
ContentsContents

 Overview of Windows Programming in C++
 Windows Desktop Applications in C++

 Windows Console Applications in C++
 Walkthrough: Creating a Standard C++ Program (C++)
 Creating a Console Application
 Win32 Application Wizard

 Application Settings, Win 32 Project Wizard
 Walkthrough: Creating Windows Desktop Applications (C++)
 Creating an Empty Windows Desktop Application
 Adding Files to an Empty Win32 Applications
 Working with Resource Files

 Resource Files
 How to: Create Resources
 How to: Manage Resources
 How to: Include Resources at Compile Time

 Resource Identifiers (Symbols)
 How to: Create Symbols
 How to: Manage Symbols
 Predefined Symbol IDs

 ATL Predefined Symbols
 MFC Predefined Symbols
 Win32 Predefined Symbols

 Resource Editors
 Accelerator Editor

 Accelerator Keys
 Binary Editor
 Dialog Editor

 How to: Create a Dialog Box
 Dialog Box Controls

 How to: Add, Edit, or Delete Controls
 How to: Layout Controls
 How to: Define Control Access and Values

 Image Editor for Icons
 How to: Create an Icon or Other Image
 How to: Edit an Image
 How to: Use a Drawing Tool
 How to: Work with Color
 Accelerator Keys

 Menu Editor
 Menu Commands

 String Editor
 Toolbar Editor
 Version Information Editor

 Active Template Library (ATL)
 ATL COM Desktop Components
 Active Template Library (ATL) Concepts

 Active Template Library (ATL) Tutorial
 Creating the Project (ATL Tutorial, Part 1)
 Adding a Control (ATL Tutorial, Part 2)
 Adding a Property to the Control (ATL Tutorial, Part 3)
 Changing the Drawing Code (ATL Tutorial, Part 4)
 Adding an Event (ATL Tutorial, Part 5)
 Adding a Property Page (ATL Tutorial, Part 6)
 Putting the Control on a Web Page (ATL Tutorial, Part 7)

 Introduction to COM and ATL
 Introduction to COM

 Interfaces (ATL)
 IUnknown
 Reference Counting
 QueryInterface
 Marshaling

 Aggregation
 Introduction to ATL

 Using a Template Library
 Scope of ATL
 Recommendations for Choosing Between ATL and MFC

 Fundamentals of ATL COM Objects
 Implementing CComObjectRootEx
 Implementing CComObject, CComAggObject, and CComPolyObject
 Supporting IDispatch and IErrorInfo
 Supporting IDispEventImpl
 Changing the Default Class Factory and Aggregation Model
 Creating an Aggregated Object

 Dual Interfaces and ATL
 Implementing a Dual Interface
 Multiple Dual Interfaces
 nonextensible Attribute
 Dual Interfaces and Events

 ATL Collections and Enumerators
 ATL Collection and Enumerator Classes
 Design Principles for Collection and Enumerator Interfaces
 Implementing a C++ Standard Library-Based Collection

 ATL Copy Policy Classes
 ATL Composite Control Fundamentals

 Inserting a Composite Control
 Modifying the ATL Project
 Adding Functionality to the Composite Control
 Building and Testing the ATL Project

 ATL Control Containment FAQ
 ATL COM Property Pages

 Specifying Property Pages
 Implementing Property Pages

 Example: Implementing a Property Page

 ATL Support for DHTML Controls
 Identifying the Elements of the DHTML Control Project
 Calling C++ Code from DHTML
 Creating an ATL DHTML Control
 Testing the ATL DHTML Control
 Modifying the ATL DHTML Control
 Testing the Modified ATL DHTML Control

 ATL Connection Points
 ATL Connection Point Classes
 Adding Connection Points to an Object
 ATL Connection Point Example

 Event Handling and ATL
 Event Handling Principles
 Implementing the Event Handling Interface
 Using IDispEventImpl
 Using IDispEventSimpleImpl
 ATL Event Handling Summary

 ATL and the Free Threaded Marshaler
 Specifying the Threading Model for a Project (ATL)
 ATL Module Classes
 ATL Services

 CAtlServiceModuleT::Start Function
 CAtlServiceModuleT::ServiceMain Function
 CAtlServiceModuleT::Run Function
 CAtlServiceModuleT::Handler Function
 Registry Entries
 DCOMCNFG
 Debugging Tips

 Using Task Manager
 Displaying Assertions
 Running the Program as a Local Server

 ATL Window Classes

 Introduction to ATL Window Classes
 Using a Window
 Implementing a Window

 Adding an ATL Message Handler
 Message Maps (ATL)
 Message Handler Functions

 CommandHandler
 MessageHandler
 NotifyHandler

 Implementing a Window with CWindowImpl
 Implementing a Dialog Box
 Using Contained Windows
 Understanding Window Traits

 ATL Collection Classes
 ATL Registry Component (Registrar)

 Creating Registrar Scripts
 Understanding Backus Nauer Form (BNF) Syntax
 Understanding Parse Trees
 Registry Scripting Examples
 Using Replaceable Parameters (The Registrar's Preprocessor)
 Invoking Scripts

 Setting Up a Static Link to the Registrar Code (C++ Only)
 Programming with ATL and C Run-Time Code

 Benefits and Tradeoffs of the Method Used to Link to the CRT
 Linking to the CRT in Your ATL Project

 Programming with CComBSTR (ATL)
 ATL Encoding Reference
 ATL Utilities Reference

 ATL Class Overview
 Class Factories Classes
 Class Information Classes
 Collection Classes

 COM Modules Classes
 Composite Controls Classes
 Connection Points Classes
 Control Containment Classes
 Controls: General Support Classes
 Data Transfer Classes
 Data Types Classes
 Debugging and Exceptions Classes
 Dual Interfaces Classes
 Enumerators and Collections Classes
 Error Information Classes
 File Handling Classes
 Interface Pointers Classes
 IUnknown Implementation Classes
 Memory Management Classes
 MMC Snap-In Classes
 Object Safety Classes
 Persistence Classes
 Properties and Property Pages Classes
 Registry Support Classes
 Running Objects Classes
 Security Classes
 Service Provider Support Classes
 Site Information Classes
 String and Text Classes
 Tear-Off Interfaces Classes
 Thread Pooling Classes
 Threading Models and Critical Sections Classes
 UI Support Classes
 Utility Classes
 Windows Support Classes

 Reference

 ATL Classes and structs
 _ATL_BASE_MODULE70 Structure
 _ATL_COM_MODULE70 Structure
 _ATL_FUNC_INFO Structure
 _ATL_MODULE70 Structure
 _ATL_WIN_MODULE70 Structure
 _AtlCreateWndData Structure
 ATL_DRAWINFO Structure
 _U_MENUorID Class
 _U_RECT Class
 _U_STRINGorID Class
 CA2AEX Class
 CA2CAEX Class
 CA2WEX Class
 CAccessToken Class
 CAcl Class
 CAdapt Class
 CAtlArray Class
 CAtlAutoThreadModule Class
 CAtlAutoThreadModuleT Class
 CAtlBaseModule Class
 CAtlComModule Class
 CAtlDebugInterfacesModule Class
 CAtlDllModuleT Class
 CAtlException Class
 CAtlExeModuleT Class
 CAtlFile Class
 CAtlFileMapping Class
 CAtlFileMappingBase Class
 CAtlList Class
 CAtlMap Class
 CAtlModule Class

 CAtlModuleT Class
 CAtlPreviewCtrlImpl Class
 CAtlServiceModuleT Class
 CAtlTemporaryFile Class
 CAtlTransactionManager Class
 CAtlWinModule Class
 CAutoPtr Class
 CAutoPtrArray Class
 CAutoPtrElementTraits Class
 CAutoPtrList Class
 CAutoRevertImpersonation Class
 CAutoVectorPtr Class
 CAutoVectorPtrElementTraits Class
 CAxDialogImpl Class
 CAxWindow Class
 CAxWindow2T Class
 CBindStatusCallback Class
 CComAggObject Class
 CComAllocator Class
 CComApartment Class
 CComAutoCriticalSection Class
 CComAutoDeleteCriticalSection Class
 CComAutoThreadModule Class
 CComBSTR Class
 CComCachedTearOffObject Class
 CComClassFactory Class
 CComClassFactory2 Class
 CComClassFactoryAutoThread Class
 CComClassFactorySingleton Class
 CComCoClass Class
 CComCompositeControl Class
 CComContainedObject Class

 CComControl Class
 CComControlBase Class
 CComCriticalSection Class
 CComCritSecLock Class
 CComCurrency Class
 CComDynamicUnkArray Class
 CComEnum Class
 CComEnumImpl Class
 CComEnumOnSTL Class
 CComFakeCriticalSection Class
 CComGITPtr Class
 CComHeap Class
 CComHeapPtr Class
 CComModule Class
 CComMultiThreadModel Class
 CComMultiThreadModelNoCS Class
 CComObject Class
 CComObjectGlobal Class
 CComObjectNoLock Class
 CComObjectRoot Class
 CComObjectRootEx Class
 CComObjectStack Class
 CComPolyObject Class
 CComPtr Class
 CComPtrBase Class
 CComQIPtr Class
 CComQIPtrElementTraits Class
 CComSafeArray Class
 CComSafeArrayBound Class
 CComSafeDeleteCriticalSection Class
 CComSimpleThreadAllocator Class
 CComSingleThreadModel Class

 CComTearOffObject Class
 CComUnkArray Class
 CComVariant Class
 CContainedWindowT Class
 CCRTAllocator Class
 CCRTHeap Class
 CDacl Class
 CDebugReportHook Class
 CDefaultCharTraits Class
 CDefaultCompareTraits Class
 CDefaultElementTraits Class
 CDefaultHashTraits Class
 CDialogImpl Class
 CDynamicChain Class
 CElementTraits Class
 CElementTraitsBase Class
 CFirePropNotifyEvent Class
 CGlobalHeap Class
 CHandle Class
 CHeapPtr Class
 CHeapPtrBase Class
 CHeapPtrElementTraits Class
 CHeapPtrList Class
 CInterfaceArray Class
 CInterfaceList Class
 CLocalHeap Class
 CMessageMap Class
 CNonStatelessWorker Class
 CNoWorkerThread Class
 CPathT Class
 CPrimitiveElementTraits Class
 CPrivateObjectSecurityDesc Class

 CRBMap Class
 CRBMultiMap Class
 CRBTree Class
 CRegKey Class
 CRTThreadTraits Class
 CSacl Class
 CSecurityAttributes Class
 CSecurityDesc Class
 CSid Class
 CSimpleArray Class
 CSimpleArrayEqualHelper Class
 CSimpleArrayEqualHelperFalse Class
 CSimpleDialog Class
 CSimpleMap Class
 CSimpleMapEqualHelper Class
 CSimpleMapEqualHelperFalse Class
 CSnapInItemImpl Class
 CSnapInPropertyPageImpl Class
 CSocketAddr Class
 CStockPropImpl Class
 CStringElementTraits Class
 CStringElementTraitsI Class
 CStringRefElementTraits Class
 CThreadPool Class
 CTokenGroups Class
 CTokenPrivileges Class
 CUrl Class
 CW2AEX Class
 CW2CWEX Class
 CW2WEX Class
 CWin32Heap Class
 CWindow Class

 CWindowImpl Class
 CWinTraits Class
 CWinTraitsOR Class
 CWndClassInfo Class
 CWorkerThread Class
 IAtlAutoThreadModule Class
 IAtlMemMgr Class
 IAxWinAmbientDispatch Interface
 IAxWinAmbientDispatchEx Interface
 IAxWinHostWindow Interface
 IAxWinHostWindowLic Interface
 ICollectionOnSTLImpl Class
 IConnectionPointContainerImpl Class
 IConnectionPointImpl Class
 IDataObjectImpl Class
 IDispatchImpl Class
 IDispEventImpl Class
 IDispEventSimpleImpl Class
 IDocHostUIHandlerDispatch Interface
 IEnumOnSTLImpl Class
 IObjectSafetyImpl Class
 IObjectWithSiteImpl Class
 IOleControlImpl Class
 IOleInPlaceActiveObjectImpl Class
 IOleInPlaceObjectWindowlessImpl Class
 IOleObjectImpl Class
 IPerPropertyBrowsingImpl Class
 IPersistPropertyBagImpl Class
 IPersistStorageImpl Class
 IPersistStreamInitImpl Class
 IPointerInactiveImpl Class
 IPropertyNotifySinkCP Class

 IPropertyPage2Impl Class
 IPropertyPageImpl Class
 IProvideClassInfo2Impl Class
 IQuickActivateImpl Class
 IRegistrar Interface
 IRunnableObjectImpl Class
 IServiceProviderImpl Class
 ISpecifyPropertyPagesImpl Class
 ISupportErrorInfoImpl Class
 IThreadPoolConfig Interface
 IViewObjectExImpl Class
 IWorkerThreadClient Interface
 Win32ThreadTraits Class
 Worker Archetype

 ATL_URL_SCHEME
 ATL Functions

 ATL HTTP Utility Functions
 ATL Text Encoding Functions
 ATL Path Functions
 COM Map Global Functions
 Composite Control Global Functions
 Connection Point Global Functions
 Debugging and Error Reporting Global Functions
 Device Context Global Functions
 Event Handling Global Functions
 Marshaling Global Functions
 Pixel-HIMETRIC Conversion Global Functions
 Registry and TypeLib Global Functions
 Security Global Functions
 Security Identifier Global Functions
 Server Registration Global Functions
 WinModule Global Functions

 ATL Macros
 Aggregation and Class Factory Macros
 Category Macros
 COM Map Macros
 COM Interface Entry Macros
 Compiler Options Macros
 Composite Control Macros
 Connection Point Macros
 Debugging and Error Reporting Macros
 Exception Handling Macros
 Message Map Macros (ATL)
 Object Map Macros
 Object Status Macros
 Property Map Macros
 Registry Data Exchange Macros
 Registry Macros
 Service Map Macros
 Snap-In Object Macros
 String Conversion Macros
 Window Class Macros
 Windows Messages Macros

 ATL Operators
 ATL Global Variables
 ATL Typedefs
 ATL Wizards and Dialog Boxes

 Application Settings, ATL Project Wizard
 ATL Active Server Page Component Wizard, ASP
 ATL Active Server Page Component Wizard, Options
 ATL Active Server Page Component Wizard
 ATL COM+ 1.0 Component Wizard
 ATL Control Wizard, Appearance
 ATL Control Wizard, Interfaces

 ATL Control Wizard, Options
 ATL Control Wizard, Stock Properties,
 ATL Control Wizard
 ATL Dialog Wizard
 ATL OLE DB Consumer Wizard
 ATL OLE DB Provider Wizard
 ATL Project Wizard
 ATL Property Page Wizard, Options
 ATL Property Page Wizard, Strings
 ATL Property Page Wizard
 ATL Simple Object Wizard, Options
 ATL Simple Object Wizard
 ATL Wizards and Dialog Boxes
 COM+ 1.0, ATL COM+ 1.0 Component Wizard
 Adding a New Interface in an ATL Project
 Adding an ATL Active Server Page Component
 Adding an ATL COM+ 1.0 Component
 Adding an ATL Control
 Adding an ATL Dialog Box
 Adding an ATL OLE DB Consumer
 Adding an ATL OLE DB Provider
 Adding an ATL Property Page
 Adding an ATL Simple Object
 Adding Objects and Controls to an ATL Project
 Creating an ATL Project
 COM+ 1.0 Support in ATL Projects
 Default ATL Project Configurations
 Making an ATL Object Noncreatable
 MFC Support in ATL Projects
 Specifying Compiler Optimization for an ATL Project

 Microsoft Foundation Classes (MFC)
 MFC and ATL

 MFC Desktop Applications
 MFC Concepts

 General MFC Topics
 Using the MFC Source Files

 An Example of the Comments
 -- Implementation Comment
 -- Constructors Comment
 -- Attributes Comment
 -- Operations Comment
 -- Overridables Comment

 MFC Library Versions
 MFC MBCS DLL Add-on

 Using the Classes to Write Applications for Windows
 Framework (MFC)
 SDI and MDI
 Documents, Views, and the Framework
 Wizards and the Resource Editors

 Building on the Framework
 Sequence of Operations for Building MFC Applications
 Sequence of Operations for Creating OLE Applications
 Sequence of Operations for Creating ActiveX Controls
 Sequence of Operations for Creating Database Applications
 How the Framework Calls Your Code

 CWinApp: The Application Class
 CWinApp and the MFC Application Wizard
 Overridable CWinApp Member Functions
 InitInstance Member Function
 Run Member Function
 ExitInstance Member Function
 OnIdle Member Function
 Special CWinApp Services

 Document Templates and the Document-View Creation Process

 Document Template Creation
 Document-View Creation
 Relationships Among MFC Objects
 Creating New Documents, Windows, and Views

 Managing the State Data of MFC Modules
 Exported DLL Function Entry Points
 COM Interface Entry Points
 Window Procedure Entry Points

 Idle Loop Processing
 Support for Activation Contexts in the MFC Module State
 Isolation of the MFC Common Controls Library
 Build Requirements for Windows Vista Common Controls

 Deprecated ANSI APIs
 How to: Add Restart Manager Support
 Dynamic Layout

 Using CObject
 Deriving a Class from CObject

 Specifying Levels of Functionality
 Accessing Run-Time Class Information
 Dynamic Object Creation
 CObject Class: Frequently Asked Questions

 Do I Have to Derive New Classes from CObject?
 What Does it Cost me to Derive a Class from CObject?

 Collections
 Recommendations for Choosing a Collection Class
 Template-Based Classes
 How to: Make a Type-Safe Collection
 Accessing All Members of a Collection

 Deleting All Objects in a CObject Collection
 Creating Stack and Queue Collections

 Exception Handling in MFC
 Exceptions: Changes to Exception Macros in Version 3.0

 Exceptions: Catching and Deleting Exceptions
 Exceptions: Converting from MFC Exception Macros
 Exceptions: Using MFC Macros and C++ Exceptions
 Exceptions: Examining Exception Contents
 Exceptions: Freeing Objects in Exceptions
 Exceptions: Throwing Exceptions from Your Own Functions
 Exceptions: Exceptions in Constructors
 Exceptions: Database Exceptions
 Exceptions: OLE Exceptions

 Files in MFC
 Opening Files
 Reading and Writing Files
 Closing Files
 Accessing File Status

 Interface Elements
 MAPI

 MAPI Support in MFC
 MAPI Samples

 Memory Management
 Memory Management: Frame Allocation
 Memory Management: Heap Allocation

 Memory Management: Examples
 Memory Management: Resizable Memory Blocks

 Message Handling and Mapping
 Messages and Commands in the Framework

 Messages
 Message Handlers
 Message Categories
 Mapping Messages
 User-Interface Objects and Command IDs

 Command IDs
 Standard Commands

 Command Targets
 How the Framework Calls a Handler

 Message Sending and Receiving
 How Noncommand Messages Reach Their Handlers
 Command Routing
 Command Routing Illustration
 OnCmdMsg Handler
 Overriding the Standard Command Routing

 How the Framework Searches Message Maps
 Where to Find Message Maps
 Derived Message Maps

 Declaring Message Handler Functions
 Handlers for Standard Windows Messages
 Handlers for Commands and Control Notifications
 Handlers for Message-Map Ranges
 Handling Reflected Messages

 How to: Display Command Information in the Status Bar
 How to: Create a Message Map for a Template Class

 MFC COM
 Active Document Containment

 Example of Active Document Containment: Office Binder
 Creating an Active Document Container Application
 Active Document Containers

 Help Menu Merging
 Programmatic Printing
 Message Handling and Command Targets

 Active Document Servers
 Active Documents

 Automation
 Automation Clients

 Automation Clients: Using Type Libraries
 Automation Servers

 Automation Servers: Object-Lifetime Issues
 Connection Points

 MFC Internet Programming Basics
 Internet-Related MFC Classes
 Internet Information by Topic
 Internet Information by Task
 Active Technology on the Internet
 WinInet Basics
 HTML Basics

 MFC Internet Programming Tasks
 Application Design Choices
 Writing MFC Applications
 ActiveX Controls on the Internet
 Upgrading an Existing ActiveX Control
 Asynchronous Monikers on the Internet
 Testing Internet Applications
 Internet Security (C++)

 OLE in MFC
 OLE Background

 OLE Background: Linking and Embedding
 OLE Background: Containers and Servers
 OLE Background: Implementation Strategies
 OLE Background: MFC Implementation

 Activation (C++)
 Activation: Verbs

 Containers
 Containers: Implementing a Container
 Containers: Client Items
 Containers: Client-Item Notifications
 Containers: Client-Item States
 Containers: Compound Files
 Containers: User-Interface Issues

 Containers: Advanced Features
 Data Objects and Data Sources (OLE)

 Data Objects and Data Sources: Creation and Destruction
 Data Objects and Data Sources: Manipulation

 Drag and Drop (OLE)
 Drag and Drop: Implementing a Drop Source
 Drag and Drop: Implementing a Drop Target
 Drag and Drop: Customizing

 Menus and Resources (OLE)
 Menus and Resources: Container Additions
 Menus and Resources: Server Additions
 Menus and Resources: Menu Merging

 Registration
 Servers

 Servers: Implementing a Server
 Servers: Implementing Server Documents
 Servers: Implementing In-Place Frame Windows
 Servers: Server Items
 Servers: User-Interface Issues

 Trackers
 Trackers: Implementing Trackers in Your OLE Application

 How to: Implement Tracking in Your Code
 Rubber-Banding and Trackers

 Serialization in MFC
 Serialization: Making a Serializable Class
 Serialization: Serializing an Object

 What Is a CArchive Object
 Two Ways to Create a CArchive Object
 Using the CArchive << and >> Operators
 Storing and Loading CObjects via an Archive

 Serialization: Serialization vs. Database Input-Output
 Recommendations for Handling Input-Output

 File Menu in an MFC Database Application
 User Interface Elements (MFC)

 ActiveX Controls
 MFC ActiveX Controls

 MFC ActiveX Controls: Optimization
 MFC ActiveX Controls: Painting an ActiveX Control
 MFC ActiveX Controls: Events
 MFC ActiveX Controls: Adding Stock Events to an ActiveX Control
 MFC ActiveX Controls: Adding Custom Events
 MFC ActiveX Controls: Methods
 MFC ActiveX Controls: Adding Stock Methods
 MFC ActiveX Controls: Adding Custom Methods
 MFC ActiveX Controls: Returning Error Codes From a Method
 MFC ActiveX Controls: Properties
 MFC ActiveX Controls: Adding Stock Properties
 MFC ActiveX Controls: Adding Custom Properties
 MFC ActiveX Controls: Advanced Property Implementation
 MFC ActiveX Controls: Accessing Ambient Properties
 MFC ActiveX Controls: Property Pages
 MFC ActiveX Controls: Adding Another Custom Property Page
 MFC ActiveX Controls: Using Stock Property Pages
 MFC ActiveX Controls: Creating an Automation Server
 MFC ActiveX Controls: Using Fonts
 MFC ActiveX Controls: Using Pictures in an ActiveX Control
 MFC ActiveX Controls: Advanced Topics
 MFC ActiveX Controls: Distributing ActiveX Controls
 MFC ActiveX Controls: Licensing an ActiveX Control
 MFC ActiveX Controls: Localizing an ActiveX Control
 MFC ActiveX Controls: Serializing
 MFC ActiveX Controls: Subclassing a Windows Control
 MFC ActiveX Controls: Using Data Binding in an ActiveX Control

 ActiveX Control Containers

 Containers for ActiveX Controls
 ActiveX Control Containers: Manually Enabling ActiveX Control Containment
 ActiveX Control Containers: Inserting a Control into a Control Container

Application
 ActiveX Control Containers: Connecting an ActiveX Control to a Member

Variable
 ActiveX Control Containers: Handling Events from an ActiveX Control
 ActiveX Control Containers: Viewing and Modifying Control Properties
 ActiveX Control Containers: Programming ActiveX Controls in an ActiveX

Control Container
 ActiveX Control Containers: Using Controls in a Non-Dialog Container

 Testing Properties and Events with Test Container
 Clipboard

 Clipboard: When to Use Each Clipboard Mechanism
 Clipboard: Using the Windows Clipboard
 Clipboard: Using the OLE Clipboard Mechanism

 Clipboard: Copying and Pasting Data
 Clipboard: Adding Other Formats

 Controls (MFC)
 Common Control Sample List
 Making and Using Controls

 Using Common Controls in a Dialog Box
 Using the Dialog Editor to Add Controls
 Adding Controls By Hand
 Deriving Controls from a Standard Control
 Using a Common Control as a Child Window
 Receiving Notification from Common Controls

 Using CAnimateCtrl
 Using an Animation Control
 Notifications Sent by Animation Controls

 Using CDateTimeCtrl
 Creating the Date and Time Picker Control
 Date and Time Picker Control Examples

 Accessing the Embedded Month Calendar Control
 Using Custom Format Strings in a Date and Time Picker Control
 Using Callback Fields in a Date and Time Picker Control
 Processing Notification Messages in Date and Time Picker Controls

 Using CComboBoxEx
 Creating an Extended Combo Box Control
 Using Image Lists in an Extended Combo Box Control
 Setting the Images for an Individual Item
 Processing Notification Messages in Extended Combo Box Controls

 Using CHeaderCtrl
 Header Control and List Control
 Header Control Examples
 Header Items in a Header Control
 Customizing the Header Item's Appearance
 Providing Drag-and-Drop Support for Header Items
 Using Image Lists with Header Controls
 Making Owner-Drawn Header Controls
 Working with a Header Control
 Creating the Header Control
 Adding Items to the Header Control
 Ordering Items in the Header Control
 Processing Header-Control Notifications

 Using CHotKeyCtrl
 Using a Hot Key Control
 Setting a Hot Key
 Global Hot Keys
 Thread-Specific Hot Keys

 Using CImageList
 Types of Image Lists
 Using an Image List
 Manipulating Image Lists
 Drawing Images from an Image List

 Image Overlays in Image Lists
 Dragging Images from an Image List
 Image Information in Image Lists

 Using CListCtrl
 List Control and List View
 List Items and Image Lists
 Callback Items and the Callback Mask
 Creating the List Control
 Creating the Image Lists
 Adding Columns to the Control (Report View)
 Adding Items to the Control
 Scrolling, Arranging, Sorting, and Finding in List Controls
 Implementing Working Areas in List Controls
 Processing Notification Messages in List Controls
 Changing List Control Styles
 Virtual List Controls
 Destroying the List Control

 Using CMonthCalCtrl
 Creating the Month Calendar Control
 Month Calendar Control Examples
 Processing Notification Messages in Month Calendar Controls
 Setting the Day State of a Month Calendar Control

 Using CProgressCtrl
 Styles for the Progress Control
 Settings for the Progress Control
 Manipulating the Progress Control

 Using CReBarCtrl
 CReBar vs. CReBarCtrl
 Creating a Rebar Control
 Rebar Controls and Bands
 Using an Image List with a Rebar Control
 Using a Dialog Bar with a Rebar Control

 Processing Notification Messages in a Rebar Control
 Using CRichEditCtrl

 Overview of the Rich Edit Control
 Classes Related to Rich Edit Controls
 Rich Edit Control Examples
 Character Formatting in Rich Edit Controls
 Paragraph Formatting in Rich Edit Controls
 Current Selection in a Rich Edit Control
 Word Breaks in Rich Edit Controls
 Clipboard Operations in Rich Edit Controls
 Stream Operations in Rich Edit Controls
 Printing in Rich Edit Controls
 Bottomless Rich Edit Controls
 Notifications from a Rich Edit Control

 Using CSliderCtrl
 Using Slider Controls
 Slider Control Styles
 Slider Control Member Functions
 Slider Notification Messages

 Using CSpinButtonCtrl
 Spin Button Styles
 Spin Button Member Functions

 Using CStatusBarCtrl
 Methods of Creating a Status Bar
 Settings for the CStatusBarCtrl
 Using CStatusBarCtrl to Create a CStatusBarCtrl Object
 Setting the Mode of a CStatusBarCtrl Object
 Initializing the Parts of a CStatusBarCtrl Object
 Using Tooltips in a CStatusBarCtrl Object

 Using CTabCtrl
 Tab Controls and Property Sheets
 Tabs and Tab Control Attributes

 Making Owner-Drawn Tabs
 Working with a Tab Control
 Creating the Tab Control
 Adding Tabs to a Tab Control
 Processing Tab Control Notification Messages

 Using CToolBarCtrl
 Methods of Creating a Toolbar
 Settings for the Toolbar Control
 Creating a CToolBarCtrl Object
 Using Image Lists in a Toolbar Control
 Using Drop-Down Buttons in a Toolbar Control
 Customizing the Appearance of a Toolbar Control
 Handling Tool Tip Notifications
 Handling Customization Notifications

 Using CToolTipCtrl
 Methods of Creating Tool Tips
 Settings for the Tool Tip Control
 Using CToolTipCtrl to Create and Manipulate a CToolTipCtrl Object
 Manipulating the Tool Tip Control

 Using CTreeCtrl
 CTreeCtrl vs. CTreeView
 Using Tree Controls
 Communicating with a Tree Control
 Tree Control Styles
 Tree Control Parent and Child Items
 Tree Control Item Position
 Tree Control Item Labels
 Tree Control Label Editing
 Tree Control Item States Overview
 Tree Control Image Lists
 Tree Control Item Selection
 Tree Control Drag-and-Drop Operations

 Tree Control Item Information
 Tree Control Notification Messages

 Control Bars
 Dialog Bars
 Dialog Boxes

 Example: Displaying a Dialog Box via a Menu Command
 Dialog Sample List
 Dialog-Box Components in the Framework
 Modal and Modeless Dialog Boxes
 Property Sheets and Property Pages (MFC)
 Creating the Dialog Resource
 Creating a Dialog Class with Code Wizards

 Creating Your Dialog Class
 Life Cycle of a Dialog Box

 Creating and Displaying Dialog Boxes
 Creating Modal Dialog Boxes
 Creating Modeless Dialog Boxes
 Using a Dialog Template in Memory
 Setting the Dialog Box’s Background Color
 Initializing the Dialog Box
 Handling Windows Messages in Your Dialog Box
 Retrieving Data from the Dialog Object
 Closing the Dialog Box
 Destroying the Dialog Box

 Dialog Data Exchange and Validation
 Dialog Data Exchange
 Dialog Data Validation

 Type-Safe Access to Controls in a Dialog Box
 Type-Safe Access to Controls Without Code Wizards
 Type-Safe Access to Controls With Code Wizards

 Mapping Windows Messages to Your Class
 Commonly Overridden Member Functions

 Commonly Added Member Functions
 Common Dialog Classes
 Dialog Boxes in OLE
 Walkthrough: Adding a CTaskDialog to an Application

 Document-View Architecture
 Document-View Sample List
 A Portrait of the Document-View Architecture
 Advantages of the Document-View Architecture
 Document and View Classes Created by the MFC Application Wizard
 Alternatives to the Document-View Architecture
 Using Documents

 Deriving a Document Class from CDocument
 Managing Data with Document Data Variables
 Serializing Data to and from Files
 Bypassing the Serialization Mechanism
 Handling Commands in the Document

 Using Views
 Derived View Classes Available in MFC
 Drawing in a View
 Interpreting User Input Through a View
 Role of the View in Printing
 Scrolling and Scaling Views

 Multiple Document Types, Views, and Frame Windows
 Initializing and Cleaning Up Documents and Views

 Initializing Documents and Views
 Cleaning Up Documents and Views

 Adding Multiple Views to a Single Document
 Form Views (MFC)

 Inserting a Form into a Project
 HTML Help: Context-Sensitive Help for Your Programs
 MDI Tabbed Groups
 Menus (MFC)

 Menu Sample List
 Manipulating Menus During Program Execution
 How to: Update User-Interface Objects

 When Update Handlers Are Called
 ON_UPDATE_COMMAND_UI Macro
 The CCmdUI Class

 OLE (MFC)
 Printing and Print Preview

 Printing
 How Default Printing Is Done
 Multipage Documents
 Headers and Footers
 Allocating GDI Resources

 Print Preview Architecture
 Property Sheets (MFC)

 Property Sheets and Property Pages in MFC
 Using Property Sheets in Your Application
 Adding Controls to a Property Sheet
 Exchanging Data
 Creating a Modeless Property Sheet
 Handling the Apply Button
 Property Sheets as Wizards

 Ribbon Designer (MFC)
 How to: Convert an Existing MFC Ribbon to a Ribbon Resource
 How to: Customize the Application Button
 How to: Customize the Quick Access Toolbar
 How to: Add Ribbon Controls and Event Handlers
 How to: Load a Ribbon Resource from an MFC Application
 Walkthrough: Creating a Ribbon Application By Using MFC
 Walkthrough: Updating the MFC Scribble Application (Part 1)
 Walkthrough: Updating the MFC Scribble Application (Part 2)

 Status Bars

 Status Bar Implementation in MFC
 Updating the Text of a Status-Bar Pane

 Tool Tips
 Tool Tips in Windows Not Derived from CFrameWnd

 Enabling Tool Tips
 Handling TTN_NEEDTEXT Notification for Tool Tips
 TOOLTIPTEXT Structure

 Toolbars
 Toolbar Sample List
 MFC Toolbar Implementation

 Toolbar Fundamentals
 Docking and Floating Toolbars
 Toolbar Tool Tips
 Working with the Toolbar Control
 Using Your Old Toolbars

 Visualization Manager
 Windows

 Window Objects
 Relationship Between a C++ Window Object and an HWND
 Derived Window Classes
 Creating Windows
 Destroying Window Objects
 Detaching a CWnd from Its HWND
 Working with Window Objects
 Device Contexts
 Graphic Objects

 Frame Windows
 Frame-Window Classes
 Frame-Window Styles (C++)
 What Frame Windows Do
 Using Frame Windows

 Windows Sockets

 Windows Sockets in MFC
 Windows Sockets: Background
 Windows Sockets: Stream Sockets
 Windows Sockets: Datagram Sockets
 Windows Sockets: Using Sockets with Archives
 Windows Sockets: Sequence of Operations
 Windows Sockets: Example of Sockets Using Archives
 Windows Sockets: How Sockets with Archives Work
 Windows Sockets: Using Class CAsyncSocket
 Windows Sockets: Deriving from Socket Classes
 Windows Sockets: Socket Notifications
 Windows Sockets: Blocking
 Windows Sockets: Byte Ordering
 Windows Sockets: Converting Strings
 Windows Sockets: Ports and Socket Addresses

 Win32 Internet Extensions (WinInet)
 How WinInet Makes It Easier to Create Internet Client Applications
 How MFC Makes It Easier to Create Internet Client Applications
 MFC Classes for Creating Internet Client Applications
 Prerequisites for Internet Client Classes
 Writing an Internet Client Application Using MFC WinInet Classes
 Steps in a Typical Internet Client Application
 Steps in a Typical FTP Client Application
 Steps in a Typical FTP Client Application to Delete a File
 Steps in a Typical Gopher Client Application
 Steps in a Typical HTTP Client Application

 Hierarchy Chart
 Hierarchy Chart Categories

 Customization for MFC
 Keyboard and Mouse Customization
 User-defined Tools
 Security Implications of Customization

 MFC Technical Notes
 Technical Notes by Category
 Technical Notes by Number
 TN001: Window Class Registration
 TN002: Persistent Object Data Format
 TN003: Mapping of Windows Handles to Objects
 TN006: Message Maps
 TN011: Using MFC as Part of a DLL
 TN014: Custom Controls
 TN016: Using C++ Multiple Inheritance with MFC
 TN017: Destroying Window Objects
 TN020: ID Naming and Numbering Conventions
 TN021: Command and Message Routing
 TN022: Standard Commands Implementation
 TN023: Standard MFC Resources
 TN024: MFC-Defined Messages and Resources
 TN025: Document, View, and Frame Creation
 TN026: DDX and DDV Routines
 TN028: Context-Sensitive Help Support
 TN029: Splitter Windows
 TN030: Customizing Printing and Print Preview
 TN031: Control Bars
 TN032: MFC Exception Mechanism
 TN033: DLL Version of MFC
 TN035: Using Multiple Resource Files and Header Files with Visual C++
 TN036: Using CFormView with AppWizard and ClassWizard
 TN037: Multithreaded MFC 2.1 Applications
 TN038: MFC-OLE IUnknown Implementation
 TN039: MFC-OLE Automation Implementation
 TN040: MFC-OLE In-Place Resizing and Zooming
 TN041: MFC-OLE1 Migration to MFC-OLE 2
 TN042: ODBC Driver Developer Recommendations

 TN043: RFX Routines
 TN044: MFC Support for DBCS
 TN045: MFC-Database Support for Long Varchar-Varbinary
 TN046: Commenting Conventions for the MFC Classes
 TN047: Relaxing Database Transaction Requirements
 TN048: Writing ODBC Setup and Administration Programs for MFC Database

Applications
 TN049: MFC-OLE MBCS to Unicode Translation Layer (MFCANS32)
 TN050: MFC-OLE Common Dialogs (MFCUIx32)
 TN051: Using CTL3D Now and in the Future
 TN053: Custom DFX Routines for DAO Database Classes
 TN054: Calling DAO Directly While Using MFC DAO Classes
 TN055: Migrating MFC ODBC Database Class Applications to MFC DAO Classes
 TN056: Installation of Localized MFC Components
 TN057: Localization of MFC Components
 TN058: MFC Module State Implementation
 TN059: Using MFC MBCS-Unicode Conversion Macros
 TN060: The New Windows Common Controls
 TN061: ON_NOTIFY and WM_NOTIFY Messages
 TN062: Message Reflection for Windows Controls
 TN063: Debugging Internet MFC extension DLLs
 TN064: Apartment-Model Threading in ActiveX Controls
 TN065: Dual-Interface Support for OLE Automation Servers
 TN066: Common MFC 3.x to 4.0 Porting Issues
 TN068: Performing Transactions with the Microsoft Access 7 ODBC Driver
 TN070: MFC Window Class Names
 TN071: MFC IOleCommandTarget Implementation

 Class Library Overview
 General Class Design Philosophy

 Application Framework
 Relationship to the C-Language API

 Root Class: CObject
 MFC Application Architecture Classes

 Application and Thread Support Classes
 Command Routing Classes
 Document Classes
 View Classes (Architecture)
 Frame Window Classes (Architecture)
 Document-Template Classes

 Window, Dialog, and Control Classes
 Frame Window Classes (Windows)
 View Classes (Windows)
 Dialog Box Classes
 Control Classes
 Control Bar Classes

 Drawing and Printing Classes
 Output (Device Context) Classes
 Drawing Tool Classes

 Simple Data Type Classes
 Array, List, and Map Classes

 Template Classes for Arrays, Lists, and Maps
 Ready-to-Use Array Classes
 Ready-to-Use List Classes
 Ready-to-Use Map Classes

 File and Database Classes
 File I-O Classes
 OLE DB Classes
 DAO Classes
 ODBC Classes

 Internet and Networking Classes
 Windows Sockets Classes
 Win32 Internet Classes

 OLE Classes
 OLE Container Classes
 OLE Server Classes

 OLE Drag-and-Drop and Data Transfer Classes
 OLE Common Dialog Classes
 OLE Automation Classes
 OLE Control Classes
 Active Document Classes
 OLE-Related Classes

 Debugging and Exception Classes
 Debugging Support Classes
 Exception Classes

 Walkthroughs (MFC)
 Walkthrough: Using the New MFC Shell Controls
 Walkthrough: Putting Controls On Toolbars
 Walkthrough: Adding a D2D Object to an MFC Project
 Walkthrough: Adding Animation to an MFC Project

 Reference
 MFC Classes

 CAccelerateDecelerateTransition Class
 CAnimateCtrl Class
 CAnimationBaseObject Class
 CAnimationColor Class
 CAnimationController Class
 CAnimationGroup Class
 CAnimationManagerEventHandler Class
 CAnimationPoint Class
 CAnimationRect Class
 CAnimationSize Class
 CAnimationStoryboardEventHandler Class
 CAnimationTimerEventHandler Class
 CAnimationValue Class
 CAnimationVariable Class
 CAnimationVariableChangeHandler Class
 CAnimationVariableIntegerChangeHandler Class

 CArchive Class
 CArchiveException Class
 CArray Class
 CAsyncMonikerFile Class
 CAsyncSocket Class
 CAutoHideDockSite Class
 CBaseKeyFrame Class
 CBasePane Class
 CBaseTabbedPane Class
 CBaseTransition Class
 CBitmap Class
 CBitmapButton Class
 CBitmapRenderTarget Class
 CBrush Class
 CButton Class
 CByteArray Class
 CCachedDataPathProperty Class
 CCheckListBox Class
 CClientDC Class
 CCmdTarget Class
 CCmdUI Class
 CColorDialog Class
 CComboBox Class
 CComboBoxEx Class
 CCommandLineInfo Class
 CCommonDialog Class
 CConnectionPoint Class
 CConstantTransition Class
 CContextMenuManager Class
 CControlBar Class
 CCreateContext Structure
 CCriticalSection Class

 CCtrlView Class
 CCubicTransition Class
 CCustomInterpolator Class
 CCustomTransition Class
 CD2DBitmap Class
 CD2DBitmapBrush Class
 CD2DBrush Class
 CD2DBrushProperties Class
 CD2DEllipse Class
 CD2DGeometry Class
 CD2DGeometrySink Class
 CD2DGradientBrush Class
 CD2DLayer Class
 CD2DLinearGradientBrush Class
 CD2DMesh Class
 CD2DPathGeometry Class
 CD2DPointF Class
 CD2DPointU Class
 CD2DRadialGradientBrush Class
 CD2DRectF Class
 CD2DRectU Class
 CD2DResource Class
 CD2DRoundedRect Class
 CD2DSizeF Class
 CD2DSizeU Class
 CD2DSolidColorBrush Class
 CD2DTextFormat Class
 CD2DTextLayout Class
 CDaoDatabase Class
 CDaoException Class
 CDaoFieldExchange Class
 CDaoQueryDef Class

 CDaoRecordset Class
 CDaoRecordView Class
 CDaoTableDef Class
 CDaoWorkspace Class
 CDatabase Class
 CDataExchange Class
 CDataPathProperty Class
 CDataRecoveryHandler Class
 CDateTimeCtrl Class
 CDBException Class
 CDBVariant Class
 CDC Class
 CDCRenderTarget Class
 CDHtmlDialog Class

 DDX_DHtml Helper Macros
 CDialog Class
 CDialogBar Class
 CDialogEx Class
 CDiscreteTransition Class
 CDocItem Class
 CDockablePane Class
 CDockablePaneAdapter Class
 CDockingManager Class
 CDockingPanesRow Class
 CDockSite Class
 CDockState Class
 CDocObjectServer Class
 CDocObjectServerItem Class
 CDocTemplate Class
 CDocument Class
 CDragListBox Class
 CDrawingManager Class

 CDumpContext Class
 CDWordArray Class
 CEdit Class
 CEditView Class
 CEvent Class
 CException Class
 CFieldExchange Class
 CFile Class
 CFileDialog Class
 CFileException Class
 CFileFind Class
 CFindReplaceDialog Class
 CFolderPickerDialog Class
 CFont Class
 CFontDialog Class
 CFontHolder Class
 CFormView Class
 CFrameWnd Class
 CFrameWndEx Class
 CFtpConnection Class
 CFtpFileFind Class
 CGdiObject Class
 CGlobalUtils Class
 CGopherConnection Class
 CGopherFile Class
 CGopherFileFind Class
 CGopherLocator Class
 CHeaderCtrl Class
 CHotKeyCtrl Class
 CHtmlEditCtrl Class
 CHtmlEditCtrlBase Class
 CHtmlEditDoc Class

 CHtmlEditView Class
 CHtmlView Class
 CHttpConnection Class
 CHttpFile Class
 CHwndRenderTarget Class
 CImageList Class
 CInstantaneousTransition Class
 CInternetConnection Class
 CInternetException Class
 CInternetFile Class
 CInternetSession Class
 CInterpolatorBase Class
 CInvalidArgException Class
 CIPAddressCtrl Class
 CJumpList Class
 CKeyboardManager Class
 CKeyFrame Class
 CLinearTransition Class
 CLinearTransitionFromSpeed Class
 CLinkCtrl Class
 CList Class
 CListBox Class
 CListCtrl Class
 CListView Class
 CLongBinary Class
 CMap Class
 CMapPtrToPtr Class
 CMapPtrToWord Class
 CMapStringToOb Class
 CMapStringToPtr Class
 CMapStringToString Class
 CMapWordToOb Class

 CMapWordToPtr Class
 CMDIChildWnd Class
 CMDIChildWndEx Class
 CMDIFrameWnd Class
 CMDIFrameWndEx Class
 CMDITabInfo Class
 CMemFile Class
 CMemoryException Class
 CMemoryState Structure
 CMenu Class
 CMenuTearOffManager Class
 CMetaFileDC Class
 CMFCAcceleratorKey Class
 CMFCAcceleratorKeyAssignCtrl Class
 CMFCAutoHideBar Class
 CMFCAutoHideButton Class
 CMFCBaseTabCtrl Class
 CMFCBaseToolBar Class
 CMFCBaseVisualManager Class
 CMFCButton Class
 CMFCCaptionBar Class
 CMFCCaptionButton Class
 CMFCCmdUsageCount Class
 CMFCColorBar Class
 CMFCColorButton Class
 CMFCColorDialog Class
 CMFCColorMenuButton Class
 CMFCColorPickerCtrl Class
 CMFCColorPopupMenu Class
 CMFCCustomColorsPropertyPage Class
 CMFCDesktopAlertDialog Class
 CMFCDesktopAlertWnd Class

 CMFCDesktopAlertWndButton Class
 CMFCDesktopAlertWndInfo Class
 CMFCDisableMenuAnimation Class
 CMFCDragFrameImpl Class
 CMFCDropDownFrame Class
 CMFCDropDownToolBar Class
 CMFCDropDownToolbarButton Class
 CMFCDynamicLayout Class
 CMFCEditBrowseCtrl Class
 CMFCFilterChunkValueImpl Class
 CMFCFontComboBox Class
 CMFCFontInfo Class
 CMFCHeaderCtrl Class
 CMFCImageEditorDialog Class
 CMFCImageEditorPaletteBar Class
 CMFCImagePaintArea Class
 CMFCKeyMapDialog Class
 CMFCLinkCtrl Class
 CMFCListCtrl Class
 CMFCMaskedEdit Class
 CMFCMenuBar Class
 CMFCMenuButton Class
 CMFCOutlookBar Class
 CMFCOutlookBarPane Class
 CMFCOutlookBarTabCtrl Class
 CMFCPopupMenu Class
 CMFCPopupMenuBar Class
 CMFCPreviewCtrlImpl Class
 CMFCPrintPreviewToolBar Class
 CMFCPropertyGridColorProperty Class
 CMFCPropertyGridCtrl Class
 CMFCPropertyGridFileProperty Class

 CMFCPropertyGridFontProperty Class
 CMFCPropertyGridProperty Class
 CMFCPropertyGridToolTipCtrl Class
 CMFCPropertyPage Class
 CMFCPropertySheet Class
 CMFCReBar Class
 CMFCRibbonApplicationButton Class
 CMFCRibbonBar Class
 CMFCRibbonBaseElement Class
 CMFCRibbonButton Class
 CMFCRibbonButtonsGroup Class
 CMFCRibbonCategory Class
 CMFCRibbonCheckBox Class
 CMFCRibbonColorButton Class
 CMFCRibbonComboBox Class
 CMFCRibbonContextCaption Class
 CMFCRibbonCustomizeDialog Class
 CMFCRibbonCustomizePropertyPage Class
 CMFCRibbonEdit Class
 CMFCRibbonFontComboBox Class
 CMFCRibbonGallery Class
 CMFCRibbonGalleryMenuButton Class
 CMFCRibbonLabel Class
 CMFCRibbonLinkCtrl Class
 CMFCRibbonMainPanel Class
 CMFCRibbonMiniToolBar Class
 CMFCRibbonPanel Class
 CMFCRibbonProgressBar Class
 CMFCRibbonQuickAccessToolBarDefaultState Class
 CMFCRibbonSeparator Class
 CMFCRibbonSlider Class
 CMFCRibbonStatusBar Class

 CMFCRibbonStatusBarPane Class
 CMFCRibbonUndoButton Class
 CMFCShellListCtrl Class
 CMFCShellTreeCtrl Class
 CMFCSpinButtonCtrl Class
 CMFCStandardColorsPropertyPage Class
 CMFCStatusBar Class
 CMFCTabCtrl Class
 CMFCTabDropTarget Class
 CMFCTabToolTipInfo Structure
 CMFCTasksPane Class
 CMFCTasksPaneTask Class
 CMFCTasksPaneTaskGroup Class
 CMFCToolBar Class
 CMFCToolBarButton Class
 CMFCToolBarComboBoxButton Class
 CMFCToolBarComboBoxEdit Class
 CMFCToolBarDateTimeCtrl Class
 CMFCToolBarEditBoxButton Class
 CMFCToolBarFontComboBox Class
 CMFCToolBarFontSizeComboBox Class
 CMFCToolBarImages Class
 CMFCToolBarMenuButton Class
 CMFCToolBarInfo Class
 CMFCToolBarsCustomizeDialog Class
 CMFCToolTipCtrl Class
 CMFCToolTipInfo Class
 CMFCVisualManager Class
 CMFCVisualManagerOffice2003 Class
 CMFCVisualManagerOffice2007 Class
 CMFCVisualManagerOfficeXP Class
 CMFCVisualManagerVS2005 Class

 CMFCVisualManagerWindows Class
 CMFCVisualManagerWindows7 Class
 CMFCWindowsManagerDialog Class
 CMiniFrameWnd Class
 CMonikerFile Class
 CMonthCalCtrl Class
 CMouseManager Class
 CMultiDocTemplate Class
 CMultiLock Class
 CMultiPageDHtmlDialog Class
 CMultiPaneFrameWnd Class
 CMutex Class
 CNetAddressCtrl Class
 CNotSupportedException Class
 CObArray Class
 CObject Class
 CObList Class
 COccManager Class
 COleBusyDialog Class
 COleChangeIconDialog Class
 COleChangeSourceDialog Class
 COleClientItem Class
 COleCmdUI Class
 COleControl Class
 COleControlContainer Class
 COleControlModule Class
 COleControlSite Class
 COleConvertDialog Class
 COleCurrency Class
 COleDataObject Class
 COleDataSource Class
 COleDBRecordView Class

 COleDialog Class
 COleDispatchDriver Class
 COleDispatchException Class
 COleDocObjectItem Class
 COleDocument Class
 COleDropSource Class
 COleDropTarget Class
 COleException Class
 COleInsertDialog Class
 COleIPFrameWnd Class
 COleIPFrameWndEx Class
 COleLinkingDoc Class
 COleLinksDialog Class
 COleMessageFilter Class
 COleObjectFactory Class
 COlePasteSpecialDialog Class
 COlePropertiesDialog Class
 COlePropertyPage Class
 COleResizeBar Class
 COleSafeArray Class
 COleServerDoc Class
 COleServerItem Class
 COleStreamFile Class
 COleTemplateServer Class
 COleUpdateDialog Class
 COleVariant Class
 CPagerCtrl Class
 CPageSetupDialog Class
 CPaintDC Class
 CPalette Class
 CPane Class
 CPaneContainer Class

 CPaneContainerManager Class
 CPaneDialog Class
 CPaneDivider Class
 CPaneFrameWnd Class
 CParabolicTransitionFromAcceleration Class
 CPen Class
 CPictureHolder Class
 CPrintDialog Class
 CPrintDialogEx Class
 CPrintInfo Structure
 CProgressCtrl Class
 CPropertyPage Class
 CPropertySheet Class
 CPropExchange Class
 CPtrArray Class
 CPtrList Class
 CReBar Class
 CReBarCtrl Class
 CRecentDockSiteInfo Class
 CRecentFileList Class
 CRecordset Class
 CRecordView Class
 CRectTracker Class
 CRenderTarget Class
 CResourceException Class
 CReversalTransition Class
 CRgn Class
 CRichEditCntrItem Class
 CRichEditCtrl Class
 CRichEditDoc Class
 CRichEditView Class
 CRuntimeClass Structure

 CScrollBar Class
 CScrollView Class
 CSemaphore Class
 CSettingsStore Class
 CSettingsStoreSP Class
 CSharedFile Class
 CShellManager Class
 CSimpleException Class
 CSingleDocTemplate Class
 CSingleLock Class
 CSinusoidalTransitionFromRange Class
 CSinusoidalTransitionFromVelocity Class
 CSliderCtrl Class
 CSmartDockingInfo Class
 CSmoothStopTransition Class
 CSocket Class
 CSocketFile Class
 CSpinButtonCtrl Class
 CSplitButton Class
 CSplitterWnd Class
 CSplitterWndEx Class
 CStatic Class
 CStatusBar Class
 CStatusBarCtrl Class
 CStdioFile Class
 CStringArray Class
 CStringList Class
 CSyncObject Class
 CTabCtrl Class
 CTabbedPane Class
 CTabView Class
 CTaskDialog Class

 CToolBar Class
 CToolBarCtrl Class
 CToolTipCtrl Class
 CTooltipManager Class
 CTreeCtrl Class
 CTreeView Class
 CTypedPtrArray Class
 CTypedPtrList Class
 CTypedPtrMap Class
 CUIntArray Class
 CUserException Class
 CUserTool Class
 CUserToolsManager Class
 CView Class
 CVSListBox Class
 CWaitCursor Class
 CWinApp Class
 CWinAppEx Class
 CWindowDC Class
 CWinFormsControl Class
 CWinFormsDialog Class
 CWinFormsView Class
 CWinThread Class
 CWnd Class
 CWordArray Class
 ICommandSource Interface
 ICommandTarget Interface
 ICommandUI Interface
 IView Interface

 Internal Classes
 MFC Macros and Globals

 Data Types (MFC)

 Type Casting of MFC Class Objects
 Run-Time Object Model Services
 Diagnostic Services
 Modules and DLLs
 Exception Processing
 CString Formatting and Message-Box Display
 Application Information and Management
 Standard Command and Window IDs
 Collection Class Helpers
 Gray and Dithered Bitmap Functions
 Record Field Exchange Functions
 Dialog Data Exchange Functions for CRecordView and CDaoRecordView
 Dialog Data Exchange Functions for OLE Controls
 Database Macros and Globals
 DAO Database Engine Initialization and Termination
 OLE Initialization
 Application Control
 Dispatch Maps
 Variant Parameter Type Constants
 Type Library Access
 Property Pages (MFC)
 Event Maps
 Event Sink Maps
 Connection Maps
 Registering OLE Controls
 Class Factories and Licensing
 Persistence of OLE Controls
 Internet URL Parsing Globals
 DHTML Event Maps
 DHTML Editing Command Maps
 Standard Dialog Data Exchange Routines
 Standard Dialog Data Validation Routines

 AFX Messages
 ToolBar Control Styles
 CMFCImagePaintArea::IMAGE_EDIT_MODE Enumeration
 UICheckState Enumeration

 Structures, Styles, Callbacks, and Message Maps
 Structures Used by MFC

 AFX_EXTENSION_MODULE Structure
 AFX_GLOBAL_DATA Structure
 CDaoDatabaseInfo Structure
 CDaoErrorInfo Structure
 CDaoFieldInfo Structure
 CDaoIndexInfo Structure
 CDaoIndexFieldInfo Structure
 CDaoParameterInfo Structure
 CDaoQueryDefInfo Structure
 CDaoRelationInfo Structure
 CDaoRelationFieldInfo Structure
 CDaoTableDefInfo Structure
 CDaoWorkspaceInfo Structure
 CODBCFieldInfo Structure
 DHtmlUrlEventMapEntry Structure
 HSE_VERSION_INFO Structure

 Styles Used by MFC
 Callback Functions Used by MFC
 Message Maps (MFC)

 Message Map Macros (MFC)
 Delegate and Interface Map Macros
 How to: Use the Message-Map Cross-Reference
 Child Window Notification Message Handlers
 Generic Control Handler
 User Button Handlers
 Combo Box Handlers

 Edit Control Handlers
 List Box Handlers
 Handlers for WM_ Messages
 WM_ Message Handlers: A - C
 WM_ Message Handlers: D - E
 WM_ Message Handlers: F - K
 WM_ Message Handlers: L - M
 WM_ Message Handlers: N - O
 WM_ Messages: P - R
 WM_ Messages: S
 WM_ Messages: T - Z
 User-Defined Handlers

 MFC Wizards and Dialog Boxes
 Creating an MFC DLL Project

 MFC DLL Wizard
 Application Settings, MFC DLL Wizard

 Classes and Functions Generated by the MFC DLL Wizard
 Creating an MFC Application

 MFC Application Wizard
 Application Type, MFC Application Wizard
 Compound Document Support, MFC Application Wizard
 Document Template Strings, MFC Application Wizard
 Database Support, MFC Application Wizard
 User Interface Features, MFC Application Wizard
 Advanced Features, MFC Application Wizard
 Generated Classes, MFC Application Wizard

 Creating a Forms-Based MFC Application
 Creating a File Explorer-Style MFC Application
 Creating a Web Browser-Style MFC Application

 Creating an MFC ActiveX Control Container
 Creating an MFC ActiveX Control

 MFC ActiveX Control Wizard

 Application Settings, MFC ActiveX Control Wizard
 Control Names, MFC ActiveX Control Wizard
 Control Settings, MFC ActiveX Control Wizard

 Adding an MFC Class
 MFC Add Class Wizard

 Document Template Strings, MFC Add Class Wizard
 Adding an MFC Class from a Type Library

 Add Class from Typelib Wizard
 Adding an MFC Message Handler

 Mapping Messages to Functions
 Message Types Associated with User-Interface Objects
 Editing a Message Handler
 Defining a Message Handler for a Reflected Message
 Declaring a Variable Based on Your New Control Class

 Adding an MFC ODBC Consumer
 MFC ODBC Consumer Wizard

 Adding ATL Support to Your MFC Project
 Details of ATL Support Added by the ATL Wizard

 MFC Class Wizard
 ATL and MFC Shared Classes

 ATL-MFC Shared Classes
 ATL-MFC Concepts

 Date and Time
 Current Time: General Purpose Classes
 Elapsed Time: General-Purpose Classes
 Formatting Time Values: General-Purpose Classes
 Date and Time: SYSTEMTIME Support
 Date and Time: Automation Support

 Current Time: Automation Classes
 Elapsed Time: Automation Classes
 Formatting Time: Automation Classes

 Date and Time: Database Support

 DATE Type
 Strings (ATL-MFC)

 Using CStringT
 Memory Management with CStringT

 Implementation of a Custom String Manager (Basic Method)
 Avoidance of Heap Contention
 Implementation of a Custom String Manager (Advanced Method)
 CFixedStringT: Example of a Custom String Manager

 Exporting String Classes Using CStringT
 Using CString

 Basic CString Operations
 String Data Management
 CString Semantics
 CString Operations Relating to C-Style Strings
 Allocating and Releasing Memory for a BSTR
 CString Exception Cleanup
 CString Argument Passing
 Unicode and Multibyte Character Set (MBCS) Support

 Reference
 CSize Class
 CTimeSpan Class
 COleDateTime Class
 CRect Class
 Classes Shared by MFC and ATL
 CPoint Class
 CStringT Class
 COleDateTimeSpan Class
 IAtlStringMgr Class
 CFixedStringT Class
 CStrBufT Class
 CFileTimeSpan Class
 CImage Class

 CStringData Class
 CFileTime Class
 CSimpleStringT Class
 CTime Class

 .NET Development with C++/CLI
 Component Extensions for .NET and UWP

 Tracking Reference Operator (C++/CLI and C++/CX)
 Handle to Object Operator (^) (C++/CLI and C++/CX)
 abstract (C++/CLI and C++/CX)
 Arrays (C++/CLI and C++/CX)
 Boxing (C++/CLI and C++/CX)
 Classes and Structs (C++/CLI and C++/CX)
 Platform, default, and cli Namespaces (C++/CLI and C++/CX)
 Compiler Support for Type Traits (C++/CLI and C++/CX)
 Context-Sensitive Keywords (C++/CLI and C++/CX)
 delegate (C++/CLI and C++/CX)
 enum class (C++/CLI and C++/CX)
 event (C++/CLI and C++/CX)
 Exception Handling (C++/CLI and C++/CX)
 Explicit Overrides (C++/CLI and C++/CX)
 ref new, gcnew (C++/CLI and C++/CX)
 Generics (C++/CLI and C++/CX)

 Overview of Generics in Visual C++
 Generic Functions (C++/CLI)
 Generic Classes (C++/CLI)
 Generic Interfaces (C++/CLI)
 Generic Delegates (C++/CLI)
 Constraints on Generic Type Parameters (C++/CLI)
 Consuming Generics (C++/CLI)
 Generics and Templates (C++/CLI)
 How to: Improve Performance with Generics (C++/CLI)

 interface class (C++/CLI and C++/CX)

 literal (C++/CLI and C++/CX)
 Windows Runtime and Managed Templates (C++/CLI and C++/CX)
 new (new slot in vtable) (C++/CLI and C++/CX)
 nullptr (C++/CLI and C++/CX)
 Override Specifiers (C++/CLI and C++/CX)
 override (C++/CLI and C++/CX)
 partial (C++/CLI and C++/CX)
 property (C++/CLI and C++/CX)
 safe_cast (C++/CLI and C++/CX)
 String (C++/CLI and C++/CX)
 sealed (C++/CLI and C++/CX)
 typeid (C++/CLI and C++/CX)
 User-Defined Attributes (C++/CLI and C++/CX)

 Attribute Parameter Types (C++/CLI and C++/CX)
 Attribute Targets (C++/CLI and C++/CX)

 Extensions That Are Specific to C++/CLI
 __identifier (C++/CLI)
 C-Style Casts with -clr (C++/CLI)
 interior_ptr (C++/CLI)

 How to: Declare and Use Interior Pointers and Managed Arrays (C++/CLI)
 How to: Declare Value Types with the interior_ptr Keyword (C++/CLI)
 How to: Overload Functions with Interior Pointers and Native Pointers (C++/CLI)
 How to: Declare Interior Pointers with the const Keyword (C++/CLI)

 pin_ptr (C++/CLI)
 How to: Pin Pointers and Arrays
 How to: Declare Pinning Pointers and Value Types

 Type Forwarding (C++/CLI)
 Variable Argument Lists (...) (C++/CLI)

 Resources for Creating a Game Using DirectX
 Walkthrough: Creating and Using a Static Library (C++)
 How to: Use the Windows 10 SDK in a Windows Desktop Application

 Universal Windows Apps (C++)
 C++/CX

 C++/CX
 Visual C++ Language Reference (C++/CX)

 Quick Reference (C++/CX)
 Type System (C++/CX)

 Namespaces and Type Visibility (C++/CX)
 Fundamental types (C++/CX)
 Strings (C++/CX)
 Array and WriteOnlyArray (C++/CX)
 Ref classes and structs (C++/CX)
 Value classes and structs (C++/CX)
 Partial classes (C++/CX)
 Properties (C++/CX)
 Collections (C++/CX)
 Template ref classes (C++/CX)
 Interfaces (C++/CX)
 Enums (C++/CX)
 Delegates (C++/CX)
 Exceptions (C++/CX)
 Events (C++/CX)
 Casting (C++/CX)
 Boxing (C++/CX)
 Attributes (C++/CX)
 Deprecating types and members (C++/CX)

 Building apps and libraries (C++/CX)
 Compiler and Linker options (C++/CX)
 Static libraries (C++/CX)
 DLLs (C++/CX)

 Interoperating with Other Languages (C++/CX)
 JavaScript integration (C++/CX)
 CLR integration (C++/CX)
 WRL integration (C++/CX)

 Obtaining pointers to data buffers (C++/CX)
 Threading and Marshaling (C++/CX)

 Weak references and breaking cycles (C++/CX)
 Namespaces Reference (C++/CX)

 default namespace
 default::(type_name)::Equals
 default::(type_name)::GetHashCode
 default::(type_name)::GetType
 default::(type_name)::ToString

 Platform namespace (C++/CX)
 Platform::AccessDeniedException Class
 Platform::Agile Class
 Platform::Array Class
 Platform::ArrayReference Class
 Platform::Boolean value class
 Platform::Box Class
 Platform::CallbackContext Enumeration
 Platform::ChangedStateException Class
 Platform::ClassNotRegisteredException Class
 Platform::COMException Class
 Platform::Delegate Class
 Platform::DisconnectedException Class
 Platform::Enum Class
 Platform::Exception Class
 Platform::FailureException Class
 Platform::Guid value class
 Platform::IBox Interface
 Platform::IBoxArray Interface
 Platform::IDisposable Interface
 Platform::IntPtr value class
 Platform::InvalidArgumentException Class
 Platform::InvalidCastException Class
 Platform::IValueType Interface
 Platform::MTAThreadAttribute Class

 Platform::NotImplementedException Class
 Platform::NullReferenceException Class
 Platform::Object Class
 Platform::ObjectDisposedException Class
 Platform::OperationCanceledException Class
 Platform::OutOfBoundsException Class
 Platform::OutOfMemoryException Class
 Platform::ReCreateException
 Platform::SizeT value class
 Platform::STAThreadAttribute Class
 Platform::String Class
 Platform::StringReference Class
 Platform::Type Class
 Platform::Type^ Operator
 Platform::TypeCode Enumeration
 Platform::UIntPtr value class
 Platform::ValueType Class
 Platform::WeakReference Class
 Platform::WriteOnlyArray Class
 Platform::WrongThreadException Class

 Platform::Collections Namespace
 Platform::Collections::BackInsertIterator Class
 Platform::Collections::InputIterator Class
 Platform::Collections::Map Class
 Platform::Collections::MapView Class
 Platform::Collections::UnorderedMap Class
 Platform::Collections::UnorderedMapView Class
 Platform::Collections::Vector Class
 Platform::Collections::VectorIterator Class
 Platform::Collections::VectorView Class
 Platform::Collections::VectorViewIterator Class

 Platform::Collections::Details Namespace

 Platform::Details Namespace
 Platform::Details::__GUID Struct
 Platform::Details::Console Class
 Platform::Details::Heap Class
 Platform::Details::HeapAllocationTrackingLevel Enumeration
 Platform::Details::HeapEntryHandler Delegate
 Platform::Details::IEquatable Interface
 Platform::Details::IPrintable Interface

 Platform::Metadata Namespace
 Platform::Metadata::Attribute Attribute
 Platform::Metadata::DefaultMemberAttribute Attribute
 Platform::Metadata::FlagsAttribute Attribute
 Platform::Metadata::RuntimeClassName

 Platform::Runtime::CompilerServices Namespace
 Platform::Runtime::InteropServices Namespace
 Windows::Foundation::Collections Namespace (C++/CX)

 back_inserter Function
 begin Function
 end Function
 to_vector Function

 Windows::UI::Xaml::Interop::TypeName Operator
 CRT functions not supported in Universal Windows Platform apps

 Windows Runtime C++ Template Library (WRL)
 How to: Activate and Use a Windows Runtime Component Using WRL
 How to: Complete Asynchronous Operations Using WRL
 How to: Handle Events Using WRL
 Walkthrough: Creating a UWP app using WRL and Media Foundation
 How to: Create a Classic COM Component Using WRL
 How to: Instantiate WRL Components Directly
 How to: Use winmdidl.exe and midlrt.exe to create .h files from windows metadata
 Key WRL APIs by Category
 WRL Reference

 Microsoft::WRL Namespace
 ActivatableClass Macros
 ActivationFactory Class
 AgileActivationFactory Class
 AgileEventSource Class
 AsWeak Function
 AsyncBase Class
 AsyncResultType Enumeration
 Callback Function (WRL)
 CancelTransitionPolicy Enumeration
 ChainInterfaces Structure
 ClassFactory Class
 CloakedIid Structure
 ComposableBase Class
 ComPtr Class
 CreateActivationFactory Function
 CreateClassFactory Function
 DeferrableEventArgs Class
 EventSource Class
 FactoryCacheFlags Enumeration
 FtmBase Class
 GetModuleBase Function
 Implements Structure
 InspectableClass Macro
 InvokeModeOptions Structure
 Make Function
 MixIn Structure
 Module Class

 Module::GenericReleaseNotifier Class
 Module::MethodReleaseNotifier Class
 Module::ReleaseNotifier Class

 ModuleType Enumeration

 operator!= Operator (Microsoft::WRL)
 operator== Operator (Microsoft::WRL)
 operator< Operator (Microsoft::WRL)
 RuntimeClass Class
 RuntimeClassFlags Structure
 RuntimeClassType Enumeration
 SimpleActivationFactory Class
 SimpleClassFactory Class
 WeakRef Class

 Microsoft::WRL::Details Namespace
 ActivationFactoryCallback Function
 ArgTraits Structure
 ArgTraitsHelper Structure
 AsyncStatusInternal Enumeration
 BoolStruct Structure
 ComPtrRef Class
 ComPtrRefBase Class
 CreatorMap Structure
 DerefHelper Structure
 DontUseNewUseMake Class
 EnableIf Structure
 EventTargetArray Class
 FactoryCache Structure
 ImplementsBase Structure
 ImplementsHelper Structure
 InterfaceList Structure
 InterfaceListHelper Structure
 InterfaceTraits Structure
 InvokeHelper Structure
 IsBaseOfStrict Structure
 IsSame Structure
 MakeAllocator Class

 MakeAndInitialize Function
 ModuleBase Class
 Move Function
 Nil Structure
 RaiseException Function
 RemoveIUnknown Class
 RemoveReference Structure
 RuntimeClassBase Structure
 RuntimeClassBaseT Structure
 Swap Function (WRL)
 TerminateMap Function
 VerifyInheritanceHelper Structure
 VerifyInterfaceHelper Structure
 WeakReference Class

 Microsoft::WRL::Wrappers Namespace
 CriticalSection Class
 Event Class (WRL)
 HandleT Class
 HString Class
 HStringReference Class
 Mutex Class
 RoInitializeWrapper Class
 Semaphore Class
 SRWLock Class

 Microsoft::WRL::Wrappers::Details Namespace
 CompareStringOrdinal Method
 SyncLockT Class
 SyncLockWithStatusT Class

 Microsoft::WRL::Wrappers::HandleTraits Namespace
 CriticalSectionTraits Structure
 EventTraits Structure
 FileHandleTraits Structure

 HANDLENullTraits Structure
 HANDLETraits Structure
 MutexTraits Structure
 SemaphoreTraits Structure
 SRWLockExclusiveTraits Structure
 SRWLockSharedTraits Structure

 Windows::Foundation Namespace
 ActivateInstance Function
 GetActivationFactory Function

 IID_PPV_ARGS_Helper Function
 SafeInt Library

 SafeInt Class
 SafeInt Functions
 SafeIntException Class

 C++ Attributes for COM and .NET
 Attribute Programming FAQ
 Attributes by Group

 COM Attributes
 IDL Attributes
 OLE DB Consumer Attributes
 Compiler Attributes

 Attributes by Usage
 Module Attributes
 Interface Attributes
 Class Attributes
 Method Attributes
 Parameter Attributes
 Data Member Attributes
 Typedef, Enum, Union, and Struct Attributes
 Array Attributes
 Stand-Alone Attributes
 Custom Attributes

 Attributes Alphabetical Reference
 aggregatable
 aggregates
 appobject
 async_uuid
 attribute
 bindable
 call_as
 case
 coclass
 com_interface_entry
 control
 cpp_quote
 custom
 db_accessor
 db_column
 db_command
 db_param
 db_source
 db_table
 default
 defaultbind
 defaultcollelem
 defaultvalue
 defaultvtable
 dispinterface
 displaybind
 dual
 emitidl
 entry
 event_receiver
 event_source

 export
 first_is
 helpcontext
 helpfile
 helpstring
 helpstringcontext
 helpstringdll
 hidden
 id
 idl_module
 idl_quote
 iid_is
 immediatebind
 implements
 implements_category
 import
 importidl
 importlib
 in
 include
 includelib
 last_is
 lcid
 length_is
 library_block
 licensed
 local
 max_is
 module
 ms_union
 no_injected_text
 nonbrowsable

 noncreatable
 nonextensible
 object
 odl
 oleautomation
 optional
 out
 pointer_default
 pragma
 progid
 propget
 propput
 propputref
 ptr
 public(C++ Attributes)
 range
 rdx
 readonly
 ref
 registration_script
 requestedit
 requires_category
 restricted
 retval
 satype
 size_is
 source
 string
 support_error_info
 switch_is
 switch_type
 synchronize

 threading
 transmit_as
 uidefault
 unique
 usesgetlasterror
 uuid(C++ Attributes)
 v1_enum
 vararg
 version
 vi_progid
 wire_marshal

Overview of Windows Programming in C++
11/15/2018 • 5 minutes to read • Edit Online

Command line (console) applications

Native desktop client applications

C++ or .NET?C++ or .NET?

COM Components

Windows Universal Apps

There are several broad categories of Windows applications that you can create with C++. Each has its own
programming model and set of Windows-specific libraries, but the C++ standard library as well as third-party
C++ libraries can be used in any of them.

C++ console applications run from the command line in a console window and can display text output only. For
more information, see Console Applications.

The term native desktop client applicaton refers to a C or C++ windowed application that uses the original
Windows Win32 APIs to access the operating system. Those APIs are themselves written mostly in C. When
creating this kind of application, you have the choice of programming directly against a C-style message loop that
processes operating system events, or using Microsoft Foundation Classes (MFC), a C++ library that wraps Win32
in a way that is somewhat object-oriented. Neither approach is considered "modern" compared to the Universal
Windows Platform (see below), but both are still totally supported and have millions of lines of code running in the
world today.

To get started with traditional Windows C++ programming, see Get Started with Win32 and C++. After you gain
some understanding of Win32, it will be easier to learn about MFC Desktop Applications. For an example of a
traditional C++ desktop application that uses sophisticated graphics, see Hilo: Developing C++ Applications for
Windows.

For most desktop application scenarios (in other words, not targeting UWP), consider using C# and .NET. This is
because .NET programming is generally less complex, less error-prone, and has a more modern object-oriented
API than Win32 or MFC. In most cases, its performance is more than adequate. .NET features the Windows
Presentation Foundation (WPF) for rich graphics, and you can consume Win32 as well as the modern Windows
Runtime API (see UWP below). As a general rule, we recommend using C++ for desktop applications when you
require:

precise control over memory usage
the utmost economy in power consumption
usage of the GPU for general computing
access to DirectX
heavy usage of standard C++ libraries

Many parts of the Windows operating system are based on the Component Object Model (COM) which defines a
binary standard that enables the component to be consumed from client applications written in any computer
language. In C++ you can use the Active Template Library (ATL) to simplify the work of creating your own COM
components. For more information, see Component Object Model (COM) and ATL COM desktop components.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/overview-of-windows-programming-in-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/console-applications-in-visual-cpp
https://docs.microsoft.com/windows/desktop/LearnWin32/learn-to-program-for-windows
https://docs.microsoft.com/mfc/mfc-desktop-applications
https://msdn.microsoft.com/library/windows/desktop/ff708696.aspx
https://docs.microsoft.com/windows/desktop/com/component-object-model--com--portal
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/atl-com-desktop-components

Games

.NET wrappers for C++ libraries

SQL Server database clients

Windows device drivers

Windows services

SDKs, libraries, and header files

The Universal Windows Platform (UWP) is the modern Windows API. UWP apps run on any Windows 10 device,
use XAML for the user-interface, and are fully touch-enabled. For more information about UWP, see What's a
Universal Windows Platform (UWP) app? and Guide to Windows Universal Apps.

The original C++ support for UWP consisted of (1) C++/CX, a dialect of C++ with syntax extensions, or (2) the
Windows Runtime Library (WRL) which is based on standard C++ and COM. Both C++/CX and WRL are still
supported. For new projects we recommend C++/WinRT which is entirely based on standard C++ and provides
faster performance.

For Windows 10, you can package your existing C++ desktop application as-is for deployment through the
Microsoft Store. For more information, see Package desktop applications (Desktop Bridge).

DirectX games can run on the PC or Xbox. For more information, see DirectX Graphics and Gaming.

You can use C++/CLI to create an interop layer that enables .NET code to consume native C++ libraries. For more
information, see .NET Programming with C++/CLI.

To access SQL Server databases from native code, use ODBC or OLE DB. For more information, see SQL Server
Native Client.

Drivers are low-level components that make data from hardware devices accessible to applications and other
operating system components. For more information, see Windows Driver Kit (WDK).

A Windows service is a program that can run in the background with little or no user interaction. In UNIX these are
called daemons. For more information, see Services.

Visual Studio includes the C Runtime Library (CRT), the C++ Standard Library, and other Microsoft-specific
libraries. The include folders that contain header files for these libraries are located either in the Visual Studio
installation directory under the \VC\ folder, or in the case of the CRT, in the Windows SDK installation folder.

You can use the Vcpkg package manager to conveniently install hundreds of third-party open-source libraries for
Windows.

The Microsoft libraries include:

Microsoft Foundation Classes (MFC): An object-oriented framework for creating traditional Windows
programs—especially enterprise applications—that have rich user interfaces that feature buttons, list boxes,
tree views, and other controls. For more information, see MFC Desktop Applications.

Active Template Library (ATL): A powerful helper library for creating COM components. For more
information, see ATL COM Desktop Components.

C++ AMP (C++ Accelerated Massive Parallelism): A library that enables high-performance general
computational work on the GPU. For more information, see C++ AMP (C++ Accelerated Massive

https://docs.microsoft.com/windows/uwp/get-started/whats-a-uwp
https://docs.microsoft.com/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/windows/uwp/cpp-and-winrt-apis/intro-to-using-cpp-with-winrt
https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-root
https://docs.microsoft.com/windows/desktop/directx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/dotnet-programming-with-cpp-cli-visual-cpp
https://docs.microsoft.com/sql/relational-databases/native-client/odbc/sql-server-native-client-odbc
https://docs.microsoft.com/windows-hardware/drivers/index
https://docs.microsoft.com/windows/desktop/services/services
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/vcpkg
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/mfc/mfc-desktop-applications
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/atl-com-desktop-components
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/amp/cpp-amp-cpp-accelerated-massive-parallelism

Development Tools

In this section
TITLE DESCRIPTION

Windows Desktop Applications in C++ How to create traditional desktop applications.

Active Template Library (ATL) Use the ATL library to create COM components in C++.

Microsoft Foundation Classes (MFC) Use MFC to create large or small Windows applications with
dialogs and controls

ATL and MFC Shared Classes Use classes such as CString that are shared in ATL and MFC.

.NET Development with C++/CLI Create wrappers for native C++ libraries that enable it to
communication with .NET applications and components.

Component Extensions for .NET and UWP Reference for syntax elements shared by C++/CX and
C++/CLI.

Universal Windows Apps (C++) Write UWP applications using C++/CX or Windows Runtime
Template Library (WRL).

C++ Attributes for COM and .NET Non-standard attributes for Windows-only programming
using .NET or COM.

Related Articles
TITLE DESCRIPTION

Visual C++ Parent topic for Visual C++ developer content.

Parallelism).

Concurrency Runtime: A library that simplifies the work of parallel and asynchronous programming for
multicore and many-core devices. For more information, see Concurrency Runtime.

Many Windows programming scenarios also require the Windows SDK, which includes the header files that
enable access to the Windows operating system components. By default, Visual Studio installs the Windows SDK
as a component of the C++ Desktop workload, which enables development of Universal Windows apps. To
develop UWP apps, you need the Windows 10 version of the Windows SDK. For information, see Windows 10
SDK. (For more information about the Windows SDKs for earlier versions of Windows, see the Windows SDK
archive).

Program Files (x86)\Windows Kits is the default location for all versions of the Windows SDK that you have
installed.

Other platforms such as Xbox and Azure have their own SDKs that you may have to install. For more information,
see the DirectX Developer Center and the Azure Developer Center.

Visual Studio includes a powerful debugger for native code, static analysis tools, graphics debugging tools, a full-
featured code editor, support for unit tests, and many other tools and utilities. For more information, see Get
started developing with Visual Studio, and IDE and Development Tools.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/concrt/concurrency-runtime
https://dev.windows.com/downloads/windows-10-sdk
https://developer.microsoft.com/windows/downloads/sdk-archive
https://docs.microsoft.com/visualstudio/ide/get-started-developing-with-visual-studio
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/ide-and-tools-for-visual-cpp-development
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/desktop-applications-visual-cpp
file:///T:/kuot/vcppdocs-2015/atl/TOC.md
file:///T:/kuot/vcppdocs-2015/mfc/TOC.md
file:///T:/kuot/vcppdocs-2015/atl-mfc-shared/TOC.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/dotnet-programming-with-cpp-cli-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/component-extensions-for-runtime-platforms
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/universal-windows-apps-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributes/cpp-attributes-com-net
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-in-visual-studio

Desktop Applications (Visual C++)
11/15/2018 • 4 minutes to read • Edit Online

Desktop BridgeDesktop Bridge

TerminologyTerminology

A desktop application in C++ is a native application that can access the full set of Windows APIs and either runs in
a window or in the system console. Desktop applications in C++ can run on Windows XP through Windows 10
(although Windows XP is no longer officially supported and there are many Windows APIs that have been
introduced since then).

A desktop application is distinct from a Universal Windows Platform (UWP) app, which can run on PCs running
Windows 10, and also on XBox, Windows Phone, Surface Hub, and other devices. For more information about
desktop vs. UWP applications, see Choose your technology.

In Windows 10 you can package your existing desktop application or COM object as a UWP app and add UWP
features such as touch, or call APIs from the modern Windows API set. You can also add a UWP app to a desktop
solution in Visual Studio, and package them together in a single package and use Windows APIs to communicate
between them.

In Visual Studio 2017 version 15.4 and later, you can create a Windows Application Package Project to greatly
simplify the work of packaging your existing desktop application. A few restrictions apply with respect to what
registry calls or APIs your desktop application uses, but in many cases you can create alternate code paths to
achieve similar functionality while running in an app package. For more information, see Desktop Bridge.

A Win32 application is a Windows desktop application in C++ that can make use of native Windows C APIs
and/or COM APIs CRT and Standard Library APIs, and 3rd party libraries. A Win32 application that runs in
a window requires the developer to work explicitly with Windows messages inside a Windows procedure
function. Despite the name, a Win32 application can be compiled as a 32-bit (x86) or 64-bit (x64) binary. In
the Visual Studio IDE, the terms x86 and Win32 are synonymous.

The Component Object Model (COM) is a specification that enables programs written in different languages
to communicate with one another. Many Windows components are implemented as COM objects and
follow standard COM rules for object creation, interface discovery and object destruction. Using COM
objects from C++ desktop applications is relatively straightforward, but writing your own COM object is
more advanced. The Active Template Library (ATL) provides macros and helper functions that simplify COM
development.

An MFC application is a Windows desktop application that use the Microsoft Foundation Classes to create
the user interface. An MFC application can also use COM components as well as CRT and Standard Library
APIs. MFC provides a thin C++ object-oriented wrapper over the window message loop and Windows
APIs. MFC is the default choice for applications—especially enterprise-type applications—that have lots of
user interface controls or custom user controls. MFC provides convenient helper classes for window
management, serialization, text manipulation, printing, and modern user interface elements such as the
ribbon. To be effective with MFC you should be familiar with Win32.

A C++/CLI application or component uses extensions to C++ syntax (as allowed by the C++ Specification)
to enable interaction between .NET and native C++code. A C++/CLI application can have parts that run
natively and parts that run on the .NET Framework with access to the .NET Base Class Library. C++/CLI is
the preferred option when you have native C++ code that needs to work with code written in C# or Visual
Basic. It is primarily intended for use in .NET DLLs rather than in user interface code. For more information,
see .NET Programming with C++/CLI (Visual C++).

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/desktop-applications-visual-cpp.md
https://docs.microsoft.com/windows/desktop/choose-your-technology
https://docs.microsoft.com/windows-uwp/porting/desktop-to-uwp-root
https://docs.microsoft.com/windows/desktop/apiindex/windows-api-list
https://docs.microsoft.com/windows/desktop/com/the-component-object-model

In this section
TITLE DESCRIPTION

Windows Console Applications in C++ Contains information about console apps. A Win32 (or Win64)
console application has no window of its own and no message
loop. It runs in the console window, and input and output are
handled through the command line.

Walkthrough: Creating Windows Desktop Applications (C++) Create a simple Windows desktop application.

Creating an Empty Windows Desktop Application How to create a Windows desktop project that has no default
files.

Adding Files to an Empty Win32 Applications How to add files to an empty project.

Working with Resource Files How to add images, icons, string tables, and other resources
to a desktop application.

Resources for Creating a Game Using DirectX (C++) Links to content for creating games in C++.

Walkthrough: Creating and Using a Static Library How to create a .lib binary file.

How to: Use the Windows 10 SDK in a Windows Desktop
Application

Contains steps for setting up your project to build using the
Windows 10 SDK.

Related Articles
TITLE DESCRIPTION

Windows Development Contains information about the Windows API and COM.
(Some Windows APIs and third-party DLLs are implemented
as COM objects.)

Hilo: Developing C++ Applications for Windows 7 Describes how to create a rich-client Windows desktop
application that uses Windows Animation and Direct2D to
create a carousel-based user interface. This tutorial has not
been updated since Windows 7 but it still provides a thorough
introduction to Win32 programming.

Overview of Windows Programming in C++ Describes key features of Windows desktop programming in
C++.

See Also

Any desktop application in C++ can use C Runtime (CRT) and Standard Library classes and functions, COM
objects, and the public Windows functions, which collectively are known as the Windows API. For an introduction
to Windows desktop applications in C++, see Get Started with Win32 and C++.

Visual C++

https://docs.microsoft.com/windows/desktop/LearnWin32/learn-to-program-for-windows
https://docs.microsoft.com/windows/desktop/index
https://msdn.microsoft.com/library/windows/desktop/ff708696.aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-in-visual-studio

Console Applications in Visual C++
10/31/2018 • 2 minutes to read • Edit Online

Related Articles
TITLE DESCRIPTION

Walkthrough: Creating a Standard C++ Program (C++) Describes how to create a console application that users can
run from the command line.

Creating a Console Application Provides information about console applications.

A console application accepts input and sends output to the console, which is also known as the command prompt.
You can create console apps to do basic work or to perform very sophisticated tasks. You can also use a console
app as a proof-of-concept demonstration of functionality that you later want to incorporate into a Windows
desktop application or Universal Windows Platform App. Console apps can communicate with other desktop apps
by means of pipes or other RPC mechanisms.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/console-applications-in-visual-cpp.md

Walkthrough: Creating a Standard C++ Program
(C++)
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

Prerequisites

To create a project and add a source fileTo create a project and add a source file

You can use Visual C++ in the Visual Studio integrated development environment (IDE) to create Standard C++
programs. By following the steps in this walkthrough, you can create a project, add a new file to the project, modify
the file to add C++ code, and then compile and run the program by using Visual Studio.

You can type your own C++ program or use one of the sample programs. The sample program in this
walkthrough is a console application. This application uses the set container in the C++ Standard Library.

Visual C++ follows the 2003 C++ Standard, with these major exceptions: two-stage name lookup, exception
specifications, and export. Additionally, Visual C++ supports several C++0x features, for example, lambdas, auto,
static_assert, rvalue references, and extern templates.

If compliance with the standard is required, use the /Za compiler option to disable Microsoft extensions to the standard.
For more information, see /Za, /Ze (Disable Language Extensions).

To complete this walkthrough, you must understand the fundamentals of the C++ language.

NOTENOTE

NOTENOTE

1. Create a project by pointing to New on the File menu, and then clicking Project.

2. In the Visual C++ project types pane, click Windows Desktop, and then click Windows Console
Application.

For versions of Visual Studio older than 2017, in the New Project dialog box, expand Installed > Templates >
Visual C++, and then select Win32. In the center pane, select Win32 Console Application.

Type a name for the project.

By default, the solution that contains the project has the same name as the project, but you can type a
different name. You can also type a different location for the project.

Click OK to create the project.

For versions of Visual Studio older than 2017, complete the Win32 Application Wizard. Click Next, then make sure
Console Application is selected and uncheck the Precompiled Headers box. Click Finish.

3. If Solution Explorer isn't displayed, on the View menu, click Solution Explorer.

4. Add a new source file to the project, as follows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/walkthrough-creating-a-standard-cpp-program-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/za-ze-disable-language-extensions

Next Steps

See Also

a. In Solution Explorer, right-click the Source Files folder, point to Add, and then click New Item.

b. In the Code node, click C++ File (.cpp), type a name for the file, and then click Add.

The .cpp file appears in the Source Files folder in Solution Explorer, and the file is opened in the Visual
Studio editor.

5. In the file in the editor, type a valid C++ program that uses the C++ Standard Library, or copy one of the
sample programs and paste it in the file.

6. Save the file.

7. On the Build menu, click Build Solution.

The Output window displays information about the compilation progress, for example, the location of the
build log and a message that indicates the build status.

8. On the Debug menu, click Start without Debugging.

If you used the sample program, a command window is displayed and shows whether certain integers are
found in the set.

Previous: Console Applications in Visual C++
Next: Walkthrough: Compiling a Native C++ Program on the Command Line

C++ Language Reference
C++ Standard Library

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/walkthrough-compiling-a-native-cpp-program-on-the-command-line
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/cpp-language-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference

Creating a Console Application
10/31/2018 • 2 minutes to read • Edit Online

To create a Win32 console applicationTo create a Win32 console application

See Also

The easiest way to create a Win32 console application is to use the Win32 Application Wizard.

NOTENOTE

1. Follow the instructions in the help topic Creating a Project with a Visual C++ Application Wizard.

2. In the New Project dialog box, select Win32 Console Project in the Templates pane to open the wizard.

3. Define your application settings using the Win32 Application Wizard.

Skip this step to keep the wizard default settings.

4. Click Finish to close the wizard, and your newly created project opens in Solution Explorer.

Console Projects
Adding Functionality with Code Wizards
Property Pages

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/creating-a-console-application.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-desktop-projects-by-using-application-wizards
https://docs.microsoft.com/visualstudio/debugger/debugging-preparation-console-projects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/property-pages-visual-cpp

Win32 Application Wizard
10/31/2018 • 2 minutes to read • Edit Online

TYPE OF SUPPORT CONSOLE APPLICATION

EXECUTABLE
(WINDOWS)
APPLICATION

DYNAMIC-LINK
LIBRARY STATIC LIBRARY

Empty project Yes Yes Yes No

Export symbols No No Yes No

Precompiled
header

No No No Yes

ATL support Yes No No No

MFC support Yes No No Yes

Overview

NOTENOTE

The Visual C++ Win32 Application Wizard allows you to create any of four types of projects (listed in the heading
in the table below). In each case, you can specify additional options that are appropriate for the type of project you
open. The following table indicates which options are available for each application type.

This wizard page describes the current project settings for the Win32 application you are creating. By default, the
following options are set:

The project is a Windows application.

The project is not empty.

The project contains no export symbols.

The project does not use a precompiled header file (this option is available for static library projects only).

The project includes support for neither MFC nor ATL.

To change these defaults, click the Application Settings tab in the left column of the wizard and make the desired
changes.

Once you have created a Windows desktop application, you can add generic C++ classes using the Generic Code
Wizard. You can add other items, such as HTML files, header files, resources, or text files.

You cannot add ATL classes, and you can add MFC classes only to those Windows desktop application types that support
MFC (see the previous table).

You can view the files the wizard creates for your project in Solution Explorer. For more information about the
files the wizard creates for your project, see the project-generated file, ReadMe.txt . For more information about
the file types, File Types Created for Visual C++ Projects.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/win32-application-wizard.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/generic-cpp-class-wizard
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/file-types-created-for-visual-cpp-projects

See Also
Creating an Empty Windows Desktop Application
Visual C++ Project Types

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/visual-cpp-project-types

Application Settings, Win 32 Project Wizard
10/31/2018 • 2 minutes to read • Edit Online

Application type

OPTION DESCRIPTION

Console application Creates a console application. Console programs are
developed with Console Functions, which provide character-
mode support in console windows. The Visual C++ run-time
libraries also provide output and input from console windows
with standard I/O functions, such as printf_s() and
scanf_s() . A console application has no graphical user

interface. It compiles into an .exe file and can be run as a
stand-alone application from the command line.

You can add MFC and ATL support to a console application.

Windows application Creates a Win32 program. A Win32 program is an executable
application (EXE) written in C or C++, using calls to the Win32
API to create a graphical user interface.

You cannot add MFC or ATL support to a Windows
application.

DLL Creates a Win32 dynamic-link library (DLL). A Win32 DLL is a
binary file, written in C or C++, that uses calls to the Win32
API rather than to MFC classes, and that acts as a shared
library of functions that can be used simultaneously by
multiple applications.

You cannot add MFC or ATL support to a DLL application. You
can indicate that the DLL exports symbols.

Static library Creates a static library. A static library is a file containing
objects and their functions and data that links into your
program when the executable file is built. This topic explains
how to create the starter files and project properties for a
static library. A static library file provides the following
benefits:

- A Win32 static library is useful if the application you are
working on makes calls to the Win32 API rather than to MFC
classes.
- The linking process is the same whether the rest of your
Windows application is written in C or in C++.
- You can link a static library to an MFC-based program or to
a non-MFC program.

Additional options

Use this page of the wizard to set options for the Win32 project.

Creates the specified application type.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/application-settings-win-32-project-wizard.md
https://msdn.microsoft.com/library/ms813137.aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/c-run-time-library-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/property-pages-visual-cpp

OPTION DESCRIPTION

Empty project Specifies that the project files are blank. If you have a set of
source code files (such as .cpp files, header files, icons,
toolbars, dialog boxes, and so on) and want to create a project
in the Visual C++ development environment, you must first
create a blank project, then add the files to the project.

This selection is unavailable for static library projects.

Export symbols Specifies that the DLL project exports symbols.

Precompiled header Specifies that the static library project uses a pre-compiled
header.

Security Development Lifecycle (SDL) checks For more information about SDL, see Microsoft Security
Development Lifecycle (SDL) Process Guidance

Add support for

OPTION DESCRIPTION

ATL Builds into the project support for classes in the Active
Template Library (ATL). For Win32 console applications only.

Note This option does not indicate support for adding ATL
objects using the ATL code wizards. You can add ATL objects
only to ATL projects or MFC projects with ATL support.

MFC Builds into the project support for the Microsoft Foundation
Class (MFC) Library. For Win32 console applications and static
libraries only.

See Also

Defines the support and options for the application, depending on its type.

Add support for one of the libraries supplied in Visual C++.

Win32 Application Wizard

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/sdl-enable-additional-security-checks

Walkthrough: Create a traditional Windows Desktop
application (C++)
1/24/2019 • 13 minutes to read • Edit Online

IMPORTANTIMPORTANT

Prerequisites

Create a Windows desktop project

To create a Windows desktop project in Visual Studio 2017 Update 15.3 and laterTo create a Windows desktop project in Visual Studio 2017 Update 15.3 and later

This walkthrough shows how to create a traditional Windows desktop application in Visual Studio. The example
application you'll create uses the Windows API to display "Hello, Windows desktop!" in a window. You can use the
code that you develop in this walkthrough as a pattern to create other Windows desktop applications.

The Windows API (also known as the Win32 API, Windows Desktop API, and Windows Classic API) is a C-
language-based framework for creating Windows applications. It has been in existence since the 1980s and has
been used to create Windows applications for decades. More advanced and easier-to-program frameworks have
been built on top of the Windows API, such as MFC, ATL, and the .NET frameworks. Even the most modern code
for UWP and Store apps written in C++/WinRT uses the Windows API underneath. For more information about
the Windows API, see Windows API Index. There are many ways to create Windows applications, but the process
above was the first.

For the sake of brevity, some code statements are omitted in the text. The Build the code section at the end of this document
shows the complete code.

A computer that runs Microsoft Windows 7 or later versions. We recommend Windows 10 for the best
development experience.

A copy of Visual Studio 2017. For information on how to download and install Visual Studio, see Install
Visual Studio. When you run the installer, make sure that the Desktop development with C++ workload
is checked. Don't worry if you didn't install this workload when you installed Visual Studio. You can run the
installer again and install it now.

An understanding of the basics of using the Visual Studio IDE. If you've used Windows desktop apps before,
you can probably keep up. For an introduction, see Visual Studio IDE feature tour.

An understanding of enough of the fundamentals of the C++ language to follow along. Don't worry, we
don't do anything too complicated.

Follow these steps to create your first Windows desktop project and enter the code for a working Windows
desktop application. If you're using a version of Visual Studio older than Visual Studio 2017 version 15.3, skip
ahead to To create a Windows desktop project in Visual Studio 2017 RTM.

1. On the File menu, choose New and then choose Project.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/walkthrough-creating-windows-desktop-applications-cpp.md
https://docs.microsoft.com/windows/desktop/apiindex/windows-api-list
https://docs.microsoft.com/visualstudio/install/install-visual-studio
https://docs.microsoft.com/visualstudio/ide/visual-studio-ide

2. In the New Project dialog box, in the left pane, expand Installed > Visual C++, then select Windows
Desktop. In the middle pane, select Windows Desktop Wizard.

In the Name box, type a name for the project, for example, DesktopApp. Choose OK.

3. In the Windows Desktop Project dialog, under Application type, select Windows application (.exe).
Under Additional options, select Empty project. Choose OK to create the project.

4. In Solution Explorer, right-click the DesktopApp project, choose Add, and then choose New Item.

5. In the Add New Item dialog box, select C++ File (.cpp). In the Name box, type a name for the file, for
example, HelloWindowsDesktop.cpp. Choose Add.

Your project is now created and your source file is opened in the editor. To continue, skip ahead to Create the code.

 To create a Windows desktop project in Visual Studio 2017 RTMTo create a Windows desktop project in Visual Studio 2017 RTM
1. On the File menu, choose New and then choose Project.

2. In the New Project dialog box, in the left pane, expand Installed > Templates > Visual C++, and then
select Win32. In the middle pane, select Win32 Project.

In the Name box, type a name for the project, for example, DesktopApp. Choose OK.

3. On the Overview page of the Win32 Application Wizard, choose Next.

4. On the Application Settings page, under Application type, select Windows application. Under
Additional options, select Empty project. Choose Finish to create the project.

5. In Solution Explorer, right-click the DesktopApp project, choose Add, and then choose New Item.

 Create the code

To start a Windows desktop applicationTo start a Windows desktop application

6. In the Add New Item dialog box, select C++ File (.cpp). In the Name box, type a name for the file, for
example, HelloWindowsDesktop.cpp. Choose Add.

Your project is now created and your source file is opened in the editor.

Next, you'll learn how to create the code for a Windows desktop application in Visual Studio.

int CALLBACK WinMain(
 In HINSTANCE hInstance,
 In HINSTANCE hPrevInstance,
 In LPSTR lpCmdLine,
 In int nCmdShow
);

NOTENOTE

1. Just as every C application and C++ application must have a main function as its starting point, every
Windows desktop application must have a WinMain function. WinMain has the following syntax.

For information about the parameters and return value of this function, see WinMain entry point.

What are all those extra words, such as CALLBACK , or HINSTANCE , or _In_ ? The traditional Windows API uses
typedefs and preprocessor macros extensively to abstract away some of the details of types and platform-specific
code, such as calling conventions, __declspec declarations, and compiler pragmas. In Visual Studio, you can use the
IntelliSense Quick Info feature to see what these typedefs and macros define. Hover your mouse over the word of
interest, or select it and press Ctrl+K, Ctrl+I for a small pop-up window that contains the definition. For more
information, see Using IntelliSense. Parameters and return types often use SAL Annotations to help you catch
programming errors. For more information, see Using SAL Annotations to Reduce C/C++ Code Defects.

2. Windows desktop programs require <windows.h>. <tchar.h> defines the TCHAR macro, which resolves
ultimately to wchar_t if the UNICODE symbol is defined in your project, otherwise it resolves to char. If
you always build with UNICODE enabled, you don't need TCHAR and can just use wchar_t directly.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-winmain
https://docs.microsoft.com/visualstudio/ide/using-intellisense#quick-info
https://docs.microsoft.com/visualstudio/ide/using-intellisense
https://docs.microsoft.com/visualstudio/code-quality/using-sal-annotations-to-reduce-c-cpp-code-defects

To add functionality to the WinMain functionTo add functionality to the WinMain function

#include <windows.h>
#include <tchar.h>

LRESULT CALLBACK WndProc(
 In HWND hwnd,
 In UINT uMsg,
 In WPARAM wParam,
 In LPARAM lParam
);

3. In addition to the WinMain function, every Windows desktop application must also have a window-
procedure function. This function is typically named WndProc but you can name it whatever you like.
WndProc has the following syntax.

In this function, you write code to handle messages that the application receives from Windows when events
occur. For example, if a user chooses an OK button in your application, Windows will send a message to you
and you can write code inside your WndProc function that does whatever work is appropriate. It's called
handling an event. You only handle the events that are relevant for your application.

For more information, see Window Procedures.

WNDCLASSEX wcex;

wcex.cbSize = sizeof(WNDCLASSEX);
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = WndProc;
wcex.cbClsExtra = 0;
wcex.cbWndExtra = 0;
wcex.hInstance = hInstance;
wcex.hIcon = LoadIcon(hInstance, IDI_APPLICATION);
wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
wcex.lpszMenuName = NULL;
wcex.lpszClassName = szWindowClass;
wcex.hIconSm = LoadIcon(wcex.hInstance, IDI_APPLICATION);

if (!RegisterClassEx(&wcex))
{
 MessageBox(NULL,
 _T("Call to RegisterClassEx failed!"),
 _T("Windows Desktop Guided Tour"),
 NULL);

 return 1;
}

1. In the WinMain function, you populate a structure of type WNDCLASSEX. The structure contains
information about the window, for example, the application icon, the background color of the window, the
name to display in the title bar, and importantly, a function pointer to your window procedure. The following
example shows a typical WNDCLASSEX structure.

For information about the fields of the structure above, see WNDCLASSEX.

2. Register the WNDCLASSEX with Windows so that it knows about your window and how to send messages to
it. Use the RegisterClassEx function and pass the window class structure as an argument. The _T macro is
used because we use the TCHAR type.

https://docs.microsoft.com/windows/desktop/winmsg/window-procedures
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassexa
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassexa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclassexa

static TCHAR szWindowClass[] = _T("DesktopApp");
static TCHAR szTitle[] = _T("Windows Desktop Guided Tour Application");

// The parameters to CreateWindow explained:
// szWindowClass: the name of the application
// szTitle: the text that appears in the title bar
// WS_OVERLAPPEDWINDOW: the type of window to create
// CW_USEDEFAULT, CW_USEDEFAULT: initial position (x, y)
// 500, 100: initial size (width, length)
// NULL: the parent of this window
// NULL: this application does not have a menu bar
// hInstance: the first parameter from WinMain
// NULL: not used in this application
HWND hWnd = CreateWindow(
 szWindowClass,
 szTitle,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 500, 100,
 NULL,
 NULL,
 hInstance,
 NULL
);
if (!hWnd)
{
 MessageBox(NULL,
 _T("Call to CreateWindow failed!"),
 _T("Windows Desktop Guided Tour"),
 NULL);

 return 1;
}

// The parameters to ShowWindow explained:
// hWnd: the value returned from CreateWindow
// nCmdShow: the fourth parameter from WinMain
ShowWindow(hWnd,
 nCmdShow);
UpdateWindow(hWnd);

3. Now you can create a window. Use the CreateWindow function.

This function returns an HWND , which is a handle to a window. A handle is somewhat like a pointer that
Windows uses to keep track of open windows. For more information, see Windows Data Types.

4. At this point, the window has been created, but we still need to tell Windows to make it visible. That's what
this code does:

The displayed window doesn't have much content because you haven't yet implemented the WndProc
function. In other words, the application isn't yet handling the messages that Windows is now sending to it.

5. To handle the messages, we first add a message loop to listen for the messages that Windows sends. When
the application receives a message, this loop dispatches it to your WndProc function to be handled. The
message loop resembles the following code.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/WinProg/windows-data-types

MSG msg;
while (GetMessage(&msg, NULL, 0, 0))
{
 TranslateMessage(&msg);
 DispatchMessage(&msg);
}

return (int) msg.wParam;

int WINAPI WinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPSTR lpCmdLine,
 int nCmdShow)
{
 WNDCLASSEX wcex;

 wcex.cbSize = sizeof(WNDCLASSEX);
 wcex.style = CS_HREDRAW | CS_VREDRAW;
 wcex.lpfnWndProc = WndProc;
 wcex.cbClsExtra = 0;
 wcex.cbWndExtra = 0;
 wcex.hInstance = hInstance;
 wcex.hIcon = LoadIcon(hInstance, IDI_APPLICATION);
 wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
 wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wcex.lpszMenuName = NULL;
 wcex.lpszClassName = szWindowClass;
 wcex.hIconSm = LoadIcon(wcex.hInstance, IDI_APPLICATION);

 if (!RegisterClassEx(&wcex))
 {
 MessageBox(NULL,
 _T("Call to RegisterClassEx failed!"),
 _T("Windows Desktop Guided Tour"),
 NULL);

 return 1;
 }

 // Store instance handle in our global variable
 hInst = hInstance;

 // The parameters to CreateWindow explained:
 // szWindowClass: the name of the application
 // szTitle: the text that appears in the title bar
 // WS_OVERLAPPEDWINDOW: the type of window to create
 // CW_USEDEFAULT, CW_USEDEFAULT: initial position (x, y)
 // 500, 100: initial size (width, length)
 // NULL: the parent of this window
 // NULL: this application dows not have a menu bar
 // hInstance: the first parameter from WinMain
 // NULL: not used in this application
 HWND hWnd = CreateWindow(
 szWindowClass,
 szTitle,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 500, 100,
 NULL,
 NULL,
 hInstance,

For more information about the structures and functions in the message loop, see MSG, GetMessage,
TranslateMessage, and DispatchMessage.

At this point, the WinMain function should resemble the following code.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-msg
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getmessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

To add functionality to the WndProc functionTo add functionality to the WndProc function

 hInstance,
 NULL
);

 if (!hWnd)
 {
 MessageBox(NULL,
 _T("Call to CreateWindow failed!"),
 _T("Windows Desktop Guided Tour"),
 NULL);

 return 1;
 }

 // The parameters to ShowWindow explained:
 // hWnd: the value returned from CreateWindow
 // nCmdShow: the fourth parameter from WinMain
 ShowWindow(hWnd,
 nCmdShow);
 UpdateWindow(hWnd);

 // Main message loop:
 MSG msg;
 while (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 return (int) msg.wParam;
}

1. To enable the WndProc function to handle the messages that the application receives, implement a switch
statement.

One important message to handle is the WM_PAINT message. The application receives the WM_PAINT

message when part of its displayed window must be updated. The event can occur when a user moves a
window in front of your window, then moves it away again, and your application doesn't know when these
events occur. Only Windows knows, so it notifies you with WM_PAINT . When the window is first displayed, all
of it must be updated.

To handle a WM_PAINT message, first call BeginPaint, then handle all the logic to lay out the text, buttons, and
other controls in the window, and then call EndPaint. For the application, the logic between the beginning
call and the ending call is to display the string "Hello, Windows desktop!" in the window. In the following
code, notice that the TextOut function is used to display the string.

https://docs.microsoft.com/windows/desktop/gdi/wm-paint
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-beginpaint
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-endpaint
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-textouta

Build the code

PAINTSTRUCT ps;
HDC hdc;
TCHAR greeting[] = _T("Hello, Windows desktop!");

switch (message)
{
case WM_PAINT:
 hdc = BeginPaint(hWnd, &ps);

 // Here your application is laid out.
 // For this introduction, we just print out "Hello, Windows desktop!"
 // in the top left corner.
 TextOut(hdc,
 5, 5,
 greeting, _tcslen(greeting));
 // End application-specific layout section.

 EndPaint(hWnd, &ps);
 break;
}

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 PAINTSTRUCT ps;
 HDC hdc;
 TCHAR greeting[] = _T("Hello, Windows desktop!");

 switch (message)
 {
 case WM_PAINT:
 hdc = BeginPaint(hWnd, &ps);

 // Here your application is laid out.
 // For this introduction, we just print out "Hello, Windows desktop!"
 // in the top left corner.
 TextOut(hdc,
 5, 5,
 greeting, _tcslen(greeting));
 // End application specific layout section.

 EndPaint(hWnd, &ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hWnd, message, wParam, lParam);
 break;
 }

 return 0;
}

HDC in the code is a handle to a device context, which is a data structure that Windows uses to enable your
application to communicate with the graphics subsystem. The BeginPaint and EndPaint functions make
your application behave like a good citizen and doesn't use the device context for longer than it needs to.
The functions help make the graphics subsystem is available for use by other applications.

2. An application typically handles many other messages, for example, WM_CREATE when a window is first
created, and WM_DESTROY when the window is closed. The following code shows a basic but complete
WndProc function.

https://docs.microsoft.com/windows/desktop/winmsg/wm-create
https://docs.microsoft.com/windows/desktop/winmsg/wm-destroy

 Build the code

To build this exampleTo build this example

As promised, here's the complete code for the working application.

// HelloWindowsDesktop.cpp
// compile with: /D_UNICODE /DUNICODE /DWIN32 /D_WINDOWS /c

#include <windows.h>
#include <stdlib.h>
#include <string.h>
#include <tchar.h>

// Global variables

// The main window class name.
static TCHAR szWindowClass[] = _T("DesktopApp");

// The string that appears in the application's title bar.
static TCHAR szTitle[] = _T("Windows Desktop Guided Tour Application");

HINSTANCE hInst;

// Forward declarations of functions included in this code module:
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM);

int CALLBACK WinMain(
 In HINSTANCE hInstance,
 In HINSTANCE hPrevInstance,
 In LPSTR lpCmdLine,
 In int nCmdShow
)
{
 WNDCLASSEX wcex;

 wcex.cbSize = sizeof(WNDCLASSEX);
 wcex.style = CS_HREDRAW | CS_VREDRAW;
 wcex.lpfnWndProc = WndProc;
 wcex.cbClsExtra = 0;
 wcex.cbWndExtra = 0;
 wcex.hInstance = hInstance;
 wcex.hIcon = LoadIcon(hInstance, IDI_APPLICATION);
 wcex.hCursor = LoadCursor(NULL, IDC_ARROW);
 wcex.hbrBackground = (HBRUSH)(COLOR_WINDOW+1);
 wcex.lpszMenuName = NULL;
 wcex.lpszClassName = szWindowClass;
 wcex.hIconSm = LoadIcon(wcex.hInstance, IDI_APPLICATION);

 if (!RegisterClassEx(&wcex))
 {
 MessageBox(NULL,
 _T("Call to RegisterClassEx failed!"),
 _T("Windows Desktop Guided Tour"),
 NULL);

 return 1;
 }

 // Store instance handle in our global variable
 hInst = hInstance;

 // The parameters to CreateWindow explained:
 // szWindowClass: the name of the application
 // szTitle: the text that appears in the title bar

1. Delete any code you've entered in HelloWindowsDesktop.cpp in the editor. Copy this example code and then
paste it into HelloWindowsDesktop.cpp:

 // szTitle: the text that appears in the title bar
 // WS_OVERLAPPEDWINDOW: the type of window to create
 // CW_USEDEFAULT, CW_USEDEFAULT: initial position (x, y)
 // 500, 100: initial size (width, length)
 // NULL: the parent of this window
 // NULL: this application does not have a menu bar
 // hInstance: the first parameter from WinMain
 // NULL: not used in this application
 HWND hWnd = CreateWindow(
 szWindowClass,
 szTitle,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT, CW_USEDEFAULT,
 500, 100,
 NULL,
 NULL,
 hInstance,
 NULL
);

 if (!hWnd)
 {
 MessageBox(NULL,
 _T("Call to CreateWindow failed!"),
 _T("Windows Desktop Guided Tour"),
 NULL);

 return 1;
 }

 // The parameters to ShowWindow explained:
 // hWnd: the value returned from CreateWindow
 // nCmdShow: the fourth parameter from WinMain
 ShowWindow(hWnd,
 nCmdShow);
 UpdateWindow(hWnd);

 // Main message loop:
 MSG msg;
 while (GetMessage(&msg, NULL, 0, 0))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 return (int) msg.wParam;
}

// FUNCTION: WndProc(HWND, UINT, WPARAM, LPARAM)
//
// PURPOSE: Processes messages for the main window.
//
// WM_PAINT - Paint the main window
// WM_DESTROY - post a quit message and return
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{
 PAINTSTRUCT ps;
 HDC hdc;
 TCHAR greeting[] = _T("Hello, Windows desktop!");

 switch (message)
 {
 case WM_PAINT:
 hdc = BeginPaint(hWnd, &ps);

 // Here your application is laid out.
 // For this introduction, we just print out "Hello, Windows desktop!"
 // in the top left corner.
 TextOut(hdc,
 5, 5,

 5, 5,
 greeting, _tcslen(greeting));
 // End application-specific layout section.

 EndPaint(hWnd, &ps);
 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 break;
 default:
 return DefWindowProc(hWnd, message, wParam, lParam);
 break;
 }

 return 0;
}

2. On the Build menu, choose Build Solution. The results of the compilation should appear in the Output
window in Visual Studio.

3. To run the application, press F5. A window that contains the text "Hello, Windows desktop!" should appear
in the upper-left corner of the display.

Congratulations! You've completed this walkthrough and built a traditional Windows desktop application.

See Also
Windows Desktop Applications

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/windows-desktop-applications-cpp

Creating an Empty Windows Desktop Application
10/31/2018 • 2 minutes to read • Edit Online

To create an empty Windows desktop applicationTo create an empty Windows desktop application
1. From the File menu, select New > Project.

2. In the left pane of the New Project dialog, click on Win32 and in the center pane, select Win32 Console
Application.

3. Enter a name for your new project, a path to the project directory, and then click OK.

4. In the Win32 Application Wizard, click the Application Settings page. Select the Application type you
want to create with your source code file, and then select the Empty Project check box under Additional
options.

5. Click OK.

The project appears in Solution Explorer with three directories to contain source files, header files, and resource
files.

Next, you can add files to your empty Visual C++ project.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/creating-an-empty-windows-desktop-application.md

Adding Files to an Empty Win32 Applications
10/31/2018 • 2 minutes to read • Edit Online

To add your files to an empty Windows desktop applicationTo add your files to an empty Windows desktop application

NOTENOTE

See Also

1. Select the directory in Solution Explorer.

2. Right-click the directory name, click Add from the shortcut menu, and then click Existing Item.

3. In the Add Existing Item dialog, navigate to the files you want to add to your project.

4. Click OK.

To add files that are neither source, header, or resource files to your project, right-click the Solution node in
Solution Explorer and add the files to the project in the same manner. A Miscellaneous folder will be created to
hold the other files in your project.

Before building your project, you will need to specify build options for these files so that they are included correctly in your
finished application. For more information, see Specifying Project Settings with Property Pages and Building a C/C++
Program.

Creating an Empty Windows Desktop Application

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/adding-files-to-an-empty-win32-applications.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/property-pages-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/building-c-cpp-programs

Working with Resource Files
3/7/2019 • 2 minutes to read • Edit Online

WARNINGWARNING

NOTENOTE

In This Section

Related Sections

This section applies to Windows desktop applications written in C++.

For information about resources in Universal Windows Platform apps written in C++, see Defining App Resources, or on
adding resources to C++/CLI (managed) projects, see Resources in Desktop Apps in the .NET Framework Developer's Guide.

Resources can be composed of a wide range of elements, like:

Interface elements that provide information to the user such as a bitmap, icon, or cursor.
Custom resources that contain data and application needs.
Version resources that are used by setup APIs.
Menu and dialog box resources.

You can add new resources to your project and modify those resources using the appropriate resource editor.
Most Visual C++ wizards will automatically generate an .rc file for your project.

The Resource Editors and Resource View aren't available in Express editions.

To manually add resource files to managed projects, see Creating Resource Files for Desktop Apps. This article
includes how to access resources, display static resources, and assign resource strings to properties.

To globalize and localize resources in managed apps, see Globalizing and Localizing .NET Framework
Applications.

Resource Files
Describes resource files and how they're used in Windows desktop applications. Also provides links to articles
that describe how to use resource files.

Resource Identifiers (Symbols)
Describes symbols and provides information on using the Resource Symbols dialog box to manage symbols in
your projects.

Resource Editors
Describes the resource editors provided in Visual Studio and the types of resources you can modify with each
editor. Also provides links to detailed information on using each editor.

Visual C++
Provides links into the Visual C++ documentation.

Talk to Us
Provides links to information on using the documentation set, contacting product support, and employing

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/working-with-resource-files.md
https://docs.microsoft.com/windows/uwp/app-resources/
https://docs.microsoft.com/dotnet/framework/resources/index
https://docs.microsoft.com/dotnet/framework/resources/creating-resource-files-for-desktop-apps
https://docs.microsoft.com/dotnet/standard/globalization-localization/index
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-in-visual-studio
https://docs.microsoft.com/visualstudio/ide/talk-to-us

See Also

accessibility features.

Windows Desktop Applications
Menus and Other Resources

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/windows-desktop-applications-cpp
https://msdn.microsoft.com/library/windows/desktop/ms632583.aspx

Resource Files (C++)
3/7/2019 • 3 minutes to read • Edit Online

NOTENOTE

Editable Resources

FILE NAME DESCRIPTION

.rc Resource script files

.rct Resource template files

Since projects in .NET programming languages do not use resource script files, you must open your resources from Solution
Explorer. Use the Image editor and the Binary editor to work with resource files in managed projects.

Any managed resources you want to edit must be linked resources. The Visual Studio resource editors do not support
editing embedded resources.

The term resource file can refer to a number of file types, like:

The resource script (.rc) file of a program.

A resource template (.rct) file.

An individual resource existing as a stand-alone file. This type includes a bitmap, icon, or cursor file that's
referred to from an .rc file.

A header file generated by the development environment. This type includes Resource.h , that's referred to
from an .rc file.

Resources found in other file types such as .exe, .dll, and .res files are referred to as resources.

You can work with resource files and resources from within your project. You can also work with ones that aren't
part of the current project or were created outside the development environment of Visual Studio. For example,
you can:

Work with nested and conditionally included resource files.

Update existing resources or convert them to Visual C++.

Import or export graphic resources to or from your current resource file.

Include shared or read-only identifiers (symbols) that can't be modified by the development environment.

Include resources in your executable (.exe) file that don't need editing (or shouldn't be edited), such as
shared resources between several projects.

Include resource types not supported by the development environment.

For more information on resources, see how to Create Resources, Manage Resources, and Include Resources at
Compile Time.

The following types of files can be opened to edit the resources they contain:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/resource-files-visual-studio.md

.res Resource files

.resx Managed resource files

.exe Executable files

.dll Dynamic-link library files

.bmp, .ico, .dib, .cur Bitmap, icon, toolbar, and cursor files

FILE NAME DESCRIPTION

FILE NAME DESCRIPTION

Resource.h Header file generated by the development environment that
contains symbol definitions.

Include this file in source control.

Filename.aps Binary version of the current resource script file used for quick
loading.

Resource editors don't directly read .rc or resource.h files. The
resource compiler compiles them into .aps files that are
consumed by the resource editors. This file is a compile step
and only stores symbolic data.

As with a normal compile process, information that isn't
symbolic, such as commenting, is discarded during the
compile process.

Whenever the .aps file is out of synch with the .rc file, the .rc
file is regenerated. For example, when you Save, the resource
editor overwrites the .rc file and the resource.h file. Any
changes to the resources themselves remain incorporated in
the .rc file, but comments will always be lost once the .rc file is
overwritten. For information on how to preserve comments,
see Include Resources at Compile Time.

Typically, you shouldn't include the .aps file in source control.

.rc Resource script file that contains script for the resources in
your current project. This file is overwritten by the .aps file
whenever you save.

Include this file in source control.

Manifest Resources

When editing resources, the Visual Studio environment works with and affects the following files:

In C++ desktop projects, manifest resources are XML files that describe the dependencies an application uses. For
example, in Visual Studio this MFC wizard-generated manifest file defines which version of the Windows common
control DLLs the application should use:

<description>Your app description here</description>
<dependency>
 <dependentAssembly>
 <assemblyIdentity
 type="win32"
 name="Microsoft.Windows.Common-Controls"
 version="6.0.0.0"
 processorArchitecture="X86"
 publicKeyToken="6595b64144ccf1df"
 language="*"
 />
 </dependentAssembly>
</dependency>

NOTENOTE

To open a manifest resourceTo open a manifest resource

Requirements

See Also

For a Windows XP or Windows Vista application, the manifest resource should specify the most current version of
the Windows common controls for the application to use. The example above uses version 6.0.0.0 , which
supports the Syslink control.

You can only have one manifest resource per module.

To view the version and type information contained in a manifest resource, open the file in an XML viewer or the
Visual Studio text editor. If you open a manifest resource from Resource View, the resource will open in binary
format.

1. Open your project in Visual Studio and navigate to Solution Explorer.

2. Expand the Resource Files folder, then:

To open in the text editor, double-click the .manifest file.

To open in another editor, right-click the .manifest file and select Open With. Specify the editor to
use and select Open.

Win32

Working with Resource Files
Resource Identifiers (Symbols)
Resource Editors

https://docs.microsoft.com/windows/desktop/Controls/syslink-overview
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-view-window

How to: Create Resources (C++)
3/7/2019 • 8 minutes to read • Edit Online

Use Resource Script Files

NOTENOTE

To create a resource script fileTo create a resource script file

To open a resource script fileTo open a resource script file

NOTENOTE

You can create resources for your project by:

NOTENOTE

Using a resource script file.

This step is necessary before you add resources.

Adding resources to your project and using the Resource View.

Using a resource template to create customized resources.

Before you create and add new resources to your project, you must first create a resource script (.rc) file.

You can only add a resource script file to an existing project loaded into the Visual Studio IDE. You can't create a standalone
resource script outside the project, though resource template (.rct) files can be created anytime.

NOTENOTE

1. Put focus on your existing project folder in Solution Explorer, for example, MyProject.

Don't confuse the project folder with the solution folder in Solution Explorer. If you put focus on the Solution
folder, you won't have the same Add New Item choices.

2. In the menu, go to Project > Add New Item.

3. Select the Visual C++ folder and choose Resource File (.rc) in the right pane.

4. Provide a name for your resource script file in the Name text box and select Open.

You can view resources in a resource script file without having a project open. The script file opens in a document
window as opposed to the Resource View.

Some commands are only available if the file is opened standalone, meaning outside of a project without first loading the
project. For example, to use the Save As command and save a file with a different format or file name, the file must be
opened standalone.

To open a resource script file outside of a project, in the menu, go to File > Open, and choose File.
Navigate to the resource script file, highlight the file, and choose Open.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/how-to-create-a-resource-script-file.md

TIPTIP

Create Resources

TIPTIP

NOTENOTE
There may be times when you want to view the contents of your project's resource script file without using the
resource editors to open a resource. For example, you may want to search for a string across all dialog boxes in the
resource file without having to open each one separately. You can easily open the resource file in text format to view
all the resources it contains and complete global operations supported by the text editor.

To open a resource script file in text format, use the drop-down arrow on the right side of the Open button in the
above step and choose Open With. Select Source Code (Text) Editor and from the Open As drop-down list,
select Text and the resource opens in the Source Code editor.

To open multiple resource scripts follow the same step above for each file you want to open, for example,
Source1.rc and Source2.rc. Then, when both .rc files are open in separate documents windows, either use
the Window menu or right-click one of the files, and choose New Horizontal Tab Group or New
Vertical Tab Group. The windows are now tiled so you can view them simultaneously.

You can open resource script files by right-clicking the .rc file in Solution Explorer, selecting Open with and choosing
Source Code (Text) Editor.

When you build a Microsoft Foundation Class (MFC) application for Windows using the MFC application wizard,
the wizard generates a basic set of files including a resource script (.rc) file) that contains the core features of the
MFC. However, these MFC-specific features aren't available when editing an .rc file for Windows applications not
based on MFC. This includes code wizards, menu prompt strings, list contents for combo box controls, and
ActiveX control hosting.

NOTENOTE

To add MFC support, with the resource script file open, in Resource View, highlight the resources folder
(for example, MFC.rc). Then in the Properties window, set MFC Mode to True.

In addition to setting MFC Mode, the .rc file must be part of an MFC project. Only setting MFC Mode to True on
an .rc file in a Win32 project won't give you MFC features.

You can create a resource as a new default resource meaning a resource that isn't based on a template, or as a
resource patterned after a template.

Use the Resource View window to display resource files included in your projects. Expanding the top folder, for
example, Project1.rc, shows the resource types within that file. Expand each resource type to show the individual
resources of that type.

To open the Resource View window, go to menu View > Resource View or press Ctrl+Shift+E.

You can also use right-click on the Resource View window to launch a shortcut menu of commands, or double-
click the title bar to dock and undock the window. Right-click the title bar for commands that control the behavior
of the window. For more information, see Windows Management.

The Resource View windows includes the Add Resource dialog box with the following properties to add

https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/visualstudio/ide/customizing-window-layouts-in-visual-studio

PROPERTY DESCRIPTION

Resource Type Specify the kind of resource you want to create.

You can expand the cursor and dialog box resource categories
to reveal additional resources, which are located in
..\Microsoft Visual Studio
<version>\VC\VCResourceTemplates\<LCID>\mfc.rct. If you
need to add .rct files, either put them here or specify another
include path. Resources shown at the top level in the tree
control are the default resources provided by Visual Studio.
Resources in .rct files appear at the second level under the
appropriate category. There's no preset limit to the number
of .rct files you can add.

New Create a resource based on the type selected in the
Resource Type box and open the resource in the
appropriate editor.

For example, if you create a dialog resource, it opens the
resource in the Dialog Editor.

Import Open the Import dialog box to navigate to the resource you
want to import into your current project.

You can import a bitmap, icon, cursor, HTML, sound (.WAV),
or custom resource file.

Custom Open the New Custom Resource dialog box to create a
custom resource.

Also includes a Resource Type property that provides a text
box for you to enter the name of the custom resource type.
Visual C++ automatically capitalizes the name when you exit.
Custom resources are only edited in the Binary Editor.

NOTENOTE

To create a resourceTo create a resource

resources to a C++ Windows desktop application project:

When you create a new resource, Visual C++ assigns a unique name to it, for example, IDD_Dialog1 . You can
customize this resource ID by editing the resource properties either in the associated resource editor or in the
Properties window.

Don't specify a resource name or ID that is reserved by Visual Studio. Reserved names are DESIGNINFO , HWB , and
TEXTINCLUDE , and the reserved ID is 255 .

TIPTIP

In Resource View, select your .rc file, then use Edit > Add Resource and choose the type of resource to
add to your project.

You can also right-click the .rc file in Resource View and choose Add Resource from the shortcut menu.

In Solution Explorer, right-click the project folder, select Add > Add Resource and choose the type of

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/how-to-specify-include-directories-for-resources
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

Use Resource Templates

NOTENOTE

NOTENOTE

To create and use a resource templateTo create and use a resource template

NOTENOTE

resource to add to your project.

If you don't already have an .rc file in your project, this step will create one. You can then repeat this step to add
specific resource types to the new .rc file.

In Class View, right-click the class, select Add > Add Resource and choose the type of resource to add to
your project.

Use the menu Project > Add Resource.

A resource template is a customized resource that you've saved as an .rct file. A resource template then serves as
a starting point for creating resources. Resource templates save time in developing additional resources or
groups of resources that share features, such as standard controls or repeated elements. For example, if you want
to include a help button with a company logo icon in several dialog boxes, create a new dialog box template and
customize it with the help button and the logo.

After customizing a resource template, save your changes in the template folder or the location specified in the
include path, so that the new resource template will appear under its resource type in the Add Resource dialog
box. You can now use the new resource template as often as needed.

The resource editor automatically provides a unique resource ID. You can revise the resource properties as needed.

Place language-specific template files in subdirectories of the main template directory. For example, English-only template
files go in ..\<resource template directory>\1033.

Visual Studio searches for new .rct files in \Program Files\Microsoft Visual Studio <version>\VC\VCResourceTemplates,
\Program Files\Microsoft Visual Studio <version>\VC\VCResourceTemplates\<LCID> (such as an LCID of 1033 for
English), or anywhere on the include path. If you prefer to store your .rct files in another location, you must add the location
to the include path.

1. In Solution Explorer, right-click your project and select Add > Add New Item.

2. In the Templates: pane, select Resource Template File (.rct).

3. Provide a name and location for your new .rct file and choose Open.

The new .rct file is added to your project and appears in Solution Explorer under the Resources folder.

4. Double-click the .rct file to open it in a document window. To add resources, right-click the file in the
document window and choose Add Resource.

You can customize your added resources and save the .rct file.

5. In the Resource View pane, right-click the .rc file and choose Add Resource.

6. Select the plus sign (+) next to a resource to expand the resource node and view the templates available
for that resource.

https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/changing-the-properties-of-a-resource
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/how-to-specify-include-directories-for-resources

To convert an existing resource file to a templateTo convert an existing resource file to a template

Requirements

See Also

7. Double-click the template you want to use.

You can modify the added resource as needed in its resource editor.

With the resource script file open, in the menu, go to File > Save <filename> As. Specify a location and choose
OK.

Win32

Resource Files
How to: Manage Resources
How to: Include Resources at Compile Time

How to: Manage Resources (C++)
3/7/2019 • 3 minutes to read • Edit Online

Copy and Edit Resources

NOTENOTE

To copy resourcesTo copy resources

NOTENOTE

You can copy resources from one file to another without changing them, or changing the language or condition of
a resource while copying it.

You can easily copy resources from an existing resource or executable file to your current resource file. To copy
resources, you open both files containing resources at the same time and drag items from one file to another or
copy and paste between the two files. This method works for resource script (.rc) files and resource template (.rct)
files, and as executable (.exe) files.

Visual C++ includes sample resource files that you can use in your own application. For more information, see CLIPART:
Common Resources.

You can't drag and drop, copy, cut, or paste between resource files in the project (Resource View) and stand-alone
.rc files open in document windows. You could do this in previous versions of the product. Only use the drag-and-
drop method between .rc files that are open outside of the project.

1. Open both resource files stand-alone (see how to to open a resource script file). For example, open
Source1.rc and Source2.rc.

2. Inside the first .rc file, either:

Use the drag-and-drop method

TIPTIP

a. Select the resource you wish to copy. For example, in Source1.rc, select IDD_DIALOG1.

b. Hold down the Ctrl key and drag the resource to the second .rc file. For example, drag
IDD_DIALOG1 from Source1.rc to Source2.rc.

Dragging the resource without holding down the Ctrl key moves the resource rather than copying it.

Use the copy and paste method

a. Right-click the resource you with to copy (for example, Source1.rc) and choose Copy.

b. Right-click the resource file into which you'd like to paste the resource (for example,
Source2.rc) and choose Paste.

To avoid conflicts with symbol names or values in the existing file, Visual C++ may change the transferred resource's symbol
value or symbol name and value when you copy it to the new file.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/how-to-copy-resources.md
https://github.com/Microsoft/VCSamples
https://docs.microsoft.com/how-to-create-a-resource-script-file#use-resource-script-files

IDD_AboutBox (Finnish - XX33)

To copy an existing resource and change its language or conditionTo copy an existing resource and change its language or condition

To edit resourcesTo edit resources

Import and Export Resources

NOTENOTE

To import a resource into the resource script fileTo import a resource into the resource script file

NOTENOTE

To export a resource for use outside of Visual C++To export a resource for use outside of Visual C++

While copying in a resource, you can change its language property or condition property, or both.

The language of a resource specifies the language used by FindResource to help identify the resource for
which you're looking. Resources can have differences for each language that aren't related to text, for
example, accelerators that might only work on a Japanese keyboard or a bitmap that would only be
appropriate for Chinese localized builds.

The condition of a resource is a defined symbol that identifies a condition under which this particular copy
of the resource is to be used.

The language and condition of a resource are shown in parentheses after the name of the resource in the
Workspace window. Here the resource named IDD_AboutBox is using Finnish as its language and its condition is
XX33 :

In the .rc file or in the Resource View window, right-click the resource you want to copy and choose Insert Copy.
Then set the following:

For the Language list box, select the language.

In the Condition box, type the condition.

Managed resource (.resx) files are XML files. When you add a managed resource file to your project from the Add
New Item dialog box, the Managed Resources Editor opens by default.

You can import graphical resources (bitmaps, icons, cursors, and toolbars), HTML files, and custom resources for
use in Visual C++. You can export the same types of files from a Visual C++ project to separate files that can be
used outside the development environment.

Resource types such as accelerators, dialog boxes, and string tables can't be imported or exported because they're not
stand-alone file types.

1. In Resource View right-click the node of the resource script (.rc) file to which you want to add a resource
and select Import.

2. Locate and choose the file name of the bitmap (.bmp), icon (.ico), cursor (.cur), html file (.htm), or other file
to import.

3. Select OK to add the resource to the resource script file.

The import process works the same no matter which resource type you have selected. The imported resource is
automatically added to the correct node of that resource type.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-findresourcea
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-view-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-view-window

Requirements

See Also

1. In Resource View, right-click the resource you want to export and select Export. You can accept the current
file name or type a new one.

2. Navigate to the folder where you want to save the file and select Export.

Win32

Resource Files
How to: Create Resources
How to: Include Resources at Compile Time

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-view-window

How to: Include Resources at Compile Time (C++)
3/7/2019 • 3 minutes to read • Edit Online

Resource Includes

PROPERTY DESCRIPTION

Symbol header file Allows you to change the name of the header file where
symbol definitions for your resource files are stored.

For more information, see Changing the Names of Symbol
Header Files.

Read-only symbol directives Enables you to include header files that contain symbols that
shouldn't be modified.

For example, symbol files to be shared with other projects.
This can also include MFC .h files. For more information, see
Including Shared (Read-Only) or Calculated Symbols.

Compile-time directives Allows you to include resource files that are created and
edited separately from the resources in your main resource
file, contain compile-time directives (such as those directives
that conditionally include resources), or contain resources in a
custom format.

You can also use the Compile-time directives box to
include standard MFC resource files.

By default all resources are located in one resource script (.rc) file, however there are many reasons to place
resources in a file other than the main .rc file:

To add comments to resource statements that won't get deleted when you save the .rc file.

To include resources that have already been developed and tested and don't need further modification. Any
files that are included but don't have an .rc extension won't be editable by the resource editors.

To include resources that are being used by different projects, or that are part of a source code version-
control system. These resources must exist in a central location where modifications will affect all projects.

To include resources (such as RCDATA resources) that are a custom format. RCDATA resources have special
requirements where you can't use an expression as a value for the nameID field.

If you have sections in your existing .rc files that meet any of these conditions, place these sections in one or more
separate .rc files and include them in your project using the Resource Includes dialog box.

You can add resources from other files to your project at compile time by listing them in the Compile-time
directives box in the Resource Includes dialog box. Use the Resource Includes dialog box to modify the
project environment's normal working arrangement of storing all resources in the project .rc file and all symbols
in Resource.h .

To get started, open the Resource Includes dialog box by right-clicking an .rc file in Resource View, select
Resource Includes and note the following properties:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/how-to-include-resources-at-compile-time.md
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/changing-the-names-of-symbol-header-files
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/including-shared-read-only-or-calculated-symbols

NOTENOTE

To include resources in your project at compile timeTo include resources in your project at compile time

To specify include directories for a specific resource (.rc) fileTo specify include directories for a specific resource (.rc) file

To find symbols in resourcesTo find symbols in resources

NOTENOTE

Requirements

See Also

Entries in these text boxes appear in the .rc file marked by TEXTINCLUDE 1 , TEXTINCLUDE 2 , and TEXTINCLUDE 3

respectively. For more information, see TN035: Using Multiple Resource Files and Header Files with Visual C++.

Once changes are made to your resource file using the Resource Includes dialog box, you must close and reopen
the .rc file for the changes to take effect.

1. Place the resources in a resource script file with a unique file name. Don't use projectname.rc, because this
is the name of the file used for the main resource script file.

2. Right-click the .rc file in Resource View and select Resource Includes.

3. In the Compile-time directives box, add the #include compiler directive to include the new resource file
in the main resource file in the development environment.

The resources in files included this way are only made part of the executable at compile time and aren't available
for editing or modification when you're working on your project's main .rc file. Included .rc files need to be opened
separately and any files included without the .rc extension won't be editable by the resource editors.

1. Right-click the .rc file in Solution Explorer and select Properties.

2. Select the Resources node in the left pane and specify any additional include directories in the Additional
include directories property.

TIPTIP

1. Go to menu Edit > Find Symbol.

To use regular expressions in your search, select Find in Files in the Edit menu instead of Find Symbol. Select the
Use: Regular Expressions check box in the Find dialog box and in the Find What box you can choose a regular
search expression from the drop-down list. When you select an expression from this list, it's substituted as the search
text in the Find What box.

2. In the Find What box, select a previous search string from the drop-down list or type the accelerator key
you want to find, for example, ID_ACCEL1 .

3. Select any of the Find options and choose Find Next.

You cannot search for symbols in string, accelerator, or binary resources.

Win32

Resource Files
How to: Create Resources

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-include-directive-c-cpp
https://docs.microsoft.com/visualstudio/ide/go-to
https://docs.microsoft.com/visualstudio/ide/using-regular-expressions-in-visual-studio
https://docs.microsoft.com/visualstudio/ide/reference/find-command
https://docs.microsoft.com/visualstudio/ide/finding-and-replacing-text

How to: Manage Resources

Resource Identifiers (Symbols) (C++)
3/7/2019 • 2 minutes to read • Edit Online

IDC_EDITNAME = 5100

NOTENOTE

Requirements

See Also

A symbol is a resource identifier (ID) that consists of two parts, a symbol name (text string) mapped to an symbol
value (integer), for example:

Symbol names are most often referred to as identifiers.

Symbols provide a descriptive way of referring to resources and user-interface objects, both in your source code
and while you're working with them in the resource editors. You can view and manipulate symbols in one
convenient place using the Resource Symbols dialog box.

As your application grows in size and sophistication, so does its number of resources and symbols. Tracking large
numbers of symbols scattered throughout several files can be difficult. The Resource Symbols dialog box
simplifies symbol management by offering a central tool through which you can:

Create Symbols

Manage Symbols

View Predefined Symbol IDs

When you create a new resource or resource object, the resource editors provide a default name for the resource,
for example, IDC_RADIO1 , and assign a value to it. The name-plus-value definition is stored in the Resource.h file.

When you are copying resources or resource objects from one .rc file to another, Visual C++ may change the transferred
resource's symbol value, or symbol name and value, to avoid conflicts with symbol names or values in the existing file.

Win32

Working with Resource Files
Resource Files
Resource Editors

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/symbols-resource-identifiers.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/viewing-resource-symbols

How to: Create Symbols (C++)
3/7/2019 • 2 minutes to read • Edit Online

NOTENOTE

PROPERTY DESCRIPTION

Name Displays the name of the symbol.

For more information, see Symbol Name Restrictions.

Value Displays the numeric value of the symbol.

For more information, see Symbol Value Restrictions.

In Use When selected, specifies that the symbol is being used by one
or more resources.

The resource or resources are listed in the Used by box.

Show read-only symbols When selected, displays read-only resources.

By default, the Resource Symbol dialog box displays only the
modifiable resources in your resource script file, but with this
option selected, modifiable resources appear in bold text and
read-only resources appear in plain text.

Used by Displays the resource or resources using the symbol selected
in the symbols list.

To move to the editor for a given resource, select the resource
in the Used by box and choose View Use.

New Opens the New Symbol dialog box that enables you to
define the name and, if necessary, a value for a new symbolic
resource identifier.

Change Opens the Change Symbol dialog box that allows you to
change the name or value of a symbol.

If the symbol is for a control or resource in use, the symbol
can be changed only from the corresponding resource editor.
For more information, see Manage Symbols.

When you're beginning a new project, you may find it convenient to map out the symbol names you need before
creating the resources to which they'll be assigned.

If your project doesn't already contain an .rc file, please see How to: Create Resources.

The Resource Symbols dialog box allows you to add new resource symbols, change the symbols that are
displayed, or skip to the location in the source code where a symbol is in use.

The dialog box contains the following properties:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/creating-new-symbols.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/symbol-name-restrictions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/symbol-value-restrictions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/changing-unassigned-symbols

View Use Opens the resource that contains the symbol in the
corresponding resource editor.

PROPERTY DESCRIPTION

Create Symbols
To create a new symbolTo create a new symbol

NOTENOTE

To view resource symbols

NOTENOTE

To open the resource editor for a given symbolTo open the resource editor for a given symbol

Requirements

See Also

1. In the Resource Symbols dialog box, choose New.

2. In the Name box, type a symbol name.

3. Accept the assigned symbol value or type a new value in the Value box.

4. Select OK to add the new symbol to the symbol list.

If you type a symbol name that already exists, a message box appears stating that a symbol with that name is already
defined. You can't define two or more symbols with the same name, but you can define different symbols with the same
numeric value.

In Resource View, right-click your .rc file and select Resource Symbols to view a resource symbol table in the
Resource Symbols dialog box.

To see predefined symbols, check the Show read-only symbols check box.

When you're browsing symbols in the Resource Symbols, you may want more information on how a particular
symbol is used. The View Use button provides a quick way to get this information.

1. In the Resource Symbols dialog box in the Name box, select a symbol.

2. In the Used By box, select the resource type that interests you.

3. Select the View Use button.

The resource appears in the appropriate editor window.

Win32

Resource Identifiers (Symbols)
How to: Manage Symbols
Predefined Symbol IDs

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources

How to: Manage Symbols
3/7/2019 • 6 minutes to read • Edit Online

NOTENOTE

Symbol Name Restrictions

NOTENOTE

CATEGORY PREFIX USE

When you create a new resource or resource object, the development environment assigns it a default symbol
name, for example, IDD_DIALOG1 . You can use the Properties window to change the default symbol name or to
change the name of any symbol already associated with a resource.

For symbols associated with a single resource, you can also use the Properties window to change the symbol
value. You can use the Resource Symbols dialog box to change the value of symbols not currently assigned to a
resource.

Normally all symbol definitions are saved in Resource.h . However, you may need to change this include filename
so that you can, for example, work with more than one resource file in the same directory.

If your project doesn't already contain an .rc file, see How to: Create Resources.

The restrictions on symbol names are as follows:

All symbols must be unique within the scope of the application to prevent conflicting symbol definitions in
the header files.

Valid characters for a symbol name include A-Z, a-z, 0-9, and underscores (_).

Symbol names can't begin with a number and are limited to 247 characters.

Symbol names can't contain spaces.

Symbol names aren't case-sensitive, but the case of the first symbol definition is preserved.

The header file that defines the symbols is used by both the resource compiler/editor and C++ program(s)
to refer resources defined in a resource file. For two symbol names that differ only in case, the C++
program will see two separate symbols while the resource compiler/editor will see both names as referring
to one single symbol.

If you don't follow the standard symbol name scheme (ID*_[keyword]) outlined below and your symbol name happens to be
the same as a keyword known to the resource script compiler, trying to build the resource script file will result in seemingly
random error generation that is difficult to diagnose. To prevent this, adhere to the standard naming scheme.

Symbol names have descriptive prefixes that indicate the kind of resource or object they represent. These
descriptive prefixes begin with the text combination ID. The Microsoft Foundation Class (MFC) library uses the
symbol naming conventions shown in the following table:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/changing-a-symbol-or-symbol-name-id.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-symbols-dialog-box

Resources IDR_, IDD_, IDC_, IDI_, IDB_ Accelerator or menu (and associated or
custom resources), dialog box, cursor,
icon, bitmap

Menu items ID_ Menu item

Commands ID_ Command

Controls and child windows IDC_ Control

Strings IDS_ String in the string table

MFC AFX_ Reserved for predefined MFC symbols

CATEGORY PREFIX USE

To change a symbol name (ID)To change a symbol name (ID)

NOTENOTE

Symbol Value Restrictions

18
4001
0x0012
-3456

1. In Resource View, select the resource.

2. In the Properties window, type a new symbol name or select from the list of existing symbols in the ID
box.

If you type a new symbol name, it's automatically assigned a value.

You can use the Resource Symbols dialog box to change the names of symbols not currently assigned to a resource.

A symbol value can be any integer expressed in the normal manner for #define preprocessor directives. Here are
some examples of symbol values:

Symbol values for resources such as accelerators, bitmaps, cursors, dialog boxes, icons, menus, string tables, and
version information, must be decimal numbers in the range from 0 to 32,767 but can't be hexadecimal. Symbol
values for parts of resources, such as dialog box controls or individual strings in the string table, can be from 0 to
65,534 or from -32,768 to 32,767. For more information on number ranges, see TN023: Standard MFC
Resources.

Resource symbols are 16-bit numbers. You may enter them as signed or unsigned, however, they're used internally
as unsigned integers, so negative numbers will be cast to their corresponding positive value.

Some limitations of symbol values are:

The Visual Studio development environment and MFC use some number ranges for special purposes. All
numbers with the most significant bit set (-32,768 to -1 or 32,768 to 65,534, depending on sign) are
reserved by MFC.

You can't define a symbol value using other symbol strings. For example, the following symbol definition
isn't supported:

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-symbols-dialog-box

To change a symbol valueTo change a symbol value

Change or Delete Symbols

To change an unassigned symbolTo change an unassigned symbol

NOTENOTE

To delete an unassigned (unused) symbolTo delete an unassigned (unused) symbol

NOTENOTE

Include Symbols

#define IDC_MYEDIT IDC_OTHEREDIT //not supported

#define IDD_ABOUT ID(7) //not supported

You can't use preprocessor macros with arguments as value definitions. The following example isn't a valid
expression regardless of what ID evaluates to at compile time:

Your application may have an existing file containing symbols defined with expressions.

IDC_EDITNAME=5100

1. In Resource View, select the resource.

2. In the Properties window, type the symbol name followed by an equal sign and an integer in the ID box,
for example:

The new value is stored in the symbol header file the next time you save the project. Only the symbol name
remains visible in the ID box and the equal sign and value aren't displayed after they're validated.

While in the Resource Symbols dialog box, you can edit or delete existing symbols that aren't already assigned to a
resource or object.

1. In the Name box, select the unassigned symbol, and choose Change.

2. Edit the symbol's name or value in the boxes provided in the Change Symbol dialog box.

To change a symbol that's assigned to a resource or object, you must use the resource editor or Properties window.

In the Resource Symbols dialog box, select the symbol that you want to delete, and choose Delete.

Before deleting an unused symbol in a resource file, make sure it's not used elsewhere in the program or by resource files
included at compile time.

The first time the development environment reads a resource file created by another application, it marks all
included header files as read-only. Though you can use the Resource Includes dialog box to add additional read-
only symbol header files.

One reason you may want to use read-only symbol definitions is for symbol files that you plan to share among
several projects.

You can also use included symbol files when you have existing resources with symbol definitions that use

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-symbols-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-includes-dialog-box

#define IDC_CONTROL1 2100
#define IDC_CONTROL2 (IDC_CONTROL1+1)

NOTENOTE

To include shared (read-only) symbols in your resource fileTo include shared (read-only) symbols in your resource file

To change the name of the resource symbol header fileTo change the name of the resource symbol header file

Requirements

See Also

expressions rather than simple integers to define the symbol value. For example:

The environment will correctly interpret these calculated symbols as long as:

The calculated symbols are placed in a read-only symbols file.

Your resource file contains resources to which these calculated symbols are already assigned.

A numeric expression is expected.

If a string or a numeric expression is expected, then the expression is not evaluated.

NOTENOTE

1. In Resource View, right-click your .rc file and select Resource Includes.

2. In the Read-only symbol directives box, use the #include compiler directive to specify the file where you
want the read-only symbols to be kept.

Don't call the file Resource.h , since that is the filename normally used by the main symbol header file.

What you type in the Read-Only symbol directives box is included in the resource file exactly as you type it. Make
sure what you type does not contain any spelling or syntax errors.

Use the Read-only symbol directives box to include files with symbol definitions only. Don't include
resource definitions, else duplicate resource definitions will be created when the file is saved.

3. Place the symbols in the file you specified.

The symbols in files included in this way are evaluated each time you open your resource file, but they
aren't replaced on the disk when you save your file.

4. Select OK.

1. In Resource View, right-click your .rc file and choose Resource Includes.

2. In the Symbol header file box, type the new name for the include file.

Win32

Resource Identifiers (Symbols)
How to: Create Symbols
Predefined Symbol IDs

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-includes-dialog-box
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-includes-dialog-box

Predefined Symbol IDs
3/7/2019 • 2 minutes to read • Edit Online

NOTENOTE

Requirements

See Also

When you begin a new project, depending on the project type, some symbol IDs are predefined for your use.
These symbol IDs support the various libraries and project types such as MFC. They represent common tasks that
are usually included in any application, or actions of hardware items, such as a mouse or printer.

These symbol IDs become important when working with resources. They are available when you edit accelerator
tables and some of them are already associated with virtual keys. They're also available to you through the
Properties window. You can assign any of the predefined symbol IDs to new resources, or you can assign
accelerator keys to them and the functionality associated with the symbol ID automatically associates with that
key combination.

Libraries have predefined symbols that will appear as part of the project:

ATL Predefined Symbols

MFC Predefined Symbols

Win32 Predefined Symbols

Predefined symbols are always read-only.

Win32, MFC, or ATL

Resource Identifiers (Symbols)
How to: Create Symbols
How to: Manage Symbols

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/predefined-symbol-ids.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

ATL Predefined Symbols
3/7/2019 • 2 minutes to read • Edit Online

IDABORT (control) Dialog box, Abort button

IDC_STATIC (control) Static control

IDCANCEL (control) Dialog box, Cancel button

IDIGNORE (control) Dialog box, Ignore button

IDNO (control) Dialog box, No button

IDOK (control) Dialog box, OK button

IDR_ACCELERATOR1 (resource) Accelerator table

IDRETRY (control) Dialog box, Retry button

IDS_PROJNAME (string) Current application name

IDYES (control) Dialog box, Yes button

Requirements

See Also

These symbols are defined in the ATL header files, but they support standard Windows application functions and
actions. These symbols are mainly used with dialog boxes.

When you are working with dialogs and controls in the Dialog Editor, these symbols will appear in the Properties
window associated with common controls. For instance, if your dialog box has a Cancel button, that command will
be associated with the symbol IDCANCEL in the Properties window.

ATL

Predefined Symbol IDs
MFC Predefined Symbols
Win32 Predefined Symbols

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/atl-predefined-symbols.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

MFC Predefined Symbols
3/7/2019 • 3 minutes to read • Edit Online

#include <afxwin.h> //MFC core and standard components
#include <afxext.h> //MFC extensions
#include <afxdisp.h> //MFC automation classes
#include <afxdtctl.h> //MFC support for Internet Explorer common controls
#include <afxcmn.h> //MFC support for Windows common controls.

AFX_ID_PREVIEW_CLOSE

AFX_ID_PREVIEW_NEXT AFX_ID_PREVIEW_NUMPAGE

AFX_ID_PREVIEW_PREV AFX_ID_PREVIEW_PRINT

AFX_ID_PREVIEW_ZOOMIN AFX_ID_PREVIEW_ZOOMOUT

AFX_IDB_CHECKLISTBOX_95 AFX_IDB_MINIFRAME_MENU

AFX_IDC_BROWSE AFX_IDC_BROWSER

AFX_IDC_CHANGE AFX_IDC_CLEAR

AFX_IDC_COLOR_BLACK AFX_IDC_COLOR_BLUE

AFX_IDC_COLOR_CYAN AFX_IDC_COLOR_DARKBLUE

AFX_IDC_COLOR_DARKCYAN AFX_IDC_COLOR_DARKGREEN

AFX_IDC_COLOR_DARKMAGENTA AFX_IDC_COLOR_DARKRED

AFX_IDC_COLOR_GRAY AFX_IDC_COLOR_GREEN

AFX_IDC_COLOR_LIGHTBROWN AFX_IDC_COLOR_LIGHTGRAY

AFX_IDC_COLOR_MAGENTA AFX_IDC_COLOR_RED

AFX_IDC_COLOR_WHITE AFX_IDC_COLOR_YELLOW

AFX_IDC_COLORPROP AFX_IDC_CONTEXTHELP

AFX_IDC_FONTNAMES AFX_IDC_FONTPROP

MFC projects always include several header files that support windows. These are added via #include statements
in the StdAfx.h file:

The header files include symbol ID values for MFC common values. These symbols are only available when you're
working in an MFC project. The AFX_ prefix is followed by the standard symbol name prefixes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/mfc-predefined-symbols.md

AFX_IDC_FONTSIZES AFX_IDC_FONTSTYLES

AFX_IDC_HSPLITBAR AFX_IDC_LISTBOX

AFX_IDC_MAGNIFY AFX_IDC_MOUSE_MASK

AFX_IDC_MOUSE_ORG_HORZ AFX_IDC_MOUSE_ORG_HV

AFX_IDC_MOUSE_ORG_VERT AFX_IDC_MOUSE_PAN_E

AFX_IDC_MOUSE_PAN_HORZ AFX_IDC_MOUSE_PAN_HV

AFX_IDC_MOUSE_PAN_N AFX_IDC_MOUSE_PAN_NE

AFX_IDC_MOUSE_PAN_NW AFX_IDC_MOUSE_PAN_S

AFX_IDC_MOUSE_PAN_SE AFX_IDC_MOUSE_PAN_SW

AFX_IDC_MOUSE_PAN_VERT AFX_IDC_MOUSE_PAN_W

AFX_IDC_MOVE4WAY AFX_IDC_NODROPCRSR

AFX_IDC_PICTURE AFX_IDC_PRINT_DOCNAME

AFX_IDC_PRINT_PAGENUM AFX_IDC_PRINT_PORTNAME

AFX_IDC_PRINT_PRINTERNAME AFX_IDC_PROPNAME

AFX_IDC_SAMPLEBOX AFX_IDC_SMALLARROWS

AFX_IDC_STRIKEOUT AFX_IDC_SYSTEMCOLORS

AFX_IDC_TAB_CONTROL AFX_IDC_TRACK4WAY

AFX_IDC_TRACKNESW AFX_IDC_TRACKNS

AFX_IDC_TRACKNWSE AFX_IDC_TRACKWE

AFX_IDC_UNDERLINE AFX_IDC_VSPLITBAR

AFX_IDD_BUSY AFX_IDD_CHANGEICON

AFX_IDD_CHANGESOURCE AFX_IDD_CONVERT

AFX_IDD_EDITLINKS AFX_IDD_FILEBROWSE

AFX_IDD_INSERTOBJECT AFX_IDD_NEWTYPEDLG

AFX_IDD_OBJECTPROPERTIES AFX_IDD_PASTESPECIAL

AFX_IDD_PREVIEW_TOOLBAR AFX_IDD_PRINTDLG

AFX_IDD_PROPPAGE_COLOR AFX_IDD_PROPPAGE_FONT

AFX_IDD_PROPPAGE_PICTURE AFX_IDI_STD_FRAME

AFX_IDI_STD_MDIFRAME AFX_IDP_ARCH_BADCLASS

AFX_IDP_ARCH_BADINDEX AFX_IDP_ARCH_BADSCHEMA

AFX_IDP_ARCH_ENDOFFILE AFX_IDP_ARCH_GENERIC

AFX_IDP_ARCH_NONE AFX_IDP_ARCH_READONLY

AFX_IDP_ARCH_WRITEONLY AFX_IDP_ASK_TO_DISCARD

AFX_IDP_ASK_TO_SAVE AFX_IDP_ASK_TO_UPDATE

AFX_IDP_BAD_VERB AFX_IDP_COMMAND_FAILURE

AFX_IDP_DAO_BADBINDINFO AFX_IDP_DAO_COLUMNUNAVAILABLE

AFX_IDP_DAO_DFX_BIND AFX_IDP_DAO_ENGINE_ INITIALIZATION

AFX_IDP_DAO_OBJECT_NOT_OPEN AFX_IDP_DAO_ROWTOOSHORT

AFX_IDP_DLL_BAD_VERSION AFX_IDP_DLL_LOAD_FAILED

AFX_IDP_E_BADFILEMODE AFX_IDP_E_BADFILENAME

AFX_IDP_E_ BADFILENAMEORNUMBER AFX_IDP_E_BADRECORDLENGTH

AFX_IDP_E_BADREDORDNUMBER AFX_IDP_E_CANTSAVEFILETOEMP

AFX_IDP_E_DEVICEIOERROR AFX_IDP_E_DEVICEUNAVAILABLE

AFX_IDP_E_DISKFULL AFX_IDP_E_DISKNOTREADY

AFX_IDP_E_DIVISIONBYZERO AFX_IDP_E_FILEALREADYEXISTS

AFX_IDP_E_FILEALREADYOPEN AFX_IDP_E_FILENOTFOUND

AFX_IDP_E_GETNOTSUPPORTED AFX_IDP_E_ GETNOTSUPPORTEDATRUNTIME

AFX_IDP_E_ILLEGALFUNCTIONCALL AFX_IDP_E_ INVALIDCLIPBOARDFORMAT

AFX_IDP_E_INVALIDFILEFORMAT AFX_IDP_E_INVALIDPATTERNSTRING

AFX_IDP_E_INVALIDPICTURE AFX_IDP_E_ INVALIDPROPERTYARRAYINDEX

AFX_IDP_E_INVALIDPROPERTYVALUE AFX_IDP_E_INVALIDUSEOFNULL

AFX_IDP_E_ NEEDPROPERTYARRAYINDEX AFX_IDP_E_OUTOFMEMORY

AFX_IDP_E_OUTOFSTACKSPACE AFX_IDP_E_OVERFLOW

AFX_IDP_E_PATHFILEACCESSERROR AFX_IDP_E_PATHNOTTFOUND

AFX_IDP_E_PERMISSIONDENIED AFX_IDP_E_PRINTERERROR

AFX_IDP_E_PROPERTYNOTFOUND AFX_IDP_E_REPLACEMENTSTOOLONG

AFX_IDP_E_SEARCHTEXTNOTFOUND AFX_IDP_E_SETNOTPERMITTED

AFX_IDP_E_SETNOTSUPPORTED AFX_IDP_E_ SETNOTSUPPORTEDATRUNTIME

AFX_IDP_E_TOOMANYFILES AFX_IDP_FAILED_ACCESS_READ

AFX_IDP_FAILED_ACCESS_WRITE AFX_IDP_FAILED_DISK_FULL

AFX_IDP_FAILED_INVALID_FORMAT AFX_IDP_FAILED_INVALID_PATH

AFX_IDP_FAILED_IO_ERROR_READ AFX_IDP_FAILED_IO_ERROR_WRITE

AFX_IDP_FAILED_MAPI_LOAD AFX_IDP_FAILED_MAPI_SEND

AFX_IDP_FAILED_MEMORY_ALLOC AFX_IDP_FAILED_TO_AUTO_REGISTER

AFX_IDP_FAILED_TO_CONNECT AFX_IDP_FAILED_TO_CONVERT

AFX_IDP_FAILED_TO_CREATE AFX_IDP_FAILED_TO_CREATE_DOC

AFX_IDP_FAILED_TO_LAUNCH AFX_IDP_FAILED_TO_LAUNCH_HELP

AFX_IDP_FAILED_TO_NOTIFY AFX_IDP_FAILED_TO_OPEN_DOC

AFX_IDP_FAILED_TO_REGISTER AFX_IDP_FAILED_TO_SAVE_DOC

AFX_IDP_FAILED_TO_START_PRINT AFX_IDP_FAILED_TO_UPDATE

AFX_IDP_FILE_ACCESS_DENIED AFX_IDP_FILE_BAD_PATH

AFX_IDP_FILE_BAD_SEEK AFX_IDP_FILE_DIR_FULL

AFX_IDP_FILE_DISKFULL AFX_IDP_FILE_EOF

AFX_IDP_FILE_GENERIC AFX_IDP_FILE_HARD_IO

AFX_IDP_FILE_INVALID_FILE AFX_IDP_FILE_LOCKING

AFX_IDP_FILE_NONE AFX_IDP_FILE_NOT_FOUND

AFX_IDP_FILE_REMOVE_CURRENT AFX_IDP_FILE_SHARING

AFX_IDP_FILE_TOO_LARGE AFX_IDP_FILE_TOO_MANY_OPEN

AFX_IDP_GET_NOT_SUPPORTED AFX_IDP_INTERNAL_FAILURE

AFX_IDP_INVALID_FILENAME AFX_IDP_INVALID_MAPI_DLL

AFX_IDP_NO_ERROR_AVAILABLE AFX_IDP_PARSE_BYTE

AFX_IDP_PARSE_CURRENCY AFX_IDP_PARSE_DATE

AFX_IDP_PARSE_DATETIME AFX_IDP_PARSE_GUID

AFX_IDP_PARSE_INT AFX_IDP_PARSE_INT_RANGE

AFX_IDP_PARSE_RADIO_BUTTON AFX_IDP_PARSE_REAL

AFX_IDP_PARSE_REAL_RANGE AFX_IDP_PARSE_STRING_SIZE

AFX_IDP_PARSE_TIME AFX_IDP_PARSE_UINT

AFX_IDP_PICTURECANTLOAD AFX_IDP_PICTURECANTOPEN

AFX_IDP_PICTUREREADFAILED AFX_IDP_PICTURETOOLARGE

AFX_IDP_SCRIPT_ DISPATCH_EXCEPTION AFX_IDP_SCRIPT_ERROR

AFX_IDP_SERVER_BUSY AFX_IDP_SET_NOT_SUPPORTED

AFX_IDP_STATIC_OBJECT AFX_IDP_UNREG_DONE

AFX_IDP_UNREG_FAILURE AFX_IDR_PREVIEW_ACCEL

AFX_IDS_ACTIVATE_VERB AFX_IDS_ALL_FILES

AFX_IDS_ALLFILTER AFX_IDS_APP_TITLE

AFX_IDS_APP_TITLE_EMBEDDING AFX_IDS_AUTO

AFX_IDS_AUTOSAVE_RECOVERED AFX_IDS_AUTOSAVE_RECOVERY_ASK_1

AFX_IDS_AUTOSAVE_RECOVERY_ASK_2 AFX_IDS_AUTOSAVE_RECOVERY_ASK_3

AFX_IDS_AUTOSAVE_RECOVERY_ASK_4 AFX_IDS_AUTOSAVE_RECOVERY_ASK_5

AFX_IDS_AUTOSAVE_RECOVERY_ASK_6 AFX_IDS_BITMAP_FORMAT

AFX_IDS_BOLD AFX_IDS_BOLDITALIC

AFX_IDS_BORDERSTYLE_0 AFX_IDS_BORDERSTYLE_1

AFX_IDS_CHANGE_LINK AFX_IDS_CHECKLISTBOX_CHECK

AFX_IDS_CHECKLISTBOX_MIXED AFX_IDS_CHECKLISTBOX_ UNCHECK

AFX_IDS_COLOR_ACTIVEBAR AFX_IDS_COLOR_ACTIVEBORDER

AFX_IDS_COLOR_ACTIVETEXT AFX_IDS_COLOR_APPWORKSPACE

AFX_IDS_COLOR_BTNFACE AFX_IDS_COLOR_BTNHIGHLIGHT

AFX_IDS_COLOR_BTNSHADOW AFX_IDS_COLOR_BTNTEXT

AFX_IDS_COLOR_DESKTOP AFX_IDS_COLOR_DISABLEDTEXT

AFX_IDS_COLOR_HIGHLIGHT AFX_IDS_COLOR_HIGHTLIGHTTEXT

AFX_IDS_COLOR_INACTIVEBAR AFX_IDS_COLOR_INACTIVEBORDER

AFX_IDS_COLOR_INACTIVETEXT AFX_IDS_COLOR_MENUBAR

AFX_IDS_COLOR_MENUTEXT AFX_IDS_COLOR_PPG

AFX_IDS_COLOR_PPG_CAPTION AFX_IDS_COLOR_SCROLLBARS

AFX_IDS_COLOR_WNDBACKGND AFX_IDS_COLOR_WNDFRAME

AFX_IDS_COLOR_WNDTEXT AFX_IDS_COMPANY_NAME

AFX_IDS_DELETED AFX_IDS_DESKACCESSORY

AFX_IDS_DISPLAYSTRING_COLOR AFX_IDS_DISPLAYSTRING_FONT

AFX_IDS_DISPLAYSTRING_PICTURE AFX_IDS_EDIT_VERB

AFX_IDS_EMBED_FORMAT AFX_IDS_EXIT_MENU

AFX_IDS_FONT_PPG AFX_IDS_FONT_PPG_CAPTION

AFX_IDS_FROZEN AFX_IDS_HELPMODEMESSAGE

AFX_IDS_HIDE AFX_IDS_HTTP_AUTH_REQUIRED

AFX_IDS_HTTP_BAD_REQUEST AFX_IDS_HTTP_FORBIDDEN

AFX_IDS_HTTP_NO_TEXT AFX_IDS_HTTP_NOT_FOUND

AFX_IDS_HTTP_NOT_IMPLEMENTED AFX_IDS_HTTP_SERVER_ERROR

AFX_IDS_HTTP_TITLE AFX_IDS_IDLEMESSAGE

AFX_IDS_INVALID_CURRENCY AFX_IDS_INVALID_DATETIME

AFX_IDS_INVALID_DATETIMESPAN AFX_IDS_ITALIC

AFX_IDS_LINKSOURCE_FORMAT AFX_IDS_MANUAL

AFX_IDS_MDICHILD AFX_IDS_MEMORY_EXCEPTION

AFX_IDS_METAFILE_FORMAT AFX_IDS_MINI-FONT

AFX_IDS_NOT_DOCOBJECT AFX_IDS_NOT_SUPPORTED_ EXCEPTION

AFX_IDS_OBJ_TITLE_INPLACE AFX_IDS_OBJECT_MENUITEM

AFX_IDS_OCC_SCALEUNITS_PIXELS AFX_IDS_ONEPAGE

AFX_IDS_OPENFILE AFX_IDS_PASTELINKEDTYPE

AFX_IDS_PICTURE_PPG AFX_IDS_PICTURE_PPG_CAPTION

AFX_IDS_PICTUREBROWSETITLE AFX_IDS_PICTUREFILTER

AFX_IDS_PICTYPE_BITMAP AFX_IDS_PICTYPE_ICON

AFX_IDS_PICTYPE_METAFILE AFX_IDS_PICTYPE_NONE

AFX_IDS_PICTYPE_UNKNOWN AFX_IDS_PREVIEW_CLOSE

AFX_IDS_PREVIEWPAGEDESC AFX_IDS_PRINTCAPTION

AFX_IDS_PRINTDEFAULT AFX_IDS_PRINTDEFAULTEXT

AFX_IDS_PRINTFILTER AFX_IDS_PRINTONPORT

AFX_IDS_PRINTPAGENUM AFX_IDS_PRINTTOFILE

AFX_IDS_PROPPAGE_UNKNOWN AFX_IDS_REGULAR

AFX_IDS_RESOURCE_EXCEPTION AFX_IDS_RTF_FORMAT

AFX_IDS_SAMPLETEXT AFX_IDS_SAVE_AS_MENU

AFX_IDS_SAVE_COPY_AS_MENU AFX_IDS_SAVE_MENU

AFX_IDS_SAVEFILE AFX_IDS_SAVEFILECOPY

AFX_IDS_SCCLOSE AFX_IDS_SCMAXIMIZE

AFX_IDS_SCMINIMIZE AFX_IDS_SCMOVE

AFX_IDS_SCNEXTWINDOW AFX_IDS_SCPREVWINDOW

AFX_IDS_SCRESTORE AFX_IDS_SCSIZE

AFX_IDS_SCTASKLIST AFX_IDS_STATUS_FONT

AFX_IDS_TEXT_FORMAT AFX_IDS_TOOLTIP_FONT

AFX_IDS_TWOPAGE AFX_IDS_UNICODE_FONT

AFX_IDS_UNKNOWNTYPE AFX_IDS_UNNAMED_FILE

AFX_IDS_UNTITLED AFX_IDS_UPDATE_MENU

AFX_IDS_UPDATING_ITEMS AFX_IDS_USER_EXCEPTION

AFX_IDS_VERB_EDIT AFX_IDS_VERB_PROPERTIES

MFC Database Programming

AFX_IDP_SQL_API_CONFORMANCE AFX_IDP_SQL_BOOKMARKS_ NOT_ENABLED

AFX_IDP_SQL_BOOKMARKS_ NOT_SUPPORTED AFX_IDP_SQL_CONNECT_FAIL

AFX_IDP_SQL_DATA_TRUNCATED AFX_IDP_SQL_DYNAMIC_CURSOR_ NOT_SUPPORTED

AFX_IDP_SQL_DYNASET_ NOT_SUPPORTED AFX_IDP_SQL_EMPTY_COLUMN_LIST

AFX_IDP_SQL_FIELD_NOT_FOUND AFX_IDP_SQL_FILED_SCHEMA_ MISMATCH

AFX_IDP_SQL_ILLEGAL_MODE AFX_IDP_SQL_INCORRECT_ODBC

AFX_IDP_SQL_LOCK_MODE_ NOT_SUPPORTED AFX_IDP_SQL_MULTIPLE_ ROWS_AFFECTED

AFX_IDP_SQL_NO_CURRENT_RECORD AFX_IDP_SQL_NO_DATA_FOUND

AFX_IDP_SQL_NO_POSITIONED_ UPDATES AFX_IDP_SQL_NO_ROWS_AFFECTED

AFX_IDP_SQL_ODBC_LOAD_FAILED AFX_IDP_SQL_ODBC_V2_REQUIRED

AFX_IDP_SQL_RECORDSET_ FORWARD_ONLY AFX_IDP_SQL_RECORDSET_READONLY

AFX_IDP_SQL_ROW_FETCH AFX_IDP_SQL_ROW_UPDATE_ NOT_SUPPORTED

AFX_IDP_SQL_SNAPSHOT_ NOT_SUPPORTED AFX_IDP_SQL_SQL_CONFORMANCE

AFX_IDP_SQL_SQL_NO_TOTAL AFX_IDP_SQL_UPDATE_DELETE_FAILED

MFC Windows Programming

The symbols in this table only appear in an MFC project when database support has been added. They support
the MFC connection to SQL servers and database programming.

These symbols are also part of the MFC support files, but they support standard Windows application functions
and actions. These symbols are used with menus.

When you're working with menus in the Menu Editor, these symbols will appear in the Property window
associated with common menu commands. For instance, if your application has a File menu with an Exit

ID_APP_ABOUT ID_APP_EXIT ID_APPLY_NOW

ID_CONTEXT_HELP ID_DEFAULT_HELP ID_EDIT_CLEAR

ID_EDIT_CLEAR_ALL ID_EDIT_COPY ID_EDIT_CUT

ID_EDIT_FIND ID_EDIT_PASTE ID_EDIT_PASTE_LINK

ID_EDIT_PASTE_SPECIAL ID_EDIT_REDO ID_EDIT_REPEAT

ID_EDIT_REPLACE ID_EDIT_SELECT_ALL ID_EDIT_UNDO

ID_FILE_CLOSE ID_FILE_MRU_FILE1 ID_FILE_MRU_FILE10

ID_FILE_MRU_FILE11 ID_FILE_MRU_FILE12 ID_FILE_MRU_FILE13

ID_FILE_MRU_FILE14 ID_FILE_MRU_FILE15 ID_FILE_MRU_FILE16

ID_FILE_MRU_FILE2 ID_FILE_MRU_FILE3 ID_FILE_MRU_FILE4

ID_FILE_MRU_FILE5 ID_FILE_MRU_FILE6 ID_FILE_MRU_FILE7

ID_FILE_MRU_FILE8 ID_FILE_MRU_FILE9 ID_FILE_MRU_FIRST

ID_FILE_MRU_LAST ID_FILE_NEW ID_FILE_NEW_FRAME

ID_FILE_OPEN ID_FILE_PAGE_SETUP ID_FILE_PRINT

ID_FILE_PRINT_DIRECT ID_FILE_PRINT_PREVIEW ID_FILE_PRINT_SETUP

ID_FILE_SAVE ID_FILE_SAVE_AS ID_FILE_SAVE_COPY_AS

ID_FILE_SEND_MAIL ID_FILE_UPDATE ID_FORMAT_FONT

ID_HELP ID_HELP_FINDER ID_HELP_INDEX

ID_HELP+USING ID_INDICATOR_CAPS ID_INDICATOR_EXT

ID_INDICATOR_KANA ID_INDICATOR_NUM ID_INDICATOR_OVR

ID_INDICATOR_REC ID_INDICATOR_SCRL ID_NEXT_PANE

ID_OLE_EDIT_CHANGE_ICON ID_OLE_EDIT_CONVERT ID_OLE_EDIT_LINKS

ID_OLE_EDIT_PROPERTIES ID_OLE_INSERT_NEW ID_OLE_VERB_FIRST

ID_PREV_PANE ID_REC_FIRST ID_RECORD_LAST

ID_RECORD_NEXT ID_RECORD_PREV ID_SEPARATOR

command, that command will be associated with the symbol ID_APP_EXIT in the Properties window.

https://docs.microsoft.com/visualstudio/ide/reference/properties-window

ID_VIEW_AUTOARRANGE ID_VIEW_BYNAME ID_VIEW_DETAILS

ID_VIEW_LARGEICON ID_VIEW_LINEUP ID_VIEW_LIST

ID_VIEW_REBAR ID_VIEW_SMALLICON ID_VIEW_STATUS_BAR

ID_VIEW_TOOLBAR ID_WINDOW_ARRANGE ID_WINDOW_CASCADE

ID_WINDOW_NEW ID_WINDOW_SPLIT ID_WINDOW_TILE_HORIZ

ID_WINDOW_TILE_VERT ID_WIZBACK ID_WIZFINISH

ID_WIZNEXT IDABORT IDC_STATIC

IDCANCEL IDD_ABOUTBOX IDIGNORE

IDNO IDOK IDP_OLE_INIT_FAILED

IDRETRY IDYES

Requirements

See Also

MFC

Predefined Symbol IDs
ATL Predefined Symbols
Win32 Predefined Symbols

Win32 Predefined Symbols
3/7/2019 • 2 minutes to read • Edit Online

IDABORT (control) Dialog box, Abort button

IDC_STATIC (control) Static text in a dialog box

IDCANCEL (control) Dialog box, Cancel button

IDD_ABOUTBOX (dialog) Product About dialog box

IDI_PROJECTNAME (icon) Current project icon

IDI_SMALL (icon) Current project small icon

IDIGNORE (control) Used with Ignore button on dialogs

IDM_ABOUT (menu item) Used with Help...About...

IDM_EXIT (menu item) Used with File...Exit...

IDNO (control) Dialog box, No button

IDOK (control) Dialog box, OK button

IDRETRY (control) Dialog box, Retry button

IDS_APP_TITLE (string) Current application name

IDYES (control) Dialog box, Yes button

Requirements

See Also

These symbols are defined in the Win32 header files and they support standard Windows application functions
and actions. These symbols are mainly used with common UI elements. When you are working with controls in
the resource editors, these symbols will appear in the Properties window associated with common controls. For
instance, if your toolbar should display the application icon, the icon will be associated with the symbol
IDI_SMALL in the Property window.

Win32

Predefined Symbol IDs
MFC Predefined Symbols
ATL Predefined Symbols

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/win32-predefined-symbols.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

Resource Editors (C++)
3/7/2019 • 4 minutes to read • Edit Online

NOTENOTE

USE THE... TO EDIT...

Accelerator Editor Accelerator tables in Visual C++ projects.

Binary Editor Binary data information and custom resources in Visual C++,
Visual Basic, or Visual C# projects.

Dialog Editor Dialog boxes in Visual C++ projects.

Image Editor Bitmaps, icons, cursors, and other image files in Visual C++,
Visual Basic, or Visual C# projects.

Menu Editor Menu resources in Visual C++ projects.

Ribbon Editor Ribbon resources in MFC projects.

String Editor String tables in Visual C++ projects.

Toolbar Editor Toolbar resources in Visual C++ projects. The Toolbar
Editor is part of the Image Editor.

Version Information Editor Version information in Visual C++ projects.

NOTENOTE

View and Edit Resources

A resource editor is a specialized environment for creating or modifying resources that are included in a Visual
Studio project. The Visual Studio resource editors share techniques and interfaces to help you create and modify
application resources quickly and easily. Resource editors enable you to view and edit resources in the
appropriate editor and preview resources.

The appropriate editor opens automatically when you create or open a resource.

Because managed projects do not use resource script files, you must open your resources from Solution Explorer. You
can use the Image Editor and the Binary Editor to work with resource files in managed projects. Any managed resources
you want to edit must be linked resources. The Visual Studio resource editors do not support editing embedded
resources.

If your project doesn't already contain an .rc file, please see How to: Create Resources.

Each resource type has a resource editor specific to that resource type. You can rearrange, resize, add controls
and features, or otherwise modify aspects of a resource using the associated editor. You can also edit a resource
in text format and binary format.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/resource-editors.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/how-to-open-a-resource-script-file-in-text-format
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/opening-a-resource-for-binary-editing

NOTENOTE

Win32 ResourcesWin32 Resources

To view a Win32 resource in a resource editorTo view a Win32 resource in a resource editor

To delete an existing Win32 resourceTo delete an existing Win32 resource

TIPTIP

Managed Project ResourcesManaged Project Resources

Some resource types are individual files that can be imported and used in various ways; these include bitmaps,
icons, cursors, toolbars, and html files. Such resources have file names and resource identifiers. Others, such as
dialogs, menus, and string tables in Win32 projects, exist only as part of a resource script (.rc) file or resource
template (.rct) file.

Resources can also be edited outside of the project without having the project open, see How to: Create
Resources.

Properties of a resource can be modified using the Properties window.

To edit the properties of a resource, in Resource View, right-click the resource you want to edit and
choose Properties. Then, in the Properties window, change the properties of your resource.

To undo a change made to the properties of a resource, make sure your resource has focus in Resource
View and choose Undo from the Edit menu.

You can access Win32 resources in the Resource View pane.

1. Go to menu View > Resource View.

2. If the Resource View window isn't the top-most window, select the Resource View tab to bring it to the
top.

3. From Resource View, expand the folder for the project that contains resources you want to view. For
example, if you want to view a dialog resource, expand the Dialog folder.

4. Double-click the resource, for example, IDD_ABOUTBOX.

The resource opens in the appropriate editor. For example, for dialog resources, the resource opens inside
the Dialog Editor.

1. In Resource View, expand the node for a resource type.

2. Right-click on the resource you want to delete and choose Delete.

You can also use this method when you have the .rc file open in a document window outside a project.

Because managed projects don't use resource script files, you must open your resources from Solution
Explorer. Use the Image Editor and the Binary Editor to work with resource files in managed projects. Any
managed resources you want to edit must be linked resources and Visual Studio resource editors don't support
editing embedded resources.

To view a managed resource in a resource editor, in Solution Explorer, double-click the resource, for
example, Bitmap1.bmp, and the resource opens in the appropriate editor.

To delete an existing managed resource, in Solution Explorer, right-click the resource you want to delete
and choose Delete.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/how-to-open-a-resource-script-file-outside-of-a-project-standalone
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources

Preview Resources

NOTENOTE

To preview resourcesTo preview resources

Requirements

See Also

Preview your resources to allow you to view graphical resource without opening them. Previewing is also useful
for executables after you've compiled them, because the resource identifiers change to numbers. Since these
numeric identifiers often don't provide enough information, previewing the resources helps you quickly identify
them.

The following resource types provide a visual layout preview: Bitmap, Dialog, Icon, Menu, Cursor, Toolbar

The following resources don't provide a visual preview: Accelerator, Manifest, String Table, Version Information

To preview resources requires Win32.

TIPTIP

1. In Resource View or a document window, select your resource, for example, IDD_ABOUTBOX.

2. In the Properties window, select the Property Pages button.

Use a shortcut, go to menu View > Property Pages.

The Property page for the resource opens displaying a preview of that resource. You can use the Up and
Down arrow keys to navigate the tree control in Resource View or the document window. The Property
page will stay open and show any resource that has focus and can be previewed.

None

Working with Resource Files
Resource Files
Resource Identifiers (Symbols)

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

Accelerator Editor (C++)
3/7/2019 • 7 minutes to read • Edit Online

TIPTIP

NOTENOTE

Accelerator Properties

NOTENOTE

VALUE DESCRIPTION

An accelerator table is a C++ Windows resource that contains a list of accelerator keys, known as shortcut keys,
and the command identifiers that are associated with them. A program can have more than one accelerator table.

Normally, accelerators are used as keyboard shortcuts for program commands that are also available on a menu
or toolbar. However, you can use the accelerator table to define key combinations for commands that don't have a
user-interface object associated with them.

When using the Accelerator Editor, right-click to display a shortcut menu of frequent commands. The commands available
depend on what the pointer is pointing to.

You can use Class View to hook accelerator key commands to code. For a list of pre-defined accelerator keys, see
Accelerator Keys.

Windows doesn't allow you to create empty accelerator tables. If you create an accelerator table with no entries, it is deleted
automatically when you save the table.

You can set accelerator properties in the Properties window at any time. You can also use the Accelerator Editor
to modify the accelerator properties in the accelerator table. Changes made using the Properties window or the
Accelerator Editor have the same result, edits are immediately reflected in the accelerator table.

The ID property references each accelerator table entry in program code. This entry is the command value that the
program receives when a user presses the accelerator key or a key combination. To make an accelerator the same
as a menu item, make the ID the same, so long as the ID of the accelerator table is the same as the ID for the
menu resource.

Each accelerator ID has three properties: Modifier, Key, and Type

The Modifier property sets control key combinations for the accelerator.

In the Properties window, the Modifier property appears as three separate Boolean properties, all of which can be
controlled independently: Alt, Ctrl, and Shift.

The following are legal entries for the Modifier property in the accelerator table:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/accelerator-editor.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

None User presses only the Key value.

This value is most effectively used with the ASCII/ANSI values
001 through 026, which is interpreted as ^A through ^Z
(Ctrl+A through Ctrl+Z).

Alt User must press Alt before the Key value.

Ctrl User must press Ctrl before the Key value, not valid with
ASCII Type.

Shift User must press Shift before the Key value.

Ctrl+Alt User must press Ctrl and Alt before the Key value, not valid
with ASCII Type.

Ctrl+Shift User must press Ctrl and Shift before the Key value, not valid
with ASCII Type.

Alt+Shift User must press Alt and Shift before the Key value, not valid
with ASCII Type.

Ctrl+Alt+Shift User must press Ctrl, Alt, and Shift before the Key value, not
valid with ASCII Type.

VALUE DESCRIPTION

VALUE DESCRIPTION

An integer between 0 and 255 in decimal format. The value determines whether the value is treated as ASCII or
ANSI as follows:

- Single-digit numbers are always interpreted as the
corresponding key, rather than as ASCII or ANSI values.
- Values from 1 through 26, when preceded with zeros, are
interpreted as ^A through ^Z, which represents the ASCII
value of the letters of the alphabet when pressed with the Ctrl
key held down.
- Values from 27-32 are always interpreted as three-digit
decimal values 027 through 032.
- Values from 033 through 255, whether preceded by 0's or
not are interpreted as ANSI values.

A single keyboard character. Uppercase A - Z or the numbers 0 - 9 can be either ASCII or
virtual key values. Any other character is ASCII only.

A single keyboard character in the range A - Z (uppercase
only), preceded by a caret (^), for example, ^C.

This option enters the ASCII value of the key when it's pressed
with the Ctrl key held down.

Any valid virtual key identifier. The drop-down Key box in the accelerator table contains a list
of standard virtual key identifiers.

The Key property sets the actual key to use as the accelerator.

The following are legal entries for the Key property in the accelerator table:

NOTENOTE

TIPTIP

NOTENOTE

Accelerator Tables

To edit in an accelerator tableTo edit in an accelerator table

To find an entry in an open accelerator tableTo find an entry in an open accelerator table

When entering an ASCII value, the Modifier property options are limited. The only control key available for use is the Alt
key.

A shortcut to define an accelerator key is to right-click an entry or multiple entries in the accelerator table, then choose Next
Key Typed and press any of the keys or key combinations on the keyboard.

This Next Key Typed command is also available from the Edit menu.

The Type property determines whether the shortcut key combination associated with the accelerator ID is
interpreted as an ASCII/ANSI key value or a virtual key (VIRTKEY) combination.

If the Type property is ASCII, the Modifier property may only be None or Alt , or it can have an
accelerator that uses the Ctrl key, as specified by preceding the key with a ^ .

If the Type property is VIRTKEY , any combination of Modifier and Key values is valid.

If you want to enter a value into the accelerator table and have the value treated as ASCII/ANSI, select the Type for the
entry in the table and select ASCII from the dropdown list. However, if you use the Next Key Typed command from the
Edit menu to specify the Key, you must change the Type property from VIRTKEY to ASCII before entering the Key code.

In a C++ project, you can edit an accelerator table directly with in-place editing in the Accelerator Editor.

The procedures below refer to the use of standard property pages, however, both in-place editing and the property
page method have the same result. Changes made using property pages or using in-place editing are immediately
reflected in the accelerator table.

1. Open the accelerator table by double-clicking its icon in Resource View.

2. Select an entry in the table and select to activate in-place editing.

3. Select from the drop-down combo box or type in place to make changes:

For ID , select from the list or type to edit.

For Modifier, select from the list.

For Key, select from the list or type to edit.

For Type, select ASCII or VIRTKEY from the list.

1. Open the accelerator table by double-clicking its icon in Resource View.

2. Select a column head to sort the contents of the column alphabetically. For example, select ID to display all
the IDs in your accelerator table alphabetically.

You can then scan the list and find the entry.

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources

To add an entry to an accelerator tableTo add an entry to an accelerator table

NOTENOTE

To delete an entry from an accelerator tableTo delete an entry from an accelerator table

TIPTIP

To move or copy an accelerator table entry to another resource script fileTo move or copy an accelerator table entry to another resource script file

NOTENOTE

To change the properties of multiple accelerator keysTo change the properties of multiple accelerator keys

NOTENOTE

1. Open the accelerator table by double-clicking its icon in Resource View.

2. Right-click within the accelerator table and choose New Accelerator, or select the empty row entry at the
bottom of the table.

3. Select an ID from the drop-down list in the ID box or type a new ID in the ID box.

4. Type the Key you want to use as an accelerator, or right-click and choose Next Key Typed to set a key
combination, or go to menu Edit > Next Key Typed.

5. Change the Modifier and Type, if necessary, and press Enter.

Make sure all accelerators you define are unique. You can have several key combinations assigned to the same ID with no ill
effect, for example, Ctrl+P and F8 can both be assigned to ID_PRINT. However, having a key combination assigned to more
than one ID won't work well, for example, Ctrl+Z assigned to both ID_SPELL_CHECK and ID_THESAURUS.

1. Open the accelerator table by double-clicking its icon in Resource View.

2. Select the entry you want to delete, or hold down the Ctrl or Shift key while selecting to choose multiple
entries.

3. Right-click and choose Delete, or go to menu Edit > Delete.

You can also press the Delete key to delete.

1. Open the accelerator tables in both resource script files and select the entry you want to move.

2. From the Edit menu, choose Copy or Cut.

3. Select an entry in the target resource script file and from the Edit menu, choose Paste.

You can also use the shortcut keys for copying and pasting.

1. Open the accelerator table by double-clicking its icon in Resource View.

2. Select the accelerator keys you want to change by holding down the Ctrl key as you select each one.

3. Go to the Properties window and type in the values you want all of the selected accelerators to share.

Each modifier value appears as a Boolean property in the Properties window. If you change a Modifier value in the
Properties window, the accelerator table treats the new modifier as an addition to any modifiers that were previously there.
Because of this, if you set any modifier values, you'll need to set all of them to ensure that every accelerator shares the same
Modifier settings.

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/accelerator-modifier-property

Requirements

See Also

Win32

Resource Editors
Accelerator Keys

Accelerator Keys (C++)
3/1/2019 • 2 minutes to read • Edit Online

Predefined Accelerator Keys

KEY DESCRIPTION

VK_ACCEPT (IME) accept

VK_BROWSER_BACK (Windows) Browser, Back key

VK_BROWSER_FAVORITES (Windows) Browser, Favorites key

VK_BROWSER_FORWARD (Windows) Browser, Forward key

VK_BROWSER_HOME (Windows) Browser, Start and Home key

VK_BROWSER_REFRESH (Windows) Browser, Refresh key

VK_BROWSER_SEARCH (Windows) Browser, Search key

VK_BROWSER_STOP (Windows) Browser, Stop key

VK_CONVERT (IME) convert

VK_FINAL (IME) final mode

VK_HANGUEL (IME) Hanguel mode (maintained for compatibility, use
VK_HANGUL)

VK_HANGUL (IME) Hangul mode

VK_HANJA (IME) Hanja mode

VK_JUNJA (IME) Junja mode

VK_KANA (IME) Kana mode

VK_KANJI (IME) Kanji mode

VK_LAUNCH_APP1 (Windows) Start Application 1 key

VK_LAUNCH_APP2 (Windows) Start Application 2 key

VK_LAUNCH_MAIL (Windows) Start Mail key

There are a number of predefined accelerator keys that may be part of a Windows application project. Some of
these virtual keys are for the Windows environment. Others support browser or Unicode applications. You can use
any of these keys in any accelerator.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/predefined-accelerator-keys.md

VK_LAUNCH_MEDIA_SELECT (Windows) Select Media key

VK_LCONTROL Left Ctrl key

VK_LMENU Left Menu key

VK_LSHIFT Left Shift key

VK_MEDIA_NEXT_TRACK (Windows) Next Track key

VK_MEDIA_PLAY_PAUSE (Windows) Play/Pause Media key

VK_MEDIA_PREV_TRACK (Windows) Previous Track key

VK_MEDIA_STOP (Windows) Stop Media key

VK_MODECHANGE (IME) mode change request

VK_NONCONVERT (IME) nonconvert

VK_OEM_1 (Windows) For the US standard keyboard, the ;: key

VK_OEM_102 (Windows) Either the angle bracket key or the backslash key
on the RT 102-key keyboard

VK_OEM_2 (Windows) For the US standard keyboard, the /? key

VK_OEM_3 (Windows) For the US standard keyboard, the `~ key

VK_OEM_4 (Windows) For the US standard keyboard, the [{ key

VK_OEM_5 (Windows) For the US standard keyboard, the \| key

VK_OEM_6 (Windows) For the US standard keyboard, the]} key

VK_OEM_7 (Windows) For the US standard keyboard, the 'single-
quote/double-quote' key

VK_OEM_COMMA (Windows) For any country/region, the , key

VK_OEM_MINUS (Windows) For any country/region, the - key

VK_OEM_PERIOD (Windows) For any country/region, the . key

VK_OEM_PLUS (Windows) For any country/region, the + key

VK_PACKET (Windows) Used to pass Unicode characters as if they're
keystrokes.

VK_RCONTROL Right Ctrl key

KEY DESCRIPTION

VK_RMENU Right Menu key

VK_RSHIFT Right Shift key

VK_SLEEP Computer Sleep key

VK_VOLUME_DOWN (Windows) Volume Down key

VK_VOLUME_MUTE (Windows) Volume Mute key

VK_VOLUME_UP (Windows) Volume Up key

VK_XBUTTON1 (Windows) X1 mouse button

VK_XBUTTON2 (Windows) X2 mouse button

KEY DESCRIPTION

Accelerator Key Association

Requirements

See Also

Many times, you want a menu item and a keyboard combination to issue the same program command. You do this
action by assigning the same resource identifier (ID) to the menu item and to an entry in your application's
accelerator table. You then edit the menu item's caption to show the name of the accelerator. For more information
on menu items and accelerator keys, see Menu Commands.

Win32

Accelerator Editor

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/associating-a-menu-command-with-an-accelerator-key

Binary Editor (C++)
3/7/2019 • 4 minutes to read • Edit Online

C a u t i o nC a u t i o n

TIPTIP

How To

To open a Windows desktop resource for binary editingTo open a Windows desktop resource for binary editing

Editing resources such as dialog boxes, images, or menus in the Binary Editor is dangerous. Incorrect editing
could corrupt the resource, making it unreadable in its native editor.

The Binary Editor allows you to edit any resource at the binary level in either hexadecimal or ASCII format. You
can also use the Find command to search for either ASCII strings or hexadecimal bytes. Use the Binary Editor
only when you need to view or make minor changes to custom resources or resource types not supported by the
Visual Studio environment. The Binary Editor is not available in Express editions.

To open the Binary Editor on a new file, go to menu File > New > File, select the type of file you want to
edit, then select the drop arrow next to the Open button, and choose Open With > Binary Editor.

To open the Binary Editor on an existing file, go to menu File > Open > File, select the file you want to
edit, then select the drop arrow next to the Open button, and choose Open With > Binary Editor.

Binary data for a dialog box displayed in the Binary Editor

Only certain ASCII values are represented in the Binary Editor (0x20 through 0x7E). Extended characters are
displayed as periods in the right panel ASCII value section of the Binary Editor. The printable characters are
ASCII values 32 through 126.

While using the Binary Editor, in many instances you can right-click to display a shortcut menu of resource-specific
commands. The commands available depend on what your cursor is pointing to. For example, if you right-click while
pointing to the Binary Editor with selected hexadecimal values, the shortcut menu shows the Cut, Copy, and Paste
commands.

The Binary Editor enables you:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/binary-editor.md
https://docs.microsoft.com/visualstudio/ide/reference/find-command

NOTENOTE

To open a managed resource for binary editingTo open a managed resource for binary editing

NOTENOTE

To edit a resourceTo edit a resource

NOTENOTE

To find binary dataTo find binary data

To create a new custom or data resourceTo create a new custom or data resource

1. In Resource View, select the specific resource file you want to edit.

2. Right-click the resource and select Open Binary Data.

If you use the Resource View window to open a resource with a format that Visual Studio doesn't recognize, such as
RCDATA or a custom resource, the resource is automatically opened in the Binary Editor.

1. In Solution Explorer, select the specific resource file you want to edit.

2. Right-click the resource and select Open With.

3. In the Open With dialog box, choose Binary Editor.

You can use the Image Editor and the Binary Editor to work with resource files in managed projects. Any managed
resources you want to edit must be linked resources. The Visual Studio resource editors do not support editing embedded
resources.

If you want to use the Binary Editor on a resource already being edited in another editor window, close the other
editor window first.

1. Select the byte you want to edit.

The Tab key moves the focus between the hexadecimal and ASCII sections of the Binary Editor. You can
use the Page Up and Page Down keys to move through the resource one screen at a time.

2. Type the new value.

The value changes immediately in both the hexadecimal and ASCII sections and focus shifts to the next
value in line.

The Binary Editor accepts changes automatically when you close the editor.

You can search for either ASCII strings or hexadecimal bytes. For example, to find Hello, you can search for either
the string Hello or its hexadecimal value, 48 65 6C 6C 6F .

1. Go to menu Edit > Find.

2. In the Find What box, select a previous search string from the drop-down list or type the data you want to
find.

3. Select any of the Find options and choose Find Next.

You can create a new custom or data resource by placing the resource in a separate file using normal resource
script (.rc) file syntax, and then including that file by right-clicking your project in Solution Explorer and
selecting Resource Includes.

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/visualstudio/ide/reference/find-command

NOTENOTE

Requirements

See Also

#include mydata.rc

1. Create a .rc file that contains the custom or data resource.

You can type custom data in a .rc file as null-terminated quoted strings, or as integers in decimal,
hexadecimal, or octal format.

2. In Solution Explorer, right-click your project's .rc file and select Resource Includes.

3. In the Compile-Time Directives box, type a #include statement that gives the name of the file
containing your custom resource, for example:

Make sure the syntax and spelling of what you type are correct. The contents of the Compile-Time
Directives box are inserted into the resource script file exactly as you type them.

4. Select OK to record your changes.

Another way to create a custom resource is to import an external file as the custom resource, see How to: Manage
Resources.

Creating new custom or data resources requires Win32.

None

Resource Editors

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/how-to-import-and-export-resources

Dialog Editor (C++)
3/7/2019 • 5 minutes to read • Edit Online

TIPTIP

Dialog Editor Toolbar

ICON MEANING ICON MEANING

Test Dialog Across

Align Lefts Down

Align Rights Make Same Width

Align Tops Make Same Height

Align Bottoms Make Same Size

The Dialog Editor allows you to create or edit dialog box resources.

To open the editor, double-click on a dialog’s .rc file in the Resource View window, or go to menu View >
Resource View.

One of the first steps in making a new dialog box or dialog box template, is adding controls. In the Dialog
Editor, you can arrange controls to fit a certain size, shape, or alignment, or you can move them around to
work within the dialog box. It's also easy to delete a control.

You can store a dialog box as a template so you can reuse it. You can also easily switch between designing the
dialog box and editing the code that implements it.

It's also possible to edit properties of single or multiple controls in the Dialog Editor. You can change the tab
order, that is, the order in which controls gain focus when the Tab key is pressed, or you can define an access
key or key combination that allows users to choose a control using the keyboard.

The Dialog Editor also allows you to use custom controls, including ActiveX controls. You can also edit a form
view, record views, or dialog bars.

Starting with Visual Studio 2015, you can use the Dialog Editor to define dynamic layouts, which specify how
controls move and resize when the user resizes a dialog. For more information, see Dynamic Layout.

For more information on resources, see how to Create a Dialog Box and Dialog Box Controls.

While using the Dialog Editor, in many instances, you can select with the right mouse button to display a shortcut menu
of frequently used commands.

The Dialog Editor toolbar contains buttons for arranging the layout of controls on the dialog box, for example
size and alignment. Dialog Editor toolbar buttons correspond to commands on the Format menu.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/dialog-editor.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access

Vertical Toggle Grid

Horizontal Toggle Guides

ICON MEANING ICON MEANING

Switch Between Dialog Box Controls and Code

Accelerator Keys

COMMAND KEYS DESCRIPTION

Format.AlignBottoms Ctrl + Shift + Down Arrow Aligns the bottom edges of the
selected controls with the dominant
control.

Format.AlignCenters Shift + F9 Aligns the vertical centers of the
selected controls with the dominant
control.

To show or hide the Dialog Editor toolbar, go to menu View > Toolbars > Dialog Editor.

When you open the Dialog Editor in a C++ project, the Dialog Editor toolbar automatically appears at the
top of your solution, however, if you explicitly close the toolbar, you'll need to invoke it the next time you open
the Dialog Editor. You can toggle its display by selecting it from the list of available toolbars and windows.

In MFC applications, you can double-click on dialog box controls to jump to their handler code or to quickly
create stub handler functions.

With a control selected, select the ControlEvents button or the Messages button in the Properties window to
view a complete list of Windows messages and events available for the selected item. Choose from the list to
create or edit handler functions.

NOTENOTE

To jump to code from the Dialog Editor, double-click on a control within the dialog box to jump to the
declaration for its most-recently implemented message handling function.

For ATL-based dialog classes, you always jump to the constructor definition.

To view events for a control, with a control selected, choose the ControlEvents button in the Properties
window.

When a single control has focus in the dialog box, you can right-click and select Add Event Handler.
This enables you to specify the class to which the handler is added. For more information, see Adding an
Event Handler.

Choosing the ControlEvents button when the dialog box has focus exposes a list of all the controls in the dialog
box, which you can then expand to edit the events for the individual controls.

To view messages for a dialog box, with the dialog box selected, choose the Messages button in the
Properties window.

Below are the default accelerator keys for the Dialog Editor commands.

https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-an-event-handler-visual-cpp

Format.AlignLefts Ctrl + Shift + Left Arrow Aligns the left edges of the selected
controls with the dominant control.

Format.AlignMiddles F9 Aligns the horizontal centers of the
selected controls with the dominant
control.

Format.AlignRights Ctrl + Shift + Right Arrow Aligns the right edges of the selected
controls with the dominant control.

Format.AlignTops Ctrl + Shift + Up Arrow Aligns the top edges of the selected
controls with the dominant control.

Format.ButtonBottom Ctrl + B Places the selected buttons along the
bottom-center of the dialog box.

Format.ButtonRight Ctrl + R Places the selected buttons in the top-
right corner of the dialog box.

Format.CenterHorizontal Ctrl + Shift + F9 Centers the controls horizontally
within the dialog box.

Format.CenterVertical Ctrl + F9 Centers the controls vertically within
the dialog box.

Format.CheckMnemonics Ctrl + M Checks uniqueness of mnemonics.

Format.SizeToContent Shift + F7 Resizes the selected control(s) to fit the
caption text.

Format.SpaceAcross Alt + Left Arrow Evenly spaces the selected controls
horizontally.

Format.SpaceDown Alt + Down Arrow Evenly spaces the selected controls
vertically.

Format.TabOrder Ctrl + D Sets the order of controls within the
dialog.

Format.TestDialog Ctrl + T Runs the dialog box to test
appearance and behavior.

Format.ToggleGuides Ctrl + G Cycles between no grid, guidelines,
and grid for dialog editing.

COMMAND KEYS DESCRIPTION

To change shortcut keys, go to menu Tools > Options, and choose Keyboard under the Environment
folder.

For more information, see Identifying and Customizing Keyboard Shortcuts.

To change your settings, go to menu Tools > Import and Export Settings.

The options available in dialog boxes, and the names and locations of menu commands you see, might
differ from what is described in Help depending on your active settings or edition. For more
information, see Personalize the Visual Studio IDE.

https://docs.microsoft.com/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide

Requirements

See Also

Win32

Resource Editors
How to: Create a Dialog Box
Dialog Box Controls

How to: Create a Dialog Box (C++)
3/7/2019 • 3 minutes to read • Edit Online

NOTENOTE

How To

To create a new dialog boxTo create a new dialog box

To create a dialog box that a user can't exitTo create a dialog box that a user can't exit

NOTENOTE

To specify the location and size of a dialog boxTo specify the location and size of a dialog box

The location and size of a C++ dialog box, and the location and size of controls within it, are measured in dialog
units. The values for individual controls and the dialog box appear in the lower right of the Visual Studio status bar
when you select them.

If your project doesn't already contain an .rc file, please see Creating a New Resource Script File.

The Dialog Editor enables you:

1. In Resource View, right-click your .rc file and select Add Resource.

2. In the Add Resource dialog box, select Dialog in the Resource Type list, then choose New.

If a plus sign (+) appears next to the Dialog resource type, it means that dialog box templates are available.
Select the plus sign to expand the list of templates, select a template, and choose New.

The new dialog box opens in the Dialog Editor.

You can also open existing dialog boxes in the Dialog Box editor for editing.

You can create a runtime dialog box that a user can't exit. This kind of dialog box is useful for logons, and for
application or document locks.

1. In the Properties pane for the dialog box, set the System Menu property to false.

This setting disables the dialog box system menu and Close button.

2. In the dialog box form, delete the Cancel and OK buttons.

At run time, a user can't exit a modal dialog box that has these characteristics.

To enable testing of this kind of dialog box, the test dialog box function detects when Esc is pressed. Esc is also
known as the VK_ESCAPE virtual key. No matter how the dialog box is designed to behave at run time, you can
end test mode by pressing Esc.

For MFC applications, to create a dialog box that users cannot exit, you must override the default behavior of OnOK and
OnCancel because even if you delete the associated buttons, the dialog box can still be dismissed by pressing Enter or Esc.

There are properties you can set in the Properties Window to specify where a dialog box will appear onscreen.

The Boolean Center property.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/creating-a-new-dialog-box.md
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

To test a dialog boxTo test a dialog box

NOTENOTE

Requirements

See Also

If you set the value to True, the dialog box will always appear in the center of the screen. If you set this
property to False, you can then set the XPos and YPos properties.

The XPos and YPos properties that are used to explicitly define where onscreen the dialog box will appear.

These position properties are offset values from the upper left-hand corner of the viewing area, which is
defined as {X=0, Y=0} .

The Absolute Align property that affects position.

If True, the coordinates are relative to the screen. If False, the coordinates are relative to the dialog owner's
window.

When you're designing a dialog box, you can simulate and test its run-time behavior without compiling your
program. In this mode, you can:

Type text, select from combo-box lists, turn options on or off, and choose commands.

Test the tab order.

Test the grouping of controls such as radio buttons and check boxes.

Test the keyboard shortcuts for controls in the dialog box.

Connections to dialog box code made by using wizards aren't included in the simulation.

When you test a dialog box, it typically displays at a location that's relative to the main program window. If you've
set the dialog box Absolute Align property to True, the dialog box displays at a position that's relative to the
upper-left corner of the screen.

1. When the Dialog Editor is the active window, go to menu Format > Test Dialog.

2. To end the simulation, press Esc or select the Close button in the dialog box you're testing.

Win32

Dialog Editor
How to: Manage Dialog Box Controls

Dialog Box Controls (C++)
3/7/2019 • 3 minutes to read • Edit Online

CONTROL NAME DEFAULT EVENT

Button control BN_CLICKED

Check Box control BN_CLICKED

Combo Box control CBN_SELCHANGE

Edit control EN_CHANGE

Group box (not applicable)

List Box control LBN_SELCHANGE

Radio Button control BN_CLICKED

Static Text control (not applicable)

Picture control (not applicable)

Rich Edit 2.0 control EN_CHANGE

Scroll bar control NM_THEMECHANGED

You can add controls to a dialog box using the Dialog Editor tab in the Toolbox window that enables you to
choose the control you want and drag it onto the dialog box. By default, the Toolbox window is set to auto hide. It
appears as a tab on the left margin of your solution when the Dialog Editor is open. However, you can pin the
Toolbox window into position by selecting the Auto Hide button in the upper right corner of the window. For
more information on how to control the behavior of this window, see Window Management.

The fastest way to add controls to a dialog box, reposition existing controls, or move controls from one dialog box
to another, is to use the drag-and-drop method. The control's position is outlined in a dotted line until it is
dropped into the dialog box. When you add a control to a dialog box with the drag-and-drop method, the control
is given a standard height appropriate to that type of control.

When you add a control to a dialog box or reposition it, its final placement may be determined by guides or
margins, or whether you have the layout grid turned on.

Once you have added a control to the dialog box, you can change properties such as its caption in the Properties
Window. You can also select multiple controls and change their properties all at once.

For more information on the Dialog Editor, see how to Add, Edit, or Delete Controls, Layout Controls, and
Define Control Access and Values.

For more information on controls and dialogs, see Control Classes, Dialog Box Classes, and Scroll-Bar Styles.

The standard controls available in the Toolbox with default events are:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/controls-in-dialog-boxes.md
https://docs.microsoft.com/visualstudio/ide/reference/toolbox
https://docs.microsoft.com/visualstudio/ide/customizing-window-layouts-in-visual-studio
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

NOTENOTE

CONTROL NAME DEFAULT EVENT

Slider control NM_CUSTOMDRAW

Spin control UDN_DELTAPOS

Progress control NM_CUSTOMDRAW

Hot Key control NM_OUTOFMEMORY

List control LVN_ITEMCHANGE

Tree control TVN_SELCHANGE

Tab control TCN_SELCHANGE

Animation control ACN_START

Date Time Picker control DTN_DATETIMECHANGE

Month Calendar control MCN_SELCHANGE

IP Address control IPN_FIELDCHANGED

Extended Combo Box control

Custom control TTN_GETDISPINFO

Custom Controls

NOTENOTE

For more information on using the RichEdit 1.0 control with MFC, see Using the RichEdit 1.0 Control with MFC and Rich
Edit Control Examples.

The Windows Common Controls available in the Toolbox to provide increased functionality are:

The Dialog Editor lets you use existing custom or user controls in a dialog box template.

Custom controls in this sense are not to be confused with ActiveX controls. ActiveX controls were sometimes called OLE
custom controls. Also, don't confuse these controls with the owner-drawn controls in Windows.

This functionality is intended to let you use controls other than those supplied by Windows. At run time, the
control is associated with a Window class (not the same as a C++ class). A more common way to accomplish the
same task is to install any control, such as a static control, in your dialog box. Then at run time, in the OnInitDialog
function, remove that control and replace it with your own custom control.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/using-the-richedit-1-0-control-with-mfc

NOTENOTE

Requirements

See Also

This is an old technique. Today you are advised in most cases to write an ActiveX control or subclass a Windows common
control.

For these custom controls, you are limited to:

Setting the location in the dialog box.

Typing a caption.

Identifying the name of the control's Windows class since your application code must register the control
by this name.

Typing a 32-bit hexadecimal value that sets the control's style.

Setting the extended style.

Win32

Dialog Editor

How To: Add, Edit, or Delete Controls (C++)
3/7/2019 • 8 minutes to read • Edit Online

TIPTIP

Add Controls
To add a controlTo add a control

To add multiple controlsTo add multiple controls

To size a control while you add itTo size a control while you add it

Using the Dialog Editor, you can add, resize, edit, and delete controls in dialog boxes. You can also edit the
properties of a control, such as its ID, or whether it's initially visible at run time.

The Dialog Editor tab appears in the Toolbox window when you're working in the Dialog Editor. You can also
customize the Toolbox window for easier use. For more information, see Using the Toolbox and Show or hide the
Toolbox window.

While using the Dialog Editor, in many instances, you can select the right mouse button to display a shortcut menu of
frequently used commands.

1. Ensure that the dialog box tabbed window is the current document in the editor frame. If a dialog isn't the
current document, you won't see the Dialog Editor Tab in the Toolbox.

2. On the Dialog Editor tab of the Toolbox window, select the control you want, then either :

Select the dialog box at the location where you want to place the control and the control appears
where you've selected.

Drag and drop the control from the Toolbox window to the location on your dialog box and you can
then move the controls around or change their size and shape.

Double-click the control in the Toolbox window and it appears on your dialog box, then reposition
the control to the location you prefer.

1. While holding down the Ctrl key, select a control in the Toolbox window.

2. Release the Ctrl key and select the dialog box as many times as you want to add the particular control.

3. Press Esc to stop placing controls.

NOTENOTE

1. Select a control in the Toolbox window.

2. Place your cursor that appears as cross hairs, where you want the upper-left corner of the new control to be
on your dialog box.

3. Select and hold down the mouse button to anchor the upper-left corner of your control on the dialog box,
then drag the cursor to the right and down until the control is the size you want.

You can anchor any of the four corners of the control you're drawing. This procedure used the upper-left corner as
an example.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/adding-editing-or-deleting-controls.md
https://docs.microsoft.com/visualstudio/ide/reference/toolbox
https://docs.microsoft.com/visualstudio/ide/using-the-toolbox
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/showing-or-hiding-the-dialog-editor-toolbar

TIPTIP

To add a custom controlTo add a custom control

Edit Controls
To edit the properties of a control or controlsTo edit the properties of a control or controls

To undo changes to the properties of a controlTo undo changes to the properties of a control

To define a member variable for a (non-button) dialog box controlTo define a member variable for a (non-button) dialog box control

NOTENOTE

4. Release the mouse button. The control settles onto the dialog box in the size you specified.

You can resize the control after dropping it onto the dialog box by moving the sizing handles on the border of the control.
For more information, see Sizing Individual Controls.

You can add custom controls to the dialog box by selecting the Custom Control icon in the Toolbox and
dragging it to your dialog box. To add a Syslink control, add a custom control, then change the control's Class
property to Syslink. This action will cause the properties to refresh and show the Syslink control properties. For
information on the MFC wrapper class, see CLinkCtrl.

NOTENOTE

NOTENOTE

1. In the dialog box, select the control you want to modify.

If you select multiple controls, only the properties common to the selected controls can be edited.

2. In the Properties window, change the properties of your control.

When you set the Bitmap property for a button, radio button, or check box control equal to True, the style
BS_BITMAP is implemented for your control. For more information, see Button Styles. For an example of associating a
bitmap with a control, see CButton::SetBitmap. Bitmaps will not appear on your control while you are in the Dialog
Editor.

1. Make sure the control has focus in the Dialog Editor.

2. Go to menu Edit > Undo. If focus isn't on the control, the Undo command will be unavailable.

This process applies only to dialog controls within an MFC project. ATL projects should use the New Windows Messages
and Event Handlers dialog box. For more information, see Message Types Associated with User-Interface Objects, Editing a
Message Handler, and Defining a Message Handler for a Reflected Message.

1. In the Dialog Editor, select a control.

2. While pressing the Ctrl key, double-click the dialog box control.

The Add Member Variable wizard appears.

3. Type the appropriate information in the Add Member Variable wizard. For more information, see Dialog
Data Exchange.

4. Select OK to return to the Dialog Editor.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/sizing-individual-controls
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-member-variable-wizard

TIPTIP

Delete Controls

Other Issues
TroubleshootingTroubleshooting

Slider Control Tree Control Date Time Picker

Spin Control Tab Control Month Calendar

Progress Control Animation Control IP Address Control

Hot Key Rich Edit Control Extended Combo Box

List Control Rich Edit 2.0 Control Custom Control

To jump from any dialog box control to its existing handler, double-click the control.

You can also use the Member Variables tab in the MFC Class Wizard to add new member variables for a
specified class, and view member variables that have already been defined.

In the dialog box, select the control, then press the Delete key, or go to menu Edit > Delete.

After adding a common control or rich edit control to a dialog box, it won't appear when you test the dialog box or
the dialog itself won't appear, for example:

1. Create a Win32 project, modifying the application settings so you create a Windows application (not a
console app).

2. In Resource View, double-click on the .rc file.

3. Under the dialog option, double-click the About box.

4. Add an IP Address Control to the dialog box.

5. Save and Rebuild all.

6. Execute the program.

7. On the dialog box's Help menu, select the About command and observe no dialog box is displayed.

Currently, the Dialog Editor doesn't automatically add code to your project when you drag and drop the
following common controls or rich edit controls onto a dialog box. Nor does Visual Studio provide an error or
warning when this problem occurs. To fix, add the code for the control manually.

To use common controls on a dialog box, you need to call InitCommonControlsEx or AFXInitCommonControls

before you create the dialog box.

To use RichEdit controls, you must call LoadLibrary . For more information, see About Rich Edit Controls in the
Windows SDK and Overview of the Rich Edit Control.

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-initcommoncontrolsex
https://docs.microsoft.com/windows/desktop/Controls/about-rich-edit-controls

NOTENOTE

ActiveX ControlsActiveX Controls

PROPERTY DESCRIPTION

ActiveX Control Displays a list of ActiveX controls.

Inserting a control from this dialog box doesn't generate a
wrapper class. If you need a wrapper class, use Class View to
create one, see Adding a Class.

If an ActiveX control doesn't appear in this dialog box, try
installing the control according to the vendor's instructions.

Path Displays the file in which the ActiveX control is found.

C a u t i o nC a u t i o n

To add an ActiveX controlTo add an ActiveX control

TIPTIP

To edit properties for an ActiveX controlTo edit properties for an ActiveX control

To use a RichEdit control with MFC, you must first call AfxInitRichEdit2 to load the RichEdit 2.0 Control (RICHED20.DLL), or
call AfxInitRichEdit to load the older RichEdit 1.0 Control (RICHED32.DLL).

You may use the current CRichEditCtrl class with the older RichEdit 1.0 control, but CRichEditCtrl is only designed to
support the RichEdit 2.0 control. Because RichEdit 1.0 and RichEdit 2.0 are similar, most methods will work. However, there
are some differences between the 1.0 and 2.0 controls, so some methods might work incorrectly or not work at all.

Visual Studio enables you to insert ActiveX controls into your dialog box. For more information, see MFC ActiveX
Controls and ActiveX Control Containers.

The Insert ActiveX Control dialog box enables you to insert ActiveX controls into your dialog box while using
the Dialog Editor. This dialog contains the following properties:

It may not be legal to distribute all of the ActiveX controls on your system. Please refer to the license agreement
for the software that installed the controls or contact the software company.

1. Open a dialog box in the Dialog Editor.

2. Right-click anywhere in the body of the dialog box and select Insert ActiveX Control.

The Insert ActiveX Control dialog box appears, showing all the ActiveX controls on your system. At the
bottom of the dialog box, the path to the ActiveX Control file appears.

3. Select the control you want to add to your dialog box and choose OK.

The control appears in the dialog box, where you can edit it or create handlers for it just as you would any
other control.

You can use the shortcut menu in the Dialog Editor to quickly add registered ActiveX controls to a dialog box, or try adding
ActiveX controls to the Toolbox window for easy access.

ActiveX controls supplied by independent vendors may come equipped with their own properties and
characteristics. These properties are displayed in the Properties window, including any property pages created by
the writers of the ActiveX control are displayed in the Properties Pages dialog box (to view the Property Page
for a specific ActiveX control, select the Property Page button in the Properties window).

https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

NOTENOTE

Requirements

See Also

Select the ActiveX control and go to menu View > Property Page to view the properties. Make changes
as needed in the property page.

Various tabs are displayed in the property page for an ActiveX control, depending on the property sheets
that come as part of the ActiveX control.

This procedure applies to using the property page to edit ActiveX controls. You can also browse and edit ActiveX properties
in the new Properties window.

Win32

Manage Dialog Box Controls
How To: Layout Controls
How to: Define Control Access and Values

How To: Layout Controls (C++)
3/7/2019 • 10 minutes to read • Edit Online

Arrange Controls

PROPERTY DESCRIPTION

Layout guides Displays the settings for the layout guides.

None Hides layout tools.

Rulers and guides When enabled, adds rulers to the layout tools and allows
guides to be placed in the rulers. The default guides are the
margins.

Grid Creates a layout grid. New controls will automatically align to
the grid.

Grid spacing Displays the settings for the grid spacing in dialog box units
(DLUs).

Width: DLUs Sets the width of the layout grid in DLUs. A horizontal DLU is
the average width of the dialog box font divided by 4.

Height: DLUs Sets the height of the layout grid in DLUs. A vertical DLU is
the average height of the dialog box font divided by 8.

Guides and MarginsGuides and Margins

The Dialog Editor provides layout tools that align and size controls automatically. For most tasks, you can use the
Dialog Editor toolbar. All Dialog Editor toolbar commands are also available on the Format menu, and most
have shortcut keys.

Many layout commands for dialog boxes are available only when more than one control is selected. You can select
a single control or multiple controls, and when more than one control is selected, the first one you select is by
default the dominant control.

The location, height, and width of the current control are displayed in the lower-right corner of the status bar.
When the entire dialog box is selected, the status bar displays the position of the dialog box as a whole, and its
height and width.

You can arrange controls on dialog boxes with the Dialog Editor in one of three different states:

With guides and margins on, set as default.

With the layout grid on.

Without any snap or alignment features.

The Dialog Editor toolbar contains buttons that control the state.

To change the state, select the appropriate icon, or go to menu Format > Guide Settings.

The Guide Settings dialog box has the following properties:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/arrangement-of-controls-on-dialog-boxes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/showing-or-hiding-the-dialog-editor-toolbar
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/accelerator-keys-for-the-dialog-editor
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/showing-or-hiding-the-dialog-editor-toolbar

Layout GridLayout Grid

Disable GuidesDisable Guides

Whether you're moving controls, adding controls, or rearranging a current layout, guides and margins can help
you align controls accurately within a dialog box.

When you create a dialog box, four modified guides called margins are provided, and appear as blue dotted lines.

To move margins, drag the margin to the new position.

To make a margin disappear, move the margin to a zero position.

To bring back the margin, place the pointer over the margin's zero position and move the margin into
position.

Guides appear as blue dotted lines across the dialog box displayed in the editor and corresponding arrows in the
rulers at the top and along the left side of the Dialog Editor. The sizing handles of controls snap to guides when
the controls are moved, and guides snap to controls if there are no controls previously snapped to the guide.
When a guide is moved, controls that are snapped to it move as well. Controls snapped to more than one guide
are resized when one of the guides is moved.

To create a guide within the ruler, select once to create a guide, or double-click to launch the Guide
Settings dialog box where you can specify guide settings.

To set a guide on the dialog box, select the guide and drag it to a new position, or select the arrow in the
ruler to drag the associated guide.

The coordinates of the guide are displayed in the status bar at the bottom of the window and in the ruler or
move the pointer over the arrow in the ruler to display the exact position of the guide.

To delete a guide, drag the guide out of the dialog box or drag the corresponding arrow off the ruler.

The tick marks in the rulers that determine the spacing of guides and controls are defined by dialog units (DLUs).
A DLU is based on the size of the dialog box font, normally 8-point MS Shell Dlg. A horizontal DLU is the average
width of the dialog box font divided by four. A vertical DLU is the average height of the font divided by 8.

To change the intervals of the tick marks, go to menu Format > Guide Settings, then in the Grid Spacing
field, specify a new width and height in DLUs.

When you're placing or arranging controls in a dialog box, use the layout grid for more precise positioning. When
the grid is turned on, controls will snap to the dotted lines of the grid as if magnetized.

To turn the layout grid on or off, go to menu Format > Guide Settings and select or clear the Grid button.

You can still control the grid in individual Dialog Editor windows using the Toggle Grid button on the
Dialog Editor toolbar.

To change the size of the layout grid, go to menu Format > Guide Settings and type the height and width
in DLUs for the cells in the grid. The minimum height or width is 4.

You can use special keys in conjunction with the mouse to disable the snapping effect of the guides. Using the Alt
key disables the snapping effects of the guide selected. Moving a guide with the Shift key prevents snapped
controls from moving with the guide.

To disable the snapping effect of the guides, drag the control while holding down the Alt key.

To move guides without moving the snapped controls, drag the guide while holding down the Shift key.

To turn off the guides, go to menu Format > Guide Settings. Then, under Layout Guides, select None.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/showing-or-hiding-the-dialog-editor-toolbar

Select Controls

Dominant ControlsDominant Controls

NOTENOTE

Size Controls

TIPTIP
You can also use the shortcut in the menu Format > Toggle Guides.

Select controls to size, align, move, copy, or delete them, and then complete the operation you want. In most cases,
you need to select more than one control to use the sizing and alignment tools on the Dialog Editor toolbar.

When a control is selected, it has a shaded border around it with solid (active) or hollow (inactive) sizing handles,
small squares that appear in the selection border. When multiple controls are selected, the dominant control has
solid sizing handles and all the other selected controls have hollow sizing handles.

To select controls, in the Toolbox Window, select the Pointer tool and use one of the following steps to
make your selection:

Drag the pointer to draw a selection box around the controls you want to select in your dialog box.
When you release the mouse button, all controls inside and intersecting the selection box are
selected.

Hold down the Shift key and select the controls you'd like to include in the selection.

Hold down the Ctrl key and select the controls you'd like to include in the selection.

To add or remove a control from the group of selected controls, hold down the Shift key and select the
control you want to add or remove.

When you're sizing or aligning multiple controls, the Dialog Editor uses the dominant control to determine how
the other controls are sized or aligned. By default, the dominant control is the first control selected.

To specify the dominant control, hold down the Ctrl key and select the control you want to use to influence
the size or location of other controls first. Holding down the Ctrl key and selecting a control within a
selection will also make that control the dominant control in that selection.

To change the dominant control, clear the current selection by selecting outside all the currently selected
controls and repeat the above procedure, selecting a different control first.

The sizing handles of the dominant control are solid while the handles of subordinate controls are hollow. All further resizing
or alignment is based on the dominant control.

Use the sizing handles to resize a control. When the pointer is positioned on a sizing handle, it changes shape to
indicate the directions in which the control can be resized. Active sizing handles are solid and if a sizing handle is
hollow, the control can't be resized along that axis.

To size a control, select the control and drag the sizing handles to change the size.

Size handles at the top and sides change the horizontal or vertical size.

Size handles at the corners change both horizontal and vertical size.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/showing-or-hiding-the-dialog-editor-toolbar
https://docs.microsoft.com/visualstudio/ide/reference/toolbox

Other ControlsOther Controls

NOTENOTE

Align Controls

TIPTIP
You can resize the control one dialog unit (DLU) at a time by holding down the Shift key and using the Right and
Down arrow keys.

To automatically size a control to fit the text within it, go to menu Format or right-click the control, and
choose Size to Content.

To make controls the same size, select the controls you want to resize and go to menu Format > Make
Same Size, then choose either Both, Height, or Width.

You resize a group of controls based on the size of the dominant control, which is the control selected first
in the series. The final size of the controls in the group depends on the size of the dominant control.

To size a group of controls with guides, snap one side of the control (or controls) to a guide, then drag a
guide to the other side of the control (or controls). Now you can move either guide to size the control (or
controls).

If necessary with multiple controls, size each to snap to the second guide.

You can size a combo box when you add it to the dialog box. You can also specify the size of the drop-down list
box. For more information, see Adding Values to a Combo Box Control.

1. Select the drop-down arrow button at the right of the combo box.

The outline of the control changes to show the size of the combo box with the drop-down list area
extended.

2. Use the lower sizing handle to change the initial size of the drop-down list area.

3. Select the drop-down arrow again to close the drop-down list portion of the combo box.

When you add a list box with a horizontal scroll bar to a dialog box using MFC, the scroll bar won't automatically appear in
your application.

Set a maximum width for the widest element by calling CListBox::SetHorizontalExtent in your code. Without this value set,
the scroll bar won't appear, even when the items in the list box are wider than the box.

To align controls, select the controls you want to align. Go to menu Format > Align and choose one of the
following alignments:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/adding-values-to-a-combo-box-control

Requirements

ALIGNMENT DESCRIPTION

Lefts Aligns the selected controls along their left sides.

Centers Aligns the selected controls horizontally along their center
points.

Rights Aligns the selected controls along their right sides.

Tops Aligns the selected controls along their top edges.

Middles Aligns the selected controls vertically along their middle
points.

Bottoms Aligns the selected controls along their bottom edges.

SPACING DESCRIPTION

Across Space controls evenly between the leftmost and the
rightmost control selected.

Down Space controls evenly between the topmost and the
bottommost control selected.

ARRANGEMENT DESCRIPTION

Vertical Center controls vertically in the dialog box.

Horizontal Center controls horizontally in the dialog box.

ARRANGEMENT DESCRIPTION

Right Aligns push buttons along the right edge of the dialog
box.

Bottom Aligns push buttons along the bottom edge of the dialog
box.

Be sure to select the control that you want to be dominant first or set it to be the dominant control before
executing the alignment or sizing command as the final position of the group of controls depends on the
position of the dominant control.

To evenly space controls, select the controls you want to rearrange. Go to menu Format > Space Evenly
and choose one of the following spacing alignments:

To center controls, select the control or controls you want to rearrange. Go to menu Format > Center In
Dialog and choose one of the following arrangements:

To align push buttons, select one or more push buttons. Go to menu Format > Arrange Buttons, then
choose one of the following arrangements:

If you select a control other than a push button, its position isn't affected.

See Also

Win32

Manage Dialog Box Controls
How To: Add, Edit, or Delete Controls
How to: Define Control Access and Values

How to: Define Control Access and Values (C++)
3/7/2019 • 6 minutes to read • Edit Online

Tab Order

NOTENOTE

TIPTIP

Mnemonics (Access Keys)

To define an access key for a control with a visible caption (push buttons, check boxes, and radio buttons)To define an access key for a control with a visible caption (push buttons, check boxes, and radio buttons)

The tab order is the order in which the Tab key moves the input focus from one control to the next within a dialog
box. Usually the tab order proceeds from left to right and from top to bottom in a dialog box. Each control has a
Tabstop property that determines whether a control receives input focus.

To set input focus for a control, in the Properties Window, select True or False in the Tabstop property.

Even controls that don't have the Tabstop property set to True need to be part of the tab order, especially for
controls that don't have captions. Static text that contains an access key for a related control must immediately
precede the related control in the tab order.

If your dialog box contains overlapping controls, changing the tab order may change the way the controls are displayed.
Controls that come later in the tab order are always displayed on top of any overlapping controls that precede them in the
tab order.

To view the current tab order for all controls, go to menu Format > Tab Order, or press Ctrl + D .

A number in the upper-left corner of each control shows its place in the current tab order.

To change the tab order for all controls, go to menu Format > Tab Order and set the tab order by selecting
each control in the order you want the Tab key to follow.

To change the tab order for two or more controls, go to menu Format > Tab Order. Hold down the Ctrl
key and select the control where the change in order will begin, then release the Ctrl key and select the
controls in the order you want the Tab key to follow from that point.

For example, if you want to change the order of controls 7 through 9 , hold down Ctrl, then select control
6 first.

To set a specific control to number 1 , or first in the tab order, double-click the control.

Once you enter Tab Order mode, press Esc or Enter to exit Tab Order mode and disable the ability to change the tab
order.

Normally, keyboard users move the input focus from one control to another in a dialog box with the Tab and
Arrow keys. However, you can define an access key (a mnemonic or easy-to-remember name) that allows users to
choose a control by pressing a single key.

1. Select the control on the dialog box.

2. In the Properties Window, in the Caption property, type a new name for the control, typing an ampersand

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/defining-mnemonics-access-keys.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

To define an access key for a control without a visible captionTo define an access key for a control without a visible caption

NOTENOTE

Combo Box Values

TIPTIP

To enter values into a combo box controlTo enter values into a combo box control

NOTENOTE

To test the appearance of values in a combo boxTo test the appearance of values in a combo box

(&) in front of the letter you want as the access key for that control. For example, &Radio1 .

3. Press Enter.

An underline appears in the displayed caption to indicate the access key, for example, Radio1.

1. Make a caption for the control by using a Static Text control in the Toolbox.

2. In the static text caption, type an ampersand (&) in front of the letter you want as the access key.

3. Make sure the static text control immediately precedes the control it labels in the tab order.

All access keys within a dialog box should be unique. To check for duplicate access keys, go to menu Format > Check
Mnemonics.

You can add values to a combo box control as long as you have the Dialog Editor open.

It's a good idea to add all values to the combo box before you size the box in the Dialog Editor, or you may truncate text
that should appear in the combo control.

NOTENOTE

NOTENOTE

1. Choose the combo box control by selecting it.

2. In the Properties Window, scroll down to the Data property.

If you're displaying properties grouped by type, Data appears in the Misc properties.

3. Select the value area for the Data property and type in your data values, separated by semicolons.

Don't put spaces between values because spaces interfere with alphabetizing in the drop-down list.

4. Press Enter when you are finished adding values.

For information on enlarging the drop-down portion of a combo box, see Setting the Size of the Combo Box and
Its Drop-Down List.

You can't add values to Win32 projects using this procedure (the Data property is grayed out for Win32 projects). Because
Win32 projects do not have libraries that add this capability, you must add values to a combo box with a Win32 project
programmatically.

https://docs.microsoft.com/visualstudio/ide/reference/toolbox
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/setting-the-size-of-the-combo-box-and-its-drop-down-list

Radio Button Values

To add a group of radio buttons to a dialog boxTo add a group of radio buttons to a dialog box

To add a member variable for the radio button groupTo add a member variable for the radio button group

Requirements

See Also

1. After entering values in the Data property, select the Test button on the Dialog Editor Toolbar.

2. Try scrolling down the entire value list. Values appear exactly as they are typed in the Data property in the
Properties window. There is no spelling or capitalization checking.

3. Press Esc to return to the Dialog box editor.

When you add radio buttons to a dialog box, treat them as a group by setting a Group property in the Properties
window for the first button in the group. A control ID for that radio button then appears in the Add Member
Variable Wizard, allowing you to add a member variable for the group of radio buttons.

You can have more than one group of radio buttons on a dialog box. Add each group using the following
procedure.

NOTENOTE

1. Select the radio button control in the Toolbox Window and choose the location in the dialog box where to
place the control.

2. Repeat the above step to add as many radio buttons as you need. Make sure the radio buttons in the group
are consecutive in the tab order.

3. In the Properties Window, set the Group property of the first radio button in the tab order to True.

Changing the Group property to True adds the WS_GROUP style to the button's entry in the dialog object
of the resource script and prevents the user can from selecting more than one radio button at a time in the
button group (if the user selects one radio button, the others in the group are cleared).

Only the first radio button in the group should have the Group property set to True. If you have additional controls
that aren't part of the button group, set the Group property of the first control that is outside the group to True as
well. You can quickly identify the first control outside of the group by using Ctrl+D to view the tab order.

1. Right-click the first radio button control in the tab order (the dominant control and the one with the Group
property set to True) and choose Add Variable.

2. In the Add Member Variable wizard, select the Control variable check box, then select the Value radio
button.

In the Variable name box, type a name for the new member variable.

In the Variable type list box, select int or type int.

You can now modify your code to specify which radio button should appear selected. For example,
m_radioBox1 = 0; selects the first radio button in the group.

Win32

Manage Dialog Box Controls
How To: Add, Edit, or Delete Controls

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/showing-or-hiding-the-dialog-editor-toolbar
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-member-variable-wizard
https://docs.microsoft.com/visualstudio/ide/reference/toolbox
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-member-variable-wizard

How To: Layout Controls

Image Editor for Icons (C++)
3/7/2019 • 9 minutes to read • Edit Online

NOTENOTE

NOTENOTE

Image Menu

COMMAND DESCRIPTION

Invert Colors Inverts your colors.

Flip Horizontal Flips the image or selection horizontally.

Flip Vertical Flips the image or selection vertically.

Rotate 90 Degrees Rotates the image or selection 90 degrees.

When you select an image file (such as .ico, .bmp, .png) in Solution Explorer, the image opens in the Image
Editor in the same way that code files open in the Code Editor. When an Image Editor tab is active, you see
toolbars with many tools for creating and editing images. Along with bitmaps, icons, and cursors, you can edit
images in GIF or JPEG format using commands on the Image menu and tools on the Image Editor toolbar.

Graphical resources are the images you define for your application. You can draw freehand or draw using
shapes. You can select parts of an image for editing, flipping or resizing, or you can create a custom brush from a
selected part of an image and draw with that brush. You can define image properties, save images in different
formats, and convert images from one format to another.

Using the Image Editor, you can view 32-bit images, but you can't edit them.

You can also use the Image Editor and the Binary Editor to work with resource files in managed projects. Any
managed resources you want to edit must be linked resources. The Visual Studio resource editors don't support
editing embedded resources.

In addition to creating new graphical resources, you can import existing images for editing and then add them to
your project. You can also open and edit images that are not part of a project for stand-alone image editing.

For information on the Image Editor, see how to Create an Icon or Other Image, Edit an Image, Use a Drawing
Tool, Work with Color, and Accelerator Keys.

Download at no cost the Visual Studio Image Library that contains many animations, bitmaps, and icons that you can
use in your applications. For more information about how to download the library, see the Visual Studio Image Library.

The Image menu, which appears only when the Image Editor is active, has commands for editing images,
managing color palettes, and setting Image Editor window options. Also, commands for using device images
are available when working with icons and cursors.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/image-editor-for-icons.md
https://docs.microsoft.com/windows/how-to-copy-resources#import-and-export-resources
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/editing-an-image-outside-of-a-project-image-editor-for-icons
https://docs.microsoft.com/visualstudio/designers/the-visual-studio-image-library

Show Colors Window Opens the Colors window, in which you can choose the
colors to use for your image.

Use Selection as Brush Enables you to create a custom brush from a portion of an
image.

Your selection becomes a custom brush that distributes the
colors in the selection across the image. Copies of the
selection are left along the dragging path. The more slowly
you drag, the more copies are made.

Copy and Outline Selection Creates a copy of the current selection and outlines it.

If the background color is contained in the current selection,
it will be excluded if you have transparent selected.

Adjust Colors Opens the Custom Color Selector, which allows you to
customize the colors you use for your image.

Load Palette Opens the Load Color Palette dialog box, which enables
you to load palette colors previously saved to a .pal file.

Save Palette Saves the palette colors to a .pal file.

Draw Opaque When selected, makes the current selection opaque.

When cleared, makes the current selection transparent.

Toolbar Editor Opens the New Toolbar Resource dialog box.

Grid Settings Opens the Grid Settings dialog box in which you can specify
grids for your image.

New Image Type Opens the New <Device> Image Type dialog box.

A single icon resource can contain several images of different
sizes and windows can use the appropriate icon size
depending on how it's going to be displayed. A new device
type doesn't modify the size of the icon, but rather creates a
new image within the icon. Only applies to icons and cursors.

Current Icon/Cursor Image Type Opens a submenu that lists the first nine available cursor or
icon images. The last command on the submenu, More,
opens the Open <Device> Image dialog box.

Delete Image Type Deletes the selected device image.

Tools Launches a submenu that contains all the tools available
from the Image Editor toolbar.

COMMAND DESCRIPTION

The Grid Settings dialog box allows you to specify the grid settings for your image and displays grid lines over
the edited image. The lines are useful for editing the image, but aren't saved as part of the image itself.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/new-toolbar-resource-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/new-device-image-type-dialog-box-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/open-device-image-dialog-box-image-editor-for-icons

PROPERTY DESCRIPTION

Pixel grid When checked, displays a grid around each pixel in the
Image Editor.

The grid appears only at 4× and higher resolutions.

Tile grid When selected, displays a grid around blocks of pixels in the
Image Editor, specified by the grid spacing values.

Width Specifies the width of each tile block.

This property is useful when drawing bitmaps containing
multiple images that are arranged at regular intervals.

Height Specifies the height of each tile block.

This property is useful when drawing bitmaps containing
multiple images that are arranged at regular intervals.

Toolbar

TIPTIP

NOTENOTE

Option selectorOption selector

The Image Editor toolbar contains tools for drawing, painting, entering text, erasing, and manipulating views. It
also contains an option selector, with which you can select options for using each tool. For example, you can
choose from various brush widths, magnification factors, and line styles.

All tools available on the Image Editor toolbar are also available from the menu Image > Tools. To use the
Image Editor toolbar and Option selector, select the tool or option that you want.

Image Editor toolbar

Tool tips appear when you hover your cursor over a toolbar button. These tips can help you identify the function of each
button.

Since many of the drawing tools are available from the keyboard, it's sometimes useful to hide the Image
Editor toolbar.

To display or hide the Image Editor toolbar, go to menu View > Toolbars and choose Image Editor.

Elements from this toolbar will appear unavailable when an image file from the current project or solution isn't open in the
Image Editor.

Text toolText tool

TIPTIP

PROPERTY DESCRIPTION

Font Lists the available fonts.

Font Style Lists the available styles for the specified font.

Size Lists the available point sizes for the specified font.

Sample Shows a sample of how text will appear with the specified
font settings.

Script Lists the available language scripts for the specified font.

When you select a different language script, the character set
for that language becomes available for creating multilingual
documents.

To change the font of text on an imageTo change the font of text on an image

With the Option selector you can specify the width of a line, brush stroke, and more. The icon on the Option
selector button changes depending on which tool you've selected.

Option selector on the Image Editor toolbar

Use the Text Tool dialog box to add text to a cursor, bitmap, or icon resource.

To access this dialog box, open the Image Editor and go to menu Image > Tools, then select the Text Tool
command.

You can right-click on the Text Tool dialog box to access a default shortcut menu that contains a list of standard Windows
commands.

Open the Text Tool Font dialog box to change the font, style, or size of the cursor font. Changes are applied to
the text displayed in the Text area.

To access this dialog box, select the Font button in the Text Tool dialog box. The properties available are:

Here is an example of how to add text to an icon in a Windows application and manipulate the font of your text.

1. Create a C++ Windows Forms Application. For details, see Creating a Windows Application Project. An

https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/42wc9kk5

NOTENOTE

Window Panes

app.ico file is added to your project by default.

2. In Solution Explorer, double-click the file app.ico. The Image Editor will open.

3. Go to menu Image > Tools and select Text Tool.

4. In the Text Tool dialog box, type C++ in the empty text area. This text will appear in a resizable box
located in the upper left corner of app.ico in the Image Editor.

5. In the Image Editor, drag the resizable box to the center of app.ico to improve the readability of your
text.

6. In the Text Tool dialog box, select the Font button.

7. In the Text Tool Font dialog box:

Select Times New Roman from the list of available fonts that are listed in the Font list box.

Select Bold from the list of available font styles listed in the Font style list box.

Select 10 from the list of available point sizes listed in the Size list box.

Choose OK. The Text Tool Font dialog box will close and the new font settings will apply to your
text.

8. Choose Close on the Text Tool dialog box. The resizable box around your text will disappear from the
Image Editor.

The text area displays the text that appears as part of the resource. Initially this area is empty.

If Transparent Background is set, only the text will be placed into the image. If Opaque Background is set, a bounding
rectangle, filled with the background color, will be placed behind the text.

The Image Editor window shows two views of an image, with a split bar separating the two panes. You can
drag the split bar from side to side to change the relative sizes of the panes. The active pane displays a selection
border.

One view is actual size and the other is enlarged by a default enlargement factor of 6. The views in these two
panes are updated automatically, any changes you make in one pane are immediately shown in the other. The
two panes make it easy for you to work on an enlarged view of your image, in which you can distinguish
individual pixels and, at the same time, observe the effect of your work on the actual-size view of the image.

The left pane uses as much space as is needed (up to half of the Image window) to display the default 1:1
magnification view of your image. The right pane displays a default 6:1 magnification zoomed image. You can
change the magnification in each pane using the Magnify tool on the Image Editor toolbar or by using the
accelerator keys.

You can enlarge the smaller pane of the Image Editor window and use the two panes to show different regions
of a large image. Select inside the pane to choose it.

You can change the relative sizes of the panes by positioning the pointer on the split bar and moving the split bar
to the right or left. The split bar can move all the way to either side if you want to work on only one pane.

If the Image Editor pane is enlarged by a factor of 4 or greater, you can display a pixel grid that delimits the
individual pixels in the image.

To change the magnification factorTo change the magnification factor

To display or hide the pixel gridTo display or hide the pixel grid

Requirements

See Also

By default, the Image Editor displays the view in the left pane at actual size and the view in the right pane at 6
times actual size. The magnification factor (seen in the status bar at the bottom of the workspace) is the ratio
between the actual size of the image and the displayed size. The default factor is 6 and the range is from 1 to 10.

NOTENOTE

1. Select the Image Editor pane whose magnification factor you want to change.

2. On the Image Editor toolbar, select the arrow to the right of the Magnify tool and select the
magnification-factor from the submenu: 1X, 2X, 6X, or 8X.

To select a magnification factor other than those listed in the Magnify tool, use the accelerator keys.

For all Image Editor panes with a magnification factor of 4 or greater, you can display a grid that delimits the
individual pixels in the image.

1. Go to menu Image > Grid Settings.

2. Select the Pixel Grid check box to display the grid, or clear the box to hide the grid.

None

Resource Editors

How To: Create an Icon or Other Image
3/7/2019 • 11 minutes to read • Edit Online

Icons and Cursors: Image Resources for Display Devices

COLOR WIDTH (PIXELS) HEIGHT (PIXELS)

Monochrome 16 16

Monochrome 32 32

Monochrome 48 48

Monochrome 64 64

Monochrome 96 96

16 16 16

16 32 32

16 64 64

16 48 48

16 96 96

256 16 16

256 32 32

256 48 48

256 64 64

You can create a new image, bitmap, icon, cursor, or toolbar, and then use the Image Editor to customize its
appearance. You can also create a new bitmap patterned after a resource template.

Icons and cursors are graphical resources that can contain multiple images in different sizes and color schemes for
different types of display devices. A cursor also has a hot spot, the location Windows uses to track its position.
Both icons and cursors are created and edited using the Image Editor, as are bitmaps and other images.

When you create a new icon or cursor, the Image Editor first creates an image of a standard type. The image is
initially filled with the screen (transparent) color. If the image is a cursor, the hot spot is initially the upper-left
corner with coordinates 0,0 .

By default, the Image Editor supports the creation of additional images for the devices shown in the following
table. You can create images for other devices by typing width, height, and color-count parameters into the
Custom Image dialog box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/creating-an-icon-or-other-image-image-editor-for-icons.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/how-to-use-resource-templates

256 96 96

COLOR WIDTH (PIXELS) HEIGHT (PIXELS)

Create a device image (icon or cursor)Create a device image (icon or cursor)

NOTENOTE

- 16 x 16, 16 colors - 48 x 48, 16 colors - 96 x 96, 16 colors

- 16 x 16, 256 colors - 48 x 48, 256 colors - 96 x 96, 256 colors

- 16 x 16, Monochrome - 48 x 48, Monochrome - 96 x 96, Monochrome

- 32 x 32, 16 colors - 64 x 64, 16 colors

- 32 x 32, 256 colors - 64 x 64, 256 colors

- 32 x 32, Monochrome - 64 x 64, Monochrome

NOTENOTE

PROPERTY DESCRIPTION

Width Provides a space for you to enter the width of the custom
image in pixels (1 - 512, limit of 2048).

When you create a new icon or cursor resource, the Image Editor first creates an image in a specific style (32 ×
32, 16 colors for icons and 32 × 32, Monochrome for cursors). You can then add images in different sizes and
styles to the initial icon or cursor and edit each additional image, as needed, for the different display devices. You
can also edit an image by using a cut-and-paste operation from an existing image type or from a bitmap created in
a graphics program.

When you open the icon or cursor resource in the Image Editor, the image most closely matching the current
display device is opened by default.

If your project doesn't already contain an .rc file, see Creating a New Resource Script File.

The New <Device> Image Type dialog box enables you to create a new device image of a specified type. To
open the New <Device> Image dialog box, go to menu Image > New Image Type. The following properties
included are Target Image Type and Custom.

The Target Image Type property lists the available image types where you select the image type you want to
open:

Any existing images will not be displayed in this list.

The Custom property opens the Custom Image dialog box in which you can create a new image with a custom
size and number of colors.

The Custom Image dialog box enables you to create a new image with a custom size and number of colors. The
following properties included are:

Height Provides a space for you to enter the height for the custom
image in pixels (1 - 512, limit of 2048).

Colors Provides a space for you to choose the number of colors for
the custom image: 2, 16, or 256.

PROPERTY DESCRIPTION

PROPERTY DESCRIPTION

Current Images Lists the images included in the resource. Select the image
type you want to open.

To create a new icon or cursorTo create a new icon or cursor

To add an image for a different display deviceTo add an image for a different display device

To copy a device imageTo copy a device image

To delete a device imageTo delete a device image

NOTENOTE

Use the Open <Device> Image dialog box to open device images in C++ projects. It lists existing device images
in the current resource (images that are part of the current resource). The following property included is:

1. In Resource View, right-click your .rc file, then choose Insert Resource. If you already have an existing
image resource in your .rc file, such as a cursor, you can right-click the Cursor folder and select Insert
Cursor.

2. In the Insert Resource dialog box, select Icon or Cursor and choose New. For icons, this action creates an
icon resource with a 32 × 32, 16-color icon. For cursors, a 32 × 32, Monochrome (2-color) image is created.

If a plus sign (+) appears next to the image resource type in the Insert Resource dialog box, it means that
toolbar templates are available. Select the plus sign to expand the list of templates, select a template, and
choose New.

1. Go to menu Image > New Device Image, or right-click in the Image Editor pane and choose New
Device Image.

2. Select the type of image you want to add. You can also select Custom to create an icon whose size isn't
available in the default list.

1. Go to menu Image > Open Device Image and choose an image from the current images list. For
example, choose the 32 × 32, 16-color version of an icon.

2. Copy the currently displayed icon image (Ctrl+C).

3. Open a different image of the icon in another Image Editor window. For example, open the 16 × 16, 16-
color version of the icon.

4. Paste the icon image (Ctrl+V) from one Image Editor window to the other. If you're pasting a larger size
into a smaller size, you can use the icon handles to resize the image.

While the icon image is displayed in the Image Editor, go to menu Image > Delete Device Image. When you
delete the last icon image in the resource, the resource is also deleted.

When you press the Del key, the images and colors you have drawn on an icon are deleted but the icon remains and you
can now redesign it. If you press Del by mistake, press Ctrl+Z to undo the action.

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/add-resource-dialog-box

To create transparent or inverse regions in device imagesTo create transparent or inverse regions in device images

NOTENOTE

To create transparent or inverse regionsTo create transparent or inverse regions

To change the screen or inverse colorTo change the screen or inverse color

Use the 256-color paletteUse the 256-color palette

To create a 256-color icon or cursorTo create a 256-color icon or cursor

To choose a color from the 256-color palette for large iconsTo choose a color from the 256-color palette for large icons

In the Image Editor, the initial icon or cursor image has a transparent attribute. Although icon and cursor images
are rectangular, many don't appear so because parts of the image are transparent and the underlying image on the
screen shows through the icon or cursor. When you drag an icon, parts of the image may appear in an inverted
color. You create this effect by setting the screen color and inverse color in the Colors window.

The screen and inverse colors you apply to icons and cursors either shape and color the derived image or assign
inverse regions. The colors indicate parts of the image that have those attributes. You can change the colors that
represent the screen-color and inverse-color attributes in editing. These changes don't affect the appearance of the
icon or cursor in your application.

The dialog boxes and menu commands you see might differ from those described in Help depending on your active settings
or edition. To change your settings, go to menu Tools > Import and Export Settings. For more information, see
Personalize the Visual Studio IDE.

1. In the Colors window, choose the selector Screen-Color or Inverse-Color.

2. Apply the screen or inverse color onto your image using a drawing tool. For more information on drawing
tools, see Using a Drawing Tool.

TIPTIP

1. Select either the Screen-Color selector or the Inverse-Color selector.

2. Choose a color from the Colors palette in the Colors window.

The complementary color is automatically assigned for the other selector.

If you double-click the Screen-Color or Inverse-Color selector, the Custom Color Selector dialog box appears.

Using the Image Editor, icons and cursors can be sized large (64 × 64) with a 256-color palette to choose from.
After creating the resource, a device image style is selected.

1. In Resource View, right-click your .rc file, then choose Insert Resource. If you already have an existing
image resource in your .rc file, such as a cursor, you can right-click the Cursor folder and select Insert
Cursor.

2. In the Insert Resource dialog box, select Icon or Cursor and choose New.

3. Go to menu Image > New Device Image and select the 256-color image style you want.

To draw with a selection from the 256-color palette, you need to select the colors from the Colors palette in the
Colors window.

1. Select the large icon or cursor, or create a new large icon or cursor.

2. Choose a color from the 256 colors displayed in the Colors palette in the Colors window.

The color selected will become the current color in the Colors palette in the Colors window.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/colors-window-image-editor-for-icons
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/custom-color-selector-dialog-box-image-editor-for-icons
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/add-resource-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/colors-window-image-editor-for-icons

To set a cursor's hot spotTo set a cursor's hot spot

To create and save a bitmap as a .gif or .jpegTo create and save a bitmap as a .gif or .jpeg

NOTENOTE

To convert an image from one format to anotherTo convert an image from one format to another

NOTENOTE
The initial palette used for 256-color images matches the palette returned by the CreateHalftonePalette

Windows API. All icons intended for the Windows shell should use this palette to prevent flicker during palette
realization.

The hot spot of a cursor is the point to which Windows refers in tracking the cursor's position. By default, the hot
spot is set to the upper-left corner of the cursor with coordinates 0,0 . The Hotspot property in the Properties
window shows the hot spot coordinates.

1. On the Image Editor toolbar, choose the Set Hotspot tool.

2. Select the pixel you want to assign as the cursor's hot spot.

The Hotspot property in the Properties window displays the new coordinates.

When you create a bitmap, the image is created in bitmap format (.bmp). You can, however, save the image as a
GIF or JPEG or in other graphic formats.

This process doesn't apply to icons and cursors.

NOTENOTE

1. Go to menu File > Open, then select File.

2. In the New File dialog box, choose the Visual C++ folder, then select Bitmap File (.bmp) in the
Templates box and select Open.

The bitmap opens in the Image Editor.

3. Make changes to your new bitmap as needed.

4. With the bitmap still open in the Image Editor, go to menu File > Save filename.bmp As.

5. In the Save File As dialog box, type the name you want to give the file and the extension that denotes the
file format you want in the File Name box. For example, myfile.gif.

You must create or open the bitmap outside of your project in order to save it as another file format. If you create or
open it within your project, the Save As command will be unavailable. For more information, see Viewing Resources
in a Resource Script File Outside of a Project (Standalone).

6. Select Save.

You can open GIF or JPEG images in the Image Editor and save them as bitmaps. Also, you can open a bitmap
file and save it as a GIF or JPEG. Images you work with need not be part of a project for editing in the
development environment (see stand-alone image editing).

1. Open the image in the Image Editor.

2. Go to menu File > Save filename As.

https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/toolbar-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/how-to-open-a-resource-script-file-outside-of-a-project-standalone
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/editing-an-image-outside-of-a-project-image-editor-for-icons

To add a new image resource to an unmanaged C++ projectTo add a new image resource to an unmanaged C++ project

To add a new image resource to a project in a .NET programming languageTo add a new image resource to a project in a .NET programming language

Requirements

See Also

3. In the Save File As dialog box, in the File name box, type the file name and the extension that denotes the
format you want.

4. Select Save.

1. In Resource View, right-click your .rc file, then choose Insert Resource. If you already have an existing
image resource in your .rc file, such as a cursor, you can simply right-click the Cursor folder and select
Insert Cursor.

2. In the Insert Resource dialog box, select the type of image resource you'd like to create (Bitmap, for
example) then choose New.

If a plus sign (+) appears next to the image resource type in the Insert Resource dialog box, it means that
toolbar templates are available. Select the plus sign to expand the list of templates, select a template, and
choose New.

1. In Solution Explorer, right-click the project folder (for example, WindowsApplication1).

2. From the shortcut menu, select Add, then choose Add New Item.

3. In the Categories pane, expand the Local Project Items folder, then choose Resources.

4. In the Templates pane, choose the resource type you'd like to add to your project.

The resource is added to your project in Solution Explorer and the resource opens in the Image Editor.
You can now use all the tools available in the Image Editor to modify your image. For more information
on adding images to a managed project, see Loading a Picture at Design Time.

None

Image Editor for Icons
How to: Edit an Image
How to: Use a Drawing Tool
How to: Work with Color
Accelerator Keys

https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/add-resource-dialog-box
https://docs.microsoft.com/dotnet/framework/winforms/controls/how-to-load-a-picture-using-the-designer-windows-forms

How to: Edit an Image
3/7/2019 • 7 minutes to read • Edit Online

NOTENOTE

How To

To select an imageTo select an image

To select an entire imageTo select an entire image

To edit parts of an imageTo edit parts of an image

To cut the current selection and move it to the clipboardTo cut the current selection and move it to the clipboard

To copy the selectionTo copy the selection

To paste the clipboard contents into an imageTo paste the clipboard contents into an image

You can use selection tools to define an area of an image that you want to cut, copy, clear, resize, invert, or move.
With the Rectangle Selection tool you can define and select a rectangular region of the image. With the
Irregular Selection tool you can draw a freehand outline of the area you want to select for the cut, copy, or other
operation.

See the Rectangle Selection and Irregular Selection tools pictured in Image Editor toolbar or view the tool tips
associated with each button on the Image Editor toolbar.

You can also create a custom brush from a selection. For more information, see Creating a Custom Brush.

To edit an image, see how:

1. Use the Image Editor toolbar or go to menu Image > Tools and choose the selection tool you want.

2. Move the insertion point to one corner of the image area that you want to select. Cross hairs appear when
the insertion point is over the image.

3. Drag the insertion point to the opposite corner of the area you want to select. A rectangle shows which
pixels will be selected. All pixels within the rectangle, including those under the rectangle, are included in
the selection.

4. Release the mouse button. The selection border encloses the selected area.

Select the image outside of the current selection. The selection border changes focus and encompasses the whole
image once again.

You can perform standard editing operations — cutting, copying, clearing, and moving — on a selection, whether
the selection is the entire image or just a part of it. Because the Image Editor uses the Windows Clipboard, you
can transfer images between the Image Editor and other applications for Windows.

In addition, you can resize the selection, whether it includes the entire image or just a part.

Go to menu Edit > Cut.

1. Position the pointer inside the selection border or anywhere on it except the sizing handles.

2. Hold down the Ctrl key as you drag the selection to a new location. The area of the original selection is
unchanged.

3. To copy the selection into the image at its current location, select outside the selection cursor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/selecting-an-area-of-an-image-image-editor-for-icons.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/toolbar-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/creating-a-custom-brush-image-editor-for-icons

To delete the current selection without moving it to the clipboardTo delete the current selection without moving it to the clipboard

NOTENOTE

To move the selectionTo move the selection

To flip an imageTo flip an image

To resize an imageTo resize an image

1. Go to menu Edit > Paste.

The clipboard contents, surrounded by the selection border, appear in the upper-left corner of the pane.

2. Position the pointer within the selection border and drag the image to the desired location on the image.

3. To anchor the image at its new location, select outside of the selection border.

Go to menu Edit > Delete.

The original area of the selection is filled with the current background color.

You can access the Cut, Copy, Paste, and Delete commands by right-clicking in the Resource View window.

1. Position the pointer inside the selection border or anywhere on it except the sizing handles.

2. Drag the selection to its new location.

3. To anchor the selection in the image at its new location, select outside the selection border.

For more information on drawing with a selection, see Creating a Custom Brush.

You can flip or rotate an image to either create a mirror image of the original, turn the image upside down, or
rotate the image to the right 90 degrees at a time.

NOTENOTE

To flip the image horizontally (mirror image), go to menu Image > Flip Horizontal.

To flip the image vertically (turn upside down), go to menu Image > Flip Vertical.

To rotate the image 90 degrees, go to menu Image > Rotate 90 Degrees.

You can also use the accelerator (shortcut) keys for these commands or access the commands from the shortcut
menu (select outside the image while in the Image Editor).

The behavior of the Image Editor while resizing an image depends on whether you've selected the entire image
or just part of it.

When the selection includes only part of the image, the Image Editor shrinks the selection by deleting rows or
columns of pixels and filling the vacated regions with the current background color. It can also stretch the
selection by duplicating rows or columns of pixels.

When the selection includes the entire image, the Image Editor either shrinks and stretches the image, or crops
and extends it.

There are two mechanisms for resizing an image: the sizing handles and the Properties window. You drag the
sizing handles to change the size of all or part of an image. Sizing handles that you can drag are solid. You can't
drag handles that are hollow. Use the Properties window to resize the entire image only, not a selected part.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/creating-a-custom-brush-image-editor-for-icons
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

NOTENOTE

To resize an entire image using the properties windowTo resize an entire image using the properties window

To crop or extend an entire imageTo crop or extend an entire image

To shrink or stretch an entire imageTo shrink or stretch an entire image

To shrink or stretch part of an imageTo shrink or stretch part of an image

To edit an image outside of a projectTo edit an image outside of a project

Sizing handles

If you have the Tile Grid option selected in the Grid Settings dialog box, then resizing snaps to the next tile grid line. If only
the Pixel Grid option is selected (the default setting), resizing snaps to the next available pixel.

NOTENOTE

1. Open the image whose properties you want to change.

2. In the Width and Height boxes in the Properties window, type the dimensions that you want.

If you're increasing the size of the image, the Image Editor extends the image to the right, downward, or
both, and fills the new region with the current background color. The image isn't stretched.

If you shorten the size of the image, the Image Editor crops the image on the right or bottom edge, or
both.

You can use the Width and Height properties to resize only the entire image, not to resize a partial selection.

1. Select the entire image.

If part of the image is currently selected, and you want to select the entire image, select anywhere on the
image outside the current selection border.

2. Drag a sizing handle until the image is the right size.

Normally, the Image Editor crops or enlarges an image when you resize it by moving a sizing handle. If you hold
down the Shift key as you move a sizing handle, the Image Editor shrinks or stretches the image.

1. Select the entire image.

If a part of the image is currently selected and you want to select the entire image, select anywhere on the
image outside the current selection border.

2. Hold down the Shift key and drag a sizing handle until the image is the right size.

1. Select the part of the image you want to resize. For more information, see Selecting an Area of the Image.

2. Drag one of the sizing handles until the selection is the right size.

You can open and edit images in the development environment just as you would in any graphics application, for

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/grid-settings-dialog-box-image-editor-for-icons
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

To change image propertiesTo change image properties

example opening a bitmap for stand-alone editing. The images you work with need not be part of a Visual Studio
project.

1. Go to menu File > Open.

2. In the Files of Type box, select All Files.

3. Locate and open the image you want to edit.

You can set or modify properties of an image using the Properties window.

PROPERTY DESCRIPTION

Colors Specifies the color scheme for the image. Select
Monochrome, 16, or 256, or True Color.

If you've already drawn the image with a 16-color palette,
selecting Monochrome causes substitutions of black and
white for the colors in the image. Contrast is not always
maintained: for example, adjacent areas of red and green
are both converted to black.

Filename Specifies the name of the image file.

By default, Visual Studio assigns a base filename created
by removing the first four characters ("IDB_") from the
default resource identifier (IDB_BITMAP1) and adding the
appropriate extension. The file name for the image in this
example would be BITMAP1.bmp. You could rename it
MYBITMAP1.bmp.

Height Sets the height of the image (in pixels). The default value
is 48.

The image is cropped or blank space is added below the
existing image.

ID Sets the resource's identifier.

For an image, Microsoft Visual Studio, by default, assigns
the next available identifier in a series: IDB_BITMAP1,
IDB_BITMAP2, and so forth. Similar names are used for
icons and cursors.

Palette Changes color properties.

Double-click to select a color and display the Custom
Color Selector dialog box. Define the color by typing RGB
or HSL values in the appropriate text boxes.

1. Open the image in the Image Editor.

2. In the Properties window, change any or all properties for your image.

https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/custom-color-selector-dialog-box-image-editor-for-icons

Requirements

See Also

SaveCompressed Indicates whether the image is in a compressed format.
This property is read-only.

Visual Studio doesn't allow you to save images in a
compressed format, so for any images created in Visual
Studio, this property will be False. If you open a
compressed image (created in another program) in Visual
Studio, this property will be True. If you save a
compressed image using Visual Studio, it will be
uncompressed and this property will revert back to False.

Width Sets the width of the image (in pixels). The default value
for bitmaps is 48.

The image is cropped or blank space is added to the right
of the existing image.

PROPERTY DESCRIPTION

None

Image Editor for Icons
How to: Create an Icon or Other Image
How to: Use a Drawing Tool
How to: Work with Color
Accelerator Keys

How to: Use a Drawing Tool
3/7/2019 • 4 minutes to read • Edit Online

Drawing Tools

TIPTIP

To select and use a drawing tool from the Image Editor toolbarTo select and use a drawing tool from the Image Editor toolbar

To select and use a drawing tool from the Image menuTo select and use a drawing tool from the Image menu

The Image Editor has freehand drawing and erasing tools that all work in the same way. You select the tool and,
if necessary, select foreground and background colors and size and shape options. You then move the pointer to
the image and click or drag to draw and erase.

You can select drawing tools from either the Image Editor toolbar or the Image menu. When you select the
Eraser tool, Brush tool, or Airbrush tool, the option selector displays that tool's options.

Tool tips appear when you hover your cursor over the buttons on the Image Editor toolbar. These tips will help you identify
the specific buttons mentioned here.

1. Select a button on the Image Editor toolbar.

TIPTIP

The Eraser tool paints over the image with the current background color when you press the left
mouse button.

Instead of using the Eraser tool, you may find it more convenient to draw in the background color with one
of the drawing tools.

The Pencil tool draws freehand in a constant width of one pixel.

The Brush tool has various shapes and sizes.

The Airbrush tool randomly distributes color pixels around the center of the brush.

2. If necessary, select colors and a brush:

In the Colors palette, select the left mouse button to select a foreground color or the right mouse
button to select a background color.

In the Options selector, select a shape representing the brush you want to use.

3. Point to the place on the image where you want to start drawing or painting. The pointer changes shape
according to the tool you selected.

4. Press the left mouse button (for the foreground color) or the right mouse button (for the background
color), and hold it down as you draw.

1. Go to menu Image > Tools.

2. On the cascading submenu, choose the tool you wish to use.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/using-a-drawing-tool-image-editor-for-icons.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/selecting-foreground-or-background-colors-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/toolbar-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/colors-window-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/toolbar-image-editor-for-icons

Lines or Closed Figures

To draw a lineTo draw a line

To draw a closed figureTo draw a closed figure

Custom Brushes

To create a custom brush from a portion of an imageTo create a custom brush from a portion of an image

The Image Editor tools for drawing lines and closed figures all work in the same way: you place the insertion
point at one point and drag to another. For lines, these points are the endpoints. For closed figures, these points
are opposite corners of a rectangle bounding the figure.

Lines are drawn in a width determined by the current brush selection, and framed figures are drawn in a width
determined by the current width selection. Lines and all figures, both framed and filled, are drawn in the current
foreground color if you press the left mouse button, or in the current background color if you press the right
mouse button.

1. Use the Image Editor toolbar or go to menu Image> Tools and choose the Line tool.

2. If necessary, select colors and a brush:

In the Colors palette, select the left mouse button to select a foreground color or the right mouse
button to select a background color.

In the Options selector, select a shape representing the brush you want to use.

3. Place the pointer at the line's starting point.

4. Drag to the line's endpoint.

1. Use the Image Editor toolbar or go to menu Image > Tools and select a Closed-Figure Drawing tool.

The Closed-Figure Drawing tools create figures as indicated on their respective buttons.

2. If necessary, select colors and a line width.

3. Move the pointer to one corner of the rectangular area in which you want to draw the figure.

4. Drag the pointer to the diagonally opposite corner.

A custom brush is a rectangular portion of an image that you pick up and use like one of the Image Editor's
ready-made brushes. All operations you can perform on a selection, you can perform on a custom brush as well.

NOTENOTE

1. Select the part of the image that you want to use for a brush.

2. Hold the Shift key down, choose in the selection and drag it across the image, or go to menu Image >
Use Selection as Brush.

Your selection becomes a custom brush that distributes the colors in the selection across the image. Copies
of the selection are left along the dragging path. The more slowly you drag, the more copies are made.

Selecting the Use a Selection as Brush without first selecting a portion of the image will use the whole image as a
brush. The result of using a custom brush will also depend on whether you've selected an Opaque or Transparent
background.

Pixels in a custom brush that match the current background color are normally transparent: they don't paint over
the existing image. You can change this behavior so that background-color pixels paint over the existing image.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/toolbar-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/colors-window-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/toolbar-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/choosing-a-transparent-or-opaque-background-image-editor-for-icons

To draw custom brush shapes in the background colorTo draw custom brush shapes in the background color

To double or halve the custom brush sizeTo double or halve the custom brush size

To cancel the custom brushTo cancel the custom brush

Requirements

See Also

You can use the custom brush like a stamp or a stencil to create different special effects.

1. Select an opaque or transparent background.

2. Set the background color to the color in which you want to draw.

3. Position the custom brush where you want to draw.

4. Select the right mouse button. Any opaque regions of the custom brush are drawn in the background color.

Press the Plus Sign (+) key to double the brush size, or the Minus Sign (-) key to halve it.

Press Esc or choose another drawing tool.

None

Image Editor for Icons
How to: Create an Icon or Other Image
How to: Edit an Image
How to: Work with Color
Accelerator Keys

How to: Work with Color
3/7/2019 • 8 minutes to read • Edit Online

NOTENOTE

The Image Editor contains many features that specifically handle and customize colors. You can set a foreground
or background color, fill bounded areas with color, or select a color on an image to use as the current foreground
or background color. You can use tools on the Image Editor toolbar along with the colors palette in the Colors
window to create images.

All colors for monochrome and 16-color images are shown in the Colors palette in the Colors window. Along
with the 16 standard colors, you can create your own custom colors. Changing any of the colors in the palette will
immediately change the corresponding color in the image.

When working with 256-color icon and cursor images, the Colors property in the Properties window is used. For
more information, see Creating a 256-color icon or cursor.

True-color images can also be created. However, true color samples don't appear in the full palette in the Colors
window; they appear only in the foreground or background color indicator area. True colors are created using the
Custom Color Selector dialog box.

You can save customized color palettes on disk and reload them as needed. The color palette you used most
recently is saved in the Registry and automatically loaded the next time you start Visual Studio.

The Colors window has two parts:

The Colors Palette, which is an array of color samples that represent colors you can use. You can select the
samples to choose foreground and background colors when you're using the graphics tools.

The Color Indicator, which shows the foreground and background colors and selectors for screen and
inverse color.

Colors window

The Screen color and Inverse color tools are only available for icons and cursors.

You can use the Colors window with the Image Editor toolbar.

To display the Colors window, right-click in an Image Editor pane and choose Show Colors Window, or
go to menu Image > Show Colors Window.

To hide the Colors window, unpin the window (this action will allow the window to auto hide when it's not
in use) or select the Close button.

The Colors palette initially displays 16 standard colors. With displayed colors, you can also create your own
custom colors. You can then save and load a customized Color palette.

The Custom Color Selector dialog box allows you to customize the colors you use for your image with the

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/working-with-color-image-editor-for-icons.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/toolbar-image-editor-for-icons
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/creating-a-256-color-icon-or-cursor-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/toolbar-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/image-menu-image-editor-for-icons

PROPERTY DESCRIPTION

Gradient Color Display Changes the values of a selected color.

Position the crosshair on the color you want to change and
move the slider up or down to change the luminosity or RGB
values of the color.

Luminosity Bar Sets the luminosity for the color you select in the Gradient
Color Display box.

Select and drag the white arrow up the bar for greater
brightness or down for less. The Color box displays the color
you've selected and the effect of the luminosity you set.

Color Lists the hue (color wheel value) of the color you're defining.
Values range from 0 to 240, where 0 is red, 60 is yellow, 120
is green, 180 is cyan, 200 is magenta, and 240 is blue.

Hue Lists the hue (color wheel value) of the color you're defining.
Values range from 0 to 240, where 0 is red, 60 is yellow, 120
is green, 180 is cyan, 200 is magenta, and 240 is blue.

Sat Specifies the saturation value of the color you're defining.
Saturation is the amount of color in a specified hue. Values
range from 0 to 240.

Lum Lists the luminosity (brightness) of the color you're defining.
Values range from 0 to 240.

Red Specifies the red value of the color you're defining. Values
range from 0 to 255.

Green Specifies the green value of the color you're defining. Values
range from 0 to 255.

Blue Specifies the blue value of the color you're defining. Values
range from 0 to 255.

TIPTIP

PROPERTY DESCRIPTION

following properties:

You can save and load a Colors palette that contains customized colors. By default, the Colors palette most
recently used is automatically loaded when you start Visual Studio.

Since the Image Editor has no means to restore the default Colors palette, you should save the default Colors palette
under a name such as standard.pal or default.pal so that you can easily restore the default settings.

Use the Load Palette Colors dialog box to load special color palettes to use in your C++ project with following
properties:

Look in Specifies the location where you want to locate a file or folder.

Select the arrow to choose another location, or select the
folder icon on the toolbar to move up levels.

File name Provides a space for you to type the name of the file you
want to open.

To quickly find a file you've previously opened, select the file
name in the drop-down list, if available.

If you're searching for a file, you can use asterisks (*) as
wildcards. For example, you can type *.* to see a list of all files.
You can also type the full path of a file, for example, C:\My
Documents\MyColorPalette.pal or
\\NetworkServer\MyFolder\MyColorPalette.pal.

Files of type Lists the types of files to display.

Palette (*.pal) is the default file type for color palettes.

PROPERTY DESCRIPTION

How To
To select foreground or background colorsTo select foreground or background colors

To fill a bounded area of an image with a colorTo fill a bounded area of an image with a color

To use the fill toolTo use the fill tool

To pick up a color from an image to use elsewhereTo pick up a color from an image to use elsewhere

Except for the Eraser, tools on the Image Editor toolbar draw with the current foreground or background color
when you press the left or right mouse button, respectively.

To select a foreground color, with the left mouse button, select the color you want on the Colors palette.

To select a background color, with the right mouse button, select the color you want on the Colors palette.

The Image Editor provides the Fill tool for filling any enclosed image area with the current drawing color or the
current background color.

1. Use the Image Editor toolbar or go to menu Image > Tools and select the Fill tool.

2. If necessary, choose drawing colors. In the Colors palette, select the left mouse button to select a
foreground color or the right mouse button to select a background color.

3. Move the Fill tool to the area you want to fill.

4. Select the left or right mouse button to fill with the foreground color or the background color, respectively.

The Select Color, or color-pickup, tool makes any color on the image the current foreground color or
background color, depending on whether you press the left or the right mouse button. To cancel the Select Color
tool, choose another tool.

1. Use the Image Editor toolbar or go to menu Image > Tools and select the Select Color tool.

2. Select the color you want to pick up from the image.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/colors-window-image-editor-for-icons

To choose the backgroundTo choose the background

To switch between a transparent and opaque backgroundTo switch between a transparent and opaque background

TIPTIP

To invert the colors in a selectionTo invert the colors in a selection

NOTENOTE
After you pick up a color, the Image Editor reactivates the most recently used tool.

3. Draw using the left mouse button for the foreground color, or the right mouse button for the background
color.

When you move or copy a selection from an image, any pixels in the selection that match the current background
color are, by default, transparent and they don't obscure pixels in the target location.

You can switch from a transparent background (the default) to an opaque background, and back again. When you
use a selection tool, the Transparent Background and Opaque Background options appear in the Option
selector on the Image Editor toolbar.

Transparent and Opaque Options on the Image Editor Toolbar

In the Image Editor toolbar, select the Option selector, and then choose the appropriate background:

Opaque Background (O): Existing image is obscured by all parts of the selection.

Transparent Background (T): Existing image shows through parts of the selection that match the current
background color.

For a shortcut, on the Image menu, select or clear Draw Opaque.

You can change the background color while a selection is already in effect to change which parts of the image are
transparent.

The Image Editor provides a convenient way to invert colors in the selected part of the image so you can tell
how an image would appear with inverted colors.

To invert colors in the current selection, go to menu Image > Invert Colors.

To customize or change colors on the colors paletteTo customize or change colors on the colors palette

To save a custom colors paletteTo save a custom colors palette

To load a custom colors paletteTo load a custom colors palette

Requirements

See Also

1. Go to menu Image > Adjust Colors.

2. In the Custom Color Selector dialog box, define the color by typing RGB or HSL values in the appropriate
text boxes or choose a color in the Gradient Color Display box.

3. Set the luminosity by moving the slider on the Luminosity bar.

4. Many custom colors are dithered. If you want the solid color closest to the dithered color, double-click the
Color box.

If you later decide you want the dithered color, move the slider on the Luminosity bar or move the cross
hairs in the Gradient Color Display box again to restore the dithering.

5. Select OK to add the new color.

1. Go to menu Image > Save Palette.

2. Navigate to the directory where you want to save the palette, and type a name for the palette.

3. Select Save.

1. Go to menu Image > Load Palette.

2. In the Load Color Palette dialog box, navigate to the correct directory and select the palette you want to
load. Color palettes are saved with a .pal file extension.

None

Image Editor for Icons
How to: Create an Icon or Other Image
How to: Edit an Image
How to: Use a Drawing Tool
Accelerator Keys

Accelerator Keys (C++ Image Editor for Icons)
3/7/2019 • 3 minutes to read • Edit Online

NOTENOTE

COMMAND KEYS DESCRIPTION

Image.AirBrushTool Ctrl + A Draws using an airbrush with the
selected size and color.

Image.BrushTool Ctrl + B Draws using a brush with the selected
shape, size, and color.

Image.CopyAndOutlineSelection Ctrl + Shift + U Creates a copy of the current selection
and outlines it. If the background color
is contained in the current selection, it
will be excluded if you have transparent
selected.

Image.DrawOpaque Ctrl + J Makes the current selection either
opaque or transparent.

Image.EllipseTool Ctrl + P Draws an ellipse with the selected line
width and color.

Image.EraserTool Ctrl + Shift + I Erases a portion of the image (with the
current background color).

Image.FilledEllipseTool Ctrl + Shift + Alt + P Draws a filled ellipse.

Image.FilledRectangleTool Ctrl + Shift + Alt + R Draws a filled rectangle.

Image.FilledRoundRectangleTool Ctrl + Shift + Alt + W Draws a filled round rectangle.

Image.FillTool Ctrl + F Fills an area.

Image.FlipHorizontal Ctrl + H Flips the image or selection
horizontally.

Image.FlipVertical Shift+ Alt + H Flips the image or selection vertically.

Below are the accelerator keys for the Image editor commands that are bound to keys by default. To change
accelerator keys, go to menu Tools > Options and choose Keyboard under the Environment folder. For more
information, see Identifying and Customizing Keyboard Shortcuts.

The options available in dialog boxes, and the names and locations of menu commands you see, might differ from what is
described in Help depending on your active settings or edition. To change your settings, go to menu Tools > Import and
Export Settings. For more information, see Personalize the Visual Studio IDE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/accelerator-keys-image-editor-for-icons.md
https://docs.microsoft.com/visualstudio/ide/identifying-and-customizing-keyboard-shortcuts-in-visual-studio
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/choosing-a-transparent-or-opaque-background-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/choosing-a-transparent-or-opaque-background-image-editor-for-icons

Image.LargerBrush Ctrl + = Increases the brush size by one pixel in
each direction. To decrease the brush
size, see Image.SmallerBrush in this
table.

Image.LineTool Ctrl + L Draws a straight line with the selected
shape, size, and color.

Image.MagnificationTool Ctrl + M Activates the Magnify tool, which
allows you to magnify specific sections
of your image.

Image.Magnify Ctrl + Shift + M Toggles between the current
magnification and 1:1 magnification.

Image.NewImageType Insert Launches the New <Device> Image
Type dialog box with which you can
create an image for a different image
type.

Image.NextColor Ctrl +]

- or -

Ctrl + Right Arrow

Changes the drawing foreground color
to the next palette color.

Image.NextRightColor Ctrl + Shift +]

- or -

Shift + Ctrl + Right Arrow

Changes the drawing background color
to the next palette color.

Image.OutlinedEllipseTool Shift + Alt + P Draws a filled ellipse with an outline.

Image.OutlinedRectangleTool Shift + Alt + R Draws a filled rectangle with an outline

Image.OutlinedRoundRectangleTool Shift + Alt + W Draws a filled round rectangle with an
outline.

Image.PencilTool Ctrl + I Draws using a single-pixel pencil.

Image.PreviousColor Ctrl + [

- or -

Ctrl + Left Arrow

Changes the drawing foreground color
to the previous palette color.

Image.PreviousRightColor Ctrl + Shift + [

- or -

Shift + Ctrl + Left Arrow

Changes the drawing background color
to the previous palette color.

Image.RectangleSelectionTool Shift + Alt + S Selects a rectangular portion of the
image to move, copy, or edit.

COMMAND KEYS DESCRIPTION

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/new-device-image-type-dialog-box-image-editor-for-icons

Image.RectangleTool ATL + R Draws a rectangle with the selected line
width and color.

Image.Rotate90Degrees Ctrl + Shift + H Rotates the image or selection 90
degrees.

Image.RoundedRectangleTool Alt + W Draws a round rectangle with the
selected line width and color.

Image.ShowGrid Ctrl + Alt + S Toggles the pixel grid (selects or clears
the Pixel grid option in the Grid
Settings dialog box).

Image.ShowTileGrid Ctrl + Shift + Alt + S Toggles the tile grid (selects or clears
the Tile grid option in the Grid
Settings dialog box).

Image.SmallBrush Ctrl + . (period) Reduces the Brush size to one pixel.
(See also Image.LargerBrush and
Image.SmallerBrush in this table.)

Image.SmallerBrush Ctrl + - (minus) Reduces the brush size by one pixel in
each direction. To expand the brush
size again, see Image.LargerBrush in
this table.

Image.TextTool Ctrl + T Opens the Text Tool dialog box.

Image.UseSelectionAsBrush Ctrl + U Draws using the current selection as a
brush.

Image.ZoomIn Ctrl + Shift + . (period)

- or -

Ctrl + Up Arrow

Increases the magnification for the
current view.

Image.ZoomOut Ctrl + , (comma)

- or -

Ctrl + Down Arrow

Reduces the magnification of the
current view.

COMMAND KEYS DESCRIPTION

Requirements

See Also

None

Image Editor for Icons
How to: Create an Icon or Other Image
How to: Edit an Image
How to: Use a Drawing Tool
How to: Work with Color

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/grid-settings-dialog-box-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/grid-settings-dialog-box-image-editor-for-icons
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/text-tool-dialog-box-image-editor-for-icons

Menu Editor (C++)
3/7/2019 • 5 minutes to read • Edit Online

TIPTIP

How To

To create a standard menuTo create a standard menu

Menus allow you to arrange commands in a logical and easy-to-find fashion. With the Menu Editor, you can
create and edit menus by working directly with a menu bar that closely resembles the one in your finished
application.

While using the Menu Editor, in many instances, you can right-click to display a pop-up menu of frequently used
commands. The commands available depend on what the pointer is pointing to.

The Menu Editor enables you:

1. Go to menu View > Resource View and right-click on the Menu heading. Choose Add Resource, then
Menu.

2. Select the New Item box (the rectangle that contains Type Here) on the menu bar.

New Item box

3. Type a name for your new menu, for example, File.

The text you type appears in both the Menu Editor and in the Caption box in the Properties Window. You
can edit the properties for your new menu in either location.

Once you have given your new menu a name on the menu bar, the new-item box shifts to the right (to allow
you to add another menu), and another new-item box opens below your first menu so you can add menu
commands to it.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/menu-editor.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

To create a submenuTo create a submenu

To insert a new menu between existing menusTo insert a new menu between existing menus

To add commands to a menuTo add commands to a menu

NOTENOTE

New Item box with focus shifted after you type menu name

To create a single-item menu on the menu bar, set the Popup property to False.

1. Select the menu command for which you want to create a submenu.

2. In the New Item box that appears to the right, type the name of the new menu command. This new
command will appear first on the submenu menu.

3. Add additional menu commands to the submenu menu.

Select an existing menu name and press the Insert key, or right-click on the menu bar and choose Insert New.

The New Item box is inserted before the selected item.

NOTENOTE

TIPTIP

NOTENOTE

1. Create a menu. Then select a menu name, for example, File.

Each menu will expand and expose a new item box for commands. For example, you can add the commands
New, Open, and Close to a File menu.

2. In the new item box, type a name for the new menu command.

The text you type appears in both the Menu Editor and in the Caption box in the Properties Window. You can edit
the properties for your new menu in either location.

You can define a mnemonic key (hot key) that allows the user to select the menu command. Type an ampersand (&)
in front of a letter to specify it as the mnemonic. The user can select the menu command by typing that letter.

3. In the Properties window, select the menu command properties that apply. For details, see Menu
Command Properties.

4. In the Prompt box in the Properties window, type the prompt string you want to appear in your
application's status bar.

This step creates an entry in the string table with the same resource identifier as the menu command you
created.

Prompts can only apply to menu items with a Popup property of True. For example, top-level menu items can have
prompts if they have sub-menu items. The purpose of a Prompt is to indicate what will happen if a user selects the
menu item.

5. Press Enter to complete the menu command.

The new item box is selected so you can create additional menu commands.

https://docs.microsoft.com/visualstudio/ide/reference/properties-window

To select multiple menu commands to run bulk operations such as deleting or changing propertiesTo select multiple menu commands to run bulk operations such as deleting or changing properties

To move and copy menus and menu commandsTo move and copy menus and menu commands

NOTENOTE

To delete a menu or menu commandTo delete a menu or menu command

NOTENOTE

Pop-up Menus

NOTENOTE

While holding down the Ctrl key, select the menus or submenu commands you want.

Use the drag-and-drop method:

1. Drag or copy the item you want to move to:

A new location on the current menu.

A different menu. You can navigate to other menus by dragging the mouse pointer over them.

2. Drop the menu command when the insertion guide shows the position you want.

Use shortcut menu commands:

1. Right-click one or more menus or menu commands, then choose Cut (to move) or Copy.

2. If you're moving the items to another menu resource or resource script file, open it in another
window.

3. Select the position of the menu or menu command you want to move or copy to.

4. From the shortcut menu, choose Paste. The moved or copied item is placed before the item you
select.

You can also drag, copy, and paste to other menus in other menu windows.

Right-click the menu name or command and choose Delete.

Similarly, you can use the shortcut menu to perform other actions such as Copy, Cut, Paste, Insert New, Insert Separator,
Edit IDs, View as Pop-up, Check Mnemonics, etc.

Pop-up menus display frequently used commands. They can be context sensitive to the location of the pointer.
Using pop-up menus in your application requires building the menu itself and then connecting it to application
code.

Once you've created the menu resource, your application code needs to load the menu resource and use
TrackPopupMenu to cause the menu to appear. Once the user has dismissed the pop-up menu by selecting outside
it, or has selected a command, that function will return. If the user chooses a command, that command message
will be sent to the window whose handle was passed.

For Microsoft Foundation Class (MFC) library programs and ATL programs, use Code Wizards to hook menu commands to
code. For more information, see Adding an Event and Mapping Messages to Functions.

To create a pop-up menu, create a menu with an empty title and don't provide a Caption. Then, add a menu
command to the new menu, move to the first menu command below the blank menu title with the

https://docs.microsoft.com/visualstudio/ide/customizing-window-layouts-in-visual-studio
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackpopupmenu
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-an-event-visual-cpp

TIPTIP

Requirements

See Also

CMenu menu;
VERIFY(menu.LoadMenu(IDR_MENU1));
CMenu* pPopup = menu.GetSubMenu(0);
ASSERT(pPopup != NULL);
pPopup->TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON, point.x, point.y, AfxGetMainWnd());

NOTENOTE

temporary caption Type Here and type a Caption and any other information.

Repeat this process for any other menu commands in the pop-up menu and be sure to save the menu
resource.

To connect a pop-up menu to your application, for example, add a message handler for
WM_CONTEXTMENU, then add the following code to the message handler:

The CPoint passed by the message handler is in screen coordinates.

Normally, when you're working in the Menu Editor, a menu resource is displayed as a menu bar. However, you
might have menu resources that are added to the application's menu bar while the program is running.

To view a menu resource as a pop-up menu, right-click the menu and choose View as Popup.

This option is only a viewing preference and won't modify your menu.

To change back to the menu-bar view, select View as Popup again. This action removes the check mark and returns your
menu-bar view.

Win32

Resource Editors
Menu Commands

Menu Commands (C++)
3/7/2019 • 4 minutes to read • Edit Online

PROPERTY DESCRIPTION

Break Can be one of these values:
- None: No break. This is the default.
- Column: For static menus, this value places the menu
command on a new line.
For pop-up menus, this value places the menu command in a
new column with no dividing line between the columns.
Setting this property affects the appearance of the menu only
at run time, not in the menu editor.
- Bar: Same as Column except, for pop-up menus, this value
separates the new column from the old column with a vertical
line.
Setting this property affects the appearance of the menu only
at run time, not in the Menu Editor.

Caption The text that labels the menu command (the menu name). To
make one of the letters in the caption of a menu command
the mnemonic key, precede it with an ampersand (&).

Checked If True, the menu command is initially checked. Type: Bool.
Default: False.

Enabled If False, the menu item is disabled.

Grayed If True, the menu command is initially grayed and inactive.
Type: Bool. Default: False.

Help Aligns menu item to the right. Default: False.

For example, the Help menu command is always on the right
in all Windows applications. If you set this property on a
menu item, that item will appear at the very far right and at
the very end of the menu. Applies to top-level items.

ID A symbol defined in the header file. Type: Symbol, Integer, or
Quoted String.

You may use any symbol that is commonly available in any of
the editors, even though the Properties Window does not
provide a drop-down list for you to select from.

Popup If True, the menu command is a pop-up menu. Type: Bool.
Default: True for top-level menus on a menu bar, otherwise
False.

The information below is organized according to the Menu properties that appear in the Properties Window
when you select a menu command. These are listed alphabetically although the Properties window also enables
you to view these properties by category.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/menu-command-properties.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

Prompt Contains text to appear in the status bar when this menu
command is highlighted. The text is placed in the string table
with the same identifier as the menu command.

This property is available for any type of project, but the run-
time functionality is MFC specific.

Right to Left Justify Right-justifies the menu command on the menu bar at run
time. Type: Bool. Default: False.

Right to Left Order Allows menu commands to display right to left when the
interface is localized to any language that reads right-to-left,
such as Hebrew or Arabic.

Separator If True, the menu command is a separator. Type: Bool.
Default: False.

PROPERTY DESCRIPTION

Associate Menu Commands

To associate a menu command with an accelerator keyTo associate a menu command with an accelerator key

There are often times you want a menu command and a keyboard combination to issue the same program
command. Identical commands are issued by using the Menu Editor to assign the same resource identifier to the
menu command and to an entry in your application's accelerator table. You then edit the Caption of the menu
command to show the name of the accelerator key.

&Open...\tCtrl+O

1. In the Menu Editor, select the menu command you want.

2. In the Properties Window, add the name of the accelerator key to the Caption property:

Following the menu caption, type the escape sequence for a tab (\t), so that all the menu's accelerator
keys are left aligned.

Type the name of the modifier key (Ctrl, Alt, or Shift) followed by a plus sign (+) and the name,
letter, or symbol of the additional key.

For example, to assign Ctrl+O to the Open command on the File menu, you modify the menu command's
Caption so that it looks like the following text:

The menu command in the Menu Editor is updated to reflect the new caption as you type it.

3. Create the accelerator-table entry in the Accelerator editor and assign it the same identifier as the menu
command. Use a key combination that you think will be easy to remember.

Your MFC application can display descriptive text for each of the menu commands a user may select. Display
descriptive text by assigning a text string to each menu command using the Prompt property in the Properties
window. If you have a string in the string table whose ID is the same as the command, an MFC application will
automatically display this string resource in the status bar of the running application when a user hovers over a
menu item.

To associate a menu command with a status bar text string in MFC applications, in the Menu Editor, select the
menu command. In the Properties Window, type the associated status bar text in the Prompt box.

In a C++ project, you can assign an access key (a mnemonic that allows the user to select the menu with the

https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/adding-an-entry-to-an-accelerator-table
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

NOTENOTE

Requirements

See Also

keyboard) to your menus and menu commands.

To assign an access (shortcut) key to a menu command, type an ampersand (&) in front of a letter in the
menu name or command name to specify that letter as the corresponding access key.

For example, "&File" sets Alt+F as the shortcut key for the File menu in applications written for Microsoft
Windows.

The menu item will provide a visible cue that one of the letters has a shortcut key assigned to it. The letter
following the ampersand will appear underlined (contingent on the operating system).

Make sure all the access keys on a menu are unique by right-clicking your menu and choosing Check Mnemonics.

Win32

Menu Editor

String Editor (C++)
3/7/2019 • 4 minutes to read • Edit Online

NOTENOTE

How To

To find a string resource in the string tableTo find a string resource in the string table

TIPTIP

To add or delete a string resourceTo add or delete a string resource

To add a string table entryTo add a string table entry

A string table is a Windows resource that contains a list of IDs, values, and captions for all the strings of your
application. For example, the status-bar prompts are located in the string table.

While developing an application, you can have several string tables — one for each language or condition.
However, an executable module has only one string table. A running application can reference several string tables
if you put the tables into different DLLs.

String tables make it easy to localize your application into different languages. If all strings are in a string table,
you can localize the application by translating the strings (and other resources) without changing source code. This
situation is more desirable than manually finding and replacing various strings in source files.

Windows doesn't allow the creation of empty string tables. If you create a string table with no entries, it is deleted
automatically when you save the resource file.

The String Editor enables you:

1. Open the string table by double-clicking its icon in Resource View.

2. Go to menu Edit > Find and Replace and choose Find.

3. In the Find What box, select a previous search string from the drop-down list, or type the caption text or
resource identifier of the string you want to find.

4. Select any of the Find options and select Find Next.

To use regular expressions when searching files, use the Find in Files command in the Edit menu.

Type a regular expression to match a pattern or select the button to the right of the Find What box to display a list of
regular search expressions. When you select an expression from this list, it is substituted as the search text in the Find What
box.

If you use regular expressions, be sure the Use: Regular Expressions check box is selected.

You can quickly insert or delete entries into the string table using the String Editor. New strings are placed at the
end of the table and are given the next available identifier. You can edit the ID , Value, or Caption properties in the
Properties window as needed.

The String Editor makes sure you don't use an ID that's already in use. If you select an ID already in use, the
String Editor will notify you and then assign a generic unique ID, for example IDS_STRING58113 .

1. Open the string table by double-clicking its icon in Resource View.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/string-editor.md
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/visualstudio/ide/using-regular-expressions-in-visual-studio
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources

To delete a string table entryTo delete a string table entry

To move a string from one resource script file to anotherTo move a string from one resource script file to another

NOTENOTE

To change the properties of a string resourceTo change the properties of a string resource

NOTENOTE

To change a string or its identifierTo change a string or its identifier

To change the caption property of multiple string resourcesTo change the caption property of multiple string resources

NOTENOTE

2. Right-click within the string table and choose New String.

3. In the String Editor, select an ID from the ID drop-down list or type an ID directly in place.

4. Edit the Value, if necessary.

5. Type an entry for the Caption.

Null strings aren't allowed in Windows string tables. If you create an entry in the string table that's a null string, you'll
receive a message asking you to Please enter a string for this table entry.

Select the entry you want to delete and do one of the following:

Go to menu Edit > Delete.

Right-click the string to delete and choose Delete.

Press the Delete key.

1. Open the string tables in both .rc files.

2. Right-click the string to move and choose Cut.

3. Place the cursor in the target String Editor window.

4. In the .rc file to which you want to move the string, right-click and choose Paste.

If the ID or Value of the moved string conflicts with an existing ID or value in the destination file, either that ID or the Value
of the moved string changes.

You can use in-place editing to change the ID , Value, and Caption properties.

You can also edit a string's properties in the Properties window.

1. Open the string table by double-clicking its icon in Resource View.

2. Select the string you want to edit and double-click the ID , Value, or Caption column, then you can:

Select an ID from the ID drop-down list, or type an ID directly in place.

Type a different number in the Value column.

Type edits in the Caption column.

1. Open the string table by double-clicking its icon in Resource View.

2. Select the strings you want to change by holding down the Ctrl key as you select each one.

https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources

To add formatting or special characters to a string resourceTo add formatting or special characters to a string resource

Requirements

See Also

3. In the Properties Window, type a new value for the property you want to change.

4. Press Enter.

TO GET THIS... TYPE THIS...

New line \n

Carriage return \r

Tab \t

Backslash (\) \\

ASCII character \ddd (octal notation)

Alert (bell) \a

NOTENOTE

1. Open the string table by double-clicking its icon in Resource View.

2. Select the string you want to modify.

3. In the Properties Window, add any of the standard escape sequences listed below to the text in the Caption
box and press Enter.

The String Editor doesn't support the full set of escaped ASCI characters. You can only use those listed above.

Win32

Resource Editors

https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/windows/how-to-create-a-resource-script-file#create-resources
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

Toolbar Editor (C++)
3/7/2019 • 7 minutes to read • Edit Online

PROPERTY DESCRIPTION

The Toolbar Editor enables you to create toolbar resources and convert bitmaps into toolbar resources. The
Toolbar Editor uses a graphical display to show a toolbar and buttons that closely resemble how they'll look in a
finished application.

The Toolbar Editor window shows two views of a button image, the same as the Image Editor window. A split
bar separates the two panes and you can drag the split bar from side to side to change the relative sizes of the
panes. The active pane displays a selection border and above the two views of the image is the subject toolbar.

Toolbar Editor

The Toolbar Editor is similar to the Image Editor in functionality and the menu items, graphic tools, and bitmap
grid between the two are the same. There's a menu command in the Image menu to switch between the Toolbar
Editor and the Image Editor. For more information on using the Graphics toolbar, Colors palette, or Image
menu, see Image Editor.

You can create a new toolbar in a C++ project by converting a bitmap. The graphic from the bitmap converts to
the button images for a toolbar. Usually the bitmap contains several button images on a single bitmap, with one
image for each button. Images can be any size as the default is 16 pixels wide and the height of the image. You can
specify the size of the button images in the New Toolbar Resource dialog box when you choose Toolbar Editor
from the Image menu while in the Image Editor.

The New Toolbar Resource dialog box allows you to specify the width and height of the buttons you're adding to
a toolbar resource in a C++ project. The default is 16 × 15 pixels.

A bitmap that's used to create a toolbar has a maximum width of 2048, so if you set the Button Width to 512,
you can only have four buttons. If you set the width to 513, you can only have three buttons.

The New Toolbar Resource dialog box has the following properties:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/toolbar-editor.md

Button Width Provides a space for you to enter the width for the toolbar
buttons you're converting from a bitmap resource to a
toolbar resource.

Button Height Provides a space for you to enter the height for the toolbar
buttons you're converting from a bitmap resource to a
toolbar resource.

PROPERTY DESCRIPTION

NOTENOTE

PROPERTY DESCRIPTION

ID Defines the ID for the button. The drop-down list provides
common ID names.

Width Sets the width of the button. 16 pixels is recommended.

Height Sets the height of the button. The height of one button
changes the height of all buttons on the toolbar. 15 pixels is
recommended.

Prompt Defines the message displayed in the status bar. Adding \n
and a name adds a ToolTip to that toolbar button. For more
information, see Creating a ToolTip.

How To

To create new toolbarsTo create new toolbars

To convert bitmaps to toolbar resourcesTo convert bitmaps to toolbar resources

The images are cropped to the width and height specified, and the colors are adjusted to use standard toolbar colors (16
colors).

By default, a new or blank button is displayed at the right end of the toolbar. You can move this button before
editing it. When you create a new button, another blank button appears to the right of the edited button. When
you save a toolbar, the blank button isn't saved.

A toolbar button has the following properties:

Width and Height apply to all buttons. A bitmap that is used to create a toolbar has a maximum width of 2048,
so if you set the button width to 512, you can only have four buttons and if you set the width to 513, you can only
have three buttons.

The Toolbar Editor enables you:

1. In Resource View, right-click your .rc file and choose Add Resource. If you have an existing toolbar in
your .rc file, you can right-click the Toolbar folder and select Insert Toolbar.

2. In the Add Resource dialog box, select Toolbar in the Resource Type list, then choose New.

If a plus sign (+) appears next to the Toolbar resource type, it means that toolbar templates are available.
Select the plus sign to expand the list of templates, select a template, and choose New.

1. Open an existing bitmap resource in the Image Editor. If the bitmap isn't already in your .rc file, right-click

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/creating-a-tool-tip-for-a-toolbar-button

To manage toolbar buttonsTo manage toolbar buttons
To create a new toolbar buttonTo create a new toolbar button

To add an image to a toolbar as a buttonTo add an image to a toolbar as a button

To move a toolbar buttonTo move a toolbar button

TIPTIP

the .rc file and choose Import, then navigate to the bitmap you want to add to your .rc file and select Open.

2. Go to menu Image > Toolbar Editor.

The New Toolbar Resource dialog box appears. You can change the width and height of the icon images
to match the bitmap. The toolbar image is then displayed in the Toolbar Editor.

3. To finish the conversion, change the command ID of the button using the Properties window. Type the new
ID or select an ID from the drop-down list.

The Properties window contains a pushpin button in the title bar and selecting this enables or disables Auto Hide
for the window. To cycle through all the toolbar button properties without having to reopen the individual property
windows, turn Auto Hide off so the Properties window stays stationary.

You can also change the command IDs of the buttons on the new toolbar by using the Properties window.

1. In Resource View expand the resource folder (for example, Project1.rc).

2. Expand the Toolbar folder and select a toolbar to edit, then do one of the following:

Assign an ID to the blank button at the right end of the toolbar. You can do so by editing the ID
property in the Properties Window. For example, you may want to give a toolbar button the same
ID as a menu option. In this case, use the drop-down list box to select the ID of the menu option.

Select the blank button at the right end of the toolbar in the Toolbar View pane and begin drawing.
A default button command ID is assigned (ID_BUTTON<n>).

NOTENOTE

1. In Resource View, open the toolbar by double-clicking it.

2. Next, open the image you'd like to add to your toolbar.

If you open the image in Visual Studio, it will open in the Image Editor. You can also open the image in other
graphics programs.

3. Go to menu Edit > Copy.

4. Switch to your toolbar by selecting its tab at the top of the source window.

5. Go to menu Edit > Paste.

The image will appear on your toolbar as a new button.

In the Toolbar View pane, drag the button that you want to move to its new location on the toolbar.

To copy buttons from a toolbar, hold down the Ctrl key and in the Toolbar View pane, drag the button to
either its new location on the toolbar or to a location on another toolbar.

To delete a toolbar button, select the toolbar button and drag it off the toolbar.

To insert or remove space between buttons on a toolbar, either drag them away from or towards one
another on the toolbar.

https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-view-window
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-view-window

ACTION STEP

To insert a space before a button that isn't followed by a
space

Drag the button to the right or down until it overlaps the
next button about halfway.

To insert a space before a button that is followed by a space
and to keep the trailing space

Drag the button until the right or bottom edge is just
touching the next button or just overlaps it.

To insert a space before a button that is followed by a space
and close up that following space

Drag the button to the right or down until it overlaps the
next button about halfway.

To remove a space between buttons on a toolbar Drag the button on one side of the space toward the button
on the other side of the space until it overlaps the next
button about halfway.

NOTENOTE

To change the properties of a toolbar buttonTo change the properties of a toolbar button

To create a tool tip for a toolbar buttonTo create a tool tip for a toolbar button

Requirements

See Also

If there's no space on the side of the button that you're dragging away from and you drag the button more than halfway
past the adjacent button, the Toolbar Editor inserts a space on the opposite side of the button that you're dragging.

1. In a C++ project, select the toolbar button.

2. Type the new ID in the ID property in the Properties Window, or use the drop-down list to select a new ID .

1. Select the toolbar button.

2. In the Properties Window, in the Prompt field, add a description of the button for the status bar and after
the message, add \n and the tool tip name.

For example, to see the tool tip for the Print button in WordPad:

1. Open WordPad.

2. Hover your mouse pointer over the Print toolbar button and notice the word Print now is floating under
your mouse pointer.

3. Look at the status bar at the bottom of the WordPad window and notice that it now shows the text
Prints the active document .

Print is the tool tip name and Prints the active document is the description of the button for the status bar.

If you want this effect using the Toolbar Editor, set the Prompt property to Prints the active document\nPrint .

MFC or ATL

Resource Editors

https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

Version Information Editor (C++)
3/1/2019 • 2 minutes to read • Edit Online

NOTENOTE

NOTENOTE

How To

To edit a string in a version information resourceTo edit a string in a version information resource

To add version information for another language (new version info block)To add version information for another language (new version info block)

Version information consists of company and product identification, a product release number, and copyright and
trademark notification. With the Version Information Editor, you create and maintain this data, which is stored
in the version information resource. The version information resource is not required by an application, but it's a
useful place to collect information that identifies the application. Version information is also used by setup APIs.

The Windows standard is to have only one version resource, named VS_VERSION_INFO.

A version information resource has an upper block and one or more lower blocks: a single fixed-information block
at the top and one or more version information blocks at the bottom (for other languages and/or character sets).
The top block has both editable numeric boxes and selectable drop-down lists. The lower blocks have only editable
text boxes.

While using the Version Information Editor, in many instances you can right-click to display a shortcut menu of resource-
specific commands. For example, if you select while pointing to a block header entry, the shortcut menu shows the New
Version Block Info and Delete Version Block Info commands.

The Version Information Editor enables you:

Select the item once to choose it, then again to begin editing it. Make changes directly in the Version Information
table or in the Properties window. The changes you make will be reflected in both places.

When editing the FILEFLAGS key in the Version Information Editor, notice you can't set the Debug, Private
Build, or Special Build properties in the Properties window for .rc files:

The Version Information Editor sets the Debug property with a #ifdef in the resource script, based on
the _DEBUG build flag.

If the Private Build key has a Value set in the Version Information table, the corresponding Private
Build property in the Properties window for the FILEFLAGS key will be True. If Value is empty, the
property will be False. Likewise, the Special Build key in the Version Information table is tied to the
Special Build property for the FILEFLAGS key.

You can sort the information sequence of the string block by selecting either the Key or the Value column
headings. These headings automatically rearrange the information into the selected sequence.

1. Open a version information resource by double-clicking it in Resource View.

2. Right-click within the version information table and choose New Version Info Block.

This command adds an additional information block to the current version information resource and opens

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/version-information-editor.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-view-window

To delete a version information blockTo delete a version information block

To access version information from within your programTo access version information from within your program

Requirements

See Also

its corresponding properties in the Properties window.

3. In the Properties window, choose the appropriate language and character set for your new block.

1. Open the version information resource by double-clicking its icon in Resource View.

2. Right-click the block header you wish to delete and choose Delete Version Info Block.

This command deletes the selected header and leaves the rest of the version information intact. You can't
undo the action.

If you want to access the version information from within your program, use the GetFileVersionInfo function and
the VerQueryValue function.

Win32

Resource Editors

https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/resource-view-window
https://docs.microsoft.com/windows/desktop/api/winver/nf-winver-getfileversioninfoa
https://docs.microsoft.com/windows/desktop/api/winver/nf-winver-verqueryvaluea

ATL COM Desktop Components
10/31/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

The ATL Reference documents the Active Template Library (ATL), a set of template-based C++ classes that
simplify the programming of Component Object Model (COM) objects. COM is a binary specification for
creating and consuming software components on Windows. To fully take advantage of ATL, a working
familiarity with COM is highly recommended. For more information about COM, see Component Object Model
(COM).

ATL Class Overview
Provides links to and brief descriptions of the ATL classes organized by category.

ATL Classes and structs
Provides reference material on the classes and structs organized alphabetically.

ATL Functions
Provides reference material on the global functions organized alphabetically. Includes topics organizing the
functions into categories.

ATL Global Variables
Provides reference material on the global variables organized alphabetically.

ATL Macros
Provides reference material on the macros organized alphabetically. Includes topics organizing the macros into
categories.

ATL Typedefs
Provides reference material on the typedefs organized alphabetically

Worker Archetype
Provides a links to the ATL Worker archetype.

ATL
Provides topics on how to program using the Active Template Library (ATL).

ATL Tutorial
Leads you through the creation of a control and demonstrates some ATL fundamentals in the process.

ATL Samples
Sample code that shows how to use ATL to write COM objects.

OLE DB Templates
Provides reference material for the OLE DB consumer and provider templates, a set of template classes that
implement many commonly used OLE DB interfaces.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-com-desktop-components.md
https://docs.microsoft.com/windows/desktop/com/component-object-model--com--portal
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ole-db-templates

Active Template Library (ATL) Concepts
3/4/2019 • 2 minutes to read • Edit Online

In This Section

The Active Template Library (ATL) is a set of template-based C++ classes that let you create small, fast
Component Object Model (COM) objects. It has special support for key COM features, including stock
implementations, dual interfaces, standard COM enumerator interfaces, connection points, tear-off interfaces,
and ActiveX controls.

If you do a lot of ATL programming, you will want to learn more about attributes, a new feature in Visual C++
.NET that is designed to simplify COM programming. For more information, see Attributed Programming.

ATL Tutorial
Leads you through the creation of a control and demonstrates some ATL fundamentals in the process.

Introduction to COM and ATL
Introduces the major concepts behind the Component Object Model (COM). This article also briefly explains
what ATL is and when you should use it.

Fundamentals of ATL COM Objects
Discusses the relationship among various ATL classes and how those classes are implemented.

Dual Interfaces and ATL
Describes dual interfaces from an ATL perspective.

ATL Collections and Enumerators
Describes the implementation and creation of collections and enumerators in ATL.

Composite Control Fundamentals
Provides step-by-step instructions for creating a composite control. A composite control is a type of ActiveX
control that can contain other ActiveX controls or Windows controls.

ATL Control Containment FAQ
Covers the fundamental questions related to hosting controls with ATL.

ATL COM Property Pages
Shows you how to specify and implement COM property pages.

ATL Support for DHTML Controls
Provides step-by-step instructions for creating a DHTML control.

ATL Connection Points
Explains what connection points are and how ATL implements them.

Event Handling and ATL
Describes the steps that you need to take to handle COM events using ATL's IDispEventImpl and
IDispEventSimpleImpl classes.

ATL and the Free Threaded Marshaler
Provides details on the ATL Simple Object Wizard's option that allows your class to aggregate the free
threaded marshaler (FTM).

Specifying the Project's Threading Model

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/active-template-library-atl-concepts.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributed-programming-concepts

Related Sections

Describes the macros that are available to control run-time performance related to threading in your project.

ATL Module Classes
Discusses the module classes new for ATL 7.0. Module classes implement the basic functionality required by
ATL.

ATL Services
Covers the series of events that occur when a service is implemented. Also talks about some of the concepts
related to developing a service.

ATL Window Classes
Describes how to create, superclass, and subclass windows in ATL. The ATL window classes are not COM
classes.

ATL Collection Classes
Describes how to use arrays and maps in ATL.

The ATL Registry Component (Registrar)
Discusses ATL scripting syntax and replaceable parameters. It also explains how to set up a static link to the
Registrar.

Programming with ATL and C Run-Time Code
Discusses the benefits of linking statically or dynamically to the C Run-Time Library (CRT).

Programming with CComBSTR
Discusses several situations that require caution when programming with CComBSTR .

Encoding Reference
Provides functions and macros that support encoding in a range of common Internet standards such as
uuencode, hexadecimal, and UTF8 in atlenc.h.

Utilities Reference
Provides code for manipulating paths and URLs in the form of CPathT and CUrl. A thread pool, CThreadPool,
can be used in your own applications. This code can be found in atlpath.h and atlutil.h.

ATL Samples
Provides descriptions of and links to the ATL sample programs.

Creating an ATL Project
Contains information on the ATL Project Wizard.

ATL Control Wizard
Discusses how to add classes.

Attributed Programming
Provides an overview on using attributes to simplify COM programming plus a list of links to more detailed
topics.

ATL Class Overview
Provides reference information and links to the ATL classes.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/attributed-programming-concepts

Active Template Library (ATL) Tutorial
3/4/2019 • 2 minutes to read • Edit Online

See also

ATL is designed to simplify the process of creating efficient, flexible, lightweight controls. This tutorial leads
you through the creation of an ActiveX control, demonstrating many ATL and COM fundamentals.

By following this tutorial, you will learn how to add a control to an ATL project that draws a circle and a filled
polygon. You will then add a property to indicate how many sides the polygon will have and create drawing
code for updating the control when the property changes. The control will then be displayed on a Web page
using some VBScript to make it respond to events.

The tutorial is divided into seven steps. You should perform each step in order as later steps depend on
previously completed tasks. Before you begin, you should confirm that you have privileges required to
register an ActiveX component on your particular computer. This is usually only a concern if you are running
Visual Studio .NET over a Terminal Services connection.

Step 1: Creating the Project

Step 2: Adding a Control to Your Project

Step 3. Adding a Property to Your Control

Step 4: Changing Your Control's Drawing Code

Step 5: Adding an Event

Step 6: Adding a Property Page

Step 7: Putting Your Control on a Web Page

Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/active-template-library-atl-tutorial.md

Creating the Project (ATL Tutorial, Part 1)
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

NOTENOTE

#ifndef WINVER
#define WINVER 0x0400
#endif

#ifndef WINVER
#define WINVER 0x0500
#define _WIN32_WINNT 0x0500
#endif

To create the initial ATL project using the ATL Project WizardTo create the initial ATL project using the ATL Project Wizard

This tutorial walks you step-by-step through a nonattributed ATL project that creates an ActiveX object that
displays a polygon. The object includes options for allowing the user to change the number of sides making up the
polygon, and code to refresh the display.

ATL and MFC are not generally supported in the Express editions of Visual Studio.

This tutorial creates the same source code as the Polygon sample. If you want to avoid entering the source code manually,
you can download it from the Polygon sample abstract. You can then refer to the Polygon source code as you work through
the tutorial, or use it to check for errors in your own project. To compile, open stdafx.h and replace:

with

The compiler will still complain about regsvr32 not exiting correctly, but you should still have the control's DLL built and
available for use.

1. In the Visual Studio development environment, click New on the File menu, and then click Project.

2. Open the Visual C++ tab and select MFC/ATL. Select ATL Project.

3. Type Polygon as the project name.

The location for the source code will usually default to \Users\<username>\source\repos, and a new folder
will be created automatically.

4. Click OK and the ATL Project wizard opens.

5. Click Application Settings to see the options available.

6. As you are creating a control, and a control must be an in-process server, leave the Application type as a
DLL.

7. Leave the other options at their default values, and click OK.

The ATL Project Wizard will create the project by generating several files. You can view these files in Solution
Explorer by expanding the Polygon object. The files are listed below.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/creating-the-project-atl-tutorial-part-1.md
https://github.com/Microsoft/VCSamples/tree/master/VC2008Samples/ATL/Controls/Polygon

FILE DESCRIPTION

Polygon.cpp Contains the implementation of DllMain ,
DllCanUnloadNow , DllGetClassObject ,
DllRegisterServer , and DllUnregisterServer . Also

contains the object map, which is a list of the ATL objects in
your project. This is initially blank.

Polygon.def This module-definition file provides the linker with information
about the exports required by your DLL.

Polygon.idl The interface definition language file, which describes the
interfaces specific to your objects.

Polygon.rgs This registry script contains information for registering your
program's DLL.

Polygon.rc The resource file, which initially contains the version
information and a string containing the project name.

Resource.h The header file for the resource file.

Polygonps.def This module definition file provides the linker with information
about the exports required by the proxy and stub code that
support calls across apartments.

stdafx.cpp The file that will #include the ATL implementation files.

stdafx.h The file that will #include the ATL header files.

See also

1. In Solution Explorer, right-click the Polygon project.

2. On the shortcut menu, click Properties.

3. Click on Linker. Change the Per-UserRedirection option to Yes.

4. Click OK.

In the next step, you will add a control to your project.

On to Step 2

Tutorial

Adding a Control (ATL Tutorial, Part 2)
3/4/2019 • 3 minutes to read • Edit Online

Procedures
To add an object to an ATL projectTo add an object to an ATL project

FIELD CONTENTS

Short name The name you entered for the control.

Class The C++ class name created to implement the control.

.h file The file created to contain the definition of the C++ class.

.cpp file The file created to contain the implementation of the C++
class.

CoClass The name of the component class for this control.

Interface The name of the interface on which the control will implement
its custom methods and properties.

Type A description for the control.

ProgID The readable name that can be used to look up the CLSID of
the control.

To enable support for rich error information and connection pointsTo enable support for rich error information and connection points

In this step, you will add a control to your project, build it, and test it on a Web page.

1. In Solution Explorer, right-click the Polygon project.

2. Point to Add on the shortcut menu, and click New Item in the submenu.

The Add New Item dialog box appears. The different object categories are listed in the tree structure on
the left.

3. Click the ATL folder.

4. From the list of templates on the right, select ATL Control. Click Add. The ATL Control wizard will open,
and you can configure the control.

5. Type PolyCtl as the short name and note that the other fields are automatically completed. Do not click
Finish yet, because you have to make some changes.

The ATL Control wizard's Names page contains the following fields:

You have to make several additional settings in the ATL Control wizard.

1. Click Options to open the Options page.

2. Select the Connection points check box. This will create support for an outgoing interface in the IDL file.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/adding-a-control-atl-tutorial-part-2.md

To extend the control's functionalityTo extend the control's functionality

To make the control insertableTo make the control insertable

To add a Fill Color stock property and create the controlTo add a Fill Color stock property and create the control

FILE DESCRIPTION

PolyCtl.h Contains most of the implementation of the C++ class
CPolyCtl .

PolyCtl.cpp Contains the remaining parts of CPolyCtl .

PolyCtl.rgs A text file that contains the registry script used to register the
control.

PolyCtl.htm A Web page containing a reference to the newly created
control.

Building and Testing the Control
To build and test the controlTo build and test the control

You can also add interfaces to extend the control's functionality.

1. Click Interfaces to open the Interfaces page.

2. Select IProvideClassInfo2 and click the Up arrow to move it to the Supported list.

3. Select ISpecifyPropertyPages and click the Up arrow to move it to the Supported list.

You can also make the control insertable, which means it can be embedded into applications that support
embedded objects, such as Excel or Word.

1. Click Appearance to open the Appearance page.

2. Select the Insertable check box.

The polygon displayed by the object will have a solid fill color, so you have to add a Fill Color stock property.

1. Click Stock Properties to open the Stock Properties page.

2. Under Not supported, scroll down the list of possible stock properties. Select Fill Color and click the Up
arrow to move it to the Supported list.

3. This completes the options for the control. Click Finish.

As the wizard created the control, several code changes and file additions occurred. The following files were
created:

The wizard also performed the following code changes:

Added an #include statement to the stdafx.h and stdafx.cpp files to include the ATL files necessary for
supporting controls.

Changed Polygon.idl to include details of the new control.

Added the new control to the object map in Polygon.cpp.

Now you can build the control to see it in action.

1. On the Build menu, click Build Polygon.

NOTENOTE

NOTENOTE

See also

Once the control finishes building, right-click PolyCtl.htm in Solution Explorer and select View in
Browser. The HTML Web page containing the control will be displayed. You should see a page with the title
“ATL 8.0 test page for object PolyCtl” and the text PolyCtl. This is your control.

If the control isn't visible, know that some browsers require settings adjustments to run ActiveX controls. Please refer to the
browser's documentation on how to enable ActiveX controls.

When completing this tutorial, if you receive an error message where the DLL file cannot be created, close the PolyCtl.htm
file and the ActiveX Control Test container and build the solution again. If you still cannot create the DLL, reboot the
computer or log off (if you are using Terminal Services).

Next, you will add a custom property to the control.

Back to Step 1 | On to Step 3

Tutorial

Adding a Property to the Control (ATL Tutorial, Part
3)
3/4/2019 • 2 minutes to read • Edit Online

To add the property definitions to your projectTo add the property definitions to your project

To update the get and put methodsTo update the get and put methods

IPolyCtl is the interface that contains the control's custom methods and properties, and you will add a property
to it.

short get_Sides();
 void set_Sides(short value);

[propget, id(1), helpstring("property Sides")] HRESULT Sides([out, retval] short *pVal);
 [propput, id(1), helpstring("property Sides")] HRESULT Sides([in] short newVal);

short m_nSides;
STDMETHOD(get_Sides)(short* pval);
STDMETHOD(put_Sides)(short newval);

1. In Class View, expand the Polygon branch.

2. Right-click IPolyCtl .

3. On the shortcut menu, click Add, and then click Add Property. The Add Property wizard will appear.

4. Type Sides as the Property Name.

5. In the drop-down list of Property Type, select short .

6. Click OK to finish adding the property.

7. From Solution Explorer, open Polygon.idl and replace the following lines at the end of the
IPolyCtl : IDispatch interface:

with

8. From Solution Explorer, open PolyCtl.h and add the following lines after the definition of m_clrFillColor :

Although you now have skeleton functions to set and retrieve the property and a variable to store the property,
you must implement the functions accordingly.

m_nSides = 3;

1. Set the default value of m_nSides . Make the default shape a triangle by adding a line to the constructor in
PolyCtl.h:

2. Implement the Get and Put methods. The get_Sides and put_Sides function declarations have been
added to PolyCtl.h. Now add the code for get_Sides and put_Sides to PolyCtl.cpp with the following:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/adding-a-property-to-the-control-atl-tutorial-part-3.md

See also

STDMETHODIMP CPolyCtl::get_Sides(short* pVal)
{
 *pVal = m_nSides;

 return S_OK;
}

STDMETHODIMP CPolyCtl::put_Sides(short newVal)
{
 if (2 < newVal && newVal < 101)
 {
 m_nSides = newVal;
 return S_OK;
 }
 else
 {
 return Error(_T("Shape must have between 3 and 100 sides"));
 }
}

The get_Sides method returns the current value of the Sides property through the pVal pointer. In the
put_Sides method, the code ensures the user is setting the Sides property to an acceptable value. The minimum

must be 3, and because an array of points will be used for each side, 100 is a reasonable limit for a maximum
value.

You now have a property called Sides . In the next step, you will change the drawing code to use it.

Back to Step 2 | On to Step 4

Tutorial

Changing the Drawing Code (ATL Tutorial, Part 4)
3/4/2019 • 5 minutes to read • Edit Online

Modifying the Header File

To modify the header fileTo modify the header file

Modifying the OnDraw Method

By default, the control's drawing code displays a square and the text PolyCtl. In this step, you will change the code
to display something more interesting. The following tasks are involved:

Modifying the Header File

Modifying the OnDraw Function

Adding a Method to Calculate the Polygon Points

Initializing the Fill Color

Start by adding support for the math functions sin and cos , which will be used calculate the polygon points, and
by creating an array to store positions.

#include <math.h>
#include "resource.h" // main symbols

public CComControl<CPolyCtl>

public CComControl<CPolyCtl>,
 public IProvideClassInfo2Impl<&CLSID_PolyCtl, &DIID__IPolyCtlEvents, &LIBID_PolygonLib>

COM_INTERFACE_ENTRY(IProvideClassInfo)
 COM_INTERFACE_ENTRY(IProvideClassInfo2)

POINT m_arrPoint[100];

1. Add the line #include <math.h> to the top of PolyCtl.h. The top of the file should look like this:

2. Implement the IProvideClassInfo interface to provide method information for the control, by adding the
following code to PolyCtl.h. In the CPolyCtl class, replace line:

with

and in BEGIN_COM_MAP(CPolyCtl) , add the lines:

3. Once the polygon points are calculated, they will be stored in an array of type POINT , so add the array after
the definition statement short m_nSides; in PolyCtl.h:

Now you should modify the OnDraw method in PolyCtl.h. The code you will add creates a new pen and brush with
which to draw your polygon, and then calls the Ellipse and Polygon Win32 API functions to perform the actual

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/changing-the-drawing-code-atl-tutorial-part-4.md

To modify the OnDraw functionTo modify the OnDraw function

Adding a Method to Calculate the Polygon Points

To add the CalcPoints methodTo add the CalcPoints method

drawing.

HRESULT CPolyCtl::OnDraw(ATL_DRAWINFO& di)
{
 RECT& rc = *(RECT*)di.prcBounds;
 HDC hdc = di.hdcDraw;

 COLORREF colFore;
 HBRUSH hOldBrush, hBrush;
 HPEN hOldPen, hPen;

 // Translate m_colFore into a COLORREF type
 OleTranslateColor(m_clrFillColor, NULL, &colFore);

 // Create and select the colors to draw the circle
 hPen = (HPEN)GetStockObject(BLACK_PEN);
 hOldPen = (HPEN)SelectObject(hdc, hPen);
 hBrush = (HBRUSH)GetStockObject(WHITE_BRUSH);
 hOldBrush = (HBRUSH)SelectObject(hdc, hBrush);

 Ellipse(hdc, rc.left, rc.top, rc.right, rc.bottom);

 // Create and select the brush that will be used to fill the polygon
 hBrush = CreateSolidBrush(colFore);
 SelectObject(hdc, hBrush);

 CalcPoints(rc);
 Polygon(hdc, &m_arrPoint[0], m_nSides);

 // Select back the old pen and brush and delete the brush we created
 SelectObject(hdc, hOldPen);
 SelectObject(hdc, hOldBrush);
 DeleteObject(hBrush);

 return S_OK;
}

1. Replace the existing OnDraw method in PolyCtl.h with the following code:

Add a method, called CalcPoints , that will calculate the coordinates of the points that make up the perimeter of
the polygon. These calculations will be based on the RECT variable that is passed into the function.

void CalcPoints(const RECT& rc);

 void FinalRelease()
 {
 }
public:
 void CalcPoints(const RECT& rc);

1. Add the declaration of CalcPoints to the IPolyCtl public section of the CPolyCtl class in PolyCtl.h:

The last part of the public section of the CPolyCtl class will look like this:

2. Add this implementation of the CalcPoints function to the end of PolyCtl.cpp:

Initializing the Fill Color

To initialize the fill colorTo initialize the fill color

CPolyCtl()
{
 m_nSides = 3;
 m_clrFillColor = RGB(0, 0xFF, 0);
}

Building and Testing the Control

To use the ActiveX Control Test ContainerTo use the ActiveX Control Test Container

void CPolyCtl::CalcPoints(const RECT& rc)
{
 const double pi = 3.14159265358979;
 POINT ptCenter;
 double dblRadiusx = (rc.right - rc.left) / 2;
 double dblRadiusy = (rc.bottom - rc.top) / 2;
 double dblAngle = 3 * pi / 2; // Start at the top
 double dblDiff = 2 * pi / m_nSides; // Angle each side will make
 ptCenter.x = (rc.left + rc.right) / 2;
 ptCenter.y = (rc.top + rc.bottom) / 2;

 // Calculate the points for each side
 for (int i = 0; i < m_nSides; i++)
 {
 m_arrPoint[i].x = (long)(dblRadiusx * cos(dblAngle) + ptCenter.x + 0.5);
 m_arrPoint[i].y = (long)(dblRadiusy * sin(dblAngle) + ptCenter.y + 0.5);
 dblAngle += dblDiff;
 }
}

Initialize m_clrFillColor with a default color.

m_clrFillColor = RGB(0, 0xFF, 0);

1. Use green as the default color by adding this line to the CPolyCtl constructor in PolyCtl.h:

The constructor now looks like this:

Rebuild the control. Make sure the PolyCtl.htm file is closed if it is still open, and then click Build Polygon on the
Build menu. You could view the control once again from the PolyCtl.htm page, but this time use the ActiveX
Control Test Container.

1. Build and start the ActiveX Control Test Container. The TSTCON Sample: ActiveX Control Test Container
can be found on GitHub.

https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/MFC/ole/TstCon

To modify a control's property from within the Test ContainerTo modify a control's property from within the Test Container

To add a call to FireViewChangeTo add a call to FireViewChange

NOTENOTE

#ifndef WINVER
#define WINVER 0x0400
#endif

#ifndef WINVER
#define WINVER 0x0500
#define _WIN32_WINNT 0x0500
#endif

For errors involving ATL::CW2AEX , in Script.Cpp, replace line
TRACE("XActiveScriptSite::GetItemInfo(%s)\n", pszNameT); with
TRACE("XActiveScriptSite::GetItemInfo(%s)\n", pszNameT.m_psz); , and line
TRACE("Source Text: %s\n", COLE2CT(bstrSourceLineText)); with
TRACE("Source Text: %s\n", bstrSourceLineText); .

For errors involving HMONITOR , open StdAfx.h in the TCProps project and replace:

with

2. In Test Container, on the Edit menu, click Insert New Control.

3. Locate your control, which will be called PolyCtl class , and click OK. You will see a green triangle within a
circle.

Try changing the number of sides by following the next procedure. To modify properties on a dual interface from
within Test Container, use Invoke Methods.

1. In Test Container, click Invoke Methods on the Control menu.

The Invoke Method dialog box is displayed.

2. Select the PropPut version of the Sides property from the Method Name drop-down list box.

3. Type 5 in the Parameter Value box, click Set Value, and click Invoke.

Note that the control does not change. Although you changed the number of sides internally by setting the
m_nSides variable, this did not cause the control to repaint. If you switch to another application and then switch

back to Test Container, you will find that the control has repainted and has the correct number of sides.

To correct this problem, add a call to the FireViewChange function, defined in IViewObjectExImpl , after you set the
number of sides. If the control is running in its own window, FireViewChange will call the InvalidateRect method
directly. If the control is running windowless, the InvalidateRect method will be called on the container's site
interface. This forces the control to repaint itself.

1. Update PolyCtl.cpp by adding the call to FireViewChange to the put_Sides method. When you have
finished, the put_Sides method should look like this:

See also

STDMETHODIMP CPolyCtl::put_Sides(short newVal)
{
 if (2 < newVal && newVal < 101)
 {
 m_nSides = newVal;
 FireViewChange();
 return S_OK;
 }
 else
 {
 return Error(_T("Shape must have between 3 and 100 sides"));
 }
}

After adding FireViewChange , rebuild and try the control again in the ActiveX Control Test Container. This time
when you change the number of sides and click Invoke , you should see the control change immediately.

In the next step, you will add an event.

Back to Step 3 | On to Step 5

Tutorial
Testing Properties and Events with Test Container

Adding an Event (ATL Tutorial, Part 5)
3/4/2019 • 6 minutes to read • Edit Online

Adding the ClickIn and ClickOut methods

To add the ClickIn and ClickOut methodsTo add the ClickIn and ClickOut methods

Generating the Type Library

To generate the type libraryTo generate the type library

In this step, you will add a ClickIn and a ClickOut event to your ATL control. You will fire the ClickIn event if
the user clicks within the polygon and fire ClickOut if the user clicks outside. The tasks to add an event are as
follows:

Adding the ClickIn and ClickOut methods

Generating the Type Library

Implementing the Connection Point Interfaces

When you created the ATL control in step 2, you selected the Connection points check box. This created the
_IPolyCtlEvents interface in the Polygon.idl file. Note that the interface name starts with an underscore. This is a

convention to indicate that the interface is an internal interface. Thus, programs that allow you to browse COM
objects can choose not to display the interface to the user. Also note that selecting Connection points added the
following line in the Polygon.idl file to indicate that _IPolyCtlEvents is the default source interface:

[default, source] dispinterface _IPolyCtlEvents;

The source attribute indicates that the control is the source of the notifications, so it will call this interface on the
container.

Now add the ClickIn and ClickOut methods to the _IPolyCtlEvents interface.

[id(1), helpstring("method ClickIn")] void ClickIn([in] LONG x,[in] LONG y);
[id(2), helpstring("method ClickOut")] void ClickOut([in] LONG x,[in] LONG y);

1. In Solution Explorer, open Polygon.idl and add the following code under methods: in the
dispInterface_IPolyCtlEvents declaration of the PolygonLib library:

The ClickIn and ClickOut methods take the x and y coordinates of the clicked point as parameters.

Generate the type library at this point, because the project will use it to obtain the information it needs to construct
a connection point interface and a connection point container interface for your control.

1. Rebuild your project.

-or-

2. Right-click the Polygon.idl file in Solution Explorer and click Compile on the shortcut menu.

This will create the Polygon.tlb file, which is your type library. The Polygon.tlb file is not visible from Solution
Explorer, because it is a binary file and cannot be viewed or edited directly.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/adding-an-event-atl-tutorial-part-5.md

Implementing the Connection Point Interfaces

To implement the connection pointsTo implement the connection points

Implement a connection point interface and a connection point container interface for your control. In COM,
events are implemented through the mechanism of connection points. To receive events from a COM object, a
container establishes an advisory connection to the connection point that the COM object implements. Because a
COM object can have multiple connection points, the COM object also implements a connection point container
interface. Through this interface, the container can determine which connection points are supported.

The interface that implements a connection point is called IConnectionPoint , and the interface that implements a
connection point container is called IConnectionPointContainer .

To help implement IConnectionPoint , you will use the Implement Connection Point Wizard. This wizard generates
the IConnectionPoint interface by reading your type library and implementing a function for each event that can
be fired.

1. In Solution Explorer, open _IPolyCtlEvents_CP.h and add the following code under the public:

statement in the CProxy_IPolyCtlEvents class:

VOID Fire_ClickIn(LONG x, LONG y)
 {
 T* pT = static_cast<T*>(this);
 int nConnectionIndex;
 CComVariant* pvars = new CComVariant[2];
 int nConnections = m_vec.GetSize();

 for (nConnectionIndex = 0; nConnectionIndex < nConnections; nConnectionIndex++)
 {
 pT->Lock();
 CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);
 pT->Unlock();
 IDispatch* pDispatch = reinterpret_cast<IDispatch*>(sp.p);
 if (pDispatch != NULL)
 {
 pvars[1].vt = VT_I4;
 pvars[1].lVal = x;
 pvars[0].vt = VT_I4;
 pvars[0].lVal = y;
 DISPPARAMS disp = { pvars, NULL, 2, 0 };
 pDispatch->Invoke(0x1, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD, &disp, NULL, NULL, NULL);
 }
 }
 delete[] pvars;

 }
 VOID Fire_ClickOut(LONG x, LONG y)
 {
 T* pT = static_cast<T*>(this);
 int nConnectionIndex;
 CComVariant* pvars = new CComVariant[2];
 int nConnections = m_vec.GetSize();

 for (nConnectionIndex = 0; nConnectionIndex < nConnections; nConnectionIndex++)
 {
 pT->Lock();
 CComPtr<IUnknown> sp = m_vec.GetAt(nConnectionIndex);
 pT->Unlock();
 IDispatch* pDispatch = reinterpret_cast<IDispatch*>(sp.p);
 if (pDispatch != NULL)
 {
 pvars[1].vt = VT_I4;
 pvars[1].lVal = x;
 pvars[0].vt = VT_I4;
 pvars[0].lVal = y;
 DISPPARAMS disp = { pvars, NULL, 2, 0 };
 pDispatch->Invoke(0x2, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD, &disp, NULL, NULL, NULL);
 }
 }
 delete[] pvars;

 }

You will see that this file has a class called CProxy_IPolyCtlEvents that derives from IConnectionPointImpl .
_IPolyCtlEvents_CP.h now defines the two methods Fire_ClickIn and Fire_ClickOut , which take the two
coordinate parameters. You call these methods when you want to fire an event from your control.

By creating the control with Connection points option selected, the _IPolyCtlEvents_CP.h file was generated for
you. It also added CProxy_PolyEvents and IConnectionPointContainerImpl to your control's multiple inheritance list
and exposed IConnectionPointContainer for you by adding appropriate entries to the COM map.

You are finished implementing the code to support events. Now, add some code to fire the events at the
appropriate moment. Remember, you are going to fire a ClickIn or ClickOut event when the user clicks the left
mouse button in the control. To find out when the user clicks the button, add a handler for the WM_LBUTTONDOWN

To add a handler for the WM_LBUTTONDOWN messageTo add a handler for the WM_LBUTTONDOWN message

To modify the OnLButtonDown methodTo modify the OnLButtonDown method

Building and Testing the Control

message.

1. In Class View, right-click the CPolyCtl class and click Properties on the shortcut menu.

2. In the Properties window, click the Messages icon and then click WM_LBUTTONDOWN from the list on the left.

3. From the drop-down list that appears, click <Add> OnLButtonDown. The OnLButtonDown handler
declaration will be added to PolyCtl.h, and the handler implementation will be added to PolyCtl.cpp.

Next, modify the handler.

LRESULT CPolyCtl::OnLButtonDown(UINT /*uMsg*/, WPARAM /*wParam*/, LPARAM lParam,
 BOOL& /*bHandled*/)
{
 HRGN hRgn;
 WORD xPos = LOWORD(lParam); // horizontal position of cursor
 WORD yPos = HIWORD(lParam); // vertical position of cursor

 CalcPoints(m_rcPos);

 // Create a region from our list of points
 hRgn = CreatePolygonRgn(&m_arrPoint[0], m_nSides, WINDING);

 // If the clicked point is in our polygon then fire the ClickIn
 // event otherwise we fire the ClickOut event
 if (PtInRegion(hRgn, xPos, yPos))
 Fire_ClickIn(xPos, yPos);
 else
 Fire_ClickOut(xPos, yPos);

 // Delete the region that we created
 DeleteObject(hRgn);
 return 0;
}

1. Change the code which comprises the OnLButtonDown method in PolyCtl.cpp (deleting any code placed by
the wizard) so that it looks like this:

This code makes use of the points calculated in the OnDraw function to create a region that detects the user's
mouse clicks with the call to PtInRegion .

The uMsg parameter is the ID of the Windows message being handled. This allows you to have one function that
handles a range of messages. The wParam and the lParam parameters are the standard values for the message
being handled. The parameter bHandled allows you to specify whether the function handled the message or not.
By default, the value is set to TRUE to indicate that the function handled the message, but you can set it to FALSE.
This will cause ATL to continue looking for another message handler function to send the message to.

Now try out your events. Build the control and start the ActiveX Control Test Container again. This time, view the
event log window. To route events to the output window, click Logging from the Options menu and select Log to
output window. Insert the control and try clicking in the window. Note that ClickIn is fired if you click within
the filled polygon, and ClickOut is fired when you click outside of it.

Next, you will add a property page.

Back to Step 4 | On to Step 6

See also
Tutorial

Adding a Property Page (ATL Tutorial, Part 6)
3/4/2019 • 6 minutes to read • Edit Online

Creating the Property Page Resource

To add a Property PageTo add a Property Page

FILE DESCRIPTION

PolyProp.h Contains the C++ class CPolyProp , which implements the
property page.

PolyProp.cpp Includes the PolyProp.h file.

PolyProp.rgs The registry script that registers the property page object.

Property pages are implemented as separate COM objects, which allow them to be shared if required. In this step,
you will do the following tasks to add a property page to the control:

Creating the Property Page Resource

Adding Code to Create and Manage the Property Page

Adding the Property Page to the Control

To add a property page to your control, use the ATL Property Page template.

1. In Solution Explorer, right-click Polygon .

2. On the shortcut menu, click Add > New Item.

3. From the list of templates, select ATL > ATL Property Page and click Add.

4. When the ATL Property Page Wizard appears, enter PolyProp as the Short name.

5. Click Strings to open the Strings page and enter &Polygon as the Title.

The Title of the property page is the string that appears in the tab for that page. The Doc string is a
description that a property frame uses to put in a status line or tool tip. Note that the standard property
frame currently does not use this string, so you can leave it with the default contents. You will not generate
a Help file at the moment, so delete the entry in that text box.

6. Click Finish, and the property page object will be created.

The following three files are created:

The following code changes are also made:

The new property page is added to the object entry map in Polygon.cpp.

The PolyProp class is added to the Polygon.idl file.

The new registry script file PolyProp.rgs is added to the project resource.

A dialog box template is added to the project resource for the property page.

The property strings that you specified are added to the resource string table.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/adding-a-property-page-atl-tutorial-part-6.md

To add fields to the Property PageTo add fields to the Property Page

Adding Code to Create and Manage the Property Page

To modify the Apply function to set the number of sidesTo modify the Apply function to set the number of sides

Now add the fields that you want to appear on the property page.

1. In Solution Explorer, double-click the Polygon.rc resource file. This will open Resource View.

2. In Resource View, expand the Dialog node and double-click IDD_POLYPROP . Note that the dialog box that
appears is empty except for a label that tells you to insert your controls here.

3. Select that label and change it to read Sides: by altering the Caption text in the Properties window.

4. Resize the label box so that it fits the size of the text.

5. Drag an Edit Control from the Toolbox to the right of the label.

6. Finally, change the ID of the edit control to IDC_SIDES using the Properties window.

This completes the process of creating the property page resource.

Now that you have created the property page resource, you need to write the implementation code.

First, enable the CPolyProp class to set the number of sides in your object when the Apply button is pressed.

STDMETHOD(Apply)(void)
{
 USES_CONVERSION;
 ATLTRACE(_T("CPolyProp::Apply\n"));
 for (UINT i = 0; i < m_nObjects; i++)
 {
 CComQIPtr<IPolyCtl, &IID_IPolyCtl> pPoly(m_ppUnk[i]);
 short nSides = (short)GetDlgItemInt(IDC_SIDES);
 if FAILED(pPoly->put_Sides(nSides))
 {
 CComPtr<IErrorInfo> pError;
 CComBSTR strError;
 GetErrorInfo(0, &pError);
 pError->GetDescription(&strError);
 MessageBox(OLE2T(strError), _T("Error"), MB_ICONEXCLAMATION);
 return E_FAIL;
 }
 }
 m_bDirty = FALSE;
 return S_OK;
}

1. Replace the Apply function in PolyProp.h with the following code:

A property page can have more than one client attached to it at a time, so the Apply function loops around and
calls put_Sides on each client with the value retrieved from the edit box. You are using the CComQIPtr class,
which performs the QueryInterface on each object to obtain the IPolyCtl interface from the IUnknown interface
(stored in the m_ppUnk array).

The code now checks that setting the Sides property actually worked. If it fails, the code displays a message box
displaying error details from the IErrorInfo interface. Typically, a container asks an object for the
ISupportErrorInfo interface and calls InterfaceSupportsErrorInfo first, to determine whether the object supports

setting error information. You can skip this task.

CComPtr helps you by automatically handling the reference counting, so you do not need to call Release on the

To handle the Apply buttonTo handle the Apply button

To modify the OnEnChangeSides methodTo modify the OnEnChangeSides method

Adding the Property Page to the Control

To add the property pageTo add the property page

interface. CComBSTR helps you with BSTR processing, so you do not have to perform the final SysFreeString call.
You also use one of the various string conversion classes, so you can convert the BSTR if necessary (this is why
the USES_CONVERSION macro is at the start of the function).

You also need to set the property page's dirty flag to indicate that the Apply button should be enabled. This occurs
when the user changes the value in the Sides edit box.

1. In Class View, right-click CPolyProp and click Properties on the shortcut menu.

2. In the Properties window, click the Events icon.

3. Expand the IDC_SIDES node in the event list.

4. Select EN_CHANGE , and from the drop-down menu to the right, click <Add> OnEnChangeSides. The
OnEnChangeSides handler declaration will be added to Polyprop.h, and the handler implementation to

Polyprop.cpp.

Next, you will modify the handler.

LRESULT CPolyProp::OnEnChangeSides(WORD /*wNotifyCode*/, WORD /*wID*/,
 HWND /*hWndCtl*/, BOOL& /*bHandled*/)
{
 SetDirty(TRUE);

 return 0;
}

1. Add the following code in Polyprop.cpp to the OnEnChangeSides method (deleting any code that the wizard
put there):

OnEnChangeSides will be called when a WM_COMMAND message is sent with the EN_CHANGE notification for the
IDC_SIDES control. OnEnChangeSides then calls SetDirty and passes TRUE to indicate the property page is now

dirty and the Apply button should be enabled.

The ATL Property Page template and wizard do not add the property page to your control for you automatically,
because there could be multiple controls in your project. You will need to add an entry to the control's property
map.

PROP_ENTRY_TYPE("Sides", 1, CLSID_PolyProp, VT_INT)
PROP_PAGE(CLSID_PolyProp)

1. Open PolyCtl.h and add these lines to the property map:

The control's property map now looks like this:

BEGIN_PROP_MAP(CPolyCtl)
 PROP_DATA_ENTRY("_cx", m_sizeExtent.cx, VT_UI4)
 PROP_DATA_ENTRY("_cy", m_sizeExtent.cy, VT_UI4)
#ifndef _WIN32_WCE
 PROP_ENTRY_TYPE("FillColor", DISPID_FILLCOLOR, CLSID_StockColorPage, VT_UI4)
#endif
 PROP_ENTRY_TYPE("Sides", 1, CLSID_PolyProp, VT_INT)
 PROP_PAGE(CLSID_PolyProp)
 // Example entries
 // PROP_ENTRY("Property Description", dispid, clsid)
 // PROP_PAGE(CLSID_StockColorPage)
END_PROP_MAP()

Building and Testing the Control

See also

You could have added a PROP_PAGE macro with the CLSID of your property page, but if you use the PROP_ENTRY

macro as shown, the Sides property value is also saved when the control is saved.

The three parameters to the macro are the property description, the DISPID of the property, and the CLSID of the
property page that has the property on it. This is useful if, for example, you load the control into Visual Basic and
set the number of Sides at design time. Because the number of Sides is saved, when you reload your Visual Basic
project, the number of Sides will be restored.

Now build that control and insert it into ActiveX Control Test Container. In Test Container, on the Edit menu,
click PolyCtl Class Object. The property page appears with the information you added.

The Apply button is initially disabled. Start typing a value in the Sides box and the Apply button will become
enabled. After you have finished entering the value, click the Apply button. The control display changes, and the
Apply button is again disabled. Try entering an invalid value. You will see a message box containing the error
description that you set from the put_Sides function.

Next, you will put your control on a Web page.

Back to Step 5 | On to Step 7

Tutorial

Putting the Control on a Web Page (ATL Tutorial,
Part 7)
3/4/2019 • 3 minutes to read • Edit Online

Adding new functionality
To add control featuresTo add control features

Scripting the Web Page

To script the Web pageTo script the Web page

Your control is now finished. To see your control work in a real-world situation, put it on a Web page. An HTML file
that contains the control was created when you defined your control. Open the PolyCtl.htm file from Solution
Explorer, and you can see your control on a Web page.

In this step, you will add functionality to the control and script the Web page to respond to events. You will also
modify the control to let Internet Explorer know that the control is safe for scripting.

if (PtInRegion(hRgn, xPos, yPos))
 Fire_ClickIn(xPos, yPos);
else
 Fire_ClickOut(xPos, yPos);

short temp = m_nSides;
if (PtInRegion(hRgn, xPos, yPos))
{
 Fire_ClickIn(xPos, yPos);
 put_Sides(++temp);
}
else
{
 Fire_ClickOut(xPos, yPos);
 put_Sides(--temp);
}

1. Open PolyCtl.cpp and replace the following code:

with

The shape will now add or remove sides depending on where you click.

The control does not do anything yet, so change the Web page to respond to the events that you send.

1. Open PolyCtl.htm and select HTML view. Add the following lines to the HTML code. They should be added
after </OBJECT> but before </BODY> .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/putting-the-control-on-a-web-page-atl-tutorial-part-7.md

Indicating that the Control Is Safe for Scripting

NOTENOTE

IMPORTANTIMPORTANT

To add IObjectSafetyImpl to the controlTo add IObjectSafetyImpl to the control

<SCRIPT LANGUAGE="VBScript">
<!--
 Sub PolyCtl_ClickIn(x, y)
 MsgBox("Clicked (" & x & ", " & y & ") - adding side")
 End Sub
 Sub PolyCtl_ClickOut(x, y)
 MsgBox("Clicked (" & x & ", " & y & ") - removing side")
 End Sub
-->
</SCRIPT>

2. Save the HTM file.

You have added some VBScript code that gets the Sides property from the control and increases the number of
sides by one if you click inside the control. If you click outside the control, you reduce the number of sides by one.

You can view the Web page with the control in Internet Explorer or, more conveniently, use the Web browser view
built into Visual C++. To see your control in the Web browser view, right-click PolyCtl.htm, and click View in
Browser.

If the control isn't visible, know that some browsers require settings adjustments to run ActiveX controls. Please refer to the
browser's documentation on how to enable ActiveX controls.

Based on your current Internet Explorer security settings, you may receive a Security Alert dialog box stating that
the control may not be safe to script and could potentially do damage. For example, if you had a control that
displayed a file but also had a Delete method that deleted a file, it would be safe if you just viewed it on a page. It
would be not safe to script, however, because someone could call the Delete method.

For this tutorial, you can change your security settings in Internet Explorer to run ActiveX controls that are not marked as
safe. In Control Panel, click Internet Properties and click Security to change the appropriate settings. When you have
completed the tutorial, change your security settings back to their original state.

You can programmatically alert Internet Explorer that it does not need to display the Security Alert dialog box for
this particular control. You can do this with the IObjectSafety interface, and ATL supplies an implementation of
this interface in the class IObjectSafetyImpl. To add the interface to your control, add IObjectSafetyImpl to your
list of inherited classes and add an entry for it in your COM map.

public IObjectSafetyImpl<CPolyCtl, INTERFACESAFE_FOR_UNTRUSTED_CALLER>

COM_INTERFACE_ENTRY(IObjectSafety)

1. Add the following line to the end of the list of inherited classes in PolyCtl.h and add a comma to the
previous line:

2. Add the following line to the COM map in PolyCtl.h:

Building and Testing the Control

Next Steps

See also

Build the control. Once the build has finished, open PolyCtl.htm in browser view again. This time, the Web page
should be displayed directly without the Safety Alert dialog box. Click inside the polygon; the number of sides
increases by one. Click outside the polygon to reduce the number of sides.

Back to Step 6

This concludes the ATL tutorial. For links to more information about ATL, see the ATL start page.

Tutorial

Introduction to COM and ATL
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section provides a brief introduction to COM and ATL.

Introduction to COM
Provides an overview of the Component Object Model's (COM) fundamental concepts, including interfaces,
IUnknown , reference counting, QueryInterface , marshaling, and aggregation.

Introduction to ATL
Discusses, briefly, what the Active Template Library (ATL) was designed for, template libraries, and ATL version
numbers. Includes recommendations for choosing between ATL and MFC.

The Component Object Model
The Windows SDK material on COM.

ATL
Provides links to conceptual topics on how to program using the Active Template Library.

ATL Class Overview
Provides reference information and links to the ATL classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/introduction-to-com-and-atl.md
https://docs.microsoft.com/windows/desktop/com/the-component-object-model

Introduction to COM
3/4/2019 • 2 minutes to read • Edit Online

See also

COM is the fundamental "object model" on which ActiveX Controls and OLE are built. COM allows an object to
expose its functionality to other components and to host applications. It defines both how the object exposes itself
and how this exposure works across processes and across networks. COM also defines the object's life cycle.

Fundamental to COM are these concepts:

Interfaces — the mechanism through which an object exposes its functionality.

IUnknown — the basic interface on which all others are based. It implements the reference counting and
interface querying mechanisms running through COM.

Reference counting — the technique by which an object (or, strictly, an interface) decides when it is no
longer being used and is therefore free to remove itself.

QueryInterface — the method used to query an object for a given interface.

Marshaling — the mechanism that enables objects to be used across thread, process, and network
boundaries, allowing for location independence.

Aggregation — a way in which one object can make use of another.

Introduction to COM and ATL
The Component Object Model

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/introduction-to-com.md
https://docs.microsoft.com/windows/desktop/com/the-component-object-model

Interfaces (ATL)
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

An interface is the way in which an object exposes its functionality to the outside world. In COM, an interface is a
table of pointers (like a C++ vtable) to functions implemented by the object. The table represents the interface, and
the functions to which it points are the methods of that interface. An object can expose as many interfaces as it
chooses.

Each interface is based on the fundamental COM interface, IUnknown. The methods of IUnknown allow navigation
to other interfaces exposed by the object.

Also, each interface is given a unique interface ID (IID). This uniqueness makes it easy to support interface
versioning. A new version of an interface is simply a new interface, with a new IID.

IIDs for the standard COM and OLE interfaces are predefined.

Introduction to COM
COM Objects and Interfaces

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/interfaces-atl.md
https://docs.microsoft.com/windows/desktop/com/com-objects-and-interfaces

IUnknown
3/4/2019 • 2 minutes to read • Edit Online

See also

IUnknown is the base interface of every other COM interface. This interface defines three methods:
QueryInterface, AddRef, and Release. QueryInterface allows an interface user to ask the object for a pointer to
another of its interfaces. AddRef and Release implement reference counting on the interface.

Introduction to COM
IUnknown and Interface Inheritance

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/iunknown.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/com/iunknown-and-interface-inheritance

Reference Counting
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

COM itself does not automatically try to remove an object from memory when it thinks the object is no longer
being used. Instead, the object programmer must remove the unused object. The programmer determines whether
an object can be removed based on a reference count.

COM uses the IUnknown methods, AddRef and Release, to manage the reference count of interfaces on an object.
The general rules for calling these methods are:

Whenever a client receives an interface pointer, AddRef must be called on the interface.

Whenever the client has finished using the interface pointer, it must call Release .

In a simple implementation, each AddRef call increments and each Release call decrements a counter variable
inside the object. When the count returns to zero, the interface no longer has any users and is free to remove itself
from memory.

Reference counting can also be implemented so that each reference to the object (not to an individual interface) is
counted. In this case, each AddRef and Release call delegates to a central implementation on the object, and
Release frees the entire object when its reference count reaches zero.

When a CComObject -derived object is constructed using the new operator, the reference count is 0. Therefore, a call to
AddRef must be made after successfully creating the CComObject -derived object.

Introduction to COM
Managing Object Lifetimes through Reference Counting

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference-counting.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/com/managing-object-lifetimes-through-reference-counting

QueryInterface
3/4/2019 • 2 minutes to read • Edit Online

See also

Although there are mechanisms by which an object can express the functionality it provides statically (before it is
instantiated), the fundamental COM mechanism is to use the IUnknown method called QueryInterface.

Every interface is derived from IUnknown , so every interface has an implementation of QueryInterface . Regardless
of implementation, this method queries an object using the IID of the interface to which the caller wants a pointer.
If the object supports that interface, QueryInterface retrieves a pointer to the interface, while also calling AddRef .
Otherwise, it returns the E_NOINTERFACE error code.

Note that you must obey Reference Counting rules at all times. If you call Release on an interface pointer to
decrement the reference count to zero, you should not use that pointer again. Occasionally you may need to obtain
a weak reference to an object (that is, you may wish to obtain a pointer to one of its interfaces without
incrementing the reference count), but it is not acceptable to do this by calling QueryInterface followed by
Release . The pointer obtained in such a manner is invalid and should not be used. This more readily becomes

apparent when _ATL_DEBUG_INTERFACES is defined, so defining this macro is a useful way of finding reference
counting bugs.

Introduction to COM
QueryInterface: Navigating in an Object

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/queryinterface.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/com/queryinterface--navigating-in-an-object

Marshaling
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

The COM technique of marshaling allows interfaces exposed by an object in one process to be used in another
process. In marshaling, COM provides code (or uses code provided by the interface implementor) both to pack a
method's parameters into a format that can be moved across processes (as well as, across the wire to processes
running on other machines) and to unpack those parameters at the other end. Likewise, COM must perform these
same steps on the return from the call.

Marshaling is typically not necessary when an interface provided by an object is being used in the same process as the
object. However, marshaling may be needed between threads.

Introduction to COM
Marshaling Details

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/marshaling.md
https://docs.microsoft.com/windows/desktop/com/marshaling-details

Aggregation
3/4/2019 • 2 minutes to read • Edit Online

See also

There are times when an object's implementor would like to take advantage of the services offered by another,
prebuilt object. Furthermore, it would like this second object to appear as a natural part of the first. COM achieves
both of these goals through containment and aggregation.

Aggregation means that the containing (outer) object creates the contained (inner) object as part of its creation
process and the interfaces of the inner object are exposed by the outer. An object allows itself to be aggregatable
or not. If it is, then it must follow certain rules for aggregation to work properly.

Primarily, all IUnknown method calls on the contained object must delegate to the containing object.

Introduction to COM
Reusing Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/aggregation.md
https://docs.microsoft.com/windows/desktop/com/reusing-objects

Introduction to ATL
3/4/2019 • 2 minutes to read • Edit Online

See also

ATL is the Active Template Library, a set of template-based C++ classes with which you can easily create small,
fast Component Object Model (COM) objects. It has special support for key COM features including: stock
implementations of IUnknown, IClassFactory, IClassFactory2, and IDispatch ; dual interfaces; standard COM
enumerator interfaces; connection points; tear-off interfaces; and ActiveX controls.

ATL code can be used to create single-threaded objects, apartment-model objects, free-threaded model objects, or
both free-threaded and apartment-model objects.

Topics covered in this section include:

How a template library differs from a standard library.

What you can and cannot do with ATL.

Recommendations for choosing between ATL and MFC.

Introduction to COM and ATL

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/introduction-to-atl.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iclassfactory2

Using a Template Library
3/4/2019 • 2 minutes to read • Edit Online

See also

A template is somewhat like a macro. As with a macro, invoking a template causes it to expand (with appropriate
parameter substitution) to code you have written. However, a template goes further than this to allow the creation
of new classes based on types that you pass as parameters. These new classes implement type-safe ways of
performing the operation expressed in your template code.

Template libraries such as ATL differ from traditional C++ class libraries in that they are typically supplied only as
source code (or as source code with a little, supporting run time) and are not inherently or necessarily hierarchical
in nature. Rather than deriving from a class to get the functionality you desire, you instantiate a class from a
template.

Introduction to ATL

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/using-a-template-library.md

Scope of ATL
3/4/2019 • 2 minutes to read • Edit Online

See also

ATL allows you to easily create COM objects, Automation servers, and ActiveX controls. ATL provides built-in
support for many of the fundamental COM interfaces.

ATL is shipped as source code which you include in your application. ATL also makes a DLL available (atl90.dll),
which contains code that can be shared across components. However, this DLL is not necessary.

Introduction to ATL
ATL Project Wizard

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/scope-of-atl.md

Recommendations for Choosing Between ATL and
MFC
3/4/2019 • 2 minutes to read • Edit Online

Using ATL

Using MFC

Using ATL in an MFC Project

See also

When developing components and applications, you can choose between two approaches — ATL and MFC (the
Microsoft Foundation Class Library).

ATL is a fast, easy way to both create a COM component in C++ and maintain a small footprint. Use ATL to create
a control if you don't need all of the built-in functionality that MFC automatically provides.

MFC allows you to create full applications, ActiveX controls, and active documents. If you have already created a
control with MFC, you may want to continue development in MFC. When creating a new control, consider using
ATL if you don't need all of MFC's built-in functionality.

You can add support for using ATL in an existing MFC project by running a wizard. For details, see Adding ATL
Support to Your MFC Project.

Introduction to ATL

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/recommendations-for-choosing-between-atl-and-mfc.md

Fundamentals of ATL COM Objects
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

The following illustration depicts the relationship among the classes and interfaces that are used to define an
ATL COM object.

This diagram shows that CComObject is derived from CYourClass whereas CComAggObject and CComPolyObject

include CYourClass as a member variable.

There are three ways to define an ATL COM object. The standard option is to use the CComObject class which is
derived from CYourClass . The second option is to create an aggregated object by using the CComAggObject class.
The third option is to use the CComPolyObject class. CComPolyObject acts as a hybrid: it can function as a
CComObject class or as a CComAggObject class, depending on how it is first created. For more information about

how to use the CComPolyObject class, see CComPolyObject Class.

When you use standard ATL COM, you use two objects: an outer object and an inner object. External clients
access the functionality of the inner object through the wrapper functions that are defined in the outer object.
The outer object is of type CComObject .

When you use an aggregated object, the outer object does not provide wrappers for the functionality of the
inner object. Instead, the outer object provides a pointer that is directly accessed by external clients. In this
scenario, the outer object is of type CComAggObject . The inner object is a member variable of the outer object,
and it is of type CYourClass .

Because the client does not have to go through the outer object to interact with the inner object, aggregated
objects are usually more efficient. Also, the outer object does not have to know the functionality of the
aggregated object, given that the interface of the aggregated object is directly available to the client. However,
not all objects can be aggregated. For an object to be aggregated, it needs to be designed with aggregation in
mind.

ATL implements IUnknown in two phases:

CComObject, CComAggObject, or CComPolyObject implements the IUnknown methods.

CComObjectRoot or CComObjectRootEx manages the reference count and outer pointers of IUnknown .

Other aspects of your ATL COM object are handled by other classes:

CComCoClass defines the object's default class factory and aggregation model.

IDispatchImpl provides a default implementation of the IDispatch Interface portion of any dual

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/fundamentals-of-atl-com-objects.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

In This Section

Related Sections

See also

interfaces on the object.

ISupportErrorInfoImpl implements the ISupportErrorInfo interface that ensures error information can
be propagated up the call chain correctly.

Implementing CComObjectRootEx
Show example COM map entries for implementing CComObjectRootEx .

Implementing CComObject, CComAggObject, and CComPolyObject
Discusses how the DECLARE_*_AGGREGATABLE macros affect the use of CComObject , CComAggObject , and
CComPolyObject .

Supporting IDispatch and IErrorInfo
Lists the ATL implementation classes to use for supporting the IDispatch and IErrorInfo interfaces.

Supporting IDispEventImpl
Discusses the steps to implement a connection point for your class.

Changing the Default Class Factory and Aggregation Model
Show what macros to use to change the default class factory and aggregation model.

Creating an Aggregated Object
Lists the steps for creating an aggregated object.

Creating an ATL Project
Provides information about creating an ATL COM object.

ATL
Provides links to conceptual topics on how to program using the Active Template Library.

Concepts

Implementing CComObjectRootEx
3/4/2019 • 2 minutes to read • Edit Online

BEGIN_COM_MAP(CBeeper)
 COM_INTERFACE_ENTRY(IBeeper)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY_TEAR_OFF(IID_ISupportErrorInfo, CBeeper2)
END_COM_MAP()

See also

CComObjectRootEx is essential; all ATL objects must have one instance of CComObjectRootEx or CComObjectRoot
in their inheritance. CComObjectRootEx provides the default QueryInterface mechanism based on COM map
entries.

Through its COM map, an object's interfaces are exposed to a client when the client queries for an interface. The
query is performed through CComObjectRootEx::InternalQueryInterface . InternalQueryInterface only handles
interfaces in the COM map table.

You can enter interfaces into the COM map table with the COM_INTERFACE_ENTRY macro or one of its variants.
For example, the following code enters the interfaces IDispatch , IBeeper , and ISupportErrorInfo into the COM
map table:

Fundamentals of ATL COM Objects
COM Map Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/implementing-ccomobjectrootex.md

Implementing CComObject, CComAggObject, and
CComPolyObject
3/4/2019 • 2 minutes to read • Edit Online

MACRO EFFECT

DECLARE_NOT_AGGREGATABLE Always uses CComObject .

DECLARE_AGGREGATABLE Uses CComAggObject if the object is aggregated and
CComObject if it is not. CComCoClass contains this macro so

if none of the DECLARE_*_AGGREGATABLE macros are
declared in your class, this will be the default.

DECLARE_ONLY_AGGREGATABLE Always uses CComAggObject . Returns an error if the object is
not aggregated.

DECLARE_POLY_AGGREGATABLE ATL creates an instance of CComPolyObject<CYourClass>
when IClassFactory::CreateInstance is called. During
creation, the value of the outer unknown is checked. If it is
NULL, IUnknown is implemented for a nonaggregated object.
If the outer unknown is not NULL, IUnknown is implemented
for an aggregated object.

See also

The template classes CComObject, CComAggObject, and CComPolyObject are always the most derived classes in
the inheritance chain. It is their responsibility to handle all of the methods in IUnknown : QueryInterface , AddRef ,
and Release . In addition, CComAggObject and CComPolyObject (when used for aggregated objects) provide the
special reference counting and QueryInterface semantics required for the inner unknown.

Whether CComObject , CComAggObject , or CComPolyObject is used depends on whether you declare one (or none) of
the following macros:

The advantage of using CComAggObject and CComObject is that the implementation of IUnknown is optimized for
the kind of object being created. For instance, a nonaggregated object only needs a reference count, while an
aggregated object needs both a reference count for the inner unknown and a pointer to the outer unknown.

The advantage of using CComPolyObject is that you avoid having both CComAggObject and CComObject in your
module to handle the aggregated and nonaggregated cases. A single CComPolyObject object handles both cases.
This means only one copy of the vtable and one copy of the functions exist in your module. If your vtable is large,
this can substantially decrease your module size. However, if your vtable is small, using CComPolyObject can result
in a slightly larger module size because it is not optimized for an aggregated or nonaggregated object, as are
CComAggObject and CComObject .

Fundamentals of ATL COM Objects
Aggregation and Class Factory Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/implementing-ccomobject-ccomaggobject-and-ccompolyobject.md

Supporting IDispatch and IErrorInfo
3/4/2019 • 2 minutes to read • Edit Online

See also

You can use the template class IDispatchImpl to provide a default implementation of the IDispatch Interface

portion of any dual interfaces on your object.

If your object uses the IErrorInfo interface to report errors back to the client, then your object must support the
ISupportErrorInfo Interface interface. The template class ISupportErrorInfoImpl provides an easy way to

implement this if you only have a single interface that generates errors on your object.

Fundamentals of ATL COM Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/supporting-idispatch-and-ierrorinfo.md

Supporting IDispEventImpl
3/4/2019 • 2 minutes to read • Edit Online

Importing the Type Libraries

#import "PROGID:MSCAL.Calendar.7" no_namespace, raw_interfaces_only

NOTENOTE

Declaring the IDispEventImpl Interfaces

public IDispEventImpl<IDC_CALENDAR1, CMyCompositCtrl2, &__uuidof(DCalendarEvents), &__uuidof(__MSACAL), 7, 0>,
public IDispEventImpl<IDC_CALENDAR2, CMyCompositCtrl2, &__uuidof(DCalendarEvents), &__uuidof(__MSACAL), 7, 0>

Declaring an Event Sink Map

The template class IDispEventImpl can be used to provide support for connection point sinks in your ATL class. A
connection point sink allows your class to handle events fired from external COM objects. These connection point
sinks are mapped with an event sink map, provided by your class.

To properly implement a connection point sink for your class, the following steps must be completed:

Import the type libraries for each external object

Declare the IDispEventImpl interfaces

Declare an event sink map

Advise and unadvise the connection points

The steps involved in implementing a connection point sink are all accomplished by modifying only the header file
(.h) of your class.

For each external object whose events you want to handle, you must import the type library. This step defines the
events that can be handled and provides information that is used when declaring the event sink map. The #import
directive can be used to accomplish this. Add the necessary #import directive lines for each dispatch interface you
will support to the header file (.h) of your class.

The following example imports the type library of an external COM server (MSCAL.Calendar.7):

You must have a separate #import statement for each external type library you will support.

Now that you have imported the type libraries of each dispatch interface, you need to declare separate
IDispEventImpl interfaces for each external dispatch interface. Modify the declaration of your class by adding an
IDispEventImpl interface declaration for each external object. For more information on the parameters, see

IDispEventImpl.

The following code declares two connection point sinks, for the DCalendarEvents interface, for the COM object
implemented by class CMyCompositCtrl2 :

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/supporting-idispeventimpl.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-import-directive-cpp

BEGIN_SINK_MAP(comClass)
 SINK_ENTRY_EX(id, iid, dispid, func)
 . . . //additional external event entries
END_SINK_MAP()

BEGIN_SINK_MAP(CMyCompositCtrl2)
 //Make sure the Event Handlers have __stdcall calling convention
 SINK_ENTRY_EX(IDC_CALENDAR1, __uuidof(DCalendarEvents), DISPID_CLICK,
 &CMyCompositCtrl2::ClickCalendar1)
 SINK_ENTRY_EX(IDC_CALENDAR2, __uuidof(DCalendarEvents), DISPID_CLICK,
 &CMyCompositCtrl2::ClickCalendar2)
END_SINK_MAP()

Advising and Unadvising the IDispEventImpl Interfaces

See also

In order for the event notifications to be handled by the proper function, your class must route each event to its
correct handler. This is achieved by declaring an event sink map.

ATL provides several macros, BEGIN_SINK_MAP, END_SINK_MAP, and SINK_ENTRY_EX, that make this
mapping easier. The standard format is as follows:

The following example declares an event sink map with two event handlers:

The implementation is nearly complete. The last step concerns the advising and unadvising of the external
interfaces.

The final step is to implement a method that will advise (or unadvise) all connection points at the proper times.
This advising must be done before communication between the external clients and your object can take place.
Before your object becomes visible, each external dispatch interface supported by your object is queried for
outgoing interfaces. A connection is established and a reference to the outgoing interface is used to handle events
from the object. This procedure is referred to as "advising."

After your object is finished with the external interfaces, the outgoing interfaces should be notified that they are no
longer used by your class. This process is referred to as "unadvising."

Because of the unique nature of COM objects, this procedure varies, in detail and execution, between
implementations. These details are beyond the scope of this topic and are not addressed.

Fundamentals of ATL COM Objects

Changing the Default Class Factory and Aggregation
Model
3/4/2019 • 2 minutes to read • Edit Online

class ATL_NO_VTABLE CMyClass2 :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyClass2, &CLSID_MyClass>,
 public IDispatchImpl<IMyClass, &IID_IMyClass, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor =*/ 0>,
 public IDispatchImpl<IMyDualInterface, &__uuidof(IMyDualInterface), &LIBID_NVC_ATL_COMLib, /* wMajor = */
1, /* wMinor = */ 0>
{
public:
 DECLARE_CLASSFACTORY2(CMyLicense)

 // Remainder of class declaration omitted

See also

ATL uses CComCoClass to define the default class factory and aggregation model for your object. CComCoClass

specifies the following two macros:

DECLARE_CLASSFACTORY Declares the class factory to be CComClassFactory.

DECLARE_AGGREGATABLE Declares that your object can be aggregated.

You can override either of these defaults by specifying another macro in your class definition. For example, to use
CComClassFactory2 instead of CComClassFactory , specify the DECLARE_CLASSFACTORY2 macro:

Two other macros that define a class factory are DECLARE_CLASSFACTORY_AUTO_THREAD and
DECLARE_CLASSFACTORY_SINGLETON.

ATL also uses the typedef mechanism to implement default behavior. For example, the
DECLARE_AGGREGATABLE macro uses typedef to define a type called _CreatorClass , which is then referenced
throughout ATL. Note that in a derived class, a typedef using the same name as the base class's typedef results in
ATL using your definition and overriding the default behavior.

Fundamentals of ATL COM Objects
Aggregation and Class Factory Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/changing-the-default-class-factory-and-aggregation-model.md

Creating an Aggregated Object
3/4/2019 • 2 minutes to read • Edit Online

To create an aggregated object

NOTENOTE

See also

Aggregation delegates IUnknown calls, providing a pointer to the outer object's IUnknown to the inner object.

1. Add an IUnknown pointer to your class object and initialize it to NULL in the constructor.

2. Override FinalConstruct to create the aggregate.

3. Use the IUnknown pointer, defined in Step 1, as the second parameter for the
COM_INTERFACE_ENTRY_AGGREGATE macros.

4. Override FinalRelease to release the IUnknown pointer.

If you use and release an interface from the aggregated object during FinalConstruct , you should add the
DECLARE_PROTECT_FINAL_CONSTRUCT macro to the definition of your class object.

Fundamentals of ATL COM Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/creating-an-aggregated-object.md

Dual Interfaces and ATL
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

See also

A dual interface allows its methods to be accessed as dispinterface methods or as vtable methods. This section
covers some of the features of dual interfaces from an ATL perspective.

Implementing a Dual Interface
Discusses the classes and wizards involved in implementing a dual interface.

Multiple Dual Interfaces
Discusses how to expose multiple dual interfaces on a single object.

The nonextensible Attribute
Discusses when to use the nonextensible attribute on your interface definition.

Dual Interfaces and Events
Discusses design reasons for not making an event interface a dual interface.

ATL
Provides links to conceptual topics on how to program using the Active Template Library.

Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/dual-interfaces-and-atl.md

Implementing a Dual Interface
3/4/2019 • 2 minutes to read • Edit Online

ATL Simple Object Wizard

Implement Interface Wizard

NOTENOTE

Implementing IDispatch

NOTENOTE

See also

You can implement a dual interface using the IDispatchImpl class, which provides a default implementation of the
IDispatch methods in a dual interface. For more information, see Implementing the IDispatch Interface.

To use this class:

Define your dual interface in a type library.

Derive your class from a specialization of IDispatchImpl (pass information about the interface and type
library as the template arguments).

Add an entry (or entries) to the COM map to expose the dual interface through QueryInterface .

Implement the vtable part of the interface in your class.

Ensure that the type library containing the interface definition is available to your objects at run time.

If you want to create a new interface and a new class to implement it, you can use the ATL Add Class dialog box,
and then the ATL Simple Object Wizard.

If you have an existing interface, you can use the Implement Interface Wizard to add the necessary base class,
COM map entries, and skeleton method implementations to an existing class.

You may need to adjust the generated base class so that the major and minor version numbers of the type library are passed
as template arguments to your IDispatchImpl base class. The Implement Interface Wizard doesn't check the type library
version number for you.

You can use an IDispatchImpl base class to provide an implementation of a dispinterface just by specifying the
appropriate entry in the COM map (using the COM_INTERFACE_ENTRY2 or COM_INTERFACE_ENTRY_IID
macro) as long as you have a type library describing a corresponding dual interface. It is quite common to
implement the IDispatch interface this way, for example. The ATL Simple Object Wizard and Implement Interface
Wizard both assume that you intend to implement IDispatch in this way, so they will add the appropriate entry to
the map.

ATL offers the IDispEventImpl and IDispEventSimpleImpl classes to help you implement dispinterfaces without requiring a
type library containing the definition of a compatible dual interface.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/implementing-a-dual-interface.md
https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box

Dual Interfaces and ATL

Multiple Dual Interfaces
3/4/2019 • 2 minutes to read • Edit Online

Exposing a Single IDispatch Interface

COM_INTERFACE_ENTRY2(IDispatch, IMyDualInterface)

Combining Multiple Dual Interfaces into a Single Implementation of
IDispatch

See also

You may want to combine the advantages of a dual interface (that is, the flexibility of both vtable and late binding,
thus making the class available to scripting languages as well as C++) with the techniques of multiple inheritance.

Although it is possible to expose multiple dual interfaces on a single COM object, it is not recommended. If there
are multiple dual interfaces, there must be only one IDispatch interface exposed. The techniques available to
ensure that this is the case carry penalties such as loss of function or increased code complexity. The developer
considering this approach should carefully weigh the advantages and disadvantages.

It is possible to expose multiple dual interfaces on a single object by deriving from two or more specializations of
IDispatchImpl . However, if you allow clients to query for the IDispatch interface, you will need to use the

COM_INTERFACE_ENTRY2 macro (or COM_INTERFACE_ENTRY_IID)) to specify which base class to use for the
implementation of IDispatch .

Because only one IDispatch interface is exposed, clients that can only access your objects through the IDispatch

interface will not be able to access the methods or properties in any other interface.

ATL does not provide any support for combining multiple dual interfaces into a single implementation of
IDispatch . However, there are several known approaches to manually combining the interfaces, such as creating a

templated class that contains a union of the separate IDispatch interfaces, creating a new object to perform the
QueryInterface function, or using a typeinfo-based implementation of nested objects to create the IDispatch

interface.

These approaches have problems with potential namespace collisions, as well as code complexity and
maintainability. It is not recommended that you create multiple dual interfaces.

Dual Interfaces and ATL

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/multiple-dual-interfaces.md

nonextensible Attribute
3/4/2019 • 2 minutes to read • Edit Online

See also

If a dual interface will not be extended at run time (that is, you won't provide methods or properties via
IDispatch::Invoke that are not available via the vtable), you should apply the nonextensible attribute to your

interface definition. This attribute provides information to client languages (such as Visual Basic) that can be used
to enable full code verification at compile time. If this attribute is not supplied, bugs may remain hidden in the
client code until run time.

For more information on the nonextensible attribute and an example, see nonextensible.

Dual Interfaces and ATL

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/nonextensible-attribute.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/nonextensible

Dual Interfaces and Events
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

While it is possible to design an event interface as a dual, there are a number of good design reasons not to do so.
The fundamental reason is that the source of the event will only fire the event via the vtable or via Invoke , not
both. If the event source fires the event as a direct vtable method call, the IDispatch methods will never be used
and it's clear that the interface should have been a pure vtable interface. If the event source fires the event as a call
to Invoke , the vtable methods will never be used and it's clear that the interface should have been a dispinterface.
If you define your event interfaces as duals, you'll be requiring clients to implement part of an interface that will
never be used.

This argument does not apply to dual interfaces, in general. From an implementation perspective, duals are a quick,
convenient, and well-supported way of implementing interfaces that are accessible to a wide range of clients.

There are further reasons to avoid dual event interfaces; neither Visual Basic nor Internet Explorer support them.

Dual Interfaces and ATL

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/dual-interfaces-and-events.md

ATL Collections and Enumerators
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

See also

A collection is a COM object that provides an interface that allows access to a group of data items (raw data or
other objects). An interface that follows the standards for providing access to a group of objects is known as a
collection interface.

At a minimum, collection interfaces must provide a Count property that returns the number of items in the
collection, an Item property that returns an item from the collection based on an index, and a _NewEnum property
that returns an enumerator for the collection. Optionally, collection interfaces can provide Add and Remove

methods to allow items to be inserted into or deleted from the collection, and a Clear method to remove all
items.

An enumerator is a COM object that provides an interface for iterating through items in a collection. Enumerator
interfaces provide serial access to the elements of a collection via four required methods: Next , Skip , Reset ,
and Clone .

You can learn more about enumerator interfaces by reading reference content such as IEnumString interface.

ATL Collection and Enumerator Classes
Briefly describes and provides links to the ATL classes that will help you implement collections and enumerators.

Design Principles for Collection and Enumerator Interfaces
Discusses the different design principles behind each type of interface.

Implementing a C++ Standard Library-Based Collection
An extended example that walks you through the implementation of a C++ Standard Library-based collection.

ATL
Provides links to conceptual topics on how to program using the Active Template Library.

ATLCollections Sample
A sample that demonstrates the use of ICollectionOnSTLImpl and CComEnumOnSTL , and the implementation of
custom copy policy classes.

Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-collections-and-enumerators.md
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ienumstring
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ATL Collection and Enumerator Classes
3/4/2019 • 2 minutes to read • Edit Online

CLASS DESCRIPTION

ICollectionOnSTLImpl Collection interface implementation

IEnumOnSTLImpl Enumerator interface implementation (assumes data stored in
a C++ Standard Library-compatible container)

CComEnumImpl Enumerator interface implementation (assumes data stored in
an array)

CComEnumOnSTL Enumerator object implementation (uses IEnumOnSTLImpl)

CComEnum Enumerator object implementation (uses CComEnumImpl)

_Copy Copy policy class

_CopyInterface Copy policy class

CAdapt Adapter class (hides operator & allowing CComPtr ,
CComQIPtr , and CComBSTR to be stored in C++ Standard

Library containers)

See also

ATL provides the following classes to help you implement collections and enumerators.

Collections and Enumerators

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-collection-and-enumerator-classes.md

Design Principles for Collection and Enumerator
Interfaces
3/4/2019 • 2 minutes to read • Edit Online

See also

There are different design principles behind each type of interface:

A collection interface provides random access to a single item in the collection via the Item method, it lets
clients discover how many items are in the collection via the Count property, and often allows clients to add
and remove items.

An enumerator interface provides serial access to multiple items in a collection, it doesn't allow the client to
discover how many items are in the collection (until the enumerator stops returning items), and it doesn't
provide any way of adding or removing items.

Each type of interface plays a different role in providing access to the elements in a collection.

Collections and Enumerators

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/design-principles-for-collection-and-enumerator-interfaces.md

Implementing a C++ Standard Library-Based
Collection
3/4/2019 • 5 minutes to read • Edit Online

Generating a New Simple Object

Editing the IDL File

ATL provides the ICollectionOnSTLImpl interface to enable you to quickly implement C++ Standard Library-based
collection interfaces on your objects. To understand how this class works, you will work through a simple example
(below) that uses this class to implement a read-only collection aimed at Automation clients.

The sample code is from the ATLCollections sample.

To complete this procedure, you will:

Generate a new Simple Object.

Edit the IDL file for the generated interface.

Create five typedefs describing how the collection items are stored and how they will be exposed to clients
via COM interfaces.

Create two typedefs for copy policy classes.

Create typedefs for the enumerator and collection implementations.

Edit the wizard-generated C++ code to use the collection typedef.

Add code to populate the collection.

Create a new project, ensuring that the Attributes box under Application Settings is cleared. Use the ATL Add Class
dialog box and Add Simple Object Wizard to generate a Simple Object called Words . Make sure that a dual
interface called IWords is generated. Objects of the generated class will be used to represent a collection of words
(that is, strings).

Now, open the IDL file and add the three properties necessary to turn IWords into a read-only collection interface,
as shown below:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/implementing-an-stl-based-collection.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

[
 object,
 uuid(7B3AC376-509F-4068-87BA-03B73ADC359B),
 dual, // (1)
 nonextensible, // (2)
 pointer_default(unique)
]
interface IWords : IDispatch
{
 [id(DISPID_NEWENUM), propget] // (3)
 HRESULT _NewEnum([out, retval] IUnknown** ppUnk);

 [id(DISPID_VALUE), propget] // (4)
 HRESULT Item([in] long Index, [out, retval] BSTR* pVal); // (5)

 [id(0x00000001), propget] // (6)
 HRESULT Count([out, retval] long* pVal);

};

Creating Typedefs for Storage and Exposure

This is the standard form for a read-only collection interface designed with Automation clients in mind. The
numbered comments in this interface definition correspond to the comments below:

1. Collection interfaces are usually dual because Automation clients accesses the _NewEnum property via
IDispatch::Invoke . However, Automation clients can access the remaining methods via the vtable, so dual

interfaces are preferable to dispinterfaces.

2. If a dual interface or dispinterface will not be extended at run time (that is, you won't provide extra methods
or properties via IDispatch::Invoke), you should apply the nonextensible attribute to your definition. This
attribute enables Automation clients to perform full code verification at compile time. In this case, the
interface should not be extended.

3. The correct DISPID is important if you want Automation clients to be able to use this property. (Note that
there is only one underscore in DISPID_NEWENUM.)

4. You can supply any value as the DISPID of the Item property. However, Item typically uses
DISPID_VALUE to make it the default property of the collection. This allows Automation clients to refer to
the property without naming it explicitly.

5. The data type used for the return value of the Item property is the type of the item stored in the collection
as far as COM clients are concerned. The interface returns strings, so you should use the standard COM
string type, BSTR. You can store the data in a different format internally as you'll see shortly.

6. The value used for the DISPID of the Count property is completely arbitrary. There's no standard DISPID
for this property.

Once the collection interface is defined, you need to decide how the data will be stored, and how the data will be
exposed via the enumerator.

The answers to these questions can be provided in the form of a number of typedefs, which you can add near the
top of the header file for your newly created class:

// Store the data in a vector of std::strings
typedef std::vector< std::string > ContainerType;

// The collection interface exposes the data as BSTRs
typedef BSTR CollectionExposedType;
typedef IWords CollectionInterface;

// Use IEnumVARIANT as the enumerator for VB compatibility
typedef VARIANT EnumeratorExposedType;
typedef IEnumVARIANT EnumeratorInterface;

Creating Typedefs for Copy Policy Classes

// Typedef the copy classes using existing typedefs
typedef VCUE::GenericCopy<EnumeratorExposedType, ContainerType::value_type> EnumeratorCopyType;
typedef VCUE::GenericCopy<CollectionExposedType, ContainerType::value_type> CollectionCopyType;

Creating Typedefs for Enumeration and Collection

typedef CComEnumOnSTL< EnumeratorInterface, &__uuidof(EnumeratorInterface), EnumeratorExposedType,
EnumeratorCopyType, ContainerType > EnumeratorType;
typedef ICollectionOnSTLImpl< CollectionInterface, ContainerType, CollectionExposedType, CollectionCopyType,
EnumeratorType > CollectionType;

Editing the Wizard-Generated Code

In this case, you will store the data as a std::vector of std::strings. std::vector is a C++ Standard Library
container class that behaves like a managed array. std::string is the C++ Standard Library's string class. These
classes make it easy to work with a collection of strings.

Since Visual Basic support is vital to the success of this interface, the enumerator returned by the _NewEnum

property must support the IEnumVARIANT interface. This is the only enumerator interface understood by Visual
Basic.

The typedefs you have created so far provide all the information you need to create further typedefs for the copy
classes that will be used by the enumerator and collection:

In this example, you can use the custom GenericCopy class defined in VCUE_Copy.h and VCUE_CopyString.h from
the ATLCollections sample. You can use this class in other code, but you may need to define further specializations
of GenericCopy to support data types used in your own collections. For more information, see ATL Copy Policy
Classes.

Now all the template parameters necessary to specialize the CComEnumOnSTL and ICollectionOnSTLImpl classes for
this situation have been provided in the form of typedefs. To simplify the use of the specializations, create two
more typedefs as shown below:

Now CollectionType is a synonym for a specialization of ICollectionOnSTLImpl that implements the IWords

interface defined earlier and provides an enumerator that supports IEnumVARIANT .

Now you must derive CWords from the interface implementation represented by the CollectionType typedef
rather than IWords , as shown below:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

class ATL_NO_VTABLE CWords :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CWords, &CLSID_Words>,
 // 'CollectionType' replaces 'IWords' in next line
 public IDispatchImpl<CollectionType, &IID_IWords, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor =*/ 0>
{
public:
DECLARE_REGISTRY_RESOURCEID(IDR_WORDS)

BEGIN_COM_MAP(CWords)
 COM_INTERFACE_ENTRY(IWords)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

// Remainder of class declaration omitted.

Adding Code to Populate the Collection

CWords()
{
 m_coll.push_back("this");
 m_coll.push_back("is");
 m_coll.push_back("a");
 m_coll.push_back("test");
}

See also

The only thing that remains is to populate the vector with data. In this simple example, you can add a few words to
the collection in the constructor for the class:

Now, you can test the code with the client of your choice.

Collections and Enumerators
ATLCollections Sample
ATL Copy Policy Classes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ATL Copy Policy Classes
3/4/2019 • 3 minutes to read • Edit Online

Definition

NOTENOTE

Standard Implementations

Copy policy classes are utility classes used to initialize, copy, and delete data. Copy policy classes allow you to
define copy semantics for any type of data, and to define conversions between different data types.

ATL uses copy policy classes in its implementations of the following templates:

CComEnumImpl

IEnumOnSTLImpl

ICollectionOnSTLImpl

By encapsulating the information needed to copy or convert data in a copy policy class that can be passed as a
template argument, the ATL developers have provided for extreme reusability of these classes. For example, if
you need to implement a collection using any arbitrary data type, all you need to provide is the appropriate copy
policy; you never have to touch the code that implements the collection.

By definition, a class that provides the following static functions is a copy policy class:

static void init(DestinationType * p);

static HRESULT copy(DestinationType * pTo, const SourceType * pFrom);

static void destroy(DestinationType * p);

You can replace the types DestinationType and SourceType with arbitrary data types for each copy policy.

Although you can define copy policy classes for any arbitrary data types, use of the classes in ATL code should limit the
types that make sense. For example, when using a copy policy class with ATL's collection or enumerator implementations,
DestinationType must be a type that can be used as a parameter in a COM interface method.

Use init to initialize data, copy to copy data, and destroy to free the data. The precise meaning of initialization,
copying, and destruction are the domain of the copy policy class and will vary depending on the data types
involved.

There are two requirements on the use and implementation of a copy policy class:

The first parameter to copy must only receive a pointer to data that you have previously initialized using
init.

destroy must only ever receive a pointer to data that you have previously initialized using init or copied
via copy.

ATL provides two copy policy classes in the form of the _Copy and _CopyInterface template classes:

The _Copy class allows homogeneous copying only (not conversion between data types) since it only

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-copy-policy-classes.md

Custom Implementations

GenericCopyGenericCopy

template <class DestinationType, class SourceType = DestinationType>
class GenericCopy
{
public :
 typedef DestinationType destination_type;
 typedef SourceType source_type;

 static void init(destination_type* p)
 {
 _Copy<destination_type>::init(p);
 }
 static void destroy(destination_type* p)
 {
 _Copy<destination_type>::destroy(p);
 }
 static HRESULT copy(destination_type* pTo, const source_type* pFrom)
 {
 return _Copy<destination_type>::copy(pTo, const_cast<source_type*>(pFrom));
 }

}; // class GenericCopy

MapCopyMapCopy

offers a single template parameter to specify both DestinationType and SourceType. The generic
implementation of this template contains no initialization or destruction code and uses memcpy to copy the
data. ATL also provides specializations of _Copy for VARIANT, LPOLESTR, OLEVERB, and
CONNECTDATA data types.

The _CopyInterface class provides an implementation for copying interface pointers following standard
COM rules. Once again this class allows only homogeneous copying, so it uses simple assignment and a
call to AddRef to perform the copy.

Typically, you'll need to define your own copy policy classes for heterogeneous copying (that is, conversion
between data types). For some examples of custom copy policy classes, look at the files VCUE_Copy.h and
VCUE_CopyString.h in the ATLCollections sample. These files contain two template copy policy classes,
GenericCopy and MapCopy , plus a number of specializations of GenericCopy for different data types.

GenericCopy allows you to specify the SourceType and DestinationType as template arguments. Here's the most
general form of the GenericCopy class from VCUE_Copy.h:

VCUE_Copy.h also contains the following specializations of this class: GenericCopy<BSTR> ,
GenericCopy<VARIANT, BSTR> , GenericCopy<BSTR, VARIANT> . VCUE_CopyString.h contains specializations for

copying from std::strings: GenericCopy<std::string> , GenericCopy<VARIANT, std::string> , and
GenericCopy<BSTR, std::string> . You could enhance GenericCopy by providing further specializations of your

own.

MapCopy assumes that the data being copied is stored into a C++ Standard Library-style map, so it allows you to
specify the type of map in which the data is stored and the destination type. The implementation of the class just
uses the typedefs supplied by the MapType class to determine the type of the source data and to call the
appropriate GenericCopy class. No specializations of this class are needed.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

template <class MapType, class DestinationType = MapType::mapped_type>
class MapCopy
{
public :
 typedef DestinationType destination_type;
 typedef typename MapType::value_type source_type;

 typedef MapType map_type;
 typedef typename MapType::mapped_type pseudosource_type;

 static void init(destination_type* p)
 {
 GenericCopy<destination_type, pseudosource_type>::init(p);
 }
 static void destroy(destination_type* p)
 {
 GenericCopy<destination_type, pseudosource_type>::destroy(p);
 }
 static HRESULT copy(destination_type* pTo, const source_type* pFrom)
 {
 return GenericCopy<destination_type, pseudosource_type>::copy(pTo, &(pFrom->second));
 }

}; // class MapCopy

See also
Implementing a C++ Standard Library-Based Collection
ATLCollections Sample

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ATL Composite Control Fundamentals
3/4/2019 • 2 minutes to read • Edit Online

See also

A composite control is a type of ActiveX control that can contain (similar to a dialog box) other ActiveX controls or
Windows controls. Once the composite control is built, it can be inserted anywhere an ActiveX control can be
hosted.

The ATL Project Wizard and Add Class dialog box automate the process of creating and implementing a
composite control project, similar to the result of running the Application Wizard to create an MFC application
framework. The development process consists of five steps:

Creating an ATL project

Inserting a composite control

Modifying the ATL project

Adding functionality to the composite control

Building and testing the ATL project

Concepts
Composite Control Global Functions
Composite Control Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-composite-control-fundamentals.md

Inserting a Composite Control
3/4/2019 • 2 minutes to read • Edit Online

See also

The Add Class dialog box allows you to insert an ATL object into a project. Access this dialog box by right-clicking
the project name in Solution Explorer, pointing to Add, and then clicking Add Class.

In the Add Class dialog box, choose ATL Control. This will start the ATL Control Wizard. To create a composite
control, select the Options tab, and click the Composite control check box.

A default HTML page will be created for viewing the control.

Composite Control Fundamentals

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/inserting-a-composite-control.md

Modifying the ATL Project
3/4/2019 • 2 minutes to read • Edit Online

See also

At this point, your composite control project implements the necessary objects for your composite control. The
next step is to add any controls that the composite control will contain and handle any necessary events.

To add additional ActiveX or Windows controls, add a new resource script and then use the Dialog editor. For more
information on adding controls (and related tasks), see Dialog Editor.

To handle any necessary events from the ActiveX controls, see Adding Functionality to the Composite Control.

Composite Control Fundamentals
How to: Create a Resource Script File

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/modifying-the-atl-project.md

Adding Functionality to the Composite Control
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

Once you have inserted any necessary controls into the composite control, the next step involves adding new
functionality. This new functionality usually falls into two categories:

Supporting additional interfaces and customizing the behavior of your composite control with additional,
specific features.

Handling events from the contained ActiveX control (or controls).

For the purpose and scope of this article, the remainder of this section focuses solely on handling events from
ActiveX controls.

If you need to handle messages from Windows controls, see Implementing a Window for more information on message
handling in ATL.

After inserting an ActiveX control in the dialog resource, right-click the control and click Add Event Handler.
Select the event you want to handle and click Add and Edit. The event handler code will be added to the control's
.h file.

Connection points for ActiveX controls on the composite control are automatically connected and disconnected
via calls to CComCompositeControl::AdviseSinkMap.

Composite Control Fundamentals

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/adding-functionality-to-the-composite-control.md

Building and Testing the ATL Project
3/4/2019 • 2 minutes to read • Edit Online

See also

As mentioned in Inserting a Composite Control, one of the initial components of the project is a default HTML
page that hosts your new composite control. After you finish modifying the composite control, click Build
Solution or Rebuild Solution from the Build menu. Once the project successfully builds, load the HTML page,
located in the root directory of your composite control project, into Internet Explorer or another browser and test
the functionality of your control.

You can also test your composite control using the Test Container tool, or any other application that can host an
ActiveX control. See Testing Properties and Events with Test Container for information on how to access the test
container.

Composite Control Fundamentals

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/building-and-testing-the-atl-project.md

ATL Control Containment FAQ
3/4/2019 • 9 minutes to read • Edit Online

Which ATL Classes Facilitate ActiveX Control Containment?

CLASS DESCRIPTION

CAxWindow Wraps an "AtlAxWin80" window, providing methods for
creating the window, creating a control and/or attaching a
control to the window, and retrieving interface pointers on the
host object.

CAxWindow2T Wraps an "AtlAxWinLic80" window, providing methods for
creating the window, creating a control and/or attaching a
licensed control to the window, and retrieving interface
pointers on the host object.

CComCompositeControl Acts as a base class for ActiveX control classes based on a
dialog resource. Such controls can contain other ActiveX
controls.

CAxDialogImpl Acts as a base class for dialog classes based on a dialog
resource. Such dialogs can contain ActiveX controls.

CWindow Provides a method, GetDlgControl, that will return an
interface pointer on a control, given the ID of its host window.
In addition, the Windows API wrappers exposed by CWindow

generally make window management easier.

What Is the ATL Control-Hosting API?

FUNCTION DESCRIPTION

AtlAxAttachControl Creates a host object, connects it to the supplied window,
then attaches an existing control.

AtlAxCreateControl Creates a host object, connects it to the supplied window,
then loads a control.

AtlAxCreateControlLic Creates a licensed ActiveX control, initializes it, and hosts it in
the specified window, similar to AtlAxCreateControl.

AtlAxCreateControlEx Creates a host object, connects it to the supplied window,
then loads a control (also allows event sinks to be set up).

ATL's control-hosting code doesn't require you to use any ATL classes; you can simply create an "AtlAxWin80"
window and use the control-hosting API if necessary (for more information, see What Is the ATL Control-
Hosting API. However, the following classes make the containment features easier to use.

ATL's control-hosting API is the set of functions that allows any window to act as an ActiveX control container.
These functions can be statically or dynamically linked into your project since they are available as source code
and exposed by ATL90.dll. The control-hosting functions are listed in the table below.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-control-containment-faq.md

AtlAxCreateControlLicEx Creates a licensed ActiveX control, initializes it, and hosts it in
the specified window, similar to AtlAxCreateControlLic.

AtlAxCreateDialog Creates a modeless dialog box from a dialog resource and
returns the window handle.

AtlAxDialogBox Creates a modal dialog box from a dialog resource.

AtlAxGetControl Returns the IUnknown interface pointer of the control hosted
in a window.

AtlAxGetHost Returns the IUnknown interface pointer of the host object
connected to a window.

AtlAxWinInit Initializes the control-hosting code.

AtlAxWinTerm Uninitializes the control-hosting code.

FUNCTION DESCRIPTION

NOTENOTE

What Is AtlAxWin100?

When Do I Need to Call AtlAxWinInit?

What Is a Host Object?

The HWND parameters in the first three functions must be an existing window of (almost) any type. If you call any
of these three functions explicitly (typically, you won't have to), do not pass a handle to a window that's already
acting as a host (if you do, the existing host object won't be freed).

The first seven functions call AtlAxWinInit implicitly.

The control-hosting API forms the foundation of ATL's support for ActiveX control containment. However, there is usually
little need to call these functions directly if you take advantage of or make full use of ATL's wrapper classes. For more
information, see Which ATL Classes Facilitate ActiveX Control Containment.

AtlAxWin100 is the name of a window class that helps provide ATL's control-hosting functionality. When you
create an instance of this class, the window procedure will automatically use the control-hosting API to create a
host object associated with the window and load it with the control that you specify as the title of the window.

AtlAxWinInit registers the "AtlAxWin80" window class (plus a couple of custom window messages) so this
function must be called before you try to create a host window. However, you don't always need to call this
function explicitly, since the hosting APIs (and the classes that use them) often call this function for you. There is
no harm in calling this function more than once.

A host object is a COM object that represents the ActiveX control container supplied by ATL for a particular
window. The host object subclasses the container window so that it can reflect messages to the control, it provides
the necessary container interfaces to be used by the control, and it exposes the IAxWinHostWindow and
IAxWinAmbientDispatch interfaces to allow you to configure the environment of the control.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/which-atl-classes-facilitate-activex-control-containment-q

Can I Host More Than One Control in a Single Window?

Can I Reuse a Host Window?

When Do I Need to Call AtlAxWinTerm?

Hosting ActiveX Controls Using ATL AXHost

USE_METHOD HOST
CONTROL ACCESS AND EVENT
SINKING FUNCTION DEMONSTRATED

1 Child window One step CreateControlLicEx

2 Main window One step AtlAxCreateControlLicEx

3 Child window One step CreateControlEx

4 Main window One step AtlAxCreateControlEx

5 Child window Multiple steps CreateControlLic

6 Main window Multiple steps AtlAxCreateControlLic

7 Child window Multiple steps CreateControl

8 Main window Multiple steps AtlAxCreateControl

You can use the host object to set the ambient properties of the container.

It is not possible to host more than one control in a single ATL host window. Each host window is designed to hold
exactly one control at a time (this allows for a simple mechanism for handling message reflection and per-control
ambient properties). However, if you need the user to see multiple controls in a single window, it's a simple matter
to create multiple host windows as children of that window.

It is not recommended that you reuse host windows. To ensure the robustness of your code, you should tie the
lifetime of your host window to the lifetime of a single control.

AtlAxWinTerm unregisters the "AtlAxWin80" window class. You should call this function (if you no longer need
to create host windows) after all existing host windows have been destroyed. If you don't call this function, the
window class will be unregistered automatically when the process terminates.

The sample in this section shows how to create AXHost and how to host an ActiveX control using various ATL
functions. It also shows how to access the control and sink events (using IDispEventImpl) from the control that is
hosted. The sample hosts the Calendar control in a main window or in a child window.

Notice the definition of the USE_METHOD symbol. You can change the value of this symbol to vary between 1 and 8.
The value of the symbol determines how the control will be created:

For even-numbered values of USE_METHOD , the call to create the host subclasses a window and converts it
into a control host. For odd-numbered values, the code creates a child window that acts as a host.

For values of USE_METHOD between 1 and 4, access to the control and sinking of events are accomplished in
the call that also creates the host. Values between 5 and 8 query the host for interfaces and hook the sink.

Here's a summary:

// Your project must be apartment threaded or the (AtlAx)CreateControl(Lic)(Ex)
// calls will fail.
#define _ATL_APARTMENT_THREADED
#include <atlbase.h>
#include <atlwin.h>
#include <atlhost.h>

// Value of g_UseMethod determines the function used to create the control.
int g_UseMethod = 0; // 1 to 8 are valid values
bool ValidateUseMethod() { return (1 <= g_UseMethod) && (g_UseMethod <= 8); }

#import "PROGID:MSCAL.Calendar.7" no_namespace, raw_interfaces_only

// Child window class that will be subclassed for hosting Active X control
class CChildWindow : public CWindowImpl<CChildWindow>
{
public:
 BEGIN_MSG_MAP(CChildWindow)
 END_MSG_MAP()
};

class CMainWindow : public CWindowImpl<CMainWindow, CWindow, CFrameWinTraits>,
 public IDispEventImpl<1, CMainWindow, &__uuidof(DCalendarEvents), &__uuidof(__MSACAL), 7, 0>
{
public :

 CChildWindow m_wndChild;
 CAxWindow2 m_axwnd;
 CWindow m_wndEdit;

 static ATL::CWndClassInfo& GetWndClassInfo()
 {
 static ATL::CWndClassInfo wc =
 {
 {
 sizeof(WNDCLASSEX),
 CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS,
 StartWindowProc,
 0, 0, NULL, NULL, NULL,
 (HBRUSH)(COLOR_WINDOW + 1),
 0,
 _T("MainWindow"),
 NULL
 },
 NULL, NULL, IDC_ARROW, TRUE, 0, _T("")
 };
 return wc;
 }

 BEGIN_MSG_MAP(CMainWindow)
 MESSAGE_HANDLER(WM_CREATE, OnCreate)
 MESSAGE_HANDLER(WM_DESTROY, OnDestroy)
 END_MSG_MAP()

 BEGIN_SINK_MAP(CMainWindow)
 SINK_ENTRY_EX(1, __uuidof(DCalendarEvents), 1, OnClick)
 END_SINK_MAP()

 // Helper to display events
 void DisplayNotification(TCHAR* pszMessage)
 {
 CWindow wnd;
 wnd.Attach(GetDlgItem(2));

 wnd.SendMessage(EM_SETSEL, (WPARAM)-1, -1);
 wnd.SendMessage(EM_REPLACESEL, 0, (LPARAM)pszMessage);
 }

 // Event Handler for Click
 STDMETHOD(OnClick)()
 {
 DisplayNotification(_T("OnClick\r\n"));
 return S_OK;
 }

 LRESULT OnCreate(UINT, WPARAM, LPARAM, BOOL&)
 {
 HRESULT hr = E_INVALIDARG;

 _pAtlModule->Lock();

 RECT rect;
 GetClientRect(&rect);

 RECT rect2;
 rect2 = rect;

 rect2.bottom -=200;

 // if g_UseMethod is odd then create AxHost directly as the child of the main window
 if (g_UseMethod & 0x1)
 {
 m_axwnd.Create(m_hWnd, rect2, NULL, WS_CHILD | WS_VISIBLE | WS_BORDER, 0, 1);
 }
 // if g_UseMethod is even then the AtlAx version is invoked.
 else
 {
 // Create a child window.
 // AtlAx functions will subclass this window.
 m_wndChild.Create(m_hWnd, rect2, NULL, WS_CHILD | WS_VISIBLE | WS_BORDER, 0, 1);
 // Attach the child window to the CAxWindow so we can access the
 // host that subclasses the child window.
 m_axwnd.Attach(m_wndChild);
 }

 if (m_axwnd.m_hWnd != NULL)
 {
 CComPtr<IUnknown> spControl;

 // The calls to (AtlAx)CreateControl(Lic)(Ex) do the following:
 // Create Calendar control. (Passing in NULL for license key.
 // Pass in valid license key to the Lic functions if the
 // control requires one.)
 // Get the IUnknown pointer for the control.
 // Sink events from the control.

 // The AtlAx versions subclass the hWnd that is passed in to them
 // to implement the host functionality.

 // The first 4 calls accomplish it in one call.
 // The last 4 calls accomplish it using multiple steps.

 switch (g_UseMethod)
 {
 case 1:
 {
 hr = m_axwnd.CreateControlLicEx(
 OLESTR("MSCAL.Calendar.7"),
 NULL,
 NULL,
 &spControl,
 __uuidof(DCalendarEvents),
 (IUnknown*)(IDispEventImpl<1, CMainWindow,
 &__uuidof(DCalendarEvents), &__uuidof(__MSACAL), 7, 0>*)this
);
 break;
 }

 }
 case 2:
 {
 hr = AtlAxCreateControlLicEx(
 OLESTR("MSCAL.Calendar.7"),
 m_wndChild.m_hWnd,
 NULL,
 NULL,
 &spControl,
 __uuidof(DCalendarEvents),
 (IUnknown*)(IDispEventImpl<1, CMainWindow,
 &__uuidof(DCalendarEvents), &__uuidof(__MSACAL), 7, 0>*)this,
 NULL
);
 break;
 }
 case 3:
 {
 hr = m_axwnd.CreateControlEx(
 OLESTR("MSCAL.Calendar.7"),
 NULL,
 NULL,
 &spControl,
 __uuidof(DCalendarEvents),
 (IUnknown*)(IDispEventImpl<1, CMainWindow,
 &__uuidof(DCalendarEvents), &__uuidof(__MSACAL), 7, 0>*)this
);
 break;
 }
 case 4:
 {
 hr = AtlAxCreateControlEx(
 OLESTR("MSCAL.Calendar.7"),
 m_wndChild.m_hWnd,
 NULL,
 NULL,
 &spControl,
 __uuidof(DCalendarEvents),
 (IUnknown*)(IDispEventImpl<1, CMainWindow,
 &__uuidof(DCalendarEvents), &__uuidof(__MSACAL), 7, 0>*)this
);
 break;
 }
 // The following calls create the control, obtain an interface to
 // the control, and set up the sink in multiple steps.
 case 5:
 {
 hr = m_axwnd.CreateControlLic(
 OLESTR("MSCAL.Calendar.7")
);
 break;
 }
 case 6:
 {
 hr = AtlAxCreateControlLic(
 OLESTR("MSCAL.Calendar.7"),
 m_wndChild.m_hWnd,
 NULL,
 NULL
);
 break;
 }
 case 7:
 {
 hr = m_axwnd.CreateControl(
 OLESTR("MSCAL.Calendar.7")
);
 break;
 }
 case 8:

 case 8:
 {
 hr = AtlAxCreateControl(
 OLESTR("MSCAL.Calendar.7"),
 m_wndChild.m_hWnd ,
 NULL,
 NULL
);
 break;
 }
 }

 // have to obtain an interface to the control and set up the sink
 if (g_UseMethod > 4)
 {
 if (SUCCEEDED(hr))
 {
 hr = m_axwnd.QueryControl(&spControl);
 if (SUCCEEDED(hr))
 {
 // Sink events form the control
 DispEventAdvise(spControl, &__uuidof(DCalendarEvents));
 }
 }
 }

 if (SUCCEEDED(hr))
 {
 // Use the returned IUnknown pointer.
 CComPtr<ICalendar> spCalendar;
 hr = spControl.QueryInterface(&spCalendar);
 if (SUCCEEDED(hr))
 {
 spCalendar->put_ShowDateSelectors(VARIANT_FALSE);
 }
 }
 }

 rect2 = rect;
 rect2.top = rect.bottom - 200 + 1;
 m_wndEdit.Create(_T("Edit"), m_hWnd, rect2, NULL, WS_CHILD | WS_VISIBLE |
 WS_BORDER | ES_AUTOHSCROLL | ES_AUTOVSCROLL | ES_MULTILINE, 0, 2);
 return 0;
 }

 LRESULT OnDestroy(UINT, WPARAM, LPARAM, BOOL&)
 {
 _pAtlModule->Unlock();
 return 0;
 }
};

class CHostActiveXModule : public CAtlExeModuleT<CHostActiveXModule>
{
public :

 CMainWindow m_wndMain;

 // Create the Main window
 HRESULT PreMessageLoop(int nCmdShow)
 {
 HRESULT hr = CAtlExeModuleT<CHostActiveXModule>::PreMessageLoop(nCmdShow);
 if (SUCCEEDED(hr))
 {
 AtlAxWinInit();
 hr = S_OK;
 RECT rc;
 rc.top = rc.left = 100;
 rc.bottom = rc.right = 500;
 m_wndMain.Create(NULL, rc, _T("Host Calendar"));

 m_wndMain.Create(NULL, rc, _T("Host Calendar"));
 m_wndMain.ShowWindow(nCmdShow);
 }
 return hr;
 }

 // Clean up. App is exiting.
 HRESULT PostMessageLoop()
 {
 AtlAxWinTerm();
 return CAtlExeModuleT<CHostActiveXModule>::PostMessageLoop();
 }
};

CHostActiveXModule _AtlModule;

int APIENTRY _tWinMain(HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPTSTR lpCmdLine,
 int nCmdShow)
{
 UNREFERENCED_PARAMETER(hInstance);
 UNREFERENCED_PARAMETER(hPrevInstance);

 g_UseMethod = _ttoi(lpCmdLine);

 if (ValidateUseMethod())
 {
 return _AtlModule.WinMain(nCmdShow);
 }
 else
 {
 return E_INVALIDARG;
 }
}

See also
Control Containment FAQ
AtlAxCreateControl
AtlAxCreateControlEx
AtlAxCreateControlLic
AtlAxCreateControlLicEx
CAxWindow2T Class
IAxWinHostWindowLic Interface

ATL COM Property Pages
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

See also

COM property pages provide a user interface for setting the properties (or calling the methods) of one or more
COM objects. Property pages are used extensively by ActiveX controls for providing rich user interfaces that allow
control properties to be set at design time.

Property pages are COM objects that implement the IPropertyPage or IPropertyPage2 interface. These interfaces
provide methods that allow the page to be associated with a site (a COM object representing the container of
the page) and a number of objects (COM objects whose methods will be called in response to changes made by
the user of the property page). The property page container is responsible for calling methods on the property
page interface to tell the page when to show or hide its user interface, and when to apply the changes made by the
user to the underlying objects.

Each property page can be built completely independently of the objects whose properties can be set. All that a
property page needs is to understand a particular interface (or set of interfaces) and to provide a user interface for
calling methods on that interface.

For more information, see Property Sheets and Property Pages in the Windows SDK.

Specifying Property Pages
Lists the steps for specifying property pages for you control and shows an example class.

Implementing Property Pages
Lists the steps for implementing property pages, including methods to override. Walks you through a complete
example based on the ATLPages sample program.

ATLPages Sample
The sample abstract for the ATLPages sample, which implements a property page using IPropertyPageImpl .

ATL
Provides links to conceptual topics on how to program using the Active Template Library.

Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-com-property-pages.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertypage
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertypage2
https://docs.microsoft.com/windows/desktop/com/property-sheets-and-property-pages
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Specifying Property Pages
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Example

class ATL_NO_VTABLE CMyCtrl :
 OtherInterfaces
 public ISpecifyPropertyPagesImpl<CMyCtrl>
{
public:

BEGIN_COM_MAP(CMyCtrl)
 OtherComMapEntries
 COM_INTERFACE_ENTRY(ISpecifyPropertyPages)
END_COM_MAP()

BEGIN_PROP_MAP(CMyCtrl)
 OtherPropMapEntries
 PROP_PAGE(CLSID_DatePage)
 PROP_PAGE(CLSID_StockColorPage)
END_PROP_MAP()

 // Remainder of class declaration omitted.

See also

When you create an ActiveX control, you will often want to associate it with property pages that can be used to set
the properties of your control. Control containers use the ISpecifyPropertyPages interface to find out which
property pages can be used to set your control's properties. You will need to implement this interface on your
control.

To implement ISpecifyPropertyPages using ATL, take the following steps:

1. Derive your class from ISpecifyPropertyPagesImpl.

2. Add an entry for ISpecifyPropertyPages to your class's COM map.

3. Add a PROP_PAGE entry to the property map for each page associated with your control.

When generating a standard control using the ATL Control Wizard, you will only have to add the PROP_PAGE entries to the
property map. The wizard generates the necessary code for the other steps.

Well-behaved containers will display the specified property pages in the same order as the PROP_PAGE entries in
the property map. Generally, you should put standard property page entries after the entries for your custom
pages in the property map, so that users see the pages specific to your control first.

The following class for a calendar control uses the ISpecifyPropertyPages interface to tell containers that its
properties can be set using a custom date page and the stock color page.

Property Pages
ATLPages Sample

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/specifying-property-pages.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Implementing Property Pages
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Property pages are COM objects that implement the IPropertyPage or IPropertyPage2 interface. ATL provides
support for implementing property pages through the ATL Property Page Wizard in the Add Class dialog box.

To create a property page using ATL:

IPROPERTYPAGEIMPL METHOD OVERRIDE WHEN YOU WANT TO... NOTES

SetObjects Perform basic sanity checks on the
number of objects being passed to
your page and the interfaces that
they support.

Execute your own code before calling
the base class implementation. If the
objects being set don't conform to
your expectations, you should fail the
call as soon as possible.

Activate Initialize your page's user interface
(for example, set dialog controls with
current property values from objects,
create controls dynamically, or
perform other initializations).

Call the base class implementation
before your code so that the base
class has a chance to create the
dialog window and all the controls
before you try to update them.

Apply Validate the property settings and
update the objects.

There is no need to call the base class
implementation since it doesn't do
anything apart from trace the call.

Deactivate Clean up window-related items. The base class implementation
destroys the dialog box representing
the property page. If you need to
clean up before the dialog box is
destroyed, you should add your code
before calling the base class.

Create or open an ATL Dynamic-link library (DLL) server project.

Open the Add Class dialog box and select ATL Property Page.

Make sure your property page is apartment threaded (since it has a user interface).

Set the title, description (Doc String), and help file to be associated with your page.

Add controls to the generated dialog resource to act as the user interface of your property page.

Respond to changes in your page's user interface to perform validation, update the page site, or update the
objects associated with your page. In particular, call IPropertyPageImpl::SetDirty when the user makes
changes to the property page.

Optionally override the IPropertyPageImpl methods using the guidelines below.

For an example property page implementation, see Example: Implementing a Property Page.

If you want to host ActiveX controls in your property page, you will need to change the derivation of your wizard-generated
class. Replace CDialogImpl<CYourClass> with CAxDialogImpl<CYourClass> in the list of base classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/implementing-property-pages.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box

See also
Property Pages
ATLPages Sample

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Example: Implementing a Property Page
3/4/2019 • 9 minutes to read • Edit Online

Adding the ATL Property Page Class

ITEM VALUE

Title TextDocument

Doc String VCUE TextDocument Properties

Helpfile <blank>

NOTENOTE

This example shows how to build a property page that displays (and allows you to change) properties of the
Document Classes interface.

The example is based on the ATLPages sample.

To complete this example, you will:

Add the ATL property page class using the Add Class dialog box and the ATL Property Page Wizard.

Edit the dialog resource by adding new controls for the interesting properties of the Document interface.

Add message handlers to keep the property page site informed of changes made by the user.

Add some #import statements and a typedef in the Housekeeping section.

Override IPropertyPageImpl::SetObjects to validate the objects being passed to the property page.

Override IPropertyPageImpl::Activate to initialize the property page's interface.

Override IPropertyPageImpl::Apply to update the object with the latest property values.

Display the property page by creating a simple helper object.

Create a macro that will test the property page.

First, create a new ATL project for a DLL server called ATLPages7 . Now use the ATL Property Page Wizard to
generate a property page. Give the property page a Short Name of DocProperties then switch to the Strings
page to set property-page-specific items as shown in the table below.

The values that you set on this page of the wizard will be returned to the property page container when it calls
IPropertyPage::GetPageInfo . What happens to the strings after that is dependent on the container, but typically

they will be used to identify your page to the user. The Title will usually appear in a tab above your page and the
Doc String may be displayed in a status bar or ToolTip (although the standard property frame doesn't use this
string at all).

The strings that you set here are stored as string resources in your project by the wizard. You can easily edit these strings
using the resource editor if you need to change this information after the code for your page has been generated.

Click OK to have the wizard generate your property page.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/example-implementing-a-property-page.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Editing the Dialog Resource

NOTENOTE

Adding Message Handlers

BEGIN_MSG_MAP(CDocProperties)
 COMMAND_HANDLER(IDC_NAME, EN_CHANGE, OnUIChange)
 COMMAND_HANDLER(IDC_READONLY, BN_CLICKED, OnUIChange)
 CHAIN_MSG_MAP(IPropertyPageImpl<CDocProperties>)
END_MSG_MAP()

 // Respond to changes in the UI to update the dirty status of the page
 LRESULT OnUIChange(WORD wNotifyCode, WORD wID, HWND hWndCtl, BOOL& bHandled)
 {
 wNotifyCode; wID; hWndCtl; bHandled;
 SetDirty(true);
 return 0;
 }

NOTENOTE

Housekeeping

Now that your property page has been generated, you'll need to add a few controls to the dialog resource
representing your page. Add an edit box, a static text control, and a check box and set their IDs as shown below:

These controls will be used to display the file name of the document and its read-only status.

The dialog resource does not include a frame or command buttons, nor does it have the tabbed look that you might have
expected. These features are provided by a property page frame such as the one created by calling OleCreatePropertyFrame.

With the controls in place, you can add message handlers to update the dirty status of the page when the value of
either of the controls changes:

This code responds to changes made to the edit control or check box by calling IPropertyPageImpl::SetDirty, which
informs the page site that the page has changed. Typically the page site will respond by enabling or disabling an
Apply button on the property page frame.

In your own property pages, you might need to keep track of precisely which properties have been altered by the user so
that you can avoid updating properties that haven't been changed. This example implements that code by keeping track of
the original property values and comparing them with the current values from the UI when it's time to apply the changes.

Now add a couple of #import statements to DocProperties.h so that the compiler knows about the Document

interface:

https://docs.microsoft.com/windows/desktop/api/olectl/nf-olectl-olecreatepropertyframe

// MSO.dll
#import <libid:2DF8D04C-5BFA-101B-BDE5-00AA0044DE52> version("2.2") \
 rename("RGB", "Rgb") \
 rename("DocumentProperties", "documentproperties") \
 rename("ReplaceText", "replaceText") \
 rename("FindText", "findText") \
 rename("GetObject", "getObject") \
 raw_interfaces_only

// dte.olb
#import <libid:80CC9F66-E7D8-4DDD-85B6-D9E6CD0E93E2> \
 inject_statement("using namespace Office;") \
 rename("ReplaceText", "replaceText") \
 rename("FindText", "findText") \
 rename("GetObject", "getObject") \
 rename("SearchPath", "searchPath") \
 raw_interfaces_only

typedef IPropertyPageImpl<CDocProperties> PPGBaseClass;

Overriding IPropertyPageImpl::SetObjects

STDMETHOD(SetObjects)(ULONG nObjects, IUnknown** ppUnk)
{
 HRESULT hr = E_INVALIDARG;
 if (nObjects == 1)
 {
 CComQIPtr<EnvDTE::Document> pDoc(ppUnk[0]);
 if (pDoc)
 hr = PPGBaseClass::SetObjects(nObjects, ppUnk);
 }
 return hr;
}

NOTENOTE

Overriding IPropertyPageImpl::Activate

CComBSTR m_bstrFullName; // The original name
VARIANT_BOOL m_bReadOnly; // The original read-only state

You'll also need to refer to the IPropertyPageImpl base class; add the following typedef to the CDocProperties

class:

The first IPropertyPageImpl method that you need to override is SetObjects. Here you'll add code to check that
only a single object has been passed and that it supports the Document interface that you're expecting:

It makes sense to support only a single object for this page because you will allow the user to set the file name of the object
— only one file can exist at any one location.

The next step is to initialize the property page with the property values of the underlying object when the page is
first created.

In this case you should add the following members to the class since you'll also use the initial property values for
comparison when users of the page apply their changes:

STDMETHOD(Activate)(HWND hWndParent, LPCRECT prc, BOOL bModal)
{
 // If we don't have any objects, this method should not be called
 // Note that OleCreatePropertyFrame will call Activate even if
 // a call to SetObjects fails, so this check is required
 if (!m_ppUnk)
 return E_UNEXPECTED;

 // Use Activate to update the property page's UI with information
 // obtained from the objects in the m_ppUnk array

 // We update the page to display the Name and ReadOnly properties
 // of the document

 // Call the base class
 HRESULT hr = PPGBaseClass::Activate(hWndParent, prc, bModal);
 if (FAILED(hr))
 return hr;

 // Get the EnvDTE::Document pointer
 CComQIPtr<EnvDTE::Document> pDoc(m_ppUnk[0]);
 if (!pDoc)
 return E_UNEXPECTED;

 // Get the FullName property
 hr = pDoc->get_FullName(&m_bstrFullName);
 if (FAILED(hr))
 return hr;

 // Set the text box so that the user can see the document name
 USES_CONVERSION;
 SetDlgItemText(IDC_NAME, CW2CT(m_bstrFullName));

 // Get the ReadOnly property
 m_bReadOnly = VARIANT_FALSE;
 hr = pDoc->get_ReadOnly(&m_bReadOnly);
 if (FAILED(hr))
 return hr;

 // Set the check box so that the user can see the document's read-only status
 CheckDlgButton(IDC_READONLY, m_bReadOnly ? BST_CHECKED : BST_UNCHECKED);

 return hr;
}

Overriding IPropertyPageImpl::Apply

The base class implementation of the Activate method is responsible for creating the dialog box and its controls, so
you can override this method and add your own initialization after calling the base class:

This code uses the COM methods of the Document interface to get the properties that you're interested in. It then
uses the Win32 API wrappers provided by CDialogImpl and its base classes to display the property values to the
user.

When users want to apply their changes to the objects, the property page site will call the Apply method. This is
the place to do the reverse of the code in Activate — whereas Activate took values from the object and pushed
them into the controls on the property page, Apply takes values from the controls on the property page and
pushes them into the object.

STDMETHOD(Apply)(void)
{
 // If we don't have any objects, this method should not be called
 if (!m_ppUnk)
 return E_UNEXPECTED;

 // Use Apply to validate the user's settings and update the objects'
 // properties

 // Check whether we need to update the object
 // Quite important since standard property frame calls Apply
 // when it doesn't need to
 if (!m_bDirty)
 return S_OK;

 HRESULT hr = E_UNEXPECTED;

 // Get a pointer to the document
 CComQIPtr<EnvDTE::Document> pDoc(m_ppUnk[0]);
 if (!pDoc)
 return hr;

 // Get the read-only setting
 VARIANT_BOOL bReadOnly = IsDlgButtonChecked(IDC_READONLY) ? VARIANT_TRUE : VARIANT_FALSE;

 // Get the file name
 CComBSTR bstrName;
 if (!GetDlgItemText(IDC_NAME, bstrName.m_str))
 return E_FAIL;

 // Set the read-only property
 if (bReadOnly != m_bReadOnly)
 {
 hr = pDoc->put_ReadOnly(bReadOnly);
 if (FAILED(hr))
 return hr;
 }

 // Save the document
 if (bstrName != m_bstrFullName)
 {
 EnvDTE::vsSaveStatus status;
 hr = pDoc->Save(bstrName, &status);
 if (FAILED(hr))
 return hr;
 }

 // Clear the dirty status of the property page
 SetDirty(false);

 return S_OK;
}

NOTENOTE
The check against m_bDirty at the beginning of this implementation is an initial check to avoid unnecessary updates of the
objects if Apply is called more than once. There are also checks against each of the property values to ensure that only
changes result in a method call to the Document .

NOTENOTE

Displaying the Property Page

ITEM VALUE

Method Name ShowPage

Parameters [in] BSTR bstrCaption, [in] BSTR bstrID, [in]
IUnknown* pUnk

STDMETHODIMP CHelper::ShowPage(BSTR bstrCaption, BSTR bstrID, IUnknown* pUnk)
{
 if (!pUnk)
 return E_INVALIDARG;

 // First, assume bstrID is a string representing the CLSID
 CLSID theCLSID = {0};
 HRESULT hr = CLSIDFromString(bstrID, &theCLSID);
 if (FAILED(hr))
 {
 // Now assume bstrID is a ProgID
 hr = CLSIDFromProgID(bstrID, &theCLSID);
 if (FAILED(hr))
 return hr;
 }

 // Use the system-supplied property frame
 return OleCreatePropertyFrame(
 GetActiveWindow(), // Parent window of the property frame
 0, // Horizontal position of the property frame
 0, // Vertical position of the property frame
 bstrCaption, // Property frame caption
 1, // Number of objects
 &pUnk, // Array of IUnknown pointers for objects
 1, // Number of property pages
 &theCLSID, // Array of CLSIDs for property pages
 NULL, // Locale identifier
 0, // Reserved - 0
 NULL // Reserved - 0
);
}

Document exposes FullName as a read-only property. To update the file name of the document based on changes made
to the property page, you have to use the Save method to save the file with a different name. Thus, the code in a property
page doesn't have to limit itself to getting or setting properties.

To display this page, you need to create a simple helper object. The helper object will provide a method that
simplifies the OleCreatePropertyFrame API for displaying a single page connected to a single object. This helper
will be designed so that it can be used from Visual Basic.

Use the Add Class dialog box and the ATL Simple Object Wizard to generate a new class and use Helper as its
short name. Once created, add a method as shown in the table below.

The bstrCaption parameter is the caption to be displayed as the title of the dialog box. The bstrID parameter is a
string representing either a CLSID or a ProgID of the property page to display. The pUnk parameter will be the
IUnknown pointer of the object whose properties will be configured by the property page.

Implement the method as shown below:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box

 Creating a Macro

Imports EnvDTE
Imports System.Diagnostics

Public Module AtlPages

Public Sub Test()
 Dim Helper
 Helper = CreateObject("ATLPages7.Helper.1")

 On Error Resume Next
 Helper.ShowPage(ActiveDocument.Name, "ATLPages7Lib.DocumentProperties.1", DTE.ActiveDocument)
End Sub

End Module

See also

Once you've built the project, you can test the property page and the helper object using a simple macro that you
can create and run in the Visual Studio development environment. This macro will create a helper object, then call
its ShowPage method using the ProgID of the DocProperties property page and the IUnknown pointer of the
document currently active in the Visual Studio editor. The code you need for this macro is shown below:

When you run this macro, the property page will be displayed showing the file name and read-only status of the
currently active text document. The read-only state of the document only reflects the ability to write to the
document in the development environment; it doesn't affect the read-only attribute of the file on disk.

Property Pages
ATLPages Sample

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ATL Support for DHTML Controls
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

Using ATL, you can create a control with Dynamic HTML (DHTML) capability. An ATL DHTML control:

Hosts the WebBrowser control.

Specifies, using HTML, the user interface (UI) of the DHTML control.

Accesses the WebBrowser object and its methods through its interface, IWebBrowser2.

Manages communication between C++ code and HTML.

A DHTML control is similar to any other ATL control, except the DHTML control includes an additional dispatch
interface. See the figure in Identifying the Elements of the DHTML Control Project for an illustration of the
interfaces provided in the default DHTML project.

You can view the ATL DHTML control in a Web browser or other container, such as the ActiveX Control Test
Container.

Identifying the Elements of the DHTML Control Project
Describes the elements of a DHTML control project.

Calling C++ Code from DHTML
Provides an example of calling C++ code from a DHTML control.

Creating an ATL DHTML Control
Lists the steps for creating a DHTML control.

Testing the ATL DHTML Control
Shows how to build and test the initial DHTML control project.

Modifying the ATL DHTML Control
Shows how to add some functionality to the control.

Testing the Altered ATL DHTML Control
Shows how to build and test the control's added functionality.

ATL
Provides links to conceptual topics on how to program using the Active Template Library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-support-for-dhtml-controls.md
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa752127(v=vs.85)

Identifying the Elements of the DHTML Control
Project
3/5/2019 • 2 minutes to read • Edit Online

NOTENOTE

Most DHTML control code is exactly like that created for any ATL control. For a basic understanding of the generic
code, work through the ATL tutorial, and read the sections Creating an ATL Project and Fundamentals of ATL
COM Objects.

A DHTML control is similar to any ATL control, except:

In addition to the regular interfaces a control implements, it implements an additional interface that is used
to communicate between the C++ code and the HTML user interface (UI). The HTML UI calls into C++
code using this interface.

It creates an HTML resource for the control UI.

It allows access to the DHTML object model through the member variable m_spBrowser , which is a smart
pointer of type IWebBrowser2. Use this pointer to access any part of the DHTML object model.

The following graphic illustrates the relationship between your DLL, the DHTML control, the Web browser, and
the HTML resource.

The names on this graphic are placeholders. The names of your HTML resource and the interfaces exposed on your control
are based on the names you assign them in the ATL Control Wizard.

In this graphic, the elements are:

My DLL The DLL created using the ATL Project Wizard.

DHTML Control (m_spBrowser) The DHTML control, created using the ATL Object Wizard. This control
accesses the Web browser object and its methods through the Web browser object's interface,
IWebBrowser2 . The control itself exposes the following two interfaces, in addition to the other standard

interfaces required for a control.

IDHCTL1 The interface exposed by the control for use only by the container.

IDHCTLUI1 The dispatch interface for communicating between the C++ code and the HTML user
interface. The Web browser uses the control's dispatch interface to display the control. You can call
various methods of this dispatch interface from the control's user interface by invoking
window.external , followed by the method name on this dispatch interface that you want to invoke.

You would access window.external from a SCRIPT tag within the HTML that makes up the UI for
this control. For more information about invoking external methods in the resource file, see Calling

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/identifying-the-elements-of-the-dhtml-control-project.md
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa752127(v=vs.85)

See also

C++ Code from DHTML.

IDR_CTL1 The resource ID of the HTML resource. Its file name, in this case, is DHCTL1UI.htm. The
DHTML control uses an HTML resource that contains standard HTML tags and external window dispatch
commands that you can edit using the Text editor.

Web Browser The Web browser displays the control's UI, based on the HTML in the HTML resource. A
pointer to the Web browser's IWebBrowser2 interface is available in the DHTML control to allow access to
the DHTML object model.

The ATL Control Wizard generates a control with default code in both the HTML resource and the .cpp file. You
can compile and run the control as generated by the wizard, and then view the control in either the Web browser
or the ActiveX Control Test Container. The picture below shows the default ATL DHTML control with three
buttons displayed in Test Container:

See Creating an ATL DHTML Control to get started building a DHTML control. See Testing Properties and Events
with Test Container for information on how to access Test Container.

Support for DHTML Control

Calling C++ Code from DHTML
3/4/2019 • 2 minutes to read • Edit Online

Declaring WebBrowser Methods in the Header File

STDMETHOD(OnClick)(IDispatch* pdispBody, VARIANT varColor)

Calling C++ Code in the HTML File

See also

A DHTML control can be hosted in a container, such as Test Container or Internet Explorer. See Testing Properties
and Events with Test Container for information on how to access Test Container.

The container hosting the control communicates with the control using the normal control interfaces. DHTML uses
the dispatch interface that ends with "UI" to communicate with your C++ code and your HTML resource. In
Modifying the ATL DHTML Control, you can practice adding the methods to be called by these different interfaces.

To see an example of calling C++ code from DHTML, create a DHTML control using the ATL Control Wizard and
examine the code in the header file and in the HTML file.

To invoke C++ methods from the DHTML UI, you must add methods to your control's UI interface. For example,
the header file created by the ATL Control Wizard contains the C++ method OnClick , which is a member of the
UI interface of the wizard-generated control.

Examine OnClick in the control's .h file:

The first parameter, pdispBody, is a pointer to the body object's dispatch interface. The second parameter, varColor,
identifies the color to apply to the control.

Once you have declared the WebBrowser methods in the header file, you can invoke the methods from the HTML
file. Notice in the HTML file that the ATL Control Wizard inserts three Windows dispatch methods: three OnClick

methods that dispatch messages to change the background color of the control.

Examine one of the methods in the HTML file:

<BUTTON onclick='window.external.OnClick(theBody, "red");'>Red</BUTTON>

In the HTML code above, the window external method, OnClick , is called as part of the button tag. The method
has two parameters: theBody , which references the body of the HTML document, and "red" , which indicates that
the control's background color will be changed to red when the button is clicked. The Red following the tag is the
button's label.

See Modifying the ATL DHTML Control for more information about providing your own methods. See Identifying
the Elements of the DHTML Control Project for more information about the HTML file.

Support for DHTML Control

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/calling-cpp-code-from-dhtml.md

Creating an ATL DHTML Control
3/4/2019 • 2 minutes to read • Edit Online

To create an ATL DHTML control

See also

The ATL Control Wizard automates the process of creating a DHTML control. It generates the necessary resource
files, including an HTML file containing sample code.

1. Follow the steps in Creating an ATL Project.

2. In Class View, right-click the project node, point to Add, and click Add Class from the shortcut menu. In
the Add Class dialog box, double-click the ATL Control Wizard. In the ATL Control Wizard, click the
Options tab and select DHTML control.

You can now test the default control.

Support for DHTML Control

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/creating-an-atl-dhtml-control.md

Testing the ATL DHTML Control
3/4/2019 • 2 minutes to read • Edit Online

To build and test the ATL DHTML control

See also

Once you have created your project, you can build and test the sample control. Before you do this, use Class View
and Solution Explorer to examine the project. The elements of your project are described in greater detail in
Identifying the Elements of the DHTML Control Project.

1. Build the project. From the Build menu, click Build Solution.

2. When the build is completed, open Test Container. See Testing Properties and Events with Test Container
for information on how to access Test Container.

3. In Test Container, from the Edit menu, click Insert New Control.

4. In the Insert Control dialog box, select your control from the list box. Remember, its name is based on the
short name you indicated in the ATL Control Wizard. Click OK.

5. Examine the control. Note that it has a scroll bar. Use the control's handles to resize the control to activate
the scrollbar.

6. Test the control's buttons. The background color changes to the color indicated by the button.

7. Close Test Container.

Next, try modifying the DHTML control.

Support for DHTML Control

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/testing-the-atl-dhtml-control.md

Modifying the ATL DHTML Control
3/4/2019 • 2 minutes to read • Edit Online

To modify the ATL DHTML control

To modify the HTML resource

The ATL Control Wizard provides starter code so you can build and run the control, and so you can see how the
methods are written in the project files and how the DHTML calls into the control's C++ code using the dispatch
methods. You can add any dispatch method to the interface. Then, you can call the methods in the HTML resource.

::MessageBox(NULL, _T("I'm invoked"), _T("Your Container Message"), MB_OK);

::MessageBox(NULL, _T("Here's your message"), _T("HelloHTML"), MB_OK);

m_spBrowser->Navigate(CComBSTR(L"www.microsoft.com"), NULL, NULL, NULL, NULL);

1. In Class View, expand the control project.

Note that the interface that ends in "UI" has one method, OnClick . The interface that does not end in "UI"
does not have any methods.

2. Add a method called MethodInvoked to the interface that does not end in "UI."

This method will be added to the interface that is used in the control container for container interaction, not
to the interface used by DHTML to interact with the control. Only the container can invoke this method.

3. Find the stubbed-out method in the .cpp file and add code to display a message box, for example:

4. Add another method called HelloHTML , only this time, add it to the interface that ends in "UI." Find the
stubbed-out HelloHTML method in the .cpp file and add code to display a message box, for example:

5. Add a third method, GoToURL , to the interface that does not end in "UI." Implement this method by calling
IWebBrowser2::Navigate, as follows:

You can use the IWebBrowser2 methods because ATL provides a pointer to that interface for you in your .h
file.

Next, modify the HTML resource to invoke the methods you created. You will add three buttons for invoking these
methods.

1. In Solution Explorer, double-click the .htm file to display the HTML resource.

Examine the HTML, especially the calls to the external Windows dispatch methods. The HTML calls the
project's OnClick method, and the parameters indicate the body of the control (theBody) and the color to
assign (" red "). The text following the method call is the label that appears on the button.

2. Add another OnClick method, only change the color. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/modifying-the-atl-dhtml-control.md
https://msdn.microsoft.com/library/aa752133.aspx

See also

<BUTTON onclick='window.external.OnClick(theBody, "white");'>Refresh</BUTTON>

<BUTTON onclick='window.external.HelloHTML();'>HelloHTML</BUTTON>

This method will create a button, labeled Refresh, that the user can click to return the control to the
original, white background.

3. Add the call to the HelloHTML method you created. For example:

This method will create a button, labeled HelloHTML, that the user can click to display the HelloHTML

message box.

You can now build and test the modified DHTML control.

Support for DHTML Control

Testing the Modified ATL DHTML Control
3/4/2019 • 2 minutes to read • Edit Online

To build and test the modified control

See also

Try out your new control to see how it works now.

1. Rebuild the project and open it in Test Container. See Testing Properties and Events with Test Container
for information on how to access Test Container.

Resize the control to show all of the buttons you added.

2. Examine the two buttons that you inserted by altering the HTML. Each button bears the label you identified
in Modifying the ATL DHTML Control: Refresh and HelloHTML.

3. Test the two new buttons to see how they work.

Now test the methods that are not part of the UI.

1. Highlight the control, so the border is activated.

2. On the Control menu, choose Invoke Methods.

The methods in the list labeled Method Name are the methods that the container can call: MethodInvoked

and GoToURL . All other methods are controlled by the UI.

3. Select a method to invoke and choose Invoke to display the method's message box or to navigate to
www.microsoft.com .

4. In the Invoke Methods dialog box, choose Close.

To learn more about the various elements and files that make up an ATL DHTML control, see Identifying the
Elements of the DHTML Control Project.

Support for DHTML Control

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/testing-the-modified-atl-dhtml-control.md

ATL Connection Points
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

See also

A connectable object is one that supports outgoing interfaces. An outgoing interface allows the object to
communicate with a client. For each outgoing interface, the connectable object exposes a connection point. Each
outgoing interface is implemented by a client on an object called a sink.

Each connection point supports the IConnectionPoint interface. The connectable object exposes its connection
points to the client through the IConnectionPointContainer interface.

ATL Connection Point Classes
Briefly describes the ATL classes that support connection points.

Adding Connection Points to an Object
Outlines the steps used to add connection points to an object.

ATL Connection Point Example
Provides an example of declaring a connection point.

ATL
Provides links to conceptual topics on how to program using the Active Template Library.

Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-connection-points.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iconnectionpoint
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iconnectionpointcontainer

ATL Connection Point Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

ATL uses the following classes to support connection points:

IConnectionPointImpl implements a connection point. The IID of the outgoing interface it represents is
passed as a template parameter.

IConnectionPointContainerImpl implements the connection point container and manages the list of
IConnectionPointImpl objects.

IPropertyNotifySinkCP implements a connection point representing the IPropertyNotifySink interface.

CComDynamicUnkArray manages an arbitrary number of connections between the connection point and
its sinks.

CComUnkArray manages a predefined number of connections as specified by the template parameter.

CFirePropNotifyEvent notifies a client's sink that an object's property has changed or is about to change.

IDispEventImpl provides support for connection points for an ATL COM object. These connection points are
mapped with an event sink map, which is provided by your COM object.

IDispEventSimpleImpl works in conjunction with the event sink map in your class to route events to the
appropriate handler function.

Connection Point

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-connection-point-classes.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink

Adding Connection Points to an Object
3/4/2019 • 2 minutes to read • Edit Online

To add a connection point to a control or objectTo add a connection point to a control or object

The ATL Tutorial demonstrates how to create a control with support for connection points, how to add events, and
then how to implement the connection point. ATL implements connection points with the IConnectionPointImpl
class.

To implement a connection point, you have two choices:

Implement your own outgoing event source, by adding a connection point to the control or object.

Reuse a connection point interface defined in another type library.

In either case, the Implement Connection Point Wizard uses a type library to do its work.

[
 uuid(3233E37D-BCC0-4871-B277-48AE6B61224A),
 helpstring("Buddy Events")
]
dispinterface DBuddyEvents
{
 properties:
 methods:
};

coclass Buddy
{
 [default] interface IBuddy;
 [default,source] dispinterface DBuddyEvents;
};

1. Define a dispinterface in the library block of the .idl file. If you enabled support for connection points when
you created the control with the ATL Control Wizard, the dispinterface will already be created. If you did not
enable support for connection points when you created the control, you must manually add a dispinterface
to the .idl file. The following is an example of a dispinterface. Outgoing interfaces are not required to be
dispatch interfaces but many scripting languages such as VBScript and JScript require this, so this example
uses two dispinterfaces:

Use either the uuidgen.exe or guidgen.exe utility to generate a GUID.

2. Add the dispinterface as the [default,source] interface in the coclass for the object in the project's .idl file.
Again, if you enabled support for connection points when you created the control, the ATL Control Wizard
will create the [default,source] entry. To manually add this entry, add the line in bold:

See the .idl file in the Circ ATL sample for an example.

3. Use Class View to add methods and properties to the event interface. Right-click the class in Class View,
point to Add on the shortcut menu, and click Add Connection Point.

4. In the Source Interfaces list box of the Implement Connection Point Wizard, select Project's interfaces. If
you choose an interface for your control and press OK, you will:

Generate a header file with an event proxy class that implements the code that will make the

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/adding-connection-points-to-an-object.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

To reuse a connection point interface defined in another type libraryTo reuse a connection point interface defined in another type library

See also

outgoing calls for the event.

Add an entry to the connection point map.

You will also see a list of all of the type libraries on your computer. You should only use one of these other
type libraries to define your connection point if you want to implement the exact same outgoing interface
found in another type library.

1. In Class View, right-click a class that implements a BEGIN_COM_MAP macro, point to Add on the
shortcut menu, and click Add Connection Point.

2. In the Implement Connection Point Wizard, select a type library and an interface in the type library and
click Add.

3. Edit the .idl file to either:

Copy the dispinterface from the .idl file for the object whose event-source is being used.

Use the importlib instruction on that type library.

Connection Point

ATL Connection Point Example
3/4/2019 • 2 minutes to read • Edit Online

class ATL_NO_VTABLE CConnect1 :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CConnect1, &CLSID_Connect1>,
 public IConnectionPointContainerImpl<CConnect1>,
 public IConnectionPointImpl<CConnect1, &IID_IPropertyNotifySink>,
 public IConnect1
{
public:
 CConnect1()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_CONNECT1)

BEGIN_COM_MAP(CConnect1)
 COM_INTERFACE_ENTRY(IConnect1)
 COM_INTERFACE_ENTRY(IConnectionPointContainer)
END_COM_MAP()

BEGIN_CONNECTION_POINT_MAP(CConnect1)
 CONNECTION_POINT_ENTRY(IID_IPropertyNotifySink)
END_CONNECTION_POINT_MAP()

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return S_OK;
 }

 void FinalRelease()
 {
 }

public:

};

class ATL_NO_VTABLE CConnect2 :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CConnect2, &CLSID_Connect2>,
 public IConnectionPointContainerImpl<CConnect2>,
 public IPropertyNotifySinkCP<CConnect2>

See also

This example shows an object that supports IPropertyNotifySink as an outgoing interface:

When specifying IPropertyNotifySink as an outgoing interface, you can use class IPropertyNotifySinkCP instead
of IConnectionPointImpl . For example:

Connection Point

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-connection-point-example.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink

Event Handling and ATL
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

See also

This section shows how to sink events using ATL. It covers the principles of COM event handling and the specifics
of sinking events using the support provided by ATL.

For information on how to fire events and implement connection points, read ATL Connection Points.

Event Handling Principles
Discusses the steps common to all event handing.

Implementing the Event Handling Interface
Discusses the classes to use for implementing the event interface.

Using IDispEventImpl
Lists the steps for using IDispEventImpl and shows a code sample.

Using IDispEventSimpleImpl
Lists the steps for using IDispEventSimpleImpl and shows a code sample.

ATL Event Handling Summary
Summarizes, using tables, the main ways for implementing an event interface and for advising and unadvising the
event source using ATL.

ATL
Provides links to conceptual topics on how to program using the Active Template Library.

Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/event-handling-and-atl.md

Event Handling Principles
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

There are three steps common to all event handling. You will need to:

Implement the event interface on your object.

Advise the event source that your object wants to receive events.

Unadvise the event source when your object no longer needs to receive events.

The way that you'll implement the event interface will depend on its type. An event interface can be vtable, dual, or
a dispinterface. It's up to the designer of the event source to define the interface; it's up to you to implement that
interface.

Although there are no technical reasons that an event interface can't be dual, there are a number of good design reasons to
avoid the use of duals. However, this is a decision made by the designer/implementer of the event source. Since you're
working from the perspective of the event sink , you need to allow for the possibility that you might not have any choice
but to implement a dual event interface. For more information on dual interfaces, see Dual Interfaces and ATL.

Advising the event source can be broken down into three steps:

Query the source object for IConnectionPointContainer.

Call IConnectionPointContainer::FindConnectionPoint passing the IID of the event interface that interests
you. If successful, this will return the IConnectionPoint interface on a connection point object.

Call IConnectionPoint::Advise passing the IUnknown of the event sink. If successful, this will return a DWORD

cookie representing the connection.

Once you have successfully registered your interest in receiving events, methods on your object's event interface
will be called according to the events fired by the source object. When you no longer need to receive events, you
can pass the cookie back to the connection point via IConnectionPoint::Unadvise. This will break the connection
between source and sink.

Be careful to avoid reference cycles when handling events.

Event Handling

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/event-handling-principles.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iconnectionpointcontainer
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iconnectionpointcontainer-findconnectionpoint
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iconnectionpoint
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iconnectionpoint-advise
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iconnectionpoint-unadvise

Implementing the Event Handling Interface
3/4/2019 • 2 minutes to read • Edit Online

See also

ATL helps you with all three elements required for handling events: implementing the event interface, advising the
event source, and unadvising the event source. The precise steps you'll need to take depend on the type of the
event interface and the performance requirements of your application.

The most common ways of implementing an interface using ATL are:

Deriving from a custom interface directly.

Deriving from IDispatchImpl for dual interfaces described in a type library.

Deriving from IDispEventImpl for dispinterfaces described in a type library.

Deriving from IDispEventSimpleImpl for dispinterfaces not described in a type library or when you want to
improve efficiency by not loading the type information at run time.

If you are implementing a custom or dual interface, you should advise the event source by calling AtlAdvise or
CComPtrBase::Advise. You will need to keep track of the cookie returned by the call yourself. Call AtlUnadvise to
break the connection.

If you are implementing a dispinterface using IDispEventImpl or IDispEventSimpleImpl , you should advise the
event source by calling IDispEventSimpleImpl::DispEventAdvise. Call IDispEventSimpleImpl::DispEventUnadvise
to break the connection.

If you are using IDispEventImpl as a base class of a composite control, the event sources listed in the sink map will
be advised and unadvised automatically using CComCompositeControl::AdviseSinkMap.

The IDispEventImpl and IDispEventSimpleImpl classes manage the cookie for you.

Event Handling

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/implementing-the-event-handling-interface.md

Using IDispEventImpl
3/4/2019 • 2 minutes to read • Edit Online

Example

[uuid(000209F7-0000-0000-C000-000000000046), hidden]
dispinterface ApplicationEvents {
properties:
methods:
 [id(0x00000001), restricted, hidden]
 void Startup();

 [id(0x00000002)]
 void Quit();

 [id(0x00000003)]
 void DocumentChange();
};

#pragma warning (disable : 4146)

// Paths to required MS OFFICE files (replace "MSO.DLL" and "MSWORD.OLB" with the actual paths to those
files...)
#define _MSDLL_PATH "MSO.DLL"
// Delete the *.tlh files when changing import qualifiers
#import _MSDLL_PATH rename("RGB", "MSRGB") rename("DocumentProperties", "WordDocumentProperties")
raw_interfaces_only

#import "C:\Program Files\Common Files\Microsoft Shared\VBA\VBA6\VBE6EXT.OLB" raw_interfaces_only

#define _MSWORDOLB_PATH "MSWORD.OLB"
#import _MSWORDOLB_PATH rename("ExitWindows", "WordExitWindows") rename("FindText", "WordFindText")
raw_interfaces_only

#pragma warning (default : 4146)

When using IDispEventImpl to handle events, you will need to:

Derive your class from IDispEventImpl.

Add an event sink map to your class.

Add entries to the event sink map using the SINK_ENTRY or S INK_ENTRY_EX macro.

Implement the methods that you're interested in handling.

Advise and unadvise the event source.

The example below shows how to handle the DocumentChange event fired by Word's Application object. This
event is defined as a method on the ApplicationEvents dispinterface.

The example is from the ATLEventHandling sample.

The example uses #import to generate the required header files from Word's type library. If you want to use this
example with other versions of Word, you must specify the correct mso dll file. For example, Office 2000 provides
mso9.dll and OfficeXP provides mso.dll. This code is simplified from stdafx.h:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/using-idispeventimpl.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

// Note #import doesn't generate a LIBID (because we don't use 'named_guids')
// so we have to do it manually
namespace Word
{
 struct __declspec(uuid("00020905-0000-0000-C000-000000000046"))
 /* library */ Library;
};

class ATL_NO_VTABLE CNotSoSimple :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CNotSoSimple, &CLSID_NotSoSimple>,
 public IDispatchImpl<ISwitch, &IID_ISwitch, &LIBID_ATLEVENTHANDLINGLib>,
 // Note inheritance from IDispEventImpl
 public IDispEventImpl</*nID*/ 1, CNotSoSimple,
 &__uuidof(Word::ApplicationEvents2),
 &__uuidof(Word::Library), /*wMajor*/ 8, /*wMinor*/ 1>

{
public:
 CNotSoSimple()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_NOTSOSIMPLE)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CNotSoSimple)
 COM_INTERFACE_ENTRY(ISwitch)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

 CComPtr<Word::_Application> m_pApp;

 // Event handlers
 // Note the __stdcall calling convention and
 // dispinterface-style signature
 void __stdcall OnQuit()
 {
 Stop();
 }

 void __stdcall OnDocChange()
 {
 ATLASSERT(m_pApp != NULL);

 // Get a pointer to the _Document interface on the active document
 CComPtr<Word::_Document> pDoc;
 m_pApp->get_ActiveDocument(&pDoc);

 // Get the name from the active document
 CComBSTR bstrName;
 if (pDoc)
 pDoc->get_Name(&bstrName);

 // Create a display string
 CComBSTR bstrDisplay(_T("New document title:\n"));
 bstrDisplay += bstrName;

 // Display the name to the user
 USES_CONVERSION;
 MessageBox(NULL, W2CT(bstrDisplay), _T("IDispEventImpl : Active Document Changed"), MB_OK);
 }

// Note the mapping from Word events to our event handler functions.
BEGIN_SINK_MAP(CNotSoSimple)

The following code appears in NotSoSimple.h. The relevant code is noted by comments:

BEGIN_SINK_MAP(CNotSoSimple)
 SINK_ENTRY_EX(/*nID =*/ 1, __uuidof(Word::ApplicationEvents2), /*dispid =*/ 3, OnDocChange)
 SINK_ENTRY_EX(/*nID =*/ 1, __uuidof(Word::ApplicationEvents2), /*dispid =*/ 2, OnQuit)
END_SINK_MAP()

// ISwitch
public:

 STDMETHOD(Start)()
 {
 // If we already have an object, just return
 if (m_pApp)
 return S_OK;

 // Create an instance of Word's Application object
 HRESULT hr = m_pApp.CoCreateInstance(__uuidof(Word::Application), NULL, CLSCTX_SERVER);
 if (FAILED(hr))
 return hr;

 ATLASSERT(m_pApp != NULL);

 // Make the Word user interface visible
 m_pApp->put_Visible(true);

 // Note call to advise
 // Forge a connection to enable us to receive events
 DispEventAdvise(m_pApp);

 return S_OK;
 }

 STDMETHOD(Stop)()
 {
 // Check we have an object to unadvise on
 if (!m_pApp)
 return S_OK;

 // Note call to unadvise
 // Break the connection with the event source
 DispEventUnadvise(m_pApp);

 // Release the Word application
 m_pApp.Release();

 return S_OK;
 }
};

See also
Event Handling
ATLEventHandling Sample

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Using IDispEventSimpleImpl
3/4/2019 • 2 minutes to read • Edit Online

Example

[uuid(000209F7-0000-0000-C000-000000000046), hidden]
dispinterface ApplicationEvents {
properties:
methods:
 [id(0x00000001), restricted, hidden]
 void Startup();

 [id(0x00000002)]
 void Quit();

 [id(0x00000003)]
 void DocumentChange();
};

When using IDispEventSimpleImpl to handle events, you will need to:

Derive your class from IDispEventSimpleImpl.

Add an event sink map to your class.

Define _ATL_FUNC_INFO structures describing the events.

Add entries to the event sink map using the SINK_ENTRY_INFO macro.

Implement the methods that you're interested in handling.

Advise and unadvise the event source.

The example below shows you how to handle the DocumentChange event fired by Word's Application object. This
event is defined as a method on the ApplicationEvents dispinterface.

The example is from the ATLEventHandling sample.

The example uses #import to generate the required header files from Word's type library. If you want to use this
example with other versions of Word, you must specify the correct mso dll file. For example, Office 2000 provides
mso9.dll and OfficeXP provides mso.dll. This code is simplified from stdafx.h:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/using-idispeventsimpleimpl.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

#pragma warning (disable : 4146)

// Paths to required MS OFFICE files (replace "MSO.DLL" and "MSWORD.OLB" with the actual paths to those
files...)
#define _MSDLL_PATH "MSO.DLL"
// Delete the *.tlh files when changing import qualifiers
#import _MSDLL_PATH rename("RGB", "MSRGB") rename("DocumentProperties", "WordDocumentProperties")
raw_interfaces_only

#import "C:\Program Files\Common Files\Microsoft Shared\VBA\VBA6\VBE6EXT.OLB" raw_interfaces_only

#define _MSWORDOLB_PATH "MSWORD.OLB"
#import _MSWORDOLB_PATH rename("ExitWindows", "WordExitWindows") rename("FindText", "WordFindText")
raw_interfaces_only

#pragma warning (default : 4146)

// Note declaration of structure for type information
extern _ATL_FUNC_INFO OnDocChangeInfo;
extern _ATL_FUNC_INFO OnQuitInfo;

class ATL_NO_VTABLE CSimple :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CSimple, &CLSID_Simple>,
 public IDispatchImpl<ISwitch, &IID_ISwitch, &LIBID_ATLEVENTHANDLINGLib>,
 // Note inheritance from IDispEventSimpleImpl
 public IDispEventSimpleImpl</*nID =*/ 1, CSimple, &__uuidof(Word::ApplicationEvents)>
{
public:
 CSimple()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_SIMPLE)

DECLARE_PROTECT_FINAL_CONSTRUCT()

BEGIN_COM_MAP(CSimple)
 COM_INTERFACE_ENTRY(ISwitch)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

 CComPtr<Word::_Application> m_pApp;

 // Event handlers
 // Note the __stdcall calling convention and
 // dispinterface-style signature
 void __stdcall OnQuit()
 {
 Stop();
 }

 void __stdcall OnDocChange()
 {
 ATLASSERT(m_pApp != NULL);

 // Get a pointer to the _Document interface on the active document
 CComPtr<Word::_Document> pDoc;
 m_pApp->get_ActiveDocument(&pDoc);

 // Get the name from the active document

The only information from the type library actually used in this example is the CLSID of the Word Application

object and the IID of the ApplicationEvents interface. This information is only used at compile time.

The following code appears in Simple.h. The relevant code is noted by comments:

 // Get the name from the active document
 CComBSTR bstrName;
 if (pDoc)
 pDoc->get_Name(&bstrName);

 // Create a display string
 CComBSTR bstrDisplay(_T("New document title:\n"));
 bstrDisplay += bstrName;

 // Display the name to the user
 USES_CONVERSION;
 MessageBox(NULL, W2CT(bstrDisplay), _T("IDispEventSimpleImpl : Active Document Changed"), MB_OK);
 }

// Note the mapping from Word events to our event handler functions.
BEGIN_SINK_MAP(CSimple)
 SINK_ENTRY_INFO(/*nID =*/ 1, __uuidof(Word::ApplicationEvents), /*dispid =*/ 3, OnDocChange,
&OnDocChangeInfo)
 SINK_ENTRY_INFO(/*nID =*/ 1, __uuidof(Word::ApplicationEvents), /*dispid =*/ 2, OnQuit, &OnQuitInfo)
END_SINK_MAP()

// ISwitch
public:
 STDMETHOD(Start)()
 {
 // If we already have an object, just return
 if (m_pApp)
 return S_OK;

 // Create an instance of Word's Application object
 HRESULT hr = m_pApp.CoCreateInstance(__uuidof(Word::Application), NULL, CLSCTX_SERVER);
 if (FAILED(hr))
 return hr;

 ATLASSERT(m_pApp != NULL);

 // Make the Word user interface visible
 m_pApp->put_Visible(true);

 // Note call to advise
 // Forge a connection to enable us to receive events
 DispEventAdvise(m_pApp);

 return S_OK;
 }

 STDMETHOD(Stop)()
 {
 // Check we have an object to unadvise on
 if (!m_pApp)
 return S_OK;

 // Note call to unadvise
 // Break the connection with the event source
 DispEventUnadvise(m_pApp);

 // Release the Word application
 m_pApp.Release();

 return S_OK;
 }
};

The following code is from Simple.cpp:

// Define type info structure
_ATL_FUNC_INFO OnDocChangeInfo = {CC_STDCALL, VT_EMPTY, 0};
_ATL_FUNC_INFO OnQuitInfo = {CC_STDCALL, VT_EMPTY, 0};
// (don't actually need two structure since they're the same)

See also
Event Handling
ATLEventHandling Sample

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ATL Event Handling Summary
3/4/2019 • 2 minutes to read • Edit Online

Implementing the Interface

DERIVE FROM SUITABLE FOR INTERFACE TYPE
REQUIRES YOU TO IMPLEMENT
ALL METHODS*

REQUIRES A TYPE LIBRARY AT
RUN TIME

The interface Vtable Yes No

IDispatchImpl Dual Yes Yes

IDispEventImpl Dispinterface No Yes

IDispEventSimpleImpl Dispinterface No No

Advising and Unadvising the Event Source

ADVISE FUNCTION UNADVISE FUNCTION
MOST SUITABLE FOR USE
WITH

REQUIRES YOU TO KEEP
TRACK OF A COOKIE COMMENTS

AtlAdvise,
CComPtrBase::Advise

AtlUnadvise Vtable or dual interfaces Yes AtlAdvise is a global
ATL function.
CComPtrBase::Advise

is used by CComPtr and
CComQIPtr.

IDispEventSimpleImpl::D
ispEventAdvise

IDispEventSimpleImpl::D
ispEventUnadvise

IDispEventImpl or
IDispEventSimpleImpl

No Fewer parameters than
AtlAdvise since the

base class does more
work.

CComCompositeContro
l::AdviseSinkMap(TRUE)

CComCompositeContro
l::AdviseSinkMap(FALSE)

ActiveX controls in
Composite controls

No CComCompositeControl::AdviseSinkMap

advises all entries in the
event sink map. The
same function
unadvises the entries.
This method is called
automatically by the
CComCompositeControl

class.

In general, handling COM events is a relatively simple process. There are three main steps:

Implement the event interface on your object.

Advise the event source that your object wants to receive events.

Unadvise the event source when your object no longer needs to receive events.

There are four main ways of implementing an interface using ATL.

* When using ATL support classes, you are never required to implement the IUnknown or IDispatch methods manually.

There are three main ways of advising and unadvising an event source using ATL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-event-handling-summary.md

CAxDialogImpl::AdviseSi
nkMap(TRUE)

CAxDialogImpl::AdviseSi
nkMap(FALSE)

ActiveX controls in a
dialog box

No CAxDialogImpl::AdviseSinkMap

advises and unadvises
all ActiveX controls in
the dialog resource. This
is done automatically
for you.

ADVISE FUNCTION UNADVISE FUNCTION
MOST SUITABLE FOR USE
WITH

REQUIRES YOU TO KEEP
TRACK OF A COOKIE COMMENTS

See also
Event Handling
Supporting IDispEventImpl

ATL and the Free Threaded Marshaler
3/4/2019 • 2 minutes to read • Edit Online

See also

The ATL Simple Object Wizard's Attributes page provides an option that allows your class to aggregate the free
threaded marshaler (FTM).

The wizard generates code to create an instance of the free threaded marshaler in FinalConstruct and release that
instance in FinalRelease . A COM_INTERFACE_ENTRY_AGGREGATE macro is automatically added to the COM
map to ensure that QueryInterface requests for IMarshal are handled by the free threaded marshaler.

The free threaded marshaler allows direct access to interfaces on your object from any thread in the same process,
speeding up cross-apartment calls. This option is intended for classes that use the Both threading model.

When using this option, classes must take responsibility for the thread-safety of their data. In addition, objects that
aggregate the free threaded marshaler and need to use interface pointers obtained from other objects must take
extra steps to ensure that the interfaces are correctly marshaled. Typically this involves storing the interface
pointers in the global interface table (GIT) and getting the pointer from the GIT each time it is used. ATL provides
the class CComGITPtr to help you use interface pointers stored in the GIT.

Concepts
CoCreateFreeThreadedMarshaler
IMarshal
When to Use the Global Interface Table
In-Process Server Threading Issues

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-and-the-free-threaded-marshaler.md
https://docs.microsoft.com/windows/desktop/api/objidlbase/nn-objidlbase-imarshal
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cocreatefreethreadedmarshaler
https://docs.microsoft.com/windows/desktop/api/objidlbase/nn-objidlbase-imarshal
https://docs.microsoft.com/windows/desktop/com/when-to-use-the-global-interface-table
https://docs.microsoft.com/windows/desktop/com/in-process-server-threading-issues

Specifying the Threading Model for a Project (ATL)
3/4/2019 • 2 minutes to read • Edit Online

MACRO GUIDELINES FOR USING

_ATL_SINGLE_THREADED Define if all of your objects use the single threading model.

_ATL_APARTMENT_THREADED Define if one or more of your objects use apartment
threading.

_ATL_FREE_THREADED Define if one or more of your objects use free or neutral
threading. Existing code may contain references to the
equivalent macro _ATL_MULTI_THREADED.

See also

The following macros are available to specify the threading model of an ATL project:

If you do not define any of these macros for your project, _ATL_FREE_THREADED will be in effect.

The macros affect run-time performance as follows:

Specifying the macro that corresponds to the objects in your project can improve run-time performance.

Specifying a higher level of macro, for example if you specify _ATL_APARTMENT_THREADED when all of
your objects are single threaded, will slightly degrade run-time performance.

Specifying a lower level of macro, for example, if you specify _ATL_SINGLE_THREADED when one or
more of your objects use apartment threading or free threading, can cause your application to fail at run
time.

See Options, ATL Simple Object Wizard for a description of the threading models available for an ATL object.

Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/specifying-the-threading-model-for-a-project-atl.md

ATL Module Classes
3/4/2019 • 2 minutes to read • Edit Online

CComModule Replacement Classes

Reasons for Distributing CComModule Functionality

See also

This topic discusses the module classes that were new in ATL 7.0.

Earlier versions of ATL used CComModule . In ATL 7.0, CComModule functionality is replaced by several classes:

CAtlBaseModule Contains information required by most applications that use ATL. Contains the
HINSTANCE of the module and the resource instance.

CAtlComModule Contains information required by the COM classes in ATL.

CAtlWinModule Contains information required by the windowing classes in ATL.

CAtlDebugInterfacesModule Contains support for interface debugging.

CAtlModule The following CAtlModule -derived classes are customized to contain information
required in a particular application type. Most members in these classes can be overridden:

CAtlDllModuleT Used in DLL applications. Provides code for the standard exports.

CAtlExeModuleT Used in EXE applications. Provides code required in an EXE.

CAtlServiceModuleT Provides support to create Windows NT and Windows 2000 Services.

CComModule is still available for backward compatibility.

The functionality of CComModule was distributed into several new classes for the following reasons:

Make the functionality in CComModule granular.

Support for COM, windowing, interface debugging, and application-specific (DLL or EXE) features is
now in separate classes.

Automatically declare global instance of each of these modules.

A global instance of the required module classes is linked into the project.

Remove the necessity of calling Init and Term methods.

Init and Term methods have moved into the constructors and destructors for the module classes;
there is no longer a need to call Init and Term.

Concepts
Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-module-classes.md

ATL Services
3/4/2019 • 2 minutes to read • Edit Online

See also

To create your ATL COM object so that it runs in a service, simply select Service (EXE) from the list of server
options in the ATL Project Wizard. The wizard will then create a class derived from CAtlServiceModuleT to
implement the service.

When the ATL COM object is built as a service, it will only be registered as a local server, and it will not appear in
the list of services in Control Panel. This is because it is easier to debug the service as a local server than as a
service. To install it as a service, run the following at the command prompt:

YourEXE .exe /Service

To uninstall it, run the following:

YourEXE .exe /UnregServer

The first four topics in this section discuss the actions that occur during execution of CAtlServiceModuleT member
functions. These topics appear in the same sequence as the functions are typically called. To improve your
understanding of these topics, it is a good idea to use the source code generated by the ATL Project Wizard as a
reference. These first four topics are:

The CAtlServiceModuleT::Start Function

The CAtlServiceModuleT::ServiceMain Function

The CAtlServiceModuleT::Run Function

The CAtlServiceModuleT::Handler Function

The last three topics discuss concepts related to developing a service:

Registry Entries for ATL services

DCOMCNFG

Debugging Tips for ATL services

Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-services.md

CAtlServiceModuleT::Start Function
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

When the service is run, _tWinMain calls CAtlServiceModuleT::WinMain , which in turn calls
CAtlServiceModuleT::Start .

CAtlServiceModuleT::Start sets up an array of SERVICE_TABLE_ENTRY structures that map each service to its startup
function. This array is then passed to the Win32 API function, StartServiceCtrlDispatcher. In theory, one EXE could
handle multiple services and the array could have multiple SERVICE_TABLE_ENTRY structures. Currently, however, an
ATL-generated service supports only one service per EXE. Therefore, the array has a single entry that contains the
service name and _ServiceMain as the startup function. _ServiceMain is a static member function of
CAtlServiceModuleT that calls the non-static member function, ServiceMain .

Failure of StartServiceCtrlDispatcher to connect to the service control manager (SCM) probably means that the
program is not running as a service. In this case, the program calls CAtlServiceModuleT::Run directly so that the program
can run as a local server. For more information about running the program as a local server, see Debugging Tips.

Services
CAtlServiceModuleT::Start

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/catlservicemodulet-start-function.md
https://docs.microsoft.com/windows/desktop/api/winsvc/nf-winsvc-startservicectrldispatchera

CAtlServiceModuleT::ServiceMain Function
3/4/2019 • 2 minutes to read • Edit Online

See also

The service control manager (SCM) calls ServiceMain when you open the Services Control Panel application,
select the service, and click Start.

After the SCM calls ServiceMain , a service must give the SCM a handler function. This function lets the SCM
obtain the service's status and pass specific instructions (such as pausing or stopping). The SCM gets this function
when the service passes _Handler to the Win32 API function, RegisterServiceCtrlHandler. (_Handler is a static
member function that calls the non-static member function Handler.)

At startup, a service should also inform the SCM of its current status. It does this by passing
SERVICE_START_PENDING to the Win32 API function, SetServiceStatus.

ServiceMain then calls CAtlExeModuleT::InitializeCom , which calls the Win32 API function CoInitializeEx. By
default, InitializeCom passes the COINIT_MULTITHREADED flag to the function. This flag indicates that the
program is to be a free-threaded server.

Now, CAtlServiceModuleT::Run is called to perform the main work of the service. Run continues to execute until
the service is stopped.

Services
CAtlServiceModuleT::ServiceMain

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/catlservicemodulet-servicemain-function.md
https://docs.microsoft.com/windows/desktop/api/winsvc/nf-winsvc-registerservicectrlhandlera
https://docs.microsoft.com/windows/desktop/api/winsvc/nf-winsvc-setservicestatus
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-coinitializeex

CAtlServiceModuleT::Run Function
3/4/2019 • 2 minutes to read • Edit Online

See also

Run contains calls to PreMessageLoop , RunMessageLoop , and PostMessageLoop . After being called, PreMessageLoop

first stores the service's thread ID. The service will use this ID to close itself by sending a WM_QUIT message using
the Win32 API function, PostThreadMessage.

PreMessageLoop then calls InitializeSecurity . By default, InitializeSecurity calls CoInitializeSecurity with the
security descriptor set to NULL, which means that any user has access to your object.

If you do not want the service to specify its own security, override PreMessageLoop and don't call
InitializeSecurity , and COM will then determine the security settings from the registry. A convenient way to

configure registry settings is with the DCOMCNFG utility discussed later in this section.

Once security is specified, the object is registered with COM so that new clients can connect to the program.
Finally, the program tells the service control manager (SCM) that it is running and the program enters a message
loop. The program remains running until it posts a quit message upon service shutdown.

Services
CSecurityDesc Class
CSid Class
CDacl Class
CAtlServiceModuleT::Run

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/catlservicemodulet-run-function.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-postthreadmessagea
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-coinitializesecurity

CAtlServiceModuleT::Handler Function
3/4/2019 • 2 minutes to read • Edit Online

See also

CAtlServiceModuleT::Handler is the routine that the service control manager (SCM) calls to retrieve the status of
the service and give it various instructions (such as stopping or pausing). The SCM passes an operation code to
Handler to indicate what the service should do. A default ATL-generated service only handles the stop instruction.

If the SCM passes the stop instruction, the service tells the SCM that the program is about to stop. The service
then calls PostThreadMessage to post a quit message to itself. This terminates the message loop and the service will
ultimately close.

To handle more instructions, you need to change the m_status data member initialized in the CAtlServiceModuleT

constructor. This data member tells the SCM which buttons to enable when the service is selected in the Services
Control Panel application.

Services
CAtlServiceModuleT::Handler

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/catlservicemodulet-handler-function.md

Registry Entries
3/4/2019 • 2 minutes to read • Edit Online

See also

DCOM introduced the concept of Application IDs (AppIDs), which group configuration options for one or more
DCOM objects into a centralized location in the registry. You specify an AppID by indicating its value in the AppID
named value under the object's CLSID.

By default, an ATL-generated service uses its CLSID as the GUID for its AppID. Under HKEY_CLASSES_ROOT\AppID ,
you can specify DCOM-specific entries. Initially, two entries exist:

LocalService , with a value equal to the name of the service. If this value exists, it is used instead of the
LocalServer32 key under the CLSID.

ServiceParameters , with a value equal to -Service . This value specifies parameters that will be passed to
the service when it is started. Note that these parameters are passed to the service's ServiceMain function,
not WinMain .

Any DCOM service also needs to create another key under HKEY_CLASSES_ROOT\AppID . This key is equal to the name
of the EXE and acts as a cross-reference, as it contains an AppID value pointing back to the AppID entries.

Services

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/registry-entries.md

DCOMCNFG
3/4/2019 • 2 minutes to read • Edit Online

Default Security Page

Default Protocols Page

Default Properties Page

Applications Page

See also

DCOMCNFG is a Windows NT 4.0 utility that allows you to configure various DCOM-specific settings in the
registry. The DCOMCNFG window has three pages: Default Security, Default Properties, and Applications. Under
Windows 2000 a fourth page, Default Protocols, is present.

You can use the Default Security page to specify default permissions for objects on the system. The Default
Security page has three sections: Access, Launch, and Configuration. To change a section's defaults, click the
corresponding Edit Default button. These Default Security settings are stored in the registry under
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE .

This page lists the set of network protocols available to DCOM on this machine. The order reflects the priority in
which they will be used; the first in the list has the highest priority. Protocols can be added or deleted from this
page.

On the Default Properties page, you must select the Enable Distributed COM on this computer check box if
you want clients on other machines to access COM objects running on this machine. Selecting this option sets the
HKEY_LOCAL_MACHINE\Software\Microsoft\OLE\EnableDCOM value to Y .

You change the settings for a particular object with the Applications page. Simply select the application from the
list and click the Properties button. The Properties window has five pages:

The General page confirms the application you are working with.

The Location page allows you to specify where the application should run when a client calls
CoCreateInstance on the relevant CLSID. If you select the Run application on the following computer

check box and enter a computer name, then a RemoteServerName value is added under the AppID for that
application. Clearing the Run application on this computer check box renames the LocalService value
to _LocalService and, thereby, disables it.

The Security page is similar to the Default Security page found in the DCOMCNFG window, except that
these settings apply only to the current application. Again, the settings are stored under the AppID for that
object.

The Identify page identifies which user is used to run the application.

The Endpoints page lists the set of protocols and endpoints available for use by clients of the selected
DCOM server.

Services

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/dcomcnfg.md

Debugging Tips
3/4/2019 • 2 minutes to read • Edit Online

See also

The following topics outline some useful steps for debugging your service:

Using Task Manager

Displaying Assertions

Running the Program as a Local Server

Services

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/debugging-tips.md

Using Task Manager
3/4/2019 • 2 minutes to read • Edit Online

See also

One of the simplest ways to debug a service is through the use of the Task Manager. While the service is running,
start the Task Manager and click the Processes tab. Right-click the name of the EXE and then click Debug. This
launches Visual C++ attached to that running process. Now, click Break on the Debug menu to allow you to set
breakpoints in your code. Click Run to run to your selected breakpoints.

Debugging Tips

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/using-task-manager.md

Displaying Assertions
3/4/2019 • 2 minutes to read • Edit Online

See also

If the client connected to your service appears to stop responding, the service may have asserted and displayed a
message box that you are not able to see. You can confirm this by using Visual C++'s debugger to debug your
code (see Using Task Manager earlier in this section).

If you determine that your service is displaying a message box that you cannot see, you may want to set the Allow
Service to Interact with Desktop option before using the service again. This option is a startup parameter that
permits any message boxes displayed by the service to appear on the desktop. To set this option, open the Services
Control Panel application, select the service, click Startup, and then select the Allow Service to Interact with
Desktop option.

Debugging Tips

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/displaying-assertions.md

Running the Program as a Local Server
3/4/2019 • 2 minutes to read • Edit Online

See also

If running the program as a service is inconvenient, you can temporarily change the registry so that the program is
run as a normal local server. Simply rename the LocalService value under your AppID to _LocalService and
ensure the LocalServer32 key under your CLSID is set correctly. (Note that using DCOMCNFG to specify that
your application should be run on a different computer renames your LocalServer32 key to _LocalServer32 .)
Running your program as a local server takes a few more seconds on startup because the call to
StartServiceCtrlDispatcher in CAtlServiceModuleT::Start takes a few seconds before it fails.

Debugging Tips

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/running-the-program-as-a-local-server.md

ATL Window Classes
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

ATL includes several classes that allow you to use and implement windows. These classes, like other ATL classes,
provide an efficient implementation that does not impose an overhead on your code.

This section describes the ATL window classes and explains how to use them.

Introduction to ATL Window Classes
Briefly describes each ATL window class and provides links to the reference material on them.

Using a Window
Discusses how to use CWindow to manipulate a window.

Implementing a Window
Discusses message handlers, message maps, and using CWindowImpl . Includes details on superclassing and
subclassing.

Implementing a Dialog Box
Discusses the two methods for adding a dialog box class and shows a code sample.

Using Contained Windows
Discusses contained windows in ATL, which are windows that delegate their messages to a container object
instead of handling them in their own class.

Understanding Window Traits
Discusses window traits classes in ATL. These classes provide a simple method for standardizing the styles used
for the creation of a window object.

ATL
Provides links to conceptual topics on how to program using the Active Template Library.

Windows Support Classes
Lists additional ATL classes that support windows and message maps in ATL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-window-classes.md

Introduction to ATL Window Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following ATL classes are designed to implement and manipulate windows:

CWindow allows you to attach a window handle to the CWindow object. You then call CWindow methods to
manipulate the window.

CWindowImpl allows you to implement a new window and process messages with a message map. You can
create a window based on a new Windows class, superclass an existing class, or subclass an existing
window.

CDialogImpl allows you to implement a modal or a modeless dialog box and process messages with a
message map.

CContainedWindowT is a prebuilt class that implements a window whose message map is contained in
another class. Using CContainedWindowT allows you to centralize message processing in one class.

CAxDialogImpl allows you to implement a dialog box (modal or modeless) that hosts ActiveX controls.

CSimpleDialog allows you to implement a modal dialog box with basic functionality.

CAxWindow allows you to implement a window that hosts an ActiveX control.

CAxWindow2T allows you to implement a window that hosts a licensed ActiveX control.

In addition to specific window classes, ATL provides several classes designed to make the implementation of an
ATL window object easier. They are as follows:

CWndClassInfo manages the information of a new window class.

CWinTraits and CWinTraitsOR provide a simple method of standardizing the traits of an ATL window object.

Window Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/introduction-to-atl-window-classes.md

Using a Window
3/4/2019 • 2 minutes to read • Edit Online

See also

Class CWindow allows you to use a window. Once you attach a window to a CWindow object, you can then call
CWindow methods to manipulate the window. CWindow also contains an HWND operator to convert a CWindow

object to an HWND. Thus you can pass a CWindow object to any function that requires a handle to a window. You
can easily mix CWindow method calls and Win32 function calls, without creating any temporary objects.

Because CWindow has only two data member (a window handle and the default dimensions), it does not impose an
overhead on your code. In addition, many of the CWindow methods simply wrap corresponding Win32 API
functions. By using CWindow , the HWND member is automatically passed to the Win32 function.

In addition to using CWindow directly, you can also derive from it to add data or code to your class. ATL itself
derives three classes from CWindow : CWindowImpl, CDialogImpl, and CContainedWindowT.

Window Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/using-a-window.md

Implementing a Window
3/4/2019 • 2 minutes to read • Edit Online

See also

Class CWindowImpl allows you to implement a window and handle its messages. Message handing in ATL is
based on a message map. This section explains:

How to add a message handler to a control.

What message maps are and how to use them.

The syntax for message handler functions.

How to implement a window with CWindowImpl.

Window Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/implementing-a-window.md

Adding an ATL Message Handler
3/4/2019 • 2 minutes to read • Edit Online

See also

To add a message handler (a member function that handles Windows messages) to a control, first select the
control in the Class View. Then open the Properties window, select the Messages icon, and click the drop-down
control in the box opposite the required message. This will add a declaration for the message handler in the
control's header file and a skeleton implementation of the handler in the control's .cpp file. It will also add the
message map and add an entry for the handler.

Adding a message handler in ATL is similar to adding a message handler to an MFC class. See Adding an MFC
Message Handler for more information.

The following conditions apply only to adding an ATL message handler:

The message handlers follow the same naming convention as MFC.

The new message map entries are added into the main message map. The wizard does not recognize
alternate message maps and chaining.

Implementing a Window

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/adding-an-atl-message-handler.md

Message Maps (ATL)
3/4/2019 • 2 minutes to read • Edit Online

Chained Message Maps

Alternate Message Maps

See also

A message map associates a handler function with a particular message, command, or notification. By using
ATL's message map macros, you can specify a message map for a window. The window procedures in
CWindowImpl , CDialogImpl , and CContainedWindowT direct a window's messages to its message map.

The message handler functions accept an additional argument of type BOOL& . This argument indicates whether
a message has been processed, and it is set to TRUE by default. A handler function can then set the argument to
FALSE to indicate that it has not handled a message. In this case, ATL will continue to look for a handler function
further in the message map. By setting this argument to FALSE, you can first perform some action in response
to a message and then allow the default processing or another handler function to finish handling the message.

ATL also allows you to chain message maps, which directs the message handling to a message map defined in
another class. For example, you can implement common message handling in a separate class to provide
uniform behavior for all windows chaining to that class. You can chain to a base class or to a data member of
your class.

ATL also supports dynamic chaining, which allows you to chain to another object's message map at run time. To
implement dynamic chaining, you must derive your class from CDynamicChain. Then declare the
CHAIN_MSG_MAP_DYNAMIC macro in your message map. CHAIN_MSG_MAP_DYNAMIC requires a
unique number that identifies the object and the message map to which you are chaining. You must define this
unique value through a call to CDynamicChain::SetChainEntry .

You can chain to any class that declares a message map, provided the class derives from CMessageMap.
CMessageMap allows an object to expose its message maps to other objects. Note that CWindowImpl already

derives from CMessageMap .

Finally, ATL supports alternate message maps, declared with the ALT_MSG_MAP macro. Each alternate
message map is identified by a unique number, which you pass to ALT_MSG_MAP. Using alternate message
maps, you can handle the messages of multiple windows in one map. Note that by default, CWindowImpl does
not use alternate message maps. To add this support, override the WindowProc method in your CWindowImpl -
derived class and call ProcessWindowMessage with the message map identifier.

Implementing a Window

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/message-maps-atl.md

Message Handler Functions
3/4/2019 • 2 minutes to read • Edit Online

TYPE OF MESSAGE HANDLER CORRESPONDING MESSAGE MACRO

MessageHandler MESSAGE_HANDLER

CommandHandler COMMAND_HANDLER

NotifyHandler NOTIFY_HANDLER

See also

ATL provides three types of message handler functions:

Implementing a Window
Message Maps
WM_NOTIFY

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/message-handler-functions.md
https://docs.microsoft.com/windows/desktop/controls/wm-notify

CommandHandler
3/4/2019 • 2 minutes to read • Edit Online

Syntax
LRESULT CommandHandler(
 WORD wNotifyCode,
 WORD wID,
 HWND hWndCtl,
 BOOL& bHandled);

ParametersParameters

Return Value

Remarks

See also

CommandHandler is the function identified by the third parameter of the COMMAND_HANDLER macro in your
message map.

wNotifyCode
The notification code.

wID
The identifier of the menu item, control, or accelerator.

hWndCtl
A handle to a window control.

bHandled
The message map sets bHandled to TRUE before CommandHandler is called. If CommandHandler does not fully handle
the message, it should set bHandled to FALSE to indicate the message needs further processing.

The result of message processing. 0 if successful.

For an example of using this message handler in a message map, see COMMAND_HANDLER.

Implementing a Window
Message Maps
WM_NOTIFY

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/commandhandler.md
https://docs.microsoft.com/windows/desktop/controls/wm-notify

MessageHandler
3/4/2019 • 2 minutes to read • Edit Online

Syntax
LRESULT MessageHandler(
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam,
 BOOL& bHandled);

ParametersParameters

Return Value

Remarks

See also

MessageHandler is the name of the function identified by the second parameter of the MESSAGE_HANDLER
macro in your message map.

uMsg
Specifies the message.

wParam
Additional message-specific information.

lParam
Additional message-specific information.

bHandled
The message map sets bHandled to TRUE before MessageHandler is called. If MessageHandler does not fully handle
the message, it should set bHandled to FALSE to indicate the message needs further processing.

The result of message processing. 0 if successful.

For an example of using this message handler in a message map, see MESSAGE_HANDLER.

Implementing a Window
Message Maps
WM_NOTIFY

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/messagehandler.md
https://docs.microsoft.com/windows/desktop/controls/wm-notify

NotifyHandler
3/4/2019 • 2 minutes to read • Edit Online

Syntax
LRESULT NotifyHandler(
 int idCtrl,
 LPNMHDR pnmh,
 BOOL& bHandled);

ParametersParameters

Return Value

Remarks

See also

The name of the function identified by the third parameter of the NOTIFY_HANDLER macro in your message
map.

idCtrl
The identifier of the control sending the message.

pnmh
Address of an NMHDR structure that contains the notification code and additional information. For some
notification messages, this parameter points to a larger structure that has the NMHDR structure as its first member.

bHandled
The message map sets bHandled to TRUE before NotifyHandler is called. If NotifyHandler does not fully handle
the message, it should set bHandled to FALSE to indicate the message needs further processing.

The result of message processing. 0 if successful.

For an example of using this message handler in a message map, see NOTIFY_HANDLER).

Implementing a Window
Message Maps
WM_NOTIFY

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/notifyhandler.md
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_nmhdr
https://docs.microsoft.com/windows/desktop/controls/wm-notify

Implementing a Window with CWindowImpl
3/4/2019 • 2 minutes to read • Edit Online

Creating a Window Based on a New Windows Class

NOTENOTE

Example

class CMyCustomWnd : public CWindowImpl<CMyCustomWnd>
{
public:
 // Optionally specify name of the new Windows class
 DECLARE_WND_CLASS(_T("MyName"))
 // If this macro is not specified in your
 // class, ATL will generate a class name

 BEGIN_MSG_MAP(CMyCustomWnd)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
 END_MSG_MAP()

 LRESULT OnPaint(UINT /*nMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 // Do some painting code
 return 0;
 }

};

To implement a window, derive a class from CWindowImpl . In your derived class, declare a message map and the
message handler functions. You can now use your class in three different ways:

Create a window based on a new Windows class

Superclass an existing Windows class

Subclass an existing window

CWindowImpl contains the DECLARE_WND_CLASS macro to declare Windows class information. This macro
implements the GetWndClassInfo function, which uses CWndClassInfo to define the information of a new
Windows class. When CWindowImpl::Create is called, this Windows class is registered and a new window is created.

CWindowImpl passes NULL to the DECLARE_WND_CLASS macro, which means ATL will generate a Windows class name. To
specify your own name, pass a string to DECLARE_WND_CLASS in your CWindowImpl -derived class.

Following is an example of a class that implements a window based on a new Windows class:

To create a window, create an instance of CMyWindow and then call the Create method.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/implementing-a-window-with-cwindowimpl.md

NOTENOTE

Superclassing an Existing Windows Class

Example

class CMyEdit : public CWindowImpl<CMyEdit>
{
public:
 // "Edit" is the name of the standard Windows class.
 // "MyEdit" is the name of the new Windows class
 // that will be based on the Edit class.
 DECLARE_WND_SUPERCLASS(_T("MyEdit"), _T("Edit"))

 BEGIN_MSG_MAP(CMyEdit)
 MESSAGE_HANDLER(WM_CHAR, OnChar)
 END_MSG_MAP()

 LRESULT OnChar(UINT /*nMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 // Do some character handling code
 return 0;
 }
};

Subclassing an Existing Window

See also

To override the default Windows class information, implement the GetWndClassInfo method in your derived class by
setting the CWndClassInfo members to the appropriate values.

The DECLARE_WND_SUPERCLASS macro allows you to create a window that superclasses an existing Windows
class. Specify this macro in your CWindowImpl -derived class. Like any other ATL window, messages are handled by
a message map.

When you use DECLARE_WND_SUPERCLASS, a new Windows class will be registered. This new class will be the
same as the existing class you specify, but will replace the window procedure with CWindowImpl::WindowProc (or
with your function that overrides this method).

Following is an example of a class that superclasses the standard Edit class:

To create the superclassed Edit window, create an instance of CMyEdit and then call the Create method.

To subclass an existing window, derive a class from CWindowImpl and declare a message map, as in the two
previous cases. Note, however, that you do not specify any Windows class information, since you will subclass an
already existing window.

Instead of calling Create , call SubclassWindow and pass it the handle to the existing window you want to subclass.
Once the window is subclassed, it will use CWindowImpl::WindowProc (or your function that overrides this method)
to direct messages to the message map. To detach a subclassed window from your object, call UnsubclassWindow .
The window's original window procedure will then be restored.

Implementing a Window

Implementing a Dialog Box
3/4/2019 • 2 minutes to read • Edit Online

Adding a Dialog Box with the ATL Dialog Wizard

NOTENOTE

Adding a Dialog Box Manually

NOTENOTE

Example

There are two ways to add a dialog box to your ATL project: use the ATL Dialog Wizard or add it manually.

In the Add Class dialog box, select the ATL Dialog object to add a dialog box to your ATL project. Fill in the ATL
Dialog Wizard as appropriate and click Finish. The wizard adds a class derived from CAxDialogImpl to your
project. Open Resource View from the View menu, locate your dialog, and double-click it to open it in the
resource editor.

If your dialog box is derived from CAxDialogImpl , it can host both ActiveX and Windows controls. If you don't want the
overhead of ActiveX control support in your dialog box class, use CSimpleDialog or CDialogImpl instead.

Message and event handlers can be added to your dialog class from Class View. For more information, see
Adding an ATL Message Handler.

Implementing a dialog box is similar to implementing a window. You derive a class from either CAxDialogImpl,
CDialogImpl, or CSimpleDialog and declare a message map to handle messages. However, you must also specify
a dialog template resource ID in your derived class. Your class must have a data member called IDD to hold this
value.

When you create a dialog box using the ATL Dialog Wizard, the wizard automatically adds the IDD member as an enum
type.

CDialogImpl allows you to implement a modal or a modeless dialog box that hosts Windows controls.
CAxDialogImpl allows you to implement a modal or a modeless dialog box that hosts both ActiveX and Windows

controls.

To create a modal dialog box, create an instance of your CDialogImpl -derived (or CAxDialogImpl -derived) class
and then call the DoModal method. To close a modal dialog box, call the EndDialog method from a message
handler. To create a modeless dialog box, call the Create method instead of DoModal . To destroy a modeless dialog
box, call DestroyWindow.

Sinking events is automatically done in CAxDialogImpl. Implement the dialog box's message handlers as you
would the handlers in a CWindowImpl -derived class. If there is a message-specific return value, return it as an
LRESULT . The returned LRESULT values are mapped by ATL for proper handling by the Windows dialog manager.

For details, see the source code for CDialogImplBaseT::DialogProc in atlwin.h.

The following class implements a dialog box:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/implementing-a-dialog-box.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box

class CMyDialog : public CDialogImpl<CMyDialog>
{
public:
 enum { IDD = IDD_MYDLG };

 BEGIN_MSG_MAP(CMyDialog)
 MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)
 COMMAND_HANDLER(IDCANCEL, BN_CLICKED, OnBnClickedCancel)
 END_MSG_MAP()

 LRESULT OnInitDialog(UINT /*uMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 // Do some initialization code
 return 1;
 }
public:
 LRESULT OnBnClickedCancel(WORD /*wNotifyCode*/, WORD /*wID*/, HWND /*hWndCtl*/, BOOL& /*bHandled*/);
};

See also
Window Classes

Using Contained Windows
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Example

class CMyContainer : public CMessageMap
{
public:
 CContainedWindow m_wndEdit;
 CContainedWindow m_wndList;

 CMyContainer() : m_wndEdit(_T("Edit"), this, 1),
 m_wndList(_T("List"), this, 2)
 {
 }

 BEGIN_MSG_MAP(CMyContainer)
 ALT_MSG_MAP(1)
 // handlers for the Edit window go here
 ALT_MSG_MAP(2)
 // handlers for the List window go here
 END_MSG_MAP()

};

See also

ATL implements contained windows with CContainedWindowT. A contained window represents a window that
delegates its messages to a container object instead of handling them in its own class.

You do not need to derive a class from CContainedWindowT in order to use contained windows.

With contained windows, you can either superclass an existing Windows class or subclass an existing window. To
create a window that superclasses an existing Windows class, first specify the existing class name in the
constructor for the CContainedWindowT object. Then call CContainedWindowT::Create . To subclass an existing
window, you don't need to specify a Windows class name (pass NULL to the constructor). Simply call the
CContainedWindowT::SubclassWindow method with the handle to the window being subclassed.

You typically use contained windows as data members of a container class. The container does not need to be a
window; however, it must derive from CMessageMap.

A contained window can use alternate message maps to handle its messages. If you have more than one contained
window, you should declare several alternate message maps, each corresponding to a separate contained window.

Following is an example of a container class with two contained windows:

For more information about contained windows, see the SUBEDIT sample.

Window Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/using-contained-windows.md
https://github.com/Microsoft/VCSamples/tree/master/VC2008Samples/ATL/Controls/SubEdit

Understanding Window Traits
3/4/2019 • 2 minutes to read • Edit Online

ATL Window Traits Templates

CLASS DESCRIPTION

CWinTraits Use this template when you want to provide default window
styles that will be used only when no other styles are specified
in the call to Create . The styles provided at run time take
precedence over the styles set at compile time.

CWinTraitsOR Use this class when you want to specify styles that must
always be set for the window class. The styles provided at run
time are combined with the styles set at compile time using
the bitwise OR operator.

Custom Window Traits

static DWORD GetWndStyle(DWORD dwStyle);
static DWORD GetWndExStyle(DWORD dwExStyle);

See also

Window traits classes provide a simple method for standardizing the styles used for the creation of an ATL
window object. Window traits are accepted as template parameters by CWindowImpl and other ATL window
classes as a way of providing default window styles at the class level.

If the creator of a window instance doesn't provide styles explicitly in the call to Create, you can use a traits class to
ensure that the window is still created with the correct styles. You can even ensure that certain styles are set for all
instances of that window class while permitting other styles to be set on a per-instance basis.

ATL provides two window traits templates that allow you to set default styles at compile time using their template
parameters.

In addition to these templates, ATL provides a number of predefined specializations of the CWinTraits template
for commonly used combinations of window styles. See the CWinTraits reference documentation for full details.

In the unlikely situation that specializing one of the templates provided by ATL isn't sufficient and you need to
create your own traits class, you just need to create a class that implements two static functions: GetWndStyle and
GetWndStyleEx :

Each of these functions will be passed some style value at run time which it can use to produce a new style value.
If your window traits class is being used as the template argument to an ATL window class, the style values passed
to these static functions will be whatever was passed as the style arguments to Create.

Window Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/understanding-window-traits.md

ATL Collection Classes
3/4/2019 • 5 minutes to read • Edit Online

Small Collection Classes

CLASS TYPE OF DATA STORAGE

CSimpleArray Implements an array class for dealing with small numbers of
objects.

CSimpleMap Implements a mapping class for dealing with small numbers
of objects.

General Purpose Collection Classes

CLASS TYPE OF DATA STORAGE

CAtlArray Implements an array.

CAtlList Implements a list.

CAtlMap Implements a mapping structure, whereby data can be
referenced by key or value.

CRBMap Implements a mapping structure using the Red-Black
algorithm.

CRBMultiMap Implements a Red-Black multimapping structure.

Specialized Collection Classes

ATL provides many classes for storing and accessing data. Which class you decide to use depends on several
factors, including:

The amount of data to be stored

Efficiency versus performance in accessing the data

The ability to access the data by index or by key

How the data is ordered

Personal preference

ATL provides the following array classes for dealing with small numbers of objects. However, these classes are
limited and designed for use internally by ATL. It is not recommended that you use them in your programs.

The follow classes implement arrays, lists, and maps and are provided as general purpose collection classes:

These classes will trap many programming errors when used in debug builds, but for sake of performance,
these checks will not be performed in retail builds.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-collection-classes.md

CLASS PURPOSE

CAutoPtrArray Provides methods useful when constructing an array of
smart pointers.

CAutoPtrList Provides methods useful when constructing a list of smart
pointers.

CComUnkArray Stores IUnknown pointers and is designed to be used as a
parameter to the IConnectionPointImpl template class.

CHeapPtrList Provides methods useful when constructing a list of heap
pointers.

CInterfaceArray Provides methods useful when constructing an array of
COM interface pointers.

CInterfaceList Provides methods useful when constructing a list of COM
interface pointers.

Choosing a Collection Class

Collection Shape FeaturesCollection Shape Features

SHAPE ORDERED INDEXED

INSERT AN

ELEMENT

SEARCH FOR

SPECIFIED
ELEMENT

DUPLICATE

ELEMENTS

List Yes No Fast (constant
time)

Slow O(n) Yes

More specialized collection classes are also provided for managing memory pointers and interface pointers:

Each of the available collection classes offers different performance characteristics, as shown in the table below.

Columns 2 and 3 describe each class's ordering and access characteristics. In the table, the term
"ordered" means that the order in which items are inserted and deleted determines their order in the
collection; it does not mean the items are sorted on their contents. The term "indexed" means that the
items in the collection can be retrieved by an integer index, much like items in a typical array.

Columns 4 and 5 describe each class's performance. In applications that require many insertions into the
collection, insertion speed might be especially important; for other applications, lookup speed may be
more important.

Column 6 describes whether each shape allows duplicate elements.

The performance of a given collection class operation is expressed in terms of the relationship between
the time required to complete the operation and the number of elements in the collection. An operation
taking an amount of time that increases linearly as the number of elements increases is described as an
O(n) algorithm. By contrast, an operation taking a period of time that increases less and less as the
number of elements increases is described as an O(log n) algorithm. Therefore, in terms of performance,
O(log n) algorithms outperform O(n) algorithms more and more as the number of elements increases.

Array Yes By int (constant
time)

Slow O(n) except
if inserting at
end, in which
case constant
time

Slow O(n) Yes

Map No By key (constant
time)

Fast (constant
time)

Fast (constant
time)

No (keys) Yes
(values)

Red-Black Map Yes (by key) By key O(log n) Fast O(log n) Fast O(log n) No

Red-Black
Multimap

Yes (by key) By key O(log n)
(multiple values
per key)

Fast O(log n) Fast O(log n) Yes (multiple
values per key)

SHAPE ORDERED INDEXED

INSERT AN

ELEMENT

SEARCH FOR

SPECIFIED
ELEMENT

DUPLICATE

ELEMENTS

Using CTraits Objects

Example
CodeCode

// Collection class / traits class example.
// This program demonstrates using a CTraits class
// to create a new comparison operator.

#define MAX_STRING 80

// Define our own data type to store in the list.

struct MyData
{
 int ID;
 TCHAR name[MAX_STRING];
 TCHAR address[MAX_STRING];
};

// Define our own traits class, making use of the
// existing traits and overriding only the comparison
// we need.

class MyTraits : public CElementTraits< MyData >
{
public:
 // Override the comparison to only compare

As the ATL collection classes can be used to store a wide range of user-defined data types, it can be useful to be
able to override important functions such as comparisons. This is achieved using the CTraits classes.

CTraits classes are similar to, but more flexible than, the MFC collection class helper functions; see Collection
Class Helpers for more information.

When constructing your collection class, you have the option of specifying a CTraits class. This class will contain
the code that will perform operations such as comparisons when called by the other methods that make up the
collection class. For example, if your list object contains your own user-defined structures, you may want to
redefine the equality test to only compare certain member variables. In this way, the list object's Find method
will operate in a more useful manner.

 // Override the comparison to only compare
 // the ID value.

 static bool CompareElements(const MyData& element1, const MyData& element2)
 {
 if (element1.ID == element2.ID)
 return true;
 else
 return false;
 };
};

void DoAtlCustomTraitsList()
{
 // Declare the array, with our data type and traits class

 CAtlList < MyData, MyTraits > MyList;

 // Create some variables of our data type

 MyData add_item, search_item;

 // Add some elements to the list.

 add_item.ID = 1;
 _stprintf_s(add_item.name, _T("Rumpelstiltskin"));
 _stprintf_s(add_item.address, _T("One Grimm Way"));

 MyList.AddHead(add_item);

 add_item.ID = 2;
 _stprintf_s(add_item.name, _T("Rapunzel"));
 _stprintf_s(add_item.address, _T("One Grimm Way"));

 MyList.AddHead(add_item);

 add_item.ID = 3;
 _stprintf_s(add_item.name, _T("Cinderella"));
 _stprintf_s(add_item.address, _T("Two Grimm Way"));

 MyList.AddHead(add_item);

 // Create an element which will be used
 // to search the list for a match.

 search_item.ID = 2;
 _stprintf_s(search_item.name, _T("Don't care"));
 _stprintf_s(search_item.address, _T("Don't care"));

 // Perform a comparison by searching for a match
 // between any element in the list, and our
 // search item. This operation will use the
 // (overridden) comparison operator and will
 // find a match when the IDs are the same.

 POSITION i;

 i = MyList.Find(search_item);

 if (i != NULL)
 _tprintf_s(_T("Item found!\n"));
 else
 _tprintf_s(_T("Item not found.\n"));
}

Comments

Collection Classes Samples

See also

For a list of the CTraits classes, see Collection Classes.

The following diagram shows the class hierarchy for the CTraits classes.

The following samples demonstrate the collection classes:

MMXSwarm Sample

DynamicConsumer Sample

UpdatePV Sample

Marquee Sample

Concepts
Collection Classes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/ATL/OLEDB/Provider/UPDATEPV
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ATL Registry Component (Registrar)
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

In This Section

Related Sections

The ATL Registrar provides optimized access to the system registry through a custom interface. The Registrar is
free-threaded and allows static linking of code for C++ clients.

The source code for the ATL Registrar can be found in atlmfc\include\atliface.h.

Creating Registrar Scripts
A guide to creating registrar scripts. Includes topics on BNF syntax, parse trees, registry scripting examples, using
replaceable parameters, and invoking scripts.

Setting Up a Static Link to the Registrar Code (C++ only)
Lists the steps to set up static linking to the Registrar.

ATL
Provides links to conceptual topics on how to program using the Active Template Library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-registry-component-registrar.md

Creating Registrar Scripts
3/4/2019 • 2 minutes to read • Edit Online

See also

A registrar script provides data-driven, rather than API-driven, access to the system registry. Data-driven access is
typically more efficient since it takes only one or two lines in a script to add a key to the registry.

The ATL Control Wizard automatically generates a registrar script for your COM server. You can find this script in
the .rgs file associated with your object.

The ATL Registrar's Script Engine processes your registrar script at run time. ATL automatically invokes the Script
Engine during server setup.

This article covers the following topics related to the registrar scripts:

Understanding Backus Nauer Form (BNF) Syntax

Understanding Parse Trees

Registry Scripting Examples

Using Replaceable Parameters (The Registrar's Preprocessor)

Invoking Scripts

Registry Component (Registrar)

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/creating-registrar-scripts.md

Understanding Backus Nauer Form (BNF) Syntax
3/4/2019 • 2 minutes to read • Edit Online

CONVENTION/SYMBOL MEANING

::= Equivalent

| OR

X+ One or more Xs.

[X] X is optional. Optional delimiters are denoted by [].

Any bold text A string literal.

Any italicized text How to construct the string literal.

STRING LITERAL ACTION

ForceRemove Completely removes the next key (if it exists) and then re-
creates it.

NoRemove Does not remove the next key during Unregister.

val Specifies that <Key Name> is actually a named value.

Delete Deletes the next key during Register.

s Specifies that the next value is a string (REG_SZ).

d Specifies that the next value is a DWORD (REG_DWORD).

m Specifies that the next value is a multistring (REG_MULTI_SZ).

b Specifies that the next value is a binary value (REG_BINARY).

BNF Syntax Examples

Syntax Example 1Syntax Example 1

The scripts used by the ATL Registrar are described in this topic using BNF syntax, which uses the notation shown
in the following table.

As indicated in the preceding table, registrar scripts use string literals. These values are actual text that must appear
in your script. The following table describes the string literals used in an ATL Registrar script.

Here are a few syntax examples to help you understand how the notation and string literals work in an ATL
Registrar script.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/understanding-backus-nauer-form-bnf-syntax.md

<registry expression> ::= <Add Key>

Syntax Example 2Syntax Example 2

<registry expression> ::= <Add Key> | <Delete Key>

Syntax Example 3Syntax Example 3

<Key Name> ::= '<AlphaNumeric>+'

Syntax Example 4Syntax Example 4

<Add Key> ::= [ForceRemove | NoRemove | val]<Key Name>

Syntax Example 5Syntax Example 5

<AlphaNumeric> ::= any character not NULL, that is, ASCII 0

Syntax Example 6Syntax Example 6

val 'testmulti' = m 'String 1\0String 2\0'

Syntax Example 7Syntax Example 7

val 'testhex' = d '&H55'

See also

specifies that registry expression is equivalent to Add Key .

specifies that registry expression is equivalent to either Add Key or Delete Key .

specifies that Key Name is equivalent to one or more AlphaNumerics .

specifies that Add Key is equivalent to Key Name , and that the string literals, ForceRemove , NoRemove , and val , are
optional.

specifies that AlphaNumeric is equivalent to any non-NULL character.

specifies that the key name testmulti is a multistring value composed of String 1 and String 2 .

specifies that the key name testhex is a DWORD value set to hexadecimal 55 (decimal 85). Note this format
adheres to the &H notation as found in the Visual Basic specification.

Creating Registrar Scripts

Understanding Parse Trees
3/4/2019 • 2 minutes to read • Edit Online

<root key>{<registry expression>}+

<root key> ::= HKEY_CLASSES_ROOT | HKEY_CURRENT_USER |
 HKEY_LOCAL_MACHINE | HKEY_USERS |
 HKEY_PERFORMANCE_DATA | HKEY_DYN_DATA |
 HKEY_CURRENT_CONFIG | HKCR | HKCU |
 HKLM | HKU | HKPD | HKDD | HKCC
<registry expression> ::= <Add Key> | <Delete Key>
<Add Key> ::= [ForceRemove | NoRemove | val]<Key Name> [<Key Value>][{<Add Key>}]
<Delete Key> ::= Delete<Key Name>
<Key Name> ::= '<AlphaNumeric>+'
<AlphaNumeric> ::= any character not NULL, i.e. ASCII 0
<Key Value> ::== <Key Type><Key Name>
<Key Type> ::= s | d
<Key Value> ::= '<AlphaNumeric>'

NOTENOTE

HKEY_CLASSES_ROOT
{
 'MyVeryOwnKey'
 {
 'HasASubKey'
 {
 'PrettyCool'
 }
 }
}

See also

You can define one or more parse trees in your registrar script, where each parse tree has the following form:

where:

HKEY_CLASSES_ROOT and HKCR are equivalent; HKEY_CURRENT_USER and HKCU are equivalent; and so on.

A parse tree can add multiple keys and subkeys to the <root key>. In doing so, it keeps a subkey's handle open
until the parser has completed parsing all of its subkeys. This approach is more efficient than operating on a single
key at a time, as seen in the following example:

Here, the Registrar initially opens (creates) HKEY_CLASSES_ROOT\MyVeryOwnKey . It then sees that MyVeryOwnKey has a
subkey. Rather than close the key to MyVeryOwnKey , the Registrar retains the handle and opens (creates)
HasASubKey using this parent handle. (The system registry can be slower when no parent handle is open.) Thus,

opening HKEY_CLASSES_ROOT\MyVeryOwnKey and then opening HasASubKey with MyVeryOwnKey as the parent is faster
than opening MyVeryOwnKey , closing MyVeryOwnKey , and then opening MyVeryOwnKey\HasASubKey .

Creating Registrar Scripts

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/understanding-parse-trees.md

Registry Scripting Examples
3/4/2019 • 2 minutes to read • Edit Online

Add a Key to HKEY_CURRENT_USER

HKEY_CURRENT_USER
{
 'MyVeryOwnKey' = s 'HowGoesIt'
}

HKCU
{
 'MyVeryOwnKey' = s 'HowGoesIt'
 {
 'HasASubkey'
 {
 'PrettyCool' = d '55'
 val 'ANameValue' = s 'WithANamedValue'
 }
 }
}

Register the Registrar COM Server

The scripting examples in this topic demonstrate how to add a key to the system registry, register the Registrar
COM server, and specify multiple parse trees.

The following parse tree illustrates a simple script that adds a single key to the system registry. In particular, the
script adds the key, MyVeryOwnKey , to HKEY_CURRENT_USER . It also assigns the default string value of HowGoesIt to the
new key:

This script can easily be extended to define multiple subkeys as follows:

Now, the script adds a subkey, HasASubkey , to MyVeryOwnKey . To this subkey, it adds both the PrettyCool subkey
(with a default DWORD value of 55) and the ANameValue named value (with a string value of WithANamedValue).

The following script registers the Registrar COM server itself.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/registry-scripting-examples.md

HKCR
{
 ATL.Registrar = s 'ATL Registrar Class'
 {
 CLSID = s '{44EC053A-400F-11D0-9DCD-00A0C90391D3}'
 }
 NoRemove CLSID
 {
 ForceRemove {44EC053A-400F-11D0-9DCD-00A0C90391D3} = s 'ATL Registrar Class'
 {
 ProgID = s 'ATL.Registrar'
 InprocServer32 = s '%MODULE%'
 {
 val ThreadingModel = s 'Apartment'
 }
 }
 }
}

Specify Multiple Parse Trees

HKCR
{
 'MyVeryOwnKey' = s 'HowGoesIt'
}
HKEY_CURRENT_USER
{
 'MyVeryOwnKey' = s 'HowGoesIt'
}

At run time, this parse tree adds the ATL.Registrar key to HKEY_CLASSES_ROOT . To this new key, it then:

Specifies ATL Registrar Class as the key's default string value.

Adds CLSID as a subkey.

Specifies {44EC053A-400F-11D0-9DCD-00A0C90391D3} for CLSID . (This value is the Registrar's CLSID for use
with CoCreateInstance .)

Since CLSID is shared, it should not be removed in Unregister mode. The statement, NoRemove CLSID , does this by
indicating that CLSID should be opened in Register mode and ignored in Unregister mode.

The ForceRemove statement provides a housekeeping function by removing a key and all of its subkeys before re-
creating the key. This can be useful if the names of the subkeys have changed. In this scripting example,
ForceRemove checks to see if {44EC053A-400F-11D0-9DCD-00A0C90391D3} already exists. If it does, ForceRemove :

Recursively deletes {44EC053A-400F-11D0-9DCD-00A0C90391D3} and all of its subkeys.

Re-creates {44EC053A-400F-11D0-9DCD-00A0C90391D3} .

Adds ATL Registrar Class as the default string value for {44EC053A-400F-11D0-9DCD-00A0C90391D3} .

The parse tree now adds two new subkeys to {44EC053A-400F-11D0-9DCD-00A0C90391D3} . The first key, ProgID , gets a
default string value that is the ProgID. The second key, InprocServer32 , gets a default string value, %MODULE% , that
is a preprocessor value explained in the section, Using Replaceable Parameters (The Registrar's Preprocessor), of
this article. InprocServer32 also gets a named value, ThreadingModel , with a string value of Apartment .

To specify more than one parse tree in a script, simply place one tree at the end of another. For example, the
following script adds the key, MyVeryOwnKey , to the parse trees for both HKEY_CLASSES_ROOT and HKEY_CURRENT_USER :

NOTENOTE

See also

In a Registrar script, 4K is the maximum token size. (A token is any recognizable element in the syntax.) In the previous
scripting example, HKCR , HKEY_CURRENT_USER , 'MyVeryOwnKey' , and 'HowGoesIt' are all tokens.

Creating Registrar Scripts

Using Replaceable Parameters (The Registrar's
Preprocessor)
3/4/2019 • 2 minutes to read • Edit Online

Using %MODULE%

Concatenating Run-Time Data with Script Data

'MySampleKey' = s '%MODULE%, 1'

TCHAR szModule[_MAX_PATH];
::GetModuleFileName(_AtlBaseModule.GetModuleInstance(), szModule, _MAX_PATH);
p->AddReplacement(OLESTR("Module"), T2OLE(szModule));

NOTENOTE

NOTENOTE

Replaceable parameters allow a Registrar's client to specify run-time data. To do this, the Registrar maintains a
replacement map into which it enters the values associated with the replaceable parameters in your script. The
Registrar makes these entries at run time.

The ATL Control Wizard automatically generates a script that uses %MODULE% . ATL uses this replaceable parameter
for the actual location of your server's DLL or EXE.

Another use of the preprocessor is to concatenate run-time data with script data. For example, suppose an entry is
needed that contains a full path to a module with the string " , 1 " appended at the end. First, define the following
expansion:

Then, before calling one of the script processing methods listed in Invoking Scripts, add a replacement to the map:

During the parsing of the script, the Registrar expands '%MODULE%, 1' to c:\mycode\mydll.dll, 1 .

In a Registrar script, 4K is the maximum token size. (A token is any recognizable element in the syntax.) This includes tokens
that were created or expanded by the preprocessor.

To substitute replacement values at run time, remove the call in the script to the DECLARE_REGISTRY_RESOURCE or
DECLARE_REGISTRY_RESOURCEID macro. Instead, replace it with your own UpdateRegistry method that calls
CAtlModule::UpdateRegistryFromResourceD or CAtlModule::UpdateRegistryFromResourceS, and pass your array of
_ATL_REGMAP_ENTRY structures. Your array of _ATL_REGMAP_ENTRY must have at least one entry that is set to
{NULL,NULL}, and this entry should always be the last entry. Otherwise, an access violation error will be generated when
UpdateRegistryFromResource is called.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/using-replaceable-parameters-the-registrar-s-preprocessor.md

NOTENOTE

See also

When building a project that outputs an executable, ATL automatically adds quotation marks around the path name created
at run time with the %MODULE% registrar script parameter. If you do not want the path name to include the quotation
marks, use the new %MODULE_RAW% parameter instead.

When building a project that outputs a DLL, ATL will not add quotation marks to the path name if %MODULE% or
%MODULE_RAW% is used.

Creating Registrar Scripts

Invoking Scripts
3/4/2019 • 2 minutes to read • Edit Online

METHOD SYNTAX/DESCRIPTION

ResourceRegister HRESULT ResourceRegister(LPCOLESTR resFileName ,
UINT nID , LPCOLESTR szType);

Registers the script contained in a module's resource.
resFileName indicates the UNC path to the module itself. nID
and szType contain the resource's ID and type, respectively.

ResourceUnregister HRESULT ResourceUnregister(LPCOLESTR resFileName ,
UINT nID , LPCOLESTR szType);

Unregisters the script contained in a module's resource.
resFileName indicates the UNC path to the module itself. nID
and szType contain the resource's ID and type, respectively.

ResourceRegisterSz HRESULT ResourceRegisterSz(LPCOLESTR resFileName ,
LPCOLESTR szID , LPCOLESTR szType);

Registers the script contained in a module's resource.
resFileName indicates the UNC path to the module itself. szID
and szType contain the resource's string identifier and type,
respectively.

ResourceUnregisterSz HRESULT ResourceUnregisterSz(LPCOLESTR resFileName ,
LPCOLESTR szID , LPCOLESTR szType);

Unregisters the script contained in a module's resource.
resFileName indicates the UNC path to the module itself. szID
and szType contain the resource's string identifier and type,
respectively.

FileRegister HRESULT FileRegister(LPCOLESTR fileName);

Registers the script in a file. fileName is a UNC path to a file
that contains (or is) a resource script.

FileUnregister HRESULT FileUnregister(LPCOLESTR fileName);

Unregisters the script in a file. fileName is a UNC path to a file
that contains (or is) a resource script.

StringRegister HRESULT StringRegister(LPCOLESTR data);

Registers the script in a string. data contains the script itself.

Using Replaceable Parameters (The Registrar's Preprocessor) discusses replacement maps and mentions the
Registrar method AddReplacement. The Registrar has eight other methods specific to scripting, and all are
described in the following table.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/invoking-scripts.md

StringUnregister HRESULT StringUnregister(LPCOLESTR data);

Unregisters the script in a string. data contains the script
itself.

METHOD SYNTAX/DESCRIPTION

See also

ResourceRegisterSz and ResourceUnregisterSz, are similar to ResourceRegister and ResourceUnregister,
but allow you to specify a string identifier.

The methods FileRegister and FileUnregister are useful if you do not want the script in a resource or if you want
the script in its own file. The methods StringRegister and StringUnregister allow the .rgs file to be stored in a
dynamically allocated string.

Creating Registrar Scripts

Setting Up a Static Link to the Registrar Code (C++
Only)
3/4/2019 • 2 minutes to read • Edit Online

To create a static link using DECLARE_REGISTRY_RESOURCEID

See also

C++ clients can create a static link to the Registrar's code. Static linking of the Registrar's parser adds
approximately 5K to a release build.

The simplest way to set up static linking assumes you have specified DECLARE_REGISTRY_RESOURCEID in your
object's declaration. (This is the default specification used by the ATL.)

1. Specify /D _ATL_STATIC_REGISTRY instead of /D _ATL_DLL.

2. Recompile.

Registry Component (Registrar)

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/setting-up-a-static-link-to-the-registrar-code-cpp-only.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/d-preprocessor-definitions

Programming with ATL and C Run-Time Code
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

See also

This section discusses the benefits of using the C Run-Time Library (CRT) with either static or dynamic linking.

Benefits and Tradeoffs of the Method Used to Link to the CRT
Summarizes the benefits and tradeoffs involved in linking statically to the CRT or linking dynamically.

Linking to the CRT in Your ATL Project
Discusses the project settings and linker options for linking to the CRT; also provides details on how linking to the
CRT affects your program image.

ATL
Provides links to conceptual topics on how to program using the Active Template Library.

DLLs and Visual C++ run-time library behavior
Provides details on how the VCRuntime and CRT startup code works.

C Run-Time Libraries
Discusses the various .lib files that comprise the C run-time libraries and lists their associated compiler options
and preprocessor directives.

Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/programming-with-atl-and-c-run-time-code.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/run-time-library-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features

Benefits and Tradeoffs of the Method Used to Link to
the CRT
3/4/2019 • 2 minutes to read • Edit Online

METHOD BENEFIT TRADEOFF

Statically linking to the CRT

(Runtime Library set to Single-
threaded)

The CRT DLL is not required on the
system where the image will run.

About 25K of startup code is added to
your image, substantially increasing its
size.

Dynamically linking to the CRT

(Runtime Library set to Multi-
threaded)

Your image does not require the CRT
startup code, so it is much smaller.

The CRT DLL must be on the system
running the image.

See also

Your project can link with the CRT either dynamically or statically. The table below outlines the benefits and
tradeoffs involved in choosing which method to use.

The topic Linking to the CRT in Your ATL Project discusses how to select the manner in which to link to the CRT.

Programming with ATL and C Run-Time Code
DLLs and Visual C++ run-time library behavior
CRT Library Features

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/benefits-and-tradeoffs-of-the-method-used-to-link-to-the-crt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/run-time-library-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features

Linking to the CRT in Your ATL Project
3/4/2019 • 2 minutes to read • Edit Online

Effects of Linking to the CRT on Your Program Image

Optimization Options

See also

The C Run-Time Libraries (CRT) provide many useful functions that can make programming much easier during
ATL development. All ATL projects link to the CRT library. You can see the advantages and disadvantages of linking
method in Benefits and Tradeoffs of the Method Used to Link to the CRT.

If you statically link to the CRT, code from the CRT is placed in your executable image and you do not need to have
the CRT DLL present on a system to run your image. If you dynamically link to the CRT, references to the code in
the CRT DLL are placed in your image, but not the code itself. In order for your image to run on a given system,
the CRT DLL must be present on that system. Even when you dynamically link to the CRT, you may find that some
code can be statically linked (for example, DllMainCRTStartup).

When you link your image, you either explicitly or implicitly specify an entry point that the operating system will
call into after loading the image. For a DLL, the default entry point is DllMainCRTStartup . For an EXE, it is
WinMainCRTStartup . You can override the default with the /ENTRY linker option. The CRT provides an

implementation for DllMainCRTStartup , WinMainCRTStartup , and wWinMainCRTStartup (the Unicode entry point for
an EXE). These CRT-provided entry points call constructors on global objects and initialize other data structures
that are used by some CRT functions. This startup code adds about 25K to your image if it is linked statically. If it is
linked dynamically, most of the code is in the DLL, so your image size stays small.

For more information, see the linker topic /ENTRY (Entry-Point Symbol).

Using the linker option /OPT:NOWIN98 can further reduce a default ATL control by 10K, at the expense of
increased loading time on Windows 98 systems. For more information on linking options, see /OPT
(Optimizations).

Programming with ATL and C Run-Time Code
DLLs and Visual C++ run-time library behavior

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/linking-to-the-crt-in-your-atl-project.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/entry-entry-point-symbol
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/opt-optimizations
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/run-time-library-behavior

Programming with CComBSTR (ATL)
3/4/2019 • 2 minutes to read • Edit Online

Conversion Issues

ExampleExample

// Declare a CComBSTR object. Although the argument is ANSI,
// the constructor converts it into UNICODE.
CComBSTR bstrMyString("Hello World");
// Convert the string into an ANSI string
CW2A szMyString(bstrMyString);
// Display the ANSI string
MessageBoxA(NULL, szMyString, "String Test", MB_OK);

ExampleExample

// The following converts the ANSI string to Unicode
CComBSTR bstr1("Test");
// The following uses a Unicode string at compile time
CComBSTR bstr2(L"Test");

Scope Issues

ExampleExample

The ATL class CComBSTR provides a wrapper around the BSTR data type. While CComBSTR is a useful tool, there
are several situations that require caution.

Conversion Issues

Scope Issues

Explicitly Freeing the CComBSTR Object

Using CComBSTR Objects in Loops

Memory Leak Issues

Although several CComBSTR methods will automatically convert an ANSI string argument into Unicode, the
methods will always return Unicode format strings. To convert the output string back to ANSI, use an ATL
conversion class. For more information on the ATL conversion classes, see ATL and MFC String Conversion
Macros.

If you are using a string literal to modify a CComBSTR object, use wide character strings. This will reduce
unnecessary conversions.

As with any well-behaved class, CComBSTR will free its resources when it goes out of scope. If a function returns a
pointer to the CComBSTR string, this can cause problems, as the pointer will reference memory that has already
been freed. In these cases, use the Copy method, as shown below.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/programming-with-ccombstr-atl.md

// The wrong way to do it
BSTR * MyBadFunction()
{
 // Create the CComBSTR object
 CComBSTR bstrString(L"Hello World");
 // Convert the string to uppercase
 HRESULT hr;
 hr = bstrString.ToUpper();

 // Return a pointer to the BSTR. ** Bad thing to do **
 return &bstrString;
}
// The correct way to do it
HRESULT MyGoodFunction(/*[out]*/ BSTR* bstrStringPtr)
{
 // Create the CComBSTR object
 CComBSTR bstrString(L"Hello World");
 // Convert the string to uppercase
 HRESULT hr;
 hr = bstrString.ToUpper();
 if (hr != S_OK)
 return hr;
 // Return a copy of the string.
 return bstrString.CopyTo(bstrStringPtr);
}

Explicitly Freeing the CComBSTR Object

ExampleExample

// Declare a CComBSTR object
CComBSTR bstrMyString(L"Hello World");
// Free the string explicitly
::SysFreeString(bstrMyString);
// The string will be freed a second time
// when the CComBSTR object goes out of scope,
// which is invalid.

Using CComBSTR Objects in Loops

ExampleExample

// This is not an efficient way to use a CComBSTR object.
CComBSTR bstrMyString;
HRESULT hr;
while (bstrMyString.Length() < 1000)
 hr = bstrMyString.Append(L"*");

Memory Leak Issues

It is possible to explicitly free the string contained in the CComBSTR object before the object goes out scope. If the
string is freed, the CComBSTR object is invalid.

As the CComBSTR class allocates a buffer to perform certain operations, such as the += operator or Append

method, it is not recommended that you perform string manipulation inside a tight loop. In these situations,
CStringT provides better performance.

Passing the address of an initialized CComBSTR to a function as an [out] parameter causes a memory leak.

CComBSTR bstrLeak(L"Initialized");
HRESULT hr = MyGoodFunction(&bstrLeak);

See also

In the example below, the string allocated to hold the string "Initialized" is leaked when the function
MyGoodFunction replaces the string.

To avoid the leak, call the Empty method on existing CComBSTR objects before passing the address as an [out]
parameter.

Note that the same code would not cause a leak if the function's parameter was [in, out].

Concepts
CStringT Class
wstring
String Conversion Macros

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/basic-string-class

ATL Encoding Reference
3/4/2019 • 2 minutes to read • Edit Online

FunctionsFunctions

AtlGetHexValue Call this function to get the numeric value of a hexadecimal
digit.

AtlHexDecode Decodes a string of data that has been encoded as
hexadecimal text such as by a previous call to AtlHexEncode.

AtlHexDecodeGetRequiredLength Call this function to get the size in bytes of a buffer that could
contain data decoded from a hex-encoded string of the
specified length.

AtlHexEncode Call this function to encode some data as a string of
hexadecimal text.

AtlHexEncodeGetRequiredLength Call this function to get the size in characters of a buffer that
could contain a string encoded from data of the specified size.

AtlUnicodeToUTF8 Call this function to convert a Unicode string to UTF-8.

BEncode Call this function to convert some data using the "B"
encoding.

BEncodeGetRequiredLength Call this function to get the size in characters of a buffer that
could contain a string encoded from data of the specified size.

EscapeXML Call this function to convert characters that are unsafe for use
in XML to their safe equivalents.

GetExtendedChars Call this function to get the number of extended characters in
a string.

IsExtendedChar Call this function to find out if a given character is an extended
character (less than 32, greater than 126, and not a tab,
linefeed or carriage return)

QEncode Call this function to convert some data using the "Q"
encoding.

QEncodeGetRequiredLength Call this function to get the size in characters of a buffer that
could contain a string encoded from data of the specified size.

QPDecode Decodes a string of data that has been encoded in quoted-
printable format such as by a previous call to QPEncode.

Encoding in a range of common Internet standards such as uuencode, hexadecimal, and UTF8 is supported by the
code found in atlenc.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-encoding-reference.md

QPDecodeGetRequiredLength Call this function to get the size in bytes of a buffer that could
contain data decoded from quoted-printable-encoded string
of the specified length.

QPEncode Call this function to encode some data in quoted-printable
format.

QPEncodeGetRequiredLength Call this function to get the size in characters of a buffer that
could contain a string encoded from data of the specified size.

UUDecode Decodes a string of data that has been uuencoded such as by
a previous call to UUEncode.

UUDecodeGetRequiredLength Call this function to get the size in bytes of a buffer that could
contain data decoded from a uuencoded string of the
specified length.

UUEncode Call this function to uuencode some data.

UUEncodeGetRequiredLength Call this function to get the size in characters of a buffer that
could contain a string encoded from data of the specified size.

See also
Concepts
ATL COM Desktop Components

ATL Utilities Reference
3/4/2019 • 3 minutes to read • Edit Online

ClassesClasses

CPathT Class This class represents a path.

CDebugReportHook Class Use this class to send debug reports to a named pipe.

CNonStatelessWorker Class Receives requests from a thread pool and passes them on to a
worker object that is created and destroyed on each request.

CNoWorkerThread Class Use this class as the argument for the MonitorClass

template parameter to cache classes if you want to disable
dynamic cache maintenance.

CThreadPool Class This class provides a pool of worker threads that process a
queue of work items.

CUrl Class This class represents a URL. It allows you to manipulate each
element of the URL independently of the others whether
parsing an existing URL string or building a string from
scratch.

CWorkerThread Class This class creates a worker thread or uses an existing one,
waits on one or more kernel object handles, and executes a
specified client function when one of the handles is signaled.

TypedefsTypedefs

CPath A specialization of CPathT using CString .

CPathA A specialization of CPathT using CStringA .

CPathW A specialization of CPathT using CStringW .

ATL_URL_PORT The type used by CUrl for specifying a port number.

EnumsEnums

ATL_URL_SCHEME The members of this enumeration provide constants for the
schemes understood by CUrl.

FunctionsFunctions

ATL provides code for manipulating paths and URLs in the form of CPathT and CUrl. A thread pool, CThreadPool,
can be used in your applications. This code can be found in atlpath.h and atlutil.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-utilities-reference.md

AtlCanonicalizeUrl Call this function to canonicalize a URL, which includes
converting unsafe characters and spaces into escape
sequences.

AtlCombineUrl Call this function to combine a base URL and a relative URL
into a single, canonical URL.

AtlEscapeUrl Call this function to convert all unsafe characters to escape
sequences.

AtlGetDefaultUrlPort Call this function to get the default port number associated
with a particular internet protocol or scheme.

AtlHexValue Call this function to get the numeric value of a hexadecimal
digit.

AtlIsUnsafeUrlChar Call this function to find out whether a character is safe for
use in a URL.

AtlUnescapeUrl Call this function to convert escaped characters back to their
original values.

SystemTimeToHttpDate Call this function to convert a system time to a string in a
format suitable for using in HTTP headers.

|ATLPath::AddBackslash|This function is an overloaded wrapper for PathAddBackslash.|
|ATLPath::AddExtension|This function is an overloaded wrapper for PathAddExtension.| |ATLPath::Append|This
function is an overloaded wrapper for PathAppend.| |ATLPath::BuildRoot|This function is an overloaded wrapper
for PathBuildRoot.| |ATLPath::Canonicalize|This function is an overloaded wrapper for PathCanonicalize.|
|ATLPath::Combine|This function is an overloaded wrapper for PathCombine.| |ATLPath::CommonPrefix|This
function is an overloaded wrapper for PathCommonPrefix.| |ATLPath::CompactPath|This function is an overloaded
wrapper for PathCompactPath.| |ATLPath::CompactPathEx|This function is an overloaded wrapper for
PathCompactPathEx.| |ATLPath::FileExists|This function is an overloaded wrapper for PathFileExists.|
ATLPath::FindExtension	This function is an overloaded wrapper for PathFindExtension.
ATLPath::FindFileName	This function is an overloaded wrapper for PathFindFileName.
ATLPath::GetDriveNumber	This function is an overloaded wrapper for PathGetDriveNumber.
ATLPath::IsDirectory	This function is an overloaded wrapper for PathIsDirectory.
function is an overloaded wrapper for PathIsFileSpec.	
for PathIsPrefix.	
ATLPath::IsRoot	This function is an overloaded wrapper for PathIsRoot.
overloaded wrapper for PathIsSameRoot.	
PathIsUNC.	
ATLPath::IsUNCServerShare	This function is an overloaded wrapper for PathIsUNCServerShare.
ATLPath::MakePretty	This function is an overloaded wrapper for PathMakePretty.
function is an overloaded wrapper for PathMatchSpec.	
wrapper for PathQuoteSpaces.	
PathRelativePathTo.	
ATLPath::RemoveBackslash	This function is an overloaded wrapper for PathRemoveBackslash.
ATLPath::RemoveBlanks	This function is an overloaded wrapper for PathRemoveBlanks.
ATLPath::RemoveExtension	This function is an overloaded wrapper for PathRemoveExtension.
ATLPath::RemoveFileSpec	This function is an overloaded wrapper for PathRemoveFileSpec.
ATLPath::RenameExtension	This function is an overloaded wrapper for PathRenameExtension.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathaddbackslasha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathaddextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathappenda
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathbuildroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcanonicalizea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcombinea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcommonprefixa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcompactpatha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcompactpathexa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfileexistsa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindfilenamea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathgetdrivenumbera
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisdirectorya
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisfilespeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisprefixa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisrelativea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathissameroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisunca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisuncservera
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisuncserversharea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathmakeprettya
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathmatchspeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathquotespacesa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathrelativepathtoa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveargsa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremovebackslasha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveblanksa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremovefilespeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathrenameextensiona

See also

|ATLPath::SkipRoot|This function is an overloaded wrapper for PathSkipRoot.| |ATLPath::StripPath|This function is
an overloaded wrapper for PathStripPath.| |ATLPath::StripToRoot|This function is an overloaded wrapper for
PathStripToRoot.| |ATLPath::UnquoteSpaces|This function is an overloaded wrapper for PathUnquoteSpaces.|

Concepts
ATL COM Desktop Components

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathskiproota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathstrippatha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathstriptoroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathunquotespacesa

ATL Class Overview
3/4/2019 • 2 minutes to read • Edit Online

Class Factories Memory Management

Class Information MMC Snap-In

Collection Object Safety

COM Modules Persistence

Composite Controls Properties and Property Pages

Connection Points Registry Support

Control Containment Running Objects

Controls: General Support Security

Data Transfer Service Provider Support

Data Types Site Information

Debugging and Exception String and Text

Dual Interfaces Tear-Off Interfaces

Enumerators and Collections Thread Pooling

Error Information Threading Models and Critical Sections

File Handling UI Support

Interface Pointers Windows Support

IUnknown Implementation Utility

See also

Classes in the Active Template Library (ATL) can be categorized as follows:

For additional classes that can be used in ATL projects, see Shared Classes.

Classes and structs
ATL COM Desktop Components
Functions
Global Variables
Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/atl-class-overview.md

Typedefs

Class Factories Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes implement or support a class factory:

CComClassFactory Provides a default class factory for object creation.

CComClassFactory2 Controls object creation through a license.

CComClassFactoryAutoThread Allows objects to be created in multiple thread-pooled apartments.

CComClassFactorySingleton Creates a single object.

CComCoClass Defines the class factory for the object.

Class Overview
Aggregation and Class Factory Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/class-factories-classes.md

Class Information Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following class provides support for retrieving class information:

IProvideClassInfo2Impl Provides access to type information. Retrieves the outgoing IID for the object's default
event set.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/class-information-classes.md

Collection Classes
3/4/2019 • 2 minutes to read • Edit Online

The following classes provide support for arrays, lists, maps, and also traits methods for helping with comparisons
and element access.

CAtlArray This class implements an array object.

CAtlList This class provides methods for creating and managing a list object.

CAtlMap This class provides methods for creating and managing a map object.

CAutoPtrArray This class provides methods useful when constructing an array of smart pointers.

CAutoPtrElementTraits This class provides methods, static functions, and typedefs useful when creating
collections of smart pointers.

CAutoPtrList This class provides methods useful when constructing a list of smart pointers.

CAutoVectorPtrElementTraits This class provides methods, static functions, and typedefs useful when
creating collections of smart pointers using vector new and delete operators.

CComQIPtrElementTraits This class provides methods, static functions, and typedefs useful when creating
collections of COM interface pointers.

CComSafeArray This class is a wrapper for the SAFEARRAY Data Type structure.

CComSafeArrayBound This class is a wrapper for a SAFEARRAYBOUND structure.

CComUnkArray This class stores IUnknown pointers and is designed to be used as a parameter to the
IConnectionPointImpl template class.

CDefaultCharTraits This class provides two static functions for converting characters between uppercase
and lowercase.

CDefaultCompareTraits This class provides default element comparison functions.

CDefaultElementTraits This class provides default methods and functions for a collection class.

CDefaultHashTraits This class provides a static function for calculating hash values.

CElementTraits This class is used by collection classes to provide methods and functions for moving,
copying, comparison, and hashing operations.

CElementTraitsBase This class provides default copy and move methods for a collection class.

CHeapPtrElementTraits This class provides methods, static functions, and typedefs useful when creating
collections of heap pointers.

CHeapPtrList This class provides methods useful when constructing a list of heap pointers.

CInterfaceArray This class provides methods useful when constructing an array of COM interface pointers.

CInterfaceList This class provides methods useful when constructing a list of COM interface pointers.

CPrimitiveElementTraits This class provides default methods and functions for a collection class composed
of primitive data types.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/collection-classes.md
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagsafearray
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagsafearraybound

Related Articles

See also

CRBMap This class represents a mapping structure, using a Red-Black binary tree.

CRBMultiMap This class represents a mapping structure that allows each key to be associated with more
than one value, using a Red-Black binary tree.

CRBTree This class provides methods for creating and utilizing a Red-Black tree.

CSimpleArray This class provides methods for managing a simple array.

CSimpleArrayEqualHelper This class is a helper for the CSimpleArray class.

CSimpleArrayEqualHelperFalse This class is a helper for the CSimpleArray class.

CSimpleMap This class provides support for a simple mapping array.

CSimpleMapEqualHelper This class is a helper for the CSimpleMap class.

CSimpleMapEqualHelperFalse This class is a helper for the CSimpleMap class.

CStringElementTraits This class provides static functions used by collection classes storing CString objects.

CStringElementTraitsI This class provides static functions related to strings stored in collection class objects.
It is similar to CStringElementTraits, but performs case-insensitive comparisons.

CStringRefElementTraits This class provides static functions related to strings stored in collection class
objects. The string objects are dealt with as references.

ATL Collection Classes

Class Overview
Collection Classes

COM Modules Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following classes provide support for a COM module:

CAtlBaseModule This class is instantiated in every ATL project.

CAtlComModule This class implements a COM server module.

CAtlModule This class provides methods used by several ATL module classes.

CAtlModuleT This class implements an ATL module.

CAtlExeModuleT This class represents the module for an application.

CAtlServiceModuleT This class implements a service.

CAtlWinModule This class provides support for ATL windowing components.

CComModule This class implements a DLL or EXE module. Obsolete in ATL 7.0.

CComAutoThreadModule This class implements an EXE module, with support for multiple thread-pooled
apartments. Obsolete in ATL 7.0.

ATL Module Classes

Class Overview
Module Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/com-modules-classes.md

Composite Controls Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following class provides support for creating composite controls

CComCompositeControl ActiveX controls derived from CComCompositeControl are hosted by a standard dialog
box. These types of controls are called composite controls because they are able to host other controls (native
Windows controls and ActiveX controls).

Composite Control Fundamentals

Class Overview
Composite Control Macros
Composite Control Global Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/composite-controls-classes.md

Connection Points Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following classes provide support for connection points:

IConnectionPointContainerImpl Implements a connection point container.

IConnectionPointImpl Implements a connection point.

IPropertyNotifySinkCP Implements a connection point representing the IPropertyNotifySink interface.

CComDynamicUnkArray Manages unlimited connections between a connection point and its sinks.

CComUnkArray Manages a fixed number of connections between a connection point and its sinks.

CFirePropNotifyEvent Notifies a client's sink that an object's property has changed or is about to change.

IDispEventImpl Provides support for connection points for an ATL COM object. These connection points are
mapped with an event sink map, which is provided by your COM object.

IDispEventSimpleImpl Works in conjunction with the event sink map in your class to route events to the
appropriate handler function.

Connection Points

Event Handling and ATL

Class Overview
Connection Point Macros
Connection Point Global Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/connection-points-classes.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink

Control Containment Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following classes provide containment support for hosting controls:

CAxWindow Provides methods for manipulating a window that hosts an ActiveX control.

CAxWindow2T Provides methods for manipulating a window that hosts an ActiveX control and also has
support for hosting licensed ActiveX controls.

IAxWinAmbientDispatch Call the methods on this interface to set the ambient properties available to a
hosted control.

IAxWinHostWindow Call the methods on this interface to create and/or attach a control to a host object, or
to get an interface from a hosted control.

ATL Control Containment FAQ

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/control-containment-classes.md

Controls: General Support Classes
3/4/2019 • 2 minutes to read • Edit Online

Sample Program

Related Articles

See also

The following classes provide general support for ATL controls:

CComControl Consists of helper functions and data members that are essential to ATL controls.

IOleControlImpl Provides methods necessary for controls.

IOleObjectImpl Provides the principal methods through which a container communicates with a control.
Manages the activation and deactivation of in-place controls.

IQuickActivateImpl Combines initialization into a single call to help containers avoid delays when loading
controls.

IPointerInactiveImpl Provides minimal mouse interaction for an otherwise inactive control.

ATLFire

ATL Tutorial

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/controls-general-support-classes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Data Transfer Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes support various types of data transfer:

IDataObjectImpl Supports Uniform Data Transfer by using standard formats to retrieve and set data.
Handles data change notifications by managing connections to advise sinks.

CBindStatusCallback Allows an asynchronous moniker to send and receive information about the
asynchronous data transfer to and from your object.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/data-transfer-classes.md

Data Types Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes wrap C++ data types:

CComBSTR Wraps the BSTR data type.

CComVariant Wraps the VARIANT data type.

CComCurrency Includes methods and operators for creating and managing a CURRENCY object.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/data-types-classes.md

Debugging and Exceptions Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes provide support for exception handling and debugging.

CAtlDebugInterfacesModule This class provides support for debugging interfaces.

CAtlException This class defines an ATL exception.

Class Overview
Debugging and Error Reporting Global Functions
Debugging and Error Reporting Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/debugging-and-exceptions-classes.md

Dual Interfaces Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following class provides support for dual interfaces:

IDispatchImpl Implements the IDispatch portion of a dual interface. For more information, see Implementing
the IDispatch Interface.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/dual-interfaces-classes.md
https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface

Enumerators and Collections Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following classes provide support for COM collections and enumerations:

CComEnum Defines a COM enumerator object based on an array.

CComEnumImpl Provides the implementation for a COM enumerator interface where the items being
enumerated are stored in an array.

CComEnumOnSTL Defines a COM enumerator object based on a C++ Standard Library collection.

IEnumOnSTLImpl Provides the implementation for a COM enumerator interface where the items being
enumerated are stored in a C++ Standard Library-compatible container.

ICollectionOnSTLImpl Provides the implementation for the Count , Item , and _NewEnum properties of a
collection interface.

ATL Collections and Enumerators

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/enumerators-and-collections-classes.md

Error Information Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following class indicates how error information is handled:

ISupportErrorInfoImpl Determines whether the object supports the IErrorInfo interface. IErrorInfo allows
error information to be propagated back to the client.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/error-information-classes.md
https://docs.microsoft.com/windows/desktop/api/oaidl/nn-oaidl-ierrorinfo

File Handling Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes provide methods for handling files, temporary files, and memory-mapped files.

CAtlFile This class provides a thin wrapper around the Windows file-handling API.

CAtlFileMapping This class represents a memory-mapped file, adding a cast operator to the methods of
CAtlFileMappingBase.

CAtlFileMappingBase This class represents a memory-mapped file.

CAtlTemporaryFile This class provides methods for the creation and use of a temporary file.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/file-handling-classes.md

Interface Pointers Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes manage a given interface pointer:

CComPtr Performs automatic reference counting.

CComQIPtr Similar to CComPtr , but also performs automatic querying of interfaces.

CInterfaceArray Provides methods useful when constructing an array of COM interface pointers.

CInterfaceList Provides methods useful when constructing a list of COM interface pointers.

CComGITPtr Provides methods for dealing with interface pointers and the global interface table (GIT).

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/interface-pointers-classes.md

IUnknown Implementation Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following classes implement IUnknown and related methods:

CComObjectRootEx Manages reference counting for both aggregated and nonaggregated objects. Allows
you to specify a threading model.

CComObjectRoot Manages reference counting for both aggregated and nonaggregated objects. Uses the
default threading model of the server.

CComAggObject Implements IUnknown for an aggregated object.

CComObject Implements IUnknown for a nonaggregated object.

CComPolyObject Implements IUnknown for aggregated and nonaggregated objects. Using CComPolyObject

avoids having both CComAggObject and CComObject in your module. A single CComPolyObject object handles
both aggregated and nonaggregated cases.

CComObjectNoLock Implements IUnknown for a nonaggregated object, without modifying the module lock
count.

CComTearOffObject Implements IUnknown for a tear-off interface.

CComCachedTearOffObject Implements IUnknown for a "cached" tear-off interface.

CComContainedObject Implements IUnknown for the inner object of an aggregation or a tear-off interface.

CComObjectGlobal Manages a reference count on the module to ensure your object won't be deleted.

CComObjectStack Creates a temporary COM object, using a skeletal implementation of IUnknown .

Fundamentals of ATL COM Objects

Class Overview
Aggregation and Class Factory Macros
COM Map Macros
COM Map Global Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/iunknown-implementation-classes.md

Memory Management Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes provide support for heap pointers, smart pointers, and other memory allocation routines.

CAutoPtr This class represents a smart pointer object.

CAutoPtrArray This class provides methods useful when constructing an array of smart pointers.

CAutoPtrList This class provides methods useful when constructing a list of smart pointers.

CAutoVectorPtr This class represents a smart pointer object using vector new and delete operators.

CComAllocator This class provides methods for managing memory using COM memory routines.

CComGITPtr This class provides methods for dealing with interface pointers and the global interface table
(GIT).

CComHeap This class implements IAtlMemMgr using the COM memory allocation functions.

CComHeapPtr A smart pointer class for managing heap pointers.

CComPtr A smart pointer class for managing COM interface pointers.

CComPtrBase This class provides a basis for smart pointer classes using COM-based memory routines.

CComQIPtr A smart pointer class for managing COM interface pointers.

CCRTAllocator This class provides methods for managing memory using CRT memory routines.

CCRTHeap This class implements IAtlMemMgr using the CRT heap functions.

CGlobalHeap This class implements IAtlMemMgr using the Win32 global heap functions.

CHandle This class provides methods for creating and using a handle object.

CHeapPtr A smart pointer class for managing heap pointers.

CHeapPtrBase This class forms the basis for several smart heap pointer classes.

CHeapPtrList This class provides methods useful when constructing a list of heap pointers.

CLocalHeap This class implements IAtlMemMgr using the Win32 local heap functions.

CWin32Heap This class implements IAtlMemMgr using the Win32 heap allocation functions.

IAtlMemMgr This class represents the interface to a memory manager.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/memory-management-classes.md

MMC Snap-In Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes provide support for developing Microsoft Management Console (MMC) snap-in
components:

CSnapInItemImpl Implements a snap-in node object, such as adding menu items and toolbars, and
forwarding commands for the snap-in node to the appropriate handler function.

CSnapInPropertyPageImpl Implements a snap-in property page object.

Class Overview
Snap-In Object Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/mmc-snap-in-classes.md

Object Safety Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following class provides support for object safety:

IObjectSafetyImpl Allows an object to be marked as safe for initialization or safe for scripting.

ATL Tutorial

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/object-safety-classes.md

Persistence Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following classes implement object persistence:

IPersistPropertyBagImpl Allows a client to load and save an object's properties to a property bag.

IPersistStreamInitImpl Allows a client to load and save an object's persistent data to a stream.

IPersistStorageImpl Allows a client to load and save an object's persistent data to a storage.

ATL Tutorial

Class Overview
Property Map Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/persistence-classes.md

Properties and Property Pages Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following classes support properties and property pages:

CComDispatchDriver Retrieves or sets an object's properties through an IDispatch pointer.

CStockPropImpl Implements the stock properties supported by ATL.

IPerPropertyBrowsingImpl Accesses the information in an object's property pages.

IPersistPropertyBagImpl Stores an object's properties in a client-supplied property bag.

IPropertyPageImpl Manages a particular property page within a property sheet.

IPropertyPage2Impl Similar to IPropertyPageImpl , but also allows a client to select a specific property in a
property page.

ISpecifyPropertyPagesImpl Obtains the CLSIDs for the property pages supported by an object.

ATL Tutorial

ATL COM Property Pages

Class Overview
Property Map Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/properties-and-property-pages-classes.md

Registry Support Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following class provides registry support:

CRegKey Contains methods for manipulating values in the system registry.

The ATL Registry Component (Registrar)

Class Overview
Registry Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/registry-support-classes.md

Running Objects Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following class provides support for running objects:

IRunnableObjectImpl Determines if an object is running, forces it to run, or locks it into the running state.

ATL Tutorial

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/running-objects-classes.md

Security Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes are wrappers for common Win32 security classes and objects.

CAccessToken This class is a wrapper for an access token.

CAcl This class is a wrapper for an ACL (access-control list) structure.

CDacl This class is a wrapper for a DACL (discretionary access-control list) structure.

CPrivateObjectSecurityDesc This class represents a private object security descriptor object.

CSacl This class is a wrapper for a SACL (system access-control list) structure.

CSecurityAttributes This class is a thin wrapper for the SECURITY_ATTRIBUTES structure.

CSecurityDesc This class is a wrapper for the SECURITY_DESCRIPTOR structure.

CSid This class is a wrapper for a SID (security identifier) structure.

CTokenGroups This class is a wrapper for the TOKEN_GROUPS structure.

CTokenPrivileges This class is a wrapper for the TOKEN_PRIVILEGES structure.

Class Overview
Security Global Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/security-classes.md

Service Provider Support Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following class provides support for service providers:

IServiceProviderImpl Locates a service specified by its GUID and returns the interface pointer for the requested
interface on the service.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/service-provider-support-classes.md

Site Information Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes allow an object to communicate with its site:

IObjectWithSiteImpl Retrieves and sets a pointer to an object's site. Used for objects that are not controls.

IOleObjectImpl Retrieves and sets a pointer to an object's site. Used for controls.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/site-information-classes.md

String and Text Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes provide support for strings and text string conversions.

CA2AEX This class is used by the string conversion macros CA2TEX and CT2AEX, and the typedef CA2A.

CA2CAEX This class is used by string conversion macros CA2CTEX and CT2CAEX, and the typedef CA2CA.

CA2WEX This class is used by the string conversion macros CA2TEX, CA2CTEX, CT2WEX, and CT2CWEX,
and the typedef CA2W.

CW2AEX This class is used by the string conversion macros CT2AEX, CW2TEX, CW2CTEX, and CT2CAEX,
and the typedef CW2A.

CW2CWEX This class is used by the string conversion macros CW2CTEX and CT2CWEX, and the typedef
CW2CW.

CW2WEX This class is used by the string conversion macros CW2TEX and CT2WEX, and the typedef
CW2W.

CComBSTR This class is a wrapper for BSTRs.

_U_STRINGorID This argument adapter class allows either resource names (LPCTSTR s) or resource IDs
(UINTs) to be passed to a function without requiring the caller to convert the ID to a string using the
MAKEINTRESOURCE macro.

Class Overview
ATL and MFC String Conversion Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/string-and-text-classes.md

Tear-Off Interfaces Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes provide support for tear-off interfaces:

CComTearOffObject Implements IUnknown for a tear-off interface.

CComCachedTearOffObject Implements IUnknown for a "cached" tear-off interface.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/tear-off-interfaces-classes.md

Thread Pooling Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes support thread pooling:

CComAutoThreadModule Implements an EXE module, with support for multiple thread-pooled
apartments.

CComApartment Manages an apartment in a thread-pooled EXE module.

CComSimpleThreadAllocator Manages thread selection for an EXE module.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/thread-pooling-classes.md

Threading Models and Critical Sections Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes define a threading model and critical section:

CAtlAutoThreadModule Implements a thread-pooled, apartment-model COM server.

CAtlAutoThreadModuleT Provides methods for implementing a thread-pooled, apartment-model COM
server.

CComMultiThreadModel Provides thread-safe methods for incrementing and decrementing a variable.
Provides a critical section.

CComMultiThreadModelNoCS Provides thread-safe methods for incrementing and decrementing a
variable. Does not provide a critical section.

CComSingleThreadModel Provides methods for incrementing and decrementing a variable. Does not
provide a critical section.

CComObjectThreadModel Determines the appropriate threading-model class for a single object class.

CComGlobalsThreadModel Determines the appropriate threading-model class for an object that is globally
available.

CComAutoCriticalSection Contains methods for obtaining and releasing a critical section. The critical
section is automatically initialized.

CComCriticalSection Contains methods for obtaining and releasing a critical section. The critical section
must be explicitly initialized.

CComFakeCriticalSection Mirrors the methods in CComCriticalSection without providing a critical section.
The methods in CComFakeCriticalSection do nothing.

CRTThreadTraits Provides the creation function for a CRT thread. Use this class if the thread will use CRT
functions.

Win32ThreadTraits Provides the creation function for a Windows thread. Use this class if the thread will not
use CRT functions.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/threading-models-and-critical-sections-classes.md

UI Support Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following classes provide general UI support:

IDocHostUIHandlerDispatch An interface to the Microsoft HTML parsing and rendering engine.

IOleObjectImpl Provides the principal methods through which a container communicates with a control.
Manages the activation and deactivation of in-place controls.

IOleInPlaceObjectWindowlessImpl Manages the reactivation of in-place controls. Enables a windowless
control to receive messages, as well as to participate in drag-and-drop operations.

IOleInPlaceActiveObjectImpl Assists communication between an in-place control and its container.

IViewObjectExImpl Enables a control to display itself directly and to notify the container of changes in its
display. Provides support for flicker-free drawing, non-rectangular and transparent controls, and hit testing.

ATL Tutorial

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/ui-support-classes.md

Utility Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following MFC-independent utility classes are provided:

CImage Provides enhanced bitmap support, including the ability to load and save images in JPEG, GIF,
BMP, and Portable Network Graphics (PNG) formats.

CPoint Provides an implementation for storing coordinate (x, y) pairs.

CRect Provides an implementation for storing coordinates of rectangular areas.

CSize Provides an implementation for storing distance, relative positions, or paired values.

CString Provides an implementation for storing character strings.

CAdapt A simple template used to wrap classes that redefine the address-of operator.

_U_RECT An argument adapter class that allows either RECT pointers or references to be passed to a
function that is implemented in terms of pointers.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/utility-classes.md

Windows Support Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles

See also

The following classes provide support for windows:

_U_MENUorID Provides wrappers for CreateWindow and CreateWindowEx .

CWindow Contains methods for manipulating a window. CWindow is the base class for CWindowImpl ,
CDialogImpl , and CContainedWindow .

CWindowImpl Implements a window based on a new window class. Also allows you to subclass or
superclass the window.

CDialogImpl Implements a dialog box.

CAxDialogImpl Implements a dialog box (modal or modeless) that hosts ActiveX controls.

CSimpleDialog Implements a dialog box (modal or modeless) with basic functionality.

CAxWindow Manipulates a window that hosts an ActiveX control.

CAxWindow2T Provides methods for manipulating a window that hosts an ActiveX control and also has
support for hosting licensed ActiveX controls.

CContainedWindowT Implements a window contained within another object.

CWndClassInfo Manages the information of a new window class.

CDynamicChain Supports dynamic chaining of message maps.

CMessageMap Allows an object to expose its message maps to other objects.

CWinTraits Provides a simple method of standardizing the traits of an ATL window object.

CWinTraitsOR Provides default values for window styles and extended styles used to create a window.
These values are added, using the logical-OR operator, to values provided during the creation of a window.

ATL Window Classes

ATL Tutorial

Class Overview
Message Map Macros
Window Class Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/windows-support-classes.md

ATL classes and structs
3/4/2019 • 14 minutes to read • Edit Online

CLASS / STRUCT DESCRIPTION HEADER FILE

ATL_DRAWINFO Contains information used for
rendering to various targets, such as a
printer, metafile, or ActiveX control.

atlctl.h

_AtlCreateWndData Contains class instance data in
windowing code in ATL.

atlbase.h

_ATL_BASE_MODULE70 Used by any project that uses ATL. atlbase.h

_ATL_COM_MODULE70 Used by COM-related code in ATL. atlbase.h

_ATL_FUNC_INFO Contains type information used to
describe a method or property on a
dispinterface.

atlcom.h

_ATL_MODULE70 Contains data used by every ATL
module.

atlbase.h

_ATL_WIN_MODULE70 Used by windowing code in ATL. atlbase.h

CA2AEX This class is used by the string
conversion macros CA2TEX and
CT2AEX, and the typedef CA2A.

atlconv.h

CA2CAEX This class is used by string conversion
macros CA2CTEX and CT2CAEX, and
the typedef CA2CA.

atlconv.h

CA2WEX This class is used by the string
conversion macros CA2TEX, CA2CTEX,
CT2WEX, and CT2CWEX, and the
typedef CA2W.

atlconv.h

CAccessToken This class is a wrapper for an access
token.

atlsecurity.h

CAcl This class is a wrapper for an ACL
(access-control list) structure.

atlsecurity.h

CAdapt This template is used to wrap classes
that redefine the address-of operator
to return something other than the
address of the object.

atlcomcli.h

The Active Template Library (ATL) includes the following classes and structs. To find a particular class by
category, see the ATL Class Overview.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-classes.md

CAtlArray This class implements an array object. atlcoll.h

CAtlAutoThreadModule This class implements a thread-pooled,
apartment-model COM server.

atlbase.h

CAtlAutoThreadModuleT This class provides methods for
implementing a thread-pooled,
apartment-model COM server.

atlbase.h

CAtlBaseModule This class is instantiated in every ATL
project.

atlcore.h

CAtlComModule This class implements a COM server
module.

atlbase.h

CAtlDebugInterfacesModule This class provides support for
debugging interfaces.

atlbase.h

CAtlDllModuleT This class represents the module for a
DLL.

atlbase.h

CAtlException This class defines an ATL exception. atlexcept.h

CAtlExeModuleT This class represents the module for an
application.

atlbase.h

CAtlFile This class provides a thin wrapper
around the Windows file-handling API.

atlfile.h

CAtlFileMapping This class represents a memory-
mapped file, adding a cast operator to
the methods of CAtlFileMappingBase.

atlfile.h

CAtlFileMappingBase This class represents a memory-
mapped file.

atlfile.h

CAtlList This class provides methods for
creating and managing a list object.

atlcoll.h

CAtlMap This class provides methods for
creating and managing a map object.

atlcoll.h

CAtlModule This class provides methods used by
several ATL module classes.

atlbase.h

CAtlModuleT This class implements an ATL module. atlbase.h

CAtlPreviewCtrlImpl This class is an ATL implementation of
a window that is placed on a host
window provided by the Shell for Rich
Preview.

atlpreviewctrlimpl.h

CAtlServiceModuleT This class implements a service. atlbase.h

CLASS / STRUCT DESCRIPTION HEADER FILE

CAtlTemporaryFile This class provides methods for the
creation and use of a temporary file.

atlfile.h

CAtlTransactionManager This class provides a wrapper to Kernel
Transaction Manager (KTM) functions.

atltransactionmanager.h

CAtlWinModule This class provides support for ATL
windowing components.

atlbase.h

CAutoPtr This class represents a smart pointer
object.

atlbase.h

CAutoPtrArray This class provides methods useful
when constructing an array of smart
pointers.

atlbase.h

CAutoPtrElementTraits This class provides methods, static
functions, and typedefs useful when
creating collections of smart pointers.

atlcoll.h

CAutoPtrList This class provides methods useful
when constructing a list of smart
pointers.

atlcoll.h

CAutoVectorPtr This class represents a smart pointer
object using vector new and delete
operators.

atlbase.h

CAutoVectorPtrElementTraits This class provides methods, static
functions, and typedefs useful when
creating collections of smart pointers
using vector new and delete operators.

atlcoll.h

CAxDialogImpl This class implements a dialog box
(modal or modeless) that hosts ActiveX
controls.

atlwin.h

CAxWindow This class provides methods for
manipulating a window hosting an
ActiveX control.

atlwin.h

CAxWindow2T This class provides methods for
manipulating a window that hosts an
ActiveX control and also has support
for hosting licensed ActiveX controls.

atlwin.h

CBindStatusCallback This class implements the
IBindStatusCallback interface.

atlctl.h

CComAggObject This class implements IUnknown for an
aggregated object.

atlcom.h

CComAllocator This class provides methods for
managing memory using COM
memory routines.

atlbase.h

CLASS / STRUCT DESCRIPTION HEADER FILE

https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

CComApartment This class provides support for
managing an apartment in a thread-
pooled EXE module.

atlbase.h

CComAutoCriticalSection This class provides methods for
obtaining and releasing ownership of a
critical section object.

atlcore.h

CComAutoThreadModule As of ATL 7.0, CComAutoThreadModule

is obsolete: see ATL Modules for more
details.

atlbase.h

CComBSTR This class is a wrapper for BSTRs. atlbase.h

CComCachedTearOffObject This class implements IUnknown for a
tear-off interface.

atlcom.h

CComClassFactory This class implements the IClassFactory
interface.

atlcom.h

CComClassFactory2 This class implements the
IClassFactory2 interface.

atlcom.h

CComClassFactoryAutoThread This class implements the IClassFactory
interface and allows objects to be
created in multiple apartments.

atlcom.h

CComClassFactorySingleton This class derives from
CComClassFactory and uses
CComObjectGlobal to construct a
single object.

atlcom.h

CComCoClass This class provides methods for
creating instances of a class and
obtaining its properties.

atlcom.h

CComCompositeControl This class provides the methods
required to implement a composite
control.

atlctl.h

CComContainedObject This class implements IUnknown by
delegating to the owner object's
IUnknown .

atlcom.h

CComControl This class provides methods for
creating and managing ATL controls.

atlctl.h

CComControlBase This class provides methods for
creating and managing ATL controls.

atlctl.h

CComCriticalSection This class provides methods for
obtaining and releasing ownership of a
critical section object.

atlcore.h

CLASS / STRUCT DESCRIPTION HEADER FILE

https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iclassfactory2
https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

CComCritSecLock This class provides methods for locking
and unlocking a critical section object.

atlbase.h

CComCurrency This class has methods and operators
for creating and managing a
CURRENCY object.

atlcur.h

CComDynamicUnkArray This class stores an array of IUnknown

pointers.
atlcom.h

CComEnum This class defines a COM enumerator
object based on an array.

atlcom.h

CComEnumImpl This class provides the implementation
for a COM enumerator interface where
the items being enumerated are stored
in an array.

atlcom.h

CComEnumOnSTL This class defines a COM enumerator
object based on a C++ Standard
Library collection.

atlcom.h

CComFakeCriticalSection This class provides the same methods
as CComCriticalSection but does not
provide a critical section.

atlcore.h

CComGITPtr This class provides methods for dealing
with interface pointers and the global
interface table (GIT).

atlbase.h

CComHeap This class implements IAtlMemMgr
using the COM memory allocation
functions.

ATLComMem.h

CComHeapPtr A smart pointer class for managing
heap pointers.

atlbase.h

CComModule As of ATL 7.0, CComModule is
obsolete: see ATL Modules for more
details.

atlbase.h

CComMultiThreadModel This class provides thread-safe
methods for incrementing and
decrementing the value of a variable.

atlbase.h

CComMultiThreadModelNoCS This class provides thread-safe
methods for incrementing and
decrementing the value of a variable,
without critical section locking or
unlocking functionality.

atlbase.h

CComObject This class implements IUnknown for a
nonaggregated object.

atlcom.h

CLASS / STRUCT DESCRIPTION HEADER FILE

CComObjectGlobal This class manages a reference count
on the module containing your Base

object.

atlcom.h

CComObjectNoLock This class implements IUnknown for a
nonaggregated object, but does not
increment the module lock count in
the constructor.

atlcom.h

CComObjectRoot This typedef of CComObjectRootEx is
templatized on the default threading
model of the server.

atlcom.h

CComObjectRootEx This class provides methods to handle
object reference count management
for both nonaggregated and
aggregated objects.

atlcom.h

CComObjectStack This class creates a temporary COM
object and provides it with a skeletal
implementation of IUnknown .

atlcom.h

CComPolyObject This class implements IUnknown for
an aggregated or nonaggregated
object.

atlcom.h

CComPtr A smart pointer class for managing
COM interface pointers.

atlcomcli.h

CComPtrBase This class provides a basis for smart
pointer classes using COM-based
memory routines.

atlcomcli.h

CComQIPtr A smart pointer class for managing
COM interface pointers.

atlcomcli.h

CComQIPtrElementTraits This class provides methods, static
functions, and typedefs useful when
creating collections of COM interface
pointers.

atlcoll.h

CComSafeArray This class is a wrapper for the
SAFEARRAY Data Type structure.

atlsafe.h

CComSafeArrayBound This class is a wrapper for a
SAFEARRAYBOUND structure.

atlsafe.h

CComSimpleThreadAllocator This class manages thread selection for
the class CComAutoThreadModule.

atlbase.h

CComSingleThreadModel This class provides methods for
incrementing and decrementing the
value of a variable.

atlbase.h

CLASS / STRUCT DESCRIPTION HEADER FILE

CComTearOffObject This class implements a tear-off
interface.

atlcom.h

CComUnkArray This class stores IUnknown pointers
and is designed to be used as a
parameter to the
IConnectionPointImpl template class.

atlcom.h

CComVariant This class wraps the VARIANT type,
providing a member indicating the
type of data stored.

atlcomcli.h

CContainedWindowT This class implements a window
contained within another object.

atlwin.h

CCRTAllocator This class provides methods for
managing memory using CRT memory
routines.

atlcore.h

CCRTHeap This class implements IAtlMemMgr
using the CRT heap functions.

atlmem.h

CDacl This class is a wrapper for a DACL
(discretionary access-control list)
structure.

atlsecurity.h

CDebugReportHook Class Use this class to send debug reports
to a named pipe.

atlutil.h

CDefaultCharTraits This class provides two static functions
for converting characters between
uppercase and lowercase.

atlcoll.h

CDefaultCompareTraits This class provides default element
comparison functions.

atlcoll.h

CDefaultElementTraits This class provides default methods
and functions for a collection class.

atlcoll.h

CDefaultHashTraits This class provides a static function for
calculating hash values.

atlcoll.h

CDialogImpl This class provides methods for
creating a modal or modeless dialog
box.

atlwin.h

CDynamicChain This class provides methods
supporting the dynamic chaining of
message maps.

atlwin.h

CElementTraits This class is used by collection classes
to provide methods and functions for
moving, copying, comparison, and
hashing operations.

atlcoll.h

CLASS / STRUCT DESCRIPTION HEADER FILE

CElementTraitsBase This class provides default copy and
move methods for a collection class.

atlcoll.h

CFirePropNotifyEvent This class provides methods for
notifying the container's sink regarding
control property changes.

atlctl.h

CGlobalHeap This class implements IAtlMemMgr
using the Win32 global heap functions.

atlmem.h

CHandle This class provides methods for
creating and using a handle object.

atlbase.h

CHeapPtr A smart pointer class for managing
heap pointers.

atlcore.h

CHeapPtrBase This class forms the basis for several
smart heap pointer classes.

atlcore.h

CHeapPtrElementTraits Class This class provides methods, static
functions, and typedefs useful when
creating collections of heap pointers.

atlcoll.h

CHeapPtrList This class provides methods useful
when constructing a list of heap
pointers.

atlcoll.h

CImage Provides enhanced bitmap support,
including the ability to load and save
images in JPEG, GIF, BMP, and
Portable Network Graphics (PNG)
formats.

atlimage.h

CInterfaceArray This class provides methods useful
when constructing an array of COM
interface pointers.

atlcoll.h

CInterfaceList This class provides methods useful
when constructing a list of COM
interface pointers.

atlcoll.h

CLocalHeap This class implements IAtlMemMgr
using the Win32 local heap functions.

atlmem.h

CMessageMap This class allows an object's message
maps to be accessed by another
object.

atlwin.h

CNonStatelessWorker Class Receives requests from a thread pool
and passes them on to a worker object
that is created and destroyed on each
request.

atlutil.h

CLASS / STRUCT DESCRIPTION HEADER FILE

CNoWorkerThread Class Use this class as the argument for the
MonitorClass template parameter

cache classes if you want to disable
dynamic cache maintenance.

atlutil.h

CPathT Class This class represents a path. atlpath.h

CPrimitiveElementTraits This class provides default methods
and functions for a collection class
composed of primitive data types.

atlcoll.h

CPrivateObjectSecurityDesc This class represents a private object
security descriptor object.

atlsecurity.h

CRBMap This class represents a mapping
structure, using a Red-Black binary
tree.

atlcoll.h

CRBMultiMap This class represents a mapping
structure that allows each key to be
associated with more than one value,
using a Red-Black binary tree.

atlcoll.h

CRBTree This class provides methods for
creating and utilizing a Red-Black tree.

atlcoll.h

CRegKey This class provides methods for
manipulating entries in the system
registry.

atlbase.h

CRTThreadTraits This class provides the creation
function for a CRT thread. Use this
class if the thread will use CRT
functions.

atlbase.h

CSacl This class is a wrapper for a SACL
(system access-control list) structure.

atlsecurity.h

CSecurityAttributes This class is a thin wrapper for the
SECURITY_ATTRIBUTES structure.

atlsecurity.h

CSecurityDesc This class is a wrapper for the
SECURITY_DESCRIPTOR structure.

atlsecurity.h

CSid This class is a wrapper for a SID

(security identifier) structure.
atlsecurity.h

CSimpleArray This class provides methods for
managing a simple array.

atlsimpcoll.h

CSimpleArrayEqualHelper This class is a helper for the
CSimpleArray class.

atlsimpcoll.h

CLASS / STRUCT DESCRIPTION HEADER FILE

CSimpleArrayEqualHelperFalse This class is a helper for the
CSimpleArray class.

atlsimpcoll.h

CSimpleDialog This class implements a basic modal
dialog box.

atlwin.h

CSimpleMap This class provides support for a
simple mapping array.

atlsimpcoll.h

CSimpleMapEqualHelper This class is a helper for the
CSimpleMap class.

atlsimpcoll.h

CSimpleMapEqualHelperFalse This class is a helper for the
CSimpleMap class.

atlsimpcoll.h

CSnapInItemImpl This class provides methods for
implementing a snap-in node object.

atlsnap.h

CSnapInPropertyPageImpl This class provides methods for
implementing a snap-in property page
object.

atlsnap.h

CStockPropImpl This class provides methods for
supporting stock property values.

atlctl.h

CStringElementTraits This class provides static functions
used by collection classes storing
CString objects.

cstringt.h

CStringElementTraitsI This class provides static functions
related to strings stored in collection
class objects. It is similar to
CStringElementTraits, but performs
case-insensitive comparisons.

atlcoll.h

CStringRefElementTraits This class provides static functions
related to strings stored in collection
class objects. The string objects are
dealt with as references.

atlcoll.h

CThreadPool Class This class provides a pool of worker
threads that process a queue of work
items.

atlutil.h

CTokenGroups This class is a wrapper for the
TOKEN_GROUPS structure.

atlsecurity.h

CTokenPrivileges This class is a wrapper for the
TOKEN_PRIVILEGES structure.

atlsecurity.h

CUrl Class This class represents a URL. It allows
you to manipulate each element of the
URL independently of the others
whether parsing an existing URL string
or building a string from scratch.

atlutil.h

CLASS / STRUCT DESCRIPTION HEADER FILE

CW2AEX This class is used by the string
conversion macros CT2AEX, CW2TEX,
CW2CTEX, and CT2CAEX, and the
typedef CW2A.

atlconv.h

CW2CWEX This class is used by the string
conversion macros CW2CTEX and
CT2CWEX, and the typedef CW2CW.

atlconv.h

CW2WEX This class is used by the string
conversion macros CW2TEX and
CT2WEX, and the typedef CW2W.

atlconv.h

CWin32Heap This class implements IAtlMemMgr
using the Win32 heap allocation
functions.

atlmem.h

CWindow This class provides methods for
manipulating a window.

atlwin.h

CWindowImpl This class provides methods for
creating or subclassing a window.

atlwin.h

CWinTraits This class provides a method for
standardizing the styles used when
creating a window object.

atlwin.h

CWinTraitsOR This class provides a method for
standardizing the styles used when
creating a window object.

atlwin.h

CWndClassInfo This class provides methods for
registering information for a window
class.

atlwin.h

CWorkerThread Class This class creates a worker thread or
uses an existing one, waits on one or
more kernel object handles, and
executes a specified client function
when one of the handles is signaled.

atlutil.h

IAtlAutoThreadModule This class represents an interface to a
CreateInstance method.

atlbase.h

IAtlMemMgr This class represents the interface to a
memory manager.

atlmem.h

IAxWinAmbientDispatch This interface provides methods for
specifying characteristics of the hosted
control or container.

atlbase.h, ATLIFace.h

IAxWinAmbientDispatchEx This interface implements
supplemental ambient properties for a
hosted control.

atlbase.h, ATLIFace.h

CLASS / STRUCT DESCRIPTION HEADER FILE

IAxWinHostWindow This interface provides methods for
manipulating a control and its host
object.

atlbase.h, ATLIFace.h

IAxWinHostWindowLic This interface provides methods for
manipulating a licensed control and its
host object.

atlbase.h, ATLIFace.h

ICollectionOnSTLImpl This class provides methods used by a
collection class.

atlcom.h

IConnectionPointContainerImpl This class implements a connection
point container to manage a collection
of IConnectionPointImpl objects.

atlcom.h

IConnectionPointImpl This class implements a connection
point.

atlcom.h

IDataObjectImpl This class provides methods for
supporting Uniform Data Transfer and
managing connections.

atlctl.h

IDispatchImpl This class provides a default
implementation for the IDispatch

portion of a dual interface.

atlcom.h

IDispEventImpl This class provides implementations of
the IDispatch methods.

atlcom.h

IDispEventSimpleImpl This class provides implementations of
the IDispatch methods, without
getting type information from a type
library.

atlcom.h

IDocHostUIHandlerDispatch An interface to the Microsoft HTML
parsing and rendering engine.

atlbase.h, ATLIFace.h

IEnumOnSTLImpl This class defines an enumerator
interface based on a C++ Standard
Library collection.

atlcom.h

IObjectSafetyImpl This class provides a default
implementation of the
IObjectSafety interface to allow a

client to retrieve and set an object's
safety levels.

atlctl.h

IObjectWithSiteImpl This class provides methods allowing
an object to communicate with its site.

atlcom.h

IOleControlImpl This class provides a default
implementation of the IOleControl

interface and implements IUnknown .

atlctl.h

CLASS / STRUCT DESCRIPTION HEADER FILE

IOleInPlaceActiveObjectImpl This class provides methods for
assisting communication between an
in-place control and its container.

atlctl.h

IOleInPlaceObjectWindowlessImpl This class implements IUnknown and
provides methods that enable a
windowless control to receive window
messages and to participate in drag-
and-drop operations.

atlctl.h

IOleObjectImpl This class implements IUnknown and
is the principal interface through which
a container communicates with a
control.

atlctl.h

IPerPropertyBrowsingImpl This class implements IUnknown and
allows a client to access the
information in an object's property
pages.

atlctl.h

IPersistPropertyBagImpl This class implements IUnknown and
allows an object to save its properties
to a client-supplied property bag.

atlcom.h

IPersistStorageImpl This class implements the
IPersistStorage interface.

atlcom.h

IPersistStreamInitImpl This class implements IUnknown and
provides a default implementation of
the IPersistStreamInit interface.

atlcom.h

IPointerInactiveImpl This class implements IUnknown and
the IPointerInactive interface methods.

atlctl.h

IPropertyNotifySinkCP This class exposes the
IPropertyNotifySink interface as an
outgoing interface on a connectable
object.

atlctl.h

IPropertyPage2Impl This class implements IUnknown and
inherits the default implementation of
IPropertyPageImpl.

atlctl.h

IPropertyPageImpl This class implements IUnknown and
provides a default implementation of
the IPropertyPage interface.

atlctl.h

IProvideClassInfo2Impl This class provides a default
implementation of the
IProvideClassInfo and
IProvideClassInfo2 methods.

atlcom.h

IQuickActivateImpl This class combines containers' control
initialization into a single call.

atlctl.h

CLASS / STRUCT DESCRIPTION HEADER FILE

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ipersiststorage
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipersiststreaminit
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipointerinactive
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertypage
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iprovideclassinfo
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iprovideclassinfo2

IRunnableObjectImpl This class implements IUnknown and
provides a default implementation of
the IRunnableObject interface.

atlctl.h

IServiceProviderImpl This class provides a default
implementation of the
IServiceProvider interface.

atlcom.h

ISpecifyPropertyPagesImpl This class implements IUnknown and
provides a default implementation of
the ISpecifyPropertyPages interface.

atlcom.h

ISupportErrorInfoImpl This class provides a default
implementation of the
ISupportErrorInfo Interface

interface and can be used when only a
single interface generates errors on an
object.

atlcom.h

IThreadPoolConfig Interface This interface provides methods for
configuring a thread pool.

atlutil.h

IViewObjectExImpl This class implements IUnknown and
provides default implementations of
the IViewObject, IViewObject2, and
IViewObjectEx interfaces.

atlctl.h

IWorkerThreadClient Interface IWorkerThreadClient is the interface
implemented by clients of the
CWorkerThread class.

atlutil.h

_U_MENUorID This class provides wrappers for
CreateWindow and CreateWindowEx

.

atlwin.h

_U_RECT This argument adapter class allows
either RECT pointers or references to
be passed to a function that is
implemented in terms of pointers.

atlwin.h

_U_STRINGorID This argument adapter class allows
either resource names (LPCTSTRs) or
resource IDs (UINTs) to be passed to a
function without requiring the caller to
convert the ID to a string using the
MAKEINTRESOURCE macro.

atlwin.h

Win32ThreadTraits This class provides the creation
function for a Windows thread. Use
this class if the thread will not use CRT
functions.

atlbase.h

CLASS / STRUCT DESCRIPTION HEADER FILE

See also
ATL COM Desktop Components

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-irunnableobject
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ispecifypropertypages
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-iviewobject
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-iviewobject2
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iviewobjectex

Functions
Global Variables
Typedefs
Class Overview

_ATL_BASE_MODULE70 Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct _ATL_BASE_MODULE70 {
 UINT cbSize;
 HINSTANCE m_hInst;
 HINSTANCE m_hInstResource;
 bool m_bNT5orWin98;
 DWORD dwAtlBuildVer;
 GUID* pguidVer;
 CRITICAL_SECTION m_csResource;
 CSimpleArray<HINSTANCE> m_rgResourceInstance;
};

Members

Remarks

Requirements

Used by any project that uses ATL.

cbSize

The size of the structure, used for versioning.

m_hInst

The hInstance for this module (either exe or dll).

m_hInstResource

Default instance resource handle.

m_bNT5orWin98

Operating system version information. Used internally by ATL.

dwAtlBuildVer

Stores the version of ATL. Currently 0x0700.

pguidVer

ATL's internal GUID.

m_csResource

Used to synchronize access to the m_rgResourceInstance array. Used internally by ATL.

m_rgResourceInstance

Array used to search for resources in all the resource instances of which ATL is aware. Used internally by ATL.

_ATL_BASE_MODULE is defined as a typedef of _ATL_BASE_MODULE70.

Header: atlcore.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-base-module70-structure.md

See also
Classes and structs

_ATL_COM_MODULE70 Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct _ATL_COM_MODULE70 {
 UINT cbSize;
 HINSTANCE m_hInstTypeLib;
 _ATL_OBJMAP_ENTRY** m_ppAutoObjMapFirst;
 _ATL_OBJMAP_ENTRY** m_ppAutoObjMapLast;
 CRITICAL_SECTION m_csObjMap;
};

Members

Remarks

Requirements

See also

Used by COM-related code in ATL.

cbSize

The size of the structure, used for versioning.

m_hInstTypeLib

The handle instance to the type library for this module.

m_ppAutoObjMapFirst

Address of the array element indicating the beginning of the object map entries for this module.

m_ppAutoObjMapLast

Address of the array element indicating the end of the object map entries for this module.

m_csObjMap

Critical section to serialize access to the object map entries. Used internally by ATL.

_ATL_COM_MODULE is defined as a typedef of _ATL_COM_MODULE70.

Header: atlbase.h

Classes and structs

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-com-module70-structure.md

_ATL_FUNC_INFO Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct _ATL_FUNC_INFO {
 CALLCONV cc;
 VARTYPE vtReturn;
 SHORT nParams;
 VARTYPE pVarTypes[_ATL_MAX_VARTYPES];
};

Members

Remarks

Example

HRESULT SomeFunction([in] long Number, [in] BSTR String);

_ATL_FUNC_INFO info = {CC_STDCALL, VT_EMPTY, 2, {VT_I4, VT_BSTR} };

Requirements

Contains type information used to describe a method or property on a dispinterface.

cc

The calling convention. When using this structure with the IDispEventSimpleImpl class, this member must be
CC_STDCALL. CC_CDECL is the only option supported in Windows CE for the CALLCONV field of the
_ATL_FUNC_INFO structure. Any other value is unsupported thus its behavior undefined.

vtReturn

The variant type of the function return value.

nParams

The number of function parameters.

pVarTypes

An array of variant types of the function parameters.

Internally, ATL uses this structure to hold information obtained from a type library. You may need to manipulate
this structure directly if you provide type information for an event handler used with the IDispEventSimpleImpl
class and SINK_ENTRY_INFO macro.

Given a dispinterface method defined in IDL:

you would define an _ATL_FUNC_INFO structure:

Header: atlcom.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-func-info-structure.md

See also
Classes and structs
IDispEventSimpleImpl Class
SINK_ENTRY_INFO

_ATL_MODULE70 Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct _ATL_MODULE70 {
 UINT cbSize;
 LONG m_nLockCnt;
 _ATL_TERMFUNC_ELEM* m_pTermFuncs;
 CComCriticalSection m_csStaticDataInitAndTypeInfo;
};

Members

Remarks

Requirements

See also

Contains data used by every ATL module.

cbSize

The size of the structure, used for versioning.

m_nLockCnt

Reference count to determine how long the module should stay alive.

m_pTermFuncs

Tracks functions that have been registered to be called when ATL shuts down.

m_csStaticDataInitAndTypeInfo

Used to coordinate access to internal data in multithreaded situations.

_ATL_MODULE is defined as a typedef of _ATL_MODULE70 .

Header: atlbase.h

Classes and structs

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-module70-structure.md

_ATL_WIN_MODULE70 Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct _ATL_WIN_MODULE70 {
 UNIT cbSize;
 CRITICAL_SECTION m_csWindowCreate;
 _AtlCreateWndData* m_pCreateWndList;
 CSimpleArray<ATOM> m_rgWindowClassAtoms;
};

Members

Remarks

Requirements

See also

Used by windowing code in ATL.

cbSize

The size of the structure, used for versioning.

m_csWindowCreate

Used to serialize access to window registration code. Used internally by ATL.

m_pCreateWndList

Used to bind windows to their objects. Used internally by ATL.

m_rgWindowClassAtoms

Used to track window class registrations so that they can be properly unregistered at termination. Used internally
by ATL.

_ATL_WIN_MODULE is defined as a typedef of _ATL_WIN_MODULE70 .

Header: atlbase.h

Classes and structs

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-win-module70-structure.md

_AtlCreateWndData Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
 struct _AtlCreateWndData{
 void* m_pThis;
 DWORD m_dwThreadID;
 _AtlCreateWndData* m_pNext;
};

Members

Requirements

See also

This structure contains class instance data in windowing code in ATL.

m_pThis

The this pointer used to get access to the class instance in window procedures.

m_dwThreadID

The thread ID of the current class instance.

m_pNext

Pointer to the next _AtlCreateWndData object.

Header: atlbase.h

Classes and structs

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atlcreatewnddata-structure.md

ATL_DRAWINFO Structure
3/4/2019 • 3 minutes to read • Edit Online

Syntax
struct ATL_DRAWINFO {
 UINT cbSize;
 DWORD dwDrawAspect;
 LONG lindex;
 DVTARGETDEVICE* ptd;
 HDC hicTargetDev;
 HDC hdcDraw;
 LPCRECTL prcBounds;
 LPCRECTL prcWBounds;
 BOOL bOptimize;
 BOOL bZoomed;
 BOOL bRectInHimetric;
 SIZEL ZoomNum;
 SIZEL ZoomDen;
};

Members

Contains information used for rendering to various targets, such as a printer, metafile, or ActiveX control.

cbSize

The size of the structure, in bytes.

dwDrawAspect

Specifies how the target is to be represented. Representations can include content, an icon, a thumbnail, or a
printed document. For a list of possible values, see DVASPECT and DVASPECT2.

lindex

Portion of the target that is of interest for the draw operation. Its interpretation varies depending on the value in
the dwDrawAspect member.

ptd

Pointer to a DVTARGETDEVICE structure that enables drawing optimizations depending on the aspect specified.
Note that newer objects and containers that support optimized drawing interfaces support this member as well.
Older objects and containers that do not support optimized drawing interfaces always specify NULL for this
member.

hicTargetDev

Information context for the target device pointed to by ptd from which the object can extract device metrics and
test the device's capabilities. If ptd is NULL, the object should ignore the value in the hicTargetDev member.

hdcDraw

The device context on which to draw. For a windowless object, the hdcDraw member is in the MM_TEXT mapping
mode with its logical coordinates matching the client coordinates of the containing window. In addition, the device
context should be in the same state as the one normally passed by a WM_PAINT message.

prcBounds

Pointer to a RECTL structure specifying the rectangle on hdcDraw and in which the object should be drawn. This

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-drawinfo-structure.md
https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-tagdvaspect
https://docs.microsoft.com/windows/desktop/api/ocidl/ne-ocidl-tagdvaspect2
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagdvtargetdevice
https://msdn.microsoft.com/library/windows/desktop/dd162907

Remarks

Requirements

See also

member controls the positioning and stretching of the object. This member should be NULL to draw a windowless
in-place active object. In every other situation, NULL is not a legal value and should result in an E_INVALIDARG

error code. If the container passes a non-NULL value to a windowless object, the object should render the
requested aspect into the specified device context and rectangle. A container can request this from a windowless
object to render a second, non-active view of the object or to print the object.

prcWBounds

If hdcDraw is a metafile device context (see GetDeviceCaps in the Windows SDK), this is a pointer to a RECTL

structure specifying the bounding rectangle in the underlying metafile. The rectangle structure contains the
window extent and window origin. These values are useful for drawing metafiles. The rectangle indicated by
prcBounds is nested inside this prcWBounds rectangle; they are in the same coordinate space.

bOptimize

Nonzero if the drawing of the control is to be optimized, otherwise 0. If the drawing is optimized, the state of the
device context is automatically restored when you are finished rendering.

bZoomed

Nonzero if the target has a zoom factor, otherwise 0. The zoom factor is stored in ZoomNum .

bRectInHimetric

Nonzero if the dimensions of prcBounds are in HIMETRIC, otherwise 0.

ZoomNum

The width and height of the rectangle into which the object is rendered. The zoom factor along the x-axis (the
proportion of the object's natural size to its current extent) of the target is the value of ZoomNum.cx divided by the
value of ZoomDen.cx . The zoom factor along the y-axis is achieved in a similar fashion.

ZoomDen

The actual width and height of the target.

Typical usage of this structure would be the retrieval of information during the rendering of the target object. For
example, you could retrieve values from ATL_DRAWINFO inside your overload of
CComControlBase::OnDrawAdvanced.

This structure stores pertinent information used to render the appearance of an object for the target device. The
information provided can be used in drawing to the screen, a printer, or even a metafile.

Header: atlctl.h

Classes and structs
IViewObject::Draw
CComControlBase::OnDrawAdvanced

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getdevicecaps
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject-draw

_U_MENUorID Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class _U_MENUorID

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

_U_MENUorID::_U_MENUorID The constructor.

Public Data MembersPublic Data Members

NAME DESCRIPTION

_U_MENUorID::m_hMenu A handle to a menu.

Remarks

Requirements

_U_MENUorID::m_hMenu

This class provides wrappers for CreateWindow and CreateWindowEx .

This class and its members cannot be used in applications that execute in the Windows Runtime.

This argument adapter class allows either IDs (UINTs) or menu handles (HMENUs) to be passed to a function
without requiring an explicit cast on the part of the caller.

This class is designed for implementing wrappers to the Windows API, particularly the CreateWindow and
CreateWindowEx functions, both of which accept an HMENU argument that may be a child window identifier
(UINT) rather than a menu handle. For example, you can see this class in use as a parameter to
CWindowImpl::Create.

The class defines two constructor overloads: one accepts a UINT argument and the other accepts an HMENU
argument. The UINT argument is just cast to an HMENU in the constructor and the result stored in the class's
single data member, m_hMenu. The argument to the HMENU constructor is stored directly without conversion.

Header: atlwin.h

The class holds the value passed to either of its constructors as a public HMENU data member.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/u-menuorid-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa

HMENU m_hMenu;

_U_MENUorID::_U_MENUorID

_U_MENUorID(UINT nID);
_U_MENUorID(HMENU hMenu);

ParametersParameters

RemarksRemarks

See also

The UINT argument is just cast to an HMENU in the constructor and the result stored in the class's single data
member, m_hMenu.

nID
A child window identifier.

hMenu
A menu handle.

The argument to the HMENU constructor is stored directly without conversion.

Class Overview

_U_RECT Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class _U_RECT

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

_U_RECT::_U_RECT The constructor.

Public Data MembersPublic Data Members

NAME DESCRIPTION

_U_RECT::m_lpRect Pointer to a RECT .

Remarks

Requirements

_U_RECT::m_lpRect

LPRECT m_lpRect;

_U_RECT::_U_RECT

This argument adapter class allows either RECT pointers or references to be passed to a function that is
implemented in terms of pointers.

This class and its members cannot be used in applications that execute in the Windows Runtime.

The class defines two constructor overloads: one accepts a RECT& argument and the other accepts an LPRECT

argument. The first constructor stores the address of the reference argument in the class's single data member,
m_lpRect. The argument to the pointer constructor is stored directly without conversion.

Header: atlwin.h

The class holds the value passed to either of its constructors as a public LPRECT data member.

The address of the reference argument is stored in the class's single data member, m_lpRect.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/u-rect-class.md

_U_RECT(RECT& rc);
_U_RECT(LPRECT lpRect);

ParametersParameters

RemarksRemarks

See also

rc
A RECT reference.

lpRect
A RECT pointer.

The argument to the pointer constructor is stored directly without conversion.

Class Overview

_U_STRINGorID Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class _U_STRINGorID

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

_U_STRINGorID::_U_STRINGorID The constructor.

Public Data MembersPublic Data Members

NAME DESCRIPTION

_U_STRINGorID::m_lpstr The resource identifier.

Remarks

Requirements

_U_STRINGorID::m_lpstr

This argument adapter class allows either resource names (LPCTSTRs) or resource IDs (UINTs) to be passed to a
function without requiring the caller to convert the ID to a string using the MAKEINTRESOURCE macro.

This class and its members cannot be used in applications that execute in the Windows Runtime.

This class is designed for implementing wrappers to the Windows resource management API such as the
FindResource, LoadIcon, and LoadMenu functions, which accept an LPCTSTR argument that may be either the
name of a resource or its ID.

The class defines two constructor overloads: one accepts a LPCTSTR argument and the other accepts a UINT
argument. The UINT argument is converted to a resource type compatible with Windows resource-management
functions using the MAKEINTRESOURCE macro and the result stored in the class's single data member, m_lpstr.
The argument to the LPCTSTR constructor is stored directly without conversion.

Header: atlwin.h

The class holds the value passed to either of its constructors as a public LPCTSTR data member.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/u-stringorid-class.md
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-findresourcea
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-loadicona
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-loadmenua

LPCTSTR m_lpstr;

_U_STRINGorID::_U_STRINGorID

_U_STRINGorID(UINT nID);
_U_STRINGorID(LPCTSTR lpString);

ParametersParameters

RemarksRemarks

See also

The UINT constructor converts its argument to a resource type compatible with Windows resource-management
functions using the MAKEINTRESOURCE macro and the result is stored in the class's single data member,
m_lpstr.

nID
A resource ID.

lpString
A resource name.

The argument to the LPCTSTR constructor is stored directly without conversion.

Class Overview

CA2AEX Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <int t_nBufferLength = 128>
class CA2AEX

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CA2AEX::CA2AEX The constructor.

CA2AEX::~CA2AEX The destructor.

Public OperatorsPublic Operators

NAME DESCRIPTION

CA2AEX::operator LPSTR Conversion operator.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CA2AEX::m_psz The data member that stores the source string.

CA2AEX::m_szBuffer The static buffer, used to store the converted string.

Remarks

This class is used by the string conversion macros CA2TEX and CT2AEX, and the typedef CA2A.

This class and its members cannot be used in applications that execute in the Windows Runtime.

t_nBufferLength
The size of the buffer used in the translation process. The default length is 128 bytes.

Unless extra functionality is required, use CA2TEX, CT2AEX, or CA2A in your own code.

This class contains a fixed-size static buffer which is used to store the result of the conversion. If the result is too
large to fit into the static buffer, the class allocates memory using malloc, freeing the memory when the object
goes out of scope. This ensures that, unlike text conversion macros available in previous versions of ATL, this class

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ca2aex-class.md

Example

Requirements

CA2AEX::CA2AEX

CA2AEX(LPCSTR psz, UINT nCodePage) throw(...);
CA2AEX(LPCSTR psz) throw(...);

ParametersParameters

RemarksRemarks

CA2AEX::~CA2AEX

~CA2AEX() throw();

RemarksRemarks

CA2AEX::m_psz

is safe to use in loops and that it won't overflow the stack.

If the class tries to allocate memory on the heap and fails, it will call AtlThrow with an argument of
E_OUTOFMEMORY.

By default, the ATL conversion classes and macros use the current thread's ANSI code page for the conversion.

The following macros are based on this class:

CA2TEX

CT2AEX

The following typedef is based on this class:

CA2A

For a discussion of these text conversion macros, see ATL and MFC String Conversion Macros.

See ATL and MFC String Conversion Macros for an example of using these string conversion macros.

Header: atlconv.h

The constructor.

psz
The text string to be converted.

nCodePage
Unused in this class.

Creates the buffer required for the translation.

The destructor.

Frees the allocated buffer.

The data member that stores the source string.

LPSTR m_psz;

CA2AEX::m_szBuffer

char m_szBuffer[t_nBufferLength];

CA2AEX::operator LPSTR

operator LPSTR() const throw();

Return ValueReturn Value

See also

The static buffer, used to store the converted string.

Conversion operator.

Returns the text string as type LPSTR.

CA2CAEX Class
CA2WEX Class
CW2AEX Class
CW2CWEX Class
CW2WEX Class
Class Overview

CA2CAEX Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<int t_nBufferLength = 128>
class CA2CAEX

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CA2CAEX::CA2CAEX The constructor.

CA2CAEX::~CA2CAEX The destructor.

Public OperatorsPublic Operators

NAME DESCRIPTION

CA2CAEX::operator LPCSTR Conversion operator.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CA2CAEX::m_psz The data member that stores the source string.

Remarks

This class is used by string conversion macros CA2CTEX and CT2CAEX, and the typedef CA2CA.

This class and its members cannot be used in applications that execute in the Windows Runtime.

t_nBufferLength
The size of the buffer used in the translation process. The default length is 128 bytes.

Unless extra functionality is required, use CA2CTEX, CT2CAEX, or CA2CA in your own code.

This class is safe to use in loops and won't overflow the stack. By default, the ATL conversion classes and macros
will use the current thread's ANSI code page for the conversion.

The following macros are based on this class:

CA2CTEX

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ca2caex-class.md

Example

Requirements

CA2CAEX::CA2CAEX

CA2CAEX(LPCSTR psz, UINT nCodePage) throw(...);
CA2CAEX(LPCSTR psz) throw(...);

ParametersParameters

RemarksRemarks

CA2CAEX::~CA2CAEX

~CA2CAEX() throw();

RemarksRemarks

CA2CAEX::m_psz

LPCSTR m_psz;

CA2CAEX::operator LPCSTR

CT2CAEX

The following typedef is based on this class:

CA2CA

For a discussion of these text conversion macros, see ATL and MFC String Conversion Macros.

See ATL and MFC String Conversion Macros for an example of using these string conversion macros.

Header: atlconv.h

The constructor.

psz
The text string to be converted.

nCodePage
Unused in this class.

Creates the buffer required for the translation.

The destructor.

Frees the allocated buffer.

The data member that stores the source string.

Conversion operator.

operator LPCSTR() const throw();

Return ValueReturn Value

See also

Returns the text string as type LPCSTR.

CA2AEX Class
CA2WEX Class
CW2AEX Class
CW2CWEX Class
CW2WEX Class
Class Overview

CA2WEX Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <int t_nBufferLength = 128>
class CA2WEX

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CA2WEX::CA2WEX The constructor.

CA2WEX::~CA2WEX The destructor.

Public OperatorsPublic Operators

NAME DESCRIPTION

CA2WEX::operator LPWSTR Conversion operator.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CA2WEX::m_psz The data member that stores the source string.

CA2WEX::m_szBuffer The static buffer, used to store the converted string.

Remarks

This class is used by the string conversion macros CA2TEX, CA2CTEX, CT2WEX, and CT2CWEX, and the typedef
CA2W.

This class and its members cannot be used in applications that execute in the Windows Runtime.

t_nBufferLength
The size of the buffer used in the translation process. The default length is 128 bytes.

Unless extra functionality is required, use CA2TEX, CA2CTEX, CT2WEX, CT2CWEX, or CA2W in your code.

This class contains a fixed-size static buffer which is used to store the result of the conversion. If the result is too
large to fit into the static buffer, the class allocates memory using malloc, freeing the memory when the object

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ca2wex-class.md

Example

Requirements

CA2WEX::CA2WEX

CA2WEX(LPCSTR psz, UINT nCodePage) throw(...);
CA2WEX(LPCSTR psz) throw(...);

ParametersParameters

RemarksRemarks

CA2WEX::~CA2WEX

goes out of scope. This ensures that, unlike text conversion macros available in previous versions of ATL, this class
is safe to use in loops and that it won't overflow the stack.

If the class tries to allocate memory on the heap and fails, it will call AtlThrow with an argument of
E_OUTOFMEMORY.

By default, the ATL conversion classes and macros use the current thread's ANSI code page for the conversion. If
you want to override that behavior for a specific conversion, specify the code page as the second parameter to the
constructor for the class.

The following macros are based on this class:

CA2TEX

CA2CTEX

CT2WEX

CT2CWEX

The following typedef is based on this class:

CA2W

For a discussion of these text conversion macros, see ATL and MFC String Conversion Macros.

See ATL and MFC String Conversion Macros for an example of using these string conversion macros.

Header: atlconv.h

The constructor.

psz
The text string to be converted.

nCodePage
The code page used to perform the conversion. See the code page parameter discussion for the Windows SDK
function MultiByteToWideChar for more details.

Allocates the buffer used in the translation process.

The destructor.

https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-multibytetowidechar

~CA2WEX() throw();

RemarksRemarks

CA2WEX::m_psz

LPWSTR m_psz;

CA2WEX::m_szBuffer

wchar_t m_szBuffer[t_nBufferLength];

CA2WEX::operator LPWSTR

operator LPWSTR() const throw();

Return ValueReturn Value

See also

Frees the allocated buffer.

The data member that stores the source string.

The static buffer, used to store the converted string.

Conversion operator.

Returns the text string as type LPWSTR.

CA2AEX Class
CA2CAEX Class
CW2AEX Class
CW2CWEX Class
CW2WEX Class
Class Overview

CAccessToken Class
3/4/2019 • 24 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CAccessToken

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAccessToken::~CAccessToken The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAccessToken::Attach Call this method to take ownership of the given access token
handle.

CAccessToken::CheckTokenMembership Call this method to determine if a specified SID is enabled in
the CAccessToken object.

CAccessToken::CreateImpersonationToken Call this method to create a new impersonation access token.

CAccessToken::CreatePrimaryToken Call this method to create a new primary token.

CAccessToken::CreateProcessAsUser Call this method to create a new process running in the
security context of the user represented by the
CAccessToken object.

CAccessToken::CreateRestrictedToken Call this method to create a new, restricted CAccessToken
object.

CAccessToken::Detach Call this method to revoke ownership of the access token.

CAccessToken::DisablePrivilege Call this method to disable a privilege in the CAccessToken

object.

This class is a wrapper for an access token.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/caccesstoken-class.md

CAccessToken::DisablePrivileges Call this method to disable one or more privileges in the
CAccessToken object.

CAccessToken::EnablePrivilege Call this method to enable a privilege in the CAccessToken

object.

CAccessToken::EnablePrivileges Call this method to enable one or more privileges in the
CAccessToken object.

CAccessToken::GetDefaultDacl Call this method to return the CAccessToken object's
default DACL.

CAccessToken::GetEffectiveToken Call this method to get the CAccessToken object equal to
the access token in effect for the current thread.

CAccessToken::GetGroups Call this method to return the CAccessToken object's token
groups.

CAccessToken::GetHandle Call this method to retrieve a handle to the access token.

CAccessToken::GetImpersonationLevel Call this method to get the impersonation level from the
access token.

CAccessToken::GetLogonSessionId Call this method to get the Logon Session ID associated with
the CAccessToken object.

CAccessToken::GetLogonSid Call this method to get the Logon SID associated with the
CAccessToken object.

CAccessToken::GetOwner Call this method to get the owner associated with the
CAccessToken object.

CAccessToken::GetPrimaryGroup Call this method to get the primary group associated with
the CAccessToken object.

CAccessToken::GetPrivileges Call this method to get the privileges associated with the
CAccessToken object.

CAccessToken::GetProcessToken Call this method to initialize the CAccessToken with the
access token from the given process.

CAccessToken::GetProfile Call this method to get the handle pointing to the user
profile associated with the CAccessToken object.

CAccessToken::GetSource Call this method to get the source of the CAccessToken

object.

CAccessToken::GetStatistics Call this method to get information associated with the
CAccessToken object.

CAccessToken::GetTerminalServicesSessionId Call this method to get the Terminal Services Session ID
associated with the CAccessToken object.

NAME DESCRIPTION

CAccessToken::GetThreadToken Call this method to initialize the CAccessToken with the
token from the given thread.

CAccessToken::GetTokenId Call this method to get the Token ID associated with the
CAccessToken object.

CAccessToken::GetType Call this method to get the token type of the CAccessToken

object.

CAccessToken::GetUser Call this method to identify the user associated with the
CAccessToken object.

CAccessToken::HKeyCurrentUser Call this method to get the handle pointing to the user
profile associated with the CAccessToken object.

CAccessToken::Impersonate Call this method to assign an impersonation CAccessToken

to a thread.

CAccessToken::ImpersonateLoggedOnUser Call this method to allow the calling thread to impersonate
the security context of a logged-on user.

CAccessToken::IsTokenRestricted Call this method to test if the CAccessToken object contains
a list of restricted SIDs.

CAccessToken::LoadUserProfile Call this method to load the user profile associated with the
CAccessToken object.

CAccessToken::LogonUser Call this method to create a logon session for the user
associated with the given credentials.

CAccessToken::OpenCOMClientToken Call this method from within a COM server handling a call
from a client to initialize the CAccessToken with the access
token from the COM client.

CAccessToken::OpenNamedPipeClientToken Call this method from within a server taking requests over a
named pipe to initialize the CAccessToken with the access
token from the client.

CAccessToken::OpenRPCClientToken Call this method from within a server handling a call from an
RPC client to initialize the CAccessToken with the access
token from the client.

CAccessToken::OpenThreadToken Call this method to set the impersonation level and then
initialize the CAccessToken with the token from the given
thread.

CAccessToken::PrivilegeCheck Call this method to determine whether a specified set of
privileges are enabled in the CAccessToken object.

CAccessToken::Revert Call this method to stop a thread that is using an
impersonation token.

NAME DESCRIPTION

CAccessToken::SetDefaultDacl Call this method to set the default DACL of the
CAccessToken object.

CAccessToken::SetOwner Call this method to set the owner of the CAccessToken

object.

CAccessToken::SetPrimaryGroup Call this method to set the primary group of the
CAccessToken object.

NAME DESCRIPTION

Remarks

Requirements

CAccessToken::Attach

void Attach(HANDLE hToken) throw();

ParametersParameters

RemarksRemarks

CAccessToken::~CAccessToken

virtual ~CAccessToken() throw();

RemarksRemarks

CAccessToken::CheckTokenMembership

An access token is an object that describes the security context of a process or thread and is allocated to each user
logged onto a Windows system.

For an introduction to the access control model in Windows, see Access Control in the Windows SDK.

Header: atlsecurity.h

Call this method to take ownership of the given access token handle.

hToken
A handle to the access token.

In debug builds, an assertion error will occur if the CAccessToken object already has ownership of an access
token.

The destructor.

Frees all allocated resources.

Call this method to determine if a specified SID is enabled in the CAccessToken object.

https://docs.microsoft.com/windows/desktop/SecAuthZ/access-tokens
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control

bool CheckTokenMembership(
 const CSid& rSid,
 bool* pbIsMember) const throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CAccessToken::CreateImpersonationToken

bool CreateImpersonationToken(
 CAccessToken* pImp,
 SECURITY_IMPERSONATION_LEVEL sil = SecurityImpersonation) const throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAccessToken::CreatePrimaryToken

rSid
Reference to a CSid Class object.

pbIsMember
Pointer to a variable that receives the results of the check.

Returns TRUE on success, FALSE on failure.

The CheckTokenMembership method checks for the presence of the SID in the user and group SIDs of the access
token. If the SID is present and has the SE_GROUP_ENABLED attribute, pbIsMember is set to TRUE; otherwise,
it is set to FALSE.

In debug builds, an assertion error will occur if pbIsMember is not a valid pointer.

The CAccessToken object must be an impersonation token and not a primary token.

Call this method to create an impersonation access token.

pImp
Pointer to the new CAccessToken object.

sil
Specifies a SECURITY_IMPERSONATION_LEVEL enumerated type that supplies the impersonation level of the
new token.

Returns TRUE on success, FALSE on failure.

CreateImpersonationToken calls DuplicateToken to create a new impersonation token.

Call this method to create a new primary token.

https://docs.microsoft.com/windows/desktop/api/winnt/ne-winnt-_security_impersonation_level
https://docs.microsoft.com/windows/desktop/api/securitybaseapi/nf-securitybaseapi-duplicatetoken

bool CreatePrimaryToken(
 CAccessToken* pPri,
 DWORD dwDesiredAccess = MAXIMUM_ALLOWED,
 const CSecurityAttributes* pTokenAttributes = NULL) const throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAccessToken::CreateProcessAsUser

bool CreateProcessAsUser(
 LPCTSTR pApplicationName,
 LPTSTR pCommandLine,
 LPPROCESS_INFORMATION pProcessInformation,
 LPSTARTUPINFO pStartupInfo,
 DWORD dwCreationFlags = NORMAL_PRIORITY_CLASS,
 bool bLoadProfile = false,
 const CSecurityAttributes* pProcessAttributes = NULL,
 const CSecurityAttributes* pThreadAttributes = NULL,
 bool bInherit = false,
 LPCTSTR pCurrentDirectory = NULL) throw();

ParametersParameters

pPri
Pointer to the new CAccessToken object.

dwDesiredAccess
Specifies the requested access rights for the new token. The default, MAXIMUM_ALLOWED, requests all access
rights that are valid for the caller. See Access Rights and Access Masks for more on access rights.

pTokenAttributes
Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the new token and
determines whether child processes can inherit the token. If pTokenAttributes is NULL, the token gets a default
security descriptor and the handle cannot be inherited.

Returns TRUE on success, FALSE on failure.

CreatePrimaryToken calls DuplicateTokenEx to create a new primary token.

Call this method to create a new process running in the security context of the user represented by the
CAccessToken object.

pApplicationName
Pointer to a null-terminated string that specifies the module to execute. This parameter may not be NULL.

pCommandLine
Pointer to a null-terminated string that specifies the command line to execute.

pProcessInformation
Pointer to a PROCESS_INFORMATION structure that receives identification information about the new process.

pStartupInfo
Pointer to a STARTUPINFO structure that specifies how the main window for the new process should appear.

dwCreationFlags
Specifies additional flags that control the priority class and the creation of the process. See the Win32 function

https://docs.microsoft.com/windows/desktop/SecAuthZ/access-rights-and-access-masks
https://msdn.microsoft.com/library/windows/desktop/aa379560
https://docs.microsoft.com/windows/desktop/api/securitybaseapi/nf-securitybaseapi-duplicatetokenex
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/ns-processthreadsapi-_process_information
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/ns-processthreadsapi-_startupinfoa

Return ValueReturn Value

RemarksRemarks

CAccessToken::CreateRestrictedToken

bool CreateRestrictedToken(
 CAccessToken* pRestrictedToken,
 const CTokenGroups& SidsToDisable,
 const CTokenGroups& SidsToRestrict,
 const CTokenPrivileges& PrivilegesToDelete = CTokenPrivileges()) const throw(...);

ParametersParameters

CreateProcessAsUser for a list of flags.

bLoadProfile
If TRUE, the user's profile is loaded with LoadUserProfile.

pProcessAttributes
Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the new process and
determines whether child processes can inherit the returned handle. If pProcessAttributes is NULL, the process
gets a default security descriptor and the handle cannot be inherited.

pThreadAttributes
Pointer to a SECURITY_ATTRIBUTES structure that specifies a security descriptor for the new thread and
determines whether child processes can inherit the returned handle. If pThreadAttributes is NULL, the thread
gets a default security descriptor and the handle cannot be inherited.

bInherit
Indicates whether the new process inherits handles from the calling process. If TRUE, each inheritable open
handle in the calling process is inherited by the new process. Inherited handles have the same value and access
privileges as the original handles.

pCurrentDirectory
Pointer to a null-terminated string that specifies the current drive and directory for the new process. The string
must be a full path that includes a drive letter. If this parameter is NULL, the new process will have the same
current drive and directory as the calling process.

Returns TRUE on success, FALSE on failure.

CreateProcessAsUser uses the CreateProcessAsUser Win32 function to create a new process that runs in the
security context of the user represented by the CAccessToken object. See the description of the
CreateProcessAsUser function for a full discussion of the parameters required.

For this method to succeed, the CAccessToken object must hold AssignPrimaryToken (unless it is a restricted
token) and IncreaseQuota privileges.

Call this method to create a new, restricted CAccessToken object.

pRestrictedToken
The new, restricted CAccessToken object.

SidsToDisable
A CTokenGroups object that specifies the deny-only S IDs.

SidsToRestrict
A CTokenGroups object that specifies the restricting SIDs.

PrivilegesToDelete

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessasusera
https://docs.microsoft.com/windows/desktop/api/userenv/nf-userenv-loaduserprofilea
https://msdn.microsoft.com/library/windows/desktop/aa379560
https://msdn.microsoft.com/library/windows/desktop/aa379560
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createprocessasusera

Return ValueReturn Value

RemarksRemarks

IMPORTANTIMPORTANT

CAccessToken::Detach

HANDLE Detach() throw();

Return ValueReturn Value

RemarksRemarks

CAccessToken::DisablePrivilege

bool DisablePrivilege(
 LPCTSTR pszPrivilege,
 CTokenPrivileges* pPreviousState = NULL) throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::DisablePrivileges

A CTokenPrivileges object that specifies the privileges to delete in the restricted token. The default creates an
empty object.

Returns TRUE on success, FALSE on failure.

CreateRestrictedToken uses the CreateRestrictedToken Win32 function to create a new CAccessToken object, with
restrictions.

When using CreateRestrictedToken , ensure the following: the existing token is valid (and not entered by the user) and
SidsToDisable and PrivilegesToDelete are both valid (and not entered by the user). If the method returns FALSE, deny
functionality.

Call this method to revoke ownership of the access token.

Returns the handle to the CAccessToken which has been detached.

This method revokes the CAccessToken 's ownership of the access token.

Call this method to disable a privilege in the CAccessToken object.

pszPrivilege
Pointer to a string containing the privilege to disable in the CAccessToken object.

pPreviousState
Pointer to a CTokenPrivileges object which will contain the previous state of the privileges.

Returns TRUE on success, FALSE on failure.

Call this method to disable one or more privileges in the CAccessToken object.

https://docs.microsoft.com/windows/desktop/api/securitybaseapi/nf-securitybaseapi-createrestrictedtoken

bool DisablePrivileges(
 const CAtlArray<LPCTSTR>& rPrivileges,
 CTokenPrivileges* pPreviousState = NULL) throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::EnablePrivilege

bool EnablePrivilege(
 LPCTSTR pszPrivilege,
 CTokenPrivileges* pPreviousState = NULL) throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::EnablePrivileges

bool EnablePrivileges(
 const CAtlArray<LPCTSTR>& rPrivileges,
 CTokenPrivileges* pPreviousState = NULL) throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::GetDefaultDacl

rPrivileges
Pointer to an array of strings containing the privileges to disable in the CAccessToken object.

pPreviousState
Pointer to a CTokenPrivileges object which will contain the previous state of the privileges.

Returns TRUE on success, FALSE on failure.

Call this method to enable a privilege in the CAccessToken object.

pszPrivilege
Pointer to a string containing the privilege to enable in the CAccessToken object.

pPreviousState
Pointer to a CTokenPrivileges object which will contain the previous state of the privileges.

Returns TRUE on success, FALSE on failure.

Call this method to enable one or more privileges in the CAccessToken object.

rPrivileges
Pointer to an array of strings containing the privileges to enable in the CAccessToken object.

pPreviousState
Pointer to a CTokenPrivileges object which will contain the previous state of the privileges.

Returns TRUE on success, FALSE on failure.

Call this method to return the CAccessToken object's default DACL.

bool GetDefaultDacl(CDacl* pDacl) const throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::GetEffectiveToken

bool GetEffectiveToken(DWORD dwDesiredAccess) throw();

ParametersParameters

Return ValueReturn Value

CAccessToken::GetGroups

bool GetGroups(CTokenGroups* pGroups) const throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::GetHandle

HANDLE GetHandle() const throw();

Return ValueReturn Value

CAccessToken::GetImpersonationLevel

pDacl
Pointer to the CDacl Class object which will receive the CAccessToken object's default DACL.

Returns TRUE if the default DACL has been recovered, FALSE otherwise.

Call this method to get the CAccessToken object equal to the access token in effect for the current thread.

dwDesiredAccess
Specifies an access mask that specifies the requested types of access to the access token. These requested access
types are compared with the token's DACL to determine which accesses are granted or denied.

Returns TRUE on success, FALSE on failure.

Call this method to return the CAccessToken object's token groups.

pGroups
Pointer to the CTokenGroups Class object which will receive the group information.

Returns TRUE on success, FALSE on failure.

Call this method to retrieve a handle to the access token.

Returns a handle to the CAccessToken object's access token.

Call this method to get the impersonation level from the access token.

bool GetImpersonationLevel(
 SECURITY_IMPERSONATION_LEVEL* pImpersonationLevel) const throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::GetLogonSessionId

bool GetLogonSessionId(LUID* pluid) const throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAccessToken::GetLogonSid

bool GetLogonSid(CSid* pSid) const throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAccessToken::GetOwner

bool GetOwner(CSid* pSid) const throw(...);

ParametersParameters

pImpersonationLevel
Pointer to a SECURITY_IMPERSONATION_LEVEL enumeration type which will receive the impersonation level
information.

Returns TRUE on success, FALSE on failure.

Call this method to get the Logon Session ID associated with the CAccessToken object.

pluid
Pointer to a LUID which will receive the Logon Session ID.

Returns TRUE on success, FALSE on failure.

In debug builds, an assertion error will occur if pluid is an invalid value.

Call this method to get the Logon SID associated with the CAccessToken object.

pSid
Pointer to a CSid Class object.

Returns TRUE on success, FALSE on failure.

In debug builds, an assertion error will occur if pSid is an invalid value.

Call this method to get the owner associated with the CAccessToken object.

pSid

https://docs.microsoft.com/windows/desktop/api/winnt/ne-winnt-_security_impersonation_level
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_luid

Return ValueReturn Value

RemarksRemarks

CAccessToken::GetPrimaryGroup

bool GetPrimaryGroup(CSid* pSid) const throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAccessToken::GetPrivileges

bool GetPrivileges(CTokenPrivileges* pPrivileges) const throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::GetProcessToken

bool GetProcessToken(DWORD dwDesiredAccess, HANDLE hProcess = NULL) throw();

ParametersParameters

Pointer to a CSid Class object.

Returns TRUE on success, FALSE on failure.

The owner is set by default on any objects created while this access token is in effect.

Call this method to get the primary group associated with the CAccessToken object.

pSid
Pointer to a CSid Class object.

Returns TRUE on success, FALSE on failure.

The group is set by default on any objects created while this access token is in effect.

Call this method to get the privileges associated with the CAccessToken object.

pPrivileges
Pointer to a CTokenPrivileges Class object which will receive the privileges.

Returns TRUE on success, FALSE on failure.

Call this method to initialize the CAccessToken with the access token from the given process.

dwDesiredAccess
Specifies an access mask that specifies the requested types of access to the access token. These requested access
types are compared with the token's DACL to determine which accesses are granted or denied.

hProcess
Handle to the process whose access token is opened. If the default value of NULL is used, the current process is
used.

Return ValueReturn Value

RemarksRemarks

CAccessToken::GetProfile

HANDLE GetProfile() const throw();

Return ValueReturn Value

CAccessToken::GetSource

bool GetSource(TOKEN_SOURCE* pSource) const throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::GetStatistics

bool GetStatistics(TOKEN_STATISTICS* pStatistics) const throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::GetTerminalServicesSessionId

bool GetTerminalServicesSessionId(DWORD* pdwSessionId) const throw(...);

ParametersParameters

Returns TRUE on success, FALSE on failure.

Calls the OpenProcessToken Win32 function.

Call this method to get the handle pointing to the user profile associated with the CAccessToken object.

Returns a handle pointing to the user profile, or NULL if no profile exists.

Call this method to get the source of the CAccessToken object.

pSource
Pointer to a TOKEN_SOURCE structure.

Returns TRUE on success, FALSE on failure.

Call this method to get information associated with the CAccessToken object.

pStatistics
Pointer to a TOKEN_STATISTICS structure.

Returns TRUE on success, FALSE on failure.

Call this method to get the Terminal Services Session ID associated with the CAccessToken object.

pdwSessionId
The Terminal Services Session ID.

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-openprocesstoken
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_source
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_statistics

Return ValueReturn Value

CAccessToken::GetThreadToken

bool GetThreadToken(
 DWORD dwDesiredAccess,
 HANDLE hThread = NULL,
 bool bOpenAsSelf = true) throw();

ParametersParameters

Return ValueReturn Value

CAccessToken::GetTokenId

bool GetTokenId(LUID* pluid) const throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::GetType

bool GetType(TOKEN_TYPE* pType) const throw(...);

ParametersParameters

Returns TRUE on success, FALSE on failure.

Call this method to initialize the CAccessToken with the token from the given thread.

dwDesiredAccess
Specifies an access mask that specifies the requested types of access to the access token. These requested access
types are compared with the token's DACL to determine which accesses are granted or denied.

hThread
Handle to the thread whose access token is opened.

bOpenAsSelf
Indicates whether the access check is to be made against the security context of the thread calling the
GetThreadToken method or against the security context of the process for the calling thread.

If this parameter is FALSE, the access check is performed using the security context for the calling thread. If the
thread is impersonating a client, this security context can be that of a client process. If this parameter is TRUE, the
access check is made using the security context of the process for the calling thread.

Returns TRUE on success, FALSE on failure.

Call this method to get the Token ID associated with the CAccessToken object.

pluid
Pointer to a LUID which will receive the Token ID.

Returns TRUE on success, FALSE on failure.

Call this method to get the token type of the CAccessToken object.

pType
Address of the TOKEN_TYPE variable that, on success, receives the type of the token.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_luid
https://docs.microsoft.com/windows/desktop/api/winnt/ne-winnt-_token_type

Return ValueReturn Value

RemarksRemarks

CAccessToken::GetUser

bool GetUser(CSid* pSid) const throw(...);

ParametersParameters

Return ValueReturn Value

CAccessToken::HKeyCurrentUser

HKEY HKeyCurrentUser() const throw();

Return ValueReturn Value

CAccessToken::Impersonate

bool Impersonate(HANDLE hThread = NULL) const throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAccessToken::ImpersonateLoggedOnUser

Returns TRUE on success, FALSE on failure.

The TOKEN_TYPE enumeration type contains values that differentiate between a primary token and an
impersonation token.

Call this method to identify the user associated with the CAccessToken object.

pSid
Pointer to a CSid Class object.

Returns TRUE on success, FALSE on failure.

Call this method to get the handle pointing to the user profile associated with the CAccessToken object.

Returns a handle pointing to the user profile, or NULL if no profile exists.

Call this method to assign an impersonation CAccessToken to a thread.

hThread
Handle to the thread to assign the impersonation token to. This handle must have been opened with
TOKEN_IMPERSONATE access rights. If hThread is NULL, the method causes the thread to stop using an
impersonation token.

Returns TRUE on success, FALSE on failure.

In debug builds, an assertion error will occur if CAccessToken does not have a valid pointer to a token.

The CAutoRevertImpersonation class can be used to automatically revert impersonated access tokens.

Call this method to allow the calling thread to impersonate the security context of a logged-on user.

bool ImpersonateLoggedOnUser() const throw(...);

Return ValueReturn Value

RemarksRemarks

IMPORTANTIMPORTANT

CAccessToken::IsTokenRestricted

bool IsTokenRestricted() const throw();

Return ValueReturn Value

CAccessToken::LoadUserProfile

bool LoadUserProfile() throw(...);

Return ValueReturn Value

RemarksRemarks

CAccessToken::LogonUser

bool LogonUser(
 LPCTSTR pszUserName,
 LPCTSTR pszDomain,
 LPCTSTR pszPassword,
 DWORD dwLogonType = LOGON32_LOGON_INTERACTIVE,
 DWORD dwLogonProvider = LOGON32_PROVIDER_DEFAULT) throw();

ParametersParameters

Returns TRUE on success, FALSE on failure.

If a call to an impersonation function fails for any reason, the client is not impersonated and the client request is made in
the security context of the process from which the call was made. If the process is running as a highly privileged account, or
as a member of an administrative group, the user might be able to perform actions he or she would otherwise be
disallowed. Therefore, the return value for this function should always be confirmed.

Call this method to test if the CAccessToken object contains a list of restricted SIDs.

Returns TRUE if the object contains a list of restricting SIDs, FALSE if there are no restricting SIDs or if the
method fails.

Call this method to load the user profile associated with the CAccessToken object.

Returns TRUE on success, FALSE on failure.

In debug builds, an assertion error will occur if the CAccessToken does not contain a valid token, or if a user
profile already exists.

Call this method to create a logon session for the user associated with the given credentials.

pszUserName
Pointer to a null-terminated string that specifies the user name. This is the name of the user account to log on to.

Return ValueReturn Value

RemarksRemarks

CAccessToken::OpenCOMClientToken

bool OpenCOMClientToken(
 DWORD dwDesiredAccess,
 bool bImpersonate = false,
 bool bOpenAsSelf = true) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pszDomain
Pointer to a null-terminated string that specifies the name of the domain or server whose account database
contains the pszUserName account.

pszPassword
Pointer to a null-terminated string that specifies the clear-text password for the user account specified by
pszUserName.

dwLogonType
Specifies the type of logon operation to perform. See LogonUser for more details.

dwLogonProvider
Specifies the logon provider. See LogonUser for more details.

Returns TRUE on success, FALSE on failure.

The access token resulting from the logon will be associated with the CAccessToken . For this method to succeed,
the CAccessToken object must hold SE_TCB_NAME privileges, identifying the holder as part of the trusted
computer base. See LogonUser for more information regarding the privileges required.

Call this method from within a COM server handling a call from a client to initialize the CAccessToken with the
access token from the COM client.

dwDesiredAccess
Specifies an access mask that specifies the requested types of access to the access token. These requested access
types are compared with the token's DACL to determine which accesses are granted or denied.

bImpersonate
If TRUE, the current thread will impersonate the calling COM client if this call completes successfully. If FALSE,
the access token will be opened, but the thread will not have an impersonation token when this call completes.

bOpenAsSelf
Indicates whether the access check is to be made against the security context of the thread calling the
GetThreadToken method or against the security context of the process for the calling thread.

If this parameter is FALSE, the access check is performed using the security context for the calling thread. If the
thread is impersonating a client, this security context can be that of a client process. If this parameter is TRUE, the
access check is made using the security context of the process for the calling thread.

Returns TRUE on success, FALSE on failure.

The CAutoRevertImpersonation Class can be used to automatically revert impersonated access tokens created by
setting the bImpersonate flag to TRUE.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-logonusera
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-logonusera
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-logonusera
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getcurrentthread

CAccessToken::OpenNamedPipeClientToken

bool OpenNamedPipeClientToken(
 HANDLE hPipe,
 DWORD dwDesiredAccess,
 bool bImpersonate = false,
 bool bOpenAsSelf = true) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAccessToken::OpenRPCClientToken

bool OpenRPCClientToken(
 RPC_BINDING_HANDLE BindingHandle,
 DWORD dwDesiredAccess,
 bool bImpersonate = false,
 bool bOpenAsSelf = true) throw(...);

ParametersParameters

Call this method from within a server taking requests over a named pipe to initialize the CAccessToken with the
access token from the client.

hPipe
Handle to a named pipe.

dwDesiredAccess
Specifies an access mask that specifies the requested types of access to the access token. These requested access
types are compared with the token's DACL to determine which accesses are granted or denied.

bImpersonate
If TRUE, the current thread will impersonate the calling pipe client if this call completes successfully. If FALSE, the
access token will be opened, but the thread will not have an impersonation token when this call completes.

bOpenAsSelf
Indicates whether the access check is to be made against the security context of the thread calling the
GetThreadToken method or against the security context of the process for the calling thread.

If this parameter is FALSE, the access check is performed using the security context for the calling thread. If the
thread is impersonating a client, this security context can be that of a client process. If this parameter is TRUE, the
access check is made using the security context of the process for the calling thread.

Returns TRUE on success, FALSE on failure.

The CAutoRevertImpersonation Class can be used to automatically revert impersonated access tokens created by
setting the bImpersonate flag to TRUE.

Call this method from within a server handling a call from an RPC client to initialize the CAccessToken with the
access token from the client.

BindingHandle
Binding handle on the server that represents a binding to a client.

dwDesiredAccess
Specifies an access mask that specifies the requested types of access to the access token. These requested access

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getcurrentthread

Return ValueReturn Value

RemarksRemarks

CAccessToken::OpenThreadToken

bool OpenThreadToken(
 DWORD dwDesiredAccess,
 bool bImpersonate = false,
 bool bOpenAsSelf = true,
 SECURITY_IMPERSONATION_LEVEL sil = SecurityImpersonation) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

types are compared with the token's DACL to determine which accesses are granted or denied.

bImpersonate
If TRUE, the current thread will impersonate the calling RPC client if this call completes successfully. If FALSE, the
access token will be opened, but the thread will not have an impersonation token when this call completes.

bOpenAsSelf
Indicates whether the access check is to be made against the security context of the thread calling the
GetThreadToken method or against the security context of the process for the calling thread.

If this parameter is FALSE, the access check is performed using the security context for the calling thread. If the
thread is impersonating a client, this security context can be that of a client process. If this parameter is TRUE, the
access check is made using the security context of the process for the calling thread.

Returns TRUE on success, FALSE on failure.

The CAutoRevertImpersonation Class can be used to automatically revert impersonated access tokens created by
setting the bImpersonate flag to TRUE.

Call this method to set the impersonation level and then initialize the CAccessToken with the token from the given
thread.

dwDesiredAccess
Specifies an access mask that specifies the requested types of access to the access token. These requested access
types are compared with the token's DACL to determine which accesses are granted or denied.

bImpersonate
If TRUE, the thread will be left at the requested impersonation level after this method completes. If FALSE, the
thread will revert to its original impersonation level.

bOpenAsSelf
Indicates whether the access check is to be made against the security context of the thread calling the
GetThreadToken method or against the security context of the process for the calling thread.

If this parameter is FALSE, the access check is performed using the security context for the calling thread. If the
thread is impersonating a client, this security context can be that of a client process. If this parameter is TRUE, the
access check is made using the security context of the process for the calling thread.

sil
Specifies a SECURITY_IMPERSONATION_LEVEL enumerated type that supplies the impersonation level of the
token.

Returns TRUE on success, FALSE on failure.

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getcurrentthread
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getcurrentthread
https://docs.microsoft.com/windows/desktop/api/winnt/ne-winnt-_security_impersonation_level

CAccessToken::PrivilegeCheck

bool PrivilegeCheck(
 PPRIVILEGE_SET RequiredPrivileges,
 bool* pbResult) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAccessToken::Revert

bool Revert(HANDLE hThread = NULL) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAccessToken::SetDefaultDacl

bool SetDefaultDacl(const CDacl& rDacl) throw(...);

OpenThreadToken is similar to CAccessToken::GetThreadToken, but sets the impersonation level before initializing
the CAccessToken from the thread's access token.

The CAutoRevertImpersonation Class can be used to automatically revert impersonated access tokens created by
setting the bImpersonate flag to TRUE.

Call this method to determine whether a specified set of privileges are enabled in the CAccessToken object.

RequiredPrivileges
Pointer to a PRIVILEGE_SET structure.

pbResult
Pointer to a value the method sets to indicate whether any or all of the specified privilege are enabled in the
CAccessToken object.

Returns TRUE on success, FALSE on failure.

When PrivilegeCheck returns, the Attributes member of each LUID_AND_ATTRIBUTES structure is set to
SE_PRIVILEGE_USED_FOR_ACCESS if the corresponding privilege is enabled. This method calls the
PrivilegeCheck Win32 function.

Call this method to stop a thread from using an impersonation token.

hThread
Handle to the thread to revert from impersonation. If hThread is NULL, the current thread is assumed.

Returns TRUE on success, FALSE on failure.

The reversion of impersonation tokens can be performed automatically with the CAutoRevertImpersonation
Class.

Call this method to set the default DACL of the CAccessToken object.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_privilege_set
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_luid_and_attributes
https://docs.microsoft.com/windows/desktop/api/securitybaseapi/nf-securitybaseapi-privilegecheck

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAccessToken::SetOwner

bool SetOwner(const CSid& rSid) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAccessToken::SetPrimaryGroup

bool SetPrimaryGroup(const CSid& rSid) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

rDacl
The new default CDacl Class information.

Returns TRUE on success, FALSE on failure.

The default DACL is the DACL that is used by default when new objects are created with this access token in
effect.

Call this method to set the owner of the CAccessToken object.

rSid
The CSid Class object containing the owner information.

Returns TRUE on success, FALSE on failure.

The owner is the default owner that is used for new objects created while this access token is in effect.

Call this method to set the primary group of the CAccessToken object.

rSid
The CSid Class object containing the primary group information.

Returns TRUE on success, FALSE on failure.

The primary group is the default group for new objects created while this access token is in effect.

ATLSecurity Sample
Access Tokens
Class Overview

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-tokens

CAcl Class
3/4/2019 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CAcl

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CAcl::CAccessMaskArray An array of ACCESS_MASKs.

CAcl::CAceFlagArray An array of BYTEs.

CAcl::CAceTypeArray An array of BYTEs.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAcl::CAcl The constructor.

CAcl::~CAcl The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAcl::GetAceCount Returns the number of access-control entry (ACE) objects.

CAcl::GetAclEntries Retrieves the access-control list (ACL) entries from the CAcl

object.

CAcl::GetAclEntry Retrieves all of the information about an entry in a CAcl

object.

CAcl::GetLength Returns the length of the ACL.

CAcl::GetPACL Returns a PACL (pointer to an ACL).

This class is a wrapper for an ACL (access-control list) structure.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cacl-class.md

CAcl::IsEmpty Tests the CAcl object for entries.

CAcl::IsNull Returns the status of the CAcl object.

CAcl::RemoveAce Removes a specific ACE (access-control entry) from the CAcl

object.

CAcl::RemoveAces Removes all ACEs (access-control entries) from the CAcl

that apply to the given CSid .

CAcl::SetEmpty Marks the CAcl object as empty.

CAcl::SetNull Marks the CAcl object as NULL.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CAcl::operator const ACL * Casts a CAcl object to an ACL structure.

CAcl::operator = Assignment operator.

Remarks

Requirements

CAcl::CAccessMaskArray

The ACL structure is the header of an ACL (access-control list). An ACL includes a sequential list of zero or more
ACEs (access-control entries). The individual ACEs in an ACL are numbered from 0 to n-1, where n is the number
of ACEs in the ACL. When editing an ACL, an application refers to an access-control entry (ACE) within the ACL
by its index.

There are two ACL types:

Discretionary

System

A discretionary ACL is controlled by the owner of an object or anyone granted WRITE_DAC access to the object. It
specifies the access particular users and groups can have to an object. For example, the owner of a file can use a
discretionary ACL to control which users and groups can and cannot have access to the file.

An object can also have system-level security information associated with it, in the form of a system ACL
controlled by a system administrator. A system ACL can allow the system administrator to audit any attempts to
gain access to an object.

For more details, see the ACL discussion in the Windows SDK.

For an introduction to the access control model in Windows, see Access Control in the Windows SDK.

Header: atlsecurity.h

https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control-entries
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control-lists
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control

typedef CAtlArray<ACCESS_MASK> CAccessMaskArray;

RemarksRemarks

CAcl::CAceFlagArray

typedef CAtlArray<BYTE> CAceFlagArray;

RemarksRemarks

CAcl::CAceTypeArray

typedef CAtlArray<BYTE> CAceTypeArray;

RemarksRemarks

CAcl::CAcl

CAcl() throw();
CAcl(const CAcl& rhs) throw(...);

ParametersParameters

RemarksRemarks

CAcl::~CAcl

virtual ~CAcl() throw();

RemarksRemarks

An array of ACCESS_MASK objects.

This typedef specifies the array type that can be used to store access rights used in access-control entries (ACEs).

An array of BYTEs.

This typedef specifies the array type used to define the access-control entry (ACE) type-specific control flags. See
the ACE_HEADER definition for the complete list of possible flags.

An array of BYTEs.

This typedef specifies the array type used to define the nature of the access-control entry (ACE) objects, such as
ACCESS_ALLOWED_ACE_TYPE or ACCESS_DENIED_ACE_TYPE. See the ACE_HEADER definition for the
complete list of possible types.

The constructor.

rhs
An existing CAcl object.

The CAcl object can be optionally created using an existing CAcl object.

The destructor.

The destructor frees any resources acquired by the object.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_ace_header
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_ace_header

CAcl::GetAceCount

virtual UINT GetAceCount() const throw() = 0;

Return ValueReturn Value

CAcl::GetAclEntries

void GetAclEntries(
 CSid::CSidArray* pSids,
 CAccessMaskArray* pAccessMasks = NULL,
 CAceTypeArray* pAceTypes = NULL,
 CAceFlagArray* pAceFlags = NULL) const throw(...);

ParametersParameters

RemarksRemarks

CAcl::GetAclEntry

void GetAclEntry(
 UINT nIndex,
 CSid* pSid,
 ACCESS_MASK* pMask = NULL,
 BYTE* pType = NULL,
 BYTE* pFlags = NULL,
 GUID* pObjectType = NULL,
 GUID* pInheritedObjectType = NULL) const throw(...);

ParametersParameters

Returns the number of access-control entry (ACE) objects.

Returns the number of ACE entries in the CAcl object.

Retrieves the access-control list (ACL) entries from the CAcl object.

pSids
A pointer to an array of CSid objects.

pAccessMasks
The access masks.

pAceTypes
The access-control entry (ACE) types.

pAceFlags
The ACE flags.

This method fills the array parameters with the details of every ACE object contained in the CAcl object. Use
NULL when the details for that particular array are not required.

The contents of each array correspond to each other, that is, the first element of the CAccessMaskArray array
corresponds to the first element in the CSidArray array, and so on.

See ACE_HEADER for more details on ACE types and flags.

Retrieves all of the information about an entry in an access-control list (ACL).

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_ace_header

RemarksRemarks

CAcl::GetLength

UINT GetLength() const throw();

Return ValueReturn Value

CAcl::GetPACL

const ACL* GetPACL() const throw(...);

Return ValueReturn Value

CAcl::IsEmpty

bool IsEmpty() const throw();

RemarksRemarks

nIndex
Index to the ACL entry to retrieve.

pSid
The CSid object to which the ACL entry applies.

pMask
The mask specifying permissions to grant or deny access.

pType
The ACE type.

pFlags
The ACE flags.

pObjectType
The object type. This will be set to GUID_NULL if the object type is not specified in the ACE, or if the ACE is not an
OBJECT ACE.

pInheritedObjectType
The inherited object type. This will be set to GUID_NULL if the inherited object type is not specified in the ACE, or
if the ACE is not an OBJECT ACE.

This method will retrieve all of the information about an individual ACE, providing more information than
CAcl::GetAclEntries alone makes available.

See ACE_HEADER for more details on ACE types and flags.

Returns the length of the access-control list (ACL).

Returns the required length in bytes necessary to hold the ACL structure.

Returns a pointer to an access-control list (ACL).

Returns a pointer to the ACL structure.

Tests the CAcl object for entries.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_ace_header

CAcl::IsNull

bool IsNull() const throw();

Return ValueReturn Value

CAcl::operator const ACL *

operator const ACL *() const throw(...);

RemarksRemarks

CAcl::operator =

CAcl& operator= (const CAcl& rhs) throw(...);

ParametersParameters

Return ValueReturn Value

CAcl::RemoveAce

void RemoveAce(UINT nIndex) throw();

ParametersParameters

RemarksRemarks

CAcl::RemoveAces

Returns TRUE if the CAcl object is not NULL, and contains no entries. Returns FALSE if the CAcl object is either
NULL, or contains at least one entry.

Returns the status of the CAcl object.

Returns TRUE if the CAcl object is NULL, FALSE otherwise.

Casts a CAcl object to an ACL (access-control list) structure.

Returns the address of the ACL structure.

Assignment operator.

rhs
The CAcl to assign to the existing object.

Returns a reference to the updated CAcl object.

Removes a specific ACE (access-control entry) from the CAcl object.

nIndex
Index to the ACE entry to remove.

This method is derived from CAtlArray::RemoveAt.

Removes alls ACEs (access-control entries) from the CAcl that apply to the given CSid .

bool RemoveAces(const CSid& rSid) throw(...)

ParametersParameters

CAcl::SetEmpty

void SetEmpty() throw();

RemarksRemarks

CAcl::SetNull

void SetNull() throw();

RemarksRemarks

See also

rSid
A reference to a CSid object.

Marks the CAcl object as empty.

The CAcl can be set to empty or to NULL: the two states are distinct.

Marks the CAcl object as NULL.

The CAcl can be set to empty or to NULL: the two states are distinct.

Class Overview
Security Global Functions

CAdapt Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template <class T>
class CAdapt

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAdapt::CAdapt The constructor.

Public OperatorsPublic Operators

NAME DESCRIPTION

CAdapt::operator const T& Returns a const reference to m_T .

CAdapt::operator T& Returns a reference to m_T .

CAdapt::operator < Compares an object of the adapted type with m_T .

CAdapt::operator = Assigns an object of the adapted type to m_T .

CAdapt::operator == Compares an object of the adapted type with m_T .

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAdapt::m_T The data being adapted.

Remarks

This template is used to wrap classes that redefine the address-of operator to return something other than the
address of the object.

T
The adapted type.

CAdapt is a simple template used to wrap classes that redefine the address-of operator (operator &) to return
something other than the address of the object. Examples of such classes include ATL's CComBSTR , CComPtr , and
CComQIPtr classes, and the compiler COM support class, _com_ptr_t . These classes all redefine the address-of

operator to return the address of one of their data members (a BSTR in the case of CComBSTR , and an interface

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cadapt-class.md

Requirements

CAdapt::CAdapt

CAdapt();
CAdapt(const T& rSrc);
CAdapt(const CAdapt& rSrCA);
CAdapt(T&& rSrCA); // (Visual Studio 2017)
CAdapt(CAdapt<T>&& rSrCA) noexcept; // (Visual Studio 2017)

ParametersParameters

CAdapt::m_T

T m_T;

RemarksRemarks

CAdapt::operator const T&

pointer in the case of the other classes).

CAdapt 's primary role is to hide the address-of operator defined by class T, yet still retain the characteristics of the
adapted class. CAdapt fulfils this role by holding a public member, m_T, of type T, and by defining conversion
operators, comparison operators, and a copy constructor to allow specializations of CAdapt to be treated as if they
are objects of type T.

The adapter class CAdapt is useful because some container-style classes expect to be able to obtain the addresses
of their contained objects using the address-of operator. The redefinition of the address-of operator can confound
this requirement, typically causing compilation errors and preventing the use of the non-adapted type with classes
that expect it to "just work". CAdapt provides a way around those problems.

Typically, you will use CAdapt when you want to store CComBSTR , CComPtr , CComQIPtr , or _com_ptr_t objects in a
container-style class. This was most commonly necessary for C++ Standard Library containers prior to support
for the C++11 Standard, but C++11 Standard Library containers automatically work with types that have
overloaded operator&() . The Standard Library achieves this by internally using std::addressof to get the true
addresses of objects.

Header: atlcomcli.h

The constructors allow an adapter object to be default constructed, copied from an object of the adapted type, or
copied from another adapter object.

rSrc
A variable of the type being adapted to be copied into the newly constructed adapter object.

rSrCA
An adapter object whose contained data should be copied (or moved) into the newly constructed adapter object.

Holds the data being adapted.

This public data member can be accessed directly or indirectly with operator const T& and operator T&.

Returns a const reference to the m_T member, allowing the adapter object to be treated as if it were an object of
type T.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/memory-functions

operator const T&() const;

Return ValueReturn Value

CAdapt::operator T&

operator T&();

Return ValueReturn Value

CAdapt::operator <

bool operator<(const T& rSrc) const;

ParametersParameters

Return ValueReturn Value

CAdapt::operator =

CAdapt& operator= (const T& rSrc);
CAdapt& operator= (T&& rSrCA); // (Visual Studio 2017)
CAdapt& operator= (CAdapt<T>&& rSrCA) noexcept; // (Visual Studio 2017)

ParametersParameters

Return ValueReturn Value

CAdapt::operator ==

A const reference to m_T .

Returns a reference to the m_T member, allowing the adapter object to be treated as if it were an object of type T.

A reference to m_T .

Compares an object of the adapted type with m_T.

rSrc
A reference to the object to be compared.

The result of the comparison between m_T and rSrc.

The assignment operator assigns the argument, rSrc, to the data member m_T and returns the current adapter
object.

rSrc
A reference to an object of the adapted type to be copied.

rSrCA
A reference to an object to be moved.

A reference to the current object.

Compares an object of the adapted type with m_T.

bool operator== (const T& rSrc) const;

ParametersParameters

Return ValueReturn Value

See also

rSrc
A reference to the object to be compared.

The result of the comparison between m_T and rSrc.

Class Overview

CAtlArray Class
3/4/2019 • 11 minutes to read • Edit Online

Syntax
template<typename E, class ETraits = CElementTraits<E>>
class CAtlArray

ParametersParameters

Members
MethodsMethods

Add Call this method to add an element to the array object.

Append Call this method to add the contents of one array to the end
of another.

AssertValid Call this method to confirm that the array object is valid.

CAtlArray The constructor.

~CAtlArray The destructor.

Copy Call this method to copy the elements of one array to
another.

FreeExtra Call this method to remove any empty elements from the
array.

GetAt Call this method to retrieve a single element from the array
object.

GetCount Call this method to return the number of elements stored in
the array.

GetData Call this method to return a pointer to the first element in the
array.

InsertArrayAt Call this method to insert one array into another.

This class implements an array object.

E
The type of data to be stored in the array.

ETraits
The code used to copy or move elements.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlarray-class.md

InsertAt Call this method to insert a new element (or multiple copies
of an element) into the array object.

IsEmpty Call this method to test if the array is empty.

RemoveAll Call this method to remove all elements from the array
object.

RemoveAt Call this method to remove one or more elements from the
array.

SetAt Call this method to set the value of an element in the array
object.

SetAtGrow Call this method to set the value of an element in the array
object, expanding the array as required.

SetCount Call this method to set the size of the array object.

OperatorsOperators

operator [] Call this operator to return a reference to an element in the
array.

TypedefsTypedefs

INARGTYPE The data type to use for adding elements to the array.

OUTARGTYPE The data type to use for retrieving elements from the array.

Remarks

Requirements

CAtlArray::Add

CAtlArray provides methods for creating and managing an array of elements of a user-defined type. Although
similar to standard C arrays, the CAtlArray object can dynamically shrink and grow as necessary. The array index
always starts at position 0, and the upper bound can be fixed, or allowed to expand as new elements are added.

For arrays with a small number of elements, the ATL class CSimpleArray can be used.

CAtlArray is closely related to MFC's CArray class and will work in an MFC project, albeit without serialization
support.

For more information, see ATL Collection Classes.

Header: atlcoll.h

Call this method to add an element to the array object.

size_t Add(INARGTYPE element);
size_t Add();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Declare an array of integers
CAtlArray<int> iArray;

iArray.Add(1); // element 0
iArray.Add(2); // element 1
iArray.Add(); // element 2

ATLASSERT(iArray.GetCount() == 3);

CAtlArray::Append

size_t Append(const CAtlArray<E, ETraits>& aSrc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

element
The element to be added to the array.

Returns the index of the added element.

The new element is added to the end of the array. If no element is provided, an empty element is added; that is,
the array is increased in size as though a real element has been added. If the operation fails, AtlThrow is called
with the argument E_OUTOFMEMORY.

Call this method to add the contents of one array to the end of another.

aSrc
The array to append.

Returns the index of the first appended element.

The elements in the supplied array are added to the end of the existing array. If necessary, memory will be
allocated to accommodate the new elements.

The arrays must be of the same type, and it is not possible to append an array to itself.

In debug builds, an ATLASSERT will be raised if the CAtlArray argument is not a valid array or if aSrc refers to
the same object. In release builds, invalid arguments may lead to unpredictable behavior.

// Declare two integer arrays
CAtlArray<int> iArray1,iArray2;

iArray1.Add(1); // element 0
iArray1.Add(2); // element 1

iArray2.Add(3); // element 0
iArray2.Add(4); // element 1

// Append iArray2 to iArray1
iArray1.Append(iArray2);

ATLASSERT(iArray1.GetCount() == 4);

CAtlArray::AssertValid

void AssertValid() const;

RemarksRemarks

ExampleExample

CAtlArray<float> fArray;
// AssertValid only exists in debug builds
#ifdef _DEBUG
fArray.AssertValid();
#endif

CAtlArray::CAtlArray

CAtlArray() throw();

RemarksRemarks

ExampleExample

CAtlArray<int> iArray;

CAtlArray::~CAtlArray

~CAtlArray() throw();

RemarksRemarks

Call this method to confirm that the array object is valid.

If the array object is not valid, ATLASSERT will throw an assertion. This method is available only if _DEBUG is
defined.

The constructor.

Initializes the array object.

The destructor.

CAtlArray::Copy

void Copy(const CAtlArray<E, ETraits>& aSrc);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

CAtlArray<int> iArrayS, iArrayT;

iArrayS.Add(1);
iArrayS.Add(2);

iArrayT.Add(3);
iArrayT.Add(4);

iArrayT.Copy(iArrayS);

ATLASSERT(iArrayT.GetCount() == 2);
ATLASSERT(iArrayT[0] == 1);
ATLASSERT(iArrayT[1] == 2);

CAtlArray::FreeExtra

void FreeExtra() throw();

RemarksRemarks

CAtlArray::GetAt

Frees up any resources used by the array object.

Call this method to copy the elements of one array to another.

aSrc
The source of the elements to copy to an array.

Call this method to overwrite elements of one array with the elements of another array. If necessary, memory will
be allocated to accommodate the new elements. It is not possible to copy elements of an array to itself.

If the existing contents of the array are to be retained, use CAtlArray::Append instead.

In debug builds, an ATLASSERT will be raised if the existing CAtlArray object is not valid, or if aSrc refers to the
same object. In release builds, invalid arguments may lead to unpredictable behavior.

CAtlArray::Copy does not support arrays consisting of elements created with the CAutoPtr class.

Call this method to remove any empty elements from the array.

Any empty elements are removed, but the size and upper bound of the array remain unchanged.

In debug builds, an ATLASSERT will be raised if the CAtlArray object is not valid, or if the array would exceed its
maximum size.

const E& GetAt(size_t iElement) const throw();
E& GetAt(size_t iElement) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Declare an array of integers

CAtlArray<int> iMyArray;
int element;

// Add ten elements to the array
for (int i = 0; i < 10; i++)
{
 iMyArray.Add(i);
}

// Use GetAt and SetAt to modify
// every element in the array

for (size_t i = 0; i < iMyArray.GetCount(); i++)
{
 element = iMyArray.GetAt(i);
 element *= 10;
 iMyArray.SetAt(i, element);
}

CAtlArray::GetCount

size_t GetCount() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAtlArray::GetData

Call this method to retrieves a single element from the array object.

iElement
The index value of the array element to return.

Returns a reference to the required array element.

In debug builds, an ATLASSERT will be raised if iElement exceeds the number of elements in the array. In release
builds, an invalid argument may lead to unpredictable behavior.

Call this method to return the number of elements stored in the array.

Returns the number of elements stored in the array.

As the first element in the array is at position 0, the value returned by GetCount is always 1 greater than the
largest index.

See the example for CAtlArray::GetAt.

E* GetData() throw();
const E* GetData() const throw();

Return ValueReturn Value

ExampleExample

// Define an array of integers
CAtlArray<int> MyArray;

// Define a pointer
int* pData;

// Allocate enough space for 32 elements
// with buffer increase to be calculated
// automatically
MyArray.SetCount(32, -1);

// Set the pointer to the first element
pData = MyArray.GetData();

// Set array values directly
for (int j = 0; j < 32; j++, pData++)
{
 *pData = j * 10;
}

CAtlArray::INARGTYPE

typedef ETraits::INARGTYPE INARGTYPE;

CAtlArray::InsertArrayAt

void InsertArrayAt(size_t iStart, const CAtlArray<E, ETraits>* paNew);

ParametersParameters

RemarksRemarks

Call this method to return a pointer to the first element in the array.

Returns a pointer to the memory location storing the first element in the array. If no elements are available, NULL
is returned.

The data type to use for adding elements to the array.

Call this method to insert one array into another.

iStart
The index at which the array is to be inserted.

paNew
The array to be inserted.

Elements from the array paNew are copied into the array object, beginning at element iStart. The existing array
elements are moved to avoid being overwritten.

In debug builds, an ATLASSERT will be raised if the CAtlArray object is not valid, or if the paNew pointer is

NOTENOTE

ExampleExample

// Define two integer arrays
CAtlArray<int> iTargetArray, iSourceArray;

// Add elements to first array
for (int x = 0; x < 10; x++)
{
 iTargetArray.Add(x);
}

// Add elements to the second array
for (int x = 0; x < 10; x++)
{
 iSourceArray.Add(x * 10);
}

// Insert the Source array into the Target
// array, starting at the 5th element.
iTargetArray.InsertArrayAt(5, &iSourceArray);

CAtlArray::InsertAt

void InsertAt(size_t iElement, INARGTYPE element, size_t nCount = 1);

ParametersParameters

RemarksRemarks

ExampleExample

NULL or invalid.

CAtlArray::InsertArrayAt does not support arrays consisting of elements created with the CAutoPtr class.

Call this method to insert a new element (or multiple copies of an element) into the array object.

iElement
The index where the element or elements are to be inserted.

element
The value of the element or elements to be inserted.

nCount
The number of elements to add.

Inserts one or more elements into the array, starting at index iElement. Existing elements are moved to avoid
being overwritten.

In debug builds, an ATLASSERT will be raised if the CAtlArray object is invalid, the number of elements to be
added is zero, or the combined number of elements is too large for the array to contain. In retail builds, passing
invalid parameters may cause unpredictable results.

// Declare an array of integers
CAtlArray<int> iBuffer;

// Add elements to the array
for (int b = 0; b < 10; b++)
{
 iBuffer.Add(0);
}

// Instert ten 1's into the array
// at position 5
iBuffer.InsertAt(5, 1, 10);

CAtlArray::IsEmpty

bool IsEmpty() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Define an array of chars
CAtlArray<char> cArray;

// Add an element
cArray.Add('a');

// Confirm array is not empty
ATLASSERT(!cArray.IsEmpty());

// Remove all elements
cArray.RemoveAll();

// Confirm array is empty
ATLASSERT(cArray.IsEmpty());

CAtlArray::operator []

E& operator[](size_t ielement) throw();
const E& operator[](size_t ielement) const throw();

ParametersParameters

Return ValueReturn Value

Call this method to test if the array is empty.

Returns true if the array is empty, false otherwise.

The array is said to be empty if it contains no elements. Therefore, even if the array contains empty elements, it is
not empty.

Call this operator to return a reference to an element in the array.

iElement
The index value of the array element to return.

Returns a reference to the required array element.

RemarksRemarks

CAtlArray::OUTARGTYPE

typedef ETraits::OUTARGTYPE OUTARGTYPE;

CAtlArray::RemoveAll

void RemoveAll() throw();

RemarksRemarks

ExampleExample

CAtlArray::RemoveAt

void RemoveAt(size_t iElement, size_t nCount = 1);

ParametersParameters

RemarksRemarks

ExampleExample

Performs a similar function to CAtlArray::GetAt. Unlike the MFC class CArray, this operator cannot be used as a
substitute for CAtlArray::SetAt.

In debug builds, an ATLASSERT will be raised if iElement exceeds the total number of elements in the array. In
retail builds, an invalid parameter may cause unpredictable results.

The data type to use for retrieving elements from the array.

Call this method to remove all elements from the array object.

Removes all of the elements from the array object.

This method calls CAtlArray::SetCount to resize the array and subsequently frees any allocated memory.

See the example for CAtlArray::IsEmpty.

Call this method to remove one or more elements from the array.

iElement
The index of the first element to remove.

nCount
The number of elements to remove.

Removes one or more elements from the array. Any remaining elements are shifted down. The upper bound is
decremented, but memory is not freed until a call to CAtlArray::FreeExtra is made.

In debug builds, an ATLASSERT will be raised if the CAtlArray object is not valid, or if the combined total of
iElement and nCount exceeds the total number of elements in the array. In retail builds, invalid parameters may
cause unpredictable results.

// Declare an array of chars
CAtlArray<char> cMyArray;

// Add ten elements to the array
for (int a = 0; a < 10; a++)
{
 cMyArray.Add('*');
}

// Remove five elements starting with
// the element at position 1
cMyArray.RemoveAt(1, 5);

// Free memory
cMyArray.FreeExtra();

// Confirm size of array
ATLASSERT(cMyArray.GetCount() == 5);

CAtlArray::SetAt

void SetAt(size_t iElement, INARGTYPE element);

ParametersParameters

RemarksRemarks

ExampleExample

CAtlArray::SetCount

bool SetCount(size_t nNewSize, int nGrowBy = - 1);

ParametersParameters

Return ValueReturn Value

Call this method to set the value of an element in the array object.

iElement
The index pointing to the array element to set.

element
The new value of the specified element.

In debug builds, an ATLASSERT will be raised if iElement exceeds the number of elements in the array. In retail
builds, an invalid parameter may result in unpredictable results.

See the example for CAtlArray::GetAt.

Call this method to set the size of the array object.

nNewSize
The required size of the array.

nGrowBy
A value used to determine how large to make the buffer. A value of -1 causes an internally calculated value to be
used.

Returns true if the array is successfully resized, false otherwise.

RemarksRemarks

ExampleExample

CAtlArray::SetAtGrow

void SetAtGrow(size_t iElement, INARGTYPE element);

ParametersParameters

RemarksRemarks

ExampleExample

// Declare an array of integers
CAtlArray<int> iGrowArray;

// Add an element
iGrowArray.Add(0);

// Add an extra element at position 19.
// This will grow the array to accommodate.
iGrowArray.SetAtGrow(19, 0);

// Confirm size of new array
ATLASSERT(iGrowArray.GetCount() == 20);

// Note: the values at position 1 to 18
// are undefined.

See also

The array can be increased or decreased in size. If increased, extra empty elements are added to the array. If
decreased, the elements with the largest indices will be deleted and memory freed.

Use this method to set the size of the array before using it. If SetCount is not used, the process of adding
elements — and the subsequent memory allocation performed — will reduce performance and fragment
memory.

See the example for CAtlArray::GetData.

Call this method to set the value of an element in the array object, expanding the array as required.

iElement
The index pointing to the array element to set.

element
The new value of the specified element.

Replaces the value of the element pointed to by the index. If iElement is larger than the current size of the array,
the array is automatically increased using a call to CAtlArray::SetCount. In debug builds, an ATLASSERT will be
raised if the CAtlArray object is not valid. In retail builds, invalid parameters may cause unpredictable results.

MMXSwarm Sample
DynamicConsumer Sample
UpdatePV Sample
Marquee Sample
CArray Class
Class Overview

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CAtlAutoThreadModule Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CAtlAutoThreadModule : public CAtlAutoThreadModuleT<CAtlAutoThreadModule>

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

See also

This class implements a thread-pooled, apartment-model COM server.

This class and its members cannot be used in applications that execute in the Windows Runtime.

CAtlAutoThreadModule derives from CAtlAutoThreadModuleT and implements a thread-pooled, apartment-model
COM server. CAtlAutoThreadModule uses CComApartment to manage an apartment for each thread in the module.

You must use the DECLARE_CLASSFACTORY_AUTO_THREAD macro in your object's class definition to specify
CComClassFactoryAutoThread as the class factory. You should then add a single instance of a class derived from
CAtlAutoThreadModuleT such as CAtlAutoThreadModule . For example:

CAtlAutoThreadModule _AtlAutoModule; // name is immaterial.

This class replaces the obsolete CComAutoThreadModule class.

IAtlAutoThreadModule

CAtlAutoThreadModuleT

CAtlAutoThreadModule

Header: atlbase.h

CAtlAutoThreadModuleT Class
IAtlAutoThreadModule Class
Class Overview
Module Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlautothreadmodule-class.md

CAtlAutoThreadModuleT Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T,
 class ThreadAllocator = CComSimpleThreadAllocator,
 DWORD dwWait = INFINITE>
class ATL_NO_VTABLE CAtlAutoThreadModuleT : public IAtlAutoThreadModule

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CAtlAutoThreadModuleT::GetDefaultThreads This static function dynamically calculates and returns the
maximum number of threads for the EXE module, based on
the number of processors.

Remarks

NOTENOTE

Inheritance Hierarchy

This class provides methods for implementing a thread-pooled, apartment-model COM server.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
The class which will implement the COM server.

ThreadAllocator
The class managing thread selection. The default value is CComSimpleThreadAllocator.

dwWait
Specifies the time-out interval, in milliseconds. The default is INFINITE, which means the method's time-out
interval never elapses.

The class CAtlAutoThreadModule derives from CAtlAutoThreadModuleT in order to implement a thread-pooled,
apartment-model COM server. It replaces the obsolete class CComAutoThreadModule.

This class should not be used in a DLL, as the default dwWait value of INFINITE will cause a deadlock when the DLL is
unloaded.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlautothreadmodulet-class.md

Requirements

CAtlAutoThreadModuleT::GetDefaultThreads

static int GetDefaultThreads();

Return ValueReturn Value

RemarksRemarks

See also

IAtlAutoThreadModule

CAtlAutoThreadModuleT

Header: atlbase.h

This static function dynamically calculates and returns the maximum number of threads for the EXE module,
based on the number of processors.

The number of threads to be created in the EXE module.

Override this method if you want to use a different method for calculating the number of threads. By default, the
number of threads is based on the number of processors.

IAtlAutoThreadModule Class
Class Overview
IAtlAutoThreadModule Class
Module Classes

CAtlBaseModule Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CAtlBaseModule : public _ATL_BASE_MODULE

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlBaseModule::CAtlBaseModule The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlBaseModule::AddResourceInstance Adds a resource instance to the list of stored handles.

CAtlBaseModule::GetHInstanceAt Returns a handle to a specified resource instance.

CAtlBaseModule::GetModuleInstance Returns the module instance from a CAtlBaseModule object.

CAtlBaseModule::GetResourceInstance Returns the resource instance from a CAtlBaseModule

object.

CAtlBaseModule::RemoveResourceInstance Removes a resource instance from the list of stored handles.

CAtlBaseModule::SetResourceInstance Sets the resource instance of a CAtlBaseModule object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAtlBaseModule::m_bInitFailed A variable that indicates if the module initialization has failed.

Remarks

This class is instantiated in every ATL project.

An instance of CAtlBaseModule named _AtlBaseModule is present in every ATL project, containing a handle to the
module instance, a handle to the module containing resources (which by default, are one and the same), and an
array of handles to modules providing primary resources. CAtlBaseModule can be safely accessed from multiple
threads.

This class replaces the obsolete CComModule class used in earlier versions of ATL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlbasemodule-class.md

Inheritance Hierarchy

Requirements

CAtlBaseModule::AddResourceInstance

bool AddResourceInstance(HINSTANCE hInst) throw();

ParametersParameters

Return ValueReturn Value

CAtlBaseModule::CAtlBaseModule

CAtlBaseModule() throw();

RemarksRemarks

CAtlBaseModule::GetHInstanceAt

HINSTANCE GetHInstanceAt(int i) throw();

ParametersParameters

Return ValueReturn Value

CAtlBaseModule::GetModuleInstance

HINSTANCE GetModuleInstance() throw();

_ATL_BASE_MODULE

CAtlBaseModule

Header: atlcore.h

Adds a resource instance to the list of stored handles.

hInst
The resource instance to add.

Returns true if the resource was successfully added, false otherwise.

The constructor.

Creates the CAtlBaseModule .

Returns a handle to a specified resource instance.

i
The number of the resource instance.

Returns the handle to the resource instance, or NULL if no corresponding resource instance exists.

Returns the module instance from a CAtlBaseModule object.

Return ValueReturn Value

CAtlBaseModule::GetResourceInstance

HINSTANCE GetResourceInstance() throw();

Return ValueReturn Value

CAtlBaseModule::m_bInitFailed

static bool m_bInitFailed;

RemarksRemarks

CAtlBaseModule::RemoveResourceInstance

bool RemoveResourceInstance(HINSTANCE hInst) throw();

ParametersParameters

Return ValueReturn Value

CAtlBaseModule::SetResourceInstance

HINSTANCE SetResourceInstance(HINSTANCE hInst) throw();

ParametersParameters

Return ValueReturn Value

See also

Returns the module instance.

Returns the resource instance.

Returns the resource instance.

A variable that indicates if the module initialization has failed.

True if the module initialized, false if it failed to initialize.

Removes a resource instance from the list of stored handles.

hInst
The resource instance to remove.

Returns true if the resource was successfully removed, false otherwise.

Sets the resource instance of a CAtlBaseModule object.

hInst
The new resource instance.

Returns the updated resource instance.

Class Overview

Module Classes

CAtlComModule Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CAtlComModule : public _ATL_COM_MODULE

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlComModule::CAtlComModule The constructor.

CAtlComModule::~CAtlComModule The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlComModule::RegisterServer Call this method to update the system registry for each object
in the object map.

CAtlComModule::RegisterTypeLib Call this method to register a type library.

CAtlComModule::UnregisterServer Call this method to unregister each object in the object map.

CAtlComModule::UnRegisterTypeLib Call this method to unregister a type library.

Remarks

Inheritance Hierarchy

Requirements

This class implements a COM server module.

CAtlComModule implements a COM server module, allowing a client to access the module's components.

This class replaces the obsolete CComModule class used in earlier versions of ATL. See ATL Module Classes for
more details.

_ATL_COM_MODULE

CAtlComModule

Header: atlbase.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlcommodule-class.md

CAtlComModule::CAtlComModule

CAtlComModule() throw();

RemarksRemarks

CAtlComModule::~CAtlComModule

~CAtlComModule();

RemarksRemarks

CAtlComModule::RegisterServer

HRESULT RegisterServer(BOOL bRegTypeLib = FALSE, const CLSID* pCLSID = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlComModule::RegisterTypeLib

HRESULT RegisterTypeLib(LPCTSTR lpszIndex);
HRESULT RegisterTypeLib();

ParametersParameters

Return ValueReturn Value

The constructor.

Initializes the module.

The destructor.

Frees all class factories.

Call this method to update the system registry for each object in the object map.

bRegTypeLib
TRUE if the type library is to be registered. The default value is FALSE.

pCLSID
Points to the CLSID of the object to be registered. If NULL (the default value), all objects in the object map will be
registered.

Returns S_OK on success, or an error HRESULT on failure.

Calls the global function AtlComModuleRegisterServer.

Call this method to register a type library.

lpszIndex
String in the format "\\N", where N is the integer index of the TYPELIB resource.

Returns S_OK on success, or an error HRESULT on failure.

RemarksRemarks

CAtlComModule::UnregisterServer

HRESULT UnregisterServer(
 BOOL bRegTypeLib = FALSE,
 const CLSID* pCLSID = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlComModule::UnRegisterTypeLib

HRESULT UnRegisterTypeLib(LPCTSTR lpszIndex);
HRESULT UnRegisterTypeLib();

ParametersParameters

RemarksRemarks

Return ValueReturn Value

See also

Adds information about a type library to the system registry. If the module instance contains multiple type
libraries, use the first version of this method to specify which type library should be used.

Call this method to unregister each object in the object map.

bRegTypeLib
TRUE if the type library is to be unregistered. The default value is FALSE.

pCLSID
Points to the CLSID of the object to be unregistered. If NULL (the default value), all objects in the object map will
be unregistered.

Returns S_OK on success, or an error HRESULT on failure.

Calls the global function AtlComModuleUnregisterServer.

Call this method to unregister a type library.

lpszIndex
String in the format "\\N", where N is the integer index of the TYPELIB resource.

Removes information about a type library from the system registry. If the module instance contains multiple type
libraries, use the first version of this method to specify which type library should be used.

Returns S_OK on success, or an error HRESULT on failure.

_ATL_COM_MODULE
Class Overview

CAtlDebugInterfacesModule Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CAtlDebugInterfacesModule

Remarks

Requirements

See also

This class provides support for debugging interfaces.

CAtlDebugInterfacesModule provides the support required for debugging interfaces. It is included in any project
that defines the symbol _ATL_DEBUG_QI.

Header: atlbase.h

Class Overview
Module Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catldebuginterfacesmodule-class.md

CAtlDllModuleT Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class T>
class ATL_NO_VTABLE CAtlDllModuleT : public CAtlModuleT<T>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlDllModuleT::CAtlDllModuleT The constructor.

CAtlDllModuleT::~CAtlDllModuleT The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlDllModuleT::DllCanUnloadNow Tests if the DLL can be unloaded.

CAtlDllModuleT::DllGetClassObject Returns a class factory.

CAtlDllModuleT::DllMain The optional entry point into a dynamic-link library (DLL).

CAtlDllModuleT::DllRegisterServer Adds entries to the system registry for objects in the DLL.

CAtlDllModuleT::DllUnregisterServer Removes entries in the system registry for objects in the DLL.

CAtlDllModuleT::GetClassObject Returns a class factory. Invoked by DllGetClassObject.

Remarks

Inheritance Hierarchy

This class represents the module for a DLL.

T
Your class derived from CAtlDllModuleT .

CAtlDllModuleT represents the module for a dynamic-link library (DLL) and provides functions used by all DLL
projects. This specialization of CAtlModuleT class includes support for registration.

For more information on modules in ATL, see ATL Module Classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catldllmodulet-class.md

Requirements

CAtlDllModuleT::CAtlDllModuleT

CAtlDllModuleT() throw();

CAtlDllModuleT::~CAtlDllModuleT

~CAtlDllModuleT() throw();

CAtlDllModuleT::DllCanUnloadNow

HRESULT DllCanUnloadNow() throw();

Return ValueReturn Value

CAtlDllModuleT::DllGetClassObject

HRESULT DllGetClassObject(
 REFCLSID rclsid,
 REFIID riid,
 LPVOID* ppv) throw();

ParametersParameters

Return ValueReturn Value

_ATL_MODULE

CAtlModule

CAtlModuleT

CAtlDllModuleT

Header: atlbase.h

The constructor.

The destructor.

Tests if the DLL can be unloaded.

Returns S_OK if the DLL can be unloaded, or S_FALSE if it cannot.

Returns the class factory.

rclsid
The CLSID of the object to be created.

riid
The IID of the requested interface.

ppv
A pointer to the interface pointer identified by riid. If the object does not support this interface, ppv is set to NULL.

CAtlDllModuleT::DllMain

BOOL WINAPI DllMain(DWORD dwReason, LPVOID /* lpReserved*/) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlDllModuleT::DllRegisterServer

HRESULT DllRegisterServer(BOOL bRegTypeLib = TRUE) throw();

ParametersParameters

Return ValueReturn Value

CAtlDllModuleT::DllUnregisterServer

HRESULT DllUnregisterServer(BOOL bUnRegTypeLib = TRUE) throw();

ParametersParameters

Return ValueReturn Value

CAtlDllModuleT::GetClassObject

Returns S_OK on success, or an error HRESULT on failure.

The optional entry point into a dynamic-link library (DLL).

dwReason
If set to DLL_PROCESS_ATTACH, the DLL_THREAD_ATTACH and DLL_THREAD_DETACH notification calls are
disabled.

lpReserved
Reserved.

Always returns TRUE.

Disabling the DLL_THREAD_ATTACH and DLL_THREAD_DETACH notification calls can be a useful optimization
for multithreaded applications that have many DLLs, that frequently create and delete threads, and whose DLLs
do not need these thread-level notifications of attachment/detachment.

Adds entries to the system registry for objects in the DLL.

bRegTypeLib
TRUE if the type library is to be registered. The default value is TRUE.

Returns S_OK on success, or an error HRESULT on failure.

Removes entries in the system registry for objects in the DLL.

bUnRegTypeLib
TRUE if the type library is to be removed from the registry. The default value is TRUE.

Returns S_OK on success, or an error HRESULT on failure.

HRESULT GetClassObject(
 REFCLSID rclsid,
 REFIID riid,
 LPVOID* ppv) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Creates an object of the specified CLSID.

rclsid
The CLSID of the object to be created.

riid
The IID of the requested interface.

ppv
A pointer to the interface pointer identified by riid. If the object does not support this interface, ppv is set to NULL.

Returns S_OK on success, or an error HRESULT on failure.

This method is called by CAtlDllModuleT::DllGetClassObject and is included for backward compatibility.

CAtlModuleT Class
CAtlExeModuleT Class
Class Overview
Module Classes

CAtlException Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CAtlException

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlException::CAtlException The constructor.

Public OperatorsPublic Operators

NAME DESCRIPTION

CAtlException::operator HRESULT Casts the current object to an HRESULT value.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAtlException::m_hr The variable of type HRESULT created by the object and used
to store the error condition.

Remarks

Requirements

CAtlException::CAtlException

CAtlException(HRESULT hr) throw();
CAtlException() throw();

This class defines an ATL exception.

A CAtlException object represents an exception condition related to an ATL operation. The CAtlException class
includes a public data member that stores the status code indicating the reason for the exception and a cast
operator that allows you to treat the exception as if it were an HRESULT.

In general, you will call AtlThrow rather than creating a CAtlException object directly.

Header: atlexcept.h

The constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlexception-class.md

ParametersParameters

CAtlException::operator HRESULT

operator HRESULT() const throw ();

CAtlException::m_hr

HRESULT m_hr;

RemarksRemarks

See also

hr
The HRESULT error code.

Casts the current object to an HRESULT value.

The HRESULT data member.

The data member that stores the error condition. The HRESULT value is set by the constructor,
CAtlException::CAtlException.

AtlThrow
Class Overview

CAtlExeModuleT Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
template <class T>
class ATL_NO_VTABLE CAtlExeModuleT : public CAtlModuleT<T>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlExeModuleT::CAtlExeModuleT The constructor.

CAtlExeModuleT::~CAtlExeModuleT The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlExeModuleT::InitializeCom Initializes COM.

CAtlExeModuleT::ParseCommandLine Parses the command line and performs registration if
necessary.

CAtlExeModuleT::PostMessageLoop This method is called immediately after the message loop
exits.

CAtlExeModuleT::PreMessageLoop This method is called immediately before entering the
message loop.

CAtlExeModuleT::RegisterClassObjects Registers the class object.

CAtlExeModuleT::RevokeClassObjects Revokes the class object.

CAtlExeModuleT::Run This method executes code in the EXE module to initialize,
run the message loop, and clean up.

CAtlExeModuleT::RunMessageLoop This method executes the message loop.

CAtlExeModuleT::UninitializeCom Uninitializes COM.

This class represents the module for an application.

T
Your class derived from CAtlExeModuleT .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlexemodulet-class.md

CAtlExeModuleT::Unlock Decrements the module's lock count.

CAtlExeModuleT::WinMain This method implements the code required to run an EXE.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAtlExeModuleT::m_bDelayShutdown A flag indicating that there should be a delay shutting down
the module.

CAtlExeModuleT::m_dwPause A pause value used to ensure all objects are released before
shutdown.

CAtlExeModuleT::m_dwTimeOut A time-out value used to delay the unloading of the module.

Remarks

Inheritance Hierarchy

Requirements

CAtlExeModuleT::CAtlExeModuleT

CAtlExeModuleT() throw();

RemarksRemarks

CAtlExeModuleT represents the module for an application (EXE) and contains code that supports creating an EXE,
processing the command line, registering class objects, running the message loop, and cleaning up on exit.

This class is designed to improve performance when COM objects in the EXE server are continually created and
destroyed. After the last COM object is released, the EXE waits for a duration specified by the
CAtlExeModuleT::m_dwTimeOut data member. If there is no activity during this period (that is, no COM objects
are created), the shutdown process is initiated.

The CAtlExeModuleT::m_bDelayShutdown data member is a flag used to determine if the EXE should use the
mechanism defined above. If it is set to false, then the module will terminate immediately.

For more information on modules in ATL, see ATL Module Classes.

_ATL_MODULE

CAtlModule

CAtlModuleT

CAtlExeModuleT

Header: atlbase.h

The constructor.

If the EXE module could not be initialized, WinMain will immediately return without further processing.

CAtlExeModuleT::~CAtlExeModuleT

~CAtlExeModuleT() throw();

RemarksRemarks

CAtlExeModuleT::InitializeCom

static HRESULT InitializeCom() throw();

Return ValueReturn Value

RemarksRemarks

CAtlExeModuleT::m_bDelayShutdown

bool m_bDelayShutdown;

RemarksRemarks

CAtlExeModuleT::m_dwPause

DWORD m_dwPause;

RemarksRemarks

CAtlExeModuleT::m_dwTimeOut

DWORD m_dwTimeOut;

The destructor.

Frees all allocated resources.

Initializes COM.

Returns S_OK on success, or an error HRESULT on failure.

This method is called from the constructor and can be overridden to initialize COM in a manner different from
the default implementation. The default implementation either calls CoInitializeEx(NULL, COINIT_MULTITHREADED)

or CoInitialize(NULL) depending on the project configuration.

Overriding this method normally requires overriding CAtlExeModuleT::UninitializeCom.

A flag indicating that there should be a delay shutting down the module.

See the CAtlExeModuleT Overview for details.

A pause value used to ensure all objects are gone before shutdown.

Change this value after calling CAtlExeModuleT::InitializeCom to set the number of milliseconds used as the
pause value for shutting down the server. The default value is 1000 milliseconds.

A time-out value used to delay the unloading of the module.

RemarksRemarks

CAtlExeModuleT::ParseCommandLine

bool ParseCommandLine(LPCTSTR lpCmdLine, HRESULT* pnRetCode) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlExeModuleT::PostMessageLoop

HRESULT PostMessageLoop() throw();

Return ValueReturn Value

RemarksRemarks

CAtlExeModuleT::PreMessageLoop

HRESULT PreMessageLoop(int nShowCmd) throw();

ParametersParameters

Return ValueReturn Value

Change this value after calling CAtlExeModuleT::InitializeCom to define the number of milliseconds used as the
time-out value for shutting down the server. The default value is 5000 milliseconds. See the CAtlExeModuleT
Overview for more details.

Parses the command line and performs registration if necessary.

lpCmdLine
The command line passed to the application.

pnRetCode
The HRESULT corresponding to the registration (if it took place).

Return true if the application should continue to run, otherwise false.

This method is called from CAtlExeModuleT::WinMain and can be overridden to handle command-line switches.
The default implementation checks for /RegServer and /UnRegServer command-line arguments and performs
registration or unregistration.

This method is called immediately after the message loop exits.

Returns S_OK on success, or an error HRESULT on failure.

Override this method to perform custom application cleanup. The default implementation calls
CAtlExeModuleT::RevokeClassObjects.

This method is called immediately before entering the message loop.

nShowCmd
The value passed as the nShowCmd parameter in WinMain.

Returns S_OK on success, or an error HRESULT on failure.

RemarksRemarks

CAtlExeModuleT::RegisterClassObjects

HRESULT RegisterClassObjects(DWORD dwClsContext, DWORD dwFlags) throw();

ParametersParameters

Return ValueReturn Value

CAtlExeModuleT::RevokeClassObjects

HRESULT RevokeClassObjects() throw();

Return ValueReturn Value

CAtlExeModuleT::Run

HRESULT Run(int nShowCmd = SW_HIDE) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlExeModuleT::RunMessageLoop

Override this method to add custom initialization code for the application. The default implementation registers
the class objects.

Registers the class object with OLE so other applications can connect to it.

dwClsContext
Specifies the context in which the class object is to be run. Possible values are CLSCTX_INPROC_SERVER,
CLSCTX_INPROC_HANDLER, or CLSCTX_LOCAL_SERVER.

dwFlags
Determines the connection types to the class object. Possible values are REGCLS_SINGLEUSE,
REGCLS_MULTIPLEUSE, or REGCLS_MULTI_SEPARATE.

Returns S_OK on success, S_FALSE if there were no classes to register, or an error HRESULT on failure.

Removes the class object.

Returns S_OK on success, S_FALSE if there were no classes to register, or an error HRESULT on failure.

This method executes code in the EXE module to initialize, run the message loop, and clean up.

nShowCmd
Specifies how the window is to be shown. This parameter can be one of the values discussed in the WinMain
section. Defaults to SW_HIDE.

Returns S_OK on success, or an error HRESULT on failure.

This method can be overridden. However, in practice is it better to override CAtlExeModuleT::PreMessageLoop,
CAtlExeModuleT::RunMessageLoop, or CAtlExeModuleT::PostMessageLoop instead.

This method executes the message loop.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-winmain

void RunMessageLoop() throw();

RemarksRemarks

CAtlExeModuleT::UninitializeCom

static void UninitializeCom() throw();

RemarksRemarks

CAtlExeModuleT::Unlock

LONG Unlock() throw();

Return ValueReturn Value

CAtlExeModuleT::WinMain

int WinMain(int nShowCmd) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

This method can be overridden to change the behavior of the message loop.

Uninitializes COM.

By default this method simply calls CoUninitialize and is called from the destructor. Override this method if you
override CAtlExeModuleT::InitializeCom.

Decrements the module's lock count.

Returns a value which may be useful for diagnostics or testing.

This method implements the code required to run an EXE.

nShowCmd
Specifies how the window is to be shown. This parameter can be one of the values discussed in the WinMain
section.

Returns the executable's return value.

This method can be overridden. If overriding CAtlExeModuleT::PreMessageLoop,
CAtlExeModuleT::PostMessageLoop, or CAtlExeModuleT::RunMessageLoop doesn't provide enough flexibility,
it's possible to override the WinMain function using this method.

ATLDuck Sample
CAtlModuleT Class
CAtlDllModuleT Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-couninitialize
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-winmain
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CAtlFile Class
3/4/2019 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CAtlFile : public CHandle

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlFile::CAtlFile The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlFile::Create Call this method to create or open a file.

CAtlFile::Flush Call this method to clear the buffers for the file and cause all
buffered data to be written to the file.

CAtlFile::GetOverlappedResult Call this method to get the results of an overlapped operation
on the file.

CAtlFile::GetPosition Call this method to get the current file pointer position from
the file.

CAtlFile::GetSize Call this method to get the size in bytes of the file.

CAtlFile::LockRange Call this method to lock a region in the file to prevent other
processes from accessing it.

CAtlFile::Read Call this method to read data from a file starting at the
position indicated by the file pointer.

CAtlFile::Seek Call this method to move the file pointer of the file.

CAtlFile::SetSize Call this method to set the size of the file.

This class provides a thin wrapper around the Windows file-handling API.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlfile-class.md

CAtlFile::UnlockRange Call this method to unlock a region of the file.

CAtlFile::Write Call this method to write data to the file starting at the
position indicated by the file pointer.

NAME DESCRIPTION

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CAtlFile::m_pTM Pointer to CAtlTransactionManager object

Remarks

Inheritance Hierarchy

Requirements

CAtlFile::CAtlFile

CAtlFile() throw();
CAtlFile(CAtlTransactionManager* pTM = NULL) throw();
CAtlFile(CAtlFile& file) throw();
explicit CAtlFile(HANDLE hFile) throw();

ParametersParameters

RemarksRemarks

CAtlFile::Create

Use this class when file-handling needs are relatively simple, but more abstraction than the Windows API provides
is required, without including MFC dependencies.

CHandle

CAtlFile

Header: atlfile.h

The constructor.

file
The file object.

hFile
The file handle.

pTM
Pointer to CAtlTransactionManager object

The copy constructor transfers ownership of the file handle from the original CAtlFile object to the newly
constructed object.

Call this method to create or open a file.

HRESULT Create(
 LPCTSTR szFilename,
 DWORD dwDesiredAccess,
 DWORD dwShareMode,
 DWORD dwCreationDisposition,
 DWORD dwFlagsAndAttributes = FILE_ATTRIBUTE_NORMAL,
 LPSECURITY_ATTRIBUTES lpsa = NULL,
 HANDLE hTemplateFile = NULL) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlFile::Flush

HRESULT Flush() throw();

Return ValueReturn Value

RemarksRemarks

CAtlFile::GetOverlappedResult

szFilename
The file name.

dwDesiredAccess
The desired access. See dwDesiredAccess in CreateFile in the Windows SDK.

dwShareMode
The share mode. See dwShareMode in CreateFile .

dwCreationDisposition
The creation disposition. See dwCreationDisposition in CreateFile .

dwFlagsAndAttributes
The flags and attributes. See dwFlagsAndAttributes in CreateFile .

lpsa
The security attributes. See lpSecurityAttributes in CreateFile .

hTemplateFile
The template file. See hTemplateFile in CreateFile .

Returns S_OK on success, or an error HRESULT on failure.

Calls CreateFile to create or open the file.

Call this method to clear the buffers for the file and cause all buffered data to be written to the file.

Returns S_OK on success, or an error HRESULT on failure.

Calls FlushFileBuffers to flush buffered data to the file.

Call this method to get the results of an overlapped operation on the file.

https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-createfilea
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-flushfilebuffers

HRESULT GetOverlappedResult(
 LPOVERLAPPED pOverlapped,
 DWORD& dwBytesTransferred,
 BOOL bWait) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlFile::GetPosition

HRESULT GetPosition(ULONGLONG& nPos) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlFile::GetSize

HRESULT GetSize(ULONGLONG& nLen) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pOverlapped
The overlapped structure. See lpOverlapped in GetOverlappedResult in the Windows SDK.

dwBytesTransferred
The bytes transferred. See lpNumberOfBytesTransferred in GetOverlappedResult .

bWait
The wait option. See bWait in GetOverlappedResult .

Returns S_OK on success, or an error HRESULT on failure.

Calls GetOverlappedResult to get the results of an overlapped operation on the file.

Call this method to get the current file pointer position.

nPos
The position in bytes.

Returns S_OK on success, or an error HRESULT on failure.

Calls SetFilePointer to get the current file pointer position.

Call this method to get the size in bytes of the file.

nLen
The number of bytes in the file.

Returns S_OK on success, or an error HRESULT on failure.

Calls GetFileSize to get the size in bytes of the file.

https://docs.microsoft.com/windows/desktop/api/ioapiset/nf-ioapiset-getoverlappedresult
https://docs.microsoft.com/windows/desktop/api/ioapiset/nf-ioapiset-getoverlappedresult
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-setfilepointer
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-getfilesize

CAtlFile::LockRange

HRESULT LockRange(ULONGLONG nPos, ULONGLONG nCount) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlFile::m_pTM

CAtlTransactionManager* m_pTM;

RemarksRemarks

CAtlFile::Read

HRESULT Read(
 LPVOID pBuffer,
 DWORD nBufSize) throw();

HRESULT Read(
 LPVOID pBuffer,
 DWORD nBufSize,
 DWORD& nBytesRead) throw();

HRESULT Read(
 LPVOID pBuffer,
 DWORD nBufSize,
 LPOVERLAPPED pOverlapped) throw();

HRESULT Read(
 LPVOID pBuffer,
 DWORD nBufSize,
 LPOVERLAPPED pOverlapped,
 LPOVERLAPPED_COMPLETION_ROUTINE pfnCompletionRoutine) throw();

ParametersParameters

Call this method to lock a region in the file to prevent other processes from accessing it.

nPos
The position in the file where the lock should begin.

nCount
The length of the byte range to be locked.

Returns S_OK on success, or an error HRESULT on failure.

Calls LockFile to lock a region in the file. Locking bytes in a file prevents access to those bytes by other processes.
You can lock more than one region of a file, but no overlapping regions are allowed. When you unlock a region,
using CAtlFile::UnlockRange, the byte range must correspond exactly to the region that was previously locked.
LockRange does not merge adjacent regions; if two locked regions are adjacent, you must unlock each separately.

Pointer to a CAtlTransactionManager object.

Call this method to read data from a file starting at the position indicated by the file pointer.

pBuffer

https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-lockfile

Return ValueReturn Value

RemarksRemarks

CAtlFile::Seek

HRESULT Seek(
 LONGLONG nOffset,
 DWORD dwFrom = FILE_CURRENT) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlFile::SetSize

HRESULT SetSize(ULONGLONG nNewLen) throw();

ParametersParameters

Return ValueReturn Value

Pointer to the buffer that will receive the data read from the file.

nBufSize
The buffer size in bytes.

nBytesRead
The number of bytes read.

pOverlapped
The overlapped structure. See lpOverlapped in ReadFile in the Windows SDK.

pfnCompletionRoutine
The completion routine. See lpCompletionRoutine in ReadFileEx in the Windows SDK.

Returns S_OK on success, or an error HRESULT on failure.

The first three forms call ReadFile, the last ReadFileEx to read data from the file. Use CAtlFile::Seek to move the file
pointer.

Call this method to move the file pointer of the file.

nOffset
The offset from the starting point given by dwFrom.

dwFrom
The starting point (FILE_BEGIN, FILE_CURRENT, or FILE_END).

Returns S_OK on success, or an error HRESULT on failure.

Calls SetFilePointer to move the file pointer.

Call this method to set the size of the file.

nNewLen
The new length of the file in bytes.

Returns S_OK on success, or an error HRESULT on failure.

https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-readfileex
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-readfile
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-readfileex
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-setfilepointer

RemarksRemarks

CAtlFile::UnlockRange

HRESULT UnlockRange(ULONGLONG nPos, ULONGLONG nCount) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlFile::Write

HRESULT Write(
 LPCVOID pBuffer,
 DWORD nBufSize,
 LPOVERLAPPED pOverlapped,
 LPOVERLAPPED_COMPLETION_ROUTINE pfnCompletionRoutine) throw();

HRESULT Write(
 LPCVOID pBuffer,
 DWORD nBufSize,
 DWORD* pnBytesWritten = NULL) throw();

HRESULT Write(
 LPCVOID pBuffer,
 DWORD nBufSize,
 LPOVERLAPPED pOverlapped) throw();

ParametersParameters

Calls SetFilePointer and SetEndOfFile to set the size of the file. On return, the file pointer is positioned at the end
of the file.

Call this method to unlock a region of the file.

nPos
The position in the file where the unlock should begin.

nCount
The length of the byte range to be unlocked.

Returns S_OK on success, or an error HRESULT on failure.

Calls UnlockFile to unlock a region of the file.

Call this method to write data to the file starting at the position indicated by the file pointer.

pBuffer
The buffer containing the data to be written to the file.

nBufSize
The number of bytes to be transferred from the buffer.

pOverlapped
The overlapped structure. See lpOverlapped in WriteFile in the Windows SDK.

pfnCompletionRoutine
The completion routine. See lpCompletionRoutine in WriteFileEx in the Windows SDK.

pnBytesWritten

https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-setfilepointer
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-setendoffile
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-unlockfile
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-writefileex

Return ValueReturn Value

RemarksRemarks

See also

The bytes written.

Returns S_OK on success, or an error HRESULT on failure.

The first three forms call WriteFile, the last calls WriteFileEx to write data to the file. Use CAtlFile::Seek to move
the file pointer.

Marquee Sample
Class Overview
CHandle Class

https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-writefile
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-writefileex
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CAtlFileMapping Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <typename T = char>
class CAtlFileMapping : public CAtlFileMappingBase

ParametersParameters

Members
Public OperatorsPublic Operators

NAME DESCRIPTION

CAtlFileMapping::operator T* Allows implicit conversion of CAtlFileMapping objects to
T* .

Remarks

Inheritance Hierarchy

Requirements

CAtlFileMapping::operator T*

operator T*() const throw();

This class represents a memory-mapped file, adding a cast operator to the methods of CAtlFileMappingBase.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
The type of data used for the cast operator.

This class adds a single cast operator to allow implicit conversion of CAtlFileMapping objects to T* . Other
members are supplied by the base class, CAtlFileMappingBase.

CAtlFileMappingBase

CAtlFileMapping

Header: atlfile.h

Allows implicit conversion of CAtlFileMapping objects to T* .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlfilemapping-class.md

Return ValueReturn Value

RemarksRemarks

See also

Returns a T* pointer to the start of the memory-mapped file.

Calls CAtlFileMappingBase::GetData and reinterprets the returned pointer as a T* where T is the type used as the
template parameter of this class.

CAtlFileMappingBase Class
Class Overview

CAtlFileMappingBase Class
3/4/2019 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CAtlFileMappingBase

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlFileMappingBase::CAtlFileMappingBase The constructor.

CAtlFileMappingBase::~CAtlFileMappingBase The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlFileMappingBase::CopyFrom Call this method to copy from a file-mapping object.

CAtlFileMappingBase::GetData Call this method to get the data from a file-mapping object.

CAtlFileMappingBase::GetHandle Call this method to return the file handle.

CAtlFileMappingBase::GetMappingSize Call this method to get the mapping size from a file-mapping
object.

CAtlFileMappingBase::MapFile Call this method to create a file-mapping object.

CAtlFileMappingBase::MapSharedMem Call this method to create a file-mapping object that permits
full access to all processes.

CAtlFileMappingBase::OpenMapping Call this method to return a handle to the file-mapping
object.

CAtlFileMappingBase::Unmap Call this method to unmap a file-mapping object.

Public OperatorsPublic Operators

This class represents a memory-mapped file.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlfilemappingbase-class.md

NAME DESCRIPTION

CAtlFileMappingBase::operator = Sets the current file-mapping object to another file-mapping
object.

Remarks

Requirements

CAtlFileMappingBase::CAtlFileMappingBase

CAtlFileMappingBase(CAtlFileMappingBase& orig);
CAtlFileMappingBase() throw();

ParametersParameters

RemarksRemarks

ExampleExample

File mapping is the association of a file's contents with a portion of the virtual address space of a process. This
class provides methods for creating file-mapping objects that permit programs to easily access and share data.

For more information, see File Mapping in the Windows SDK.

Header: atlfile.h

The constructor.

orig
The original file-mapping object to copy to create the new object.

Creates a new file-mapping object, optionally using an existing object. It is still necessary to call
CAtlFileMappingBase::MapFile to open or create the file-mapping object for a particular file.

https://docs.microsoft.com/windows/desktop/Memory/file-mapping

int OpenMyFileMap()
{
 // Create the file-mapping object.
 CAtlFileMappingBase myFileMap;

 // Create a file.
 CAtlFile myFile;
 myFile.Create(_T("myMapTestFile"),
 GENERIC_READ|GENERIC_WRITE|STANDARD_RIGHTS_ALL,
 FILE_SHARE_READ|FILE_SHARE_WRITE,
 OPEN_ALWAYS);

 // The file handle.
 HANDLE hFile = (HANDLE)myFile;

 // Test the file has opened successfully.
 ATLASSERT(hFile != INVALID_HANDLE_VALUE);

 // Open the file for file-mapping.
 // Must give a size as the file is zero by default.
 if (myFileMap.MapFile(hFile,
 1024,
 0,
 PAGE_READWRITE,
 FILE_MAP_READ) != S_OK)
 {
 CloseHandle(hFile);
 return 0;
 }

 // Confirm the size of the mapping file.
 ATLASSERT(myFileMap.GetMappingSize() == 1024);

 // Now the file-mapping object is open, a second
 // process could access the filemap object to exchange
 // data.

 return 0;
}

CAtlFileMappingBase::~CAtlFileMappingBase

~CAtlFileMappingBase() throw();

RemarksRemarks

CAtlFileMappingBase::CopyFrom

HRESULT CopyFrom(CAtlFileMappingBase& orig) throw();

ParametersParameters

The destructor.

Frees any resources allocated by the class and calls the CAtlFileMappingBase::Unmap method.

Call this method to copy from a file-mapping object.

orig
The original file-mapping object to copy from.

Return ValueReturn Value

CAtlFileMappingBase::GetData

void* GetData() const throw();

Return ValueReturn Value

CAtlFileMappingBase::GetHandle

HANDLE GetHandle() throw ();

Return ValueReturn Value

CAtlFileMappingBase::GetMappingSize

SIZE_T GetMappingSize() throw();

Return ValueReturn Value

ExampleExample

CAtlFileMappingBase::MapFile

HRESULT MapFile(
 HANDLE hFile,
 SIZE_T nMappingSize = 0,
 ULONGLONG nOffset = 0,
 DWORD dwMappingProtection = PAGE_READONLY,
 DWORD dwViewDesiredAccess = FILE_MAP_READ) throw();

ParametersParameters

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the data from a file-mapping object.

Returns a pointer to the data.

Call this method to return a handle to the file-mapping object.

Returns a handle to the file-mapping object.

Call this method to get the mapping size from a file-mapping object.

Returns the mapping size.

See the example for CAtlFileMappingBase::CAtlFileMappingBase.

Call this method to open or create a file-mapping object for the specified file.

hFile
Handle to the file from which to create a mapping object. hFile must be valid and cannot be set to
INVALID_HANDLE_VALUE.

nMappingSize
The mapping size. If 0, the maximum size of the file-mapping object is equal to the current size of the file
identified by hFile.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAtlFileMappingBase::MapSharedMem

HRESULT MapSharedMem(
 SIZE_T nMappingSize,
 LPCTSTR szName,
 BOOL* pbAlreadyExisted = NULL,
 LPSECURITY_ATTRIBUTES lpsa = NULL,
 DWORD dwMappingProtection = PAGE_READWRITE,
 DWORD dwViewDesiredAccess = FILE_MAP_ALL_ACCESS) throw();

ParametersParameters

nOffset
The file offset where mapping is to begin. The offset value must be a multiple of the system's memory allocation
granularity.

dwMappingProtection
The protection desired for the file view when the file is mapped. See flProtect in CreateFileMapping in the
Windows SDK.

dwViewDesiredAccess
Specifies the type of access to the file view and, therefore, the protection of the pages mapped by the file. See
dwDesiredAccess in MapViewOfFileEx in the Windows SDK.

Returns S_OK on success, or an error HRESULT on failure.

After a file-mapping object has been created, the size of the file must not exceed the size of the file-mapping
object; if it does, not all of the file's contents will be available for sharing. For more details, see CreateFileMapping
and MapViewOfFileEx in the Windows SDK.

See the example for CAtlFileMappingBase::CAtlFileMappingBase.

Call this method to create a file-mapping object that permits full access to all processes.

nMappingSize
The mapping size. If 0, the maximum size of the file-mapping object is equal to the current size of the file-
mapping object identified by szName.

szName
The name of the mapping object.

pbAlreadyExisted
Points to a BOOL value that is set to TRUE if the mapping object already existed.

lpsa
The pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited by
child processes. See lpAttributes in CreateFileMapping in the Windows SDK.

dwMappingProtection
The protection desired for the file view, when the file is mapped. See flProtect in CreateFileMapping in the
Windows SDK.

dwViewDesiredAccess
Specifies the type of access to the file view and, therefore, the protection of the pages mapped by the file. See
dwDesiredAccess in MapViewOfFileEx in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-createfilemappinga
https://docs.microsoft.com/windows/desktop/api/memoryapi/nf-memoryapi-mapviewoffileex
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-createfilemappinga
https://docs.microsoft.com/windows/desktop/api/memoryapi/nf-memoryapi-mapviewoffileex
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-createfilemappinga
https://docs.microsoft.com/windows/desktop/api/memoryapi/nf-memoryapi-mapviewoffileex

Return ValueReturn Value

RemarksRemarks

CAtlFileMappingBase::OpenMapping

HRESULT OpenMapping(
 LPCTSTR szName,
 SIZE_T nMappingSize,
 ULONGLONG nOffset = 0,
 DWORD dwViewDesiredAccess = FILE_MAP_ALL_ACCESS) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlFileMappingBase::operator =

CAtlFileMappingBase& operator=(CAtlFileMappingBase& orig);

ParametersParameters

Return ValueReturn Value

Returns S_OK on success, or an error HRESULT on failure.

MapShareMem allows an existing file-mapping object, created by CreateFileMapping, to be shared between
processes.

Call this method to open a named file-mapping object for the specified file.

szName
The name of the mapping object. If there is an open handle to a file-mapping object by this name and the
security descriptor on the mapping object does not conflict with the dwViewDesiredAccess parameter, the open
operation succeeds.

nMappingSize
The mapping size. If 0, the maximum size of the file-mapping object is equal to the current size of the file-
mapping object identified by szName.

nOffset
The file offset where mapping is to begin. The offset value must be a multiple of the system's memory allocation
granularity.

dwViewDesiredAccess
Specifies the type of access to the file view and, therefore, the protection of the pages mapped by the file. See
dwDesiredAccess in MapViewOfFileEx in the Windows SDK.

Returns S_OK on success, or an error HRESULT on failure.

In debug builds, an assertion error will occur if the input parameters are invalid.

Sets the current file-mapping object to another file-mapping object.

orig
The current file-mapping object.

Returns a reference to the current object.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-createfilemappinga
https://docs.microsoft.com/windows/desktop/api/memoryapi/nf-memoryapi-mapviewoffileex

 CAtlFileMappingBase::Unmap

HRESULT Unmap() throw();

Return ValueReturn Value

RemarksRemarks

See also

Call this method to unmap a file-mapping object.

Returns S_OK on success, or an error HRESULT on failure.

See UnmapViewOfFile in the Windows SDK for more details.

CAtlFileMapping Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/memoryapi/nf-memoryapi-unmapviewoffile

CAtlList Class
3/4/2019 • 18 minutes to read • Edit Online

Syntax
template<typename E, class ETraits = CElementTraits<E>>
class CAtlList

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CAtlList::INARGTYPE

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlList::CAtlList The constructor.

CAtlList::~CAtlList The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlList::AddHead Call this method to add an element to the head of the list.

CAtlList::AddHeadList Call this method to add an existing list to the head of the list.

CAtlList::AddTail Call this method to add an element to the tail of this list.

CAtlList::AddTailList Call this method to add an existing list to the tail of this list.

CAtlList::AssertValid Call this method to confirm the list is valid.

CAtlList::Find Call this method to search the list for the specified element.

This class provides methods for creating and managing a list object.

E
The element type.

ETraits
The code used to copy or move elements. See CElementTraits Class for more details.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catllist-class.md

CAtlList::FindIndex Call this method to obtain the position of an element, given
an index value.

CAtlList::GetAt Call this method to return the element at a specified position
in the list.

CAtlList::GetCount Call this method to return the number of objects in the list.

CAtlList::GetHead Call this method to return the element at the head of the list.

CAtlList::GetHeadPosition Call this method to obtain the position of the head of the list.

CAtlList::GetNext Call this method to return the next element from the list.

CAtlList::GetPrev Call this method to return the previous element from the list.

CAtlList::GetTail Call this method to return the element at the tail of the list.

CAtlList::GetTailPosition Call this method to obtain the position of the tail of the list.

CAtlList::InsertAfter Call this method to insert a new element into the list after
the specified position.

CAtlList::InsertBefore Call this method to insert a new element into the list before
the specified position.

CAtlList::IsEmpty Call this method to determine if the list is empty.

CAtlList::MoveToHead Call this method to move the specified element to the head
of the list.

CAtlList::MoveToTail Call this method to move the specified element to the tail of
the list.

CAtlList::RemoveAll Call this method to remove all of the elements from the list.

CAtlList::RemoveAt Call this method to remove a single element from the list.

CAtlList::RemoveHead Call this method to remove the element at the head of the
list.

CAtlList::RemoveHeadNoReturn Call this method to remove the element at the head of the
list without returning a value.

CAtlList::RemoveTail Call this method to remove the element at the tail of the list.

CAtlList::RemoveTailNoReturn Call this method to remove the element at the tail of the list
without returning a value.

CAtlList::SetAt Call this method to set the value of the element at a given
position in the list.

NAME DESCRIPTION

CAtlList::SwapElements Call this method to swap elements in the list.

NAME DESCRIPTION

Remarks

Requirements

CAtlList::AddHead

POSITION AddHead();
POSITION AddHead(INARGTYPE element);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

The CAtlList class supports ordered lists of nonunique objects accessible sequentially or by value. CAtlList

lists behave like doubly linked lists. Each list has a head and a tail, and new elements (or lists in some cases) can
be added to either end of the list, or inserted before or after specific elements.

Most of the CAtlList methods make use of a position value. This value is used by the methods to reference the
actual memory location where the elements are stored, and should not be calculated or predicted directly. If it is
necessary to access the nth element in the list, the method CAtlList::FindIndex will return the corresponding
position value for a given index. The methods CAtlList::GetNext and CAtlList::GetPrev can be used to iterate
through the objects in the list.

For more information regarding the collection classes available with ATL, see ATL Collection Classes.

Header: atlcoll.h

Call this method to add an element to the head of the list.

element
The new element.

Returns the position of the newly added element.

If the first version is used, an empty element is created using its default constructor, rather than its copy
constructor.

// Declare a list of integers
CAtlList<int> myList;

// Add some elements, each to the head of the list.
// As each new element is added, the previous head is
// pushed down the list.
myList.AddHead(42);
myList.AddHead(49);

// Confirm the value currently at the head of the list
ATLASSERT(myList.GetHead() == 49);

// Confirm the value currently at the tail of the list
ATLASSERT(myList.GetTail() == 42);

CAtlList::AddHeadList

void AddHeadList(const CAtlList<E, ETraits>* plNew);

ParametersParameters

RemarksRemarks

ExampleExample

// Define two lists of integers
CAtlList<int> myList1;
CAtlList<int> myList2;

// Fill up the first list
myList1.AddTail(1);
myList1.AddTail(2);
myList1.AddTail(3);

// Add an element to the second list
myList2.AddTail(4);

// Insert the first list into the second
myList2.AddHeadList(&myList1);

// The second list now contains:
// 1, 2, 3, 4

CAtlList::AddTail

POSITION AddTail();
POSITION AddTail(INARGTYPE element);

ParametersParameters

Call this method to add an existing list to the head of the list.

plNew
The list to be added.

The list pointed to by plNew is inserted at the start of the existing list. In debug builds, an assertion failure will
occur if plNew is equal to NULL.

Call this method to add an element to the tail of this list.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Define the list
CAtlList<int> myList;

// Add elements to the tail
myList.AddTail(1);
myList.AddTail(2);
myList.AddTail(3);

// Confirm the current head of the list
ATLASSERT(myList.GetHead() == 1);

// Confirm the current tail of the list
ATLASSERT(myList.GetTail() == 3);

CAtlList::AddTailList

void AddTailList(const CAtlList<E, ETraits>* plNew);

ParametersParameters

RemarksRemarks

ExampleExample

element
The element to add.

Returns the POSITION of the newly added element.

If the first version is used, an empty element is created using its default constructor, rather than its copy
constructor. The element is added to the end of the list, and so it now becomes the tail. This method can be used
with an empty list.

Call this method to add an existing list to the tail of this list.

plNew
The list to be added.

The list pointed to by plNew is inserted after the last element (if any) in the list object. The last element in the
plNew list therefore becomes the tail. In debug builds, an assertion failure will occur if plNew is equal to NULL.

// Define two integer lists
CAtlList<int> myList1;
CAtlList<int> myList2;

// Fill up the first list
myList1.AddTail(1);
myList1.AddTail(2);
myList1.AddTail(3);

// Add an element to the second list
myList2.AddTail(4);

// Insert the first list into the second
myList2.AddTailList(&myList1);

// The second list now contains:
// 4, 1, 2, 3

CAtlList::AssertValid

void AssertValid() const;

RemarksRemarks

ExampleExample

// Define the list
CAtlList<int> myList;

// AssertValid only exists in debug builds
#ifdef _DEBUG
myList.AssertValid();
#endif

CAtlList::CAtlList

CAtlList(UINT nBlockSize = 10) throw();

ParametersParameters

RemarksRemarks

ExampleExample

Call this method to confirm the list is valid.

In debug builds, an assertion failure will occur if the list object is not valid. To be valid, an empty list must have
both the head and tail pointing to NULL, and a list that is not empty must have both the head and tail pointing to
valid addresses.

The constructor.

nBlockSize
The block size.

The constructor for the CAtlList object. The block size is a measure of the amount of memory allocated when a
new element is required. Larger block sizes reduce calls to memory allocation routines, but use more resources.

// Define two lists
CAtlList<int> myList1;
CAtlList<double> myList2;

CAtlList::~CAtlList

~CAtlList() throw();

RemarksRemarks

CAtlList::Find

POSITION Find(INARGTYPE element, POSITION posStartAfter = NULL) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Define the integer list
CAtlList<int> myList;

// Populate the list
myList.AddTail(100);
myList.AddTail(200);
myList.AddTail(300);
myList.AddTail(400);

// Find the '300' element in the list,
// starting from the list head.
POSITION myPos = myList.Find(300);

// Confirm that the element was found
ATLASSERT(myList.GetAt(myPos) == 300);

CAtlList::FindIndex

The destructor.

Frees all allocated resources, including a call to CAtlList::RemoveAll to remove all elements from the list.

In debug builds, an assertion failure will occur if the list still contains some elements after the call to RemoveAll .

Call this method to search the list for the specified element.

element
The element to be found in the list.

posStartAfter
The start position for the search. If no value is specified, the search begins with the head element.

Returns the POSITION value of the element if found, otherwise returns NULL.

In debug builds, an assertion failure will occur if the list object is not valid, or if the posStartAfter value is out of
range.

POSITION FindIndex(size_t iElement) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Define the integer list
CAtlList<int> myList;

// Populate the list
for (int i = 0; i < 100; i++)
{
 myList.AddTail(i);
}

// Iterate through the entire list
for (size_t j = 0; j < myList.GetCount(); j++)
{
 size_t i = myList.GetAt(myList.FindIndex(j));
 ATLASSERT(i == j);
}

CAtlList::GetAt

E& GetAt(POSITION pos) throw();
const E& GetAt(POSITION pos) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Call this method to obtain the position of an element, given an index value.

iElement
The zero-based index of the required list element.

Returns the corresponding POSITION value, or NULL if iElement is out of range.

This method returns the POSITION corresponding to a given index value, allowing access to the nth element in
the list.

In debug builds, an assertion failure will occur if the list object is not valid.

Call this method to return the element at a specified position in the list.

pos
The POSITION value specifying a particular element.

A reference to, or copy of, the element.

If the list is const, GetAt returns a copy of the element. This allows the method to be used only on the right side
of an assignment statement and protects the list from modification.

If the list is not const, GetAt returns a reference to the element. This allows the method to be used on either side
of an assignment statement and thus allows the list entries to be modified.

ExampleExample

CAtlList::GetCount

size_t GetCount() const throw();

Return ValueReturn Value

ExampleExample

CAtlList::GetHead

E& GetHead() throw();
const E& GetHead() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAtlList::GetHeadPosition

POSITION GetHeadPosition() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

In debug builds, an assertion failure will occur if pos is equal to NULL.

See the example for CAtlList::FindIndex.

Call this method to return the number of objects in the list.

Returns the number of elements in the list.

See the example for CAtlList::Find.

Call this method to return the element at the head of the list.

Returns a reference to, or a copy of, the element at the head of the list.

If the list is const, GetHead returns a copy of the element at the head of the list. This allows the method to be
used only on the right side of an assignment statement and protects the list from modification.

If the list is not const, GetHead returns a reference to the element at the head of the list. This allows the method
to be used on either side of an assignment statement and thus allows the list entries to be modified.

In debug builds, an assertion failure will occur if the head of the list points to NULL.

See the example for CAtlList::AddHead.

Call this method to obtain the position of the head of the list.

Returns the POSITION value corresponding to the element at the head of the list.

If the list is empty, the value returned is NULL.

// Define the integer list
CAtlList<int> myList;
int i;

// Populate the list
for (i = 0; i < 100; i++)
{
 myList.AddTail(i);
}

// Get the starting position value
POSITION myPos = myList.GetHeadPosition();

// Iterate through the entire list
i = 0;
int j;

do {
 j = myList.GetNext(myPos);
 ATLASSERT(i == j);
 i++;
} while (myPos != NULL);

CAtlList::GetNext

E& GetNext(POSITION& pos) throw();
const E& GetNext(POSITION& pos) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAtlList::GetPrev

E& GetPrev(POSITION& pos) throw();
const E& GetPrev(POSITION& pos) const throw();

Call this method to return the next element from the list.

pos
A POSITION value, returned by a previous call to GetNext , CAtlList::GetHeadPosition, or other CAtlList

method.

If the list is const, GetNext returns a copy of the next element of the list. This allows the method to be used only
on the right side of an assignment statement and protects the list from modification.

If the list is not const, GetNext returns a reference to the next element of the list. This allows the method to be
used on either side of an assignment statement and thus allows the list entries to be modified.

The POSITION counter, pos, is updated to point to the next element in the list, or NULL if there are no more
elements. In debug builds, an assertion failure will occur if pos is equal to NULL.

See the example for CAtlList::GetHeadPosition.

Call this method to return the previous element from the list.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAtlList::GetTail

E& GetTail() throw();
const E& GetTail() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAtlList::GetTailPosition

POSITION GetTailPosition() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

pos
A POSITION value, returned by a previous call to GetPrev , CAtlList::GetTailPosition, or other CAtlList method.

If the list is const, GetPrev returns a copy of an element of the list. This allows the method to be used only on
the right side of an assignment statement and protects the list from modification.

If the list is not const, GetPrev returns a reference to an element of the list. This allows the method to be used on
either side of an assignment statement and thus allows the list entries to be modified.

The POSITION counter, pos, is updated to point to the previous element in the list, or NULL if there are no more
elements. In debug builds, an assertion failure will occur if pos is equal to NULL.

See the example for CAtlList::GetTailPosition.

Call this method to return the element at the tail of the list.

Returns a reference to, or a copy of, the element at the tail of the list.

If the list is const, GetTail returns a copy of the element at the head of the list. This allows the method to be
used only on the right side of an assignment statement and protects the list from modification.

If the list is not const, GetTail returns a reference to the element at the head of the list. This allows the method
to be used on either side of an assignment statement and thus allows the list entries to be modified.

In debug builds, an assertion failure will occur if the tail of the list points to NULL.

See the example for CAtlList::AddTail.

Call this method to obtain the position of the tail of the list.

Returns the POSITION value corresponding to the element at the tail of the list.

If the list is empty, the value returned is NULL.

// Define the integer list
CAtlList<int> myList;
int i;

// Populate the list
for (i = 0; i < 100; i++)
{
 myList.AddHead(i);
}

// Get the starting position value
POSITION myP = myList.GetTailPosition();

// Iterate through the entire list
i = 0;
int j;

do {
 j = myList.GetPrev(myP);
 ATLASSERT(i == j);
 i++;
} while (myP != NULL);

CAtlList::INARGTYPE

typedef ETraits::INARGTYPE INARGTYPE;

CAtlList::InsertAfter

POSITION InsertAfter(POSITION pos, INARGTYPE element);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Type used when an element is passed as an input argument.

Call this method to insert a new element into the list after the specified position.

pos
The POSITION value after which the new element will be inserted.

element
The element to be inserted.

Returns the POSITION value of the new element.

In debug builds, an assertion failure will occur if the list isn't valid, if the insert fails, or if an attempt is made to
insert the element after the tail.

// Define the integer list
CAtlList<int> myList;

// Populate the list
POSITION myPos = myList.AddHead(1);
myPos = myList.InsertAfter(myPos, 2);
myPos = myList.InsertAfter(myPos, 3);

// Confirm the tail value is as expected
ATLASSERT(myList.GetTail() == 3);

CAtlList::InsertBefore

POSITION InsertBefore(POSITION pos, INARGTYPE element);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Define the integer list
CAtlList<int> myList;

// Populate the list
POSITION myPos = myList.AddHead(1);
myPos = myList.InsertBefore(myPos, 2);
myPos = myList.InsertBefore(myPos, 3);

// Confirm the head value is as expected
ATLASSERT(myList.GetHead() == 3);

CAtlList::IsEmpty

bool IsEmpty() const throw();

Return ValueReturn Value

ExampleExample

Call this method to insert a new element into the list before the specified position.

pos
The new element will be inserted into the list before this POSITION value.

element
The element to be inserted.

Returns the POSITION value of the new element.

In debug builds, an assertion failure will occur if the list isn't valid, if the insert fails, or if an attempt is made to
insert the element before the head.

Call this method to determine if the list is empty.

Returns true if the list contains no objects, otherwise false.

// Define the integer list
CAtlList<int> myList;

// Populate the list
myList.AddTail(1);
myList.AddTail(2);
myList.AddTail(3);
myList.AddTail(4);

// Confirm not empty
ATLASSERT(myList.IsEmpty() == false);

// Remove the tail element
myList.RemoveTailNoReturn();

// Confirm not empty
ATLASSERT(myList.IsEmpty() == false);

// Remove the head element
myList.RemoveHeadNoReturn();

// Confirm not empty
ATLASSERT(myList.IsEmpty() == false);

// Remove all remaining elements
myList.RemoveAll();

// Confirm empty
ATLASSERT(myList.IsEmpty() == true);

CAtlList::MoveToHead

void MoveToHead(POSITION pos) throw();

ParametersParameters

RemarksRemarks

ExampleExample

Call this method to move the specified element to the head of the list.

pos
The POSITION value of the element to move.

The specified element is moved from its current position to the head of the list. In debug builds, an assertion
failure will occur if pos is equal to NULL.

// Define the integer list
CAtlList<int> myList;

// Populate the list
myList.AddTail(1);
myList.AddTail(2);
myList.AddTail(3);
myList.AddTail(4);

// Move the tail element to the head
myList.MoveToHead(myList.GetTailPosition());

// Confirm the head is as expected
ATLASSERT(myList.GetHead() == 4);

// Move the head element to the tail
myList.MoveToTail(myList.GetHeadPosition());

// Confirm the tail is as expected
ATLASSERT(myList.GetTail() == 4);

CAtlList::MoveToTail

void MoveToTail(POSITION pos) throw();

ParametersParameters

RemarksRemarks

ExampleExample

CAtlList::RemoveAll

void RemoveAll() throw();

RemarksRemarks

ExampleExample

CAtlList::RemoveAt

Call this method to move the specified element to the tail of the list.

pos
The POSITION value of the element to move.

The specified element is moved from its current position to the tail of the list. In debug builds, an assertion failure
will occur if pos is equal to NULL.

See the example for CAtlList::MoveToHead.

Call this method to remove all of the elements from the list.

This method removes all of the elements from the list and frees the allocated memory. In debugs builds, an
ATLASSERT will be raised if all elements aren't deleted or if the list structure has become corrupted.

See the example for CAtlList::IsEmpty.

Call this method to remove a single element from the list.

void RemoveAt(POSITION pos) throw();

ParametersParameters

RemarksRemarks

ExampleExample

// Define the integer list
CAtlList<int> myList;

// Populate the list
myList.AddTail(100);
myList.AddTail(200);
myList.AddTail(300);

// Use RemoveAt to remove elements one by one
myList.RemoveAt(myList.Find(100));
myList.RemoveAt(myList.Find(200));
myList.RemoveAt(myList.Find(300));

// Confirm all have been deleted
ATLASSERT(myList.IsEmpty() == true);

CAtlList::RemoveHead

E RemoveHead();

Return ValueReturn Value

RemarksRemarks

ExampleExample

pos
The POSITION value of the element to remove.

The element referenced by pos is removed, and memory is freed. It is acceptable to use RemoveAt to remove the
head or tail of the list.

In debug builds, an assertion failure will occur if the list is not valid or if removing the element causes the list to
access memory which isn't part of the list structure.

Call this method to remove the element at the head of the list.

Returns the element at the head of the list.

The head element is deleted from the list, and memory is freed. A copy of the element is returned. In debug
builds, an assertion failure will occur if the list is empty.

// Define the integer list
CAtlList<int> myList;

// Populate the list
myList.AddTail(100);
myList.AddTail(200);
myList.AddTail(300);

// Confirm the head of the list
ATLASSERT(myList.GetHead() == 100);

// Remove the head of the list
ATLASSERT(myList.RemoveHead() == 100);

// Confirm the new head of the list
ATLASSERT(myList.GetHead() == 200);

CAtlList::RemoveHeadNoReturn

void RemoveHeadNoReturn() throw();

RemarksRemarks

ExampleExample

CAtlList::RemoveTail

E RemoveTail();

Return ValueReturn Value

RemarksRemarks

ExampleExample

Call this method to remove the element at the head of the list without returning a value.

The head element is deleted from the list, and memory is freed. In debug builds, an assertion failure will occur if
the list is empty.

See the example for CAtlList::IsEmpty.

Call this method to remove the element at the tail of the list.

Returns the element at the tail of the list.

The tail element is deleted from the list, and memory is freed. A copy of the element is returned. In debug builds,
an assertion failure will occur if the list is empty.

// Define the integer list
CAtlList<int> myList;

// Populate the list
myList.AddTail(100);
myList.AddTail(200);
myList.AddTail(300);

// Confirm the tail of the list
ATLASSERT(myList.GetTail() == 300);

// Remove the tail of the list
ATLASSERT(myList.RemoveTail() == 300);

// Confirm the new tail of the list
ATLASSERT(myList.GetTail() == 200);

CAtlList::RemoveTailNoReturn

void RemoveTailNoReturn() throw();

RemarksRemarks

ExampleExample

CAtlList::SetAt

void SetAt(POSITION pos, INARGTYPE element);

ParametersParameters

RemarksRemarks

ExampleExample

Call this method to remove the element at the tail of the list without returning a value.

The tail element is deleted from the list, and memory is freed. In debug builds, an assertion failure will occur if
the list is empty.

See the example for CAtlList::IsEmpty.

Call this method to set the value of the element at a given position in the list.

pos
The POSITION value corresponding to the element to change.

element
The new element value.

Replaces the existing value with element. In debug builds, an assertion failure will occur if pos is equal to NULL.

// Define the integer list
CAtlList<int> myList;

// Populate the list
myList.AddTail(100);
myList.AddTail(200);

// Use SetAt to change the values stored in the head and
// tail of the list
myList.SetAt(myList.GetHeadPosition(), myList.GetHead() * 10);
myList.SetAt(myList.GetTailPosition(), myList.GetTail() * 10);

// Confirm the values
ATLASSERT(myList.GetHead() == 1000);
ATLASSERT(myList.GetTail() == 2000);

CAtlList::SwapElements

void SwapElements(POSITION pos1, POSITION pos2) throw();

ParametersParameters

RemarksRemarks

ExampleExample

Call this method to swap elements in the list.

pos1
The first POSITION value.

pos2
The second POSITION value.

Swaps the elements at the two positions specified. In debug builds, an assertion failure will occur if either
position value is equal to NULL.

// Define the integer list
CAtlList<int> myList;

// Populate the list
for (int i = 0; i < 100; i++)
{
 myList.AddHead(i);
}

// Order is: 99, 98, 97, 96...
ATLASSERT(myList.GetHead() == 99);
ATLASSERT(myList.GetTail() == 0);

// Perform a crude bubble sort
for (int j = 0; j < 100; j++)
{
 for(int i = 0; i < 99; i++)
 {
 if (myList.GetAt(myList.FindIndex(i)) >
 myList.GetAt(myList.FindIndex(i+1)))
 {
 myList.SwapElements(myList.FindIndex(i), myList.FindIndex(i+1));
 }
 }
}

// Order is: 0, 1, 2, 3...
ATLASSERT(myList.GetHead() == 0);
ATLASSERT(myList.GetTail() == 99);

See also
CList Class
Class Overview

CAtlMap Class
3/4/2019 • 15 minutes to read • Edit Online

Syntax
template <typename K,
 typename V,
 class KTraits = CElementTraits<K>,
 class VTraits = CElementTraits<V>>
class CAtlMap

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CAtlMap::KINARGTYPE Type used when a key is passed as an input argument

CAtlMap::KOUTARGTYPE Type used when a key is returned as an output argument.

CAtlMap::VINARGTYPE Type used when a value is passed as an input argument.

CAtlMap::VOUTARGTYPE Type used when a value is passed as an output argument.

Public ClassesPublic Classes

NAME DESCRIPTION

CAtlMap::CPair Class A class containing the key and value elements.

CPair Data MembersCPair Data Members

NAME DESCRIPTION

CPair::m_key The data member storing the key element.

This class provides methods for creating and managing a map object.

K
The key element type.

V
The value element type.

KTraits
The code used to copy or move key elements. See CElementTraits Class for more details.

VTraits
The code used to copy or move value elements.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlmap-class.md

CPair::m_value The data member storing the value element.

NAME DESCRIPTION

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlMap::CAtlMap The constructor.

CAtlMap::~CAtlMap The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlMap::AssertValid Call this method to cause an ASSERT if the CAtlMap is not
valid.

CAtlMap::DisableAutoRehash Call this method to disable automatic rehashing of the
CAtlMap object.

CAtlMap::EnableAutoRehash Call this method to enable automatic rehashing of the
CAtlMap object.

CAtlMap::GetAt Call this method to return the element at a specified position
in the map.

CAtlMap::GetCount Call this method to retrieve the number of elements in the
map.

CAtlMap::GetHashTableSize Call this method to determine the number of bins in the
map's hash table.

CAtlMap::GetKeyAt Call this method to retrieve the key stored at the given
position in the CAtlMap object.

CAtlMap::GetNext Call this method to obtain a pointer to the next element pair
stored in the CAtlMap object.

CAtlMap::GetNextAssoc Gets the next element for iterating.

CAtlMap::GetNextKey Call this method to retrieve the next key from the CAtlMap

object.

CAtlMap::GetNextValue Call this method to get the next value from the CAtlMap

object.

CAtlMap::GetStartPosition Call this method to start a map iteration.

CAtlMap::GetValueAt Call this method to retrieve the value stored at a given
position in the CAtlMap object.

CAtlMap::InitHashTable Call this method to initialize the hash table.

CAtlMap::IsEmpty Call this method to test for an empty map object.

CAtlMap::Lookup Call this method to look up keys or values in the CAtlMap

object.

CAtlMap::Rehash Call this method to rehash the CAtlMap object.

CAtlMap::RemoveAll Call this method to remove all elements from the CAtlMap

object.

CAtlMap::RemoveAtPos Call this method to remove the element at the given position
in the CAtlMap object.

CAtlMap::RemoveKey Call this method to remove an element from the CAtlMap

object, given the key.

CAtlMap::SetAt Call this method to insert an element pair into the map.

CAtlMap::SetOptimalLoad Call this method to set the optimal load of the CAtlMap

object.

CAtlMap::SetValueAt Call this method to change the value stored at a given
position in the CAtlMap object.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CAtlMap::operator[] Replaces or adds a new element to the CAtlMap .

Remarks
CAtlMap provides support for a mapping array of any given type, managing an unordered array of key elements

and their associated values. Elements (consisting of a key and a value) are stored using a hashing algorithm,
allowing a large amount of data to be efficiently stored and retrieved.

The KTraits and VTraits parameters are traits classes that contain any supplemental code needed to copy or move
elements.

An alternative to CAtlMap is offered by the CRBMap class. CRBMap also stores key/value pairs, but exhibits
different performance characteristics. The time taken to insert an item, look up a key, or delete a key from a
CRBMap object is of order log(n), where n is the number of elements. For CAtlMap , all of these operations typically

take a constant time, although worst-case scenarios might be of order n. Therefore, in a typical case, CAtlMap is
faster.

The other difference between CRBMap and CAtlMap becomes apparent when iterating through the stored
elements. In a CRBMap , the elements are visited in a sorted order. In a CAtlMap , the elements are not ordered, and
no order can be inferred.

When a small number of elements need to be stored, consider using the CSimpleMap class instead.

For more information, see ATL Collection Classes.

Requirements

CAtlMap::AssertValid

void AssertValid() const;

RemarksRemarks

ExampleExample

CAtlMap::CAtlMap

CAtlMap(
 UINT nBins = 17,
 float fOptimalLoad = 0.75f,
 float fLoThreshold = 0.25f,
 float fHiThreshold = 2.25f,
 UINT nBlockSize = 10) throw ();

ParametersParameters

RemarksRemarks

Header: atlcoll.h

Call this method to cause an ASSERT if the CAtlMap object is not valid.

In debug builds, this method will cause an ASSERT if the CAtlMap object is not valid.

See the example for CAtlMap::CAtlMap.

The constructor.

nBins
The number of bins providing pointers to the stored elements. See Remarks later in this topic for an explanation
of bins.

fOptimalLoad
The optimal load ratio.

fLoThreshold
The lower threshold for the load ratio.

fHiThreshold
The upper threshold for the load ratio.

nBlockSize
The block size.

CAtlMap references all of its stored elements by first creating an index using a hashing algorithm on the key. This
index references a "bin" which contains a pointer to the stored elements. If the bin is already in use, a linked-list is
created to access the subsequent elements. Traversing a list is slower than directly accessing the correct element,
and so the map structure needs to balance storage requirements against performance. The default parameters
have been chosen to give good results in most cases.

The load ratio is the ratio of the number of bins to the number of elements stored in the map object. When the
map structure is recalculated, the fOptimalLoad parameter value will be used to calculate the number of bins
required. This value can be changed using the CAtlMap::SetOptimalLoad method.

ExampleExample

// Create a map which stores a double
// value using an integer key

CAtlMap<int, double> mySinTable;
int i;

// Initialize the Hash Table
mySinTable.InitHashTable(257);

// Add items to the map
for (i = 0; i < 90; i++)
 mySinTable[i] = sin((double)i);

// Confirm the map is valid
mySinTable.AssertValid();

// Confirm the number of elements in the map
ATLASSERT(mySinTable.GetCount() == 90);

// Remove elements with even key values
for (i = 0; i < 90; i += 2)
 mySinTable.RemoveKey(i);

// Confirm the number of elements in the map
ATLASSERT(mySinTable.GetCount() == 45);

// Walk through all the elements in the map.
// First, get start position.
POSITION pos;
int key;
double value;
pos = mySinTable.GetStartPosition();

// Now iterate the map, element by element
while (pos != NULL)
{
 key = mySinTable.GetKeyAt(pos);
 value = mySinTable.GetNextValue(pos);
}

CAtlMap::~CAtlMap

~CAtlMap() throw();

The fLoThreshold parameter is the lower value that the load ratio can reach before CAtlMap will recalculate the
optimal size of the map.

The fHiThreshold parameter is the upper value that the load ratio can reach before the CAtlMap object will
recalculate the optimal size of the map.

This recalculation process (known as rehashing) is enabled by default. If you want to disable this process, perhaps
when entering a lot of data at one time, call the CAtlMap::DisableAutoRehash method. Reactivate it with the
CAtlMap::EnableAutoRehash method.

The nBlockSize parameter is a measure of the amount of memory allocated when a new element is required.
Larger block sizes reduce calls to memory allocation routines, but use more resources.

Before any data can be stored, it is necessary to initialize the hash table with a call to CAtlMap::InitHashTable.

The destructor.

RemarksRemarks

CAtlMap::CPair Class

class CPair : public __POSITION

RemarksRemarks

CAtlMap::DisableAutoRehash

void DisableAutoRehash() throw();

RemarksRemarks

CAtlMap::EnableAutoRehash

void EnableAutoRehash() throw();

RemarksRemarks

CAtlMap::GetAt

void GetAt(
 POSITION pos,
 KOUTARGTYPE key,
 VOUTARGTYPE value) const;

CPair* GetAt(POSITION& pos) throw();

Frees any allocated resources.

A class containing the key and value elements.

This class is used by the methods CAtlMap::GetNext and CAtlMap::Lookup to access the key and value elements
stored in the mapping structure.

Call this method to disable automatic rehashing of the CAtlMap object.

When automatic rehashing is enabled (which it is by default), the number of bins in the hash table will
automatically be recalculated if the load value (the ratio of the number of bins to the number of elements stored
in the array) exceeds the maximum or minimum values specified at the time the map was created.

DisableAutoRehash is most useful when a large number of elements will be added to the map at once. Instead of
triggering the rehashing process every time the limits are exceeded, it is more efficient to call DisableAutoRehash ,
add the elements, and finally call CAtlMap::EnableAutoRehash.

Call this method to enable automatic rehashing of the CAtlMap object.

When automatic rehashing is enabled (which it is by default), the number of bins in the hash table will
automatically be recalculated if the load value (the ratio of the number of bins to the number of elements stored
in the array) exceeds the maximum or minimum values specified at the time the map is created.

EnableAutoRefresh is most often used after a call to CAtlMap::DisableAutoRehash.

Call this method to return the element at a specified position in the map.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlMap::GetCount

size_t GetCount() const throw();

Return ValueReturn Value

ExampleExample

CAtlMap::GetHashTableSize

UINT GetHashTableSize() const throw();

Return ValueReturn Value

CAtlMap::GetKeyAt

const K& GetKeyAt(POSITION pos) const throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

pos
The position counter, returned by a previous call to CAtlMap::GetNextAssoc or CAtlMap::GetStartPosition.

key
Template parameter specifying the type of the map's key.

value
Template parameter specifying the type of the map's value.

Returns a pointer to the current pair of key/value elements stored in the map.

In debug builds, an assertion error will occur if pos is equal to NULL.

Call this method to retrieve the number of elements in the map.

Returns the number of elements in the map object. A single element is a key/value pair.

See the example for CAtlMap::CAtlMap.

Call this method to determine the number of bins in the map's hash table.

Returns the number of bins in the hash table. See CAtlMap::CAtlMap for an explanation.

Call this method to retrieve the key stored at the given position in the CAtlMap object.

pos
The position counter, returned by a previous call to CAtlMap::GetNextAssoc or CAtlMap::GetStartPosition.

Returns a reference to the key stored at the given position in the CAtlMap object.

See the example for CAtlMap::CAtlMap.

CAtlMap::GetNext

CPair* GetNext(POSITION& pos) throw();
const CPair* GetNext(POSITION& pos) const throw();

ParametersParameters

Return ValueReturn Value

CAtlMap::GetNextAssoc

void GetNextAssoc(
 POSITION& pos,
 KOUTARGTYPE key,
 VOUTARGTYPE value) const;

ParametersParameters

RemarksRemarks

CAtlMap::GetNextKey

const K& GetNextKey(POSITION& pos) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Call this method to obtain a pointer to the next element pair stored in the CAtlMap object.

pos
The position counter, returned by a previous call to CAtlMap::GetNextAssoc or CAtlMap::GetStartPosition.

Returns a pointer to the next pair of key/value elements stored in the map. The pos position counter is updated
after each call. If the retrieved element is the last in the map, pos is set to NULL.

Gets the next element for iterating.

pos
The position counter, returned by a previous call to CAtlMap::GetNextAssoc or CAtlMap::GetStartPosition.

key
Template parameter specifying the type of the map's key.

value
Template parameter specifying the type of the map's value.

The pos position counter is updated after each call. If the retrieved element is the last in the map, pos is set to
NULL.

Call this method to retrieve the next key from the CAtlMap object.

pos
The position counter, returned by a previous call to CAtlMap::GetNextAssoc or CAtlMap::GetStartPosition.

Returns a reference to the next key in the map.

Updates the current position counter, pos. If there are no more entries in the map, the position counter is set to

CAtlMap::GetNextValue

V& GetNextValue(POSITION& pos) throw();
const V& GetNextValue(POSITION& pos) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAtlMap::GetStartPosition

POSITION GetStartPosition() const throw();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CAtlMap::GetValueAt

V& GetValueAt(POSITION pos) throw();
const V& GetValueAt(POSITION pos) const throw();

ParametersParameters

NULL.

Call this method to get the next value from the CAtlMap object.

pos
The position counter, returned by a previous call to CAtlMap::GetNextAssoc or CAtlMap::GetStartPosition.

Returns a reference to the next value in the map.

Updates the current position counter, pos. If there are no more entries in the map, the position counter is set to
NULL.

See the example for CAtlMap::CAtlMap.

Call this method to start a map iteration.

Returns the start position, or NULL is returned if the map is empty.

Call this method to start a map iteration by returning a POSITION value that can be passed to the GetNextAssoc

method.

The iteration sequence is not predictable

See the example for CAtlMap::CAtlMap.

Call this method to retrieve the value stored at a given position in the CAtlMap object.

pos

Return ValueReturn Value

CAtlMap::InitHashTable

bool InitHashTable(
 UINT nBins,
 bool bAllocNow = true);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAtlMap::IsEmpty

bool IsEmpty() const throw();

Return ValueReturn Value

CAtlMap::KINARGTYPE

typedef KTraits::INARGTYPE KINARGTYPE;

CAtlMap::KOUTARGTYPE

The position counter, returned by a previous call to CAtlMap::GetNextAssoc or CAtlMap::GetStartPosition.

Returns a reference to the value stored at the given position in the CAtlMap object.

Call this method to initialize the hash table.

nBins
The number of bins used by the hash table. See CAtlMap::CAtlMap for an explanation.

bAllocNow
A flag indication when memory should be allocated.

Returns TRUE on successful initialization, FALSE on failure.

InitHashTable must be called before any elements are stored in the hash table. If this method is not called
explicitly, it will be called automatically the first time an element is added using the bin count specified by the
CAtlMap constructor. Otherwise, the map will be initialized using the new bin count specified by the nBins

parameter.

If the bAllocNow parameter is false, the memory required by the hash table will not be allocated until it is first
required. This can be useful if it is uncertain if the map will be used.

See the example for CAtlMap::CAtlMap.

Call this method to test for an empty map object.

Returns TRUE if the map is empty, FALSE otherwise.

Type used when a key is passed as an input argument.

Type used when a key is returned as an output argument.

typedef KTraits::OUTARGTYPE KOUTARGTYPE;

CAtlMap::Lookup

bool Lookup(KINARGTYPE key, VOUTARGTYPE value) const;
const CPair* Lookup(KINARGTYPE key) const throw();
CPair* Lookup(KINARGTYPE key) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlMap::operator []

V& operator[](kinargtype key) throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

CAtlMap::Rehash

void Rehash(UINT nBins = 0);

ParametersParameters

Call this method to look up keys or values in the CAtlMap object.

key
Specifies the key that identifies the element to be looked up.

value
Variable that receives the looked-up value.

The first form of the method returns true if the key is found, otherwise false. The second and third forms return a
pointer to a CPair which can be used as a position for calls to CAtlMap::GetNext and so on.

Lookup uses a hashing algorithm to quickly find the map element containing a key that exactly matches the given
key parameter.

Replaces or adds a new element to the CAtlMap .

key
The key of the element to add or replace.

Returns a reference to the value associated with the given key.

If the key already exists, the element is replaced. If the key does not exist, a new element is added. See the
example for CAtlMap::CAtlMap.

Call this method to rehash the CAtlMap object.

nBins
The new number of bins to use in the hash table. See CAtlMap::CAtlMap for an explanation.

RemarksRemarks

CAtlMap::RemoveAll

void RemoveAll() throw();

RemarksRemarks

CAtlMap::RemoveAtPos

void RemoveAtPos(POSITION pos) throw();

ParametersParameters

RemarksRemarks

CAtlMap::RemoveKey

bool RemoveKey(KINARGTYPE key) throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

CAtlMap::SetAt

If nBins is 0, CAtlMap calculates a reasonable number based on the number of elements in the map and the
optimal load setting. Normally the rehashing process is automatic, but if CAtlMap::DisableAutoRehash has been
called, this method will perform the necessary resizing.

Call this method to remove all elements from the CAtlMap object.

Clears out the CAtlMap object, freeing the memory used to store the elements.

Call this method to remove the element at the given position in the CAtlMap object.

pos
The position counter, returned by a previous call to CAtlMap::GetNextAssoc or CAtlMap::GetStartPosition.

Removes the key/value pair stored at the specified position. The memory used to store the element is freed. The
POSITION referenced by pos becomes invalid, and while the POSITION of any other elements in the map
remains valid, they do not necessarily retain the same order.

Call this method to remove an element from the CAtlMap object, given the key.

key
The key corresponding to the element pair you want to remove.

Returns TRUE if the key is found and removed, FALSE on failure.

See the example for CAtlMap::CAtlMap.

Call this method to insert an element pair into the map.

POSITION SetAt(
 KINARGTYPE key,
 VINARGTYPE value);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlMap::SetOptimalLoad

void SetOptimalLoad(
 float fOptimalLoad,
 float fLoThreshold,
 float fHiThreshold,
 bool bRehashNow = false);

ParametersParameters

RemarksRemarks

CAtlMap::SetValueAt

void SetValueAt(
 POSITION pos,
 VINARGTYPE value);

key
The key value to add to the CAtlMap object.

value
The value to add to the CAtlMap object.

Returns the position of the key/value element pair in the CAtlMap object.

SetAt replaces an existing element if a matching key is found. If the key is not found, a new key/value pair is
created.

Call this method to set the optimal load of the CAtlMap object.

fOptimalLoad
The optimal load ratio.

fLoThreshold
The lower threshold for the load ratio.

fHiThreshold
The upper threshold for the load ratio.

bRehashNow
Flag indicating if the hash table should be recalculated.

This method redefines the optimal load value for the CAtlMap object. See CAtlMap::CAtlMap for a discussion of
the various parameters. If bRehashNow is true, and the number of elements is outside the minimum and
maximum values, the hash table is recalculated.

Call this method to change the value stored at a given position in the CAtlMap object.

ParametersParameters

RemarksRemarks

CAtlMap::VINARGTYPE

typedef VTraits::INARGTYPE VINARGTYPE;

CAtlMap::VOUTARGTYPE

typedef VTraits::OUTARGTYPE VOUTARGTYPE;

CAtlMap::CPair::m_key

const K m_key;

ParametersParameters

CAtlMap::CPair::m_value

V m_value;

ParametersParameters

See also

pos
The position counter, returned by a previous call to CAtlMap::GetNextAssoc or CAtlMap::GetStartPosition.

value
The value to add to the CAtlMap object.

Changes the value element stored at the given position in the CAtlMap object.

Type used when a value is passed as an input argument.

Type used when a value is passed as an output argument.

The data member storing the key element.

K
The key element type.

The data member storing the value element.

V
The value element type.

Marquee Sample
UpdatePV Sample
Class Overview

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/ATL/OLEDB/Provider/UPDATEPV

CAtlModule Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class ATL_NO_VTABLE CAtlModule : public _ATL_MODULE

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlModule::CAtlModule The constructor.

CAtlModule::~CAtlModule The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlModule::AddCommonRGSReplacements Override this method to add parameters to the ATL Registry
Component (Registrar) replacement map.

CAtlModule::AddTermFunc Adds a new function to be called when the module
terminates.

CAtlModule::GetGITPtr Returns the Global Interface Pointer.

CAtlModule::GetLockCount Returns the lock count.

CAtlModule::Lock Increments the lock count.

CAtlModule::Term Releases all data members.

CAtlModule::Unlock Decrements the lock count.

CAtlModule::UpdateRegistryFromResourceD Runs the script contained in a specified resource to register
or unregister an object.

CAtlModule::UpdateRegistryFromResourceDHelper This method is called by UpdateRegistryFromResourceD to
perform the registry update.

CAtlModule::UpdateRegistryFromResourceS Runs the script contained in a specified resource to register
or unregister an object. This method statically links to the
ATL Registry Component.

Public Data MembersPublic Data Members

This class provides methods used by several ATL module classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlmodule-class.md

NAME DESCRIPTION

CAtlModule::m_libid Contains the GUID of the current module.

CAtlModule::m_pGIT Pointer to the Global Interface Table.

Remarks

Inheritance Hierarchy

Requirements

CAtlModule::AddCommonRGSReplacements

virtual HRESULT AddCommonRGSReplacements(IRegistrarBase* /* pRegistrar*/) throw() = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlModule::AddTermFunc

HRESULT AddTermFunc(_ATL_TERMFUNC* pFunc, DWORD_PTR dw) throw();

ParametersParameters

This class is used by CAtlDllModuleT Class, CAtlExeModuleT Class, and CAtlServiceModuleT Class to provide
support for DLL applications, EXE applications, and Windows services, respectively.

For more information on modules in ATL, see ATL Module Classes.

This class replaces the obsolete CComModule Class used in earlier versions of ATL.

_ATL_MODULE

CAtlModule

Header: atlbase.h

Override this method to add parameters to the ATL Registry Component (Registrar) replacement map.

pRegistrar
Reserved.

Returns S_OK on success, or an error HRESULT on failure.

Replaceable parameters allow a Registrar's client to specify run-time data. To do this, the Registrar maintains a
replacement map into which it enters the values associated with the replaceable parameters in your script. The
Registrar makes these entries at run time.

See the topic Using Replaceable Parameters (The Registrar's Preprocessor) for more details.

Adds a new function to be called when the module terminates.

pFunc

Return ValueReturn Value

CAtlModule::CAtlModule

CAtlModule() throw();

RemarksRemarks

CAtlModule::~CAtlModule

~CAtlModule() throw();

RemarksRemarks

CAtlModule::GetGITPtr

virtual HRESULT GetGITPtr(IGlobalInterfaceTable** ppGIT) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlModule::GetLockCount

Pointer to the function to add.

dw
User-defined data, passed to the function.

Returns S_OK on success, or an error HRESULT on failure.

The constructor.

Initializes data members and initiates a critical section around the module's thread.

The destructor.

Releases all data members.

Retrieves a pointer to the Global Interface Table.

ppGIT
Pointer to the variable which will receive the pointer to the Global Interface Table.

Returns S_OK on success, or an error code on failure. E_POINTER is returned if ppGIT is equal to NULL.

If the Global Interface Table object does not exist, it is created, and its address is stored in the member variable
CAtlModule::m_pGIT.

In debug builds, an assertion error will occur if ppGIT is equal to NULL, or if the Global Interface Table pointer
cannot be obtained.

See IGlobalInterfaceTable for information on the Global Interface Table.

Returns the lock count.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-iglobalinterfacetable

virtual LONG GetLockCount() throw();

Return ValueReturn Value

CAtlModule::Lock

virtual LONG Lock() throw();

Return ValueReturn Value

CAtlModule::m_libid

static GUID m_libid;

CAtlModule::m_pGIT

IGlobalInterfaceTable* m_pGIT;

CAtlModule::Term

void Term() throw();

RemarksRemarks

CAtlModule::Unlock

virtual LONG Unlock() throw();

Return ValueReturn Value

CAtlModule::UpdateRegistryFromResourceD

Returns the lock count. This value may be useful for diagnostics and debugging.

Increments the lock count.

Increments the lock count and returns the updated value. This value may be useful for diagnostics and
debugging.

Contains the GUID of the current module.

Pointer to the Global Interface Table.

Releases all data members.

Releases all data members. This method is called by the destructor.

Decrements the lock count.

Decrements the lock count and returns the updated value. This value may be useful for diagnostics and
debugging.

HRESULT WINAPI UpdateRegistryFromResourceD(
 UINT nResID,
 BOOL bRegister,
 struct _ATL_REGMAP_ENTRY* pMapEntries = NULL) throw();

HRESULT WINAPI UpdateRegistryFromResourceD(
 LPCTSTR lpszRes,
 BOOL bRegister,
 struct _ATL_REGMAP_ENTRY* pMapEntries = NULL) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlModule::UpdateRegistryFromResourceDHelper

inline HRESULT WINAPI UpdateRegistryFromResourceDHelper(
 LPCOLESTR lpszRes,
 BOOL bRegister,
 struct _ATL_REGMAP_ENTRY* pMapEntries = NULL) throw();

ParametersParameters

Runs the script contained in a specified resource to register or unregister an object.

lpszRes
A resource name.

nResID
A resource ID.

bRegister
TRUE if the object should be registered; FALSE otherwise.

pMapEntries
A pointer to the replacement map storing values associated with the script's replaceable parameters. ATL
automatically uses %MODULE%. To use additional replaceable parameters, see
CAtlModule::AddCommonRGSReplacements. Otherwise, use the NULL default value.

Returns S_OK on success, or an error HRESULT on failure.

Runs the script contained in the resource specified by lpszRes or nResID. If bRegister is TRUE, this method
registers the object in the system registry; otherwise it removes the object from the registry.

To statically link to the ATL Registry Component (Registrar), see CAtlModule::UpdateRegistryFromResourceS.

This method calls CAtlModule::UpdateRegistryFromResourceDHelper and IRegistrar::ResourceUnregister.

This method is called by UpdateRegistryFromResourceD to perform the registry update.

lpszRes
A resource name.

bRegister
Indicates whether the object should be registered.

pMapEntries
A pointer to the replacement map storing values associated with the script's replaceable parameters. ATL
automatically uses %MODULE%. To use additional replaceable parameters, see

Return ValueReturn Value

RemarksRemarks

CAtlModule::UpdateRegistryFromResourceS

HRESULT WINAPI UpdateRegistryFromResourceS(
 UINT nResID,
 BOOL bRegister,
 struct _ATL_REGMAP_ENTRY* pMapEntries = NULL) throw();

HRESULT WINAPI UpdateRegistryFromResourceS(
 LPCTSTR lpszRes,
 BOOL bRegister,
 struct _ATL_REGMAP_ENTRY* pMapEntries = NULL) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

CAtlModule::AddCommonRGSReplacements. Otherwise, use the NULL default value.

Returns S_OK on success, or an error HRESULT on failure.

This method provides the implementation of CAtlModule::UpdateRegistryFromResourceD.

Runs the script contained in a specified resource to register or unregister an object. This method statically links
to the ATL Registry Component.

nResID
A resource ID.

lpszRes
A resource name.

bRegister
Indicates whether the resource script should be registered.

pMapEntries
A pointer to the replacement map storing values associated with the script's replaceable parameters. ATL
automatically uses %MODULE%. To use additional replaceable parameters, see
CAtlModule::AddCommonRGSReplacements. Otherwise, use the NULL default value.

Returns S_OK on success, or an error HRESULT on failure.

Similar to CAtlModule::UpdateRegistryFromResourceD except CAtlModule::UpdateRegistryFromResourceS creates
a static link to the ATL Registry Component (Registrar).

_ATL_MODULE
Class Overview
Module Classes
Registry Component (Registrar)

CAtlModuleT Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class T>
class ATL_NO_VTABLE CAtlModuleT : public CAtlModule

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlModuleT::CAtlModuleT The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlModuleT::InitLibId Initializes the data member containing the GUID of the
current module.

CAtlModuleT::RegisterAppId Adds the EXE to the registry.

CAtlModuleT::RegisterServer Adds the service to the registry.

CAtlModuleT::UnregisterAppId Removes the EXE from the registry.

CAtlModuleT::UnregisterServer Removes the service from the registry.

CAtlModuleT::UpdateRegistryAppId Updates the EXE information in the registry.

Remarks

Inheritance Hierarchy

This class implements an ATL module.

T
Your class derived from CAtlModuleT .

CAtlModuleT , derived from CAtlModule, implements an Executable (EXE) or a Service (EXE) ATL module. An
Executable module is a local, out-of-process server, whereas a Service module is a Windows application that runs
in the background when Windows starts.

CAtlModuleT provides support for initializing, registering, and unregistering of the module.

_ATL_MODULE

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlmodulet-class.md

Requirements

CAtlModuleT::CAtlModuleT

CAtlModuleT() throw();

RemarksRemarks

CAtlModuleT::InitLibId

static void InitLibId() throw();

RemarksRemarks

CAtlModuleT::RegisterAppId

HRESULT RegisterAppId() throw();

Return ValueReturn Value

CAtlModuleT::RegisterServer

HRESULT RegisterServer(
 BOOL bRegTypeLib = FALSE,
 const CLSID* pCLSID = NULL) throw();

ParametersParameters

Return ValueReturn Value

CAtlModule

CAtlModuleT

Header: atlbase.h

The constructor.

Calls CAtlModuleT::InitLibId.

Initializes the data member containing the GUID of the current module.

Called by the constructor CAtlModuleT::CAtlModuleT.

Adds the EXE to the registry.

Returns S_OK on success, or an error HRESULT on failure.

Adds the service to the registry.

bRegTypeLib
TRUE if the type library is to be registered. The default value is FALSE.

pCLSID
Points to the CLSID of the object to be registered. If NULL (the default value), all objects in the object map will
be registered.

CAtlModuleT::UnregisterAppId

HRESULT UnregisterAppId() throw();

Return ValueReturn Value

CAtlModuleT::UnregisterServer

HRESULT UnregisterServer(
 BOOL bUnRegTypeLib,
 const CLSID* pCLSID = NULL) throw();

ParametersParameters

Return ValueReturn Value

CAtlModuleT::UpdateRegistryAppId

static HRESULT WINAPI UpdateRegistryAppId(BOOL /* bRegister*/) throw();

ParametersParameters

Return ValueReturn Value

See also

Returns S_OK on success, or an error HRESULT on failure.

Removes the EXE from the registry.

Returns S_OK on success, or an error HRESULT on failure.

Removes the service from the registry.

bUnRegTypeLib
TRUE if the type library is also to be unregistered.

pCLSID
Points to the CLSID of the object to be unregistered. If NULL (the default value), all objects in the object map will
be unregistered.

Returns S_OK on success, or an error HRESULT on failure.

Updates the EXE information in the registry.

bRegister
Reserved.

Returns S_OK on success, or an error HRESULT on failure.

CAtlModule Class
Class Overview
Module Classes

CAtlPreviewCtrlImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CAtlPreviewCtrlImpl : public CWindowImpl<CAtlPreviewCtrlImpl>, public IPreviewCtrl;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlPreviewCtrlImpl::~CAtlPreviewCtrlImpl Destructs a preview control object.

CAtlPreviewCtrlImpl::CAtlPreviewCtrlImpl Constructs a preview control object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlPreviewCtrlImpl::Create Called by a Rich Preview handler to create the Windows
window.

CAtlPreviewCtrlImpl::Destroy Called by a Rich Preview handler when it needs to destroy this
control.

CAtlPreviewCtrlImpl::Focus Sets input focus to this control.

CAtlPreviewCtrlImpl::OnPaint Handles the WM_PAINT message.

CAtlPreviewCtrlImpl::Redraw Tells this control to redraw.

CAtlPreviewCtrlImpl::SetHost Sets a new parent for this control.

CAtlPreviewCtrlImpl::SetPreviewVisuals Called by a Rich Preview handler when it needs to set visuals
of rich preview content.

CAtlPreviewCtrlImpl::SetRect Sets a new bounding rectangle for this control.

Protected MethodsProtected Methods

This class is an ATL implementation of a window that is placed on a host window provided by the Shell for Rich
Preview.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlpreviewctrlimpl-class.md

NAME DESCRIPTION

CAtlPreviewCtrlImpl::DoPaint Called by the framework to render the preview.

Protected ConstantsProtected Constants

NAME DESCRIPTION

CAtlPreviewCtrlImpl::m_plf Font used to display text in the preview window.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CAtlPreviewCtrlImpl::m_clrBack Background color of the preview window.

CAtlPreviewCtrlImpl::m_clrText Text color of preview window.

Remarks

Inheritance Hierarchy

Requirements

CAtlPreviewCtrlImpl::CAtlPreviewCtrlImpl

CAtlPreviewCtrlImpl(void) : m_clrText(0),
 m_clrBack(RGB(255, 255, 255)), m_plf(NULL);

RemarksRemarks

CAtlPreviewCtrlImpl::~CAtlPreviewCtrlImpl

virtual ~CAtlPreviewCtrlImpl(void);

TBase

ATL::CMessageMap

ATL::CWindowImplRoot<TBase>

ATL::CWindowImplBaseT<TBase,TWinTraits>

ATL::CWindowImpl<CAtlPreviewCtrlImpl>

IPreviewCtrl

ATL::CAtlPreviewCtrlImpl

Header: atlpreviewctrlimpl.h

Constructs a preview control object.

Destructs a preview control object.

RemarksRemarks

CAtlPreviewCtrlImpl::Create

virtual BOOL Create(HWND hWndParent, const RECT* prc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlPreviewCtrlImpl::Destroy

virtual void Destroy();

RemarksRemarks

CAtlPreviewCtrlImpl::DoPaint

virtual void DoPaint(HDC hdc);

ParametersParameters

RemarksRemarks

CAtlPreviewCtrlImpl::Focus

virtual void Focus();

RemarksRemarks

CAtlPreviewCtrlImpl::m_clrBack

Called by a Rich Preview handler to create the Windows window.

hWndParent
A handle to the host window supplied by the Shell for Rich Preview.

prc
Specifies the initial size and position of the window.

TRUE if successful; otherwise FALSE.

Called by a Rich Preview handler when it needs to destroy this control.

Called by the framework to render the preview.

hdc
A handle to a device context for painting.

Sets input focus to this control.

Background color of the preview window.

COLORREF m_clrBack;

RemarksRemarks

CAtlPreviewCtrlImpl::m_clrText

COLORREF m_clrText;

RemarksRemarks

CAtlPreviewCtrlImpl::m_plf

const LOGFONTW* m_plf;

RemarksRemarks

CAtlPreviewCtrlImpl::OnPaint

LRESULT OnPaint(
 UINT nMsg,
 WPARAM wParam,
 LPARAM lParam,
 BOOL& bHandled);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlPreviewCtrlImpl::Redraw

virtual void Redraw();

Text color of the preview window.

Font used to display text in the preview window.

Handles the WM_PAINT message.

nMsg
Set to WM_PAINT.

wParam
This parameter is not used.

lParam
This parameter is not used.

bHandled
When this function returns, it contains TRUE.

Always returns 0.

Tells this control to redraw.

RemarksRemarks

CAtlPreviewCtrlImpl::SetHost

virtual void SetHost(HWND hWndParent);

ParametersParameters

RemarksRemarks

CAtlPreviewCtrlImpl::SetPreviewVisuals

virtual void SetPreviewVisuals(
 COLORREF clrBack,
 COLORREF clrText,
 const LOGFONTW* plf);

ParametersParameters

RemarksRemarks

CAtlPreviewCtrlImpl::SetRect

virtual void SetRect(const RECT* prc, BOOL bRedraw);

ParametersParameters

RemarksRemarks

See also

Sets a new parent for this control.

hWndParent
A handle to the new parent window.

Called by a Rich Preview handler when it needs to set visuals of rich preview content.

clrBack
Background color of the preview window.

clrText
Text color of the preview window.

plf
Font used to display text in the preview window.

Sets a new bounding rectangle for this control.

prc
Specifies the new size and position of the preview control.

bRedraw
Specifies whether the control should be redrawn.

ATL COM Desktop Components

CAtlServiceModuleT Class
3/4/2019 • 8 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T, UINT nServiceNameID>
class ATL_NO_VTABLE CAtlServiceModuleT : public CAtlExeModuleT<T>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlServiceModuleT::CAtlServiceModuleT The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlServiceModuleT::Handler The handler routine for the service.

CAtlServiceModuleT::InitializeSecurity Provides the default security settings for the service.

CAtlServiceModuleT::Install Installs and creates the service.

CAtlServiceModuleT::IsInstalled Confirms that the service has been installed.

CAtlServiceModuleT::LogEvent Writes to the event log.

CAtlServiceModuleT::OnContinue Override this method to continue the service.

CAtlServiceModuleT::OnInterrogate Override this method to interrogate the service.

CAtlServiceModuleT::OnPause Override this method to pause the service.

This class implements a service.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class derived from CAtlServiceModuleT .

nServiceNameID
The resource identifier of the service.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlservicemodulet-class.md

CAtlServiceModuleT::OnShutdown Override this method to shut down the service

CAtlServiceModuleT::OnStop Override this method to stop the service

CAtlServiceModuleT::OnUnknownRequest Override this method to handle unknown requests to the
service

CAtlServiceModuleT::ParseCommandLine Parses the command line and performs registration if
necessary.

CAtlServiceModuleT::PreMessageLoop This method is called immediately before entering the
message loop.

CAtlServiceModuleT::RegisterAppId Registers the service in the registry.

CAtlServiceModuleT::Run Runs the service.

CAtlServiceModuleT::ServiceMain The method called by the Service Control Manager.

CAtlServiceModuleT::SetServiceStatus Updates the service status.

CAtlServiceModuleT::Start Called by CAtlServiceModuleT::WinMain when the service
starts.

CAtlServiceModuleT::Uninstall Stops and removes the service.

CAtlServiceModuleT::Unlock Decrements the service's lock count.

CAtlServiceModuleT::UnregisterAppId Removes the service from the registry.

CAtlServiceModuleT::WinMain This method implements the code required to run the service.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAtlServiceModuleT::m_bService Flag indicating the program is running as a service.

CAtlServiceModuleT::m_dwThreadID Member variable storing the thread identifier.

CAtlServiceModuleT::m_hServiceStatus Member variable storing a handle to the status information
structure for the current service.

CAtlServiceModuleT::m_status Member variable storing the status information structure for
the current service.

CAtlServiceModuleT::m_szServiceName The name of the service being registered.

Remarks
CAtlServiceModuleT , derived from CAtlExeModuleT, implements a ATL Service module. CAtlServiceModuleT

provides methods for command-line processing, installation, registering, and removal. If extra functionality is

Inheritance Hierarchy

Requirements

CAtlServiceModuleT::CAtlServiceModuleT

CAtlServiceModuleT() throw();

RemarksRemarks

CAtlServiceModuleT::Handler

void Handler(DWORD dwOpcode) throw();

ParametersParameters

RemarksRemarks

OPERATION CODE MEANING

SERVICE_CONTROL_STOP Stops the service. Override the method
CAtlServiceModuleT::OnStop in atlbase.h to change the
behavior.

SERVICE_CONTROL_PAUSE User implemented. Override the empty method
CAtlServiceModuleT::OnPause in atlbase.h to pause the
service.

required, these and other methods can be overridden.

This class replaces the obsolete CComModule Class used in earlier versions of ATL. See ATL Module Classes for
more details.

_ATL_MODULE

CAtlModule

CAtlModuleT

CAtlExeModuleT

CAtlServiceModuleT

Header: atlbase.h

The constructor.

Initializes the data members and sets the initial service status.

The handler routine for the service.

dwOpcode
A switch that defines the handler operation. For details, see the Remarks.

This is the code that the Service Control Manager (SCM) calls to retrieve the status of the service and issue
instructions such as stop or pause. The SCM passes an operation code, shown below, to Handler to indicate what
the service should do.

SERVICE_CONTROL_CONTINUE User implemented. Override the empty method
CAtlServiceModuleT::OnContinue in atlbase.h to continue the
service.

SERVICE_CONTROL_INTERROGATE User implemented. Override the empty method
CAtlServiceModuleT::OnInterrogate in atlbase.h to interrogate
the service.

SERVICE_CONTROL_SHUTDOWN User implemented. Override the empty method
CAtlServiceModuleT::OnShutdown in atlbase.h to shutdown
the service.

OPERATION CODE MEANING

CAtlServiceModuleT::InitializeSecurity

HRESULT InitializeSecurity() throw();

Return ValueReturn Value

RemarksRemarks

class CNonAttribServiceModule : public CAtlServiceModuleT< CNonAttribServiceModule, IDS_SERVICENAME >
{
public :
 DECLARE_LIBID(LIBID_NonAttribServiceLib)
 DECLARE_REGISTRY_APPID_RESOURCEID(IDR_NONATTRIBSERVICE, "{29160736-339F-4A1C-ABEF-C320CE103E12}")
 HRESULT InitializeSecurity() throw()
 {
 // TODO : Call CoInitializeSecurity and provide the appropriate security settings for
 // your service
 // Suggested - PKT Level Authentication,
 // Impersonation Level of RPC_C_IMP_LEVEL_IDENTIFY
 // and an appropiate Non NULL Security Descriptor.

 return S_OK;
 }
};

If the operation code isn't recognized, the method CAtlServiceModuleT::OnUnknownRequest is called.

A default ATL-generated service only handles the stop instruction. If the SCM passes the stop instruction, the
service tells the SCM that the program is about to stop. The service then calls PostThreadMessage to post a quit
message to itself. This terminates the message loop and the service will ultimately close.

Provides the default security settings for the service.

Returns S_OK on success, or an error HRESULT on failure.

In Visual Studio .NET 2003, this method is not implemented in the base class. The Visual Studio project wizard
includes this method in the generated code, but a compilation error will occur if a project created in an earlier
version of Visual C++ is compiled using ATL 7.1. Any class that derives from CAtlServiceModuleT must implement
this method in the derived class.

Use PKT-level authentication, impersonation level of RPC_C_IMP_LEVEL_IDENTIFY and an appropriate non-null
security descriptor in the call to CoInitializeSecurity .

For wizard-generated nonattributed service projects, this would be in

[module(SERVICE, uuid = "{D3103322-7B70-4581-8E59-12769BD9A62B}",
 name = "AttribService",
 helpstring = "AttribService 1.0 Type Library",
 resource_name="IDS_SERVICENAME")]
class CAttribServiceModule
{
public:
 HRESULT InitializeSecurity() throw()
 {
 // TODO : Call CoInitializeSecurity and provide the appropriate security settings for
 // your service
 // Suggested - PKT Level Authentication,
 // Impersonation Level of RPC_C_IMP_LEVEL_IDENTIFY
 // and an appropiate Non NULL Security Descriptor.

 return S_OK;
 }
};

CAtlServiceModuleT::Install

BOOL Install() throw();

Return ValueReturn Value

RemarksRemarks

CAtlServiceModuleT::IsInstalled

BOOL IsInstalled() throw();

Return ValueReturn Value

CAtlServiceModuleT::LogEvent

void __cdecl LogEvent(LPCTSTR pszFormat, ...) throw();

ParametersParameters

For attributed service projects, this would be in

Installs and creates the service.

Returns TRUE on success, FALSE on failure.

Installs the service into the Service Control Manager (SCM) database and then creates the service object. If the
service could not be created, a message box is displayed and the method returns FALSE.

Confirms that the service has been installed.

Returns TRUE if the service is installed, FALSE otherwise.

Writes to the event log.

pszFormat
The string to write to the event log.

...

RemarksRemarks

CAtlServiceModuleT::m_bService

BOOL m_bService;

RemarksRemarks

CAtlServiceModuleT::m_dwThreadID

DWORD m_dwThreadID;

RemarksRemarks

CAtlServiceModuleT::m_hServiceStatus

SERVICE_STATUS_HANDLE m_hServiceStatus;

RemarksRemarks

CAtlServiceModuleT::m_status

SERVICE_STATUS m_status;

RemarksRemarks

CAtlServiceModuleT::m_szServiceName

TCHAR [256] m_szServiceName;

RemarksRemarks

Optional extra strings to be written to the event log.

This method writes details out to an event log, using the function ReportEvent. If no service is running, the string
is sent to the console.

Flag indicating the program is running as a service.

Used to distinguish a Service EXE from an Application EXE.

Member variable storing the thread identifier of the Service.

This variable stores the thread identifier of the current thread.

Member variable storing a handle to the status information structure for the current service.

The SERVICE_STATUS structure contains information about a service.

Member variable storing the status information structure for the current service.

The SERVICE_STATUS structure contains information about a service.

The name of the service being registered.

A null-terminated string which stores the name of the service.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-reporteventa
https://docs.microsoft.com/windows/desktop/api/winsvc/ns-winsvc-_service_status
https://docs.microsoft.com/windows/desktop/api/winsvc/ns-winsvc-_service_status

CAtlServiceModuleT::OnContinue

void OnContinue() throw();

CAtlServiceModuleT::OnInterrogate

void OnInterrogate() throw();

CAtlServiceModuleT::OnPause

void OnPause() throw();

CAtlServiceModuleT::OnShutdown

void OnShutdown() throw();

CAtlServiceModuleT::OnStop

void OnStop() throw();

CAtlServiceModuleT::OnUnknownRequest

void OnUnknownRequest(DWORD /* dwOpcode*/) throw();

ParametersParameters

CAtlServiceModuleT::ParseCommandLine

bool ParseCommandLine(LPCTSTR lpCmdLine, HRESULT* pnRetCode) throw();

ParametersParameters

Override this method to continue the service.

Override this method to interrogate the service.

Override this method to pause the service.

Override this method to shut down the service.

Override this method to stop the service.

Override this method to handle unknown requests to the service.

dwOpcode
Reserved.

Parses the command line and performs registration if necessary.

Return ValueReturn Value

RemarksRemarks

CAtlServiceModuleT::PreMessageLoop

HRESULT PreMessageLoop(int nShowCmd) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlServiceModuleT::RegisterAppId

inline HRESULT RegisterAppId(bool bService = false) throw();

ParametersParameters

Return ValueReturn Value

CAtlServiceModuleT::Run

HRESULT Run(int nShowCmd = SW_HIDE) throw();

ParametersParameters

lpCmdLine
The command line.

pnRetCode
The HRESULT corresponding to the registration (if it took place).

Returns true on success, or false if the RGS file supplied in the command line could not be registered.

Parses the command line and registers or unregisters the supplied RGS file if necessary. This method calls
CAtlExeModuleT::ParseCommandLine to check for /RegServer and /UnregServer. Adding the argument -
/Service will register the service.

This method is called immediately before entering the message loop.

nShowCmd
This parameter is passed to CAtlExeModuleT::PreMessageLoop.

Returns S_OK on success, or an error HRESULT on failure.

Override this method to add custom initialization code for the Service.

Registers the service in the registry.

bService
Must be true to register as a service.

Returns S_OK on success, or an error HRESULT on failure.

Runs the service.

nShowCmd
Specifies how the window is to be shown. This parameter can be one of the values discussed in the WinMain

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-winmain

Return ValueReturn Value

RemarksRemarks

CAtlServiceModuleT::ServiceMain

void ServiceMain(DWORD dwArgc, LPTSTR* lpszArgv) throw();

ParametersParameters

RemarksRemarks

CAtlServiceModuleT::SetServiceStatus

void SetServiceStatus(DWORD dwState) throw();

ParametersParameters

RemarksRemarks

CAtlServiceModuleT::Start

HRESULT Start(int nShowCmd) throw();

section. The default value is SW_HIDE.

Returns S_OK on success, or an error HRESULT on failure.

After being called, Run calls CAtlServiceModuleT::PreMessageLoop, CAtlExeModuleT::RunMessageLoop, and
CAtlExeModuleT::PostMessageLoop.

This method is called by the Service Control Manager.

dwArgc
The argc argument.

lpszArgv
The argv argument.

The Service Control Manager (SCM) calls ServiceMain when you open the Services application in the Control
Panel, select the service, and click Start.

After the SCM calls ServiceMain , a service must give the SCM a handler function. This function lets the SCM
obtain the service's status and pass specific instructions (such as pausing or stopping). Subsequently,
CAtlServiceModuleT::Run is called to perform the main work of the service. Run continues to execute until the
service is stopped.

This method updates the service status.

dwState
The new status. See SetServiceStatus for possible values.

Updates the Service Control Manager's status information for the service. It is called by
CAtlServiceModuleT::Run, CAtlServiceModuleT::ServiceMain and other handler methods. The status is also
stored in the member variable CAtlServiceModuleT::m_status.

Called by CAtlServiceModuleT::WinMain when the service starts.

https://docs.microsoft.com/windows/desktop/api/winsvc/nf-winsvc-setservicestatus

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlServiceModuleT::Uninstall

BOOL Uninstall() throw();

Return ValueReturn Value

RemarksRemarks

CAtlServiceModuleT::Unlock

LONG Unlock() throw();

Return ValueReturn Value

CAtlServiceModuleT::UnregisterAppId

HRESULT UnregisterAppId() throw();

Return ValueReturn Value

CAtlServiceModuleT::WinMain

int WinMain(int nShowCmd) throw();

ParametersParameters

nShowCmd
Specifies how the window is to be shown. This parameter can be one of the values discussed in the WinMain
section.

Returns S_OK on success, or an error HRESULT on failure.

The CAtlServiceModuleT::WinMain method handles both registration and installation, as well as tasks involved in
removing registry entries and uninstalling the module. When the service is run, WinMain calls Start .

Stops and removes the service.

Returns TRUE on success, FALSE on failure.

Stops the service from running and removes it from the Service Control Manager database.

Decrements the service's lock count.

Returns the lock count, which may be useful for diagnostics and debugging.

Removes the service from the registry.

Returns S_OK on success, or an error HRESULT on failure.

This method implements the code required to start the service.

nShowCmd
Specifies how the window is to be shown. This parameter can be one of the values discussed in the WinMain

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-winmain
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-winmain

Return ValueReturn Value

RemarksRemarks

See also

section.

Returns the service's return value.

This method processes the command line (with CAtlServiceModuleT::ParseCommandLine) and then starts the
service (using CAtlServiceModuleT::Start).

CAtlExeModuleT Class
Class Overview

CAtlTemporaryFile Class
3/4/2019 • 7 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CAtlTemporaryFile

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlTemporaryFile::CAtlTemporaryFile The constructor.

CAtlTemporaryFile::~CAtlTemporaryFile The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlTemporaryFile::Close Call this method to close a temporary file and either delete its
contents or store them under the specified file name.

CAtlTemporaryFile::Create Call this method to create a temporary file.

CAtlTemporaryFile::Flush Call this method to force any data remaining in the file buffer
to be written to the temporary file.

CAtlTemporaryFile::GetPosition Call this method to get the current file pointer position.

CAtlTemporaryFile::GetSize Call this method to get the size in bytes of the temporary file.

CAtlTemporaryFile::HandsOff Call this method to disassociate the file from the
CAtlTemporaryFile object.

CAtlTemporaryFile::HandsOn Call this method to open an existing temporary file and
position the pointer at the end of the file.

CAtlTemporaryFile::LockRange Call this method to lock a region in the file to prevent other
processes from accessing it.

This class provides methods for the creation and use of a temporary file.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catltemporaryfile-class.md

CAtlTemporaryFile::Read Call this method to read data from the temporary file starting
at the position indicated by the file pointer.

CAtlTemporaryFile::Seek Call this method to move the file pointer of the temporary file.

CAtlTemporaryFile::SetSize Call this method to set the size of the temporary file.

CAtlTemporaryFile::TempFileName Call this method to return the name of the temporary file.

CAtlTemporaryFile::UnlockRange Call this method to unlock a region of the temporary file.

CAtlTemporaryFile::Write Call this method to write data to the temporary file starting at
the position indicated by the file pointer.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CAtlTemporaryFile::operator HANDLE Returns a handle to the temporary file.

Remarks

Requirements

Example

CAtlTemporaryFile::CAtlTemporaryFile

CAtlTemporaryFile() throw();

RemarksRemarks

ExampleExample

CAtlTemporaryFile makes it easy to create and use a temporary file. The file is automatically named, opened,
closed, and deleted. If the file contents are required after the file is closed, they can be saved to a new file with a
specified name.

Header: atlfile.h

See the example for CAtlTemporaryFile::CAtlTemporaryFile.

The constructor.

A file is not actually opened until a call is made to CAtlTemporaryFile::Create.

// Declare the temporary file object
CAtlTemporaryFile myTempFile;

// Create the temporary file, without caring where it
// will be created, but with both read and write access.
ATLVERIFY (myTempFile.Create(NULL, GENERIC_READ|GENERIC_WRITE) == S_OK);

// Create some data to write to the file

int nBuffer[100];
DWORD bytes_written = 0, bytes_read = 0;
int i;

for (i = 0; i < 100; i++)
 nBuffer[i] = i;

// Write some data to the file
myTempFile.Write(&nBuffer, sizeof(nBuffer), &bytes_written);

// Confirm it was written ok
ATLASSERT(bytes_written == sizeof(nBuffer));

// Flush the data to disk
ATLVERIFY(myTempFile.Flush() == S_OK);

// Reset the file pointer to the beginning of the file
ATLVERIFY(myTempFile.Seek(0, FILE_BEGIN) == S_OK);

// Read in the data
myTempFile.Read(&nBuffer, sizeof(nBuffer), bytes_read);

// Confirm it was read ok
ATLASSERT(bytes_read == sizeof(nBuffer));

// Close the file, making a copy of it at another location
ATLVERIFY(myTempFile.Close(_T("c:\\temp\\mydata.tmp")) == S_OK);

CAtlTemporaryFile::~CAtlTemporaryFile

~CAtlTemporaryFile() throw();

RemarksRemarks

CAtlTemporaryFile::Close

HRESULT Close(LPCTSTR szNewName = NULL) throw();

ParametersParameters

The destructor.

The destructor calls CAtlTemporaryFile::Close.

Call this method to close a temporary file and either delete its contents or store them under the specified file
name.

szNewName
The name for the new file to store the contents of the temporary file in. If this argument is NULL, the contents of
the temporary file are deleted.

Return ValueReturn Value

ExampleExample

CAtlTemporaryFile::Create

HRESULT Create(LPCTSTR pszDir = NULL, DWORD dwDesiredAccess = GENERIC_WRITE) throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

CAtlTemporaryFile::Flush

HRESULT Flush() throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAtlTemporaryFile::GetPosition

HRESULT GetPosition(ULONGLONG& nPos) const throw();

ParametersParameters

Return ValueReturn Value

Returns S_OK on success, or an error HRESULT on failure.

See the example for CAtlTemporaryFile::CAtlTemporaryFile.

Call this method to create a temporary file.

pszDir
The path for the temporary file. If this is NULL, GetTempPath will be called to assign a path.

dwDesiredAccess
The desired access. See dwDesiredAccess in CreateFile in the Windows SDK.

Returns S_OK on success, or an error HRESULT on failure.

See the example for CAtlTemporaryFile::CAtlTemporaryFile.

Call this method to force any data remaining in the file buffer to be written to the temporary file.

Returns S_OK on success, or an error HRESULT on failure.

Similar to CAtlTemporaryFile::HandsOff, except that the file is not closed.

See the example for CAtlTemporaryFile::CAtlTemporaryFile.

Call this method to get the current file pointer position.

nPos
The position in bytes.

Returns S_OK on success, or an error HRESULT on failure.

https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-gettemppatha
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-createfilea

RemarksRemarks

CAtlTemporaryFile::GetSize

HRESULT GetSize(ULONGLONG& nLen) const throw();

ParametersParameters

Return ValueReturn Value

CAtlTemporaryFile::HandsOff

HRESULT HandsOff() throw();

Return ValueReturn Value

RemarksRemarks

CAtlTemporaryFile::HandsOn

HRESULT HandsOn() throw();

Return ValueReturn Value

RemarksRemarks

CAtlTemporaryFile::LockRange

HRESULT LockRange(ULONGLONG nPos, ULONGLONG nCount) throw();

ParametersParameters

To change the file pointer position, use CAtlTemporaryFile::Seek.

Call this method to get the size in bytes of the temporary file.

nLen
The number of bytes in the file.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to disassociate the file from the CAtlTemporaryFile object.

Returns S_OK on success, or an error HRESULT on failure.

HandsOff and CAtlTemporaryFile::HandsOn are used to disassociate the file from the object, and reattach it if
needed. HandsOff will force any data remaining in the file buffer to be written to the temporary file, and then close
the file. If you want to close and delete the file permanently, or if you want to close and retain the contents of the
file with a given name, use CAtlTemporaryFile::Close.

Call this method to open an existing temporary file and position the pointer at the end of the file.

Returns S_OK on success, or an error HRESULT on failure.

CAtlTemporaryFile::HandsOff and HandsOn are used to disassociate the file from the object, and reattach it if
needed.

Call this method to lock a region in the temporary file to prevent other processes from accessing it.

Return ValueReturn Value

RemarksRemarks

CAtlTemporaryFile::operator HANDLE

operator HANDLE() throw();

CAtlTemporaryFile::Read

HRESULT Read(
 LPVOID pBuffer,
 DWORD nBufSize,
 DWORD& nBytesRead) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAtlTemporaryFile::Seek

nPos
The position in the file where the lock should begin.

nCount
The length of the byte range to be locked.

Returns S_OK on success, or an error HRESULT on failure.

Locking bytes in a file prevents access to those bytes by other processes. You can lock more than one region of a
file, but no overlapping regions are allowed. To successfully unlock a region, use CAtlTemporaryFile::UnlockRange,
ensuring the byte range corresponds exactly to the region that was previously locked. LockRange does not merge
adjacent regions; if two locked regions are adjacent, you must unlock each separately.

Returns a handle to the temporary file.

Call this method to read data from the temporary file starting at the position indicated by the file pointer.

pBuffer
Pointer to the buffer that will receive the data read from the file.

nBufSize
The buffer size in bytes.

nBytesRead
The number of bytes read.

Returns S_OK on success, or an error HRESULT on failure.

Calls CAtlFile::Read. To change the position of the file pointer, call CAtlTemporaryFile::Seek.

See the example for CAtlTemporaryFile::CAtlTemporaryFile.

Call this method to move the file pointer of the temporary file.

HRESULT Seek(LONGLONG nOffset, DWORD dwFrom = FILE_CURRENT) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAtlTemporaryFile::SetSize

HRESULT SetSize(ULONGLONG nNewLen) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlTemporaryFile::TempFileName

LPCTSTR TempFileName() throw();

Return ValueReturn Value

RemarksRemarks

CAtlTemporaryFile::UnlockRange

nOffset
The offset, in bytes, from the starting point given by dwFrom.

dwFrom
The starting point (FILE_BEGIN, FILE_CURRENT, or FILE_END).

Returns S_OK on success, or an error HRESULT on failure.

Calls CAtlFile::Seek. To obtain the current file pointer position, call CAtlTemporaryFile::GetPosition.

See the example for CAtlTemporaryFile::CAtlTemporaryFile.

Call this method to set the size of the temporary file.

nNewLen
The new length of the file in bytes.

Returns S_OK on success, or an error HRESULT on failure.

Calls CAtlFile::SetSize. On return, the file pointer is positioned at the end of the file.

Call this method to return the name of temporary file.

Returns the LPCTSTR pointing to the file name.

The file name is generated in CAtlTemporaryFile::CAtlTemporaryFile with a call to the GetTempFileWindows SDK
function. The file extension will always be "TFR" for the temporary file.

Call this method to unlock a region of the temporary file.

https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-gettempfilenamea

HRESULT UnlockRange(ULONGLONG nPos, ULONGLONG nCount) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAtlTemporaryFile::Write

HRESULT Write(
 LPCVOID pBuffer,
 DWORD nBufSize,
 DWORD* pnBytesWritten = NULL) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

See also

nPos
The position in the file where the unlock should begin.

nCount
The length of the byte range to be unlocked.

Returns S_OK on success, or an error HRESULT on failure.

Calls CAtlFile::UnlockRange.

Call this method to write data to the temporary file starting at the position indicated by the file pointer.

pBuffer
The buffer containing the data to be written to the file.

nBufSize
The number of bytes to be transferred from the buffer.

pnBytesWritten
The number of bytes written.

Returns S_OK on success, or an error HRESULT on failure.

Calls CAtlFile::Write.

See the example for CAtlTemporaryFile::CAtlTemporaryFile.

Class Overview
CAtlFile Class

CAtlTransactionManager Class
3/4/2019 • 8 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CAtlTransactionManager;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

~CAtlTransactionManager CAtlTransactionManager destructor.

CAtlTransactionManager CAtlTransactionManager constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

Close Closes one the transaction handle.

Commit Requests that the transaction be committed.

Create Creates the transaction handle.

CreateFile Creates or opens a file, file stream, or directory as a transacted
operation.

DeleteFile Deletes an existing file as a transacted operation.

FindFirstFile Searches a directory for a file or subdirectory as a transacted
operation.

GetFileAttributes Retrieves file system attributes for a specified file or directory
as a transacted operation.

GetFileAttributesEx Retrieves file system attributes for a specified file or directory
as a transacted operation.

GetHandle Returns the transaction handle.

CAtlTransactionManager class provides a wrapper to Kernel Transaction Manager (KTM) functions.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catltransactionmanager-class.md

IsFallback Determines whether the fallback calls are enabled.

MoveFile Moves an existing file or a directory, including its children, as a
transacted operation.

RegCreateKeyEx Creates the specified registry key and associates it with a
transaction. If the key already exists, the function opens it.

RegDeleteKey Deletes a subkey and its values from the specified platform-
specific view of the registry as a transacted operation.

RegOpenKeyEx Opens the specified registry key and associates it with a
transaction.

Rollback Requests that the transaction be rolled back.

SetFileAttributes Sets the attributes for a file or directory as a transacted
operation.

NAME DESCRIPTION

Protected Data MembersProtected Data Members

NAME DESCRIPTION

m_bFallback TRUE if the fallback is supported; FALSE otherwise.

m_hTransaction The transaction handle.

Remarks

Inheritance Hierarchy

Requirements

~CAtlTransactionManager

virtual ~CAtlTransactionManager();

RemarksRemarks

CAtlTransactionManager

ATL::CAtlTransactionManager

Header: atltransactionmanager.h

CAtlTransactionManager destructor.

In normal processing, the transaction is automatically committed and closed. If the destructor is called during an
exception unwind, the transaction is rolled back and closed.

CAtlTransactionManager constructor.

CAtlTransactionManager(BOOL bFallback = TRUE, BOOL bAutoCreateTransaction = TRUE);

ParametersParameters

RemarksRemarks

Close

inline BOOL Close();

Return ValueReturn Value

RemarksRemarks

Commit

inline BOOL Commit();

Return ValueReturn Value

RemarksRemarks

Create

inline BOOL Create();

Return ValueReturn Value

RemarksRemarks

CreateFile

bFallback
TRUE indicates support fallback. If transacted function fails, the class automatically calls the "non-transacted"
function. FALSE indicates no "fallback" calls.

bAutoCreateTransaction
TRUE indicates that the transaction handler is created automatically in the constructor. FALSE indicates that it is
not.

Closes the transaction handle.

TRUE if successful; otherwise FALSE.

This wrapper calls the CloseHandle function. The method is automatically called in the destructor.

Requests that the transaction be committed.

TRUE if successful; otherwise FALSE.

This wrapper calls the CommitTransaction function. The method is automatically called in the destructor.

Creates the transaction handle.

TRUE if successful; otherwise FALSE.

This wrapper calls the CreateTransaction function. Check it for

inline HANDLE CreateFile(
 LPCTSTR lpFileName,
 DWORD dwDesiredAccess,
 DWORD dwShareMode,
 LPSECURITY_ATTRIBUTES lpSecurityAttributes,
 DWORD dwCreationDisposition,
 DWORD dwFlagsAndAttributes,
 HANDLE hTemplateFile);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

DeleteFile

inline BOOL DeleteFile(LPCTSTR lpFileName);

ParametersParameters

Creates or opens a file, file stream, or directory as a transacted operation.

lpFileName
The name of an object to be created or opened.

dwDesiredAccess
The access to the object, which can be summarized as read, write, both, or neither (zero). The most commonly used
values are GENERIC_READ, GENERIC_WRITE, or both: GENERIC_READ | GENERIC_WRITE.

dwShareMode
The sharing mode of an object, which can be read, write, both, delete, all of these, or none: 0,
FILE_SHARE_DELETE, FILE_SHARE_READ, FILE_SHARE_WRITE.

lpSecurityAttributes
A pointer to a SECURITY_ATTRIBUTES structure that contains an optional security descriptor and also determines
whether or not the returned handle can be inherited by child processes. The parameter can be NULL.

dwCreationDisposition
An action to take on files that exist and do not exist. This parameter must be one of the following values, which
cannot be combined: CREATE_ALWAYS, CREATE_NEW, OPEN_ALWAYS, OPEN_EXISTING, or
TRUNCATE_EXISTING.

dwFlagsAndAttributes
The file attributes and flags. This parameter can include any combination of the available file attributes
(FILE_ATTRIBUTE_*). All other file attributes override FILE_ATTRIBUTE_NORMAL. This parameter can also
contain combinations of flags (FILE_FLAG_*) for control of buffering behavior, access modes, and other special-
purpose flags. These combine with any FILE_ATTRIBUTE_* values.

hTemplateFile
A valid handle to a template file with the GENERIC_READ access right. The template file supplies file attributes
and extended attributes for the file that is being created. This parameter can be NULL.

Returns a handle that can be used to access the object.

This wrapper calls the CreateFileTransacted function.

Deletes an existing file as a transacted operation.

lpFileName

RemarksRemarks

FindFirstFile

inline HANDLE FindFirstFile(
 LPCTSTR lpFileName,
 WIN32_FIND_DATA* pNextInfo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

GetFileAttributes

inline DWORD GetFileAttributes(LPCTSTR lpFileName);

ParametersParameters

RemarksRemarks

GetFileAttributesEx

inline BOOL GetFileAttributesEx(
 LPCTSTR lpFileName,
 GET_FILEEX_INFO_LEVELS fInfoLevelId,
 LPVOID lpFileInformation);

ParametersParameters

The name of the file to be deleted.

This wrapper calls the DeleteFileTransacted function.

Searches a directory for a file or subdirectory as a transacted operation.

lpFileName
The directory or path, and the file name to search for. This parameter can include wildcard characters, such as an
asterisk (*) or a question mark ().

pNextInfo
A pointer to the WIN32_FIND_DATA structure that receives information about a found file or subdirectory.

If the function succeeds, the return value is a search handle used in a subsequent call to FindNextFile or
FindClose . If the function fails or fails to locate files from the search string in the lpFileName parameter, the return

value is INVALID_HANDLE_VALUE.

This wrapper calls the FindFirstFileTransacted function.

Retrieves file system attributes for a specified file or directory as a transacted operation.

lpFileName
The name of the file or directory.

This wrapper calls the GetFileAttributesTransacted function.

Retrieves file system attributes for a specified file or directory as a transacted operation.

lpFileName

RemarksRemarks

GetHandle

HANDLE GetHandle() const;

Return ValueReturn Value

RemarksRemarks

IsFallback

BOOL IsFallback() const;

Return ValueReturn Value

RemarksRemarks

m_bFallback

BOOL m_bFallback;

RemarksRemarks

m_hTransaction

HANDLE m_hTransaction;

RemarksRemarks

MoveFile

The name of the file or directory.

fInfoLevelId
The level of attribute information to retrieve.

lpFileInformation
A pointer to a buffer that receives the attribute information. The type of attribute information that is stored into
this buffer is determined by the value of fInfoLevelId. If the fInfoLevelId parameter is GetFileExInfoStandard then
this parameter points to a WIN32_FILE_ATTRIBUTE_DATA structure.

This wrapper calls the GetFileAttributesTransacted function.

Returns the transaction handle.

Returns the transaction handle for a class. Returns NULL if the CAtlTransactionManager is not attached to a handle.

Determines whether the fallback calls are enabled.

Returns TRUE is the class supports fallback calls. FALSE otherwise.

TRUE if the fallback is supported; FALSE otherwise.

The transaction handle.

inline BOOL MoveFile(LPCTSTR lpOldFileName, LPCTSTR lpNewFileName);

ParametersParameters

RemarksRemarks

RegCreateKeyEx

inline LSTATUS RegCreateKeyEx(
 HKEY hKey,
 LPCTSTR lpSubKey,
 DWORD dwReserved,
 LPTSTR lpClass,
 DWORD dwOptions,
 REGSAM samDesired,
 CONST LPSECURITY_ATTRIBUTES lpSecurityAttributes,
 PHKEY phkResult,
 LPDWORD lpdwDisposition);

ParametersParameters

Moves an existing file or a directory, including its children, as a transacted operation.

lpOldFileName
The current name of the existing file or directory on the local computer.

lpNewFileName
The new name for the file or directory. This name must not already exist. A new file may be on a different file
system or drive. A new directory must be on the same drive.

This wrapper calls the MoveFileTransacted function.

Creates the specified registry key and associates it with a transaction. If the key already exists, the function opens it.

hKey
A handle to an open registry key.

lpSubKey
The name of a subkey that this function opens or creates.

dwReserved
This parameter is reserved and must be zero.

lpClass
The user-defined class of this key. This parameter may be ignored. This parameter can be NULL.

dwOptions
This parameter can be one of the following values: REG_OPTION_BACKUP_RESTORE,
REG_OPTION_NON_VOLATILE, or REG_OPTION_VOLATILE.

samDesired
A mask that specifies the access rights for the key.

lpSecurityAttributes
Pointer to a SECURITY_ATTRIBUTES structure that determines whether the returned handle can be inherited by
child processes. If lpSecurityAttributes is NULL, the handle cannot be inherited.

phkResult
A pointer to a variable that receives a handle to the opened or created key. If the key is not one of the predefined
registry keys, call the RegCloseKey function after you have finished using the handle.

Return ValueReturn Value

RemarksRemarks

RegDeleteKey

inline LSTATUS RegDeleteKeyEx(HKEY hKey, LPCTSTR lpSubKey);

ParametersParameters

PARAMETER DESCRIPTION

hKey A handle to an open registry key.

lpSubKey The name of the key to be deleted.

Return ValueReturn Value

RemarksRemarks

RegOpenKeyEx

inline LSTATUS RegOpenKeyEx(
 HKEY hKey,
 LPCTSTR lpSubKey,
 DWORD ulOptions,
 REGSAM samDesired,
 PHKEY phkResult);

ParametersParameters

lpdwDisposition
A pointer to a variable that receives one of the following disposition values: REG_CREATED_NEW_KEY or
REG_OPENED_EXISTING_KEY.

If the function succeeds, the return value is ERROR_SUCCESS. If the function fails, the return value is a nonzero
error code defined in Winerror.h.

This wrapper calls the RegCreateKeyTransacted function.

Deletes a subkey and its values from the specified platform-specific view of the registry as a transacted operation.

If the function succeeds, the return value is ERROR_SUCCESS. If the function fails, the return value is a nonzero
error code defined in Winerror.h.

This wrapper calls the RegDeleteKeyTransacted function.

Opens the specified registry key and associates it with a transaction.

hKey
A handle to an open registry key.

lpSubKey
The name of the registry subkey to be opened.

ulOptions
This parameter is reserved and must be zero.

samDesired
A mask that specifies the access rights for the key.

Return ValueReturn Value

RemarksRemarks

Rollback

inline BOOL Rollback();

Return ValueReturn Value

RemarksRemarks

SetFileAttributes

inline BOOL SetFileAttributes(LPCTSTR lpFileName, DWORD dwAttributes);

ParametersParameters

RemarksRemarks

See also

phkResult
A pointer to a variable that receives a handle to the opened or created key. If the key is not one of the predefined
registry keys, call the RegCloseKey function after you have finished using the handle.

If the function succeeds, the return value is ERROR_SUCCESS. If the function fails, the return value is a nonzero
error code defined in Winerror.h

This wrapper calls the RegOpenKeyTransacted function.

Requests that the transaction be rolled back.

TRUE if successful; otherwise FALSE.

This wrapper calls the RollbackTransaction function.

Sets the attributes for a file or directory as a transacted operation.

lpFileName
The name of the file or directory.

dwAttributes
The file attributes to set for the file. For more information, see SetFileAttributesTransacted.

This wrapper calls the SetFileAttributesTransacted function.

ATL COM Desktop Components

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-setfileattributestransacteda

CAtlWinModule Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CAtlWinModule : public _ATL_WIN_MODULE

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAtlWinModule::CAtlWinModule The constructor.

CAtlWinModule::~CAtlWinModule The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAtlWinModule::AddCreateWndData Adds a data object.

CAtlWinModule::ExtractCreateWndData Returns a pointer to the window module data object.

Remarks

Inheritance Hierarchy

Requirements

CAtlWinModule::AddCreateWndData

This class provides support for ATL windowing components.

This class and its members cannot be used in applications that execute in the Windows Runtime.

This class provides support for all ATL classes which require windowing features.

_ATL_WIN_MODULE

CAtlWinModule

Header: atlbase.h

This method initializes and adds an _AtlCreateWndData structure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/catlwinmodule-class.md

void AddCreateWndData(_AtlCreateWndData* pData, void* pObject);

ParametersParameters

RemarksRemarks

CAtlWinModule::CAtlWinModule

CAtlWinModule();

RemarksRemarks

CAtlWinModule::~CAtlWinModule

~CAtlWinModule();

RemarksRemarks

CAtlWinModule::ExtractCreateWndData

void* ExtractCreateWndData();

Return ValueReturn Value

See also

pData
Pointer to the _AtlCreateWndData structure to be initialized and added to the current module.

pObject
Pointer to an object's this pointer.

This method calls AtlWinModuleAddCreateWndData which initializes an _AtlCreateWndData structure. This
structure will store the this pointer, used to obtain the class instance in window procedures.

The constructor.

If initialization fails, an EXCEPTION_NONCONTINUABLE exception is raised.

The destructor.

Frees all allocated resources.

This method returns a pointer to an _AtlCreateWndData structure.

Returns a pointer to the _AtlCreateWndData structure previously added with CAtlWinModule::AddCreateWndData,
or NULL if no object is available.

_ATL_WIN_MODULE
Class Overview
Module Classes

CAutoPtr Class
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <typename T>
class CAutoPtr

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAutoPtr::CAutoPtr The constructor.

CAutoPtr::~CAutoPtr The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAutoPtr::Attach Call this method to take ownership of an existing pointer.

CAutoPtr::Detach Call this method to release ownership of a pointer.

CAutoPtr::Free Call this method to delete an object pointed to by a
CAutoPtr .

Public OperatorsPublic Operators

NAME DESCRIPTION

CAutoPtr::operator T* The cast operator.

CAutoPtr::operator = The assignment operator.

CAutoPtr::operator -> The pointer-to-member operator.

This class represents a smart pointer object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
The pointer type.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cautoptr-class.md

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAutoPtr::m_p The pointer data member variable.

Remarks

Requirements

Example

This class provides methods for creating and managing a smart pointer, which will help protect against memory
leaks by automatically freeing resources when it falls out of scope.

Further, CAutoPtr 's copy constructor and assignment operator transfer ownership of the pointer, copying the
source pointer to the destination pointer and setting the source pointer to NULL. It is therefore impossible to
have two CAutoPtr objects each storing the same pointer, and this reduces the possibility of deleting the same
pointer twice.

CAutoPtr also simplifies the creation of collections of pointers. Instead of deriving a collection class and
overriding the destructor, it's simpler to make a collection of CAutoPtr objects. When the collection is deleted, the
CAutoPtr objects will go out of scope and automatically delete themselves.

CHeapPtr and variants work in the same way as CAutoPtr , except that they allocate and free memory using
different heap functions instead of the C++ new and delete operators. CAutoVectorPtr is similar to CAutoPtr ,
the only difference being that it uses vector new[] and vector delete[] to allocate and free memory.

See also CAutoPtrArray and CAutoPtrList when arrays or lists of smart pointers are required.

Header: atlbase.h

// A simple class for demonstration purposes

class MyClass
{
 int iA;
 int iB;
public:
 MyClass(int a, int b);
 void Test();
};

MyClass::MyClass(int a, int b)
{
 iA = a;
 iB = b;
}

void MyClass::Test()
{
 ATLASSERT(iA == iB);
}

// A simple function

void MyFunction(MyClass* c)
{
 c->Test();
}

int UseMyClass()
{
 // Create an object of MyClass.
 MyClass *pMyC = new MyClass(1, 1);

 // Create a CAutoPtr object and have it take
 // over the pMyC pointer by calling Attach.
 CAutoPtr<MyClass> apMyC;
 apMyC.Attach(pMyC);

 // The overloaded -> operator allows the
 // CAutoPtr object to be used in place of the pointer.
 apMyC->Test();

 // Assign a second CAutoPtr, using the = operator.
 CAutoPtr<MyClass> apMyC2;
 apMyC2 = apMyC;

 // The casting operator allows the
 // object to be used in place of the pointer.
 MyFunction(pMyC);
 MyFunction(apMyC2);

 // Detach breaks the association, so after this
 // call, pMyC is controlled only by apMyC.
 apMyC2.Detach();

 // CAutoPtr destroys any object it controls when it
 // goes out of scope, so apMyC destroys the object
 // pointed to by pMyC here.
 return 0;
}

CAutoPtr::Attach
Call this method to take ownership of an existing pointer.

void Attach(T* p) throw();

ParametersParameters

RemarksRemarks

ExampleExample

CAutoPtr::CAutoPtr

CAutoPtr() throw();
explicit CAutoPtr(T* p) throw();

template<typename TSrc>
CAutoPtr(CAutoPtr<TSrc>& p) throw();

template<>
CAutoPtr(CAutoPtr<T>& p) throw();

ParametersParameters

RemarksRemarks

ExampleExample

CAutoPtr::~CAutoPtr

~CAutoPtr() throw();

RemarksRemarks

CAutoPtr::Detach

p
The CAutoPtr object will take ownership of this pointer.

When a CAutoPtr object takes ownership of a pointer, it will automatically delete the pointer and any allocated
data when it goes out of scope. If CAutoPtr::Detach is called, the programmer is again given responsibility for
freeing any allocated resources.

In debug builds, an assertion failure will occur if the CAutoPtr::m_p data member currently points to an existing
value; that is, it is not equal to NULL.

See the example in the CAutoPtr Overview.

The constructor.

p
An existing pointer.

TSrc
The type being managed by another CAutoPtr , used to initialize the current object.

The CAutoPtr object can be created using an existing pointer, in which case it transfers ownership of the pointer.

See the example in the CAutoPtr Overview.

The destructor.

Frees any allocated resources. Calls CAutoPtr::Free.

T* Detach() throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAutoPtr::Free

void Free() throw();

RemarksRemarks

CAutoPtr::m_p

T* m_p;

RemarksRemarks

CAutoPtr::operator =

template<>
CAutoPtr<T>& operator= (CAutoPtr<T>& p);

template<typename TSrc>
CAutoPtr<T>& operator= (CAutoPtr<TSrc>& p);

ParametersParameters

Return ValueReturn Value

Call this method to release ownership of a pointer.

Returns a copy of the pointer.

Releases ownership of a pointer, sets the CAutoPtr::m_p data member variable to NULL, and returns a copy of
the pointer. After calling Detach , it is up to the programmer to free any allocated resources over which the
CAutoPtr object may have previously assumed reponsibility.

See the example in the CAutoPtr Overview.

Call this method to delete an object pointed to by a CAutoPtr .

The object pointed to by the CAutoPtr is freed, and the CAutoPtr::m_p data member variable is set to NULL.

The pointer data member variable.

This member variable holds the pointer information.

The assignment operator.

p
A pointer.

TSrc
A class type.

Returns a reference to a CAutoPtr< T >.

RemarksRemarks

ExampleExample

CAutoPtr::operator ->

T* operator->() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAutoPtr::operator T*

operator T* () const throw();

Return ValueReturn Value

ExampleExample

See also

The assignment operator detaches the CAutoPtr object from any current pointer and attaches the new pointer, p,
in its place.

See the example in the CAutoPtr Overview.

The pointer-to-member operator.

Returns the value of the CAutoPtr::m_p data member variable.

Use this operator to call a method in a class pointed to by the CAutoPtr object. In debug builds, an assertion
failure will occur if the CAutoPtr points to NULL.

See the example in the CAutoPtr Overview.

The cast operator.

Returns a pointer to the object data type defined in the class template.

See the example in the CAutoPtr Overview.

CHeapPtr Class
CAutoVectorPtr Class
Class Overview

CAutoPtrArray Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <typename E>
class CAutoPtrArray : public CAtlArray<
 ATL::CAutoPtr<E>,
 CAutoPtrElementTraits<E>>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAutoPtrArray::CAutoPtrArray The constructor.

Remarks

Inheritance Hierarchy

Requirements

CAutoPtrArray::CAutoPtrArray

This class provides methods useful when constructing an array of smart pointers.

This class and its members cannot be used in applications that execute in the Windows Runtime.

E
The pointer type.

This class provides a constructor and derives methods from CAtlArray and CAutoPtrElementTraits to aid the
creation of a collection class object storing smart pointers.

For more information, see ATL Collection Classes.

CAtlArray

CAutoPtrArray

Header: atlcoll.h

The constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cautoptrarray-class.md

CAutoPtrArray() throw();

RemarksRemarks

See also

Initializes the smart pointer array.

CAtlArray Class
CAutoPtrElementTraits Class
CAutoPtrList Class
Class Overview

CAutoPtrElementTraits Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<typename T>
class CAutoPtrElementTraits
 : public CDefaultElementTraits<ATL::CAutoPtr<T>>

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CAutoPtrElementTraits::INARGTYPE The data type to use for adding elements to the collection
class object.

CAutoPtrElementTraits::OUTARGTYPE The data type to use for retrieving elements from the
collection class object.

Remarks

Inheritance Hierarchy

This class provides methods, static functions, and typedefs useful when creating collections of smart pointers.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
The pointer type.

This class provides methods, static functions, and typedefs for aiding the creation of collection class objects
containing smart pointers. The classes CAutoPtrArray and CAutoPtrList derive from CAutoPtrElementTraits . If
building a collection of smart pointers that requires vector new and delete operators, use
CAutoVectorPtrElementTraits instead.

CDefaultCompareTraits

CDefaultHashTraits

CElementTraitsBase

CDefaultElementTraits

CAutoPtrElementTraits

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cautoptrelementtraits-class.md

Requirements

CAutoPtrElementTraits::INARGTYPE

typedef CAutoPtr<T>& INARGTYPE;

CAutoPtrElementTraits::OUTARGTYPE

typedef T *& OUTARGTYPE;

See also

Header: atlcoll.h

The data type to use for adding elements to the collection class object.

The data type to use for retrieving elements from the collection class object.

CDefaultElementTraits Class
Class Overview

CAutoPtrList Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<typename E>
class CAutoPtrList :
 public CAtlList<ATL::CAutoPtr<E>, CAutoPtrElementTraits<E>>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAutoPtrList::CAutoPtrList The constructor.

Remarks

Inheritance Hierarchy

Requirements

CAutoPtrList::CAutoPtrList

This class provides methods useful when constructing a list of smart pointers.

This class and its members cannot be used in applications that execute in the Windows Runtime.

E
The pointer type.

This class provides a constructor and derives methods from CAtlList and CAutoPtrElementTraits to aid the
creation of a list object storing smart pointers. The class CAutoPtrArray provides a similar function for an array
object.

For more information, see ATL Collection Classes.

CAtlList

CAutoPtrList

Header: atlcoll.h

The constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cautoptrlist-class.md

CAutoPtrList(UINT nBlockSize = 10) throw();

ParametersParameters

RemarksRemarks

See also

nBlockSize
The block size, with a default of 10.

The block size is a measure of the amount of memory allocated when a new element is required. Larger block
sizes reduce calls to memory allocation routines, but use more resources.

CAtlList Class
CAutoPtrElementTraits Class
Class Overview

CAutoRevertImpersonation Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CAutoRevertImpersonation

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAutoRevertImpersonation::CAutoRevertImpersonation Constructs an CAutoRevertImpersonation object

CAutoRevertImpersonation::~CAutoRevertImpersonation Destroys the object and reverts access token impersonation.

Public MethodsPublic Methods

NAME DESCRIPTION

CAutoRevertImpersonation::Attach Automates the impersonation reversion of an access token.

CAutoRevertImpersonation::Detach Cancels the automatic impersonation reversion.

CAutoRevertImpersonation::GetAccessToken Retrieves the access token current associated with this object.

Remarks

Requirements

CAutoRevertImpersonation::Attach

This class reverts CAccessToken objects to a nonimpersonating state when it goes out of scope.

An access token is an object that describes the security context of a process or thread and is allocated to each user
logged onto a Windows NT or Windows 2000 system. These access tokens can be represented with the
CAccessToken class.

It is sometimes necessary to impersonate access tokens. This class is provided as a convenience, but it does not
perform the impersonation of access tokens; it only performs the automatic reversion to a nonimpersonated
state. This is because token access impersonation can be performed several different ways.

For an introduction to the access control model in Windows, see Access Control in the Windows SDK.

Header: atlsecurity.h

Automates the impersonation reversion of an access token.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cautorevertimpersonation-class.md
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-tokens
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control

void Attach(const CAccessToken* pAT) throw();

ParametersParameters

RemarksRemarks

CAutoRevertImpersonation::CAutoRevertImpersonation

CAutoRevertImpersonation(const CAccessToken* pAT) throw();

ParametersParameters

RemarksRemarks

CAutoRevertImpersonation::~CAutoRevertImpersonation

~CAutoRevertImpersonation() throw();

RemarksRemarks

CAutoRevertImpersonation::Detach

const CAccessToken* Detach() throw();

Return ValueReturn Value

RemarksRemarks

pAT
The address of the CAccessToken object to be reverted automatically

This method should only be used if the CAutoRevertImpersonation object was created with a NULL
CAccessToken pointer, or if Detach was called previously. For simple cases, it is not necessary to use this method.

Constructs a CAutoRevertImpersonation object.

pAT
The address of the CAccessToken object to be reverted automatically.

The actual impersonation of the access token should be performed separately from and preferably before the
creation of a CAutoRevertImpersonation object. This impersonation will be reverted automatically when the
CAutoRevertImpersonation object goes out of scope.

Destroys the object and reverts access token impersonation.

Reverts any impersonation currently in effect for the CAccessToken object provided either at construction or
through the Attach method. If no CAccessToken is associated, the destructor has no effect.

Cancels the automatic impersonation reversion.

The address of the previously associated CAccessToken, or NULL if no association existed.

Calling Detach prevents the CAutoRevertImpersonation object from reverting any impersonation currently in
effect for the CAccessToken object associated with this object. CAutoRevertImpersonation can then be destroyed
with no effect or reassociated to the same or another CAccessToken object using Attach.

 CAutoRevertImpersonation::GetAccessToken

const CAccessToken* GetAccessToken() throw();

Return ValueReturn Value

RemarksRemarks

See also

Retrieves the access token current associated with this object.

The address of the previously associated CAccessToken, or NULL if no association existed.

If this method is called for the purposes that include the reversion of an impersonation of the CAccessToken

object, the Detach method should be used instead.

ATLSecurity Sample
Access Tokens
Class Overview

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-tokens

CAutoVectorPtr Class
3/4/2019 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<typename T>
class CAutoVectorPtr

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAutoVectorPtr::CAutoVectorPtr The constructor.

CAutoVectorPtr::~CAutoVectorPtr The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CAutoVectorPtr::Allocate Call this method to allocate the memory required by the
array of objects pointed to by CAutoVectorPtr .

CAutoVectorPtr::Attach Call this method to take ownership of an existing pointer.

CAutoVectorPtr::Detach Call this method to release ownership of a pointer.

CAutoVectorPtr::Free Call this method to delete an object pointed to by a
CAutoVectorPtr .

Public OperatorsPublic Operators

NAME DESCRIPTION

CAutoVectorPtr::operator T * The cast operator.

CAutoVectorPtr::operator = The assignment operator.

This class represents a smart pointer object using vector new and delete operators.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
The pointer type.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cautovectorptr-class.md

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAutoVectorPtr::m_p The pointer data member variable.

Remarks

Requirements

CAutoVectorPtr::Allocate

bool Allocate(size_t nElements) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAutoVectorPtr::Attach

void Attach(T* p) throw();

ParametersParameters

RemarksRemarks

This class provides methods for creating and managing a smart pointer, which will help protect against memory
leaks by automatically freeing resources when it falls out of scope. CAutoVectorPtr is similar to CAutoPtr , the only
difference being that CAutoVectorPtr uses vector new[] and vector delete[] to allocate and free memory instead of
the C++ new and delete operators. See CAutoVectorPtrElementTraits if collection classes of CAutoVectorPtr are
required.

See CAutoPtr for an example of using a smart pointer class.

Header: atlbase.h

Call this method to allocate the memory required by the array of objects pointed to by CAutoVectorPtr .

nElements
The number of elements in the array.

Returns true if the memory is successfully allocated, false on failure.

In debug builds, an assertion failure will occur if the CAutoVectorPtr::m_p member variable currently points to an
existing value; that is, it is not equal to NULL.

Call this method to take ownership of an existing pointer.

p
The CAutoVectorPtr object will take ownership of this pointer.

When a CAutoVectorPtr object takes ownership of a pointer, it will automatically delete the pointer and any
allocated data when it goes out of scope. If CAutoVectorPtr::Detach is called, the programmer is again given
responsibility for freeing any allocated resources.

In debug builds, an assertion failure will occur if the CAutoVectorPtr::m_p member variable currently points to an

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/new-operators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/new-operators

CAutoVectorPtr::CAutoVectorPtr

CAutoVectorPtr() throw();
explicit CAutoVectorPtr(T* p) throw();
CAutoVectorPtr(CAutoVectorPtr<T>& p) throw();

ParametersParameters

RemarksRemarks

CAutoVectorPtr::~CAutoVectorPtr

~CAutoVectorPtr() throw();

RemarksRemarks

CAutoVectorPtr::Detach

T* Detach() throw();

Return ValueReturn Value

RemarksRemarks

CAutoVectorPtr::Free

void Free() throw();

RemarksRemarks

existing value; that is, it is not equal to NULL.

The constructor.

p
An existing pointer.

The CAutoVectorPtr object can be created using an existing pointer, in which case it transfers ownership of the
pointer.

The destructor.

Frees any allocated resources. Calls CAutoVectorPtr::Free.

Call this method to release ownership of a pointer.

Returns a copy of the pointer.

Releases ownership of a pointer, sets the CAutoVectorPtr::m_p member variable to NULL, and returns a copy of
the pointer. After calling Detach , it is up to the programmer to free any allocated resources over which the
CAutoVectorPtr object may have previously assumed responsibility.

Call this method to delete an object pointed to by a CAutoVectorPtr .

The object pointed to by the CAutoVectorPtr is freed, and the CAutoVectorPtr::m_p member variable is set to
NULL.

CAutoVectorPtr::m_p

T* m_p;

RemarksRemarks

CAutoVectorPtr::operator =

CAutoVectorPtr<T>& operator= (CAutoVectorPtr<T>& p) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAutoVectorPtr::operator T *

operator T*() const throw();

RemarksRemarks

See also

The pointer data member variable.

This member variable holds the pointer information.

The assignment operator.

p
A pointer.

Returns a reference to a CAutoVectorPtr< T >.

The assignment operator detaches the CAutoVectorPtr object from any current pointer and attaches the new
pointer, p, in its place.

The cast operator.

Returns a pointer to the object data type defined in the class template.

CAutoPtr Class
Class Overview

CAutoVectorPtrElementTraits Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <typename T>
class CAutoVectorPtrElementTraits :
 public CDefaultElementTraits<ATL::CAutoVectorPtr<T>>

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CAutoVectorPtrElementTraits::INARGTYPE The data type to use for adding elements to the collection
class object.

CAutoVectorPtrElementTraits::OUTARGTYPE The data type to use for retrieving elements from the
collection class object.

Remarks

Inheritance Hierarchy

Requirements

This class provides methods, static functions, and typedefs useful when creating collections of smart pointers
using vector new and delete operators.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
The pointer type.

This class provides methods, static functions, and typedefs for aiding the creation of collection class objects
containing smart pointers. Unlike CAutoPtrElementTraits, this class uses vector new and delete operators.

CDefaultCompareTraits

CDefaultHashTraits

CElementTraitsBase

CDefaultElementTraits

CAutoVectorPtrElementTraits

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cautovectorptrelementtraits-class.md

CAutoVectorPtrElementTraits::INARGTYPE

typedef CAutoVectorPtr<T>& INARGTYPE;

CAutoVectorPtrElementTraits::OUTARGTYPE

typedef T*& OUTARGTYPE;

See also

Header: atlcoll.h

The data type to use for adding elements to the collection class object.

The data type to use for retrieving elements from the collection class object.

CDefaultElementTraits Class
CAutoVectorPtr Class
Class Overview

CAxDialogImpl Class
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T, class TBase = CWindow>
class ATL_NO_VTABLE CAxDialogImpl : public CDialogImplBaseT<TBase>

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CAxDialogImpl::AdviseSinkMap Call this method to advise or unadvise all entries in the
object's sink map event map.

CAxDialogImpl::Create Call this method to create a modeless dialog box.

CAxDialogImpl::DestroyWindow Call this method to destroy a modeless dialog box.

CAxDialogImpl::DoModal Call this method to create a modal dialog box.

CAxDialogImpl::EndDialog Call this method to destroy a modal dialog box.

CAxDialogImpl::GetDialogProc Call this method to get a pointer to the DialogProc

callback function.

CAxDialogImpl::GetIDD Call this method to get the dialog template resource ID

CAxDialogImpl::IsDialogMessage Call this method to determine whether a message is intended
for this dialog box and, if it is, process the message.

Protected Data MembersProtected Data Members

This class implements a dialog box (modal or modeless) that hosts ActiveX controls.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from CAxDialogImpl .

TBase
The base window class for CDialogImplBaseT .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/caxdialogimpl-class.md

NAME DESCRIPTION

CAxDialogImpl::m_bModal A variable that exists only in debug builds and is set to true if
the dialog box is modal.

Remarks

enum { IDD = IDD_MYDLG };

Inheritance Hierarchy

Requirements

CAxDialogImpl::AdviseSinkMap

HRESULT AdviseSinkMap(bool bAdvise);

ParametersParameters

CAxDialogImpl allows you to create a modal or modeless dialog box. CAxDialogImpl provides the dialog box
procedure, which uses the default message map to direct messages to the appropriate handlers.

CAxDialogImpl derives from CDialogImplBaseT , which in turn derives from TBase (by default, CWindow) and
CMessageMap .

Your class must define an IDD member that specifies the dialog template resource ID. For example, adding an
ATL Dialog object using the Add Class dialog box automatically adds the following line to your class:

where MyDialog is the Short name entered in the ATL Dialog Wizard.

See Implementing a Dialog Box for more information.

Note that an ActiveX control on a modal dialog box created with CAxDialogImpl will not support accelerator
keys. To support accelerator keys on a dialog box created with CAxDialogImpl , create a modeless dialog box and,
using your own message loop, use CAxDialogImpl::IsDialogMessage after getting a message from the queue to
handle an accelerator key.

For more information on CAxDialogImpl , see ATL Control Containment FAQ.

CMessageMap

TBase

CWindowImplRoot

CDialogImplBaseT

CAxDialogImpl

Header: atlwin.h

Call this method to advise or unadvise all entries in the object's sink map event map.

bAdvise
Set to true if all sink entries are to be advised; false if all sink entries are to be unadvised.

Return ValueReturn Value

CAxDialogImpl::Create

HWND Create(HWND hWndParent, LPARAM dwInitParam = NULL);
HWND Create(HWND hWndParent, RECT&, LPARAM dwInitParam = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAxDialogImpl::DestroyWindow

BOOL DestroyWindow();

Return ValueReturn Value

RemarksRemarks

CAxDialogImpl::DoModal

INT_PTR DoModal(
 HWND hWndParent = ::GetActiveWindow(),
 LPARAM dwInitParam = NULL);

ParametersParameters

Returns S_OK on success, or an error HRESULT on failure.

Call this method to create a modeless dialog box.

hWndParent
[in] The handle to the owner window.

dwInitParam
[in] Specifies the value to pass to the dialog box in the lParam parameter of the WM_INITDIALOG message.

RECT&
This parameter is not used. This parameter is passed in by CComControl .

The handle to the newly created dialog box.

This dialog box is automatically attached to the CAxDialogImpl object. To create a modal dialog box, call
DoModal.

The second override is provided only so dialog boxes can be used with CComControl.

Call this method to destroy a modeless dialog box.

TRUE if the window is successfully destroyed; otherwise FALSE.

Do not call DestroyWindow to destroy a modal dialog box. Call EndDialog instead.

Call this method to create a modal dialog box.

hWndParent
[in] The handle to the owner window. The default value is the return value of the GetActiveWindow Win32
function.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getactivewindow

Return ValueReturn Value

RemarksRemarks

CAxDialogImpl::EndDialog

BOOL EndDialog(int nRetCode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CAxDialogImpl::GetDialogProc

virtual DLGPROC GetDialogProc();

Return ValueReturn Value

RemarksRemarks

CAxDialogImpl::GetIDD

int GetIDD();

Return ValueReturn Value

dwInitParam
[in] Specifies the value to pass to the dialog box in the lParam parameter of the WM_INITDIALOG message.

If successful, the value of the nRetCode parameter specified in the call to EndDialog; otherwise, -1.

This dialog box is automatically attached to the CAxDialogImpl object.

To create a modeless dialog box, call Create.

Call this method to destroy a modal dialog box.

nRetCode
[in] The value to be returned by DoModal.

TRUE if the dialog box is destroyed; otherwise, FALSE.

EndDialog must be called through the dialog box procedure. After the dialog box is destroyed, Windows uses the
value of nRetCode as the return value for DoModal , which created the dialog box.

Do not call EndDialog to destroy a modeless dialog box. Call DestroyWindow instead.

Call this method to get a pointer to the DialogProc callback function.

Returns a pointer to the DialogProc callback function.

The DialogProc function is an application-defined callback function.

Call this method to get the dialog template resource ID.

CAxDialogImpl::IsDialogMessage

BOOL IsDialogMessage(LPMSG pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAxDialogImpl::m_bModal

bool m_bModal;

See also

Returns the dialog template resource ID.

Call this method to determine whether a message is intended for this dialog box and, if it is, process the message.

pMsg
Pointer to a MSG structure that contains the message to be checked.

Returns TRUE if the message has been processed, FALSE otherwise.

This method is intended to be called from within a message loop.

A variable that exists only in debug builds and is set to true if the dialog box is modal.

CDialogImpl Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-msg

CAxWindow Class
3/4/2019 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CAxWindow : public CWindow

Members
MethodsMethods

AttachControl Attaches an existing ActiveX control to the CAxWindow

object.

CAxWindow Constructs a CAxWindow object.

CreateControl Creates an ActiveX control, initializes it, and hosts it in the
CAxWindow window.

CreateControlEx Creates an ActiveX control and retrieves an interface pointer
(or pointers) from the control.

GetWndClassName (Static) Retrieves the predefined class name of the
CAxWindow object.

QueryControl Retrieves the IUnknown of the hosted ActiveX control.

QueryHost Retrieves the IUnknown pointer of the CAxWindow object.

SetExternalDispatch Sets the external dispatch interface used by the CAxWindow

object.

SetExternalUIHandler Sets the external IDocHostUIHandler interface used by the
CAxWindow object.

OperatorsOperators

operator = Assigns an HWND to an existing CAxWindow object.

This class provides methods for manipulating a window hosting an ActiveX control.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/caxwindow-class.md

Remarks

Requirements

CAxWindow::AttachControl

HRESULT AttachControl(
 IUnknown* pControl,
 IUnknown** ppUnkContainer);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAxWindow::CAxWindow

CAxWindow(HWND hWnd = NULL);

ParametersParameters

CAxWindow::CreateControl

This class provides methods for manipulating a window that hosts an ActiveX control. The hosting is provided by
" AtlAxWin80", which is wrapped by CAxWindow .

Class CAxWindow is implemented as a specialization of the CAxWindowT class. This specialization is declared as:

typedef CAxWindowT<CWindow> CAxWindow;

If you need to change the base class, you can use CAxWindowT and specify the new base class as a template
argument.

Header: atlwin.h

Creates a new host object if one isn't already present and attaches the specified control to the host.

pControl
[in] A pointer to the IUnknown of the control.

ppUnkContainer
[out] A pointer to the IUnknown of the host (the AxWin object).

A standard HRESULT value.

The control object being attached must be correctly initialized before calling AttachControl .

Constructs a CAxWindow object using an existing window object handle.

hWnd
A handle to an existing window object.

Creates an ActiveX control, initializes it, and hosts it in the specified window.

HRESULT CreateControl(
 LPCOLESTR lpszName,
 IStream* pStream = NULL,
 IUnknown** ppUnkContainer = NULL);

HRESULT CreateControl(
 DWORD dwResID,
 IStream* pStream = NULL,
 IUnknown** ppUnkContainer = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AtlAxCreateControlEx(lpszName, hWnd, pStream, NULL, NULL, GUID_NULL, NULL);

ExampleExample

lpszName
A pointer to a string to create the control. Must be formatted in one of the following ways:

NOTENOTE

A ProgID such as "MSCAL.Calendar.7"

A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"

A URL such as "http://www.microsoft.com"

A reference to an Active document such as "file://\\Documents\MyDoc.doc"

A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of text</BODY></HTML>"

"MSHTML:" must precede the HTML fragment so that it is designated as being an MSHTML stream. Only the
ProgID and CLSID are supported in Windows Mobile platforms. Windows CE embedded platforms, other than
Windows Mobile with support for CE IE support all types including ProgID, CLSID, URL, reference to active
document, and fragment of HTML.

pStream
[in] A pointer to a stream that is used to initialize the properties of the control. Can be NULL.

ppUnkContainer
[out] The address of a pointer that will receive the IUnknown of the container. Can be NULL.

dwResID
The resource ID of an HTML resource. The WebBrowser control will be created and loaded with the specified
resource.

A standard HRESULT value.

If the second version of this method is used, an HTML control is created and bound to the resource identified by
dwResID.

This method gives you the same result as calling:

See CAxWindow2T::CreateControlLic to create, initialize, and host a licensed ActiveX control.

See Hosting ActiveX Controls Using ATL AXHost for a sample that uses CreateControl .

http://www.microsoft.com
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost

 CAxWindow::CreateControlEx

HRESULT CreateControlEx(
 LPCOLESTR lpszName,
 IStream* pStream = NULL,
 IUnknown** ppUnkContainer = NULL,
 IUnknown** ppUnkControl = NULL,
 REFIID iidSink = IID_NULL,
 IUnknown* punkSink = NULL);

HRESULT CreateControlEx(
 DWORD dwResID,
 IStream* pStream = NULL,
 IUnknown** ppUnkContainer = NULL,
 IUnknown** ppUnkControl = NULL,
 REFIID iidSink = IID_NULL,
 IUnknown* punkSink = NULL);

ParametersParameters

Creates an ActiveX control, initializes it, and hosts it in the specified window.

lpszName
A pointer to a string to create the control. Must be formatted in one of the following ways:

NOTENOTE

A ProgID such as "MSCAL.Calendar.7"

A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"

A URL such as "http://www.microsoft.com"

A reference to an Active document such as "file://\\Documents\MyDoc.doc"

A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of text</BODY></HTML>"

"MSHTML:" must precede the HTML fragment so that it is designated as being an MSHTML stream. Only the
ProgID and CLSID are supported in Windows Mobile platforms. Windows CE embedded platforms, other than
Windows Mobile with support for CE IE support all types including ProgID, CLSID, URL, reference to active
document, and fragment of HTML.

pStream
[in] A pointer to a stream that is used to initialize the properties of the control. Can be NULL.

ppUnkContainer
[out] The address of a pointer that will receive the IUnknown of the container. Can be NULL.

ppUnkControl
[out] The address of a pointer that will receive the IUnknown of the control. Can be NULL.

iidSink
[in] The interface identifier of an outgoing interface on the contained object. Can be IID_NULL.

punkSink
[in] A pointer to the IUnknown interface of the sink object to be connected to the connection point on the
contained object specified by iidSink.

dwResID
[in] The resource ID of an HTML resource. The WebBrowser control will be created and loaded with the specified

http://www.microsoft.com

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAxWindow::GetWndClassName

static LPCTSTR GetWndClassName();

Return ValueReturn Value

CAxWindow::operator =

CAxWindow<TBase>& operator=(HWND hWnd);

ParametersParameters

Return ValueReturn Value

CAxWindow::QueryControl

HRESULT QueryControl(REFIID iid, void** ppUnk);
template <class Q>
HRESULT QueryControl(Q** ppUnk);

ParametersParameters

resource.

A standard HRESULT value.

This method is similar to CAxWindow::CreateControl, but unlike that method, CreateControlEx also allows you to
receive an interface pointer to the newly created control and set up an event sink to receive events fired by the
control.

See CAxWindow2T::CreateControlLicEx to create, initialize, and host a licensed ActiveX control.

See Hosting ActiveX Controls Using ATL AXHost for a sample that uses CreateControlEx .

Retrieves the name of the window class.

A pointer to a string containing the name of the window class that can host nonlicensed ActiveX controls.

Assigns an HWND to an existing CAxWindow object.

hWnd
A handle to an existing window.

Returns a reference to the current CAxWindow object.

Retrieves the specified interface of the hosted control.

iid
[in] Specifies the IID of the control's interface.

ppUnk
[out] A pointer to the interface of the control. In the template version of this method, there is no need for a
reference ID as long as a typed interface with an associated UUID is passed.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost

Return ValueReturn Value

CAxWindow::QueryHost

HRESULT QueryHost(REFIID iid, void** ppUnk);
template <class Q>
HRESULT QueryHost(Q** ppUnk);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAxWindow::SetExternalDispatch

HRESULT SetExternalDispatch(IDispatch* pDisp);

ParametersParameters

Return ValueReturn Value

CAxWindow::SetExternalUIHandler

HRESULT SetExternalUIHandler(IDocHostUIHandlerDispatch* pUIHandler);

ParametersParameters

Q
[in] The interface that is being queried for.

A standard HRESULT value.

Returns the specified interface of the host.

iid
[in] Specifies the IID of the control's interface.

ppUnk
[out] A pointer to the interface on the host. In the template version of this method, there is no need for a reference
ID as long as a typed interface with an associated UUID is passed.

Q
[in] The interface that is being queried for.

A standard HRESULT value.

The interface of the host allows access to the underlying functionality of the window-hosting code, implemented
by AxWin .

Sets the external dispatch interface for the CAxWindow object.

pDisp
[in] A pointer to an IDispatch interface.

A standard HRESULT value.

Sets the external IDocHostUIHandlerDispatch interface for the CAxWindow object.

pUIHandler

Return ValueReturn Value

RemarksRemarks

See also

[in] A pointer to an IDocHostUIHandlerDispatch interface.

A standard HRESULT value.

The external IDocHostUIHandlerDispatch interface is used by controls that query the host's site for the
IDocHostUIHandlerDispatch interface. The WebBrowser control is one control that does this.

ATLCON Sample
CWindow Class
Composite Control Fundamentals
Class Overview
Control Containment FAQ

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CAxWindow2T Class
3/4/2019 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class TBase = CWindow>
 class CAxWindow2T :
 public CAxWindowT<TBase>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAxWindow2T::CAxWindow2T Constructs a CAxWindow2T object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAxWindow2T::Create Creates a host window.

CAxWindow2T::CreateControlLic Creates a licensed ActiveX control, initializes it, and hosts it in
the specified window.

CAxWindow2T::CreateControlLicEx Creates a licensed ActiveX control, initializes it, hosts it in the
specified window, and retrieves an interface pointer (or
pointers) from the control.

CAxWindow2T::GetWndClassName Static method that retrieves the name of the window class.

Public OperatorsPublic Operators

NAME DESCRIPTION

CAxWindow2T::operator = Assigns an HWND to an existing CAxWindow2T object.

This class provides methods for manipulating a window that hosts an ActiveX control, and also has support for
hosting licensed ActiveX controls.

This class and its members cannot be used in applications that execute in the Windows Runtime.

TBase
The class from which CAxWindowT derives.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/caxwindow2t-class.md

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

CAxWindow2T::CAxWindow2T

CAxWindow2T(HWND hWnd = NULL) : CAxWindowT<TBase>(hWnd)

ParametersParameters

CAxWindow2T::Create

HWND Create(
 HWND hWndParent,
 _U_RECT rect = NULL,
 LPCTSTR szWindowName = NULL,
 DWORD dwStyle = 0,
 DWORD dwExStyle = 0,
 _U_MENUorID MenuOrID = 0U,
 LPVOID lpCreateParam = NULL);

RemarksRemarks

CAxWindow2T provides methods for manipulating a window that hosts an ActiveX control. CAxWindow2T also has
support for hosting licensed ActiveX controls. The hosting is provided by " AtlAxWinLic80", which is wrapped
by CAxWindow2T .

Class CAxWindow2 is implemented as a specialization of the CAxWindow2T class. This specialization is declared as:

typedef CAxWindow2T <CWindow> CAxWindow2;

CAxWindowT members are documented under CAxWindow.

See Hosting ActiveX Controls Using ATL AXHost for a sample that uses the members of this class.

TBase

CAxWindowT

CAxWindow2T

Header: atlwin.h

Constructs a CAxWindow2T object.

hWnd
A handle of an existing window.

Creates a host window.

CAxWindow2T::Create calls CWindow::Create with the LPCTSTR lpstrWndClass parameter set to the window class
that provides control hosting (AtlAxWinLic80).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost

ExampleExample

CAxWindow2T::CreateControlLic

HRESULT CreateControlLic(
 DWORD dwResID,
 IStream* pStream = NULL,
 IUnknown** ppUnkContainer = NULL,
 BSTR bstrLicKey = NULL);

HRESULT CreateControlLic(
 LPCOLESTR lpszName,
 IStream* pStream = NULL,
 IUnknown** ppUnkContainer = NULL,
 BSTR bstrLicKey = NULL);

ParametersParameters

RemarksRemarks

ExampleExample

CAxWindow2T::CreateControlLicEx

HRESULT CreateControlLicEx(
 LPCOLESTR lpszName,
 IStream* pStream = NULL,
 IUnknown** ppUnkContainer = NULL,
 IUnknown** ppUnkControl = NULL,
 REFIID iidSink = IID_NULL,
 IUnknown* punkSink = NULL,
 BSTR bstrLicKey = NULL);

 HRESULT CreateControlLicEx(
 DWORD dwResID,
 IStream* pStream = NULL,
 IUnknown** ppUnkContainer = NULL,
 IUnknown** ppUnkControl = NULL,
 REFIID iidSink = IID_NULL,
 IUnknown* punkSink = NULL,
 BSTR bstrLickey = NULL);

ParametersParameters

See CWindow::Create for a description of the parameters and return value.

Note If 0 is used as the value for the MenuOrID parameter, it must be specified as 0U (the default value) to avoid
a compiler error.

See Hosting ActiveX Controls Using ATL AXHost for a sample that uses CAxWindow2T::Create .

Creates a licensed ActiveX control, initializes it, and hosts it in the specified window.

bstrLicKey
The license key for the control; NULL if creating a nonlicensed control.

See CAxWindow::CreateControl for a description of the remaining parameters and return value.

See Hosting ActiveX Controls Using ATL AXHost for a sample that uses CAxWindow2T::CreateControlLic .

Creates a licensed ActiveX control, initializes it, hosts it in the specified window, and retrieves an interface pointer
(or pointers) from the control.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost

RemarksRemarks

ExampleExample

CAxWindow2T::GetWndClassName

static LPCTSTR GetWndClassName();

Return ValueReturn Value

CAxWindow2T::operator =

CAxWindow2T<TBase>& operator= (HWND hWnd);

ParametersParameters

See also

bstrLicKey
The license key for the control; NULL if creating a nonlicensed control.

See CAxWindow::CreateControlEx for a description of the remaining parameters and return value.

See Hosting ActiveX Controls Using ATL AXHost for a sample that uses CAxWindow2T::CreateControlLicEx .

Retrieves the name of the window class.

A pointer to a string containing the name of the window class (AtlAxWinLic80) that can host licensed and
nonlicensed ActiveX controls.

Assigns an HWND to an existing CAxWindow2T object.

hWnd
A handle of an existing window.

Class Overview
Control Containment FAQ

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost

CBindStatusCallback Class
3/4/2019 • 9 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T,
 int nBindFlags = BINDF_ASYNCHRONOUS | BINDF_ASYNCSTORAGE | BINDF_GETNEWESTVERSION | BINDF_NOWRITECACHE>
class ATL_NO_VTABLE CBindStatusCallback : public CComObjectRootEx <T ::_ThreadModel::ThreadModelNoCS>,
 public IBindStatusCallbackImpl<T>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CBindStatusCallback::CBindStatusCallback The constructor.

CBindStatusCallback::~CBindStatusCallback The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CBindStatusCallback::Download Static method that starts the download process, creates a
CBindStatusCallback object, and calls
StartAsyncDownload .

CBindStatusCallback::GetBindInfo Called by the asynchronous moniker to request information
on the type of bind to be created.

CBindStatusCallback::GetPriority Called by the asynchronous moniker to get the priority of the
bind operation. The ATL implementation returns E_NOTIMPL .

This class implements the IBindStatusCallback interface.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class containing the function that will be called as the data is received.

nBindFlags
Specifies the bind flags that are returned by GetBindInfo. The default implementation sets the binding to be
asynchronous, retrieves the newest version of the data/object, and does not store retrieved data in the disk cache.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cbindstatuscallback-class.md

CBindStatusCallback::OnDataAvailable Called to provide data to your application as it becomes
available. Reads the data, then calls the function passed to it
to use the data.

CBindStatusCallback::OnLowResource Called when resources are low. The ATL implementation
returns S_OK.

CBindStatusCallback::OnObjectAvailable Called by the asynchronous moniker to pass an object
interface pointer to your application. The ATL implementation
returns S_OK.

CBindStatusCallback::OnProgress Called to indicate the progress of a data downloading process.
The ATL implementation returns S_OK.

CBindStatusCallback::OnStartBinding Called when binding is started.

CBindStatusCallback::OnStopBinding Called when the asynchronous data transfer is stopped.

CBindStatusCallback::StartAsyncDownload Initializes the bytes available and bytes read to zero, creates a
push-type stream object from a URL, and calls
OnDataAvailable every time data is available.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CBindStatusCallback::m_dwAvailableToRead Number of bytes available to read.

CBindStatusCallback::m_dwTotalRead Total number of bytes read.

CBindStatusCallback::m_pFunc Pointer to the function called when data is available.

CBindStatusCallback::m_pT Pointer to the object requesting the asynchronous data
transfer.

CBindStatusCallback::m_spBindCtx Pointer to the IBindCtx interface for the current bind
operation.

CBindStatusCallback::m_spBinding Pointer to the IBinding interface for the current bind
operation.

CBindStatusCallback::m_spMoniker Pointer to the IMoniker interface for the URL to use.

CBindStatusCallback::m_spStream Pointer to the IStream interface for the data transfer.

Remarks
The CBindStatusCallback class implements the IBindStatusCallback interface. IBindStatusCallback must be
implemented by your application so it can receive notifications from an asynchronous data transfer. The
asynchronous moniker provided by the system uses IBindStatusCallback methods to send and receive
information about the asynchronous data transfer to and from your object.

Typically, the CBindStatusCallback object is associated with a specific bind operation. For example, in the ASYNC

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ibindctx
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-imoniker
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

STDMETHOD(put_URL)(BSTR newVal)
{
 HRESULT hResult = E_UNEXPECTED;

 ATLTRACE(_T("IATLAsync::put_URL\n"));
 m_bstrURL = newVal;

 if (::IsWindow(m_EditCtrl.m_hWnd))
 {
 ::SendMessage(m_EditCtrl.m_hWnd, WM_SETTEXT, 0, (LPARAM)_T(""));
 hResult = CBindStatusCallback<CATLAsync>::Download(this, &CATLAsync::OnData,
 m_bstrURL, m_spClientSite, FALSE);
 }

 return hResult;
}

Inheritance Hierarchy

Requirements

CBindStatusCallback::CBindStatusCallback

CBindStatusCallback();

RemarksRemarks

CBindStatusCallback::~CBindStatusCallback

~CBindStatusCallback();

RemarksRemarks

sample, when you set the URL property, it creates a CBindStatusCallback object in the call to Download :

The asynchronous moniker uses the callback function OnData to call your application when it has data. The
asynchronous moniker is provided by the system.

CComObjectRootBase

IBindStatusCallback

CComObjectRootEx

CBindStatusCallback

Header: atlctl.h

The constructor.

Creates an object to receive notifications concerning the asynchronous data transfer. Typically, one object is
created for each bind operation.

The constructor also initializes m_pT and m_pFunc to NULL.

The destructor.

Frees all allocated resources.

CBindStatusCallback::Download

static HRESULT Download(
 T* pT,
 ATL_PDATAAVAILABLE pFunc,
 BSTR bstrURL,
 IUnknown* pUnkContainer = NULL,
 BOOL bRelative = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBindStatusCallback::GetBindInfo

STDMETHOD(GetBindInfo)(
 DWORD* pgrfBSCF,
 BINDINFO* pbindinfo);

ParametersParameters

Creates a CBindStatusCallback object and calls StartAsyncDownload to start downloading data asynchronously
from the specified URL.

pT
[in] A pointer to the object requesting the asynchronous data transfer. The CBindStatusCallback object is
templatized on this object's class.

pFunc
[in] A pointer to the function that receives the data that is read. The function is a member of your object's class of
type T . See StartAsyncDownload for syntax and an example.

bstrURL
[in] The URL to obtain data from. Can be any valid URL or file name. Cannot be NULL. For example:

CComBSTR mybstr =_T("http://somesite/data.htm")

pUnkContainer
[in] The IUnknown of the container. NULL by default.

bRelative
[in] A flag indicating whether the URL is relative or absolute. FALSE by default, meaning the URL is absolute.

One of the standard HRESULT values.

Every time data is available it is sent to the object through OnDataAvailable . OnDataAvailable reads the data and
calls the function pointed to by pFunc (for example, to store the data or print it to the screen).

Called to tell the moniker how to bind.

pgrfBSCF
[out] A pointer to BINDF enumeration values indicating how the bind operation should occur. By default, set with
the following enumeration values:

BINDF_ASYNCHRONOUS Asynchronous download.

BINDF_ASYNCSTORAGE OnDataAvailable returns E_PENDING when data is not yet available rather than
blocking until data is available.

Return ValueReturn Value

RemarksRemarks

CBindStatusCallback::GetPriority

STDMETHOD(GetPriority)(LONG* pnPriority);

ParametersParameters

Return ValueReturn Value

CBindStatusCallback::m_dwAvailableToRead

DWORD m_dwAvailableToRead;

RemarksRemarks

CBindStatusCallback::m_dwTotalRead

DWORD m_dwTotalRead;

RemarksRemarks

CBindStatusCallback::m_pFunc

BINDF_GETNEWESTVERSION The bind operation should retrieve the newest version of the data.

BINDF_NOWRITECACHE The bind operation should not store retrieved data in the disk cache.

pbindinfo
[in, out] A pointer to the BINDINFO structure giving more information about how the object wants binding to occur.

One of the standard HRESULT values.

The default implementation sets the binding to be asynchronous and to use the data-push model. In the data-push
model, the moniker drives the asynchronous bind operation and continuously notifies the client whenever new
data is available.

Called by the asynchronous moniker to get the priority of the bind operation.

pnPriority
[out] Address of the LONG variable that, on success, receives the priority.

Returns E_NOTIMPL.

Can be used to store the number of bytes available to be read.

Initialized to zero in StartAsyncDownload .

The cumulative total of bytes read in the asynchronous data transfer.

Incremented every time OnDataAvailable is called by the number of bytes actually read. Initialized to zero in
StartAsyncDownload .

The function pointed to by m_pFunc is called by OnDataAvailable after it reads the available data (for example, to
store the data or print it to the screen).

ATL_PDATAAVAILABLE m_pFunc;

RemarksRemarks

void Function_Name(
 CBindStatusCallback<T>* pbsc,
 BYTE* pBytes,
 DWORD dwSize
);

CBindStatusCallback::m_pT

T* m_pT;

RemarksRemarks

CBindStatusCallback::m_spBindCtx

CComPtr<IBindCtx> m_spBindCtx;

RemarksRemarks

CBindStatusCallback::m_spBinding

CComPtr<IBinding> m_spBinding;

RemarksRemarks

CBindStatusCallback::m_spMoniker

CComPtr<IMoniker> m_spMoniker;

RemarksRemarks

The function pointed to by m_pFunc is a member of your object's class and has the following syntax:

A pointer to the object requesting the asynchronous data transfer.

The CBindStatusCallback object is templatized on this object's class.

A pointer to an IBindCtx interface that provides access to the bind context (an object that stores information about
a particular moniker binding operation).

Initialized in StartAsyncDownload .

A pointer to the IBinding interface of the current bind operation.

Initialized in OnStartBinding and released in OnStopBinding .

A pointer to the IMoniker interface for the URL to use.

Initialized in StartAsyncDownload .

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ibindctx
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-imoniker

CBindStatusCallback::m_spStream

CComPtr<IStream> m_spStream;

RemarksRemarks

CBindStatusCallback::OnDataAvailable

STDMETHOD(
 OnDataAvailable)(DWORD grfBSCF,
 DWORD dwSize,
 FORMATETC* /* pformatetc */,
 STGMEDIUM* pstgmed);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBindStatusCallback::OnLowResource

STDMETHOD(OnLowResource)(DWORD /* dwReserved */);

ParametersParameters

A pointer to the IStream interface of the current bind operation.

Initialized in OnDataAvailable from the STGMEDIUM structure when the BCSF flag is
BCSF_FIRSTDATANOTIFICATION and released when the BCSF flag is BCSF_LASTDATANOTIFICATION.

The system-supplied asynchronous moniker calls OnDataAvailable to provide data to the object as it becomes
available.

grfBSCF
[in] A BSCF enumeration value. One or more of the following: BSCF_FIRSTDATANOTIFICATION,
BSCF_INTERMEDIARYDATANOTIFICATION, or BSCF_LASTDATANOTIFICATION.

dwSize
[in] The cumulative amount (in bytes) of data available since the beginning of the binding. Can be zero, indicating
that the amount of data is not relevant or that no specific amount became available.

pformatetc
[in] Pointer to the FORMATETC structure that contains the format of the available data. If there is no format, can
be CF_NULL.

pstgmed
[in] Pointer to the STGMEDIUM structure that holds the actual data now available.

One of the standard HRESULT values.

OnDataAvailable reads the data, then calls a method of your object's class (for example, to store the data or print it
to the screen). See CBindStatusCallback::StartAsyncDownload for details.

Called when resources are low.

dwReserved
Reserved.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream
https://docs.microsoft.com/windows/desktop/com/the-formatetc-structure
https://docs.microsoft.com/windows/desktop/com/the-stgmedium-structure

Return ValueReturn Value

CBindStatusCallback::OnObjectAvailable

STDMETHOD(OnObjectAvailable)(REFID /* riid */, IUnknown* /* punk */);

ParametersParameters

Return ValueReturn Value

CBindStatusCallback::OnProgress

STDMETHOD(OnProgress)(
 ULONG /* ulProgress */,
 ULONG /* ulProgressMax */,
 ULONG /* ulStatusCode */,
 LPCWSTRONG /* szStatusText */);

ParametersParameters

Return ValueReturn Value

CBindStatusCallback::OnStartBinding

STDMETHOD(OnStartBinding)(DWORD /* dwReserved */, IBinding* pBinding);

ParametersParameters

Returns S_OK.

Called by the asynchronous moniker to pass an object interface pointer to your application.

riid
Interface identifier of the requested interface. Unused.

punk
Address of the IUnknown interface. Unused.

Returns S_OK.

Called to indicate the progress of a data downloading process.

ulProgress
Unsigned long integer. Unused.

ulProgressMax
Unsigned long integer Unused.

ulStatusCode
Unsigned long integer. Unused.

szStatusText
Address of a string value. Unused.

Returns S_OK.

Sets the data member m_spBinding to the IBinding pointer in pBinding.

dwReserved
Reserved for future use.

CBindStatusCallback::OnStopBinding

STDMETHOD(OnStopBinding)(HRESULT hresult, LPCWSTR /* szError */);

ParametersParameters

RemarksRemarks

CBindStatusCallback::StartAsyncDownload

HRESULT StartAsyncDownload(
 T* pT,
 ATL_PDATAAVAILABLE pFunc,
 BSTR bstrURL,
 IUnknown* pUnkContainer = NULL,
 BOOL bRelative = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pBinding
[in] Address of the IBinding interface of the current bind operation. This cannot be NULL. The client should call
AddRef on this pointer to keep a reference to the binding object.

Releases the IBinding pointer in the data member m_spBinding.

hresult
Status code returned from the bind operation.

szError
Address of a string value. Unused.

Called by the system-supplied asynchronous moniker to indicate the end of the bind operation.

Starts downloading data asynchronously from the specified URL.

pT
[in] A pointer to the object requesting the asynchronous data transfer. The CBindStatusCallback object is
templatized on this object's class.

pFunc
[in] A pointer to the function that receives the data being read. The function is a member of your object's class of
type T . See Remarks for syntax and an example.

bstrURL
[in] The URL to obtain data from. Can be any valid URL or file name. Cannot be NULL. For example:

CComBSTR mybstr =_T("http://somesite/data.htm")

pUnkContainer
[in] The IUnknown of the container. NULL by default.

bRelative
[in] A flag indicating whether the URL is relative or absolute. FALSE by default, meaning the URL is absolute.

One of the standard HRESULT values.

void Function_Name(
 CBindStatusCallback<T>* pbsc,
 BYTE* pBytes,
 DWORD dwSize);

ExampleExample

void OnData(CBindStatusCallback<CATLAsync>* , BYTE* pBytes, DWORD /*cBytes*/)
{
 ATLTRACE(_T("OnData called\n"));

 m_bstrText.Append((LPCSTR)pBytes);
 if (::IsWindow(m_EditCtrl.m_hWnd))
 {
 USES_CONVERSION;
 _ATLTRY {
 ::SendMessage(m_EditCtrl.m_hWnd, WM_SETTEXT, 0,
 (LPARAM)(LPCTSTR)COLE2CT((BSTR)m_bstrText));
 }
 _ATLCATCH(e) {
 e; // unused
 // COLE2CT threw an exception!
 ::SendMessage(m_EditCtrl.m_hWnd, WM_SETTEXT, 0,
 (LPARAM)_T("Could not allocate enough memory!!!"));
 }
 }
}

See also

Every time data is available it is sent to the object through OnDataAvailable . OnDataAvailable reads the data and
calls the function pointed to by pFunc (for example, to store the data or print it to the screen).

The function pointed to by pFunc is a member of your object's class and has the following syntax:

In the following example (taken from the ASYNC sample), the function OnData writes the received data into a text
box.

Class Overview

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CComAggObject Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template<class contained>
class CComAggObject : public IUnknown,
 public CComObjectRootEx<contained::_ThreadModel::ThreadModelNoCS>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComAggObject::CComAggObject The constructor.

CComAggObject::~CComAggObject The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComAggObject::AddRef Increments the reference count on the aggregated object.

CComAggObject::CreateInstance This static function allows you to create a new
CComAggObject< contained > object without the
overhead of CoCreateInstance.

CComAggObject::FinalConstruct Performs final initialization of m_contained .

CComAggObject::FinalRelease Performs final destruction of m_contained .

CComAggObject::QueryInterface Retrieves a pointer to the requested interface.

CComAggObject::Release Decrements the reference count on the aggregated object.

Public Data MembersPublic Data Members

This class implements the IUnknown interface for an aggregated object. By definition, an aggregated object is
contained within an outer object. The CComAggObject class is similar to the CComObject Class, except that it
exposes an interface that is directly accessible to external clients.

contained
Your class, derived from CComObjectRoot or CComObjectRootEx, as well as from any other interfaces you want
to support on the object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomaggobject-class.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cocreateinstance

NAME DESCRIPTION

CComAggObject::m_contained Delegates IUnknown calls to the outer unknown.

Remarks

Inheritance Hierarchy

Requirements

CComAggObject::AddRef

STDMETHOD_(ULONG, AddRef)();

Return ValueReturn Value

CComAggObject::CComAggObject

CComAggObject(void* pv);

ParametersParameters

RemarksRemarks

CComAggObject::~CComAggObject

CComAggObject implements IUnknown for an aggregated object. CComAggObject has its own IUnknown interface,
separate from the outer object's IUnknown interface, and maintains its own reference count.

For more information about aggregation, see the article Fundamentals of ATL COM Objects.

CComObjectRootBase

CComObjectRootEx

IUnknown

CComAggObject

Header: atlcom.h

Increments the reference count on the aggregated object.

A value that may be useful for diagnostics or testing.

The constructor.

pv
[in] The outer unknown.

Initializes the CComContainedObject member, m_contained, and increments the module lock count.

The destructor decrements the module lock count.

The destructor.

https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

~CComAggObject();

RemarksRemarks

CComAggObject::CreateInstance

static HRESULT WINAPI CreateInstance(
 LPUNKNOWN pUnkOuter,
 CComAggObject<contained>** pp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComAggObject::FinalConstruct

HRESULT FinalConstruct();

Return ValueReturn Value

CComAggObject::FinalRelease

void FinalRelease();

CComAggObject::m_contained

CComContainedObject<contained> m_contained;

Frees all allocated resources, calls FinalRelease, and decrements the module lock count.

This static function allows you to create a new CComAggObject< contained > object without the overhead of
CoCreateInstance.

pp
[out] A pointer to a CComAggObject<contained> pointer. If CreateInstance is unsuccessful, pp is set to NULL.

A standard HRESULT value.

The object returned has a reference count of zero, so call AddRef immediately, then use Release to free the
reference on the object pointer when you're done.

If you do not need direct access to the object, but still want to create a new object without the overhead of
CoCreateInstance , use CComCoClass::CreateInstance instead.

Called during the final stages of object construction, this method performs any final initialization on the
m_contained member.

A standard HRESULT value.

Called during object destruction, this method frees the m_contained member.

A CComContainedObject object derived from your class.

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cocreateinstance

ParametersParameters

RemarksRemarks

CComAggObject::QueryInterface

STDMETHOD(QueryInterface)(REFIID iid, void** ppvObject);
template <class Q>
HRESULT STDMETHODCALLTYPE QueryInterface(Q** pp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComAggObject::Release

STDMETHOD_(ULONG, Release)();

Return ValueReturn Value

See also

contained
[in] Your class, derived from CComObjectRoot or CComObjectRootEx, as well as from any other interfaces you
want to support on the object.

All IUnknown calls through m_contained are delegated to the outer unknown.

Retrieves a pointer to the requested interface.

iid
[in] The identifier of the interface being requested.

ppvObject
[out] A pointer to the interface pointer identified by iid. If the object does not support this interface, ppvObject is
set to NULL.

pp
[out] A pointer to the interface pointer identified by type Q . If the object does not support this interface, pp is set
to NULL.

A standard HRESULT value.

If the requested interface is IUnknown , QueryInterface returns a pointer to the aggregated object's own
IUnknown and increments the reference count. Otherwise, this method queries for the interface through the
CComContainedObject member, m_contained.

Decrements the reference count on the aggregated object.

In debug builds, Release returns a value that may be useful for diagnostics or testing. In non-debug builds,
Release always returns 0.

CComObject Class
CComPolyObject Class
DECLARE_AGGREGATABLE
DECLARE_ONLY_AGGREGATABLE
DECLARE_NOT_AGGREGATABLE

Class Overview

CComAllocator Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CComAllocator

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CComAllocator::Allocate Call this static method to allocate memory.

CComAllocator::Free Call this static method to free allocated memory.

CComAllocator::Reallocate Call this static method to reallocate memory.

Remarks

Requirements

CComAllocator::Allocate

static void* Allocate(size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComAllocator::Free

This class provides methods for managing memory using COM memory routines.

This class is used by CComHeapPtr to provide the COM memory allocation routines. The counterpart class,
CCRTAllocator, provides the same methods using CRT routines.

Header: atlbase.h

Call this static function to allocate memory.

nBytes
The number of bytes to allocate.

Returns a void pointer to the allocated space, or NULL if there is insufficient memory available.

Allocates memory. See CoTaskMemAlloc for more details.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomallocator-class.md
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemalloc

static void Free(void* p) throw();

ParametersParameters

RemarksRemarks

CComAllocator::Reallocate

static void* Reallocate(void* p, size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Call this static function to free allocated memory.

p
Pointer to the allocated memory.

Frees the allocated memory. See CoTaskMemFree for more details.

Call this static function to reallocate memory.

p
Pointer to the allocated memory.

nBytes
The number of bytes to reallocate.

Returns a void pointer to the allocated space, or NULL if there is insufficient memory

Resizes the amount of allocated memory. See CoTaskMemRealloc for more details.

CComHeapPtr Class
CCRTAllocator Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemfree
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemrealloc

CComApartment Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CComApartment

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComApartment::CComApartment The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComApartment::Apartment Marks the thread's starting address.

CComApartment::GetLockCount Returns the thread's current lock count.

CComApartment::Lock Increments the thread's lock count.

CComApartment::Unlock Decrements the thread's lock count.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComApartment::m_dwThreadID Contains the thread's identifier.

CComApartment::m_hThread Contains the thread's handle.

CComApartment::m_nLockCnt Contains the thread's current lock count.

Remarks

This class provides support for managing an appartment in a thread-pooled EXE module.

This class and its members cannot be used in applications that execute in the Windows Runtime.

CComApartment is used by CComAutoThreadModule to manage an apartment in a thread-pooled EXE module.
CComApartment provides methods for incrementing and decrementing the lock count on a thread.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomapartment-class.md

Requirements

CComApartment::Apartment

DWORD Apartment();

Return ValueReturn Value

RemarksRemarks

CComApartment::CComApartment

CComApartment();

RemarksRemarks

CComApartment::GetLockCount

LONG GetLockCount();

Return ValueReturn Value

CComApartment::Lock

LONG Lock();

Return ValueReturn Value

RemarksRemarks

CComApartment::m_dwThreadID

Header: atlbase.h

Marks the thread's starting address.

Always 0.

Automatically set during CComAutoThreadModule::Init.

The constructor.

Initializes the CComApartment data members m_nLockCnt and m_hThread.

Returns the thread's current lock count.

The lock count on the thread.

Increments the thread's lock count.

A value that may be useful for diagnostics or testing.

Called by CComAutoThreadModule::Lock.

The lock count on the thread is used for statistical purposes.

Contains the thread's identifier.

DWORD m_dwThreadID;

CComApartment::m_hThread

HANDLE m_hThread;

CComApartment::m_nLockCnt

LONG m_nLockCnt;

CComApartment::Unlock

LONG Unlock();

Return ValueReturn Value

RemarksRemarks

See also

Contains the thread's handle.

Contains the thread's current lock count.

Decrements the thread's lock count.

A value that may be useful for diagnostics or testing.

Called by CComAutoThreadModule::Unlock.

The lock count on the thread is used for statistical purposes.

Class Overview

CComAutoCriticalSection Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CComAutoCriticalSection : public CComCriticalSection

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComAutoCriticalSection::CComAutoCriticalSection The constructor.

CComAutoCriticalSection::~CComAutoCriticalSection The destructor.

Remarks

Inheritance Hierarchy

Requirements

CComAutoCriticalSection::CComAutoCriticalSection

CComAutoCriticalSection();

RemarksRemarks

CComAutoCriticalSection provides methods for obtaining and releasing ownership of a critical section object.

CComAutoCriticalSection is similar to class CComCriticalSection, except CComAutoCriticalSection automatically
initializes the critical section object in the constructor.

Typically, you use CComAutoCriticalSection through the typedef name AutoCriticalSection. This name references
CComAutoCriticalSection when CComMultiThreadModel is being used.

The Init and Term methods from CComCriticalSection are not available when using this class.

CComCriticalSection

CComAutoCriticalSection

Header: atlcore.h

The constructor.

Calls the Win32 function InitializeCriticalSection, which initializes the critical section object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomautocriticalsection-class.md
https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-initializecriticalsection

 CComAutoCriticalSection::~CComAutoCriticalSection

~CComAutoCriticalSection() throw();

RemarksRemarks

See also

The destructor.

The destructor calls DeleteCriticalSection, which releases all system resources used by the critical section object.

CComFakeCriticalSection Class
Class Overview
CComCriticalSection Class

https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-deletecriticalsection

CComAutoDeleteCriticalSection Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CComAutoDeleteCriticalSection : public CComSafeDeleteCriticalSection

Remarks

Inheritance Hierarchy

Requirements

See also

This class provides methods for obtaining and releasing ownership of a critical section object.

CComAutoDeleteCriticalSection derives from the class CComSafeDeleteCriticalSection. However,
CComAutoDeleteCriticalSection overrides the Term method to private access, which forces internal memory

cleanup to occur only when instances of this class go out of scope or are explicitly deleted from memory.

This class introduces no additional methods over its base class. See CComSafeDeleteCriticalSection and
CComCriticalSection for more information on critical section helper classes.

CComCriticalSection

CComSafeDeleteCriticalSection

CComAutoDeleteCriticalSection

Header: atlcore.h

CComSafeDeleteCriticalSection Class
CComCriticalSection Class
Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomautodeletecriticalsection-class.md

CComAutoThreadModule Class
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class ThreadAllocator = CComSimpleThreadAllocator>
class CComAutoThreadModule : public CComModule

ParametersParameters

Members
MethodsMethods

CreateInstance Selects a thread and then creates an object in the associated
apartment.

GetDefaultThreads (Static) Dynamically calculates the number of threads for the
module based on the number of processors.

Init Creates the module's threads.

Lock Increments the lock count on the module and on the current
thread.

Unlock Decrements the lock count on the module and on the
current thread.

Data MembersData Members

Data MembersData Members

dwThreadID Contains the identifier of the current thread.

m_Allocator Manages thread selection.

m_nThreads Contains the number of threads in the module.

m_pApartments Manages the module's apartments.

As of ATL 7.0, CComAutoThreadModule is obsolete: see ATL Module Classes for more details.

This class and its members cannot be used in applications that execute in the Windows Runtime.

ThreadAllocator
[in] The class managing thread selection. The default value is CComSimpleThreadAllocator.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomautothreadmodule-class.md

Remarks

NOTENOTE

class CMyModule :
public CComAutoThreadModule<CComSimpleThreadAllocator>
{
public:
 LONG Unlock()
 {
 LONG l = CComAutoThreadModule<CComSimpleThreadAllocator>::Unlock();
 if (l == 0)
 PostThreadMessage(dwThreadID, WM_QUIT, 0, 0);
 return l;
 }

 DWORD dwThreadID;
};

Inheritance Hierarchy

Requirements

CComAutoThreadModule::CreateInstance

This class is obsolete, having been replaced by the CAtlAutoThreadModule and CAtlModule derived classes. The
information that follows is for use with older releases of ATL.

CComAutoThreadModule derives from CComModule to implement a thread-pooled, apartment-model COM server
for EXEs and Windows services. CComAutoThreadModule uses CComApartment to manage an apartment for each
thread in the module.

Derive your module from CComAutoThreadModule when you want to create objects in multiple apartments. You
must also include the DECLARE_CLASSFACTORY_AUTO_THREAD macro in your object's class definition to
specify CComClassFactoryAutoThread as the class factory.

By default, the ATL COM AppWizard (the ATL Project Wizard in Visual Studio .NET) will derive your module
from CComModule . To use CComAutoThreadModule , modify the class definition. For example:

_ATL_MODULE

CAtlModule

IAtlAutoThreadModule

CAtlModuleT

CAtlAutoThreadModuleT

CComModule

CComAutoThreadModule

Header: atlbase.h

As of ATL 7.0, CComAutoThreadModule is obsolete: see ATL Module Classes for more details.

HRESULT CreateInstance(
 void* pfnCreateInstance,
 REFIID riid,
 void** ppvObj);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComAutoThreadModule::dwThreadID

DWORD dwThreadID;

RemarksRemarks

CComAutoThreadModule::GetDefaultThreads

static int GetDefaultThreads();

Return ValueReturn Value

RemarksRemarks

CComAutoThreadModule::Init

pfnCreateInstance
[in] A pointer to a creator function.

riid
[in] The IID of the requested interface.

ppvObj
[out] A pointer to the interface pointer identified by riid. If the object does not support this interface, ppvObj is
set to NULL.

A standard HRESULT value.

Selects a thread and then creates an object in the associated apartment.

As of ATL 7.0, CComAutoThreadModule is obsolete: see ATL Module Classes for more details.

Contains the identifier of the current thread.

As of ATL 7.0, CComAutoThreadModule is obsolete: see ATL Module Classes for more details.

The number of threads to be created in the EXE module.

This static function dynamically calculates the maximum number of threads for the EXE module, based on the
number of processors. By default, this return value is passed to the Init method to create the threads.

As of ATL 7.0, CComAutoThreadModule is obsolete: see ATL Module Classes for more details.

HRESULT Init(
 _ATL_OBJMAP_ENTRY* p,
 HINSTANCE h,
 const GUID* plibid = NULL,
 int nThreads = GetDefaultThreads());

ParametersParameters

RemarksRemarks

CComAutoThreadModule::Lock

LONG Lock();

Return ValueReturn Value

RemarksRemarks

CComAutoThreadModule::m_Allocator

ThreadAllocator m_Allocator;

RemarksRemarks

CComAutoThreadModule::m_nThreads

int m_nThreads;

p
[in] A pointer to an array of object map entries.

h
[in] The HINSTANCE passed to DLLMain or WinMain .

plibid
[in] A pointer to the L IBID of the type library associated with the project.

nThreads
[in] The number of threads to be created. By default, nThreads is the value returned by GetDefaultThreads.

Initializes data members and creates the number of threads specified by nThreads.

As of ATL 7.0, CComAutoThreadModule is obsolete: see ATL Module Classes for more details.

A value that may be useful for diagnostics or testing.

Performs an atomic increment on the lock count for the module and for the current thread.
CComAutoThreadModule uses the module lock count to determine whether any clients are accessing the module.

The lock count on the current thread is used for statistical purposes.

As of ATL 7.0, CComAutoThreadModule is obsolete: see ATL Module Classes for more details.

The object managing thread selection. By default, the ThreadAllocator class template parameter is
CComSimpleThreadAllocator.

As of ATL 7.0, CComAutoThreadModule is obsolete: see ATL Module Classes for more details.

RemarksRemarks

CComAutoThreadModule::m_pApartments

CComApartment* m_pApartments;

RemarksRemarks

CComAutoThreadModule::Unlock

LONG Unlock();

Return ValueReturn Value

RemarksRemarks

See also

Contains the number of threads in the EXE module. When Init is called, m_nThreads is set to the nThreads
parameter value. Each thread's associated apartment is managed by a CComApartment object.

As of ATL 7.0, CComAutoThreadModule is obsolete: see ATL Module Classes for more details.

Points to an array of CComApartment objects, each of which manages an apartment in the module. The number
of elements in the array is based on the m_nThreads member.

As of ATL 7.0, CComAutoThreadModule is obsolete: see ATL Module Classes for more details.

A value that may be useful for diagnostics or testing.

Performs an atomic decrement on the lock count for the module and for the current thread.
CComAutoThreadModule uses the module lock count to determine whether any clients are accessing the module.

The lock count on the current thread is used for statistical purposes.

When the module lock count reaches zero, the module can be unloaded.

Class Overview
Module Classes

CComBSTR Class
3/4/2019 • 15 minutes to read • Edit Online

Syntax
class CComBSTR

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComBSTR::CComBSTR The constructor.

CComBSTR::~CComBSTR The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComBSTR::Append Appends a string to m_str .

CComBSTR::AppendBSTR Appends a BSTR to m_str .

CComBSTR::AppendBytes Appends a specified number of bytes to m_str .

CComBSTR::ArrayToBSTR Creates a BSTR from the first character of each element in the
safearray and attaches it to the CComBSTR object.

CComBSTR::AssignBSTR Assigns a BSTR to m_str .

CComBSTR::Attach Attaches a BSTR to the CComBSTR object.

CComBSTR::BSTRToArray Creates a zero-based one-dimensional safearray, where each
element of the array is a character from the CComBSTR

object.

CComBSTR::ByteLength Returns the length of m_str in bytes.

CComBSTR::Copy Returns a copy of m_str .

CComBSTR::CopyTo Returns a copy of m_str via an [out] parameter

CComBSTR::Detach Detaches m_str from the CComBSTR object.

This class is a wrapper for BSTRs.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccombstr-class.md
https://docs.microsoft.com/previous-versions/windows/desktop/automat/bstr

CComBSTR::Empty Frees m_str .

CComBSTR::Length Returns the length of m_str .

CComBSTR::LoadString Loads a string resource.

CComBSTR::ReadFromStream Loads a BSTR object from a stream.

CComBSTR::ToLower Converts the string to lowercase.

CComBSTR::ToUpper Converts the string to uppercase.

CComBSTR::WriteToStream Saves m_str to a stream.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CComBSTR::operator BSTR Casts a CComBSTR object to a BSTR.

CComBSTR::operator ! Returns TRUE or FALSE, depending on whether m_str is
NULL.

CComBSTR::operator != Compares a CComBSTR with a string.

CComBSTR::operator & Returns the address of m_str .

CComBSTR::operator += Appends a CComBSTR to the object.

CComBSTR::operator < Compares a CComBSTR with a string.

CComBSTR::operator = Assigns a value to m_str .

CComBSTR::operator == Compares a CComBSTR with a string.

CComBSTR::operator > Compares a CComBSTR with a string.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComBSTR::m_str Contains the BSTR associated with the CComBSTR object.

Remarks
The CComBSTR class is a wrapper for BSTRs, which are length-prefixed strings. The length is stored as an integer at
the memory location preceding the data in the string.

A BSTR is null-terminated after the last counted character but may also contain null characters embedded within
the string. The string length is determined by the character count, not the first null character.

https://docs.microsoft.com/previous-versions/windows/desktop/automat/bstr

NOTENOTE

NOTENOTE

Requirements

CComBSTR::Append

HRESULT Append(const CComBSTR& bstrSrc) throw();
HRESULT Append(wchar_t ch) throw();
HRESULT Append(char ch) throw();
HRESULT Append(LPCOLESTR lpsz) throw();
HRESULT Append(LPCSTR lpsz) throw();
HRESULT Append(LPCOLESTR lpsz, int nLen) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

The CComBSTR class provides a number of members (constructors, assignment operators, and comparison operators) that
take either ANSI or Unicode strings as arguments. The ANSI versions of these functions are less efficient than their Unicode
counterparts because temporary Unicode strings are often created internally. For efficiency, use the Unicode versions where
possible.

Because of the improved lookup behavior implemented in Visual Studio .NET, code such as bstr = L"String2" + bstr; ,
which may have compiled in previous releases, should instead be implemented as bstr = CStringW(L"String2") + bstr .

For a list of cautions when using CComBSTR , see Programming with CComBSTR.

Header: atlbase.h

Appends either lpsz or the BSTR member of bstrSrc to m_str.

bstrSrc
[in] A CComBSTR object to append.

ch
[in] A character to append.

lpsz
[in] A zero-terminated character string to append. You can pass a Unicode string via the LPCOLESTR overload or
an ANSI string via the LPCSTR version.

nLen
[in] The number of characters from lpsz to append.

S_OK on success, or any standard HRESULT error value.

An ANSI string will be converted to Unicode before being appended.

enum { urlASP, urlHTM, urlISAPI } urlType;
urlType = urlASP;

CComBSTR bstrURL = OLESTR("http://SomeSite/");
CComBSTR bstrDEF = OLESTR("/OtherSite");
CComBSTR bstrASP = OLESTR("default.asp");

CComBSTR bstrTemp;
HRESULT hr;

switch (urlType)
{
case urlASP:
 // bstrURL is 'http://SomeSite/default.asp'
 hr = bstrURL.Append(bstrASP);
 break;

case urlHTM:
 // bstrURL is 'http://SomeSite/default.htm'
 hr = bstrURL.Append(OLESTR("default.htm"));
 break;

case urlISAPI:
 // bstrURL is 'http://SomeSite/default.dll?func'
 hr = bstrURL.Append(OLESTR("default.dll?func"));
 break;

default:
 // bstrTemp is 'http://'
 hr = bstrTemp.Append(bstrURL, 7);
 // bstrURL is 'http://OtherSite'
 if (hr == S_OK)
 hr = bstrTemp.Append(bstrDEF);
 bstrURL = bstrTemp;

 break;
}

CComBSTR::AppendBSTR

HRESULT AppendBSTR(BSTR p) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Appends the specified BSTR to m_str.

p
[in] A BSTR to append.

S_OK on success, or any standard HRESULT error value.

Do not pass an ordinary wide-character string to this method. The compiler cannot catch the error and run time
errors will occur.

CComBSTR bstrPre(OLESTR("Hello "));
CComBSTR bstrSuf(OLESTR("World!"));
HRESULT hr;

// Appends "World!" to "Hello "
hr = bstrPre.AppendBSTR(bstrSuf);

// Displays a message box with text "Hello World!"
::MessageBox(NULL, CW2CT(bstrPre), NULL, MB_OK);

CComBSTR::AppendBytes

HRESULT AppendBytes(const char* lpsz, int nLen) throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

CComBSTR bstrPre(OLESTR("Hello "));
HRESULT hr;

// Appends "Wo" to "Hello " (4 bytes == 2 characters)
hr = bstrPre.AppendBytes(reinterpret_cast<char*>(OLESTR("World!")), 4);

// Displays a message box with text "Hello Wo"
::MessageBox(NULL, CW2CT(bstrPre), NULL, MB_OK);

CComBSTR::ArrayToBSTR

HRESULT ArrayToBSTR(const SAFEARRAY* pSrc) throw();

ParametersParameters

Return ValueReturn Value

CComBSTR::AssignBSTR

Appends the specified number of bytes to m_str without conversion.

lpsz
[in] A pointer to an array of bytes to append.

p
[in] The number of bytes to append.

S_OK on success, or any standard HRESULT error value.

Frees any existing string held in the CComBSTR object, then creates a BSTR from the first character of each element
in the safearray and attaches it to the CComBSTR object.

pSrc
[in] The safearray containing the elements used to create the string.

S_OK on success, or any standard HRESULT error value.

Assigns a BSTR to m_str.

HRESULT AssignBSTR(const BSTR bstrSrc) throw();

ParametersParameters

Return ValueReturn Value

CComBSTR::Attach

void Attach(BSTR src) throw();

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

// STDMETHOD(BSTRToUpper)(/*[in, out]*/ BSTR bstrConv);
STDMETHODIMP InplaceBSTRToUpper(BSTR bstrConv)
{
 // Assign bstrConv to m_str member of CComBSTR
 CComBSTR bstrTemp;
 bstrTemp.Attach(bstrConv);

 // Make sure BSTR is not NULL string
 if (!bstrTemp)
 return E_POINTER;

 // Make string uppercase
 HRESULT hr;
 hr = bstrTemp.ToUpper();
 if (hr != S_OK)
 return hr;

 // Set m_str to NULL, so the BSTR is not freed
 bstrTemp.Detach();

 return S_OK;
}

CComBSTR::BSTRToArray

bstrSrc
[in] A BSTR to assign to the current CComBSTR object.

S_OK on success, or any standard HRESULT error value.

Attaches a BSTR to the CComBSTR object by setting the m_str member to src.

src
[in] The BSTR to attach to the object.

Do not pass an ordinary wide-character string to this method. The compiler cannot catch the error and run time
errors will occur.

This method will assert if m_str is non- NULL.

Creates a zero-based one-dimensional safearray, where each element of the array is a character from the

HRESULT BSTRToArray(LPSAFEARRAY* ppArray) throw();

ParametersParameters

Return ValueReturn Value

CComBSTR::ByteLength

unsigned int ByteLength() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// string with 11 chars (22 bytes)
CComBSTR bstrTemp(OLESTR("Hello World"));

unsigned int len = bstrTemp.ByteLength();

ATLASSERT(len == 22);

CComBSTR::CComBSTR

CComBSTR() throw();
CComBSTR(const CComBSTR& src);
CComBSTR(REFGUID guid);
CComBSTR(int nSize);
CComBSTR(int nSize, LPCOLESTR sz);
CComBSTR(int nSize, LPCSTR sz);
CComBSTR(LPCOLESTR pSrc);
CComBSTR(LPCSTR pSrc);
CComBSTR(CComBSTR&& src) throw(); // (Visual Studio 2017)

ParametersParameters

CComBSTR object.

ppArray
[out] The pointer to the safearray used to hold the results of the function.

S_OK on success, or any standard HRESULT error value.

Returns the number of bytes in m_str , excluding the terminating null character.

The length of the m_str member in bytes.

Returns 0 if m_str is NULL.

The constructor. The default constructor sets the m_str member to NULL.

nSize
[in] The number of characters to copy from sz or the initial size in characters for the CComBSTR .

sz
[in] A string to copy. The Unicode version specifies an LPCOLESTR; the ANSI version specifies an LPCSTR.

pSrc

RemarksRemarks

ExampleExample

CComBSTR bstr1; // BSTR points to NULL
bstr1 = "Bye"; // initialize with assignment operator
 // ANSI string is converted to wide char

OLECHAR* str = OLESTR("Bye bye!"); // wide char string of length 5
int len = (int)wcslen(str);
CComBSTR bstr2(len + 1);// unintialized BSTR of length 6
wcsncpy_s(bstr2.m_str, bstr2.Length(), str, len); // copy wide char string to BSTR

CComBSTR bstr3(5, OLESTR("Hello World")); // BSTR containing 'Hello',
 // input string is wide char
CComBSTR bstr4(5, "Hello World"); // same as above, input string
 // is ANSI

CComBSTR bstr5(OLESTR("Hey there")); // BSTR containing 'Hey there',
 // input string is wide char
CComBSTR bstr6("Hey there"); // same as above, input string
 // is ANSI

CComBSTR bstr7(bstr6); // copy constructor, bstr7 contains 'Hey there'

CComBSTR::~CComBSTR

~CComBSTR();

RemarksRemarks

CComBSTR::Copy

[in] A string to copy. The Unicode version specifies an LPCOLESTR; the ANSI version specifies an LPCSTR.

src
[in] A CComBSTR object.

guid
[in] A reference to a GUID structure.

The copy constructor sets m_str to a copy of the BSTR member of src. The REFGUID constructor converts the
GUID to a string using StringFromGUID2 and stores the result.

The other constructors set m_str to a copy of the specified string. If you pass a value for nSize, then only nSize
characters will be copied, followed by a terminating null character.

CComBSTR supports move semantics. You can use the move constructor (the constructor that takes an rvalue
reference (&&) to create a new object that uses the same underlying data as the old object you pass in as an
argument, without the overhead of copying the object.

The destructor frees the string pointed to by m_str .

The destructor.

The destructor frees the string pointed to by m_str .

Allocates and returns a copy of m_str .

BSTR Copy() const throw();

Return ValueReturn Value

ExampleExample

CComBSTR m_bstrURL; // BSTR representing a URL

// put_URL is the put method for the URL property.
STDMETHOD(put_URL)(BSTR strURL)
{
 ATLTRACE(_T("put_URL\n"));

 // free existing string in m_bstrURL & make a copy
 // of strURL pointed to by m_bstrURL
 m_bstrURL = strURL;
 return S_OK;
}

// get_URL is the get method for the URL property.
STDMETHOD(get_URL)(BSTR* pstrURL)
{
 ATLTRACE(_T("get_URL\n"));

 // make a copy of m_bstrURL pointed to by pstrURL
 *pstrURL = m_bstrURL.Copy(); // See CComBSTR::CopyTo
 return S_OK;
}

CComBSTR::CopyTo

HRESULT CopyTo(BSTR* pbstr) throw();

HRESULT CopyTo(VARIANT* pvarDest) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

A copy of the m_str member. If m_str is NULL, returns NULL.

Allocates and returns a copy of m_str via the parameter.

pbstr
[out] The address of a BSTR in which to return the string allocated by this method.

pvarDest
[out] The address of a VARIANT in which to return the string allocated by this method.

A standard HRESULT value indicating the success or failure of the copy.

After calling this method, the VARIANT pointed to by pvarDest will be of type VT_BSTR.

CComBSTR m_bstrURL; // BSTR representing a URL

// get_URL is the get method for the URL property.
STDMETHOD(get_URL)(BSTR* pstrURL)
{
 // Make a copy of m_bstrURL and return it via pstrURL
 return m_bstrURL.CopyTo(pstrURL);
}

CComBSTR::Detach

BSTR Detach() throw();

Return ValueReturn Value

ExampleExample

// Method which converts bstrIn to uppercase
STDMETHODIMP BSTRToUpper(BSTR bstrIn, BSTR* pbstrOut)
{
 if (bstrIn == NULL || pbstrOut == NULL)
 return E_POINTER;

 // Create a temporary copy of bstrIn
 CComBSTR bstrTemp(bstrIn);

 if (!bstrTemp)
 return E_OUTOFMEMORY;

 // Make string uppercase
 HRESULT hr;
 hr = bstrTemp.ToUpper();
 if (hr != S_OK)
 return hr;

 // Return m_str member of bstrTemp
 *pbstrOut = bstrTemp.Detach();

 return S_OK;
}

CComBSTR::Empty

void Empty() throw();

ExampleExample

CComBSTR bstr(OLESTR("abc"));

// Calls SysFreeString to free the BSTR
bstr.Empty();
ATLASSERT(bstr.Length() == 0);

Detaches m_str from the CComBSTR object and sets m_str to NULL.

The BSTR associated with the CComBSTR object.

Frees the m_str member.

CComBSTR::Length

unsigned int Length() const throw();

Return ValueReturn Value

ExampleExample

// string with 11 chars
CComBSTR bstrTemp(OLESTR("Hello World"));

unsigned int len = bstrTemp.Length();

ATLASSERT(len == 11);

CComBSTR::LoadString

bool LoadString(HINSTANCE hInst, UINT nID) throw();
bool LoadString(UINT nID) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CComBSTR bstrTemp;

// IDS_PROJNAME proj name stored as resource in string table
bstrTemp.LoadString(IDS_PROJNAME);

// the above is equivalent to:
// bstrTemp.LoadString(_Module.m_hInstResource, IDS_PROJNAME);

// display message box w/ proj name as title & text
::MessageBox(NULL, CW2CT(bstrTemp), CW2CT(bstrTemp), MB_OK);

CComBSTR::m_str

BSTR m_str;

Returns the number of characters in m_str , excluding the terminating null character.

The length of the m_str member.

Loads a string resource specified by nID and stores it in this object.

See LoadString in the Windows SDK.

Returns TRUE if the string is successfully loaded; otherwise, returns FALSE.

The first function loads the resource from the module identified by you via the hInst parameter. The second
function loads the resource from the resource module associated with the CComModule-derived object used in
this project.

Contains the BSTR associated with the CComBSTR object.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-loadstringa

ExampleExample

CComBSTR GuidToBSTR(REFGUID guid)
{
 // 39 - length of string representation of GUID + 1
 CComBSTR b(39);

 // Convert GUID to BSTR
 // m_str member of CComBSTR is of type BSTR. When BSTR param
 // is required, pass the m_str member explicitly or use implicit
 // BSTR cast operator.
 int nRet = StringFromGUID2(guid, b.m_str, 39);

 // Above equivalent to:
 // int nRet = StringFromGUID2(guid, b, 39);
 // implicit BSTR cast operator used for 2nd param

 // Both lines are equivalent to:
 // CComBSTR b(guid);
 // CComBSTR constructor can convert GUIDs

 ATLASSERT(nRet);
 return b;
}

CComBSTR::operator BSTR

operator BSTR() const throw();

RemarksRemarks

ExampleExample

CComBSTR::operator !

bool operator!() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

Casts a CComBSTR object to a BSTR.

Allows you to pass CComBSTR objects to functions that have [in] BSTR parameters.

See the example for CComBSTR::m_str.

Checks whether BSTR string is NULL.

Returns TRUE if the m_str member is NULL; otherwise, FALSE.

This operator only checks for a NULL value, not for an empty string.

// STDMETHOD(BSTRToUpper)(/*[in, out]*/ BSTR bstrConv);
STDMETHODIMP InplaceBSTRToUpper(BSTR bstrConv)
{
 // Assign bstrConv to m_str member of CComBSTR
 CComBSTR bstrTemp;
 bstrTemp.Attach(bstrConv);

 // Make sure BSTR is not NULL string
 if (!bstrTemp)
 return E_POINTER;

 // Make string uppercase
 HRESULT hr;
 hr = bstrTemp.ToUpper();
 if (hr != S_OK)
 return hr;

 // Set m_str to NULL, so the BSTR is not freed
 bstrTemp.Detach();

 return S_OK;
}

CComBSTR::operator !=

bool operator!= (const CComBSTR& bstrSrc) const throw();
bool operator!= (LPCOLESTR pszSrc) const;
bool operator!= (LPCSTR pszSrc) const;
bool operator!= (int nNull) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComBSTR::operator &

BSTR* operator&() throw();

RemarksRemarks

Returns the logical opposite of operator ==.

bstrSrc
[in] A CComBSTR object.

pszSrc
[in] A zero-terminated string.

nNull
[in] Must be NULL.

Returns TRUE if the item being compared is not equal to the CComBSTR object; otherwise, returns FALSE.

CComBSTR s are compared textually in the context of the user's default locale. The final comparison operator just
compares the contained string against NULL.

Returns the address of the BSTR stored in the m_str member.

ExampleExample

#define ATL_NO_CCOMBSTR_ADDRESS_OF_ASSERT

void MyInitFunction(BSTR* pbstr)
{
 ::SysReAllocString(pbstr, OLESTR("Hello World"));
 return;
}

CComBSTR bstrStr ;
// bstrStr is not initialized so this call will not assert.
MyInitFunction(&bstrStr);

CComBSTR bstrStr2(OLESTR("Hello World"));
// bstrStr2 is initialized so this call will assert.
::SysReAllocString(&bstrStr2, OLESTR("Bye"));

CComBSTR::operator +=

CComBSTR& operator+= (const CComBSTR& bstrSrc);
CComBSTR& operator+= (const LPCOLESTR pszSrc);

ParametersParameters

RemarksRemarks

ExampleExample

CComBstr operator & has a special assertion associated with it to help identify memory leaks. The program will
assert when the m_str member is initialized. This assertion was created to identify situations where a
programmer uses the & operator to assign a new value to m_str member without freeing the first allocation of
m_str . If m_str equals NULL, the program assumes that m_str wasn't allocated yet. In this case, the program will

not assert.

This assertion is not enabled by default. Define ATL_CCOMBSTR_ADDRESS_OF_ASSERT to enable this
assertion.

Appends a string to the CComBSTR object.

bstrSrc
[in] A CComBSTR object to append.

pszSrc
[in] A zero-terminated string to append.

CComBSTR s are compared textually in the context of the user's default locale. The LPCOLESTR comparison is done
using memcmp on the raw data in each string. The LPCSTR comparison is carried out in the same way once a
temporary Unicode copy of pszSrc has been created. The final comparison operator just compares the contained
string against NULL.

CComBSTR bstrPre(OLESTR("Hello "));
CComBSTR bstrSuf(OLESTR("World!"));

// Appends "World!" to "Hello "
bstrPre += bstrSuf;

// Displays a message box with text "Hello World!"
::MessageBox(NULL, CW2CT(bstrPre), NULL, MB_OK);

CComBSTR::operator <

bool operator<(const CComBSTR& bstrSrc) const throw();
bool operator<(LPCOLESTR pszSrc) const throw();
bool operator<(LPCSTR pszSrc) const throw();

Return ValueReturn Value

RemarksRemarks

CComBSTR::operator =

CComBSTR& operator= (const CComBSTR& src);
CComBSTR& operator= (LPCOLESTR pSrc);
CComBSTR& operator= (LPCSTR pSrc);
CComBSTR& operator= (CComBSTR&& src) throw(); // (Visual Studio 2017)

RemarksRemarks

ExampleExample

CComBSTR::operator ==

bool operator== (const CComBSTR& bstrSrc) const throw();
bool operator== (LPCOLESTR pszSrc) const;
bool operator== (LPCSTR pszSrc) const;
bool operator== (int nNull) const throw();

ParametersParameters

Compares a CComBSTR with a string.

Returns TRUE if the item being compared is less than the CComBSTR object; otherwise, returns FALSE.

The comparison is performed using the user's default locale.

Sets the m_str member to a copy of pSrc or to a copy of the BSTR member of src. The move assignment operator
moves src without copying it.

The pSrc parameter specifies either an LPCOLESTR for Unicode versions or LPCSTR for ANSI versions.

See the example for CComBSTR::Copy.

Compares a CComBSTR with a string. CComBSTR s are compared textually in the context of the user's default locale.

bstrSrc
[in] A CComBSTR object.

pszSrc

Return ValueReturn Value

RemarksRemarks

CComBSTR::operator >

bool operator>(const CComBSTR& bstrSrc) const throw();

Return ValueReturn Value

RemarksRemarks

CComBSTR::ReadFromStream

HRESULT ReadFromStream(IStream* pStream) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

[in] A zero-terminated string.

nNull
[in] Must be NULL.

Returns TRUE if the item being compared is equal to the CComBSTR object; otherwise, returns FALSE.

The final comparison operator just compares the contained string against NULL.

Compares a CComBSTR with a string.

Returns TRUE if the item being compared is greater than the CComBSTR object; otherwise, returns FALSE.

The comparison is performed using the user's default locale.

Sets the m_str member to the BSTR contained in the specified stream.

pStream
[in] A pointer to the IStream interface on the stream containing the data.

A standard HRESULT value.

ReadToStream requires the contents of the stream at the current position to be compatible with the data format
written out by a call to WriteToStream.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream

IDataObject* pDataObj;

// Fill in the FORMATETC struct to retrieve desired format
// from clipboard
FORMATETC formatetcIn = {CF_TEXT, NULL, DVASPECT_CONTENT, -1, TYMED_ISTREAM};
STGMEDIUM medium;
ZeroMemory(&medium, sizeof(STGMEDIUM));

// Get IDataObject from clipboard
HRESULT hr = ::OleGetClipboard(&pDataObj);

// Retrieve data from clipboard
hr = pDataObj->GetData(&formatetcIn, &medium);

if (SUCCEEDED(hr) && medium.tymed == TYMED_ISTREAM)
{
 CComBSTR bstrStr;
 // Get BSTR out of the stream
 hr = bstrStr.ReadFromStream(medium.pstm);

 //release the stream
 ::ReleaseStgMedium(&medium);
}

CComBSTR::ToLower

HRESULT ToLower() throw();

Return ValueReturn Value

RemarksRemarks

CComBSTR::ToUpper

HRESULT ToUpper() throw();

Return ValueReturn Value

RemarksRemarks

CComBSTR::WriteToStream

HRESULT WriteToStream(IStream* pStream) throw();

ParametersParameters

Converts the contained string to lowercase.

A standard HRESULT value.

See CharLowerBuff for more information on how the conversion is performed.

Converts the contained string to uppercase.

A standard HRESULT value.

See CharUpperBuff for more information on how the conversion is performed.

Saves the m_str member to a stream.

Return ValueReturn Value

RemarksRemarks

ExampleExample

//implementation of IDataObject::GetData()
STDMETHODIMP CMyDataObj::GetData(FORMATETC *pformatetcIn, STGMEDIUM *pmedium)
{
 HRESULT hr = S_OK;
 if (pformatetcIn->cfFormat == CF_TEXT && pformatetcIn->tymed == TYMED_ISTREAM)
 {
 IStream *pStm;
 // Create an IStream from global memory
 hr = CreateStreamOnHGlobal(NULL, TRUE, &pStm);
 if (FAILED(hr))
 return hr;

 // Initialize CComBSTR
 CComBSTR bstrStr = OLESTR("Hello World");

 // Serialize string into stream
 // the length followed by actual string is serialized into stream
 hr = bstrStr.WriteToStream(pStm);

 // Pass the IStream pointer back through STGMEDIUM struct
 pmedium->tymed = TYMED_ISTREAM;
 pmedium->pstm = pStm;
 pmedium->pUnkForRelease = NULL;
 }

 return hr;
}

See also

pStream
[in] A pointer to the IStream interface on a stream.

A standard HRESULT value.

You can recreate a BSTR from the contents of the stream using the ReadFromStream function.

Class Overview
ATL and MFC String Conversion Macros

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream

CComCachedTearOffObject Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template
<class contained>
class CComCachedTearOffObject : public
 IUnknown,
public CComObjectRootEx<contained
::_ThreadModel::ThreadModelNoCS>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComCachedTearOffObject::CComCachedTearOffObject The constructor.

CComCachedTearOffObject::~CComCachedTearOffObject The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComCachedTearOffObject::AddRef Increments the reference count for a
CComCachedTearOffObject object.

CComCachedTearOffObject::FinalConstruct Calls the m_contained::FinalConstruct (the tear-off class'
method).

CComCachedTearOffObject::FinalRelease Calls the m_contained::FinalRelease (the tear-off class'
method).

CComCachedTearOffObject::QueryInterface Returns a pointer to the IUnknown of the
CComCachedTearOffObject object, or to the requested

interface on your tear-off class (the class contained).

CComCachedTearOffObject::Release Decrements the reference count for a
CComCachedTearOffObject object and destroys it if the

reference count is 0.

Public Data MembersPublic Data Members

This class implements IUnknown for a tear-off interface.

contained
Your tear-off class, derived from CComTearOffObjectBase and the interfaces you want your tear-off object to
support.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomcachedtearoffobject-class.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

NAME DESCRIPTION

CComCachedTearOffObject::m_contained A CComContainedObject object derived from your tear-off
class (the class contained).

Remarks

Inheritance Hierarchy

Requirements

CComCachedTearOffObject::AddRef

STDMETHOD_(ULONG, AddRef)();

Return ValueReturn Value

CComCachedTearOffObject::CComCachedTearOffObject

CComCachedTearOffObject(void* pv);

ParametersParameters

CComCachedTearOffObject implements IUnknown for a tear-off interface. This class differs from CComTearOffObject

in that CComCachedTearOffObject has its own IUnknown , separate from the owner object's IUnknown (the owner is
the object for which the tear-off is being created). CComCachedTearOffObject maintains its own reference count on
its IUnknown and deletes itself once its reference count is zero. However, if you query for any of its tear-off
interfaces, the reference count of the owner object's IUnknown will be incremented.

If the CComCachedTearOffObject object implementing the tear-off is already instantiated, and the tear-off interface
is queried for again, the same CComCachedTearOffObject object is reused. In contrast, if a tear-off interface
implemented by a CComTearOffObject is again queried for through the owner object, another CComTearOffObject

will be instantiated.

The owner class must implement FinalRelease and call Release on the cached IUnknown for the
CComCachedTearOffObject , which will decrement its reference count. This will cause CComCachedTearOffObject 's
FinalRelease to be called and delete the tear-off.

CComObjectRootBase

CComObjectRootEx

IUnknown

CComCachedTearOffObject

Header: atlcom.h

Increments the reference count of the CComCachedTearOffObject object by 1.

A value that may be useful for diagnostics and testing.

The constructor.

https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

RemarksRemarks

CComCachedTearOffObject::~CComCachedTearOffObject

~CComCachedTearOffObject();

RemarksRemarks

CComCachedTearOffObject::FinalConstruct

HRESULT FinalConstruct();

Return ValueReturn Value

CComCachedTearOffObject::FinalRelease

void FinalRelease();

CComCachedTearOffObject::m_contained

CcomContainedObject <contained> m_contained;

ParametersParameters

RemarksRemarks

CComCachedTearOffObject::QueryInterface

pv
[in] Pointer to the IUnknown of the CComCachedTearOffObject .

Initializes the CComContainedObject member, m_contained.

The destructor.

Frees all allocated resources and calls FinalRelease.

Calls m_contained::FinalConstruct to create m_contained , the CComContainedObject < contained > object used to
access the interface implemented by your tear-off class.

A standard HRESULT value.

Calls m_contained::FinalRelease to free m_contained , the CComContainedObject < contained > object.

A CComContainedObject object derived from your tear-off class.

contained
[in] Your tear-off class, derived from CComTearOffObjectBase and the interfaces you want your tear-off object to
support.

The methods m_contained inherits are used to access the tear-off interface in your tear-off class through the
cached tear-off object's QueryInterface , FinalConstruct , and FinalRelease .

Retrieves a pointer to the requested interface.

STDMETHOD(QueryInterface)(REFIID iid, void** ppvObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComCachedTearOffObject::Release

STDMETHOD_(ULONG, Release)();

Return ValueReturn Value

See also

iid
[in] The GUID of the interface being requested.

ppvObject
[out] A pointer to the interface pointer identified by iid, or NULL if the interface is not found.

A standard HRESULT value.

If the requested interface is IUnknown , returns a pointer to the CComCachedTearOffObject 's own IUnknown and
increments the reference count. Otherwise, queries for the interface on your tear-off class using the
InternalQueryInterface method inherited from CComObjectRootEx .

Decrements the reference count by 1 and, if the reference count is 0, deletes the CComCachedTearOffObject object.

In non-debug builds, always returns 0. In debug builds, returns a value that may be useful for diagnostics or
testing.

CComTearOffObject Class
CComObjectRootEx Class
Class Overview

CComClassFactory Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CComClassFactory
 : public IClassFactory,
 public CComObjectRootEx<CComGlobalsThreadModel>

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CComClassFactory::CreateInstance Creates an object of the specified CLSID.

CComClassFactory::LockServer Locks the class factory in memory.

Remarks

class ATL_NO_VTABLE CMyCustomClass :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyCustomClass, &CLSID_MyCustomClass>,
 public IDispatchImpl<IMyCustomClass, &IID_IMyCustomClass, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1,
/*wMinor =*/ 0>
{
public:
 DECLARE_CLASSFACTORY_EX(CMyClassFactory)

 // Remainder of class declaration omitted.

This class implements the IClassFactory interface.

CComClassFactory implements the IClassFactory interface, which contains methods for creating an object of a
particular CLSID, as well as locking the class factory in memory to allow new objects to be created more
quickly. IClassFactory must be implemented for every class that you register in the system registry and to
which you assign a CLSID.

ATL objects normally acquire a class factory by deriving from CComCoClass. This class includes the macro
DECLARE_CLASSFACTORY, which declares CComClassFactory as the default class factory. To override this
default, specify one of the DECLARE_CLASSFACTORY XXX macros in your class definition. For example, the
DECLARE_CLASSFACTORY_EX macro uses the specified class for the class factory:

The above class definition specifies that CMyClassFactory will be used as the object's default class factory.
CMyClassFactory must derive from CComClassFactory and override CreateInstance .

ATL provides three other macros that declare a class factory:

DECLARE_CLASSFACTORY2 Uses CComClassFactory2, which controls creation through a license.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomclassfactory-class.md
https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory
https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory

Requirements

CComClassFactory::CreateInstance

STDMETHOD(CreateInstance)(LPUNKNOWN pUnkOuter, REFIID riid, void** ppvObj);

ParametersParameters

Return ValueReturn Value

CComClassFactory::LockServer

STDMETHOD(LockServer)(BOOL fLock);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

DECLARE_CLASSFACTORY_AUTO_THREAD Uses CComClassFactoryAutoThread, which creates
objects in multiple apartments.

DECLARE_CLASSFACTORY_SINGLETON Uses CComClassFactorySingleton, which constructs a single
CComObjectGlobal object.

Header: atlcom.h

Creates an object of the specified CLSID and retrieves an interface pointer to this object.

pUnkOuter
[in] If the object is being created as part of an aggregate, then pUnkOuter must be the outer unknown.
Otherwise, pUnkOuter must be NULL.

riid
[in] The IID of the requested interface. If pUnkOuter is non- NULL, riid must be IID_IUnknown .

ppvObj
[out] A pointer to the interface pointer identified by riid. If the object does not support this interface, ppvObj is
set to NULL.

A standard HRESULT value.

Increments and decrements the module lock count by calling _Module::Lock and _Module::Unlock , respectively.

fLock
[in] If TRUE, the lock count is incremented; otherwise, the lock count is decremented.

A standard HRESULT value.

_Module refers to the global instance of CComModule or a class derived from it.

Calling LockServer allows a client to hold onto a class factory so that multiple objects can be created quickly.

CComObjectRootEx Class
CComGlobalsThreadModel
Class Overview

CComClassFactory2 Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
template <class license>
class CComClassFactory2 : public IClassFactory2,
 public CComObjectRootEx<CComGlobalsThreadModel>,
 public license

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CComClassFactory2::CreateInstance Creates an object of the specified CLSID.

CComClassFactory2::CreateInstanceLic Given a license key, creates an object of the specified CLSID.

CComClassFactory2::GetLicInfo Retrieves information describing the licensing capabilities of
the class factory.

CComClassFactory2::LockServer Locks the class factory in memory.

CComClassFactory2::RequestLicKey Creates and returns a license key.

Remarks

This class implements the IClassFactory2 interface.

license
A class that implements the following static functions:

static BOOL VerifyLicenseKey(BSTR bstr);

static BOOL GetLicenseKey(DWORD dwReserved, BSTR * pBstr);

static BOOL IsLicenseValid();

CComClassFactory2 implements the IClassFactory2 interface, which is an extension of IClassFactory.
IClassFactory2 controls object creation through a license. A class factory executing on a licensed machine can

provide a run-time license key. This license key allows an application to instantiate objects when a full machine
license does not exist.

ATL objects normally acquire a class factory by deriving from CComCoClass. This class includes the macro
DECLARE_CLASSFACTORY, which declares CComClassFactory as the default class factory. To use
CComClassFactory2 , specify the DECLARE_CLASSFACTORY2 macro in your object's class definition. For

example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomclassfactory2-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iclassfactory2
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iclassfactory2
https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory

class ATL_NO_VTABLE CMyClass2 :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyClass2, &CLSID_MyClass>,
 public IDispatchImpl<IMyClass, &IID_IMyClass, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor =*/ 0>,
 public IDispatchImpl<IMyDualInterface, &__uuidof(IMyDualInterface), &LIBID_NVC_ATL_COMLib, /* wMajor = */
1, /* wMinor = */ 0>
{
public:
 DECLARE_CLASSFACTORY2(CMyLicense)

 // Remainder of class declaration omitted

class CMyLicense
{
protected:
 static BOOL VerifyLicenseKey(BSTR bstr)
 {
 USES_CONVERSION;
 return !lstrcmp(OLE2T(bstr), _T("My run-time license key"));
 }

 static BOOL GetLicenseKey(DWORD /*dwReserved*/, BSTR* pBstr)
 {
 USES_CONVERSION;
 *pBstr = SysAllocString(T2OLE(_T("My run-time license key")));
 return TRUE;
 }

 static BOOL IsLicenseValid() { return TRUE; }
};

Inheritance Hierarchy

Requirements

CComClassFactory2::CreateInstance

STDMETHOD(CreateInstance)(LPUNKNOWN pUnkOuter, REFIID riid, void** ppvObj);

CMyLicense , the template parameter to CComClassFactory2 , must implement the static functions
VerifyLicenseKey , GetLicenseKey , and IsLicenseValid . The following is an example of a simple license class:

CComClassFactory2 derives from both CComClassFactory2Base and license. CComClassFactory2Base , in turn, derives
from IClassFactory2 and CComObjectRootEx< CComGlobalsThreadModel > .

CComObjectRootBase

license

CComObjectRootEx

IClassFactory2

CComClassFactory2

Header: atlcom.h

Creates an object of the specified CLSID and retrieves an interface pointer to this object.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComClassFactory2::CreateInstanceLic

STDMETHOD(CreateInstanceLic)(
 IUnknown* pUnkOuter,
 IUnknown* /* pUnkReserved
*/,
 REFIID riid,
 BSTR bstrKey,
 void** ppvObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pUnkOuter
[in] If the object is being created as part of an aggregate, then pUnkOuter must be the outer unknown.
Otherwise, pUnkOuter must be NULL.

riid
[in] The IID of the requested interface. If pUnkOuter is non- NULL, riid must be IID_IUnknown .

ppvObj
[out] A pointer to the interface pointer identified by riid. If the object does not support this interface, ppvObj is set
to NULL.

A standard HRESULT value.

Requires the machine to be fully licensed. If a full machine license does not exist, call CreateInstanceLic.

Similar to CreateInstance, except that CreateInstanceLic requires a license key.

pUnkOuter
[in] If the object is being created as part of an aggregate, then pUnkOuter must be the outer unknown.
Otherwise, pUnkOuter must be NULL.

pUnkReserved
[in] Not used. Must be NULL.

riid
[in] The IID of the requested interface. If pUnkOuter is non- NULL, riid must be IID_IUnknown .

bstrKey
[in] The run-time license key previously obtained from a call to RequestLicKey . This key is required to create the
object.

ppvObject
[out] A pointer to the interface pointer specified by riid. If the object does not support this interface, ppvObject is
set to NULL.

A standard HRESULT value.

You can obtain a license key using RequestLicKey. In order to create an object on an unlicensed machine, you
must call CreateInstanceLic .

CComClassFactory2::GetLicInfo

STDMETHOD(GetLicInfo)(LICINFO* pLicInfo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComClassFactory2::LockServer

STDMETHOD(LockServer)(BOOL fLock);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComClassFactory2::RequestLicKey

STDMETHOD(RequestLicKey)(DWORD dwReserved, BSTR* pbstrKey);

ParametersParameters

Return ValueReturn Value

Fills a L ICINFO structure with information that describes the class factory's licensing capabilities.

pLicInfo
[out] Pointer to a LICINFO structure.

A standard HRESULT value.

The fRuntimeKeyAvail member of this structure indicates whether, given a license key, the class factory allows
objects to be created on an unlicensed machine. The fLicVerified member indicates whether a full machine license
exists.

Increments and decrements the module lock count by calling _Module::Lock and _Module::Unlock , respectively.

fLock
[in] If TRUE, the lock count is incremented; otherwise, the lock count is decremented.

A standard HRESULT value.

_Module refers to the global instance of CComModule or a class derived from it.

Calling LockServer allows a client to hold onto a class factory so that multiple objects can be quickly created.

Creates and returns a license key, provided that the fRuntimeKeyAvail member of the L ICINFO structure is
TRUE.

dwReserved
[in] Not used. Must be zero.

pbstrKey
[out] Pointer to the license key.

A standard HRESULT value.

https://docs.microsoft.com/windows/desktop/api/ocidl/ns-ocidl-taglicinfo
https://docs.microsoft.com/windows/desktop/api/ocidl/ns-ocidl-taglicinfo

RemarksRemarks

See also

A license key is required for calling CreateInstanceLic to create an object on an unlicensed machine. If
fRuntimeKeyAvail is FALSE, then objects can only be created on a fully licensed machine.

Call GetLicInfo to retrieve the value of fRuntimeKeyAvail .

CComClassFactoryAutoThread Class
CComClassFactorySingleton Class
CComObjectRootEx Class
CComGlobalsThreadModel
Class Overview

CComClassFactoryAutoThread Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CComClassFactoryAutoThread
 : public IClassFactory,
 public CComObjectRootEx<CComGlobalsThreadModel>

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CComClassFactoryAutoThread::CreateInstance Creates an object of the specified CLSID.

CComClassFactoryAutoThread::LockServer Locks the class factory in memory.

Remarks

class ATL_NO_VTABLE CMyAutoClass :
 public CComObjectRootEx<CComMultiThreadModel>,
 public CComCoClass<CMyAutoClass, &CLSID_MyAutoClass>,
 public IMyAutoClass
{
public:
 DECLARE_CLASSFACTORY_AUTO_THREAD()

 // Remainder of class declaration omitted.

Inheritance Hierarchy

This class implements the IClassFactory interface, and allows objects to be created in multiple apartments.

This class and its members cannot be used in applications that execute in the Windows Runtime.

CComClassFactoryAutoThread is similar to CComClassFactory, but allows objects to be created in multiple
apartments. To take advantage of this support, derive your EXE module from CComAutoThreadModule.

ATL objects normally acquire a class factory by deriving from CComCoClass. This class includes the macro
DECLARE_CLASSFACTORY, which declares CComClassFactory as the default class factory. To use
CComClassFactoryAutoThread , specify the DECLARE_CLASSFACTORY_AUTO_THREAD macro in your object's

class definition. For example:

CComObjectRootBase

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomclassfactoryautothread-class.md
https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory

Requirements

CComClassFactoryAutoThread::CreateInstance

STDMETHODIMP CreateInstance(
 LPUNKNOWN pUnkOuter,
 REFIID riid,
 void** ppvObj);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComClassFactoryAutoThread::LockServer

STDMETHODIMP LockServer(BOOL fLock);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComObjectRootEx

IClassFactory

CComClassFactoryAutoThread

Header: atlcom.h

Creates an object of the specified CLSID and retrieves an interface pointer to this object.

pUnkOuter
[in] If the object is being created as part of an aggregate, then pUnkOuter must be the outer unknown.
Otherwise, pUnkOuter must be NULL.

riid
[in] The IID of the requested interface. If pUnkOuter is non- NULL, riid must be IID_IUnknown .

ppvObj
[out] A pointer to the interface pointer identified by riid. If the object does not support this interface, ppvObj is
set to NULL.

A standard HRESULT value.

If your module derives from CComAutoThreadModule, CreateInstance first selects a thread to create the object
in the associated apartment.

Increments and decrements the module lock count by calling _Module::Lock and _Module::Unlock , respectively.

fLock
[in] If TRUE, the lock count is incremented; otherwise, the lock count is decremented.

A standard HRESULT value.

When using CComClassFactoryAutoThread , _Module typically refers to the global instance of
CComAutoThreadModule.

See also

Calling LockServer allows a client to hold onto a class factory so that multiple objects can be quickly created.

IClassFactory
CComClassFactory2 Class
CComClassFactorySingleton Class
CComObjectRootEx Class
CComGlobalsThreadModel
Class Overview

https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory

CComClassFactorySingleton Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class CComClassFactorySingleton : public CComClassFactory

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CComClassFactorySingleton::CreateInstance Queries m_spObj for an interface pointer.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComClassFactorySingleton::m_spObj The CComObjectGlobal object constructed by
CComClassFactorySingleton .

Remarks

This class derives from CComClassFactory and uses CComObjectGlobal to construct a single object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class.

CComClassFactorySingleton derives from CComClassFactory and uses CComObjectGlobal to construct a single
object. Each call to the CreateInstance method simply queries this object for an interface pointer.

ATL objects normally acquire a class factory by deriving from CComCoClass. This class includes the macro
DECLARE_CLASSFACTORY, which declares CComClassFactory as the default class factory. To use
CComClassFactorySingleton , specify the DECLARE_CLASSFACTORY_SINGLETON macro in your object's class

definition. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomclassfactorysingleton-class.md

class ATL_NO_VTABLE CMySingletonClass :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMySingletonClass, &CLSID_MySingletonClass>,
 public IMySingletonClass
{
public:
 DECLARE_CLASSFACTORY_SINGLETON(CMySingletonClass)

 // Remainder of class declaration omitted.

Inheritance Hierarchy

Requirements

CComClassFactorySingleton::CreateInstance

STDMETHOD(CreateInstance)(LPUNKNOWN pUnkOuter, REFIID riid, void** ppvObj);

ParametersParameters

Return ValueReturn Value

CComClassFactorySingleton::m_spObj

CComPtr<IUnknown> m_spObj;

RemarksRemarks

CComObjectRootBase

CComObjectRootEx

IClassFactory

CComClassFactory

CComClassFactorySingleton

Header: atlcom.h

Calls QueryInterface through m_spObj to retrieve an interface pointer.

pUnkOuter
[in] If the object is being created as part of an aggregate, then pUnkOuter must be the outer unknown.
Otherwise, pUnkOuter must be NULL.

riid
[in] The IID of the requested interface. If pUnkOuter is non- NULL, riid must be IID_IUnknown .

ppvObj
[out] A pointer to the interface pointer identified by riid. If the object does not support this interface, ppvObj is set
to NULL.

A standard HRESULT value.

The CComObjectGlobal object constructed by CComClassFactorySingleton .

Each call to the CreateInstance method simply queries this object for an interface pointer.

See also

Note that the current form of m_spObj presents a breaking change from the way that CComClassFactorySingleton

worked in previous versions of ATL. In previous versions the CComClassFactorySingleton object was created at the
same time as the class factory, during server initialization. In Visual C++.NET 2003, the object is created lazily, on
the first request. This change could cause errors in programs that rely on early initialization.

IClassFactory
CComClassFactory2 Class
CComClassFactoryAutoThread Class
CComObjectRootEx Class
CComGlobalsThreadModel
Class Overview

https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory

CComCoClass Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
template <class T, const CLSID* pclsid = &CLSID_NULL>
class CComCoClass

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CComCoClass::CreateInstance (Static) Creates an instance of the class and queries for an
interface.

CComCoClass::Error (Static) Returns rich error information to the client.

CComCoClass::GetObjectCLSID (Static) Returns the object's class identifier.

CComCoClass::GetObjectDescription (Static) Override to return the object's description.

Remarks

This class provides methods for creating instances of a class, and obtaining its properties.

T
Your class, derived from CComCoClass .

pclsid
A pointer to the CLSID of the object.

CComCoClass provides methods for retrieving an object's CLSID, setting error information, and creating
instances of the class. Any class registered in the object map should be derived from CComCoClass .

CComCoClass also defines the default class factory and aggregation model for your object. CComCoClass uses
the following two macros:

DECLARE_CLASSFACTORY Declares the class factory to be CComClassFactory.

DECLARE_AGGREGATABLE Declares that your object can be aggregated.

You can override either of these defaults by specifying another macro in your class definition. For example, to
use CComClassFactory2 instead of CComClassFactory , specify the DECLARE_CLASSFACTORY2 macro:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomcoclass-class.md

class ATL_NO_VTABLE CMyClass2 :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyClass2, &CLSID_MyClass>,
 public IDispatchImpl<IMyClass, &IID_IMyClass, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor =*/ 0>,
 public IDispatchImpl<IMyDualInterface, &__uuidof(IMyDualInterface), &LIBID_NVC_ATL_COMLib, /* wMajor =
/ 1, / wMinor = */ 0>
{
public:
 DECLARE_CLASSFACTORY2(CMyLicense)

 // Remainder of class declaration omitted

Requirements

CComCoClass::CreateInstance

template <class Q>
static HRESULT CreateInstance(Q** pp);

template <class Q>
static HRESULT CreateInstance(IUnknown* punkOuter, Q** pp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Header: atlcom.h

Use these CreateInstance functions to create an instance of a COM object and retrieve an interface pointer
without using the COM API.

Q
The COM interface that should be returned via pp.

punkOuter
[in] The outer unknown or controlling unknown of the aggregate.

pp
[out] The address of a pointer variable that receives the requested interface pointer if creation succeeds.

A standard HRESULT value. See CoCreateInstance in the Windows SDK for a description of possible return
values.

Use the first overload of this function for typical object creation; use the second overload when you need to
aggregate the object being created.

The ATL class implementing the required COM object (that is, the class used as the first template parameter to
CComCoClass) must be in the same project as the calling code. The creation of the COM object is carried out
by the class factory registered for this ATL class.

These functions are useful for creating objects that you have prevented from being externally creatable by
using the OBJECT_ENTRY_NON_CREATEABLE_EX_AUTO macro. They are also useful in situations where you
want to avoid the COM API for reasons of efficiency.

Note that the interface Q must have an IID associated with it that can be retrieved using the __uuidof operator.

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cocreateinstance
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/uuidof-operator

STDMETHODIMP CMyApp::CreateDocument(/* [out, retval] */ IDocument** ppDoc)
{
 *ppDoc = NULL;
 return CMyDoc::CreateInstance(ppDoc);
}

CComCoClass::Error

static HRESULT WINAPI Error(
 LPCOLESTR lpszDesc,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0);

static HRESULT WINAPI Error(
 LPCOLESTR lpszDesc,
 DWORD dwHelpID,
 LPCOLESTR lpszHelpFile,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0);

static HRESULT WINAPI Error(
 LPCSTR lpszDesc,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0);

static HRESULT WINAPI Error(
 LPCSTR lpszDesc,
 DWORD dwHelpID,
 LPCSTR lpszHelpFile,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0);

static HRESULT WINAPI Error(
 UINT nID,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0,
 HINSTANCE hInst = _AtlBaseModule.GetResourceInstance ());

static HRESULT Error(
 UINT nID,
 DWORD dwHelpID,
 LPCOLESTR lpszHelpFile,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0,
 HINSTANCE hInst = _AtlBaseModule.GetResourceInstance());

ParametersParameters

In the following example, CDocument is a wizard-generated ATL class derived from CComCoClass that
implements the IDocument interface. The class is registered in the object map with the
OBJECT_ENTRY_NON_CREATEABLE_EX_AUTO macro so clients can't create instances of the document using
CoCreateInstance. CApplication is a CoClass that provides a method on one of its own COM interfaces to
create instances of the document class. The code below shows how easy it to create instances of the document
class using the CreateInstance member inherited from the CComCoClass base class.

This static function sets up the IErrorInfo interface to provide error information to the client.

lpszDesc
[in] The string describing the error. The Unicode version of Error specifies that lpszDesc is of type
LPCOLESTR; the ANSI version specifies a type of LPCSTR.

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cocreateinstance

Return ValueReturn Value

RemarksRemarks

CComCoClass::GetObjectCLSID

static const CLSID& WINAPI GetObjectCLSID();

Return ValueReturn Value

CComCoClass::GetObjectDescription

static LPCTSTR WINAPI GetObjectDescription();

Return ValueReturn Value

RemarksRemarks

iid
[in] The IID of the interface defining the error or GUID_NULL (the default value) if the error is defined by the
operating system.

hRes
[in] The HRESULT you want returned to the caller. The default value is 0. For more details about hRes, see
Remarks.

nID
[in] The resource identifier where the error description string is stored. This value should lie between 0x0200
and 0xFFFF, inclusively. In debug builds, an ASSERT will result if nID does not index a valid string. In release
builds, the error description string will be set to "Unknown Error."

dwHelpID
[in] The help context identifier for the error.

lpszHelpFile
[in] The path and name of the help file describing the error.

hInst
[in] The handle to the resource. By default, this parameter is _AtlModule::GetResourceInstance , where
_AtlModule is the global instance of CAtlModule.

A standard HRESULT value. For details, see Remarks.

To call Error , your object must implement the ISupportErrorInfo Interface interface.

If the hRes parameter is nonzero, then Error returns the value of hRes. If hRes is zero, then the first four
versions of Error return DISP_E_EXCEPTION. The last two versions return the result of the macro
MAKE_HRESULT(1, FACILITY_ITF, nID).

Provides a consistent way of retrieving the object's CLSID.

The object's class identifier.

This static function retrieves the text description for your class object.

The class object's description.

The default implementation returns NULL. You can override this method with the
DECLARE_OBJECT_DESCRIPTION macro. For example:

class ATL_NO_VTABLE CMyDoc :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyDoc, &CLSID_MyDoc>,
 public IDocument
{
public:
 DECLARE_OBJECT_DESCRIPTION("My Document Object 1.0")

 // Remainder of class declaration omitted.

See also

GetObjectDescription is called by IComponentRegistrar::GetComponents . IComponentRegistrar is an Automation
interface that allows you to register and unregister individual components in a DLL. When you create a
Component Registrar object with the ATL Project Wizard, the wizard will automatically implement the
IComponentRegistrar interface. IComponentRegistrar is typically used by Microsoft Transaction Server.

For more information about the ATL Project Wizard, see the article Creating an ATL Project.

Class Overview

CComCompositeControl Class
3/4/2019 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T>
class CComCompositeControl : public CComControl<T,CAxDialogImpl<T>>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComCompositeControl::CComCompositeControl The constructor.

CComCompositeControl::~CComCompositeControl The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComCompositeControl::AdviseSinkMap Call this method to advise or unadvise all controls hosted by
the composite control.

CComCompositeControl::CalcExtent Call this method to calculate the size in HIMETRIC units of the
dialog resource used to host the composite control.

CComCompositeControl::Create This method is called to create the control window for the
composite control.

CComCompositeControl::CreateControlWindow Call this method to create the control window and advise any
hosted control.

CComCompositeControl::SetBackgroundColorFromAmbient Call this method to set the background color of the
composite control using the container's background color.

Public Data MembersPublic Data Members

This class provides the methods required to implement a composite control.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from CComObjectRoot or CComObjectRootEx, as well as from any other interfaces you want
to support for your composite control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomcompositecontrol-class.md

NAME DESCRIPTION

CComCompositeControl::m_hbrBackground The background brush.

CComCompositeControl::m_hWndFocus The handle of the window that currently has focus.

Remarks

enum { IDD = IDD_MYCOMPOSITE };

NOTENOTE

NOTENOTE

Example

Classes derived from class CComCompositeControl inherit the functionality of an ActiveX composite control. ActiveX
controls derived from CComCompositeControl are hosted by a standard dialog box. These types of controls are
called composite controls because they are able to host other controls (native Windows controls and ActiveX
controls).

CComCompositeControl identifies the dialog resource to use in creating the composite control by looking for an
enumerated data member in the child class. The member IDD of this child class is set to the resource ID of the
dialog resource that will be used as the control's window. The following is an example of the data member that the
class derived from CComCompositeControl should contain to identify the dialog resource to be used for the control's
window:

Composite controls are always windowed controls, although they can contain windowless controls.

A control implemented by a CComCompositeControl -derived class has default tabbing behavior built in. When the
control receives focus by being tabbed to in a containing application, successively pressing the TAB key will cause
the focus to be cycled through all of the composite control's contained controls, then out of the composite control
and on to the next item in the tab order of the container. The tab order of the hosted controls is determined by the
dialog resource and determines the order in which tabbing will occur.

In order for accelerators to work properly with a CComCompositeControl , it is necessary to load an accelerator table as the
control is created, pass the handle and number of accelerators back into IOleControlImpl::GetControlInfo, and finally destroy
the table when the control is released.

// Example for overriding IOleControlImpl::GetControlInfo()
// This example uses the accelerator table from the project resources
// with the identifier IDR_ACCELTABLE
// Define GetControlInfo() in the header of your composite
// control class as follows:

STDMETHOD(GetControlInfo)(CONTROLINFO* pCI)
{
 // Load the accelerator table from the resource
 pCI->hAccel = LoadAccelerators(_AtlBaseModule.GetResourceInstance(),
 MAKEINTRESOURCE(IDR_ACCELTABLE));

 if (pCI->hAccel == NULL)
 return E_FAIL;

 // Get the number of accelerators in the table
 pCI->cAccel = (USHORT)CopyAcceleratorTable(pCI->hAccel, NULL, 0);
 // The following is optional if you want your control
 // to process the return and/or escape keys
 // pCI.dwFlags = CTRLINFO_EATS_RETURN | CTRLINFO_EATS_ESCAPE;
 pCI->dwFlags = 0;

 return S_OK;
}

Inheritance Hierarchy

Requirements

CComCompositeControl::AdviseSinkMap

HRESULT AdviseSinkMap(bool bAdvise);

ParametersParameters

Return ValueReturn Value

S_OK All controls in the event sink map were connected or
disconnected from their event source successfully.

E_FAIL Not all controls in the event sink map could be connected or
disconnected from their event source successfully.

WinBase

CComControlBase

CComControl

CComCompositeControl

Header: atlctl.h

Call this method to advise or unadvise all controls hosted by the composite control.

bAdvise
True if all controls are to be advised; otherwise false.

E_POINTER This error usually indicates a problem with an entry in the
control's event sink map or a problem with a template
argument used in an IDispEventImpl or
IDispEventSimpleImpl base class.

CONNECT_E_ADVISELIMIT The connection point has already reached its limit of
connections and cannot accept any more.

CONNECT_E_CANNOTCONNECT The sink does not support the interface required by this
connection point.

CONNECT_E_NOCONNECTION The cookie value does not represent a valid connection. This
error usually indicates a problem with an entry in the control's
event sink map or a problem with a template argument used
in an IDispEventImpl or IDispEventSimpleImpl base
class.

RemarksRemarks

CComCompositeControl::CalcExtent

BOOL CalcExtent(SIZE& size);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComCompositeControl::Create

HWND Create(
 HWND hWndParent,
 RECT& /* rcPos */,
 LPARAM dwInitParam = NULL);

ParametersParameters

The base implementation of this method searches through the entries in the event sink map. It then advises or
unadvises the connection points to the COM objects described by the event sink map's sink entries. This member
method also relies on the fact that the derived class inherits from one instance of IDispEventImpl for every control
in the sink map that is to be advised or unadvised.

Call this method to calculate the size in HIMETRIC units of the dialog resource used to host the composite control.

size
A reference to a SIZE structure to be filled by this method.

TRUE if the control is hosted by a dialog box; otherwise FALSE.

The size is returned in the size parameter.

This method is called to create the control window for the composite control.

hWndParent
A handle to the parent window of the control.

Return ValueReturn Value

RemarksRemarks

CComCompositeControl::CComCompositeControl

CComCompositeControl();

RemarksRemarks

CComCompositeControl::~CComCompositeControl

~CComCompositeControl();

RemarksRemarks

CComCompositeControl::CreateControlWindow

virtual HWND CreateControlWindow(
 HWND hWndParent,
 RECT& rcPos);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

rcPos
Reserved.

dwInitParam
Data to be passed to the control during control creation. The data passed as dwInitParam will show up as the
LPARAM parameter of the WM_INITDIALOG message, which will be sent to the composite control when it gets
created.

A handle to the newly created composite control dialog box.

This method is usually called during in-place activation of the control.

The constructor.

Initializes the CComCompositeControl::m_hbrBackground and CComCompositeControl::m_hWndFocus data
members to NULL.

The destructor.

Deletes the background object, if it exists.

Call this method to create the control window and advise any hosted controls.

hWndParent
A handle to the parent window of the control.

rcPos
The position rectangle of the composite control in client coordinates relative to hWndParent.

Returns a handle to the newly created composite control dialog box.

This method calls CComCompositeControl::Create and CComCompositeControl::AdviseSinkMap.

https://docs.microsoft.com/windows/desktop/dlgbox/wm-initdialog

CComCompositeControl::m_hbrBackground

HBRUSH m_hbrBackground;

CComCompositeControl::m_hWndFocus

HWND m_hWndFocus;

CComCompositeControl::SetBackgroundColorFromAmbient

HRESULT SetBackgroundColorFromAmbient();

Return ValueReturn Value

See also

The background brush.

The handle of the window that currently has focus.

Call this method to set the background color of the composite control using the container's background color.

Returns S_OK on success, or an error HRESULT on failure.

CComControl Class
Composite Control Fundamentals
Class Overview

CComContainedObject Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class Base>
class CComContainedObject : public Base

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComContainedObject::CComContainedObject The constructor. Initializes the member pointer to the owner
object's IUnknown .

CComContainedObject::~CComContainedObject The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComContainedObject::AddRef Increments the reference count on the owner object.

CComContainedObject::GetControllingUnknown Retrieves the owner object's IUnknown .

CComContainedObject::QueryInterface Retrieves a pointer to the interface requested on the owner
object.

CComContainedObject::Release Decrements the reference count on the owner object.

Remarks

This class implements IUnknown by delegating to the owner object's IUnknown .

This class and its members cannot be used in applications that execute in the Windows Runtime.

Base
Your class, derived from CComObjectRoot or CComObjectRootEx.

ATL uses CComContainedObject in classes CComAggObject, CComPolyObject, and CComCachedTearOffObject.
CComContainedObject implements IUnknown by delegating to the owner object's IUnknown . (The owner is either

the outer object of an aggregation, or the object for which a tear-off interface is being created.)
CComContainedObject calls CComObjectRootEx 's OuterQueryInterface , OuterAddRef , and OuterRelease , all inherited

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomcontainedobject-class.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

Inheritance Hierarchy

Requirements

CComContainedObject::AddRef

STDMETHOD_(ULONG, AddRef)();

Return ValueReturn Value

CComContainedObject::CComContainedObject

CComContainedObject(void* pv);

ParametersParameters

RemarksRemarks

CComContainedObject::~CComContainedObject

~CComContainedObject();

RemarksRemarks

CComContainedObject::GetControllingUnknown

IUnknown* GetControllingUnknown();

Return ValueReturn Value

through Base .

Base

CComContainedObject

Header: atlcom.h

Increments the reference count on the owner object.

A value that may be useful for diagnostics or testing.

The constructor.

pv
[in] The owner object's IUnknown .

Sets the m_pOuterUnknown member pointer (inherited through the Base class) to pv.

The destructor.

Frees all allocated resources.

Returns the m_pOuterUnknown member pointer (inherited through the Base class) that holds the owner object's
IUnknown .

RemarksRemarks

CComContainedObject::QueryInterface

STDMETHOD(QueryInterface)(REFIID iid, void** ppvObject);
template <class Q>
HRESULT STDMETHODCALLTYPE QueryInterface(Q** pp);

ParametersParameters

Return ValueReturn Value

CComContainedObject::Release

STDMETHOD_(ULONG, Release)();

Return ValueReturn Value

See also

The owner object's IUnknown .

This method may be virtual if Base has declared the DECLARE_GET_CONTROLLING_UNKNOWN macro.

Retrieves a pointer to the interface requested on the owner object.

iid
[in] The identifier of the interface being requested.

ppvObject
[out] A pointer to the interface pointer identified by iid. If the object does not support this interface, ppvObject is
set to NULL.

pp
[out] A pointer to the interface pointer identified by type Q . If the object does not support this interface, pp is set
to NULL.

A standard HRESULT value.

Decrements the reference count on the owner object.

In debug builds, Release returns a value that may be useful for diagnostics or testing. In non-debug builds,
Release always returns 0.

Class Overview

CComControl Class
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T, class WinBase = CWindowImpl<T>>
class ATL_NO_VTABLE CComControl : public CComControlBase,
 public WinBase;

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComControl::CComControl Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComControl::ControlQueryInterface Retrieves a pointer to the requested interface.

CComControl::CreateControlWindow Creates a window for the control.

CComControl::FireOnChanged Notifies the container's sink that a control property has
changed.

CComControl::FireOnRequestEdit Notifies the container's sink that a control property is about
to change and that the object is asking the sink how to
proceed.

CComControl::MessageBox Call this method to create, display, and operate a message
box.

Remarks

This class provides methods for creating and managing ATL controls.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
The class implementing the control.

WinBase
The base class that implements windowing functions. Defaults to CWindowImpl.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomcontrol-class.md

Inheritance Hierarchy

Requirements

CComControl::CComControl

CComControl();

RemarksRemarks

CComControl::ControlQueryInterface

virtual HRESULT ControlQueryInterface(const IID& iid, void** ppv);

ParametersParameters

RemarksRemarks

ExampleExample

// Retrieve the control's IOleObject interface. Note interface
// is automatically released when pOleObject goes out of scope

CComPtr<IOleObject> pOleObject;
ControlQueryInterface(IID_IOleObject, (void**)&pOleObject);

CComControl::CreateControlWindow

CComControl is a set of useful control helper functions and essential data members for ATL controls. When you
create a standard control or a DHTML control using the ATL Control Wizard, the wizard will automatically
derive your class from CComControl . CComControl derives most of its methods from CComControlBase.

For more information about creating a control, see the ATL Tutorial. For more information about the ATL Project
Wizard, see the article Creating an ATL Project.

For a demonstration of CComControl methods and data members, see the CIRC sample.

WinBase

CComControlBase

CComControl

Header: atlctl.h

The constructor.

Calls the CComControlBase constructor, passing the m_hWnd data member inherited through CWindowImpl.

Retrieves a pointer to the requested interface.

iid
[in] The GUID of the interface being requested.

ppv
[out] A pointer to the interface pointer identified by iid, or NULL if the interface is not found.

Only handles interfaces in the COM map table.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CComControl::CreateControlWindow

virtual HWND CreateControlWindow(HWND hWndParent, RECT& rcPos);

ParametersParameters

RemarksRemarks

ExampleExample

RECT rc = {10,10,210,110};
HWND hwndParent, hwndControl;

// get HWND of control's parent window from IOleInPlaceSite interface
m_spInPlaceSite->GetWindow(&hwndParent);
hwndControl = CreateControlWindow(hwndParent, rc);

CComControl::FireOnChanged

HRESULT FireOnChanged(DISPID dispID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

By default, creates a window for the control by calling CWindowImpl::Create .

hWndParent
[in] Handle to the parent or owner window. A valid window handle must be supplied. The control window is
confined to the area of its parent window.

rcPos
[in] The initial size and position of the window to be created.

Override this method if you want to do something other than create a single window, for example, to create two
windows, one of which becomes a toolbar for your control.

Notifies the container's sink that a control property has changed.

dispID
[in] Identifier of the property that has changed.

One of the standard HRESULT values.

If your control class derives from IPropertyNotifySink, this method calls CFirePropNotifyEvent::FireOnChanged
to notify all connected IPropertyNotifySink interfaces that the specified control property has changed. If your
control class does not derive from IPropertyNotifySink , this method returns S_OK.

This method is safe to call even if your control doesn't support connection points.

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink

STDMETHODIMP CMyControl::put_MyText(BSTR newVal)
{
 // store newVal in CComBstr member
 m_bstrMyText = newVal;

 // note the DISPID for the MyText property is 3 in this example
 FireOnChanged(3);

 return S_OK;
}

CComControl::FireOnRequestEdit

HRESULT FireOnRequestEdit(DISPID dispID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

STDMETHODIMP CMyControl::put_MyTitle(BSTR newVal)
{
 // the DISPID for MyTitle in this example is 4
 DISPID dispID = 4;

 // make sure we can change the property
 if (FireOnRequestEdit(dispID) == S_FALSE)
 return S_FALSE;

 // store newVal in CComBstr member
 m_bstrMyTitle = newVal;

 // signal that the property has been changed
 FireOnChanged(dispID);

 return S_OK;
}

CComControl::MessageBox

Notifies the container's sink that a control property is about to change and that the object is asking the sink how
to proceed.

dispID
[in] Identifier of the property about to change.

One of the standard HRESULT values.

If your control class derives from IPropertyNotifySink, this method calls
CFirePropNotifyEvent::FireOnRequestEdit to notify all connected IPropertyNotifySink interfaces that the
specified control property is about to change. If your control class does not derive from IPropertyNotifySink ,
this method returns S_OK.

This method is safe to call even if your control doesn't support connection points.

Call this method to create, display, and operate a message box.

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink

int MessageBox(
 LPCTSTR lpszText,
 LPCTSTR lpszCaption = _T(""),
 UINT nType = MB_OK);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

lpszText
The text to be displayed in the message box.

lpszCaption
The dialog box title. If NULL (the default), the title "Error" is used.

nType
Specifies the contents and behavior of the dialog box. See the MessageBox entry in the Windows SDK
documentation for a list of the different message boxes available. The default provides a simple OK button.

Returns an integer value specifying one of the menu-item values listed under MessageBox in the Windows SDK
documentation.

MessageBox is useful both during development and as an easy way to display an error or warning message to
the user.

CWindowImpl Class
Class Overview
CComControlBase Class
CComCompositeControl Class

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-messagebox
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-messagebox

CComControlBase Class
3/4/2019 • 30 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class ATL_NO_VTABLE CComControlBase

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CComControlBase::AppearanceType Override if your m_nAppearance stock property isn't of type
short.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComControlBase::CComControlBase The constructor.

CComControlBase::~CComControlBase The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComControlBase::ControlQueryInterface Retrieves a pointer to the requested interface.

CComControlBase::DoesVerbActivate Checks that the iVerb parameter used by
IOleObjectImpl::DoVerb either activates the control's user

interface (iVerb equals OLEIVERB_UIACTIVATE), defines the
action taken when the user double-clicks the control (iVerb
equals OLEIVERB_PRIMARY), displays the control (iVerb
equals OLEIVERB_SHOW), or activates the control (iVerb
equals OLEIVERB_INPLACEACTIVATE).

CComControlBase::DoesVerbUIActivate Checks that the iVerb parameter used by
IOleObjectImpl::DoVerb causes the control's user interface

to activate and returns TRUE.

CComControlBase::DoVerbProperties Displays the control's property pages.

This class provides methods for creating and managing ATL controls.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomcontrolbase-class.md

CComControlBase::FireViewChange Call this method to tell the container to redraw the control, or
notify the registered advise sinks that the control's view has
changed.

CComControlBase::GetAmbientAppearance Retrieves DISPID_AMBIENT_APPEARANCE, the current
appearance setting for the control: 0 for flat and 1 for 3D.

CComControlBase::GetAmbientAutoClip Retrieves DISPID_AMBIENT_AUTOCLIP, a flag indicating
whether the container supports automatic clipping of the
control display area.

CComControlBase::GetAmbientBackColor Retrieves DISPID_AMBIENT_BACKCOLOR, the ambient
background color for all controls, defined by the container.

CComControlBase::GetAmbientCharSet Retrieves DISPID_AMBIENT_CHARSET, the ambient character
set for all controls, defined by the container.

CComControlBase::GetAmbientCodePage Retrieves DISPID_AMBIENT_CODEPAGE, the ambient
character set for all controls, defined by the container.

CComControlBase::GetAmbientDisplayAsDefault Retrieves DISPID_AMBIENT_DISPLAYASDEFAULT, a flag that
is TRUE if the container has marked the control in this site to
be a default button, and therefore a button control should
draw itself with a thicker frame.

CComControlBase::GetAmbientDisplayName Retrieves DISPID_AMBIENT_DISPLAYNAME, the name the
container has supplied to the control.

CComControlBase::GetAmbientFont Retrieves a pointer to the container's ambient IFont
interface.

CComControlBase::GetAmbientFontDisp Retrieves a pointer to the container's ambient IFontDisp
dispatch interface.

CComControlBase::GetAmbientForeColor Retrieves DISPID_AMBIENT_FORECOLOR, the ambient
foreground color for all controls, defined by the container.

CComControlBase::GetAmbientLocaleID Retrieves DISPID_AMBIENT_LOCALEID, the identifier of the
language used by the container.

CComControlBase::GetAmbientMessageReflect Retrieves DISPID_AMBIENT_MESSAGEREFLECT, a flag
indicating whether the container wants to receive window
messages (such as WM_DRAWITEM) as events.

CComControlBase::GetAmbientPalette Retrieves DISPID_AMBIENT_PALETTE, used to access the
container's HPALETTE.

CComControlBase::GetAmbientProperty Retrieves the container property specified by id.

CComControlBase::GetAmbientRightToLeft Retrieves DISPID_AMBIENT_RIGHTTOLEFT, the direction in
which content is displayed by the container.

NAME DESCRIPTION

CComControlBase::GetAmbientScaleUnits Retrieves DISPID_AMBIENT_SCALEUNITS, the container's
ambient units (such as inches or centimeters) for labeling
displays.

CComControlBase::GetAmbientShowGrabHandles Retrieves DISPID_AMBIENT_SHOWGRABHANDLES, a flag
indicating whether the container allows the control to display
grab handles for itself when active.

CComControlBase::GetAmbientShowHatching Retrieves DISPID_AMBIENT_SHOWHATCHING, a flag
indicating whether the container allows the control to display
itself with a hatched pattern when the UI is active.

CComControlBase::GetAmbientSupportsMnemonics Retrieves DISPID_AMBIENT_SUPPORTSMNEMONICS, a flag
indicating whether the container supports keyboard
mnemonics.

CComControlBase::GetAmbientTextAlign Retrieves DISPID_AMBIENT_TEXTALIGN, the text alignment
preferred by the container: 0 for general alignment (numbers
right, text left), 1 for left alignment, 2 for center alignment,
and 3 for right alignment.

CComControlBase::GetAmbientTopToBottom Retrieves DISPID_AMBIENT_TOPTOBOTTOM, the direction in
which content is displayed by the container.

CComControlBase::GetAmbientUIDead Retrieves DISPID_AMBIENT_UIDEAD, a flag indicating whether
the container wants the control to respond to user-interface
actions.

CComControlBase::GetAmbientUserMode Retrieves DISPID_AMBIENT_USERMODE, a flag indicating
whether the container is in run-mode (TRUE) or design-mode
(FALSE).

CComControlBase::GetDirty Returns the value of data member m_bRequiresSave .

CComControlBase::GetZoomInfo Retrieves the x and y values of the numerator and
denominator of the zoom factor for a control activated for in-
place editing.

CComControlBase::InPlaceActivate Causes the control to transition from the inactive state to
whatever state the verb in iVerb indicates.

CComControlBase::InternalGetSite Call this method to query the control site for a pointer to the
identified interface.

CComControlBase::OnDraw Override this method to draw your control.

CComControlBase::OnDrawAdvanced The default OnDrawAdvanced prepares a normalized device
context for drawing, then calls your control class's OnDraw

method.

CComControlBase::OnKillFocus Checks that the control is in-place active and has a valid
control site, then informs the container that the control has
lost focus.

NAME DESCRIPTION

CComControlBase::OnMouseActivate Checks that the UI is in user mode, then activates the control.

CComControlBase::OnPaint Prepares the container for painting, gets the control's client
area, then calls the control class's OnDraw method.

CComControlBase::OnSetFocus Checks that the control is in-place active and has a valid
control site, then informs the container the control has gained
focus.

CComControlBase::PreTranslateAccelerator Override this method to provide your own keyboard
accelerator handlers.

CComControlBase::SendOnClose Notifies all advisory sinks registered with the advise holder
that the control has been closed.

CComControlBase::SendOnDataChange Notifies all advisory sinks registered with the advise holder
that the control data has changed.

CComControlBase::SendOnRename Notifies all advisory sinks registered with the advise holder
that the control has a new moniker.

CComControlBase::SendOnSave Notifies all advisory sinks registered with the advise holder
that the control has been saved.

CComControlBase::SendOnViewChange Notifies all registered advisory sinks that the control's view
has changed.

CComControlBase::SetControlFocus Sets or removes the keyboard focus to or from the control.

CComControlBase::SetDirty Sets the data member m_bRequiresSave to the value in
bDirty.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComControlBase::m_bAutoSize Flag indicating the control cannot be any other size.

CComControlBase::m_bDrawFromNatural Flag indicating that IDataObjectImpl::GetData and
CComControlBase::GetZoomInfo should set the control size

from m_sizeNatural rather than from m_sizeExtent .

CComControlBase::m_bDrawGetDataInHimetric Flag indicating that IDataObjectImpl::GetData should use
HIMETRIC units and not pixels when drawing.

CComControlBase::m_bInPlaceActive Flag indicating the control is in-place active.

CComControlBase::m_bInPlaceSiteEx Flag indicating the container supports the
IOleInPlaceSiteEx interface and OCX96 control features,

such as windowless and flicker-free controls.

CComControlBase::m_bNegotiatedWnd Flag indicating whether or not the control has negotiated
with the container about support for OCX96 control features
(such as flicker-free and windowless controls), and whether
the control is windowed or windowless.

CComControlBase::m_bRecomposeOnResize Flag indicating the control wants to recompose its
presentation when the container changes the control's display
size.

CComControlBase::m_bRequiresSave Flag indicating the control has changed since it was last
saved.

CComControlBase::m_bResizeNatural Flag indicating the control wants to resize its natural extent
(its unscaled physical size) when the container changes the
control's display size.

CComControlBase::m_bUIActive Flag indicating the control's user interface, such as menus and
toolbars, is active.

CComControlBase::m_bUsingWindowRgn Flag indicating the control is using the container-supplied
window region.

CComControlBase::m_bWasOnceWindowless Flag indicating the control has been windowless, but may or
may not be windowless now.

CComControlBase::m_bWindowOnly Flag indicating the control should be windowed, even if the
container supports windowless controls.

CComControlBase::m_bWndLess Flag indicating the control is windowless.

CComControlBase::m_hWndCD Contains a reference to the window handle associated with
the control.

CComControlBase::m_nFreezeEvents A count of the number of times the container has frozen
events (refused to accept events) without an intervening thaw
of events (acceptance of events).

CComControlBase::m_rcPos The position in pixels of the control, expressed in the
coordinates of the container.

CComControlBase::m_sizeExtent The extent of the control in HIMETRIC units (each unit is 0.01
millimeters) for a particular display.

CComControlBase::m_sizeNatural The physical size of the control in HIMETRIC units (each unit is
0.01 millimeters).

CComControlBase::m_spAdviseSink A direct pointer to the advisory connection on the container
(the container's IAdviseSink).

CComControlBase::m_spAmbientDispatch A CComDispatchDriver object that lets you retrieve and set
the container's properties through an IDispatch pointer.

CComControlBase::m_spClientSite A pointer to the control's client site within the container.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-iadvisesink

CComControlBase::m_spDataAdviseHolder Provides a standard means to hold advisory connections
between data objects and advise sinks.

CComControlBase::m_spInPlaceSite A pointer to the container's IOleInPlaceSite, IOleInPlaceSiteEx,
or IOleInPlaceSiteWindowless interface pointer.

CComControlBase::m_spOleAdviseHolder Provides a standard implementation of a way to hold
advisory connections.

NAME DESCRIPTION

Remarks

Requirements

CComControlBase::AppearanceType

typedef short AppearanceType;

RemarksRemarks

CComControlBase::CComControlBase

CComControlBase(HWND& h);

ParametersParameters

RemarksRemarks

CComControlBase::~CComControlBase

This class provides methods for creating and managing ATL controls. CComControl Class derives from
CComControlBase . When you create a Standard Control or DHTML control using the ATL Control Wizard, the

wizard will automatically derive your class from CComControlBase .

For more information about creating a control, see the ATL Tutorial. For more information about the ATL Project
Wizard, see the article Creating an ATL Project.

Header: atlctl.h

Override if your m_nAppearance stock property isn't of type short.

The ATL Control Wizard adds m_nAppearance stock property of type short. Override AppearanceType if you use a
different data type.

The constructor.

h
The handle to the window associated with the control.

Initializes the control size to 5080X5080 HIMETRIC units (2"X2") and initializes the CComControlBase data
member values to NULL or FALSE.

The destructor.

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplacesite
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplacesiteex
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplacesitewindowless

~CComControlBase();

RemarksRemarks

CComControlBase::ControlQueryInterface

virtual HRESULT ControlQueryInterface(const IID& iid,
 void** ppv);

ParametersParameters

RemarksRemarks

ExampleExample

// Retrieve the control's IOleObject interface. Note interface
// is automatically released when pOleObject goes out of scope

CComPtr<IOleObject> pOleObject;
ControlQueryInterface(IID_IOleObject, (void**)&pOleObject);

CComControlBase::DoesVerbActivate

BOOL DoesVerbActivate(LONG iVerb);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComControlBase::DoesVerbUIActivate

If the control is windowed, ~CComControlBase destroys it by calling DestroyWindow.

Retrieves a pointer to the requested interface.

iid
The GUID of the interface being requested.

ppv
A pointer to the interface pointer identified by iid, or NULL if the interface is not found.

Only handles interfaces in the COM map table.

Checks that the iVerb parameter used by IOleObjectImpl::DoVerb either activates the control's user interface
(iVerb equals OLEIVERB_UIACTIVATE), defines the action taken when the user double-clicks the control (iVerb
equals OLEIVERB_PRIMARY), displays the control (iVerb equals OLEIVERB_SHOW), or activates the control
(iVerb equals OLEIVERB_INPLACEACTIVATE).

iVerb
Value indicating the action to be performed by DoVerb .

Returns TRUE if iVerb equals OLEIVERB_UIACTIVATE, OLEIVERB_PRIMARY, OLEIVERB_SHOW, or
OLEIVERB_INPLACEACTIVATE; otherwise, returns FALSE.

You can override this method to define your own activation verb.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-destroywindow

BOOL DoesVerbUIActivate(LONG iVerb);

ParametersParameters

Return ValueReturn Value

CComControlBase::DoVerbProperties

HRESULT DoVerbProperties(LPCRECT /* prcPosRect */, HWND hwndParent);

ParametersParameters

Return ValueReturn Value

ExampleExample

// The following implementation of the WM_RBUTTONDOWN message handler
// will pop up the ActiveX Control's PropertyPages
LRESULT CMyComposite::OnRButtonDown(UINT /*uMsg*/, WPARAM /*wParam*/,
 LPARAM /*lParam*/, BOOL& /*bHandled*/)
{
 DoVerbProperties(NULL, ::GetActiveWindow());
 return 0L;
}

MESSAGE_HANDLER(WM_RBUTTONDOWN, OnRButtonDown)

CComControlBase::FireViewChange

HRESULT FireViewChange();

Return ValueReturn Value

Checks that the iVerb parameter used by IOleObjectImpl::DoVerb causes the control's user interface to activate
and returns TRUE.

iVerb
Value indicating the action to be performed by DoVerb .

Returns TRUE if iVerb equals OLEIVERB_UIACTIVATE, OLEIVERB_PRIMARY, OLEIVERB_SHOW, or
OLEIVERB_INPLACEACTIVATE. Otherwise, the method returns FALSE.

Displays the control's property pages.

prcPosRec
Reserved.

hwndParent
Handle of the window containing the control.

One of the standard HRESULT values.

Call this method to tell the container to redraw the control, or notify the registered advise sinks that the control's
view has changed.

One of the standard HRESULT values.

RemarksRemarks

ExampleExample

STDMETHODIMP CMyControl::put_Shape(int newVal)
{
 // store newVal in m_nShape user-defined member
 m_nShape = newVal;

 // notify container to redraw control
 FireViewChange();
 return S_OK;
}

CComControlBase::GetAmbientAppearance

HRESULT GetAmbientAppearance(short& nAppearance);

ParametersParameters

Return ValueReturn Value

ExampleExample

If the control is active (the control class data member CComControlBase::m_bInPlaceActive is TRUE), notifies the
container that you want to redraw the entire control. If the control is inactive, notifies the control's registered
advise sinks (through the control class data member CComControlBase::m_spAdviseSink) that the control's view
has changed.

Retrieves DISPID_AMBIENT_APPEARANCE, the current appearance setting for the control: 0 for flat and 1 for
3D.

nAppearance
The property DISPID_AMBIENT_APPEARANCE.

One of the standard HRESULT values.

HRESULT OnDraw(ATL_DRAWINFO& di)
{
 short nAppearance;
 RECT& rc = *(RECT*)di.prcBounds;

 // draw 3D border if AmbientAppearance is not supported or is set to 1
 HRESULT hr = GetAmbientAppearance(nAppearance);
 if (hr != S_OK || nAppearance==1)
 {
 DrawEdge(di.hdcDraw, &rc, EDGE_SUNKEN, BF_RECT);
 }
 else
 {
 Rectangle(di.hdcDraw, rc.left, rc.top, rc.right, rc.bottom);
 }

 SetTextAlign(di.hdcDraw, TA_CENTER|TA_BASELINE);
 LPCTSTR pszText = _T("ATL 8.0 : MyControl");

 // For security reasons, we recommend that you use the lstrlen function
 // with caution. Here, we can guarantee that pszText is NULL terminated,
 // and therefore it is safe to use this function.
 TextOut(di.hdcDraw,
 (rc.left + rc.right) / 2,
 (rc.top + rc.bottom) / 2,
 pszText,
 lstrlen(pszText));

 return S_OK;
}

CComControlBase::GetAmbientAutoClip

HRESULT GetAmbientAutoClip(BOOL& bAutoClip);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientBackColor

HRESULT GetAmbientBackColor(OLE_COLOR& BackColor);

ParametersParameters

Return ValueReturn Value

Retrieves DISPID_AMBIENT_AUTOCLIP, a flag indicating whether the container supports automatic clipping of
the control display area.

bAutoClip
The property DISPID_AMBIENT_AUTOCLIP.

One of the standard HRESULT values.

Retrieves DISPID_AMBIENT_BACKCOLOR, the ambient background color for all controls, defined by the
container.

BackColor
The property DISPID_AMBIENT_BACKCOLOR.

CComControlBase::GetAmbientCharSet

HRESULT GetAmbientCharSet(BSTR& bstrCharSet);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientCodePage

HRESULT GetAmbientCodePage(ULONG& ulCodePage);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientDisplayAsDefault

HRESULT GetAmbientDisplayAsDefault(BOOL& bDisplayAsDefault);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientDisplayName

HRESULT GetAmbientDisplayName(BSTR& bstrDisplayName);

ParametersParameters

One of the standard HRESULT values.

Retrieves DISPID_AMBIENT_CHARSET, the ambient character set for all controls, defined by the container.

bstrCharSet
The property DISPID_AMBIENT_CHARSET.

Returns S_OK on success, or an error HRESULT on failure.

Retrieves DISPID_AMBIENT_CODEPAGE, the ambient code page for all controls, defined by the container.

ulCodePage
The property DISPID_AMBIENT_CODEPAGE.

Returns S_OK on success, or an error HRESULT on failure.

Retrieves DISPID_AMBIENT_DISPLAYASDEFAULT, a flag that is TRUE if the container has marked the control in
this site to be a default button, and therefore a button control should draw itself with a thicker frame.

bDisplayAsDefault
The property DISPID_AMBIENT_DISPLAYASDEFAULT.

One of the standard HRESULT values.

Retrieves DISPID_AMBIENT_DISPLAYNAME, the name the container has supplied to the control.

bstrDisplayName
The property DISPID_AMBIENT_DISPLAYNAME.

Return ValueReturn Value

CComControlBase::GetAmbientFont

HRESULT GetAmbientFont(IFont** ppFont);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComControlBase::GetAmbientFontDisp

HRESULT GetAmbientFontDisp(IFontDisp** ppFont);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComControlBase::GetAmbientForeColor

HRESULT GetAmbientForeColor(OLE_COLOR& ForeColor);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientLocaleID

One of the standard HRESULT values.

Retrieves a pointer to the container's ambient IFont interface.

ppFont
A pointer to the container's ambient IFont interface.

One of the standard HRESULT values.

If the property is NULL, the pointer is NULL. If the pointer is not NULL, the caller must release the pointer.

Retrieves a pointer to the container's ambient IFontDisp dispatch interface.

ppFont
A pointer to the container's ambient IFontDisp dispatch interface.

Returns S_OK on success, or an error HRESULT on failure.

If the property is NULL, the pointer is NULL. If the pointer is not NULL, the caller must release the pointer.

Retrieves DISPID_AMBIENT_FORECOLOR, the ambient foreground color for all controls, defined by the
container.

ForeColor
The property DISPID_AMBIENT_FORECOLOR.

One of the standard HRESULT values.

Retrieves DISPID_AMBIENT_LOCALEID, the identifier of the language used by the container.

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ifont
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ifontdisp

HRESULT GetAmbientLocaleID(LCID& lcid);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComControlBase::GetAmbientMessageReflect

HRESULT GetAmbientMessageReflect(BOOL& bMessageReflect);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientPalette

HRESULT GetAmbientPalette(HPALETTE& hPalette);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientProperty

HRESULT GetAmbientProperty(DISPID dispid, VARIANT& var);

ParametersParameters

lcid
The property DISPID_AMBIENT_LOCALEID.

One of the standard HRESULT values.

The control can use this identifier to adapt its user interface to different languages.

Retrieves DISPID_AMBIENT_MESSAGEREFLECT, a flag indicating whether the container wants to receive
window messages (such as WM_DRAWITEM) as events.

bMessageReflect
The property DISPID_AMBIENT_MESSAGEREFLECT.

One of the standard HRESULT values.

Retrieves DISPID_AMBIENT_PALETTE, used to access the container's HPALETTE.

hPalette
The property DISPID_AMBIENT_PALETTE.

One of the standard HRESULT values.

Retrieves the container property specified by dispid.

dispid
Identifier of the container property to be retrieved.

var
Variable to receive the property.

Return ValueReturn Value

RemarksRemarks

CComControlBase::GetAmbientRightToLeft

HRESULT GetAmbientRightToLeft(BOOL& bRightToLeft);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientScaleUnits

HRESULT GetAmbientScaleUnits(BSTR& bstrScaleUnits);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientShowGrabHandles

HRESULT GetAmbientShowGrabHandles(BOOL& bShowGrabHandles);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientShowHatching

One of the standard HRESULT values.

ATL has provided a set of helper functions to retrieve specific properties, for example,
CComControlBase::GetAmbientBackColor. If there is no suitable method available, use GetAmbientProperty .

Retrieves DISPID_AMBIENT_RIGHTTOLEFT, the direction in which content is displayed by the container.

bRightToLeft
The property DISPID_AMBIENT_RIGHTTOLEFT. Set to TRUE if content is displayed right to left, FALSE if it is
displayed left to right.

Returns S_OK on success, or an error HRESULT on failure.

Retrieves DISPID_AMBIENT_SCALEUNITS, the container's ambient units (such as inches or centimeters) for
labeling displays.

bstrScaleUnits
The property DISPID_AMBIENT_SCALEUNITS.

One of the standard HRESULT values.

Retrieves DISPID_AMBIENT_SHOWGRABHANDLES, a flag indicating whether the container allows the control
to display grab handles for itself when active.

bShowGrabHandles
The property DISPID_AMBIENT_SHOWGRABHANDLES.

One of the standard HRESULT values.

HRESULT GetAmbientShowHatching(BOOL& bShowHatching);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientSupportsMnemonics

HRESULT GetAmbientSupportsMnemonics(BOOL& bSupportsMnemonics);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientTextAlign

HRESULT GetAmbientTextAlign(short& nTextAlign);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetAmbientTopToBottom

HRESULT GetAmbientTopToBottom(BOOL& bTopToBottom);

ParametersParameters

Retrieves DISPID_AMBIENT_SHOWHATCHING, a flag indicating whether the container allows the control to
display itself with a hatched pattern when the control's user interface is active.

bShowHatching
The property DISPID_AMBIENT_SHOWHATCHING.

One of the standard HRESULT values.

Retrieves DISPID_AMBIENT_SUPPORTSMNEMONICS, a flag indicating whether the container supports
keyboard mnemonics.

bSupportsMnemonics
The property DISPID_AMBIENT_SUPPORTSMNEMONICS.

One of the standard HRESULT values.

Retrieves DISPID_AMBIENT_TEXTALIGN, the text alignment preferred by the container: 0 for general alignment
(numbers right, text left), 1 for left alignment, 2 for center alignment, and 3 for right alignment.

nTextAlign
The property DISPID_AMBIENT_TEXTALIGN.

One of the standard HRESULT values.

Retrieves DISPID_AMBIENT_TOPTOBOTTOM, the direction in which content is displayed by the container.

bTopToBottom
The property DISPID_AMBIENT_TOPTOBOTTOM. Set to TRUE if text is displayed top to bottom, FALSE if it is
displayed bottom to top.

Return ValueReturn Value

CComControlBase::GetAmbientUIDead

HRESULT GetAmbientUIDead(BOOL& bUIDead);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComControlBase::GetAmbientUserMode

HRESULT GetAmbientUserMode(BOOL& bUserMode);

ParametersParameters

Return ValueReturn Value

CComControlBase::GetDirty

BOOL GetDirty();

Return ValueReturn Value

RemarksRemarks

CComControlBase::GetZoomInfo

Returns S_OK on success, or an error HRESULT on failure.

Retrieves DISPID_AMBIENT_UIDEAD, a flag indicating whether the container wants the control to respond to
user-interface actions.

bUIDead
The property DISPID_AMBIENT_UIDEAD.

One of the standard HRESULT values.

If TRUE, the control should not respond. This flag applies regardless of the DISPID_AMBIENT_USERMODE flag.
See CComControlBase::GetAmbientUserMode.

Retrieves DISPID_AMBIENT_USERMODE, a flag indicating whether the container is in run-mode (TRUE) or
design-mode (FALSE).

bUserMode
The property DISPID_AMBIENT_USERMODE.

One of the standard HRESULT values.

Returns the value of data member m_bRequiresSave .

Returns the value of data member m_bRequiresSave.

This value is set using CComControlBase::SetDirty.

Retrieves the x and y values of the numerator and denominator of the zoom factor for a control activated for in-
place editing.

void GetZoomInfo(ATL_DRAWINFO& di);

ParametersParameters

RemarksRemarks

CComControlBase::InPlaceActivate

HRESULT InPlaceActivate(LONG iVerb, const RECT* prcPosRect = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComControlBase::InternalGetSite

HRESULT InternalGetSite(REFIID riid, void** ppUnkSite);

ParametersParameters

Return ValueReturn Value

di
The structure that will hold the zoom factor's numerator and denominator. For more information, see
ATL_DRAWINFO.

The zoom factor is the proportion of the control's natural size to its current extent.

Causes the control to transition from the inactive state to whatever state the verb in iVerb indicates.

iVerb
Value indicating the action to be performed by IOleObjectImpl::DoVerb.

prcPosRect
Pointer to the position of the in-place control.

One of the standard HRESULT values.

Before activation, this method checks that the control has a client site, checks how much of the control is visible,
and gets the control's location in the parent window. After the control is activated, this method activates the
control's user interface and tells the container to make the control visible.

This method also retrieves an IOleInPlaceSite , IOleInPlaceSiteEx , or IOleInPlaceSiteWindowless interface
pointer for the control and stores it in the control class's data member CComControlBase::m_spInPlaceSite. The
control class data members CComControlBase::m_bInPlaceSiteEx, CComControlBase::m_bWndLess,
CComControlBase::m_bWasOnceWindowless, and CComControlBase::m_bNegotiatedWnd are set to true as
appropriate.

Call this method to query the control site for a pointer to the identified interface.

riid
The IID of the interface pointer that should be returned in ppUnkSite.

ppUnkSite
Address of the pointer variable that receives the interface pointer requested in riid.

Returns S_OK on success, or an error HRESULT on failure.

RemarksRemarks

CComControlBase::m_bAutoSize

unsigned m_bAutoSize:1;

RemarksRemarks

NOTENOTE

CComControlBase::m_bDrawFromNatural

unsigned m_bDrawFromNatural:1;

RemarksRemarks

NOTENOTE

CComControlBase::m_bDrawGetDataInHimetric

unsigned m_bDrawGetDataInHimetric:1;

RemarksRemarks

NOTENOTE

If the site supports the interface requested in riid, the pointer is returned by means of ppUnkSite. Otherwise,
ppUnkSite is set to NULL.

Flag indicating the control cannot be any other size.

This flag is checked by IOleObjectImpl::SetExtent and, if TRUE, causes the function to return E_FAIL.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

If you add the Auto Size option on the Stock Properties tab of the ATL Control Wizard, the wizard automatically
creates this data member in your control class, creates put and get methods for the property, and supports
IPropertyNotifySink to automatically notify the container when the property changes.

Flag indicating that IDataObjectImpl::GetData and CComControlBase::GetZoomInfo should set the control size from
m_sizeNatural rather than from m_sizeExtent .

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

Flag indicating that IDataObjectImpl::GetData should use HIMETRIC units and not pixels when drawing.

Each logical HIMETRIC unit is 0.01 millimeter.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink

CComControlBase::m_bInPlaceActive

unsigned m_bInPlaceActive:1;

RemarksRemarks

NOTENOTE

CComControlBase::m_bInPlaceSiteEx

unsigned m_bInPlaceSiteEx:1;

RemarksRemarks

NOTENOTE

CComControlBase::m_bNegotiatedWnd

unsigned m_bNegotiatedWnd:1;

RemarksRemarks

NOTENOTE

Flag indicating the control is in-place active.

This means the control is visible and its window, if any, is visible, but its menus and toolbars may not be active.
The m_bUIActive flag indicates the control's user interface, such as menus, is also active.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

Flag indicating the container supports the IOleInPlaceSiteEx interface and OCX96 control features, such as
windowless and flicker-free controls.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

The data member m_spInPlaceSite points to an IOleInPlaceSite, IOleInPlaceSiteEx, or
IOleInPlaceSiteWindowless interface, depending on the value of the m_bWndLess and m_bInPlaceSiteEx flags.
(The data member m_bNegotiatedWnd must be TRUE for the m_spInPlaceSite pointer to be valid.)

If m_bWndLess is FALSE and m_bInPlaceSiteEx is TRUE, m_spInPlaceSite is an IOleInPlaceSiteEx interface
pointer. See m_spInPlaceSite for a table showing the relationship among these three data members.

Flag indicating whether or not the control has negotiated with the container about support for OCX96 control
features (such as flicker-free and windowless controls), and whether the control is windowed or windowless.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

The m_bNegotiatedWnd flag must be TRUE for the m_spInPlaceSite pointer to be valid.

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplacesite
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplacesiteex
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplacesitewindowless

CComControlBase::m_bRecomposeOnResize

unsigned m_bRecomposeOnResize:1;

RemarksRemarks

NOTENOTE

CComControlBase::m_bRequiresSave

unsigned m_bRequiresSave:1;

RemarksRemarks

NOTENOTE

CComControlBase::m_bResizeNatural

unsigned m_bResizeNatural:1;

RemarksRemarks

NOTENOTE

Flag indicating the control wants to recompose its presentation when the container changes the control's display
size.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

This flag is checked by IOleObjectImpl::SetExtent and, if TRUE, SetExtent notifies the container of view changes.
if this flag is set, the OLEMISC_RECOMPOSEONRESIZE bit in the OLEMISC enumeration should also be set.

Flag indicating the control has changed since it was last saved.

The value of m_bRequiresSave can be set with CComControlBase::SetDirty and retrieved with
CComControlBase::GetDirty.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

Flag indicating the control wants to resize its natural extent (its unscaled physical size) when the container
changes the control's display size.

This flag is checked by IOleObjectImpl::SetExtent and, if TRUE, the size passed into SetExtent is assigned to
m_sizeNatural .

The size passed into SetExtent is always assigned to m_sizeExtent , regardless of the value of m_bResizeNatural .

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolemisc

CComControlBase::m_bUIActive

unsigned m_bUIActive:1;

RemarksRemarks

NOTENOTE

CComControlBase::m_bUsingWindowRgn

unsigned m_bUsingWindowRgn:1;

RemarksRemarks

NOTENOTE

CComControlBase::m_bWasOnceWindowless

unsigned m_bWasOnceWindowless:1;

RemarksRemarks

NOTENOTE

CComControlBase::m_bWindowOnly

unsigned m_bWindowOnly:1;

RemarksRemarks

Flag indicating the control's user interface, such as menus and toolbars, is active.

The m_bInPlaceActive flag indicates that the control is active, but not that its user interface is active.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

Flag indicating the control is using the container-supplied window region.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

Flag indicating the control has been windowless, but may or may not be windowless now.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

Flag indicating the control should be windowed, even if the container supports windowless controls.

NOTENOTE

CComControlBase::m_bWndLess

unsigned m_bWndLess:1;

RemarksRemarks

NOTENOTE

CComControlBase::m_hWndCD

HWND& m_hWndCD;

RemarksRemarks

NOTENOTE

CComControlBase::m_nFreezeEvents

short m_nFreezeEvents;

RemarksRemarks

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

Flag indicating the control is windowless.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

The data member m_spInPlaceSite points to an IOleInPlaceSite, IOleInPlaceSiteEx, or
IOleInPlaceSiteWindowless interface, depending on the value of the m_bWndLess and
CComControlBase::m_bInPlaceSiteEx flags. (The data member CComControlBase::m_bNegotiatedWnd must be
TRUE for the CComControlBase::m_spInPlaceSite pointer to be valid.)

If m_bWndLess is TRUE, m_spInPlaceSite is an IOleInPlaceSiteWindowless interface pointer. See
CComControlBase::m_spInPlaceSite for a table showing the complete relationship between these data members.

Contains a reference to the window handle associated with the control.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

A count of the number of times the container has frozen events (refused to accept events) without an intervening
thaw of events (acceptance of events).

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplacesite
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplacesiteex
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplacesitewindowless

NOTENOTE

CComControlBase::m_rcPos

RECT m_rcPos;

RemarksRemarks

NOTENOTE

CComControlBase::m_sizeExtent

SIZE m_sizeExtent;

RemarksRemarks

NOTENOTE

CComControlBase::m_sizeNatural

SIZE m_sizeNatural;

RemarksRemarks

NOTENOTE

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

The position in pixels of the control, expressed in the coordinates of the container.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

The extent of the control in HIMETRIC units (each unit is 0.01 millimeters) for a particular display.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

This size is scaled by the display. The control's physical size is specified in the m_sizeNatural data member and is
fixed.

You can convert the size to pixels with the global function AtlHiMetricToPixel.

The physical size of the control in HIMETRIC units (each unit is 0.01 millimeters).

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

This size is fixed, while the size in m_sizeExtent is scaled by the display.

You can convert the size to pixels with the global function AtlHiMetricToPixel.

CComControlBase::m_spAdviseSink

CComPtr<IAdviseSink>
 m_spAdviseSink;

RemarksRemarks

NOTENOTE

CComControlBase::m_spAmbientDispatch

CComDispatchDriver m_spAmbientDispatch;

RemarksRemarks

NOTENOTE

CComControlBase::m_spClientSite

CComPtr<IOleClientSite>
 m_spClientSite;

RemarksRemarks

NOTENOTE

CComControlBase::m_spDataAdviseHolder

CComPtr<IDataAdviseHolder>
 m_spDataAdviseHolder;

RemarksRemarks

A direct pointer to the advisory connection on the container (the container's IAdviseSink).

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

A CComDispatchDriver object that lets you retrieve and set an object's properties through an IDispatch pointer.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

A pointer to the control's client site within the container.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

Provides a standard means to hold advisory connections between data objects and advise sinks.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-iadvisesink

NOTENOTE

CComControlBase::m_spInPlaceSite

CComPtr<IOleInPlaceSiteWindowless>
 m_spInPlaceSite;

RemarksRemarks

NOTENOTE

M_SPINPLACESITE TYPE M_BWNDLESS VALUE M_BINPLACESITEEX VALUE

IOleInPlaceSiteWindowless TRUE TRUE or FALSE

IOleInPlaceSiteEx FALSE TRUE

IOleInPlaceSite FALSE FALSE

CComControlBase::m_spOleAdviseHolder

CComPtr<IOleAdviseHolder>
 m_spOleAdviseHolder;

RemarksRemarks

NOTENOTE

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

A data object is a control that can transfer data and that implements IDataObject, whose methods specify the
format and transfer medium of the data.

The interface m_spDataAdviseHolder implements the IDataObject::DAdvise and IDataObject::DUnadvise methods
to establish and delete advisory connections to the container. The control's container must implement an advise
sink by supporting the IAdviseSink interface.

A pointer to the container's IOleInPlaceSite, IOleInPlaceSiteEx, or IOleInPlaceSiteWindowless interface pointer.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

The m_spInPlaceSite pointer is valid only if the m_bNegotiatedWnd flag is TRUE.

The following table shows how the m_spInPlaceSite pointer type depends on the m_bWndLess and
m_bInPlaceSiteEx data member flags:

Provides a standard implementation of a way to hold advisory connections.

To use this data member within your control class, you must declare it as a data member in your control class. Your control
class will not inherit this data member from the base class because it is declared within a union in the base class.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-idataobject
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-dadvise
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-dunadvise
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-iadvisesink
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplacesite
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplacesiteex
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplacesitewindowless

CComControlBase::OnDraw

virtual HRESULT OnDraw(ATL_DRAWINFO& di);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CComControlBase::OnDrawAdvanced

virtual HRESULT OnDrawAdvanced(ATL_DRAWINFO& di);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComControlBase::OnKillFocus

The interface m_spOleAdviseHolder implements the IOleObject::Advise and IOleObject::Unadvise methods to
establish and delete advisory connections to the container. The control's container must implement an advise sink
by supporting the IAdviseSink interface.

Override this method to draw your control.

di
A reference to the ATL_DRAWINFO structure that contains drawing information such as the draw aspect, the
control bounds, and whether the drawing is optimized or not.

A standard HRESULT value.

The default OnDraw deletes or restores the device context or does nothing, depending on flags set in
CComControlBase::OnDrawAdvanced.

An OnDraw method is automatically added to your control class when you create your control with the ATL
Control Wizard. The wizard's default OnDraw draws a rectangle with the label "ATL 8.0".

See the example for CComControlBase::GetAmbientAppearance.

The default OnDrawAdvanced prepares a normalized device context for drawing, then calls your control class's
OnDraw method.

di
A reference to the ATL_DRAWINFO structure that contains drawing information such as the draw aspect, the
control bounds, and whether the drawing is optimized or not.

A standard HRESULT value.

Override this method if you want to accept the device context passed by the container without normalizing it.

See CComControlBase::OnDraw for more details.

Checks that the control is in-place active and has a valid control site, then informs the container that the control
has lost focus.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-advise
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-unadvise
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-iadvisesink

LRESULT OnKillFocus(UINT /* nMsg */,
 WPARAM /* wParam */,
 LPARAM /* lParam */,
 BOOL& bHandled);

ParametersParameters

Return ValueReturn Value

CComControlBase::OnMouseActivate

LRESULT OnMouseActivate(UINT /* nMsg */,
 WPARAM /* wParam */,
 LPARAM /* lParam */,
 BOOL& bHandled);

ParametersParameters

Return ValueReturn Value

CComControlBase::OnPaint

LRESULT OnPaint(UINT /* nMsg */,
 WPARAM wParam,
 LPARAM /* lParam */,
 BOOL& /* lResult */);

nMsg
Reserved.

wParam
Reserved.

lParam
Reserved.

bHandled
Flag that indicates whether the window message was successfully handled. The default is FALSE.

Always returns 1.

Checks that the UI is in user mode, then activates the control.

nMsg
Reserved.

wParam
Reserved.

lParam
Reserved.

bHandled
Flag that indicates whether the window message was successfully handled. The default is FALSE.

Always returns 1.

Prepares the container for painting, gets the control's client area, then calls the control class's OnDrawAdvanced
method.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComControlBase::OnSetFocus

LRESULT OnSetFocus(UINT /* nMsg */,
 WPARAM /* wParam */,
 LPARAM /* lParam */,
 BOOL& bHandled);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComControlBase::PreTranslateAccelerator

BOOL PreTranslateAccelerator(LPMSG /* pMsg */,
 HRESULT& /* hRet */);

nMsg
Reserved.

wParam
An existing HDC.

lParam
Reserved.

lResult
Reserved.

Always returns zero.

If wParam is not NULL, OnPaint assumes it contains a valid HDC and uses it instead of
CComControlBase::m_hWndCD.

Checks that the control is in-place active and has a valid control site, then informs the container the control has
gained focus.

nMsg
Reserved.

wParam
Reserved.

lParam
Reserved.

bHandled
Flag that indicates whether the window message was successfully handled. The default is FALSE.

Always returns 1.

Sends a notification to the container that the control has received focus.

Override this method to provide your own keyboard accelerator handlers.

ParametersParameters

Return ValueReturn Value

CComControlBase::SendOnClose

HRESULT SendOnClose();

Return ValueReturn Value

RemarksRemarks

CComControlBase::SendOnDataChange

HRESULT SendOnDataChange(DWORD advf = 0);

ParametersParameters

Return ValueReturn Value

CComControlBase::SendOnRename

HRESULT SendOnRename(IMoniker* pmk);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pMsg
Reserved.

hRet
Reserved.

By default returns FALSE.

Notifies all advisory sinks registered with the advise holder that the control has been closed.

Returns S_OK on success, or an error HRESULT on failure.

Sends a notification that the control has closed its advisory sinks.

Notifies all advisory sinks registered with the advise holder that the control data has changed.

advf
Advise flags that specify how the call to IAdviseSink::OnDataChange is made. Values are from the ADVF
enumeration.

Returns S_OK on success, or an error HRESULT on failure.

Notifies all advisory sinks registered with the advise holder that the control has a new moniker.

pmk
Pointer to the new moniker of the control.

Returns S_OK on success, or an error HRESULT on failure.

Sends a notification that the moniker for the control has changed.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-iadvisesink-ondatachange
https://docs.microsoft.com/windows/desktop/api/objidl/ne-objidl-tagadvf

CComControlBase::SendOnSave

HRESULT SendOnSave();

Return ValueReturn Value

RemarksRemarks

CComControlBase::SendOnViewChange

HRESULT SendOnViewChange(DWORD dwAspect, LONG lindex = -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComControlBase::SetControlFocus

BOOL SetControlFocus(BOOL bGrab);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComControlBase::SetDirty

Notifies all advisory sinks registered with the advise holder that the control has been saved.

Returns S_OK on success, or an error HRESULT on failure.

Sends a notification that the control has just saved its data.

Notifies all registered advisory sinks that the control's view has changed.

dwAspect
The aspect or view of the control.

lindex
The portion of the view that has changed. Only -1 is valid.

Returns S_OK on success, or an error HRESULT on failure.

SendOnViewChange calls IAdviseSink::OnViewChange. The only value of lindex currently supported is -1, which
indicates that the entire view is of interest.

Sets or removes the keyboard focus to or from the control.

bGrab
If TRUE, sets the keyboard focus to the calling control. If FALSE, removes the keyboard focus from the calling
control, provided it has the focus.

Returns TRUE if the control successfully receives focus; otherwise, FALSE.

For a windowed control, the Windows API function SetFocus is called. For a windowless control,
IOleInPlaceSiteWindowless::SetFocus is called. Through this call, a windowless control obtains the keyboard
focus and can respond to window messages.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-iadvisesink-onviewchange
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setfocus
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ioleinplacesitewindowless-setfocus

void SetDirty(BOOL bDirty);

ParametersParameters

RemarksRemarks

See also

Sets the data member m_bRequiresSave to the value in bDirty.

bDirty
Value of the data member CComControlBase::m_bRequiresSave.

SetDirty(TRUE) should be called to flag that the control has changed since it was last saved. The value of
m_bRequiresSave is retrieved with CComControlBase::GetDirty.

CComControl Class
Class Overview

CComCriticalSection Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CComCriticalSection

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComCriticalSection::CComCriticalSection The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComCriticalSection::Init Creates and initializes a critical section object.

CComCriticalSection::Lock Obtains ownership of the critical section object.

CComCriticalSection::Term Releases system resources used by the critical section object.

CComCriticalSection::Unlock Releases ownership of the critical section object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComCriticalSection::m_sec A CRITICAL_SECTION object.

Remarks

Requirements

CComCriticalSection::CComCriticalSection

This class provides methods for obtaining and releasing ownership of a critical section object.

CComCriticalSection is similar to class CComAutoCriticalSection, except that you must explicitly initialize and
release the critical section.

Typically, you use CComCriticalSection through the typedef name CriticalSection. This name references
CComCriticalSection when CComMultiThreadModel is being used.

See CComCritSecLock Class for a safer way to use this class than calling Lock and Unlock directly.

Header: atlcore.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomcriticalsection-class.md

CComCriticalSection::CComCriticalSection

CComCriticalSection() throw();

RemarksRemarks

CComCriticalSection::Init

HRESULT Init() throw();

Return ValueReturn Value

CComCriticalSection::Lock

HRESULT Lock() throw();

Return ValueReturn Value

RemarksRemarks

CComCriticalSection::m_sec

CRITICAL_SECTION m_sec;

CComCriticalSection::Term

HRESULT Term() throw();

Return ValueReturn Value

RemarksRemarks

The constructor.

Sets the m_sec data member to NULL.

Calls the Win32 function InitializeCriticalSection, which initializes the critical section object contained in the
m_sec data member.

Returns S_OK on success, E_OUTOFMEMORY or E_FAIL on failure.

Calls the Win32 function EnterCriticalSection, which waits until the thread can take ownership of the critical
section object contained in the m_sec data member.

Returns S_OK on success, E_OUTOFMEMORY or E_FAIL on failure.

The critical section object must first be initialized with a call to the Init method. When the protected code has
finished executing, the thread must call Unlock to release ownership of the critical section.

Contains a critical section object that is used by all CComCriticalSection methods.

Calls the Win32 function DeleteCriticalSection, which releases all resources used by the critical section object
contained in the m_sec data member.

Returns S_OK.

https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-initializecriticalsection
https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-entercriticalsection
https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-deletecriticalsection

 CComCriticalSection::Unlock

HRESULT Unlock() throw();

Return ValueReturn Value

RemarksRemarks

See also

Once Term has been called, the critical section can no longer be used for synchronization.

Calls the Win32 function LeaveCriticalSection, which releases ownership of the critical section object contained
in the m_sec data member.

Returns S_OK.

To first obtain ownership, the thread must call the Lock method. Each call to Lock requires a corresponding
call to Unlock to release ownership of the critical section.

CComFakeCriticalSection Class
Class Overview
CComCritSecLock Class

https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-leavecriticalsection

CComCritSecLock Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class TLock> class CComCritSecLock

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComCritSecLock::CComCritSecLock The constructor.

CComCritSecLock::~CComCritSecLock The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComCritSecLock::Lock Call this method to lock the critical section object.

CComCritSecLock::Unlock Call this method to unlock the critical section object.

Remarks

Requirements

CComCritSecLock::CComCritSecLock

CComCritSecLock(TLock& cs, bool bInitialLock = true);

ParametersParameters

This class provides methods for locking and unlocking a critical section object.

TLock
The object to be locked and unlocked.

Use this class to lock and unlock objects in a safer way than with the CComCriticalSection Class or
CComAutoCriticalSection Class.

Header: atlbase.h

The constructor.

cs

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomcritseclock-class.md

RemarksRemarks

CComCritSecLock::~CComCritSecLock

~CComCritSecLock() throw();

RemarksRemarks

CComCritSecLock::Lock

HRESULT Lock() throw();

Return ValueReturn Value

RemarksRemarks

CComCritSecLock::Unlock

void Unlock() throw();

RemarksRemarks

See also

The critical section object.

bInitialLock
The initial lock state: true means locked.

Initializes the critical section object.

The destructor.

Unlocks the critical section object.

Call this method to lock the critical section object.

Returns S_OK if the object has successfully been locked, or an error HRESULT on failure.

If the object is already locked, an ASSERT error will occur in debug builds.

Call this method to unlock the critical section object.

If the object is already unlocked, an ASSERT error will occur in debug builds.

CComCriticalSection Class
CComAutoCriticalSection Class

CComCurrency Class
3/4/2019 • 11 minutes to read • Edit Online

Syntax
class CComCurrency

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComCurrency::CComCurrency The constructor for a CComCurrency object.

Public MethodsPublic Methods

NAME DESCRIPTION

CComCurrency::GetCurrencyPtr Returns the address of an m_currency data member.

CComCurrency::GetFraction Call this method to return the fractional component of a
CComCurrency object.

CComCurrency::GetInteger Call this method to return the integer component of a
CComCurrency object.

CComCurrency::Round Call this method to round a CComCurrency object to the
nearest integer value.

CComCurrency::SetFraction Call this method to set the fractional component of a
CComCurrency object.

CComCurrency::SetInteger Call this method to set the integer component of a
CComCurrency object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CComCurrency::operator - This operator is used to perform subtraction on a
CComCurrency object.

CComCurrency::operator != Compares two CComCurrency objects for inequality.

CComCurrency::operator * This operator is used to perform multiplication on a
CComCurrency object.

CComCurrency has methods and operators for creating and managing a CURRENCY object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomcurrency-class.md

CComCurrency::operator *= This operator is used to perform multiplication on a
CComCurrency object and assign it the result.

CComCurrency::operator / This operator is used to perform division on a CComCurrency

object.

CComCurrency::operator /= This operator is used to perform division on a CComCurrency

object and assign it the result.

CComCurrency::operator + This operator is used to perform addition on a
CComCurrency object.

CComCurrency::operator += This operator is used to perform addition on a
CComCurrency object and assign the result to the current

object.

CComCurrency::operator < This operator compares two CComCurrency objects to
determine the lesser.

CComCurrency::operator <= This operator compares two CComCurrency objects to
determine equality or the lesser.

CComCurrency::operator = This operator assigns the CComCurrency object to a new
value.

CComCurrency::operator -= This operator is used to perform subtraction on a
CComCurrency object and assign it the result.

CComCurrency::operator == This operator compares two CComCurrency objects for
equality.

CComCurrency::operator > This operator compares two CComCurrency objects to
determine the larger.

CComCurrency::operator >= This operator compares two CComCurrency objects to
determine equality or the larger.

CComCurrency::operator CURRENCY Casts a CURRENCY object.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComCurrency::m_currency The CURRENCY variable created by your class instance.

Remarks
CComCurrency is a wrapper for the CURRENCY data type. CURRENCY is implemented as an 8-byte two's-

complement integer value scaled by 10,000. This gives a fixed-point number with 15 digits to the left of the
decimal point and 4 digits to the right. The CURRENCY data type is extremely useful for calculations involving
money, or for any fixed-point calculations where accuracy is important.

VALUE POSSIBLE CCOMCURRENCY ASSIGNMENTS

$10.50 CComCurrency(10,5000) or CComCurrency(10.50)

$10.05 CComCurrency(10,500) or CComCurrency(10.05)

Requirements

CComCurrency::CComCurrency

CComCurrency() throw();
CComCurrency(const CComCurrency& curSrc) throw();
CComCurrency(CURRENCY cySrc) throw();
CComCurrency(DECIMAL dSrc);
CComCurrency(ULONG ulSrc);
CComCurrency(USHORT usSrc);
CComCurrency(CHAR cSrc);
CComCurrency(DOUBLE dSrc);
CComCurrency(FLOAT fSrc);
CComCurrency(LONG lSrc);
CComCurrency(SHORT sSrc);
CComCurrency(BYTE bSrc);
CComCurrency(LONGLONG nInteger, SHORT nFraction);
explicit CComCurrency(LPDISPATCH pDispSrc);
explicit CComCurrency(const VARIANT& varSrc);
explicit CComCurrency(LPCWSTR szSrc);
explicit CComCurrency(LPCSTR szSrc);

ParametersParameters

The CComCurrency wrapper implements arithmetic, assignment, and comparison operations for this fixed-point
type. The supported applications have been selected to control the rounding errors that can occur during fixed-
point calculations.

The CComCurrency object provides access to the numbers on either side of the decimal point in the form of two
components: an integer component which stores the value to the left of the decimal point, and a fractional
component which stores the value to the right of the decimal point. The fractional component is stored internally
as an integer value between -9999 (CY_MIN_FRACTION) and +9999 (CY_MAX_FRACTION). The method
CComCurrency::GetFraction returns a value scaled by a factor of 10000 (CY_SCALE).

When specifying the integer and fractional components of a CComCurrency object, remember that the fractional
component is a number in the range 0 to 9999. This is important when dealing with a currency such as the US
dollar that expresses amounts using only two significant digits after the decimal point. Even though the last two
digits are not displayed, they must be taken into account.

The values CY_MIN_FRACTION, CY_MAX_FRACTION, and CY_SCALE are defined in atlcur.h.

Header: atlcur.h

The constructor.

curSrc
An existing CComCurrency object.

cySrc
A variable of type CURRENCY.

bSrc, dSrc, fSrc, lSrc, sSrc, ulSrc, usSrc

RemarksRemarks

CComCurrency::GetCurrencyPtr

CURRENCY* GetCurrencyPtr() throw();

Return ValueReturn Value

CComCurrency::GetFraction

SHORT GetFraction() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

The initial value given to the member variable m_currency .

cSrc
A character containing the initial value given to the member variable m_currency .

nInteger, nFraction
The integer and fractional components of the initial monetary value. See the CComCurrency overview for more
information.

pDispSrc
An IDispatch pointer.

varSrc
A variable of type VARIANT. The locale of the current thread is used to perform the conversion.

szSrc
A Unicode or ANSI string containing the initial value. The locale of the current thread is used to perform the
conversion.

The constructor sets the initial value of CComCurrency::m_currency, and accepts a wide range of data types,
including integers, strings, floating-point numbers, CURRENCY variables, and other CComCurrency objects. If no
value is provided, m_currency is set to 0.

In the event of an error, such as an overflow, the constructors lacking an empty exception specification (throw())
call AtlThrow with an HRESULT describing the error.

When using floating-point or double values to assign a value, note that CComCurrency(10.50) is equivalent to
CComCurrency(10,5000) and not CComCurrency(10,50) .

Returns the address of an m_currency data member.

Returns the address of an m_currency data member

Call this method to return the fractional component of the CComCurrency object.

Returns the fractional component of the m_currency data member.

The fractional component is a 4-digit integer value between -9999 (CY_MIN_FRACTION) and +9999
(CY_MAX_FRACTION). GetFraction returns this value scaled by 10000 (CY_SCALE). The values of
CY_MIN_FRACTION, CY_MAX_FRACTION, and CY_SCALE are defined in atlcur.h.

CComCurrency cur(10, 5000);
int nFract;
nFract = cur.GetFraction();
ATLASSERT(nFract == 5000);

CComCurrency::GetInteger

LONGLONG GetInteger() const;

Return ValueReturn Value

ExampleExample

CComCurrency cur(10, 5000);
LONGLONG nInteger;
nInteger = cur.GetInteger();
ATLASSERT(nInteger == 10);

CComCurrency::m_currency

CURRENCY m_currency;

RemarksRemarks

CComCurrency::operator -

CComCurrency operator-() const;
CComCurrency operator-(const CComCurrency& cur) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur1(10, 5000), cur2;
cur2 = cur1 - CComCurrency(4, 5000);
ATLASSERT(cur2 == CComCurrency(6, 0));

Call this method to get the integer component of a CComCurrency object.

Returns the integer component of the m_currency data member.

The CURRENCY data member.

This member holds the currency accessed and manipulated by the methods of this class.

This operator is used to perform subtraction on a CComCurrency object.

cur
A CComCurrency object.

Returns a CComCurrency object representing the result of the subtraction. In the event of an error, such as an
overflow, this operator calls AtlThrow with an HRESULT describing the error.

CComCurrency::operator !=

bool operator!= (const CComCurrency& cur) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur1(10, 5000), cur2(10, 5001);
ATLASSERT(cur1 != cur2);

CComCurrency::operator *

CComCurrency operator*(long nOperand) const;
CComCurrency operator*(const CComCurrency& cur) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur1(10, 5000), cur2;
cur2 = cur1 * 2;
ATLASSERT(cur2 == CComCurrency(21, 0));

CComCurrency::operator *=

const CComCurrency& operator*= (long nOperand);
const CComCurrency& operator*= (const CComCurrency& cur);

ParametersParameters

This operator compares two objects for inequality.

cur
The CComCurrency object to be compared.

Returns TRUE if the item being compared is not equal to the CComCurrency object; otherwise, FALSE.

This operator is used to perform multiplication on a CComCurrency object.

nOperand
The multiplier.

cur
The CComCurrency object used as the multiplier.

Returns a CComCurrency object representing the result of the multiplication. In the event of an error, such as an
overflow, this operator calls AtlThrow with an HRESULT describing the error.

This operator is used to perform multiplication on a CComCurrency object and assign it the result.

nOperand
The multiplier.

Return ValueReturn Value

ExampleExample

CComCurrency cur(10, 5000);
cur *= 2;
ATLASSERT(cur == CComCurrency(21, 0));

CComCurrency::operator /

CComCurrency operator/(long nOperand) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur1(10, 5000), cur2;
cur2 = cur1 / 10;
ATLASSERT(cur2 == CComCurrency(1, 500));

CComCurrency::operator /=

const CComCurrency& operator/= (long nOperand);

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur(10, 5000);
cur /= 10;
ATLASSERT(cur == CComCurrency(1, 500));

CComCurrency::operator +

cur
The CComCurrency object used as the multiplier.

Returns the updated CComCurrency object. In the event of an error, such as an overflow, this operator calls
AtlThrow with an HRESULT describing the error.

This operator is used to perform division on a CComCurrency object.

nOperand
The divisor.

Returns a CComCurrency object representing the result of the division. If the divisor is 0, an assert failure will occur.

This operator is used to perform division on a CComCurrency object and assign it the result.

nOperand
The divisor.

Returns the updated CComCurrency object. If the divisor is 0, an assert failure will occur.

CComCurrency operator+(const CComCurrency& cur) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur1(10, 5000), cur2;
cur2 = cur1 + CComCurrency(4, 5000);
ATLASSERT(cur2 == CComCurrency(15, 0));

CComCurrency::operator +=

const CComCurrency& operator+= (const CComCurrency& cur);

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur(10, 2500);
cur += CComCurrency(4, 2500);
ATLASSERT(cur == CComCurrency(14, 5000));

CComCurrency::operator <

bool operator<(const CComCurrency& cur) const;

ParametersParameters

Return ValueReturn Value

This operator is used to perform addition on a CComCurrency object.

cur
The CComCurrency object to be added to the original object.

Returns a CComCurrency object representing the result of the addition. In the event of an error, such as an overflow,
this operator calls AtlThrow with an HRESULT describing the error.

This operator is used to perform addition on a CComCurrency object and assign the result to the current object.

cur
The CComCurrency object.

Returns the updated CComCurrency object. In the event of an error, such as an overflow, this operator calls
AtlThrow with an HRESULT describing the error.

This operator compares two CComCurrency objects to determine the lesser.

cur
A CComCurrency object.

Returns TRUE if the first object is less than the second, FALSE otherwise.

ExampleExample

CComCurrency cur1(10, 4900);
CComCurrency cur2(10, 5000);
ATLASSERT(cur1 < cur2);

CComCurrency::operator <=

bool operator<= (const CComCurrency& cur) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur1(10, 4900);
CComCurrency cur2(10, 5000);
ATLASSERT(cur1 <= cur2);

CComCurrency::operator =

const CComCurrency& operator= (const CComCurrency& curSrc) throw();
const CComCurrency& operator= (CURRENCY cySrc) throw();
const CComCurrency& operator= (FLOAT fSrc);
const CComCurrency& operator= (SHORT sSrc);
const CComCurrency& operator= (LONG lSrc);
const CComCurrency& operator= (BYTE bSrc);
const CComCurrency& operator= (USHORT usSrc);
const CComCurrency& operator= (DOUBLE dSrc);
const CComCurrency& operator= (CHAR cSrc);
const CComCurrency& operator= (ULONG ulSrc);
const CComCurrency& operator= (DECIMAL dSrc);

ParametersParameters

Return ValueReturn Value

This operator compares two CComCurrency objects to determine equality or the lesser.

cur
A CComCurrency object.

Returns TRUE if the first object is less than or equal to the second, FALSE otherwise.

This operator assigns the CComCurrency object to a new value.

curSrc
A CComCurrency object.

cySrc
A variable of type CURRENCY.

sSrc, fSrc, lSrc, bSrc, usSrc, dSrc, cSrc, ulSrc, dSrc
The numeric value to assign to the CComCurrency object.

Returns the updated CComCurrency object. In the event of an error, such as an overflow, this operator calls
AtlThrow with an HRESULT describing the error.

ExampleExample

CComCurrency cur1, cur2(10, 5000);
CURRENCY cy;

// Copying one object to another
cur1 = cur2;

// Using the CURRENCY data type
cy.int64 = 105000;
cur1 = cy;

ATLASSERT(cur1 == cur2);

CComCurrency::operator -=

const CComCurrency& operator-= (const CComCurrency& cur);

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur(10, 5000);
cur -= CComCurrency(4, 5000);
ATLASSERT(cur == CComCurrency(6, 0));

CComCurrency::operator ==

bool operator== (const CComCurrency& cur) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur1(10, 5000), cur2;
cur2 = cur1;
ATLASSERT(cur1 == cur2);

This operator is used to perform subtraction on a CComCurrency object and assign it the result.

cur
A CComCurrency object.

Returns the updated CComCurrency object. In the event of an error, such as an overflow, this operator calls
AtlThrow with an HRESULT describing the error.

This operator compares two CComCurrency objects for equality.

cur
The CComCurrency object to compare.

Returns TRUE if the objects are equal (that is, the m_currency data members, both integer and fractional, in both
objects have the same value), FALSE otherwise.

CComCurrency::operator >

bool operator>(const CComCurrency& cur) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur1(10, 5100);
CComCurrency cur2(10, 5000);
ATLASSERT(cur1 > cur2);

CComCurrency::operator >=

bool operator>= (const CComCurrency& cur) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur1(10, 5100);
CComCurrency cur2(10, 5000);
ATLASSERT(cur1 >= cur2);

CComCurrency::operator CURRENCY

operator CURRENCY&() throw();
operator const CURRENCY&() const throw();

Return ValueReturn Value

ExampleExample

This operator compares two CComCurrency objects to determine the larger.

cur
A CComCurrency object.

Returns TRUE if the first object is greater than the second, FALSE otherwise.

This operator compares two CComCurrency objects to determine equality or the larger.

cur
A CComCurrency object.

Returns TRUE if the first object is greater than or equal to the second, FALSE otherwise.

These operators are used to cast a CComCurrency object to a CURRENCY data type.

Returns a reference to a CURRENCY object.

CComCurrency cur(10, 5000);
CURRENCY cy = static_cast<CURRENCY>(cur); // Note that explicit cast is not necessary
ATLASSERT(cy.int64 == 105000);

CComCurrency::Round

HRESULT Roundint nDecimals);

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur(10, 1234);
cur.Round(3);
ATLASSERT(cur.GetFraction() == 1230);

CComCurrency::SetFraction

HRESULT SetFraction(SHORT nFraction);

ParametersParameters

Return ValueReturn Value

ExampleExample

CComCurrency cur(10, 0);
cur.SetFraction(5000);
ATLASSERT(CComCurrency(10, 5000) == cur);

CComCurrency::SetInteger

HRESULT SetInteger(LONGLONG nInteger);

ParametersParameters

Call this method to round the currency to a specified number of decimal places.

nDecimals
The number of digits to which m_currency will be rounded, in the range 0 to 4.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the fractional component of a CComCurrency object.

nFraction
The value to be assigned to the fractional component of the m_currency data member. The sign of the fractional
component must the same as the integer component, and the value must be in range -9999
(CY_MIN_FRACTION) to +9999 (CY_MAX_FRACTION).

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the integer component of a CComCurrency object.

Return ValueReturn Value

ExampleExample

CComCurrency cur(0, 5000);
cur.SetInteger(10);
ATLASSERT(CComCurrency(10, 5000) == cur);

See also

nInteger
The value to be assigned to the integer component of the m_currency data member. The sign of the integer
component must match the sign of the existing fractional component.

nInteger must be in the range CY_MIN_INTEGER to CY_MAX_INTEGER inclusive. These values are defined in
atlcur.h.

Returns S_OK on success, or an error HRESULT on failure.

COleCurrency Class
CURRENCY
Class Overview

https://docs.microsoft.com/windows/desktop/api/wtypes/ns-wtypes-tagcy

CComDynamicUnkArray Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CComDynamicUnkArray

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComDynamicUnkArray::CComDynamicUnkArray Constructor. Initializes the collection values to NULL and the
collection size to zero.

CComDynamicUnkArray::~CComDynamicUnkArray The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComDynamicUnkArray::Add Call this method to add an IUnknown pointer to the array.

CComDynamicUnkArray::begin Returns a pointer to the first IUnknown pointer in the
collection.

CComDynamicUnkArray::clear Empties the array.

CComDynamicUnkArray::end Returns a pointer to one past the last IUnknown pointer in
the collection.

CComDynamicUnkArray::GetAt Retrieves the element at the specified index.

CComDynamicUnkArray::GetCookie Call this method to get the cookie associated with a given
IUnknown pointer.

CComDynamicUnkArray::GetSize Returns the length of an array.

CComDynamicUnkArray::GetUnknown Call this method to get the IUnknown pointer associated
with a given cookie.

CComDynamicUnkArray::Remove Call this method to remove an IUnknown pointer from the
array.

Remarks

This class stores an array of IUnknown pointers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomdynamicunkarray-class.md

NOTENOTE

Requirements

CComDynamicUnkArray::Add

DWORD Add(IUnknown* pUnk);

ParametersParameters

Return ValueReturn Value

CComDynamicUnkArray::begin

IUnknown**
 begin();

Return ValueReturn Value

RemarksRemarks

CComDynamicUnkArray::clear

void clear();

CComDynamicUnkArray holds a dynamically allocated array of IUnknown pointers, each an interface on a connection
point. CComDynamicUnkArray can be used as a parameter to the IConnectionPointImpl template class.

The CComDynamicUnkArray methods begin and end can be used to loop through all connection points (for example,
when an event is fired).

See Adding Connection Points to an Object for details on automating creation of connection point proxies.

Note The class CComDynamicUnkArray is used by the Add Class wizard when creating a control which has Connection
Points. If you wish to specify the number of Connection Points manually, change the reference from CComDynamicUnkArray

to CComUnkArray< n > , where n is the number of connection points required.

Header: atlcom.h

Call this method to add an IUnknown pointer to the array.

pUnk
The IUnknown pointer to add to the array.

Returns the cookie associated with the newly added pointer.

Returns a pointer to the beginning of the collection of IUnknown interface pointers.

A pointer to an IUnknown interface pointer.

The collection contains pointers to interfaces stored locally as IUnknown . You cast each IUnknown interface to the
real interface type and then call through it. You do not need to query for the interface first.

Before using the IUnknown interface, you should check that it is not NULL.

Empties the array.

CComDynamicUnkArray::CComDynamicUnkArray

CComDynamicUnkArray();

RemarksRemarks

CComDynamicUnkArray::~CComDynamicUnkArray

~CComDynamicUnkArray();

RemarksRemarks

CComDynamicUnkArray::end

IUnknown**
 end();

Return ValueReturn Value

CComDynamicUnkArray::GetAt

IUnknown* GetAt(int nIndex);

ParametersParameters

Return ValueReturn Value

CComDynamicUnkArray::GetCookie

DWORD WINAPI GetCookie(IUnknown** ppFind);

ParametersParameters

The constructor.

Sets the collection size to zero and initializes the values to NULL. The destructor frees the collection, if necessary.

The destructor.

Frees resources allocated by the class constructor.

Returns a pointer to one past the last IUnknown pointer in the collection.

A pointer to an IUnknown interface pointer.

Retrieves the element at the specified index.

nIndex
The index of the element to retrieve.

A pointer to an IUnknown interface.

Call this method to get the cookie associated with a given IUnknown pointer.

ppFind
The IUnknown pointer for which the associated cookie is required.

https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

Return ValueReturn Value

RemarksRemarks

CComDynamicUnkArray::GetSize

int GetSize() const;

Return ValueReturn Value

CComDynamicUnkArray::GetUnknown

IUnknown* WINAPI GetUnknown(DWORD dwCookie);

ParametersParameters

Return ValueReturn Value

CComDynamicUnkArray::Remove

BOOL Remove(DWORD dwCookie);

ParametersParameters

Return ValueReturn Value

See also

Returns the cookie associated with the IUnknown pointer, or zero if no matching IUnknown pointer is found.

If there is more than one instance of the same IUnknown pointer, this function returns the cookie for the first one.

Returns the length of an array.

The length of the array.

Call this method to get the IUnknown pointer associated with a given cookie.

dwCookie
The cookie for which the associated IUnknown pointer is required.

Returns the IUnknown pointer, or NULL if no matching cookie is found.

Call this method to remove an IUnknown pointer from the array.

dwCookie
The cookie referencing the IUnknown pointer to be removed from the array.

Returns TRUE if the pointer is removed; otherwise FALSE.

CComUnkArray Class
Class Overview

CComEnum Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class Base,
 const IID* piid, class T, class Copy, class ThreadModel = CcomObjectThreadModel>
class ATL_NO_VTABLE CComEnum : public CComEnumImpl<Base, piid,
T,
 Copy>,
public CComObjectRootEx<ThreadModel>

ParametersParameters

Remarks

To use this class:

Inheritance Hierarchy

This class defines a COM enumerator object based on an array.

Base
A COM enumerator interface. See IEnumString for an example.

piid
A pointer to the interface ID of the enumerator interface.

T
The type of item exposed by the enumerator interface.

Copy
A homogeneous copy policy class.

ThreadModel
The threading model of the class. This parameter defaults to the global object thread model used in your project.

CComEnum defines a COM enumerator object based on an array. This class is analogous to CComEnumOnSTL
which implements an enumerator based on a C++ Standard Library container. Typical steps for using this class
are outlined below. For more information, see ATL Collections and Enumerators.

typedef a specialization of this class.

Use the typedef as the template argument in a specialization of CComObject .

Create an instance of the CComObject specialization.

Initialize the enumerator object by calling CComEnumImpl::Init.

Return the enumerator interface to the client.

CComObjectRootBase

Base

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomenum-class.md
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ienumstring

Requirements

Example

template <class EnumType, class ElementType>
HRESULT CreateEnumerator(IUnknown** ppUnk, ElementType* begin, ElementType* end,
 IUnknown* pUnk, CComEnumFlags flags)
{
 if (ppUnk == NULL)
 return E_POINTER;
 *ppUnk = NULL;

 CComObject<EnumType>* pEnum = NULL;
 HRESULT hr = CComObject<EnumType>::CreateInstance(&pEnum);

 if (FAILED(hr))
 return hr;

 hr = pEnum->Init(begin, end, pUnk, flags);

 if (SUCCEEDED(hr))
 hr = pEnum->QueryInterface(ppUnk);

 if (FAILED(hr))
 delete pEnum;

 return hr;
} // CreateEnumerator

typedef CComEnum<IEnumVARIANT, &IID_IEnumVARIANT, VARIANT, _Copy<VARIANT> > VarArrEnum;

class ATL_NO_VTABLE CVariantArrayCollection :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CVariantArrayCollection, &CLSID_VariantArrayCollection>,
 public IDispatchImpl<IVariantArrayCollection, &IID_IVariantArrayCollection, &LIBID_NVC_ATL_COMLib, /*wMajor
=*/ 1, /*wMinor =*/ 0>
{
VARIANT m_arr[3];
public:
 STDMETHOD(get__NewEnum)(IUnknown** ppUnk)
 {
 return CreateEnumerator<VarArrEnum>(ppUnk, &m_arr[0], &m_arr[3], this,
 AtlFlagNoCopy);
 }

 // Remainder of class declaration omitted.

CComObjectRootEx

CComEnumImpl

CComEnum

Header: atlcom.h

The code shown below provides a reusable function for creating and initializing an enumerator object.

This template function can be used to implement the _NewEnum property of a collection interface as shown below:

This code creates a typedef for CComEnum that exposes a vector of VARIANTs through the IEnumVariant interface.
The CVariantArrayCollection class simply specializes CreateEnumerator to work with enumerator objects of this
type and passes the necessary arguments.

See also
Class Overview
CComObjectThreadModel
CComEnumImpl Class
CComObjectRootEx Class

CComEnumImpl Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
template <class Base,
 const IID* piid, class T, class Copy>
class ATL_NO_VTABLE CComEnumImpl : public Base

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComEnumImpl::CComEnumImpl The constructor.

CComEnumImpl::~CComEnumImpl The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComEnumImpl::Clone The implementation of the Clone enumeration interface
method.

CComEnumImpl::Init Initializes the enumerator.

CComEnumImpl::Next The implementation of Next.

CComEnumImpl::Reset The implementation of Reset.

CComEnumImpl::Skip The implementation of Skip.

Public Data MembersPublic Data Members

This class provides the implementation for a COM enumerator interface where the items being enumerated are
stored in an array.

Base
A COM enumerator interface. See IEnumString for an example.

piid
A pointer to the interface ID of the enumerator interface.

T
The type of item exposed by the enumerator interface.

Copy
A homogeneous copy policy class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomenumimpl-class.md
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ienumstring

NAME DESCRIPTION

CComEnumImpl::m_begin A pointer to the first item in the array.

CComEnumImpl::m_dwFlags Copy flags passed through Init .

CComEnumImpl::m_end A pointer to the location just beyond the last item in the
array.

CComEnumImpl::m_iter A pointer to the current item in the array.

CComEnumImpl::m_spUnk The IUnknown pointer of the object supplying the collection
being enumerated.

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

CComEnumImpl::CComEnumImpl

CComEnumImpl();

CComEnumImpl::~CComEnumImpl

See IEnumString for an example of method implementations. CComEnumImpl provides the implementation for a
COM enumerator interface where the items being enumerated are stored in an array. This class is analogous to
the IEnumOnSTLImpl class, which provides an implementation of an enumerator interface based on a C++
Standard Library container.

For details on further differences between CComEnumImpl and IEnumOnSTLImpl , see CComEnumImpl::Init.

Typically, you will not need to create your own enumerator class by deriving from this interface implementation.
If you want to use an ATL-supplied enumerator based on an array, it is more common to create an instance of
CComEnum.

However, if you do need to provide a custom enumerator (for example, one that exposes interfaces in addition to
the enumerator interface), you can derive from this class. In this situation, it is likely that you'll need to override
the CComEnumImpl::Clone method to provide your own implementation.

For more information, see ATL Collections and Enumerators.

Base

CComEnumImpl

Header: atlcom.h

The constructor.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ienumstring

~CComEnumImpl();

CComEnumImpl::Init

HRESULT Init(
 T* begin,
 T* end,
 IUnknown* pUnk,
 CComEnumFlags flags = AtlFlagNoCopy);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

enum CComEnumFlags
 {
 AtlFlagNoCopy = 0,
 AtlFlagTakeOwnership = 2, // BitOwn
 AtlFlagCopy = 3 // BitOwn | BitCopy
 };

The destructor.

You must call this method before passing a pointer to the enumerator interface back to any clients.

begin
A pointer to the first element of the array containing the items to be enumerated.

end
A pointer to the location just beyond the last element of the array containing the items to be enumerated.

pUnk
[in] The IUnknown pointer of an object that must be kept alive during the lifetime of the enumerator. Pass NULL if
no such object exists.

flags
Flags specifying whether or not the enumerator should take ownership of the array or make a copy of it. Possible
values are described below.

A standard HRESULT value.

Only call this method once — initialize the enumerator, use it, then throw it away.

If you pass pointers to items in an array held in another object (and you don't ask the enumerator to copy the
data), you can use the pUnk parameter to ensure that the object and the array it holds are available for as long as
the enumerator needs them. The enumerator simply holds a COM reference on the object to keep it alive. The
COM reference is automatically released when the enumerator is destroyed.

The flags parameter allows you to specify how the enumerator should treat the array elements passed to it. flags
can take one of the values from the CComEnumFlags enumeration shown below:

AtlFlagNoCopy means that the array's lifetime is not controlled by the enumerator. In this case, either the array
will be static or the object identified by pUnk will be responsible for freeing the array when it's no longer needed.

AtlFlagTakeOwnership means that the destruction of the array is to be controlled by the enumerator. In this case,
the array must have been dynamically allocated using new. The enumerator will delete the array in its destructor.

NOTENOTE

CComEnumImpl::Clone

STDMETHOD(Clone)(Base** ppEnum);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComEnumImpl::m_spUnk

CComPtr<IUnknown> m_spUnk;

CComEnumImpl::m_begin

T* m_begin;

CComEnumImpl::m_end

Typically, you would pass NULL for pUnk, although you can still pass a valid pointer if you need to be notified of
the destruction of the enumerator for some reason.

AtlFlagCopy means that a new array is to be created by copying the array passed to Init . The new array's
lifetime is to be controlled by the enumerator. The enumerator will delete the array in its destructor. Typically, you
would pass NULL for pUnk, although you can still pass a valid pointer if you need to be notified of the
destruction of the enumerator for some reason.

The prototype of this method specifies the array elements as being of type T , where T was defined as a template
parameter to the class. This is the same type that is exposed by means of the COM interface method
CComEnumImpl::Next. The implication of this is that, unlike IEnumOnSTLImpl, this class does not support different storage
and exposed data types. The data type of elements in the array must be the same as the data type exposed by means of
the COM interface.

This method provides the implementation of the Clone method by creating an object of type CComEnum ,
initializing it with the same array and iterator used by the current object, and returning the interface on the newly
created object.

ppEnum
[out] The enumerator interface on a newly created object cloned from the current enumerator.

A standard HRESULT value.

Note that cloned enumerators never make their own copy (or take ownership) of the data used by the original
enumerator. If necessary, cloned enumerators will keep the original enumerator alive (using a COM reference) to
ensure that the data is available for as long as they need it.

This smart pointer maintains a reference on the object passed to CComEnumImpl::Init, ensuring that it remains
alive during the lifetime of the enumerator.

A pointer to the location just beyond the last element of the array containing the items to be enumerated.

T* m_end;

CComEnumImpl::m_iter

T* m_iter;

CComEnumImpl::m_dwFlags

DWORD m_dwFlags;

CComEnumImpl::Next

STDMETHOD(Next)(ULONG celt, T* rgelt, ULONG* pceltFetched);

ParametersParameters

Return ValueReturn Value

CComEnumImpl::Reset

STDMETHOD(Reset)(void);

Return ValueReturn Value

CComEnumImpl::Skip

A pointer to the first element of the array containing the items to be enumerated.

A pointer to the current element of the array containing the items to be enumerated.

The flags passed to CComEnumImpl::Init.

This method provides the implementation of the Next method.

celt
[in] The number of elements requested.

rgelt
[out] The array to be filled with the elements.

pceltFetched
[out] The number of elements actually returned in rgelt. This can be less than celt if fewer than celt elements
remained in the list.

A standard HRESULT value.

This method provides the implementation of the Reset method.

A standard HRESULT value.

This method provides the implementation of the Skip method.

STDMETHOD(Skip)(ULONG celt);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

celt
[in] The number of elements to skip.

A standard HRESULT value.

Returns E_INVALIDARG if celt is zero, returns S_FALSE if less than celt elements are returned, returns S_OK
otherwise.

IEnumOnSTLImpl Class
CComEnum Class
Class Overview

CComEnumOnSTL Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class Base,
 const IID* piid, class T, class Copy, class CollType, class ThreadModel = CComObjectThreadModel>
class ATL_NO_VTABLE CComEnumOnSTL : public IEnumOnSTLImpl<Base, piid,
T,
 Copy,
CollType>,
 public CComObjectRootEx<ThreadModel>

ParametersParameters

Remarks

To use this class with ICollectionOnSTLImpl:

To use this class independently of ICollectionOnSTLImpl:

This class defines a COM enumerator object based on a C++ Standard Library collection.

Base
A COM enumerator. See IEnumString for an example.

piid
A pointer to the interface ID of the enumerator interface.

T
The type of item exposed by the enumerator interface.

Copy
A copy policy class.

CollType
A C++ Standard Library container class.

CComEnumOnSTL defines a COM enumerator object based on a C++ Standard Library collection. This class can be
used on its own or in conjunction with ICollectionOnSTLImpl. Typical steps for using this class are outlined below.
For more information, see ATL Collections and Enumerators.

typedef a specialization of this class.

Use the typedef as the final template argument in a specialization of ICollectionOnSTLImpl .

See ATL Collections and Enumerators for an example.

typedef a specialization of this class.

Use the typedef as the template argument in a specialization of CComObject .

Create an instance of the CComObject specialization.

Initialize the enumerator object by calling IEnumOnSTLImpl::Init.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomenumonstl-class.md
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ienumstring

Inheritance Hierarchy

Requirements

Example

template <class EnumType, class CollType>
HRESULT CreateSTLEnumerator(IUnknown** ppUnk, IUnknown* pUnkForRelease,
 CollType& collection)
{
 if (ppUnk == NULL)
 return E_POINTER;
 *ppUnk = NULL;

 CComObject<EnumType>* pEnum = NULL;
 HRESULT hr = CComObject<EnumType>::CreateInstance(&pEnum);

 if (FAILED(hr))
 return hr;

 hr = pEnum->Init(pUnkForRelease, collection);

 if (SUCCEEDED(hr))
 hr = pEnum->QueryInterface(ppUnk);

 if (FAILED(hr))
 delete pEnum;

 return hr;
} // CreateSTLEnumerator

Return the enumerator interface to the client.

CComObjectRootBase

Base

CComObjectRootEx

IEnumOnSTLImpl

CComEnumOnSTL

Header: atlcom.h

The code shown below provides a generic function to handle the creation and initialization of an enumerator
object:

This template function can be used to implement the _NewEnum property of a collection interface as shown below:

typedef CComEnumOnSTL<IEnumVARIANT, &IID_IEnumVARIANT, VARIANT, _Copy<VARIANT>,
 std::vector<CComVariant> > VarVarEnum;

class ATL_NO_VTABLE CVariantCollection :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CVariantCollection, &CLSID_VariantCollection>,
 public IDispatchImpl<IVariantCollection, &IID_IVariantCollection, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1,
/*wMinor =*/ 0>
{
public:
 std::vector<CComVariant> m_vec;

 STDMETHOD(get__NewEnum)(IUnknown** ppUnk)
 {
 return CreateSTLEnumerator<VarVarEnum>(ppUnk, this, m_vec);
 }

 // Remainder of class declaration omitted.

See also

This code creates a typedef for CComEnumOnSTL that exposes a vector of CComVariant s by means of the
IEnumVariant interface. The CVariantCollection class simply specializes CreateSTLEnumerator to work with

enumerator objects of this type.

IEnumOnSTLImpl
ATLCollections Sample: Demonstrates ICollectionOnSTLImpl, CComEnumOnSTL, and Custom Copy Policy
Classes
Class Overview
CComObjectRootEx Class
CComObjectThreadModel
IEnumOnSTLImpl Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CComFakeCriticalSection Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CComFakeCriticalSection

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CComFakeCriticalSection::Init Does nothing since there is no critical section.

CComFakeCriticalSection::Lock Does nothing since there is no critical section.

CComFakeCriticalSection::Term Does nothing since there is no critical section.

CComFakeCriticalSection::Unlock Does nothing since there is no critical section.

Remarks

Requirements

CComFakeCriticalSection::Init

HRESULT Init() throw();

Return ValueReturn Value

CComFakeCriticalSection::Lock

This class provides the same methods as CComCriticalSection but does not provide a critical section.

CComFakeCriticalSection mirrors the methods found in CComCriticalSection. However, CComFakeCriticalSection

does not provide a critical section; therefore, its methods do nothing.

Typically, you use CComFakeCriticalSection through a typedef name, either AutoCriticalSection or
CriticalSection . When using CComSingleThreadModel or CComMultiThreadModelNoCS, both of these
typedef names reference CComFakeCriticalSection . When using CComMultiThreadModel, they reference

CComAutoCriticalSection and CComCriticalSection , respectively.

Header: atlcore.h

Does nothing since there is no critical section.

Returns S_OK.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomfakecriticalsection-class.md

HRESULT Lock() throw();

Return ValueReturn Value

CComFakeCriticalSection::Term

HRESULT Term() throw();

Return ValueReturn Value

CComFakeCriticalSection::Unlock

HRESULT Unlock() throw();

Return ValueReturn Value

See also

Does nothing since there is no critical section.

Returns S_OK.

Does nothing since there is no critical section.

Returns S_OK.

Does nothing since there is no critical section.

Returns S_OK.

Class Overview

CComGITPtr Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template <class T>
class CComGITPtr

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComGITPtr::CComGITPtr The constructor.

CComGITPtr::~CComGITPtr The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComGITPtr::Attach Call this method to register the interface pointer in the global
interface table (GIT).

CComGITPtr::CopyTo Call this method to copy the interface from the global
interface table (GIT) to the passed pointer.

CComGITPtr::Detach Call this method to disassociate the interface from the
CComGITPtr object.

CComGITPtr::GetCookie Call this method to return the cookie from the CComGITPtr

object.

CComGITPtr::Revoke Call this method to remove the interface from the global
interface table (GIT).

Public OperatorsPublic Operators

NAME DESCRIPTION

CComGITPtr::operator DWORD Returns the cookie from the CComGITPtr object.

CComGITPtr::operator = Assignment operator.

This class provides methods for dealing with interface pointers and the global interface table (GIT).

T
The type of the interface pointer to be stored in the GIT.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomgitptr-class.md

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComGITPtr::m_dwCookie The cookie.

Remarks

NOTENOTE

Requirements

CComGITPtr::Attach

HRESULT Attach(T* p) throw();

HRESULT Attach(DWORD dwCookie) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComGITPtr::CComGITPtr

CComGITPtr() throw();
CComGITPtr(T* p);
CComGITPtr(const CComGITPtr& git);
explicit CComGITPtr(DWORD dwCookie) throw();
CComGITPtr(CComGITPtr&& rv);

Objects that aggregate the free threaded marshaler and need to use interface pointers obtained from other
objects must take extra steps to ensure that the interfaces are correctly marshaled. Typically this involves storing
the interface pointers in the GIT and getting the pointer from the GIT each time it is used. The class CComGITPtr is
provided to help you use interface pointers stored in the GIT.

The global interface table facility is only available on Windows 95 with DCOM version 1.1 and later, Windows 98, Windows
NT 4.0 with Service Pack 3 and later, and Windows 2000.

Header: atlbase.h

Call this method to register the interface pointer in the global interface table (GIT).

p
The interface pointer to be added to the GIT.

dwCookie
The cookie used to identify the interface pointer.

Returns S_OK on success, or an error HRESULT on failure.

In debug builds, an assertion error will occur if the GIT is not valid, or if the cookie is equal to NULL.

The constructor.

ParametersParameters

RemarksRemarks

CComGITPtr::~CComGITPtr

~CComGITPtr() throw();

RemarksRemarks

CComGITPtr::CopyTo

HRESULT CopyTo(T** pp) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComGITPtr::Detach

DWORD Detach() throw();

Return ValueReturn Value

p
[in] An interface pointer to be stored in the global interface table (GIT).

git
[in] A reference to an existing CComGITPtr object.

dwCookie
[in] A cookie used to identify the interface pointer.

rv
[in] The source CComGITPtr object to move data from.

Creates a new CComGITPtr object, optionally using an existing CComGITPtr object.

The constructor utilizing rv is a move constructor. The data is moved from the source, rv, and then rv is cleared.

The destructor.

Removes the interface from the global interface table (GIT), using CComGITPtr::Revoke.

Call this method to copy the interface from the global interface table (GIT) to the passed pointer.

pp
The pointer which is to receive the interface.

Returns S_OK on success, or an error HRESULT on failure.

The interface from the GIT is copied to the passed pointer. The pointer must be released by the caller when it is no
longer required.

Call this method to disassociate the interface from the CComGITPtr object.

Returns the cookie from the CComGITPtr object.

RemarksRemarks

CComGITPtr::GetCookie

DWORD GetCookie() const;

Return ValueReturn Value

RemarksRemarks

CComGITPtr::m_dwCookie

DWORD m_dwCookie;

RemarksRemarks

CComGITPtr::operator =

CComGITPtr& operator= (T* p);
CComGITPtr& operator= (const CComGITPtr& git);
CComGITPtr& operator= (DWORD dwCookie);
CComGITPtr& operator= (CComGITPtr&& rv);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

It is up to the caller to remove the interface from the GIT, using CComGITPtr::Revoke.

Call this method to return the cookie from the CComGITPtr object.

Returns the cookie.

The cookie is a variable used to identify an interface and its location.

The cookie.

The cookie is a member variable used to identify an interface and its location.

The assignment operator.

p
[in] A pointer to an interface.

git
[in] A reference to a CComGITPtr object.

dwCookie
[in] A cookie used to identify the interface pointer.

rv
[in] The CComGITPtr to move data from.

Returns the updated CComGITPtr object.

Assigns a new value to a CComGITPtr object, either from an existing object or from a reference to a global interface
table.

CComGITPtr::operator DWORD

operator DWORD() const;

RemarksRemarks

CComGITPtr::Revoke

HRESULT Revoke() throw();

Return ValueReturn Value

RemarksRemarks

See also

Returns the cookie associated with the CComGITPtr object.

The cookie is a variable used to identify an interface and its location.

Call this method to remove the current interface from the global interface table (GIT).

Returns S_OK on success, or an error HRESULT on failure.

Removes the interface from the GIT.

Free Threaded Marshaler
Accessing Interfaces Across Apartments
When to Use the Global Interface Table
Class Overview

https://docs.microsoft.com/windows/desktop/com/accessing-interfaces-across-apartments
https://docs.microsoft.com/windows/desktop/com/when-to-use-the-global-interface-table

CComHeap Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CComHeap : public IAtlMemMgr

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CComHeap::Allocate Call this method to allocate a block of memory.

CComHeap::Free Call this method to free a block of memory allocated by this
memory manager.

CComHeap::GetSize Call this method to get the allocated size of a memory block
allocated by this memory manager.

CComHeap::Reallocate Call this method to reallocate memory allocated by this
memory manager.

Remarks

Example

Inheritance Hierarchy

Requirements

This class implements IAtlMemMgr using the COM memory allocation functions.

This class and its members cannot be used in applications that execute in the Windows Runtime.

CComHeap implements memory allocation functions using the COM allocation functions, including
CoTaskMemAlloc, CoTaskMemFree, IMalloc::GetSize, and CoTaskMemRealloc. The maximum amount of memory
that can be allocated is equal to INT_MAX (2147483647) bytes.

See the example for IAtlMemMgr.

IAtlMemMgr

CComHeap

Header: ATLComMem.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomheap-class.md
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemalloc
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemfree
https://docs.microsoft.com/windows/desktop/api/objidlbase/nf-objidlbase-imalloc-getsize
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemrealloc

CComHeap::Allocate

virtual __declspec(allocator) void* Allocate(size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComHeap::Free

virtual void Free(void* p) throw();

ParametersParameters

RemarksRemarks

CComHeap::GetSize

virtual size_t GetSize(void* p) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComHeap::Reallocate

Call this method to allocate a block of memory.

nBytes
The requested number of bytes in the new memory block.

Returns a pointer to the start of the newly allocated memory block.

Call CComHeap::Free or CComHeap::Reallocate to free the memory allocated by this method.

Implemented using CoTaskMemAlloc.

Call this method to free a block of memory allocated by this memory manager.

p
Pointer to memory previously allocated by this memory manager. NULL is a valid value and does nothing.

Implemented using CoTaskMemFree.

Call this method to get the allocated size of a memory block allocated by this memory manager.

p
Pointer to memory previously allocated by this memory manager.

Returns the size of the allocated memory block in bytes.

Implemented using IMalloc::GetSize.

Call this method to reallocate memory allocated by this memory manager.

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemalloc
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemfree
https://docs.microsoft.com/windows/desktop/api/objidlbase/nf-objidlbase-imalloc-getsize

virtual __declspec(allocator) void* Reallocate(void* p, size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

p
Pointer to memory previously allocated by this memory manager.

nBytes
The requested number of bytes in the new memory block.

Returns a pointer to the start of the newly allocated memory block.

Call CComHeap::Free to free the memory allocated by this method.

Implemented using CoTaskMemRealloc.

DynamicConsumer Sample
Class Overview
CWin32Heap Class
CLocalHeap Class
CGlobalHeap Class
CCRTHeap Class
IAtlMemMgr Class

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemrealloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CComHeapPtr Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
class CComHeapPtr : public CHeapPtr<T, CComAllocator>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComHeapPtr::CComHeapPtr The constructor.

Remarks

Inheritance Hierarchy

Requirements

CComHeapPtr::CComHeapPtr

CComHeapPtr() throw();
explicit CComHeapPtr(T* pData) throw();

ParametersParameters

A smart pointer class for managing heap pointers.

T
The object type to be stored on the heap.

CComHeapPtr derives from CHeapPtr , but uses CComAllocator to allocate memory using COM routines. See
CHeapPtr and CHeapPtrBase for the methods available.

CHeapPtrBase

CHeapPtr

CComHeapPtr

Header: atlbase.h

The constructor.

pData
An existing CComHeapPtr object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomheapptr-class.md

RemarksRemarks

See also

The heap pointer can optionally be created using an existing CComHeapPtr object. If so, the new CComHeapPtr

object assumes responsibility for managing the new pointer and resources.

CHeapPtr Class
CHeapPtrBase Class
CComAllocator Class
Class Overview

CComModule Class
3/4/2019 • 11 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CComModule : public _ATL_MODULE

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CComModule::GetClassObject Creates an object of a specified CLSID. For DLLs only.

CComModule::GetModuleInstance Returns m_hInst .

CComModule::GetResourceInstance Returns m_hInstResource .

CComModule::GetTypeLibInstance Returns m_hInstTypeLib .

CComModule::Init Initializes data members.

CComModule::RegisterClassHelper Enters an object's standard class registration in the system
registry.

CComModule::RegisterClassObjects Registers the class object. For EXEs only.

CComModule::RegisterServer Updates the system registry for each object in the object
map.

CComModule::RegisterTypeLib Registers a type library.

CComModule::RevokeClassObjects Revokes the class object. For EXEs only.

CComModule::Term Releases data members.

CComModule::UnregisterClassHelper Removes an object's standard class registration from the
system registry.

CComModule::UnregisterServer Unregisters each object in the object map.

As of ATL 7.0, CComModule is deprecated: see ATL Module Classes for more details.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccommodule-class.md

CComModule::UpdateRegistryClass Registers or unregisters an object's standard class
registration.

CComModule::UpdateRegistryFromResourceD Runs the script contained in a specified resource to register
or unregister an object.

CComModule::UpdateRegistryFromResourceS Statically links to the ATL Registry Component. Runs the
script contained in a specified resource to register or
unregister an object.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComModule::m_csObjMap Ensures synchronized access to the object map information.

CComModule::m_csTypeInfoHolder Ensures synchronized access to the type library information.

CComModule::m_csWindowCreate Ensures synchronized access to window class information
and static data used during window creation.

CComModule::m_hInst Contains the handle to the module instance.

CComModule::m_hInstResource By default, contains the handle to the module instance.

CComModule::m_hInstTypeLib By default, contains the handle to the module instance.

CComModule::m_pObjMap Points to the object map maintained by the module
instance.

Remarks

NOTENOTE
This class is deprecated, and the ATL code generation wizards now use the CAtlAutoThreadModule and CAtlModule
derived classes. See ATL Module Classes for more information. The information that follows is for use with applications
created with older releases of ATL. CComModule is still part of ATL for backwards capability.

CComModule implements a COM server module, allowing a client to access the module's components.
CComModule supports both DLL (in-process) and EXE (local) modules.

A CComModule instance uses an object map to maintain a set of class object definitions. This object map is
implemented as an array of _ATL_OBJMAP_ENTRY structures, and contains information for :

Entering and removing object descriptions in the system registry.

Instantiating objects through a class factory.

Establishing communication between a client and the root object in the component.

Performing lifetime management of class objects.

When you run the ATL COM AppWizard, the wizard automatically generates _Module , a global instance of

Inheritance Hierarchy

Requirements

CComModule::GetClassObject

HRESULT GetClassObject(
 REFCLSID rclsid,
 REFIID riid,
 LPVOID* ppv) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComModule::GetModuleInstance

HINSTANCE GetModuleInstance() throw();

Return ValueReturn Value

CComModule or a class derived from it. For more information about the ATL Project Wizard, see the article
Creating an ATL Project.

In addition to CComModule , ATL provides CComAutoThreadModule, which implements an apartment-model
module for EXEs and Windows services. Derive your module from CComAutoThreadModule when you want to
create objects in multiple apartments.

_ATL_MODULE

CAtlModule

CAtlModuleT

CComModule

Header: atlbase.h

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

rclsid
[in] The CLSID of the object to be created.

riid
[in] The IID of the requested interface.

ppv
[out] A pointer to the interface pointer identified by riid. If the object does not support this interface, ppv is set
to NULL.

A standard HRESULT value.

Creates an object of the specified CLSID and retrieves an interface pointer to this object.

GetClassObject is only available to DLLs.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

RemarksRemarks

CComModule::GetResourceInstance

HINSTANCE GetResourceInstance() throw();

Return ValueReturn Value

RemarksRemarks

CComModule::GetTypeLibInstance

HINSTANCE GetTypeLibInstance() const throw();

Return ValueReturn Value

RemarksRemarks

CComModule::Init

HRESULT Init(
 _ATL_OBJMAP_ENTRY* p,
 HINSTANCE h,
 const GUID* plibid = NULL) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The HINSTANCE identifying this module.

Returns the m_hInst data member.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

An HINSTANCE.

Returns the m_hInstResource data member.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

An HINSTANCE.

Returns the m_hInstTypeLib data member.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

p
[in] A pointer to an array of object map entries.

h
[in] The HINSTANCE passed to DLLMain or WinMain .

plibid
[in] A pointer to the L IBID of the type library associated with the project.

A standard HRESULT value.

Initializes all data members.

CComModule::m_csObjMap

CRITICAL_SECTION m_csObjMap;

RemarksRemarks

CComModule::m_csTypeInfoHolder

CRITICAL_SECTION m_csTypeInfoHolder;

RemarksRemarks

CComModule::m_csWindowCreate

CRITICAL_SECTION m_csWindowCreate;

RemarksRemarks

CComModule::m_hInst

HINSTANCE m_hInst;

RemarksRemarks

CComModule::m_hInstResource

HINSTANCE m_hInstResource;

RemarksRemarks

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

Ensures synchronized access to the object map.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

Ensures synchronized access to the type library.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

Ensures synchronized access to window class information and to static data used during window creation.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

Contains the handle to the module instance.

The Init method sets m_hInst to the handle passed to DLLMain or WinMain .

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

By default, contains the handle to the module instance.

The Init method sets m_hInstResource to the handle passed to DLLMain or WinMain . You can explicitly set
m_hInstResource to the handle to a resource.

CComModule::m_hInstTypeLib

HINSTANCE m_hInstTypeLib;

RemarksRemarks

CComModule::m_pObjMap

_ATL_OBJMAP_ENTRY* m_pObjMap;

RemarksRemarks

CComModule::RegisterClassHelper

ATL_DEPRECATED HRESULT RegisterClassHelper(
 const CLSID& clsid,
 LPCTSTR lpszProgID,
 LPCTSTR lpszVerIndProgID,
 UINT nDescID,
 DWORD dwFlags);

ParametersParameters

Return ValueReturn Value

The GetResourceInstance method returns the handle stored in m_hInstResource .

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

By default, contains the handle to the module instance.

The Init method sets m_hInstTypeLib to the handle passed to DLLMain or WinMain . You can explicitly set
m_hInstTypeLib to the handle to a type library.

The GetTypeLibInstance method returns the handle stored in m_hInstTypeLib .

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

Points to the object map maintained by the module instance.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

clsid
[in] The CLSID of the object to be registered.

lpszProgID
[in] The ProgID associated with the object.

lpszVerIndProgID
[in] The version-independent ProgID associated with the object.

nDescID
[in] The identifier of a string resource for the object's description.

dwFlags
[in] Specifies the threading model to enter in the registry. Possible values are THREADFLAGS_APARTMENT,
THREADFLAGS_BOTH, or AUTPRXFLAG.

RemarksRemarks

CComModule::RegisterClassObjects

HRESULT RegisterClassObjects(DWORD dwClsContext, DWORD dwFlags) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComModule::RegisterServer

HRESULT RegisterServer(
 BOOL bRegTypeLib = FALSE,
 const CLSID* pCLSID = NULL) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

A standard HRESULT value.

Enters an object's standard class registration in the system registry.

The UpdateRegistryClass method calls RegisterClassHelper .

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

dwClsContext
[in] Specifies the context in which the class object is to be run. Possible values are CLSCTX_INPROC_SERVER,
CLSCTX_INPROC_HANDLER, or CLSCTX_LOCAL_SERVER. For a description of these values, see CLSCTX in
the Windows SDK.

dwFlags
[in] Determines the connection types to the class object. Possible values are REGCLS_SINGLEUSE,
REGCLS_MULTIPLEUSE, or REGCLS_MULTI_SEPARATE. For a description of these values, see REGCLS in the
Windows SDK.

A standard HRESULT value.

Registers an EXE class object with OLE so other applications can connect to it. This method is only available to
EXEs.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

bRegTypeLib
[in] Indicates whether the type library will be registered. The default value is FALSE.

pCLSID
[in] Points to the CLSID of the object to be registered. If NULL (the default value), all objects in the object map
will be registered.

A standard HRESULT value.

Depending on the pCLSID parameter, updates the system registry for a single class object or for all objects in
the object map.

https://docs.microsoft.com/windows/desktop/api/wtypesbase/ne-wtypesbase-tagclsctx
https://docs.microsoft.com/windows/desktop/api/combaseapi/ne-combaseapi-tagregcls

CComModule::RegisterTypeLib

HRESULT RegisterTypeLib() throw();
HRESULT RegisterTypeLib(LPCTSTR lpszIndex) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComModule::RevokeClassObjects

HRESULT RevokeClassObjects() throw();

Return ValueReturn Value

RemarksRemarks

CComModule::Term

void Term() throw();

RemarksRemarks

CComModule::UnregisterClassHelper

If bRegTypeLib is TRUE, the type library information will also be updated.

See OBJECT_ENTRY_AUTO for information on how to add an entry to the object map.

RegisterServer will be called automatically by DLLRegisterServer for a DLL or by WinMain for an EXE run with
the /RegServer command line option.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

lpszIndex
[in] String in the format "\\N" , where N is the integer index of the TYPELIB resource.

A standard HRESULT value.

Adds information about a type library to the system registry.

If the module instance contains multiple type libraries, use the second version of this method to specify which
type library should be used.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

A standard HRESULT value.

Removes the class object. This method is only available to EXEs.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

Releases all data members.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

ATL_DEPRECATED HRESULT UnregisterClassHelper(
 const CLSID& clsid,
 LPCTSTR lpszProgID,
 LPCTSTR lpszVerIndProgID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComModule::UnregisterServer

HRESULT UnregisterServer(const CLSID* pCLSID = NULL) throw ();
inline HRESULT UnregisterServer(BOOL bUnRegTypeLib, const CLSID* pCLSID = NULL) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComModule::UpdateRegistryClass

clsid
[in] The CLSID of the object to be unregistered.

lpszProgID
[in] The ProgID associated with the object.

lpszVerIndProgID
[in] The version-independent ProgID associated with the object.

A standard HRESULT value.

Removes an object's standard class registration from the system registry.

The UpdateRegistryClass method calls UnregisterClassHelper .

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

bUnRegTypeLib
If TRUE, the type library is also unregistered.

pCLSID
Points to the CLSID of the object to be unregistered. If NULL (the default value), all objects in the object map
will be unregistered.

A standard HRESULT value.

Depending on the pCLSID parameter, unregisters either a single class object or all objects in the object map.

UnregisterServer will be called automatically by DLLUnregisterServer for a DLL or by WinMain for an EXE run
with the /UnregServer command line option.

See OBJECT_ENTRY_AUTO for information on how to add an entry to the object map.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

ATL_DEPRECATED HRESULT UpdateRegistryClass(
 const CLSID& clsid,
 LPCTSTR lpszProgID,
 LPCTSTR lpszVerIndProgID,
 UINT nDescID,
 DWORD dwFlags,
 BOOL bRegister);

ATL_DEPRECATED HRESULT UpdateRegistryClass(
 const CLSID& clsid,
 LPCTSTR lpszProgID,
 LPCTSTR lpszVerIndProgID,
 LPCTSTR szDesc,
 DWORD dwFlags,
 BOOL bRegister);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComModule::UpdateRegistryFromResourceD

clsid
The CLSID of the object to be registered or unregistered.

lpszProgID
The ProgID associated with the object.

lpszVerIndProgID
The version-independent ProgID associated with the object.

nDescID
The identifier of the string resource for the object's description.

szDesc
A string containing the object's description.

dwFlags
Specifies the threading model to enter in the registry. Possible values are THREADFLAGS_APARTMENT,
THREADFLAGS_BOTH, or AUTPRXFLAG.

bRegister
Indicates whether the object should be registered.

A standard HRESULT value.

If bRegister is TRUE, this method enters the object's standard class registration in the system registry.

If bRegister is FALSE, it removes the object's registration.

Depending on the value of bRegister, UpdateRegistryClass calls either RegisterClassHelper or
UnregisterClassHelper.

By specifying the DECLARE_REGISTRY macro, UpdateRegistryClass will be invoked automatically when your
object map is processed.

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

virtual HRESULT UpdateRegistryFromResourceD(
 LPCTSTR lpszRes,
 BOOL bRegister,
 struct _ATL_REGMAP_ENTRY* pMapEntries = NULL) throw();

virtual HRESULT UpdateRegistryFromResourceD(
 UINT nResID,
 BOOL bRegister,
 struct _ATL_REGMAP_ENTRY* pMapEntries = NULL) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

NOTENOTE

CComModule::UpdateRegistryFromResourceS

lpszRes
[in] A resource name.

nResID
[in] A resource ID.

bRegister
[in] Indicates whether the object should be registered.

pMapEntries
[in] A pointer to the replacement map storing values associated with the script's replaceable parameters. ATL
automatically uses %MODULE% . To use additional replaceable parameters, see the Remarks for details. Otherwise,
use the NULL default value.

A standard HRESULT value.

Runs the script contained in the resource specified by lpszRes or nResID.

If bRegister is TRUE, this method registers the object in the system registry; otherwise, it unregisters the object.

By specifying the DECLARE_REGISTRY_RESOURCE or DECLARE_REGISTRY_RESOURCEID macro,
UpdateRegistryFromResourceD will be invoked automatically when your object map is processed.

To substitute replacement values at run time, do not specify the DECLARE_REGISTRY_RESOURCE or
DECLARE_REGISTRY_RESOURCEID macro. Instead, create an array of _ATL_REGMAP_ENTRIES structures, where each entry
contains a variable placeholder paired with a value to replace the placeholder at run time. Then call
UpdateRegistryFromResourceD , passing the array for the pMapEntries parameter. This adds all the replacement values in

the _ATL_REGMAP_ENTRIES structures to the Registrar's replacement map.

To statically link to the ATL Registry Component (Registrar), see UpdateRegistryFromResourceS.

For more information about replaceable parameters and scripting, see the article The ATL Registry Component
(Registrar).

As of ATL 7.0, CComModule is obsolete: see ATL Module Classes for more details.

virtual HRESULT UpdateRegistryFromResourceS(
 LPCTSTR lpszRes,
 BOOL bRegister,
 struct _ATL_REGMAP_ENTRY* pMapEntries = NULL) throw();

virtual HRESULT UpdateRegistryFromResourceS(
 UINT nResID,
 BOOL bRegister,
 struct _ATL_REGMAP_ENTRY* pMapEntries = NULL) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

See also

lpszRes
[in] A resource name.

nResID
[in] A resource ID.

bRegister
[in] Indicates whether the resource script should be registered.

pMapEntries
[in] A pointer to the replacement map storing values associated with the script's replaceable parameters. ATL
automatically uses %MODULE% . To use additional replaceable parameters, see the Remarks for details. Otherwise,
use the NULL default value.

A standard HRESULT value.

Similar to UpdateRegistryFromResourceD except UpdateRegistryFromResourceS creates a static link to the ATL
Registry Component (Registrar).

UpdateRegistryFromResourceS will be invoked automatically when your object map is processed, provided you
add #define _ATL_STATIC_REGISTRY to your stdafx.h.

To substitute replacement values at run time, do not specify the DECLARE_REGISTRY_RESOURCE or
DECLARE_REGISTRY_RESOURCEID macro. Instead, create an array of _ATL_REGMAP_ENTRIES structures, where each entry
contains a variable placeholder paired with a value to replace the placeholder at run time. Then call
UpdateRegistryFromResourceS , passing the array for the pMapEntries parameter. This adds all the replacement values in

the _ATL_REGMAP_ENTRIES structures to the Registrar's replacement map.

For more information about replaceable parameters and scripting, see the article The ATL Registry Component
(Registrar).

Class Overview

CComMultiThreadModel Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CComMultiThreadModel

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CComMultiThreadModel::AutoCriticalSection References class CComAutoCriticalSection.

CComMultiThreadModel::CriticalSection References class CComCriticalSection.

CComMultiThreadModel::ThreadModelNoCS References class CComMultiThreadModelNoCS.

Public MethodsPublic Methods

NAME DESCRIPTION

CComMultiThreadModel::Decrement (Static) Decrements the value of the specified variable in a
thread-safe manner.

CComMultiThreadModel::Increment (Static) Increments the value of the specified variable in a
thread-safe manner.

Remarks

TYPEDEF SINGLE THREADING APARTMENT THREADING FREE THREADING

CComObjectThreadModel S S M

CComGlobalsThreadModel S M M

CComMultiThreadModel provides thread-safe methods for incrementing and decrementing the value of a variable.

Typically, you use CComMultiThreadModel through one of two typedef names, either [CComObjectThreadModel]
(atl-typedefs.md#ccomobjectthreadmodel or [CComGlobalsThreadModel](atl-
typedefs.md#ccomglobalsthreadmodel. The class referenced by each typedef depends on the threading model
used, as shown in the following table:

S= CComSingleThreadModel ; M= CComMultiThreadModel

CComMultiThreadModel itself defines three typedef names. AutoCriticalSection and CriticalSection reference
classes that provide methods for obtaining and releasing ownership of a critical section. ThreadModelNoCS

references class [CComMultiThreadModelNoCS(ccommultithreadmodelnocs-class.md).

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccommultithreadmodel-class.md

Requirements

CComMultiThreadModel::AutoCriticalSection

typedef CComAutoCriticalSection AutoCriticalSection;

RemarksRemarks

CLASS DEFINED IN CLASS REFERENCED

CComMultiThreadModel CComCriticalSection

CComSingleThreadModel CComFakeCriticalSection

CComMultiThreadModelNoCS CComFakeCriticalSection

ExampleExample

template<class ThreadModel>
class CMyAutoCritClass
{
public:
 typedef ThreadModel _ThreadModel;
 typedef typename _ThreadModel::AutoCriticalSection _CritSec;

 CMyAutoCritClass() : m_dwRef(0) {}

 ULONG InternalAddRef()
 {
 return _ThreadModel::Increment(&m_dwRef);
 }
 ULONG InternalRelease()
 {
 return _ThreadModel::Decrement(&m_dwRef);
 }
 void Lock() { m_critsec.Lock(); }
 void Unlock() { m_critsec.Unlock(); }

private:
 _CritSec m_critsec;
 LONG m_dwRef;

Header: atlbase.h

When using CComMultiThreadModel , the typedef name AutoCriticalSection references class
CComAutoCriticalSection, which provides methods for obtaining and releasing ownership of a critical section
object.

CComSingleThreadModel and CComMultiThreadModelNoCS also contain definitions for AutoCriticalSection .
The following table shows the relationship between the threading model class and the critical section class
referenced by AutoCriticalSection :

In addition to AutoCriticalSection , you can use the typedef name CriticalSection. You should not specify
AutoCriticalSection in global objects or static class members if you want to eliminate the CRT startup code.

The following code is modeled after CComObjectRootEx, and demonstrates AutoCriticalSection being used in
a threading environment.

ThreadModel = CComObjectThreadModelThreadModel = CComObjectThreadModel

METHOD SINGLE OR APARTMENT THREADING FREE THREADING

InternalAddRef The increment is not thread-safe. The increment is thread-safe.

Lock Does nothing; there is no critical
section to lock.

The critical section is locked.

ThreadModel = CComObjectThreadModel::ThreadModelNoCSThreadModel = CComObjectThreadModel::ThreadModelNoCS

METHOD SINGLE OR APARTMENT THREADING FREE THREADING

InternalAddRef The increment is not thread-safe. The increment is thread-safe.

Lock Does nothing; there is no critical
section to lock.

Does nothing; there is no critical
section to lock.

CComMultiThreadModel::CriticalSection

typedef CComCriticalSection CriticalSection;

RemarksRemarks

CLASS DEFINED IN CLASS REFERENCED

CComMultiThreadModel CComCriticalSection

CComSingleThreadModel CComFakeCriticalSection

CComMultiThreadModelNoCS CComFakeCriticalSection

ExampleExample

CComMultiThreadModel::Decrement

The following tables show the results of the InternalAddRef and Lock methods, depending on the ThreadModel

template parameter and the threading model used by the application:

When using CComMultiThreadModel , the typedef name CriticalSection references class CComCriticalSection,
which provides methods for obtaining and releasing ownership of a critical section object.

CComSingleThreadModel and CComMultiThreadModelNoCS also contain definitions for CriticalSection . The
following table shows the relationship between the threading model class and the critical section class
referenced by CriticalSection :

In addition to CriticalSection , you can use the typedef name AutoCriticalSection. You should not specify
AutoCriticalSection in global objects or static class members if you want to eliminate the CRT startup code.

See CComMultiThreadModel::AutoCriticalSection.

This static function calls the Win32 function InterlockedDecrement, which decrements the value of the variable
pointed to by p.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-interlockeddecrement

static ULONG WINAPI Decrement(LPLONG p) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComMultiThreadModel::Increment

static ULONG WINAPI Increment(LPLONG p) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComMultiThreadModel::ThreadModelNoCS

typedef CComMultiThreadModelNoCS ThreadModelNoCS;

RemarksRemarks

CLASS DEFINED IN CLASS REFERENCED

CComMultiThreadModel CComMultiThreadModelNoCS

p
[in] Pointer to the variable to be decremented.

If the result of the decrement is 0, then Decrement returns 0. If the result of the decrement is nonzero, the return
value is also nonzero but may not equal the result of the decrement.

InterlockedDecrement prevents more than one thread from simultaneously using this variable.

This static function calls the Win32 function InterlockedIncrement, which increments the value of the variable
pointed to by p.

p
[in] Pointer to the variable to be incremented.

If the result of the increment is 0, then Increment returns 0. If the result of the increment is nonzero, the return
value is also nonzero but may not equal the result of the increment.

InterlockedIncrement prevents more than one thread from simultaneously using this variable.

When using CComMultiThreadModel , the typedef name ThreadModelNoCS references class
CComMultiThreadModelNoCS.

CComMultiThreadModelNoCS provides thread-safe methods for incrementing and decrementing a variable;
however, it does not provide a critical section.

CComSingleThreadModel and CComMultiThreadModelNoCS also contain definitions for ThreadModelNoCS . The
following table shows the relationship between the threading model class and the class referenced by
ThreadModelNoCS :

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-interlockedincrement

CComSingleThreadModel CComSingleThreadModel

CComMultiThreadModelNoCS CComMultiThreadModelNoCS

CLASS DEFINED IN CLASS REFERENCED

ExampleExample

See also

See CComMultiThreadModel::AutoCriticalSection.

CComSingleThreadModel Class
CComAutoCriticalSection Class
CComCriticalSection Class
Class Overview

CComMultiThreadModelNoCS Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CComMultiThreadModelNoCS

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CComMultiThreadModelNoCS::AutoCriticalSection References class CComFakeCriticalSection.

CComMultiThreadModelNoCS::CriticalSection References class CComFakeCriticalSection .

CComMultiThreadModelNoCS::ThreadModelNoCS References class CComMultiThreadModelNoCS .

Public MethodsPublic Methods

NAME DESCRIPTION

CComMultiThreadModelNoCS::Decrement (Static) Decrements the value of the specified variable in a
thread-safe manner.

CComMultiThreadModelNoCS::Increment (Static) Increments the value of the specified variable in a
thread-safe manner.

Remarks

NOTENOTE

CComMultiThreadModelNoCS provides thread-safe methods for incrementing and decrementing the value of a
variable, without critical section locking or unlocking functionality.

CComMultiThreadModelNoCS is similar to CComMultiThreadModel in that it provides thread-safe methods for
incrementing and decrementing a variable. However, when you reference a critical section class through
CComMultiThreadModelNoCS , methods such as Lock and Unlock will do nothing.

Typically, you use CComMultiThreadModelNoCS through the ThreadModelNoCS typedef name. This typedef is
defined in CComMultiThreadModelNoCS , CComMultiThreadModel , and CComSingleThreadModel.

The global typedef names CComObjectThreadModel and CComGlobalsThreadModel do not reference
CComMultiThreadModelNoCS .

In addition to ThreadModelNoCS , CComMultiThreadModelNoCS defines AutoCriticalSection and CriticalSection .
These latter two typedef names reference CComFakeCriticalSection, which provides empty methods associated

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccommultithreadmodelnocs-class.md

Requirements

CComMultiThreadModelNoCS::AutoCriticalSection

typedef CComFakeCriticalSection AutoCriticalSection;

RemarksRemarks

CLASS DEFINED IN CLASS REFERENCED

CComMultiThreadModelNoCS CComFakeCriticalSection

CComMultiThreadModel CComAutoCriticalSection

CComSingleThreadModel CComFakeCriticalSection

ExampleExample

CComMultiThreadModelNoCS::CriticalSection

typedef CComFakeCriticalSection CriticalSection;

RemarksRemarks

CLASS DEFINED IN CLASS REFERENCED

CComMultiThreadModelNoCS CComFakeCriticalSection

with obtaining and releasing a critical section.

Header: atlbase.h

When using CComMultiThreadModelNoCS , the typedef name AutoCriticalSection references class
CComFakeCriticalSection.

Because CComFakeCriticalSection does not provide a critical section, its methods do nothing.

CComMultiThreadModel and CComSingleThreadModel also contain definitions for AutoCriticalSection . The
following table shows the relationship between the threading model class and the critical section class
referenced by AutoCriticalSection :

In addition to AutoCriticalSection , you can use the typedef name CriticalSection. You should not specify
AutoCriticalSection in global objects or static class members if you want to eliminate the CRT startup code.

See CComMultiThreadModel::AutoCriticalSection.

When using CComMultiThreadModelNoCS , the typedef name CriticalSection references class
CComFakeCriticalSection.

Because CComFakeCriticalSection does not provide a critical section, its methods do nothing.

CComMultiThreadModel and CComSingleThreadModel also contain definitions for CriticalSection . The
following table shows the relationship between the threading model class and the critical section class
referenced by CriticalSection :

CComMultiThreadModel CComCriticalSection

CComSingleThreadModel CComFakeCriticalSection

CLASS DEFINED IN CLASS REFERENCED

ExampleExample

CComMultiThreadModelNoCS::Decrement

static ULONG WINAPI Decrement(LPLONG p) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComMultiThreadModelNoCS::Increment

static ULONG WINAPI Increment(LPLONG p) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComMultiThreadModelNoCS::ThreadModelNoCS

In addition to CriticalSection , you can use the typedef name AutoCriticalSection . You should not specify
AutoCriticalSection in global objects or static class members if you want to eliminate the CRT startup code.

See CComMultiThreadModel::AutoCriticalSection.

This static function calls the Win32 function InterlockedDecrement, which decrements the value of the variable
pointed to by p.

p
[in] Pointer to the variable to be decremented.

If the result of the decrement is 0, then Decrement returns 0. If the result of the decrement is nonzero, the return
value is also nonzero but may not equal the result of the decrement.

InterlockedDecrement prevents more than one thread from simultaneously using this variable.

This static function calls the Win32 function InterlockedIncrement, which increments the value of the variable
pointed to by p.

p
[in] Pointer to the variable to be incremented.

If the result of the increment is 0, then Increment returns 0. If the result of the increment is nonzero, the return
value is also nonzero but may not equal the result of the increment.

InterlockedIncrement prevents more than one thread from simultaneously using this variable.

When using CComMultiThreadModelNoCS , the typedef name ThreadModelNoCS simply references
CComMultiThreadModelNoCS .

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-interlockeddecrement
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-interlockedincrement

typedef CComMultiThreadModelNoCS ThreadModelNoCS;

RemarksRemarks

CLASS DEFINED IN CLASS REFERENCED

CComMultiThreadModelNoCS CComMultiThreadModelNoCS

CComMultiThreadModel CComMultiThreadModelNoCS

CComSingleThreadModel CComSingleThreadModel

typedef typename ThreadModel::ThreadModelNoCS _ThreadModel;

ExampleExample

See also

CComMultiThreadModel and CComSingleThreadModel also contain definitions for ThreadModelNoCS . The
following table shows the relationship between the threading model class and the class referenced by
ThreadModelNoCS :

Note that the definition of ThreadModelNoCS in CComMultiThreadModelNoCS provides symmetry with
CComMultiThreadModel and CComSingleThreadModel . For example, suppose the sample code in
CComMultiThreadModel::AutoCriticalSection declared the following typedef:

Regardless of the class specified for ThreadModel (such as CComMultiThreadModelNoCS), _ThreadModel resolves
accordingly.

See CComMultiThreadModel::AutoCriticalSection.

Class Overview

CComObject Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class Base>
class CComObject : public Base

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComObject::CComObject The constructor.

CComObject::~CComObject The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComObject::AddRef Increments the reference count on the object.

CComObject::CreateInstance (Static) Creates a new CComObject object.

CComObject::QueryInterface Retrieves a pointer to the requested interface.

CComObject::Release Decrements the reference count on the object.

Remarks

Inheritance Hierarchy

This class implements IUnknown for a nonaggregated object.

Base
Your class, derived from CComObjectRoot or CComObjectRootEx, as well as from any other interfaces you want
to support on the object.

CComObject implements IUnknown for a nonaggregated object. However, calls to QueryInterface , AddRef , and
Release are delegated to CComObjectRootEx .

For more information about using CComObject , see the article Fundamentals of ATL COM Objects.

Base

CComObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomobject-class.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

Requirements

CComObject::AddRef

STDMETHOD_(ULONG, AddRef)();

Return ValueReturn Value

CComObject::CComObject

CComObject(void* = NULL);

ParametersParameters

RemarksRemarks

CComObject::~CComObject

CComObject();

RemarksRemarks

CComObject::CreateInstance

static HRESULT WINAPI CreateInstance(CComObject<Base>** pp);

ParametersParameters

Return ValueReturn Value

Header: atlcom.h

Increments the reference count on the object.

This function returns the new incremented reference count on the object. This value may be useful for
diagnostics or testing.

The constructor increments the module lock count.

void*
[in] This unnamed parameter is not used. It exists for symmetry with other CComXXXObjectXXX constructors.

The destructor decrements it.

If a CComObject -derived object is successfully constructed using the new operator, the initial reference count is 0.
To set the reference count to the proper value (1), make a call to the AddRef function.

The destructor.

Frees all allocated resources, calls FinalRelease, and decrements the module lock count.

This static function allows you to create a new CComObject< Base > object, without the overhead of
CoCreateInstance.

pp
[out] A pointer to a CComObject< Base > pointer. If CreateInstance is unsuccessful, pp is set to NULL.

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cocreateinstance

RemarksRemarks

ExampleExample

class ATL_NO_VTABLE CMyCircle :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyCircle, &CLSID_MyCircle>,
 public IDispatchImpl<IMyCircle, &IID_IMyCircle, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor =*/ 0>
{
public:
 CMyCircle()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_MYCIRCLE)

DECLARE_NOT_AGGREGATABLE(CMyCircle)

BEGIN_COM_MAP(CMyCircle)
 COM_INTERFACE_ENTRY(IMyCircle)
 COM_INTERFACE_ENTRY(IDispatch)
END_COM_MAP()

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return S_OK;
 }

 void FinalRelease()
 {
 }

public:

public:
 STDMETHOD(get_XCenter)(double* pVal);
};

A standard HRESULT value.

The object returned has a reference count of zero, so call AddRef immediately, then use Release to free the
reference on the object pointer when you're done.

If you do not need direct access to the object, but still want to create a new object without the overhead of
CoCreateInstance , use CComCoClass::CreateInstance instead.

// Create a local instance of COM object CMyCircle.
double x;
CComObject<CMyCircle>* pCircle;
HRESULT hRes = CComObject<CMyCircle>::CreateInstance(&pCircle);
ATLASSERT(SUCCEEDED(hRes));

// Increment reference count immediately
pCircle->AddRef();

// Access method of COM object
hRes = pCircle->get_XCenter(&x);

// Decrement reference count when done
pCircle->Release();
pCircle = NULL;

CComObject::QueryInterface

STDMETHOD(QueryInterface)(REFIID iid, void** ppvObject);
template <class Q>
HRESULT STDMETHODCALLTYPE QueryInterface(Q** pp);

ParametersParameters

Return ValueReturn Value

CComObject::Release

STDMETHOD_(ULONG, Release)();

Return ValueReturn Value

See also

Retrieves a pointer to the requested interface.

iid
[in] The identifier of the interface being requested.

ppvObject
[out] A pointer to the interface pointer identified by iid. If the object does not support this interface, ppvObject is
set to NULL.

pp
[out] A pointer to the interface pointer identified by type Q . If the object does not support this interface, pp is
set to NULL.

A standard HRESULT value.

Decrements the reference count on the object.

This function returns the new decremented reference count on the object. In debug builds, the return value may
be useful for diagnostics or testing. In non-debug builds, Release always returns 0.

CComAggObject Class
CComPolyObject Class
DECLARE_AGGREGATABLE
DECLARE_NOT_AGGREGATABLE

Class Overview

CComObjectGlobal Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class Base>
class CComObjectGlobal : public Base

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComObjectGlobal::CComObjectGlobal The constructor.

CComObjectGlobal::~CComObjectGlobal The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComObjectGlobal::AddRef Implements a global AddRef .

CComObjectGlobal::QueryInterface Implements a global QueryInterface .

CComObjectGlobal::Release Implements a global Release .

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComObjectGlobal::m_hResFinalConstruct Contains the HRESULT returned during construction of the
CComObjectGlobal object.

Remarks

This class manages a reference count on the module containing your Base object.

Base
Your class, derived from CComObjectRoot or CComObjectRootEx, as well as from any other interface you want
to support on the object.

CComObjectGlobal manages a reference count on the module containing your Base object. CComObjectGlobal

ensures your object will not be deleted as long as the module is not released. Your object will only be removed
when the reference count on the entire module goes to zero.

For example, using CComObjectGlobal , a class factory can hold a common global object that is shared by all its

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomobjectglobal-class.md

Inheritance Hierarchy

Requirements

CComObjectGlobal::AddRef

STDMETHOD_(ULONG, AddRef)();

Return ValueReturn Value

RemarksRemarks

CComObjectGlobal::CComObjectGlobal

CComObjectGlobal(void* = NULL));

RemarksRemarks

CComObjectGlobal::~CComObjectGlobal

CComObjectGlobal();

RemarksRemarks

CComObjectGlobal::m_hResFinalConstruct

HRESULT m_hResFinalConstruct;

clients.

Base

CComObjectGlobal

Header: atlcom.h

Increments the reference count of the object by 1.

A value that may be useful for diagnostics and testing.

By default, AddRef calls _Module::Lock , where _Module is the global instance of CComModule or a class
derived from it.

The constructor. Calls FinalConstruct and then sets m_hResFinalConstruct to the HRESULT returned by
FinalConstruct .

If you have not derived your base class from CComObjectRoot, you must supply your own FinalConstruct

method. The destructor calls FinalRelease .

The destructor.

Frees all allocated resources and calls FinalRelease.

Contains the HRESULT from calling FinalConstruct during construction of the CComObjectGlobal object.

CComObjectGlobal::QueryInterface

STDMETHOD(QueryInterface)(REFIID iid, void** ppvObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComObjectGlobal::Release

STDMETHOD_(ULONG, Release)();

Return ValueReturn Value

RemarksRemarks

See also

Retrieves a pointer to the requested interface pointer.

iid
[in] The GUID of the interface being requested.

ppvObject
[out] A pointer to the interface pointer identified by iid, or NULL if the interface is not found.

A standard HRESULT value.

QueryInterface only handles interfaces in the COM map table.

Decrements the reference count of the object by 1.

In debug builds, Release returns a value that may be useful for diagnostics and testing. In non-debug builds,
Release always returns 0.

By default, Release calls _Module::Unlock , where _Module is the global instance of CComModule or a class
derived from it.

CComObjectStack Class
CComAggObject Class
CComObject Class
Class Overview

CComObjectNoLock Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class Base>
class CComObjectNoLock : public Base

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComObjectNoLock::CComObjectNoLock Constructor.

CComObjectNoLock::~CComObjectNoLock The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComObjectNoLock::AddRef Increments the reference count on the object.

CComObjectNoLock::QueryInterface Returns a pointer to the requested interface.

CComObjectNoLock::Release Decrements the reference count on the object.

Remarks

Inheritance Hierarchy

This class implements IUnknown for a nonaggregated object, but does not increment the module lock count in the
constructor.

Base
Your class, derived from CComObjectRoot or CComObjectRootEx, as well as from any other interface you want to
support on the object.

CComObjectNoLock is similar to CComObject in that it implements IUnknown for a nonaggregated object; however,
CComObjectNoLock does not increment the module lock count in the constructor.

ATL uses CComObjectNoLock internally for class factories. In general, you will not use this class directly.

Base

CComObjectNoLock

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomobjectnolock-class.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

Requirements

CComObjectNoLock::AddRef

STDMETHOD_(ULONG, AddRef)();

Return ValueReturn Value

CComObjectNoLock::CComObjectNoLock

CComObjectNoLock(void* = NULL);

ParametersParameters

CComObjectNoLock::~CComObjectNoLock

~CComObjectNoLock();

RemarksRemarks

CComObjectNoLock::QueryInterface

STDMETHOD(QueryInterface)(REFIID iid, void** ppvObject);

ParametersParameters

Return ValueReturn Value

CComObjectNoLock::Release

Header: atlcom.h

Increments the reference count on the object.

A value that may be useful for diagnostics or testing.

The constructor. Unlike CComObject, does not increment the module lock count.

void*
[in] This unnamed parameter is not used. It exists for symmetry with other CComXXXObjectXXX constructors.

The destructor.

Frees all allocated resources and calls FinalRelease.

Retrieves a pointer to the requested interface.

iid
[in] The identifier of the interface being requested.

ppvObject
[out] A pointer to the interface pointer identified by iid. If the object does not support this interface, ppvObject is
set to NULL.

A standard HRESULT value.

STDMETHOD_(ULONG, Release)();

Return ValueReturn Value

See also

Decrements the reference count on the object.

In debug builds, Release returns a value that may be useful for diagnostics or testing. In non-debug builds,
Release always returns 0.

Class Overview

CComObjectRoot Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
typedef CComObjectRootEx<CComObjectThreadModel> CComObjectRoot;

Remarks

Requirements

See also

This typedef of CComObjectRootEx is templatized on the default threading model of the server.

CComObjectRoot is a typedef of CComObjectRootEx templatized on the default threading model of the server.
Thus CComObjectThreadModel will reference either CComSingleThreadModel or CComMultiThreadModel.

CComObjectRootEx handles object reference count management for both nonaggregated and aggregated
objects. It holds the object reference count if your object is not being aggregated, and holds the pointer to the
outer unknown if your object is being aggregated. For aggregated objects, CComObjectRootEx methods can be
used to handle the failure of the inner object to construct, and to protect the outer object from deletion when
inner interfaces are released or the inner object is deleted.

Header: atlcom.h

CComObjectRootEx Class
CComAggObject Class
CComObject Class
CComPolyObject Class
Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomobjectroot-class.md

CComObjectRootEx Class
3/4/2019 • 9 minutes to read • Edit Online

Syntax
template<class ThreadModel>
class CComObjectRootEx : public CComObjectRootBase

ParametersParameters

Members
MethodsMethods

CComObjectRootEx Constructor.

InternalAddRef Increments the reference count for a nonaggregated
object.

InternalRelease Decrements the reference count for a nonaggregated
object.

Lock If the thread model is multithreaded, obtains ownership
of a critical section object.

Unlock If the thread model is multithreaded, releases ownership
of a critical section object.

CComObjectRootBase MethodsCComObjectRootBase Methods

FinalConstruct Override in your class to perform any initialization
required by your object.

FinalRelease Override in your class to perform any cleanup required
by your object.

OuterAddRef Increments the reference count for an aggregated object.

This class provides methods to handle object reference count management for both nonaggregated and
aggregated objects.

ThreadModel
The class whose methods implement the desired threading model. You can explicitly choose the threading
model by setting ThreadModel to CComSingleThreadModel, CComMultiThreadModel, or
CComMultiThreadModelNoCS. You can accept the server's default thread model by setting ThreadModel
to CComObjectThreadModel or CComGlobalsThreadModel.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomobjectrootex-class.md

OuterQueryInterface Delegates to the outer IUnknown of an aggregated
object.

OuterRelease Decrements the reference count for an aggregated
object.

Static FunctionsStatic Functions

InternalQueryInterface Delegates to the IUnknown of a nonaggregated object.

ObjectMain Called during module initialization and termination for
derived classes listed in the object map.

Data MembersData Members

m_dwRef With m_pOuterUnknown , part of a union. Used when the
object is not aggregated to hold the reference count of
AddRef and Release .

m_pOuterUnknown With m_dwRef , part of a union. Used when the object is
aggregated to hold a pointer to the outer unknown.

Remarks
CComObjectRootEx handles object reference count management for both nonaggregated and aggregated

objects. It holds the object reference count if your object is not being aggregated, and holds the pointer to
the outer unknown if your object is being aggregated. For aggregated objects, CComObjectRootEx methods
can be used to handle the failure of the inner object to construct, and to protect the outer object from
deletion when inner interfaces are released or the inner object is deleted.

A class that implements a COM server must inherit from CComObjectRootEx or CComObjectRoot.

If your class definition specifies the DECLARE_POLY_AGGREGATABLE macro, ATL creates an instance of
CComPolyObject<CYourClass> when IClassFactory::CreateInstance is called. During creation, the value of

the outer unknown is checked. If it is NULL, IUnknown is implemented for a nonaggregated object. If the
outer unknown is not NULL, IUnknown is implemented for an aggregated object.

If your class does not specify the DECLARE_POLY_AGGREGATABLE macro, ATL creates an instance of
CAggComObject<CYourClass> for aggregated objects or an instance of CComObject<CYourClass> for

nonaggregated objects.

The advantage of using CComPolyObject is that you avoid having both CComAggObject and CComObject in
your module to handle the aggregated and nonaggregated cases. A single CComPolyObject object handles
both cases. Therefore, only one copy of the vtable and one copy of the functions exist in your module. If
your vtable is large, this can substantially decrease your module size. However, if your vtable is small,
using CComPolyObject can result in a slightly larger module size because it is not optimized for an
aggregated or nonaggregated object, as are CComAggObject and CComObject .

If your object is aggregated, IUnknown is implemented by CComAggObject or CComPolyObject . These
classes delegate QueryInterface , AddRef , and Release calls to CComObjectRootEx 's OuterQueryInterface ,
OuterAddRef , and OuterRelease to forward to the outer unknown. Typically, you override

https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

Requirements

CComObjectRootEx::CComObjectRootEx

CComObjectRootEx();

CComObjectRootEx::FinalConstruct

HRESULT FinalConstruct();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CComObjectRootEx::FinalConstruct in your class to create any aggregated objects, and override
CComObjectRootEx::FinalRelease to free any aggregated objects.

If your object is not aggregated, IUnknown is implemented by CComObject or CComPolyObject . In this case,
calls to QueryInterface , AddRef , and Release are delegated to CComObjectRootEx 's
InternalQueryInterface , InternalAddRef , and InternalRelease to perform the actual operations.

Header: atlcom.h

The constructor initializes the reference count to 0.

You can override this method in your derived class to perform any initialization required for your object.

Return S_OK on success or one of the standard error HRESULT values.

By default, CComObjectRootEx::FinalConstruct simply returns S_OK.

There are advantages to performing initialization in FinalConstruct rather than the constructor of your
class:

You cannot return a status code from a constructor, but you can return an HRESULT by means of
FinalConstruct 's return value. When objects of your class are being created using the standard

class factory provided by ATL, this return value is propagated back to the COM client allowing you
to provide them with detailed error information.

You cannot call virtual functions through the virtual function mechanism from the constructor of a
class. Calling a virtual function from the constructor of a class results in a statically resolved call to
the function as it is defined at that point in the inheritance hierarchy. Calls to pure virtual functions
result in linker errors.

Your class is not the most derived class in the inheritance hierarchy — it relies on a derived class
supplied by ATL to provide some of its functionality. There is a good chance that your initialization
will need to use the features provided by that class (this is certainly true when objects of your class
need to aggregate other objects), but the constructor in your class has no way to access those
features. The construction code for your class is executed before the most derived class is fully
constructed.

However, FinalConstruct is called immediately after the most derived class is fully constructed
allowing you to call virtual functions and use the reference-counting implementation provided by
ATL.

class ATL_NO_VTABLE CMyAggObject :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyAggObject, &CLSID_MyAggObject>,
 public IDispatchImpl<IMyAggObject, &IID_IMyAggObject, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1,
/*wMinor =*/ 0>
{
public:
 DECLARE_GET_CONTROLLING_UNKNOWN()
 HRESULT FinalConstruct()
 {
 return CoCreateInstance(CLSID_MyCustomClass, GetControllingUnknown(),
 CLSCTX_ALL, IID_IUnknown, (void**)&m_pMyCustomClass);
 }

 IMyCustomClass* m_pMyCustomClass;

 // Remainder of class declaration omitted.

CComObjectRootEx::FinalRelease

void FinalRelease();

RemarksRemarks

CComObjectRootEx::InternalAddRef

ULONG InternalAddRef();

Return ValueReturn Value

Typically, override this method in the class derived from CComObjectRootEx to create any aggregated
objects. For example:

If the construction fails, you can return an error. You can also use the macro
DECLARE_PROTECT_FINAL_CONSTRUCT to protect your outer object from being deleted if, during
creation, the internal aggregated object increments the reference count then decrements the count to 0.

Here is a typical way to create an aggregate:

Add an IUnknown pointer to your class object and initialize it to NULL in the constructor.

Override FinalConstruct to create the aggregate.

Use the IUnknown pointer you defined as the parameter to the
COM_INTERFACE_ENTRY_AGGREGATE macro.

Override FinalRelease to release the IUnknown pointer.

You can override this method in your derived class to perform any cleanup required for your object.

By default, CComObjectRootEx::FinalRelease does nothing.

Performing cleanup in FinalRelease is preferable to adding code to the destructor of your class since the
object is still fully constructed at the point at which FinalRelease is called. This enables you to safely
access the methods provided by the most derived class. This is particularly important for freeing any
aggregated objects before deletion.

Increments the reference count of a nonaggregated object by 1.

RemarksRemarks

CComObjectRootEx::InternalQueryInterface

static HRESULT InternalQueryInterface(
 void* pThis,
 const _ATL_INTMAP_ENTRY* pEntries,
 REFIID iid,
 void** ppvObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComObjectRootEx::InternalRelease

ULONG InternalRelease();

Return ValueReturn Value

RemarksRemarks

CComObjectRootEx::Lock

A value that may be useful for diagnostics and testing.

If the thread model is multithreaded, InterlockedIncrement is used to prevent more than one thread from
changing the reference count at the same time.

Retrieves a pointer to the requested interface.

pThis
[in] A pointer to the object that contains the COM map of interfaces exposed to QueryInterface .

pEntries
[in] A pointer to the _ATL_INTMAP_ENTRY structure that accesses a map of available interfaces.

iid
[in] The GUID of the interface being requested.

ppvObject
[out] A pointer to the interface pointer specified in iid, or NULL if the interface is not found.

One of the standard HRESULT values.

InternalQueryInterface only handles interfaces in the COM map table. If your object is aggregated,
InternalQueryInterface does not delegate to the outer unknown. You can enter interfaces into the COM

map table with the macro COM_INTERFACE_ENTRY or one of its variants.

Decrements the reference count of a nonaggregated object by 1.

In both non-debug and debug builds, this function returns a value which may be useful for diagnostics or
testing. The exact value returned depends on many factors such as the operating system used, and may, or
may not, be the reference count.

If the thread model is multithreaded, InterlockedDecrement is used to prevent more than one thread from
changing the reference count at the same time.

void Lock();

RemarksRemarks

CComObjectRootEx::m_dwRef

long m_dwRef;

RemarksRemarks

union {
 long m_dwRef;
 IUnknown* m_pOuterUnknown;
};

CComObjectRootEx::m_pOuterUnknown

IUnknown*
 m_pOuterUnknown;

RemarksRemarks

union {
 long m_dwRef;
 IUnknown* m_pOuterUnknown;
};

CComObjectRootEx::ObjectMain

If the thread model is multithreaded, this method calls the Win32 API function EnterCriticalSection, which
waits until the thread can take ownership of the critical section object obtained through a private data
member.

When the protected code finishes executing, the thread must call Unlock to release ownership of the
critical section.

If the thread model is single-threaded, this method does nothing.

Part of a union that accesses four bytes of memory.

With m_pOuterUnknown , part of a union:

If the object is not aggregated, the reference count accessed by AddRef and Release is stored in m_dwRef

. If the object is aggregated, the pointer to the outer unknown is stored in m_pOuterUnknown.

Part of a union that accesses four bytes of memory.

With m_dwRef , part of a union:

If the object is aggregated, the pointer to the outer unknown is stored in m_pOuterUnknown . If the object is
not aggregated, the reference count accessed by AddRef and Release is stored in m_dwRef.

For each class listed in the object map, this function is called once when the module is initialized, and
again when it is terminated.

https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-entercriticalsection

static void WINAPI ObjectMain(bool bStarting);

ParametersParameters

RemarksRemarks

ExampleExample

class ATL_NO_VTABLE CMyApp :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyApp, &CLSID_MyApp>,
 public IMyApp
{
public:
 CMyApp()
 {
 }

 static void WINAPI ObjectMain(bool bStarting)
 {
 if (bStarting)
 ;// Perform custom initialization routines
 else
 ;// Perform custom termination routines
 }

 // Remainder of class declaration omitted.

CComObjectRootEx::OuterAddRef

ULONG OuterAddRef();

Return ValueReturn Value

CComObjectRootEx::OuterQueryInterface

HRESULT OuterQueryInterface(REFIID iid, void** ppvObject);

ParametersParameters

bStarting
[out] The value is TRUE if the class is being initialized; otherwise FALSE.

The value of the bStarting parameter indicates whether the module is being initialized or terminated. The
default implementation of ObjectMain does nothing, but you can override this function in your class to
initialize or clean up resources that you want to allocate for the class. Note that ObjectMain is called
before any instances of the class are requested.

ObjectMain is called from the entry point of the DLL, so the type of operation that the entry-point
function can perform is restricted. For more information on these restrictions, see DLLs and Visual C++
run-time library behavior and DllMain.

Increments the reference count of the outer unknown of an aggregation.

A value that may be useful for diagnostics and testing.

Retrieves an indirect pointer to the requested interface.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/run-time-library-behavior
https://docs.microsoft.com/windows/desktop/Dlls/dllmain

Return ValueReturn Value

CComObjectRootEx::OuterRelease

ULONG OuterRelease();

Return ValueReturn Value

CComObjectRootEx::Unlock

void Unlock();

RemarksRemarks

See also

iid
[in] The GUID of the interface being requested.

ppvObject
[out] A pointer to the interface pointer specified in iid, or NULL if the aggregation does not support the
interface.

One of the standard HRESULT values.

Decrements the reference count of the outer unknown of an aggregation.

In non-debug builds, always returns 0. In debug builds, returns a value that may be useful for diagnostics
or testing.

If the thread model is multithreaded, this method calls the Win32 API function LeaveCriticalSection,
which releases ownership of the critical section object obtained through a private data member.

To obtain ownership, the thread must call Lock . Each call to Lock requires a corresponding call to
Unlock to release ownership of the critical section.

If the thread model is single-threaded, this method does nothing.

CComAggObject Class
CComObject Class
CComPolyObject Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/synchapi/nf-synchapi-leavecriticalsection

CComObjectStack Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class Base>
class CComObjectStack : public Base

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComObjectStack::CComObjectStack The constructor.

CComObjectStack::~CComObjectStack The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComObjectStack::AddRef Returns zero. In debug mode, calls _ASSERTE .

CComObjectStack::QueryInterface Returns E_NOINTERFACE. In debug mode, calls _ASSERTE .

CComObjectStack::Release Returns zero. In debug mode, calls _ASSERTE . ~

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComObjectStack::m_hResFinalConstruct Contains the HRESULT returned during construction of the
CComObjectStack object.

Remarks

This class creates a temporary COM object and provides it with a skeletal implementation of IUnknown .

Base
Your class, derived from CComObjectRoot or CComObjectRootEx, as well as from any other interface you want to
support on the object.

CComObjectStack is used to create a temporary COM object and provide the object a skeletal implementation of
IUnknown . Typically, the object is used as a local variable within one function (that is, pushed onto the stack). Since

the object is destroyed when the function finishes, reference counting is not performed to increase efficiency.

The following example shows how to create a COM object used inside a function:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomobjectstack-class.md

void MyFunc()
{
 CComObjectStack<CMyClass2> Tempobj;
 //...
}

Inheritance Hierarchy

Requirements

CComObjectStack::AddRef

STDMETHOD_(ULONG, AddRef)();

Return ValueReturn Value

RemarksRemarks

CComObjectStack::CComObjectStack

CComObjectStack(void* = NULL);

RemarksRemarks

CComObjectStack::~CComObjectStack

CComObjectStack();

RemarksRemarks

CComObjectStack::m_hResFinalConstruct

The temporary object Tempobj is pushed onto the stack and automatically disappears when the function finishes.

Base

CComObjectStack

Header: atlcom.h

Returns zero.

Returns zero.

In debug mode, calls _ASSERTE .

The constructor.

Calls FinalConstruct and then sets m_hResFinalConstruct to the HRESULT returned by FinalConstruct . If you
have not derived your base class from CComObjectRoot, you must supply your own FinalConstruct method. The
destructor calls FinalRelease .

The destructor.

Frees all allocated resources and calls FinalRelease.

HRESULT m_hResFinalConstruct;

CComObjectStack::QueryInterface

HRESULT QueryInterface(REFIID, void**);

Return ValueReturn Value

RemarksRemarks

CComObjectStack::Release

STDMETHOD_(ULONG, Release)();

Return ValueReturn Value

RemarksRemarks

See also

Contains the HRESULT returned from calling FinalConstruct during construction of the CComObjectStack object.

Returns E_NOINTERFACE.

Returns E_NOINTERFACE.

In debug mode, calls _ASSERTE .

Returns zero.

Returns zero.

In debug mode, calls _ASSERTE .

CComAggObject Class
CComObject Class
CComObjectGlobal Class
Class Overview

CComPolyObject Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
template<class contained>
class CComPolyObject : public IUnknown,
 public CComObjectRootEx<contained::_ThreadModel::ThreadModelNoCS>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComPolyObject::CComPolyObject The constructor.

CComPolyObject::~CComPolyObject The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComPolyObject::AddRef Increments the object's reference count.

CComPolyObject::CreateInstance (Static) Allows you to create a new CComPolyObject<
contained > object without the overhead of

CoCreateInstance.

CComPolyObject::FinalConstruct Performs final initialization of m_contained .

CComPolyObject::FinalRelease Performs final destruction of m_contained .

CComPolyObject::QueryInterface Retrieves a pointer to the requested interface.

CComPolyObject::Release Decrements the object's reference count.

Public Data MembersPublic Data Members

NAME DESCRIPTION

This class implements IUnknown for an aggregated or nonaggregated object.

contained
Your class, derived from CComObjectRoot or CComObjectRootEx, as well as from any other interfaces you want
to support on the object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccompolyobject-class.md
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cocreateinstance

CComPolyObject::m_contained Delegates IUnknown calls to the outer unknown if the
object is aggregated or to the IUnknown of the object if the
object is not aggregated.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CComPolyObject::AddRef

STDMETHOD_(ULONG, AddRef)();

Return ValueReturn Value

CComPolyObject implements IUnknown for an aggregated or nonaggregated object.

When an instance of CComPolyObject is created, the value of the outer unknown is checked. If it is NULL,
IUnknown is implemented for a nonaggregated object. If the outer unknown is not NULL, IUnknown is

implemented for an aggregated object.

The advantage of using CComPolyObject is that you avoid having both CComAggObject and CComObject in
your module to handle the aggregated and nonaggregated cases. A single CComPolyObject object handles both
cases. This means only one copy of the vtable and one copy of the functions exist in your module. If your vtable
is large, this can substantially decrease your module size. However, if your vtable is small, using CComPolyObject

can result in a slightly larger module size because it is not optimized for an aggregated or nonaggregated object,
as are CComAggObject and CComObject .

If the DECLARE_POLY_AGGREGATABLE macro is specified in your object's class definition, CComPolyObject will
be used to create your object. DECLARE_POLY_AGGREGATABLE will automatically be declared if you use the
ATL Project Wizard to create a full control or Internet Explorer control.

If aggregated, the CComPolyObject object has its own IUnknown , separate from the outer object's IUnknown , and
maintains its own reference count. CComPolyObject uses CComContainedObject to delegate to the outer
unknown.

For more information about aggregation, see the article Fundamentals of ATL COM Objects.

CComObjectRootBase

CComObjectRootEx

IUnknown

CComPolyObject

Header: atlcom.h

Increments the reference count on the object.

A value that may be useful for diagnostics or testing.

https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

CComPolyObject::CComPolyObject

CComPolyObject(void* pv);

ParametersParameters

RemarksRemarks

CComPolyObject::~CComPolyObject

~CComPolyObject();

RemarksRemarks

CComPolyObject::CreateInstance

static HRESULT WINAPI CreateInstance(
 LPUNKNOWN pUnkOuter,
 CComPolyObject<contained>** pp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComPolyObject::FinalConstruct

The constructor.

pv
[in] A pointer to the outer unknown if the object is to be aggregated, or NULL if the object if the object is not
aggregated.

Initializes the CComContainedObject data member, m_contained, and increments the module lock count.

The destructor decrements the module lock count.

The destructor.

Frees all allocated resources, calls FinalRelease, and decrements the module lock count.

Allows you to create a new CComPolyObject< contained > object without the overhead of CoCreateInstance.

pp
[out] A pointer to a CComPolyObject< contained > pointer. If CreateInstance is unsuccessful, pp is set to
NULL.

A standard HRESULT value.

The object returned has a reference count of zero, so call AddRef immediately, then use Release to free the
reference on the object pointer when you're done.

If you don't need direct access to the object, but still want to create a new object without the overhead of
CoCreateInstance , use CComCoClass::CreateInstance instead.

Called during the final stages of object construction, this method performs any final initialization on the
m_contained data member.

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cocreateinstance

HRESULT FinalConstruct();

Return ValueReturn Value

CComPolyObject::FinalRelease

void FinalRelease();

CComPolyObject::m_contained

CComContainedObject<contained> m_contained;

ParametersParameters

RemarksRemarks

CComPolyObject::QueryInterface

STDMETHOD(QueryInterface)(REFIID iid, void** ppvObject);
template <class Q>
HRESULT QueryInterface(Q** pp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

A standard HRESULT value.

Called during object destruction, this method frees the m_contained data member.

A CComContainedObject object derived from your class.

contained
[in] Your class, derived from CComObjectRoot or CComObjectRootEx, as well as from any other interfaces you
want to support on the object.

IUnknown calls through m_contained are delegated to the outer unknown if the object is aggregated, or to the
IUnknown of this object if the object is not aggregated.

Retrieves a pointer to the requested interface.

Q
The COM interface.

iid
[in] The identifier of the interface being requested.

ppvObject
[out] A pointer to the interface pointer identified by iid. If the object does not support this interface, ppvObject is
set to NULL.

pp
[out] A pointer to the interface identified by __uuidof(Q) .

A standard HRESULT value.

 CComPolyObject::Release

STDMETHOD_(ULONG, Release)();

Return ValueReturn Value

See also

For an aggregated object, if the requested interface is IUnknown , QueryInterface returns a pointer to the
aggregated object's own IUnknown and increments the reference count. Otherwise, this method queries for the
interface through the CComContainedObject data member, m_contained.

Decrements the reference count on the object.

In debug builds, Release returns a value that may be useful for diagnostics or testing. In nondebug builds,
Release always returns 0.

CComObjectRootEx Class
DECLARE_POLY_AGGREGATABLE
Class Overview

CComPtr Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class T>
class CComPtr

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComPtr::CComPtr The constructor.

Public OperatorsPublic Operators

NAME DESCRIPTION

CComPtr::operator = Assigns a pointer to the member pointer.

Remarks

A smart pointer class for managing COM interface pointers.

T
A COM interface specifying the type of pointer to be stored.

ATL uses CComPtr and CComQIPtr to manage COM interface pointers. Both are derived from CComPtrBase, and
both perform automatic reference counting.

The CComPtr and CComQIPtr classes can help eliminate memory leaks by performing automatic reference
counting. The following functions both perform the same logical operations; however, note how the second
version may be less error-prone by using the CComPtr class:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomptr-class.md

// Error-checking routine that performs manual lifetime management
// of a COM IErrorInfo object
HRESULT CheckComError_Manual()
{
 HRESULT hr;
 CComBSTR bstrDescription;
 CComBSTR bstrSource;
 CComBSTR bstrHelpFile;

 IErrorInfo* pErrInfo = NULL; // naked COM interface pointer
 hr = ::GetErrorInfo(0, &pErrInfo);
 if(hr != S_OK)
 return hr;

 hr = pErrInfo->GetDescription(&bstrDescription);
 if(FAILED(hr))
 {
 pErrInfo->Release(); // must release interface pointer before returning
 return hr;
 }

 hr = pErrInfo->GetSource(&bstrSource);
 if(FAILED(hr))
 {
 pErrInfo->Release(); // must release interface pointer before returning
 return hr;
 }

 hr = pErrInfo->GetHelpFile(&bstrHelpFile);
 if(FAILED(hr))
 {
 pErrInfo->Release(); // must release interface pointer before returning
 return hr;
 }

 pErrInfo->Release(); // must release interface pointer before returning
 return S_OK;
}

// Error-checking routine that performs automatic lifetime management
// of a COM IErrorInfo object through a CComPtr smart pointer object
HRESULT CheckComError_SmartPtr()
{
 HRESULT hr;
 CComBSTR bstrDescription;
 CComBSTR bstrSource;
 CComBSTR bstrHelpFile;

 CComPtr<IErrorInfo> pErrInfo;
 hr = ::GetErrorInfo(0, &pErrInfo);
 if(hr != S_OK)
 return hr;

 hr = pErrInfo->GetDescription(&bstrDescription);
 if(FAILED(hr))
 return hr;

 hr = pErrInfo->GetSource(&bstrSource);
 if(FAILED(hr))
 return hr;

 hr = pErrInfo->GetHelpFile(&bstrHelpFile);
 if(FAILED(hr))
 return hr;

 return S_OK;
} // CComPtr will auto-release underlying IErrorInfo interface pointer as needed

Inheritance Hierarchy

Requirements

CComPtr::CComPtr

CComPtr() throw ();
CComPtr(T* lp) throw ();
CComPtr (const CComPtr<T>& lp) throw ();

ParametersParameters

CComPtr::operator =

In Debug builds, link atlsd.lib for code tracing.

CComPtrBase

CComPtr

Header: atlbase.h

The constructor.

lp
Used to initialize the interface pointer.

T
A COM interface.

Assignment operator.

T* operator= (T* lp) throw ();
T* operator= (const CComPtr<T>& lp) throw ();

Return ValueReturn Value

RemarksRemarks

See also

Returns a pointer to the updated CComPtr object

This operation AddRefs the new object and releases the existing object, if one exists.

CComPtr::CComPtr
CComQIPtr::CComQIPtr
Class Overview

CComPtrBase Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
template <class T>
class CComPtrBase

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComPtrBase::~CComPtrBase The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComPtrBase::Advise Call this method to create a connection between the
CComPtrBase 's connection point and a client's sink.

CComPtrBase::Attach Call this method to take ownership of an existing pointer.

CComPtrBase::CoCreateInstance Call this method to create an object of the class associated
with a specified Class ID or Program ID.

CComPtrBase::CopyTo Call this method to copy the CComPtrBase pointer to
another pointer variable.

CComPtrBase::Detach Call this method to release ownership of a pointer.

CComPtrBase::IsEqualObject Call this method to check if the specified IUnknown points to
the same object associated with the CComPtrBase object.

CComPtrBase::QueryInterface Call this method to return a pointer to a specified interface.

CComPtrBase::Release Call this method to release the interface.

CComPtrBase::SetSite Call this method to set the site of the CComPtrBase object
to the IUnknown of the parent object.

Public OperatorsPublic Operators

This class provides a basis for smart pointer classes using COM-based memory routines.

T
The object type to be referenced by the smart pointer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomptrbase-class.md

NAME DESCRIPTION

CComPtrBase::operator T* The cast operator.

CComPtrBase::operator ! The NOT operator.

CComPtrBase::operator & The & operator.

CComPtrBase::operator * The * operator.

[CComPtrBase::operator <](#ccomptrbase__operator lt) The less-than operator.

CComPtrBase::operator == The equality operator.

CComPtrBase::operator -> The pointer-to-members operator.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComPtrBase::p The pointer data member variable.

Remarks

Requirements

CComPtrBase::Advise

HRESULT Advise(
 IUnknown* pUnk,
 const IID& iid,
 LPDWORD pdw) throw();

ParametersParameters

Return ValueReturn Value

This class provides the basis for other smart pointers which use COM memory management routines, such as
CComQIPtr and CComPtr. The derived classes add their own constructors and operators, but rely on the methods
provided by CComPtrBase .

Header: atlcomcli.h

Call this method to create a connection between the CComPtrBase 's connection point and a client's sink.

pUnk
A pointer to the client's IUnknown .

iid
The GUID of the connection point. Typically, this is the same as the outgoing interface managed by the
connection point.

pdw
A pointer to the cookie that uniquely identifies the connection.

RemarksRemarks

CComPtrBase::Attach

void Attach(T* p2) throw();

ParametersParameters

RemarksRemarks

CComPtrBase::~CComPtrBase

~CComPtrBase() throw();

RemarksRemarks

CComPtrBase::CoCreateInstance

HRESULT CoCreateInstance(
 LPCOLESTR szProgID,
 LPUNKNOWN pUnkOuter = NULL,
 DWORD dwClsContext = CLSCTX_ALL) throw();

HRESULT CoCreateInstance(
 REFCLSID rclsid,
 LPUNKNOWN pUnkOuter = NULL,
 DWORD dwClsContext = CLSCTX_ALL) throw();

ParametersParameters

Returns S_OK on success, or an error HRESULT on failure.

See AtlAdvise for more information.

Call this method to take ownership of an existing pointer.

p2
The CComPtrBase object will take ownership of this pointer.

Attach calls CComPtrBase::Release on the existing CComPtrBase::p member variable and then assigns p2 to
CComPtrBase::p . When a CComPtrBase object takes ownership of a pointer, it will automatically call Release on

the pointer which will delete the pointer and any allocated data if the reference count on the object goes to 0.

The destructor.

Releases the interface pointed to by CComPtrBase .

Call this method to create an object of the class associated with a specified Class ID or Program ID.

szProgID
Pointer to a ProgID, used to recover the CLSID.

pUnkOuter
If NULL, indicates that the object is not being created as part of an aggregate. If non- NULL, is a pointer to the
aggregate object's IUnknown interface (the controlling IUnknown).

dwClsContext
Context in which the code that manages the newly created object will run.

Return ValueReturn Value

RemarksRemarks

CComPtrBase::CopyTo

HRESULT CopyTo(T** ppT) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComPtrBase::Detach

T* Detach() throw();

Return ValueReturn Value

RemarksRemarks

CComPtrBase::IsEqualObject

rclsid
CLSID associated with the data and code that will be used to create the object.

Returns S_OK on success, or REGDB_E_CLASSNOTREG, CLASS_E_NOAGGREGATION, CO_E_CLASSSTRING
or E_NOINTERFACE on failure. See CoCreateClassInstance and CLSIDFromProgID for a description of these
errors.

If the first form of the method is called, CLSIDFromProgID is used to recover the CLSID. Both forms then call
CoCreateClassInstance.

In debug builds, an assertion error will occur if CComPtrBase::p is not equal to NULL.

Call this method to copy the CComPtrBase pointer to another pointer variable.

ppT
Address of the variable which will receive the CComPtrBase pointer.

Returns S_OK on success, E_POINTER on failure.

Copies the CComPtrBase pointer to ppT. The reference count on the CComPtrBase::p member variable is
incremented.

An error HRESULT will be returned if ppT is equal to NULL. In debug builds, an assertion error will occur if ppT is
equal to NULL.

Call this method to release ownership of a pointer.

Returns a copy of the pointer.

Releases ownership of a pointer, sets the CComPtrBase::p data member variable to NULL, and returns a copy of
the pointer.

Call this method to check if the specified IUnknown points to the same object associated with the CComPtrBase

object.

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cocreateinstance
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-clsidfromprogid
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-clsidfromprogid
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cocreateinstance

bool IsEqualObject(IUnknown* pOther) throw();

ParametersParameters

Return ValueReturn Value

CComPtrBase::operator !

bool operator!() const throw();

Return ValueReturn Value

CComPtrBase::operator &

T** operator&() throw();

Return ValueReturn Value

CComPtrBase::operator *

T& operator*() const throw();

Return ValueReturn Value

CComPtrBase::operator ==

bool operator== (T* pT) const throw();

ParametersParameters

Return ValueReturn Value

pOther
The IUnknown * to compare.

Returns true if the objects are identical, false otherwise.

The NOT operator.

Returns true if the CComHeapPtr pointer is equal to NULL, false otherwise.

The & operator.

Returns the address of the object pointed to by the CComPtrBase object.

The * operator.

Returns the value of CComPtrBase::p; that is, a pointer to the object referenced by the CComPtrBase object.

If debug builds, an assertion error will occur if CComPtrBase::p is not equal to NULL.

The equality operator.

pT
A pointer to an object.

Returns true if CComPtrBase and pT point to the same object, false otherwise.

CComPtrBase::operator ->

_NoAddRefReleaseOnCComPtr<T>* operator->() const throw();

Return ValueReturn Value

RemarksRemarks

CComPtrBase::operator <

bool operator<(T* pT) const throw();

ParametersParameters

Return ValueReturn Value

CComPtrBase::operator T*

operator T*() const throw();

RemarksRemarks

CComPtrBase::p

T* p;

RemarksRemarks

CComPtrBase::QueryInterface

template <class Q> HRESULT QueryInterface(Q
** pp) const throw();

The pointer-to-member operator.

Returns the value of the CComPtrBase::p data member variable.

Use this operator to call a method in a class pointed to by the CComPtrBase object. In debug builds, an assertion
failure will occur if the CComPtrBase data member points to NULL.

The less-than operator.

pT
A pointer to an object.

Returns true if the pointer managed by current object is less than the pointer to which it is being compared.

The cast operator.

Returns a pointer to the object data type defined in the class template.

The pointer data member variable.

This member variable holds the pointer information.

Call this method to return a pointer to a specified interface.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComPtrBase::Release

void Release() throw();

RemarksRemarks

CComPtrBase::SetSite

HRESULT SetSite(IUnknown* punkParent) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Q
The object type whose interface pointer is required.

pp
Address of output variable that receives the requested interface pointer.

Returns S_OK on success, or E_NOINTERFACE on failure.

This method calls IUnknown::QueryInterface.

In debug builds, an assertion error will occur if pp is not equal to NULL.

Call this method to release the interface.

The interface is released, and CComPtrBase::p is set to NULL.

Call this method to set the site of the CComPtrBase object to the IUnknown of the parent object.

punkParent
A pointer to the IUnknown interface of the parent.

Returns S_OK on success, or an error HRESULT on failure.

This method calls AtlSetChildSite.

Class Overview

https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)

CComQIPtr Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class T, const IID* piid= &__uuidof(T)>
class CComQIPtr: public CComPtr<T>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComQIPtr::CComQIPtr Constructor.

Public OperatorsPublic Operators

NAME DESCRIPTION

CComQIPtr::operator = Assigns a pointer to the member pointer.

Remarks

Inheritance Hierarchy

Requirements

CComQIPtr::CComQIPtr

A smart pointer class for managing COM interface pointers.

T
A COM interface specifying the type of pointer to be stored.

piid
A pointer to the IID of T.

ATL uses CComQIPtr and CComPtr to manage COM interface pointers, both of which derive from CComPtrBase.
Both classes perform automatic reference counting through calls to AddRef and Release . Overloaded operators
handle pointer operations.

CComPtrBase

CComPtr

CComQIPtr

Header: atlcomcli.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomqiptr-class.md

CComQIPtr() throw();
CComQIPtr(T* lp) throw();
CComQIPtr(IUnknown* lp) throw();
CComQIPtr(const CComQIPtr<T, piid>& lp) throw();

ParametersParameters

CComQIPtr::operator =

T* operator= (T* lp) throw();
T* operator= (const CComQIPtr<T, piid>& lp) throw();
T* operator= (IUnknown* lp) throw();

ParametersParameters

Return ValueReturn Value

See also

The constructor.

lp
Used to initialize the interface pointer.

T
A COM interface.

piid
A pointer to the IID of T.

The assignment operator.

lp
Used to initialize the interface pointer.

T
A COM interface.

piid
A pointer to the IID of T.

Returns a pointer to the updated CComQIPtr object.

CComPtr::CComPtr
CComQIPtr::CComQIPtr
CComPtrBase Class
Class Overview
CComQIPtrElementTraits Class

CComQIPtrElementTraits Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<typename I, const IID* piid=& __uuidof(I)>
class CComQIPtrElementTraits :
 public CDefaultElementTraits<ATL::CComQIPtr<I, piid>>

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CComQIPtrElementTraits::INARGTYPE The data type to use for adding elements to the collection
class object.

Remarks

Inheritance Hierarchy

Requirements

This class provides methods, static functions, and typedefs useful when creating collections of COM interface
pointers.

I
A COM interface specifying the type of pointer to be stored.

piid
A pointer to the IID of I.

This class derives methods and provides a typedef useful when creating a collection class of CComQIPtr COM
interface pointer objects. This class is utilized by both the CInterfaceArray and CInterfaceList classes.

For more information, see ATL Collection Classes.

CDefaultCompareTraits

CDefaultHashTraits

CElementTraitsBase

CDefaultElementTraits

CComQIPtrElementTraits

Header: atlcoll.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomqiptrelementtraits-class.md

 CComQIPtrElementTraits::INARGTYPE

typedef I* INARGTYPE;

See also

The data type to use for adding elements to the collection class object.

CDefaultElementTraits Class
Class Overview

CComSafeArray Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
template <typename T, VARTYPE _vartype = _ATL_AutomationType<T>::type>
class CComSafeArray

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComSafeArray::CComSafeArray The constructor.

CComSafeArray::~CComSafeArray The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComSafeArray::Add Adds one or more elements, or a SAFEARRAY structure, to a
CComSafeArray .

CComSafeArray::Attach Attaches a SAFEARRAY structure to a CComSafeArray object.

CComSafeArray::CopyFrom Copies the contents of a SAFEARRAY structure into the
CComSafeArray object.

CComSafeArray::CopyTo Creates a copy of the CComSafeArray object.

CComSafeArray::Create Creates a CComSafeArray object.

CComSafeArray::Destroy Destroys a CComSafeArray object.

CComSafeArray::Detach Detaches a SAFEARRAY from a CComSafeArray object.

CComSafeArray::GetAt Retrieves a single element from a single-dimensional array.

CComSafeArray::GetCount Returns the number of elements in the array.

This class is a wrapper for the SAFEARRAY structure.

T
The type of data to be stored in the array.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomsafearray-class.md

CComSafeArray::GetDimensions Returns the number of dimensions in the array.

CComSafeArray::GetLowerBound Returns the lower bound for a given dimension of the array.

CComSafeArray::GetSafeArrayPtr Returns the address of the m_psa data member.

CComSafeArray::GetType Returns the type of data stored in the array.

CComSafeArray::GetUpperBound Returns the upper bound for any dimension of the array.

CComSafeArray::IsSizable Tests if a CComSafeArray object can be resized.

CComSafeArray::MultiDimGetAt Retrieves a single element from a multidimensional array.

CComSafeArray::MultiDimSetAt Sets the value of an element in a multidimensional array.

CComSafeArray::Resize Resizes a CComSafeArray object.

CComSafeArray::SetAt Sets the value of an element in a single-dimensional array.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CComSafeArray::operator LPSAFEARRAY Casts a value to a SAFEARRAY pointer.

CComSafeArray::operator[] Retrieves an element from the array.

CComSafeArray::operator = Assignment operator.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CComSafeArray::m_psa This data member holds the address of the SAFEARRAY

structure.

Remarks
CComSafeArray provides a wrapper for the SAFEARRAY Data Type class, making it a simple matter to create and

manage single- and multidimensional arrays of almost any of the VARIANT-supported types.

CComSafeArray simplifies passing arrays between processes, and in addition provides extra security by checking
array index values against upper and lower bounds.

The lower bound of a CComSafeArray can start at any user-defined value; however, arrays that are accessed
through C++ should use a lower bound of 0. Other languages such as Visual Basic may use other bounding
values (for example, -10 to 10).

Use CComSafeArray::Create to create a CComSafeArray object, and CComSafeArray::Destroy to delete it.

A CComSafeArray can contain the following subset of VARIANT data types:

https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagsafearray

VARTYPE DESCRIPTION

VT_I1 char

VT_I2 short

VT_I4 int

VT_I4 long

VT_I8 longlong

VT_UI1 byte

VT_UI2 ushort

VT_UI4 uint

VT_UI4 ulong

VT_UI8 ulonglong

VT_R4 float

VT_R8 double

VT_DECIMAL decimal pointer

VT_VARIANT variant pointer

VT_CY Currency data type

Requirements

Example

Header: atlsafe.h

// Create a multidimensional array,
// then write and read elements

// Define an array of character pointers
CComSafeArray<char> *pSar;

char cElement;
char cTable[2][3] = {'A','B','C','D','E','F'};

// Declare the variable used to store the
// array indexes
LONG aIndex[2];

// Define the array bound structure
CComSafeArrayBound bound[2];
bound[0].SetCount(2);
bound[0].SetLowerBound(0);
bound[1].SetCount(3);
bound[1].SetLowerBound(0);

// Create a new 2 dimensional array
// each dimension size is 3
pSar = new CComSafeArray<char>(bound,2);

// Use MultiDimSetAt to store characters in the array
for (int x = 0; x < 2; x++)
{
 for (int y = 0; y < 3; y++)
 {
 aIndex[0] = x;
 aIndex[1] = y;
 HRESULT hr = pSar->MultiDimSetAt(aIndex,cTable[x][y]);
 ATLASSERT(hr == S_OK);
 }
}
// Use MultiDimGetAt to retrieve characters in the array
for (int x = 0; x < 2; x++)
{
 for (int y = 0; y < 3; y++)
 {
 aIndex[0]=x;
 aIndex[1]=y;
 HRESULT hr = pSar->MultiDimGetAt(aIndex,cElement);
 ATLASSERT(hr == S_OK);
 ATLASSERT(cElement == cTable[x][y]);
 }
}

CComSafeArray::Add

HRESULT Add(const SAFEARRAY* psaSrc);
HRESULT Add(ULONG ulCount, const T* pT, BOOL bCopy = TRUE);
HRESULT Add(const T& t, BOOL bCopy = TRUE);

ParametersParameters

Adds one or more elements, or a SAFEARRAY structure, to a CComSafeArray .

psaSrc
A pointer to a SAFEARRAY object.

ulCount
The number of objects to add to the array.

Return ValueReturn Value

RemarksRemarks

CComSafeArray::Attach

HRESULT Attach(const SAFEARRAY* psaSrc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComSafeArray::CComSafeArray

CComSafeArray();
CComSafeArray(const SAFEARRAYBOUND& bound);
CComSafeArray(ULONG ulCount, LONG lLBound = 0);
CComSafeArray(const SAFEARRAYBOUND* pBound, UINT uDims = 1);
CComSafeArray(const CComSafeArray& saSrc);
CComSafeArray(const SAFEARRAY& saSrc);
CComSafeArray(const SAFEARRAY* psaSrc);

ParametersParameters

pT
A pointer to one or more objects to be added to the array.

t
A reference to the object to be added to the array.

bCopy
Indicates whether a copy of the data should be created. The default value is TRUE.

Returns S_OK on success, or an error HRESULT on failure.

The new objects are appended to the end of the existing SAFEARRAY object. Adding an object to a multidimensional
SAFEARRAY object is not supported. When adding an existing array of objects, both arrays must contain elements

of the same type.

The bCopy flag is taken into account when elements of type BSTR or VARIANT are added to an array. The default
value of TRUE ensures that a new copy is made of the data when the element is added to the array.

Attaches a SAFEARRAY structure to a CComSafeArray object.

psaSrc
A pointer to the SAFEARRAY structure.

Returns S_OK on success, or an error HRESULT on failure.

Attaches a SAFEARRAY structure to a CComSafeArray object, making the existing CComSafeArray methods available.

The constructor.

bound
A SAFEARRAYBOUND structure.

ulCount
The number of elements in the array.

RemarksRemarks

CComSafeArray::~CComSafeArray

~CComSafeArray() throw()

RemarksRemarks

CComSafeArray::CopyFrom

HRESULT CopyFrom(LPSAFEARRAY* ppArray);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComSafeArray::CopyTo

HRESULT CopyTo(LPSAFEARRAY* ppArray);

ParametersParameters

lLBound
The lower bound value; that is, the index of the first element in the array.

pBound
A pointer to a SAFEARRAYBOUND structure.

uDims
The count of dimensions in the array.

saSrc
A reference to a SAFEARRAY structure or CComSafeArray object. In either case the constructor uses this reference to
make a copy of the array, so the array is not referenced after construction.

psaSrc
A pointer to a SAFEARRAY structure. The constructor uses this address to make a copy of the array, so the array is
not referenced after construction.

Creates a CComSafeArray object.

The destructor.

Frees all allocated resources.

Copies the contents of a SAFEARRAY structure into the CComSafeArray object.

ppArray
Pointer to the SAFEARRAY to copy.

Returns S_OK on success, or an error HRESULT on failure.

This method copies the contents of a SAFEARRAY into the current CComSafeArray object. The existing contents of
the array are replaced.

Creates a copy of the CComSafeArray object.

Return ValueReturn Value

RemarksRemarks

CComSafeArray::Create

HRESULT Create(const SAFEARRAYBOUND* pBound, UINT uDims = 1);
HRESULT Create(ULONG ulCount = 0, LONG lLBound = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComSafeArray::Destroy

HRESULT Destroy();

Return ValueReturn Value

RemarksRemarks

CComSafeArray::Detach

ppArray
A pointer to a location in which to create the new SAFEARRAY .

Returns S_OK on success, or an error HRESULT on failure.

This method copies the contents of a CComSafeArray object into a SAFEARRAY structure.

Creates a CComSafeArray .

pBound
A pointer to a SAFEARRAYBOUND object.

uDims
The number of dimensions in the array.

ulCount
The number of elements in the array.

lLBound
The lower bound value; that is, the index of the first element in the array.

Returns S_OK on success, or an error HRESULT on failure.

A CComSafeArray object can be created from an existing SAFEARRAYBOUND structure and the number of dimensions,
or by specifying the number of elements in the array and the lower bound. If the array is to be accessed from
Visual C++, the lower bound should be 0. Other languages may allow other values for the lower bound (for
example, Visual Basic supports arrays with elements with a range such as -10 to 10).

Destroys a CComSafeArray object.

Returns S_OK on success, or an error HRESULT on failure.

Destroys an existing CComSafeArray object and all of the data it contains.

Detaches a SAFEARRAY from a CComSafeArray object.

LPSAFEARRAY Detach();

Return ValueReturn Value

RemarksRemarks

CComSafeArray::GetAt

T& GetAt(LONG lIndex) const;

ParametersParameters

Return ValueReturn Value

CComSafeArray::GetCount

ULONG GetCount(UINT uDim = 0) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComSafeArray::GetDimensions

UINT GetDimensions() const;

Return ValueReturn Value

CComSafeArray::GetLowerBound

Returns a pointer to a SAFEARRAY object.

This method detaches the SAFEARRAY object from the CComSafeArray object.

Retrieves a single element from a single-dimensional array.

lIndex
The index number of the value in the array to return.

Returns a reference to the required array element.

Returns the number of elements in the array.

uDim
The array dimension.

Returns the number of elements in the array.

When used with a multidimensional array, this method will return the number of elements in a specific dimension
only.

Returns the number of dimensions in the array.

Returns the number of dimensions in the array.

Returns the lower bound for a given dimension of the array.

LONG GetLowerBound(UINT uDim = 0) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComSafeArray::GetSafeArrayPtr

LPSAFEARRAY* GetSafeArrayPtr() throw();

Return ValueReturn Value

CComSafeArray::GetType

VARTYPE GetType() const;

Return ValueReturn Value

VARTYPE DESCRIPTION

VT_I1 char

VT_I2 short

VT_I4 int

VT_I4 long

VT_I8 longlong

VT_UI1 byte

VT_UI2 ushort

VT_UI4 uint

uDim
The array dimension for which to get the lower bound. If omitted, the default is 0.

Returns the lower bound.

If the lower bound is 0, this indicates a C-like array whose first element is element number 0. In the event of an
error, for example, an invalid dimension argument, this method calls AtlThrow with an HRESULT describing the
error.

Returns the address of the m_psa data member.

Returns a pointer to the CComSafeArray::m_psa data member.

Returns the type of data stored in the array.

Returns the type of data stored in the array, which could be any of the following types:

VT_UI4 ulong

VT_UI8 ulonglong

VT_R4 float

VT_R8 double

VT_DECIMAL decimal pointer

VT_VARIANT variant pointer

VT_CY Currency data type

VARTYPE DESCRIPTION

CComSafeArray::GetUpperBound

LONG GetUpperBound(UINT uDim = 0) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComSafeArray::IsSizable

bool IsSizable() const;

Return ValueReturn Value

CComSafeArray::m_psa

LPSAFEARRAY m_psa;

CComSafeArray::MultiDimGetAt

Returns the upper bound for any dimension of the array.

uDim
The array dimension for which to get the upper bound. If omitted, the default is 0.

Returns the upper bound. This value is inclusive, the maximum valid index for this dimension.

In the event of an error, for example, an invalid dimension argument, this method calls AtlThrow with an
HRESULT describing the error.

Tests if a CComSafeArray object can be resized.

Returns TRUE if the CComSafeArray can be resized, FALSE if it cannot.

Holds the address of the SAFEARRAY structure accessed.

HRESULT MultiDimGetAt(const LONG* alIndex, T& t);

ParametersParameters

Return ValueReturn Value

CComSafeArray::MultiDimSetAt

HRESULT MultiDimSetAt(const LONG* alIndex, const T& t);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComSafeArray::operator []

T& operator[](long lindex) const;
T& operator[]int nindex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Retrieves a single element from a multidimensional array.

alIndex
Pointer to a vector of indexes for each dimension in the array. The leftmost (most significant) dimension is
alIndex[0] .

t
A reference to the data returned.

Returns S_OK on success, or an error HRESULT on failure.

Sets the value of an element in a multidimensional array.

alIndex
Pointer to a vector of indexes for each dimension in the array. The rightmost (least significant) dimension is
alIndex [0].

T
Specifies the value of the new element.

Returns S_OK on success, or an error HRESULT on failure.

This is a multidimensional version of CComSafeArray::SetAt.

Retrieves an element from the array.

lIndex, nIndex
The index number of the required element in the array.

Returns the appropriate array element.

Performs a similar function to CComSafeArray::GetAt, however this operator only works with single-dimensional
arrays.

CComSafeArray::operator =

ATL::CComSafeArray<T>& operator=(const ATL::CComSafeArray& saSrc);
ATL::CComSafeArray<T>& operator=(const SAFEARRAY* psaSrc);

ParametersParameters

Return ValueReturn Value

CComSafeArray::operator LPSAFEARRAY

operator LPSAFEARRAY() const;

Return ValueReturn Value

CComSafeArray::Resize

HRESULT Resize(const SAFEARRAYBOUND* pBound);
HRESULT Resize(ULONG ulCount, LONG lLBound = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComSafeArray::SetAt

Assignment operator.

saSrc
A reference to a CComSafeArray object.

psaSrc
A pointer to a SAFEARRAY object.

Returns the type of data stored in the array.

Casts a value to a SAFEARRAY pointer.

Casts a value to a SAFEARRAY pointer.

Resizes a CComSafeArray object.

pBound
A pointer to a SAFEARRAYBOUND structure that contains information on the number of elements and the lower
bound of an array.

ulCount
The requested number of objects in the resized array.

lLBound
The lower bound.

Returns S_OK on success, or an error HRESULT on failure.

This method only resizes the rightmost dimension. It will not resize arrays that return IsResizable as FALSE.

Sets the value of an element in a single-dimensional array.

HRESULT SetAt(LONG lIndex, const T& t, BOOL bCopy = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

lIndex
The index number of the array element to set.

t
The new value of the specified element.

bCopy
Indicates whether a copy of the data should be created. The default value is TRUE.

Returns S_OK on success, or an error HRESULT on failure.

The bCopy flag is taken into account when elements of type BSTR or VARIANT are added to an array. The default
value of TRUE ensures that a new copy is made of the data when the element is added to the array.

SAFEARRAY Data Type
CComSafeArray::Create
CComSafeArray::Destroy
Class Overview

https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagsafearray

CComSafeArrayBound Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CComSafeArrayBound : public SAFEARRAYBOUND

Members
MethodsMethods

CComSafeArrayBound The constructor.

GetCount Call this method to return the number of elements.

GetLowerBound Call this method to return the lower bound.

GetUpperBound Call this method to return the upper bound.

SetCount Call this method to set the number of elements.

SetLowerBound Call this method to set the lower bound.

OperatorsOperators

operator = Sets the CComSafeArrayBound to a new value.

Remarks

Requirements

CComSafeArrayBound::CComSafeArrayBound

This class is a wrapper for a SAFEARRAYBOUND structure.

This class is a wrapper for the SAFEARRAYBOUND structure used by CComSafeArray. It provides methods for
querying and setting the upper and lower bounds of a single dimension of a CComSafeArray object and the
number of elements it contains. A multidimensional CComSafeArray object uses an array of CComSafeArrayBound

objects, one for each dimension. Therefore, when using methods such as GetCount, be aware that this method will
not return the total number of elements in a multidimensional array.

Header: atlsafe.h

Header: atlsafe.h

The constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomsafearraybound-class.md
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagsafearraybound

CComSafeArrayBound(ULONG ulCount = 0, LONG lLowerBound = 0) throw();

ParametersParameters

RemarksRemarks

CComSafeArrayBound::GetCount

ULONG GetCount() const throw();

Return ValueReturn Value

RemarksRemarks

CComSafeArrayBound::GetLowerBound

LONG GetLowerBound() const throw();

Return ValueReturn Value

CComSafeArrayBound::GetUpperBound

LONG GetUpperBound() const throw();

Return ValueReturn Value

RemarksRemarks

ulCount
The number of elements in the array.

lLowerBound
The lower bound from which the array is numbered.

If the array is to be accessed from a Visual C++ program, it is recommended that the lower bound be defined as 0.
It may be preferable to use a different lower bound value if the array is to be used with other languages, such as
Visual Basic.

Call this method to return the number of elements.

Returns the number of elements.

If the associated CComSafeArray object represents a multidimensional array, this method will only return the total
number of elements in the rightmost dimension. Use CComSafeArray::GetCount to obtain the total number of
elements.

Call this method to return the lower bound.

Returns the lower bound of the CComSafeArrayBound object.

Call this method to return the upper bound.

Returns the upper bound of the CComSafeArrayBound object.

The upper bound depends on the number of elements and the lower bound value. For example, if the lower bound
is 0 and the number of elements is 10, the upper bound will automatically be set to 9.

CComSafeArrayBound::operator =

CComSafeArrayBound& operator= (const CComSafeArrayBound& bound) throw();
CComSafeArrayBound& operator= (ULONG ulCount) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComSafeArrayBound::SetCount

ULONG SetCount(ULONG ulCount) throw();

ParametersParameters

Return ValueReturn Value

CComSafeArrayBound::SetLowerBound

LONG SetLowerBound(LONG lLowerBound) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Sets the CComSafeArrayBound to a new value.

bound
A CComSafeArrayBound object.

ulCount
The number of elements.

Returns a pointer to the CComSafeArrayBound object.

The CComSafeArrayBound object can be assigned using an existing CComSafeArrayBound , or by supplying the number
of elements, in which case the lower bound is set to 0 by default.

Call this method to set the number of elements.

ulCount
The number of elements.

Returns the number of elements in the CComSafeArrayBound object.

Call this method to set the lower bound.

lLowerBound
The lower bound.

Returns the new lower bound of the CComSafeArrayBound object.

If the array is to be accessed from a Visual C++ program, it is recommended that the lower bound be defined as 0.
It may be preferable to use a different lower bound value if the array is to be used with other languages, such as
Visual Basic.

The upper bound depends on the number of elements and the lower bound value. For example, if the lower bound

See also

is 0 and the number of elements is 10, the upper bound will automatically be set to 9.

Class Overview

CComSafeDeleteCriticalSection Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CComSafeDeleteCriticalSection : public CComCriticalSection

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComSafeDeleteCriticalSection::CComSafeDeleteCriticalSectio
n

The constructor.

CComSafeDeleteCriticalSection::~CComSafeDeleteCriticalSecti
on

The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComSafeDeleteCriticalSection::Init Creates and initializes a critical section object.

CComSafeDeleteCriticalSection::Lock Obtains ownership of the critical section object.

CComSafeDeleteCriticalSection::Term Releases system resources used by the critical section object.

Data MembersData Members

m_bInitialized Flags whether the internal CRITICAL_SECTION object has
been initialized.

Remarks

This class provides methods for obtaining and releasing ownership of a critical section object.

CComSafeDeleteCriticalSection derives from the class CComCriticalSection. However,
CComSafeDeleteCriticalSection provides additional safety mechanisms over CComCriticalSection.

When an instance of CComSafeDeleteCriticalSection goes out of scope or is explicitly deleted from memory, the
underlying critical section object will automatically be cleaned up if it is still valid. In addition, the
CComSafeDeleteCriticalSection::Term method will exit gracefully if the underlying critical section object has not
yet been allocated or has already been released from memory.

See CComCriticalSection for more information on critical section helper classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomsafedeletecriticalsection-class.md

Inheritance Hierarchy

Requirements

CComSafeDeleteCriticalSection::CComSafeDeleteCriticalSection

CComSafeDeleteCriticalSection();

RemarksRemarks

CComSafeDeleteCriticalSection::~CComSafeDeleteCriticalSection

~CComSafeDeleteCriticalSection() throw();

RemarksRemarks

CComSafeDeleteCriticalSection::Init

HRESULT Init() throw();

Return ValueReturn Value

CComSafeDeleteCriticalSection::Lock

HRESULT Lock();

Return ValueReturn Value

RemarksRemarks

CComCriticalSection

CComSafeDeleteCriticalSection

Header: atlcore.h

The constructor.

Sets the m_bInitialized data member to FALSE.

The destructor.

Releases the internal CRITICAL_SECTION object from memory if the m_bInitialized data member is set to TRUE.

Calls the base class implementation of Init and sets m_bInitialized to TRUE if successful.

Returns the result of CComCriticalSection::Init.

Calls the base class implementation of Lock.

Returns the result of CComCriticalSection::Lock.

This method assumes the m_bInitialized data member is set to TRUE upon entry. An assertion is generated in
Debug builds if this condidtion is not met.

For more information on the behavior of the function, refer to CComCriticalSection::Lock.

https://docs.microsoft.com/visualstudio/debugger/init

CComSafeDeleteCriticalSection::m_bInitialized

bool m_bInitialized;

RemarksRemarks

CComSafeDeleteCriticalSection::Term

HRESULT Term() throw();

Return ValueReturn Value

RemarksRemarks

See also

Flags whether the internal CRITICAL_SECTION object has been initialized.

The m_bInitialized data member is used to track validity of the underlying CRITICAL_SECTION object associated
with the CComSafeDeleteCriticalSection class. The underlying CRITICAL_SECTION object will not be attempted to
be released from memory if this flag is not set to TRUE.

Calls the base class implementation of CComCriticalSection::Term if the internal CRITICAL_SECTION object is valid.

Returns the result of CComCriticalSection::Term, or S_OK if m_bInitialized was set to FALSE upon entry.

It is safe to call this method even if the internal CRITICAL_SECTION object is not valid. The destructor of this class
calls this method if the m_bInitialized data member is set to TRUE.

CComCriticalSection Class
Class Overview

CComSimpleThreadAllocator Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CComSimpleThreadAllocator

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CComSimpleThreadAllocator::GetThread Selects a thread.

Remarks

Requirements

CComSimpleThreadAllocator::GetThread

int GetThread(CComApartment* /* pApt */, int nThreads);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This class manages thread selection for the class CComAutoThreadModule .

CComSimpleThreadAllocator manages thread selection for CComAutoThreadModule.
CComSimpleThreadAllocator::GetThread simply cycles through each thread and returns the next one in the

sequence.

Header: atlbase.h

Selects a thread by specifying the next thread in the sequence.

pApt
Not used in ATL's default implementation.

nThreads
The maximum number of threads in the EXE module.

An integer between zero and (nThreads - 1). Identifies one of the threads in the EXE module.

You can override GetThread to provide a different method of selection or to make use of the pApt parameter.

GetThread is called by CComAutoThreadModule::CreateInstance.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomsimplethreadallocator-class.md

See also
CComApartment Class
Class Overview

CComSingleThreadModel Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CComSingleThreadModel

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CComSingleThreadModel::AutoCriticalSection References class CComFakeCriticalSection.

CComSingleThreadModel::CriticalSection References class CComFakeCriticalSection .

CComSingleThreadModel::ThreadModelNoCS References CComSingleThreadModel .

Public MethodsPublic Methods

NAME DESCRIPTION

CComSingleThreadModel::Decrement Decrements the value of the specified variable. This
implementation is not thread-safe.

CComSingleThreadModel::Increment Increments the value of the specified variable. This
implementation is not thread-safe.

Remarks

TYPEDEF SINGLE THREADING MODEL
APARTMENT THREADING
MODEL FREE THREADING MODEL

CComObjectThreadModel S S M

CComGlobalsThreadModel S M M

This class provides methods for incrementing and decrementing the value of a variable.

CComSingleThreadModel provides methods for incrementing and decrementing the value of a variable. Unlike
CComMultiThreadModel and CComMultiThreadModelNoCS, these methods are not thread-safe.

Typically, you use CComSingleThreadModel through one of two typedef names, either CComObjectThreadModel
or CComGlobalsThreadModel. The class referenced by each typedef depends on the threading model used, as
shown in the following table:

S= CComSingleThreadModel ; M= CComMultiThreadModel

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomsinglethreadmodel-class.md

Requirements

CComSingleThreadModel::AutoCriticalSection

typedef CComFakeCriticalSection AutoCriticalSection;

RemarksRemarks

CLASS DEFINED IN CLASS REFERENCED

CComSingleThreadModel CComFakeCriticalSection

CComMultiThreadModel CComAutoCriticalSection

CComMultiThreadModelNoCS CComFakeCriticalSection

ExampleExample

CComSingleThreadModel::CriticalSection

typedef CComFakeCriticalSection CriticalSection;

RemarksRemarks

CComSingleThreadModel itself defines three typedef names. ThreadModelNoCS references CComSingleThreadModel .
AutoCriticalSection and CriticalSection reference class CComFakeCriticalSection, which provides empty

methods associated with obtaining and releasing ownership of a critical section.

Header: atlbase.h

When using CComSingleThreadModel , the typedef name AutoCriticalSection references class
CComFakeCriticalSection.

Because CComFakeCriticalSection does not provide a critical section, its methods do nothing.

CComMultiThreadModel and CComMultiThreadModelNoCS contain definitions for AutoCriticalSection . The
following table shows the relationship between the threading model class and the critical section class
referenced by AutoCriticalSection :

In addition to AutoCriticalSection , you can use the typedef name CriticalSection. You should not specify
AutoCriticalSection in global objects or static class members if you want to eliminate the CRT startup code.

See CComMultiThreadModel::AutoCriticalSection.

When using CComSingleThreadModel , the typedef name CriticalSection references class
CComFakeCriticalSection.

Because CComFakeCriticalSection does not provide a critical section, its methods do nothing.

CComMultiThreadModel and CComMultiThreadModelNoCS contain definitions for CriticalSection . The
following table shows the relationship between the threading model class and the critical section class
referenced by CriticalSection :

CLASS DEFINED IN CLASS REFERENCED

CComSingleThreadModel CComFakeCriticalSection

CComMultiThreadModel CComCriticalSection

CComMultiThreadModelNoCS CComFakeCriticalSection

ExampleExample

CComSingleThreadModel::Decrement

static ULONG WINAPI Decrement(LPLONG p) throw();

ParametersParameters

Return ValueReturn Value

CComSingleThreadModel::Increment

static ULONG WINAPI Increment(LPLONG p) throw();

ParametersParameters

Return ValueReturn Value

CComSingleThreadModel::ThreadModelNoCS

typedef CComSingleThreadModel ThreadModelNoCS;

RemarksRemarks

In addition to CriticalSection , you can use the typedef name AutoCriticalSection. You should not specify
AutoCriticalSection in global objects or static class members if you want to eliminate the CRT startup code.

See CComMultiThreadModel::AutoCriticalSection.

This static function decrements the value of the variable pointed to by p.

p
[in] Pointer to the variable to be decremented.

The result of the decrement.

This static function decrements the value of the variable pointed to by p.

p
[in] Pointer to the variable to be incremented.

The result of the increment.

When using CComSingleThreadModel , the typedef name ThreadModelNoCS simply references
CComSingleThreadModel .

CComMultiThreadModel and CComMultiThreadModelNoCS contain definitions for ThreadModelNoCS . The
following table shows the relationship between the threading model class and the class referenced by
ThreadModelNoCS :

CLASS DEFINED IN CLASS REFERENCED

CComSingleThreadModel CComSingleThreadModel

CComMultiThreadModel CComMultiThreadModelNoCS

CComMultiThreadModelNoCS CComMultiThreadModelNoCS

ExampleExample

See also

See CComMultiThreadModel::AutoCriticalSection.

Class Overview

CComTearOffObject Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template<class Base>
class CComTearOffObject : public Base

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComTearOffObject::CComTearOffObject The constructor.

CComTearOffObject::~CComTearOffObject The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComTearOffObject::AddRef Increments the reference count for a CComTearOffObject

object.

CComTearOffObject::QueryInterface Returns a pointer to the requested interface on either your
tear-off class or the owner class.

CComTearOffObject::Release Decrements the reference count for a CComTearOffObject

object and destroys it.

CComTearOffObjectBase MethodsCComTearOffObjectBase Methods

CComTearOffObjectBase Constructor.

CComTearOffObjectBase Data MembersCComTearOffObjectBase Data Members

This class implements a tear-off interface.

Base
Your tear-off class, derived from CComTearOffObjectBase and the interfaces you want your tear-off object to
support.

ATL implements its tear-off interfaces in two phases — the CComTearOffObjectBase methods handle the reference
count and QueryInterface , while CComTearOffObject implements IUnknown.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomtearoffobject-class.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

m_pOwner A pointer to a CComObject derived from the owner class.

Remarks
CComTearOffObject implements a tear-off interface as a separate object that is instantiated only when that

interface is queried for. The tear-off is deleted when its reference count becomes zero. Typically, you build a tear-
off interface for an interface that is rarely used, since using a tear-off saves a vtable pointer in all the instances of
your main object.

You should derive the class implementing the tear-off from CComTearOffObjectBase and from whichever interfaces
you want your tear-off object to support. CComTearOffObjectBase is templatized on the owner class and the thread
model. The owner class is the class of the object for which a tear-off is being implemented. If you do not specify a
thread model, the default thread model is used.

You should create a COM map for your tear-off class. When ATL instantiates the tear-off, it will create
CComTearOffObject<CYourTearOffClass> or CComCachedTearOffObject<CYourTearOffClass> .

For example, in the BEEPER sample, the CBeeper2 class is the tear-off class and the CBeeper class is the owner
class:

class CBeeper2 :
 public ISupportErrorInfo,
 public CComTearOffObjectBase<CBeeper>
{
public:
 CBeeper2() {}
 STDMETHOD(InterfaceSupportsErrorInfo)(REFIID riid)
 {
 return (InlineIsEqualGUID(IID_IBeeper, riid)) ? S_OK : S_FALSE;
 }

BEGIN_COM_MAP(CBeeper2)
 COM_INTERFACE_ENTRY(ISupportErrorInfo)
END_COM_MAP()
};

class ATL_NO_VTABLE CBeeper :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CBeeper, &CLSID_Beeper>,
 public IDispatchImpl<IBeeper, &IID_IBeeper, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor =*/ 0>
{
public:
 CBeeper()
 {
 }

DECLARE_REGISTRY_RESOURCEID(IDR_BEEPER)

DECLARE_NOT_AGGREGATABLE(CBeeper)

BEGIN_COM_MAP(CBeeper)
 COM_INTERFACE_ENTRY(IBeeper)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY_TEAR_OFF(IID_ISupportErrorInfo, CBeeper2)
END_COM_MAP()

// ISupportsErrorInfo
 STDMETHOD(InterfaceSupportsErrorInfo)(REFIID riid);

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 HRESULT FinalConstruct()
 {
 return S_OK;
 }

 void FinalRelease()
 {
 }

public:

};

Inheritance Hierarchy

Requirements

Base

CComTearOffObject

Header: atlcom.h

CComTearOffObject::AddRef

STDMETHOD_(ULONG, AddRef)();

Return ValueReturn Value

CComTearOffObject::CComTearOffObject

CComTearOffObject(void* pv);

ParametersParameters

RemarksRemarks

CComTearOffObject::~CComTearOffObject

~CComTearOffObject();

RemarksRemarks

CComTearOffObject::CComTearOffObjectBase

CComTearOffObjectBase();

RemarksRemarks

CComTearOffObject::m_pOwner

CComObject<Owner>* m_pOwner;

ParametersParameters

Increments the reference count of the CComTearOffObject object by one.

A value that may be useful for diagnostics and testing.

The constructor.

pv
[in] Pointer that will be converted to a pointer to a CComObject<Owner> object.

Increments the owner's reference count by one.

The destructor.

Frees all allocated resources, calls FinalRelease, and decrements the module lock count.

The constructor.

Initializes the m_pOwner member to NULL.

A pointer to a CComObject object derived from Owner.

Owner
[in] The class for which a tear-off is being implemented.

RemarksRemarks

CComTearOffObject::QueryInterface

STDMETHOD(QueryInterface)(REFIID iid, void** ppvObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComTearOffObject::Release

STDMETHOD_ULONG Release();

Return ValueReturn Value

See also

The pointer is initialized to NULL during construction.

Retrieves a pointer to the requested interface.

iid
[in] The IID of the interface being requested.

ppvObject
[out] A pointer to the interface pointer identified by iid, or NULL if the interface is not found.

A standard HRESULT value.

Queries first for interfaces on your tear-off class. If the interface is not there, queries for the interface on the owner
object. If the requested interface is IUnknown , returns the IUnknown of the owner.

Decrements the reference count by one and, if the reference count is zero, deletes the CComTearOffObject .

In non-debug builds, always returns zero. In debug builds, returns a value that may be useful for diagnostics or
testing.

CComCachedTearOffObject Class
Class Overview

CComUnkArray Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template<unsigned int nMaxSize>
class CComUnkArray

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComUnkArray::CComUnkArray Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComUnkArray::Add Call this method to add an IUnknown pointer to the array.

CComUnkArray::begin Returns a pointer to the first IUnknown pointer in the
collection.

CComUnkArray::end Returns a pointer to one past the last IUnknown pointer in
the collection.

CComUnkArray::GetCookie Call this method to get the cookie associated with a given
IUnknown pointer.

CComUnkArray::GetUnknown Call this method to get the IUnknown pointer associated
with a given cookie.

CComUnkArray::Remove Call this method to remove an IUnknown pointer from the
array.

Remarks

This class stores IUnknown pointers, and is designed to be used as a parameter to the IConnectionPointImpl
template class.

nMaxSize
The maximum number of IUnknown pointers that can be held in the static array.

CComUnkArray holds a fixed number of IUnknown pointers, each an interface on a connection point. CComUnkArray

can be used as a parameter to the IConnectionPointImpl template class. CComUnkArray<1> is a template
specialization of CComUnkArray that has been optimized for one connection point.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomunkarray-class.md

NOTENOTE

Requirements

CComUnkArray::Add

DWORD Add(IUnknown* pUnk);

ParametersParameters

Return ValueReturn Value

CComUnkArray::begin

IUnknown**
 begin();

Return ValueReturn Value

RemarksRemarks

CComUnkArray::CComUnkArray

CComUnkArray();

RemarksRemarks

The CComUnkArray methods begin and end can be used to loop through all connection points (for example, when
an event is fired).

See Adding Connection Points to an Object for details on automating creation of connection point proxies.

Note The class CComDynamicUnkArray is used by the Add Class wizard when creating a control which has Connection
Points. If you wish to specify the number of Connection Points manually, change the reference from
CComDynamicUnkArray to CComUnkArray< n > , where n is the number of connection points required.

Header: atlcom.h

Call this method to add an IUnknown pointer to the array.

pUnk
Call this method to add an IUnknown pointer to the array.

Returns the cookie associated with the newly added pointer, or 0 if the array is not large enough to contain the
new pointer.

Returns a pointer to the beginning of the collection of IUnknown interface pointers.

A pointer to an IUnknown interface pointer.

The collection contains pointers to interfaces stored locally as IUnknown . You cast each IUnknown interface to the
real interface type and then call through it. You do not need to query for the interface first.

Before using the IUnknown interface, you should check that it is not NULL.

The constructor.

CComUnkArray::end

IUnknown**
 end();

Return ValueReturn Value

RemarksRemarks

IUnknown** p = m_vec.begin();
while(p != m_vec.end())
{
 // Do something with *p
 p++;
}

CComUnkArray::GetCookie

DWORD WINAPI GetCookie(IUnknown** ppFind);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComUnkArray::GetUnknown

IUnknown* WINAPI GetUnknown(DWORD dwCookie);

ParametersParameters

Return ValueReturn Value

Sets the collection to hold nMaxSize IUnknown pointers, and initializes the pointers to NULL.

Returns a pointer to one past the last IUnknown pointer in the collection.

A pointer to an IUnknown interface pointer.

The CComUnkArray methods begin and end can be used to loop through all connection points, for example,
when an event is fired.

Call this method to get the cookie associated with a given IUnknown pointer.

ppFind
The IUnknown pointer for which the associated cookie is required.

Returns the cookie associated with the IUnknown pointer, or 0 if no matching IUnknown pointer is found.

If there is more than one instance of the same IUnknown pointer, this function returns the cookie for the first one.

Call this method to get the IUnknown pointer associated with a given cookie.

dwCookie
The cookie for which the associated IUnknown pointer is required.

Returns the IUnknown pointer, or NULL if no matching cookie is found.

 CComUnkArray::Remove

BOOL Remove(DWORD dwCookie);

ParametersParameters

Return ValueReturn Value

See also

Call this method to remove an IUnknown pointer from the array.

dwCookie
The cookie referencing the IUnknown pointer to be removed from the array.

Returns TRUE if the pointer is removed, FALSE otherwise.

CComDynamicUnkArray Class
Class Overview

CComVariant Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
class CComVariant : public tagVARIANT

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComVariant::CComVariant The constructor.

CComVariant::~CComVariant The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CComVariant::Attach Attaches a VARIANT to the CComVariant object.

CComVariant::ChangeType Converts the CComVariant object to a new type.

CComVariant::Clear Clears the CComVariant object.

CComVariant::Copy Copies a VARIANT to the CComVariant object.

CComVariant::CopyTo Copies the contents of the CComVariant object.

CComVariant::Detach Detaches the underlying VARIANT from the CComVariant

object.

CComVariant::GetSize Returns the size in number of bytes of the contents of the
CComVariant object.

CComVariant::ReadFromStream Loads a VARIANT from a stream.

CComVariant::SetByRef Initializes the CComVariant object and sets the vt member
to VT_BYREF.

CComVariant::WriteToStream Saves the underlying VARIANT to a stream.

Public OperatorsPublic Operators

This class wraps the VARIANT type, providing a member indicating the type of data stored.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccomvariant-class.md

CComVariant::operator < Indicates whether the CComVariant object is less than the
specified VARIANT.

CComVariant::operator > Indicates whether the CComVariant object is greater than
the specified VARIANT.

operator != Indicates whether the CComVariant object does not equal
the specified VARIANT.

operator = Assigns a value to the CComVariant object.

operator == Indicates whether the CComVariant object equals the
specified VARIANT.

Remarks

Inheritance Hierarchy

Requirements

CComVariant::Attach

HRESULT Attach(VARIANT* pSrc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComVariant::CComVariant

CComVariant wraps the VARIANT and VARIANTARG type, which consists of a union and a member indicating the
type of the data stored in the union. VARIANTs are typically used in Automation.

CComVariant derives from the VARIANT type so it can be used wherever a VARIANT can be used. You can, for
example, use the V_VT macro to extract the type of a CComVariant or you can access the vt member directly just
as you can with a VARIANT.

tagVARIANT

CComVariant

Header: atlcomcli.h

Safely clears the current contents of the CComVariant object, copies the contents of pSrc into this object, then sets
the variant type of pSrc to VT_EMPTY.

pSrc
[in] Points to the VARIANT to be attached to the object.

A standard HRESULT value.

Ownership of the data held by pSrc is transferred to the CComVariant object.

https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant

CComVariant() throw();
CComVariant(const CComVariant& varSrc);
CComVariant(const VARIANT& varSrc);
CComVariant(LPCOLESTR lpszSrc);
CComVariant(LPCSTR lpszSrc);
CComVariant(bool bSrc);
CComVariant(BYTE nSrc) throw();
CComVariant(int nSrc, VARTYPE vtSrc = VT_I4) throw();
CComVariant(unsigned int nSrc, VARTYPE vtSrc = VT_UI4) throw();
CComVariant(shor nSrc) throw();
CComVariant(unsigned short nSrc) throw();
CComVariant(long nSrc, VARTYPE vtSrc = VT_I4) throw();
CComVariant(unsigned long nSrc) throw();
CComVariant(LONGLONG nSrc) throw();
CComVariant(ULONGLONG nSrc) throw();
CComVariant(float fltSrc) throw();
CComVariant(double dblSrc, VARTYPE vtSrc = VT_R8) throw();
CComVariant(CY cySrc) throw();
CComVariant(IDispatch* pSrc) throw();
CComVariant(IUnknown* pSrc) throw();
CComVariant(const SAFEARRAY* pSrc);
CComVariant(char cSrc) throw();
CComVariant(const CComBSTR& bstrSrc);

ParametersParameters

Each constructor handles the safe initialization of the CComVariant object by calling the VariantInit Win32
function or by setting the object's value and type according to the parameters passed.

varSrc
[in] The CComVariant or VARIANT used to initialize the CComVariant object. The contents of the source variant are
copied to the destination without conversion.

lpszSrc
[in] The character string used to initialize the CComVariant object. You can pass a zero-terminated wide (Unicode)
character string to the LPCOLESTR version of the constructor or an ANSI string to the LPCSTR version. In either
case the string is converted to a Unicode BSTR allocated using SysAllocString . The type of the CComVariant

object will be VT_BSTR.

bSrc
[in] The bool used to initialize the CComVariant object. The bool argument is converted to a VARIANT_BOOL
before being stored. The type of the CComVariant object will be VT_BOOL.

nSrc
[in] The int, BYTE , short, long, LONGLONG, ULONGLONG, unsigned short, unsigned long, or unsigned int
used to initialize the CComVariant object. The type of the CComVariant object will be VT_I4, VT_UI1, VT_I2, VT_I4,
VT_I8, VT_UI8, VT_UI2, VT_UI4, or VT_UI4, respectively.

vtSrc
[in] The type of the variant. When the first parameter is int, valid types are VT_I4 and VT_INT. When the first
parameter is long, valid types are VT_I4 and VT_ERROR. When the first parameter is double, valid types are
VT_R8 and VT_DATE. When the first parameter is unsigned int, valid types are VT_UI4 and VT_UINT.

fltSrc
[in] The float used to initialize the CComVariant object. The type of the CComVariant object will be VT_R4.

dblSrc
[in] The double used to initialize the CComVariant object. The type of the CComVariant object will be VT_R8.

cySrc

RemarksRemarks

CComVariant::~CComVariant

~CComVariant() throw();

RemarksRemarks

CComVariant::ChangeType

HRESULT ChangeType(VARTYPE vtNew, const VARIANT* pSrc = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComVariant::Clear

[in] The CY used to initialize the CComVariant object. The type of the CComVariant object will be VT_CY.

pSrc
[in] The IDispatch or IUnknown pointer used to initialize the CComVariant object. AddRef will be called on the
interface pointer. The type of the CComVariant object will be VT_DISPATCH or VT_UNKNOWN, respectively.

Or, the SAFERRAY pointer used to initialize the CComVariant object. A copy of the SAFEARRAY is stored in the
CComVariant object. The type of the CComVariant object will be a combination of the original type of the

SAFEARRAY and VT_ARRAY.

cSrc
[in] The char used to initialize the CComVariant object. The type of the CComVariant object will be VT_I1.

bstrSrc
[in] The BSTR used to initialize the CComVariant object. The type of the CComVariant object will be VT_BSTR.

The destructor manages cleanup by calling CComVariant::Clear.

The destructor.

This method manages cleanup by calling CComVariant::Clear.

Converts the CComVariant object to a new type.

vtNew
[in] The new type for the CComVariant object.

pSrc
[in] A pointer to the VARIANT whose value will be converted to the new type. The default value is NULL, meaning
the CComVariant object will be converted in place.

A standard HRESULT value.

If you pass a value for pSrc, ChangeType will use this VARIANT as the source for the conversion. Otherwise, the
CComVariant object will be the source.

Clears the CComVariant object by calling the VariantClear Win32 function.

HRESULT Clear();

Return ValueReturn Value

RemarksRemarks

CComVariant::Copy

HRESULT Copy(const VARIANT* pSrc);

ParametersParameters

Return ValueReturn Value

CComVariant::CopyTo

HRESULT CopyTo(BSTR* pstrDest);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComVariant::Detach

HRESULT Detach(VARIANT* pDest);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

A standard HRESULT value.

The destructor automatically calls Clear .

Frees the CComVariant object and then assigns it a copy of the specified VARIANT.

pSrc
[in] A pointer to the VARIANT to be copied.

A standard HRESULT value.

Copies the contents of the CComVariant object.

pstrDest
Points to a BSTR that will receive a copy of the contents of the CComVariant object.

A standard HRESULT value.

The CComVariant object must be of type VT_BSTR.

Detaches the underlying VARIANT from the CComVariant object and sets the object's type to VT_EMPTY.

pDest
[out] Returns the underlying VARIANT value of the object.

A standard HRESULT value.

https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant

CComVariant::GetSize

ULONG GetSize() const;

Return ValueReturn Value

RemarksRemarks

CComVariant::operator =

CComVariant& operator=(const CComVariant& varSrc);
CComVariant& operator=(const VARIANT& varSrc);
CComVariant& operator=(const CComBSTR& bstrSrc);
CComVariant& operator=(LPCOLESTR lpszSrc);
CComVariant& operator=(LPCSTR lpszSrc);
CComVariant& operator=(bool bSrc);
CComVariant& operator=(BYTE nSrc) throw();
CComVariant& operator=int nSrc) throw();
CComVariant& operator=(unsigned int nSrc) throw();
CComVariant& operator=(short nSrc) throw();
CComVariant& operator=(unsigned short nSrc) throw();
CComVariant& operator=(long nSrc) throw();
CComVariant& operator=(unsigned long nSrc) throw();
CComVariant& operator=(LONGLONG nSrc) throw();
CComVariant& operator=(ULONGLONG nSrc) throw();
CComVariant& operator=(float fltSrc) throw();
CComVariant& operator=(double dblSrc) throw();
CComVariant& operator=(CY cySrc) throw();
CComVariant& operator=(IDispatch* pSrc) throw();
CComVariant& operator=(IUnknown* pSrc) throw();
CComVariant& operator=(const SAFEARRAY* pSrc);
CComVariant& operator=(char cSrc) throw();

ParametersParameters

Note that the contents of the VARIANT referenced by pDest will automatically be cleared before being assigned
the value and type of the calling CComVariant object.

For simple-fixed size VARIANTs, this method returns the sizeof the underlying data type plus sizeof(VARTYPE).

The size in bytes of the current contents of the CComVariant object.

If the VARIANT contains an interface pointer, GetSize queries for IPersistStream or IPersistStreamInit . If
successful, the return value is the low-order 32 bits of the value returned by GetSizeMax plus the sizeof a CLSID
and sizeof(VARTYPE). If the interface pointer is NULL, GetSize returns the sizeof a CLSID plus
sizeof(VARTYPE). If the total size is larger than ULONG_MAX, GetSize returns sizeof(VARTYPE) which
indicates an error.

In all other cases, a temporary VARIANT of type VT_BSTR is coerced from the current VARIANT. The length of
this BSTR is calculated as the size of the length of the string plus the length of the string itself plus the size of the
null character plus sizeof(VARTYPE). If the VARIANT cannot be coerced to a VARIANT of type VT_BSTR,
GetSize returns sizeof(VARTYPE).

The size returned by this method matches the number of bytes used by CComVariant::WriteToStream under
successful conditions.

Assigns a value and corresponding type to the CComVariant object.

varSrc
[in] The CComVariant or VARIANT to be assigned to the CComVariant object. The contents of the source variant

https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant

CComVariant::operator ==

bool operator==(const VARIANT& varSrc) const throw();

RemarksRemarks

CComVariant::operator !=

are copied to the destination without conversion.

bstrSrc
[in] The BSTR to be assigned to the CComVariant object. The type of the CComVariant object will be VT_BSTR.

lpszSrc
[in] The character string to be assigned to the CComVariant object. You can pass a zero-terminated wide (Unicode)
character string to the LPCOLESTR version of the operator or an ANSI string to the LPCSTR version. In either
case, the string is converted to a Unicode BSTR allocated using SysAllocString . The type of the CComVariant

object will be VT_BSTR.

bSrc
[in] The bool to be assigned to the CComVariant object. The bool argument is converted to a VARIANT_BOOL
before being stored. The type of the CComVariant object will be VT_BOOL.

nSrc
[in] The int, BYTE, short, long, LONGLONG, ULONGLONG, unsigned short, unsigned long, or unsigned int
to be assigned to the CComVariant object. The type of the CComVariant object will be VT_I4, VT_UI1, VT_I2, VT_I4,
VT_I8, VT_UI8, VT_UI2, VT_UI4, or VT_UI4, respectively.

fltSrc
[in] The float to be assigned to the CComVariant object. The type of the CComVariant object will be VT_R4.

dblSrc
[in] The double to be assigned to the CComVariant object. The type of the CComVariant object will be VT_R8.

cySrc
[in] The CY to be assigned to the CComVariant object. The type of the CComVariant object will be VT_CY.

pSrc
[in] The IDispatch or IUnknown pointer to be assigned to the CComVariant object. AddRef will be called on the
interface pointer. The type of the CComVariant object will be VT_DISPATCH or VT_UNKNOWN, respectively.

Or, a SAFEARRAY pointer to be assigned to the CComVariant object. A copy of the SAFEARRAY is stored in the
CComVariant object. The type of the CComVariant object will be a combination of the original type of the

SAFEARRAY and VT_ARRAY.

cSrc
[in] The char to be assigned to the CComVariant object. The type of the CComVariant object will be VT_I1.

Indicates whether the CComVariant object equals the specified VARIANT.

Returns TRUE if the value and type of varSrc are equal to the value and type, respectively, of the CComVariant

object. Otherwise, FALSE. The operator uses the user's default locale to perform the comparison.

The operator compares only the value of the variant types. It compares strings, integers, and floating points, but
not arrays or records.

Indicates whether the CComVariant object does not equal the specified VARIANT.

bool operator!=(const VARIANT& varSrc) const throw();

RemarksRemarks

CComVariant::operator <

bool operator<(const VARIANT& varSrc) const throw();

RemarksRemarks

CComVariant::operator >

bool operator>(const VARIANT& varSrc) const throw();

RemarksRemarks

CComVariant::ReadFromStream

HRESULT ReadFromStream(IStream* pStream);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComVariant::SetByRef

Returns TRUE if either the value or type of varSrc is not equal to the value or type, respectively, of the
CComVariant object. Otherwise, FALSE. The operator uses the user's default locale to perform the comparison.

The operator compares only the value of the variant types. It compares strings, integers, and floating points, but
not arrays or records.

Indicates whether the CComVariant object is less than the specified VARIANT.

Returns TRUE if the value of the CComVariant object is less than the value of varSrc. Otherwise, FALSE. The
operator uses the user's default locale to perform the comparison.

Indicates whether the CComVariant object is greater than the specified VARIANT.

Returns TRUE if the value of the CComVariant object is greater than the value of varSrc. Otherwise, FALSE. The
operator uses the user's default locale to perform the comparison.

Sets the underlying VARIANT to the VARIANT contained in the specified stream.

pStream
[in] A pointer to the IStream interface on the stream containing the data.

A standard HRESULT value.

ReadToStream requires a previous call to WriteToStream.

Initializes the CComVariant object and sets the vt member to VT_BYREF.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream

template < typename T >
void SetByRef(T* pT) throw();

ParametersParameters

RemarksRemarks

CComVariant var;
int nData = 10;
var.SetByRef(&nData);

CComVariant::WriteToStream

HRESULT WriteToStream(IStream* pStream);

ParametersParameters

Return ValueReturn Value

See also

T
The type of VARIANT, for example, BSTR, int, or char.

pT
The pointer used to initialize the CComVariant object.

SetByRef is a function template that initializes the CComVariant object to the pointer pT and sets the vt member
to VT_BYREF. For example:

Saves the underlying VARIANT to a stream.

pStream
[in] A pointer to the IStream interface on a stream.

A standard HRESULT value.

Class Overview

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream

CContainedWindowT Class
3/5/2019 • 9 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class TBase = CWindow, class TWinTraits = CControlWinTraits>
class CContainedWindowT : public TBase

ParametersParameters

NOTENOTE

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CContainedWindowT::CContainedWindowT Constructor. Initializes data members to specify which
message map will process the contained window's messages.

Public MethodsPublic Methods

NAME DESCRIPTION

CContainedWindowT::Create Creates a window.

CContainedWindowT::DefWindowProc Provides default message processing.

CContainedWindowT::GetCurrentMessage Returns the current message.

CContainedWindowT::RegisterWndSuperclass Registers the window class of the contained window.

CContainedWindowT::SubclassWindow Subclasses a window.

This class implements a window contained within another object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

TBase
The base class of your new class. The default base class is CWindow .

TWinTraits
A traits class that defines styles for your window. The default is CControlWinTraits .

CContainedWindow is a specialization of CContainedWindowT . If you want to change the base class or traits, use
CContainedWindowT directly.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccontainedwindowt-class.md

CContainedWindowT::SwitchMessageMap Changes which message map is used to process the
contained window's messages.

CContainedWindowT::UnsubclassWindow Restores a previously subclassed window.

CContainedWindowT::WindowProc (Static) Processes messages sent to the contained window.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CContainedWindowT::m_dwMsgMapID Identifies which message map will process the contained
window's messages.

CContainedWindowT::m_lpszClassName Specifies the name of an existing window class on which a
new window class will be based.

CContainedWindowT::m_pfnSuperWindowProc Points to the window class's original window procedure.

CContainedWindowT::m_pObject Points to the containing object.

Remarks

NOTENOTE

CContainedWindowT implements a window contained within another object. CContainedWindowT 's window
procedure uses a message map in the containing object to direct messages to the appropriate handlers. When
constructing a CContainedWindowT object, you specify which message map should be used.

CContainedWindowT allows you to create a new window by superclassing an existing window class. The Create

method first registers a window class that is based on an existing class but uses CContainedWindowT::WindowProc .
Create then creates a window based on this new window class. Each instance of CContainedWindowT can

superclass a different window class.

CContainedWindowT also supports window subclassing. The SubclassWindow method attaches an existing window
to the CContainedWindowT object and changes the window procedure to CContainedWindowT::WindowProc . Each
instance of CContainedWindowT can subclass a different window.

For any given CContainedWindowT object, call either Create or SubclassWindow . You should not invoke both methods
on the same object.

When you use the Add control based on option in the ATL Project Wizard, the wizard will automatically add a
CContainedWindowT data member to the class implementing the control. The following example shows how the

contained window is declared:

public:
 // Declare a contained window data member
 CContainedWindow m_ctlEdit;

 // Initialize the contained window:
 // 1. Pass "Edit" to specify that the contained
 // window should be based on the standard
 // Windows Edit box
 // 2. Pass 'this' pointer to specify that CAtlEdit
 // contains the message map to be used for the
 // contained window's message processing
 // 3. Pass the identifier of the message map. '1'
 // identifies the alternate message map declared
 // with ALT_MSG_MAP(1)
 CAtlEdit()
 : m_ctlEdit(_T("Edit"), this, 1)
 {
 m_bWindowOnly = TRUE;
 }

// Declare the default message map, identified by '0'
BEGIN_MSG_MAP(CAtlEdit)
 MESSAGE_HANDLER(WM_CREATE, OnCreate)
 MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
 CHAIN_MSG_MAP(CComControl<CAtlEdit>)
// Declare an alternate message map, identified by '1'
ALT_MSG_MAP(1)
 MESSAGE_HANDLER(WM_CHAR, OnChar)
END_MSG_MAP()

// Define OnCreate handler
// When the containing window receives a WM_CREATE
// message, create the contained window by calling
// CContainedWindow::Create
LRESULT OnCreate(UINT /*uMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
{
 RECT rc;
 GetWindowRect(&rc);
 rc.right -= rc.left;
 rc.bottom -= rc.top;
 rc.top = rc.left = 0;
 m_ctlEdit.Create(m_hWnd, rc, _T("hello"), WS_CHILD | WS_VISIBLE |
 ES_MULTILINE | ES_AUTOVSCROLL);
 return 0;
}

FOR MORE INFORMATION ABOUT SEE

Creating controls ATL Tutorial

Using windows in ATL ATL Window Classes

ATL Project Wizard Creating an ATL Project

Windows Windows and subsequent topics in the Windows SDK

Inheritance Hierarchy

https://docs.microsoft.com/windows/desktop/winmsg/windows

Requirements

CContainedWindowT::CContainedWindowT

CContainedWindowT(
 LPTSTR lpszClassName,
 CMessageMap* pObject,
 DWORD dwMsgMapID = 0);

CContainedWindowT(
 CMessageMap* pObject,
 DWORD dwMsgMapID = 0)
 CContainedWindowT();

ParametersParameters

RemarksRemarks

CContainedWindowT::Create

TBase

CContainedWindowT

Header: atlwin.h

The constructor initializes data members.

lpszClassName
[in] The name of an existing window class on which the contained window will be based.

pObject
[in] A pointer to the containing object that declares the message map. This object's class must derive from
CMessageMap.

dwMsgMapID
[in] Identifies the message map that will process the contained window's messages. The default value, 0,
specifies the default message map declared with BEGIN_MSG_MAP. To use an alternate message map declared
with ALT_MSG_MAP(msgMapID), pass msgMapID .

If you want to create a new window through Create, you must pass the name of an existing window class for the
lpszClassName parameter. For an example, see the CContainedWindow overview.

There are three constructors:

The constructor with three arguments is the one typically called.

The constructor with two arguments uses the class name from TBase::GetWndClassName .

The constructor with no arguments is used if you want to supply the arguments later. You must supply the
window class name, message map object, and message map ID when you later call Create .

If you subclass an existing window through SubclassWindow, the lpszClassName value will not be used;
therefore, you can pass NULL for this parameter.

Calls RegisterWndSuperclass to register a window class that is based on an existing class but uses
CContainedWindowT::WindowProc.

HWND Create(
 HWND hWndParent,
 _U_RECT rect,
 LPCTSTR szWindowName = NULL,
 DWORD dwStyle = 0,
 DWORD dwExStyle = 0,
 _U_MENUorID MenuOrID = 0U,
 LPVOID lpCreateParam = NULL);

HWND Create(
 CMessageMap* pObject,
 DWORD dwMsgMapID,
 HWND hWndParent,
 _U_RECT rect,
 LPCTSTR szWindowName = NULL,
 DWORD dwStyle = 0,
 DWORD dwExStyle = 0,
 _U_MENUorID MenuOrID = 0U,
 LPVOID lpCreateParam = NULL);

HWND Create(
 LPCTSTR lpszClassName,
 CMessageMap* pObject,
 DWORD dwMsgMapID,
 HWND hWndParent,
 _U_RECT rect,
 LPCTSTR szWindowName = NULL,
 DWORD dwStyle = 0,
 DWORD dwExStyle = 0,
 _U_MENUorID MenuOrID = 0U,
 LPVOID lpCreateParam = NULL);

ParametersParameters
lpszClassName
[in] The name of an existing window class on which the contained window will be based.

pObject
[in] A pointer to the containing object that declares the message map. This object's class must derive from
CMessageMap.

dwMsgMapID
[in] Identifies the message map that will process the contained window's messages. The default value, 0,
specifies the default message map declared with BEGIN_MSG_MAP. To use an alternate message map declared
with ALT_MSG_MAP(msgMapID), pass msgMapID .

hWndParent
[in] The handle to the parent or owner window.

rect
[in] A RECT structure specifying the position of the window. The RECT can be passed by pointer or by reference.

szWindowName
[in] Specifies the name of the window. The default value is NULL.

dwStyle
[in] The style of the window. The default value is WS_CHILD | WS_VISIBLE. For a list of possible values, see
CreateWindow in the Windows SDK.

dwExStyle
[in] The extended window style. The default value is 0, meaning no extended style. For a list of possible values,
see CreateWindowEx in the Windows SDK.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa

Return ValueReturn Value

RemarksRemarks

NOTENOTE

NOTENOTE

CContainedWindowT::DefWindowProc

LRESULT DefWindowProc()
LRESULT DefWindowProc(
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CContainedWindowT::GetCurrentMessage

MenuOrID
[in] For a child window, the window identifier. For a top-level window, a menu handle for the window. The
default value is 0U .

lpCreateParam
[in] A pointer to window-creation data. For a full description, see the description for the final parameter to
CreateWindowEx.

If successful, the handle to the newly created window; otherwise, NULL.

The existing window class name is saved in m_lpszClassName. Create then creates a window based on this
new class. The newly created window is automatically attached to the CContainedWindowT object.

Do not call Create if you have already called SubclassWindow.

If 0 is used as the value for the MenuOrID parameter, it must be specified as 0U (the default value) to avoid a compiler
error.

Called by WindowProc to process messages not handled by the message map.

uMsg
[in] The message sent to the window.

wParam
[in] Additional message-specific information.

lParam
[in] Additional message-specific information.

The result of the message processing.

By default, DefWindowProc calls the CallWindowProc Win32 function to send the message information to the
window procedure specified in m_pfnSuperWindowProc.

Returns the current message (m_pCurrentMsg).

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-callwindowproca

const _ATL_MSG* GetCurrentMessage();

Return ValueReturn Value

CContainedWindowT::m_dwMsgMapID

DWORD m_dwMsgMapID;

RemarksRemarks

CContainedWindowT::m_lpszClassName

LPTSTR m_lpszClassName;

RemarksRemarks

CContainedWindowT::m_pfnSuperWindowProc

WNDPROC m_pfnSuperWindowProc;

RemarksRemarks

CContainedWindowT::m_pObject

The current message, packaged in the MSG structure.

Holds the identifier of the message map currently being used for the contained window.

This message map must be declared in the containing object.

The default message map, declared with BEGIN_MSG_MAP, is always identified by zero. An alternate message
map, declared with ALT_MSG_MAP(msgMapID), is identified by msgMapID .

m_dwMsgMapID is first initialized by the constructor and can be changed by calling SwitchMessageMap. For an
example, see the CContainedWindowT Overview.

Specifies the name of an existing window class.

When you create a window, Create registers a new window class that is based on this existing class but uses
CContainedWindowT::WindowProc.

m_lpszClassName is initialized by the constructor. For an example, see the CContainedWindowT overview.

If the contained window is subclassed, m_pfnSuperWindowProc points to the original window procedure of the
window class.

If the contained window is superclassed, meaning it is based on a window class that modifies an existing class,
m_pfnSuperWindowProc points to the existing window class's window procedure.

The DefWindowProc method sends message information to the window procedure saved in
m_pfnSuperWindowProc .

Points to the object containing the CContainedWindowT object.

CMessageMap* m_pObject;

RemarksRemarks

CContainedWindowT::RegisterWndSuperclass

ATOM RegisterWndSuperClass();

Return ValueReturn Value

RemarksRemarks

CContainedWindowT::SubclassWindow

BOOL SubclassWindow(HWND hWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CContainedWindowT::SwitchMessageMap

void SwitchMessageMap(DWORD dwMsgMapID);

ParametersParameters

This container, whose class must derive from CMessageMap, declares the message map used by the contained
window.

m_pObject is initialized by the constructor. For an example, see the CContainedWindowT overview.

Called by Create to register the window class of the contained window.

If successful, an atom that uniquely identifies the window class being registered; otherwise, zero.

This window class is based on an existing class but uses CContainedWindowT::WindowProc. The existing
window class's name and window procedure are saved in m_lpszClassName and m_pfnSuperWindowProc,
respectively.

Subclasses the window identified by hWnd and attaches it to the CContainedWindowT object.

hWnd
[in] The handle to the window being subclassed.

TRUE if the window is successfully subclassed; otherwise, FALSE.

The subclassed window now uses CContainedWindowT::WindowProc. The original window procedure is saved
in m_pfnSuperWindowProc.

Do not call SubclassWindow if you have already called Create.

Changes which message map will be used to process the contained window's messages.

RemarksRemarks

CContainedWindowT::UnsubclassWindow

HWND UnsubclassWindow(BOOL bForce = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CContainedWindowT::WindowProc

static LRESULT CALLBACK WindowProc(
 HWND hWnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

dwMsgMapID
[in] The message map identifier. To use the default message map declared with BEGIN_MSG_MAP, pass zero. To
use an alternate message map declared with ALT_MSG_MAP(msgMapID), pass msgMapID .

The message map must be defined in the containing object.

You initially specify the message map identifier in the constructor.

Detaches the subclassed window from the CContainedWindowT object and restores the original window
procedure, saved in m_pfnSuperWindowProc.

bForce
[in] Set to TRUE to force the original window procedure to be restored even if the window procedure for this
CContainedWindowT object is not currently active. If bForce is set to FALSE and the window procedure for this
CContainedWindowT object is not currently active, the original window procedure will not be restored.

The handle to the window previously subclassed. If bForce is set to FALSE and the window procedure for this
CContainedWindowT object is not currently active, returns NULL.

Use this method only if you want to restore the original window procedure before the window is destroyed.
Otherwise, WindowProc will automatically do this when the window is destroyed.

This static method implements the window procedure.

hWnd
[in] The handle to the window.

uMsg
[in] The message sent to the window.

wParam
[in] Additional message-specific information.

lParam
[in] Additional message-specific information.

RemarksRemarks

See also

The result of the message processing.

WindowProc directs messages to the message map identified by m_dwMsgMapID. If necessary, WindowProc calls
DefWindowProc for additional message processing.

CWindow Class
CWindowImpl Class
CMessageMap Class
BEGIN_MSG_MAP
ALT_MSG_MAP(msgMapID)
Class Overview

CCRTAllocator Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class ATL::CCRTAllocator

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CCRTAllocator::Allocate (Static) Call this method to allocate memory.

CCRTAllocator::Free (Static) Call this method to free memory.

CCRTAllocator::Reallocate (Static) Call this method to reallocate memory.

Remarks

Requirements

CCRTAllocator::Allocate

static __declspec(allocator) void* Allocate(size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCRTAllocator::Free

This class provides methods for managing memory using CRT memory routines.

This class is used by CHeapPtr to provide the CRT memory allocation routines. The counterpart class,
CComAllocator, provides the same methods using COM routines.

Header: atlcore.h

Call this static function to allocate memory.

nBytes
The number of bytes to allocate.

Returns a void pointer to the allocated space, or NULL if there is insufficient memory available.

Allocates memory. See malloc for more details.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccrtallocator-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc

static void Free(void* p) throw();

ParametersParameters

RemarksRemarks

CCRTAllocator::Reallocate

static __declspec(allocator) void* Reallocate(void* p, size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Call this static function to free memory.

p
Pointer to the allocated memory.

Frees the allocated memory. See free for more details.

Call this static function to reallocate memory.

p
Pointer to the allocated memory.

nBytes
The number of bytes to reallocate.

Returns a void pointer to the allocated space, or NULL if there is insufficient memory.

Resizes the amount of allocated memory. See realloc for more details.

CHeapPtr Class
CComAllocator Class
Class Overview

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/free
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/realloc

CCRTHeap Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CCRTHeap : public IAtlMemMgr

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CCRTHeap::Allocate Call this method to allocate a block of memory.

CCRTHeap::Free Call this method to free a block of memory allocated by this
memory manager.

CCRTHeap::GetSize Call this method to get the allocated size of a memory block
allocated by this memory manager.

CCRTHeap::Reallocate Call this method to reallocate memory allocated by this
memory manager.

Remarks

Example

Inheritance Hierarchy

Requirements

CCRTHeap::Allocate

This class implements IAtlMemMgr using the CRT heap functions.

CCRTHeap implements memory allocation functions using the CRT heap functions, including malloc, free, realloc,
and _msize.

See the example for IAtlMemMgr.

IAtlMemMgr

CCRTHeap

Header: atlmem.h

Call this method to allocate a block of memory.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ccrtheap-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/free
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/realloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/msize

virtual __declspec(allocator) void* Allocate(size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCRTHeap::Free

virtual void Free(void* p) throw();

ParametersParameters

RemarksRemarks

CCRTHeap::GetSize

virtual size_t GetSize(void* p) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCRTHeap::Reallocate

virtual __declspec(allocator) void* Reallocate(void* p, size_t nBytes) throw();

ParametersParameters

nBytes
The requested number of bytes in the new memory block.

Returns a pointer to the start of the newly allocated memory block.

Call CCRTHeap::Free or CCRTHeap::Reallocate to free the memory allocated by this method.

Implemented using malloc.

Call this method to free a block of memory allocated by this memory manager.

p
Pointer to memory previously allocated by this memory manager. NULL is a valid value and does nothing.

Implemented using free.

Call this method to get the allocated size of a memory block allocated by this memory manager.

p
Pointer to memory previously allocated by this memory manager.

Returns the size of the allocated memory block in bytes.

Implemented using _msize.

Call this method to reallocate memory allocated by this memory manager.

p

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/free
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/msize

Return ValueReturn Value

RemarksRemarks

See also

Pointer to memory previously allocated by this memory manager.

nBytes
The requested number of bytes in the new memory block.

Returns a pointer to the start of the newly allocated memory block.

Call CCRTHeap::Free to free the memory allocated by this method. Implemented using realloc.

Class Overview
CComHeap Class
CWin32Heap Class
CLocalHeap Class
CGlobalHeap Class
IAtlMemMgr Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/realloc

CDacl Class
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CDacl : public CAcl

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDacl::CDacl The constructor.

CDacl::~CDacl The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CDacl::AddAllowedAce Adds an allowed ACE (access-control entry) to the CDacl

object.

CDacl::AddDeniedAce Adds a denied ACE to the CDacl object.

CDacl::GetAceCount Returns the number of ACEs (access-control entries) in the
CDacl object.

CDacl::RemoveAce Removes a specific ACE (access-control entry) from the
CDacl object.

CDacl::RemoveAllAces Removes all of the ACEs contained in the CDacl object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CDacl::operator = Assignment operator.

Remarks

This class is a wrapper for a DACL (discretionary access-control list) structure.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cdacl-class.md

Inheritance Hierarchy

Requirements

CDacl::AddAllowedAce

bool AddAllowedAce(
 const CSid& rSid,
 ACCESS_MASK AccessMask,
 BYTE AceFlags = 0) throw(...);

bool AddAllowedAce(
 const CSid& rSid,
 ACCESS_MASK AccessMask,
 BYTE AceFlags,
 const GUID* pObjectType,
 const GUID* pInheritedObjectType) throw(...);

ParametersParameters

Return ValueReturn Value

An object's security descriptor can contain a DACL. A DACL contains zero or more ACEs (access-control entries)
that identify the users and groups who can access the object. If a DACL is empty (that is, it contains zero ACEs), no
access is explicitly granted, so access is implicitly denied. However, if an object's security descriptor does not have
a DACL, the object is unprotected and everyone has complete access.

To retrieve an object's DACL, you must be the object's owner or have READ_CONTROL access to the object. To
change an object's DACL, you must have WRITE_DAC access to the object.

Use the class methods provided to create, add, remove, and delete ACEs from the CDacl object. See also
AtlGetDacl and AtlSetDacl.

For an introduction to the access control model in Windows, see Access Control in the Windows SDK.

CAcl

CDacl

Header: atlsecurity.h

Adds an allowed ACE (access-control entry) to the CDacl object.

rSid
A CSid object.

AccessMask
Specifies the mask of access rights to be allowed for the specified CSid object.

AceFlags
A set of bit flags that control ACE inheritance.

pObjectType
The object type.

pInheritedObjectType
The inherited object type.

Returns TRUE if the ACE is added to the CDacl object, FALSE on failure.

https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control

RemarksRemarks

CDacl::AddDeniedAce

bool AddDeniedAce(
 const CSid& rSid,
 ACCESS_MASK AccessMask,
 BYTE AceFlags = 0) throw(...);

bool AddDeniedAce(
 const CSid& rSid,
 ACCESS_MASK AccessMask,
 BYTE AceFlags,
 const GUID* pObjectType,
 const GUID* pInheritedObjectType) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDacl::CDacl

CDacl (const ACL& rhs) throw(...);
CDacl () throw();

ParametersParameters

A CDacl object contains zero or more ACEs (access-control entries) that identify the users and groups who can
access the object. This method adds an ACE that allows access to the CDacl object.

See ACE_HEADER for a description of the various flags which can be set in the AceFlags parameter.

Adds a denied ACE (access-control entry) to the CDacl object.

rSid
A CSid object.

AccessMask
Specifies the mask of access rights to be denied for the specified CSid object.

AceFlags
A set of bit flags that control ACE inheritance. Defaults to 0 in the first form of the method.

pObjectType
The object type.

pInheritedObjectType
The inherited object type.

Returns TRUE if the ACE is added to the CDacl object, FALSE on failure.

A CDacl object contains zero or more ACEs (access-control entries) that identify the users and groups who can
access the object. This method adds an ACE that denies access to the CDacl object.

See ACE_HEADER for a description of the various flags which can be set in the AceFlags parameter.

The constructor.

rhs

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_ace_header
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_ace_header

RemarksRemarks

CDacl::~CDacl

~CDacl () throw();

RemarksRemarks

CDacl::GetAceCount

UINT GetAceCount() const throw();

Return ValueReturn Value

CDacl::operator =

CDacl& operator= (const ACL& rhs) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDacl::RemoveAce

void RemoveAce(UINT nIndex) throw();

An existing ACL (access-control list) structure.

The CDacl object can be optionally created using an existing ACL structure. It is important to note that only a
DACL (discretionary access-control list), and not a SACL (system access-control list), should be passed as this
parameter. In debug builds, passing a SACL will cause an ASSERT. In release builds, passing a SACL will cause
the ACEs (access-control entries) in the ACL to be ignored, and no error will occur.

The destructor.

The destructor frees any resources acquired by the object, including all ACEs (access-control entries) using
CDacl::RemoveAllAces.

Returns the number of ACEs (access-control entries) in the CDacl object.

Returns the number of ACEs contained in the CDacl object.

Assignment operator.

rhs
The ACL (access-control list) to assign to the existing object.

Returns a reference to the updated CDacl object.

You should ensure that you only pass a DACL (discretionary access-control list) to this function. Passing a SACL
(system access-control list) to this function will cause an ASSERT in debug builds but will cause no error in
release builds.

Removes a specific ACE (access-control entry) from the CDacl object.

ParametersParameters

RemarksRemarks

CDacl::RemoveAllAces

void RemoveAllAces() throw();

RemarksRemarks

See also

nIndex
Index to the ACE entry to remove.

This method is derived from CAtlArray::RemoveAt.

Removes all of the ACEs (access-control entries) contained in the CDacl object.

Removes every ACE (access-control entry) structure (if any) in the CDacl object.

Security Sample
CAcl Class
ACLs
ACEs
Class Overview
Security Global Functions

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control-lists
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control-entries

CDebugReportHook Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CDebugReportHook

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDebugReportHook::CDebugReportHook Calls SetPipeName, SetTimeout, and SetHook.

CDebugReportHook::~CDebugReportHook Calls CDebugReportHook::RemoveHook.

Public MethodsPublic Methods

NAME DESCRIPTION

CDebugReportHook::CDebugReportHookProc (Static) The custom reporting function that is hooked into the
C run-time debug reporting process.

CDebugReportHook::RemoveHook Call this method to stop sending debug reports to the named
pipe and restore the previous report hook.

CDebugReportHook::SetHook Call this method to start sending debug reports to the named
pipe.

CDebugReportHook::SetPipeName Call this method to set the machine and name of the pipe to
which the debug reports will be sent.

CDebugReportHook::SetTimeout Call this method to set the time in milliseconds that this class
will wait for the named pipe to become available.

Remarks

Use this class to send debug reports to a named pipe.

Create an instance of this class in debug builds of your services or applications to send debug reports to a named
pipe. Debug reports are generated by calling _CrtDbgReport or using a wrapper for this function such as the
ATLTRACE and ATLASSERT macros.

Use of this class allows you to interactively debug components running in non-interactive window stations.

Note that debug reports are sent using the underlying security context of the thread. Impersonation is temporarily
disabled so that debug reports can be viewed in situations where impersonation of low privilege users is taking
place, such as in web applications.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cdebugreporthook-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/crtdbgreport-crtdbgreportw
https://docs.microsoft.com/windows/desktop/winstation/window-stations

Requirements

CDebugReportHook::CDebugReportHook

CDebugReportHook(
 LPCSTR szMachineName = ".",
 LPCSTR szPipeName = "AtlsDbgPipe",
 DWORD dwTimeout = 20000) throw();

ParametersParameters

CDebugReportHook::~CDebugReportHook

~CDebugReportHook() throw();

CDebugReportHook::CDebugReportHookProc

static int __cdecl CDebugReportHookProc(
 int reportType,
 char* message,
 int* returnValue) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Header: atlutil.h

Calls SetPipeName, SetTimeout, and SetHook.

szMachineName
The name of the machine to which the debug output should be sent. Defaults to the local machine.

szPipeName
The name of the named pipe to which the debug output should be sent.

dwTimeout
The time in milliseconds that this class will wait for the named pipe to become available.

Calls CDebugReportHook::RemoveHook.

The custom reporting function that is hooked into the C run-time debug reporting process.

reportType
The type of the report (_CRT_WARN, _CRT_ERROR, or _CRT_ASSERT).

message
The message string.

returnValue
The value that should be returned by _CrtDbgReport.

Returns FALSE if the hook handles the message in question completely so that no further reporting is required.
Returns TRUE if _CrtDbgReport should report the message in the normal way.

The reporting function attempts to open the named pipe and communicate with the process at the other end. If the

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/crtdbgreport-crtdbgreportw

CDebugReportHook::RemoveHook

void RemoveHook() throw();

RemarksRemarks

CDebugReportHook::SetHook

void SetHook() throw();

RemarksRemarks

CDebugReportHook::SetPipeName

BOOL SetPipeName(
 LPCSTR szMachineName = ".",
 LPCSTR szPipeName = "AtlsDbgPipe") throw();

ParametersParameters

Return ValueReturn Value

CDebugReportHook::SetTimeout

void SetTimeout(DWORD dwTimeout);

ParametersParameters

pipe is busy, the reporting function will wait until the pipe is free or the timeout expires. The timeout can be set by
the constructor or a call to CDebugReportHook::SetTimeout.

The code in this function is executed in the underlying security context of the calling thread, that is, impersonation
is disabled for the duration of this function.

Call this method to stop sending debug reports to the named pipe and restore the previous report hook.

Calls _CrtSetReportHook2 to restore the previous report hook.

Call this method to start sending debug reports to the named pipe.

Calls _CrtSetReportHook2 to have debug reports routed through CDebugReportHookProc to the named pipe.
This class keeps track of the previous report hook so that it can be restored when RemoveHook is called.

Call this method to set the machine and name of the pipe to which the debug reports will be sent.

szMachineName
The name of the machine to which the debug output should be sent.

szPipeName
The name of the named pipe to which the debug output should be sent.

Returns TRUE on success, FALSE on failure.

Call this method to set the time in milliseconds that this class will wait for the named pipe to become available.

dwTimeout
The time in milliseconds that this class will wait for the named pipe to become available.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/crtsetreporthook2-crtsetreporthookw2
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/crtsetreporthook2-crtsetreporthookw2

See also
Classes

CDefaultCharTraits Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <typename T>
class CDefaultCharTraits

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CDefaultCharTraits::CharToLower (Static) Call this function to convert a character to uppercase.

CDefaultCharTraits::CharToUpper (Static) Call this function to convert a character to lowercase.

Remarks

Requirements

CDefaultCharTraits::CharToLower

static wchar_t CharToLower(wchar_t x);
static char CharToLower(char x);

ParametersParameters

ExampleExample

printf_s("%c\n", CDefaultCharTraits<char>::CharToLower('A'));

CDefaultCharTraits::CharToUpper

This class provides two static functions for converting characters between uppercase and lowercase.

T
The type of data to be stored in the collection.

This class provides functions that are utilized by the class CStringElementTraitsI.

Header: atlcoll.h

Call this function to convert a character to lowercase.

x
The character to convert to lowercase.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cdefaultchartraits-class.md

static wchar_t CharToUpper(wchar_t x);
static char CharToUpper(char x);

ParametersParameters

See also

Call this function to convert a character to uppercase.

x
The character to convert to uppercase.

Class Overview

CDefaultCompareTraits Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
class CDefaultCompareTraits

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CDefaultCompareTraits::CompareElements (Static) Call this function to compare two elements for
equality.

CDefaultCompareTraits::CompareElementsOrdered (Static) Call this function to determine the greater and lesser
element.

Remarks

Requirements

CDefaultCompareTraits::CompareElements

static bool CompareElements(const T& element1, const T& element2);

ParametersParameters

This class provides default element comparison functions.

T
The type of data to be stored in the collection.

This class contains two static functions for comparing elements stored in a collection class object. This class is
utilized by the CDefaultElementTraits Class.

For more information, see ATL Collection Classes.

Header: atlcoll.h

Call this function to compare two elements for equality.

element1
The first element.

element2
The second element.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cdefaultcomparetraits-class.md

Return ValueReturn Value

RemarksRemarks

CDefaultCompareTraits::CompareElementsOrdered

static int CompareElementsOrdered(const T& element1, const T& element2);

ParametersParameters

Return ValueReturn Value

CONDITION RETURN VALUE

element1 < element2 <0

element1 == element2 0

element1 > element2 >0

RemarksRemarks

See also

Returns true if the elements are equal, false otherwise.

The default implementation of this function is the equality (==) operator. For objects other than simple data
types, this function may need to be overridden.

Call this function to determine the greater and lesser element.

element1
The first element.

element2
The second element.

Returns an integer based on the following table:

The default implementation of this function uses the ==, <, and > operators. For objects other than simple data
types, this function may need to be overridden.

Class Overview

CDefaultElementTraits Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <typename T>
class CDefaultElementTraits : public CElementTraitsBase<T>,
 public CDefaultHashTraits<T>,
 public CDefaultCompareTraits<T>

ParametersParameters

Remarks

Requirements

See also

This class provides default methods and functions for a collection class.

T
The type of data to be stored in the collection.

This class provides default static functions and methods for moving, copying, comparing, and hashing elements
stored in a collection class object. This class derives its functions and methods from CElementTraitsBase,
CDefaultHashTraits, and CDefaultCompareTraits, and is utilized by CElementTraits, CPrimitiveElementTraits,
and CHeapPtrElementTraits.

For more information, see ATL Collection Classes.

Header: atlcoll.h

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cdefaultelementtraits-class.md

CDefaultHashTraits Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
class CDefaultHashTraits

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CDefaultHashTraits::Hash (Static) Call this function to calculate a hash value for a given
element.

Remarks

Requirements

CDefaultHashTraits::Hash

static ULONG Hash(const T& element) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This class provides a static function for calculating hash values.

T
The type of data to be stored in the collection.

This class contains a single static function that returns a hash value for a given element. This class is utilized by
the CDefaultElementTraits Class.

For more information, see ATL Collection Classes.

Header: atlcoll.h

Call this function to calculate a hash value for a given element.

element
The element.

Returns the hash value.

The default hashing algorithm is very simple: the return value is the element number. Override this function if a

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cdefaulthashtraits-class.md

See also

more complicated algorithm is required.

Class Overview

CDialogImpl Class
3/5/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T,
 class TBase = CWindow>
 class ATL_NO_VTABLE CDialogImpl : public CDialogImplBaseT<TBase>

ParametersParameters

Members
MethodsMethods

Create Creates a modeless dialog box.

DestroyWindow Destroys a modeless dialog box.

DoModal Creates a modal dialog box.

EndDialog Destroys a modal dialog box.

CDialogImplBaseT MethodsCDialogImplBaseT Methods

GetDialogProc Returns the current dialog box procedure.

MapDialogRect Maps the dialog-box units of the specified rectangle to
screen units (pixels).

OnFinalMessage Called after receiving the last message, typically
WM_NCDESTROY.

Static FunctionsStatic Functions

This class provides methods for creating a modal or modeless dialog box.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from CDialogImpl .

TBase
The base class of your new class. The default base class is CWindow.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cdialogimpl-class.md

DialogProc Processes messages sent to the dialog box.

StartDialogProc Called when the first message is received to process
messages sent to the dialog box.

Remarks

NOTENOTE

enum { IDD = IDD_MYDLG };

FOR MORE INFORMATION ABOUT SEE

Creating controls ATL Tutorial

Using dialog boxes in ATL ATL Window Classes

ATL Project Wizard Creating an ATL Project

Dialog boxes Dialog Boxes and subsequent topics in the Windows SDK

Requirements

CDialogImpl::Create

HWND Create(
 HWND hWndParent,
 LPARAM dwInitParam = NULL);

HWND Create(
 HWND hWndParent,
 RECT&,
 LPARAM dwInitParam = NULL);

ParametersParameters

With CDialogImpl you can create a modal or modeless dialog box. CDialogImpl provides the dialog box
procedure, which uses the default message map to direct messages to the appropriate handlers.

The base class destructor ~CWindowImplRoot ensures that the window is gone before destroying the object.

CDialogImpl derives from CDialogImplBaseT , which in turn derives from CWindowImplRoot .

Your class must define an IDD member that specifies the dialog template resource ID. For example, the ATL Project
Wizard automatically adds the following line to your class:

where MyDlg is the Short name entered in the wizard's Names page.

Header: atlwin.h

Creates a modeless dialog box.

https://docs.microsoft.com/windows/desktop/dlgbox/dialog-boxes

Return ValueReturn Value

RemarksRemarks

CDialogImpl::DestroyWindow

BOOL DestroyWindow();

Return ValueReturn Value

RemarksRemarks

CDialogImpl::DialogProc

static LRESULT CALLBACK DialogProc(
 HWND hWnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

hWndParent
[in] The handle to the owner window.

RECT& rect [in] A RECT structure specifying the dialog's size and position.

dwInitParam
[in] Specifies the value to pass to the dialog box in the lParam parameter of the WM_INITDIALOG message.

The handle to the newly created dialog box.

This dialog box is automatically attached to the CDialogImpl object. To create a modal dialog box, call DoModal.
The second override above is used only with CComControl.

Destroys a modeless dialog box.

TRUE if the dialog box was successfully destroyed; otherwise FALSE.

Returns TRUE if the dialog box was successfully destroyed; otherwise FALSE.

This static function implements the dialog box procedure.

hWnd
[in] The handle to the dialog box.

uMsg
[in] The message sent to the dialog box.

wParam
[in] Additional message-specific information.

lParam
[in] Additional message-specific information.

TRUE if the message is processed; otherwise, FALSE.

DialogProc uses the default message map to direct messages to the appropriate handlers.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

CDialogImpl::DoModal

INT_PTR DoModal(
 HWND hWndParent = ::GetActiveWindow(),
 LPARAM dwInitParam = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDialogImpl::EndDialog

BOOL EndDialog(int nRetCode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CDialogImpl::GetDialogProc

virtual WNDPROC GetDialogProc();

You can override DialogProc to provide a different mechanism for handling messages.

Creates a modal dialog box.

hWndParent
[in] The handle to the owner window. The default value is the return value of the GetActiveWindow Win32
function.

dwInitParam
[in] Specifies the value to pass to the dialog box in the lParam parameter of the WM_INITDIALOG message.

If successful, the value of the nRetCode parameter specified in the call to EndDialog. Otherwise, -1.

This dialog box is automatically attached to the CDialogImpl object.

To create a modeless dialog box, call Create.

Destroys a modal dialog box.

nRetCode
[in] The value to be returned by CDialogImpl::DoModal.

TRUE if the dialog box is destroyed; otherwise, FALSE.

EndDialog must be called through the dialog procedure. After the dialog box is destroyed, Windows uses the
value of nRetCode as the return value for DoModal , which created the dialog box.

Do not call EndDialog to destroy a modeless dialog box. Call CWindow::DestroyWindow instead.

Returns DialogProc , the current dialog box procedure.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getactivewindow

Return ValueReturn Value

RemarksRemarks

CDialogImpl::MapDialogRect

BOOL MapDialogRect(LPRECT lpRect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDialogImpl::OnFinalMessage

virtual void OnFinalMessage(HWND hWnd);

ParametersParameters

RemarksRemarks

CDialogImpl::StartDialogProc

static LRESULT CALLBACK StartDialogProc(
 HWND hWnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

The current dialog box procedure.

Override this method to replace the dialog procedure with your own.

Converts (maps) the dialog-box units of the specified rectangle to screen units (pixels).

lpRect
Points to a CRect object or RECT structure that is to receive the client coordinates of the update that encloses
the update region.

Nonzero if the update succeeds; 0 if the update fails. To get extended error information, call GetLastError .

The function replaces the coordinates in the specified RECT structure with the converted coordinates, which
allows the structure to be used to create a dialog box or position a control within a dialog box.

Called after receiving the last message (typically WM_NCDESTROY).

hWnd
[in] A handle to the window being destroyed.

Note that if you want to automatically delete your object upon the window destruction, you can call delete this;
here.

Called only once, when the first message is received, to process messages sent to the dialog box.

hWnd
[in] The handle to the dialog box.

uMsg

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

Return ValueReturn Value

RemarksRemarks

See also

[in] The message sent to the dialog box.

wParam
[in] Additional message-specific information.

lParam
[in] Additional message-specific information.

The window procedure.

After the initial call to StartDialogProc , DialogProc is set as a dialog procedure, and further calls go there.

BEGIN_MSG_MAP
Class Overview

CDynamicChain Class
3/4/2019 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CDynamicChain

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDynamicChain::CDynamicChain The constructor.

CDynamicChain::~CDynamicChain The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CDynamicChain::CallChain Directs a Windows message to another object's message map.

CDynamicChain::RemoveChainEntry Removes a message map entry from the collection.

CDynamicChain::SetChainEntry Adds a message map entry to the collection or modifies an
existing entry.

Remarks

This class provides methods supporting the dynamic chaining of message maps.

This class and its members cannot be used in applications that execute in the Windows Runtime.

CDynamicChain manages a collection of message maps, enabling a Windows message to be directed, at run time,
to another object's message map.

To add support for dynamic chaining of message maps, do the following:

Derive your class from CDynamicChain . In the message map, specify the CHAIN_MSG_MAP_DYNAMIC
macro to chain to another object's default message map.

Derive every class you want to chain to from CMessageMap. CMessageMap allows an object to expose its
message maps to other objects.

Call CDynamicChain::SetChainEntry to identify which object and which message map you want to chain to.

For example, suppose your class is defined as follows:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cdynamicchain-class.md

class CMyChainWnd : public CWindowImpl<CMyChainWnd>,
 public CDynamicChain
{
public:
 CMyChainWnd() {}

 BEGIN_MSG_MAP(CMyChainWnd)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
 MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
 // dynamically chain to the default
 // message map in another object
 CHAIN_MSG_MAP_DYNAMIC(1313)
 // '1313' identifies the object
 // and the message map that will be
 // chained to. '1313' is defined
 // through the SetChainEntry method
 END_MSG_MAP()

 LRESULT OnPaint(UINT /*nMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 // Do some painting code
 return 0;
 }

 LRESULT OnSetFocus(UINT /*uMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 return 0;
 }
};

myCtl.SetChainEntry(1313, &chainedObj);

Requirements

CDynamicChain::CallChain

BOOL CallChain(
 DWORD dwChainID,
 HWND hWnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam,
 LRESULT& lResult);

ParametersParameters

The client then calls CMyWindow::SetChainEntry :

where chainedObj is the chained object and is an instance of a class derived from CMessageMap . Now, if myCtl

receives a message that is not handled by OnPaint or OnSetFocus , the window procedure directs the message to
chainedObj 's default message map.

For more information about message map chaining, see Message Maps in the article "ATL Window Classes."

Header: atlwin.h

Directs the Windows message to another object's message map.

Return ValueReturn Value

RemarksRemarks

CDynamicChain::CDynamicChain

CDynamicChain();

CDynamicChain::~CDynamicChain

~CDynamicChain();

RemarksRemarks

CDynamicChain::RemoveChainEntry

BOOL RemoveChainEntry(DWORD dwChainID);

ParametersParameters

dwChainID
[in] The unique identifier associated with the chained object and its message map.

hWnd
[in] The handle to the window receiving the message.

uMsg
[in] The message sent to the window.

wParam
[in] Additional message-specific information.

lParam
[in] Additional message-specific information.

lResult
[out] The result of the message processing.

TRUE if the message is fully processed; otherwise, FALSE.

For the window procedure to invoke CallChain , you must specify the CHAIN_MSG_MAP_DYNAMIC macro in
your message map. For an example, see the CDynamicChain overview.

CallChain requires a previous call to SetChainEntry to associate the dwChainID value with an object and its
message map.

The constructor.

The destructor.

Frees all allocated resources.

Removes the specified message map from the collection.

dwChainID
[in] The unique identifier associated with the chained object and its message map. You originally define this value
through a call to SetChainEntry.

Return ValueReturn Value

CDynamicChain::SetChainEntry

BOOL SetChainEntry(
 DWORD dwChainID,
 CMessageMap* pObject,
 DWORD dwMsgMapID = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

TRUE if the message map is successfully removed from the collection. Otherwise, FALSE.

Adds the specified message map to the collection.

dwChainID
[in] The unique identifier associated with the chained object and its message map.

pObject
[in] A pointer to the chained object declaring the message map. This object must derive from CMessageMap.

dwMsgMapID
[in] The identifier of the message map in the chained object. The default value is 0, which identifies the default
message map declared with BEGIN_MSG_MAP. To specify an alternate message map declared with
ALT_MSG_MAP(msgMapID), pass msgMapID .

TRUE if the message map is successfully added to the collection. Otherwise, FALSE.

If the dwChainID value already exists in the collection, its associated object and message map are replaced by
pObject and dwMsgMapID, respectively. Otherwise, a new entry is added.

CWindowImpl Class
Class Overview

CElementTraits Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
class CElementTraits : public CDefaultElementTraits<T>

ParametersParameters

Remarks

Requirements

See also

This class is used by collection classes to provide methods and functions for moving, copying, comparison, and
hashing operations.

T
The type of data to be stored in the collection.

This class provides default static functions and methods for moving, copying, comparing, and hashing elements
stored in a collection class object. CElementTraits is specified as the default provider of these operations by the
collection classes CAtlArray, CAtlList, CRBMap, CRBMultiMap, and CRBTree.

The default implementations will suffice for simple data types, but if the collection classes are used to store more
complex objects, the functions and methods must be overridden by user-supplied implementations.

For more information, see ATL Collection Classes.

Header: atlcoll.h

CDefaultElementTraits Class
Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/celementtraits-class.md

CElementTraitsBase Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
class CElementTraitsBase

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CElementTraitsBase::INARGTYPE The data type to use for adding elements to the collection
class object.

CElementTraitsBase::OUTARGTYPE The data type to use for retrieving elements from the
collection class object.

Public MethodsPublic Methods

NAME DESCRIPTION

CElementTraitsBase::CopyElements Call this method to copy elements stored in a collection class
object.

CElementTraitsBase::RelocateElements Call this method to relocate elements stored in a collection
class object.

Remarks

Requirements

CElementTraitsBase::CopyElements

This class provides default copy and move methods for a collection class.

T
The type of data to be stored in the collection.

This base class defines methods for copying and relocating elements in a collection class. It is utilized by the
classes CDefaultElementTraits, CStringRefElementTraits, and CStringElementTraitsI.

For more information, see ATL Collection Classes.

Header: atlcoll.h

Call this method to copy elements stored in a collection class object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/celementtraitsbase-class.md

static void CopyElements(
 T* pDest,
 const T* pSrc,
 size_t nElements);

ParametersParameters

RemarksRemarks

CElementTraitsBase::INARGTYPE

typedef const T& INARGTYPE;

CElementTraitsBase::OUTARGTYPE

typedef T& OUTARGTYPE;

CElementTraitsBase::RelocateElements

static void RelocateElements(
 T* pDest,
 T* pSrc,
 size_t nElements);

ParametersParameters

RemarksRemarks

pDest
Pointer to the first element that will receive the copied data.

pSrc
Pointer to the first element to copy.

nElements
The number of elements to copy.

The source and destination elements should not overlap.

The data type to use for adding elements to the collection.

The data type to use for retrieving elements from the collection.

Call this method to relocate elements stored in a collection class object.

pDest
Pointer to the first element that will receive the relocated data.

pSrc
Pointer to the first element to relocate.

nElements
The number of elements to relocate.

This method calls memmove, which is sufficient for most data types. If the objects being moved contain pointers
to their own members, this method will need to be overridden.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/memmove-wmemmove

See also
Class Overview

CFirePropNotifyEvent Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CFirePropNotifyEvent

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CFirePropNotifyEvent::FireOnChanged (Static) Notifies the container's sink that a control property
has changed.

CFirePropNotifyEvent::FireOnRequestEdit (Static) Notifies the container's sink that a control property is
about to change.

Remarks

Requirements

CFirePropNotifyEvent::FireOnChanged

static HRESULT FireOnChanged(IUnknown* pUnk, DISPID dispID);

ParametersParameters

This class provides methods for notifying the container's sink regarding control property changes.

This class and its members cannot be used in applications that execute in the Windows Runtime.

CFirePropNotifyEvent has two methods that notify the container's sink that a control property has changed or is
about to change.

If the class implementing your control is derived from IPropertyNotifySink , the CFirePropNotifyEvent methods
are invoked when you call FireOnRequestEdit or FireOnChanged . If your control class is not derived from
IPropertyNotifySink , calls to these functions return S_OK.

For more information about creating controls, see the ATL Tutorial.

Header: atlctl.h

Notifies all connected IPropertyNotifySink interfaces (on every connection point of the object) that the specified
object property has changed.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cfirepropnotifyevent-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink

Return ValueReturn Value

RemarksRemarks

CFirePropNotifyEvent::FireOnRequestEdit

static HRESULT FireOnRequestEdit(IUnknown* pUnk, DISPID dispID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

pUnk
[in] Pointer to the IUnknown of the object sending the notification.

dispID
[in] Identifier of the property that has changed.

One of the standard HRESULT values.

This function is safe to call even if your control does not support connection points.

Notifies all connected IPropertyNotifySink interfaces (on every connection point of the object) that the specified
object property is about to change.

pUnk
[in] Pointer to the IUnknown of the object sending the notification.

dispID
[in] Identifier of the property about to change.

One of the standard HRESULT values.

This function is safe to call even if your control does not support connection points.

Class Overview

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink

CGlobalHeap Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CGlobalHeap : public IAtlMemMgr

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CGlobalHeap::Allocate Call this method to allocate a block of memory.

CGlobalHeap::Free Call this method to free a block of memory allocated by this
memory manager.

CGlobalHeap::GetSize Call this method to get the allocated size of a memory block
allocated by this memory manager.

CGlobalHeap::Reallocate Call this method to reallocate memory allocated by this
memory manager.

Remarks

NOTENOTE

Example

Inheritance Hierarchy

This class implements IAtlMemMgr using the Win32 global heap functions.

This class and its members cannot be used in applications that execute in the Windows Runtime.

CGlobalHeap implements memory allocation functions using the Win32 global heap functions.

The global heap functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions. These are available in the CWin32Heap class. Global functions
are still used by DDE and the clipboard functions.

See the example for IAtlMemMgr.

IAtlMemMgr

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cglobalheap-class.md
https://docs.microsoft.com/windows/desktop/Memory/heap-functions

Requirements

CGlobalHeap::Allocate

virtual __declspec(allocator) void* Allocate(size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGlobalHeap::Free

virtual void Free(void* p) throw();

ParametersParameters

RemarksRemarks

CGlobalHeap::GetSize

virtual size_t GetSize(void* p) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGlobalHeap

Header: atlmem.h

Call this method to allocate a block of memory.

nBytes
The requested number of bytes in the new memory block.

Returns a pointer to the start of the newly allocated memory block.

Call CGlobalHeap::Free or CGlobalHeap::Reallocate to free the memory allocated by this method.

Implemented using GlobalAlloc with a flag parameter of GMEM_FIXED.

Call this method to free a block of memory allocated by this memory manager.

p
Pointer to memory previously allocated by this memory manager. NULL is a valid value and does nothing.

Implemented using GlobalFree.

Call this method to get the allocated size of a memory block allocated by this memory manager.

p
Pointer to memory previously allocated by this memory manager.

Returns the size of the allocated memory block in bytes.

Implemented using GlobalSize.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalalloc
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalfree
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalsize

 CGlobalHeap::Reallocate

virtual __declspec(allocator) void* Reallocate(void* p, size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Call this method to reallocate memory allocated by this memory manager.

p
Pointer to memory previously allocated by this memory manager.

nBytes
The requested number of bytes in the new memory block.

Returns a pointer to the start of the newly allocated memory block.

Call CGlobalHeap::Free to free the memory allocated by this method.

Implemented using GlobalReAlloc.

Class Overview
CComHeap Class
CWin32Heap Class
CLocalHeap Class
CCRTHeap Class
IAtlMemMgr Class

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalrealloc

CHandle Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CHandle

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CHandle::CHandle The constructor.

CHandle::~CHandle The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CHandle::Attach Call this method to attach the CHandle object to an existing
handle.

CHandle::Close Call this method to close a CHandle object.

CHandle::Detach Call this method to detach a handle from a CHandle object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CHandle::operator HANDLE Returns the value of the stored handle.

CHandle::operator = Assignment operator.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CHandle::m_h The member variable that stores the handle.

Remarks

This class provides methods for creating and using a handle object.

A CHandle object can be used whenever a handle is required: the main difference is that the CHandle object will
automatically be deleted.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/chandle-class.md

NOTENOTE

Requirements

CHandle::Attach

void Attach(HANDLE h) throw();

ParametersParameters

RemarksRemarks

CHandle::CHandle

CHandle() throw();
CHandle(CHandle& h) throw();
explicit CHandle(HANDLE h) throw();

ParametersParameters

RemarksRemarks

CHandle::~CHandle

~CHandle() throw();

RemarksRemarks

CHandle::Close

Some API functions will use NULL as an empty or invalid handle, while others use INVALID_HANDLE_VALUE. CHandle only
uses NULL and will treat INVALID_HANDLE_VALUE as a real handle. If you call an API which can return
INVALID_HANDLE_VALUE, you should check for this value before calling CHandle::Attach or passing it to the CHandle

constructor, and instead pass NULL.

Header: atlbase.h

Call this method to attach the CHandle object to an existing handle.

h
CHandle will take ownership of the handle h.

Assigns the CHandle object to the h handle. In debugs builds, an ATLASSERT will be raised if h is NULL. No other
check as to the validity of the handle is made.

The constructor.

h
An existing handle or CHandle .

Creates a new CHandle object, optionally using an existing handle or CHandle object.

The destructor.

Frees the CHandle object by calling CHandle::Close.

void Close() throw();

RemarksRemarks

CHandle::Detach

HANDLE Detach() throw();

Return ValueReturn Value

RemarksRemarks

CHandle::m_h

HANDLE m_h;

CHandle::operator =

CHandle& operator=(CHandle& h) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHandle::operator HANDLE

operator HANDLE() const throw();

RemarksRemarks

Call this method to close a CHandle object.

Closes an open object handle. If the handle is NULL, which will be the case if Close has already been called, an
ATLASSERT will be raised in debug builds.

Call this method to detach a handle from a CHandle object.

Returns the handle being detached.

Releases ownership of the handle.

The member variable that stores the handle.

The assignment operator.

h
CHandle will take ownership of the handle h.

Returns a reference to the new CHandle object.

If the CHandle object currently contains a handle, it will be closed. The CHandle object being passed in will have
its handle reference set to NULL. This ensures that two CHandle objects will never contain the same active handle.

Returns the value of the stored handle.

See also

Returns the value stored in CHandle::m_h.

Class Overview

CHeapPtr Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<typename T, class Allocator=CCRTAllocator>
class CHeapPtr : public CHeapPtrBase<T, Allocator>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CHeapPtr::CHeapPtr The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CHeapPtr::Allocate Call this method to allocate memory on the heap to store
objects.

CHeapPtr::Reallocate Call this method to reallocate the memory on the heap.

Public OperatorsPublic Operators

NAME DESCRIPTION

CHeapPtr::operator = The assignment operator.

Remarks

A smart pointer class for managing heap pointers.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
The object type to be stored on the heap.

Allocator
The memory allocation class to use.

CHeapPtr is derived from CHeapPtrBase and by default uses the CRT routines (in CCRTAllocator) to allocate
and free memory. The class CHeapPtrList may be used to construct a list of heap pointers. See also
CComHeapPtr, which uses COM memory allocation routines.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cheapptr-class.md

Inheritance Hierarchy

Requirements

CHeapPtr::Allocate

bool Allocate(size_t nElements = 1) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Create a new CHeapPtr object
CHeapPtr <int> myHP;
// Allocate space for 10 integers on the heap
myHP.Allocate(10);

CHeapPtr::CHeapPtr

CHeapPtr() throw();
explicit CHeapPtr(T* p) throw();
CHeapPtr(CHeapPtr<T, Allocator>& p) throw();

ParametersParameters

RemarksRemarks

ExampleExample

CHeapPtrBase

CHeapPtr

Header: atlcore.h

Call this method to allocate memory on the heap to store objects.

nElements
The number of elements used to calculate the amount of memory to allocate. The default value is 1.

Returns true if the memory was successfully allocated, false on failure.

The allocator routines are used to reserve enough memory on the heap to store nElement objects of a type
defined in the constructor.

The constructor.

p
An existing heap pointer or CHeapPtr .

The heap pointer can optionally be created using an existing pointer, or a CHeapPtr object. If so, the new
CHeapPtr object assumes responsibility for managing the new pointer and resources.

// Create a new CHeapPtr object
CHeapPtr <int> myHP;
// Create a new CHeapPtr from the first
CHeapPtr <int> myHP2(myHP);

CHeapPtr::operator =

CHeapPtr<T, Allocator>& operator=(
 CHeapPtr<T, Allocator>& p) throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

// Create a new CHeapPtr object
CHeapPtr <int> myHP;
// Allocate space for 10 integers on the heap
myHP.Allocate(10);
// Create a second heap pointer
// and assign it to the first pointer.
CHeapPtr <int> myHP2;
myHP2 = myHP;

CHeapPtr::Reallocate

bool Reallocate(size_t nElements) throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

// Create a new CHeapPtr object
CHeapPtr <int> myHP;
// Allocate space for 10 integers on the heap
myHP.Allocate(10);
// Resize the allocated memory for 20 integers
myHP.Reallocate(20);

See also

Assignment operator.

p
An existing CHeapPtr object.

Returns a reference to the updated CHeapPtr .

Call this method to reallocate the memory on the heap.

nElements
The new number of elements used to calculate the amount of memory to allocate.

Returns true if the memory was successfully allocated, false on failure.

CHeapPtrBase Class
CCRTAllocator Class
Class Overview

CHeapPtrBase Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T, class Allocator = CCRTAllocator>
class CHeapPtrBase

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CHeapPtrBase::~CHeapPtrBase The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CHeapPtrBase::AllocateBytes Call this method to allocate memory.

CHeapPtrBase::Attach Call this method to take ownership of an existing pointer.

CHeapPtrBase::Detach Call this method to release ownership of a pointer.

CHeapPtrBase::Free Call this method to delete an object pointed to by a
CHeapPtrBase .

CHeapPtrBase::ReallocateBytes Call this method to reallocate memory.

Public OperatorsPublic Operators

NAME DESCRIPTION

CHeapPtrBase::operator T* The cast operator.

This class forms the basis for several smart heap pointer classes.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
The object type to be stored on the heap.

Allocator
The memory allocation class to use. By default CRT routines are used to allocate and free memory.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cheapptrbase-class.md

CHeapPtrBase::operator & The & operator.

CHeapPtrBase::operator -> The pointer-to-member operator.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CHeapPtrBase::m_pData The pointer data member variable.

Remarks

Requirements

CHeapPtrBase::AllocateBytes

bool AllocateBytes(size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHeapPtrBase::Attach

void Attach(T* pData) throw();

ParametersParameters

RemarksRemarks

This class forms the basis for several smart heap pointer classes. The derived classes, for example, CHeapPtr and
CComHeapPtr, add their own constructors and operators. See these classes for implementation examples.

Header: atlcore.h

Call this method to allocate memory.

nBytes
The number of bytes of memory to allocate.

Returns true if the memory is successfully allocated, false otherwise.

In debug builds, an assertion failure will occur if the CHeapPtrBase::m_pData member variable currently points
to an existing value; that is, it is not equal to NULL.

Call this method to take ownership of an existing pointer.

pData
The CHeapPtrBase object will take ownership of this pointer.

When a CHeapPtrBase object takes ownership of a pointer, it will automatically delete the pointer and any
allocated data when it goes out of scope.

CHeapPtrBase::~CHeapPtrBase

~CHeapPtrBase() throw();

RemarksRemarks

CHeapPtrBase::Detach

T* Detach() throw();

Return ValueReturn Value

RemarksRemarks

CHeapPtrBase::Free

void Free() throw();

RemarksRemarks

CHeapPtrBase::m_pData

T* m_pData;

RemarksRemarks

CHeapPtrBase::operator &

T** operator&() throw();

In debug builds, an assertion failure will occur if the CHeapPtrBase::m_pData member variable currently points
to an existing value; that is, it is not equal to NULL.

The destructor.

Frees all allocated resources.

Call this method to release ownership of a pointer.

Returns a copy of the pointer.

Releases ownership of a pointer, sets the CHeapPtrBase::m_pData member variable to NULL, and returns a copy
of the pointer.

Call this method to delete an object pointed to by a CHeapPtrBase .

The object pointed to by the CHeapPtrBase is freed, and the CHeapPtrBase::m_pData member variable is set to
NULL.

The pointer data member variable.

This member variable holds the pointer information.

The & operator.

Return ValueReturn Value

CHeapPtrBase::operator ->

T* operator->() const throw();

Return ValueReturn Value

RemarksRemarks

CHeapPtrBase::operator T*

operator T*() const throw();

RemarksRemarks

CHeapPtrBase::ReallocateBytes

bool ReallocateBytes(size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

See also

Returns the address of the object pointed to by the CHeapPtrBase object.

The pointer-to-member operator.

Returns the value of the CHeapPtrBase::m_pData member variable.

Use this operator to call a method in a class pointed to by the CHeapPtrBase object. In debug builds, an assertion
failure will occur if the CHeapPtrBase points to NULL.

The cast operator.

Returns CHeapPtrBase::m_pData.

Call this method to reallocate memory.

nBytes
The new amount of memory to allocate, in bytes.

Returns true if the memory is successfully allocated, false otherwise.

CHeapPtr Class
CComHeapPtr Class
Class Overview

CHeapPtrElementTraits Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<typename T, class Allocator = ATL::CCRTAllocator>
class CHeapPtrElementTraits :
 public CDefaultElementTraits<ATL::CHeapPtr<T, Allocator>>

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CHeapPtrElementTraits::INARGTYPE The data type to use for adding elements to the collection
class object.

CHeapPtrElementTraits::OUTARGTYPE The data type to use for retrieving elements from the
collection class object.

Remarks

Inheritance Hierarchy

This class provides methods, static functions, and typedefs useful when creating collections of heap pointers.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
The object type to be stored in the collection class.

Allocator
The memory allocation class to use. The default is CCRTAllocator.

This class provides methods, static functions, and typedefs for aiding the creation of collection class objects
containing heap pointers. The class CHeapPtrList derives from CHeapPtrElementTraits .

For more information, see ATL Collection Classes.

CDefaultCompareTraits

CDefaultHashTraits

CElementTraitsBase

CDefaultElementTraits

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cheapptrelementtraits-class.md

Requirements

CHeapPtrElementTraits::INARGTYPE

typedef CHeapPtr<T, Allocator>& INARGTYPE;

CHeapPtrElementTraits::OUTARGTYPE

typedef T *& OUTARGTYPE;

See also

CHeapPtrElementTraits

Header: atlcoll.h

The data type to use for adding elements to the collection class object.

The data type to use for retrieving elements from the collection class object.

CDefaultElementTraits Class
CComHeapPtr Class
Class Overview

CHeapPtrList Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<typename E, class Allocator = ATL::CCRTAllocator>
class CHeapPtrList
 : public CAtlList<ATL::CHeapPtr<E, Allocator>,
 CHeapPtrElementTraits<E, Allocator>>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CHeapPtrList::CHeapPtrList The constructor.

Remarks

Inheritance Hierarchy

Requirements

CHeapPtrList::CHeapPtrList

This class provides methods useful when constructing a list of heap pointers.

This class and its members cannot be used in applications that execute in the Windows Runtime.

E
The object type to be stored in the collection class.

Allocator
The memory allocation class to use. The default is CCRTAllocator.

This class provides a constructor and derives methods from CAtlList and CHeapPtrElementTraits to aid the
creation of a collection class object storing heap pointers.

CAtlList

CHeapPtrList

Header: atlcoll.h

The constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cheapptrlist-class.md

CHeapPtrList(UINT nBlockSize = 10) throw();

ParametersParameters

RemarksRemarks

See also

nBlockSize
The block size.

The block size is a measure of the amount of memory allocated when a new element is required. Larger block
sizes reduce calls to memory allocation routines, but use more resources.

CAtlList Class
CHeapPtr Class
CHeapPtrElementTraits Class
Class Overview

CInterfaceArray Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class I, const IID* piid=& __uuidof(I)>
class CInterfaceArray :
 public CAtlArray<ATL::CComQIPtr<I, piid>,
 CComQIPtrElementTraits<I, piid>>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CInterfaceArray::CInterfaceArray The constructor for the interface array.

Remarks

Inheritance Hierarchy

Requirements

CInterfaceArray::CInterfaceArray

CInterfaceArray() throw();

This class provides methods useful when constructing an array of COM interface pointers.

I
A COM interface specifying the type of pointer to be stored.

piid
A pointer to the IID of I.

This class provides a constructor and derived methods for creating an array of COM interface pointers. Use
CInterfaceList when a list is required.

For more information, see ATL Collection Classes.

CAtlArray

CInterfaceArray

Header: atlcoll.h

The constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cinterfacearray-class.md

RemarksRemarks

See also

Initializes the smart pointer array.

CAtlArray Class
CComQIPtr Class
CComQIPtrElementTraits Class
Class Overview

CInterfaceList Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class I, const IID* piid =& __uuidof(I)>
class CInterfaceList
 : public CAtlList<ATL::CComQIPtr<I, piid>,
 CComQIPtrElementTraits<I, piid>>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CInterfaceList::CInterfaceList The constructor for the interface list.

Remarks

Inheritance Hierarchy

Requirements

CInterfaceList::CInterfaceList

CInterfaceList(UINT nBlockSize = 10) throw();

This class provides methods useful when constructing a list of COM interface pointers.

I
A COM interface specifying the type of pointer to be stored.

piid
A pointer to the IID of I.

This class provides a constructor and derived methods for creating a list of COM interface pointers. Use
CInterfaceArray when an array is required.

For more information, see ATL Collection Classes.

CAtlList

CInterfaceList

Header: atlcoll.h

The constructor for the interface list.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cinterfacelist-class.md

ParametersParameters

RemarksRemarks

See also

nBlockSize
The block size, with a default of 10.

The block size is a measure of the amount of memory allocated when a new element is required. Larger block
sizes reduce calls to memory allocation routines, but use more resources.

CAtlList Class
CComQIPtr Class
CComQIPtrElementTraits Class
Class Overview

CLocalHeap Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CLocalHeap : public IAtlMemMgr

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CLocalHeap::Allocate Call this method to allocate a block of memory.

CLocalHeap::Free Call this method to free a block of memory allocated by this
memory manager.

CLocalHeap::GetSize Call this method to get the allocated size of a memory block
allocated by this memory manager.

CLocalHeap::Reallocate Call this method to reallocate memory allocated by this
memory manager.

Remarks

NOTENOTE

Example

Inheritance Hierarchy

This class implements IAtlMemMgr using the Win32 local heap functions.

This class and its members cannot be used in applications that execute in the Windows Runtime.

CLocalHeap implements memory allocation functions using the Win32 local heap functions.

The local heap functions are slower than other memory management functions and do not provide as many features.
Therefore, new applications should use the heap functions. These are available in the CWin32Heap class.

See the example for IAtlMemMgr.

IAtlMemMgr

CLocalHeap

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/clocalheap-class.md
https://docs.microsoft.com/windows/desktop/Memory/heap-functions

Requirements

CLocalHeap::Allocate

virtual __declspec(allocator) void* Allocate(size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLocalHeap::Free

virtual void Free(void* p) throw();

ParametersParameters

RemarksRemarks

CLocalHeap::GetSize

virtual size_t GetSize(void* p) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLocalHeap::Reallocate

Header: atlmem.h

Call this method to allocate a block of memory.

nBytes
The requested number of bytes in the new memory block.

Returns a pointer to the start of the newly allocated memory block.

Call CLocalHeap::Free or CLocalHeap::Reallocate to free the memory allocated by this method.

Implemented using LocalAlloc with a flag parameter of LMEM_FIXED.

Call this method to free a block of memory allocated by this memory manager.

p
Pointer to memory previously allocated by this memory manager. NULL is a valid value and does nothing.

Implemented using LocalFree.

Call this method to get the allocated size of a memory block allocated by this memory manager.

p
Pointer to memory previously allocated by this memory manager.

Returns the size of the allocated memory block in bytes.

Implemented using LocalSize.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-localalloc
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-localfree
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-localsize

virtual __declspec(allocator) void* Reallocate(void* p, size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Call this method to reallocate memory allocated by this memory manager.

p
Pointer to memory previously allocated by this memory manager.

nBytes
The requested number of bytes in the new memory block.

Returns a pointer to the start of the newly allocated memory block.

Call CLocalHeap::Free to free the memory allocated by this method.

Implemented using LocalReAlloc.

Class Overview
CComHeap Class
CWin32Heap Class
CGlobalHeap Class
CCRTHeap Class
IAtlMemMgr Class

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-localrealloc

CMessageMap Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class ATL_NO_VTABLE CMessageMap

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMessageMap::ProcessWindowMessage Accesses a message map in the CMessageMap -derived class.

Remarks

This class allows an object's message maps to be access by another object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

CMessageMap is an abstract base class that allows an object's message maps to be accessed by another object. In
order for an object to expose its message maps, its class must derive from CMessageMap .

ATL uses CMessageMap to support contained windows and dynamic message map chaining. For example, any
class containing a CContainedWindow object must derive from CMessageMap . The following code is taken from
the SUBEDIT sample. Through CComControl, the CAtlEdit class automatically derives from CMessageMap .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cmessagemap-class.md
https://github.com/Microsoft/VCSamples/tree/master/VC2008Samples/ATL/Controls/SubEdit

class ATL_NO_VTABLE CAtlEdit :
 OtherInheritedClasses
 public CComControl<CAtlEdit>
 // CComControl derives from CWindowImpl, which derives from CMessageMap
{
public:
 // Declare a contained window data member
 CContainedWindow m_ctlEdit;

 // Initialize the contained window:
 // 1. Pass "Edit" to specify that the contained
 // window should be based on the standard
 // Windows Edit box
 // 2. Pass 'this' pointer to specify that CAtlEdit
 // contains the message map to be used for the
 // contained window's message processing
 // 3. Pass the identifier of the message map. '1'
 // identifies the alternate message map declared
 // with ALT_MSG_MAP(1)
 CAtlEdit()
 : m_ctlEdit(_T("Edit"), this, 1)
 {
 m_bWindowOnly = TRUE;
 }

// Declare the default message map, identified by '0'
BEGIN_MSG_MAP(CAtlEdit)
 MESSAGE_HANDLER(WM_CREATE, OnCreate)
 MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
 CHAIN_MSG_MAP(CComControl<CAtlEdit>)
// Declare an alternate message map, identified by '1'
ALT_MSG_MAP(1)
 MESSAGE_HANDLER(WM_CHAR, OnChar)
END_MSG_MAP()

Requirements

CMessageMap::ProcessWindowMessage

virtual BOOL ProcessWindowMessage(
 HWND hWnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam,
 LRESULT& lResult,
 DWORD dwMsgMapID) = 0;

ParametersParameters

Because the contained window, m_EditCtrl , will use a message map in the containing class, CAtlEdit derives
from CMessageMap .

For more information about message maps, see Message Maps in the article "ATL Window Classes."

Header: atlwin.h

Accesses the message map identified by dwMsgMapID in a CMessageMap -derived class.

hWnd
[in] The handle to the window receiving the message.

uMsg

Return ValueReturn Value

RemarksRemarks

See also

[in] The message sent to the window.

wParam
[in] Additional message-specific information.

lParam
[in] Additional message-specific information.

lResult
[out] The result of the message processing.

dwMsgMapID
[in] The identifier of the message map that will process the message. The default message map, declared with
BEGIN_MSG_MAP, is identified by 0. An alternate message map, declared with ALT_MSG_MAP(msgMapID), is
identified by msgMapID .

TRUE if the message is fully handled; otherwise, FALSE.

Called by the window procedure of a CContainedWindow object or of an object that is dynamically chaining to
the message map.

CDynamicChain Class
BEGIN_MSG_MAP
ALT_MSG_MAP(msgMapID)
Class Overview

CNonStatelessWorker Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class Worker>
class CNonStatelessWorker

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CNonStatelessWorker::RequestType Implementation of WorkerArchetype::RequestType.

Public MethodsPublic Methods

NAME DESCRIPTION

CNonStatelessWorker::Execute Implementation of WorkerArchetype::Execute.

CNonStatelessWorker::Initialize Implementation of WorkerArchetype::Initialize.

CNonStatelessWorker::Terminate Implementation of WorkerArchetype::Terminate.

Remarks

Receives requests from a thread pool and passes them on to a worker object that is created and destroyed on each
request.

This class and its members cannot be used in applications that execute in the Windows Runtime.

Worker
A worker thread class conforming to the worker archetype suitable for handling requests queued on CThreadPool.

This class is a simple worker thread for use with CThreadPool. This class doesn't provide any request-handling
capabilities of its own. Instead, it instantiates one instance of Worker per request and delegates the
implementation of its methods to that instance.

The benefit of this class is that it provides a convenient way to change the state model for existing worker thread
classes. CThreadPool will create a single worker for the lifetime of the thread, so if the worker class holds state, it
will hold it across multiple requests. By simply wrapping that class in the CNonStatelessWorker template before
using it with CThreadPool , the lifetime of the worker and the state it holds is limited to a single request.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cnonstatelessworker-class.md

Requirements

CNonStatelessWorker::Execute

void Execute(
 Worker::RequestType request,
 void* pvWorkerParam,
 OVERLAPPED* pOverlapped);

RemarksRemarks

CNonStatelessWorker::Initialize

BOOL Initialize(void* /* pvParam */) throw();

Return ValueReturn Value

RemarksRemarks

CNonStatelessWorker::RequestType

typedef Worker::RequestType RequestType;

RemarksRemarks

CNonStatelessWorker::Terminate

void Terminate(void* /* pvParam */) throw();

RemarksRemarks

See also

Header: atlutil.h

Implementation of WorkerArchetype::Execute.

This method creates an instance of the Worker class on the stack and calls Initialize on that object. If the
initialization is successful, this method also calls Execute and Terminate on the same object.

Implementation of WorkerArchetype::Initialize.

Always returns TRUE.

This class does not do any initialization in Initialize .

Implementation of WorkerArchetype::RequestType.

This class handles the same type of work item as the class used for the Worker template parameter. See
CNonStatelessWorker Overview for details.

Implementation of WorkerArchetype::Terminate.

This class does not do any cleanup in Terminate .

CThreadPool Class

Worker Archetype
Classes

CNoWorkerThread Class
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CNoWorkerThread

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CNoWorkerThread::AddHandle Non-functional equivalent of CWorkerThread::AddHandle.

CNoWorkerThread::AddTimer Non-functional equivalent of CWorkerThread::AddTimer.

CNoWorkerThread::GetThreadHandle Non-functional equivalent of
CWorkerThread::GetThreadHandle.

CNoWorkerThread::GetThreadId Non-functional equivalent of CWorkerThread::GetThreadId.

CNoWorkerThread::Initialize Non-functional equivalent of CWorkerThread::Initialize.

CNoWorkerThread::RemoveHandle Non-functional equivalent of CWorkerThread::RemoveHandle.

CNoWorkerThread::Shutdown Non-functional equivalent of CWorkerThread::Shutdown.

Remarks

Requirements

CNoWorkerThread::AddHandle

Use this class as the argument for the MonitorClass template parameter to cache classes if you want to disable
dynamic cache maintenance.

This class and its members cannot be used in applications that execute in the Windows Runtime.

This class provides the same public interface as CWorkerThread. This interface is expected to be provided by the
MonitorClass template parameter to cache classes.

The methods in this class are implemented to do nothing. The methods that return an HRESULT always return
S_OK, and the methods that return a HANDLE or thread ID always return 0.

Header: atlutil.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cnoworkerthread-class.md

HRESULT AddHandle(HANDLE /* hObject */,
 IWorkerThreadClient* /* pClient */,
 DWORD_PTR /* dwParam */) throw();

Return ValueReturn Value

RemarksRemarks

CNoWorkerThread::AddTimer

HRESULT AddTimer(DWORD /* dwInterval */,
 IWorkerThreadClient* /* pClient */,
 DWORD_PTR /* dwParam */,
 HANDLE* /* phTimer */) throw();

Return ValueReturn Value

RemarksRemarks

CNoWorkerThread::GetThreadHandle

HANDLE GetThreadHandle() throw();

Return ValueReturn Value

RemarksRemarks

CNoWorkerThread::GetThreadId

DWORD GetThreadId() throw();

Return ValueReturn Value

RemarksRemarks

Non-functional equivalent of CWorkerThread::AddHandle.

Always returns S_OK.

The implementation provided by this class does nothing.

Non-functional equivalent of CWorkerThread::AddTimer.

Always returns S_OK.

The implementation provided by this class does nothing.

Non-functional equivalent of CWorkerThread::GetThreadHandle.

Always returns NULL.

The implementation provided by this class does nothing.

Non-functional equivalent of CWorkerThread::GetThreadId.

Always returns 0.

The implementation provided by this class does nothing.

CNoWorkerThread::Initialize

HRESULT Initialize() throw();

Return ValueReturn Value

RemarksRemarks

CNoWorkerThread::RemoveHandle

HRESULT RemoveHandle(HANDLE /* hObject */) throw();

Return ValueReturn Value

RemarksRemarks

CNoWorkerThread::Shutdown

HRESULT Shutdown(DWORD dwWait = ATL_WORKER_THREAD_WAIT) throw();

Return ValueReturn Value

RemarksRemarks

Non-functional equivalent of CWorkerThread::Initialize.

Always returns S_OK.

The implementation provided by this class does nothing.

Non-functional equivalent of CWorkerThread::RemoveHandle.

Always returns S_OK.

The implementation provided by this class does nothing.

Non-functional equivalent of CWorkerThread::Shutdown.

Always returns S_OK.

The implementation provided by this class does nothing.

CPathT Class
3/4/2019 • 13 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <typename StringType>
class CPathT

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CPathT::PCXSTR A constant string type.

CPathT::PXSTR A string type.

CPathT::XCHAR A character type.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPathT::CPathT The constructor for the path.

Public MethodsPublic Methods

NAME DESCRIPTION

CPathT::AddBackslash Call this method to add a backslash to the end of a string to
create the correct syntax for a path.

CPathT::AddExtension Call this method to add a file extension to a path.

CPathT::Append Call this method to append a string to the current path.

CPathT::BuildRoot Call this method to create a root path from a given drive
number.

This class represents a path.

This class and its members cannot be used in applications that execute in the Windows Runtime.

StringType
The ATL/MFC string class to use for the path (see CStringT).

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cpatht-class.md

CPathT::Canonicalize Call this method to convert the path to canonical form.

CPathT::Combine Call this method to concatenate a string representing a
directory name and a string representing a file path name
into one path.

CPathT::CommonPrefix Call this method to determine whether the specified path
shares a common prefix with the current path.

CPathT::CompactPath Call this method to truncate a file path to fit within a given
pixel width by replacing path components with ellipses.

CPathT::CompactPathEx Call this method to truncate a file path to fit within a given
number of characters by replacing path components with
ellipses.

CPathT::FileExists Call this method to check whether the file at this path name
exists.

CPathT::FindExtension Call this method to find the position of the file extension
within the path.

CPathT::FindFileName Call this method to find the position of the file name within
the path.

CPathT::GetDriveNumber Call this method to search the path for a drive letter within
the range of 'A' to 'Z' and return the corresponding drive
number.

CPathT::GetExtension Call this method to get the file extension from the path.

CPathT::IsDirectory Call this method to check whether the path is a valid
directory.

CPathT::IsFileSpec Call this method to search a path for any path-delimiting
characters (for example, ':' or '\'). If there are no path-
delimiting characters present, the path is considered to be a
File Spec path.

CPathT::IsPrefix Call this method to determine whether a path contains a
valid prefix of the type passed by pszPrefix.

CPathT::IsRelative Call this method to determine if the path is relative.

CPathT::IsRoot Call this method to determine if the path is a directory root.

CPathT::IsSameRoot Call this method to determine whether another path has a
common root component with the current path.

CPathT::IsUNC Call this method to determine whether the path is a valid
UNC (universal naming convention) path for a server and
share.

NAME DESCRIPTION

CPathT::IsUNCServer Call this method to determine whether the path is a valid
UNC (universal naming convention) path for a server only.

CPathT::IsUNCServerShare Call this method to determine whether the path is a valid
UNC (universal naming convention) share path, \\ server\
share.

CPathT::MakePretty Call this method to convert a path to all lowercase
characters to give the path a consistent appearance.

CPathT::MatchSpec Call this method to search the path for a string containing a
wildcard match type.

CPathT::QuoteSpaces Call this method to enclose the path in quotation marks if it
contains any spaces.

CPathT::RelativePathTo Call this method to create a relative path from one file or
folder to another.

CPathT::RemoveArgs Call this method to remove any command-line arguments
from the path.

CPathT::RemoveBackslash Call this method to remove the trailing backslash from the
path.

CPathT::RemoveBlanks Call this method to remove all leading and trailing spaces
from the path.

CPathT::RemoveExtension Call this method to remove the file extension from the path,
if there is one.

CPathT::RemoveFileSpec Call this method to remove the trailing file name and
backslash from the path, if it has them.

CPathT::RenameExtension Call this method to replace the file name extension in the
path with a new extension. If the file name does not contain
an extension, the extension will be attached to the end of
the string.

CPathT::SkipRoot Call this method to parse a path, ignoring the drive letter or
UNC server/share path parts.

CPathT::StripPath Call this method to remove the path portion of a fully
qualified path and file name.

CPathT::StripToRoot Call this method to remove all parts of the path except for
the root information.

CPathT::UnquoteSpaces Call this method to remove quotation marks from the
beginning and end of a path.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CPathT::operator const StringType & This operator allows the object to be treated like a string.

CPathT::operator CPathT::PCXSTR This operator allows the object to be treated like a string.

CPathT::operator StringType & This operator allows the object to be treated like a string.

CPathT::operator += This operator appends a string to the path.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CPathT::m_strPath The path.

Remarks

Requirements

CPathT::AddBackslash

void AddBackslash();

RemarksRemarks

CPathT::AddExtension

BOOL AddExtension(PCXSTR pszExtension);

ParametersParameters

Return ValueReturn Value

CPath , CPathA , and CPathW are instantiations of CPathT defined as follows:

typedef CPathT< CString > CPath;

typedef CPathT< CStringA > CPathA;

typedef CPathT< CStringW > CPathW;

Header: atlpath.h

Call this method to add a backslash to the end of a string to create the correct syntax for a path. If the path
already has a trailing backslash, no backslash will be added.

For more information, see PathAddBackSlash.

Call this method to add a file extension to a path.

pszExtension
The file extension to add.

Returns TRUE on success, FALSE on failure.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathaddbackslasha

RemarksRemarks

CPathT::Append

BOOL Append(PCXSTR pszMore);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPathT::BuildRoot

void BuildRoot(int iDrive);

ParametersParameters

RemarksRemarks

CPathT::Canonicalize

void Canonicalize();

RemarksRemarks

CPathT::Combine

void Combine(PCXSTR pszDir, PCXSTR pszFile);

ParametersParameters

For more information, see PathAddExtension.

Call this method to append a string to the current path.

pszMore
The string to append.

Returns TRUE on success, FALSE on failure.

For more information, see PathAppend.

Call this method to create a root path from a given drive number.

iDrive
The drive number (0 is A:, 1 is B:, and so on).

For more information, see PathBuildRoot.

Call this method to convert the path to canonical form.

For more information, see PathCanonicalize.

Call this method to concatenate a string representing a directory name and a string representing a file path
name into one path.

pszDir
The directory path.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathaddextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathappenda
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathbuildroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcanonicalizea

RemarksRemarks

CPathT::CommonPrefix

CPathT<StringType> CommonPrefix(PCXSTR pszOther);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPathT::CompactPath

BOOL CompactPath(HDC hDC, UINT nWidth);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPathT::CompactPathEx

BOOL CompactPathEx(UINT nMaxChars, DWORD dwFlags = 0);

ParametersParameters

pszFile
The file path.

For more information, see PathCombine.

Call this method to determine whether the specified path shares a common prefix with the current path.

pszOther
The path to compare to the current one.

Returns the common prefix.

A prefix is one of these types: "C:\\", ".", "..", "..\\". For more information, see PathCommonPrefix.

Call this method to truncate a file path to fit within a given pixel width by replacing path components with
ellipses.

hDC
The device context used for font metrics.

nWidth
The width, in pixels, that the string will be forced to fit in.

Returns TRUE on success, FALSE on failure.

For more information, see PathCompactPath.

Call this method to truncate a file path to fit within a given number of characters by replacing path components
with ellipses.

nMaxChars
The maximum number of characters to be contained in the new string, including the terminating NULL

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcombinea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcommonprefixa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcompactpatha

Return ValueReturn Value

RemarksRemarks

CPathT::CPathT

CPathT(PCXSTR pszPath);
CPathT(const CPathT<StringType>& path);
CPathT() throw();

ParametersParameters

CPathT::FileExists

BOOL FileExists() const;

Return ValueReturn Value

RemarksRemarks

CPathT::FindExtension

int FindExtension() const;

Return ValueReturn Value

RemarksRemarks

CPathT::FindFileName

character.

dwFlags
Reserved.

Returns TRUE on success, FALSE on failure.

For more information, see PathCompactPathEx.

The constructor.

pszPath
The pointer to a path string.

path
The path string.

Call this method to check whether the file at this path name exists.

Returns TRUE if the file exists, FALSE otherwise.

For more information, see PathFileExists.

Call this method to find the position of the file extension within the path.

Returns the position of the "." preceding the extension. If no extension is found, returns -1.

For more information, see PathFindExtension.

Call this method to find the position of the file name within the path.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcompactpathexa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfileexistsa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindextensiona

int FindFileName() const;

Return ValueReturn Value

RemarksRemarks

CPathT::GetDriveNumber

int GetDriveNumber() const;

Return ValueReturn Value

RemarksRemarks

CPathT::GetExtension

StringType GetExtension() const;

Return ValueReturn Value

CPathT::IsDirectory

BOOL IsDirectory() const;

Return ValueReturn Value

RemarksRemarks

CPathT::IsFileSpec

BOOL IsFileSpec() const;

Returns the position of the file name. If no file name is found, returns -1.

For more information, see PathFindFileName.

Call this method to search the path for a drive letter within the range of 'A' to 'Z' and return the corresponding
drive number.

Returns the drive number as an integer from 0 through 25 (corresponding to 'A' through 'Z') if the path has a
drive letter, or -1 otherwise.

For more information, see PathGetDriveNumber.

Call this method to get the file extension from the path.

Returns the file extension.

Call this method to check whether the path is a valid directory.

Returns a non-zero value (16) if the path is a directory, FALSE otherwise.

For more information, see PathIsDirectory.

Call this method to search a path for any path-delimiting characters (for example, ':' or '\'). If there are no path-
delimiting characters present, the path is considered to be a File Spec path.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindfilenamea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathgetdrivenumbera
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisdirectorya

Return ValueReturn Value

RemarksRemarks

CPathT::IsPrefix

BOOL IsPrefix(PCXSTR pszPrefix) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPathT::IsRelative

BOOL IsRelative() const;

Return ValueReturn Value

RemarksRemarks

CPathT::IsRoot

BOOL IsRoot() const;

Return ValueReturn Value

RemarksRemarks

CPathT::IsSameRoot

Returns TRUE if there are no path-delimiting characters within the path, or FALSE if there are path-delimiting
characters.

For more information, see PathIsFileSpec.

Call this method to determine whether a path contains a valid prefix of the type passed by pszPrefix.

pszPrefix
The prefix for which to search. A prefix is one of these types: "C:\\", ".", "..", "..\\".

Returns TRUE if the path contains the prefix, or FALSE otherwise.

For more information, see PathIsPrefix.

Call this method to determine if the path is relative.

Returns TRUE if the path is relative, or FALSE if it is absolute.

For more information, see PathIsRelative.

Call this method to determine if the path is a directory root.

Returns TRUE if the path is a root, or FALSE otherwise.

For more information, see PathIsRoot.

Call this method to determine whether another path has a common root component with the current path.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisfilespeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisprefixa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisrelativea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisroota

BOOL IsSameRoot(PCXSTR pszOther) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPathT::IsUNC

BOOL IsUNC() const;

Return ValueReturn Value

RemarksRemarks

CPathT::IsUNCServer

BOOL IsUNCServer() const;

Return ValueReturn Value

RemarksRemarks

CPathT::IsUNCServerShare

BOOL IsUNCServerShare() const;

Return ValueReturn Value

RemarksRemarks

pszOther
The other path.

Returns TRUE if both strings have the same root component, or FALSE otherwise.

For more information, see PathIsSameRoot.

Call this method to determine whether the path is a valid UNC (universal naming convention) path for a server
and share.

Returns TRUE if the path is a valid UNC path, or FALSE otherwise.

For more information, see PathIsUNC.

Call this method to determine whether the path is a valid UNC (universal naming convention) path for a server
only.

Returns TRUE if the string is a valid UNC path for a server only (no share name), or FALSE otherwise.

For more information, see PathIsUNCServer.

Call this method to determine whether the path is a valid UNC (universal naming convention) share path, \\
server\ share.

Returns TRUE if the path is in the form \\ server\ share, or FALSE otherwise.

For more information, see PathIsUNCServerShare.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathissameroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisunca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisuncservera
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisuncserversharea

CPathT::m_strPath

StringType m_strPath;

RemarksRemarks

CPathT::MakePretty

BOOL MakePretty();

Return ValueReturn Value

RemarksRemarks

CPathT::MatchSpec

BOOL MatchSpec(PCXSTR pszSpec) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPathT::operator +=

CPathT<StringType>& operator+=(PCXSTR pszMore);

ParametersParameters

Return ValueReturn Value

The path.

StringType is the template parameter to CPathT .

Call this method to convert a path to all lowercase characters to give the path a consistent appearance.

Returns TRUE if the path has been converted, or FALSE otherwise.

For more information, see PathMakePretty.

Call this method to search the path for a string containing a wildcard match type.

pszSpec
Pointer to a null-terminated string with the file type for which to search. For example, to test whether the file at
the current path is a DOC file, pszSpec should be set to "*.doc".

Returns TRUE if the string matches, or FALSE otherwise.

For more information, see PathMatchSpec.

This operator appends a string to the path.

pszMore
The string to append.

Returns the updated path.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathmakeprettya
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathmatchspeca

CPathT::operator const StringType &

operatorconst StringType&() const throw();

Return ValueReturn Value

CPathT::operator CPathT::PCXSTR

operatorPCXSTR() const throw();

Return ValueReturn Value

CPathT::operator StringType &

operatorStringType&() throw();

Return ValueReturn Value

CPathT::PCXSTR

typedef StringType::PCXSTR PCXSTR;

RemarksRemarks

CPathT::PXSTR

typedef StringType::PXSTR PXSTR;

RemarksRemarks

CPathT::QuoteSpaces

This operator allows the object to be treated like a string.

Returns a string representing the current path managed by this object.

This operator allows the object to be treated like a string.

Returns a string representing the current path managed by this object.

This operator allows the object to be treated like a string.

Returns a string representing the current path managed by this object.

A constant string type.

StringType is the template parameter to CPathT .

A string type.

StringType is the template parameter to CPathT .

Call this method to enclose the path in quotation marks if it contains any spaces.

void QuoteSpaces();

RemarksRemarks

CPathT::RelativePathTo

BOOL RelativePathTo(
 PCXSTR pszFrom,
 DWORD dwAttrFrom,
 PCXSTR pszTo,
 DWORD dwAttrTo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPathT::RemoveArgs

void RemoveArgs();

RemarksRemarks

CPathT::RemoveBackslash

void RemoveBackslash();

RemarksRemarks

For more information, see PathQuoteSpaces.

Call this method to create a relative path from one file or folder to another.

pszFrom
The start of the relative path.

dwAttrFrom
The File attributes of pszFrom. If this value contains FILE_ATTRIBUTE_DIRECTORY, pszFrom is assumed to be
a directory; otherwise, pszFrom is assumed to be a file.

pszTo
The end point of the relative path.

dwAttrTo
The File attributes of pszTo. If this value contains FILE_ATTRIBUTE_DIRECTORY, pszTo is assumed to be a
directory; otherwise, pszTo is assumed to be a file.

Returns TRUE on success, FALSE on failure.

For more information, see PathRelativePathTo.

Call this method to remove any command-line arguments from the path.

For more information, see PathRemoveArgs.

Call this method to remove the trailing backslash from the path.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathquotespacesa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathrelativepathtoa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveargsa

CPathT::RemoveBlanks

void RemoveBlanks();

RemarksRemarks

CPathT::RemoveExtension

void RemoveExtension();

RemarksRemarks

CPathT::RemoveFileSpec

BOOL RemoveFileSpec();

Return ValueReturn Value

RemarksRemarks

CPathT::RenameExtension

BOOL RenameExtension(PCXSTR pszExtension);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPathT::SkipRoot

For more information, see PathRemoveBackslash.

Call this method to remove all leading and trailing spaces from the path.

For more information, see PathRemoveBlanks.

Call this method to remove the file extension from the path, if there is one.

For more information, see PathRemoveExtension.

Call this method to remove the trailing file name and backslash from the path, if it has them.

Returns TRUE on success, FALSE on failure.

For more information, see PathRemoveFileSpec.

Call this method to replace the file name extension in the path with a new extension. If the file name does not
contain an extension, the extension will be attached to the end of the path.

pszExtension
The new file name extension, preceded by a "." character.

Returns TRUE on success, FALSE on failure.

For more information, see PathRenameExtension.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremovebackslasha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveblanksa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremovefilespeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathrenameextensiona

int SkipRoot() const;

Return ValueReturn Value

RemarksRemarks

CPathT::StripPath

void StripPath();

RemarksRemarks

CPathT::StripToRoot

BOOL StripToRoot();

Return ValueReturn Value

RemarksRemarks

CPathT::UnquoteSpaces

void UnquoteSpaces();

RemarksRemarks

CPathT::XCHAR

typedef StringType::XCHAR XCHAR;

RemarksRemarks

Call this method to parse a path, ignoring the drive letter or UNC (universal naming convention) server/share
path parts.

Returns the position of the beginning of the subpath that follows the root (drive letter or UNC server/share).

For more information, see PathSkipRoot.

Call this method to remove the path portion of a fully qualified path and file name.

For more information, see PathStripPath.

Call this method to remove all parts of the path except for the root information.

Returns TRUE if a valid drive letter was found in the path, or FALSE otherwise.

For more information, see PathStripToRoot.

Call this method to remove quotation marks from the beginning and end of a path.

For more information, see PathUnquoteSpaces.

A character type.

StringType is the template parameter to CPathT .

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathskiproota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathstrippatha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathstriptoroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathunquotespacesa

See also
Classes
CStringT Class

CPrimitiveElementTraits Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <typename T>
class CPrimitiveElementTraits : public CDefaultElementTraits<T>

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CPrimitiveElementTraits::INARGTYPE The data type to use for adding elements to the collection
class object.

CPrimitiveElementTraits::OUTARGTYPE The data type to use for retrieving elements from the
collection class object.

Remarks

Inheritance Hierarchy

Requirements

CPrimitiveElementTraits::INARGTYPE

This class provides default methods and functions for a collection class composed of primitive data types.

T
The type of data to be stored in the collection class object.

This class provides default static functions and methods for moving, copying, comparing, and hashing primitive
data type elements stored in a collection class object.

For more information, see ATL Collection Classes.

CDefaultCompareTraits

CDefaultHashTraits

CElementTraitsBase

CDefaultElementTraits

CPrimitiveElementTraits

Header: atlcoll.h

The data type to use for adding elements to the collection class object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cprimitiveelementtraits-class.md

typedef T INARGTYPE;

CPrimitiveElementTraits::OUTARGTYPE

typedef T& OUTARGTYPE;

See also

The data type to use for retrieving elements from the collection class object.

CDefaultElementTraits Class
Class Overview

CPrivateObjectSecurityDesc Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CPrivateObjectSecurityDesc : public CSecurityDesc

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPrivateObjectSecurityDesc::CPrivateObjectSecurityDesc The constructor.

CPrivateObjectSecurityDesc::~CPrivateObjectSecurityDesc The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CPrivateObjectSecurityDesc::ConvertToAutoInherit Call this method to convert a security descriptor and its
access-control lists (ACLs) to a format that supports
automatic propagation of inheritable access-control entries
(ACEs).

CPrivateObjectSecurityDesc::Create Call this method to allocate and initialize a self-relative
security descriptor for the private object created by the calling
resource manager.

CPrivateObjectSecurityDesc::Get Call this method to retrieve information from a private object's
security descriptor.

CPrivateObjectSecurityDesc::Set Call this method to modify a private object's security
descriptor.

OperatorsOperators

operator = Assignment operator.

Remarks

This class represents a private object security descriptor object.

This class, derived from CSecurityDesc, provides methods for creating and managing the security descriptor of a
private object.

For an introduction to the access control model in Windows, see Access Control in the Windows SDK.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cprivateobjectsecuritydesc-class.md
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control

Inheritance Hierarchy

Requirements

CPrivateObjectSecurityDesc::ConvertToAutoInherit

bool ConvertToAutoInherit(
 const CSecurityDesc* pParent,
 GUID* ObjectType,
 bool bIsDirectoryObject,
 PGENERIC_MAPPING GenericMapping) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPrivateObjectSecurityDesc::CPrivateObjectSecurityDesc

CPrivateObjectSecurityDesc() throw();

RemarksRemarks

CSecurityDesc

CPrivateObjectSecurityDesc

Header: atlsecurity.h

Call this method to convert a security descriptor and its access-control lists (ACLs) to a format that supports
automatic propagation of inheritable access-control entries (ACEs).

pParent
Pointer to a CSecurityDesc object referencing the parent container of the object. If there is no parent container, this
parameter is NULL.

ObjectType
Pointer to a GUID structure that identifies the type of object associated with the current object. Set ObjectType to
NULL if the object does not have a GUID.

bIsDirectoryObject
Specifies whether the new object can contain other objects. A value of true indicates that the new object is a
container. A value of false indicates that the new object is not a container.

GenericMapping
Pointer to a GENERIC_MAPPING structure that specifies the mapping from each generic right to specific rights
for the object.

Returns true on success, false on failure.

This method attempts to determine whether the ACEs in the discretionary access-control list (DACL) and system
access-control list (SACL) of the current security descriptor were inherited from the parent security descriptor. It
calls the ConvertToAutoInheritPrivateObjectSecurity function.

The constructor.

Initializes the CPrivateObjectSecurityDesc object.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_generic_mapping
https://docs.microsoft.com/windows/desktop/api/securitybaseapi/nf-securitybaseapi-converttoautoinheritprivateobjectsecurity

CPrivateObjectSecurityDesc::~CPrivateObjectSecurityDesc

~CPrivateObjectSecurityDesc() throw();

RemarksRemarks

CPrivateObjectSecurityDesc::Create

bool Create(
 const CSecurityDesc* pParent,
 const CSecurityDesc* pCreator,
 bool bIsDirectoryObject,
 const CAccessToken& Token,
 PGENERIC_MAPPING GenericMapping) throw();

bool Create(
 const CSecurityDesc* pParent,
 const CSecurityDesc* pCreator,
 GUID* ObjectType,
 bool bIsContainerObject,
 ULONG AutoInheritFlags,
 const CAccessToken& Token,
 PGENERIC_MAPPING GenericMapping) throw();

ParametersParameters

The destructor.

The destructor frees all allocated resources and deletes the private object's security descriptor.

Call this method to allocate and initialize a self-relative security descriptor for the private object created by the
calling resource manager.

pParent
Pointer to a CSecurityDesc object referencing the parent directory in which a new object is being created. Set to
NULL if there is no parent directory.

pCreator
Pointer to a security descriptor provided by the creator of the object. If the object's creator does not explicitly pass
security information for the new object, set this parameter to NULL.

bIsDirectoryObject
Specifies whether the new object can contain other objects. A value of true indicates that the new object is a
container. A value of false indicates that the new object is not a container.

Token
Reference to the CAccessToken object for the client process on whose behalf the object is being created.

GenericMapping
Pointer to a GENERIC_MAPPING structure that specifies the mapping from each generic right to specific rights
for the object.

ObjectType
Pointer to a GUID structure that identifies the type of object associated with the current object. Set ObjectType to
NULL if the object does not have a GUID.

bIsContainerObject
Specifies whether the new object can contain other objects. A value of true indicates that the new object is a
container. A value of false indicates that the new object is not a container.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_generic_mapping

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CPrivateObjectSecurityDesc::Get

bool Get(
 SECURITY_INFORMATION si,
 CSecurityDesc* pResult) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPrivateObjectSecurityDesc::operator =

CPrivateObjectSecurityDesc& operator= (const CPrivateObjectSecurityDesc& rhs) throw(...);

ParametersParameters

Return ValueReturn Value

AutoInheritFlags
A set of bit flags that control how access-control entries (ACEs) are inherited from pParent. See
CreatePrivateObjectSecurityEx for more details.

Returns true on success, false on failure.

This method calls CreatePrivateObjectSercurity or CreatePrivateObjectSecurityEx.

The second method permits specifying the object type GUID of the new object or controlling how ACEs are
inherited.

A self-relative security descriptor is a security descriptor that stores all of its security information in a contiguous block of
memory.

Call this method to retrieve information from a private object's security descriptor.

si
A set of bit flags that indicate the parts of the security descriptor to retrieve. This value can be a combination of the
SECURITY_INFORMATION bit flags.

pResult
Pointer to a CSecurityDesc object that receives a copy of the requested information from the specified security
descriptor.

Returns true on success, false on failure.

The security descriptor is a structure and associated data that contains the security information for a securable
object.

Assignment operator.

rhs
The CPrivateObjectSecurityDesc object to assign to the current object.

https://msdn.microsoft.com/library/windows/desktop/aa446581
https://docs.microsoft.com/windows/desktop/api/securitybaseapi/nf-securitybaseapi-createprivateobjectsecurity
https://msdn.microsoft.com/library/windows/desktop/aa446581
https://docs.microsoft.com/windows/desktop/SecAuthZ/security-information

 CPrivateObjectSecurityDesc::Set

bool Set(
 SECURITY_INFORMATION si,
 const CSecurityDesc& Modification,
 PGENERIC_MAPPING GenericMapping,
 const CAccessToken& Token) throw();

bool Set(
 SECURITY_INFORMATION si,
 const CSecurityDesc& Modification,
 ULONG AutoInheritFlags,
 PGENERIC_MAPPING GenericMapping,
 const CAccessToken& Token) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Returns the updated CPrivateObjectSecurityDesc object.

Call this method to modify a private object's security descriptor.

si
A set of bit flags that indicate the parts of the security descriptor to set. This value can be a combination of the
SECURITY_INFORMATION bit flags.

Modification
Pointer to a CSecurityDesc object. The parts of this security descriptor indicated by the si parameter are applied to
the object's security descriptor.

GenericMapping
Pointer to a GENERIC_MAPPING structure that specifies the mapping from each generic right to specific rights
for the object.

Token
Reference to the CAccessToken object for the client process on whose behalf the object is being created.

AutoInheritFlags
A set of bit flags that control how access-control entries (ACEs) are inherited from pParent. See
CreatePrivateObjectSecurityEx for more details.

Returns true on success, false on failure.

The second method permits specifying the object type GUID of the object or controlling how ACEs are inherited.

SECURITY_DESCRIPTOR
Class Overview
Security Global Functions
CSecurityDesc Class

https://docs.microsoft.com/windows/desktop/SecAuthZ/security-information
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_generic_mapping
https://msdn.microsoft.com/library/windows/desktop/aa446581
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_security_descriptor

CRBMap Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template <typename K,
 typename V,
 class KTraits = CElementTraits<K>,
 class VTraits = CElementTraits<V>>
class CRBMap : public CRBTree<K, V, KTraits, VTraits>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRBMap::CRBMap The constructor.

CRBMap::~CRBMap The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CRBMap::Lookup Call this method to look up keys or values in the CRBMap

object.

CRBMap::RemoveKey Call this method to remove an element from the CRBMap

object, given the key.

CRBMap::SetAt Call this method to insert an element pair into the map.

Remarks

This class represents a mapping structure, using a Red-Black binary tree.

K
The key element type.

V
The value element type.

KTraits
The code used to copy or move key elements. See CElementTraits Class for more details.

VTraits
The code used to copy or move value elements.

CRBMap provides support for a mapping array of any given type, managing an ordered array of key elements and

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/crbmap-class.md

Inheritance Hierarchy

Requirements

CRBMap::CRBMap

explicit CRBMap(size_t nBlockSize = 10) throw();

ParametersParameters

RemarksRemarks

ExampleExample

// Define a map object which has an
// integer key, a double value, and a
// block size of 5
CRBMap<int, double> myMap(5);

CRBMap::~CRBMap

their associated values. Each key can have only one associated value. Elements (consisting of a key and a value)
are stored in a binary tree structure, using the CRBMap::SetAt method. Elements can be removed using the
CRBMap::RemoveKey method, which deletes the element with the given key value.

Traversing the tree is made possible with methods such as CRBTree::GetHeadPosition, CRBTree::GetNext, and
CRBTree::GetNextValue.

The KTraits and VTraits parameters are traits classes that contain any supplemental code needed to copy or move
elements.

CRBMap is derived from CRBTree, which implements a binary tree using the Red-Black algorithm. CRBMultiMap
is a variation that allows multiple values for each key. It too is derived from CRBTree , and so shares many
features with CRBMap .

An alternative to both CRBMap and CRBMultiMap is offered by the CAtlMap class. When only a small number of
elements needs to be stored, consider using the CSimpleMap class instead.

For a more complete discussion of the various collection classes and their features and performance
characteristics, see ATL Collection Classes.

CRBTree

CRBMap

Header: atlcoll.h

The constructor.

nBlockSize
The block size.

The nBlockSize parameter is a measure of the amount of memory allocated when a new element is required.
Larger block sizes reduce calls to memory allocation routines, but use more resources. The default will allocate
space for 10 elements at a time.

See the documentation for the base class CRBTree for information on the other methods available.

~CRBMap() throw();

RemarksRemarks

CRBMap::Lookup

bool Lookup(KINARGTYPE key, VOUTARGTYPE value) const throw(...);
const CPair* Lookup(KINARGTYPE key) const throw();
CPair* Lookup(KINARGTYPE key) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Look up the value for a key of 0
double v;
myMap.Lookup(0,v);

CRBMap::RemoveKey

bool RemoveKey(KINARGTYPE key) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The destructor.

Frees any allocated resources.

See the documentation for the base class CRBTree for information on the other methods available.

Call this method to look up keys or values in the CRBMap object.

key
Specifies the key that identifies the element to be looked up.

value
Variable that receives the looked-up value.

The first form of the method returns true if the key is found, otherwise false. The second and third forms return a
pointer to a CPair.

See the documentation for the base class CRBTree for information on the other methods available.

Call this method to remove an element from the CRBMap object, given the key.

key
The key corresponding to the element pair you want to remove.

Returns true if the key is found and removed, false on failure.

See the documentation for the base class CRBTree for information on the other methods available.

ExampleExample

// Remove an element, based on the key of 0
ATLVERIFY(myMap.RemoveKey(0) == true);

CRBMap::SetAt

POSITION SetAt(
 KINARGTYPE key,
 VINARGTYPE value) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Add an element to the map, with a key of 0
myMap.SetAt(0,1.1);

See also

Call this method to insert an element pair into the map.

key
The key value to add to the CRBMap object.

value
The value to add to the CRBMap object.

Returns the position of the key/value element pair in the CRBMap object.

SetAt replaces an existing element if a matching key is found. If the key is not found, a new key/value pair is
created.

See the documentation for the base class CRBTree for information on the other methods available.

CRBTree Class
CAtlMap Class
CRBMultiMap Class
Class Overview

CRBMultiMap Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
template<typename K,
 typename V,
 class KTraits = CElementTraits<K>,
 class VTraits = CElementTraits<V>>
class CRBMultiMap : public CRBTree<K, V, KTraits, VTraits>

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRBMultiMap::CRBMultiMap The constructor.

CRBMultiMap::~CRBMultiMap The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CRBMultiMap::FindFirstWithKey Call this method to find the position of the first element with
a given key.

CRBMultiMap::GetNextValueWithKey Call this method to get the value associated with a given key,
and update the position value.

CRBMultiMap::GetNextWithKey Call this method to get the element associated with a given
key, and update the position value.

CRBMultiMap::Insert Call this method to insert an element pair into the map.

This class represents a mapping structure that allows each key can be associated with more than one value, using
a Red-Black binary tree.

K
The key element type.

V
The value element type.

KTraits
The code used to copy or move key elements. See CElementTraits Class for more details.

VTraits
The code used to copy or move value elements.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/crbmultimap-class.md

CRBMultiMap::RemoveKey Call this method to remove all of the key/value elements for a
given key.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CRBMultiMap::CRBMultiMap

explicit CRBMultiMap(size_t nBlockSize = 10) throw();

ParametersParameters

RemarksRemarks

CRBMultiMap provides support for a mapping array of any given type, managing an ordered array of key
elements and values. Unlike the CRBMap class, each key can be associated with more than one value.

Elements (consisting of a key and a value) are stored in a binary tree structure, using the CRBMultiMap::Insert
method. Elements can be removed using the CRBMultiMap::RemoveKey method, which deletes all elements
which match the given key.

Traversing the tree is made possible with methods such as CRBTree::GetHeadPosition, CRBTree::GetNext, and
CRBTree::GetNextValue. Accessing the potentially multiple values per key is possible using the
CRBMultiMap::FindFirstWithKey, CRBMultiMap::GetNextValueWithKey, and CRBMultiMap::GetNextWithKey
methods. See the example for CRBMultiMap::CRBMultiMap for an illustration of this in practice.

The KTraits and VTraits parameters are traits classes that contain any supplemental code needed to copy or move
elements.

CRBMultiMap is derived from CRBTree, which implements a binary tree using the Red-Black algorithm. An
alternative to CRBMultiMap and CRBMap is offered by the CAtlMap class. When only a small number of elements
needs to be stored, consider using the CSimpleMap class instead.

For a more complete discussion of the various collection classes and their features and performance
characteristics, see ATL Collection Classes.

CRBTree

CRBMultiMap

Header: atlcoll.h

The constructor.

nBlockSize
The block size.

The nBlockSize parameter is a measure of the amount of memory allocated when a new element is required.
Larger block sizes reduce calls to memory allocation routines, but use more resources. The default will allocate
space for 10 elements at a time.

See the documentation for the base class CRBTree for information on the other methods available.

ExampleExample

// Define a multimap object which has an integer
// key, a double value, and a block size of 5
CRBMultiMap<int, double> myMap(5);

// Add some key/values. Notice how three
// different values are associated with
// one key. In a CRBMap object, the values
// would simply overwrite each other.
myMap.Insert(0, 1.1);
myMap.Insert(0, 1.2);
myMap.Insert(0, 1.3);
myMap.Insert(1, 2.1);

// Look up a key and iterate through
// all associated values

double v;
POSITION myPos = myMap.FindFirstWithKey(0);

while (myPos != NULL)
{
 v = myMap.GetNextValueWithKey(myPos,0);
 // As the loop iterates, v
 // contains the values 1.3, 1.2, 1.1
}

// Remove all of the values associated with that key
size_t i = myMap.RemoveKey(0);

// Confirm all three values were deleted
ATLASSERT(i == 3);

CRBMultiMap::~CRBMultiMap

~CRBMultiMap() throw();

RemarksRemarks

CRBMultiMap::FindFirstWithKey

POSITION FindFirstWithKey(KINARGTYPE key) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The destructor.

Frees any allocated resources.

See the documentation for the base class CRBTree for information on the other methods available.

Call this method to find the position of the first element with a given key.

key
Specifies the key that identifies the element to be found.

Returns the POSITION of the first key/value element if the key is found, NULL otherwise.

ExampleExample

CRBMultiMap::GetNextValueWithKey

const V& GetNextValueWithKey(
 POSITION& pos,
 KINARGTYPE key) const throw();
V& GetNextValueWithKey(
 POSITION& pos,
 KINARGTYPE key) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRBMultiMap::GetNextWithKey

const CPair* GetNextWithKey(
 POSITION& pos,
 KINARGTYPE key) const throw();
CPair* GetNextWithKey(
 POSITION& pos,
 KINARGTYPE key) throw();

ParametersParameters

A key in the CRBMultiMap can have one or more associated values. This method will provide the position value of
the first value (which may, in fact, be the only value) associated with that particular key. The position value
returned can then be used with CRBMultiMap::GetNextValueWithKey or CRBMultiMap::GetNextWithKey to
obtain the value and update the position.

See the documentation for the base class CRBTree for information on the other methods available.

See the example for CRBMultiMap::CRBMultiMap.

Call this method to get the value associated with a given key and update the position value.

pos
The position value, obtained with either a call to CRBMultiMap::FindFirstWithKey or
CRBMultiMap::GetNextWithKey, or a previous call to GetNextValueWithKey .

key
Specifies the key that identifies the element to be found.

Returns the element pair associated with the given key.

The position value is updated to point to the next value associated with the key. If no more values exist, the
position value is set to NULL.

See the documentation for the base class CRBTree for information on the other methods available.

See the example for CRBMultiMap::CRBMultiMap.

Call this method to get the element associated with a given key and update the position value.

pos
The position value, obtained with either a call to CRBMultiMap::FindFirstWithKey or

Return ValueReturn Value

RemarksRemarks

CRBMultiMap::Insert

POSITION Insert(KINARGTYPE key, VINARGTYPE value) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRBMultiMap::RemoveKey

size_t RemoveKey(KINARGTYPE key) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRBMultiMap::GetNextValueWithKey, or a previous call to GetNextWithKey .

key
Specifies the key that identifies the element to be found.

Returns the next CRBTree::CPair Class element associated with the given key.

The position value is updated to point to the next value associated with the key. If no more values exist, the
position value is set to NULL.

See the documentation for the base class CRBTree for information on the other methods available.

Call this method to insert an element pair into the map.

key
The key value to add to the CRBMultiMap object.

value
The value to add to the CRBMultiMap object, associated with key.

Returns the position of the key/value element pair in the CRBMultiMap object.

See the documentation for the base class CRBTree for information on the other methods available.

See the example for CRBMultiMap::CRBMultiMap.

Call this method to remove all of the key/value elements for a given key.

key
Specifies the key that identifies the element(s) to be deleted.

Returns the number of values associated with the given key.

RemoveKey deletes all of the key/value elements that have a key that matches key.

See the documentation for the base class CRBTree for information on the other methods available.

See also

See the example for CRBMultiMap::CRBMultiMap.

CRBTree Class
CAtlMap Class
CRBMap Class
Class Overview

CRBTree Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
template <typename K,
 typename V,
 class KTraits = CElementTraits<K>,
 class VTraits = CElementTraits<V>>
class CRBTree

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CRBTree::KINARGTYPE Type used when a key is passed as an input argument.

CRBTree::KOUTARGTYPE Type used when a key is returned as an output argument.

CRBTree::VINARGTYPE Type used when a value is passed as an input argument.

CRBTree::VOUTARGTYPE Type used when a value is passed as an output argument.

Public ClassesPublic Classes

NAME DESCRIPTION

CRBTree::CPair Class A class containing the key and value elements.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRBTree::~CRBTree The destructor.

This class provides methods for creating and utilizing a Red-Black tree.

K
The key element type.

V
The value element type.

KTraits
The code used to copy or move key elements. See CElementTraits Class for more details.

VTraits
The code used to copy or move value elements.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/crbtree-class.md

Public MethodsPublic Methods

NAME DESCRIPTION

CRBTree::FindFirstKeyAfter Call this method to find the position of the element that
uses the next available key.

CRBTree::GetAt Call this method to get the element at a given position in
the tree.

CRBTree::GetCount Call this method to get the number of elements in the tree.

CRBTree::GetHeadPosition Call this method to get the position value for the element
at the head of the tree.

CRBTree::GetKeyAt Call this method to get the key from a given position in the
tree.

CRBTree::GetNext Call this method to obtain a pointer to an element stored
in the CRBTree object, and advance the position to the
next element.

CRBTree::GetNextAssoc Call this method to get the key and value of an element
stored in the map and advance the position to the next
element.

CRBTree::GetNextKey Call this method to get the key of an element stored in the
tree and advance the position to the next element.

CRBTree::GetNextValue Call this method to get the value of an element stored in
the tree and advance the position to the next element.

CRBTree::GetPrev Call this method to obtain a pointer to an element stored
in the CRBTree object, and then update the position to
the previous element.

CRBTree::GetTailPosition Call this method to get the position value for the element
at the tail of the tree.

CRBTree::GetValueAt Call this method to retrieve the value stored at a given
position in the CRBTree object.

CRBTree::IsEmpty Call this method to test for an empty tree object.

CRBTree::RemoveAll Call this method to remove all elements from the
CRBTree object.

CRBTree::RemoveAt Call this method to remove the element at the given
position in the CRBTree object.

CRBTree::SetValueAt Call this method to change the value stored at a given
position in the CRBTree object.

Remarks
A Red-Black tree is a binary search tree that uses an extra bit of information per node to ensure that it

Requirements

CRBTree::CPair Class

class CPair : public __POSITION

RemarksRemarks

m_key The data member storing the key element.

m_value The data member storing the value element.

CRBTree::~CRBTree

~CRBTree() throw();

RemarksRemarks

CRBTree::FindFirstKeyAfter

POSITION FindFirstKeyAfter(KINARGTYPE key) const throw();

ParametersParameters

Return ValueReturn Value

remains "balanced," that is, the tree height doesn't grow disproportionately large and affect performance.

This template class is designed to be used by CRBMap and CRBMultiMap. The bulk of the methods that
make up these derived classes are provided by CRBTree .

For a more complete discussion of the various collection classes and their features and performance
characteristics, see ATL Collection Classes.

Header: atlcoll.h

A class containing the key and value elements.

This class is used by the methods CRBTree::GetAt, CRBTree::GetNext, and CRBTree::GetPrev to access the key
and value elements stored in the tree structure.

The members are as follows:

The destructor.

Frees any allocated resources. Calls CRBTree::RemoveAll to delete all elements.

Call this method to find the position of the element that uses the next available key.

key
A key value.

Returns the position value of the element that uses the next available key. If there are no more elements,
NULL is returned.

RemarksRemarks

CRBTree::GetAt

CPair* GetAt(POSITION pos) throw();
const CPair* GetAt(POSITION pos) const throw();
void GetAt(POSITION pos, KOUTARGTYPE key, VOUTARGTYPE value) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRBTree::GetCount

size_t GetCount() const throw();

Return ValueReturn Value

CRBTree::GetHeadPosition

POSITION GetHeadPosition() const throw();

Return ValueReturn Value

RemarksRemarks

This method makes it easy to traverse the tree without having to calculate position values beforehand.

Call this method to get the element at a given position in the tree.

pos
The position value.

key
The variable that receives the key.

value
The variable that receives the value.

The first two forms return a pointer to a CPair. The third form obtains a key and a value for the given position.

The position value can be previously determined with a call to a method such as CRBTree::GetHeadPosition
or CRBTree::GetTailPosition.

In debug builds, an assertion failure will occur if pos is equal to NULL.

Call this method to get the number of elements in the tree.

Returns the number of elements (each key/value pair is one element) stored in the tree.

Call this method to get the position value for the element at the head of the tree.

Returns the position value for the element at the head of the tree.

The value returned by GetHeadPosition can be used with methods such as CRBTree::GetKeyAt or
CRBTree::GetNext to traverse the tree and retrieve values.

CRBTree::GetKeyAt

const K& GetKeyAt(POSITION pos) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRBTree::GetNext

const CPair* GetNext(POSITION& pos) const throw();
CPair* GetNext(POSITION& pos) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRBTree::GetNextAssoc

void GetNextAssoc(
 POSITION& pos,
 KOUTARGTYPE key,
 VOUTARGTYPE value) const;

ParametersParameters

Call this method to get the key from a given position in the tree.

pos
The position value.

Returns the key stored at position pos in the tree.

If pos is not a valid position value, results are unpredictable. In debug builds, an assertion failure will occur if
pos is equal to NULL.

Call this method to obtain a pointer to an element stored in the CRBTree object, and advance the position to
the next element.

pos
The position counter, returned by a previous call to methods such as CRBTree::GetHeadPosition or
CRBTree::FindFirstKeyAfter.

Returns a pointer to the next CPair value in the tree.

The pos position counter is updated after each call. If the retrieved element is the last in the tree, pos is set to
NULL.

Call this method to get the key and value of an element stored in the map and advance the position to the
next element.

pos
The position counter, returned by a previous call to methods such as CRBTree::GetHeadPosition or
CRBTree::FindFirstKeyAfter.

key

RemarksRemarks

CRBTree::GetNextKey

const K& GetNextKey(POSITION& pos) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRBTree::GetNextValue

const V& GetNextValue(POSITION& pos) const throw();
V& GetNextValue(POSITION& pos) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRBTree::GetPrev

Template parameter specifying the type of the tree's key.

value
Template parameter specifying the type of the tree's value.

The pos position counter is updated after each call. If the retrieved element is the last in the tree, pos is set to
NULL.

Call this method to get the key of an element stored in the tree and advance the position to the next element.

pos
The position counter, returned by a previous call to methods such as CRBTree::GetHeadPosition or
CRBTree::FindFirstKeyAfter.

Returns a reference to the next key in the tree.

Updates the current position counter, pos. If there are no more entries in the tree, the position counter is set to
NULL.

Call this method to get the value of an element stored in the tree and advance the position to the next
element.

pos
The position counter, returned by a previous call to methods such as CRBTree::GetHeadPosition or
CRBTree::FindFirstKeyAfter.

Returns a reference to the next value in the tree.

Updates the current position counter, pos. If there are no more entries in the tree, the position counter is set to
NULL.

Call this method to obtain a pointer to an element stored in the CRBTree object, and then update the position
to the previous element.

const CPair* GetPrev(POSITION& pos) const throw();
CPair* GetPrev(POSITION& pos) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRBTree::GetTailPosition

POSITION GetTailPosition() const throw();

Return ValueReturn Value

RemarksRemarks

CRBTree::GetValueAt

const V& GetValueAt(POSITION pos) const throw();
V& GetValueAt(POSITION pos) throw();

ParametersParameters

Return ValueReturn Value

CRBTree::IsEmpty

bool IsEmpty() const throw();

Return ValueReturn Value

pos
The position counter, returned by a previous call to methods such as CRBTree::GetHeadPosition or
CRBTree::FindFirstKeyAfter.

Returns a pointer to the previous CPair value stored in the tree.

Updates the current position counter, pos. If there are no more entries in the tree, the position counter is set to
NULL.

Call this method to get the position value for the element at the tail of the tree.

Returns the position value for the element at the tail of the tree.

The value returned by GetTailPosition can be used with methods such as CRBTree::GetKeyAt or
CRBTree::GetPrev to traverse the tree and retrieve values.

Call this method to retrieve the value stored at a given position in the CRBTree object.

pos
The position counter, returned by a previous call to methods such as CRBTree::GetHeadPosition or
CRBTree::FindFirstKeyAfter.

Returns a reference to the value stored at the given position in the CRBTree object.

Call this method to test for an empty tree object.

Returns TRUE if the tree is empty, FALSE otherwise.

CRBTree::KINARGTYPE

typedef KTraits::INARGTYPE KINARGTYPE;

CRBTree::KOUTARGTYPE

typedef KTraits::OUTARGTYPE KOUTARGTYPE;

CRBTree::RemoveAll

void RemoveAll() throw();

RemarksRemarks

CRBTree::RemoveAt

void RemoveAt(POSITION pos) throw();

ParametersParameters

RemarksRemarks

CRBTree::SetValueAt

void SetValueAt(POSITION pos, VINARGTYPE value);

ParametersParameters

Type used when a key is passed as an input argument.

Type used when a key is returned as an output argument.

Call this method to remove all elements from the CRBTree object.

Clears out the CRBTree object, freeing the memory used to store the elements.

Call this method to remove the element at the given position in the CRBTree object.

pos
The position counter, returned by a previous call to methods such as CRBTree::GetHeadPosition or
CRBTree::FindFirstKeyAfter.

Removes the key/value pair stored at the specified position. The memory used to store the element is freed.
The POSITION referenced by pos becomes invalid, and while the POSITION of any other elements in the
tree remains valid, they do not necessarily retain the same order.

Call this method to change the value stored at a given position in the CRBTree object.

pos
The position counter, returned by a previous call to methods such as CRBTree::GetHeadPosition or
CRBTree::FindFirstKeyAfter.

value

RemarksRemarks

CRBTree::VINARGTYPE

typedef VTraits::INARGTYPE VINARGTYPE;

CRBTree::VOUTARGTYPE

typedef VTraits::OUTARGTYPE VOUTARGTYPE;

See also

The value to add to the CRBTree object.

Changes the value element stored at the given position in the CRBTree object.

Type used when a value is passed as an input argument.

Type used when a value is passed as an output argument.

Class Overview

CRegKey Class
3/4/2019 • 24 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CRegKey

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRegKey::CRegKey The constructor.

CRegKey::~CRegKey The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CRegKey::Attach Call this method to attach an HKEY to the CRegKey object by
setting the m_hKey member handle to hKey .

CRegKey::Close Call this method to release the m_hKey member handle and
set it to NULL.

CRegKey::Create Call this method to create the specified key, if it does not exist
as a subkey of hKeyParent .

CRegKey::DeleteSubKey Call this method to remove the specified key from the
registry.

CRegKey::DeleteValue Call this method to remove a value field from m_hKey.

CRegKey::Detach Call this method to detach the m_hKey member handle from
the CRegKey object and set m_hKey to NULL.

CRegKey::EnumKey Call this method to enumerate the subkeys of the open
registry key.

This class provides methods for manipulating entries in the system registry.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cregkey-class.md

CRegKey::Flush Call this method to write all of the attributes of the open
registry key into the registry.

CRegKey::GetKeySecurity Call this method to retrieve a copy of the security descriptor
protecting the open registry key.

CRegKey::NotifyChangeKeyValue This method notifies the caller about changes to the attributes
or contents of the open registry key.

CRegKey::Open Call this method to open the specified key and set m_hKey to
the handle of this key.

CRegKey::QueryBinaryValue Call this method to retrieve the binary data for a specified
value name.

CRegKey::QueryDWORDValue Call this method to retrieve the DWORD data for a specified
value name.

CRegKey::QueryGUIDValue Call this method to retrieve the GUID data for a specified
value name.

CRegKey::QueryMultiStringValue Call this method to retrieve the multistring data for a specified
value name.

CRegKey::QueryQWORDValue Call this method to retrieve the QWORD data for a specified
value name.

CRegKey::QueryStringValue Call this method to retrieve the string data for a specified
value name.

CRegKey::QueryValue Call this method to retrieve the data for the specified value
field of m_hKey. Earlier versions of this method are no longer
supported and are marked as ATL_DEPRECATED.

CRegKey::RecurseDeleteKey Call this method to remove the specified key from the registry
and explicitly remove any subkeys.

CRegKey::SetBinaryValue Call this method to set the binary value of the registry key.

CRegKey::SetDWORDValue Call this method to set the DWORD value of the registry key.

CRegKey::SetGUIDValue Call this method to set the GUID value of the registry key.

CRegKey::SetKeySecurity Call this method to set the security of the registry key.

CRegKey::SetKeyValue Call this method to store data in a specified value field of a
specified key.

CRegKey::SetMultiStringValue Call this method to set the multistring value of the registry
key.

CRegKey::SetQWORDValue Call this method to set the QWORD value of the registry key.

NAME DESCRIPTION

CRegKey::SetStringValue Call this method to set the string value of the registry key.

CRegKey::SetValue Call this method to store data in the specified value field of
m_hKey. Earlier versions of this method are no longer
supported and are marked as ATL_DEPRECATED.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CRegKey::operator HKEY Converts a CRegKey object to an HKEY.

CRegKey::operator = Assignment operator.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CRegKey::m_hKey Contains a handle of the registry key associated with the
CRegKey object.

CRegKey::m_pTM Pointer to CAtlTransactionManager object

Remarks

IMPORTANTIMPORTANT

Requirements

CRegKey::Attach

CRegKey provides methods for creating and deleting keys and values in the system registry. The registry contains
an installation-specific set of definitions for system components, such as software version numbers, logical-to-
physical mappings of installed hardware, and COM objects.

CRegKey provides a programming interface to the system registry for a given machine. For example, to open a
particular registry key, call CRegKey::Open . To retrieve or modify a data value, call CRegKey::QueryValue or
CRegKey::SetValue , respectively. To close a key, call CRegKey::Close .

When you close a key, its registry data is written (flushed) to the hard disk. This process may take several seconds.
If your application must explicitly write registry data to the hard disk, you can call the RegFlushKey Win32
function. However, RegFlushKey uses many system resources and should be called only when absolutely
necessary.

Any methods that allow the caller to specify a registry location have the potential to read data that cannot be trusted.
Methods that make use of RegQueryValueEx should take into consideration that this function does not explicitly handle
strings which are NULL terminated. Both conditions should be checked for by the calling code.

Header: atlbase.h

Call this method to attach an HKEY to the CRegKey object by setting the m_hKey member handle to hKey.

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regflushkey
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regqueryvalueexa

void Attach(HKEY hKey) throw();

ParametersParameters

RemarksRemarks

CRegKey::Close

LONG Close() throw();

Return ValueReturn Value

CRegKey::Create

LONG Create(
 HKEY hKeyParent,
 LPCTSTR lpszKeyName,
 LPTSTR lpszClass = REG_NONE,
 DWORD dwOptions = REG_OPTION_NON_VOLATILE,
 REGSAM samDesired = KEY_READ | KEY_WRITE,
 LPSECURITY_ATTRIBUTES lpSecAttr = NULL,
 LPDWORD lpdwDisposition = NULL) throw();

ParametersParameters

hKey
The handle of a registry key.

Attach will assert if m_hKey is non-NULL.

Call this method to release the m_hKey member handle and set it to NULL.

If successful, returns ERROR_SUCCESS; otherwise returns an error value.

Call this method to create the specified key, if it does not exist as a subkey of hKeyParent.

hKeyParent
The handle of an open key.

lpszKeyName
Specifies the name of a key to be created or opened. This name must be a subkey of hKeyParent.

lpszClass
Specifies the class of the key to be created or opened. The default value is REG_NONE.

dwOptions
Options for the key. The default value is REG_OPTION_NON_VOLATILE. For a list of possible values and
descriptions, see RegCreateKeyEx in the Windows SDK.

samDesired
The security access for the key. The default value is KEY_READ | KEY_WRITE. For a list of possible values and
descriptions, see RegCreateKeyEx .

lpSecAttr
A pointer to a SECURITY_ATTRIBUTES structure that indicates whether the handle of the key can be inherited by
a child process. By default, this parameter is NULL (meaning the handle cannot be inherited).

lpdwDisposition

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regcreatekeyexa
https://msdn.microsoft.com/library/windows/desktop/aa379560

Return ValueReturn Value

RemarksRemarks

CRegKey::CRegKey

CRegKey() throw();
CRegKey(CRegKey& key) throw();
explicit CRegKey(HKEY hKey) throw();
CRegKey(CAtlTransactionManager* pTM) throw();

ParametersParameters

RemarksRemarks

CRegKey::~CRegKey

~CRegKey() throw();

RemarksRemarks

CRegKey::DeleteSubKey

LONG DeleteSubKey(LPCTSTR lpszSubKey) throw();

ParametersParameters

Return ValueReturn Value

[out] If non-NULL, retrieves either REG_CREATED_NEW_KEY (if the key did not exist and was created) or
REG_OPENED_EXISTING_KEY (if the key existed and was opened).

If successful, returns ERROR_SUCCESS and opens the key. If the method fails, the return value is a nonzero error
code defined in WINERROR.H.

Create sets the m_hKey member to the handle of this key.

The constructor.

key
A reference to a CRegKey object.

hKey
A handle to a registry key.

pTM
Pointer to CAtlTransactionManager object

Creates a new CRegKey object. The object can be created from an existing CRegKey object, or from a handle to a
registry key.

The destructor.

The destructor releases m_hKey .

Call this method to remove the specified key from the registry.

lpszSubKey
Specifies the name of the key to delete. This name must be a subkey of m_hKey.

RemarksRemarks

CRegKey::DeleteValue

LONG DeleteValue(LPCTSTR lpszValue) throw();

ParametersParameters

Return ValueReturn Value

CRegKey::Detach

HKEY Detach() throw();

Return ValueReturn Value

CRegKey::EnumKey

LONG EnumKey(
 DWORD iIndex,
 LPTSTR pszName,
 LPDWORD pnNameLength,
 FILETIME* pftLastWriteTime = NULL) throw();

ParametersParameters

If successful, returns ERROR_SUCCESS. If the method fails, the return value is a nonzero error code defined in
WINERROR.H.

DeleteSubKey can only delete a key that has no subkeys. If the key has subkeys, call RecurseDeleteKey instead.

Call this method to remove a value field from m_hKey.

lpszValue
Specifies the value field to remove.

If successful, returns ERROR_SUCCESS. If the method fails, the return value is a nonzero error code defined in
WINERROR.H.

Call this method to detach the m_hKey member handle from the CRegKey object and set m_hKey to NULL.

The HKEY associated with the CRegKey object.

Call this method to enumerate the subkeys of the open registry key.

iIndex
The subkey index. This parameter should be zero for the first call and then incremented for subsequent calls

pszName
Pointer to a buffer that receives the name of the subkey, including the terminating null character. Only the name of
the subkey is copied to the buffer, not the full key hierarchy.

pnNameLength
Pointer to a variable that specifies the size, in TCHARs, of the buffer specified by the pszName parameter. This size
should include the terminating null character. When the method returns, the variable pointed to by pnNameLength
contains the number of characters stored in the buffer. The count returned does not include the terminating null
character.

Return ValueReturn Value

RemarksRemarks

CRegKey::Flush

LONG Flush() throw();

Return ValueReturn Value

RemarksRemarks

CRegKey::GetKeySecurity

LONG GetKeySecurity(
 SECURITY_INFORMATION si,
 PSECURITY_DESCRIPTOR psd,
 LPDWORD pnBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRegKey::m_hKey

pftLastWriteTime
Pointer to a variable that receives the time the enumerated subkey was last written to.

If the method succeeds, the return value is ERROR_SUCCESS. If the method fails, the return value is a nonzero
error code defined in WINERROR.H.

To enumerate the subkeys, call CRegKey::EnumKey with an index of zero. Increment the index value and repeat until
the method returns ERROR_NO_MORE_ITEMS. For more information, see RegEnumKeyEx in the Windows SDK.

Call this method to write all of the attributes of the open registry key into the registry.

If the method succeeds, the return value is ERROR_SUCCESS. If the method fails, the return value is a nonzero
error code defined in WINERROR.H.

For more information, see RegEnumFlush in the Windows SDK.

Call this method to retrieve a copy of the security descriptor protecting the open registry key.

si
The SECURITY_INFORMATION value that indicates the requested security information.

psd
A pointer to a buffer that receives a copy of the requested security descriptor.

pnBytes
The size, in bytes, of the buffer pointed to by psd.

If the method succeeds, the return value is ERROR_SUCCESS. If the method fails, the return value is a nonzero
error code is defined in WINERROR.H.

For more information, see RegGetKeySecurity.

Contains a handle of the registry key associated with the CRegKey object.

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regenumkeyexa
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regflushkey
https://docs.microsoft.com/windows/desktop/SecAuthZ/security-information
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-reggetkeysecurity

HKEY m_hKey;

CRegKey::m_pTM

CAtlTransactionManager* m_pTM;

RemarksRemarks

CRegKey::NotifyChangeKeyValue

LONG NotifyChangeKeyValue(
 BOOL bWatchSubtree,
 DWORD dwNotifyFilter,
 HANDLE hEvent,
 BOOL bAsync = TRUE) throw();

ParametersParameters

VALUE MEANING

REG_NOTIFY_CHANGE_NAME Notify the caller if a subkey is added or deleted.

REG_NOTIFY_CHANGE_ATTRIBUTES Notify the caller of changes to the attributes of the key, such
as the security descriptor information.

REG_NOTIFY_CHANGE_LAST_SET Notify the caller of changes to a value of the key. This can
include adding or deleting a value, or changing an existing
value.

REG_NOTIFY_CHANGE_SECURITY Notify the caller of changes to the security descriptor of the
key.

Pointer to a CAtlTransactionManager object.

This method notifies the caller about changes to the attributes or contents of the open registry key.

bWatchSubtree
Specifies a flag that indicates whether to report changes in the specified key and all of its subkeys or only in the
specified key. If this parameter is TRUE, the method reports changes in the key and its subkeys. If the parameter is
FALSE, the method reports changes only in the key.

dwNotifyFilter
Specifies a set of flags that control which changes should be reported. This parameter can be a combination of the
following values:

hEvent
Handle to an event. If the bAsync parameter is TRUE, the method returns immediately and changes are reported
by signaling this event. If bAsync is FALSE, hEvent is ignored.

bAsync
Specifies a flag that indicates how the method reports changes. If this parameter is TRUE, the method returns
immediately and reports changes by signaling the specified event. When this parameter is FALSE, the method
does not return until a change has occurred. If hEvent does not specify a valid event, the bAsync parameter cannot
be TRUE.

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CRegKey::Open

LONG Open(
 HKEY hKeyParent,
 LPCTSTR lpszKeyName,
 REGSAM samDesired = KEY_READ | KEY_WRITE) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRegKey::operator HKEY

operator HKEY() const throw();

CRegKey::operator =

CRegKey& operator= (CRegKey& key) throw();

If the method succeeds, the return value is ERROR_SUCCESS. If the method fails, the return value is a nonzero
error code defined in WINERROR.H.

This method does not notify the caller if the specified key is deleted.

For more details and a sample program, see RegNotifyChangeKeyValue.

Call this method to open the specified key and set m_hKey to the handle of this key.

hKeyParent
The handle of an open key.

lpszKeyName
Specifies the name of a key to be created or opened. This name must be a subkey of hKeyParent.

samDesired
The security access for the key. The default value is KEY_ALL_ACCESS. For a list of possible values and
descriptions, see RegCreateKeyEx in the Windows SDK.

If successful, returns ERROR_SUCCESS; otherwise, a non-zero error value defined in WINERROR.H.

If the lpszKeyName parameter is NULL or points to an empty string, Open opens a new handle of the key
identified by hKeyParent, but does not close any previously opened handle.

Unlike CRegKey::Create, Open will not create the specified key if it does not exist.

Converts a CRegKey object to an HKEY.

Assignment operator.

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regnotifychangekeyvalue
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regcreatekeyexa

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRegKey::QueryBinaryValue

LONG QueryBinaryValue(
 LPCTSTR pszValueName,
 void* pValue,
 ULONG* pnBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IMPORTANTIMPORTANT

CRegKey::QueryDWORDValue

LONG QueryDWORDValue(
 LPCTSTR pszValueName,
 DWORD& dwValue) throw();

ParametersParameters

key
The key to copy.

Returns a reference to the new key.

This operator detaches key from its current object and assigns it to the CRegKey object instead.

Call this method to retrieve the binary data for a specified value name.

pszValueName
Pointer to a null-terminated string containing the name of the value to query.

pValue
Pointer to a buffer that receives the value's data.

pnBytes
Pointer to a variable that specifies the size, in bytes, of the buffer pointed to by the pValue parameter. When the
method returns, this variable contains the size of the data copied to the buffer.

If the method succeeds, ERROR_SUCCESS is returned. If the method fails to read a value, it returns a nonzero
error code defined in WINERROR.H. If the data referenced is not of type REG_BINARY, ERROR_INVALID_DATA
is returned.

This method makes use of RegQueryValueEx and confirms that the correct type of data is returned. See
RegQueryValueEx for more details.

This method allows the caller to specify any registry location, potentially reading data which cannot be trusted. Also, the
RegQueryValueEx function used by this method does not explicitly handle strings which are NULL terminated. Both
conditions should be checked for by the calling code.

Call this method to retrieve the DWORD data for a specified value name.

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regqueryvalueexa
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regqueryvalueexa

Return ValueReturn Value

RemarksRemarks

IMPORTANTIMPORTANT

CRegKey::QueryGUIDValue

LONG QueryGUIDValue(
 LPCTSTR pszValueName,
 GUID& guidValue) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IMPORTANTIMPORTANT

CRegKey::QueryMultiStringValue

pszValueName
Pointer to a null-terminated string containing the name of the value to query.

dwValue
Pointer to a buffer that receives the DWORD.

If the method succeeds, ERROR_SUCCESS is returned. If the method fails to read a value, it returns a nonzero
error code defined in WINERROR.H. If the data referenced is not of type REG_DWORD, ERROR_INVALID_DATA
is returned.

This method makes use of RegQueryValueEx and confirms that the correct type of data is returned. See
RegQueryValueEx for more details.

This method allows the caller to specify any registry location, potentially reading data which cannot be trusted. Also, the
RegQueryValueEx function used by this method does not explicitly handle strings which are NULL terminated. Both
conditions should be checked for by the calling code.

Call this method to retrieve the GUID data for a specified value name.

pszValueName
Pointer to a null-terminated string containing the name of the value to query.

guidValue
Pointer to a variable that receives the GUID.

If the method succeeds, ERROR_SUCCESS is returned. If the method fails to read a value, it returns a nonzero
error code defined in WINERROR.H. If the data referenced is not a valid GUID, ERROR_INVALID_DATA is
returned.

This method makes use of CRegKey::QueryStringValue and converts the string into a GUID using
CLSIDFromString.

This method allows the caller to specify any registry location, potentially reading data which cannot be trusted.

Call this method to retrieve the multistring data for a specified value name.

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regqueryvalueexa
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regqueryvalueexa
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-clsidfromstring

LONG QueryMultiStringValue(
 LPCTSTR pszValueName,
 LPTSTR pszValue,
 ULONG* pnChars) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IMPORTANTIMPORTANT

CRegKey::QueryQWORDValue

LONG QueryQWORDValue(
 LPCTSTR pszValueName,
 ULONGLONG& qwValue) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pszValueName
Pointer to a null-terminated string containing the name of the value to query.

pszValue
Pointer to a buffer that receives the multistring data. A multistring is an array of null-terminated strings,
terminated by two null characters.

pnChars
The size, in TCHARs, of the buffer pointed to by pszValue. When the method returns, pnChars contains the size, in
TCHARs, of the multistring retrieved, including a terminating null character.

If the method succeeds, ERROR_SUCCESS is returned. If the method fails to read a value, it returns a nonzero
error code defined in WINERROR.H. If the data referenced is not of type REG_MULTI_SZ,
ERROR_INVALID_DATA is returned.

This method makes use of RegQueryValueEx and confirms that the correct type of data is returned. See
RegQueryValueEx for more details.

This method allows the caller to specify any registry location, potentially reading data which cannot be trusted. Also, the
RegQueryValueEx function used by this method does not explicitly handle strings which are NULL terminated. Both
conditions should be checked for by the calling code.

Call this method to retrieve the QWORD data for a specified value name.

pszValueName
Pointer to a null-terminated string containing the name of the value to query.

qwValue
Pointer to a buffer that receives the QWORD.

If the method succeeds, ERROR_SUCCESS is returned. If the method fails to read a value, it returns a nonzero
error code defined in WINERROR.H. If the data referenced is not of type REG_QWORD, ERROR_INVALID_DATA
is returned.

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regqueryvalueexa
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regqueryvalueexa

IMPORTANTIMPORTANT

CRegKey::QueryStringValue

LONG QueryStringValue(
 LPCTSTR pszValueName,
 LPTSTR pszValue,
 ULONG* pnChars) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IMPORTANTIMPORTANT

CRegKey::QueryValue

This method makes use of RegQueryValueEx and confirms that the correct type of data is returned. See
RegQueryValueEx for more details.

This method allows the caller to specify any registry location, potentially reading data which cannot be trusted. Also, the
RegQueryValueEx function used by this method does not explicitly handle strings which are NULL terminated. Both
conditions should be checked for by the calling code.

Call this method to retrieve the string data for a specified value name.

pszValueName
Pointer to a null-terminated string containing the name of the value to query.

pszValue
Pointer to a buffer that receives the string data.

pnChars
The size, in TCHARs, of the buffer pointed to by pszValue. When the method returns, pnChars contains the size, in
TCHARs, of the string retrieved, including a terminating null character.

If the method succeeds, ERROR_SUCCESS is returned. If the method fails to read a value, it returns a nonzero
error code defined in WINERROR.H. If the data referenced is not of type REG_SZ, ERROR_INVALID_DATA is
returned. If the method returns ERROR_MORE_DATA, pnChars equals zero, not the required buffer size in bytes.

This method makes use of RegQueryValueEx and confirms that the correct type of data is returned. See
RegQueryValueEx for more details.

This method allows the caller to specify any registry location, potentially reading data which cannot be trusted. Also, the
RegQueryValueEx function used by this method does not explicitly handle strings which are NULL terminated. Both
conditions should be checked for by the calling code.

Call this method to retrieve the data for the specified value field of m_hKey. Earlier versions of this method are no
longer supported and are marked as ATL_DEPRECATED.

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regqueryvalueexa
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regqueryvalueexa
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regqueryvalueexa
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regqueryvalueexa

LONG QueryValue(
 LPCTSTR pszValueName,
 DWORD* pdwType,
 void* pData,
 ULONG* pnBytes) throw();

ATL_DEPRECATED LONG QueryValue(
 DWORD& dwValue,
 LPCTSTR lpszValueName);

ATL_DEPRECATED LONG QueryValue(
 LPTSTR szValue,
 LPCTSTR lpszValueName,
 DWORD* pdwCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IMPORTANTIMPORTANT

pszValueName
Pointer to a null-terminated string containing the name of the value to query. If pszValueName is NULL or an
empty string, "", the method retrieves the type and data for the key's unnamed or default value, if any.

pdwType
Pointer to a variable that receives a code indicating the type of data stored in the specified value. The pdwType
parameter can be NULL if the type code is not required.

pData
Pointer to a buffer that receives the value's data. This parameter can be NULL if the data is not required.

pnBytes
Pointer to a variable that specifies the size, in bytes, of the buffer pointed to by the pData parameter. When the
method returns, this variable contains the size of the data copied to pData.

dwValue
The value field's numerical data.

lpszValueName
Specifies the value field to be queried.

szValue
The value field's string data.

pdwCount
The size of the string data. Its value is initially set to the size of the szValue buffer.

If successful, returns ERROR_SUCCESS; otherwise, a nonzero error code defined in WINERROR.H.

The two original versions of QueryValue are no longer supported and are marked as ATL_DEPRECATED. The
compiler will issue a warning if these forms are used.

The remaining method calls RegQueryValueEx.

This method allows the caller to specify any registry location, potentially reading data which cannot be trusted. Also, the
RegQueryValueEx function used by this method does not explicitly handle strings which are NULL terminated. Both
conditions should be checked for by the calling code.

CRegKey::RecurseDeleteKey

LONG RecurseDeleteKey(LPCTSTR lpszKey) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRegKey::SetBinaryValue

LONG SetBinaryValue(
 LPCTSTR pszValueName,
 const void* pValue,
 ULONG nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRegKey::SetDWORDValue

LONG SetDWORDValue(LPCTSTR pszValueName, DWORD dwValue) throw();

ParametersParameters

Call this method to remove the specified key from the registry and explicitly remove any subkeys.

lpszKey
Specifies the name of the key to delete. This name must be a subkey of m_hKey.

If successful, returns ERROR_SUCCESS; otherwise, a non-zero error value defined in WINERROR.H.

If the key has subkeys, you must call this method to delete the key.

Call this method to set the binary value of the registry key.

pszValueName
Pointer to a string containing the name of the value to set. If a value with this name is not already present, the
method adds it to the key.

pValue
Pointer to a buffer containing the data to be stored with the specified value name.

nBytes
Specifies the size, in bytes, of the information pointed to by the pValue parameter.

If the method succeeds, the return value is ERROR_SUCCESS. If the method fails, the return value is a nonzero
error code defined in WINERROR.H.

This method uses RegSetValueEx to write the value to the registry.

Call this method to set the DWORD value of the registry key.

pszValueName
Pointer to a string containing the name of the value to set. If a value with this name is not already present, the
method adds it to the key.

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regsetvalueexa

Return ValueReturn Value

RemarksRemarks

CRegKey::SetGUIDValue

LONG SetGUIDValue(LPCTSTR pszValueName, REFGUID guidValue) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRegKey::SetKeyValue

LONG SetKeyValue(
 LPCTSTR lpszKeyName,
 LPCTSTR lpszValue,
 LPCTSTR lpszValueName = NULL) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

dwValue
The DWORD data to be stored with the specified value name.

If the method succeeds, the return value is ERROR_SUCCESS. If the method fails, the return value is a nonzero
error code defined in WINERROR.H.

This method uses RegSetValueEx to write the value to the registry.

Call this method to set the GUID value of the registry key.

pszValueName
Pointer to a string containing the name of the value to set. If a value with this name is not already present, the
method adds it to the key.

guidValue
Reference to the GUID to be stored with the specified value name.

If the method succeeds, the return value is ERROR_SUCCESS. If the method fails, the return value is a nonzero
error code defined in WINERROR.H.

This method makes use of CRegKey::SetStringValue and converts the GUID into a string using StringFromGUID2.

Call this method to store data in a specified value field of a specified key.

lpszKeyName
Specifies the name of the key to be created or opened. This name must be a subkey of m_hKey.

lpszValue
Specifies the data to be stored. This parameter must be non-NULL.

lpszValueName
Specifies the value field to be set. If a value field with this name does not already exist in the key, it is added.

If successful, returns ERROR_SUCCESS; otherwise, a nonzero error code defined in WINERROR.H.

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regsetvalueexa
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-stringfromguid2

CRegKey::SetKeySecurity

LONG SetKeySecurity(SECURITY_INFORMATION si, PSECURITY_DESCRIPTOR psd) throw();

ParametersParameters

VALUE MEANING

DACL_SECURITY_INFORMATION Sets the key's discretionary access-control list (DACL). The key
must have WRITE_DAC access, or the calling process must be
the object's owner.

GROUP_SECURITY_INFORMATION Sets the key's primary group security identifier (SID). The key
must have WRITE_OWNER access, or the calling process must
be the object's owner.

OWNER_SECURITY_INFORMATION Sets the key's owner SID. The key must have WRITE_OWNER
access, or the calling process must be the object's owner or
have the SE_TAKE_OWNERSHIP_NAME privilege enabled.

SACL_SECURITY_INFORMATION Sets the key's system access-control list (SACL). The key must
have ACCESS_SYSTEM_SECURITY access. The proper way to
get this access is to enable the SE_SECURITY_NAME privilege
in the caller's current access token, open the handle for
ACCESS_SYSTEM_SECURITY access, and then disable the
privilege.

Return ValueReturn Value

RemarksRemarks

CRegKey::SetMultiStringValue

LONG SetMultiStringValue(LPCTSTR pszValueName, LPCTSTR pszValue) throw();

ParametersParameters

Call this method to create or open the lpszKeyName key and store the lpszValue data in the lpszValueName value
field.

Call this method to set the security of the registry key.

si
Specifies the components of the security descriptor to set. The value can be a combination of the following values:

psd
Pointer to a SECURITY_DESCRIPTOR structure that specifies the security attributes to set for the specified key.

If the method succeeds, the return value is ERROR_SUCCESS. If the method fails, the return value is a nonzero
error code defined in WINERROR.H.

Sets the key's security attributes. See RegSetKeySecurity for more details.

Call this method to set the multistring value of the registry key.

pszValueName
Pointer to a string containing the name of the value to set. If a value with this name is not already present, the
method adds it to the key.

https://docs.microsoft.com/windows/desktop/secauthz/privileges
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_security_descriptor
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regsetkeysecurity

Return ValueReturn Value

RemarksRemarks

CRegKey::SetQWORDValue

LONG SetQWORDValue(LPCTSTR pszValueName, ULONGLONG qwValue) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRegKey::SetStringValue

LONG SetStringValue(
 LPCTSTR pszValueName,
 LPCTSTR pszValue,
 DWORD dwType = REG_SZ) throw();

ParametersParameters

Return ValueReturn Value

pszValue
Pointer to the multistring data to be stored with the specified value name. A multistring is an array of null-
terminated strings, terminated by two null characters.

If the method succeeds, the return value is ERROR_SUCCESS. If the method fails, the return value is a nonzero
error code defined in WINERROR.H.

This method uses RegSetValueEx to write the value to the registry.

Call this method to set the QWORD value of the registry key.

pszValueName
Pointer to a string containing the name of the value to set. If a value with this name is not already present, the
method adds it to the key.

qwValue
The QWORD data to be stored with the specified value name.

If the method succeeds, the return value is ERROR_SUCCESS. If the method fails, the return value is a nonzero
error code defined in WINERROR.H.

This method uses RegSetValueEx to write the value to the registry.

Call this method to set the string value of the registry key.

pszValueName
Pointer to a string containing the name of the value to set. If a value with this name is not already present, the
method adds it to the key.

pszValue
Pointer to the string data to be stored with the specified value name.

dwType
The type of the string to write to the registry: either REG_SZ (the default) or REG_EXPAND_SZ (for multistrings).

If the method succeeds, the return value is ERROR_SUCCESS. If the method fails, the return value is a nonzero

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regsetvalueexa
https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regsetvalueexa

RemarksRemarks

CRegKey::SetValue

LONG SetValue(
 LPCTSTR pszValueName,
 DWORD dwType,
 const void* pValue,
 ULONG nBytes) throw();

static LONG WINAPI SetValue(
 HKEY hKeyParent,
 LPCTSTR lpszKeyName,
 LPCTSTR lpszValue,
 LPCTSTR lpszValueName = NULL);

ATL_DEPRECATED LONG SetValue(
 DWORD dwValue,
 LPCTSTR lpszValueName);

ATL_DEPRECATED LONG SetValue(
 LPCTSTR lpszValue,
 LPCTSTR lpszValueName = NULL,
 bool bMulti = false,
 int nValueLen = -1);

ParametersParameters

error code defined in WINERROR.H.

This method uses RegSetValueEx to write the value to the registry.

Call this method to store data in the specified value field of m_hKey. Earlier versions of this method are no longer
supported and are marked as ATL_DEPRECATED.

pszValueName
Pointer to a string containing the name of the value to set. If a value with this name is not already present in the
key, the method adds it to the key. If pszValueName is NULL or an empty string, "", the method sets the type and
data for the key's unnamed or default value.

dwType
Specifies a code indicating the type of data pointed to by the pValue parameter.

pValue
Pointer to a buffer containing the data to be stored with the specified value name.

nBytes
Specifies the size, in bytes, of the information pointed to by the pValue parameter. If the data is of type REG_SZ,
REG_EXPAND_SZ, or REG_MULTI_SZ, nBytes must include the size of the terminating null character.

hKeyParent
The handle of an open key.

lpszKeyName
Specifies the name of a key to be created or opened. This name must be a subkey of hKeyParent.

lpszValue
Specifies the data to be stored. This parameter must be non-NULL.

lpszValueName
Specifies the value field to be set. If a value field with this name does not already exist in the key, it is added.

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regsetvalueexa

Return ValueReturn Value

RemarksRemarks

See also

dwValue
Specifies the data to be stored.

bMulti
If false, indicates the string is of type REG_SZ. If true, indicates the string is a multistring of type REG_MULTI_SZ.

nValueLen
If bMulti is true, nValueLen is the length of the lpszValue string in characters. If bMulti is false, a value of -1
indicates that the method will calculate the length automatically.

If successful, returns ERROR_SUCCESS; otherwise, a nonzero error code defined in WINERROR.H.

The two original versions of SetValue are marked as ATL_DEPRECATED and should no longer be used. The
compiler will issue a warning if these forms are used.

The third method calls RegSetValueEx.

DCOM Sample
Class Overview

https://docs.microsoft.com/windows/desktop/api/winreg/nf-winreg-regsetvalueexa
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CRTThreadTraits Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CRTThreadTraits

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CRTThreadTraits::CreateThread (Static) Call this function to create a thread that can use CRT
functions.

Remarks

Requirements

CRTThreadTraits::CreateThread

static HANDLE CreateThread(
 LPSECURITY_ATTRIBUTES lpsa,
 DWORD dwStackSize,
 LPTHREAD_START_ROUTINE pfnThreadProc,
 void* pvParam,
 DWORD dwCreationFlags,
 DWORD* pdwThreadId) throw();

This class provides the creation function for a CRT thread. Use this class if the thread will use CRT functions.

This class and its members cannot be used in applications that execute in the Windows Runtime.

Thread traits are classes that provide a creation function for a particular type of thread. The creation function has
the same signature and semantics as the Windows CreateThread function.

Thread traits are used by the following classes:

CThreadPool

CWorkerThread

If the thread will not be using CRT functions, use Win32ThreadTraits instead.

Header: atlbase.h

Call this function to create a thread that can use CRT functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/crtthreadtraits-class.md
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createthread

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

lpsa
The security attributes for the new thread.

dwStackSize
The stack size for the new thread.

pfnThreadProc
The thread procedure of the new thread.

pvParam
The parameter to be passed to the thread procedure.

dwCreationFlags
The creation flags (0 or CREATE_SUSPENDED).

pdwThreadId
[out] Address of the DWORD variable that, on success, receives the thread ID of the newly created thread.

Returns the handle to the newly created thread or NULL on failure. Call GetLastError to get extended error
information.

See CreateThread for further information on the parameters to this function.

This function calls _beginthreadex to create the thread.

Class Overview

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createthread
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/beginthread-beginthreadex

CSacl Class
3/4/2019 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CSacl : public CAcl

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSacl::CSacl The constructor.

CSacl::~CSacl The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSacl::AddAuditAce Adds an audit access-control entry (ACE) to the CSacl

object.

CSacl::GetAceCount Returns the number of access-control entries (ACEs) in the
CSacl object.

CSacl::RemoveAce Removes a specific ACE (access-control entry) from the
CSacl object.

CSacl::RemoveAllAces Removes all of the ACEs contained in the CSacl object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CSacl::operator = Assignment operator.

Remarks

This class is a wrapper for a SACL (system access-control list) structure.

This class and its members cannot be used in applications that execute in the Windows Runtime.

A SACL contains access-control entries (ACEs) that specify the types of access attempts that generate audit
records in the security event log of a domain controller. Note that a SACL generates log entries only on the

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csacl-class.md

Inheritance Hierarchy

Requirements

CSacl::AddAuditAce

bool AddAuditAce(
 const CSid& rSid,
 ACCESS_MASK AccessMask,
 bool bSuccess,
 bool bFailure,
 BYTE AceFlags = 0) throw(...);

bool AddAuditAce(
 const CSid& rSid,
 ACCESS_MASK AccessMask,
 bool bSuccess,
 bool bFailure,
 BYTE AceFlags,
 const GUID* pObjectType,
 const GUID* pInheritedObjectType) throw(...);

ParametersParameters

domain controller where the access attempt occurred, not on every domain controller that contains a replica of the
object.

To set or retrieve the SACL in an object's security descriptor, the SE_SECURITY_NAME privilege must be enabled
in the access token of the requesting thread. The administrators group has this privilege granted by default, and it
can be granted to other users or groups. Having the privilege granted is not all that is required: before the
operation defined by the privilege can be performed, the privilege must be enabled in the security access token in
order to take effect. The model allows privileges to be enabled only for specific system operations, and then
disabled when they are no longer needed. See AtlGetSacl and AtlSetSacl for examples of enabling
SE_SECURITY_NAME.

Use the class methods provided to add, remove, create, and delete ACEs from the SACL object. See also
AtlGetSacl and AtlSetSacl.

For an introduction to the access control model in Windows, see Access Control in the Windows SDK.

CAcl

CSacl

Header: atlsecurity.h

Adds an audit access-control entry (ACE) to the CSacl object.

rSid
The CSid object.

AccessMask
Specifies the mask of access rights to be audited for the specified CSid object.

bSuccess
Specifies whether allowed access attempts are to be audited. Set this flag to true to enable auditing; otherwise, set
it to false.

bFailure

https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control

Return ValueReturn Value

RemarksRemarks

CSacl::CSacl

CSacl() throw();
CSacl(const ACL& rhs) throw(...);

ParametersParameters

RemarksRemarks

CSacl::~CSacl

~CSacl() throw();

RemarksRemarks

CSacl::GetAceCount

UINT GetAceCount() const throw();

Return ValueReturn Value

Specifies whether denied access attempts are to be audited. Set this flag to true to enable auditing; otherwise, set it
to false.

AceFlags
A set of bit flags that control ACE inheritance.

pObjectType
The object type.

pInheritedObjectType
The inherited object type.

Returns TRUE if the ACE is added to the CSacl object, FALSE on failure.

A CSacl object contains access-control entries (ACEs) that specify the types of access attempts that generate audit
records in the security event log. This method adds such an ACE to the CSacl object.

See ACE_HEADER for a description of the various flags which can be set in the AceFlags parameter.

The constructor.

rhs
An existing ACL (access-control list) structure.

The CSacl object can be optionally created using an existing ACL structure. Ensure that this parameter is a
system access-control list (SACL) and not a discretionary access-control list (DACL). In debug builds, if a DACL is
supplied an assertion will occur. In release builds any entries from a DACL are ignored.

The destructor.

The destructor frees any resources acquired by the object, including all access-control entries (ACEs).

Returns the number of access-control entries (ACEs) in the CSacl object.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_ace_header

CSacl::operator =

CSacl& operator=(const ACL& rhs) throw(...);

ParametersParameters

Return ValueReturn Value

CSacl::RemoveAce

void RemoveAce(UINT nIndex) throw();

ParametersParameters

RemarksRemarks

CSacl::RemoveAllAces

void RemoveAllAces() throw();

RemarksRemarks

See also

Returns the number of ACEs contained in the CSacl object.

Assignment operator.

rhs
The ACL (access-control list) to assign to the existing object.

Returns a reference to the updated CSacl object. Ensure that the ACL parameter is actually a system access-
control list (SACL) and not a discretionary access-control list (DACL). In debug builds an assertion will occur, and
in release builds the ACL parameter will be ignored.

Removes a specific ACE (access-control entry) from the CSacl object.

nIndex
Index to the ACE entry to remove.

This method is derived from CAtlArray::RemoveAt.

Removes all of the access-control entries (ACEs) contained in the CSacl object.

Removes every ACE structure (if any) in the CSacl object.

CAcl Class
ACLs
ACEs
Class Overview
Security Global Functions

https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control-lists
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control-entries

CSecurityAttributes Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CSecurityAttributes : public SECURITY_ATTRIBUTES

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSecurityAttributes::CSecurityAttributes The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSecurityAttributes::Set Call this method to set the attributes of the
CSecurityAttributes object.

Remarks

Inheritance Hierarchy

Requirements

CSecurityAttributes::CSecurityAttributes

This class is a thin wrapper for the security attributes structure.

This class and its members cannot be used in applications that execute in the Windows Runtime.

The SECURITY_ATTRIBUTES structure contains a security descriptor used for the creation of an object and specifies
whether the handle retrieved by specifying this structure is inheritable.

For an introduction to the access control model in Windows, see Access Control in the Windows SDK.

SECURITY_ATTRIBUTES

CSecurityAttributes

Header: atlsecurity.h

The constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csecurityattributes-class.md
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_security_descriptor
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control

CSecurityAttributes() throw();
explicit CSecurityAttributes(const CSecurityDesc& rSecurityDescriptor, bool bInheritsHandle = false)
throw(...);

ParametersParameters

CSecurityAttributes::Set

void Set(const CSecurityDesc& rSecurityDescriptor, bool bInheritHandle = false) throw(...);

ParametersParameters

RemarksRemarks

See also

rSecurityDescriptor
Reference to a security descriptor.

bInheritsHandle
Specifies whether the returned handle is inherited when a new process is created. If this member is true, the new
process inherits the handle.

Call this method to set the attributes of the CSecurityAttributes object.

rSecurityDescriptor
Reference to a security descriptor.

bInheritHandle
Specifies whether the returned handle is inherited when a new process is created. If this member is true, the new
process inherits the handle.

This method is used by the constructor to initialize the CSecurityAttributes object.

Security Sample
SECURITY_ATTRIBUTES
security descriptor
Class Overview
Security Global Functions

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://msdn.microsoft.com/library/windows/desktop/aa379560
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_security_descriptor

CSecurityDesc Class
3/4/2019 • 15 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CSecurityDesc

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSecurityDesc::CSecurityDesc The constructor.

CSecurityDesc::~CSecurityDesc The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSecurityDesc::FromString Converts a string-format security descriptor into a valid,
functional security descriptor.

CSecurityDesc::GetControl Retrieves control information from the security descriptor.

CSecurityDesc::GetDacl Retrieves discretionary access-control list (DACL) information
from the security descriptor.

CSecurityDesc::GetGroup Retrieves the primary group information from the security
descriptor.

CSecurityDesc::GetOwner Retrieves owner informaton from the security descriptor.

CSecurityDesc::GetPSECURITY_DESCRIPTOR Returns a pointer to the SECURITY_DESCRIPTOR structure.

CSecurityDesc::GetSacl Retrieves system access-control list (SACL) information from
the security descriptor.

CSecurityDesc::IsDaclAutoInherited Determines if the DACL is configured to support automatic
propagation.

This class is a wrapper for the SECURITY_DESCRIPTOR structure.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csecuritydesc-class.md

CSecurityDesc::IsDaclDefaulted Determines if the security descriptor is configured with a
default DACL.

CSecurityDesc::IsDaclPresent Determines if the security descriptor contains a DACL.

CSecurityDesc::IsDaclProtected Determines if the DACL is configured to prevent
modifications.

CSecurityDesc::IsGroupDefaulted Determines if the security descriptor's group security
identifier (SID) was set by default.

CSecurityDesc::IsOwnerDefaulted Determines if the security descriptor's owner SID was set by
default.

CSecurityDesc::IsSaclAutoInherited Determines if the SACL is configured to support automatic
propagation.

CSecurityDesc::IsSaclDefaulted Determines if the security descriptor is configured with a
default SACL.

CSecurityDesc::IsSaclPresent Determines if the security descriptor contains a SACL.

CSecurityDesc::IsSaclProtected Determines if the SACL is configured to prevent
modifications.

CSecurityDesc::IsSelfRelative Determines if the security descriptor is in self-relative format.

CSecurityDesc::MakeAbsolute Call this method to convert the security descriptor to
absolute format.

CSecurityDesc::MakeSelfRelative Call this method to convert the security descriptor to self-
relative format.

CSecurityDesc::SetControl Sets the control bits of a security descriptor.

CSecurityDesc::SetDacl Sets information in a DACL. If a DACL is already present in
the security descriptor, it is replaced.

CSecurityDesc::SetGroup Sets the primary group information of an absolute format
security descriptor, replacing any primary group information
already present.

CSecurityDesc::SetOwner Sets the owner information of an absolute format security
descriptor, replacing any owner information already present.

CSecurityDesc::SetSacl Sets information in a SACL. If a SACL is already present in the
security descriptor, it is replaced.

CSecurityDesc::ToString Converts a security descriptor to a string format.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CSecurityDesc::operator const SECURITY_DESCRIPTOR * Returns a pointer to the SECURITY_DESCRIPTOR structure.

CSecurityDesc::operator = Assignment operator.

Remarks

Requirements

CSecurityDesc::CSecurityDesc

CSecurityDesc() throw();
CSecurityDesc(const CSecurityDesc& rhs) throw(...);
CSecurityDesc(const SECURITY_DESCRIPTOR& rhs) throw(...);

ParametersParameters

RemarksRemarks

CSecurityDesc::~CSecurityDesc

virtual ~CSecurityDesc() throw();

RemarksRemarks

CSecurityDesc::FromString

bool FromString(LPCTSTR pstr) throw(...);

ParametersParameters

The SECURITY_DESCRIPTOR structure contains the security information associated with an object. Applications use
this structure to set and query an object's security status. See also AtlGetSecurityDescriptor.

Applications should not modify the SECURITY_DESCRIPTOR structure directly, and instead should use the class
methods provided.

For an introduction to the access control model in Windows, see Access Control in the Windows SDK.

Header: atlsecurity.h

The constructor.

rhs
The CSecurityDesc object or SECURITY_DESCRIPTOR structure to assign to the new CSecurityDesc object.

The CSecurityDesc object can optionally be created using a SECURITY_DESCRIPTOR structure or a previously
defined CSecurityDesc object.

The destructor.

The destructor frees all allocated resources.

Converts a string-format security descriptor into a valid, functional security descriptor.

https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::GetControl

bool GetControl(SECURITY_DESCRIPTOR_CONTROL* psdc) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::GetDacl

bool GetDacl(
 CDacl* pDacl,
 bool* pbPresent = NULL,
 bool* pbDefaulted = NULL) const throw(...);

ParametersParameters

Return ValueReturn Value

pstr
Pointer to a null-terminated string that contains the string-format security descriptor to be converted.

Returns true on success. Throws an exception on failure.

The string can be created by using CSecurityDesc::ToString. Converting the security descriptor into a string
makes it easier to store and transmit.

This method calls ConvertStringSecurityDescriptorToSecurityDescriptor.

Retrieves control information from the security descriptor.

psdc
Pointer to a SECURITY_DESCRIPTOR_CONTROL structure that receives the security descriptor's control information.

Returns true if the method succeeds, false if it fails.

This method calls GetSecurityDescriptorControl.

Retrieves discretionary access-control list (DACL) information from the security descriptor.

pDacl
Pointer to an CDacl structure in which to store a copy of the security descriptor's DACL. If a discretionary ACL
exists, the method sets pDacl to the address of the security descriptor's discretionary ACL. If a discretionary ACL
does not exist, no value is stored.

pbPresent
Pointer to a value that indicates the presence of a discretionary ACL in the specified security descriptor. If the
security descriptor contains a discretionary ACL, this parameter is set to true. If the security descriptor does not
contain a discretionary ACL, this parameter is set to false.

pbDefaulted
Pointer to a flag set to the value of the SE_DACL_DEFAULTED flag in the SECURITY_DESCRIPTOR_CONTROL structure
if a discretionary ACL exists for the security descriptor. If this flag is true, the discretionary ACL was retrieved by
a default mechanism; if false, the discretionary ACL was explicitly specified by a user.

https://docs.microsoft.com/windows/desktop/SecAuthZ/security-descriptor-string-format
https://docs.microsoft.com/windows/desktop/api/sddl/nf-sddl-convertstringsecuritydescriptortosecuritydescriptora
https://docs.microsoft.com/windows/desktop/api/securitybaseapi/nf-securitybaseapi-getsecuritydescriptorcontrol

CSecurityDesc::GetGroup

bool GetGroup(
 CSid* pSid,
 bool* pbDefaulted = NULL) const throw(...);

ParametersParameters

Return ValueReturn Value

CSecurityDesc::GetOwner

bool GetOwner(
 CSid* pSid,
 bool* pbDefaulted = NULL) const throw(...);

ParametersParameters

Return ValueReturn Value

CSecurityDesc::GetPSECURITY_DESCRIPTOR

const SECURITY_DESCRIPTOR* GetPSECURITY_DESCRIPTOR() const throw();

Return ValueReturn Value

CSecurityDesc::GetSacl

Returns true if the method succeeds, false if it fails.

Retrieves the primary group information from the security descriptor.

pSid
Pointer to a CSid (security identifier) that receives a copy of the group stored in the CDacl.

pbDefaulted
Pointer to a flag set to the value of the SE_GROUP_DEFAULTED flag in the SECURITY_DESCRIPTOR_CONTROL

structure when the method returns.

Returns true if the method succeeds, false if it fails.

Retrieves owner informaton from the security descriptor.

pSid
Pointer to a CSid (security identifier) that receives a copy of the group stored in the CDacl.

pbDefaulted
Pointer to a flag set to the value of the SE_OWNER_DEFAULTED flag in the SECURITY_DESCRIPTOR_CONTROL

structure when the method returns.

Returns true if the method succeeds, false if it fails.

Returns a pointer to the SECURITY_DESCRIPTOR structure.

Returns a pointer to the SECURITY_DESCRIPTOR structure.

Retrieves system access-control list (SACL) information from the security descriptor.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_security_descriptor

bool GetSacl(
 CSacl* pSacl,
 bool* pbPresent = NULL,
 bool* pbDefaulted = NULL) const throw(...);

ParametersParameters

Return ValueReturn Value

CSecurityDesc::IsDaclAutoInherited

bool IsDaclAutoInherited() const throw();

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::IsDaclDefaulted

bool IsDaclDefaulted() const throw();

Return ValueReturn Value

RemarksRemarks

pSacl
Pointer to an CSacl structure in which to store a copy of the security descriptor's SACL. If a system ACL exists,
the method sets pSacl to the address of the security descriptor's system ACL. If a system ACL does not exist, no
value is stored.

pbPresent
Pointer to a flag the method sets to indicate the presence of a system ACL in the specified security descriptor. If
the security descriptor contains a system ACL, this parameter is set to true. If the security descriptor does not
contain a system ACL, this parameter is set to false.

pbDefaulted
Pointer to a flag set to the value of the SE_SACL_DEFAULTED flag in the SECURITY_DESCRIPTOR_CONTROL structure
if a system ACL exists for the security descriptor.

Returns true if the method succeeds, false if it fails.

Determines if the discretionary access-control list (DACL) is configured to support automatic propagation.

Returns true if the security descriptor contains a DACL which is set up to support automatic propagation of
inheritable access-control entries (ACEs) to existing child objects. Returns false otherwise.

The system sets this bit when it performs the automatic inheritance algorithm for the object and its existing child
objects.

Determines if the security descriptor is configured with a default discretionary access-control list (DACL).

Returns true if the security descriptor contains a default DACL, false otherwise.

This flag can affect how the system treats the DACL, with respect to access-control entry (ACE) inheritance. For
example, if an object's creator does not specify a DACL, the object receives the default DACL from the creator's
access token. The system ignores this flag if the SE_DACL_PRESENT flag is not set.

This flag is used to determine how the final DACL on the object is to be computed and is not stored physically in
the security descriptor control of the securable object.

CSecurityDesc::IsDaclPresent

bool IsDaclPresent() const throw();

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::IsDaclProtected

bool IsDaclProtected() const throw();

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::IsGroupDefaulted

bool IsGroupDefaulted() const throw();

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::IsOwnerDefaulted

To set this flag, use the CSecurityDesc::SetDacl method.

Determines if the security descriptor contains a discretionary access-control list (DACL).

Returns true if the security descriptor contains a DACL, false otherwise.

If this flag is not set, or if this flag is set and the DACL is NULL, the security descriptor allows full access to
everyone.

This flag is used to hold the security information specified by a caller until the security descriptor is associated
with a securable object. Once the security descriptor is associated with a securable object, the
SE_DACL_PRESENT flag is always set in the security descriptor control.

To set this flag, use the CSecurityDesc::SetDacl method.

Determines if the discretionary access-control list (DACL) is configured to prevent modifications.

Returns true if the DACL is configured to prevent the security descriptor from being modified by inheritable
access-control entries (ACEs). Returns false otherwise.

To set this flag, use the CSecurityDesc::SetDacl method.

This method supports automatic propagation of inheritable ACEs.

Determines if the security descriptor's group security identifier (S ID) was set by default.

Returns true if a default mechanism, rather than the original provider of the security descriptor, provided the
security descriptor's group SID. Returns false otherwise.

To set this flag, use the CSecurityDesc::SetGroup method.

Determines if the security descriptor's owner security identifier (S ID) was set by default.

bool IsOwnerDefaulted() const throw();

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::IsSaclAutoInherited

bool IsSaclAutoInherited() const throw();

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::IsSaclDefaulted

bool IsSaclDefaulted() const throw();

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::IsSaclPresent

bool IsSaclPresent() const throw();

Return ValueReturn Value

RemarksRemarks

Returns true if a default mechanism, rather than the original provider of the security descriptor, provided the
security descriptor's owner S ID. Returns false otherwise.

To set this flag, use the CSecurityDesc::SetOwner method.

Determines if the system access-control list (SACL) is configured to support automatic propagation.

Returns true if the security descriptor contains a SACL which is set up to support automatic propagation of
inheritable access-control entries (ACEs) to existing child objects. Returns false otherwise.

The system sets this bit when it performs the automatic inheritance algorithm for the object and its existing child
objects.

Determines if the security descriptor is configured with a default system access-control list (SACL).

Returns true if the security descriptor contains a default SACL, false otherwise.

This flag can affect how the system treats the SACL, with respect to access-control entry (ACE) inheritance. The
system ignores this flag if the SE_SACL_PRESENT flag is not set.

To set this flag, use the CSecurityDesc::SetSacl method.

Determines if the security descriptor contains a system access-control list (SACL).

Returns true if the security descriptor contains a SACL, false otherwise.

To set this flag, use the CSecurityDesc::SetSacl method.

CSecurityDesc::IsSaclProtected

bool IsSaclProtected() const throw();

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::IsSelfRelative

bool IsSelfRelative() const throw();

Return ValueReturn Value

CSecurityDesc::MakeAbsolute

bool MakeAbsolute() throw(...);

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::MakeSelfRelative

bool MakeSelfRelative() throw(...);

Determines if the system access-control list (SACL) is configured to prevent modifications.

Returns true if the SACL is configured to prevent the security descriptor from being modified by inheritable
access-control entries (ACEs). Returns false otherwise.

To set this flag, use the CSecurityDesc::SetSacl method.

This method supports automatic propagation of inheritable ACEs.

Determines if the security descriptor is in self-relative format.

Returns true if the security descriptor is in self-relative format with all the security information in a contiguous
block of memory. Returns false if the security descriptor is in absolute format. For more information, see
Absolute and Self-Relative Security Descriptors.

Call this method to convert the security descriptor to absolute format.

Returns true if the method succeeds, false otherwise.

A security descriptor in absolute format contains pointers to the information it contains, rather than the
information itself. A security descriptor in self-relative format contains the information in a contiguous block of
memory. In a self-relative security descriptor, a SECURITY_DESCRIPTOR structure always starts the information, but
the security descriptor's other components can follow the structure in any order. Instead of using memory
addresses, the components of the self-relative security descriptor are identified by offsets from the beginning of
the security descriptor. This format is useful when a security descriptor must be stored on a disk or transmitted
by means of a communications protocol. For more information, see Absolute and Self-Relative Security
Descriptors.

Call this method to convert the security descriptor to self-relative format.

https://docs.microsoft.com/windows/desktop/SecAuthZ/absolute-and-self-relative-security-descriptors
https://docs.microsoft.com/windows/desktop/SecAuthZ/absolute-and-self-relative-security-descriptors

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::operator =

CSecurityDesc& operator= (const SECURITY_DESCRIPTOR& rhs) throw(...);
CSecurityDesc& operator= (const CSecurityDesc& rhs) throw(...);

ParametersParameters

Return ValueReturn Value

CSecurityDesc::operator const SECURITY_DESCRIPTOR *

operator const SECURITY_DESCRIPTOR *() const throw();

CSecurityDesc::SetControl

bool SetControl(
 SECURITY_DESCRIPTOR_CONTROL ControlBitsOfInterest,
 SECURITY_DESCRIPTOR_CONTROL ControlBitsToSet) throw();

ParametersParameters

Return ValueReturn Value

Returns true if the method succeeds, false otherwise.

A security descriptor in absolute format contains pointers to the information it contains, rather than containing
the information itself. A security descriptor in self-relative format contains the information in a contiguous block
of memory. In a self-relative security descriptor, a SECURITY_DESCRIPTOR structure always starts the information,
but the security descriptor's other components can follow the structure in any order. Instead of using memory
addresses, the components of the security descriptor are identified by offsets from the beginning of the security
descriptor. This format is useful when a security descriptor must be stored on a disk or transmitted by means of
a communications protocol. For more information, see Absolute and Self-Relative Security Descriptors.

Assignment operator.

rhs
The SECURITY_DESCRIPTOR structure or CSecurityDesc object to assign to the CSecurityDesc object.

Returns the updated CSecurityDesc object.

Casts a value to a pointer to the SECURITY_DESCRIPTOR structure.

Sets the control bits of a security descriptor.

ControlBitsOfInterest
A SECURITY_DESCRIPTOR_CONTROL mask that indicates the control bits to set. For a list of the flags which
can be set, see SetSecurityDescriptorControl.

ControlBitsToSet
A SECURITY_DESCRIPTOR_CONTROL mask that indicates the new values for the control bits specified by the
ControlBitsOfInterest mask. This parameter can be a combination of the flags listed for the ControlBitsOfInterest
parameter.

Returns true on success, false on failure.

https://docs.microsoft.com/windows/desktop/SecAuthZ/absolute-and-self-relative-security-descriptors
https://docs.microsoft.com/windows/desktop/api/securitybaseapi/nf-securitybaseapi-setsecuritydescriptorcontrol

RemarksRemarks

CSecurityDesc::SetDacl

inline void SetDacl(
 bool bPresent = true,
 bool bDefaulted = false) throw(...);

inline void SetDacl(
 const CDacl& Dacl,
 bool bDefaulted = false) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSecurityDesc::SetGroup

bool SetGroup(const CSid& Sid, bool bDefaulted = false) throw(...);

ParametersParameters

This method calls SetSecurityDescriptorControl.

Sets information in a discretionary access-control list (DACL). If a DACL is already present in the security
descriptor, it is replaced.

Dacl
Reference to a CDacl object specifying the DACL for the security descriptor. This parameter must not be NULL.
To set a NULL DACL in the security descriptor, the first form of the method should be used with bPresent set to
false.

bPresent
Specifies a flag indicating the presence of a DACL in the security descriptor. If this parameter is true, the method
sets the SE_DACL_PRESENT flag in the SECURITY_DESCRIPTOR_CONTROL structure and uses the values in the Dacl
and bDefaulted parameters. If it is false, the method clears the SE_DACL_PRESENT flag, and bDefaulted is
ignored.

bDefaulted
Specifies a flag indicating the source of the DACL. If this flag is true, the DACL has been retrieved by some
default mechanism. If false, the DACL has been explicitly specified by a user. The method stores this value in the
SE_DACL_DEFAULTED flag of the SECURITY_DESCRIPTOR_CONTROL structure. If this parameter is not specified, the
SE_DACL_DEFAULTED flag is cleared.

Returns true on success, false on failure.

There is an important difference between an empty and a nonexistent DACL. When a DACL is empty, it contains
no access-control entries and no access rights have been explicitly granted. As a result, access to the object is
implicitly denied. When an object has no DACL, on the other hand, no protection is assigned to the object, and
any access request is granted.

Sets the primary group information of an absolute format security descriptor, replacing any primary group
information already present.

Sid
Reference to a CSid object for the security descriptor's new primary group. This parameter must not be NULL. A
security descriptor can be marked as not having a DACL or a SACL, but it must have a group and an owner, even

https://docs.microsoft.com/windows/desktop/api/securitybaseapi/nf-securitybaseapi-setsecuritydescriptorcontrol

Return ValueReturn Value

CSecurityDesc::SetOwner

bool SetOwner(const CSid& Sid, bool bDefaulted = false) throw(...);

ParametersParameters

Return ValueReturn Value

CSecurityDesc::SetSacl

bool SetSacl(const CSacl& Sacl, bool bDefaulted = false) throw(...);

ParametersParameters

Return ValueReturn Value

CSecurityDesc::ToString

it these are the NULL SID (which is a built-in S ID with a special meaning).

bDefaulted
Indicates whether the primary group information was derived from a default mechanism. If this value is true, it is
default information, and the method stores this value as the SE_GROUP_DEFAULTED flag in the
SECURITY_DESCRIPTOR_CONTROL structure. If this parameter is zero, the SE_GROUP_DEFAULTED flag is cleared.

Returns true on success, false on failure.

Sets the owner information of an absolute format security descriptor. It replaces any owner information already
present.

Sid
The CSid object for the security descriptor's new primary owner. This parameter must not be NULL.

bDefaulted
Indicates whether the owner information is derived from a default mechanism. If this value is true, it is default
information. The method stores this value as the SE_OWNER_DEFAULTED flag in the
SECURITY_DESCRIPTOR_CONTROL structure. If this parameter is zero, the SE_OWNER_DEFAULTED flag is cleared.

Returns true on success, false on failure.

Sets information in a system access-control list (SACL). If a SACL is already present in the security descriptor, it
is replaced.

Sacl
Pointer to an CSacl object specifying the SACL for the security descriptor. This parameter must not be NULL,
and must be a CSacl object. Unlike DACLs, there is no difference between NULL and an empty SACL, as SACL
objects do not specify access rights, only auditing information.

bDefaulted
Specifies a flag indicating the source of the SACL. If this flag is true, the SACL has been retrieved by some
default mechanism. If false, the SACL has been explicitly specified by a user. The method stores this value in the
SE_SACL_DEFAULTED flag of the SECURITY_DESCRIPTOR_CONTROL structure. If this parameter is not specified, the
SE_SACL_DEFAULTED flag is cleared.

Returns true on success, false on failure.

bool ToString(
 CString* pstr, SECURITY_INFORMATION si = OWNER_SECURITY_INFORMATION |
 GROUP_SECURITY_INFORMATION | DACL_SECURITY_INFORMATION |
 SACL_SECURITY_INFORMATION) const throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

VALUE MEANING

OWNER_SECURITY_INFORMATION Include the owner.

GROUP_SECURITY_INFORMATION Include the primary group.

DACL_SECURITY_INFORMATION Include the DACL.

SACL_SECURITY_INFORMATION Include the SACL.

See also

Converts a security descriptor to a string format.

pstr
Pointer to a null-terminated string which will receive the string-format security descriptor.

si
Specifies a combination of SECURITY_INFORMATION bit flags to indicate the components of the security
descriptor to include in the output string.

Returns true on success, false on failure.

Once the security descriptor is in string format, it can more easily be stored or transmitted. Use the
CSecurityDesc::FromString method to convert the string back into a security descriptor.

The si parameter can contain the following SECURITY_INFORMATION flags:

If the DACL is NULL and the SE_DACL_PRESENT control bit is set in the input security descriptor, the method
fails.

If the DACL is NULL and the SE_DACL_PRESENT control bit is not set in the input security descriptor, the
resulting security descriptor string does not have a D: component. See Security Descriptor String Format for
more details.

This method calls ConvertStringSecurityDescriptorToSecurityDescriptor.

Security Sample
SECURITY_DESCRIPTOR
Class Overview
Security Global Functions

https://docs.microsoft.com/windows/desktop/SecAuthZ/security-descriptor-string-format
https://docs.microsoft.com/windows/desktop/SecAuthZ/security-descriptor-string-format
https://docs.microsoft.com/windows/desktop/api/sddl/nf-sddl-convertstringsecuritydescriptortosecuritydescriptora
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_security_descriptor

CSid Class
3/4/2019 • 9 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CSid

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CSid::CSidArray An array of CSid objects.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSid::CSid The constructor.

CSid::~CSid The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSid::AccountName Returns the name of the account associated with the
CSid object.

CSid::Domain Returns the name of the domain associated with the
CSid object.

CSid::EqualPrefix Tests SID (security identifier) prefixes for equality.

CSid::GetLength Returns the length of the CSid object.

CSid::GetPSID Returns a pointer to a SID structure.

CSid::GetPSID_IDENTIFIER_AUTHORITY Returns a pointer to the SID_IDENTIFIER_AUTHORITY

structure.

This class is a wrapper for a SID (security identifier) structure.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csid-class.md

CSid::GetSubAuthority Returns a specified subauthority in a SID structure.

CSid::GetSubAuthorityCount Returns the subauthority count.

CSid::IsValid Tests the CSid object for validity.

CSid::LoadAccount Updates the CSid object given the account name and
domain, or an existing SID structure.

CSid::Sid Returns the ID string.

CSid::SidNameUse Returns a description of the state of the CSid object.

NAME DESCRIPTION

OperatorsOperators

operator = Assignment operator.

operator const SID * Casts a CSid object to a pointer to a SID structure.

Global OperatorsGlobal Operators

operator == Tests two security descriptor objects for equality

operator != Tests two security descriptor objects for inequality

operator < Compares relative value of two security descriptor objects.

operator > Compares relative value of two security descriptor objects.

operator <= Compares relative value of two security descriptor objects.

operator >= Compares relative value of two security descriptor objects.

Remarks

Requirements

CSid::AccountName

The SID structure is a variable-length structure used to uniquely identify users or groups.

Applications should not modify the SID structure directly, but instead use the methods provided in this
wrapper class. See also AtlGetOwnerSid, AtlSetGroupSid, AtlGetGroupSid, and AtlSetOwnerSid.

For an introduction to the access control model in Windows, see Access Control in the Windows SDK.

Header: atlsecurity.h

Returns the name of the account associated with the CSid object.

https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control

LPCTSTR AccountName() const throw(...);

Return ValueReturn Value

RemarksRemarks

CSid::CSid

CSid() throw();
CSid(const SID& rhs) throw(...);
CSid(const CSid& rhs) throw(...);

CSid(
 const SID_IDENTIFIER_AUTHORITY& IdentifierAuthority,
 BYTE nSubAuthorityCount,
 ...) throw(...);

explicit CSid(
 LPCTSTR pszAccountName,
 LPCTSTR pszSystem = NULL) throw(...);

explicit CSid(
 const SID* pSid,
 LPCTSTR pszSystem = NULL) throw(...);

ParametersParameters

RemarksRemarks

Returns the LPCTSTR pointing to the name of the account.

This method attempts to find a name for the specified SID (security identifier). For full details, see
LookupAccountSid.

If no account name for the SID can be found, AccountName returns an empty string. This can occur if a
network timeout prevents this method from finding the name. It also occurs for security identifiers with no
corresponding account name, such as a logon SID that identifies a logon session.

The constructor.

rhs
An existing CSid object or SID (security identifier) structure.

IdentifierAuthority
The authority.

nSubAuthorityCount
The subauthority count.

pszAccountName
The account name.

pszSystem
The system name. This string can be the name of a remote computer. If this string is NULL, the local system
is used instead.

pSid
A pointer to a SID structure.

The constructor initializes the CSid object, setting an internal data member to SidTypeInvalid, or by copying
the settings from an existing CSid , SID , or existing account.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-lookupaccountsida

CSid::~CSid

virtual ~CSid() throw();

RemarksRemarks

CSid::CSidArray

typedef CAtlArray<CSid> CSidArray;

RemarksRemarks

CSid::Domain

LPCTSTR Domain() const throw(...);

Return ValueReturn Value

RemarksRemarks

CSid::EqualPrefix

bool EqualPrefix(const SID& rhs) const throw();
bool EqualPrefix(const CSid& rhs) const throw();

ParametersParameters

Return ValueReturn Value

If initialization fails, the constructor will throw a CAtlException Class.

The destructor.

The destructor frees any resources acquired by the object.

An array of CSid objects.

This typedef specifies the array type that can be used to retrieve security identifiers from an ACL (access-
control list). See CAcl::GetAclEntries.

Returns the name of the domain associated with the CSid object.

Returns the LPCTSTR pointing to the domain.

This method attempts to find a name for the specified SID (security identifier). For full details, see
LookupAccountSid.

If no account name for the SID can be found, Domain returns the domain as an empty string. This can occur
if a network timeout prevents this method from finding the name. It also occurs for security identifiers with
no corresponding account name, such as a logon SID that identifies a logon session.

Tests SID (security identifier) prefixes for equality.

rhs
The SID (security identifier) structure or CSid object to compare.

Returns TRUE on success, FALSE on failure.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-lookupaccountsida

RemarksRemarks

CSid::GetLength

UINT GetLength() const throw();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CSid::GetPSID

const SID* GetPSID() const throw(...);

Return ValueReturn Value

CSid::GetPSID_IDENTIFIER_AUTHORITY

const SID_IDENTIFIER_AUTHORITY* GetPSID_IDENTIFIER_AUTHORITY() const throw();

Return ValueReturn Value

NOTENOTE

CSid::GetSubAuthority

See EqualPrefixSid in the Windows SDK for more details.

Returns the length of the CSid object.

Returns the length in bytes of the CSid object.

If the CSid structure is not valid, the return value is undefined. Before calling GetLength , use the
CSid::IsValid member function to verify that CSid is valid.

Under debug builds the function will cause an ASSERT if the CSid object is not valid.

Returns a pointer to a SID (security identifier) structure.

Returns the address of the CSid object's underlying SID structure.

Returns a pointer to the SID_IDENTIFIER_AUTHORITY structure.

If the method succeeds, it returns the address of the SID_IDENTIFIER_AUTHORITY structure. If it fails, the return
value is undefined. Failure may occur if the CSid object is not valid, in which case the CSid::IsValid method
returns FALSE. The function GetLastError can be called for extended error information.

Under debug builds the function will cause an ASSERT if the CSid object is not valid.

Returns a specified subauthority in a SID (security identifier) structure.

https://docs.microsoft.com/windows/desktop/api/securitybaseapi/nf-securitybaseapi-equalprefixsid

DWORD GetSubAuthority(DWORD nSubAuthority) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CSid::GetSubAuthorityCount

UCHAR GetSubAuthorityCount() const throw();

Return ValueReturn Value

NOTENOTE

CSid::IsValid

bool IsValid() const throw();

Return ValueReturn Value

RemarksRemarks

CSid::LoadAccount

nSubAuthority
The subauthority.

Returns the subauthority referenced by nSubAuthority. The subauthority value is a relative identifier (RID).

The nSubAuthority parameter specifies an index value identifying the subauthority array element the method
will return. The method performs no validation tests on this value. An application can call
CSid::GetSubAuthorityCount to discover the range of acceptable values.

Under debug builds the function will cause an ASSERT if the CSid object is not valid.

Returns the subauthority count.

If the method succeeds, the return value is the subauthority count.

If the method fails, the return value is undefined. The method fails if the CSid object is invalid. To get
extended error information, call GetLastError .

Under debug builds the function will cause an ASSERT if the CSid object is not valid.

Tests the CSid object for validity.

Returns TRUE if the CSid object is valid, FALSE if not. There is no extended error information for this
method; do not call GetLastError .

The IsValid method validates the CSid object by verifying that the revision number is within a known
range and that the number of subauthorities is less than the maximum.

bool LoadAccount(
 LPCTSTR pszAccountName,
 LPCTSTR pszSystem = NULL) throw(...);

bool LoadAccount(
 const SID* pSid,
 LPCTSTR pszSystem = NULL) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSid::operator =

CSid& operator= (const CSid& rhs) throw(...);
CSid& operator= (const SID& rhs) throw(...);

ParametersParameters

Return ValueReturn Value

CSid::operator ==

bool operator==(
 const CSid& lhs,
 const CSid& rhs) throw();

ParametersParameters

Updates the CSid object given the account name and domain, or an existing SID (security identifier)
structure.

pszAccountName
The account name.

pszSystem
The system name. This string can be the name of a remote computer. If this string is NULL, the local system
is used instead.

pSid
A pointer to a S ID structure.

Returns TRUE on success, FALSE on failure. To get extended error information, call GetLastError .

LoadAccount attempts to find a security identifier for the specified name. See LookupAccountSid for more
details.

Assignment operator.

rhs
The SID (security identifier) or CSid to assign to the CSid object.

Returns a reference to the updated CSid object.

Tests two security descriptor objects for equality.

lhs
The SID (security identifier) or CSid that appears on the left side of the == operator.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_sid
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-lookupaccountsida

Return ValueReturn Value

CSid::operator !=

bool operator!=(
 const CSid& lhs,
 const CSid& rhs) throw();

ParametersParameters

Return ValueReturn Value

CSid::operator <

bool operator<(
 const CSid& lhs,
 const CSid& rhs) throw();

ParametersParameters

Return ValueReturn Value

CSid::operator <=

bool operator<=(
 const CSid& lhs,
 const CSid& rhs) throw();

ParametersParameters

rhs
The SID (security identifier) or CSid that appears on the right side of the == operator.

TRUE if the security descriptors are equal, otherwise FALSE.

Tests two security descriptor objects for inequality.

lhs
The SID (security identifier) or CSid that appears on the left side of the != operator.

rhs
The SID (security identifier) or CSid that appears on the right side of the != operator.

TRUE if the security descriptors are not equal, otherwise FALSE.

Compares relative value of two security descriptor objects.

lhs
The SID (security identifier) or CSid that appears on the left side of the != operator.

rhs
The SID (security identifier) or CSid that appears on the right side of the != operator.

TRUE if lhs is less than rhs, otherwise FALSE.

Compares relative value of two security descriptor objects.

lhs
The SID (security identifier) or CSid that appears on the left side of the != operator.

Return ValueReturn Value

CSid::operator >

bool operator>(
 const CSid& lhs,
 const CSid& rhs) throw();

ParametersParameters

Return ValueReturn Value

CSid::operator >=

bool operator>=(
 const CSid& lhs,
 const CSid& rhs) throw());

ParametersParameters

Return ValueReturn Value

CSid::operator const SID *

operator const SID *() const throw(...);

RemarksRemarks

CSid::Sid

rhs
The SID (security identifier) or CSid that appears on the right side of the != operator.

TRUE if lhs is less than or equal to rhs, otherwise FALSE.

Compares relative value of two security descriptor objects.

lhs
The SID (security identifier) or CSid that appears on the left side of the != operator.

rhs
The SID (security identifier) or CSid that appears on the right side of the != operator.

TRUE if lhs is greater than rhs, otherwise FALSE.

Compares relative value of two security descriptor objects.

lhs
The SID (security identifier) or CSid that appears on the left side of the != operator.

rhs
The SID (security identifier) or CSid that appears on the right side of the != operator.

TRUE if lhs is greater than or equal to rhs, otherwise FALSE.

Casts a CSid object to a pointer to a SID (security identifier) structure.

Returns the address of the SID structure.

LPCTSTR Sid() const throw(...);

Return ValueReturn Value

CSid::SidNameUse

SID_NAME_USE SidNameUse() const throw();

Return ValueReturn Value

VALUE DESCRIPTION

SidTypeUser Indicates a user SID (security identifier).

SidTypeGroup Indicates a group SID .

SidTypeDomain Indicates a domain SID .

SidTypeAlias Indicates an alias SID .

SidTypeWellKnownGroup Indicates a SID for a well-known group.

SidTypeDeletedAccount Indicates a SID for a deleted account.

SidTypeInvalid Indicates an invalid SID .

SidTypeUnknown Indicates an unknown SID type.

SidTypeComputer Indicates a SID for a computer.

RemarksRemarks

See also

Returns the SID (security identifier) structure as a string.

Returns the SID structure as a string in a format suitable for display, storage, or transmission. Equivalent to
ConvertSidToStringSid.

Returns a description of the state of the CSid object.

Returns the value of the data member that stores a value describing the state of the CSid object.

Call CSid::LoadAccount to update the CSid object before calling SidNameUse to return its state. SidNameUse

does not change the state of the object (by calling to LookupAccountName or LookupAccountSid), but only
returns the current state.

Security Sample
Class Overview
Security Global Functions
Operators

https://docs.microsoft.com/windows/desktop/api/sddl/nf-sddl-convertsidtostringsida
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CSimpleArray Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
template <class T, class TEqual = CSimpleArrayEqualHelper<T>>
class CSimpleArray

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSimpleArray::CSimpleArray The constructor for the simple array.

CSimpleArray::~CSimpleArray The destructor for the simple array.

Public MethodsPublic Methods

NAME DESCRIPTION

CSimpleArray::Add Adds a new element to the array.

CSimpleArray::Find Finds an element in the array.

CSimpleArray::GetData Returns a pointer to the data stored in the array.

CSimpleArray::GetSize Returns the number of elements stored in the array.

CSimpleArray::Remove Removes a given element from the array.

CSimpleArray::RemoveAll Removes all elements from the array.

CSimpleArray::RemoveAt Removes the specified element from the array.

CSimpleArray::SetAtIndex Sets the specified element in the array.

Public OperatorsPublic Operators

This class provides methods for managing a simple array.

T
The type of data to store in the array.

TEqual
A trait object, defining the equality test for elements of type T.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csimplearray-class.md

NAME DESCRIPTION

CSimpleArray::operator[] Retrieves an element from the array.

CSimpleArray::operator = Assignment operator.

Remarks

Requirements

Example
// Create an array of integers
CSimpleArray<int> iArray;

// Create an array of char pointers
// and use a new equality function
CSimpleArray<char *, MyEqualityEqualHelper<char *> > cMyArray;

CSimpleArray::Add

BOOL Add(const T& t);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Create an array of integers and add some elements
CSimpleArray<int> iMyArray;
for (int i = 0; i < 10; i++)
 iMyArray.Add(i);

CSimpleArray::CSimpleArray

CSimpleArray provides methods for creating and managing a simple array, of any given type T .

The parameter TEqual provides a means of defining an equality function for two elements of type T . By
creating a class similar to CSimpleArrayEqualHelper, it is possible to alter the behavior of the equality test for
any given array. For example, when dealing with an array of pointers, it may be useful to define the equality as
depending on the values the pointers reference. The default implementation utilizes operator=().

Both CSimpleArray and CSimpleMap are designed for a small number of elements. CAtlArray and CAtlMap
should be used when the array contains a large number of elements.

Header: atlsimpcoll.h

Adds a new element to the array.

t
The element to add to the array.

Returns TRUE if the element is successfully added to the array, FALSE otherwise.

CSimpleArray(const CSimpleArray<T, TEqual>& src);
CSimpleArray();

ParametersParameters

RemarksRemarks

CSimpleArray::~CSimpleArray

~CSimpleArray();

RemarksRemarks

CSimpleArray::Find

int Find(const T& t) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

// Create an array of floats and search for a particular element

CSimpleArray<float> fMyArray;

for (int i = 0; i < 10; i++)
 fMyArray.Add((float)i * 100);

int e = fMyArray.Find(200);
if (e == -1)
 _tprintf_s(_T("Could not find element\n"));
else
 _tprintf_s(_T("Found the element at location %d\n"), e);

CSimpleArray::GetData

The constructor for the array object.

src
An existing CSimpleArray object.

Initializes the data members, creating a new empty CSimpleArray object, or a copy of an existing CSimpleArray

object.

The destructor.

Frees all allocated resources.

Finds an element in the array.

t
The element for which to search.

Returns the index of the found element, or -1 if the element is not found.

Returns a pointer to the data stored in the array.

T* GetData() const;

Return ValueReturn Value

CSimpleArray::GetSize

int GetSize() const;

Return ValueReturn Value

CSimpleArray::operator []

T& operator[](int nindex);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Create an array and display its contents
 CSimpleArray<int> iMySampleArray;

 for (int i = 0; i < 10; i++)
 iMySampleArray.Add(i);

 for (int i = 0; i < iMySampleArray.GetSize(); i++)
 _tprintf_s(_T("Array index %d contains %d\n"), i, iMySampleArray[i]);

CSimpleArray::operator =

CSimpleArray<T, TEqual>
& operator=(
 const CSimpleArray<T, TEqual>& src);

ParametersParameters

Return ValueReturn Value

Returns a pointer to the data in the array.

Returns the number of elements stored in the array.

Returns the number of elements stored in the array.

Retrieves an element from the array.

nIndex
The element index.

Returns the element of the array referenced by nIndex.

Assignment operator.

src
The array to copy.

Returns a pointer to the updated CSimpleArray object.

RemarksRemarks

ExampleExample

// Create an array of chars and copy it to a second array
CSimpleArray<char> cMyArray1;
cMyArray1.Add('a');
CSimpleArray<char> cMyArray2;
cMyArray2 = cMyArray1;
ATLASSERT(cMyArray2[0] == 'a');

CSimpleArray::Remove

BOOL Remove(const T& t);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSimpleArray::RemoveAll

void RemoveAll();

RemarksRemarks

CSimpleArray::RemoveAt

BOOL RemoveAtint nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Copies all elements from the CSimpleArray object referenced by src into the current array object, replacing all
existing data.

Removes a given element from the array.

t
The element to remove from the array.

Returns TRUE if the element is found and removed, FALSE otherwise.

When an element is removed, the remaining elements in the array are renumbered to fill the empty space.

Removes all elements from the array.

Removes all elements currently stored in the array.

Removes the specified element from the array.

nIndex
Index pointing to the element to remove.

Returns TRUE if the element was removed, FALSE if the index was invalid.

 CSimpleArray::SetAtIndex

BOOL SetAtIndex(
 int nIndex,
 const T& t);

ParametersParameters

Return ValueReturn Value

See also

When an element is removed, the remaining elements in the array are renumbered to fill the empty space.

Set the specified element in the array.

nIndex
The index of the element to change.

t
The value to assign to the specified element.

Returns TRUE if successful, FALSE if the index was not valid.

Class Overview

CSimpleArrayEqualHelper Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class T>
class CSimpleArrayEqualHelper

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CSimpleArrayEqualHelper::IsEqual (Static) Tests two CSimpleArray object elements for equality.

Remarks

Requirements

CSimpleArrayEqualHelper::IsEqual

static bool IsEqual(
 const T& t1,
 const T& t2);

ParametersParameters

Return ValueReturn Value

This class is a helper for the CSimpleArray class.

T
A derived class.

This traits class is a supplement to the CSimpleArray class. It provides a method for comparing two elements
stored in a CSimpleArray object. By default, the elements are compared using operator=(), but if the array
contains complex data types that lack their own equality operator, you will need to override this class.

Header: atlsimpcoll.h

Tests two CSimpleArray object elements for equality.

t1
An object of type T.

t2
An object of type T.

Returns true if the elements are equal, false otherwise.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csimplearrayequalhelper-class.md

See also
CSimpleArray Class
CSimpleArrayEqualHelperFalse Class
Class Overview

CSimpleArrayEqualHelperFalse Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class T>
class CSimpleArrayEqualHelperFalse

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CSimpleArrayEqualHelperFalse::IsEqual (Static) Returns false.

Remarks

Requirements

CSimpleArrayEqualHelperFalse::IsEqual

static bool IsEqual(const T&, const T&);

Return ValueReturn Value

RemarksRemarks

See also

This class is a helper for the CSimpleArray class.

T
A derived class.

This traits class is a complement to the CSimpleArray class. It always returns false, and in addition, will call
ATLASSERT with an argument of false if it is ever referenced. In situations where the equality test is not sufficiently

defined, this class allows an array containing elements to operate correctly for most methods but fail in a well-
defined manner for methods that depend on comparisons such as CSimpleArray::Find.

Header: atlsimpcoll.h

Returns false.

Returns false.

This method always returns false, and will call ATLASSERT with an argument of false if referenced. The purpose of
CSimpleArrayEqualHelperFalse::IsEqual is to force methods using comparisons to fail in a well-defined manner

when equality tests have not been adequately defined.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csimplearrayequalhelperfalse-class.md

CSimpleArrayEqualHelper Class
Class Overview

CSimpleDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <WORD t_wDlgTemplateID, BOOL t_bCenter = TRUE>
class CSimpleDialog : public CDialogImplBase

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CSimpleDialog::DoModal Creates a modal dialog box.

Remarks

Inheritance Hierarchy

Requirements

CSimpleDialog::DoModal

This class implements a basic modal dialog box.

t_wDlgTemplateID

The resource ID of the dialog template resource.

t_bCenter
TRUE if the dialog object is to be centered on the owner window; otherwise FALSE.

Implements a modal dialog box with basic functionality. CSimpleDialog provides support for Windows common
controls only. To create and display a modal dialog box, create an instance of this class, providing the name of an
existing resource template for the dialog box. The dialog box object closes when the user clicks any control with a
pre-defined value (such as IDOK or IDCANCEL).

CSimpleDialog allows you to create only modal dialog boxes. CSimpleDialog provides the dialog box procedure,
which uses the default message map to direct messages to the appropriate handlers.

See Implementing a Dialog Box for more information.

CDialogImplBase

CSimpleDialog

Header: atlwin.h

Invokes a modal dialog box and returns the dialog-box result when done.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csimpledialog-class.md

INT_PTR DoModal(HWND hWndParent = ::GetActiveWindow());

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

hWndParent
A handle to the parent of the dialog box. If no value is provided, the parent is set to the current active window.

If successful, the return value is the resource ID of the control that dismissed the dialog box.

If the function fails, the return value is -1. To get extended error information, call GetLastError .

This method handles all interaction with the user while the dialog box is active. This is what makes the dialog box
modal; that is, the user cannot interact with other windows until the dialog box is closed.

Class Overview

CSimpleMap Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
template <class TKey, class TVal, class TEqual = CSimpleMapEqualHelper<TKey, TVal>>
class CSimpleMap

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CSimpleMap::_ArrayElementType Typedef for the value type.

CSimpleMap::_ArrayKeyType Typedef for the key type.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSimpleMap::CSimpleMap The constructor.

CSimpleMap::~CSimpleMap The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSimpleMap::Add Adds a key and associated value to the map array.

CSimpleMap::FindKey Finds a specific key.

CSimpleMap::FindVal Finds a specific value.

CSimpleMap::GetKeyAt Retrieves the specified key.

This class provides support for a simple mapping array.

TKey
The key element type.

TVal
The value element type.

TEqual
A trait object, defining the equality test for elements of type T .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csimplemap-class.md

CSimpleMap::GetSize Returns the number of entries in the mapping array.

CSimpleMap::GetValueAt Retrieves the specified value.

CSimpleMap::Lookup Returns the value associated with the given key.

CSimpleMap::Remove Removes a key and matching value.

CSimpleMap::RemoveAll Removes all keys and values.

CSimpleMap::RemoveAt Removes a specific key and matching value.

CSimpleMap::ReverseLookup Returns the key associated with the given value.

CSimpleMap::SetAt Sets the value associated with the given key.

CSimpleMap::SetAtIndex Sets the specific key and value.

NAME DESCRIPTION

Remarks

Requirements

Example
// Create a map with an integer key and character pointer value
CSimpleMap<int, char *> iArray;

CSimpleMap::Add

BOOL Add(const TKey& key, const TVal& val);

ParametersParameters

CSimpleMap provides support for a simple mapping array of any given type T , managing an unordered array
of key elements and their associated values.

The parameter TEqual provides a means of defining an equality function for two elements of type T . By
creating a class similar to CSimpleMapEqualHelper, it is possible to alter the behavior of the equality test for
any given array. For example, when dealing with an array of pointers, it may be useful to define the equality as
depending on the values the pointers reference. The default implementation utilizes operator==().

Both CSimpleMap and CSimpleArray are provided for compatibility with previous ATL releases, and more
complete and efficient collection implementations are provided by CAtlArray and CAtlMap.

Unlike other map collections in ATL and MFC, this class is implemented with a simple array, and lookup
searches require a linear search. CAtlMap should be used when the array contains a large number of elements.

Header: atlsimpcoll.h

Adds a key and associated value to the map array.

Return ValueReturn Value

RemarksRemarks

CSimpleMap::_ArrayElementType

typedef TVal _ArrayElementType;

CSimpleMap::_ArrayKeyType

typedef TKey _ArrayKeyType;

CSimpleMap::CSimpleMap

CSimpleMap();

RemarksRemarks

CSimpleMap::~CSimpleMap

~CSimpleMap();

RemarksRemarks

CSimpleMap::FindKey

int FindKey(const TKey& key) const;

key
The key.

val
The associated value.

Returns TRUE if the key and value were successfully added, FALSE otherwise.

Each key and value pair added causes the mapping array memory to be freed and reallocated, in order to
ensure the data for each is always stored contiguously. That is, the second key element always directly follows
the first key element in memory and so on.

A typedef for the key type.

A typedef for the value type.

The constructor.

Initializes the data members.

The destructor.

Frees all allocated resources.

Finds a specific key.

ParametersParameters

Return ValueReturn Value

CSimpleMap::FindVal

int FindVal(const TVal& val) const;

ParametersParameters

Return ValueReturn Value

CSimpleMap::GetKeyAt

TKey& GetKeyAt(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSimpleMap::GetSize

int GetSize() const;

Return ValueReturn Value

CSimpleMap::GetValueAt

TVal& GetValueAt(int nIndex) const;

key
The key to search for.

Returns the index of the key if found, otherwise returns -1.

Finds a specific value.

val
The value for which to search.

Returns the index of the value if it is found, otherwise returns -1.

Retrieves the key at the specified index.

nIndex
The index of the key to return.

Returns the key referenced by nIndex.

The index passed by nIndex must be valid for the return value to be meaningful.

Returns the number of entries in the mapping array.

Returns the number of entries (a key and value is one entry) in the mapping array.

Retrieves the value at the specific index.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSimpleMap::Lookup

TVal Lookup(const TKey& key) const;

ParametersParameters

Return ValueReturn Value

CSimpleMap::Remove

BOOL Remove(const TKey& key);

ParametersParameters

Return ValueReturn Value

CSimpleMap::RemoveAll

void RemoveAll();

RemarksRemarks

CSimpleMap::RemoveAt

BOOL RemoveAt(int nIndex);

nIndex
The index of the value to return.

Returns the value referenced by nIndex.

The index passed by nIndex must be valid for the return value to be meaningful.

Returns the value associated with the given key.

key
The key.

Returns the associated value. If no matching key is found, NULL is returned.

Removes a key and matching value.

key
The key.

Returns TRUE if the key, and matching value, were successfully removed, FALSE otherwise.

Removes all keys and values.

Removes all keys and values from the mapping array object.

Removes a key and associated value at the specified index.

ParametersParameters

Return ValueReturn Value

CSimpleMap::ReverseLookup

TKey ReverseLookup(const TVal& val) const;

ParametersParameters

Return ValueReturn Value

CSimpleMap::SetAt

BOOL SetAt(const TKey& key, const TVal& val);

ParametersParameters

Return ValueReturn Value

CSimpleMap::SetAtIndex

BOOL SetAtIndex(
 int nIndex,
 const TKey& key,
 const TVal& val);

ParametersParameters

nIndex
The index of the key and associated value to remove.

Returns TRUE on success, FALSE if the index specified is an invalid index.

Returns the key associated with the given value.

val
The value.

Returns the associated key. If no matching key is found, NULL is returned.

Sets the value associated with the given key.

key
The key.

val
The new value to assign.

Returns TRUE if the key was found, and the value was successfully changed, FALSE otherwise.

Sets the key and value at a specified index.

nIndex
The index, referencing the key and value pairing to change.

key
The new key.

val

Return ValueReturn Value

RemarksRemarks

See also

The new value.

Returns TRUE if successful, FALSE if the index was not valid.

Updates both the key and value pointed to by nIndex.

Class Overview

CSimpleMapEqualHelper Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class TKey, class TVal>
class CSimpleMapEqualHelper

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CSimpleMapEqualHelper::IsEqualKey (Static) Tests two keys for equality.

CSimpleMapEqualHelper::IsEqualValue (Static) Tests two values for equality.

Remarks

Requirements

CSimpleMapEqualHelper::IsEqualKey

static bool IsEqualKey(const TKey& k1, const TKey& k2);

ParametersParameters

This class is a helper for the CSimpleMap class.

TKey
The key element.

TVal
The value element.

This traits class is a supplement to the CSimpleMap class. It provides methods for comparing two CSimpleMap

object elements (specifically, the key and value components) for equality. By default, the keys and values are
compared using operator==(), but if the map contains complex data types that lack their own equality operator,
this class can be overridden to provide the extra required functionality.

Header: atlsimpcoll.h

Tests two keys for equality.

k1
The first key.

k2

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csimplemapequalhelper-class.md

Return ValueReturn Value

CSimpleMapEqualHelper::IsEqualValue

static bool IsEqualValue(const TVal& v1, const TVal& v2);

ParametersParameters

Return ValueReturn Value

See also

The second key.

Returns true if the keys are equal, false otherwise.

Tests two values for equality.

v1
The first value.

v2
The second value.

Returns true if the values are equal, false otherwise.

CSimpleMapEqualHelperFalse Class
Class Overview

CSimpleMapEqualHelperFalse Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class TKey, class TVal>
class CSimpleMapEqualHelperFalse

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CSimpleMapEqualHelperFalse::IsEqualKey (Static) Tests two keys for equality.

CSimpleMapEqualHelperFalse::IsEqualValue (Static) Returns false.

Remarks

Requirements

CSimpleMapEqualHelperFalse::IsEqualKey

static bool IsEqualKey(const TKey& k1, const TKey& k2);

ParametersParameters

Return ValueReturn Value

This class is a helper for the CSimpleMap class.

This traits class is a supplement to the CSimpleMap class. It provides a method for comparing two elements
contained in the CSimpleMap object, specifically two value elements or two key elements.

The value comparison will always return false, and in addition, will call ATLASSERT with an argument of false if it is
ever referenced. In situations where the equality test is not sufficiently defined, this class allows a map containing
key/value pairs to operate correctly for most methods but fail in a well-defined manner for methods that depend
on comparisons such as CSimpleMap::FindVal.

Header: atlsimpcoll.h

Tests two keys for equality.

k1
The first key.

k2
The second key.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csimplemapequalhelperfalse-class.md

RemarksRemarks

CSimpleMapEqualHelperFalse::IsEqualValue

static bool IsEqualValue(const TVal&, const TVal&);

Return ValueReturn Value

RemarksRemarks

See also

Returns true if the keys are equal, false otherwise.

This method calls CSimpleArrayEqualHelper.

Returns false.

Returns false.

This method always returns false, and will call ATLASSERT with an argument of false if it is ever referenced. The
purpose of CSimpleMapEqualHelperFalse::IsEqualValue is to force methods using comparisons to fail in a well-
defined manner when equality tests have not been adequately defined.

CSimpleMapEqualHelper Class
Class Overview

CSnapInItemImpl Class
3/4/2019 • 10 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T, BOOL bIsExtension = FALSE>
class ATL_NO_VTABLE CSnapInItemImpl : public CSnapInItem

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSnapInItemImpl::CSnapInItemImpl Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSnapInItemImpl::AddMenuItems Adds menu items to a context menu.

CSnapInItemImpl::Command Called by the console when a custom menu item is selected.

CSnapInItemImpl::CreatePropertyPages Adds pages to the property sheet of the snap-in.

CSnapInItemImpl::FillData Copies information on the snap-in object into a specified
stream.

CSnapInItemImpl::GetResultPaneInfo Retrieves the RESULTDATAITEM structure of the snap-in.

CSnapInItemImpl::GetResultViewType Determines the type of view used by the result pane.

CSnapInItemImpl::GetScopePaneInfo Retrieves the SCOPEDATAITEM structure of the snap-in.

This class provides methods for implementing a snap-in node object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from CSnapInItemImpl .

bIsExtension
TRUE if the object is a snap-in extension; otherwise FALSE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csnapinitemimpl-class.md

CSnapInItemImpl::Notify Called by the console to notify the snap-in of actions taken by
the user.

CSnapInItemImpl::QueryPagesFor Called to see if the snap-in node supports property pages.

CSnapInItemImpl::SetMenuInsertionFlags Modifies the menu insertion flags for a snap-in object.

CSnapInItemImpl::SetToolbarButtonInfo Sets the information of the specified toolbar button.

CSnapInItemImpl::UpdateMenuState Updates the state of a context menu item.

CSnapInItemImpl::UpdateToolbarButton Updates the state of the specified toolbar button.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CSnapInItemImpl::m_bstrDisplayName The name of the snap-in object.

CSnapInItemImpl::m_resultDataItem The Windows RESULTDATAITEM structure used by the
CSnapInItemImpl object.

CSnapInItemImpl::m_scopeDataItem The Windows SCOPEDATAITEM structure used by the
CSnapInItemImpl object.

Remarks

Inheritance Hierarchy

Requirements

CSnapInItemImpl::AddMenuItems

AddMenuItems(
 LPCONTEXTMENUCALLBACK piCallback,
 long* pInsertionAllowed,
 DATA_OBJECT_TYPES type);

CSnapInItemImpl provides a basic implementation for a snap-in node object, such as adding menu items and
toolbars, and forwarding commands for the snap-in node to the appropriate handler function. These features are
implemented using several different interfaces and map types. The default implementation handles notifications
sent to the node object by determining the correct instance of the derived class and then forwarding the message
to the correct instance.

CSnapInItem

CSnapInItemImpl

Header: atlsnap.h

This method implements the Win32 function IExtendContextMenu::AddMenuItems.

https://docs.microsoft.com/windows/desktop/api/mmc/nf-mmc-iextendcontextmenu-addmenuitems

ParametersParameters

CSnapInItemImpl::Command

Command(long lCommandID, DATA_OBJECT_TYPES type);

ParametersParameters

CSnapInItemImpl::CreatePropertyPages

CreatePropertyPages(
 LPPROPERTYSHEETCALLBACK lpProvider,
 long handle,
 IUnknown* pUnk,
 DATA_OBJECT_TYPES type);

piCallback
[in] Pointer to the IContextMenuCallback that can add items to the context menu.

pInsertionAllowed
[in, out] Identifies Microsoft Management Console (MMC)-defined, menu-item insertion points that can be used.
This can be a combination of the following flags:

CCM_INSERTIONALLOWED_TOP Items can be inserted at the top of a context menu.

CCM_INSERTIONALLOWED_NEW Items can be inserted in the Create New submenu.

CCM_INSERTIONALLOWED_TASK Items can be inserted in the Task submenu.

CCM_INSERTIONALLOWED_VIEW Items can be inserted in the toolbar view menu or in the View
submenu of the result pane context menu.

type
[in] Specifies the type of object. It can have one of the following values:

CCT_SCOPE Data object for scope pane context.

CCT_RESULT Data object for result pane context.

CCT_SNAPIN_MANAGER Data object for snap-in manager context.

CCT_UNINITIALIZED Data object has an invalid type.

This method implements the Win32 function IExtendContextMenu::Command.

lCommandID
[in] Specifies the command identifier of the menu item.

type
[in] Specifies the type of object. It can have one of the following values:

CCT_SCOPE Data object for scope pane context.

CCT_RESULT Data object for result pane context.

CCT_SNAPIN_MANAGER Data object for snap-in manager context.

CCT_UNINITIALIZED Data object has an invalid type.

This method implements the Win32 function IExtendPropertySheet::CreatePropertyPages.

https://docs.microsoft.com/windows/desktop/api/mmc/nf-mmc-iextendcontextmenu-command
https://docs.microsoft.com/windows/desktop/api/mmc/nn-mmc-iextendpropertysheet2

ParametersParameters

CSnapInItemImpl::CSnapInItemImpl

CSnapInItemImpl();

CSnapInItemImpl::FillData

FillData(CLIPFORMAT cf, LPSTREAM pStream);

ParametersParameters

RemarksRemarks

CSnapInItemImpl::GetResultViewType

GetResultViewType(
 LPOLESTR* ppViewType,
 long* pViewOptions);

ParametersParameters

lpProvider
[in] Pointer to the IPropertySheetCallback interface.

handle
[in] Specifies the handle used to route the MMCN_PROPERTY_CHANGE notification message to the appropriate
data class.

pUnk
[in] Pointer to the IExtendPropertySheet interface on the object that contains context information about the node.

type
[in] Specifies the type of object. It can have one of the following values:

CCT_SCOPE Data object for scope pane context.

CCT_RESULT Data object for result pane context.

CCT_SNAPIN_MANAGER Data object for snap-in manager context.

CCT_UNINITIALIZED Data object has an invalid type.

Constructs a CSnapInItemImpl object.

This function is called to retrieve information about the item.

cf
[in] The format (text, rich text, or rich text with OLE items) of the Clipboard.

pStream
[in] A pointer to the stream containing the object data.

To properly implement this function, copy the correct information into the stream (pStream), depending on the
Clipboard format indicated by cf.

Call this function to retrieve the type of view for the result pane of the snap-in object.

CSnapInItemImpl::GetScopePaneInfo

GetScopePaneInfo (SCOPEDATAITEM* pScopeDataItem);

ParametersParameters

CSnapInItemImpl::GetResultPaneInfo

GetResultPaneInfo (RESULTDATAITEM* pResultDataItem);

ParametersParameters

CSnapInItemImpl::m_bstrDisplayName

CComBSTR m_bstrDisplayName;

CSnapInItemImpl::m_scopeDataItem

SCOPEDATAITEM m_scopeDataItem;

CSnapInItemImpl::m_resultDataItem

RESULTDATAITEM m_resultDataItem;

ppViewType
[out] Pointer to the address of the returned view type.

pViewOptions
[out] Pointer to the MMC_VIEW_OPTIONS enumeration, which provides the console with options specified by
the owning snap-in. This value can be one of the following:

MMC_VIEW_OPTIONS_NOLISTVIEWS = 0x00000001 Tells the console to refrain from presenting
standard list view choices in the View menu. Allows the snap-in to display its own custom views only in the
result view pane. This is the only option flag defined at this time.

MMC_VIEW_OPTIONS_NONE = 0 Allows the default view options.

Call this function to retrieve the SCOPEDATAITEM structure of the snap-in.

pScopeDataItem
[out] A pointer to the SCOPEDATAITEM structure of the CSnapInItemImpl object.

Call this function to retrieve the RESULTDATAITEM structure of the snap-in.

pResultDataItem
[out] A pointer to the RESULTDATAITEM structure of the CSnapInItemImpl object.

Contains the string displayed for the node item.

The SCOPEDATAITEM structure of the snap-in data object.

The RESULTDATAITEM structure of the snap-in data object.

https://docs.microsoft.com/windows/desktop/api/mmc/ns-mmc-resultdataitem

 CSnapInItemImpl::Notify

STDMETHOD(Notify)(
 MMC_NOTIFY_TYPE event,
 long arg,
 long param,
 IComponentData* pComponentData,
 IComponent* pComponent,
 DATA_OBJECT_TYPES type) = 0;

ParametersParameters

Called when the snap-in object is acted upon by the user.

event
[in] Identifies an action taken by a user. The following notifications are possible:

MMCN_ACTIVATE Sent when a window is being activated and deactivated.

MMCN_ADD_IMAGES Sent to add images to the result pane.

MMCN_BTN_CLICK Sent when the user clicks one of the toolbar buttons.

MMCN_CLICK Sent when a user clicks a mouse button on a list view item.

MMCN_DBLCLICK Sent when a user double clicks a mouse button on a list view item.

MMCN_DELETE Sent to inform the snap-in that the object should be deleted.

MMCN_EXPAND Sent when a folder needs to be expanded or contracted.

MMCN_MINIMIZED Sent when a window is being minimized or maximized.

MMCN_PROPERTY_CHANGE Sent to notify a snap-in object that the snap-in object's view is about to
change.

MMCN_REMOVE_CHILDREN Sent when the snap-in must delete the entire subtree it has added below
the specified node.

MMCN_RENAME Sent the first time to query for a rename and the second time to do the rename.

MMCN_SELECT Sent when an item in the scope or result view pane is selected.

MMCN_SHOW Sent when a scope item is selected or deselected for the first time.

MMCN_VIEW_CHANGE Sent when the snap-in can update all views when a change occurs.

arg
[in] Depends on the notification type.

param
[in] Depends on the notification type.

pComponentData
[out] A pointer to the object implementing IComponentData . This parameter is NULL if the notification is not being
forwarded from IComponentData::Notify .

pComponent
[out] A pointer to the object that implements IComponent . This parameter is NULL if the notification is not being
forwarded from IComponent::Notify .

type

CSnapInItemImpl::QueryPagesFor

QueryPagesFor(DATA_OBJECT_TYPES type);

CSnapInItemImpl::SetMenuInsertionFlags

void SetMenuInsertionFlags(
 bool bBeforeInsertion,
 long* pInsertionAllowed);

ParametersParameters

RemarksRemarks

CSnapInItemImpl::SetToolbarButtonInfo

[in] Specifies the type of object. It can have one of the following values:

CCT_SCOPE Data object for scope pane context.

CCT_RESULT Data object for result pane context.

CCT_SNAPIN_MANAGER Data object for snap-in manager context.

CCT_UNINITIALIZED Data object has an invalid type.

Called to see if the snap-in node supports property pages.

Call this function to modify the menu insertion flags, specified by pInsertionAllowed, for the snap-in object.

bBeforeInsertion
[in] Nonzero if the function should be called before items are added to the context menu; otherwise 0.

pInsertionAllowed
[in, out] Identifies Microsoft Management Console (MMC)-defined, menu-item insertion points that can be used.
This can be a combination of the following flags:

CCM_INSERTIONALLOWED_TOP Items can be inserted at the top of a context menu.

CCM_INSERTIONALLOWED_NEW Items can be inserted in the Create New submenu.

CCM_INSERTIONALLOWED_TASK Items can be inserted in the Task submenu.

CCM_INSERTIONALLOWED_VIEW Items can be inserted in the toolbar view menu or in the View
submenu of the result pane context menu.

If you are developing a primary snap-in, you can reset any of the insertion flags as a way of restricting the kind of
menu items that a third-party extension can add. For example, the primary snap-in can clear the
CCM_INSERTIONALLOWED_NEW flag to prevent extensions from adding their own Create New menu items.

You should not attempt to set bits in pInsertionAllowed that were originally cleared. Future versions of MMC may
use bits not currently defined so you should not change bits that are currently not defined.

Call this function to modify any toolbar button styles, of the snap-in object, before the toolbar is created.

void SetToolbarButtonInfo(
 UINT id,
 BYTE* fsState,
 BYTE* fsType);

ParametersParameters

CSnapInItemImpl::UpdateMenuState

void UpdateMenuState(
 UINT id,
 LPTSTR pBuf,
 UINT* flags);

ParametersParameters

id
[in] The ID of the toolbar button to be set.

fsState
[in] The state flags of the button. Can be one or more of the following:

TBSTATE_CHECKED The button has the TBSTYLE_CHECKED style and is being pressed.

TBSTATE_ENABLED The button accepts user input. A button that does not have this state does not accept
user input and is grayed.

TBSTATE_HIDDEN The button is not visible and cannot receive user input.

TBSTATE_INDETERMINATE The button is grayed.

TBSTATE_PRESSED The button is being pressed.

TBSTATE_WRAP A line break follows the button. The button must also have the TBSTATE_ENABLED.

fsType
[in] The state flags of the button. Can be one or more of the following:

TBSTYLE_BUTTON Creates a standard push button.

TBSTYLE_CHECK Creates a button that toggles between the pressed and not-pressed states each time the
user clicks it. The button has a different background color when it is in the pressed state.

TBSTYLE_CHECKGROUP Creates a check button that stays pressed until another button in the group is
pressed.

TBSTYLE_GROUP Creates a button that stays pressed until another button in the group is pressed.

TBSTYLE_SEP Creates a separator, providing a small gap between button groups. A button that has this
style does not receive user input.

Call this function to modify a menu item before it is inserted into the context menu of the snap-in object.

id
[in] The ID of the menu item to be set.

pBuf
[in] A pointer to the string for the menu item to be updated.

flags

 CSnapInItemImpl::UpdateToolbarButton

BOOL UpdateToolbarButton(UINT id, BYTE fsState);

ParametersParameters

[in] Specifies the new state flags. This can be a combination of the following flags:

MF_POPUP Specifies that this is a submenu within the context menu. Menu items, insertion points, and
further submenus may be added to this submenu using its lCommandID as their IInsertionPointID .

MF_BITMAP and MF_OWNERDRAW These flags are not permitted and will result in a return value of
E_INVALIDARG.

MF_SEPARATOR Draws a horizontal dividing line. Only IContextMenuProvider is allowed to add menu
items with MF_SEPARATOR set.

MF_CHECKED Places a check mark next to the menu item.

MF_DISABLED Disables the menu item so it cannot be selected, but the flag does not gray it.

MF_ENABLED Enables the menu item so it can be selected, restoring it from its grayed state.

MF_GRAYED Disables the menu item, graying it so it cannot be selected.

MF_MENUBARBREAK Functions the same as the MF_MENUBREAK flag for a menu bar. For a drop-down
menu, submenu, or shortcut menu, the new column is separated from the old column by a vertical line.

MF_MENUBREAK Places the item on a new line (for a menu bar) or in a new column (for a drop-down
menu, submenu, or shortcut menu) without separating columns.

MF_UNCHECKED Does not place a check mark next to the item (default).

The following groups of flags cannot be used together:

MF_DISABLED, MF_ENABLED, and MF_GRAYED.

MF_MENUBARBREAK and MF_MENUBREAK.

MF_CHECKED and MF_UNCHECKED.

Call this function to modify a toolbar button, of the snap-in object, before it is displayed.

id
Specifies the button ID of the toolbar button to be updated.

fsState
Specifies a toolbar button state. If this state is to be set, return TRUE. This can be a combination of the following
flags:

ENABLED The button accepts user input. A button that does not have this state does not accept user input
and is grayed.

CHECKED The button has the CHECKED style and is being pressed.

HIDDEN The button is not visible and cannot receive user input.

INDETERMINATE The button is grayed.

BUTTONPRESSED The button is being pressed.

See also
Class Overview

CSnapInPropertyPageImpl Class
3/4/2019 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
CSnapInPropertyPageImpl : public CDialogImplBase

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSnapInPropertyPageImpl::CSnapInPropertyPageImpl Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSnapInPropertyPageImpl::CancelToClose Changes the status of the OK and Cancel buttons.

CSnapInPropertyPageImpl::Create Initializes a newly created CSnapInPropertyPageImpl object.

CSnapInPropertyPageImpl::OnApply Called by the framework when the user clicks the Apply Now
button while using a wizard-type property sheet.

CSnapInPropertyPageImpl::OnHelp Called by the framework when the user clicks the Help button
while using a wizard-type property sheet.

CSnapInPropertyPageImpl::OnKillActive Called by the framework when the current page is no longer
active.

CSnapInPropertyPageImpl::OnQueryCancel Called by the framework when the user clicks the Cancel
button and before the cancel has taken place.

CSnapInPropertyPageImpl::OnReset Called by the framework when the user clicks the Reset
button while using a wizard-type property sheet.

CSnapInPropertyPageImpl::OnSetActive Called by the framework when the current page becomes
active.

CSnapInPropertyPageImpl::OnWizardBack Called by the framework when the user clicks the Back button
while using a wizard-type property sheet.

This class provides methods for implementing a snap-in property page object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csnapinpropertypageimpl-class.md

CSnapInPropertyPageImpl::OnWizardFinish Called by the framework when the user clicks the Finish
button while using a wizard-type property sheet.

CSnapInPropertyPageImpl::OnWizardNext Called by the framework when the user clicks the Next button
while using a wizard-type property sheet.

CSnapInPropertyPageImpl::QuerySiblings Forwards the current message to all pages of the property
sheet.

CSnapInPropertyPageImpl::SetModified Call to activate or deactivate the Apply Now button.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CSnapInPropertyPageImpl::m_psp The Windows PROPSHEETPAGE structure used by the
CSnapInPropertyPageImpl object.

Remarks

Inheritance Hierarchy

Requirements

CSnapInPropertyPageImpl::CancelToClose

void CancelToClose();

RemarksRemarks

CSnapInPropertyPageImpl::CSnapInPropertyPageImpl

CSnapInPropertyPageImpl provides a basic implementation for a snap-in property page object. The basic features of
a snap-in property page are implemented using several different interfaces and map types.

CDialogImplBase

CSnapInPropertyPageImpl

Header: atlsnap.h

Call this function after an unrecoverable change has been made to the data in a page of a modal property sheet.

This function will change the OK button to Close and disable the Cancel button. This change alerts the user that a
change is permanent and the modifications cannot be cancelled.

The CancelToClose member function does nothing in a modeless property sheet, because a modeless property
sheet does not have a Cancel button by default.

Constructs a CSnapInPropertyPageImpl object.

CSnapInPropertyPageImpl(LPCTSTR lpszTitle = NULL);

ParametersParameters

RemarksRemarks

CSnapInPropertyPageImpl::Create

HPROPSHEETPAGE Create();

Return ValueReturn Value

RemarksRemarks

CSnapInPropertyPageImpl::m_psp

PROPSHEETPAGE m_psp;

RemarksRemarks

CSnapInPropertyPageImpl::OnApply

BOOL OnApply();

Return ValueReturn Value

RemarksRemarks

lpszTitle
[in] The title of the property page.

To initialize the underlying structure, call CSnapInPropertyPageImpl::Create.

Call this function to initialize the underlying structure of the property page.

A handle to a PROPSHEETPAGE structure containing the attributes of the newly created property sheet.

You should first call CSnapInPropertyPageImpl::CSnapInPropertyPageImpl before calling this function.

m_psp is a structure whose members store the characteristics of PROPSHEETPAGE .

Use this structure to initialize the appearance of a property page after it is constructed.

For more information on this structure, including a listing of its members, see PROPSHEETPAGE in the Windows
SDK.

This member function is called when the user clicks the OK or the Apply Now button.

Nonzero if the changes are accepted; otherwise 0.

Before OnApply can be called by the framework, you must have called SetModified and set its parameter to
TRUE. This will activate the Apply Now button as soon as the user makes a change on the property page.

Override this member function to specify what action your program takes when the user clicks the Apply Now
button. When overriding, the function should return TRUE to accept changes and FALSE to prevent changes from
taking effect.

The default implementation of OnApply returns TRUE.

https://msdn.microsoft.com/library/aa815151

CSnapInPropertyPageImpl::OnHelp

void OnHelp();

RemarksRemarks

CSnapInPropertyPageImpl::OnKillActive

BOOL OnKillActive();

Return ValueReturn Value

RemarksRemarks

CSnapInPropertyPageImpl::OnQueryCancel

BOOL OnQueryCancel();

Return ValueReturn Value

RemarksRemarks

CSnapInPropertyPageImpl::OnReset

void OnReset();

RemarksRemarks

CSnapInPropertyPageImpl::OnSetActive

This member function is called when the user clicks the Help button for the property page.

Override this member function to display help for the property page.

This member function is called when the page is no longer the active page.

Nonzero if data was updated successfully; otherwise 0.

Override this member function to perform special data validation tasks.

This member function is called when the user clicks the Cancel button and before the cancel action has taken
place.

Nonzero to allow the cancel operation; otherwise 0.

Override this member function to specify an action the program takes when the user clicks the Cancel button.

The default implementation of OnQueryCancel returns TRUE.

This member function is called when the user clicks the Cancel button.

When this function is called, changes to all property pages that were made by the user previously clicking the
Apply Now button are discarded, and the property sheet retains focus.

Override this member function to specify what action the program takes when the user clicks the Cancel button.

This member function is called when the page is chosen by the user and becomes the active page.

BOOL OnSetActive();

Return ValueReturn Value

RemarksRemarks

CSnapInPropertyPageImpl::OnWizardBack

BOOL OnWizardBack();

Return ValueReturn Value

RemarksRemarks

CSnapInPropertyPageImpl::OnWizardFinish

BOOL OnWizardFinish();

Return ValueReturn Value

RemarksRemarks

CSnapInPropertyPageImpl::OnWizardNext

BOOL OnWizardNext();

Return ValueReturn Value

RemarksRemarks

Nonzero if the page was successfully set active; otherwise 0.

Override this member function to perform tasks when a page is activated. Your override of this member function
should call the default version before any other processing is done.

The default implementation returns TRUE.

This member function is called when the user clicks the Back button in a wizard.

0 to automatically advance to the previous page.

-1 to prevent the page from changing.

To jump to a page other than the next one, return the identifier of the dialog box to be displayed.

Override this member function to specify some action the user must take when the Back button is clicked.

This member function is called when the user clicks the Finish button in a wizard.

Nonzero if the property sheet is destroyed when the wizard finishes; otherwise zero.

Override this member function to specify some action the user must take when the Finish button is clicked.

This member function is called when the user clicks the Next button in a wizard.

0 to automatically advance to the next page.

-1 to prevent the page from changing.

To jump to a page other than the next one, return the identifier of the dialog box to be displayed.

CSnapInPropertyPageImpl::QuerySiblings

LRESULT QuerySiblings(WPARAM wParam, LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSnapInPropertyPageImpl::SetModified

void SetModified(BOOL bChanged = TRUE);

ParametersParameters

RemarksRemarks

See also

Override this member function to specify some action the user must take when the Next button is clicked.

Call this member function to forward a message to each page in the property sheet.

wParam
[in] Specifies additional message-dependent information.

lParam
[in] Specifies additional message-dependent information.

Nonzero if the message should not be forwarded to the next property page; otherwise zero.

If a page returns a nonzero value, the property sheet does not send the message to subsequent pages.

Call this member function to enable or disable the Apply Now button, based on whether the settings in the
property page should be applied to the appropriate external object.

bChanged
[in] TRUE to indicate that the property page settings have been modified since the last time they were applied;
FALSE to indicate that the property page settings have been applied, or should be ignored.

The property sheet keeps track of which pages are "dirty," that is, property pages for which you have called
SetModified(TRUE) . The Apply Now button will always be enabled if you call SetModified(TRUE) for one of

the pages. The Apply Now button will be disabled when you call SetModified(FALSE) for one of the pages, but
only if none of the other pages is "dirty."

Class Overview

CSocketAddr Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CSocketAddr

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSocketAddr::CSocketAddr The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSocketAddr::FindAddr Call this method to convert the provided host name to the
host address.

CSocketAddr::FindINET4Addr Call this method to convert the IPv4 host name to the host
address.

CSocketAddr::FindINET6Addr Call this method to convert the IPv6 host name to the host
address.

CSocketAddr::GetAddrInfo Call this method to return a pointer to a specific element in
the addrinfo list.

CSocketAddr::GetAddrInfoList Call this method to return a pointer to the addrinfo list.

Remarks

Requirements

This class provides methods for converting host names to host addresses, supporting both IPv4 and IPV6 formats.

This class provides an IP version agnostic approach for looking up network addresses for use with Windows
sockets API functions and socket wrappers in libraries.

The members of this class that are used to look up network addresses use the Win32 API function getaddrinfo. The
ANSI or UNICODE version of the function is called depending on whether your code is compiled for ANSI or
UNICODE.

This class supports both IPv4 andIPv6 network addresses.

Header: atlsocket.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/csocketaddr-class.md
https://docs.microsoft.com/windows/desktop/api/ws2tcpip/nf-ws2tcpip-getaddrinfo

CSocketAddr::CSocketAddr

CSocketAddr();

RemarksRemarks

CSocketAddr::FindAddr

int FindAddr(
 const TCHAR *szHost,
 const TCHAR *szPortOrServiceName,
 int flags,
 int addr_family,
 int sock_type,
 int ai_proto);

int FindAddr(
 const TCHAR *szHost,
 int nPortNo,
 int flags,
 int addr_family,
 int sock_type,
 int ai_proto);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The constructor.

Creates a new CSocketAddr object and initializes the linked list containing response information about the host.

Call this method to convert the provided host name to the host address.

szHost
The host name or dotted IP address.

szPortOrServiceName
The port number or name of service on host.

nPortNo
The port number.

flags
0 or combination of AI_PASSIVE, AI_CANONNAME or AI_NUMERICHOST.

addr_family
Address family (such as PF_INET).

sock_type
Socket type (such as SOCK_STREAM).

ai_proto
Protocol (such as IPPROTO_IP or IPPROTO_IPV6).

Returns zero if the address is calculated successfully. Returns a nonzero Windows Socket error code on failure. If
successful, the calculated address is stored in a linked list that may be referenced using
CSocketAddr::GetAddrInfoList and CSocketAddr::GetAddrInfo .

CSocketAddr::FindINET4Addr

int FindINET4Addr(
 const TCHAR *szHost,
 int nPortNo,
 int flags = 0,
 int sock_type = SOCK_STREAM);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSocketAddr::FindINET6Addr

int FindINET6Addr(
 const TCHAR *szHost,
 int nPortNo,
 int flags = 0,
 int sock_type = SOCK_STREAM);

ParametersParameters

The host name parameter may be in either IPv4 or IPv6 format. This method calls the Win32 API function
getaddrinfo to perform the conversion.

Call this method to convert the IPv4 host name to the host address.

szHost
The host name or dotted IP address.

nPortNo
The port number.

flags
0 or combination of AI_PASSIVE, AI_CANONNAME or AI_NUMERICHOST.

sock_type
Socket type (such as SOCK_STREAM).

Returns zero if the address is calculated successfully. Returns a nonzero Windows Socket error code on failure. If
successful, the calculated address is stored in a linked list that may be referenced using
CSocketAddr::GetAddrInfoList and CSocketAddr::GetAddrInfo .

This method calls the Win32 API function getaddrinfo to perform the conversion.

Call this method to convert the IPv6 host name to the host address.

szHost
The host name or dotted IP address.

nPortNo
The port number.

flags
0 or combination of AI_PASSIVE, AI_CANONNAME or AI_NUMERICHOST.

sock_type
Socket type (such as SOCK_STREAM).

https://docs.microsoft.com/windows/desktop/api/ws2tcpip/nf-ws2tcpip-getaddrinfo
https://docs.microsoft.com/windows/desktop/api/ws2tcpip/nf-ws2tcpip-getaddrinfo

Return ValueReturn Value

RemarksRemarks

CSocketAddr::GetAddrInfo

addrinfo* const GetAddrInfo(int nIndex = 0) const;

ParametersParameters

Return ValueReturn Value

CSocketAddr::GetAddrInfoList

addrinfo* const GetAddrInfoList() const;

Return ValueReturn Value

See also

Returns zero if the address is calculated successfully. Returns a nonzero Windows Socket error code on failure. If
successful, the calculated address is stored in a linked list that may be referenced using
CSocketAddr::GetAddrInfoList and CSocketAddr::GetAddrInfo .

This method calls the Win32 API function getaddrinfo to perform the conversion.

Call this method to return a pointer to a specific element in the addrinfo list.

nIndex
A reference to a specific element in the addrinfo list.

Returns a pointer to the addrinfo structure referenced by nIndex in the linked list containing response information
about the host.

Call this method to return a pointer to the addrinfo list.

Pointer to a linked list of one or more addrinfo structures containing response information about the host. For
more information, see addrinfo structure.

Class Overview

https://docs.microsoft.com/windows/desktop/api/ws2tcpip/nf-ws2tcpip-getaddrinfo
https://docs.microsoft.com/windows/desktop/api/ws2def/ns-ws2def-addrinfoa
https://docs.microsoft.com/windows/desktop/api/ws2def/ns-ws2def-addrinfoa

CStockPropImpl Class
3/4/2019 • 17 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <
 class T,
 class InterfaceName,
 const IID* piid = &_ATL_IIDOF(InterfaceName),
 const GUID* plibid = &CComModule::m_libid,
 WORD wMajor = 1,
 WORD wMinor = 0,
 class tihclass = CcomTypeInfoHolder>
class ATL_NO_VTABLE CStockPropImpl :
 public IDispatchImpl<InterfaceName, piid, plibid, wMajor, wMinor, tihclass>

ParametersParameters

Members
Public MethodsPublic Methods

get_Appearance Call this method to get the paint style used by the control, for
example, flat or 3D.

This class provides methods for supporting stock property values.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
The class implementing the control and deriving from CStockPropImpl .

InterfaceName
A dual interface exposing the stock properties.

piid
A pointer to the IID of InterfaceName .

plibid
A pointer to the L IBID of the type library containing the definition of InterfaceName .

wMajor
The major version of the type library. The default value is 1.

wMinor
The minor version of the type library. The default value is 0.

tihclass
The class used to manage the type information for T. The default value is CComTypeInfoHolder .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cstockpropimpl-class.md

get_AutoSize Call this method to get the status of the flag that indicates if
the control cannot be any other size.

get_BackColor Call this method to get the control's background color.

get_BackStyle Call this method to get the control's background style, either
transparent or opaque.

get_BorderColor Call this method to get the control's border color.

get_BorderStyle Call this method to get the control's border style.

get_BorderVisible Call this method to get the status of the flag that indicates if
the control's border is visible or not.

get_BorderWidth Call this method to get the width (in pixels) of the control's
border.

get_Caption Call this method to get the text specified in an object's
caption.

get_DrawMode Call this method to get the control's drawing mode, for
example, XOR Pen or Invert Colors.

get_DrawStyle Call this method to get the control's drawing style, for
example, solid, dashed, or dotted.

get_DrawWidth Call this method to get the drawing width (in pixels) used by
the control's drawing methods.

get_Enabled Call this method to get the status of the flag that indicates if
the control is enabled.

get_FillColor Call this method to get the control's fill color.

get_FillStyle Call this method to get the control's fill style, for example,
solid, transparent, or cross-hatched.

get_Font Call this method to get a pointer to the control's font
properties.

get_ForeColor Call this method to get the control's foreground color.

get_HWND Call this method to get the window handle associated with
the control.

get_MouseIcon Call this method to get the picture properties of the graphic
(icon, bitmap, or metafile) to be displayed when the mouse is
over the control.

get_MousePointer Call this method to get the type of mouse pointer displayed
when the mouse is over the control, for example, arrow, cross,
or hourglass.

get_Picture Call this method to get a pointer to the picture properties of a
graphic (icon, bitmap, or metafile) to be displayed.

get_ReadyState Call this method to get the control's ready state, for example,
loading or loaded.

get_TabStop Call this method to get the flag that indicates if the control is
a tab stop or not.

get_Text Call this method to get the text that is displayed with the
control.

getvalid Call this method to get the status of the flag that indicates if
the control is valid or not.

get_Window Call this method to get the window handle associated with
the control. Identical to CStockPropImpl::get_HWND.

put_Appearance Call this method to set the paint style used by the control, for
example, flat or 3D.

put_AutoSize Call this method to set the value of the flag that indicates if
the control cannot be any other size.

put_BackColor Call this method to set the control's background color.

put_BackStyle Call this method to set the control's background style.

put_BorderColor Call this method to set the control's border color.

put_BorderStyle Call this method to set the control's border style.

put_BorderVisible Call this method to set the value of the flag that indicates if
the control's border is visible or not.

put_BorderWidth Call this method to set the width of the control's border.

put_Caption Call this method to set the text to be displayed with the
control.

put_DrawMode Call this method to set the control's drawing mode, for
example, XOR Pen or Invert Colors.

put_DrawStyle Call this method to set the control's drawing style, for
example, solid, dashed, or dotted.

put_DrawWidth Call this method to set the width (in pixels) used by the
control's drawing methods.

put_Enabled Call this method to set the flag that indicates if the control is
enabled.

put_FillColor Call this method to set the control's fill color.

put_FillStyle Call this method to set the control's fill style, for example,
solid, transparent, or cross-hatched.

put_Font Call this method to set the control's font properties.

put_ForeColor Call this method to set the control's foreground color.

put_HWND This method returns E_FAIL.

put_MouseIcon Call this method to set the picture properties of the graphic
(icon, bitmap, or metafile) to be displayed when the mouse is
over the control.

put_MousePointer Call this method to set the type of mouse pointer displayed
when the mouse is over the control, for example, arrow, cross,
or hourglass.

put_Picture Call this method to set the picture properties of a graphic
(icon, bitmap, or metafile) to be displayed.

put_ReadyState Call this method to set the control's ready state, for example,
loading or loaded.

put_TabStop Call this method to set the value of the flag that indicates if
the control is a tab stop or not.

put_Text Call this method to set the text that is displayed with the
control.

putvalid Call this method to set the flag that indicates if the control is
valid or not.

put_Window This method calls CStockPropImpl::put_HWND, which returns
E_FAIL.

putref_Font Call this method to set the control's font properties, with a
reference count.

putref_MouseIcon Call this method to set the picture properties of the graphic
(icon, bitmap, or metafile) to be displayed when the mouse is
over the control, with a reference count.

putref_Picture Call this method to set the picture properties of a graphic
(icon, bitmap, or metafile) to be displayed, with a reference
count.

Remarks
CStockPropImpl provides put and get methods for each stock property. These methods provide the code

necessary to set or get the data member associated with each property and to notify and synchronize with the
container when any property changes.

Visual C++ provides support for stock properties through its wizards. For more information about adding stock
properties to a control, see the ATL Tutorial.

Inheritance Hierarchy

Requirements

CStockPropImpl::get_Appearance

HRESULT STDMETHODCALLTYPE get_Appearance(SHORT pnAppearance);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_AutoSize

HRESULT STDMETHODCALLTYPE get_Autosize(VARIANT_BOOL* pbAutoSize);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_BackColor

For backward compatibility, CStockPropImpl also exposes get_Window and put_Window methods that simply call
get_HWND and put_HWND , respectively. The default implementation of put_HWND returns E_FAIL since HWND

should be a read-only property.

The following properties also have a putref implementation:

Font

MouseIcon

Picture

The same three stock properties require their corresponding data member to be of type CComPtr or some other
class that provides correct interface reference counting by means of the assignment operator.

T

IDispatchImpl

CStockPropImpl

Header: atlctl.h

Call this method to get the paint style used by the control, for example, flat or 3D.

pnAppearance
Variable that receives the control's paint style.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the status of the flag that indicates if the control cannot be any other size.

pbAutoSize
Variable that receives the flag status. TRUE indicates that the control cannot be any other size.

Returns S_OK on success, or an error HRESULT on failure.

HRESULT STDMETHODCALLTYPE get_BackColor(OLE_COLOR* pclrBackColor);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_BackStyle

HRESULT STDMETHODCALLTYPE get_BackStyle(LONG* pnBackStyle);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_BorderColor

HRESULT STDMETHODCALLTYPE get_BorderColor(OLE_COLOR* pclrBorderColor);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_BorderStyle

HRESULT STDMETHODCALLTYPE get_BorderStyle(LONG* pnBorderStyle);

ParametersParameters

Return ValueReturn Value

Call this method to get the control's background color.

pclrBackColor
Variable that receives the control's background color.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the control's background style, either transparent or opaque.

pnBackStyle
Variable that receives the control's background style.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the control's border color.

pclrBorderColor
Variable that receives the control's border color.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the control's border style.

pnBorderStyle
Variable that receives the control's border style.

Returns S_OK on success, or an error HRESULT on failure.

CStockPropImpl::get_BorderVisible

HRESULT STDMETHODCALLTYPE get_BorderVisible(VARIANT_BOOL* pbBorderVisible);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_BorderWidth

HRESULT STDMETHODCALLTYPE get_BorderWidth(LONG* pnBorderWidth);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_Caption

HRESULT STDMETHODCALLTYPE get_Caption(BSTR* pbstrCaption);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_DrawMode

HRESULT STDMETHODCALLTYPE get_DrawMode(LONG* pnDrawMode);

ParametersParameters

Return ValueReturn Value

Call this method to get the status of the flag that indicates if the control's border is visible or not.

pbBorderVisible
Variable that receives the flag status. TRUE indicates that the control's border is visible.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the width of the control's border.

pnBorderWidth
Variable that receives the control's border width.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the text specified in an object's caption.

pbstrCaption
The text to be displayed with the control.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the control's drawing mode, for example, XOR Pen or Invert Colors.

pnDrawMode
Variable that receives the control's drawing mode.

Returns S_OK on success, or an error HRESULT on failure.

CStockPropImpl::get_DrawStyle

HRESULT STDMETHODCALLTYPE get_DrawStyle(LONG* pnDrawStyle);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_DrawWidth

HRESULT STDMETHODCALLTYPE get_DrawWidth(LONG* pnDrawWidth);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_Enabled

HRESULT STDMETHODCALLTYPE get_Enabled(VARIANT_BOOL* pbEnabled);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_FillColor

HRESULT STDMETHODCALLTYPE get_FillColor(OLE_COLOR* pclrFillColor);

ParametersParameters

Return ValueReturn Value

Call this method to get the control's drawing style, for example, solid, dashed, or dotted.

pnDrawStyle
Variable that receives the control's drawing style.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the drawing width (in pixels) used by the control's drawing methods.

pnDrawWidth
Variable that receives the control's width value, in pixels.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the status of the flag that indicates if the control is enabled.

pbEnabled
Variable that receives the flag status. TRUE indicates that the control is enabled.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the control's fill color.

pclrFillColor
Variable that receives the control's fill color.

Returns S_OK on success, or an error HRESULT on failure.

CStockPropImpl::get_FillStyle

HRESULT STDMETHODCALLTYPE get_FillStyle(LONG* pnFillStyle);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_Font

HRESULT STDMETHODCALLTYPE get_Font(IFontDisp** ppFont);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_ForeColor

HRESULT STDMETHODCALLTYPE get_ForeColor(OLE_COLOR* pclrForeColor);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_HWND

HRESULT STDMETHODCALLTYPE get_HWND(LONG_PTR* phWnd);

ParametersParameters

Return ValueReturn Value

Call this method to get the control's fill style, for example, solid, transparent, or crosshatched.

pnFillStyle
Variable that receives the control's fill style.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get a pointer to the control's font properties.

ppFont
Variable that receives a pointer to the control's font properties.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the control's foreground color.

pclrForeColor
Variable that receives the controls foreground color.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the window handle associated with the control.

phWnd
The window handle associated with the control.

Returns S_OK on success, or an error HRESULT on failure.

CStockPropImpl::get_MouseIcon

HRESULT STDMETHODCALLTYPE get_MouseIcon(IPictureDisp** ppPicture);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_MousePointer

HRESULT STDMETHODCALLTYPE get_MousePointer(LONG* pnMousePointer);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_Picture

HRESULT STDMETHODCALLTYPE get_Picture(IPictureDisp** ppPicture);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_ReadyState

HRESULT STDMETHODCALLTYPE get_ReadyState(LONG* pnReadyState);

ParametersParameters

Call this method to get the picture properties of the graphic (icon, bitmap, or metafile) to be displayed when the
mouse is over the control.

ppPicture
Variable that receives a pointer to the picture properties of the graphic.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the type of mouse pointer displayed when the mouse is over the control, for example,
arrow, cross, or hourglass.

pnMousePointer
Variable that receives the type of mouse pointer.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get a pointer to the picture properties of a graphic (icon, bitmap, or metafile) to be displayed.

ppPicture
Variable that receives a pointer to the picture's properties. See IPictureDisp for more details.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the control's ready state, for example, loading or loaded.

pnReadyState
Variable that receives the control's ready state.

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipicturedisp

Return ValueReturn Value

CStockPropImpl::get_TabStop

HRESULT STDMETHODCALLTYPE get_TabStop(VARIANT_BOOL* pbTabStop);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_Text

HRESULT STDMETHODCALLTYPE get_Text(BSTR* pbstrText);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::getvalid

HRESULT STDMETHODCALLTYPE getvalid(VARIANT_BOOL* pbValid);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::get_Window

HRESULT STDMETHODCALLTYPE get_Window(LONG_PTR* phWnd);

ParametersParameters

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the status of the flag that indicates if the control is a tab stop or not.

pbTabStop
Variable that receives the flag status. TRUE indicates that the control is a tab stop.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the text that is displayed with the control.

pbstrText
The text that is displayed with the control.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the status of the flag that indicates if the control is valid or not.

pbValid
Variable that receives the flag status. TRUE indicates that the control is valid.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the window handle associated with the control. Identical to CStockPropImpl::get_HWND.

phWnd
The window handle associated with the control.

Return ValueReturn Value

CStockPropImpl::put_Appearance

HRESULT STDMETHODCALLTYPE put_Appearance(SHORT nAppearance);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_AutoSize

HRESULT STDMETHODCALLTYPE put_AutoSize(VARIANT_BOOL bAutoSize,);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_BackColor

HRESULT STDMETHODCALLTYPE put_BackColor(OLE_COLOR clrBackColor);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_BackStyle

HRESULT STDMETHODCALLTYPE put_BackStyle(LONG nBackStyle);

ParametersParameters

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the paint style used by the control, for example, flat or 3D.

nAppearance
The new paint style to be used by the control.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the value of flag that indicates if the control cannot be any other size.

bAutoSize
TRUE if the control cannot be any other size.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the control's background color.

clrBackColor
The new control background color.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the control's background style.

nBackStyle
The new control background style.

Return ValueReturn Value

CStockPropImpl::put_BorderColor

HRESULT STDMETHODCALLTYPE put_BorderColor(OLE_COLOR clrBorderColor);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_BorderStyle

HRESULT STDMETHODCALLTYPE put_BorderStyle(LONG nBorderStyle);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_BorderVisible

HRESULT STDMETHODCALLTYPE put_BorderVisible(VARIANT_BOOL bBorderVisible);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_BorderWidth

HRESULT STDMETHODCALLTYPE put_BorderWidth(LONG nBorderWidth);

ParametersParameters

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the control's border color.

clrBorderColor
The new border color. The OLE_COLOR data type is internally represented as a 32-bit long integer.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the control's border style.

nBorderStyle
The new border style.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the value of the flag that indicates if the control's border is visible or not.

bBorderVisible
TRUE if the border is to be visible.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the width of the control's border.

nBorderWidth
The new width of the control's border.

Return ValueReturn Value

CStockPropImpl::put_Caption

HRESULT STDMETHODCALLTYPE put_Caption(BSTR bstrCaption);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_DrawMode

HRESULT STDMETHODCALLTYPE put_DrawMode(LONG nDrawMode);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_DrawStyle

HRESULT STDMETHODCALLTYPE put_DrawStyle(LONG pnDrawStyle);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_DrawWidth

HRESULT STDMETHODCALLTYPE put_DrawWidth(LONG nDrawWidth);

ParametersParameters

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the text to be displayed with the control.

bstrCaption
The text to be displayed with the control.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the control's drawing mode, for example, XOR Pen or Invert Colors.

nDrawMode
The new drawing mode for the control.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the control's drawing style, for example, solid, dashed, or dotted.

nDrawStyle
The new drawing style for the control.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the width (in pixels) used by the control's drawing methods.

nDrawWidth
The new width to be used by the control's drawing methods.

Return ValueReturn Value

CStockPropImpl::put_Enabled

HRESULT STDMETHODCALLTYPE put_Enabled(VARIANT_BOOL bEnabled);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_FillColor

HRESULT STDMETHODCALLTYPE put_FillColor(OLE_COLOR clrFillColor);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_FillStyle

HRESULT STDMETHODCALLTYPE put_FillStyle(LONG nFillStyle);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_Font

HRESULT STDMETHODCALLTYPE put_Font(IFontDisp* pFont);

ParametersParameters

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the value of the flag that indicates if the control is enabled.

bEnabled
TRUE if the control is enabled.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the control's fill color.

clrFillColor
The new fill color for the control.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the control's fill style, for example, solid, transparent, or cross-hatched.

nFillStyle
The new fill style for the control.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the control's font properties.

pFont
A pointer to the control's font properties.

Return ValueReturn Value

CStockPropImpl::put_ForeColor

HRESULT STDMETHODCALLTYPE put_ForeColor(OLE_COLOR clrForeColor);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_HWND

HRESULT STDMETHODCALLTYPE put_HWND(LONG_PTR /* hWnd */);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStockPropImpl::put_MouseIcon

HRESULT STDMETHODCALLTYPE put_MouseIcon(IPictureDisp* pPicture);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_MousePointer

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the control's foreground color.

clrForeColor
The new foreground color of the control.

Returns S_OK on success, or an error HRESULT on failure.

This method returns E_FAIL.

hWnd
Reserved.

Returns E_FAIL.

The window handle is a read-only value.

Call this method to set the picture properties of the graphic (icon, bitmap, or metafile) to be displayed when the
mouse is over the control.

pPicture
A pointer to the picture properties of the graphic.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the type of mouse pointer displayed when the mouse is over the control, for example,
arrow, cross, or hourglass.

HRESULT STDMETHODCALLTYPE put_MousePointer(LONG nMousePointer);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_Picture

HRESULT STDMETHODCALLTYPE put_Picture(IPictureDisp* pPicture);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_ReadyState

HRESULT STDMETHODCALLTYPE put_ReadyState(LONG nReadyState);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_TabStop

HRESULT STDMETHODCALLTYPE put_TabStop(VARIANT_BOOL bTabStop);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_Text

nMousePointer
The type of mouse pointer.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the picture properties of a graphic (icon, bitmap, or metafile) to be displayed.

pPicture
A pointer to the picture's properties. See IPictureDisp for more details.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the control's ready state, for example, loading or loaded.

nReadyState
The control's ready state.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the flag that indicates if the control is a tab stop or not.

bTabStop
TRUE if the control is a tab stop.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the text that is displayed with the control.

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipicturedisp

HRESULT STDMETHODCALLTYPE put_Text(BSTR bstrText);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::putvalid

HRESULT STDMETHODCALLTYPE getvalid(VARIANT_BOOL bValid);

ParametersParameters

Return ValueReturn Value

CStockPropImpl::put_Window

HRESULT STDMETHODCALLTYPE put_Window(LONG_PTR hWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStockPropImpl::putref_Font

HRESULT STDMETHODCALLTYPE putref_Font(IFontDisp* pFont);

ParametersParameters

Return ValueReturn Value

bstrText
The text that is displayed with the control.

Returns S_OK on success, or an error HRESULT on failure.

Call this method to set the flag that indicates if the control is valid or not.

bValid
TRUE if the control is valid.

Returns S_OK on success, or an error HRESULT on failure.

This method calls CStockPropImpl::put_HWND, which returns E_FAIL.

hWnd
The window handle.

Returns E_FAIL.

The window handle is a read-only value.

Call this method to set the control's font properties, with a reference count.

pFont
A pointer to the control's font properties.

Returns S_OK on success, or an error HRESULT on failure.

RemarksRemarks

CStockPropImpl::putref_MouseIcon

HRESULT STDMETHODCALLTYPE putref_MouseIcon(IPictureDisp* pPicture);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStockPropImpl::putref_Picture

HRESULT STDMETHODCALLTYPE putref_Picture(IPictureDisp* pPicture);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

The same as CStockPropImpl::put_Font, but with a reference count.

Call this method to set the picture properties of the graphic (icon, bitmap, or metafile) to be displayed when the
mouse is over the control, with a reference count.

pPicture
A pointer to the picture properties of the graphic.

Returns S_OK on success, or an error HRESULT on failure.

The same as CStockPropImpl::put_MouseIcon, but with a reference count.

Call this method to set the picture properties of a graphic (icon, bitmap, or metafile) to be displayed, with a
reference count.

pPicture
A pointer to the picture's properties. See IPictureDisp for more details.

Returns S_OK on success, or an error HRESULT on failure.

The same as CStockPropImpl::put_Picture, but with a reference count.

Class Overview
IDispatchImpl Class

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipicturedisp

CStringElementTraits Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <typename T>
class CStringElementTraits

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CStringElementTraits::INARGTYPE The data type to use for adding elements to the collection
class object.

CStringElementTraits::OUTARGTYPE The data type to use for retrieving elements from the
collection class object.

Public MethodsPublic Methods

NAME DESCRIPTION

CStringElementTraits::CompareElements (Static) Call this function to compare two string elements for
equality.

CStringElementTraits::CompareElementsOrdered (Static) Call this function to compare two string elements.

CStringElementTraits::CopyElements (Static) Call this function to copy CString elements stored
in a collection class object.

CStringElementTraits::Hash (Static) Call this function to calculate a hash value for the
given string element.

CStringElementTraits::RelocateElements (Static) Call this function to relocate CString elements
stored in a collection class object.

Remarks

This class provides static functions used by collection classes storing CString objects.

T
The type of data to be stored in the collection.

This class provides static functions for copying, moving, and comparing strings and for creating a hash value.
These functions are useful when using a collection class to store string-based data. Use CStringElementTraitsI
when case-insensitive comparisons are required. Use CStringRefElementTraits when the string objects are to be
dealt with as references.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cstringelementtraits-class.md

Requirements

CStringElementTraits::CompareElements

static bool CompareElements(INARGTYPE str1, INARGTYPE str2);

ParametersParameters

Return ValueReturn Value

CStringElementTraits::CompareElementsOrdered

static int CompareElementsOrdered(INARGTYPE str1, INARGTYPE str2);

ParametersParameters

Return ValueReturn Value

CStringElementTraits::CopyElements

static void CopyElements(
 T* pDest,
 const T* pSrc,
 size_t nElements);

ParametersParameters

For more information, see ATL Collection Classes.

Header: cstringt.h

Call this static function to compare two string elements for equality.

str1
The first string element.

str2
The second string element.

Returns true if the elements are equal, false otherwise.

Call this static function to compare two string elements.

str1
The first string element.

str2
The second string element.

Zero if the strings are identical, < 0 if str1 is less than str2, or > 0 if str1 is greater than str2. The
CStringT::Compare method is used to perform the comparisons.

Call this static function to copy CString elements stored in a collection class object.

pDest
Pointer to the first element that will receive the copied data.

pSrc

RemarksRemarks

CStringElementTraits::Hash

static ULONG Hash(INARGTYPE str);

ParametersParameters

Return ValueReturn Value

CStringElementTraits::INARGTYPE

typedef T::PCXSTR INARGTYPE;

CStringElementTraits::OUTARGTYPE

typedef T& OUTARGTYPE;

CStringElementTraits::RelocateElements

static void RelocateElements(
 T* pDest,
 T* pSrc,
 size_t nElements);

ParametersParameters

RemarksRemarks

Pointer to the first element to copy.

nElements
The number of elements to copy.

The source and destination elements should not overlap.

Call this static function to calculate a hash value for the given string element.

str
The string element.

Returns a hash value, calculated using the string's contents.

The data type to use for adding elements to the collection class object.

The data type to use for retrieving elements from the collection class object.

Call this static function to relocate CString elements stored in a collection class object.

pDest
Pointer to the first element that will receive the relocated data.

pSrc
Pointer to the first element to relocate.

nElements
The number of elements to relocate.

See also

This static function calls memmove, which is sufficient for most data types. If the objects being moved contain
pointers to their own members, this static function will need to be overridden.

CElementTraitsBase Class
CStringElementTraitsI Class
Class Overview

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/memmove-wmemmove

CStringElementTraitsI Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <typename T, class CharTraits = CDefaultCharTraits<T ::XCHAR>>
class CStringElementTraitsI : public CElementTraitsBase<T>

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CStringElementTraitsI::INARGTYPE The data type to use for adding elements to the collection
class object.

CStringElementTraitsI::OUTARGTYPE The data type to use for retrieving elements from the
collection class object.

Public MethodsPublic Methods

NAME DESCRIPTION

CStringElementTraitsI::CompareElements Call this static function to compare two string elements for
equality, ignoring differences in case.

CStringElementTraitsI::CompareElementsOrdered Call this static function to compare two string elements,
ignoring differences in case.

CStringElementTraitsI::Hash Call this static function to calculate a hash value for the given
string element.

Remarks

Inheritance Hierarchy

This class provides static functions related to strings stored in collection class objects. It is similar to
CStringElementTraits, but performs case-insensitive comparisons.

T
The type of data to be stored in the collection.

This class provides static functions for comparing strings and for creating a hash value. These functions are useful
when using a collection class to store string-based data. Use CStringRefElementTraits when the string objects are
to be with dealt with as references.

For more information, see ATL Collection Classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cstringelementtraitsi-class.md

Requirements

CStringElementTraitsI::CompareElements

static bool CompareElements(INARGTYPE str1, INARGTYPE str2) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStringElementTraitsI::CompareElementsOrdered

static int CompareElementsOrdered(INARGTYPE str1, INARGTYPE str2) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStringElementTraitsI::Hash

static ULONG Hash(INARGTYPE str) throw();

CElementTraitsBase

CStringElementTraitsI

Header: atlcoll.h

Call this static function to compare two string elements for equality, ignoring differences in case.

str1
The first string element.

str2
The second string element.

Returns true if the elements are equal, false otherwise.

Comparisons are case insensitive.

Call this static function to compare two string elements, ignoring differences in case.

str1
The first string element.

str2
The second string element.

Zero if the strings are identical, < 0 if str1 is less than str2, or > 0 if str1 is greater than str2. The
CStringT::Compare method is used to perform the comparisons.

Comparisons are case insensitive.

Call this static function to calculate a hash value for the given string element.

ParametersParameters

Return ValueReturn Value

CStringElementTraitsI::INARGTYPE

typedef T::PCXSTR INARGTYPE;

CStringElementTraitsI::OUTARGTYPE

typedef T& OUTARGTYPE;

See also

str
The string element.

Returns a hash value, calculated using the string's contents.

The data type to use for adding elements to the collection class object.

The data type to use for retrieving elements from the collection class object.

CElementTraitsBase Class
Class Overview
CStringElementTraits Class

CStringRefElementTraits Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <typename T>
class CStringRefElementTraits : public CElementTraitsBase<T>

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CStringRefElementTraits::CompareElements Call this static function to compare two string elements for
equality.

CStringRefElementTraits::CompareElementsOrdered Call this static function to compare two string elements.

CStringRefElementTraits::Hash Call this static function to calculate a hash value for the given
string element.

Remarks

Inheritance Hierarchy

Requirements

CStringRefElementTraits::CompareElements

This class provides static functions related to strings stored in collection class objects. The string objects are dealt
with as references.

T
The type of data to be stored in the collection.

This class provides static functions for comparing strings and for creating a hash value. These functions are useful
when using a collection class to store string-based data. Unlike CStringElementTraits and CStringElementTraitsI,
CStringRefElementTraits causes the CString arguments to be passed as const CString& references.

For more information, see ATL Collection Classes.

CElementTraitsBase

CStringRefElementTraits

Header: atlcoll.h

Call this static function to compare two string elements for equality.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cstringrefelementtraits-class.md

static bool CompareElements(INARGTYPE element1, INARGTYPE element2) throw();

ParametersParameters

Return ValueReturn Value

CStringRefElementTraits::CompareElementsOrdered

static int CompareElementsOrdered(INARGTYPE str1, INARGTYPE str2) throw();

ParametersParameters

Return ValueReturn Value

CStringRefElementTraits::Hash

static ULONG Hash(INARGTYPE str) throw();

ParametersParameters

Return ValueReturn Value

See also

element1
The first string element.

element2
The second string element.

Returns true if the elements are equal, false otherwise.

Call this static function to compare two string elements.

str1
The first string element.

str2
The second string element.

Zero if the strings are identical, < 0 if str1 is less than str2, or > 0 if str1 is greater than str2. The
CStringT::Compare method is used to perform the comparisons.

Call this static function to calculate a hash value for the given string element.

str
The string element.

Returns a hash value, calculated using the string's contents.

CElementTraitsBase Class
Class Overview

CThreadPool Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
template <class Worker, class ThreadTraits = DefaultThreadTraits>
class CThreadPool : public IThreadPoolConfig

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CThreadPool::CThreadPool The constructor for the thread pool.

CThreadPool::~CThreadPool The destructor for the thread pool.

Public MethodsPublic Methods

NAME DESCRIPTION

CThreadPool::AddRef Implementation of IUnknown::AddRef .

CThreadPool::GetNumThreads Call this method to get the number of threads in the pool.

CThreadPool::GetQueueHandle Call this method to get the handle of the IO completion port
used to queue work items.

CThreadPool::GetSize Call this method to get the number of threads in the pool.

CThreadPool::GetTimeout Call this method to get the maximum time in milliseconds
that the thread pool will wait for a thread to shut down.

CThreadPool::Initialize Call this method to initialize the thread pool.

CThreadPool::QueryInterface Implementation of IUnknown::QueryInterface .

CThreadPool::QueueRequest Call this method to queue a work item to be handled by a
thread in the pool.

This class provides a pool of worker threads that process a queue of work items.

Worker
The class conforming to the worker archetype providing the code used to process work items queued on the
thread pool.

ThreadTraits
The class providing the function used to create the threads in the pool.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cthreadpool-class.md

CThreadPool::Release Implementation of IUnknown::Release .

CThreadPool::SetSize Call this method to set the number of threads in the pool.

CThreadPool::SetTimeout Call this method to set the maximum time in milliseconds
that the thread pool will wait for a thread to shut down.

CThreadPool::Shutdown Call this method to shut down the thread pool.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CThreadPool::AddRef

ULONG STDMETHODCALLTYPE AddRef() throw();

Return ValueReturn Value

RemarksRemarks

Threads in the pool are created and destroyed when the pool is initialized, resized, or shut down. An instance of
class Worker will be created on the stack of each worker thread in the pool. Each instance will live for the lifetime
of the thread.

Immediately after creation of a thread, Worker:: Initialize will be called on the object associated with that
thread. Immediately before destruction of a thread, Worker:: Terminate will be called. Both methods must accept
a void* argument. The value of this argument is passed to the thread pool through the pvWorkerParam
parameter of CThreadPool::Initialize.

When there are work items in the queue and worker threads available for work, a worker thread will pull an item
off the queue and call the Execute method of the Worker object for that thread. Three items are then passed to
the method: the item from the queue, the same pvWorkerParam passed to Worker:: Initialize and Worker::
Terminate , and a pointer to the OVERLAPPED structure used for the IO completion port queue.

The Worker class declares the type of the items that will be queued on the thread pool by providing a typedef,
Worker:: RequestType . This type must be capable of being cast to and from a ULONG_PTR.

An example of a Worker class is CNonStatelessWorker Class.

IUnknown

IThreadPoolConfig

CThreadPool

Header: atlutil.h

Implementation of IUnknown::AddRef .

Always returns 1.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_overlapped

CThreadPool::CThreadPool

CThreadPool() throw();

RemarksRemarks

CThreadPool::~CThreadPool

~CThreadPool() throw();

RemarksRemarks

CThreadPool::GetNumThreads

int GetNumThreads() throw();

Return ValueReturn Value

CThreadPool::GetQueueHandle

HANDLE GetQueueHandle() throw();

Return ValueReturn Value

CThreadPool::GetSize

HRESULT STDMETHODCALLTYPE GetSize(int* pnNumThreads) throw();

ParametersParameters

Return ValueReturn Value

This class does not implement lifetime control using reference counting.

The constructor for the thread pool.

Initializes the timeout value to ATLS_DEFAULT_THREADPOOLSHUTDOWNTIMEOUT. The default time is 36
seconds. If necessary, you can define your own positive integer value for this symbol before including atlutil.h.

The destructor for the thread pool.

Calls CThreadPool::Shutdown.

Call this method to get the number of threads in the pool.

Returns the number of threads in the pool.

Call this method to get the handle of the IO completion port used to queue work items.

Returns the queue handle or NULL if the thread pool has not been initialized.

Call this method to get the number of threads in the pool.

pnNumThreads
[out] Address of the variable that, on success, receives the number of threads in the pool.

CThreadPool::GetTimeout

HRESULT STDMETHODCALLTYPE GetTimeout(DWORD* pdwMaxWait) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CThreadPool::Initialize

HRESULT Initialize(
 void* pvWorkerParam = NULL,
 int nNumThreads = 0,
 DWORD dwStackSize = 0,
 HANDLE hCompletion = INVALID_HANDLE_VALUE) throw();

ParametersParameters

Return ValueReturn Value

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the maximum time in milliseconds that the thread pool will wait for a thread to shut
down.

pdwMaxWait
[out] Address of the variable that, on success, receives the maximum time in milliseconds that the thread pool
will wait for a thread to shut down.

Returns S_OK on success, or an error HRESULT on failure.

This timeout value is used by CThreadPool::Shutdown if no other value is supplied to that method.

Call this method to initialize the thread pool.

pvWorkerParam
The worker parameter to be passed to the worker thread object's Initialize , Execute , and Terminate

methods.

nNumThreads
The requested number of threads in the pool.

If nNumThreads is negative, its absolute value will be multiplied by the number of processors in the machine to
get the total number of threads.

If nNumThreads is zero, ATLS_DEFAULT_THREADSPERPROC will be multiplied by the number of processors
in the machine to get the total number of threads. The default is 2 threads per processor. If necessary, you can
define your own positive integer value for this symbol before including atlutil.h.

dwStackSize
The stack size for each thread in the pool.

hCompletion
The handle of an object to associate with the completion port.

Returns S_OK on success, or an error HRESULT on failure.

CThreadPool::QueryInterface

HRESULT STDMETHODCALLTYPE QueryInterface(REFIID riid, void** ppv) throw();

RemarksRemarks

CThreadPool::QueueRequest

BOOL QueueRequest(Worker::RequestType request) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CThreadPool::Release

ULONG STDMETHODCALLTYPE Release() throw();

Return ValueReturn Value

RemarksRemarks

CThreadPool::SetSize

HRESULT STDMETHODCALLTYPE SetSizeint nNumThreads) throw();

ParametersParameters

Implementation of IUnknown::QueryInterface .

Objects of this class can be successfully queried for the IUnknown and IThreadPoolConfig interfaces.

Call this method to queue a work item to be handled by a thread in the pool.

request
The request to be queued.

Returns TRUE on success, FALSE on failure.

This method adds a work item to the queue. The threads in the pool pick items off the queue in the order in
which they are received.

Implementation of IUnknown::Release .

Always returns 1.

This class does not implement lifetime control using reference counting.

Call this method to set the number of threads in the pool.

nNumThreads
The requested number of threads in the pool.

If nNumThreads is negative, its absolute value will be multiplied by the number of processors in the machine to
get the total number of threads.

Return ValueReturn Value

RemarksRemarks

CThreadPool::SetTimeout

HRESULT STDMETHODCALLTYPE SetTimeout(DWORD dwMaxWait) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CThreadPool::Shutdown

void Shutdown(DWORD dwMaxWait = 0) throw();

ParametersParameters

RemarksRemarks

If nNumThreads is zero, ATLS_DEFAULT_THREADSPERPROC will be multiplied by the number of processors
in the machine to get the total number of threads. The default is 2 threads per processor. If necessary, you can
define your own positive integer value for this symbol before including atlutil.h.

Returns S_OK on success, or an error HRESULT on failure.

If the number of threads specified is less than the number of threads currently in the pool, the object puts a
shutdown message on the queue to be picked up by a waiting thread. When a waiting thread pulls the message
off the queue, it notifies the thread pool and exits the thread procedure. This process is repeated until the
number of threads in the pool reaches the specified number or until no thread has exited within the period
specified by GetTimeout/ SetTimeout. In this situation the method will return an HRESULT corresponding to
WAIT_TIMEOUT and the pending shutdown message is canceled.

Call this method to set the maximum time in milliseconds that the thread pool will wait for a thread to shut
down.

dwMaxWait
The requested maximum time in milliseconds that the thread pool will wait for a thread to shut down.

Returns S_OK on success, or an error HRESULT on failure.

The timeout is initialized to ATLS_DEFAULT_THREADPOOLSHUTDOWNTIMEOUT. The default time is 36
seconds. If necessary, you can define your own positive integer value for this symbol before including atlutil.h.

Note that dwMaxWait is the time that the pool will wait for a single thread to shut down. The maximum time
that could be taken to remove multiple threads from the pool could be slightly less than dwMaxWait multiplied
by the number of threads.

Call this method to shut down the thread pool.

dwMaxWait
The requested maximum time in milliseconds that the thread pool will wait for a thread to shut down. If 0 or no
value is supplied, this method will use the timeout set by CThreadPool::SetTimeout.

This method posts a shutdown request to all threads in the pool. If the timeout expires, this method will call
TerminateThread on any thread that did not exit. This method is called automatically from the destructor of the
class.

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-terminatethread

See also
IThreadPoolConfig Interface
DefaultThreadTraits
Classes

CTokenGroups Class
3/4/2019 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CTokenGroups

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CTokenGroups::CTokenGroups The constructor.

CTokenGroups::~CTokenGroups The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CTokenGroups::Add Adds a CSid or existing TOKEN_GROUPS structure to the
CTokenGroups object.

CTokenGroups::Delete Deletes a CSid and its associated attributes from the
CTokenGroups object.

CTokenGroups::DeleteAll Deletes all CSid objects and their associated attributes from
the CTokenGroups object.

CTokenGroups::GetCount Returns the number of CSid objects and associated
attributes contained in the CTokenGroups object.

CTokenGroups::GetLength Returns the size of the CTokenGroups object.

CTokenGroups::GetPTOKEN_GROUPS Retrieves a pointer to the TOKEN_GROUPS structure.

CTokenGroups::GetSidsAndAttributes Retrieves the CSid objects and attributes belonging to the
CTokenGroups object.

CTokenGroups::LookupSid Retrieves the attributes associated with a CSid object.

This class is a wrapper for the TOKEN_GROUPS structure.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ctokengroups-class.md

Public OperatorsPublic Operators

NAME DESCRIPTION

CTokenGroups::operator const TOKEN_GROUPS * Casts the CTokenGroups object to a pointer to the
TOKEN_GROUPS structure.

CTokenGroups::operator = Assignment operator.

Remarks

Requirements

CTokenGroups::Add

void Add(const CSid& rSid, DWORD dwAttributes) throw(...);
void Add(const TOKEN_GROUPS& rTokenGroups) throw(...);

ParametersParameters

RemarksRemarks

CTokenGroups::CTokenGroups

CTokenGroups() throw();
CTokenGroups(const CTokenGroups& rhs) throw(...);
CTokenGroups(const TOKEN_GROUPS& rhs) throw(...);

ParametersParameters

An access token is an object that describes the security context of a process or thread and is allocated to each user
logged onto a Windows system.

The CTokenGroups class is a wrapper for the TOKEN_GROUPS structure, containing information about the group
security identifiers (S IDs) in an access token.

For an introduction to the access control model in Windows, see Access Control in the Windows SDK.

Header: atlsecurity.h

Adds a CSid or existing TOKEN_GROUPS structure to the CTokenGroups object.

rSid
A CSid object.

dwAttributes
The attributes to associate with the CSid object.

rTokenGroups
A TOKEN_GROUPS structure.

These methods add one or more CSid objects and their associated attributes to the CTokenGroups object.

The constructor.

rhs
The CTokenGroups object or TOKEN_GROUPS structure with which to construct the CTokenGroups object.

https://docs.microsoft.com/windows/desktop/SecAuthZ/access-tokens
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_groups
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_groups
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_groups

RemarksRemarks

CTokenGroups::~CTokenGroups

virtual ~CTokenGroups() throw();

RemarksRemarks

CTokenGroups::Delete

bool Delete(const CSid& rSid) throw();

ParametersParameters

Return ValueReturn Value

CTokenGroups::DeleteAll

void DeleteAll() throw();

CTokenGroups::GetCount

UINT GetCount() const throw();

Return ValueReturn Value

CTokenGroups::GetLength

UINT GetLength() const throw();

RemarksRemarks

The CTokenGroups object can optionally be created using a TOKEN_GROUPS structure or a previously defined
CTokenGroups object.

The destructor.

The destructor frees all allocated resources.

Deletes a CSid and its associated attributes from the CTokenGroups object.

rSid
The CSid object for which the security identifier (S ID) and attributes should be removed.

Returns true if the CSid is removed, false otherwise.

Deletes all CSid objects and their associated attributes from the CTokenGroups object.

Returns the number of CSid objects contained in CTokenGroups .

Returns the number of CSid objects and their associated attributes contained in the CTokenGroups object.

Returns the size of the CTokenGroup object.

Returns the total size of the CTokenGroup object, in bytes.

CTokenGroups::GetPTOKEN_GROUPS

const TOKEN_GROUPS* GetPTOKEN_GROUPS() const throw(...);

Return ValueReturn Value

CTokenGroups::GetSidsAndAttributes

void GetSidsAndAttributes(
 CSid::CSidArray* pSids,
 CAtlArray<DWORD>* pAttributes = NULL) const throw(...);

ParametersParameters

RemarksRemarks

CTokenGroups::LookupSid

bool LookupSid(
 const CSid& rSid,
 DWORD* pdwAttributes = NULL) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Retrieves a pointer to the TOKEN_GROUPS structure.

Retrieves a pointer to the TOKEN_GROUPS structure belonging to the CTokenGroups access token object.

Retrieves the CSid objects and (optionally) the attributes belonging to the CTokenGroups object.

pSids
Pointer to an array of CSid objects.

pAttributes
Pointer to an array of DWORDs. If this parameter is omitted or NULL, the attributes are not retrieved.

This method will enumerate all of the CSid objects contained in the CTokenGroups object and place them and
(optionally) the attribute flags into array objects.

Retrieves the attributes associated with a CSid object.

rSid
The CSid object.

pdwAttributes
Pointer to a DWORD which will accept the CSid object's attribute. If omitted or NULL, the attribute will not be
retrieved.

Returns true if the CSid is found, false otherwise.

Setting pdwAttributes to NULL provides a way of confirming the existence of the CSid without accessing the
attribute. Note that this method should not be used to check access rights. Applications should instead use the
CAccessToken::CheckTokenMembership method.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_groups

CTokenGroups::operator =

CTokenGroups& operator= (const TOKEN_GROUPS& rhs) throw(...);
CTokenGroups& operator= (const CTokenGroups& rhs) throw(...);

ParametersParameters

Return ValueReturn Value

CTokenGroups::operator const TOKEN_GROUPS *

operator const TOKEN_GROUPS *() const throw(...);

RemarksRemarks

See also

Assignment operator.

rhs
The CTokenGroups object or TOKEN_GROUPS structure to assign to the CTokenGroups object.

Returns the updated CTokenGroups object.

Casts a value to a pointer to the TOKEN_GROUPS structure.

Casts a value to a pointer to the TOKEN_GROUPS structure.

Security Sample
CSid Class
Class Overview
Security Global Functions

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_groups
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_groups
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CTokenPrivileges Class
3/4/2019 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CTokenPrivileges

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CTokenPrivileges::CTokenPrivileges The constructor.

CTokenPrivileges::~CTokenPrivileges The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CTokenPrivileges::Add Adds one or more privileges to the CTokenPrivileges

object.

CTokenPrivileges::Delete Deletes a privilege from the CTokenPrivileges object.

CTokenPrivileges::DeleteAll Deletes all privileges from the CTokenPrivileges object.

CTokenPrivileges::GetCount Returns the number of privilege entries in the
CTokenPrivileges object.

CTokenPrivileges::GetDisplayNames Retrieves display names for the privileges contained in the
CTokenPrivileges object.

CTokenPrivileges::GetLength Returns the buffer size in bytes required to hold the
TOKEN_PRIVILEGES structure represented by the
CTokenPrivileges object.

CTokenPrivileges::GetLuidsAndAttributes Retrieves the locally unique identifiers (LUIDs) and attribute
flags from the CTokenPrivileges object.

This class is a wrapper for the TOKEN_PRIVILEGES structure.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ctokenprivileges-class.md

CTokenPrivileges::GetNamesAndAttributes Retrieves the privilege names and attribute flags from the
CTokenPrivileges object.

CTokenPrivileges::GetPTOKEN_PRIVILEGES Returns a pointer to the TOKEN_PRIVILEGES structure.

CTokenPrivileges::LookupPrivilege Retrieves the attribute associated with a given privilege name.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CTokenPrivileges::operator const TOKEN_PRIVILEGES * Casts a value to a pointer to the TOKEN_PRIVILEGES

structure.

CTokenPrivileges::operator = Assignment operator.

Remarks

Requirements

CTokenPrivileges::Add

bool Add(LPCTSTR pszPrivilege, bool bEnable) throw(...);
void Add(const TOKEN_PRIVILEGES& rPrivileges) throw(...);

ParametersParameters

Return ValueReturn Value

An access token is an object that describes the security context of a process or thread and is allocated to each user
logged onto a Windows system.

The access token is used to describe the various security privileges granted to each user. A privilege consists of a
64-bit number called a locally unique identifier (LUID) and a descriptor string.

The CTokenPrivileges class is a wrapper for the TOKEN_PRIVILEGES structure and contains 0 or more privileges.
Privileges can be added, deleted, or queried using the supplied class methods.

For an introduction to the access control model in Windows, see Access Control in the Windows SDK.

Header: atlsecurity.h

Adds one or more privileges to the CTokenPrivileges access token object.

pszPrivilege
Pointer to a null-terminated string that specifies the name of the privilege, as defined in the WINNT.H header file.

bEnable
If true, the privilege is enabled. If false, the privilege is disabled.

rPrivileges
Reference to a TOKEN_PRIVILEGES structure. The privileges and attributes are copied from this structure and
added to the CTokenPrivileges object.

https://docs.microsoft.com/windows/desktop/SecAuthZ/access-tokens
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_luid
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_privileges
https://docs.microsoft.com/windows/desktop/SecAuthZ/access-control
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_privileges

CTokenPrivileges::CTokenPrivileges

CTokenPrivileges() throw();
CTokenPrivileges(const CTokenPrivileges& rhs) throw(...);
CTokenPrivileges(const TOKEN_PRIVILEGES& rPrivileges) throw(...);

ParametersParameters

RemarksRemarks

CTokenPrivileges::~CTokenPrivileges

virtual ~CTokenPrivileges() throw();

RemarksRemarks

CTokenPrivileges::Delete

bool Delete(LPCTSTR pszPrivilege) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTokenPrivileges::DeleteAll

The first form of this method returns true if the privileges are successfully added, false otherwise.

The constructor.

rhs
The CTokenPrivileges object to assign to the new object.

rPrivileges
The TOKEN_PRIVILEGES structure to assign to the new CTokenPrivileges object.

The CTokenPrivileges object can optionally be created using a TOKEN_PRIVILEGES structure or a previously defined
CTokenPrivileges object.

The destructor.

The destructor frees all allocated resources.

Deletes a privilege from the CTokenPrivileges access token object.

pszPrivilege
Pointer to a null-terminated string that specifies the name of the privilege, as defined in the WINNT.H header file.
For example, this parameter could specify the constant SE_SECURITY_NAME, or its corresponding string,
"SeSecurityPrivilege."

Returns true if the privilege was successfully deleted, false otherwise.

This method is useful as a tool for creating restricted tokens.

Deletes all privileges from the CTokenPrivileges access token object.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_privileges

void DeleteAll() throw();

RemarksRemarks

CTokenPrivileges::GetDisplayNames

void GetDisplayNames(CNames* pDisplayNames) const throw(...);

ParametersParameters

RemarksRemarks

CTokenPrivileges::GetCount

UINT GetCount() const throw();

Return ValueReturn Value

CTokenPrivileges::GetLength

UINT GetLength() const throw();

Return ValueReturn Value

CTokenPrivileges::GetLuidsAndAttributes

Deletes all privileges contained in the CTokenPrivileges access token object.

Retrieves display names for the privileges contained in the CTokenPrivileges access token object.

pDisplayNames
A pointer to an array of CString objects. CNames is defined as a typedef: CTokenPrivileges::CAtlArray<CString> .

The parameter pDisplayNames is a pointer to an array of CString objects which will receive the display names
corresponding to the privileges contained in the CTokenPrivileges object. This method retrieves display names
only for the privileges specified in the Defined Privileges section of WINNT.H.

This method retrieves a displayable name: for example, if the attribute name is
SE_REMOTE_SHUTDOWN_NAME, the displayable name is "Force shutdown from a remote system." To obtain
the system name, use CTokenPrivileges::GetNamesAndAttributes.

Returns the number of privilege entries in the CTokenPrivileges object.

Returns the number of privileges contained in the CTokenPrivileges object.

Returns the length of the CTokenPrivileges object.

Returns the number of bytes required to hold a TOKEN_PRIVILEGES structure represented by the CTokenPrivileges

object, including all of the privilege entries it contains.

Retrieves the locally unique identifiers (LUIDs) and attribute flags from the CTokenPrivileges object.

void GetLuidsAndAttributes(
 CLUIDArray* pPrivileges,
 CAttributes* pAttributes = NULL) const throw(...);

ParametersParameters

RemarksRemarks

CTokenPrivileges::GetNamesAndAttributes

void GetNamesAndAttributes(
 CNames* pNames,
 CAttributes* pAttributes = NULL) const throw(...);

ParametersParameters

RemarksRemarks

CTokenPrivileges::GetPTOKEN_PRIVILEGES

const TOKEN_PRIVILEGES* GetPTOKEN_PRIVILEGES() const throw(...);

Return ValueReturn Value

CTokenPrivileges::LookupPrivilege

pPrivileges
Pointer to an array of LUID objects. CLUIDArray is a typedef defined as CAtlArray<LUID> CLUIDArray .

pAttributes
Pointer to an array of DWORD objects. If this parameter is omitted or NULL, the attributes are not retrieved.
CAttributes is a typedef defined as CAtlArray <DWORD> CAttributes .

This method will enumerate all of the privileges contained in the CTokenPrivileges access token object and place
the individual LUIDs and (optionally) the attribute flags into array objects.

Retrieves the name and attribute flags from the CTokenPrivileges object.

pNames
Pointer to an array of CString objects. CNames is a typedef defined as CAtlArray <CString> CNames .

pAttributes
Pointer to an array of DWORD objects. If this parameter is omitted or NULL, the attributes are not retrieved.
CAttributes is a typedef defined as CAtlArray <DWORD> CAttributes .

This method will enumerate all of the privileges contained in the CTokenPrivileges object, placing the name and
(optionally) the attribute flags into array objects.

This method retrieves the attribute name, rather than the displayable name: for example, if the attribute name is
SE_REMOTE_SHUTDOWN_NAME, the system name is "SeRemoteShutdownPrivilege." To obtain the displayable
name, use the method CTokenPrivileges::GetDisplayNames.

Returns a pointer to the TOKEN_PRIVILEGES structure.

Returns a pointer to the TOKEN_PRIVILEGES structure.

Retrieves the attribute associated with a given privilege name.

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_luid
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_privileges

bool LookupPrivilege(
 LPCTSTR pszPrivilege,
 DWORD* pdwAttributes = NULL) const throw(...);

ParametersParameters

Return ValueReturn Value

CTokenPrivileges::operator =

CTokenPrivileges& operator= (const TOKEN_PRIVILEGES& rPrivileges) throw(...);
CTokenPrivileges& operator= (const CTokenPrivileges& rhs) throw(...);

ParametersParameters

Return ValueReturn Value

CTokenPrivileges::operator const TOKEN_PRIVILEGES *

operator const TOKEN_PRIVILEGES *() const throw(...);

RemarksRemarks

See also

pszPrivilege
Pointer to a null-terminated string that specifies the name of the privilege, as defined in the WINNT.H header file.
For example, this parameter could specify the constant SE_SECURITY_NAME, or its corresponding string,
"SeSecurityPrivilege."

pdwAttributes
Pointer to a variable that receives the attributes.

Returns true if the attribute is successfully retrieved, false otherwise.

Assignment operator.

rPrivileges
The TOKEN_PRIVILEGES structure to assign to the CTokenPrivileges object.

rhs
The CTokenPrivileges object to assign to the object.

Returns the updated CTokenPrivileges object.

Casts a value to a pointer to the TOKEN_PRIVILEGES structure.

Casts a value to a pointer to the TOKEN_PRIVILEGES structure.

Security Sample
TOKEN_PRIVILEGES
LUID
LUID_AND_ATTRIBUTES
Class Overview
Security Global Functions

https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_privileges
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_privileges
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_token_privileges
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_luid
https://docs.microsoft.com/windows/desktop/api/winnt/ns-winnt-_luid_and_attributes

CUrl Class
3/4/2019 • 8 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CUrl

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CUrl::CUrl The constructor.

CUrl::~CUrl The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CUrl::Canonicalize Call this method to convert the URL string to canonical form.

CUrl::Clear Call this method to clear all of the URL fields.

CUrl::CrackUrl Call this method to decode and parse the URL.

CUrl::CreateUrl Call this method to create the URL.

CUrl::GetExtraInfo Call this method to get extra information (such as text or #
text) from the URL.

CUrl::GetExtraInfoLength Call this method to get the length of the extra information
(such as text or # text) to retrieve from the URL.

CUrl::GetHostName Call this method to get the host name from the URL.

CUrl::GetHostNameLength Call this method to get the length of the host name.

CUrl::GetPassword Call this method to get the password from the URL.

This class represents a URL. It allows you to manipulate each element of the URL independently of the others
whether parsing an existing URL string or building a string from scratch.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/curl-class.md

CUrl::GetPasswordLength Call this method to get the length of the password.

CUrl::GetPortNumber Call this method to get the port number in terms of
ATL_URL_PORT.

CUrl::GetScheme Call this method to get the URL scheme.

CUrl::GetSchemeName Call this method to get the URL scheme name.

CUrl::GetSchemeNameLength Call this method to get the length of the URL scheme name.

CUrl::GetUrlLength Call this method to get the URL length.

CUrl::GetUrlPath Call this method to get the URL path.

CUrl::GetUrlPathLength Call this method to get the URL path length.

CUrl::GetUserName Call this method to get the user name from the URL.

CUrl::GetUserNameLength Call this method to get the length of the user name.

CUrl::SetExtraInfo Call this method to set the extra information (such as text or
text) of the URL.

CUrl::SetHostName Call this method to set the host name.

CUrl::SetPassword Call this method to set the password.

CUrl::SetPortNumber Call this method to set the port number in terms of
ATL_URL_PORT.

CUrl::SetScheme Call this method to set the URL scheme.

CUrl::SetSchemeName Call this method to set the URL scheme name.

CUrl::SetUrlPath Call this method to set the URL path.

CUrl::SetUserName Call this method to set the user name.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CUrl::operator = Assigns the specified CUrl object to the current CUrl

object.

Remarks
CUrl allows you to manipulate the fields of a URL, such as the path or port number. CUrl understands URLs of

the following form:

<Scheme>://<UserName>:<Password>@<HostName>:<PortNumber>/<UrlPath><ExtraInfo>

Requirements

CUrl::Canonicalize

inline BOOL Canonicalize(DWORD dwFlags = 0) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

(Some fields are optional.) For example, consider this URL:

http://someone:secret@www.microsoft.com:80/visualc/stuff.htm#contents

CUrl::CrackUrl parses it as follows:

Scheme: "http" or ATL_URL_SCHEME_HTTP

UserName: "someone"

Password: "secret"

HostName: " www.microsoft.com "

PortNumber: 80

UrlPath: "visualc/stuff.htm"

ExtraInfo: "#contents"

To manipulate the UrlPath field (for instance), you would use GetUrlPath, GetUrlPathLength, and SetUrlPath. You
would use CreateUrl to create the complete URL string.

Header: atlutil.h

Call this method to convert the URL string to canonical form.

dwFlags
The flags that control canonicalization. If no flags are specified (dwFlags = 0), the method converts all unsafe
characters and meta sequences (such as \.,\ .., and \...) to escape sequences. dwFlags can be one of the following
values:

ATL_URL_BROWSER_MODE: Does not encode or decode characters after "#" or "" and does not remove
trailing white space after "". If this value is not specified, the entire URL is encoded and trailing white
space is removed.

ATL_URL _DECODE: Converts all %XX sequences to characters, including escape sequences, before the
URL is parsed.

ATL_URL _ENCODE_PERCENT: Encodes any percent signs encountered. By default, percent signs are not
encoded.

ATL_URL _ENCODE_SPACES_ONLY: Encodes spaces only.

ATL_URL _NO_ENCODE: Does not convert unsafe characters to escape sequences.

ATL_URL _NO_META: Does not remove meta sequences (such as "." and "..") from the URL.

Returns TRUE on success, FALSE on failure.

CUrl::Clear

inline void Clear() throw();

CUrl::CrackUrl

BOOL CrackUrl(LPCTSTR lpszUrl, DWORD dwFlags = 0) throw();

ParametersParameters

Return ValueReturn Value

CUrl::CreateUrl

inline BOOL CreateUrl(
 LPTSTR lpszUrl,
 DWORD* pdwMaxLength,
 DWORD dwFlags = 0) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Converting to canonical form involves converting unsafe characters and spaces to escape sequences.

Call this method to clear all of the URL fields.

Call this method to decode and parse the URL.

lpszUrl
The URL.

dwFlags
Specify ATL_URL_DECODE or ATL_URL_ESCAPE to convert all escape characters in lpszUrl to their real values
after parsing. (Before Visual C++ 2005, ATL_URL_DECODE converted all escape characters before parsing.)

Returns TRUE on success, FALSE on failure.

This method constructs a URL string from a CUrl object's component fields.

lpszUrl
A string buffer to hold the complete URL string.

pdwMaxLength
The maximum length of the lpszUrl string buffer.

dwFlags
Specify ATL_URL_ESCAPE to convert all escape characters in lpszUrl to their real values.

Returns TRUE on success, FALSE on failure.

This method appends its individual fields in order to construct the complete URL string using the following
format:

<scheme>://<user>:<pass>@<domain>:<port><path><extra>

When calling this method, the pdwMaxLength parameter should initially contain the maximum length of the

ExampleExample

CUrl url;

// Set the CUrl contents
url.CrackUrl(_T("http://someone:secret@www.microsoft.com:8080/visualc/stuff.htm#contents"));

// Obtain the length of the URL string and allocate a buffer to
// hold its contents
DWORD dwUrlLen = url.GetUrlLength() + 1;
TCHAR* szUrl = new TCHAR[dwUrlLen];

// Retrieve the contents of the CUrl object
url.CreateUrl(szUrl, &dwUrlLen, 0L);

// Cleanup
delete[] szUrl;

CUrl::CUrl

CUrl() throw();
CUrl(const CUrl& urlThat) throw();

ParametersParameters

CUrl::~CUrl

~CUrl() throw();

CUrl::GetExtraInfo

inline LPCTSTR GetExtraInfo() const throw();

Return ValueReturn Value

CUrl::GetExtraInfoLength

string buffer referenced by the lpszUrl parameter. The value of the pdwMaxLength parameter will be updated
with the actual length of the URL string.

This sample demonstrates creation of a CUrl object and retrieving its URL string

The constructor.

urlThat
The CUrl object to copy to create the URL.

The destructor.

Call this method to get extra information (such as text or # text) from the URL.

Returns a string containing the extra information.

Call this method to get the length of the extra information (such as text or # text) to retrieve from the URL.

inline DWORD GetExtraInfoLength() const throw();

Return ValueReturn Value

CUrl::GetHostName

inline LPCTSTR GetHostName() const throw();

Return ValueReturn Value

CUrl::GetHostNameLength

inline DWORD GetHostNameLength() const throw();

Return ValueReturn Value

CUrl::GetPassword

inline LPCTSTR GetPassword() const throw();

Return ValueReturn Value

CUrl::GetPasswordLength

inline DWORD GetPasswordLength() const throw();

Return ValueReturn Value

CUrl::GetPortNumber

inline ATL_URL_PORT GetPortNumber() const throw();

Return ValueReturn Value

Returns the length of the string containing the extra information.

Call this method to get the host name from the URL.

Returns the host name.

Call this method to get the length of the host name.

Returns the host name length.

Call this method to get the password from the URL.

Returns the password.

Call this method to get the length of the password.

Returns the password length.

Call this method to get the port number.

CUrl::GetScheme

inline ATL_URL_SCHEME GetScheme() const throw();

Return ValueReturn Value

CUrl::GetSchemeName

inline LPCTSTR GetSchemeName() const throw();

Return ValueReturn Value

CUrl::GetSchemeNameLength

inline DWORD GetSchemeNameLength() const throw();

Return ValueReturn Value

CUrl::GetUrlLength

inline DWORD GetUrlLength() const throw();

Return ValueReturn Value

CUrl::GetUrlPath

inline LPCTSTR GetUrlPath() const throw();

Return ValueReturn Value

CUrl::GetUrlPathLength

Returns the port number.

Call this method to get the URL scheme.

Returns the ATL_URL_SCHEME value describing the scheme of the URL.

Call this method to get the URL scheme name.

Returns the URL scheme name (such as "http" or "ftp").

Call this method to get the length of the URL scheme name.

Returns the URL scheme name length.

Call this method to get the URL length.

Returns the URL length.

Call this method to get the URL path.

Returns the URL path.

Call this method to get the URL path length.

inline DWORD GetUrlPathLength() const throw();

Return ValueReturn Value

CUrl::GetUserName

inline LPCTSTR GetUserName() const throw();

Return ValueReturn Value

CUrl::GetUserNameLength

inline DWORD GetUserNameLength() const throw();

Return ValueReturn Value

CUrl::operator =

CUrl& operator= (const CUrl& urlThat) throw();

ParametersParameters

Return ValueReturn Value

CUrl::SetExtraInfo

inline BOOL SetExtraInfo(LPCTSTR lpszInfo) throw();

ParametersParameters

Return ValueReturn Value

CUrl::SetHostName

Returns the URL path length.

Call this method to get the user name from the URL.

Returns the user name.

Call this method to get the length of the user name.

Returns the user name length.

Assigns the specified CUrl object to the current CUrl object.

urlThat
The CUrl object to copy into the current object.

Returns a reference to the current object.

Call this method to set the extra information (such as text or # text) of the URL.

lpszInfo
The string containing the extra information to include in the URL.

Returns TRUE on success, FALSE on failure.

CUrl::SetHostName

inline BOOL SetHostName(LPCTSTR lpszHost) throw();

ParametersParameters

Return ValueReturn Value

CUrl::SetPassword

inline BOOL SetPassword(LPCTSTR lpszPass) throw();

ParametersParameters

Return ValueReturn Value

CUrl::SetPortNumber

inline BOOL SetPortNumber(ATL_URL_PORT nPrt) throw();

ParametersParameters

Return ValueReturn Value

CUrl::SetScheme

inline BOOL SetScheme(ATL_URL_SCHEME nScheme) throw();

ParametersParameters

Return ValueReturn Value

Call this method to set the host name.

lpszHost
The host name.

Returns TRUE on success, FALSE on failure.

Call this method to set the password.

lpszPass
The password.

Returns TRUE on success, FALSE on failure.

Call this method to set the port number.

nPrt
The port number.

Returns TRUE on success, FALSE on failure.

Call this method to set the URL scheme.

nScheme
One of the ATL_URL_SCHEME values for the scheme.

Returns TRUE on success, FALSE on failure.

RemarksRemarks

CUrl::SetSchemeName

inline BOOL SetSchemeName(LPCTSTR lpszSchm) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CUrl::SetUrlPath

inline BOOL SetUrlPath(LPCTSTR lpszPath) throw();

ParametersParameters

Return ValueReturn Value

CUrl::SetUserName

inline BOOL SetUserName(LPCTSTR lpszUser) throw();

ParametersParameters

Return ValueReturn Value

See also

You can also set the scheme by name (see CUrl::SetSchemeName).

Call this method to set the URL scheme name.

lpszSchm
The URL scheme name.

Returns TRUE on success, FALSE on failure.

You can also set the scheme by using an ATL_URL_SCHEME constant (see CUrl::SetScheme).

Call this method to set the URL path.

lpszPath
The URL path.

Returns TRUE on success, FALSE on failure.

Call this method to set the user name.

lpszUser
The user name.

Returns TRUE on success, FALSE on failure.

Classes

CW2AEX Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<int t_nBufferLength = 128>
class CW2AEX

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CW2AEX::CW2AEX The constructor.

CW2AEX::~CW2AEX The destructor.

Public OperatorsPublic Operators

NAME DESCRIPTION

CW2AEX::operator LPSTR Conversion operator.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CW2AEX::m_psz The data member that stores the source string.

CW2AEX::m_szBuffer The static buffer, used to store the converted string.

Remarks

This class is used by the string conversion macros CT2AEX, CW2TEX, CW2CTEX, and CT2CAEX, and the typedef
CW2A.

This class and its members cannot be used in applications that execute in the Windows Runtime.

t_nBufferLength
The size of the buffer used in the translation process. The default length is 128 bytes.

Unless extra functionality is required, use CT2AEX, CW2TEX, CW2CTEX, CT2CAEX, or CW2A in your code.

This class contains a fixed-size static buffer which is used to store the result of the conversion. If the result is too
large to fit into the static buffer, the class allocates memory using malloc, freeing the memory when the object

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cw2aex-class.md

Example

Requirements

CW2AEX::CW2AEX

CW2AEX(LPCWSTR psz, UINT nCodePage) throw(...);
CW2AEX(LPCWSTR psz) throw(...);

ParametersParameters

RemarksRemarks

CW2AEX::~CW2AEX

goes out of scope. This ensures that, unlike text conversion macros available in previous versions of ATL, this class
is safe to use in loops and that it won't overflow the stack.

If the class tries to allocate memory on the heap and fails, it will call AtlThrow with an argument of
E_OUTOFMEMORY.

By default, the ATL conversion classes and macros use the current thread's ANSI code page for the conversion. If
you want to override that behavior for a specific conversion, specify the code page as the second parameter to the
constructor for the class.

The following macros are based on this class:

CT2AEX

CW2TEX

CW2CTEX

CT2CAEX

The following typedef is based on this class:

CW2A

For a discussion of these text conversion macros, see ATL and MFC String Conversion Macros.

See ATL and MFC String Conversion Macros for an example of using these string conversion macros.

Header: atlconv.h

The constructor.

psz
The text string to be converted.

nCodePage
The code page used to perform the conversion. See the code page parameter discussion for the Windows SDK
function MultiByteToWideChar for more details.

Allocates the buffer used in the translation process.

The destructor.

https://docs.microsoft.com/windows/desktop/api/stringapiset/nf-stringapiset-multibytetowidechar

~CW2AEX() throw();

RemarksRemarks

CW2AEX::m_psz

LPSTR m_psz;

CW2AEX::m_szBuffer

char m_szBuffer[t_nBufferLength];

CW2AEX::operator LPSTR

operator LPSTR() const throw();

Return ValueReturn Value

See also

Frees the allocated buffer.

The data member that stores the source string.

The static buffer, used to store the converted string.

Conversion operator.

Returns the text string as type LPSTR.

CA2AEX Class
CA2CAEX Class
CA2WEX Class
CW2CWEX Class
CW2WEX Class
Class Overview

CW2CWEX Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<int t_nBufferLength = 128>
class CW2CWEX

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CW2CWEX::CW2CWEX The constructor.

CW2CWEX::~CW2CWEX The destructor.

Public OperatorsPublic Operators

NAME DESCRIPTION

CW2CWEX::operator LPCWSTR Conversion operator.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CW2CWEX::m_psz The data member that stores the source string.

Remarks

This class is used by the string conversion macros CW2CTEX and CT2CWEX, and the typedef CW2W.

This class and its members cannot be used in applications that execute in the Windows Runtime.

t_nBufferLength
The size of the buffer used in the translation process. The default length is 128 bytes.

Unless extra functionality is required, use CW2CTEX, CT2CWEX, or CW2W in your code.

This class is safe to use in loops and won't overflow the stack. By default, the ATL conversion classes and macros
use the current thread's ANSI code page for the conversion.

The following macros are based on this class:

CW2CTEX

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cw2cwex-class.md

Example

Requirements

CW2CWEX::CW2CWEX

CW2CWEX(LPCWSTR psz, UINT nCodePage) throw(...);
CW2CWEX(LPCWSTR psz) throw(...);

ParametersParameters

RemarksRemarks

CW2CWEX::~CW2CWEX

~CW2CWEX() throw();

RemarksRemarks

CW2CWEX::m_psz

LPCWSTR m_psz;

CW2CWEX::operator LPCWSTR

CT2CWEX

The following typedef is based on this class:

CW2W

For a discussion of these text conversion macros, see ATL and MFC String Conversion Macros.

See ATL and MFC String Conversion Macros for an example of using these string conversion macros.

Header: atlconv.h

The constructor.

psz
The text string to be converted.

nCodePage
The code page. Not used in this class.

Allocates the buffer used in the translation process.

The destructor.

Frees the allocated buffer.

The data member that stores the source string.

Conversion operator.

operator LPCWSTR() const throw();

Return ValueReturn Value

See also

Returns the text string as type LPCWSTR.

CA2AEX Class
CA2CAEX Class
CA2WEX Class
CW2AEX Class
CW2WEX Class
Class Overview

CW2WEX Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <int t_nBufferLength = 128>
class CW2WEX

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CW2WEX::CW2WEX The constructor.

CW2WEX::~CW2WEX The destructor.

Public OperatorsPublic Operators

NAME DESCRIPTION

CW2WEX::operator LPWSTR Conversion operator.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CW2WEX::m_psz The data member that stores the source string.

CW2WEX::m_szBuffer The static buffer, used to store the converted string.

Remarks

This class is used by the string conversion macros CW2TEX and CT2WEX, and the typedef CW2W.

This class and its members cannot be used in applications that execute in the Windows Runtime.

t_nBufferLength
The size of the buffer used in the translation process. The default length is 128 bytes.

Unless extra functionality is required, use CW2TEX, CT2WEX, or CW2W in your code.

This class contains a fixed-size static buffer which is used to store the result of the conversion. If the result is too
large to fit into the static buffer, the class allocates memory using malloc, freeing the memory when the object
goes out of scope. This ensures that, unlike text conversion macros available in previous versions of ATL, this

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cw2wex-class.md

Example

Requirements

CW2WEX::CW2WEX

CW2WEX(LPCWSTR psz, UINT nCodePage) throw(...);
CW2WEX(LPCWSTR psz) throw(...);

ParametersParameters

RemarksRemarks

CW2WEX::~CW2WEX

~CW2WEX() throw();

RemarksRemarks

CW2WEX::m_psz

class is safe to use in loops and that it won't overflow the stack.

If the class tries to allocate memory on the heap and fails, it will call AtlThrow with an argument of
E_OUTOFMEMORY.

By default, the ATL conversion classes and macros use the current thread's ANSI code page for the conversion.

The following macros are based on this class:

CW2TEX

CT2WEX

The following typedef is based on this class:

CW2W

For a discussion of these text conversion macros, see ATL and MFC String Conversion Macros.

See ATL and MFC String Conversion Macros for an example of using these string conversion macros.

Header: atlconv.h

The constructor.

psz
The text string to be converted.

nCodePage
The code page. Not used in this class.

Creates the buffer required for the translation.

The destructor..

Frees the allocated buffer.

The data member that stores the source string.

LPWSTR m_psz;

CW2WEX::m_szBuffer

wchar_t m_szBuffer[t_nBufferLength];

CW2WEX::operator LPWSTR

operator LPWSTR() const throw();

Return ValueReturn Value

See also

The static buffer, used to store the converted string.

Cast operator.

Returns the text string as type LPWSTR.

CA2AEX Class
CA2CAEX Class
CA2WEX Class
CW2AEX Class
CW2CWEX Class
Class Overview

CWin32Heap Class
3/4/2019 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CWin32Heap : public IAtlMemMgr

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWin32Heap::CWin32Heap The constructor.

CWin32Heap::~CWin32Heap The destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CWin32Heap::Allocate Allocates a block of memory from the heap object.

CWin32Heap::Attach Attaches the heap object to an existing heap.

CWin32Heap::Detach Detaches the heap object from an existing heap.

CWin32Heap::Free Frees memory previously allocated from the heap.

CWin32Heap::GetSize Returns the size of a memory block allocated from the heap
object.

CWin32Heap::Reallocate Reallocates a block of memory from the heap object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CWin32Heap::m_bOwnHeap A flag used to determine current ownership of the heap
handle.

CWin32Heap::m_hHeap Handle to the heap object.

This class implements IAtlMemMgr using the Win32 heap allocation functions.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cwin32heap-class.md

Remarks

Example

Inheritance Hierarchy

Requirements

CWin32Heap::Allocate

virtual __declspec(allocator) void* Allocate(size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWin32Heap::Attach

void Attach(HANDLE hHeap, bool bTakeOwnership) throw();

ParametersParameters

RemarksRemarks

CWin32Heap implements memory allocation methods using the Win32 heap allocation functions, including
HeapAlloc and HeapFree. Unlike other Heap classes, CWin32Heap requires a valid heap handle to be provided
before memory is allocated: the other classes default to using the process heap. The handle can be supplied to
the constructor or to the CWin32Heap::Attach method. See the CWin32Heap::CWin32Heap method for more
details.

See the example for IAtlMemMgr.

IAtlMemMgr

CWin32Heap

Header: atlmem.h

Allocates a block of memory from the heap object.

nBytes
The requested number of bytes in the new memory block.

Returns a pointer to the newly allocated memory block.

Call CWin32Heap::Free or CWin32Heap::Reallocate to free the memory allocated by this method.

Implemented using HeapAlloc.

Attaches the heap object to an existing heap.

hHeap
An existing heap handle.

bTakeOwnership
A flag indicating if the CWin32Heap object is to take ownership over the resources of the heap.

https://docs.microsoft.com/windows/desktop/api/heapapi/nf-heapapi-heapalloc
https://docs.microsoft.com/windows/desktop/api/heapapi/nf-heapapi-heapfree
https://docs.microsoft.com/windows/desktop/api/heapapi/nf-heapapi-heapalloc

CWin32Heap::CWin32Heap

CWin32Heap() throw();
CWin32Heap(HANDLE hHeap) throw();
CWin32Heap(
 DWORD dwFlags,
 size_t nInitialSize,
 size_t nMaxSize = 0);

ParametersParameters

RemarksRemarks

CWin32Heap MyHeap(GetProcessHeap());

CWin32Heap MyHeap(HEAP_NO_SERIALIZE, SomeInitialSize);

CWin32Heap::~CWin32Heap

~CWin32Heap() throw();

If bTakeOwnership is TRUE, the CWin32Heap object is responsible for deleting the heap handle.

The constructor.

hHeap
An existing heap object.

dwFlags
Flags used in creating the heap.

nInitialSize
The initial size of the heap.

nMaxSize
The maximum size of the heap.

Before allocating memory, it is necessary to provide the CWin32Heap object with a valid heap handle. The
simplest way to achieve this is to use the process heap:

It is also possible to supply an existing heap handle to the constructor, in which case the new object does not take
over ownership of the heap. The original heap handle will still be valid when the CWin32Heap object is deleted.

An existing heap can also be attached to the new object, using CWin32Heap::Attach.

If a heap is required where operations are all performed from a single thread, the best way is to create the object
as follows:

The parameter HEAP_NO_SERIALIZE specifies that mutual exclusion will not be used when the heap functions
allocate and free memory, with an according increase in performance.

The third parameter defaults to 0, which allows the heap to grow as required. See HeapCreate for an explanation
of the memory sizes and flags.

The destructor.

https://docs.microsoft.com/windows/desktop/api/heapapi/nf-heapapi-heapcreate

RemarksRemarks

CWin32Heap::Detach

HANDLE Detach() throw();

Return ValueReturn Value

CWin32Heap::Free

virtual void Free(void* p) throw();

ParametersParameters

CWin32Heap::GetSize

virtual size_t GetSize(void* p) throw();

ParametersParameters

Return ValueReturn Value

CWin32Heap::m_bOwnHeap

bool m_bOwnHeap;

CWin32Heap::m_hHeap

HANDLE m_hHeap;

RemarksRemarks

Destroys the heap handle if the CWin32Heap object has ownership of the heap.

Detaches the heap object from an existing heap.

Returns the handle to the heap to which the object was previously attached.

Frees memory previously allocated from the heap by CWin32Heap::Allocate or CWin32Heap::Reallocate.

p
Pointer to the block of memory to free. NULL is a valid value and does nothing.

Returns the size of a memory block allocated from the heap object.

p
Pointer to the memory block whose size the method will obtain. This is a pointer returned by
CWin32Heap::Allocate or CWin32Heap::Reallocate.

Returns the size, in bytes, of the allocated memory block.

A flag used to determine current ownership of the heap handle stored in m_hHeap.

Handle to the heap object.

 CWin32Heap::Reallocate

virtual __declspec(allocator) void* Reallocate(void* p, size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

A variable used to store a handle to the heap object.

Reallocates a block of memory from the heap object.

p
Pointer to the block of memory to reallocate.

nBytes
The new size in bytes of the allocated block. The block can be made larger or smaller.

Returns a pointer to the newly allocated memory block.

If p is NULL, it's assumed that the memory block has not yet been allocated and CWin32Heap::Allocate is called,
with an argument of nBytes.

Class Overview
IAtlMemMgr Class
CLocalHeap Class
CGlobalHeap Class
CCRTHeap Class
CComHeap Class

CWindow Class
3/5/2019 • 40 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CWindow

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWindow::CWindow Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CWindow::ArrangeIconicWindows Arranges all minimized child windows.

CWindow::Attach Attaches a window to the CWindow object.

CWindow::BeginPaint Prepares the window for painting.

CWindow::BringWindowToTop Brings the window to the top of the Z order.

CWindow::CenterWindow Centers the window against a given window.

CWindow::ChangeClipboardChain Removes the window from the chain of Clipboard viewers.

CWindow::CheckDlgButton Changes the check state of the specified button.

CWindow::CheckRadioButton Checks the specified radio button.

CWindow::ChildWindowFromPoint Retrieves the child window containing the specified point.

CWindow::ChildWindowFromPointEx Retrieves a particular type of child window containing the
specified point.

CWindow::ClientToScreen Converts client coordinates to screen coordinates.

This class provides methods for manipulating a window.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cwindow-class.md

CWindow::Create Creates a window.

CWindow::CreateCaret Creates a new shape for the system caret.

CWindow::CreateGrayCaret Creates a gray rectangle for the system caret.

CWindow::CreateSolidCaret Creates a solid rectangle for the system caret.

CWindow::DeferWindowPos Updates the specified multiple-window-position structure for
the specified window.

CWindow::DestroyWindow Destroys the window associated with the CWindow object.

CWindow::Detach Detaches the window from the CWindow object.

CWindow::DlgDirList Fills a list box with the names of all files matching a specified
path or file name.

CWindow::DlgDirListComboBox Fills a combo box with the names of all files matching a
specified path or file name.

CWindow::DlgDirSelect Retrieves the current selection from a list box.

CWindow::DlgDirSelectComboBox Retrieves the current selection from a combo box.

CWindow::DragAcceptFiles Registers whether the window accepts dragged files.

CWindow::DrawMenuBar Redraws the window's menu bar.

CWindow::EnableScrollBar Enables or disables the scroll bar arrows.

CWindow::EnableWindow Enables or disables input.

CWindow::EndPaint Marks the end of painting.

CWindow::FlashWindow Flashes the window once.

CWindow::GetClientRect Retrieves the coordinates of the client area.

CWindow::GetDC Retrieves a device context for the client area.

CWindow::GetDCEx Retrieves a device context for the client area and allows
clipping options.

CWindow::GetDescendantWindow Retrieves the specified descendant window.

CWindow::GetDlgControl Retrieves an interface on the specified control.

CWindow::GetDlgCtrlID Retrieves the window's identifier (for child windows only).

NAME DESCRIPTION

CWindow::GetDlgHost Retrieves a pointer to an interface to the ATL Control hosting
container.

CWindow::GetDlgItem Retrieves the specified child window.

CWindow::GetDlgItemInt Translates a control's text to an integer.

CWindow::GetDlgItemText Retrieves a control's text.

CWindow::GetExStyle Retrieves the extended window styles.

CWindow::GetFont Retrieves the window's current font.

CWindow::GetHotKey Determines the hot key associated with the window.

CWindow::GetIcon Retrieves the window's large or small icon.

CWindow::GetLastActivePopup Retrieves the most recently active pop-up window.

CWindow::GetMenu Retrieves the window's menu.

CWindow::GetNextDlgGroupItem Retrieves the previous or next control within a group of
controls.

CWindow::GetNextDlgTabItem Retrieves the previous or next control having the
WS_TABSTOP style.

CWindow::GetParent Retrieves the immediate parent window.

CWindow::GetScrollInfo Retrieves the parameters of a scroll bar.

CWindow::GetScrollPos Retrieves the position of the scroll box.

CWindow::GetScrollRange Retrieves the scroll bar range.

CWindow::GetStyle Retrieves the window styles.

CWindow::GetSystemMenu Creates a copy of the system menu for modification.

CWindow::GetTopLevelParent Retrieves the top-level parent or owner window.

CWindow::GetTopLevelWindow Retrieves the top-level owner window.

CWindow::GetTopWindow Retrieves the top-level child window.

CWindow::GetUpdateRect Retrieves the coordinates of the smallest rectangle that
completely encloses the update region.

CWindow::GetUpdateRgn Retrieves the update region and copies it into a specified
region.

NAME DESCRIPTION

CWindow::GetWindow Retrieves the specified window.

CWindow::GetWindowContextHelpId Retrieves the window's help context identifier.

CWindow::GetWindowDC Retrieves a device context for the entire window.

CWindow::GetWindowLong Retrieves a 32-bit value at a specified offset into the extra
window memory.

CWindow::GetWindowLongPtr Retrieves information about the specified window, including a
value at a specified offset into the extra window memory.

CWindow::GetWindowPlacement Retrieves the show state and positions.

CWindow::GetWindowProcessID Retrieves the identifier of the process that created the
window.

CWindow::GetWindowRect Retrieves the window's bounding dimensions.

CWindow::GetWindowRgn Obtains a copy of the window region of a window.

CWindow::GetWindowText Retrieves the window's text.

CWindow::GetWindowTextLength Retrieves the length of the window's text.

CWindow::GetWindowThreadID Retrieves the identifier of the thread that created the
specified window.

CWindow::GetWindowWord Retrieves a 16-bit value at a specified offset into the extra
window memory.

CWindow::GotoDlgCtrl Sets the keyboard focus to a control in the dialog box.

CWindow::HideCaret Hides the system caret.

CWindow::HiliteMenuItem Highlights or removes the highlight from a top-level menu
item.

CWindow::Invalidate Invalidates the entire client area.

CWindow::InvalidateRect Invalidates the client area within the specified rectangle.

CWindow::InvalidateRgn Invalidates the client area within the specified region.

CWindow::IsChild Determines whether the specified window is a child window.

CWindow::IsDialogMessage Determines whether a message is intended for the specified
dialog box.

CWindow::IsDlgButtonChecked Determines the check state of the button.

NAME DESCRIPTION

CWindow::IsIconic Determines whether the window is minimized.

CWindow::IsParentDialog Determines if the parent window of a control is a dialog
window.

CWindow::IsWindow Determines whether the specified window handle identifies
an existing window.

CWindow::IsWindowEnabled Determines whether the window is enabled for input.

CWindow::IsWindowUnicode Determines whether the specified window is a native Unicode
window.

CWindow::IsWindowVisible Determines the window's visibility state.

CWindow::IsZoomed Determines whether the window is maximized.

CWindow::KillTimer Destroys a timer event.

CWindow::LockWindowUpdate Disables or enables drawing in the window.

CWindow::MapWindowPoints Converts a set of points from the window's coordinate space
to the coordinate space of another window.

CWindow::MessageBox Displays a message box.

CWindow::ModifyStyle Modifies the window styles.

CWindow::ModifyStyleEx Modifies the extended window styles.

CWindow::MoveWindow Changes the window's size and position.

CWindow::NextDlgCtrl Sets the keyboard focus to the next control in the dialog box.

CWindow::OpenClipboard Opens the Clipboard.

CWindow::PostMessage Places a message in the message queue associated with the
thread that created the window. Returns without waiting for
the thread to process the message.

CWindow::PrevDlgCtrl Sets the keyboard focus to the previous control in the dialog
box.

CWindow::Print Requests that the window be drawn in a specified device
context.

CWindow::PrintClient Requests that the window's client area be drawn in a
specified device context.

CWindow::RedrawWindow Updates a specified rectangle or region in the client area.

CWindow::ReleaseDC Releases a device context.

NAME DESCRIPTION

CWindow::ResizeClient Resizes the window.

CWindow::ScreenToClient Converts screen coordinates to client coordinates.

CWindow::ScrollWindow Scrolls the specified client area.

CWindow::ScrollWindowEx Scrolls the specified client area with additional features.

CWindow::SendDlgItemMessage Sends a message to a control.

CWindow::SendMessage Sends a message to the window and does not return until
the window procedure has processed the message.

CWindow::SendMessageToDescendants Sends a message to the specified descendant windows.

CWindow::SendNotifyMessage Sends a message to the window. If the window was created
by the calling thread, SendNotifyMessage does not return
until the window procedure has processed the message.
Otherwise, it returns immediately.

CWindow::SetActiveWindow Activates the window.

CWindow::SetCapture Sends all subsequent mouse input to the window.

CWindow::SetClipboardViewer Adds the window to the Clipboard viewer chain.

CWindow::SetDlgCtrlID Changes the window's identifier.

CWindow::SetDlgItemInt Changes a control's text to the string representation of an
integer value.

CWindow::SetDlgItemText Changes a control's text.

CWindow::SetFocus Sets the input focus to the window.

CWindow::SetFont Changes the window's current font.

CWindow::SetHotKey Associates a hot key with the window.

CWindow::SetIcon Changes the window's large or small icon.

CWindow::SetMenu Changes the window's current menu.

CWindow::SetParent Changes the parent window.

CWindow::SetRedraw Sets or clears the redraw flag.

CWindow::SetScrollInfo Sets the parameters of a scroll bar.

CWindow::SetScrollPos Changes the position of the scroll box.

NAME DESCRIPTION

CWindow::SetScrollRange Changes the scroll bar range.

CWindow::SetTimer Creates a timer event.

CWindow::SetWindowContextHelpId Sets the window's help context identifier.

CWindow::SetWindowLong Sets a 32-bit value at a specified offset into the extra window
memory.

CWindow::SetWindowLongPtr Changes an attribute of the specified window, and also sets a
value at the specified offset in the extra window memory.

CWindow::SetWindowPlacement Sets the show state and positions.

CWindow::SetWindowPos Sets the size, position, and Z order.

CWindow::SetWindowRgn Sets the window region of a window.

CWindow::SetWindowText Changes the window's text.

CWindow::SetWindowWord Sets a 16-bit value at a specified offset into the extra window
memory.

CWindow::ShowCaret Displays the system caret.

CWindow::ShowOwnedPopups Shows or hides the pop-up windows owned by the window.

CWindow::ShowScrollBar Shows or hides a scroll bar.

CWindow::ShowWindow Sets the window's show state.

CWindow::ShowWindowAsync Sets the show state of a window created by a different
thread.

CWindow::UpdateWindow Updates the client area.

CWindow::ValidateRect Validates the client area within the specified rectangle.

CWindow::ValidateRgn Validates the client area within the specified region.

CWindow::WinHelp Starts Windows Help.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CWindow::operator HWND Converts the CWindow object to an HWND.

CWindow::operator = Assigns an HWND to the CWindow object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CWindow::m_hWnd The handle to the window associated with the CWindow

object.

CWindow::rcDefault Contains default window dimensions.

Remarks

CWINDOW METHOD WIN32 FUNCTION

BOOL ShowWindow(int nCmdShow); BOOL ShowWindow(HWND hWnd , int nCmdShow);

NOTENOTE

Requirements

CWindow::ArrangeIconicWindows

CWindow provides the base functionality for manipulating a window in ATL. Many of the CWindow methods
simply wrap one of the Win32 API functions. For example, compare the prototypes for CWindow::ShowWindow and
ShowWindow :

CWindow::ShowWindow calls the Win32 function ShowWindow by passing CWindow::m_hWnd as the first parameter.
Every CWindow method that directly wraps a Win32 function passes the m_hWnd member; therefore, much of the
CWindow documentation will refer you to the Windows SDK.

Not every window-related Win32 function is wrapped by CWindow , and not every CWindow method wraps a Win32
function.

CWindow::m_hWnd stores the HWND that identifies a window. An HWND is attached to your object when you:

Specify an HWND in CWindow 's constructor.

Call CWindow::Attach .

Use CWindow 's operator =.

Create or subclass a window using one of the following classes derived from CWindow :

CWindowImpl Allows you to create a new window or subclass an existing window.

CContainedWindow Implements a window contained within another object. You can create a new window or
subclass an existing window.

CDialogImpl Allows you to create a modal or modeless dialog box.

For more information about windows, see Windows and subsequent topics in the Windows SDK. For more
information about using windows in ATL, see the article ATL Window Classes.

Header: atlwin.h

Arranges all minimized child windows.

https://docs.microsoft.com/windows/desktop/winmsg/windows

UINT ArrangeIconicWindows() throw();

RemarksRemarks

CWindow::Attach

void Attach(HWND hWndNew) throw();

ParametersParameters

ExampleExample

//The following example attaches an HWND to the CWindow object
HWND hWnd = ::GetDesktopWindow();
CWindow myWindow;
myWindow.Attach(hWnd);

CWindow::BeginPaint

HDC BeginPaint(LPPAINTSTRUCT lpPaint) throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object
//and calls CWindow::BeginPaint() and CWindow::EndPaint() in the
// WM_PAINT handler of a CWindowImpl-derived class
LRESULT CMyCtrl::OnPaint(UINT /*uMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
{
 CWindow myWindow;
 myWindow.Attach(m_hWnd);
 PAINTSTRUCT ps;
 HDC hDC = myWindow.BeginPaint(&ps);
 //Use the hDC as much as you want
 ::Rectangle(hDC, 0, 0, 50, 50);

 myWindow.EndPaint(&ps);

 return 0;
}

CWindow::BringWindowToTop

See ArrangeIconicWindows in the Windows SDK.

Attaches the window identified by hWndNew to the CWindow object.

hWndNew
[in] The handle to a window.

Prepares the window for painting.

See BeginPaint in the Windows SDK.

Brings the window to the top of the Z order.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-arrangeiconicwindows
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-beginpaint

BOOL BringWindowToTop() throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::BringWindowToTop() to bring the window to the top
//of the z-order.

CWindow myWindow;
myWindow.Attach(hWnd);
BOOL bOnTop = myWindow.BringWindowToTop();

//check if we could bring the window on top
if(bOnTop)
{
 //Do something
}

CWindow::CenterWindow

BOOL CenterWindow(HWND hWndCenter = NULL) throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

//The following example attaches various HWNDs to the CWindow objects
//and calls CWindow::CenterWindow() for each of them

CWindow childWindow, popupWindow, overlappedWindow;

childWindow.Attach(hWndChild); //a window created with WS_CHILD style
childWindow.CenterWindow(); //This will center the child
 //window against its Parent window

popupWindow.Attach(hWndPopup); //a window created with WS_POPUP style
popupWindow.CenterWindow(); //This will center the popup window
 //against its Owner window

overlappedWindow.Attach(hWndOverlapped); //a window created with
 //WS_OVERLAPPED style
overlappedWindow.CenterWindow(::GetDesktopWindow()); //This will center
 //the overlapped window against the DeskTop window

See BringWindowToTop in the Windows SDK.

Centers the window against a given window.

hWndCenter
[in] The handle to the window against which to center. If this parameter is NULL (the default value), the method
will set hWndCenter to the window's parent window if it is a child window. Otherwise, it will set hWndCenter to
the window's owner window.

TRUE if the window is successfully centered; otherwise, FALSE.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-bringwindowtotop

CWindow::ChangeClipboardChain

BOOL ChangeClipboardChain(HWND hWndNewNext) throw();

RemarksRemarks

CWindow::CheckDlgButton

BOOL CheckDlgButton(int nIDButton, UINT nCheck) throw();

RemarksRemarks

CWindow::CheckRadioButton

BOOL CheckRadioButton(
 int nIDFirstButton,
 int nIDLastButton,
 int nIDCheckButton) throw();

RemarksRemarks

CWindow::ChildWindowFromPoint

HWND ChildWindowFromPoint(POINT point) const throw();

RemarksRemarks

CWindow::ChildWindowFromPointEx

HWND ChildWindowFromPoint(POINT point, UINT uFlags) const throw();

RemarksRemarks

CWindow::ClientToScreen

Removes the window from the chain of Clipboard viewers.

See ChangeClipboardChain in the Windows SDK.

Changes the check state of the specified button.

See CheckDlgButton in the Windows SDK.

Checks the specified radio button.

See CheckRadioButton in the Windows SDK.

Retrieves the child window containing the specified point.

See ChildWindowFromPoint in the Windows SDK.

Retrieves a particular type of child window containing the specified point.

See ChildWindowFromPointEx in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-changeclipboardchain
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-checkdlgbutton
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-checkradiobutton
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-childwindowfrompoint
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-childwindowfrompointex

BOOL ClientToScreen(LPPOINT lpPoint) const throw();
BOOL ClientToScreen(LPRECT lpRect) const throw();

RemarksRemarks

CWindow::Create

HWND Create(
 LPCTSTR lpstrWndClass,
 HWND hWndParent,
 _U_RECT rect = NULL,
 LPCTSTR szWindowName = NULL,
 DWORD dwStyle = 0,
 DWORD dwExStyle = 0,
 _U_MENUorID MenuOrID = 0U,
 LPVOID lpCreateParam = NULL) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Converts client coordinates to screen coordinates.

See ClientToScreen in the Windows SDK.

The second version of this method allows you to convert the coordinates of a RECT structure.

Creates a window.

lpstrWndClass
[in] A pointer to the window's class.

hWndParent
[in] The handle to the parent or owner window.

rect
[in] A variable of type _U_RECT specifying the position of the window. The default value is NULL. When this
parameter is NULL, the value of CWindow::rcDefault is used.

szWindowName
[in] Specifies the name of the window. The default value is NULL.

dwStyle
[in] The style of the window. The default value is 0, meaning no style is specified. For a list of possible values, see
CreateWindow in the Windows SDK.

dwExStyle
[in] The extended window style. The default value is 0, meaning no extended style is specified. For a list of
possible values, see CreateWindowEx in the Windows SDK.

MenuOrID
[in] A variable of type _U_MENUorID specifying a handle to a menu or a window identifier. The default value is
0U.

lpCreateParam
A pointer to the window-creation data contained in a CREATESTRUCT structure.

If successful, the handle to the newly created window, specified by m_hWnd. Otherwise, NULL.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-clienttoscreen
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcreatestructa

CWindow::CreateCaret

BOOL CreateCaret(HBITMAP pBitmap) throw();

RemarksRemarks

CWindow::CreateGrayCaret

BOOL CreateGrayCaret(int nWidth, int nHeight) throw();

RemarksRemarks

CWindow::CreateSolidCaret

BOOL CreateSolidCaret(int nWidth, int nHeight) throw();

RemarksRemarks

CWindow::CWindow

CWindow(HWND hWnd = NULL) throw();

ParametersParameters

RemarksRemarks

CWindow::rcDefault is defined as
__declspec(selectany) RECT CWindow::rcDefault = {CW_USEDEFAULT, CW_USEDEFAULT, 0, 0}; .

See CreateWindow in the Windows SDK for more information.

Note If 0 is used as the value for the MenuOrID parameter, it must be specified as 0U (the default value) to
avoid a compiler error.

Creates a new shape for the system caret.

See CreateCaret in the Windows SDK.

Creates a gray rectangle for the system caret.

See CreateCaret in the Windows SDK.

Passes (HBITMAP) 1 for the bitmap handle parameter to the Win32 function.

Creates a solid rectangle for the system caret.

See CreateCaret in the Windows SDK.

Passes (HBITMAP) 0 for the bitmap handle parameter to the Win32 function.

The constructor.

hWnd
[in] The handle to a window.

Initializes the m_hWnd member to hWnd, which by default is NULL.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createcaret
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createcaret
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createcaret

NOTENOTE

CWindow::DeferWindowPos

HDWP DeferWindowPos(
 HDWP hWinPosInfo,
 HWND hWndInsertAfter,
 int x,
 int y,
 int cx,
 int cy,
 UINT uFlags) throw();

RemarksRemarks

CWindow::DestroyWindow

BOOL DestroyWindow() throw();

RemarksRemarks

ExampleExample

 //The following example attaches an HWND to the CWindow object and
 //calls CWindow::DestroyWindow() to destroy the window

 CWindow myWindow;
 myWindow.Attach(hWndChild);
 //call the CWindow wrappers

 myWindow.DestroyWindow();
 hWndChild = NULL;

CWindow::Detach

HWND Detach() throw();

Return ValueReturn Value

CWindow::CWindow does not create a window. Classes CWindowImpl, CContainedWindow, and CDialogImpl (all of which
derive from CWindow) provide a method to create a window or dialog box, which is then assigned to CWindow::m_hWnd .
You can also use the CreateWindow Win32 function.

Updates the specified multiple-window-position structure for the specified window.

See DeferWindowPos in the Windows SDK.

Destroys the window associated with the CWindow object and sets m_hWnd to NULL.

See DestroyWindow in the Windows SDK.

It does not destroy the CWindow object itself.

Detaches m_hWnd from the CWindow object and sets m_hWnd to NULL.

The HWND associated with the CWindow object.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-deferwindowpos
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-destroywindow

ExampleExample

//The following example attaches an HWND to the CWindow object and
//later detaches the CWindow object from the HWND when no longer needed

CWindow myWindow;
myWindow.Attach(hWnd);

//call CWindow wrappers

//We don't need the C++ object any more, so detach it from the HWND.
myWindow.Detach();

CWindow::DlgDirList

int DlgDirList(
 LPTSTR lpPathSpec,
 int nIDListBox,
 int nIDStaticPath,
 UINT nFileType) throw();

RemarksRemarks

CWindow::DlgDirListComboBox

int DlgDirListComboBox(
 LPTSTR lpPathSpec,
 int nIDComboBox,
 int nIDStaticPath,
 UINT nFileType) throw();

RemarksRemarks

CWindow::DlgDirSelect

BOOL DlgDirSelect(
 LPTSTR lpString,
 int nCount,
 int nIDListBox) throw();

RemarksRemarks

CWindow::DlgDirSelectComboBox

Fills a list box with the names of all files matching a specified path or file name.

See DlgDirList in the Windows SDK.

Fills a combo box with the names of all files matching a specified path or file name.

See DlgDirListComboBox in the Windows SDK.

Retrieves the current selection from a list box.

See DlgDirSelectEx in the Windows SDK.

Retrieves the current selection from a combo box.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dlgdirlista
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dlgdirlistcomboboxa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dlgdirselectexa

BOOL DlgDirSelectComboBox(
 LPTSTR lpString,
 int nCount,
 int nIDComboBox) throw();

RemarksRemarks

CWindow::DragAcceptFiles

void DragAcceptFiles(BOOL bAccept = TRUE);

RemarksRemarks

CWindow::DrawMenuBar

BOOL DrawMenuBar() throw();

RemarksRemarks

CWindow::EnableScrollBar

BOOL EnableScrollBar(UINT uSBFlags, UINT uArrowFlags = ESB_ENABLE_BOTH) throw();

RemarksRemarks

CWindow::EnableWindow

BOOL EnableWindow(BOOL bEnable = TRUE) throw();

RemarksRemarks

ExampleExample

See DlgDirSelectComboBoxEx in the Windows SDK.

Registers whether the window accepts dragged files.

See DragAcceptFiles in the Windows SDK.

Redraws the window's menu bar.

See DrawMenuBar in the Windows SDK.

Enables or disables the scroll bar arrows.

See EnableScrollBar in the Windows SDK.

Enables or disables input.

See EnableWindow in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dlgdirselectcomboboxexa
https://docs.microsoft.com/windows/desktop/api/shellapi/nf-shellapi-dragacceptfiles
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawmenubar
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-enablescrollbar
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-enablewindow

//The following example attaches an HWND to the CWindow object and
//calls CWindow::EnableWindow() to enable and disable the window
//wrapped by the CWindow object

CWindow myWindow;
myWindow.Attach(hWnd);

//The following call enables the window
//CWindow::EnableWindow() takes TRUE as the default parameter

myWindow.EnableWindow();

if(myWindow.IsWindowEnabled())
{
 //Do something now that the window is enabled

 //Now it's time to disable the window again
 myWindow.EnableWindow(FALSE);
}

CWindow::EndPaint

void EndPaint(LPPAINTSTRUCT lpPaint) throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object
//and calls CWindow::BeginPaint() and CWindow::EndPaint() in the
// WM_PAINT handler of a CWindowImpl-derived class
LRESULT CMyCtrl::OnPaint(UINT /*uMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
{
 CWindow myWindow;
 myWindow.Attach(m_hWnd);
 PAINTSTRUCT ps;
 HDC hDC = myWindow.BeginPaint(&ps);
 //Use the hDC as much as you want
 ::Rectangle(hDC, 0, 0, 50, 50);

 myWindow.EndPaint(&ps);

 return 0;
}

CWindow::FlashWindow

BOOL FlashWindow(BOOL bInvert) throw();

RemarksRemarks

Marks the end of painting.

See EndPaint in the Windows SDK.

Flashes the window once.

See FlashWindow in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-endpaint
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-flashwindow

CWindow::GetClientRect

BOOL GetClientRect(LPRECT lpRect) const throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::GetClientRect() to get the client area rectangle
//of the window

CWindow myWindow;
myWindow.Attach(hWnd);
RECT rc;
myWindow.GetClientRect(&rc);

CWindow::GetDC

HDC GetDC() throw();

RemarksRemarks

ExampleExample

// The following example attaches a HWND to the CWindow object,
// calls CWindow::GetDC to retrieve the DC of the client
// area of the window wrapped by CWindow Object, and calls
// CWindow::ReleaseDC to release the DC.

CWindow myWindow;
myWindow.Attach(hWnd);
HDC hDC = myWindow.GetDC();

// Use the DC

myWindow.ReleaseDC(hDC);
hDC = NULL;

CWindow::GetDCEx

HDC GetDCEx(HRGN hRgnClip, DWORD flags) throw();

RemarksRemarks

Retrieves the coordinates of the client area.

See GetClientRect in the Windows SDK.

Retrieves a device context for the client area.

See GetDC in the Windows SDK.

Retrieves a device context for the client area and allows clipping options.

See GetDCEx in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getclientrect
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdcex

CWindow::GetDescendantWindow

HWND GetDescendantWindow(int nID) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWindow::GetDlgControl

HRESULT GetDlgControl(
 int nID,
 REFIID iid,
 void** ppCtrl) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWindow::GetDlgCtrlID

int GetDlgCtrlID() const throw();

RemarksRemarks

Finds the descendant window specified by the given identifier.

nID
[in] The identifier of the descendant window to be retrieved.

The handle to a descendant window.

GetDescendantWindow searches the entire tree of child windows, not only the windows that are immediate
children.

Call this function to get a pointer to an interface of an ActiveX control that is hosted by a composite control or a
control-hosting dialog.

nID
[in] The resource ID of the control being retrieved.

iid
[in] The ID of the interface you would like to get from the control.

ppCtrl
[out] The pointer to the interface.

Returns S_OK on success or any valid error HRESULT. For example, the function returns E_FAIL if the control
specified by nID cannot be found and it returns E_NOINTERFACE if the control can be found, but it doesn't
support the interface specified by iid.

Using this pointer, you can call methods on the interface.

Retrieves the window's identifier (for child windows only).

See GetDlgCtrlID in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdlgctrlid

CWindow::GetDlgHost

HRESULT GetDlgHost(
 int nID,
 REFIID iid,
 void** ppHost) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWindow::GetDlgItem

HWND GetDlgItem(int nID) const throw();

RemarksRemarks

CWindow::GetDlgItemInt

UINT GetDlgItemInt(
 int nID,
 BOOL* lpTrans = NULL,
 BOOL bSigned = TRUE) const throw();

RemarksRemarks

CWindow::GetDlgItemText

Retrieves a pointer to an interface to the ATL Control hosting container.

nID
[in] The resource ID of the control being retrieved.

iid
[in] The ID of the interface you would like to get from the control.

ppHost
[out] The pointer to the interface.

Returns S_OK if the window specified by iid is a Control Container, and the requested interface could be
retrieved. Returns E_FAIL if the window is not a Control Container, or if the interface requested could not be
retrieved. If a window with the specified ID could not be found, then the return value is equal to
HRESULT_FROM_WIN32(ERROR_CONTROL_ID_NOT_FOUND).

Using this pointer, you can call methods on the interface.

Retrieves the specified child window.

See GetDlgItem in the Windows SDK.

Translates a control's text to an integer.

See GetDlgItemInt in the Windows SDK.

Retrieves a control's text.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdlgitem
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdlgitemint

UINT GetDlgItemText(
 int nID,
 LPTSTR lpStr,
 int nMaxCount) const throw();

BOOL GetDlgItemText(
 int nID,
 BSTR& bstrText) const throw();

RemarksRemarks

RemarksRemarks

CWindow::GetExStyle

DWORD GetExStyle() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::GetExStyle() to retrieve the extended styles of
//the window

CWindow myWindow;
myWindow.Attach(hWnd);
DWORD dwExStyles = myWindow.GetExStyle();

CWindow::GetFont

HFONT GetFont() const throw();

Return ValueReturn Value

CWindow::GetHotKey

DWORD GetHotKey() const throw();

See GetDlgItemText in the Windows SDK.

The second version of this method allows you to copy the control's text to a BSTR. This version returns TRUE if
the text is successfully copied; otherwise, FALSE.

Retrieves the extended window styles of the window.

The window's extended styles.

To retrieve the regular window styles, call GetStyle.

Retrieves the window's current font by sending a WM_GETFONT message to the window.

A font handle.

Determines the hot key associated with the window by sending a WM_GETHOTKEY message.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdlgitemtexta
https://docs.microsoft.com/windows/desktop/winmsg/wm-getfont

Return ValueReturn Value

CWindow::GetIcon

HICON GetIcon(BOOL bBigIcon = TRUE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWindow::GetLastActivePopup

HWND GetLastActivePopup() const throw();

RemarksRemarks

CWindow::GetMenu

HMENU GetMenu() const throw();

RemarksRemarks

CWindow::GetNextDlgGroupItem

HWND GetNextDlgGroupItem(HWND hWndCtl, BOOL bPrevious = FALSE) const throw();

RemarksRemarks

CWindow::GetNextDlgTabItem

The virtual key code and modifiers for the hot key associated with the window. For a list of possible modifiers,
see WM_GETHOTKEY in the Windows SDK. For a list of standard virtual key codes, see Winuser.h.

Retrieves the handle to the window's large or small icon.

bBigIcon
[in] If TRUE (the default value) the method returns the large icon. Otherwise, it returns the small icon.

An icon handle.

GetIcon sends a WM_GETICON message to the window.

Retrieves the most recently active pop-up window.

See GetLastActivePopup in the Windows SDK.

Retrieves the window's menu.

See GetMenu in the Windows SDK.

Retrieves the previous or next control within a group of controls.

See GetNextDlgGroupItem in the Windows SDK.

Retrieves the previous or next control having the WS_TABSTOP style.

https://docs.microsoft.com/windows/desktop/inputdev/wm-gethotkey
https://docs.microsoft.com/windows/desktop/winmsg/wm-geticon
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getlastactivepopup
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getmenu
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getnextdlggroupitem

HWND GetNextDlgTabItem(HWND hWndCtl, BOOL bPrevious = FALSE) const throw();

RemarksRemarks

CWindow::GetParent

HWND GetParent() const throw();

RemarksRemarks

ExampleExample

// The following example attaches a HWND to the CWindow object
// and calls CWindow::GetParent to find out the parent
// window of the window wrapped by CWindow object.

CWindow myWindow;
myWindow.Attach(hWnd);
HWND hWndParent = myWindow.GetParent();

CWindow::GetScrollInfo

BOOL GetScrollInfo(int nBar, LPSCROLLINFO lpScrollInfo) throw();

RemarksRemarks

CWindow::GetScrollPos

int GetScrollPos(int nBar) const throw();

RemarksRemarks

CWindow::GetScrollRange

BOOL GetScrollRange(
 int nBar,
 LPINT lpMinPos,
 LPINT lpMaxPos) const throw();

See GetNextDlgTabItem in the Windows SDK.

Retrieves the immediate parent window.

See GetParent in the Windows SDK.

Retrieves the parameters of a scroll bar.

See GetScrollInfo in the Windows SDK.

Retrieves the position of the scroll box.

See GetScrollPos in the Windows SDK.

Retrieves the scroll bar range.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getnextdlgtabitem
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getparent
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getscrollinfo
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getscrollpos

RemarksRemarks

CWindow::GetStyle

DWORD GetStyle() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::GetStyle() to retrieve the styles of the window

CWindow myWindow;
myWindow.Attach(hWnd);
DWORD dwStyles = myWindow.GetStyle();

CWindow::GetSystemMenu

HMENU GetSystemMenu(BOOL bRevert) const throw();

RemarksRemarks

CWindow::GetTopLevelParent

HWND GetTopLevelParent() const throw();

Return ValueReturn Value

CWindow::GetTopLevelWindow

HWND GetTopLevelWindow() const throw();

Return ValueReturn Value

See GetScrollRange in the Windows SDK.

Retrieves the window styles of the window.

The window's styles.

To retrieve the extended window styles, call GetExStyle.

Creates a copy of the system menu for modification.

See GetSystemMenu in the Windows SDK.

Retrieves the window's top-level parent window.

The handle to the top-level parent window.

Retrieves the window's top-level parent or owner window.

The handle to the top-level owner window.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getscrollrange
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsystemmenu

CWindow::GetTopWindow

HWND GetTopWindow() const throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::GetTopWindow() to get the top-level child window

CWindow myWindow;
myWindow.Attach(hWnd);
HWND hWndFavoriteChild = myWindow.GetTopWindow();

CWindow::GetUpdateRect

BOOL GetUpdateRect(LPRECT lpRect, BOOL bErase = FALSE) throw();

RemarksRemarks

CWindow::GetUpdateRgn

int GetUpdateRgn(HRGN hRgn, BOOL bErase = FALSE) throw();

RemarksRemarks

CWindow::GetWindow

HWND GetWindow(UINT nCmd) const throw();

RemarksRemarks

CWindow::GetWindowContextHelpId

DWORD GetWindowContextHelpId() const throw();

Retrieves the top-level child window.

See GetTopWindow in the Windows SDK.

Retrieves the coordinates of the smallest rectangle that completely encloses the update region.

See GetUpdateRect in the Windows SDK.

Retrieves the update region and copies it into a specified region.

See GetUpdateRgn in the Windows SDK.

Retrieves the specified window.

See GetWindow in the Windows SDK.

Retrieves the window's help context identifier.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-gettopwindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getupdaterect
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getupdatergn

RemarksRemarks

CWindow::GetWindowDC

HDC GetWindowDC() throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::GetWindowDC() to retrieve the DC of the entire window

CWindow myWindow;
myWindow.Attach(hWnd);
HDC hDC = myWindow.GetWindowDC();

CWindow::GetWindowLong

LONG GetWindowLong(int nIndex) const throw();

RemarksRemarks

NOTENOTE

CWindow::GetWindowLongPtr

LONG_PTR GetWindowLongPtr(int nIndex) const throw();

RemarksRemarks

RemarksRemarks

NOTENOTE

See GetWindowContextHelpId in the Windows SDK.

Retrieves a device context for the entire window.

See GetWindowDC in the Windows SDK.

Retrieves a 32-bit value at a specified offset into the extra window memory.

See GetWindowLong in the Windows SDK.

To write code that is compatible with both 32-bit and 64-bit versions of Windows, use CWindow::GetWindowLongPtr.

Retrieves information about the specified window, including a value at a specified offset into the extra window
memory.

See GetWindowLongPtr in the Windows SDK.

If you are retrieving a pointer or a handle, this function supersedes the CWindow::GetWindowLong method.

Pointers and handles are 32 bits on 32-bit Windows and 64 bits on 64-bit Windows.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowcontexthelpid
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowdc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowlonga
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowlongptra

CWindow::GetWindowPlacement

BOOL GetWindowPlacement(WINDOWPLACEMENT FAR* lpwndpl) const throw();

RemarksRemarks

CWindow::GetWindowProcessID

DWORD GetWindowProcessID() throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::GetWindowProcessID() to retrieve the id of the
//process that created the window

CWindow myWindow;
myWindow.Attach(hWnd);
DWORD dwID = myWindow.GetWindowProcessID();

CWindow::GetWindowRect

BOOL GetWindowRect(LPRECT lpRect) const throw();

RemarksRemarks

CWindow::GetWindowRgn

int GetWindowRgn(HRGN hRgn) throw();

RemarksRemarks

CWindow::GetWindowText

To write code that is compatible with both 32-bit and 64-bit versions of Windows, use
CWindow::GetWindowLongPtr .

Retrieves the show state and positions.

See GetWindowPlacement in the Windows SDK.

Retrieves the identifier of the process that created the window.

See GetWindowThreadProcessID in the Windows SDK.

Retrieves the window's bounding dimensions.

See GetWindowRect in the Windows SDK.

Obtains a copy of the window region of a window.

See GetWindowRgn in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowplacement
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowthreadprocessid
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowrect
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowrgn

int GetWindowText(LPTSTR lpszStringBuf, int nMaxCount) const throw();
BOOL GetWindowText(BSTR& bstrText) throw();
int GetWindowText(CSimpleString& strText) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWindow::GetWindowTextLength

int GetWindowTextLength() const throw();

RemarksRemarks

CWindow::GetWindowThreadID

DWORD GetWindowThreadID() throw();

RemarksRemarks

ExampleExample

Retrieves the window's text.

lpszStringBuf
A buffer to which to write the window text.

nMaxCount
The size of the buffer in characters; also the maximum number of characters to write.

bstrText
A BSTR in which to store the window text.

strText
A CString in which to store the window text.

If the text is successfully copied, the return value is TRUE; otherwise, the return value is FALSE.

See GetWindowText in the Windows SDK.

The second version of this method allows you to store the text in a BSTR; the third version allows you to store
the result in a CString, since CSimpleString is the base class of CString .

Retrieves the length of the window's text.

See GetWindowTextLength in the Windows SDK.

Retrieves the identifier of the thread that created the specified window.

See GetWindowThreadProcessID in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowtexta
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowtextlengtha
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowthreadprocessid

//The following example attaches an HWND to the CWindow object and
//calls CWindow::GetWindowThreadID() to retrieve the id of the thread
//that created the window

CWindow myWindow;
myWindow.Attach(hWnd);
DWORD dwID = myWindow.GetWindowThreadID();

CWindow::GetWindowWord

WORD GetWindowWord(int nIndex) const throw();

RemarksRemarks

CWindow::GotoDlgCtrl

void GotoDlgCtrl(HWND hWndCtrl) const throw();

RemarksRemarks

CWindow::HideCaret

BOOL HideCaret() throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::HideCaret() to hide the caret of the window owning
//the caret

CWindow myWindow;
myWindow.Attach(hWndEdit);
myWindow.HideCaret();

CWindow::HiliteMenuItem

Retrieves a 16-bit value at a specified offset into the extra window memory.

See GetWindowLong in the Windows SDK.

Sets the keyboard focus to a control in the dialog box.

See WM_NEXTDLGCTL in the Windows SDK.

Hides the system caret.

See HideCaret in the Windows SDK.

Highlights or removes the highlight from a top-level menu item.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowlonga
https://docs.microsoft.com/windows/desktop/dlgbox/wm-nextdlgctl
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-hidecaret

BOOL HiliteMenuItem(
 HMENU hMenu,
 UINT uHiliteItem,
 UINT uHilite) throw();

RemarksRemarks

CWindow::Invalidate

BOOL Invalidate(BOOL bErase = TRUE) throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::Invalidate() to invalidate the entire client area

CWindow myWindow;
myWindow.Attach(hWnd);
myWindow.Invalidate();

CWindow::InvalidateRect

BOOL InvalidateRect(LPCRECT lpRect, BOOL bErase = TRUE) throw();

RemarksRemarks

CWindow::InvalidateRgn

void InvalidateRgn(HRGN hRgn, BOOL bErase = TRUE) throw();

RemarksRemarks

RemarksRemarks

CWindow::IsChild

See HiliteMenuItem in the Windows SDK.

Invalidates the entire client area.

See InvalidateRect in the Windows SDK.

Passes NULL for the RECT parameter to the InvalidateRect Win32 function.

Invalidates the client area within the specified rectangle.

See InvalidateRect in the Windows SDK.

Invalidates the client area within the specified region.

See InvalidateRgn in the Windows SDK.

Specifies a void return type, while the InvalidateRgn Win32 function always returns TRUE.

Determines whether the specified window is a child window.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-hilitemenuitem
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-invalidaterect
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-invalidaterect
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-invalidatergn

BOOL IsChild(const HWND hWnd) const throw();

RemarksRemarks

CWindow::IsDialogMessage

BOOL IsDialogMessage(LPMSG lpMsg) throw();

RemarksRemarks

CWindow::IsDlgButtonChecked

UINT IsDlgButtonChecked(int nIDButton) const throw();

RemarksRemarks

CWindow::IsIconic

BOOL IsIconic() const throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::IsIconic() to determine if the window is minimized

CWindow myWindow;
myWindow.Attach(hWnd);
BOOL bIconic = myWindow.IsIconic();

CWindow::IsParentDialog

BOOL IsParentDialog() throw();

Return ValueReturn Value

See IsChild in the Windows SDK.

Determines whether a message is intended for the specified dialog box.

See IsDialogMessage in the Windows SDK.

Determines the check state of the button.

See IsDlgButtonChecked in the Windows SDK.

Determines whether the window is minimized.

See IsIconic in the Windows SDK.

Determines if the parent window of the control is a dialog window.

Returns TRUE if the parent window is a dialog, FALSE otherwise.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-ischild
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-isdialogmessagea
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-isdlgbuttonchecked
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-isiconic

CWindow::IsWindow

BOOL IsWindow() throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::IsWindow() to verify if the HWND corresponds
//to an existing window

CWindow myWindow;
myWindow.Attach(hWnd);
BOOL bWindow = myWindow.IsWindow();

CWindow::IsWindowEnabled

BOOL IsWindowEnabled() const throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::IsWindowEnabled() to verify if the window is enabled
//for receiving input

CWindow myWindow;
myWindow.Attach(hWnd);
BOOL bEnabled = myWindow.IsWindowEnabled();

CWindow::IsWindowVisible

BOOL IsWindowVisible() const throw();

RemarksRemarks

ExampleExample

Determines whether the specified window handle identifies an existing window.

See IsWindow in the Windows SDK.

Determines whether the window is enabled for input.

See IsWindowEnabled in the Windows SDK.

Determines the window's visibility state.

See IsWindowVisible in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-iswindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-iswindowenabled
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-iswindowvisible

//The following example attaches an HWND to the CWindow object and
//calls CWindow::IsWindowVisible() to determine the visibility state
//of the window

CWindow myWindow;
myWindow.Attach(hWnd);
BOOL bVisible = myWindow.IsWindowVisible();

CWindow::IsWindowUnicode

BOOL IsWindowUnicode() throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::IsWindowUnicode() to determine if the window is a
//UNICODE window or an ANSI one.

CWindow myWindow;
myWindow.Attach(hWnd);
BOOL bUnicode = myWindow.IsWindowUnicode();

CWindow::IsZoomed

BOOL IsZoomed() const throw();

RemarksRemarks

CWindow::KillTimer

BOOL KillTimer(UINT nIDEvent) throw();

RemarksRemarks

CWindow::LockWindowUpdate

BOOL LockWindowUpdate(BOOL bLock = TRUE) throw();

Determines whether the specified window is a native Unicode window.

See IsWindowUnicode in the Windows SDK.

Determines whether the window is maximized.

See IsZoomed in the Windows SDK.

Destroys a timer event created by CWindow::SetTimer .

See KillTimer in the Windows SDK.

Disables or enables drawing in the window by calling the LockWindowUpdate Win32 function.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-iswindowunicode
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-iszoomed
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-killtimer
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-lockwindowupdate

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWindow::m_hWnd

HWND m_hWnd throw() throw();

CWindow::MapWindowPoints

int MapWindowPoints(
 HWND hWndTo,
 LPPOINT lpPoint,
 UINT nCount) const throw();

int MapWindowPoints(
 HWND hWndTo,
 LPRECT lpRect) const throw();

RemarksRemarks

CWindow::MessageBox

int MessageBox(
 LPCTSTR lpszText,
 LPCTSTR lpszCaption = NULL,
 UINT nType = MB_OK) throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::MessageBox() to pop up a Windows message box

CWindow myWindow;
myWindow.Attach(hWnd);
myWindow.MessageBox(_T("Hello World"));

bLock
[in] If TRUE (the default value), the window will be locked. Otherwise, it will be unlocked.

TRUE if the window is successfully locked; otherwise, FALSE.

If bLock is TRUE, this method passes m_hWnd to the Win32 function; otherwise, it passes NULL.

Contains a handle to the window associated with the CWindow object.

Converts a set of points from the window's coordinate space to the coordinate space of another window.

See MapWindowPoints in the Windows SDK.

The second version of this method allows you to convert the coordinates of a RECT structure.

Displays a message box.

See MessageBox in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-mapwindowpoints
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-messagebox

CWindow::ModifyStyle

BOOL ModifyStyle(
 DWORD dwRemove,
 DWORD dwAdd,
 UINT nFlags = 0) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::ModifyStyle() to add and remove the window styles

CWindow myWindow;
myWindow.Attach(hWnd);

//The following line removes the WS_CLIPCHILDREN style from the
//window and adds the WS_CAPTION style to the window
myWindow.ModifyStyle(WS_CLIPCHILDREN, WS_CAPTION);

CWindow::ModifyStyleEx

Modifies the window styles of the CWindow object.

dwRemove
[in] Specifies the window styles to be removed during style modification.

dwAdd
[in] Specifies the window styles to be added during style modification.

nFlags
[in] Window-positioning flags. For a list of possible values, see the SetWindowPos function in the Windows SDK.

TRUE if the window styles are modified; otherwise, FALSE.

Styles to be added or removed can be combined by using the bitwise OR (|) operator. See the CreateWindow
function in the Windows SDKfor information about the available window styles.

If nFlags is nonzero, ModifyStyle calls the Win32 function SetWindowPos , and redraws the window by combining
nFlags with the following four flags:

SWP_NOSIZE Retains the current size.

SWP_NOMOVE Retains the current position.

SWP_NOZORDER Retains the current Z order.

SWP_NOACTIVATE Does not activate the window.

To modify a window's extended styles, call ModifyStyleEx.

Modifies the extended window styles of the CWindow object.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowpos
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa

BOOL ModifyStyleEx(
 DWORD dwRemove,
 DWORD dwAdd,
 UINT nFlags = 0) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::ModifyStyleEx() to add and remove the extended
//window styles

CWindow myWindow;
myWindow.Attach(hWnd);

//The following line removes WS_EX_CONTEXTHELP extended style from
//the window and adds WS_EX_TOOLWINDOW extended style to the window

myWindow.ModifyStyleEx(WS_EX_CONTEXTHELP, WS_EX_TOOLWINDOW);

CWindow::MoveWindow

dwRemove
[in] Specifies the extended styles to be removed during style modification.

dwAdd
[in] Specifies the extended styles to be added during style modification.

nFlags
[in] Window-positioning flags. For a list of possible values, see the SetWindowPos function in the Windows SDK.

TRUE if the extended window styles are modified; otherwise, FALSE.

Styles to be added or removed can be combined by using the bitwise OR (|) operator. See the CreateWindowEx
function in the Windows SDKfor information about the available extended styles.

If nFlags is nonzero, ModifyStyleEx calls the Win32 function SetWindowPos , and redraws the window by
combining nFlags with the following four flags:

SWP_NOSIZE Retains the current size.

SWP_NOMOVE Retains the current position.

SWP_NOZORDER Retains the current Z order.

SWP_NOACTIVATE Does not activate the window.

To modify windows using regular window styles, call ModifyStyle.

Changes the window's size and position.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowpos
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa

BOOL MoveWindow(
 int x,
 int y,
 int nWidth,
 int nHeight,
 BOOL bRepaint = TRUE) throw();

BOOL MoveWindow(
 LPCRECT lpRect,
 BOOL bRepaint = TRUE) throw();

RemarksRemarks

CWindow::NextDlgCtrl

void NextDlgCtrl() const throw();

RemarksRemarks

CWindow::OpenClipboard

BOOL OpenClipboard() throw();

RemarksRemarks

CWindow::operator HWND

operator HWND() const throw();

CWindow::operator =

CWindow& operator= (HWND hWnd) throw();

CWindow::PostMessage

For a top-level window object, the x and y parameters are relative to the upper-left corner of the screen. For a
child window object, they are relative to the upper-left corner of the parent window's client area.

The second version of this method uses a RECT structure to determine the window's new position, width, and
height.

Sets the keyboard focus to the next control in the dialog box.

See WM_NEXTDLGCTL in the Windows SDK.

Opens the Clipboard.

See OpenClipboard in the Windows SDK.

Converts a CWindow object to an HWND.

Assigns an HWND to the CWindow object by setting the m_hWnd member to hWnd .

Places a message in the message queue associated with the thread that created the window.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/dlgbox/wm-nextdlgctl
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-openclipboard

BOOL PostMessage(
 UINT message,
 WPARAM wParam = 0,
 LPARAM lParam = 0) throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//posts a WM_PAINT message to the Window wrapped by the CWindow object
//using CWindow::PostMessage() with the default values of WPARAM and
//LPARAM

CWindow myWindow;
myWindow.Attach(hWnd);
myWindow.PostMessage(WM_PAINT);

CWindow::PrevDlgCtrl

void PrevDlgCtrl() const throw();

RemarksRemarks

CWindow::Print

void Print(HDC hDC, DWORD dwFlags) const throw();

ParametersParameters

See PostMessage in the Windows SDK.

Returns without waiting for the thread to process the message.

Sets the keyboard focus to the previous control in the dialog box.

See WM_NEXTDLGCTL in the Windows SDK.

Sends a WM_PRINT message to the window to request that it draw itself in the specified device context.

hDC
[in] The handle to a device context.

dwFlags
[in] Specifies the drawing options. You can combine one or more of the following flags:

PRF_CHECKVISIBLE Draw the window only if it is visible.

PRF_CHILDREN Draw all visible child windows.

PRF_CLIENT Draw the client area of the window.

PRF_ERASEBKGND Erase the background before drawing the window.

PRF_NONCLIENT Draw the non-client area of the window.

PRF_OWNED Draw all owned windows.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-postmessagea
https://docs.microsoft.com/windows/desktop/dlgbox/wm-nextdlgctl
https://docs.microsoft.com/windows/desktop/gdi/wm-print

CWindow::PrintClient

void PrintClient(HDC hDC, DWORD dwFlags) const throw();

ParametersParameters

CWindow::rcDefault

static RECT rcDefault;

CWindow::RedrawWindow

BOOL RedrawWindow(
 LPCRECT lpRectUpdate = NULL,
 HRGN hRgnUpdate = NULL,
 UINT flags = RDW_INVALIDATE | RDW_UPDATENOW | RDW_ERASE);

throw()

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::RedrawWindow() to update the entire window using the
//default arguments

CWindow myWindow;
myWindow.Attach(hWnd);
BOOL bRedrawn = myWindow.RedrawWindow();

Sends a WM_PRINTCLIENT message to the window to request that it draw its client area in the specified device
context.

hDC
[in] The handle to a device context.

dwFlags
[in] Specifies drawing options. You can combine one or more of the following flags:

PRF_CHECKVISIBLE Draw the window only if it is visible.

PRF_CHILDREN Draw all visible child windows.

PRF_CLIENT Draw the client area of the window.

PRF_ERASEBKGND Erase the background before drawing the window.

PRF_NONCLIENT Draw the non-client area of the window.

PRF_OWNED Draw all owned windows.

Contains default window dimensions.

Updates a specified rectangle or region in the client area.

See RedrawWindow in the Windows SDK.

https://docs.microsoft.com/windows/desktop/gdi/wm-printclient
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-redrawwindow

CWindow::ReleaseDC

int ReleaseDC(HDC hDC);

RemarksRemarks

ExampleExample

// The following example attaches a HWND to the CWindow object,
// calls CWindow::GetDC to retrieve the DC of the client
// area of the window wrapped by CWindow Object, and calls
// CWindow::ReleaseDC to release the DC.

CWindow myWindow;
myWindow.Attach(hWnd);
HDC hDC = myWindow.GetDC();

// Use the DC

myWindow.ReleaseDC(hDC);
hDC = NULL;

CWindow::ResizeClient

BOOL ResizeClient(
 int nWidth,
 int nHeight,
 BOOL bRedraw = FALSE) throw();

ParametersParameters

CWindow::ScreenToClient

BOOL ScreenToClient(LPPOINT lpPoint) const throw();
BOOL ScreenToClient(LPRECT lpRect) const throw();

RemarksRemarks

Releases a device context.

See ReleaseDC in the Windows SDK.

Resizes the window to the specified client area size.

nWidth
New width of the window in pixels.

nHeight
New height of the window in pixels.

bRedraw
A flag indicating whether to redraw changes. Default is FALSE, indicating the window does not redraw changes.

Converts screen coordinates to client coordinates.

See ScreenToClient in the Windows SDK.

The second version of this method allows you to convert the coordinates of a RECT structure.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-releasedc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-screentoclient
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

CWindow::ScrollWindow

BOOL ScrollWindow(
 int xAmount,
 int yAmount,
 LPCRECT lpRect = NULL,
 LPCRECT lpClipRect = NULL) throw();

RemarksRemarks

CWindow::ScrollWindowEx

int ScrollWindowEx(
 int dx,
 int dy,
 LPCRECT lpRectScroll,
 LPCRECT lpRectClip,
 HRGN hRgnUpdate,
 LPRECT lpRectUpdate,
 UINT flags) throw();

RemarksRemarks

CWindow::SendDlgItemMessage

LRESULT SendDlgItemMessage(
 int nID,
 UINT message,
 WPARAM wParam = 0,
 LPARAM lParam = 0) throw();

RemarksRemarks

CWindow::SendMessage

Scrolls the specified client area.

See ScrollWindow in the Windows SDK.

Scrolls the specified client area with additional features.

See ScrollWindowEx in the Windows SDK.

Sends a message to a control.

See SendDlgItemMessage in the Windows SDK.

Sends a message to the window and does not return until the window procedure has processed the message.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-scrollwindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-scrollwindowex
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-senddlgitemmessagea

LRESULT SendMessage(
 UINT message,
 WPARAM wParam = 0,
 LPARAM lParam = 0) throw();

static LRESULT SendMessage(
 HWND hWnd,
 UINT message,
 WPARAM wParam,
 LPARAM lParam) throw();

RemarksRemarks

ExampleExample

// The following example attaches a HWND to the CWindow
// object and sends a WM_PAINT message to the window
// wrapped by CWindow object using CWindow::SendMessage.

CWindow myWindow;
myWindow.Attach(hWnd);
myWindow.SendMessage(WM_PAINT, 0L, 0L);

CWindow::SendMessageToDescendants

void SendMessageToDescendants(
 UINT message,
 WPARAM wParam = 0,
 LPARAM lParam = 0,
 BOOL bDeep = TRUE) throw();

ParametersParameters

RemarksRemarks

CWindow::SendNotifyMessage

See SendMessage in the Windows SDK.

Sends the specified message to all immediate children of the CWindow object.

message
[in] The message to be sent.

wParam
[in] Additional message-specific information.

lParam
[in] Additional message-specific information.

bDeep
[in] If TRUE (the default value), the message will be sent to all descendant windows; otherwise, it will be sent
only to the immediate child windows.

If bDeep is TRUE, the message is additionally sent to all other descendant windows.

Sends a message to the window.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-sendmessage

BOOL SendNotifyMessage(
 UINT message,
 WPARAM wParam = 0,
 LPARAM lParam = 0) throw();

RemarksRemarks

CWindow::SetActiveWindow

HWND SetActiveWindow() throw();

RemarksRemarks

ExampleExample

// The following example attaches a HWND to the CWindow object
// and sets the window as an active window by calling
// CWindow::SetActiveWindow which returns the HWND of the
// previously active window.

CWindow myWindow;
myWindow.Attach(hWnd);
HWND hWndPrev = myWindow.SetActiveWindow();

CWindow::SetCapture

HWND SetCapture() throw();

RemarksRemarks

CWindow::SetClipboardViewer

HWND SetClipboardViewer() throw();

RemarksRemarks

CWindow::SetDlgCtrlID

See SendNotifyMessage in the Windows SDK.

If the window was created by the calling thread, SendNotifyMessage does not return until the window procedure
has processed the message. Otherwise, it returns immediately.

Activates the window.

See SetActiveWindow in the Windows SDK.

Sends all subsequent mouse input to the window.

See SetCapture in the Windows SDK.

Adds the window to the Clipboard viewer chain.

See SetClipboardViewer in the Windows SDK.

Sets the identifier of the window to the specified value.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-sendnotifymessagea
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setactivewindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setcapture
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setclipboardviewer

int SetDlgCtrlID(int nID) throw();

ParametersParameters

Return ValueReturn Value

CWindow::SetDlgItemInt

BOOL SetDlgItemInt(
 int nID,
 UINT nValue,
 BOOL bSigned = TRUE) throw();

RemarksRemarks

CWindow::SetDlgItemText

BOOL SetDlgItemText(int nID, LPCTSTR lpszString) throw();

RemarksRemarks

CWindow::SetFocus

HWND SetFocus() throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::SetFocus() to set the input focus

CWindow myWindow;
myWindow.Attach(hWnd);
HWND hWndLeftFocus = myWindow.SetFocus();

CWindow::SetFont

nID
[in] The new value to set for the window's identifier.

If successful, the previous identifier of the window; otherwise 0.

Changes a control's text to the string representation of an integer value.

See SetDlgItemInt in the Windows SDK.

Changes a control's text.

See SetDlgItemText in the Windows SDK.

Sets the input focus to the window.

See SetFocus in the Windows SDK.

Changes the window's current font by sending a WM_SETFONT message to the window.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setdlgitemint
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setdlgitemtexta
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setfocus
https://docs.microsoft.com/windows/desktop/winmsg/wm-setfont

void SetFont(HFONT hFont, BOOL bRedraw = TRUE) throw();

ParametersParameters

CWindow::SetHotKey

int SetHotKey(WORD wVirtualKeyCode, WORD wModifiers) throw();

ParametersParameters

Return ValueReturn Value

CWindow::SetIcon

HICON SetIcon(HICON hIcon, BOOL bBigIcon = TRUE) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWindow::SetMenu

BOOL SetMenu(HMENU hMenu) throw();

RemarksRemarks

hFont
[in] The handle to the new font.

bRedraw
[in] If TRUE (the default value), the window is redrawn. Otherwise, it is not.

Associates a hot key with the window by sending a WM_SETHOTKEY message.

wVirtualKeyCode
[in] The virtual key code of the hot key. For a list of standard virtual key codes, see Winuser.h.

wModifiers
[in] The modifiers of the hot key. For a list of possible values, see WM_SETHOTKEY in the Windows SDK.

For a list of possible return values, see WM_SETHOTKEY in the Windows SDK.

Sets the window's large or small icon to the icon identified by hIcon.

hIcon
[in] The handle to a new icon.

bBigIcon
[in] If TRUE (the default value), the method sets a large icon. Otherwise, it sets a small icon.

The handle to the previous icon.

SetIcon sends a WM_SETICON message to the window.

Changes the window's current menu.

https://docs.microsoft.com/windows/desktop/inputdev/wm-sethotkey
https://docs.microsoft.com/windows/desktop/winmsg/wm-seticon

CWindow::SetParent

HWND SetParent(HWND hWndNewParent) throw();

RemarksRemarks

ExampleExample

// The following example attaches a HWND to the CWindow object
// and sets the hWndParent as the parent window of the
// window wrapped by CWindow object using CWindow::SetParent.

CWindow myWindow;
myWindow.Attach(hWndChild);
HWND hWndPrevParent = myWindow.SetParent(hWndParent);

CWindow::SetRedraw

void SetRedraw(BOOL bRedraw = TRUE) throw();

ParametersParameters

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::SetRedraw() to set and reset the redraw flag

CWindow myWindow;
myWindow.Attach(hWnd);
myWindow.SetRedraw(); //sets the redraw flag to TRUE
//
//
myWindow.SetRedraw(FALSE); //sets the redraw flag to FALSE

CWindow::SetScrollInfo

See SetMenu in the Windows SDK.

Changes the parent window.

See SetParent in the Windows SDK.

Sets or clears the redraw flag by sending a WM_SETREDRAW message to the window.

bRedraw
[in] Specifies the state of the redraw flag. If TRUE (the default value), the redraw flag is set; if FALSE, the flag is
cleared.

Call SetRedraw to allow changes to be redrawn or to prevent changes from being redrawn.

Sets the parameters of a scroll bar.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setmenu
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setparent
https://docs.microsoft.com/windows/desktop/gdi/wm-setredraw

int SetScrollInfo(
 int nBar,
 LPSCROLLINFO lpScrollInfo,
 BOOL bRedraw = TRUE) throw();

RemarksRemarks

CWindow::SetScrollPos

int SetScrollPos(
 int nBar,
 int nPos,
 BOOL bRedraw = TRUE) throw();

RemarksRemarks

CWindow::SetScrollRange

BOOL SetScrollRange(
 int nBar,
 int nMinPos,
 int nMaxPos,
 BOOL bRedraw = TRUE) throw();

RemarksRemarks

CWindow::SetTimer

UINT SetTimer(
 UINT nIDEvent,
 UINT nElapse,
 void (CALLBACK* lpfnTimer)(HWND, UINT, UINT, DWORD) = NULL) throw();

RemarksRemarks

CWindow::SetWindowContextHelpId

BOOL SetWindowContextHelpId(DWORD dwContextHelpId) throw();

RemarksRemarks

See SetScrollInfo in the Windows SDK.

Changes the position of the scroll box.

See SetScrollPos in the Windows SDK.

Changes the scroll bar range.

See SetScrollRange in the Windows SDK.

Creates a timer event.

See SetTimer in the Windows SDK.

Sets the window's help context identifier.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setscrollinfo
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setscrollpos
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setscrollrange
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-settimer

CWindow::SetWindowLong

LONG SetWindowLong(int nIndex, LONG dwNewLong) throw();

RemarksRemarks

NOTENOTE

CWindow::SetWindowLongPtr

LONG_PTR SetWindowLongPtr(int nIndex, LONG_PTR dwNewLong) throw();

RemarksRemarks

CWindow::SetWindowPlacement

BOOL SetWindowPlacement(const WINDOWPLACEMENT FAR* lpwndpl);

RemarksRemarks

CWindow::SetWindowPos

See SetWindowContextHelpId in the Windows SDK.

Sets a 32-bit value at a specified offset into the extra window memory.

See SetWindowLong in the Windows SDK.

To write code that is compatible with both 32-bit and 64-bit versions of Windows, use CWindow::SetWindowLongPtr.

Changes an attribute of the specified window, and also sets a value at the specified offset in the extra window
memory.

See SetWindowLongPtr in the Windows SDK.

This function supersedes the CWindow::SetWindowLong method. To write code that is compatible with both 32-bit
and 64-bit versions of Windows, use CWindow::SetWindowLongPtr .

Sets the show state and positions.

See SetWindowPlacement in the Windows SDK.

Sets the size, position, and Z order.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowcontexthelpid
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowlonga
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowlongptra
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowplacement

BOOL SetWindowPos(
 HWND hWndInsertAfter,
 int x,
 int y,
 int cx,
 int cy,
 UINT nFlags) throw();

BOOL SetWindowPos(
 HWND hWndInsertAfter,
 LPCRECT lpRect,
 UINT nFlags) throw();

RemarksRemarks

CWindow::SetWindowRgn

int SetWindowRgn(HRGN hRgn, BOOL bRedraw = FALSE) throw();

RemarksRemarks

CWindow::SetWindowText

BOOL SetWindowText(LPCTSTR lpszString) throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::SetWindowText() to set the new title-text of the
//window

CWindow myWindow;
myWindow.Attach(hWnd);
myWindow.SetWindowText(_T("Hello ATL"));

CWindow::SetWindowWord

WORD SetWindowWord(int nIndex, WORD wNewWord) throw();

RemarksRemarks

See SetWindowPos in the Windows SDK.

The second version of this method uses a RECT structure to set the window's new position, width, and height.

Sets the window region of a window.

See SetWindowRgn in the Windows SDK.

Changes the window's text.

See SetWindowText in the Windows SDK.

Sets a 16-bit value at a specified offset into the extra window memory.

See SetWindowLong in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowpos
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowrgn
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowtexta
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowlonga

CWindow::ShowCaret

BOOL ShowCaret() throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::ShowCaret() to show the caret

CWindow myWindow;
myWindow.Attach(hWnd);
myWindow.ShowCaret();

CWindow::ShowOwnedPopups

BOOL ShowOwnedPopups(BOOL bShow = TRUE) throw();

RemarksRemarks

CWindow::ShowScrollBar

BOOL ShowScrollBar(UINT nBar, BOOL bShow = TRUE) throw();

RemarksRemarks

CWindow::ShowWindow

BOOL ShowWindow(int nCmdShow) throw();

RemarksRemarks

ExampleExample

Displays the system caret.

See ShowCaret in the Windows SDK.

Shows or hides the pop-up windows owned by the window.

See ShowOwnedPopups in the Windows SDK.

Shows or hides a scroll bar.

See ShowScrollBar in the Windows SDK.

Sets the window's show state.

See ShowWindow in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-showcaret
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-showownedpopups
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-showscrollbar
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-showwindow

//The following example attaches an HWND to the CWindow object and
//calls CWindow::ShowWindow() to show the window in its maximized state

CWindow myWindow;
myWindow.Attach(hWnd);
myWindow.ShowWindow(SW_SHOWMAXIMIZED);

CWindow::ShowWindowAsync

BOOL ShowWindowAsync(int nCmdShow) throw();

RemarksRemarks

CWindow::UpdateWindow

BOOL UpdateWindow() throw();

RemarksRemarks

ExampleExample

//The following example attaches an HWND to the CWindow object and
//calls CWindow::UpdateWindow() to update the window

CWindow myWindow;
myWindow.Attach(hWnd);
BOOL bUpdated = myWindow.UpdateWindow();

CWindow::ValidateRect

BOOL ValidateRect(LPCRECT lpRect) throw();

RemarksRemarks

CWindow::ValidateRgn

BOOL ValidateRgn(HRGN hRgn) throw();

RemarksRemarks

Sets the show state of a window created by a different thread.

See ShowWindowAsync in the Windows SDK.

Updates the client area.

See UpdateWindow in the Windows SDK.

Validates the client area within the specified rectangle.

See ValidateRect in the Windows SDK.

Validates the client area within the specified region.

See ValidateRgn in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-showwindowasync
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-updatewindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-validaterect
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-validatergn

 CWindow::WinHelp

BOOL WinHelp(
 LPCTSTR lpszHelp,
 UINT nCmd = HELP_CONTEXT,
 DWORD dwData = 0) throw();

RemarksRemarks

See also

Starts Windows Help.

See WinHelp in the Windows SDK.

Class Overview

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-winhelpa

CWindowImpl Class
3/5/2019 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T, class TBase = CWindow, class TWinTraits = CControlWinTraits>
class ATL_NO_VTABLE CWindowImpl : public CWindowImplBaseT<TBase, TWinTraits>

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CWindowImpl::Create Creates a window.

CWindowImplBaseT MethodsCWindowImplBaseT Methods

DefWindowProc Provides default message processing.

GetCurrentMessage Returns the current message.

GetWindowProc Returns the current window procedure.

OnFinalMessage Called after the last message is received (typically
WM_NCDESTROY).

SubclassWindow Subclasses a window.

UnsubclassWindow Restores a previously subclassed window.

Static MethodsStatic Methods

Provides methods for creating or subclassing a window.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your new class, derived from CWindowImpl .

TBase
The base class of your class. By default, the base class is CWindow.

TWinTraits
A traits class that defines styles for your window. The default is CControlWinTraits .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cwindowimpl-class.md

GetWndClassInfo Returns a static instance of CWndClassInfo, which manages
the window class information.

WindowProc Processes messages sent to the window.

Data MembersData Members

m_pfnSuperWindowProc Points to the window class's original window procedure.

Remarks

class ATL_NO_VTABLE CMyWindow :
 OtherInheritedClasses
 public CComControl<CMyWindow>
 // CComControl derives from CWindowImpl
{
public:
 // 1. The NULL parameter means ATL will generate a
 // name for the superclass
 // 2. The "EDIT" parameter means the superclass is
 // based on the standard Windows Edit box
 DECLARE_WND_SUPERCLASS(NULL, _T("EDIT"))

 // Remainder of class declaration omitted

NOTENOTE

NOTENOTE

You can use CWindowImpl to create a window or subclass an existing window. the CWindowImpl window
procedure uses a message map to direct messages to the appropriate handlers.

CWindowImpl::Create creates a window based on the window class information that's managed by
CWndClassInfo. CWindowImpl contains the DECLARE_WND_CLASS macro, which means CWndClassInfo

registers a new window class. If you want to superclass an existing window class, derive your class from
CWindowImpl and include the DECLARE_WND_SUPERCLASS macro. In this case, CWndClassInfo registers a

window class that's based on an existing class but uses CWindowImpl::WindowProc . For example:

Because CWndClassInfo manages the information for just one window class, each window created through an instance
of CWindowImpl is based on the same window class.

CWindowImpl also supports window subclassing. The SubclassWindow method attaches an existing window to
the CWindowImpl object and changes the window procedure to CWindowImpl::WindowProc . Each instance of
CWindowImpl can subclass a different window.

For any given CWindowImpl object, call either Create or SubclassWindow . Don't invoke both methods on the same
object.

In addition to CWindowImpl , ATL provides CContainedWindow to create a window that's contained in another
object.

FOR MORE INFORMATION ABOUT SEE

Creating controls ATL Tutorial

Using windows in ATL ATL Window Classes

ATL Project Wizard Creating an ATL Project

Inheritance Hierarchy

Requirements

CWindowImpl::Create

HWND Create(
 HWND hWndParent,
 _U_RECT rect = NULL,
 LPCTSTR szWindowName = NULL,
 DWORD dwStyle = 0,
 DWORD dwExStyle = 0,
 _U_MENUorID MenuOrID = 0U,
 LPVOID lpCreateParam = NULL);

ParametersParameters

The base class destructor (~ CWindowImplRoot) ensures that the window is gone before the object is destroyed.

CWindowImpl derives from CWindowImplBaseT , which derives from CWindowImplRoot , which derives from TBase

and CMessageMap.

CMessageMap

TBase

CWindowImplRoot

CWindowImplBaseT

CWindowImpl

Header: atlwin.h

Creates a window based on a new window class.

hWndParent
[in] The handle to the parent or owner window.

rect
[in] A RECT structure specifying the position of the window. The RECT can be passed by pointer or by
reference.

szWindowName
[in] Specifies the name of the window. The default value is NULL.

dwStyle
[in] The style of the window. This value is combined with the style provided by the traits class for the window.
The default value gives the traits class full control over the style. For a list of possible values, see
CreateWindow in the Windows SDK.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa

Return ValueReturn Value

RemarksRemarks

NOTENOTE

NOTENOTE

CWindowImpl::DefWindowProc

LRESULT DefWindowProc(
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);

LRESULT DefWindowProc();

ParametersParameters

dwExStyle
[in] The extended window style. This value is combined with the style provided by the traits class for the
window. The default value gives the traits class full control over the style. For a list of possible values, see
CreateWindowEx in the Windows SDK.

MenuOrID
[in] For a child window, the window identifier. For a top-level window, a menu handle for the window. The
default value is 0U .

lpCreateParam
[in] A pointer to window-creation data. For a full description, see the description for the final parameter to
CreateWindowEx.

If successful, the handle to the newly created window. Otherwise, NULL.

Create first registers the window class if it has not yet been registered. The newly created window is
automatically attached to the CWindowImpl object.

Do not call Create if you have already called SubclassWindow.

To use a window class that is based on an existing window class, derive your class from CWindowImpl and
include the DECLARE_WND_SUPERCLASS macro. The existing window class's window procedure is saved in
m_pfnSuperWindowProc. For more information, see the CWindowImpl overview.

If 0 is used as the value for the MenuOrID parameter, it must be specified as 0U (the default value) to avoid a compiler
error.

Called by WindowProc to process messages not handled by the message map.

uMsg
[in] The message sent to the window.

wParam
[in] Additional message-specific information.

lParam
[in] Additional message-specific information.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa

Return ValueReturn Value

RemarksRemarks

CWindowImpl::GetCurrentMessage

const MSG* GetCurrentMessage();

Return ValueReturn Value

CWindowImpl::GetWindowProc

virtual WNDPROC GetWindowProc();

Return ValueReturn Value

RemarksRemarks

CWindowImpl::GetWndClassInfo

static CWndClassInfo& GetWndClassInfo();

Return ValueReturn Value

RemarksRemarks

CWindowImpl::m_pfnSuperWindowProc

The result of the message processing.

By default, DefWindowProc calls the CallWindowProc Win32 function to send the message information to the
window procedure specified in m_pfnSuperWindowProc.

The function with no parameters automatically retrieves the needed parameters from the current message.

Returns the current message, packaged in the MSG structure.

The current message.

Returns WindowProc , the current window procedure.

The current window procedure.

Override this method to replace the window procedure with your own.

Called by Create to access the window class information.

A static instance of CWndClassInfo.

By default, CWindowImpl obtains this method through the DECLARE_WND_CLASS macro, which specifies a
new window class.

To superclass an existing window class, derive your class from CWindowImpl and include the
DECLARE_WND_SUPERCLASS macro to override GetWndClassInfo . For more information, see the
CWindowImpl overview.

Besides using the DECLARE_WND_CLASS and DECLARE_WND_SUPERCLASS macros, you can override
GetWndClassInfo with your own implementation.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-callwindowproca

WNDPROC m_pfnSuperWindowProc;

RemarksRemarks

TYPE OF WINDOW WINDOW PROCEDURE

A window based on a new window class, specified through
the DECLARE_WND_CLASS macro.

The DefWindowProc Win32 function.

A window based on a window class that modifies an
existing class, specified through the
DECLARE_WND_SUPERCLASS macro.

The existing window class's window procedure.

A subclassed window. The subclassed window's original window procedure.

CWindowImpl::OnFinalMessage

virtual void OnFinalMessage(HWND hWnd);

ParametersParameters

RemarksRemarks

CWindowImpl::SubclassWindow

BOOL SubclassWindow(HWND hWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Depending on the window, points to one of the following window procedures.

CWindowImpl::DefWindowProc sends message information to the window procedure saved in
m_pfnSuperWindowProc .

Called after receiving the last message (typically WM_NCDESTROY).

hWnd
[in] A handle to the window being destroyed.

The default implementation of OnFinalMessage does nothing, but you can override this function to handle
cleanup before destroying a window. If you want to automatically delete your object upon the window
destruction, you can call delete this; in this function.

Subclasses the window identified by hWnd and attaches it to the CWindowImpl object.

hWnd
[in] The handle to the window being subclassed.

TRUE if the window is successfully subclassed; otherwise, FALSE.

The subclassed window now uses CWindowImpl::WindowProc. The original window procedure is saved in
m_pfnSuperWindowProc.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-defwindowproca

NOTENOTE

CWindowImpl::UnsubclassWindow

HWND UnsubclassWindow();

Return ValueReturn Value

CWindowImpl::WindowProc

static LRESULT CALLBACK WindowProc(
 HWND hWnd,
 UINT uMsg,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Do not call SubclassWindow if you have already called Create.

Detaches the subclassed window from the CWindowImpl object and restores the original window procedure,
saved in m_pfnSuperWindowProc.

The handle to the window previously subclassed.

This static function implements the window procedure.

hWnd
[in] The handle to the window.

uMsg
[in] The message sent to the window.

wParam
[in] Additional message-specific information.

lParam
[in] Additional message-specific information.

The result of the message processing.

WindowProc uses the default message map (declared with BEGIN_MSG_MAP) to direct messages to the
appropriate handlers. If necessary, WindowProc calls DefWindowProc for additional message processing. If the
final message is not handled, WindowProc does the following:

Performs unsubclassing if the window was unsubclassed.

Clears m_hWnd .

Calls OnFinalMessage before the window is destroyed.

You can override WindowProc to provide a different mechanism for handling messages.

BEGIN_MSG_MAP
CComControl Class
Class Overview

CWinTraits Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <DWORD t_dwStyle = 0, DWORD t_dwExStyle = 0> class CWinTraits

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CWinTraits::GetWndExStyle (Static) Retrieves the extended styles for the CWinTraits

object.

CWinTraits::GetWndStyle (Static) Retrieves the standard styles for the CWinTraits

object.

Remarks

This class provides a method for standardizing the styles used when creating a window object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

t_dwStyle
Default standard window styles.

t_dwExStyle
Default extended window styles.

This window traits class provides a simple method for standardizing the styles used for the creation of an ATL
window object. Use a specialization of this class as a template parameter to CWindowImpl or another of ATL's
window classes to specify the default standard and extended styles used for instances of that window class.

Use this template when you want to provide default window styles that will be used only when no other styles are
specified in the call to CWindowImpl::Create.

ATL provides three predefined specializations of this template for commonly used combinations of window styles:

CControlWinTraits

Designed for a standard control window. The following standard styles are used: WS_CHILD,
WS_VISIBLE, WS_CLIPCHILDREN, and WS_CLIPSIBLINGS. There are no extended styles.

CFrameWinTraits

Designed for a standard frame window. The standard styles used include: WS_OVERLAPPEDWINDOW,

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cwintraits-class.md

Requirements

CWinTraits::GetWndStyle

static DWORD GetWndStyle(DWORD dwStyle);

ParametersParameters

Return ValueReturn Value

CWinTraits::GetWndExStyle

static DWORD GetWndExStyle(DWORD dwExStyle);

ParametersParameters

Return ValueReturn Value

See also

WS_CLIPCHILDREN, and WS_CLIPSIBLINGS. The extended styles used include: WS_EX_APPWINDOW
and WS_EX_WINDOWEDGE.

CMDIChildWinTraits

Designed for a standard MDI child window. The standard styles used include:
WS_OVERLAPPEDWINDOW, WS_CHILD, WS_VISIBLE, WS_CLIPCHILDREN, and WS_CLIPSIBLINGS.
The extended styles used include: WS_EX_MDICHILD.

If you want to ensure that certain styles are set for all instances of the window class while permitting other styles
to be set on a per-instance basis, use CWinTraitsOR instead.

Header: atlwin.h

Call this function to retrieve the standard styles of the CWinTraits object.

dwStyle
Standard styles used for creation of a window. If dwStyle is 0, the template style values (t_dwStyle) are returned.
If dwStyle is nonzero, dwStyle is returned.

The standard window styles of the object.

Call this function to retrieve the extended styles of the CWinTraits object.

dwExStyle
Extended styles used for creation of a window. If dwExStyle is 0, the template style values (t_dwExStyle) are
returned. If dwExStyle is nonzero, dwExStyle is returned.

The extended window styles of the object.

Class Overview
Understanding Window Traits

CWinTraitsOR Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <DWORD t_dwStyle = 0,
 DWORD t_dwExStyle = 0,
 class TWinTraits = CControlWinTraits>
class CWinTraitsOR

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CWinTraitsOR::GetWndExStyle Retrieves the extended styles for the CWinTraitsOR object.

CWinTraitsOR::GetWndStyle Retrieves the standard styles for the CWinTraitsOR object.

Remarks

Requirements

This class provides a method for standardizing the styles used when creating a window object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

t_dwStyle
Default window styles.

t_dwExStyle
Default extended window styles.

This window traits class provides a simple method for standardizing the styles used for the creation of an ATL
window object. Use a specialization of this class as a template parameter to CWindowImpl or another of ATL's
window classes to specify the minimum set of standard and extended styles to be used for instances of that
window class.

Use a specialization of this template if you want to ensure that certain styles are set for all instances of the
window class while permitting other styles to be set on a per-instance basis in the call to CWindowImpl::Create.

If you want to provide default window styles that will be used only when no other styles are specified in the call to
CWindowImpl::Create , use CWinTraits instead.

Header: atlwin.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cwintraitsor-class.md

CWinTraitsOR::GetWndStyle

static DWORD GetWndStyle(DWORD dwStyle);

ParametersParameters

Return ValueReturn Value

CWinTraitsOR::GetWndExStyle

static DWORD GetWndExStyle(DWORD dwExStyle);

ParametersParameters

Return ValueReturn Value

See also

Call this function to retrieve a combination (using the logical OR operator) of the standard styles of the
CWinTraits object and the default styles specified by t_dwStyle.

dwStyle
Styles used for creation of a window.

A combination of styles that are passed in dwStyle and the default ones specified by t_dwStyle , using the logical
OR operator.

Call this function to retrieve a combination (using the logical OR operator) of the extended styles of the
CWinTraits object and the default styles specified by t_dwStyle .

dwExStyle
Extended styles used for creation of a window.

A combination of extended styles that are passed in dwExStyle and default ones specified by t_dwExStyle , using
the logical OR operator

Class Overview
Understanding Window Traits

CWndClassInfo Class
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CWndClassInfo

Members
Public MethodsPublic Methods

Register Registers the window class.

Data MembersData Members

m_atom Uniquely identifies the registered window class.

m_bSystemCursor Specifies whether the cursor resource refers to a system
cursor or to a cursor contained in a module resource.

m_lpszCursorID Specifies the name of the cursor resource.

m_lpszOrigName Contains the name of an existing window class.

m_szAutoName Holds an ATL-generated name of the window class.

m_wc Maintains window class information in a WNDCLASSEX

structure.

pWndProc Points to the window procedure of an existing window class.

Remarks

This class provides methods for registering information for a window class.

This class and its members cannot be used in applications that execute in the Windows Runtime.

CWndClassInfo manages the information of a window class. You typically use CWndClassInfo through one of
three macros, DECLARE_WND_CLASS, DECLARE_WND_CLASS_EX, or DECLARE_WND_SUPERCLASS, as
described in the following table:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cwndclassinfo-class.md

MACRO DESCRIPTION

DECLARE_WND_CLASS CWndClassInfo registers information for a new window
class.

DECLARE_WND_CLASS_EX CWndClassInfo registers information for a new window
class, including the class parameters.

DECLARE_WND_SUPERCLASS CWndClassInfo registers information for a window class
that is based on an existing class but uses a different window
procedure. This technique is called superclassing.

class ATL_NO_VTABLE CMyWindow :
 OtherInheritedClasses
 public CComControl<CMyWindow>
 // CComControl derives from CWindowImpl
{
public:
 // 1. The NULL parameter means ATL will generate a
 // name for the superclass
 // 2. The "EDIT" parameter means the superclass is
 // based on the standard Windows Edit box
 DECLARE_WND_SUPERCLASS(NULL, _T("EDIT"))

 // Remainder of class declaration omitted

Requirements

CWndClassInfo::m_atom

ATOM m_atom;

CWndClassInfo::m_bSystemCursor

BOOL m_bSystemCursor;

RemarksRemarks

By default, CWindowImpl includes the DECLARE_WND_CLASS macro to create a window based on a new window
class. DECLARE_WND_CLASS provides default styles and background color for the control. If you want to
specify the style and background color yourself, derive your class from CWindowImpl and include the
DECLARE_WND_CLASS_EX macro in your class definition.

If you want to create a window based on an existing window class, derive your class from CWindowImpl and
include the DECLARE_WND_SUPERCLASS macro in your class definition. For example:

For more information about window classes, see Window Classes in the Windows SDK.

For more information about using windows in ATL, see the article ATL Window Classes.

Header: atlwin.h

Contains the unique identifier for the registered window class.

If TRUE, the system cursor resource will be loaded when the window class is registered.

https://docs.microsoft.com/windows/desktop/winmsg/window-classes

CWndClassInfo::m_lpszCursorID

LPCTSTR m_lpszCursorID;

RemarksRemarks

CWndClassInfo::m_lpszOrigName

LPCTSTR m_lpszOrigName;

RemarksRemarks

CWndClassInfo::m_szAutoName

TCHAR m_szAutoName[13];

RemarksRemarks

CWndClassInfo::m_wc

WNDCLASSEX m_wc;

RemarksRemarks

Otherwise, the cursor resource contained in your module will be loaded.

CWndClassInfo uses m_bSystemCursor only when the DECLARE_WND_CLASS (the default in CWindowImpl) or
the DECLARE_WND_CLASS_EX macro is specified. In this case, m_bSystemCursor is initialized to TRUE. For
more information, see the CWndClassInfo overview.

Specifies either the name of the cursor resource or the resource identifier in the low-order word and zero in the
high-order word.

When the window class is registered, the handle to the cursor identified by m_lpszCursorID is retrieved and
stored by m_wc.

CWndClassInfo uses m_lpszCursorID only when the DECLARE_WND_CLASS (the default in CWindowImpl) or
the DECLARE_WND_CLASS_EX macro is specified. In this case, m_lpszCursorID is initialized to IDC_ARROW.
For more information, see the CWndClassInfo overview.

Contains the name of an existing window class.

CWndClassInfo uses m_lpszOrigName only when you include the DECLARE_WND_SUPERCLASS macro in your
class definition. In this case, CWndClassInfo registers a window class based on the class named by
m_lpszOrigName . For more information, see the CWndClassInfo overview.

Holds the name of the window class.

CWndClassInfo uses m_szAutoName only if NULL is passed for the WndClassName parameter to
DECLARE_WND_CLASS, the DECLARE_WND_CLASS_EX or DECLARE_WND_SUPERCLASS. ATL will
construct a name when the window class is registered.

Maintains the window class information in a WNDCLASSEX structure.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassexa

CWndClassInfo::pWndProc

WNDPROC pWndProc;

RemarksRemarks

CWndClassInfo::Register

ATOM Register(WNDPROC* pProc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

If you have specified the DECLARE_WND_CLASS (the default in CWindowImpl) or the
DECLARE_WND_CLASS_EX macro, m_wc contains information about a new window class.

If you have specified the DECLARE_WND_SUPERCLASS macro, m_wc contains information about a superclass
— a window class that is based on an existing class but uses a different window procedure. m_lpszOrigName
and pWndProc save the existing window class's name and window procedure, respectively.

Points to the window procedure of an existing window class.

CWndClassInfo uses pWndProc only when you include the DECLARE_WND_SUPERCLASS macro in your class
definition. In this case, CWndClassInfo registers a window class that is based on an existing class but uses a
different window procedure. The existing window class's window procedure is saved in pWndProc . For more
information, see the CWndClassInfo overview.

Called by CWindowImpl::Create to register the window class if it has not yet been registered.

pProc
[out] Specifies the original window procedure of an existing window class.

If successful, an atom that uniquely identifies the window class being registered. Otherwise, 0.

If you have specified the DECLARE_WND_CLASS (the default in CWindowImpl) or the
DECLARE_WND_CLASS_EX macro, Register registers a new window class. In this case, the pProc parameter
is not used.

If you have specified the DECLARE_WND_SUPERCLASS macro, Register registers a superclass — a window
class that is based on an existing class but uses a different window procedure. The existing window class's
window procedure is returned in pProc.

CComControl Class
Class Overview

CWorkerThread Class
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class ThreadTraits = DefaultThreadTraits>
class CWorkerThread

ParametersParameters

Members
Protected StructuresProtected Structures

NAME DESCRIPTION

WorkerClientEntry

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWorkerThread::CWorkerThread The constructor for the worker thread.

CWorkerThread::~CWorkerThread The destructor for the worker thread.

Public MethodsPublic Methods

NAME DESCRIPTION

CWorkerThread::AddHandle Call this method to add a waitable object's handle to the list
maintained by the worker thread.

CWorkerThread::AddTimer Call this method to add a periodic waitable timer to the list
maintained by the worker thread.

CWorkerThread::GetThreadHandle Call this method to get the thread handle of the worker
thread.

CWorkerThread::GetThreadId Call this method to get the thread ID of the worker thread.

This class creates a worker thread or uses an existing one, waits on one or more kernel object handles, and
executes a specified client function when one of the handles is signaled.

This class and its members cannot be used in applications that execute in the Windows Runtime.

ThreadTraits
The class providing the thread creation function, such as CRTThreadTraits or Win32ThreadTraits.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/cworkerthread-class.md

CWorkerThread::Initialize Call this method to initialize the worker thread.

CWorkerThread::RemoveHandle Call this method to remove a handle from the list of waitable
objects.

CWorkerThread::Shutdown Call this method to shut down the worker thread.

NAME DESCRIPTION

Remarks
To use CWorkerThreadTo use CWorkerThread

Requirements

CWorkerThread::AddHandle

HRESULT AddHandle(
 HANDLE hObject,
 IWorkerThreadClient* pClient,
 DWORD_PTR dwParam) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

1. Create an instance of this class.

2. Call CWorkerThread::Initialize.

3. Call CWorkerThread::AddHandle with the handle of a kernel object and a pointer to an implementation of
IWorkerThreadClient.

- or -

Call CWorkerThread::AddTimer with a pointer to an implementation of IWorkerThreadClient.

4. Implement IWorkerThreadClient::Execute to take some action when the handle or timer is signaled.

5. To remove an object from the list of waitable objects, call CWorkerThread::RemoveHandle.

6. To terminate the thread, call CWorkerThread::Shutdown.

Header: atlutil.h

Call this method to add a waitable object's handle to the list maintained by the worker thread.

hObject
The handle to a waitable object.

pClient
The pointer to the IWorkerThreadClient interface on the object to be called when the handle is signaled.

dwParam
The parameter to be passed to IWorkerThreadClient::Execute when the handle is signaled.

Returns S_OK on success, or an error HRESULT on failure.

CWorkerThread::AddTimer

HRESULT AddTimer(
 DWORD dwInterval,
 IWorkerThreadClient* pClient,
 DWORD_PTR dwParam,
 HANDLE* phTimer) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWorkerThread::CWorkerThread

CWorkerThread() throw();

CWorkerThread::~CWorkerThread

~CWorkerThread() throw();

RemarksRemarks

CWorkerThread::GetThreadHandle

HANDLE GetThreadHandle() throw();

IWorkerThreadClient::Execute will be called through pClient when the handle, hObject, is signaled.

Call this method to add a periodic waitable timer to the list maintained by the worker thread.

dwInterval
Specifies the period of the timer in milliseconds.

pClient
The pointer to the IWorkerThreadClient interface on the object to be called when the handle is signaled.

dwParam
The parameter to be passed to IWorkerThreadClient::Execute when the handle is signaled.

phTimer
[out] Address of the HANDLE variable that, on success, receives the handle to the newly created timer.

Returns S_OK on success, or an error HRESULT on failure.

IWorkerThreadClient::Execute will be called through pClient when the timer is signaled.

Pass the timer handle from phTimer to CWorkerThread::RemoveHandle to close the timer.

The constructor.

The destructor.

Calls CWorkerThread::Shutdown.

Call this method to get the thread handle of the worker thread.

Return ValueReturn Value

CWorkerThread::GetThreadId

DWORD GetThreadId() throw();

Return ValueReturn Value

CWorkerThread::Initialize

HRESULT Initialize() throw();

HRESULT Initialize(CWorkerThread<ThreadTraits>* pThread) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWorkerThread::RemoveHandle

HRESULT RemoveHandle(HANDLE hObject) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Returns the thread handle or NULL if the worker thread has not been initialized.

Call this method to get the thread ID of the worker thread.

Returns the thread ID or NULL if the worker thread has not been initialized.

Call this method to initialize the worker thread.

pThread
An existing worker thread.

Returns S_OK on success, or an error HRESULT on failure.

This method should be called to initialize the object after creation or after a call to CWorkerThread::Shutdown.

To have two or more CWorkerThread objects use the same worker thread, initialize one of them without passing
any arguments then pass a pointer to that object to the Initialize methods of the others. The objects initialized
using the pointer should be shut down before the object used to initialize them.

See CWorkerThread::Shutdown for information on how that method's behavior changes when initialized using a
pointer to an existing object.

Call this method to remove a handle from the list of waitable objects.

hObject
The handle to remove.

Returns S_OK on success, or an error HRESULT on failure.

When the handle is removed IWorkerThreadClient::CloseHandle will be called on the associated object that was

 CWorkerThread::Shutdown

HRESULT Shutdown(DWORD dwWait = ATL_WORKER_THREAD_WAIT) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

passed to AddHandle. If this call fails, CWorkerThread will call the Windows CloseHandle function on the handle.

Call this method to shut down the worker thread.

dwWait
The time in milliseconds to wait for the worker thread to shut down. ATL_WORKER_THREAD_WAIT defaults to
10 seconds. If necessary, you can define your own value for this symbol before including atlutil.h.

Returns S_OK on success, or an error HRESULT on failure, such as if the timeout value, dwWait, is exceeded.

To reuse the object, call CWorkerThread::Initialize after calling this method.

Note that calling Shutdown on an object initialized with a pointer to another CWorkerThread object has no effect
and always returns S_OK.

DefaultThreadTraits
Classes
Multithreading: Creating Worker Threads
IWorkerThreadClient Interface

https://docs.microsoft.com/windows/desktop/api/handleapi/nf-handleapi-closehandle
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-creating-worker-threads

IAtlAutoThreadModule Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
__interface IAtlAutoThreadModule

Remarks

Requirements

See also

This class represents an interface to a CreateInstance method.

This class and its members cannot be used in applications that execute in the Windows Runtime.

The class CAtlAutoThreadModuleT derives from IAtlAutoThreadModule , using it to provide code for creating an
object and retrieving an interface pointer.

Header: atlbase.h

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iatlautothreadmodule-class.md

IAtlMemMgr Class
3/4/2019 • 13 minutes to read • Edit Online

Syntax
__interface __declspec(uuid("654F7EF5-CFDF-4df9-A450-6C6A13C622C0")) IAtlMemMgr

Members
MethodsMethods

Allocate Call this method to allocate a block of memory.

Free Call this method to free a block of memory.

GetSize Call this method to retrieve the size of an allocated
memory block.

Reallocate Call this method to reallocate a block of memory.

Remarks

NOTENOTE

Example

This class represents the interface to a memory manager.

This interface is implemented by CComHeap, CCRTHeap, CLocalHeap, CGlobalHeap, or CWin32Heap.

The local and global heap functions are slower than other memory management functions, and do not provide as
many features. Therefore, new applications should use the heap functions. These are available in the CWin32Heap
class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iatlmemmgr-class.md
https://docs.microsoft.com/windows/desktop/Memory/heap-functions

// Demonstrate IAtlMemMgr using the five possible
// memory function implementation classes.

HRESULT MemoryManagerDemonstration(IAtlMemMgr& MemoryManager) throw()
{
 // The IAtlMemMgr interface guarantees not to throw exceptions
 // so we can make the same guarantee for this function
 // without adding exception handling code.

 // A variable which will point to some allocated memory.
 void* pMemory = NULL;

 const size_t BytesInChunk = 1024;

 // Allocate a chunk of memory
 pMemory = MemoryManager.Allocate(BytesInChunk);

 // Confirm the validity of the allocated memory
 if (pMemory == NULL)
 return E_OUTOFMEMORY;

 // Confirm the size of the allocated memory
 ATLASSERT(MemoryManager.GetSize(pMemory) == BytesInChunk);

 // Increase the size of the allocated memory
 pMemory = MemoryManager.Reallocate(pMemory, BytesInChunk * 2);

 // Confirm the validity of the allocated memory
 if (pMemory == NULL)
 return E_OUTOFMEMORY;

 // Confirm the size of the reallocated memory
 ATLASSERT(MemoryManager.GetSize(pMemory) == BytesInChunk * 2);

 // Free the allocated memory
 MemoryManager.Free(pMemory);

 return S_OK;
}

int DoMemoryManagerDemonstration()
{
 CComHeap heapCom;
 CCRTHeap heapCrt;
 CLocalHeap heapLocal;
 CGlobalHeap heapGlobal;
 // It is necessary to provide extra information
 // to the constructor when using CWin32Heap
 CWin32Heap heapWin32(NULL, 4096);

 ATLASSERT(S_OK==MemoryManagerDemonstration(heapCom));
 ATLASSERT(S_OK==MemoryManagerDemonstration(heapCrt));
 ATLASSERT(S_OK==MemoryManagerDemonstration(heapLocal));
 ATLASSERT(S_OK==MemoryManagerDemonstration(heapGlobal));
 ATLASSERT(S_OK==MemoryManagerDemonstration(heapWin32));

 return 0;
}

Requirements

IAtlMemMgr::Allocate

Header: atlmem.h

void* Allocate(size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

IAtlMemMgr::Free

void Free(void* p) throw();

ParametersParameters

RemarksRemarks

ExampleExample

IAtlMemMgr::GetSize

size_t GetSize(void* p) throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

IAtlMemMgr::Reallocate

Call this method to allocate a block of memory.

nBytes
The requested number of bytes in the new memory block.

Returns a pointer to the start of the newly allocated memory block.

Call IAtlMemMgr::Free or IAtlMemMgr::Reallocate to free the memory allocated by this method.

For an example, see the IAtlMemMgr Overview.

Call this method to free a block of memory.

p
Pointer to memory previously allocated by this memory manager.

Use this method to free memory obtained by IAtlMemMgr::Allocate or IAtlMemMgr::Reallocate.

For an example, see the IAtlMemMgr Overview.

Call this method to retrieve the size of an allocated memory block.

p
Pointer to memory previously allocated by this memory manager.

Returns the size of the memory block in bytes.

For an example, see the IAtlMemMgr Overview.

Call this method to reallocate memory allocated by this memory manager.

void* Reallocate(void* p, size_t nBytes) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

IAxWinAmbientDispatch::get_AllowContextMenu

STDMETHOD(get_AllowContextMenu)(VARIANT_BOOL* pbAllowContextMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_AllowShowUI

STDMETHOD(get_AllowShowUI)(VARIANT_BOOL* pbAllowShowUI);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

p
Pointer to memory previously allocated by this memory manager.

nBytes
The requested number of bytes in the new memory block.

Returns a pointer to the start of the newly allocated memory block.

Call IAtlMemMgr::Free or IAtlMemMgr::Reallocate to free the memory allocated by this method.

Conceptually this method frees the existing memory and allocates a new memory block. In reality, the
existing memory may be extended or otherwise reused.

For an example, see the IAtlMemMgr Overview.

The AllowContextMenu property specifies whether the hosted control is allowed to display its own context
menu.

pbAllowContextMenu
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The AllowShowUI property specifies whether the hosted control is allowed to display its own user interface.

pbAllowShowUI
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

IAxWinAmbientDispatch::get_AllowWindowlessActivation

STDMETHOD(get_AllowWindowlessActivation)(VARIANT_BOOL* pbAllowWindowless);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_BackColor

STDMETHOD(get_BackColor)(OLE_COLOR* pclrBackground);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_DisplayAsDefault

STDMETHOD(get_DisplayAsDefault)(VARIANT_BOOL* pbDisplayAsDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The ATL host object implementation uses VARIANT_FALSE as the default value of this property.

The AllowWindowlessActivation property specifies whether the container will allow windowless activation.

pbAllowWindowless
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The BackColor property specifies the ambient background color of the container.

pclrBackground
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses COLOR_BTNFACE or COLOR_WINDOW as the default value of
this property (depending on whether the parent of the host window is a dialog or not).

DisplayAsDefault is an ambient property that allows a control to find out if it is the default control.

pbDisplayAsDefault
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_FALSE as the default value of this property.

IAxWinAmbientDispatch::get_DocHostDoubleClickFlags

STDMETHOD(get_DocHostDoubleClickFlags)(DWORD* pdwDocHostDoubleClickFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_DocHostFlags

STDMETHOD(get_DocHostFlags)(DWORD* pdwDocHostFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_Font

STDMETHOD(get_Font)(IFontDisp** pFont);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The DocHostDoubleClickFlags property specifies the operation that should take place in response to a
double-click.

pdwDocHostDoubleClickFlags
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses DOCHOSTUIDBLCLK_DEFAULT as the default value of this
property.

The DocHostFlags property specifies the user interface capabilities of the host object.

pdwDocHostFlags
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses DOCHOSTUIFLAG_NO3DBORDER as the default value of this
property.

The Font property specifies the ambient font of the container.

pFont
[out] The address of an IFontDisp interface pointer used to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses the default GUI font or the system font as the default value of this
property.

IAxWinAmbientDispatch::get_ForeColor

STDMETHOD(get_ForeColor)(OLE_COLOR* pclrForeground);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_LocaleID

STDMETHOD(get_LocaleID)(LCID* plcidLocaleID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_MessageReflect

STDMETHOD(get_MessageReflect)(VARIANT_BOOL* pbMessageReflect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The ForeColor property specifies the ambient foreground color of the container.

pclrForeground
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses the system window text color as the default value of this property.

The LocaleID property specifies the ambient locale ID of the container.

plcidLocaleID
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses the user's default locale as the default value of this property.

With this method you can discover the Ambient LocalID, that is, the LocaleID of the program your control
is being used in. Once you know the LocaleID, you can call code to load locale-specific captions, error
message text, and so forth from a resource file or satellite DLL.

The MessageReflect ambient property specifies whether the container will reflect messages to the hosted
control.

pbMessageReflect
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

IAxWinAmbientDispatch::get_OptionKeyPath

STDMETHOD(get_OptionKeyPath)(BSTR* pbstrOptionKeyPath);

ParametersParameters

Return ValueReturn Value

IAxWinAmbientDispatch::get_ShowGrabHandles

STDMETHOD(get_ShowGrabHandles)(VARIANT_BOOL* pbShowGrabHandles);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_ShowHatching

STDMETHOD(get_ShowHatching)(VARIANT_BOOL* pbShowHatching);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_UserMode

STDMETHOD(get_UserMode)(VARIANT_BOOL* pbUserMode);

The OptionKeyPath property specifies the registry key path to user settings.

pbstrOptionKeyPath
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ShowGrabHandles ambient property allows the control to find out if it should draw itself with grab
handles.

pbShowGrabHandles
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation always returns VARIANT_FALSE as the value of this property.

The ShowHatching ambient property allows the control to find out if it should draw itself hatched.

pbShowHatching
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation always returns VARIANT_FALSE as the value of this property.

The UserMode property specifies the ambient user mode of the container.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_AllowContextMenu

STDMETHOD(put_AllowContextMenu)(VARIANT_BOOL bAllowContextMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_AllowShowUI

STDMETHOD(put_AllowShowUI)(VARIANT_BOOL bAllowShowUI);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_AllowWindowlessActivation

STDMETHOD(put_AllowWindowlessActivation)(VARIANT_BOOL bAllowWindowless);

ParametersParameters

pbUserMode
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The AllowContextMenu property specifies whether the hosted control is allowed to display its own context
menu.

bAllowContextMenu
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The AllowShowUI property specifies whether the hosted control is allowed to display its own user interface.

bAllowShowUI
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_FALSE as the default value of this property.

The AllowWindowlessActivation property specifies whether the container will allow windowless activation.

bAllowWindowless
[in] The new value of this property.

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_BackColor

STDMETHOD(put_BackColor)(OLE_COLOR clrBackground);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_DisplayAsDefault

STDMETHOD(put_DisplayAsDefault)(VARIANT_BOOL bDisplayAsDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_DocHostDoubleClickFlags

STDMETHOD(put_DocHostDoubleClickFlags)(DWORD dwDocHostDoubleClickFlags);

ParametersParameters

Return ValueReturn Value

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The BackColor property specifies the ambient background color of the container.

clrBackground
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses COLOR_BTNFACE or COLOR_WINDOW as the default value of
this property (depending on whether the parent of the host window is a dialog or not).

DisplayAsDefault is an ambient property that allows a control to find out if it is the default control.

bDisplayAsDefault
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_FALSE as the default value of this property.

The DocHostDoubleClickFlags property specifies the operation that should take place in response to a
double-click.

dwDocHostDoubleClickFlags
[in] The new value of this property.

A standard HRESULT value.

RemarksRemarks

IAxWinAmbientDispatch::put_DocHostFlags

STDMETHOD(put_DocHostFlags)(DWORD dwDocHostFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_Font

STDMETHOD(put_Font)(IFontDisp* pFont);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_ForeColor

STDMETHOD(put_ForeColor)(OLE_COLOR clrForeground);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The ATL host object implementation uses DOCHOSTUIDBLCLK_DEFAULT as the default value of this
property.

The DocHostFlags property specifies the user interface capabilities of the host object.

dwDocHostFlags
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses DOCHOSTUIFLAG_NO3DBORDER as the default value of this
property.

The Font property specifies the ambient font of the container.

pFont
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses the default GUI font or the system font as the default value of this
property.

The ForeColor property specifies the ambient foreground color of the container.

clrForeground
[in] The new value of this property.

A standard HRESULT value.

IAxWinAmbientDispatch::put_LocaleID

STDMETHOD(put_LocaleID)(LCID lcidLocaleID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_MessageReflect

STDMETHOD(put_MessageReflect)(VARIANT_BOOL bMessageReflect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_OptionKeyPath

STDMETHOD(put_OptionKeyPath)(BSTR bstrOptionKeyPath);

ParametersParameters

Return ValueReturn Value

IAxWinAmbientDispatch::put_UserMode

The ATL host object implementation uses the system window text color as the default value of this property.

The LocaleID property specifies the ambient locale ID of the container.

lcidLocaleID
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses the user's default locale as the default value of this property.

The MessageReflect ambient property specifies whether the container will reflect messages to the hosted
control.

bMessageReflect
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The OptionKeyPath property specifies the registry key path to user settings.

bstrOptionKeyPath
[in] The new value of this property.

A standard HRESULT value.

The UserMode property specifies the ambient user mode of the container.

STDMETHOD(put_UserMode)(VARIANT_BOOL bUserMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatchEx::SetAmbientDispatch

virtual HRESULT STDMETHODCALLTYPE SetAmbientDispatch(IDispatch* pDispatch) = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinHostWindow::AttachControl

STDMETHOD(AttachControl)(IUnknown* pUnkControl, HWND hWnd);

ParametersParameters

Return ValueReturn Value

IAxWinHostWindow::CreateControl

bUserMode
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

This method is called to supplement the default ambient property interface with a user-defined interface.

pDispatch
Pointer to the new interface.

Returns S_OK on success, or an error HRESULT on failure.

When SetAmbientDispatch is called with a pointer to a new interface, this new interface will be used to
invoke any properties or methods asked for by the hosted control — if those properties are not already
provided by IAxWinAmbientDispatch.

Attaches an existing (and previously initialized) control to the host object using the window identified by
hWnd.

pUnkControl
[in] A pointer to the IUnknown interface of the control to be attached to the host object.

hWnd
[in] A handle to the window to be used for hosting.

A standard HRESULT value.

Creates a control, initializes it, and hosts it in the window identified by hWnd.

STDMETHOD(CreateControl)(
 LPCOLESTR lpTricsData,
 HWND hWnd,
 IStream* pStream);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinHostWindow::CreateControlEx

STDMETHOD(CreateControlEx)(
 LPCOLESTR lpszTricsData,
 HWND hWnd,
 IStream* pStream,
 IUnknown** ppUnk,
 REFIID riidAdvise,
 IUnknown* punkAdvise);

ParametersParameters

lpTricsData
[in] A string identifying the control to create. Can be a CLSID (must include the braces), ProgID, URL, or
raw HTML (prefixed by MSHTML:).

hWnd
[in] A handle to the window to be used for hosting.

pStream
[in] An interface pointer for a stream containing initialization data for the control. Can be NULL.

A standard HRESULT value.

This window will be subclassed by the host object exposing this interface so that messages can be reflected
to the control and other container features will work.

Calling this method is equivalent to calling IAxWinHostWindow::CreateControlEx.

To create a licensed ActiveX control, see IAxWinHostWindowLic::CreateControlLic.

Creates an ActiveX control, initializes it, and hosts it in the specified window, similar to
IAxWinHostWindow::CreateControl.

lpTricsData
[in] A string identifying the control to create. Can be a CLSID (must include the braces), ProgID, URL, or
raw HTML (prefixed with MSHTML:).

hWnd
[in] A handle to the window to be used for hosting.

pStream
[in] An interface pointer for a stream containing initialization data for the control. Can be NULL.

ppUnk
[out] The address of a pointer that will receive the IUnknown interface of the created control. Can be NULL.

riidAdvise
[in] The interface identifier of an outgoing interface on the contained object. Can be IID_NULL.

Return ValueReturn Value

RemarksRemarks

IAxWinHostWindow::QueryControl

STDMETHOD(QueryControl)(REFIID riid, void** ppvObject);

ParametersParameters

Return ValueReturn Value

IAxWinHostWindow::SetExternalDispatch

STDMETHOD(SetExternalDispatch)(IDispatch* pDisp);

ParametersParameters

Return ValueReturn Value

IAxWinHostWindow::SetExternalUIHandler

STDMETHOD(SetExternalUIHandler)(IDocHostUIHandlerDispatch* pDisp);

ParametersParameters

punkAdvise
[in] A pointer to the IUnknown interface of the sink object to be connected to the connection point on the
contained object specified by iidSink .

A standard HRESULT value.

Unlike the CreateControl method, CreateControlEx also allows you to receive an interface pointer to the
newly created control and set up an event sink to receive events fired by the control.

To create a licensed ActiveX control, see IAxWinHostWindowLic::CreateControlLicEx.

Returns the specified interface pointer provided by the hosted control.

riid
[in] The ID of an interface on the control being requested.

ppvObject
[out] The address of a pointer that will receive the specified interface of the created control.

A standard HRESULT value.

Sets the external dispinterface, which is available to contained controls through the
IDocHostUIHandlerDispatch::GetExternal method.

pDisp
[in] A pointer to an IDispatch interface.

A standard HRESULT value.

Call this function to set the external IDocHostUIHandlerDispatch interface for the CAxWindow object.

pDisp
[in] A pointer to an IDocHostUIHandlerDispatch interface.

Return ValueReturn Value

RemarksRemarks

IAxWinHostWindowLic::CreateControlLic

STDMETHOD(CreateControlLic)(
 LPCOLESTR lpTricsData,
 HWND hWnd,
 IStream* pStream,
 BSTR bstrLic);

ParametersParameters

RemarksRemarks

ExampleExample

IAxWinHostWindowLic::CreateControlLicEx

STDMETHOD(CreateControlLicEx)(
 LPCOLESTR lpszTricsData,
 HWND hWnd,
 IStream* pStream,
 IUnknown** ppUnk,
 REFIID riidAdvise,
 IUnknown* punkAdvise,
 BSTR bstrLic);

ParametersParameters

RemarksRemarks

ExampleExample

A standard HRESULT value.

This function is used by controls (such as the Web browser control) that query the host's site for the
IDocHostUIHandlerDispatch interface.

Creates a licensed control, initializes it, and hosts it in the window identified by hWnd .

bstrLic
[in] The BSTR that contains the license key for the control.

See IAxWinHostWindow::CreateControl for a description of the remaining parameters and return value.

Calling this method is equivalent to calling IAxWinHostWindowLic::CreateControlLicEx

See Hosting ActiveX Controls Using ATL AXHost for a sample that uses
IAxWinHostWindowLic::CreateControlLic .

Creates a licensed ActiveX control, initializes it, and hosts it in the specified window, similar to
IAxWinHostWindow::CreateControl.

bstrLic
[in] The BSTR that contains the license key for the control.

See IAxWinHostWindow::CreateControlEx for a description of the remaining parameters and return value.

See Hosting ActiveX Controls Using ATL AXHost for a sample that uses
IAxWinHostWindowLic::CreateControlLicEx .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost

See also
Class Overview

IAxWinAmbientDispatch Interface
3/5/2019 • 10 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
interface IAxWinAmbientDispatch : IDispatch

Members
MethodsMethods

get_AllowContextMenu The AllowContextMenu property specifies whether the
hosted control is allowed to display its own context menu.

get_AllowShowUI The AllowShowUI property specifies whether the hosted
control is allowed to display its own user interface.

get_AllowWindowlessActivation The AllowWindowlessActivation property specifies
whether the container will allow windowless activation.

get_BackColor The BackColor property specifies the ambient background
color of the container.

get_DisplayAsDefault DisplayAsDefault is an ambient property that allows a
control to find out if it is the default control.

get_DocHostDoubleClickFlags The DocHostDoubleClickFlags property specifies the
operation that should take place in response to a double-
click.

get_DocHostFlags The DocHostFlags property specifies the user interface
capabilities of the host object.

get_Font The Font property specifies the ambient font of the
container.

get_ForeColor The ForeColor property specifies the ambient foreground
color of the container.

get_LocaleID The LocaleID property specifies the ambient locale ID of
the container.

This interface provides methods for specifying characteristics of the hosted control or container.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iaxwinambientdispatch-interface.md

get_MessageReflect The MessageReflect ambient property specifies whether
the container will reflect messages to the hosted control.

get_OptionKeyPath The OptionKeyPath property specifies the registry key path
to user settings.

get_ShowGrabHandles The ShowGrabHandles ambient property allows the control
to find out if it should draw itself with grab handles.

get_ShowHatching The ShowHatching ambient property allows the control to
find out if it should draw itself hatched.

get_UserMode The UserMode property specifies the ambient user mode of
the container.

put_AllowContextMenu The AllowContextMenu property specifies whether the
hosted control is allowed to display its own context menu.

put_AllowShowUI The AllowShowUI property specifies whether the hosted
control is allowed to display its own user interface.

put_AllowWindowlessActivation The AllowWindowlessActivation property specifies
whether the container will allow windowless activation.

put_BackColor The BackColor property specifies the ambient background
color of the container.

put_DisplayAsDefault DisplayAsDefault is an ambient property that allows a
control to find out if it is the default control.

put_DocHostDoubleClickFlags The DocHostDoubleClickFlags property specifies the
operation that should take place in response to a double-
click.

put_DocHostFlags The DocHostFlags property specifies the user interface
capabilities of the host object.

put_Font The Font property specifies the ambient font of the
container.

put_ForeColor The ForeColor property specifies the ambient foreground
color of the container.

put_LocaleID The LocaleID property specifies the ambient locale ID of
the container.

put_MessageReflect The MessageReflect ambient property specifies whether
the container will reflect messages to the hosted control.

put_OptionKeyPath The OptionKeyPath property specifies the registry key path
to user settings.

put_UserMode The UserMode property specifies the ambient user mode of
the container.

Remarks

Requirements

DEFINITION TYPE FILE

IDL atliface.idl

Type Library ATL.dll

C++ atliface.h (also included in ATLBase.h)

IAxWinAmbientDispatch::get_AllowContextMenu

STDMETHOD(get_AllowContextMenu)(VARIANT_BOOL* pbAllowContextMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_AllowShowUI

STDMETHOD(get_AllowShowUI)(VARIANT_BOOL* pbAllowShowUI);

ParametersParameters

This interface is exposed by ATL's ActiveX control hosting objects. Call the methods on this interface to set the
ambient properties available to the hosted control or to specify other aspects of the container's behavior. To
supplement the properties provided by IAxWinAmbientDispatch , use IAxWinAmbientDispatchEx.

AxHost will try to load type information about IAxWinAmbientDispatch and IAxWinAmbientDispatchEx from the
typelib that contains the code.

If you are linking to ATL90.dll, AXHost will load the type information from the typelib in the DLL.

See Hosting ActiveX Controls Using ATL AXHost for more details.

The definition of this interface is available in a number of forms, as shown in the table below.

The AllowContextMenu property specifies whether the hosted control is allowed to display its own context menu.

pbAllowContextMenu
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The AllowShowUI property specifies whether the hosted control is allowed to display its own user interface.

https://msdn.microsoft.com/en-us/library/system.windows.forms.axhost(v=vs.110).aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_AllowWindowlessActivation

STDMETHOD(get_AllowWindowlessActivation)(VARIANT_BOOL* pbAllowWindowless);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_BackColor

STDMETHOD(get_BackColor)(OLE_COLOR* pclrBackground);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_DisplayAsDefault

STDMETHOD(get_DisplayAsDefault)(VARIANT_BOOL* pbDisplayAsDefault);

ParametersParameters

pbAllowShowUI
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_FALSE as the default value of this property.

The AllowWindowlessActivation property specifies whether the container will allow windowless activation.

pbAllowWindowless
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The BackColor property specifies the ambient background color of the container.

pclrBackground
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses COLOR_BTNFACE or COLOR_WINDOW as the default value of this
property (depending on whether the parent of the host window is a dialog or not).

DisplayAsDefault is an ambient property that allows a control to find out if it is the default control.

pbDisplayAsDefault
[out] The address of a variable to receive the current value of this property.

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_DocHostDoubleClickFlags

STDMETHOD(get_DocHostDoubleClickFlags)(DWORD* pdwDocHostDoubleClickFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_DocHostFlags

STDMETHOD(get_DocHostFlags)(DWORD* pdwDocHostFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_Font

STDMETHOD(get_Font)(IFontDisp** pFont);

ParametersParameters

Return ValueReturn Value

A standard HRESULT value.

The ATL host object implementation uses VARIANT_FALSE as the default value of this property.

The DocHostDoubleClickFlags property specifies the operation that should take place in response to a double-
click.

pdwDocHostDoubleClickFlags
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses DOCHOSTUIDBLCLK_DEFAULT as the default value of this property.

The DocHostFlags property specifies the user interface capabilities of the host object.

pdwDocHostFlags
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses DOCHOSTUIFLAG_NO3DBORDER as the default value of this
property.

The Font property specifies the ambient font of the container.

pFont
[out] The address of an IFontDisp interface pointer used to receive the current value of this property.

A standard HRESULT value.

RemarksRemarks

IAxWinAmbientDispatch::get_ForeColor

STDMETHOD(get_ForeColor)(OLE_COLOR* pclrForeground);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_LocaleID

STDMETHOD(get_LocaleID)(LCID* plcidLocaleID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_MessageReflect

STDMETHOD(get_MessageReflect)(VARIANT_BOOL* pbMessageReflect);

ParametersParameters

Return ValueReturn Value

The ATL host object implementation uses the default GUI font or the system font as the default value of this
property.

The ForeColor property specifies the ambient foreground color of the container.

pclrForeground
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses the system window text color as the default value of this property.

The LocaleID property specifies the ambient locale ID of the container.

plcidLocaleID
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses the user's default locale as the default value of this property.

With this method you can discover the Ambient LocalID, that is, the LocaleID of the program your control is
being used in. Once you know the LocaleID, you can call code to load locale-specific captions, error message text,
and so forth from a resource file or satellite DLL.

The MessageReflect ambient property specifies whether the container will reflect messages to the hosted control.

pbMessageReflect
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

RemarksRemarks

IAxWinAmbientDispatch::get_OptionKeyPath

STDMETHOD(get_OptionKeyPath)(BSTR* pbstrOptionKeyPath);

ParametersParameters

Return ValueReturn Value

IAxWinAmbientDispatch::get_ShowGrabHandles

STDMETHOD(get_ShowGrabHandles)(VARIANT_BOOL* pbShowGrabHandles);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_ShowHatching

STDMETHOD(get_ShowHatching)(VARIANT_BOOL* pbShowHatching);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::get_UserMode

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The OptionKeyPath property specifies the registry key path to user settings.

pbstrOptionKeyPath
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ShowGrabHandles ambient property allows the control to find out if it should draw itself with grab handles.

pbShowGrabHandles
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation always returns VARIANT_FALSE as the value of this property.

The ShowHatching ambient property allows the control to find out if it should draw itself hatched.

pbShowHatching
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation always returns VARIANT_FALSE as the value of this property.

The UserMode property specifies the ambient user mode of the container.

STDMETHOD(get_UserMode)(VARIANT_BOOL* pbUserMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_AllowContextMenu

STDMETHOD(put_AllowContextMenu)(VARIANT_BOOL bAllowContextMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_AllowShowUI

STDMETHOD(put_AllowShowUI)(VARIANT_BOOL bAllowShowUI);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_AllowWindowlessActivation

STDMETHOD(put_AllowWindowlessActivation)(VARIANT_BOOL bAllowWindowless);

ParametersParameters

pbUserMode
[out] The address of a variable to receive the current value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The AllowContextMenu property specifies whether the hosted control is allowed to display its own context menu.

bAllowContextMenu
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The AllowShowUI property specifies whether the hosted control is allowed to display its own user interface.

bAllowShowUI
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_FALSE as the default value of this property.

The AllowWindowlessActivation property specifies whether the container will allow windowless activation.

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_BackColor

STDMETHOD(put_BackColor)(OLE_COLOR clrBackground);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_DisplayAsDefault

STDMETHOD(put_DisplayAsDefault)(VARIANT_BOOL bDisplayAsDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_DocHostDoubleClickFlags

STDMETHOD(put_DocHostDoubleClickFlags)(DWORD dwDocHostDoubleClickFlags);

ParametersParameters

bAllowWindowless
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The BackColor property specifies the ambient background color of the container.

clrBackground
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses COLOR_BTNFACE or COLOR_WINDOW as the default value of this
property (depending on whether the parent of the host window is a dialog or not).

DisplayAsDefault is an ambient property that allows a control to find out if it is the default control.

bDisplayAsDefault
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_FALSE as the default value of this property.

The DocHostDoubleClickFlags property specifies the operation that should take place in response to a double-
click.

dwDocHostDoubleClickFlags
[in] The new value of this property.

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_DocHostFlags

STDMETHOD(put_DocHostFlags)(DWORD dwDocHostFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_Font

STDMETHOD(put_Font)(IFontDisp* pFont);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_ForeColor

STDMETHOD(put_ForeColor)(OLE_COLOR clrForeground);

ParametersParameters

Return ValueReturn Value

A standard HRESULT value.

The ATL host object implementation uses DOCHOSTUIDBLCLK_DEFAULT as the default value of this property.

The DocHostFlags property specifies the user interface capabilities of the host object.

dwDocHostFlags
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses DOCHOSTUIFLAG_NO3DBORDER as the default value of this
property.

The Font property specifies the ambient font of the container.

pFont
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses the default GUI font or the system font as the default value of this
property.

The ForeColor property specifies the ambient foreground color of the container.

clrForeground
[in] The new value of this property.

A standard HRESULT value.

RemarksRemarks

IAxWinAmbientDispatch::put_LocaleID

STDMETHOD(put_LocaleID)(LCID lcidLocaleID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_MessageReflect

STDMETHOD(put_MessageReflect)(VARIANT_BOOL bMessageReflect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinAmbientDispatch::put_OptionKeyPath

STDMETHOD(put_OptionKeyPath)(BSTR bstrOptionKeyPath);

ParametersParameters

Return ValueReturn Value

IAxWinAmbientDispatch::put_UserMode

The ATL host object implementation uses the system window text color as the default value of this property.

The LocaleID property specifies the ambient locale ID of the container.

lcidLocaleID
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses the user's default locale as the default value of this property.

The MessageReflect ambient property specifies whether the container will reflect messages to the hosted control.

bMessageReflect
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

The OptionKeyPath property specifies the registry key path to user settings.

bstrOptionKeyPath
[in] The new value of this property.

A standard HRESULT value.

The UserMode property specifies the ambient user mode of the container.

STDMETHOD(put_UserMode)(VARIANT_BOOL bUserMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

bUserMode
[in] The new value of this property.

A standard HRESULT value.

The ATL host object implementation uses VARIANT_TRUE as the default value of this property.

IAxWinAmbientDispatchEx Interface
IAxWinHostWindow Interface
CAxWindow::QueryHost
AtlAxGetHost

IAxWinAmbientDispatchEx Interface
3/5/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
MIDL_INTERFACE("B2D0778B - AC99 - 4c58 - A5C8 - E7724E5316B5") IAxWinAmbientDispatchEx : public
IAxWinAmbientDispatch

Members
MethodsMethods

SetAmbientDispatch This method is called to supplement the default ambient
property interface with a user-defined interface.

Remarks

Requirements

DEFINITION TYPE FILE

IDL atliface.idl

Type Library ATL.dll

This interface implements supplemental ambient properties for a hosted control.

This class and its members cannot be used in applications that execute in the Windows Runtime.

Include this interface in ATL applications that are statically linked to ATL and host ActiveX Controls, especially
ActiveX Controls that have Ambient Properties. Not including this interface will generate this assertion: "Did you
forget to pass the L IBID to CComModule::Init"

This interface is exposed by ATL's ActiveX control hosting objects. Derived from IAxWinAmbientDispatch,
IAxWinAmbientDispatchEx adds a method that allows you to supplement the ambient property interface provided

by ATL with one of your own.

AxHost will try to load type information about IAxWinAmbientDispatch and IAxWinAmbientDispatchEx from the type
library that contains the code.

If you are linking to ATL90.dll, AXHost will load the type information from the type library in the DLL.

See Hosting ActiveX Controls Using ATL AXHost for more details.

The definition of this interface is available in a number of forms, as shown in the following table.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iaxwinambientdispatchex-interface.md
https://msdn.microsoft.com/en-us/library/system.windows.forms.axhost(v=vs.110).aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost

C++ atliface.h (also included in ATLBase.h)

DEFINITION TYPE FILE

IAxWinAmbientDispatchEx::SetAmbientDispatch

virtual HRESULT STDMETHODCALLTYPE SetAmbientDispatch(IDispatch* pDispatch) = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

This method is called to supplement the default ambient property interface with a user-defined interface.

pDispatch
Pointer to the new interface.

Returns S_OK on success, or an error HRESULT on failure.

When SetAmbientDispatch is called with a pointer to a new interface, this new interface will be used to invoke any
properties or methods asked for by the hosted control, if those properties are not already provided by
IAxWinAmbientDispatch.

IAxWinAmbientDispatch Interface

IAxWinHostWindow Interface
3/4/2019 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
interface IAxWinHostWindow : IUnknown

Members
MethodsMethods

AttachControl Attaches an existing control to the host object.

CreateControl Creates a control and attaches it to the host object.

CreateControlEx Creates a control, attaches it to the host object, and
optionally sets up an event handler.

QueryControl Returns an interface pointer to the hosted control.

SetExternalDispatch Sets the external IDispatch interface.

SetExternalUIHandler Sets the external IDocHostUIHandlerDispatch interface.

Remarks

Requirements

DEFINITION TYPE FILE

IDL ATLIFace.idl

C++ ATLIFace.h (also included in ATLBase.h)

This interface provides methods for manipulating a control and its host object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

This interface is exposed by ATL's ActiveX control hosting objects. Call the methods on this interface to create
and/or attach a control to the host object, to get an interface from a hosted control, or to set the external
dispinterface or UI handler for use when hosting the Web browser.

The definition of this interface is available as IDL or C++, as shown below.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iaxwinhostwindow-interface.md

IAxWinHostWindow::AttachControl

STDMETHOD(AttachControl)(IUnknown* pUnkControl, HWND hWnd);

ParametersParameters

Return ValueReturn Value

IAxWinHostWindow::CreateControl

STDMETHOD(CreateControl)(
 LPCOLESTR lpTricsData,
 HWND hWnd,
 IStream* pStream);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinHostWindow::CreateControlEx

Attaches an existing (and previously initialized) control to the host object using the window identified by hWnd.

pUnkControl
[in] A pointer to the IUnknown interface of the control to be attached to the host object.

hWnd
[in] A handle to the window to be used for hosting.

A standard HRESULT value.

Creates a control, initializes it, and hosts it in the window identified by hWnd.

lpTricsData
[in] A string identifying the control to create. Can be a CLSID (must include the braces), ProgID, URL, or raw
HTML (prefixed by MSHTML:).

hWnd
[in] A handle to the window to be used for hosting.

pStream
[in] An interface pointer for a stream containing initialization data for the control. Can be NULL.

A standard HRESULT value.

This window will be subclassed by the host object exposing this interface so that messages can be reflected to the
control and other container features will work.

Calling this method is equivalent to calling IAxWinHostWindow::CreateControlEx.

To create a licensed ActiveX control, see IAxWinHostWindowLic::CreateControlLic.

Creates an ActiveX control, initializes it, and hosts it in the specified window, similar to
IAxWinHostWindow::CreateControl.

STDMETHOD(CreateControlEx)(
 LPCOLESTR lpszTricsData,
 HWND hWnd,
 IStream* pStream,
 IUnknown** ppUnk,
 REFIID riidAdvise,
 IUnknown* punkAdvise);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IAxWinHostWindow::QueryControl

STDMETHOD(QueryControl)(
 REFIID riid,
 void** ppvObject);

ParametersParameters

Return ValueReturn Value

lpTricsData
[in] A string identifying the control to create. Can be a CLSID (must include the braces), ProgID, URL, or raw
HTML (prefixed with MSHTML:).

hWnd
[in] A handle to the window to be used for hosting.

pStream
[in] An interface pointer for a stream containing initialization data for the control. Can be NULL.

ppUnk
[out] The address of a pointer that will receive the IUnknown interface of the created control. Can be NULL.

riidAdvise
[in] The interface identifier of an outgoing interface on the contained object. Can be IID_NULL.

punkAdvise
[in] A pointer to the IUnknown interface of the sink object to be connected to the connection point on the
contained object specified by iidSink .

A standard HRESULT value.

Unlike the CreateControl method, CreateControlEx also allows you to receive an interface pointer to the newly
created control and set up an event sink to receive events fired by the control.

To create a licensed ActiveX control, see IAxWinHostWindowLic::CreateControlLicEx.

Returns the specified interface pointer provided by the hosted control.

riid
[in] The ID of an interface on the control being requested.

ppvObject
[out] The address of a pointer that will receive the specified interface of the created control.

A standard HRESULT value.

IAxWinHostWindow::SetExternalDispatch

STDMETHOD(SetExternalDispatch)(IDispatch* pDisp);

ParametersParameters

Return ValueReturn Value

IAxWinHostWindow::SetExternalUIHandler

STDMETHOD(SetExternalUIHandler)(IDocHostUIHandlerDispatch* pDisp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Sets the external dispinterface, which is available to contained controls through the
IDocHostUIHandlerDispatch::GetExternal method.

pDisp
[in] A pointer to an IDispatch interface.

A standard HRESULT value.

Call this function to set the external IDocHostUIHandlerDispatch interface for the CAxWindow object.

pDisp
[in] A pointer to an IDocHostUIHandlerDispatch interface.

A standard HRESULT value.

This function is used by controls (such as the Web browser control) that query the host's site for the
IDocHostUIHandlerDispatch interface.

IAxWinAmbientDispatch Interface
CAxWindow::QueryHost
AtlAxGetHost

IAxWinHostWindowLic Interface
3/4/2019 • 2 minutes to read • Edit Online

Syntax
interface IAxWinHostWindowLic : IAxWinHostWindow

Members
MethodsMethods

CreateControlLic Creates a licensed control and attaches it to the host object.

CreateControlLicEx Creates a licensed control, attaches it to the host object, and
optionally sets up an event handler.

Remarks

Requirements

DEFINITION TYPE FILE

IDL ATLIFace.idl

C++ ATLIFace.h (also included in ATLBase.h)

IAxWinHostWindowLic::CreateControlLic

STDMETHOD(CreateControlLic)(
 LPCOLESTR lpTricsData,
 HWND hWnd,
 IStream* pStream,
 BSTR bstrLic);

ParametersParameters

This interface provides methods for manipulating a licensed control and its host object.

IAxWinHostWindowLic inherits from IAxWinHostWindow and adds methods that support the creation of licensed
controls.

See Hosting ActiveX Controls Using ATL AXHost for a sample that uses the members of this interface.

The definition of this interface is available as IDL or C++, as shown below.

Creates a licensed control, initializes it, and hosts it in the window identified by hWnd .

bstrLic

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iaxwinhostwindowlic-interface.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost

RemarksRemarks

ExampleExample

IAxWinHostWindowLic::CreateControlLicEx

STDMETHOD(CreateControlLicEx)(
 LPCOLESTR lpszTricsData,
 HWND hWnd,
 IStream* pStream,
 IUnknown** ppUnk,
 REFIID riidAdvise,
 IUnknown* punkAdvise,
 BSTR bstrLic);

ParametersParameters

RemarksRemarks

ExampleExample

[in] The BSTR that contains the license key for the control.

See IAxWinHostWindow::CreateControl for a description of the remaining parameters and return value.

Calling this method is equivalent to calling IAxWinHostWindowLic::CreateControlLicEx

See Hosting ActiveX Controls Using ATL AXHost for a sample that uses IAxWinHostWindowLic::CreateControlLic .

Creates a licensed ActiveX control, initializes it, and hosts it in the specified window, similar to
IAxWinHostWindow::CreateControl.

bstrLic
[in] The BSTR that contains the license key for the control.

See IAxWinHostWindow::CreateControlEx for a description of the remaining parameters and return value.

See Hosting ActiveX Controls Using ATL AXHost for a sample that uses IAxWinHostWindowLic::CreateControlLicEx .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost

ICollectionOnSTLImpl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class T, class CollType, class ItemType, class CopyItem, class EnumType>
class ICollectionOnSTLImpl : public T

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

ICollectionOnSTLImpl::get__NewEnum Returns an enumerator object for the collection.

ICollectionOnSTLImpl::getcount Returns the number of elements in the collection.

ICollectionOnSTLImpl::get_Item Returns the requested item from the collection.

Public Data MembersPublic Data Members

NAME DESCRIPTION

ICollectionOnSTLImpl::m_coll The collection.

Remarks

This class provides methods used by a collection class.

T
A COM collection interface.

CollType
A C++ Standard Library container class.

ItemType
The type of item exposed by the container interface.

CopyItem
A copy policy class.

EnumType
A CComEnumOnSTL-compatible enumerator class.

This class provides the implementation for three methods of a collection interface: getcount, get_Item, and
get__NewEnum.

To use this class:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/icollectiononstlimpl-class.md

NOTENOTE

Inheritance Hierarchy

Requirements

ICollectionOnSTLImpl::getcount

STDMETHOD(getcount)(long* pcount);

ParametersParameters

Return ValueReturn Value

ICollectionOnSTLImpl::get_Item

STDMETHOD(get_Item)(long Index, ItemType* pvar);

ParametersParameters

Return ValueReturn Value

Define (or borrow) a collection interface that you wish to implement.

Derive your class from a specialization of ICollectionOnSTLImpl based on this collection interface.

Use your derived class to implement any methods from the collection interface not handled by
ICollectionOnSTLImpl .

If the collection interface is a dual interface, derive your class from IDispatchImpl, passing the ICollectionOnSTLImpl

specialization as the first template parameter if you want ATL to provide the implementation of the IDispatch methods.

Add items to the m_coll member to populate the collection.

For more information and examples, see ATL Collections and Enumerators.

T

ICollectionOnSTLImpl

Header: atlcom.h

This method returns the number of items in the collection.

pcount
[out] The number of elements in the collection.

A standard HRESULT value.

This method returns the specified item from the collection.

Index
[in] The 1-based index of an item in the collection.

pvar
[out] The item corresponding to Index.

A standard HRESULT value.

RemarksRemarks

ICollectionOnSTLImpl::get__NewEnum

STDMETHOD(get__NewEnum)(IUnknown** ppUnk);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ICollectionOnSTLImpl::m_coll

CollType m_coll;

See also

The item is obtained by copying the data at the specified position in m_coll using the copy method of the copy
policy class passed as a template argument in the ICollectionOnSTLImpl specialization.

Returns an enumerator object for the collection.

ppUnk
[out] The IUnknown pointer of a newly created enumerator object.

A standard HRESULT value.

The newly created enumerator maintains an iterator on the original collection, m_coll , (so no copy is made) and
holds a COM reference on the collection object to ensure that the collection remains alive while there are
outstanding enumerators.

This member holds the items represented by the collection.

ATLCollections Sample
Class Overview

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

IConnectionPointContainerImpl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class T>
class ATL_NO_VTABLE IConnectionPointContainerImpl
 : public IConnectionPointContainer

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IConnectionPointContainerImpl::EnumConnectionPoints Creates an enumerator to iterate through the connection
points supported in the connectable object.

IConnectionPointContainerImpl::FindConnectionPoint Retrieves an interface pointer to the connection point that
supports the specified IID.

Remarks

Inheritance Hierarchy

Requirements

This class implements a connection point container to manage a collection of IConnectionPointImpl objects.

T
Your class, derived from IConnectionPointContainerImpl .

IConnectionPointContainerImpl implements a connection point container to manage a collection of
IConnectionPointImpl objects. IConnectionPointContainerImpl provides two methods that a client can call to
retrieve more information about a connectable object:

EnumConnectionPoints allows the client to determine which outgoing interfaces the object supports.

FindConnectionPoint allows the client to determine whether the object supports a specific outgoing
interface.

For information about using connection points in ATL, see the article Connection Points.

IConnectionPointContainer

IConnectionPointContainerImpl

Header: atlcom.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iconnectionpointcontainerimpl-class.md

IConnectionPointContainerImpl::EnumConnectionPoints

STDMETHOD(EnumConnectionPoints)(IEnumConnectionPoints** ppEnum);

RemarksRemarks

IConnectionPointContainerImpl::FindConnectionPoint

STDMETHOD(FindConnectionPoint)(REFIID riid, IConnectionPoint** ppCP);

RemarksRemarks

See also

Creates an enumerator to iterate through the connection points supported in the connectable object.

See IConnectionPointContainer::EnumConnectionPoints in the Windows SDK.

Retrieves an interface pointer to the connection point that supports the specified IID.

See IConnectionPointContainer::FindConnectionPoint in the Windows SDK.

IConnectionPointContainer
Class Overview

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iconnectionpointcontainer-enumconnectionpoints
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iconnectionpointcontainer-findconnectionpoint
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iconnectionpointcontainer

IConnectionPointImpl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template<class T, const IID* piid, class CDV = CComDynamicUnkArray>
class ATL_NO_VTABLE IConnectionPointImpl : public _ICPLocator<piid>

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IConnectionPointImpl::Advise Establishes a connection between the connection point and
a sink.

IConnectionPointImpl::EnumConnections Creates an enumerator to iterate through the connections
for the connection point.

IConnectionPointImpl::GetConnectionInterface Retrieves the IID of the interface represented by the
connection point.

IConnectionPointImpl::GetConnectionPointContainer Retrieves an interface pointer to the connectable object.

IConnectionPointImpl::Unadvise Terminates a connection previously established through
Advise .

Public Data MembersPublic Data Members

NAME DESCRIPTION

IConnectionPointImpl::m_vec Manages the connections for the connection point.

Remarks

This class implements a connection point.

T
Your class, derived from IConnectionPointImpl .

piid
A pointer to the IID of the interface represented by the connection point object.

CDV
A class that manages the connections. The default value is CComDynamicUnkArray, which allows unlimited
connections. You can also use CComUnkArray, which specifies a fixed number of connections.

IConnectionPointImpl implements a connection point, which allows an object to expose an outgoing interface

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iconnectionpointimpl-class.md

Inheritance Hierarchy

Requirements

IConnectionPointImpl::Advise

STDMETHOD(Advise)(
 IUnknown* pUnkSink,
 DWORD* pdwCookie);

RemarksRemarks

IConnectionPointImpl::EnumConnections

STDMETHOD(EnumConnections)(IEnumConnections** ppEnum);

RemarksRemarks

IConnectionPointImpl::GetConnectionInterface

STDMETHOD(GetConnectionInterface)(IID* piid2);

RemarksRemarks

IConnectionPointImpl::GetConnectionPointContainer

to the client. The client implements this interface on an object called a sink.

ATL uses IConnectionPointContainerImpl to implement the connectable object. Each connection point within
the connectable object represents an outgoing interface, identified by piid. Class CDV manages the connections
between the connection point and a sink. Each connection is uniquely identified by a "cookie."

For more information about using connection points in ATL, see the article Connection Points.

_ICPLocator

IConnectionPointImpl

Header: atlcom.h

Establishes a connection between the connection point and a sink.

Use Unadvise to terminate the connection call.

See IConnectionPoint::Advise in the Windows SDK.

Creates an enumerator to iterate through the connections for the connection point.

See IConnectionPoint::EnumConnections in the Windows SDK.

Retrieves the IID of the interface represented by the connection point.

See IConnectionPoint::GetConnectionInterface in the Windows SDK.

Retrieves an interface pointer to the connectable object.

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iconnectionpoint-advise
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iconnectionpoint-enumconnections
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iconnectionpoint-getconnectioninterface

STDMETHOD(GetConnectionPointContainer)(IConnectionPointContainer** ppCPC);

RemarksRemarks

IConnectionPointImpl::m_vec

CDV m_vec;

RemarksRemarks

IConnectionPointImpl::Unadvise

STDMETHOD(Unadvise)(DWORD dwCookie);

RemarksRemarks

See also

See IConnectionPoint::GetConnectionPointContainer in the Windows SDK.

Manages the connections between the connection point object and a sink.

By default, m_vec is of type CComDynamicUnkArray.

Terminates a connection previously established through Advise.

See IConnectionPoint::Unadvise in the Windows SDK.

IConnectionPoint
Class Overview

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iconnectionpoint-getconnectionpointcontainer
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iconnectionpoint-unadvise
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iconnectionpoint

IDataObjectImpl Class
3/4/2019 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class IDataObjectImpl

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IDataObjectImpl::DAdvise Establishes a connection between the data object and an
advise sink. This enables the advise sink to receive
notifications of changes in the object.

IDataObjectImpl::DUnadvise Terminates a connection previously established through
DAdvise .

IDataObjectImpl::EnumDAdvise Creates an enumerator to iterate through the current
advisory connections.

IDataObjectImpl::EnumFormatEtc Creates an enumerator to iterate through the FORMATETC

structures supported by the data object. The ATL
implementation returns E_NOTIMPL.

IDataObjectImpl::FireDataChange Sends a change notification back to each advise sink.

IDataObjectImpl::GetCanonicalFormatEtc Retrieves a logically equivalent FORMATETC structure to one
that is more complex. The ATL implementation returns
E_NOTIMPL.

IDataObjectImpl::GetData Transfers data from the data object to the client. The data is
described in a FORMATETC structure and is transferred
through a STGMEDIUM structure.

This class provides methods for supporting Uniform Data Transfer and managing connections.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IDataObjectImpl .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/idataobjectimpl-class.md

IDataObjectImpl::GetDataHere Similar to GetData , except the client must allocate the
STGMEDIUM structure. The ATL implementation returns

E_NOTIMPL.

IDataObjectImpl::QueryGetData Determines whether the data object supports a particular
FORMATETC structure for transferring data. The ATL

implementation returns E_NOTIMPL.

IDataObjectImpl::SetData Transfers data from the client to the data object. The ATL
implementation returns E_NOTIMPL.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

IDataObjectImpl::DAdvise

HRESULT DAdvise(
 FORMATETC* pformatetc,
 DWORD advf,
 IAdviseSink* pAdvSink,
 DWORD* pdwConnection);

RemarksRemarks

The IDataObject interface provides methods to support Uniform Data Transfer. IDataObject uses the standard
format structures FORMATETC and STGMEDIUM to retrieve and store data.

IDataObject also manages connections to advise sinks to handle data change notifications. In order for the client
to receive data change notifications from the data object, the client must implement the IAdviseSink interface on
an object called an advise sink. When the client then calls IDataObject::DAdvise , a connection is established
between the data object and the advise sink.

Class IDataObjectImpl provides a default implementation of IDataObject and implements IUnknown by sending
information to the dump device in debug builds.

Related Articles ATL Tutorial, Creating an ATL Project

IDataObject

IDataObjectImpl

Header: atlctl.h

Establishes a connection between the data object and an advise sink.

This enables the advise sink to receive notifications of changes in the object.

To terminate the connection, call DUnadvise.

See IDataObject::DAdvise in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-idataobject
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-iadvisesink
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-dadvise

IDataObjectImpl::DUnadvise

HRESULT DUnadvise(DWORD dwConnection);

RemarksRemarks

IDataObjectImpl::EnumDAdvise

HRESULT DAdvise(
 FORMATETC* pformatetc,
 DWORD advf,
 IAdviseSink* pAdvSink,
 DWORD* pdwConnection);

RemarksRemarks

IDataObjectImpl::EnumFormatEtc

HRESULT EnumFormatEtc(
 DWORD dwDirection,
 IEnumFORMATETC** ppenumFormatEtc);

RemarksRemarks

Return ValueReturn Value

IDataObjectImpl::FireDataChange

HRESULT FireDataChange();

Return ValueReturn Value

IDataObjectImpl::GetCanonicalFormatEtc

HRESULT GetCanonicalFormatEtc(FORMATETC* pformatetcIn, FORMATETC* pformatetcOut);

Terminates a connection previously established through DAdvise.

See IDataObject::DUnadvise in the Windows SDK.

Creates an enumerator to iterate through the current advisory connections.

See IDataObject::EnumDAdvise in the Windows SDK.

Creates an enumerator to iterate through the FORMATETC structures supported by the data object.

See IDataObject::EnumFormatEtc in the Windows SDK.

Returns E_NOTIMPL.

Sends a change notification back to each advise sink that is currently being managed.

A standard HRESULT value.

Retrieves a logically equivalent FORMATETC structure to one that is more complex.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-dunadvise
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-enumdadvise
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-enumformatetc

Return ValueReturn Value

RemarksRemarks

IDataObjectImpl::GetData

HRESULT GetData(
 FORMATETC* pformatetcIn,
 STGMEDIUM* pmedium);

RemarksRemarks

IDataObjectImpl::GetDataHere

HRESULT GetDataHere(
 FORMATETC* pformatetc,
 STGMEDIUM* pmedium);

Return ValueReturn Value

RemarksRemarks

IDataObjectImpl::QueryGetData

HRESULT QueryGetData(FORMATETC* pformatetc);

Return ValueReturn Value

RemarksRemarks

IDataObjectImpl::SetData

Returns E_NOTIMPL.

See IDataObject::GetCanonicalFormatEtc in the Windows SDK.

Transfers data from the data object to the client.

The pformatetcIn parameter must specify a storage medium type of TYMED_MFPICT.

See IDataObject::GetData in the Windows SDK.

Similar to GetData , except the client must allocate the STGMEDIUM structure.

Returns E_NOTIMPL.

See IDataObject::GetDataHere in the Windows SDK.

Determines whether the data object supports a particular FORMATETC structure for transferring data.

Returns E_NOTIMPL.

See IDataObject::QueryGetData in the Windows SDK.

Transfers data from the client to the data object.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-getcanonicalformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-getdata
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-getdatahere
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-querygetdata

HRESULT SetData(
 FORMATETC* pformatetc,
 STGMEDIUM* pmedium,
 BOOL fRelease);

Return ValueReturn Value

RemarksRemarks

See also

Returns E_NOTIMPL.

See IDataObject::SetData in the Windows SDK.

Class Overview

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-setdata

IDispatchImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T,
 const IID* piid= &__uuidof(T),
 const GUID* plibid = &CAtlModule::m_libid,
 WORD wMajor = 1,
 WORD wMinor = 0,
 class tihclass = CComTypeInfoHolder>
class ATL_NO_VTABLE IDispatchImpl : public T

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

IDispatchImpl::IDispatchImpl The constructor. Calls AddRef on the protected member
variable that manages the type information for the dual
interface. The destructor calls Release .

Public MethodsPublic Methods

Provides a default implementation for the IDispatch part of a dual interface.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
[in] A dual interface.

piid
[in] A pointer to the IID of T.

plibid
[in] A pointer to the L IBID of the type library that contains information about the interface. By default, the
server-level type library is passed.

wMajor
[in] The major version of the type library. By default, the value is 1.

wMinor
[in] The minor version of the type library. By default, the value is 0.

tihclass
[in] The class used to manage the type information for T. By default, the value is CComTypeInfoHolder .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/idispatchimpl-class.md

NAME DESCRIPTION

IDispatchImpl::GetIDsOfNames Maps a set of names to a corresponding set of dispatch
identifiers.

IDispatchImpl::GetTypeInfo Retrieves the type information for the dual interface.

IDispatchImpl::GetTypeInfoCount Determines whether there is type information available for
the dual interface.

IDispatchImpl::Invoke Provides access to the methods and properties exposed by
the dual interface.

Remarks

class ATL_NO_VTABLE CBeeper :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CBeeper, &CLSID_Beeper>,
 public IDispatchImpl<IBeeper, &IID_IBeeper, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor =*/ 0>

Inheritance Hierarchy

Requirements

IDispatchImpl::GetIDsOfNames

IDispatchImpl provides a default implementation for the IDispatch part of any dual interface on an object. A
dual interface derives from IDispatch and uses only Automation-compatible types. Like a dispinterface, a dual
interface supports early binding and late binding; however, a dual interface also supports vtable binding.

The following example shows a typical implementation of IDispatchImpl .

By default, the IDispatchImpl class looks up the type information for T in the registry. To implement an
unregistered interface, you can use the IDispatchImpl class without accessing the registry by using a predefined
version number. If you create an IDispatchImpl object that has 0xFFFF as the value for wMajor and 0xFFFF as
the value for wMinor, the IDispatchImpl class retrieves the type library from the .dll file instead of the registry.

IDispatchImpl contains a static member of type CComTypeInfoHolder that manages the type information for the
dual interface. If you have multiple objects that implement the same dual interface, only one instance of
CComTypeInfoHolder is used.

T

IDispatchImpl

Header: atlcom.h

Maps a set of names to a corresponding set of dispatch identifiers.

STDMETHOD(GetIDsOfNames)(
 REFIID riid,
 LPOLESTR* rgszNames,
 UINT cNames,
 LCID lcid,
 DISPID* rgdispid);

RemarksRemarks

IDispatchImpl::GetTypeInfo

STDMETHOD(GetTypeInfo)(
 UINT itinfo,
 LCID lcid,
 ITypeInfo** pptinfo);

RemarksRemarks

IDispatchImpl::GetTypeInfoCount

STDMETHOD(GetTypeInfoCount)(UINT* pctinfo);

RemarksRemarks

IDispatchImpl::IDispatchImpl

IDispatchImpl();

IDispatchImpl::Invoke

STDMETHOD(Invoke)(
 DISPID dispidMember,
 REFIID riid,
 LCID lcid,
 WORD wFlags,
 DISPPARAMS* pdispparams,
 VARIANT* pvarResult,
 EXCEPINFO* pexcepinfo,
 UINT* puArgErr);

RemarksRemarks

See IDispatch::GetIDsOfNames in the Windows SDK.

Retrieves the type information for the dual interface.

See IDispatch::GetTypeInfo in the Windows SDK.

Determines whether there is type information available for the dual interface.

See IDispatch::GetTypeInfoCount in the Windows SDK.

The constructor. Calls AddRef on the protected member variable that manages the type information for the dual
interface. The destructor calls Release .

Provides access to the methods and properties exposed by the dual interface.

https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-getidsofnames
https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-gettypeinfo

See also

See IDispatch::Invoke in the Windows SDK.

Class Overview

https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-invoke

IDispEventImpl Class
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <UINT nID, class T,
 const IID* pdiid = &IID_NULL,
 const GUID* plibid = &GUID_NULL,
 WORD wMajor = 0,
 WORD wMinor = 0,
 class tihclass = CcomTypeInfoHolder>
class ATL_NO_VTABLE IDispEventImpl : public IDispEventSimpleImpl<nID, T, pdiid>

ParametersParameters

Members
Public TypedefsPublic Typedefs

This class provides implementations of the IDispatch methods.

This class and its members cannot be used in applications that execute in the Windows Runtime.

nID
A unique identifier for the source object. When IDispEventImpl is the base class for a composite control, use
the resource ID of the desired contained control for this parameter. In other cases, use an arbitrary positive
integer.

T
The user's class, which is derived from IDispEventImpl .

pdiid
The pointer to the IID of the event dispinterface implemented by this class. This interface must be defined in the
type library denoted by plibid, wMajor, and wMinor.

plibid
A pointer to the type library that defines the dispatch interface pointed to by pdiid. If &GUID_NULL, the type
library will be loaded from the object sourcing the events.

wMajor
The major version of the type library. The default value is 0.

wMinor
The minor version of the type library. The default value is 0.

tihclass
The class used to manage the type information for T. The default value is a class of type CComTypeInfoHolder ;
however, you can override this template parameter by providing a class of a type other than
CComTypeInfoHolder .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/idispeventimpl-class.md

NAME DESCRIPTION

IDispEventImpl::_tihclass The class used to manage the type information. By default,
CComTypeInfoHolder .

Public ConstructorsPublic Constructors

NAME DESCRIPTION

IDispEventImpl::IDispEventImpl The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

IDispEventImpl::GetFuncInfoFromId Locates the function index for the specified dispatch
identifier.

IDispEventImpl::GetIDsOfNames Maps a single member and an optional set of argument
names to a corresponding set of integer DISPIDs.

IDispEventImpl::GetTypeInfo Retrieves the type information for an object.

IDispEventImpl::GetTypeInfoCount Retrieves the number of type information interfaces.

IDispEventImpl::GetUserDefinedType Retrieves the basic type of a user-defined type.

Remarks
IDispEventImpl provides a way of implementing an event dispinterface without requiring you to supply

implementation code for every method/event on that interface. IDispEventImpl provides implementations of
the IDispatch methods. You only need to supply implementations for the events that you are interested in
handling.

IDispEventImpl works in conjunction with the event sink map in your class to route events to the appropriate
handler function. To use this class:

Add a S INK_ENTRY or S INK_ENTRY_EX macro to the event sink map for each event on each object that you
want to handle. When using IDispEventImpl as a base class of a composite control, you can call
AtlAdviseSinkMap to establish and break the connection with the event sources for all entries in the event sink
map. In other cases, or for greater control, call DispEventAdvise to establish the connection between the source
object and the base class. Call DispEventUnadvise to break the connection.

You must derive from IDispEventImpl (using a unique value for nID) for each object for which you need to
handle events. You can reuse the base class by unadvising against one source object then advising against a
different source object, but the maximum number of source objects that can be handled by a single object at
one time is limited by the number of IDispEventImpl base classes.

IDispEventImpl provides the same functionality as IDispEventSimpleImpl, except it gets type information
about the interface from a type library rather than having it supplied as a pointer to an _ATL_FUNC_INFO
structure. Use IDispEventSimpleImpl when you do not have a type library describing the event interface or want
to avoid the overhead associated with using the type library.

NOTENOTE

Inheritance Hierarchy

Requirements

IDispEventImpl::GetFuncInfoFromId

HRESULT GetFuncInfoFromId(
 const IID& iid,
 DISPID dispidMember,
 LCID lcid,
 _ATL_FUNC_INFO& info);

ParametersParameters

Return ValueReturn Value

IDispEventImpl::GetIDsOfNames

IDispEventImpl and IDispEventSimpleImpl provide their own implementation of IUnknown::QueryInterface

enabling each IDispEventImpl and IDispEventSimpleImpl base class to act as a separate COM identity while still
allowing direct access to class members in your main COM object.

CE ATL implementation of ActiveX event sinks only supports return values of type HRESULT or void from your
event handler methods; any other return value is unsupported and its behavior is undefined.

For more information, see Supporting IDispEventImpl.

_IDispEvent

_IDispEventLocator

IDispEventSimpleImpl

IDispEventImpl

Header: atlcom.h

Locates the function index for the specified dispatch identifier.

iid
[in] A reference to the ID of the function.

dispidMember
[in] The dispatch ID of the function.

lcid
[in] The locale context of the function ID.

info
[in] The structure indicating how the function is called.

A standard HRESULT value.

Maps a single member and an optional set of argument names to a corresponding set of integer DISPIDs,
which can be used on subsequent calls to IDispatch::Invoke.

https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-invoke

STDMETHOD(GetIDsOfNames)(
 REFIID riid,
 LPOLESTR* rgszNames,
 UINT cNames,
 LCID lcid,
 DISPID* rgdispid);

RemarksRemarks

IDispEventImpl::GetTypeInfo

STDMETHOD(GetTypeInfo)(
 UINT itinfo,
 LCID lcid,
 ITypeInfo** pptinfo);

RemarksRemarks

IDispEventImpl::GetTypeInfoCount

STDMETHOD(GetTypeInfoCount)(UINT* pctinfo);

RemarksRemarks

IDispEventImpl::GetUserDefinedType

VARTYPE GetUserDefinedType(
 ITypeInfo* pTI,
 HREFTYPE hrt);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IDispEventImpl::IDispEventImpl

See IDispatch::GetIDsOfNames in the Windows SDK.

Retrieves the type information for an object, which can then be used to get the type information for an
interface.

Retrieves the number of type information interfaces that an object provides (either 0 or 1).

See IDispatch::GetTypeInfoCount in the Windows SDK.

Retrieves the basic type of a user-defined type.

pTI
[in] A pointer to the ITypeInfo interface containing the user-defined type.

hrt
[in] A handle to the type description to be retrieved.

The type of variant.

See ITypeInfo::GetRefTypeInfo.

https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-getidsofnames
https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-gettypeinfocount
https://docs.microsoft.com/windows/desktop/api/oaidl/nn-oaidl-itypeinfo
https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-itypeinfo-getreftypeinfo

IDispEventImpl();

IDispEventImpl::tihclass

typedef tihclass _tihclass;

RemarksRemarks

See also

The constructor. Stores the values of the class template parameters plibid, pdiid, wMajor, and wMinor.

This typedef is an instance of the class template parameter tihclass.

By default, the class is CComTypeInfoHolder . CComTypeInfoHolder manages the type information for the class.

_ATL_FUNC_INFO Structure
IDispatchImpl Class
IDispEventSimpleImpl Class
SINK_ENTRY
SINK_ENTRY_EX
SINK_ENTRY_INFO
Class Overview

IDispEventSimpleImpl Class
3/4/2019 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <UINT nID, class T, const IID* pdiid>
class ATL_NO_VTABLE IDispEventSimpleImpl : public _IDispEventLocator<nID, pdiid>

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IDispEventSimpleImpl::Advise Establishes a connection with the default event source.

IDispEventSimpleImpl::DispEventAdvise Establishes a connection with the event source.

IDispEventSimpleImpl::DispEventUnadvise Breaks the connection with the event source.

IDispEventSimpleImpl::GetIDsOfNames Returns E_NOTIMPL.

IDispEventSimpleImpl::GetTypeInfo Returns E_NOTIMPL.

IDispEventSimpleImpl::GetTypeInfoCount Returns E_NOTIMPL.

IDispEventSimpleImpl::Invoke Calls the event handlers listed in the event sink map.

IDispEventSimpleImpl::Unadvise Breaks the connection with the default event source.

This class provides implementations of the IDispatch methods, without getting type information from a type
library.

This class and its members cannot be used in applications that execute in the Windows Runtime.

nID
A unique identifier for the source object. When IDispEventSimpleImpl is the base class for a composite control,
use the resource ID of the desired contained control for this parameter. In other cases, use an arbitrary positive
integer.

T
The user's class, which is derived from IDispEventSimpleImpl .

pdiid
The pointer to the IID of the event dispinterface implemented by this class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/idispeventsimpleimpl-class.md

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

IDispEventSimpleImpl::Advise

IDispEventSimpleImpl provides a way of implementing an event dispinterface without requiring you to supply
implementation code for every method/event on that interface. IDispEventSimpleImpl provides
implementations of the IDispatch methods. You only need to supply implementations for the events that you
are interested in handling.

IDispEventSimpleImpl works in conjunction with the event sink map in your class to route events to the
appropriate handler function. To use this class:

Add a S INK_ENTRY_INFO macro to the event sink map for each event on each object that you want to
handle.

Supply type information for each event by passing a pointer to an _ATL_FUNC_INFO structure as a
parameter to each entry. On the x86 platform, the _ATL_FUNC_INFO.cc value must be CC_CDECL with
the callback function calling method of __stdcall.

Call DispEventAdvise to establish the connection between the source object and the base class.

Call DispEventUnadvise to break the connection.

You must derive from IDispEventSimpleImpl (using a unique value for nID) for each object for which you need
to handle events. You can reuse the base class by unadvising against one source object then advising against a
different source object, but the maximum number of source objects that can be handled by a single object at
one time is limited by the number of IDispEventSimpleImpl base classes.

IDispEventSimplImpl provides the same functionality as IDispEventImpl, except it does not get type
information about the interface from a type library. The wizards generate code based only on IDispEventImpl ,
but you can use IDispEventSimpleImpl by adding the code by hand. Use IDispEventSimpleImpl when you don't
have a type library describing the event interface or want to avoid the overhead associated with using the type
library.

IDispEventImpl and IDispEventSimpleImpl provide their own implementation of IUnknown::QueryInterface

enabling each IDispEventImpl or IDispEventSimpleImpl base class to act as a separate COM identity while still
allowing direct access to class members in your main COM object.

CE ATL implementation of ActiveX event sinks only supports return values of type HRESULT or void from
your event handler methods; any other return value is unsupported and its behavior is undefined.

For more information, see Supporting IDispEventImpl.

_IDispEvent

_IDispEventLocator

IDispEventSimpleImpl

Header: atlcom.h

HRESULT Advise(IUnknown* pUnk);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

IDispEventSimpleImpl::DispEventAdvise

HRESULT DispEventAdvise(IUnknown* pUnk const IID* piid);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

IDispEventSimpleImpl::DispEventUnadvise

Call this method to establish a connection with the event source represented by pUnk.

pUnk
[in] A pointer to the IUnknown interface of the event source object.

S_OK or any failure HRESULT value.

Once the connection is established, events fired from pUnk will be routed to handlers in your class by way of
the event sink map.

If your class derives from multiple IDispEventSimpleImpl classes, you will need to disambiguate calls to this method
by scoping the call with the particular base class you are interested in.

Advise establishes a connection with the default event source, it gets the IID of the default event source of the
object as determined by AtlGetObjectSourceInterface.

Call this method to establish a connection with the event source represented by pUnk.

pUnk
[in] A pointer to the IUnknown interface of the event source object.

piid
A pointer to the IID of the event source object.

S_OK or any failure HRESULT value.

Subsequently, events fired from pUnk will be routed to handlers in your class by way of the event sink map.

If your class derives from multiple IDispEventSimpleImpl classes, you will need to disambiguate calls to this method
by scoping the call with the particular base class you are interested in.

DispEventAdvise establishes a connection with the event source specified in pdiid .

Breaks the connection with the event source represented by pUnk.

HRESULT DispEventUnadvise(IUnknown* pUnk const IID* piid);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

IDispEventSimpleImpl::GetIDsOfNames

STDMETHOD(GetIDsOfNames)(
 REFIID /* riid */,
 LPOLESTR* /* rgszNames */,
 UINT /* cNames */,
 LCID /* lcid */,
 DISPID* /* rgdispid */);

RemarksRemarks

IDispEventSimpleImpl::GetTypeInfo

STDMETHOD(GetTypeInfo)(
 UINT /* itinfo */,
 LCID /* lcid */,
 ITypeInfo** /* pptinfo */);

RemarksRemarks

IDispEventSimpleImpl::GetTypeInfoCount

pUnk
[in] A pointer to the IUnknown interface of the event source object.

piid
A pointer to the IID of the event source object.

S_OK or any failure HRESULT value.

Once the connection is broken, events will no longer be routed to the handler functions listed in the event sink
map.

If your class derives from multiple IDispEventSimpleImpl classes, you will need to disambiguate calls to this method
by scoping the call with the particular base class you are interested in.

DispEventAdvise breaks a connection that was established with the event source specified in pdiid .

This implementation of IDispatch::GetIDsOfNames returns E_NOTIMPL.

See IDispatch::GetIDsOfNames in the Windows SDK.

This implementation of IDispatch::GetTypeInfo returns E_NOTIMPL.

See IDispatch::GetTypeInfo in the Windows SDK.

This implementation of IDispatch::GetTypeInfoCount returns E_NOTIMPL.

https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-getidsofnames
https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-gettypeinfo

STDMETHOD(GetTypeInfoCount)(UINT* /* pctinfo */);

RemarksRemarks

IDispEventSimpleImpl::Invoke

STDMETHOD(Invoke)(
 DISPID dispidMember,
 REFIID /* riid */,
 LCID lcid,
 WORD /* wFlags */,
 DISPPARMS* pdispparams,
 VARIANT* pvarResult,
 EXCEPINFO* /* pexcepinfo */,
 UINT* /* puArgErr */);

RemarksRemarks

IDispEventSimpleImpl::Unadvise

HRESULT Unadvise(IUnknown* pUnk);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

See also

See IDispatch::GetTypeInfoCount in the Windows SDK.

This implementation of IDispatch::Invoke calls the event handlers listed in the event sink map.

See IDispatch::Invoke.

Breaks the connection with the event source represented by pUnk.

pUnk
[in] A pointer to the IUnknown interface of the event source object.

S_OK or any failure HRESULT value.

Once the connection is broken, events will no longer be routed to the handler functions listed in the event sink
map.

If your class derives from multiple IDispEventSimpleImpl classes, you will need to disambiguate calls to this method
by scoping the call with the particular base class you are interested in.

Unadvise breaks a connection that was established with the default event source specified in pdiid .

Unavise breaks a connection with the default event source, it gets the IID of the default event source of the
object as determined by AtlGetObjectSourceInterface.

_ATL_FUNC_INFO Structure
IDispatchImpl Class

https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-gettypeinfocount
https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-invoke

IDispEventImpl Class
SINK_ENTRY_INFO
Class Overview

IDocHostUIHandlerDispatch Interface
3/5/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
interface IDocHostUIHandlerDispatch : IDispatch

Members
Public MethodsPublic Methods

NOTENOTE

EnableModeless Called from MSHTML implementation of
IOleInPlaceActiveObject::EnableModeless. Also called when
MSHTML displays modal UI.

FilterDataObject Called on the host by MSHTML to allow the host to replace
MSHTML's data object.

GetDropTarget Called by MSHTML when it is being used as a drop target to
allow the host to supply an alternative IDropTarget.

GetExternal Called by MSHTML to obtain the host's IDispatch interface.

GetHostInfo Retrieves the UI capabilities of MSHTML host.

GetOptionKeyPath Returns the registry key under which MSHTML stores user
preferences.

HideUI Called when MSHTML removes its menus and toolbars.

OnDocWindowActivate Called from MSHTML implementation of
IOleInPlaceActiveObject::OnDocWindowActivate.

OnFrameWindowActivate Called from MSHTML implementation of
IOleInPlaceActiveObject::OnFrameWindowActivate.

An interface to the Microsoft HTML parsing and rendering engine.

This class and its members cannot be used in applications that execute in the Windows Runtime.

The links in the following table are to the INet SDK reference topics for the members of the IDocUIHostHandler interface.
IDocHostUIHandlerDispatch has the same functionality as IDocUIHostHandler , with the difference being that
IDocHostUIHandlerDispatch is a dispinterface whereas IDocUIHostHandler is a custom interface.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/idochostuihandlerdispatch-interface.md
https://msdn.microsoft.com/library/aa753260.aspx
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753253(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-enablemodeless
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753254(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753255(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753256(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753257(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753258(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753259(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753261(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-ondocwindowactivate
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753262(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-onframewindowactivate

ResizeBorder Called from MSHTML implementation of
IOleInPlaceActiveObject::ResizeBorder.

ShowContextMenu Called from MSHTML to display a context menu.

ShowUI Allows the host to replace MSHTML menus and toolbars.

TranslateAccelerator Called by MSHTML when
IOleInPlaceActiveObject::TranslateAccelerator or
IOleControlSite::TranslateAccelerator is called.

TranslateUrl Called by MSHTML to allow the host an opportunity to
modify the URL to be loaded.

UpdateUI Notifies the host that the command state has changed.

Remarks

Requirements

DEFINITION TYPE FILE

IDL ATLIFace.idl

C++ ATLIFace.h (also included in ATLBase.h)

See also

A host can replace the menus, toolbars, and context menus used by the Microsoft HTML parsing and rendering
engine (MSHTML) by implementing this interface.

The definition of this interface is available as IDL or C++, as shown below.

IDocUIHostHandler

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753263(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-resizeborder
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753264(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753265(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753266(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-translateaccelerator
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iolecontrolsite-translateaccelerator
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753267(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753268(v=vs.85)
https://msdn.microsoft.com/library/aa753260.aspx

IEnumOnSTLImpl Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template <class Base,
 const IID* piid, class T, class Copy, class CollType>
class ATL_NO_VTABLE IEnumOnSTLImpl : public Base

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IEnumOnSTLImpl::Clone The implementation of Clone.

IEnumOnSTLImpl::Init Initializes the enumerator.

IEnumOnSTLImpl::Next The implementation of Next.

IEnumOnSTLImpl::Reset The implementation of Reset.

IEnumOnSTLImpl::Skip The implementation of Skip.

Public Data MembersPublic Data Members

NAME DESCRIPTION

IEnumOnSTLImpl::m_iter The iterator that represents the enumerator's current
position within the collection.

This class defines an enumerator interface based on a C++ Standard Library collection.

Base
A COM enumerator. See IEnumString for an example.

piid
A pointer to the interface ID of the enumerator interface.

T
The type of item exposed by the enumerator interface.

Copy
A copy policy class.

CollType
A C++ Standard Library container class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ienumonstlimpl-class.md
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ienumstring

IEnumOnSTLImpl::m_pcollection A pointer to the C++ Standard Library container holding the
items to be enumerated.

IEnumOnSTLImpl::m_spUnk The IUnknown pointer of the object supplying the collection.

NAME DESCRIPTION

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

IEnumOnSTLImpl::Init

HRESULT Init(
 IUnknown* pUnkForRelease,
 CollType& collection);

ParametersParameters

Return ValueReturn Value

IEnumOnSTLImpl provides the implementation for a COM enumerator interface where the items being
enumerated are stored in a C++ Standard Library-compatible container. This class is analogous to the
CComEnumImpl class, which provides an implementation for an enumerator interface based on an array.

See CComEnumImpl::Init for details on further differences between CComEnumImpl and IEnumOnSTLImpl .

Typically, you will not need to create your own enumerator class by deriving from this interface implementation.
If you want to use an ATL-supplied enumerator based on a C++ Standard Library container, it is more common
to create an instance of CComEnumOnSTL, or to create a collection class that returns an enumerator by deriving
from ICollectionOnSTLImpl.

However, if you do need to provide a custom enumerator (for example, one that exposes interfaces in addition to
the enumerator interface), you can derive from this class. In this situation it is likely that you'll need to override
the Clone method to provide your own implementation.

Base

IEnumOnSTLImpl

Header: atlcom.h

Initializes the enumerator.

pUnkForRelease
[in] The IUnknown pointer of an object that must be kept alive during the lifetime of the enumerator. Pass NULL
if no such object exists.

collection
A reference to the C++ Standard Library container that holds the items to be enumerated.

RemarksRemarks

IEnumOnSTLImpl::Clone

STDMETHOD(Clone)(Base** ppEnum);

ParametersParameters

Return ValueReturn Value

IEnumOnSTLImpl::m_spUnk

CComPtr<IUnknown> m_spUnk;

RemarksRemarks

IEnumOnSTLImpl::m_pcollection

CollType* m_pcollection;

RemarksRemarks

IEnumOnSTLImpl::m_iter

CollType::iterator m_iter;

A standard HRESULT value.

If you pass Init a reference to a collection held in another object, you can use the pUnkForRelease parameter
to ensure that the object, and the collection it holds, is available for as long as the enumerator needs it.

You must call this method before passing a pointer to the enumerator interface back to any clients.

This method provides the implementation of the Clone method by creating an object of type CComEnumOnSTL ,
initializing it with the same collection and iterator used by the current object, and returning the interface on the
newly created object.

ppEnum
[out] The enumerator interface on a newly created object cloned from the current enumerator.

A standard HRESULT value.

The IUnknown pointer of the object supplying the collection.

This smart pointer maintains a reference on the object passed to IEnumOnSTLImpl::Init, ensuring that it remains
alive during the lifetime of the enumerator.

This member points to the collection that provides the data driving the implementation of the enumerator
interface.

This member is initialized by a call to IEnumOnSTLImpl::Init.

This member holds the iterator used to mark the current position within the collection and navigate to
subsequent elements.

IEnumOnSTLImpl::Next

STDMETHOD(Next)(
 ULONG celt,
 T* rgelt,
 ULONG* pceltFetched);

ParametersParameters

Return ValueReturn Value

IEnumOnSTLImpl::Reset

STDMETHOD(Reset)(void);

Return ValueReturn Value

IEnumOnSTLImpl::Skip

STDMETHOD(Skip)(ULONG celt);

ParametersParameters

Return ValueReturn Value

See also

This method provides the implementation of the Next method.

celt
[in] The number of elements requested.

rgelt
[out] The array to be filled in with the elements.

pceltFetched
[out] The number of elements actually returned in rgelt. This can be less than celt if fewer than celt elements
remain in the list.

A standard HRESULT value.

This method provides the implementation of the Reset method.

A standard HRESULT value.

This method provides the implementation of the Skip method.

celt
[in] The number of elements to skip.

A standard HRESULT value.

Class Overview

IObjectSafetyImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T,DWORD dwSupportedSafety>
class IObjectSafetyImpl

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IObjectSafetyImpl::GetInterfaceSafetyOptions Retrieves the safety options supported by the object, as well
as the safety options currently set for the object.

IObjectSafetyImpl::SetInterfaceSafetyOptions Makes the object safe for initialization or scripting.

Public Data MembersPublic Data Members

NAME DESCRIPTION

IObjectSafetyImpl::m_dwCurrentSafety Stores the object's current safety level.

Remarks

This class provides a default implementation of the IObjectSafety interface to allow a client to retrieve and set an
object's safety levels.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IObjectSafetyImpl .

dwSupportedSafety
Specifies the supported safety options for the control. Can be one of the following values:

INTERFACESAFE_FOR_UNTRUSTED_CALLER The interface identified by the SetInterfaceSafetyOptions
parameter riid should be made safe for scripting.

INTERFACESAFE_FOR_UNTRUSTED_DATA The interface identified by the SetInterfaceSafetyOptions

parameter riid should be made safe for untrusted data during initialization.

Class IObjectSafetyImpl provides a default implementation of IObjectSafety . The IObjectSafety interface allows
a client to retrieve and set an object's safety levels. For example, a web browser can call

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iobjectsafetyimpl-class.md

Inheritance Hierarchy

Requirements

IObjectSafetyImpl::GetInterfaceSafetyOptions

HRESULT GetInterfaceSafetyOptions(
 REFIID riid,
 DWORD* pdwSupportedOptions,
 DWORD* pdwEnabledOptions);

RemarksRemarks

IMPORTANTIMPORTANT

IObjectSafetyImpl::m_dwCurrentSafety

DWORD m_dwCurrentSafety;

IObjectSafetyImpl::SetInterfaceSafetyOptions

IObjectSafety::SetInterfaceSafetyOptions to make a control safe for initialization or safe for scripting.

Note that using the IMPLEMENTED_CATEGORY macro with the CATID_SafeForScripting and
CATID_SafeForInitializing component categories provides an alternative way of specifying that a component is
safe.

Related Articles ATL Tutorial, Creating an ATL Project

IObjectSafety

IObjectSafetyImpl

Header: atlctl.h

Retrieves the safety options supported by the object, as well as the safety options currently set for the object.

The implementation returns the appropriate values for any interface supported by the object's implementation of
IUnknown::QueryInterface .

Any object that supports IObjectSafety is responsible for its own security, and that of any object it delegates. The
programmer must take into account issues arising from running code in the user's context, cross-site scripting and perform
suitable zone checking.

See IObjectSafety::GetInterfaceSafetyOptions in the Windows SDK.

Stores the object's current safety level.

Makes the object safe for initialization or scripting by setting the m_dwCurrentSafety member to the appropriate
value.

https://msdn.microsoft.com/library/aa768223.aspx

HRESULT SetInterfaceSafetyOptions(
 REFIID riid,
 DWORD dwOptionsSetMask,
 DWORD dwEnabledOptions);

RemarksRemarks

IMPORTANTIMPORTANT

See also

The implementation returns E_NOINTERFACE for any interface not supported by the object's implementation of
IUnknown::QueryInterface .

Any object that supports IObjectSafety is responsible for its own security, and that of any object it delegates. The
programmer must take into account issues arising from running code in the user's context, cross-site scripting and perform
suitable zone checking.

See IObjectSafety::SetInterfaceSafetyOptions in the Windows SDK.

IObjectSafety Interface
Class Overview

https://msdn.microsoft.com/library/aa768225.aspx
https://msdn.microsoft.com/library/aa768224.aspx

IObjectWithSiteImpl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class T>
 class ATL_NO_VTABLE IObjectWithSiteImpl :
 public IObjectWithSite

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IObjectWithSiteImpl::GetSite Queries the site for an interface pointer.

IObjectWithSiteImpl::SetChildSite Provides the object with the site's IUnknown pointer.

IObjectWithSiteImpl::SetSite Provides the object with the site's IUnknown pointer.

Public Data MembersPublic Data Members

NAME DESCRIPTION

IObjectWithSiteImpl::m_spUnkSite Manages the site's IUnknown pointer.

Remarks

Inheritance Hierarchy

This class provides methods allowing an object to communicate with its site.

T
Your class, derived from IObjectWithSiteImpl .

The IObjectWithSite interface allows an object to communicate with its site. Class IObjectWithSiteImpl provides a
default implementation of this interface and implements IUnknown by sending information to the dump device in
debug builds.

IObjectWithSiteImpl specifies two methods. The client first calls SetSite , passing the site's IUnknown pointer. This
pointer is stored within the object, and can later be retrieved through a call to GetSite .

Typically, you derive your class from IObjectWithSiteImpl when you are creating an object that is not a control.
For controls, derive your class from IOleObjectImpl, which also provides a site pointer. Do not derive your class
from both IObjectWithSiteImpl and IOleObjectImpl .

IObjectWithSite

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iobjectwithsiteimpl-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iobjectwithsite

Requirements

IObjectWithSiteImpl::GetSite

STDMETHOD(GetSite)(
 REFIID riid,
 void** ppvSite);

RemarksRemarks

IObjectWithSiteImpl::m_spUnkSite

CComPtr<IUnknown> m_spUnkSite;

RemarksRemarks

IObjectWithSiteImpl::SetChildSite

HRESULT SetChildSite(IUnknown* pUnkSite);

ParametersParameters

Return ValueReturn Value

IObjectWithSiteImpl::SetSite

STDMETHOD(SetSite)(IUnknown* pUnkSite);

RemarksRemarks

IObjectWithSiteImpl

Header: atlcom.h

Queries the site for a pointer to the interface identified by riid .

If the site supports this interface, the pointer is returned via ppvSite . Otherwise, ppvSite is set to NULL.

See IObjectWithSite::GetSite in the Windows SDK.

Manages the site's IUnknown pointer.

m_spUnkSite initially receives this pointer through a call to SetSite.

Provides the object with the site's IUnknown pointer.

pUnkSite
[in] Pointer to the IUnknown interface pointer of the site managing this object. If NULL, the object should call
IUnknown::Release on any existing site at which point the object no longer knows its site.

Returns S_OK.

Provides the object with the site's IUnknown pointer.

See IObjectWithSite::SetSite in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iobjectwithsite-getsite
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iobjectwithsite-setsite

See also
Class Overview

IOleControlImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class IOleControlImpl

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IOleControlImpl::FreezeEvents Indicates whether or not the container ignores or accepts
events from the control.

IOleControlImpl::GetControlInfo Fills in information about the control's keyboard behavior. The
ATL implementation returns E_NOTIMPL.

IOleControlImpl::OnAmbientPropertyChange Informs a control that one or more of the container's ambient
properties has changed. The ATL implementation returns
S_OK.

IOleControlImpl::OnMnemonic Informs the control that a user has pressed a specified
keystroke. The ATL implementation returns E_NOTIMPL.

Remarks

Inheritance Hierarchy

This class provides a default implementation of the IOleControl interface and implements IUnknown .

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IOleControlImpl .

Class IOleControlImpl provides a default implementation of the IOleControl interface and implements IUnknown

by sending information to the dump device in debug builds.

Related Articles ATL Tutorial, Creating an ATL Project

IOleControl

IOleControlImpl

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iolecontrolimpl-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iolecontrol

Requirements

IOleControlImpl::FreezeEvents

HRESULT FreezeEvents(BOOL bFreeze);

RemarksRemarks

IOleControlImpl::GetControlInfo

HRESULT GetControlInfo(LPCONTROLINFO pCI);

RemarksRemarks

Return ValueReturn Value

IOleControlImpl::OnAmbientPropertyChange

HRESULT OnAmbientPropertyChange(DISPID dispid);

Return ValueReturn Value

RemarksRemarks

IOleControlImpl::OnMnemonic

HRESULT OnMnemonic(LPMSG pMsg);

Return ValueReturn Value

RemarksRemarks

Header: atlctl.h

In ATL's implementation, FreezeEvents increments the control class's m_nFreezeEvents data member if bFreeze is
TRUE, and decrements m_nFreezeEvents if bFreeze is FALSE.

FreezeEvents then returns S_OK.

See IOleControl::FreezeEvents in the Windows SDK.

Fills in information about the control's keyboard behavior.

See IOleControl:GetControlInfo in the Windows SDK.

Returns E_NOTIMPL.

Informs a control that one or more of the container's ambient properties has changed.

Returns S_OK.

See IOleControl::OnAmbientPropertyChange in the Windows SDK.

Informs the control that a user has pressed a specified keystroke.

Returns E_NOTIMPL.

See IOleControl::OnMnemonic in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iolecontrol-freezeevents
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iolecontrol-getcontrolinfo
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iolecontrol-onambientpropertychange
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iolecontrol-onmnemonic

See also
IOleObjectImpl Class
ActiveX Controls Interfaces
Class Overview

https://docs.microsoft.com/windows/desktop/com/activex-controls-interfaces

IOleInPlaceActiveObjectImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class IOleInPlaceActiveObjectImpl

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IOleInPlaceActiveObjectImpl::ContextSensitiveHelp Enables context-sensitive help. The ATL implementation
returns E_NOTIMPL.

IOleInPlaceActiveObjectImpl::EnableModeless Enables modeless dialog boxes. The ATL implementation
returns S_OK.

IOleInPlaceActiveObjectImpl::GetWindow Gets a window handle.

IOleInPlaceActiveObjectImpl::OnDocWindowActivate Notifies the control when the container's document window is
activated or deactivated. The ATL implementation returns
S_OK.

IOleInPlaceActiveObjectImpl::OnFrameWindowActivate Notifies the control when the container's top-level frame
window is activated or deactivated. The ATL implementation
returns

IOleInPlaceActiveObjectImpl::ResizeBorder Informs the control it needs to resize its borders. The ATL
implementation returns S_OK.

IOleInPlaceActiveObjectImpl::TranslateAccelerator Processes menu accelerator-key messages from the container.
The ATL implementation returns E_NOTIMPL.

Remarks

This class provides methods for assisting communication between an in-place control and its container.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IOleInPlaceActiveObjectImpl .

The IOleInPlaceActiveObject interface assists communication between an in-place control and its container; for
example, communicating the active state of the control and container, and informing the control it needs to resize

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ioleinplaceactiveobjectimpl-class.md
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplaceactiveobject

Inheritance Hierarchy

Requirements

IOleInPlaceActiveObjectImpl::ContextSensitiveHelp

HRESULT ContextSensitiveHelp(BOOL fEnterMode);

Return ValueReturn Value

RemarksRemarks

IOleInPlaceActiveObjectImpl::EnableModeless

HRESULT EnableModeless(BOOL fEnable);

Return ValueReturn Value

RemarksRemarks

IOleInPlaceActiveObjectImpl::GetWindow

HRESULT GetWindow(HWND* phwnd);

RemarksRemarks

itself. Class IOleInPlaceActiveObjectImpl provides a default implementation of IOleInPlaceActiveObject and
supports IUnknown by sending information to the dump device in debug builds.

Related Articles ATL Tutorial, Creating an ATL Project

IOleInPlaceActiveObject

IOleInPlaceActiveObjectImpl

Header: atlctl.h

Enables context-sensitive help.

Returns E_NOTIMPL.

See IOleWindow::ContextSensitiveHelp in the Windows SDK.

Enables modeless dialog boxes.

Returns S_OK.

See IOleInPlaceActiveObject::EnableModeless in the Windows SDK.

The container calls this function to get the window handle of the control.

Some containers will not work with a control that has been windowless, even if it is currently windowed. In ATL's
implementation, if the CComControl::m_bWasOnceWindowless data member is TRUE, the function returns E_FAIL.
Otherwise, if * phwnd is not NULL, GetWindow assigns phwnd to the control class's data member m_hWnd and
returns S_OK.

See IOleWindow::GetWindow in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iolewindow-contextsensitivehelp
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-enablemodeless
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iolewindow-getwindow

IOleInPlaceActiveObjectImpl::OnDocWindowActivate

HRESULT OnDocWindowActivate(BOOL fActivate);

Return ValueReturn Value

RemarksRemarks

IOleInPlaceActiveObjectImpl::OnFrameWindowActivate

HRESULT OnFrameWindowActivate(BOOL fActivate);

Return ValueReturn Value

RemarksRemarks

IOleInPlaceActiveObjectImpl::ResizeBorder

HRESULT ResizeBorder(
 LPRECT prcBorder,
 IOleInPlaceUIWindow* pUIWindow,
 BOOL fFrameWindow);

Return ValueReturn Value

RemarksRemarks

IOleInPlaceActiveObjectImpl::TranslateAccelerator

HRESULT TranslateAccelerator(LPMSG lpmsg);

Return ValueReturn Value

RemarksRemarks

Notifies the control when the container's document window is activated or deactivated.

Returns S_OK.

See IOleInPlaceActiveObject::OnDocWindowActivate in the Windows SDK.

Notifies the control when the container's top-level frame window is activated or deactivated.

Returns S_OK.

See IOleInPlaceActiveObject::OnFrameWindowActivate in the Windows SDK.

Informs the control it needs to resize its borders.

Returns S_OK.

See IOleInPlaceActiveObject::ResizeBorder in the Windows SDK.

Processes menu accelerator-key messages from the container.

This method supports the following return values:

S_OK if the message was translated successfully.

S_FALSE if the message was not translated.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-ondocwindowactivate
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-onframewindowactivate
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-resizeborder

See also

See IOleInPlaceActiveObject::TranslateAccelerator in the Windows SDK.

CComControl Class
ActiveX Controls Interfaces
Class Overview

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-translateaccelerator
https://docs.microsoft.com/windows/desktop/com/activex-controls-interfaces

IOleInPlaceObjectWindowlessImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class IOleInPlaceObjectWindowlessImpl

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IOleInPlaceObjectWindowlessImpl::ContextSensitiveHelp Enables context-sensitive help. The ATL implementation
returns E_NOTIMPL.

IOleInPlaceObjectWindowlessImpl::GetDropTarget Supplies the IDropTarget interface for an in-place active,
windowless object that supports drag and drop. The ATL
implementation returns E_NOTIMPL.

IOleInPlaceObjectWindowlessImpl::GetWindow Gets a window handle.

IOleInPlaceObjectWindowlessImpl::InPlaceDeactivate Deactivates an active in-place control.

IOleInPlaceObjectWindowlessImpl::OnWindowMessage Dispatches a message from the container to a windowless
control that is in-place active.

IOleInPlaceObjectWindowlessImpl::ReactivateAndUndo Reactivates a previously deactivated control. The ATL
implementation returns E_NOTIMPL.

IOleInPlaceObjectWindowlessImpl::SetObjectRects Indicates what part of the in-place control is visible.

IOleInPlaceObjectWindowlessImpl::UIDeactivate Deactivates and removes the user interface that supports in-
place activation.

Remarks

This class implements IUnknown and provides methods that enable a windowless control to receive window
messages and to participate in drag-and-drop operations.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IOleInPlaceObjectWindowlessImpl .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ioleinplaceobjectwindowlessimpl-class.md

Inheritance Hierarchy

Requirements

IOleInPlaceObjectWindowlessImpl::ContextSensitiveHelp

HRESULT ContextSensitiveHelp(BOOL fEnterMode);

RemarksRemarks

IOleInPlaceObjectWindowlessImpl::GetDropTarget

HRESULT GetDropTarget(IDropTarget** ppDropTarget);

RemarksRemarks

IOleInPlaceObjectWindowlessImpl::GetWindow

HRESULT GetWindow(HWND* phwnd);

RemarksRemarks

The IOleInPlaceObject interface manages the reactivation and deactivation of in-place controls and determines
how much of the control should be visible. The IOleInPlaceObjectWindowless interface enables a windowless
control to receive window messages and to participate in drag-and-drop operations. Class
IOleInPlaceObjectWindowlessImpl provides a default implementation of IOleInPlaceObject and
IOleInPlaceObjectWindowless and implements IUnknown by sending information to the dump device in debug

builds.

Related Articles ATL Tutorial, Creating an ATL Project

IOleInPlaceObjectWindowless

IOleInPlaceObjectWindowlessImpl

Header: atlctl.h

Returns E_NOTIMPL.

See IOleWindow::ContextSensitiveHelp in the Windows SDK.

Returns E_NOTIMPL.

See IOleInPlaceObjectWindowless::GetDropTarget in the Windows SDK.

The container calls this function to get the window handle of the control.

Some containers will not work with a control that has been windowless, even if it is currently windowed. In ATL's
implementation, if the control class's data member m_bWasOnceWindowless is TRUE, the function returns E_FAIL.
Otherwise, if phwnd is not NULL, GetWindow sets * phwnd to the control class's data member m_hWnd and returns
S_OK.

See IOleWindow::GetWindow in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplaceobject
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplaceobjectwindowless
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iolewindow-contextsensitivehelp
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ioleinplaceobjectwindowless-getdroptarget
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iolewindow-getwindow

IOleInPlaceObjectWindowlessImpl::InPlaceDeactivate

HRESULT InPlaceDeactivate(HWND* phwnd);

RemarksRemarks

IOleInPlaceObjectWindowlessImpl::OnWindowMessage

HRESULT OnWindowMessage(
 UINT msg,
 WPARAM WParam,
 LPARAM LParam,
 LRESULT plResultParam);

RemarksRemarks

IOleInPlaceObjectWindowlessImpl::ReactivateAndUndo

HRESULT ReactivateAndUndo();

RemarksRemarks

IOleInPlaceObjectWindowlessImpl::SetObjectRects

HRESULT SetObjectRects(LPCRECT prcPos, LPCRECT prcClip);

RemarksRemarks

IOleInPlaceObjectWindowlessImpl::UIDeactivate

Called by the container to deactivate an in-place active control.

This method performs a full or partial deactivation depending on the state of the control. If necessary, the control's
user interface is deactivated, and the control's window, if any, is destroyed. The container is notified that the control
is no longer active in place. The IOleInPlaceUIWindow interface used by the container to negotiate menus and
border space is released.

See IOleInPlaceObject::InPlaceDeactivate in the Windows SDK.

Dispatches a message from a container to a windowless control that is in-place active.

See IOleInPlaceObjectWindowless::OnWindowMessage in the Windows SDK.

Returns E_NOTIMPL.

See IOleInPlaceObject::ReactivateAndUndo in the Windows SDK.

Called by the container to inform the control that its size and/or position has changed.

Updates the control's m_rcPos data member and the control display. Only the part of the control that intersects
the clip region is displayed. If a control's display was previously clipped but the clipping has been removed, this
function can be called to redraw a full view of the control.

See IOleInPlaceObject::SetObjectRects in the Windows SDK.

Deactivates and removes the control's user interface that supports in-place activation.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceobject-inplacedeactivate
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ioleinplaceobjectwindowless-onwindowmessage
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceobject-reactivateandundo
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceobject-setobjectrects

HRESULT UIDeactivate();

RemarksRemarks

See also

Sets the control class's data member m_bUIActive to FALSE. The ATL implementation of this function always
returns S_OK.

See IOleInPlaceObject::UIDeactivate in the Windows SDK.

CComControl Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceobject-uideactivate

IOleObjectImpl Class
3/4/2019 • 11 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class ATL_NO_VTABLE IOleObjectImpl : public IOleObject

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IOleObjectImpl::Advise Establishes an advisory connection with the control.

IOleObjectImpl::Close Changes the control state from running to loaded.

IOleObjectImpl::DoVerb Tells the control to perform one of its enumerated actions.

IOleObjectImpl::DoVerbDiscardUndo Tells the control to discard any undo state it is maintaining.

IOleObjectImpl::DoVerbHide Tells the control to remove its user interface from view.

IOleObjectImpl::DoVerbInPlaceActivate Runs the control and installs its window, but does not install
the control's user interface.

IOleObjectImpl::DoVerbOpen Causes the control to be open-edited in a separate window.

IOleObjectImpl::DoVerbPrimary Performs the specified action when the user double-clicks the
control. The control defines the action, usually to activate the
control in-place.

IOleObjectImpl::DoVerbShow Shows a newly inserted control to the user.

IOleObjectImpl::DoVerbUIActivate Activates the control in-place and shows the control's user
interface, such as menus and toolbars.

This class implements IUnknown and is the principal interface through which a container communicates with a
control.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IOleObjectImpl .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ioleobjectimpl-class.md

IOleObjectImpl::EnumAdvise Enumerates the control's advisory connections.

IOleObjectImpl::EnumVerbs Enumerates actions for the control.

IOleObjectImpl::GetClientSite Retrieves the control's client site.

IOleObjectImpl::GetClipboardData Retrieves data from the Clipboard. The ATL implementation
returns E_NOTIMPL.

IOleObjectImpl::GetExtent Retrieves the extent of the control's display area.

IOleObjectImpl::GetMiscStatus Retrieves the status of the control.

IOleObjectImpl::GetMoniker Retrieves the control's moniker. The ATL implementation
returns E_NOTIMPL.

IOleObjectImpl::GetUserClassID Retrieves the control's class identifier.

IOleObjectImpl::GetUserType Retrieves the control's user-type name.

IOleObjectImpl::InitFromData Initializes the control from selected data. The ATL
implementation returns E_NOTIMPL.

IOleObjectImpl::IsUpToDate Checks if the control is up to date. The ATL implementation
returns S_OK.

IOleObjectImpl::OnPostVerbDiscardUndo Called by DoVerbDiscardUndo after the undo state is
discarded.

IOleObjectImpl::OnPostVerbHide Called by DoVerbHide after the control is hidden.

IOleObjectImpl::OnPostVerbInPlaceActivate Called by DoVerbInPlaceActivate after the control is activated
in place.

IOleObjectImpl::OnPostVerbOpen Called by DoVerbOpen after the control has been opened for
editing in a separate window.

IOleObjectImpl::OnPostVerbShow Called by DoVerbShow after the control has been made
visible.

IOleObjectImpl::OnPostVerbUIActivate Called by DoVerbUIActivate after the control's user interface
has been activated.

IOleObjectImpl::OnPreVerbDiscardUndo Called by DoVerbDiscardUndo before the undo state is
discarded.

IOleObjectImpl::OnPreVerbHide Called by DoVerbHide before the control is hidden.

IOleObjectImpl::OnPreVerbInPlaceActivate Called by DoVerbInPlaceActivate before the control is
activated in place.

NAME DESCRIPTION

IOleObjectImpl::OnPreVerbOpen Called by DoVerbOpen before the control has been opened
for editing in a separate window.

IOleObjectImpl::OnPreVerbShow Called by DoVerbShow before the control has been made
visible.

IOleObjectImpl::OnPreVerbUIActivate Called by DoVerbUIActivate before the control's user interface
has been activated.

IOleObjectImpl::SetClientSite Tells the control about its client site in the container.

IOleObjectImpl::SetColorScheme Recommends a color scheme to the control's application, if
any. The ATL implementation returns E_NOTIMPL.

IOleObjectImpl::SetExtent Sets the extent of the control's display area.

IOleObjectImpl::SetHostNames Tells the control the names of the container application and
container document.

IOleObjectImpl::SetMoniker Tells the control what its moniker is. The ATL implementation
returns E_NOTIMPL.

IOleObjectImpl::Unadvise Deletes an advisory connection with the control.

IOleObjectImpl::Update Updates the control. The ATL implementation returns S_OK.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

IOleObjectImpl::Advise

STDMETHOD(Advise)(
 IAdviseSink* pAdvSink,
 DWORD* pdwConnection);

The IOleObject interface is the principal interface through which a container communicates with a control. Class
IOleObjectImpl provides a default implementation of this interface and implements IUnknown by sending

information to the dump device in debug builds.

Related Articles ATL Tutorial, Creating an ATL Project

IOleObject

IOleObjectImpl

Header: atlctl.h

Establishes an advisory connection with the control.

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleobject

RemarksRemarks

IOleObjectImpl::Close

STDMETHOD(Close)(DWORD dwSaveOption);

RemarksRemarks

IOleObjectImpl::DoVerb

STDMETHOD(DoVerb)(
 LONG iVerb,
 LPMSG /* pMsg */,
 IOleClientSite* pActiveSite,
 LONG /* lindex */,
 HWND hwndParent,
 LPCRECT lprcPosRect);

RemarksRemarks

IVERB VALUE DOVERB HELPER FUNCTION CALLED

OLEIVERB_DISCARDUNDOSTATE DoVerbDiscardUndo

OLEIVERB_HIDE DoVerbHide

OLEIVERB_INPLACEACTIVATE DoVerbInPlaceActivate

OLEIVERB_OPEN DoVerbOpen

OLEIVERB_PRIMARY DoVerbPrimary

OLEIVERB_PROPERTIES CComControlBase::DoVerbProperties

OLEIVERB_SHOW DoVerbShow

OLEIVERB_UIACTIVATE DoVerbUIActivate

See IOleObject::Advise in the Windows SDK.

Changes the control state from running to loaded.

Deactivates the control and destroys the control window if it exists. If the control class data member
CComControlBase::m_bRequiresSave is TRUE and the dwSaveOption parameter is either
OLECLOSE_SAVEIFDIRTY or OLECLOSE_PROMPTSAVE, the control properties are saved before closing.

The pointers held in the control class data members CComControlBase::m_spInPlaceSite and
CComControlBase::m_spAdviseSink are released, and the data members
CComControlBase::m_bNegotiatedWnd, CComControlBase::m_bWndless, and
CComControlBase::m_bInPlaceSiteEx are set to FALSE.

See IOleObject::Close in the Windows SDK.

Tells the control to perform one of its enumerated actions.

Depending on the value of iVerb , one of the ATL DoVerb helper functions is called as follows:

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-advise
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-close

IOleObjectImpl::DoVerbDiscardUndo

HRESULT DoVerbDiscardUndo(LPCRECT /* prcPosRect */, HWND /* hwndParent */);

ParametersParameters

Return ValueReturn Value

IOleObjectImpl::DoVerbHide

HRESULT DoVerbHide(LPCRECT /* prcPosRect */, HWND /* hwndParent */);

ParametersParameters

Return ValueReturn Value

IOleObjectImpl::DoVerbInPlaceActivate

HRESULT DoVerbInPlaceActivate(LPCRECT prcPosRect, HWND /* hwndParent */);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See IOleObject::DoVerb in the Windows SDK.

Tells the control to discard any undo state it is maintaining.

prcPosRec
[in] Pointer to the rectangle the container wants the control to draw into.

hwndParent
[in] Handle of the window containing the control.

Returns S_OK.

Deactivates and removes the control's user interface, and hides the control.

prcPosRec
[in] Pointer to the rectangle the container wants the control to draw into.

hwndParent
[in] Handle of the window containing the control. Not used in the ATL implementation.

Returns S_OK.

Runs the control and installs its window, but does not install the control's user interface.

prcPosRec
[in] Pointer to the rectangle the container wants the control to draw into.

hwndParent
[in] Handle of the window containing the control. Not used in the ATL implementation.

One of the standard HRESULT values.

Activates the control in place by calling CComControlBase::InPlaceActivate. Unless the control class's data
member m_bWindowOnly is TRUE, DoVerbInPlaceActivate first attempts to activate the control as a windowless

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-doverb

IOleObjectImpl::DoVerbOpen

HRESULT DoVerbOpen(LPCRECT /* prcPosRect */, HWND /* hwndParent */);

ParametersParameters

Return ValueReturn Value

IOleObjectImpl::DoVerbPrimary

HRESULT DoVerbPrimary(LPCRECT prcPosRect, HWND hwndParent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::DoVerbShow

HRESULT DoVerbShow(LPCRECT prcPosRect, HWND /* hwndParent */);

ParametersParameters

control (possible only if the container supports IOleInPlaceSiteWindowless). If that fails, the function attempts to
activate the control with extended features (possible only if the container supports IOleInPlaceSiteEx). If that fails,
the function attempts to activate the control with no extended features (possible only if the container supports
IOleInPlaceSite). If activation succeeds, the function notifies the container the control has been activated.

Causes the control to be open-edited in a separate window.

prcPosRec
[in] Pointer to the rectangle the container wants the control to draw into.

hwndParent
[in] Handle of the window containing the control.

Returns S_OK.

Defines the action taken when the user double-clicks the control.

prcPosRec
[in] Pointer to the rectangle the container wants the control to draw into.

hwndParent
[in] Handle of the window containing the control.

One of the standard HRESULT values.

By default, set to display the property pages. You can override this in your control class to invoke a different
behavior on double-click; for example, play a video or go in-place active.

Tells the container to make the control visible.

prcPosRec
[in] Pointer to the rectangle the container wants the control to draw into.

hwndParent
[in] Handle of the window containing the control. Not used in the ATL implementation.

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplacesitewindowless
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplacesiteex
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplacesite

Return ValueReturn Value

IOleObjectImpl::DoVerbUIActivate

HRESULT DoVerbUIActivate(LPCRECT prcPosRect, HWND /* hwndParent */);

ParametersParameters

Return ValueReturn Value

IOleObjectImpl::EnumAdvise

STDMETHOD(EnumAdvise)(IEnumSTATDATA** ppenumAdvise);

RemarksRemarks

IOleObjectImpl::EnumVerbs

STDMETHOD(EnumVerbs)(IEnumOLEVERB** ppEnumOleVerb);

RemarksRemarks

IOleObjectImpl::GetClientSite

STDMETHOD(GetClientSite)(IOleClientSite** ppClientSite);

RemarksRemarks

IOleObjectImpl::GetClipboardData

One of the standard HRESULT values.

Activates the control's user interface and notifies the container that its menus are being replaced by composite
menus.

prcPosRec
[in] Pointer to the rectangle the container wants the control to draw into.

hwndParent
[in] Handle of the window containing the control. Not used in the ATL implementation.

One of the standard HRESULT values.

Supplies an enumeration of registered advisory connections for this control.

See IOleObject::EnumAdvise in the Windows SDK.

Supplies an enumeration of registered actions (verbs) for this control by calling OleRegEnumVerbs .

You can add verbs to your project's .rgs file. For example, see CIRCCTL.RGS in the CIRC sample.

See IOleObject::EnumVerbs in the Windows SDK.

Puts the pointer in the control class data member CComControlBase::m_spClientSite into ppClientSite and
increments the reference count on the pointer.

See IOleObject::GetClientSite in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-enumadvise
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-enumverbs
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-getclientsite

IOleObjectImpl::GetClipboardData

STDMETHOD(GetClipboardData)(
 DWORD /* dwReserved */,
 IDataObject** /* ppDataObject */);

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::GetExtent

STDMETHOD(GetExtent)(
 DWORD dwDrawAspect,
 SIZEL* psizel);

RemarksRemarks

IOleObjectImpl::GetMiscStatus

STDMETHOD(GetMiscStatus)(
 DWORD dwAspect,
 DWORD* pdwStatus);

RemarksRemarks

IOleObjectImpl::GetMoniker

STDMETHOD(GetMoniker)(
 DWORD /* dwAssign */,
 DWORD /* dwWhichMoniker */,
 IMoniker** /* ppmk */);

Return ValueReturn Value

RemarksRemarks

Retrieves data from the Clipboard.

Returns E_NOTIMPL.

See IOleObject::GetClipboardData in the Windows SDK.

Retrieves a running control's display size in HIMETRIC units (0.01 millimeter per unit).

The size is stored in the control class data member CComControlBase::m_sizeExtent.

See IOleObject::GetExtent in the Windows SDK.

Returns a pointer to registered status information for the control by calling OleRegGetMiscStatus .

The status information includes behaviors supported by the control and presentation data. You can add status
information to your project's .rgs file.

See IOleObject::GetMiscStatus in the Windows SDK.

Retrieves the control's moniker.

Returns E_NOTIMPL.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-getclipboarddata
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-getextent
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-getmiscstatus

IOleObjectImpl::GetUserClassID

STDMETHOD(GetUserClassID)(CLSID* pClsid);

RemarksRemarks

IOleObjectImpl::GetUserType

STDMETHOD(GetUserType)(
 DWORD dwFormOfType,
 LPOLESTR* pszUserType);

RemarksRemarks

IOleObjectImpl::InitFromData

STDMETHOD(InitFromData)(
 IDataObject* /* pDataObject */,
 BOOL /* fCreation */,
 DWORD /* dwReserved */);

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::IsUpToDate

STDMETHOD(IsUpToDate)(void);

Return ValueReturn Value

RemarksRemarks

See IOleObject::GetMoniker in the Windows SDK.

Returns the control's class identifier.

See IOleObject::GetUserClassID in the Windows SDK.

Returns the control's user-type name by calling OleRegGetUserType .

The user-type name is used for display in user-interfaces elements such as menus and dialog boxes. You can
change the user-type name in your project's .rgs file.

See IOleObject::GetUserType in the Windows SDK.

Initializes the control from selected data.

Returns E_NOTIMPL.

See IOleObject::InitFromData in the Windows SDK.

Checks if the control is up to date.

Returns S_OK.

See IOleObject::IsUpToDate in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-getmoniker
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-getuserclassid
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-getusertype
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-initfromdata
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-isuptodate

IOleObjectImpl::OnPostVerbDiscardUndo

HRESULT OnPostVerbDiscardUndo();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::OnPostVerbHide

HRESULT OnPostVerbHide();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::OnPostVerbInPlaceActivate

HRESULT OnPostVerbInPlaceActivate();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::OnPostVerbOpen

HRESULT OnPostVerbOpen();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::OnPostVerbShow

Called by DoVerbDiscardUndo after the undo state is discarded.

Returns S_OK.

Override this method with code you want executed after the undo state is discarded.

Called by DoVerbHide after the control is hidden.

Returns S_OK.

Override this method with code you want executed after the control is hidden.

Called by DoVerbInPlaceActivate after the control is activated in place.

Returns S_OK.

Override this method with code you want executed after the control is activated in place.

Called by DoVerbOpen after the control has been opened for editing in a separate window.

Returns S_OK.

Override this method with code you want executed after the control has been opened for editing in a separate
window.

HRESULT OnPostVerbShow();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::OnPostVerbUIActivate

HRESULT OnPostVerbUIActivate();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::OnPreVerbDiscardUndo

HRESULT OnPreVerbDiscardUndo();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::OnPreVerbHide

HRESULT OnPreVerbHide();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::OnPreVerbInPlaceActivate

Called by DoVerbShow after the control has been made visible.

Returns S_OK.

Override this method with code you want executed after the control has been made visible.

Called by DoVerbUIActivate after the control's user interface has been activated.

Returns S_OK.

Override this method with code you want executed after the control's user interface has been activated.

Called by DoVerbDiscardUndo before the undo state is discarded.

Returns S_OK.

To prevent the undo state from being discarded, override this method to return an error HRESULT.

Called by DoVerbHide before the control is hidden.

Returns S_OK.

To prevent the control from being hidden, override this method to return an error HRESULT.

Called by DoVerbInPlaceActivate before the control is activated in place.

HRESULT OnPreVerbInPlaceActivate();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::OnPreVerbOpen

HRESULT OnPreVerbOpen();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::OnPreVerbShow

HRESULT OnPreVerbShow();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::OnPreVerbUIActivate

HRESULT OnPreVerbUIActivate();

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::SetClientSite

STDMETHOD(SetClientSite)(IOleClientSite* pClientSite);

Returns S_OK.

To prevent the control from being activated in place, override this method to return an error HRESULT.

Called by DoVerbOpen before the control has been opened for editing in a separate window.

Returns S_OK.

To prevent the control from being opened for editing in a separate window, override this method to return an
error HRESULT.

Called by DoVerbShow before the control has been made visible.

Returns S_OK.

To prevent the control from being made visible, override this method to return an error HRESULT.

Called by DoVerbUIActivate before the control's user interface has been activated.

Returns S_OK.

To prevent the control's user interface from being activated, override this method to return an error HRESULT.

Tells the control about its client site in the container.

RemarksRemarks

IOleObjectImpl::SetColorScheme

STDMETHOD(SetColorScheme)(LOGPALETTE* /* pLogPal */);

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::SetExtent

STDMETHOD(SetExtent)(
 DWORD dwDrawAspect,
 SIZEL* psizel);

RemarksRemarks

IOleObjectImpl::SetHostNames

STDMETHOD(SetHostNames)(LPCOLESTR /* szContainerApp */, LPCOLESTR /* szContainerObj */);

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::SetMoniker

The method then returns S_OK.

See IOleObject::SetClientSite in the Windows SDK.

Recommends a color scheme to the control's application, if any.

Returns E_NOTIMPL.

See IOleObject::SetColorScheme in the Windows SDK.

Sets the extent of the control's display area.

Otherwise, SetExtent stores the value pointed to by psizel in the control class data member
CComControlBase::m_sizeExtent. This value is in HIMETRIC units (0.01 millimeter per unit).

If the control class data member CComControlBase::m_bResizeNatural is TRUE, SetExtent also stores the value
pointed to by psizel in the control class data member CComControlBase::m_sizeNatural.

If the control class data member CComControlBase::m_bRecomposeOnResize is TRUE, SetExtent calls
SendOnDataChange and SendOnViewChange to notify all advisory sinks registered with the advise holder that the

control size has changed.

See IOleObject::SetExtent in the Windows SDK.

Tells the control the names of the container application and container document.

Returns S_OK.

See IOleObject::SetHostNames in the Windows SDK.

Tells the control what its moniker is.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-setclientsite
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-setcolorscheme
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-setextent
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-sethostnames

STDMETHOD(SetMoniker)(
 DWORD /* dwWhichMoniker */,
 IMoniker** /* pmk */);

Return ValueReturn Value

RemarksRemarks

IOleObjectImpl::Unadvise

STDMETHOD(Unadvise)(DWORD dwConnection);

RemarksRemarks

IOleObjectImpl::Update

STDMETHOD(Update)(void);

Return ValueReturn Value

RemarksRemarks

See also

Returns E_NOTIMPL.

See IOleObject::SetMoniker in the Windows SDK.

Deletes the advisory connection stored in the control class's m_spOleAdviseHolder data member.

See IOleObject::Unadvise in the Windows SDK.

Updates the control.

Returns S_OK.

See IOleObject::Update in the Windows SDK.

CComControl Class
ActiveX Controls Interfaces
Class Overview

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-setmoniker
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-unadvise
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-update
https://docs.microsoft.com/windows/desktop/com/activex-controls-interfaces

IPerPropertyBrowsingImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax

template <class T>
class ATL_NO_VTABLE IPerPropertyBrowsingImpl :
 public IPerPropertyBrowsing

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IPerPropertyBrowsingImpl::GetDisplayString Retrieves a string describing a given property.

IPerPropertyBrowsingImpl::GetPredefinedStrings Retrieves an array of strings corresponding to the values that
a given property can accept.

IPerPropertyBrowsingImpl::GetPredefinedValue Retrieves a VARIANT containing the value of a property
identified by a given DISPID. The DISPID is associated with the
string name retrieved from GetPredefinedStrings . The ATL
implementation returns E_NOTIMPL.

IPerPropertyBrowsingImpl::MapPropertyToPage Retrieves the CLSID of the property page associated with a
given property.

Remarks

NOTENOTE

This class implements IUnknown and allows a client to access the information in an object's property pages.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IPerPropertyBrowsingImpl .

The IPerPropertyBrowsing interface allows a client to access the information in an object's property pages. Class
IPerPropertyBrowsingImpl provides a default implementation of this interface and implements IUnknown by

sending information to the dump device in debug builds.

If you are using Microsoft Access as the container application, you must derive your class from IPerPropertyBrowsingImpl

. Otherwise, Access will not load your control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iperpropertybrowsingimpl-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iperpropertybrowsing

Inheritance Hierarchy

Requirements

IPerPropertyBrowsingImpl::GetDisplayString

STDMETHOD(GetDisplayString)(
 DISPID dispID,
 BSTR* pBstr);

RemarksRemarks

IPerPropertyBrowsingImpl::GetPredefinedStrings

STDMETHOD(GetPredefinedStrings)(
 DISPID dispID,
 CALPOLESTR* pCaStringsOut,
 CADWORD* pCaCookiesOut);

Return ValueReturn Value

RemarksRemarks

IPerPropertyBrowsingImpl::GetPredefinedValue

STDMETHOD(GetPredefinedValue)(
 DISPID dispID,
 DWORD dwCookie,
 VARIANT* pVarOut);

Return ValueReturn Value

RemarksRemarks

Related Articles ATL Tutorial, Creating an ATL Project

IPerPropertyBrowsing

IPerPropertyBrowsingImpl

Header: atlctl.h

Retrieves a string describing a given property.

See IPerPropertyBrowsing::GetDisplayString in the Windows SDK.

Fills each array with zero items.

ATL's implementation of GetPredefinedValue returns E_NOTIMPL.

See IPerPropertyBrowsing::GetPredefinedStrings in the Windows SDK.

Retrieves a VARIANT containing the value of a property identified by a given DISPID. The DISPID is associated
with the string name retrieved from GetPredefinedStrings .

Returns E_NOTIMPL.

ATL's implementation of GetPredefinedStrings retrieves no corresponding strings.

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iperpropertybrowsing-getdisplaystring
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iperpropertybrowsing-getpredefinedstrings

 IPerPropertyBrowsingImpl::MapPropertyToPage

STDMETHOD(MapPropertyToPage)(
 DISPID dispID,
 CLSID* pClsid);

RemarksRemarks

See also

See IPerPropertyBrowsing::GetPredefinedValue in the Windows SDK.

Retrieves the CLSID of the property page associated with the specified property.

ATL uses the object's property map to obtain this information.

See IPerPropertyBrowsing::MapPropertyToPage in the Windows SDK.

IPropertyPageImpl Class
ISpecifyPropertyPagesImpl Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iperpropertybrowsing-getpredefinedvalue
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iperpropertybrowsing-mappropertytopage

IPersistPropertyBagImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T>
class ATL_NO_VTABLE IPersistPropertyBagImpl : public IPersistPropertyBag

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IPersistPropertyBagImpl::GetClassID Retrieves the object's CLSID.

IPersistPropertyBagImpl::InitNew Initializes a newly created object. The ATL implementation
returns S_OK.

IPersistPropertyBagImpl::Load Loads the object's properties from a client-supplied property
bag.

IPersistPropertyBagImpl::Save Saves the object's properties into a client-supplied property
bag.

Remarks

Inheritance Hierarchy

This class implements IUnknown and allows an object to save its properties to a client-supplied property bag.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IPersistPropertyBagImpl .

The IPersistPropertyBag interface allows an object to save its properties to a client-supplied property bag. Class
IPersistPropertyBagImpl provides a default implementation of this interface and implements IUnknown by

sending information to the dump device in debug builds.

IPersistPropertyBag works in conjunction with IPropertyBag and IErrorLog. These latter two interfaces must be
implemented by the client. Through IPropertyBag , the client saves and loads the object's individual properties.
Through IErrorLog , both the object and the client can report any errors encountered.

Related Articles ATL Tutorial, Creating an ATL Project

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ipersistpropertybagimpl-class.md
https://msdn.microsoft.com/library/aa768205.aspx
https://msdn.microsoft.com/library/aa768196.aspx
https://msdn.microsoft.com/library/aa768231.aspx

Requirements

IPersistPropertyBagImpl::GetClassID

STDMETHOD(GetClassID)(CLSID* pClassID);

RemarksRemarks

IPersistPropertyBagImpl::InitNew

STDMETHOD(InitNew)();

Return ValueReturn Value

RemarksRemarks

IPersistPropertyBagImpl::Load

STDMETHOD(Load)(LPPROPERTYBAG pPropBag, LPERRORLOG pErrorLog);

RemarksRemarks

IPersistPropertyBagImpl::Save

STDMETHOD(Save)(
 LPPROPERTYBAG pPropBag,
 BOOL fClearDirty,
 BOOL fSaveAllProperties);

RemarksRemarks

IPersistPropertyBag

IPersistPropertyBagImpl

Header: atlcom.h

Retrieves the object's CLSID.

See IPersist::GetClassID in the Windows SDK.

Initializes a newly created object.

Returns S_OK.

See IPersistPropertyBag::InitNew in the Windows SDK.

Loads the object's properties from a client-supplied property bag.

ATL uses the object's property map to retrieve this information.

See IPersistPropertyBag::Load in the Windows SDK.

Saves the object's properties into a client-supplied property bag.

ATL uses the object's property map to store this information. By default, this method saves all properties,
regardless of the value of fSaveAllProperties.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersist-getclassid
https://msdn.microsoft.com/library/aa768204.aspx
https://msdn.microsoft.com/library/aa768206.aspx

See also

See IPersistPropertyBag::Save in the Windows SDK.

BEGIN_PROP_MAP
Class Overview

https://msdn.microsoft.com/library/aa768207.aspx

IPersistStorageImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T>
class ATL_NO_VTABLE IPersistStorageImpl : public IPersistStorage

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IPersistStorageImpl::GetClassID Retrieves the object's CLSID.

IPersistStorageImpl::HandsOffStorage Instructs the object to release all storage objects and enter
HandsOff mode. The ATL implementation returns S_OK.

IPersistStorageImpl::InitNew Initializes a new storage.

IPersistStorageImpl::IsDirty Checks whether the object's data has changed since it was last
saved.

IPersistStorageImpl::Load Loads the object's properties from the specified storage.

IPersistStorageImpl::Save Saves the object's properties to the specified storage.

IPersistStorageImpl::SaveCompleted Notifies an object that it can return to Normal mode to write
to its storage object. The ATL implementation returns S_OK.

Remarks

This class implements the IPersistStorage interface.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IPersistStorageImpl .

IPersistStorageImpl implements the IPersistStorage interface, which allows a client to request that your object
load and save its persistent data using a storage.

The implementation of this class requires class T to make an implementation of the IPersistStreamInit interface
available via QueryInterface . Typically this means that class T should derive from IPersistStreamInitImpl, provide
an entry for IPersistStreamInit in the COM map, and use a property map to describe the class's persistent data.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ipersiststorageimpl-class.md
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ipersiststorage
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ipersiststorage

Inheritance Hierarchy

Requirements

IPersistStorageImpl::GetClassID

STDMETHOD(GetClassID)(CLSID* pClassID);

RemarksRemarks

IPersistStorageImpl::HandsOffStorage

STDMETHOD(HandsOffStorage)(void);

Return ValueReturn Value

RemarksRemarks

IPersistStorageImpl::InitNew

STDMETHOD(InitNew)(IStorage*);

RemarksRemarks

IPersistStorageImpl::IsDirty

STDMETHOD(IsDirty)(void);

RemarksRemarks

Related Articles ATL Tutorial, Creating an ATL Project

IPersistStorage

IPersistStorageImpl

Header: atlcom.h

Retrieves the object's CLSID.

See IPersist::GetClassID in the Windows SDK.

Instructs the object to release all storage objects and enter HandsOff mode.

Returns S_OK.

See IPersistStorage::HandsOffStorage in the Windows SDK.

Initializes a new storage.

The ATL implementation delegates to the IPersistStreamInit interface.

See IPersistStorage:InitNew in the Windows SDK.

Checks whether the object's data has changed since it was last saved.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersist-getclassid
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststorage-handsoffstorage
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipersiststreaminit
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststorage-initnew

IPersistStorageImpl::Load

STDMETHOD(Load)(IStorage* pStorage);

RemarksRemarks

IPersistStorageImpl::Save

STDMETHOD(Save)(IStorage* pStorage, BOOL fSameAsLoad);

RemarksRemarks

IPersistStorageImpl::SaveCompleted

STDMETHOD(SaveCompleted)(IStorage*);

Return ValueReturn Value

RemarksRemarks

See also

The ATL implementation delegates to the IPersistStreamInit interface.

See IPersistStorage:IsDirty in the Windows SDK.

Loads the object's properties from the specified storage.

The ATL implementation delegates to the IPersistStreamInit interface. Load uses a stream named "Contents" to
retrieve the object's data. The Save method originally creates this stream.

See IPersistStorage:Load in the Windows SDK.

Saves the object's properties to the specified storage.

The ATL implementation delegates to the IPersistStreamInit interface. When Save is first called, it creates a stream
named "Contents" on the specified storage. This stream is then used in later calls to Save and in calls to Load.

See IPersistStorage:Save in the Windows SDK.

Notifies an object that it can return to Normal mode to write to its storage object.

Returns S_OK.

See IPersistStorage:SaveCompleted in the Windows SDK.

Storages and Streams
IPersistStreamInitImpl Class
IPersistPropertyBagImpl Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipersiststreaminit
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststorage-isdirty
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipersiststreaminit
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststorage-load
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipersiststreaminit
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststorage-save
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststorage-savecompleted
https://docs.microsoft.com/windows/desktop/Stg/storages-and-streams

IPersistStreamInitImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class ATL_NO_VTABLE IPersistStreamInitImpl
 : public IPersistStreamInit

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IPersistStreamInitImpl::GetClassID Retrieves the object's CLSID.

IPersistStreamInitImpl::GetSizeMax Retrieves the size of the stream needed to save the object's
data. The ATL implementation returns E_NOTIMPL.

IPersistStreamInitImpl::InitNew Initializes a newly created object.

IPersistStreamInitImpl::IsDirty Checks whether the object's data has changed since it was
last saved.

IPersistStreamInitImpl::Load Loads the object's properties from the specified stream.

IPersistStreamInitImpl::Save Saves the object's properties to the specified stream.

Remarks

Inheritance Hierarchy

This class implements IUnknown and provides a default implementation of the IPersistStreamInit interface.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IPersistStreamInitImpl .

The IPersistStreamInit interface allows a client to request that your object loads and saves its persistent data to a
single stream. Class IPersistStreamInitImpl provides a default implementation of this interface and implements
IUnknown by sending information to the dump device in debug builds.

Related Articles ATL Tutorial, Creating an ATL Project

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ipersiststreaminitimpl-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipersiststreaminit
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipersiststreaminit

Requirements

IPersistStreamInitImpl::GetClassID

STDMETHOD(GetClassID)(CLSID* pClassID);

RemarksRemarks

IPersistStreamInitImpl::GetSizeMax

STDMETHOD(GetSizeMax)(ULARGE_INTEGER FAR* pcbSize);

Return ValueReturn Value

RemarksRemarks

IPersistStreamInitImpl::InitNew

STDMETHOD(InitNew)();

RemarksRemarks

IPersistStreamInitImpl::IsDirty

STDMETHOD(IsDirty)();

RemarksRemarks

IPersistStreamInitImpl::Load

IPersistStreamInit

IPersistStreamInitImpl

Header: atlcom.h

Retrieves the object's CLSID.

See IPersist::GetClassID in the Windows SDK.

Retrieves the size of the stream needed to save the object's data.

Returns E_NOTIMPL.

See IPersistStreamInit::GetSizeMax in the Windows SDK.

Initializes a newly created object.

See IPersistStreamInit::InitNew in the Windows SDK.

Checks whether the object's data has changed since it was last saved.

See IPersistStreamInit::IsDirty in the Windows SDK.

Loads the object's properties from the specified stream.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersist-getclassid
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipersiststreaminit-getsizemax
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipersiststreaminit-initnew
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipersiststreaminit-isdirty

STDMETHOD(Load)(LPSTREAM pStm);

RemarksRemarks

IPersistStreamInitImpl::Save

STDMETHOD(Save)(LPSTREAM pStm, BOOL fClearDirty);

RemarksRemarks

See also

ATL uses the object's property map to retrieve this information.

See IPersistStreamInit::Load in the Windows SDK.

Saves the object's properties to the specified stream.

ATL uses the object's property map to store this information.

See IPersistStreamInit::Save in the Windows SDK.

Storages and Streams
Class Overview

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipersiststreaminit-load
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipersiststreaminit-save
https://docs.microsoft.com/windows/desktop/Stg/storages-and-streams

IPointerInactiveImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class IPointerInactiveImpl

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IPointerInactiveImpl::GetActivationPolicy Retrieves the current activation policy for the object. The ATL
implementation returns E_NOTIMPL.

IPointerInactiveImpl::OnInactiveMouseMove Notifies the object that the mouse pointer has moved over it,
indicating the object can fire mouse events. The ATL
implementation returns E_NOTIMPL.

IPointerInactiveImpl::OnInactiveSetCursor Sets the mouse pointer for the inactive object. The ATL
implementation returns E_NOTIMPL.

Remarks

Inheritance Hierarchy

This class implements IUnknown and the IPointerInactive interface methods.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IPointerInactiveImpl .

An inactive object is one that is simply loaded or running. Unlike an active object, an inactive object cannot receive
Windows mouse and keyboard messages. Thus, inactive objects use fewer resources and are typically more
efficient.

The IPointerInactive interface allows an object to support a minimal level of mouse interaction while remaining
inactive. This functionality is particularly useful for controls.

Class IPointerInactiveImpl implements the IPointerInactive methods by simply returning E_NOTIMPL.
However, it implements IUnknown by sending information to the dump device in debug builds.

Related Articles ATL Tutorial, Creating an ATL Project

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ipointerinactiveimpl-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipointerinactive
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipointerinactive

Requirements

IPointerInactiveImpl::GetActivationPolicy

HRESULT GetActivationPolicy(DWORD* pdwPolicy);

Return ValueReturn Value

RemarksRemarks

IPointerInactiveImpl::OnInactiveMouseMove

HRESULT OnInactiveMouseMove(
 LPCRECT pRectBounds,
 long x,
 long y,
 DWORD dwMouseMsg);

Return ValueReturn Value

RemarksRemarks

IPointerInactiveImpl::OnInactiveSetCursor

HRESULT OnInactiveSetCursor(
 LPCRECT pRectBounds,
 long x,
 long y,
 DWORD dwMouseMsg,
 BOOL fSetAlways);

Return ValueReturn Value

RemarksRemarks

IPointerInactive

IPointerInactiveImpl

Header: atlctl.h

Retrieves the current activation policy for the object.

Returns E_NOTIMPL.

See IPointerInactive::GetActivationPolicy in the Windows SDK.

Notifies the object that the mouse pointer has moved over it, indicating the object can fire mouse events.

Returns E_NOTIMPL.

See IPointerInactive::OnInactiveMouseMove in the Windows SDK.

Sets the mouse pointer for the inactive object.

Returns E_NOTIMPL.

See IPointerInactive::OnInactiveSetCursor in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipointerinactive-getactivationpolicy
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipointerinactive-oninactivemousemove
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipointerinactive-oninactivesetcursor

See also
Class Overview

IPropertyNotifySinkCP Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T, class CDV = CComDynamicUnkArray>
class IPropertyNotifySinkCP
 : public IConnectionPointImpl<T, &IID_IPropertyNotifySink, CDV>

ParametersParameters

Remarks

Requirements

See also

This class exposes IPropertyNotifySink interface as an outgoing interface on a connectable object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IPropertyNotifySinkCP .

CDV
A class that manages the connections between a connection point and its sinks. The default value is
CComDynamicUnkArray, which allows unlimited connections. You can also use CComUnkArray, which specifies a
fixed number of connections.

IPropertyNotifySinkCP inherits all methods through its base class, IConnectionPointImpl.

The IPropertyNotifySink interface allows a sink object to receive notifications about property changes. Class
IPropertyNotifySinkCP exposes this interface as an outgoing interface on a connectable object. The client must

implement the IPropertyNotifySink methods on the sink.

Derive your class from IPropertyNotifySinkCP when you want to create a connection point that represents the
IPropertyNotifySink interface.

For more information about using connection points in ATL, see the article Connection Points.

Header: atlctl.h

IConnectionPointImpl Class
IConnectionPointContainerImpl Class
Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ipropertynotifysinkcp-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink

IPropertyPage2Impl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class IPropertyPage2Impl : public IPropertyPageImpl<T>

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IPropertyPage2Impl::EditProperty Specifies which property control will receive the focus when
the property page is activated. The ATL implementation
returns E_NOTIMPL.

Remarks

Inheritance Hierarchy

This class implements IUnknown and inherits the default implementation of IPropertyPageImpl.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IPropertyPage2Impl .

The IPropertyPage2 interface extends IPropertyPage by adding the EditProperty method. This method allows a
client to select a specific property in a property page object.

Class IPropertyPage2Impl simply returns E_NOTIMPL for IPropertyPage2::EditProperty . However, it inherits the
default implementation of IPropertyPageImpl and implements IUnknown by sending information to the dump
device in debug builds.

When you create a property page, your class is typically derived from IPropertyPageImpl . To provide the extra
support of IPropertyPage2 , modify your class definition and override the EditProperty method.

Related Articles ATL Tutorial, Creating an ATL Project

IPropertyPage

IPropertyPageImpl

IPropertyPage2Impl

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ipropertypage2impl-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertypage2
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertypage

Requirements

IPropertyPage2Impl::EditProperty

HRESULT EditProperty(DISPID dispID);

Return ValueReturn Value

RemarksRemarks

See also

Header: atlctl.h

Specifies which property control will receive the focus when the property page is activated.

Returns E_NOTIMPL.

See IPropertyPage2::EditProperty in the Windows SDK.

IPerPropertyBrowsingImpl Class
ISpecifyPropertyPagesImpl Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipropertypage2-editproperty

IPropertyPageImpl Class
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class IPropertyPageImpl

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

IPropertyPageImpl::IPropertyPageImpl Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

IPropertyPageImpl::Activate Creates the dialog box window for the property page.

IPropertyPageImpl::Apply Applies current property page values to the underlying
objects specified through SetObjects . The ATL
implementation returns S_OK.

IPropertyPageImpl::Deactivate Destroys the window created with Activate .

IPropertyPageImpl::GetPageInfo Retrieves information about the property page.

IPropertyPageImpl::Help Invokes Windows help for the property page.

IPropertyPageImpl::IsPageDirty Indicates whether the property page has changed since it
was activated.

IPropertyPageImpl::Move Positions and resizes the property page dialog box.

IPropertyPageImpl::SetDirty Flags the property page's state as changed or unchanged.

This class implements IUnknown and provides a default implementation of the IPropertyPage interface.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IPropertyPageImpl .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ipropertypageimpl-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertypage

IPropertyPageImpl::SetObjects Provides an array of IUnknown pointers for the objects
associated with the property page. These objects receive the
current property page values through a call to Apply .

IPropertyPageImpl::SetPageSite Provides the property page with an IPropertyPageSite

pointer, through which the property page communicates
with the property frame.

IPropertyPageImpl::Show Makes the property page dialog box visible or invisible.

IPropertyPageImpl::TranslateAccelerator Processes a specified keystroke.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

IPropertyPageImpl::m_bDirty Specifies whether the property page's state has changed.

IPropertyPageImpl::m_dwDocString Stores the resource identifier associated with the text string
describing the property page.

IPropertyPageImpl::m_dwHelpContext Stores the context identifier for the help topic associated with
the property page.

IPropertyPageImpl::m_dwHelpFile Stores the resource identifier associated with the name of the
help file describing the property page.

IPropertyPageImpl::m_dwTitle Stores the resource identifier associated with the text string
that appears in the tab for the property page.

IPropertyPageImpl::m_nObjects Stores the number of objects associated with the property
page.

IPropertyPageImpl::m_pPageSite Points to the IPropertyPageSite interface through which
the property page communicates with the property frame.

IPropertyPageImpl::m_ppUnk Points to an array of IUnknown pointers to the objects
associated with the property page.

IPropertyPageImpl::m_size Stores the height and width of the property page's dialog
box, in pixels.

Remarks

Inheritance Hierarchy

The IPropertyPage interface allows an object to manage a particular property page within a property sheet. Class
IPropertyPageImpl provides a default implementation of this interface and implements IUnknown by sending

information to the dump device in debug builds.

Related Articles ATL Tutorial, Creating an ATL Project

IPropertyPage

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertypage

Requirements

IPropertyPageImpl::Activate

HRESULT Activate(
 HWND hWndParent,
 LPCRECT pRect,
 BOOL bModal);

RemarksRemarks

IPropertyPageImpl::Apply

HRESULT Apply();

Return ValueReturn Value

RemarksRemarks

IPropertyPageImpl::Deactivate

HRESULT Deactivate();

RemarksRemarks

IPropertyPageImpl::GetPageInfo

HRESULT GetPageInfo(PROPPAGEINFO* pPageInfo);

RemarksRemarks

IPropertyPageImpl

Header: atlctl.h

Creates the dialog box window for the property page.

By default, the dialog box is always modeless, regardless of the value of the bModal parameter.

See IPropertyPage::Activate in the Windows SDK.

Applies current property page values to the underlying objects specified through SetObjects .

Returns S_OK.

See IPropertyPage::Apply in the Windows SDK.

Destroys the dialog box window created with Activate.

See IPropertyPage::Deactivate in the Windows SDK.

Fills the pPageInfo structure with information contained in the data members.

GetPageInfo loads the string resources associated with m_dwDocString, m_dwHelpFile, and m_dwTitle.

See IPropertyPage::GetPageInfo in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipropertypage-activate
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipropertypage-apply
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipropertypage-deactivate
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipropertypage-getpageinfo

IPropertyPageImpl::Help

HRESULT Help(PROPPAGEINFO* pPageInfo);

RemarksRemarks

IPropertyPageImpl::IPropertyPageImpl

IPropertyPageImpl();

RemarksRemarks

IPropertyPageImpl::IsPageDirty

HRESULT IsPageDirty(void);

RemarksRemarks

IPropertyPageImpl::m_bDirty

BOOL m_bDirty;

IPropertyPageImpl::m_nObjects

ULONG m_nObjects;

IPropertyPageImpl::m_dwHelpContext

DWORD m_dwHelpContext;

IPropertyPageImpl::m_dwDocString

Invokes Windows help for the property page.

See IPropertyPage::Help in the Windows SDK.

The constructor.

Initializes all data members.

Indicates whether the property page has changed since it was activated.

IsPageDirty returns S_OK if the page has changed since it was activated.

Specifies whether the property page's state has changed.

Stores the number of objects associated with the property page.

Stores the context identifier for the help topic associated with the property page.

Stores the resource identifier associated with the text string describing the property page.

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipropertypage-help

UINT m_dwDocString;

IPropertyPageImpl::m_dwHelpFile

UINT m_dwHelpFile;

IPropertyPageImpl::m_dwTitle

UINT m_dwTitle;

IPropertyPageImpl::m_pPageSite

IPropertyPageSite* m_pPageSite;

IPropertyPageImpl::m_ppUnk

IUnknown** m_ppUnk;

IPropertyPageImpl::m_size

SIZE m_size;

IPropertyPageImpl::Move

HRESULT Move(LPCRECT pRect);

RemarksRemarks

IPropertyPageImpl::SetDirty

Stores the resource identifier associated with the name of the help file describing the property page.

Stores the resource identifier associated with the text string that appears in the tab for the property page.

Points to the IPropertyPageSite interface through which the property page communicates with the property
frame.

Points to an array of IUnknown pointers to the objects associated with the property page.

Stores the height and width of the property page's dialog box, in pixels.

Positions and resizes the property page dialog box.

See IPropertyPage::Move in the Windows SDK.

Flags the property page's state as changed or unchanged, depending on the value of bDirty.

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertypagesite
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipropertypage-move

void SetDirty(BOOL bDirty);

ParametersParameters

RemarksRemarks

IPropertyPageImpl::SetObjects

HRESULT SetObjects(ULONG nObjects, IUnknown** ppUnk);

RemarksRemarks

IPropertyPageImpl::SetPageSite

HRESULT SetPageSite(IPropertyPageSite* pPageSite);

RemarksRemarks

IPropertyPageImpl::Show

HRESULT Show(UINT nCmdShow);

RemarksRemarks

IPropertyPageImpl::TranslateAccelerator

HRESULT TranslateAccelerator(MSG* pMsg);

RemarksRemarks

See also

bDirty
[in] If TRUE, the property page's state is marked as changed. Otherwise, it is marked as unchanged.

If necessary, SetDirty informs the frame that the property page has changed.

Provides an array of IUnknown pointers for the objects associated with the property page.

See IPropertyPage::SetObjects in the Windows SDK.

Provides the property page with an IPropertyPageSite pointer, through which the property page communicates
with the property frame.

See IPropertyPage::SetPageSite in the Windows SDK.

Makes the property page dialog box visible or invisible.

See IPropertyPage::Show in the Windows SDK.

Processes the keystroke specified in pMsg .

See IPropertyPage::TranslateAccelerator in the Windows SDK.

IPropertyPage2Impl Class

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipropertypage-setobjects
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertypagesite
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipropertypage-setpagesite
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipropertypage-show
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipropertypage-translateaccelerator

IPerPropertyBrowsingImpl Class
ISpecifyPropertyPagesImpl Class
Class Overview

IProvideClassInfo2Impl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <const CLSID* pcoclsid,
 const IID* psrcid,
 const GUID* plibid = &CAtlModule::m_libid,
 WORD wMajor = 1,
 WORD wMinor = 0, class tihclass = CComTypeInfoHolder>
class ATL_NO_VTABLE IProvideClassInfo2Impl : public IProvideClassInfo2

ParametersParameters

Members
ConstructorsConstructors

NAME DESCRIPTION

IProvideClassInfo2Impl::IProvideClassInfo2Impl Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

IProvideClassInfo2Impl::GetClassInfo Retrieves an ITypeInfo pointer to the coclass' type
information.

IProvideClassInfo2Impl::GetGUID Retrieves the GUID for the object's outgoing dispinterface.

Protected Data MembersProtected Data Members

This class provides a default implementation of the IProvideClassInfo and IProvideClassInfo2 methods.

pcoclsid
A pointer to the coclass' identifier.

psrcid
A pointer to the identifier for the coclass' default outgoing dispinterface.

plibid
A pointer to the L IBID of the type library that contains information about the interface. By default, the server-level
type library is passed.

wMajor
The major version of the type library. The default value is 1.

wMinor
The minor version of the type library. The default value is 0.

tihclass
The class used to manage the coclass' type information. The default value is CComTypeInfoHolder .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iprovideclassinfo2impl-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iprovideclassinfo
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iprovideclassinfo2

NAME DESCRIPTION

IProvideClassInfo2Impl::_tih Manages the type information for the coclass.

Remarks

Inheritance Hierarchy

Requirements

IProvideClassInfo2Impl::GetClassInfo

STDMETHOD(GetClassInfo)(ITypeInfo** pptinfo);

RemarksRemarks

IProvideClassInfo2Impl::GetGUID

STDMETHOD(GetGUID)(
 DWORD dwGuidKind,
 GUID* pGUID);

RemarksRemarks

IProvideClassInfo2Impl::IProvideClassInfo2Impl

IProvideClassInfo2Impl();

RemarksRemarks

The IProvideClassInfo2 interface extends IProvideClassInfo by adding the GetGUID method. This method allows a
client to retrieve an object's outgoing interface IID for its default event set. Class IProvideClassInfo2Impl provides
a default implementation of the IProvideClassInfo and IProvideClassInfo2 methods.

IProvideClassInfo2Impl contains a static member of type CComTypeInfoHolder that manages the type information
for the coclass.

IProvideClassInfo2

IProvideClassInfo2Impl

Header: atlcom.h

Retrieves an ITypeInfo pointer to the coclass' type information.

See IProvideClassInfo::GetClassInfo in the Windows SDK.

Retrieves the GUID for the object's outgoing dispinterface.

See IProvideClassInfo2::GetGUID in the Windows SDK.

The constructor.

Calls AddRef on the _tih member. The destructor calls Release .

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iprovideclassinfo2
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iprovideclassinfo
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iprovideclassinfo-getclassinfo
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iprovideclassinfo2-getguid

 IProvideClassInfo2Impl::_tih

static tihclass
 _tih;

RemarksRemarks

See also

This static data member is an instance of the class template parameter, tihclass, which by default is
CComTypeInfoHolder .

_tih manages the type information for the coclass.

Class Overview

IQuickActivateImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template <class T>
class ATL_NO_VTABLE IQuickActivateImpl : public IQuickActivate

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IQuickActivateImpl::GetContentExtent Retrieves the current display size for a running control.

IQuickActivateImpl::QuickActivate Performs quick initialization of controls being loaded.

IQuickActivateImpl::SetContentExtent Informs the control of how much display space the container
has assigned to it.

Remarks

Inheritance Hierarchy

Requirements

This class combines containers' control initialization into a single call.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IQuickActivateImpl .

The IQuickActivate interface helps containers avoid delays when loading controls by combining initialization in a
single call. The QuickActivate method allows the container to pass a pointer to a QACONTAINER structure that
holds pointers to all the interfaces the control needs. On return, the control passes back a pointer to a
QACONTROL structure that holds pointers to its own interfaces, which are used by the container. Class
IQuickActivateImpl provides a default implementation of IQuickActivate and implements IUnknown by sending

information to the dump device in debug builds.

Related Articles ATL Tutorial, Creating an ATL Project

IQuickActivate

IQuickActivateImpl

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iquickactivateimpl-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iquickactivate
https://docs.microsoft.com/windows/desktop/api/ocidl/ns-ocidl-tagqacontainer
https://docs.microsoft.com/windows/desktop/api/ocidl/ns-ocidl-tagqacontrol

IQuickActivateImpl::GetContentExtent

STDMETHOD(GetContentExtent)(LPSIZEL pSize);

RemarksRemarks

IQuickActivateImpl::QuickActivate

STDMETHOD(QuickActivate)(
 QACONTAINER* pQACont,
 QACONTROL* pQACtrl);

RemarksRemarks

IQuickActivateImpl::SetContentExtent

STDMETHOD(SetContentExtent)(LPSIZEL pSize);

RemarksRemarks

See also

Header: atlctl.h

Retrieves the current display size for a running control.

The size is for a full rendering of the control and is specified in HIMETRIC units.

See IQuickActivate::GetContentExtent in the Windows SDK.

Performs quick initialization of controls being loaded.

The structure contains pointers to interfaces needed by the control and the values of some ambient properties.
Upon return, the control passes a pointer to a QACONTROL structure that contains pointers to its own interfaces
that the container requires, and additional status information.

See IQuickActivate::QuickActivate in the Windows SDK.

Informs the control of how much display space the container has assigned to it.

The size is specified in HIMETRIC units.

See IQuickActivate::SetContentExtent in the Windows SDK.

CComControl Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iquickactivate-getcontentextent
https://docs.microsoft.com/windows/desktop/api/ocidl/ns-ocidl-tagqacontrol
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iquickactivate-quickactivate
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iquickactivate-setcontentextent

IRegistrar Interface
3/4/2019 • 2 minutes to read • Edit Online

Syntax
typedef interface IRegistrar IRegistrar;

Remarks

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IRegistrar::ResourceRegisterSz Registers the resource.

IRegistrar::ResourceUnregisterSz Unregisters the resource.

IRegistrar::FileRegister Registers the file.

IRegistrar::FileUnregister Unregisters the file.

IRegistrar::StringRegister Registers the string.

IRegistrar::StringUnregister Unregisters the string

IRegistrar::ResourceRegister Registers the resource.

IRegistrar::ResourceUnregister Unregisters the resource.

Requirements

IRegistrar::ResourceRegisterSz

virtual HRESULT STDMETHODCALLTYPE ResourceRegisterSz(
 /* [in] */ _In_z_ LPCOLESTR resFileName,
 /* [in] */ _In_z_ LPCOLESTR szID,
 /* [in] */ _In_z_ LPCOLESTR szType) = 0;

This interface is defined in atliface.h and is used internally by CAtlModule member functions such as
UpdateRegistryFromResourceD.

See the topic Using Replaceable Parameters (The Registrar's Preprocessor) for more details.

Header: atlifase.h

Registers the resource.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iregistrar-class.md

IRegistrar::ResourceUnregisterSz

virtual HRESULT STDMETHODCALLTYPE ResourceUnregisterSz(
 /* [in] */ _In_z_ LPCOLESTR resFileName,
 /* [in] */ _In_z_ LPCOLESTR szID,
 /* [in] */ _In_z_ LPCOLESTR szType) = 0;

IRegistrar::FileRegister

virtual HRESULT STDMETHODCALLTYPE FileRegister(
 /* [in] */ _In_z_ LPCOLESTR fileName) = 0;

IRegistrar::FileUnregister

virtual HRESULT STDMETHODCALLTYPE FileUnregister(
 /* [in] */ _In_z_ LPCOLESTR fileName) = 0;

IRegistrar::StringRegister

virtual HRESULT STDMETHODCALLTYPE StringRegister(
 /* [in] */ _In_z_ LPCOLESTR data) = 0;

IRegistrar::StringUnregister

virtualHRESULT STDMETHODCALLTYPE StringUnregister(
 /* [in] */ _In_z_ LPCOLESTR data) = 0;

IRegistrar::ResourceRegister

virtual HRESULT STDMETHODCALLTYPE ResourceRegister(
 /* [in] */ _In_z_ LPCOLESTR resFileName,
 /* [in] */ _In_ UINT nID,
 /* [in] */ _In_z_ LPCOLESTR szType) = 0;

IRegistrar::ResourceUnregister

Unregisters the resource.

Registers the file.

Unregisters the file.

Registers the specified string data.

Unregisters the specified string data.

Registers the resource.

Unregisters the resource.

virtualHRESULT STDMETHODCALLTYPE ResourceUnregister(
 /* [in] */ _In_z_ LPCOLESTR resFileName,
 /* [in] */ _In_ UINT nID,
 /* [in] */ _In_z_ LPCOLESTR szType) = 0;

See also
Using Replaceable Parameters (The Registrar's Preprocessor)
Class Overview
Module Classes
Registry Component (Registrar)

IRunnableObjectImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class IRunnableObjectImpl

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IRunnableObjectImpl::GetRunningClass Returns the CLSID of the running control. The ATL
implementation sets the CLSID to GUID_NULL and returns
E_UNEXPECTED.

IRunnableObjectImpl::IsRunning Determines if the control is running. The ATL implementation
returns TRUE.

IRunnableObjectImpl::LockRunning Locks the control into the running state. The ATL
implementation returns S_OK.

IRunnableObjectImpl::Run Forces the control to run. The ATL implementation returns
S_OK.

IRunnableObjectImpl::SetContainedObject Indicates that the control is embedded. The ATL
implementation returns S_OK.

Remarks

Inheritance Hierarchy

This class implements IUnknown and provides a default implementation of the IRunnableObject interface.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IRunnableObjectImpl .

The IRunnableObject interface enables a container to determine if a control is running, force it to run, or lock it
into the running state. Class IRunnableObjectImpl provides a default implementation of this interface and
implements IUnknown by sending information to the dump device in debug builds.

Related Articles ATL Tutorial, Creating an ATL Project

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/irunnableobjectimpl-class.md
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-irunnableobject
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-irunnableobject

Requirements

IRunnableObjectImpl::GetRunningClass

HRESULT GetRunningClass(LPCLSID lpClsid);

Return ValueReturn Value

RemarksRemarks

IRunnableObjectImpl::IsRunning

virtual BOOL IsRunning();

Return ValueReturn Value

RemarksRemarks

IRunnableObjectImpl::LockRunning

HRESULT LockRunning(BOOL fLock, BOOL fLastUnlockCloses);

Return ValueReturn Value

RemarksRemarks

IRunnableObjectImpl::Run

HRESULT Run(LPBINDCTX lpbc);

Return ValueReturn Value

IRunnableObject

IRunnableObjectImpl

Header: atlctl.h

Returns the CLSID of the running control.

The ATL implementation sets * lpClsid to GUID_NULL and returns E_UNEXPECTED.

See IRunnableObject::GetRunningClass in the Windows SDK.

Determines if the control is running.

The ATL implementation returns TRUE.

See IRunnableObject::IsRunning in the Windows SDK.

Locks the control into the running state.

The ATL implementation returns S_OK.

See IRunnableObject::LockRunning in the Windows SDK.

Forces the control to run.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-irunnableobject-getrunningclass
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-irunnableobject-isrunning
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-irunnableobject-lockrunning

RemarksRemarks

IRunnableObjectImpl::SetContainedObject

HRESULT SetContainedObject(BOOL fContained);

Return ValueReturn Value

RemarksRemarks

See also

The ATL implementation returns S_OK.

See IRunnableObject::Run in the Windows SDK.

Indicates that the control is embedded.

The ATL implementation returns S_OK.

See IRunnableObject::SetContainedObject in the Windows SDK.

CComControl Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-irunnableobject-run
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-irunnableobject-setcontainedobject

IServiceProviderImpl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <class T>
class ATL_NO_VTABLE IServiceProviderImpl : public IServiceProvider

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IServiceProviderImpl::QueryService Creates or accesses the specified service and returns an
interface pointer to the specified interface for the service.

Remarks

Inheritance Hierarchy

Requirements

IServiceProviderImpl::QueryService

This class provides a default implementation of the IServiceProvider interface.

T
Your class, derived from IServiceProviderImpl .

The IServiceProvider interface locates a service specified by its GUID and returns the interface pointer for the
requested interface on the service. Class IServiceProviderImpl provides a default implementation of this interface.

IServiceProviderImpl specifies one method: QueryService, which creates or accesses the specified service and
returns an interface pointer to the specified interface for the service.

IServiceProviderImpl uses a service map, starting with BEGIN_SERVICE_MAP and ending with
END_SERVICE_MAP.

The service map contains two entries: SERVICE_ENTRY, which indicates a specified service id (S ID) supported by
the object, and SERVICE_ENTRY_CHAIN, which calls QueryService to chain to another object.

IServiceProvider

IServiceProviderImpl

Header: atlcom.h

Creates or accesses the specified service and returns an interface pointer to the specified interface for the service.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iserviceproviderimpl-class.md

STDMETHOD(QueryService)(
 REFGUID guidService,
 REFIID riid,
 void** ppvObject);

ParametersParameters

Return ValueReturn Value

RETURN VALUE MEANING

S_OK The service was successfully created or retrieved.

E_INVALIDARG One or more of the arguments is invalid.

E_OUTOFMEMORY Memory is insufficient to create the service.

E_UNEXPECTED An unknown error occurred.

E_NOINTERFACE The requested interface is not part of this service, or the
service is unknown.

RemarksRemarks

guidService
[in] Pointer to a service identifier (S ID).

riid
[in] Identifier of the interface to which the caller is to gain access.

ppvObj
[out] Indirect pointer to the requested interface.

The returned HRESULT value is one of the following:

QueryService returns an indirect pointer to the requested interface in the specified service. The caller is
responsible for releasing this pointer when it is no longer required.

When you call QueryService , you pass both a service identifier (guidService) and an interface identifier (riid). The
guidService specifies the service to which you want access, and the riid identifies an interface that is part of the
service. In return, you receive an indirect pointer to the interface.

The object that implements the interface might also implement interfaces that are part of other services. Consider
the following:

Some of these interfaces might be optional. Not all interfaces defined in the service description are
necessarily present on every implementation of the service or on every returned object.

Unlike calls to QueryInterface , passing a different service identifier does not necessarily mean that a
different Component Object Model (COM) object is returned.

The returned object might have additional interfaces that are not part of the definition of the service.

Two different services, such as S ID_SMyService and SID_SYourService, can both specify the use of the same
interface, even though the implementation of the interface might have nothing in common between the two
services. This works, because a call to QueryService (S ID_SMyService, IID_IDispatch) can return a different object
than QueryService (S ID_SYourService, IID_IDispatch). Object identity is not assumed when you specify a different
service identifier.

See also
Class Overview

ISpecifyPropertyPagesImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class ATL_NO_VTABLE ISpecifyPropertyPagesImpl
 : public ISpecifyPropertyPages

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

ISpecifyPropertyPagesImpl::GetPages Fills a Counted Array of UUID values. Each UUID corresponds
to the CLSID for one of the property pages that can be
displayed in the object's property sheet.

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

This class implements IUnknown and provides a default implementation of the ISpecifyPropertyPages interface.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from ISpecifyPropertyPagesImpl .

The ISpecifyPropertyPages interface allows a client to obtain a list of CLSIDs for the property pages supported
by an object. Class ISpecifyPropertyPagesImpl provides a default implementation of this interface and
implements IUnknown by sending information to the dump device in debug builds.

Do not expose the ISpecifyPropertyPages interface if your object does not support property pages.

Related Articles ATL Tutorial, Creating an ATL Project

ISpecifyPropertyPages

ISpecifyPropertyPagesImpl

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ispecifypropertypagesimpl-class.md
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ispecifypropertypages
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ispecifypropertypages

 ISpecifyPropertyPagesImpl::GetPages

STDMETHOD(GetPages)(CAUUID* pPages);

RemarksRemarks

See also

Header: atlcom.h

Fills the array in the CAUUID structure with the CLSIDs for the property pages that can be displayed in the
object's property sheet.

ATL uses the object's property map to retrieve each CLSID.

See ISpecifyPropertyPages::GetPages in the Windows SDK.

IPropertyPageImpl Class
IPerPropertyBrowsingImpl Class
Class Overview

https://docs.microsoft.com/windows/desktop/api/ocidl/ns-ocidl-tagcauuid
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ispecifypropertypages-getpages

ISupportErrorInfoImpl Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<const IID* piid>
class ATL_NO_VTABLE ISupportErrorInfoImpl
 : public ISupportErrorInfo

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

ISupportErrorInfoImpl::InterfaceSupportsErrorInfo Indicates whether the interface identified by riid supports
the IErrorInfo interface.

Remarks

class ATL_NO_VTABLE CMySuppErrClass :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMySuppErrClass, &CLSID_MySuppErrClass>,
 public ISupportErrorInfoImpl<&IID_IMySuppErrClass>,
 public IDispatchImpl<IMySuppErrClass, &IID_IMySuppErrClass, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1,
/*wMinor =*/ 0>

Inheritance Hierarchy

This class provides a default implementation of the ISupportErrorInfo Interface and can be used when only a
single interface generates errors on an object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

piid
A pointer to the IID of an interface that supports IErrorInfo.

The ISupportErrorInfo Interface ensures that error information can be returned to the client. Objects that use
IErrorInfo must implement ISupportErrorInfo .

Class ISupportErrorInfoImpl provides a default implementation of ISupportErrorInfo and can be used when
only a single interface generates errors on an object. For example:

ISupportErrorInfo

ISupportErrorInfoImpl

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/isupporterrorinfoimpl-class.md
https://docs.microsoft.com/windows/desktop/api/oaidl/nn-oaidl-isupporterrorinfo
https://docs.microsoft.com/windows/desktop/api/oaidl/nn-oaidl-ierrorinfo
https://docs.microsoft.com/windows/desktop/api/oaidl/nn-oaidl-ierrorinfo
https://docs.microsoft.com/windows/desktop/api/oaidl/nn-oaidl-isupporterrorinfo

Requirements

ISupportErrorInfoImpl::InterfaceSupportsErrorInfo

STDMETHOD(InterfaceSupportsErrorInfo)(REFIID riid);

RemarksRemarks

IThreadPoolConfig::GetSize

STDMETHOD(GetSize)(int* pnNumThreads);

ParametersParameters

Return ValueReturn Value

ExampleExample

Header: atlcom.h

Indicates whether the interface identified by riid supports the IErrorInfo interface.

See ISupportErrorInfo::InterfaceSupportsErrorInfo in the Windows SDK.

Call this method to get the number of threads in the pool.

pnNumThreads
[out] Address of the variable that, on success, receives the number of threads in the pool.

Returns S_OK on success, or an error HRESULT on failure.

https://docs.microsoft.com/windows/desktop/api/oaidl/nn-oaidl-ierrorinfo
https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-isupporterrorinfo-interfacesupportserrorinfo

HRESULT DoPoolOperations(IThreadPoolConfig* pPool, int nSize)
{
 int nCurrSize = 0;
 HRESULT hr = pPool->GetSize(&nCurrSize);
 if (SUCCEEDED(hr))
 {
 printf_s("Current pool size: %d\n", nCurrSize);
 hr = pPool->SetSize(nSize);
 if (SUCCEEDED(hr))
 {
 printf_s("New pool size : %d\n", nSize);
 DWORD dwTimeout = 0;
 hr = pPool->GetTimeout(&dwTimeout);
 if (SUCCEEDED(hr))
 {
 printf_s("Current pool timeout: %u\n", dwTimeout);
 // Increase timeout by 10 seconds.
 dwTimeout += 10 * 1000;
 hr = pPool->SetTimeout(dwTimeout);
 if (SUCCEEDED(hr))
 {
 printf_s("New pool timeout: %u\n", dwTimeout);
 }
 else
 {
 printf_s("Failed to set pool timeout: 0x%08X\n", hr);
 }
 }
 else
 {
 printf_s("Failed to get pool timeout: 0x%08X\n", hr);
 }
 }
 else
 {
 printf_s("Failed to resize pool: 0x%08X\n", hr);
 }
 }
 else
 {
 printf_s("Failed to get pool size: 0x%08x\n", hr);
 }

 return hr;
}

IThreadPoolConfig::GetTimeout

STDMETHOD(GetTimeout)(DWORD* pdwMaxWait);

ParametersParameters

Return ValueReturn Value

ExampleExample

Call this method to get the maximum time in milliseconds that the thread pool will wait for a thread to shut down.

pdwMaxWait
[out] Address of the variable that, on success, receives the maximum time in milliseconds that the thread pool will
wait for a thread to shut down.

Returns S_OK on success, or an error HRESULT on failure.

IThreadPoolConfig::SetSize

STDMETHOD(SetSize)int nNumThreads);

ParametersParameters

Return ValueReturn Value

ExampleExample

IThreadPoolConfig::SetTimeout

STDMETHOD(SetTimeout)(DWORD dwMaxWait);

ParametersParameters

Return ValueReturn Value

ExampleExample

See also

See IThreadPoolConfig::GetSize.

Call this method to set the number of threads in the pool.

nNumThreads
The requested number of threads in the pool.

If nNumThreads is negative, its absolute value will be multiplied by the number of processors in the machine to
get the total number of threads.

If nNumThreads is zero, ATLS_DEFAULT_THREADSPERPROC will be multiplied by the number of processors in
the machine to get the total number of threads.

Returns S_OK on success, or an error HRESULT on failure.

See IThreadPoolConfig::GetSize.

Call this method to set the maximum time in milliseconds that the thread pool will wait for a thread to shut down.

dwMaxWait
The requested maximum time in milliseconds that the thread pool will wait for a thread to shut down.

Returns S_OK on success, or an error HRESULT on failure.

See IThreadPoolConfig::GetSize.

Class Overview

IThreadPoolConfig Interface
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
__interface
 __declspec(uuid("B1F64757-6E88-4fa2-8886-7848B0D7E660")) IThreadPoolConfig : public IUnknown

Members
MethodsMethods

GetSize Call this method to get the number of threads in the pool.

GetTimeout Call this method to get the maximum time in milliseconds
that the thread pool will wait for a thread to shut down.

SetSize Call this method to set the number of threads in the pool.

SetTimeout Call this method to set the maximum time in milliseconds that
the thread pool will wait for a thread to shut down.

Remarks

Requirements

IThreadPoolConfig::GetSize

STDMETHOD(GetSize)(int* pnNumThreads);

ParametersParameters

Return ValueReturn Value

This interface provides methods for configuring a thread pool.

This class and its members cannot be used in applications that execute in the Windows Runtime.

This interface is implemented by CThreadPool.

Header: atlutil.h

Call this method to get the number of threads in the pool.

pnNumThreads
[out] Address of the variable that, on success, receives the number of threads in the pool.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/ithreadpoolconfig-interface.md

ExampleExample

HRESULT DoPoolOperations(IThreadPoolConfig* pPool, int nSize)
{
 int nCurrSize = 0;
 HRESULT hr = pPool->GetSize(&nCurrSize);
 if (SUCCEEDED(hr))
 {
 printf_s("Current pool size: %d\n", nCurrSize);
 hr = pPool->SetSize(nSize);
 if (SUCCEEDED(hr))
 {
 printf_s("New pool size : %d\n", nSize);
 DWORD dwTimeout = 0;
 hr = pPool->GetTimeout(&dwTimeout);
 if (SUCCEEDED(hr))
 {
 printf_s("Current pool timeout: %u\n", dwTimeout);
 // Increase timeout by 10 seconds.
 dwTimeout += 10 * 1000;
 hr = pPool->SetTimeout(dwTimeout);
 if (SUCCEEDED(hr))
 {
 printf_s("New pool timeout: %u\n", dwTimeout);
 }
 else
 {
 printf_s("Failed to set pool timeout: 0x%08X\n", hr);
 }
 }
 else
 {
 printf_s("Failed to get pool timeout: 0x%08X\n", hr);
 }
 }
 else
 {
 printf_s("Failed to resize pool: 0x%08X\n", hr);
 }
 }
 else
 {
 printf_s("Failed to get pool size: 0x%08x\n", hr);
 }

 return hr;
}

IThreadPoolConfig::GetTimeout

STDMETHOD(GetTimeout)(DWORD* pdwMaxWait);

ParametersParameters

Return ValueReturn Value

Returns S_OK on success, or an error HRESULT on failure.

Call this method to get the maximum time in milliseconds that the thread pool will wait for a thread to shut down.

pdwMaxWait
[out] Address of the variable that, on success, receives the maximum time in milliseconds that the thread pool will
wait for a thread to shut down.

ExampleExample

IThreadPoolConfig::SetSize

STDMETHOD(SetSize)int nNumThreads);

ParametersParameters

Return ValueReturn Value

ExampleExample

IThreadPoolConfig::SetTimeout

STDMETHOD(SetTimeout)(DWORD dwMaxWait);

ParametersParameters

Return ValueReturn Value

ExampleExample

See also

Returns S_OK on success, or an error HRESULT on failure.

See IThreadPoolConfig::GetSize.

Call this method to set the number of threads in the pool.

nNumThreads
The requested number of threads in the pool.

If nNumThreads is negative, its absolute value will be multiplied by the number of processors in the machine to
get the total number of threads.

If nNumThreads is zero, ATLS_DEFAULT_THREADSPERPROC will be multiplied by the number of processors in
the machine to get the total number of threads.

Returns S_OK on success, or an error HRESULT on failure.

See IThreadPoolConfig::GetSize.

Call this method to set the maximum time in milliseconds that the thread pool will wait for a thread to shut down.

dwMaxWait
The requested maximum time in milliseconds that the thread pool will wait for a thread to shut down.

Returns S_OK on success, or an error HRESULT on failure.

See IThreadPoolConfig::GetSize.

Classes
CThreadPool Class

IViewObjectExImpl Class
3/4/2019 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<class T>
class ATL_NO_VTABLE IViewObjectExImpl
 : public IViewObjectEx

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IViewObjectExImpl::Draw Draws a representation of the control onto a device context.

IViewObjectExImpl::Freeze Freezes the drawn representation of a control so it won't
change until an Unfreeze . The ATL implementation returns
E_NOTIMPL.

IViewObjectExImpl::GetAdvise Retrieves an existing advisory sink connection on the control,
if there is one.

IViewObjectExImpl::GetColorSet Returns the logical palette used by the control for drawing.
The ATL implementation returns E_NOTIMPL.

IViewObjectExImpl::GetExtent Retrieves the control's display size in HIMETRIC units (0.01
millimeter per unit) from the control class data member
CComControlBase::m_sizeExtent.

IViewObjectExImpl::GetNaturalExtent Provides sizing hints from the container for the object to use
as the user resizes it.

IViewObjectExImpl::GetRect Returns a rectangle describing a requested drawing aspect.
The ATL implementation returns E_NOTIMPL.

IViewObjectExImpl::GetViewStatus Returns information about the opacity of the object and what
drawing aspects are supported.

This class implements IUnknown and provides default implementations of the IViewObject, IViewObject2, and
IViewObjectEx interfaces.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class, derived from IViewObjectExImpl .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iviewobjecteximpl-class.md
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-iviewobject
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-iviewobject2
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iviewobjectex

IViewObjectExImpl::QueryHitPoint Checks if the specified point is in the specified rectangle and
returns a HITRESULT value in pHitResult .

IViewObjectExImpl::QueryHitRect Checks whether the control's display rectangle overlaps any
point in the specified location rectangle and returns a
HITRESULT value in pHitResult .

IViewObjectExImpl::SetAdvise Sets up a connection between the control and an advise sink
so the sink can be notified about changes in the control's view.

IViewObjectExImpl::Unfreeze Unfreezes the drawn representation of the control. The ATL
implementation returns E_NOTIMPL.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

IViewObjectExImpl::Draw

STDMETHOD(Draw)(
 DWORD dwDrawAspect,
 LONG lindex,
 void* pvAspect,
 DVTARGETDEVICE* ptd,
 HDC hicTargetDev,
 LPCRECTL prcBounds,
 LPCRECTL prcWBounds,
 BOOL(_stdcall* /* pfnContinue*/) (DWORD_PTR dwContinue),
 DWORD_PTR /* dwContinue */);

RemarksRemarks

The IViewObject, IViewObject2, and IViewObjectEx interfaces enable a control to display itself directly, and to
create and manage an advise sink to notify the container of changes in the control display. The IViewObjectEx

interface provides support for extended control features such as flicker-free drawing, non-rectangular and
transparent controls, and hit-testing (for example, how close a mouse click must be to be considered on the
control). Class IViewObjectExImpl provides a default implementation of these interfaces and implements IUnknown

by sending information to the dump device in debug builds.

IViewObjectEx

IViewObjectExImpl

Header: atlctl.h

Draws a representation of the control onto a device context.

This method calls CComControl::OnDrawAdvanced which in turn calls your control class's OnDraw method. An OnDraw

method is automatically added to your control class when you create your control with the ATL Control Wizard.
The Wizard's default OnDraw draws a rectangle with the label "ATL 3.0".

See IViewObject::Draw in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/ocidl/ne-ocidl-taghitresult
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-iviewobject
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-iviewobject2
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iviewobjectex
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject-draw

IViewObjectExImpl::Freeze

STDMETHOD(Freeze)(
 DWORD /* dwAspect */,
 LONG /* lindex */,
 void* /* pvAspect */,
 DWORD* /* pdwFreeze */);

RemarksRemarks

IViewObjectExImpl::GetAdvise

STDMETHOD(GetAdvise)(
 DWORD* /* pAspects */,
 DWORD* /* pAdvf */,
 IAdviseSink** /* ppAdvSink */);

RemarksRemarks

IViewObjectExImpl::GetColorSet

STDMETHOD(GetColorSet)(
 DWORD /* dwAspect */,
 LONG /* lindex */,
 void* /* pvAspect */,
 DVTARGETDEVICE* /* ptd */,
 HDC /* hicTargetDevice */,
 LOGPALETTE** /* ppColorSet */);

RemarksRemarks

IViewObjectExImpl::GetExtent

STDMETHOD(GetExtent)(
 DWORD /* dwDrawAspect */,
 LONG /* lindex */,
 DVTARGETDEVICE* /* ptd */,
 LPSIZEL* lpsizel);

RemarksRemarks

Freezes the drawn representation of a control so it won't change until an Unfreeze . The ATL implementation
returns E_NOTIMPL.

See IViewObject::Freeze in the Windows SDK.

Retrieves an existing advisory sink connection on the control, if there is one.

The advisory sink is stored in the control class data member CComControlBase::m_spAdviseSink.

See IViewObject::GetAdvise in the Windows SDK.

Returns the logical palette used by the control for drawing. The ATL implementation returns E_NOTIMPL.

See IViewObject::GetColorSet in the Windows SDK.

Retrieves the control's display size in HIMETRIC units (0.01 millimeter per unit) from the control class data
member CComControlBase::m_sizeExtent.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject-freeze
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject-getadvise
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject-getcolorset

IViewObjectExImpl::GetNaturalExtent

STDMETHOD(GetNaturalExtent)(
 DWORD dwAspect,
 LONG /* lindex */,
 DVTARGETDEVICE* /* ptd */,
 HDC /* hicTargetDevice */,
 DVEXTENTINFO* pExtentInfo,
 LPSIZEL psizel);

RemarksRemarks

IViewObjectExImpl::GetRect

STDMETHOD(GetRect)(DWORD /* dwAspect */, LPRECTL /* pRect */);

RemarksRemarks

IViewObjectExImpl::GetViewStatus

STDMETHOD(GetViewStatus)(DWORD* pdwStatus);

RemarksRemarks

IViewObjectExImpl::QueryHitPoint

STDMETHOD(QueryHitPoint)(
 DWORD dwAspect,
 LPCRECT pRectBounds,
 POINT ptlLoc,
 LONG /* lCloseHit */,
 DWORD* /* pHitResult */);

RemarksRemarks

See IViewObject2::GetExtent in the Windows SDK.

Provides sizing hints from the container for the object to use as the user resizes it.

If dwAspect is DVASPECT_CONTENT and pExtentInfo->dwExtentMode is DVEXTENT_CONTENT, sets * psizel

to the control class's data member CComControlBase::m_sizeNatural. Otherwise, returns an error HRESULT.

See IViewObjectEx::GetNaturalExtent in the Windows SDK.

Returns a rectangle describing a requested drawing aspect. The ATL implementation returns E_NOTIMPL.

See IViewObjectEx::GetRect in the Windows SDK.

Returns information about the opacity of the object and what drawing aspects are supported.

By default, ATL sets pdwStatus to indicate that the control supports VIEWSTATUS_OPAQUE (possible values are
in the VIEWSTATUS enumeration).

See IViewObjectEx::GetViewStatus in the Windows SDK.

Checks if the specified point is in the specified rectangle and returns a HITRESULT value in pHitResult .

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject2-getextent
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iviewobjectex-getnaturalextent
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iviewobjectex-getrect
https://docs.microsoft.com/windows/desktop/api/ocidl/ne-ocidl-tagviewstatus
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iviewobjectex-getviewstatus
https://docs.microsoft.com/windows/desktop/api/ocidl/ne-ocidl-taghitresult

IViewObjectExImpl::QueryHitRect

STDMETHOD(QueryHitRect)(
 DWORD dwAspect,
 LPCRECT pRectBounds,
 LPRECT prcLoc,
 LONG /* lCloseHit */,
 DWORD* /* pHitResult */);

RemarksRemarks

IViewObjectExImpl::SetAdvise

STDMETHOD(SetAdvise)(
 DWORD /* aspects */,
 DWORD /* advf */,
 IAdviseSink* pAdvSink);

RemarksRemarks

IViewObjectExImpl::Unfreeze

STDMETHOD(Unfreeze)(DWORD /* dwFreeze */);

RemarksRemarks

IWorkerThreadClient::CloseHandle

The value can be either HITRESULT_HIT or HITRESULT_OUTSIDE.

If dwAspect equals DVASPECT_CONTENT, the method returns S_OK. Otherwise, the method returns E_FAIL.

See IViewObjectEx::QueryHitPoint in the Windows SDK.

Checks whether the control's display rectangle overlaps any point in the specified location rectangle and returns a
HITRESULT value in pHitResult .

The value can be either HITRESULT_HIT or HITRESULT_OUTSIDE.

If dwAspect equals DVASPECT_CONTENT, the method returns S_OK. Otherwise, the method returns E_FAIL.

See IViewObjectEx::QueryHitRect in the Windows SDK.

Sets up a connection between the control and an advise sink so the sink can be notified about changes in the
control's view.

The pointer to the IAdviseSink interface on the advise sink is stored in the control class data member
CComControlBase::m_spAdviseSink.

See IViewObject::SetAdvise in the Windows SDK.

Unfreezes the drawn representation of the control. The ATL implementation returns E_NOTIMPL.

See IViewObject::Unfreeze in the Windows SDK.

Implement this method to close the handle associated with this object.

https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-tagdvaspect
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iviewobjectex-queryhitpoint
https://docs.microsoft.com/windows/desktop/api/ocidl/ne-ocidl-taghitresult
https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-tagdvaspect
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iviewobjectex-queryhitrect
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-iadvisesink
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject-setadvise
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject-unfreeze

HRESULT CloseHandle(HANDLE hHandle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

HRESULT CloseHandle(HANDLE hObject)
{
 // Users should do any shutdown operation required here.
 // Generally, this means just closing the handle.

 if (!::CloseHandle(hObject))
 {
 // Closing the handle failed for some reason.
 return AtlHresultFromLastError();
 }

 return S_OK;
}

IWorkerThreadClient::Execute

HRESULT Execute(DWORD_PTR dwParam, HANDLE hObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

hHandle
The handle to be closed.

Return S_OK on success, or an error HRESULT on failure.

The handle passed to this method was previously associated with this object by a call to
CWorkerThread::AddHandle.

The following code shows a simple implementation of IWorkerThreadClient::CloseHandle .

Implement this method to execute code when the handle associated with this object becomes signaled.

dwParam
The user parameter.

hObject
The handle that has become signaled.

Return S_OK on success, or an error HRESULT on failure.

The handle and DWORD/pointer passed to this method were previously associated with this object by a call to
CWorkerThread::AddHandle.

The following code shows a simple implementation of IWorkerThreadClient::Execute .

HRESULT Execute(DWORD_PTR dwParam, HANDLE hObject)
{
 // Cast the parameter to its known type.
 LONG* pn = reinterpret_cast<LONG*>(dwParam);

 // Increment the LONG.
 LONG n = InterlockedIncrement(pn);

 // Log the results.
 printf_s("Handle 0x%08X incremented value to : %d\n", (DWORD_PTR)hObject, n);

 return S_OK;
}

See also
CComControl Class
ActiveX Controls Interfaces
Tutorial
Creating an ATL Project
Class Overview

https://docs.microsoft.com/windows/desktop/com/activex-controls-interfaces

IWorkerThreadClient Interface
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
__interface IWorkerThreadClient

Members
MethodsMethods

CloseHandle Implement this method to close the handle associated with
this object.

Execute Implement this method to execute code when the handle
associated with this object becomes signaled.

Remarks

Requirements

IWorkerThreadClient::CloseHandle

HRESULT CloseHandle(HANDLE hHandle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IWorkerThreadClient is the interface implemented by clients of the CWorkerThread class.

This class and its members cannot be used in applications that execute in the Windows Runtime.

Implement this interface when you have code that needs to execute on a worker thread in response to a handle
becoming signaled.

Header: atlutil.h

Implement this method to close the handle associated with this object.

hHandle
The handle to be closed.

Return S_OK on success, or an error HRESULT on failure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/iworkerthreadclient-interface.md

ExampleExample

HRESULT CloseHandle(HANDLE hObject)
{
 // Users should do any shutdown operation required here.
 // Generally, this means just closing the handle.

 if (!::CloseHandle(hObject))
 {
 // Closing the handle failed for some reason.
 return AtlHresultFromLastError();
 }

 return S_OK;
}

IWorkerThreadClient::Execute

HRESULT Execute(DWORD_PTR dwParam, HANDLE hObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

HRESULT Execute(DWORD_PTR dwParam, HANDLE hObject)
{
 // Cast the parameter to its known type.
 LONG* pn = reinterpret_cast<LONG*>(dwParam);

 // Increment the LONG.
 LONG n = InterlockedIncrement(pn);

 // Log the results.
 printf_s("Handle 0x%08X incremented value to : %d\n", (DWORD_PTR)hObject, n);

 return S_OK;
}

The handle passed to this method was previously associated with this object by a call to
CWorkerThread::AddHandle.

The following code shows a simple implementation of IWorkerThreadClient::CloseHandle .

Implement this method to execute code when the handle associated with this object becomes signaled.

dwParam
The user parameter.

hObject
The handle that has become signaled.

Return S_OK on success, or an error HRESULT on failure.

The handle and DWORD/pointer passed to this method were previously associated with this object by a call to
CWorkerThread::AddHandle.

The following code shows a simple implementation of IWorkerThreadClient::Execute .

See also
Classes
CWorkerThread Class

Win32ThreadTraits Class
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class Win32ThreadTraits

Members
Public MethodsPublic Methods

NAME DESCRIPTION

Win32ThreadTraits::CreateThread (Static) Call this function to create a thread that should not
use CRT functions.

Remarks

Requirements

Win32ThreadTraits::CreateThread

This class provides the creation function for a Windows thread. Use this class if the thread will not use CRT
functions.

This class and its members cannot be used in applications that execute in the Windows Runtime.

Thread traits are classes that provide a creation function for a particular type of thread. The creation function has
the same signature and semantics as the Windows CreateThread function.

Thread traits are used by the following classes:

CThreadPool

CWorkerThread

If the thread will be using CRT functions, use CRTThreadTraits instead.

Header: atlbase.h

Call this function to create a thread that should not use CRT functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/win32threadtraits-class.md
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createthread

static HANDLE CreateThread(
 LPSECURITY_ATTRIBUTES lpsa,
 DWORD dwStackSize,
 LPTHREAD_START_ROUTINE pfnThreadProc,
 void* pvParam,
 DWORD dwCreationFlags,
 DWORD* pdwThreadId) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

lpsa
The security attributes for the new thread.

dwStackSize
The stack size for the new thread.

pfnThreadProc
The thread procedure of the new thread.

pvParam
The parameter to be passed to the thread procedure.

dwCreationFlags
The creation flags (0 or CREATE_SUSPENDED).

pdwThreadId
[out] Address of the DWORD variable that, on success, receives the thread ID of the newly created thread.

Returns the handle to the newly created thread or NULL on failure. Call GetLastError to get extended error
information.

See CreateThread for further information on the parameters to this function.

This function calls CreateThread to create the thread.

Class Overview

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-createthread

Worker Archetype
3/4/2019 • 2 minutes to read • Edit Online

METHOD DESCRIPTION

Initialize Called to initialize the worker object before any requests are
passed to Execute.

Execute Called to process a work item.

Terminate Called to uninitialize the worker object after all requests have
been passed to Execute.

TYPEDEF DESCRIPTION

RequestType A typedef for the type of work item that can be processed by
the worker class.

class CMyWorker
{
public:
 typedef MyRequestType RequestType;

 BOOL Initialize(void* pvWorkerParam);

 void Execute(MyRequestType request, void* pvWorkerParam, OVERLAPPED* pOverlapped);

 void Terminate(void* pvWorkerParam);
};

CLASS DESCRIPTION

CNonStatelessWorker Receives requests from the thread pool and passes them on
to a worker object that is created and destroyed for each
request.

Classes that conform to the worker archetype provide the code to process work items queued on a thread pool.

Implementation

To implement a class conforming to this archetype, the class must provide the following features:

A typical worker class looks like this:

Existing Implementations

These classes conform to this archetype:

Use

These template parameters expect the class to conform to this archetype:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/worker-archetype.md

PARAMETER NAME USED BY

Worker CThreadPool

Worker CNonStatelessWorker

RequirementsRequirements

WorkerArchetype::Execute

void Execute(
 RequestType request,
 void* pvWorkerParam,
 OVERLAPPED* pOverlapped);

ParametersParameters

WorkerArchetype::Initialize

BOOL Initialize(void* pvParam) throw();

ParametersParameters

Return ValueReturn Value

WorkerArchetype::RequestType

typedef MyRequestType RequestType;

RemarksRemarks

Header: atlutil.h

Called to process a work item.

request
The work item to be processed. The work item is of the same type as RequestType .

pvWorkerParam
A custom parameter understood by the worker class. Also passed to WorkerArchetype::Initialize and Terminate .

pOverlapped
A pointer to the OVERLAPPED structure used to create the queue on which work items were queued.

Called to initialize the worker object before any requests are passed to WorkerArchetype::Execute .

pvParam
A custom parameter understood by the worker class. Also passed to WorkerArchetype::Terminate and
WorkerArchetype::Execute .

Return TRUE on success, FALSE on failure.

A typedef for the type of work item that can be processed by the worker class.

This type must be used as the first parameter of WorkerArchetype::Execute and must be capable of being cast to
and from a ULONG_PTR.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_overlapped

 WorkerArchetype::Terminate

void Terminate(void* pvParam) throw();

ParametersParameters

See also

Called to uninitialize the worker object after all requests have been passed to WorkerArchetype::Execute).

pvParam
A custom parameter understood by the worker class. Also passed to WorkerArchetype::Initialize and
WorkerArchetype::Execute .

Concepts
ATL COM Desktop Components

ATL_URL_SCHEME
3/4/2019 • 2 minutes to read • Edit Online

Syntax
enum ATL_URL_SCHEME{
 ATL_URL_SCHEME_UNKNOWN = -1,
 ATL_URL_SCHEME_FTP = 0,
 ATL_URL_SCHEME_GOPHER = 1,
 ATL_URL_SCHEME_HTTP = 2,
 ATL_URL_SCHEME_HTTPS = 3,
 ATL_URL_SCHEME_FILE = 4,
 ATL_URL_SCHEME_NEWS = 5,
 ATL_URL_SCHEME_MAILTO = 6,
 ATL_URL_SCHEME_SOCKS = 7
};

Requirements

See also

The members of this enumeration provide constants for the schemes understood by CUrl.

Header: atlutil.h

Concepts
CUrl::SetScheme
CUrl::GetScheme

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-url-scheme-enum.md

ATL Functions
3/4/2019 • 2 minutes to read • Edit Online

See also

To find an ATL function by category, see the following topics.

ATL Path Functions
Provide support for manipulating file paths.

COM Map Global Functions
Provide support for COM map IUnknown implementations.

Composite Control Global Functions
Provide support for creating dialog boxes, and for creating, hosting and licensing ActiveX controls.

Connection Point Global Functions
Provide support for connection points and sink maps.

Debugging and Error Reporting Global Functions
Provide useful debugging and trace facilities.

Device Context Global Functions
Creates a device context for a given device.

Event Handling Global Functions
Provides an event handler.

Marshaling Global Functions
Provide support for marshaling and converting marshaling data into interface pointers.

Pixel/HIMETRIC Conversion Global Functions
Provide support for converting to and from pixel and HIMETRIC units.

Registry and TypeLib Global Functions
Provide support for loading and registering a type library.

Security Global Functions
Provide support for modifying SID and ACL objects.

Security Identifier Global Functions
Return common well-known SID objects.

Server Registration Global Functions
Provide support for registering and unregistering server objects in the object map.

WinModule Global Functions
Provide support for _AtlCreateWndData structure operations.

ATL COM Desktop Components
Macros
Global Variables
Typedefs
Classes and structs

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-functions.md

ATL HTTP Utility Functions
3/4/2019 • 5 minutes to read • Edit Online

AtlCanonicalizeUrl Canonicalizes a URL, which includes converting unsafe
characters and spaces into escape sequences.

AtlCombineUrl Combines a base URL and a relative URL into a single,
canonical URL.

AtlEscapeUrl Converts all unsafe characters to escape sequences.

AtlGetDefaultUrlPort Gets the default port number associated with a particular
Internet protocol or scheme.

AtlIsUnsafeUrlChar Determines whether a character is safe for use in a URL.

AtlUnescapeUrl Converts escaped characters back to their original values.

RGBToHtml Converts a COLORREF value to the HTML text corresponding
to that color value.

SystemTimeToHttpDate Call this function to convert a system time to a string in a
format suitable for using in HTTP headers.

Requirements

AtlCanonicalizeUrl

inline BOOL AtlCanonicalizeUrl(
 LPCTSTR szUrl,
 LPTSTR szCanonicalized,
 DWORD* pdwMaxLength,
 DWORD dwFlags = 0) throw();

ParametersParameters

These functions support manipulation of URLs.

Header: atlutil.h

Call this function to canonicalize a URL, which includes converting unsafe characters and spaces into escape
sequences.

szUrl
The URL to be canonicalized.

szCanonicalized
Caller-allocated buffer to receive the canonicalized URL.

pdwMaxLength
Pointer to a variable that contains the length in characters of szCanonicalized. If the function succeeds, the variable

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-http-utility-functions.md
https://docs.microsoft.com/windows/desktop/gdi/colorref

Return ValueReturn Value

RemarksRemarks

AtlCombineUrl

inline BOOL AtlCombineUrl(
 LPCTSTR szBaseUrl,
 LPCTSTR szRelativeUrl,
 LPTSTR szBuffer,
 DWORD* pdwMaxLength,
 DWORD dwFlags = 0) throw();

ParametersParameters

receives the number of characters written to the buffer including the terminating null character. If the function fails,
the variable receives the required length in bytes of the buffer including space for the terminating null character.

dwFlags
ATL_URL flags controlling the behavior of this function.

ATL_URL_BROWSER_MODE Does not encode or decode characters after "#" or "?", and does not remove
trailing white space after "?". If this value is not specified, the entire URL is encoded and trailing white space
is removed.

ATL_URL_DECODE Converts all %XX sequences to characters, including escape sequences, before the URL
is parsed.

ATL_URL_ENCODE_PERCENT Encodes any percent signs encountered. By default, percent signs are not
encoded.

ATL_URL_ENCODE_SPACES_ONLY Encodes spaces only.

ATL_URL_ESCAPE Converts all escape sequences (%XX) to their corresponding characters.

ATL_URL_NO_ENCODE Does not convert unsafe characters to escape sequences.

ATL_URL_NO_META Does not remove meta sequences (such as "." and "..") from the URL.

Returns TRUE on success, FALSE on failure.

Behaves like the current version of InternetCanonicalizeUrl but does not require WinInet or Internet Explorer to be
installed.

Call this function to combine a base URL and a relative URL into a single, canonical URL.

szBaseUrl
The base URL.

szRelativeUrl
The URL relative to the base URL.

szBuffer
Caller-allocated buffer to receive the canonicalized URL.

pdwMaxLength
Pointer to a variable that contains the length in characters of szBuffer. If the function succeeds, the variable receives
the number of characters written to the buffer including the terminating null character. If the function fails, the
variable receives the required length in bytes of the buffer including space for the terminating null character.

dwFlags

https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-internetcanonicalizeurla

Return ValueReturn Value

RemarksRemarks

AtlEscapeUrl

inline BOOL AtlEscapeUrl(
 LPCSTR szStringIn,
 LPSTR szStringOut,
 DWORD* pdwStrLen,
 DWORD dwMaxLength,
 DWORD dwFlags = 0) throw();

inline BOOL AtlEscapeUrl(
 LPCWSTR szStringIn,
 LPWSTR szStringOut,
 DWORD* pdwStrLen,
 DWORD dwMaxLength,
 DWORD dwFlags = 0) throw();

ParametersParameters

Return ValueReturn Value

AtlGetDefaultUrlPort

inline ATL_URL_PORT AtlGetDefaultUrlPort(ATL_URL_SCHEME m_nScheme) throw();

ParametersParameters

Flags controlling the behavior of this function. See AtlCanonicalizeUrl.

Returns TRUE on success, FALSE on failure.

Behaves like the current version of InternetCombineUrl but does not require WinInet or Internet Explorer to be
installed.

Call this function to convert all unsafe characters to escape sequences.

lpszStringIn
The URL to be converted.

lpszStringOut
Caller-allocated buffer to which the converted URL will be written.

pdwStrLen
Pointer to a DWORD variable. If the function succeeds, pdwStrLen receives the number of characters written to the
buffer including the terminating null character. If the function fails, the variable receives the required length in bytes
of the buffer including space for the terminating null character. When using the wide character version of this
method, pdwStrLen receives the number of characters required, not the number of bytes.

dwMaxLength
The size of the buffer lpszStringOut.

dwFlags
ATL_URL flags controlling the behavior of this function. See ATLCanonicalizeUrl for possible values.

Returns TRUE on success, FALSE on failure.

Call this function to get the default port number associated with a particular Internet protocol or scheme.

https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-internetcombineurla

Return ValueReturn Value

AtlIsUnsafeUrlChar

inline BOOL AtlIsUnsafeUrlChar(char chIn) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AtlUnescapeUrl

inline BOOL AtlUnescapeUrl(
 LPCSTR szStringIn,
 LPSTR szStringOut,
 LPDWORD pdwStrLen,
 DWORD dwMaxLength) throw();

inline BOOL AtlUnescapeUrl(
 LPCWSTR szStringIn,
 LPWSTR szStringOut,
 LPDWORD pdwStrLen,
 DWORD dwMaxLength) throw();

ParametersParameters

Return ValueReturn Value

m_nScheme
The ATL_URL_SCHEME value identifying the scheme for which you want to obtain the port number.

The ATL_URL_PORT associated with the specified scheme or ATL_URL_INVALID_PORT_NUMBER if the scheme
is not recognized.

Call this function to find out whether a character is safe for use in a URL.

chIn
The character to be tested for safety.

Returns TRUE if the input character is unsafe, FALSE otherwise.

Characters that should not be used in URLs can be tested using this function and converted using
AtlCanonicalizeUrl.

Call this function to convert escaped characters back to their original values.

lpszStringIn
The URL to be converted.

lpszStringOut
Caller-allocated buffer to which the converted URL will be written.

pdwStrLen
Pointer to a DWORD variable. If the function succeeds, the variable receives the number of characters written to
the buffer including the terminating null character. If the function fails, the variable receives the required length in
bytes of the buffer including space for the terminating null character.

dwMaxLength
The size of the buffer lpszStringOut.

RemarksRemarks

RGBToHtml

bool inline RGBToHtml(
 COLORREF color,
 LPTSTR pbOut,
 long nBuffer);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

SystemTimeToHttpDate

inline void SystemTimeToHttpDate(
 const SYSTEMTIME& st,
 CStringA& strTime);

ParametersParameters

See also

Returns TRUE on success, FALSE on failure.

Reverses the conversion process applied by AtlEscapeUrl.

Converts a COLORREF value to the HTML text corresponding to that color value.

color
An RGB color value.

pbOut
Caller-allocated buffer to receive the text for the HTML color value. The buffer must have space for at least 8
characters including space for the null terminator).

nBuffer
The size in bytes of the buffer (including space for the null terminator).

Returns TRUE on success, FALSE on failure.

An HTML color value is a pound sign followed by a 6-digit hexadecimal value using 2 digits for each of the red,
green, and blue components of the color (for example, #FFFFFF is white).

Call this function to convert a system time to a string in a format suitable for using in HTTP headers.

st
The system time to be obtained as an HTTP format string.

strTime
A reference to a string variable to receive the HTTP date time as defined in RFC 2616
(http://www.ietf.org/rfc/rfc2616.txt) and RFC 1123 (http://www.ietf.org/rfc/rfc1123.txt).

Concepts
ATL COM Desktop Components
InternetCanonicalizeUrl

https://docs.microsoft.com/windows/desktop/gdi/colorref
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc1123.txt
https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-internetcanonicalizeurla

ATL Text Encoding Functions
3/4/2019 • 13 minutes to read • Edit Online

AtlGetHexValue Call this function to get the numeric value of a hexadecimal
digit.

AtlGetVersion Call this function to get the version of the ATL library that you
are using.

AtlHexDecode Decodes a string of data that has been encoded as
hexadecimal text such as by a previous call to AtlHexEncode.

AtlHexDecodeGetRequiredLength Call this function to get the size in bytes of a buffer that could
contain data decoded from a hex-encoded string of the
specified length.

AtlHexEncode Call this function to encode some data as a string of
hexadecimal text.

AtlHexEncodeGetRequiredLength Call this function to get the size in characters of a buffer that
could contain a string encoded from data of the specified size.

AtlHexValue Call this function to get the numeric value of a hexadecimal
digit.

AtlUnicodeToUTF8 Call this function to convert a Unicode string to UTF-8.

BEncode Call this function to convert some data using the "B"
encoding.

BEncodeGetRequiredLength Call this function to get the size in characters of a buffer that
could contain a string encoded from data of the specified size.

EscapeXML Call this function to convert characters that are unsafe for use
in XML to their safe equivalents.

GetExtendedChars Call this function to get the number of extended characters in
a string.

IsExtendedChar Call this function to find out if a given character is an extended
character (less than 32, greater than 126, and not a tab,
linefeed or carriage return)

QEncode Call this function to convert some data using the "Q"
encoding.

QEncodeGetRequiredLength Call this function to get the size in characters of a buffer that
could contain a string encoded from data of the specified size.

These functions support text encoding and decoding.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-text-encoding-functions.md

QPDecode Decodes a string of data that has been encoded in quoted-
printable format such as by a previous call to QPEncode.

QPDecodeGetRequiredLength Call this function to get the size in bytes of a buffer that could
contain data decoded from quoted-printable-encoded string
of the specified length.

QPEncode Call this function to encode some data in quoted-printable
format.

QPEncodeGetRequiredLength Call this function to get the size in characters of a buffer that
could contain a string encoded from data of the specified size.

UUDecode Decodes a string of data that has been uuencoded such as by
a previous call to UUEncode.

UUDecodeGetRequiredLength Call this function to get the size in bytes of a buffer that could
contain data decoded from a uuencoded string of the specified
length.

UUEncode Call this function to uuencode some data.

UUEncodeGetRequiredLength Call this function to get the size in characters of a buffer that
could contain a string encoded from data of the specified size.

Requirements

AtlGetHexValue

inline char AtlGetHexValue(char chIn) throw();

ParametersParameters

Return ValueReturn Value

AtlGetVersion

ATLAPI_(DWORD) AtlGetVersion(void* pReserved);

ParametersParameters

Header: atlenc.h

Call this function to get the numeric value of a hexadecimal digit.

chIn
The hexadecimal character '0'-'9', 'A'-'F', or 'a'-'f'.

The numeric value of the input character interpreted as a hexadecimal digit. For example, an input of '0' returns a
value of 0 and an input of 'A' returns a value of 10. If the input character is not a hexadecimal digit, this function
returns -1.

Call this function to get the version of the ATL library that you are using.

Return ValueReturn Value

Example

DWORD ver;
ver = AtlGetVersion(NULL);

RequirementsRequirements

AtlHexDecode

inline BOOL AtlHexDecode(
 LPCSTR pSrcData,
 int nSrcLen,
 LPBYTE pbDest,
 int* pnDestLen) throw();

ParametersParameters

Return ValueReturn Value

AtlHexDecodeGetRequiredLength

inline int AtlHexDecodeGetRequiredLength(int nSrcLen) throw();

ParametersParameters

pReserved
A reserved pointer.

Returns a DWORD integer value of the version of the ATL library that you are compiling or running.

The function should be called as follows.

Header: atlbase.h

Decodes a string of data that has been encoded as hexadecimal text such as by a previous call to AtlHexEncode.

pSrcData
The string containing the data to be decoded.

nSrcLen
The length in characters of pSrcData.

pbDest
Caller-allocated buffer to receive the decoded data.

pnDestLen
Pointer to a variable that contains the length in bytes of pbDest. If the function succeeds, the variable receives the
number of bytes written to the buffer. If the function fails, the variable receives the required length in bytes of the
buffer.

Returns TRUE on success, FALSE on failure.

Call this function to get the size in bytes of a buffer that could contain data decoded from a hex-encoded string of
the specified length.

nSrcLen

Return ValueReturn Value

AtlHexEncode

inline BOOL AtlHexEncode(
 const BYTE * pbSrcData,
 int nSrcLen,
 LPSTR szDest,
int * pnDestLen) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AtlHexEncodeGetRequiredLength

inline int AtlHexEncodeGetRequiredLength(int nSrcLen) throw();

ParametersParameters

Return ValueReturn Value

AtlHexValue

The number of characters in the encoded string.

The number of bytes required for a buffer that could hold a decoded string of nSrcLen characters.

Call this function to encode some data as a string of hexadecimal text.

pbSrcData
The buffer containing the data to be encoded.

nSrcLen
The length in bytes of the data to be encoded.

szDest
Caller-allocated buffer to receive the encoded data.

pnDestLen
Pointer to a variable that contains the length in characters of szDest. If the function succeeds, the variable receives
the number of characters written to the buffer. If the function fails, the variable receives the required length in
characters of the buffer.

Returns TRUE on success, FALSE on failure.

Each byte of source data is encoded as 2 hexadecimal characters.

Call this function to get the size in characters of a buffer that could contain a string encoded from data of the
specified size.

nSrcLen
The number of bytes of data to be encoded.

The number of characters required for a buffer that could hold encoded data of nSrcLen bytes.

Call this function to get the numeric value of a hexadecimal digit.

inline short AtlHexValue(char chIn) throw();

ParametersParameters

Return ValueReturn Value

AtlUnicodeToUTF8

ATL_NOINLINE inline int AtlUnicodeToUTF8(
 LPCWSTR wszSrc,
 int nSrc,
 LPSTR szDest,
 int nDest) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

BEncode

inline BOOL BEncode(
 BYTE* pbSrcData,
 int nSrcLen,
 LPSTR szDest,
 int* pnDestLen,
 LPCSTR pszCharSet) throw();

ParametersParameters

chIn
The hexadecimal character '0'-'9', 'A'-'F', or 'a'-'f'.

The numeric value of the input character interpreted as a hexadecimal digit. For example, an input of '0' returns a
value of 0 and an input of 'A' returns a value of 10. If the input character is not a hexadecimal digit, this function
returns -1.

Call this function to convert a Unicode string to UTF-8.

wszSrc
The Unicode string to be converted

nSrc
The length in characters of the Unicode string.

szDest
Caller-allocated buffer to receive the converted string.

nDest
The length in bytes of the buffer.

Returns the number of characters for the converted string.

To determine the size of the buffer required for the converted string, call this function passing 0 for szDest and
nDest.

Call this function to convert some data using the "B" encoding.

pbSrcData

Return ValueReturn Value

RemarksRemarks

BEncodeGetRequiredLength

inline int BEncodeGetRequiredLength(int nSrcLen, int nCharsetLen) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

EscapeXML

inline int EscapeXML(
 const wchar_t * szIn,
 int nSrcLen,
 wchar_t * szEsc,
 int nDestLen,
 DWORD dwFlags = ATL_ESC_FLAG_NONE) throw();

ParametersParameters

The buffer containing the data to be encoded.

nSrcLen
The length in bytes of the data to be encoded.

szDest
Caller-allocated buffer to receive the encoded data.

pnDestLen
Pointer to a variable that contains the length in characters of szDest. If the function succeeds, the variable receives
the number of characters written to the buffer. If the function fails, the variable receives the required length in
characters of the buffer.

pszCharSet
The character set to use for the conversion.

Returns TRUE on success, FALSE on failure.

The "B" encoding scheme is described in RFC 2047 (http://www.ietf.org/rfc/rfc2047.txt).

Call this function to get the size in characters of a buffer that could contain a string encoded from data of the
specified size.

nSrcLen
The number of bytes of data to be encoded.

nCharsetLen
The length in characters of the character set to use for the conversion.

The number of characters required for a buffer that could hold encoded data of nSrcLen bytes.

The "B" encoding scheme is described in RFC 2047 (http://www.ietf.org/rfc/rfc2047.txt).

Call this function to convert characters that are unsafe for use in XML to their safe equivalents.

szIn

http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2047.txt

Return ValueReturn Value

RemarksRemarks

SOURCE DESTINATION

< <

> >

& &

' '

" "

GetExtendedChars

inline int GetExtendedChars(LPCSTR szSrc, int nSrcLen) throw();

ParametersParameters

Return ValueReturn Value

IsExtendedChar

The string to be converted.

nSrclen
The length in characters of the string to be converted.

szEsc
Caller-allocated buffer to receive the converted string.

nDestLen
The length in characters of the caller-allocated buffer.

dwFlags
ATL_ESC Flags describing how the conversion is to be performed.

ATL_ESC_FLAG_NONE Default behavior. Quote marks and apostrophes are not converted.
ATL_ESC_FLAG_ATTR Quote marks and apostrophes are converted to " and ' respectively.

The length in characters of the converted string.

Possible conversions performed by this function are shown in the table:

Call this function to get the number of extended characters in a string.

szSrc
The string to be analyzed.

nSrcLen
The length of the string in characters.

Returns the number of extended characters found within the string as determined by IsExtendedChar.

Call this function to find out if a given character is an extended character (less than 32, greater than 126, and not a
tab, linefeed or carriage return)

inline int IsExtendedChar(char ch) throw();

ParametersParameters

Return ValueReturn Value

QEncode

inline BOOL QEncode(
 BYTE* pbSrcData,
 int nSrcLen,
 LPSTR szDest,
 int* pnDestLen,
 LPCSTR pszCharSet,
 int* pnNumEncoded = NULL) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

QEncodeGetRequiredLength

inline int QEncodeGetRequiredLength(int nSrcLen, int nCharsetLen) throw();

ch
The character to be tested

TRUE if the character is extended, FALSE otherwise.

Call this function to convert some data using the "Q" encoding.

pbSrcData
The buffer containing the data to be encoded.

nSrcLen
The length in bytes of the data to be encoded.

szDest
Caller-allocated buffer to receive the encoded data.

pnDestLen
Pointer to a variable that contains the length in characters of szDest. If the function succeeds, the variable receives
the number of characters written to the buffer. If the function fails, the variable receives the required length in
characters of the buffer.

pszCharSet
The character set to use for the conversion.

pnNumEncoded
A pointer to a variable that on return contains the number of unsafe characters that had to be converted.

Returns TRUE on success, FALSE on failure.

The "Q" encoding scheme is described in RFC 2047 (http://www.ietf.org/rfc/rfc2047.txt).

Call this function to get the size in characters of a buffer that could contain a string encoded from data of the
specified size.

http://www.ietf.org/rfc/rfc2047.txt

ParametersParameters

Return ValueReturn Value

RemarksRemarks

QPDecode

inline BOOL QPDecode(
 BYTE* pbSrcData,
 int nSrcLen,
 LPSTR szDest,
 int* pnDestLen,
 DWORD dwFlags = 0) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

QPDecodeGetRequiredLength

inline int QPDecodeGetRequiredLength(int nSrcLen) throw();

nSrcLen
The number of bytes of data to be encoded.

nCharsetLen
The length in characters of the character set to use for the conversion.

The number of characters required for a buffer that could hold encoded data of nSrcLen bytes.

The "Q" encoding scheme is described in RFC 2047 (http://www.ietf.org/rfc/rfc2047.txt).

Decodes a string of data that has been encoded in quoted-printable format such as by a previous call to QPEncode.

pbSrcData
[in] The buffer containing the data to be decoded.

nSrcLen
[in] The length in bytes of pbSrcData.

szDest
[out] Caller-allocated buffer to receive the decoded data.

pnDestLen
[out] Pointer to a variable that contains the length in bytes of szDest. If the function succeeds, the variable receives
the number of bytes written to the buffer. If the function fails, the variable receives the required length in bytes of
the buffer.

dwFlags
[in] ATLSMTP_QPENCODE flags describing how the conversion is to be performed.

Returns TRUE on success, FALSE on failure.

The quoted-printable encoding scheme is described in RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt).

Call this function to get the size in bytes of a buffer that could contain data decoded from quoted-printable-
encoded string of the specified length.

http://www.ietf.org/rfc/rfc2047.txt
http://www.ietf.org/rfc/rfc2045.txt

ParametersParameters

Return ValueReturn Value

RemarksRemarks

QPEncode

inline BOOL QPEncode(
 BYTE* pbSrcData,
 int nSrcLen,
 LPSTR szDest,
 int* pnDestLen,
 DWORD dwFlags = 0) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

QPEncodeGetRequiredLength

nSrcLen
The number of characters in the encoded string.

The number of bytes required for a buffer that could hold a decoded string of nSrcLen characters.

The quoted-printable encoding scheme is described in RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt).

Call this function to encode some data in quoted-printable format.

pbSrcData
The buffer containing the data to be encoded.

nSrcLen
The length in bytes of the data to be encoded.

szDest
Caller-allocated buffer to receive the encoded data.

pnDestLen
Pointer to a variable that contains the length in characters of szDest. If the function succeeds, the variable receives
the number of characters written to the buffer. If the function fails, the variable receives the required length in
characters of the buffer.

dwFlags
ATLSMTP_QPENCODE flags describing how the conversion is to be performed.

ATLSMTP_QPENCODE_DOT If a period appears at the start of a line, it is added to the output as well as
encoded.

ATLSMTP_QPENCODE_TRAILING_SOFT Appends =\r\n to the encoded string.

The quoted-printable encoding scheme is described in RFC 2045.

Returns TRUE on success, FALSE on failure.

The quoted-printable encoding scheme is described in RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt).

Call this function to get the size in characters of a buffer that could contain a string encoded from data of the
specified size.

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

inline int QPEncodeGetRequiredLength(int nSrcLen) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

UUDecode

inline BOOL UUDecode(
 BYTE* pbSrcData,
 int nSrcLen,
 BYTE* pbDest,
 int* pnDestLen) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

UUDecodeGetRequiredLength

inline int UUDecodeGetRequiredLength(int nSrcLen) throw ();

ParametersParameters

nSrcLen
The number of bytes of data to be encoded.

The number of characters required for a buffer that could hold encoded data of nSrcLen bytes.

The quoted-printable encoding scheme is described in RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt).

Decodes a string of data that has been uuencoded such as by a previous call to UUEncode.

pbSrcData
The string containing the data to be decoded.

nSrcLen
The length in bytes of pbSrcData.

pbDest
Caller-allocated buffer to receive the decoded data.

pnDestLen
Pointer to a variable that contains the length in bytes of pbDest. If the function succeeds, the variable receives the
number of bytes written to the buffer. If the function fails, the variable receives the required length in bytes of the
buffer.

Returns TRUE on success, FALSE on failure.

This uuencoding implementation follows the POSIX P1003.2b/D11 specification.

Call this function to get the size in bytes of a buffer that could contain data decoded from a uuencoded string of the
specified length.

nSrcLen
The number of characters in the encoded string.

http://www.ietf.org/rfc/rfc2045.txt

Return ValueReturn Value

RemarksRemarks

UUEncode

inline BOOL UUEncode(
 const BYTE* pbSrcData,
 int nSrcLen,
 LPSTR szDest,
 int* pnDestLen,
 LPCTSTR lpszFile = _T("file"),
 DWORD dwFlags = 0) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

UUEncodeGetRequiredLength

The number of bytes required for a buffer that could hold a decoded string of nSrcLen characters.

This uuencoding implementation follows the POSIX P1003.2b/D11 specification.

Call this function to uuencode some data.

pbSrcData
The buffer containing the data to be encoded.

nSrcLen
The length in bytes of the data to be encoded.

szDest
Caller-allocated buffer to receive the encoded data.

pnDestLen
Pointer to a variable that contains the length in characters of szDest. If the function succeeds, the variable receives
the number of characters written to the buffer. If the function fails, the variable receives the required length in
characters of the buffer.

lpszFile
The file to be added to the header when ATLSMTP_UUENCODE_HEADER is specified in dwFlags.

dwFlags
Flags controlling the behavior of this function.

ATLSMTP_UUENCODE_HEADE The header will be encoded.

ATLSMTP_UUENCODE_END The end will be encoded.

ATLSMTP_UUENCODE_DOT Data stuffing will be performed.

Returns TRUE on success, FALSE on failure.

This uuencoding implementation follows the POSIX P1003.2b/D11 specification.

Call this function to get the size in characters of a buffer that could contain a string encoded from data of the
specified size.

inline int UUEncodeGetRequiredLength(int nSrcLen) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

nSrcLen
The number of bytes of data to be encoded.

The number of characters required for a buffer that could hold encoded data of nSrcLen bytes.

This uuencoding implementation follows the POSIX P1003.2b/D11 specification.

Concepts
ATL COM Desktop Components

ATL Path functions
3/4/2019 • 6 minutes to read • Edit Online

Related ClassesRelated Classes

CPathT Class This class represents a path.

Related TypedefsRelated Typedefs

CPath A specialization of CPathT using CString .

CPathA A specialization of CPathT using CStringA .

CPathW A specialization of CPathT using CStringW .

FunctionsFunctions

ATLPath::AddBackslash This function is an overloaded wrapper for PathAddBackslash.

ATLPath::AddExtension This function is an overloaded wrapper for PathAddExtension.

ATLPath::Append This function is an overloaded wrapper for PathAppend.

ATLPath::BuildRoot This function is an overloaded wrapper for PathBuildRoot.

ATLPath::Canonicalize This function is an overloaded wrapper for PathCanonicalize.

ATLPath::Combine This function is an overloaded wrapper for PathCombine.

ATLPath::CommonPrefix This function is an overloaded wrapper for PathCommonPrefix.

ATLPath::CompactPath This function is an overloaded wrapper for PathCompactPath.

ATLPath::CompactPathEx This function is an overloaded wrapper for
PathCompactPathEx.

ATLPath::FileExists This function is an overloaded wrapper for PathFileExists.

ATLPath::FindExtension This function is an overloaded wrapper for PathFindExtension.

ATLPath::FindFileName This function is an overloaded wrapper for PathFindFileName.

ATLPath::GetDriveNumber This function is an overloaded wrapper for
PathGetDriveNumber.

ATL provides the ATLPath class for manipulating paths in the form of CPathT. This code can be found in atlpath.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-path-functions.md
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathaddbackslasha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathaddextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathappenda
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathbuildroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcanonicalizea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcombinea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcommonprefixa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcompactpatha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcompactpathexa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfileexistsa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindfilenamea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathgetdrivenumbera

ATLPath::IsDirectory This function is an overloaded wrapper for PathIsDirectory.

ATLPath::IsFileSpec This function is an overloaded wrapper for PathIsFileSpec.

ATLPath::IsPrefix This function is an overloaded wrapper for PathIsPrefix.

ATLPath::IsRelative This function is an overloaded wrapper for PathIsRelative.

ATLPath::IsRoot This function is an overloaded wrapper for PathIsRoot.

ATLPath::IsSameRoot This function is an overloaded wrapper for PathIsSameRoot.

ATLPath::IsUNC This function is an overloaded wrapper for PathIsUNC.

ATLPath::IsUNCServer This function is an overloaded wrapper for PathIsUNCServer.

ATLPath::IsUNCServerShare This function is an overloaded wrapper for
PathIsUNCServerShare.

ATLPath::MakePretty This function is an overloaded wrapper for PathMakePretty.

ATLPath::MatchSpec This function is an overloaded wrapper for PathMatchSpec.

ATLPath::QuoteSpaces This function is an overloaded wrapper for PathQuoteSpaces.

ATLPath::RelativePathTo This function is an overloaded wrapper for PathRelativePathTo.

ATLPath::RemoveArgs This function is an overloaded wrapper for PathRemoveArgs.

ATLPath::RemoveBackslash This function is an overloaded wrapper for
PathRemoveBackslash.

ATLPath::RemoveBlanks This function is an overloaded wrapper for PathRemoveBlanks.

ATLPath::RemoveExtension This function is an overloaded wrapper for
PathRemoveExtension.

ATLPath::RemoveFileSpec This function is an overloaded wrapper for
PathRemoveFileSpec.

ATLPath::RenameExtension This function is an overloaded wrapper for
PathRenameExtension.

ATLPath::SkipRoot This function is an overloaded wrapper for PathSkipRoot.

ATLPath::StripPath This function is an overloaded wrapper for PathStripPath.

ATLPath::StripToRoot This function is an overloaded wrapper for PathStripToRoot.

ATLPath::UnquoteSpaces This function is an overloaded wrapper for
PathUnquoteSpaces.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisdirectorya
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisfilespeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisprefixa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisrelativea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathissameroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisunca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisuncservera
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisuncserversharea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathmakeprettya
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathmatchspeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathquotespacesa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathrelativepathtoa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveargsa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremovebackslasha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveblanksa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremovefilespeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathrenameextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathskiproota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathstrippatha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathstriptoroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathunquotespacesa

Requirements

ATLPath::AddBackSlash

SyntaxSyntax

inline char* AddBackslash(char* pszPath);
inline wchar_t* AddBackslash(wchar_t* pszPath);

RemarksRemarks

ATLPath::AddExtension

SyntaxSyntax

inline BOOL AddExtension(char* pszPath, const char* pszExtension);
inline BOOL AddExtension(wchar_t* pszPath, const wchar_t* pszExtension);

RemarksRemarks

ATLPath::Append

SyntaxSyntax

inline BOOL Append(char* pszPath, const char* pszMore);
inline BOOL Append(wchar_t* pszPath, const wchar_t* pszMore);

RemarksRemarks

ATLPath::BuildRoot

SyntaxSyntax

inline char* BuildRoot(char* pszPath, int iDrive);
inline wchar_t* BuildRoot(wchar_t* pszPath, int iDrive);

RemarksRemarks

ATLPath::Canonicalize

Header: atlpath.h

This function is an overloaded wrapper for PathAddBackslash.

See PathAddBackslash for details.

This function is an overloaded wrapper for PathAddExtension.

See PathAddExtension for details.

This function is an overloaded wrapper for PathAppend.

See PathAppend for details.

This function is an overloaded wrapper for PathBuildRoot.

See PathBuildRoot for details.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathaddbackslasha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathaddbackslasha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathaddextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathaddextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathappenda
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathappenda
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathbuildroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathbuildroota

SyntaxSyntax

inline BOOL Canonicalize(char* pszDest, const char* pszSrc);
inline BOOL Canonicalize(wchar_t* pszDest, const wchar_t* pszSrc);

RemarksRemarks

ATLPath::Combine

SyntaxSyntax

inline char* Combine(
 char* pszDest,
 const char* pszDir,
 const char* pszFile
);

inline wchar_t* Combine(
 wchar_t* pszDest,
 const wchar_t* pszDir,
 const wchar_t* pszFile);

RemarksRemarks

ATLPath::CommonPrefix

SyntaxSyntax

inline int CommonPrefix(
 const char* pszFile1,
 const char* pszFile2,
 char* pszDest);

inline int CommonPrefix(
 const wchar_t* pszFile1,
 const wchar_t* pszFile2,
 wchar_t* pszDest);

RemarksRemarks

ATLPath::CompactPath

SyntaxSyntax

This function is an overloaded wrapper for PathCanonicalize.

See PathCanonicalize for details.

This function is an overloaded wrapper for PathCombine.

See PathCombine for details.

This function is an overloaded wrapper for PathCommonPrefix.

See PathCommonPrefix for details.

This function is an overloaded wrapper for PathCompactPath.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcanonicalizea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcanonicalizea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcombinea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcommonprefixa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcommonprefixa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcompactpatha

inline BOOL CompactPath(
 HDC hDC,
 char* pszPath,
 UINT dx);

inline BOOL CompactPath(
 HDC hDC,
 wchar_t* pszPath,
 UINT dx);

RemarksRemarks

ATLPath::CompactPathEx

SyntaxSyntax

inline BOOL CompactPathEx(
 char* pszDest,
 const char* pszSrc,
 UINT nMaxChars,
 DWORD dwFlags);

inline BOOL CompactPathEx(
 wchar_t* pszDest,
 const wchar_t* pszSrc,
 UINT nMaxChars,
 DWORD dwFlags);

RemarksRemarks

ATLPath::FileExists

SyntaxSyntax

inline BOOL FileExists(const char* pszPath);
inline BOOL FileExists(const wchar_t* pszPath);

RemarksRemarks

ATLPath::FindExtension

SyntaxSyntax

inline char* FindExtension(const char* pszPath);
inline wchar_t* FindExtension(const wchar_t* pszPath);

RemarksRemarks

See PathCompactPath for details.

This function is an overloaded wrapper for PathCompactPathEx.

See PathCompactPathEx for details.

This function is an overloaded wrapper for PathFileExists.

See PathFileExists for details.

This function is an overloaded wrapper for PathFindExtension.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcompactpatha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcompactpathexa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathcompactpathexa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfileexistsa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfileexistsa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindextensiona

ATLPath::FindFileName

SyntaxSyntax

inline char* FindFileName(const char* pszPath);
inline wchar_t* FindFileName(const wchar_t* pszPath);

RemarksRemarks

ATLPath::GetDriveNumber

SyntaxSyntax

inline int GetDriveNumber(const char* pszPath);
inline int GetDriveNumber(const wchar_t* pszPath);

RemarksRemarks

ATLPath::IsDirectory

inline BOOL IsDirectory(const char* pszPath);
inline BOOL IsDirectory(const wchar_t* pszPath);

RemarksRemarks

ATLPath::IsFileSpec

SyntaxSyntax

inline BOOL IsFileSpec(const char* pszPath);
inline BOOL IsFileSpec(const wchar_t* pszPath);

RemarksRemarks

ATLPath::IsPrefix

SyntaxSyntax

See PathFindExtension for details.

This function is an overloaded wrapper for PathFindFileName.

See PathFindFileName for details.

This function is an overloaded wrapper for PathGetDriveNumber.

See PathGetDriveNumber for details.

This function is an overloaded wrapper for PathIsDirectory.

See PathIsDirectory for details.

This function is an overloaded wrapper for PathIsFileSpec.

See PathIsFileSpec for details.

This function is an overloaded wrapper for PathIsPrefix.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindfilenamea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindfilenamea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathgetdrivenumbera
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathgetdrivenumbera
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisdirectorya
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisfilespeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisfilespeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisprefixa

inline BOOL IsPrefix(const char* pszPrefix, const char* pszPath);
inline BOOL IsPrefix(const wchar_t* pszPrefix, const wchar_t* pszPath);

RemarksRemarks

ATLPath::IsRelative

SyntaxSyntax

inline BOOL IsRelative(const char* pszPath);
inline BOOL IsRelative(const wchar_t* pszPath);

RemarksRemarks

ATLPath::IsRoot

SyntaxSyntax

inline BOOL IsRoot(const char* pszPath);
inline BOOL IsRoot(const wchar_t* pszPath);

RemarksRemarks

ATLPath::IsSameRoot

SyntaxSyntax

inline BOOL IsSameRoot(const char* pszPath1, const char* pszPath2);
inline BOOL IsSameRoot(const wchar_t* pszPath1, const wchar_t* pszPath2);

RemarksRemarks

ATLPath::IsUNC

SyntaxSyntax

inline BOOL IsUNC(const char* pszPath);
inline BOOL IsUNC(const wchar_t* pszPath);

RemarksRemarks

See PathIsPrefix for details.

This function is an overloaded wrapper for PathIsRelative.

See PathIsRelative for details.

This function is an overloaded wrapper for PathIsRoot.

See PathIsRoot for details.

This function is an overloaded wrapper for PathIsSameRoot.

See PathIsSameRoot for details.

This function is an overloaded wrapper for PathIsUNC.

See PathIsUNC for details.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisprefixa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisrelativea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisrelativea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathissameroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathissameroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisunca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisunca

ATLPath::IsUNCServer

SyntaxSyntax

inline BOOL IsUNCServer(const char* pszPath);
inline BOOL IsUNCServer(const wchar_t* pszPath);

RemarksRemarks

ATLPath::IsUNCServerShare

SyntaxSyntax

inline BOOL IsUNCServerShare(const char* pszPath);
inline BOOL IsUNCServerShare(const wchar_t* pszPath);

RemarksRemarks

ATLPath::MakePretty

SyntaxSyntax

inline BOOL MakePretty(char* pszPath);
inline BOOL MakePretty(wchar_t* pszPath);

RemarksRemarks

ATLPath::MatchSpec

SyntaxSyntax

inline BOOL MatchSpec(const char* pszPath, const char* pszSpec);
inline BOOL MatchSpec(const wchar_t* pszPath, const wchar_t* pszSpec);

RemarksRemarks

ATLPath::QuoteSpaces

SyntaxSyntax

This function is an overloaded wrapper for PathIsUNCServer.

See PathIsUNCServer for details.

This function is an overloaded wrapper for PathIsUNCServerShare.

See PathIsUNCServerShare for details.

This function is an overloaded wrapper for PathMakePretty.

See PathMakePretty for details.

This function is an overloaded wrapper for PathMatchSpec.

See PathMatchSpec for details.

This function is an overloaded wrapper for PathQuoteSpaces.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisuncservera
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisuncservera
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisuncserversharea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathisuncserversharea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathmakeprettya
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathmakeprettya
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathmatchspeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathmatchspeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathquotespacesa

inline void QuoteSpaces(char* pszPath);
inline void QuoteSpaces(wchar_t* pszPath);

RemarksRemarks

ATLPath::RelativePathTo

SyntaxSyntax

inline BOOL RelativePathTo(
 char* pszPath,
 const char* pszFrom,
 DWORD dwAttrFrom,
 const char* pszTo,
 DWORD dwAttrTo);

inline BOOL RelativePathTo(
 wchar_t* pszPath,
 const wchar_t* pszFrom,
 DWORD dwAttrFrom,
 const wchar_t* pszTo,
 DWORD dwAttrTo);

RemarksRemarks

ATLPath::RemoveArgs

SyntaxSyntax

inline void RemoveArgs(char* pszPath);
inline void RemoveArgs(wchar_t* pszPath);

RemarksRemarks

ATLPath::RemoveBackslash

SyntaxSyntax

inline char* RemoveBackslash(char* pszPath);
inline wchar_t* RemoveBackslash(wchar_t* pszPath);

RemarksRemarks

ATLPath::RemoveBlanks

See PathQuoteSpaces for details.

This function is an overloaded wrapper for PathRelativePathTo.

See PathRelativePathTo for details.

This function is an overloaded wrapper for PathRemoveArgs.

See PathRemoveArgs for details.

This function is an overloaded wrapper for PathRemoveBackslash.

See PathRemoveBackslash for details.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathquotespacesa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathrelativepathtoa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathrelativepathtoa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveargsa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveargsa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremovebackslasha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremovebackslasha

SyntaxSyntax

inline void RemoveBlanks(char* pszPath);
inline void RemoveBlanks(wchar_t* pszPath);

RemarksRemarks

ATLPath::RemoveExtension

SyntaxSyntax

inline void RemoveExtension(char* pszPath);
inline void RemoveExtension(wchar_t* pszPath);

RemarksRemarks

ATLPath::RemoveFileSpec

SyntaxSyntax

inline BOOL RemoveFileSpec(char* pszPath);
inline BOOL RemoveFileSpec(wchar_t* pszPath);

RemarksRemarks

ATLPath::RenameExtension

SyntaxSyntax

inline BOOL RenameExtension(char* pszPath, const char* pszExt);
inline BOOL RenameExtension(wchar_t* pszPath, const wchar_t* pszExt);

RemarksRemarks

ATLPath::SkipRoot

SyntaxSyntax

This function is an overloaded wrapper for PathRemoveBlanks.

See PathRemoveBlanks for details.

This function is an overloaded wrapper for PathRemoveExtension.

See PathRemoveExtension for details.

This function is an overloaded wrapper for PathRemoveFileSpec.

See PathRemoveFileSpec for details.

This function is an overloaded wrapper for PathRenameExtension.

See PathRenameExtension for details.

This function is an overloaded wrapper for PathSkipRoot.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveblanksa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveblanksa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremoveextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremovefilespeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathremovefilespeca
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathrenameextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathrenameextensiona
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathskiproota

inline char* SkipRoot(const char* pszPath);
inline wchar_t* SkipRoot(const wchar_t* pszPath);

RemarksRemarks

ATLPath::StripPath

SyntaxSyntax

inline void StripPath(char* pszPath);
inline void StripPath(wchar_t* pszPath);

RemarksRemarks

ATLPath::StripToRoot

SyntaxSyntax

inline BOOL StripToRoot(char* pszPath);
inline BOOL StripToRoot(wchar_t* pszPath);

RemarksRemarks

ATLPath::UnquoteSpaces

SyntaxSyntax

inline void UnquoteSpaces(char* pszPath);
inline void UnquoteSpaces(wchar_t* pszPath);

RemarksRemarks

See PathSkipRoot for details.

This function is an overloaded wrapper for PathStripPath.

See PathStripPath for details.

This function is an overloaded wrapper for PathStripToRoot.

See PathStripToRoot for details.

This function is an overloaded wrapper for PathUnquoteSpaces.

See PathUnquoteSpaces for details.

https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathskiproota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathstrippatha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathstrippatha
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathstriptoroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathstriptoroota
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathunquotespacesa
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathunquotespacesa

COM Map Global Functions
3/4/2019 • 2 minutes to read • Edit Online

AtlInternalQueryInterface Delegates to the IUnknown of a nonaggregated object.

InlineIsEqualIUnknown Generates efficient code for comparing interfaces against
IUnknown .

Requirements

AtlInternalQueryInterface

HRESULT AtlInternalQueryInterface(
 void* pThis,
 const _ATL_INTMAP_ENTRY* pEntries,
 REFIID iid,
 void** ppvObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

These functions provide support for COM Map IUnknown implementations.

Header: atlbase.h

Retrieves a pointer to the requested interface.

pThis
[in] A pointer to the object that contains the COM map of interfaces exposed to QueryInterface .

pEntries
[in] An array of _ATL_INTMAP_ENTRY structures that access a map of available interfaces.

iid
[in] The GUID of the interface being requested.

ppvObject
[out] A pointer to the interface pointer specified in iid, or NULL if the interface is not found.

One of the standard HRESULT values.

AtlInternalQueryInterface only handles interfaces in the COM map table. If your object is aggregated,
AtlInternalQueryInterface does not delegate to the outer unknown. You can enter interfaces into the COM map

table with the macro COM_INTERFACE_ENTRY or one of its variants.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/com-map-global-functions.md

// MyTimerProc is a callback function passed to SetTimer()
VOID CALLBACK MyTimerProc(HWND /*hwnd*/, UINT /*uMsg*/, UINT /*idEvent*/,
 DWORD /*dwTime*/)
{
 LPDISPATCH pDisp = NULL;
 // gpMyCtrl is a global variable of type CMyCtrl*
 // _GetEntries() is a static function you get with BEGIN_COM_MAP()
 AtlInternalQueryInterface (gpMyCtrl, CMyCtrl::_GetEntries(), IID_IDispatch,
 (LPVOID*)&pDisp);
 //...
 pDisp->Release ();
}

InlineIsEqualIUnknown

BOOL InlineIsEqualUnknown(REFGUID rguid1);

ParametersParameters

See also

Call this function, for the special case of testing for IUnknown .

rguid1
[in] The GUID to compare to IID_IUnknown .

Functions
COM Map Macros

Composite Control Global Functions
3/4/2019 • 11 minutes to read • Edit Online

IMPORTANTIMPORTANT

AtlAxDialogBox Creates a modal dialog box from a dialog template provided
by the user. The resulting dialog box can contain ActiveX
controls.

AtlAxCreateDialog Creates a modeless dialog box from a dialog template
provided by the user. The resulting dialog box can contain
ActiveX controls.

AtlAxCreateControl Creates an ActiveX control, initializes it, and hosts it in the
specified window.

AtlAxCreateControlEx Creates an ActiveX control, initializes it, hosts it in the
specified window, and retrieves an interface pointer (or
pointers) from the control.

AtlAxCreateControlLic Creates a licensed ActiveX control, initializes it, and hosts it in
the specified window.

AtlAxCreateControlLicEx Creates a licensed ActiveX control, initializes it, hosts it in the
specified window, and retrieves an interface pointer (or
pointers) from the control.

AtlAxAttachControl Attaches a previously created control to the specified window.

AtlAxGetHost Used to obtain a direct interface pointer to the container for a
specified window (if any), given its handle.

AtlAxGetControl Used to obtain a direct interface pointer to the control
contained inside a specified window (if any), given its handle.

AtlSetChildSite Initializes the IUnknown of the child site.

AtlAxWinInit Initializes the hosting code for AxWin objects.

AtlAxWinTerm Uninitializes the hosting code for AxWin objects.

AtlGetObjectSourceInterface Returns information about the default source interface of an
object.

Requirements

These functions provide support for creating dialog boxes, and for creating, hosting and licensing ActiveX controls.

The functions listed in the following table cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/composite-control-global-functions.md

AtlAxDialogBox

ATLAPI_(int) AtlAxDialogBox(
 HINSTANCE hInstance,
 LPCWSTR lpTemplateName,
 HWND hWndParent,
 DLGPROC lpDialogProc,
 LPARAM dwInitParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CONTROL "{04FE35E9-ADBC-4f1d-83FE-8FA4D1F71C7F}", IDC_TEST,
 "AtlAxWin80", WS_GROUP | WS_TABSTOP, 0, 0, 100, 100

AtlAxCreateDialog

Header: atlhost.h

Creates a modal dialog box from a dialog template provided by the user.

hInstance
[in] Identifies an instance of the module whose executable file contains the dialog box template.

lpTemplateName
[in] Identifies the dialog box template. This parameter is either the pointer to a null-terminated character string
that specifies the name of the dialog box template or an integer value that specifies the resource identifier of the
dialog box template. If the parameter specifies a resource identifier, its high-order word must be zero and its low-
order word must contain the identifier. You can use the MAKEINTRESOURCE macro to create this value.

hWndParent
[in] Identifies the window that owns the dialog box.

lpDialogProc
[in] Points to the dialog box procedure. For more information about the dialog box procedure, see DialogProc.

dwInitParam
[in] Specifies the value to pass to the dialog box in the lParam parameter of the WM_INITDIALOG message.

One of the standard HRESULT values.

To use AtlAxDialogBox with a dialog template that contains an ActiveX control, specify a valid CLSID, APPID or
URL string as the text field of the CONTROL section of the dialog resource, along with "AtlAxWin80" as the class
name field under the same section. The following demonstrates what a valid CONTROL section might look like:

For more information on editing resource scripts, see How to: Open a Resource Script File in Text Format. For
more information on control resource-definition statements, see Common Control Parameters under Windows
SDK: SDK Tools.

For more information on dialog boxes in general, refer to DialogBox and CreateDialogParam in the Windows
SDK.

Creates a modeless dialog box from a dialog template provided by the user.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-makeintresourcea
https://docs.microsoft.com/windows/desktop/api/winuser/nc-winuser-dlgproc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/how-to-open-a-resource-script-file-in-text-format
https://docs.microsoft.com/windows/desktop/menurc/common-control-parameters
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dialogboxa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createdialogparama

ATLAPI_(HWND) AtlAxCreateDialog(
 HINSTANCE hInstance,
 LPCWSTR lpTemplateName,
 HWND hWndParent,
 DLGPROC lpDialogProc,
 LPARAM dwInitParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AtlAxCreateControl

ATLAPI AtlAxCreateControl(
 LPCOLESTR lpszName,
 HWND hWnd,
 IStream* pStream,
 IUnknown** ppUnkContainer);

ParametersParameters

hInstance
[in] Identifies an instance of the module whose executable file contains the dialog box template.

lpTemplateName
[in] Identifies the dialog box template. This parameter is either the pointer to a null-terminated character string
that specifies the name of the dialog box template or an integer value that specifies the resource identifier of the
dialog box template. If the parameter specifies a resource identifier, its high-order word must be zero and its low-
order word must contain the identifier. You can use the MAKEINTRESOURCE macro to create this value.

hWndParent
[in] Identifies the window that owns the dialog box.

lpDialogProc
[in] Points to the dialog box procedure. For more information about the dialog box procedure, see DialogProc.

dwInitParam
[in] Specifies the value to pass to the dialog box in the lParam parameter of the WM_INITDIALOG message.

One of the standard HRESULT values.

The resulting dialog box can contain ActiveX controls.

See CreateDialog and CreateDialogParam in the Windows SDK.

Creates an ActiveX control, initializes it, and hosts it in the specified window.

lpszName
A pointer to a string to be passed to the control. Must be formatted in one of the following ways:

A ProgID such as "MSCAL.Calendar.7"

A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"

A URL such as "http://www.microsoft.com"

A reference to an Active document such as "file://\\Documents\MyDoc.doc"

A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of text</BODY></HTML>"

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-makeintresourcea
https://docs.microsoft.com/windows/desktop/api/winuser/nc-winuser-dlgproc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createdialoga
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createdialogparama
http://www.microsoft.com

Return ValueReturn Value

RemarksRemarks

AtlAxCreateControlEx

ATLAPI AtlAxCreateControlEx(
 LPCOLESTR lpszName,
 HWND hWnd,
 IStream* pStream,
 IUnknown** ppUnkContainer,
 IUnknown** ppUnkControl,
 REFIID iidSink = IID_NULL,
 IUnknown* punkSink = NULL);

ParametersParameters

NOTENOTE
"MSHTML:" must precede the HTML fragment so that it is designated as being an MSHTML stream.

hWnd
[in] Handle to the window that the control will be attached to.

pStream
[in] A pointer to a stream that is used to initialize the properties of the control. Can be NULL.

ppUnkContainer
[out] The address of a pointer that will receive the IUnknown of the container. Can be NULL.

One of the standard HRESULT values.

This global function gives you the same result as calling AtlAxCreateControlEx(lpszName, hWnd, pStream, NULL,
NULL, NULL, NULL);.

To create a licensed ActiveX control, see AtlAxCreateControlLic.

Creates an ActiveX control, initializes it, and hosts it in the specified window. An interface pointer and event sink
for the new control can also be created.

lpszName
A pointer to a string to be passed to the control. Must be formatted in one of the following ways:

NOTENOTE

A ProgID such as "MSCAL.Calendar.7"

A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"

A URL such as "http://www.microsoft.com"

A reference to an Active document such as "file://\\Documents\MyDoc.doc"

A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of text</BODY></HTML>"

"MSHTML:" must precede the HTML fragment so that it is designated as being an MSHTML stream.

hWnd
[in] Handle to the window that the control will be attached to.

http://www.microsoft.com

Return ValueReturn Value

RemarksRemarks

AtlAxCreateControlLic

ATLAPI AtlAxCreateControlLic(
 LPCOLESTR lpszName,
 HWND hWnd,
 IStream* pStream,
 IUnknown** ppUnkContainer,
 BSTR bstrLic = NULL);

ParametersParameters

pStream
[in] A pointer to a stream that is used to initialize the properties of the control. Can be NULL.

ppUnkContainer
[out] The address of a pointer that will receive the IUnknown of the container. Can be NULL.

ppUnkControl
[out] The address of a pointer that will receive the IUnknown of the created control. Can be NULL.

iidSink
The interface identifier of an outgoing interface on the contained object.

punkSink
A pointer to the IUnknown interface of the sink object to be connected to the connection point specified by iidSink
on the contained object after the contained object has been successfully created.

One of the standard HRESULT values.

AtlAxCreateControlEx is similar to AtlAxCreateControl but also allows you to receive an interface pointer to the
newly created control and set up an event sink to receive events fired by the control.

To create a licensed ActiveX control, see AtlAxCreateControlLicEx.

Creates a licensed ActiveX control, initializes it, and hosts it in the specified window.

lpszName
A pointer to a string to be passed to the control. Must be formatted in one of the following ways:

NOTENOTE

A ProgID such as "MSCAL.Calendar.7"

A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"

A URL such as "http://www.microsoft.com"

A reference to an Active document such as "file://\\Documents\MyDoc.doc"

A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of text</BODY></HTML>"

"MSHTML:" must precede the HTML fragment so that it is designated as being an MSHTML stream.

hWnd
Handle to the window that the control will be attached to.

pStream

http://www.microsoft.com

Return ValueReturn Value

ExampleExample

AtlAxCreateControlLicEx

ATLAPI AtlAxCreateControlLicEx(
 LPCOLESTR lpszName,
 HWND hWnd,
 IStream* pStream,
 IUnknown** ppUnkContainer,
 IUnknown** ppUnkControl,
 REFIID iidSink = IID_NULL,
 IUnknown* punkSink = NULL,
 BSTR bstrLic = NULL);

ParametersParameters

A pointer to a stream that is used to initialize the properties of the control. Can be NULL.

ppUnkContainer
The address of a pointer that will receive the IUnknown of the container. Can be NULL.

bstrLic
The BSTR containing the license for the control.

One of the standard HRESULT values.

See Hosting ActiveX Controls Using ATL AXHost for a sample of how to use AtlAxCreateControlLic .

Creates a licensed ActiveX control, initializes it, and hosts it in the specified window. An interface pointer and event
sink for the new control can also be created.

lpszName
A pointer to a string to be passed to the control. Must be formatted in one of the following ways:

NOTENOTE

A ProgID such as "MSCAL.Calendar.7"

A CLSID such as "{8E27C92B-1264-101C-8A2F-040224009C02}"

A URL such as "http://www.microsoft.com"

A reference to an Active document such as "file://\\Documents\MyDoc.doc"

A fragment of HTML such as "MSHTML:<HTML><BODY>This is a line of text</BODY></HTML>"

"MSHTML:" must precede the HTML fragment so that it is designated as being an MSHTML stream.

hWnd
Handle to the window that the control will be attached to.

pStream
A pointer to a stream that is used to initialize the properties of the control. Can be NULL.

ppUnkContainer
The address of a pointer that will receive the IUnknown of the container. Can be NULL.

ppUnkControl
[out] The address of a pointer that will receive the IUnknown of the created control. Can be NULL.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost
http://www.microsoft.com

Return ValueReturn Value

RemarksRemarks

ExampleExample

AtlAxAttachControl

ATLAPI AtlAxAttachControl(
 IUnknown* pControl,
 HWND hWnd,
 IUnknown** ppUnkContainer);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

AtlAxGetHost

ATLAPI AtlAxGetHost(HWND h, IUnknown** pp);

iidSink
The interface identifier of an outgoing interface on the contained object.

punkSink
A pointer to the IUnknown interface of the sink object to be connected to the connection point specified by iidSink
on the contained object after the contained object has been successfully created.

bstrLic
The BSTR containing the license for the control.

One of the standard HRESULT values.

AtlAxCreateControlLicEx is similar to AtlAxCreateControlLic but also allows you to receive an interface pointer to
the newly created control and set up an event sink to receive events fired by the control.

See Hosting ActiveX Controls Using ATL AXHost for a sample of how to use AtlAxCreateControlLicEx .

Attaches a previously created control to the specified window.

pControl
[in] A pointer to the IUnknown of the control.

hWnd
[in] Handle to the window that will host the control.

ppUnkContainer
[out] A pointer to a pointer to the IUnknown of the container object.

One of the standard HRESULT values.

Use AtlAxCreateControlEx and AtlAxCreateControl to simultaneously create and attach a control.

The control object being attached must be correctly initialized before calling AtlAxAttachControl .

Obtains a direct interface pointer to the container for a specified window (if any), given its handle.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/atl/hosting-activex-controls-using-atl-axhost

ParametersParameters

Return ValueReturn Value

AtlAxGetControl

ATLAPI AtlAxGetControl(HWND h, IUnknown** pp);

ParametersParameters

Return ValueReturn Value

AtlSetChildSite

HRESULT AtlSetChildSite(IUnknown* punkChild, IUnknown* punkParent);

ParametersParameters

Return ValueReturn Value

AtlAxWinInit

ATLAPI_(BOOL) AtlAxWinInit();

Return ValueReturn Value

RemarksRemarks

h
[in] A handle to the window that is hosting the control.

pp
[out] The IUnknown of the container of the control.

One of the standard HRESULT values.

Obtains a direct interface pointer to the control contained inside a specified window given its handle.

h
[in] A handle to the window that is hosting the control.

pp
[out] The IUnknown of the control being hosted.

One of the standard HRESULT values.

Call this function to set the site of the child object to the IUnknown of the parent object.

punkChild
[in] A pointer to the IUnknown interface of the child.

punkParent
[in] A pointer to the IUnknown interface of the parent.

A standard HRESULT value.

This function initializes ATL's control hosting code by registering the "AtlAxWin80" and "AtlAxWinLic80"
window classes plus a couple of custom window messages.

Nonzero if the initialization of the control hosting code was successful; otherwise FALSE.

AtlAxWinTerm

inline BOOL AtlAxWinTerm();

Return ValueReturn Value

RemarksRemarks

AtlGetObjectSourceInterface

ATLAPI AtlGetObjectSourceInterface(
 IUnknown* punkObj,
 GUID* plibid,
 IID* piid,
 unsigned short* pdwMajor,
 unsigned short* pdwMinor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This function must be called before using the ATL control hosting API. Following a call to this function, the
"AtlAxWin" window class can be used in calls to CreateWindow or CreateWindowEx, as described in the
Windows SDK.

This function uninitializes ATL's control hosting code by unregistering the "AtlAxWin80" and "AtlAxWinLic80"
window classes.

Always returns TRUE.

This function simply calls UnregisterClass as described in the Windows SDK.

Call this function to clean up after all existing host windows have been destroyed if you called AtlAxWinInit and
you no longer need to create host windows. If you don't call this function, the window class will be unregistered
automatically when the process terminates.

Call this function to retrieve information about the default source interface of an object.

punkObj
[in] A pointer to the object for which information is to be returned.

plibid
[out] A pointer to the L IBID of the type library containing the definition of the source interface.

piid
[out] A pointer to the interface ID of the object's default source interface.

pdwMajor
[out] A pointer to the major version number of the type library containing the definition of the source interface.

pdwMinor
[out] A pointer to the minor version number of the type library containing the definition of the source interface.

A standard HRESULT value.

AtlGetObjectSourceInterface can provide you with the interface ID of the default source interface, along with the
LIBID and major and minor version numbers of the type library describing that interface.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-unregisterclassa

NOTENOTE

ExampleExample

template <UINT nID, class T>
class CEasySink : public IDispEventImpl<nID, T>
{
public:
 HRESULT EasyAdvise(IUnknown* pUnk)
 {
 AtlGetObjectSourceInterface(pUnk,
 &m_libid, &m_iid, &m_wMajorVerNum, &m_wMinorVerNum);
 return DispEventAdvise(pUnk, &m_iid);
 }
 HRESULT EasyUnadvise(IUnknown* pUnk)
 {
 AtlGetObjectSourceInterface(pUnk,
 &m_libid, &m_iid, &m_wMajorVerNum, &m_wMinorVerNum);
 return DispEventUnadvise(pUnk, &m_iid);
 }
};

See also

For this function to successfully retrieve the requested information, the object represented by punkObj must implement
IDispatch (and return type information through IDispatch::GetTypeInfo) plus it must also implement either
IProvideClassInfo2 or IPersist . The type information for the source interface must be in the same type library as the

type information for IDispatch .

The example below shows how you might define an event sink class, CEasySink , that reduces the number of
template arguments that you can pass to IDispEventImpl to the bare essentials. EasyAdvise and EasyUnadvise

use AtlGetObjectSourceInterface to initialize the IDispEventImpl members before calling DispEventAdvise or
DispEventUnadvise.

Functions
Composite Control Macros

Connection Point Global Functions
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

AtlAdvise Creates a connection between an object's connection point
and a client's sink.

AtlUnadvise Terminates the connection established through AtlAdvise .

AtlAdviseSinkMap Advises or unadvises entries in an event sink map.

Requirements

AtlAdvise

IMPORTANTIMPORTANT

HRESULT AtlAdvise(
 IUnknown* pUnkCP,
 IUnknown* pUnk,
 const IID& iid,
 LPDWORD pdw);

ParametersParameters

These functions provide support for connection points and sink maps.

The functions listed in the following table cannot be used in applications that execute in the Windows Runtime.

Header: atlbase.h

Creates a connection between an object's connection point and a client's sink.

This function cannot be used in applications that execute in the Windows Runtime.

pUnkCP
[in] A pointer to the IUnknown of the object the client wants to connect with.

pUnk
[in] A pointer to the client's IUnknown .

iid
[in] The GUID of the connection point. Typically, this is the same as the outgoing interface managed by the
connection point.

pdw
[out] A pointer to the cookie that uniquely identifies the connection.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/connection-point-global-functions.md

Return ValueReturn Value

RemarksRemarks

ExampleExample

LPUNKNOWN m_pSourceUnk;
LPUNKNOWN m_pSinkUnk;
DWORD m_dwCustCookie;

// create source object
HRESULT hr = CoCreateInstance (CLSID_MyComponent, NULL, CLSCTX_ALL,
 IID_IUnknown, (LPVOID*)&m_pSourceUnk);
ATLASSERT(SUCCEEDED(hr));

// Create sink object. CMySink is a CComObjectRootEx-derived class
// that implements the event interface methods.
CComObject<CMySink>* pSinkClass;
CComObject<CMySink>::CreateInstance(&pSinkClass);
hr = pSinkClass->QueryInterface (IID_IUnknown, (LPVOID*)&m_pSinkUnk);
ATLASSERT(SUCCEEDED(hr));

hr = AtlAdvise (m_pSourceUnk, m_pSinkUnk, __uuidof(_IMyComponentEvents), &m_dwCustCookie);
ATLASSERT(SUCCEEDED(hr));

AtlUnadvise

IMPORTANTIMPORTANT

HRESULT AtlUnadvise(
 IUnknown* pUnkCP,
 const IID& iid,
 DWORD dw);

ParametersParameters

Return ValueReturn Value

ExampleExample

A standard HRESULT value.

The sink implements the outgoing interface supported by the connection point. The client uses the pdw cookie to
remove the connection by passing it to AtlUnadvise.

Terminates the connection established through AtlAdvise.

This function cannot be used in applications that execute in the Windows Runtime.

pUnkCP
[in] A pointer to the IUnknown of the object that the client is connected with.

iid
[in] The GUID of the connection point. Typically, this is the same as the outgoing interface managed by the
connection point.

dw
[in] The cookie that uniquely identifies the connection.

A standard HRESULT value.

LPUNKNOWN m_pSourceUnk;
LPUNKNOWN m_pSinkUnk;
DWORD m_dwCustCookie;

// create source object
HRESULT hr = CoCreateInstance (CLSID_MyComponent, NULL, CLSCTX_ALL,
 IID_IUnknown, (LPVOID*)&m_pSourceUnk);
ATLASSERT(SUCCEEDED(hr));

// Create sink object. CMySink is a CComObjectRootEx-derived class
// that implements the event interface methods.
CComObject<CMySink>* pSinkClass;
CComObject<CMySink>::CreateInstance(&pSinkClass);
hr = pSinkClass->QueryInterface (IID_IUnknown, (LPVOID*)&m_pSinkUnk);
ATLASSERT(SUCCEEDED(hr));

hr = AtlAdvise (m_pSourceUnk, m_pSinkUnk, __uuidof(_IMyComponentEvents), &m_dwCustCookie);
ATLASSERT(SUCCEEDED(hr));

// do something
CComBSTR bstrMsg(L"Hi there!");
((CMyComponent*)m_pSourceUnk)->Fire_ShowMyMsg(bstrMsg);

hr = AtlUnadvise (m_pSourceUnk, __uuidof(_IMyComponentEvents), m_dwCustCookie);
ATLASSERT(SUCCEEDED(hr));

AtlAdviseSinkMap

IMPORTANTIMPORTANT

HRESULT AtlAdviseSinkMap(T* pT, bool bAdvise);

ParametersParameters

Return ValueReturn Value

ExampleExample

Call this function to advise or unadvise all entries in the object's sink event map.

This function cannot be used in applications that execute in the Windows Runtime.

pT
[in] A pointer to the object containing the sink map.

bAdvise
[in] TRUE if all sink entries are to be advised; FALSE if all sink entries are to be unadvised.

A standard HRESULT value.

class CMyDlg :
 public CAxDialogImpl<CMyDlg>
{
public:
BEGIN_MSG_MAP(CMyDlg)
 MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)
 COMMAND_HANDLER(IDOK, BN_CLICKED, OnClickedOK)
 COMMAND_HANDLER(IDCANCEL, BN_CLICKED, OnClickedCancel)
 CHAIN_MSG_MAP(CAxDialogImpl<CMyDlg>)
END_MSG_MAP()

 LRESULT OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled)
 {
 CAxDialogImpl<CMyDlg>::OnInitDialog(uMsg, wParam, lParam, bHandled);

 AtlAdviseSinkMap(this, TRUE);

 bHandled = TRUE;
 return 1; // Let the system set the focus
 }

 // Remainder of class declaration omitted.

See also
Functions
Connection Point Macros

Debugging and Error Reporting Global Functions
3/4/2019 • 4 minutes to read • Edit Online

AtlHresultFromLastError Returns a GetLastError error code in the form of an
HRESULT.

AtlHresultFromWin32 Converts a Win32 error code into an HRESULT.

AtlReportError Sets up IErrorInfo to provide error details to a client.

AtlThrow Throws a CAtlException .

AtlThrowLastWin32 Call this function to signal an error based on the result of the
Windows function GetLastError .

AtlHresultFromLastError

HRESULT AtlHresultFromLastError();

RemarksRemarks

RequirementsRequirements

AtlHresultFromWin32

AtlHresultFromWin32(DWORD error);

ParametersParameters

RemarksRemarks

NOTENOTE

These functions provide useful debugging and trace facilities.

Returns the calling thread's last-error code value in the form of an HRESULT.

AtlHresultFromLastError calls GetLastError to obtain the last error and returns the error after converting it to an
HRESULT using the HRESULT_FROM_WIN32 macro.

Header: atlcomcli.h

Converts a Win32 error code into an HRESULT.

error
The error value to convert.

Converts a Win32 error code into an HRESULT, using the macro HRESULT_FROM_WIN32.

Instead of using HRESULT_FROM_WIN32(GetLastError()) , use the function AtlHresultFromLastError.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/debugging-and-error-reporting-global-functions.md

RequirementsRequirements

AtlReportError

HRESULT WINAPI AtlReportError(
 const CLSID& clsid,
 LPCOLESTR lpszDesc,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0);

HRESULT WINAPI AtlReportError(
 const CLSID& clsid,
 LPCOLESTR lpszDesc,
 DWORD dwHelpID,
 LPCOLESTR lpszHelpFile,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0);

HRESULT WINAPI AtlReportError(
 const CLSID& clsid,
 LPCSTR lpszDesc,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0);

HRESULT WINAPI AtlReportError(
 const CLSID& clsid,
 LPCSTR lpszDesc,
 DWORD dwHelpID,
 LPCSTR lpszHelpFile,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0);

HRESULT WINAPI AtlReportError(
 const CLSID& clsid,
 UINT nID,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0,
 HINSTANCE hInst = _AtlBaseModule.GetResourceInstance());

HRESULT WINAPI AtlReportError(
 const CLSID& clsid,
 UINT nID,
 DWORD dwHelpID,
 LPCOLESTR lpszHelpFile,
 const IID& iid = GUID_NULL,
 HRESULT hRes = 0,
 HINSTANCE hInst = _AtlBaseModule.GetResourceInstance());

ParametersParameters

Header: atlcomcli.h

Sets up the IErrorInfo interface to provide error information to clients of the object.

clsid
[in] The CLSID of the object reporting the error.

lpszDesc
[in] The string describing the error. The Unicode versions specify that lpszDesc is of type LPCOLESTR; the ANSI
version specifies a type of LPCSTR.

iid
[in] The IID of the interface defining the error or GUID_NULL if the error is defined by the operating system.

hRes

Return ValueReturn Value

RemarksRemarks

ExampleExample

STDMETHODIMP CMyControl::MyErrorProneMethod()
{
 BOOL bSucceeded = ErrorProneFunc();
 if (bSucceeded)
 return S_OK;
 else
 // hRes is set to DISP_E_EXCEPTION
 return AtlReportError(GetObjectCLSID(), L"My error message");
}

C a u t i o nC a u t i o n

RequirementsRequirements

AtlThrow

__declspec(noreturn) inline void AtlThrow(HRESULT hr);

ParametersParameters

RemarksRemarks

[in] The HRESULT you want returned to the caller.

nID
[in] The resource identifier where the error description string is stored. This value should lie between 0x0200 and
0xFFFF, inclusively. In debug builds, an ASSERT will result if nID does not index a valid string. In release builds,
the error description string will be set to "Unknown Error."

dwHelpID
[in] The help context identifier for the error.

lpszHelpFile
[in] The path and name of the help file describing the error.

hInst
[in] The handle to the resource. By default, this parameter is __AtlBaseModuleModule::GetResourceInstance , where
__AtlBaseModuleModule is the global instance of CAtlBaseModule or a class derived from it.

If the hRes parameter is nonzero, returns the value of hRes. If hRes is zero, then the first four versions of
AtlReportError return DISP_E_EXCEPTION. The last two versions return the result of the macro

MAKE_HRESULT(1, FACILITY_ITF, nID).

The string lpszDesc is used as the text description of the error. When the client receives the hRes you return from
AtlReportError , the client can access the IErrorInfo structure for details about the error.

Do not use AtlReportError in C++ catch handlers. Some overrides of these functions use the ATL string
conversion macros internally, which in turn use the _alloca function internally. Using AtlReportError in a C++
catch handler can cause exceptions in C++ catch handlers.

Header: atlcom.h

Call this function to signal an error based on a HRESULT status code.

hr
Standard HRESULT value.

ExampleExample

// Constructors and operators cannot return error codes, and
// so they are the place where exceptions are generally used.
class CMyClass
{
private:
 CComPtr<IBuddy> m_spBuddy;
public:
 CMyClass()
 {
 HRESULT hr = m_spBuddy.CoCreateInstance(CLSID_Buddy);
 if (FAILED(hr))
 AtlThrow(hr);
 }
 // methods ..
};

Requirements

AtlThrowLastWin32

inline void AtlThrowLastWin32();

RemarksRemarks

This function is used by ATL and MFC code in the event of an error condition. It can also be called from your own
code. The default implementation of this function depends on the definition of the symbol
_ATL_NO_EXCEPTIONS and on the type of project, MFC or ATL.

In all cases, this function traces the HRESULT to the debugger.

In Visual Studio 2015 Update 3 and later, this function is attributed __declspec(noreturn) to avoid spurious SAL
warnings.

If _ATL_NO_EXCEPTIONS is not defined in an MFC project, this function throws a CMemoryException or a
COleException based on the value of the HRESULT.

If _ATL_NO_EXCEPTIONS is not defined in an ATL project, the function throws a CAtlException.

If _ATL_NO_EXCEPTIONS is defined, the function causes an assertion failure instead of throwing an exception.

For ATL projects, it is possible to provide your own implementation of this function to be used by ATL in the event
of a failure. To do this, define your own function with the same signature as AtlThrow and #define AtlThrow to be
the name of your function. This must be done before including atlexcept.h (which means that it must be done prior
to including any ATL headers since atlbase.h includes atlexcept.h). Attribute your function __declspec(noreturn) to
avoid spurious SAL warnings.

Header: atldef.h

Call this function to signal an error based on the result of the Windows function GetLastError .

This function traces the result of GetLastError to the debugger.

If _ATL_NO_EXCEPTIONS is not defined in an MFC project, this function throws a CMemoryException or a
COleException based on the value returned by GetLastError .

If _ATL_NO_EXCEPTIONS is not defined in an ATL project, the function throws a CAtlException.

Requirements

See also

If _ATL_NO_EXCEPTIONS is defined, the function causes an assertion failure instead of throwing an exception.

Header: atldef.h

Functions
Debugging and Error Reporting Macros

Device Context Global Functions
3/4/2019 • 2 minutes to read • Edit Online

AtlCreateTargetDC Creates a device context.

AtlCreateTargetDC

HDC AtlCreateTargetDC(HDC hdc, DVTARGETDEVICE* ptd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Requirements

See also

This function creates a device context for a given device.

Creates a device context for the device specified in the DVTARGETDEVICE structure.

hdc
[in] The existing handle of a device context, or NULL.

ptd
[in] A pointer to the DVTARGETDEVICE structure that contains information about the target device.

Returns the handle to a device context for the device specified in the DVTARGETDEVICE . If no device is specified,
returns the handle to the default display device.

If the structure is NULL and hdc is NULL, creates a device context for the default display device.

If hdc is not NULL and ptd is NULL, the function returns the existing hdc.

Header: atlwin.h

Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/device-context-global-functions.md
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagdvtargetdevice

Event Handling Global Functions
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

AtlWaitWithMessageLoop Waits for an object to be signaled, meanwhile dispatching
window messages as needed.

Requirements

AtlWaitWithMessageLoop

IMPORTANTIMPORTANT

BOOL AtlWaitWithMessageLoop(HANDLE hEvent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

This function provides an event handler.

The function listed in the following table cannot be used in applications that execute in the Windows Runtime.

Header: atlbase.h

Waits for the object to be signaled, meanwhile dispatching window messages as needed.

This function cannot be used in applications that execute in the Windows Runtime.

hEvent
[in] The handle of the object to wait for.

Returns TRUE if the object has been signaled.

This is useful if you want to wait for an object's event to happen and be notified of it happening, but allow window
messages to be dispatched while waiting.

Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/event-handling-global-functions.md

Marshaling Global Functions
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

AtlFreeMarshalStream Releases the marshal data and the IStream pointer.

AtlMarshalPtrInProc Creates a new stream object and marshals the specified
interface pointer.

AtlUnmarshalPtr Converts a stream's marshaling data into an interface pointer.

Requirements:

AtlFreeMarshalStream

HRESULT AtlFreeMarshalStream(IStream* pStream);

ParametersParameters

ExampleExample

AtlMarshalPtrInProc

HRESULT AtlMarshalPtrInProc(
 IUnknown* pUnk,
 const IID& iid,
 IStream** ppStream);

ParametersParameters

These functions provide support for marshaling and converting marshaling data into interface pointers.

The functions listed in the following table cannot be used in applications that execute in the Windows Runtime.

Header: atlbase.h

Releases the marshal data in the stream, then releases the stream pointer.

pStream
[in] A pointer to the IStream interface on the stream used for marshaling.

See the example for AtlMarshalPtrInProc.

Creates a new stream object, writes the CLSID of the proxy to the stream, and marshals the specified interface
pointer by writing the data needed to initialize the proxy into the stream.

pUnk
[in] A pointer to the interface to be marshaled.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/marshaling-global-functions.md

Return ValueReturn Value

RemarksRemarks

ExampleExample

//marshaling interface from one thread to another

//IStream ptr to hold serialized presentation of interface ptr
IStream* g_pStm;

//forward declaration
DWORD WINAPI ThreadProc(LPVOID lpParameter);

HRESULT WriteInterfacePtrToStream(IMyCircle *pCirc)
{
 //marshal the interface ptr to another thread
 //pCirc has to be pointer to actual object & not a proxy
 HRESULT hr = AtlMarshalPtrInProc(pCirc, IID_IMyCircle, &g_pStm);

 //m_dwThreadID is a DWORD holding thread ID of thread being created.
 CreateThread(NULL, 0, ThreadProc, NULL, 0, &m_dwThreadID);
 return hr;
}

DWORD WINAPI ThreadProc(LPVOID /*lpParameter*/)
{
 // CoInitializeEx is per thread, so initialize COM on this thread
 // (required by AtlUnmarshalPtr)
 HRESULT hr = CoInitializeEx(NULL, COINIT_APARTMENTTHREADED);
 if (SUCCEEDED(hr))
 {
 IMyCircle* pCirc;

 //unmarshal IMyCircle ptr from the stream
 hr = AtlUnmarshalPtr(g_pStm, IID_IMyCircle, (IUnknown**)&pCirc);

 // use IMyCircle ptr to call its methods
 double center;
 pCirc->get_XCenter(¢er);

 //release the stream if no other thread requires it
 //to unmarshal the IMyCircle interface pointer
 hr = AtlFreeMarshalStream(g_pStm);

 CoUninitialize();
 }

 return hr;
}

iid
[in] The GUID of the interface being marshaled.

ppStream
[out] A pointer to the IStream interface on the new stream object used for marshaling.

A standard HRESULT value.

The MSHLFLAGS_TABLESTRONG flag is set so the pointer can be marshaled to multiple streams. The pointer can
also be unmarshaled multiple times.

If marshaling fails, the stream pointer is released.

AtlMarshalPtrInProc can only be used on a pointer to an in-process object.

 AtlUnmarshalPtr

HRESULT AtlUnmarshalPtr(
 IStream* pStream,
 const IID& iid,
 IUnknown** ppUnk);

ParametersParameters

Return ValueReturn Value

ExampleExample

See also

Converts the stream's marshaling data into an interface pointer that can be used by the client.

pStream
[in] A pointer to the stream being unmarshaled.

iid
[in] The GUID of the interface being unmarshaled.

ppUnk
[out] A pointer to the unmarshaled interface.

A standard HRESULT value.

See the example for AtlMarshalPtrInProc.

Functions

Pixel/HIMETRIC Conversion Global Functions
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

AtlHiMetricToPixel Converts HIMETRIC units (each unit is 0.01 millimeter) to
pixels.

AtlPixelToHiMetric Converts pixels to HIMETRIC units (each unit is 0.01
millimeter).

AtlHiMetricToPixel

extern void AtlHiMetricToPixel(
 const SIZEL* lpSizeInHiMetric,
 LPSIZEL lpSizeInPix);

ParametersParameters

ExampleExample

// m_sizeExtent is a member of CComControlBase that holds the
// control's extents in HIMETRIC units.
// Use AtlHiMetricToPixel to find the extent of the control in pixels.
AtlHiMetricToPixel(&m_sizeExtent, &sz);
ATLTRACE("Width = %d, Height = %d\n", sz.cx, sz.cy);

RequirementsRequirements

AtlPixelToHiMetric

extern void AtlPixelToHiMetric(
 const SIZEL* lpSizeInPix,
 LPSIZEL lpSizeInHiMetric);

These functions provide support for converting to and from pixel and HIMETRIC units.

The functions listed in the following table cannot be used in applications that execute in the Windows Runtime.

Converts an object's size in HIMETRIC units (each unit is 0.01 millimeter) to a size in pixels on the screen device.

lpSizeInHiMetric
[in] Pointer to the size of the object in HIMETRIC units.

lpSizeInPix
[out] Pointer to where the object's size in pixels is to be returned.

Header: atlwin.h

Converts an object's size in pixels on the screen device to a size in HIMETRIC units (each unit is 0.01 millimeter).

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/pixel-himetric-conversion-global-functions.md

ParametersParameters

ExampleExample

// Initialize our control's default size to 100 by 25 pixels
CMyControl::CMyControl()
{
 // width = 100 pixels, height = 25 pixels
 SIZE sz = { 100, 25 };
 // convert pixels to himetric
 AtlPixelToHiMetric(&sz, &m_sizeExtent);
 // store natural extent
 m_sizeNatural = m_sizeExtent;
}

RequirementsRequirements

See also

lpSizeInPix
[in] Pointer to the object's size in pixels.

lpSizeInHiMetric
[out] Pointer to where the object's size in HIMETRIC units is to be returned.

Header: atlwin.h

Functions

Registry and TypeLib Global Functions
3/4/2019 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

AfxRegCreateKey Creates the specified registry key.

AfxRegDeleteKey Deletes the specified registry key.

AfxRegisterPreviewHandler A helper to register a preview handler.

AfxUnregisterPreviewHandler A helper to unregister a preview handler.

AtlRegisterTypeLib This function is called to register a type library.

AtlUnRegisterTypeLib This function is called to unregister a type library

AfxRegOpenKey Opens the specified registry key.

AfxRegOpenKeyEx Opens the specified registry key.

AtlLoadTypeLib This function is called to load a type library.

AtlUpdateRegistryFromResourceD This function is called to update the registry from the supplied
resource.

RegistryDataExchange This function is called to read from, or write to, the system
registry. Called by the Registry Data Exchange Macros.

AtlGetPerUserRegistration Retrieves whether the application redirects registry access to
the HKEY_CURRENT_USER (HKCU) node.

AtlSetPerUserRegistration Sets whether the application redirects registry access to the
HKEY_CURRENT_USER (HKCU) node.

RequirementsRequirements

AtlGetPerUserRegistration

These functions provide support for loading and registering a type library.

The functions listed in the following tables cannot be used in applications that execute in the Windows Runtime.

These functions control which node in the registry the program uses to store information.

Header: atlbase.h

Use this function to determine whether the application redirects registry access to the HKEY_CURRENT_USER

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/registry-and-typelib-global-functions.md

SyntaxSyntax

ATLINLINE ATLAPI AtlGetPerUserRegistration(bool* pEnabled);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

AfxRegCreateKey

SyntaxSyntax

LONG AFXAPI AfxRegCreateKey(HKEY hKey, LPCTSTR lpSubKey, PHKEY phkResult, CAtlTransactionManager* pTM = NULL);

ParametersParameters

Return ValueReturn Value

RequirementsRequirements

AfxRegDeleteKey

SyntaxSyntax

(HKCU) node.

pEnabled
[out] TRUE indicates that the registry information is directed to the HKCU node; FALSE indicates that the
application writes registry information to the default node. The default node is HKEY_CLASSES_ROOT (HKCR).

S_OK if the method is successful, otherwise the HRESULT error code if an error occurs.

Registry redirection is not enabled by default. If you enable this option, registry access is redirected to
HKEY_CURRENT_USER\Software\Classes.

The redirection is not global. Only the MFC and ATL frameworks are affected by this registry redirection.

Header: atlbase.h

Creates the specified registry key.

hKey
A handle to an open registry key.

lpSubKey
The name of a key that this function opens or creates.

phkResult
A pointer to a variable that receives a handle to the opened or created key.

pTM
Pointer to a CAtlTransactionManager object.

If the function succeeds, the return value is ERROR_SUCCESS. If the function fails, the return value is a nonzero
error code defined in Winerror.h.

Header: afxpriv.h

Deletes the specified registry key.

LONG AFXAPI AfxRegDeleteKey(HKEY hKey, LPCTSTR lpSubKey, CAtlTransactionManager* pTM = NULL);

ParametersParameters

Return ValueReturn Value

RequirementsRequirements

SyntaxSyntax

BOOL AFXAPI AfxRegisterPreviewHandler(LPCTSTR lpszCLSID, LPCTSTR lpszShortTypeName, LPCTSTR lpszFilterExt);

ParametersParameters

RequirementsRequirements

AtlRegisterTypeLib

ATLAPI AtlRegisterTypeLib(HINSTANCE hInstTypeLib, LPCOLESTR lpszIndex);

ParametersParameters

Return ValueReturn Value

hKey
A handle to an open registry key.

lpSubKey
The name of the key to be deleted.

pTM
Pointer to a CAtlTransactionManager object.

If the function succeeds, the return value is ERROR_SUCCESS. If the function fails, the return value is a nonzero
error code defined in Winerror.h.

Header: afxpriv.h

A helper to register a preview handler.

lpszCLSID
Specifies the CLSID of handler.

lpszShortTypeName
Specifies the ProgID of handler.

lpszFilterExt
Specifies the file extension registered with this handler.

Header: afxdisp.h

This function is called to register a type library.

hInstTypeLib
The handle to the module instance.

lpszIndex
String in the format "\\N", where N is the integer index of the type library resource. Can be NULL if no index is
required.

RemarksRemarks

RequirementsRequirements

AfxRegOpenKey

SyntaxSyntax

LONG AFXAPI AfxRegOpenKey(HKEY hKey, LPCTSTR lpSubKey, PHKEY phkResult, CAtlTransactionManager* pTM = NULL);

ParametersParameters

Return ValueReturn Value

RequirementsRequirements

AfxRegOpenKeyEx

SyntaxSyntax

LONG AFXAPI AfxRegOpenKeyEx(HKEY hKey, LPCTSTR lpSubKey, DWORD ulOptions, REGSAM samDesired, PHKEY phkResult,
CAtlTransactionManager* pTM = NULL);

ParametersParameters

Returns S_OK on success, or an error HRESULT on failure.

This helper function is utilized by AtlComModuleUnregisterServer and CAtlComModule::RegisterTypeLib.

Header: atlbase.h

Opens the specified registry key.

hKey
A handle to an open registry key.

lpSubKey
The name of a key that this function opens or creates.

phkResult
A pointer to a variable that receives a handle to the created key.

pTM
Pointer to a CAtlTransactionManager object.

If the function succeeds, the return value is ERROR_SUCCESS. If the function fails, the return value is a nonzero
error code defined in Winerror.h.

Header: afxpriv.h

Opens the specified registry key.

hKey
A handle to an open registry key.

lpSubKey
The name of a key that this function opens or creates.

ulOptions
This parameter is reserved and must be zero.

samDesired

Return ValueReturn Value

RequirementsRequirements

AfxUnregisterPreviewHandler

SyntaxSyntax

BOOL AFXAPI AfxUnRegisterPreviewHandler(LPCTSTR lpszCLSID);

ParametersParameters

RequirementsRequirements

AtlSetPerUserRegistration

SyntaxSyntax

ATLINLINE ATLAPI AtlSetPerUserRegistration(bool bEnable);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

A mask that specifies the desired access rights to the key.

phkResult
A pointer to a variable that receives a handle to the opened key.

pTM
Pointer to a CAtlTransactionManager object.

If the function succeeds, the return value is ERROR_SUCCESS. If the function fails, the return value is a nonzero
error code defined in Winerror.h.

Header: afxpriv.h

A helper to unregister a preview handler.

lpszCLSID
Specifies the CLSID of the handler to be unregistered.

Header: afxdisp.h

Sets whether the application redirects registry access to the HKEY_CURRENT_USER (HKCU) node.

bEnable
[in] TRUE indicates that the registry information is directed to the HKCU node; FALSE indicates that the
application writes registry information to the default node. The default node is HKEY_CLASSES_ROOT (HKCR).

S_OK if the method is successful, otherwise the HRESULT error code if an error occurs.

Registry redirection is not enabled by default. If you enable this option, registry access is redirected to
HKEY_CURRENT_USER\Software\Classes.

The redirection is not global. Only the MFC and ATL frameworks are affected by this registry redirection.

Header: atlbase.h

AtlUnRegisterTypeLib

SyntaxSyntax

ATLAPI AtlUnRegisterTypeLib(
 HINSTANCE hInstTypeLib,
 LPCOLESTR lpszIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

AtlLoadTypeLib

SyntaxSyntax

ATLINLINE ATLAPI AtlLoadTypeLib(
 HINSTANCE hInstTypeLib,
 LPCOLESTR lpszIndex,
 BSTR* pbstrPath,
 ITypeLib** ppTypeLib);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This function is called to unregister a type library.

hInstTypeLib
The handle to the module instance.

lpszIndex
String in the format "\\N", where N is the integer index of the type library resource. Can be NULL if no index is
required.

Returns S_OK on success, or an error HRESULT on failure.

This helper function is utilized by CAtlComModule::UnRegisterTypeLib and AtlComModuleUnregisterServer.

Header: atlbase.h

This function is called to load a type library.

hInstTypeLib
Handle to the module associated with the type library.

lpszIndex
String in the format "\\N", where N is the integer index of the type library resource. Can be NULL if no index is
required.

pbstrPath
On successful return, contains the full path of the module associated with the type library.

ppTypeLib
On successful return, contains a pointer to a pointer to the loaded type library.

Returns S_OK on success, or an error HRESULT on failure.

AtlUpdateRegistryFromResourceD

<removed>

RegistryDataExchange

SyntaxSyntax

HRESULT RegistryDataExchange(
 T* pT,
 enum RDXOperations rdxOp,
 void* pItem = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ENUM VALUE OPERATION

eReadFromReg Read data from the registry.

eWriteToReg Write data to the registry.

eDeleteFromReg Delete the key from the registry.

RequirementsRequirements

See also

This helper function is utilized by AtlRegisterTypeLib and AtlUnRegisterTypeLib.

This function was deprecated in Visual Studio 2013 and is removed in Visual Studio 2015.

This function is called to read from, or write to, the system registry.

pT
A pointer to the current object.

rdxOp
An enum value that indicates which operation the function should perform. See the table in the Remarks section
for the allowed values.

pItem
Pointer to the data that is to be read from, or written to, the registry. The data can also represent a key to be
deleted from the registry. The default value is NULL.

Returns S_OK on success, or an error HRESULT on failure.

The macros BEGIN_RDX_MAP and END_RDX_MAP expand to a function that calls RegistryDataExchange .

The possible enum values that indicate the operation the function should perform are shown in the following table:

Header: atlbase.h

Functions
Registry Data Exchange Macros

Security Global Functions
3/4/2019 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

AtlGetDacl Call this function to retrieve the discretionary access-control
list (DACL) information of a specified object.

AtlSetDacl Call this function to set the discretionary access-control list
(DACL) information of a specified object.

AtlGetGroupSid Call this function to retrieve the group security identifier
(SID) of an object.

AtlSetGroupSid Call this function to set the group security identifier (SID) of
an object.

AtlGetOwnerSid Call this function to retrieve the owner security identifier
(SID) of an object.

AtlSetOwnerSid Call this function to set the owner security identifier (SID) of
an object.

AtlGetSacl Call this function to retrieve the system access-control list
(SACL) information of a specified object.

AtlSetSacl Call this function to set the system access-control list (SACL)
information of a specified object.

AtlGetSecurityDescriptor Call this function to retrieve the security descriptor of a given
object.

Requirements

AtlGetDacl

IMPORTANTIMPORTANT

These functions provide support for modifying SID and ACL objects.

The functions listed in the following table cannot be used in applications that execute in the Windows Runtime.

Header: atlsecurity.h

Call this function to retrieve the discretionary access-control list (DACL) information of a specified object.

This function cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/security-global-functions.md

inline bool AtlGetDacl(
 HANDLE hObject,
 SE_OBJECT_TYPE ObjectType,
 CDacl* pDacl) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AtlSetDacl

IMPORTANTIMPORTANT

inline bool AtlSetDacl(
 HANDLE hObject,
 SE_OBJECT_TYPE ObjectType,
 const CDacl& rDacl,
 DWORD dwInheritanceFlowControl = 0) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

hObject
Handle to the object for which to retrieve the security information.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object identified by the
hObject parameter.

pDacl
Pointer to a DACL object which will contain the retrieved security information.

Returns true on success, false on failure.

In debug builds, an assertion error will occur if either hObject or pDacl is invalid.

Call this function to set the discretionary access-control list (DACL) information of a specified object.

This function cannot be used in applications that execute in the Windows Runtime.

hObject
Handle to the object for which to set security information.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object identified by the
hObject parameter.

rDacl
The DACL containing the new security information.

dwInheritanceFlowControl
The inheritance flow control. This value can be 0 (the default), PROTECTED_DACL_SECURITY_INFORMATION
or UNPROTECTED_DACL_SECURITY_INFORMATION.

Returns true on success, false on failure.

https://docs.microsoft.com/windows/desktop/api/accctrl/ne-accctrl-_se_object_type
https://docs.microsoft.com/windows/desktop/api/accctrl/ne-accctrl-_se_object_type

RequirementsRequirements

AtlGetGroupSid

IMPORTANTIMPORTANT

inline bool AtlGetGroupSid(
 HANDLE hObject,
 SE_OBJECT_TYPE ObjectType,
 CSid* pSid) throw(...);

ParametersParameters

Return ValueReturn Value

RequirementsRequirements

AtlSetGroupSid

IMPORTANTIMPORTANT

inline bool AtlSetGroupSid(
 HANDLE hObject,
 SE_OBJECT_TYPE ObjectType,
 const CSid& rSid) throw(...);

ParametersParameters

In debug builds, an assertion error will occur if hObject is invalid, or if dwInheritanceFlowControl is not one of
the three permitted values.

Header: atlsecurity.h

Call this function to retrieve the group security identifier (S ID) of an object.

This function cannot be used in applications that execute in the Windows Runtime.

hObject
Handle to the object from which to retrieve security information.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object identified by the
hObject parameter.

pSid
Pointer to a CSid object which will contain the new security information.

Returns true on success, false on failure.

Header: atlsecurity.h

Call this function to set the group security identifier (S ID) of an object.

This function cannot be used in applications that execute in the Windows Runtime.

hObject
Handle to the object for which to set security information.

https://docs.microsoft.com/windows/desktop/api/accctrl/ne-accctrl-_se_object_type

Return ValueReturn Value

RequirementsRequirements

AtlGetOwnerSid

IMPORTANTIMPORTANT

inline bool AtlGetOwnerSid(
 HANDLE hObject,
 SE_OBJECT_TYPE ObjectType,
 CSid* pSid) throw(...);

ParametersParameters

Return ValueReturn Value

RequirementsRequirements

AtlSetOwnerSid

IMPORTANTIMPORTANT

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object identified by the
hObject parameter.

rSid
The CSid object containing the new security information.

Returns true on success, false on failure.

Header: atlsecurity.h

Call this function to retrieve the owner security identifier (S ID) of an object.

This function cannot be used in applications that execute in the Windows Runtime.

hObject
Handle to the object from which to retrieve security information.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object identified by the
hObject parameter.

pSid
Pointer to a CSid object which will contain the new security information.

Returns true on success, false on failure.

Header: atlsecurity.h

Call this function to set the owner security identifier (S ID) of an object.

This function cannot be used in applications that execute in the Windows Runtime.

https://docs.microsoft.com/windows/desktop/api/accctrl/ne-accctrl-_se_object_type
https://docs.microsoft.com/windows/desktop/api/accctrl/ne-accctrl-_se_object_type

inline bool AtlSetOwnerSid(
 HANDLE hObject,
 SE_OBJECT_TYPE ObjectType,
 const CSid& rSid) throw(...);

ParametersParameters

Return ValueReturn Value

RequirementsRequirements

AtlGetSacl

IMPORTANTIMPORTANT

inline bool AtlGetSacl(
 HANDLE hObject,
 SE_OBJECT_TYPE ObjectType,
 CSacl* pSacl,
 bool bRequestNeededPrivileges = true) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

hObject
Handle to the object for which to set security information.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object identified by the
hObject parameter.

rSid
The CSid object containing the new security information.

Returns true on success, false on failure.

Header: atlsecurity.h

Call this function to retrieve the system access-control list (SACL) information of a specified object.

This function cannot be used in applications that execute in the Windows Runtime.

hObject
Handle to the object from which to retrieve the security information.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object identified by the
hObject parameter.

pSacl
Pointer to a SACL object which will contain the retrieved security information.

bRequestNeededPrivileges
If true, the function will attempt to enable the SE_SECURITY_NAME privilege, and restore it on completion.

Returns true on success, false on failure.

https://docs.microsoft.com/windows/desktop/api/accctrl/ne-accctrl-_se_object_type
https://docs.microsoft.com/windows/desktop/api/accctrl/ne-accctrl-_se_object_type

RequirementsRequirements

AtlSetSacl

IMPORTANTIMPORTANT

inline bool AtlSetSacl(
 HANDLE hObject,
 SE_OBJECT_TYPE ObjectType,
 const CSacl& rSacl,
 DWORD dwInheritanceFlowControl = 0,
 bool bRequestNeededPrivileges = true) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

AtlGetSecurityDescriptor

If AtlGetSacl is to be called many times on many different objects, it will be more efficient to enable the
SE_SECURITY_NAME privilege once before calling the function, with bRequestNeededPrivileges set to false.

Header: atlsecurity.h

Call this function to set the system access-control list (SACL) information of a specified object.

This function cannot be used in applications that execute in the Windows Runtime.

hObject
Handle to the object for which to set security information.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object identified by the
hObject parameter.

rSacl
The SACL containing the new security information.

dwInheritanceFlowControl
The inheritance flow control. This value can be 0 (the default), PROTECTED_SACL_SECURITY_INFORMATION
or UNPROTECTED_SACL_SECURITY_INFORMATION.

bRequestNeededPrivileges
If true, the function will attempt to enable the SE_SECURITY_NAME privilege, and restore it on completion.

Returns true on success, false on failure.

In debug builds, an assertion error will occur if hObject is invalid, or if dwInheritanceFlowControl is not one of
the three permitted values.

If AtlSetSacl is to be called many times on many different objects, it will be more efficient to enable the
SE_SECURITY_NAME privilege once before calling the function, with bRequestNeededPrivileges set to false.

Header: atlsecurity.h

Call this function to retrieve the security descriptor of a given object.

https://docs.microsoft.com/windows/desktop/api/accctrl/ne-accctrl-_se_object_type

IMPORTANTIMPORTANT

inline bool AtlGetSecurityDescriptor(
 LPCTSTR pszObjectName,
 SE_OBJECT_TYPE ObjectType,
 CSecurityDesc* pSecurityDescriptor,
 SECURITY_INFORMATION requestedInfo = OWNER_SECURITY_INFORMATION |
 GROUP_SECURITY_INFORMATION | DACL_SECURITY_INFORMATION |
 SACL_SECURITY_INFORMATION,
bool bRequestNeededPrivileges = true) throw(...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

See also

This function cannot be used in applications that execute in the Windows Runtime.

pszObjectName
Pointer to a null-terminated string that specifies the name of the object from which to retrieve security
information.

ObjectType
Specifies a value from the SE_OBJECT_TYPE enumeration that indicates the type of object identified by the
pszObjectName parameter.

pSecurityDescriptor
The object which receives the requested security descriptor.

requestedInfo
A set of SECURITY_INFORMATION bit flags that indicate the type of security information to retrieve. This
parameter can be a combination of the following values.

bRequestNeededPrivileges
If true, the function will attempt to enable the SE_SECURITY_NAME privilege, and restore it on completion.

Returns true on success, false on failure.

If AtlGetSecurityDescriptor is to be called many times on many different objects, it will be more efficient to
enable the SE_SECURITY_NAME privilege once before calling the function, with bRequestNeededPrivileges set
to false.

Header: atlsecurity.h

Functions

https://docs.microsoft.com/windows/desktop/api/accctrl/ne-accctrl-_se_object_type
https://docs.microsoft.com/windows/desktop/SecAuthZ/security-information

Security Identifier Global Functions
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Sids::AccountOps Returns the DOMAIN_ALIAS_RID_ACCOUNT_OPS SID.

Sids::Admins Returns the DOMAIN_ALIAS_RID_ADMINS SID.

Sids::AnonymousLogon Returns the SECURITY_ANONYMOUS_LOGON_RID SID.

Sids::AuthenticatedUser Returns the SECURITY_AUTHENTICATED_USER_RID SID.

Sids::BackupOps Returns the DOMAIN_ALIAS_RID_BACKUP_OPS SID.

Sids::Batch Returns the SECURITY_BATCH_RID SID.

Sids::CreatorGroup Returns the SECURITY_CREATOR_GROUP_RID SID.

Sids::CreatorGroupServer Returns the SECURITY_CREATOR_GROUP_SERVER_RID SID.

Sids::CreatorOwner Returns the SECURITY_CREATOR_OWNER_RID SID.

Sids::CreatorOwnerServer Returns the SECURITY_CREATOR_OWNER_SERVER_RID SID.

Sids::Dialup Returns the SECURITY_DIALUP_RID SID.

Sids::Guests Returns the DOMAIN_ALIAS_RID_GUESTS SID.

Sids::Interactive Returns the SECURITY_INTERACTIVE_RID SID.

Sids::Local Returns the SECURITY_LOCAL_RID SID.

Sids::Network Returns the SECURITY_NETWORK_RID SID.

Sids::NetworkService Returns the SECURITY_NETWORK_SERVICE_RID SID.

Sids::Null Returns the SECURITY_NULL_RID SID.

Sids::PreW2KAccess Returns the DOMAIN_ALIAS_RID_PREW2KCOMPACCESS SID.

Sids::PowerUsers Returns the DOMAIN_ALIAS_RID_POWER_USERS SID.

These functions return common well-known SID objects.

The functions listed in the following table cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/security-identifier-global-functions.md

Sids::PrintOps Returns the DOMAIN_ALIAS_RID_PRINT_OPS SID.

Sids::Proxy Returns the SECURITY_PROXY_RID SID.

Sids::RasServers Returns the DOMAIN_ALIAS_RID_RAS_SERVERS SID.

Sids::Replicator Returns the DOMAIN_ALIAS_RID_REPLICATOR SID.

Sids::RestrictedCode Returns the SECURITY_RESTRICTED_CODE_RID SID.

Sids::Self Returns the SECURITY_PRINCIPAL_SELF_RID SID.

Sids::ServerLogon Returns the SECURITY_SERVER_LOGON_RID SID.

Sids::Service Returns the SECURITY_SERVICE_RID SID.

Sids::System Returns the SECURITY_LOCAL_SYSTEM_RID SID.

Sids::SystemOps Returns the DOMAIN_ALIAS_RID_SYSTEM_OPS SID.

Sids::TerminalServer Returns the SECURITY_TERMINAL_SERVER_RID SID.

Sids::Users Returns the DOMAIN_ALIAS_RID_USERS SID.

Sids::World Returns the SECURITY_WORLD_RID SID.

RequirementsRequirements

Sids::AccountOps

CSid AccountOps() throw(...);

Sids::Admins

CSid Admins() throw(...);

Sids::AnonymousLogon

CSid AnonymousLogon() throw(...);

Sids::AuthenticatedUser

Header: atlsecurity.h

Returns the DOMAIN_ALIAS_RID_ACCOUNT_OPS SID.

Returns the DOMAIN_ALIAS_RID_ADMINS SID.

Returns the SECURITY_ANONYMOUS_LOGON_RID SID.

CSid AuthenticatedUser() throw(...);

Sids::BackupOps

CSid BackupOps() throw(...);

Sids::Batch

CSid Batch() throw(...);

Sids::CreatorGroup

CSid CreatorGroup() throw(...);

Sids::CreatorGroupServer

CSid CreatorGroupServer() throw(...);

Sids::CreatorOwner

CSid CreatorOwner() throw(...);

Sids::CreatorOwnerServer

CSid CreatorOwnerServer() throw(...);

Sids::Dialup

CSid Dialup() throw(...);

Returns the SECURITY_AUTHENTICATED_USER_RID SID.

Returns the DOMAIN_ALIAS_RID_BACKUP_OPS SID.

Returns the SECURITY_BATCH_RID SID.

Returns the SECURITY_CREATOR_GROUP_RID SID.

Returns the SECURITY_CREATOR_GROUP_SERVER_RID SID.

Returns the SECURITY_CREATOR_OWNER_RID SID.

Returns the SECURITY_CREATOR_OWNER_SERVER_RID SID.

Returns the SECURITY_DIALUP_RID SID.

Sids::Guests

CSid Guests() throw(...);

Sids::Interactive

CSid Interactive() throw(...);

Sids::Local

CSid Local() throw(...);

Sids::Network

CSid Network() throw(...);

Sids::NetworkService

CSid NetworkService() throw(...);

RemarksRemarks

Sids::Null

CSid Null() throw(...);

Sids::PreW2KAccess

Returns the DOMAIN_ALIAS_RID_GUESTS SID.

Returns the SECURITY_INTERACTIVE_RID SID.

Returns the SECURITY_LOCAL_RID SID.

Returns the SECURITY_NETWORK_RID SID.

Returns the SECURITY_NETWORK_SERVICE_RID SID.

Use NetworkService to enable the NT AUTHORITY\NetworkService user to read a CPerfMon security object.
NetworkService adds a SecurityAttribute to the ATLServer code which will allow the DLL to login under the
NetworkService account on Windows XP Home Edition, Windows XP Professional, Windows Server 2003 and
greater operating system.

When custom log counters are created with ATLServer CPerfMon class in the Perfmon MMC, the counters may
not appear when viewing the log file although they will appear correctly in the realtime view. CPerfMon custom
performance counters don't have the necessary permissions to run under the "Performance Logs and Alerts"
service (smlogsvc.exe) on Windows XP Home Edition, Windows XP Professional, Windows Server 2003 (or
greater) operating systems. This service runs under the "NT AUTHORITY\NetworkService" account.

Returns the SECURITY_NULL_RID SID.

Sids::PreW2KAccess

CSid PreW2KAccess() throw(...);

Sids::PowerUsers

CSid PowerUsers() throw(...);

Sids::PrintOps

CSid PrintOps() throw(...);

Sids::Proxy

CSid Proxy() throw(...);

Sids::RasServers

CSid RasServers() throw(...);

Sids::Replicator

CSid Replicator() throw(...);

Sids::RestrictedCode

CSid RestrictedCode() throw(...);

Sids::Self

Returns the DOMAIN_ALIAS_RID_PREW2KCOMPACCESS SID.

Returns the DOMAIN_ALIAS_RID_POWER_USERS SID.

Returns the DOMAIN_ALIAS_RID_PRINT_OPS SID.

Returns the SECURITY_PROXY_RID SID.

Returns the DOMAIN_ALIAS_RID_RAS_SERVERS SID.

Returns the DOMAIN_ALIAS_RID_REPLICATOR SID.

Returns the SECURITY_RESTRICTED_CODE_RID SID.

Returns the SECURITY_PRINCIPAL_SELF_RID SID.

CSid Self() throw(...);

Sids::ServerLogon

CSid ServerLogon() throw(...);

Sids::Service

CSid Service() throw(...);

Sids::System

CSid System() throw(...);

Sids::SystemOps

CSid SystemOps() throw(...);

Sids::TerminalServer

CSid TerminalServer() throw(...);

Sids::Users

CSid Users() throw(...);

Sids::World

CSid World() throw(...);

See also

Returns the SECURITY_SERVER_LOGON_RID SID.

Returns the SECURITY_SERVICE_RID SID.

Returns the SECURITY_LOCAL_SYSTEM_RID SID.

Returns the DOMAIN_ALIAS_RID_SYSTEM_OPS SID.

Returns the SECURITY_TERMINAL_SERVER_RID SID.

Returns the DOMAIN_ALIAS_RID_USERS SID.

Returns the SECURITY_WORLD_RID SID.

Functions

Server Registration Global Functions
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

AtlComModuleRegisterServer This function is called to register every object in the object
map.

AtlComModuleUnregisterServer This function is called to unregister every object in the object
map.

AtlComModuleRegisterClassObjects This function is called to register class objects.

AtlComModuleRevokeClassObjects This function is called to revoke class objects from a COM
module.

AtlComModuleGetClassObject This function is called to get the class object.

Requirements

AtlComModuleRegisterServer

ATLINLINE ATLAPI AtlComModuleRegisterServer(
 _ATL_COM_MODULE* pComModule,
 BOOL bRegTypeLib,
 const CLSID* pCLSID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

These functions provide support for registering and unregistering server objects in the object map.

The functions listed in the following table cannot be used in applications that execute in the Windows Runtime.

Header: atlbase.h

This function is called to register every object in the object map.

pComModule
Pointer to the COM module.

bRegTypeLib
TRUE if the type library is to be registered.

pCLSID
Points to the CLSID of the object to be registered. If NULL, all objects in the object map will be registered.

Returns S_OK on success, or an error HRESULT on failure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/server-registration-global-functions.md

AtlComModuleUnregisterServer

ATLINLINE ATLAPI AtlComModuleUnregisterServer(
 _ATL_COM_MODULE* pComModule,
 BOOL bUnRegTypeLib,
 const CLSID* pCLSID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AtlComModuleRegisterClassObjects

ATLINLINE ATLAPI AtlComModuleRegisterClassObjects(
 _ATL_COM_MODULE* pComModule,
 DWORD dwClsContext,
 DWORD dwFlags);

ParametersParameters

Return ValueReturn Value

AtlComModuleRegisterServer walks the ATL autogenerated object map and registers each object in the map. If
pCLSID is not NULL, then only the object referred to by pCLSID is registered; otherwise all of the objects are
registered.

This function is called by CAtlComModule::RegisterServer.

This function is called to unregister every object in the object map.

pComModule
Pointer to the COM module.

bUnRegTypeLib
TRUE if the type library is to be registered.

pCLSID
Points to the CLSID of the object to be unregistered. If NULL all objects in the object map will be unregistered.

Returns S_OK on success, or an error HRESULT on failure.

AtlComModuleUnregisterServer walks the ATL object map and unregisters each object in the map. If pCLSID is not
NULL, then only the object referred to by pCLSID is unregistered; otherwise all of the objects are unregistered.

This function is called by CAtlComModule::UnregisterServer.

This function is called to register class objects.

pComModule
Pointer to the COM module.

dwClsContext
Specifies the context in which the class object is to be run. Possible values are CLSCTX_INPROC_SERVER,
CLSCTX_INPROC_HANDLER, or CLSCTX_LOCAL_SERVER. See CLSCTX for more details.

dwFlags
Determines the connection types to the class object. Possible values are REGCLS_SINGLEUSE,
REGCLS_MULTIPLEUSE, or REGCLS_MULTI_SEPARATE. See REGCLS for more details.

https://docs.microsoft.com/windows/desktop/api/wtypesbase/ne-wtypesbase-tagclsctx
https://docs.microsoft.com/windows/desktop/api/combaseapi/ne-combaseapi-tagregcls

RemarksRemarks

AtlComModuleRevokeClassObjects

ATLINLINE ATLAPI AtlComModuleRevokeClassObjects(_ATL_COM_MODULE* pComModule);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AtlComModuleGetClassObject

ATLINLINE ATLAPI AtlComModuleGetClassObject(
 _ATL_COM_MODULE* pComModule,
 REFCLSID rclsid,
 REFIID riid,
 LPVOID* ppv);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Returns S_OK on success, or an error HRESULT on failure.

This helper function is utilized by CComModule::RegisterClassObjects (obsolete in ATL 7.0) and
CAtlExeModuleT::RegisterClassObjects.

This function is called to remove the class factory/factories from the Running Object Table.

pComModule
Pointer to the COM module.

Returns S_OK on success, or an error HRESULT on failure.

This helper function is utilized by CComModule::RevokeClassObjects (obsolete in ATL 7.0) and
CAtlExeModuleT::RevokeClassObjects.

This function is called to return the class factory.

pComModule
Pointer to the COM module.

rclsid
The CLSID of the object to be created.

riid
The IID of the requested interface.

ppv
A pointer to the interface pointer identified by riid. If the object does not support this interface, ppv is set to NULL.

Returns S_OK on success, or an error HRESULT on failure.

This helper function is utilized by CComModule::GetClassObject (obsolete in ATL 7.0) and
CAtlDllModuleT::GetClassObject.

Functions

WinModule Global Functions
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

AtlWinModuleAddCreateWndData This function is used to initialize and add an
_AtlCreateWndData structure.

AtlWinModuleExtractCreateWndData Call this function to extract an existing _AtlCreateWndData

structure.

Requirements

AtlWinModuleAddCreateWndData

ATLINLINE ATLAPI_(void) AtlWinModuleAddCreateWndData(
 _ATL_WIN_MODULE* pWinModule,
 _AtlCreateWndData* pData,
 void* pObject);

ParametersParameters

RemarksRemarks

AtlWinModuleExtractCreateWndData

These functions provide support for _AtlCreateWndData structure operations.

The functions listed in the following table cannot be used in applications that execute in the Windows Runtime.

Header: atlbase.h

This function is used to initialize and add an _AtlCreateWndData structure.

pWinModule
Pointer to a module's _ATL_WIN_MODULE70 structure.

pData
Pointer to the _AtlCreateWndData structure to be initialized and added to the current module.

pObject
Pointer to an object's this pointer.

Initializes an _AtlCreateWndData structure, which is used to store the this pointer used to refer to class instances,
and adds it to the list referenced by a module's _ATL_WIN_MODULE70 structure. Called by
CAtlWinModule::AddCreateWndData.

Call this function to extract an existing _AtlCreateWndData structure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/winmodule-global-functions.md

ATLINLINE ATLAPI_(void*) AtlWinModuleExtractCreateWndData(_ATL_WIN_MODULE* pWinModule);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

pWinModule
Pointer to a module's _ATL_WIN_MODULE70 structure.

Returns a pointer to the _AtlCreateWndData structure.

This function will extract an existing _AtlCreateWndData structure from the list referenced by a module's
_ATL_WIN_MODULE70 structure.

Functions

ATL Macros
3/4/2019 • 2 minutes to read • Edit Online

To find an ATL macro by category, see the following topics.

Aggregation and Class Factory Macros
Provide ways of controlling aggregation and of declaring class factories.

Category Macros
Define category maps.

COM Map Macros
Define COM interface maps.

Compiler Options Macros
Control specific compiler features.

Composite Control Macros
Define event sink maps and entries.

Connection Point Macros
Define connection point maps and entries.

Debugging and Error Reporting Macros
Provide useful debugging and trace facilities.

Exception Handling Macros
Provide support for exception handling.

Message Map Macros
Define message maps and entries.

Object Map Macros
Define object maps and entries.

Object Status Macros
Sets flags belonging to ActiveX controls.

Property Map Macros
Define property maps and entries.

Registry Data Exchange Macros
Perform Registry Data Exchange operations.

Registry Macros
Define useful type library and registry facilities.

Service Map Macros
Define service maps and entries.

Snap-In Object Macros
Provide support for snap-in extensions.

String Conversion Macros
Provide string conversion features.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-macros.md

See also

Window Class Macros
Define window class utilities.

Windows Messages Macros
Forward window messages.

ATL COM Desktop Components
Functions
Global Variables
Classes and structs
Typedefs

Aggregation and Class Factory Macros
3/4/2019 • 8 minutes to read • Edit Online

DECLARE_AGGREGATABLE Declares that your object can be aggregated (the default).

DECLARE_CLASSFACTORY Declares the class factory to be CComClassFactory, the ATL
default class factory.

DECLARE_CLASSFACTORY_EX Declares your class factory object to be the class factory.

DECLARE_CLASSFACTORY2 Declares CComClassFactory2 to be the class factory.

DECLARE_CLASSFACTORY_AUTO_THREAD Declares CComClassFactoryAutoThread to be the class
factory.

DECLARE_CLASSFACTORY_SINGLETON Declares CComClassFactorySingleton to be the class factory.

DECLARE_GET_CONTROLLING_UNKNOWN Declares a virtual GetControllingUnknown function.

DECLARE_NOT_AGGREGATABLE Declares that your object cannot be aggregated.

DECLARE_ONLY_AGGREGATABLE Declares that your object must be aggregated.

DECLARE_POLY_AGGREGATABLE Checks the value of the outer unknown and declares your
object aggregatable or not aggregatable, as appropriate.

DECLARE_PROTECT_FINAL_CONSTRUCT Protects the outer object from deletion during construction of
an inner object.

DECLARE_VIEW_STATUS Specifies the VIEWSTATUS flags to the container.

Requirements

DECLARE_AGGREGATABLE

DECLARE_AGGREGATABLE(x)

ParametersParameters

RemarksRemarks

These macros provide ways of controlling aggregation and of declaring class factories.

Header: atlcom.h

Specifies that your object can be aggregated.

x
[in] The name of the class you are defining as aggregatable.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/aggregation-and-class-factory-macros.md

ExampleExample

class ATL_NO_VTABLE CNoAggClass :
 public CComObjectRoot,
 public CComCoClass<CNoAggClass, &CLSID_NoAggClass>
{
public:
 CNoAggClass()
 {
 }

 DECLARE_NOT_AGGREGATABLE(CNoAggClass)
};

DECLARE_CLASSFACTORY

DECLARE_CLASSFACTORY()

RemarksRemarks

ExampleExample

class ATL_NO_VTABLE CMyClass :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyClass, &CLSID_MyClass>,
 public IDispatchImpl<IMyClass, &IID_IMyClass, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor =*/ 0>,
 public IDispatchImpl<IMyDualInterface, &__uuidof(IMyDualInterface), &LIBID_NVC_ATL_COMLib, /* wMajor = */
1, /* wMinor = */ 0>
{
public:
 DECLARE_CLASSFACTORY()

 // Remainder of class declaration omitted

CComClassFactory Class

class CComClassFactory : public IClassFactory,
public CComObjectRootEx<CComGlobalsThreadModel>

RemarksRemarks

CComCoClass contains this macro to specify the default aggregation model. To override this default, specify
either the DECLARE_NOT_AGGREGATABLE or DECLARE_ONLY_AGGREGATABLE macro in your class
definition.

Declares CComClassFactory to be the class factory.

CComCoClass uses this macro to declare the default class factory for your object.

This class implements the IClassFactory interface.

CComClassFactory implements the IClassFactory interface, which contains methods for creating an object of a
particular CLSID, as well as locking the class factory in memory to allow new objects to be created more quickly.
IClassFactory must be implemented for every class that you register in the system registry and to which you

assign a CLSID.

ATL objects normally acquire a class factory by deriving from CComCoClass. This class includes the macro
DECLARE_CLASSFACTORY, which declares CComClassFactory as the default class factory. To override this

https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory
https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory

class ATL_NO_VTABLE CMyCustomClass :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyCustomClass, &CLSID_MyCustomClass>,
 public IDispatchImpl<IMyCustomClass, &IID_IMyCustomClass, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor
=*/ 0>
{
public:
 DECLARE_CLASSFACTORY_EX(CMyClassFactory)

 // Remainder of class declaration omitted.

DECLARE_CLASSFACTORY_EX

DECLARE_CLASSFACTORY_EX(cf)

ParametersParameters

RemarksRemarks

ExampleExample

class ATL_NO_VTABLE CMyCustomClass :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyCustomClass, &CLSID_MyCustomClass>,
 public IDispatchImpl<IMyCustomClass, &IID_IMyCustomClass, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor
=*/ 0>
{
public:
 DECLARE_CLASSFACTORY_EX(CMyClassFactory)

 // Remainder of class declaration omitted.

default, specify one of the DECLARE_CLASSFACTORYXXX macros in your class definition. For example, the
DECLARE_CLASSFACTORY_EX macro uses the specified class for the class factory:

The above class definition specifies that CMyClassFactory will be used as the object's default class factory.
CMyClassFactory must derive from CComClassFactory and override CreateInstance .

ATL provides three other macros that declare a class factory:

DECLARE_CLASSFACTORY2 Uses CComClassFactory2, which controls creation through a license.

DECLARE_CLASSFACTORY_AUTO_THREAD Uses CComClassFactoryAutoThread, which creates objects
in multiple apartments.

DECLARE_CLASSFACTORY_SINGLETON Uses CComClassFactorySingleton, which constructs a single
CComObjectGlobal object.

Declares cf to be the class factory.

cf
[in] The name of the class that implements your class factory object.

The cf parameter must derive from CComClassFactory and override the CreateInstance method.

CComCoClass includes the DECLARE_CLASSFACTORY macro, which specifies CComClassFactory as the default
class factory. However, by including the DECLARE_CLASSFACTORY_EX macro in your object's class definition,
you override this default.

 DECLARE_CLASSFACTORY2

DECLARE_CLASSFACTORY2(lic)

ParametersParameters

RemarksRemarks

ExampleExample

class ATL_NO_VTABLE CMyClass2 :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyClass2, &CLSID_MyClass>,
 public IDispatchImpl<IMyClass, &IID_IMyClass, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor =*/ 0>,
 public IDispatchImpl<IMyDualInterface, &__uuidof(IMyDualInterface), &LIBID_NVC_ATL_COMLib, /* wMajor = */
1, /* wMinor = */ 0>
{
public:
 DECLARE_CLASSFACTORY2(CMyLicense)

 // Remainder of class declaration omitted

CComClassFactory2 Class

template <class license>
class CComClassFactory2 : public IClassFactory2,
 public CComObjectRootEx<CComGlobalsThreadModel>,
 public license

ParametersParameters

RemarksRemarks

Declares CComClassFactory2 to be the class factory.

lic
[in] A class that implements VerifyLicenseKey , GetLicenseKey , and IsLicenseValid .

CComCoClass includes the DECLARE_CLASSFACTORY macro, which specifies CComClassFactory as the default
class factory. However, by including the DECLARE_CLASSFACTORY2 macro in your object's class definition, you
override this default.

This class implements the IClassFactory2 interface.

license
A class that implements the following static functions:

static BOOL VerifyLicenseKey(BSTR bstr);

static BOOL GetLicenseKey(DWORD dwReserved, BSTR * pBstr);

static BOOL IsLicenseValid();

CComClassFactory2 implements the IClassFactory2 interface, which is an extension of IClassFactory.
IClassFactory2 controls object creation through a license. A class factory executing on a licensed machine can

provide a run-time license key. This license key allows an application to instantiate objects when a full machine
license does not exist.

ATL objects normally acquire a class factory by deriving from CComCoClass. This class includes the macro
DECLARE_CLASSFACTORY, which declares CComClassFactory as the default class factory. To use

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iclassfactory2
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iclassfactory2
https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory

class ATL_NO_VTABLE CMyClass2 :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMyClass2, &CLSID_MyClass>,
 public IDispatchImpl<IMyClass, &IID_IMyClass, &LIBID_NVC_ATL_COMLib, /*wMajor =*/ 1, /*wMinor =*/ 0>,
 public IDispatchImpl<IMyDualInterface, &__uuidof(IMyDualInterface), &LIBID_NVC_ATL_COMLib, /* wMajor = */
1, /* wMinor = */ 0>
{
public:
 DECLARE_CLASSFACTORY2(CMyLicense)

 // Remainder of class declaration omitted

class CMyLicense
{
protected:
 static BOOL VerifyLicenseKey(BSTR bstr)
 {
 USES_CONVERSION;
 return !lstrcmp(OLE2T(bstr), _T("My run-time license key"));
 }

 static BOOL GetLicenseKey(DWORD /*dwReserved*/, BSTR* pBstr)
 {
 USES_CONVERSION;
 *pBstr = SysAllocString(T2OLE(_T("My run-time license key")));
 return TRUE;
 }

 static BOOL IsLicenseValid() { return TRUE; }
};

DECLARE_CLASSFACTORY_AUTO_THREAD

DECLARE_CLASSFACTORY_AUTO_THREAD()

RemarksRemarks

ExampleExample

CComClassFactory2 , specify the DECLARE_CLASSFACTORY2 macro in your object's class definition. For example:

CMyLicense , the template parameter to CComClassFactory2 , must implement the static functions
VerifyLicenseKey , GetLicenseKey , and IsLicenseValid . The following is an example of a simple license class:

CComClassFactory2 derives from both CComClassFactory2Base and license. CComClassFactory2Base , in turn, derives
from IClassFactory2 and CComObjectRootEx< CComGlobalsThreadModel >.

Declares CComClassFactoryAutoThread to be the class factory.

CComCoClass includes the DECLARE_CLASSFACTORY macro, which specifies CComClassFactory as the default
class factory. However, by including the DECLARE_CLASSFACTORY_AUTO_THREAD macro in your object's
class definition, you override this default.

When you create objects in multiple apartments (in an out-of-proc server), add
DECLARE_CLASSFACTORY_AUTO_THREAD to your class.

class ATL_NO_VTABLE CMyAutoClass :
 public CComObjectRootEx<CComMultiThreadModel>,
 public CComCoClass<CMyAutoClass, &CLSID_MyAutoClass>,
 public IMyAutoClass
{
public:
 DECLARE_CLASSFACTORY_AUTO_THREAD()

 // Remainder of class declaration omitted.

CComClassFactoryAutoThread Class

IMPORTANTIMPORTANT

class CComClassFactoryAutoThread : public IClassFactory,
public CComObjectRootEx<CComGlobalsThreadModel>

RemarksRemarks

class ATL_NO_VTABLE CMyAutoClass :
 public CComObjectRootEx<CComMultiThreadModel>,
 public CComCoClass<CMyAutoClass, &CLSID_MyAutoClass>,
 public IMyAutoClass
{
public:
 DECLARE_CLASSFACTORY_AUTO_THREAD()

 // Remainder of class declaration omitted.

DECLARE_CLASSFACTORY_SINGLETON

DECLARE_CLASSFACTORY_SINGLETON(obj)

ParametersParameters

RemarksRemarks

This class implements the IClassFactory interface, and allows objects to be created in multiple apartments.

This class and its members cannot be used in applications that execute in the Windows Runtime.

CComClassFactoryAutoThread is similar to CComClassFactory, but allows objects to be created in multiple
apartments. To take advantage of this support, derive your EXE module from CComAutoThreadModule.

ATL objects normally acquire a class factory by deriving from CComCoClass. This class includes the macro
DECLARE_CLASSFACTORY, which declares CComClassFactory as the default class factory. To use
CComClassFactoryAutoThread , specify the DECLARE_CLASSFACTORY_AUTO_THREAD macro in your object's

class definition. For example:

Declares CComClassFactorySingleton to be the class factory.

obj
[in] The name of your class object.

CComCoClass includes the DECLARE_CLASSFACTORY macro, which specifies CComClassFactory as the default
class factory. However, by including the DECLARE_CLASSFACTORY_SINGLETON macro in your object's class

https://docs.microsoft.com/windows/desktop/api/unknwnbase/nn-unknwnbase-iclassfactory

ExampleExample

class ATL_NO_VTABLE CMySingletonClass :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMySingletonClass, &CLSID_MySingletonClass>,
 public IMySingletonClass
{
public:
 DECLARE_CLASSFACTORY_SINGLETON(CMySingletonClass)

 // Remainder of class declaration omitted.

CComClassFactorySingleton Class

IMPORTANTIMPORTANT

template<class T>
class CComClassFactorySingleton : public CComClassFactory

ParametersParameters

RemarksRemarks

class ATL_NO_VTABLE CMySingletonClass :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CMySingletonClass, &CLSID_MySingletonClass>,
 public IMySingletonClass
{
public:
 DECLARE_CLASSFACTORY_SINGLETON(CMySingletonClass)

 // Remainder of class declaration omitted.

DECLARE_GET_CONTROLLING_UNKNOWN

DECLARE_GET_CONTROLLING_UNKNOWN()

definition, you override this default.

This class derives from CComClassFactory and uses CComObjectGlobal to construct a single object.

This class and its members cannot be used in applications that execute in the Windows Runtime.

T
Your class.

CComClassFactorySingleton derives from CComClassFactory and uses CComObjectGlobal to construct a single
object. Each call to the CreateInstance method simply queries this object for an interface pointer.

ATL objects normally acquire a class factory by deriving from CComCoClass. This class includes the macro
DECLARE_CLASSFACTORY, which declares CComClassFactory as the default class factory. To use
CComClassFactorySingleton , specify the DECLARE_CLASSFACTORY_SINGLETON macro in your object's class

definition. For example:

Declares a virtual function GetControllingUnknown .

RemarksRemarks

DECLARE_NOT_AGGREGATABLE

DECLARE_NOT_AGGREGATABLE(x)

ParametersParameters

RemarksRemarks

ExampleExample

class ATL_NO_VTABLE CNoAggClass :
 public CComObjectRoot,
 public CComCoClass<CNoAggClass, &CLSID_NoAggClass>
{
public:
 CNoAggClass()
 {
 }

 DECLARE_NOT_AGGREGATABLE(CNoAggClass)
};

DECLARE_ONLY_AGGREGATABLE

DECLARE_ONLY_AGGREGATABLE(x)

ParametersParameters

RemarksRemarks

ExampleExample

Add this macro to your object if you get the compiler error message that GetControllingUnknown is undefined (for
example, in CComAggregateCreator).

Specifies that your object cannot be aggregated.

x
[in] The name of the class object you are defining as not aggregatable.

DECLARE_NOT_AGGREGATABLE causes CreateInstance to return an error (CLASS_E_NOAGGREGATION) if
an attempt is made to aggregate onto your object.

By default, CComCoClass contains the DECLARE_AGGREGATABLE macro, which specifies that your object can
be aggregated. To override this default behavior, include DECLARE_NOT_AGGREGATABLE in your class
definition.

Specifies that your object must be aggregated.

x
[in] The name of the class object you are defining as only aggregatable.

DECLARE_ONLY_AGGREGATABLE causes an error (E_FAIL) if an attempt is made to CoCreate your object as
nonaggregated object.

By default, CComCoClass contains the DECLARE_AGGREGATABLE macro, which specifies that your object can
be aggregated. To override this default behavior, include DECLARE_ONLY_AGGREGATABLE in your class
definition.

class ATL_NO_VTABLE COnlyAggClass :
 public CComObjectRoot,
 public CComCoClass<COnlyAggClass, &CLSID_OnlyAggClass>
{
public:
 COnlyAggClass()
 {
 }

 DECLARE_ONLY_AGGREGATABLE(COnlyAggClass)
};

DECLARE_POLY_AGGREGATABLE

DECLARE_POLY_AGGREGATABLE(x)

ParametersParameters

RemarksRemarks

DECLARE_PROTECT_FINAL_CONSTRUCT

DECLARE_PROTECT_FINAL_CONSTRUCT()

DECLARE_VIEW_STATUS

DECLARE_VIEW_STATUS(statusFlags)

ParametersParameters

Specifies that an instance of CComPolyObject < x > is created when your object is created.

x
[in] The name of the class object you are defining as aggregatable or not aggregatable.

During creation, the value of the outer unknown is checked. If it is NULL, IUnknown is implemented for a
nonaggregated object. If the outer unknown is not NULL, IUnknown is implemented for an aggregated object.

The advantage of using DECLARE_POLY_AGGREGATABLE is that you avoid having both CComAggObject and
CComObject in your module to handle the aggregated and nonaggregated cases. A single CComPolyObject object

handles both cases. This means only one copy of the vtable and one copy of the functions exist in your module. If
your vtable is large, this can substantially decrease your module size. However, if your vtable is small, using
CComPolyObject can result in a slightly larger module size because it is not optimized for an aggregated or

nonaggregated object, as are CComAggObject and CComObject .

The DECLARE_POLY_AGGREGATABLE macro is automatically declared in your object if you use the ATL Control
Wizard to create a full control.

Protects your object from being deleted if (during FinalConstruct) the internal aggregated object increments the
reference count then decrements the count to 0.

Place this macro in an ATL ActiveX control's control class to specify the VIEWSTATUS flags to the container.

statusFlags
[in] The VIEWSTATUS flags. See VIEWSTATUS for a list of flags.

https://docs.microsoft.com/windows/desktop/api/ocidl/ne-ocidl-tagviewstatus

ExampleExample

DECLARE_VIEW_STATUS(VIEWSTATUS_SOLIDBKGND | VIEWSTATUS_OPAQUE)

See also
Macros

Category Macros
3/4/2019 • 3 minutes to read • Edit Online

BEGIN_CATEGORY_MAP Marks the beginning of the category map.

END_CATEGORY_MAP Marks the end of the category map.

IMPLEMENTED_CATEGORY Indicates categories that are implemented by the COM object.

REQUIRED_CATEGORY Indicates categories that are required of the container by the
COM object.

Requirements

BEGIN_CATEGORY_MAP

BEGIN_CATEGORY_MAP(theClass)

ParametersParameters

RemarksRemarks

NOTENOTE

These macros define category maps.

Header: atlcom.h

Marks the beginning of the category map.

theClass
[in] The name of the class containing the category map.

The category map is used to specify which component categories the COM class will implement and which
categories it requires from its container.

Add an IMPLEMENTED_CATEGORY entry to the map for each category implemented by the COM class. Add a
REQUIRED_CATEGORY entry to the map for each category that the class requires its clients to implement. Mark
the end of the map with the END_CATEGORY_MAP macro.

The component categories listed in the map will be registered automatically when the module is registered if the
class has an associated OBJECT_ENTRY_AUTO or OBJECT_ENTRY_NON_CREATEABLE_EX_AUTO.

ATL uses the standard component categories manager to register component categories. If the manager is not present on
the system when the module is registered, registration succeeds, but the component categories will not be registered for
that class.

For more information about component categories, see What are Component Categories and how do they work in
the Windows SDK.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/category-macros.md
https://docs.microsoft.com/windows/desktop/com/component-categories-and-how-they-work

ExampleExample

BEGIN_CATEGORY_MAP(CMyCtrl)
 IMPLEMENTED_CATEGORY(CATID_Insertable)
END_CATEGORY_MAP()

END_CATEGORY_MAP

END_CATEGORY_MAP()

ExampleExample

IMPLEMENTED_CATEGORY

IMPLEMENTED_CATEGORY(catID)

ParametersParameters

RemarksRemarks

A Selection of Stock CategoriesA Selection of Stock Categories

DESCRIPTION SYMBOL REGISTRY GUID

Safe For Scripting CATID_SafeForScripting {7DD95801-9882-11CF-9FA9-
00AA006C42C4}

Safe For Initialization CATID_SafeForInitializing {7DD95802-9882-11CF-9FA9-
00AA006C42C4}

Simple Frame Site Containment CATID_SimpleFrameControl {157083E0-2368-11cf-87B9-
00AA006C8166}

Simple Data Binding CATID_PropertyNotifyControl {157083E1-2368-11cf-87B9-
00AA006C8166}

Marks the end of the category map.

See the example for BEGIN_CATEGORY_MAP.

Add an IMPLEMENTED_CATEGORY macro to your component's category map to specify that it should be
registered as implementing the category identified by the catID parameter.

catID
[in] A CATID constant or variable holding the globally unique identifier (GUID) for the implemented category. The
address of catID will be taken and added to the map. See the table below for a selection of stock categories.

The component categories listed in the map will be registered automatically when the module is registered if the
class has an associated OBJECT_ENTRY_AUTO or OBJECT_ENTRY_NON_CREATEABLE_EX_AUTO macro.

Clients can use the category information registered for the class to determine its capabilities and requirements
without having to create an instance of it.

For more information about component categories, see What are Component Categories and how do they work in
the Windows SDK.

https://docs.microsoft.com/windows/desktop/com/component-categories-and-how-they-work

Advanced Data Binding CATID_VBDataBound {157083E2-2368-11cf-87B9-
00AA006C8166}

Windowless Controls CATID_WindowlessObject {1D06B600-3AE3-11cf-87B9-
00AA006C8166}

Internet-Aware Objects See Internet Aware Objects in the
Windows SDK for a sample list.

DESCRIPTION SYMBOL REGISTRY GUID

ExampleExample

BEGIN_CATEGORY_MAP(CMyCtrl)
 IMPLEMENTED_CATEGORY(CATID_Insertable)
END_CATEGORY_MAP()

REQUIRED_CATEGORY

REQUIRED_CATEGORY(catID)

ParametersParameters

RemarksRemarks

A Selection of Stock CategoriesA Selection of Stock Categories

DESCRIPTION SYMBOL REGISTRY GUID

Safe For Scripting CATID_SafeForScripting {7DD95801-9882-11CF-9FA9-
00AA006C42C4}

Safe For Initialization CATID_SafeForInitializing {7DD95802-9882-11CF-9FA9-
00AA006C42C4}

Simple Frame Site Containment CATID_SimpleFrameControl {157083E0-2368-11cf-87B9-
00AA006C8166}

Add a REQUIRED_CATEGORY macro to your component's category map to specify that it should be registered as
requiring the category identified by the catID parameter.

catID
[in] A CATID constant or variable holding the globally unique identifier (GUID) for the required category. The
address of catID will be taken and added to the map. See the table below for a selection of stock categories.

The component categories listed in the map will be registered automatically when the module is registered if the
class has an associated OBJECT_ENTRY_AUTO or OBJECT_ENTRY_NON_CREATEABLE_EX_AUTO macro.

Clients can use the category information registered for the class to determine its capabilities and requirements
without having to create an instance of it. For example, a control may require that a container support data
binding. The container can find out if it has the capabilities necessary to host the control by querying the category
manager for the categories required by that control. If the container does not support a required feature, it can
refuse to host the COM object.

For more information about component categories, including a sample list, see What are Component Categories
and how do they work in the Windows SDK.

https://docs.microsoft.com/windows/desktop/com/internet-aware-objects
https://docs.microsoft.com/windows/desktop/com/component-categories-and-how-they-work

Simple Data Binding CATID_PropertyNotifyControl {157083E1-2368-11cf-87B9-
00AA006C8166}

Advanced Data Binding CATID_VBDataBound {157083E2-2368-11cf-87B9-
00AA006C8166}

Windowless Controls CATID_WindowlessObject {1D06B600-3AE3-11cf-87B9-
00AA006C8166}

Internet-Aware Objects See Internet Aware Objects in the
Windows SDK for a sample list.

DESCRIPTION SYMBOL REGISTRY GUID

ExampleExample

BEGIN_CATEGORY_MAP(CMyWindow)
 REQUIRED_CATEGORY(CATID_InternetAware)
END_CATEGORY_MAP()

See also
Macros

https://docs.microsoft.com/windows/desktop/com/internet-aware-objects

COM Map Macros
3/4/2019 • 2 minutes to read • Edit Online

BEGIN_COM_MAP Marks the beginning of the COM interface map entries.

END_COM_MAP Marks the end of the COM interface map entries.

Requirements

BEGIN_COM_MAP

BEGIN_COM_MAP(x)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_COM_MAP(CBeeper)
 COM_INTERFACE_ENTRY(IBeeper)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY_TEAR_OFF(IID_ISupportErrorInfo, CBeeper2)
END_COM_MAP()

END_COM_MAP

END_COM_MAP()

See also

These macros define COM interface maps.

Header: atlcom.h

The COM map is the mechanism that exposes interfaces on an object to a client through QueryInterface .

x
[in] The name of the class object you are exposing interfaces on.

CComObjectRootEx::InternalQueryInterface only returns pointers for interfaces in the COM map. Start your
interface map with the BEGIN_COM_MAP macro, add entries for each of your interfaces with the
COM_INTERFACE_ENTRY macro or one of its variants, and complete the map with the END_COM_MAP macro.

From the ATL BEEPER sample:

Ends the definition of your COM interface map.

Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/com-map-macros.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COM Map Global Functions

COM_INTERFACE_ENTRY Macros
3/4/2019 • 7 minutes to read • Edit Online

COM_INTERFACE_ENTRY Enters interfaces into the COM interface map.

COM_INTERFACE_ENTRY2 Use this macro to disambiguate two branches of inheritance.

COM_INTERFACE_ENTRY_IID Use this macro to enter the interface into the COM map and
specify its IID.

COM_INTERFACE_ENTRY2_IID Same as COM_INTERFACE_ENTRY2, except you can specify a
different IID.

COM_INTERFACE_ENTRY_AGGREGATE When the interface identified by iid is queried for,
COM_INTERFACE_ENTRY_AGGREGATE forwards to punk .

COM_INTERFACE_ENTRY_AGGREGATE_BLIND Same as COM_INTERFACE_ENTRY_AGGREGATE, except that
querying for any IID results in forwarding the query to punk.

COM_INTERFACE_ENTRY_AUTOAGGREGATE Same as COM_INTERFACE_ENTRY_AGGREGATE, except if punk
is NULL, it automatically creates the aggregate described by
the clsid.

COM_INTERFACE_ENTRY_AUTOAGGREGATE_BLIND Same as COM_INTERFACE_ENTRY_AUTOAGGREGATE, except
that querying for any IID results in forwarding the query to
punk, and if punk is NULL, automatically creating the
aggregate described by the clsid.

COM_INTERFACE_ENTRY_BREAK Causes your program to call DebugBreak when the specified
interface is queried for.

COM_INTERFACE_ENTRY_CACHED_TEAR_OFF Saves the interface-specific data for every instance.

COM_INTERFACE_ENTRY_TEAR_OFF Exposes your tear-off interfaces.

COM_INTERFACE_ENTRY_CHAIN Processes the COM map of the base class when the
processing reaches this entry in the COM map.

COM_INTERFACE_ENTRY_FUNC A general mechanism for hooking into ATL's QueryInterface

logic.

COM_INTERFACE_ENTRY_FUNC_BLIND Same as COM_INTERFACE_ENTRY_FUNC, except that querying
for any IID results in a call to func.

COM_INTERFACE_ENTRY_NOINTERFACE Returns E_NOINTERFACE and terminates COM map
processing when the specified interface is queried for.

These macros enter an object's interfaces into its COM map so that they can be accessed by QueryInterface . The
order of entries in the COM map is the order interfaces will be checked for a matching IID during QueryInterface .

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/com-interface-entry-macros.md
https://msdn.microsoft.com/library/windows/desktop/ms679297

Requirements

COM_INTERFACE_ENTRY

SyntaxSyntax

COM_INTERFACE_ENTRY(x)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_COM_MAP(CThisExample)
 COM_INTERFACE_ENTRY(IThisExample)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY(ISupportErrorInfo)
END_COM_MAP()

RequirementsRequirements

COM_INTERFACE_ENTRY2

COM_INTERFACE_ENTRY2(x, x2)

ParametersParameters

RemarksRemarks

ExampleExample

Header: atlcom.h

Enters interfaces into the COM interface map.

x
[in] The name of an interface your class object derives from directly.

Typically, this is the entry type you use most often.

Header: atlcom.h

Use this macro to disambiguate two branches of inheritance.

x
[in] The name of an interface you want to expose from your object.

x2
[in] The name of the inheritance branch from which x is exposed.

For example, if you derive your class object from two dual interfaces, you expose IDispatch using
COM_INTERFACE_ENTRY2 since IDispatch can be obtained from either one of the interfaces.

class ATL_NO_VTABLE CEntry2Example :
 public CEntry2ExampleBase, // CEntry2ExampleBase derives from IDispatch
 public IDispatchImpl<IEntry2Example, &IID_IEntry2Example, &LIBID_NVC_ATL_WindowingLib, /*wMajor =*/ 1,
/*wMinor =*/ 0>,
 public CComCoClass<CEntry2Example, &CLSID_Entry2Example>
{
public:
 CEntry2Example()
 {
 }

BEGIN_COM_MAP(CEntry2Example)
 COM_INTERFACE_ENTRY(IEntry2Example)
 COM_INTERFACE_ENTRY2(IDispatch, IEntry2Example)
END_COM_MAP()
};

COM_INTERFACE_ENTRY_IID

COM_INTERFACE_ENTRY_IID(iid, x)

ParametersParameters

ExampleExample

BEGIN_COM_MAP(CExample)
 COM_INTERFACE_ENTRY(IExample)
 COM_INTERFACE_ENTRY_IID(IID_IDispatch, CExampleDispatch)
 COM_INTERFACE_ENTRY(IExampleBase)
 COM_INTERFACE_ENTRY(ISupportErrorInfo)
END_COM_MAP()

COM_INTERFACE_ENTRY2_IID

COM_INTERFACE_ENTRY2_IID(iid, x, x2)

ParametersParameters

Use this macro to enter the interface into the COM map and specify its IID.

iid
[in] The GUID of the interface exposed.

x
[in] The name of the class whose vtable will be exposed as the interface identified by iid.

Same as COM_INTERFACE_ENTRY2, except you can specify a different IID.

iid
[in] The GUID you are specifying for the interface.

x
[in] The name of an interface that your class object derives from directly.

x2
[in] The name of a second interface that your class object derives from directly.

COM_INTERFACE_ENTRY_AGGREGATE

COM_INTERFACE_ENTRY_AGGREGATE(iid, punk)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_COM_MAP(COuter1)
 COM_INTERFACE_ENTRY_AGGREGATE(__uuidof(IAgg), m_punkAgg)
END_COM_MAP()

COM_INTERFACE_ENTRY_AGGREGATE_BLIND

COM_INTERFACE_ENTRY_AGGREGATE_BLIND(punk)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_COM_MAP(COuter2)
 COM_INTERFACE_ENTRY_AGGREGATE_BLIND(m_punkAggBlind)
END_COM_MAP()

COM_INTERFACE_ENTRY_AUTOAGGREGATE

COM_INTERFACE_ENTRY_AUTOAGGREGATE(iid, punk, clsid)

ParametersParameters

When the interface identified by iid is queried for, COM_INTERFACE_ENTRY_AGGREGATE forwards to punk.

iid
[in] The GUID of the interface queried for.

punk
[in] The name of an IUnknown pointer.

The punk parameter is assumed to point to the inner unknown of an aggregate or to NULL, in which case the entry
is ignored. Typically, you would CoCreate the aggregate in FinalConstruct .

Same as COM_INTERFACE_ENTRY_AGGREGATE, except that querying for any IID results in forwarding the
query to punk.

punk
[in] The name of an IUnknown pointer.

If the interface query fails, processing of the COM map continues.

Same as COM_INTERFACE_ENTRY_AGGREGATE, except if punk is NULL, it automatically creates the aggregate
described by the clsid.

iid

RemarksRemarks

ExampleExample

BEGIN_COM_MAP(COuter3)
 COM_INTERFACE_ENTRY_AUTOAGGREGATE(__uuidof(IAutoAgg), m_punkAutoAgg, CLSID_CAutoAgg)
END_COM_MAP()

COM_INTERFACE_ENTRY_AUTOAGGREGATE_BLIND

COM_INTERFACE_ENTRY_AUTOAGGREGATE_BLIND(punk, clsid)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_COM_MAP(COuter4)
 COM_INTERFACE_ENTRY_AUTOAGGREGATE_BLIND(m_punkAutoAggB, CLSID_CAutoAggB)
END_COM_MAP()

COM_INTERFACE_ENTRY_BREAK

COM_INTERFACE_ENTRY_BREAK(x)

ParametersParameters

RemarksRemarks

[in] The GUID of the interface queried for.

punk
[in] The name of an IUnknown pointer. Must be a member of the class containing the COM map.

clsid
[in] The identifier of the aggregate that will be created if punk is NULL.

Same as COM_INTERFACE_ENTRY_AUTOAGGREGATE, except that querying for any IID results in forwarding the
query to punk, and if punk is NULL, automatically creating the aggregate described by the clsid.

punk
[in] The name of an IUnknown pointer. Must be a member of the class containing the COM map.

clsid
[in] The identifier of the aggregate that will be created if punk is NULL.

If the interface query fails, processing of the COM map continues.

Causes your program to call DebugBreak when the specified interface is queried for.

x
[in] Text used to construct the interface identifier.

The interface IID will be constructed by appending x to IID_ . For example, if x is IPersistStorage , the IID will be
IID_IPersistStorage .

https://msdn.microsoft.com/library/windows/desktop/ms679297

COM_INTERFACE_ENTRY_CACHED_TEAR_OFF

COM_INTERFACE_ENTRY_CACHED_TEAR_OFF(iid, x, punk)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_COM_MAP(COuter)
 COM_INTERFACE_ENTRY(IOuter)
 COM_INTERFACE_ENTRY_CACHED_TEAR_OFF(IID_ITearOff, CTearOff, punkTearOff)
END_COM_MAP()

COM_INTERFACE_ENTRY_TEAR_OFF

COM_INTERFACE_ENTRY_TEAR_OFF(iid, x)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_COM_MAP(CBeeper)
 COM_INTERFACE_ENTRY(IBeeper)
 COM_INTERFACE_ENTRY(IDispatch)
 COM_INTERFACE_ENTRY_TEAR_OFF(IID_ISupportErrorInfo, CBeeper2)
END_COM_MAP()

Saves the interface-specific data for every instance.

iid
[in] The GUID of the tear-off interface.

x
[in] The name of the class implementing the interface.

punk
[in] The name of an IUnknown pointer. Must be a member of the class containing the COM map. Should be
initialized to NULL in the class object's constructor.

If the interface is not used, this lowers the overall instance size of your object.

Exposes your tear-off interfaces.

iid
[in] The GUID of the tear-off interface.

x
[in] The name of the class implementing the interface.

A tear-off interface is implemented as a separate object that is instantiated every time the interface it represents is
queried for. Typically, you build your interface as a tear-off if the interface is rarely used, since this saves a vtable
pointer in every instance of your main object. The tear-off is deleted when its reference count becomes zero. The
class implementing the tear-off should be derived from CComTearOffObjectBase and have its own COM map.

COM_INTERFACE_ENTRY_CHAIN

COM_INTERFACE_ENTRY_CHAIN(classname)

ParametersParameters

RemarksRemarks

BEGIN_COM_MAP(COuterObject)
 COM_INTERFACE_ENTRY2(IDispatch, IOuterObject)
 COM_INTERFACE_ENTRY_CHAIN(CBase)
END_COM_MAP()

BEGIN_COM_MAP(CThisObject)
 COM_INTERFACE_ENTRY(IUnknown)
 COM_INTERFACE_ENTRY_CHAIN(CBase)
END_COM_MAP()

COM_INTERFACE_ENTRY_FUNC

COM_INTERFACE_ENTRY_FUNC(iid, dw, func)

ParametersParameters

RemarksRemarks

Processes the COM map of the base class when the processing reaches this entry in the COM map.

classname
[in] A base class of the current object.

For example, in the following code:

Note that the first entry in the COM map must be an interface on the object containing the COM map. Thus, you
cannot start your COM map entries with COM_INTERFACE_ENTRY_CHAIN, which causes the COM map of a
different object to be searched at the point where COM_INTERFACE_ENTRY_CHAIN(COtherObject) appears in
your object's COM map. If you want to search the COM map of another object first, add an interface entry for
IUnknown to your COM map, then chain the other object's COM map. For example:

A general mechanism for hooking into ATL's QueryInterface logic.

iid
[in] The GUID of the interface exposed.

dw
[in] A parameter passed through to the func.

func
[in] The function pointer that will return iid.

If iid matches the IID of the interface queried for, then the function specified by func is called. The declaration for
the function should be:

HRESULT WINAPI func(void* pv, REFIID riid, LPVOID* ppv, DWORD_PTR dw);

When your function is called, pv points to your class object. The riid parameter refers to the interface being
queried for, ppv is the pointer to the location where the function should store the pointer to the interface, and dw

COM_INTERFACE_ENTRY_FUNC_BLIND

COM_INTERFACE_ENTRY_FUNC_BLIND(dw, func)

ParametersParameters

RemarksRemarks

COM_INTERFACE_ENTRY_NOINTERFACE

COM_INTERFACE_ENTRY_NOINTERFACE(x)

ParametersParameters

RemarksRemarks

is the parameter you specified in the entry. The function should set * ppv to NULL and return E_NOINTERFACE
or S_FALSE if it chooses not to return an interface. With E_NOINTERFACE, COM map processing terminates. With
S_FALSE, COM map processing continues, even though no interface pointer was returned. If the function returns
an interface pointer, it should return S_OK.

Same as COM_INTERFACE_ENTRY_FUNC, except that querying for any IID results in a call to func.

dw
[in] A parameter passed through to the func.

func
[in] The function that gets called when this entry in the COM map is processed.

Any failure will cause processing to continue on the COM map. If the function returns an interface pointer, it should
return S_OK.

Returns E_NOINTERFACE and terminates COM map processing when the specified interface is queried for.

x
[in] Text used to construct the interface identifier.

You can use this macro to prevent an interface from being used in a particular case. For example, you can insert
this macro into your COM map right before COM_INTERFACE_ENTRY_AGGREGATE_BLIND to prevent a query
for the interface from being forwarded to the aggregate's inner unknown.

The interface IID will be constructed by appending x to IID_ . For example, if x is IPersistStorage , the IID will be
IID_IPersistStorage .

Compiler Options Macros
3/4/2019 • 5 minutes to read • Edit Online

_ATL_ALL_WARNINGS A symbol which enables errors in projects converted from
previous versions of ATL.

_ATL_APARTMENT_THREADED Define if one or more of your objects use apartment
threading.

_ATL_CSTRING_EXPLICIT_CONSTRUCTORS Makes certain CString constructors explicit, preventing any
unintentional conversions.

_ATL_ENABLE_PTM_WARNING Define this macro in order to use C++ standard compliant
syntax, which generates the C4867 compiler error when a non
standard syntax is used to initialize a pointer to a member
function.

_ATL_FREE_THREADED Define if one or more of your objects use free or neutral
threading.

_ATL_MULTI_THREADED A symbol that indicates the project will have objects that are
marked as Both, Free or Neutral. The macro
_ATL_FREE_THREADED should be used instead.

_ATL_NO_AUTOMATIC_NAMESPACE A symbol which prevents the default use of namespace as ATL.

_ATL_NO_COM_SUPPORT A symbol which prevents COM-related code from being
compiled with your project.

ATL_NO_VTABLE A symbol that prevents the vtable pointer from being
initialized in the class's constructor and destructor.

ATL_NOINLINE A symbol that indicates a function should not be inlined.

_ATL_SINGLE_THREADED Define if all of your objects use the single threading model.

_ATL_ALL_WARNINGS

#define _ATL_ALL_WARNINGS

RemarksRemarks

These macros control specific compiler features.

A symbol which enables errors in projects converted from previous versions of ATL.

Before Visual C++ .NET 2002, ATL disabled a lot of warnings and left them disabled so that they never showed up
in user code. Specifically:

C4127 conditional expression is constant

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/compiler-options-macros.md

#define _ATL_ALL_WARNINGS

_ATL_APARTMENT_THREADED

_ATL_APARTMENT_THREADED

RemarksRemarks

_ATL_CSTRING_EXPLICIT_CONSTRUCTORS

_ATL_CSTRING_EXPLICIT_CONSTRUCTORS

RemarksRemarks

_ATL_ENABLE_PTM_WARNING

C4786 'identifier' : identifier was truncated to 'number' characters in the debug information

C4201 nonstandard extension used : nameless struct/union

C4103 'filename' : used #pragma pack to change alignment

C4291 'declaration' : no matching operator delete found; memory will not be freed if initialization throws an
exception

C4268 'identifier' : 'const' static/global data initialized with compiler generated default constructor fills the
object with zeros

C4702 unreachable code

In projects converted from previous versions, these warnings are still disabled by the libraries headers.

By adding the following line to the stdafx.h file before including libraries headers, this behavior can be changed.

If this #define is added, the ATL headers are careful to preserve the state of these warnings so that they are not
disabled globally (or if the user explicitly disables individual warnings, not to enable them).

New projects have this #define set in stdafx.h by default.

Define if one or more of your objects use apartment threading.

Specifies apartment threading. See Specifying the Project's Threading Model for other threading options, and
Options, ATL Simple Object Wizard for a description of the threading models available for an ATL object.

Makes certain CString constructors explicit, preventing any unintentional conversions.

When this is defined, all CString constructors that take a single parameter are compiled with the explicit keyword,
which prevents implicit conversions of input arguments. This means for example, that when _UNICODE is defined,
if you attempt use a char* string as a CString constructor argument, a compiler error will result. Use this macro in
situations where you need to prevent implicit conversions between narrow and wide string types.

By using the _T macro on all constructor string arguments, you can define
_ATL_CSTRING_EXPLICIT_CONSTRUCTORS and avoid compile errors regardless of whether _UNICODE is
defined.

Define this macro in order to force the use of ANSI C++ standard-compliant syntax for pointer to member
functions. Using this macro will cause the C4867 compiler error to be generated when non-standard syntax is used

#define _ATL_ENABLE_PTM_WARNING

RemarksRemarks

BEGIN_MESSAGE_MAP(CMFCListViewDoc, CDocument)
 ON_COMMAND(ID_MYCOMMAND, OnMycommand)
END_MESSAGE_MAP()

BEGIN_MESSAGE_MAP(CMFCListViewDoc, CDocument)
 ON_COMMAND(ID_MYCOMMAND, &CMFCListViewDoc::OnMycommand)
END_MESSAGE_MAP()

_ATL_FREE_THREADED

_ATL_FREE_THREADED

RemarksRemarks

_ATL_MULTI_THREADED

_ATL_MULTI_THREADED

RemarksRemarks

_ATL_NO_AUTOMATIC_NAMESPACE

to initialize a pointer to a member function.

The ATL and MFC libraries have been changed to match the Visual C++ compiler's improved standard C++
compliance. According to the ANSI C++ standard, the syntax of a pointer to a class member function should be
&CMyClass::MyFunc .

When _ATL_ENABLE_PTM_WARNING is not defined (the default case), ATL/MFC disables the C4867 error in
macro maps (notably message maps) so that code that was created in earlier versions can continue to build as
before. If you define _ATL_ENABLE_PTM_WARNING, your code should be C++ standard compliant.

However, the non-standard form has been deprecated, so you need to move existing code to C++ standard
compliant syntax. For example, the following:

Should be changed to:

Note that for map macros that add the '&' character, you should not add it again in your code.

Define if one or more of your objects use free or neutral threading.

Specifies free threading. Free threading is equivalent to a multithread apartment model. See Specifying the
Project's Threading Model for other threading options, and Options, ATL Simple Object Wizard for a description of
the threading models available for an ATL object.

A symbol that indicates the project will have objects that are marked as Both, Free or Neutral.

If this symbol is defined, ATL will pull in code that will correctly synchronize access to global data. New code
should use the equivalent macro _ATL_FREE_THREADED instead.

_ATL_NO_AUTOMATIC_NAMESPACE

RemarksRemarks

_ATL_NO_COM_SUPPORT

_ATL_NO_COM_SUPPORT

ATL_NO_VTABLE

ATL_NO_VTABLE

RemarksRemarks

ExampleExample

class ATL_NO_VTABLE CMyClass2 :

ATL_NOINLINE

 ATL_NOINLINE inline
 myfunction()
 {
 ...
 }

ParametersParameters

RemarksRemarks

_ATL_SINGLE_THREADED

A symbol which prevents the default use of namespace as ATL.

If this symbol is not defined, including atlbase.h will perform using namespace ATL by default, which may lead to
naming conflicts. To prevent this, define this symbol.

A symbol which prevents COM-related code from being compiled with your project.

A symbol that prevents the vtable pointer from being initialized in the class's constructor and destructor.

If the vtable pointer is prevented from being initialized in the class's constructor and destructor, the linker can
eliminate the vtable and all of the functions to which it points. Expands to __declspec(novtable).

A symbol that indicates a function should not be inlined.

myfunction
The function that should not be inlined.

Use this symbol if you want to ensure a function does not get inlined by the compiler, even though it must be
declared as inline so that it can be placed in a header file. Expands to __declspec(noinline).

Define if all of your objects use the single threading model

_ATL_SINGLE_THREADED

RemarksRemarks

See also

Specifies that the object always runs in the primary COM thread. See Specifying the Project's Threading Model for
other threading options, and Options, ATL Simple Object Wizard for a description of the threading models
available for an ATL object.

Macros

Composite Control Macros
3/4/2019 • 3 minutes to read • Edit Online

BEGIN_SINK_MAP Marks the beginning of the event sink map for the composite
control.

END_SINK_MAP Marks the end of the event sink map for the composite
control.

SINK_ENTRY Entry to the event sink map.

SINK_ENTRY_EX Entry to the event sink map with an additional parameter.

SINK_ENTRY_EX_P (Visual Studio 2017) Similar to SINK_ENTRY_EX except that it
takes a pointer to iid.

SINK_ENTRY_INFO Entry to the event sink map with manually supplied type
information for use with IDispEventSimpleImpl.

SINK_ENTRY_INFO_P (Visual Studio 2017) Similar to SINK_ENTRY_INFO except that
it takes a pointer to iid.

Requirements

BEGIN_SINK_MAP

BEGIN_SINK_MAP(_class)

ParametersParameters

ExampleExample

BEGIN_SINK_MAP(CMyCompositeCtrl)
 //Make sure the Event Handlers have __stdcall calling convention
 SINK_ENTRY(IDC_CALENDAR1, DISPID_CLICK, &CMyCompositeCtrl::ClickCalendar1)
 SINK_ENTRY(IDC_CALENDAR2, DISPID_CLICK, &CMyCompositeCtrl::ClickCalendar2)
END_SINK_MAP()

RemarksRemarks

These macros define event sink maps and entries.

Header: atlcom.h

Declares the beginning of the event sink map for the composite control.

_class
[in] Specifies the control.

CE ATL implementation of ActiveX event sinks only supports return values of type HRESULT or void from your
event handler methods; any other return value is unsupported and its behavior is undefined.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/composite-control-macros.md

END_SINK_MAP

END_SINK_MAP()

ExampleExample

BEGIN_SINK_MAP(CMyCompositeCtrl)
 //Make sure the Event Handlers have __stdcall calling convention
 SINK_ENTRY(IDC_CALENDAR1, DISPID_CLICK, &CMyCompositeCtrl::ClickCalendar1)
 SINK_ENTRY(IDC_CALENDAR2, DISPID_CLICK, &CMyCompositeCtrl::ClickCalendar2)
END_SINK_MAP()

RemarksRemarks

SINK_ENTRY

SINK_ENTRY(id, dispid, fn)

ParametersParameters

ExampleExample

BEGIN_SINK_MAP(CMyCompositeCtrl)
 //Make sure the Event Handlers have __stdcall calling convention
 SINK_ENTRY(IDC_CALENDAR1, DISPID_CLICK, &CMyCompositeCtrl::ClickCalendar1)
 SINK_ENTRY(IDC_CALENDAR2, DISPID_CLICK, &CMyCompositeCtrl::ClickCalendar2)
END_SINK_MAP()

RemarksRemarks

SINK_ENTRY_EX and SINK_ENTRY_EX_P

Declares the end of the event sink map for the composite control.

CE ATL implementation of ActiveX event sinks only supports return values of type HRESULT or void from your
event handler methods; any other return value is unsupported and its behavior is undefined.

Declares the handler function (fn) for the specified event (dispid), of the control identified by id.

id
[in] Identifies the control.

dispid
[in] Identifies the specified event.

fn
[in] Name of the event handler function. This function must use the _stdcall calling convention and have the
appropriate dispinterface-style signature.

CE ATL implementation of ActiveX event sinks only supports return values of type HRESULT or void from your
event handler methods; any other return value is unsupported and its behavior is undefined.

Declares the handler function (fn) for the specified event (dispid), of the dispatch interface (iid), for the control
identified by id.

SINK_ENTRY_EX(id, iid, dispid, fn)
SINK_ENTRY_EX_P(id, piid, dispid, fn) // (Visual Studio 2017)

ParametersParameters

ExampleExample

BEGIN_SINK_MAP(CMyCompositCtrl2)
 //Make sure the Event Handlers have __stdcall calling convention
 SINK_ENTRY_EX(IDC_CALENDAR1, __uuidof(DCalendarEvents), DISPID_CLICK,
 &CMyCompositCtrl2::ClickCalendar1)
 SINK_ENTRY_EX(IDC_CALENDAR2, __uuidof(DCalendarEvents), DISPID_CLICK,
 &CMyCompositCtrl2::ClickCalendar2)
END_SINK_MAP()

RemarksRemarks

SINK_ENTRY_INFO and SINK_ENTRY_INFO_P

SINK_ENTRY_INFO(id, iid, dispid, fn, info)
SINK_ENTRY_INFO_P(id, piid, dispid, fn, info) // (Visual Studio 2017)

ParametersParameters

id
[in] Identifies the control.

iid
[in] Identifies the dispatch interface.

piid
[in] Pointer to the dispatch interface.

dispid
[in] Identifies the specified event.

fn
[in] Name of the event handler function. This function must use the _stdcall calling convention and have the
appropriate dispinterface-style signature.

CE ATL implementation of ActiveX event sinks only supports return values of type HRESULT or void from your
event handler methods; any other return value is unsupported and its behavior is undefined.

Use the SINK_ENTRY_INFO macro within an event sink map to provide the information needed by
IDispEventSimpleImpl to route events to the relevant handler function.

id
[in] Unsigned integer identifying the event source. This value must match the nID template parameter used in the
related IDispEventSimpleImpl base class.

iid
[in] IID that identifies the dispatch interface.

piid
[in] Pointer to IID that identifies the dispatch interface.

dispid
[in] DISPID identifying the specified event.

RemarksRemarks

See also

fn
[in] Name of the event handler function. This function must use the _stdcall calling convention and have the
appropriate dispinterface-style signature.

info
[in] Type information for the event handler function. This type information is provided in the form of a pointer to
an _ATL_FUNC_INFO structure. CC_CDECL is the only option supported in Windows CE for the CALLCONV field of
the _ATL_FUNC_INFO structure. Any other value is unsupported thus its behavior undefined.

The first four macro parameters are the same as those for the SINK_ENTRY_EX macro. The final parameter
provides type information for the event. CE ATL implementation of ActiveX event sinks only supports return
values of type HRESULT or void from your event handler methods; any other return value is unsupported and its
behavior is undefined.

Macros
Composite Control Global Functions

Connection Point Macros
3/4/2019 • 2 minutes to read • Edit Online

BEGIN_CONNECTION_POINT_MAP Marks the beginning of the connection point map entries.

CONNECTION_POINT_ENTRY Enters connection points into the map.

CONNECTION_POINT_ENTRY_P (Visual Studio 2017) Similar to CONNECTION_POINT_ENTRY
but takes a pointer to iid.

END_CONNECTION_POINT_MAP Marks the end of the connection point map entries.

Requirements

BEGIN_CONNECTION_POINT_MAP

BEGIN_CONNECTION_POINT_MAP(x)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_CONNECTION_POINT_MAP(CPolyCtl)
 CONNECTION_POINT_ENTRY(__uuidof(_IPolyCtlEvents))
END_CONNECTION_POINT_MAP()

CONNECTION_POINT_ENTRY and CONNECTION_POINT_ENTRY_P

CONNECTION_POINT_ENTRY(iid)
CONNECTION_POINT_ENTRY_P(piid) // (Visual Studio 2017)

These macros define connection point maps and entries.

Header: atlcom.h

Marks the beginning of the connection point map entries.

x
[in] The name of the class containing the connection points.

Start your connection point map with the BEGIN_CONNECTION_POINT_MAP macro, add entries for each of
your connection points with the CONNECTION_POINT_ENTRY macro, and complete the map with the
END_CONNECTION_POINT_MAP macro.

For more information about connection points in ATL, see the article Connection Points.

Enters a connection point for the specified interface into the connection point map so that it can be accessed.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/connection-point-macros.md

ParametersParameters

RemarksRemarks

ExampleExample

class ATL_NO_VTABLE CConnect2 :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CConnect2, &CLSID_Connect2>,
 public IConnectionPointContainerImpl<CConnect2>,
 public IPropertyNotifySinkCP<CConnect2>
{
public:
 BEGIN_CONNECTION_POINT_MAP(CConnect2)
 CONNECTION_POINT_ENTRY(IID_IPropertyNotifySink)
 END_CONNECTION_POINT_MAP()

 // Remainder of class declaration omitted.

END_CONNECTION_POINT_MAP

END_CONNECTION_POINT_MAP()

RemarksRemarks

ExampleExample

BEGIN_CONNECTION_POINT_MAP(CMyComponent)
 CONNECTION_POINT_ENTRY(__uuidof(_IMyComponentEvents))
END_CONNECTION_POINT_MAP()

See also

iid
[in] The GUID of the interface being added to the connection point map.

piid
[in] Pointer to the GUID of the interface being adde.

Connection point entries in the map are used by IConnectionPointContainerImpl. The class containing the
connection point map must inherit from IConnectionPointContainerImpl .

Start your connection point map with the BEGIN_CONNECTION_POINT_MAP macro, add entries for each of
your connection points with the CONNECTION_POINT_ENTRY macro, and complete the map with the
END_CONNECTION_POINT_MAP macro.

For more information about connection points in ATL, see the article Connection Points.

Marks the end of the connection point map entries.

Start your connection point map with the BEGIN_CONNECTION_POINT_MAP macro, add entries for each of
your connection points with the CONNECTION_POINT_ENTRY macro, and complete the map with the
END_CONNECTION_POINT_MAP macro.

For more information about connection points in ATL, see the article Connection Points.

Macros
Connection Point Global Functions

Debugging and Error Reporting Macros
3/4/2019 • 7 minutes to read • Edit Online

_ATL_DEBUG_INTERFACES Writes, to the output window, any interface leaks that are
detected when _Module.Term is called.

_ATL_DEBUG_QI Writes all calls to QueryInterface to the output window.

ATLASSERT Performs the same functionality as the _ASSERTE macro found
in the C run-time library.

ATLENSURE Performs parameters validation. Call AtlThrow if needed

ATLTRACENOTIMPL Sends a message to the dump device that the specified
function is not implemented.

ATLTRACE Reports warnings to an output device, such as the debugger
window, according to the indicated flags and levels. Included
for backward compatibility.

ATLTRACE2 Reports warnings to an output device, such as the debugger
window, according to the indicated flags and levels.

_ATL_DEBUG_INTERFACES

#define _ATL_DEBUG_INTERFACES

RemarksRemarks

These macros provide useful debugging and trace facilities.

Define this macro before including any ATL header files to trace all AddRef and Release calls on your
components' interfaces to the output window.

The trace output will appear as shown below:

ATL: QIThunk - 2008 AddRef : Object = 0x00d81ba0 Refcount = 1 CBug - IBug

The first part of each trace will always be ATL: QIThunk . Next is a value identifying the particular interface thunk
being used. An interface thunk is an object used to maintain a reference count and provide the tracing capability
used here. A new interface thunk is created on every call to QueryInterface except for requests for the IUnknown

interface (in this case, the same thunk is returned every time to comply with COM's identity rules).

Next you'll see AddRef or Release indicating which method was called. Following that, you'll see a value
identifying the object whose interface reference count was changed. The value traced is the this pointer of the
object.

The reference count that is traced is the reference count on that thunk after AddRef or Release was called. Note
that this reference count may not match the reference count for the object. Each thunk maintains its own reference
count to help you fully comply with COM's reference-counting rules.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/debugging-and-error-reporting-macros.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/assert-asserte-assert-expr-macros

NOTENOTE

_ATL_DEBUG_QI

#define _ATL_DEBUG_QI

RemarksRemarks

ATLASSERT

ATLASSERT(booleanExpression);

ParametersParameters

RemarksRemarks

Requirements

ATLENSURE

ATLENSURE(booleanExpression);
ATLENSURE_THROW(booleanExpression, hr);

ParametersParameters

The final piece of information traced is the name of the object and the interface being affected by the AddRef or
Release call.

Any interface leaks that are detected when the server shuts down and _Module.Term is called will be logged like
this:

ATL: QIThunk - 2005 LEAK : Object = 0x00d81ca0 Refcount = 1 MaxRefCount = 1 CBug - IBug

The information provided here maps directly to the information provided in the previous trace statements, so you
can examine the reference counts throughout the whole lifetime of an interface thunk. In addition, you get an
indication of the maximum reference count on that interface thunk.

_ATL_DEBUG_INTERFACES can be used in retail builds.

Writes all calls to QueryInterface to the output window.

If a call to QueryInterface failed, the output window will display:

interface name - failed

The ATLASSERT macro performs the same functionality as the _ASSERTE macro found in the C run-time library.

booleanExpression
Expression (including pointers) that evaluates to nonzero or 0.

In debug builds, ATLASSERT evaluates booleanExpression and generates a debug report when the result is false.

Header: atldef.h

This macro is used to validate parameters passed to a function.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/assert-asserte-assert-expr-macros

RemarksRemarks

ExampleExample

void MyImportantFunction(char* psz)
{
 ATLENSURE(NULL != psz);

 char mysz[64];
 strcpy_s(mysz, sizeof(mysz), psz);
}

Requirements

ATLTRACENOTIMPL

ATLTRACENOTIMPL(funcname);

ParametersParameters

RemarksRemarks

ExampleExample

ATLTRACENOTIMPL(_T("IOleControl::GetControlInfo"));

Requirements

ATLTRACE

booleanExpression
Specifies a boolean expression to be tested.

hr
Specifies an error code to return.

These macros provide a mechanism to detect and notify the user of incorrect parameter usage.

The macro calls ATLASSERT and if the condition fails calls AtlThrow .

In the ATLENSURE case, AtlThrow is called with E_FAIL.

In the ATLENSURE_THROW case, AtlThrow is called with the specified HRESULT.

The difference between ATLENSURE and ATLASSERT is that ATLENSURE throws an exception in Release builds
as well as in Debug builds.

Header: afx.h

In debug builds of ATL, sends the string " funcname is not implemented" to the dump device and returns
E_NOTIMPL.

funcname
[in] A string containing the name of the function that is not implemented.

In release builds, simply returns E_NOTIMPL.

Header: atltrace.h

ATLTRACE(exp);

ATLTRACE(
 DWORD category,
 UINT level,
 LPCSTR lpszFormat, ...);

ParametersParameters

RemarksRemarks

ATLTRACE2

ATLTRACE2(exp);

ATLTRACE2(
 DWORD category,
 UINT level,
 LPCSTRlpszFormat, ...);

ParametersParameters

RemarksRemarks

Reports warnings to an output device, such as the debugger window, according to the indicated flags and levels.
Included for backward compatibility.

exp
[in] The string and variables to send to the Visual C++ output window or any application that traps these
messages.

category
[in] Type of event or method on which to report. See the Remarks for a list of categories.

level
[in] The level of tracing to report. See the Remarks for details.

lpszFormat
[in] The formatted string to send to the dump device.

See ATLTRACE2 for a description of ATLTRACE. ATLTRACE and ATLTRACE2 have the same behavior, ATLTRACE
is included for backward compatibility.

Reports warnings to an output device, such as the debugger window, according to the indicated flags and levels.

exp
[in] The string to send to the Visual C++ output window or any application that traps these messages.

category
[in] Type of event or method on which to report. See the Remarks for a list of categories.

level
[in] The level of tracing to report. See the Remarks for details.

lpszFormat
[in] The printf -style format string to use to create a string to send to the dump device.

The short form of ATLTRACE2 writes a string to the debugger's output window. The second form of ATLTRACE2
also writes output to the debugger's output window, but is subject to the settings of the ATL/MFC Trace Tool (see
ATLTraceTool Sample). For example, if you set level to 4 and the ATL/MFC Trace Tool to level 0, you will not see the

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ATL Trace FlagsATL Trace Flags

ATL CATEGORY DESCRIPTION

atlTraceGeneral Reports on all ATL applications. The default.

atlTraceCOM Reports on COM methods.

atlTraceQI Reports on QueryInterface calls.

atlTraceRegistrar Reports on the registration of objects.

atlTraceRefcount Reports on changing reference count.

atlTraceWindowing Reports on windows methods; for example, reports an invalid
message map ID.

atlTraceControls Reports on controls; for example, reports when a control or its
window is destroyed.

atlTraceHosting Reports hosting messages; for example, reports when a client
in a container is activated.

atlTraceDBClient Reports on OLE DB Consumer Template; for example, when a
call to GetData fails, the output can contain the HRESULT.

atlTraceDBProvider Reports on OLE DB Provider Template; for example, reports if
the creation of a column failed.

atlTraceSnapin Reports for MMC SnapIn application.

atlTraceNotImpl Reports that the indicated function is not implemented.

atlTraceAllocation Reports messages printed by the memory debugging tools in
atldbgmem.h.

MFC Trace FlagsMFC Trace Flags

MFC CATEGORY DESCRIPTION

traceAppMsg General purpose, MFC messages. Always recommended.

traceDumpContext Messages from CDumpContext.

traceWinMsg Messages from MFC's message handling code.

traceMemory Messages from MFC's memory management code.

traceCmdRouting Messages from MFC's Windows command routing code.

message. level can be 0, 1, 2, 3, or 4. The default, 0, reports only the most serious problems.

The category parameter lists the trace flags to set. These flags correspond to the types of methods for which you
want to report. The tables below list the valid trace flags you can use for the category parameter.

traceHtml Messages from MFC's DHTML dialog support.

traceSocket Messages from MFC's socket support.

traceOle Messages from MFC's OLE support.

traceDatabase Messages from MFC's database support.

traceInternet Messages from MFC's Internet support.

MFC CATEGORY DESCRIPTION

CTraceCategory MY_CATEGORY(_T("MyCategoryName"), 1);

ATLTRACE2(MY_CATEGORY, 2, _T("a message in a custom category"));

ExampleExample

int i = 1;
ATLTRACE2(atlTraceGeneral, 4, "Integer = %d\n", i);
// Output: 'Integer = 1'

See also

To declare a custom trace category, declare a global instance of the CTraceCategory class as follows:

The category name, MY_CATEGORY in this example, is the name you specify to the category parameter. The first
parameter is the category name that will appear in the ATL/MFC Trace Tool. The second parameter is the default
trace level. This parameter is optional, and the default trace level is 0.

To use a user-defined category:

To specify that you want to filter the trace messages, insert definitions for these macros into Stdafx.h before the
#include <atlbase.h> statement.

Alternatively, you can set the filter in the preprocessor directives in the Property Pages dialog box. Click the
Preprocessor tab and then insert the global into the Preprocessor Definitions edit box.

Atlbase.h contains default definitions of the ATLTRACE2 macros and these definitions will be used if you don't
define these symbols before atlbase.h is processed.

In release builds, ATLTRACE2 compiles to (void) 0 .

ATLTRACE2 limits the contents of the string to be sent to the dump device to no more than 1023 characters, after
formatting.

ATLTRACE and ATLTRACE2 have the same behavior, ATLTRACE is included for backward compatibility.

Macros
Debugging and Error Reporting Global Functions

Exception Handling Macros
3/4/2019 • 2 minutes to read • Edit Online

_ATLCATCH Statement(s) to handle errors occurring in the associated
_ATLTRY .

_ATLCATCHALL Statement(s) to handle errors occurring in the associated
_ATLTRY .

_ATLTRY Marks a guarded code section where an error could possibly
occur.

Requirements:

_ATLCATCH

_ATLCATCH(e)

ParametersParameters

RemarksRemarks

_ATLCATCHALL

_ATLCATCHALL

RemarksRemarks

_ATLTRY

_ATLTRY

These macros provide support for exception handling.

Header: atldef.h

Statement(s) to handle errors occurring in the associated _ATLTRY .

e
The exception to catch.

Used in conjunction with _ATLTRY . Resolves to C++ catch(CAtlException e) for handling a given type of C++
exceptions.

Statement(s) to handle errors occurring in the associated _ATLTRY .

Used in conjunction with _ATLTRY . Resolves to C++ catch(...) for handling all types of C++ exceptions.

Marks a guarded code section where an error could possibly occur.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/exception-handling-macros.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-throw-and-catch-statements-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-throw-and-catch-statements-cpp

RemarksRemarks

See also

Used in conjunction with _ATLCATCH or _ATLCATCHALL. Resolves to the C++ symbol try.

Macros

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-throw-and-catch-statements-cpp

Message Map Macros (ATL)
3/4/2019 • 21 minutes to read • Edit Online

ALT_MSG_MAP Marks the beginning of an alternate message map.

BEGIN_MSG_MAP Marks the beginning of the default message map.

CHAIN_MSG_MAP_ALT Chains to an alternate message map in the base class.

CHAIN_MSG_MAP_ALT_MEMBER Chains to an alternate message map in a data member of the
class.

CHAIN_MSG_MAP Chains to the default message map in the base class.

CHAIN_MSG_MAP_DYNAMIC Chains to the message map in another class at run time.

CHAIN_MSG_MAP_MEMBER Chains to the default message map in a data member of the
class.

COMMAND_CODE_HANDLER Maps a WM_COMMAND message to a handler function,
based on the notification code.

COMMAND_HANDLER Maps a WM_COMMAND message to a handler function,
based on the notification code and the identifier of the menu
item, control, or accelerator.

COMMAND_ID_HANDLER Maps a WM_COMMAND message to a handler function,
based on the identifier of the menu item, control, or
accelerator.

COMMAND_RANGE_CODE_HANDLER Maps a WM_COMMAND message to a handler function,
based on the notification code and a contiguous range of
control identifiers.

COMMAND_RANGE_HANDLER Maps a WM_COMMAND message to a handler function,
based on a contiguous range of control identifiers.

DECLARE_EMPTY_MSG_MAP Implements an empty message map.

DEFAULT_REFLECTION_HANDLER Provides a default handler for reflected messages that are not
handled otherwise.

END_MSG_MAP Marks the end of a message map.

FORWARD_NOTIFICATIONS Forwards notification messages to the parent window.

MESSAGE_HANDLER Maps a Windows message to a handler function.

These macros define message maps and entries.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/message-map-macros-atl.md

MESSAGE_RANGE_HANDLER Maps a contiguous range of Windows messages to a handler
function.

NOTIFY_CODE_HANDLER Maps a WM_NOTIFY message to a handler function, based on
the notification code.

NOTIFY_HANDLER Maps a WM_NOTIFY message to a handler function, based on
the notification code and the control identifier.

NOTIFY_ID_HANDLER Maps a WM_NOTIFY message to a handler function, based on
the control identifier.

NOTIFY_RANGE_CODE_HANDLER Maps a WM_NOTIFY message to a handler function, based on
the notification code and a contiguous range of control
identifiers.

NOTIFY_RANGE_HANDLER Maps a WM_NOTIFY message to a handler function, based on
a contiguous range of control identifiers.

REFLECT_NOTIFICATIONS Reflects notification messages back to the window that sent
them.

REFLECTED_COMMAND_CODE_HANDLER Maps a reflected WM_COMMAND message to a handler
function, based on the notification code.

REFLECTED_COMMAND_HANDLER Maps a reflected WM_COMMAND message to a handler
function, based on the notification code and the identifier of
the menu item, control, or accelerator.

REFLECTED_COMMAND_ID_HANDLER Maps a reflected WM_COMMAND message to a handler
function, based on the identifier of the menu item, control, or
accelerator.

REFLECTED_COMMAND_RANGE_CODE_HANDLER Maps a reflected WM_COMMAND message to a handler
function, based on the notification code and a contiguous
range of control identifiers.

REFLECTED_COMMAND_RANGE_HANDLER Maps a reflected WM_COMMAND message to a handler
function, based on a contiguous range of control identifiers.

REFLECTED_NOTIFY_CODE_HANDLER Maps a reflected WM_NOTIFY message to a handler function,
based on the notification code.

REFLECTED_NOTIFY_HANDLER Maps a reflected WM_NOTIFY message to a handler function,
based on the notification code and the control identifier.

REFLECTED_NOTIFY_ID_HANDLER Maps a reflected WM_NOTIFY message to a handler function,
based on the control identifier.

REFLECTED_NOTIFY_RANGE_CODE_HANDLER Maps a reflected WM_NOTIFY message to a handler function,
based on the notification code and a contiguous range of
control identifiers.

REFLECTED_NOTIFY_RANGE_HANDLER Maps a reflected WM_NOTIFY message to a handler function,
based on a contiguous range of control identifiers.

Requirements

ALT_MSG_MAP

ALT_MSG_MAP(msgMapID)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_MSG_MAP(CMyOneAltClass)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
ALT_MSG_MAP(1)
 MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
END_MSG_MAP()

BEGIN_MSG_MAP(CMyClass)
ALT_MSG_MAP(1)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
 MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
ALT_MSG_MAP(2)
 MESSAGE_HANDLER(WM_CREATE, OnCreate)
END_MSG_MAP()

RequirementsRequirements

BEGIN_MSG_MAP

Header: atlwin.h

Marks the beginning of an alternate message map.

msgMapID
[in] The message map identifier.

ATL identifies each message map by a number. The default message map (declared with the BEGIN_MSG_MAP
macro) is identified by 0. An alternate message map is identified by msgMapID.

Message maps are used to process messages sent to a window. For example, CContainedWindow allows you to
specify the identifier of a message map in the containing object. CContainedWindow::WindowProc then uses this
message map to direct the contained window's messages either to the appropriate handler function or to another
message map. For a list of macros that declare handler functions, see BEGIN_MSG_MAP.

Always begin a message map with BEGIN_MSG_MAP. You can then declare subsequent alternate message maps.

The END_MSG_MAP macro marks the end of the message map. Note that there is always exactly one instance of
BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see Message Maps.

The following example shows the default message map and one alternate message map, each containing one
handler function:

The next example shows two alternate message maps. The default message map is empty.

Header: atlwin.h

BEGIN_MSG_MAP(theClass)

ParametersParameters

RemarksRemarks

MACRO DESCRIPTION

MESSAGE_HANDLER Maps a Windows message to a handler function.

MESSAGE_RANGE_HANDLER Maps a contiguous range of Windows messages to a handler
function.

COMMAND_HANDLER Maps a WM_COMMAND message to a handler function,
based on the notification code and the identifier of the menu
item, control, or accelerator.

COMMAND_ID_HANDLER Maps a WM_COMMAND message to a handler function,
based on the identifier of the menu item, control, or
accelerator.

COMMAND_CODE_HANDLER Maps a WM_COMMAND message to a handler function,
based on the notification code.

COMMAND_RANGE_HANDLER Maps a contiguous range of WM_COMMAND messages to a
handler function, based on the identifier of the menu item,
control, or accelerator.

NOTIFY_HANDLER Maps a WM_NOTIFY message to a handler function, based on
the notification code and the control identifier.

NOTIFY_ID_HANDLER Maps a WM_NOTIFY message to a handler function, based on
the control identifier.

NOTIFY_CODE_HANDLER Maps a WM_NOTIFY message to a handler function, based on
the notification code.

NOTIFY_RANGE_HANDLER Maps a contiguous range of WM_NOTIFY messages to a
handler function, based on the control identifier.

MACRO DESCRIPTION

CHAIN_MSG_MAP Chains to the default message map in the base class.

Marks the beginning of the default message map.

theClass
[in] The name of the class containing the message map.

CWindowImpl::WindowProc uses the default message map to process messages sent to the window. The
message map directs messages either to the appropriate handler function or to another message map.

The following macros map a message to a handler function. This function must be defined in theClass.

The following macros direct messages to another message map. This process is called "chaining."

CHAIN_MSG_MAP_MEMBER Chains to the default message map in a data member of the
class.

CHAIN_MSG_MAP_ALT Chains to an alternate message map in the base class.

CHAIN_MSG_MAP_ALT_MEMBER Chains to an alternate message map in a data member of the
class.

CHAIN_MSG_MAP_DYNAMIC Chains to the default message map in another class at run
time.

MACRO DESCRIPTION

MACRO DESCRIPTION

REFLECTED_COMMAND_HANDLER Maps a reflected WM_COMMAND message to a handler
function, based on the notification code and the identifier of
the menu item, control, or accelerator.

REFLECTED_COMMAND_ID_HANDLER Maps a reflected WM_COMMAND message to a handler
function, based on the identifier of the menu item, control, or
accelerator.

REFLECTED_COMMAND_CODE_HANDLER Maps a reflected WM_COMMAND message to a handler
function, based on the notification code.

REFLECTED_COMMAND_RANGE_HANDLER Maps a reflected WM_COMMAND message to a handler
function, based on a contiguous range of control identifiers.

REFLECTED_COMMAND_RANGE_CODE_HANDLER Maps a reflected WM_COMMAND message to a handler
function, based on the notification code and a contiguous
range of control identifiers.

REFLECTED_NOTIFY_HANDLER Maps a reflected WM_NOTIFY message to a handler function,
based on the notification code and the control identifier.

REFLECTED_NOTIFY_ID_HANDLER Maps a reflected WM_NOTIFY message to a handler function,
based on the control identifier.

REFLECTED_NOTIFY_CODE_HANDLER Maps a reflected WM_NOTIFY message to a handler function,
based on the notification code.

REFLECTED_NOTIFY_RANGE_HANDLER Maps a reflected WM_NOTIFY message to a handler function,
based on a contiguous range of control identifiers.

REFLECTED_NOTIFY_RANGE_CODE_HANDLER Maps a reflected WM_NOTIFY message to a handler function,
based on the notification code and a contiguous range of
control identifiers.

ExampleExample

The following macros direct "reflected" messages from the parent window. For example, a control normally sends
notification messages to its parent window for processing, but the parent window can reflect the message back to
the control.

class CMyExtWindow : public CMyBaseWindow
{
public:
 BEGIN_MSG_MAP(CMyExtWindow)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
 MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
 CHAIN_MSG_MAP(CMyBaseWindow)
 END_MSG_MAP()

 LRESULT OnPaint(UINT /*nMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 return 0;
 }

 LRESULT OnSetFocus(UINT /*nMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 return 0;
 }
};

BEGIN_MSG_MAP(CMyOneAltClass)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
ALT_MSG_MAP(1)
 MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
END_MSG_MAP()

BEGIN_MSG_MAP(CMyClass)
ALT_MSG_MAP(1)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
 MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
ALT_MSG_MAP(2)
 MESSAGE_HANDLER(WM_CREATE, OnCreate)
END_MSG_MAP()

RequirementsRequirements

CHAIN_MSG_MAP_ALT

When a CMyExtWindow object receives a WM_PAINT message, the message is directed to CMyExtWindow::OnPaint

for the actual processing. If OnPaint indicates the message requires further processing, the message will then be
directed to the default message map in CMyBaseWindow .

In addition to the default message map, you can define an alternate message map with ALT_MSG_MAP. Always
begin a message map with BEGIN_MSG_MAP. You can then declare subsequent alternate message maps. The
following example shows the default message map and one alternate message map, each containing one handler
function:

The next example shows two alternate message maps. The default message map is empty.

The END_MSG_MAP macro marks the end of the message map. Note that there is always exactly one instance of
BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see Message Maps.

Header: atlwin.h

Defines an entry in a message map.

CHAIN_MSG_MAP_ALT(theChainClass, msgMapID)

ParametersParameters

RemarksRemarks

NOTENOTE

RequirementsRequirements

CHAIN_MSG_MAP_ALT_MEMBER

CHAIN_MSG_MAP_ALT_MEMBER(theChainMember, msgMapID)

ParametersParameters

RemarksRemarks

NOTENOTE

theChainClass
[in] The name of the base class containing the message map.

msgMapID
[in] The message map identifier.

CHAIN_MSG_MAP_ALT directs messages to an alternate message map in a base class. You must have declared
this alternate message map with ALT_MSG_MAP(msgMapID). To direct messages to a base class's default
message map (declared with BEGIN_MSG_MAP), use CHAIN_MSG_MAP. For an example, see
CHAIN_MSG_MAP.

Always begin a message map with BEGIN_MSG_MAP. You can then declare subsequent alternate message maps with
ALT_MSG_MAP. The END_MSG_MAP macro marks the end of the message map. Every message map must have exactly one
instance of BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see Message Maps.

Header: atlwin.h

Defines an entry in a message map.

theChainMember
[in] The name of the data member containing the message map.

msgMapID
[in] The message map identifier.

CHAIN_MSG_MAP_ALT_MEMBER directs messages to an alternate message map in a data member. You must
have declared this alternate message map with ALT_MSG_MAP(msgMapID). To direct messages to a data
member's default message map (declared with BEGIN_MSG_MAP), use CHAIN_MSG_MAP_MEMBER. For an
example, see CHAIN_MSG_MAP_MEMBER.

Always begin a message map with BEGIN_MSG_MAP. You can then declare subsequent alternate message maps with
ALT_MSG_MAP. The END_MSG_MAP macro marks the end of the message map. Every message map must have exactly one
instance of BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see Message Maps.

RequirementsRequirements

CHAIN_MSG_MAP

CHAIN_MSG_MAP(theChainClass)

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

class CMyExtClass : public CMyBaseClass
{
public:
 BEGIN_MSG_MAP(CMyExtClass)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
 // chain to default message map in CMyBaseClass
 CHAIN_MSG_MAP(CMyBaseClass)
 ALT_MSG_MAP(1)
 // chain to first alternative message map in CMyBaseClass
 CHAIN_MSG_MAP(CMyBaseClass)
 ALT_MSG_MAP(2)
 MESSAGE_HANDLER(WM_CHAR, OnChar)
 // chain to alternate message map in CMyBaseClass
 CHAIN_MSG_MAP_ALT(CMyBaseClass, 1)
 END_MSG_MAP()

 LRESULT OnPaint(UINT /*nMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 return 0;
 }

 LRESULT OnChar(UINT /*nMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 return 0;
 }
};

Header: atlwin.h

Defines an entry in a message map.

theChainClass
[in] The name of the base class containing the message map.

CHAIN_MSG_MAP directs messages to a base class's default message map (declared with BEGIN_MSG_MAP).
To direct messages to a base class's alternate message map (declared with ALT_MSG_MAP), use
CHAIN_MSG_MAP_ALT.

Always begin a message map with BEGIN_MSG_MAP. You can then declare subsequent alternate message maps with
ALT_MSG_MAP. The END_MSG_MAP macro marks the end of the message map. Every message map must have exactly one
instance of BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see Message Maps.

This example illustrates the following:

RequirementsRequirements

CHAIN_MSG_MAP_DYNAMIC

CHAIN_MSG_MAP_DYNAMIC(dynaChainID)

ParametersParameters

RemarksRemarks

NOTENOTE

RequirementsRequirements

CHAIN_MSG_MAP_MEMBER

CHAIN_MSG_MAP_MEMBER(theChainMember)

ParametersParameters

RemarksRemarks

If a window procedure is using CMyClass 's default message map and OnPaint does not handle a message,
the message is directed to CMyBaseClass 's default message map for processing.

If a window procedure is using the first alternate message map in CMyClass , all messages are directed to
CMyBaseClass 's default message map.

If a window procedure is using CMyClass 's second alternate message map and OnChar does not handle a
message, the message is directed to the specified alternate message map in CMyBaseClass . CMyBaseClass

must have declared this message map with ALT_MSG_MAP(1).

Header: atlwin.h

Defines an entry in a message map.

dynaChainID
[in] The unique identifier for an object's message map.

CHAIN_MSG_MAP_DYNAMIC directs messages, at run time, to the default message map in another object. The
object and its message map are associated with dynaChainID, which you define through
CDynamicChain::SetChainEntry. You must derive your class from CDynamicChain in order to use
CHAIN_MSG_MAP_DYNAMIC. For an example, see the CDynamicChain overview.

Always begin a message map with BEGIN_MSG_MAP. You can then declare subsequent alternate message maps with
ALT_MSG_MAP. The END_MSG_MAP macro marks the end of the message map. Every message map must have exactly one
instance of BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see Message Maps.

Header: atlwin.h

Defines an entry in a message map.

theChainMember
[in] The name of the data member containing the message map.

CHAIN_MSG_MAP_MEMBER directs messages to a data member's default message map (declared with

NOTENOTE

ExampleExample

class CMyContainerClass : public CWindowImpl<CMyContainerClass>
{
public:
 CMyContainedClass m_obj;

 BEGIN_MSG_MAP(CMyContainerClass)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
 // chain to default message map of m_obj
 CHAIN_MSG_MAP_MEMBER(m_obj)
 ALT_MSG_MAP(1)
 // chain to default message map of m_obj
 CHAIN_MSG_MAP_MEMBER(m_obj)
 ALT_MSG_MAP(2)
 MESSAGE_HANDLER(WM_CHAR, OnChar)
 // chain to alternate message map of m_obj
 CHAIN_MSG_MAP_ALT_MEMBER(m_obj, 1)
 END_MSG_MAP()

 LRESULT OnPaint(UINT /*nMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 return 0;
 }
 LRESULT OnChar(UINT /*nMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 return 0;
 }
};

RequirementsRequirements

COMMAND_CODE_HANDLER

BEGIN_MSG_MAP). To direct messages to a data member's alternate message map (declared with
ALT_MSG_MAP), use CHAIN_MSG_MAP_ALT_MEMBER.

Always begin a message map with BEGIN_MSG_MAP. You can then declare subsequent alternate message maps with
ALT_MSG_MAP. The END_MSG_MAP macro marks the end of the message map. Every message map must have exactly one
instance of BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see Message Maps.

This example illustrates the following:

If a window procedure is using CMyClass 's default message map and OnPaint does not handle a message,
the message is directed to m_obj 's default message map for processing.

If a window procedure is using the first alternate message map in CMyClass , all messages are directed to
m_obj 's default message map.

If a window procedure is using CMyClass 's second alternate message map and OnChar does not handle a
message, the message is directed to the specified alternate message map of m_obj . Class
CMyContainedClass must have declared this message map with ALT_MSG_MAP(1).

Header: atlwin.h

COMMAND_CODE_HANDLER(code, func)

ParametersParameters

RequirementsRequirements

COMMAND_HANDLER

COMMAND_HANDLER(id, code, func)

ParametersParameters

RemarksRemarks

class ATL_NO_VTABLE CPolyProp :
 public CComObjectRootEx<CComSingleThreadModel>,
 public CComCoClass<CPolyProp, &CLSID_PolyProp>,
 public IPropertyPageImpl<CPolyProp>,
 public CDialogImpl<CPolyProp>
{
public:
BEGIN_COM_MAP(CPolyProp)
 COM_INTERFACE_ENTRY(IPropertyPage)
END_COM_MAP()

BEGIN_MSG_MAP(CPolyProp)
 COMMAND_HANDLER(IDC_SIDES, EN_CHANGE, OnEnChangeSides)
 CHAIN_MSG_MAP(IPropertyPageImpl<CPolyProp>)
END_MSG_MAP()

 // When a CPolyProp object receives a WM_COMMAND message identified
 // by IDC_SIDES and EN_CHANGE, the message is directed to
 // CPolyProp::OnEnChangeSides for the actual processing.
 LRESULT OnEnChangeSides(WORD /*wNotifyCode*/, WORD /*wID*/, HWND /*hWndCtl*/,
 BOOL& /*bHandled*/);

Similar to COMMAND_HANDLER, but maps a WM_COMMAND message based only on the notification code.

code
[in] The notification code.

func
[in] The name of the message-handler function.

Header: atlwin.h

Defines an entry in a message map.

id
[in] The identifier of the menu item, control, or accelerator.

code
[in] The notification code.

func
[in] The name of the message-handler function.

COMMAND_HANDLER maps a WM_COMMAND message to the specified handler function, based on the
notification code and the control identifier. For example:

Any function specified in a COMMAND_HANDLER macro must be defined as follows:

https://docs.microsoft.com/windows/desktop/menurc/wm-command
https://docs.microsoft.com/windows/desktop/menurc/wm-command

NOTENOTE

RequirementsRequirements

COMMAND_ID_HANDLER

COMMAND_ID_HANDLER(id, func)

ParametersParameters

RequirementsRequirements

COMMAND_RANGE_CODE_HANDLER

COMMAND_RANGE_CODE_HANDLER(idFirst, idLast, code, func)

ParametersParameters

LRESULT CommandHandler(WORD wNotifyCode, WORD wID, HWND hWndCtl, BOOL& bHandled);

The message map sets bHandled to TRUE before CommandHandler is called. If CommandHandler does not fully
handle the message, it should set bHandled to FALSE to indicate the message needs further processing.

Always begin a message map with BEGIN_MSG_MAP. You can then declare subsequent alternate message maps with
ALT_MSG_MAP. The END_MSG_MAP macro marks the end of the message map. Every message map must have exactly one
instance of BEGIN_MSG_MAP and END_MSG_MAP.

In addition to COMMAND_HANDLER, you can use MESSAGE_HANDLER to map a WM_COMMAND message
without regard to an identifier or code. In this case, MESSAGE_HANDLER(WM_COMMAND, OnHandlerFunction) will direct all
WM_COMMAND messages to OnHandlerFunction .

For more information about using message maps in ATL, see Message Maps.

Header: atlwin.h

Similar to COMMAND_HANDLER, but maps a WM_COMMAND message based only on the identifier of the
menu item, control, or accelerator.

id
[in] The identifier of the menu item, control, or accelerator sending the message.

func
[in] The name of the message-handler function.

Header: atlwin.h

Similar to COMMAND_RANGE_HANDLER, but maps WM_COMMAND messages with a specific notification
code from a range of controls to a single handler function.

idFirst
[in] Marks the beginning of a contiguous range of control identifiers.

idLast
[in] Marks the end of a contiguous range of control identifiers.

code
[in] The notification code.

https://docs.microsoft.com/windows/desktop/menurc/wm-command
https://docs.microsoft.com/windows/desktop/menurc/wm-command

RemarksRemarks

RequirementsRequirements

COMMAND_RANGE_HANDLER

COMMAND_RANGE_HANDLER(idFirst, idLast, func)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DECLARE_EMPTY_MSG_MAP

DECLARE_EMPTY_MSG_MAP()

RemarksRemarks

BEGIN_MSG_MAP(CExample)
END_MSG_MAP()

DEFAULT_REFLECTION_HANDLER

DEFAULT_REFLECTION_HANDLER()

func
[in] The name of the message-handler function.

This range is based on the identifier of the menu item, control, or accelerator sending the message.

Header: atlwin.h

Similar to COMMAND_HANDLER, but maps WM_COMMAND messages from a range of controls to a single
handler function.

idFirst
[in] Marks the beginning of a contiguous range of control identifiers.

idLast
[in] Marks the end of a contiguous range of control identifiers.

func
[in] The name of the message-handler function.

This range is based on the identifier of the menu item, control, or accelerator sending the message.

Header: atlwin.h

Declares an empty message map.

DECLARE_EMPTY_MSG_MAP is a convenience macro that calls the macros BEGIN_MSG_MAP and
END_MSG_MAP to create an empty message map:

Provides a default handler for the child window (control) that will receive reflected messages; the handler will
properly pass unhandled messages to DefWindowProc .

https://docs.microsoft.com/windows/desktop/menurc/wm-command

RequirementsRequirements

END_MSG_MAP

END_MSG_MAP()

RemarksRemarks

ExampleExample

BEGIN_MSG_MAP(CMyOneAltClass)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
ALT_MSG_MAP(1)
 MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
END_MSG_MAP()

BEGIN_MSG_MAP(CMyClass)
ALT_MSG_MAP(1)
 MESSAGE_HANDLER(WM_PAINT, OnPaint)
 MESSAGE_HANDLER(WM_SETFOCUS, OnSetFocus)
ALT_MSG_MAP(2)
 MESSAGE_HANDLER(WM_CREATE, OnCreate)
END_MSG_MAP()

RequirementsRequirements

FORWARD_NOTIFICATIONS

FORWARD_NOTIFICATIONS()

RemarksRemarks

RequirementsRequirements

MESSAGE_HANDLER

Header: atlwin.h

Marks the end of a message map.

Always use the BEGIN_MSG_MAP macro to mark the beginning of a message map. Use ALT_MSG_MAP to
declare subsequent alternate message maps.

Note that there is always exactly one instance of BEGIN_MSG_MAP and END_MSG_MAP.

For more information about using message maps in ATL, see Message Maps.

The following example shows the default message map and one alternate message map, each containing one
handler function:

The next example shows two alternate message maps. The default message map is empty.

Header: atlwin.h

Forwards notification messages to the parent window.

Specify this macro as part of your message map.

Header: atlwin.h

MESSAGE_HANDLER(msg, func)

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

class CMyBaseWindow : public CWindowImpl<CMyBaseWindow>
{
public:
 BEGIN_MSG_MAP(CMyBaseWindow)
 MESSAGE_HANDLER(WM_CREATE, OnCreate)
 END_MSG_MAP()

 // When a CMyBaseWindow object receives a WM_CREATE message, the message
 // is directed to CMyBaseWindow::OnCreate for the actual processing.
 LRESULT OnCreate(UINT /*nMsg*/, WPARAM /*wParam*/, LPARAM /*lParam*/,
 BOOL& /*bHandled*/)
 {
 return 0;
 }
};

RequirementsRequirements

MESSAGE_RANGE_HANDLER

Defines an entry in a message map.

msg
[in] The Windows message.

func
[in] The name of the message-handler function.

MESSAGE_HANDLER maps a Windows message to the specified handler function.

Any function specified in a MESSAGE_HANDLER macro must be defined as follows:

LRESULT MessageHandler(UINT uMsg, WPARAM wParam, LPARAM lParam, BOOL& bHandled);

The message map sets bHandled to TRUE before MessageHandler is called. If MessageHandler does not fully
handle the message, it should set bHandled to FALSE to indicate the message needs further processing.

Always begin a message map with BEGIN_MSG_MAP. You can then declare subsequent alternate message maps with
ALT_MSG_MAP. The END_MSG_MAP macro marks the end of the message map. Every message map must have exactly one
instance of BEGIN_MSG_MAP and END_MSG_MAP.

In addition to MESSAGE_HANDLER, you can use COMMAND_HANDLER and NOTIFY_HANDLER to map
WM_COMMAND and WM_NOTIFY messages, respectively.

For more information about using message maps in ATL, see Message Maps.

Header: atlwin.h

Similar to MESSAGE_HANDLER, but maps a range of Windows messages to a single handler function.

https://docs.microsoft.com/windows/desktop/menurc/wm-command
https://docs.microsoft.com/windows/desktop/controls/wm-notify

MESSAGE_RANGE_HANDLER(msgFirst, msgLast, func)

ParametersParameters

RequirementsRequirements

NOTIFY_CODE_HANDLER

NOTIFY_CODE_HANDLER(cd, func)

ParametersParameters

RequirementsRequirements

NOTIFY_HANDLER

NOTIFY_HANDLER(id, cd, func)

ParametersParameters

RemarksRemarks

msgFirst
[in] Marks the beginning of a contiguous range of messages.

msgLast
[in] Marks the end of a contiguous range of messages.

func
[in] The name of the message-handler function.

Header: atlwin.h

Similar to NOTIFY_HANDLER, but maps a WM_NOTIFY message based only on the notification code.

cd
[in] The notification code.

func
[in] The name of the message-handler function.

Header: atlwin.h

Defines an entry in a message map.

id
[in] The identifier of the control sending the message.

cd
[in] The notification code.

func
[in] The name of the message-handler function.

NOTIFY_HANDLER maps a WM_NOTIFY message to the specified handler function, based on the notification
code and the control identifier.

Any function specified in a NOTIFY_HANDLER macro must be defined as follows:

LRESULT NotifyHandler(int idCtrl, LPNMHDR pnmh, BOOL& bHandled);

https://docs.microsoft.com/windows/desktop/controls/wm-notify
https://docs.microsoft.com/windows/desktop/controls/wm-notify

NOTENOTE

ExampleExample

class CMyDialog2 : public CDialogImpl<CMyDialog2>
{
public:
 enum { IDD = IDD_MYDLG };

 BEGIN_MSG_MAP(CMyDialog2)
 NOTIFY_HANDLER(IDC_TREE1, NM_CLICK, OnNMClickTree1)
 END_MSG_MAP()

public:
 // When a CMyDialog2 object receives a WM_NOTIFY message
 // identified by IDC_TREE1 and NM_CLICK, the message is
 // directed to CMyDialog2::OnNMClickTree1 for the actual
 // processing.
 LRESULT OnNMClickTree1(int /*idCtrl*/, LPNMHDR pNMHDR, BOOL& /*bHandled*/);
};

RequirementsRequirements

NOTIFY_ID_HANDLER

NOTIFY_ID_HANDLER(id, func)

ParametersParameters

RequirementsRequirements

NOTIFY_RANGE_CODE_HANDLER

The message map sets bHandled to TRUE before NotifyHandler is called. If NotifyHandler does not fully handle
the message, it should set bHandled to FALSE to indicate the message needs further processing.

Always begin a message map with BEGIN_MSG_MAP. You can then declare subsequent alternate message maps with
ALT_MSG_MAP. The END_MSG_MAP macro marks the end of the message map. Every message map must have exactly one
instance of BEGIN_MSG_MAP and END_MSG_MAP.

In addition to NOTIFY_HANDLER, you can use MESSAGE_HANDLER to map a WM_NOTIFY message without
regard to an identifier or code. In this case, MESSAGE_HANDLER(WM_NOTIFY, OnHandlerFunction) will direct all
WM_NOTIFY messages to OnHandlerFunction .

For more information about using message maps in ATL, see Message Maps.

Header: atlwin.h

Similar to NOTIFY_HANDLER, but maps a WM_NOTIFY message based only on the control identifier.

id
[in] The identifier of the control sending the message.

func
[in] The name of the message-handler function.

Header: atlwin.h

Similar to NOTIFY_RANGE_HANDLER, but maps WM_NOTIFY messages with a specific notification code from a

https://docs.microsoft.com/windows/desktop/controls/wm-notify
https://docs.microsoft.com/windows/desktop/controls/wm-notify

NOTIFY_RANGE_CODE_HANDLER(idFirst, idLast, cd, func)

ParametersParameters

RemarksRemarks

RequirementsRequirements

NOTIFY_RANGE_HANDLER

NOTIFY_RANGE_HANDLER(idFirst, idLast, func)

ParametersParameters

RemarksRemarks

RequirementsRequirements

REFLECT_NOTIFICATIONS

REFLECT_NOTIFICATIONS()

RemarksRemarks

range of controls to a single handler function.

idFirst
[in] Marks the beginning of a contiguous range of control identifiers.

idLast
[in] Marks the end of a contiguous range of control identifiers.

cd
[in] The notification code.

func
[in] The name of the message-handler function.

This range is based on the identifier of the control sending the message.

Header: atlwin.h

Similar to NOTIFY_HANDLER, but maps WM_NOTIFY messages from a range of controls to a single handler
function.

idFirst
[in] Marks the beginning of a contiguous range of control identifiers.

idLast
[in] Marks the end of a contiguous range of control identifiers.

func
[in] The name of the message-handler function.

This range is based on the identifier of the control sending the message.

Header: atlwin.h

Reflects notification messages back to the child window (control) that sent them.

Specify this macro as part of the parent window's message map.

https://docs.microsoft.com/windows/desktop/controls/wm-notify

RequirementsRequirements

REFLECTED_COMMAND_CODE_HANDLER

REFLECTED_COMMAND_CODE_HANDLER(code, func)

ParametersParameters

RequirementsRequirements

REFLECTED_COMMAND_HANDLER

REFLECTED_COMMAND_HANDLER(id, code, func)

ParametersParameters

RequirementsRequirements

REFLECTED_COMMAND_ID_HANDLER

REFLECTED_COMMAND_ID_HANDLER(id, func)

ParametersParameters

RequirementsRequirements

Header: atlwin.h

Similar to COMMAND_CODE_HANDLER, but maps commands reflected from the parent window.

code
[in] The notification code.

func
[in] The name of the message-handler function.

Header: atlwin.h

Similar to COMMAND_HANDLER, but maps commands reflected from the parent window.

id
[in] The identifier of the menu item, control, or accelerator.

code
[in] The notification code.

func
[in] The name of the message-handler function.

Header: atlwin.h

Similar to COMMAND_ID_HANDLER, but maps commands reflected from the parent window.

id
[in] The identifier of the menu item, control, or accelerator.

func
[in] The name of the message-handler function.

REFLECTED_COMMAND_RANGE_CODE_HANDLER

REFLECTED_COMMAND_RANGE_CODE_HANDLER(idFirst, idLast, code, func)

ParametersParameters

RequirementsRequirements

REFLECTED_COMMAND_RANGE_HANDLER

REFLECTED_COMMAND_RANGE_HANDLER(idFirst, idLast, func)

ParametersParameters

RequirementsRequirements

REFLECTED_NOTIFY_CODE_HANDLER

REFLECTED_NOTIFY_CODE_HANDLER_EX(cd, func)

ParametersParameters

Header: atlwin.h

Similar to COMMAND_RANGE_CODE_HANDLER, but maps commands reflected from the parent window.

idFirst
[in] Marks the beginning of a contiguous range of control identifiers.

idLast
[in] Marks the end of a contiguous range of control identifiers.

code
[in] The notification code.

func
[in] The name of the message-handler function.

Header: atlwin.h

Similar to COMMAND_RANGE_HANDLER, but maps commands reflected from the parent window.

idFirst
[in] Marks the beginning of a contiguous range of control identifiers.

idLast
[in] Marks the end of a contiguous range of control identifiers.

func
[in] The name of the message-handler function.

Header: atlwin.h

Similar to NOTIFY_CODE_HANDLER, but maps notifications reflected from the parent window.

cd
[in] The notification code.

func

RequirementsRequirements

REFLECTED_NOTIFY_HANDLER

REFLECTED_NOTIFY_HANDLER(id, cd, func)

ParametersParameters

RequirementsRequirements

REFLECTED_NOTIFY_ID_HANDLER

REFLECTED_NOTIFY_ID_HANDLER(id, func)

ParametersParameters

RequirementsRequirements

REFLECTED_NOTIFY_RANGE_CODE_HANDLER

REFLECTED_NOTIFY_RANGE_CODE_HANDLER(idFirst, idLast, cd, func)

ParametersParameters

[in] The name of the message-handler function.

Header: atlwin.h

Similar to NOTIFY_HANDLER, but maps notifications reflected from the parent window.

id
[in] The identifier of the menu item, control, or accelerator.

cd
[in] The notification code.

func
[in] The name of the message-handler function.

Header: atlwin.h

Similar to NOTIFY_ID_HANDLER, but maps notifications reflected from the parent window.

id
[in] The identifier of the menu item, control, or accelerator.

func
[in] The name of the message-handler function.

Header: atlwin.h

Similar to NOTIFY_RANGE_CODE_HANDLER, but maps notifications reflected from the parent window.

idFirst
[in] Marks the beginning of a contiguous range of control identifiers.

idLast
[in] Marks the end of a contiguous range of control identifiers.

RequirementsRequirements

REFLECTED_NOTIFY_RANGE_HANDLER

REFLECTED_NOTIFY_RANGE_HANDLER(idFirst, idLast, func)

ParametersParameters

See also

cd
[in] The notification code.

func
[in] The name of the message-handler function.

Header: atlwin.h

Similar to NOTIFY_RANGE_HANDLER, but maps notifications reflected from the parent window.

idFirst
[in] Marks the beginning of a contiguous range of control identifiers.

idLast
[in] Marks the end of a contiguous range of control identifiers.

func
[in] The name of the message-handler function.

Macros

Object Map Macros
3/4/2019 • 2 minutes to read • Edit Online

DECLARE_OBJECT_DESCRIPTION Allows you to specify a class object's text description, which
will be entered into the object map.

OBJECT_ENTRY_AUTO Enters an ATL object into the object map, updates the registry,
and creates an instance of the object.

OBJECT_ENTRY_NON_CREATEABLE_EX_AUTO Allows you to specify that the object should be registered and
initialized, but it should not be externally creatable via
CoCreateInstance .

Requirements

DECLARE_OBJECT_DESCRIPTION

DECLARE_OBJECT_DESCRIPTION(x)

ParametersParameters

RemarksRemarks

ExampleExample

These macros define object maps and entries.

Header: atlcom.h

Allows you to specify a text description for your class object.

x
[in] The class object's description.

ATL enters this description into the object map through the OBJECT_ENTRY_AUTO macro.

DECLARE_OBJECT_DESCRIPTION implements a GetObjectDescription function, which you can use to override
the CComCoClass::GetObjectDescription method.

The GetObjectDescription function is called by IComponentRegistrar::GetComponents . IComponentRegistrar is an
Automation interface that allows you to register and unregister individual components in a DLL. When you create
a Component Registrar object with the ATL Project Wizard, the wizard will automatically implement the
IComponentRegistrar interface. IComponentRegistrar is typically used by Microsoft Transaction Server.

For more information about the ATL Project Wizard, see the article Creating an ATL Project.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/object-map-macros.md

class ATL_NO_VTABLE CMyDescribedClass :
 public CComObjectRoot,
 public CComCoClass<CMyDescribedClass, &CLSID_MyDescribedClass>
{
public:
 CMyDescribedClass()
 {
 }

 // Override CComCoClass::GetObjectDescription
 DECLARE_OBJECT_DESCRIPTION("My Described Object 1.0")
};

OBJECT_ENTRY_AUTO

OBJECT_ENTRY_AUTO(clsid, class)

ParametersParameters

RemarksRemarks

INFORMATION FOR OBTAINED FROM

COM registration Registry Macros

Class factory creation Class Factory Macros

Instance creation Aggregation Macros

Component category registration Category Macros

Class-level initialization and cleanup ObjectMain

OBJECT_ENTRY_NON_CREATEABLE_EX_AUTO

Enters an ATL object into the object map, updates the registry, and creates an instance of the object.

clsid
[in] The CLSID of a COM class implemented by the C++ class named class.

class
[in] The name of the C++ class implementing the COM class represented by clsid.

Object entry macros are placed at global scope in the project to provide support for the registration, initialization,
and creation of a class.

OBJECT_ENTRY_AUTO enters the function pointers of the creator class and class-factory creator class
CreateInstance functions for this object into the auto-generated ATL object map. When

CAtlComModule::RegisterServer is called, it updates the system registry for each object in the object map.

The table below describes how the information added to the object map is obtained from the class given as the
second parameter to this macro.

Allows you to specify that the object should be registered and initialized, but it should not be externally creatable
via CoCreateInstance .

OBJECT_ENTRY_NON_CREATEABLE_EX_AUTO(clsid, class)

ParametersParameters

RemarksRemarks

See also

clsid
[in] The CLSID of a COM class implemented by the C++ class named class.

class
[in] The name of the C++ class implementing the COM class represented by clsid.

Object entry macros are placed at global scope in the project to provide support for the registration, initialization,
and creation of a class.

OBJECT_ENTRY_NON_CREATEABLE_EX_AUTO allows you to specify that an object should be registered and
initialized (see OBJECT_ENTRY_AUTO for more information), but it should not be creatable via CoCreateInstance .

Macros

Object Status Macros
3/4/2019 • 2 minutes to read • Edit Online

DECLARE_OLEMISC_STATUS Used in ATL ActiveX controls to set the OLEMISC flags.

Requirements

DECLARE_OLEMISC_STATUS

DECLARE_OLEMISC_STATUS(miscstatus)

ParametersParameters

RemarksRemarks

ExampleExample

DECLARE_OLEMISC_STATUS(OLEMISC_RECOMPOSEONRESIZE |
 OLEMISC_CANTLINKINSIDE |
 OLEMISC_INSIDEOUT |
 OLEMISC_ACTIVATEWHENVISIBLE |
 OLEMISC_SETCLIENTSITEFIRST
)

See also

This macro sets flags belonging to ActiveX controls.

Header: atlcom.h

Used in ATL ActiveX controls to set the OLEMISC flags.

miscstatus
All applicable OLEMISC flags.

This macro is used to set the OLEMISC flags for an ActiveX control. Refer to IOleObject::GetMiscStatus for more
details.

Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/object-status-macros.md
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-getmiscstatus

Property Map Macros
3/4/2019 • 3 minutes to read • Edit Online

BEGIN_PROP_MAP Marks the beginning of the ATL property map.

PROP_DATA_ENTRY Indicates the extent, or dimensions, of an ActiveX control.

PROP_ENTRY_TYPE Enters a property description, property DISPID, and property
page CLSID into the property map.

PROP_ENTRY_TYPE_EX Enters a property description, property DISPID, property
page CLSID, and IDispatch IID into the property map.

PROP_PAGE Enters a property page CLSID into the property map.

END_PROP_MAP Marks the end of the ATL property map.

Requirements

BEGIN_PROP_MAP

BEGIN_PROP_MAP(theClass)

ParametersParameters

RemarksRemarks

ExampleExample

These macros define property maps and entries.

Header: atlcom.h

Marks the beginning of the object's property map.

theClass
[in] Specifies the class containing the property map.

The property map stores property descriptions, property DISPIDs, property page CLSIDs, and IDispatch IIDs.
Classes IPerPropertyBrowsingImpl, IPersistPropertyBagImpl, IPersistStreamInitImpl, and
ISpecifyPropertyPagesImpl use the property map to retrieve and set this information.

When you create an object with the ATL Project Wizard, the wizard will create an empty property map by
specifying BEGIN_PROP_MAP followed by END_PROP_MAP.

BEGIN_PROP_MAP does not save out the extent (that is, the dimensions) of a property map, because an object
using a property map may not have a user interface, so it would have no extent. If the object is an ActiveX control
with a user interface, it has an extent. In this case, you must specify PROP_DATA_ENTRY in your property map to
supply the extent.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/property-map-macros.md

BEGIN_PROP_MAP(CMyPropCtrl)
 PROP_DATA_ENTRY("_cx", m_sizeExtent.cx, VT_UI4)
 PROP_DATA_ENTRY("_cy", m_sizeExtent.cy, VT_UI4)
 PROP_ENTRY_TYPE("Property1", 1, CLSID_MyPropPage1, VT_BSTR)
 PROP_ENTRY_TYPE_EX("Caption", DISPID_CAPTION, CLSID_MyPropPage2, IID_IMyDual1, VT_BSTR)
 PROP_ENTRY_INTERFACE_CALLBACK("CorrectParamCallback", 0, CLSID_MyPropPage1, AllowedCLSID, VT_DISPATCH)
 PROP_ENTRY_INTERFACE_CALLBACK_EX("CorrectParamCallbackEx", 1, IID_IMyDual1, CLSID_MyPropPage2,
AllowedCLSID, VT_UNKNOWN)
 PROP_PAGE(CLSID_MyPropPage3)
END_PROP_MAP()

PROP_DATA_ENTRY

PROP_DATA_ENTRY(szDesc, member, vt)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_PROP_MAP(CMyWindow)
 PROP_DATA_ENTRY("_cx", m_sizeExtent.cx, VT_UI4)
 PROP_DATA_ENTRY("_cy", m_sizeExtent.cy, VT_UI4)
END_PROP_MAP()

BEGIN_PROP_MAP(CMyCompositeCtrl)
 PROP_DATA_ENTRY("Width", m_nWidth, VT_UI4)
 PROP_DATA_ENTRY("Height", m_nHeight, VT_UI4)
END_PROP_MAP()

PROP_ENTRY_TYPE

PROP_ENTRY_TYPE(szDesc, dispid, clsid, vt)

Indicates the extent, or dimensions, of an ActiveX control.

szDesc
[in] The property description.

member
[in] The data member containing the extent; for example, m_sizeExtent .

vt
[in] Specifies the VARIANT type of the property.

This macro causes the specified data member to be persisted.

When you create an ActiveX control, the wizard inserts this macro after the property map macro
BEGIN_PROP_MAP and before the property map macro END_PROP_MAP.

In the following example, the extent of the object (m_sizeExtent) is being persisted.

Use this macro to enter a property description, property DISPID, and property page CLSID into the object's
property map.

ParametersParameters

RemarksRemarks

ExampleExample

PROP_ENTRY_TYPE_EX

PROP_ENTRY_TYPE_EX(szDesc, dispid, clsid, iidDispatch, vt)

ParametersParameters

RemarksRemarks

ExampleExample

szDesc
[in] The property description.

dispid
[in] The property's DISPID.

clsid
[in] The CLSID of the associated property page. Use the special value CLSID_NULL for a property that does not
have an associated property page.

vt
[in] The property's type.

The PROP_ENTRY macro was insecure and deprecated. It has been replaced with PROP_ENTRY_TYPE.

The BEGIN_PROP_MAP macro marks the beginning of the property map; the END_PROP_MAP macro marks
the end.

See the example for BEGIN_PROP_MAP.

Similar to PROP_ENTRY_TYPE, but allows you specify a particular IID if your object supports multiple dual
interfaces.

szDesc
[in] The property description.

dispid
[in] The property's DISPID.

clsid
[in] The CLSID of the associated property page. Use the special value CLSID_NULL for a property that does not
have an associated property page.

iidDispatch
[in] The IID of the dual interface defining the property.

vt
[in] The property's type.

The PROP_ENTRY_EX macro was insecure and deprecated. It has been replaced with PROP_ENTRY_TYPE_EX.

The BEGIN_PROP_MAP macro marks the beginning of the property map; the END_PROP_MAP macro marks
the end.

The following example groups entries for IMyDual1 followed by an entry for IMyDual2 . Grouping by dual
interface will improve performance.

BEGIN_PROP_MAP(CAtlEdit)
 PROP_ENTRY_TYPE_EX("Caption", DISPID_CAPTION, CLSID_MyPropPage2, IID_IMyDual1, VT_BSTR)
 PROP_ENTRY_TYPE_EX("Enabled", DISPID_ENABLED, CLSID_MyPropPage2, IID_IMyDual1, VT_BOOL)
 PROP_ENTRY_TYPE_EX("Width", DISPID_DRAWWIDTH, CLSID_MyPropPage2, IID_IMyDual2, VT_UINT)
END_PROP_MAP()

PROP_PAGE

PROP_PAGE(clsid)

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

BEGIN_PROP_MAP(CMyCtrl)
 OtherPropMapEntries
 PROP_PAGE(CLSID_DatePage)
 PROP_PAGE(CLSID_StockColorPage)
END_PROP_MAP()

END_PROP_MAP

END_PROP_MAP()

RemarksRemarks

ExampleExample

See also

Use this macro to enter a property page CLSID into the object's property map.

clsid
[in] The CLSID of a property page.

PROP_PAGE is similar to PROP_ENTRY_TYPE, but does not require a property description or DISPID.

If you have already entered a CLSID with PROP_ENTRY_TYPE or PROP_ENTRY_TYPE_EX, you do not need to make an
additional entry with PROP_PAGE.

The BEGIN_PROP_MAP macro marks the beginning of the property map; the END_PROP_MAP macro marks
the end.

Marks the end of the object's property map.

When you create an object with the ATL Project Wizard, the wizard will create an empty property map by
specifying BEGIN_PROP_MAP followed by END_PROP_MAP.

See the example for BEGIN_PROP_MAP.

Macros

Registry Data Exchange Macros
3/4/2019 • 3 minutes to read • Edit Online

BEGIN_RDX_MAP Marks the beginning of the Registry Data Exchange map.

END_RDX_MAP Marks the end of the Registry Data Exchange map.

RDX_BINARY Associates the specified registry entry with a specified
member variable of type BYTE.

RDX_CSTRING_TEXT Associates the specified registry entry with a specified
member variable of type CString.

RDX_DWORD Associates the specified registry entry with a specified
member variable of type DWORD.

RDX_TEXT Associates the specified registry entry with a specified
member variable of type TCHAR.

Requirements

BEGIN_RDX_MAP

BEGIN_RDX_MAP

RemarksRemarks

MACRO DESCRIPTION

RDX_BINARY Associates the specified registry entry with a specified
member variable of type BYTE.

RDX_DWORD Associates the specified registry entry with a specified
member variable of type DWORD.

RDX_CSTRING_TEXT Associates the specified registry entry with a specified
member variable of type CString.

RDX_TEXT Associates the specified registry entry with a specified
member variable of type TCHAR.

These macros perform Registry Data Exchange operations.

Header: atlplus.h

Marks the beginning of the Registry Data Exchange map.

The following macros are used within the Registry Data Exchange map to read and write entries in the system
registry:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/registry-data-exchange-macros.md

END_RDX_MAP

END_RDX_MAP

RDX_BINARY

RDX_BINARY(
 rootkey,
 subkey,
 valuename,
 member,
 member_size)

ParametersParameters

RemarksRemarks

RDX_CSTRING_TEXT

RDX_CSTRING_TEXT(
 rootkey,
 subkey,
 valuename,
 member,
 member_size)

ParametersParameters

The global function RegistryDataExchange, or the member function of the same name created by the
BEGIN_RDX_MAP and END_RDX_MAP macros, should be used whenever your code needs to exchange data
between the system registry and the variables specified in the RDX map.

Marks the end of the Registry Data Exchange map.

Associates the specified registry entry with a specified member variable of type BYTE.

rootkey
The registry key root.

subkey
The registry subkey.

valuename
The registry key.

member
The member variable to associate with the specified registry entry.

member_size
The size, in bytes, of the member variable.

This macro is used in conjunction with the BEGIN_RDX_MAP and END_RDX_MAP macros to associate a member
variable with a given registry entry. The global function RegistryDataExchange, or the member function of the
same name created by the BEGIN_RDX_MAP and END_RDX_MAP macros, should be used to perform exchange
of data between the system registry and the member variables in the RDX map.

Associates the specified registry entry with a specified member variable of type CString.

RemarksRemarks

RDX_DWORD

RDX_DWORD(
 rootkey,
 subkey,
 valuename,
 member,
 member_size)

ParametersParameters

RemarksRemarks

RDX_TEXT

rootkey
The registry key root.

subkey
The registry subkey.

valuename
The registry key.

member
The member variable to associate with the specified registry entry.

member_size
The size, in bytes, of the member variable.

This macro is used in conjunction with the BEGIN_RDX_MAP and END_RDX_MAP macros to associate a member
variable with a given registry entry. The global function RegistryDataExchange, or the member function of the
same name created by the BEGIN_RDX_MAP and END_RDX_MAP macros, should be used to perform exchange
of data between the system registry and the member variables in the RDX map.

Associates the specified registry entry with a specified member variable of type DWORD.

rootkey
The registry key root.

subkey
The registry subkey.

valuename
The registry key.

member
The member variable to associate with the specified registry entry.

member_size
The size, in bytes, of the member variable.

This macro is used in conjunction with the BEGIN_RDX_MAP and END_RDX_MAP macros to associate a member
variable with a given registry entry. The global function RegistryDataExchange, or the member function of the
same name created by the BEGIN_RDX_MAP and END_RDX_MAP macros, should be used to perform exchange
of data between the system registry and the member variables in the RDX map.

Associates the specified registry entry with a specified member variable of type TCHAR.

RDX_TEXT(
 rootkey,
 subkey,
 valuename,
 member,
 member_size)

ParametersParameters

RemarksRemarks

See also

rootkey
The registry key root.

subkey
The registry subkey.

valuename
The registry key.

member
The member variable to associate with the specified registry entry.

member_size
The size, in bytes, of the member variable.

This macro is used in conjunction with the BEGIN_RDX_MAP and END_RDX_MAP macros to associate a member
variable with a given registry entry. The global function RegistryDataExchange, or the member function of the
same name created by the BEGIN_RDX_MAP and END_RDX_MAP macros, should be used to perform exchange
of data between the system registry and the member variables in the RDX map.

Macros
RegistryDataExchange

Registry Macros
3/4/2019 • 4 minutes to read • Edit Online

_ATL_STATIC_REGISTRY Indicates that you want the registration code for your object
to be in the object to avoid a dependency on ATL.DLL.

DECLARE_LIBID Provides a way for ATL to obtain the libid of the type library.

DECLARE_NO_REGISTRY Avoids default ATL registration.

DECLARE_REGISTRY Enters or removes the main object's entry in the system
registry.

DECLARE_REGISTRY_APPID_RESOURCEID Specifies the information required to automatically register
the appid.

DECLARE_REGISTRY_RESOURCE Finds the named resource and runs the registry script within
it.

DECLARE_REGISTRY_RESOURCEID Finds the resource identified by an ID number and runs the
registry script within it.

Requirements

_ATL_STATIC_REGISTRY

#define _ATL_STATIC_REGISTRY

RemarksRemarks

#ifdef _ATL_STATIC_REGISTRY
#include <statreg.h>
#endif

DECLARE_LIBID

These macros define useful type library and registry facilities.

Header: atlcom.h

A symbol that indicates you want the registration code for your object to be in the object to avoid a dependency
on ATL.DLL.

When you define ATL_STATIC_REGISTRY, you should use the following code:

Provides a way for ATL to obtain the libid of the type library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/registry-macros.md

DECLARE_LIBID(libid)

ParametersParameters

RemarksRemarks

ExampleExample

DECLARE_NO_REGISTRY

DECLARE_NO_REGISTRY()

DECLARE_REGISTRY

DECLARE_REGISTRY(
 class,
 pid,
 vpid,
 nid,
 flags)

ParametersParameters

RemarksRemarks

libid
The GUID of the type library.

Use DECLARE_LIBID in a CAtlModuleT -derived class.

Non-attributed wizard-generated ATL projects will have a sample of using this macro.

Use DECLARE_NO_REGISTRY if you want to avoid any default ATL registration for the class in which this macro
appears.

Enters the standard class registration into the system registry or removes it from the system registry.

class
[in] Included for backward compatibility.

pid
[in] An LPCTSTR that is a version-specific program identifier.

vpid
[in] An LPCTSTR that is a version-independent program identifier.

nid
[in] A UINT that is an index of the resource string in the registry to use as the description of the program.

flags
[in] A DWORD containing the program's threading model in the registry. Must be one of the following values:
THREADFLAGS_APARTMENT, THREADFLAGS_BOTH, or AUTPRXFLAG.

The standard registration consists of the CLSID, program ID, version-independent program ID, description string,
and thread model.

When you create an object or control using the ATL Add Class Wizard, the wizard automatically implements
script-based registry support and adds the DECLARE_REGISTRY_RESOURCEID macro to your files. If you do
not want script-based registry support, you need to replace this macro with DECLARE_REGISTRY.

DECLARE_REGISTRY_APPID_RESOURCEID

DECLARE_REGISTRY_APPID_RESOURCEID(
 resid,
 appid)

ParametersParameters

RemarksRemarks

ExampleExample

DECLARE_REGISTRY_RESOURCE

DECLARE_REGISTRY_RESOURCE(x)

ParametersParameters

RemarksRemarks

#define _ATL_STATIC_REGISTRY

DECLARE_REGISTRY only inserts the five basic keys described above into the registry. You must manually write
code to insert other keys into the registry.

Specifies the information required to automatically register the appid.

resid
The resource id of the .rgs file that contains information about the appid.

appid
A GUID.

Use DECLARE_REGISTRY_APPID_RESOURCEID in a CAtlModuleT -derived class.

Classes added to ATL projects with the Add Class code wizard will have a sample of using this macro.

Gets the named resource containing the registry file and runs the script to either enter objects into the system
registry or remove them from the system registry.

x
[in] String identifier of your resource.

When you create an object or control using the ATL Project Wizard, the wizard will automatically implement
script-based registry support and add the DECLARE_REGISTRY_RESOURCEID macro, which is similar to
DECLARE_REGISTRY_RESOURCE, to your files.

You can statically link with the ATL Registry Component (Registrar) for optimized registry access. To statically link
to the Registrar code, add the following line to your stdafx.h file:

If you want ATL to substitute replacement values at run time, do not specify the
DECLARE_REGISTRY_RESOURCE or DECLARE_REGISTRY_RESOURCEID macro. Instead, create an array of
_ATL_REGMAP_ENTRIES structures, where each entry contains a variable placeholder paired with a value to replace

the placeholder at run time. Then call CAtlModule::UpdateRegistryFromResourceD or
CAtlModule::UpdateRegistryFromResourceS, passing the array. This adds all of the replacement values in the
_ATL_REGMAP_ENTRIES structures to the Registrar's replacement map.

For more information about replaceable parameters and scripting, see the article The ATL Registry Component

 DECLARE_REGISTRY_RESOURCEID

DECLARE_REGISTRY_RESOURCEID(x)

ParametersParameters

RemarksRemarks

#define _ATL_STATIC_REGISTRY

See also

(Registrar).

Same as DECLARE_REGISTRY_RESOURCE except that it uses a wizard-generated UINT to identify the resource,
rather than a string name.

x
[in] Wizard-generated identifier of your resource.

When you create an object or control using the ATL Project Wizard, the wizard will automatically implement
script-based registry support and add the DECLARE_REGISTRY_RESOURCEID macro to your files.

You can statically link with the ATL Registry Component (Registrar) for optimized registry access. To statically link
to the Registrar code, add the following line to your stdafx.h file:

If you want ATL to substitute replacement values at run time, do not specify the
DECLARE_REGISTRY_RESOURCE or DECLARE_REGISTRY_RESOURCEID macro. Instead, create an array of
_ATL_REGMAP_ENTRIES structures, where each entry contains a variable placeholder paired with a value to replace

the placeholder at run time. Then call CAtlModule::UpdateRegistryFromResourceD or
CAtlModule::UpdateRegistryFromResourceS, passing the array. This adds all of the replacement values in the
_ATL_REGMAP_ENTRIES structures to the Registrar's replacement map.

For more information about replaceable parameters and scripting, see the article The ATL Registry Component
(Registrar).

Macros

Service Map Macros
3/4/2019 • 2 minutes to read • Edit Online

BEGIN_SERVICE_MAP Marks the beginning of an ATL service map.

END_SERVICE_MAP Marks the end of an ATL service map.

SERVICE_ENTRY Indicates that the object supports a specific service ID.

SERVICE_ENTRY_CHAIN Instructs IServiceProviderImpl::QueryService to chain to the
specified object.

Requirements

BEGIN_SERVICE_MAP

BEGIN_SERVICE_MAP(theClass)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_SERVICE_MAP(CMyService)
 SERVICE_ENTRY(SID_SBindHost) // This object supports the SBindHost service
 SERVICE_ENTRY_CHAIN(m_spClientSite) // Everything else, just ask the container
END_SERVICE_MAP()

END_SERVICE_MAP

These macros define service maps and entries.

Header: atlcom.h

Marks the beginning of the service map.

theClass
[in] Specifies the class containing the service map.

Use the service map to implement service provider functionality on your COM object. First, you must derive your
class from IServiceProviderImpl. There are two types of entries:

SERVICE_ENTRY Indicates support for the specified service ID (S ID).

SERVICE_ENTRY_CHAIN Instructs IServiceProviderImpl::QueryService to chain to another, specified
object.

Marks the end of the service map.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/service-map-macros.md

END_SERVICE_MAP()

ExampleExample

SERVICE_ENTRY

SERVICE_ENTRY(SID)

ParametersParameters

ExampleExample

SERVICE_ENTRY_CHAIN

SERVICE_ENTRY_CHAIN(punk)

ParametersParameters

ExampleExample

IServiceProviderImpl::QueryService

STDMETHOD(QueryService)(
 REFGUID guidService,
 REFIID riid,
 void** ppvObject);

ParametersParameters

Return ValueReturn Value

See the example for BEGIN_SERVICE_MAP.

Indicates that the object supports the service id specified by SID.

SID
The service ID.

See the example for BEGIN_SERVICE_MAP.

Instructs IServiceProviderImpl::QueryService to chain to the object specified by punk.

punk
A pointer to the IUnknown interface to which to chain.

See the example for BEGIN_SERVICE_MAP.

Creates or accesses the specified service and returns an interface pointer to the specified interface for the service.

guidService
[in] Pointer to a service identifier (S ID).

riid
[in] Identifier of the interface to which the caller is to gain access.

ppvObj
[out] Indirect pointer to the requested interface.

The returned HRESULT value is one of the following:

RETURN VALUE MEANING

S_OK The service was successfully created or retrieved.

E_INVALIDARG One or more of the arguments is invalid.

E_OUTOFMEMORY Memory is insufficient to create the service.

E_UNEXPECTED An unknown error occurred.

E_NOINTERFACE The requested interface is not part of this service, or the
service is unknown.

RemarksRemarks

See also

QueryService returns an indirect pointer to the requested interface in the specified service. The caller is
responsible for releasing this pointer when it is no longer required.

When you call QueryService , you pass both a service identifier (guidService) and an interface identifier (riid). The
guidService specifies the service to which you want access, and the riid identifies an interface that is part of the
service. In return, you receive an indirect pointer to the interface.

The object that implements the interface might also implement interfaces that are part of other services. Consider
the following:

Some of these interfaces might be optional. Not all interfaces defined in the service description are
necessarily present on every implementation of the service or on every returned object.

Unlike calls to QueryInterface , passing a different service identifier does not necessarily mean that a
different Component Object Model (COM) object is returned.

The returned object might have additional interfaces that are not part of the definition of the service.

Two different services, such as S ID_SMyService and SID_SYourService, can both specify the use of the same
interface, even though the implementation of the interface might have nothing in common between the two
services. This works, because a call to QueryService (S ID_SMyService, IID_IDispatch) can return a different object
than QueryService (S ID_SYourService, IID_IDispatch). Object identity is not assumed when you specify a different
service identifier.

Macros

Snap-In Object Macros
3/4/2019 • 2 minutes to read • Edit Online

BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP Marks the beginning of the snap-in extension data class map
for a Snap-In object.

BEGIN_SNAPINTOOLBARID_MAP Marks the beginning of the toolbar map for a Snap-In object.

END_EXTENSION_SNAPIN_NODEINFO_MAP Marks the end of the snap-in extension data class map for a
Snap-In object.

END_SNAPINTOOLBARID_MAP Marks the end of the toolbar map for a Snap-In object.

EXTENSION_SNAPIN_DATACLASS Creates a data member for the data class of the snap-in
extension.

EXTENSION_SNAPIN_NODEINFO_ENTRY Enters a snap-in extension data class into the snap-in
extension data class map of the Snap-In object.

SNAPINMENUID Declares the ID of the context menu used by the Snap-In
object.

SNAPINTOOLBARID_ENTRY Enters a toolbar into the toolbar map of the Snap-In object.

Requirements

BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP

BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP(classname)

ParametersParameters

RemarksRemarks

ExampleExample

These macros provide support for snap-in extensions.

Header: atlsnap.h

Marks the beginning of the snap-in extension data class map.

classname
[in] The name of the snap-in extension data class.

Start your snap-in extension map with the BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP macro, add entries
for each of your snap-in extension data types with the EXTENSION_SNAPIN_NODEINFO_ENTRY macro, and
complete the map with the END_EXTENSION_SNAPIN_NODEINFO_MAP macro.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/snap-in-object-macros.md

class CMyExtSnapinExtData :
 public CSnapInItemImpl<CMyExtSnapinExtData>,
 public CMySnapinBase
{
public:
 CMyExtSnapinExtData() {}
};

class CMyExtSnapin :
 public CComObjectRoot,
 public CSnapInObjectRoot<1, CMyExtSnapin>,
 public IComponentDataImpl<CMyExtSnapin, CMyExtSnapin>
{
public:
 CMyExtSnapin() {}

 BEGIN_COM_MAP(CMyExtSnapin)
 END_COM_MAP()

 EXTENSION_SNAPIN_DATACLASS(CMyExtSnapinExtData)

 BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP(CMyExtSnapin)
 EXTENSION_SNAPIN_NODEINFO_ENTRY(CMyExtSnapinExtData)
 END_EXTENSION_SNAPIN_NODEINFO_MAP()
};

BEGIN_SNAPINTOOLBARID_MAP

BEGIN_SNAPINTOOLBARID_MAP(_class)

ParametersParameters

ExampleExample

class CMySnapinData :
 public CSnapInItemImpl<CMySnapinData>,
 public CMySnapinBase
{
public:
 CMySnapinData() {}

 BEGIN_SNAPINTOOLBARID_MAP(CMySnapinData)
 // IDR_MYSNAPINTOOLBAR is the resource ID of a toolbar resource.
 SNAPINTOOLBARID_ENTRY(IDR_MYSNAPINTOOLBAR)
 END_SNAPINTOOLBARID_MAP()
};

END_EXTENSION_SNAPIN_NODEINFO_MAP

END_EXTENSION_SNAPIN_NODEINFO_MAP()

RemarksRemarks

Declares the beginning of the toolbar ID map for the Snap-In object.

_class
[in] Specifies the Snap-In object class.

Marks the end of the snap-in extension data class map.

ExampleExample

END_SNAPINTOOLBARID_MAP

END_SNAPINTOOLBARID_MAP(_class)

ParametersParameters

ExampleExample

EXTENSION_SNAPIN_DATACLASS

EXTENSION_SNAPIN_DATACLASS(dataClass)

ParametersParameters

RemarksRemarks

ExampleExample

Start your snap-in extension map with the BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP macro, add entries
for each of your extension snap-in data types with the EXTENSION_SNAPIN_NODEINFO_ENTRY macro, and
complete the map with the END_EXTENSION_SNAPIN_NODEINFO_MAP macro.

See the example for BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP.

Declares the end of the toolbar ID map for the Snap-In object.

_class
[in] Specifies the Snap-In object class.

See the example for BEGIN_SNAPINTOOLBARID_MAP.

Adds a data member to the snap-in extension data class for an ISnapInItemImpl-derived class.

dataClass
[in] The data class of the snap-in extension.

This class should also be entered into a snap-in extension data class map. Start your snap-in extension data class
map with the BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP macro, add entries for each of your snap-in
extension data types with the EXTENSION_SNAPIN_NODEINFO_ENTRY macro, and complete the map with the
END_EXTENSION_SNAPIN_NODEINFO_MAP macro.

class CMyExtSnapinExtData :
 public CSnapInItemImpl<CMyExtSnapinExtData>,
 public CMySnapinBase
{
public:
 CMyExtSnapinExtData() {}
};

class CMyExtSnapin :
 public CComObjectRoot,
 public CSnapInObjectRoot<1, CMyExtSnapin>,
 public IComponentDataImpl<CMyExtSnapin, CMyExtSnapin>
{
public:
 CMyExtSnapin() {}

 BEGIN_COM_MAP(CMyExtSnapin)
 END_COM_MAP()

 EXTENSION_SNAPIN_DATACLASS(CMyExtSnapinExtData)

 BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP(CMyExtSnapin)
 EXTENSION_SNAPIN_NODEINFO_ENTRY(CMyExtSnapinExtData)
 END_EXTENSION_SNAPIN_NODEINFO_MAP()
};

EXTENSION_SNAPIN_NODEINFO_ENTRY

EXTENSION_SNAPIN_NODEINFO_ENTRY(dataClass)

ParametersParameters

RemarksRemarks

ExampleExample

SNAPINMENUID

SNAPINMENUID(id)

ParametersParameters

SNAPINTOOLBARID_ENTRY

Adds a snap-in extension data class to the snap-in extension data class map.

dataClass
[in] The data class of the snap-in extension.

Start your snap-in extension data class map with the BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP macro,
add entries for each of your snap-in extension data types with the EXTENSION_SNAPIN_NODEINFO_ENTRY
macro, and complete the map with the END_EXTENSION_SNAPIN_NODEINFO_MAP macro.

See the example for BEGIN_EXTENSION_SNAPIN_NODEINFO_MAP.

Use this macro to declare the context menu resource of the Snap-In object.

id
[in] Identifies the context menu of the Snap-In object.

SNAPINTOOLBARID_ENTRY(id)

ParametersParameters

RemarksRemarks

ExampleExample

See also

Use this macro to enter a toolbar ID into the Snap-In object's toolbar ID map.

id
[in] Identifies the toolbar control.

The BEGIN_SNAPINTOOLBARID_MAP macro marks the beginning of the toolbar ID map; the
END_SNAPINTOOLBARID_MAP macro marks the end.

See the example for BEGIN_SNAPINTOOLBARID_MAP.

Macros

String Conversion Macros
3/4/2019 • 2 minutes to read • Edit Online

ATL and MFC String Conversion Macros

DEVMODE and TEXTMETRIC String Conversion Macros

MACRONAME(address_of_structure)

RemarksRemarks

DEVMODEW* lpw = DEVMODEA2W(lpa);

TEXTMETRICW* lptmw = TEXTMETRICA2W(lptma);

COMPILER DIRECTIVE IN EFFECT T BECOMES OLE BECOMES

none A W

These macros provide string conversion features.

The string conversion macros discussed here are valid for both ATL and MFC. For more information on MFC
string conversion, see TN059: Using MFC MBCS/Unicode Conversion Macros and MFC Macros and Globals.

These macros create a copy of a DEVMODE or TEXTMETRIC structure and convert the strings within the new
structure to a new string type. The macros allocate memory on the stack for the new structure and return a
pointer to the new structure.

For example:

and:

In the macro names, the string type in the source structure is on the left (for example, A) and the string type in
the destination structure is on the right (for example, W). A stands for LPSTR, OLE stands for LPOLESTR, T
stands for LPTSTR, and W stands for LPWSTR.

Thus, DEVMODEA2W copies a DEVMODE structure with LPSTR strings into a DEVMODE structure with LPWSTR
strings, TEXTMETRICOLE2T copies a TEXTMETRIC structure with LPOLESTR strings into a TEXTMETRIC

structure with LPTSTR strings, and so on.

The two strings converted in the DEVMODE structure are the device name (dmDeviceName) and the form name (
dmFormName). The DEVMODE string conversion macros also update the structure size (dmSize).

The four strings converted in the TEXTMETRIC structure are the first character (tmFirstChar), the last character
(tmLastChar), the default character (tmDefaultChar), and the break character (tmBreakChar).

The behavior of the DEVMODE and TEXTMETRIC string conversion macros depends on the compiler directive in
effect, if any. If the source and destination types are the same, no conversion takes place. Compiler directives
change T and OLE as follows:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/string-conversion-macros.md
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagtextmetrica

_UNICODE W W

OLE2ANSI A A

_UNICODE and OLE2ANSI W A

COMPILER DIRECTIVE IN EFFECT T BECOMES OLE BECOMES

DEVMODEA2W TEXTMETRICA2W

DEVMODEOLE2T TEXTMETRICOLE2T

DEVMODET2OLE TEXTMETRICT2OLE

DEVMODEW2A TEXTMETRICW2A

See also

The following table lists the DEVMODE and TEXTMETRIC string conversion macros.

Macros

Window Class Macros
3/4/2019 • 3 minutes to read • Edit Online

DECLARE_WND_CLASS Allows you to specify the name of a new window class.

DECLARE_WND_CLASS2 (Visual Studio 2017) Allows you to specify the name of a new
window class and the enclosing class whose window
procedure the new class will use.

DECLARE_WND_SUPERCLASS Allows you to specify the name of an existing window class on
which a new window class will be based.

DECLARE_WND_CLASS_EX Allows you to specify the parameters of a class.

Requirements

DECLARE_WND_CLASS

DECLARE_WND_CLASS(WndClassName)

ParametersParameters

RemarksRemarks

static CWndClassInfo& GetWndClassInfo();

These macros define window class utilities.

Header: atlwin.h

Allows you to specify the name of a new window class. Place this macro in an ATL ActiveX control's control class.

WndClassName
[in] The name of the new window class. If NULL, ATL will generate a window class name.

If you are using the /permissive- compiler option, then DECLARE_WND_CLASS will cause a compiler error; use
DECLARE_WND_CLASS2 instead.

DECLARE_WND_CLASS allows you to specify the name of a new window class whose information will be
managed by CWndClassInfo. DECLARE_WND_CLASS defines the new window class by implementing the
following static function:

DECLARE_WND_CLASS specifies the following styles for the new window:

CS_HREDRAW

CS_VREDRAW

CS_DBLCLKS

DECLARE_WND_CLASS also specifies the default window's background color. Use the

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/window-class-macros.md

DECLARE_WND_CLASS2

DECLARE_WND_CLASS2(WndClassName, EnclosingClass)

ParametersParameters

RemarksRemarks

DECLARE_WND_SUPERCLASS

DECLARE_WND_SUPERCLASS(WndClassName, OrigWndClassName)

ParametersParameters

RemarksRemarks

static CWndClassInfo& GetWndClassInfo();

DECLARE_WND_CLASS_EX macro to provide your own styles and background color.

CWindowImpl uses the DECLARE_WND_CLASS macro to create a window based on a new window class. To
override this behavior, use the DECLARE_WND_SUPERCLASS macro, or provide your own implementation of
the GetWndClassInfo function.

For more information about using windows in ATL, see the article ATL Window Classes.

(Visual Studio 2017) Similar to DECLARE_WND_CLASS, but with an extra parameter that avoids a dependent
name error when compiling with the /permissive- option.

WndClassName
[in] The name of the new window class. If NULL, ATL will generate a window class name.

EnclosingClass
[in] The name of the window class that encloses the new window class. Cannot be NULL.

If you are using the /permissive- option, then DECLARE_WND_CLASS will cause a compilation error because it
contains a dependent name. DECLARE_WND_CLASS2 requires you to explicitly name the class that this macro is
used in and does not cause the error under the /permissive- flag. Otherwise this macro is identical to
DECLARE_WND_CLASS.

Allows you to specify the parameters of a class. Place this macro in an ATL ActiveX control's control class.

WndClassName
[in] The name of the window class that will superclass OrigWndClassName. If NULL, ATL will generate a window
class name.

OrigWndClassName
[in] The name of an existing window class.

This macro allows you to specify the name of a window class that will superclass an existing window class.
CWndClassInfo manages the information of the superclass.

DECLARE_WND_SUPERCLASS implements the following static function:

By default, CWindowImpl uses the DECLARE_WND_CLASS macro to create a window based on a new window
class. By specifying the DECLARE_WND_SUPERCLASS macro in a CWindowImpl -derived class, the window class
will be based on an existing class but will use your window procedure. This technique is called superclassing.

 DECLARE_WND_CLASS_EX

DECLARE_WND_CLASS_EX(WndClassName, style, bkgnd)

ParametersParameters

RemarksRemarks

static CWndClassInfo& GetWndClassInfo();

See also

Besides using the DECLARE_WND_CLASS and DECLARE_WND_SUPERCLASS macros, you can override the
GetWndClassInfo function with your own implementation.

For more information about using windows in ATL, see the article ATL Window Classes.

Allows you to specify the name of an existing window class on which a new window class will be based. Place this
macro in an ATL ActiveX control's control class.

WndClassName
[in] The name of the new window class. If NULL, ATL will generate a window class name.

style
[in] The style of the window.

bkgnd
[in] The background color of the window.

This macro allows you to specify the class parameters of a new window class, whose information will be managed
by CWndClassInfo. DECLARE_WND_CLASS_EX defines the new window class by implementing the following
static function:

If you want to use the default styles and background color, use the DECLARE_WND_CLASS macro. For more
information about using windows in ATL, see the article ATL Window Classes.

Macros

Windows Messages Macros
3/4/2019 • 2 minutes to read • Edit Online

WM_FORWARDMSG Use to forward a message received by a window to another
window for processing.

Requirements

WM_FORWARDMSG

WM_FORWARDMSG

Return ValueReturn Value

RemarksRemarks

PARAMETER USAGE

WPARAM Data defined by user

LPARAM A pointer to a MSG structure that contains information about
a message

ExampleExample

LRESULT CMyWindow::OnMsg(UINT nMsg, WPARAM wParam, LPARAM lParam,
 BOOL& bHandled)
{
 MSG msg = { m_hWnd, nMsg, wParam, lParam, 0, { 0, 0 } };
 LRESULT lRet = SendMessage(m_hWndOther, WM_FORWARDMSG, 0, (LPARAM)&msg);
 if(lRet == 0) // not handled
 bHandled = FALSE;
 return 0;
}

See also

This macro forwards window messages.

Header: atlbase.h

This macro forwards a message received by a window to another window for processing.

Nonzero if the message was processed, zero if not.

Use WM_FORWARDMSG to forward a message received by a window to another window for processing. The
LPARAM and WPARAM parameters are used as follows:

In the following example, m_hWndOther represents the other window that receives this message.

Macros

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/windows-messages-macros.md

ATL Operators
3/4/2019 • 3 minutes to read • Edit Online

OPERATOR DESCRIPTION

operator == Compares two CSid objects or SID structures for equality.

operator != Compares two CSid objects or SID structures for
inequality.

operator < Tests if the CSid object or SID structure on the left side of
the operator is less than the CSid object or SID structure
on the right side (for C++ Standard Library compatibility).

operator > Tests if the CSid object or SID structure on the left side of
the operator is greater than the CSid object or SID

structure on the right side (for C++ Standard Library
compatibility).

operator <= Tests if the CSid object or SID structure on the left side of
the operator is less than or equal to the CSid object or SID

structure on the right side (for C++ Standard Library
compatibility).

operator >= Tests if the CSid object or SID structure on the left side of
the operator is greater than or equal to the CSid object or
SID structure on the right side (for C++ Standard Library

compatibility).

Requirements

operator ==

bool operator==(const CSid& lhs, const CSid& rhs) throw();

ParametersParameters

Return ValueReturn Value

This section contains the reference topics for the ATL global operators.

Header: atlsecurity.h.

Compares CSid objects or SID (security identifier) structures for equality.

lhs
The first CSid object or SID structure to compare.

rhs
The second CSid object or SID structure to compare.

Returns TRUE if the objects are equal, FALSE if they are not equal.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-operators.md

operator !=

bool operator==(const CSid& lhs, const CSid& rhs) throw();

ParametersParameters

Return ValueReturn Value

operator <

bool operator<(const CSid& lhs, const CSid& rhs) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

operator >

bool operator<(const CSid& lhs, const CSid& rhs) throw();

ParametersParameters

Return ValueReturn Value

Compares CSid objects or SID (security identifier) structures for inequality.

lhs
The first CSid object or SID structure to compare.

rhs
The second CSid object or SID structure to compare.

Returns TRUE if the objects are not equal, FALSE if they are equal.

Tests if the CSid object or SID structure on the left side of the operator is less than the CSid object or SID

structure on the right side (for C++ Standard Library compatibility).

lhs
The first CSid object or SID structure to compare.

rhs
The second CSid object or SID structure to compare.

Returns TRUE if the address of the lhs object is less than the address of the rhs object, FALSE otherwise.

This operator acts on the address of the CSid object or SID structure, and is implemented to provide
compatibility with C++ Standard Library collection classes.

Tests if the CSid object or SID structure on the left side of the operator is greater than the CSid object or SID

structure on the right side (for C++ Standard Library compatibility).

lhs
The first CSid object or SID structure to compare.

rhs
The second CSid object or SID structure to compare.

RemarksRemarks

operator <=

bool operator<(const CSid& lhs, const CSid& rhs) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

operator >=

bool operator<(const CSid& lhs, const CSid& rhs) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Returns TRUE if the address of the lhs is greater than the address of the rhs, FALSE otherwise.

This operator acts on the address of the CSid object or SID structure, and is implemented to provide
compatibility with C++ Standard Library collection classes.

Tests if the CSid object or SID structure on the left side of the operator is less than or equal to the CSid object or
SID structure on the right side (for C++ Standard Library compatibility).

lhs
The first CSid object or SID structure to compare.

rhs
The second CSid object or SID structure to compare.

Returns TRUE if the address of the lhs is less than or equal to the address of the rhs, FALSE otherwise.

This operator acts on the address of the CSid object or SID structure, and is implemented to provide
compatibility with C++ Standard Library collection classes.

Tests if the CSid object or SID structure on the left side of the operator is greater than or equal to the CSid

object or SID structure on the right side (for C++ Standard Library compatibility).

lhs
The first CSid object or SID structure to compare.

rhs
The second CSid object or SID structure to compare.

Returns TRUE if the address of the lhs is greater than or equal to the address of the rhs, FALSE otherwise.

This operator acts on the address of the CSid object or SID structure, and is implemented to provide
compatibility with C++ Standard Library collection classes.

ATL Global Variables
10/31/2018 • 2 minutes to read • Edit Online

_pAtlModule

__declspec(selectany) CAtlModule * _pAtlModule

RemarksRemarks

ExampleExample

LONG lLocks = _pAtlModule->GetLockCount();

RequirementsRequirements

A global variable storing a pointer to the current module.

Methods on this global variable can be used to provide the functionality that the (now obsolete) class
CComModule provided in Visual C++ 6.0.

Header: atlbase.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-global-variables.md

ATL Typedefs
3/4/2019 • 4 minutes to read • Edit Online

_ATL_BASE_MODULE Defined as a typedef based on _ATL_BASE_MODULE70.

_ATL_COM_MODULE Defined as a typedef based on _ATL_COM_MODULE70.

_ATL_MODULE Defined as a typedef based on _ATL_MODULE70.

_ATL_WIN_MODULE Defined as a typedef based on _ATL_WIN_MODULE70

ATL_URL_PORT The type used by CUrl for specifying a port number.

CComDispatchDriver This class manages COM interface pointers.

CComGlobalsThreadModel Calls the appropriate thread model methods, regardless of
the threading model being used.

CComObjectThreadModel Calls the appropriate thread model methods, regardless of
the threading model being used.

CContainedWindow This class is a specialization of CContainedWindowT .

CPath A specialization of CPathT using CString .

CPathA A specialization of CPathT using CStringA .

CPathW A specialization of CPathT using CStringW .

CSimpleValArray Represents an array for storing simple types.

DefaultThreadTraits The default thread traits class.

LPCURL A pointer to a constant CUrl object.

LPURL A pointer to a CUrl object.

_ATL_BASE_MODULE

typedef ATL::_ATL_BASE_MODULE70 _ATL_BASE_MODULE;

RemarksRemarks

The Active Template Library includes the following typedefs.

Defined as a typedef based on _ATL_BASE_MODULE70.

Used in every ATL project. Based on _ATL_BASE_MODULE70.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-typedefs.md

Requirements

_ATL_COM_MODULE

typedef ATL::_ATL_COM_MODULE70 _ATL_COM_MODULE;

RemarksRemarks

Requirements

_ATL_MODULE

typedef ATL::_ATL_MODULE70 _ATL_MODULE;

Requirements

RemarksRemarks

_ATL_WIN_MODULE

typedef ATL::_ATL_WIN_MODULE70 _ATL_WIN_MODULE;

RemarksRemarks

Requirements

ATL_URL_PORT

Classes that are part of the ATL 7.0 Module Classes derive from the _ATL_BASE_MODULE structure. For more
information on ATL Module Classes, refer to COM Modules Classes.

Header: atlcore.h

Defined as a typedef based on _ATL_COM_MODULE70.

Used by ATL projects which use COM features. Based on _ATL_COM_MODULE70.

Header: atlbase.h

Defined as a typedef based on _ATL_MODULE70.

Header:

Based on _ATL_MODULE70.

Defined as a typedef based on _ATL_WIN_MODULE70.

Used by any ATL projects which use windowing features. Based on _ATL_WIN_MODULE70.

Header: atlbase.h

The type used by CUrl for specifying a port number.

typedef WORD ATL_URL_PORT;

Requirements

CComDispatchDriver

typedef CComQIPtr<IDispatch, &__uuidof(IDispatch)> CComDispatchDriver;

Requirements

CComGlobalsThreadModel

#if defined(_ATL_SINGLE_THREADED)
typedef CComSingleThreadModel CComGlobalsThreadModel;
#elif defined(_ATL_APARTMENT_THREADED)
typedef CComMultiThreadModel CComGlobalsThreadModel;
#elif defined(_ATL_FREE_THREADED)
typedef CComMultiThreadModel CComGlobalsThreadModel;
#else
#pragma message ("No global threading model defined")
#endif

RemarksRemarks

NOTENOTE

TYPEDEF SINGLE THREADING APARTMENT THREADING FREE THREADING

CComObjectThreadModel S S M

CComGlobalsThreadModel S M M

Header: atlutil.h

This class manages COM interface pointers.

Header: atlbase.h

Calls the appropriate thread model methods, regardless of the threading model being used.

Depending on the threading model used by your application, the typedef name CComGlobalsThreadModel

references either CComSingleThreadModel or CComMultiThreadModel. These classes provide additional
typedef names to reference a critical section class.

CComGlobalsThreadModel does not reference class CComMultiThreadModelNoCS.

Using CComGlobalsThreadModel frees you from specifying a particular threading model class. Regardless of the
threading model being used, the appropriate methods will be called.

In addition to CComGlobalsThreadModel , ATL provides the typedef name CComObjectThreadModel. The class
referenced by each typedef depends on the threading model used, as shown in the following table:

S= CComSingleThreadModel ; M= CComMultiThreadModel

Requirements

CComObjectThreadModel

#if defined(_ATL_SINGLE_THREADED)
typedef CComSingleThreadModel CComObjectThreadModel;
#elif defined(_ATL_APARTMENT_THREADED)
typedef CComSingleThreadModel CComObjectThreadModel;
#elif defined(_ATL_FREE_THREADED)
typedef CComMultiThreadModel CComObjectThreadModel;
#else
#pragma message ("No global threading model defined")
#endif

RemarksRemarks

NOTENOTE

TYPEDEF SINGLE THREADING APARTMENT THREADING FREE THREADING

CComObjectThreadModel S S M

CComGlobalsThreadModel S M M

Requirements

CContainedWindow

Use CComObjectThreadModel within a single object class. Use CComGlobalsThreadModel in an object that is globally
available to your program, or when you want to protect module resources across multiple threads.

Header: atlbase.h

Calls the appropriate thread model methods, regardless of the threading model being used.

Depending on the threading model used by your application, the typedef name CComObjectThreadModel

references either CComSingleThreadModel or CComMultiThreadModel. These classes provide additional
typedef names to reference a critical section class.

CComObjectThreadModel does not reference class CComMultiThreadModelNoCS.

Using CComObjectThreadModel frees you from specifying a particular threading model class. Regardless of the
threading model being used, the appropriate methods will be called.

In addition to CComObjectThreadModel , ATL provides the typedef name CComGlobalsThreadModel. The class
referenced by each typedef depends on the threading model used, as shown in the following table:

S= CComSingleThreadModel ; M= CComMultiThreadModel

Use CComObjectThreadModel within a single object class. Use CComGlobalsThreadModel in an object that is either
globally available to your program, or when you want to protect module resources across multiple threads.

Header: atlbase.h

This class is a specialization of CContainedWindowT .

typedef CContainedWindowT<CWindow> CContainedWindow;

Requirements

RemarksRemarks

CPath

typedef CPathT<CString> CPath;

Requirements

CPathA

typedef CPathT<CStringA> CPathA;

Requirements

CPathW

typedef ATL::CPathT<CStringW> CPathW;

Requirements

CSimpleValArray

#define CSimpleValArray CSimpleArray

RemarksRemarks

Header: atlwin.h

CContainedWindow is a specialization of CContainedWindowT. If you want to change the base class or traits, use
CContainedWindowT directly.

A specialization of CPathT using CString .

Header: atlpath.h

A specialization of CPathT using CStringA .

Header: atlpath.h

A specialization of CPathT using CStringW .

Header: atlpath.h

Represents an array for storing simple types.

CSimpleValArray is provided for creating and managing arrays containing simple data types. It is a simple #define
of CSimpleArray.

Requirements

LPCURL

typedef const CUrl* LPCURL;

Requirements

DefaultThreadTraits

SyntaxSyntax

#if defined(_MT)
 typedef CRTThreadTraits DefaultThreadTraits;
#else
 typedef Win32ThreadTraits DefaultThreadTraits;
#endif

Remarks

Requirements

LPURL

typedef CUrl* LPURL;

Requirements

See also

Header: atlsimpcoll.h

A pointer to a constant CUrl object.

Header: atlutil.h

The default thread traits class.

If the current project uses the multithreaded CRT, DefaultThreadTraits is defined as CRTThreadTraits. Otherwise,
Win32ThreadTraits is used.

Header: atlbase.h

A pointer to a CUrl object.

Header: atlutil.h

ATL COM Desktop Components
Functions
Global Variables
Classes and structs
Macros

ATL Wizards and Dialog Boxes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles
TITLE DESCRIPTION

Creating an ATL Project Describes the ATL project wizard and its settings.

ATL Simple Object Creates a basic object.

ATL Property Page Creates a basic property page.

ATL OLE DB Provider Creates a basic OLE DB provider.

ATL OLE DB Consumer Creates a basic OLE DB consumer.

ATL Dialog Box Creates a basic dialog box.

ATL Control Creates a basic ActiveX control.

ATL COM+ 1.0 Component Creates a basic ATL COM+ 1.0 component

ATL Active Server Page Component Creates a basic ATL Active Server Page component.

ATL COM Desktop Components Links to the ATL documentation.

The Active Template Library (ATL) wizards generate boilerplate code for various kinds of COM objects. You can run
the wizards by opening the shortcut menu for a project in Solution Explorer and choosing Add, Class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-wizards-and-dialog-boxes.md

Application Settings, ATL Project Wizard
3/4/2019 • 2 minutes to read • Edit Online

Server type

Additional options

NOTENOTE

See also

Use the Application Settings page of the ATL Project Wizard to design and add basic features to a new ATL
project.

Choose from one of three server types:

Dynamic-link library (DLL)

Select to create an in-process server.

Executable (EXE)

Select to create a local out-of-process server. This option does not allow support for MFC or COM+ 1.0. It
does not allow for the merging of proxy/stub code.

Service (EXE)

Select to create a Windows application that runs in the background when Windows starts. This option does
not allow support for MFC or COM+ 1.0 or does not allow for the merging of proxy/stub code.

All additional options are available for DLL projects only.

Allow merging of proxy/stub code

Select the Allow merging of proxy/stub code check box as a convenience when marshaling interfaces is
required. This option puts the MIDL-generated proxy and stub code in the same executable as the server.

Support MFC

Select to specify that your object includes MFC support. This option links your project to the MFC libraries
so that you can access any of the classes and functions they contain.

Support COM+ 1.0

Select to modify the project build settings to support COM+ 1.0 components. In addition to the standard
list of libraries, the wizard adds the COM+ 1.0 component-specific library comsvcs.lib

In addition, the mtxex.dll is delay loaded on the host system when your application is launched.

Support component registrar

If your ATL project contains support for COM+ 1.0 components, you can set this option. The component
registrar allows your COM+ 1.0 object to obtain a list of components, register components, or unregister
components (individually or all at once).

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/application-settings-atl-project-wizard.md

ATL Project Wizard
Creating an ATL Project
Default ATL Project Configurations

ASP, ATL Active Server Page Component Wizard
3/4/2019 • 2 minutes to read • Edit Online

OPTION DESCRIPTION

Request Provides access to the Active Server Pages intrinsic Request
object. The Request object is used to pass an HTTP request.

Response Provides access to the Active Server Pages intrinsic Response
object. In response to a request, the Response object sends
information to the browser to display to the user.

Session Provides access to the Active Server Pages intrinsic Session
object. The Session object maintains information about the
current user session, including storing and retrieving state
information.

Application Provides access to the Active Server Pages intrinsic
Application object. The Application object manages state
that is shared across multiple ASP objects.

Server Provides access to the Active Server Pages intrinsic Server
object. The Server object allows you to create other ASP
objects.

See also

Use this page of the ATL Active Server Page Component Wizard to specify optional settings for handling
information and state related to your ASP component.

Optional methods

Adds the optional ASP methods, OnStartPage and OnEndPage, to your object. This option must be
selected to set any Active Server Pages intrinsic objects. By default, it is selected.

OnStartPage/OnEndPage

OnStartPage is called the first time the script tries to access the object. OnEndPage is called when the
object is finished processing the script.

Intrinsic object

You must select the OnStartPage/OnEndPage option to set any ASP intrinsic objects.

ATL Active Server Page Component Wizard
ATL Active Server Page Component

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/asp-atl-active-server-page-component-wizard.md
https://msdn.microsoft.com/library/ms691624.aspx

Options, ATL Active Server Page Component Wizard
3/4/2019 • 2 minutes to read • Edit Online

Use this page of the ATL Active Server Page Component Wizard to design for increased efficiency and error
support for the object.

For more information on ATL projects and ATL COM classes, see ATL COM Desktop Components.

OPTION DESCRIPTION

Single Specifies that the object uses the single threading model.
In the single threading model, an object always runs in the
primary COM thread. See Single-Threaded Apartments
and InprocServer32 for more information.

Apartment Specifies that the object uses apartment threading.
Equivalent to single thread apartment. Each object of an
apartment-threaded component is assigned an apartment
for its thread, for the life of the object; however, multiple
threads can be used for multiple objects. Each apartment
is tied to a specific thread and has a Windows message
pump (default).

See Single-Threaded Apartments for more information.

Both Specifies that the object can use either apartment or free
threading, depending from which kind of a thread it is
created.

Free Specifies that the object uses free threading. Free
threading is equivalent to a multithread apartment model.
See Multithreaded Apartments for more information.

Neutral Specifies that the object follows the guidelines for
multithreaded apartments, but it can execute on any kind
of thread.

OPTION DESCRIPTION

Yes Specifies that the object can be aggregated. The default.

No Specifies that the object is not aggregated.

Threading model

Indicates the method for managing threads. By default, the project uses Apartment threading.

See Specifying the Project's Threading Model for more information.

Aggregation

Indicates whether the object uses aggregation. The aggregate object chooses which interfaces to expose to
clients, and the interfaces are exposed as if the aggregate object implemented them. Clients of the aggregate
object communicate only with the aggregate object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/options-atl-active-server-page-component-wizard.md
https://docs.microsoft.com/windows/desktop/com/single-threaded-apartments
https://docs.microsoft.com/windows/desktop/com/inprocserver32
https://docs.microsoft.com/windows/desktop/com/single-threaded-apartments
https://docs.microsoft.com/windows/desktop/com/multithreaded-apartments
https://docs.microsoft.com/windows/desktop/com/aggregation

See also

Only Specifies that the object must be aggregated.

OPTION DESCRIPTION

OPTION DESCRIPTION

ISupportErrorInfo Creates support for the ISupportErrorInfo interface so the
object can return error information to the client.

Connection points Enables connection points for your object by making your
object's class derive from IConnectionPointContainerImpl.

Free-threaded marshaler Creates a free-threaded marshaler object to marshal
interface pointers efficiently between threads in the same
process. Available to object specifying either Both or Free
as the threading model.

Support

Additional support options:

ATL Active Server Page Component Wizard
ATL Active Server Page Component

ATL Active Server Page Component Wizard
3/4/2019 • 4 minutes to read • Edit Online

WARNINGWARNING

Remarks

Names

C++C++

This wizard inserts into the project an Active Server Pages (ASP) component. The Microsoft Internet Information
Services (IIS) uses ASP components as part of its enhanced Web page development architecture.

By using this wizard, you can specify the component's threading model and its aggregation support. You can also
indicate support for the error information interface, connection points, and free-threaded marshaling.

In Visual Studio 2017 version 15.9 this code wizard is deprecated and will be removed in a future version of Visual Studio.
This wizard is rarely used. General support for ATL and MFC is not impacted by the removal of this wizard. If you would like
to share your feedback about this deprecation, please complete this survey. Your feedback matters to us.

Beginning with Visual Studio 2008, the registration script produced by this wizard will register its COM
components under HKEY_CURRENT_USER instead of HKEY_LOCAL_MACHINE . To modify this behavior, set
the Register component for all users option of the ATL Wizard.

Specify the names for the object, interface, and classes to be added to your project. Except for Short name, all
other boxes can be edited independently of the others. If you change the text for Short name, the change is
reflected in the names of all other boxes in this page.

If you change the Coclass name in the COM section, the change is reflected in the Type and ProgID boxes, but
the Interface name does not change. This naming behavior is designed to make all the names easily identifiable
for you as you develop your control.

Provides information for the C++ class created for the object.

Short name

Sets the root name for the object. The name that you provide determines the Class and Coclass names,
the .cpp file and .h file names, the Interface name, the Type names, and the ProgID , unless you change
those fields individually.

.h file

Sets the name of the header file for the new object's class. By default, this name is based on the name that
you provide in Short name. Click the ellipsis button to save the file name to the location of your choice, or
to append the class declaration to an existing file. If you select an existing file, the wizard will not save it to
the selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class declaration should be appended to the contents of the file.
Click Yes to append the file; click No to return to the wizard and specify another file name.

Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-active-server-page-component-wizard.md
https://www.surveymonkey.com/r/QDWKKCN

COMCOM

See also

Sets the name of the class to be created. This name is based on the name that you provide in Short name,
preceded by 'C', the typical prefix for a class name.

.cpp file

Sets the name of the implementation file for the new object's class. By default, this name is based on the
name that you provide in Short name. Click the ellipsis button to save the file name to the location of your
choice. The file is not saved to the selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class implementation should be appended to the contents of
the file. Click Yes to append the file; click No to return to the wizard and specify another file name.

Attributed

Indicates whether the object uses attributes. If you are adding an object to an attributed ATL project, this
option is selected and not available to change. That is, you can add only attributed objects to a project
created with attribute support.

If you select this option for an ATL project that does not have attribute support, the wizard prompts you to
specify whether you want to add attribute support to the project.

By default for nonattributed projects, any objects you add after you set this option are designated as
attributed (the check box is selected). You can clear this box to add an object that does not use attributes.

See Application Settings, ATL Project Wizard and Basic Mechanics of Attributes for more information.

Provides information about the COM functionality for the object.

Coclass

Sets the name of the component class that contains a list of interfaces supported by the object. If your
project or this object uses attributes, you cannot change this option because ATL does not include the
coclass attribute.

Type

Sets the object description that will appear in the registry for the coclass.

Interface

Sets the interface you create for your object. This interface contains your custom methods.

ProgID

Sets the name that containers can use instead of the CLSID of the object.

ATL Active Server Page Component

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/basic-mechanics-of-attributes

ATL COM+ 1.0 Component Wizard
3/4/2019 • 4 minutes to read • Edit Online

WARNINGWARNING

Remarks

Names

Use this wizard to add an object to your project that supports COM+ 1.0 services, including transactions.

You can specify whether the object supports dual interfaces and Automation. You can also indicate support for the
error information interface, enhanced object control, transactions, and asynchronous message queuing.

In Visual Studio 2017 version 15.9 this code wizard is deprecated and will be removed in a future version of Visual Studio.
This wizard is rarely used. General support for ATL and MFC is not impacted by the removal of this wizard. If you would like
to share your feedback about this deprecation, please complete this survey. Your feedback matters to us.

Beginning with Visual Studio 2008, the registration script produced by this wizard will register its COM
components under HKEY_CURRENT_USER instead of HKEY_LOCAL_MACHINE . To modify this behavior, set
the Register component for all users option of the ATL Wizard.

Specify the names for the object, interface, and classes to be added to your project. With the exception of Short
name, all other boxes can be edited independently of the others. If you change the text for Short name, the
change is reflected in the names of all other boxes in this page. If you change the Coclass name in the COM
section, the change is reflected in the Type and ProgID boxes, but the Interface name does not change. This
naming behavior is designed to make all the names easily identifiable for you as you develop your control.

Short name

Sets the abbreviated name for the object. The name that you provide determines the Class and Coclass

names, the .cpp file and .h file names, the Interface name, the Type names, and the ProgID , unless you
change those fields individually.

.h file

Sets the name of the header file for the new object's class. By default, this name is based on the name that
you provide in Short name. Click the ellipsis button to save the file name to the location of your choice, or
to append the class declaration to an existing file. If you choose an existing file, the wizard will not save it to
the selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class declaration should be appended to the contents of the file.
Click Yes to append the file; click No to return to the wizard and specify another file name.

Class

Sets the name of the class to be created. This name is based on the name you provide in Short name,
preceded by 'C', the typical prefix for a class name.

.cpp file

Sets the name of the implementation file for the new object's class. By default, this name is based on the

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-com-plus-1-0-component-wizard.md
https://www.surveymonkey.com/r/QDWKKCN

COMCOM

NOTENOTE

See also

name you provide in Short name. Click the ellipsis button to save the file name to the location of your
choice. The file is not saved to the selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class implementation should be appended to the contents of
the file. Click Yes to append the file; click No to return to the wizard and specify another file name.

Attributed

Indicates whether the object uses attributes. If you are adding an object to an attributed ATL project, this
option is selected and not available to change. That is, you can add only attributed objects to a project
created with attribute support.

If you select this option for an ATL project that does not have attribute support, the wizard prompts you to
specify whether you want to add attribute support to the project.

Any objects you add following setting this option are designated as attributed by default (the check box is
selected). You can clear this box to add an object that does not use attributes.

See Application Settings, ATL Project Wizard and Basic Mechanics of Attributes for more information.

Provides information about the COM functionality for the object.

Coclass

Sets the name of the component class that contains a list of interfaces supported by the object.

If you create your project using attributes, or if you indicate on this wizard page that the COM+ 1.0 component uses
attributes, you cannot change this option because ATL does not include the coclass attribute.

Type

Sets the object description that will appear in the registry

Interface

Sets the interface you create for your object. This interface contains your custom methods.

ProgID

Sets the name that containers can use instead of the CLSID of the object.

ATL COM+ 1.0 Component

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/basic-mechanics-of-attributes

Appearance, ATL Control Wizard
3/4/2019 • 2 minutes to read • Edit Online

UIElement List

Use this page of the wizard to identify additional user element options for the control. This page is available for
controls identified as Standard controls under Control type on the Options, ATL Control Wizard page.

View status

Sets the appearance of the control within the container.

Opaque: Sets the VIEWSTATUS_OPAQUE bit in the VIEWSTATUS enumeration and draws the
entire control rectangle passed to the CComControlBase::OnDraw method. The control appears
completely opaque, and none of the container shows behind the control boundaries.

This setting helps the container draw the control more quickly. If this option is not selected, the
control can contain transparent parts.

Only an opaque control can have a solid background.

Solid Background: Sets the VIEWSTATUS_SOLIDBKGND bit in the VIEWSTATUS enumeration.
The control's background appears as a solid color with no pattern.

This option is available only if the Opaque option is also selected.

Add control based on

Sets the control to be based on a Windows control type by adding a CContainedWindow data member to
the class implementing the control. It also adds a message map and message handler functions to handle
Windows messages for the control. Choose from the list the type of Windows control you want to create, if
any.

Button

ListBox

SysAnimate32

SysListView32

ComboBox

RichEdit

SysDateTimePick32

SysMonthCal32

ComboBoxEx32

ScrollBar

SysHeader32

SysTabControl32

Edit

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/appearance-atl-control-wizard.md
https://docs.microsoft.com/windows/desktop/api/ocidl/ne-ocidl-tagviewstatus

See also

Static

SysIPAddress32

SysTreeView32

Misc status

Sets additional appearance and behavior options for the control.

Invisible at run-time: Sets the control to be invisible at run time. You can use invisible controls to
perform operations in the background, such as firing events at timed intervals.

Acts like button: Sets the OLEMISC_ACTSLIKEBUTTON bit in the OLEMISC enumeration to
enable a control to act like a button. If the container has marked the control's client site as a default
button, selecting this option enables your button control to display itself as a default button by
drawing itself with a thicker frame. See CComControlBase::GetAmbientDisplayAsDefault for more
information.

Acts like label: Sets the OLEMISC_ACTSLIKELABEL bit in the OLEMISC enumeration to enable a
control to replace the container's native label. The container determines what to do with this flag, if
anything.

Other

Sets additional behavior options for the control.

Normalized DC: Sets the control to create a normalized device context when it is called to draw
itself. This action standardizes the control's appearance, but it makes drawing less efficient.

Window only: Specifies that your control cannot be windowless. If you do not select this option,
your control is automatically windowless in containers that support windowless objects, and it is
automatically windowed in containers that do not support windowless objects. Selecting this option
forces your control to be windowed, even in containers that support windowless objects.

Insertable: Select this option to have your control appear in the Insert Object dialog box of
applications such as Word and Excel. Your control can then be inserted by any application that
supports embedded objects through this dialog box.

ATL Control Wizard
SUBEDIT Sample: Superclasses a Standard Windows Control

https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolemisc
https://github.com/Microsoft/VCSamples/tree/master/VC2008Samples/ATL/Controls/SubEdit

Interfaces, ATL Control Wizard
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

This page of the wizard identifies the interfaces that the control supports. By default, the supported interfaces are
those typically used by most containers.

If you selected Minimal control on the Options tab, no interfaces appear by default in the Supported list box.

TRANSFER BUTTON DESCRIPTION

> Adds to the Supported list the interface name currently
selected in the Not Supported list.

>> Adds to the Supported list all interface names available in
the Not Supported list.

< Removes the interface name currently selected in the
Supported list.

<< Removes all interface names currently listed in the
Supported list.

Not supported

Indicates the available interfaces that are not currently supported for the control.

Supported

Indicates the interfaces that are currently supported for the control.

ATL Control Wizard

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/interfaces-atl-control-wizard.md

Options, ATL Control Wizard
3/4/2019 • 2 minutes to read • Edit Online

UIElement List
Control typeControl type

Minimal controlMinimal control

AggregationAggregation

Threading modelThreading model

Use this page of the wizard to define the type of control you are creating and the level of interface support it
contains.

The kind of control you want to create.

Standard control: An ActiveX control.

Composite control: An ActiveX control that can contain (similar to a dialog box) other ActiveX controls or
Windows controls. A composite control includes the following:

A template for the dialog box that implements the composite control.

A custom resource, REGISTRY, which automatically registers the composite control when invoked.

A C++ class that implements the composite control.

A COM interface, exposed by the composite control.

An HTML test page containing the composite control.

By default, this control sets CComControlBase::m_bWindowOnly to true, to indicate that this is a
windowed control. It implements a sink map. For more information, see Support for DHTML
Control.

DHTML control: An ATL DHTML control specifies the user interface, using HTML. The DHTML UI class
contains a COM map. By default, this control sets CComControlBase::m_bWindowOnly to true, to indicate
that this is a windowed control.

For more information, see Identifying the Elements of the DHTML Control Project.

Supports only the interfaces that are absolutely needed by most containers. You can set Minimal control for any
of the control types: you can create a minimal standard control, a minimal composite control, or a minimal DHTML
control.

Adds aggregation support for the control you are creating. For more information, see Aggregation.

Yes: Create a control that can be aggregated.

No: Create a control that cannot be aggregated.

Only: Create a control that can only be instantiated through aggregation.

Specifies that the threading model used by the control.

Single: The control will run only in the primary COM thread.

Apartment: The control can be created in any single thread apartment. The default.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/options-atl-control-wizard.md

InterfaceInterface

SupportSupport

See also

The type of interface this control exposes to the container.

Dual: Creates an interface that exposes properties and methods through IDispatch and directly through
the VTBL.

Custom: Creates an interface that exposes methods directly through a VTBL.

If you select Custom, then you can specify that the control is Automation compatible. If you select
Automation compatible, then the wizard adds the oleautomation attribute to the interface in the IDL, and
the interface can be marshaled by the universal marshaler in oleaut32.dll. See Marshaling Details in the
Windows SDK for more information.

Additionally, if you select Automation compatible, then all parameters for all methods in the control must
be VARIANT compatible.

Sets additional miscellaneous support for the control.

Connection points: Enables connection points for your object by making your object's class derive from
IConnectionPointContainerImpl and allowing it to expose a source interface.

Licensed: Adds support to the control for licensing. Licensed controls can only be hosted if the client
machine has the correct license.

ATL Control Wizard

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/oleautomation
https://docs.microsoft.com/windows/desktop/com/marshaling-details
https://docs.microsoft.com/windows/desktop/com/licensing

Stock Properties, ATL Control Wizard
3/4/2019 • 2 minutes to read • Edit Online

TRANSFER BUTTON DESCRIPTION

> Adds to the Supported list the property name currently
selected in the Not Supported list.

>> Adds to the Supported list all property names available in the
Not Supported list.

< Removes the property name currently selected in the
Supported list.

<< Removes all property names currently listed in the Supported
list.

See also

This page of the wizard identifies the stock properties supported for the control. By default, no properties are
identified.

Not supported

Indicates the available properties that are not currently supported for the control.

Supported

Indicates the properties that are currently supported for the control.

ATL Control Wizard

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/stock-properties-atl-control-wizard.md

ATL Control Wizard
3/4/2019 • 4 minutes to read • Edit Online

Remarks

Names

NOTENOTE

C++C++

Inserts into an ATL project (or an MFC project with ATL support) an ATL control. You can use this wizard to
insert one of three kinds of controls:

Standard control

Composite control

DHTML control

Additionally, you can specify a minimal control, removing the interfaces from the Interfaces list, which are
provided as defaults for controls to open in most containers. You can set the interfaces you want supported for
the control in the Interfaces page of the wizard.

The registration script produced by this wizard will register its COM components under
HKEY_CURRENT_USER instead of HKEY_LOCAL_MACHINE. To modify this behavior, set the Register
component for all users option of the ATL Wizard.

Specify the names for the object, interface, and classes to be added to your project. Except for Short name, all
other boxes can be changed independently. If you change the text for Short name, the change is reflected in the
names of all other boxes in this page. If you change the Coclass name in the COM section, the change is
reflected in the Type box, but the Interface name and ProgID do not change. This naming behavior is
designed to make all the names easily identifiable for you as you develop your control.

Coclass is editable on only nonattributed controls. If your project attributed, you cannot edit Coclass.

Provides information for the C++ class created to implement the object.

Short name

Sets the abbreviated name for the object. The name that you provide determines the class and Coclass
names, the file (.CPP and .H) names, the interface name, and the Type names, unless you change those
fields individually.

Class

Sets the name of the class that implements the object. This name is based on the name that you provide
in Short name, preceded by 'C', the typical prefix for a class name.

.h file

Sets the name of the header file for the new object's class. By default, this name is based on the name
that you provide in Short name. Click the ellipsis button to save the file name to the location of your
choice, or to append the class declaration to an existing file. If you select an existing file, the wizard will

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-control-wizard.md

COMCOM

See also

not save it to the selected location until you click Finish.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class declaration should be appended to the contents of the
file. Click Yes to append the file; click No to return to the wizard and specify another file name.

.cpp file

Sets the name of the implementation file for the new object's class. By default, this name is based on the
name that you provide in Short name. Click the ellipsis button to save the file name to the location of
your choice. The file is not saved to the selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class implementation should be appended to the contents of
the file. Click Yes to append the file; click No to return to the wizard and specify another file name.

Attributed

Indicates whether the object uses attributes. If you are adding an object to an attributed ATL project, this
option is selected and not available to change. That is, you can add only attributed objects to a project
created with attribute support.

You can add an attributed object only to an ATL project that uses attributes. If you select this option for an
ATL project that does not have attribute support, the wizard prompts you to specify whether you want to
add attribute support to the project.

By default, any objects you add after you set this option are designated as attributed (the check box is
selected). You can clear this box to add an object that does not use attributes.

See Application Settings, ATL Project Wizard and Basic Mechanics of Attributes for more information.

Provides information about the COM functionality for the object.

NOTENOTE

Coclass

Sets the name of the component class that contains a list of interfaces supported by the object.

If you create your project using attributes, or if you indicate on this wizard page that the control uses attributes,
you cannot change this option because ATL does not include the coclass attribute.

Interface

Sets the name of the interface for the object. By default an interface name is prepended with "I".

Type

Sets the object description that will appear in the registry

ProgID

Sets the name that containers can use instead of the CLSID of the object. This field is not automatically
populated. If you do not manually populate this field, the control may not be available to other tools. For
example, ActiveX controls that are generated without a ProgID are not available in the Insert ActiveX
Control dialog box. For more information about the dialog box, see Insert ActiveX Control Dialog Box.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/basic-mechanics-of-attributes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/insert-activex-control-dialog-box

ATL Control
Adding Functionality to the Composite Control
Fundamentals of ATL COM Objects

ATL Dialog Wizard
3/4/2019 • 2 minutes to read • Edit Online

See also

This wizard inserts into the project an ATL dialog box object, derived from CAxDialogImpl. A dialog box derived
from CAxDialogImpl can host ActiveX controls.

The wizard creates a dialog resource with default OK and Cancel buttons. You can edit the dialog resource and
add ActiveX controls using the Dialog Editor in Resource View.

The wizard inserts into the header file a message map and declarations for handling the default click events. See
Implementing a Dialog Box for more information about ATL dialog boxes.

Short name

Sets the abbreviated name for the ATL dialog object. The name you provide determines the class name and
the file (.cpp and .h) names, unless you change those fields individually.

Class

Sets the name of the class to be created. This name is based on the name you provide in Short name,
preceded by 'C', the typical prefix for a class name.

.h file

Sets the name of the header file for the new object's class. By default, this name is based on the name you
provide in Short name. Click the ellipsis button to save the file name to the location of your choice, or to
append the class declaration to an existing file. If you choose an existing file, the wizard will not save it to the
selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class declaration should be appended to the contents of the file.
Click Yes to append the file; click No to return to the wizard and specify another file name.

.cpp file

Sets the name of the implementation file for the new object's class. By default, this name is based on the
name you provide in Short name. Click the ellipsis button to save the file name to the location of your
choice. The file is not saved to the selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class implementation should be appended to the contents of
the file. Click Yes to append the file; click No to return to the wizard and specify another file name.

ATL Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-dialog-wizard.md

ATL OLE DB Consumer Wizard
11/9/2018 • 6 minutes to read • Edit Online

NOTENOTE

UIElement List

This wizard sets up an OLE DB consumer class with the data bindings necessary to access the specified data
source through the specified OLE DB provider.

This wizard requires you to click the Data Source button to select a data source before entering names in the Class and .h
file fields.

Data Source

The Data Source button lets you set up the specified data source using the specified OLE DB provider.
When you click this button, the Data Link Properties dialog box appears. For more information on
building connection strings and the Data Link Properties dialog box, see Data Link API Overview in the
Windows SDK documentation.

The following additional information describes the tabs in the Data Link Properties dialog box.

Provider tab

Select an appropriate provider to manage the connection to the data source. The type of provider is
typically determined by the type of database to which you are connecting. Click the Next button or
click the Connection tab.

Connection tab

The contents of this tab depend on the provider you selected. Although there are many types of
providers, this section covers connections for the two most common: SQL and ODBC data. The
others are similar variations on the fields described here.

For SQL data:

1. Select or enter a server name: Click the drop-down list menu to display all registered data
servers on the network, and select one.

2. Enter information to log on to the server: Enter a user name and password to log on to
the data server.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-ole-db-consumer-wizard.md
https://docs.microsoft.com/previous-versions/windows/desktop/ms718102

NOTENOTE
There is a security problem with the "Allow saving of password" feature of the Data Link Properties
dialog box. In "Enter information to log on to the server," there are two radio buttons:

Use Windows NT integrated security
Use a specific user name and password

If you select Use a specific user name and password, you have the option of saving the password
(using the check box for "Allow saving password"); however, this option is not secure. It is
recommended that you select Use Windows NT integrated security; this option is secure because it
encrypts the password. There might be situations in which you want to select "Allow saving
password." For example, if you are releasing a library with a private database solution, you should not
access the database directly but instead use a middle-tier application to verify the user (through
whatever authentication scheme you choose) and then limit the sort of data available to the user.

3. Select the database on the server: Click the drop-down list menu to display all registered
databases on the data server, and select one.

- or -

Attach a database file as a database name: Specify a file to be used as the database; enter
the explicit pathname.

For ODBC data:

NOTENOTE

1. Specify the source of data: You can use a data source name or a connection string.

Use data source name: This drop-down list displays data sources registered in your
machine. You can set up data sources ahead of time using the ODBC Data Source
Administrator

- or -

Use connection string: Either enter a connection string you have already obtained, or click
the Build button; the Select Data Source dialog box appears. Select a file or machine data
source and click OK.

You can obtain a connection string by viewing the properties of an existing connection in Server
Explorer, or you can create a connection by double-clicking Add Connection in Server Explorer.

2. Enter information to log on to the server: Enter a user name and password to log on to
the data server.

3. Enter the initial catalog to use.

4. Click Test Connection; if the test succeeds, click OK. If not, check your logon information, try
another database, or try another data server.

Advanced tab

Network settings: Specify the Impersonation level (the level of impersonation that the server is
allowed to use when impersonating the client; corresponds directly to RPC impersonation levels) and
Protection level (the level of protection of data sent between client and server; corresponds directly
to RPC protection levels).

Other: In Connect timeout, specify the number of seconds of idle time allowed before a timeout
occurs. In Access permissions, specify the access permissions on the data connection.

For more information about advanced initialization properties, refer to the documentation provided
with each specific OLE DB provider.

All tab

This tab displays a summary of the initialization properties for the data source and connection you
have specified. You can edit these values.

Click OK to finish. The Select Database Object dialog box appears. From this dialog box, select the
table, view, or stored procedure that the consumer will use.

Class

After you select a data source, this box is populated with a default class name based on the table or stored
procedure that you selected (see Select a data source below). You can edit the class name.

.h file

After you select a data source, this box is populated with a default header class name based on the table or
stored procedure that you selected (see Select a data source below). You can edit the header file's name or
select an existing header file.

Attributed

This option specifies whether the wizard will create consumer classes using attributes or template
declarations. When you select this option, the wizard uses attributes instead of template declarations (this is
the default option). When you deselect this option, the wizard uses template declarations instead of
attributes.

```cpp
// Inject table class and table accessor class declarations
[db_source("<initialization_string>"), db_table("dbo.Orders")]
...
// Column map
[ db_column(1, status=m_dwOrderIDStatus, length=m_dwOrderIDLength) ] LONG m_OrderID;
[ db_column(2, status=m_dwCustomerIDStatus, length=m_dwCustomerIDLength) ] TCHAR m_CustomerID[6];
...
```

If you select a consumer Type of Table, the wizard uses the db_source and db_table attributes to
create the table and table accessor class declarations, and uses db_column to create the column map.
For example, it creates this map:

instead of using the CTable template class to declare the table and table accessor class, and the
BEGIN_COLUMN_MAP and END_COLUMN_MAP macros to create the column map, as in this
example:


```cpp
// Table accessor class
    class COrdersAccessor; // Table class
    class COrders : public CTable<CAccessor<COrdersAccessor>>;
// ...
// Column map
    BEGIN_COLUMN_MAP(COrderDetailsAccessor)
        COLUMN_ENTRY_LENGTH_STATUS(1, m_OrderID, m_dwOrderIDLength, m_dwOrderIDStatus)
        COLUMN_ENTRY_LENGTH_STATUS(2, m_CustomerID, m_dwCustomerIDLength, m_dwCustomerIDStatus)
        // ...
    END_COLUMN_MAP()
```

```cpp
[db_source("<initialization_string>"), db_command("SQL_command")]
...
// Column map using db_column is the same as for consumer type of 'table'
```

```cpp
// Command accessor class:
    class CListOrdersAccessor;
// Command class:
    class CListOrders : public CCommand<CAccessor<CListOrdersAccessor>>;
// ...
// Column map using BEGIN_COLUMN_MAP ... END_COLUMN_MAP is the same as
// for consumer type of 'table'
```

If you select a consumer Type of Command, the wizard uses the db_source and db_command

attributes, and uses db_column to create the column map. For example, it creates this map:

instead of using the command and command accessor class declarations in the command class' .h
file, for example:

See Basic Mechanics of Attributes for more information.

Type

Select one of these radio buttons to specify whether the consumer class will be derived from CTable or
CCommand (default).

Table

Select this option if you want to use CTable or db_table to create the table and table accessor class
declarations.

Command

Select this option if you want to use CCommand or db_command to create the command and command
accessor class declarations. This is the default selection.

Support

Select the check boxes to specify the kinds of updates to be supported in the consumer (the default is none).
Each of the following will set DBPROP_IRowsetChange and the appropriate entries for
DBPROP_UPDATABILITY in the property set map.

Change

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/basic-mechanics-of-attributes
https://docs.microsoft.com/previous-versions/windows/desktop/ms715892
https://docs.microsoft.com/previous-versions/windows/desktop/ms722676

See also

Specifies that the consumer support updates of row data in the rowset.

Insert

Specifies that the consumer support insertion of rows into the rowset.

Delete

Specifies that the consumer support deletion of rows from the rowset.

ATL OLE DB Consumer
Adding Functionality with Code Wizards
Connection Strings and Data Links (OLE DB)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/previous-versions/windows/desktop/ms718376

ATL OLE DB Provider Wizard
3/4/2019 • 2 minutes to read • Edit Online

WARNINGWARNING

Remarks

This wizard creates the classes that compose an OLE DB provider.

In Visual Studio 2017 version 15.9 this code wizard is deprecated and will be removed in a future version of Visual Studio.
This wizard is rarely used. General support for ATL and MFC is not impacted by the removal of this wizard. If you would like
to share your feedback about this deprecation, please complete this survey. Your feedback matters to us.

Beginning with Visual Studio 2008, the registration script produced by this wizard will register its COM
components under HKEY_CURRENT_USER instead of HKEY_LOCAL_MACHINE . To modify this behavior, set
the Register component for all users option of the ATL Wizard.

The following table describes the options for the ATL OLE DB Provider Wizard:

Short name

Type the short name of the provider to be created. The other edit boxes in the wizard will automatically
populate based on what you type here. You can edit the other name boxes if you want.

Coclass

The name of the coclass. The ProgID name will change to match this name.

Attributed

This option specifies whether the wizard will create provider classes using attributes or template
declarations. When you select this option, the wizard uses attributes instead of template declarations (this is
the default option if you created an attributed project). When you clear this option, the wizard uses template
declarations instead of attributes (this is the default option if you created a non-attributed project).

If you select this option when you created a non-attributed project, the wizard warns you that the project
will be converted to an attributed project and asks you whether to continue or not.

ProgID

The ProgID, or programmatic identifier, is a text string that your application can use instead of a GUID. The
ProgID name has the form Projectname.Coclassname.

Version

The version number of your provider. The default is 1.

DataSource class

The name of the data source class, of the form CShortnameSource.

DataSource .h file

The header file for the data source class. You can edit this file's name or select an existing header file.

Session class

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-ole-db-provider-wizard.md
https://www.surveymonkey.com/r/QDWKKCN

See also

The name of the session class, of the form CShortnameSession.

Session .h file

The header file for the session class. You can edit this file's name or select an existing header file.

Command class

The name of the command class, of the form CShortnameCommand.

Command .h file

The header file for the command class. This name cannot be edited and depends on the name of the rowset
header file.

Rowset class

The name of the rowset class, of the form CShortnameRowset.

Rowset .h file

The header file for the rowset class. You can edit this file's name or select an existing header file.

Rowset .cpp file

The provider's implementation file. You can edit this file's name or select an existing implementation file.

ATL OLE DB Provider

ATL Project Wizard
3/4/2019 • 2 minutes to read • Edit Online

Overview

See also

The Active Template Library (ATL) is a set of template-based C++ classes that simplify writing small and fast
COM objects. The ATL Project Wizard creates a project with the structures to contain COM objects.

This wizard page describes the current application settings for the ATL project you are creating. By default, the
project has the following settings:

Dynamic-link library Specifies that your server is a DLL and therefore an in-process server.

Attributed Specifies that your project uses attributes.

To change these defaults, click Application Settings in the left column of the wizard and make changes in that
page of the ATL Project Wizard.

For information on the default project settings, including the choice of character set, and linking defaults, see
Default ATL Project Configurations.

After you create an ATL project, you can add objects or controls to your project using Visual C++ code wizards.
You can make the following types of enhancements to a basic ATL project using code wizards:

Add object and controls to an ATL project

Add a new interface in an ATL project

Add a COM+ 1.0 component to an ATL project

Additionally, consider these tasks when you create and enhance an ATL project:

Make an ATL object noncreatable

Optimize the compiler for an ATL project

You can specify project properties (for example, whether to link statically to the CRT) in the Project Properties
page, and you can set build configurations for an ATL project.

Creating and Managing Visual C++ Projects
Visual C++ Project Types
Creating Desktop Projects By Using Application Wizards
Fundamentals of ATL COM Objects
Programming with ATL and C Run-Time Code
Tutorial

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-project-wizard.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/general-property-page-project
https://docs.microsoft.com/visualstudio/ide/understanding-build-configurations
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-and-managing-visual-cpp-projects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/visual-cpp-project-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-desktop-projects-by-using-application-wizards

Options, ATL Property Page Wizard
3/4/2019 • 2 minutes to read • Edit Online

See also

Use this page of the wizard to define the threading model and aggregation level of property page you are creating.

OPTION DESCRIPTION

Single The property page runs only in the primary COM thread.

Apartment The property page can be created in any single thread
apartment. The default.

OPTION DESCRIPTION

Yes Create a property page that can be aggregated.

No Create a property page that cannot be aggregated.

Only Create a property page that can only be instantiated
through aggregation.

Threading model

Specifies the threading model used by the property page.

See Specifying the Project's Threading Model for more information.

Aggregation

Adds aggregation support for the property page you are creating. See Aggregation for more information.

ATL Property Page Wizard
Strings, ATL Property Page Wizard

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/options-atl-property-page-wizard.md

Strings, ATL Property Page Wizard
3/4/2019 • 2 minutes to read • Edit Online

See also

Provides the text associated with the property page.

Title

Sets the text that appears on the tab of the property page.

Doc string

Sets a text string describing the page. This string can be displayed in the property sheet dialog box. The
property frame could use the description in a status line or tool tip. The standard property frame currently
does not use this string.

Help file

Sets the name of the help file that describes how to use the property page. This name should not include a
path. When the user presses Help, the frame opens the help file in the directory named in the value of the
HelpDir key in the property page registry entries under its CLSID.

ATL Property Page Wizard
Options, ATL Property Page Wizard

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/strings-atl-property-page-wizard.md

ATL Property Page Wizard
3/4/2019 • 4 minutes to read • Edit Online

WARNINGWARNING

Remarks

Names

NOTENOTE

C++C++

Term Definition

Short name Sets the abbreviated name for the object. The name that you
provide determines the class and Coclass names, the file
(.cpp and .h) names, the Type name, and the ProgID, unless
you change those fields individually.

This wizard adds a property page into an ATL project or to an MFC project with ATL support. An ATL property
page provides a user interface for setting the properties (or calling the methods) of one or more COM objects.

In Visual Studio 2017 version 15.9 this code wizard is deprecated and will be removed in a future version of Visual Studio.
This wizard is rarely used. General support for ATL and MFC is not impacted by the removal of this wizard. If you would like
to share your feedback about this deprecation, please complete this survey. Your feedback matters to us.

Beginning with Visual Studio 2008, the registration script produced by this wizard will register its COM
components under HKEY_CURRENT_USER instead of HKEY_LOCAL_MACHINE . To modify this behavior, set
the Register component for all users option of the ATL Wizard.

Specify the names for the object, interface, and classes to be added to your project. Except for Short name, all
other boxes can be edited independently. If you change the text for Short name, the change is reflected in the
names of all other boxes in this page. If you change the Coclass name in the COM section, the change is reflected
in the Type and ProgID boxes. This naming behavior is designed to make all the names easily identifiable for you
as you develop your property page.

Coclass is editable on only nonattributed projects. If your project attributed, you cannot edit Coclass.

Provides information for the C++ class created to implement the object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-property-page-wizard.md
https://www.surveymonkey.com/r/QDWKKCN

.h file Sets the name of the header file for the new object's class. By
default, this name is based on the name that you provide in
Short name. Click the ellipsis button to save the file name to
the location of your choice, or to append the class declaration
to an existing file. If you select an existing file, the wizard will
not save it to the selected location until you click Finish in the
wizard.

The wizard does not overwrite a file. If you select the name of
an existing file, when you click Finish, the wizard prompts you
to indicate whether the class declaration should be appended
to the contents of the file. Click Yes to append the file; click
No to return to the wizard and specify another file name.

Class Sets the name of the class that implements the object. This
name is based on the name that you provide in Short name,
preceded by 'C', the typical prefix for a class name.

.cpp file Sets the name of the implementation file for the new object's
class. By default, this name is based on the name that you
provide in Short name. Click the ellipsis button to save the
file name to the location of your choice. The file is not saved
to the selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of
an existing file, when you click Finish, the wizard prompts you
to indicate whether the class implementation should be
appended to the contents of the file. Click Yes to append the
file; click No to return to the wizard and specify another file
name.

Attributed Indicates whether the object uses attributes. If you are adding
an object to an attributed ATL project, this option is selected
and not available to change, that is, you can add only
attributed objects to a project created with attribute support.

You can add an attributed object only to an ATL project that
uses attributes. If you select this option for an ATL project
that does not have attribute support, the wizard prompts you
to specify whether you want to add attribute support to the
project.

By default, any objects you add after you set this option are
designated as attributed (the check box is selected). You can
clear this box to add an object that does not use attributes.

See Application Settings, ATL Project Wizard and Basic
Mechanics of Attributes for more information.

COMCOM
Provides information about the COM functionality for the object.

Coclass

Sets the name of the component class that contains a list of interfaces supported by the object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/basic-mechanics-of-attributes

See also

NOTENOTE
If you create your project using attributes, or if you indicate on this wizard page that the property page uses
attributes, you cannot change this option because ATL does not include the coclass attribute.

Type

Sets the object description that will appear in the registry

ProgID

Sets the name that containers can use instead of the CLSID of the object.

Options, ATL Property Page Wizard
Strings, ATL Property Page Wizard
Example: Implementing a Property Page

Options, ATL Simple Object Wizard
3/4/2019 • 2 minutes to read • Edit Online

Use this page of the ATL Simple Object Wizard to design for increased efficiency and error support for the object.

For more information on ATL projects and ATL COM classes, see ATL COM Desktop Components.

OPTION DESCRIPTION

Single Specifies that the object always runs in the primary COM
thread. See Single-Threaded Apartments and
InprocServer32 for more information.

Apartment Specifies that the object uses apartment threading.
Equivalent to single thread apartment. Each object of an
apartment-threaded component is assigned an
apartment for its thread, for the life of the object;
however, multiple threads can be used for multiple
objects. Each apartment is tied to a specific thread and
has a Windows message pump (default).

See Single-Threaded Apartments for more information.

Both Specifies that the object can use either apartment or free
threading, depending from which kind of a thread it is
created.

Free Specifies that the object uses free threading. Free
threading is equivalent to a multithread apartment
model. See Multithreaded Apartments for more
information.

Neutral Specifies that the object follows the guidelines for
multithreaded apartments, but it can execute on any kind
of thread.

OPTION DESCRIPTION

Yes Specifies that the object can be aggregated. The default.

No Specifies that the object is not aggregated.

Threading model

Indicates the method for managing threads. By default, the project uses Apartment threading.

See Specifying the Project's Threading Model for more information.

Aggregation

Indicates whether the object uses aggregation. The aggregate object chooses which interfaces to expose to
clients, and the interfaces are exposed as if the aggregate object implemented them. Clients of the
aggregate object communicate only with the aggregate object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/options-atl-simple-object-wizard.md
https://docs.microsoft.com/windows/desktop/com/single-threaded-apartments
https://docs.microsoft.com/windows/desktop/com/inprocserver32
https://docs.microsoft.com/windows/desktop/com/single-threaded-apartments
https://docs.microsoft.com/windows/desktop/com/multithreaded-apartments
https://docs.microsoft.com/windows/desktop/com/aggregation

See also

Only Specifies that the object must be aggregated.

OPTION DESCRIPTION

OPTION DESCRIPTION

Dual Specifies that the object supports a dual interface (its
vtable has custom interface functions plus late-binding
IDispatch methods). Allows both COM clients and

Automation controllers to access the object. The default.

Custom Specifies that the object supports a custom interface (its
vtable has custom interface functions). A custom interface
can be faster than a dual interface, especially across
process boundaries.

- Automation compatible Allows Automation
controllers to access an object that has the custom
interface support.

OPTION DESCRIPTION

ISupportErrorInfo Creates support for the ISupportErrorInfo interface so the
object can return error information to the client.

Connection points Enables connection points for your object by making your
object's class derive from IConnectionPointContainerImpl.

Free-threaded marshaler Creates a free-threaded marshaler object to marshal
interface pointers efficiently between threads in the same
process. Available to object specifying Both as the
threading model.

IObjectWithSite (IE object support) Implements IObjectWithSiteImpl, which provides a simple
way to support communication between an object and its
site in a container.

Interface

Indicates the type of interface the object supports. By default, the object supports a dual interface.

Support

Indicates additional support for the object.

ATL Simple Object Wizard
ATL Simple Object
In-Process Server Threading Issues

https://docs.microsoft.com/windows/desktop/com/in-process-server-threading-issues

ATL Simple Object Wizard
3/4/2019 • 4 minutes to read • Edit Online

Remarks

Names

NOTENOTE

C++

This wizard inserts into the project a minimal COM object. Use this page of the wizard to specify the names that
identify the C++ class and files for your object and its COM functionality.

Use the Options page of this wizard to specify the object's threading model, its aggregation support, and whether
it supports dual interfaces and Automation. You can also indicate support for the error information interface,
connection points, Internet Explorer support, and free-threaded marshaling.

Beginning with Visual Studio 2008, the registration script produced by this wizard will register its COM
components under HKEY_CURRENT_USER instead of HKEY_LOCAL_MACHINE . To modify this behavior, set
the Register component for all users option of the ATL Wizard.

Specify the names for the object, interface, and classes to be added to your project. Except for Short name, all
other boxes can be edited independently of the others. If you change the text for Short name, the change is
reflected in the names of all other boxes in this page. If you change the Coclass name in the COM section, the
change is reflected in the Type and ProgID boxes, but the Interface name does not change. This naming
behavior is designed to make all the names easily identifiable for you as you develop your control.

Coclass is editable on only nonattributed projects. If your project attributed, you cannot edit Coclass.

Provides information for the C++ class created for the object.

Short name

Sets the abbreviated name for the object. The name that you provide determines the Class and Coclass

names, the .cpp file and .h file names, the Interface name, the Type names, and the ProgID , unless you
change those fields individually.

.h file

Sets the name of the header file for the new object's class. By default, this name is based on the name that
you provide in Short name. Click the ellipsis button to save the file name to the location of your choice, or
to append the class declaration to an existing file. If you select an existing file, the wizard will not save it to
the selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class declaration should be appended to the contents of the
file. Click Yes to append the file; click No to return to the wizard and specify another file name.

Class

Sets the name of the class to be created. This name is based on the name that you provide in Short name,

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-simple-object-wizard.md

COM

See also

preceded by 'C', the typical prefix for a class name.

.cpp file

Sets the name of the implementation file for the new object's class. By default, this name is based on the
name that you provide in Short name. Click the ellipsis button to save the file name to the location of your
choice. The file is not saved to the selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class implementation should be appended to the contents of
the file. Click Yes to append the file; click No to return to the wizard and specify another file name.

Attributed

Indicates whether the object uses attributes. If you are adding an object to an attributed ATL project, this
option is selected and not available to change. That is, you can add only attributed objects to a project
created with attribute support.

You can add an attributed object only to an ATL project that uses attributes. If you select this option for an
ATL project that does not have attribute support, the wizard prompts you to specify whether you want to
add attribute support to the project.

By default, any objects you add after you set this option are designated as attributed (the check box is
selected). You can clear this box to add an object that does not use attributes.

See Application Settings, ATL Project Wizard and Basic Mechanics of Attributes for more information.

Provides information about the COM functionality for the object.

NOTENOTE

Coclass

Sets the name of the component class that contains a list of interfaces supported by the object.

If you create your project using attributes, or if you indicate on this wizard page that the object uses attributes, you
cannot change this option because ATL does not include the coclass attribute.

Type

Sets the object description that will appear in the registry

Interface

Sets the interface you create for your object. This interface contains your custom methods.

ProgID

Sets the name that containers can use instead of the CLSID of the object.

ATL Simple Object

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/basic-mechanics-of-attributes

ATL Wizards and Dialog Boxes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles
TITLE DESCRIPTION

Creating an ATL Project Describes the ATL project wizard and its settings.

ATL Simple Object Creates a basic object.

ATL Property Page Creates a basic property page.

ATL OLE DB Provider Creates a basic OLE DB provider.

ATL OLE DB Consumer Creates a basic OLE DB consumer.

ATL Dialog Box Creates a basic dialog box.

ATL Control Creates a basic ActiveX control.

ATL COM+ 1.0 Component Creates a basic ATL COM+ 1.0 component

ATL Active Server Page Component Creates a basic ATL Active Server Page component.

ATL COM Desktop Components Links to the ATL documentation.

The Active Template Library (ATL) wizards generate boilerplate code for various kinds of COM objects. You can run
the wizards by opening the shortcut menu for a project in Solution Explorer and choosing Add, Class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/atl-wizards-and-dialog-boxes.md

COM+ 1.0, ATL COM+ 1.0 Component Wizard
3/4/2019 • 2 minutes to read • Edit Online

Use this page of the ATL COM+ 1.0 Component Wizard to specify interface type and additional interfaces to be
supported.

For more information on ATL projects and ATL COM classes, see ATL COM Desktop Components.

OPTION DESCRIPTION

Dual Specifies that the object supports a dual interface (its
vtable has custom interface functions and late-binding
IDispatch methods). Allows both COM clients and

Automation controllers to access the object.

Custom Specifies that the object supports a custom interface (its
vtable has custom interface functions). A custom interface
can be faster than a dual interface, especially across
process boundaries.

- Automation compatible Adds automation support to
the custom interface. For attributed projects, sets the
oleautomation attribute in the coclass.

OPTION DESCRIPTION

ISupportErrorInfo Creates support for the ISupportErrorInfo interface so the
object can return error information to the client.

IObjectControl Provides your object access to the three IObjectControl
methods: Activate, CanBePooled, and Deactivate.

IObjectConstruct Creates support for the IObjectConstruct interface to
manage passing in parameters from other methods or
objects.

Interface

Indicates the type of interface the object supports. By default, the object supports a dual interface.

Queueable

Indicates that clients can call this component asynchronously using message queues. Adds the component
attributed macro custom(TLBATTR_QUEUEABLE, 0) to the .h file (attributed projects) or to the .idl file
(nonattributed projects).

Support

Indicates additional support for error handling and object control.

Transaction

Indicates that the object supports transactions. Includes the file mtxattr.h in the .idl file (nonattributed
projects).

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/com-plus-1-0-atl-com-plus-1-0-component-wizard.md
https://docs.microsoft.com/windows/desktop/api/comsvcs/nn-comsvcs-iobjectcontrol
https://docs.microsoft.com/windows/desktop/api/comsvcs/nf-comsvcs-iobjectcontrol-activate
https://docs.microsoft.com/windows/desktop/api/comsvcs/nf-comsvcs-iobjectcontrol-canbepooled
https://docs.microsoft.com/windows/desktop/api/comsvcs/nf-comsvcs-iobjectcontrol-deactivate
https://docs.microsoft.com/windows/desktop/api/comsvcs/nn-comsvcs-iobjectconstruct

See also

OPTION DESCRIPTION

Supported Specifies that the object is never the root of a transaction
stream by adding the component attribute macro
custom(TLBATTR_TRANS_SUPPORTED,0) to the .h file
(attributed projects) or to the .idl file (nonattributed
projects).

Required Specifies that the object may or may not be the root of a
transaction stream by adding the component attribute
macro custom(TLBATTR_TRANS_REQUIRED,0) to the .h file
(attributed projects) or to the .idl file (nonattributed
projects).

Not supported Specifies that the object excludes transactions. Adds the
component attribute macro
custom(TLBATTR_TRANS_NOTSUPP,0) to the .h file
(attributed projects) or to the .idl file (nonattributed
projects).

Requires new Specifies that the object is always the root of a transaction
stream by adding the component attribute macro
custom(TLBATTR_TRANS_REQNEW,0) to the .h file
(attributed projects) or to the .idl file (nonattributed
projects).

ATL COM+ 1.0 Component Wizard
ATL COM+ 1.0 Component

Adding a New Interface in an ATL Project
3/4/2019 • 2 minutes to read • Edit Online

To use code wizards in Class View to add an interface to an existing
object or control

To add a new interface manually

See also

When you add an interface to your object or control, you create stubbed-out functions for each method in that
interface. In your object or control, you can add only interfaces currently found in an existing type library. Also, the
class in which you add the interface must implement the BEGIN_COM_MAP macro or, if the project is attributed,
it must have the coclass attribute.

You can add a new interface to your control in one of two ways: manually or using code wizards in Class View.

1. In Class View, right-click the class name of a control. For example, a full control or composite control, or
any other control class that implements a BEGIN_COM_MAP macro in its header file.

2. On the shortcut menu, click Add, and then click Implement Interface.

3. Select the interfaces to implement in the Implement Interface Wizard. If the interface does not exist in any
available typelib, then you must add it manually to the .idl file.

1. Add the definition of your new interface to the .idl file.

2. Derive your object or control from the interface.

3. Create a new COM_INTERFACE_ENTRY for the interface or, if the project is attributed, add the coclass

attribute.

4. Implement methods on the interface.

ATL Project Wizard
Visual C++ Project Types
Creating Desktop Projects By Using Application Wizards
Programming with ATL and C Run-Time Code
Fundamentals of ATL COM Objects
Default ATL Project Configurations

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/adding-a-new-interface-in-an-atl-project.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/implement-interface-wizard
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/visual-cpp-project-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-desktop-projects-by-using-application-wizards

Adding an ATL Active Server Page Component
3/4/2019 • 2 minutes to read • Edit Online

To add an ATL Active Server Pages component to your project

See also

To add an Active Template Library (ATL) object to your project, your project must have been created as an ATL
COM application or as an MFC application that contains ATL support. You can use the ATL Project Wizard to
create an ATL application, you can select Add ATL Support to MFC from the Add Class Dialog Box dialog box,
or you can add an ATL object to your MFC application to implement ATL support for an MFC application.

Active Server Pages components are part of the Internet Information Services architecture, which provides the
following advanced Web development features:

You can embed ASP components into your HTML pages to create dynamic, browser-independent content.

You can use ASP pages to provide standards-based database connectivity.

You can use the ASP error-handling capabilities for your Web-based applications.

1. In Solution Explorer right-click the name of the project to which you want to add the ATL Active Server
Pages component.

2. From the shortcut menu, click Add, and then click Add Class.

3. In the Add Class dialog box, in the Templates pane, click ATL Active Server Page Component, and then
click Open to display the ATL Active Server Page Component Wizard.

Adding a Class
Adding a New Interface in an ATL Project
Adding Connection Points to an Object
Adding a Method
MFC Class
Adding a Generic C++ Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/adding-an-atl-active-server-page-component.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-method-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-generic-cpp-class

Adding an ATL COM+ 1.0 Component
3/4/2019 • 2 minutes to read • Edit Online

To add an ATL COM+ 1.0 component to your project

See also

This wizard adds an object to your project that supports COM+ 1.0 services, including transactions.

1. In either Solution Explorer or Class View, right-click the name of the project to which you want to add
the ATL COM+ 1.0 component.

2. On the shortcut menu, click Add, and then click Add Class.

3. In the Add Class dialog box, in the Templates pane, click ATL COM+ 1.0 Component, and then click
Open to display the ATL COM+ 1.0 Component Wizard.

Adding a Class
Adding a Method

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/adding-an-atl-com-plus-1-0-component.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-method-visual-cpp

Adding an ATL Control
3/4/2019 • 2 minutes to read • Edit Online

To add an ATL control to your project

See also

Use this wizard to add a user interface object to a project that supports interfaces for all potential containers. To
support these interfaces, the project must have been created as an ATL application or as an MFC application that
contains ATL support. You can use the ATL Project Wizard to create an ATL application, or add an ATL object to
your MFC application to implement ATL support for an MFC application.

1. In either Solution Explorer or Class View, right-click the name of the project to which you want to add the
ATL simple object.

2. Click Add from the shortcut menu, and then click Add Class.

3. In the Add Class dialog box, in the templates pane, click ATL Control, and then click Add to display the ATL
Control Wizard.

Using the ATL Control Wizard, you can create one of three types of controls:

A standard control

A composite control

A DHTML control

Additionally, you can reduce the size of the control and remove interfaces that are not used by most containers by
selecting Minimal control on the Options page of the wizard.

Adding Functionality to the Composite Control
Fundamentals of ATL COM Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/adding-an-atl-control.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box

Adding an ATL Dialog Box
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To add an ATL dialog resource to your project

See also

To add an ATL dialog to your project, your project must be either an ATL project or an MFC project that includes
ATL support. You can use the ATL Project Wizard to create an ATL application, or add an ATL object to your MFC
application to implement ATL support for an MFC application.

By default, the ATL Dialog Wizard implements a dialog box derived from CAxDialogImpl. This class includes
support for hosting ActiveX and Windows controls. If you do not want the overhead of ActiveX control support,
once the wizard has generated your code, replace all instances of CAxDialogImpl with either CSimpleDialog or
CDialogImpl as your base class.

CSimpleDialog creates only modal dialog boxes that support only Windows common controls. CDialogImpl creates
either modal or modeless dialog boxes.

1. Create an ATL project using the ATL Project Wizard.

2. From Class View, right-click the project name and click Add from the shortcut menu. Click Add Class.

3. In the Templates pane of the Add Class dialog box, click ATL Dialog. Click Open to display the ATL
Dialog Wizard.

For more information, see Implementing a Dialog Box.

Adding a Class
Window Classes
Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/adding-an-atl-dialog-box.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp

Adding an ATL OLE DB Consumer
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To add an ATL OLE DB consumer to your project

See also

Use this wizard to add an ATL OLE DB consumer to a project. An ATL OLE DB consumer consists of an OLE DB
accessor class and data bindings necessary to access a data source. The project must have been created as an ATL
COM application, or as an MFC or Win32 application that contains ATL support (which the ATL OLE DB
Consumer Wizard adds automatically).

You can add an OLE DB consumer to an MFC project. If you do, the ATL OLE DB Consumer Wizard adds the necessary COM
support to your project. This assumes that when you created the MFC project, you selected the ActiveX controls check box
(in the Advanced Features page of the MFC Project Application Wizard), which is checked by default. Selecting this option
ensures that the application calls CoInitialize and CoUninitialize . If you did not select ActiveX controls when you
created the MFC project, you need to call CoInitialize and CoUninitialize in your main code.

1. In Class View, right-click the project. On the shortcut menu, click Add and then click Add Class.

2. In the Visual C++ folder, double-click the ATL OLE DB Consumer icon or select it and click Open.

The ATL OLE DB Consumer Wizard opens.

3. Define settings as described in ATL OLE DB Consumer Wizard.

4. Click Finish to close the wizard. The newly created OLE DB consumer code will be inserted in your project.

Adding Functionality with Code Wizards

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/adding-an-atl-ole-db-consumer.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp

Adding an ATL OLE DB Provider
3/4/2019 • 2 minutes to read • Edit Online

To add an ATL OLE DB provider to your project

See also

Use this wizard to add an ATL OLE DB provider to a project. An ATL OLE DB provider consists of a data source,
session, command, and rowset classes. The project must have been created as an ATL COM application.

1. In Class View, right-click the project. On the shortcut menu, click Add and then click Add Class.

2. In the Visual C++ folder, double-click the ATL OLE DB Provider icon or select it and click Open.

The ATL OLE DB Provider Wizard opens.

3. Define settings as described in ATL OLE DB Provider Wizard.

4. Click Finish to close the wizard, which will insert the newly created OLE DB provider code in your project.

Adding Functionality with Code Wizards

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/adding-an-atl-ole-db-provider.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp

Adding an ATL Property Page
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To add an ATL property page to your project

See also

To add an Active Template Library (ATL) property page to your project, your project must have been created as an
ATL application or as an MFC application that contains ATL support. You can use the ATL Project Wizard to create
an ATL application or add an ATL object to your MFC application to implement ATL support for an MFC
application.

If you are adding a property page for a control, your control must support the ISpecifyPropertyPagesImpl
interface. By default, this interface is in the derivation list of your control class when you create an ATL control
using the ATL Control Wizard.

If your control class does not have ISpecifyPropertyPagesImpl in its derivation list, you must add it manually.

1. In either Solution Explorer or Class View, right-click the name of the project to which you want to add the
ATL property page.

2. From the shortcut menu, click Add and then click Add Class.

3. In the Add Class dialog box, in the Templates pane, click ATL Property Page and then click Open to
display the ATL Property Page Wizard.

Once you create a property page for a control, you must provide the PROP_PAGE entry in the property map for
the control.

Property Pages
Fundamentals of ATL COM Objects
Example: Implementing a Property Page

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/adding-an-atl-property-page.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box

Adding an ATL Simple Object
3/4/2019 • 2 minutes to read • Edit Online

To add an ATL simple object to your ATL COM project

See also

To add an ATL (Active Template Library) object to your project, your project must have been created as an ATL
application or as an MFC application that contains ATL support. You can use the ATL Project Wizard to create an
ATL application, or add an ATL object to your MFC application to implement ATL support for an MFC application.

You can define COM interfaces for your new ATL object when you first create it, or add them later by using the
Implement Interface command from the Class View shortcut menu.

1. In either Solution Explorer or Class View, right-click the name of the project to which you want to add the
ATL simple object.

2. From the shortcut menu, click Add, and then click Add Class.

3. In the Add Class dialog box, in the Templates pane, click ATL Simple Object, and then click Open to
display the ATL Simple Object Wizard.

4. Set additional options for your project on the Options page of the ATL Simple Object wizard.

5. Click Finish to add the object to your project.

Adding a Class
Adding a New Interface in an ATL Project
Adding Connection Points to an Object
Adding a Method
MFC Class
Adding a Generic C++ Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/adding-an-atl-simple-object.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/implement-interface-wizard
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-method-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-generic-cpp-class

Adding Objects and Controls to an ATL Project
3/4/2019 • 2 minutes to read • Edit Online

ATL Simple Object ATL Dialog ATL Control

ATL Property Page ATL Active Server Page Component ATL OLE DB Consumer

Add ATL Support to MFC ATL COM+ 1.0 Component Wizard ATL OLE DB Provider

NOTENOTE

To add an object or a control using the ATL Control Wizard

See also

You can use one of the ATL code wizards to add an object or a control to your ATL- or MFC-based projects. For
each COM object or control you add, the wizard generates .cpp and .h files, as well as an .rgs file for script-based
registry support. The following ATL code wizards are available in Visual Studio:

Before adding an ATL object to your project, you should review the details and requirements for the object in its related Help
topics.

NOTENOTE

1. In Solution Explorer, right-click the project node and click Add from the shortcut menu. Click Add Class.

The Add Class dialog box appears.

2. With the ATL folder selected in the Categories pane, select an object to insert from the Templates pane.
Click Open. The code wizard for the selected object appears.

If you want to add an ATL object to an MFC project, you must add ATL support to the existing project. You can do
this by following the instructions in Adding ATL Support to Your MFC Project.

Alternately, if you attempt to add an ATL object to your MFC project without previously adding ATL
support, Visual Studio prompts you to specify whether you want ATL support added to your project. Click
Yes to add ATL support to the project and open the selected ATL wizard.

ATL Project Wizard
Visual C++ Project Types
Creating Desktop Projects By Using Application Wizards
Fundamentals of ATL COM Objects
Programming with ATL and C Run-Time Code
Default ATL Project Configurations

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/adding-objects-and-controls-to-an-atl-project.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/visual-cpp-project-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-desktop-projects-by-using-application-wizards

Creating an ATL Project
3/4/2019 • 2 minutes to read • Edit Online

To create an ATL project using the ATL Project Wizard

See also

The easiest way to create an ATL project is to use the ATL Project Wizard, located in the Win32 Projects
folder of the New Project dialog box.

NOTENOTE

1. Follow the instructions in the topic Creating a Project with a Visual C++ Application Wizard.

2. Select the ATL Project icon in the Templates pane to open the ATL Project Wizard.

3. Define your application settings using the Application Settings page of the ATL Project Wizard.

Skip this step to keep the wizard default settings.

4. Click Finish to close the wizard and open your new project in the development environment.

Once your project is created, you can view the files created in Solution Explorer. For more information
about the files the wizard creates for your project, see the project-generated file ReadMe.txt. For more
information about the file types, see File Types Created for Visual C++ Projects. For more information
about the configurations for the new ATL project, and how to change them, see Default ATL Project
Configurations.

Adding Functionality with Code Wizards
Property Pages

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/creating-an-atl-project.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-desktop-projects-by-using-application-wizards
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/file-types-created-for-visual-cpp-projects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/property-pages-visual-cpp

COM+ 1.0 Support in ATL Projects
3/4/2019 • 2 minutes to read • Edit Online

See also

You can use the ATL Project Wizard to create a project with basic support for COM+ 1.0 components.

COM+ 1.0 is designed for developing distributed component-based applications. It also provides a run-time
infrastructure for deploying and managing these applications.

If you select the Support COM+ 1.0 check box, the wizard modifies the build script in the link step. Specifically, the
COM+ 1.0 project links to the following libraries:

comsvcs.lib

Mtxguid.lib

If you select the Support COM+ 1.0 check box, you can also select Support component registrar. The
component registrar allows your COM+ 1.0 object to get a list of components, register components, or unregister
components (individually or all at once).

Fundamentals of ATL COM Objects
Programming with ATL and C Run-Time Code
Default ATL Project Configurations

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/com-plus-1-0-support-in-atl-projects.md

Default ATL Project Configurations
3/4/2019 • 2 minutes to read • Edit Online

CONFIGURATION CHARACTER SET USE OF ATL

Release MBCS DLL

Debug MBCS DLL

See also

The ATL Project Wizard creates two project configurations by default:

Character set, Use of ATL and can all be changed in the Project Settings dialog under the General tab. You
can also add your own configurations using the Configuration Manager. For details, see Build Configurations.

Programming with ATL and C Run-Time Code
Working with Project Properties
Configuration Manager Dialog Box
Compiling and Building

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/default-atl-project-configurations.md
https://docs.microsoft.com/visualstudio/ide/understanding-build-configurations
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/working-with-project-properties
https://docs.microsoft.com/visualstudio/ide/understanding-build-configurations
https://docs.microsoft.com/visualstudio/ide/compiling-and-building-in-visual-studio

Making an ATL Object Noncreatable
3/4/2019 • 2 minutes to read • Edit Online

To make an object noncreatable

See also

You can change the attributes of an ATL-based COM object so that a client cannot directly create the object. In this
case, the object would be returned through a method call on another object rather than created directly.

[uuid(A1992E3D-3CF0-11D0-826F-00A0C90F2851),
helpstring("MyObject"),
noncreatable]
coclass MyObject
{
 [default] interface IMyInterface;
}

1. Remove the OBJECT_ENTRY_AUTO for the object. If you want the object to be noncreatable but the control
to be registered, replace OBJECT_ENTRY_AUTO with OBJECT_ENTRY_NON_CREATEABLE_EX_AUTO.

2. Add the noncreatable attribute to the coclass in the .idl file. For example:

ATL Project Wizard
Visual C++ Project Types
Creating Desktop Projects By Using Application Wizards
Programming with ATL and C Run-Time Code
Fundamentals of ATL COM Objects
Default ATL Project Configurations

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/making-an-atl-object-noncreatable.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/noncreatable
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/visual-cpp-project-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-desktop-projects-by-using-application-wizards

MFC Support in ATL Projects
3/4/2019 • 2 minutes to read • Edit Online

class CProjNameApp : public CWinApp
{
public:

// Overrides
 virtual BOOL InitInstance();
virtual int ExitInstance();
DECLARE_MESSAGE_MAP()
};

BEGIN_MESSAGE_MAP(CProjNameApp, CWinApp)
END_MESSAGE_MAP()

CProjNameApp theApp;

BOOL CProjNameApp::InitInstance()
{
 return CWinApp::InitInstance();

}

int CProjNameApp::ExitInstance()
{
 return CWinApp::ExitInstance();

}

See also

If you select Support MFC in the ATL Project Wizard, your project declares the application as an MFC application
object (class). The project initializes the MFC library and instantiates a class (class ProjName) that is derived from
CWinApp.

This option is available for nonattributed ATL DLL projects only.

You can view the application object class and its InitInstance and ExitInstance functions in Class View.

Adding a Class
Creating an ATL Project
Default ATL Project Configurations

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/mfc-support-in-atl-projects.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp

Specifying Compiler Optimization for an ATL Project
3/4/2019 • 2 minutes to read • Edit Online

class ATL_NO_VTABLE CProjName
{
...
};

#ifdef _ATL_DISABLE_NO_VTABLE
#define ATL_NO_VTABLE
#else
#define ATL_NO_VTABLE __declspec(novtable)
#endif

#define _ATL_DISABLE_NO_VTABLE

See also

By default, the ATL Control Wizard generates new classes with the ATL_NO_VTABLE macro, as follows:

ATL then defines _ATL_NO_VTABLE as follows:

If you do not define _ATL_DISABLE_NO_VTABLE, the ATL_NO_VTABLE macro expands to declspec(novtable) .
Using declspec(novtable) in a class declaration prevents the vtable pointer from being initialized in the class
constructor and destructor. When you build your project, the linker eliminates the vtable and all functions to which
the vtable points.

You must use ATL_NO_VTABLE, and consequently declspec(novtable) , with only base classes that are not directly
creatable. You must not use declspec(novtable) with the most-derived class in your project, because this class
(usually CComObject, CComAggObject, or CComPolyObject) initializes the vtable pointer for your project.

You must not call virtual functions from the constructor of any object that uses declspec(novtable) . You should
move those calls to the FinalConstruct method.

If you are unsure whether you should use the declspec(novtable) modifier, you can remove the ATL_NO_VTABLE
macro from any class definition, or you can globally disable it by specifying

in stdafx.h, before all other ATL header files are included.

ATL Project Wizard
Visual C++ Project Types
Creating Desktop Projects By Using Application Wizards
Programming with ATL and C Run-Time Code
Fundamentals of ATL COM Objects
novtable
Default ATL Project Configurations

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl/reference/specifying-compiler-optimization-for-an-atl-project.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/visual-cpp-project-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-desktop-projects-by-using-application-wizards
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/novtable

MFC and ATL
10/31/2018 • 2 minutes to read • Edit Online

Related Articles
TITLE DESCRIPTION

MFC Desktop Applications Microsoft Foundation Classes provide a thin object-oriented
wrapper over Win32 to enable rapid development of GUI
applications in C++.

ATL COM Desktop Components ATL provides class templates and other use constructs to
simplify creation of COM objects in C++.

ATL/MFC Shared Classes References for CStringT Class and other classes that are shared
by MFC and ATL.

Working with Resource Files The resource editor lets you edit UI resources such as strings,
images, and dialog boxes.

Visual C++ Parent topic for all C++ content in the MSDN library.

The Microsoft Foundation Classes (MFC) provide a C++ object-oriented wrapper over Win32 for rapid
development of native desktop applications. The Active Template Library (ATL) is a wrapper library that simplifies
COM development and is used extensively for creating ActiveX controls.

You can create MFC or ATL programs with Visual Studio Community Edition or higher. The Express editions do not
support MFC or ATL.

In Visual Studio 2015, Visual C++ is an optional component, and MFC and ATL components are optional sub-
components under Visual C++. If you do not select these components when you first install Visual Studio, you will
be prompted to install them the first time you attempt to create or open an MFC or ATL project.

In Visual Studio 2017 and later, MFC and ATL are optional sub-components under the Desktop development
with C++ workload in the Visual Studio Installer program. You can install ATL support without MFC, or combined
MFC and ATL support (MFC depends on ATL). For more information about workloads and components, see Install
Visual Studio 2017.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-and-atl.md
https://docs.microsoft.com/visualstudio/install/install-visual-studio
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-in-visual-studio

MFC Desktop Applications
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

In This Section

The Microsoft Foundation Class (MFC) Library provides an object-oriented wrapper over much of the Win32
and COM APIs. Although it can be used to create very simple desktop applications, it is most useful when you
need to develop more complex user interfaces with multiple controls. You can use MFC to create applications
with Office-style user interfaces.

The MFC Reference covers the classes, global functions, global variables, and macros that make up the Microsoft
Foundation Class Library.

The individual hierarchy charts included with each class are useful for locating base classes. The MFC Reference
usually does not describe inherited member functions or inherited operators. For information on these functions,
refer to the base classes depicted in the hierarchy diagrams.

The documentation for each class includes a class overview, a member summary by category, and topics for the
member functions, overloaded operators, and data members.

Public and protected class members are documented only when they are normally used in application programs
or derived classes. See the class header files for a complete listing of class members.

The MFC classes and their members cannot be used in applications that execute in the Windows Runtime environment.

MFC libraries (DLLs) for multibyte character encoding (MBCS) are no longer included in Visual Studio, but are available as a
Visual Studio add-on. For more information, see MFC MBCS DLL Add-on.

Concepts
Conceptual articles on MFC topics.

Hierarchy Chart
Visually details the class relationships in the class library.

Class Overview
Lists the classes in the MFC Library according to category.

Walkthroughs
Contains articles that walk you through various tasks associated with MFC library features.

Technical Notes
Provides links to specialized topics, written by the MFC development team, on the class library.

Customization for MFC
Provides some tips for customizing your MFC application.

Classes
Provides links to and header file information for the MFC classes.

Internal Classes
Used internally in MFC. For completeness, this section describes these internal classes, but they are not intended
to be used directly in your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-desktop-applications.md

Related Sections

See also

Macros and Globals
Provides links to the macros and global functions in the MFC Library.

Structures, Styles, Callbacks, and Message Maps
Provides links to the structures, styles, callbacks, and message maps used by the MFC Library.

MFC Wizards and Dialog Boxes
A guide to the features in Visual Studio for creating MFC applications.

Working with Resource Files
How to use resource files to manage static user interface data such as UI strings and dialog box layout.

Hierarchy Chart Categories
Describes the MFC hierarchy chart by category.

ATL/MFC Shared Classes
Provides links to classes that are shared between MFC and ATL.

MFC Samples
Provides links to samples that demonstrate how to use MFC.

Visual C++ Libraries Reference
Provides links to the various libraries provided with Visual C++, including ATL, MFC, OLE DB Templates, the C
run-time library, and the C++ Standard Library.

Debugging in Visual Studio
Provides links to using the Visual Studio debugger to correct logic errors in your application or stored
procedures.

MFC and ATL

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/cpp-standard-library-reference
https://docs.microsoft.com/visualstudio/debugger/debugging-in-visual-studio.md

MFC Concepts
10/31/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section provides conceptual and task-based topics to help you program using the Microsoft Foundation
Class (MFC) Library.

General MFC Topics
Discusses the technical details of the MFC Library.

Using CObject
Provides links to using CObject , the base class for most classes in MFC.

Collections
Discusses collection classes created from and not created from C++ templates.

Date and Time
Provides links to topics discussing using date and time with MFC.

Files
Discusses CFile and how to handle files in MFC.

Memory Management (MFC)
Describes how to take advantage of the general-purpose services related to memory management.

Message Handling and Mapping
Describes how messages and commands are processed by the MFC framework and how to connect them to their
handler functions.

Serialization
Explains the serialization mechanism provided to allow objects to persist between runs of your program.

Exception Handling (MFC)
Explains the exception-handling mechanisms available in MFC.

MFC Internet Programming Basics
Discusses the MFC classes that support Internet programming.

MFC Internet Programming Tasks
Discusses how to add Internet support to your applications.

Unicode and Multibyte Character Set (MBCS) Support
Explains how to use MFC and ATL support for Unicode and multibyte character sets.

MFC COM
Discusses a subset of MFC, which is designed to support COM, while most of the Active Template Library (ATL)
is designed for COM programming.

Multithreading with C++ and MFC
Describes what processes and threads are and discusses the MFC approach to multithreading.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-concepts.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-with-cpp-and-mfc

Windows Sockets in MFC
Covers the MFC implementation of Windows Sockets.

MFC Reference
Provides reference material for the MFC Library, a set of classes that constitute an application framework, which
is the framework of an application written for the Windows API.

MFC Samples
Provides links to samples that show how to use MFC in desktop applications, DLLs, database applications,
controls, Web applications, and more.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

General MFC Topics
3/4/2019 • 2 minutes to read • Edit Online

In This Section

See also

This family of articles includes technical details about the Microsoft Foundation Class (MFC) Library and
provides an overview of the MFC framework and its key components and subsystems.

The Microsoft Foundation Class Library is an application framework for programming in Microsoft Windows.
Written in C++, MFC provides much of the code necessary for managing windows, menus, and dialog boxes;
performing basic input/output; storing collections of data objects; and so on. All you need to do is add your
application-specific code into this framework. Given the nature of C++ class programming, it is easy to extend
or override the basic functionality that the MFC framework supplies.

The MFC framework is a powerful approach that lets you build upon the work of expert programmers for
Windows. MFC shortens development time; makes code more portable; provides tremendous support without
reducing programming freedom and flexibility; and gives easy access to "hard to program" user-interface
elements and technologies, like Active technology, OLE, and Internet programming. Furthermore, MFC
simplifies database programming through Data Access Objects (DAO) and Open Database Connectivity
(ODBC), and network programming through Windows Sockets. MFC makes it easy to program features like
property sheets ("tab dialogs"), print preview, and floating, customizable toolbars.

MFC Samples , which are supplied in Visual C++ Samples

Using the MFC Source Files

MFC Library Versions

Using the Classes to Write Applications for Windows

Building on the Framework

CWinApp: The Application Class

Document Templates and the Document/View Creation Process

Managing the State Data of MFC Modules

Idle Loop Processing

Support for Activation Contexts in the MFC Module State

Isolation of the MFC Common Controls Library

Build Requirements for Windows Vista Common Controls

How to: Add Restart Manager Support

Dynamic Layout

For an overview of the MFC reference documentation, see Microsoft Foundation Class Library.

For information about ATL, see Active Template Library Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/general-mfc-topics.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Working with Window Objects

Using the MFC Source Files
3/4/2019 • 2 minutes to read • Edit Online

See also

The Microsoft Foundation Class (MFC) Library supplies full source code. Header files (.h) are in the
\atlmfc\include directory; implementation files (.cpp) are in the \atlmfc\src\mfc directory.

This family of articles explains the conventions that MFC uses to comment the various parts of each class, what
these comments mean, and what you should expect to find in each section. The Visual C++ wizards use similar
conventions for the classes that they create for you, and you will probably find these conventions useful for your
own code.

You might be familiar with the public, protected, and private C++ keywords. When looking at the MFC header
files, you will find that each class may have several of each of these. For example, public member variables and
functions might be under more than one public keyword. This is because MFC separates member variables and
functions based on their use, not by the type of access allowed. MFC uses private sparingly; even items
considered implementation details are generally protected and many times are public. Although access to the
implementation details is discouraged, MFC leaves the decision to you.

In both the MFC source files and the files that the MFC Application Wizard creates, you will find comments like
these within class declarations (usually in this order):

// Constructors

// Attributes

// Operations

// Overridables

// Implementation

Topics covered in this family of articles include:

An example of the comments

The // Implementation comment

The // Constructors comment

The // Attributes comment

The // Operations comment

The // Overridables comment

General MFC Topics

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-the-mfc-source-files.md

An Example of the Comments
3/4/2019 • 2 minutes to read • Edit Online

class CChildFrame : public CMDIChildWnd
{
 DECLARE_DYNCREATE(CChildFrame)
public:
 CChildFrame();

// Attributes
public:

// Operations
public:

// Overrides
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

// Implementation
public:
 virtual ~CChildFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

// Generated message map functions
protected:
 DECLARE_MESSAGE_MAP()

public:
 afx_msg void OnRangeCmds(UINT nID);
};

See also

The following partial listing of class CChildFrame uses most of the standard comments that MFC employs in its
classes to divide class members by the ways they are used:

These comments consistently mark sections of the class declaration that contain similar kinds of class members.
Keep in mind that these are MFC conventions, not set rules.

Using the MFC Source Files
// Implementation Comment
// Constructors Comment
// Attributes Comment
// Operations Comment
// Overridables Comment

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/an-example-of-the-comments.md

// Implementation Comment
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

The // Implementation section is the most important part of any MFC class declaration.

This section houses all implementation details. Both member variables and member functions can appear in this
section. Everything below this line could change in a future release of MFC. Unless you cannot avoid it, you should
not rely on details below the // Implementation line. In addition, members declared below the implementation
line are not documented, although some implementation is discussed in technical notes. Overrides of virtual
functions in the base class reside in this section, regardless of which section the base class function is defined in,
because the fact that a function overrides the base class implementation is considered an implementation detail.
Typically, these members are protected, but not always.

Notice from the CStdioFile listing under An Example of the Comments that members declared below the
// Implementation comment may be declared as public, protected, or private. You should only use these

members with caution, because they may change in the future. Declaring a group of members as public may be
necessary for the class library implementation to work correctly. However, this does not mean that you may safely
use the members so declared.

You may find comments of the remaining types either above or below the // Implementation comment. In either case,
they describe the kinds of members declared below them. If they occur below the // Implementation comment, you
should assume that the members may change in future versions of MFC.

Using the MFC Source Files
An Example of the Comments
// Constructors Comment
// Attributes Comment
// Operations Comment
// Overridables Comment

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/decrement-implementation-comment.md

// Constructors Comment
3/4/2019 • 2 minutes to read • Edit Online

See also

The // Constructors section of an MFC class declaration declares constructors (in the C++ sense) as well as any
initialization functions required to really use the object. For example, CWnd::Create is in the constructors section
because before you use the CWnd object, it must be "fully constructed" by first calling the C++ constructor and
then calling the Create function. Typically, these members are public.

For example, class CStdioFile has three constructors, one of which is shown in the listing under An Example of
the Comments.

Using the MFC Source Files
// Implementation Comment
// Attributes Comment
// Operations Comment
// Overridables Comment

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/decrement-constructors-comment.md

// Attributes Comment
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

The // Attributes section of an MFC class declaration contains the public attributes (or properties) of the object.
Typically these are member variables, or Get/Set functions. The "Get" and "Set" functions may or may not be
virtual. The "Get" functions are usually const, because in most cases they do not have side effects. These
members are normally public; protected and private attributes are typically found in the implementation section.

In the sample listing from class CStdioFile , under An Example of the Comments, the list includes one member
variable, m_pStream. Class CDC lists nearly 20 members under this comment.

Large classes, such as CDC and CWnd , may have so many members that simply listing all the attributes in one group
would not add much to clarity. In such cases, the class library uses other comments as headings to further delineate the
members. For example, CDC uses // Device-Context Functions , // Drawing Tool Functions ,
// Drawing Attribute Functions , and more. Groups that represent attributes will follow the usual syntax described

above. Many OLE classes have an implementation section called // Interface Maps .

Using the MFC Source Files
An Example of the Comments
// Implementation Comment
// Constructors Comment
// Operations Comment
// Overridables Comment

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/decrement-attributes-comment.md

// Operations Comment
3/4/2019 • 2 minutes to read • Edit Online

See also

The // Operations section of an MFC class declaration contains member functions that you can call on the object
to make it do things or perform actions (perform operations). These functions are typically non-const because
they usually have side effects. They may be virtual or nonvirtual depending on the needs of the class. Typically,
these members are public.

In the sample listing from class CStdioFile , in An Example of the Comments, the list includes two member
functions under this comment: ReadString and WriteString .

As with attributes, operations can be further subdivided.

Using the MFC Source Files
An Example of the Comments
// Implementation Comment
// Constructors Comment
// Attributes Comment
// Overridables Comment

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/decrement-operations-comment.md

// Overridables Comment
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

The // Overridables section of an MFC class declaration contains virtual functions that you can override in a
derived class when you need to modify the base class behavior. They are usually named starting with "On",
although it is not strictly necessary. Functions here are designed to be overridden, and often implement or
provide some sort of "callback" or "hook." Typically, these members are protected.

In MFC itself, pure virtual functions are always placed in this section. A pure virtual function in C++ is one of the
form:

virtual void OnDraw() = 0;

In the sample listing from class CStdioFile , in An Example of the Comments, the list includes no overridables
section. Class CDocument , on the other hand, lists approximately 10 overridable member functions.

In some classes, you may also see the comment // Advanced Overridables . These are functions that only
advanced programmers should attempt to override. You will probably never need to override them.

The conventions described in this article also work well, in general, for Automation (formerly known as OLE Automation)
methods and properties. Automation methods are similar to MFC operations. Automation properties are similar to MFC
attributes. Automation events (supported for ActiveX controls, formerly known as OLE controls) are similar to MFC
overridable member functions.

Using the MFC Source Files
An Example of the Comments
// Implementation Comment
// Constructors Comment
// Attributes Comment
// Operations Comment

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/decrement-overridables-comment.md

MFC Library Versions
10/31/2018 • 5 minutes to read • Edit Online

Automatic linking of MFC library versions

The MFC Library is available in versions that support ANSI single-byte and multibyte character set (MBCS) code,
as well as versions that support Unicode (encoded as UTF-16LE, the Windows-native character set). Each MFC
version is available as a static library or as a shared DLL. There is also a smaller MFC static library version that
leaves out MFC controls for dialogs, for applications that are very sensitive to size and don't need those controls.
The MFC libraries are available in both debug and release versions for supported architectures that include x86,
x64, and ARM processors. You can create both applications (.exe files) and DLLs with any version of the MFC
libraries. There is also a set of MFC libraries compiled for interfacing with managed code. The MFC shared DLLs
include a version number to indicate library binary compatibility.

The MFC header files automatically determine the correct version of the MFC library to link, based on values
defined in your build environment. The MFC header files add compiler directives instructing the linker to link in a
specific version of the MFC library.

For example, the AFX.H header file instructs the linker to link in the full static, limited static, or shared DLL version
of MFC; ANSI/MBCS or Unicode version; and debug or retail version, depending on your build configuration:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-library-versions.md

#ifndef _AFXDLL
 #ifdef _AFX_NO_MFC_CONTROLS_IN_DIALOGS
 #ifdef _DEBUG
 #pragma comment(lib, "afxnmcdd.lib")
 #else
 #pragma comment(lib, "afxnmcd.lib")
 #endif
 #pragma comment(linker, "/include:__afxNoMFCControlSupportInDialogs")
 #pragma comment(linker, "/include:__afxNoMFCControlContainerInDialogs")
 #endif
 #ifndef _UNICODE
 #ifdef _DEBUG
 #pragma comment(lib, "nafxcwd.lib")
 #else
 #pragma comment(lib, "nafxcw.lib")
 #endif
 #else
 #ifdef _DEBUG
 #pragma comment(lib, "uafxcwd.lib")
 #else
 #pragma comment(lib, "uafxcw.lib")
 #endif
 #endif
#else
 #ifndef _UNICODE
 #ifdef _DEBUG
 #pragma comment(lib, "mfc" _MFC_FILENAME_VER "d.lib")
 #pragma comment(lib, "mfcs" _MFC_FILENAME_VER "d.lib")
 #else
 #pragma comment(lib, "mfc" _MFC_FILENAME_VER ".lib")
 #pragma comment(lib, "mfcs" _MFC_FILENAME_VER ".lib")
 #endif
 #else
 #ifdef _DEBUG
 #pragma comment(lib, "mfc" _MFC_FILENAME_VER "ud.lib")
 #pragma comment(lib, "mfcs" _MFC_FILENAME_VER "ud.lib")
 #else
 #pragma comment(lib, "mfc" _MFC_FILENAME_VER "u.lib")
 #pragma comment(lib, "mfcs" _MFC_FILENAME_VER "u.lib")
 #endif
 #endif
#endif

ANSI, MBCS, and Unicode

MFC static library naming conventions

MFC header files also include directives to link in all required libraries, including MFC libraries, Win32 libraries,
OLE libraries, OLE libraries built from samples, ODBC libraries, and so on.

The MFC ANSI/MBCS library versions support both single-byte character sets such as ASCII, and multibyte
character sets such as Shift-JIS. The MFC Unicode library versions support Unicode in its UTF-16LE wide-
character encoded form. Use the ANSI/MBCS library versions of MFC for UTF-8 encoded Unicode support.

To set your project configuration to use single-byte, multibyte, or wide-character Unicode string and character
support in the IDE, use the Project Properties dialog. In the Configuration Properties > General page, set the
Character Set property to Not Set to use a single-byte character set. Set the property to Use Multi-Byte
Character Set to use a multibyte character set, or to Use Unicode Character Set to use Unicode encoded as
UTF-16.

MFC projects use the preprocessor symbol _UNICODE to indicate UTF-16 wide-character Unicode support, and
_MBCS to indicate MBCS support. These options are mutually exclusive in a project.

SPECIFIER VALUES AND MEANINGS

u ANSI/MBCS (N) or Unicode (U); omit for version without MFC
controls in dialogs

c Version with MFC controls in dialogs (CW) or without (NMCD)

d Debug or Release: D=Debug; omit specifier for Release

LIBRARY DESCRIPTION

NAFXCW.LIB MFC Static-Link Library, Release version

NAFXCWD.LIB MFC Static-Link Library, Debug version

UAFXCW.LIB MFC Static-Link Library with Unicode support, Release version

UAFXCWD.LIB MFC Static-Link Library with Unicode support, Debug version

AFXNMCD.LIB MFC Static-Link Library without MFC dialog controls, Release
version

AFXNMCDD.LIB MFC Static-Link Library without MFC dialog controls, Debug
version

MFC shared DLL naming conventions

DLL DESCRIPTION

MFCversion.DLL MFC DLL, ANSI or MBCS Release version

MFCversionU.DLL MFC DLL, Unicode Release version

MFCversionD.DLL MFC DLL, ANSI or MBCS Debug version

MFCversionUD.DLL MFC DLL, Unicode Debug version

Static libraries for MFC use the following naming conventions. The library names have the form

uAFXcd.L IB

where the letters shown in italic lowercase are placeholders for specifiers whose meanings are shown in the
following table:

All libraries listed in the following table are included prebuilt in the \atlmfc\lib directory for supported build
architectures.

Debugger files that have the same base name and a .pdb extension are also available for each of the static libraries.

The MFC shared DLLs also follow a structured naming convention. This makes it easier to know which DLL or
library you should be using for which purpose.

The MFC DLLs have version numbers that indicate binary compatibility. Use MFC DLLs that have the same
version as your other libraries and compiler toolset to guarantee compatibility within a project.

MFCMversion.DLL MFC DLL with Windows Forms controls, ANSI or MBCS
Release version

MFCMversionU.DLL MFC DLL with Windows Forms controls, Unicode Release
version

MFCMversionD.DLL MFC DLL with Windows Forms controls, ANSI or MBCS Debug
version

MFCMversionUD.DLL MFC DLL with Windows Forms controls, Unicode Debug
version

DLL DESCRIPTION

Dynamic-link library support

See also

The import libraries needed to build applications or MFC extension DLLs that use these shared DLLs have the
same base name as the DLL but have a .lib file name extension. When you use the shared DLLs, a small static
library must still be linked with your code; this library is named MFCSversion{U}{D}.lib.

If you are dynamically linking to the shared DLL version of MFC, whether it is from an application or from an MFC
extension DLL, you must include the matching MFCversion.DLL or MFCversionU.DLL when you deploy your
product.

For a list of Visual C++ DLLs that can be distributed with your applications, see Distributable Code for Microsoft
Visual Studio 2017 and Microsoft Visual Studio 2017 SDK (Includes Utilities and BuildServer Files).

For more information on MBCS and Unicode support in MFC, see Unicode and Multibyte Character Set (MBCS)
Support.

You can use either the static or shared dynamic MFC libraries to create DLLs that can be used by both MFC and
non-MFC executables. These are called "regular DLLs" or "regular MFC DLLs", to distinguish them from MFC
extension DLLs that can only be used by MFC apps and MFC DLLs. A DLL built by using the MFC static libraries
is sometimes called a USRDLL in older references, because MFC DLL projects define the preprocessor symbol
_USRDLL. A DLL that uses the MFC shared DLLs is sometimes called an AFXDLL in older references, because it
defines the preprocessor symbol _AFXDLL.

When you create your DLL project by linking to the MFC static libraries, your DLL can be deployed without the
MFC shared DLLs. When your DLL project links to the import libraries MFCversion.L IB or MFCversionU.LIB, you
must deploy the matching MFC shared DLL MFCversion.DLL or MFCversionU.DLL together with your DLL. For
more information, see DLLs.

General MFC Topics

http://go.microsoft.com/fwlink/p/?LinkId=823098
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/dlls-in-visual-cpp

MFC MBCS DLL Add-on
3/4/2019 • 2 minutes to read • Edit Online

See also

Support for MFC and its multibyte character set (MBCS) libraries requires an additional step during Visual Studio
installation in Visual Studio 2013, 2015, and 2017.

Visual Studio 2013: By default, the MFC libraries installed in Visual Studio 2013 only support Unicode
development. You need the MBCS DLLs in order to build an MFC project in Visual Studio 2013 that has the
Character Set property set to Use Multi-Byte Character Set or Not Set. Download the DLL at Multibyte MFC
Library for Visual Studio 2013.

Visual Studio 2015: Both Unicode and MBCS MFC DLLs are included in the Visual C++ setup components, but
support for MFC is not installed by default. Visual C++ and MFC are optional install configurations in Visual
Studio setup. To make sure that MFC is installed, choose Custom in setup, and under Programming Languages,
make sure that Visual C++ and Microsoft Foundation Classes for C++ are selected. If you have already
installed Visual Studio, you will be prompted to install Visual C++ and/or MFC when you attempt to create an
MFC project.

Visual Studio 2017: The Unicode and MBCS MFC DLLs are installed with the Desktop development with C++
workload when you select MFC and ATL support from the Optional Components pane. If your installation does
not include these components, navigate to the File | New Projects dialog and click the Open Visual Studio
Installer link.

MFC Library Versions

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-mbcs-dll-add-on.md
https://www.microsoft.com/download/details.aspx?id=40770

Using the Classes to Write Applications for Windows
3/4/2019 • 2 minutes to read • Edit Online

Taken together, the classes in the Microsoft Foundation Class (MFC) Library make up an "application framework,"
on which you build an application for the Windows operating system. At a very general level, the framework
defines the skeleton of an application and supplies standard user-interface implementations that can be placed
onto the skeleton. Your job as programmer is to fill in the rest of the skeleton, which are those things that are
specific to your application. You can get a head start by using the MFC Application Wizard to create the files for a
very thorough starter application. You use the Microsoft Visual C++ resource editors to design your user-
interface elements visually, Class View commands to connect those elements to code, and the class library to
implement your application-specific logic.

Version 3.0 and later of the MFC framework supports programming for Win32 platforms, including Microsoft
Windows 95 and later, and Windows NT versions 3.51 and later. MFC Win32 support includes multithreading.
Use version 1.5x if you need to do 16-bit programming.

This family of articles presents a broad overview of the application framework. It also explores the major objects
that make up your application and how they are created. Among the topics covered in these articles are the
following:

The framework.

Division of labor between the framework and your code, as described in Building on the Framework.

The application class, which encapsulates application-level functionality.

How document templates create and manage documents and their associated views and frame windows.

Class CWnd, the root base class of all windows.

Graphic objects, such as pens and brushes.

Other parts of the framework include:

Window Objects: Overview

Message handling and mapping

CObject, The Root Base Class in MFC

Document/View Architecture

Dialog Boxes

Controls

Control Bars

OLE

Memory Management

Besides giving you an advantage in writing applications for the Windows operating system, MFC also
makes it much easier to write applications that specifically use OLE linking and embedding technology. You
can make your application an OLE visual editing container, an OLE visual editing server, or both, and you
can add Automation so that other applications can use objects from your application or even drive it
remotely.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-the-classes-to-write-applications-for-windows.md

See also

MFC ActiveX Controls

The OLE control development kit (CDK) is now fully integrated with the framework. This article family
supplies an overview of ActiveX control development with MFC. (ActiveX controls were formerly known as
OLE controls.)

Database Programming

MFC also supplies two sets of database classes that simplify writing data-access applications. Using the
ODBC database classes, you can connect to databases through an Open Database Connectivity (ODBC)
driver, select records from tables, and display record information in an on-screen form. Using the Data
Access Object (DAO) classes, you can work with databases through the Microsoft Jet database engine or
external (non-Jet) data sources, including ODBC data sources.

In addition, MFC is fully enabled for writing applications that use Unicode and multibyte character sets
(MBCS), specifically double-byte character sets (DBCS).

For a general guide to MFC documentation, see General MFC Topics.

General MFC Topics

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl

Framework (MFC)
3/4/2019 • 2 minutes to read • Edit Online

In This Section

In Related Sections

See also

Your work with the Microsoft Foundation Class (MFC) Library framework is based largely on a few major classes
and several Visual C++ tools. Some classes encapsulate a large portion of the Win32 application programming
interface (API). Other classes encapsulate application concepts such as documents, views, and the application itself.
Still others encapsulate OLE features and ODBC and DAO data-access functionality.

For example, Win32's concept of window is encapsulated by MFC class CWnd . That is, a C++ class called CWnd

encapsulates or "wraps" the HWND handle that represents a Windows window. Likewise, class CDialog
encapsulates Win32 dialog boxes.

Encapsulation means that the C++ class CWnd , for example, contains a member variable of type HWND , and the
class's member functions encapsulate calls to Win32 functions that take an HWND as a parameter. The class
member functions typically have the same name as the Win32 function they encapsulate.

SDI and MDI

Documents, Views, and the Framework

Wizards and Resource Editors

Building on the Framework

How the Framework Calls Your Code

CWinApp: The Application Class

Document Templates and the Document/View Creation Process

Message Handling and Mapping

Window Objects

Using the Classes to Write Applications for Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/framework-mfc.md

SDI and MDI
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

MFC makes it easy to work with both single-document interface (SDI) and multiple-document interface (MDI)
applications.

SDI applications allow only one open document frame window at a time. MDI applications allow multiple
document frame windows to be open in the same instance of an application. An MDI application has a window
within which multiple MDI child windows, which are frame windows themselves, can be opened, each containing a
separate document. In some applications, the child windows can be of different types, such as chart windows and
spreadsheet windows. In that case, the menu bar can change as MDI child windows of different types are
activated.

Under Windows 95 and later, applications are commonly SDI because the operating system has adopted a "document-
centered" view.

For more information, see Documents, Views, and the Framework.

Using the Classes to Write Applications for Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/sdi-and-mdi.md

Documents, Views, and the Framework
3/4/2019 • 3 minutes to read • Edit Online

At the heart of the MFC framework are the concepts of document and view. A document is a data object with
which the user interacts in an editing session. It is created by the New or Open command on the File menu and is
typically saved in a file. (Standard MFC documents, derived from class CDocument , are different from Active
documents and OLE compound documents.) A view is a window object through which the user interacts with a
document.

The key objects in a running application are:

The document or documents.

Your document class (derived from CDocument) specifies your application's data.

If you want OLE functionality in your application, derive your document class from COleDocument or one
of its derived classes, depending on the type of functionality you need.

The view or views.

Your view class (derived from CView) is the user's "window on the data." The view class controls how the
user sees your document's data and interacts with it. In some cases, you may want a document to have
multiple views of the data.

If you need scrolling, derive from CScrollView. If your view has a user interface that is laid out in a dialog-
template resource, derive from CFormView. For simple text data, use or derive from CEditView. For a form-
based data-access application, such as a data-entry program, derive from CRecordView (for ODBC). Also
available are classes CTreeView, CListView, and CRichEditView.

The frame windows

Views are displayed inside "document frame windows." In an SDI application, the document frame window
is also the "main frame window" for the application. In an MDI application, document windows are child
windows displayed inside a main frame window. Your derived main frame-window class specifies the styles
and other characteristics of the frame windows that contain your views. If you need to customize frame
windows, derive from CFrameWnd to customize the document frame window for SDI applications. Derive
from CMDIFrameWnd to customize the main frame window for MDI applications. Also derive a class from
CMDIChildWnd to customize each distinct kind of MDI document frame windows that your application
supports.

The document template or templates

A document template orchestrates the creation of documents, views, and frame windows. A particular
document-template class, derived from class CDocTemplate, creates and manages all open documents of
one type. Applications that support more than one type of document have multiple document templates.
Use class CSingleDocTemplate for SDI applications, or use class CMultiDocTemplate for MDI applications.

The application object

Your application class (derived from CWinApp) controls all of the objects above and specifies application
behavior such as initialization and cleanup. The application's one and only application object creates and
manages the document templates for any document types the application supports.

Thread objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/documents-views-and-the-framework.md

See also

If your application creates separate threads of execution — for example, to perform calculations in the
background — you'll use classes derived from CWinThread. CWinApp itself is derived from CWinThread

and represents the primary thread of execution (or the main process) in your application. You can also use
MFC in secondary threads.

In a running application, these objects cooperatively respond to user actions, bound together by commands and
other messages. A single application object manages one or more document templates. Each document template
creates and manages one or more documents (depending on whether the application is SDI or MDI). The user
views and manipulates a document through a view contained inside a frame window. The following figure shows
the relationships among these objects for an SDI application.

Objects in a Running SDI Application

The rest of this family of articles explains how the framework tools, the MFC Application Wizard, and the resource
editors, create these objects, how they work together, and how you use them in your programming. Documents,
views, and frame windows are discussed in more detail in Window Objects and Document/View Architecture.

Using the Classes to Write Applications for Windows

Wizards and the Resource Editors
3/4/2019 • 2 minutes to read • Edit Online

Use the MFC Application Wizard to Create an MFC Application

Use Class View to Manage Classes and Windows Messages

NOTENOTE

Use the Resource Editors to Create and Edit Resources

Visual C++ includes several wizards for use in MFC programming, along with many integrated resource editors.
For ActiveX controls programming, the ActiveX Control Wizard serves a purpose much like that of the MFC
Application Wizard. While you can write MFC applications without most of these tools, the tools greatly simplify
and speed your work.

Use the MFC Application Wizard to create an MFC project in Visual C++, which can include OLE and database
support. Files in the project contain your application, document, view, and frame-window classes; standard
resources, including menus and an optional toolbar; other required Windows files; and optional .rtf files containing
standard Windows Help topics that you can revise and augment to create your program's help file.

Class View helps you create handler functions for Windows messages and commands, create and manage classes,
create class member variables, create Automation methods and properties, create database classes, and more.

Class View also helps you to override virtual functions in the MFC classes. Select the class and the virtual function to
override. The rest of the process is similar to message handling, as described in the following paragraphs.

Applications running under Windows are message driven. User actions and other events that occur in the running
program cause Windows to send messages to the windows in the program. For example, if the user clicks the
mouse in a window, Windows sends a WM_LBUTTONDOWN message when the left mouse button is pressed and
a WM_LBUTTONUP message when the button is released. Windows also sends WM_COMMAND messages
when the user selects commands from the menu bar.

In the MFC framework, various objects, such as documents, views, frame windows, document templates, and the
application object, can "handle" messages. Such an object provides a "handler function" as one of its member
functions, and the framework maps the incoming message to its handler.

A large part of your programming task is choosing which messages to map to which objects and then
implementing that mapping. To do so, you use Class View and the Properties window.

The Properties window will create empty message-handler member functions, and you use the source code editor
to implement the body of the handler. You can also create or edit classes (including classes of your own, not
derived from MFC classes) and their members with Class View. For more information on using Class View and
about wizards that add code to a project, see Adding Functionality with Code Wizards.

Use the Visual C++ resource editors to create and edit menus, dialog boxes, custom controls, accelerator keys,
bitmaps, icons, cursors, strings, and version resources. As of Visual C++ version 4.0, a toolbar editor makes
creating toolbars much easier.

To help you even more, the Microsoft Foundation Class Library provides a file called COMMON.RES, which
contains "clip art" resources that you can copy from COMMON.RES and paste into your own resource file.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/wizards-and-the-resource-editors.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp

See also

COMMON.RES includes toolbar buttons, common cursors, icons, and more. You can use, modify, and redistribute
these resources in your application. For more information about COMMON.RES, see the Clipart sample.

The MFC Application Wizard, the Visual C++ wizards, resource editors, and the MFC framework do a lot of work
for you and make managing your code much easier. The bulk of your application-specific code is in your document
and view classes.

Using the Classes to Write Applications for Windows

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Building on the Framework
3/4/2019 • 2 minutes to read • Edit Online

See also

Your role in configuring an application with the MFC framework is to supply the application-specific source code
and to connect the components by defining what messages and commands to which they respond. You use the
C++ language and standard C++ techniques to derive your own application-specific classes from those supplied
by the class library and to override and augment the base class's behavior.

In related topics, the following tables describe the general sequence of operations you will typically follow and
your responsibilities versus the framework's responsibilities:

Sequence for Building an Application with the Framework

Sequence of Operations for Creating OLE Applications

Sequence of Operations for Creating ActiveX Controls

Sequence of Operations for Creating Database Applications

For the most part, you can follow these tables as a sequence of steps for creating an MFC application, although
some of the steps are alternative options. For example, most applications use one type of view class from the
several types available.

General MFC Topics

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/building-on-the-framework.md

Sequence of Operations for Building MFC
Applications
3/4/2019 • 6 minutes to read • Edit Online

Sequence for Building an Application with the FrameworkSequence for Building an Application with the Framework

TASK YOU DO THE FRAMEWORK DOES

Create a skeleton application. Run the MFC Application Wizard.
Specify the options you want in the
options pages. Options include making
the application a COM component,
container, or both; adding Automation;
and making the application database-
aware.

The MFC Application Wizard creates the
files for a skeleton application, including
source files for your application,
document, view, and frame windows; a
resource file; a project file; and others,
all tailored to your specifications.

See what the framework and the MFC
Application Wizard offer without adding
a line of your own code.

Build the skeleton application and run it
in Visual C++.

The running skeleton application
derives many standard File, Edit, View,
and Help menu commands from the
framework. For MDI applications, you
also get a fully functional Windows
menu, and the framework manages
creation, arrangement, and destruction
of MDI child windows.

Construct your application's user
interface.

Use the Visual C++ resource editors to
visually edit the application's user
interface:

- Create menus.
- Define accelerators.
- Create dialog boxes.
- Create and edit bitmaps, icons, and
cursors.
- Edit the toolbar created for you by
the MFC Application Wizard.
- Create and edit other resources.

You can also test the dialog boxes in
the dialog editor.

The default resource file created by the
MFC Application Wizard supplies many
of the resources you need. Visual C++
lets you edit existing resources and add
new resources easily and visually.

Map menus to handler functions. Use the Events button in the Properties
window to connect menus and
accelerators to handler functions in
your code.

The Properties window inserts
message-map entries and empty
function templates into the source files
you specify and manages many manual
coding tasks.

The following table explains the general sequence you might typically follow as you develop your MFC
application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/sequence-of-operations-for-building-mfc-applications.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

Write your handler code. Use Class View to jump directly to the
code in the source code editor. Fill in
the code for your handler functions. For
more information on using Class View
and about wizards that add code to a
project, see Adding Functionality with
Code Wizards.

Class View opens the editor, scrolls to
the empty function template and
positions the cursor for you.

Map toolbar buttons to commands. Map each button on your toolbar to a
menu or accelerator command by
assigning the button the appropriate
command ID.

The framework controls the drawing,
enabling, disabling, checking, and other
visual aspects of the toolbar buttons.

Test your handler functions. Rebuild the program and use the built-
in debugging tools to test that your
handlers work correctly.

You can step or trace through the code
to see how your handlers are called. If
you have filled out the handler code,
the handlers carry out commands. The
framework will automatically disable
menu items and toolbar buttons that
are not handled.

Add dialog boxes. Design dialog-template resources with
the dialog editor. Then create a dialog
class and the code that handles the
dialog box.

The framework manages the dialog box
and facilitates retrieving information
entered by the user.

Initialize, validate, and retrieve dialog-
box data.

You can also define how the dialog
box's controls are to be initialized and
validated. Use Visual Studio to add
member variables to the dialog class
and map them to dialog controls.
Specify validation rules to be applied to
each control as the user enters data.
Provide your own custom validations if
you wish.

The framework manages dialog-box
initialization and validation. If the user
enters invalid information, the
framework displays a message box and
lets the user reenter the data.

Create additional classes. Use Class View to create additional
document, view, and frame-window
classes beyond those created
automatically by the MFC Application
Wizard. You can create additional
database recordset classes, dialog
classes, and so on. (With Class View,
you can create classes not derived from
MFC classes.)

Class View adds these classes to your
source files and helps you define their
connections to any commands they
handle.

Add ready-to-use components to your
application.

Use the New Item dialog box to add
a variety of items.

These items are easy to integrate into
your application and save you a great
deal of work.

Implement your document class. Implement your application-specific
document class or classes. Add member
variables to hold data structures. Add
member functions to provide an
interface to the data.

The framework already knows how to
interact with document data files. It can
open and close document files, read
and write the document's data, and
handle other user interfaces. You can
focus on how the document's data is
manipulated.

TASK YOU DO THE FRAMEWORK DOES

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp

Implement Open, Save, and Save As
commands.

Write code for the document's
Serialize member function.

The framework displays dialog boxes for
the Open, Save, and Save As
commands on the File menu. It writes
and reads back a document using the
data format specified in your
Serialize member function.

Implement your view class. Implement one or more view classes
corresponding to your documents.
Implement the view's member functions
that you mapped to the user interface
with Class View. A variety of CView-
derived classes are available, including
CListView and CTreeView.

The framework manages most of the
relationship between a document and
its view. The view's member functions
access the view's document to render
its image on the screen or printed page
and to update the document's data
structures in response to user editing
commands.

Enhance default printing. If you need to support multipage
printing, override view member
functions.

The framework supports the Print,
Page Setup, and Print Preview
commands on the File menu. You must
tell it how to break your document into
multiple pages.

Add scrolling. If you need to support scrolling, derive
your view class or classes from
CScrollView.

The view automatically adds scroll bars
when the view window becomes too
small.

Create form views. If you want to base your views on
dialog-template resources, derive your
view class or classes from CFormView.

The view uses the dialog-template
resource to display controls. The user
can tab from control to control in the
view.

Create database forms. If you want a form-based data-access
application, derive your view class from
CRecordView (for ODBC programming).

The view works like a form view, but its
controls are connected to the fields of a
CRecordset object representing a
database table. MFC moves data
between the controls and the recordset
for you.

Create a simple text editor. If you want your view to be a simple
text editor, derive your view class or
classes from CEditView or
CRichEditView.

The view provides editing functions,
Clipboard support, and file
input/output. CRichEditView provides
styled text.

Add splitter windows. If you want to support window
splitting, add a CSplitterWnd object to
your SDI frame window or MDI child
window and hook it up in the window's
OnCreateClient member function.

The framework supplies splitter-box
controls next to the scroll bars and
manages splitting your view into
multiple panes. If the user splits a
window, the framework creates and
attaches additional view objects to the
document.

Build, test, and debug your application. Use the facilities of Visual C++ to build,
test, and debug your application.

Visual C++ lets you adjust compile, link,
and other options. It also lets you
browse your source code and class
structure.

TASK YOU DO THE FRAMEWORK DOES

See also
Sequence of Operations for Creating OLE Applications
Sequence of Operations for Creating ActiveX Controls
Sequence of Operations for Creating Database Applications
Building on the Framework

Sequence of Operations for Creating OLE
Applications
3/4/2019 • 2 minutes to read • Edit Online

Creating OLE ApplicationsCreating OLE Applications

TASK YOU DO THE FRAMEWORK DOES

Create a COM component. Run the MFC Application Wizard.
Choose Full-server or Mini-server in
the Compound Document Support
tab.

The framework generates a skeleton
application with COM component
capability enabled. All of the COM
capability can be transferred to your
existing application with only slight
modification.

Create a container application from
scratch.

Run the MFC Application Wizard.
Choose Container in the Compound
Document Support tab. Using Class
View, go to the source code editor. Fill
in code for your COM handler
functions.

The framework generates a skeleton
application that can insert COM objects
created by COM component (server)
applications.

Create an application that supports
Automation from scratch.

Run the MFC Application Wizard.
Choose Automation from the
Advanced Features tab. Use Class
View to expose methods and properties
in your application for automation.

The framework generates a skeleton
application that can be activated and
automated by other applications.

See also

The following table shows your role and the framework's role in creating OLE linking and embedding applications.
These represent options available rather than a sequence of steps to perform.

Building on the Framework
Sequence of Operations for Building MFC Applications
Sequence of Operations for Creating ActiveX Controls
Sequence of Operations for Creating Database Applications

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/sequence-of-operations-for-creating-ole-applications.md

Sequence of Operations for Creating ActiveX
Controls
3/4/2019 • 2 minutes to read • Edit Online

Creating ActiveX ControlsCreating ActiveX Controls

TASK YOU DO THE FRAMEWORK DOES

Create an ActiveX control framework. Run the MFC ActiveX Control Wizard to
create your control. Specify the options
you want in the options pages. Options
include the type and name of the
control in the project, licensing,
subclassing, and an About Box method.

The MFC ActiveX Control Wizard
creates the files for an ActiveX control
with basic functionality, including source
files for your application, control, and
property page or pages; a resource file;
a project file; and others, all tailored to
your specifications.

See what the control and the ActiveX
Control Wizard offer without adding a
line of your own code.

Build the ActiveX control and test it
with Internet Explorer or the TSTCON
sample.

The running control has the ability to
be resized and moved. It also has an
About Box method (if chosen) that can
be invoked.

Implement the control's methods and
properties.

Implement your control-specific
methods and properties by adding
member functions to provide an
exposed interface to the control's data.
Add member variables to hold data
structures and use event handlers to
fire events when you determine.

The framework has already defined a
map to support the control's events,
properties, and methods, leaving you
to focus on how the properties and
methods are implemented. The default
property page is viewable and a default
About Box method is supplied.

Construct the control's property page
or pages.

Use the Visual C++ resource editors to
visually edit the control's property page
interface:

- Create additional property pages.
- Create and edit bitmaps, icons, and
cursors.

You can also test the property page(s)
in the dialog editor.

The default resource file created by the
MFC Application Wizard supplies many
of the resources you need. Visual C++
lets you edit existing resources and add
new resources easily and visually.

Test the control's events, methods, and
properties.

Rebuild the control and use Test
Container to test that your handlers
work correctly.

You can invoke the control's methods
and manipulate its properties through
the property page interface or through
Test Container. In addition, use Test
Container to track events fired from the
control and notifications received by
the control's container.

See also

The following table shows your role and the framework's role in creating ActiveX controls (formerly known as
OLE controls).

Building on the Framework

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/sequence-of-operations-for-creating-activex-controls.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Sequence of Operations for Building MFC Applications
Sequence of Operations for Creating OLE Applications
Sequence of Operations for Creating Database Applications

Sequence of Operations for Creating Database
Applications
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Creating Database ApplicationsCreating Database Applications

TASK YOU DO THE FRAMEWORK DOES

Decide whether to use the MFC ODBC
or DAO classes.

Use ODBC for new MFC projects. Use
DAO only to maintain existing
applications. For general information,
see the article Data Access
Programming.

The framework supplies classes that
support database access.

Create your skeleton application with
database options.

Run the MFC Application Wizard. Select
options on the Database Support page.
If you choose an option that creates a
record view, also specify:

- Data source and table name or names
- Query name or names.

The MFC Application Wizard creates
files and specifies the necessary
includes. Depending on the options you
specify, the files can include a recordset
class.

Design your database form or forms. Use the Visual C++ dialog editor to
place controls on the dialog template
resources for your record view classes.

The MFC Application Wizard creates an
empty dialog template resource for you
to fill in.

Create additional record view and
recordset classes as needed.

Use Class View to create the classes
and the dialog editor to design the
views.

Class View creates additional files for
your new classes.

Create recordset objects as needed in
your code. Use each recordset to
manipulate records...

Your recordsets are based on the
classes derived from CRecordset with
the wizards.

ODBC uses record field exchange (RFX)
to exchange data between the database
and your recordset's field data
members. If you are using a record
view, dialog data exchange (DDX)
exchanges data between the recordset
and the controls on the record view.

...or create an explicit CDatabase in
your code for each database you want
to open.

Base your recordset objects on the
database objects.

The database object provides an
interface to the data source.

The following table shows your role and the framework's role in writing database applications.

The Visual C++ environment and wizards do not support DAO (although the DAO classes are included and you can still use
them). Microsoft recommends that you use ODBC for new MFC projects. You should only use DAO in maintaining existing
applications.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/sequence-of-operations-for-creating-database-applications.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl

Bind data columns to your recordset
dynamically.

In ODBC, add code to your derived
recordset class to manage the binding.
See the article Recordset: Dynamically
Binding Data Columns (ODBC).

TASK YOU DO THE FRAMEWORK DOES

See also
Building on the Framework
Sequence of Operations for Building MFC Applications
Sequence of Operations for Creating OLE Applications
Sequence of Operations for Creating ActiveX Controls

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-dynamically-binding-data-columns-odbc

How the Framework Calls Your Code
3/4/2019 • 2 minutes to read • Edit Online

See also

It is crucial to understand the relationship between your source code and the code in the MFC framework. When
your application runs, most of the flow of control resides in the framework's code. The framework manages the
message loop that gets messages from Windows as the user chooses commands and edits data in a view. Events
that the framework can handle by itself do not rely on your code at all. For example, the framework knows how to
close windows and how to exit the application in response to user commands. As it handles these tasks, the
framework uses message handlers and C++ virtual functions to give you opportunities to respond to these events
as well. Your code is not in control, however; the framework is.

The framework calls your code for application-specific events. For example, when the user chooses a menu
command, the framework routes the command along a sequence of C++ objects: the current view and frame
window, the document associated with the view, the document's document template, and the application object. If
one of these objects can handle the command, it does so, calling the appropriate message-handler function. For
any given command, the code called may be yours or it may be the framework's.

This arrangement is somewhat familiar to programmers experienced with traditional programming for Windows
or event-driven programming.

In related topics, you will read what the framework does as it initializes and runs the application and then cleans up
as the application terminates. You will also understand where the code you write fits in.

For more information, see Class CWinApp: The Application Class and Document Templates and the
Document/View Creation Process.

Building on the Framework

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-the-framework-calls-your-code.md

CWinApp: The Application Class
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

NOTENOTE

See also

The main application class in MFC encapsulates the initialization, running, and termination of an application for
the Windows operating system. An application built on the framework must have one and only one object of a
class derived from CWinApp. This object is constructed before windows are created.

CWinApp is derived from CWinThread , which represents the main thread of execution for your application, which
might have one or more threads. In recent versions of MFC, the InitInstance , Run, ExitInstance , and OnIdle

member functions are actually in class CWinThread . These functions are discussed here as if they were CWinApp

members instead, because the discussion concerns the object's role as application object rather than as primary
thread.

Your application class constitutes your application's primary thread of execution. Using Win32 API functions, you can also
create secondary threads of execution. These threads can use the MFC Library. For more information, see Multithreading.

Like any program for the Windows operating system, your framework application has a WinMain function. In a
framework application, however, you do not write WinMain . It is supplied by the class library and is called when
the application starts up. WinMain performs standard services such as registering window classes. It then calls
member functions of the application object to initialize and run the application. (You can customize WinMain by
overriding the CWinApp member functions that WinMain calls.)

To initialize the application, WinMain calls your application object's InitApplication and InitInstance member
functions. To run the application's message loop, WinMain calls the Run member function. On termination,
WinMain calls the application object's ExitInstance member function.

Names shown in bold in this documentation indicate elements supplied by the Microsoft Foundation Class Library and
Visual C++. Names shown in monospaced type indicate elements that you create or override.

General MFC Topics
CWinApp and the MFC Application Wizard
Overridable CWinApp Member Functions
Special CWinApp Services

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/cwinapp-the-application-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-support-for-older-code-visual-cpp

CWinApp and the MFC Application Wizard
3/4/2019 • 2 minutes to read • Edit Online

See also

When it creates a skeleton application, the MFC Application Wizard declares an application class derived from
CWinApp. The MFC Application Wizard also generates an implementation file that contains the following items:

A message map for the application class.

An empty class constructor.

A variable that declares the one and only object of the class.

A standard implementation of your InitInstance member function.

The application class is placed in the project header and main source files. The names of the class and files created
are based on the project name you supply in the MFC Application Wizard. The easiest way to view the code for
these classes is through Class View.

The standard implementations and message map supplied are adequate for many purposes, but you can modify
them as needed. The most interesting of these implementations is the InitInstance member function. Typically,
you will add code to the skeletal implementation of InitInstance .

CWinApp: The Application Class
Overridable CWinApp Member Functions
Special CWinApp Services

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/cwinapp-and-the-mfc-application-wizard.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code

Overridable CWinApp Member Functions
3/4/2019 • 2 minutes to read • Edit Online

See also

CWinApp provides several key overridable member functions (CWinApp overrides these members from class
CWinThread, from which CWinApp derives):

InitInstance

Run

ExitInstance

OnIdle

The only CWinApp member function that you must override is InitInstance .

CWinApp: The Application Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/overridable-cwinapp-member-functions.md

InitInstance Member Function
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

The Windows operating system allows you to run more than one copy, or "instance," of the same application.
WinMain calls InitInstance every time a new instance of the application starts.

The standard InitInstance implementation created by the MFC Application Wizard performs the following tasks:

As its central action, creates the document templates that in turn create documents, views, and frame
windows. For a description of this process, see Document Template Creation.

Loads standard file options from an .ini file or the Windows registry, including the names of the most
recently used files.

Registers one or more document templates.

For an MDI application, creates a main frame window.

Processes the command line to open a document specified on the command line or to open a new, empty
document.

You can add your own initialization code or modify the code written by the wizard.

MFC applications must be initialized as single threaded apartment (STA). If you call CoInitializeEx in your InitInstance

override, specify COINIT_APARTMENTTHREADED (rather than COINIT_MULTITHREADED).

CWinApp: The Application Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/initinstance-member-function.md
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-coinitializeex

Run Member Function
3/4/2019 • 2 minutes to read • Edit Online

See also

A framework application spends most of its time in the Run member function of class CWinApp. After
initialization, WinMain calls Run to process the message loop.

Run cycles through a message loop, checking the message queue for available messages. If a message is available,
Run dispatches it for action. If no messages are available, which is often true, Run calls OnIdle to do any idle-

time processing that you or the framework may need done. If there are no messages and no idle processing to do,
the application waits until something happens. When the application terminates, Run calls ExitInstance . The
figure in OnIdle Member Function shows the sequence of actions in the message loop.

Message dispatching depends on the kind of message. For more information, see Messages and Commands in the
Framework.

CWinApp: The Application Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/run-member-function.md

ExitInstance Member Function
3/4/2019 • 2 minutes to read • Edit Online

See also

The ExitInstance member function of class CWinApp is called each time a copy of your application terminates,
usually as a result of the user quitting the application.

Override ExitInstance if you need special cleanup processing, such as freeing graphics device interface (GDI)
resources or deallocating memory used during program execution. Cleanup of standard items such as documents
and views, however, is provided by the framework, with other overridable functions for doing special cleanup
specific to those objects.

CWinApp: The Application Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exitinstance-member-function.md

OnIdle Member Function
3/4/2019 • 2 minutes to read • Edit Online

See also

When no Windows messages are being processed, the framework calls the CWinApp member function OnIdle
(described in the MFC Library Reference).

Override OnIdle to perform background tasks. The default version updates the state of user-interface objects
such as toolbar buttons and performs cleanup of temporary objects created by the framework in the course of its
operations. The following figure illustrates how the message loop calls OnIdle when there are no messages in the
queue.

The Message Loop

For more information about what you can do in the idle loop, see Idle Loop Processing.

CWinApp: The Application Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/onidle-member-function.md

Special CWinApp Services
3/4/2019 • 3 minutes to read • Edit Online

Shell Registration

int CMyWinApp::Run()
{
 GdiplusStartupInput gdiSI;
 GdiplusStartupOutput gdiSO;
 ULONG_PTR gdiToken;
 ULONG_PTR gdiHookToken;

 gdiSI.SuppressBackgroundThread = TRUE;
 GdiplusStartup(&gdiToken,&gdiSI,&gdiSO);
 gdiSO.NotificationHook(&gdiHookToken);
 int nRet = CWinApp::Run();

 gdiSO.NotificationUnhook(gdiHookToken);
 GdiplusShutdown(gdiToken);

 return nRet;
}

Besides running the message loop and giving you an opportunity to initialize the application and clean up after it,
CWinApp provides several other services.

By default, the MFC Application Wizard makes it possible for the user to open data files that your application has
created by double-clicking them in File Explorer or File Manager. If your application is an MDI application and you
specify an extension for the files your application creates, the MFC Application Wizard adds calls to the
RegisterShellFileTypes and EnableShellOpen member functions of CWinApp to the InitInstance override that it
writes for you.

RegisterShellFileTypes registers your application's document types with File Explorer or File Manager. The
function adds entries to the registration database that Windows maintains. The entries register each document
type, associate a file extension with the file type, specify a command line to open the application, and specify a
dynamic data exchange (DDE) command to open a document of that type.

EnableShellOpen completes the process by allowing your application to receive DDE commands from File
Explorer or File Manager to open the file chosen by the user.

This automatic registration support in CWinApp eliminates the need to ship a .reg file with your application or to
do special installation work.

If you want to initialize GDI+ for your application (by calling GdiplusStartup in your InitInstance function), you
have to suppress the GDI+ background thread.

You can do this by setting the SuppressBackgroundThread member of the GdiplusStartupInput structure to TRUE .
When suppressing the GDI+ background thread, the NotificationHook and NotificationUnhook calls should be
made just prior to entering and exiting the application's message loop. For more information on these calls, see
GdiplusStartupOutput. Therefore, a good place to call GdiplusStartup and the hook notification functions would
be in an override of the virtual function CWinApp::Run, as shown below:

If you do not suppress the background GDI+ thread, DDE commands can be prematurely issued to the
application before its main window has been created. The DDE commands issued by the shell can be prematurely

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/special-cwinapp-services.md
https://docs.microsoft.com/windows/desktop/api/gdiplusinit/nf-gdiplusinit-gdiplusstartup
https://docs.microsoft.com/windows/desktop/api/gdiplusinit/ns-gdiplusinit-gdiplusstartupinput
https://docs.microsoft.com/windows/desktop/api/gdiplusinit/ns-gdiplusinit-gdiplusstartupoutput

File Manager Drag and Drop

NOTENOTE

Keeping Track of the Most Recently Used Documents

See also

aborted, resulting in error messages.

Files can be dragged from the file view window in File Manager or File Explorer to a window in your application.
You might, for example, enable one or more files to be dragged to an MDI application's main window, where the
application could retrieve the file names and open MDI child windows for those files.

To enable file drag and drop in your application, the MFC Application Wizard writes a call to the CWnd member
function DragAcceptFiles for your main frame window in your InitInstance . You can remove that call if you do
not want to implement the drag-and-drop feature.

You can also implement more general drag-and-drop capabilities—dragging data between or within documents—with OLE.
For information, see the article Drag and Drop (OLE).

As the user opens and closes files, the application object keeps track of the four most recently used files. The
names of these files are added to the File menu and updated when they change. The framework stores these file
names in either the registry or in the .ini file, with the same name as your project and reads them from the file
when your application starts up. The InitInstance override that the MFC Application Wizard creates for you
includes a call to the CWinApp member function LoadStdProfileSettings, which loads information from the
registry or .ini file, including the most recently used file names.

These entries are stored as follows:

In Windows NT, Windows 2000, and later, the value is stored to a registry key.

In Windows 3.x, the value is stored in the WIN.INI file.

In Windows 95 and later, the value is stored in a cached version of WIN.INI.

CWinApp: The Application Class

Document Templates and the Document/View
Creation Process
3/4/2019 • 2 minutes to read • Edit Online

See also

To manage the complex process of creating documents with their associated views and frame windows, the
framework uses two document template classes: CSingleDocTemplate for SDI applications and
CMultiDocTemplate for MDI applications. A CSingleDocTemplate can create and store one document of one type
at a time. A CMultiDocTemplate keeps a list of many open documents of one type.

Some applications support multiple document types. For example, an application might support text documents
and graphics documents. In such an application, when the user chooses the New command on the File menu, a
dialog box shows a list of possible new document types to open. For each supported document type, the
application uses a distinct document template object. The following figure illustrates the configuration of an MDI
application that supports two document types and shows several open documents.

An MDI Application with Two Document Types

Document templates are created and maintained by the application object. One of the key tasks performed
during your application's InitInstance function is to construct one or more document templates of the
appropriate kind. This feature is described in Document Template Creation. The application object stores a
pointer to each document template in its template list and provides an interface for adding document templates.

If you need to support two or more document types, you must add an extra call to AddDocTemplate for each
document type.

An icon is registered for each document template based on its position in the application's list of document
templates. The order of the document templates is determined by the order they are added with calls to
AddDocTemplate . MFC assumes that the first Icon resource in the application is the application icon, the next Icon

resource is the first document icon, and so on.

For example, a document template is the third of three for the application. If there is an Icon resource in the
application at index 3, that icon is used for the document template. If not, the icon at index 0 is used as a default.

General MFC Topics
Document Template Creation
Document/View Creation
Relationships Among MFC Objects
Creating New Documents, Windows, and Views

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/document-templates-and-the-document-view-creation-process.md

Document Template Creation
3/4/2019 • 2 minutes to read • Edit Online

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(IDR_CMyDocTypeTYPE,
 RUNTIME_CLASS(CMyDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CMyView));
if (!pDocTemplate)
 return FALSE;
AddDocTemplate(pDocTemplate);

See also

When creating a new document in response to a New or Open command from the File menu, the document
template also creates a new frame window through which to view the document.

The document-template constructor specifies what types of documents, windows, and views the template will be
able to create. This is determined by the arguments you pass to the document-template constructor. The following
code illustrates creation of a CMultiDocTemplate for a sample application:

The pointer to a new CMultiDocTemplate object is used as an argument to AddDocTemplate. Arguments to the
CMultiDocTemplate constructor include the resource ID associated with the document type's menus and

accelerators, and three uses of the RUNTIME_CLASS macro. RUNTIME_CLASS returns the CRuntimeClass object
for the C++ class named as its argument. The three CRuntimeClass objects passed to the document-template
constructor supply the information needed to create new objects of the specified classes during the document
creation process. The example shows creation of a document template that creates CScribDoc objects with
CScribView objects attached. The views are framed by standard MDI child frame windows.

Document Templates and the Document/View Creation Process
Document/View Creation
Relationships Among MFC Objects
Creating New Documents, Windows, and Views

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/document-template-creation.md

Document/View Creation
3/4/2019 • 2 minutes to read • Edit Online

Object CreatorsObject Creators

CREATOR CREATES

Application object Document template

Document template Document

Document template Frame window

Frame window View

See also

The framework supplies implementations of the New and Open commands (among others) on the File menu.
Creation of a new document and its associated view and frame window is a cooperative effort among the
application object, a document template, the newly created document, and the newly created frame window. The
following table summarizes which objects create what.

Document Templates and the Document/View Creation Process
Document Template Creation
Relationships Among MFC Objects
Creating New Documents, Windows, and Views

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/document-view-creation.md

Relationships Among MFC Objects
3/4/2019 • 2 minutes to read • Edit Online

Gaining Access to Other Objects in Your ApplicationGaining Access to Other Objects in Your Application

FROM OBJECT HOW TO ACCESS OTHER OBJECTS

Document Use GetFirstViewPosition and GetNextView to access the
document's view list.

Call GetDocTemplate to get the document template.

View Call GetDocument to get the document.

Call GetParentFrame to get the frame window.

Document frame window Call GetActiveView to get the current view.

Call GetActiveDocument to get the document attached to the
current view.

MDI frame window Call MDIGetActive to get the currently active CMDIChildWnd.

NOTENOTE

To help put the document/view creation process in perspective, consider a running program: a document, the
frame window used to contain the view, and the view associated with the document.

A document keeps a list of the views of that document and a pointer to the document template that created
the document.

A view keeps a pointer to its document and is a child of its parent frame window.

A document frame window keeps a pointer to its current active view.

A document template keeps a list of its open documents.

The application keeps a list of its document templates.

Windows keeps track of all open windows so it can send messages to them.

These relationships are established during document/view creation. The following table shows how objects in a
running program can access other objects. Any object can obtain a pointer to the application object by calling the
global function AfxGetApp.

Typically, a frame window has one view, but sometimes, as in splitter windows, the same frame window contains
multiple views. The frame window keeps a pointer to the currently active view; the pointer is updated any time
another view is activated.

A pointer to the main frame window is stored in the m_pMainWnd member variable of the application object. A call to
OnFileNew in your override of the InitInstance member function of CWinApp sets m_pMainWnd for you. If you do not

call OnFileNew , you must set the variable's value in InitInstance yourself. (SDI COM component (server) applications
may not set the variable if /Embedding is on the command line.) Note that m_pMainWnd is now a member of class
CWinThread rather than CWinApp .

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/relationships-among-mfc-objects.md

See also
Document Templates and the Document/View Creation Process
Document Template Creation
Document/View Creation
Creating New Documents, Windows, and Views

Creating New Documents, Windows, and Views
3/4/2019 • 2 minutes to read • Edit Online

The following figures give an overview of the creation process for documents, views, and frame windows. Other
articles that focus on the participating objects provide further details.

Upon completion of this process, the cooperating objects exist and store pointers to each other. The following
figures show the sequence in which objects are created. You can follow the sequence from figure to figure.

Sequence in Creating a Document

Sequence in Creating a Frame Window

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-new-documents-windows-and-views.md

Initializing Your Own Additions to These Classes

See also

Sequence in Creating a View

For information about how the framework initializes the new document, view, and frame-window objects, see
classes CDocument, CView, CFrameWnd, CMDIFrameWnd, and CMDIChildWnd in the MFC Library Reference.
Also see Technical Note 22, which explains the creation and initialization processes further under its discussion of
the framework's standard commands for the New and Open items on the File menu.

The preceding figures also suggest the points at which you can override member functions to initialize your
application's objects. An override of OnInitialUpdate in your view class is the best place to initialize the view. The
OnInitialUpdate call occurs immediately after the frame window is created and the view within the frame

window is attached to its document. For example, if your view is a scroll view (derived from CScrollView rather
than CView), you should set the view size based on the document size in your OnInitialUpdate override. (This
process is described in the description of class CScrollView.) You can override the CDocument member functions
OnNewDocument and OnOpenDocument to provide application-specific initialization of the document. Typically, you

must override both since a document can be created in two ways.

In most cases, your override should call the base class version. For more information, see the named member
functions of classes CDocument, CView, CFrameWnd, and CWinApp in the MFC Library Reference.

Document Templates and the Document/View Creation Process
Document Template Creation
Document/View Creation
Relationships Among MFC Objects

Managing the State Data of MFC Modules
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

This article discusses the state data of MFC modules and how this state is updated when the flow of execution (the
path code takes through an application when executing) enters and leaves a module. Switching module states with
the AFX_MANAGE_STATE and METHOD_PROLOGUE macros is also discussed.

The term "module" here refers to an executable program, or to a DLL (or set of DLLs) that operate independently of the rest
of the application, but uses a shared copy of the MFC DLL. An ActiveX control is a typical example of a module.

As shown in the following figure, MFC has state data for each module used in an application. Examples of this
data include Windows instance handles (used for loading resources), pointers to the current CWinApp and
CWinThread objects of an application, OLE module reference counts, and a variety of maps that maintain the

connections between Windows object handles and corresponding instances of MFC objects. However, when an
application uses multiple modules, the state data of each module is not application wide. Rather, each module has
its own private copy of the MFC's state data.

State Data of a Single Module (Application)

A module's state data is contained in a structure and is always available via a pointer to that structure. When the
flow of execution enters a particular module, as shown in the following figure, that module's state must be the
"current" or "effective" state. Therefore, each thread object has a pointer to the effective state structure of that
application. Keeping this pointer updated at all times is vital to managing the application's global state and
maintaining the integrity of each module's state. Incorrect management of the global state can lead to
unpredictable application behavior.

State Data of Multiple Modules

In other words, each module is responsible for correctly switching between module states at all of its entry points.
An "entry point" is any place where the flow of execution can enter the module's code. Entry points include:

Exported functions in a DLL

Member functions of COM interfaces

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/managing-the-state-data-of-mfc-modules.md

See also

Window procedures

General MFC Topics

Exported DLL Function Entry Points
3/4/2019 • 2 minutes to read • Edit Online

AFX_MANAGE_STATE(AfxGetStaticModuleState())

See also

For exported functions of a DLL, use the AFX_MANAGE_STATE macro to maintain the proper global state when
switching from the DLL module to the calling application's DLL.

When called, this macro sets pModuleState , a pointer to an AFX_MODULE_STATE structure containing global data for
the module, as the effective module state for the remainder of the containing scope of the function. Upon leaving
the scope containing the macro, the previous effective module state is automatically restored.

This switching is achieved by constructing an instance of an AFX_MODULE_STATE class on the stack. In its constructor,
this class obtains a pointer to the current module state and stores it in a member variable, and then sets
pModuleState as the new effective module state. In its destructor, this class restores the pointer stored in its

member variable as the effective module state.

If you have an exported function, such as one that launches a dialog box in your DLL, you need to add the
following code to the beginning of the function:

This swaps the current module state with the state returned from AfxGetStaticModuleState until the end of the
current scope.

Problems with resources in DLLs will occur if the AFX_MANAGE_STATE macro is not used. By default, MFC uses the
resource handle of the main application to load the resource template. This template is actually stored in the DLL.
The root cause is that MFC's module state information has not been switched by the AFX_MANAGE_STATE macro. The
resource handle is recovered from MFC's module state. Not switching the module state causes the wrong resource
handle to be used.

AFX_MANAGE_STATE does not need to be put into every function in the DLL. For example, InitInstance can be called
by the MFC code in the application without AFX_MANAGE_STATE because MFC automatically shifts the module state
before InitInstance and then switches it back after InitInstance returns. The same is true for all message-map
handlers. Regular MFC DLLs actually have a special master window procedure that automatically switches the
module state before routing any message.

Managing the State Data of MFC Modules

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exported-dll-function-entry-points.md

COM Interface Entry Points
3/4/2019 • 2 minutes to read • Edit Online

STDMETHODIMP_(ULONG) CMySink::XSinky::AddRef()
{
 METHOD_PROLOGUE(CMySink, Sinky);
 return pThis->InternalAddRef();
}

#define METHOD_PROLOGUE(theClass, localClass) \
 theClass* pThis = \
 ((theClass*)((BYTE*)this - offsetof(theClass, m_x##localClass))); \
 AFX_MANAGE_STATE(pThis->m_pModuleState) \

See also

For member functions of a COM interface, use the METHOD_PROLOGUE macro to maintain the proper global
state when calling methods of an exported interface.

Typically, member functions of interfaces implemented by CCmdTarget -derived objects already use this macro to
provide automatic initialization of the pThis pointer. For example:

For additional information, see Technical Note 38 on MFC/OLE IUnknown implementation.

The METHOD_PROLOGUE macro is defined as:

The portion of the macro concerned with managing the global state is:

AFX_MANAGE_STATE(pThis->m_pModuleState)

In this expression, m_pModuleState is assumed to be a member variable of the containing object. It is
implemented by the CCmdTarget base class and is initialized to the appropriate value by COleObjectFactory , when
the object is instantiated.

Managing the State Data of MFC Modules

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/com-interface-entry-points.md

Window Procedure Entry Points
3/4/2019 • 2 minutes to read • Edit Online

See also

To protect MFC window procedures, a module static links with a special window procedure implementation. The
linkage occurs automatically when the module is linked with MFC. This window procedure uses the
AFX_MANAGE_STATE macro to properly set the effective module state, then it calls AfxWndProc , which in turn
delegates to the WindowProc member function of the appropriate CWnd -derived object.

Managing the State Data of MFC Modules

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/window-procedure-entry-points.md

Idle Loop Processing
3/4/2019 • 2 minutes to read • Edit Online

PeekMessage in the MFC Message Loop

NOTENOTE

PeekMessage Elsewhere in Your Application

Many applications perform lengthy processing "in the background." Sometimes performance considerations
dictate using multithreading for such work. Threads involve extra development overhead, so they are not
recommended for simple tasks like the idle-time work that MFC does in the OnIdle function. This article focuses
on idle processing. For more information about multithreading, see Multithreading Topics.

Some kinds of background processing are appropriately done during intervals that the user is not otherwise
interacting with the application. In an application developed for the Microsoft Windows operating system, an
application can perform idle-time processing by splitting a lengthy process into many small fragments. After
processing each fragment, the application yields execution control to Windows using a PeekMessage loop.

This article explains two ways to do idle processing in your application:

Using PeekMessage in MFC's main message loop.

Embedding another PeekMessage loop somewhere else in the application.

In an application developed with MFC, the main message loop in the CWinThread class contains a message loop
that calls the PeekMessage Win32 API. This loop also calls the OnIdle member function of CWinThread between
messages. An application can process messages in this idle time by overriding the OnIdle function.

Run , OnIdle , and certain other member functions are now members of class CWinThread rather than of class CWinApp .
CWinApp is derived from CWinThread .

For more information about performing idle processing, see OnIdle in the MFC Reference.

Another method for performing idle processing in an application involves embedding a message loop in one of
your functions. This message loop is very similar to MFC's main message loop, found in CWinThread::Run. That
means such a loop in an application developed with MFC must perform many of the same functions as the main
message loop. The following code fragment demonstrates writing a message loop that is compatible with MFC:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/idle-loop-processing.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-support-for-older-code-visual-cpp
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-peekmessagea
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-peekmessagea

BOOL bDoingBackgroundProcessing = TRUE;
while (bDoingBackgroundProcessing)
{
 MSG msg;
 while (::PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))
 {
 if (!AfxGetApp()->PumpMessage())
 {
 bDoingBackgroundProcessing = FALSE;
 ::PostQuitMessage(0);
 break;
 }
 }
 // let MFC do its idle processing
 LONG lIdle = 0;
 while (AfxGetApp()->OnIdle(lIdle++))
 ;
 // Perform some background processing here
 // using another call to OnIdle
}

See also

This code, embedded in a function, loops as long as there is idle processing to do. Within that loop, a nested loop
repeatedly calls PeekMessage . As long as that call returns a nonzero value, the loop calls CWinThread::PumpMessage

to perform normal message translation and dispatching. Although PumpMessage is undocumented, you can
examine its source code in the ThrdCore.Cpp file in the \atlmfc\src\mfc directory of your Visual C++ installation.

Once the inner loop ends, the outer loop performs idle processing with one or more calls to OnIdle . The first call
is for MFC's purposes. You can make additional calls to OnIdle to do your own background work.

For more information about performing idle processing, see OnIdle in the MFC Library Reference.

General MFC Topics

Support for Activation Contexts in the MFC Module
State
3/4/2019 • 2 minutes to read • Edit Online

Remarks

See also

MFC creates an activation context using a manifest resource provided by the user module. For more information
on how activation contexts are created, see the following topics:

Activation Contexts

Application Manifests

Assembly Manifests

When reading these Windows SDK topics, note that the MFC activation context mechanism resembles the
Windows SDK activation context except that MFC does not use the Windows SDK Activation Context API.

Activation context works in MFC applications, user DLLs, and MFC extension DLLs in the following ways:

MFC applications use resource ID 1 for their manifest resource. In this case, the MFC does not create its
own activation context, but uses the default application context.

MFC user DLLs use resource ID 2 for their manifest resource. Here, MFC creates an activation context for
each User DLL, so different user DLLs can use different versions of the same libraries (for example, the
Common Controls library).

MFC extension DLLs rely on their hosting applications or user DLLs to establish their activation context.

Although the activation context state can be modified using the processes described under Using the Activation
Context API, using the MFC activation context mechanism can be useful when developing DLL-based plug-in
architectures where it is not easy (or not possible) to manually switch activation state before and after individual
calls to external plug-ins.

The activation context is created in AfxWinInit. It is destroyed in the AFX_MODULE_STATE destructor. An activation
context handle is kept in AFX_MODULE_STATE . (AFX_MODULE_STATE is described in AfxGetStaticModuleState.)

The AFX_MANAGE_STATE macro activates and deactivates the activation context. AFX_MANAGE_STATE is enabled for
static MFC libraries, as well as MFC DLLs, to allow MFC code to execute in the proper activation context selected
by the User DLL.

Activation Contexts
Application Manifests
Assembly Manifests
AfxWinInit
AfxGetStaticModuleState
AFX_MANAGE_STATE

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/support-for-activation-contexts-in-the-mfc-module-state.md
https://docs.microsoft.com/windows/desktop/SbsCs/activation-contexts
https://docs.microsoft.com/windows/desktop/SbsCs/application-manifests
https://docs.microsoft.com/windows/desktop/SbsCs/assembly-manifests
https://docs.microsoft.com/windows/desktop/SbsCs/using-the-activation-context-api
https://docs.microsoft.com/windows/desktop/SbsCs/activation-contexts
https://docs.microsoft.com/windows/desktop/SbsCs/application-manifests
https://docs.microsoft.com/windows/desktop/SbsCs/assembly-manifests

Isolation of the MFC Common Controls Library
3/4/2019 • 2 minutes to read • Edit Online

The Common Controls library is now isolated within MFC, allowing different modules (such as user DLLs) to use
different versions of the Common Controls library by specifying the version in their manifests.

An MFC application (or user code called by MFC) makes calls to Common Controls library APIs through wrapper
functions named Afx FunctionName, where FunctionName is the name of a Common Controls API. Those
wrapper functions are defined in afxcomctl32.h and afxcomctl32.inl.

You can use the AFX_COMCTL32_IF_EXISTS and AFX_COMCTL32_IF_EXISTS2 macros (defined in
afxcomctl32.h) to determine whether the Common Controls library implements a certain API instead of calling
GetProcAddress.

Technically, you make calls to Common Controls Library APIs through a wrapper class, CComCtlWrapper (defined in
afxcomctl32.h). CComCtlWrapper is also responsible for the loading and unloading of comctl32.dll. The MFC
Module State contains a pointer to an instance of CComCtlWrapper . You can access the wrapper class using the
afxComCtlWrapper macro.

Note that calling Common Controls API directly (not using the MFC wrapper functions) from an MFC application
or user DLL will work in most cases, because the MFC application or user DLL is bound to the Common Controls
library it requested in its manifest). However, the MFC code itself has to use the wrappers, because MFC code
might be called from user DLLs with different Common Controls library versions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/isolation-of-the-mfc-common-controls-library.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/getprocaddress

Build Requirements for Windows Vista Common
Controls
3/4/2019 • 2 minutes to read • Edit Online

Compilation Requirements
Supported VersionsSupported Versions

Supported Character SetsSupported Character Sets

/D_UNICODE /DUNICODE

Migration Requirements

The Microsoft Foundation Class (MFC) library supports Windows Common Controls version 6.1. The common
controls are included in Windows Vista and the library is included in the Visual Studio SDK. The library provides
new methods that enhance existing classes, and new classes and methods that support Windows Vista common
controls. When you build your application, you should follow the compilation and migration requirements that are
described in the following sections.

Some new classes and methods support only Windows Vista and later, while other methods also support earlier
operating systems. A note in the Requirements section of each method topic specifies when the minimum required
operating system is Windows Vista.

Even if your computer does not run Windows Vista, you can build an MFC application that will run on Windows
Vista if you have the version 6.1 MFC header files on your computer. However, common controls that are
designed specifically for Windows Vista operate only on that system, and are ignored by earlier operating systems.

The new Windows common controls support only the Unicode character set, and not the ANSI character set. If
you build your application on the command line, use both of the following define (/D) compiler options to specify
Unicode as the underlying character set:

If you build your application in the Visual Studio integrated development environment (IDE), specify the Unicode
Character Set option of the Character Set property in the General node of the project properties.

The ANSI version of several MFC methods have been deprecated starting with Windows Common Controls
version 6.1. For more information, see Deprecated ANSI APIs.

If you use the Visual Studio IDE to build a new MFC application that uses Windows Common Controls version
6.1, the IDE automatically declares an appropriate manifest. However, if you migrate an existing MFC application
from an earlier version of Visual Studio and you want to use the new common controls, the IDE does not
automatically provide manifest information to upgrade your application. Instead, you must manually insert the
following source code in your stdafx.h file:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/build-requirements-for-windows-vista-common-controls.md

#ifdef UNICODE
#if defined _M_IX86
#pragma comment(linker,"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls'
version='6.0.0.0' processorArchitecture='x86' publicKeyToken='6595b64144ccf1df' language='*'\"")
#elif defined _M_IA64
#pragma comment(linker,"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls'
version='6.0.0.0' processorArchitecture='ia64' publicKeyToken='6595b64144ccf1df' language='*'\"")
#elif defined _M_X64
#pragma comment(linker,"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls'
version='6.0.0.0' processorArchitecture='amd64' publicKeyToken='6595b64144ccf1df' language='*'\"")
#else
#pragma comment(linker,"/manifestdependency:\"type='win32' name='Microsoft.Windows.Common-Controls'
version='6.0.0.0' processorArchitecture='*' publicKeyToken='6595b64144ccf1df' language='*'\"")
#endif
#endif

See also
General MFC Topics
Hierarchy Chart
Deprecated ANSI APIs

Deprecated ANSI APIs
3/4/2019 • 2 minutes to read • Edit Online

CButton class
AFX_ANSI_DEPRECATED BOOL GetIdealSize(LPSIZE psize) const;

AFX_ANSI_DEPRECATED BOOL GetImageList(PBUTTON_IMAGELIST pbuttonImagelist) const;

AFX_ANSI_DEPRECATED BOOL GetTextMargin(LPRECT pmargin) const;

AFX_ANSI_DEPRECATED BOOL SetImageList(PBUTTON_IMAGELIST pbuttonImagelist);

AFX_ANSI_DEPRECATED BOOL SetTextMargin(LPRECT pmargin);

CComboBoxEx class
AFX_ANSI_DEPRECATED HRESULT SetWindowTheme(LPCWSTR pszSubAppName);

CEdit class
AFX_ANSI_DEPRECATED BOOL GetCueBanner(LPWSTR lpszText,
 int cchText) const;

AFX_ANSI_DEPRECATED BOOL SetCueBanner(LPCWSTR lpszText,
 BOOL fDrawIfFocused = FALSE);

CLinkCtrl class

CListCtrl class
AFX_ANSI_DEPRECATED void CancelEditLabel();

AFX_ANSI_DEPRECATED int EnableGroupView(BOOL fEnable);

AFX_ANSI_DEPRECATED int GetGroupInfo(int iGroupId,
 PLVGROUP pgrp) const;

AFX_ANSI_DEPRECATED void GetGroupMetrics(PLVGROUPMETRICS pGroupMetrics) const;

AFX_ANSI_DEPRECATED BOOL GetInsertMark(LPLVINSERTMARK lvim) const;

The Microsoft Foundation Class (MFC) library is migrating toward classes and methods that are based on the
Unicode character set. Consequently, the ANSI versions of several MFC methods are deprecated. Use the Unicode
versions of these methods in your future applications.

Starting with Windows Common Controls version 6.1, which ships in Windows Vista, the following ANSI methods
are deprecated.

The entire class is deprecated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/deprecated-ansi-apis.md

AFX_ANSI_DEPRECATED COLORREF GetInsertMarkColor() const;

AFX_ANSI_DEPRECATED int GetInsertMarkRect(LPRECT pRect) const;

AFX_ANSI_DEPRECATED COLORREF GetOutlineColor() const;

AFX_ANSI_DEPRECATED UINT GetSelectedColumn() const;

AFX_ANSI_DEPRECATED BOOL GetTileInfo(PLVTILEINFO pti) const;

AFX_ANSI_DEPRECATED BOOL GetTileViewInfo(PLVTILEVIEWINFO ptvi) const;

AFX_ANSI_DEPRECATED DWORD GetView() const;

AFX_ANSI_DEPRECATED BOOL HasGroup(int iGroupId) const;

AFX_ANSI_DEPRECATED int InsertGroup(int index,
 PLVGROUP pgrp);

AFX_ANSI_DEPRECATED void InsertGroupSorted(PLVINSERTGROUPSORTED pStructInsert);

AFX_ANSI_DEPRECATED int InsertMarkHitTest(LPPOINT pPoint,
 LPLVINSERTMARK lvim) const;

AFX_ANSI_DEPRECATED BOOL IsGroupViewEnabled() const;

AFX_ANSI_DEPRECATED void MoveGroup(int iGroupId,
 int toIndex);

AFX_ANSI_DEPRECATED void MoveItemToGroup(int idItemFrom,
 int idGroupTo);

AFX_ANSI_DEPRECATED void RemoveAllGroups();

AFX_ANSI_DEPRECATED int RemoveGroup(int iGroupId);

AFX_ANSI_DEPRECATED BOOL SetGroupInfo(int iGroupId,
 PLVGROUP pGroup);

AFX_ANSI_DEPRECATED void SetGroupMetrics(PLVGROUPMETRICS pGroupMetrics);

AFX_ANSI_DEPRECATED BOOL SetInfoTip(PLVSETINFOTIP plvInfoTip);

AFX_ANSI_DEPRECATED BOOL SetInsertMark(LPLVINSERTMARK lvim);

AFX_ANSI_DEPRECATED COLORREF SetInsertMarkColor(COLORREF color);

AFX_ANSI_DEPRECATED COLORREF SetOutlineColor(COLORREF color);

AFX_ANSI_DEPRECATED void SetSelectedColumn(int iCol);

AFX_ANSI_DEPRECATED BOOL SetTileInfo(PLVTILEINFO pti);

AFX_ANSI_DEPRECATED BOOL SetTileViewInfo(PLVTILEVIEWINFO ptvi);

AFX_ANSI_DEPRECATED DWORD SetView(int iView);

AFX_ANSI_DEPRECATED BOOL SortGroups(PFNLVGROUPCOMPARE _pfnGroupCompare,
 LPVOID _plv);

CReBarCtrl class

AFX_ANSI_DEPRECATED void GetBandMargins(PMARGINS pMargins) const;

AFX_ANSI_DEPRECATED HRESULT SetWindowTheme(LPCWSTR pszSubAppName);

CToolBarCtrl class
AFX_ANSI_DEPRECATED void GetMetrics(LPTBMETRICS ptbm) const;

AFX_ANSI_DEPRECATED void SetMetrics(LPTBMETRICS ptbm);

AFX_ANSI_DEPRECATED HRESULT SetWindowTheme(LPCWSTR pszSubAppName);

CToolTipCtrl class
AFX_ANSI_DEPRECATED HRESULT SetWindowTheme(LPCWSTR pszSubAppName);

See also
Build Requirements for Windows Vista Common Controls

How to: Add Restart Manager Support
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To Add Support For the Restart Manager to an Existing ApplicationTo Add Support For the Restart Manager to an Existing Application

 m_dwRestartManagerSupportFlags = AFX_RESTART_MANAGER_SUPPORT_ALL_ASPECTS;

See also

The restart manager is a feature added to Visual Studio for Windows Vista or later operating systems. The restart
manager adds support for your application if it unexpectedly closes or restarts. The behavior of the restart
manager depends on the type of your application. If your application is a document editor, the restart manager
enabled your application to automatically save the state and content of any open documents and restarts your
application after an unexpected closure. If your application is not a document editor, the restart manager will
restart the application, but it cannot save the state of the application by default.

After restart, the application displays a task dialog box if the application is Unicode. If it is an ANSI application, the
application displays a Windows Message box. At this point, the user chooses whether to restore the automatically
saved documents. If the user does not restore the automatically saved documents, the restart manager discards
the temporary files.

You can override the default behavior of the restart manager for saving data and restarting the application.

By default, MFC applications created by using the project wizard in Visual Studio support the restart manager
when the applications are run on a computer that has a Windows Vista or later operating system. If you do not
want your application to support the restart manager, you can disable the restart manager in the new project
wizard.

1. Open an existing MFC application in Visual Studio.

2. Open the source file for your main application. By default this is the .cpp file that has the same name as
your application. For example, the main application source file for MyProject is MyProject.cpp.

3. Find the constructor for your main application. For example, if your project is MyProject, the constructor is
CMyProjectApp::CMyProjectApp() .

4. Add the following line of code to your constructor.

1. Make sure the InitInstance method of your application calls its parent InitInstance method:
CWinApp::InitInstance or CWinAppEx::InitInstance . The InitInstance method is responsible for checking
the m_dwRestartManagerSupportFlags parameter.

2. Compile and run your application.

CDataRecoveryHandler Class
CWinApp::m_dwRestartManagerSupportFlags
CWinApp Class
CWinApp::m_nAutosaveInterval
CDocument::OnDocumentEvent

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-to-add-restart-manager-support.md

Dynamic Layout
11/20/2018 • 5 minutes to read • Edit Online

Specifying dynamic layout settings for an MFC dialog box

Setting dynamic layout properties in the resource editorSetting dynamic layout properties in the resource editor

To set dynamic layout properties in the resource editorTo set dynamic layout properties in the resource editor

With MFC in Visual Studio 2015, you can create dialogs that the user can resize, and you can control the way the
layout adjusts to the change in size. For example, you can attach buttons at the bottom of a dialog to the bottom
edge so they always stay at the bottom. You can also set up certain controls such as listboxes, editboxes, and text
fields to expand as the user expands the dialog.

When the user resizes a dialog, the controls in the dialog can resize or move in the X and Y directions. The change
in size or position of a control when the user resizes a dialog is called dynamic layout. For example, the following is
a dialog before being resized:

After being resized, the listbox area is increased to show more items, and the buttons are moved along with the
bottom right corner :

You can control dynamic layout by specifying the details for each control in the Resource Editor in the IDE, or you
can do so programmatically by accessing the CMFCDynamicLayout object for a particular control and setting the
properties.

You can set the dynamic layout behavior for a dialog box without having to write any code, by using the resource
editor.

1. With an MFC project open, open the dialog you want to work with in the dialog editor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dynamic-layout.md

Setting dynamic layout properties programmaticallySetting dynamic layout properties programmatically

To set dynamic layout properties programmaticallyTo set dynamic layout properties programmatically

2. Select a control and in the properties window, set its dynamic layout properties. The Dynamic Layout
section in the properties window contains the properties Moving Type, Sizing Type, and, depending on
the values selected for those properties, specific properties that define how much controls move or change
size. Moving Type determines how a control is moved as the size of the dialog is changed; Sizing Type
determines how a control is resized as the size of the dialog is changed. Moving Type and Sizing Type
may be Horizontal, Vertical, Both, or None depending on the dimensions that you want to change
dynamically. Horizontal is the X dimension; Vertical is the Y direction.

3. If you want a control such as a button to be at a fixed size and stay in place at the bottom right, as is
common for the OK or Cancel buttons, set the Sizing Type to None, and set the Moving Type to Both.
For the Moving X and Moving Y values under Moving Type, set 100% to cause the control to stay a
fixed distance from the bottom right corner.

4. Suppose you also have a control that you want to expand as the dialog expands. Typically, a user might
expand a dialog in order to expand a multiline editbox to increase the size of the text area, or they might
expand a list control to see more data. For this case, set the Sizing Type to Both, and set the Moving Type
to none. Then, set the Sizing X and Sizing Y values to 100.

5. Experiment with other values that might make sense for your controls. A dialog with a one-line textbox
might have the Sizing Type set to Horizontal only, for example.

The previous procedure is useful for specifying dynamic layout properties for a dialog at design time, but if you
want to control the dynamic layout at runtime, you can set dynamic layout properties programmatically.

1. Find or create a place in your dialog class's implementation code where you want to specify the dynamic
layout for the dialog. For example, you might want to add a method such as AdjustLayout in your dialog,
and call it from places where the layout needs to be changed. You might first call this from the constructor,

To set the dynamic layout programmatically from a resource fileTo set the dynamic layout programmatically from a resource file

CMFCDynamicLayout* dynamicLayout = pDialog->GetDynamicLayout();

MoveSettings moveSettings = CMFCDynamicLayout::MoveHorizontal(100);

SizeSettings sizeSettings = CMFCDynamicLayout::SizeNone();

dynamicLayout->AddItem(hWndControl,
moveSettings,
sizeSettings);

pDialog->EnableDynamicLayout(TRUE);

pDialog->EnableDynamicLayout(FALSE);

or after making changes to the dialog.

2. For the dialog, call GetDynamicLayout, a method of the CWnd class. GetDynamicLayout returns a pointer to a
CMFCDynamicLayout object.

3. For the first control to which you want to add dynamic behavior, use the static methods on the dynamic
layout class to create the MoveSettings structure that encodes the way the control should be adjusted. You
do this by first choosing the appropriate static method: CMFCDynamicLayout::MoveHorizontal,
CMFCDynamicLayout::MoveVertical, CMFCDynamicLayout::MoveNone, or
CMFCDynamicLayout::MoveHorizontalAndVertical. You pass in a percentage for the horizontal and/or
vertical aspects of the move. These static methods all return a newly created MoveSettings object that you
can use to specify a control's move behavior.

Keep in mind that 100 means move exactly as much as the dialog changes size, which causes a control's
edge to stay a fixed distance from the new border.

4. Do the same thing for the size behavior, which uses the SizeSettings type. For example, to specify that a
control does not change size when the dialog resizes, use the following code:

5. Add the control to the dynamic layout manager using the CMFCDynamicLayout::AddItem method. There
are two overloads for different ways of specifying the desired control. One takes the control's window
handle (HWND), and the other takes the control ID.

6. Repeat for each control that needs to be moved or resized.

7. If necessary, can use the CMFCDynamicLayout::HasItem method to determine if a control is already on the
list of controls subjected to dyamic layout changes, or the CMFCDynamicLayout::IsEmpty method to
determine if there are any controls that are subject to changes.

8. To enable dialog layout, call the CWnd::EnableDynamicLayout method.

9. The next time the user resizes the dialog, the CMFCDynamicLayout::Adjust method is called which actually
applies the settings.

10. If you want to disable dynamic layout, call CWnd::EnableDynamicLayout with FALSE as for the bEnabled
parameter.

See also

dynamicLayout->LoadResource("IDD_DIALOG1");

///
//
// AFX_DIALOG_LAYOUT
//

IDD_MFCAPPLICATION1_DIALOG AFX_DIALOG_LAYOUT
BEGIN
0x0000,
0x6400,
0x0028,
0x643c,
0x0028
END

IDD_DIALOG1 AFX_DIALOG_LAYOUT
BEGIN
0x0000,
0x6464,
0x0000,
0x6464,
0x0000,
0x0000,
0x6464,
0x0000,
0x0000

END

1. Use the CMFCDynamicLayout::MoveHorizontalAndVertical method to specify a resource name in the
relevant resource script file (.rc file) that specifies dynamic layout information, as in the following example:

The named resource must reference a dialog that contains layout information in the form of an
AFX_DIALOG_LAYOUT entry in the resource file, as in the following example:

CMFCDynamicLayout Class
Control Classes
Dialog Box Classes
Dialog Editor
Dynamic Dialog Layout for MFC in Visual C++ 2015

https://mariusbancila.ro/blog/2015/07/27/dynamic-dialog-layout-for-mfc-in-visual-c-2015/

Using CObject
3/4/2019 • 2 minutes to read • Edit Online

What do you want to do

See also

CObject is the root base class for most of the Microsoft Foundation Class Library (MFC). The CObject class
contains many useful features that you may want to incorporate into your own program objects, including
serialization support, run-time class information, and object diagnostic output. If you derive your class from
CObject , your class can exploit these CObject features.

Derive a class from CObject

Add support for run-time class information, dynamic creation, and serialization to my derived class

Access run-time class information

Create objects dynamically

Dump the object's data for diagnostic purposes

Validate the object's internal state (see MFC ASSERT_VALID and CObject::AssertValid)

Have the class serialize itself to persistent storage

See a list of CObject Frequently Asked Questions

Concepts
General MFC Topics
CRuntimeClass Structure
Files
Serialization

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-cobject.md
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/sc15kz85

Deriving a Class from CObject
3/4/2019 • 2 minutes to read • Edit Online

Macros Used for Serialization and Run-Time InformationMacros Used for Serialization and Run-Time Information

MACRO USED COBJECT::ISKINDOF

CRUNTIMECLASS::

CREATEOBJECT

CARCHIVE::OPERATOR>>

CARCHIVE::OPERATOR<<

Basic CObject functionality No No No

DECLARE_DYNAMIC Yes No No

DECLARE_DYNCREATE Yes Yes No

DECLARE_SERIAL Yes Yes Yes

To use basic CObject functionalityTo use basic CObject functionality

This article describes the minimum steps necessary to derive a class from CObject. Other CObject class articles
describe the steps needed to take advantage of specific CObject features, such as serialization and diagnostic
debugging support.

In the discussions of CObject , the terms "interface file" and "implementation file" are used frequently. The
interface file (often called the header file, or .H file) contains the class declaration and any other information
needed to use the class. The implementation file (or .CPP file) contains the class definition as well as the code that
implements the class member functions. For example, for a class named CPerson , you would typically create an
interface file named PERSON.H and an implementation file named PERSON.CPP. However, for some small
classes that will not be shared among applications, it is sometimes easier to combine the interface and
implementation into a single .CPP file.

You can choose from four levels of functionality when deriving a class from CObject :

Basic functionality: No support for run-time class information or serialization but includes diagnostic
memory management.

Basic functionality plus support for run-time class information.

Basic functionality plus support for run-time class information and dynamic creation.

Basic functionality plus support for run-time class information, dynamic creation, and serialization.

Classes designed for reuse (those that will later serve as base classes) should at least include run-time class
support and serialization support, if any future serialization need is anticipated.

You choose the level of functionality by using specific declaration and implementation macros in the declaration
and implementation of the classes you derive from CObject .

The following table shows the relationship among the macros used to support serialization and run-time
information.

1. Use the normal C++ syntax to derive your class from CObject (or from a class derived from CObject).

The following example shows the simplest case, the derivation of a class from CObject :

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/deriving-a-class-from-cobject.md

See also

class CSimple : public CObject
{
 // add CSimple-specific members and functions...
};

Normally, however, you may want to override some of CObject 's member functions to handle the specifics of
your new class. For example, you may usually want to override the Dump function of CObject to provide
debugging output for the contents of your class. For details on how to override Dump , see the article Diagnostics:
Dumping Object Contents. You may also want to override the AssertValid function of CObject to provide
customized testing to validate the consistency of the data members of class objects. For a description of how to
override AssertValid , see MFC ASSERT_VALID and CObject::AssertValid.

The article Specifying Levels of Functionality describes how to specify other levels of functionality, including run-
time class information, dynamic object creation, and serialization.

Using CObject

https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/sc15kz85
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/38z04tfa

Specifying Levels of Functionality
3/4/2019 • 2 minutes to read • Edit Online

To add run-time class information

NOTENOTE

To add dynamic creation support

To add serialization support

This article describes how to add the following levels of functionality to your CObject-derived class:

Run-time class information

Dynamic creation support

Serialization support

For a general description of CObject functionality, see the article Deriving a Class from CObject.

class CPerson : public CObject
{
 DECLARE_DYNAMIC(CPerson)

 // other declarations
};

IMPLEMENT_DYNAMIC(CPerson, CObject)

1. Derive your class from CObject , as described in the Deriving a Class from CObject article.

2. Use the DECLARE_DYNAMIC macro in your class declaration, as shown here:

3. Use the IMPLEMENT_DYNAMIC macro in the implementation file (.CPP) of your class. This macro takes
as arguments the name of the class and its base class, as follows:

Always put IMPLEMENT_DYNAMIC in the implementation file (.CPP) for your class. The IMPLEMENT_DYNAMIC macro
should be evaluated only once during a compilation and therefore should not be used in an interface file (.H) that could
potentially be included in more than one file.

1. Derive your class from CObject .

2. Use the DECLARE_DYNCREATE macro in the class declaration.

3. Define a constructor with no arguments (a default constructor).

4. Use the IMPLEMENT_DYNCREATE macro in the class implementation file.

1. Derive your class from CObject .

2. Override the Serialize member function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/specifying-levels-of-functionality.md

NOTENOTE

See also

NOTENOTE
If you call Serialize directly, that is, you do not want to serialize the object through a polymorphic pointer, omit
steps 3 through 5.

3. Use the DECLARE_SERIAL macro in the class declaration.

4. Define a constructor with no arguments (a default constructor).

5. Use the IMPLEMENT_SERIAL macro in the class implementation file.

A "polymorphic pointer" points to an object of a class (call it A) or to an object of any class derived from A (say, B). To
serialize through a polymorphic pointer, the framework must determine the run-time class of the object it is serializing (B),
since it might be an object of any class derived from some base class (A).

For more details on how to enable serialization when you derive your class from CObject , see the articles Files in
MFC and Serialization.

Deriving a Class from CObject

Accessing Run-Time Class Information
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To use the RUNTIME_CLASS macroTo use the RUNTIME_CLASS macro

To use the IsKindOf functionTo use the IsKindOf function

This article explains how to access information about the class of an object at run time.

MFC does not use the Run-Time Type Information (RTTI) support introduced in Visual C++ 4.0.

If you have derived your class from CObject and used the DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC , the
DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE , or the DECLARE_SERIAL and IMPLEMENT_SERIAL macros explained in

the article Deriving a Class from CObject, the CObject class has the ability to determine the exact class of an
object at run time.

This ability is most useful when extra type checking of function arguments is needed and when you must write
special-purpose code based on the class of an object. However, this practice is not usually recommended because
it duplicates the functionality of virtual functions.

The CObject member function IsKindOf can be used to determine if a particular object belongs to a specified
class or if it is derived from a specific class. The argument to IsKindOf is a CRuntimeClass object, which you can
get using the RUNTIME_CLASS macro with the name of the class.

CRuntimeClass* pClass = RUNTIME_CLASS(CObject);

1. Use RUNTIME_CLASS with the name of the class, as shown here for the class CObject :

You will rarely need to access the run-time class object directly. A more common use is to pass the run-time class
object to the IsKindOf function, as shown in the next procedure. The IsKindOf function tests an object to see if it
belongs to a particular class.

class CPerson : public CObject
{
 DECLARE_DYNAMIC(CPerson)

 // other declarations
};

1. Make sure the class has run-time class support. That is, the class must have been derived directly or
indirectly from CObject and used the DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC , the
DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE , or the DECLARE_SERIAL and IMPLEMENT_SERIAL macros

explained in the article Deriving a Class from CObject.

2. Call the IsKindOf member function for objects of that class, using the RUNTIME_CLASS macro to generate
the CRuntimeClass argument, as shown here:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/accessing-run-time-class-information.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/run-time-type-information

See also

IMPLEMENT_DYNAMIC(CPerson, CObject)

IMPLEMENT_DYNCREATE(CMyDynCreateObj, CObject)

void MemoryCorruptingSnippet(bool bCorrupt)
{
 if (bCorrupt)
 {
 CAge* pcage = new CAge(21); // CAge is derived from CObject.
 Age* page = new Age(22); // Age is NOT derived from CObject.
 (((char)pcage) - 1) = 99; // Corrupt preceding guard byte
 (((char)page) - 1) = 99; // Corrupt preceding guard byte
 AfxCheckMemory();
 }
}

void SomeFunction(void)
{
 CObject* pMyObject = new CPerson;

 if(NULL != pMyObject &&
 pMyObject->IsKindOf(RUNTIME_CLASS(CPerson)))
 {
 //if IsKindOf is true, then cast is all right
 CPerson* pmyPerson = (CPerson*) pMyObject ;
 pmyPerson->AssertValid();
 // other code goes here...
 }

 delete pMyObject;
}

NOTENOTE
IsKindOf returns TRUE if the object is a member of the specified class or of a class derived from the specified class.
IsKindOf does not support multiple inheritance or virtual base classes, although you can use multiple inheritance

for your derived Microsoft Foundation classes if necessary.

One use of run-time class information is in the dynamic creation of objects. This process is discussed in the article
Dynamic Object Creation.

For more detailed information on serialization and run-time class information, see the articles Files in MFC and
Serialization.

Using CObject

Dynamic Object Creation
3/4/2019 • 2 minutes to read • Edit Online

To dynamically create an object given its run-time classTo dynamically create an object given its run-time class

See also

This article explains how to create an object dynamically at run time. The procedure uses run-time class
information, as discussed in the article Accessing Run-Time Class Information.

CRuntimeClass* pRuntimeClass = RUNTIME_CLASS(CMyClass);
CObject* pObject = pRuntimeClass->CreateObject();
ASSERT(pObject->IsKindOf(RUNTIME_CLASS(CMyClass)));

1. Use the following code to dynamically create an object by using the CreateObject function of the
CRuntimeClass . Note that on failure, CreateObject returns NULL instead of raising an exception:

Using CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dynamic-object-creation.md

CObject Class: Frequently Asked Questions
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

This section covers questions on class CObject .

Do I have to derive new classes from CObject

What does it cost me to derive a class from CObject

Using CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/cobject-class-frequently-asked-questions.md

Do I Have to Derive New Classes from CObject?
3/4/2019 • 2 minutes to read • Edit Online

See also

No, you don't.

Derive a class from CObject when you need the facilities it provides, such as serialization or dynamic creatability.
Many data classes need to be serialized to files, so it's often a good idea to derive them from CObject . For an
example of a class derived from CObject , see the Scribble sample.

CObject Class: Frequently Asked Questions

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/do-i-have-to-derive-new-classes-from-cobject-q.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

What Does it Cost me to Derive a Class from
CObject?
3/4/2019 • 2 minutes to read • Edit Online

See also

The overhead in deriving from class CObject is minimal. Your derived class inherits only four virtual functions and
a single CRuntimeClass object.

CObject Class: Frequently Asked Questions

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/what-does-it-cost-me-to-derive-a-class-from-cobject-q.md

Collections
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Collection Shapes

The Template-Based Collection Classes

Collection Template ClassesCollection Template Classes

COLLECTION CONTENTS ARRAYS LISTS MAPS

Collections of objects of
any type

CArray CList CMap

The Microsoft Foundation Class Library provides collection classes to manage groups of objects. These classes
are of two types:

Collection classes created from C++ templates

Collection classes not created from templates

If your code already uses nontemplate collection classes, you can continue to use them. If you write new type-safe
collection classes for your own data types, we recommend that you use the newer template-based classes.

A collection class is characterized by its "shape" and by the types of its elements. The shape refers to the way
the objects are organized and stored by the collection. MFC provides three basic collection shapes: lists, arrays,
and maps (also known as dictionaries). You can pick the collection shape that is most suited to your particular
programming problem.

Each of the three provided collection shapes is described briefly later in this topic. To compare the features of
the shapes to help you decide which is best for your program, see Recommendations for Choosing a Collection
Class.

List

The list class provides an ordered, nonindexed list of elements, implemented as a doubly linked list. A
list has a "head" and a "tail," and adding or removing elements from the head or tail, or inserting or
deleting elements in the middle, is very fast.

Array

The array class provides a dynamically sized, ordered, and integer-indexed array of objects.

Map (also known as a dictionary)

A map is a collection that associates a key object with a value object.

The easiest way to implement a type-safe collection that contains objects of any type is to use one of the MFC
template-based classes. For examples of these classes, see the MFC sample COLLECT.

The following table lists the MFC template-based collection classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/collections.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Collections of pointers to
objects of any type

CTypedPtrArray CTypedPtrList CTypedPtrMap

COLLECTION CONTENTS ARRAYS LISTS MAPS

The Collection Classes Not Based on Templates

Nontemplate Collection ClassesNontemplate Collection Classes

ARRAYS LISTS MAPS

CObArray CObList CMapPtrToWord

CByteArray CPtrList CMapPtrToPtr

CDWordArray CStringList CMapStringToOb

CPtrArray CMapStringToPtr

CStringArray CMapStringToString

CWordArray CMapWordToOb

CUIntArray CMapWordToPtr

What do you want to doWhat do you want to do
General Collection-Class TasksGeneral Collection-Class Tasks

Template-Based Collection-Class TasksTemplate-Based Collection-Class Tasks

Accessing the Members of a Collection (Template-Based or Not)Accessing the Members of a Collection (Template-Based or Not)

If your application already uses MFC nontemplate classes, you can continue to use them. However, for new
collections, we recommend that you use the template-based classes. The following table lists the MFC
collection classes that are not based on templates.

The Characteristics of MFC Collection Classes table in Recommendations for Choosing a Collection Class
describes the MFC collection classes in terms of these characteristics (other than shape):

Whether the class uses C++ templates

Whether the elements stored in the collection can be serialized

Whether the elements stored in the collection can be dumped for diagnostics

Whether the collection is type-safe

Recommendations for Choosing a Collection Class

How to: Make a Type-Safe Collection

Creating Stack and Queue Collections

CArray::Add

Template-Based Classes

Accessing All Members of a Collection

Deleting All Objects in a CObject Collection

See also
Concepts
General MFC Topics

Recommendations for Choosing a Collection Class
3/4/2019 • 3 minutes to read • Edit Online

Collection Shape FeaturesCollection Shape Features

SHAPE ORDERED INDEXED
INSERT AN
ELEMENT

SEARCH FOR
SPECIFIED
ELEMENT

DUPLICATE
ELEMENTS

List Yes No Fast Slow Yes

Array Yes By int Slow Slow Yes

Map No By key Fast Fast No (keys) Yes
(values)

Characteristics of MFC Collection ClassesCharacteristics of MFC Collection Classes

This article contains detailed information designed to help you choose a collection class for your particular
application needs.

Your choice of a collection class depends on a number of factors, including:

The features of the class shape: order, indexing, and performance, as shown in the Collection Shape
Features table later in this topic

Whether the class uses C++ templates

Whether the elements stored in the collection can be serialized

Whether the elements stored in the collection can be dumped for diagnostics

Whether the collection is type-safe

The following table, Collection Shape Features, summarizes the characteristics of the available collection shapes.

Columns 2 and 3 describe each shape's ordering and access characteristics. In the table, the term "ordered"
means that the order in which items are inserted and deleted determines their order in the collection; it
does not mean the items are sorted on their contents. The term "indexed" means that the items in the
collection can be retrieved by an integer index, much like items in a typical array.

Columns 4 and 5 describe each shape's performance. In applications that require many insertions into the
collection, insertion speed might be especially important; for other applications, lookup speed may be more
important.

Column 6 describes whether each shape allows duplicate elements.

The following table, Characteristics of MFC Collection Classes, summarizes other important characteristics of
specific MFC collection classes as a guide to selection. Your choice may depend on whether the class is based on
C++ templates, whether its elements can be serialized via MFC's document serialization mechanism, whether its
elements can be dumped via MFC's diagnostic dumping mechanism, or whether the class is type-safe — that is,
whether you can guarantee the type of elements stored in and retrieved from a collection based on the class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/recommendations-for-choosing-a-collection-class.md

CLASS

USES C++

TEMPLATES

CAN BE

SERIALIZED

CAN BE

DUMPED

IS

TYPE-SAFE

CArray Yes Yes 1 Yes 1 No

CByteArray No Yes Yes Yes 3

CDWordArray No Yes Yes Yes 3

CList Yes Yes 1 Yes 1 No

CMap Yes Yes 1 Yes 1 No

CMapPtrToPtr No No Yes No

CMapPtrToWord No No Yes No

CMapStringToOb No Yes Yes No

CMapStringToPtr No No Yes No

CMapStringToString No Yes Yes Yes 3

CMapWordToOb No Yes Yes No

CMapWordToPtr No No Yes No

CObArray No Yes Yes No

CObList No Yes Yes No

CPtrArray No No Yes No

CPtrList No No Yes No

CStringArray No Yes Yes Yes 3

CStringList No Yes Yes Yes 3

CTypedPtrArray Yes Depends 2 Yes Yes

CTypedPtrList Yes Depends 2 Yes Yes

CTypedPtrMap Yes Depends 2 Yes Yes

CUIntArray No No Yes Yes 3

CWordArray No Yes Yes Yes 3

1. To serialize, you must explicitly call the collection object's Serialize function; to dump, you must explicitly

See also

call its Dump function. You cannot use the form ar << collObj to serialize or the form dmp << collObj to
dump.

2. Serializability depends on the underlying collection type. For example, if a typed pointer array is based on
CObArray , it is serializable; if based on CPtrArray , it is not serializable. In general, the "Ptr" classes cannot

be serialized.

3. If marked Yes in this column, a nontemplate collection class is type-safe provided you use it as intended.
For example, if you store bytes in a CByteArray , the array is type-safe. But if you use it to store characters,
its type safety is less certain.

Collections
Template-Based Classes
How to: Make a Type-Safe Collection
Accessing All Members of a Collection

Template-Based Classes
3/4/2019 • 5 minutes to read • Edit Online

Using Simple Array, List, and Map Templates

Simple Array and List UsageSimple Array and List Usage

CArray<int, int> myArray;
CList<CPerson, CPerson&> myList;

This article explains the type-safe template-based collection classes in MFC version 3.0 and later. Using these
templates to create type-safe collections is more convenient and helps provide type safety more effectively than
using the collection classes not based on templates.

MFC predefines two categories of template-based collections:

Simple array, list, and map classes

CArray , CList , CMap

Arrays, lists, and maps of typed pointers

CTypedPtrArray , CTypedPtrList , CTypedPtrMap

The simple collection classes are all derived from class CObject , so they inherit the serialization, dynamic creation,
and other properties of CObject . The typed pointer collection classes require you to specify the class you derive
from — which must be one of the nontemplate pointer collections predefined by MFC, such as CPtrList or
CPtrArray . Your new collection class inherits from the specified base class, and the new class's member functions

use encapsulated calls to the base class members to enforce type safety.

For more information about C++ templates, see Templates in the C++ Language Reference.

To use the simple collection templates, you need to know what kind of data you can store in these collections and
what parameters to use in your collection declarations.

The simple array and list classes, CArray and CList, take two parameters: TYPE and ARG_TYPE . These classes can
store any data type, which you specify in the TYPE parameter :

Fundamental C++ data types, such as int, char, and float

C++ structures and classes

Other types that you define

For convenience and efficiency, you can use the ARG_TYPE parameter to specify the type of function arguments.
Typically, you specify ARG_TYPE as a reference to the type you named in the TYPE parameter. For example:

The first example declares an array collection, myArray , that contains ints. The second example declares a list
collection, myList , that stores CPerson objects. Certain member functions of the collection classes take
arguments whose type is specified by the ARG_TYPE template parameter. For example, the Add member function
of class CArray takes an ARG_TYPE argument:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/template-based-classes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/templates-cpp

CArray<CPerson, CPerson&> personArr;
CPerson person;
personArr.Add(person);

Simple Map UsageSimple Map Usage

CMap< int, int, MY_STRUCT, MY_STRUCT& > myMap1;
CMap< CString, LPCTSTR, CPerson, CPerson& > myMap2;

CMap< CString, LPCTSTR, CPerson, CPerson& > myMap;
CPerson person;
LPCTSTR lpstrName = _T("Jones");
myMap.SetAt(lpstrName, person);

Using Typed-Pointer Collection Templates

Typed-Pointer Array and List UsageTyped-Pointer Array and List Usage

CTypedPtrArray<CObArray, CPerson*> myArray;
CTypedPtrList<CPtrList, MY_STRUCT*> myList;

The simple map class, CMap, takes four parameters: KEY , ARG_KEY , VALUE, and ARG_VALUE. Like the array and
list classes, the map classes can store any data type. Unlike arrays and lists, which index and order the data they
store, maps associate keys and values: You access a value stored in a map by specifying the value's associated key.
The KEY parameter specifies the data type of the keys used to access data stored in the map. If the type of KEY is a
structure or class, the ARG_KEY parameter is typically a reference to the type specified in KEY . The VALUE
parameter specifies the type of the items stored in the map. If the type of ARG_VALUE is a structure or class, the
ARG_VALUE parameter is typically a reference to the type specified in VALUE. For example:

The first example stores MY_STRUCT values, accesses them by int keys, and returns accessed MY_STRUCT items by
reference. The second example stores CPerson values, accesses them by CString keys, and returns references to
accessed items. This example might represent a simple address book, in which you look up persons by last name.

Because the KEY parameter is of type CString and the KEY_TYPE parameter is of type LPCSTR , the keys are
stored in the map as items of type CString but are referenced in functions such as SetAt through pointers of
type LPCSTR . For example:

To use the typed-pointer collection templates, you need to know what kinds of data you can store in these
collections and what parameters to use in your collection declarations.

The typed-pointer array and list classes, CTypedPtrArray and CTypedPtrList, take two parameters: BASE_CLASS
and TYPE. These classes can store any data type, which you specify in the TYPE parameter. They are derived from
one of the nontemplate collection classes that stores pointers; you specify this base class in BASE_CLASS. For
arrays, use either CObArray or CPtrArray . For lists, use either CObList or CPtrList .

In effect, when you declare a collection based on, say CObList , the new class not only inherits the members of its
base class, but it also declares a number of additional type-safe member functions and operators that help provide
type safety by encapsulating calls to the base class members. These encapsulations manage all necessary type
conversion. For example:

The first example declares a typed-pointer array, myArray , derived from CObArray . The array stores and returns
pointers to CPerson objects (where CPerson is a class derived from CObject). You can call any CObArray member
function, or you can call the new type-safe GetAt and ElementAt functions or use the type-safe [] operator.

Typed-Pointer Map UsageTyped-Pointer Map Usage

CTypedPtrMap<CMapPtrToPtr, CString, MY_STRUCT*> myPtrMap;
CTypedPtrMap<CMapStringToOb, CString, CPerson*> myPersonMap;

NOTENOTE

See also

The second example declares a typed-pointer list, myList , derived from CPtrList . The list stores and returns
pointers to MY_STRUCT objects. A class based on CPtrList is used for storing pointers to objects not derived from
CObject . CTypedPtrList has a number of type-safe member functions: GetHead , GetTail , RemoveHead ,
RemoveTail , GetNext , GetPrev , and GetAt .

The typed-pointer map class, CTypedPtrMap, takes three parameters: BASE_CLASS, KEY , and VALUE. The
BASE_CLASS parameter specifies the class from which to derive the new class: CMapPtrToWord , CMapPtrToPtr ,
CMapStringToPtr , CMapWordToPtr , CMapStringToOb , and so on. KEY is analogous to KEY in CMap : It specifies the

type of the key used for lookups. VALUE is analogous to VALUE in CMap : It specifies the type of object stored in
the map. For example:

The first example is a map based on CMapPtrToPtr — it uses CString keys mapped to pointers to MY_STRUCT . You
can look up a stored pointer by calling a type-safe Lookup member function. You can use the [] operator to look
up a stored pointer and add it if not found. And you can iterate the map using the type-safe GetNextAssoc

function. You can also call other member functions of class CMapPtrToPtr .

The second example is a map based on CMapStringToOb — it uses string keys mapped to stored pointers to
CMyObject objects. You can use the same type-safe members described in the previous paragraph, or you can call

members of class CMapStringToOb .

If you specify a class or struct type for the VALUE parameter, rather than a pointer or reference to the type, the class or
structure must have a copy constructor.

For more information, see How to Make a Type-Safe Collection.

Collections

How to: Make a Type-Safe Collection
3/4/2019 • 4 minutes to read • Edit Online

Using Template-Based Classes for Type Safety
To use template-based classesTo use template-based classes

Implementing Helper Functions

Serializing ElementsSerializing Elements

This article explains how to make type-safe collections for your own data types. Topics include:

Using template-based classes for type safety

Implementing helper functions

Using nontemplate collection classes

The Microsoft Foundation Class Library provides predefined type-safe collections based on C++ templates.
Because they are templates, these classes help provide type safety and ease of use without the type-casting and
other extra work involved in using a nontemplate class for this purpose. The MFC sample COLLECT
demonstrates the use of template-based collection classes in an MFC application. In general, use these classes
any time you write new collections code.

CList<int, int> m_intList;

m_intList.AddTail(100);
m_intList.RemoveAll();

1. Declare a variable of the collection class type. For example:

2. Call the member functions of the collection object. For example:

3. If necessary, implement the helper functions and SerializeElements. For information on implementing
these functions, see Implementing Helper Functions.

This example shows the declaration of a list of integers. The first parameter in step 1 is the type of data stored as
elements of the list. The second parameter specifies how the data is to be passed to and returned from member
functions of the collection class, such as Add and GetAt .

The template-based collection classes CArray , CList , and CMap use five global helper functions that you can
customize as needed for your derived collection class. For information on these helper functions, see Collection
Class Helpers in the MFC Reference. Implementation of the serialization function is necessary for most uses of
the template-based collection classes.

The CArray , CList , and CMap classes call SerializeElements to store collection elements to or read them from
an archive.

The default implementation of the SerializeElements helper function does a bitwise write from the objects to the
archive, or a bitwise read from the archive to the objects, depending on whether the objects are being stored in or
retrieved from the archive. Override SerializeElements if this action is not appropriate.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-to-make-a-type-safe-collection.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CArray< CPerson, CPerson& > personArray;

template <> void AFXAPI SerializeElements <CPerson> (CArchive& ar,
 CPerson* pNewPersons, INT_PTR nCount)
{
 for (int i = 0; i < nCount; i++, pNewPersons++)
 {
 // Serialize each CPerson object
 pNewPersons->Serialize(ar);
 }
}

Using Nontemplate Collection Classes

To use the nontemplate collections with type castingTo use the nontemplate collections with type casting

If your collection stores objects derived from CObject and you use the IMPLEMENT_SERIAL macro in the
implementation of the collection element class, you can take advantage of the serialization functionality built into
CArchive and CObject :

The overloaded insertion operators for CArchive call CObject::Serialize (or an override of that function) for
each CPerson object.

MFC also supports the collection classes introduced with MFC version 1.0. These classes are not based on
templates. They can be used to contain data of the supported types CObject* , UINT , DWORD , and CString . You
can use these predefined collections (such as CObList) to hold collections of any objects derived from CObject .
MFC also provides other predefined collections to hold primitive types such as UINT and void pointers (void *).
In general, however, it is often useful to define your own type-safe collections to hold objects of a more specific
class and its derivatives. Note that doing so with the collection classes not based on templates is more work than
using the template-based classes.

There are two ways to create type-safe collections with the nontemplate collections:

1. Use the nontemplate collections, with type casting if necessary. This is the easier approach.

2. Derive from and extend a nontemplate type-safe collection.

CPerson* p1 = new CPerson();
CObList myList;

myList.AddHead(p1); // No cast needed
CPerson* p2 = (CPerson*)myList.GetHead();

1. Use one of the nontemplate classes, such as CWordArray , directly.

For example, you can create a CWordArray and add any 32-bit values to it, then retrieve them. There is
nothing more to do. You just use the predefined functionality.

You can also use a predefined collection, such as CObList , to hold any objects derived from CObject . A
CObList collection is defined to hold pointers to CObject . When you retrieve an object from the list, you

may have to cast the result to the proper type since the CObList functions return pointers to CObject . For
example, if you store CPerson objects in a CObList collection, you have to cast a retrieved element to be a
pointer to a CPerson object. The following example uses a CObList collection to hold CPerson objects:

This technique of using a predefined collection type and casting as necessary may be adequate for many of
your collection needs. If you need further functionality or more type safety, use a template-based class, or
follow the next procedure.

To derive and extend a nontemplate type-safe collectionTo derive and extend a nontemplate type-safe collection

See also

class CPersonList : public CObList
{
public:
 void AddHeadPerson(CPerson* person)
 {AddHead(person);}

 const CPerson* GetHeadPerson()
 {return (CPerson*)GetHead();}
};

1. Derive your own collection class from one of the predefined nontemplate classes.

When you derive your class, you can add type-safe wrapper functions to provide a type-safe interface to
existing functions.

For example, if you derived a list from CObList to hold CPerson objects, you might add the wrapper
functions AddHeadPerson and GetHeadPerson , as shown below.

These wrapper functions provide a type-safe way to add and retrieve CPerson objects from the derived
list. You can see that for the GetHeadPerson function, you are simply encapsulating the type casting.

You can also add new functionality by defining new functions that extend the capabilities of the collection
rather than just wrapping existing functionality in type-safe wrappers. For example, the article Deleting All
Objects in a CObject Collection describes a function to delete all the objects contained in a list. This
function could be added to the derived class as a member function.

Collections

Accessing All Members of a Collection
3/4/2019 • 3 minutes to read • Edit Online

To iterate an arrayTo iterate an array

To iterate a listTo iterate a list

The MFC array collection classes — both template-based and not — use indexes to access their elements. The
MFC list and map collection classes — both template-based and not — use an indicator of type POSITION to
describe a given position within the collection. To access one or more members of these collections, you first
initialize the position indicator and then repeatedly pass that position to the collection and ask it to return the next
element. The collection is not responsible for maintaining state information about the progress of the iteration.
That information is kept in the position indicator. But, given a particular position, the collection is responsible for
returning the next element.

The following procedures show how to iterate over the three main types of collections provided with MFC:

Iterating an array

Iterating a list

Iterating a map

CTypedPtrArray<CObArray, CPerson*> myArray;

myArray.Add(new CPerson());
for (int i = 0; i < myArray.GetSize();i++)
{
 CPerson* thePerson = myArray.GetAt(i);
 thePerson->AssertValid();
}

CPerson* thePerson = myArray[i];

1. Use sequential index numbers with the GetAt member function:

This example uses a typed pointer array that contains pointers to CPerson objects. The array is derived
from class CObArray , one of the nontemplate predefined classes. GetAt returns a pointer to a CPerson

object. For typed pointer collection classes — arrays or lists — the first parameter specifies the base class;
the second parameter specifies the type to store.

The CTypedPtrArray class also overloads the [] operator so that you can use the customary array-subscript
syntax to access elements of an array. An alternative to the statement in the body of the for loop above is

This operator exists in both const and non-const versions. The const version, which is invoked for const
arrays, can appear only on the right side of an assignment statement.

1. Use the member functions GetHeadPosition and GetNext to work your way through the list:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/accessing-all-members-of-a-collection.md

 To iterate a mapTo iterate a map

CTypedPtrList<CObList, CPerson*> myList;

myList.AddHead(new CPerson());
POSITION pos = myList.GetHeadPosition();
while(pos != NULL)
{
 CPerson* thePerson = myList.GetNext(pos);
 thePerson->AssertValid();
}

This example uses a typed pointer list to contain pointers to CPerson objects. The list declaration resembles
the one for the array in the procedure To iterate an array but is derived from class CObList . GetNext

returns a pointer to a CPerson object.

CMap<CString, LPCTSTR, CPerson*, CPerson*> myMap;
CPerson myPerson;

myMap.SetAt(_T("Bill"), &myPerson);
POSITION pos = myMap.GetStartPosition();
while(pos != NULL)
{
 CPerson* pPerson;
 CString string;
 // Get key (string) and value (pPerson)
 myMap.GetNextAssoc(pos, string, pPerson);
 // Use string and pPerson
}

NOTENOTE

1. Use GetStartPosition to get to the beginning of the map and GetNextAssoc to repeatedly get the next key
and value from the map, as shown by the following example:

This example uses a simple map template (rather than a typed pointer collection) that uses CString keys
and stores pointers to CPerson objects. When you use access functions such as GetNextAssoc , the class
provides pointers to CPerson objects. If you use one of the nontemplate map collections instead, you must
cast the returned CObject pointer to a pointer to a CPerson .

For nontemplate maps, the compiler requires a reference to a CObject pointer in the last parameter to
GetNextAssoc . On input, you must cast your pointers to that type, as shown in the next example.

The template solution is simpler and helps provide better type safety. The nontemplate code is more
complicated, as you can see here:

See also

CMapStringToOb myMap; // A nontemplate collection class
CPerson myPerson;
myMap.SetAt(_T("Bill"), &myPerson);

POSITION pos = myMap.GetStartPosition();
while(pos != NULL)
{
 CPerson* pPerson;
 CString string;
 // Gets key (string) and value (pPerson)
 myMap.GetNextAssoc(pos, string,
 (CObject*&)pPerson);
 ASSERT(pPerson->IsKindOf(
 RUNTIME_CLASS(CPerson)));
 // Use string and pPerson
}

For more information, see Deleting All Objects in a CObject Collection.

Collections

Deleting All Objects in a CObject Collection
3/4/2019 • 3 minutes to read • Edit Online

C a u t i o nC a u t i o n

To delete all objects in a list of pointers to CObjectTo delete all objects in a list of pointers to CObject

CTypedPtrList<CObList, CPerson*> myList;
CPerson* pPerson = new CPerson();
myList.AddHead(pPerson);
POSITION pos = myList.GetHeadPosition();

while(pos != NULL)
{
 delete myList.GetNext(pos);
}
myList.RemoveAll();

To delete all elements in an arrayTo delete all elements in an array

This article explains how to delete all objects in a collection (without deleting the collection object itself).

To delete all the objects in a collection of CObject s (or of objects derived from CObject), you use one of the
iteration techniques described in the article Accessing All Members of a Collection to delete each object in turn.

Objects in collections can be shared. That is, the collection keeps a pointer to the object, but other parts of the
program may also have pointers to the same object. You must be careful not to delete an object that is shared until
all the parts have finished using the object.

This article shows you how to delete the objects in:

A list

An array

A map

1. Use GetHeadPosition and GetNext to iterate through the list.

2. Use the delete operator to delete each object as it is encountered in the iteration.

3. Call the RemoveAll function to remove all elements from the list after the objects associated with those
elements have been deleted.

The following example shows how to delete all objects from a list of CPerson objects. Each object in the list is a
pointer to a CPerson object that was originally allocated on the heap.

The last function call, RemoveAll , is a list member function that removes all elements from the list. The member
function RemoveAt removes a single element.

Notice the difference between deleting an element's object and removing the element itself. Removing an element
from the list merely removes the list's reference to the object. The object still exists in memory. When you delete
an object, it ceases to exist and its memory is reclaimed. Thus, it is important to remove an element immediately
after the element's object has been deleted so that the list won't try to access objects that no longer exist.

1. Use GetSize and integer index values to iterate through the array.

2. Use the delete operator to delete each element as it is encountered in the iteration.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/deleting-all-objects-in-a-cobject-collection.md

 To delete all elements in a mapTo delete all elements in a map

See also

CArray<CPerson*, CPerson*> myArray;

int i = 0;
while (i < myArray.GetSize())
{
 delete myArray.GetAt(i++);
}

myArray.RemoveAll();

3. Call the RemoveAll function to remove all elements from the array after they have been deleted.

The code for deleting all elements of an array is as follows:

As with the list example above, you can call RemoveAll to remove all elements in an array or RemoveAt to remove
an individual element.

CMap<CString, LPCTSTR, CPerson*, CPerson*> myMap;
// ... Add some key-value elements ...
// Now delete the elements
POSITION pos = myMap.GetStartPosition();
while(pos != NULL)
{
 CPerson* pPerson;
 CString string;
 // Gets key (string) and value (pPerson)
 myMap.GetNextAssoc(pos, string, pPerson);
 delete pPerson;
}
// RemoveAll deletes the keys
myMap.RemoveAll();

1. Use GetStartPosition and GetNextAssoc to iterate through the array.

2. Use the delete operator to delete the key and/or value for each map element as it is encountered in the
iteration.

3. Call the RemoveAll function to remove all elements from the map after they have been deleted.

The code for deleting all elements of a CMap collection is as follows. Each element in the map has a string
as the key and a CPerson object (derived from CObject) as the value.

You can call RemoveAll to remove all elements in a map or RemoveKey to remove an individual element with the
specified key.

Accessing All Members of a Collection

Creating Stack and Queue Collections
3/4/2019 • 2 minutes to read • Edit Online

Stacks

To create a stack collectionTo create a stack collection

Queues

To create a queue collectionTo create a queue collection

This article explains how to create other data structures, such as stacks and queues, from MFC list classes. The
examples use classes derived from CList , but you can use CList directly unless you need to add functionality.

Because the standard list collection has both a head and a tail, it is easy to create a derived list collection that
mimics the behavior of a last-in-first-out stack. A stack is like a stack of trays in a cafeteria. As trays are added to
the stack, they go on top of the stack. The last tray added is the first to be removed. The list collection member
functions AddHead and RemoveHead can be used to add and remove elements specifically from the head of the list;
thus, the most recently added element is the first to be removed.

class CTray : public CObject { };

class CStack : public CTypedPtrList< CObList, CTray* >
{
public:
 // Add element to top of stack
 void Push(CTray* newTray)
 { AddHead(newTray); }

 // Peek at top element of stack
 CTray* Peek()
 { return IsEmpty() ? NULL : GetHead(); }

 // Pop top element off stack
 CTray* Pop()
 { return RemoveHead(); }
};

1. Derive a new list class from one of the existing MFC list classes and add more member functions to support
the functionality of stack operations.

The following example shows how to add member functions to push elements on to the stack, peek at the
top element of the stack, and pop the top element from the stack:

Note that this approach exposes the underlying CObList class. The user can call any CObList member function,
whether it makes sense for a stack or not.

Because the standard list collection has both a head and a tail, it is also easy to create a derived list collection that
mimics the behavior of a first-in-first-out queue. A queue is like a line of people in a cafeteria. The first person in
line is the first to be served. As more people come, they go to the end of the line to wait their turn. The list
collection member functions AddTail and RemoveHead can be used to add and remove elements specifically from
the head or tail of the list; thus, the most recently added element is always the last to be removed.

1. Derive a new list class from one of the predefined list classes provided with the Microsoft Foundation Class
Library and add more member functions to support the semantics of queue operations.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-stack-and-queue-collections.md

See also

class CQueue : public CTypedPtrList< CObList, CPerson* >
{
public:
 // Go to the end of the line
 void AddToEnd(CPerson* newPerson)
 { AddTail(newPerson); } // End of the queue

 // Get first element in line
 CPerson* GetFromFront()
 { return IsEmpty() ? NULL : RemoveHead(); }
};

The following example shows how you can append member functions to add an element to the end of the
queue and get the element from the front of the queue.

Collections

Exception Handling in MFC
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

When to Use Exceptions

This article explains the exception-handling mechanisms available in MFC. Two mechanisms are available:

C++ exceptions, available in MFC version 3.0 and later

The MFC exception macros, available in MFC versions 1.0 and later

If you're writing a new application using MFC, you should use the C++ mechanism. You can use the macro-
based mechanism if your existing application already uses that mechanism extensively.

You can readily convert existing code to use C++ exceptions instead of the MFC exception macros.
Advantages of converting your code and guidelines for doing so are described in the article Exceptions:
Converting from MFC Exception Macros.

If you have already developed an application using the MFC exception macros, you can continue using these
macros in your existing code, while using C++ exceptions in your new code. The article Exceptions: Changes
to Exception Macros in Version 3.0 gives guidelines for doing so.

To enable C++ exception handling in your code, select Enable C++ Exceptions on the Code Generation page in the
C/C++ folder of the project's Property Pages dialog box, or use the /EHsc compiler option.

This article covers the following topics:

When to use exceptions

MFC exception support

Further reading about exceptions

Three categories of outcomes can occur when a function is called during program execution: normal
execution, erroneous execution, or abnormal execution. Each category is described below.

Normal execution

The function may execute normally and return. Some functions return a result code to the caller, which
indicates the outcome of the function. The possible result codes are strictly defined for the function
and represent the range of possible outcomes of the function. The result code can indicate success or
failure or can even indicate a particular type of failure that is within the normal range of expectations.
For example, a file-status function can return a code that indicates that the file does not exist. Note that
the term "error code" is not used because a result code represents one of many expected outcomes.

Erroneous execution

The caller makes some mistake in passing arguments to the function or calls the function in an
inappropriate context. This situation causes an error, and it should be detected by an assertion during
program development. (For more information on assertions, see C/C++ Assertions.)

Abnormal execution

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exception-handling-in-mfc.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/property-pages-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model
https://docs.microsoft.com/visualstudio/debugger/c-cpp-assertions

MFC Exception Support

EXCEPTION CLASS MEANING

CMemoryException Class Out-of-memory

CFileException Class File exception

CArchiveException Class Archive/Serialization exception

CNotSupportedException Class Response to request for unsupported service

CResourceException Class Windows resource allocation exception

CDaoException Class Database exceptions (DAO classes)

CDBException Class Database exceptions (ODBC classes)

COleException Class OLE exceptions

COleDispatchException Class Dispatch (automation) exceptions

CUserException Class Exception that alerts the user with a message box, then
throws a generic CException Class

NOTENOTE

Further Reading About Exceptions

Abnormal execution includes situations where conditions outside the program's control, such as low
memory or I/O errors, are influencing the outcome of the function. Abnormal situations should be
handled by catching and throwing exceptions.

Using exceptions is especially appropriate for abnormal execution.

Whether you use the C++ exceptions directly or use the MFC exception macros, you will use CException
Class or CException -derived objects that may be thrown by the framework or by your application.

The following table shows the predefined exceptions provided by MFC.

MFC supports both C++ exceptions and the MFC exception macros. MFC does not directly support Windows NT
structured exception handlers (SEH), as discussed in Structured Exception Handling.

The following articles explain using the MFC library for exception handing:

Exceptions: Catching and Deleting Exceptions

Exceptions: Examining Exception Contents

Exceptions: Freeing Objects in Exceptions

Exceptions: Throwing Exceptions from Your Own Functions

Exceptions: Database Exceptions

Exceptions: OLE Exceptions

https://docs.microsoft.com/windows/desktop/debug/structured-exception-handling

See also

The following articles compare the MFC exception macros with the C++ exception keywords and explain
how you can adapt your code:

Exceptions: Changes to Exception Macros in Version 3.0

Exceptions: Converting from MFC Exception Macros

Exceptions: Using MFC Macros and C++ Exceptions

C++ Exception Handling
How Do I: Create my Own Custom Exception Classes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/cpp-exception-handling
http://go.microsoft.com/fwlink/p/?linkid=128045

Exceptions: Changes to Exception Macros in Version
3.0
3/4/2019 • 2 minutes to read • Edit Online

Exception Types and the CATCH Macro

TRY
{
 THROW((CException*) new CCustomException());
}
CATCH(CCustomException, e)
{
 TRACE("MFC 2.x will land here\n");
}
AND_CATCH(CException, e)
{
 TRACE("MFC 3.0 will land here\n");
}
END_CATCH

THROW((CException*) new CCustomException());

e->IsKindOf(RUNTIME_CLASS(CException));

This is an advanced topic.

In MFC version 3.0 and later, the exception-handling macros have been changed to use C++ exceptions. This
article tells how those changes can affect the behavior of existing code that uses the macros.

This article covers the following topics:

Exception types and the CATCH macro

Re-throwing exceptions

In earlier versions of MFC, the CATCH macro used MFC run-time type information to determine an exception's
type; the exception's type is determined, in other words, at the catch site. With C++ exceptions, however, the
exception's type is always determined at the throw site by the type of the exception object that is thrown. This will
cause incompatibilities in the rare case where the type of the pointer to the thrown object differs from the type of
the thrown object.

The following example illustrates the consequence of this difference between MFC version 3.0 and earlier
versions:

This code behaves differently in version 3.0 because control always passes to the first catch block with a matching
exception-declaration. The result of the throw expression

is thrown as a CException* , even though it is constructed as a CCustomException . The CATCH macro in MFC
versions 2.5 and earlier uses CObject::IsKindOf to test the type at run time. Because the expression

is true, the first catch block catches the exception. In version 3.0, which uses C++ exceptions to implement many of

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exceptions-changes-to-exception-macros-in-version-3-0.md

 Re-Throwing Exceptions

 TRY
 {
 // Do something to throw an exception.
 AfxThrowUserException();
 }
 CATCH(CException, e)
 {
 THROW(e); // Wrong. Use THROW_LAST() instead
 }
 END_CATCH
}

See also

the exception-handling macros, the second catch block matches the thrown CException .

Code like this is uncommon. It usually appears when an exception object is passed to another function that accepts
a generic CException* , performs "pre-throw" processing, and finally throws the exception.

To work around this problem, move the throw expression from the function to the calling code and throw an
exception of the actual type known to the compiler at the time the exception is generated.

A catch block cannot throw the same exception pointer that it caught.

For example, this code was valid in previous versions, but will have unexpected results with version 3.0:

Using THROW in the catch block causes the pointer e to be deleted, so that the outer catch site will receive an
invalid pointer. Use THROW_LAST to re-throw e .

For more information, see Exceptions: Catching and Deleting Exceptions.

Exception Handling

Exceptions: Catching and Deleting Exceptions
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To catch and delete exceptionsTo catch and delete exceptions

The following instructions and examples show you how to catch and delete exceptions. For more information on
the try, catch, and throw keywords, see C++ Exception Handling.

Your exception handlers must delete exception objects they handle, because failure to delete the exception causes
a memory leak whenever that code catches an exception.

Your catch block must delete an exception when:

catch(CException* e)
{
 if (m_bThrowExceptionAgain)
 throw; // Do not delete e
 else
 e->Delete();
}

The catch block throws a new exception.

Of course, you must not delete the exception if you throw the same exception again:

Execution returns from within the catch block.

When deleting a CException , use the Delete member function to delete the exception. Do not use the delete keyword,
because it can fail if the exception is not on the heap.

try
{
 // Execute some code that might throw an exception.
 AfxThrowUserException();
}
catch(CException* e)
{
 // Handle the exception here.
 // "e" contains information about the exception.
 e->Delete();
}

1. Use the try keyword to set up a try block. Execute any program statements that might throw an exception
within a try block.

Use the catch keyword to set up a catch block. Place exception-handling code in a catch block. The code
in the catch block is executed only if the code within the try block throws an exception of the type specified
in the catch statement.

The following skeleton shows how try and catch blocks are normally arranged:

When an exception is thrown, control passes to the first catch block whose exception-declaration matches
the type of the exception. You can selectively handle different types of exceptions with sequential catch

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exceptions-catching-and-deleting-exceptions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/cpp-exception-handling

See also

try
{
 // Execute some code that might throw an exception.
 AfxThrowUserException();
}
catch(CMemoryException* e)
{
 // Handle the out-of-memory exception here.
 e->Delete();
}
catch(CFileException* e)
{
 // Handle the file exceptions here.
 e->Delete();
}
catch(CException* e)
{
 // Handle all other types of exceptions here.
 e->Delete();
}

blocks as listed below:

For more information, see Exceptions: Converting from MFC Exception Macros.

Exception Handling

Exceptions: Converting from MFC Exception Macros
10/31/2018 • 3 minutes to read • Edit Online

Advantages of Converting

This is an advanced topic.

This article explains how to convert existing code written with Microsoft Foundation Class macros — TRY ,
CATCH, THROW, and so on — to use the C++ exception-handling keywords try, catch, and throw. Topics
include:

Conversion advantages

Converting code with exception macros to use C++ exceptions

You probably do not need to convert existing code, although you should be aware of differences between the
macro implementations in MFC version 3.0 and the implementations in earlier versions. These differences and
subsequent changes in code behavior are discussed in Exceptions: Changes to Exception Macros in Version 3.0.

The principal advantages of converting are:

Code that uses the C++ exception-handling keywords compiles to a slightly smaller .EXE or .DLL.

The C++ exception-handling keywords are more versatile: They can handle exceptions of any data type that
can be copied (int, float, char, and so on), whereas the macros handle exceptions only of class CException

and classes derived from it.

The major difference between the macros and the keywords is that code using the macros "automatically" deletes
a caught exception when the exception goes out of scope. Code using the keywords does not, so you must
explicitly delete a caught exception. For more information, see the article Exceptions: Catching and Deleting
Exceptions.

Another difference is syntax. The syntax for macros and keywords differs in three respects:

1. Macro arguments and exception declarations:

A CATCH macro invocation has the following syntax:

CATCH(exception_class, exception_object_pointer_name)

Notice the comma between the class name and the object pointer name.

The exception declaration for the catch keyword uses this syntax:

catch(exception_type exception_name)

This exception declaration statement indicates the type of exception the catch block handles.

2. Delimitation of catch blocks:

With the macros, the CATCH macro (with its arguments) begins the first catch block; the AND_CATCH
macro begins subsequent catch blocks, and the END_CATCH macro terminates the sequence of catch
blocks.

With the keywords, the catch keyword (with its exception declaration) begins each catch block. There is no
counterpart to the END_CATCH macro; the catch block ends with its closing brace.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exceptions-converting-from-mfc-exception-macros.md

 Doing the Conversion
To convert code using macros to use the C++ exception-handling keywordsTo convert code using macros to use the C++ exception-handling keywords

TRY
{
 // Do something to throw an exception.
 AfxThrowUserException();
}
CATCH(CException, e)
{
 if (m_bPassExceptionsUp)
 THROW_LAST();

 if (m_bReturnFromThisFunction)
 return;

 // Not necessary to delete the exception e.
}
END_CATCH

3. The throw expression:

The macros use THROW_LAST to re-throw the current exception. The throw keyword, with no argument,
has the same effect.

CATCH(CException, e)

catch(CException* e)

1. Locate all occurrences of the MFC macros TRY , CATCH, AND_CATCH, END_CATCH, THROW, and
THROW_LAST.

2. Replace or delete all occurrences of the following macros:

TRY (Replace it with try)

CATCH (Replace it with catch)

AND_CATCH (Replace it with catch)

END_CATCH (Delete it)

THROW (Replace it with throw)

THROW_LAST (Replace it with throw)

3. Modify the macro arguments so that they form valid exception declarations.

For example, change

to

4. Modify the code in the catch blocks so that it deletes exception objects as necessary. For more information,
see the article Exceptions: Catching and Deleting Exceptions.

Here is an example of exception-handling code using MFC exception macros. Note that because the code in the
following example uses the macros, the exception e is deleted automatically:

The code in the next example uses the C++ exception keywords, so the exception must be explicitly deleted:

try
{
 // Do something to throw an exception.
 AfxThrowUserException();
}
catch(CException* e)
{
 if (m_bPassExceptionsUp)
 throw;

 if (m_bThrowDifferentException)
 {
 e->Delete();
 throw new CMyOtherException;
 }

 if (m_bReturnFromThisFunction)
 {
 e->Delete();
 return;
 }

 e->Delete();
}

See also

For more information, see Exceptions: Using MFC Macros and C++ Exceptions.

Exception Handling

Exceptions: Using MFC Macros and C++ Exceptions
3/4/2019 • 2 minutes to read • Edit Online

Mixing Exception Keywords and Macros

TRY
{
 TRY
 {
 // Do something to throw an exception.
 AfxThrowUserException();
 }
 CATCH(CException, e) // The "inner" catch block
 {
 throw; // Invalid attempt to throw exception
 // to the outer catch block below.
 }
 END_CATCH
}
CATCH(CException, e) // The "outer" catch block
{
 // Pointer e is invalid because
 // it was deleted in the inner catch block.
}
END_CATCH

This article discusses considerations for writing code that uses both the MFC exception-handling macros and the
C++ exception-handling keywords.

This article covers the following topics:

Mixing exception keywords and macros

Try blocks inside catch blocks

You can mix MFC exception macros and C++ exception keywords in the same program. But you cannot mix MFC
macros with C++ exception keywords in the same block because the macros delete exception objects
automatically when they go out of scope, whereas code using the exception-handling keywords does not. For
more information, see the article Exceptions: Catching and Deleting Exceptions.

The main difference between the macros and the keywords is that the macros "automatically" delete a caught
exception when the exception goes out of scope. Code using the keywords does not; exceptions caught in a catch
block must be explicitly deleted. Mixing macros and C++ exception keywords can cause memory leaks when an
exception object is not deleted, or heap corruption when an exception is deleted twice.

The following code, for example, invalidates the exception pointer:

The problem occurs because e is deleted when execution passes out of the "inner" CATCH block. Using the
THROW_LAST macro instead of the THROW statement will cause the "outer" CATCH block to receive a valid
pointer :

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exceptions-using-mfc-macros-and-cpp-exceptions.md

TRY
{
 TRY
 {
 // Do something to throw an exception.
 AfxThrowUserException();
 }
 CATCH(CException, e) // The "inner" catch block
 {
 THROW_LAST(); // Throw exception to the outer catch block below.
 }
 END_CATCH
}
CATCH(CException, e) // The "outer" catch block
{
 // Pointer e is valid because
 // THROW_LAST() was used.
}
END_CATCH

Try Blocks Inside Catch Blocks

TRY
{
 // Do something to throw an exception.
 AfxThrowUserException();
}
CATCH(CException, e)
{
 try
 {
 throw; // Wrong. Causes e (the exception
 // being thrown) to be deleted.
 }
 catch(CException* exception)
 {
 exception->ReportError();
 }
}
END_CATCH

See also

You cannot re-throw the current exception from within a try block that is inside a CATCH block. The following
example is invalid:

For more information, see Exceptions: Examining Exception Contents.

Exception Handling

Exceptions: Examining Exception Contents
3/4/2019 • 2 minutes to read • Edit Online

try
{
 CFile file(_T("\\this_file_should_not_exist.dat"), CFile::modeRead);
}
catch(CFileException* theException)
{
 if(theException->m_cause == CFileException::fileNotFound)
 TRACE("File not found\n");
 theException->Delete();
}

See also

Although a catch block's argument can be of almost any data type, the MFC functions throw exceptions of types
derived from the class CException . To catch an exception thrown by an MFC function, then, you write a catch
block whose argument is a pointer to a CException object (or an object derived from CException , such as
CMemoryException). Depending on the exact type of the exception, you can examine the data members of the

exception object to gather information about the specific cause of the exception.

For example, the CFileException type has the m_cause data member, which contains an enumerated type that
specifies the cause of the file exception. Some examples of the possible return values are
CFileException::fileNotFound and CFileException::readOnly .

The following example shows how to examine the contents of a CFileException . Other exception types can be
examined similarly.

For more information, see Exceptions: Freeing Objects in Exceptions and Exceptions: Catching and Deleting
Exceptions.

Exception Handling

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exceptions-examining-exception-contents.md

Exceptions: Freeing Objects in Exceptions
3/4/2019 • 3 minutes to read • Edit Online

void SomeFunc() // Problematic code
{
 CPerson* myPerson = new CPerson;

 // Do something that might throw an exception.
 myPerson->SomeFunc();

 // Now destroy the object before exiting.
 // If SomeFunc above throws an exception this code will
 // not be reached and myPerson will not be deleted.
 delete myPerson;
}

Handling the Exception Locally

This article explains the need and the method of freeing objects when an exception occurs. Topics include:

Handling the exception locally

Throwing exceptions after destroying objects

Exceptions thrown by the framework or by your application interrupt normal program flow. Thus, it is very
important to keep close track of objects so that you can properly dispose of them in case an exception is thrown.

There are two primary methods to do this.

Handle exceptions locally using the try and catch keywords, then destroy all objects with one statement.

Destroy any object in the catch block before throwing the exception outside the block for further handling.

These two approaches are illustrated below as solutions to the following problematic example:

As written above, myPerson will not be deleted if an exception is thrown by SomeFunc . Execution jumps directly to
the next outer exception handler, bypassing the normal function exit and the code that deletes the object. The
pointer to the object goes out of scope when the exception leaves the function, and the memory occupied by the
object will never be recovered as long as the program is running. This is a memory leak; it would be detected by
using the memory diagnostics.

The try/catch paradigm provides a defensive programming method for avoiding memory leaks and ensuring
that your objects are destroyed when exceptions occur. For instance, the example shown earlier in this article could
be rewritten as follows:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exceptions-freeing-objects-in-exceptions.md

void SomeFunc()
{
 CPerson* myPerson = new CPerson;

 try
 {
 // Do something that might throw an exception.
 myPerson->SomeFunc();
 }
 catch(CException* e)
 {
 // Handle the exception locally
 e->Delete();
 }

 // Now destroy the object before exiting.
 delete myPerson;
}

Throwing Exceptions After Destroying Objects

void SomeFunc()
{
 CPerson* myPerson = new CPerson;

 try
 {
 // Do something that might throw an exception.
 myPerson->SomeFunc();
 }
 catch(CException* e)
 {
 e->ReportError();
 // Destroy the object before passing exception on.
 delete myPerson;
 // Throw the exception to the next handler.
 throw;
 }

 // On normal exits, destroy the object.
 delete myPerson;
}

This new example sets up an exception handler to catch the exception and handle it locally. It then exits the
function normally and destroys the object. The important aspect of this example is that a context to catch the
exception is established with the try/catch blocks. Without a local exception frame, the function would never
know that an exception had been thrown and would not have the chance to exit normally and destroy the object.

Another way to handle exceptions is to pass them on to the next outer exception-handling context. In your catch
block, you can do some cleanup of your locally allocated objects and then throw the exception on for further
processing.

The throwing function may or may not need to deallocate heap objects. If the function always deallocates the heap
object before returning in the normal case, then the function should also deallocate the heap object before
throwing the exception. On the other hand, if the function does not normally deallocate the object before returning
in the normal case, then you must decide on a case-by-case basis whether the heap object should be deallocated.

The following example shows how locally allocated objects can be cleaned up:

The exception mechanism automatically deallocates frame objects; the destructor of the frame object is also called.

See also

If you call functions that can throw exceptions, you can use try/catch blocks to make sure that you catch the
exceptions and have a chance to destroy any objects you have created. In particular, be aware that many MFC
functions can throw exceptions.

For more information, see Exceptions: Catching and Deleting Exceptions.

Exception Handling

Exceptions: Throwing Exceptions from Your Own
Functions
3/4/2019 • 2 minutes to read • Edit Online

To throw an exceptionTo throw an exception

It is possible to use the MFC exception-handling paradigm solely to catch exceptions thrown by functions in MFC
or other libraries. In addition to catching exceptions thrown by library code, you can throw exceptions from your
own code if you are writing functions that can encounter exceptional conditions.

When an exception is thrown, execution of the current function is stopped and jumps directly to the catch block of
the innermost exception frame. The exception mechanism bypasses the normal exit path from a function.
Therefore, you must be sure to delete those memory blocks that would be deleted in a normal exit.

{
 char* p1 = (char*)malloc(SIZE_FIRST);
 if(p1 == NULL)
 AfxThrowMemoryException();
 char* p2 = (char*)malloc(SIZE_SECOND);
 if(p2 == NULL)
 {
 free(p1);
 AfxThrowMemoryException();
 }

 // ... Do something with allocated blocks ...

 // In normal exit, both blocks are deleted.
 free(p1);
 free(p2);
}

1. Use one of the MFC helper functions, such as AfxThrowMemoryException . These functions throw a
preallocated exception object of the appropriate type.

In the following example, a function tries to allocate two memory blocks and throws an exception if either
allocation fails:

If the first allocation fails, you can simply throw the memory exception. If the first allocation is successful but
the second one fails, you must free the first allocation block before throwing the exception. If both
allocations succeed, you can proceed normally and free the blocks when exiting the function.

or -
2. Use a user-defined exception to indicate a problem condition. You can throw an item of any type, even an

entire class, as your exception.

The following example attempts to play a sound through a wave device and throws an exception if there is a
failure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exceptions-throwing-exceptions-from-your-own-functions.md

NOTENOTE

See also

#define WAVE_ERROR -5
{
 // This Win32 API returns 0 if the sound cannot be played.
 // Throw an integer constant if it fails.
 if(!PlaySound(_T("SIREN.WAV"), NULL, SND_ASYNC))
 throw WAVE_ERROR;
}

MFC's default handling of exceptions applies only to pointers to CException objects (and objects of CException -derived
classes). The example above bypasses MFC's exception mechanism.

Exception Handling

Exceptions: Exceptions in Constructors
3/4/2019 • 2 minutes to read • Edit Online

See also

When throwing an exception in a constructor, clean up whatever objects and memory allocations you have made
prior to throwing the exception, as explained in Exceptions: Throwing Exceptions from Your Own Functions.

When throwing an exception in a constructor, the memory for the object itself has already been allocated by the
time the constructor is called. So, the compiler will automatically deallocate the memory occupied by the object
after the exception is thrown.

For more information, see Exceptions: Freeing Objects in Exceptions.

Exception Handling

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exceptions-exceptions-in-constructors.md

Exceptions: Database Exceptions
3/4/2019 • 3 minutes to read • Edit Online

Approaches to Exception Handling

Error Codes Used for ODBC ExceptionsError Codes Used for ODBC Exceptions

Error Codes Used for DAO ExceptionsError Codes Used for DAO Exceptions

A Database Exception-Handling Example

This article explains how to handle database exceptions. Most of the material in this article applies whether you
are working with the MFC classes for Open Database Connectivity (ODBC) or the MFC classes for Data Access
Objects (DAO). Material specific to one or the other model is explicitly marked. Topics include:

Approaches to exception handling

A database exception-handling example

The approach is the same whether you are working with DAO or ODBC.

You should always write exception handlers to handle exceptional conditions.

The most pragmatic approach to catching database exceptions is to test your application with exception scenarios.
Determine the likely exceptions that might occur for an operation in your code, and force the exception to occur.
Then examine the trace output to see what exception is thrown, or examine the returned error information in the
debugger. This lets you know which return codes you'll see for the exception scenarios you are using.

In addition to return codes defined by the framework, which have names of the form AFX_SQL_ERROR_XXX,
some CDBExceptions are based on ODBC return codes. The return codes for such exceptions have names of the
form SQL_ERROR_XXX.

The return codes — both framework-defined and ODBC-defined — that the database classes can return are
documented under the m_nRetCode data member of class CDBException . Additional information about return
codes defined by ODBC is available in the ODBC SDK Programmer's Reference in the MSDN Library.

For DAO exceptions, more information is typically available. You can access error information through three data
members of a caught CDaoException object:

m_pErrorInfo contains a pointer to a CDaoErrorInfo object that encapsulates error information in DAO's
collection of error objects associated with the database.

m_nAfxDaoError contains an extended error code from the MFC DAO classes. These error codes, which
have names of the form AFX_DAO_ERROR_XXX, are documented under the data member in
CDaoException .

m_scode contains an OLE SCODE from DAO, if applicable. You'll seldom need to work with this error code,
however. Usually more information is available in the other two data members. See the data member for
more about SCODE values.

Additional information about DAO errors, the DAO Error object type, and the DAO Errors collection is available
under class CDaoException.

The following example attempts to construct a CRecordset-derived object on the heap with the new operator, and
then open the recordset (for an ODBC data source). For a similar example for the DAO classes, see "DAO

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exceptions-database-exceptions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/odbc-basics

ODBC Exception ExampleODBC Exception Example

CRecordset* CMyDatabaseDoc::GetRecordset()
{
 CCourses* pSet = new CCourses(&m_dbCust);
 try
 {
 pSet->Open();
 }
 catch(CDBException* e)
 {
 AfxMessageBox(e->m_strError, MB_ICONEXCLAMATION);
 // Delete the incomplete recordset object
 delete pSet;
 pSet = NULL;
 e->Delete();
 }
 return pSet;
}

DAO Exception ExampleDAO Exception Example

CDaoRecordset* CMyDaoDatabaseDoc::GetRecordset()
{
 CDaoRecordset* pSet = new CCustSet(&m_db);
 try
 {
 pSet->Open();
 }
 catch(CDaoException* pe)
 {
 AfxMessageBox(pe->m_pErrorInfo->m_strDescription, MB_ICONEXCLAMATION);
 // Delete the incomplete recordset object
 delete pSet;
 pSet = NULL;
 pe->Delete();
 }
 return pSet;
}

Exception Example" below.

The Open member function could throw an exception (of type CDBException for the ODBC classes), so this code
brackets the Open call with a try block. The subsequent catch block will catch a CDBException . You could examine
the exception object itself, called e , but in this case it is enough to know that the attempt to create a recordset has
failed. The catch block displays a message box and cleans up by deleting the recordset object.

The DAO example is similar to the example for ODBC, but you can typically retrieve more kinds of information.
The following code also attempts to open a recordset. If that attempt throws an exception, you can examine a data
member of the exception object for error information. As with the previous ODBC example, it is probably enough
to know that the attempt to create a recordset failed.

This code gets an error message string from the m_pErrorInfo member of the exception object. MFC fills this
member when it throws the exception.

For a discussion of the error information returned by a CDaoException object, see classes CDaoException and
CDaoErrorInfo.

When you are working with Microsoft Jet (.mdb) databases, and in most cases when you are working with ODBC,
there will be only one error object. In the rare case when you are using an ODBC data source and there are
multiple errors, you can loop through DAO's Errors collection based on the number of errors returned by
CDaoException::GetErrorCount. Each time through the loop, call CDaoException::GetErrorInfo to refill the

See also

m_pErrorInfo data member.

Exception Handling

Exceptions: OLE Exceptions
3/4/2019 • 2 minutes to read • Edit Online

See also

The techniques and facilities for handling exceptions in OLE are the same as those for handling other exceptions.
For further information on exception handling, see the article C++ Exception Handling.

All exception objects are derived from the abstract base class CException . MFC provides two classes for handling
OLE exceptions:

COleException For handling general OLE exceptions.

COleDispatchException For generating and handling OLE dispatch (automation) exceptions.

The difference between these two classes is the amount of information they provide and where they are used.
COleException has a public data member that contains the OLE status code for the exception.
COleDispatchException supplies more information, including the following:

An application-specific error code

An error description, such as "Disk full"

A Help context that your application can use to provide additional information for the user

The name of your application's Help file

The name of the application that generated the exception

COleDispatchException provides more information so that it can be used with products like Microsoft Visual Basic.
The verbal error description can be used in a message box or other notification; the Help information can be used
to help the user respond to the conditions that caused the exception.

Two global functions correspond to the two OLE exception classes: AfxThrowOleException and
AfxThrowOleDispatchException. Use them to throw general OLE exceptions and OLE dispatch exceptions,
respectively.

Exception Handling

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exceptions-ole-exceptions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/cpp-exception-handling

Files in MFC
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

What do you want to do

See also

In the Microsoft Foundation Class Library (MFC), class CFile handles normal file I/O operations. This family of
articles explains how to open and close files as well as read and write data to those files. It also discusses file
status operations. For a description of how to use the object-based serialization features of MFC as an alternative
way of reading and writing data in files, see the article Serialization.

When you use MFC CDocument objects, the framework does much of the serialization work for you. In particular, the
framework creates and uses the CFile object. You only have to write code in your override of the Serialize member
function of class CDocument .

The CFile class provides an interface for general-purpose binary file operations. The CStdioFile and CMemFile

classes derived from CFile and the CSharedFile class derived from CMemFile supply more specialized file
services.

For more information about alternatives to MFC file handling, see File Handling in the Run-Time Library
Reference.

For information about derived CFile classes, see the MFC hierarchy chart.

Use CFile

Open a file with CFile

Read and write a file with CFile

Close a file with CFile

Access file status with CFile

Use MFC Serialization (Object Persistence)

Create a serializable class

Serialize an object via a CArchive object

Create a CArchive object

Use CArchive << and >> operators

Store and load CObjects and CObject-derived objects via an archive

Concepts
General MFC Topics
CArchive Class
CObject Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/files-in-mfc.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/file-handling

Opening Files
3/4/2019 • 2 minutes to read • Edit Online

To open a fileTo open a file

TCHAR* pszFileName = _T("c:\\test\\myfile.dat");
CFile myFile;
CFileException fileException;

if (!myFile.Open(pszFileName, CFile::modeCreate |
 CFile::modeReadWrite, &fileException))
{
 TRACE(_T("Can't open file %s, error = %u\n"),
 pszFileName, fileException.m_cause);
}

NOTENOTE

See also

In MFC, the most common way to open a file is a two-stage process.

1. Create the file object without specifying a path or permission flags.

You usually create a file object by declaring a CFile variable on the stack frame.

2. Call the Open member function for the file object, supplying a path and permission flags.

The return value for Open will be nonzero if the file was opened successfully or 0 if the specified file could
not be opened. The Open member function is prototyped as follows:

virtual BOOL Open(LPCTSTR lpszFileName, UINT nOpenFlags, CFileException* pError = NULL);

The open flags specify which permissions, such as read-only, you want for the file. The possible flag values
are defined as enumerated constants within the CFile class, so they are qualified with " CFile:: " as in
CFile::modeRead . Use the CFile::modeCreate flag if you want to create the file.

The following example shows how to create a new file with read/write permission (replacing any previous file with
the same path):

This example creates and opens a file. If there are problems, the Open call can return a CFileException object in its last
parameter, as shown here. The TRACE macro prints both the file name and a code indicating the reason for failure. You can
call the AfxThrowFileException function if you require more detailed error reporting.

CFile Class
CFile::Open
Files

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/opening-files.md

Reading and Writing Files
3/4/2019 • 2 minutes to read • Edit Online

To read from and write to the fileTo read from and write to the file

TCHAR szBuffer[256];
UINT nActual = 0;
CFile myFile;

if (myFile.Open(_T("c:\\test\\myfile.dat"), CFile::modeCreate |
 CFile::modeReadWrite))
{
 myFile.Write(szBuffer, sizeof(szBuffer));
 myFile.Flush();
 myFile.Seek(0, CFile::begin);
 nActual = myFile.Read(szBuffer, sizeof(szBuffer));
}

NOTENOTE

See also

If you've used the C run-time library file-handling functions, MFC reading and writing operations will appear
familiar. This article describes reading directly from and writing directly to a CFile object. You can also do
buffered file I/O with the CArchive class.

1. Use the Read and Write member functions to read and write data in the file.

-or-

2. The Seek member function is also available for moving to a specific offset within the file.

Read takes a pointer to a buffer and the number of bytes to read and returns the actual number of bytes that were
read. If the required number of bytes could not be read because end-of-file (EOF) is reached, the actual number of
bytes read is returned. If any read error occurs, an exception is thrown. Write is similar to Read , but the number
of bytes written is not returned. If a write error occurs, including not writing all the bytes specified, an exception is
thrown. If you have a valid CFile object, you can read from it or write to it as shown in the following example:

You should normally carry out input/output operations within a try/catch exception handling block. For more information,
see Exception Handling (MFC).

Files

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reading-and-writing-files.md

Closing Files
3/4/2019 • 2 minutes to read • Edit Online

To close a fileTo close a file

See also

As usual in I/O operations, once you finish with a file, you must close it.

1. Use the Close member function. This function closes the file-system file and flushes buffers if necessary.

If you allocated the CFile object on the frame (as in the example shown in Opening Files), the object will
automatically be closed and then destroyed when it goes out of scope. Note that deleting the CFile object does
not delete the physical file in the file system.

Files

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/closing-files.md

Accessing File Status
3/4/2019 • 2 minutes to read • Edit Online

To get file statusTo get file status

CFile theFile;
TCHAR* szFileName = _T("c:\\test\\myfile.dat");
BOOL bOpenOK;

CFileStatus status;
if(CFile::GetStatus(szFileName, status))
{
 // Open the file without the Create flag
 bOpenOK = theFile.Open(szFileName,
 CFile::modeWrite);
}
else
{
 // Open the file with the Create flag
 bOpenOK = theFile.Open(szFileName,
 CFile::modeCreate | CFile::modeWrite);
}

See also

CFile also supports getting file status, including whether the file exists, creation and modification dates and times,
logical size, and path.

1. Use the CFile class to get and set information about a file. One useful application is to use the CFile static
member function GetStatus to determine if a file exists. GetStatus returns 0 if the specified file does not exist.

Thus, you could use the result of GetStatus to determine whether to use the CFile::modeCreate flag when
opening a file, as shown by the following example:

For related information, see Serialization.

Files

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/accessing-file-status.md

Interface Elements
3/4/2019 • 4 minutes to read • Edit Online

Window Docking

Control Bars are Now Panes

Dock Site

This document describes interface elements that were introduced in Visual Studio 2008 SP1, and also describes
differences with the earlier version of the library.

The following illustration shows an application that was built by using the new interface elements.

Window docking functionality resembles the window docking that the Visual Studio graphical user interface uses.

Control bars are now known as panes and are derived from CBasePane Class. In earlier versions of MFC, the base
class of control bars was CControlBar .

The application main frame window is usually represented by the CFrameWndEx Class or the CMDIFrameWndEx
Class. The main frame is called the dock site. Panes can have one of three types of parents: a dock site, a dock bar,
or a mini-frame window.

There are two types of panes: non-resizable and resizable. Resizable panes, such as status bars and toolbars, can be
resized by using splitters or sliders. Resizable panes can form containers (one pane can be docked to another pane,
creating a splitter between them). However, resizable panes cannot be attached (docked) to dock bars.

If your application uses non-resizable panes, derive them from CPane Class. If your application uses resizable
panes, derive them from CDockablePane Class

The dock site (or main frame window) owns all panes and mini-frame windows in an application. The dock site
contains a CDockingManager member. This member maintains a list of all panes that belong to the dock site. The
list is ordered so that the panes created at the outer edges of the dock site are positioned at the start of the list.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/interface-elements.md

Dock Bars

Mini-frame Windows

Pane Dividers

Containers

Auto-hide Control Bars

Tabbed Control Bars and Outlook Bars

When the framework redraws the dock site, it loops over this list and adjusts the layout of each pane to include the
current bounding rectangle of the dock site. You can call AdjustDockingLayout or RecalcLayout when you have to
adjust the docking layout, and the framework redirects this call to the docking manager.

Each main frame window can position dock bars along its borders. A dock bar is a pane that belongs to a
CDockSite Class. Dock bars can accept objects derived from CPane, such as toolbars. To create dock bars when the
main frame window is initialized, call EnableDocking . To enable auto hide bars, call EnableAutoHideBars .
EnableAutoHideBars creates CAutoHideDockSite objects, and positions them next to each dock bar.

Each dock bar is divided into dock rows. Dock rows are represented by the CDockingPanesRow Class. Each dock
row contains a list of toolbars. If a user docks a toolbar or moves the toolbar from one row to another within the
same dock bar, the framework either creates a new row and resizes the dock bar accordingly, or it positions the
toolbar on an existing row.

A floating pane resides in a mini-frame window. Mini-frame windows are represented by two classes:
CMDITabInfo Class (which can contain only one pane) and CMultiPaneFrameWnd Class (which can contain
several panes). To float a pane in your code, call CBasePane::FloatPane. After a pane floats, the framework
automatically creates a mini-frame window and that mini-frame window becomes the floating pane's parent. When
the floating pane docks, the framework resets its parent, and the floating pane becomes a dock bar (for toolbars) or
a dock site (for resizable panes).

Pane dividers (also named sliders or splitters) are represented by the CPaneDivider Class. When a user docks a
pane, the framework creates pane dividers, regardless of whether the pane is docked at the dock site or at another
pane. When a pane docks to the dock site, the pane divider is called the default pane divider. The default pane
divider is responsible for the layout of all the docking panes in the dock site. The dock manager maintains a list of
default pane dividers, and a list of panes. Dock managers are responsible for the layout of all the docking panes.

All resizable panes, when docked to each other, are maintained in containers. Containers are represented by the
CPaneContainer Class. Each container has pointers to its left pane, right pane, left sub-container, right sub-
container, and the splitter between the left and right parts. (Left and right do not refer to physical sides but rather
identify the branches of a tree structure.) In this manner we can build a tree of panes and splitters and therefore
achieve complex layouts of panes that can be resized together. The CPaneContainer class maintains the tree of
containers; it also maintains two lists of panes and sliders that reside in this tree. Pane container managers are
usually embedded into default sliders and mini-frame windows that carry multiple panes.

By default, each CDockablePane supports the auto-hide feature. When a user clicks the pin button on the caption of
the CDockablePane , the framework switches the pane to auto-hide mode. To handle the click, the framework creates
a CMFCAutoHideBar Class and a CMFCAutoHideButton Class associated with the CMFCAutoHideBar object. The
framework puts the new CMFCAutoHideBar on the CAutoHideDockSite. The framework also attaches the
CMFCAutoHideButton to the toolbar. The CDockingManager Class maintains the CDockablePane .

See also

The CMFCBaseTabCtrl Class implements the base functionality of a tabbed window with detachable tabs. To use a
CMFCBaseTabCtrl object, initialize a CBaseTabbedPane Class in your application. CBaseTabbedPane is derived from
CDockablePane and maintains a pointer to a CMFCBaseTabCtrl object. The CBaseTabbedPane enables users to dock

and resize tabbed control bars. Use CDockablePane::AttachToTabWnd to dynamically create control bars that are
docked and tabbed.

The Outlook bar control is also based on tabbed bars. The CMFCOutlookBar Class is derived from
CBaseTabbedPane . For more information about how to use Outlook bar, see CMFCOutlookBar Class.

Concepts

MAPI
3/4/2019 • 2 minutes to read • Edit Online

In This Section

See also

This article describes the Microsoft Messaging Application Programming Interface (MAPI) for client message
application developers. MFC supplies support for a subset of MAPI in class CDocument but does not encapsulate
the entire API. For more information, see MAPI Support in MFC.

MAPI is a set of functions that mail-enabled and mail-aware applications use to create, manipulate, transfer, and
store mail messages. It gives application developers the tools to define the purpose and content of mail messages
and gives them flexibility in their management of stored mail messages. MAPI also provides a common interface
that application developers can use to create mail-enabled and mail-aware applications independent of the
underlying messaging system.

Messaging clients provide a human interface for interaction with the Microsoft Windows Messaging System
(WMS). This interaction typically includes requesting services from MAPI-compliant providers such as message
stores and address books.

For more information about MAPI, see the articles under Guide in Win32 Messaging (MAPI) of the Windows
SDK.

MAPI Support in MFC

CDocument::OnFileSendMail
CDocument::OnUpdateFileSendMail
COleDocument::OnFileSendMail

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mapi.md

MAPI Support in MFC
3/4/2019 • 2 minutes to read • Edit Online

TIPTIP

NOTENOTE

To implement a Send Mail command with MFCTo implement a Send Mail command with MFC

MFC supplies support for a subset of the Microsoft Messaging Application Program Interface (MAPI) in class
CDocument . Specifically, CDocument has member functions that determine whether mail support is present on the

end-user's machine and, if so, enable a Send Mail command whose standard command ID is
ID_FILE_SEND_MAIL. The MFC handler function for this command allows the user to send a document through
electronic mail.

Although MFC does not encapsulate the entire MAPI function set, you can still call MAPI functions directly, just as you can
call Win32 API functions directly from MFC programs.

Providing the Send Mail command in your application is very easy. MFC provides the implementation to package
a document (that is, a CDocument -derived object) as an attachment and send it as mail. This attachment is
equivalent to a File Save command that saves (serializes) the document's contents to the mail message. This
implementation calls upon the mail client on the user's machine to give the user the opportunity to address the
mail and to add subject and message text to the mail message. Users see their familiar mail application's user
interface. This functionality is supplied by two CDocument member functions: OnFileSendMail and
OnUpdateFileSendMail .

MAPI needs to read the file to send the attachment. If the application keeps its data file open during an
OnFileSendMail function call, the file needs to be opened with a share mode that allows multiple processes to

access the file.

An overriding version of OnFileSendMail for class COleDocument correctly handles compound documents.

ON_COMMAND(ID_FILE_SENDMAIL, &CMyDoc::OnFileSendMail)
ON_UPDATE_COMMAND_UI(ID_FILE_SENDMAIL, &CMyDoc::OnUpdateFileSendMail)

NOTENOTE

1. Use the Visual C++ menu editor to add a menu item whose command ID is ID_FILE_SEND_MAIL.

This command ID is provided by the framework in AFXRES.H. The command can be added to any menu,
but it is usually added to the File menu.

2. Manually add the following to your document's message map:

This message map works for a document derived from either CDocument or COleDocument — it picks up the
correct base class in either case, even though the message map is in your derived document class.

3. Build your application.

If mail support is available, MFC enables your menu item with OnUpdateFileSendMail and subsequently processes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mapi-support-in-mfc.md

TIPTIP

See also

the command with OnFileSendMail . If mail support is not available, MFC automatically removes your menu item
so the user will not see it.

Rather than manually adding message map entries as previously described, you can use the class Properties window to map
messages to functions. For more information, see Mapping Messages to Functions.

For related information, see the MAPI overview.

For more information about the CDocument member functions that enable MAPI, see:

CDocument::OnFileSendMail

CDocument::OnUpdateFileSendMail

COleDocument::OnFileSendMail

MAPI

MAPI Samples
3/4/2019 • 2 minutes to read • Edit Online

See also

See the following sample programs that illustrate Microsoft Messaging Application Programming Interface
(MAPI) functionality:

NPP

DRAWCLI

MAPI

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mapi-samples.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Memory Management
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

This group of articles describes how to take advantage of the general-purpose services of the Microsoft
Foundation Class Library (MFC) related to memory management. Memory allocation can be divided into two
main categories: frame allocations and heap allocations.

One main difference between the two allocation techniques is that with frame allocation you typically work with
the actual memory block itself, while with heap allocation you are always given a pointer to the memory block.
Another major difference between the two schemes is that frame objects are automatically deleted, while heap
objects must be explicitly deleted by the programmer.

For non-MFC information about memory management in programs for Windows, see Memory Management in
the Windows SDK.

Frame allocation

Heap allocation

Allocating memory for an array

Deallocating memory for an array from the heap

Allocating memory for a data structure

Allocating memory for an object

Resizable memory blocks

Concepts
General MFC Topics

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/memory-management.md
https://docs.microsoft.com/windows/desktop/memory/memory-management

Memory Management: Frame Allocation
3/4/2019 • 2 minutes to read • Edit Online

void MyFunction()
{
 // Local object created on the stack
 CString strName;
 // Object goes out of scope and is deleted as function ends
}

See also

Allocation on the frame takes its name from the "stack frame" that is set up whenever a function is called. The stack
frame is an area of memory that temporarily holds the arguments to the function as well as any variables that are
defined local to the function. Frame variables are often called "automatic" variables because the compiler
automatically allocates the space for them.

There are two key characteristics of frame allocations. First, when you define a local variable, enough space is
allocated on the stack frame to hold the entire variable, even if it is a large array or data structure. Second, frame
variables are automatically deleted when they go out of scope:

For local function variables, this scope transition happens when the function exits, but the scope of a frame variable
can be smaller than a function if nested braces are used. This automatic deletion of frame variables is very
important. In the case of simple primitive types (such as int or byte), arrays, or data structures, the automatic
deletion simply reclaims the memory used by the variable. Since the variable has gone out of scope, it cannot be
accessed anyway. In the case of C++ objects, however, the process of automatic deletion is a bit more complicated.

When an object is defined as a frame variable, its constructor is automatically invoked at the point where the
definition is encountered. When the object goes out of scope, its destructor is automatically invoked before the
memory for the object is reclaimed. This automatic construction and destruction can be very handy, but you must
be aware of the automatic calls, especially to the destructor.

The key advantage of allocating objects on the frame is that they are automatically deleted. When you allocate your
objects on the frame, you don't have to worry about forgotten objects causing memory leaks. (For details on
memory leaks, see the article Detecting Memory Leaks in MFC.) A disadvantage of frame allocation is that frame
variables cannot be used outside their scope. Another factor in choosing frame allocation versus heap allocation is
that for large structures and objects, it is often better to use the heap instead of the stack for storage since stack
space is often limited.

Memory Management

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/memory-management-frame-allocation.md
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/c99kz476

Memory Management: Heap Allocation
3/4/2019 • 2 minutes to read • Edit Online

See also

The heap is reserved for the memory allocation needs of the program. It is an area apart from the program code
and the stack. Typical C programs use the functions malloc and free to allocate and deallocate heap memory. The
Debug version of MFC provides modified versions of the C++ built-in operators new and delete to allocate and
deallocate objects in heap memory.

When you use new and delete instead of malloc and free, you are able to take advantage of the class library's
memory-management debugging enhancements, which can be useful in detecting memory leaks. When you build
your program with the Release version of MFC, the standard versions of the new and delete operators provide an
efficient way to allocate and deallocate memory (the Release version of MFC does not provide modified versions
of these operators).

Note that the total size of objects allocated on the heap is limited only by your system's available virtual memory.

Memory Management

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/memory-management-heap-allocation.md

Memory Management: Examples
3/4/2019 • 2 minutes to read • Edit Online

Allocation of an Array of Bytes
To allocate an array of bytes on the frameTo allocate an array of bytes on the frame

To allocate an array of bytes (or any primitive data type) on the heapTo allocate an array of bytes (or any primitive data type) on the heap

To deallocate the arrays from the heapTo deallocate the arrays from the heap

Allocation of a Data Structure
To allocate a data structure on the frameTo allocate a data structure on the frame

This article describes how MFC performs frame allocations and heap allocations for each of the three typical kinds
of memory allocations:

An array of bytes

A data structure

An object

{
 const int BUFF_SIZE = 128;

 // Allocate on the frame
 char myCharArray[BUFF_SIZE];
 int myIntArray[BUFF_SIZE];
 // Reclaimed when exiting scope
}

1. Define the array as shown by the following code. The array is automatically deleted and its memory
reclaimed when the array variable exits its scope.

const int BUFF_SIZE = 128;

// Allocate on the heap
char* myCharArray = new char[BUFF_SIZE];
int* myIntArray = new int[BUFF_SIZE];

1. Use the new operator with the array syntax shown in this example:

delete [] myCharArray;
delete [] myIntArray;

1. Use the delete operator as follows:

1. Define the structure variable as follows:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/memory-management-examples.md

To allocate data structures on the heapTo allocate data structures on the heap

Allocation of an Object
To allocate an object on the frameTo allocate an object on the frame

To allocate an object on the heapTo allocate an object on the heap

struct MyStructType { int topScore; };
void MyFunc()
{
 // Frame allocation
 MyStructType myStruct;

 // Use the struct
 myStruct.topScore = 297;

 // Reclaimed when exiting scope
}

The memory occupied by the structure is reclaimed when it exits its scope.

// Heap allocation
MyStructType* myStruct = new MyStructType;

// Use the struct through the pointer ...
myStruct->topScore = 297;

delete myStruct;

1. Use new to allocate data structures on the heap and delete to deallocate them, as shown by the following
examples:

{
 CMyClass myClass; // Automatic constructor call here

 myClass.SomeMemberFunction(); // Use the object
}

1. Declare the object as follows:

The destructor for the object is automatically invoked when the object exits its scope.

// Automatic constructor call here
CMyClass* myClass = new CMyClass;

myClass->SomeMemberFunction(); // Use the object

delete myClass; // Destructor invoked during delete

CMyClass myClass("Joe Smith");

1. Use the new operator, which returns a pointer to the object, to allocate objects on the heap. Use the delete
operator to delete them.

The following heap and frame examples assume that the CPerson constructor takes no arguments.

If the argument for the CPerson constructor is a pointer to char, the statement for frame allocation is:

The statement for heap allocation is:

See also

CMyClass* myClass = new CMyClass("Joe Smith");

Memory Management: Heap Allocation

Memory Management: Resizable Memory Blocks
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

See also

The new and delete operators, described in the article Memory Management: Examples, are good for allocating
and deallocating fixed-size memory blocks and objects. Occasionally, your application may need resizable memory
blocks. You must use the standard C run-time library functions malloc, realloc, and free to manage resizable
memory blocks on the heap.

Mixing the new and delete operators with the resizable memory-allocation functions on the same memory block will result
in corrupted memory in the Debug version of MFC. You should not use realloc on a memory block allocated with new.
Likewise, you should not allocate a memory block with the new operator and delete it with free, or use the delete operator
on a block of memory allocated with malloc.

Memory Management: Heap Allocation

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/memory-management-resizable-memory-blocks.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/realloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/free

Message Handling and Mapping
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

This article family describes how messages and commands are processed by the MFC framework and how you
connect them to their handler functions.

In traditional programs for Windows, Windows messages are handled in a large switch statement in a window
procedure. MFC instead uses message maps to map direct messages to distinct class member functions.
Message maps are more efficient than virtual functions for this purpose, and they allow messages to be
handled by the most appropriate C++ object — application, document, view, and so on. You can map a single
message or a range of messages, command IDs, or control IDs.

WM_COMMAND messages — usually generated by menus, toolbar buttons, or accelerators — also use the
message-map mechanism. MFC defines a standard routing of command messages among the application,
frame window, view, and Active documents in your program. You can override this routing if you need to.

Message maps also supply a way to update user-interface objects (such as menus and toolbar buttons),
enabling or disabling them to suit the current context.

For general information about messages and message queues in Windows, see Messages and Message
Queues in the Windows SDK.

Messages and Commands in the Framework

How the framework calls a message handler

How the Framework Searches Message Maps

Declaring Message Handler Functions

Mapping Messages to Functions

How to Display Command Information in the Status Bar

Dynamic update of user-interface objects

How to: Create a Message Map for a Template Class

Concepts
General MFC Topics
CWnd Class
CCmdTarget Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/message-handling-and-mapping.md
https://docs.microsoft.com/windows/desktop/winmsg/messages-and-message-queues

Messages and Commands in the Framework
3/4/2019 • 2 minutes to read • Edit Online

See also

Applications written for Microsoft Windows are "message driven." In response to events such as mouse clicks,
keystrokes, window movements, and so on, Windows sends messages to the proper window. Framework
applications process Windows messages like any other application for Windows. But the framework also
provides some enhancements that make processing messages easier, more maintainable, and better
encapsulated.

The following topics introduce the key terms used in the rest of the article family to discuss messages and
commands:

Messages

Message handlers

Message categories

Windows messages and control-notification messages

Command messages

Message maps

User-interface objects and command IDs

Command targets

Message Handling and Mapping

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/messages-and-commands-in-the-framework.md

Messages
3/4/2019 • 2 minutes to read • Edit Online

See also

The message loop in the Run member function of class CWinApp retrieves queued messages generated by various
events. For example, when the user clicks the mouse, Windows sends several mouse-related messages, such as
WM_LBUTTONDOWN when the left mouse button is pressed and WM_LBUTTONUP when the left mouse
button is released. The framework's implementation of the application message loop dispatches the message to
the appropriate window.

The important categories of messages are described in Message Categories.

Messages and Commands in the Framework

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/messages.md

Message Handlers
3/4/2019 • 2 minutes to read • Edit Online

See also

In MFC, a dedicated handler function processes each separate message. Message-handler functions are member
functions of a class. This documentation uses the terms message-handler member function, message-handler
function, message handler, and handler interchangeably. Some kinds of message handlers are also called
"command handlers."

Writing message handlers accounts for a large proportion of your work in writing a framework application. This
article family describes how the message-processing mechanism works.

What does the handler for a message do It does whatever you want done in response to that message. You can
create the handlers by using the Properties window of the class, and then fill in the handler's code using the source
code editor.

You can use all of the facilities of Microsoft Visual C++ and MFC to write your handlers. For a list of all classes, see
Class Library Overview in the MFC Reference.

Messages and Commands in the Framework

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/message-handlers.md

Message Categories
3/4/2019 • 2 minutes to read • Edit Online

Windows Messages and Control-Notification Messages

Command Messages

See also

What kinds of messages do you write handlers for There are three main categories:

1. Windows messages

This includes primarily those messages beginning with the WM_ prefix, except for WM_COMMAND.
Windows messages are handled by windows and views. These messages often have parameters that are
used in determining how to handle the message.

2. Control notifications

This includes WM_COMMAND notification messages from controls and other child windows to their
parent windows. For example, an edit control sends its parent a WM_COMMAND message containing the
EN_CHANGE control-notification code when the user has taken an action that may have altered text in the
edit control. The window's handler for the message responds to the notification message in some
appropriate way, such as retrieving the text in the control.

The framework routes control-notification messages like other WM_ messages. One exception, however, is
the BN_CLICKED control-notification message sent by buttons when the user clicks them. This message is
treated specially as a command message and routed like other commands.

3. Command messages

This includes WM_COMMAND notification messages from user-interface objects: menus, toolbar buttons,
and accelerator keys. The framework processes commands differently from other messages, and they can
be handled by more kinds of objects, as explained in Command Targets.

Messages in categories 1 and 2 — Windows messages and control notifications — are handled by windows:
objects of classes derived from class CWnd . This includes CFrameWnd , CMDIFrameWnd , CMDIChildWnd , CView ,
CDialog , and your own classes derived from these base classes. Such objects encapsulate an HWND , a handle to a

Windows window.

Messages in category 3 — commands — can be handled by a wider variety of objects: documents, document
templates, and the application object itself in addition to windows and views. When a command directly affects
some particular object, it makes sense to have that object handle the command. For example, the Open command
on the File menu is logically associated with the application: the application opens a specified document upon
receiving the command. So the handler for the Open command is a member function of the application class. For
more about commands and how they are routed to objects, see How the Framework Calls a Handler.

Messages and Commands in the Framework

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/message-categories.md

Mapping Messages
3/4/2019 • 2 minutes to read • Edit Online

See also

Each framework class that can receive messages or commands has its own "message map." The framework uses
message maps to connect messages and commands to their handler functions. Any class derived from class
CCmdTarget can have a message map. Other articles explain message maps in detail and describe how to use

them.

In spite of the name "message map," message maps handle both messages and commands — all three categories
of messages listed in Message Categories.

Messages and Commands in the Framework

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mapping-messages.md

User-Interface Objects and Command IDs
3/4/2019 • 2 minutes to read • Edit Online

See also

Menu items, toolbar buttons, and accelerator keys are "user-interface objects" capable of generating commands.
Each such user-interface object has an ID. You associate a user-interface object with a command by assigning the
same ID to the object and the command. As explained in Messages, commands are implemented as special
messages. The figure "Commands in the Framework" below shows how the framework manages commands.
When a user-interface object generates a command, such as ID_EDIT_CLEAR_ALL , one of the objects in your
application handles the command — in the figure below, the document object's OnEditClearAll function is called
via the document's message map.

Commands in the Framework

The figure "Command Updating in the Framework" below shows how MFC updates user-interface objects such
as menu items and toolbar buttons. Before a menu drops down, or during the idle loop in the case of toolbar
buttons, MFC routes an update command. In the figure below, the document object calls its update command
handler, OnUpdateEditClearAll , to enable or disable the user-interface object.

Command Updating in the Framework

Messages and Commands in the Framework

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/user-interface-objects-and-command-ids.md

Command IDs
3/4/2019 • 2 minutes to read • Edit Online

See also

A command is fully described by its command ID alone (encoded in the WM_COMMAND message). This ID is
assigned to the user-interface object that generates the command. Typically, IDs are named for the functionality of
the user-interface object they are assigned to.

For example, a Clear All item in the Edit menu might be assigned an ID such as ID_EDIT_CLEAR_ALL. The class
library predefines some IDs, particularly for commands that the framework handles itself, such as
ID_EDIT_CLEAR_ALL or ID_FILE_OPEN . You will create other command IDs yourself.

When you create your own menus in the Visual C++ menu editor, it is a good idea to follow the class library's
naming convention as illustrated by ID_FILE_OPEN . Standard Commands explains the standard commands
defined by the class library.

User-Interface Objects and Command IDs

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/command-ids.md

Standard Commands
3/4/2019 • 2 minutes to read • Edit Online

See also

The framework defines many standard command messages. The IDs for these commands typically take the form:

ID_ Source_Item

where Source is usually a menu name and Item is a menu item. For example, the command ID for the New
command on the File menu is ID_FILE_NEW. Standard command IDs are shown in bold type in the
documentation. Programmer-defined IDs are shown in a font that is different from the surrounding text.

The following is a list of some of the most important commands supported:

File Menu Commands
New, Open, Close, Save, Save As, Page Setup, Print Setup, Print, Print Preview, Exit, and most-recently-used files.

Edit Menu Commands
Clear, Clear All, Copy, Cut, Find, Paste, Repeat, Replace, Select All, Undo, and Redo.

View Menu Commands
Toolbar and Status Bar.

Window Menu Commands
New, Arrange, Cascade, Tile Horizontal, Tile Vertical, and Split.

Help Menu Commands
Index, Using Help, and About.

OLE Commands (Edit Menu)
Insert New Object, Edit Links, Paste Link, Paste Special, and typename Object (verb commands).

The framework provides varying levels of support for these commands. Some commands are supported only as
defined command IDs, while others are supported with thorough implementations. For example, the framework
implements the Open command on the File menu by creating a new document object, displaying an Open dialog
box, and opening and reading the file. In contrast, you must implement commands on the Edit menu yourself, since
commands like ID_EDIT_COPY depend on the nature of the data you are copying.

For more information about the commands supported and the level of implementation provided, see Technical
Note 22. The standard commands are defined in the file AFXRES.H.

User-Interface Objects and Command IDs

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/standard-commands.md

Command Targets
3/4/2019 • 2 minutes to read • Edit Online

See also

The figure Commands in the Framework shows the connection between a user-interface object, such as a menu
item, and the handler function that the framework calls to carry out the resulting command when the object is
clicked.

Windows sends messages that are not command messages directly to a window whose handler for the message is
then called. However, the framework routes commands to a number of candidate objects — called "command
targets" — one of which normally invokes a handler for the command. The handler functions work the same way
for both commands and standard Windows messages, but the mechanisms by which they are called are different,
as explained in How the Framework Calls a Handler.

Messages and Commands in the Framework

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/command-targets.md

How the Framework Calls a Handler
3/4/2019 • 2 minutes to read • Edit Online

See also

The following topics first examine how the framework routes commands, then examine how other messages and
control notifications are sent to windows:

Message sending and receiving

How noncommand messages reach their handlers

Command routing

Command Routing Illustration

The OnCmdMsg Handler

Overriding the Standard Command Routing

Message Handling and Mapping

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-the-framework-calls-a-handler.md

Message Sending and Receiving
3/4/2019 • 2 minutes to read • Edit Online

See also

Consider the sending part of the process and how the framework responds.

Most messages result from user interaction with the program. Commands are generated by mouse clicks in menu
items or toolbar buttons or by accelerator keystrokes. The user also generates Windows messages by, for example,
moving or resizing a window. Other Windows messages are sent when events such as program startup or
termination occur, as windows get or lose the focus, and so on. Control-notification messages are generated by
mouse clicks or other user interactions with a control, such as a button or list-box control in a dialog box.

The Run member function of class CWinApp retrieves messages and dispatches them to the appropriate window.
Most command messages are sent to the main frame window of the application. The WindowProc predefined by
the class library gets the messages and routes them differently, depending on the category of message received.

Now consider the receiving part of the process.

The initial receiver of a message must be a window object. Windows messages are usually handled directly by that
window object. Command messages, usually originating in the application's main frame window, get routed to the
command-target chain described in Command Routing.

Each object capable of receiving messages or commands has its own message map that pairs a message or
command with the name of its handler.

When a command-target object receives a message or command, it searches its message map for a match. If it
finds a handler for the message, it calls the handler. For more information about how message maps are searched,
see How the Framework Searches Message Maps. Refer again to the figure Commands in the Framework.

How the Framework Calls a Handler

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/message-sending-and-receiving.md

How Noncommand Messages Reach Their Handlers
3/4/2019 • 2 minutes to read • Edit Online

See also

Unlike commands, standard Windows messages do not get routed through a chain of command targets but are
usually handled by the window to which Windows sends the message. The window might be a main frame
window, an MDI child window, a standard control, a dialog box, a view, or some other kind of child window.

At run time, each Windows window is attached to a window object (derived directly or indirectly from CWnd) that
has its own associated message map and handler functions. The framework uses the message map — as for a
command — to map incoming messages to handlers.

How the Framework Calls a Handler

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-noncommand-messages-reach-their-handlers.md

Command Routing
3/4/2019 • 2 minutes to read • Edit Online

Standard Command RouteStandard Command Route

WHEN AN OBJECT OF THIS TYPE RECEIVES A COMMAND . . .
IT GIVES ITSELF AND OTHER COMMAND-TARGET OBJECTS A
CHANCE TO HANDLE THE COMMAND IN THIS ORDER:

MDI frame window (CMDIFrameWnd) 1. Active CMDIChildWnd

2. This frame window
3. Application (CWinApp object)

Document frame window (CFrameWnd , CMDIChildWnd) 1. Active view
2. This frame window
3. Application (CWinApp object)

View 1. This view
2. Document attached to the view

Document 1. This document
2. Document template attached to the document

Dialog box 1. This dialog box
2. Window that owns the dialog box
3. Application (CWinApp object)

Your responsibility in working with commands is limited to making message-map connections between
commands and their handler functions, a task for which you use the Properties window. You must also write most
command handlers.

Windows messages are usually sent to the main frame window, but command messages are then routed to other
objects. The framework routes commands through a standard sequence of command-target objects, one of which
is expected to have a handler for the command. Each command-target object checks its message map to see if it
can handle the incoming message.

Different command-target classes check their own message maps at different times. Typically, a class routes the
command to certain other objects to give them first chance at the command. If none of those objects handles the
command, the original class checks its own message map. Then, if it can't supply a handler itself, it may route the
command to yet more command targets. The table Standard Command Route below shows how each of the
classes structures this sequence. The general order in which a command target routes a command is:

1. To its currently active child command-target object.

2. To itself.

3. To other command targets.

How expensive is this routing mechanism Compared to what your handler does in response to a command, the
cost of the routing is low. Bear in mind that the framework generates commands only when the user interacts
with a user-interface object.

Where numbered entries in the second column of the preceding table mention other objects, such as a document,
see the corresponding item in the first column. For instance, when you read in the second column that the view
forwards a command to its document, see the "Document" entry in the first column to follow the routing further.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/command-routing.md

See also
How the Framework Calls a Handler

Command Routing Illustration
3/4/2019 • 2 minutes to read • Edit Online

See also

To illustrate, consider a command message from a Clear All menu item in an MDI application's Edit menu.
Suppose the handler function for this command happens to be a member function of the application's document
class. Here's how that command reaches its handler after the user chooses the menu item:

1. The main frame window receives the command message first.

2. The main MDI frame window gives the currently active MDI child window a chance to handle the
command.

3. The standard routing of an MDI child frame window gives its view a chance at the command before
checking its own message map.

4. The view checks its own message map first and, finding no handler, next routes the command to its
associated document.

5. The document checks its message map and finds a handler. This document member function is called and
the routing stops.

If the document did not have a handler, it would next route the command to its document template. Then the
command would return to the view and then the frame window. Finally, the frame window would check its
message map. If that check failed as well, the command would be routed back to the main MDI frame window and
then to the application object — the ultimate destination of unhandled commands.

How the Framework Calls a Handler

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/command-routing-illustration.md

OnCmdMsg Handler
3/4/2019 • 2 minutes to read • Edit Online

See also

To accomplish the routing of commands, each command target calls the OnCmdMsg member function of the next
command target in the sequence. Command targets use OnCmdMsg to determine whether they can handle a
command and to route it to another command target if they cannot handle it.

Each command-target class may override the OnCmdMsg member function. The overrides let each class route
commands to a particular next target. A frame window, for example, always routes commands to its current child
window or view, as shown in the table Standard Command Route.

The default CCmdTarget implementation of OnCmdMsg uses the message map of the command-target class to
search for a handler function for each command message it receives — in the same way that standard messages
are searched. If it finds a match, it calls the handler. Message-map searching is explained in How the Framework
Searches Message Maps.

How the Framework Calls a Handler

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/oncmdmsg-handler.md

Overriding the Standard Command Routing
3/4/2019 • 2 minutes to read • Edit Online

See also

In rare cases when you must implement some variation of the standard framework routing, you can override it.
The idea is to change the routing in one or more classes by overriding OnCmdMsg in those classes. Do so:

In the class that breaks the order to pass to a nondefault object.

In the new nondefault object or in command targets it might in turn pass commands to.

If you insert some new object into the routing, its class must be a command-target class. In your overriding
versions of OnCmdMsg , be sure to call the version that you're overriding. See the OnCmdMsg member function of
class CCmdTarget in the MFC Reference and the versions in such classes as CView and CDocument in the supplied
source code for examples.

How the Framework Calls a Handler

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/overriding-the-standard-command-routing.md

How the Framework Searches Message Maps
3/4/2019 • 2 minutes to read • Edit Online

See also

The framework searches the message-map table for matches with incoming messages. Once you write a
message-map entry for each message you want a class to handle and write the corresponding handlers, the
framework calls your handlers automatically. The following topics explain message-map searching:

Where to find message maps

Derived message maps

Mapping ranges of messages, command IDs, or control IDs to one handler

Message Handling and Mapping

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-the-framework-searches-message-maps.md

Where to Find Message Maps
3/4/2019 • 2 minutes to read • Edit Online

BEGIN_MESSAGE_MAP(CMyView, CFormView)
 ON_WM_MOUSEACTIVATE()
 ON_COMMAND(ID_EDIT_CUT, &CMyView::OnEditCut)
 ON_UPDATE_COMMAND_UI(ID_EDIT_CUT, &CMyView::OnUpdateEditCut)
 ON_BN_CLICKED(IDC_MYBUTTON, &CMyView::OnBnClickedMybutton)
 ON_WM_CREATE()
END_MESSAGE_MAP()

NOTENOTE

See also

When you create a new skeleton application with the Application Wizard, the Application Wizard writes a message
map for each command-target class it creates for you. This includes your derived application, document, view, and
frame-window classes. Some of these message maps already have the entries supplied by the Application Wizard
for certain messages and predefined commands, and some are just placeholders for handlers that you will add.

A class's message map is located in the .CPP file for the class. Working with the basic message maps that the
Application Wizard creates, you use the Properties window to add entries for the messages and commands that
each class will handle. A typical message map might look like the following after you add some entries:

The message map consists of a collection of macros. Two macros, BEGIN_MESSAGE_MAP and
END_MESSAGE_MAP, bracket the message map. Other macros, such as ON_COMMAND , fill in the message map's
contents.

The message-map macros are not followed by semicolons.

When you use the Add Class wizard to create a new class, it provides a message map for the class. Alternatively,
you can create a message map manually using the source code editor.

How the Framework Searches Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/where-to-find-message-maps.md

Derived Message Maps
3/4/2019 • 2 minutes to read • Edit Online

BEGIN_MESSAGE_MAP(CMyView, CFormView)

See also

During message handling, checking a class's own message map is not the end of the message-map story. What
happens if class CMyView (derived from CView) has no matching entry for a message

Keep in mind that CView , the base class of CMyView , is derived in turn from CWnd . Thus CMyView is a CView and is
a CWnd . Each of those classes has its own message map. The figure "A View Hierarchy" below shows the
hierarchical relationship of the classes, but keep in mind that a CMyView object is a single object that has the
characteristics of all three classes.

A View Hierarchy

So if a message can't be matched in class CMyView 's message map, the framework also searches the message map
of its immediate base class. The BEGIN_MESSAGE_MAP macro at the start of the message map specifies two class
names as its arguments:

The first argument names the class to which the message map belongs. The second argument provides a
connection with the immediate base class — CView here — so the framework can search its message map, too.

The message handlers provided in a base class are thus inherited by the derived class. This is very similar to
normal virtual member functions without needing to make all handler member functions virtual.

If no handler is found in any of the base-class message maps, default processing of the message is performed. If
the message is a command, the framework routes it to the next command target. If it is a standard Windows
message, the message is passed to the appropriate default window procedure.

To speed message-map matching, the framework caches recent matches on the likelihood that it will receive the
same message again. One consequence of this is that the framework processes unhandled messages quite
efficiently. Message maps are also more space-efficient than implementations that use virtual functions.

How the Framework Searches Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/derived-message-maps.md

Declaring Message Handler Functions
3/4/2019 • 2 minutes to read • Edit Online

See also

Certain rules and conventions govern the names of your message-handler functions. These depend on the
message category, as described in the following topics:

Handlers for standard Windows messages

Handlers for commands and control notifications

Handlers for ranges of messages

Handling reflected messages

Message Handling and Mapping

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/declaring-message-handler-functions.md

Handlers for Standard Windows Messages
3/4/2019 • 2 minutes to read • Edit Online

C a u t i o nC a u t i o n

int CMyView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CFormView::OnCreate(lpCreateStruct) == -1)
 return -1;

 // TODO: Add your specialized creation code here

 return 0;
}

See also

Default handlers for standard Windows messages (WM_) are predefined in class CWnd . The class library bases
names for these handlers on the message name. For example, the handler for the WM_PAINT message is
declared in CWnd as:

afx_msg void OnPaint();

The afx_msg keyword suggests the effect of the C++ virtual keyword by distinguishing the handlers from other
CWnd member functions. Note, however, that these functions are not actually virtual; they are instead implemented

through message maps. Message maps depend solely on standard preprocessor macros, not on any extensions to
the C++ language. The afx_msg keyword resolves to white space after preprocessing.

To override a handler defined in a base class, simply define a function with the same prototype in your derived
class and to make a message-map entry for the handler. Your handler "overrides" any handler of the same name in
any of your class's base classes.

In some cases, your handler should call the overridden handler in the base class so the base class(es) and Windows
can operate on the message. Where you call the base-class handler in your override depends on the circumstances.
Sometimes you must call the base-class handler first and sometimes last. Sometimes you call the base-class
handler conditionally, if you choose not to handle the message yourself. Sometimes you should call the base-class
handler, then conditionally execute your own handler code, depending on the value or state returned by the base-
class handler.

It is not safe to modify the arguments passed into a handler if you intend to pass them to a base-class handler. For
example, you might be tempted to modify the nChar argument of the OnChar handler (to convert to uppercase, for
example). This behavior is fairly obscure, but if you need to accomplish this effect, use the CWnd member function
SendMessage instead.

How do you determine the proper way to override a given message When the Properties window writes the
skeleton of the handler function for a given message — an OnCreate handler for WM_CREATE , for example — it
sketches in the form of the recommended overridden member function. The following example recommends that
the handler first call the base-class handler and proceed only on condition that it does not return -1.

By convention, the names of these handlers begin with the prefix "On." Some of these handlers take no arguments,
while others take several. Some also have a return type other than void. The default handlers for all WM_
messages are documented in the MFC Reference as member functions of class CWnd whose names begin with
"On." The member function declarations in CWnd are prefixed with afx_msg.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/handlers-for-standard-windows-messages.md

Declaring Message Handler Functions

Handlers for Commands and Control Notifications
3/4/2019 • 2 minutes to read • Edit Online

afx_msg void OnEditCut();

afx_msg void OnBnClickedMybutton();

See also

There are no default handlers for commands or control-notification messages. Therefore, you are bound only by
convention in naming your handlers for these categories of messages. When you map the command or control
notification to a handler, the Properties windows proposes a name based on the command ID or control-
notification code. You can accept the proposed name, change it, or replace it.

Convention suggests that you name handlers in both categories for the user-interface object they represent. Thus
a handler for the Cut command on the Edit menu might be named

Because the Cut command is so commonly implemented in applications, the framework predefines the command
ID for the Cut command as ID_EDIT_CUT. For a list of all predefined command IDs, see the file AFXRES.H. For
more information, see Standard Commands.

In addition, convention suggests a handler for the BN_CLICKED notification message from a button labeled "My
Button" might be named

You might assign this command an ID of IDC_MY_BUTTON because it is equivalent to an application-specific
user-interface object.

Both categories of messages take no arguments and return no value.

Declaring Message Handler Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/handlers-for-commands-and-control-notifications.md

Handlers for Message-Map Ranges
3/4/2019 • 3 minutes to read • Edit Online

Writing the Message-Map Entry

ON_COMMAND_RANGE(ID_MYCMD_ONE, ID_MYCMD_TEN, &OnDoSomething)

This article explains how to map a range of messages to a single message handler function (instead of mapping
one message to only one function).

There are times when you need to process more than one message or control notification in exactly the same way.
At such times, you might wish to map all of the messages to a single handler function. Message-map ranges allow
you to do this for a contiguous range of messages:

You can map ranges of command IDs to:

A command handler function.

A command update handler function.

You can map control-notification messages for a range of control IDs to a message handler function.

Topics covered in this article include:

Writing the message-map entry

Declaring the handler function

Example for a range of command IDs

Example for a range of control IDs

In the .CPP file, add your message-map entry, as shown in the following example:

The message-map entry consists of the following items:

The message-map range macro:

ON_COMMAND_RANGE

ON_UPDATE_COMMAND_UI_RANGE

ON_CONTROL_RANGE

Parameters to the macro:

The first two macros take three parameters:

The command ID that starts the range

The command ID that ends the range

The name of the message handler function

The range of command IDs must be contiguous.

The third macro, ON_CONTROL_RANGE , takes an additional first parameter: a control-notification message, such

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/handlers-for-message-map-ranges.md

Declaring the Handler Function

public:
 afx_msg void OnDoSomething(UINT nID);

Example for a Range of Command IDs

ON_COMMAND_RANGE(ID_VIEW_ZOOM25, ID_VIEW_ZOOM300, &OnZoom)

public:
 afx_msg void OnZoom(UINT nID);

Example for a Range of Control IDs

as EN_CHANGE .

Add your handler function declaration in the .H file. The following code shows how this might look, as shown
below:

Handler functions for single commands normally take no parameters. With the exception of update handler
functions, handler functions for message-map ranges require an extra parameter, nID, of type UINT. This
parameter is the first parameter. The extra parameter accommodates the extra command ID needed to specify
which command the user actually chose.

For more information about parameter requirements for updating handler functions, see Example for a Range of
Command IDs.

When might you use ranges One example is in handling commands like the Zoom command in the MFC sample
HIERSVR. This command zooms the view, scaling it between 25% and 300% of its normal size. HIERSVR's view
class uses a range to handle the Zoom commands with a message-map entry resembling this:

When you write the message-map entry, you specify:

Two command IDs, beginning and ending a contiguous range.

Here they are ID_VIEW_ZOOM25 and ID_VIEW_ZOOM300.

The name of the handler function for the commands.

Here it's OnZoom .

The function declaration would resemble this:

The case of update handler functions is similar, and likely to be more widely useful. It's quite common to write
ON_UPDATE_COMMAND_UI handlers for a number of commands and find yourself writing, or copying, the same code

over and over. The solution is to map a range of command IDs to one update handler function using the
ON_UPDATE_COMMAND_UI_RANGE macro. The command IDs must form a contiguous range. For an example, see the
OnUpdateZoom handler and its ON_UPDATE_COMMAND_UI_RANGE message-map entry in the HIERSVR sample's view

class.

Update handler functions for single commands normally take a single parameter, pCmdUI, of type CCmdUI* .
Unlike handler functions, update handler functions for message-map ranges do not require an extra parameter,
nID, of type UINT. The command ID, which is needed to specify which command the user actually chose, is found
in the CCmdUI object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ON_CONTROL_RANGE(BN_CLICKED, IDC_BUTTON1, IDC_BUTTON10, OnButtonClicked)

void CRangesView::OnButtonClicked(UINT nID)
{
 int nButton = nID - IDC_BUTTON1;
 ASSERT(nButton >= 0 && nButton < 10);
 // ...
}

See also

Another interesting case is mapping control-notification messages for a range of control IDs to a single handler.
Suppose the user can click any of 10 buttons. To map all 10 buttons to one handler, your message-map entry
would look like this:

When you write the ON_CONTROL_RANGE macro in your message map, you specify:

A particular control-notification message.

Here it's BN_CLICKED .

The control ID values associated with the contiguous range of controls.

Here these are IDC_BUTTON1 and IDC_BUTTON10.

The name of the message handler function.

Here it's OnButtonClicked .

When you write the handler function, specify the extra UINT parameter, as shown in the following:

The OnButtonClicked handler for a single BN_CLICKED message takes no parameters. The same handler for a
range of buttons takes one UINT. The extra parameter allows for identifying the particular control responsible for
generating the BN_CLICKED message.

The code shown in the example is typical: converting the value passed to an int within the message range and
asserting that this is the case. Then you might take some different action depending on which button was clicked.

Declaring Message Handler Functions

Handling Reflected Messages
3/4/2019 • 2 minutes to read • Edit Online

What do you want to do

See also

Message reflection lets you handle messages for a control, such as WM_CTLCOLOR, WM_COMMAND , and
WM_NOTIFY , within the control itself. This makes the control more self-contained and portable. The mechanism
works with Windows common controls as well as with ActiveX controls (formerly called OLE controls).

Message reflection lets you reuse your CWnd -derived classes more readily. Message reflection works via
CWnd::OnChildNotify, using special ON_XXX_REFLECT message map entries: for example,
ON_CTLCOLOR_REFLECT and ON_CONTROL_REFLECT. Technical Note 62 explains message reflection in
more detail.

Learn more about message reflection

Implement message reflection for a common control

Implement message reflection for an ActiveX control

Declaring Message Handler Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/handling-reflected-messages.md

How to: Display Command Information in the Status
Bar
3/4/2019 • 2 minutes to read • Edit Online

See also

When you run the Application Wizard to create the skeleton of your application, you can support a toolbar and a
status bar. Just one option in the Application Wizard supports both. When a status bar is present, the application
automatically provides helpful feedback as the user moves the pointer over items on the menus. The application
automatically displays a prompt string in the status bar when the menu item is highlighted. For example, when the
user moves the pointer over the Cut command on the Edit menu, the status bar might display "Cuts the selection
and puts it on the Clipboard" in the message area of the status bar. The prompt helps the user understand the
purpose of the menu item. This also works when the user clicks a toolbar button.

You can add to this status-bar help by defining prompt strings for menu items that you add to the program. To do
this, provide the prompt strings when you edit the properties of the menu item in the menu editor. The strings you
define are stored in the application resource file; they have the same IDs as the commands they explain.

By default, the Application Wizard adds AFX_IDS_IDLEMESSAGE , the ID for a standard "Ready" message, which
is displayed when the program is waiting for new messages. If you specify the Context-Sensitive Help option in
the Application Wizard, the message is changed to "For Help, press F1."

Message Handling and Mapping

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-to-display-command-information-in-the-status-bar.md

How to: Create a Message Map for a Template Class
3/4/2019 • 3 minutes to read • Edit Online

Example

// Extends the CListBox class to provide synchronization with
// an external data source
template <typename CollectionT>
class CSyncListBox : public CListBox
{
public:
 CSyncListBox();
 virtual ~CSyncListBox();

 afx_msg void OnPaint();
 afx_msg void OnDestroy();
 afx_msg LRESULT OnSynchronize(WPARAM wParam, LPARAM lParam);
 DECLARE_MESSAGE_MAP()

 // ...additional functionality as needed
};

Message mapping in MFC provides an efficient way to direct Windows messages to an appropriate C++ object
instance. Examples of MFC message map targets include application classes, document and view classes, control
classes, and so on.

Traditional MFC message maps are declared using the BEGIN_MESSAGE_MAP macro to declare the start of the
message map, a macro entry for each message-handler class method, and finally the END_MESSAGE_MAP
macro to declare the end of the message map.

One limitation with the BEGIN_MESSAGE_MAP macro occurs when it is used in conjunction with a class
containing template arguments. When used with a template class, this macro will cause a compile-time error due
to the missing template parameters during macro expansion. The BEGIN_TEMPLATE_MESSAGE_MAP macro was
designed to allow classes containing a single template argument to declare their own message maps.

Consider an example where the MFC CListBox class is extended to provide synchronization with an external data
source. The fictitious CSyncListBox class is declared as follows:

The CSyncListBox class is templated on a single type that describes the data source it will synchronize with. It also
declares three methods that will participate in the message map of the class: OnPaint , OnDestroy , and
OnSynchronize . The OnSynchronize method is implemented as follows:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-to-create-a-message-map-for-a-template-class.md

template <class CollectionT>
LRESULT CSyncListBox<CollectionT>::OnSynchronize(WPARAM, LPARAM lParam)
{
 CollectionT* pCollection = (CollectionT*)(lParam);

 ResetContent();

 if(pCollection != NULL)
 {
 INT nCount = (INT)pCollection->GetCount();
 for(INT n = 0; n < nCount; n++)
 {
 CString s = StringizeElement(pCollection, n);
 AddString(s);
 }
 }

 return 0L;
}

// Template function for converting an element within a collection
// to a CString object
template<typename CollectionT>
CString StringizeElement(CollectionT* pCollection, INT iIndex);

BEGIN_MESSAGE_MAP(CSyncListBox, CListBox)
 ON_WM_PAINT()
 ON_WM_DESTROY()
 ON_MESSAGE(LBN_SYNCHRONIZE, OnSynchronize)
END_MESSAGE_MAP()

#define LBN_SYNCHRONIZE (WM_USER + 1)

BEGIN_TEMPLATE_MESSAGE_MAP(CSyncListBox, CollectionT, CListBox)
 ON_WM_PAINT()
 ON_WM_DESTROY()
 ON_MESSAGE(LBN_SYNCHRONIZE, OnSynchronize)
END_MESSAGE_MAP()

The above implementation allows the CSyncListBox class to be specialized on any class type that implements the
GetCount method, such as CArray , CList , and CMap . The StringizeElement function is a template function

prototyped by the following:

Normally, the message map for this class would be defined as:

where LBN_SYNCHRONIZE is a custom user message defined by the application, such as:

The above macro map will not compile, due to the fact that the template specification for the CSyncListBox class
will be missing during macro expansion. The BEGIN_TEMPLATE_MESSAGE_MAP macro solves this by
incorporating the specified template parameter into the expanded macro map. The message map for this class
becomes:

The following demonstrates sample usage of the CSyncListBox class using a CStringList object:

void CSyncListBox_Test(CWnd* pParentWnd)
{
 CSyncListBox<CStringList> ctlStringLB;
 ctlStringLB.Create(WS_CHILD | WS_VISIBLE | LBS_STANDARD | WS_HSCROLL,
 CRect(10,10,200,200), pParentWnd, IDC_MYSYNCLISTBOX);

 // Create a CStringList object and add a few strings
 CStringList stringList;
 stringList.AddTail(_T("A"));
 stringList.AddTail(_T("B"));
 stringList.AddTail(_T("C"));

 // Send a message to the list box control to synchronize its
 // contents with the string list
 ctlStringLB.SendMessage(LBN_SYNCHRONIZE, 0, (LPARAM)&stringList);

 // Verify the contents of the list box by printing out its contents
 INT nCount = ctlStringLB.GetCount();
 for(INT n = 0; n < nCount; n++)
 {
 TCHAR szText[256];
 ctlStringLB.GetText(n, szText);
 TRACE(_T("%s\n"), szText);
 }
}

template<>
CString StringizeElement(CStringList* pStringList, INT iIndex)
{
 if (pStringList != NULL && iIndex < pStringList->GetCount())
 {
 POSITION pos = pStringList->GetHeadPosition();
 for(INT i = 0; i < iIndex; i++)
 {
 pStringList->GetNext(pos);
 }
 return pStringList->GetAt(pos);
 }
 return CString(); // or throw, depending on application requirements
}

See also

To complete the test, the StringizeElement function must be specialized to work with the CStringList class:

BEGIN_TEMPLATE_MESSAGE_MAP
Message Handling and Mapping

MFC COM
3/4/2019 • 2 minutes to read • Edit Online

In This Section

See also

A subset of MFC is designed to support COM, while most of the Active Template Library (ATL) is designed for
COM programming. This section of topics describes MFC's support for COM.

Active technologies (such as ActiveX controls, Active document containment, OLE, and so on) use the Component
Object Model (COM) to enable software components to interact with one another in a networked environment,
regardless of the language with which they were created. Active technologies can be used to create applications
that run on the desktop or the Internet. For more information see Introduction to COM or The Component Object
Model.

Active technologies include both client and server technologies, including the following:

ActiveX controls are interactive objects that can be used in containers such as a Web site. For more
information on ActiveX controls, see:

MFC ActiveX Controls

ActiveX Controls on the Internet

Overview: Internet

Upgrade an Existing ActiveX Control to be Used on the Internet

Debugging an ActiveX Control

Active scripting controls the integrated behavior of one or more ActiveX controls from a browser or server.
For more information on active scripting, see Active Technology on the Internet.

Automation (formerly known as OLE Automation) makes it possible for one application to manipulate
objects implemented in another application, or to "expose" objects so they can be manipulated.

The automated object might be local or remote (on another machine accessible across a network).
Automation is available for both OLE and COM objects.

This section also provides information on how to write COM components using MFC, for example, in
Connection Points.

For a discussion of what is still called OLE versus what is now called active technology, see the topics on OLE.

Active Document Containment

Automation

Connection Points

MFC ActiveX Controls

Concepts

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-com.md
https://docs.microsoft.com/windows/desktop/com/the-component-object-model
https://docs.microsoft.com/visualstudio/debugger/how-to-debug-an-activex-control

Active Document Containment
3/4/2019 • 2 minutes to read • Edit Online

Sample Programs

See also

Active document containment is a technology that provides a single frame in which to work with documents,
instead of forcing you to create and use multiple application frames for each document type. It differs from basic
OLE technology in that OLE works with embedded objects within a compound document in which only a single
piece of content can be active. With active document containment, you activate an entire document (that is, an
entire application, including associated menus, toolbars, and so on) within the context of a single frame.

The active document containment technology was originally developed for Microsoft Office to implement Office
Binder. However, the technology is flexible enough to support active document containers other than Office
Binder and can support document servers other than Office and Office-compatible applications.

The application that hosts active documents is called an active document container. Examples of such containers
are the Microsoft Office Binder or Microsoft Internet Explorer.

Active document containment is implemented as a set of extensions to OLE documents, the compound document
technology of OLE. The extensions are additional interfaces that allow an embeddable, in-place object to represent
an entire document instead of a single piece of embedded content. As with OLE documents, active document
containment uses a container that provides the display space for active documents, and servers that provide the
user interface and manipulation capabilities for the active documents themselves.

An active document server is an application (such as Word, Excel, or PowerPoint) that supports one or more active
document classes, where each object itself supports the extension interfaces that allow the object to be activated
in a suitable container.

An active document (provided from an active document server such as Word or Excel) is essentially a full-scale,
conventional document that is embedded as an object within another active document container. Unlike
embedded objects, active documents have complete control over their pages, and the full interface of the
application (with all its underlying commands and tools) is available to the user to edit them.

An active document is best understood by distinguishing it from a standard OLE embedded object. Following the
OLE convention, an embedded object is one that is displayed within the page of the document that owns it, and
the document is managed by an OLE container. The container stores the embedded object's data with the rest of
the document. However, embedded objects are limited in that they do not control the page on which they appear.

Users of an active document container application can create active documents (called sections in Office Binder)
using their favorite applications (provided these applications are active document enabled), yet the users can
manage the resulting project as a single entity, which can be uniquely named, saved, printed, and so on. In the
same way, a user of an Internet browser can treat the entire network, as well as local file systems, as a single
document storage entity with the ability to browse the documents in that storage from a single location.

The MFCBIND sample illustrates the implementation of an active document container application.

MFC COM

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/active-document-containment.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Example of Active Document Containment: Office
Binder
3/4/2019 • 2 minutes to read • Edit Online

See also

The Microsoft Office Binder is an example of an active document container. An Office Binder includes two primary
panes, as containers typically do. The left pane contains icons that correspond to active documents in the Binder.
Each document is called a section within the Binder. For example, a Binder can contain Word documents,
PowerPoint files, Excel spreadsheets, and so on.

Clicking an icon in the left pane activates the corresponding active document. The right pane of the Binder then
displays the contents of the currently selected active document.

If you open and activate a Word document in a Binder, the Word menu bar and toolbars appear at the top of the
view frame, and you can edit the document's contents using any Word command or tool. However, the menu bar is
a combination of both the Binder's and Word's menu bars. Because both Binder and Word have Help menus, the
contents of the respective menus are merged. Active document containers such as Office Binder automatically
provide Help menu merging; for more information, see Help Menu Merging.

When you select an active document of another application type, the Binder's interface changes to accommodate
that of the active document's application type. For example, if a Binder contains an Excel spreadsheet, you will
observe that the menus in the Binder change when you select the Excel spreadsheet section.

There are, of course, other possible types of containers beside Binders. File Explorer uses the typical dual-pane
interface in which the left pane uses a tree control to display a hierarchical list of directories in a drive or network,
while the right pane displays the files contained in the currently selected directory. An Internet browser-type of
container (such as Microsoft Internet Explorer), rather than using a dual-pane interface, usually has a single frame
and provides navigation using hyperlinks.

Active Document Containment

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/example-of-active-document-containment-office-binder.md

Creating an Active Document Container Application
3/4/2019 • 2 minutes to read • Edit Online

To create an active document container applicationTo create an active document container application

The simplest and most recommended way to create an active document container application is to create an MFC
EXE container application using the MFC Application Wizard, then modify the application to support active
document containment.

1. From the File menu, click Projectfrom the New submenu.

2. From the left pane, click Visual C++ project type.

3. Select MFC Application from the right pane.

4. Name the project MyProj, click OK.

5. Select the Compound Document Support page.

6. Select the Container or Container/Full-server option.

7. Select the Active document container check box.

8. Click Finish.

9. When the MFC Application Wizard finishes generating the application, open the following files using
Solution Explorer:

MyProjview.cpp

10. In MyProjview.cpp, make the following changes:

if (!CView::OnPreparePrinting(pInfo))
 return FALSE;

if (!COleDocObjectItem::OnPreparePrinting(this, pInfo))
 return FALSE;

return TRUE;

In CMyProjView::OnPreparePrinting , replace the function contents with the following code:

OnPreparePrinting provides printing support. This code replaces DoPreparePrinting , which is the default
print preparation.

Active document containment provides an improved printing scheme:

You can first call the active document through its IPrint interface and tell it to print itself. This is
different from previous OLE containment, in which the container had to render an image of the
contained item onto the printer CDC object.

If that fails, tell the contained item to print itself through its IOleCommandTarget interface

If that fails, make your own rendering of the item.

The static member functions COleDocObjectItem::OnPrint and COleDocObjectItem::OnPreparePrinting , as
implemented in the previous code, handle this improved printing scheme.

11. Add any implementation of your own and build the application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-an-active-document-container-application.md

See also
Active Document Containment

Active Document Containers
3/4/2019 • 4 minutes to read • Edit Online

Container Requirements

An active document container, such as Microsoft Office Binder or Internet Explorer, allows you to work with
several documents of different application types within a single frame (instead of forcing you to create and use
multiple application frames for each document type).

MFC provides full support for active document containers in the COleDocObjectItem class. You can use the MFC
Application Wizard to create an active document container by selecting the Active document container check
box on the Compound Document Support page of the MFC Application Wizard. For more information, see
Creating an Active Document Container Application.

For more information about active document containers, see:

Container Requirements

Document Site Objects

View Site Objects

Frame Object

Help Menu Merging

Programmatic Printing

Command Targets

Active document support in an active document container implies more than just interface implementations: it
also requires knowledge of using the interfaces of a contained object. The same applies to active document
extensions, where the container must also know how to use those extension interfaces on the active documents
themselves.

An active document container that integrates active documents must:

Be capable of handling object storage through the IPersistStorage interface, that is, it must provide an
IStorage instance to each active document.

Support the basic embedding features of OLE documents, necessitating "site" objects (one per document or
embedding) that implement IOleClientSite and IAdviseSink .

Support in-place activation of embedded objects or active documents. The container's site objects must
implement IOleInPlaceSite and the container's frame object must provide IOleInPlaceFrame .

Support the active documents' extensions by implementing IOleDocumentSite to provide the mechanism
for the container to talk to the document. Optionally, the container can implement the active document
interfaces IOleCommandTarget and IContinueCallback to pick up simple commands such as printing or
saving.

The frame object, the view objects, and the container object can optionally implement IOleCommandTarget to
support the dispatch of certain commands, as discussed in Command Targets. View and container objects can also
optionally implement IPrint and IContinueCallback , to support programmatic printing, as discussed in
Programmatic Printing.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/active-document-containers.md

Document Site Objects

interface IOleDocumentSite : IUnknown
{
 HRESULT ActivateMe(IOleDocumentView *pViewToActivate);
}

View Site Objects

Frame Object

The following figure shows the conceptual relationships between a container and its components (at left), and the
active document and its views (at right). The active document manages storage and data, and the view displays or
optionally prints that data. Interfaces in bold are those required for active document participation; those bold and
italic are optional. All other interfaces are required.

A document that supports only a single view can implement both the view and document components (that is,
their corresponding interfaces) on a single concrete class. In addition, a container site that only supports one view
at a time can combine the document site and the view site into a single concrete site class. The container's frame
object, however, must remain distinct, and the container's document component is merely included here to give a
complete picture of the architecture; it is not affected by the active document containment architecture.

In the active document containment architecture, a document site is the same as a client site object in OLE
Documents with the addition of the IOleDocument interface:

The document site is conceptually the container for one or more "view site" objects. Each view site object is
associated with individual view objects of the document managed by the document site. If the container only
supports a single view per document site, then it can implement the document site and the view site with a single
concrete class.

A container's view site object manages the display space for a particular view of a document. In addition to
supporting the standard IOleInPlaceSite interface, a view site also generally implements IContinueCallback for
programmatic printing control. (Note that the view object never queries for IContinueCallback so it can actually
be implemented on any object the container desires.)

A container that supports multiple views must be able to create multiple view site objects within the document
site. This provides each view with separate activation and deactivation services as provided through
IOleInPlaceSite .

The container's frame object is, for the most part, the same frame that is used for in-place activation in OLE
Documents, that is, the one that handles menu and toolbar negotiation. A view object has access to this frame
object through IOleInPlaceSite::GetWindowContext , which also provides access to the container object representing
the container document (which can handle pane-level toolbar negotiation and contained object enumeration).

See also

An active document container can augment the frame by adding IOleCommandTarget . This allows it to receive
commands that originate in the active document's user interface in the same way that this interface can allow a
container to send the same commands (such as File New, Open, Save As, Print; Edit Copy, Paste, Undo, and
others) to an active document. For more information, see Command Targets.

Active Document Containment

Help Menu Merging
3/4/2019 • 4 minutes to read • Edit Online

When an object is active within a container, the menu merging protocol of OLE Documents gives the object
complete control of the Help menu. As a result, the container's Help topics are not available unless the user
deactivates the object. The active document containment architecture expands on the rules for in-place menu
merging to allow both the container and an active document that is active to share the menu. The new rules are
simply additional conventions about what component owns what part of the menu and how the shared menu is
constructed.

The new convention is simple. In active documents, the Help menu has two top-level menu items organized as
follows:

Help

Container Help >

Object Help >

For example, when a Word section is active in the Office Binder, then the Help menu would appear as follows:

Help

Binder Help >

Word Help >

Both menu items are cascading menus under which any additional menu items specific to the container and the
object are provided to the user. What items appear here will vary with the container and objects involved.

To construct this merged Help menu, the active document containment architecture modifies the normal OLE
Documents procedure. According to OLE Documents, the merged menu bar can have six groups of menus,
namely File, Edit, Container, Object, Window, Help, in that order. In each group, there can be zero or more
menus. The groups File, Container, and Window belong to the container and the groups Edit, Object, and Help
belong to the object. When the object wants to do menu merging, it creates a blank menu bar and passes it to the
container. The container then inserts its menus, by calling IOleInPlaceFrame::InsertMenus . The object also passes a
structure that is an array of six LONG values (OLEMENUGROUPWIDTHS). After inserting the menus, the
container marks how many menus it added in each one of its groups, and then returns. Then the object inserts its
menus, paying attention to the count of menus in each container group. Finally, the object passes the merged
menu bar and the array (which contains the count of menus in each group) to OLE, which returns an opaque
"menu descriptor" handle. Later the object passes that handle and the merged menu bar to the container, via
IOleInPlaceFrame::SetMenu . At this time, the container displays the merged menu bar and also passes the handle

to OLE, so that OLE can do proper dispatching of menu messages.

In the modified active document procedure, the object must first initialize the OLEMENUGROUPWIDTHS
elements to zero before passing it to the container. Then the container performs a normal menu insertion with one
exception: The container inserts a Help menu as the last item and stores a value of 1 in the last (sixth) entry of the
OLEMENUGROUPWIDTHS array (that is, width[5], which belongs to the object's Help group). This Help menu
will have only one item which is a submenu, the "Container Help >" cascade menu as previously described.

The object then executes its normal menu insertion code, except that before inserting its Help menu, it checks the
sixth entry of the OLEMENUGROUPWIDTHS array. If the value is 1 and the name of the last menu is Help (or
the appropriate localized string), then the object inserts its Help menu as submenu of the container's Help menu.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/help-menu-merging.md

See also

The object then sets the sixth element of OLEMENUGROUPWIDTHS to zero and increments the fifth element
by one. This lets OLE know that the Help menu belongs to the container and the menu messages corresponding
to that menu (and its submenus) should be routed to the container. It is then the container's responsibility to
forward WM_INITMENUPOPUP , WM_SELECT, WM_COMMAND , and other menu-related messages that
belong to the object's portion of the Help menu. This is accomplished by using WM_INITMENU to clear a flag
that tells the container whether the user has navigated into the object's Help menu. The container then watches
WM_MENUSELECT for entry into or exit from any item on the Help menu that the container did not add itself.
On entry, it means the user has navigated into an object menu, so the container sets the "in object Help menu" flag
and uses the state of that flag to forward any WM_MENUSELECT, WM_INITMENUPOPUP , and
WM_COMMAND messages, as a minimum, to the object window. (On exit, the container clears the flag and then
processes these same messages itself.) The container should use the window returned from the object's
IOleInPlaceActiveObejct::GetWindow function as the destination for these messages.

If the object detects a zero in the sixth element of OLEMENUGROUPWIDTHS, it proceeds according to the
normal OLE Documents rules. This procedure covers containers that do participate in Help menu merging as well
as those that do not.

When the object calls IOleInPlaceFrame::SetMenu , before displaying the merged menu bar, the container checks
whether the Help menu has an additional submenu, in addition to what the container has inserted. If so, the
container leaves its Help menu in the merged menu bar. If the Help menu does not have an additional submenu,
the container will remove its Help menu from the merged menu bar. This procedure covers objects that
participate in Help menu merging as well as those that do not.

Finally, when it is time to disassemble the menu, the object removes the inserted Help menu in addition to
removing the other inserted menus. When the container removes its menus, it will remove its Help menu in
addition to the other menus that it has inserted.

Active Document Containers

Programmatic Printing
3/4/2019 • 2 minutes to read • Edit Online

interface IPrint : IUnknown
 {
 HRESULT SetInitialPageNum([in] LONG nFirstPage);
 HRESULT GetPageInfo(
 [out] LONG *pnFirstPage,
 [out] LONG *pcPages);
 HRESULT Print(
 [in] DWORD grfFlags,
 [in,out] DVTARGETDEVICE **pptd,
 [in,out] PAGESET ** ppPageSet,
 [in,out] STGMEDIUM **ppstgmOptions,
 [in] IContinueCallback* pCallback,
 [in] LONG nFirstPage,
 [out] LONG *pcPagesPrinted,
 [out] LONG *pnPageLast);
 };

OLE provided the means to uniquely identify persistent documents (GetClassFile) and load them into their
associated code (CoCreateInstance , QueryInterface(IID_IPersistFile) , QueryInterface(IID_IPersistStorage) ,
IPersistFile::Load , and IPersistStorage::Load). To further enable printing documents, active document

containment (using an existing OLE design not shipped with OLE 2.0 originally) introduces a base-standard
printing interface, IPrint , generally available through any object that can load the persistent state of the
document type. Each view of an active document can optionally support the IPrint interface to provide these
capabilities.

The IPrint interface is defined as follows:

Clients and containers simply use IPrint::Print to instruct the document to print itself once that document is
loaded, specifying printing control flags, the target device, the pages to print, and additional options. The client can
also control the continuation of printing through the interface IContinueCallback (see below).

In addition, IPrint::SetInitialPageNum supports the ability to print a series of documents as one by numbering
pages seamlessly, obviously a benefit for active document containers like Office Binder. IPrint::GetPageInfo

makes displaying pagination information simple by allowing the caller to retrieve the starting page number
previously passed to SetInitialPageNum (or the document's internal default starting page number) and the
number of pages in the document.

Objects that support IPrint are marked in the registry with the "Printable" key stored under the object's CLSID:

HKEY_CLASSES_ROOT\CLSID\{...}\Printable

IPrint is usually implemented on the same object that supports either IPersistFile or IPersistStorage . Callers
note the capability to programmatically print the persistent state of some class by looking in the registry for the
"Printable" key. Currently, "Printable" indicates support for at least IPrint ; other interfaces may be defined in the
future which would then be available through QueryInterface where IPrint simply represents the base level of
support.

During a print procedure, you may want the client or container that initiated the printing to control whether or not
the printing should continue. For example, the container may support a "Stop Print" command that should
terminate the print job as soon as possible. To support this capability, the client of a printable object can implement
a small notification sink object with the interface IContinueCallback :

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/programmatic-printing.md

interface IContinueCallback : IUnknown
 {
 HRESULT FContinue(void);
 HRESULT FContinuePrinting(
 [in] LONG cPagesPrinted,
 [in] LONG nCurrentPage,
 [in] LPOLESTR pszPrintStatus);
 };

See also

This interface is designed to be useful as a generic continuation callback function that takes the place of the
various continuation procedures in the Win32 API (such as the AbortProc for printing and the EnumMetafileProc

for metafile enumeration). Thus this interface design is useful in a wide variety of time-consuming processes.

In the most generic cases, the IContinueCallback::FContinue function is called periodically by any lengthy process.
The sink object returns S_OK to continue the operation, and S_FALSE to stop the procedure as soon as possible.

FContinue , however, is not used in the context of IPrint::Print ; rather, printing uses
IContinueCallback::FContinuePrint . Any printing object should periodically call FContinuePrinting passing the

number of pages that have been printing, the number of the page being printed, and an additional string
describing the print status that the client may choose to display to the user (such as "Page 5 of 19").

Active Document Containers

Message Handling and Command Targets
3/4/2019 • 2 minutes to read • Edit Online

interface IOleCommandTarget : IUnknown
 {
 HRESULT QueryStatus(
 [in] GUID *pguidCmdGroup,
 [in] ULONG cCmds,
 [in,out][size_is(cCmds)] OLECMD *prgCmds,
 [in,out] OLECMDTEXT *pCmdText);
 HRESULT Exec(
 [in] GUID *pguidCmdGroup,
 [in] DWORD nCmdID,
 [in] DWORD nCmdExecOpt,
 [in] VARIANTARG *pvaIn,
 [in,out] VARIANTARG *pvaOut);
 }

See also

The command dispatch interface IOleCommandTarget defines a simple and extensible mechanism to query and
execute commands. This mechanism is simpler than Automation's IDispatch because it relies entirely on a
standard set of commands; commands rarely have arguments, and no type information is involved (type safety is
diminished for command arguments as well).

In the command dispatch interface design, each command belongs to a "command group" which is itself identified
with a GUID . Therefore, anyone can define a new group and define all the commands within that group without
any need to coordinate with Microsoft or any other vendor. (This is essentially the same means of definition as a
dispinterface plus dispIDs in Automation. There is overlap here, although this command routing mechanism is
only for command routing and not for scripting/programmability on a large scale as Automation handles.)

IOleCommandTarget handles the following scenarios:

When an object is in-place activated, only the object's toolbars are typically displayed and the object's
toolbars may have buttons for some of the container commands like Print, Print Preview, Save, New,
Zoom, and others. (In-place activation standards recommend that objects remove such buttons from their
toolbars, or at least disable them. This design allows those commands to be enabled and yet routed to the
right handler.) Currently, there is no mechanism for the object to dispatch these commands to the container.

When an active document is embedded in an active document container (such as Office Binder), the
container may need to send commands such Print, Page Setup, Properties, and others to the contained
active document.

This simple command routing could be handled through existing Automation standards and IDispatch . However,
the overhead involved with IDispatch is more than is necessary here, so IOleCommandTarget provides a simpler
means to achieve the same ends:

The QueryStatus method here tests whether a particular set of commands, the set being identified with a GUID ,
is supported. This call fills an array of OLECMD values (structures) with the supported list of commands as well
as returning text describing the name of a command and/or status information. When the caller wishes to invoke a
command, it can pass the command (and the set GUID) to Exec along with options and arguments, getting back
a return value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/message-handling-and-command-targets.md

Active Document Containers

Active Document Servers
3/4/2019 • 2 minutes to read • Edit Online

See also

Active document servers such as Word, Excel, or PowerPoint host documents of other application types called
active documents. Unlike OLE embedded objects (which are simply displayed within the page of another
document), Active documents provide the full interface and complete native functionality of the server application
that creates them. Users can create documents using the full power of their favorite applications (if they are active
document enabled), yet can treat the resulting project as a single entity.

Active documents can have more than one page and are always in-place active. Active documents control part of
the user interface, merging their menus with the File and Help menus of the container. They occupy the entire
editing area of the container and control the views and the layout of the printer page (margins, footers, and so on).

MFC implements active document servers with document/view interfaces, command dispatch maps, printing,
menu management, and registry management. Specific programming requirements are discussed in active
documents.

MFC supports active documents with the CDocObjectServer class, derived from CCmdTarget, and
CDocObjectServerItem, derived from COleServerItem. MFC supports active document containers with the
COleDocObjectItem class, derived from COleClientItem.

CDocObjectServer maps the active document interfaces and initializes and activates an active document. MFC also
provides macros to handle command routing in ACTIVE documents. To use active documents in your application,
include AfxDocOb.h in your StdAfx.h file.

A regular MFC server hooks up its own COleServerItem -derived class. The MFC Application Wizard generates this
class for you if you select the Mini-server or Full-server check box to give your application server compound
document support. If you also select the Active document server check box, the MFC Application Wizard
generates a class derived from CDocObjectServerItem instead.

The COleDocObjectItem class allows an OLE container to become an active document container. You can use the
MFC Application Wizard to create an active document container by selecting the Active document container
checkbox in the Compound Document Support page of the MFC Application Wizard. For more information, see
Creating an Active Document Container Application.

Active Document Containment

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/active-document-servers.md

Active Documents
3/4/2019 • 4 minutes to read • Edit Online

interface IOleDocument : IUnknown
 {
 HRESULT CreateView(
 [in] IOleInPlaceSite *pIPSite,
 [in] IStream *pstm,
 [in] DWORD dwReserved,
 [out] IOleDocumentView **ppView);

 HRESULT GetDocMiscStatus([out] DWORD *pdwStatus);

 HRESULT EnumViews(
 [out] IEnumOleDocumentViews **ppEnum,
 [out] IOleDocumentView **ppView);
 }

Requirements for Active Documents

Active documents extend the compound document technology of OLE. These extensions are provided in the form
of additional interfaces that manage views, so that objects can function within containers and yet retain control
over their display and printing functions. This process makes it possible to display documents both in foreign
frames (such as the Microsoft Office Binder or Microsoft Internet Explorer) and in native frames (such as the
product's own view ports).

This section describes the functional requirements for active documents. The active document owns a set of data
and has access to storage where the data can be saved and retrieved. It can create and manage one or more views
on its data. In addition to supporting the usual embedding and in-place activation interfaces of OLE documents,
the active document communicates its ability to create views through IOleDocument . Through this interface, the
container can ask to create (and possibly enumerate) the views that the active document can display. Through this
interface, the active document can also provide miscellaneous information about itself, such as whether it supports
multiple views or complex rectangles.

The following is the IOleDocument interface. Note that the IEnumOleDocumentViews interface is a standard OLE
enumerator for IOleDocumentView* types.

Every active document must have a view frame provider with this interface. If the document is not embedded
within a container, the active document server itself must provide the view frame. However, when the active
document is embedded in an active document container, the container provides the view frame.

An active document can create one or more types of views of its data (for example, normal, outline, page layout,
and so on). Views act like filters through which the data can be seen. Even if the document has only one type of
view, you may still want to support multiple views as a means of supporting new window functionality (for
example, the New Window item on the Window menu in Office applications).

An active document that can be displayed in an active document container must:

Use OLE's Compound Files as its storage mechanism by implementing IPersistStorage .

Support the basic embedding features of OLE Documents, including Create From File. This necessitates
the interfaces IPersistFile , IOleObject , and IDataObject .

Support one or more views, each of which is capable of in-place activation. That is, the views must support

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/active-documents.md

 Requirements for View Objects

interface IOleDocumentView : IUnknown
 {
 HRESULT SetInPlaceSite([in] IOleInPlaceSite *pIPSite);
 HRESULT GetInPlaceSite([out] IOleInPlaceSite **ppIPSite);
 HRESULT GetDocument([out] IUnknown **ppunk);
 [input_sync] HRESULT SetRect([in] LPRECT prcView);
 HRESULT GetRect([in] LPRECT prcView);
 [input_sync] HRESULT SetRectComplex(
 [in] LPRECT prcView,
 [in] LPRECT prcHScroll,
 [in] LPRECT prcVScroll,
 [in] LPRECT prcSizeBox);
 HRESULT Show([in] BOOL fShow);
 HRESULT UIActivate([in] BOOL fUIActivate);
 HRESULT Open(void);
 HRESULT CloseView([in] DWORD dwReserved);
 HRESULT SaveViewState([in] IStream *pstm);
 HRESULT ApplyViewState([in] IStream *pstm);
 HRESULT Clone(
 [in] IOleInPlaceSite *pIPSiteNew,
 [out] IOleDocumentView **ppViewNew);
 }

the interface IOleDocumentView as well as the interfaces IOleInPlaceObject and IOleInPlaceActiveObject

(using the container's IOleInPlaceSite and IOleInPlaceFrame interfaces).

Support the standard active document interfaces IOleDocument , IOleCommandTarget , and IPrint .

Knowledge of when and how to use the container-side interfaces is implied in these requirements.

An active document can create one or more views of its data. Functionally, these views are like ports onto a
particular method for displaying the data. If an active document only supports a single view, the active document
and that single view can be implemented using a single class. IOleDocument::CreateView returns the same object's
IOleDocumentView interface pointer.

To be represented within an active document container, a view component must support IOleInPlaceObject and
IOleInPlaceActiveObject in addition to IOleDocumentView :

Every view has an associated view site, which encapsulates the view frame and the view port (HWND and a
rectangular area in that window). The site exposes this functionality though the standard IOleInPlaceSite

interface. Note that it is possible to have more than one view port on a single HWND.

Typically, each type of view has a different printed representation. Hence views and the corresponding view sites
should implement the printing interfaces if IPrint and IContinueCallback , respectively. The view frame must
negotiate with the view provider through IPrint when printing begins, so that headers, footers, margins, and
related elements are printed correctly. The view provider notifies the frame of printing-related events through
IContinueCallback . For more information on the use of these interfaces, see Programmatic Printing.

Note that if an active document only supports a single view, then the active document and that single view can be
implemented using a single concrete class. IOleDocument::CreateView simply returns the same object's
IOleDocumentView interface pointer. In short, it is not necessary that there be two separate object instances when

only one view is required.

A view object can also be a command target. By implementing IOleCommandTarget a view can receive commands
that originate in the container's user interface (such as New, Open, Save As, Print on the File menu; and Copy,
Paste, Undo on the Edit menu). For more information, see Message Handling and Command Targets.

See also
Active Document Containment

Automation
3/4/2019 • 2 minutes to read • Edit Online

Passing Parameters in Automation

Automation Samples

Automation (formerly known as OLE Automation) makes it possible for one application to manipulate objects
implemented in another application, or to expose objects so they can be manipulated.

An Automation server is an application (a type of COM server) that exposes its functionality through COM
interfaces to other applications, called Automation clients. The exposure enables Automation clients to automate
certain functions by directly accessing objects and using the services they provide.

Automation servers and clients use COM interfaces that are always derived from IDispatch and take and return
a specific set of data types called Automation types. You can automate any object that exposes an Automation
interface, providing methods and properties that you can access from other applications. Automation is available
for both OLE and COM objects. The automated object might be local or remote (on another machine accessible
across a network); therefore there are two categories of automation:

Automation (local).

Remote Automation (over a network, using Distributed COM, or DCOM).

Exposing objects is beneficial when applications provide functionality useful to other applications. For example, an
ActiveX control is a type of Automation server; the application hosting the ActiveX control is the automation
client of that control.

As another example, a word processor might expose its spell-checking functionality to other programs. Exposure
of objects enables vendors to improve their applications by using the ready-made functionality of other
applications. In this way, Automation applies some of the principles of object-oriented programming, such as
reusability and encapsulation, at the level of applications themselves.

More important is the support Automation provides to users and solution providers. By exposing application
functionality through a common, well-defined interface, Automation makes it possible to build comprehensive
solutions in a single general programming language, such as Microsoft Visual Basic, instead of in diverse
application-specific macro languages.

Many commercial applications, such as Microsoft Excel and Microsoft Visual C++, allow you to automate much
of their functionality. For example, in Visual C++, you can write VBScript macros to automate builds, aspects of
code editing, or debugging tasks.

One difficulty in creating Automation methods is helping to provide a uniform "safe" mechanism to pass data
between automation servers and clients. Automation uses the VARIANT type to pass data. The VARIANT type
is a tagged union. It has a data member for the value (this is an anonymous C++ union) and a data member
indicating the type of information stored in the union. The VARIANT type supports a number of standard data
types: 2- and 4-byte integers, 4- and 8-byte floating-point numbers, strings, and Boolean values. In addition, it
supports the HRESULT (OLE error codes), CURRENCY (a fixed-point numeric type), and DATE (absolute date
and time) types, as well as pointers to IUnknown and IDispatch interfaces.

The VARIANT type is encapsulated in the COleVariant class. The supporting CURRENCY and DATE classes are
encapsulated in the COleCurrency and COleDateTime classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/automation.md

What do you want to know more about

What do you want to do

See also

AUTOCLIK Use this sample to learn Automation techniques and as a foundation for learning Remote
Automation.

ACDUAL Adds dual interfaces to an Automation server application.

CALCDRIV Automation client application driving MFCCALC.

INPROC Demonstrates an In-Process Automation server application.

IPDRIVE Automation client application driving INPROC.

MFCCALC Demonstrates an Automation client application.

Automation Clients

Automation Servers

OLE

Active Technology

Add an Automation class

Use type libraries

Access automation servers

Write automation clients in C++

MFC COM

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Automation Clients
3/4/2019 • 2 minutes to read • Edit Online

Types of Automation ClientsTypes of Automation Clients

Handling Events in Automation ClientsHandling Events in Automation Clients

See also

Automation makes it possible for your application to manipulate objects implemented in another application, or
to expose objects so they can be manipulated. An Automation client is an application that can manipulate
exposed objects belonging to another application. The application that exposes the objects is called the
Automation server. The client manipulates the server application's objects by accessing those objects' properties
and functions.

There are two types of Automation clients:

Clients that dynamically (at run time) acquire information about the properties and operations of the
server.

Clients that possess static information (provided at compile time) that specifies the properties and
operations of the server.

Clients of the first kind acquire information about the server's methods and properties by querying the OLE
system's IDispatch mechanism. Although it is adequate to use for dynamic clients, IDispatch is difficult to use
for static clients, where the objects being driven must be known at compile time. For static bound clients, the
Microsoft Foundation classes provide the COleDispatchDriver class.

Static bound clients use a proxy class that is statically linked with the client application. This class provides a type-
safe C++ encapsulation of the server application's properties and operations.

The class COleDispatchDriver provides the principal support for the client side of Automation. Using the Add
New Item dialog box, you create a class derived from COleDispatchDriver .

You then specify the type-library file describing the properties and functions of the server application's object.
The Add Item dialog box reads this file and creates the COleDispatchDriver -derived class, with member functions
that your application can call to access the server application's objects in C++ in a type-safe manner. Additional
functionality inherited from COleDispatchDriver simplifies the process of calling the proper Automation server.

If you want to handle events in your automation client, you need to add a sink interface. MFC provides wizard
support to add sink interfaces for ActiveX controls, but not support for other COM servers.

Automation Clients: Using Type Libraries
Automation
MFC Application Wizard

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/automation-clients.md

Automation Clients: Using Type Libraries
3/4/2019 • 2 minutes to read • Edit Online

To create a dispatch class from a type-library (.tlb) fileTo create a dispatch class from a type-library (.tlb) file

Automation clients must have information about server objects' properties and methods if the clients are to
manipulate the servers' objects. Properties have data types; methods often return values and accept parameters.
The client requires information about the data types of all of these in order to statically bind to the server object
type.

This type information can be made known in several ways. The recommended way is to create a type library.

For information on MkTypLib, see the Windows SDK.

Visual C++ can read a type-library file and create a dispatch class derived from COleDispatchDriver. An object of
that class has properties and operations duplicating those of the server object. Your application calls this object's
properties and operations, and functionality inherited from COleDispatchDriver routes these calls to the OLE
system, which in turn routes them to the server object.

Visual C++ automatically maintains this type-library file for you if you chose to include Automation when the
project was created. As part of each build, the .tlb file will be built with MkTypLib.

NOTENOTE

NOTENOTE

NOTENOTE

1. In either Class View or Solution Explorer, right-click the project and click Add and then click Add Class on
the shortcut menu.

2. In the Add Class dialog box, select the Visual C++/MFC folder in the left pane. Select the MFC Class
From TypeLib icon from the right pane and click Open.

3. In the Add Class From Typelib Wizard dialog box, select a type library from the Available type
libraries drop-down list. The Interfaces box displays the interfaces available for the selected type library.

You can select interfaces from more than one type library.

To select interfaces, double-click them or click the Add button. When you do so, names for the dispatch
classes will appear in the Generated classes box. You can edit the class names in the Class box.

The File box displays the file in which the class will be declared. (you can edit this file name as well). You
can also use the browse button to select other files, if you prefer to have the header and implementation
information written in existing files or in a directory other than the project directory.

All the dispatch classes for the selected interfaces will be put into the file specified here. If you want the interfaces to
be declared in separate headers, you must run this wizard for each header file you want to create.

Some type library information may be stored in files with .DLL, .OCX, or .OLB file extensions.

4. Click Finish.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/automation-clients-using-type-libraries.md
https://docs.microsoft.com/windows/desktop/Midl/differences-between-midl-and-mktyplib

See also

The wizard will then write the code for your dispatch classes using the specified class and file names.

Automation Clients

Automation Servers
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Support for Automation Servers

BEGIN_DISPATCH_MAP(CMyServerDoc, COleServerDoc)
 DISP_PROPERTY(CMyServerDoc, "Msg", m_strMsg, VT_BSTR)
 DISP_FUNCTION(CMyServerDoc, "SetDirty", SetDirty, VT_EMPTY, VTS_I4)
END_DISPATCH_MAP()

Automation makes it possible for your application to manipulate objects implemented in another application, or
to expose objects so they can be manipulated. An Automation server is an application that exposes
programmable objects (called Automation objects) to other applications (called Automation clients). Automation
servers are sometimes called Automation components.

Exposing Automation objects enables clients to automate certain procedures by directly accessing the objects
and functionality the server makes available. Exposing objects this way is beneficial when applications provide
functionality that is useful for other applications. For example, a word processor might expose its spell-checking
functionality so that other programs can use it. Exposure of objects thus enables vendors to improve their
applications' functionality by using the ready-made functionality of other applications.

These Automation objects have properties and methods as their external interface. Properties are named
attributes of the Automation object. Properties are like the data members of a C++ class. Methods are functions
that work on Automation objects. Methods are like the public member functions of a C++ class.

Although properties are like C++ data members, they are not directly accessible. To provide transparent access, set up an
internal variable in the Automation object with a pair of get/set member functions to access them.

By exposing application functionality through a common, well-defined interface, Automation makes it possible
to build applications in a single general programming language like Microsoft Visual Basic instead of in diverse,
application-specific macro languages.

Visual C++ and the MFC framework provide extensive support for Automation servers. They handle much of
the overhead involved in making an Automation server, so you can focus your efforts on the functionality of
your application.

The framework's principal mechanism for supporting Automation is the dispatch map, a set of macros that
expands into the declarations and calls needed to expose methods and properties for OLE. A typical dispatch
map looks like this:

The Properties window and Class View assist in maintaining dispatch maps. When you add a new method or
property to a class, Visual C++ adds a corresponding DISP_FUNCTION or DISP_PROPERTY macro with parameters
indicating the class name, external and internal names of the method or property, and data types.

The Add Class dialog box also simplifies the declaration of Automation classes and the management of their
properties and operations. When you use the Add Class dialog box to add a class to your project, you specify its
base class. If the base class allows Automation, the Add Class dialog box displays controls you use to specify
whether the new class should support Automation, whether it is "OLE creatable" (that is, whether objects of the
class can be created on a request from a COM client), and the external name for the COM client to use.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/automation-servers.md

What do you want to doWhat do you want to do

See also

The Add Class dialog box then creates a class declaration, including the appropriate macros for the OLE
features you have specified. It also adds the skeleton code for implementation of your class's member functions.

The MFC Application Wizard simplifies the steps involved in getting your automation server application off the
ground. If you select the Automation check box from the Advanced Features page, the MFC Application
Wizard adds to your application's InitInstance function the calls required to register your Automation objects
and run your application as an Automation server.

Learn about Automation clients

Learn more about class CCmdTarget

Learn more about class COleDispatchDriver

Automation
MFC Application Wizard

Automation Servers: Object-Lifetime Issues
3/4/2019 • 2 minutes to read • Edit Online

See also

When an Automation client creates or activates an OLE item, the server passes the client a pointer to that object.
The client establishes a reference to the object through a call to the OLE function IUnknown::AddRef. This reference
is in effect until the client calls IUnknown::Release. (Client applications written with the Microsoft Foundation Class
Library's OLE classes need not make these calls; the framework does so.) The OLE system and the server itself may
establish references to the object. A server should not destroy an object as long as external references to the object
remain in effect.

The framework maintains an internal count of the number of references to any server object derived from
CCmdTarget. This count is updated when an Automation client or other entity adds or releases a reference to the
object.

When the reference count becomes 0, the framework calls the virtual function CCmdTarget::OnFinalRelease. The
default implementation of this function calls the delete operator to delete this object.

The Microsoft Foundation Class Library provides additional facilities for controlling application behavior when
external clients have references to the application's objects. Besides maintaining a count of references to each
object, servers maintain a global count of active objects. The global functions AfxOleLockApp and
AfxOleUnlockApp update the application's count of active objects. If this count is nonzero, the application does not
terminate when the user chooses Close from the system menu or Exit from the File menu. Instead, the application's
main window is hidden (but not destroyed) until all pending client requests have been completed. Typically,
AfxOleLockApp and AfxOleUnlockApp are called in the constructors and destructors, respectively, of classes that

support Automation.

Sometimes circumstances force the server to terminate while a client still has a reference to an object. For example,
a resource on which the server depends may become unavailable, causing the server to encounter an error. The
user may also close a server document that contains objects to which other applications have references.

In the Windows SDK, see IUnknown::AddRef and IUnknown::Release .

Automation Servers
AfxOleCanExitApp

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/automation-servers-object-lifetime-issues.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release

Connection Points
3/4/2019 • 3 minutes to read • Edit Online

class CMyClass : public CCmdTarget
{
protected:
 // Connection point for ISample interface
 BEGIN_CONNECTION_PART(CMyClass, SampleConnPt)
 CONNECTION_IID(IID_ISampleSink)
 END_CONNECTION_PART(SampleConnPt)

 DECLARE_CONNECTION_MAP()

This article explains how to implement connection points (formerly known as OLE connection points) using the
MFC classes CCmdTarget and CConnectionPoint .

In the past, the Component Object Model (COM) defined a general mechanism (IUnknown::QueryInterface *) that
allowed objects to implement and expose functionality in interfaces. However, a corresponding mechanism that
allowed objects to expose their capability to call specific interfaces was not defined. That is, COM defined how
incoming pointers to objects (pointers to that object's interfaces) were handled, but it did not have an explicit
model for outgoing interfaces (pointers the object holds to other objects' interfaces). COM now has a model,
called connection points, that supports this functionality.

A connection has two parts: the object calling the interface, called the source, and the object implementing the
interface, called the sink. A connection point is the interface exposed by the source. By exposing a connection
point, a source allows sinks to establish connections to itself (the source). Through the connection point
mechanism (the IConnectionPoint interface), a pointer to the sink interface is passed to the source object. This
pointer provides the source with access to the sink's implementation of a set of member functions. For example, to
fire an event implemented by the sink, the source can call the appropriate method of the sink's implementation.
The following figure demonstrates the connection point just described.

An Implemented Connection Point

MFC implements this model in the CConnectionPoint and CCmdTarget classes. Classes derived from
CConnectionPoint implement the IConnectionPoint interface, used to expose connection points to other objects.

Classes derived from CCmdTarget implement the IConnectionPointContainer interface, which can enumerate all of
an object's available connection points or find a specific connection point.

For each connection point implemented in your class, you must declare a connection part that implements the
connection point. If you implement one or more connection points, you must also declare a single connection map
in your class. A connection map is a table of connection points supported by the ActiveX control.

The following examples demonstrate a simple connection map and one connection point. The first example
declares the connection map and point; the second example implements the map and point. Note that CMyClass

must be a CCmdTarget -derived class. In the first example, code is inserted in the class declaration, under the
protected section:

The BEGIN_CONNECTION_PART and END_CONNECTION_PART macros declare an embedded class,
XSampleConnPt (derived from CConnectionPoint), that implements this particular connection point. If you want to

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/connection-points.md

BEGIN_CONNECTION_MAP(CMyClass, CCmdTarget)
 CONNECTION_PART(CMyClass, IID_ISampleSink, SampleConnPt)
END_CONNECTION_MAP()

CMyClass::CMyClass()
{
 EnableConnections();
}

void CMyClass::CallSinkFunc()
{
 POSITION pos = m_xSampleConnPt.GetStartPosition();
 ISampleSink* pSampleSink;
 while(pos != NULL)
 {
 pSampleSink = (ISampleSink*)(m_xSampleConnPt.GetNextConnection(pos));
 if(pSampleSink != NULL)
 pSampleSink->SinkFunc();
 }
}

See also

override any CConnectionPoint member functions or add member functions of your own, declare them between
these two macros. For example, the CONNECTION_IID macro overrides the CConnectionPoint::GetIID member
function when placed between these two macros.

In the second example, code is inserted in the control's implementation file (.cpp file). This code implements the
connection map, which includes the connection point, SampleConnPt :

If your class has more than one connection point, insert additional CONNECTION_PART macros between the
BEGIN_CONNECTION_MAP and END_CONNECTION_MAP macros.

Finally, add a call to EnableConnections in the class's constructor. For example:

Once this code has been inserted, your CCmdTarget -derived class exposes a connection point for the ISampleSink

interface. The following figure illustrates this example.

A Connection Point Implemented with MFC

Usually, connection points support "multicasting" — the ability to broadcast to multiple sinks connected to the
same interface. The following example fragment demonstrates how to multicast by iterating through each sink on
a connection point:

This example retrieves the current set of connections on the SampleConnPt connection point with a call to
CConnectionPoint::GetConnections . It then iterates through the connections and calls ISampleSink::SinkFunc on

every active connection.

MFC COM

MFC Internet Programming Basics
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

In This Section

Related Sections

Microsoft provides many APIs for programming both client and server applications. Many new applications are
being written for the Internet, and as technologies, browser capabilities, and security options change, new types
of applications will be written. Browsers run on client computers, providing access to the World Wide Web and
displaying HTML pages that contain text, graphics, ActiveX controls, and documents. Servers provide FTP, HTTP,
and gopher services, and run server extension applications using CGI. Your custom application can retrieve
information and provide data on the Internet.

ActiveX is a legacy technology that should not be used for new development. For more information, see ActiveX Controls.

MFC provides classes that support Internet programming. You can use COleControl and CDocObjectServer and
related MFC classes to write ActiveX controls and Active documents. You can use MFC classes such as
CInternetSession, CFtpConnection, and CAsyncMonikerFile to retrieve files and information using Internet
protocols such as FTP, HTTP, and gopher.

Internet-Related MFC Classes

Internet Information by Topic

Internet Information by Task

Active Technology on the Internet

WinInet Basics

HTML Basics

ActiveX Controls on the Internet

Asynchronous Monikers on the Internet

Win32 Internet Extensions (WinInet)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-internet-programming-basics.md

Web Sites for More Information

More Internet Help

See also

MFC Internet Programming Tasks

Application Design Choices

Writing MFC Applications

Testing Internet Applications

Internet Security

ATL Support for DHTML Controls

For additional information about Microsoft Internet technology, see the Microsoft Developer Network (MSDN)
Web site. (Links may change without notice.)

This Web site for developers contains information on using Microsoft development tools and technologies, and
top stories about recent and upcoming conferences. From this page, you can jump to many related developer
sites, including the .NET, and XML Developer Centers. You can also download beta SDKs and samples.

The World Wide Web Consortium (W3C) publishes specifications for HTML, HTTP, CGI, and other World Wide
Web technologies.

The OLE section of the Windows SDK contains additional information about OLE programming. This
information provides details about using the Win32 WinInet functions directly, rather than through the MFC
classes. It also contains overview information about Internet technologies.

http://go.microsoft.com/fwlink/p/?linkid=56322
http://go.microsoft.com/fwlink/p/?linkid=37125

Internet-Related MFC Classes
3/4/2019 • 2 minutes to read • Edit Online

Global functions

ActiveX control classes

Active document classes

Asynchronous moniker classes

WinInet classes

See also

For information about Internet-related classes and functions, see:

AfxParseURL

AfxGetInternetHandleType

COleControl

CDocObjectServer

CDocObjectServerItem

CAsyncMonikerFile

CDataPathProperty

CInternetSession

CInternetConnection

CFtpConnection

CGopherConnection

CHttpConnection

CInternetFile

CGopherFile

CHttpFile

CFileFind

CFtpFileFind

CGopherFileFind

CGopherLocator

CInternetException

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/internet-related-mfc-classes.md

MFC Internet Programming Basics

Internet Information by Topic
3/4/2019 • 2 minutes to read • Edit Online

WinInetWinInet

Overviews WinInet (HTTP, FTP, Gopher)

WinInet Basics

Win32 Internet Extensions (WinInet)

How WinInet Makes It Easier to Create Internet Client
Applications

How MFC Makes It Easier to Create Internet Client
Applications

Steps in creating WinInet applications Prerequisites for Internet Client Classes

Writing an Internet Client Application Using MFC WinInet
Classes

Steps in a Typical Internet Client Application

Steps in a Typical FTP Client Application

Steps in a Typical HTTP Client Application

Steps in a Typical Gopher Client Application

Steps in a Typical HTTP Client Application

See also

For information on programming with a specific Internet technology, see:

MFC Internet Programming Basics

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/internet-information-by-topic.md

Internet Information by Task
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

What do you want to do
ActiveX Controls, Documents and Asynchronous Moniker TasksActiveX Controls, Documents and Asynchronous Moniker Tasks

WinInet TasksWinInet Tasks

See also

The tasks listed in this topic are sorted based on the task you want to accomplish.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

The following categories of tasks are listed in this topic:

ActiveX Controls, Documents and Asynchronous Moniker Tasks

WinInet Tasks

Learn about Asynchronous Monikers

Learn about ActiveX controls in the Internet context

Optimize an ActiveX control

Learn about WinInet, the Win32 API functions for Internet access

Review what's involved with WinInet programming

Write an Internet client application, using MFC WinInet classes

Write an FTP client application

Write an HTTP client application

Write a Gopher client application

MFC Internet Programming Basics

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/internet-information-by-task.md

Active Technology on the Internet
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

ActiveX Controls

Internet Data Download Services

Active Scripts

HTML Extensions

See also

Active technology is an open platform that lets developers create exciting, dynamic content and applications for
the global Internet, or for a company's internal network, known as an intranet. The major technologies provided by
Microsoft for Internet programming are described below.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

ActiveX controls (formerly OLE controls) are objects that can be inserted into Web pages or any other application
that is an ActiveX control container. Examples include buttons, stock tickers, and chart controls. For more
information, see ActiveX Controls on the Internet.

Data can be downloaded over the Internet using common protocols: HTTP, FTP, and gopher. The MFC WinInet
classes make it easy to transfer data using HTTP, FTP, and gopher protocols by abstracting the TCP/IP and
WinSock protocols. The MFC asynchronous moniker classes provide a way to download files without blocking and
to render large objects asynchronously. For more information, see Win32 Internet Extensions (WinInet).

VBScript and other scripting languages connect controls and add interactive functionality to Web pages. Scripting
moves processing from the server to the client. For example, form entries can be validated on the client and then
sent to the server.

HTML extensions, such as the object tag, have been added to support controls and scripting.

MFC Internet Programming Basics
ActiveX Controls on the Internet
Win32 Internet Extensions (WinInet)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/active-technology-on-the-internet.md

WinInet Basics
3/4/2019 • 3 minutes to read • Edit Online

Create a Very Simple Browser
#include <afxinet.h>

void DisplayPage(LPCTSTR pszURL)
{
 CInternetSession session(_T("My Session"));
 CStdioFile* pFile = NULL;
 CHAR szBuff[1024];
 //use a URL and print a Web page to the console
 pFile = session.OpenURL(pszURL);
 while (pFile->Read(szBuff, 1024) > 0)
 {
 printf_s("%1023s", szBuff);
 }
 delete pFile;
 session.Close();
}

Download a Web Page

You can use WinInet to add FTP support to download and upload files from within your application. You can
override OnStatusCallback and use the dwContext parameter to provide progress information to users as you
search for and download files.

This article contains the following topics:

Create a Very Simple Browser

Download a Web Page

FTP a File

Retrieve a Gopher Directory

Display Progress Information While Transferring Files

The code excerpts below demonstrate how to create a simple browser, download a Web page, FTP a file, and
search for a gopher file. They are not meant as complete examples and not all contain exception handling.

For additional information on WinInet, see Win32 Internet Extensions (WinInet).

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/wininet-basics.md

//this code excerpt also demonstrates try/catch exception handling
#include <afxinet.h>

void DisplayHttpPage(LPCTSTR pszServerName, LPCTSTR pszFileName)
{
 CInternetSession session(_T("My Session"));
 CHttpConnection* pServer = NULL;
 CHttpFile* pFile = NULL;
 try
 {
 CString strServerName;
 INTERNET_PORT nPort = 80;
 DWORD dwRet = 0;

 pServer = session.GetHttpConnection(pszServerName, nPort);
 pFile = pServer->OpenRequest(CHttpConnection::HTTP_VERB_GET, pszFileName);
 pFile->SendRequest();
 pFile->QueryInfoStatusCode(dwRet);

 if (dwRet == HTTP_STATUS_OK)
 {
 CHAR szBuff[1024];
 while (pFile->Read(szBuff, 1024) > 0)
 {
 printf_s("%1023s", szBuff);
 }
 }
 delete pFile;
 delete pServer;
 }
 catch (CInternetException* pEx)
 {
 //catch errors from WinInet
 TCHAR pszError[64];
 pEx->GetErrorMessage(pszError, 64);
 _tprintf_s(_T("%63s"), pszError);
 }
 session.Close();
}

FTP a File
#include <afxinet.h>

void GetFtpFile(LPCTSTR pszServerName, LPCTSTR pszRemoteFile, LPCTSTR pszLocalFile)
{
 CInternetSession session(_T("My FTP Session"));
 CFtpConnection* pConn = NULL;

 pConn = session.GetFtpConnection(pszServerName);
 //get the file
 if (!pConn->GetFile(pszRemoteFile, pszLocalFile))
 {
 //display an error
 }
 delete pConn;
 session.Close();
}

Retrieve a Gopher Directory

#include <afxinet.h>

void RetrieveGopherFile(LPCTSTR pszGopherSite, LPCTSTR pszFile)
{
 CInternetSession session(_T("My Gopher Session"));
 CGopherConnection* pConn = NULL;
 CGopherFileFind* pFile;

 pConn = session.GetGopherConnection(pszGopherSite);
 pFile = new CGopherFileFind(pConn);
 BOOL bFound = pFile->FindFile(pszFile);
 while (bFound)
 {
 //retrieve attributes of found file
 bFound = pFile->FindNextFile();
 }
 delete pFile;
 delete pConn;
 session.Close();
}

Use OnStatusCallback

Display Progress Information While Transferring Files

When using the WinInet classes, you can use the OnStatusCallback member of your application's
CInternetSession object to retrieve status information. If you derive your own CInternetSession object, override
OnStatusCallback , and enable status callbacks, MFC will call your OnStatusCallback function with progress

information about all the activity in that Internet session.

Because a single session might support several connections (which, over their lifetime, might perform many
different distinct operations), OnStatusCallback needs a mechanism to identify each status change with a
particular connection or transaction. That mechanism is provided by the context ID parameter given to many of
the member functions in the WinInet support classes. This parameter is always of type DWORD and is always
named dwContext.

The context assigned to a particular Internet object is used only to identify the activity the object causes in the
OnStatusCallback member of the CInternetSession object. The call to OnStatusCallback receives several

parameters; these parameters work together to tell your application what progress has been made for which
transaction and connection.

When you create a CInternetSession object, you can specify a dwContext parameter to the constructor.
CInternetSession itself doesn't use the context ID; instead, it passes the context ID on to any

InternetConnection-derived objects that don't explicitly get a context ID of their own. In turn, those
CInternetConnection objects will pass the context ID along to CInternetFile objects they create if you don't

explicitly specify a different context ID. If, on the other hand, you do specify a specific context ID of your own,
the object and any work it does will be associated with that context ID. You can use the context IDs to identify
what status information is being given to you in your OnStatusCallback function.

For example, if you write an application that creates a connection with an FTP server to read a file and also
connects to an HTTP server to get a Web page, you'll have a CInternetSession object, two CInternetConnection

objects (one would be a CFtpSession and the other would be a CHttpSession), and two CInternetFile objects
(one for each connection). If you used default values for the dwContext parameters, you would not be able to
distinguish between the OnStatusCallback invocations that indicate progress for the FTP connection and the
invocations that indicate progress for the HTTP connection. If you specify a dwContext ID, which you can later
test for in OnStatusCallback , you will know which operation generated the callback.

See also
MFC Internet Programming Basics
Win32 Internet Extensions (WinInet)

HTML Basics
3/4/2019 • 2 minutes to read • Edit Online

To create an HTML fileTo create an HTML file

<HTML>
<HEAD>
<TITLE>Top HTML Tags</TITLE>
</HEAD>
</HTML>

<BODY>
 HTML is swell.
 Life is good.
</BODY>

Most browsers have the capability of examining the HTML source of the pages you browse. When you view the
source you will see a number of HTML (Hypertext markup language) tags, surrounded by angle brackets(<>),
interspersed with text.

The steps below use HTML tags to build a simple Web page. In these steps, you'll type plain text into a file in
Notepad, make a few changes, save the file, and reload your page in the browser to see your changes.

1. Open Notepad or any plain text editor.

2. From the File menu, choose New.

3. Type the following lines:

1. From the File menu, choose Save, and save the file as c:\webpages\First.htm. Leave the file open in the
editor.

2. Switch to your browser, and from the File menu, choose Open, or type file://C:/webpages/first.htm in the
browser's URL edit box. You should see a blank page with the window caption "Top HTML Tags."

Notice the tags are paired and are included in angle brackets. Tags are not case-sensitive, but capitalization
is often used to make tags stand out.

The tag <HTML> starts the document, and the tag </HTML> ends it. Ending tags (not always required) are
the same as the starting tag, but have a forward slash (/) in front of the tag. There should be no spaces
between the angle bracket (<) and the start of your tag.

3. Switch back to Notepad, and after the </HEAD> line, type:

1. From the File menu, choose Save.

2. Switch back to your browser and refresh the page.

The words will appear in the client area of your browser's window. Notice that your carriage return is
ignored. If you want to have a line break, you must include a
 tag after the first line.

For all the steps that follow, insert the text anywhere between <BODY> and </BODY> to add to the body
of your document.

3. Add a header:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/html-basics.md

<H3>Here's the big picture</H3>

Make me an unordered list.
One programmer
Ten SDKs
Great Internet Apps

<HTML>
<HEAD>
<TITLE>Top HTML Tags</TITLE>
</HEAD>
<BODY>
HTML is swell.

Life is good.
<H3>Here's the big picture</H3>

Make me an unordered list.
One programmer
Ten SDKs
Great Internet Apps

</BODY>
</HTML>

See also

10. Add an image, using a .gif file saved in the same directory as your page:

11. Add a list:

12. To number the list instead, use paired and tags in place of the and tags.

That should get you started. If you see a great feature on a Web page, you can find out how it was created by
examining the HTML source. HTML editors such as Microsoft Front Page can be used to create both simple and
advanced pages.

Here's the entire HTML source for the file you've been building:

For a complete description of tags, attributes, and extensions, see the Hypertext Markup Language (HTML)
specification:

http://www.w3.org/pub/WWW/MarkUp/

MFC Internet Programming Basics

http://www.w3.org/pub/www/markup/

MFC Internet Programming Tasks
3/4/2019 • 2 minutes to read • Edit Online

YOU HAVE YOU WANT TO YOU SHOULD

A Web server. Track logons and detailed information
about URL requests.

Write a filter, request notifications for
logon events and URL mapping.

A Web browser. Provide dynamic content. Create ActiveX controls and Active
documents.

A document-based application. Add support to FTP a file. Use WinInet or asynchronous
monikers.

See also

This section contains detailed steps for adding Internet support to your applications. Topics include how to use
the MFC classes to Internet-enable your existing applications, and how to add Active document support to your
existing COM component. Do you want to create a document with up-to-the-minute stock quotes, Pittsburgh's
football scores, and the latest temperature in Antarctica Microsoft provides a number of technologies to help you
do that over the Internet.

Active technologies include ActiveX controls (formerly OLE controls) and Active documents; WinInet for easily
retrieving and saving files across the Internet; and asynchronous monikers for efficient data downloading. Visual
C++ provides wizards to help you get started quickly with a starter application. For an introduction to these
technologies, see MFC Internet Programming Basics and MFC COM.

Have you always wanted to FTP a file but haven't learned WinSock and network programming protocols WinInet
classes encapsulate these protocols, providing you with a simple set of functions you can use to write a client
application on the Internet to download files using HTTP, FTP, and gopher. You can use WinInet to search
directories on your hard drive or around the world. You can transparently collect data of several different types,
and present it to the user in an integrated interface.

Do you have large amounts of data to download Asynchronous monikers provide a COM (Component Object
Model) solution for progressive rendering of large objects. WinInet can also be used asynchronously.

The following table describes a few of the things you can do with these technologies.

See the following topics for details to get you started:

Application Design Choices

Writing MFC Applications

ActiveX Controls on the Internet

Upgrading an Existing ActiveX Control

Asynchronous Monikers on the Internet

Testing Internet Applications

Internet Security

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-internet-programming-tasks.md

MFC Internet Programming Basics
Internet Information by Task

Application Design Choices
3/4/2019 • 3 minutes to read • Edit Online

Intranet Versus Internet

INTERNET INTRANET

Low bandwidth High bandwidth

Reduced security of data and systems Controlled access to data and systems

Minimal control of content High control of content

Client or Server Application

The Web Page: HTML, Active Documents, ActiveX Controls

This article discusses some of the design issues to consider when programming for the Internet.

Topics covered in this article include:

Intranet Versus Internet

Client or Server Application

Browser or Stand-Alone Application

COM on the Internet

Client Data Download Services

If you are ready to start writing your program now, see Writing MFC Applications.

Many applications run on the Internet and are accessible to anyone with a browser and Internet access.
Businesses are also implementing intranets, which are company-wide networks using TCP/IP protocols and Web
browsers. Intranets offer an easily upgradeable, central source for company-wide information. They can be used
for upgrading software, for delivering and tabulating surveys, for customer support, and for information delivery.
The following table compares features of the Internet and intranets.

Your application may run on a client computer or on a server computer. Your application may also be stored on a
server, and then downloaded across the Internet and run on a client computer. MFC WinInet classes are used for
client applications to download files. MFC and asynchronous moniker classes are used to download files and
control properties. Classes for ActiveX controls and Active documents are used for client applications and for
applications that are downloaded from the server to run on a client.

Microsoft offers several ways of providing content on a Web page. Web pages can use standard HTML or HTML
extensions, such as the object tag, to provide dynamic content such as ActiveX controls.

Web browsers typically display HTML pages. Active documents can also display your application's data in the
simple point-and-click interface of a COM-enabled browser. Your Active document server can display your
document, full frame in the entire client area, with its own menus and toolbars.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/application-design-choices.md

Browser or Stand-Alone Application

COM on the Internet

Client Data Download Services

USE THIS PROTOCOL UNDER THESE CONDITIONS USING THESE CLASSES

Internet Downloading Using
Asynchronous Monikers

For asynchronous transfer using COM,
ActiveX controls, and any Internet
protocol.

CAsyncMonikerFile, CDataPathProperty

WinInet For Internet protocols for HTTP, FTP,
and gopher. Data can be transferred
synchronously or asynchronously and is
stored in a system-wide cache.

CInternetSession, CFtpFileFind,
CGopherFileFind, and many more.

WinSock For maximum efficiency and control.
Requires understanding of sockets and
TCP/IP protocols.

CSocket, CAsyncSocket

See also

ActiveX controls you write can be downloaded asynchronously from the server and displayed on a Web page. You
can use a scripting language such as VBScript to perform client-side validation before sending information to the
server.

You can write ActiveX controls that are embedded in an HTML page and Active document servers that are viewed
in a browser. You can write HTML pages that contain a button to submit a request to run your ISAPI application
on a Web server. You can write a stand-alone application that uses Internet protocols to download files and display
the information to your user, without ever using a browser application.

ActiveX controls, Active documents, and asynchronous monikers all use COM (Component Object Model)
technologies.

ActiveX controls provide dynamic content to documents and pages on Internet sites. With COM you can build
ActiveX controls and full-frame documents using Active documents.

Asynchronous monikers provide features to enable a control to perform well in an Internet environment,
including an incremental or progressive means to download data. Controls must also work well with other
controls that may also be retrieving their data asynchronously at the same time.

Two sets of APIs that will help transfer data to your client are WinInet and asynchronous monikers. If you have
large .gif and .avi files and ActiveX controls on your HTML page, you can increase the responsiveness to the user
by downloading asynchronously, either by using asynchronous monikers or using WinInet asynchronously.

A common task on the Internet is transferring data. If you are already using Active technology (for example, if you
have an ActiveX control), you can use asynchronous monikers to progressively render data as it downloads. You
can use WinInet to transfer data using common Internet protocols like HTTP, FTP, and gopher. Both methods
provide protocol independence, and provide an abstract layer to using WinSock and TCP/IP. You can still use
WinSock directly.

The following table summarizes several ways of using MFC to transfer data across the Internet.

MFC Internet Programming Tasks
MFC Internet Programming Basics

Win32 Internet Extensions (WinInet)
Asynchronous Monikers on the Internet

Writing MFC Applications
3/4/2019 • 2 minutes to read • Edit Online

See also

This article explains the initial steps you take to develop your application. First, you must decide what kind of
application you are writing. Several of the choices were discussed in Application Design Choices. Will your
application be:

Running on the Internet or an intranet

Running on a client or on a server

Running in a browser or as a stand-alone application

Using COM or Active technology

Downloading data using WinInet or asynchronous monikers

Your decisions determine which classes are appropriate for your application. Your answers also help determine the
selections you make when you run the Application Wizard to begin constructing your application.

After you've made your initial design decisions about your Internet application, you can use the Application
Wizard to get started. Use the Application Wizard to create a skeleton application and modify the code as
described in the following articles:

For an ActiveX control, see ActiveX Controls on the Internet.

The following articles also provide instructions to help you start your programming tasks:

Application Design Choices

Asynchronous Monikers on the Internet

WinInet Basics

MFC Internet Programming Tasks
MFC Internet Programming Basics

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/writing-mfc-applications.md

ActiveX Controls on the Internet
3/4/2019 • 7 minutes to read • Edit Online

IMPORTANTIMPORTANT

Making Your Existing Controls Internet-Friendly

ActiveX controls are the updated version of the OLE control specification.

ActiveX is a legacy technology that should not be used for new development. For more information, see ActiveX Controls.

Controls are a primary architecture for developing programmable software components that can be used in a
variety of different containers, including COM-aware Web browsers on the Internet. Any ActiveX control can be
an Internet control and can add its functionality to an Active document or be part of a Web page. Controls on a
Web page can communicate with each other using scripting.

ActiveX controls are not limited to the Internet. An ActiveX control can also be used in any container, as long as
the control supports the interfaces required by that container.

ActiveX controls have several advantages, including:

Fewer required interfaces than previous OLE controls.

The ability to be windowless and always in-place active.

In order to be an ActiveX control, a control must:

Support the IUnknown interface.

Be a COM object.

Export DLLRegisterServer and DLLUnRegisterServer.

Support additional interfaces as needed for functionality.

Designing a control that will work well in an Internet environment requires consideration for the relatively low
transmission rates on the Internet. You can use your existing controls; however, there are steps you should take
to make your code size smaller and to make your control properties download asynchronously.

To improve performance of your controls, follow these tips on efficiency considerations:

Implement the techniques described in the article ActiveX Controls: Optimization.

Consider how a control is instantiated.

Be asynchronous; don't hold up other programs.

Download data in small blocks.

When downloading large streams such as bitmaps or video data, access a control's data asynchronously
in cooperation with the container. Retrieve the data in an incremental or progressive fashion, working
cooperatively with other controls that may also be retrieving data. Code can also be downloading
asynchronously.

Download code and properties in the background.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/activex-controls-on-the-internet.md

Creating a New ActiveX Control

To create your project using the MFC ActiveX Control WizardTo create your project using the MFC ActiveX Control Wizard

To create a class derived from CDataPathPropertyTo create a class derived from CDataPathProperty

Become user-interface active as quickly as possible.

Consider how persistent data is stored, both properties and large data BLOBs (such as a bitmap image or
video data).

Controls with significant amounts of persistent data, such as large bitmaps or AVI files, require careful
attention to downloading method. A document or page can become visible as soon as possible, and allow
the user to interact with the page while controls retrieve data in the background.

Write efficient routines to keep code size and run time down.

Small button and label controls, with only a few bytes of persistent data, are suitable for use in the
Internet environment and work well inside browsers.

Consider progress is communicated to the container.

Notify the container of progress in the asynchronous download, including when the user can start to
interact with a page, and when the download is complete. The container can display progress (such as
percent complete) to the user.

Consider how controls are registered on the client computer.

When creating a new control using the Application Wizard, you can choose to enable support for asynchronous
monikers as well as other optimizations. To add support to download control properties asynchronously, follow
these steps:

1. Click New on the File menu.

2. Select MFC ActiveX Control Wizard from the Visual C++ projects and name your project.

3. On the Control Settings page, select Loads properties asynchronously. Selecting this option sets up
the ready state property and the ready state changed event for you.

You can also select other optimizations, such as Windowless activation, which is described in ActiveX
Controls: Optimization.

4. Choose Finish to create the project.

1. Create a class derived from CDataPathProperty .

2. In each of your source files that includes the header file for your control, add the header file for this class
before it.

3. In this class, override OnDataAvailable . This function is called whenever data is available for display. As
data becomes available, you can handle it any way you choose, for example by progressively rendering it.

The code excerpt below is a simple example of progressively displaying data in an edit control. Note the
use of flag BSCF_FIRSTDATANOTIFICATION to clear the edit control.

To add a propertyTo add a property

void CMyDataPathProperty::OnDataAvailable(DWORD dwSize, DWORD bscfFlag)
{
 CListCtrl list_ctrl;
 CEdit* edit = list_ctrl.GetEditControl();
 if ((bscfFlag & BSCF_FIRSTDATANOTIFICATION) && edit->m_hWnd)
 {
 edit->SetSel(0, -1);
 edit->Clear();
 }

 if (dwSize > 0)
 {
 CString string;
 LPTSTR str = string.GetBuffer(dwSize);
 UINT nBytesRead = Read(str, dwSize);
 if (nBytesRead > 0)
 {
 string.ReleaseBuffer(nBytesRead);
 edit->SetSel(-1, -1);
 edit->ReplaceSel(string);
 }
 }
}

if (bscfFlag & BSCF_LASTDATANOTIFICATION)
{
 GetControl()->InternalSetReadyState(READYSTATE_COMPLETE);
}

Note that you must include AFXCMN.H to use the CListCtrl class.

4. When your control's overall state changes (for example, from loading to initialized or user interactive), call
COleControl::InternalSetReadyState . If your control has only one data path property, you can add code on

BSCF_LASTDATANOTIFICATION to notify the container that your download is complete. For example:

5. Override OnProgress . In OnProgress , you are passed a number showing the maximum range and a
number showing how far along the current download is. You can use these numbers to display status
such as percent complete to the user.

The next procedure adds a property to the control to use the class just derived.

CMyDataPathProperty EditControlText;

1. In Class View, right-click the interface underneath the library node and select Add, then Add Property.
This will start the Add Property Wizard.

2. In the Add Property Wizard, select the Set/Get Methods radio button, type the Property Name, for
example, EditControlText, and select BSTR as the Property type.

3. Click Finish.

4. Declare a member variable of your CDataPathProperty -derived class to your ActiveX control class.

5. Implement the Get/Set methods. For Get , return the string. For Set , load the property and call
SetModifiedFlag .

Deciding Whether to Derive from CDataPathProperty or
CCachedDataPathProperty

void CMyCachedDataPathProperty::OnDataAvailable(DWORD dwSize, DWORD bscfFlag)
{
 CCachedDataPathProperty::OnDataAvailable(dwSize, bscfFlag);
 GetControl()->InvalidateControl();
}

Downloading Data Asynchronously Using ActiveX Controls

BSTR CMFCActiveXControlCtrl::GetEditControlText(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 CString strResult;
 strResult = EditControlText.GetPath();
 return strResult.AllocSysString();
}

void CMFCActiveXControlCtrl::SetEditControlText(LPCTSTR newVal)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 Load(newVal, EditControlText);
 SetModifiedFlag();
}

PX_DataPath(pPX, _T("DataPath"), EditControlText);

EditControlText.ResetData();

6. In DoPropExchange, add the following line:

7. Override ResetData to notify the property to reset its control by adding this line:

The previous example describes steps for deriving your control's property from CDataPathProperty . This is a
good choice if you are downloading real-time data that frequently changes, and for which you do not need to
keep all the data, but only the current value. An example is a stock ticker control.

You can also derive from CCachedDataPathProperty . In this case, the downloaded data is cached in a memory file.
This is a good choice if you need to keep all the downloaded data — for example, a control that progressively
renders a bitmap. In this case, the class has a member variable containing your data:

CMemFile m_Cache;

In your ActiveX control class, you can use this memory mapped file in OnDraw to display the data. In your
ActiveX control CCachedDataPathProperty -derived class, override the member function OnDataAvailable and
invalidate the control, after calling the base class implementation.

Downloading data over a network should be done asynchronously. The advantage of doing so is that if a large
amount of data is transferred or if the connection is slow, the download process will not block other processes
on the client.

Asynchronous monikers provide a way to download data asynchronously over a network. A Read operation on

Displaying a Control on a Web Page

<OBJECT
 CLASSID="clsid:FC25B780-75BE-11CF-8B01-444553540000"
 CODEBASE="/ie/download/activex/iechart.ocx"
 ID=chart1
 WIDTH=400
 HEIGHT=200
 ALIGN=center
 HSPACE=0
 VSPACE=0>
 <PARAM NAME="BackColor" value="#ffffff"/>
 <PARAM NAME="ForeColor" value="#0000ff"/>
 <PARAM NAME="url" VALUE="/ie/controls/chart/mychart.txt"/>
</OBJECT>

Updating an Existing OLE Control to Use New ActiveX Control
Features

m_lReadyState = READYSTATE_LOADING;

See also

an Asynchronous moniker returns immediately, even if the operation has not been completed.

For example, if only 10 bytes are available and Read is called asynchronously on a 1K file, Read does not block,
but returns with the currently available 10 bytes.

You implement asynchronous monikers using the CAsyncMonikerFile class. However, ActiveX controls can use
the CDataPathProperty class, which is derived from CAsyncMonikerFile , to help implement asynchronous control
properties.

Here is an example of an object tag and attributes for inserting a control on a Web page.

If your OLE control was created with a version of Visual C++ prior to 4.2, there are steps you can take to
improve its performance and enhance its functionality. For a detailed discussion of these changes, see ActiveX
Controls: Optimization.

If you are adding asynchronous property support to an existing control, you will need to add the ready state
property and the ReadyStateChange event yourself. In the constructor for your control, add:

You will update the ready state as your code is downloaded by calling COleControl::InternalSetReadyState. One
place you could call InternalSetReadyState is from the OnProgress override of CDataPathProperty -derived class.

MFC Internet Programming Tasks
MFC Internet Programming Basics

Upgrading an Existing ActiveX Control
3/4/2019 • 10 minutes to read • Edit Online

IMPORTANTIMPORTANT

Packaging Code for Downloading

The CODEBASE TagThe CODEBASE Tag

Using the CODEBASE Tag with an OCX FileUsing the CODEBASE Tag with an OCX File

CODEBASE="http://example.microsoft.com/mycontrol.ocx#version=4,
 70,
 0,
 1086"

Existing ActiveX controls (formerly OLE controls) can be used on the Internet without modification. However, you
may want to modify controls to improve their performance.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

When using your control on a Web page, there are additional considerations. The .ocx file and all supporting files
must be on the target machine or be downloaded across the Internet. This makes code size and download time an
important consideration. Downloads can be packaged in a signed .cab file. You can mark your control as safe for
scripting, and as safe for initializing.

This article discusses the following topics:

Packaging Code for Downloading

Marking a Control Safe for Scripting and Initializing

Licensing Issues

Signing Code

Managing the Palette

Internet Explorer Browser Safety Levels and Control Behavior

You can also add optimizations, as described in ActiveX Controls: Optimization. Monikers can be used to
download properties and large BLOBs asynchronously, as described in ActiveX Controls on the Internet.

For more information on this subject, see Packaging ActiveX Controls.

ActiveX controls are embedded in Web pages using the <OBJECT> tag. The CODEBASE parameter of the <OBJECT>

tag specifies the location from which to download the control. CODEBASE can point at a number of different file
types successfully.

This solution downloads only the control's .ocx file, and requires any supporting DLLs to already be installed on
the client machine. This will work for Internet Explorer and MFC ActiveX controls built with Visual C++, because
Internet Explorer ships with the supporting DLLs for Visual C++ controls. If another Internet browser that is
ActiveX control-capable is used to view this control, this solution will not work.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/upgrading-an-existing-activex-control.md
https://docs.microsoft.com//previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa751974%28v%3dvs.85%29

Using the CODEBASE Tag with an INF FileUsing the CODEBASE Tag with an INF File

CODEBASE="http://example.microsoft.com/trustme.inf"

Using the CODEBASE Tag with a CAB FileUsing the CODEBASE Tag with a CAB File

CODEBASE="http://example.microsoft.com/acontrol.cab#version=1,
 2,
 0,
 0"

Creating CAB FilesCreating CAB Files

The INF FileThe INF File

Contents of spindial.inf:
[mfc42installer]
file-win32-x86=http://activex.microsoft.com/controls/vc/mfc42.cab
[Olepro32.dll] - FileVersion=5,
 0,
 4261,
 0
[Mfc42.dll] - FileVersion=6,
 0,
 8168,
 0
[Msvcrt.dll] - FileVersion=6,
 0,
 8168,
 0

The <OBJECT> TagThe <OBJECT> Tag

An .inf file will control the installation of an .ocx and its supporting files. This method is not recommended because
it is not possible to sign an .inf file (see Signing Code for pointers on code signing).

Cabinet files are the recommended way to package ActiveX controls that use MFC. Packaging an MFC ActiveX
control in a cabinet file allows an .inf file to be included to control installation of the ActiveX control and any
dependent DLLs (such as the MFC DLLs). Using a CAB file automatically compresses the code for quicker
download. If you are using a .cab file for component download, it is faster to sign the entire .cab file than each
individual component.

Tools to create cabinet files are now part of the Windows 10 SDK.

The cabinet file pointed to by CODEBASE should contain the .ocx file for your ActiveX control and an .inf file to
control its installation. You create the cabinet file by specifying the name of your control file and an .inf file. Do not
include dependent DLLs that may already exist on the system in this cabinet file. For example, the MFC DLLs are
packaged in a separate cabinet file and referred to by the controlling .inf file.

For details on how to create a CAB file, see Creating a CAB File.

The following example, spindial.inf, lists the supporting files and the version information needed for the MFC
Spindial control. Notice the location for the MFC DLLs is a Microsoft Web site. The mfc42.cab is provided and
signed by Microsoft.

The following example illustrates using the <OBJECT> tag to package the MFC Spindial sample control.

https://dev.windows.com/downloads/windows-10-sdk
https://docs.microsoft.com/windows/desktop/devnotes/cabinet-api-functions

<OBJECT ID="Spindial1" WIDTH=100 HEIGHT=51
 CLASSID="CLSID:06889605-B8D0-101A-91F1-00608CEAD5B3"
 CODEBASE="http://example.microsoft.com/spindial.cab#Version=1,0,0,001">
<PARAM NAME="_Version" VALUE="65536">
<PARAM NAME="_ExtentX" VALUE="2646">
<PARAM NAME="_ExtentY" VALUE="1323">
<PARAM NAME="_StockProps" VALUE="0">
<PARAM NAME="NeedlePosition" VALUE="2">
</OBJECT>

C:\CabDevKit\cabarc.exe -s 6144 N spindial.cab spindial.ocx spindial.inf

The Version TagThe Version Tag

Marking a Control Safe for Scripting and Initializing

HKEY_CLASSES_ROOT\Component Categories\{7DD95801-9882-11CF-9FA9-00AA006C42C4}

HKEY_CLASSES_ROOT\Component Categories\{7DD95802-9882-11CF-9FA9-00AA006C42C4}

HKEY_CLASSES_ROOT\CLSID\{06889605-B8D0-101A-91F1-00608CEAD5B3}\Implemented Categories\{7DD95801-9882-11CF-
9FA9-00AA006C42C4}
HKEY_CLASSES_ROOT\CLSID\{06889605-B8D0-101A-91F1-00608CEAD5B3}\Implemented Categories\{7DD95802-9882-11CF-
9FA9-00AA006C42C4}

Licensing Issues

In this case, spindial.cab will contain two files, spindial.ocx and spindial.inf. The following command will build the
cabinet file:

The -s 6144 parameter reserves space in the cabinet for code signing.

Note here that the #Version information specified with a CAB file applies to the control specified by the CLASSID
parameter of the <OBJECT> tag.

Depending on the version specified, you can force download of your control. For complete specifications of the
OBJECT tag including the CODEBASE parameter, see the W3C reference.

ActiveX controls used in Web pages should be marked as safe for scripting and safe for initializing if they are in
fact safe. A safe control will not perform disk IO or access the memory or registers of a machine directly.

Controls can be marked as safe for scripting and safe for initializing via the registry. Modify DllRegisterServer to
add entries similar to the following to mark the control as safe for scripting and persistence in the registry. An
alternative method is to implement IObjectSafety .

You will define GUIDs (Globally Unique Identifiers) for your control to mark it safe for scripting and for
persistence. Controls that can be safely scripted will contain a registry entry similar to the following:

Controls that can be safely initialized from persistent data are marked safe for persistence with a registry entry
similar to:

Add entries similar to the following (substituting your control's class ID in place of
{06889605-B8D0-101A-91F1-00608CEAD5B3}) to associate your keys with the following class ID:

To create an LPK fileTo create an LPK file

To embed a licensed control on an HTML pageTo embed a licensed control on an HTML page

<OBJECT CLASSID = "clsid:5220cb21-c88d-11cf-b347-00aa00a28331">
<PARAM NAME="LPKPath" VALUE="relative URL to .LPK file">
</OBJECT>

If you want to use a licensed control on a Web page, you must verify that the license agreement allows its use on
the Internet and create a license package file (LPK) for it.

A licensed ActiveX control will not load properly in an HTML page if the computer running Internet Explorer is not
licensed to use the control. For example, if a licensed control was built using Visual C++, the HTML page using the
control will load properly on the computer where the control was built, but it will not load on a different computer
unless licensing information is included.

To use a licensed ActiveX control in Internet Explorer, you must check the vendor's license agreement to verify that
the license for the control permits:

Redistribution

Use of the control on the Internet

Use of the Codebase parameter

To use a licensed control in an HTML page on a nonlicensed machine, you must generate a license package file
(LPK). The LPK file contains run-time licenses for licensed controls in the HTML page. This file is generated via
LPK_TOOL.EXE which comes with the ActiveX SDK. For more information, see the MSDN Web site at
http://msdn.microsoft.com.

1. Run LPK_TOOL.EXE on a computer that is licensed to use the control.

2. In the License Package Authoring Tool dialog box, in the Available Controls list box, select each
licensed ActiveX control that will be used on the HTML page and click Add.

3. Click Save & Exit and type a name for the LPK file. This will create the LPK file and close the application.

1. Edit your HTML page. In the HTML page, insert an <OBJECT> tag for the License Manager object before any
other <OBJECT> tags. The License Manager is an ActiveX control that is installed with Internet Explorer. Its
class ID is shown below. Set the LPKPath property of the License Manager object to the path and name of the
LPK file. You can have only one LPK file per HTML page.

1. Insert the <OBJECT> tag for your licensed control after the License Manager tag.

For example, an HTML page that displays the Microsoft Masked Edit control is shown below. The first class
ID is for the License Manager control, the second class ID is for the Masked Edit control. Change the tags to
point to the relative path of the .lpk file you created earlier, and add an object tag including the class ID for
your control.

2. Insert the <EMBED> attribute for your LPK file, if using the NCompass ActiveX plug-in.

If your control may be viewed on other Active enabled browsers — for example, Netscape using the
NCompass ActiveX plug-in — you must add the <EMBED> syntax as shown below.

http://msdn.microsoft.com

<OBJECT CLASSID="clsid:5220cb21-c88d-11cf-b347-00aa00a28331">
<PARAM NAME="LPKPath" VALUE="maskedit.lpk">

<EMBED SRC = "maskedit.LPK">

</OBJECT>
<OBJECT CLASSID="clsid:C932BA85-4374-101B-A56C-00AA003668DC" WIDTH=100 HEIGHT=25>
</OBJECT>

Signing Code

Managing the Palette

Internet Explorer Browser Safety Levels and Control Behavior

For more information about control licensing, see ActiveX Controls: Licensing an ActiveX Control.

Code signing is designed to identify the source of code, and to guarantee that the code has not changed since it
was signed. Depending on browser safety settings, users may be warned before the code is downloaded. Users
may choose to trust certain certificate owners or companies, in which case code signed by those trusted will be
downloaded without warning. Code is digitally signed to avoid tampering.

Make sure your final code is signed so that your control can be automatically downloaded without displaying trust
warning messages. For details on how to sign code, check the documentation on Authenticode in the ActiveX SDK
and see Signing a CAB File.

Depending on trust and browser safety level settings, a certificate may be displayed to identify the signing person
or company. If the safety level is none, or if the signed control's certificate owner is trusted, a certificate will not be
displayed. See Internet Explorer Browser Safety Levels and Control Behavior for details on how the browser
safety setting will determine whether your control is downloaded and a certificate displayed.

Digital signing guarantees code has not changed since it's been signed. A hash of the code is taken and embedded
in the certificate. This hash is later compared with a hash of the code taken after the code is downloaded but
before it runs. Companies such as Verisign can supply private and public keys needed to sign code. The ActiveX
SDK ships with MakeCert, a utility for creating test certificates.

Containers determine the palette and make it available as an ambient property, DISPID_AMBIENT_PALETTE . A
container (for example, Internet Explorer) chooses a palette that is used by all ActiveX controls on a page to
determine their own palette. This prevents display flickering and presents a consistent appearance.

A control can override OnAmbientPropertyChange to handle notification of changes to the palette.

A control can override OnGetColorSet to return a color set to draw the palette. Containers use the return value to
determine if a control is palette-aware.

Under OCX 96 guidelines, a control must always realize its palette in the background.

Older containers that do not use the ambient palette property will send WM_QUERYNEWPALETTE and
WM_PALETTECHANGED messages. A control can override OnQueryNewPalette and OnPaletteChanged to handle
these messages.

A browser has options for safety level, configurable by the user. Because Web pages can contain active content
that might potentially harm a user's computer, browsers allow the user to select options for safety level.
Depending on the way a browser implements safety levels, a control may not be downloaded at all, or will display
a certificate or a warning message to allow the user to choose at run time whether or not to download the control.
The behavior of ActiveX controls under high, medium, and low safety levels on Internet Explorer is listed below.

https://docs.microsoft.com/windows/desktop/devnotes/cabinet-api-functions

High Safety ModeHigh Safety Mode

Medium Safety ModeMedium Safety Mode

Low Safety ModeLow Safety Mode

See also

Unsigned controls will not be downloaded.

Signed controls will display a certificate if untrusted (a user can choose an option to always trust code from
this certificate owner from now on).

Only controls marked as safe will have persistent data and/or be scriptable.

Unsigned controls will display a warning before downloading.

Signed controls will display a certificate if untrusted.

Controls not marked as safe will display a warning.

Controls are downloaded without warning.

Scripting and persistence occur without warning.

MFC Internet Programming Tasks
MFC Internet Programming Basics
MFC ActiveX Controls: Licensing an ActiveX Control

Asynchronous Monikers on the Internet
3/4/2019 • 2 minutes to read • Edit Online

Advantages of Asynchronous Monikers

MFC Classes for Asynchronous Monikers

MFC Classes for Data Paths in ActiveX Controls

To download a file using asynchronous monikersTo download a file using asynchronous monikers

The Internet requires new approaches to application design because of its slow network access. Applications
should perform network access asynchronously to avoid stalling the user interface. The MFC class
CAsyncMonikerFile provides asynchronous support for downloading files.

With asynchronous monikers, you can extend your COM application to download asynchronously across the
Internet and to provide progressive rendering of large objects such as bitmaps and VRML objects.
Asynchronous monikers enable an ActiveX control property or a file on the Internet to be downloaded without
blocking the response of the user interface.

You can use asynchronous monikers to:

Download code and files without blocking.

Download properties in ActiveX controls without blocking.

Receive notifications of downloading progress.

Track progress and ready state information.

Provide status information to the user about progress.

Allow the user to cancel a download at any time.

CAsyncMonikerFile is derived from CMonikerFile, which in turn is derived from COleStreamFile. A
COleStreamFile object represents a stream of data; a CMonikerFile object uses an IMoniker to obtain the data,

and a CAsyncMonikerFile object does so asynchronously.

Asynchronous monikers are used primarily in Internet-enabled applications and ActiveX controls to provide a
responsive user interface during file transfers. A prime example of this is the use of CDataPathProperty to
provide asynchronous properties for ActiveX controls.

The MFC classes CDataPathProperty and CCachedDataPathProperty implement ActiveX control properties that
can be loaded asynchronously. Asynchronous properties are loaded after synchronous initiation. Asynchronous
ActiveX controls repeatedly invoke a callback to indicate availability of new data during a lengthy property
exchange process.

CDataPathProperty is derived from CAsyncMonikerFile . CCachedDataPathProperty is derived from
CDataPathProperty . To implement asynchronous properties in your ActiveX controls, derive a class from
CDataPathProperty or CCachedDataPathProperty , and override OnDataAvailable and other notifications you wish

to receive.

1. Declare a class derived from CAsyncMonikerFile.

2. Override OnDataAvailable to display the data.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/asynchronous-monikers-on-the-internet.md

See also

3. Override other member functions, including OnProgress, OnStartBinding, and OnStopBinding.

4. Declare an instance of this class and use it to open URLs.

For information about downloading asynchronously in an ActiveX control, see ActiveX Controls on the Internet.

MFC Internet Programming Tasks
MFC Internet Programming Basics

Testing Internet Applications
3/4/2019 • 2 minutes to read • Edit Online

See also

There are some unique testing challenges on the Internet, especially for applications running on a Web server.
Your initial testing will probably be done using a single-user client connecting to a test server. This will be useful
for debugging your code.

You will also want to test under real conditions: with multiple clients connected over high-speed connections as
well as low-speed serial lines, including modem connections. It can be difficult to simulate real conditions, but it is
certainly worth spending time designing possible scenarios and executing them. If possible, you will also want to
use tools to do capacity and stress testing. Certain classes of bugs, such as timing bugs, are difficult to find and to
reproduce.

One of the challenges of Internet programming is its visibility. Many accesses to your site may slow down your
server. You want your server to degrade gracefully. You want to prevent anything that could be destructive to a
user's computer if your application fails (for example, corruption of data while writing to the registry or while
writing cookies on the client).

MFC Internet Programming Tasks
MFC Internet Programming Basics

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/testing-internet-applications.md

Internet Security (C++)
3/4/2019 • 2 minutes to read • Edit Online

See also

Code safety is a major issue for developers and for users of Internet applications. There are risks: malicious code,
code that has been tampered with, and code from unknown sites or authors.

There are two basic approaches to security when developing for the Internet. The first is called "sandboxing." In
this approach, an application is restricted to a particular set of APIs, and excluded from potentially dangerous ones
such as file I/O where a program could destroy data on a user's computer. The second is implemented using digital
signatures. This approach is referred to as "shrinkwrap" for the Internet. Code is verified and signed using private
key/public key technology. Before the code is run, its digital signature is verified to ensure that the code is from a
known authenticated source, and that the code has not been altered since it has been signed.

In the first case, you trust that the application will not do any harm and you trust the origin of the application. In
the second, digital signatures are used to verify authenticity. Digital signing is an industry standard used to identify
and provide details about the publisher of the code. Its technology is based on standards, including RSA and
X.509. Browsers typically allow users to choose if they want to download and run code of unknown origin.

MFC Internet Programming Tasks
MFC Internet Programming Basics

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/internet-security-cpp.md

OLE in MFC
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

In This Section

These articles explain the fundamentals of OLE programming using MFC. MFC provides the easiest way to write
programs that use OLE:

To use OLE visual editing (in-place activation).

To work as OLE containers or servers.

To implement drag-and-drop functionality.

To work with date and time data.

To manage the state data of MFC modules, including exported DLL function entry points, OLE/COM
interface entry points, and window procedure entry points.

You can also use Automation.

The term OLE denotes the technologies associated with linking and embedding, including OLE containers, OLE servers,
OLE items, in-place activation (or visual editing), trackers, drag and drop, and menu merging. The term Active applies to
the Component Object Model (COM) and COM-based objects such as ActiveX controls. OLE Automation is now called
Automation.

OLE Background
Discusses OLE and provides conceptual information about how it works.

Activation
Describes the role of activation in editing OLE items.

Containers
Provides links to using containers in OLE.

Data Objects and Data Sources
Provides links to topics discussing the use of the COleDataObject and COleDataSource classes.

Drag and Drop
Discusses using copying and pasting with OLE.

OLE Menus and Resources
Explains the use of menus and resources in MFC OLE document applications.

Registration
Discusses server installation and initialization.

Servers
Describes how to create OLE items (or components) for use by container applications.

Trackers
Provides information about the CRectTracker class, which provides a graphical interface to enable users to

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-in-mfc.md

Related Sections

See also

interact with OLE client items.

Connection Points
Explains how to implement connection points (formerly known as OLE connection points) using the MFC classes
CCmdTarget and CConnectionPoint .

Container/Server COM Components
Describes the steps necessary to incorporate optional advanced features into existing container applications.

The Component Object Model
Describes using OLE without MFC.

Concepts

https://docs.microsoft.com/windows/desktop/com/the-component-object-model

OLE Background
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

OLE is a mechanism that allows users to create and edit documents containing items or "objects" created by
multiple applications.

OLE was originally an acronym for Object Linking and Embedding. However, it is now referred to as OLE. Parts of OLE not
related to linking and embedding are now part of Active technology.

OLE documents, historically called compound documents, seamlessly integrate various types of data, or
components. Sound clips, spreadsheets, and bitmaps are typical examples of components found in OLE
documents. Supporting OLE in your application allows your users to use OLE documents without worrying about
switching between the different applications; OLE does the switching for you.

You use a container application to create compound documents and a server application or component
application to create the items within the container document. Any application you write can be a container, a
server, or both.

OLE incorporates many different concepts that all work toward the goal of seamless interaction between
applications. These areas include the following:

NOTENOTE

NOTENOTE

Linking and Embedding

Linking and embedding are the two methods for storing items created inside an OLE document that were
created in another application. For general information on the differences between the two, see the article
OLE Background: Linking and Embedding. For more detailed information, see the articles Containers and
Servers.

In-Place Activation (Visual Editing)

Activating an embedded item in the context of the container document is called in-place activation or visual
editing. The container application's interface changes to incorporate the features of the component
application that created the embedded item. Linked items are never activated in place because the actual
data for the item is contained in a separate file, out of the context of the application containing the link. For
more information on in-place activation, see the article Activation.

Linking and embedding and in-place activation provide the main features of OLE visual editing.

Automation Automation allows one application to drive another application. The driving application is
known as an automation client, and the application being driven is known as an automation server or
automation component. For more information on automation, see the articles Automation Clients and
Automation Servers.

Automation works in both OLE and Active technology contexts. You can automate any object based on COM.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-background.md

See also

Compound Files

Compound files provide a standard file format that simplifies structured storing of compound documents
for OLE applications. Within a compound file, storages have many features of directories and streams have
many features of files. This technology is also called structured storage. For more information on
compound files, see the article Containers: Compound Files.

Uniform Data Transfer

Uniform Data Transfer (UDT) is a set of interfaces that allow data to be sent and received in a standard
fashion, regardless of the actual method chosen to transfer the data. UDT forms the basis for data transfers
by drag and drop. UDT now serves as the basis for existing Windows data transfer, such as the Clipboard
and dynamic data exchange (DDE). For more information on UDT, see the article Data Objects and Data
Sources (OLE).

Drag and Drop

Drag and drop is an easy-to-use, direct-manipulation technique to transfer data among applications,
among windows within an application, or even within a single window in an application. The data to be
transferred is selected and dragged to the desired destination. Drag and drop is based on uniform data
transfer. For more information on drag and drop, see the article Drag and Drop.

Component Object Model

The Component Object Model (COM) provides the infrastructure used when OLE objects communicate
with each other. The MFC OLE classes simplify COM for the programmer. COM is part of Active
technology, because COM objects underlie both OLE and Active technology. For more information about
COM, see the Active Template Library (ATL) topics.

Some of the more important OLE topics are covered in the following articles:

OLE Background: Linking and Embedding

OLE Background: Containers and Servers

OLE Background: Implementation Strategies

OLE Background: MFC Implementation

For general OLE information not found in the above articles, search for OLE in MSDN.

OLE

OLE Background: Linking and Embedding
3/4/2019 • 2 minutes to read • Edit Online

See also

Using the Paste command in a container application can create an embedded component, or embedded item. The
source data for an embedded item is stored as part of the OLE document that contains it. In this way, a document
file for a word processor document can contain text and also can contain bitmaps, graphs, formulas, or any other
type of data.

OLE provides another way to incorporate data from another application: creating a linked component, or linked
item, or a link. The steps for creating a linked item are similar to those for creating an embedded item, except that
you use the Paste Link command instead of the Paste command. Unlike an embedded component, a linked
component stores a path to the original data, which is often in a separate file.

For example, if you are working in a word processor document and create a linked item to some spreadsheet cells,
the data for the linked item is stored in the original spreadsheet document. The word processor document contains
only the information specifying where the item can be found, that is, it contains a link to the original spreadsheet
document. When you double-click the cells, the spreadsheet application is launched and the original spreadsheet
document is loaded from where it was stored.

Every OLE item, whether embedded or linked, has a type associated with it based on the application that created it.
For example, a Microsoft Paintbrush item is one type of item, and a Microsoft Excel item is another type. Some
applications, however, can create more than one item type. For example, Microsoft Excel can create worksheet
items, chart items, and macrosheet items. Each of these items can be uniquely identified by the system using a
Class Identifier or CLSID .

OLE Background
OLE Background: Containers and Servers
Containers: Client Items
Servers: Server Items

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-background-linking-and-embedding.md

OLE Background: Containers and Servers
3/4/2019 • 2 minutes to read • Edit Online

See also

A container application is an application that can incorporate embedded or linked items into its own documents.
The documents managed by a container application must be able to store and display OLE document components
as well as the data created by the application itself. A container application must also allow users to insert new
items or edit existing items by activating server applications when necessary. The user-interface requirements of a
container application are listed in the article Containers: User-Interface Issues.

A server application or component application is an application that can create OLE document components for use
by container applications. Server applications usually support drag and drop or copying their data to the Clipboard
so that a container application can insert the data as an embedded or linked item. An application can be both a
container and a server.

Most servers are stand-alone applications or full servers; they can either be run as stand-alone applications or can
be launched by a container application. A miniserver is a special type of server application that can be launched
only by a container. It cannot be run as a stand-alone application. Microsoft Draw and Microsoft Graph servers are
examples of miniservers.

Containers and servers do not communicate directly. Instead, they communicate through the OLE system
dynamic-link libraries (DLL). These DLLs provide functions that containers and servers call, and the containers and
servers provide callback functions that the DLLs call.

Using this means of communication, a container does not need to know the implementation details of the server
application. It allows a container to accept items created by any server without having to define the types of
servers with which it can work. As a result, the user of a container application can take advantage of future
applications and data formats. If these new applications are OLE components, then a compound document will be
able to incorporate items created by those applications.

OLE Background
OLE Background: MFC Implementation
Containers
Servers
Containers: Client Items
Servers: Server Items

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-background-containers-and-servers.md

OLE Background: Implementation Strategies
3/4/2019 • 2 minutes to read • Edit Online

See also

Depending on your application, there are four possible implementation strategies for adding OLE support:

You are writing a new application.

This situation usually requires the least work. You run the MFC Application Wizard and select either
Advanced Features or Compound Document Support to create a skeleton application. For information on
these options and what they do, see the article Creating an MFC EXE Program.

You have a program written with the Microsoft Foundation Class Library version 2.0 or higher that does not
support OLE.

Create a new application with the MFC Application Wizard as previously mentioned, and then copy and
paste the code from the new application into your existing application. This will work for servers, containers,
or automated applications. See the MFC SCRIBBLE sample for an example of this strategy.

You have a Microsoft Foundation Class Library program that implements OLE version 1.0 support.

See MFC Technical Note 41 for this conversion strategy.

You have an application that was not written using the Microsoft Foundation Classes and that may or may
not have implemented OLE support.

This situation requires the most work. One approach is to create a new application, as in the first strategy,
and then copy and paste your existing code into it. If your existing code is written in C, then you may need
to modify it so it can compile as C++ code. If your C code calls the Windows API, then you do not have to
change it to use the Microsoft Foundation classes. This approach likely will require some restructuring of
your program to support the document/view architecture used by versions 2.0 and higher of the Microsoft
Foundation Classes. For more information on this architecture, see Technical Note 25.

Once you have decided on a strategy, you should either read the Containers or Servers articles (depending on the
type of application you are writing) or examine the sample programs, or both. The MFC OLE samples OCLIENT
and HIERSVR show how to implement the various aspects of containers and servers, respectively. At various
points throughout these articles, you will be referred to certain functions in these samples as examples of the
techniques being discussed.

OLE Background
Containers: Implementing a Container
Servers: Implementing a Server
MFC Application Wizard

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-background-implementation-strategies.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

OLE Background: MFC Implementation
3/4/2019 • 2 minutes to read • Edit Online

Portions of OLE Not Implemented by the Class Library

TIPTIP

See also

Because of the size and complexity of the raw OLE API, calling it directly to write OLE applications can be very
time consuming. The goal of the Microsoft Foundation Class Library implementation of OLE is to reduce the
amount of work you have to do to write full-featured, OLE-capable applications.

This article explains the parts of the OLE API that have not been implemented inside MFC. The discussion also
explains how what is implemented maps to the OLE section of the Windows SDK.

A few interfaces and features of OLE are not directly provided by MFC. If you want to use these features, you can
call the OLE API directly.

IMoniker Interface The IMoniker interface is implemented by the class library (for example, the COleServerItem

class) but has not previously been exposed to the programmer. For more information about this interface, see OLE
Moniker Implementations in the OLE section of the Windows SDK. However, see also class CMonikerFile and
CAsyncMonikerFile.

IUnknown and IMarshal Interfaces The IUnknown interface is implemented by the class library but is not exposed
to the programmer. The IMarshal interface is not implemented by the class library but is used internally.
Automation servers built using the class library already have marshaling capabilities built in.

Docfiles (Compound Files) Compound files are partially supported by the class library. None of the functions that
directly manipulate compound files beyond creation are supported. MFC uses class COleFileStream to support
manipulation of streams with standard file functions. For more information, see the article Containers: Compound
Files.

In-Process Servers and Object Handlers In-process servers and object handlers allow implementation of visual
editing data or full Component Object Model (COM) objects in a dynamic-link library (DLL). To do this, you can
implement your DLL by calling the OLE API directly. However, if you are writing an Automation server and your
server has no user interface, you can use AppWizard to make your server an in-process server and put it
completely into a DLL. For more information about these topics, see Automation Servers.

The easiest way to implement an Automation server is to place it in a DLL. MFC supports this approach.

For more information on how the Microsoft Foundation OLE classes implement OLE interfaces, see MFC
Technical Notes 38, 39, and 40.

OLE Background
OLE Background: Implementation Strategies

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-background-mfc-implementation.md

Activation (C++)
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

This article explains the role of activation in the visual editing of OLE items. After a user has embedded an OLE
item in a container document, it may need to be used. To do this, the user double-clicks the item, which activates
that item. The most frequent activity for activation is editing. Many current OLE items, when activated for editing,
cause the menus and toolbars in the current frame window to change to reflect those belonging to the server
application that created the item. This behavior, known as in-place activation, allows the user to edit any
embedded item in a compound document without leaving the container document's window.

It is also possible to edit embedded OLE items in a separate window. This will happen if either the container or
server application does not support in-place activation. In this case, when the user double-clicks an embedded
item, the server application is launched in a separate window and the embedded item appears as its own
document. The user edits the item in this window. When editing is complete, the user closes the server
application and returns to the container application.

As an alternative, the user can choose "open editing" with the <object> Open command on the Edit menu. This
opens the object in a separate window.

Editing embedded items in a separate window was standard behavior in version 1 of OLE, and some OLE applications may
support only this style of editing.

In-place activation promotes a document-centric approach to document creation. The user can treat a compound
document as a single entity, working on it without switching between applications. However, in-place activation
is used only for embedded items, not for linked items: they must be edited in a separate window. This is because
a linked item is actually stored in a different place. The editing of a linked item takes place within the actual
context of the data, that is, where the data is stored. Editing a linked item in a separate window reminds the user
that the data belongs to another document.

MFC does not support nested in-place activation. If you build a container/server application, and that
container/server is embedded in another container and in-place activated, it cannot in-place activate objects
embedded inside it.

What happens to an embedded item when the user double-clicks it depends on the verbs defined for the item.
For information, see Activation: Verbs.

OLE
Containers
Servers

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/activation-cpp.md

Activation: Verbs
3/4/2019 • 2 minutes to read • Edit Online

See also

This article explains the role primary and secondary verbs play in OLE activation.

Usually, double-clicking an embedded item allows the user to edit it. However, certain items do not behave this
way. For example, double-clicking an item created with the Sound Recorder application does not open the server in
a separate window; instead, it plays the sound.

The reason for this behavior difference is that Sound Recorder items have a different "primary verb." The primary
verb is the action performed when the user double-clicks an OLE item. For most types of OLE items, the primary
verb is Edit, which launches the server that created the item. For some types of items, such as Sound Recorder
items, the primary verb is Play.

Many types of OLE items support only one verb, and Edit is the most common one. However, some types of items
support multiple verbs. For example, Sound Recorder items support Edit as a secondary verb.

Another verb used frequently is Open. The Open verb is identical to Edit, except the server application is launched
in a separate window. This verb should be used when either the container application or the server application
does not support in-place activation.

Any verbs other than the primary verb must be invoked through a submenu command when the item is selected.
This submenu contains all the verbs supported by the item and is usually reached by the typename Object
command on the Edit menu. For information on the typename Object command, see the article Menus and
Resources: Container Additions.

The verbs a server application supports are listed in the Windows registration database. If your server application
is written with the Microsoft Foundation Class Library, it will automatically register all verbs when the server is
started. If not, you should register them during the server application's initialization phase. For more information,
see the article Registration.

Activation
Containers
Servers

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/activation-verbs.md

Containers
3/4/2019 • 2 minutes to read • Edit Online

In This Section

See also

A container application is an application that can incorporate embedded or linked items into its own documents.
The documents managed by a container application must be able to store and display OLE compound
document components as well as data created by the application itself. A container application must also allow
users to insert new items or edit existing items.

Implement a Container

Container Client Items

Use Compound Files

Container User-Interface Issues

Advanced Features of Containers

OLE
Servers
Activation
Menus and Resources (OLE)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/containers.md

Containers: Implementing a Container
3/4/2019 • 2 minutes to read • Edit Online

To prepare your CWinApp-derived classTo prepare your CWinApp-derived class

To prepare your view classTo prepare your view class

To handle embedded and linked itemsTo handle embedded and linked items

This article summarizes the procedure for implementing a container and points you to other articles that provide
more detailed explanations about implementing containers. It also lists some optional OLE features you may want
to implement and the articles describing these features.

1. Initialize the OLE libraries by calling AfxOleInit in the InitInstance member function.

2. Call CDocTemplate::SetContainerInfo in InitInstance to assign the menu and accelerator resources used
when an embedded item is activated in-place. For more information on this topic, see Activation.

These features are provided for you automatically when you use the MFC Application Wizard to create a
container application. See Creating an MFC EXE Program.

1. Keep track of selected items by maintaining a pointer, or list of pointers if you support multiple selection, to
the selected items. Your OnDraw function must draw all OLE items.

2. Override IsSelected to check whether the item passed to it is currently selected.

3. Implement an OnInsertObject message handler to display the Insert Object dialog box.

4. Implement an OnSetFocus message handler to transfer focus from the view to an in-place active OLE
embedded item.

5. Implement an OnSize message handler to inform an OLE embedded item that it needs to change its
rectangle to reflect the change in size of its containing view.

Because the implementation of these features varies dramatically from one application to the next, the application
wizard provides only a basic implementation. You will likely have to customize these functions to get your
application to function properly. For an example of this, see the CONTAINER sample.

1. Derive a class from COleClientItem. Objects of this class represent items that have been embedded in or
linked to your OLE document.

2. Override OnChange , OnChangeItemPosition , and OnGetItemPosition . These functions handle sizing,
positioning, and modifying embedded and linked items.

The application wizard will derive the class for you, but you will likely need to override OnChange and the other
functions listed with it in step 2 in the preceding procedure. The skeleton implementations need to be customized
for most applications, because these functions are implemented differently from one application to the next. For
examples of this, see the MFC samples DRAWCLI and CONTAINER.

You must add a number of items to the container application's menu structure to support OLE. For more
information on these, see Menus and Resources: Container Additions.

You may also want to support some of the following features in your container application:

In-place activation when editing an embedded item.

For more information, see Activation.

Creation of OLE items by dragging and dropping a selection from a server application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/containers-implementing-a-container.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

See also

For more information, see Drag and Drop (OLE).

Links to embedded objects or combination container/server applications.

For more information, see Containers: Advanced Features.

Containers
Containers: Client Items

Containers: Client Items
3/4/2019 • 2 minutes to read • Edit Online

See also

This article explains what client items are and from what classes your application should derive its client items.

Client items are data items belonging to another application that are either contained in or referenced by an OLE
container application's document. Client items whose data is contained within the document are embedded; those
whose data is stored in another location referenced by the container document are linked.

The document class in an OLE application is derived from the class COleDocument rather than from CDocument .
The COleDocument class inherits from CDocument all the functionality necessary for using the document/view
architecture on which MFC applications are based. COleDocument also defines an interface that treats a document
as a collection of CDocItem objects. Several COleDocument member functions are provided for adding, retrieving,
and deleting elements of that collection.

Every container application should derive at least one class from COleClientItem . Objects of this class represent
items, embedded or linked, in the OLE document. These objects exist for the life of the document containing them,
unless they are deleted from the document.

CDocItem is the base class for COleClientItem and COleServerItem . Objects of classes derived from these two act
as intermediaries between the OLE item and the client and server applications, respectively. Each time a new OLE
item is added to the document, the MFC framework adds a new object of your client application's COleClientItem

-derived class to the document's collection of CDocItem objects.

Containers
Containers: Compound Files
Containers: User-Interface Issues
Containers: Advanced Features
COleClientItem Class
COleServerItem Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/containers-client-items.md

Containers: Client-Item Notifications
3/4/2019 • 2 minutes to read • Edit Online

NOTIFICATION MEANING

OLE_CHANGED The OLE item's appearance has changed.

OLE_SAVED The OLE item has been saved.

OLE_CLOSED The OLE item has been closed.

OLE_RENAMED The server document containing the OLE item has been
renamed.

OLE_CHANGED_STATE The OLE item has changed from one state to another.

OLE_CHANGED_ASPECT The OLE item's draw aspect has been changed by the
framework.

WHEN FIRST ARGUMENT IS SECOND ARGUMENT

OLE_SAVED or OLE_CLOSED Is not used.

OLE_CHANGED Specifies the aspect of the OLE item that has changed.

OLE_CHANGED_STATE Describes the state being entered (emptyState, loadedState,
openState, activeState, or activeUIState).

This article discusses the overridable functions that the MFC framework calls when server applications modify
items in your client application's document.

COleClientItem defines several overridable functions that are called in response to requests from the component
application, which is also called the server application. These overridables usually act as notifications. They inform
the container application of various events, such as scrolling, activation, or a change of position, and of changes
that the user makes when editing or otherwise manipulating the item.

The framework notifies your container application of changes through a call to COleClientItem::OnChange , an
overridable function whose implementation is required. This protected function receives two arguments. The first
specifies the reason the server changed the item:

These values are from the OLE_NOTIFICATION enumeration, which is defined in AFXOLE.H.

The second argument to this function specifies how the item has changed or what state it has entered:

For more information about the states a client item can assume, see Containers: Client-Item States.

The framework calls COleClientItem::OnGetItemPosition when an item is being activated for in-place editing.
Implementation is required for applications that support in-place editing. The MFC Application Wizard provides a
basic implementation, which assigns the item's coordinates to the CRect object that is passed as an argument to
OnGetItemPosition .

If an OLE item's position or size changes during in-place editing, the container's information about the item's

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/containers-client-item-notifications.md

See also

position and clipping rectangles must be updated and the server must receive information about the changes. The
framework calls COleClientItem::OnChangeItemPosition for this purpose. The MFC Application Wizard provides an
override that calls the base class's function. You should edit the function that the application wizard writes for your
COleClientItem -derived class so that the function updates any information retained by your client-item object.

Containers
Containers: Client-Item States
COleClientItem::OnChangeItemPosition

Containers: Client-Item States
3/4/2019 • 2 minutes to read • Edit Online

See also

This article explains the different states a client item passes through in its lifetime.

A client item passes through several states as it is created, activated, modified, and saved. Each time the item's
state changes, the framework calls COleClientItem::OnChange with the OLE_CHANGED_STATE notification. The
second parameter is a value from the COleClientItem::ItemState enumeration. It can be one of the following:

COleClientItem::emptyState

COleClientItem::loadedState

COleClientItem::openState

COleClientItem::activeState

COleClientItem::activeUIState

In the empty state, a client item is not yet completely an item. Memory has been allocated for it, but it has not yet
been initialized with the OLE item's data. This is the state a client item is in when it has been created through a call
to new but has not yet undergone the second step of the typical two-step creation.

In the second step, performed through a call to COleClientItem::CreateFromFile or another CreateFrom xxxx
function, the item is completely created. The OLE data (from a file or some other source, such as the Clipboard)
has been associated with the COleClientItem -derived object. Now the item is in the loaded state.

When an item has been opened in the server's window rather than opened in place in the container's document, it
is in the open (or fully open) state. In this state, a cross-hatch usually is drawn over the representation of the item
in the container's window to indicate that the item is active elsewhere.

When an item has been activated in place, it passes, usually only briefly, through the active state. It then enters the
UI active state, in which the server has merged its menus, toolbars, and other user-interface components with
those of the container. The presence of these user-interface components distinguishes the UI active state from the
active state. Otherwise, the active state resembles the UI active state. If the server supports Undo, the server is
required to retain the OLE item's undo-state information until it reaches the loaded or open state.

Containers
Activation
Containers: Client-Item Notifications
Trackers
CRectTracker Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/containers-client-item-states.md

Containers: Compound Files
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

Components of a Compound File

Advantages and Disadvantages of Compound Files

Incremental Access to FilesIncremental Access to Files

File Access ModesFile Access Modes

This article explains the components and implementation of compound files and the advantages and
disadvantages of using compound files in your OLE applications.

Compound files are an integral part of OLE. They are used to facilitate data transfer and OLE document storage.
Compound files are an implementation of the Active structured storage model. Consistent interfaces exist that
support serialization to a storage, a stream, or a file object. Compound files are supported in the Microsoft
Foundation Class Library by the classes COleStreamFile and COleDocument .

Using a compound file does not imply that the information comes from an OLE document or a compound document.
Compound files are just one of the ways to store compound documents, OLE documents, and other data.

The OLE implementation of compound files uses three object types: stream objects, storage objects, and
ILockBytes objects. These objects are similar to the components of a standard file system in the following ways:

Stream objects, like files, store data of any type.

Storage objects, like directories, can contain other storage and stream objects.

LockBytes objects represent the interface between the storage objects and the physical hardware. They
determine how the actual bytes are written to whatever storage device the LockBytes object is accessing,
such as a hard drive or an area of global memory. For more information about LockBytes objects and the
ILockBytes interface, see the OLE Programmer's Reference.

Compound files provide benefits not available with earlier methods of file storage. They include:

Incremental file accessing.

File access modes.

Standardization of file structure.

The potential disadvantages of compound files — large size and performance issues relating to storage on floppy
discs — should be considered when deciding whether to use them in your application.

Incremental access to files is an automatic benefit of using compound files. Because a compound file can be
viewed as a "file system within a file," individual object types, such as stream or storage, can be accessed without
the need to load the entire file. This can dramatically decrease the time an application needs to access new objects
for editing by the user. Incremental updating, based on the same concept, offers similar benefits. Instead of saving
the entire file just to save the changes made to one object, OLE saves only the stream or storage object edited by
the user.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/containers-compound-files.md

StandardizationStandardization

Size and Performance ConsiderationsSize and Performance Considerations

Using Compound Files Format for Your Data

See also

Being able to determine when changes to objects in a compound file are committed to disk is another benefit of
using compound files. The mode in which files are accessed, either transacted or direct, determines when changes
are committed.

Transacted mode uses a two-phase commit operation to make changes to objects in a compound file,
thereby keeping both the old and the new copies of the document available until the user chooses to either
save or undo the changes.

Direct mode incorporates changes to the document as they are made, without the ability to later undo
them.

For more information about access modes, see the OLE Programmer's Reference.

The standardized structure of compound files allows different OLE applications to browse through compound
files created by your OLE application with no knowledge of the application that actually created the file.

Because of the complexity of the compound file storage structure and the ability to save data incrementally, files
using this format tend to be larger than other files using unstructured or "flat file" storage. If your application
frequently loads and saves files, using compound files can cause the file size to increase much more quickly than
noncompound files. Because compound files can get large, the access time for files stored on and loaded from
floppy disks can also be affected, resulting in slower access to files.

Another issue that affects performance is compound-file fragmentation. The size of a compound file is
determined by the difference between the first and last disk sectors used by the file. A fragmented file can contain
many areas of free space that do not contain data, but are counted when calculating the size. During the lifetime
of a compound file, these areas are created by the insertion or deletion of storage objects.

After successfully creating an application that has a document class derived from COleDocument , ensure that your
main document constructor calls EnableCompoundFile . When the application wizard creates OLE container
applications, this call is inserted for you.

In the OLE Programmer's Reference, see IStream, IStorage, and ILockBytes.

Containers
Containers: User-Interface Issues
COleStreamFile Class
COleDocument Class

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istorage
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ilockbytes

Containers: User-Interface Issues
3/4/2019 • 2 minutes to read • Edit Online

FOR INFORMATION ON SEE

Menu additions for containers Menus and Resources: Container Additions

Additional resources for containers Menus and Resources: Container Additions

Painting linked or embedded items Container sample

New dialog boxes for containers Dialog Boxes in OLE

See also

You must add a number of features to a container application's user interface to adequately manage linked and
embedded items. These features involve changes to the menu structure and to the events that the application
handles. For detailed information about them, see the following articles:

Containers
Containers: Advanced Features
Menus and Resources (OLE)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/containers-user-interface-issues.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Containers: Advanced Features
3/4/2019 • 3 minutes to read • Edit Online

Creating a Container/Server Application

Links to Embedded Objects

This article describes the steps necessary to incorporate optional advanced features into existing container
applications. These features are:

An application that is both a container and a server

An OLE link to an embedded object

A container/server application is an application that acts as both a container and a server. Microsoft Word for
Windows is an example of this. You can embed Word for Windows documents in other applications, and you can
also embed items in Word for Windows documents. The process for modifying your container application to be
both a container and a full server (you cannot create a combination container/miniserver application) is similar to
the process for creating a full server.

The article Servers: Implementing a Server lists a number of tasks required to implement a server application. If
you convert a container application to a container/server application, then you need to perform some of those
same tasks, adding code to the container. The following lists the important things to consider:

The container code created by the application wizard already initializes the OLE subsystem. You will not
need to change or add anything for that support.

Wherever the base class of a document class is COleDocument , change the base class to COleServerDoc .

Override COleClientItem::CanActivate to avoid editing items in place while the server itself is being used
to edit in place.

For example, the MFC OLE sample OCLIENT has embedded an item created by your container/server
application. You open the OCLIENT application and in-place edit the item created by your container/server
application. While editing your application's item, you decide you want to embed an item created by the
MFC OLE sample HIERSVR. To do this, you cannot use in-place activation. You must fully open HIERSVR
to activate this item. Because the Microsoft Foundation Class Library does not support this OLE feature,
overriding COleClientItem::CanActivate allows you to check for this situation and prevent a possible run-
time error in your application.

If you are creating a new application and want it to function as a container/server application, choose that option
in the OLE Options dialog box in the application wizard and this support will be created automatically. For more
information, see the article Overview: Creating an ActiveX Control Container. For information about MFC
samples, see MFC Samples.

Note that you cannot insert an MDI application into itself. An application that is a container/server cannot be
inserted into itself unless it is an SDI application.

The Links to Embedded Objects feature enables a user to create a document with an OLE link to an embedded
object inside your container application. For example, create a document in a word processor containing an
embedded spreadsheet. If your application supports links to embedded objects, it could paste a link to the
spreadsheet contained in the word processor's document. This feature allows your application to use the
information contained in the spreadsheet without knowing where the word processor originally got it.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/containers-advanced-features.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

To link to embedded objects in your applicationTo link to embedded objects in your application

See also

1. Derive your document class from COleLinkingDoc instead of COleDocument .

2. Create an OLE class ID (CLSID) for your application by using the Class ID Generator included with the
OLE Development Tools.

3. Register the application with OLE.

4. Create a COleTemplateServer object as a member of your application class.

5. In your application class's InitInstance member function, do the following:

If the application is launched with the "/Embedded" switch, it should not show its main window,
similar to a server application.

Connect your COleTemplateServer object to your document templates by calling the object's
ConnectTemplate member function.

Call the COleTemplateServer::RegisterAll member function to register all class objects with the OLE
system.

Call COleTemplateServer::UpdateRegistry . The only parameter to UpdateRegistry should be
OAT_CONTAINER if the application is not launched with the "/Embedded" switch. This registers the
application as a container that can support links to embedded objects.

The MFC OLE sample OCLIENT implements this feature. For an example of how this is done, see the
InitInstance function in the OCLIENT.CPP file of this sample application.

Containers
Servers

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Data Objects and Data Sources (OLE)
3/4/2019 • 2 minutes to read • Edit Online

In This Section

See also

When you perform a data transfer, either by using the Clipboard or drag and drop, the data has a source and a
destination. One application provides the data for copying and another application accepts it for pasting. Each
side of the transfer needs to perform different operations on the same data for the transfer to succeed. The
Microsoft Foundation Class (MFC) Library provides two classes that represent each side of this transfer:

Data sources (as implemented by COleDataSource objects) represent the source side of the data transfer.
They are created by the source application when data is to be copied to the Clipboard, or when data is
provided for a drag-and-drop operation.

Data objects (as implemented by COleDataObject objects) represent the destination side of the data
transfer. They are created when the destination application has data dropped into it, or when it is asked to
perform a paste operation from the Clipboard.

The following articles explain how to use data objects and data sources in your applications. This information
applies to both container and server applications, because both may be called upon to copy and paste data.

Data Objects and Data Sources: Creation and Destruction

Data Objects and Data Sources: Manipulation

Drag and Drop

Clipboard

OLE
COleDataObject Class
COleDataSource Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/data-objects-and-data-sources-ole.md

Data Objects and Data Sources: Creation and
Destruction
3/4/2019 • 3 minutes to read • Edit Online

Creating Data Objects

Destroying Data Objects

Creating Data Sources

As explained in the article Data Objects and Data Sources (OLE), data objects and data sources represent both
sides of a data transfer. This article explains when to create and destroy these objects and sources to perform your
data transfers properly, including:

Creating data objects

Destroying data objects

Creating data sources

Destroying data sources

Data objects are used by the destination application — either the client or the server. A data object in the
destination application is one end of a connection between the source application and the destination application.
A data object in the destination application is used to access and interact with the data in the data source.

There are two common situations where a data object is needed. The first situation is when data is dropped in your
application using drag and drop. The second situation is when Paste or Paste Special is chosen from the Edit
menu.

In a drag-and-drop situation, you do not need to create a data object. A pointer to an existing data object will be
passed to your OnDrop function. This data object is created by the framework as part of the drag-and-drop
operation and will also be destroyed by it. This is not always the case when pasting is done by another method.
For more information, see Destroying Data Objects.

If the application is performing a paste or paste special operation, you should create a COleDataObject object and
call its AttachClipboard member function. This associates the data object with the data on the Clipboard. You can
then use this data object in your paste function.

If you follow the scheme described in Creating Data Objects, destroying data objects is a trivial aspect of data
transfers. The data object that was created in your paste function will be destroyed by MFC when your paste
function returns.

If you follow another method of handling paste operations, make sure the data object is destroyed after your paste
operation is complete. Until the data object is destroyed, it will be impossible for any application to successfully
copy data to the Clipboard.

Data sources are used by the source of the data transfer, which can be either the client or the server side of the
data transfer. A data source in the source application is one end of a connection between the source application
and the destination application. A data object in the destination application is used to interact with the data in the
data source.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/data-objects-and-data-sources-creation-and-destruction.md

 Destroying Data Sources

void CMyListView::OnLvnBegindrag(NMHDR *pNMHDR, LRESULT *pResult)
{
 UNREFERENCED_PARAMETER(pResult);

 LPNMLISTVIEW pNMLV = reinterpret_cast<LPNMLISTVIEW>(pNMHDR);

 CMyDataSource* pDataSrc = new CMyDataSource();
 if (NULL != pDataSrc)
 {
 pDataSrc->Initialize(pNMLV, this);
 pDataSrc->DelayRenderData((CLIPFORMAT)RegisterClipboardFormat(_T("TIGroupFiles")));
 pDataSrc->DoDragDrop();
 pDataSrc->InternalRelease();
 }
}

See also

Data sources are created when an application needs to copy data to the Clipboard. A typical scenario runs like this:

1. The user selects some data.

2. The user chooses Copy (or Cut) from the Edit menu or begins a drag-and-drop operation.

3. Depending on the design of the program, the application creates either a COleDataSource object or an
object from a class derived from COleDataSource .

4. The selected data is inserted into the data source by calling one of the functions in the
COleDataSource::CacheData or COleDataSource::DelayRenderData groups.

5. The application calls the SetClipboard member function (or the DoDragDrop member function if this is a
drag-and-drop operation) belonging to the object created in step 3.

6. If this is a Cut operation or DoDragDrop returns DROPEFFECT_MOVE , the data selected in step 1 is
deleted from the document.

This scenario is implemented by the MFC OLE samples OCLIENT and HIERSVR. Look at the source for each
application's CView -derived class for all but the GetClipboardData and OnGetClipboardData functions. These two
functions are in either the COleClientItem or COleServerItem -derived class implementations. These sample
programs provide a good example of how to implement these concepts.

One other situation in which you might want to create a COleDataSource object occurs if you are modifying the
default behavior of a drag-and-drop operation. For more information, see the Drag and Drop: Customizing article.

Data sources must be destroyed by the application currently responsible for them. In situations where you hand
the data source to OLE, such as calling COleDataSource::DoDragDrop, you need to call pDataSrc->InternalRelease

. For example:

If you have not handed your data source to OLE, then you are responsible for destroying it, as with any typical
C++ object.

For more information, see Drag and Drop, Clipboard, and Manipulating Data Objects and Data Sources.

Data Objects and Data Sources (OLE)
COleDataObject Class
COleDataSource Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Data Objects and Data Sources: Manipulation
3/4/2019 • 3 minutes to read • Edit Online

Inserting Data into a Data Source

Supplying Data Immediately (Immediate Rendering)Supplying Data Immediately (Immediate Rendering)

Supplying Data on Demand (Delayed Rendering)Supplying Data on Demand (Delayed Rendering)

Determining the Formats Available in a Data Object

After a data object or data source has been created, you can perform a number of common operations on the
data, such as inserting and removing data, enumerating the formats the data is in, and more. This article
describes the techniques necessary to complete the most common operations. Topics include:

Inserting data into a data source

Determining the formats available in a data object

Retrieving data from a data object

How data is inserted into a data source depends on whether the data is supplied immediately or on demand, and
in which medium it is supplied. The possibilities are as follows.

Call COleDataSource::CacheGlobalData repeatedly for every Clipboard format in which you are supplying
data. Pass the Clipboard format to be used, a handle to the memory containing the data and, optionally, a
FORMATETC structure describing the data.

-or-

If you want to work directly with STGMEDIUM structures, you call COleDataSource::CacheData instead of
COleDataSource::CacheGlobalData in the option above.

This is an advanced topic.

Call COleDataSource::DelayRenderData repeatedly for every Clipboard format in which you are supplying
data. Pass the Clipboard format to be used and, optionally, a FORMATETC structure describing the data.
When the data is requested, the framework will call COleDataSource::OnRenderData , which you must
override.

-or-

If you use a CFile object to supply the data, call COleDataSource::DelayRenderFileData instead of
COleDataSource::DelayRenderData in the previous option. When the data is requested, the framework will

call COleDataSource::OnRenderFileData , which you must override.

Before an application allows the user to paste data into it, it needs to know if there are formats on the Clipboard
that it can handle. To do this, your application should do the following:

1. Create a COleDataObject object and a FORMATETC structure.

2. Call the data object's AttachClipboard member function to associate the data object with the data on the
Clipboard.

3. Do one of the following:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/data-objects-and-data-sources-manipulation.md

 Retrieving Data from a Data Object

MEDIUM FUNCTION TO CALL

Global Memory (HGLOBAL) COleDataObject::GetGlobalData

File (CFile) COleDataObject::GetFileData

STGMEDIUM structure (IStorage) COleDataObject::GetData

What do you want to know more aboutWhat do you want to know more about

See also

-or-

Call the data object's IsDataAvailable member function if there are only one or two formats you
need. This will save you time in cases where the data on the Clipboard supports significantly more
formats than your application.

Call the data object's BeginEnumFormats member function to start enumerating the formats
available on the Clipboard. Then call GetNextFormat until the Clipboard returns a format your
application supports or there are no more formats.

If you are using ON_UPDATE_COMMAND_UI, you can now enable the Paste and, possibly, Paste Special items
on the Edit menu. To do this, call either CMenu::EnableMenuItem or CCmdUI::Enable . For more information about
what container applications should do with menu items and when, see Menus and Resources: Container
Additions.

Once you have decided on a data format, all that remains is to retrieve the data from the data object. To do this,
the user decides where to put the data, and the application calls the appropriate function. The data will be
available in one of the following mediums:

Commonly, the medium will be specified along with its Clipboard format. For example, a
CF_EMBEDDEDSTRUCT object is always in an IStorage medium that requires an STGMEDIUM structure.
Therefore, you would use GetData because it is the only one of these functions that can accept an STGMEDIUM
structure.

For cases where the Clipboard format is in an IStream or HGLOBAL medium, the framework can provide a CFile

pointer that references the data. The application can then use file read to get the data in much the same way as it
might import data from a file. Essentially, this is the client-side interface to the OnRenderData and
OnRenderFileData routines in the data source.

The user can now insert data into the document just like for any other data in the same format.

Drag and drop

Clipboard

Data Objects and Data Sources (OLE)
COleDataObject Class
COleDataSource Class

Drag and Drop (OLE)
3/4/2019 • 2 minutes to read • Edit Online

See also

The drag-and-drop feature of OLE is primarily a shortcut for copying and pasting data. When you use the
Clipboard to copy or paste data, a number of steps are required. You select the data, click Cut or Copy from the
Edit menu, move to the destination file, window or application, place the cursor in the desired location, and
click Paste from the Edit menu.

OLE drag and drop is different from the File Manager drag-and-drop mechanism, which can only handle
filenames and is designed specifically to pass filenames to applications. OLE drag and drop is much more
general. It allows you to drag and drop any data that could also be placed on the Clipboard.

When you use OLE drag and drop, you remove two steps from the process. You select the data from the source
window (the "drop source"), drag it to the desired destination (the "drop target"), and drop it by releasing the
mouse button. The operation eliminates the need for menus and is quicker than the copy/paste sequence. The
only requirement is that both the drop source and drop target must be open and at least partially visible on the
screen.

Using OLE drag and drop, data can be transferred from one location to another within a document, between
different documents, or between applications. It can be implemented in either a container or a server
application, and any application can be a drop source, a drop target, or both. If an application has both drop-
source and drop-target support implemented, drag and drop is enabled between child windows, or within one
window. This feature can make your application much easier to use.

If you only want to use the drag-and-drop capabilities of OLE, see Drag and Drop: Customizing. You can use
the techniques explained in that article to make non-OLE applications drop sources. The article Drag and Drop:
Implementing a Drop Target describes how to implement drop-target support for both OLE and non-OLE
applications. It will also be helpful to examine the MFC OLE samples OCLIENT and HIERSVR.

If you have not read the Data Objects and Data Sources (OLE) family of articles, you may want to do so now.
These articles explain the fundamentals of data transfer, and how to implement it in your applications.

For more information about drag and drop, see:

Drag and Drop: Implementing a Drop Source

Drag and Drop: Implementing a Drop Target

Drag and Drop: Customizing

OLE
Data Objects and Data Sources (OLE)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/drag-and-drop-ole.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Drag and Drop: Implementing a Drop Source
3/4/2019 • 2 minutes to read • Edit Online

See also

This article explains how to get your application to provide data to a drag-and-drop operation.

Basic implementation of a drop source is relatively simple. The first step is to determine what events begin a drag
operation. Recommended user interface guidelines define the beginning of a drag operation as the selection of
data and a WM_LBUTTONDOWN event occurring on a point inside the selected data. The MFC OLE samples
OCLIENT and HIERSVR follow these guidelines.

If your application is a container and the selected data is a linked or an embedded object of type COleClientItem ,
call its DoDragDrop member function. Otherwise, construct a COleDataSource object, initialize it with the selection,
and call the data source object's DoDragDrop member function. If your application is a server, use
COleServerItem::DoDragDrop . For information about customizing standard drag-and-drop behavior, see the article

Drag and Drop: Customizing.

If DoDragDrop returns DROPEFFECT_MOVE , delete the source data from the source document immediately. No
other return value from DoDragDrop has any effect on a drop source.

For more information, see:

Implementing a Drop Target

Customizing Drag and Drop

Creating and Destroying OLE Data Objects and Data Sources

Manipulating OLE Data Objects and Data Sources

Drag and Drop (OLE)
COleDataSource::DoDragDrop
COleClientItem::DoDragDrop
CView::OnDragLeave

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/drag-and-drop-implementing-a-drop-source.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Drag and Drop: Implementing a Drop Target
3/4/2019 • 2 minutes to read • Edit Online

To implement a drop targetTo implement a drop target

See also

This article outlines how to make your application a drop target. Implementing a drop target takes slightly more
work than implementing a drop source, but it is still relatively simple. These techniques also apply to non-OLE
applications.

OVERRIDE TO ALLOW

OnDragEnter Drop operations to occur in the window. Called when the
cursor first enters the window.

OnDragLeave Special behavior when the drag operation leaves the
specified window.

OnDragOver Drop operations to occur in the window. Called when the
cursor is being dragged across the window.

OnDrop Handling of data being dropped into the specified
window.

OnScrollBy Special behavior for when scrolling is necessary in the
target window.

1. Add a member variable to each view in the application that you want to be a drop target. This member
variable must be of type COleDropTarget or a class derived from it.

2. From your view class's function that handles the WM_CREATE message (typically OnCreate), call the new
member variable's Register member function. Revoke will be called automatically for you when your view
is destroyed.

3. Override the following functions. If you want the same behavior throughout your application, override
these functions in your view class. If you want to modify behavior in isolated cases or want to enable
dropping on non- CView windows, override these functions in your COleDropTarget -derived class.

See the MAINVIEW.CPP file that is part of the MFC OLE sample OCLIENT for an example of how these
functions work together.

For more information, see:

Implementing a Drop Source

Creating and Destroying OLE Data Objects and Data Sources

Manipulating OLE Data Objects and Data Sources

Drag and Drop (OLE)
COleDropTarget Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/drag-and-drop-implementing-a-drop-target.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Drag and Drop: Customizing
3/4/2019 • 2 minutes to read • Edit Online

OVERRIDE TO CUSTOMIZE

OnBeginDrag How dragging is initiated after you call DoDragDrop .

GiveFeedback Visual feedback, such as cursor appearance, for different drop
results.

QueryContinueDrag The termination of a drag-and-drop operation. This function
enables you to check modifier key states during the drag
operation.

See also

The default implementation of the drag-and-drop feature is sufficient for most applications. However, some
applications may require that this standard behavior be changed. This article explains the steps necessary to
change these defaults. In addition, you can use this technique to establish applications that do not support
compound documents as drop sources.

If you are customizing standard OLE drag-and-drop behavior, or you have a non-OLE application, you must
create a COleDataSource object to contain the data. When the user starts a drag-and-drop operation, your code
should call the DoDragDrop function from this object instead of from other classes that support drag-and-drop
operations.

Optionally, you can create a COleDropSource object to control the drop and override some of its functions
depending on the type of behavior you want to change. This drop-source object is then passed to
COleDataSource::DoDragDrop to change the default behavior of these functions. These different options allow a

great deal of flexibility in how you support drag-and-drop operations in your application. For more information
about data sources, see the article Data Objects and Data Sources (OLE).

You can override the following functions to customize drag-and-drop operations:

Drag and Drop (OLE)
COleDropSource Class
COleDataSource Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/drag-and-drop-customizing.md

Menus and Resources (OLE)
3/4/2019 • 2 minutes to read • Edit Online

RESOURCE NAME USE

IDR_MAINFRAME Used in an MDI application if no file is open, or in an SDI
application regardless of open files. This is the standard menu
used in non-OLE applications.

IDR_<project>TYPE Used in an MDI application if files are open. Used when an
application is running stand-alone. This is the standard menu
used in non-OLE applications.

IDR_<project>TYPE_SRVR_IP Used by the server or container when an object is open in
place.

IDR_<project>TYPE_SRVR_EMB Used by a server application if an object is opened without
using in-place activation.

This group of articles explains the use of menus and resources in MFC OLE document applications.

OLE visual editing places additional requirements on the menu and other resources provided by OLE document
applications because there are a number of modes in which both container and server (component) applications
can be started and used. For example, a full-server application can run in any of these three modes:

Stand alone.

In place, for editing an item within the context of a container.

Open, for editing an item outside the context of its container, often in a separate window.

This requires three separate menu layouts, one for each possible mode of the application. Accelerator tables are
also necessary for each new mode. A container application may or may not support in-place activation; if it does,
it needs a new menu structure and associated accelerator tables.

In-place activation requires that the container and server applications must negotiate for menu, toolbar, and
status bar space. All resources must be designed with this in mind. The article Menus and Resources: Menu
Merging covers this topic in detail.

Because of these issues, OLE document applications created with the application wizard can have up to four
separate menus and accelerator table resources. These are used for the following reasons:

Each of these resource names represents a menu and, usually, an accelerator table. A similar scheme should be
used in MFC applications that are not created with the application wizard.

The following articles discuss topics related to containers, servers, and the menu merging necessary to
implement in-place activation:

Menus and Resources: Container Additions

Menus and Resources: Server Additions

Menus and Resources: Menu Merging

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/menus-and-resources-ole.md

See also
OLE

Menus and Resources: Container Additions
3/4/2019 • 2 minutes to read • Edit Online

Container Menu Additions

ITEM PURPOSE

Insert New Object Opens the OLE Insert Object dialog box to insert a linked or
embedded item into the document.

Paste Link Pastes a link to the item on the Clipboard into the document.

OLE Verb Calls the selected item's primary verb. The text of this menu
item changes to reflect the primary verb of the selected item.

Links Opens the OLE Edit Links dialog box to change existing linked
items.

Container Application Accelerator Table Additions

This article explains the changes that need to be made to the menus and other resources in a visual editing
container application.

In container applications, two types of changes need to be made: modifications to existing resources to support
OLE visual editing and addition of new resources used for in-place activation. If you use the application wizard to
create your container application, these steps will be done for you, but they may require some customization.

If you do not use the application wizard, you may want to look at OCLIENT.RC, the resource script for the
OCLIENT sample application, to see how these changes are implemented. See the MFC OLE sample OCLIENT.

Topics covered in this article include:

Container Menu Additions

Accelerator Table Additions

String Table Additions

You must add the following items to the Edit menu:

In addition to the changes listed in this article, your source file must include AFXOLECL.RC, which is required for
the Microsoft Foundation Class Library implementation. Insert New Object is the only required menu addition.
Other items can be added, but those listed here are the most common.

You must create a new menu for your container application if you want to support in-place activation of
contained items. This menu consists of the same File menu and Window pop-up menus used when files are open,
but it has two separators placed between them. These separators are used to indicate where the server
(component) item (application) should place its menus when activated in place. For more information on this
menu-merging technique, see Menus and Resources: Menu Merging.

Small changes to a container application's accelerator table resources are necessary if you are supporting in-
place activation. The first change allows the user to press the escape key (ESC) to cancel the in-place editing
mode. Add the following entry to the main accelerator table:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/menus-and-resources-container-additions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ID KEY TYPE

ID_CANCEL_EDIT_CNTR VK_ESCAPE VIRTKEY

ID KEY TYPE

ID_FILE_NEW CTRL+N VIRTKEY

ID_FILE_OPEN CTRL+O VIRTKEY

ID_FILE_SAVE CTRL+S VIRTKEY

ID_FILE_PRINT CTRL+P VIRTKEY

ID_NEXT_PANE VK_F6 VIRTKEY

ID_PREV_PANE SHIFT+VK_F6 VIRTKEY

ID_CANCEL_EDIT_CNTR VK_ESCAPE VIRTKEY

String Table Additions for Container Applications

ID STRING

IDP_OLE_INIT_FAILED OLE initialization failed. Make sure that the OLE libraries are
the correct version.

IDP_FAILED_TO_CREATE Failed to create object. Make sure that the object is entered
in the system registry.

See also

The second change is to create a new accelerator table that corresponds to the new menu resource created for in-
place activation. This table has entries for the File and Window menus in addition to the VK_ESCAPE entry
above. The following example is the accelerator table created for in-place activation in the MFC sample
CONTAINER:

Most of the changes to string tables for container applications correspond to the additional menu items
mentioned in Container Menu Additions. They supply the text displayed in the status bar when each menu item is
displayed. As an example, here are the string-table entries the application wizard generates:

Menus and Resources (OLE)
Menus and Resources: Server Additions

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Menus and Resources: Server Additions
3/4/2019 • 3 minutes to read • Edit Online

Server Menu Additions

Server Application Accelerator Table Additions

This article explains the changes that need to be made to the menus and other resources in a visual editing server
(component) application. A server application requires many additions to the menu structure and other resources
because it can be started in one of three modes: stand alone, embedded, or in place. As described in the Menus
and Resources (OLE) article, there are a maximum of four sets of menus. All four are used for an MDI full-server
application, while only three are used for a miniserver. The application wizard will create the menu layout
necessary for the type of server you want. Some customization may be necessary.

If you do not use the application wizard, you may want to look at HIERSVR.RC, the resource script for the MFC
sample application HIERSVR, to see how these changes are implemented.

Topics covered in this article include:

Server Menu Additions

Accelerator Table Additions

String Table Additions

Miniserver Additions

Server (component) applications must have menu resources added to support OLE visual editing. The menus
used when the application is run in stand-alone mode do not have to be changed, but you must add two new
menu resources before building the application: one to support in-place activation and one to support the server
being fully open. Both menu resources are used by full- and miniserver applications.

To support in-place activation, you must create a menu resource that is very similar to the menu resource
used when run in stand-alone mode. The difference in this menu is that the File and Window items (and
any other menu items that deal with the application, and not the data) are missing. The container
application will supply these menu items. For more information on, and an example of, this menu-merging
technique, see the article Menus and Resources: Menu Merging.

To support fully open activation, you must create a menu resource nearly identical to the menu resource
used when run in stand-alone mode. The only modification to this menu resource is that some items are
reworded to reflect the fact that the server is operating on an item embedded in a compound document.

In addition to the changes listed in this article, your resource file needs to include AFXOLESV.RC, which is
required for the Microsoft Foundation Class Library implementation. This file is in the MFC\Include subdirectory.

Two new accelerator table resources must be added to server applications; they correspond directly to the new
menu resources previously described. The first accelerator table is used when the server application is activated in
place. It consists of all the entries in the view's accelerator table except those tied to the File and Window menus.

The second table is nearly an exact copy of the view's accelerator table. Any differences parallel changes made in
the fully open menu mentioned in Server Menu Additions.

For an example of these accelerator table changes, compare the IDR_HIERSVRTYPE_SRVR_IP and
IDR_HIERSVRTYPE_SRVR_EMB accelerator tables with IDR_MAINFRAME in the HIERSVR.RC file included in

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/menus-and-resources-server-additions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

String Table Additions for Server Applications

ID STRING

IDP_OLE_INIT_FAILED OLE initialization failed. Make sure that the OLE libraries are
the correct version.

Miniserver Additions

See also

the MFC OLE sample HIERSVR. The File and Window accelerators are missing from the in-place table and exact
copies of them are in the embedded table.

Only one string table addition is necessary in a server application — a string to signify that the OLE initialization
failed. As an example, here is the string-table entry that the application wizard generates:

The same additions apply for miniservers as those listed above for full-servers. Because a miniserver cannot be
run in stand-alone mode, its main menu is much smaller. The main menu created by the application wizard has
only a File menu, containing only the items Exit and About. Embedded and in-place menus and accelerators for
miniservers are the same as those for full-servers.

Menus and Resources (OLE)
Menus and Resources: Menu Merging

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Menus and Resources: Menu Merging
3/4/2019 • 3 minutes to read • Edit Online

Menu Layouts

This article details the steps necessary for OLE document applications to handle visual editing and in-place
activation properly. In-place activation poses a challenge for both container and server (component) applications.
The user remains in the same frame window (within the context of the container document) but is actually
running another application (the server). This requires coordination between the resources of the container and
server applications.

Topics covered in this article include:

Menu Layouts

Toolbars and Status Bars

The first step is to coordinate menu layouts. For more information, see the Menu Creation section in Menu
Programming Considerations in the Windows SDK.

Container applications should create a new menu to be used only when embedded items are activated in place. At
the minimum, this menu should consist of the following, in the order listed:

NOTENOTE

1. File menu identical to the one used when files are open. (Usually no other menu items are placed before
the next item.)

2. Two consecutive separators.

3. Window menu identical to the one used when files are open (only if the container application in an MDI
application). Some applications may have other menus, such as an Options menu, that belong in this
group, which remains on the menu when an embedded item is activated in place.

There may be other menus that affect the view of the container document, such as Zoom. These container menus
appear between the two separators in this menu resource.

Server (component) applications should also create a new menu specifically for in-place activation. It should be
like the menu used when files are open, but without menu items, such as File and Window that manipulate the
server document instead of the data. Typically, this menu consists of the following:

1. Edit menu identical to the one used when files are open.

2. Separator.

3. Object editing menus, such as the Pen menu in the Scribble sample application.

4. Separator.

5. Help menu.

For an example, look at the layout of some sample in-place menus for a container and a server. The details of
each menu item have been removed to make the example clearer. The container's in-place menu has the
following entries:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/menus-and-resources-menu-merging.md
https://msdn.microsoft.com/library/ms647557.aspx

IDR_CONTAINERTYPE_CNTR_IP MENU PRELOAD DISCARDABLE
BEGIN
 POPUP "&File C1"
 MENUITEM SEPARATOR
 POPUP "&Zoom C2"
 MENUITEM SEPARATOR
 POPUP "&Options C3"
 POPUP "&Window C3"
END

IDR_SERVERTYPE_SRVR_IP MENU PRELOAD DISCARDABLE
BEGIN
 POPUP "&Edit S1"
 MENUITEM SEPARATOR
 POPUP "&Format S2"
 MENUITEM SEPARATOR
 POPUP "&Help S3"
END

BEGIN
 POPUP "&File C1"
 POPUP "&Edit S1"
 POPUP "&Zoom C2"
 POPUP "&Format S2"
 POPUP "&Options C3
 POPUP "&Window C3"
 POPUP "&Help S3"
END

Toolbars and Status Bars

See also

The consecutive separators indicate where the first part of the server's menu should go. Now look at the server's
in-place menu:

The separators here indicate where the second group of container menu items should go. The resulting menu
structure when an object from this server is activated in place inside this container looks like this:

As you can see, the separators have been replaced with the different groups of each application's menu.

Accelerator tables associated with the in-place menu should also be supplied by the server application. The
container will incorporate them into its own accelerator tables.

When an embedded item is activated in place, the framework loads the in-place menu. It then asks the server
application for its menu for in-place activation and inserts it where the separators are. This is how the menus
combine. You get menus from the container for operating on the file and window placement, and you get menus
from the server for operating on the item.

Server applications should create a new toolbar and store its bitmap in a separate file. The application wizard-
generated applications store this bitmap in a file called ITOOLBAR.BMP. The new toolbar replaces the container
application's toolbar when your server's item is activated in place, and should contain the same items as your
normal toolbar, but remove icons representing items on the File and Window menus.

This toolbar is loaded in your COleIPFrameWnd -derived class, created for you by the application wizard. The status
bar is handled by the container application. For more information on the implementation of in-place frame
windows, see Servers: Implementing a Server.

Menus and Resources (OLE)
Activation
Servers
Containers

Registration
3/4/2019 • 3 minutes to read • Edit Online

Server Installation

NOTENOTE

NOTENOTE

Server Initialization

When a user wants to insert an OLE item into an application, OLE presents a list of object types to choose from.
OLE gets this list from the system registration database, which contains information provided by all server
applications. When a server registers itself, the entries it puts into the system registration database (the Registry)
describe each type of object it supplies, file extensions, and the path to itself, among other information.

The framework and the OLE system dynamic-link libraries (DLL) use this registry to determine what types of OLE
items are available on the system. The OLE system DLLs also use this registry to determine how to launch a
server application when a linked or embedded object is activated.

This article describes what each server application needs to do when it is installed and each time it is executed.

For detailed information about the system registration database and the format of the .reg files used to update it,
see the OLE Programmer's Reference.

When you first install your server application, it should register all the types of OLE items that it supports. You can
also have the server update the system registration database every time it executes as a stand-alone application.
This keeps the registration database up-to-date if the server's executable file is moved.

MFC applications generated by the application wizard automatically register themselves when they are run as stand-alone
applications.

If you want to register your application during installation, use the RegEdit.exe program. If you include a setup
program with your application, have the setup program run "RegEdit /S appname.reg". (The /S flag indicates
silent operation, that is, it does not display the dialog box reporting successful completion of the command.)
Otherwise, instruct the user to run RegEdit manually.

The .reg file created by the application wizard does not include the complete path for the executable. Your installation
program must either modify the .reg file to include the complete path to the executable or modify the PATH environment
variable to include the installation directory.

RegEdit merges the contents of the .reg text file into the registration database. To verify the database or to repair
it, use the registry editor. Take care to avoid deleting essential OLE entries.

When you create a server application with the application wizard, the wizard completes all initialization tasks for
you automatically. This section describes what you must do if you write a server application manually.

When a server application is launched by a container application, the OLE system DLLs add the "/Embedding"
option to the server's command line. A server application's behavior differs depending on whether it was
launched by a container, so the first thing an application should do when it begins execution is check for the

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/registration.md

See also

"/Embedding" or "-Embedding" option on the command line. If this switch exists, load a different set of resources
that show the server as being either in-place active or fully open. For more information, see Menus and
Resources: Server Additions.

Your server application should also call its CWinApp::RunEmbedded function to parse the command line. If it returns
a nonzero value, the application should not show its window because it has been run from a container application,
not as a stand-alone application. This function updates the server's entry in the system registration database and
calls the RegisterAll member function for you, performing instance registration.

When your server application is starting, you must ensure that it can perform instance registration. Instance
registration informs the OLE system DLLs that the server is active and ready to receive requests from containers.
It does not add an entry to the registration database. Perform instance registration of the server by calling the
ConnectTemplate member function defined by COleTemplateServer . This connects the CDocTemplate object to the
COleTemplateServer object.

The ConnectTemplate function takes three parameters: the server's CLSID, a pointer to the CDocTemplate object,
and a flag indicating whether the server supports multiple instances. A miniserver must be able to support
multiple instances, that is, it must be possible for multiple instances of the server to run simultaneously, one for
each container. Consequently, pass TRUE for this flag when launching a miniserver.

If you are writing a miniserver, by definition it will always be launched by a container. You should still parse the
command line to check for the "/Embedding" option. The absence of this option on the command line means that
the user has tried to launch the miniserver as a stand-alone application. If this occurs, register the server with the
system registration database and then display a message box informing the user to launch the miniserver from a
container application.

OLE
Servers
CWinApp::RunAutomated
CWinApp::RunEmbedded
COleTemplateServer Class

Servers
3/4/2019 • 2 minutes to read • Edit Online

Server CharacteristicsServer Characteristics

TYPE OF SERVER
SUPPORTS MULTIPLE
INSTANCES ITEMS PER DOCUMENT DOCUMENTS PER INSTANCE

Miniserver Yes 1 1

SDI full server Yes 1 (if linking is supported, 1
or more)

1

MDI full server No (not required) 1 (if linking is supported, 1
or more)

0 or more

A server application (or component application) creates OLE items (or components) for use by container
applications. A visual editing server application also supports visual editing or in-place activation. Another form
of OLE server is an automation server. Some server applications support only the creation of embedded items;
others support the creation of both embedded and linked items. Some support linking only, although this is
rare. All server applications must support activation by container applications when the user wants to edit an
item. An application can be both a container and a server. In other words, it can both incorporate data into its
documents, and create data that can be incorporated as items into other applications' documents.

A miniserver is a special type of server application that can only be launched by a container. Microsoft Draw
and Microsoft Graph are examples of miniservers. A miniserver does not store documents as files on disk.
Instead, it reads its documents from and writes them to items in documents belonging to containers. As a result,
a miniserver supports embedding only, not linking.

A full server can be run either as a stand-alone application or launched by a container application. A full server
can store documents as files on disk. It can support embedding only, both embedding and linking, or linking
only. The user of a container application can create an embedded item by choosing the Cut or Copy command
in the server and the Paste command in the container. A linked item is created by choosing the Copy command
in the server and the Paste Link command in the container. Alternatively, the user can create an embedded or
linked item using the Insert Object dialog box.

The following table summarizes characteristics of different types of servers:

A server application should support multiple containers simultaneously, in the event that more than one
container will be used to edit an embedded or linked item. If the server is an SDI application (or a miniserver
with a dialog box interface), multiple instances of the server must be able to run simultaneously. This allows a
separate instance of the application to handle each container request.

If the server is an MDI application, it can create a new MDI child window each time a container needs to edit an
item. In this way, a single instance of the application can support multiple containers.

Your server application must tell the OLE system DLLs what to do if one instance of the server is already
running when another container requests its services: whether it should launch a new instance of the server or
direct all containers' requests to one instance of the server.

For more details on servers, see:

Servers: Implementing a Server

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/servers.md

See also

Servers: Implementing Server Documents

Servers: Implementing In-Place Frame Windows

Servers: Server Items

Servers: User-Interface Issues

OLE
Containers
Containers: Advanced Features
Menus and Resources (OLE)
Registration
Automation Servers

Servers: Implementing a Server
3/4/2019 • 2 minutes to read • Edit Online

See also

This article explains the code the MFC Application Wizard creates for a visual editing server application. If you
are not using the application wizard, this article lists the areas where you must write code to implement a server
application.

If you are using the application wizard to create a new server application, it provides a significant amount of
server-specific code for you. If you are adding visual editing server functionality to an existing application, you
must duplicate the code that the application wizard would have provided before adding the rest of the necessary
server code.

The server code that the application wizard provides falls into several categories:

Defining server resources:

The menu resource used when the server is editing an embedded item in its own window.

The menu and toolbar resources used when the server is active in place.

For more information on these resources, see Menus and Resources: Server Additions.

Defining an item class derived from COleServerItem . For further details on server items, see Servers:
Server Items.

Changing the base class of the document class to COleServerDoc . For further details, see Servers:
Implementing Server Documents.

Defining a frame-window class derived from COleIPFrameWnd . For further details, see Servers:
Implementing In-Place Frame Windows.

Creating an entry for the server application in the Windows registration database and registering the new
instance of the server with the OLE system. For information on this topic, see Registration.

Initializing and launching the server application. For information on this topic, see Registration.

For more information, see COleServerItem, COleServerDoc, and COleIPFrameWnd in the Class Library
Reference.

Servers
Containers
Menus and Resources (OLE)
Registration

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/servers-implementing-a-server.md

Servers: Implementing Server Documents
3/4/2019 • 2 minutes to read • Edit Online

To define a server document classTo define a server document class

See also

This article explains the steps you must take to successfully implement a server document if you did not specify
the OLE Server option in the application wizard.

1. Derive your document class from COleServerDoc instead of CDocument .

2. Create a server item class derived from COleServerItem .

3. Implement the OnGetEmbeddedItem member function of your server document class.

OnGetEmbeddedItem is called when the user of a container application creates or edits an embedded item. It
should return an item representing the entire document. This should be an object of your COleServerItem -
derived class.

4. Override the Serialize member function to serialize the contents of the document. You do not need to
serialize the list of server items unless you are using them to represent the native data in your document.
For more information, see Implementing Server Items in the article Servers: Server Items.

When a server document is created, the framework automatically registers the document with the OLE system
DLLs. This allows the DLLs to identify the server documents.

For more information, see COleServerItem and COleServerDoc in the Class Library Reference.

Servers
Servers: Server Items
Servers: Implementing a Server
Servers: Implementing In-Place Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/servers-implementing-server-documents.md

Servers: Implementing In-Place Frame Windows
3/4/2019 • 2 minutes to read • Edit Online

To declare an in-place frame-window classTo declare an in-place frame-window class

This article explains what you must do to implement in-place frame windows in your visual editing server
application if you do not use the application wizard to create your server application. In place of following the
procedure outlined in this article, you could use an existing in-place frame-window class from either an application
wizard-generated application or a sample provided with Visual C++.

BOOL CInPlaceFrame::OnCreateControlBars(CFrameWnd* pWndFrame, CFrameWnd* pWndDoc)
{
 UNREFERENCED_PARAMETER(pWndDoc);

 // Set owner to this window, so messages are delivered to correct app
 m_wndToolBar.SetOwner(this);

 // Create toolbar on client's frame window
 if (!m_wndToolBar.CreateEx(pWndFrame, TBSTYLE_FLAT,WS_CHILD | WS_VISIBLE | CBRS_TOP
 | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
 !m_wndToolBar.LoadToolBar(IDR_SRVR_INPLACE))
 {
 TRACE0("Failed to create toolbar\n");
 return FALSE;
 }

 // TODO: Delete these three lines if you don't want the toolbar to be dockable
 m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
 pWndFrame->EnableDocking(CBRS_ALIGN_ANY);
 pWndFrame->DockControlBar(&m_wndToolBar);

 return TRUE;
}

1. Derive an in-place frame-window class from COleIPFrameWnd .

Use the DECLARE_DYNCREATE macro in your class header file.

Use the IMPLEMENT_DYNCREATE macro in your class implementation (.cpp) file. This allows
objects of this class to be created by the framework.

2. Declare a COleResizeBar member in the frame-window class. This is needed if you want to support in-place
resizing in server applications.

Declare an OnCreate message handler (using the Properties window), and call Create for your
COleResizeBar member, if you've defined it.

3. If you have a toolbar, declare a CToolBar member in the frame-window class.

Override the OnCreateControlBars member function to create a toolbar when the server is active in place.
For example:

See the discussion of this code following step 5.

4. Include the header file for this in-place frame-window class in your main .cpp file.

5. In InitInstance for your application class, call the SetServerInfo function of the document template object
to specify the resources and in-place frame window to be used in open and in-place editing.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/servers-implementing-in-place-frame-windows.md

See also

The series of function calls in the if statement creates the toolbar from the resources the server provided. At this
point, the toolbar is part of the container's window hierarchy. Because this toolbar is derived from CToolBar , it will
pass its messages to its owner, the container application's frame window, unless you change the owner. That is why
the call to SetOwner is necessary. This call changes the window where commands are sent to be the server's in-
place frame window, causing the messages to be passed to the server. This allows the server to react to operations
on the toolbar that it provides.

The ID for the toolbar bitmap should be the same as the other in-place resources defined in your server
application. See Menus and Resources: Server Additions for details.

For more information, see COleIPFrameWnd, COleResizeBar, and CDocTemplate::SetServerInfo in the Class
Library Reference.

Servers
Servers: Implementing a Server
Servers: Implementing Server Documents
Servers: Server Items

Servers: Server Items
3/4/2019 • 2 minutes to read • Edit Online

Implementing Server Items

To implement a server itemTo implement a server item

A Tip for Server-Item Architecture

When a container launches a server so that a user can edit an embedded or linked OLE item, the server
application creates a "server item." The server item, which is an object of a class derived from COleServerItem ,
provides an interface between the server document and the container application.

The COleServerItem class defines several overridable member functions that are called by OLE, usually in
response to requests from the container. Server items can represent part of the server document or the entire
document. When an OLE item is embedded in the container document, the server item represents the entire
server document. When the OLE item is linked, the server item can represent a part of the server document or
the whole document, depending on whether the link is to a part or to the whole.

In the HIERSVR sample, for example, the server-item class, CServerItem , has a member that is a pointer to an
object of the class CServerNode . The CServerNode object is a node in the HIERSVR application's document, which
is a tree. When the CServerNode object is the root node, the CServerItem object represents the whole document.
When the CServerNode object is a child node, the CServerItem object represents a part of the document. See the
MFC OLE sample HIERSVR for an example of this interaction.

If you use the application wizard to produce "starter" code for your application, all you have to do to include
server items in your starter code is to choose one of the server options from the OLE Options page. If you are
adding server items to an existing application, perform the following steps:

1. Derive a class from COleServerItem .

2. In your derived class, override the OnDraw member function.

The framework calls OnDraw to render the OLE item into a metafile. The container application uses this
metafile to render the item. Your application's view class also has an OnDraw member function, which is
used to render the item when the server application is active.

3. Implement an override of OnGetEmbeddedItem for your server-document class. For further information, see
the article Servers: Implementing Server Documents and the MFC OLE sample HIERSVR.

4. Implement your server-item class's OnGetExtent member function. The framework calls this function to
retrieve the size of the item. The default implementation does nothing.

As noted in Implementing Server Items, server applications must be able to render items both in the server's
view and in a metafile used by the container application. In the Microsoft Foundation Class Library's application
architecture, the view class's OnDraw member function renders the item when it is being edited (see
CView::OnDraw in the Class Library Reference). The server item's OnDraw renders the item into a metafile in all
other cases (see COleServerItem::OnDraw).

You can avoid duplication of code by writing helper functions in your server-document class and calling them
from the OnDraw functions in your view and server-item classes. The MFC OLE sample HIERSVR uses this
strategy: the functions CServerView::OnDraw and CServerItem::OnDraw both call CServerDoc::DrawTree to render
the item.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/servers-server-items.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

See also

The view and the item both have OnDraw member functions because they draw under different conditions. The
view must take into account such factors as zooming, selection size and extent, clipping, and user-interface
elements such as scroll bars. The server item, on the other hand, always draws the entire OLE object.

For more information, see CView::OnDraw, COleServerItem, COleServerItem::OnDraw, and
COleServerDoc::OnGetEmbeddedItem in the Class Library Reference.

Servers

Servers: User-Interface Issues
3/4/2019 • 2 minutes to read • Edit Online

See also

A server application has a number of features that must be added to the user interface to supply OLE items to
container applications. For further information on the menus and additional resources that need to be added to a
server application, see Menus and Resources: Server Additions.

Servers
Menus and Resources (OLE)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/servers-user-interface-issues.md

Trackers
3/4/2019 • 2 minutes to read • Edit Online

See also

The CRectTracker class provides a user interface between rectangular items in your application and your user by
providing a variety of display styles. These styles include solid, hatched, or dashed borders; a hatched pattern that
covers the item; and resize handles that can be located on the outside or inside of a border. Trackers are often used
in conjunction with OLE items, that is, objects derived from COleClientItem . The tracker rectangles give visual
cues on the current status of the item.

The MFC OLE sample OCLIENT demonstrates a common interface using trackers and OLE client items from the
viewpoint of a container application. For a demonstration of the different styles and abilities of a tracker object, see
the MFC general sample TRACKER.

For more information on implementing trackers in your OLE application, see Trackers: Implementing Trackers in
Your OLE Application

OLE
COleClientItem Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/trackers.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Trackers: Implementing Trackers in Your OLE
Application
3/4/2019 • 2 minutes to read • Edit Online

See also

Trackers provide a graphical interface to enable users to interact with OLE client items. By using different tracker
styles, OLE client items can be displayed with hatched borders, resize handles, or a variety of other visual effects.
This article describes:

How to Implement Tracking in Your Code.

Rubber-Banding and Trackers.

The article also covers the use of styles with trackers. In addition, it makes several references to the MFC OLE
sample OCLIENT.

Trackers

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/trackers-implementing-trackers-in-your-ole-application.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

How to: Implement Tracking in Your Code
3/4/2019 • 3 minutes to read • Edit Online

Container Styles and States of the OLE ItemContainer Styles and States of the OLE Item

STYLE DISPLAYED STATE OF OLE ITEM

Dotted border Item is linked

Solid border Item is embedded in your document

Resize handles Item is currently selected

Hatched border Item is currently in-place active

Hatching pattern overlays item Item's server is open

void CMainView::SetupTracker(CRectTracker* pTracker, CRectItem* pItem,
 CRect* pTrueRect)

// set minimum size for our OLE items
pTracker->m_sizeMin.cx = 8;
pTracker->m_sizeMin.cy = 8;

pTracker->m_nStyle = 0;

To track an OLE item, you must handle certain events related to the item, such as clicking the item or updating the
view of the document. In all cases, it is sufficient to declare a temporary CRectTracker object and manipulate the
item by means of this object.

When a user selects an item or inserts an object with a menu command, you must initialize the tracker with the
proper styles to represent the state of the OLE item. The following table outlines the conventions used by the
OCLIENT sample. For more information on these styles, see CRectTracker .

You can handle this initialization easily using a procedure that checks the state of the OLE item and sets the
appropriate styles. The SetupTracker function found in the OCLIENT sample demonstrates tracker initialization.
The parameters for this function are the address of the tracker, pTracker; a pointer to the client item that is related
to the tracker, pItem; and a pointer to a rectangle, pTrueRect. For a more complete example of this function, see the
MFC OLE sample OCLIENT.

The SetupTracker code example presents a single function; lines of the function are interspersed with discussion
of the function's features:

The tracker is initialized by setting the minimum size and clearing the style of the tracker.

The following lines check to see whether the item is currently selected and whether the item is linked to the
document or embedded in it. Resize handles located on the inside of the border are added to the style, indicating
that the item is currently selected. If the item is linked to your document, the dotted border style is used. A solid
border is used if the item is embedded.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-to-implement-tracking-in-your-code.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

// setup resize handles if item is selected
if (pItem == m_pSelection)
 pTracker->m_nStyle |= CRectTracker::resizeInside;

// put correct border depending on item type
if (pItem->GetType() == OT_LINK)
 pTracker->m_nStyle |= CRectTracker::dottedLine;
else
 pTracker->m_nStyle |= CRectTracker::solidLine;

// put hatching over the item if it is currently open
if (pItem->GetItemState() == COleClientItem::openState ||
 pItem->GetItemState() == COleClientItem::activeUIState)
{
 pTracker->m_nStyle |= CRectTracker::hatchInside;
}

BOOL CMainView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT message)
{
 if (pWnd == this && m_pSelection != NULL)
 {
 // give the tracker for the selection a chance
 CRectTracker tracker;
 SetupTracker(&tracker, m_pSelection);
 if (tracker.SetCursor(this, nHitTest))
 return TRUE;
 }
 return CScrollView::OnSetCursor(pWnd, nHitTest, message);
}

See also

The following code overlays the item with a hatched pattern if the item is currently open.

You can then call this function whenever the tracker has to be displayed. For example, call this function from the
OnDraw function of your view class. This updates the tracker's appearance whenever the view is repainted. For a

complete example, see the CMainView::OnDraw function of the MFC OLE sample OCLIENT.

In your application, events that require tracker code, such as resizing, moving, or hit detecting, will occur. These
actions usually indicate that an attempt is being made to grab or move the item. In these cases, you will need to
decide what was grabbed: a resize handle or a portion of the border between resize handles. The OnLButtonDown

message handler is a good place to test the position of the mouse in relation to the item. Make a call to
CRectTracker::HitTest . If the test returns something besides CRectTracker::hitOutside , the item is being resized

or moved. Therefore, you should make a call to the Track member function. See the CMainView::OnLButtonDown

function located in the MFC OLE sample OCLIENT for a complete example.

The CRectTracker class provides several different cursor shapes used to indicate whether a move, resize, or drag
operation is taking place. To handle this event, check to see whether the item currently under the mouse is selected.
If it is, make a call to CRectTracker::SetCursor , or call the default handler. The following example is from the MFC
OLE sample OCLIENT:

Trackers: Implementing Trackers in Your OLE Application

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Rubber-Banding and Trackers
3/4/2019 • 2 minutes to read • Edit Online

else if (m_Tracker.HitTest(point) < 0)
{
 // just to demonstrate CRectTracker::TrackRubberBand
 CRectTracker trackerRubber;
 if (trackerRubber.TrackRubberBand(this, point, TRUE))
 {
 MessageBeep(0); // beep indicates TRUE

 // See if rubber band intersects
 // with the doc's tracker
 CRect rectT;
 // so intersect rect works
 trackerRubber.m_rect.NormalizeRect();
 if (rectT.IntersectRect(trackerRubber.m_rect, m_Tracker.m_rect))
 {
 // If so, put resize handles on it (i.e. select it)
 if (m_Tracker.m_nStyle & CRectTracker::resizeInside)
 {
 // swap from resize inside to resize outside for effect
 m_Tracker.m_nStyle &= ~CRectTracker::resizeInside;
 m_Tracker.m_nStyle |= CRectTracker::resizeOutside;
 }
 else
 {
 // Just use inside resize handles on first time
 m_Tracker.m_nStyle &= ~CRectTracker::resizeOutside;
 m_Tracker.m_nStyle |= CRectTracker::resizeInside;
 }
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(NULL);
 }
 }
}

See also

Another feature supplied with trackers is the "rubber-band" selection, which allows a user to select multiple OLE
items by dragging a sizing rectangle around the items to be selected. When the user releases the left mouse
button, items within the region selected by the user are selected and can be manipulated by the user. For instance,
the user might drag the selection into another container application.

Implementing this feature requires some additional code in your application's WM_LBUTTONDOWN handler
function.

The following code sample implements rubber-band selection and additional features.

If you want to allow reversible orientation of the tracker during rubber-banding, you should call
CRectTracker::TrackRubberBand with the third parameter set to TRUE . Remember that allowing reversible
orientation will sometimes cause CRectTracker::m_rect to become inverted. This can be corrected by a call to
CRect::NormalizeRect.

For more information, see Container Client Items and Customizing Drag and Drop.

Trackers: Implementing Trackers in Your OLE Application

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/rubber-banding-and-trackers.md

CRectTracker Class

Serialization in MFC
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

This article explains the serialization mechanism provided in the Microsoft Foundation Class Library (MFC) to
allow objects to persist between runs of your program.

Serialization is the process of writing or reading an object to or from a persistent storage medium such as a
disk file. Serialization is ideal for situations where it is desired to maintain the state of structured data (such as
C++ classes or structures) during or after execution of a program. Using the serialization objects provided by
MFC allows this to occur in a standard and consistent manner, relieving the user from the need to perform file
operations by hand.

MFC supplies built-in support for serialization in the class CObject . Thus, all classes derived from CObject can
take advantage of CObject 's serialization protocol.

The basic idea of serialization is that an object should be able to write its current state, usually indicated by the
value of its member variables, to persistent storage. Later, the object can be re-created by reading, or
deserializing, the object's state from the storage. Serialization handles all the details of object pointers and
circular references to objects that are used when you serialize an object. A key point is that the object itself is
responsible for reading and writing its own state. Thus, for a class to be serializable, it must implement the basic
serialization operations. As shown in the Serialization group of articles, it is easy to add this functionality to a
class.

MFC uses an object of the CArchive class as an intermediary between the object to be serialized and the
storage medium. This object is always associated with a CFile object, from which it obtains the necessary
information for serialization, including the file name and whether the requested operation is a read or write. The
object that performs a serialization operation can use the CArchive object without regard to the nature of the
storage medium.

A CArchive object uses overloaded insertion (<<) and extraction (>>) operators to perform writing and
reading operations. For more information, see Storing and Loading CObjects via an Archive in the article
Serialization: Serializing an Object.

Do not confuse the CArchive class with general-purpose iostream classes, which are for formatted text only. The
CArchive class is for binary-format serialized objects.

If you want, you can bypass MFC serialization to create your own mechanism for persistent data storage. You
will need to override the class member functions that initiate serialization at the user's command. See the
discussion in Technical Note 22 of the ID_FILE_OPEN, ID_FILE_SAVE, and ID_FILE_SAVE_AS standard
commands.

The following articles cover the two main tasks required for serialization:

Serialization: Making a Serializable Class

Serialization: Serializing an Object

The article Serialization: Serialization vs. Database Input/Output describes when serialization is an appropriate
input/output technique in database applications.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/serialization-in-mfc.md

See also
Concepts
General MFC Topics
CArchive Class
CObject Class
CDocument Class
CFile Class

Serialization: Making a Serializable Class
3/4/2019 • 4 minutes to read • Edit Online

Deriving Your Class from CObject

Overriding the Serialize Member Function

class CPerson : public CObject
{
public:
 DECLARE_SERIAL(CPerson)
 // empty constructor is necessary
 CPerson();
 virtual ~CPerson();

 CString m_name;
 WORD m_number;

 void Serialize(CArchive& archive);
};

To override the Serialize member functionTo override the Serialize member function

Five main steps are required to make a class serializable. They are listed below and explained in the following
sections:

1. Deriving your class from CObject (or from some class derived from CObject).

2. Overriding the Serialize member function.

3. Using the DECLARE_SERIAL macro in the class declaration.

4. Defining a constructor that takes no arguments.

5. Using the IMPLEMENT_SERIAL macro in the implementation file for your class.

If you call Serialize directly rather than through the >> and << operators of CArchive, the last three steps are
not required for serialization.

The basic serialization protocol and functionality are defined in the CObject class. By deriving your class from
CObject (or from a class derived from CObject), as shown in the following declaration of class CPerson , you gain

access to the serialization protocol and functionality of CObject .

The Serialize member function, which is defined in the CObject class, is responsible for actually serializing the
data necessary to capture an object's current state. The Serialize function has a CArchive argument that it uses
to read and write the object data. The CArchive object has a member function, IsStoring , which indicates whether
Serialize is storing (writing data) or loading (reading data). Using the results of IsStoring as a guide, you either

insert your object's data in the CArchive object with the insertion operator (<<) or extract data with the extraction
operator (>>).

Consider a class that is derived from CObject and has two new member variables, of types CString and WORD .
The following class declaration fragment shows the new member variables and the declaration for the overridden
Serialize member function:

1. Call your base class version of Serialize to make sure that the inherited portion of the object is serialized.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/serialization-making-a-serializable-class.md

Using the DECLARE_SERIAL Macro

class CPerson : public CObject
{
public:
 DECLARE_SERIAL(CPerson)

Defining a Constructor with No Arguments

NOTENOTE

Using the IMPLEMENT_SERIAL Macro in the Implementation File

void CPerson::Serialize(CArchive& archive)
{
 // call base class function first
 // base class is CObject in this case
 CObject::Serialize(archive);

 // now do the stuff for our specific class
 if(archive.IsStoring())
 archive << m_name << m_number;
 else
 archive >> m_name >> m_number;
}

2. Insert or extract the member variables specific to your class.

The insertion and extraction operators interact with the archive class to read and write the data. The
following example shows how to implement Serialize for the CPerson class declared above:

You can also use the CArchive::Read and CArchive::Write member functions to read and write large amounts of
untyped data.

The DECLARE_SERIAL macro is required in the declaration of classes that will support serialization, as shown
here:

MFC requires a default constructor when it re-creates your objects as they are deserialized (loaded from disk). The
deserialization process will fill in all member variables with the values required to re-create the object.

This constructor can be declared public, protected, or private. If you make it protected or private, you help make
sure that it will only be used by the serialization functions. The constructor must put the object in a state that
allows it to be deleted if necessary.

If you forget to define a constructor with no arguments in a class that uses the DECLARE_SERIAL and IMPLEMENT_SERIAL
macros, you will get a "no default constructor available" compiler warning on the line where the IMPLEMENT_SERIAL macro
is used.

The IMPLEMENT_SERIAL macro is used to define the various functions needed when you derive a serializable
class from CObject . You use this macro in the implementation file (.CPP) for your class. The first two arguments to
the macro are the name of the class and the name of its immediate base class.

The third argument to this macro is a schema number. The schema number is essentially a version number for
objects of the class. Use an integer greater than or equal to 0 for the schema number. (Don't confuse this schema
number with database terminology.)

IMPLEMENT_SERIAL(CPerson, CObject, 1)

See also

The MFC serialization code checks the schema number when reading objects into memory. If the schema number
of the object on disk does not match the schema number of the class in memory, the library will throw a
CArchiveException , preventing your program from reading an incorrect version of the object.

If you want your Serialize member function to be able to read multiple versions — that is, files written with
different versions of the application — you can use the value VERSIONABLE_SCHEMA as an argument to the
IMPLEMENT_SERIAL macro. For usage information and an example, see the GetObjectSchema member function
of class CArchive .

The following example shows how to use IMPLEMENT_SERIAL for a class, CPerson , that is derived from
CObject :

Once you have a serializable class, you can serialize objects of the class, as discussed in the article Serialization:
Serializing an Object.

Serialization

Serialization: Serializing an Object
3/4/2019 • 2 minutes to read • Edit Online

See also

The article Serialization: Making a Serializable Class shows how to make a class serializable. Once you have a
serializable class, you can serialize objects of that class to and from a file via a CArchive object. This article
explains:

What a CArchive object is.

Two ways to create a CArchive.

How to use the CArchive << and >> operators.

Storing and loading CObjects via an archive.

You can let the framework create the archive for your serializable document or explicitly create the CArchive

object yourself. You can transfer data between a file and your serializable object by using the << and >>
operators for CArchive or, in some cases, by calling the Serialize function of a CObject -derived class.

Serialization

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/serialization-serializing-an-object.md

What Is a CArchive Object
3/4/2019 • 2 minutes to read • Edit Online

See also

A CArchive object provides a type-safe buffering mechanism for writing or reading serializable objects to or from
a CFile object. Usually the CFile object represents a disk file; however, it can also be a memory file (CSharedFile

object), perhaps representing the Clipboard.

A given CArchive object either stores (writes, serializes) data or loads (reads, deserializes) data, but never both.
The life of a CArchive object is limited to one pass through writing objects to a file or reading objects from a file.
Thus, two successively created CArchive objects are required to serialize data to a file and then deserialize it back
from the file.

When an archive stores objects to a file, the archive attaches the CRuntimeClass name to the objects. Then, when
another archive loads objects from a file to memory, the CObject -derived objects are dynamically reconstructed
based on the CRuntimeClass of the objects. A given object may be referenced more than once as it is written to the
file by the storing archive. The loading archive, however, will reconstruct the object only once. The details about
how an archive attaches CRuntimeClass information to objects and reconstructs objects, taking into account
possible multiple references, are described in Technical Note 2.

As data is serialized to an archive, the archive accumulates the data until its buffer is full. Then the archive writes its
buffer to the CFile object pointed to by the CArchive object. Similarly, as you read data from an archive, it reads
data from the file to its buffer and then from the buffer to your deserialized object. This buffering reduces the
number of times a hard disk is physically read, thus improving your application's performance.

Serialization: Serializing an Object

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/what-is-a-carchive-object.md

Two Ways to Create a CArchive Object
3/4/2019 • 2 minutes to read • Edit Online

Implicit Creation of a CArchive Object via the Framework

Explicit Creation of a CArchive Object

To explicitly create a CArchive objectTo explicitly create a CArchive object

There are two ways to create a CArchive object:

Implicit creation of a CArchive object via the framework

Explicit creation of a CArchive object

The most common, and easiest, way is to let the framework create a CArchive object for your document on behalf
of the Save, Save As, and Open commands on the File menu.

Here is what the framework does when the user of your application issues the Save As command from the File
menu:

1. Presents the Save As dialog box and gets the filename from the user.

2. Opens the file named by the user as a CFile object.

3. Creates a CArchive object that points to this CFile object. In creating the CArchive object, the framework
sets the mode to "store" (write, serialize), as opposed to "load" (read, deserialize).

4. Calls the Serialize function defined in your CDocument -derived class, passing it a reference to the
CArchive object.

Your document's Serialize function then writes data to the CArchive object, as explained shortly. Upon return
from your Serialize function, the framework destroys the CArchive object and then the CFile object.

Thus, if you let the framework create the CArchive object for your document, all you have to do is implement the
document's Serialize function that writes and reads to and from the archive. You also have to implement
Serialize for any CObject -derived objects that the document's Serialize function in turn serializes directly or

indirectly.

Besides serializing a document via the framework, there are other occasions when you may need a CArchive

object. For example, you might want to serialize data to and from the Clipboard, represented by a CSharedFile

object. Or, you may want to use a user interface for saving a file that is different from the one offered by the
framework. In this case, you can explicitly create a CArchive object. You do this the same way the framework does,
using the following procedure.

CFile theFile;
theFile.Open(_T("CArchive__Test.txt"), CFile::modeCreate | CFile::modeWrite);
CArchive archive(&theFile, CArchive::store);

1. Construct a CFile object or an object derived from CFile .

2. Pass the CFile object to the constructor for CArchive , as shown in the following example:

The second argument to the CArchive constructor is an enumerated value that specifies whether the

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/two-ways-to-create-a-carchive-object.md

To close the CArchive objectTo close the CArchive object

See also

archive will be used for storing or loading data to or from the file. The Serialize function of an object
checks this state by calling the IsStoring function for the archive object.

When you are finished storing or loading data to or from the CArchive object, close it. Although the CArchive

(and CFile) objects will automatically close the archive (and file), it is good practice to explicitly do so since it
makes recovery from errors easier. For more information about error handling, see the article Exceptions: Catching
and Deleting Exceptions.

archive.Close();
theFile.Close();

1. The following example illustrates how to close the CArchive object:

Serialization: Serializing an Object

Using the CArchive << and >> Operators
3/4/2019 • 2 minutes to read • Edit Online

To store an object in a file via an archiveTo store an object in a file via an archive

To load an object from a value previously stored in a fileTo load an object from a value previously stored in a file

void CSerializableObj::Serialize(CArchive& archive)
{
 // call base class function first
 // base class is CObject in this case
 CObject::Serialize(archive);

 // now do the stuff for our specific class
 if(archive.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add storing code here
 }
}

CArchive provides << and >> operators for writing and reading simple data types as well as CObject s to and
from a file.

CArchive ar(&theFile, CArchive::store);
WORD wEmployeeID = 78;
ar << wEmployeeID;

1. The following example shows how to store an object in a file via an archive:

CArchive ar(&theFile, CArchive::load);
WORD wEmployeeID;
ar >> wEmployeeID;

1. The following example shows how to load an object from a value previously stored in a file:

Usually, you store and load data to and from a file via an archive in the Serialize functions of CObject -derived
classes, which you must have declared with the DECLARE_SERIALIZE macro. A reference to a CArchive object is
passed to your Serialize function. You call the IsLoading function of the CArchive object to determine whether
the Serialize function has been called to load data from the file or store data to the file.

The Serialize function of a serializable CObject -derived class typically has the following form:

The above code template is exactly the same as the one AppWizard creates for the Serialize function of the
document (a class derived from CDocument). This code template helps you write code that is easier to review,
because the storing code and the loading code should always be parallel, as in the following example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-the-carchive-output-and-input-operators.md

void CEmployee::Serialize(CArchive& archive)
{
 // call base class function first
 // base class is CObject in this case
 CObject::Serialize(archive);

 // now do the stuff for our specific class
 if(archive.IsStoring())
 archive << m_strName << m_wAge;
 else
 archive >> m_strName >> m_wAge;
}

CObject* SIZE and CSize float

WORD CString POINT and CPoint

DWORD BYTE RECT and CRect

Double LONG CTime and CTimeSpan

Int COleCurrency COleVariant

COleDateTime COleDateTimeSpan

NOTENOTE

archive << m_strName << m_wAge;

See also

The library defines << and >> operators for CArchive as the first operand and the following data types and class
types as the second operand:

Storing and loading CObject s via an archive requires extra consideration. For more information, see Storing and Loading
CObjects via an Archive.

The CArchive << and >> operators always return a reference to the CArchive object, which is the first operand.
This enables you to chain the operators, as illustrated below:

Serialization: Serializing an Object

Storing and Loading CObjects via an Archive
3/4/2019 • 2 minutes to read • Edit Online

C a u t i o nC a u t i o n

Storing and loading CObject s via an archive requires extra consideration. In certain cases, you should call the
Serialize function of the object, where the CArchive object is a parameter of the Serialize call, as opposed to

using the << or >> operator of the CArchive . The important fact to keep in mind is that the CArchive >>
operator constructs the CObject in memory based on CRuntimeClass information previously written to the file by
the storing archive.

Therefore, whether you use the CArchive << and >> operators, versus calling Serialize , depends on whether
you need the loading archive to dynamically reconstruct the object based on previously stored CRuntimeClass

information. Use the Serialize function in the following cases:

When deserializing the object, you know the exact class of the object beforehand.

When deserializing the object, you already have memory allocated for it.

If you load the object using the Serialize function, you must also store the object using the Serialize function.
Don't store using the CArchive << operator and then load using the Serialize function, or store using the
Serialize function and then load using CArchive >> operator.

The following example illustrates the cases:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/storing-and-loading-cobjects-via-an-archive.md

class CMyObject : public CObject
{
// ...Member functions
public:
 CMyObject() { }
 virtual void Serialize(CArchive& ar);

// Implementation
protected:
 DECLARE_SERIAL(CMyObject)
};

class COtherObject : public CObject
{
 // ...Member functions
public:
 COtherObject() { }
 virtual void Serialize(CArchive& ar);

// Implementation
protected:
 DECLARE_SERIAL(COtherObject)
};

class CCompoundObject : public CObject
{
 // ...Member functions
public:
 CCompoundObject();
 ~CCompoundObject();
 virtual void Serialize(CArchive& ar);

// Implementation
protected:
 CMyObject m_myob; // Embedded object
 COtherObject* m_pOther; // Object allocated in constructor
 CObject* m_pObDyn; // Dynamically allocated object
 //..Other member data and implementation

 DECLARE_SERIAL(CCompoundObject)
};

IMPLEMENT_SERIAL(CMyObject,CObject,1)
IMPLEMENT_SERIAL(COtherObject,CObject,1)
IMPLEMENT_SERIAL(CCompoundObject,CObject,1)

CCompoundObject::CCompoundObject()
{
 m_pOther = new COtherObject; // Exact type known and object already
 //allocated.
 m_pObDyn = NULL; // Will be allocated in another member function
 // if needed, could be a derived class object.
}

CCompoundObject::~CCompoundObject()
{
 delete m_pOther;
}

void CCompoundObject::Serialize(CArchive& ar)
{
 CObject::Serialize(ar); // Always call base class Serialize.
 m_myob.Serialize(ar); // Call Serialize on embedded member.
 m_pOther->Serialize(ar); // Call Serialize on objects of known exact type.

 // Serialize dynamic members and other raw data
 if (ar.IsStoring())
 {
 ar << m_pObDyn;
 // Store other members
 }
 else
 {
 ar >> m_pObDyn; // Polymorphic reconstruction of persistent object
 //load other members
 }
}

See also

In summary, if your serializable class defines an embedded CObject as a member, you should not use the
CArchive << and >> operators for that object, but should call the Serialize function instead. Also, if your

serializable class defines a pointer to a CObject (or an object derived from CObject) as a member, but constructs
this other object in its own constructor, you should also call Serialize .

Serialization: Serializing an Object

Serialization: Serialization vs. Database Input/Output
3/4/2019 • 2 minutes to read • Edit Online

See also

This article explains when to use document objects and serialization for file-based input/output (I/O) and when
other I/O techniques are appropriate — because the application reads and writes data on a per-transaction basis,
as in database applications. If you don't use serialization, you also won't need the File Open, Save, and Save As
commands. Topics covered include:

Recommendations for handling input/output

Handling the File menu in database applications

Serialization

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/serialization-serialization-vs-database-input-output.md

Recommendations for Handling Input/Output
3/4/2019 • 2 minutes to read • Edit Online

See also

Whether you use file-based I/O or not depends on how you respond to the questions in the following decision
tree:

Does the primary data in your application reside in a disk file

Yes, the primary data resides in a disk file:

Does the application read the whole file into memory on File Open and write the whole file back
to disk on File Save

Yes: This is the default MFC document case. Use CDocument serialization.

No: This is typically the case of transaction-based updating of the file. You update the file on a per-
transaction basis and don't need CDocument serialization.

No, the primary data doesn't reside in a disk file:

Does the data reside in an ODBC data source

 Use MFC's database support. The standard MFC implementation for this case includes a `CDatabase`
object, as discussed in the article [MFC: Using Database Classes with Documents and Views]
(../data/mfc-using-database-classes-with-documents-and-views.md). The application might also read
and write an auxiliary file — the purpose of the application wizard "both a database view and
file support" option. In this case, you'd use serialization for the auxiliary file.

 Examples of this case: the data resides in a non-ODBC DBMS; the data is read via some other
mechanism, such as OLE or DDE.

 In such cases, you won't use serialization, and your application won't have Open and Save menu
items. You might still want to use a `CDocument` as a home base, just as an MFC ODBC application
uses the document to store `CRecordset` objects. But you won't use the framework's default File
Open/Save document serialization.

Yes, the data resides in an ODBC data source:

No, the data doesn't reside in an ODBC data source.

To support the Open, Save, and Save As commands on the File menu, the framework provides document
serialization. Serialization reads and writes data, including objects derived from class CObject , to permanent
storage, normally a disk file. Serialization is easy to use and serves many of your needs, but it may be
inappropriate in many data-access applications. Data-access applications typically update data on a per-transaction
basis. They update the records affected by the transaction rather than reading and writing a whole data file at once.

For information about serialization, see Serialization.

Serialization: Serialization vs. Database Input/Output

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/recommendations-for-handling-input-output.md

File Menu in an MFC Database Application
3/4/2019 • 2 minutes to read • Edit Online

See also

If you create an MFC database application and don't use serialization, how should you interpret the Open, Close,
Save, and Save As commands on the File menu While there are no style guidelines for this question, here are a few
suggestions:

Eliminate the File menu's Open command entirely.

Interpret the Open command as "open database" and show the user a list of data sources your application
recognizes.

Interpret the Open command as, perhaps, "open profile." Retain Open for opening a serialized file, but use
the file to store a serialized document containing "user profile" information, such as the user's preferences,
including his or her login ID (optionally excluding the password) and the data source he or she most
recently worked with.

The MFC Application Wizard supports creating an application with no document-related File menu commands.
Select the Database view without file support option on the Database Support page.

To interpret a File menu command in a special way, you must override one or more command handlers, mostly in
your CWinApp -derived class. For example, if you completely override OnFileOpen (which implements the
ID_FILE_OPEN command) to mean "open database:"

Don't call the base class version of OnFileOpen , since you're completely replacing the framework's default
implementation of the command.

Use the handler instead to display a dialog box listing data sources. You can display such a dialog by calling
CDatabase::OpenEx or CDatabase::Open with the parameter NULL. This opens an ODBC dialog box that

displays all available data sources on the user's machine.

Because database applications typically don't save a whole document, you'll probably want to remove the
Save and Save As implementations unless you use a serialized document to store profile information.
Otherwise, you might implement the Save command as, for example, "commit transaction." See Technical
Note 22 for more information about overriding these commands.

Serialization: Serialization vs. Database Input/Output

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/file-menu-in-an-mfc-database-application.md

User Interface Elements (MFC)
3/4/2019 • 2 minutes to read • Edit Online

In This Section

For information about how to create the user interface for your application by using the Microsoft Foundation
Class (MFC) Library, see the following topics.

ActiveX Controls
Describes how to use reusable software component based on the Component Object Model (COM), which
supports a wide variety of OLE functionality and can be customized to fit many software needs

Clipboard
Describes how to implement support for the Windows Clipboard in MFC applications.

Controls
Describes Windows common controls, including owner-drawn controls, ActiveX controls, and other control
classes supplied by the MFC Library.

Control Bars
Describes functionality of toolbars, status bars, and dialog bars.

Dialog Bars
Describes a kind of control bar that can contain any kind of control.

Dialog Boxes
Describes how to create dialog boxes by using the editors and code wizards.

Document/View Architecture
Describes data management in MFC.

Form Views
Describes how to add forms support to your application.

HTML Help: Context-Sensitive Help for Your Programs
Describes how to add context-sensitive help to your applications by using HTML Help.

MDI Tabbed Groups
Enables multiple document interface (MDI) applications to display one or more tabbed windows (or groups of
tabbed windows, which are known as tabbed groups) in the MDI client area.

Menus
Describes how to add menus to your user interface.

OLE
Provides links to topics that discuss object linking and embedding.

Printing and Print Preview
Describes MFC support for printing and print preview from your applications.

Property Sheets
Describes how to use property sheets to manage large numbers of control in a dialog box.

Ribbon Designer (MFC)
Describes MFC support for creating and modifying ribbon UI resources.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/user-interface-elements-mfc.md

Related Sections

Status Bars
Describes how to use status bars in your applications.

Tool Tips
Describes how to implement tool tips to assist users in using your applications.

Toolbars
Describes the fundamentals about how to use toolbars in MFC.

Visualization Manager
Acts as one class where you can put all the drawing code for your application.

Windows
Describes the fundamentals about how to use windows in MFC.

MFC Desktop Applications
Provides reference material for the MFC Library. MFC is a set of classes that constitute an application
framework, which is the framework of an application written for the Windows API.

ActiveX Controls
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

See also

In Visual C++ you can create ActiveX controls using MFC or ATL.

ActiveX is a legacy technology that should not be used for new development. Many capabilities of ActiveX controls can
be performed in a simpler and much more secure way with modern technologies such as HTML5 and JavaScript,
modern browser extensions, or WebAssembly modules. For more information, see A break from the past, part 2: Saying
goodbye to ActiveX, VBScript, attachEvent… and Native Messaging and Microsoft Edge extensions and WebAssembly.

MFC ActiveX Controls

ATL

User Interface Elements

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/activex-controls.md
https://blogs.windows.com/msedgedev/2015/05/06/a-break-from-the-past-part-2-saying-goodbye-to-activex-vbscript-attachevent/
https://docs.microsoft.com/microsoft-edge/extensions/guides/native-messaging
https://docs.microsoft.com/microsoft-edge/extensions
https://webassembly.org/

MFC ActiveX Controls
3/4/2019 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

An ActiveX control is a reusable software component based on the Component Object Model (COM) that
supports a wide variety of OLE functionality and can be customized to fit many software needs.

ActiveX is a legacy technology that should not be used for new development. For more information, see ActiveX
Controls.

ActiveX controls are designed for use both in ordinary ActiveX control containers and on the Internet, in
World Wide Web pages. You can create ActiveX controls either with MFC, described here, or with the Active
Template Library (ATL).

An ActiveX control can draw itself in its own window, respond to events (such as mouse clicks), and be
managed through an interface that includes properties and methods similar to those in Automation objects.

These controls can be developed for many uses, such as database access, data monitoring, or graphing.
Besides their portability, ActiveX controls support features previously not available to ActiveX controls, such
as compatibility with existing OLE containers and the ability to integrate their menus with the OLE container
menus. In addition, an ActiveX control fully supports Automation, which allows the control to expose
read\write properties and a set of methods that can be called by the control user.

You can create windowless ActiveX controls and controls that only create a window when they become
active. Windowless controls speed up the display of your application and make it possible to have
transparent and nonrectangular controls. You can also load ActiveX control properties asynchronously.

An ActiveX control is implemented as an in-process server (typically a small object) that can be used in any
OLE container. Note that the full functionality of an ActiveX control is available only when used within an
OLE container designed to be aware of ActiveX controls. See Port ActiveX Controls to Other Applications
for a list of containers that support ActiveX controls. This container type, hereafter called a "control
container," can operate an ActiveX control by using the control's properties and methods, and receives
notifications from the ActiveX control in the form of events. The following figure demonstrates this
interaction.

Interaction Between an ActiveX Control Container and a Windowed ActiveX Control

For some recent information on optimizing your ActiveX controls, see MFC ActiveX Controls: Optimization.

To create an MFC ActiveX control, see Create an ActiveX control project.

For more information, see:

ActiveX Control Containers

Active Documents

Understanding ActiveX Controls

Upgrading an Existing ActiveX Control to be Used on the Internet

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls.md
https://docs.microsoft.com/windows/desktop/com/activex-controls

Basic Components of an ActiveX Control

Interaction Between Controls with Windows and ActiveX Control
Containers

Active and Inactive States of an ActiveX Control

An ActiveX control uses several programmatic elements to interact efficiently with a control container and
with the user. These are class COleControl, a set of event-firing functions, and a dispatch map.

Every ActiveX control object you develop inherits a powerful set of features from its MFC base class,
COleControl . These features include in-place activation, and Automation logic. COleControl can provide the

control object with the same functionality as an MFC window object, plus the ability to fire events.
COleControl can also provide windowless controls, which rely on their container for help with some of the

functionality a window provides (mouse capture, keyboard focus, scrolling), but offer much faster display.

Because the control class derives from COleControl , it inherits the capability to send, or "fire," messages,
called events, to the control container when certain conditions are met. These events are used to notify the
control container when something important happens in the control. You can send additional information
about an event to the control container by attaching parameters to the event. For more information about
ActiveX control events, see the article MFC ActiveX Controls: Events.

The final element is a dispatch map, which is used to expose a set of functions (called methods) and
attributes (called properties) to the control user. Properties allow the control container or the control user to
manipulate the control in various ways. The user can change the appearance of the control, change certain
values of the control, or make requests of the control, such as accessing a specific piece of data that the
control maintains. This interface is determined by the control developer and is defined using Class View.
For more information on ActiveX control methods and properties, see the articles MFC ActiveX Controls:
Methods and Properties.

When a control is used within a control container, it uses two mechanisms to communicate: it exposes
properties and methods, and it fires events. The following figure demonstrates how these two mechanisms
are implemented.

Communication Between an ActiveX Control Container and an ActiveX Control

The previous figure also illustrates how other OLE interfaces (besides automation and events) are handled
by controls.

All of a control's communication with the container is performed by COleControl . To handle some of the
container's requests, COleControl will call member functions that are implemented in the control class. All
methods and some properties are handled in this way. Your control's class can also initiate communication
with the container by calling member functions of COleControl . Events are fired in this manner.

A control has two basic states: active and inactive. Traditionally, these states were distinguished by whether
the control had a window. An active control had a window; an inactive control did not. With the introduction
of windowless activation, this distinction is no longer universal, but still applies to many controls.

When a windowless control goes active, it invokes mouse capture, keyboard focus, scrolling, and other
window services from its container. You can also provide mouse interaction to inactive controls, as well as
create controls that wait until activated to create a window.

Serialization

Installing ActiveX Control Classes and Tools

See also

When a control with a window becomes active, it is able to interact fully with the control container, the user,
and Windows. The figure below demonstrates the paths of communication between the ActiveX control, the
control container, and the operating system.

Windows Message Processing in a Windowed ActiveX Control (When Active)

The ability to serialize data, sometimes referred to as persistence, allows the control to write the value of its
properties to persistent storage. Controls can then be recreated by reading the object's state from the
storage.

Note that a control is not responsible for obtaining access to the storage medium. Instead, the control's
container is responsible for providing the control with a storage medium to use at the appropriate times. For
more information on serialization, see the article MFC ActiveX Controls: Serializing. For information on
optimizing serialization, see Optimizing Persistence and Initialization in ActiveX Controls: Optimization.

When you install Visual C++, the MFC ActiveX control classes and retail and debug ActiveX control run-
time DLLs are automatically installed if ActiveX controls are selected in Setup (they are selected by default).

By default, the ActiveX control classes and tools are installed in the following subdirectories under \Program
Files\Microsoft Visual Studio .NET:

\Common7\Tools

Contains the Test Container files (TstCon32.exe, as well as its Help files).

\Vc7\atlmfc\include

Contains the include files needed to develop ActiveX controls with MFC

\Vc7\atlmfc\src\mfc

Contains the source code for specific ActiveX control classes in MFC

\Vc7\atlmfc\lib

Contains the libraries required to develop ActiveX controls with MFC

There are also samples for MFC ActiveX controls. For more information about these samples, see Controls
Samples: MFC-Based ActiveX Controls

User Interface Elements

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

MFC ActiveX Controls: Optimization
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

MFC ActiveX Control Wizard OLE Optimization OptionsMFC ActiveX Control Wizard OLE Optimization Options

CONTROL SETTING IN THE MFC ACTIVEX
CONTROL WIZARD ACTION MORE INFORMATION

Activate when visible check box Clear Turning Off the Activate When Visible
Option

Windowless activation check box Select Providing Windowless Activation

Unclipped device context check box Select Using an Unclipped Device Context

Flicker-free activation check box Select Providing Flicker-Free Activation

Mouse pointer notifications when
inactive check box

Select Providing Mouse Interaction While
Inactive

Optimized drawing code check box Select Optimizing Control Drawing

This article explains techniques you can use to optimize your ActiveX controls for better performance.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

The topics Turning Off the Activate When Visible Option and Providing Mouse Interaction While Inactive
discuss controls that don't create a window until activated. The topic Providing Windowless Activation
discusses controls that never create a window, even when they are activated.

Windows have two major drawbacks for OLE objects: they prevent objects from being transparent or
nonrectangular when active, and they add a large overhead to the instantiation and display of controls.
Typically, creating a window takes 60 percent of a control's creation time. With a single shared window (usually
the container's) and some dispatching code, a control receives the same window services, generally without a
loss of performance. Having a window is mostly unnecessary overhead for the object.

Some optimizations do not necessarily improve performance when your control is used in certain containers.
For example, containers released prior to 1996 did not support windowless activation, so implementing this
feature will not provide a benefit in older containers. However, nearly every container supports persistence, so
optimizing your control's persistence code will likely improve its performance in any container. If your control is
specifically intended to be used with one particular type of container, you may want to research which of these
optimizations is supported by that container. In general, however, you should try to implement as many of
these techniques as are applicable to your particular control to ensure your control performs as well as it
possibly can in a wide array of containers.

You can implement many of these optimizations through the MFC ActiveX Control Wizard, on the Control
Settings page.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-optimization.md

See also

For detailed information about the member functions that implement these optimizations, see COleControl.

For more information, see:

Optimizing Persistence and Initialization

Providing Windowless Activation

Turning Off the Activate When Visible Option

Providing Mouse Interaction While Inactive

Providing Flicker-Free Activation

Using an Unclipped Device Context

Optimizing Control Drawing

MFC ActiveX Controls

Optimizing Persistence and Initialization
3/4/2019 • 2 minutes to read • Edit Online

void CMyAxOptCtrl::DoPropExchange(CPropExchange* pPX)
{
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);

 PX_Bool(pPX, _T("BoolProp"), m_BoolProp, TRUE);
 PX_Short(pPX, _T("ShortProp"), m_ShortProp, 0);
 PX_Color(pPX, _T("ColorProp"), m_ColorProp, RGB(0xFF,0x00,0x00));
 PX_String(pPX, _T("StringProp"), m_StringProp, _T(""));
}

By default, persistence and initialization in a control are handled by the DoPropExchange member function. In a
typical control, this function contains calls to several PX_ functions (PX_Color , PX_Font , and so on), one for each
property.

This approach has the advantage that a single DoPropExchange implementation can be used for initialization, for
persistence in binary format, and for persistence in the so-called "property-bag" format used by some containers.
This one function provides all information about the properties and their default values in one convenient place.

However, this generality comes at the expense of efficiency. The PX_ functions get their flexibility through
multilayered implementations that are inherently less efficient than more direct, but less flexible, approaches.
Furthermore, if a control passes a default value to a PX_ function, that default value must be provided every time,
even in situations when the default value may not necessarily be used. If generating the default value is a nontrivial
task (for example, when the value is obtained from an ambient property), then extra, unnecessary work is done in
cases where the default value is not used.

You can improve your control's binary persistence performance by overriding your control's Serialize function.
The default implementation of this member function makes a call to your DoPropExchange function. By overriding
it, you can provide a more direct implementation for binary persistence. For example, consider this DoPropExchange

function:

To improve the performance of this control's binary persistence, you can override the Serialize function as
follows:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/optimizing-persistence-and-initialization.md

void CMyAxOptCtrl::Serialize(CArchive& ar)
{
 SerializeVersion(ar, MAKELONG(_wVerMinor, _wVerMajor));
 SerializeExtent(ar);
 SerializeStockProps(ar);

 if (ar.IsLoading())
 {
 ar >> m_BoolProp;
 ar >> m_ShortProp;
 ar >> m_ColorProp;
 ar >> m_StringProp;
 }
 else
 {
 ar << m_BoolProp;
 ar << m_ShortProp;
 ar << m_ColorProp;
 ar << m_StringProp;
 }
}

if (ar.IsLoading())
{
 BYTE bTmp;
 ar >> bTmp;
 m_BoolProp = (BOOL)bTmp;
 // other properties...
}
else
{
 ar << (BYTE)m_BoolProp;
 // other properties...
}

void CMyAxOptCtrl::OnResetState()
{
 ResetVersion(MAKELONG(_wVerMinor, _wVerMajor));
 ResetStockProps();

 m_BoolProp = TRUE;
 m_ShortProp = 0;
 m_ColorProp = RGB(0xFF,0x00,0x00);
 m_StringProp.Empty();
}

The dwVersion local variable can be used to detect the version of the control's persistent state being loaded or
saved. You can use this variable instead of calling CPropExchange::GetVersion.

To save a little space in the persistent format for a BOOL property (and to keep it compatible with the format
produced by PX_Bool), you can store the property as a BYTE , as follows:

Note that in the load case, a temporary variable is used and then its value is assigned, rather than casting
m_boolProp to a BYTE reference. The casting technique would result in only one byte of m_boolProp being
modified, leaving the remaining bytes uninitialized.

For the same control, you can optimize the control's initialization by overriding COleControl::OnResetState as
follows:

Although Serialize and OnResetState have been overridden, the DoPropExchange function should be kept intact
because it is still used for persistence in the property-bag format. It is important to maintain all three of these

See also

functions to ensure that the control manages its properties consistently, regardless of which persistence
mechanism the container uses.

MFC ActiveX Controls: Optimization

Providing Windowless Activation
3/4/2019 • 2 minutes to read • Edit Online

DWORD CMyAxOptCtrl::GetControlFlags()
{
 DWORD dwFlags = COleControl::GetControlFlags();

// The control can activate without creating a window.
dwFlags |= windowlessActivate;

 return dwFlags;
}

Window creation code (that is, everything that happens when you call CreateWindow) is costly to execute. A
control that maintains an on-screen window has to manage messages for the window. Windowless controls are
therefore faster than controls with windows.

A further advantage of windowless controls is that, unlike windowed controls, windowless controls support
transparent painting and nonrectangular screen regions. A common example of a transparent control is a text
control with a transparent background. The controls paints the text but not the background, so whatever is under
the text shows through. Newer forms often make use of nonrectangular controls, such as arrows and round
buttons.

Often, a control does not need a window of its own and, instead, can use the window services of its container,
provided that the container has been written to support windowless objects. Windowless controls are backward
compatible with older containers. In older containers not written to support windowless controls, the windowless
controls create a window when active.

Because windowless controls do not have their own windows, the container (which does have a window) is
responsible for providing services that would otherwise have been provided by the control's own window. For
example, if your control needs to query the keyboard focus, capture the mouse, or obtain a device context, these
operations are managed by the container. The container routes user input messages sent to its window to the
appropriate windowless control, using the IOleInPlaceObjectWindowless interface. (See the ActiveX SDK for a
description of this interface.) COleControl member functions invoke these services from the container.

To make your control use windowless activation, include the windowlessActivate flag in the set of flags returned
by COleControl::GetControlFlags. For example:

The code to include this flag is automatically generated if you select the Windowless activation option on the
Control Settings page of the MFC ActiveX Control Wizard.

When windowless activation is enabled, the container will delegate input messages to the control's
IOleInPlaceObjectWindowless interface. COleControl 's implementation of this interface dispatches the messages

through your control's message map, after adjusting the mouse coordinates appropriately. You can process the
messages like ordinary window messages, by adding the corresponding entries to the message map. In your
handlers for these messages, avoid using the m_hWnd member variable (or any member function that uses it)
without first checking that its value is not NULL.

COleControl provides member functions that invoke mouse capture, keyboard focus, scrolling, and other window
services from the container as appropriate, including:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/providing-windowless-activation.md

IDropTarget* CMyAxOptCtrl::GetWindowlessDropTarget()
{
 m_DropTarget.m_xDropTarget.AddRef();
 return &m_DropTarget.m_xDropTarget;
}

See also

GetFocus, SetFocus

GetCapture, SetCapture, ReleaseCapture

GetDC, ReleaseDC

InvalidateRgn

ScrollWindow

GetClientRect

In windowless controls, you should always use the COleControl member functions instead of the corresponding
CWnd member functions or their related Win32 API functions.

You may want a windowless control to be the target of an OLE drag-and-drop operation. Normally, this would
require that the control's window be registered as a drop target. Since the control has no window of its own, the
container uses its own window as a drop target. The control provides an implementation of the IDropTarget

interface to which the container can delegate calls at the appropriate time. To expose this interface to the container,
override COleControl::GetWindowlessDropTarget. For example:

MFC ActiveX Controls: Optimization

Turning off the Activate When Visible Option
3/4/2019 • 2 minutes to read • Edit Online

static const DWORD BASED_CODE _dwNVC_MFC_AxOptOleMisc =
 OLEMISC_SETCLIENTSITEFIRST |
 OLEMISC_INSIDEOUT |
 OLEMISC_CANTLINKINSIDE |
 OLEMISC_RECOMPOSEONRESIZE;

See also

A control has two basic states: active and inactive. Traditionally, these states were distinguished by whether the
control had a window. An active control had a window; an inactive control did not. With the introduction of
windowless activation, this distinction is no longer universal, but still applies to many controls.

Compared with the rest of the initialization typically performed by an ActiveX control, the creation of a window is
an extremely expensive operation. Ideally, a control would defer creating its window until absolutely necessary.

Many controls do not need to be active the entire time they are visible in a container. Often, a control can remain
in the inactive state until the user performs an operation that requires it to become active (for example, clicking
with the mouse or pressing the TAB key). To cause a control to remain inactive until the container needs to activate
it, remove the OLEMISC_ACTIVATEWHENVISIBLE flag from the control's miscellaneous flags:

The OLEMISC_ACTIVATEWHENVISIBLE flag is automatically omitted if you turn off the Activate When
Visible option in the Control Settings page of the MFC ActiveX Control Wizard when you create your control.

MFC ActiveX Controls: Optimization

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/turning-off-the-activate-when-visible-option.md

Providing Mouse Interaction While Inactive
3/4/2019 • 2 minutes to read • Edit Online

DWORD CMyAxOptCtrl::GetControlFlags()
{
 DWORD dwFlags = COleControl::GetControlFlags();

// The control can receive mouse notifications when inactive.
dwFlags |= pointerInactive;

 return dwFlags;
}

DWORD CMyAxOptCtrl::GetActivationPolicy()
{
 return POINTERINACTIVE_ACTIVATEONDRAG;
}

If your control is not immediately activated, you may still want it to process WM_SETCURSOR and
WM_MOUSEMOVE messages, even though the control has no window of its own. This can be accomplished by
enabling COleControl 's implementation of the IPointerInactive interface, which is disabled by default. (See the
ActiveX SDK for a description of this interface.) To enable it, include the pointerInactive flag in the set of flags
returned by COleControl::GetControlFlags:

The code to include this flag is automatically generated if you select the Mouse Pointer Notifications When
Inactive option on the Control Settings page when creating your control with the MFC ActiveX Control
Wizard.

When the IPointerInactive interface is enabled, the container delegates WM_SETCURSOR and
WM_MOUSEMOVE messages to it. COleControl 's implementation of IPointerInactive dispatches the messages
through your control's message map after adjusting the mouse coordinates appropriately. You can process the
messages just like ordinary window messages by adding the corresponding entries to the message map. In your
handlers for these messages, avoid using the m_hWnd member variable (or any member function that uses it)
without first checking that its value is not NULL.

You may also want an inactive control to be the target of an OLE drag-and-drop operation. This requires activating
the control at the moment the user drags an object over it, so that the control's window can be registered as a
drop target. To cause activation to occur during a drag, override COleControl::GetActivationPolicy, and return the
POINTERINACTIVE_ACTIVATEONDRAG flag:

Enabling the IPointerInactive interface typically means that you want the control to be capable of processing
mouse messages at all times. To get this behavior in a container that doesn't support the IPointerInactive

interface, you need to have your control always activated when visible, which means the control should include the
OLEMISC_ACTIVATEWHENVISIBLE flag among its miscellaneous flags. However, to prevent this flag from
taking effect in a container that does support IPointerInactive , you can also specify the
OLEMISC_IGNOREACTIVATEWHENVISIBLE flag:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/providing-mouse-interaction-while-inactive.md

static const DWORD BASED_CODE _dwMyOleMisc =
 OLEMISC_ACTIVATEWHENVISIBLE |
 OLEMISC_IGNOREACTIVATEWHENVISIBLE |
 OLEMISC_SETCLIENTSITEFIRST |
 OLEMISC_INSIDEOUT |
 OLEMISC_CANTLINKINSIDE |
 OLEMISC_RECOMPOSEONRESIZE;

See also
MFC ActiveX Controls: Optimization

Providing Flicker-Free Activation
3/4/2019 • 2 minutes to read • Edit Online

DWORD CMyAxOptCtrl::GetControlFlags()
{
 DWORD dwFlags = COleControl::GetControlFlags();

dwFlags |= noFlickerActivate;

 return dwFlags;
}

See also

If your control draws itself identically in the inactive and active states (and does not use windowless activation),
you can eliminate the drawing operations and the accompanying visual flicker that normally occur when making
the transition between the inactive and active states. To do this, include the noFlickerActivate flag in the set of
flags returned by COleControl::GetControlFlags. For example:

The code to include this flag is automatically generated if you select the Flicker-Free activation option on the
Control Settings page when creating your control with the MFC ActiveX Control Wizard.

If you are using windowless activation, this optimization has no effect.

MFC ActiveX Controls: Optimization

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/providing-flicker-free-activation.md

Using an Unclipped Device Context
3/4/2019 • 2 minutes to read • Edit Online

DWORD CMyAxOptCtrl::GetControlFlags()
{
 DWORD dwFlags = COleControl::GetControlFlags();

dwFlags &= ~clipPaintDC;

 return dwFlags;
}

See also

If you are absolutely certain that your control does not paint outside its client rectangle, you can realize a small but
detectable speed gain by disabling the call to IntersectClipRect that is made by COleControl . To do this, remove
the clipPaintDC flag from the set of flags returned by COleControl::GetControlFlags. For example:

The code to remove this flag is automatically generated if you select the Unclipped Device Context option on
the Control Settings page, when creating your control with the MFC ActiveX Control Wizard.

If you are using windowless activation, this optimization has no effect.

MFC ActiveX Controls: Optimization

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-an-unclipped-device-context.md

Optimizing Control Drawing
3/4/2019 • 2 minutes to read • Edit Online

void OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& /*rcInvalid*/)
{
 CPen pen(PS_SOLID, 0, TranslateColor(GetForeColor()));
 CBrush brush(TranslateColor(GetBackColor()));
 CPen* pPenSave = pdc->SelectObject(&pen);
 CBrush* pBrushSave = pdc->SelectObject(&brush);
 pdc->Rectangle(rcBounds);
 pdc->SelectObject(pPenSave);
 pdc->SelectObject(pBrushSave);
}

class CMyAxOptCtrl : public COleControl
{

 CPen m_pen;
 CBrush m_brush;
};

When a control is instructed to draw itself into a container-supplied device context, it typically selects GDI objects
(such as pens, brushes, and fonts) into the device context, performs its drawing operations, and restores the
previous GDI objects. If the container has multiple controls that are to be drawn into the same device context, and
each control selects the GDI objects it requires, time can be saved if the controls do not individually restore
previously selected objects. After all the controls have been drawn, the container can automatically restore the
original objects.

To detect whether a container supports this technique, a control can call the COleControl::IsOptimizedDraw
member function. If this function returns TRUE , the control can skip the normal step of restoring the previously
selected objects.

Consider a control that has the following (unoptimized) OnDraw function:

The pen and brush in this example are local variables, meaning their destructors will be called when they go out of
scope (when the OnDraw function ends). The destructors will attempt to delete the corresponding GDI objects. But
they should not be deleted if you plan to leave them selected into the device context upon returning from OnDraw .

To prevent the CPen and CBrush objects from being destroyed when OnDraw finishes, store them in member
variables instead of local variables. In the control's class declaration, add declarations for two new member
variables:

Then, the OnDraw function can be rewritten as follows:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/optimizing-control-drawing.md

void OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& /*rcInvalid*/)
{
 CPen pen(PS_SOLID, 0, TranslateColor(GetForeColor()));
 CBrush brush(TranslateColor(GetBackColor()));
 CPen* pPenSave = pdc->SelectObject(&pen);
 CBrush* pBrushSave = pdc->SelectObject(&brush);
 pdc->Rectangle(rcBounds);
 pdc->SelectObject(pPenSave);
 pdc->SelectObject(pBrushSave);
}

void CMyAxOptCtrl::OnForeColorChanged()
{
 m_pen.DeleteObject();
}

void CMyAxOptCtrl::OnBackColorChanged()
{
 m_brush.DeleteObject();
}

void CMyAxOptCtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& /*rcInvalid*/)
{
 if (m_pen.m_hObject == NULL)
 m_pen.CreatePen(PS_SOLID, 0, TranslateColor(GetForeColor()));
 if (m_brush.m_hObject == NULL)
 m_brush.CreateSolidBrush(TranslateColor(GetBackColor()));
 CPen* pPenSave = pdc->SelectObject(&m_pen);
 CBrush* pBrushSave = pdc->SelectObject(&m_brush);
 pdc->Rectangle(rcBounds);
 if (! IsOptimizedDraw())
 {
 pdc->SelectObject(pPenSave);
 pdc->SelectObject(pBrushSave);
 }
}

See also

This approach avoids creation of the pen and brush every time OnDraw is called. The speed improvement comes at
the cost of maintaining additional instance data.

If the ForeColor or BackColor property changes, the pen or brush needs to be created again. To do this, override
the OnForeColorChanged and OnBackColorChanged member functions:

Finally, to eliminate unnecessary SelectObject calls, modify OnDraw as follows:

MFC ActiveX Controls: Optimization
COleControl Class
MFC ActiveX Controls
MFC ActiveX Controls
MFC ActiveX Control Wizard
MFC ActiveX Controls: Painting an ActiveX Control

MFC ActiveX Controls: Painting an ActiveX Control
3/4/2019 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

The Painting Process of an ActiveX Control

This article describes the ActiveX control painting process and how you can alter paint code to optimize the
process. (See Optimizing Control Drawing for techniques on how to optimize drawing by not having controls
individually restore previously selected GDI objects. After all of the controls have been drawn, the container can
automatically restore the original objects.)

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

Examples in this article are from a control created by the MFC ActiveX Control Wizard with default settings. For
more information on creating a skeleton control application using the MFC ActiveX Control Wizard, see the article
MFC ActiveX Control Wizard.

The following topics are covered:

The overall process for painting a control and the code created by the ActiveX Control Wizard to support
painting

How to optimize the painting process

How to paint your control using metafiles

When ActiveX controls are initially displayed or are redrawn, they follow a painting process similar to other
applications developed using MFC, with one important distinction: ActiveX controls can be in an active or an
inactive state.

An active control is represented in an ActiveX control container by a child window. Like other windows, it is
responsible for painting itself when a WM_PAINT message is received. The control's base class, COleControl,
handles this message in its OnPaint function. This default implementation calls the OnDraw function of your
control.

An inactive control is painted differently. When the control is inactive, its window is either invisible or nonexistent,
so it can not receive a paint message. Instead, the control container directly calls the OnDraw function of the
control. This differs from an active control's painting process in that the OnPaint member function is never called.

As discussed in the preceding paragraphs, how an ActiveX control is updated depends on the state of the control.
However, because the framework calls the OnDraw member function in both cases, you add the majority of your
painting code in this member function.

The OnDraw member function handles control painting. When a control is inactive, the control container calls
OnDraw , passing the device context of the control container and the coordinates of the rectangular area occupied

by the control.

The rectangle passed by the framework to the OnDraw member function contains the area occupied by the control.
If the control is active, the upper-left corner is (0, 0) and the device context passed is for the child window that
contains the control. If the control is inactive, the upper-left coordinate is not necessarily (0, 0) and the device

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-painting-an-activex-control.md

NOTENOTE

void CMyAxUICtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& /*rcInvalid*/)
{
 if (!pdc)
 return;

 // TODO: Replace the following code with your own drawing code.
 pdc->FillRect(rcBounds, CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));
 pdc->Ellipse(rcBounds);
}

NOTENOTE

Optimizing Your Paint Code

Painting Your Control Using Metafiles

context passed is for the control container containing the control.

It is important that your modifications to OnDraw do not depend on the rectangle's upper left point being equal to (0, 0)
and that you draw only inside the rectangle passed to OnDraw . Unexpected results can occur if you draw beyond the
rectangle's area.

The default implementation provided by the MFC ActiveX Control Wizard in the control implementation file
(.CPP), shown below, paints the rectangle with a white brush and fills the ellipse with the current background color.

When painting a control, you should not make assumptions about the state of the device context that is passed as the pdc
parameter to the OnDraw function. Occasionally the device context is supplied by the container application and will not
necessarily be initialized to the default state. In particular, explicitly select the pens, brushes, colors, fonts, and other resources
that your drawing code depends upon.

After the control is successfully painting itself, the next step is to optimize the OnDraw function.

The default implementation of ActiveX control painting paints the entire control area. This is sufficient for simple
controls, but in many cases repainting the control would be faster if only the portion that needed updating was
repainted, instead of the entire control.

The OnDraw function provides an easy method of optimization by passing rcInvalid, the rectangular area of the
control that needs redrawing. Use this area, usually smaller than the entire control area, to speed up the painting
process.

In most cases the pdc parameter to the OnDraw function points to a screen device context (DC). However, when
printing images of the control or during a print preview session, the DC received for rendering is a special type
called a "metafile DC". Unlike a screen DC, which immediately handles requests sent to it, a metafile DC stores
requests to be played back at a later time. Some container applications may also choose to render the control
image using a metafile DC when in design mode.

Metafile drawing requests can be made by the container through two interface functions: IViewObject::Draw (this
function can also be called for non-metafile drawing) and IDataObject::GetData . When a metafile DC is passed as
one of the parameters, the MFC framework makes a call to COleControl::OnDrawMetafile. Because this is a virtual
member function, override this function in the control class to do any special processing. The default behavior calls
COleControl::OnDraw .

To make sure the control can be drawn in both screen and metafile device contexts, you must use only member

ARC BIBBLT CHORD

Ellipse Escape ExcludeClipRect

ExtTextOut FloodFill IntersectClipRect

LineTo MoveTo OffsetClipRgn

OffsetViewportOrg OffsetWindowOrg PatBlt

Pie Polygon Polyline

PolyPolygon RealizePalette RestoreDC

RoundRect SaveDC ScaleViewportExt

ScaleWindowExt SelectClipRgn SelectObject

SelectPalette SetBkColor SetBkMode

SetMapMode SetMapperFlags SetPixel

SetPolyFillMode SetROP2 SetStretchBltMode

SetTextColor SetTextJustification SetViewportExt

SetViewportOrg SetWindowExt SetWindowORg

StretchBlt TextOut

functions that are supported in both a screen and a metafile DC. Be aware that the coordinate system may not be
measured in pixels.

Because the default implementation of OnDrawMetafile calls the control's OnDraw function, use only member
functions that are suitable for both a metafile and a screen device context, unless you override OnDrawMetafile . The
following lists the subset of CDC member functions that can be used in both a metafile and a screen device context.
For more information on these functions, see class CDC in the MFC Reference.

In addition to CDC member functions, there are several other functions that are compatible in a metafile DC. These
include CPalette::AnimatePalette, CFont::CreateFontIndirect, and three member functions of CBrush :
CreateBrushIndirect, CreateDIBPatternBrush, and CreatePatternBrush.

Functions that are not recorded in a metafile are: DrawFocusRect, DrawIcon, DrawText, ExcludeUpdateRgn,
FillRect, FrameRect, GrayString, InvertRect, ScrollDC, and TabbedTextOut. Because a metafile DC is not actually
associated with a device, you cannot use SetDIBits, GetDIBits, and CreateDIBitmap with a metafile DC. You can use
SetDIBitsToDevice and StretchDIBits with a metafile DC as the destination. CreateCompatibleDC,
CreateCompatibleBitmap, and CreateDiscardableBitmap are not meaningful with a metafile DC.

Another point to consider when using a metafile DC is that the coordinate system may not be measured in pixels.
For this reason, all your drawing code should be adjusted to fit in the rectangle passed to OnDraw in the rcBounds
parameter. This prevents accidental painting outside the control because rcBounds represents the size of the
control's window.

To test the control's metafile using Test ContainerTo test the control's metafile using Test Container

See also

After you have implemented metafile rendering for the control, use Test Container to test the metafile. See Testing
Properties and Events with Test Container for information on how to access the test container.

1. On the Test Container's Edit menu, click Insert New Control.

2. In the Insert New Control box, select the control and click OK.

The control will appear in Test container.

3. On the Control menu, click Draw Metafile.

A separate window appears in which the metafile is displayed. You can change the size of this window to see
how scaling affects the control's metafile. You can close this window at any time.

MFC ActiveX Controls

MFC ActiveX Controls: Events
3/4/2019 • 2 minutes to read • Edit Online

DECLARE_EVENT_MAP()

BEGIN_EVENT_MAP(CMyAxUICtrl, COleControl)

END_EVENT_MAP()

See also

ActiveX controls use events to notify a container that something has happened to the control. Common examples
of events include clicks on the control, data entered using the keyboard, and changes in the control's state. When
these actions occur, the control fires an event to alert the container.

Events are also called messages.

MFC supports two kinds of events: stock and custom. Stock events are those events that class COleControl
handles automatically. For a complete list of stock events, see the article MFC ActiveX Controls: Adding Stock
Events. Custom events allow a control the ability to notify the container when an action specific to that control
occurs. Some examples would be a change in the internal state of a control or receipt of a certain window
message.

For your control to fire events properly, your control class must map each event of the control to a member
function that should be called when the related event occurs. This mapping mechanism (called an event map)
centralizes information about the event and allows Visual Studio to easily access and manipulate the control's
events. This event map is declared by the following macro, located in the header (.H) file of the control class
declaration:

After the event map has been declared, it must be defined in your control's implementation (.CPP) file. The
following lines of code define the event map, allowing your control to fire specific events:

If you use the MFC ActiveX Control Wizard to create the project, it automatically adds these lines. If you do not
use the MFC ActiveX Control Wizard, you must add these lines manually.

With Class View, you can add stock events supported by class COleControl or custom events that you define. For
each new event, Class View automatically adds the proper entry to the control's event map and the control's .IDL
file.

Two other articles discuss events in detail:

MFC ActiveX Controls: Adding Stock Events

MFC ActiveX Controls: Adding Custom Events

MFC ActiveX Controls
MFC ActiveX Controls: Methods
COleControl Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-events.md

MFC ActiveX Controls: Adding Stock Events to an
ActiveX Control
3/4/2019 • 3 minutes to read • Edit Online

Stock Events Supported by the Add Event Wizard

Stock EventsStock Events

EVENT FIRING FUNCTION COMMENTS

Click void FireClick() Fired when the control captures the
mouse, any BUTTONUP (left, middle,
or right) message is received, and the
button is released over the control. The
stock MouseDown and MouseUp
events occur before this event.

Event map entry:
EVENT_STOCK_CLICK()

DblClick void FireDblClick() Similar to Click but fired when a
BUTTONDBLCLK message is received.

Event map entry:
EVENT_STOCK_DBLCLICK()

Error void FireError(SCODE scode , LPCSTR
lpszDescription , UINT nHelpID =

0)

Fired when an error occurs within your
ActiveX control outside of the scope of
a method call or property access.

Event map entry:
EVENT_STOCK_ERROREVENT()

KeyDown void FireKeyDown(short nChar ,
short nShiftState)

Fired when a WM_SYSKEYDOWN or
WM_KEYDOWN message is received.

Event map entry:
EVENT_STOCK_KEYDOWN()

KeyPress void FireKeyPress(short * pnChar) Fired when a WM_CHAR message is
received.

Event map entry:
EVENT_STOCK_KEYPRESS()

Stock events differ from custom events in that they are automatically fired by class COleControl. COleControl

contains predefined member functions that fire events resulting from common actions. Some common actions
implemented by COleControl include single- and double-clicks on the control, keyboard events, and changes in
the state of the mouse buttons. Event map entries for stock events are always preceded by the EVENT_STOCK
prefix.

The COleControl class provides ten stock events, listed in the following table. You can specify the events you want
in your control using the Add Event Wizard.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-adding-stock-events-to-an-activex-control.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-event-wizard

KeyUp void FireKeyUp(short nChar , short
nShiftState)

Fired when a WM_SYSKEYUP or
WM_KEYUP message is received.

Event map entry:
EVENT_STOCK_KEYUP()

MouseDown void FireMouseDown(short
nButton , short nShiftState , float

x , float y)

Fired if any BUTTONDOWN (left,
middle, or right) is received. The mouse
is captured immediately before this
event is fired.

Event map entry:
EVENT_STOCK_MOUSEDOWN()

MouseMove void FireMouseMove(short
nButton , short nShiftState , float

x , float y)

Fired when a WM_MOUSEMOVE
message is received.

Event map entry:
EVENT_STOCK_MOUSEMOVE()

MouseUp void FireMouseUp(short nButton ,
short nShiftState , float x , float y)

Fired if any BUTTONUP (left, middle, or
right) is received. The mouse capture is
released before this event is fired.

Event map entry:
EVENT_STOCK_MOUSEUP()

ReadyStateChange void FireReadyStateChange() Fired when a control transitions to the
next ready state due to the amount of
data received.

Event map entry:
EVENT_STOCK_READYSTATECHANGE
()

EVENT FIRING FUNCTION COMMENTS

Adding a Stock Event Using the Add Event Wizard

To add the KeyPress stock event using the Add Event WizardTo add the KeyPress stock event using the Add Event Wizard

Add Event Wizard Changes for Stock Events

Adding stock events requires less work than adding custom events because the firing of the actual event is
handled automatically by the base class, COleControl . The following procedure adds a stock event to a control that
was developed using MFC ActiveX Control Wizard. The event, called KeyPress, fires when a key is pressed and the
control is active. This procedure can also be used to add other stock events. Substitute the selected stock event
name for KeyPress.

1. Load your control's project.

2. In Class View, right-click your ActiveX control class to open the shortcut menu.

3. From the shortcut menu, click Add and then click Add Event.

This opens the Add Event Wizard.

4. In the Event Name drop-down list, select KeyPress .

5. Click Finish.

EVENT_STOCK_KEYPRESS()

[id(DISPID_KEYPRESS)] void KeyPress(SHORT* KeyAscii);

See also

Because stock events are handled by the control's base class, the Add Event Wizard does not change your class
declaration in any way. It adds the event to the control's event map and makes an entry in its .IDL file. The
following line is added to the control's event map, located in the control class implementation (.CPP) file:

Adding this code fires a KeyPress event when a WM_CHAR message is received and the control is active. The
KeyPress event can be fired at other times by calling its firing function (for example, FireKeyPress) from within the
control code.

The Add Event Wizard adds the following line of code to the control's .IDL file:

This line associates the KeyPress event with its standard dispatch ID and allows the container to anticipate the
KeyPress event.

MFC ActiveX Controls
MFC ActiveX Controls: Methods
COleControl Class

MFC ActiveX Controls: Adding Custom Events
3/4/2019 • 5 minutes to read • Edit Online

Adding a Custom Event with the Add Event Wizard

To add the ClickIn custom event using the Add Event WizardTo add the ClickIn custom event using the Add Event Wizard

Add Event Wizard Changes for Custom Events

void FireClickIn(OLE_XPOS_PIXELS xCoord, OLE_YPOS_PIXELS yCoord)
{
 FireEvent(eventidClickIn, EVENT_PARAM(VTS_XPOS_PIXELS VTS_YPOS_PIXELS), xCoord, yCoord);
}

Custom events differ from stock events in that they are not automatically fired by class COleControl . A custom
event recognizes a certain action, determined by the control developer, as an event. The event map entries for
custom events are represented by the EVENT_CUSTOM macro. The following section implements a custom event
for an ActiveX control project that was created using the ActiveX Control Wizard.

The following procedure adds a specific custom event, ClickIn. You can use this procedure to add other custom
events. Substitute your custom event name and its parameters for the ClickIn event name and parameters.

1. Load your control's project.

2. In Class View, right-click your ActiveX control class to open the shortcut menu.

3. From the shortcut menu, click Add and then click Add Event.

This opens the Add Event Wizard.

4. In the Event name box, first select any existing event, then click on the Custom radio button, then type
ClickIn.

5. In the Internal name box, type the name of the event's firing function. For this example, use the default
value provided by the Add Event Wizard (FireClickIn).

6. Add a parameter, called xCoord (type OLE_XPOS_PIXELS), using the Parameter Name and Parameter
Type controls.

7. Add a second parameter, called yCoord (type OLE_YPOS_PIXELS).

8. Click Finish to create the event.

When you add a custom event, the Add Event Wizard makes changes to the control class .H, .CPP, and .IDL files.
The following code samples are specific to the ClickIn event.

The following lines are added to the header (.H) file of your control class:

This code declares an inline function called FireClickIn that calls COleControl::FireEvent with the ClickIn event
and parameters you defined using the Add Event Wizard.

In addition, the following line is added to the event map for the control, located in the implementation (.CPP) file of
your control class:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-adding-custom-events.md

EVENT_CUSTOM_ID("ClickIn", eventidClickIn, FireClickIn, VTS_XPOS_PIXELS VTS_YPOS_PIXELS)

[id(1)] void ClickIn(OLE_XPOS_PIXELS xCoord, OLE_YPOS_PIXELS yCoord);

Calling FireClickIn

To add a message handler with the Add Event WizardTo add a message handler with the Add Event Wizard

void CMyAxUICtrl::OnLButtonDown(UINT nFlags, CPoint point)
{
 if (InCircle(point))
 FireClickIn(point.x, point.y);

 COleControl::OnLButtonDown(nFlags, point);
}

This code maps the event ClickIn to the inline function FireClickIn , passing the parameters you defined using the
Add Event Wizard.

Finally, the following line is added to your control's .IDL file:

This line assigns the ClickIn event a specific ID number, taken from the event's position in the Add Event Wizard
event list. The entry in the event list allows a container to anticipate the event. For example, it might provide
handler code to be executed when the event is fired.

Now that you have added the ClickIn custom event using the Add Event Wizard, you must decide when this event
is to be fired. You do this by calling FireClickIn when the appropriate action occurs. For this discussion, the
control uses the InCircle function inside a WM_LBUTTONDOWN message handler to fire the ClickIn event
when a user clicks inside a circular or elliptical region. The following procedure adds the WM_LBUTTONDOWN
handler.

1. Load your control's project.

2. In Class View, select your ActiveX control class.

3. In the Properties window, click the Messages button.

The Properties window displays a list of messages that can be handled by the ActiveX control. Any message
shown in bold already has a handler function assigned to it.

4. From the Properties window, select the message you want to handle. For this example, select
WM_LBUTTONDOWN.

5. From the drop-down list box on the right, select <Add> OnLButtonDown.

6. Double-click the new handler function in Class View to jump to the message handler code in the
implementation (.CPP) file of your ActiveX control.

The following code sample calls the InCircle function every time the left mouse button is clicked within the
control window. This sample can be found in the WM_LBUTTONDOWN handler function, OnLButtonDown , in the
Circ sample abstract.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

NOTENOTE

VARIANT_BOOL CMyAxUICtrl::InCircle(CPoint& point)
{
 CRect rc;
 GetClientRect(rc);
 // Determine radii
 double a = (rc.right - rc.left) / 2;
 double b = (rc.bottom - rc.top) / 2;

 // Determine x, y
 double x = point.x - (rc.left + rc.right) / 2;
 double y = point.y - (rc.top + rc.bottom) / 2;

 // Apply ellipse formula
 return ((x * x) / (a * a) + (y * y) / (b * b) <= 1);
}

VARIANT_BOOL InCircle(CPoint& point);

Custom Events with Stock Names

To add a custom event that uses a stock event nameTo add a custom event that uses a stock event name

See also

When the Add Event Wizard creates message handlers for mouse button actions, a call to the same message handler of the
base class is automatically added. Do not remove this call. If your control uses any of the stock mouse messages, the
message handlers in the base class must be called to ensure that mouse capture is handled properly.

In the following example, the event fires only when the click occurs inside a circular or elliptical region within the
control. To achieve this behavior, you can place the InCircle function in your control's implementation (.CPP) file:

You will also need to add the following declaration of the InCircle function to your control's header (.H) file:

You can create custom events with the same name as stock events, however you can not implement both in the
same control. For example, you might want to create a custom event called Click that does not fire when the stock
event Click would normally fire. You could then fire the Click event at any time by calling its firing function.

The following procedure adds a custom Click event.

1. Load your control's project.

2. In Class View, right-click your ActiveX control class to open the shortcut menu.

3. From the shortcut menu, click Add and then click Add Event.

This opens the Add Event Wizard.

4. In the Event Name drop-down list, select a stock event name. For this example, select Click.

5. For Event Type, select Custom.

6. Click Finish to create the event.

7. Call FireClick at appropriate places in your code.

MFC ActiveX Controls
MFC ActiveX Controls: Methods

COleControl Class

MFC ActiveX Controls: Methods
3/4/2019 • 2 minutes to read • Edit Online

DECLARE_DISPATCH_MAP()

BEGIN_DISPATCH_MAP(CMyAxUICtrl, COleControl)

END_DISPATCH_MAP()

See also

An ActiveX control fires events to communicate between itself and its control container. A container can also
communicate with a control by means of methods and properties. Methods are also called functions.

Methods and properties provide an exported interface for use by other applications, such as Automation clients
and ActiveX control containers. For more information on ActiveX control properties, see the article MFC ActiveX
Controls: Properties.

Methods are similar in use and purpose to the member functions of a C++ class. There are two types of methods
your control can implement: stock and custom. Similar to stock events, stock methods are those methods for
which COleControl provides an implementation. For more information on stock methods, see the article MFC
ActiveX Controls: Adding Stock Methods. Custom methods, defined by the developer, allow additional
customization of the control. For more information, see the article MFC ActiveX Controls: Adding Custom
Methods.

The Microsoft Foundation Class Library (MFC) implements a mechanism that allows your control to support
stock and custom methods. The first part is class COleControl . Derived from CWnd , COleControl member
functions support stock methods that are common to all ActiveX controls. The second part of this mechanism is
the dispatch map. A dispatch map is similar to a message map; however, instead of mapping a function to a
Windows message ID, a dispatch map maps virtual member functions to IDispatch IDS.

For a control to support various methods properly, its class must declare a dispatch map. This is accomplished by
the following line of code located in control class header (.H) file:

The main purpose of the dispatch map is to establish the relationship between the method names used by an
external caller (such as the container) and the member functions of the control's class that implement the
methods. After the dispatch map has been declared, it needs to be defined in the control's implementation (.CPP)
file. The following lines of code define the dispatch map:

If you used the MFC ActiveX Control Wizard to create the project, these lines were added automatically. If the
MFC ActiveX Control Wizard was not used, you must add these lines manually.

The following articles discuss methods in detail:

MFC ActiveX Controls: Adding Stock Methods

MFC ActiveX Controls: Adding Custom Methods

MFC ActiveX Controls: Returning Error Codes From a Method

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-methods.md

MFC ActiveX Controls

MFC ActiveX Controls: Adding Stock Methods
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

METHOD DISPATCH MAP ENTRY COMMENT

DoClick DISP_STOCKPROP_DOCLICK() Fires a Click event.

Refresh DISP_STOCKPROP_REFRESH() Immediately updates the control's
appearance.

Adding a Stock Method Using the Add Method Wizard

To add the stock Refresh method using the Add Method WizardTo add the stock Refresh method using the Add Method Wizard

Add Method Wizard Changes for Stock Methods

DISP_STOCKFUNC_REFRESH()

A stock method differs from a custom method in that it is already implemented by class COleControl. For
example, COleControl contains a predefined member function that supports the Refresh method for your control.
The dispatch map entry for this stock method is DISP_STOCKFUNC_REFRESH.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

COleControl supports two stock methods: DoClick and Refresh. Refresh is invoked by the control's user to
immediately update the control's appearance; DoClick is invoked to fire the control's Click event.

Adding a stock method is simple using the Add Method Wizard. The following procedure demonstrates adding
the Refresh method to a control created using the MFC ActiveX Control Wizard.

1. Load your control's project.

2. In Class View, expand the library node of your control.

3. Right-click the interface node for your control (the second node of the library node) to open the shortcut
menu.

4. From the shortcut menu, click Add and then click Add Method.

This opens the Add Method Wizard.

5. In the Method Name box, click Refresh.

6. Click Finish.

Because the stock Refresh method is supported by the control's base class, the Add Method Wizard does not
change the control's class declaration in any way. It adds an entry for the method to the control's dispatch map and
to its .IDL file. The following line is added to the control's dispatch map, located in its implementation (.CPP) file:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-adding-stock-methods.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-method-wizard

[id(DISPID_REFRESH), helpstring("method Refresh")] void Refresh(void);

See also

This makes the Refresh method available to the control's users.

The following line is added to the control's .IDL file:

This line assigns the Refresh method a specific ID number.

MFC ActiveX Controls

MFC ActiveX Controls: Adding Custom Methods
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Adding a Custom Method With the Add Method Wizard

NOTENOTE

To add the PtInCircle custom method using the Add Method WizardTo add the PtInCircle custom method using the Add Method Wizard

Custom methods differ from stock methods in that they are not already implemented by COleControl . You must
supply the implementation for each custom method you add to your control.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

An ActiveX control user can call a custom method at any time to perform control-specific actions. The dispatch
map entry for custom methods is of the form DISP_FUNCTION.

The following procedure demonstrates adding the custom method PtInCircle to an ActiveX control's skeleton
code. PtInCircle determines whether the coordinates passed to the control are inside or outside the circle. This
same procedure can also be used to add other custom methods. Substitute your custom method name and its
parameters for the PtInCircle method name and parameters.

This example uses the InCircle function from the article Events. For more information on this function, see the article
MFC ActiveX Controls: Adding Custom Events to an ActiveX Control.

1. Load the control's project.

2. In Class View, expand the library node of your control.

3. Right-click the interface node for your control (the second node of the library node) to open the shortcut
menu.

4. From the shortcut menu, click Add and then click Add Method.

This opens the Add Method Wizard.

5. In the Method Name box, type PtInCircle.

6. In the Internal Name box, type the name of the method's internal function or use the default value (in this
case, PtInCircle).

7. In the Return Type box, click VARIANT_BOOL for the method's return type.

8. Using the Parameter Type and Parameter Name controls, add a parameter called xCoord (type
OLE_XPOS_PIXELS).

9. Using the Parameter Type and Parameter Name controls, add a parameter called yCoord (type
OLE_YPOS_PIXELS).

10. Click Finish.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-adding-custom-methods.md

Add Method Wizard Changes for Custom Methods

VARIANT_BOOL PtInCircle(OLE_XPOS_PIXELS xCoord, OLE_YPOS_PIXELS yCoord);

[id(1), helpstring("method PtInCircle")] VARIANT_BOOL PtInCircle(OLE_XPOS_PIXELS xCoord, OLE_YPOS_PIXELS
yCoord);

DISP_FUNCTION_ID(CMyAxUICtrl, "PtInCircle", dispidPtInCircle, PtInCircle, VT_BOOL, VTS_XPOS_PIXELS
VTS_YPOS_PIXELS)

VARIANT_BOOL CMyAxUICtrl::PtInCircle(OLE_XPOS_PIXELS xCoord, OLE_YPOS_PIXELS yCoord)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 CPoint point(xCoord, yCoord);
 return InCircle(point);
}

See also

When you add a custom method, the Add Method Wizard makes some changes to the control class header (.H)
and implementation (.CPP) files. The following line is added to the dispatch map declaration in the control class
header (.H) file:

This code declares a dispatch method handler called PtInCircle . This function can be called by the control user
using the external name PtInCircle .

The following line is added to the control's .IDL file:

This line assigns the PtInCircle method a specific ID number, the method's position in the Add Method Wizard
methods and properties list. Because the Add Method Wizard was used to add the custom method, the entry for it
was added automatically to the project's .IDL file.

In addition, the following line, located in the implementation (.CPP) file of the control class, is added to the
control's dispatch map:

The DISP_FUNCTION macro maps the method PtInCircle to the control's handler function, PtInCircle ,
declares the return type to be VARIANT_BOOL, and declares two parameters of type VTS_XPOS_PIXELS and
VTS_YPOSPIXELS to be passed to PtInCircle .

Finally, the Add Method Wizard adds the stub function CSampleCtrl::PtInCircle to the bottom of the control's
implementation (.CPP) file. For PtInCircle to function as stated previously, it must be modified as follows:

MFC ActiveX Controls
Class View and Object Browser Icons

https://docs.microsoft.com/visualstudio/ide/class-view-and-object-browser-icons

MFC ActiveX Controls: Returning Error Codes From a
Method
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

This article describes how to return error codes from an ActiveX control method.

To indicate that an error has occurred within a method, you should use the COleControl::ThrowError member
function, which takes an SCODE (status code) as a parameter. You can use a predefined SCODE or define one of
your own.

ThrowError is meant to be used only as a means of returning an error from within a property's Get or Set function or an
automation Method. These are the only times that the appropriate exception handler will be present on the stack.

Helper functions exist for the most common predefined SCODEs, such as COleControl::SetNotSupported,
COleControl::GetNotSupported, and COleControl::SetNotPermitted.

For a list of predefined SCODEs and instructions on defining custom SCODEs, see the section Handling Errors in
Your ActiveX Control in ActiveX Controls: Advanced Topics.

For more information on reporting exceptions in other areas of your code, see COleControl::FireError and the
section Handling Errors in Your ActiveX Control in ActiveX Controls: Advanced Topics.

MFC ActiveX Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-returning-error-codes-from-a-method.md

MFC ActiveX Controls: Properties
3/4/2019 • 2 minutes to read • Edit Online

See also

An ActiveX control fires events to communicate with its control container. The container, in return, uses methods
and properties to communicate with the control. Methods and properties are similar in use and purpose,
respectively, to member functions and member variables of a C++ class. Properties are data members of the
ActiveX control that are exposed to any container. Properties provide an interface for applications that contain
ActiveX controls, such as Automation clients and ActiveX control containers.

Properties are also called attributes.

For more information on ActiveX control methods, see the article MFC ActiveX Controls: Methods.

ActiveX controls can implement both stock and custom methods and properties. Class COleControl provides an
implementation for stock properties. (For a complete list of stock properties, see the article MFC ActiveX
Controls: Adding Stock Properties.) Custom properties, defined by the developer, add specialized capabilities to
an ActiveX control. For more information, see MFC ActiveX Controls: Adding Custom Properties.

Both custom and stock properties, like methods, are supported by a mechanism that consists of a dispatch map
that handles properties and methods and existing member functions of the COleControl class. In addition, these
properties can have parameters that the developer uses to pass extra information to the control.

The following articles discuss ActiveX control properties in more detail:

MFC ActiveX Controls: Adding Stock Properties

MFC ActiveX Controls: Adding Custom Properties

MFC ActiveX Controls: Advanced Property Implementation

MFC ActiveX Controls: Accessing Ambient Properties

MFC ActiveX Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-properties.md

MFC ActiveX Controls: Adding Stock Properties
3/4/2019 • 4 minutes to read • Edit Online

Using the Add Property Wizard to Add a Stock Property

To add the stock Caption property using the Add Property WizardTo add the stock Caption property using the Add Property Wizard

Add Property Wizard Changes for Stock Properties

Stock properties differ from custom properties in that they are already implemented by the class COleControl .
COleControl contains predefined member functions that support common properties for the control. Some

common properties include the control's caption and the foreground and background colors. For information on
other stock properties, see Stock Properties Supported by the Add Property Wizard later in this article. The
dispatch map entries for stock properties are always prefixed by DISP_STOCKPROP.

This article describes how to add a stock property (in this case, Caption) to an ActiveX control using the Add
Property Wizard and explains the resulting code modifications. Topics include:

NOTENOTE

Using the Add Property Wizard to add a stock property

Add Property Wizard changes for stock properties

Stock properties supported by the Add Property Wizard

Stock properties and notification

Color properties

Visual Basic custom controls typically have properties such as Top, Left, Width, Height, Align, Tag, Name, TabIndex,
TabStop, and Parent. ActiveX control containers, however, are responsible for implementing these control properties
and therefore ActiveX controls should not support these properties.

Adding stock properties requires less code than adding custom properties because support for the property is
handled automatically by COleControl . The following procedure demonstrates adding the stock Caption property
to an ActiveX control framework and can also be used to add other stock properties. Substitute the selected stock
property name for Caption.

1. Load your control's project.

2. In Class View, expand the library node of your control.

3. Right-click the interface node for your control (the second node of the library node) to open the shortcut
menu.

4. From the shortcut menu, click Add and then click Add Property.

This opens the Add Property Wizard.

5. In the Property Name box, click Caption.

6. Click Finish.

Because COleControl supports stock properties, the Add Property Wizard does not change the class declaration

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-adding-stock-properties.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/names-add-property-wizard

DISP_STOCKPROP_CAPTION()

[id(DISPID_CAPTION), helpstring("property Caption")] BSTR Caption;

Stock Properties Supported by the Add Property Wizard

PROPERTY DISPATCH MAP ENTRY HOW TO ACCESS VALUE

Appearance DISP_STOCKPROP_APPEARANCE() Value accessible as m_sAppearance .

BackColor DISP_STOCKPROP_BACKCOLOR() Value accessible by calling
GetBackColor .

BorderStyle DISP_STOCKPROP_BORDERSTYLE() Value accessible as m_sBorderStyle .

Caption DISP_STOCKPROP_CAPTION() Value accessible by calling
InternalGetText .

Enabled DISP_STOCKPROP_ENABLED() Value accessible as m_bEnabled .

Font DISP_STOCKPROP_FONT() See the article MFC ActiveX Controls:
Using Fonts for usage.

ForeColor DISP_STOCKPROP_FORECOLOR() Value accessible by calling
GetForeColor .

hWnd DISP_STOCKPROP_HWND() Value accessible as m_hWnd .

Text DISP_STOCKPROP_TEXT() Value accessible by calling
InternalGetText . This property is the

same as Caption , except for the
property name.

ReadyState DISP_STOCKPROP_READYSTATE() Value accessible as m_lReadyState or
GetReadyState

Stock Properties and Notification

in any way; it adds the property to the dispatch map. The Add Property Wizard adds the following line to the
dispatch map of the control, which is located in the implementation (.CPP) file:

The following line is added to your control's interface description (.IDL) file:

This line assigns the Caption property a specific ID. Notice that the property is bindable and will request
permission from the database before modifying the value.

This makes the Caption property available to users of your control. To use the value of a stock property, access a
member variable or member function of the COleControl base class. For more information on these member
variables and member functions, see the next section, Stock Properties Supported by the Add Property Wizard.

The COleControl class provides nine stock properties. You can add the properties you want by using the Add
Property Wizard.

 Color Properties

CBrush bkBrush(TranslateColor(GetBackColor()));
COLORREF clrFore = TranslateColor(GetForeColor());
pdc->FillRect(rcBounds, &bkBrush);
pdc->SetTextColor(clrFore);
pdc->DrawText(InternalGetText(), -1, rcBounds, DT_SINGLELINE | DT_CENTER | DT_VCENTER);

See also

Most stock properties have notification functions that can be overridden. For example, whenever the BackColor

property is changed, the OnBackColorChanged function (a member function of the control class) is called. The
default implementation (in COleControl) calls InvalidateControl . Override this function if you want to take
additional actions in response to this situation.

You can use the stock ForeColor and BackColor properties, or your own custom color properties, when painting
the control. To use a color property, call the COleControl::TranslateColor member function. The parameters of this
function are the value of the color property and an optional palette handle. The return value is a COLORREF value
that can be passed to GDI functions, such as SetTextColor and CreateSolidBrush .

The color values for the stock ForeColor and BackColor properties are accessed by calling either the
GetForeColor or the GetBackColor function, respectively.

The following example demonstrates using these two color properties when painting a control. It initializes a
temporary COLORREF variable and a CBrush object with calls to TranslateColor : one using the ForeColor

property and the other using the BackColor property. A temporary CBrush object is then used to paint the
control's rectangle, and the text color is set using the ForeColor property.

MFC ActiveX Controls
MFC ActiveX Controls: Properties
MFC ActiveX Controls: Methods
COleControl Class

MFC ActiveX Controls: Adding Custom Properties
3/4/2019 • 4 minutes to read • Edit Online

Using the Add Property Wizard to Add a Custom Property

Custom properties differ from stock properties in that custom properties are not already implemented by the
COleControl class. A custom property is used to expose a certain state or appearance of an ActiveX control to a

programmer using the control.

This article describes how to add a custom property to the ActiveX control using the Add Property Wizard and
explains the resulting code modifications. Topics include:

Using the Add Property Wizard to add a custom property

Add Property Wizard changes for custom properties

Custom properties come in four varieties of implementation: Member Variable, Member Variable with
Notification, Get/Set Methods, and Parameterized.

Member Variable Implementation

This implementation represents the property's state as a member variable in the control class. Use the
Member Variable implementation when it is not important to know when the property value changes. Of
the three types, this implementation creates the least amount of support code for the property. The dispatch
map entry macro for member variable implementation is DISP_PROPERTY.

Member Variable with Notification Implementation

This implementation consists of a member variable and a notification function created by the Add Property
Wizard. The notification function is automatically called by the framework after the property value changes.
Use the Member Variable with Notification implementation when you need to be notified after a property
value has changed. This implementation requires more time because it requires a function call. The dispatch
map entry macro for this implementation is DISP_PROPERTY_NOTIFY.

Get/Set Methods Implementation

This implementation consists of a pair of member functions in the control class. The Get/Set Methods
implementation automatically calls the Get member function when the control's user requests the current
value of the property and the Set member function when the control's user requests that the property be
changed. Use this implementation when you need to compute the value of a property during run time,
validate a value passed by the control's user before changing the actual property, or implement a read- or
write-only property type. The dispatch map entry macro for this implementation is DISP_PROPERTY_EX.
The following section, Using the Add Property Wizard to Add a Custom Property, uses the CircleOffset
custom property to demonstrate this implementation.

Parameterized Implementation

Parameterized implementation is supported by the Add Property Wizard. A parameterized property
(sometimes called a property array) can be used to access a set of values through a single property of your
control. The dispatch map entry macro for this implementation is DISP_PROPERTY_PARAM. For more
information on implementing this type, see Implementing a Parameterized Property in the article ActiveX
Controls: Advanced Topics.

The following procedure demonstrates adding a custom property, CircleOffset, which uses the Get/Set Methods

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-adding-custom-properties.md

To add the CircleOffset custom property using the Add Property WizardTo add the CircleOffset custom property using the Add Property Wizard

Add Property Wizard Changes for Custom Properties

SHORT GetCircleOffset(void);
void SetCircleOffset(SHORT newVal);

[id(2), helpstring("property CircleOffset")] SHORT CircleOffset;
[id(3), helpstring("property MyProperty")] SHORT MyProperty;

DISP_PROPERTY_EX_ID(CMyAxUICtrl, "CircleOffset", dispidCircleOffset, GetCircleOffset, SetCircleOffset, VT_I2)

implementation. The CircleOffset custom property allows the control's user to offset the circle from the center of
the control's bounding rectangle. The procedure for adding custom properties with an implementation other than
Get/Set Methods is very similar.

This same procedure can also be used to add other custom properties you want. Substitute your custom property
name for the CircleOffset property name and parameters.

1. Load your control's project.

2. In Class View, expand the library node of your control.

3. Right-click the interface node for your control (the second node of the library node) to open the shortcut
menu.

4. From the shortcut menu, click Add and then click Add Property.

This opens the Add Property Wizard.

5. In the Property Name box, type CircleOffset.

6. For Implementation Type, click Get/Set Methods.

7. In the Property Type box, select short.

8. Type unique names for your Get and Set Functions, or accept the default names.

9. Click Finish.

When you add the CircleOffset custom property, the Add Property Wizard makes changes to the header (.H) and
the implementation (.CPP) files of the control class.

The following lines are added to the .H file to declare two functions called GetCircleOffset and SetCircleOffset :

The following line is added to your control's .IDL file:

This line assigns the CircleOffset property a specific ID number, taken from the method's position in the methods
and properties list of the Add Property Wizard.

In addition, the following line is added to the dispatch map (in the .CPP file of the control class) to map the
CircleOffset property to the control's two handler functions:

Finally, the implementations of the GetCircleOffset and SetCircleOffset functions are added to the end of the
control's .CPP file. In most cases, you will modify the Get function to return the value of the property. The Set
function will usually contain code that should be executed either before or after the property changes.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/names-add-property-wizard

void CMyAxUICtrl::SetCircleOffset(SHORT /*newVal*/)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 // TODO: Add your property handler code here

 SetModifiedFlag();
}

See also

Note that the Add Property Wizard automatically adds a call, to SetModifiedFlag, to the body of the Set function.
Calling this function marks the control as modified. If a control has been modified, its new state will be saved when
the container is saved. This function should be called whenever a property, saved as part of the control's persistent
state, changes value.

MFC ActiveX Controls
MFC ActiveX Controls: Properties
MFC ActiveX Controls: Methods
COleControl Class

MFC ActiveX Controls: Advanced Property
Implementation
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Read-Only and Write-Only Properties

To implement a read-only or write-only propertyTo implement a read-only or write-only property

This article describes topics related to implementing advanced properties in an ActiveX control.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

Read-only and write-only properties

Returning error codes from a property

The Add Property Wizard provides a quick and easy method to implement read-only or write-only properties for
the control.

1. Load your control's project.

2. In Class View, expand the library node of your control.

3. Right-click the interface node for your control (the second node of the library node) to open the shortcut
menu.

4. From the shortcut menu, click Add and then click Add Property.

This opens the Add Property Wizard.

5. In the Property Name box, type the name of your property.

6. For Implementation Type, click Get/Set Methods.

7. In the Property Type box, select the proper type for the property.

8. If you want a read-only property, clear the Set function name. If you want a write-only property, clear the
Get function name.

9. Click Finish.

When you do this, the Add Property Wizard inserts the function SetNotSupported or GetNotSupported in the
dispatch map entry in place of a normal Set or Get function.

If you want to change an existing property to be read-only or write-only, you can edit the dispatch map manually
and remove the unnecessary Set or Get function from the control class.

If you want a property to be conditionally read-only or write-only (for example, only when your control is
operating in a particular mode), you can provide the Set or Get function, as normal, and call the SetNotSupported

or GetNotSupported function where appropriate. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-advanced-property-implementation.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/names-add-property-wizard

void CMyAxUICtrl::SetMyProperty(SHORT newVal)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 if (m_bReadOnlyMode) // some control-specific state
 {
 SetNotSupported();
 }
 else
 {
 m_iPropVal = newVal; // set property as normal
 SetModifiedFlag();
 }
}

Returning Error Codes From a Property

NOTENOTE

See also

This code sample calls SetNotSupported if the m_bReadOnlyMode data member is TRUE . If FALSE , then the property
is set to the new value.

To indicate that an error has occurred while attempting to get or set a property, use the COleControl::ThrowError

function, which takes an SCODE (status code) as a parameter. You can use a predefined SCODE or define one of
your own. For a list of predefined SCODEs and instructions for defining custom SCODEs, see Handling Errors in
Your ActiveX Control in the article ActiveX controls: Advanced Topics.

Helper functions exist for the most common predefined SCODEs, such as COleControl::SetNotSupported,
COleControl::GetNotSupported, and COleControl::SetNotPermitted.

ThrowError is meant to be used only as a means of returning an error from within a property's Get or Set function or an
automation method. These are the only times that the appropriate exception handler will be present on the stack.

For more information on reporting exceptions in other areas of the code, see COleControl::FireError and the
section Handling Errors in Your ActiveX Control in the article ActiveX Controls: Advanced Topics.

MFC ActiveX Controls
MFC ActiveX Controls: Properties
MFC ActiveX Controls: Methods
COleControl Class

MFC ActiveX Controls: Accessing Ambient Properties
3/4/2019 • 2 minutes to read • Edit Online

BOOL bUserMode;
if(!GetAmbientProperty(DISPID_AMBIENT_USERMODE, VT_BOOL, &bUserMode))
 bUserMode = TRUE;

This article discusses how an ActiveX control can access the ambient properties of its control container.

A control can obtain information about its container by accessing the container's ambient properties. These
properties expose visual characteristics, such as the container's background color, the current font used by the
container, and operational characteristics, such as whether the container is currently in user mode or designer
mode. A control can use ambient properties to tailor its appearance and behavior to the particular container in
which it is embedded. However, a control should never assume that its container will support any particular
ambient property. In fact, some containers may not support any ambient properties at all. In the absence of an
ambient property, a control should assume a reasonable default value.

To access an ambient property, make a call to COleControl::GetAmbientProperty. This function expects the
dispatch ID for the ambient property as the first parameter (the file OLECTL.H defines dispatch IDs for the
standard set of ambient properties).

The parameters of the GetAmbientProperty function are the dispatch ID, a variant tag indicating the expected
property type, and a pointer to memory where the value should be returned. The type of data to which this pointer
refers will vary depending on the variant tag. The function returns TRUE if the container supports the property,
otherwise it returns FALSE .

The following code example obtains the value of the ambient property called "UserMode." If the property is not
supported by the container, a default value of TRUE is assumed:

For your convenience, COleControl supplies helper functions that access many of the commonly used ambient
properties and return appropriate defaults when the properties are not available. These helper functions are as
follows:

NOTENOTE

COleControl::AmbientBackColor

AmbientDisplayName

AmbientFont

Caller must call Release() on the returned font.

AmbientForeColor

AmbientLocaleID

AmbientScaleUnits

AmbientTextAlign

AmbientUserMode

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-accessing-ambient-properties.md

See also

AmbientUIDead

AmbientShowHatching

AmbientShowGrabHandles

If the value of an ambient property changes (through some action of the container), the OnAmbientPropertyChanged

member function of the control is called. Override this member function to handle such a notification. The
parameter for OnAmbientPropertyChanged is the dispatch ID of the affected ambient property. The value of this
dispatch ID may be DISPID_UNKNOWN, which indicates that one or more ambient properties has changed, but
information about which properties were affected is unavailable.

MFC ActiveX Controls

MFC ActiveX Controls: Property Pages
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Property pages allow an ActiveX control user to view and change ActiveX control properties. These properties are
accessed by invoking a control properties dialog box, which contains one or more property pages that provide a
customized, graphical interface for viewing and editing the control properties.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

ActiveX control property pages are displayed in two ways:

When the control's Properties verb (OLEIVERB_PROPERTIES) is invoked, the control opens a modal
property dialog box that contains the control's property pages.

The container can display its own modeless dialog box that shows the property pages of the selected
control.

The properties dialog box (illustrated in the following figure) consists of an area for displaying the current
property page, tabs for switching between property pages, and a collection of buttons that perform common tasks
such as closing the property page dialog, canceling any changes made, or immediately applying any changes to
the ActiveX control.

Properties Dialog Box

This article covers topics related to using property pages in an ActiveX control. These include:

Implementing the default property page for an ActiveX control

Adding controls to a property page

Customizing the DoDataExchange function

For more information on using property pages in an ActiveX control, see the following articles:

MFC ActiveX Controls: Adding Another Custom Property Page

MFC ActiveX Controls: Using Stock Property Pages

For information on using property sheets in an MFC application other than an ActiveX control, see Property

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-property-pages.md

Implementing the Default Property Page

To implement a property pageTo implement a property page

Adding Controls to a Property Page
To add controls to a property pageTo add controls to a property page

Customizing the DoDataExchange Function

Sheets.

If you use the ActiveX Control Wizard to create your control project, the ActiveX Control Wizard provides a
default property page class for the control derived from COlePropertyPage Class. Initially, this property page is
blank, but you can add any dialog box control or set of controls to it. Because the ActiveX Control Wizard creates
only one property page class by default, additional property page classes (also derived from COlePropertyPage)
must be created using Class View. For more information on this procedure, see MFC ActiveX Controls: Adding
Another Custom Property Page.

Implementing a property page (in this case, the default) is a three-step process:

1. Add a COlePropertyPage -derived class to the control project. If the project was created using the ActiveX
Control Wizard (as in this case), the default property page class already exists.

2. Use the dialog editor to add any controls to the property page template.

3. Customize the DoDataExchange function of the COlePropertyPage -derived class to exchange values between
the property page control and the ActiveX control.

For example purposes, the following procedures use a simple control (named "Sample"). Sample was created
using the ActiveX Control Wizard and contains only the stock Caption property.

1. With your control project open, open Resource View.

2. Double-click the Dialog directory icon.

3. Open the IDD_PROPPAGE_SAMPLE dialog box.

The ActiveX Control Wizard appends the name of the project to the end of the dialog ID, in this case,
Sample.

4. Drag and drop the selected control from the Toolbox onto the dialog box area.

5. For this example, a text label control "Caption :" and an edit box control with an IDC_CAPTION identifier
are sufficient.

6. Click Save on the Toolbar to save your changes.

Now that the user interface has been modified, you need to link the edit box with the Caption property. This is
done in the following section by editing the CSamplePropPage::DoDataExchange function.

Your property page CWnd::DoDataExchange function allows you to link property page values with the actual
values of properties in the control. To establish links, you must map the appropriate property page fields to their
respective control properties.

These mappings are implemented using the property page DDP_ functions. The DDP_ functions work like the
DDX_ functions used in standard MFC dialogs, with one exception. In addition to the reference to a member
variable, DDP_ functions take the name of the control property. The following is a typical entry in the
DoDataExchange function for a property page.

DDP_Text(pDX, IDC_CAPTION, m_caption, _T("Caption"));

Property Page FunctionsProperty Page Functions

FUNCTION NAME USE THIS FUNCTION TO LINK

DDP_CBIndex The selected string's index in a combo box with a control
property.

DDP_CBString The selected string in a combo box with a control property.
The selected string can begin with the same letters as the
property's value but need not match it fully.

DDP_CBStringExact The selected string in a combo box with a control property.
The selected string and the property's string value must
match exactly.

DDP_Check A check box with a control property.

DDP_LBIndex The selected string's index in a list box with a control property.

DDP_LBString The selected string in a list box with a control property. The
selected string can begin with the same letters as the
property's value but need not match it fully.

DDP_LBStringExact The selected string in a list box with a control property. The
selected string and the property's string value must match
exactly.

DDP_Radio A radio button with a control property.

DDP_Text Text with a control property.

See also

This function associates the property page's m_caption member variable with the Caption, using the DDP_TEXT

function.

After you have the property page control inserted, you need to establish a link between the property page control,
IDC_CAPTION, and the actual control property, Caption, using the DDP_Text function as described above.

Property Pages are available for other dialog control types, such as check boxes, radio buttons, and list boxes. The
table below lists the entire set of property page DDP_ functions and their purposes:

MFC ActiveX Controls
COlePropertyPage Class

MFC ActiveX Controls: Adding Another Custom
Property Page
3/4/2019 • 3 minutes to read • Edit Online

To insert a new property page template into your projectTo insert a new property page template into your project

To associate the new template with a classTo associate the new template with a class

Occasionally, an ActiveX control will have more properties than can reasonably fit on one property page. In this
case, you can add property pages to the ActiveX control to display these properties.

This article discusses adding new property pages to an ActiveX control that already has at least one property page.
For more information on adding stock property pages (font, picture, or color), see the article MFC ActiveX
Controls: Using Stock Property Pages.

The following procedures use a sample ActiveX control framework created by the ActiveX Control Wizard.
Therefore, the class names and identifiers are unique to this example.

For more information on using property pages in an ActiveX control, see the following articles:

NOTENOTE

MFC ActiveX Controls: Property Pages

MFC ActiveX Controls: Using Stock Property Pages

It is strongly recommended that new property pages adhere to the size standard for ActiveX control property pages.
The stock picture and color property pages measure 250x62 dialog units (DLU). The standard font property page is
250x110 DLUs. The default property page created by the ActiveX Control Wizard uses the 250x62 DLU standard.

1. With your control project open, open Resource View in the project workspace.

2. Right-click in Resource View to open the shortcut menu and click Add Resource.

3. Expand the Dialog node, and select IDD_OLE_PROPPAGE_SMALL.

4. Click New to add the resource to your project.

5. Select the new property page template to refresh the Properties window.

6. Enter a new value for the ID property. This example uses IDD_PROPPAGE_NEWPAGE .

7. Click Save on the toolbar.

1. Open Class View.

2. Right-click in Class View to open the shortcut menu.

3. From the shortcut menu, click Add and then click Add Class.

This opens the Add Class dialog box.

4. Double-click the MFC Class template.

5. In the Class Name box in the MFC Class Wizard, type a name for the new dialog class. (In this example,
CAddtlPropPage .)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-adding-another-custom-property-page.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box

BEGIN_PROPPAGEIDS(CMyAxUICtrl, 2)
 PROPPAGEID(CMyAxUIPropPage::guid)
 PROPPAGEID(CAddtlPropPage::guid)
END_PROPPAGEIDS(CMyAxUICtrl)

To add new string resources to a property pageTo add new string resources to a property page

6. If you want to change file names, click Change. Type in the names for your implementation and header
files, or accept the default names.

7. In the Base Class box, select COlePropertyPage .

8. In the Dialog ID box, select IDD_PROPPAGE_NEWPAGE .

9. Click Finish to create the class.

To allow the control's users access to this new property page, make the following changes to the control's property
page IDs macro section (located in the control implementation file):

Note that you must increase the second parameter of the BEGIN_PROPPAGEIDS macro (the property page
count) from 1 to 2.

You must also modify the control implementation file (.CPP) file to include the header (.H) file of the new property
page class.

The next step involves creating two new string resources that will provide a type name and a caption for the new
property page.

BOOL CAddtlPropPage::CAddtlPropPageFactory::UpdateRegistry(BOOL bRegister)
{
 if (bRegister)
 return AfxOleRegisterPropertyPageClass(AfxGetInstanceHandle(),
 m_clsid, IDS_SAMPLE_ADDPAGE);
 else
 return AfxOleUnregisterClass(m_clsid, NULL);
}

1. With your control project open, open Resource View.

2. Double-click the String Table folder and then double-click the existing string table resource to which you
want to add a string.

This opens the string table in a window.

3. Select the blank line at the end of the string table and type the text, or caption, of the string: for example,
"Additional Property Page."

This opens a String Properties page showing Caption and ID boxes. The Caption box contains the string
you typed.

4. In the ID box, select or type an ID for the string. Press Enter when you finish.

This example uses IDS_SAMPLE_ADDPAGE for the type name of the new property page.

5. Repeat steps 3 and 4 using IDS_SAMPLE_ADDPPG_CAPTION for the ID and "Additional Property
Page" for the caption.

6. In the .CPP file of your new property page class (in this example, CAddtlPropPage) modify the
CAddtlPropPage::CAddtlPropPageFactory::UpdateRegistry so that IDS_SAMPLE_ADDPAGE is passed by

AfxOleRegisterPropertyPageClass, as in the following example:

See also

CAddtlPropPage::CAddtlPropPage() :
 COlePropertyPage(IDD, IDS_SAMPLE_ADDPPG_CAPTION)
{

}

7. Modify the constructor of CAddtlPropPage so that IDS_SAMPLE_ADDPPG_CAPTION is passed to the
COlePropertyPage constructor, as follows:

After you have made the necessary modifications rebuild your project and use Test Container to test the new
property page. See Testing Properties and Events with Test Container for information on how to access the test
container.

MFC ActiveX Controls

MFC ActiveX Controls: Using Stock Property Pages
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

BEGIN_PROPPAGEIDS(CMyAxOptCtrl, 4)
 PROPPAGEID(CMyAxOptPropPage::guid)
 PROPPAGEID(CLSID_CFontPropPage)
 PROPPAGEID(CLSID_CColorPropPage)
 PROPPAGEID(CLSID_CPicturePropPage)
END_PROPPAGEIDS(CMyAxOptCtrl)

NOTENOTE

TIPTIP

See also

This article discusses the stock property pages available for ActiveX controls and how to use them.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

For more information on using property pages in an ActiveX control, see the following articles:

MFC ActiveX Controls: Property Pages

MFC ActiveX Controls: Adding Another Custom Property Page

MFC provides three stock property pages for use with ActiveX controls: CLSID_CColorPropPage ,
CLSID_CFontPropPage , and CLSID_CPicturePropPage . These pages display a user interface for stock color, font, and

picture properties, respectively.

To incorporate these property pages into a control, add their IDs to the code that initializes the control's array of
property page IDs. In the following example, this code, located in the control implementation file (.CPP), initializes
the array to contain all three stock property pages and the default property page (named CMyPropPage in this
example):

Note that the count of property pages, in the BEGIN_PROPPAGEIDS macro, is 4. This represents the number of
property pages supported by the ActiveX control.

After these modifications have been made, rebuild your project. Your control now has property pages for the font,
picture, and color properties.

If the control stock property pages cannot be accessed, it may be because the MFC DLL (MFCxx.DLL) has not been properly
registered with the current operating system. This usually results from installing Visual C++ under an operating system
different from the one currently running.

If your stock property pages are not visible (see previous Note), register the DLL by running RegSvr32.exe from the
command line with the full path name to the DLL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-using-stock-property-pages.md

MFC ActiveX Controls
MFC ActiveX Controls: Adding Stock Properties

MFC ActiveX Controls: Creating an Automation
Server
3/4/2019 • 2 minutes to read • Edit Online

To create a control as an Automation serverTo create a control as an Automation server

To programmatically access the methods in an Automation serverTo programmatically access the methods in an Automation server

You can develop an MFC ActiveX control as an Automation server for the purpose of programmatically embedding
that control in another application and calling methods in the control from the application. Such a control would
still be available to be hosted in an ActiveX control container.

1. Create the control.

2. Add methods.

3. Override IsInvokeAllowed.

4. Build the control.

AfxOleInit();

1. Create an application, for example, an MFC exe.

2. At the beginning of the InitInstance function, add the following line:

3. In Class View, right-click the project node and select Add class from typelib to import the type library.

This will add files with the file name extensions .h and .cpp to the project.

4. In the header file of the class where you will call one or more methods in the ActiveX control, add the
following line: #include filename.h , where file name is the name of the header file that was created when
you imported the type library.

5. In the function where a call will be made to a method in the ActiveX control, add code that creates an object
of the control's wrapper class and create the ActiveX object. For example, the following MFC code
instantiates a CCirc control, gets the Caption property, and displays the result when the OK button is
clicked in a dialog box:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-creating-an-automation-server.md

See also

void CCircDlg::OnOK()
{
 UpdateData(); // Get the current data from the dialog box.
 CCirc2 circ; // Create a wrapper class for the ActiveX object.
 COleException e; // In case of errors

 // Create the ActiveX object.
 // The name is the control's progid; look it up using OleView
 if (circ.CreateDispatch(_T("CIRC.CircCtrl.1"), &e))
 {
 // get the Caption property of your ActiveX object
 // get the result into m_strCaption
 m_strCaption = circ.GetCaption();
 UpdateData(FALSE); // Display the string in the dialog box.
 }
 else { // An error
 TCHAR buf[255];
 e.GetErrorMessage(buf, sizeof(buf) / sizeof(TCHAR));
 AfxMessageBox(buf); // Display the error message.
 }
}

If you add methods to the ActiveX control after you use it in an application, you can begin using the latest version
of the control in the application by deleting the files that were created when you imported the type library. Then
import the type library again.

MFC ActiveX Controls

MFC ActiveX Controls: Using Fonts
3/4/2019 • 9 minutes to read • Edit Online

Using the Stock Font Property

To add the stock Font property using the Add Property WizardTo add the stock Font property using the Add Property Wizard

DISP_STOCKPROP_FONT()

[id(DISPID_FONT)] IFontDisp*Font;

If your ActiveX control displays text, you can allow the control user to change the text appearance by changing a
font property. Font properties are implemented as font objects and can be one of two types: stock or custom.
Stock Font properties are preimplemented font properties that you can add using the Add Property Wizard.
Custom Font properties are not preimplemented and the control developer determines the property's behavior
and usage.

This article covers the following topics:

Using the Stock Font property

Using Custom Font Properties in Your Control

Stock Font properties are preimplemented by the class COleControl. In addition, a standard Font property page is
also available, allowing the user to change various attributes of the font object, such as its name, size, and style.

Access the font object through the GetFont, SetFont, and InternalGetFont functions of COleControl . The control
user will access the font object via the GetFont and SetFont functions in the same manner as any other Get/Set
property. When access to the font object is required from within a control, use the InternalGetFont function.

As discussed in MFC ActiveX Controls: Properties, adding stock properties is easy with the Add Property Wizard.
You choose the Font property, and the Add Property Wizard automatically inserts the stock Font entry into the
control's dispatch map.

1. Load your control's project.

2. In Class View, expand the library node of your control.

3. Right-click the interface node for your control (the second node of the library node) to open the shortcut
menu.

4. From the shortcut menu, click Add and then click Add Property.

This opens the Add Property Wizard.

5. In the Property Name box, click Font.

6. Click Finish.

The Add Property Wizard adds the following line to the control's dispatch map, located in the control class
implementation file:

In addition, the Add Property Wizard adds the following line to the control .IDL file:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-using-fonts.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/names-add-property-wizard

To add the stock Caption property using the Add Property WizardTo add the stock Caption property using the Add Property Wizard

DISP_STOCKPROP_CAPTION()

Modifying the OnDraw Function

CFont* pOldFont;
TEXTMETRIC tm;
const CString& strCaption = InternalGetText();

pOldFont = SelectStockFont(pdc);
pdc->FillRect(rcBounds, CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));
pdc->Ellipse(rcBounds);
pdc->GetTextMetrics(&tm);
pdc->SetTextAlign(TA_CENTER | TA_TOP);
pdc->ExtTextOut((rcBounds.left + rcBounds.right) / 2,
 (rcBounds.top + rcBounds.bottom - tm.tmHeight) / 2,
 ETO_CLIPPED, rcBounds, strCaption, strCaption.GetLength(), NULL);

pdc->SelectObject(pOldFont);

Using Custom Font Properties in Your Control

The stock Caption property is an example of a text property that can be drawn using the stock Font property
information. Adding the stock Caption property to the control uses steps similar to those used for the stock Font
property.

1. Load your control's project.

2. In Class View, expand the library node of your control.

3. Right-click the interface node for your control (the second node of the library node) to open the shortcut
menu.

4. From the shortcut menu, click Add and then click Add Property.

This opens the Add Property Wizard.

5. In the Property Name box, click Caption.

6. Click Finish.

The Add Property Wizard adds the following line to the control's dispatch map, located in the control class
implementation file:

The default implementation of OnDraw uses the Windows system font for all text displayed in the control. This
means that you must modify the OnDraw code by selecting the font object into the device context. To do this, call
COleControl::SelectStockFont and pass the control's device context, as shown in the following example:

After the OnDraw function has been modified to use the font object, any text within the control is displayed with
characteristics from the control's stock Font property.

In addition to the stock Font property, the ActiveX control can have custom Font properties. To add a custom font
property you must:

Use the Add Property Wizard to implement the custom Font property.

Processing font notifications.

Implementing a new font notification interface.

 Implementing a Custom Font PropertyImplementing a Custom Font Property

To a d d t h e c u s t o m F o n t p r o p e r t y u s i n g t h e A d d P r o p e r t y W i z a r dTo a d d t h e c u s t o m F o n t p r o p e r t y u s i n g t h e A d d P r o p e r t y W i z a r d

DISP_PROPERTY_EX_ID(CMyAxFontCtrl, "HeadingFont", dispidHeadingFont,
 GetHeadingFont, SetHeadingFont, VT_DISPATCH)

IDispatch* CWizardGenCtrl::GetHeadingFont(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 // TODO: Add your dispatch handler code here

 return NULL;
}

void CWizardGenCtrl::SetHeadingFont(IDispatch* /*pVal*/)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 // TODO: Add your property handler code here

 SetModifiedFlag();
}

To implement a custom Font property, you use the Add Property Wizard to add the property and then make some
modifications to the code. The following sections describe how to add the custom HeadingFont property to the
Sample control.

1. Load your control's project.

2. In Class View, expand the library node of your control.

3. Right-click the interface node for your control (the second node of the library node) to open the shortcut
menu.

4. From the shortcut menu, click Add and then click Add Property.

This opens the Add Property Wizard.

5. In the Property Name box, type a name for the property. For this example, use HeadingFont.

6. For Implementation Type, click Get/Set Methods.

7. In the Property Type box, select IDispatch* for the property's type.

8. Click Finish.

The Add Property Wizard creates the code to add the HeadingFont custom property to the CSampleCtrl class and
the SAMPLE.IDL file. Because HeadingFont is a Get/Set property type, the Add Property Wizard modifies the
CSampleCtrl class's dispatch map to include a DISP_PROPERTY_EX_IDDISP_PROPERTY_EX macro entry:

The DISP_PROPERTY_EX macro associates the HeadingFont property name with its corresponding CSampleCtrl

class Get and Set methods, GetHeadingFont and SetHeadingFont . The type of the property value is also specified;
in this case, VT_FONT.

The Add Property Wizard also adds a declaration in the control header file (.H) for the GetHeadingFont and
SetHeadingFont functions and adds their function templates in the control implementation file (.CPP):

Finally, the Add Property Wizard modifies the control .IDL file by adding an entry for the HeadingFont property:

[id(1)] IDispatch* HeadingFont;

Modifications to the Control CodeModifications to the Control Code

protected:
 CFontHolder m_fontHeading;

Now that you have added the HeadingFont property to the control, you must make some changes to the control
header and implementation files to fully support the new property.

In the control header file (.H), add the following declaration of a protected member variable:

In the control implementation file (.CPP), do the following:

CMyAxFontCtrl::CMyAxFontCtrl()
 : m_fontHeading(&m_xFontNotification)
{
 InitializeIIDs(&IID_DNVC_MFC_AxFont, &IID_DNVC_MFC_AxFontEvents);
}

static const FONTDESC _fontdescHeading =
 { sizeof(FONTDESC), OLESTR("MS Sans Serif"), FONTSIZE(12), FW_BOLD,
 ANSI_CHARSET, FALSE, FALSE, FALSE };

void CMyAxFontCtrl::DoPropExchange(CPropExchange* pPX)
{
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);

 // [...other PX_ function calls...]
 PX_Font(pPX, _T("HeadingFont"), m_fontHeading, &_fontdescHeading);
}

IDispatch* CMyAxFontCtrl::GetHeadingFont(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 return m_fontHeading.GetFontDispatch();
}

Initialize m_fontHeading in the control constructor.

Declare a static FONTDESC structure containing default attributes of the font.

In the control DoPropExchange member function, add a call to the PX_Font function. This provides
initialization and persistence for your custom Font property.

Finish implementing the control GetHeadingFont member function.

Finish implementing the control SetHeadingFont member function.

PROPPAGEID(CLSID_CFontPropPage)

BEGIN_PROPPAGEIDS(CMyAxFontCtrl, 2)

Processing Font NotificationsProcessing Font Notifications

void CMyAxFontCtrl::SetHeadingFont(IDispatch* pVal)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 m_fontHeading.InitializeFont(&_fontdescHeading, pVal);
 OnFontChanged(); //notify any changes
 SetModifiedFlag();
}

CFont* pOldHeadingFont;

pOldHeadingFont = SelectFontObject(pdc, m_fontHeading);

pdc->SelectObject(pOldHeadingFont);

Modify the control OnDraw member function to define a variable to hold the previously selected font.

Modify the control OnDraw member function to select the custom font into the device context by adding the
following line wherever the font is to be used.

Modify the control OnDraw member function to select the previous font back into the device context by
adding the following line after the font has been used.

After the custom Font property has been implemented, the standard Font property page should be implemented,
allowing control users to change the control's current font. To add the property page ID for the standard Font
property page, insert the following line after the BEGIN_PROPPAGEIDS macro:

You must also increment the count parameter of your BEGIN_PROPPAGEIDS macro by one. The following line
illustrates this:

After these changes have been made, rebuild the entire project to incorporate the additional functionality.

In most cases the control needs to know when the characteristics of the font object have been modified. Each font
object is capable of providing notifications when it changes by calling a member function of the
IFontNotification interface, implemented by COleControl .

If the control uses the stock Font property, its notifications are handled by the OnFontChanged member function of
COleControl . When you add custom font properties, you can have them use the same implementation. In the

example in the previous section, this was accomplished by passing &m_xFontNotification when initializing the
m_fontHeading member variable.

 Implementing a New Font Notification InterfaceImplementing a New Font Notification Interface

Additions to the Header FileAdditions to the Header File

protected:
 BEGIN_INTERFACE_PART(HeadingFontNotify, IPropertyNotifySink)
 INIT_INTERFACE_PART(CMyAxFontCtrl, HeadingFontNotify)
 STDMETHOD(OnRequestEdit)(DISPID);
 STDMETHOD(OnChanged)(DISPID);
 END_INTERFACE_PART(HeadingFontNotify)

Additions to the Implementation FileAdditions to the Implementation File

Implementing Multiple Font Object Interfaces

The solid lines in the figure above show that both font objects are using the same implementation of
IFontNotification . This could cause problems if you wanted to distinguish which font changed.

One way to distinguish between the control's font object notifications is to create a separate implementation of the
IFontNotification interface for each font object in the control. This technique allows you to optimize your

drawing code by updating only the string, or strings, that use the recently modified font. The following sections
demonstrate the steps necessary to implement separate notification interfaces for a second Font property. The
second font property is assumed to be the HeadingFont property that was added in the previous section.

To distinguish between the notifications of two or more fonts, a new notification interface must be implemented
for each font used in the control. The following sections describe how to implement a new font notification
interface by modifying the control header and implementation files.

In the control header file (.H), add the following lines to the class declaration:

This creates an implementation of the IPropertyNotifySink interface called HeadingFontNotify . This new interface
contains a method called OnChanged .

In the code that initializes the heading font (in the control constructor), change &m_xFontNotification to
&m_xHeadingFontNotify. Then add the following code:

STDMETHODIMP_(ULONG) CMyAxFontCtrl::XHeadingFontNotify::AddRef()
{
 METHOD_MANAGE_STATE(CMyAxFontCtrl, HeadingFontNotify)
 return 1;
}
STDMETHODIMP_(ULONG) CMyAxFontCtrl::XHeadingFontNotify::Release()
{
 METHOD_MANAGE_STATE(CMyAxFontCtrl, HeadingFontNotify)
 return 0;
}

STDMETHODIMP CMyAxFontCtrl::XHeadingFontNotify::QueryInterface(REFIID iid, LPVOID FAR* ppvObj)
{
 METHOD_MANAGE_STATE(CMyAxFontCtrl, HeadingFontNotify)
 if(IsEqualIID(iid, IID_IUnknown) || IsEqualIID(iid, IID_IPropertyNotifySink))
 {
 *ppvObj= this;
 AddRef();
 return NOERROR;
 }
 return ResultFromScode(E_NOINTERFACE);
}

STDMETHODIMP CMyAxFontCtrl::XHeadingFontNotify::OnChanged(DISPID)
{
 METHOD_MANAGE_STATE(CMyAxFontCtrl, HeadingFontNotify)
 pThis->InvalidateControl();
 return NOERROR;
}

STDMETHODIMP CMyAxFontCtrl::XHeadingFontNotify::OnRequestEdit(DISPID)
{
 return NOERROR;
}

See also

The AddRef and Release methods in the IPropertyNotifySink interface keep track of the reference count for the
ActiveX control object. When the control obtains access to interface pointer, the control calls AddRef to increment
the reference count. When the control is finished with the pointer, it calls Release , in much the same way that
GlobalFree might be called to free a global memory block. When the reference count for this interface goes to

zero, the interface implementation can be freed. In this example, the QueryInterface function returns a pointer to
a IPropertyNotifySink interface on a particular object. This function allows an ActiveX control to query an object
to determine what interfaces it supports.

After these changes have been made to your project, rebuild the project and use Test Container to test the
interface. See Testing Properties and Events with Test Container for information on how to access the test
container.

MFC ActiveX Controls
MFC ActiveX Controls: Using Pictures in an ActiveX Control
MFC ActiveX Controls: Using Stock Property Pages

MFC ActiveX Controls: Using Pictures in an ActiveX
Control
3/4/2019 • 5 minutes to read • Edit Online

Overview of Custom Picture Properties

Implementing a Custom Picture Property in Your ActiveX Control

This article describes the common Picture type and how to implement it in your ActiveX control. Topics include:

Overview of Custom Picture Properties

Implementing a Custom Picture Property in Your ActiveX Control

Additions to Your Control Project

A Picture type is one of a group of types common to some ActiveX controls. The Picture type handles metafiles,
bitmaps, or icons and allows the user to specify a picture to be displayed in an ActiveX control. Custom Picture
properties are implemented using a picture object and Get/Set functions that allow the control user access to the
Picture property. Control users access the custom Picture property using the stock Picture property page.

In addition to the standard Picture type, Font and Color types are also available. For more information on using
the standard Font type in your ActiveX control, see the article MFC ActiveX Controls: Using Fonts.

The ActiveX control classes provide several components you can use to implement the Picture property within the
control. These components include:

The CPictureHolder class.

This class provides easy access to the picture object and functionality for the item displayed by the custom
Picture property.

Support for properties of type LPPICTUREDISP , implemented with Get/Set functions.

Using Class View you can quickly add a custom property, or properties, that supports the Picture type. For
more information on adding ActiveX control properties with Class View, see the article MFC ActiveX
Controls: Properties.

A property page that manipulates a control's Picture property or properties.

This property page is part of a group of stock property pages available to ActiveX controls. For more
information on ActiveX control property pages, see the article MFC ActiveX Controls: Using Stock Property
Pages

When you have completed the steps outlined in this section, the control can display pictures chosen by its user. The
user can change the displayed picture using a property page that shows the current picture and has a Browse
button that allows the user to the select different pictures.

A custom Picture property is implemented using a process similar to that used for implementing other properties,
the main difference being that the custom property must support a Picture type. Because the item of the Picture
property must be drawn by the ActiveX control, a number of additions and modifications must be made to the
property before it can be fully implemented.

To implement a custom Picture property, you must do the following:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-using-pictures-in-an-activex-control.md

 Additions to Your Control Project

PROPPAGEID(CLSID_CPicturePropPage)

BEGIN_PROPPAGEIDS(CMyAxPicCtrl, 2)

CPictureHolder m_pic;

To add a custom picture property using the Add Property WizardTo add a custom picture property using the Add Property Wizard

Add code to your control project.

A standard Picture property page ID, a data member of type CPictureHolder , and a custom property of
type LPPICTUREDISP with a Get/Set implementation must be added.

Modify several functions in your control class.

These modifications will be made to several functions that are responsible for the drawing of your ActiveX
control.

To add the property page ID for the standard Picture property page, insert the following line after the
BEGIN_PROPPAGEIDS macro in the control implementation file (.CPP):

You must also increment the count parameter of your BEGIN_PROPPAGEIDS macro by one. The following line
illustrates this:

To add the CPictureHolder data member to the control class, insert the following line under the protected section
of the control class declaration in the control header file (.H):

It is not necessary to name your data member m_pic; any name will suffice.

Next, add a custom property that supports a Picture type:

1. Load your control's project.

2. In Class View, expand the library node of your control.

3. Right-click the interface node for your control (the second node of the library node) to open the shortcut
menu.

4. From the shortcut menu, choose Add and then Add Property.

5. In the Property Name box, type the property name. For example purposes, ControlPicture is used in this
procedure.

6. In the Property Type box, select IPictureDisp* for the property type.

7. For Implementation Type, click Get/Set Methods.

8. Type unique names for your Get and Set Functions or accept the default names. (In this example, the default
names GetControlPicture and SetControlPicture are used.)

9. Click Finish.

The Add Property Wizard adds the following code between the dispatch map comments in the control header (.H)
file:

IPictureDisp* GetControlPicture(void);
void SetControlPicture(IPictureDisp* pVal);

DISP_PROPERTY_EX_ID(CMyAxPicCtrl, "ControlPicture", dispidControlPicture,
 GetControlPicture, SetControlPicture, VT_PICTURE)

IPictureDisp* CWizardGenCtrl::GetControlPicture(void)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 // TODO: Add your dispatch handler code here

 return NULL;
}

void CWizardGenCtrl::SetControlPicture(IPictureDisp* /*pVal*/)
{
 AFX_MANAGE_STATE(AfxGetStaticModuleState());

 // TODO: Add your property handler code here

 SetModifiedFlag();
}

NOTENOTE

Modifications to Your Control ProjectModifications to Your Control Project

m_pic.CreateEmpty();

void CMyAxPicCtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& /*rcInvalid*/)
{
 if (!pdc)
 return;

 m_pic.Render(pdc, rcBounds, rcBounds);
}

In addition, the following code was inserted in the dispatch map of the control implementation (.CPP) file:

The Add Property Wizard also adds the following two stub functions in the control implementation file:

Your control class and function names might differ from the example above.

After you have made the necessary additions to your control project, you need to modify several functions that
affect the rendering of your ActiveX control. These functions, OnResetState , OnDraw , and the Get/Set functions of
a custom Picture property, are located in the control implementation file. (Note that in this example the control
class is called CSampleCtrl , the CPictureHolder data member is called m_pic, and the custom picture property
name is ControlPicture .)

In the control OnResetState function, add the following optional line after the call to COleControl::OnResetState :

This sets the control's picture to a blank picture.

To draw the picture properly, make a call to CPictureHolder::Render in the control OnDraw function. Modify your
function to resemble the following example:

return m_pic.GetPictureDispatch();

m_pic.SetPictureDispatch(pVal);
InvalidateControl();

PX_Picture(pPX, _T("ControlPicture"), m_pic);

NOTENOTE

See also

In the Get function of the control's custom picture property, add the following line:

In the Set function of the control's custom Picture property, add the following lines:

The picture property must be made persistent so that information added at design time will show up at run time.
Add the following line to the COleControl -derived class's DoPropExchange function:

Your class and function names might differ from the example above.

After you complete the modifications, rebuild your project to incorporate the new functionality of the custom
Picture property and use Test Container to test the new property. See Testing Properties and Events with Test
Container for information on how to access the test container.

MFC ActiveX Controls
MFC ActiveX Controls: Using Fonts
MFC ActiveX Controls: Property Pages

MFC ActiveX Controls: Advanced Topics
3/4/2019 • 7 minutes to read • Edit Online

IMPORTANTIMPORTANT

Using Database Classes in ActiveX Controls

NOTENOTE

Implementing a Parameterized Property

x = o.Array(2, 3) ' gets element of 2D array
o.Array(2, 3) = 7 ' sets element of 2D array

This article covers advanced topics related to developing ActiveX controls. These include:

Using Database Classes in ActiveX Controls

Implementing a Parameterized Property

Handling Errors in Your ActiveX Control

Handling Special Keys in the Control

Accessing Dialog Controls That Are Invisible at Run Time

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

Because the ActiveX control classes are part of the class library, you can apply the same procedures and rules for
using database classes in a standard MFC application to developing ActiveX controls that use the MFC database
classes.

For a general overview of the MFC database classes, see MFC Database Classes (DAO and ODBC). The article
introduces both the MFC ODBC classes and the MFC DAO classes and directs you to more details on either.

The Visual C++ environment and wizards do not support DAO (although the DAO classes are included and you can still
use them). Microsoft recommends that you use OLE DB Templates or ODBC and MFC for new projects. You should only
use DAO in maintaining existing applications.

A parameterized property (sometimes called a property array) is a method for exposing a homogeneous
collection of values as a single property of the control. For example, you can use a parameterized property to
expose an array or a dictionary as a property. In Visual Basic, such a property is accessed using array notation:

Use the Add Property Wizard to implement a parameterized property. The Add Property Wizard implements the
property by adding a pair of Get/Set functions that allow the control user to access the property using the above
notation or in the standard fashion.

Similar to methods and properties, parameterized properties also have a limit to the number of parameters
allowed. In the case of parameterized properties, the limit is 15 parameters (with one parameter reserved for
storing the property value).

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-advanced-topics.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/mfc-database-classes-odbc-and-dao
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ole-db-programming
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/odbc-and-mfc

To add a parameterized property using the Add Property WizardTo add a parameterized property using the Add Property Wizard

Changes Made by the Add Property WizardChanges Made by the Add Property Wizard

SHORT GetArray(SHORT row, SHORT column);
void SetArray(SHORT row, SHORT column, SHORT newVal);

DISP_PROPERTY_PARAM_ID(CMyAxUICtrl, "Array", dispidArray, GetArray, SetArray, VT_I2, VTS_I2 VTS_I2)

Handling Errors in Your ActiveX Control

The following procedure adds a parameterized property, called Array, which can be accessed as a two-
dimensional array of integers.

1. Load your control's project.

2. In Class View, expand the library node of your control.

3. Right-click the interface node for your control (the second node of the library node) to open the shortcut
menu.

4. From the shortcut menu, click Add and then click Add Property.

5. In the Property Name box, type Array .

6. In the Property Type box, select short.

7. For Implementation Type, click Get/Set Methods.

8. In the Get Function and Set Function boxes, type unique names for your Get and Set Functions or
accept the default names.

9. Add a parameter, called row (type short), using the Parameter Name and Parameter Type controls.

10. Add a second parameter called column (type short).

11. Click Finish.

When you add a custom property, the Add Property Wizard makes changes to the control class header (.H) and
the implementation (.CPP) files.

The following lines are added to the control class .H file:

This code declares two functions called GetArray and SetArray that allow the user to request a specific row and
column when accessing the property.

In addition, the Add Property Wizard adds the following lines to the control dispatch map, located in the control
class implementation (.CPP) file:

Finally, the implementations of the GetArray and SetArray functions are added to the end of the .CPP file. In
most cases, you will modify the Get function to return the value of the property. The Set function will usually
contain code that should execute, either before or after the property changes.

For this property to be useful, you could declare a two-dimensional array member variable in the control class, of
type short, to store values for the parameterized property. You could then modify the Get function to return the
value stored at the proper row and column, as indicated by the parameters, and modify the Set function to update
the value referenced by the row and column parameters.

If error conditions occur in the control, you may need to report the error to the control container. There are two
methods for reporting errors, depending on the situation in which the error occurs. If the error occurs within a

ActiveX Control Error CodesActiveX Control Error Codes

ERROR DESCRIPTION

CTL_E_ILLEGALFUNCTIONCALL Illegal function call

CTL_E_OVERFLOW Overflow

CTL_E_OUTOFMEMORY Out of memory

CTL_E_DIVISIONBYZERO Division by zero

CTL_E_OUTOFSTRINGSPACE Out of string space

CTL_E_OUTOFSTACKSPACE Out of stack space

CTL_E_BADFILENAMEORNUMBER Bad file name or number

CTL_E_FILENOTFOUND File not found

CTL_E_BADFILEMODE Bad file mode

CTL_E_FILEALREADYOPEN File already open

CTL_E_DEVICEIOERROR Device I/O error

CTL_E_FILEALREADYEXISTS File already exists

CTL_E_BADRECORDLENGTH Bad record length

CTL_E_DISKFULL Disk full

CTL_E_BADRECORDNUMBER Bad record number

CTL_E_BADFILENAME Bad file name

CTL_E_TOOMANYFILES Too many files

CTL_E_DEVICEUNAVAILABLE Device unavailable

CTL_E_PERMISSIONDENIED Permission denied

CTL_E_DISKNOTREADY Disk not ready

CTL_E_PATHFILEACCESSERROR Path/file access error

property's Get or Set function, or within the implementation of an OLE Automation method, the control should
call COleControl::ThrowError, which signals to the control user that an error has occurred. If the error occurs at
any other time, the control should call COleControl::FireError, which fires a stock Error event.

To indicate the kind of error that has occurred, the control must pass an error code to ThrowError or FireError .
An error code is an OLE status code, which has a 32-bit value. When possible, choose an error code from the
standard set of codes defined in the OLECTL.H header file. The following table summarizes these codes.

CTL_E_PATHNOTFOUND Path not found

CTL_E_INVALIDPATTERNSTRING Invalid pattern string

CTL_E_INVALIDUSEOFNULL Invalid use of NULL

CTL_E_INVALIDFILEFORMAT Invalid file format

CTL_E_INVALIDPROPERTYVALUE Invalid property value

CTL_E_INVALIDPROPERTYARRAYINDEX Invalid property array index

CTL_E_SETNOTSUPPORTEDATRUNTIME Set not supported at run time

CTL_E_SETNOTSUPPORTED Set not supported (read-only property)

CTL_E_NEEDPROPERTYARRAYINDEX Need property array index

CTL_E_SETNOTPERMITTED Set not permitted

CTL_E_GETNOTSUPPORTEDATRUNTIME Get not supported at run time

CTL_E_GETNOTSUPPORTED Get not supported (write-only property)

CTL_E_PROPERTYNOTFOUND Property not found

CTL_E_INVALIDCLIPBOARDFORMAT Invalid clipboard format

CTL_E_INVALIDPICTURE Invalid picture

CTL_E_PRINTERERROR Printer error

CTL_E_CANTSAVEFILETOTEMP Can't save file to TEMP

CTL_E_SEARCHTEXTNOTFOUND Search text not found

CTL_E_REPLACEMENTSTOOLONG Replacements too long

ERROR DESCRIPTION

#define MYCTL_E_SPECIALERROR CUSTOM_CTL_SCODE(1000)

Handling Special Keys in the Control

If necessary, use the CUSTOM_CTL_SCODE macro to define a custom error code for a condition that is not
covered by one of the standard codes. The parameter for this macro should be an integer between 1000 and
32767, inclusive. For example:

If you are creating an ActiveX control to replace an existing VBX control, define your ActiveX control error codes
with the same numeric values the VBX control uses to ensure that the error codes are compatible.

In some cases you may want to handle certain keystroke combinations in a special way; for example, insert a new

BOOL CMyAxUICtrl::PreTranslateMessage(MSG* pMsg)
{
 BOOL bHandleNow = FALSE;

 switch (pMsg->message)
 {
 case WM_KEYDOWN:
 switch (pMsg->wParam)
 {
 case VK_UP:
 case VK_DOWN:
 case VK_LEFT:
 case VK_RIGHT:
 bHandleNow = TRUE;
 break;
 }
 if (bHandleNow)
 {
 OnKeyDown((UINT)pMsg->wParam, LOWORD(pMsg->lParam), HIWORD(pMsg->lParam));
 }
 break;
 }
 return bHandleNow;
}

Accessing Dialog Controls that Are Invisible at Run Time

See also

line when the ENTER key is pressed in a multiline text box control or move between a group of edit controls
when a directional key ID pressed.

If the base class of your ActiveX control is COleControl , you can override CWnd::PreTranslateMessage to handle
messages before the container processes them. When using this technique, always return TRUE if you handle the
message in your override of PreTranslateMessage .

The following code example demonstrates a possible way of handling any messages related to the directional
keys.

For more information on handling keyboard interfaces for an ActiveX control, see the ActiveX SDK
documentation.

You can create dialog controls that have no user interface and are invisible at run time. If you add an invisible at
run time ActiveX control to a dialog box and use CWnd::GetDlgItem to access the control, the control will not
work correctly. Instead, you should use one of the following techniques to obtain an object that represents the
control:

CCirc myCirc;
myCirc.SubclassDlgItem(IDC_CIRCCTRL2, this);
// ... use myCirc ...
myCirc.UnsubclassWindow();

Using the Add Member Variable Wizard, select Control Variable and then select the control's ID. Enter a
member variable name and select the control's wrapper class as the Control Type.

-or-

Declare a local variable and subclass as the dialog item. Insert code that resembles the following (CMyCtrl

is the wrapper class, IDC_MYCTRL1 is the control's ID):

MFC ActiveX Controls

MFC ActiveX Controls: Distributing ActiveX Controls
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

ANSI or Unicode Control Versions

Installing ActiveX Controls and Redistributable DLLs

NOTENOTE

Registering Controls

This article discusses several issues related to redistributing ActiveX controls:

ANSI or Unicode Control Versions

Installing ActiveX Controls and Redistributable DLLs

Registering Controls

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

You must decide whether to ship an ANSI or Unicode version of the control, or both. This decision is based on
portability factors inherent in ANSI and Unicode character sets.

ANSI controls, which work on all Win32 operating systems, allow for maximum portability between the various
Win32 operating systems. Unicode controls work on only Windows NT (version 3.51 or later), but not on Windows
95 or Windows 98. If portability is your primary concern, ship ANSI controls. If your controls will run only on
Windows NT, you can ship Unicode controls. You could also choose to ship both and have your application install
the version most appropriate for the user's operating system.

The setup program you provide with your ActiveX controls should create a special subdirectory of the Windows
directory and install the controls' .OCX files in it.

Use the Windows GetWindowsDirectory API in your setup program to obtain the name of the Windows directory. You may
want to derive the subdirectory name from the name of your company or product.

The setup program must install the necessary redistributable DLL files in the Windows system directory. If any of
the DLLs are already present on the user's machine, the setup program should compare their versions with the
versions you are installing. Reinstall a file only if its version number is higher than the file already installed.

Because ActiveX controls can be used only in OLE container applications, there is no need to distribute the full set
of OLE DLLs with your controls. You can assume that the containing application (or the operating system itself) has
the standard OLE DLLs installed.

Before a control can be used, appropriate entries must be created for it in the Windows registration database.
Some ActiveX control containers provide a menu item for users to register new controls, but this feature may not
be available in all containers. Therefore, you may want your setup program to register the controls when they are
installed.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-distributing-activex-controls.md

HINSTANCE hLib = LoadLibrary(pszDllName);

if (hLib < (HINSTANCE)HINSTANCE_ERROR)
{
 AfxMessageBox(IDS_LOADLIBFAILED); //unable to load DLL
 iReturn = FAIL_LOAD; //unable to load DLL
}

// Find the entry point.
lpDllEntryPoint = GetProcAddress(hLib, "DllRegisterServer");
if (lpDllEntryPoint != NULL)
 (*lpDllEntryPoint)();
else
 ;// Unable to locate entry point

NOTENOTE

See also

If you prefer, you can write your setup program to register the control directly instead.

Use the LoadLibrary Windows API to load the control DLL. Next, use GetProcAddress to obtain the address of the
"DllRegisterServer" function. Finally, call the DllRegisterServer function. The following code sample demonstrates
one possible method, where hLib stores the handle of the control library, and lpDllEntryPoint stores the address
of the "DllRegisterServer" function.

The advantage of registering the control directly is that you do not need to invoke and load a separate process
(namely, REGSVR32), reducing installation time. In addition, because registration is an internal process, the setup
program can handle errors and unforeseen situations better than an external process can.

Before your setup program installs an ActiveX control, it should call OleInitialize . When your setup program is finished,
call OleUnitialize . This ensures that the OLE system DLLs are in the proper state for registering an ActiveX control.

You should register MFCx0.DLL.

MFC ActiveX Controls

MFC ActiveX Controls: Licensing an ActiveX Control
3/4/2019 • 6 minutes to read • Edit Online

IMPORTANTIMPORTANT

Overview of ActiveX Control Licensing

Licensing support, an optional feature of ActiveX controls, allows you to control who is able to use or distribute
the control. (For additional discussion of licensing issues, see Licensing Issues in Upgrading an Existing ActiveX
Control.)

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

This article discusses the following topics:

Overview of ActiveX Control Licensing

Creating a Licensed Control

Licensing Support

Customizing the Licensing of an ActiveX Control

ActiveX controls that implement licensing allow you, as the control developer, to determine how other people will
use the ActiveX control. You provide the control purchaser with the control and .L IC file, with the agreement that
the purchaser may distribute the control, but not the .L IC file, with an application that uses the control. This
prevents users of that application from writing new applications that use the control, without first licensing the
control from you.

To provide licensing support for ActiveX controls, the COleObjectFactory class provides an implementation for
several functions in the IClassFactory2 interface: IClassFactory2::RequestLicKey , IClassFactory2::GetLicInfo ,
and IClassFactory2::CreateInstanceLic . When the container application developer makes a request to create an
instance of the control, a call to GetLicInfo is made to verify that the control .L IC file is present. If the control is
licensed, an instance of the control can be created and placed in the container. After the developer has finished
constructing the container application, another function call, this time to RequestLicKey , is made. This function
returns a license key (a simple character string) to the container application. The returned key is then embedded in
the application.

The figure below demonstrates the license verification of an ActiveX control that will be used during the
development of a container application. As mentioned previously, the container application developer must have
the proper .L IC file installed on the development machine to create an instance of the control.

Verification of a Licensed ActiveX Control During Development

The next process, shown in the following figure, occurs when the end user runs the container application.

When the application is started, an instance of the control usually needs to be created. The container accomplishes
this by making a call to CreateInstanceLic , passing the embedded license key as a parameter. A string comparison
is then made between the embedded license key and the control's own copy of the license key. If the match is

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-licensing-an-activex-control.md

Creating a Licensed Control

To add support for licensing with the ActiveX Control Wizard when you create your control projectTo add support for licensing with the ActiveX Control Wizard when you create your control project

Licensing Support

NOTENOTE

successful, an instance of the control is created and the application continues to execute normally. Note that the
.L IC file need not be present on the control user's machine.

Verification of a Licensed ActiveX Control During Execution

Control licensing consists of two basic components: specific code in the control implementation DLL and the
license file. The code is composed of two (or possibly three) function calls and a character string, hereafter referred
to as a "license string", containing a copyright notice. These calls and the license string are found in the control
implementation (.CPP) file. The license file, generated by the ActiveX Control Wizard, is a text file with a copyright
statement. It is named using the project name with an .L IC extension, for example SAMPLE.L IC. A licensed control
must be accompanied by the license file if design-time use is needed.

When you use the ActiveX Control Wizard to create the control framework, it is easy to include licensing support.
When you specify that the control should have a run-time license, the ActiveX Control Wizard adds code to the
control class to support licensing. The code consists of functions that use a key and license file for license
verification. These functions also can be modified to customize the control licensing. For more information on
license customization, see Customizing the Licensing of an ActiveX Control later in this article.

1. Use the instructions in Creating an MFC ActiveX Control. The Application Settings page of the ActiveX
Control Wizard contains the option to create the control with the run-time license.

The ActiveX Control Wizard now generates an ActiveX control framework that includes basic licensing support.
For a detailed explanation of the licensing code, see the next topic.

When you use the ActiveX Control Wizard to add licensing support to an ActiveX control, the ActiveX Control
Wizard adds code that declares and implements the licensing capability is added to the control header and
implementation files. This code is composed of a VerifyUserLicense member function and a GetLicenseKey

member function, which override the default implementations found in COleObjectFactory . These functions
retrieve and verify the control license.

A third member function, VerifyLicenseKey is not generated by the ActiveX Control Wizard, but can be overridden to
customize the license key verification behavior.

These member functions are:

VerifyUserLicense

Verifies that the control allows design-time usage by checking the system for the presence of the control
license file. This function is called by the framework as part of processing IClassFactory2::GetLicInfo and
IClassFactory::CreateInstanceLic .

GetLicenseKey

Requests a unique key from the control DLL. This key is embedded in the container application and used
later, in conjunction with VerifyLicenseKey , to create an instance of the control. This function is called by the
framework as part of processing IClassFactory2::RequestLicKey .

Header File ModificationsHeader File Modifications

BEGIN_OLEFACTORY(CMyAxUICtrl) // Class factory and guid
 virtual BOOL VerifyUserLicense();
 virtual BOOL GetLicenseKey(DWORD, BSTR FAR*);
END_OLEFACTORY(CMyAxUICtrl)

Implementation File ModificationsImplementation File Modifications

static const TCHAR BASED_CODE _szLicFileName[] = _T("NVC_MFC_AxUI.lic");

static const WCHAR BASED_CODE _szLicString[] = L"Copyright (c) 2006 ";

NOTENOTE

// CMyAxUICtrl::CMyAxUICtrlFactory::VerifyUserLicense -
// Checks for existence of a user license

BOOL CMyAxUICtrl::CMyAxUICtrlFactory::VerifyUserLicense()
{
 return AfxVerifyLicFile(AfxGetInstanceHandle(), _szLicFileName, _szLicString);
}

// CMyAxUICtrl::CMyAxUICtrlFactory::GetLicenseKey -
// Returns a runtime licensing key

BOOL CMyAxUICtrl::CMyAxUICtrlFactory::GetLicenseKey(DWORD /*dwReserved*/,
 BSTR FAR* pbstrKey)
{
 if (pbstrKey == NULL)
 return FALSE;

 *pbstrKey = SysAllocString(_szLicString);
 return (*pbstrKey != NULL);
}

VerifyLicenseKey

Verifies that the embedded key and the control's unique key are the same. This allows the container to
create an instance of the control for its use. This function is called by the framework as part of processing
IClassFactory2::CreateInstanceLic and can be overridden to provide customized verification of the license

key. The default implementation performs a string comparison. For more information, see Customizing the
Licensing of an ActiveX Control, later in this article.

The ActiveX Control Wizard places the following code in the control header file. In this example, two member
functions of CSampleCtrl 's object factory are declared, one that verifies the presence of the control .L IC file and
another that retrieves the license key to be used in the application containing the control:

The ActiveX Control Wizard places the following two statements in the control implementation file to declare the
license filename and license string:

If you modify szLicString in any way, you must also modify the first line in the control .LIC file or licensing will not
function properly.

The ActiveX Control Wizard places the following code in the control implementation file to define the control
class' VerifyUserLicense and GetLicenseKey functions:

Finally, the ActiveX Control Wizard modifies the control project .IDL file. The licensed keyword is added to the

[uuid(913E450B-E720-4C71-BCDF-71C96EE98FEB), licensed,
 helpstring("MyAxUI Control"), control]
coclass NVC_MFC_AxUI

Customizing the Licensing of an ActiveX Control

NOTENOTE

See also

coclass declaration of the control, as in the following example:

Because VerifyUserLicense , GetLicenseKey , and VerifyLicenseKey are declared as virtual member functions of
the control factory class, you can customize the control's licensing behavior.

For example, you can provide several levels of licensing for the control by overriding the VerifyUserLicense or
VerifyLicenseKey member functions. Inside this function you could adjust which properties or methods are

exposed to the user according to the license level you detected.

You can also add code to the VerifyLicenseKey function that provides a customized method for informing the user
that control creation has failed. For instance, in your VerifyLicenseKey member function you could display a
message box stating that the control failed to initialize and why.

Another way to customize ActiveX control license verification is to check the registration database for a specific registry key,
instead of calling AfxVerifyLicFile . For an example of the default implementation, see the Implementation File
Modifications section of this article.

For additional discussion of licensing issues, see Licensing Issues in Upgrading an Existing ActiveX Control.

MFC ActiveX Controls
MFC ActiveX Control Wizard

MFC ActiveX Controls: Localizing an ActiveX Control
3/4/2019 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

Localizing the Control's Programmability Interface

This article discusses procedures for localizing ActiveX control interfaces.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

If you want to adapt an ActiveX control to an international market, you may want to localize the control. Windows
supports many languages in addition to the default English, including German, French, and Swedish. This can
present problems for the control if its interface is in English only.

In general, ActiveX controls should always base their locale on the ambient LocaleID property. There are three
ways to do this:

NOTENOTE

NOTENOTE

Load resources, always on demand, based on the current value of the ambient LocaleID property. The MFC
ActiveX controls sample LOCALIZE uses this strategy.

Load resources when the first control is instanced, based on the ambient LocaleID property, and use these
resources for all other instances. This article demonstrates this strategy.

This will not work correctly in some cases, if future instances have different locales.

Use the OnAmbientChanged notification function to dynamically load the proper resources for the container's
locale.

This will work for the control, but the run-time DLL will not dynamically update its own resources when the ambient
LocaleID property changes. In addition, run-time DLLs for ActiveX controls use the thread locale to determine the
locale for its resources.

The rest of this article describes two localizing strategies. The first strategy localizes the control's programmability
interface (names of properties, methods, and events). The second strategy localizes the control's user interface,
using the container's ambient LocaleID property. For a demonstration of control localization, see the MFC ActiveX
controls sample LOCALIZE.

When localizing the control's programmability interface (the interface used by programmers writing applications
that use your control), you must create a modified version of the control .IDL file (a script for building the control
type library) for each language you intend to support. This is the only place you need to localize the control
property names.

When you develop a localized control, include the locale ID as an attribute at the type library level. For example, if
you want to provide a type library with French localized property names, make a copy of your SAMPLE.IDL file,

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-localizing-an-activex-control.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

[uuid(F8068FFB-9F76-4471-BD76-F3F7ADCD05BB), version(1.0), lcid(0x040c),
 control]
library NVC_MFC_AxLocLib

To add an .IDL file to your ActiveX control projectTo add an .IDL file to your ActiveX control project

STDAPI DllRegisterServer(void)
{
 AFX_MANAGE_STATE(_afxModuleAddrThis);

 if (!AfxOleRegisterTypeLib(AfxGetInstanceHandle(), _tlid))
 return ResultFromScode(SELFREG_E_TYPELIB);

 AfxOleRegisterTypeLib(AfxGetInstanceHandle(), _tlid, _T("samplefr.tlb"));

 if (!COleObjectFactoryEx::UpdateRegistryAll(TRUE))
 return ResultFromScode(SELFREG_E_CLASS);

 return NOERROR;
}

and call it SAMPLEFR.IDL. Add a locale ID attribute to the file (the locale ID for French is 0x040c), similar to the
following:

Change the property names in SAMPLEFR.IDL to their French equivalents, and then use MKTYPLIB.EXE to
produce the French type library, SAMPLEFR.TLB.

To create multiple localized type libraries you can add any localized .IDL files to the project and they will be built
automatically.

1. With your control project open, on the Project menu, click Add Existing Item.

The Add Existing Item dialog box appears.

2. If necessary, select the drive and directory to view.

3. In the Files of Type box, select All Files (*.*).

4. In the file list box, double-click the .IDL file you want to insert into the project.

5. Click Open when you have added all necessary .IDL files.

Because the files have been added to the project, they will be built when the rest of the project is built. The localized
type libraries are located in the current ActiveX control project directory.

Within your code, the internal property names (usually in English) are always used and are never localized. This
includes the control dispatch map, the property exchange functions, and your property page data exchange code.

Only one type library (.TLB) file may be bound into the resources of the control implementation (.OCX) file. This is
usually the version with the standardized (typically, English) names. To ship a localized version of your control you
need to ship the .OCX (which has already been bound to the default .TLB version) and the .TLB for the appropriate
locale. This means that only the .OCX is needed for English versions, since the correct .TLB has already been bound
to it. For other locales, the localized type library also must be shipped with the .OCX.

To ensure that clients of your control can find the localized type library, register your locale-specific .TLB file(s)
under the TypeLib section of the Windows system registry. The third parameter (normally optional) of the
AfxOleRegisterTypeLib function is provided for this purpose. The following example registers a French type library
for an ActiveX control:

When your control is registered, the AfxOleRegisterTypeLib function automatically looks for the specified .TLB file
in the same directory as the control and registers it in the Windows registration database. If the .TLB file is not

 Localizing the Control's User Interface

HINSTANCE CMyAxLocCtrl::GetLocalizedResourceHandle(LCID lcid)
{
 LPCTSTR lpszResDll;
 HINSTANCE hResHandle = NULL;
 switch (PRIMARYLANGID(lcid))
 {
 case LANG_ENGLISH:
 lpszResDll = _T("myctlen.dll");
 break;

 case LANG_FRENCH:
 lpszResDll = _T("myctlfr.dll");
 break;

 case LANG_GERMAN:
 lpszResDll = _T("myctlde.dll");
 break;

 case 0:
 default:
 lpszResDll = NULL;
 }

 if (lpszResDll != NULL)
 hResHandle = LoadLibrary(lpszResDll);
 #ifndef _WIN32
 if(hResHandle <= HINSTANCE_ERROR)
 hResHandle = NULL;
 #endif

 return hResHandle;
}

m_hResDll = GetLocalizedResourceHandle(AmbientLocaleID());
if (m_hResDll != NULL)
 AfxSetResourceHandle(m_hResDll);

found, the function has no effect.

To localize a control's user interface, place all of the control's user-visible resources (such as property pages and
error messages) into language-specific resource DLLs. You then can use the container's ambient LocaleID property
to select the appropriate DLL for the user's locale.

The following code example demonstrates one approach to locate and load the resource DLL for a specific locale.
This member function, called GetLocalizedResourceHandle for this example, can be a member function of your
ActiveX control class:

Note that the sublanguage ID could be checked in each case of the switch statement, to provide more specialized
localization. For a demonstration of this function, see the GetResourceHandle function in the MFC ActiveX controls
sample LOCALIZE.

When the control first loads itself into a container, it can call COleControl::AmbientLocaleID to retrieve the locale
ID. The control can then pass the returned locale ID value to the GetLocalizedResourceHandle function, which loads
the proper resource library. The control should pass the resulting handle, if any, to AfxSetResourceHandle:

Place the code sample above into a member function of the control, such as an override of
COleControl::OnSetClientSite. In addition, m_hResDLL should be a member variable of the control class.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

void CMyAxLocPropPage::OnSetPageSite()
{
 LPPROPERTYPAGESITE pSite;
 LCID lcid = 0;
 if((pSite = GetPageSite()) != NULL)
 pSite->GetLocaleID(&lcid);
 HINSTANCE hResource = GetLocalizedResourceHandle(lcid);
 HINSTANCE hResourceSave = NULL;

 if (hResource != NULL)
 {
 hResourceSave = AfxGetResourceHandle();
 AfxSetResourceHandle(hResource);
 }

 // Load dialog template and caption string.
 COlePropertyPage::OnSetPageSite();

 if (hResource != NULL)
 AfxSetResourceHandle(hResourceSave);
}

See also

You can use similar logic for localizing a control's property page. To localize the property page, add code similar to
the following sample to your property page's implementation file (in an override of
COlePropertyPage::OnSetPageSite):

MFC ActiveX Controls

MFC ActiveX Controls: Serializing
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Implementing the DoPropExchange Function

void CMyAxUICtrl::DoPropExchange(CPropExchange* pPX)
{
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);

 // TODO: Call PX_ functions for each persistent custom property.
}

void CMyAxSerCtrl::DoPropExchange(CPropExchange* pPX)
{
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);

 PX_Bool(pPX, _T("CircleShape"), m_bCircleShape, TRUE);
}

This article discusses how to serialize an ActiveX control. Serialization is the process of reading from or writing to
a persistent storage medium, such as a disk file. The Microsoft Foundation Class (MFC) Library provides built-in
support for serialization in class CObject . COleControl extends this support to ActiveX controls through the use of
a property exchange mechanism.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

Serialization for ActiveX controls is implemented by overriding COleControl::DoPropExchange. This function,
called during the loading and saving of the control object, stores all properties implemented with a member
variable or a member variable with change notification.

The following topics cover the main issues related to serializing an ActiveX control:

Implementing DoPropExchange function to serialize your control object

Customizing the Serialization Process

Implementing Version Support

When you use the ActiveX Control Wizard to generate the control project, several default handler functions are
automatically added to the control class, including the default implementation of COleControl::DoPropExchange.
The following example shows the code added to classes created with the ActiveX Control Wizard:

If you want to make a property persistent, modify DoPropExchange by adding a call to the property exchange
function. The following example demonstrates the serialization of a custom Boolean CircleShape property, where
the CircleShape property has a default value of TRUE :

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-serializing.md

PROPERTY EXCHANGE FUNCTIONS PURPOSE

PX_Blob() Serializes a type Binary Large Object (BLOB) data property.

PX_Bool() Serializes a type Boolean property.

PX_Color() Serializes a type color property.

PX_Currency() Serializes a type CY (currency) property.

PX_Double() Serializes a type double property.

PX_Font() Serializes a Font type property.

PX_Float() Serializes a type float property.

PX_IUnknown() Serializes a property of type LPUNKNOWN .

PX_Long() Serializes a type long property.

PX_Picture() Serializes a type Picture property.

PX_Short() Serializes a type short property.

PXstring() Serializes a type CString property.

PX_ULong() Serializes a type ULONG property.

PX_UShort() Serializes a type USHORT property.

Customizing the Default Behavior of DoPropExchange

Implementing Version Support

The following table lists the possible property exchange functions you can use to serialize the control's properties:

For more information on these property exchange functions, see Persistence of OLE Controls in the MFC
Reference.

The default implementation of DoPropertyExchange (as shown in the previous topic) makes a call to base class
COleControl . This serializes the set of properties automatically supported by COleControl , which uses more

storage space than serializing only the custom properties of the control. Removing this call allows your object to
serialize only those properties you consider important. Any stock property states the control has implemented will
not be serialized when saving or loading the control object unless you explicitly add PX_ calls for them.

Version support enables a revised ActiveX control to add new persistent properties, and still be able to detect and
load the persistent state created by an earlier version of the control. To make a control's version available as part of
its persistent data, call COleControl::ExchangeVersion in the control's DoPropExchange function. This call is
automatically inserted if the ActiveX control was created using the ActiveX Control Wizard. It can be removed if
version support is not needed. However, the cost in control size is very small (4 bytes) for the added flexibility that
version support provides.

If the control was not created with the ActiveX Control Wizard, add a call to COleControl::ExchangeVersion by

void CMyAxSerCtrl::DoPropExchange(CPropExchange* pPX)
{
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);

}

void CMyAxSerCtrl::DoPropExchange(CPropExchange* pPX)
{
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);

 PX_Long(pPX, _T("ReleaseDate"), m_ReleaseDate);
 if (pPX->GetVersion() >= MAKELONG(0, 2))
 {
 PX_Long(pPX, _T("OriginalDate"), m_OriginalDate);
 }
 else
 {
 if (pPX->IsLoading())
 m_OriginalDate = 0;
 }

}

See also

inserting the following line at the beginning of your DoPropExchange function (before the call to
COleControl::DoPropExchange):

You can use any DWORD as the version number. Projects generated by the ActiveX Control Wizard use
_wVerMinor and _wVerMajor as the default. These are global constants defined in the implementation file of the

project's ActiveX control class. Within the remainder of your DoPropExchange function, you can call
CPropExchange::GetVersion at any time to retrieve the version you are saving or retrieving.

In the following example, version 1 of this sample control has only a "ReleaseDate" property. Version 2 adds an
"OriginalDate" property. If the control is instructed to load the persistent state from the old version, it initializes the
member variable for the new property to a default value.

By default, a control "converts" old data to the latest format. For example, if version 2 of a control loads data that
was saved by version 1, it will write the version 2 format when it is saved again. If you want the control to save
data in the format last read, pass FALSE as a third parameter when calling ExchangeVersion . This third parameter
is optional and is TRUE by default.

MFC ActiveX Controls

MFC ActiveX Controls: Subclassing a Windows
Control
3/4/2019 • 5 minutes to read • Edit Online

IMPORTANTIMPORTANT

Overriding IsSubclassedControl and PreCreateWindow

virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
BOOL IsSubclassedControl();

This article describes the process for subclassing a common Windows control to create an ActiveX control.
Subclassing an existing Windows control is a quick way to develop an ActiveX control. The new control will have
the abilities of the subclassed Windows control, such as painting and responding to mouse clicks. The MFC
ActiveX controls sample BUTTON is an example of subclassing a Windows control.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

To subclass a Windows control, complete the following tasks:

NOTENOTE

Override the IsSubclassedControl and PreCreateWindow member functions of COleControl

Modify the OnDraw member function

Handle any ActiveX control messages (OCM) reflected to the control

Much of this work is done for you by the ActiveX Control Wizard if you select control to be subclassed using the
Select Parent Window Class drop-down list on the Control Settings page.

To override PreCreateWindow and IsSubclassedControl , add the following lines of code to the protected section
of the control class declaration:

In the control implementation file (.CPP), add the following lines of code to implement the two overridden
functions:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-subclassing-a-windows-control.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

// CMyAxSubCtrl::PreCreateWindow - Modify parameters for CreateWindowEx

BOOL CMyAxSubCtrl::PreCreateWindow(CREATESTRUCT& cs)
{
 cs.lpszClass = _T("BUTTON");
 return COleControl::PreCreateWindow(cs);
}

// CMyAxSubCtrl::IsSubclassedControl - This is a subclassed control

BOOL CMyAxSubCtrl::IsSubclassedControl()
{
 return TRUE;
}

cs.style |= BS_CHECKBOX;

Modifying the OnDraw Member Function

void CMyAxSubCtrl::OnDraw(CDC* pdc, const CRect& rcBounds, const CRect& /*rcInvalid*/)
{
 if (!pdc)
 return;

 DoSuperclassPaint(pdc, rcBounds);
}

NOTENOTE

Notice that, in this example, the Windows button control is specified in PreCreateWindow . However, any standard
Windows controls can be subclassed. For more information on standard Windows controls, see Controls.

When subclassing a Windows control, you may want to specify particular window style (WS_) or extended
window style (WS_EX_) flags to be used in creating the control's window. You can set values for these parameters
in the PreCreateWindow member function by modifying the cs.style and the cs.dwExStyle structure fields.
Modifications to these fields should be made using an OR operation, to preserve the default flags that are set by
class COleControl . For example, if the control is subclassing the BUTTON control and you want the control to
appear as a check box, insert the following line of code into the implementation of CSampleCtrl::PreCreateWindow ,
before the return statement:

This operation adds the BS_CHECKBOX style flag, while leaving the default style flag (WS_CHILD) of class
COleControl intact.

If you want your subclassed control to keep the same appearance as the corresponding Windows control, the
OnDraw member function for the control should contain only a call to the DoSuperclassPaint member function, as

in the following example:

The DoSuperclassPaint member function, implemented by COleControl , uses the window procedure of the
Windows control to draw the control in the specified device context, within the bounding rectangle. This makes
the control visible even when it is not active.

The DoSuperclassPaint member function will work only with those control types that allow a device context to be passed
as the wParam of a WM_PAINT message. This includes some of the standard Windows controls, such as SCROLLBAR and
BUTTON, and all the common controls. For controls that do not support this behavior, you will have to provide your own
code to properly display an inactive control.

 Handling Reflected Window Messages
Windows controls typically send certain window messages to their parent window. Some of these messages, such
as WM_COMMAND, provide notification of an action by the user. Others, such as WM_CTLCOLOR, are used to
obtain information from the parent window. An ActiveX control usually communicates with the parent window by
other means. Notifications are communicated by firing events (sending event notifications), and information
about the control container is obtained by accessing the container's ambient properties. Because these
communication techniques exist, ActiveX control containers are not expected to process any window messages
sent by the control.

To prevent the container from receiving the window messages sent by a subclassed Windows control,
COleControl creates an extra window to serve as the control's parent. This extra window, called a "reflector," is

created only for an ActiveX control that subclasses a Windows control and has the same size and position as the
control window. The reflector window intercepts certain window messages and sends them back to the control.
The control, in its window procedure, can then process these reflected messages by taking actions appropriate for
an ActiveX control (for example, firing an event). See Reflected Window Message IDs for a list of intercepted
windows messages and their corresponding reflected messages.

An ActiveX control container may be designed to perform message reflection itself, eliminating the need for
COleControl to create the reflector window and reducing the run-time overhead for a subclassed Windows

control. COleControl detects whether the container supports this capability by checking for a MessageReflect
ambient property with a value of TRUE .

To handle a reflected window message, add an entry to the control message map and implement a handler
function. Because reflected messages are not part of the standard set of messages defined by Windows, Class
View does not support adding such message handlers. However, it is not difficult to add a handler manually.

To add a message handler for a reflected window message manually do the following:

class CMyAxSubCtrl : public COleControl
{

protected:
 LRESULT OnOcmCommand(WPARAM wParam, LPARAM lParam);
};

BEGIN_MESSAGE_MAP(CMyAxSubCtrl, COleControl)
 ON_MESSAGE(OCM_COMMAND, &CMyAxSubCtrl::OnOcmCommand)
END_MESSAGE_MAP()

In the control class .H file, declare a handler function. The function should have a return type of LRESULT
and two parameters, with types WPARAM and LPARAM, respectively. For example:

In the control class .CPP file, add an ON_MESSAGE entry to the message map. The parameters of this
entry should be the message identifier and the name of the handler function. For example:

Also in the .CPP file, implement the OnOcmCommand member function to process the reflected message. The
wParam and lParam parameters are the same as those of the original window message.

For an example of how reflected messages are processed, refer to the MFC ActiveX controls sample BUTTON. It
demonstrates an OnOcmCommand handler that detects the BN_CLICKED notification code and responds by firing
(sending) a Click event.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

See also
MFC ActiveX Controls

Reflected Window Message IDs
3/4/2019 • 2 minutes to read • Edit Online

MESSAGE SENT BY THE CONTROL MESSAGE REFLECTED TO THE CONTROL

WM_COMMAND OCM_COMMAND

WM_CTLCOLORBTN OCM_CTLCOLORBTN

WM_CTLCOLOREDIT OCM_CTLCOLOREDIT

WM_CTLCOLORDLG OCM_CTLCOLORDLG

WM_CTLCOLORLISTBOX OCM_CTLCOLORLISTBOX

WM_CTLCOLORSCROLLBAR OCM_CTLCOLORSCROLLBAR

WM_CTLCOLORSTATIC OCM_CTLCOLORSTATIC

WM_DRAWITEM OCM_DRAWITEM

WM_MEASUREITEM OCM_MEASUREITEM

WM_DELETEITEM OCM_DELETEITEM

WM_VKEYTOITEM OCM_VKEYTOITEM

WM_CHARTOITEM OCM_CHARTOITEM

WM_COMPAREITEM OCM_COMPAREITEM

WM_HSCROLL OCM_HSCROLL

WM_VSCROLL OCM_VSCROLL

WM_PARENTNOTIFY OCM_PARENTNOTIFY

WM_NOTIFY OCM_NOTIFY

A quick way to create an ActiveX control, or other specialized control, is to subclass a window. For more
information, see MFC ActiveX Controls: Subclassing a Windows Control.

To prevent the control's container from receiving the window messages sent by a subclassed Windows control,
COleControl creates a "reflector" window to intercept certain window messages and send them back to the control.
The control, in its window procedure, can then process these reflected messages by taking actions appropriate for
an ActiveX control.

The following table shows the messages that are intercepted and the corresponding messages that the reflector
window sends.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reflected-window-message-ids.md
https://docs.microsoft.com/windows/desktop/menurc/wm-command
https://docs.microsoft.com/windows/desktop/Controls/wm-ctlcolorbtn
https://docs.microsoft.com/windows/desktop/Controls/wm-ctlcoloredit
https://docs.microsoft.com/windows/desktop/dlgbox/wm-ctlcolordlg
https://docs.microsoft.com/windows/desktop/Controls/wm-ctlcolorlistbox
https://docs.microsoft.com/windows/desktop/Controls/wm-ctlcolorscrollbar
https://docs.microsoft.com/windows/desktop/Controls/wm-ctlcolorstatic
https://docs.microsoft.com/windows/desktop/Controls/wm-drawitem
https://docs.microsoft.com/windows/desktop/Controls/wm-measureitem
https://docs.microsoft.com/windows/desktop/Controls/wm-deleteitem
https://docs.microsoft.com/windows/desktop/Controls/wm-vkeytoitem
https://docs.microsoft.com/windows/desktop/Controls/wm-chartoitem
https://docs.microsoft.com/windows/desktop/Controls/wm-compareitem
https://docs.microsoft.com/windows/desktop/Controls/wm-hscroll
https://docs.microsoft.com/windows/desktop/Controls/wm-vscroll
https://docs.microsoft.com/previous-versions/windows/desktop/inputmsg/wm-parentnotify
https://docs.microsoft.com/windows/desktop/controls/wm-notify

NOTENOTE

See also

If the control runs on a Win32 system, there are several types of WM_CTLCOLOR* messages it may receive. For more
information, see WM_CTLCOLORBTN, WM_CTLCOLORDLG, WM_CTLCOLOREDIT, WM_CTLCOLORLISTBOX,
WM_CTLCOLORMSGBOX, WM_CTLCOLORSCROLLBAR, WM_CTLCOLORSTATIC.

MFC ActiveX Controls: Subclassing a Windows Control
TN062: Message Reflection for Windows Controls

MFC ActiveX Controls: Using Data Binding in an
ActiveX Control
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Creating a Bindable Stock Property

NOTENOTE

To add a bindable stock property using the Add Property WizardTo add a bindable stock property using the Add Property Wizard

One of the more powerful uses of ActiveX controls is data binding, which allows a property of the control to bind
with a specific field in a database. When a user modifies data in this bound property, the control notifies the
database and requests that the record field be updated. The database then notifies the control of the success or
failure of the request.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

This article covers the control side of your task. Implementing the data binding interactions with the database is the
responsibility of the control container. How you manage the database interactions in your container is beyond the
scope of this documentation. How you prepare the control for data binding is explained in the rest of this article.

Conceptual Diagram of a Data-Bound Control

The COleControl class provides two member functions that make data binding an easy process to implement. The
first function, BoundPropertyRequestEdit, is used to request permission to change the property value.
BoundPropertyChanged, the second function, is called after the property value has been successfully changed.

This article covers the following topics:

Creating a Bindable Stock Property

Creating a Bindable Get/Set Method

It is possible to create a data-bound stock property, although it is more likely that you will want a bindable get/set
method.

Stock properties have the bindable and requestedit attributes by default.

1. Begin a project using the MFC ActiveX Control Wizard.

2. Right-click the interface node for your control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-activex-controls-using-data-binding-in-an-activex-control.md

#ifdef _WIN32
 WORD wNotifyCode = HIWORD(wParam);
#else
 WORD wNotifyCode = HIWORD(lParam);
#endif

 if(wNotifyCode==EN_CHANGE)
 {
 if(!BoundPropertyRequestEdit(DISPID_TEXT))
 {
 SetNotSupported();
 }
 else
 {
 GetText();
 // Notify container of change
 BoundPropertyChanged(DISPID_TEXT);
 }
 }

 return 0;

Creating a Bindable Get/Set Method

NOTENOTE

To add a bindable get/set method using the Add Property WizardTo add a bindable get/set method using the Add Property Wizard

This opens the shortcut menu.

3. From the shortcut menu, click Add and then click Add Property.

4. Select one of the entries from the Property Name drop-down list. For example, you can select Text.

Because Text is a stock property, the bindable and requestedit attributes are already checked.

5. Select the following check boxes from the IDL Attributes tab: displaybind and defaultbind to add the
attributes to the property definition in the project's .IDL file. These attributes make the control visible to the
user and make the stock property the default bindable property.

At this point, your control can display data from a data source, but the user will not be able to update data fields. If
you want your control to also be able to update data, change the OnOcmCommand OnOcmCommand function to look
as follows:

You can now build the project, which will register the control. When you insert the control in a dialog box, the Data
Field and Data Source properties will have been added and you can now select a data source and field to display
in the control.

In addition to a data-bound get/set method, you can also create a bindable stock property.

This procedure assumes you have an ActiveX control project that subclasses a Windows control.

1. Load your control's project.

2. On the Control Settings page, select a window class for the control to subclass. For example, you may want
to subclass an EDIT control.

3. Load your control's project.

4. Right-click the interface node for your control.

if(!BoundPropertyRequestEdit(1))
{
 SetNotSupported();
 return;
}
else
{
 if(AmbientUserMode()) // SendMessage only at run-time
 {
 _stprintf_s(m_strText.GetBuffer(10), 10, _T("%d"), newVal);
 SetWindowText(m_strText);
 m_strText.ReleaseBuffer();
 }
 else
 {
 InvalidateControl();
 }

 // Signal a property change
 // This is the MFC equivalent of OnChanged()
 BoundPropertyChanged(1);
 SetModifiedFlag();
}

This opens the shortcut menu.

5. From the shortcut menu, click Add and then click Add Property.

6. Type the property name in the Property Name box. Use MyProp for this example.

7. Select a data type from the Property Type drop-down list box. Use short for this example.

8. For Implementation Type, click Get/Set Methods.

9. Select the following check boxes from the IDL Attributes tab: bindable, requestedit, displaybind, and
defaultbind to add the attributes to the property definition in the project's .IDL file. These attributes make
the control visible to the user and make the stock property the default bindable property.

10. Click Finish.

11. Modify the body of the SetMyProp function so that it contains the following code:

12. The parameter passed to the BoundPropertyChanged and BoundPropertyRequestEdit functions is the dispid of
the property, which is the parameter passed to the id() attribute for the property in the .IDL file.

13. Modify the OnOcmCommand function so it contains the following code:

#ifdef _WIN32
 WORD wNotifyCode = HIWORD(wParam);
#else
 WORD wNotifyCode = HIWORD(lParam);
#endif

 if(wNotifyCode==EN_CHANGE)
 {
 if(!BoundPropertyRequestEdit(DISPID_TEXT))
 {
 SetNotSupported();
 }
 else
 {
 GetText();
 // Notify container of change
 BoundPropertyChanged(DISPID_TEXT);
 }
 }

 return 0;

if(!AmbientUserMode())
{
 // Draw the Text property at design-time
 pdc->FillRect(rcBounds,
 CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));
 pdc->DrawText(m_strText, -1, (LPRECT)&rcBounds,
 DT_LEFT | DT_TOP | DT_SINGLELINE);
}
else
{
 DoSuperclassPaint(pdc, rcBounds);
}

CString m_strText;
short m_nMyNum;

PX_String(pPX, _T("MyProp"), m_strText);

 COleControl::OnResetState(); // Resets defaults found in DoPropExchange
m_strText = AmbientDisplayName();

14. Modify the OnDraw function so that it contains the following code:

15. To the public section of the header file the header file for your control class, add the following definitions
(constructors) for member variables:

16. Make the following line the last line in the DoPropExchange function:

17. Modify the OnResetState function so that it contains the following code:

18. Modify the GetMyProp function so that it contains the following code:

See also

if(AmbientUserMode())
{
 GetWindowText(m_strText);
 m_nMyNum = (short)_ttoi(m_strText);
}
return m_nMyNum;

You can now build the project, which will register the control. When you insert the control in a dialog box, the Data
Field and Data Source properties will have been added and you can now select a data source and field to display
in the control.

MFC ActiveX Controls

ActiveX Control Containers
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

See also

An ActiveX control container is a container that fully supports ActiveX controls and can incorporate them into its
own windows or dialogs. An ActiveX control is a reusable software element that you can use in many
development projects. Controls allow your application's user to access databases, monitor data, and make various
selections within your applications. For more information on ActiveX controls, see the article MFC ActiveX
Controls.

ActiveX is a legacy technology that should not be used for new development. For more information, see ActiveX Controls.

Control containers typically take two forms in a project:

Dialogs and dialog-like windows such as form views, where an ActiveX control is used somewhere in the
dialog box.

Windows in an application, where an ActiveX control is used in a toolbar, or other location in the user
window.

The ActiveX control container interacts with the control via exposed methods and properties. These methods and
properties, which can be accessed and modified by the control container, are accessed through a wrapper class in
the ActiveX control container project. The embedded ActiveX control can also interact with the container by firing
(sending) events to notify the container that an action has occurred. The control container can choose to act upon
these notifications or not.

Additional articles discuss several topics, from creating an ActiveX control container project to basic
implementation issues related to ActiveX control containers built with Visual C++:

Creating an MFC ActiveX Control Container

Containers for ActiveX Controls

ActiveX Control Containers: Manually Enabling ActiveX Control Containment

ActiveX Control Containers: Inserting a Control into a Control Container Application

ActiveX Control Containers: Connecting an ActiveX Control to a Member Variable

ActiveX Control Containers: Handling Events from an ActiveX control

ActiveX Control Containers: Viewing and Modifying Control Properties

ActiveX Control Containers: Programming ActiveX Controls in an ActiveX Control Container

ActiveX Control Containers: Using Controls in a Non-Dialog Container

For more information about using ActiveX controls in a dialog box, see the Dialog Editor topics.

For a list of articles that explain the details of developing ActiveX controls using Visual C++ and the MFC
ActiveX control classes, see MFC ActiveX controls. The articles are grouped by functional categories.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/activex-control-containers.md

MFC ActiveX Controls

Containers for ActiveX Controls
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

See also

You can use ActiveX controls developed in Visual C++ in other applications, as long as they support ActiveX
control containment. A number of Microsoft applications, beginning with the versions listed, support ActiveX
control containment.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

The following list is not a complete list of applications that support ActiveX controls but represents the set used most often
in testing:

Applications that support ActiveX control containment include:

Internet Explorer 3.x and greater

Visual Basic 4.x and greater

Visual C++ 4.x and greater

Access 95 and greater

Excel 97 and greater

Word 97 and greater

Access 97 and greater

FrontPage 97 and greater

PowerPoint 97 and greater

Visual InterDev 97 and greater

The following are non-Microsoft applications that support ActiveX control containment:

PowerBuilder

Delphi

C++ Builder

NCompass Plug-in for Netscape Navigator

ActiveX Control Containers

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/containers-for-activex-controls.md

ActiveX Control Containers: Manually Enabling
ActiveX Control Containment
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

See also

If you did not enable ActiveX control support when you used the MFC Application Wizard to generate your
application, you will have to add this support manually. This article describes the process for manually adding
ActiveX control containment to an existing OLE container application. If you know in advance that you want
ActiveX control support in your OLE container, see the article Creating an MFC ActiveX Control Container.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

This article uses a dialog-based ActiveX control container project named Container and an embedded control named Circ as
examples in the procedures and code.

To support ActiveX controls, you must add one line of code to two of your project's files.

// COleContainerApp initialization
BOOL COleContainerApp::InitInstance()
{
 AfxEnableControlContainer();

}

#include <afxdisp.h> // MFC Automation classes

Modify your main dialog's InitInstance function (found in CONTAINER.CPP) by the MFC Application
Wizard making a call to AfxEnableControlContainer, as in the following example:

Add the following to your project's STDAFX.H header file:

After you have completed these steps, rebuild your project by clicking Build on the Build menu.

ActiveX Control Containers

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/activex-control-containers-manually-enabling-activex-control-containment.md

ActiveX Control Containers: Inserting a Control into a
Control Container Application
3/4/2019 • 2 minutes to read • Edit Online

See also

Before you can access an ActiveX control from an ActiveX control container application, you must add the ActiveX
control to the container application using the Insert ActiveX Control dialog box.

To add an ActiveX control to the ActiveX control container project, see Viewing and Adding ActiveX Controls to a
Dialog Box.

Once you add the control, you need to add a member variable (of the ActiveX control type) to the dialog box class.
For more information on this procedure, see Adding a Member Variable.

Once you have added the member variable a class, referred to as a wrapper class, is automatically generated and
added to your project. This class is used as an interface between the control container and the embedded control.

ActiveX Control Containers

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/inserting-a-control-into-a-control-container-application.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/insert-activex-control-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/viewing-and-adding-activex-controls-to-a-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp

ActiveX Control Containers: Connecting an ActiveX
Control to a Member Variable
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Adding a member variable to the dialog classAdding a member variable to the dialog class

See also

The easiest way to access an ActiveX control from within its control container application is to associate the
ActiveX control with a member variable of the dialog class that will contain the control.

This is not the only way to access an embedded control from within a container class, but for the purposes of this article it is
sufficient.

1. From Class View, right-click the main dialog class to open the shortcut menu. For example, CContainerDlg .

2. From the shortcut menu, click Add and then Add Variable.

3. In the Add Member Variable Wizard, click Control variable.

4. In the Control ID list box, select the control ID of the embedded ActiveX control. For example,
IDC_CIRCCTRL1 .

5. In the Variable Name box, enter a name.

For example, m_circctl.

6. Click Finish to accept your choices and exit the Add Member Variable Wizard.

ActiveX Control Containers

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/activex-control-containers-connecting-an-activex-control-to-a-member-variable.md

ActiveX Control Containers: Handling Events from an
ActiveX Control
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

Event Handler Modifications to the Project

BEGIN_EVENTSINK_MAP(CContainerDlg, CDialog)

END_EVENTSINK_MAP()

BEGIN_EVENTSINK_MAP(CContainerDlg, CDialog)
 ON_EVENT(CContainerDlg, IDC_CIRCCTRL1, 1 /* ClickIn */, OnClickInCircctrl1,
 VTS_I4 VTS_I4)
END_EVENTSINK_MAP()

This article discusses using the Properties window to install event handlers for ActiveX controls in an ActiveX
control container. The event handlers are used to receive notifications (from the control) of certain events and
perform some action in response. This notification is called "firing" the event.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

This article uses a dialog-based ActiveX control container project named Container and an embedded control named Circ as
examples in the procedures and code.

Using the Events button in the Properties window, you can create a map of events that can occur in your ActiveX
control container application. This map, called an "event sink map,'' is created and maintained by Visual C++ when
you add event handlers to the control container class. Each event handler, implemented with an event map entry,
maps a specific event to a container event handler member function. This event handler function is called when the
specified event is fired by the ActiveX control object.

For more information on event sink maps, see Event Sink Maps in the Class Library Reference.

When you use the Properties window to add event handlers, an event sink map is declared and defined in your
project. The following statements are added to the control .CPP file the first time an event handler is added. This
code declares an event sink map for the dialog box class (in this case, CContainerDlg):

As you use the Properties window to add events, an event map entry (ON_EVENT) is added to the event sink map
and an event handler function is added to the container's implementation (.CPP) file.

The following example declares an event handler, called OnClickInCircCtrl , for the Circ control's ClickIn event:

In addition, the following template is added to the CContainerDlg class implementation (.CPP) file for the event

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/activex-control-containers-handling-events-from-an-activex-control.md

BOOL CContainerDlg::OnClickInCircctrl1(OLE_XPOS_PIXELS nX, OLE_YPOS_PIXELS nY)
{
 // use nX and nY here
 TRACE(_T("nX = %d, nY = %d\n"), nX, nY);
 return TRUE;
}

To create an event handler functionTo create an event handler function

See also

handler member function:

For more information on event sink macros, see Event Sink Maps in the Class Library Reference.

1. From Class View, select the dialog class that contains the ActiveX control. For this example, use
CContainerDlg .

2. In the Properties window, click the Events button.

3. In the Properties window, select the control ID of the embedded ActiveX control. For this example, use
IDC_CIRCCTRL1 .

The Properties window displays a list of events that can be fired by the embedded ActiveX control. Any
member function shown in bold already has handler functions assigned to it.

4. Select the event you want the dialog class to handle. For this example, select Click.

5. From the drop-down list box on the right, select <Add> ClickCircctrl1.

6. Double-click the new handler function from Class View to jump to the event handler code in the
implementation (.CPP) file of CContainerDlg .

ActiveX Control Containers

ActiveX Control Containers: Viewing and Modifying
Control Properties
3/4/2019 • 2 minutes to read • Edit Online

To view the properties of a controlTo view the properties of a control

See also

When you insert an ActiveX control into a project, it is useful to view and change the properties supported by the
ActiveX control. This article discusses how to use the Visual C++ resource editor to do this.

If your ActiveX control container application uses embedded controls, you can view and modify the control's
properties while in the resource editor. You can also use the resource editor to set property values during design
time. The resource editor then automatically saves these values in the project's resource file. Any instance of the
control will then have its properties initialized to these values.

This procedure assumes that you have inserted a control into your project. For information, see ActiveX Control
Containers: Inserting a Control Into a Control Container Application.

The first step in viewing the control's properties is to add an instance of the control to the project's dialog template.

1. In Resource View, open the Dialog folder.

2. Open your main dialog box template.

3. Insert an ActiveX control using the Insert ActiveX Control dialog box. For more information, see Viewing
and Adding ActiveX Controls to a Dialog Box.

4. Select the ActiveX control in the dialog box.

5. From the Properties window, click the Properties button.

Use the Properties dialog box to modify and test new properties immediately.

ActiveX Control Containers

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/activex-control-containers-viewing-and-modifying-control-properties.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/viewing-and-adding-activex-controls-to-a-dialog-box

ActiveX Control Containers: Programming ActiveX
Controls in an ActiveX Control Container
3/4/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Procedures
To add the Circ control to the dialog templateTo add the Circ control to the dialog template

Modifications to the Project

#include "circ.h"

This article describes the process for accessing the exposed methods and properties of embedded ActiveX
controls.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

Basically, you will follow these steps:

1. Insert an ActiveX control into the ActiveX container project using Gallery.

2. Define a member variable (or other form of access) of the same type as the ActiveX control wrapper class.

3. Program the ActiveX control using predefined member functions of the wrapper class.

For this discussion, assume you've created a dialog-based project (named Container) with ActiveX control
support. The Circ sample control, Circ, will be added to the resulting project.

Once the Circ control is inserted into the project (step 1), insert an instance of the Circ control into the
application's main dialog box.

1. Load the ActiveX control container project. For this example, use the Container project.

2. Click the Resource View tab.

3. Open the Dialog folder.

4. Double-click the main dialog box template. For this example, use IDD_CONTAINER_DIALOG.

5. Click the Circ control icon on the Toolbox.

6. Click a spot within the dialog box to insert the Circ control.

7. From the File menu, choose Save All to save all modifications to the dialog box template.

To enable the Container application to access the Circ control, Visual C++ automatically adds the wrapper class (
CCirc) implementation file (.CPP) to the Container project and the wrapper class header (.H) file to the dialog box

header file:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/programming-activex-controls-in-a-activex-control-container.md

 The Wrapper Class Header (.H) File

class CCirc : public CWnd
{

// Functions
//

 void AboutBox()
 {
 InvokeHelper(DISPID_ABOUTBOX, DISPATCH_METHOD, VT_EMPTY, NULL, NULL);
 }

// Properties
//

 unsigned long GetBackColor()
 {
 unsigned long result;
 GetProperty(DISPID_BACKCOLOR, VT_UI4, (void*)&result);
 return result;
 }
 void SetBackColor(unsigned long propVal)
 {
 SetProperty(DISPID_BACKCOLOR, VT_UI4, propVal);
 }
 signed char GetCircleShape()
 {
 signed char result;
 GetProperty(0x1, VT_I1, (void*)&result);
 return result;
 }
 void SetCircleShape(signed char propVal)
 {
 SetProperty(0x1, VT_I1, propVal);
 }
 short GetCircleOffset()
 {
 short result;
 GetProperty(0x3, VT_I2, (void*)&result);
 return result;
 }
 void SetCircleOffset(short propVal)
 {
 SetProperty(0x3, VT_I2, propVal);
 }
 CString GetCaption()
 {
 CString result;
 GetProperty(DISPID_CAPTION, VT_BSTR, (void*)&result);
 return result;
 }
 void SetCaption(CString propVal)
 {
 SetProperty(DISPID_CAPTION, VT_BSTR, propVal);
 }
 COleFont GetFont()
 {
 LPDISPATCH result;
 GetProperty(DISPID_FONT, VT_DISPATCH, (void*)&result);
 return COleFont(result);

To get and set properties (and invoke methods) for the Circ control, the CCirc wrapper class provides a
declaration of all exposed methods and properties. In the example, these declarations are found in CIRC.H. The
following sample is the portion of class CCirc that defines the exposed interfaces of the ActiveX control:

 return COleFont(result);
 }
 void SetFont(LPDISPATCH propVal)
 {
 SetProperty(DISPID_FONT, VT_DISPATCH, propVal);
 }
 unsigned long GetForeColor()
 {
 unsigned long result;
 GetProperty(DISPID_FORECOLOR, VT_UI4, (void*)&result);
 return result;
 }
 void SetForeColor(unsigned long propVal)
 {
 SetProperty(DISPID_FORECOLOR, VT_UI4, propVal);
 }
 CString GetNote()
 {
 CString result;
 GetProperty(0x4, VT_BSTR, (void*)&result);
 return result;
 }
 void SetNote(CString propVal)
 {
 SetProperty(0x4, VT_BSTR, propVal);
 }
 unsigned long GetFlashColor()
 {
 unsigned long result;
 GetProperty(0x2, VT_UI4, (void*)&result);
 return result;
 }
 void SetFlashColor(unsigned long propVal)
 {
 SetProperty(0x2, VT_UI4, propVal);
 }
};

Member Variable Modifications to the Project

These functions can then be called from other of the application's procedures using normal C++ syntax. For more
information on using this member function set to access the control's methods and properties, see the section
Programming the ActiveX control.

Once the ActiveX control has been added to the project and embedded in a dialog box container, it can be
accessed by other parts of the project. The easiest way to access the control is to create a member variable of the
dialog class, CContainerDlg (step 2), that is of the same type as the wrapper class added to the project by Visual
C++. You can then use the member variable to access the embedded control at any time.

When the Add Member Variable dialog box adds the m_circctl member variable to the project, it also adds the
following lines to the header file (.H) of the CContainerDlg class:

class CContainerDlg : public CDialog
{
 DECLARE_DYNAMIC(CContainerDlg)

public:
 CContainerDlg(CWnd* pParent = NULL); // standard constructor
 virtual ~CContainerDlg();

 virtual void OnFinalRelease();

// Dialog Data
 enum { IDD = IDD_CONTAINER_DIALOG };

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

 DECLARE_MESSAGE_MAP()
 DECLARE_DISPATCH_MAP()
 DECLARE_INTERFACE_MAP()
public:
 CCirc m_circctl;

};

DDX_Control(pDX, IDC_CIRCCTRL1, m_circctl);

Programming the ActiveX Control

BOOL CContainerDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 m_circctl.SetCaption(_T("Circ 2 Control"));
 if(!m_circctl.GetCircleShape())
 m_circctl.SetCircleShape(TRUE);

 return TRUE; // return TRUE unless you set the focus to a control
}

In addition, a call to DDX_Control is automatically added to the CContainerDlg 's implementation of
DoDataExchange :

At this point, you have inserted the ActiveX control into your dialog template and created a member variable for it.
You can now use common C++ syntax to access the properties and methods of the embedded control.

As noted (in The Wrapper Class Header (.H) File), the header file (.H) for the CCirc wrapper class, in this case
CIRC.H, contains a list of member functions that you can use to get and set any exposed property value. Member
functions for exposed methods are also available.

A common place to modify the control's properties is in the OnInitDialog member function of the main dialog
class. This function is called just before the dialog box appears and is used to initialize its contents, including any of
its controls.

The following code example uses the m_circctl member variable to modify the Caption and CircleShape
properties of the embedded Circ control:

See also
ActiveX Control Containers

ActiveX Control Containers: Using Controls in a Non-
Dialog Container
3/4/2019 • 2 minutes to read • Edit Online

To dynamically create an ActiveX control in a non-dialog windowTo dynamically create an ActiveX control in a non-dialog window

In some applications, such as an SDI or MDI application, you will want to embed a control in a window of the
application. The Create member function of the wrapper class, inserted by Visual C++, can create an instance of
the control dynamically, without the need for a dialog box.

The Create member function has the following parameters:

lpszWindowName
A pointer to the text to be displayed in the control's Text or Caption property (if any).

dwStyle
Windows styles. For a complete list, see CWnd::CreateControl.

rect
Specifies the control's size and position.

pParentWnd
Specifies the control's parent window, usually a CDialog . It must not be NULL.

nID
Specifies the control ID and can be used by the container to refer to the control.

One example of using this function to dynamically create an ActiveX control would be in a form view of an SDI
application. You could then create an instance of the control in the WM_CREATE handler of the application.

For this example, CMyView is the main view class, CCirc is the wrapper class, and CIRC.H is the header (.H) file of
the wrapper class.

Implementing this feature is a four-step process.

#include "circ.h"

class CMyView : public CView
{

protected:
 CCirc m_myCtl;
public:
 afx_msg void OnViewCircdlg();
};

1. Insert CIRC.H in CMYVIEW.H, just before the CMyView class definition:

2. Add a member variable (of type CCirc) to the protected section of the CMyView class definition located in
CMYVIEW.H:

3. Add a WM_CREATE message handler to class CMyView .

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/activex-control-containers-using-controls-in-a-non-dialog-container.md

See also

int CMyView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 m_myCtl.Create(NULL, WS_VISIBLE, CRect(50,50,100,100), this, 0);
 m_myCtl.SetCaption(_T("Control created"));

 return 0;
}

4. In the handler function, CMyView::OnCreate , make a call to the control's Create function using the this
pointer as the parent window:

5. Rebuild the project. A Circ control will be created dynamically whenever the application's view is created.

ActiveX Control Containers

Testing Properties and Events with Test Container
3/4/2019 • 2 minutes to read • Edit Online

To access the ActiveX Control Test ContainerTo access the ActiveX Control Test Container

To test your ActiveX controlTo test your ActiveX control

To test propertiesTo test properties

To test events and specify the destination of event information.To test events and specify the destination of event information.

See also

The Test Container application, shipped in Visual C++, is an ActiveX control container for testing and debugging
ActiveX controls. Test Container allows the control developer to test the control's functionality by changing its
properties, invoking its methods, and firing its events. Test Container can display logs of data-binding
notifications and also provides facilities for testing an ActiveX control's persistence functionality: you can save
properties to a stream or to substorage, reload them, and examine the stored stream data. This section describes
how to use the basic features of Test Container. For additional information, select the Help menu while running
Test Container.

1. Build the TSTCON Sample: ActiveX Control Test Container.

NOTENOTE

1. On the Edit menu of Test Container, click Insert New Control.

2. In the Insert Control box, select the desired control and click OK. The control will appear in the control
container.

If your control is not listed in the Insert Control dialog box, make sure you have registered it with the Register
Controls command from the File menu of Test Container.

At this point you can test your control's properties or events.

1. On the Control menu, click Invoke Methods.

2. In the Method Name drop-down list, select the PropPut method for the property you want to test.

3. Modify the Parameter Value or Parameter Type and click on the Set Value button.

4. Click Invoke to apply the new value to the object.

The property now contains the new value.

1. On the Options menu, click Logging.

2. Specify the destination of event information.

MFC ActiveX Controls
How to: Debug an ActiveX Control

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/testing-properties-and-events-with-test-container.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/visualstudio/debugger/how-to-debug-an-activex-control

Clipboard
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

This family of articles explains how to implement support for the Windows Clipboard in MFC applications. The
Windows Clipboard is used in two ways:

Implementing standard Edit menu commands, such as Cut, Copy, and Paste.

Implementing uniform data transfer with drag and drop (OLE).

The Clipboard is the standard Windows method of transferring data between a source and a destination. It can
also be very useful in OLE operations. With the advent of OLE, there are two Clipboard mechanisms in Windows.
The standard Windows Clipboard API is still available, but it has been supplemented with the OLE data transfer
mechanism. OLE uniform data transfer (UDT) supports Cut, Copy, and Paste with the Clipboard and drag and
drop.

The Clipboard is a system service shared by the entire Windows session, so it does not have a handle or class of
its own. You manage the Clipboard through member functions of class CWnd.

When to use each Clipboard mechanism

Using the traditional Windows Clipboard API

Using the OLE Clipboard mechanism

Copying and pasting data

Adding other formats

The Windows Clipboard

Implementing drag and drop (OLE)

User Interface Elements

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/clipboard.md
https://msdn.microsoft.com/library/ms648709

Clipboard: When to Use Each Clipboard Mechanism
3/4/2019 • 2 minutes to read • Edit Online

What do you want to do

See also

Follow these guidelines in using the Clipboard:

Use the OLE Clipboard mechanism now to enable new capabilities in the future. While the standard
Clipboard API will be maintained, the OLE mechanism is the future of data transfer.

Use the OLE Clipboard mechanism if you are writing an OLE application or you want any of the OLE
features, such as drag and drop.

Use the OLE Clipboard mechanism if you are providing OLE formats.

Use the OLE Clipboard mechanism

Use the Windows Clipboard mechanism

Clipboard

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/clipboard-when-to-use-each-clipboard-mechanism.md

Clipboard: Using the Windows Clipboard
3/4/2019 • 2 minutes to read • Edit Online

void CMyListView::OnEditCopy()
{
 if (!OpenClipboard())
 {
 AfxMessageBox(_T("Cannot open the Clipboard"));
 return;
 }
 // Remove the current Clipboard contents
 if(!EmptyClipboard())
 {
 AfxMessageBox(_T("Cannot empty the Clipboard"));
 return;
 }
 // Get the currently selected data
 HGLOBAL hGlob = GlobalAlloc(GMEM_FIXED, 64);
 strcpy_s((char*)hGlob, 64, "Current selection\r\n");
 // For the appropriate data formats...
 if (::SetClipboardData(CF_TEXT, hGlob) == NULL)
 {
 CString msg;
 msg.Format(_T("Unable to set Clipboard data, error: %d"), GetLastError());
 AfxMessageBox(msg);
 CloseClipboard();
 GlobalFree(hGlob);
 return;
 }
 CloseClipboard();
}

This topic describes how to use the standard Windows Clipboard API within your MFC application.

Most applications for Windows support cutting or copying data to the Windows Clipboard and pasting data from
the Clipboard. The Clipboard data formats vary among applications. The framework supports only a limited
number of Clipboard formats for a limited number of classes. You will normally implement the Clipboard-related
commands — Cut, Copy, and Paste — on the Edit menu for your view. The class library defines the command IDs
for these commands: ID_EDIT_CUT, ID_EDIT_COPY , and ID_EDIT_PASTE . Their message-line prompts are
also defined.

Messages and Commands in the Framework explains how to handle menu commands in your application by
mapping the menu command to a handler function. As long as your application does not define handler functions
for the Clipboard commands on the Edit menu, they remain disabled. To write handler functions for the Cut and
Copy commands, implement selection in your application. To write a handler function for the Paste command,
query the Clipboard to see whether it contains data in a format your application can accept. For example, to enable
the Copy command, you might write a handler something like the following:

The Cut, Copy, and Paste commands are only meaningful in certain contexts. The Cut and Copy commands should
be enabled only when something is selected, and the Paste command only when something is in the Clipboard.
You can provide this behavior by defining update handler functions that enable or disable these commands
depending on the context. For more information, see How to Update User-Interface Objects.

The Microsoft Foundation Class Library does provide Clipboard support for text editing with the CEdit and
CEditView classes. The OLE classes also simplify implementing Clipboard operations that involve OLE items. For

more information on the OLE classes, see Clipboard: Using the OLE Clipboard Mechanism.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/clipboard-using-the-windows-clipboard.md

What do you want to know more about

See also

Implementing other Edit menu commands, such as Undo (ID_EDIT_UNDO) and Redo (ID_EDIT_REDO), is also
left to you. If your application does not support these commands, you can easily delete them from your resource
file using the Visual C++ resource editors.

Copying and pasting data

Using the OLE Clipboard mechanism

Clipboard

Clipboard: Using the OLE Clipboard Mechanism
3/4/2019 • 2 minutes to read • Edit Online

void CMyListView::OnEditCut()
{
 // Create an OLE data source on the heap
 COleDataSource* pData = new COleDataSource;
 // Get the currently selected data
 HGLOBAL hGlob = GlobalAlloc(GMEM_FIXED, 64);
 strcpy_s((char*)hGlob, 64, "Current selection\r\n");
 // For the appropriate data formats...
 pData->CacheGlobalData(CF_TEXT, hGlob);
 // The Clipboard now owns the allocated memory
 // and will delete this data object
 // when new data is put on the Clipboard
 pData->SetClipboard();
}

What do you want to know more about

OLE uses standard formats and some OLE-specific formats for transferring data through the Clipboard.

When you cut or copy data from an application, the data is stored on the Clipboard to be used later in paste
operations. This data is in a variety of formats. When a user chooses to paste data from the Clipboard, the
application can choose which of these formats to use. The application should be written to choose the format that
provides the most information, unless the user specifically asks for a certain format, using Paste Special. Before
continuing, you may want to read the Data Objects and Data Sources (OLE) topics. They describe the
fundamentals of how data transfers work, and how to implement them in your applications.

Windows defines a number of standard formats that can be used for transferring data through the Clipboard.
These include metafiles, text, bitmaps, and others. OLE defines a number of OLE-specific formats, as well. For
applications that need more detail than given by these standard formats, it is a good idea to register their own
custom Clipboard formats. Use the Win32 API function RegisterClipboardFormat to do this.

For example, Microsoft Excel registers a custom format for spreadsheets. This format carries much more
information than, for example, a bitmap does. When this data is pasted into an application that supports the
spreadsheet format, all the formulas and values from the spreadsheet are retained and can be updated if
necessary. Microsoft Excel also puts data on the Clipboard in formats so that it can be pasted as an OLE item. Any
OLE document container can paste this information as an embedded item. This embedded item can be changed
using Microsoft Excel. The Clipboard also contains a simple bitmap of the image of the selected range on the
spreadsheet. This can also be pasted into OLE document containers or into bitmap editors, like Paint. In the case
of a bitmap, however, there is no way to manipulate the data as a spreadsheet.

To retrieve the maximum amount of information from the Clipboard, applications should check for these custom
formats before pasting data from the Clipboard.

For example, to enable the Cut command, you might write a handler something like the following:

Copying and pasting data

Adding other formats

Using the Windows Clipboard

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/clipboard-using-the-ole-clipboard-mechanism.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata

See also

OLE

OLE data objects and data sources and uniform data transfer

Clipboard

Clipboard: Copying and Pasting Data
3/4/2019 • 2 minutes to read • Edit Online

Copying or Cutting Data
To copy data to the ClipboardTo copy data to the Clipboard

Pasting Data

To paste data from the ClipboardTo paste data from the Clipboard

This topic describes the minimum work necessary to implement copying to and pasting from the Clipboard in
your OLE application. It is recommended that you read the Data Objects and Data Sources (OLE) topics before
proceeding.

Before you can implement either copying or pasting, you must first provide functions to handle the Copy, Cut, and
Paste options on the Edit menu.

1. Determine whether the data to be copied is native data or is an embedded or linked item.

If the data is embedded or linked, obtain a pointer to the COleClientItem object that has been
selected.

If the data is native and the application is a server, create a new object derived from COleServerItem
containing the selected data. Otherwise, create a COleDataSource object for the data.

2. Call the selected item's CopyToClipboard member function.

3. If the user chose a Cut operation instead of a Copy operation, delete the selected data from your
application.

To see an example of this sequence, see the OnEditCut and OnEditCopy functions in the MFC OLE sample
programs OCLIENT and HIERSVR. Note that these samples maintain a pointer to the currently selected data, so
step 1 is already complete.

Pasting data is more complicated than copying it because you need to choose the format to use in pasting the data
into your application.

1. In your view class, implement OnEditPaste to handle users choosing the Paste option from the Edit menu.

2. In the OnEditPaste function, create a COleDataObject object and call its AttachClipboard member function
to link this object to the data on the Clipboard.

3. Call COleDataObject::IsDataAvailable to check whether a particular format is available.

Alternately, you can use COleDataObject::BeginEnumFormats to look for other formats until you find one
most suited to your application.

4. Perform the paste of the format.

For an example of how this works, see the implementation of the OnEditPaste member functions in the view
classes defined in the MFC OLE sample programs OCLIENT and HIERSVR.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/clipboard-copying-and-pasting-data.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

TIPTIP

What do you want to know more aboutWhat do you want to know more about

See also

The main benefit of separating the paste operation into its own function is that the same paste code can be used when data
is dropped in your application during a drag-and-drop operation. As in OCLIENT and HIERSVR, your OnDrop function can
also call DoPasteItem , reusing the code written to implement Paste operations.

To handle the Paste Special option on the Edit menu, see the topic Dialog Boxes in OLE.

Adding other formats

OLE data objects and data sources and uniform data transfer

OLE drag and drop

OLE

Clipboard: Using the OLE Clipboard Mechanism

Clipboard: Adding Other Formats
3/4/2019 • 2 minutes to read • Edit Online

Registering Custom Formats

Placing Formats on the Clipboard

To place formats on the ClipboardTo place formats on the Clipboard

What do you want to know more aboutWhat do you want to know more about

See also

This topic explains how to expand the list of supported formats, particularly for OLE support. The topic Clipboard:
Copying and Pasting Data describes the minimum implementation necessary to support copying and pasting
from the Clipboard. If this is all you implement, the only formats placed on the Clipboard are
CF_METAFILEPICT, CF_EMBEDSOURCE , CF_OBJECTDESCRIPTOR, and possibly CF_LINKSOURCE . Most
applications will need more formats on the Clipboard than these three.

To create your own custom formats, follow the same procedure you would use when registering any custom
Clipboard format: pass the name of the format to the RegisterClipboardFormat function and use its return value
as the format ID.

To add more formats to those placed on the Clipboard, you must override the OnGetClipboardData function in the
class you derived from either COleClientItem or COleServerItem (depending on whether the data to be copied is
native). In this function, you should use the following procedure.

1. Create a COleDataSource object.

2. Pass this data source to a function that adds your native data formats to the list of supported formats by
calling COleDataSource::CacheGlobalData .

3. Add standard formats by calling COleDataSource::CacheGlobalData for each standard format you want to
support.

This technique is used in the MFC OLE sample program HIERSVR (examine the OnGetClipboardData member
function of the CServerItem class). The only difference in this sample is that step three is not implemented
because HIERSVR supports no other standard formats.

OLE data objects and data sources and uniform data transfer

OLE drag and drop

OLE

Clipboard: Using the OLE Clipboard Mechanism

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/clipboard-adding-other-formats.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Controls (MFC)
3/4/2019 • 3 minutes to read • Edit Online

Windows Common Controls

ActiveX Controls

Other MFC Control Classes

Finding Information About Windows Common Controls

Windows Common Controls and MFC ClassesWindows Common Controls and MFC Classes

CONTROL MFC CLASS DESCRIPTION NEW IN WINDOWS 95

Controls are objects that users can interact with to enter or manipulate data. They
commonly appear in dialog boxes or on toolbars. This topic family covers three main kinds
of controls:

Windows common controls, including owner-drawn controls

ActiveX Controls

Other control classes supplied by the Microsoft Foundation Class Library (MFC)

The Windows operating system has always provided a number of Windows common
controls. These control objects are programmable, and the Visual C++ dialog editor
supports adding them to your dialog boxes. The Microsoft Foundation Class Library (MFC)
supplies classes that encapsulate each of these controls, as shown in the table Windows
Common Controls and MFC Classes. (Some items in the table have related topics that
describe them further. For controls that lack topics, see the documentation for the MFC
class.)

Class CWnd is the base class of all window classes, including all of the control classes.

ActiveX controls, formerly known as OLE controls, can be used in dialog boxes in your
applications for Windows, or in HTML pages on the World Wide Web. For more
information, see MFC ActiveX Controls.

In addition to classes that encapsulate all of the Windows common controls and that
support programming your own ActiveX controls (or using ActiveX controls supplied by
others), MFC supplies the following control classes of its own:

CBitmapButton

CCheckListBox

CDragListBox

The table below briefly describes each of the Windows common controls, including the
control's MFC wrapper class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/controls-mfc.md

animation CAnimateCtrl Displays successive
frames of an AVI
video clip

Yes

button CButton Pushbuttons that
cause an action; also
used for check boxes,
radio buttons, and
group boxes

No

combo box CComboBox Combination of an
edit box and a list box

No

date and time picker CDateTimeCtrl Allows the user to
choose a specific date
or time value

Yes

edit box CEdit Boxes for entering
text

No

extended combo box CComboBoxEx A combo box control
with the ability to
display images

Yes

header CHeaderCtrl Button that appears
above a column of
text; controls width of
text displayed

Yes

hotkey CHotKeyCtrl Window that enables
user to create a "hot
key" to perform an
action quickly

Yes

image list CImageList Collection of images
used to manage large
sets of icons or
bitmaps (image list
isn't really a control; it
supports lists used by
other controls)

Yes

list CListCtrl Window that displays
a list of text with icons

Yes

list box CListBox Box that contains a
list of strings

No

month calendar CMonthCalCtrl Control that displays
date information

Yes

progress CProgressCtrl Window that indicates
progress of a long
operation

Yes

CONTROL MFC CLASS DESCRIPTION NEW IN WINDOWS 95

rebar CRebarCtrl Tool bar that can
contain additional
child windows in the
form of controls

Yes

rich edit CRichEditCtrl Window in which user
can edit with
character and
paragraph formatting
(see Classes Related
to Rich Edit Controls)

Yes

scroll bar CScrollBar Scroll bar used as a
control inside a dialog
box (not on a window)

No

slider CSliderCtrl Window containing a
slider control with
optional tick marks

Yes

spin button CSpinButtonCtrl Pair of arrow buttons
user can click to
increment or
decrement a value

Yes

static-text CStatic Text for labeling other
controls

No

status bar CStatusBarCtrl Window for displaying
status information,
similar to MFC class
CStatusBar

Yes

tab CTabCtrl Analogous to the
dividers in a
notebook; used in
"tab dialog boxes" or
property sheets

Yes

toolbar CToolBarCtrl Window with
command-generating
buttons, similar to
MFC class CToolBar

Yes

tool tip CToolTipCtrl Small pop-up window
that describes
purpose of a toolbar
button or other tool

Yes

tree CTreeCtrl Window that displays
a hierarchical list of
items

Yes

CONTROL MFC CLASS DESCRIPTION NEW IN WINDOWS 95

What do you want to know more aboutWhat do you want to know more about
An individual control: see the table Windows Common Controls and MFC Classes in
this topic for links to all controls

See also

Making and using controls

Using the dialog editor to add controls

Adding controls to a dialog box by hand

Deriving control classes from the MFC control classes

Using common controls as child windows

Notifications from common controls

Add common controls to a dialog box.

Derive a control from a standard Windows control

Access dialog-box controls with type safety

Receive notification messages from common controls

Samples

For information about Windows common controls in the Windows SDK, see Common
Controls.

User Interface Elements
Dialog Editor

https://docs.microsoft.com/windows/desktop/Controls/common-controls-intro

Common Control Sample List
3/4/2019 • 2 minutes to read • Edit Online

See also

See the following sample programs that illustrate common controls:

CMNCTRL1

CMNCTRL2

CTRLTEST

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/common-control-sample-list.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Making and Using Controls
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

You make most controls for dialog boxes in the Visual C++ dialog editor. But you can also create controls in any
dialog box or window.

Using common controls in a dialog box

Using the dialog editor to add controls

Adding controls by hand (without the dialog editor)

Deriving controls from a standard control

Using a common control as a child window

Receiving notification from common controls

Dialog Data Exchange and Validation

Type-Safe Access to Controls With Code Wizards

Individual controls: see Controls for links to all common controls

Dialog boxes

Dialog bars

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/making-and-using-controls.md

Using Common Controls in a Dialog Box
3/4/2019 • 2 minutes to read • Edit Online

Procedures
To use a common control in a dialog boxTo use a common control in a dialog box

Remarks

What do you want to do

The Windows common controls can be used in dialog boxes, form views, record views, and any other window
based on a dialog template. The following procedure, with minor changes, will work for forms as well.

NOTENOTE

NOTENOTE

NOTENOTE

1. Place the control on the dialog template using the dialog editor.

2. Add to the dialog class a member variable that represents the control. In the Add Member Variable dialog
box, check Control variable and ensure that Control is selected for the Category.

3. If this common control is providing input to the program, declare additional member variable(s) in the
dialog class to handle those input values.

You can add these member variables using the context menu in Class View (see Adding a Member Variable).

4. In OnInitDialog for your dialog class, set the initial conditions for the common control. Using the member
variable created in the previous step, use the member functions to set initial value and other settings. See
the following descriptions of the controls for details on settings.

You can also use dialog data exchange (DDX) to initialize controls in a dialog box.

5. In handlers for controls on the dialog box, use the member variable to manipulate the control. See the
following descriptions of the controls for details on methods.

The member variable will exist only as long as the dialog box itself exists. You will not be able to query the control for
input values after the dialog box has been closed. To work with input values from a common control, override OnOK

in your dialog class. In your override, query the control for input values and store those values in member variables
of the dialog class.

You can also use dialog data exchange to set or retrieve values from the controls in a dialog box.

The addition of some common controls to a dialog box will cause the dialog box to no longer function. Refer to
Adding Controls to a Dialog Causes the Dialog to No Longer Function for more information on handling this
situation.

Add controls to a dialog box by hand instead of with the dialog editor

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-common-controls-in-a-dialog-box.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/adding-controls-to-a-dialog-causes-the-dialog-to-no-longer-function

See also

Derive my control from one of the standard Windows common controls

Use a common control as a child window

Receive notification messages from a control

Use dialog data exchange (DDX)

Making and Using Controls
Controls

Using the Dialog Editor to Add Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

When you create your dialog-template resource with the dialog editor, you drag controls from a controls palette
and drop them into the dialog box. This adds the specifications for that control type to the dialog-template
resource. When you construct a dialog object and call its Create or DoModal member function, the framework
creates a Windows control and places it in the dialog window on screen.

You can instead create controls by hand if you want. This is more work.

Making and Using Controls
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-the-dialog-editor-to-add-controls.md

Adding Controls By Hand
3/4/2019 • 2 minutes to read • Edit Online

class CCustomDialog : public CDialog
{
 CEdit m_edit;
 virtual BOOL OnInitDialog();
};

BOOL CCustomDialog::OnInitDialog()
{
 CDialog::OnInitDialog();
 CRect rect(85, 110, 180, 210);

 m_edit.Create(WS_CHILD | WS_VISIBLE | WS_TABSTOP |
 ES_AUTOHSCROLL | WS_BORDER, rect, this, IDC_EXTRA_EDIT);
 m_edit.SetFocus();
 return FALSE;
}

See also

You can either add controls to a dialog box with the dialog editor or add them yourself, with code.

To create a control object yourself, you will usually embed the C++ control object in a C++ dialog or frame-
window object. Like many other objects in the framework, controls require two-stage construction. You should call
the control's Create member function as part of creating the parent dialog box or frame window. For dialog
boxes, this is usually done in OnInitDialog, and for frame windows, in OnCreate.

The following example shows how you might declare a CEdit object in the class declaration of a derived dialog
class and then call the Create member function in OnInitDialog . Because the CEdit object is declared as an
embedded object, it is automatically constructed when the dialog object is constructed, but it must still be
initialized with its own Create member function.

The following OnInitDialog function sets up a rectangle, then calls Create to create the Windows edit control
and attach it to the uninitialized CEdit object.

After creating the edit object, you can also set the input focus to the control by calling the SetFocus member
function. Finally, you return 0 from OnInitDialog to show that you set the focus. If you return a nonzero value, the
dialog manager sets the focus to the first control item in the dialog item list. In most cases, you'll want to add
controls to your dialog boxes with the dialog editor.

Making and Using Controls
Controls
CDialog::OnInitDialog

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/adding-controls-by-hand.md

Deriving Controls from a Standard Control
3/4/2019 • 2 minutes to read • Edit Online

To create a derived control classTo create a derived control class

To place your derived control in a dialog boxTo place your derived control in a dialog box

BOOL CSubDialog::OnInitDialog()
{
 CDialog::OnInitDialog();

 m_wndMyBtn.SubclassDlgItem(IDC_MYBTN, this);

 return TRUE;
}

See also

As with any CWnd-derived class, you can modify a control's behavior by deriving a new class from an existing
control class.

1. Derive your class from an existing control class and optionally override the Create member function so
that it provides the necessary arguments to the base-class Create function.

2. Provide message-handler member functions and message-map entries to modify the control's behavior in
response to specific Windows messages. See Mapping Messages to Functions.

3. Provide new member functions to extend the functionality of the control (optional).

Using a derived control in a dialog box requires extra work. The types and positions of controls in a dialog box are
normally specified in a dialog-template resource. If you create a derived control class, you cannot specify it in a
dialog template since the resource compiler knows nothing about your derived class.

1. Embed an object of the derived control class in the declaration of your derived dialog class.

2. Override the OnInitDialog member function in your dialog class to call the SubclassDlgItem member
function for the derived control.

SubclassDlgItem "dynamically subclasses" a control created from a dialog template. When a control is
dynamically subclassed, you hook into Windows, process some messages within your own application, then pass
the remaining messages on to Windows. For more information, see the SubclassDlgItem member function of
class CWnd in the MFC Reference. The following example shows how you might write an override of
OnInitDialog to call SubclassDlgItem :

Because the derived control is embedded in the dialog class, it will be constructed when the dialog box is
constructed, and it will be destroyed when the dialog box is destroyed. Compare this code to the example in
Adding Controls By Hand.

Making and Using Controls
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/deriving-controls-from-a-standard-control.md

Using a Common Control as a Child Window
3/4/2019 • 2 minutes to read • Edit Online

To use a common control as a child windowTo use a common control as a child window

See also

Any of the Windows common controls can be used as a child window of any other window. The following
procedure describes how to create a common control dynamically and then work with it.

1. Define the control in the related class or handler.

2. Use the control's override of the CWnd::Create method to create the Windows control.

3. After the control has been created (as early as the OnCreate handler if you subclass the control), you can
manipulate the control using its member functions. See the descriptions of individual controls at Controls
for details on methods.

4. When you are finished with the control, use CWnd::DestroyWindow to destroy the control.

Making and Using Controls
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-a-common-control-as-a-child-window.md

Receiving Notification from Common Controls
3/4/2019 • 2 minutes to read • Edit Online

Retrieving the Cursor Position in a Notification Message

NOTENOTE

CPoint cursorPos;
cursorPos.x = GetCurrentMessage()->pt.x;
cursorPos.y = GetCurrentMessage()->pt.y;

See also

Common controls are child windows that send notification messages to the parent window when events, such as
input from the user, occur in the control.

The application relies on these notification messages to determine what action the user wants it to take. Most
common controls send notification messages as WM_NOTIFY messages. Windows controls send most
notification messages as WM_COMMAND messages. CWnd::OnNotify is the handler for the WM_NOTIFY
message. As with CWnd::OnCommand , the implementation of OnNotify dispatches the notification message to
OnCmdMsg for handling in message maps. The message-map entry for handling notifications is ON_NOTIFY. For

more information, see Technical Note 61: ON_NOTIFY and WM_NOTIFY Messages.

Alternately, a derived class can handle its own notification messages using "message reflection." For more
information, see Technical Note 62: Message Reflection for Windows Controls.

On occasion, it is useful to determine the current position of the cursor when certain notification messages are
received by a common control. For example, it would be helpful to determine the current cursor location when a
common control receives a NM_RCLICK notification message.

There is a simple way to accomplish this by calling CWnd::GetCurrentMessage . However, this method only retrieves
the cursor position at the time the message was sent. Because the cursor may have been moved since the
message was sent you must call CWnd::GetCursorPos to get the current cursor position.

CWnd::GetCurrentMessage should only be called within a message handler.

Add the following code to the body of the notification message handler (in this example, NM_RCLICK):

At this point, the mouse cursor location is stored in the cursorPos object.

Making and Using Controls
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/receiving-notification-from-common-controls.md

Using CAnimateCtrl
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

An animation control, represented by the class CAnimateCtrl, is a window that displays a clip in Audio Video
Interleaved (AVI) format — the standard Windows video/audio format. An AVI clip is a series of bitmap frames,
like a movie.

Since your thread continues executing while the AVI clip is displayed, one common use for an animation control is
to indicate system activity during a lengthy operation. For example, the Windows Find dialog box displays a
moving magnifying glass as the system searches for a file.

Animation controls can only play simple AVI clips, and they do not support sound. (For a complete list of
limitations, see CAnimateCtrl.) Since the capabilities of an animation control are severely limited and subject to
change, you should use an alternative such as the MCIWnd control if you need a control to provide multimedia
playback and/or recording capabilities. For more information about the MCIWnd control, see the multimedia
documentation.

Using an Animation Control

Notifications Sent by Animation Controls

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-canimatectrl.md

Using an Animation Control
3/4/2019 • 2 minutes to read • Edit Online

See also

Typical usage of an animation control follows the pattern below:

The control is created. If the control is specified in a dialog box template, creation is automatic when the
dialog box is created. (You should have a CAnimateCtrl member in your dialog class that corresponds to the
animation control.) Alternatively, you can use the Create member function to create the control as a child
window of any window.

Load an AVI clip into the animation control by calling the Open member function. If your animation control
is in a dialog box, a good place to do this is in the dialog class's OnInitDialog function.

Play the clip by calling the Play member function. If your animation control is in a dialog box, a good place
to do this is in the dialog class's OnInitDialog function. Calling Play is not necessary if the animation
control has the ACS_AUTOPLAY style set.

If you want to display portions of the clip or play it frame by frame, use the Seek member function. To stop
a clip that is playing, use the Stop member function.

If you are not going to destroy the control right away, remove the clip from memory by calling the Close

member function.

If the animation control is in a dialog box, it and the CAnimateCtrl object will be destroyed automatically. If
not, you need to ensure that both the control and the CAnimateCtrl object are properly destroyed.
Destroying the control automatically closes the AVI clip.

Using CAnimateCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-an-animation-control.md

Notifications Sent by Animation Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

An animation control (CAnimateCtrl) sends two different types of notification messages. The notifications are sent
in the form of WM_COMMAND messages.

The ACN_START message is sent when the animation control has started playing a clip. The ACN_STOP message
is sent when the animation control has finished or stopped playing a clip.

Using CAnimateCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/notifications-sent-by-animation-controls.md
https://docs.microsoft.com/windows/desktop/menurc/wm-command
https://docs.microsoft.com/windows/desktop/Controls/acn-start
https://docs.microsoft.com/windows/desktop/Controls/acn-stop

Using CDateTimeCtrl
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

What do you want to know more about

See also

The date and time picker control (CDateTimeCtrl) implements an intuitive and recognizable method of entering or
selecting a specific date. The main interface of the control is similar in functionality to a combo box. However, if
the user expands the control, a month calendar control appears (by default), allowing the user to specify a
particular date. When a date is chosen, the month calendar control automatically disappears.

To use both the CDateTimePicker and CMonthCalCtrl classes in your project, you must include AFXDTCTL.H, usually in
your project's STDAFX.H file.

Creating the Date and Time Picker Control

Date and Time Picker Control Examples

Accessing the Embedded Month Calendar Control

Using Custom Format Strings in a Date and Time Picker Control

Using Callback Fields in a Date and Time Picker Control

Processing Notification Messages in Date and Time Picker Controls

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-cdatetimectrl.md

Creating the Date and Time Picker Control
3/4/2019 • 2 minutes to read • Edit Online

To use CDateTimeCtrl directly in a dialog boxTo use CDateTimeCtrl directly in a dialog box

To use CDateTimeCtrl in a nondialog windowTo use CDateTimeCtrl in a nondialog window

See also

How the date and time picker control is created depends on whether you are using the control in a dialog box or
creating it in a nondialog window.

1. In the dialog editor, add a Date and Time Picker Control to your dialog template resource. Specify its control
ID.

2. Specify any styles required, using the Properties dialog box of the date and time picker control.

3. Use the Add Member Variable Wizard to add a member variable of type CDateTimeCtrl with the Control
property. You can use this member to call CDateTimeCtrl member functions.

4. Use the Properties window to map handler functions in the dialog class for any date time picker control
notification messages you need to handle (see Mapping Messages to Functions).

5. In OnInitDialog, set any additional styles for the CDateTimeCtrl object.

1. Declare the control in the view or window class.

2. Call the control's Create member function, possibly in OnInitialUpdate, possibly as early as the parent
window's OnCreate handler function (if you're subclassing the control). Set the styles for the control.

Using CDateTimeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-the-date-and-time-picker-control.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp

Date and Time Picker Control Examples
3/4/2019 • 2 minutes to read • Edit Online

See also

The CMNCTRL1 sample demonstrates the various attributes of the CDateTimeCtrl class. A separate page contains
a date and time picker control that the user can manipulate by changing various attributes and testing the basic
functionality of the control.

Using CDateTimeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/date-and-time-picker-control-examples.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Accessing the Embedded Month Calendar Control
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

void CMyDialog::OnDtnDropdownDatetimepicker1(NMHDR *pNMHDR, LRESULT *pResult)
{
 UNREFERENCED_PARAMETER(pNMHDR);

 //set the background color of the month to gray
 COLORREF clr= RGB(100, 100, 100);

 m_DateTimeCtrl.SetMonthCalColor(MCSC_MONTHBK, clr);

 *pResult = 0;
}

The embedded month calendar control object can be accessed from the CDateTimeCtrl object with a call to the
GetMonthCalCtrl member function.

The embedded month calendar control is used only when the date and time picker control does not have the
DTS_UPDOWN style set.

This is useful if you want to modify certain attributes before the embedded control is displayed. To accomplish this,
handle the DTN_DROPDOWN notification, retrieve the month calendar control (using
CDateTimeCtrl::GetMonthCalCtrl), and make your modifications. Unfortunately, the month calendar control is not
persistent.

In other words, when the user requests the display of the month calendar control, a new month calendar control is
created (before the DTN_DROPDOWN notification). The control is destroyed (after the DTN_CLOSEUP
notification) when dismissed by the user. This means that any attributes you modify, before the embedded control
is displayed, are lost when the embedded control is dismissed.

The following example demonstrates this procedure, using a handler for the DTN_DROPDOWN notification. The
code changes the background color of the month calendar control, with a call to SetMonthCalColor, to gray. The
code is as follows:

As stated previously, all modifications to properties of the month calendar control are lost, with two exceptions,
when the embedded control is dismissed. The first exception, the colors of the month calendar control, has already
been discussed. The second exception is the font used by the month calendar control. You can modify the default
font by making a call to CDateTimeCtrl::SetMonthCalFont, passing the handle of an existing font. The following
example (where m_dtPicker is the date and time control object) demonstrates one possible method:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/accessing-the-embedded-month-calendar-control.md

//create and initialize the font to be used
LOGFONT logFont = {0};
logFont.lfHeight = -12;
logFont.lfWeight = FW_NORMAL;
logFont.lfCharSet = DEFAULT_CHARSET;
 _tcscpy_s(logFont.lfFaceName, _countof(logFont.lfFaceName),
 _T("Verdana"));

m_MonthCalFont.CreateFontIndirect(&logFont);
m_DateTimeCtrl.SetMonthCalFont(m_MonthCalFont);

See also

Once the font has been changed, with a call to CDateTimeCtrl::SetMonthCalFont , the new font is stored and used the
next time a month calendar is to be displayed.

Using CDateTimeCtrl
Controls

Using Custom Format Strings in a Date and Time
Picker Control
3/4/2019 • 2 minutes to read • Edit Online

CString formatStr = _T("'Today is: 'yy'/'MM'/'dd");
m_DateTimeCtrl.SetFormat(formatStr);

See also

By default, date and time picker controls provide three format types (each format corresponding to a unique style)
for displaying the current date or time:

DTS_LONGDATEFORMAT Displays the date in long format, producing output like "Wednesday, January
3, 2000".

DTS_SHORTDATEFORMAT Displays the date in short format, producing output like "1/3/00".

DTS_TIMEFORMAT Displays the time in long format, producing output like "5:31:42 PM".

However, you can customize the appearance of the date or time by using a custom format string. This custom
string is made up of either existing format characters, nonformat characters, or a combination of both. Once the
custom string is built, make a call to CDateTimeCtrl::SetFormat passing in your custom string. The date and time
picker control will then display the current value using your custom format string.

The following example code (where m_dtPicker is the CDateTimeCtrl object) demonstrates one possible solution:

In addition to custom format strings, date and time picker controls also support callback fields.

Using CDateTimeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-custom-format-strings-in-a-date-and-time-picker-control.md

Using Callback Fields in a Date and Time Picker
Control
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

NOTENOTE

Initializing the Custom Format String

Handling the DTN_FORMATQUERY Notification

In addition to the standard format characters that define date and time picker fields, you can customize your
output by specifying certain parts of a custom format string as callback fields. To declare a callback field, include
one or more "X" characters (ASCII Code 88) anywhere in the body of the format string. For example, the following
string "'Today is: 'yy'/'MM'/'dd' (Day 'X')'"causes the date and time picker control to display the current value as
the year followed by the month, date, and finally the day of the year.

The number of X's in a callback field does not correspond to the number of characters that will be displayed.

You can distinguish between multiple callback fields in a custom string by repeating the "X" character. Thus, the
format string "XXddddMMMdd', 'yyyXXX" contains two unique callback fields, "XX" and "XXX".

Callback fields are treated as valid fields, so your application must be prepared to handle DTN_WMKEYDOWN notification
messages.

Implementing callback fields in your date and time picker control consists of three parts:

Initializing the custom format string

Handling the DTN_FORMATQUERY notification

Handling the DTN_FORMAT notification

Initialize the custom string with a call to CDateTimeCtrl::SetFormat . For more information, see Using Custom
Format Strings in a Date and Time Picker Control. A common place to set the custom format string is in the
OnInitDialog function of your containing dialog class or OnInitialUpdate function of your containing view class.

When the control parses the format string and encounters a callback field, the application sends DTN_FORMAT
and DTN_FORMATQUERY notification messages. The callback field string is included with the notifications so you
can determine which callback field is being queried.

The DTN_FORMATQUERY notification is sent to retrieve the maximum allowable size in pixels of the string that
will be displayed in the current callback field.

To properly calculate this value, you must calculate the height and width of the string, to be substituted for the
field, using the control's display font. The actual calculation of the string is easily achieved with a call to the
GetTextExtentPoint32 Win32 function. Once the size is determined, pass the value back to the application and exit
the handler function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-callback-fields-in-a-date-and-time-picker-control.md
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-gettextextentpoint32a

void CMyDialog::OnDtnFormatqueryDatetimepicker1(NMHDR *pNMHDR, LRESULT *pResult)
{
 LPNMDATETIMEFORMATQUERY pDTFormatQuery =
 reinterpret_cast<LPNMDATETIMEFORMATQUERY>(pNMHDR);
 CDC* pDC = NULL;
 CFont* pFont = NULL;
 CFont* pOrigFont = NULL;

 // Prepare the device context for the GetTextExtentPoint32 call.
 pDC = GetDC();
 if (NULL == pDC)
 {
 return;
 }

 pFont = GetFont();
 if(NULL == pFont)
 {
 pFont = new CFont();
 VERIFY(pFont->CreateStockObject(DEFAULT_GUI_FONT));
 }

 pOrigFont = pDC->SelectObject(pFont);

 // Check to see if this is the callback segment desired. If so,
 // use the longest text segment to determine the maximum
 // width of the callback field, and then place the information into
 // the NMDATETIMEFORMATQUERY structure.
 if(!_tcscmp(_T("X"), pDTFormatQuery->pszFormat))
 {
 ::GetTextExtentPoint32(pDC->m_hDC, _T("366"), 3, &pDTFormatQuery->szMax);
 }

 // Reset the font in the device context then release the context.
 pDC->SelectObject(pOrigFont);
 ReleaseDC(pDC);

 *pResult = 0;
}

Handling the DTN_FORMAT Notification

void CMyDialog::OnDtnFormatDatetimepicker1(NMHDR *pNMHDR, LRESULT *pResult)
{
 LPNMDATETIMEFORMAT pDTFormat = reinterpret_cast<LPNMDATETIMEFORMAT>(pNMHDR);

 COleDateTime oCurTime;

 m_DateTimeCtrl.GetTime(oCurTime);

 _itot_s(oCurTime.GetDayOfYear(), pDTFormat->szDisplay,
 sizeof(pDTFormat->szDisplay) / sizeof(TCHAR), 10);

 *pResult = 0;
}

The following example is one method of supplying the size of the callback string:

Once the size of the current callback field has been calculated, you must supply a value for the field. This is done in
the handler for the DTN_FORMAT notification.

The DTN_FORMAT notification is used by the application to request the character string that will be substituted.
The following example demonstrates one possible method:

NOTENOTE

See also

The pointer to the NMDATETIMEFORMAT structure is found by casting the first parameter of the notification handler to
the proper type.

Using CDateTimeCtrl
Controls

Processing Notification Messages in Date and Time
Picker Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

As users interact with the date and time picker control, the control (CDateTimeCtrl) sends notification messages to
its parent window, usually a view or dialog object. Handle these messages if you want to do something in
response. For example, when the user opens the date and time picker to display the embedded month calendar
control, the DTN_DROPDOWN notification is sent.

Use the Properties window to add notification handlers to the parent class for those messages you want to
implement.

The following list describes the various notifications sent by the date and time picker control.

DTN_DROPDOWN Notifies the parent that the embedded month calendar control is about to be displayed.
This notification is only sent when the DTS_UPDOWN style has not been set. For more information on this
notification, see Accessing the Embedded Month Calendar Control.

DTN_CLOSEUP Notifies the parent that the embedded month calendar control is about to be closed. This
notification is only sent when the DTS_UPDOWN style has not been set.

DTN_DATETIMECHANGE Notifies the parent that a change has occurred in the control.

DTN_FORMAT Notifies the parent that text is needed to be displayed in a callback field. For more
information on this notification and callback fields, see Using Callback Fields in a Date and Time Picker
Control.

DTN_FORMATQUERY Requests the parent to supply the maximum allowable size of the string that will be
displayed in a callback field. Handling this notification allows the control to properly display output at all
times, reducing flicker within the control's display. For more information on this notification, see Using
Callback Fields in a Date and Time Picker Control.

DTN_USERSTRING Notifies the parent that the user has finished editing the contents of the date and time
picker control. This notification is only sent when the DTS_APPCANPARSE style has been set.

DTN_WMKEYDOWN Notifies the parent when the user types in a callback field. Handle this notification to
emulate the same keyboard response supported for non-callback fields in a date and time picker control.
For more information on this notification, see Supporting Callback Fields in a DTP Control in the Windows
SDK.

Using CDateTimeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/processing-notification-messages-in-date-and-time-picker-controls.md
https://docs.microsoft.com/windows/desktop/Controls/date-and-time-picker-controls

Using CComboBoxEx
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

The extended combo box control is an extension of the standard combo box control that provides native support
for item images. These images can be used to indicate the status of individual items in the combo box, such as the
currently selected and unselected items. To make item images easily accessible, the control provides image list
support.

Use this control to provide the functionality of a combo box without having to manually draw item graphics.

Creating an Extended Combo Box Control

Using Image Lists in an Extended Combo Box Control

Setting the Images for an Individual Item

Processing Notification Messages in Extended Combo Box Controls

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-ccomboboxex.md

Creating an Extended Combo Box Control
3/4/2019 • 2 minutes to read • Edit Online

To use CComboBoxEx directly in a dialog boxTo use CComboBoxEx directly in a dialog box

To use CComboBoxEx in a nondialog windowTo use CComboBoxEx in a nondialog window

See also

How the extended combo box control is created depends on whether you are using the control in a dialog box or
creating it in a nondialog window.

1. In the dialog editor, add an Extended Combo Box control to your dialog template resource. Specify its
control ID.

2. Specify any styles required, using the Properties dialog box of the extended combo box control.

3. Use the Add Member Variable Wizard to add a member variable of type CComboBoxEx with the Control
property. You can use this member to call CComboBoxEx member functions.

4. Use the Properties window to map handler functions in the dialog class for any extended combo box
control notification messages you need to handle (see Mapping Messages to Functions).

5. In OnInitDialog, set any additional styles for the CComboBoxEx object.

1. Define the control in the view or window class.

2. Call the control's Create member function, possibly in OnInitialUpdate, possibly as early as the parent
window's OnCreate handler function. Set the styles for the control.

Using CComboBoxEx
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-an-extended-combo-box-control.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp

Using Image Lists in an Extended Combo Box Control
3/4/2019 • 2 minutes to read • Edit Online

To associate an image list with an extended combo box controlTo associate an image list with an extended combo box control

See also

The main feature of extended combo box controls is the ability to associate images from an image list with
individual items in a combo box control. Each item is able to display three different images: one for its selected
state, one for its nonselected state, and a third for an overlay image.

The following procedure associates an image list with an extended combo box control:

m_ComboImageList.Create(16, 16, ILC_COLOR, 2, 2);

m_ComboImageList.Add(AfxGetApp()->LoadIcon(IDI_ICON1));
m_ComboImageList.Add(AfxGetApp()->LoadIcon(IDI_ICON2));
m_ComboImageList.Add(AfxGetApp()->LoadIcon(IDI_ICON3));

1. Construct a new image list (or use an existing image list object), using the CImageList constructor and
storing the resultant pointer.

2. Initialize the new image list object by calling CImageList::Create. The following code is one example of this
call.

3. Add optional images for each possible state: selected or nonselected, and an overlay. The following code
adds three predefined images.

4. Associate the image list with the control with a call to CComboBoxEx::SetImageList.

Once the image list has been associated with the control, you can individually specify the images each item will use
for the three possible states. For more information, see Setting the Images for an Individual Item.

Using CComboBoxEx
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-image-lists-in-an-extended-combo-box-control.md

Setting the Images for an Individual Item
3/4/2019 • 2 minutes to read • Edit Online

Setting the Image for a New Item

COMBOBOXEXITEM cbi = {0};
CString str;
int nItem;

cbi.mask = CBEIF_IMAGE | CBEIF_INDENT | CBEIF_OVERLAY |
 CBEIF_SELECTEDIMAGE | CBEIF_TEXT;

cbi.iItem = 0;
cbi.pszText = _T("Item 0");
cbi.iImage = 0;
cbi.iSelectedImage = 1;
cbi.iOverlay = 2;
cbi.iIndent = (0 & 0x03); //Set indentation according
 //to item position

nItem = m_ComboBoxEx.InsertItem(&cbi);
ASSERT(nItem == 0);

Setting the Image for an Existing Item

To modify an existing item to use imagesTo modify an existing item to use images

The different types of images used by the extended combo box item are determined by the values in the iImage,
iSelectedImage, and iOverlay members of the COMBOBOXEXITEM structure. Each value is the index of an image
in the associated image list of the control. By default, these members are set to 0, causing the control to display no
image for the item. If you want to use images for a specific item, you can modify the structure accordingly, either
when inserting the combo box item or by modifying an existing combo box item.

If you are inserting a new item, initialize the iImage, iSelectedImage, and iOverlay structure members with the
proper values and then insert the item with a call to CComboBoxEx::InsertItem.

The following example inserts a new extended combo box item (cbi) into the extended combo box control (
m_comboEx), supplying indices for all three image states:

If you are modifying an existing item, you need to work with the mask member of a COMBOBOXEXITEM
structure.

1. Declare a COMBOBOXEXITEM structure and set the mask data member to the values you are interested
in modifying.

2. Using this structure, make a call to CComboBoxEx::GetItem.

3. Modify the mask, iImage, and iSelectedImage members of the newly returned structure, using the
appropriate values.

4. Make a call to CComboBoxEx::SetItem, passing in the modified structure.

The following example demonstrates this procedure by swapping the selected and unselected images of the third
extended combo box item:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/setting-the-images-for-an-individual-item.md
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagcomboboxexitema

COMBOBOXEXITEM cbi = {0};
int iImageTemp;

cbi.mask = CBEIF_IMAGE | CBEIF_SELECTEDIMAGE;
cbi.iItem = 0;
m_ComboBoxEx.GetItem(&cbi);

iImageTemp = cbi.iImage;
cbi.iImage = cbi.iSelectedImage;
cbi.iSelectedImage = iImageTemp;
VERIFY(m_ComboBoxEx.SetItem(&cbi));

See also
Using CComboBoxEx
Controls

Processing Notification Messages in Extended Combo
Box Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

As users interact with the extended combo box, the control (CComboBoxEx) sends notification messages to its parent
window, usually a view or dialog object. Handle these messages if you want to do something in response. For
example, when the user activates the drop-down list or clicks in the control's edit box, the CBEN_BEGINEDIT
notification is sent.

Use the Properties window to add notification handlers to the parent class for those messages you want to
implement.

The following list describes the various notifications sent by the extended combo box control.

CBEN_BEGINEDIT Sent when the user activates the drop-down list or clicks in the control's edit box.

CBEN_DELETEITEM Sent when an item has been deleted.

CBEN_DRAGBEGIN Sent when the user begins dragging the image of the item displayed in the edit
portion of the control.

CBEN_ENDEDIT Sent when the user has concluded an operation within the edit box or has selected an item
from the control's drop-down list.

CBEN_GETDISPINFO Sent to retrieve display information about a callback item.

CBEN_INSERTITEM Sent when a new item has been inserted in the control.

Using CComboBoxEx
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/processing-notification-messages-in-extended-combo-box-controls.md

Using CHeaderCtrl
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

What do you want to know more about

See also

Use a header control, represented by class CHeaderCtrl, to display column headers for a columnar list. For
example, a header control would be useful for implementing column controls in a spreadsheet.

The header control is usually divided into parts, called "header items," each bearing a title for the associated
column of text or numbers. Depending on the styles you set, you can provide a number of direct ways for users
to manipulate the header items.

CListCtrl provides an embedded header control, and CListView encapsulates CListCtrl in an MFC class. In general, think
of using CHeaderCtrl to label lists that you intend to draw yourself.

Header Control and List Control

Header Control Examples

Header Items in a Header Control

Customizing the Header Item's Appearance

Providing Drag-and-Drop Support for Header Items

Using Image Lists with Header Controls

Making Owner-Drawn Header Controls

Working with a Header Control

Creating the Header Control

Adding Items to the Header Control

Ordering Items in the Header Control

Processing Header-Control Notifications

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-cheaderctrl.md

Header Control and List Control
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

CHeaderCtrl* pHeaderCtrl = m_ListCtrl.GetHeaderCtrl();
ASSERT(NULL != pHeaderCtrl);
//perform any needed operations on the header using pHeader

What do you want to know more about

See also

In most cases, you will use the header control that is embedded in a CListCtrl or CListView object. However, there
are cases where a separate header control object is desirable, such as manipulating data, arranged in columns or
rows, in a CView-derived object. In these cases, you need greater control over the appearance and default behavior
of an embedded header control.

In the common case that you want a header control to provide standard, default behavior, you may want to use
CListCtrl or CListView instead. Use CListCtrl when you want the functionality of a default header control,
embedded in a list view common control. Use CListView when you want the functionality of a default header
control, embedded in a view object.

These controls only include a built-in header control if the list view control is created using the LVS_REPORT style.

In most cases, the appearance of the embedded header control can be modified by changing the styles of the
containing list view control. In addition, information about the header control can be obtained through member
functions of the parent list view control. However, for complete control, and access, to the attributes and styles of
the embedded header control, it is recommended that a pointer to the header control object be obtained.

The embedded header control object can be accessed from either CListCtrl or CListView with a call to the
respective class's GetHeaderCtrl member function. The following code demonstrates this:

Using image lists with header controls

Using CHeaderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/header-control-and-list-control.md

Header Control Examples
3/4/2019 • 2 minutes to read • Edit Online

See also

For examples of header controls, see the Header Controls in the Windows SDK.

Using CHeaderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/header-control-examples.md
https://docs.microsoft.com/windows/desktop/Controls/header-controls

Header Items in a Header Control
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

You have considerable control over the appearance and behavior of the header items that make up a header
control (CHeaderCtrl). Each header item can have a string, a bitmapped image, an image from an associated image
list, or an application-defined 32-bit value associated with it. The string, bitmap, or image is displayed in the header
item.

You can customize the appearance and contents of new items when they are created by making a call
CHeaderCtrl::InsertItem or by modifying an existing item, with a call to CHeaderCtrl::GetItem and
CHeaderCtrl::SetItem.

Customizing the header item's appearance

Ordering items in the header control

Providing drag-and-drop support for the header items

Using image lists with header controls

Using CHeaderCtrl

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/header-items-in-a-header-control.md

Customizing the Header Item's Appearance
3/4/2019 • 2 minutes to read • Edit Online

See also

By setting the dwStyle parameter when you first create a header control (CHeaderCtrl::Create), you can define the
appearance and behavior of header items or of the header control itself.

Here is a sampling of the styles you can set, and their purpose:

To make a header item look like a pushbutton, use the HDS_BUTTONS style.

Use this style if you want to carry out actions in response to mouse clicks on a header item, such as sorting
data by a particular column, as is done in Microsoft Outlook.

To give the header items a "hot tracking" appearance when the mouse cursor passes over them, use the
HDS_HOTTRACK style.

Hot tracking displays a 3D outline as the pointer passes over an item in an otherwise flat bar.

To indicate that the header control should be hidden, use the HDS_HIDDEN style.

The HDS_HIDDEN style indicates that the header control is intended to be used as a data container and
not a visual control. This style does not automatically hide the control but, instead, affects the behavior of
CHeaderCtrl::Layout . The value returned in the cy member of the WINDOWPOS structure will be zero

indicating that the control should not be visible to the user.

For more information about these properties, see Items in the Windows SDK. For information about adding items
to a header control, see Adding Items to the Header Control.

Using CHeaderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/customizing-the-header-item-s-appearance.md
https://docs.microsoft.com/windows/desktop/Controls/header-controls

Providing Drag-and-Drop Support for Header Items
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

To provide drag-and-drop support for header items, specify the HDS_DRAGDROP style. Drag-and-drop support
for header items gives the user the ability to reorder the header items of a header control. The default behavior
provides a semitransparent drag image of the header item being dragged and a visual indicator of the new
position, if the header item is dropped.

As with common drag-and-drop functionality, you can extend the default drag-and-drop behavior by handling the
HDN_BEGINDRAG and HDN_ENDDRAG notifications. You can also customize the appearance of the drag image
by overriding the CHeaderCtrl::CreateDragImage member function.

If you are providing drag-and-drop support for an embedded header control in a list control, see the Extended Style section
in the Changing List Control Styles topic.

Using CHeaderCtrl

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/providing-drag-and-drop-support-for-header-items.md

Using Image Lists with Header Controls
3/4/2019 • 2 minutes to read • Edit Online

To display an image in a header itemTo display an image in a header item

NOTENOTE

See also

Header items have the ability to display an image within a header item. This image, stored in an associated image
list, is 16 x 16 pixels and has the same characteristics as the icon images used in a list view control. In order to
implement this behavior successfully, you must first create and initialize the image list, associate the list with the
header control, and then modify the attributes of the header item that will display the image.

The following procedure illustrates the details, using a pointer to a header control (m_pHdrCtrl) and a pointer to
an image list (m_pHdrImages).

m_ListImageList.Create(16, 16, ILC_COLOR, 2, 2);

m_ListImageList.Add(AfxGetApp()->LoadIcon(IDI_ICON1));
m_ListImageList.Add(AfxGetApp()->LoadIcon(IDI_ICON2));

HDITEM curItem = {0};

pHeaderCtrl->SetImageList(&m_ListImageList);

curItem.mask = HDI_TEXT | HDI_FORMAT | HDI_WIDTH | HDI_IMAGE;
curItem.pszText = _T("Column 1");
curItem.cxy = 100;
curItem.iImage = 0;
curItem.fmt = HDF_LEFT | HDF_STRING | HDF_IMAGE;
pHeaderCtrl->InsertItem(0, &curItem);

1. Construct a new image list (or use an existing image list object) using the CImageList constructor, storing
the resultant pointer.

2. Initialize the new image list object by calling CImageList::Create. The following code is one example of this
call.

3. Add the images for each header item. The following code adds two predefined images.

4. Associate the image list with the header control with a call to CHeaderCtrl::SetImageList.

5. Modify the header item to display an image from the associated image list. The following example assigns
the first image, from m_phdrImages , to the first header item, m_pHdrCtrl .

For detailed information on the parameter values used, consult the pertinent CHeaderCtrl.

It is possible to have multiple controls using the same image list. For instance, in a standard list view control, there could be
an image list (of 16 x 16 pixel images) used by both the small icon view of a list view control and the header items of the list
view control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-image-lists-with-header-controls.md

Using CHeaderCtrl

Making Owner-Drawn Header Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

You can define individual items of a header control (CHeaderCtrl) to be owner-drawn items. For more information,
see Owner-Drawn Header Controls in the Windows SDK.

Using CHeaderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/making-owner-drawn-header-controls.md
https://docs.microsoft.com/windows/desktop/Controls/header-controls

Working with a Header Control
3/4/2019 • 2 minutes to read • Edit Online

See also

The easy way to use a header control (CHeaderCtrl) is in conjunction with a list control; see Using CListCtrl later in
this topic family. You can also use a header control by itself. MFC calls InitCommonControls for you. The key tasks
are as follows:

Creating the header control

Adding items to the header control

Ordering items in the header control

Processing header-control notifications

If the header control object is embedded in a parent view or dialog class, the control is destroyed when the parent
is destroyed.

Using CHeaderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/working-with-a-header-control.md

Creating the Header Control
3/4/2019 • 2 minutes to read • Edit Online

To put a header control in a dialog boxTo put a header control in a dialog box

To put a header control in a view (not a CListView)To put a header control in a view (not a CListView)

See also

The header control is not directly available in the dialog editor (although you can add a list control, which includes
a header control).

1. Manually embed a member variable of type CHeaderCtrl in your dialog class.

2. In OnInitDialog, create and set the styles for the CHeaderCtrl , position it, and display it.

3. Add items to the header control.

4. Use the Properties window to map handler functions in the dialog class for any header-control notification
messages you need to handle (see Mapping Messages to Functions).

1. Embed a CHeaderCtrl object in your view class.

2. Style, position, and display the header control window in the view's OnInitialUpdate member function.

3. Add items to the header control.

4. Use the Properties window to map handler functions in the view class for any header-control notification
messages you need to handle (see Mapping Messages to Functions).

In either case, the embedded control object is created when the view or dialog object is created. Then you must call
CHeaderCtrl::Create to create the control window. To position the control, call CHeaderCtrl::Layout to determine
the control's initial size and position and SetWindowPos to set the position you want. Then add items as described
in Adding Items to the Header Control.

For more information, see Creating a Header Control in the Windows SDK.

Using CHeaderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-the-header-control.md
https://docs.microsoft.com/windows/desktop/Controls/header-controls

Adding Items to the Header Control
3/4/2019 • 2 minutes to read • Edit Online

To add a header itemTo add a header item

See also

After creating your header control (CHeaderCtrl) in its parent window, add as many "header items" as you need:
usually one per column.

1. Prepare an HD_ITEM structure.

2. Call CHeaderCtrl::InsertItem, passing the structure.

3. Repeat steps 1 and 2 for additional items.

For more information, see Adding an Item to a Header Control in the Windows SDK.

Using CHeaderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/adding-items-to-the-header-control.md
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_hd_itema
https://docs.microsoft.com/windows/desktop/Controls/header-controls

Ordering Items in the Header Control
3/4/2019 • 2 minutes to read • Edit Online

See also

Once you've added items to a header control, you can manipulate or get information about their order with the
following functions:

CHeaderCtrl::GetOrderArray and CHeaderCtrl::SetOrderArray

Retrieves and sets the left-to-right order of header items.

CHeaderCtrl::OrderToIndex.

Retrieves the index value for a specific header item.

In addition to the previous member functions, the HDS_DRAGDROP style allows the user to drag and drop
header items within the header control. For more information, see Providing Drag-and-Drop Support for Header
Items.

Using CHeaderCtrl

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ordering-items-in-the-header-control.md

Processing Header-Control Notifications
3/4/2019 • 2 minutes to read • Edit Online

See also

In your view or dialog class, use the Properties window to create an OnChildNotify handler function with a switch
statement for any header-control (CHeaderCtrl) notification messages you want to handle (see Mapping
Messages to Functions). Notifications are sent to the parent window when the user clicks or double-clicks a header
item, drags a divider between items, and so on.

The notification messages associated with a header control are listed in Header Control Reference in the Windows
SDK.

Using CHeaderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/processing-header-control-notifications.md
https://docs.microsoft.com/windows/desktop/controls/header-control-reference

Using CHotKeyCtrl
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

A hot key control, represented by class CHotKeyCtrl, is a window that displays a text representation of the key
combination the user types into it, such as CTRL+SHIFT+Q. It also maintains an internal representation of this
key in the form of a virtual key code and a set of flags that represent the shift state. The hot key control does not
actually set the hot key — doing that is up to your program. (For a list of standard virtual key codes, see
Winuser.h.)

Use a hot key control to get a user's input for which hot key to associate with a window or thread. Hot key controls
are often used in dialog boxes, such as you might display when asking the user to assign a hot key. It is your
program's responsibility to retrieve the values describing the hot key from the hot key control and to call the
appropriate functions to associate the hot key with a window or thread.

Using a Hot Key Control

Setting a Hot Key

Global Hot Keys

Thread-Specific Hot Keys

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-chotkeyctrl.md

Using a Hot Key Control
3/4/2019 • 2 minutes to read • Edit Online

See also

Typical usage of a hot key control follows the pattern below:

The control is created. If the control is specified in a dialog box template, creation is automatic when the
dialog box is created. (You should have a CHotKeyCtrl member in your dialog class that corresponds to the
hot key control.) Alternatively, you can use the Create member function to create the control as a child
window of any window.

If you want to set a default value for the control, call the SetHotKey member function. If you want to
prohibit certain shift states, call SetRules. For controls in a dialog box, a good time to do this is in the dialog
box's OnInitDialog function.

The user interacts with the control by pressing a hot key combination when the hot key control has focus.
The user then somehow indicates that this task is complete, perhaps by clicking a button in the dialog box.

When your program is notified that the user has selected a hot key, it should use the member function
GetHotKey to retrieve the virtual key and shift state values from the hot key control.

Once you know what key the user selected, you can set the hot key using one of the methods described in
Setting a Hot Key.

If the hot key control is in a dialog box, it and the CHotKeyCtrl object will be destroyed automatically. If not,
you need to ensure that both the control and the CHotKeyCtrl object are properly destroyed.

Using CHotKeyCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-a-hot-key-control.md

Setting a Hot Key
3/4/2019 • 2 minutes to read • Edit Online

See also

Your application can use the information provided by a hot key (CHotKeyCtrl) control in one of two ways:

Set up a global hot key for activating a nonchild window by sending a WM_SETHOTKEY message to the
window to be activated.

Set up a thread-specific hot key by calling the Windows function RegisterHotKey.

Using CHotKeyCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/setting-a-hot-key.md
https://docs.microsoft.com/windows/desktop/inputdev/wm-sethotkey
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerhotkey

Global Hot Keys
3/4/2019 • 2 minutes to read • Edit Online

WORD wKeyAndShift = static_cast<WORD>(m_HotKeyCtrl.GetHotKey());
this->SendMessage(WM_SETHOTKEY, wKeyAndShift);

See also

A global hot key is associated with a particular nonchild window. It allows the user to activate the window from any
part of the system. An application sets a global hot key for a particular window by sending the WM_SETHOTKEY
message to that window. For instance, if m_HotKeyCtrl is the CHotKeyCtrl object and pMainWnd is a pointer to the
window to be activated when the hot key is pressed, you could use the following code to associate the hot key
specified in the control with the window pointed to by pMainWnd .

Whenever the user presses a global hot key, the window specified receives a WM_SYSCOMMAND message that
specifies SC_HOTKEY as the type of the command. This message also activates the window that receives it.
Because this message does not include any information on the exact key that was pressed, using this method does
not allow distinguishing between different hot keys that may be attached to the same window. The hot key remains
valid until the application that sent WM_SETHOTKEY exits.

Using CHotKeyCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/global-hot-keys.md
https://docs.microsoft.com/windows/desktop/inputdev/wm-sethotkey
https://docs.microsoft.com/windows/desktop/menurc/wm-syscommand

Thread-Specific Hot Keys
3/4/2019 • 2 minutes to read • Edit Online

See also

An application sets a thread-specific hot key (CHotKeyCtrl) by using the Windows RegisterHotKey function. When
the user presses a thread-specific hot key, Windows posts a WM_HOTKEY message to the beginning of a
particular thread's message queue. The WM_HOTKEY message contains the virtual key code, shift state, and user-
defined ID of the specific hot key that was pressed. For a list of standard virtual key codes, see Winuser.h. For more
information on this method, see RegisterHotKey.

Note that the shift state flags used in the call to RegisterHotKey are not the same as those returned by the
GetHotKey member function; you'll have to translate these flags before calling RegisterHotKey .

Using CHotKeyCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/thread-specific-hot-keys.md
https://docs.microsoft.com/windows/desktop/inputdev/wm-hotkey
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerhotkey

Using CImageList
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

An image list, represented by class CImageList, is a collection of same-sized images, each of which can be
referred to by its index. Image lists are used to efficiently manage large sets of icons or bitmaps. Image lists are
not themselves controls since they are not windows; however, they are used with several different types of
controls, including list controls (CListCtrl), tree controls (CTreeCtrl), and tab controls (CTabCtrl).

All images in an image list are contained in a single, wide bitmap in screen-device format. An image list may also
include a monochrome bitmap that contains masks used to draw images transparently (icon style). CImageList

provides member functions that enable you to draw images, create and destroy image lists, add and remove
images, replace images, merge images, and drag images.

Types of Image Lists

Using an Image List

Manipulating Image Lists

Drawing Images from an Image List

Image Overlays in Image Lists

Dragging Images from an Image List

Image Information in Image Lists

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-cimagelist.md

Types of Image Lists
3/4/2019 • 2 minutes to read • Edit Online

See also

There are two types of image lists (CImageList): nonmasked and masked. A "nonmasked image list" consists of a
color bitmap that contains one or more images. A "masked image list" consists of two bitmaps of equal size. The
first is a color bitmap that contains the images, and the second is a monochrome bitmap that contains a series of
masks — one for each image in the first bitmap.

One of the overloads of the Create member function takes a flag to indicate whether or not the image list is
masked. (The other overloads create masked image lists.)

When a nonmasked image is drawn, it is simply copied into the target device context; that is, it is drawn over the
existing background color of the device context. When a masked image is drawn, the bits of the image are
combined with the bits of the mask, typically producing transparent areas in the bitmap where the background
color of the target device context shows through. You can specify several drawing styles when drawing a masked
image. For example, you can specify that the image be dithered to indicate a selected object.

Using CImageList
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/types-of-image-lists.md

Using an Image List
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

Typical usage of an image list follows the pattern below:

Construct a CImageList object and call one of the overloads of its Create function to create an image list and
attach it to the CImageList object.

If you didn't add images when you created the image list, add images to the image list by calling the Add or
Read member function.

Associate the image list with a control by calling the appropriate member function of that control, or draw
images from the image list yourself using the image list's Draw member function.

Perhaps allow the user to drag an image, using the image list's built-in support for dragging.

If the image list was created with the new operator, you must destroy the CImageList object when you are done with it.

Using CImageList
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-an-image-list.md

Manipulating Image Lists
3/4/2019 • 2 minutes to read • Edit Online

See also

The Replace member function replaces an image in an image list (CImageList) with a new image. This function is
also useful if you need to dynamically increase the number of images in an image list object. The SetImageCount
function dynamically changes the number of images stored in the image list. If you increase the size of the image
list, call Replace to add images to the new image slots. If you decrease the size of the image list, the images
beyond the new size are freed.

The Remove member function removes an image from an image list. The Copy member function can copy or swap
images within an image list. This function allows you to indicate whether the source image should be copied to the
destination index or the source and destination images should be swapped.

To create a new image list by merging two image lists, use the appropriate overload of the Create member
function. This overload of Create merges the first image of the existing image lists, storing the resultant image in
a new image list object. The new image is created by drawing the second image transparently over the first. The
mask for the new image is the result of performing a logical-OR operation on the bits of the masks for the two
existing images.

This is repeated until all images are merged and added to the new image list object.

You can write the image information to an archive by calling the Write member function, and read it back by calling
the Read member function.

The GetSafeHandle, Attach, and Detach member functions allow you to manipulate the handle of the image list
attached to the CImageList object, while the DeleteImageList member function deletes the image list without
destroying the CImageList object.

Using CImageList
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/manipulating-image-lists.md

Drawing Images from an Image List
3/4/2019 • 2 minutes to read • Edit Online

See also

To draw an image, use the CImageList::Draw member function. You'll specify a pointer to a device context object,
the index of the image to draw, the location in the device context at which to draw the image, and a set of flags to
indicate the drawing style.

When you specify the ILD_TRANSPARENT style, Draw uses a two-step process to draw a masked image. First, it
performs a logical-AND operation on the bits of the image and the bits of the mask. Then it performs a logical-
XOR operation on the results of the first operation and the background bits of the destination device context. This
process creates transparent areas in the resulting image; that is, each white bit in the mask causes the
corresponding bit in the resulting image to be transparent.

Before drawing a masked image on a solid color background, you should use the SetBkColor member function to
set the background color of the image list to the same color as the destination. Setting the color eliminates the
need to create transparent areas in the image and enables Draw to simply copy the image to the destination
device context, resulting in a significant increase in performance. To draw the image, specify the ILD_NORMAL
style when you call Draw .

You can set the background color for a masked image list (CImageList) at any time so that it draws correctly on
any solid background. Setting the background color to CLR_NONE causes images to be drawn transparently by
default. To retrieve the background color of an image list, use the GetBkColor member function.

The ILD_BLEND25 and ILD_BLEND50 styles dither the image with the system highlight color. These styles are
useful if you use a masked image to represent an object that the user can select. For example, you can use the
ILD_BLEND50 style to draw the image when the user selects it.

A nonmasked image is copied to the destination device context using the SRCCOPY raster operation. The colors in
the image appear the same regardless of the background color of the device context. The drawing styles specified
in Draw also have no effect on the appearance of a nonmasked image.

In addition to the Draw member function, another function, DrawIndirect, extends the ability to render an image.
DrawIndirect takes, as a parameter, an IMAGELISTDRAWPARAMS structure. This structure can be used to

customize the rendering of the current image, including the use of raster operation (ROP) codes. For more
information on ROP codes, see Raster Operation Codes and Bitmaps as Brushes in the Windows SDK.

Using CImageList
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/drawing-images-from-an-image-list.md
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_imagelistdrawparams
https://docs.microsoft.com/windows/desktop/gdi/raster-operation-codes
https://docs.microsoft.com/windows/desktop/gdi/bitmaps-as-brushes

Image Overlays in Image Lists
3/4/2019 • 2 minutes to read • Edit Online

See also

Every image list (CImageList) includes a list of images to use as overlay masks. An "overlay mask" is an image
drawn transparently over another image. Any image can be used as an overlay mask. You can specify up to four
overlay masks per image list.

You add the index of an image to the list of overlay masks by using the SetOverlayImage member function, the
index of an image, and the index of an overlay mask. Note that the indices for the overlay masks are one-based
rather than zero-based.

You draw an overlay mask over an image using a single call to Draw . The parameters include the index of the
image to draw and the index of an overlay mask. You must use the INDEXTOOVERLAYMASK macro to specify the
index of the overlay mask. You can also specify an overlay image when calling the DrawIndirect member function.

Using CImageList
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/image-overlays-in-image-lists.md
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-indextooverlaymask

Dragging Images from an Image List
3/4/2019 • 2 minutes to read • Edit Online

See also

CImageList includes functions for dragging an image on the screen. The dragging functions move an image
smoothly, in color, and without any flashing of the cursor. Both masked and unmasked images can be dragged.

The BeginDrag member function begins a drag operation. The parameters include the index of the image to drag
and the location of the hot spot within the image. The hot spot is a single pixel that the dragging functions
recognize as the exact screen location of the image. Typically, an application sets the hot spot so that it coincides
with the hot spot of the mouse cursor. The DragMove member function moves the image to a new location.

The DragEnter member function sets the initial position of the drag image within a window and draws the image
at the position. The parameters include a pointer to the window in which to draw the image and a point that
specifies the coordinates of the initial position within the window. The coordinates are relative to the window's
upper-left corner, not the client area. The same is true for all of the image-dragging functions that take coordinates
as parameters. This means you must compensate for the widths of window elements, such as the border, title bar,
and menu bar, when specifying the coordinates. If you specify a NULL window handle when calling DragEnter , the
dragging functions draw the image in the device context associated with the desktop window, and the coordinates
are relative to the upper-left corner of the screen.

DragEnter locks all other updates to the given window during the drag operation. If you need to do any drawing
during a drag operation, such as highlighting the target of a drag-and-drop operation, you can temporarily hide
the dragged image by using the DragLeave member function. You can also use the DragShowNoLock member
function.

Call EndDrag when you're done dragging the image.

The SetDragCursorImage member function creates a new drag image by combining the given image (typically a
mouse cursor image) with the current drag image. Because the dragging functions use the new image during a
drag operation, you should use the Windows ShowCursor function to hide the actual mouse cursor after calling
SetDragCursorImage . Otherwise, the system may appear to have two mouse cursors for the duration of the drag

operation.

When an application calls BeginDrag , the system creates a temporary, internal image list and copies the specified
drag image to the internal list. You can retrieve a pointer to the temporary drag image list by using the
GetDragImage member function. The function also retrieves the current drag position and the offset of the drag
image relative to the drag position.

Using CImageList
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dragging-images-from-an-image-list.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-showcursor

Image Information in Image Lists
3/4/2019 • 2 minutes to read • Edit Online

See also

CImageList includes a number of functions that retrieve information from an image list. The GetImageInfo
member function fills an IMAGEINFO structure with information about a single image, including the handles of the
image and mask bitmaps, the number of color planes and bits per pixel, and the bounding rectangle of the image
within the image bitmap. You can use this information to directly manipulate the bitmaps for the image.

The GetImageCount member function retrieves the number of images in an image list.

You can create an icon based on an image and mask in an image list by using the ExtractIcon member function.
The function returns the handle of the new icon.

Using CImageList
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/image-information-in-image-lists.md

Using CListCtrl
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

What do you want to know more about

See also

Use a list control to display any arrangement of icons with labels, as in File Explorer, or columnar lists of text,
with or without icons. For a description of the four possible "views" (not to be confused with MFC views) you can
have in a list control — icon view, small icon view, list view, and report view — see Views in the CListCtrl class
overview.

In some views, users can drag icons to different positions or edit icon labels. For example, see the right-hand
pane in File Explorer, which uses a list control in a nondialog window. You can experiment with the available
views in Explorer's View menu.

For related information, see About List-View Controls in the Windows SDK.

The Windows SDK refers to list controls as "list view controls." This usage of "view" does not refer to MFC view classes,
particularly CListView . For more information, see List Control and List View.

List Control and List View

List Items and Image Lists

Callback Items and the Callback Mask

Creating the List Control

Creating the Image Lists

Adding Columns to the Control (Report View)

Adding Items to the Control

Scrolling, Arranging, Sorting, and Finding in List Controls

Implementing Working Areas in List Controls

Processing Notification Messages in List Controls

Changing List Control Styles

Virtual List Controls

Destroying the List Control

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-clistctrl.md
https://docs.microsoft.com/windows/desktop/Controls/list-view-controls-overview

List Control and List View
3/4/2019 • 2 minutes to read • Edit Online

CListCtrl& listCtrl = GetListCtrl();

See also

For convenience, MFC encapsulates the list control in two ways. You can use list controls:

Directly, by embedding a CListCtrl object in a dialog class.

Indirectly, by using class CListView.

CListView makes it easy to integrate a list control with the MFC document/view architecture, encapsulating the
control much as CEditView encapsulates an edit control: the control fills the entire surface area of an MFC view.
(The view is the control, cast to CListView .)

A CListView object inherits from CCtrlView and its base classes and adds a member function to retrieve the
underlying list control. Use view members to work with the view as a view. Use the GetListCtrl member function
to gain access to the list control's member functions. Use these members to:

Add, delete, or manipulate "items" in the list.

Set or get list control attributes.

To obtain a reference to the CListCtrl underlying a CListView , call GetListCtrl from your list view class:

This topic describes both ways to use the list control.

Using CListCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/list-control-and-list-view.md

List Items and Image Lists
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

m_ListImageList.Create(16, 16, ILC_COLOR, 2, 2);
m_ListImageList.Add(AfxGetApp()->LoadIcon(IDI_ICON1));
m_ListImageList.Add(AfxGetApp()->LoadIcon(IDI_ICON2));
m_ListCtrl.SetImageList(&m_ListImageList, LVSIL_SMALL);

See also

An "item" in a list control (CListCtrl) consists of an icon, a label, and possibly other information (in "subitems").

The icons for list control items are contained in image lists. One image list contains full-sized icons used in icon
view. A second, optional, image list contains smaller versions of the same icons for use in other views of the
control. A third optional list contains "state" images, such as check boxes, for display in front of the small icons in
certain views. A fourth optional list contains images that are displayed in individual header items of the list control.

If a list view control is created with the LVS_SHAREIMAGELISTS style, you are responsible for destroying the image lists when
they are no longer in use. Specify this style if you assign the same image lists to multiple list view controls; otherwise, more
than one control might try to destroy the same image list.

For more information about list items, see List View Image Lists and Items and Subitems in the Windows SDK.
Also see class CImageList in the MFC Reference and Using CImageList in this family of articles.

To create a list control, you need to supply image lists to be used when you insert new items into the list. The
following example demonstrates this procedure, where m_pImagelist is a pointer of type CImageList and m_listctrl
is a CListCtrl data member.

However, if you don't plan to display icons in your list view or list control, you don't need image lists.

Using CListCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/list-items-and-image-lists.md
https://docs.microsoft.com/windows/desktop/Controls/using-list-view-controls
https://docs.microsoft.com/windows/desktop/Controls/using-list-view-controls

Callback Items and the Callback Mask
3/4/2019 • 2 minutes to read • Edit Online

See also

For each of its items, a list view control typically stores the label text, the image list index of the item's icons, and a
set of bit flags for the item's state. You can define individual items as callback items, which are useful if your
application already stores some of the information for an item.

You define an item as a callback item by specifying appropriate values for the pszText and iImage members of
the LV_ITEM structure (see CListCtrl::GetItem). If the application maintains the item's or subitem's text, specify the
LPSTR_TEXTCALLBACK value for the pszText member. If the application keeps track of the icon for the item,
specify the I_IMAGECALLBACK value for the iImage member.

In addition to defining callback items, you can also modify the control's callback mask. This mask is a set of bit
flags that specify the item states for which the application, rather than the control, stores the current data. The
callback mask applies to all of the control's items, unlike the callback item designation, which applies to a specific
item. The callback mask is zero by default, meaning that the control tracks all item states. To change this default
behavior, initialize the mask to any combination of the following values:

LVIS_CUT The item is marked for a cut-and-paste operation.

LVIS_DROPHILITED The item is highlighted as a drag-and-drop target.

LVIS_FOCUSED The item has the focus.

LVIS_SELECTED The item is selected.

LVIS_OVERLAYMASK The application stores the image list index of the current overlay image for each
item.

LVIS_STATEIMAGEMASK The application stores the image list index of the current state image for each
item.

For further information on retrieving and setting this mask, see CListCtrl::GetCallbackMask and
CListCtrl::SetCallbackMask.

Using CListCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/callback-items-and-the-callback-mask.md

Creating the List Control
3/4/2019 • 2 minutes to read • Edit Online

To use CListCtrl directly in a dialog boxTo use CListCtrl directly in a dialog box

To use CListCtrl in a nondialog windowTo use CListCtrl in a nondialog window

See also

How the list control (CListCtrl) is created depends on whether you're using the control directly or using class
CListView instead. If you use CListView , the framework constructs the view as part of its document/view creation
sequence. Creating the list view creates the list control as well (the two are the same thing). The control is created
in the view's OnCreate handler function. In this case, the control is ready for you to add items, via a call to
GetListCtrl.

1. In the dialog editor, add a List Control to your dialog template resource. Specify its control ID.

2. Use the Add Member Variable Wizard to add a member variable of type CListCtrl with the Control
property. You can use this member to call CListCtrl member functions.

3. Use the Properties window to map handler functions in the dialog class for any list control notification
messages you need to handle (see Mapping Messages to Functions).

4. In OnInitDialog, set the styles for the CListCtrl . See Changing List Control Styles. This determines the kind
of "view" you get in the control, although you can change the view later.

1. Define the control in the view or window class.

2. Call the control's Create member function, possibly in OnInitialUpdate, possibly as early as the parent
window's OnCreate handler function (if you're subclassing the control). Set the styles for the control.

Using CListCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-the-list-control.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp

Creating the Image Lists
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

Creating image lists is the same whether you use CListView or CListCtrl.

You only need image lists if your list control includes the LVS_ICON style.

Use class CImageList to create one or more image lists (for full-size icons, small icons, and states). See CImageList,
and see List View Image Lists in the Windows SDK.

Call CListCtrl::SetImageList for each image list; pass a pointer to the appropriate CImageList object.

Using CListCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-the-image-lists.md
https://docs.microsoft.com/windows/desktop/Controls/using-list-view-controls

Adding Columns to the Control (Report View)
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

NOTENOTE

See also

The following procedure applies to either a CListView or CListCtrl object.

When a list control is in report view, columns are displayed, providing a method of organizing the various
subitems of each list control item. This organization is implemented with a one-to-one correspondence between a
column in the list control and the associated subitem of the list control item. For more information on subitems,
see Adding Items to the Control. An example of a list control in report view is provided by the Details view in
Windows 95 and Windows 98 Explorer. The first column lists folder, file icons, and labels. Other columns list file
size, file type, date last modified, and so on.

Even though columns can be added to a list control at any time, the columns are visible only when the control has
the LVS_REPORT style bit turned on.

Each column has an associated header item (see CHeaderCtrl) object that labels the column and allows users to
resize the column.

If your list control supports a report view, you need to add a column for each possible subitem in a list control
item. Add a column by preparing an LV_COLUMN structure and then making a call to InsertColumn. After adding
the necessary columns (sometimes referred to as header items), you can reorder them using member functions
and styles belonging to the embedded header control. For more information, see Ordering Items in the Header
Control.

If the list control is created with the LVS_NOCOLUMNHEADER style, any attempt to insert columns will be ignored.

Using CListCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/adding-columns-to-the-control-report-view.md
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvcolumna

Adding Items to the Control
3/4/2019 • 2 minutes to read • Edit Online

See also

To add items to the list control (CListCtrl), call one of several versions of the InsertItem member function,
depending on what information you have. One version takes a LV_ITEM structure that you prepare. Because the
LV_ITEM structure contains numerous members, you have greater control over the attributes of the list control

item.

Two important members (in regard to the report view) of the LV_ITEM structure are the iItem and iSubItem

members. The iItem member is the zero-based index of the item the structure is referencing and the iSubItem

member is the one-based index of a subitem, or zero if the structure contains information about an item. With
these two members you determine, per item, the type and value of subitem information that is displayed when the
list control is in report view. For more information, see CListCtrl::SetItem.

Additional members specify the item's text, icon, state, and item data. "Item data" is an application-defined value
associated with a list view item. For more information about the LV_ITEM structure, see CListCtrl::GetItem.

Other versions of InsertItem take one or more separate values, corresponding to members in the LV_ITEM

structure, allowing you to initialize only those members you want to support. Generally, the list control manages
storage for list items, but you can store some of the information in your application instead, using "callback items."
For more information, see Callback Items and the Callback Mask in this topic and Callback Items and the Callback
Mask in the Windows SDK.

For more information, see Adding List-View Items and Subitems.

Using CListCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/adding-items-to-the-control.md
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema
https://docs.microsoft.com/windows/desktop/Controls/using-list-view-controls
https://docs.microsoft.com/windows/desktop/Controls/using-list-view-controls

Scrolling, Arranging, Sorting, and Finding in List
Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

List controls (CListCtrl) are scrollable by default. For more information, see Scroll Position in the Windows SDK
and the Scroll member function.

You can call CListCtrl member functions to arrange list items in the control, sort items, and find particular items.
For more information, see Arranging, Sorting, and Finding in the Windows SDK and the CListCtrl members
Arrange, SortItems, and FindItem.

Using CListCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/scrolling-arranging-sorting-and-finding-in-list-controls.md
https://docs.microsoft.com/windows/desktop/Controls/using-list-view-controls
https://msdn.microsoft.com/library/windows/desktop/bb774736

Implementing Working Areas in List Controls
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Items and Working Areas

CSize size;
size = m_WorkAreaListCtrl.ApproximateViewRect();
size.cx += 100;
size.cy += 100;

CRect rcWorkAreas[4];
rcWorkAreas[0].SetRect(0, 0, (size.cx/2) - 5, (size.cy/2) - 5);
rcWorkAreas[1].SetRect((size.cx/2) + 5, 0, size.cx, (size.cy/2) - 5);
rcWorkAreas[2].SetRect(0, (size.cy/2) + 5, (size.cx/2) - 5, size.cy);
rcWorkAreas[3].SetRect((size.cx/2) + 5, (size.cy/2) + 5, size.cx, size.cy);

//set work areas
m_WorkAreaListCtrl.SetWorkAreas(4, rcWorkAreas);

By default, a list control arranges all items in a standard grid fashion. However, another method is supported,
working areas, that arranges the list items into rectangular groups. For an image of a list control that implements
working areas, see Using List-View Controls in the Windows SDK.

Working areas are visible only when the list control is in icon or small icon mode. However, any current working areas are
maintained if the view is switched to the report or list mode.

Working areas can be used to display an empty border (on the left, top and/or right of the items), or cause a
horizontal scroll bar to be displayed when there normally wouldn't be one. Another common usage is to create
multiple working areas to which items can be moved or dropped. With this method, you could create areas in a
single view that have different meanings. The user could then categorize the items by placing them in a different
area. An example of this would be a view of a file system that has an area for read/write files and another area for
read-only files. If a file item were moved into the read-only area, it would automatically become read-only. Moving
a file from the read-only area into the read/write area would make the file read/write.

CListCtrl provides several member functions for creating and managing working areas in your list control.
GetWorkAreas and SetWorkAreas retrieve and set an array of CRect objects (or RECT structures), which store the
currently implemented working areas for your list control. In addition, GetNumberOfWorkAreas retrieves the
current number of working areas for your list control (by default, zero).

When a working area is created, items that lie within the working area become members of it. Similarly, if an item
is moved into a working area, it becomes a member of the working area to which it was moved. If an item does not
lie within any working area, it automatically becomes a member of the first (index 0) working area. If you want to
create an item and have it placed within a specific working area, you will need to create the item and then move it
into the desired working area with a call to SetItemPosition. The second example below demonstrates this
technique.

The following example implements four working areas (rcWorkAreas), of equal size with a 10-pixel-wide border
around each working area, in a list control (m_WorkAreaListCtrl).

The call to ApproximateViewRect was made to get an estimate of the total area required to display all items in one

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/implementing-working-areas-in-list-controls.md

// set insertion points for each work area
CPoint rgptWork[4];
for (int i = 0; i < 4; i++)
{
 rgptWork[i].x = rcWorkAreas[i].left + 10;
 rgptWork[i].y = rcWorkAreas[i].top + 10;
}
// now move all the items to the different quadrants
for (int i = 0; i < 20; i++)
{
 m_WorkAreaListCtrl.SetItemPosition(i, rgptWork[i % 4]);
}

// force the control to rearrange the shuffled items
m_WorkAreaListCtrl.Arrange(LVA_DEFAULT);

See also

region. This estimate is then divided into four regions and padded with a 5-pixel-wide border.

The next example assigns the existing list items to each group (rcWorkAreas) and refreshes the control view (
m_WorkAreaListCtrl) to complete the effect.

Using CListCtrl
Controls

Processing Notification Messages in List Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

As users click column headers, drag icons, edit labels, and so on, the list control (CListCtrl) sends notification
messages to its parent window. Handle these messages if you want to do something in response. For example,
when the user clicks a column header, you might want to sort the items based on the contents of the clicked
column, as in Microsoft Outlook.

Process WM_NOTIFY messages from the list control in your view or dialog class. Use the Properties window to
create an OnChildNotify handler function with a switch statement based on which notification message is being
handled.

For a list of the notifications a list control can send to its parent window, see List View Control Reference in the
Windows SDK.

Using CListCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/processing-notification-messages-in-list-controls.md
https://docs.microsoft.com/windows/desktop/Controls/list-view-control-reference

Changing List Control Styles
3/4/2019 • 2 minutes to read • Edit Online

Extended Styles

m_ListCtrl.SetExtendedStyle(LVS_EX_TRACKSELECT | LVS_EX_ONECLICKACTIVATE);

NOTENOTE

See also

You can change the window style of a list control (CListCtrl) at any time after you create it. By changing the
window style, you change the kind of view the control uses. For example, to emulate the Explorer, you might
supply menu items or toolbar buttons for switching the control between different views: icon view, list view, and so
on.

For example, when the user selects your menu item, you could make a call to GetWindowLong to retrieve the
current style of the control and then call SetWindowLong to reset the style. For more information, see Using List
View Controls in the Windows SDK.

Available styles are listed in Create. The styles LVS_ICON , LVS_SMALLICON , LVS_LIST, and LVS_REPORT
designate the four list control views.

In addition to the standard styles for a list control, there is another set, referred to as extended styles. These styles,
discussed in Extended List View Styles in the Windows SDK, provide a variety of useful features that customize
the behavior of your list control. To implement the behavior of a certain style (such as hover selection), make a call
to CListCtrl::SetExtendedStyle, passing the needed style. The following example demonstrates the function call:

For hover selection to work, you must also have either LVS_EX_ONECLICKACTIVATE or LVS_EX_TWOCLICKACTIVATE
turned on.

Using CListCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/changing-list-control-styles.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowlonga
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowlonga
https://docs.microsoft.com/windows/desktop/Controls/using-list-view-controls
https://docs.microsoft.com/windows/desktop/Controls/extended-list-view-styles

Virtual List Controls
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

Handling the LVN_GETDISPINFO Notification

ON_NOTIFY(LVN_GETDISPINFO, IDC_LIST3, &CMyDialog::OnLvnGetdispinfoList3)

A virtual list control is a list view control that has the LVS_OWNERDATA style. This style enables the control to
support an item count up to a DWORD (the default item count only extends to an int). However, the biggest
advantage provided by this style is the ability to only have a subset of data items in memory at any one time. This
allows the virtual list view control to lend itself for use with large databases of information, where specific methods
of accessing data are already in place.

In addition to providing virtual list functionality in CListCtrl , MFC also provides the same functionality in the CListView
class.

There are some compatibility issues you should be aware of when developing virtual list controls. For more
information, see the Compatibility Issues section of the List-View Controls topic in the Windows SDK.

Virtual list controls maintain very little item information. Except for the item selection and focus information, all
item information is managed by the owner of the control. Information is requested by the framework via a
LVN_GETDISPINFO notification message. To provide the requested information, the owner of the virtual list
control (or the control itself) must handle this notification. This can easily be done using the Properties window
(see Mapping Messages to Functions). The resultant code should look something like the following example
(where CMyDialog owns the virtual list control object and the dialog is handling the notification):

In the handler for the LVN_GETDISPINFO notification message, you must check to see what type of information
is being requested. The possible values are:

LVIF_TEXT The pszText member must be filled in.

LVIF_IMAGE The iImage member must be filled in.

LVIF_INDENT The iIndent member must be filled in.

LVIF_PARAM The lParam member must be filled in. (Not present for sub-items.)

LVIF_STATE The state member must be filled in.

You should then supply whatever information is requested back to the framework.

The following example (taken from the body of the notification handler for the list control object) demonstrates
one possible method by supplying information for the text buffers and image of an item:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/virtual-list-controls.md

NMLVDISPINFO *pDispInfo = reinterpret_cast<NMLVDISPINFO*>(pNMHDR);
LV_ITEM* pItem = &(pDispInfo)->item;

int iItem = pItem->iItem;

if (pItem->mask & LVIF_TEXT) //valid text buffer?
{
 switch(pItem->iSubItem)
 {
 case 0: //fill in main text
 _tcscpy_s(pItem->pszText, pItem->cchTextMax,
 m_Items[iItem].m_strItemText);
 break;
 case 1: //fill in sub item 1 text
 _tcscpy_s(pItem->pszText, pItem->cchTextMax,
 m_Items[iItem].m_strSubItem1Text);
 break;
 case 2: //fill in sub item 2 text
 _tcscpy_s(pItem->pszText, pItem->cchTextMax,
 m_Items[iItem].m_strSubItem2Text);
 break;
 }
}

if (pItem->mask & LVIF_IMAGE) //valid image?
{
 pItem->iImage = m_Items[iItem].m_iImage;
}

Caching and Virtual List Controls

void CMyDialog::OnLvnOdcachehintList3(NMHDR *pNMHDR, LRESULT *pResult)
{
 LPNMLVCACHEHINT pCacheHint = reinterpret_cast<LPNMLVCACHEHINT>(pNMHDR);

 // Update the cache with the recommended range.
 for (int i = pCacheHint->iFrom; i <= pCacheHint->iTo; i++)
 {
 m_Items[i].m_iImage = i % 2;
 m_Items[i].m_strItemText.Format(_T("Item %d"), i);
 m_Items[i].m_strSubItem1Text = _T("Sub 1");
 m_Items[i].m_strSubItem2Text = _T("Sub 2");
 }

 *pResult = 0;
}

Finding Specific Items

Because this type of list control is intended for large data sets, it is recommended that you cache requested item
data to improve retrieval performance. The framework provides a cache-hinting mechanism to assist in optimizing
the cache by sending an LVN_ODCACHEHINT notification message.

The following example updates the cache with the range passed to the handler function.

For more information on preparing and maintaining a cache, see the Cache Management section of the List-View
Controls topic in the Windows SDK.

The LVN_ODFINDITEM notification message is sent by the virtual list control when a particular list control item
needs to be found. The notification message is sent when the list view control receives quick key access or when it
receives an LVM_FINDITEM message. Search information is sent in the form of an LVFINDINFO structure,

See also

which is a member of the NMLVFINDITEM structure. Handle this message by overriding the OnChildNotify

function of your list control object and inside the body of the handler, check for the LVN_ODFINDITEM message.
If found, perform the appropriate action.

You should be prepared to search for an item that matches the information given by the list view control. You
should return the index of the item if successful, or -1 if no matching item is found.

Using CListCtrl
Controls

Destroying the List Control
3/4/2019 • 2 minutes to read • Edit Online

See also

If you embed your CListCtrl object as a data member of a view or dialog class, it is destroyed when its owner is
destroyed. If you use a CListView, the framework destroys the control when it destroys the view.

If you arrange for some of your list data to be stored in the application rather than the list control, you will need to
arrange for its deallocation. For more information, see Callback Items and the Callback Mask in the Windows SDK.

In addition, you are responsible for deallocating any image lists you created and associated with the list control
object.

Using CListCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/destroying-the-list-control.md
https://docs.microsoft.com/windows/desktop/Controls/using-list-view-controls

Using CMonthCalCtrl
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

What do you want to know more about

See also

The month calendar control (CMonthCalCtrl) implements a calendar-like user interface. This provides the user
with a very intuitive and recognizable method of entering or selecting a date. The control also provides the
application with the means to obtain and set the date information in the control using existing data types. By
default, the month calendar control displays the current day and month. However, the user is able to scroll to the
previous and next months and select a specific month and/or year.

To use the CMonthCalCtrl class in your project, you must include AFXDTCTL.H, usually in STDAFX.H.

Creating the Month Calendar Control

Month Calendar Control Examples

Processing Notification Messages in Month Calendar Controls

Setting the Day State of a Month Calendar Control

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-cmonthcalctrl.md

Creating the Month Calendar Control
3/4/2019 • 2 minutes to read • Edit Online

To use CMonthCalCtrl directly in a dialog boxTo use CMonthCalCtrl directly in a dialog box

To use CMonthCalCtrl in a nondialog windowTo use CMonthCalCtrl in a nondialog window

See also

How the month calendar control is created depends on whether you are using the control in a dialog box or
creating it in a nondialog window.

1. In the dialog editor, add a Month Calendar Control to your dialog template resource. Specify its control ID.

2. Specify any styles required, using the Properties dialog box of the month calendar control.

3. Use the Add Member Variable Wizard to add a member variable of type CMonthCalCtrl with the Control
property. You can use this member to call CMonthCalCtrl member functions.

4. Use the Properties window to map handler functions in the dialog class for any month calendar control
notification messages you need to handle (see Mapping Messages to Functions).

5. In OnInitDialog, set any additional styles for the CMonthCalCtrl object.

1. Define the control in the view or window class.

2. Call the control's Create member function, possibly in OnInitialUpdate, possibly as early as the parent
window's OnCreate handler function (if you're subclassing the control). Set the styles for the control.

Using CMonthCalCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-the-month-calendar-control.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp

Month Calendar Control Examples
3/4/2019 • 2 minutes to read • Edit Online

See also

The CMNCTRL1 sample application demonstrates the various attributes of the CMonthCalCtrl class. The control,
found on a separate tab in the sample, demonstrates basic functionality and allows the user to dynamically modify
certain attributes.

Using CMonthCalCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/month-calendar-control-examples.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Processing Notification Messages in Month Calendar
Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

As users interact with the month calendar control (selecting dates and/or viewing a different month), the control (
CMonthCalCtrl) sends notification messages to its parent window, usually a view or dialog object. Handle these

messages if you want to do something in response. For example, when the user selects a new month to view, you
could provide a set of dates that should be emphasized.

Use the Properties window to add notification handlers to the parent class for those messages you want to
implement.

The following list describes the various notifications sent by the month calendar control.

MCN_GETDAYSTATE Requests information about which days should be displayed in bold. For information
on handling this notification, see Setting the Day State of a Month Calendar Control.

MCN_SELCHANGE Notifies the parent that the selected date or range of the date has changed.

MCN_SELECT Notifies the parent that an explicit date selection has been made.

Using CMonthCalCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/processing-notification-messages-in-month-calendar-controls.md

Setting the Day State of a Month Calendar Control
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Handling the MCN_GETDAYSTATE Notification Message

NOTENOTE

To handle the MCN_GETDAYSTATE notification messageTo handle the MCN_GETDAYSTATE notification message

One of the attributes of a month calendar control is the ability to store information, referred to as the day state of
the control, for each day of the month. This information is used to emphasize certain dates for the month currently
displayed.

The CMonthCalCtrl object must have the MCS_DAYSTATE style to display day state information.

Day state information is expressed as a 32-bit data type, MONTHDAYSTATE . Each bit in a MONTHDAYSTATE
bit field (1 through 31) represents the state of a day in a month. If a bit is on, the corresponding day will be
displayed in bold; otherwise it will be displayed with no emphasis.

There are two methods for setting the day state of the month calendar control: explicitly with a call to
CMonthCalCtrl::SetDayState or by handling the MCN_GETDAYSTATE notification message.

The MCN_GETDAYSTATE message is sent by the control to determine how the days within the visible months
should be displayed.

Because the control caches the previous and following months, in respect to the visible month, you will receive this
notification every time a new month is chosen.

To properly handle this message, you must determine how many months day state information is being requested
for, initialize an array of MONTHDAYSTATE structures with the proper values, and initialize the related structure
member with the new information. The following procedure, detailing the necessary steps, assumes that you have
a CMonthCalCtrl object called m_monthcal and an array of MONTHDAYSTATE objects, mdState.

LPNMDAYSTATE pDayState = reinterpret_cast<LPNMDAYSTATE>(pNMHDR);

int iMax = pDayState->cDayState;

for(int i = 0; i < iMax; i++)
{
 pDayState->prgDayState[i] = (MONTHDAYSTATE)0; // init to 0
 pDayState->prgDayState[i] |= 0x01 << 14; // set 15th bit to 1
}

1. Using the Properties window, add a notification handler for the MCN_GETDAYSTATE message to the
m_monthcal object (see Mapping Messages to Functions).

2. In the body of the handler, add the following code:

The example converts the pNMHDR pointer to the proper type, then determines how many months of
information are being requested (pDayState->cDayState). For each month, the current bitfield (

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/setting-the-day-state-of-a-month-calendar-control.md

See also

pDayState->prgDayState[i]) is initialized to zero and then the needed dates are set (in this case, the 15th of
each month).

Using CMonthCalCtrl
Controls

Using CProgressCtrl
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

You can use the progress control to indicate the progress of a lengthy operation. It is a rectangle that is gradually
filled with the system highlight color as the operation progresses.

The progress control is represented in MFC by class CProgressCtrl.

When you initially create the progress control, you specify its size and position, parent window (usually a dialog
box), and ID. By using the dwStyle parameter, you can also specify various window styles for the control and styles
for how it fills.

Styles for the Progress Control

Settings for the Progress Control

Manipulating the Progress Control

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-cprogressctrl.md

Styles for the Progress Control
3/4/2019 • 2 minutes to read • Edit Online

WINDOW STYLE EFFECT

WS_BORDER Creates a border around the window.

WS_CHILD Creates a child window (should always be used for
CProgressCtrl).

WS_CLIPCHILDREN Excludes the area occupied by child windows when you draw
within the parent window. Used when you create the parent
window.

WS_CLIPSIBLINGS Clips child windows relative to each other.

WS_DISABLED Creates a window that is initially disabled.

WS_VISIBLE Creates a window that is initially visible.

WS_TABSTOP Specifies that the control can receive focus when the user
presses the TAB key to move to it.

When you initially create the progress control (CProgressCtrl::Create), use the dwStyle parameter to specify the
desired window styles for your progress control. The following list details the applicable window styles. The
control ignores any window style other than the ones listed here. You should always create the control as a child
window, usually of a dialog box parent.

In addition, you can specify two styles that apply only to the progress control, PBS_VERTICAL and
PBS_SMOOTH.

Use PBS_VERTICAL to orient the control vertically, rather than horizontally. Use PBS_SMOOTH to fill the control
completely, rather than displaying small delineated squares that fill the control incrementally.

Without PBS_SMOOTH style:

With PBS_SMOOTH and PBS_VERTICAL styles:

For more information, see Window Styles in the MFC Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/styles-for-the-progress-control.md

See also
Using CProgressCtrl

Settings for the Progress Control
3/4/2019 • 2 minutes to read • Edit Online

See also

The basic settings for the progress control (CProgressCtrl) are the range and current position. The range
represents the entire duration of the operation. The current position represents the progress that your application
has made toward completing the operation. Any changes to the range or position cause the progress control to
redraw itself.

By default, the range is set to 0 - 100, and the initial position is set to 0. To retrieve the current range settings for
the progress control, use the GetRange member function. To change the range, use the SetRange member
function.

To set the position, use SetPos. To retrieve the current position without specifying a new value, use GetPos. For
example, you might want to simply query on the status of the current operation.

To step the current position of the progress control, use StepIt. To set the amount of each step, use SetStep

Using CProgressCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/settings-for-the-progress-control.md

Manipulating the Progress Control
3/4/2019 • 2 minutes to read • Edit Online

To change the position by a preset amountTo change the position by a preset amount

To change the position by an arbitrary amountTo change the position by an arbitrary amount

To change the position to a specific valueTo change the position to a specific value

See also

There are three ways to change the current position of a progress control (CProgressCtrl).

The position can be changed by a preset increment amount.

The position can be changed by an arbitrary amount.

The position can be changed to a specific value.

NOTENOTE

1. Use the SetStep member function to set the increment amount. By default, this value is 10. This value is
typically set as one of the initial settings for the control. The step value can be negative.

2. Use the StepIt member function to increment the position. This causes the control to redraw itself.

StepIt will cause the position to wrap. For example, given a range of 1 -100, a step of 20, and a position of 90,
StepIt will set the position to 10.

NOTENOTE

1. Use the OffsetPos member function to change the position. OffsetPos will accept negative values.

OffsetPos , unlike StepIt , will not wrap the position. The new position is adjusted to remain within the range.

1. Use the SetPos member function to set the position to a specific value. If necessary, the new position is adjusted
to be within the range.

Typically, the progress control is used solely for output. To get the current position without specifying a new value,
use GetPos.

Using CProgressCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/manipulating-the-progress-control.md

Using CReBarCtrl
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

A rebar control acts as a container for child windows. These child windows, often other controls, are assigned to a
rebar control band. A rebar control can contain one or more bands, with each band having any combination of a
gripper bar, a bitmap, a text label, and a child window. However, bands cannot contain more than one child
window.

The following illustration shows a rebar control that has two bands. One contains a gripper bar, a text label
("Address"), and a combo box child window. The other band contains a gripper bar, a text label, and a flat toolbar
(implemented with a child window).

CReBar vs. CReBarCtrl

Creating a Rebar Control

Rebar Controls and Bands

Using an Image List with a Rebar Control

Using a Dialog Bar with a Rebar Control

Processing Notification Messages in a Rebar Control

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-crebarctrl.md

CReBar vs. CReBarCtrl
3/4/2019 • 2 minutes to read • Edit Online

See also

MFC provides two classes to create rebars: CReBar and CReBarCtrl (which wraps the Windows common control
API). CReBar provides all of the functionality of the rebar common control, and it handles many of the required
common control settings and structures for you.

CReBarCtrl is a wrapper class for the Win32 rebar control, and therefore may be easier to implement if you do not
intend to integrate the rebar into the MFC architecture. If you plan to use CReBarCtrl and integrate the rebar into
the MFC architecture, you must take additional care to communicate rebar control manipulations to MFC. This
communication is not difficult; however, it is additional work that is unneeded when you use CReBar .

Visual C++ provides two ways to take advantage of the rebar common control.

NOTENOTE

Create the rebar using CReBar , and then call CReBar::GetReBarCtrl to get access to the CReBarCtrl

member functions.

CReBar::GetReBarCtrl is an inline member function that casts the this pointer of the rebar object. This means that,
at run time, the function call has no overhead.

Create the rebar using CReBarCtrl's constructor.

Either method will give you access to the member functions of the rebar control. When you call
CReBar::GetReBarCtrl , it returns a reference to a CReBarCtrl object so you can use either set of member functions.

See CReBar for information on constructing and creating a rebar using CReBar .

Using CReBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/crebar-vs-crebarctrl.md

Creating a Rebar Control
3/4/2019 • 2 minutes to read • Edit Online

To use a CReBarCtrl objectTo use a CReBarCtrl object

See also

CReBarCtrl objects should be created before the parent object is visible. This minimizes the possibilities of painting
problems.

For instance, rebar controls (used in frame window objects) are commonly used as parent windows for toolbar
controls. Therefore, the parent of the rebar control is the frame window object. Because the frame window object is
the parent, the OnCreate member function (of the parent) is an excellent place to create the rebar control.

To use a CReBarCtrl object, you will typically follow these steps:

1. Construct the CReBarCtrl object.

2. Call Create to create the Windows rebar common control and attach it to the CReBarCtrl object, specifying
any desired styles.

3. Load a bitmap, with a call to CBitmap::LoadBitmap, to be used as the background of the rebar control object.

4. Create and initialize any child window objects (toolbars, dialog controls, and so on) that will be contained by
the rebar control object.

5. Initialize a REBARBANDINFO structure with the necessary information for the band about to be inserted.

6. Call InsertBand to insert existing child windows (such as m_wndReToolBar) into the new rebar control. For
more information on inserting bands into an existing rebar control, see Rebar Controls and Bands.

Using CReBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-a-rebar-control.md

Rebar Controls and Bands
3/4/2019 • 2 minutes to read • Edit Online

//load bitmap for toolbar background
m_RebarBitmap.LoadBitmap(IDB_BITMAP1);

//create a toolbar band
m_Toolbar1.Create(this, TBSTYLE_TRANSPARENT | TBSTYLE_FLAT);
m_Toolbar1.LoadToolBar(IDR_MAINFRAME);

REBARBANDINFO rbi = {0};
rbi.cbSize = sizeof(REBARBANDINFO);
rbi.fMask = RBBIM_BACKGROUND | RBBIM_CHILD | RBBIM_CHILDSIZE |
 RBBIM_STYLE | RBBIM_TEXT;
rbi.fStyle = RBBS_GRIPPERALWAYS;
rbi.cxMinChild = 300;
rbi.cyMinChild = 50;
rbi.lpText = _T("Band #1");
rbi.cch = 7;
rbi.cx = 300;
rbi.hbmBack = (HBITMAP)m_RebarBitmap;
rbi.hwndChild = (HWND)m_Toolbar1;
m_Rebar.GetReBarCtrl().InsertBand(0, &rbi);

See also

The main purpose of a rebar control is to act as a container for child windows, common dialog controls, menus,
toolbars, and so on. This containment is supported by the concept of a "band." Each rebar band can contain any
combination of a gripper bar, a bitmap, a text label, and a child window.

Class CReBarCtrl has many member functions that you can use to retrieve, and manipulate, information for a
specific rebar band:

GetBandCount Retrieves the number of current bands in the rebar control.

GetBandInfo Initializes a REBARBANDINFO structure with information from the specified band. There is
a corresponding SetBandInfo member function.

GetRect Retrieves the bounding rectangle of a specified band.

GetRowCount Retrieves the number of band rows in a rebar control.

IDToIndex Retrieves the index of a specified band.

GetBandBorders Retrieves the borders of a band.

In addition to manipulation, several member functions are provided that allow you to operate on specific rebar
bands.

InsertBand and DeleteBand add and remove rebar bands. MinimizeBand and MaximizeBand affect the current size
of a specific rebar band. MoveBand changes the index of a specific rebar band. ShowBand shows or hides a rebar
band from the user.

The following example demonstrates adding a toolbar band (m_wndToolBar) to an existing rebar control
(m_wndReBar). The band is described by initializing the rbi structure and then calling the InsertBand member
function:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/rebar-controls-and-bands.md

Using CReBarCtrl
Controls

Using an Image List with a Rebar Control
3/4/2019 • 2 minutes to read • Edit Online

To display images in a rebar bandTo display images in a rebar band

REBARBANDINFO rbi = {0};
rbi.cbSize = sizeof(REBARBANDINFO);
rbi.fMask = RBBIM_BACKGROUND | RBBIM_CHILD | RBBIM_IMAGE |
 RBBIM_CHILDSIZE | RBBIM_STYLE | RBBIM_TEXT;
rbi.fStyle = RBBS_GRIPPERALWAYS;
rbi.cxMinChild = 200;
rbi.cyMinChild = 50;
rbi.lpText = _T("Band #2");
rbi.cch = 7;
rbi.cx = 300;
rbi.hbmBack = (HBITMAP)m_RebarBitmap;
rbi.iImage = 0;
rbi.hwndChild = (HWND)m_Toolbar2;
m_Rebar.GetReBarCtrl().InsertBand(1, &rbi);

See also

Each rebar band can contain, among other things, an image from an associated image list. The following procedure
details the necessary steps for displaying an image in a rebar band.

1. Attach an image list to your rebar control object by making a call to SetImageList, passing a pointer to an
existing image list.

2. Modify the REBARBANDINFO structure to assign an image to a rebar band:

Set the fMask member to RBBIM_IMAGE , using the bitwise OR operator to include additional flags as
necessary.

Set the iImage member to the image list index of the image to be displayed.

3. Initialize any remaining data members, such as the size, text, and handle of the contained child window, with
the necessary information.

4. Insert the new band (with the image) with a call to CReBarCtrl::InsertBand, passing the REBARBANDINFO
structure.

The following example assumes that an existing image list object with two images was attached to the rebar
control object (m_wndReBar). A new rebar band (defined by rbi), containing the first image, is added with a call to
InsertBand :

Using CReBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-an-image-list-with-a-rebar-control.md

Using a Dialog Bar with a Rebar Control
3/4/2019 • 2 minutes to read • Edit Online

To implement a transparent dialog bar in a rebar bandTo implement a transparent dialog bar in a rebar band

See also

As mentioned in Rebar Controls and Bands, each band can contain only one child window (or control). This might
be a limitation if you want to have more than one child window per band. A convenient workaround is to create a
dialog bar resource with multiple controls and then add a rebar band (containing the dialog bar) to the rebar
control.

Normally, if you wanted the dialog bar band to appear transparent, you would set the WS_EX_TRANSPARENT
extended style for the dialog bar object. However, because WS_EX_TRANSPARENT has some issues with properly
painting the background of a dialog bar, you will need to do a little extra work to achieve the desired effect.

The following procedure details the steps necessary to achieve transparency without using the
WS_EX_TRANSPARENT extended style.

BOOL CMyDlgBar::OnEraseBkgnd(CDC* pDC)
{
 CWnd* pParent = GetParent();
 ASSERT_VALID(pParent);
 CPoint pt(0, 0);
 MapWindowPoints(pParent, &pt, 1);
 pt = pDC->OffsetWindowOrg(pt.x, pt.y);
 LRESULT lResult = pParent->SendMessage(WM_ERASEBKGND,
 (WPARAM)pDC->m_hDC, 0L);
 pDC->SetWindowOrg(pt.x, pt.y);
 return (BOOL)lResult;
}

void CMyDlgBar::OnMove(int x, int y)
{
 UNREFERENCED_PARAMETER(x);
 UNREFERENCED_PARAMETER(y);

 Invalidate();
}

1. Using the Add Class dialog box, add a new class (for example, CMyDlgBar) that implements your dialog bar
object.

2. Add a handler for the WM_ERASEBKGND message.

3. In the new handler, modify the existing code to match the following example:

4. Add a handler for the WM_MOVE message.

5. In the new handler, modify the existing code to match the following example:

The new handlers simulate the transparency of the dialog bar by forwarding the WM_ERASEBKGND message to
the parent window and forcing a repaint every time the dialog bar object is moved.

Using CReBarCtrl

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-a-dialog-bar-with-a-rebar-control.md

Controls

Processing Notification Messages in a Rebar Control
3/4/2019 • 2 minutes to read • Edit Online

See also

In the parent class of the rebar control, create an OnChildNotify handler function with a switch statement for any
rebar-control (CReBarCtrl) notification messages you want to handle. Notifications are sent to the parent window
when the user drags objects over the rebar control, changes the layout of the rebar bands, deletes bands from the
rebar control, and so on.

The following notification messages can be sent by the rebar control object:

RBN_AUTOSIZE Sent by a rebar control (created with the RBS_AUTOSIZE style) when the rebar
automatically resizes itself.

RBN_BEGINDRAG Sent by a rebar control when the user begins dragging a band.

RBN_CHILDSIZE Sent by a rebar control when a band's child window is resized.

RBN_DELETEDBAND Sent by a rebar control after a band has been deleted.

RBN_DELETINGBAND Sent by a rebar control when a band is about to be deleted.

RBN_ENDDRAG Sent by a rebar control when the user stops dragging a band.

RBN_GETOBJECT Sent by a rebar control (created with the RBS_REGISTERDROP style) when an object is
dragged over a band in the control.

RBN_HEIGHTCHANGE Sent by a rebar control when its height has changed.

RBN_LAYOUTCHANGED Sent by a rebar control when the user changes the layout of the control's bands.

For more information on these notifications, see Rebar Control Reference in the Windows SDK.

Using CReBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/processing-notification-messages-in-a-rebar-control.md
https://docs.microsoft.com/windows/desktop/controls/rebar-control-reference

Using CRichEditCtrl
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

A rich edit control is a window in which the user can enter and edit text. The text can be assigned character and
paragraph formatting, and can include embedded OLE objects. The rich edit control is represented in MFC by
the CRichEditCtrl class.

Overview of the Rich Edit Control

Classes Related to Rich Edit Controls

Rich Edit Control Examples

Character Formatting in Rich Edit Controls

Paragraph Formatting in Rich Edit Controls

Current Selection in a Rich Edit Control

Word Breaks in a Rich Edit Control

Clipboard Operations in Rich Edit Controls

Stream Operations in Rich Edit Controls

Printing in Rich Edit Controls

Bottomless Rich Edit Controls

Notifications from a Rich Edit Control

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-cricheditctrl.md

Overview of the Rich Edit Control
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

See also

If you are using a rich edit control in a dialog box (regardless of whether your application is SDI, MDI, or dialog-based), you
must call AfxInitRichEdit once before the dialog box is displayed. A typical place to call this function is in your program's
InitInstance member function. You do not need to call it for each time you display the dialog box, only the first time. You

do not have to call AfxInitRichEdit if you are working with CRichEditView .

Rich edit controls (CRichEditCtrl) provide a programming interface for formatting text. However, an application
must implement any user interface components necessary to make formatting operations available to the user.
That is, the rich edit control supports changing the character or paragraph attributes of the selected text. Some
examples of character attributes are bold, italics, font family, and point size. Examples of paragraph attributes
include alignment, margins, and tab stops. However, it is up to you to provide the user interface, whether that is
toolbar buttons, menu items, or a format character dialog box. There are also functions to query the rich edit
control for the attributes of the current selection. Use these functions to display the current settings for the
attributes, for example, setting a check mark on the command UI if the selection has the bold character formatting
attribute.

For more information on character and paragraph formatting, see Character Formatting and Paragraph
Formatting later in this topic.

Rich edit controls support almost all of the operations and notification messages used with multiline edit controls.
Thus, applications that already use edit controls can be easily changed to use rich edit controls. Additional
messages and notifications enable applications to access the functionality unique to rich edit controls. For
information about edit controls, see CEdit.

For more information on notifications, see Notifications from a Rich Edit Control later in this topic.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/overview-of-the-rich-edit-control.md

Classes Related to Rich Edit Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

The CRichEditView, CRichEditDoc, and CRichEditCntrItem classes provide the functionality of the rich edit control
(CRichEditCtrl) within the context of MFC's document/view architecture. CRichEditView maintains the text and
formatting characteristic of text. CRichEditDoc maintains the list of OLE client items that are in the view.
CRichEditCntrItem provides container-side access to the OLE client item. To modify the contents of a
CRichEditView , use CRichEditView::GetRichEditCtrl to access the underlying rich edit control.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/classes-related-to-rich-edit-controls.md

Rich Edit Control Examples
3/4/2019 • 2 minutes to read • Edit Online

See also

The MFC OLE sample WORDPAD uses the CRichEditView , CRichEditDoc , and CRichEditCntrItem classes. By
extension, it uses the CRichEditCtrl. For a quick description of these three classes, see Classes Related to Rich Edit
Controls.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/rich-edit-control-examples.md
https://github.com/Microsoft/VCSamples/tree/da802c2aa92a730b3da33c5957186f128709c398/VC2010Samples/MFC/Visual C%2B%2B 2008 Feature Pack/WordPad

Character Formatting in Rich Edit Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

You can use member functions of the rich edit control (CRichEditCtrl) to format characters and to retrieve
formatting information. For characters, you can specify typeface, size, color, and effects such as bold, italic, and
protected.

You can apply character formatting by using the SetSelectionCharFormat and SetWordCharFormat member
functions. To determine the current character formatting for the selected text, use the GetSelectionCharFormat
member function. The CHARFORMAT structure is used with these member functions to specify character
attributes. One of the important members of CHARFORMAT is dwMask. In SetSelectionCharFormat and
SetWordCharFormat , dwMask specifies which character attributes will be set by this function call.
GetSelectionCharFormat reports the attributes of the first character in the selection; dwMask specifies the

attributes that are consistent throughout the selection.

You can also get and set the "default character formatting," which is the formatting applied to any subsequently
inserted characters. For example, if an application sets the default character formatting to bold and the user then
types a character, that character is bold. To get and set default character formatting, use the GetDefaultCharFormat
and SetDefaultCharFormat member functions.

The "protected" character attribute does not change the appearance of text. If the user attempts to modify
protected text, a rich edit control sends its parent window an EN_PROTECTED notification message, allowing the
parent window to allow or prevent the change. To receive this notification message, you must enable it by using
the SetEventMask member function. For more information about the event mask, see Notifications from a Rich
Edit Control, later in this topic.

Foreground color is a character attribute, but background color is a property of the rich edit control. To set the
background color, use the SetBackgroundColor member function.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/character-formatting-in-rich-edit-controls.md
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charformat

Paragraph Formatting in Rich Edit Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

You can use member functions of the rich edit control (CRichEditCtrl) to format paragraphs and to retrieve
formatting information. Paragraph formatting attributes include alignment, tabs, indents, and numbering.

You can apply paragraph formatting by using the SetParaFormat member function. To determine the current
paragraph formatting for the selected text, use the GetParaFormat member function. The PARAFORMAT structure
is used with these member functions to specify paragraph attributes. One of the important members of
PARAFORMAT is dwMask. In SetParaFormat , dwMask specifies which paragraph attributes will be set by this
function call. GetParaFormat reports the attributes of the first paragraph in the selection; dwMask specifies the
attributes that are consistent throughout the selection.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/paragraph-formatting-in-rich-edit-controls.md
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_paraformat

Current Selection in a Rich Edit Control
3/4/2019 • 2 minutes to read • Edit Online

See also

The user can select text in a rich edit control (CRichEditCtrl) by using the mouse or the keyboard. The current
selection is the range of selected characters, or the position of the insertion point if no characters are selected. An
application can get information about the current selection, set the current selection, determine when the current
selection changes, and show or hide the selection highlight.

To determine the current selection in a rich edit control, use the GetSel member function. To set the current
selection, use the SetSel member function. The CHARRANGE structure is used with these functions to specify a
range of characters. To retrieve information about the contents of the current selection, you can use the
GetSelectionType member function.

By default, a rich edit control shows and hides the selection highlight when it gains and loses the focus. You can
show or hide the selection highlight at any time by using the HideSelection member function. For example, an
application might provide a Search dialog box to find text in a rich edit control. The application might select
matching text without closing the dialog box, in which case it must use HideSelection to highlight the selection.

To get the selected text in a rich edit control, use the GetSelText member function. The text is copied to the specified
character array. You must ensure that the array is large enough to hold the selected text plus a terminating null
character.

You can search for a string in a rich edit control by using the FindText member function The FINDTEXTEX structure
used with this function specifies the text range to search and the string to search for. You can also specify such
options as whether the search is case-sensitive.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/current-selection-in-a-rich-edit-control.md
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charrange
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_findtextexa

Word Breaks in Rich Edit Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

A rich edit control (CRichEditCtrl) calls a function called a "word break procedure" to find breaks between words
and to determine where it can break lines. The control uses this information when performing word-wrap
operations and when processing the CTRL+LEFT and CTRL+RIGHT key combinations. An application can send
messages to a rich edit control to replace the default word-break procedure, to retrieve word-break information,
and to determine what line a given character falls on.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/word-breaks-in-rich-edit-controls.md

Clipboard Operations in Rich Edit Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

Your application can paste the contents of the Clipboard into a rich edit control (CRichEditCtrl) using either the
best available Clipboard format or a specific Clipboard format. You can also determine whether a rich edit control
is capable of pasting a Clipboard format.

You can copy or cut the contents of the current selection by using the Copy or Cut member function. Similarly, you
can paste the contents of the Clipboard into a rich edit control by using the Paste member function. The control
pastes the first available format that it recognizes, which presumably is the most descriptive format.

To paste a specific Clipboard format, you can use the PasteSpecial member function. This function is useful for
applications with a Paste Special command that enables the user to select the Clipboard format. You can use the
CanPaste member function to determine whether a given format is recognized by the control.

You can also use CanPaste to determine whether any available Clipboard format is recognized by a rich edit
control. This function is useful in the OnInitMenuPopup handler. An application might enable or gray its Paste
command depending on whether the control can paste any available format.

Rich edit controls register two Clipboard formats: rich-text format and a format called RichEdit Text and Objects.
An application can register these formats by using the RegisterClipboardFormat function, specifying the CF_RTF
and CF_RETEXTOBJ values.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/clipboard-operations-in-rich-edit-controls.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata

Stream Operations in Rich Edit Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

You can use streams to transfer data into or out of a rich edit control (CRichEditCtrl). A stream is defined by an
EDITSTREAM structure, which specifies a buffer and an application-defined callback function.

To read data into a rich edit control (that is, stream the data in), use the StreamIn member function. The control
repeatedly calls the application-defined callback function, which transfers a portion of the data into the buffer each
time.

To save the contents of a rich edit control (that is, stream the data out), you can use the StreamOut member
function. The control repeatedly writes to the buffer and then calls the application-defined callback function. For
each call, the callback function saves the contents of the buffer.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/stream-operations-in-rich-edit-controls.md
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_editstream

Printing in Rich Edit Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

You can tell a rich edit control (CRichEditCtrl) to render its output for a specified device, such as a printer. You can
also specify the output device for which a rich edit control formats its text.

To format part of the contents of a rich edit control for a specific device, you can use the FormatRange member
function. The FORMATRANGE structure used with this function specifies the range of text to format as well as the
device context (DC) for the target device.

After formatting text for an output device, you can send the output to the device by using the DisplayBand member
function. By repeatedly using FormatRange and DisplayBand , an application that prints the contents of a rich edit
control can implement banding. (Banding is division of output into smaller parts for printing purposes.)

You can use the SetTargetDevice member function to specify the target device for which a rich edit control formats
its text. This function is useful for WYSIWYG (what you see is what you get) formatting, in which an application
positions text using the default printer's font metrics instead of the screen's.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/printing-in-rich-edit-controls.md
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_formatrange

Bottomless Rich Edit Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

Your application can resize a rich edit control (CRichEditCtrl) as needed so that it is always the same size as its
contents. A rich edit control supports this so-called "bottomless" functionality by sending its parent window an
EN_REQUESTRESIZE notification message whenever the size of its contents changes.

When processing the EN_REQUESTRESIZE notification message, an application should resize the control to the
dimensions in the specified REQRESIZE structure. An application might also move any information near the
control to accommodate the control's change in height. To resize the control, you can use the CWnd function
SetWindowPos.

You can force a bottomless rich edit control to send an EN_REQUESTRESIZE notification message by using the
RequestResize member function. This message can be useful in the OnSize handler.

To receive EN_REQUESTRESIZE notification messages, you must enable the notification by using the
SetEventMask member function.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/bottomless-rich-edit-controls.md
https://docs.microsoft.com/windows/desktop/Controls/en-requestresize
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_reqresize

Notifications from a Rich Edit Control
3/4/2019 • 2 minutes to read • Edit Online

See also

Notification messages report events affecting a rich edit control (CRichEditCtrl). They can be processed by the
parent window or, using message reflection, by the rich edit control itself. Rich edit controls support all of the
notification messages used with edit controls as well as several additional ones. You can determine which
notification messages a rich edit control sends its parent window by setting its "event mask."

To set the event mask for a rich edit control, use the SetEventMask member function. You can retrieve the current
event mask for a rich edit control by using the GetEventMask member function.

The following paragraphs list several specific notifications and their uses:

EN_MSGFILTER Handling the EN_MSGFILTER notification lets a class, either the rich edit control or its
parent window, filter all keyboard and mouse input to the control. The handler can prevent the keyboard or
mouse message from being processed or can change the message by modifying the specified MSGFILTER
structure.

EN_PROTECTED Handle the EN_PROTECTED notification message to detect when the user attempts to
modify protected text. To mark a range of text as protected, you can set the protected character effect. For
more information, see Character Formatting in Rich Edit Controls.

EN_DROPFILES You can enable the user to drop files in a rich edit control by processing the
EN_DROPFILES notification message. The specified ENDROPFILES structure contains information about
the files being dropped.

EN_SELCHANGE An application can detect when the current selection changes by processing the
EN_SELCHANGE notification message. The notification message specifies a SELCHANGE structure
containing information about the new selection.

Using CRichEditCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/notifications-from-a-rich-edit-control.md
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_msgfilter
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_endropfiles
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_selchange

Using CSliderCtrl
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

The CSliderCtrl class represents a slider control, which is also called a trackbar. A "slider control" is a window that
contains a slider and optional tick marks. When the user moves the slider, using either the mouse or the arrow
keys, the slider control sends notification messages to indicate the change.

Slider controls are useful when you want the user to select a discrete value or a set of consecutive values in a
range. For example, you might use a slider control to allow the user to set the repeat rate of the keyboard by
moving the slider to a given tick mark.

The slider in a slider control moves in increments that you specify when you create it. For example, if you specify
that the slider control should have a range of five, the slider can only occupy six positions: a position at the left
side of the slider control and one position for each increment in the range. Typically, each of these positions is
identified by a tick mark.

Using Slider Controls

Slider Control Styles

Slider Control Member Functions

Slider Notification Messages

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-csliderctrl.md

Using Slider Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

Typical usage of an slider control follows the pattern below:

The control is created. If the control is specified in a dialog box template, creation is automatic when the
dialog box is created. (You should have a CSliderCtrl member in your dialog class that corresponds to the
slider control.) Alternatively, you can use the Create member function to create the control as a child
window of any window.

Call the various Set member functions to set values for the control. Changes that you can make include
setting the minimum and maximum positions for the slider, drawing tick marks, setting a selection range,
and repositioning the slider. For controls in a dialog box, a good time to do this is in the dialog's
OnInitDialog function.

As the user interacts with the control, it will send various notification messages. You can extract the slider
value from the control by calling the GetPos member function.

When you're done with the control, you need to make sure it's properly destroyed. If the slider control is in a
dialog box, it and the CSliderCtrl object will be destroyed automatically. If not, you need to ensure that
both the control and the CSliderCtrl object are properly destroyed.

Using CSliderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-slider-controls.md

Slider Control Styles
3/4/2019 • 2 minutes to read • Edit Online

See also

Slider controls (CSliderCtrl) can have either a vertical or horizontal orientation. They can have tick marks on either
side, both sides, or neither. They can also be used to specify a range of consecutive values. These properties are
controlled by using slider control styles, which you specify when you create the slider control.

The TBS_HORZ and TBS_VERT styles determine the orientation of the slider control. If you do not specify an
orientation, the slider control is oriented horizontally.

The TBS_AUTOTICKS style creates a slider control that has a tick mark for each increment in its range of values.
These tick marks are added automatically when you call the SetRange member function. If you do not specify
TBS_AUTOTICKS, you can use member functions, such as SetTic and SetTicFreq, to specify the positions of the
tick marks. To create a slider control that does not display tick marks, you can use the TBS_NOTICKS style.

You can display tick marks on either or both sides of the slider control. For horizontal slider controls, you can
specify the TBS_BOTTOM or TBS_TOP style. For vertical slider controls, you can specify the TBS_RIGHT or
TBS_LEFT style. (TBS_BOTTOM and TBS_RIGHT are the default settings.) For tick marks on both sides of the
slider control in any orientation, specify the TBS_BOTH style.

A slider control can display a selection range only if you specify the TBS_ENABLESELRANGE style when you
create it. When a slider control has this style, the tick marks at the starting and ending positions of a selection
range are displayed as triangles (instead of vertical dashes) and the selection range is highlighted. For example,
selection ranges might be useful in a simple scheduling application. The user could select a range of tick marks
corresponding to hours in a day to identify a scheduled meeting time.

By default, the length of a slider control's slider varies as the selection range changes. If the slider control has the
TBS_FIXEDLENGTH style, the length of the slider remains the same even if the selection range changes. A slider
control that has the TBS_NOTHUMB style does not include a slider.

Using CSliderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/slider-control-styles.md

Slider Control Member Functions
3/4/2019 • 2 minutes to read • Edit Online

See also

An application can call the slider control's member functions to retrieve information about the slider control
(CSliderCtrl) and to change its characteristics.

To retrieve the position of the slider (that is, the value the user has chosen), use the GetPos member function. To set
the position of the slider, use the SetPos member function. At any time you can use the VerifyPos member
function to make sure that the slider is between the minimum and maximum values.

The range of a slider control is the set of contiguous values that the slider control can represent. Most applications
use the SetRange member function to set the range of a slider control when it is first created. Applications can
dynamically alter the range after the slider control has been created by using the SetRangeMax and SetRangeMin
member functions. An application that allows the range to be changed dynamically typically retrieves the final
range settings when the user has finished working with the slider control. To retrieve these settings, use the
GetRange, GetRangeMax, and GetRangeMin member functions.

An application can use the TBS_AUTOTICKS style to have a slider control's tick marks displayed automatically. If
an application needs to control the position or frequency of the tick marks, however, a number of member
functions can be used.

To set the position of a tick mark, an application can use the SetTic member function. The SetTicFreq member
function allows an application to set tick marks that appear at regular intervals in the slider control's range. For
example, the application can use this member function to display only 10 tick marks in a range of 1 through 100.

To retrieve the index in the range corresponding to a tick mark, use the GetTic member function. The GetTicArray
member function retrieves an array of these indices. To retrieve the position of a tick mark, in client coordinates,
use the GetTicPos member function. An application can retrieve the number of tick marks by using the
GetNumTics member function.

The ClearTics member function removes all of a slider control's tick marks.

A slider control's line size determines how far the slider moves when an application receives a TB_LINEDOWN or
TB_LINEUP notification message. Similarly, the page size determines the response to the TB_PAGEDOWN and
TB_PAGEUP notification messages. Applications can retrieve and set the line and page size values by using the
GetLineSize, SetLineSize, GetPageSize, and SetPageSize member functions.

An application can use member functions to retrieve the dimensions of a slider control. The GetThumbRect
member function retrieves the bounding rectangle for the slider. The GetChannelRect member function retrieves
the bounding rectangle for the slider control's channel. (The channel is the area over which the slider moves and
which contains the highlight when a range is selected.)

If a slider control has the TBS_ENABLESELRANGE style, the user can select a range of contiguous values from it.
A number of member functions allow the selection range to be adjusted dynamically. The SetSelection member
function sets the starting and ending positions of a selection. When the user has finished setting a selection range,
an application can retrieve the settings by using the GetSelection member function. To clear a user's selection, use
the ClearSel member function.

Using CSliderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/slider-control-member-functions.md

Slider Notification Messages
3/4/2019 • 2 minutes to read • Edit Online

NOTIFICATION MESSAGE EVENT CAUSING NOTIFICATION TO BE SENT

TB_BOTTOM VK_END

TB_ENDTRACK WM_KEYUP (the user released a key that sent a relevant
virtual key code)

TB_LINEDOWN VK_RIGHT or VK_DOWN

TB_LINEUP VK_LEFT or VK_UP

TB_PAGEDOWN VK_NEXT (the user clicked the channel below or to the right of
the slider)

TB_PAGEUP VK_PRIOR (the user clicked the channel above or to the left of
the slider)

TB_THUMBPOSITION WM_LBUTTONUP following a TB_THUMBTRACK notification
message

TB_THUMBTRACK Slider movement (the user dragged the slider)

TB_TOP VK_HOME

See also

A slider control notifies its parent window of user actions by sending the parent WM_HSCROLL or
WM_VSCROLL messages, depending on the orientation of the slider control. To handle these messages, add
handlers for the WM_HSCROLL and WM_VSCROLL messages to the parent window. The OnHScroll and
OnVScroll member functions will be passed a notification code, the position of the slider, and a pointer to the
CSliderCtrl object. Note that the pointer is of type CScrollBar * even though it points to a CSliderCtrl object.
You may need to typecast this pointer if you need to manipulate the slider control.

Rather than using the scroll bar notification codes, slider controls send a different set of notification codes. A slider
control sends the TB_BOTTOM, TB_LINEDOWN, TB_LINEUP, and TB_TOP notification codes only when the user
interacts with a slider control by using the keyboard. The TB_THUMBPOSITION and TB_THUMBTRACK
notification messages are only sent when the user is using the mouse. The TB_ENDTRACK, TB_PAGEDOWN, and
TB_PAGEUP notification codes are sent in both cases.

The following table lists the slider control notification messages and the events (virtual key codes or mouse events)
that cause the notifications to be sent. (For a list of standard virtual key codes, see Winuser.h.)

Using CSliderCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/slider-notification-messages.md

Using CSpinButtonCtrl
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

What do you want to know more about

See also

The spin button control (also known as an up-down control) provides a pair of arrows that a user can click to
adjust a value. This value is known as the current position. The position stays within the range of the spin button.
When the user clicks the up arrow, the position moves toward the maximum; and when the user clicks the down
arrow, the position moves toward the minimum.

The spin button control is represented in MFC by the CSpinButtonCtrl class.

By default, the range for the spin button has the maximum set to zero (0) and the minimum set to 100. Because the
maximum value is less than the minimum value, clicking the up arrow decreases the position and clicking the down arrow
increases it. Use CSpinButtonCtrl::SetRange to adjust these values.

Typically, the current position is displayed in a companion control. The companion control is known as the buddy
window. For an illustration of a spin button control, see About Up-Down Controls in the Windows SDK.

To create a spin control and an edit control buddy window, in Visual Studio, first drag an edit control to the dialog
box or window, and then drag a spin control. Select the spin control and set its Auto Buddy and Set Buddy
Integer properties to True. Also set the Alignment property; Right Align is most typical. With these settings,
the edit control is set as the buddy window because it directly precedes the edit control in the tab order. The edit
control displays integers and the spin control is embedded in the right side of the edit control. Optionally, you can
set the valid range of the spin control by using the CSpinButtonCtrl::SetRange method. No event handlers are
required to communicate between the spin control and buddy window because they exchange data directly. If you
use a spin control for some other purpose, for example, to page through a sequence of windows or dialog boxes,
then add a handler for the UDN_DELTAPOS message and perform your custom action there.

Spin Button Styles

Spin Button Member Functions

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-cspinbuttonctrl.md
https://docs.microsoft.com/windows/desktop/Controls/up-down-controls

Spin Button Styles
3/4/2019 • 2 minutes to read • Edit Online

See also

Many of the settings for a spin button (CSpinButtonCtrl) are controlled by styles. You can set the following styles
using the Properties window in the dialog editor.

NOTENOTE

Orientation Either Vertical or Horizontal. Controls the orientation of the arrow buttons. Associated with the
UDS_HORZ style.

Alignment One of Unattached, Left, or Right. Controls the location of the spin button. Left and Right
position the spin button next to the buddy window. The width of the buddy window is decreased to
accommodate the spin button. Associated with the UDS_ALIGNLEFT and UDS_ALIGNRIGHT styles.

Auto Buddy Automatically selects the previous window in Z-order as buddy window to the spin button. In
a dialog template, this is the control which precedes the spin button in the tab order. Associated with the
UDS_AUTOBUDDY style.

Set Buddy Integer Causes the spin control to increment and decrement the caption of the buddy window
as the current position changes. Associated with the UDS_SETBUDDYINT style.

No Thousands Does not insert the thousands separator in the value in the caption of the buddy window.
Associated with the UDS_NOTHOUSANDS style.

Set this style if you want to use dialog data exchange (DDX) to get the integer value from the buddy control.
DDX_Text does not accept embedded thousand separators.

Wrap Causes the position to "wrap" as the value is incremented or decremented beyond the range of the
control. Associated with the UDS_WRAP style.

Arrow Keys Causes the spin button to increment or decrement the position when the UP ARROW and
DOWN ARROW keys are pressed. Associated with the UDS_ARROWKEYS style.

Using CSpinButtonCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/spin-button-styles.md

Spin Button Member Functions
3/4/2019 • 2 minutes to read • Edit Online

See also

There are several member functions available for the spin control (CSpinButtonCtrl). Use these functions to
change the following attributes of the spin button.

Acceleration You can adjust the rate at which the position changes when the user holds down the arrow
button. To work with acceleration, use the SetAccel and GetAccel member functions.

Base You can change the base (either 10 or 16) used to display the position in the caption of the buddy
window. To work with the base, use the GetBase and SetBase member functions.

Buddy Window You can dynamically set the buddy window. To query or change which control is the buddy
window, use the GetBuddy and SetBuddy member functions.

Position You can query and change the position. To work directly with position, use the GetPos and SetPos
member functions. Since the caption of the buddy control may have changed (for example, in the case that
the buddy is an edit control), GetPos retrieves the current caption and adjusts the position accordingly.

Range You can change the maximum and minimum positions for the spin button. By default, the maximum
is set to 0, and the minimum is set to 100. Since the default maximum is less than the default minimum, the
actions of the arrow buttons is counter-intuitive. Typically, you will set the range using the SetRange
member function. To query the range use GetRange.

Using CSpinButtonCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/spin-button-member-functions.md

Using CStatusBarCtrl
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

You can use the status bar control (CStatusBarCtrl) to create a control window that reflects various kinds of status
information about the application. The status window can be divided into parts that display more than one type of
information.

Methods of Creating a Status Bar

Settings for the CStatusBarCtrl

Using CStatusBarCtrl to Create a CStatusBarCtrl Object

Setting the Mode of a CStatusBarCtrl Object

Initializing the Parts of a CStatusBarCtrl Object

Using Tooltips in a CStatusBarCtrl Object

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-cstatusbarctrl.md

Methods of Creating a Status Bar
3/4/2019 • 2 minutes to read • Edit Online

See also

MFC provides two classes to create status bars: CStatusBar and CStatusBarCtrl (which wraps the Windows
common control API). CStatusBar provides all of the functionality of the status bar common control, it
automatically interacts with menus and toolbars, and it handles many of the required common control settings and
structures for you; however, your resulting executable usually will be larger than that created by using
CStatusBarCtrl .

CStatusBarCtrl usually results in a smaller executable, and you may prefer to use CStatusBarCtrl if you do not
intend to integrate the status bar into the MFC architecture. If you plan to use CStatusBarCtrl and integrate the
status bar into the MFC architecture, you must take additional care to communicate status bar control
manipulations to MFC. This communication is not difficult; however, it is additional work that is unneeded when
you use CStatusBar .

Visual C++ provides two ways to take advantage of the status bar common control.

Create the status bar using CStatusBar , and then call CStatusBar::GetStatusBarCtrl to get access to the
CStatusBarCtrl member functions.

Create the status bar using CStatusBarCtrl's constructor.

Either method will give you access to the member functions of the status bar control. When you call
CStatusBar::GetStatusBarCtrl , it returns a reference to a CStatusBarCtrl object so you can use either set of

member functions. See CStatusBar for information on constructing and creating a status bar using CStatusBar .

Using CStatusBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/methods-of-creating-a-status-bar.md

Settings for the CStatusBarCtrl
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

The default position of a CStatusBarCtrl status window is along the bottom of the parent window, but you can
specify the CCS_TOP style to have it appear at the top of the parent window's client area.

You can specify the SBARS_SIZEGRIP style to include a sizing grip at the right end of the CStatusBarCtrl status
window. A sizing grip is similar to a sizing border; it is a rectangular area that the user can click and drag to resize
the parent window.

If you combine the CCS_TOP and SBARS_SIZEGRIP styles, the resulting sizing grip is not functional even though the system
draws it in the status window.

The window procedure for the status window automatically sets the initial size and position of the control window.
The width is the same as that of the parent window's client area. The height is based on the metrics of the font that
is currently selected into the status window's device context and on the width of the window's borders.

The window procedure automatically adjusts the size of the status window whenever it receives a WM_SIZE
message. Typically, when the size of the parent window changes, the parent sends a WM_SIZE message to the
status window.

You can set the minimum height of a status window's drawing area by calling SetMinHeight, specifying the
minimum height in pixels. The drawing area does not include the window's borders.

You retrieve the widths of the borders of a status window by calling GetBorders. This member function includes
the pointer to a three-element array that receives the width of the horizontal border, the vertical border, and the
border between rectangles.

Using CStatusBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/settings-for-the-cstatusbarctrl.md

Using CStatusBarCtrl to Create a CStatusBarCtrl
Object
3/4/2019 • 2 minutes to read • Edit Online

To use a status bar control with partsTo use a status bar control with parts

See also

Here is an example of a typical use of CStatusBarCtrl:

1. Construct the CStatusBarCtrl object.

2. Call SetMinHeight if you want to set the minimum height of the status bar control's drawing area.

3. Call SetBkColor to set the background color of the status bar control.

4. Call SetParts to set the number of parts in a status bar control and the coordinate of the right edge of each
part.

5. Call SetText to set the text in a given part of the status bar control. The message invalidates the portion of
the control that has changed, causing it to display the new text when the control next receives the
WM_PAINT message.

In some cases, the status bar only needs to display a line of text. In this case, make a call to SetSimple. This puts the
status bar control into "simple" mode, which displays a single line of text.

Using CStatusBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-cstatusbarctrl-to-create-a-cstatusbarctrl-object.md

Setting the Mode of a CStatusBarCtrl Object
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

There are two modes for a CStatusBarCtrl object: simple and nonsimple. In the majority of cases, your status bar
control will have one or more parts, along with text and perhaps an icon or icons. This is called the nonsimple
mode. For more information on this mode, see Initializing the Parts of a CStatusBarCtrl Object.

However, there are cases where you only need to display a single line of text. In this case, the simple mode is
sufficient for your needs. To change the mode of the CStatusBarCtrl object to simple, make a call to the SetSimple
member function. Once the status bar control is in simple mode, set the text by calling the SetText member
function, passing 255 as the value for the nPane parameter.

You can use the IsSimple function to determine what mode the CStatusBarCtrl object is in.

If the status bar object is being changed from nonsimple to simple, or vice versa, the window is immediately redrawn and, if
applicable, any defined parts are automatically restored.

Using CStatusBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/setting-the-mode-of-a-cstatusbarctrl-object.md

Initializing the Parts of a CStatusBarCtrl Object
3/4/2019 • 2 minutes to read • Edit Online

int strPartDim[4]= {80, 160, 240, -1};

m_StatusBarIcon = AfxGetApp()->LoadIcon(IDI_ICON1);

m_StatusBarCtrl.SetParts(4, strPartDim);
m_StatusBarCtrl.SetIcon(1, m_StatusBarIcon);
m_StatusBarCtrl.SetText(_T("Part 1"), 1, 0);

See also

By default, a status bar displays status information using separate panes. These panes (also referred to as parts)
can contain either a text string, an icon, or both.

Use SetParts to define how many parts, and the length, the status bar will have. After you have created the parts of
the status bar, make calls to SetText and SetIcon to set the text or icon for a specific part of the status bar. Once the
part has been successfully set, the control is automatically redrawn.

The following example initializes an existing CStatusBarCtrl object (m_StatusBarCtrl) with four panes and then
sets an icon (IDI_ICON1) and some text in the second part.

For more information on setting the mode of a CStatusBarCtrl object to simple, see Setting the Mode of a
CStatusBarCtrl Object.

Using CStatusBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/initializing-the-parts-of-a-cstatusbarctrl-object.md

Using Tooltips in a CStatusBarCtrl Object
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

To enable tooltips for a status bar control, create the CStatusBarCtrl object with the SBT_TOOLTIPS style.

If you are using a CStatusBar object to implement your status bar, use the CStatusBar::CreateEx function. It allows you
to specify additional styles for the embedded CStatusBarCtrl object.

Once the CStatusBarCtrl object has been successfully created, use CStatusBarCtrl::SetTipText and
CStatusBarCtrl::GetTipText to set and retrieve the tip text for a specific pane.

Once the tool tip has been set, it is displayed only if the part has an icon and no text, or if all of the text cannot be
displayed inside the part. Tool tips are not supported in simple mode.

Using CStatusBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-tooltips-in-a-cstatusbarctrl-object.md

Using CTabCtrl
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

A "tab control" is analogous to the dividers in a notebook or the labeled folders in a file cabinet. Use the tab
control, represented by class CTabCtrl, to show multiple pages of information or controls to a user, one at a time,
in a format that suggests a peer or logical relationship between each page.

For more information on tab controls, see Tab Controls in the Windows SDK.

Tab Controls and Property Sheets

Tabs and Tab Control Attributes

Making Owner-Drawn Tabs

Working with a Tab Control

Creating the Tab Control

Adding Tabs to a Tab Control

Processing Tab Control Notification Messages

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-ctabctrl.md
https://docs.microsoft.com/windows/desktop/Controls/tab-controls

Tab Controls and Property Sheets
3/4/2019 • 2 minutes to read • Edit Online

See also

Property sheets are multiple-page dialogs or "tab dialogs" that can display up to 24 dialog template resources to
the user. For examples of property sheets, see the Windows Display Properties dialog box or the following MFC
sample application:

CMNCTRL1: Demonstrates Common Control Classes, Part 1

CMNCTRL2: Demonstrates Common Control Classes, Part 2

Property sheets can be easily implemented using the MFC class CPropertySheet.

Using CTabCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tab-controls-and-property-sheets.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Tabs and Tab Control Attributes
3/4/2019 • 2 minutes to read • Edit Online

//modify the third item to be highlighted
TCITEM curItem = {0};

m_TabCtrl.DeselectAll(FALSE); //reset all tab items
curItem.mask = TCIF_STATE;
m_TabCtrl.GetItem(2, &curItem);
curItem.mask = TCIF_STATE;
curItem.dwState = TCIS_HIGHLIGHTED;
curItem.dwStateMask = TCIS_HIGHLIGHTED;
m_TabCtrl.SetItem(2, &curItem);

See also

You have considerable control over the appearance and behavior of tabs that make up a tab control (CTabCtrl).
Each tab can have a label, an icon, an item state, and an application-defined 32-bit value associated with it. For each
tab, you can display the icon, the label, or both.

In addition, each tab item can have three possible states: pressed, unpressed, or highlighted. This state can only be
set by modifying an existing tab item. To modify an existing tab item, retrieve it with a call to GetItem, modify the
TCITEM structure (specifically the dwState and dwStateMask data members), and then return the modified TCITEM

structure with a call to SetItem. If you need to clear the item states of all the tab items in a CTabCtrl object, make a
call to DeselectAll. This function resets the state of all tab items or all items except the one currently selected.

The following code clears the state of all tab items and then modifies the state of the third item:

For more information about tab attributes, see Tabs and Tab Attributes in the Windows SDK. For more information
about adding tabs to a tab control, see Adding Tabs to a Tab Control later in this topic.

Using CTabCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tabs-and-tab-control-attributes.md
https://docs.microsoft.com/windows/desktop/Controls/tab-controls

Making Owner-Drawn Tabs
3/4/2019 • 2 minutes to read • Edit Online

See also

You can define individual items of a tab control (CTabCtrl) to be owner-drawn items. For more information, see
Owner-Drawn Tabs in the Windows SDK.

Using CTabCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/making-owner-drawn-tabs.md
https://docs.microsoft.com/windows/desktop/Controls/tab-controls

Working with a Tab Control
3/4/2019 • 2 minutes to read • Edit Online

See also

The easiest way to use a tab control (CTabCtrl) is by adding it to a dialog template resource with the dialog editor.
You can also use a tab control by itself. MFC calls InitCommonControls for you. The key tasks are as follows:

Creating the tab control

Adding tabs to a tab control

Processing tab control notification messages

If the tab control object is embedded in a parent view or dialog class, the control is destroyed when the parent is
destroyed.

Using CTabCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/working-with-a-tab-control.md

Creating the Tab Control
3/4/2019 • 2 minutes to read • Edit Online

To use CTabCtrl directly in a dialog boxTo use CTabCtrl directly in a dialog box

To use CTabCtrl in a nondialog windowTo use CTabCtrl in a nondialog window

DWORD dwExStyle= m_TabCtrl.GetExtendedStyle();
m_TabCtrl.SetExtendedStyle(dwExStyle | TCS_EX_FLATSEPARATORS);

DWORD dwExStyle= m_TabCtrl.GetExtendedStyle();
m_TabCtrl.SetExtendedStyle(dwExStyle & ~TCS_EX_FLATSEPARATORS);

How the tab control is created depends on whether you are using the control in a dialog box or creating it in a
nondialog window.

1. In the dialog editor, add a Tab Control to your dialog template resource. Specify its control ID.

2. Use the Add Member Variable Wizard to add a member variable of type CTabCtrl with the Control
property. You can use this member to call CTabCtrl member functions.

3. Map handler functions in the dialog class for any tab control notification messages you need to handle. For
more information, see Mapping Messages to Functions.

4. In OnInitDialog, set the styles for the CTabCtrl .

1. Define the control in the view or window class.

2. Call the control's Create member function, possibly in OnInitialUpdate, possibly as early as the parent
window's OnCreate handler function (if you're subclassing the control). Set the styles for the control.

After the CTabCtrl object has been created, you can set or clear the following extended styles:

NOTENOTE

TCS_EX_FLATSEPARATORS The tab control will draw separators between the tab items. This extended
style only affects tab controls that have the TCS_BUTTONS and TCS_FLATBUTTONS styles. By default,
creating the tab control with the TCS_FLATBUTTONS style sets this extended style.

TCS_EX_REGISTERDROP The tab control generates TCN_GETOBJECT notification messages to request
a drop target object when an object is dragged over the tab items in the control.

To receive the TCN_GETOBJECT notification, you must initialize the OLE libraries with a call to AfxOleInit.

These styles can be retrieved and set, after the control has been created, with respective calls to the
GetExtendedStyle and SetExtendedStyle member functions.

For instance, set the TCS_EX_FLATSEPARATORS style with the following lines of code:

Clear the TCS_EX_FLATSEPARATORS style from a CTabCtrl object with the following lines of code:

This will remove the separators that appear between the buttons of your CTabCtrl object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-the-tab-control.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp

See also
Using CTabCtrl
Controls

Adding Tabs to a Tab Control
3/4/2019 • 2 minutes to read • Edit Online

To add a tab itemTo add a tab item

See also

After creating the tab control (CTabCtrl), add as many tabs as you need.

1. Prepare a TCITEM structure.

2. Call CTabCtrl::InsertItem, passing the structure.

3. Repeat steps 1 and 2 for additional tab items.

For more information, see Creating a Tab Control in the Windows SDK.

Using CTabCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/adding-tabs-to-a-tab-control.md
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtcitema
https://docs.microsoft.com/windows/desktop/Controls/tab-controls

Processing Tab Control Notification Messages
3/4/2019 • 2 minutes to read • Edit Online

See also

As users click tabs or buttons, the tab control (CTabCtrl) sends notification messages to its parent window. Handle
these messages if you want to do something in response. For example, when the user clicks a tab, you may want to
preset control data on the page prior to displaying it.

Process WM_NOTIFY messages from the tab control in your view or dialog class. Use the Properties window to
create an OnChildNotify handler function with a switch statement based on which notification message is being
handled. For a list of the notifications a tab control can send to its parent window, see the Notifications section of
Tab Control Reference in the Windows SDK.

Using CTabCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/processing-tab-control-notification-messages.md
https://docs.microsoft.com/windows/desktop/controls/tab-control-reference

Using CToolBarCtrl
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

You can use the toolbar control (CToolBarCtrl) to create a control window containing buttons and optional spaces.
Each button in the toolbar control window sends a command message to the parent window as the user chooses
it. Typically, the buttons in a toolbar correspond to items in the application's menu, providing an additional and
more direct way for the user to access an application's commands.

Methods of Creating a Toolbar

Settings for the Toolbar Control

Creating a CToolBarCtrl Object

Using Image Lists in a Toolbar Control

Using Drop-Down Buttons in a Toolbar Control

Customizing the Appearance of a Toolbar Control

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-ctoolbarctrl.md

Methods of Creating a Toolbar
3/4/2019 • 2 minutes to read • Edit Online

See also

MFC provides two classes to create toolbars: CToolBar and CToolBarCtrl (which wraps the Windows common
control API). CToolBar provides all of the functionality of the toolbar common control, and it handles many of the
required common control settings and structures for you; however, your resulting executable usually will be larger
than that created by using CToolBarCtrl .

CToolBarCtrl usually results in a smaller executable, and you may prefer to use CToolBarCtrl if you do not intend
to integrate the toolbar into the MFC architecture. If you plan to use CToolBarCtrl and integrate the toolbar into
the MFC architecture, you must take additional care to communicate toolbar control manipulations to MFC. This
communication is not difficult; however, it is additional work that is unneeded when you use CToolBar .

Visual C++ provides two ways to take advantage of the toolbar common control.

Create the toolbar using CToolBar , and then call CToolBar::GetToolBarCtrl to get access to the
CToolBarCtrl member functions.

Create the toolbar using CToolBarCtrl's constructor.

Either method will give you access to the member functions of the toolbar control. When you call
CToolBar::GetToolBarCtrl , it returns a reference to a CToolBarCtrl object so you can use either set of member

functions. See CToolBar for information on constructing and creating a toolbar using CToolBar .

Using CToolBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/methods-of-creating-a-toolbar.md

Settings for the Toolbar Control
3/4/2019 • 2 minutes to read • Edit Online

See also

The buttons on a toolbar can display a bitmap, a string, or both. By default, the image size is set to the dimensions
of 16 by 15 pixels. All buttons are the same width, by default 24 by 22 pixels. A toolbar's height is determined by
the height of the buttons, and a toolbar's width is the same as the width of the parent window's client area, also by
default.

A toolbar can have built-in customization features, including a system-defined customization dialog box, that allow
the user to insert, delete, or rearrange toolbar buttons. An application determines whether the customization
features are available to the user and controls the extent to which the user can customize the toolbar. For more
information about customizing the toolbar, see class CToolBarCtrl in the MFC Reference.

Using CToolBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/settings-for-the-toolbar-control.md

Creating a CToolBarCtrl Object
3/4/2019 • 2 minutes to read • Edit Online

To use a CToolBarCtrl objectTo use a CToolBarCtrl object

See also

CToolBarCtrl objects contain several internal data structures — a list of button image bitmaps, a list of button label
strings, and a list of TBBUTTON structures — that associate an image and/or string with the position, style, state, and
command ID of the button. Each of the elements of these data structures is referred to by a zero-based index.
Before you can use a CToolBarCtrl object, you must set up these data structures. For a list of the data structures,
see Toolbar Controls in the Windows SDK. The list of strings can only be used for button labels; you cannot
retrieve strings from the toolbar.

To use a CToolBarCtrl object, you will typically follow these steps:

1. Construct the CToolBarCtrl object.

2. Call Create to create the Windows toolbar common control and attach it to the CToolBarCtrl object. If you
want bitmap images for buttons, add the button bitmaps to the toolbar by calling AddBitmap. If you want
string labels for buttons, add the strings to the toolbar by calling AddString and/or AddStrings. After calling
AddString and/or AddStrings , you should call AutoSize in order to get the string or strings to appear.

3. Add button structures to the toolbar by calling AddButtons.

4. If you want tool tips, handle TTN_NEEDTEXT messages in the toolbar's owner window as described in
Handling Tool Tip Notifications.

5. If you want your user to be able to customize the toolbar, handle customization notification messages in the
owner window as described in Handling Customization Notifications.

Using CToolBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-a-ctoolbarctrl-object.md

Using Image Lists in a Toolbar Control
3/4/2019 • 2 minutes to read • Edit Online

CWinApp* pApp= AfxGetApp();

m_ToolBarImages.Create(16, 16, ILC_COLOR, 4, 4);
m_ToolBarImages.Add(pApp->LoadIcon(IDI_BLK));
m_ToolBarImages.Add(pApp->LoadIcon(IDI_RED));
m_ToolBarImages.Add(pApp->LoadIcon(IDI_YELL));
m_ToolBarImages.Add(pApp->LoadIcon(IDI_WHI));

m_ToolBarDisabledImages.Create(16, 16, ILC_COLOR, 4, 4);
m_ToolBarDisabledImages.Add(pApp->LoadIcon(IDI_DIS_BLK));
m_ToolBarDisabledImages.Add(pApp->LoadIcon(IDI_DIS_RED));
m_ToolBarDisabledImages.Add(pApp->LoadIcon(IDI_DIS_YELL));
m_ToolBarDisabledImages.Add(pApp->LoadIcon(IDI_DIS_WHI));

m_ToolBarCtrl.SetImageList(&m_ToolBarImages);
m_ToolBarCtrl.SetDisabledImageList(&m_ToolBarDisabledImages);

NOTENOTE

See also

By default, the images used by the buttons in a toolbar control are stored as a single bitmap. However, you can
also store button images in a set of image lists. The toolbar control object can use up to three separate image lists:

Enabled image list Contains images for toolbar buttons that are currently enabled.

Disabled image list Contains images for toolbar buttons that are currently disabled.

Highlighted image list Contains images for toolbar buttons that are currently highlighted. This image list is
used only when the toolbar uses the TBSTYLE_FLAT style.

These image lists are used by the toolbar control when you associate them with the CToolBarCtrl object. This
association is accomplished by making calls to CToolBarCtrl::SetImageList, SetDisabledImageList, and
SetHotImageList.

By default, MFC uses the CToolBar class to implement MFC application toolbars. However, the GetToolBarCtrl

member function can be used to retrieve the embedded CToolBarCtrl object. You can then make calls to
CToolBarCtrl member functions using the returned object.

The following example demonstrates this technique by assigning an enabled (m_ToolBarImages) and disabled (
m_ToolBarDisabledImages) image list to a CToolBarCtrl object (m_ToolBarCtrl).

The image lists used by the toolbar object must be permanent objects. For this reason, they are commonly data members of
an MFC class; in this example, the main frame window class.

Once the image lists are associated with the CToolBarCtrl object, the framework automatically displays the proper
button image.

Using CToolBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-image-lists-in-a-toolbar-control.md

Using Drop-Down Buttons in a Toolbar Control
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To implement a drop-down buttonTo implement a drop-down button

In addition to standard push buttons, a toolbar can also have drop-down buttons. A drop-down button is usually
indicated by the presence of an attached down arrow.

The attached down arrow will appear only if the TBSTYLE_EX_DRAWDDARROWS extended style has been set.

When the user clicks on this arrow (or the button itself, if no arrow is present), a TBN_DROPDOWN notification
message is sent to the parent of the toolbar control. You can then handle this notification and display a pop-up
menu; similar to the behavior of Internet Explorer.

The following procedure illustrates how to implement a drop-down toolbar button with a pop-up menu:

m_ToolBarCtrl.SetExtendedStyle(TBSTYLE_EX_DRAWDDARROWS);

TBBUTTONINFO tbi;

tbi.dwMask = TBIF_STYLE;
tbi.cbSize = sizeof(TBBUTTONINFO);
m_ToolBarCtrl.GetButtonInfo(0, &tbi);
tbi.fsStyle |= TBSTYLE_DROPDOWN;
m_ToolBarCtrl.SetButtonInfo(0, &tbi);

ON_NOTIFY(TBN_DROPDOWN, IDC_TOOLBAR1, &CMyDialog::OnTbnDropDownToolBar1)

1. Once your CToolBarCtrl object has been created, set the TBSTYLE_EX_DRAWDDARROWS style, using the
following code:

2. Set the TBSTYLE_DROPDOWN style for any new (InsertButton or AddButtons) or existing (SetButtonInfo)
buttons that will be drop-down buttons. The following example demonstrates modifying an existing button
in a CToolBarCtrl object:

3. Add a TBN_DROPDOWN handler to the parent class of the toolbar object.

4. In the new handler, display the appropriate popup menu. The following code demonstrates one method:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-drop-down-buttons-in-a-toolbar-control.md

See also

void CMyDialog::OnTbnDropDownToolBar1(NMHDR* pNMHDR, LRESULT* pResult)
{
 LPNMTOOLBAR pToolBar = reinterpret_cast<LPNMTOOLBAR>(pNMHDR);
 ClientToScreen(&(pToolBar->rcButton)); // TrackPopupMenu uses screen coords

 CMenu menu;
 VERIFY(menu.LoadMenu(IDR_MENU1));
 CMenu* pPopup = menu.GetSubMenu(0);
 if (NULL != pPopup)
 {
 pPopup->TrackPopupMenu(TPM_LEFTALIGN | TPM_RIGHTBUTTON,
 pToolBar->rcButton.left, pToolBar->rcButton.bottom, this);
 }

 *pResult = 0;
}

Using CToolBarCtrl
Controls

Customizing the Appearance of a Toolbar Control
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

Class CToolBarCtrl provides many styles that affect the appearance (and, occasionally, the behavior) of the toolbar
object. Modify the toolbar object by setting the dwCtrlStyle parameter of the CToolBarCtrl::Create (or
CToolBar::CreateEx) member function, when you first create the toolbar control.

The following styles affect the "3D" aspect of the toolbar buttons and the placement of the button text:

TBSTYLE_FLAT Creates a flat toolbar where both the toolbar and the buttons are transparent. Button text
appears under button bitmaps. When this style is used, the button underneath the cursor is automatically
highlighted.

TBSTYLE_TRANSPARENT Creates a transparent toolbar. In a transparent toolbar, the toolbar is
transparent but the buttons are not. Button text appears under button bitmaps.

TBSTYLE_LIST Places button text to the right of button bitmaps.

To prevent repaint problems, the TBSTYLE_FLAT and TBSTYLE_TRANSPARENT styles should be set before the toolbar
object is visible.

The following styles determine if the toolbar allows a user to reposition individual buttons within a toolbar object
using drag and drop:

NOTENOTE

TBSTYLE_ALTDRAG Allows users to change a toolbar button's position by dragging it while holding down
ALT. If this style is not specified, the user must hold down SHIFT while dragging a button.

The CCS_ADJUSTABLE style must be specified to enable toolbar buttons to be dragged.

TBSTYLE_REGISTERDROP Generates TBN_GETOBJECT notification messages to request drop target
objects when the mouse pointer passes over toolbar buttons.

The remaining styles affect visual and nonvisual aspects of the toolbar object:

TBSTYLE_WRAPABLE Creates a toolbar that can have multiple lines of buttons. Toolbar buttons can
"wrap" to the next line when the toolbar becomes too narrow to include all buttons on the same line.
Wrapping occurs on separation and nongroup boundaries.

TBSTYLE_CUSTOMERASE Generates NM_CUSTOMDRAW notification messages when it processes
WM_ERASEBKGND messages.

TBSTYLE_TOOLTIPS Creates a tool tip control that an application can use to display descriptive text for
the buttons in the toolbar.

For a complete listing of toolbar styles and extended styles, see Toolbar Control and Button Styles and Toolbar
Extended Styles in the Windows SDK.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/customizing-the-appearance-of-a-toolbar-control.md
https://docs.microsoft.com/windows/desktop/Controls/toolbar-control-and-button-styles
https://docs.microsoft.com/windows/desktop/Controls/toolbar-extended-styles

Using CToolBarCtrl
Controls

Handling Tool Tip Notifications
3/4/2019 • 2 minutes to read • Edit Online

ON_NOTIFY_EX(TTN_NEEDTEXT, 0, &CMyDialog::OnTtnNeedText)

Remarks

NOTIFICATION MEANING

TTN_NEEDTEXTA Tool tip control requires ASCII text (Windows 95 only)

TTN_NEEDTEXTW Tool tip control requires UNICODE text (Windows NT only)

TBN_HOTITEMCHANGE Indicates that the hot (highlighted) item has changed.

NM_RCLICK Indicates the user has right-clicked a button.

TBN_DRAGOUT Indicates the user has clicked the button and dragged the
pointer off the button. It allows an application to implement
drag and drop from a toolbar button. When receiving this
notification, the application will begin the drag and drop
operation.

TBN_DROPDOWN Indicates the user has clicked a button that uses the
TBSTYLE_DROPDOWN style.

TBN_GETOBJECT Indicates the user moved the pointer over a button that uses
the TBSTYLE_DROPPABLE style.

When you specify the TBSTYLE_TOOLTIPS style, the toolbar creates and manages a tool tip control. A tool tip is
a small pop-up window that contains a line of text describing a toolbar button. The tool tip is hidden, appearing
only when the user puts the cursor on a toolbar button and leaves it there for approximately one-half second. The
tool tip is displayed near the cursor.

Before the tool tip is displayed, the TTN_NEEDTEXT notification message is sent to the toolbar's owner window
to retrieve the descriptive text for the button. If the toolbar's owner window is a CFrameWnd window, tool tips are
displayed without any extra effort, because CFrameWnd has a default handler for the TTN_NEEDTEXT notification.
If the toolbar's owner window is not derived from CFrameWnd , such as a dialog box or form view, you must add an
entry to your owner window's message map and provide a notification handler in the message map. The entry to
your owner window's message map is as follows:

memberFxn
The member function to be called when text is needed for this button.

Note that the id of a tool tip is always 0.

In addition to the TTN_NEEDTEXT notification, a tool tip control can send the following notifications to a toolbar
control:

For an example handler function and more information about enabling tool tips, see Tool Tips.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/handling-tool-tip-notifications.md

See also
Using CToolBarCtrl
Controls

Handling Customization Notifications
3/4/2019 • 7 minutes to read • Edit Online

A Windows toolbar common control has built-in customization features, including a system-defined customization
dialog box, which allow the user to insert, delete, or rearrange toolbar buttons. The application determines
whether the customization features are available and controls the extent to which the user can customize the
toolbar.

You can make these customization features available to the user by giving the toolbar the CCS_ADJUSTABLE
style. The customization features allow the user to drag a button to a new position or to remove a button by
dragging it off the toolbar. In addition, the user can double-click the toolbar to display the Customize Toolbar
dialog box, which allows the user to add, delete, and rearrange toolbar buttons. The application can display the
dialog box by using the Customize member function.

The toolbar control sends notification messages to the parent window at each step in the customization process. If
the user holds the SHIFT key down and begins dragging a button, the toolbar automatically handles the drag
operation. The toolbar sends the TBN_QUERYDELETE notification message to the parent window to determine
whether the button may be deleted. The drag operation ends if the parent window returns FALSE . Otherwise, the
toolbar captures mouse input and waits for the user to release the mouse button.

When the user releases the mouse button, the toolbar control determines the location of the mouse cursor. If the
cursor is outside the toolbar, the button is deleted. If the cursor is on another toolbar button, the toolbar sends the
TBN_QUERYINSERT notification message to the parent window to determine if a button may be inserted to the
left of the given button. The button is inserted if the parent window returns TRUE ; otherwise, it is not. The toolbar
sends the TBN_TOOLBARCHANGE notification message to signal the end of the drag operation.

If the user begins a drag operation without holding down the SHIFT key, the toolbar control sends the
TBN_BEGINDRAG notification message to the owner window. An application that implements its own button-
dragging code can use this message as a signal to begin a drag operation. The toolbar sends the
TBN_ENDDRAG notification message to signal the end of the drag operation.

A toolbar control sends notification messages when the user customizes a toolbar by using the Customize
Toolbar dialog box. The toolbar sends the TBN_BEGINADJUST notification message after the user double-
clicks the toolbar, but before the dialog box is created. Next, the toolbar begins sending a series of
TBN_QUERYINSERT notification messages to determine whether the toolbar allows buttons to be inserted.
When the parent window returns TRUE , the toolbar stops sending TBN_QUERYINSERT notification messages.
If the parent window does not return TRUE for any button, the toolbar destroys the dialog box.

Next, the toolbar control determines if any buttons may be deleted from the toolbar by sending one
TBN_QUERYDELETE notification message for each button in the toolbar. The parent window returns TRUE to
indicate that a button may be deleted; otherwise, it returns FALSE . The toolbar adds all toolbar buttons to the
dialog box, but grays those that may not be deleted.

Whenever the toolbar control needs information about a button in the Customize Toolbar dialog box, it sends the
TBN_GETBUTTONINFO notification message, specifying the index of the button for which it needs information
and the address of a TBNOTIFY structure. The parent window must fill the structure with the relevant
information.

The Customize Toolbar dialog box includes a Help button and a Reset button. When the user chooses the Help
button, the toolbar control sends the TBN_CUSTHELP notification message. The parent window should respond
by displaying help information. The dialog box sends the TBN_RESET notification message when the user selects
the Reset button. This message signals that the toolbar is about to reinitialize the dialog box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/handling-customization-notifications.md

ON_NOTIFY(wNotifyCode, idControl, memberFxn)

afx_msg void memberFxn(NMHDR * pNotifyStruct, LRESULT * result);

typedef struct tagNMHDR {
 HWND hwndFrom; // handle of control sending message
 UINT idFrom;// identifier of control sending message
 UINT code; // notification code; see below
} NMHDR;

These messages are all WM_NOTIFY messages, and they can be handled in your owner window by adding
message-map entries of the following form to your owner window's message map:

wNotifyCode

Notification message identifier code, such as TBN_BEGINADJUST.

idControl

The identifier of the control sending the notification.

memberFxn

The member function to be called when this notification is received.

Your member function would be declared with the following prototype:

If the notification message handler returns a value, it should put it in the LRESULT pointed to by result.

For each message, pNotifyStruct points to either an NMHDR structure or a TBNOTIFY structure. These
structures are described below:

The NMHDR structure contains the following members:

hwndFrom

Window handle of the control that is sending the notification. To convert this handle to a CWnd pointer, use
CWnd::FromHandle.

idFrom

Identifier of the control sending the notification.

code

Notification code. This member can be a value specific to a control type, such as TBN_BEGINADJUST or
TTN_NEEDTEXT, or it can be one of the common notification values listed below:

NM_CLICK The user has clicked the left mouse button within the control.

NM_DBLCLK The user has double-clicked the left mouse button within the control.

NM_KILLFOCUS The control has lost the input focus.

NM_OUTOFMEMORY The control could not complete an operation because there is not enough
memory available.

NM_RCLICK The user has clicked the right mouse button within the control.

NM_RDBLCLK The user has double-clicked the right mouse button within the control.

typedef struct {
 NMHDR hdr; // information common to all WM_NOTIFY messages
 int iItem; // index of button associated with notification
 TBBUTTON tbButton; // info about button associated withnotification
 int cchText; // count of characters in button text
 LPSTR lpszText;// address of button text
} TBNOTIFY, FAR* LPTBNOTIFY;

NM_RETURN The control has the input focus, and the user has pressed the ENTER key.

NM_SETFOCUS The control has received the input focus.

The TBNOTIFY structure contains the following members:

hdr

Information common to all WM_NOTIFY messages.

iItem

Index of button associated with notification.

tbButton

TBBUTTON structure that contains information about the toolbar button associated with the notification.

cchText

Count of characters in button text.

lpszText

Pointer to button text.

The notifications the toolbar sends are as follows:

TBN_BEGINADJUST

Sent when the user begins customizing a toolbar control. The pointer points to an NMHDR structure that
contains information about the notification. The handler doesn't need to return any specific value.

TBN_BEGINDRAG

Sent when the user begins dragging a button in a toolbar control. The pointer points to a TBNOTIFY
structure. The iItem member contains the zero-based index of the button being dragged. The handler
doesn't need to return any specific value.

TBN_CUSTHELP

Sent when the user chooses the Help button in the Customize Toolbar dialog box. No return value. The
pointer points to an NMHDR structure that contains information about the notification message. The
handler doesn't need to return any specific value.

TBN_ENDADJUST

Sent when the user stops customizing a toolbar control. The pointer points to an NMHDR structure that
contains information about the notification message. The handler doesn't need to return any specific value.

TBN_ENDDRAG

Sent when the user stops dragging a button in a toolbar control. The pointer points to a TBNOTIFY
structure. The iItem member contains the zero-based index of the button being dragged. The handler

See also

doesn't need to return any specific value.

TBN_GETBUTTONINFO

Sent when the user is customizing a toolbar control. The toolbar uses this notification message to retrieve
information needed by the Customize Toolbar dialog box. The pointer points to a TBNOTIFY structure. The
iItem member specifies the zero-based index of a button. The pszText and cchText members specify the
address and length, in characters, of the current button text. An application should fill the structure with
information about the button. Return TRUE if button information was copied to the structure, or FALSE
otherwise.

TBN_QUERYDELETE

Sent while the user is customizing a toolbar to determine whether a button may be deleted from a toolbar
control. The pointer points to a TBNOTIFY structure. The iItem member contains the zero-based index of
the button to be deleted. Return TRUE to allow the button to be deleted or FALSE to prevent the button
from being deleted.

TBN_QUERYINSERT

Sent while the user is customizing a toolbar control to determine whether a button may be inserted to the
left of the given button. The pointer points to a TBNOTIFY structure. The iItem member contains the zero-
based index of the button to be inserted. Return TRUE to allow a button to be inserted in front of the given
button or FALSE to prevent the button from being inserted.

TBN_RESET

Sent when the user resets the content of the Customize Toolbar dialog box. The pointer points to an
NMHDR structure that contains information about the notification message. The handler doesn't need to
return any specific value.

TBN_TOOLBARCHANGE

Sent after the user has customized a toolbar control. The pointer points to an NMHDR structure that
contains information about the notification message. The handler doesn't need to return any specific value.

Using CToolBarCtrl
Controls

Using CToolTipCtrl
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

The CToolTipCtrl class encapsulates the functionality of a tool tip control, a small pop-up window that displays a
single line of text describing the purpose of a tool in an application. A tool tip is hidden most of the time,
appearing only when the user puts the cursor on a tool and leaves it there for approximately one-half second. The
tool tip appears near the cursor and disappears when the user clicks a mouse button or moves the cursor off of
the tool.

Methods of Creating Tool Tips

Settings for the Tool Tip Control

Using CToolTipCtrl to Create and Manipulate a CToolTipCtrl Object

Manipulating the Tool Tip Control

Using CToolBarCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-ctooltipctrl.md

Methods of Creating Tool Tips
3/4/2019 • 2 minutes to read • Edit Online

See also

MFC provides three classes to create and manage the tool tip control: CWnd, CToolBarCtrl, CToolTipCtrl and
CMFCToolTipCtrl. The tool tip member functions in these classes wrap the Windows common control API. Class
CToolBarCtrl and class CToolTipCtrl are derived from class CWnd .

CWnd provides four member functions to create and manage tool tips: EnableToolTips, CancelToolTips,
FilterToolTipMessage, and OnToolHitTest. See these individual member functions for more information about how
they implement tool tips.

If you create a toolbar using CToolBarCtrl , you can implement tool tips for that toolbar directly using the
following member functions: GetToolTips and SetToolTips. See these individual member functions and Handling
Tool Tip Notifications for more information about how they implement tool tips.

The CToolTipCtrl class provides the functionality of the Windows common tool tip control. A single tool tip
control can provide information for more than one tool. A tool is either a window, such as a child window or
control, or an application-defined rectangular area within a window's client area. The CMFCToolTipCtrl class
derives from CToolTipCtrl and provides additional visual styles and functionality.

Using CToolTipCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/methods-of-creating-tool-tips.md

Settings for the Tool Tip Control
3/4/2019 • 2 minutes to read • Edit Online

See also

You can set the tool tip control (CToolTipCtrl) to be either active or inactive. When you set it to be active, the tool
tip control appears when the cursor is on a tool. When you set it to be inactive, the tool tip control does not appear,
even if the cursor is on a tool. Call Activate to activate or deactivate a tool tip control.

You can set an active tool tip to display the tool tip when the cursor is on a tool, whether or not the tool tip control's
owner window is active or inactive, by using the TTS_ALWAYSTIP style. If you do not use this style, the tool tip
control appears when the tool's owner window is active, but not when it is inactive.

Most applications contain toolbars with tools that correspond to menu commands. For such tools, it is convenient
for the tool tip control to display the same text as the corresponding menu item. The system automatically strips
the ampersand (&) accelerator characters from all strings passed to a tool tip control, unless the control has the
TTS_NOPREFIX style.

Using CToolTipCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/settings-for-the-tool-tip-control.md

Using CToolTipCtrl to Create and Manipulate a
CToolTipCtrl Object
3/4/2019 • 2 minutes to read • Edit Online

To create and manipulate a CToolTipCtrlTo create and manipulate a CToolTipCtrl

See also

Here is an example of CToolTipCtrl usage:

1. Construct the CToolTipCtrl object.

2. Call Create to create the Windows tool tip common control and attach it to the CToolTipCtrl object.

3. Call AddTool to register a tool with the tool tip control, so that the information stored in the tool tip is
displayed when the cursor is on the tool.

4. Call SetToolInfo to set the information that a tool tip maintains for a tool.

5. Call SetToolRect to set a new bounding rectangle for a tool.

6. Call HitTest to test a point to determine whether it is within the bounding rectangle of the given tool and, if
so, retrieve information about the tool.

7. Call GetToolCount to retrieve a count of the tools registered with the tool tip control.

Using CToolTipCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-ctooltipctrl-to-create-and-manipulate-a-ctooltipctrl-object.md

Manipulating the Tool Tip Control
3/4/2019 • 2 minutes to read • Edit Online

BOOL CMyDialog::PreTranslateMessage(MSG* pMsg)
{
 if(pMsg->message== WM_LBUTTONDOWN ||
 pMsg->message== WM_LBUTTONUP ||
 pMsg->message== WM_MOUSEMOVE)
 {
 m_ToolTipCtrl.RelayEvent(pMsg);
 }

 return CDialog::PreTranslateMessage(pMsg);
}

See also

Class CToolTipCtrl provides a group of member functions that control the various attributes of the CToolTipCtrl

object and the tool tip window.

The initial, pop-up, and reshow durations for the tool tip windows can be set and retrieved with calls to
GetDelayTime and SetDelayTime.

Change the appearance of the tool tip windows with the following functions:

GetMargin and SetMargin Retrieves and sets the width between the tool tip border and the tool tip text.

GetMaxTipWidth and SetMaxTipWidth Retrieves and sets the maximum width of the tool tip window.

GetTipBkColor and SetTipBkColor Retrieves and sets the background color of the tool tip window.

GetTipTextColor and SetTipTextColor Retrieves and sets the text color of the tool tip window.

In order for the tool tip control to be notified of important messages, such as WM_LBUTTONXXX messages, you
must relay the messages to your tool tip control. The best method for this relay is to make a call to
CToolTipCtrl::RelayEvent, in the PreTranslateMessage function of the owner window. The following example
illustrates one possible method (assuming the tool tip control is called m_ToolTip):

To immediately remove a tool tip window, call the Pop member function.

Using CToolTipCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/manipulating-the-tool-tip-control.md

Using CTreeCtrl
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

A tree control, represented by the class CTreeCtrl, is a window that displays a hierarchical list of items, such as
the headings in a document, the entries in an index, or the files and directories on a disk. Each item consists of a
label and an optional bitmapped image, and each item can have a list of subitems associated with it. By clicking
an item, the user can expand and collapse the associated list of subitems. The directory tree in the left-hand pane
of File Explorer is an example of a tree control.

CTreeCtrl vs. CTreeView

Using Tree Controls

Communicating with a Tree Control

Tree Control Styles

Tree Control Parent and Child Items

Tree Control Item Position

Tree Control Item Labels

Tree Control Label Editing

Tree Control Item States Overview

Tree Control Image Lists

Tree Control Item Selection

Tree Control Drag-and-Drop Operations

Tree Control Item Information

Tree Control Notification Messages

Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-ctreectrl.md

CTreeCtrl vs. CTreeView
3/4/2019 • 2 minutes to read • Edit Online

See also

MFC provides two classes that encapsulate tree controls: CTreeCtrl and CTreeView. Each class is useful in different
situations.

Use CTreeCtrl when you need a plain child window control; for instance, in a dialog box. You'd especially want to
use CTreeCtrl if there will be other child controls in the window, as in a typical dialog box.

Use CTreeView when you want the tree control to act like a view window in document/view architecture as well as
a tree control. A CTreeView will occupy the entire client area of a frame window or splitter window. It will be
automatically resized when its parent window is resized, and it can process command messages from menus,
accelerator keys, and toolbars. Since a tree control contains the data necessary to display the tree, the
corresponding document object does not have to be complicated — you could even use CDocument as the
document type in your document template.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ctreectrl-vs-ctreeview.md

Using Tree Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

Typical usage of a tree control (CTreeCtrl) follows the pattern below:

The control is created. If the control is specified in a dialog box template or if you're using CTreeView ,
creation is automatic when the dialog box or view is created. If you want to create the tree control as a child
window of some other window, use the Create member function.

If you want your tree control to use images, set an image list by calling SetImageList. You can also change
the indentation by calling SetIndent. A good time to do this is in OnInitDialog (for controls in dialog boxes)
or OnInitialUpdate (for views).

Put data into the control by calling the CTreeCtrl 's InsertItem function once for each data item. InsertItem

returns a handle to the item you can use to refer to it later, such as when adding child items. A good time to
initialize the data is in OnInitDialog (for controls in dialog boxes) or OnInitialUpdate (for views).

As the user interacts with the control, it will send various notification messages. You can specify a function to
handle each of the messages you want to handle by adding an ON_NOTIFY_REFLECT macro in your
control window's message map or by adding an ON_NOTIFY macro to your parent window's message
map. See Tree Control Notification Messages later in this topic for a list of possible notifications.

Call the various Set member functions to set values for the control. Changes that you can make include
setting the indentation and changing the text, image, or data associated with an item.

Use the various Get functions to examine the contents of the control. You can also traverse the contents of
the tree control with functions that allow you to retrieve handles to parents, children, and siblings of a
specified item. You can even sort the children of a particular node.

When you're done with the control, make sure it's properly destroyed. If the tree control is in a dialog box or
if it's a view, it and the CTreeCtrl object will be destroyed automatically. If not, you need to ensure that both
the control and the CTreeCtrl object are properly destroyed.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-tree-controls.md

Communicating with a Tree Control
3/4/2019 • 2 minutes to read • Edit Online

See also

You use different methods for calling member functions in a CTreeCtrl object depending on how the object was
created:

If the tree control is in a dialog box, use a member variable of type CTreeCtrl that you create in the dialog
box class.

If the tree control is a child window, use the CTreeCtrl object (or pointer) you used to construct the object.

If you're using a CTreeView object, use the function CTreeView::GetTreeCtrl to get a reference to the tree
control. You can initialize another reference with this value or assign the address of the reference to a
CTreeCtrl pointer.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/communicating-with-a-tree-control.md

Tree Control Styles
3/4/2019 • 2 minutes to read • Edit Online

See also

Tree control (CTreeCtrl) styles govern aspects of a tree control's appearance. You set the initial styles when you
create the tree control. You can retrieve and change the styles after creating the tree control by using the
GetWindowLong and SetWindowLong Windows functions, specifying GWL_STYLE for the nIndex parameter. For
a complete list of styles, see Tree View Control Window Styles in the Windows SDK.

The TVS_HASLINES style enhances the graphic representation of a tree control's hierarchy by drawing lines that
link child items to their corresponding parent item. This style does not link items at the root of the hierarchy. To do
so, you need to combine the TVS_HASLINES and TVS_LINESATROOT styles.

The user can expand or collapse a parent item's list of child items by double-clicking the parent item. A tree control
that has the TVS_SINGLEEXPAND style causes the item being selected to expand and the item being unselected
to collapse. If the mouse is used to single-click the selected item and that item is closed, it will be expanded. If the
selected item is single-clicked when it is open, it will be collapsed.

A tree control that has the TVS_HASBUTTONS style adds a button to the left side of each parent item. The user
can click the button to expand or collapse the child items as an alternative to double-clicking the parent item.
TVS_HASBUTTONS does not add buttons to items at the root of the hierarchy. To do so, you must combine
TVS_HASLINES, TVS_LINESATROOT, and TVS_HASBUTTONS.

The TVS_EDITLABELS style makes it possible for the user to edit the labels of tree control items. For more
information about editing labels, see Tree Control Label Editing later in this topic.

The TVS_NOTOOLTIPS style disables the automatic tool tip feature of tree view controls. This feature
automatically displays a tool tip, containing the title of the item under the mouse cursor, if the entire title is not
currently visible.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tree-control-styles.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowlonga
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowlonga
https://docs.microsoft.com/windows/desktop/Controls/tree-view-control-window-styles

Tree Control Parent and Child Items
3/4/2019 • 2 minutes to read • Edit Online

See also

Any item in a tree control (CTreeCtrl) can have a list of subitems, which are called child items, associated with it. An
item that has one or more child items is called a parent item. A child item is displayed below its parent item and is
indented to indicate it is subordinate to the parent. An item that has no parent is at the top of the hierarchy and is
called a root item.

At any given time, the state of a parent item's list of child items can be either expanded or collapsed. When the
state is expanded, the child items are displayed below the parent item. When it is collapsed, the child items are not
displayed. The list automatically toggles between the expanded and collapsed states when the user double-clicks
the parent item or, if the parent has the TVS_HASBUTTONS style, when the user clicks the button associated with
the parent item. An application can expand or collapse the child items by using the Expand member function.

You add an item to a tree control by calling the InsertItem member function. This function returns a handle of the
HTREEITEM type, which uniquely identifies the item. When adding an item, you must specify the handle of the
new item's parent item. If you specify NULL or the TVI_ROOT value instead of a parent item handle in the
TVINSERTSTRUCT structure or hParent parameter, the item is added as a root item.

A tree control sends a TVN_ITEMEXPANDING notification message when a parent item's list of child items is
about to be expanded or collapsed. The notification gives you the opportunity to prevent the change or to set any
attributes of the parent item that depend on the state of the list of child items. After changing the state of the list,
the tree control sends a TVN_ITEMEXPANDED notification message.

When a list of child items is expanded, it is indented relative to the parent item. You can set the amount of
indentation by using the SetIndent member function or retrieve the current amount by using the GetIndent
member function.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tree-control-parent-and-child-items.md
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvinsertstructa
https://docs.microsoft.com/windows/desktop/Controls/tvn-itemexpanding
https://docs.microsoft.com/windows/desktop/Controls/tvn-itemexpanded

Tree Control Item Position
3/4/2019 • 2 minutes to read • Edit Online

See also

An item's initial position is set when the item is added to the tree control (CTreeCtrl) by using the InsertItem

member function. The member function call specifies the handle of the parent item and the handle of the item after
which the new item is to be inserted. The second handle must identify either a child item of the given parent or one
of these values: TVI_FIRST , TVI_LAST , or TVI_SORT .

When TVI_FIRST or TVI_LAST is specified, the tree control places the new item at the beginning or end of the
given parent item's list of child items. When TVI_SORT is specified, the tree control inserts the new item into the list
of child items in alphabetical order based on the text of the item labels.

You can put a parent item's list of child items into alphabetical order by calling the SortChildren member function.
This function includes a parameter that specifies whether all levels of child items descending from the given parent
item are also sorted in alphabetical order.

The SortChildrenCB member function allows you to sort child items based on criteria that you define. When you
call this function, you specify an application-defined callback function that the tree control can call whenever the
relative order of two child items needs to be decided. The callback function receives two 32-bit application-defined
values for the items being compared and a third 32-bit value that you specify when calling SortChildrenCB .

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tree-control-item-position.md

Tree Control Item Labels
3/4/2019 • 2 minutes to read • Edit Online

See also

You typically specify the text of an item's label when adding the item to the tree control (CTreeCtrl). The
InsertItem member function can pass a TVITEM structure that defines the item's properties, including a string

containing the text of the label. InsertItem has several overloads that can be called with various combinations of
parameters.

A tree control allocates memory for storing each item; the text of the item labels takes up a significant portion of
this memory. If your application maintains a copy of the strings in the tree control, you can decrease the memory
requirements of the control by specifying the LPSTR_TEXTCALLBACK value in the pszText member of TV_ITEM

or the lpszItem parameter instead of passing actual strings to the tree control. Using LPSTR_TEXTCALLBACK
causes the tree control to retrieve the text of an item's label from the application whenever the item needs to be
redrawn. To retrieve the text, the tree control sends a TVN_GETDISPINFO notification message, which includes the
address of a NMTVDISPINFO structure. You must respond by setting the appropriate members of the included
structure.

A tree control uses memory allocated from the heap of the process that creates the tree control. The maximum
number of items in a tree control is based on the amount of memory available in the heap. Each item takes 64
bytes.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tree-control-item-labels.md
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitema
https://docs.microsoft.com/windows/desktop/Controls/tvn-getdispinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvdispinfoa

Tree Control Label Editing
3/4/2019 • 2 minutes to read • Edit Online

See also

The user can directly edit the labels of items in a tree control (CTreeCtrl) that has the TVS_EDITLABELS style. The
user begins editing by clicking the label of the item that has the focus. An application begins editing by using the
EditLabel member function. The tree control sends the notification when editing begins and when it is canceled or
completed. When editing is completed, you are responsible for updating the item's label, if appropriate.

When label editing begins, a tree control sends a TVN_BEGINLABELEDIT notification message. By processing this
notification, you can allow editing of some labels and prevent editing of others. Returning 0 allows editing, and
returning nonzero prevents it.

When label editing is canceled or completed, a tree control sends a TVN_ENDLABELEDIT notification message.
The lParam parameter is the address of a NMTVDISPINFO structure. The item member is a TVITEM structure
that identifies the item and includes the edited text. You are responsible for updating the item's label, if appropriate,
perhaps after validating the edited string. The pszText member of TV_ITEM is 0 if editing is canceled.

During label editing, typically in response to the TVN_BEGINLABELEDIT notification message, you can get a
pointer to the edit control used for label editing by using the GetEditControl member function. You can call the edit
control's SetLimitText member function to limit the amount of text a user can enter or subclass the edit control to
intercept and discard invalid characters. Note, however, that the edit control is displayed only after
TVN_BEGINLABELEDIT is sent.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tree-control-label-editing.md
https://docs.microsoft.com/windows/desktop/Controls/tvn-beginlabeledit
https://docs.microsoft.com/windows/desktop/Controls/tvn-endlabeledit
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvdispinfoa
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitema
https://docs.microsoft.com/windows/desktop/Controls/tvn-beginlabeledit

Tree Control Item States Overview
3/4/2019 • 2 minutes to read • Edit Online

TVITEM curItem;
HTREEITEM hParentItem;

hParentItem = m_TreeCtrl.GetSelectedItem();

//modify the parent item to keep the '+' sign
curItem.mask = TVIF_STATE | TVIF_HANDLE;
curItem.hItem = hParentItem;
curItem.state = TVIS_EXPANDPARTIAL;
curItem.stateMask = TVIS_EXPANDPARTIAL;
m_TreeCtrl.SetItem(&curItem);

See also

Each item in a tree control (CTreeCtrl) has a current state. For example, an item can be selected, disabled,
expanded, and so on. For the most part, the tree control automatically sets an item's state to reflect user actions,
such as selection of an item. However, you can also set an item's state by using the SetItemState member function
and retrieve the current state of an item by using the GetItemState member function. For a complete list of item
states, see Tree-View Control Constants in the Windows SDK.

An item's current state is specified by the nState parameter. A tree control might change an item's state to reflect a
user action, such as selecting the item or setting the focus to the item. In addition, an application might change an
item's state to disable or hide the item or to specify an overlay image or state image.

When you specify or change an item's state, the nStateMask parameter specifies which state bits to set, and the
nState parameter contains the new values for those bits. For example, the following example changes the current
state of a parent item (specified by hParentItem) in a CTreeCtrl object (m_treeCtrl) to TVIS_EXPANDPARTIAL :

Another example of changing the state would be to set an item's overlay image. To accomplish this, nStateMask
must include the TVIS_OVERLAYMASK value, and nState must include the one-based index of the overlay image
shifted left eight bits by using the INDEXTOOVERLAYMASK macro. The index can be 0 to specify no overlay
image. The overlay image must have been added to the tree control's list of overlay images by a previous call to
the CImageList::SetOverlayImage function. The function specifies the one-based index of the image to add; this is
the index used with the INDEXTOOVERLAYMASK macro. A tree control can have up to four overlay images.

To set an item's state image, nStateMask must include the TVIS_STATEIMAGEMASK value, and nState must include the
one-based index of the state image shifted left 12 bits by using the INDEXTOSTATEIMAGEMASK macro. The
index can be 0 to specify no state image. For more information about overlay and state images, see Tree Control
Image Lists.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tree-control-item-states-overview.md
https://docs.microsoft.com/windows/desktop/Controls/tree-view-control-item-states
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-indextooverlaymask
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-indextostateimagemask

Tree Control Image Lists
3/4/2019 • 2 minutes to read • Edit Online

See also

Each item in a tree control (CTreeCtrl) can have a pair of bitmapped images associated with it. The images appear
on the left side of an item's label. One image is displayed when the item is selected, and the other is displayed
when the item is not selected. For example, an item might display an open folder when it is selected and a closed
folder when it is not selected.

To use item images, you must create an image list by constructing a CImageList object and using the
CImageList::Create function to create the associated image list. Then add the desired bitmaps to the list, and
associate the list with the tree control by using the SetImageList member function. By default, all items display the
first image in the image list for both the selected and nonselected states. You can change the default behavior for a
particular item by specifying the indexes of the selected and nonselected images when adding the item to the tree
control using the InsertItem member function. You can change the indexes after adding an item by using the
SetItemImage member function.

A tree control's image lists can also contain overlay images, which are designed to be superimposed on item
images. A nonzero value in bits 8 through 11 of a tree control item's state specifies the one-based index of an
overlay image (0 indicates no overlay image). Because a 4-bit, one-based index is used, overlay images must be
among the first 15 images in the image lists. For more information about tree control item states, see Tree Control
Item States Overview earlier in this topic.

If a state image list is specified, a tree control reserves space to the left of each item's icon for a state image. An
application can use state images, such as checked and cleared check boxes, to indicate application-defined item
states. A nonzero value in bits 12 through 15 specifies the one-based index of a state image (0 indicates no state
image).

By specifying the I_IMAGECALLBACK value instead of the index of an image, you can delay specifying the
selected or nonselected image until the item is about to be redrawn. I_IMAGECALLBACK directs the tree control
to query the application for the index by sending the TVN_GETDISPINFO notification message.

The GetImageList member function retrieves the handle of a tree control's image list. This function is useful if you
need to add more images to the list. For more information about image lists, see Using CImageList, CImageList in
the MFC Reference, and Image Lists in the Windows SDK.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tree-control-image-lists.md
https://docs.microsoft.com/windows/desktop/Controls/tvn-getdispinfo
https://docs.microsoft.com/windows/desktop/controls/image-lists

Tree Control Item Selection
3/4/2019 • 2 minutes to read • Edit Online

See also

When the selection changes from one item to another, a tree control (CTreeCtrl) sends TVN_SELCHANGING and
TVN_SELCHANGED notification messages. Both notifications include a value that specifies whether the change is
the result of a mouse click or a keystroke. The notifications also include information about the item that is gaining
the selection and the item that is losing the selection. You can use this information to set item attributes that
depend on the selection state of the item. Returning TRUE in response to TVN_SELCHANGING prevents the selection
from changing; returning FALSE allows the change.

An application can change the selection by calling the SelectItem member function.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tree-control-item-selection.md
https://docs.microsoft.com/windows/desktop/Controls/tvn-selchanging
https://docs.microsoft.com/windows/desktop/Controls/tvn-selchanged

Tree Control Drag-and-Drop Operations
3/4/2019 • 2 minutes to read • Edit Online

See also

A tree control (CTreeCtrl) sends a notification when the user starts to drag an item. The control sends a
TVN_BEGINDRAG notification message when the user begins dragging an item with the left mouse button and a
TVN_BEGINRDRAG notification message when the user begins dragging with the right button. You can prevent a
tree control from sending these notifications by giving the tree control the TVS_DISABLEDRAGDROP style.

You obtain an image to display during a drag operation by calling the CreateDragImage member function. The tree
control creates a dragging bitmap based on the label of the item being dragged. Then the tree control creates an
image list, adds the bitmap to it, and returns a pointer to the CImageList object.

You must provide the code that actually drags the item. This typically involves using the dragging capabilities of the
image list functions and processing the WM_MOUSEMOVE and WM_LBUTTONUP (or WM_RBUTTONUP)
messages sent after the drag operation has begun. For more information about the image list functions, see
CImageList in the MFC Reference and Image Lists in the Windows SDK. For more information about dragging a
tree control item, see Dragging the Tree View Item, also in the Windows SDK.

If items in a tree control are to be the targets of a drag-and-drop operation, you need to know when the mouse
cursor is on a target item. You can find out by calling the HitTest member function. You specify either a point and
integer, or the address of a TVHITTESTINFO structure that contains the current coordinates of the mouse cursor.
When the function returns, the integer or structure contains a flag indicating the location of the mouse cursor
relative to the tree control. If the cursor is over an item in the tree control, the structure contains the handle of the
item as well.

You can indicate that an item is the target of a drag-and-drop operation by calling the SetItem member function to
set the state to the TVIS_DROPHILITED value. An item that has this state is drawn in the style used to indicate a drag-
and-drop target.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tree-control-drag-and-drop-operations.md
https://docs.microsoft.com/windows/desktop/Controls/tvn-begindrag
https://docs.microsoft.com/windows/desktop/Controls/tvn-beginrdrag
https://docs.microsoft.com/windows/desktop/inputdev/wm-mousemove
https://docs.microsoft.com/windows/desktop/inputdev/wm-lbuttonup
https://docs.microsoft.com/windows/desktop/inputdev/wm-rbuttonup
https://docs.microsoft.com/windows/desktop/controls/image-lists
https://docs.microsoft.com/windows/desktop/Controls/tree-view-controls
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvhittestinfo

Tree Control Item Information
3/4/2019 • 2 minutes to read • Edit Online

See also

Tree controls (CTreeCtrl) have a number of member functions that retrieve information about items in the control.
The GetItem member function retrieves some or all of the data associated with an item. This data could include the
item's text, state, images, count of child items, and an application-defined 32-bit data value. There is also a SetItem
function that can set some or all of the data associated with an item.

The GetItemState, GetItemText, GetItemData, and GetItemImage member functions retrieve individual attributes
of an item. Each of these functions has a corresponding Set function for setting the attributes of an item.

The GetNextItem member function retrieves the tree control item that bears the specified relationship to the
current item. This function can retrieve an item's parent, the next or previous visible item, the first child item, and so
on. There are also member functions to traverse the tree: GetRootItem, GetFirstVisibleItem, GetNextVisibleItem,
GetPrevVisibleItem, GetChildItem, GetNextSiblingItem, GetPrevSiblingItem, GetParentItem, GetSelectedItem, and
GetDropHilightItem.

The GetItemRect member function retrieves the bounding rectangle for a tree control item. The GetCount and
GetVisibleCount member functions retrieve a count of the items in a tree control and a count of the items that are
currently visible in the tree control's window, respectively. You can ensure that a particular item is visible by calling
the EnsureVisible member function.

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tree-control-item-information.md

Tree Control Notification Messages
3/4/2019 • 2 minutes to read • Edit Online

NOTIFICATION MESSAGE DESCRIPTION

TVN_BEGINDRAG Signals the start of a drag-and-drop operation

TVN_BEGINLABELEDIT Signals the start of in-place label editing

TVN_BEGINRDRAG Signals the start of a drag-and-drop operation, using the
right mouse button

TVN_DELETEITEM Signals the deletion of a specific item

TVN_ENDLABELEDIT Signals the end of label editing

TVN_GETDISPINFO Requests information that the tree control requires to display
an item

TVN_ITEMEXPANDED Signals that a parent item's list of child items was expanded or
collapsed

TVN_ITEMEXPANDING Signals that a parent item's list of child items is about to be
expanded or collapsed

TVN_KEYDOWN Signals a keyboard event

TVN_SELCHANGED Signals that the selection has changed from one item to
another

TVN_SELCHANGING Signals that the selection is about to be changed from one
item to another

TVN_SETDISPINFO Notification to update the information maintained for an item

See also

A tree control (CTreeCtrl) sends the following notification messages as WM_NOTIFY messages:

Using CTreeCtrl
Controls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tree-control-notification-messages.md

Control Bars
3/4/2019 • 3 minutes to read • Edit Online

IMPORTANTIMPORTANT

Control Bars

NOTENOTE

Toolbars

"Control bar" is the general name for toolbars, status bars, and dialog bars. MFC classes CToolBar , CStatusBar ,
CDialogBar , COleResizeBar , and CReBar derive from class CControlBar, which implements their common

functionality.

Control bars are windows that display rows of controls with which users can select options, execute commands,
or obtain program information. Types of control bars include toolbars, dialog bars, and status bars.

Toolbars, in class CToolBar

Status bars, in class CStatusBar

Dialog bars, in class CDialogBar

Rebars, in class CReBar

As of MFC version 4.0, toolbars, status bars, and tool tips are implemented using system functionality implemented in the
comctl32.dll instead of the previous implementation specific to MFC. In MFC version 6.0, CReBar , which also wraps
comctl32.dll functionality, was added.

Brief introductions to the control-bar types follow. For further information, see the links below.

Control bars greatly enhance a program's usability by providing quick, one-step command actions. Class
CControlBar provides the common functionality of all toolbars, status bars, and dialog bars. CControlBar

provides the functionality for positioning the control bar in its parent frame window. Because a control bar is
usually a child window of a parent frame window, it is a "sibling" to the client view or MDI client of the frame
window. A control-bar object uses information about its parent window's client rectangle to position itself. Then it
alters the parent's remaining client-window rectangle so that the client view or MDI client window fills the rest of
the client window.

If a button on the control bar doesn't have a COMMAND or UPDATE_COMMAND_UI handler, the framework
automatically disables the button.

A toolbar is a control bar that displays a row of bitmapped buttons that carry out commands. Pressing a toolbar
button is equivalent to choosing a menu item; it calls the same handler mapped to a menu item if that menu item
has the same ID as the toolbar button. The buttons can be configured to appear and behave as pushbuttons,
radio buttons, or check boxes. A toolbar is usually aligned to the top of a frame window, but an MFC toolbar can
"dock" to any side of its parent window or float in its own mini-frame window. A toolbar can also "float" and you
can change its size and drag it with a mouse. A toolbar can also display tool tips as the user moves the mouse
over the toolbar's buttons. A tool tip is a tiny popup window that briefly describes the button's purpose.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/control-bars.md

NOTENOTE

Status Bars

Dialog Bars

Rebars

See also

As of MFC version 4.0, class CToolBar uses the Windows toolbar common control. A CToolBar contains a CToolBarCtrl.
Older toolbars are still supported, however. See the article ToolBars.

A status bar is a control bar that contains text-output panes, or "indicators." The output panes are commonly
used as message lines and as status indicators. Message line examples include the command help-message lines
that briefly explain the selected menu or toolbar command in the leftmost pane of the default status bar created
by the MFC Application Wizard. Status indicator examples include the SCROLL LOCK, NUM LOCK, and other
keys. Status bars are usually aligned to the bottom of a frame window. See class CStatusBar and class
CStatusBarCtrl.

A dialog bar is a control bar, based on a dialog-template resource, with the functionality of a modeless dialog box.
Dialog bars can contain Windows, custom, or ActiveX controls. As in a dialog box, the user can tab among the
controls. Dialog bars can be aligned to the top, bottom, left, or right side of a frame window and they can also be
floated in their own frame window. See class CDialogBar.

A rebar is a control bar that provides docking, layout, state, and persistence information for rebar controls. A
rebar object can contain a variety of child windows, usually other controls, including edit boxes, toolbars, and list
boxes. A rebar object can display its child windows over a specified bitmap. It can be automatically or manually
resized by clicking or dragging its gripper bar. See class CReBar.

User Interface Elements

Dialog Bars
3/4/2019 • 2 minutes to read • Edit Online

See also

A dialog bar is a toolbar, a kind of control bar that can contain any kind of control. Because it has the
characteristics of a modeless dialog box, a CDialogBar object provides a more powerful toolbar.

There are several key differences between a toolbar and a CDialogBar object. A CDialogBar object is created from
a dialog-template resource, which you can create with the Visual C++ dialog editor and which can contain any
kind of Windows control. The user can tab from control to control. And you can specify an alignment style to align
the dialog bar with any part of the parent frame window or even to leave it in place if the parent is resized. The
following figure shows a dialog bar with a variety of controls.

A Dialog Bar

In other respects, working with a CDialogBar object is like working with a modeless dialog box. Use the dialog
editor to design and create the dialog resource.

One of the virtues of dialog bars is that they can include controls other than buttons.

While it is normal to derive your own dialog classes from CDialog , you do not typically derive your own class for
a dialog bar. Dialog bars are extensions to a main window and any dialog-bar control-notification messages, such
as BN_CLICKED or EN_CHANGE , will be sent to the parent of the dialog bar, the main window.

User Interface Elements
Sample

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dialog-bars.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Dialog Boxes
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

Applications for Windows frequently communicate with the user through dialog boxes. Class CDialog
provides an interface for managing dialog boxes, the Visual C++ dialog editor makes it easy to design dialog
boxes and create their dialog-template resources, and Code wizards simplify the process of initializing and
validating the controls in a dialog box and of gathering the values entered by the user.

Dialog boxes contain controls, including:

Windows common controls such as edit boxes, pushbuttons, list boxes, combo boxes, tree controls, list
controls, and progress indicators.

ActiveX controls.

Owner-drawn controls: controls that you are responsible for drawing in the dialog box.

Most dialog boxes are modal, which require the user to close the dialog box before using any other part of the
program. But it is possible to create modeless dialog boxes, which let users work with other windows while
the dialog box is open. MFC supports both kinds of dialog box with class CDialog . The controls are arranged
and managed using a dialog-template resource, created with the dialog editor.

Property sheets, also known as tab dialog boxes, are dialog boxes that contain "pages" of distinct dialog-box
controls. Each page has a file folder "tab" at the top. Clicking a tab brings that page to the front of the dialog
box.

Example: Displaying a Dialog Box via a Menu Command

Dialog-box components in the framework

Modal and modeless dialog boxes

Property sheets and property pages in a dialog box

Creating the dialog resource

Creating a dialog class with Code Wizards

Life cycle of a dialog box

Dialog data exchange (DDX) and validation (DDV)

Type-safe access to controls in a dialog box

Mapping Windows messages to your class

Commonly Overridden Member Functions

Commonly Added Member Functions

Common dialog classes

Dialog boxes in OLE

Create an application whose user interface is a dialog box: see the CMNCTRL1 or CMNCTRL2 sample

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dialog-boxes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

See also

programs. The Application Wizard provides this option as well.

Samples

User Interface Elements

Example: Displaying a Dialog Box via a Menu
Command
3/4/2019 • 2 minutes to read • Edit Online

ITEM NAME OR VALUE

Application DisplayDialog

Menu command Test command on View menu; Command ID = ID_VIEW_TEST

Dialog box Test dialog box; Class = CTestDialog; Header file =
TestDialog.h; Variable = testdlg, ptestdlg

Command handler OnViewTest

To display a modal dialog boxTo display a modal dialog box

To display a modeless dialog boxTo display a modeless dialog box

This topic contains procedures to:

Display a modal dialog box through a menu command.

Display a modeless dialog box through a menu command.

Both sample procedures are for MFC applications and will work in an application you create with the MFC
Application Wizard.

The procedures use the following names and values:

#include "TestDialog.h"

CTestDialog testdlg;
testdlg.DoModal();

1. Create the menu command; see Creating Menus or Menu Items.

2. Create the dialog box; see Starting the Dialog Editor.

3. Add a class for your dialog box. See Adding a Class for more information.

4. In Class View, select the document class (CDisplayDialogDoc). In the Properties window, click the Events
button. Double-click the ID of the menu command (ID_VIEW_TEST) in the left pane of the Properties
window and select Command. In the right pane, click the down arrow and select <Add> OnViewTest.

If you added the menu command to the mainframe of an MDI application, select the application class
(CDisplayDialogApp) instead.

5. Add the following include statement to CDisplayDialogDoc.cpp (or CDisplayDialogApp.cpp) after the
existing include statements:

6. Add the following code to OnViewTest to implement the function:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/example-displaying-a-dialog-box-via-a-menu-command.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/creating-a-menu
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp

See also

1. Do the first four steps to display a modal dialog box, except select the view class (CDisplayDialogView) in
step 4.

2. Edit DisplayDialogView.h:

[!code-cpp[NVC_MFCControlLadenDialog#44](../mfc/codesnippet/cpp/example-displaying-a-dialog-box-
via-a-menu-command_3.h)]

[!code-cpp[NVC_MFCControlLadenDialog#45](../mfc/codesnippet/cpp/example-displaying-a-dialog-box-
via-a-menu-command_4.h)]

Declare the dialog box class preceding the first class declaration:

Declare a pointer to the dialog box after the Attributes public section:

3. Edit DisplayDialogView.cpp:

[!code-cpp[NVC_MFCControlLadenDialog#42](../mfc/codesnippet/cpp/example-displaying-a-dialog-box-
via-a-menu-command_1.cpp)]

[!code-cpp[NVC_MFCControlLadenDialog#46](../mfc/codesnippet/cpp/example-displaying-a-dialog-box-
via-a-menu-command_5.cpp)]

[!code-cpp[NVC_MFCControlLadenDialog#47](../mfc/codesnippet/cpp/example-displaying-a-dialog-box-
via-a-menu-command_6.cpp)]

[!code-cpp[NVC_MFCControlLadenDialog#48](../mfc/codesnippet/cpp/example-displaying-a-dialog-box-
via-a-menu-command_7.cpp)]

Add the following include statement after the existing include statements:

Add the following code to the constructor:

Add the following code to the destructor:

Add the following code to OnViewTest to implement the function:

Dialog Boxes
Modal and Modeless Dialog Boxes

Dialog Sample List
3/4/2019 • 2 minutes to read • Edit Online

See also

See the following sample programs that illustrate dialog boxes and property sheets:

MDI Sample Application with Dialog Boxes

SCRIBBLE

Modeless Dialog Box

MODELESS

Property Sheet Dialog Box (Tab Dialog Box)

PROPDLG

CMNCTRL1

CMNCTRL2

Application Based on a Dialog Box

CMNCTRL1

CMNCTRL2

Dialog-Box Controls

CMNCTRL1

CMNCTRL2

CTRLTEST

Dialog-Like Form Views

VIEWEX

In-Memory Dialog Template

DLGTEMPL

Dialog Boxes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dialog-sample-list.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Dialog-Box Components in the Framework
3/4/2019 • 2 minutes to read • Edit Online

See also

In the MFC framework, a dialog box has two components:

A dialog-template resource that specifies the dialog box's controls and their placement.

The dialog resource stores a dialog template from which Windows creates the dialog window and displays
it. The template specifies the dialog box's characteristics, including its size, location, style, and the types and
positions of the dialog box's controls. You will usually use a dialog template stored as a resource, but you
can also create your own template in memory.

A dialog class, derived from CDialog, to provide a programmatic interface for managing the dialog box.

A dialog box is a window and will be attached to a Windows window when visible. When the dialog window
is created, the dialog-template resource is used as a template for creating child window controls for the
dialog box.

Dialog Boxes
Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dialog-box-components-in-the-framework.md

Modal and Modeless Dialog Boxes
3/4/2019 • 2 minutes to read • Edit Online

See also

You can use class CDialog to manage two kinds of dialog boxes:

Modal dialog boxes, which require the user to respond before continuing the program

Modeless dialog boxes, which stay on the screen and are available for use at any time but permit other user
activities

The resource editing and procedures for creating a dialog template are the same for modal and modeless dialog
boxes.

Creating a dialog box for your program requires the following steps:

1. Use the dialog editor to design the dialog box and create its dialog-template resource.

2. Create a dialog class.

3. Connect the dialog resource's controls to message handlers in the dialog class.

4. Add data members associated with the dialog box's controls and to specify dialog data exchange and dialog
data validations for the controls.

Dialog Boxes
Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/modal-and-modeless-dialog-boxes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/adding-event-handlers-for-dialog-box-controls

Property Sheets and Property Pages (MFC)
3/4/2019 • 2 minutes to read • Edit Online

See also

An MFC dialog box can take on a "tab dialog" look by incorporating property sheets and property pages. Called a
"property sheet" in MFC, this kind of dialog box, similar to many dialog boxes in Microsoft Word, Excel, and Visual
C++, appears to contain a stack of tabbed sheets, much like a stack of file folders seen from front to back, or a
group of cascaded windows. Controls on the front tab are visible; only the labeled tab is visible on the rear tabs.
Property sheets are particularly useful for managing large numbers of properties or settings that fall fairly neatly
into several groups. Typically, one property sheet can simplify a user interface by replacing several separate dialog
boxes.

As of MFC version 4.0, property sheets and property pages are implemented using the common controls that
come with Windows 95 and Windows NT version 3.51 and later.

Property sheets are implemented with classes CPropertySheet and CPropertyPage (described in the MFC
Reference). CPropertySheet defines the overall dialog box, which can contain multiple "pages" based on
CPropertyPage .

For information on creating and working with property sheets, see the topic Property Sheets.

Dialog Boxes
Life Cycle of a Dialog Box
Property Sheets and Property Pages in MFC
Exchanging Data
Creating a Modeless Property Sheet
Handling the Apply Button

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/property-sheets-and-property-pages-mfc.md

Creating the Dialog Resource
3/4/2019 • 2 minutes to read • Edit Online

See also

To design the dialog box and create the dialog resource, you use the dialog editor. In the dialog editor, you can:

Adjust the size and location your dialog box will have when it appears.

Drag various kinds of controls from a controls palette and drop them where you want them in the dialog
box.

Position the controls with alignment buttons on the toolbar.

Test your dialog box by simulating the appearance and behavior it will have in your program. In Test mode,
you can manipulate the dialog box's controls by typing text in text boxes, clicking pushbuttons, and so on.

When you finish, your dialog-template resource is stored in your application's resource script file. You can edit it
later if needed. For a full description of how to create and edit dialog resources, see the dialog editor topics. This
technique is also used to create the dialog-template resources for CFormView and CRecordView classes.

When the dialog box's appearance suits you, create a dialog class and map its messages, as discussed in Creating a
Dialog Class with Code Wizards.

Dialog Boxes
Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-the-dialog-resource.md

Creating a Dialog Class with Code Wizards
3/4/2019 • 2 minutes to read • Edit Online

Dialog-Related TasksDialog-Related Tasks

TASK APPLY TO . . .

Create a new CDialog-derived class to manage your dialog
box.

Each dialog box.

Map Windows messages to your dialog class. Each message you want handled.

Declare class member variables to represent the controls in
the dialog box.

Each control that yields a text or numeric value you want to
access from your program.

Specify how data is to be exchanged between the controls
and the member variables.

Each control you want to access from your program.

Specify validation rules for the member variables. Each control that yields a text or numeric value, if desired.

What do you want to know more about

See also

The following table lists dialog-related tasks that Code Wizards help you manage.

Creating your dialog class

Handling Windows messages in your dialog box

Dialog data exchange and validation

Dialog Boxes
Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-a-dialog-class-with-code-wizards.md

Creating Your Dialog Class
3/4/2019 • 2 minutes to read • Edit Online

See also

For each dialog box in your program, create a new dialog class to work with the dialog resource.

Adding a Class explains how to create a new dialog class. When you create a dialog class with the Add Class
Wizard, it writes the following items in the .H and .CPP files you specify:

In the .H file:

A class declaration for the dialog class. The class is derived from CDialog.

In the .CPP file:

A message map for the class.

A standard constructor for the dialog box.

An override of the DoDataExchange member function. Edit this function. It is used for dialog data exchange
and validation capabilities as described later in Dialog data exchange and validation.

Creating a Dialog Class with Code Wizards
Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-your-dialog-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp

Life Cycle of a Dialog Box
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

During the life cycle of a dialog box, the user invokes the dialog box, typically inside a command handler that
creates and initializes the dialog object, the user interacts with the dialog box, and the dialog box closes.

For modal dialog boxes, your handler gathers any data the user entered once the dialog box closes. Since the
dialog object exists after its dialog window has closed, you can simply use the member variables of your dialog
class to extract the data.

For modeless dialog boxes, you may often extract data from the dialog object while the dialog box is still
visible. At some point, the dialog object is destroyed; when this happens depends on your code.

Creating and displaying dialog boxes

Creating modal dialog boxes

Creating modeless dialog boxes

Using a dialog template in memory

Setting the dialog box's background color

Initializing the dialog box

Handling Windows messages in your dialog box

Retrieving data from the dialog object

Closing the dialog box

Destroying the dialog box

Dialog data exchange (DDX) and validation (DDV)

Property sheet dialog boxes

Dialog Boxes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/life-cycle-of-a-dialog-box.md

Creating and Displaying Dialog Boxes
3/4/2019 • 2 minutes to read • Edit Online

Dialog CreationDialog Creation

DIALOG TYPE HOW TO CREATE IT

Modeless Construct CDialog , then call Create member function.

Modal Construct CDialog , then call DoModal member function.

See also

Creating a dialog object is a two-phase operation. First, construct the dialog object, then create the dialog window.
Modal and modeless dialog boxes differ somewhat in the process used to create and display them. The following
table lists how modal and modeless dialog boxes are normally constructed and displayed.

You can, if you want, create your dialog box from an in-memory dialog template that you have constructed rather
than from a dialog template resource. This is an advanced topic, however.

Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-and-displaying-dialog-boxes.md

Creating Modal Dialog Boxes
3/4/2019 • 2 minutes to read • Edit Online

See also

To create a modal dialog box, call either of the two public constructors declared in CDialog. Next, call the dialog
object's DoModal member function to display the dialog box and manage interaction with it until the user chooses
OK or Cancel. This management by DoModal is what makes the dialog box modal. For modal dialog boxes,
DoModal loads the dialog resource.

Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-modal-dialog-boxes.md

Creating Modeless Dialog Boxes
3/4/2019 • 2 minutes to read • Edit Online

See also

For a modeless dialog box, you must provide your own public constructor in your dialog class. To create a
modeless dialog box, call your public constructor and then call the dialog object's Create member function to load
the dialog resource. You can call Create either during or after the constructor call. If the dialog resource has the
property WS_VISIBLE , the dialog box appears immediately. If not, you must call its ShowWindow member
function.

Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-modeless-dialog-boxes.md

Using a Dialog Template in Memory
3/4/2019 • 2 minutes to read • Edit Online

See also

Instead of using the methods given in the Dialog Creation table, you can create either kind of dialog box indirectly
from a dialog template in memory. For more information, see class CDialog in the MFC Reference.

Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-a-dialog-template-in-memory.md

Setting the Dialog Box’s Background Color
3/4/2019 • 2 minutes to read • Edit Online

See also

You can set the background color of your dialog boxes by handling WM_CTLCOLOR messages for the dialog box
window. The color you set is used for only the specified dialog box.

See codexpert blog for an example.

Life Cycle of a Dialog Box
Handling Windows Messages in Your Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/setting-the-dialog-boxs-background-color.md
http://codexpert.ro/blog/2013/03/13/painting-the-dialog-backround/

Initializing the Dialog Box
3/4/2019 • 2 minutes to read • Edit Online

See also

After the dialog box and all of its controls are created but just before the dialog box (of either type) appears on the
screen, the dialog object's OnInitDialog member function is called. For a modal dialog box, this occurs during the
DoModal call. For a modeless dialog box, OnInitDialog is called when Create is called. You typically override
OnInitDialog to initialize the dialog box's controls, such as setting the initial text of an edit box. You must call the
OnInitDialog member function of the base class, CDialog , from your OnInitDialog override.

If you want to set your dialog box's background color (and that of all other dialog boxes in your application), see
Setting the Dialog Box's Background Color.

Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/initializing-the-dialog-box.md

Handling Windows Messages in Your Dialog Box
3/4/2019 • 2 minutes to read • Edit Online

See also

Dialog boxes are windows, so they can handle Windows messages if you supply the appropriate handler
functions. When you create your dialog class with the Add Class Wizard, the wizard adds an empty message map
to the class. Use the Properties window to map any Windows messages or commands you want your class to
handle.

See Mapping Windows Messages to Your Dialog Class for more information.

Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/handling-windows-messages-in-your-dialog-box.md

Retrieving Data from the Dialog Object
3/4/2019 • 2 minutes to read • Edit Online

See also

The framework provides an easy way to initialize the values of controls in a dialog box and to retrieve values from
the controls. The more laborious manual approach is to call functions such as the SetDlgItemText and
GetDlgItemText member functions of class CWnd , which apply to control windows. With these functions, you

access each control individually to set or get its value, calling functions such as SetWindowText and GetWindowText .
The framework's approach automates both initialization and retrieval.

Dialog data exchange (DDX) lets you exchange data between the controls in the dialog box and member variables
in the dialog object more easily. This exchange works both ways. To initialize the controls in the dialog box, you can
set the values of data members in the dialog object, and the framework will transfer the values to the controls
before the dialog box is displayed. Then you can at any time update the dialog data members with data entered by
the user. At that point, you can use the data by referring to the data member variables.

You can also arrange for the values of dialog controls to be validated automatically with dialog data validation
(DDV).

DDX and DDV are explained in more detail in Dialog Data Exchange and Validation.

For a modal dialog box, you can retrieve any data the user entered when DoModal returns IDOK but before the
dialog object is destroyed. For a modeless dialog box, you can retrieve data from the dialog object at any time by
calling UpdateData with the argument TRUE and then accessing dialog class member variables. This subject is
discussed in more detail in Dialog Data Exchange and Validation.

Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/retrieving-data-from-the-dialog-object.md

Closing the Dialog Box
3/4/2019 • 2 minutes to read • Edit Online

See also

A modal dialog box closes when the user chooses one of its buttons, typically the OK button or the Cancel button.
Choosing the OK or Cancel button causes Windows to send the dialog object a BN_CLICKED control-notification
message with the button's ID, either IDOK or IDCANCEL. CDialog provides default handler functions for these
messages: OnOK and OnCancel . The default handlers call the EndDialog member function to close the dialog
window. You can also call EndDialog from your own code. For more information, see the EndDialog member
function of class CDialog in the MFC Reference.

To arrange for closing and deleting a modeless dialog box, override PostNcDestroy and invoke the delete operator
on the this pointer. Destroying the Dialog Box explains what happens next.

Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/closing-the-dialog-box.md

Destroying the Dialog Box
3/4/2019 • 2 minutes to read • Edit Online

See also

Modal dialog boxes are normally created on the stack frame and destroyed when the function that created them
ends. The dialog object's destructor is called when the object goes out of scope.

Modeless dialog boxes are normally created and owned by a parent view or frame window — the application's
main frame window or a document frame window. The default OnClose handler calls DestroyWindow, which
destroys the dialog-box window. If the dialog box stands alone, with no pointers to it or other special ownership
semantics, you should override PostNcDestroy to destroy the C++ dialog object. You should also override
OnCancel and call DestroyWindow from within it. If not, the owner of the dialog box should destroy the C++ object
when it is no longer necessary.

Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/destroying-the-dialog-box.md

Dialog Data Exchange and Validation
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

Dialog data exchange (DDX) is an easy way to initialize the controls in your dialog box and to gather
data input by the user. Dialog data validation (DDV) is an easy way to validate data entry in a dialog box.
To take advantage of DDX and DDV in your dialog boxes, use the Add Member Variable Wizard to
create the data members and set their data types and specify validation rules.

Dialog data exchange

Dialog data validation

Dialog Boxes
Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dialog-data-exchange-and-validation.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-member-variable-wizard

Dialog Data Exchange
3/4/2019 • 2 minutes to read • Edit Online

void CTestDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX);
 DDX_Check(pDX, IDC_MY_CHECKBOX, m_bVal);
 DDX_Text(pDX, IDC_MY_TEXTBOX, m_strName);
 DDV_MaxChars(pDX, m_strName, 20);
}

If you use the DDX mechanism, you set the initial values of the dialog object's member variables, typically in your
OnInitDialog handler or the dialog constructor. Immediately before the dialog is displayed, the framework's DDX

mechanism transfers the values of the member variables to the controls in the dialog box, where they appear
when the dialog box itself appears in response to DoModal or Create . The default implementation of
OnInitDialog in CDialog calls the UpdateData member function of class CWnd to initialize the controls in the

dialog box.

The same mechanism transfers values from the controls to the member variables when the user clicks the OK
button (or whenever you call the UpdateData member function with the argument TRUE). The dialog data
validation mechanism validates any data items for which you specified validation rules.

The following figure illustrates dialog data exchange.

Dialog Data Exchange

UpdateData works in both directions, as specified by the BOOL parameter passed to it. To carry out the exchange,
UpdateData sets up a CDataExchange object and calls your dialog class's override of CDialog 's DoDataExchange

member function. DoDataExchange takes an argument of type CDataExchange . The CDataExchange object passed to
UpdateData represents the context of the exchange, defining such information as the direction of the exchange.

When you (or a Code wizard) override DoDataExchange , you specify a call to one DDX function per data member
(control). Each DDX function knows how to exchange data in both directions based on the context supplied by the
CDataExchange argument passed to your DoDataExchange by UpdateData .

MFC provides many DDX functions for different kinds of exchange. The following example shows a
DoDataExchange override in which two DDX functions and one DDV function are called:

The DDX_ and DDV_ lines are a data map. The sample DDX and DDV functions shown are for a check-box control
and an edit-box control, respectively.

If the user cancels a modal dialog box, the OnCancel member function terminates the dialog box and DoModal

returns the value IDCANCEL. In that case, no data is exchanged between the dialog box and the dialog object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dialog-data-exchange.md

See also
Dialog Data Exchange and Validation
Life Cycle of a Dialog Box
Dialog Data Validation

Dialog Data Validation
3/4/2019 • 2 minutes to read • Edit Online

See also

You can specify validation in addition to data exchange by calling DDV functions, as shown in the example in
Dialog Data Exchange. The DDV_MaxChars call in the example validates that the string entered in the text-box
control is not longer than 20 characters. The DDV function typically alerts the user with a message box if the
validation fails and puts the focus on the offending control so the user can reenter the data. A DDV function for a
given control must be called immediately after the DDX function for the same control.

You can also define your own custom DDX and DDV routines. For details on this and other aspects of DDX and
DDV, see MFC Technical Note 26.

The Add Member Variable Wizard will write all of the DDX and DDV calls in the data map for you.

Dialog Data Exchange and Validation
Life Cycle of a Dialog Box
Dialog Data Exchange

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dialog-data-validation.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-member-variable-wizard

Type-Safe Access to Controls in a Dialog Box
3/4/2019 • 2 minutes to read • Edit Online

See also

The controls in a dialog box can use the interfaces of MFC control classes such as CListBox and CEdit . You can
create a control object and attach it to a dialog control. Then you can access the control through its class interface,
calling member functions to operate on the control. The methods described here are designed to give you type-
safe access to a control. This is especially useful for controls such as edit boxes and list boxes.

There are two approaches to making a connection between a control in a dialog box and a C++ control member
variable in a CDialog -derived class:

Without Code Wizards

With Code Wizards

Dialog Boxes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/type-safe-access-to-controls-in-a-dialog-box.md

Type-Safe Access to Controls Without Code Wizards
3/4/2019 • 2 minutes to read • Edit Online

CButton* CMyDialog::GetMyCheckbox()
{
 return (CButton*)GetDlgItem(IDC_CHECKBOX);
}

GetMyCheckbox()->SetCheck(BST_CHECKED);

See also

The first approach to creating type-safe access to controls uses an inline member function to cast the return type
of class CWnd 's GetDlgItem member function to the appropriate C++ control type, as in this example:

You can then use this member function to access the control in a type-safe manner with code similar to the
following:

Type-Safe Access to Controls in a Dialog Box
Type-Safe Access to Controls With Code Wizards

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/type-safe-access-to-controls-without-code-wizards.md

Type-Safe Access to Controls With Code Wizards
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

m_Checkbox.SetCheck(BST_CHECKED);

See also

If you are familiar with DDX features, you can use the Control property in the Add Member Variable Wizard to
create type-safe access. This approach is easier than creating controls without code wizards.

If you simply want access to a control's value, DDX provides it. If you want to do more than access a control's
value, use the Add Member Variable Wizard to add a member variable of the appropriate class to your dialog
class. Attach this member variable to the Control property.

Member variables can have a Control property instead of a Value property. The Value property refers to the type
of data returned from the control, such as CString or int. The Control property enables direct access to the
control through a data member whose type is one of the control classes in MFC, such as CButton or CEdit .

For a given control, you can, if you wish, have multiple member variables with the Value property and at most one member
variable with the Control property. You can have only one MFC object mapped to a control because multiple objects
attached to a control, or any other window, would lead to an ambiguity in the message map.

You can use this object to call any member functions for the control object. Such calls affect the control in the
dialog box. For example, for a check-box control represented by a variable m_Checkbox, of type CButton , you
could call:

Here the member variable m_Checkbox serves the same purpose as the member function GetMyCheckbox shown
in Type-Safe Access to Controls Without Code Wizards. If the check box is not an auto check box, you would still
need a handler in your dialog class for the BN_CLICKED control-notification message when the button is clicked.

For more information about controls, see Controls.

Type-Safe Access to Controls in a Dialog Box
Life Cycle of a Dialog Box
Type-Safe Access to Controls Without Code Wizards

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/type-safe-access-to-controls-with-code-wizards.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-member-variable-wizard

Mapping Windows Messages to Your Class
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

If you need your dialog box to handle Windows messages, override the appropriate handler functions. To do so,
use the Properties window to map the messages to the dialog class. This writes a message-map entry for each
message and adds the message-handler member functions to the class. Use the Visual C++ source code editor to
write code in the message handlers.

You can also override member functions of CDialog and its base classes, especially CWnd.

Message handling and mapping

Commonly overridden member functions

Commonly added member functions

Dialog Boxes
Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mapping-windows-messages-to-your-class.md

Commonly Overridden Member Functions
3/4/2019 • 2 minutes to read • Edit Online

Commonly Overridden Member Functions of Class CDialogCommonly Overridden Member Functions of Class CDialog

MEMBER FUNCTION MESSAGE IT RESPONDS TO PURPOSE OF THE OVERRIDE

OnInitDialog WM_INITDIALOG Initialize the dialog box's controls.

OnOK BN_CLICKED for button IDOK Respond when the user clicks the OK
button.

OnCancel BN_CLICKED for button IDCANCEL Respond when the user clicks the
Cancel button.

See also

The following table lists the most likely member functions to override in your CDialog -derived class.

OnInitDialog , OnOK , and OnCancel are virtual functions. To override them, you declare an overriding function in
your derived dialog class using the Properties window.

OnInitDialog is called just before the dialog box is displayed. You must call the default OnInitDialog handler from
your override — usually as the first action in the handler. By default, OnInitDialog returns TRUE to indicate that
the focus should be set to the first control in the dialog box.

OnOK is typically overridden for modeless but not modal dialog boxes. If you override this handler for a modal
dialog box, call the base class version from your override — to ensure that EndDialog is called — or call
EndDialog yourself.

OnCancel is usually overridden for modeless dialog boxes.

For more information about these member functions, see class CDialog in the MFC Reference and the discussion
on Life Cycle of a Dialog Box.

Dialog Boxes
Commonly Added Member Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/commonly-overridden-member-functions.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

Commonly Added Member Functions
3/4/2019 • 2 minutes to read • Edit Online

See also

If your dialog box contains pushbuttons other than OK or Cancel, you need to write message-handler member
functions in your dialog class to respond to the control-notification messages they generate. For an example, see
the Scribble sample program. You can also handle control-notification messages from other controls in your
dialog box.

Dialog Boxes
Life Cycle of a Dialog Box
Commonly Overridden Member Functions

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/commonly-added-member-functions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Common Dialog Classes
3/4/2019 • 2 minutes to read • Edit Online

Common Dialog ClassesCommon Dialog Classes

DERIVED DIALOG CLASS PURPOSE

CColorDialog Lets user select colors.

CFileDialog Lets user select a filename to open or to save.

CFindReplaceDialog Lets user initiate a find or replace operation in a text file.

CFontDialog Lets user specify a font.

CPrintDialog Lets user specify information for a print job.

CPrintDialogEx Windows Print property sheet.

See also

In addition to class CDialog, MFC supplies several classes derived from CDialog that encapsulate commonly used
dialog boxes, as shown in the following table. The dialog boxes encapsulated are called the "common dialog
boxes" and are part of the Windows common dialog library (COMMDLG.DLL). The dialog-template resources
and code for these classes are provided in the Windows common dialog boxes that are part of Windows versions
3.1 and later.

For more information about the common dialog classes, see the individual class names in the MFC Reference.
MFC also supplies a number of standard dialog classes used for OLE. For information about these classes, see the
base class, COleDialog, in the MFC Reference.

Three other classes in MFC have dialog-like characteristics. For information about classes CFormView,
CRecordView, and CDaoRecordView, see the classes in the MFC Reference. For information about class
CDialogBar, see Dialog Bars.

Dialog Boxes
Life Cycle of a Dialog Box
Dialog Boxes in OLE

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/common-dialog-classes.md

Dialog Boxes in OLE
3/4/2019 • 3 minutes to read • Edit Online

See also

While a user runs an OLE-enabled application, there are times when the application needs information from the
user in order to carry out the operation. The MFC OLE classes provide a number of dialog boxes to gather the
required information. This topic lists the tasks handled by the OLE dialog boxes and the classes needed to
display those dialog boxes. For details on OLE dialog boxes and the structures used to customize their behavior,
see MFC Reference.

Insert Object
This dialog box allows the user to insert newly created or existing objects into the compound document. It also
allows the user to choose to display the item as an icon and enables the Change Icon command button. Display
this dialog box when the user chooses Insert Object from the Edit menu. Use the COleInsertDialog class to
display this dialog box. Note that you cannot insert an MDI application into itself. An application that is a
container/server cannot be inserted into itself unless it is an SDI application.

Paste Special
This dialog box allows the user to control the format used when pasting data into a compound document. The
user can choose the format of the data, whether to embed or link the data, and whether to display it as an icon.
Display this dialog box when the user chooses Paste Special from the Edit menu. Use the
COlePasteSpecialDialog class to display this dialog box.

Change Icon
This dialog box allows the user to select which icon is displayed to represent the linked or embedded item.
Display this dialog box when the user chooses Change Icon from the Edit menu or chooses the Change Icon
button in either the Paste Special or Convert dialog boxes. Also display it when the user opens the Insert Object
dialog box and chooses Display as Icon. Use the COleChangeIconDialog class to display this dialog box.

Convert
This dialog box allows the user to change the type of an embedded or linked item. For example, if you have
embedded a metafile in a compound document and later want to use another application to modify the
embedded metafile, you can use the Convert dialog box. This dialog box is usually displayed by clicking item
type Object on the Edit menu and then, on the cascading menu, clicking Convert. Use the COleConvertDialog
class to display this dialog box. For an example, run the MFC OLE sample OCLIENT.

Edit Links or Update Links
The Edit Links dialog box allows the user to change information about the source of a linked object. The Update
Links dialog box verifies the sources of all the linked items in the current dialog box and displays the Edit Links
dialog box if necessary. Display the Edit Links dialog box when the user chooses Links from the Edit menu. The
Update Links dialog box is usually displayed when a compound document is first opened. Use either the
COleLinksDialog or the COleUpdateDialog class, depending on which dialog box you want to display.

Server Busy or Server Not Responding
The Server Busy dialog box is displayed when the user attempts to activate an item and the server is currently
unable to handle the request, usually because the server is in use by another user or task. The Server Not
Responding dialog box is displayed if the server does not respond to the activation request at all. These dialog
boxes are displayed via COleMessageFilter , based on an implementation of the OLE interface IMessageFilter ,
and the user can decide whether to attempt the activation request again. Use the COleBusyDialog class to
display this dialog box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dialog-boxes-in-ole.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Dialog Boxes
Life Cycle of a Dialog Box
OLE

Walkthrough: Adding a CTaskDialog to an
Application
10/31/2018 • 5 minutes to read • Edit Online

NOTENOTE

Prerequisites

Replacing a Windows Message Box with a CTaskDialog

To Replace a Windows Message Box with a CTaskDialogTo Replace a Windows Message Box with a CTaskDialog

This walkthrough introduces the CTaskDialog Class and shows you how to add one to your application.

The CTaskDialog is a task dialog box that replaces the Windows message box in Windows Vista or later. The
CTaskDialog improves the original message box and adds functionality. The Windows message box is still

supported in Visual Studio.

Versions of Windows earlier than Windows Vista do not support the CTaskDialog . You must program an alternative dialog
box option if you want to show a message to a user who runs your application on an earlier version of Windows. You can use
the static method CTaskDialog::IsSupported to determine at run time whether a user's computer can display a CTaskDialog .
In addition, the CTaskDialog is only available when your application is built with the Unicode library.

The CTaskDialog supports several optional elements to gather and display information. For example, a
CTaskDialog can display command links, customized buttons, customized icons, and a footer. The CTaskDialog also

has several methods that enable you to query the state of the task dialog box to determine what optional elements
the user selected.

You need the following components to complete this walkthrough:

Visual Studio 2010 or later

Windows Vista or later

The following procedure demonstrates the most basic use of the CTaskDialog , which is to replace the Windows
message box. This example also changes the icon associated with the task dialog box. Changing the icon makes the
CTaskDialog appear same to the Windows message box.

CString message("My message to the user");
CString dialogTitle("My Task Dialog title");
CString emptyString;

1. Create a new MFC Application project with the default settings. Call it MyProject.

2. Use the Solution Explorer to open the file MyProject.cpp.

3. Add #include "afxtaskdialog.h" after the list of includes.

4. Find the method CMyProjectApp::InitInstance . Insert the following lines of code before the return TRUE;

statement. This code creates the strings that we use in either the Windows message box or in the
CTaskDialog .

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/walkthrough-adding-a-ctaskdialog-to-an-application.md

Adding Functionality to the CTaskDialog

To Add Functionality to the CTaskDialogTo Add Functionality to the CTaskDialog

if (CTaskDialog::IsSupported())
{

}
else
{
 AfxMessageBox(message);
}

CTaskDialog taskDialog(message, emptyString, dialogTitle, TDCBF_OK_BUTTON);

taskDialog.SetMainIcon(TD_WARNING_ICON);

taskDialog.DoModal();

5. Add the following code after the code from step 4. This code guarantees that the user's computer supports
the CTaskDialog . If the dialog isn't supported, the application displays a Windows message box instead.

6. Insert the following code between the brackets after the if statement from step 5. This code creates the
CTaskDialog .

7. On the next line, add the following code. This code sets the warning icon.

8. On the next line, add the following code. This code displays the task dialog box.

You can avoid step 7 if you don't want the CTaskDialog to display the same icon as the Windows message box. If
you avoid that step, the CTaskDialog has no icon when the application displays it.

Compile and run the application. The application displays the task dialog box after it starts.

The following procedure shows you how to add functionality to the CTaskDialog that you created in the previous
procedure. The example code shows you how to execute specific instructions based on the user's selections.

CString expandedLabel("Hide extra information");
CString collapsedLabel("Show extra information");
CString expansionInfo("This is the additional information to the user,\nextended over two lines.");

1. Navigate to the Resource View. If you can't see the Resource View, you can open it from the View menu.

2. Expand the Resource View until you can select the String Table folder. Expand it and double-click the
String Table entry.

3. Scroll to the bottom of the string table and add a new entry. Change the ID to TEMP_LINE1 . Set the caption
to Command Line 1.

4. Add another new entry. Change the ID to TEMP_LINE2 . Set the caption to Command Line 2.

5. Navigate back to MyProject.cpp.

6. After CString emptyString; , add the following code:

7. Find the taskDialog.DoModal() statement and replace that statement with the following code. This code

Displaying a CTaskDialog Without Creating a CTaskDialog Object

To Display a CTaskDialog Without Creating a CTaskDialog ObjectTo Display a CTaskDialog Without Creating a CTaskDialog Object

taskDialog.SetMainInstruction(L"Warning");
taskDialog.SetCommonButtons(
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);
taskDialog.LoadCommandControls(TEMP_LINE1, TEMP_LINE2);
taskDialog.SetExpansionArea(
 expansionInfo, collapsedLabel, expandedLabel);
taskDialog.SetFooterText(L"This is the a small footnote to the user");
taskDialog.SetVerificationCheckboxText(L"Remember your selection");

INT_PTR result = taskDialog.DoModal();

if (taskDialog.GetVerificationCheckboxState())
{
 // PROCESS IF the user selects the verification checkbox
}

switch (result)
{
case TEMP_LINE1:
 // PROCESS IF the first command line
 break;
case TEMP_LINE2:
 // PROCESS IF the second command line
 break;
case IDYES:
 // PROCESS IF the user clicks yes
 break;
case IDNO:
 // PROCESS IF the user clicks no
 break;
case IDCANCEL:
 // PROCESS IF the user clicks cancel
 break;
default:
 // This case should not be hit because closing
 // the dialog box results in IDCANCEL
 break;
}

updates the task dialog box and adds new controls:

8. Add the following line of code that displays the task dialog box to the user and retrieves the user's selection:

9. Insert the following code after the call to taskDialog.DoModal() . This section of code processes the user's
input:

In the code in step 9, replace the comments that start with PROCESS IF with the code that you want to execute
under the specified conditions.

Compile and run the application. The application displays the task dialog box that uses the new controls and
additional information.

The following procedure shows you how to display a CTaskDialog without first creating a CTaskDialog object. This
example continues the previous procedures.

1. Open the MyProject.cpp file if it isn't already open.

See also

HRESULT result2 = CTaskDialog::ShowDialog(L"My error message",
 L"Error",
 L"New Title",
 TEMP_LINE1,
 TEMP_LINE2);

2. Navigate to the closing bracket for the if (CTaskDialog::IsSupported()) statement.

3. Insert the following code immediately before the closing bracket of the if statement (before the else

block):

Compile and run the application. The application displays two task dialog boxes. The first dialog box is from the To
Add Functionality to the CTaskDialog procedure; the second dialog box is from the last procedure.

These examples don't demonstrate all the available options for a CTaskDialog , but should help you get started. See
CTaskDialog Class for a full description of the class.

Dialog Boxes
CTaskDialog Class
CTaskDialog::CTaskDialog

Document/View Architecture
3/4/2019 • 3 minutes to read • Edit Online

By default, the MFC Application Wizard creates an application skeleton with a document class and a view class.
MFC separates data management into these two classes. The document stores the data and manages printing
the data and coordinates updating multiple views of the data. The view displays the data and manages user
interaction with it, including selection and editing.

In this model, an MFC document object reads and writes data to persistent storage. The document may also
provide an interface to the data wherever it resides (such as in a database). A separate view object manages
data display, from rendering the data in a window to user selection and editing of data. The view obtains display
data from the document and communicates back to the document any data changes.

While you can easily override or ignore the document/view separation, there are compelling reasons to follow
this model in most cases. One of the best is when you need multiple views of the same document, such as both
a spreadsheet and a chart view. The document/view model lets a separate view object represent each view of
the data, while code common to all views (such as a calculation engine) can reside in the document. The
document also takes on the task of updating all views whenever the data changes.

The MFC document/view architecture makes it easy to support multiple views, multiple document types,
splitter windows, and other valuable user-interface features.

The parts of the MFC framework most visible both to the user and to you, the programmer, are the document
and view. Most of your work in developing an application with the framework goes into writing your document
and view classes. This article family describes:

The purposes of documents and views and how they interact in the framework.

What you must do to implement them.

At the heart of document/view are four key classes:

The CDocument (or COleDocument) class supports objects used to store or control your program's data and
provides the basic functionality for programmer-defined document classes. A document represents the unit of
data that the user typically opens with the Open command on the File menu and saves with the Save command
on the File menu.

The CView (or one of its many derived classes) provides the basic functionality for programmer-defined view
classes. A view is attached to a document and acts as an intermediary between the document and the user: the
view renders an image of the document on the screen and interprets user input as operations upon the
document. The view also renders the image for both printing and print preview.

CFrameWnd (or one of its variations) supports objects that provides the frame around one or more views of a
document.

CDocTemplate (or CSingleDocTemplate or CMultiDocTemplate) supports an object that coordinates one or
more existing documents of a given type and manages creating the correct document, view, and frame window
objects for that type.

The following figure shows the relationship between a document and its view.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/document-view-architecture.md

What do you want to know more about

See also

Document and View

The document/view implementation in the class library separates the data itself from its display and from user
operations on the data. All changes to the data are managed through the document class. The view calls this
interface to access and update the data.

Documents, their associated views, and the frame windows that frame the views are created by a document
template. The document template is responsible for creating and managing all documents of one document
type.

A portrait of the document/view architecture

Advantages of the document/view architecture

Document and view classes created by the Application Wizard

Alternatives to the document/view architecture

Adding Multiple Views to a Single Document

Using Documents

Using Views

Multiple Document Types, Views, and Frame Windows

Initializing and cleaning up documents and views

Initialize your own additions to document & view classes

Using database classes with documents and views

Using database classes without documents and views

Samples

User Interface Elements
Windows
Frame Windows
Document Templates and the Document/View Creation Process
Document/View Creation

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/mfc-using-database-classes-with-documents-and-views
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/mfc-using-database-classes-without-documents-and-views
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Creating New Documents, Windows, and Views

Document/View Sample List
3/4/2019 • 2 minutes to read • Edit Online

See also

See the following sample programs that illustrate using MFC's document/view architecture in interesting ways:

Document/View Variations

MDI

SCRIBBLE

VIEWEX

Dialog-Box Interface Replaces Document/View

CMNCTRL1

CMNCTRL2

Using COleDocument and Its Derived Classes

CONTAINER

HIERSVR

OCLIENT

Document/View Architecture

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/document-view-sample-list.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

A Portrait of the Document/View Architecture
3/4/2019 • 2 minutes to read • Edit Online

Gaining Access to Document Data from the View

User Input to the View

Updating Multiple Views of the Same Document

What do you want to know more aboutWhat do you want to know more about

See also

Documents and views are paired in a typical MFC application. Data is stored in the document, but the view has
privileged access to the data. The separation of document from view separates the storage and maintenance of
data from its display.

The view accesses its document's data either with the GetDocument function, which returns a pointer to the
document, or by making the view class a C++ friend of the document class. The view then uses its access to the
data to obtain the data when it is ready to draw or otherwise manipulate it.

For example, from the view's OnDraw member function, the view uses GetDocument to obtain a document pointer.
Then it uses that pointer to access a CString data member in the document. The view passes the string to the
TextOut function. To see the code for this example, see Drawing in a View.

The view might also interpret a mouse click within itself as either selection or editing of data. Similarly it might
interpret keystrokes as data entry or editing. Suppose the user types a string in a view that manages text. The view
obtains a pointer to the document and uses the pointer to pass the new data to the document, which stores it in
some data structure.

In an application with multiple views of the same document — such as a splitter window in a text editor — the view
first passes the new data to the document. Then it calls the document's UpdateAllViews member function, which
tells all views of the document to update themselves, reflecting the new data. This synchronizes the views.

Advantages of the document/view architecture

Alternatives to the document/view architecture

Document/View Architecture

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/a-portrait-of-the-document-view-architecture.md

Advantages of the Document/View Architecture
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

The key advantage to using the MFC document/view architecture is that the architecture supports multiple views
of the same document particularly well. (If you don't need multiple views and the small overhead of
document/view is excessive in your application, you can avoid the architecture. Alternatives to the Document/View
Architecture.)

Suppose your application lets users view numerical data either in spreadsheet form or in chart form. A user might
want to see simultaneously both the raw data, in spreadsheet form, and a chart that results from the data. You
display these separate views in separate frame windows or in splitter panes within a single window. Now suppose
the user can edit the data in the spreadsheet and see the changes instantly reflected in the chart.

In MFC, the spreadsheet view and the chart view would be based on different classes derived from CView. Both
views would be associated with a single document object. The document stores the data (or perhaps obtains it
from a database). Both views access the document and display the data they retrieve from it.

When a user updates one of the views, that view object calls CDocument::UpdateAllViews . That function notifies all
of the document's views, and each view updates itself using the latest data from the document. The single call to
UpdateAllViews synchronizes the different views.

This scenario would be difficult to code without the separation of data from view, particularly if the views stored
the data themselves. With document/view, it's easy. The framework does most of the coordination work for you.

Alternatives to document/view

CDocument

CView

CDocument::UpdateAllViews

CView::GetDocument

Document/View Architecture

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/advantages-of-the-document-view-architecture.md

Document and View Classes Created by the MFC
Application Wizard
3/4/2019 • 2 minutes to read • Edit Online

See also

The MFC Application Wizard gives you a head start on your program development by creating skeletal document
and view classes for you. You can then map commands and messages to these classes and use the Visual C++
source code editor to write their member functions.

The document class created by the MFC Application Wizard is derived from class CDocument. The view class is
derived from CView. The names that the Application Wizard gives these classes and the files that contain them are
based on the project name you supply in the Application Wizard dialog box. In the Application Wizard, you can use
the Generated Classes page to alter the default names.

Some applications might need more than one document class, view class, or frame-window class. For more
information, see Multiple Document Types, Views, and Frame Windows.

Document/View Architecture

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/document-and-view-classes-created-by-the-mfc-application-wizard.md

Alternatives to the Document/View Architecture
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

MFC applications normally use the document/view architecture to manage information, file formats, and the
visual representation of data to users. For the majority of desktop applications, the document/view architecture is
an appropriate and efficient application architecture. This architecture separates data from viewing and, in most
cases, simplifies your application and reduces redundant code.

However, the document/view architecture is not appropriate for some situations. Consider these examples:

If you are porting an application written in C for Windows, you might want to complete your port before
adding document/view support to your application.

If you are writing a lightweight utility, you might find that you can do without the document/view
architecture.

If your original code already mixes data management with data viewing, moving the code to the
document/view model is not worth the effort because you must separate the two. You might prefer to
leave the code as is.

To create an application that does not use the document/view architecture, clear the Document/View
architecture support check box in step 1 of the MFC Application Wizard. See MFC Application Wizard for
details.

Dialog-based applications produced by the MFC Application Wizard do not use the document/view architecture, so the
Document/View architecture support check box is disabled if you select the dialog application type.

The Visual C++ wizards, as well as the source and dialog editors, work with the generated application just as they
would with any other Wizard-generated application. The application can support toolbars, scrollbars, and a status
bar, and has an About box. Your application will not register any document templates, and it will not contain a
document class.

Note that your generated application has a view class, CChildView , derived from CWnd . MFC creates and
positions one instance of the view class within the frame windows created by your application. MFC still enforces
using a view window, because it simplifies positioning and managing the application's content. You can add
painting code to the OnPaint member of this class. Your code should add scrollbars to the view rather than to the
frame.

Because the document/view architecture provided by MFC is responsible for implementing many of an
application's basic features, its absence in your project means that you are responsible for implementing many
important features of your application:

As provided by the MFC Application Wizard, the menu for your application contains only New and Exit
commands on the File menu. (The New command is supported only for MDI applications, not SDI
applications without Document/View support.) The generated menu resource will not support an MRU
(most recently used) list.

You must add handler functions and implementations for any commands that your application will support,
including Open and Save on the File menu. MFC normally provides code to support these features, but
that support is tightly bound to the document/view architecture.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/alternatives-to-the-document-view-architecture.md

See also

The toolbar for your application, if you requested one, will be minimal.

It is strongly recommended that you use the MFC Application Wizard to create applications without the
document/view architecture, because the wizard guarantees a correct MFC architecture. However, if you must
avoid using the wizard, here are several approaches for bypassing the document/view architecture in your code:

Treat the document as an unused appendage and implement your data management code in the view class,
as suggested above. Overhead for the document is relatively low. A single CDocument object incurs a small
amount of overhead by itself, plus the small overhead of CDocument 's base classes, CCmdTarget and
CObject. Both of the latter classes are small.

Declared in CDocument :

Two CString objects.

Three BOOLs.

One CDocTemplate pointer.

One CPtrList object, which contains a list of the document's views.

Additionally, the document requires the amount of time to create the document object, its view objects, a
frame window, and a document template object.

Treat both the document and view as unused appendages. Put your data management and drawing code in
the frame window rather than the view. This approach is closer to the C-language programming model.

Override the parts of the MFC framework that create the document and view to eliminate creating them at
all. The document creation process begins with a call to CWinApp::AddDocTemplate . Eliminate that call from
your application class's InitInstance member function and, instead, create a frame window in
InitInstance yourself. Put your data management code in your frame window class. The document/view

creation process is illustrated in Document/View Creation. This is more work and requires a deeper
understanding of the framework, but it frees you entirely of the document/view overhead.

The article MFC: Using Database Classes Without Documents and Views gives more concrete examples of
document/view alternatives in the context of database applications.

Document/View Architecture

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/mfc-using-database-classes-without-documents-and-views

Using Documents
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

Working together, documents and views:

Contain, manage, and display your application-specific data.

Provide an interface consisting of document data variables for manipulating the data.

Participate in writing and reading files.

Participate in printing.

Handle most of your application's commands and messages.

The document is particularly involved in managing data. Store your data, normally, in document class member
variables. The view uses these variables to access the data for display and update. The document's default
serialization mechanism manages reading and writing the data to and from files. Documents can also handle
commands (but not Windows messages other than WM_COMMAND).

Deriving a document class from CDocument

Managing data with document data variables

Serializing data to and from files

Bypassing the serialization mechanism

Handling commands in the document

The OnNewDocument member function

The DeleteContents member function

Document/View Architecture

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-documents.md

Deriving a Document Class from CDocument
3/4/2019 • 2 minutes to read • Edit Online

Other Document Functions Often Overridden

See also

Documents contain and manage your application's data. To use the MFC Application Wizard-supplied document
class, you must do the following:

Derive a class from CDocument for each type of document.

Add member variables to store each document's data.

Override CDocument 's Serialize member function in your document class. Serialize writes and reads the
document's data to and from disk.

You may also want to override other CDocument member functions. In particular, you will often need to override
OnNewDocument and OnOpenDocument to initialize the document's data members and DeleteContents to
destroy dynamically allocated data. For information about overridable members, see class CDocument in the MFC
Reference.

Using Documents

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/deriving-a-document-class-from-cdocument.md

Managing Data with Document Data Variables
3/4/2019 • 2 minutes to read • Edit Online

See also

Implement your document's data as member variables of your document class. For example, the Scribble program
declares a data member of type CObList — a linked list that stores pointers to CObject objects. This list is used to
store arrays of points that make up a freehand line drawing.

How you implement your document's member data depends on the nature of your application. To help you out,
MFC supplies a group of "collection classes" — arrays, lists, and maps (dictionaries), including collections based on
C++ templates — along with classes that encapsulate a variety of common data types such as CString , CRect ,
CPoint , CSize , and CTime . For more information about these classes, see the Class Library Overview in the MFC

Reference.

When you define your document's member data, you will usually add member functions to the document class to
set and get data items and perform other useful operations on them.

Your views access the document object by using the view's pointer to the document, installed in the view at
creation time. You can retrieve this pointer in a view's member functions by calling the CView member function
GetDocument . Be sure to cast this pointer to your own document type. Then you can access public document

members through the pointer.

If frequent data transfer requires direct access, or you wish to use the nonpublic members of the document class,
you may want to make your view class a friend (in C++ terms) of the document class.

Using Documents

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/managing-data-with-document-data-variables.md

Serializing Data to and from Files
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

The Document's Role in Serialization

The Data's Role in Serialization

See also

The basic idea of persistence is that an object should be able to write its current state, indicated by the values of its
member variables, to persistent storage. Later, the object can be re-created by reading, or "deserializing," the
object's state from persistent storage. A key point here is that the object itself is responsible for reading and
writing its own state. Thus, for a class to be persistent, it must implement the basic serialization operations.

The framework provides a default implementation for saving documents to disk files in response to the Save and
Save As commands on the File menu and for loading documents from disk files in response to the Open
command. With very little work, you can implement a document's ability to write and read its data to and from a
file. The main thing you must do is override the Serialize member function in your document class.

The MFC Application Wizard places a skeletal override of the CDocument member function Serialize in the
document class it creates for you. After you have implemented your application's member variables, you can fill in
your Serialize override with code that sends the data to an "archive object" connected to a file. A CArchive object
is similar to the cin and cout input/output objects from the C++ iostream library. However, CArchive writes and
reads binary format, not formatted text.

Serialization

The document's role in serialization

The data's role in serialization

Bypassing the serialization mechanism

The framework responds automatically to the File menu's Open, Save, and Save As commands by calling the
document's Serialize member function if it is implemented. An ID_FILE_OPEN command, for example, calls a
handler function in the application object. During this process, the user sees and responds to the File Open dialog
box and the framework obtains the filename the user chooses. The framework creates a CArchive object set up for
loading data into the document and passes the archive to Serialize . The framework has already opened the file.
The code in your document's Serialize member function reads the data in through the archive, reconstructing
data objects as needed. For more information about serialization, see the article Serialization.

In general, class-type data should be able to serialize itself. That is, when you pass an object to an archive, the
object should know how to write itself to the archive and how to read itself from the archive. MFC provides
support for making classes serializable in this way. If you design a class to define a data type and you intend to
serialize data of that type, design for serialization.

Using Documents

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/serializing-data-to-and-from-files.md

Bypassing the Serialization Mechanism
3/4/2019 • 2 minutes to read • Edit Online

See also

As you have seen, the framework provides a default way to read and write data to and from files. Serializing
through an archive object suits the needs of a great many applications. Such an application reads a file entirely
into memory, lets the user update the file, and then writes the updated version to disk again.

However, some applications operate on data very differently, and for these applications serialization through an
archive is not suitable. Examples include database programs, programs that edit only parts of large files, programs
that write text-only files, and programs that share data files.

In these cases, you can override the Serialize function in a different way to mediate file actions through a CFile
object rather than a CArchive object.

You can use the Open , Read , Write , Close , and Seek member functions of class CFile to open a file, move the
file pointer (seek) to a specific point in the file, read a record (a specified number of bytes) at that point, let the user
update the record, then seek to the same point again and write the record back to the file. The framework will open
the file for you, and you can use the GetFile member function of class CArchive to obtain a pointer to the CFile

object. For even more sophisticated and flexible use, you can override the OnOpenDocument and
OnSaveDocument member functions of class CWinApp . For more information, see class CFile in the MFC
Reference.

In this scenario, your Serialize override does nothing, unless, for example, you want to have it read and write a
file header to keep it up to date when the document closes.

Using Documents

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/bypassing-the-serialization-mechanism.md

Handling Commands in the Document
3/4/2019 • 2 minutes to read • Edit Online

See also

Your document class may also handle certain commands generated by menu items, toolbar buttons, or accelerator
keys. By default, CDocument handles the Save and Save As commands on the File menu, using serialization. Other
commands that affect the data may also be handled by member functions of your document. For example, in the
Scribble program, class CScribDoc provides a handler for the Edit Clear All command, which deletes all of the data
currently stored in the document. Documents can have message maps, but unlike views, documents cannot handle
standard Windows messages — only WM_COMMAND messages, or "commands."

Using Documents

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/handling-commands-in-the-document.md

Using Views
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

The view's responsibilities are to display the document's data graphically to the user and to accept and interpret
user input as operations on the document. Your tasks in writing your view class are to:

Write your view class's OnDraw member function, which renders the document's data.

Connect appropriate Windows messages and user-interface objects such as menu items to message-
handler member functions in the view class.

Implement those handlers to interpret user input.

In addition, you may need to override other CView member functions in your derived view class. In particular, you
may want to override OnInitialUpdate to perform special initialization for the view and OnUpdate to do any
special processing needed just before the view redraws itself. For multipage documents, you also must override
OnPreparePrinting to initialize the Print dialog box with the number of pages to print and other information. For
more information on overriding CView member functions, see class CView in the MFC Reference.

Derived view classes available in MFC

Drawing in a view

Interpreting user input through a view

The role of the view in printing

Scrolling and scaling views

Initializing and cleaning up documents and views

Document/View Architecture
CFormView Class
Record Views (MFC Data Access)
Bypassing the Serialization Mechanism

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-views.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access

Derived View Classes Available in MFC
3/4/2019 • 2 minutes to read • Edit Online

View ClassesView Classes

CLASS DESCRIPTION

CView Base class of all views.

CCtrlView Base class of CTreeView , CListView , CEditView , and
CRichEditView . These classes let you use document/view

architecture with the indicated Windows common controls.

CEditView A simple view based on the Windows edit box control. Allows
entering and editing text and can be used as the basis for a
simple text editor application. See also CRichEditView .

CRichEditView A view containing a CRichEditCtrl object. This class is
analogous to CEditView , but unlike CEditView ,
CRichEditView handles formatted text.

CListView A view containing a CListCtrl object.

CTreeView A view containing a CTreeCtrl object, for views that resemble
the Solution Explorer window in Visual C++.

CScrollView Base class of CFormView , CRecordView , and
CDaoRecordView . Implements scrolling the view's contents.

CFormView A form view, a view that contains controls. A forms-based
application provides one or more such form interfaces.

CHtmlView A Web browser view with which the application's user can
browse sites on the World Wide Web, as well as folders in the
local file system and on a network. The Web browser view can
also work as an Active document container.

CRecordView A form view that displays ODBC database records in controls.
If you select ODBC support in your project, the view's base
class is CRecordView . The view is connected to a CRowset

object.

CDaoRecordView A form view that displays DAO database records in controls. If
you select DAO support in your project, the view's base class
is CDaoRecordView . The view is connected to a
CDaoRecordset object.

The following table shows MFC's view classes and their relationships to one another. The capabilities of your view
class depend on the MFC view class from which it derives.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/derived-view-classes-available-in-mfc.md

COleDBRecordView A form view that displays OLE DB records in controls. If you
select OLE DB support in your project, the view's base class is
COleDBRecordView . The view is connected to a CRowset

object.

CLASS DESCRIPTION

NOTENOTE

See also

As of MFC version 4.0, CEditView is derived from CCtrlView .

To use these classes in your application, derive the application's view classes from them. For related information,
see Scrolling and Scaling Views. For more information on the database classes, see Overview: Database
Programming.

Using Views

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl

Drawing in a View
3/4/2019 • 2 minutes to read • Edit Online

void CMyView::OnDraw(CDC* pDC)
{
 CMyDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 if (!pDoc)
 return;

 CString s = pDoc->GetData(); // Returns a CString
 CRect rect;
 GetClientRect(&rect);

 pDC->SetTextAlign(TA_BASELINE | TA_CENTER);
 pDC->TextOut(rect.right / 2, rect.bottom / 2, s, s.GetLength());
}

Nearly all drawing in your application occurs in the view's OnDraw member function, which you must override in
your view class. (The exception is mouse drawing, discussed in Interpreting User Input Through a View.) Your
OnDraw override:

1. Gets data by calling the document member functions you provide.

2. Displays the data by calling member functions of a device-context object that the framework passes to
OnDraw .

When a document's data changes in some way, the view must be redrawn to reflect the changes. Typically, this
happens when the user makes a change through a view on the document. In this case, the view calls the
document's UpdateAllViews member function to notify all views on the same document to update themselves.
UpdateAllViews calls each view's OnUpdate member function. The default implementation of OnUpdate

invalidates the view's entire client area. You can override it to invalidate only those regions of the client area that
map to the modified portions of the document.

The UpdateAllViews member function of class CDocument and the OnUpdate member function of class CView let
you pass information describing what parts of the document were modified. This "hint" mechanism lets you limit
the area that the view must redraw. OnUpdate takes two "hint" arguments. The first, lHint, of type LPARAM, lets
you pass any data you like, while the second, pHint, of type CObject *, lets you pass a pointer to any object derived
from CObject .

When a view becomes invalid, Windows sends it a WM_PAINT message. The view's OnPaint handler function
responds to the message by creating a device-context object of class CPaintDC and calls your view's OnDraw

member function. You do not normally have to write an overriding OnPaint handler function.

A device context is a Windows data structure that contains information about the drawing attributes of a device
such as a display or a printer. All drawing calls are made through a device-context object. For drawing on the
screen, OnDraw is passed a CPaintDC object. For drawing on a printer, it is passed a CDC object set up for the
current printer.

Your code for drawing in the view first retrieves a pointer to the document, then makes drawing calls through the
device context. The following simple OnDraw example illustrates the process:

In this example, you would define the GetData function as a member of your derived document class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/drawing-in-a-view.md

See also

The example prints whatever string it gets from the document, centered in the view. If the OnDraw call is for screen
drawing, the CDC object passed in pDC is a CPaintDC whose constructor has already called BeginPaint . Calls to
drawing functions are made through the device-context pointer. For information about device contexts and
drawing calls, see class CDC in the MFC Reference and Working with Window Objects.

For more examples of how to write OnDraw , see the MFC Samples.

Using Views

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Interpreting User Input Through a View
3/4/2019 • 2 minutes to read • Edit Online

See also

Other member functions of the view handle and interpret all user input. You will usually define message-handler
member functions in your view class to process:

Windows messages generated by mouse and keyboard actions.

Commands from menus, toolbar buttons, and accelerator keys.

These message-handler member functions interpret the following actions as data input, selection, or editing,
including moving data to and from the Clipboard:

Mouse movements and clicks, drags, and double-clicks

Keystrokes

Menu commands

Which Windows messages your view handles depends on your application's needs.

Message Handling and Mapping Topics explains how to assign menu items and other user-interface objects to
commands and how to bind the commands to handler functions. Message Handling and Mapping Topics also
explains how MFC routes commands and sends standard Windows messages to the objects that contain handlers
for them.

For example, your application might need to implement direct mouse drawing in the view. The Scribble sample
shows how to handle the WM_LBUTTONDOWN, WM_MOUSEMOVE, and WM_LBUTTONUP messages
respectively to begin, continue, and end the drawing of a line segment. On the other hand, you might sometimes
need to interpret a mouse click in your view as a selection. Your view's OnLButtonDown handler function would
determine whether the user was drawing or selecting. If selecting, the handler would determine whether the click
was within the bounds of some object in the view and, if so, alter the display to show the object as selected.

Your view might also handle certain menu commands, such as those from the Edit menu to cut, copy, paste, or
delete selected data using the Clipboard. Such a handler would call some of the Clipboard-related member
functions of class CWnd to transfer a selected data item to or from the Clipboard.

Using Views

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/interpreting-user-input-through-a-view.md

Role of the View in Printing
3/4/2019 • 2 minutes to read • Edit Online

See also

Your view also plays two important roles in printing its associated document.

The view:

Uses the same OnDraw code to draw on the printer as to draw on the screen.

Manages dividing the document into pages for printing.

For more information about printing and about the view's role in printing, see Printing and Print Preview.

Using Views

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/role-of-the-view-in-printing.md

Scrolling and Scaling Views
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

Scrolling a View

Scaling a View

See also

MFC supports views that scroll and views that are automatically scaled to the size of the frame window that
displays them. Class CScrollView supports both kinds of views.

For more information about scrolling and scaling, see class CScrollView in the MFC Reference. For a scrolling
example, see the Scribble sample.

Scrolling a view

Scaling a view

View coordinates

Frequently the size of a document is greater than the size its view can display. This may occur because the
document's data increases or the user shrinks the window that frames the view. In such cases, the view must
support scrolling.

Any view can handle scroll-bar messages in its OnHScroll and OnVScroll member functions. You can either
implement scroll-bar message handling in these functions, doing all the work yourself, or you can use the
CScrollView class to handle scrolling for you.

CScrollView does the following:

Manages window and viewport sizes and mapping modes

Scrolls automatically in response to scroll-bar messages

You can specify how much to scroll for a "page" (when the user clicks in a scroll-bar shaft) and a "line" (when the
user clicks in a scroll arrow). Plan these values to suit the nature of your view. For example, you might want to
scroll in 1-pixel increments for a graphics view but in increments based on the line height in text documents.

When you want the view to automatically fit the size of its frame window, you can use CScrollView for scaling
instead of scrolling. The logical view is stretched or shrunk to fit the window's client area exactly. A scaled view has
no scroll bars.

Using Views

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/scrolling-and-scaling-views.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/gdi/window-coordinate-system

Multiple Document Types, Views, and Frame
Windows
3/4/2019 • 4 minutes to read • Edit Online

What do you want to know more about

Multiple Document Types

Multiple Views

The standard relationship among a document, its view, and its frame window is described in Document/View
Creation. Many applications support a single document type (but possibly multiple open documents of that type)
with a single view on the document and only one frame window per document. But some applications may need
to alter one or more of those defaults.

Multiple document types

Multiple views

Multiple frame windows

Splitter windows

The MFC Application Wizard creates a single document class for you. In some cases, though, you may need to
support more than one document type. For example, your application may need worksheet and chart documents.
Each document type is represented by its own document class and probably by its own view class as well. When
the user chooses the File New command, the framework displays a dialog box that lists the supported document
types. Then it creates a document of the type that the user chooses. Each document type is managed by its own
document-template object.

To create extra document classes, see Adding a Class. Choose CDocument as the Class Type to derive from and
supply the requested document information. Then implement the new class's data.

To let the framework know about your extra document class, you must add a second call to AddDocTemplate in
your application class's InitInstance override. For more information, see Document Templates.

Many documents require only a single view, but it is possible to support more than one view of a single
document. To help you implement multiple views, a document object keeps a list of its views, provides member
functions for adding and removing views, and supplies the UpdateAllViews member function for letting multiple
views know when the document's data has changed.

MFC supports three common user interfaces requiring multiple views on the same document. These models are:

View objects of the same class, each in a separate MDI document frame window.

You might want to support creating a second frame window on a document. The user could choose a New
Window command to open a second frame with a view of the same document and then use the two
frames to view different portions of the document simultaneously. The framework supports the New
Window command on the Window menu for MDI applications by duplicating the initial frame window
and view attached to the document.

View objects of the same class in the same document frame window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/multiple-document-types-views-and-frame-windows.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp

Multiple Frame Windows

Splitter Windows

Splitter windows split the view space of a single document window into multiple separate views of the
document. The framework creates multiple view objects from the same view class. For more information,
see Splitter Windows.

View objects of different classes in a single frame window.

In this model, a variation of the splitter window, multiple views share a single frame window. The views are
constructed from different classes, each view providing a different way to view the same document. For
example, one view might show a word-processing document in normal mode while the other view shows
it in outline mode. A splitter control allows the user to adjust the relative sizes of the views.

The following figure, divided into parts a, b, and c, shows the three user-interface models in the order presented
above.

Multiple-View User Interfaces

The framework provides these models by implementing the New Window command and by providing class
CSplitterWnd, as discussed in Splitter Windows. You can implement other models using these as your starting
point. For sample programs that illustrate different configurations of views, frame windows, and splitters, see
MFC Samples.

For more information about UpdateAllViews , see class CView in the MFC Reference and the Scribble sample.

You can use the New Window command on the Window menu for MDI applications to create a second frame
window on the same document. For more information, see the first model in the figure Multiple-View User
Interfaces.

In a splitter window, the window is, or can be, split into two or more scrollable panes. A splitter control (or "split

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

See also

box") in the window frame next to the scroll bars allows the user to adjust the relative sizes of the panes. Each
pane is a view on the same document. In "dynamic" splitters, the views are of the same class, as shown in part b
of the figure Multiple-View User Interfaces. In "static" splitters, the views can be of different classes. Splitter
windows of both kinds are supported by class CSplitterWnd.

Dynamic splitter windows, with views of the same class, allow the user to split a window into multiple panes at
will and then scroll different panes to see different parts of the document. The user can also unsplit the window to
remove the additional views. The splitter windows added to the Scribble sample are an example. That topic
describes the technique for creating dynamic splitter windows. A dynamic splitter window is shown in part b of
the figure Multiple-View User Interfaces.

Static splitter windows, with views of different classes, start with the window split into multiple panes, each with a
different purpose. For example, in the Visual C++ bitmap editor, the image window shows two panes side by side.
The left-hand pane displays a life-sized image of the bitmap. The right-hand pane displays a zoomed or
magnified image of the same bitmap. The panes are separated by a "splitter bar" that the user can drag to change
the relative sizes of the panes. A static splitter window is shown in part c of the figure Multiple-View User
Interfaces.

For more information, see class CSplitterWnd in the MFC Reference and MFC Samples.

Document/View Architecture

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Initializing and Cleaning Up Documents and Views
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

What do you want to know more about

See also

Use the following guidelines for initializing and cleaning up after your documents and views:

The MFC framework initializes documents and views; you initialize any data you add to them.

The framework cleans up as documents and views close; you must deallocate any memory that you
allocated on the heap from within the member functions of those documents and views.

Recall that initialization for the whole application is best done in your override of the InitInstance member function of class
CWinApp , and cleanup for the whole application is best done in your override of the CWinApp member function

ExitInstance.

The life cycle of a document (and its frame window and view or views) in an MDI application is as follows:

1. During dynamic creation, the document constructor is called.

2. For each new document, the document's OnNewDocument or OnOpenDocument is called.

3. The user interacts with the document throughout its lifetime. Typically this happens as the user works on
document data through the view, selecting and editing the data. The view passes changes on to the
document for storage and updating other views. During this time both the document and the view might
handle commands.

4. The framework calls DeleteContents to delete data specific to a document.

5. The document's destructor is called.

In an SDI application, step 1 is performed once, when the document is first created. Then steps 2 through 4 are
performed repeatedly each time a new document is opened. The new document reuses the existing document
object. Finally, step 5 is performed when the application ends.

Initializing Documents and Views

Cleaning Up Documents and Views

Document/View Architecture

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/initializing-and-cleaning-up-documents-and-views.md

Initializing Documents and Views
3/4/2019 • 2 minutes to read • Edit Online

See also

Documents are created in two different ways, so your document class must support both ways. First, the user can
create a new, empty document with the File New command. In that case, initialize the document in your override of
the OnNewDocument member function of class CDocument. Second, the user can use the Open command on the
File menu to create a new document whose contents are read from a file. In that case, initialize the document in
your override of the OnOpenDocument member function of class CDocument . If both initializations are the same,
you can call a common member function from both overrides, or OnOpenDocument can call OnNewDocument to
initialize a clean document and then finish the open operation.

Views are created after their documents are created. The best time to initialize a view is after the framework has
finished creating the document, frame window, and view. You can initialize your view by overriding the
OnInitialUpdate member function of CView. If you need to reinitialize or adjust anything each time the document
changes, you can override OnUpdate.

Initializing and Cleaning Up Documents and Views

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/initializing-documents-and-views.md

Cleaning Up Documents and Views
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

When a document is closing, the framework first calls its DeleteContents member function. If you allocated any
memory on the heap during the course of the document's operation, DeleteContents is the best place to deallocate
it.

You should not deallocate document data in the document's destructor. In the case of an SDI application, the document
object might be reused.

You can override a view's destructor to deallocate any memory you allocated on the heap.

Initializing and Cleaning Up Documents and Views

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/cleaning-up-documents-and-views.md

Adding Multiple Views to a Single Document
3/4/2019 • 4 minutes to read • Edit Online

TIPTIP

Modify the Existing Application Class

CView* m_pOldView;
CView* m_pNewView;
CView* SwitchView();

In a single-document interface (SDI) application created with the Microsoft Foundation Class (MFC) Library, each
document type is associated with a single view type. In some cases, it is desirable to have the ability to switch the
current view of a document with a new view.

For additional procedures on implementing multiple views for a single document, see CDocument::AddView and the
COLLECT MFC sample.

You can implement this functionality by adding a new CView -derived class and additional code for switching the
views dynamically to an existing MFC application.

The steps are as follows:

Modify the Existing Application Class

Create and Modify the New View Class

Create and Attach the New View

Implement the Switching Function

Add Support for Switching the View

The remainder of this topic assumes the following:

The name of the CWinApp -derived object is CMyWinApp , and CMyWinApp is declared and defined in
MYWINAPP.H and MYWINAPP.CPP.

CNewView is the name of the new CView -derived object, and CNewView is declared and defined in
NEWVIEW.H and NEWVIEW.CPP.

For the application to switch between views, you need to modify the application class by adding member variables
to store the views and a method to switch them.

Add the following code to the declaration of CMyWinApp in MYWINAPP.H:

The new member variables, m_pOldView and m_pNewView , point to the current view and the newly created one. The
new method (SwitchView) switches the views when requested by the user. The body of the method is discussed
later in this topic in Implement the Switching Function.

The last modification to the application class requires including a new header file that defines a Windows message
(WM_INITIALUPDATE) that is used in the switching function.

Insert the following line in the include section of MYWINAPP.CPP:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/adding-multiple-views-to-a-single-document.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

#include <AFXPRIV.H>

Create and Modify the New View Class

Create and Attach the New View

Save your changes and continue to the next step.

Creating the new view class is made easy by using the New Class command available from Class View. The only
requirement for this class is that it derives from CView . Add this new class to the application. For specific
information on adding a new class to the project, see Adding a Class.

Once you have added the class to the project, you need to change the accessibility of some view class members.

Modify NEWVIEW.H by changing the access specifier from protected to public for the constructor and
destructor. This allows the class to be created and destroyed dynamically and to modify the view appearance
before it is visible.

Save your changes and continue to the next step.

To create and attach the new view, you need to modify the InitInstance function of your application class. The
modification adds new code that creates a new view object and then initializes both m_pOldView and m_pNewView

with the two existing view objects.

Because the new view is created within the InitInstance function, both the new and existing views persist for the
lifetime of the application. However, the application could just as easily create the new view dynamically.

Insert this code after the call to ProcessShellCommand :

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp

CView* pActiveView = ((CFrameWnd*) m_pMainWnd)->GetActiveView();
m_pOldView = pActiveView;
m_pNewView = (CView*) new CNewView;
if (NULL == m_pNewView)
 return FALSE;

CDocument* pCurrentDoc = ((CFrameWnd*)m_pMainWnd)->GetActiveDocument();

// Initialize a CCreateContext to point to the active document.
// With this context, the new view is added to the document
// when the view is created in CView::OnCreate().
CCreateContext newContext;
newContext.m_pNewViewClass = NULL;
newContext.m_pNewDocTemplate = NULL;
newContext.m_pLastView = NULL;
newContext.m_pCurrentFrame = NULL;
newContext.m_pCurrentDoc = pCurrentDoc;

// The ID of the initial active view is AFX_IDW_PANE_FIRST.
// Incrementing this value by one for additional views works
// in the standard document/view case but the technique cannot
// be extended for the CSplitterWnd case.
UINT viewID = AFX_IDW_PANE_FIRST + 1;
CRect rect(0, 0, 0, 0); // Gets resized later.

// Create the new view. In this example, the view persists for
// the life of the application. The application automatically
// deletes the view when the application is closed.
m_pNewView->Create(NULL, _T("AnyWindowName"), WS_CHILD, rect, m_pMainWnd, viewID, &newContext);

// When a document template creates a view, the WM_INITIALUPDATE
// message is sent automatically. However, this code must
// explicitly send the message, as follows.
m_pNewView->SendMessage(WM_INITIALUPDATE, 0, 0);

Implement the Switching Function

Save your changes and continue to the next step.

In the previous step, you added code that created and initialized a new view object. The last major piece is to
implement the switching method, SwitchView .

At the end of the implementation file for your application class (MYWINAPP.CPP), add the following method
definition:

CView* CMyWinApp::SwitchView()
{
 CView* pActiveView = ((CFrameWnd*) m_pMainWnd)->GetActiveView();

 CView* pNewView = NULL;
 if(pActiveView == m_pOldView)
 pNewView = m_pNewView;
 else
 pNewView = m_pOldView;

 // Exchange view window IDs so RecalcLayout() works.
 #ifndef _WIN32
 UINT temp = ::GetWindowWord(pActiveView->m_hWnd, GWW_ID);
 ::SetWindowWord(pActiveView->m_hWnd, GWW_ID, ::GetWindowWord(pNewView->m_hWnd, GWW_ID));
 ::SetWindowWord(pNewView->m_hWnd, GWW_ID, temp);
 #else
 UINT temp = ::GetWindowLong(pActiveView->m_hWnd, GWL_ID);
 ::SetWindowLong(pActiveView->m_hWnd, GWL_ID, ::GetWindowLong(pNewView->m_hWnd, GWL_ID));
 ::SetWindowLong(pNewView->m_hWnd, GWL_ID, temp);
 #endif

 pActiveView->ShowWindow(SW_HIDE);
 pNewView->ShowWindow(SW_SHOW);
 ((CFrameWnd*) m_pMainWnd)->SetActiveView(pNewView);
 ((CFrameWnd*) m_pMainWnd)->RecalcLayout();
 pNewView->Invalidate();
 return pActiveView;
}

Add Support for Switching the View

See also

Save your changes and continue to the next step.

The final step involves adding code that calls the SwitchView method when the application needs to switch
between views. This can be done in several ways: by either adding a new menu item for the user to choose or
switching the views internally when certain conditions are met.

For more information on adding new menu items and command handler functions, see Handlers for Commands
and Control Notifications.

Document/View Architecture

Form Views (MFC)
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

You can add forms to any Visual C++ application that supports the MFC libraries, including a forms-based
application (one whose view class is derived from CFormView). If you did not initially create your application to
support forms, Visual C++ will add this support for you when you insert a new form. In an SDI or MDI
application, which implements the default document/view architecture, when the user chooses the New command
(by default, on the File menu), Visual C++ prompts the user to choose from the available forms.

With an SDI application, when the user chooses the New command, the current instance of the form continues to
run but a new instance of the application with the selected form is created if one is not found. In an MDI
application, the current instance of the form continues to run when the user chooses the New command.

You can insert a form into a dialog-based application (one whose dialog class is based on CDialog and one in which no
view class is implemented). However, without the document/view architecture, Visual C++ does not automatically implement
the File|New functionality. You must create a way for the user to view additional forms, such as by implementing a tabbed
dialog box with various property pages.

When you insert a new form into your application, Visual C++ does the following:

Creates a class based on one of the form-style classes that you choose (CFormView , CRecordView ,
CDaoRecordView , or CDialog).

Creates a dialog resource with appropriate styles (or you can use an existing dialog resource that has not
yet been associated with a class).

If you choose an existing dialog resource, you may need to set these styles by using the Properties page for
the dialog box. Styles for a dialog box must include:

WS_CHILD=On

WS_BORDER=Off

WS_VISIBLE=Off

WS_CAPTION=Off

For applications based on the document/view architecture, the New Form command (right-click in Class View)
also:

Creates a CDocument -based class

Instead of having a new class created, you can use any existing CDocument -based class in your project.

Generates a document template (derived from CDocument) with string, menu, and icon resources.

You can also create a new class on which to base the template.

Adds a call to AddDocumentTemplate in your application's InitInstance code.

Visual C++ adds this code for each new form you create, which adds the form to the list of available forms
when the user chooses the New command. This code includes the form's associated resource ID and the
names of the associated document, view, and frame classes that together make up the new form object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/form-views-mfc.md

See also

Document templates serve as the connection between documents, frame windows, and views. For a single
document, you can create many templates.

For more information, see:

Create a Forms-Based Application

Inserting a Form into a Project

User Interface Elements

Inserting a Form into a Project
3/4/2019 • 2 minutes to read • Edit Online

To insert a form into your projectTo insert a form into your project

See also

Forms provide a convenient container for controls. You can easily insert an MFC-based form into your application
as long as the application supports the MFC libraries.

1. From Class View, select the project to which you want to add the form, and click the right mouse button.

2. From the shortcut menu, click Add and then click Add Class.

If the New Form command is not available, your project may be based on the Active Template Library
(ATL). To add a form to an ATL project, you must specify certain settings when first creating the project.

3. From the MFC folder, click MFC Class.

4. Using the MFC Class Wizard, make the new class derive from CFormView.

Visual C++ adds the form to your application, opening it inside the Dialog editor so that you can begin adding
controls and working on its overall design.

You may want to perform the following additional steps (not applicable for dialog-based applications):

1. Override the OnUpdate member function.

2. Implement a member function to move data from your view to your document.

3. Create an OnPrint member function.

Form Views

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/inserting-a-form-into-a-project.md

HTML Help: Context-Sensitive Help for Your
Programs
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

See also

HTML Help is not supported in this version of MFC.

User Interface Elements

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/html-help-context-sensitive-help-for-your-programs.md

MDI Tabbed Groups
3/4/2019 • 2 minutes to read • Edit Online

Features

Using MDI Tabbed GroupsUsing MDI Tabbed Groups

The multiple document interface (MDI) tabbed groups feature enables multiple document interface (MDI)
applications to display one or more tabbed windows (or groups of tabbed windows, known as tabbed groups) in
the MDI client area. The tabbed windows can be aligned vertically or horizontally. If an application hosts more
than one MDI tabbed group, the groups are separated by splitters.

The following are the features of MDI tabbed groups:

An application can create tabbed windows dynamically.

An application can align tabbed windows horizontally or vertically.

Groups of tabbed windows are separated by splitters. The user can resize tabbed groups by using the
splitter.

The user can drag individual tabs between groups.

The user can drag individual tabs to create new groups.

The user can move tabs or create new groups by using a shortcut menu.

An application can save and load the layout of tabbed windows.

An application can save and load the list of MDI documents.

An application can access individual tabbed groups and modify their parameters.

The following are tasks commonly performed with MDI tabbed groups:

To enable MDI tabbed groups for a main frame window, call
CMDIFrameWndEx::EnableMDITabbedGroups. The second parameter of this method is an instance of the
CMDITabInfo class. You can use the default parameters or modify them before you call
CMDIFrameWndEx::EnableMDITabbedGroups .

To modify the properties of an MDI tabbed group at run time, create or modify a CMDITabInfo object and
call CMDIFrameWndEx::EnableMDITabbedGroups again

To obtain a list of MDI tabbed windows, call CMDIFrameWndEx::GetMDITabGroups .

To create a new MDI tabbed group next to an active tabbed group, call CMDIFrameWndEx::MDITabNewGroup .

To shift the input focus to the previous or next window of a tabbed group, call
CMDIFrameWndEx::MDITabMoveToNextGroup .

To determine whether a window is a member of an MDI tabbed group call
CMDIFrameWndEx::IsMemberOfMDITabGroup .

To determine whether MDI tabs or MDI tabbed groups are enabled for a main frame window, call
CMDIFrameWndEx::AreMDITabs . To determine only whether MDI tabbed groups are enabled, call
CMDIFrameWndEx::IsMDITabbedGroup .

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mdi-tabbed-groups.md

See also

To display a shortcut menu when the user clicks a tab or drags it to another MDI tabbed group, override
CMDIFrameWndEx::OnShowMDITabContextMenu in the CMDIFrameWndEx -derived class. If you do not implement this

method, the application will not display the shortcut menu.

To save the layout of MDI tabbed groups in an application, call CMDIFrameWndEx::SaveMDIState . To load a
previously saved MDI tabbed group profile, call CMDIFrameWndEx::LoadMDIState . You can also call these
methods to load or save the list of opened documents in an MDI application. For more information about
saving and loading MDI state, see CMDIFrameWndEx::LoadMDIState.

User Interface Elements
CMDIFrameWndEx Class
CMDIChildWndEx Class
CMDITabInfo Class

Menus (MFC)
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

MFC supplies two elements to help you work with menus:

Class CMenu for manipulating your program's menus at run time. Use the documentation for CMenu and
the sample to learn how to use CMenu effectively.

A mechanism for updating menus and toolbar buttons: enabling or disabling them on the fly to suit current
program conditions.

Visual C++ also provides a menu editor for creating and editing your program's menu resources.

Manipulating menu objects during program execution

How to Update User-Interface Objects

Sample

User Interface Elements

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/menus-mfc.md

Menu Sample List
3/4/2019 • 2 minutes to read • Edit Online

See also

See the following sample programs that illustrate creating, editing, and updating menus:

MDI Sample: Enable and Disable Menu Items

SCRIBBLE

Dynamically Change Menus

DYNAMENU

Menus

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/menu-sample-list.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Manipulating Menus During Program Execution
3/4/2019 • 2 minutes to read • Edit Online

See also

Use class CMenu to manipulate menus and menu items on the fly. CMenu encapsulates a Windows HMENU handle
and supplies member functions for working with menus.

See the overview for class CMenu for details.

Menus

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/manipulating-menus-during-program-execution.md

How to: Update User-Interface Objects
3/4/2019 • 2 minutes to read • Edit Online

See also

Typically, menu items and toolbar buttons have more than one state. For example, a menu item is grayed
(dimmed) if it is unavailable in the present context. Menu items can also be checked or unchecked. A toolbar
button can also be disabled if unavailable, or it can be checked.

Who updates the state of these items as program conditions change Logically, if a menu item generates a
command that is handled by, say, a document, it makes sense to have the document update the menu item. The
document probably contains the information on which the update is based.

If a command has multiple user-interface objects (perhaps a menu item and a toolbar button), both are routed to
the same handler function. This encapsulates your user-interface update code for all of the equivalent user-
interface objects in a single place.

The framework provides a convenient interface for automatically updating user-interface objects. You can choose
to do the updating in some other way, but the interface provided is efficient and easy to use.

The following topics explain the use of update handlers:

When update handlers are called

The ON_UPDATE_COMMAND_UI macro

The CCmdUI class

Menus

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-to-update-user-interface-objects.md

When Update Handlers Are Called
3/4/2019 • 2 minutes to read • Edit Online

See also

Suppose the user clicks the mouse in the File menu, which generates a WM_INITMENUPOPUP message. The
framework's update mechanism collectively updates all items on the File menu before the menu drops down so
the user can see it.

To do this, the framework routes update commands for all menu items in the pop-up menu along the standard
command routing. Command targets on the routing have an opportunity to update any menu items by matching
the update command with an appropriate message-map entry (of the form ON_UPDATE_COMMAND_UI) and calling an
"update handler" function. Thus, for a menu with six menu items, six update commands are sent out. If an update
handler exists for the command ID of the menu item, it is called to do the updating. If not, the framework checks
for the existence of a handler for that command ID and enables or disables the menu item as appropriate.

If the framework does not find an ON_UPDATE_COMMAND_UI entry during command routing, it automatically enables
the user-interface object if there is an ON_COMMAND entry somewhere with the same command ID. Otherwise, it
disables the user-interface object. Therefore, to ensure that a user-interface object is enabled, supply a handler for
the command the object generates or supply an update handler for it. See the figure in the topic User-Interface
Objects and Command IDs.

It is possible to disable the default disabling of user-interface objects. For more information, see the
m_bAutoMenuEnable member of class CFrameWnd in the MFC Reference.

Menu initialization is automatic in the framework, occurring when the application receives a
WM_INITMENUPOPUP message. During the idle loop, the framework searches the command routing for button
update handlers in much the same way as it does for menus.

How to: Update User-Interface Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/when-update-handlers-are-called.md

ON_UPDATE_COMMAND_UI Macro
3/4/2019 • 2 minutes to read • Edit Online

afx_msg void OnUpdateEditClearAll(CCmdUI *pCmdUI);

See also

Use the Properties window to connect a user-interface object to a command-update handler in a command-target
object. It will automatically connect the user-interface object's ID to the ON_UPDATE_COMMAND_UI macro and
create a handler in the object that will handle the update. See Mapping Messages to Functions for more
information.

For example, to update a Clear All command in your program's Edit menu, use the Properties window to add a
message-map entry in the chosen class, a function declaration for a command-update handler called
OnUpdateEditClearAll in the class declaration, and an empty function template in the class's implementation file.

The function prototype looks like this:

Like all handlers, the function shows the afx_msg keyword. Like all update handlers, it takes one argument, a
pointer to a CCmdUI object.

How to: Update User-Interface Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/on-update-command-ui-macro.md

The CCmdUI Class
3/4/2019 • 2 minutes to read • Edit Online

void CMyWinApp::OnUpdateEditClearAll(CCmdUI *pCmdUI)
{
 pCmdUI->Enable(m_bClearAllAvailable);
}

See also

When it routes an update command to its handler, the framework passes the handler a pointer to a CCmdUI object
(or to an object of a CCmdUI -derived class). This object represents the menu item or toolbar button or other user-
interface object that generated the command. The update handler calls member functions of the CCmdUI structure
through the pointer to update the user-interface object. For example, here is an update handler for the Clear All
menu item:

This handler calls the Enable member function of an object with access to the menu item. Enable makes the item
available for use.

How to: Update User-Interface Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/the-ccmdui-class.md

OLE (MFC)
3/4/2019 • 2 minutes to read • Edit Online

See also

Implementing OLE functionality in your program affects your user interface in several ways:

Visual editing (in-place activation) displays the user interface of another program in your program's
windows and modifies your program's menus with items from the other program.

Drag and drop allows users to drag objects within and between windows and even between programs.

Trackers provide visual cues to the state of objects during visual editing and drag and drop.

For more information, see:

OLE and MFC

Visual Editing (Activation)

Drag and Drop

Trackers

User Interface Elements

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-mfc.md

Printing and Print Preview
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

MFC supports printing and print preview for your program's documents via class CView. For basic printing and
print preview, simply override your view class's OnDraw member function, which you must do anyway. That
function can draw to the view on the screen, to a printer device context for an actual printer, or to a device context
that simulates your printer on the screen.

You can also add code to manage multipage document printing and preview, to paginate your printed documents,
and to add headers and footers to them.

This family of articles explains how printing is implemented in the Microsoft Foundation Class Library (MFC) and
how to take advantage of the printing architecture already built into the framework. The articles also explain how
MFC supports easy implementation of print preview functionality and how you can use and modify that
functionality.

Printing

Print preview architecture

Sample

User Interface Elements

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/printing-and-print-preview.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Printing
3/4/2019 • 2 minutes to read • Edit Online

Your Role in Printing vs. the Framework's Role

What do you want to know more aboutWhat do you want to know more about

See also

Microsoft Windows implements device-independent display. In MFC, this means that the same drawing calls, in
the OnDraw member function of your view class, are responsible for drawing on the display and on other devices,
such as printers. For print preview, the target device is a simulated printer output to the display.

Your view class has the following responsibilities:

Inform the framework how many pages are in the document.

When asked to print a specified page, draw that portion of the document.

Allocate and deallocate any fonts or other graphics device interface (GDI) resources needed for printing.

If necessary, send any escape codes needed to change the printer mode before printing a given page, for
example, to change the printing orientation on a per-page basis.

The framework's responsibilities are as follows:

Display the Print dialog box.

Create a CDC object for the printer.

Call the StartDoc and EndDoc member functions of the CDC object.

Repeatedly call the StartPage member function of the CDC object, inform the view class which page should
be printed, and call the EndPage member function of the CDC object.

Call overridable functions in the view at the appropriate times.

The following articles discuss how the framework supports printing and print preview:

How default printing is done

Multipage documents

Headers and footers

Allocating GDI resources for printing

Print preview

Printing and Print Preview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/printing.md

How Default Printing Is Done
3/4/2019 • 2 minutes to read • Edit Online

See also

This article explains the default printing process in Windows in terms of the MFC framework.

In MFC applications, the view class has a member function named OnDraw that contains all the drawing code.
OnDraw takes a pointer to a CDC object as a parameter. That CDC object represents the device context to receive

the image produced by OnDraw . When the window displaying the document receives a WM_PAINT message, the
framework calls OnDraw and passes it a device context for the screen (a CPaintDC object, to be specific).
Accordingly, OnDraw 's output goes to the screen.

In programming for Windows, sending output to the printer is very similar to sending output to the screen. This is
because the Windows graphics device interface (GDI) is hardware-independent. You can use the same GDI
functions for screen display or for printing simply by using the appropriate device context. If the CDC object that
OnDraw receives represents the printer, OnDraw 's output goes to the printer.

This explains how MFC applications can perform simple printing without requiring extra effort on your part. The
framework takes care of displaying the Print dialog box and creating a device context for the printer. When the
user selects the Print command from the File menu, the view passes this device context to OnDraw , which draws
the document on the printer.

However, there are some significant differences between printing and screen display. When you print, you have to
divide the document into distinct pages and display them one at a time, rather than display whatever portion is
visible in a window. As a corollary, you have to be aware of the size of the paper (whether it's letter size, legal size,
or an envelope). You may want to print in different orientations, such as landscape or portrait mode. The Microsoft
Foundation Class Library can't predict how your application will handle these issues, so it provides a protocol for
you to add these capabilities.

That protocol is described in the article Multipage Documents.

Printing

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-default-printing-is-done.md
https://docs.microsoft.com/windows/desktop/gdi/wm-paint

Multipage Documents
3/4/2019 • 8 minutes to read • Edit Online

The Printing Protocol

Overriding View Class Functions

CView's Overridable Functions for PrintingCView's Overridable Functions for Printing

NAME REASON FOR OVERRIDING

OnPreparePrinting To insert values in the Print dialog box, especially the length
of the document

OnBeginPrinting To allocate fonts or other GDI resources

OnPrepareDC To adjust attributes of the device context for a given page, or
to do print-time pagination

OnPrint To print a given page

OnEndPrinting To deallocate GDI resources

This article describes the Windows printing protocol and explains how to print documents that contain more than
one page. The article covers the following topics:

Printing protocol

Overriding view class functions

Pagination

Printer pages vs. document pages

Print-time pagination

To print a multipage document, the framework and view interact in the following manner. First the framework
displays the Print dialog box, creates a device context for the printer, and calls the StartDoc member function of
the CDC object. Then, for each page of the document, the framework calls the StartPage member function of the
CDC object, instructs the view object to print the page, and calls the EndPage member function. If the printer

mode must be changed before starting a particular page, the view calls ResetDC, which updates the DEVMODE
structure containing the new printer mode information. When the entire document has been printed, the
framework calls the EndDoc member function.

The CView class defines several member functions that are called by the framework during printing. By overriding
these functions in your view class, you provide the connections between the framework's printing logic and your
view class's printing logic. The following table lists these member functions.

You can do printing-related processing in other functions as well, but these functions are the ones that drive the
printing process.

The following figure illustrates the steps involved in the printing process and shows where each of CView 's
printing member functions are called. The rest of this article explains most of these steps in more detail. Additional

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/multipage-documents.md
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea

 Pagination

Page Number Information Stored in CPrintInfoPage Number Information Stored in CPrintInfo

MEMBER VARIABLE OR

FUNCTION NAME(S) PAGE NUMBER REFERENCED

GetMinPage / SetMinPage First page of document

GetMaxPage / SetMaxPage Last page of document

GetFromPage First page to be printed

GetToPage Last page to be printed

m_nCurPage Page currently being printed

parts of the printing process are described in the article Allocating GDI Resources.

The Printing Loop

The framework stores much of the information about a print job in a CPrintInfo structure. Several of the values in
CPrintInfo pertain to pagination; these values are accessible as shown in the following table.

Page numbers start at 1, that is, the first page is numbered 1, not 0. For more information about these and other
members of CPrintInfo, see the MFC Reference.

At the beginning of the printing process, the framework calls the view's OnPreparePrinting member function,
passing a pointer to a CPrintInfo structure. The Application Wizard provides an implementation of
OnPreparePrinting that calls DoPreparePrinting, another member function of CView . DoPreparePrinting is the

function that displays the Print dialog box and creates a printer device context.

At this point the application doesn't know how many pages are in the document. It uses the default values 1 and
0xFFFF for the numbers of the first and last page of the document. If you know how many pages your document
has, override OnPreparePrinting and call [SetMaxPage]--brokenlink--(reference/cprintinfo-class.md#setmaxpage)
for the CPrintInfo structure before you send it to DoPreparePrinting . This lets you specify the length of your

 Printer Pages vs. Document Pages

document.

DoPreparePrinting then displays the Print dialog box. When it returns, the CPrintInfo structure contains the
values specified by the user. If the user wishes to print only a selected range of pages, he or she can specify the
starting and ending page numbers in the Print dialog box. The framework retrieves these values using the
GetFromPage and GetToPage functions of CPrintInfo. If the user doesn't specify a page range, the framework calls
GetMinPage and GetMaxPage and uses the values returned to print the entire document.

For each page of a document to be printed, the framework calls two member functions in your view class,
OnPrepareDC and OnPrint, and passes each function two parameters: a pointer to a CDC object and a pointer to
a CPrintInfo structure. Each time the framework calls OnPrepareDC and OnPrint , it passes a different value in the
m_nCurPage member of the CPrintInfo structure. In this way the framework tells the view which page should be
printed.

The OnPrepareDC member function is also used for screen display. It makes adjustments to the device context
before drawing takes place. OnPrepareDC serves a similar role in printing, but there are a couple of differences:
first, the CDC object represents a printer device context instead of a screen device context, and second, a
CPrintInfo object is passed as a second parameter. (This parameter is NULL when OnPrepareDC is called for

screen display.) Override OnPrepareDC to make adjustments to the device context based on which page is being
printed. For example, you can move the viewport origin and the clipping region to ensure that the appropriate
portion of the document gets printed.

The OnPrint member function performs the actual printing of the page. The article How Default Printing Is Done
shows how the framework calls OnDraw with a printer device context to perform printing. More precisely, the
framework calls OnPrint with a CPrintInfo structure and a device context, and OnPrint passes the device
context to OnDraw . Override OnPrint to perform any rendering that should be done only during printing and not
for screen display. For example, to print headers or footers (see the article Headers and Footers for more
information). Then call OnDraw from the override of OnPrint to do the rendering common to both screen display
and printing.

The fact that OnDraw does the rendering for both screen display and printing means that your application is
WYSIWYG: "What you see is what you get." However, suppose you aren't writing a WYSIWYG application. For
example, consider a text editor that uses a bold font for printing but displays control codes to indicate bold text on
the screen. In such a situation, you use OnDraw strictly for screen display. When you override OnPrint , substitute
the call to OnDraw with a call to a separate drawing function. That function draws the document the way it appears
on paper, using the attributes that you don't display on the screen.

When you refer to page numbers, it's sometimes necessary to distinguish between the printer's concept of a page
and a document's concept of a page. From the point of view of the printer, a page is one sheet of paper. However,
one sheet of paper doesn't necessarily equal one page of the document. For example, if you're printing a
newsletter, where the sheets are to be folded, one sheet of paper might contain both the first and last pages of the
document, side by side. Similarly, if you're printing a spreadsheet, the document doesn't consist of pages at all.
Instead, one sheet of paper might contain rows 1 through 20, columns 6 through 10.

All the page numbers in the CPrintInfo structure refer to printer pages. The framework calls OnPrepareDC and
OnPrint once for each sheet of paper that will pass through the printer. When you override the

OnPreparePrinting function to specify the length of the document, you must use printer pages. If there is a one-
to-one correspondence (that is, one printer page equals one document page), then this is easy. If, on the other
hand, document pages and printer pages do not directly correspond, you must translate between them. For
example, consider printing a spreadsheet. When overriding OnPreparePrinting , you must calculate how many
sheets of paper will be required to print the entire spreadsheet and then use that value when calling the
SetMaxPage member function of CPrintInfo . Similarly, when overriding OnPrepareDC , you must translate

 Print-Time Pagination

What do you want to know more aboutWhat do you want to know more about

See also

m_nCurPage into the range of rows and columns that will appear on that particular sheet and then adjust the
viewport origin accordingly.

In some situations, your view class may not know in advance how long the document is until it has actually been
printed. For example, suppose your application isn't WYSIWYG, so a document's length on the screen doesn't
correspond to its length when printed.

This causes a problem when you override OnPreparePrinting for your view class: you can't pass a value to the
SetMaxPage function of the CPrintInfo structure, because you don't know the length of a document. If the user

doesn't specify a page number to stop at using the Print dialog box, the framework doesn't know when to stop the
print loop. The only way to determine when to stop the print loop is to print out the document and see when it
ends. Your view class must check for the end of the document while it is being printed, and then inform the
framework when the end is reached.

The framework relies on your view class's OnPrepareDC function to tell it when to stop. After each call to
OnPrepareDC , the framework checks a member of the CPrintInfo structure called m_bContinuePrinting. Its

default value is TRUE. As long as it remains so, the framework continues the print loop. If it is set to FALSE , the
framework stops. To perform print-time pagination, override OnPrepareDC to check whether the end of the
document has been reached, and set m_bContinuePrinting to FALSE when it has.

The default implementation of OnPrepareDC sets m_bContinuePrinting to FALSE if the current page is greater
than 1. This means that if the length of the document wasn't specified, the framework assumes the document is
one page long. One consequence of this is that you must be careful if you call the base class version of
OnPrepareDC . Do not assume that m_bContinuePrinting will be TRUE after calling the base class version.

Headers and footers

Allocating GDI resources

Printing
CView Class
CDC Class

Headers and Footers
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

This article explains how to add headers and footers to a printed document.

When you look at a document on the screen, the name of the document and your current location in the
document are commonly displayed in a title bar and a status bar. When looking at a printed copy of a document,
it's useful to have the name and page number shown in a header or footer. This is a common way in which even
WYSIWYG programs differ in how they perform printing and screen display.

The OnPrint member function is the appropriate place to print headers or footers because it is called for each
page, and because it is called only for printing, not for screen display. You can define a separate function to print a
header or footer, and pass it the printer device context from OnPrint . You might need to adjust the window origin
or extent before calling OnDraw to avoid having the body of the page overlap the header or footer. You might also
have to modify OnDraw because the amount of the document that fits on the page could be reduced.

One way to compensate for the area taken by the header or footer is to use the m_rectDraw member of
CPrintInfo. Each time a page is printed, this member is initialized with the usable area of the page. If you print a
header or footer before printing the body of the page, you can reduce the size of the rectangle stored in
m_rectDraw to account for the area taken by the header or footer. Then OnPrint can refer to m_rectDraw to find
out how much area remains for printing the body of the page.

You cannot print a header, or anything else, from OnPrepareDC, because it is called before the StartPage member
function of CDC has been called. At that point, the printer device context is considered to be at a page boundary.
You can perform printing only from the OnPrint member function.

Printing multipage documents

Allocating GDI resources for printing

Printing

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/headers-and-footers.md

Allocating GDI Resources
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

This article explains how to allocate and deallocate the Windows graphics device interface (GDI) objects needed
for printing.

For more information, see the GDI+ SDK documentation at:
https://msdn.microsoft.com/library/default.aspurl=/library/gdicpp/GDIPlus/GDIPlus.asp.

Suppose you need to use certain fonts, pens, or other GDI objects for printing, but not for screen display. Because
of the memory they require, it's inefficient to allocate these objects when the application starts up. When the
application isn't printing a document, that memory might be needed for other purposes. It's better to allocate
them when printing begins, and then delete them when printing ends.

To allocate these GDI objects, override the OnBeginPrinting member function. This function is well suited to this
purpose for two reasons: the framework calls this function once at the beginning of each print job and, unlike
OnPreparePrinting, this function has access to the CDC object representing the printer device driver. You can store
these objects for use during the print job by defining member variables in your view class that point to GDI
objects (for example, CFont * members, and so on).

To use the GDI objects you've created, select them into the printer device context in the OnPrint member function.
If you need different GDI objects for different pages of the document, you can examine the m_nCurPage member
of the CPrintInfo structure and select the GDI object accordingly. If you need a GDI object for several consecutive
pages, Windows requires that you select it into the device context each time OnPrint is called.

To deallocate these GDI objects, override the OnEndPrinting member function. The framework calls this function
at the end of each print job, giving you the opportunity to deallocate printing-specific GDI objects before the
application returns to other tasks.

Printing
How Default Printing Is Done

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/allocating-gdi-resources.md
https://msdn.microsoft.com/library/default.aspurl=/library/gdicpp/gdiplus/gdiplus.asp

Print Preview Architecture
3/4/2019 • 4 minutes to read • Edit Online

The Print Preview Process

Modifying Print Preview

This article explains how the MFC framework implements print preview functionality. Topics covered include:

Print preview process

Modifying print preview

Print preview is somewhat different from screen display and printing because, instead of directly drawing an
image on a device, the application must simulate the printer using the screen. To accommodate this, the Microsoft
Foundation Class Library defines a special (undocumented) class derived from CDC Class, called CPreviewDC . All
CDC objects contain two device contexts, but usually they are identical. In a CPreviewDC object, they are different:

the first represents the printer being simulated, and the second represents the screen on which output is actually
displayed.

When the user selects the Print Preview command from the File menu, the framework creates a CPreviewDC

object. Whenever your application performs an operation that sets a characteristic of the printer device context, the
framework also performs a similar operation on the screen device context. For example, if your application selects
a font for printing, the framework selects a font for screen display that simulates the printer font. Whenever your
application would send output to the printer, the framework instead sends the output to the screen.

Print preview also differs from printing in the order that each draws the pages of a document. During printing, the
framework continues a print loop until a certain range of pages has been rendered. During print preview, one or
two pages are displayed at any time, and then the application waits; no further pages are displayed until the user
responds. During print preview, the application must also respond to WM_PAINT messages, just as it does during
ordinary screen display.

The CView::OnPreparePrinting function is called when preview mode is invoked, just as it is at the beginning of a
print job. The CPrintInfo Structure structure passed to the function contains several members whose values you
can set to adjust certain characteristics of the print preview operation. For example, you can set the
m_nNumPreviewPages member to specify whether you want to preview the document in one-page or two-page
mode.

You can modify the behavior and appearance of print preview in a number of ways rather easily. For example, you
can, among other things:

Cause the print preview window to display a scroll bar for easy access to any page of the document.

Cause print preview to maintain the user's position in the document by beginning its display at the current
page.

Cause different initialization to be performed for print preview and printing.

Cause print preview to display page numbers in your own formats.

If you know how long the document is and call SetMaxPage with the appropriate value, the framework can use this
information in preview mode as well as during printing. Once the framework knows the length of the document, it
can provide the preview window with a scroll bar, allowing the user to page back and forth through the document

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/print-preview-architecture.md

See also

in preview mode. If you haven't set the length of the document, the framework cannot position the scroll box to
indicate the current position, so the framework doesn't add a scroll bar. In this case, the user must use the Next
Page and Previous Page buttons on the preview window's control bar to page through the document.

For print preview, you may find it useful to assign a value to the m_nCurPage member of CPrintInfo , even
though you would never do so for ordinary printing. During ordinary printing, this member carries information
from the framework to your view class. This is how the framework tells the view which page should be printed.

By contrast, when print preview mode is started, the m_nCurPage member carries information in the opposite
direction: from the view to the framework. The framework uses the value of this member to determine which page
should be previewed first. The default value of this member is 1, so the first page of the document is displayed
initially. You can override OnPreparePrinting to set this member to the number of the page being viewed at the
time the Print Preview command was invoked. This way, the application maintains the user's current position when
moving from normal display mode to print preview mode.

Sometimes you may want OnPreparePrinting to perform different initialization depending on whether it is called
for a print job or for print preview. You can determine this by examining the m_bPreview member variable in the
CPrintInfo structure. This member is set to TRUE when print preview is invoked.

The CPrintInfo structure also contains a member named m_strPageDesc, which is used to format the strings
displayed at the bottom of the screen in single-page and multiple-page modes. By default these strings are of the
form "Page n" and "Pages n - m," but you can modify m_strPageDesc from within OnPreparePrinting and set the
strings to something more elaborate. See CPrintInfo Structure in the MFC Reference for more information.

Printing and Print Preview
Printing
CView Class
CDC Class

Property Sheets (MFC)
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

This family of articles explains how to implement support for property sheets in MFC applications. A property
sheet, also known as a tab dialog box, provides a way to manage large numbers of controls in a dialog box. The
property sheet contains property pages, each based on a separate dialog template resource. You can divide your
dialog box's controls into logical groups and put each group on its own property page.

Property sheets and property pages

Using Property Sheets in Your Application

Adding Controls to a Property Sheet (as opposed to a property page)

Exchanging data between a property sheet and your program

Creating a modeless property sheet

Handling the Apply button

Property Sheets as Wizards

Class CPropertySheet

Class CPropertyPage

Sample

User Interface Elements

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/property-sheets-mfc.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Property Sheets and Property Pages in MFC
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

A property sheet, also known as a tab dialog box, is a dialog box that contains property pages. Each property page
is based on a dialog template resource and contains controls. It is enclosed on a page with a tab on top. The tab
names the page and indicates its purpose. Users click a tab in the property sheet to select a set of controls.

Use pages to group the controls in the property sheet into meaningful sets. The contained property sheet typically
has several controls of its own. These apply to all pages.

Property sheets are based on class CPropertySheet. Property pages are based on class CPropertyPage.

A property sheet is a special kind of dialog box that is generally used to modify the attributes of some external
object, such as the current selection in a view. The property sheet has three main parts: the containing dialog box,
one or more property pages shown one at a time, and a tab at the top of each page that the user clicks to select
that page. Property sheets are useful for situations where you have several similar groups of settings or options to
change. A property sheet groups information in an easily understood manner.

When you are trying to show a property sheet by using CPropertySheet::DoModal , the system might generate a first-
chance exception. This exception occurs because the system is trying to change the Window Styles of the object before the
object has been created. For more information about this exception, and also how to avoid it or handle it, see
CPropertySheet::DoModal.

Property Sheets

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/property-sheets-and-property-pages-in-mfc.md

Using Property Sheets in Your Application
3/4/2019 • 3 minutes to read • Edit Online

To use a property sheet in your application, complete the following steps:

1. Create a dialog template resource for each property page. Keep in mind that the user may be switching
from one page to another, so lay out each page as consistently as possible.

The dialog templates for all pages do not have to be the same size. The framework uses the size of the
largest page to determine how much space to allocate in the property sheet for the property pages.

When you create the dialog template resource for a property page, you must specify the following styles in
the Dialog Properties property sheet:

Set the Caption edit box on the General page to the text you wish to appear in the tab for this page.

Set the Style list box on the Styles page to Child.

Set the Border list box on the Styles page to Thin.

Ensure that the Titlebar check box on the Styles page is selected.

Ensure that the Disabled check box on the More Styles page is selected.

2. Create a CPropertyPage-derived class corresponding to each property page dialog template. See Adding a
Class. Choose CPropertyPage as the base class.

3. Create member variables to hold the values for this property page. The process for adding member
variables to a property page is exactly the same as adding member variables to a dialog box, because a
property page is a specialized dialog box. For more information, see Defining Member Variables for Dialog
Controls.

4. Construct a CPropertySheet object in your source code. Usually, you construct the CPropertySheet object in
the handler for the command that displays the property sheet. This object represents the entire property
sheet. If you create a modal property sheet with the DoModal function, the framework supplies three
command buttons by default: OK, Cancel, and Apply. The framework creates no command buttons for
modeless property sheets created with the Create function. You do not need to derive a class from
CPropertySheet unless you want to either add other controls (such as a preview window) or display a

modeless property sheet. This step is necessary for modeless property sheets because they do not contain
any default controls that could be used to close the property sheet.

5. For each page to be added to the property sheet, do the following:

Construct one object for each CPropertyPage -derived class that you created earlier in this process.

Call CPropertySheet::AddPage for each page.

Typically, the object that creates the CPropertySheet also creates the CPropertyPage objects in this step.
However, if you implement a CPropertySheet -derived class, you can embed the CPropertyPage objects in
the CPropertySheet object and call AddPage for each page from the CPropertySheet -derived class
constructor. AddPage adds the CPropertyPage object to the property sheet's list of pages but does not
actually create the window for that page. Therefore, it is not necessary to wait until creation of the property
sheet window to call AddPage ; you can call AddPage from the property sheet's constructor.

By default, if a property sheet has more tabs than will fit in a single row of the property sheet, the tabs will

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-property-sheets-in-your-application.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/defining-member-variables-for-dialog-controls

See also

stack in multiple rows. To disable stacking, call CPropertySheet::EnableStackedTabs with the parameter set
to FALSE . You must call EnableStackedTabs when you create the property sheet.

6. Call CPropertySheet::DoModal or Create to display the property sheet. Call DoModal to create a property
sheet as a modal dialog box. Call Create to create the property sheet as a modeless dialog box.

7. Exchange data between property pages and the owner of the property sheet. This is explained in the article
Exchanging Data.

For an example of how to use property sheets, see the MFC General sample PROPDLG.

Property Sheets

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Adding Controls to a Property Sheet
3/4/2019 • 2 minutes to read • Edit Online

See also

By default, a property sheet allocates window area for the property pages, the tab index, and the OK, Cancel, and
Apply buttons. (A modeless property sheet does not have the OK, Cancel, and Apply buttons.) You can add other
controls to the property sheet. For example, you can add a preview window to the right of the property page area
to show the user what the current settings would look like if applied to an external object.

You can add controls to the property sheet dialog in the OnCreate handler. Accommodating additional controls
usually requires expanding the size of the property sheet dialog. After calling the base class
CPropertySheet::OnCreate, call GetWindowRect to get the width and height of the currently allocated property
sheet window, expand the rectangle's dimensions, and call MoveWindow to change the size of the property sheet
window.

Property Sheets
CPropertyPage Class
CPropertySheet Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/adding-controls-to-a-property-sheet.md

Exchanging Data
3/4/2019 • 2 minutes to read • Edit Online

void CMyView::DoModalPropertySheet()
{
 CPropertySheet propsheet;
 CMyFirstPage pageFirst; // derived from CPropertyPage
 CMySecondPage pageSecond; // derived from CPropertyPage

 // Move member data from the view (or from the currently
 // selected object in the view, for example).
 pageFirst.m_nMember1 = m_nMember1;
 pageFirst.m_nMember2 = m_nMember2;

 pageSecond.m_strMember3 = m_strMember3;
 pageSecond.m_strMember4 = m_strMember4;

 propsheet.AddPage(&pageFirst);
 propsheet.AddPage(&pageSecond);

 if (propsheet.DoModal() == IDOK)
 {
 m_nMember1 = pageFirst.m_nMember1;
 m_nMember2 = pageFirst.m_nMember2;
 m_strMember3 = pageSecond.m_strMember3;
 m_strMember4 = pageSecond.m_strMember4;
 GetDocument()->SetModifiedFlag();
 GetDocument()->UpdateAllViews(NULL);
 }
}

See also

As with most dialog boxes, the exchange of data between the property sheet and the application is one of the most
important functions of the property sheet. This article describes how to accomplish this task.

Exchanging data with a property sheet is actually a matter of exchanging data with the individual property pages
of the property sheet. The procedure for exchanging data with a property page is the same as for exchanging data
with a dialog box, since a CPropertyPage object is just a specialized CDialog object. The procedure takes
advantage of the framework's dialog data exchange (DDX) facility, which exchanges data between controls in a
dialog box and member variables of the dialog box object.

The important difference between exchanging data with a property sheet and with a normal dialog box is that the
property sheet has multiple pages, so you must exchange data with all the pages in the property sheet. For more
information on DDX, see Dialog Data Exchange and Validation.

The following example illustrates exchanging data between a view and two pages of a property sheet:

Property Sheets

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exchanging-data.md

Creating a Modeless Property Sheet
3/4/2019 • 2 minutes to read • Edit Online

See also

Normally, the property sheets you create will be modal. When using a modal property sheet, the user must close
the property sheet before using any other part of the application. This article describes methods you can use to
create a modeless property sheet that allows the user to keep the property sheet open while using other parts of
the application.

To display a property sheet as a modeless dialog box instead of as a modal dialog box, call CPropertySheet::Create
instead of DoModal. You must also implement some extra tasks to support a modeless property sheet.

One of the additional tasks is exchanging data between the property sheet and the external object it is modifying
when the property sheet is open. This is generally the same task as for standard modeless dialog boxes. Part of this
task is implementing a channel of communication between the modeless property sheet and the external object to
which the property settings apply. This implementation is far easier if you derive a class from CPropertySheet for
your modeless property sheet. This article assumes you have done so.

One method for communicating between the modeless property sheet and the external object (the current
selection in a view, for example) is to define a pointer from the property sheet to the external object. Define a
function (called something like SetMyExternalObject) in the CPropertySheet -derived class to change the pointer
whenever the focus changes from one external object to another. The SetMyExternalObject function needs to reset
the settings for each property page to reflect the newly selected external object. To accomplish this, the
SetMyExternalObject function must be able to access the CPropertyPage objects belonging to the CPropertySheet

class.

The most convenient way to provide access to property pages within a property sheet is to embed the
CPropertyPage objects in the CPropertySheet -derived object. Embedding CPropertyPage objects in the
CPropertySheet -derived object differs from the typical design for modal dialog boxes, where the owner of the

property sheet creates the CPropertyPage objects and passes them to the property sheet via
CPropertySheet::AddPage.

There are many user-interface alternatives for determining when the settings of the modeless property sheet
should be applied to an external object. One alternative is to apply the settings of the current property page
whenever the user changes any value. Another alternative is to provide an Apply button, which allows the user to
accumulate changes in the property pages before committing them to the external object. For information on ways
to handle the Apply button, see the article Handling the Apply Button.

Property Sheets
Exchanging Data
Life Cycle of a Dialog Box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-a-modeless-property-sheet.md

Handling the Apply Button
3/4/2019 • 2 minutes to read • Edit Online

See also

Property sheets have a capability that standard dialog boxes do not: They allow the user to apply changes they
have made before closing the property sheet. This is done using the Apply button. This article discusses methods
you can use to implement this feature properly.

Modal dialog boxes usually apply the settings to an external object when the user clicks OK to close the dialog box.
The same is true for a property sheet: When the user clicks OK, the new settings in the property sheet take effect.

However, you may want to allow the user to save settings without having to close the property sheet dialog box.
This is the function of the Apply button. The Apply button applies the current settings in all of the property pages
to the external object, as opposed to applying only the current settings of the currently active page.

By default, the Apply button is always disabled. You must write code to enable the Apply button at the appropriate
times, and you must write code to implement the effect of Apply, as explained below.

If you do not wish to offer the Apply functionality to the user, it is not necessary to remove the Apply button. You
can leave it disabled, as will be common among applications that use standard property sheet support available in
future versions of Windows.

To report a page as being modified and enable the Apply button, call CPropertyPage::SetModified(TRUE) . If any of
the pages report being modified, the Apply button will remain enabled, regardless of whether the currently active
page has been modified.

You should call CPropertyPage::SetModified whenever the user changes any settings in the page. One way to
detect when a user changes a setting in the page is to implement change notification handlers for each of the
controls in the property page, such as EN_CHANGE or BN_CLICKED .

To implement the effect of the Apply button, the property sheet must tell its owner, or some other external object
in the application, to apply the current settings in the property pages. At the same time, the property sheet should
disable the Apply button by calling CPropertyPage::SetModified(FALSE) for all pages that applied their
modifications to the external object.

For an example of this process, see the MFC General sample PROPDLG.

Property Sheets

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/handling-the-apply-button.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Property Sheets as Wizards
3/4/2019 • 2 minutes to read • Edit Online

Example
void CMyView::OnWizard()
{
 CPropertySheet sheet;
 // CMyFirstPage and CMySecondPage are derived from CPropertyPage
 CMyFirstPage page1;
 CMySecondPage page2;

 sheet.AddPage(&page1);
 sheet.AddPage(&page2);
 sheet.SetWizardMode();
 sheet.DoModal();
}

See also

A key characteristic of a wizard property sheet is that navigation is provided with Next or Finish, Back, and Cancel
buttons instead of tabs. You need to call CPropertySheet::SetWizardMode before calling
CPropertySheet::DoModal on the property sheet object to take advantage of this feature.

The user receives the same CPropertyPage::OnSetActive and CPropertyPage::OnKillActive notifications while
moving from one page to another page. Next and Finish buttons are mutually exclusive controls; that is, only one
of them will be shown at a time. On the first page, the Next button should be enabled. If the user is on the last
page, the Finish button should be enabled. This is not done automatically by the framework. You have to call
CPropertySheet::SetWizardButton on the last page to achieve this.

To display all of the default buttons, you mush show the Finish button and move the Next button. Then move the
Back button so that its relative position to the Next button is maintained.

Property Sheets

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/property-sheets-as-wizards.md

Ribbon Designer (MFC)
3/4/2019 • 3 minutes to read • Edit Online

Understanding the Ribbon Designer

 IDR_RIBBON RT_RIBBON_XML "res\\ribbon.mfcribbon-ms"

#define IDR_RIBBON 307

<RIBBON_BAR>
<ELEMENT_NAME>RibbonBar</ELEMENT_NAME>
<IMAGE>
<ID>
<NAME>IDB_BUTTONS</NAME>
<VALUE>113</VALUE>
</ID>

The Ribbon Designer lets you create and customize ribbons in MFC applications. A ribbon is a user interface (UI)
element that organizes commands into logical groups. These groups appear on separate tabs in a strip across the
top of the window. The ribbon replaces the menu bar and toolbars. A ribbon can significantly improve application
usability. For more information, see Ribbons. The following illustration shows a ribbon.

In earlier versions of Visual Studio, ribbons had to be created by writing code that uses the MFC ribbon classes
such as CMFCRibbonBar Class. In Visual Studio 2010 and later, the ribbon designer provides an alternative
method for building ribbons. First, create and customize a ribbon as a resource. Then load the ribbon resource
from code in the MFC application. You can even use ribbon resources and MFC ribbon classes together. For
example, you can create a ribbon resource, and then programmatically add more elements to it at runtime by
using code.

The ribbon designer creates and stores the ribbon as a resource. When you create a ribbon resource, the ribbon
designer does these three things:

Adds an entry in the project resource definition script (*.rc). In the following example, IDR_RIBBON is the
unique name that identifies the ribbon resource, RT_RIBBON_XML is the resource type, and
ribbon.mfcribbon-ms is the name of the resource file.

Adds the definitions of Command IDs to resource.h.

Creates a ribbon resource file (*.mfcribbon-ms) that contains the XML code that defines the ribbon's buttons,
controls, and attributes. Changes to the ribbon in the ribbon designer are stored in the resource file as XML.
The following code example shows part of the contents of a *.mfcribbon-ms file:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ribbon-designer-mfc.md
https://docs.microsoft.com/windows/desktop/uxguide/cmd-ribbons

Creating a Ribbon By Using the Ribbon Designer

NOTENOTE

Customizing Ribbons

To use the ribbon resource in your MFC application, load the resource by calling
CMFCRibbonBar::LoadFromResource.

These are the two ways to add a ribbon resource to your MFC project:

Create an MFC application and configure the MFC Project Wizard to create the ribbon. For more
information, see Walkthrough: Creating a Ribbon Application By Using MFC.

In an existing MFC project, create a ribbon resource and load it. For more information, see Walkthrough:
Updating the MFC Scribble Application (Part 1).

If your project already has a manually coded ribbon, MFC has functions that you can use to convert the existing
ribbon to a ribbon resource. For more information, see How to: Convert an Existing MFC Ribbon to a Ribbon
Resource.

Ribbons cannot be created in dialog-based applications. For more information, see Application Type, MFC Application
Wizard.

To open a ribbon in the ribbon designer, double-click the ribbon resource in Resource View. In the designer, you
can add, remove, and customize elements on the ribbon, the Application button, or the quick access toolbar. You
can also link events, for example, button-click events and menu events, to a method in your application.

The following illustration shows the various components in the ribbon designer.

Toolbox: Contains controls that can be dragged to the designer surface.

Designer Surface: Contains the visual representation of the ribbon resource.

Properties window: Lists the attributes of the item that is selected on the designer surface.

Resource View window: Displays the resources that include ribbon resources, in your project.

Ribbon Editor Toolbar: Contains commands that let you preview the ribbon and change its visual theme.

The following topics describe how to use the features in the ribbon designer:

How to: Customize the Application Button

How to: Customize the Quick Access Toolbar

How to: Add Ribbon Controls and Event Handlers

Definitions of Ribbon Elements

See also

How to: Load a Ribbon Resource from an MFC Application

Application button: The button that appears on the upper-left corner of a ribbon. The Application button
replaces the File menu and is visible even when the ribbon is minimized. When the button is clicked, a
menu that has a list of commands is displayed.

Quick Access toolbar: A small, customizable toolbar that displays frequently used commands.

Category: The logical grouping that represents the contents of a ribbon tab.

Category Default button: The button that appears on the ribbon when the ribbon is minimized. When
the button is clicked, the category reappears as a menu.

Panel: An area of the ribbon bar that displays a group of related controls. Every ribbon category contains
one or more ribbon panels.

Ribbon elements: Controls in the panels, for example, buttons and combo boxes. To see the various
controls that can be hosted on a ribbon, see RibbonGadgets Sample: Ribbon Gadgets Application.

User Interface Elements
Working with Resource Files

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

How to: Convert an Existing MFC Ribbon to a
Ribbon Resource
3/4/2019 • 2 minutes to read • Edit Online

To convert an MFC ribbon to a ribbon resourceTo convert an MFC ribbon to a ribbon resource

 m_wndRibbonBar.SaveToXMLFile("RibbonOutput.xml");

 m_wndRibbonBar.LoadFromResource(IDR_RIBBON1);

See also

Ribbon resources are easier to visualize, modify, and maintain than manually coded ribbons. This topic describes
how to convert a manually coded ribbon in an MFC Project into a ribbon resource.

You must have an existing MFC project that has code that uses the MFC ribbon classes, for example,
CMFCRibbonBar Class.

1. In Visual Studio, in an existing MFC project, open the source file where the CMFCRibbonBar object is initialized.
Typically, the file is mainfrm.cpp. Add the following code after the initialization code for the ribbon.

Save and close the file.

1. Build and run the MFC application, and then in Notepad, open RibbonOutput.txt and copy its contents.

2. In Visual Studio, on the Project menu, click Add Resource. In the Add Resource dialog box, select Ribbon
and then click New.

Visual Studio creates a ribbon resource and opens it in design view. The ribbon resource ID is
IDR_RIBBON1, which is displayed in Resource View. The ribbon is defined in the ribbon1.mfcribbon-ms
XML file.

3. In Visual Studio, open ribbon1.mfcribbon-ms, delete its contents, and then paste the contents of
RibbonOutput.txt, which you copied earlier. Save and close ribbon1.mfcribbon-ms.

4. Again open the source file where the CMFCRibbonBar object is initialized (typically, mainfrm.cpp) and
comment out the existing ribbon code. Add the following code after the code that you commented out.

1. Build the project and run the program.

Ribbon Designer (MFC)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-to-convert-an-existing-mfc-ribbon-to-a-ribbon-resource.md

How to: Customize the Application Button
3/4/2019 • 2 minutes to read • Edit Online

To open the Application button in the Properties windowTo open the Application button in the Properties window

Application Button Properties

PROPERTY DEFINITION

Buttons Contains the collection of up to three buttons that appear in
the bottom-right corner of the Application menu.

Caption Specifies the text of the control. Unlike other ribbon elements,
the Application button does not display caption text. Instead,
the text is used for accessibility.

HDPI Image Specifies the identifier of the high dots per inch (HDPI)
Application button icon. When the application runs on a high
DPI monitor, HDPI Image is used instead of Image.

HDPI Large Images Specifies the identifier of the high DPI large images. When the
application runs on a high DPI monitor, HDPI Large Images
is used instead of Large Images.

When you click the Application button, a menu of commands is displayed. Typically, the menu contains file-related
commands such as Open, Save, Print, and Exit.

To customize the Application button, open it in the Properties window, modify its properties, and then preview the
ribbon control.

1. In Visual Studio, on the View menu, click Resource View.

2. In Resource View, double-click the ribbon resource to display it on the design surface.

3. On design surface, right-click the Application button menu and then click Properties.

The following table defines the properties of the Application button.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-to-customize-the-application-button.md

HDPI Small Images Specifies the identifier of the high DPI small images. When the
application runs on a high DPI monitor, HDPI Small Images
is used instead of Small Images.

ID Specifies the identifier of the control.

Image Specifies the identifier of the Application button icon. The icon
is a 32-bit 26x26 bitmap that has alpha transparency. The
transparent portions of the icon are highlighted when the
Application button is clicked or hovered over.

Keys Specifies the string that is displayed when key-tip navigation is
enabled. Key-tip navigation is enabled when you press ALT.

Large Images Specifies the identifier of the image that contains a series of
32x32 icons. The icons are used by the buttons in the Main
Items collection.

Main Items Contains a collection of menu items that appear on the
Application menu.

MRU Caption Specifies the text displayed on the Recent List panel.

Small Images Specifies the identifier of the image that contains a series of
16x16 icons. The icons are used by the buttons in the Buttons
collection.

Use Enables or disables the Recent List panel. The Recent List panel
appears on the Application menu.

Width Specifies the width in pixels of the Recent List panel.

PROPERTY DEFINITION

To preview the ribbon controlTo preview the ribbon control

See also

The Application menu does not appear on the design surface. To view it, you must either preview the ribbon or run
the application.

On the Ribbon Editor Toolbar, click Test Ribbon.

Ribbon Designer (MFC)

How to: Customize the Quick Access Toolbar
3/4/2019 • 2 minutes to read • Edit Online

To open the Quick Access Toolbar in the Properties windowTo open the Quick Access Toolbar in the Properties window

Quick Access Toolbar Properties

PROPERTY DEFINITION

QAT Position Specifies the position of the Quick Access Toolbar when the
application starts. The position can be either Above or Below
the ribbon control.

QAT Items Specifies the commands that are available for the Quick Access
Toolbar.

To add or remove commands on the Quick Access ToolbarTo add or remove commands on the Quick Access Toolbar

Previewing the Ribbon

The Quick Access Toolbar (QAT) is a customizable toolbar that contains a set of commands that are either
displayed next to the Application button or under the category tabs. The following illustration shows a typical
Quick Access Toolbar.

To customize the Quick Access Toolbar, open it in the Properties window, modify its commands, and then preview
the ribbon control.

1. In Visual Studio, on the View menu, click Resource View.

2. In Resource View, double-click the ribbon resource to display it on the design surface.

3. On design surface, right-click the Quick Access Toolbar menu and then click Properties.

The following table defines the properties of the Quick Access Toolbar.

1. In the Properties window, click QAT Items, and then click the ellipsis button (...).

2. In the QAT Items Editor dialog box, use the Add and Remove buttons to modify the list of commands on
the Quick Access Toolbar.

3. If you want a command to appear on both the Quick Access Toolbar and the Quick Access Toolbar menu,
select the box next to the command. If you want the command to appear only on the menu, clear the box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-to-customize-the-quick-access-toolbar.md

To preview the ribbon controlTo preview the ribbon control

See also

Quick Access Toolbar commands do not appear on the design surface. To view them, you must either preview the
ribbon or run the application.

On the Ribbon Editor Toolbar, click Test Ribbon.

Ribbon Designer (MFC)

How to: Add Ribbon Controls and Event Handlers
3/4/2019 • 2 minutes to read • Edit Online

To open the Ribbon DesignerTo open the Ribbon Designer

To add a Button and an Event HandlerTo add a Button and an Event Handler

 MessageBox((LPCTSTR)L"Hello World");

See also

Ribbon controls are elements, such as buttons and combo boxes, that you add to panels. Panels are areas of the
ribbon bar that display a group of related controls.

In this topic, you will open the Ribbon Designer, add a button, and then link an event that displays "Hello World".

1. In Visual Studio, on the View menu, click Resource View.

2. In Resource View, double-click the ribbon resource to display it on the design surface.

1. From the Toolbar, click Button and drag it on to a panel in the design surface.

2. Right-click the button, and click Add Event Handler.

3. In the Event Handler Wizard, confirm the default settings and click Add and Edit. For more information,
see Event Handler Wizard.

4. In the code editor, add the following code into the handler function:

RibbonGadgets Sample: Ribbon Gadgets Application
Ribbon Designer (MFC)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-to-add-ribbon-controls-and-event-handlers.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/event-handler-wizard
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

How to: Load a Ribbon Resource from an MFC
Application
3/4/2019 • 2 minutes to read • Edit Online

To load a ribbon resourceTo load a ribbon resource

 CMFCRibbonBar m_wndRibbonBar;

 if (!m_wndRibbonBar.Create (this))
{
 return -1;
}

 if (!m_wndRibbonBar.LoadFromResource(IDR_RIBBON))
{
 return -1;
}

See also

To use the ribbon resource in your application, modify the application to load the ribbon resource.

1. Declare the Ribbon Control object in the CMainFrame class.

1. In CMainFrame::OnCreate , create and initialize the Ribbon Control.

Ribbon Designer (MFC)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-to-load-a-ribbon-resource-from-an-mfc-application.md

Walkthrough: Creating a Ribbon Application By Using
MFC
3/4/2019 • 4 minutes to read • Edit Online

Prerequisites

To create an MFC application that has a ribbonTo create an MFC application that has a ribbon

To add a category and panel to the ribbonTo add a category and panel to the ribbon

This walkthrough shows how to use the MFC Application Wizard to create an application that has a ribbon by
default. You can then expand the ribbon by adding a Custom ribbon category that has a Favorites ribbon panel,
and then adding some frequently used commands to the panel.

This walkthrough assumes that you have set Visual Studio to use General Development Settings. If you're using
different settings, some of the user interface (UI) elements that are referenced in the following instructions might
not be displayed.

1. Use the MFC Application Wizard to create an MFC application that has a ribbon. To run the wizard, on
the File menu, point to New, and then click Project.

2. In the New Project dialog box, expand the Visual C++ node under Installed Templates, select MFC, and
then select MFC Application. Type a name for the project, for example, MFCRibbonApp, and then click OK.

3. Set the following options in the MFC Application Wizard:

a. In the Application Type section, under Visual style and colors, select Office 2007 (Blue theme).

b. In the Compound Document Support section, make sure that None is selected.

c. In the Document Template Properties section, in the File extension box, type a file name
extension for documents that this application creates, for example, mfcrbnapp.

d. In the Database Support section, make sure that None is selected.

e. In the User Interface Features section, make sure that Use a ribbon is selected.

f. By default, the MFC Application Wizard adds support for several docking panes. Because this
walkthrough just teaches about the ribbon, you can remove these options from the application. In the
Advanced Features section, clear all options.

4. Click Finish to create the MFC application.

5. To verify that the application was created successfully, build it and run it. To build the application, on the
Build menu, click Build Solution. If the application builds successfully, run it by clicking Start Debugging
on the Debug menu.

The wizard automatically creates a ribbon that has one ribbon category that is named Home. This ribbon
contains three ribbon panels, which are named Clipboard, View, and Window.

1. To open the ribbon resource that the wizard created, on the View menu, point to Other Windows and then
click Resource View. In Resource View, click Ribbon and then double-click IDR_RIBBON .

2. First, add a custom category to the ribbon by double-clicking Category in the Toolbox.

A category that has the caption Category1 is created. By default, the category contains one panel.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/walkthrough-creating-a-ribbon-application-by-using-mfc.md

To add elements to the ribbon panelsTo add elements to the ribbon panels

Next Steps

See also

NOTENOTE

Right-click Category1 and then click Properties. In the Properties window, change Caption to Custom.

The Large Images and Small Images properties specify the bitmaps that are used as icons for the ribbon
elements in this category. Because creating custom bitmaps is beyond the scope of this walkthrough, just
reuse the bitmaps that were created by the wizard. Small bitmaps are 16 pixels by 16 pixels. For small
images, use the bitmaps that are accessed by the IDB_FILESMALL resource ID. Large bitmaps are 32 pixels by
32 pixels. For large images, use the bitmaps that are accessed by the IDB_FILELARGE resource ID.

On high dots per inch (HDPI) displays, the HDPI versions of the images are automatically used.

3. Next, customize the panel. Panels are used to group items that are logically related to one another. For
example, on the Home tab of this application, the Cut, Copy, and Paste commands are all located on the
Clipboard panel. To customize the panel, right-click Panel1 and then click Properties. In the Properties
window, change Caption to Favorites.

You can specify the Image Index for the panel. This number specifies the icon that is displayed if the ribbon
panel is added to the Quick Access Toolbar. The icon isn't displayed on the ribbon panel itself.

4. To verify that the ribbon category and panel were created successfully, preview the ribbon control. On the
Ribbon Editor Toolbar, click the Test Ribbon button. A Custom tab and Favorites panel should be
displayed on the ribbon.

1. To add elements to the panel that you created in the previous procedure, drag controls from the Ribbon
Editor section of the Toolbox to the panel in the design view.

2. First, add a Print button. The Print button will have a submenu that contains a Quick Print command that
prints by using the default printer. Both of these commands are already defined for this application. They're
located on the application menu.

To create the Print button, drag a Button tool to the panel.

In the Properties window, change the ID property to ID_FILE_PRINT, which should already be defined.
Change Caption to Print. Change Image Index to 4.

To create the Quick Print button, click the property value column next to Menu Items, and then click the
ellipsis (...). In the Items Editor, click the unlabeled Add button to create a menu item. In the Properties
window, change Caption to Quick Print, ID to ID_FILE_PRINT_DIRECT, and Image to 5. The image
property specifies the Quick Print icon in the IDB_FILESMALL bitmap resource.

3. To verify that the buttons were added to the ribbon panel, build the application and run it. To build the
application, on the Build menu, click Build Solution. If the application builds successfully, run the
application by clicking Start Debugging on the Debug menu. The Print button and the combo box on the
Favorites panel on the Custom tab on the ribbon should be displayed.

How to: Customize the Quick Access Toolbar

How to: Customize the Application Button

For end-to-end samples, see Samples (MFC Feature Pack).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Walkthroughs
Samples (MFC Feature Pack)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Walkthrough: Updating the MFC Scribble Application
(Part 1)
3/4/2019 • 10 minutes to read • Edit Online

Prerequisites

Sections

Replacing the Base Classes

To replace the base classes in the Scribble applicationTo replace the base classes in the Scribble application

This walkthrough demonstrates how to modify an existing MFC application to use the Ribbon user interface.
Visual Studio supports both the Office 2007 Ribbon and the Windows 7 Scenic Ribbon. For more information
about the Ribbon user interface, see Ribbons.

This walkthrough modifies the classic Scribble 1.0 MFC sample that lets you use the mouse to create line
drawings. This part of the walkthrough shows how to modify the Scribble sample so that it displays a ribbon bar.
Part 2 adds more buttons to the ribbon bar.

The Scribble 1.0 MFC sample. For help on converting to Visual Studio 2017, see Porting Guide: MFC Scribble.

This part of the walkthrough has the following sections:

Replacing the Base Classes

Adding Bitmaps to the Project

Adding a Ribbon Resource to the Project

Creating an Instance of the Ribbon Bar

Adding a Ribbon Category

Setting the Look of the Application

To convert an application that supports a menu to an application that supports a ribbon, you must derive the
application, frame window, and toolbar classes from updated base classes. (We suggest that you don't modify the
original Scribble sample. Instead, clean the Scribble project, copy it to another directory, and then modify the
copy.)

#include <afxcontrolbars.h>

class CScribbleApp: public CWinAppEx

1. In scribble.cpp, verify that CScribbleApp::InitInstance includes a call to AfxOleInit.

2. Add the following code to the stdafx.h file.

3. In scribble.h, modify the definition for the CScribbleApp class so that it's derived from CWinAppEx Class.

4. Scribble 1.0 was written when Windows applications used an initialization (.ini) file to save user preference

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/walkthrough-updating-the-mfc-scribble-application-part-1.md
https://docs.microsoft.com/windows/desktop/uxguide/cmd-ribbons
http://download.microsoft.com/download/4/0/9/40946FEC-EE5C-48C2-8750-B0F8DA1C99A8/MFC/general/Scribble.zip.exe
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/porting/porting-guide-mfc-scribble

 Adding Bitmaps to the Project

SetRegistryKey(_T("MFCNext\\Samples\\Scribble2"));
SetRegistryBase(_T("Settings"));

m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
pWndFrame->EnableDocking(CBRS_ALIGN_ANY);
pWndFrame->DockPane(&m_wndToolBar);

data. Instead of an initialization file, modify Scribble to store user preferences in the registry. To set the
registry key and base, type the following code in CScribbleApp::InitInstance after the
LoadStdProfileSettings() statement.

5. The main frame for a multiple document interface (MDI) application is no longer derived from the
CMDIFrameWnd class. Instead, it's derived from the CMDIFrameWndEx class.

In the mainfrm.h and mainfrm.cpp files, replace all references to CMDIFrameWnd with CMDIFrameWndEx .

6. In the childfrm.h and childfrm.cpp files, replace CMDIChildWnd with CMDIChildWndEx .

In the childfrm. h file, replace CSplitterWnd with CSplitterWndEx .

7. Modify toolbars and status bars to use the new MFC classes.

In the mainfrm.h file:

a. Replace CToolBar with CMFCToolBar .

b. Replace CStatusBar with CMFCStatusBar .

8. In the mainfrm.cpp file:

a. Replace m_wndToolBar.SetBarStyle with m_wndToolBar.SetPaneStyle

b. Replace m_wndToolBar.GetBarStyle with m_wndToolBar.GetPaneStyle

c. Replace DockControlBar(&m_wndToolBar) with DockPane(&m_wndToolBar)

9. In the ipframe.cpp file, comment out the following three lines of code.

10. Save the changes and then build and run the application.

The next four steps of this walkthrough require bitmap resources. You can get the appropriate bitmaps in various
ways:

Use the Resource Editors to invent your own bitmaps. Or use the resource editors to assemble bitmaps
from the portable network graphics (.png) images that are included with Visual Studio and can be
downloaded from the Visual Studio image library.

However, the Ribbon user interface requires that certain bitmaps support transparent images. Transparent
bitmaps use 32-bit pixels, where 24 bits specify the red, green, and blue components of the color, and 8 bits
define an alpha channel that specifies the transparency of the color. The current resource editors can view,
but not modify bitmaps with 32-bit pixels. Consequently, use an external image editor instead of the
resource editors to manipulate transparent bitmaps.

Copy an appropriate resource file from another application to your project and then import bitmaps from
that file.

This walkthrough copies resource files from the example created in Walkthrough: Creating a Ribbon Application

https://docs.microsoft.com/visualstudio/designers/the-visual-studio-image-library

To add bitmaps to the ProjectTo add bitmaps to the Project

By Using MFC.

NOTENOTE

NOTENOTE

1. Use File Explorer to copy the following .bmp files from the resources directory (res) of the Ribbon
example to the resource directory (res) of the Scribble project:

a. Copy main.bmp to your Scribble project.

b. Copy filesmall.bmp and filelarge.bmp to your Scribble project.

c. Make new copies of the filelarge.bmp and filesmall.bmp files, but save the copies in the Ribbon
example. Rename the copies homesmall.bmp and homelarge.bmp and then move the copies to your
Scribble project.

d. Make a copy of the toolbar.bmp file, but save the copy in the Ribbon example. Rename the copy
panelicons.bmp and then move the copy to your Scribble project.

2. Import the bitmap for an MFC application. In Resource View, double-click the scribble.rc node, double-
click the Bitmap node, and then click Add resource. On the dialog box that appears, click Import. Browse
to the res directory, select the main.bmp file, and then click Open.

The main.bmp bitmap contains a 26x26 image. Change the ID of the bitmap to IDB_RIBBON_MAIN .

3. Import the bitmaps for the file menu that is attached to the Application button.

a. Import the filesmall.bmp file, which contains eleven 16x16 (16x176) images. Change the ID of the
bitmap to IDB_RIBBON_FILESMALL .

Because we need only the first eight 16x16 images (16x128), you may optionally crop the right-side width of this
bitmap from 176 to 128.

a. Import the filelarge.bmp, which contains nine 32x32 (32x288) images. Change the ID of the bitmap to
IDB_RIBBON_FILELARGE .

4. Import the bitmaps for the ribbon categories and panels. Each tab on the ribbon bar is a category, and
consists of a text label and an optional image.

a. Import the homesmall.bmp bitmap, which contains eleven 16x16 images for small button bitmaps.
Change the ID of the bitmap to IDB_RIBBON_HOMESMALL .

b. Import the homelarge.bmp bitmap, which contains nine 32x32 images for large button bitmaps.
Change the ID of the bitmap to IDB_RIBBON_HOMELARGE .

5. Import bitmaps for the resized ribbon panels. These bitmaps, or panel icons, are used after a resize
operation if the ribbon is too small to display the entire panel.

a. Import the panelicons.bmp bitmap, which contains eight 16x16 images. In the Properties window of
the Bitmap Editor, adjust the width of the bitmap to 64 (16x64). Change the ID of the bitmap to
IDB_PANEL_ICONS .

Because we need only the first four 16x16 images (16x64), you may optionally crop the right-side width of this
bitmap from 128 to 64.

 Adding a Ribbon Resource to the Project

To add a ribbon resource to the projectTo add a ribbon resource to the project

When you convert an application that uses menus to an application that uses a ribbon, you don't have to remove
or disable the existing menus. Just create a ribbon resource, add ribbon buttons, and then associate the new
buttons with the existing menu items. Although the menus are no longer visible, messages from the ribbon bar
are routed through the menus and menu shortcuts continue to work.

A ribbon consists of the Application button, which is the large button on the upper-left side of the ribbon, and
one or more category tabs. Each category tab contains one or more panels that act as containers for ribbon
buttons and controls. The following procedure shows how to create a ribbon resource and then customize the
Application button.

1. With the Scribble project selected in Solution Explorer, in the Project menu, click Add Resource.

2. In the Add Resource dialog box, select Ribbon and then click New.

Visual Studio creates a ribbon resource and opens it in the design view. The ribbon resource ID is
IDR_RIBBON1 , which is displayed in Resource View. The ribbon contains one category and one panel.

3. You can customize the Application button by modifying its properties. The message IDs that are used in
this code are already defined in the menu for Scribble 1.0.

4. In the design view, click the Application button to display its properties. Change property values as
follows: Image to IDB_RIBBON_MAIN , Prompt to File , Keys to f , Large Images to IDB_RIBBON_FILELARGE ,
and Small Images to IDB_RIBBON_FILESMALL .

5. The following modifications create the menu that appears when the user clicks the Application button.
Click the ellipsis (...) next to Main Items to open the Items Editor.

a. With the Item type Button selected, click Add to add a button. Change Caption to &New , ID to
ID_FILE_NEW , Image to 0 , Image Large to 0 .

b. Click Add to add a button. Change Caption to &Save , ID to ID_FILE_SAVE , Image to 2 , and
Image Large to 2 .

c. Click Add to add a button. Change Caption to Save &As , ID to ID_FILE_SAVE_AS , Image to 3 , and
Image Large to 3 .

d. Click Add to add a button. Change Caption to &Print , ID to ID_FILE_PRINT , Image to 4 , and
Image Large to 4 .

e. Change the Item type to Separator and then click Add.

f. Change the Item type to Button. Click Add to add a fifth button. Change Caption to &Close , ID to
ID_FILE_CLOSE , Image to 5 , and Image Large to 5 .

6. The following modifications create a submenu under the Print button that you created in the previous step.

a. Click the Print button, change the Item type to Label, and then click Insert. Change Caption to
Preview and print the document .

b. Click the Print button, change the Item type to Button, and click Insert. Change Caption to
&Print , ID to ID_FILE_PRINT , Image to 4 , and Image Large to 4 .

c. Click the Print button and then click Insert to add a button. Change Caption to &Quick Print , ID to
ID_FILE_PRINT_DIRECT , Image to 7 , and Image Large to 7 .

d. Click the Print button and then click Insert to add another button. Change Caption to

Creating an Instance of the Ribbon Bar

To create an instance of the ribbon barTo create an instance of the ribbon bar

Customizing the Ribbon Resource

NOTENOTE

To add a Home category and Edit panelTo add a Home category and Edit panel

Print Pre&view , ID to ID_FILE_PRINT_PREVIEW , Image to 6 , and Image Large to 6 .

e. You've now modified the Main Items. Click Close to exit the Items Editor.

7. The following modification creates an exit button that appears at the bottom of the Application button
menu.

a. In the Properties window, click the ellipsis (...) next to Button to open the Items Editor.

b. With the Item type Button selected, click Add to add a button. Change Caption to E&xit , ID to
ID_APP_EXIT , Image to 8 .

c. You've modified the Buttons. Click Close to exit the Items Editor.

The following steps show how to create an instance of the ribbon bar when your application starts. To add a
ribbon bar to an application, declare the ribbon bar in the mainfrm.h file. Then, in the mainfrm.cpp file, write code
to load the ribbon resource.

// Ribbon bar for the application
CMFCRibbonBar m_wndRibbonBar;

// Create the ribbon bar
if (!m_wndRibbonBar.Create(this))
{
 return -1; //Failed to create ribbon bar
}
m_wndRibbonBar.LoadFromResource(IDR_RIBBON1);

1. In the mainfrm.h file, add a data member to the protected section of CMainFrame , the class definition for the
main frame. This member is for the ribbon bar.

2. In the mainfrm.cpp file, add the following code before the final return statement at the end of the
CMainFrame::OnCreate function. It creates an instance of the ribbon bar.

Now that you've created the Application button, you can add elements to the ribbon.

This walkthrough uses the same panel icon for all panels. However, you can use other image list indexes to display other
icons.

1. The Scribble program requires only one category. In the design view, in the Toolbox, double-click
Category to add one and display its properties. Change property values as follows: Caption to &Home ,
Large Images to IDB_RIBBON_HOMELARGE , Small Images to IDB_RIBBON_HOMESMALL .

2. Each ribbon category is organized into named panels. Each panel contains a set of controls that complete
related operations. This category has one panel. Click Panel, and then change Caption to Edit .

3. To the Edit panel, add a button responsible for clearing the contents of the document. The message ID for

 Setting the Look of the Application

To set the look of the applicationTo set the look of the application

Next Steps

See also

this button has already been defined in the IDR_SCRIBBTYPE menu resource. Specify Clear All as the
button text and the index of the bitmap that decorates the button. Open the Toolbox, and then drag a
Button to the Edit panel. Click the button and then change Caption to Clear All , ID to
ID_EDIT_CLEAR_ALL , Image Index to 0 , Large Image Index to 0 .

4. Save the changes, and then build and run the application. The Scribble application should be displayed, and
it should have a ribbon bar at the top of the window instead of a menu bar. The ribbon bar should have one
category, Home, and Home should have one panel, Edit. The ribbon buttons that you added should be
associated with the existing event handlers, and the Open, Close, Save, Print, and Clear All buttons
should work as expected.

A visual manager is a global object that controls all drawing for an application. Because the original Scribble
application uses the Office 2000 user interface (UI) style, the application may look old-fashioned. You can reset the
application to use the Office 2007 visual manager so that it resembles an Office 2007 application.

// Set the default manager to Office 2007
CMFCVisualManager::SetDefaultManager(RUNTIME_CLASS(CMFCVisualManagerOffice2007));
CMFCVisualManagerOffice2007::SetStyle(CMFCVisualManagerOffice2007::Office2007_LunaBlue);

1. In the CMainFrame::OnCreate function, type the following code before the return 0; statement to change
the default visual manager and style.

2. Save the changes, and then build and run the application. The application UI should resemble the Office
2007 UI.

You've modified the classic Scribble 1.0 MFC sample to use the Ribbon Designer. Now go to Part 2.

Walkthroughs
Walkthrough: Updating the MFC Scribble Application (Part 2)

Walkthrough: Updating the MFC Scribble Application
(Part 2)
3/4/2019 • 9 minutes to read • Edit Online

Prerequisites

Sections

Adding New Panels to the Ribbon

To add a View panel and Window panel to the ribbon barTo add a View panel and Window panel to the ribbon bar

Part 1 of this walkthrough showed how to add an Office Fluent Ribbon to the classic Scribble application. This
part shows how to add ribbon panels and controls that users can use instead of menus and commands.

Visual C++ Samples

This part of the walkthrough has the following sections:

Adding New Panels to the Ribbon

Adding a Help Panel to the Ribbon

Adding a Pen Panel to the Ribbon

Adding a Color Button to the Ribbon

Adding a Color Member to the Document Class

Initializing Pens and Saving Preferences

These steps show how to add a View panel that contains two check boxes that control the visibility of the toolbar
and the status bar, and also a Window panel that contains a vertically oriented split button that controls the
creation and arrangement of multiple-document interface (MDI) windows.

1. Create a panel named View , which has two check boxes that toggle the status bar and toolbar.

a. From the Toolbox, drag a Panel to the Home category. Then drag two Check Boxes to the panel.

b. Click the panel to modify its properties. Change Caption to View .

c. Click the first check box to modify its properties. Change ID to ID_VIEW_TOOLBAR and Caption to
Toolbar .

d. Click the second check box to modify its properties. Change ID to ID_VIEW_STATUS_BAR and Caption
to Status Bar .

2. Create a panel named Window that has a split button. When a user clicks the split button, a shortcut menu
displays three commands that are already defined in the Scribble application.

a. From the Toolbox, drag a Panel to the Home category. Then drag a Button to the panel.

b. Click the panel to modify its properties. Change Caption to Window .

c. Click the button. Change Caption to Windows , Keys to w , Large Image Index to 1 , and Split

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/walkthrough-updating-the-mfc-scribble-application-part-2.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Adding a Help Panel to the Ribbon

To add a Help panelTo add a Help panel

Adding a Pen Panel to the Ribbon

To add a Pen panel and combo boxes to the ribbonTo add a Pen panel and combo boxes to the ribbon

Mode to False . Then click the ellipsis (...) next to Menu Items to open the Items Editor dialog
box.

d. Click Add three times to add three buttons.

e. Click the first button and then change Caption to New Window , and ID to ID_WINDOW_NEW .

f. Click the second button and then change Caption to Cascade , and ID to ID_WINDOW_CASCADE .

g. Click the third button and then change Caption to Tile , and ID to ID_WINDOW_TILE_HORZ .

3. Save the changes, and then build and run the application. The View and Window panels should be
displayed. Click the buttons to confirm that they function correctly.

Now, you can assign two menu items that are defined in the Scribble application to ribbon buttons that are named
Help Topics and About Scribble. The buttons are added to a new panel named Help.

IMPORTANTIMPORTANT

1. From the Toolbox, drag a Panel to the Home category. Then drag two Buttons to the panel.

2. Click the panel to modify its properties. Change Caption to Help .

3. Click the first button. Change Caption to Help Topics , and ID to ID_HELP_FINDER .

4. Click the second button. Change Caption to About Scribble... , and ID to ID_APP_ABOUT .

5. Save the changes, and then build and run the application. A Help panel that contains two ribbon buttons
should be displayed.

When you click the Help Topics button, the Scribble application opens a compressed HTML (.chm) help file named
your_project_name.chm. Consequently, if your project is not named Scribble, you must rename the help file to your
project name.

Now, add a panel to display buttons that control the thickness and the color of the pen. This panel contains a check
box that toggles between thick and thin pens. Its functionality resembles that of the Thick Line menu item in the
Scribble application.

The original Scribble application lets the user select pen widths from a dialog box that appears when the user
clicks Pen Widths on the menu. Because the ribbon bar has ample room for new controls, you can replace the
dialog box by using two combo boxes on the ribbon. One combo box adjusts the width of the thin pen and the
other combo box adjusts the width of the thick pen.

1. From the Toolbox, drag a Panel to the Home category. Then drag a Check Box and two Combo Boxes
to the panel.

2. Click the panel to modify its properties. Change Caption to Pen .

3. Click the check box. Change Caption to Use Thick , and ID to ID_PEN_THICK_OR_THIN .

4. Click the first combo box. Change Caption to Thin Pen , ID to ID_PEN_THIN_WIDTH , Type to Drop List ,
Data to 1;2;3;4;5;6;7;8;9; , and Text to 2 .

5. Click the second combo box. Change Caption to Thick Pen , ID to ID_PEN_THICK_WIDTH , Type to Drop List

, Data to 5;6;7;8;9;10;11;12;13;14;15;16;17;18;19;20; , and Text to 5 .

6. The new combo boxes don't correspond to any existing menu items, so you must create a menu item for
every pen option.

// Get a pointer to the ribbon bar
CMFCRibbonBar* pRibbon = ((CMDIFrameWndEx*) AfxGetMainWnd())->GetRibbonBar();
ASSERT_VALID(pRibbon);

// Get a pointer to the Thin Width combo box
CMFCRibbonComboBox* pThinComboBox = DYNAMIC_DOWNCAST(
CMFCRibbonComboBox, pRibbon->FindByID(ID_PEN_THIN_WIDTH));

//Get the selected value
int nCurSel = pThinComboBox->GetCurSel();
if (nCurSel>= 0)
{
 m_nThinWidth = atoi(CStringA(pThinComboBox->GetItem(nCurSel)));
}

// Create a new pen using the selected width
ReplacePen();

a. In the Resource View window, open the IDR_SCRIBBTYPE menu resource.

b. Click Pen to open the pen menu. Then click Type Here and type Thi&n Pen .

c. Right-click the text that you typed to open the Properties window, and then change the ID property
to ID_PEN_THIN_WIDTH .

d. Create an event handler for every pen menu item. Right-click the Thi&n Pen menu item that you
created and then click Add Event Handler. The Event Handler Wizard is displayed.

e. In the Class list box in the wizard, select CScribbleDoc and then click Add and Edit. The command
creates an event handler named CScribbleDoc::OnPenThinWidth .

f. Add the following code to CScribbleDoc::OnPenThinWidth .

7. Next, create a menu item and event handlers for the thick pen.

a. In the Resource View window, open the IDR_SCRIBBTYPE menu resource.

b. Click Pen to open the pen menu. Then click Type Here and type Thic&k Pen .

c. Right-click the text that you typed to display the Properties window. Change the ID property to
ID_PEN_THICK_WIDTH .

d. Right-click the Thick Pen menu item that you created and then click Add Event Handler. The
Event Handler Wizard is displayed.

e. In the Class list box of the wizard, select CScribbleDoc and then click Add and Edit. The
command creates an event handler named CScribbleDoc::OnPenThickWidth .

f. Add the following code to CScribbleDoc::OnPenThickWidth .

Adding a Color Button to the Pen Panel

To add a color button to the Pen panelTo add a color button to the Pen panel

Adding a Color Member to the Document Class

To add a color member to the document classTo add a color member to the document class

// Get a pointer to the ribbon bar
CMFCRibbonBar* pRibbon = ((CMDIFrameWndEx *) AfxGetMainWnd())->GetRibbonBar();
ASSERT_VALID(pRibbon);

CMFCRibbonComboBox* pThickComboBox = DYNAMIC_DOWNCAST(
 CMFCRibbonComboBox, pRibbon->FindByID(ID_PEN_THICK_WIDTH));
// Get the selected value
int nCurSel = pThickComboBox->GetCurSel();
if (nCurSel>= 0)
{
 m_nThickWidth = atoi(CStringA(pThickComboBox->GetItem(nCurSel)));
}

// Create a new pen using the selected width
ReplacePen();

8. Save the changes, and then build and run the application. New buttons and combo boxes should be
displayed. Try using different pen widths to scribble.

Next, add a CMFCRibbonColorButton object that lets the user scribble in color.

1. Before you add the color button, create a menu item for it. In the Resource View window, open the
IDR_SCRIBBTYPE menu resource. Click the Pen menu item to open the pen menu. Then click Type Here
and type &Color . Right-click the text that you typed to display the Properties window. Change the ID to
ID_PEN_COLOR .

2. Now add the color button. From the Toolbox, drag a Color Button to the Pen panel.

3. Click the color button. Change Caption to Color , ID to ID_PEN_COLOR , Simple Look to True , Large
Image Index to 1 , and Split Mode to False .

4. Save the changes, and then build and run the application. The new color button should be displayed on the
Pen panel. However, it can't be used because it doesn't yet have an event handler. The next steps show how
to add an event handler for the color button.

Because the original Scribble application doesn't have color pens, you must write an implementation for them. To
store the pen color of the document, add a new member to the document class, CscribbleDoc .

// Current pen color
COLORREF m_penColor;

1. In scribdoc.h, in the CScribbleDoc class, find the // Attributes section. Add the following lines of code
after the definition of the m_nThickWidth data member.

2. Every document contains a list of stokes that the user has already drawn. Every stroke is defined by a
CStroke object. The CStroke class doesn't include information about pen color, so you must modify the

class. In scribdoc.h, in the CStroke class, add the following lines of code after the definition of the
m_nPenWidth data member.

// Pen color for the stroke
COLORREF m_penColor;

CStroke(UINT nPenWidth, COLORREF penColor);

// Constructor that uses the document's current width and color
CStroke::CStroke(UINT nPenWidth, COLORREF penColor)
{
 m_nPenWidth = nPenWidth;
 m_penColor = penColor;
 m_rectBounding.SetRectEmpty();
}

if (!penStroke.CreatePen(PS_SOLID, m_nPenWidth, m_penColor))

// default pen color is black
m_penColor = RGB(0, 0, 0);

CStroke* pStrokeItem = new CStroke(m_nPenWidth, m_penColor);

m_penCur.CreatePen(PS_SOLID, m_nPenWidth, m_penColor);

3. In scribdoc.h, add a new CStroke constructor whose parameters specify a width and color. Add the
following line of code after the CStroke(UINT nPenWidth); statement.

4. In scribdoc.cpp, add the implementation of the new CStroke constructor. Add the following code after the
implementation of the CStroke::CStroke(UINT nPenWidth) constructor.

5. Change the second line of the CStroke::DrawStroke method as follows.

6. Set the default pen color for the document class. In scribdoc.cpp, add the following lines to
CScribbleDoc::InitDocument , after the m_nThickWidth = 5; statement.

7. In scribdoc.cpp, change the first line of the CScribbleDoc::NewStroke method to the following.

8. Change the last line of the CScribbleDoc::ReplacePen method to the following.

9. You added the m_penColor member in a previous step. Now, create an event handler for the color button
that sets the member.

a. In the Resource View window, open the IDR_SCRIBBTYPE menu resource.

b. Right-click the Color menu item and click Add Event Handler. The Event Handler Wizard
appears.

c. In the Class list box in the wizard, select CScribbleDoc and then click the Add and Edit button.
The command creates the CScribbleDoc::OnPenColor event handler stub.

10. Replace the stub for the CScribbleDoc::OnPenColor event handler with the following code.

 Initializing Pens and Saving Preferences

To initialize controls on the ribbon barTo initialize controls on the ribbon bar

void CScribbleDoc::OnPenColor()
{
 // Change pen color to reflect color button's current selection
 CMFCRibbonBar* pRibbon = ((CMDIFrameWndEx*) AfxGetMainWnd())->GetRibbonBar();
 ASSERT_VALID(pRibbon);

 CMFCRibbonColorButton* pColorBtn = DYNAMIC_DOWNCAST(
 CMFCRibbonColorButton, pRibbon->FindByID(ID_PEN_COLOR));

 m_penColor = pColorBtn->GetColor();
 // Create new pen using the selected color
 ReplacePen();
}

11. Save the changes and then build and run the application. You can now press the color button and change
the pen's color.

Next, initialize the color and width of the pens. Finally, save and load a color drawing from a file.

// Reset the ribbon UI to its initial values
CMFCRibbonBar* pRibbon =
 ((CMDIFrameWndEx*) AfxGetMainWnd())->GetRibbonBar();
ASSERT_VALID(pRibbon);

CMFCRibbonColorButton* pColorBtn = DYNAMIC_DOWNCAST(
 CMFCRibbonColorButton,
 pRibbon->FindByID(ID_PEN_COLOR));

// Set ColorButton to black
pColorBtn->SetColor(RGB(0, 0, 0));

CMFCRibbonComboBox* pThinComboBox = DYNAMIC_DOWNCAST(
 CMFCRibbonComboBox,
 pRibbon->FindByID(ID_PEN_THIN_WIDTH));

// Set Thin pen combobox to 2
pThinComboBox->SelectItem(1);

CMFCRibbonComboBox* pThickComboBox = DYNAMIC_DOWNCAST(
 CMFCRibbonComboBox,
 pRibbon->FindByID(ID_PEN_THICK_WIDTH));

// Set Thick pen combobox to 5
pThickComboBox->SelectItem(0);

ar << (COLORREF)m_penColor;

1. Initialize the pens on the ribbon bar.

Add the following code to scribdoc.cpp, in the CScribbleDoc::InitDocument method, after the
m_sizeDoc = CSize(200,200) statement.

2. Save a color drawing to a file. Add the following statement to scribdoc.cpp, in the CStroke::Serialize

method, after the ar << (WORD)m_nPenWidth; statement.

3. Finally, load a color drawing from a file. Add the following line of code, in the CStroke::Serialize method,

Conclusion

See also

ar >> m_penColor;

after the m_nPenWidth = w; statement.

4. Now scribble in color and save your drawing to a file.

You've updated the MFC Scribble application. Use this walkthrough as a guide when you modify your existing
applications.

Walkthroughs
Walkthrough: Updating the MFC Scribble Application (Part 1)

Status Bars
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

Status bars give your application a place to display messages and useful information to the user without
interrupting the user's work. Typically displayed at the bottom of a window, status bars have "panes," which
include "indicators" and a "message line." The indicators give the status of such things as SCROLL LOCK, whether
macro recording is turned on, and so on. The message line on the status bar can display information about
program status or about a toolbar button or menu item that the user is pointing to with the mouse.

Create a status bar in your program by selecting the Initial Status Bar option in the MFC Application Wizard.

Status bar implementation in MFC

Updating the text of a status bar pane

Creating a new status-bar pane (Updating the text of a status bar pane)

Making a status-bar pane display text (Updating the text of a status bar pane)

Display command information in the status bar

User Interface Elements

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/status-bars.md

Status Bar Implementation in MFC
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

A CStatusBar object is a control bar with a row of text output panes. The output panes are commonly used as
message lines and as status indicators. Examples include the menu help-message lines that briefly explain the
selected menu command and the indicators that show the status of the SCROLL LOCK, NUM LOCK, and other
keys.

As of MFC version 4.0, status bars are implemented using class CStatusBarCtrl, which encapsulates a status bar
common control. For backward compatibility, MFC retains the older status bar implementation in class
COldStatusBar . The documentation for earlier versions of MFC describes COldStatusBar under CStatusBar .

CStatusBar::GetStatusBarCtrl, a member function new to MFC 4.0, allows you to take advantage of the Windows
common control's support for status bar customization and additional functionality. CStatusBar member
functions give you most of the functionality of the Windows common controls; however, when you call
GetStatusBarCtrl , you can give your status bars even more of the characteristics of a status bar. When you call
GetStatusBarCtrl , it will return a reference to a CStatusBarCtrl object. You can use that reference to manipulate

the status bar control.

The following figure shows a status bar that displays several indicators.

A Status Bar

Like the toolbar, the status-bar object is embedded in its parent frame window and is constructed automatically
when the frame window is constructed. The status bar, like all control bars, is destroyed automatically as well when
the parent frame is destroyed.

Updating the text of a status bar pane

MFC classes CStatusBar and CStatusBarCtrl

Control bars

Dialog bars

Toolbars (MFC Toolbar Implementation)

Status Bars

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/status-bar-implementation-in-mfc.md

Updating the Text of a Status-Bar Pane
3/4/2019 • 3 minutes to read • Edit Online

To make a new paneTo make a new pane

This article explains how to change the text that appears in an MFC status bar pane. A status bar — a window
object of class CStatusBar — contains several "panes." Each pane is a rectangular area of the status bar that you
can use to display information. For example, many applications display the status of the CAPS LOCK, NUM
LOCK, and other keys in the rightmost panes. Applications also often display informative text in the leftmost pane
(pane 0), sometimes called the "message pane." For example, the default MFC status bar uses the message pane
to display a string explaining the currently selected menu item or toolbar button. The figure in Status Bars shows a
status bar from an Application Wizard-created MFC application.

By default, MFC does not enable a CStatusBar pane when it creates the pane. To activate a pane, you must use the
ON_UPDATE_COMMAND_UI macro for each pane on the status bar and update the panes. Because panes do not
send WM_COMMAND messages (they aren't like toolbar buttons), you must type the code manually.

For example, suppose one pane has ID_INDICATOR_PAGE as its command identifier and that it contains the current
page number in a document. The following procedure describes how to create a new pane in the status bar.

static UINT indicators[] =
{
 ID_SEPARATOR, // status line indicator
 ID_INDICATOR_CAPS,
 ID_INDICATOR_NUM,
 ID_INDICATOR_SCRL,
 ID_INDICATOR_PAGE,
};

1. Define the pane's command ID.

On the View menu, click Resource View. Right-click the project resource and click Resource Symbols. In
the Resource Symbols dialog box, click New . Type a command ID name: for example, ID_INDICATOR_PAGE .
Specify a value for the ID, or accept the value suggested by the Resource Symbols dialog box. For example,
for ID_INDICATOR_PAGE , accept the default value. Close the Resource Symbols dialog box.

2. Define a default string to display in the pane.

With Resource View open, double-click String Table in the window that lists resource types for your
application. With the String Table editor open, choose New String from the Insert menu. In the String
Properties window, select your pane's command ID (for example, ID_INDICATOR_PAGE) and type a default
string value, such as "Page ". Close the string editor. (You need a default string to avoid a compiler error.)

3. Add the pane to the indicators array.

In file MAINFRM.CPP, locate the indicators array. This array lists command IDs for all of the status bar's
indicators, in order from left to right. At the appropriate point in the array, enter your pane's command ID,
as shown here for ID_INDICATOR_PAGE :

The recommended way to display text in a pane is to call the SetText member function of class CCmdUI in an
update handler function for the pane. For example, you might want to set up an integer variable m_nPage that
contains the current page number and use SetText to set the pane's text to a string version of that number.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/updating-the-text-of-a-status-bar-pane.md

NOTENOTE

To make a pane display textTo make a pane display text

What do you want to know more aboutWhat do you want to know more about

See also

The SetText approach is recommended. It is possible to perform this task at a slightly lower level by calling the
CStatusBar member function SetPaneText . Even so, you still need an update handler. Without such a handler for the

pane, MFC automatically disables the pane, erasing its content.

The following procedure shows how to use an update handler function to display text in a pane.

afx_msg void OnUpdatePage(CCmdUI *pCmdUI);

void CMainFrame::OnUpdatePage(CCmdUI *pCmdUI)
{
 pCmdUI->Enable();
 CString strPage;
 strPage.Format(_T("Page %d"), m_nPage);
 pCmdUI->SetText(strPage);
}

ON_UPDATE_COMMAND_UI(ID_INDICATOR_PAGE, &CMainFrame::OnUpdatePage)

1. Add a command update handler for the command.

Manually add a prototype for the handler, as shown here for ID_INDICATOR_PAGE (in MAINFRM.H):

2. In the appropriate .CPP file, add the handler's definition, as shown here for ID_INDICATOR_PAGE (in
MAINFRM.CPP):

The last three lines of this handler are the code that displays your text.

3. In the appropriate message map, add the ON_UPDATE_COMMAND_UI macro, as shown here for
ID_INDICATOR_PAGE (in MAINFRM.CPP):

Once you define the value of the m_nPage member variable (of class CMainFrame), this technique causes the page
number to appear in the pane during idle processing in the same manner that the application updates other
indicators. If m_nPage changes, the display changes during the next idle loop.

Updating user-interface objects (how to update toolbar buttons and menu items as program conditions
change)

Status Bar Implementation in MFC
CStatusBar Class

Tool Tips
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

The procedures are distinct for adding tool tips to controls contained in windows derived from MFC class
CFrameWnd and windows not derived from CFrameWnd .

Tool tips for controls in a window that is:

Toolbar Tooltips (derived from CFrameWnd)

Tooltips in Windows not derived from CFrameWnd

User Interface Elements

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tool-tips.md

Tool Tips in Windows Not Derived from CFrameWnd
3/4/2019 • 2 minutes to read • Edit Online

See also

This article family covers enabling tool tips for controls contained in a window that is not derived from
CFrameWnd. The article Toolbars Tool Tips provides information about tool tips for controls in a CFrameWnd .

Topics covered in this article family include:

Enabling Tool Tips

Handling TTN_NEEDTEXT Notification for Tool Tips

The TOOLTIPTEXT Structure

Tool tips are automatically displayed for buttons and other controls contained in a parent window derived from
CFrameWnd . This is because CFrameWnd has a default handler for the TTN_GETDISPINFO notification, which

handles TTN_NEEDTEXT notifications from tool tip controls associated with controls.

However, this default handler is not called when the TTN_NEEDTEXT notification is sent from a tool tip control
associated with a control in a window that is not a CFrameWnd , such as a control on a dialog box or a form view.
Therefore, it is necessary for you to provide a handler function for the TTN_NEEDTEXT notification message in
order to display tool tips for child controls.

The default tool tips provided for your windows by CWnd::EnableToolTips do not have text associated with them.
To retrieve text for the tool tip to display, the TTN_NEEDTEXT notification is sent to the tool tip control's parent
window just before the tool tip window is displayed. If there is no handler for this message to assign some value
to the pszText member of the TOOLTIPTEXT structure, there will be no text displayed for the tool tip.

Tool Tips

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tool-tips-in-windows-not-derived-from-cframewnd.md
https://docs.microsoft.com/windows/desktop/Controls/ttn-getdispinfo

Enabling Tool Tips
3/4/2019 • 2 minutes to read • Edit Online

To enable tool tips for the child controls of a windowTo enable tool tips for the child controls of a window

See also

You can enable tool tip support for the child controls of a window (such as the controls on a form view or dialog
box).

1. Call EnableToolTips for the window for which you want to provide tool tips.

2. Provide a string for each control in your TTN_NEEDTEXT notification handler. The handler is in the message
map of the window that contains the child controls (for example, your form view class). This handler should
call a function that identifies the control and sets pszText to specify the text used by the tool tip control.

Tool Tips in Windows Not Derived from CFrameWnd

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/enabling-tool-tips.md

Handling TTN_NEEDTEXT Notification for Tool Tips
3/4/2019 • 2 minutes to read • Edit Online

ON_NOTIFY_EX(TTN_NEEDTEXT, 0, &CMyDialog::OnTtnNeedText)

afx_msg BOOL OnTtnNeedText(UINT id, NMHDR *pNMHDR, LRESULT *pResult);

As part of enabling tool tips, you handle the TTN_NEEDTEXT message by adding the following entry to your
owner window's message map:

memberFxn
The member function to be called when text is needed for this button.

Note that the ID of a tool tip is always 0.

Declare your handler function in the class definition as follows:

where the italicized parameters are:

id
Identifier of the control that sent the notification. Not used. The control id is taken from the NMHDR structure.

pNMHDR
A pointer to the NMTTDISPINFO structure. This structure is also discussed further in The TOOLTIPTEXT
Structure.

pResult
A pointer to result code you can set before you return. TTN_NEEDTEXT handlers can ignore the pResult
parameter.

As an example of a form-view notification handler:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/handling-ttn-needtext-notification-for-tool-tips.md
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagnmttdispinfoa

BOOL CMyDialog::OnTtnNeedText(UINT id, NMHDR *pNMHDR, LRESULT *pResult)
{
 UNREFERENCED_PARAMETER(id);

 NMTTDISPINFO *pTTT = (NMTTDISPINFO *) pNMHDR;
 UINT_PTR nID = pNMHDR->idFrom;
 BOOL bRet = FALSE;

 if (pTTT->uFlags & TTF_IDISHWND)
 {
 // idFrom is actually the HWND of the tool
 nID = ::GetDlgCtrlID((HWND)nID);
 if(nID)
 {
 _stprintf_s(pTTT->szText, sizeof(pTTT->szText) / sizeof(TCHAR),
 _T("Control ID = %d"), nID);
 pTTT->hinst = AfxGetResourceHandle();
 bRet = TRUE;
 }
 }

 *pResult = 0;

 return bRet;
}

EnableToolTips(TRUE);

See also

Call EnableToolTips (this fragment taken from OnInitDialog):

Tool Tips in Windows Not Derived from CFrameWnd

TOOLTIPTEXT Structure
3/4/2019 • 2 minutes to read • Edit Online

typedef struct {
 NMHDR hdr; // required for all WM_NOTIFY messages
 LPTSTR lpszText; // see below
 TCHAR szText[80]; // buffer for tool tip text
 HINSTANCE hinst; // see below
 UINT uflags; // flag indicating how to interpret the
 // idFrom member of the NMHDR structure
 // that is included in the structure
} TOOLTIPTEXT, FAR *LPTOOLTIPTEXT;

See also

In writing your tool tip notification handler, you need to use the TOOLTIPTEXT structure. The members of the
TOOLTIPTEXT structure are:

hdr
Identifies the tool that needs text. The only member of this structure you might need is the control's command ID.
The control's command ID will be in the idFrom member of the NMHDR structure, accessed with the syntax
hdr.idFrom . See NMHDR for a discussion of members of the NMHDR structure.

lpszText
Address of a string to receive the text for a tool.

szText
Buffer that receives the tool tip text. An application can copy the text to this buffer as an alternative to specifying a
string address.

hinst
Handle of the instance that contains a string to be used as the tool tip text. If lpszText is the address of the tool tip
text, this member is NULL.

When you handle the TTN_NEEDTEXT notification message, specify the string to be displayed in one of the following
ways:

Copy the text to the buffer specified by the szText member.

Copy the address of the buffer that contains the text to the lpszText member.

Copy the identifier of a string resource to the lpszText member, and copy the handle of the instance that
contains the resource to the hinst member.

Tool Tips in Windows Not Derived from CFrameWnd

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tooltiptext-structure.md
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_nmhdr

Toolbars
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

The toolbar family of articles describes MFC toolbars and how to create and use them.

MFC toolbar implementation

Toolbar fundamentals

How to Update User-Interface Objects (enable/disable toolbar buttons)

The CToolBar and CToolBarCtrl classes

Sample

User Interface Elements
Toolbar Editor

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/toolbars.md

Toolbar Sample List
3/4/2019 • 2 minutes to read • Edit Online

See also

See the following sample programs that illustrate using MFC's toolbars:

SCRIBBLE

CTRLBARS

DOCKTOOL

Toolbars

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/toolbar-sample-list.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

MFC Toolbar Implementation
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

Toolbar Buttons

Docking and Floating Toolbars

A toolbar is a control bar that contains the bitmap images of controls. These images can behave like pushbuttons,
check boxes, or radio buttons. MFC supplies class CToolbar to manage toolbars.

If you enable it, users of MFC toolbars can dock them to the edge of a window or "float" them anywhere within
the application window. MFC doesn't support customizable toolbars like those in the development environment.

MFC also supports tool tips: small pop-up windows that describe a toolbar button's purpose when you position
the mouse over the button. By default, when the user presses a toolbar button, a status string appears in the
status bar (if there is one). You can activate "fly by" status bar updating to display the status string when the
mouse is positioned over the button without pressing it.

As of MFC version 4.0, toolbars and tool tips are implemented using Windows 95 and later functionality instead of the
previous implementation specific to MFC.

For backward compatibility, MFC retains the older toolbar implementation in class COldToolBar . The
documentation for earlier versions of MFC describe COldToolBar under CToolBar .

Create the first toolbar in your program by selecting the Toolbar option in the Application Wizard. You can also
create additional toolbars.

The following are introduced in this article:

Toolbar buttons

Docking and floating toolbars

Toolbars and tool tips

The CToolBar and CToolBarCtrl classes

The Toolbar bitmap

The buttons in a toolbar are analogous to the items in a menu. Both kinds of user-interface objects generate
commands, which your program handles by providing handler functions. Often toolbar buttons duplicate the
functionality of menu commands, providing an alternative user interface to the same functionality. Such
duplication is arranged simply by giving the button and the menu item the same ID.

You can make the buttons in a toolbar appear and behave as pushbuttons, check boxes, or radio buttons. For
more information, see class CToolBar.

An MFC toolbar can:

Remain stationary along one side of its parent window.

Be dragged and "docked," or attached, by the user to any side or sides of the parent window you specify.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-toolbar-implementation.md

Toolbars and Tool Tips

The CToolBar and CToolBarCtrl Classes

TIPTIP

The Toolbar Bitmap

What do you want to know more aboutWhat do you want to know more about

See also

Be "floated," or detached from the frame window, in its own mini-frame window so the user can move it
around to any convenient position.

Be resized while floating.

For more information, see the article Docking and Floating Toolbars.

MFC toolbars can also be made to display "tool tips" — tiny popup windows containing a short text description
of a toolbar button's purpose. As the user moves the mouse over a toolbar button, the tool tip window pops up to
offer a hint. For more information, see the article Toolbar Tool Tips.

You manage your application's toolbars via class CToolBar. As of MFC version 4.0, CToolBar has been
reimplemented to use the toolbar common control available under Windows 95 or later and Windows NT
version 3.51 or later.

This reimplementation results in less MFC code for toolbars, because MFC makes use of the operating system
support. The reimplementation also improves capability. You can use CToolBar member functions to manipulate
toolbars, or you can obtain a reference to the underlying CToolBarCtrl object and call its member functions for
toolbar customization and additional functionality.

If you have invested heavily in the older MFC implementation of CToolBar , that support is still available. See the article
Using Your Old Toolbars.

Also see the MFC General sample DOCKTOOL.

Once constructed, a CToolBar object creates the toolbar image by loading a single bitmap that contains one
image for each button. The Application Wizard creates a standard toolbar bitmap that you can customize with the
Visual C++ toolbar editor.

Toolbar fundamentals

Docking and floating toolbars

Toolbar tool tips

Working with the Toolbar Control

Using Your Old Toolbars

The CToolBar and CToolBarCtrl classes

Toolbars
Toolbar Editor

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Toolbar Fundamentals
3/4/2019 • 3 minutes to read • Edit Online

The Application Wizard Toolbar Option

The Toolbar in Code

class CMainFrame : public CMDIFrameWnd
{
// Implementation
protected: // control bar embedded members
 CStatusBar m_wndStatusBar;
 CToolBar m_wndToolBar;

// Generated message map functions
protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 DECLARE_MESSAGE_MAP()

This article describes the fundamental MFC implementation that lets you add a default toolbar to your application
by selecting an option in the Application Wizard. Topics covered include:

The Application Wizard toolbar option

The toolbar in code

Editing the toolbar resource

Multiple toolbars

To get a single toolbar with default buttons, select the Standard Docking toolbar option on the page labeled User
Interface Features. This adds code to your application that:

Creates the toolbar object.

Manages the toolbar, including its ability to dock or to float.

The toolbar is a CToolBar object declared as a data member of your application's CMainFrame class. In other words,
the toolbar object is embedded in the main frame window object. This means that MFC creates the toolbar when
it creates the frame window and destroys the toolbar when it destroys the frame window. The following partial
class declaration, for a multiple document interface (MDI) application, shows data members for an embedded
toolbar and an embedded status bar. It also shows the override of the OnCreate member function.

Toolbar creation occurs in CMainFrame::OnCreate . MFC calls OnCreate after creating the window for the frame but
before it becomes visible. The default OnCreate that the Application Wizard generates does the following toolbar
tasks:

1. Calls the CToolBar object's Create member function to create the underlying CToolBarCtrl object.

2. Calls LoadToolBar to load the toolbar resource information.

3. Calls functions to enable docking, floating, and tool tips. For details about these calls, see the article
Docking and Floating Toolbars.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/toolbar-fundamentals.md

NOTENOTE

Editing the Toolbar Resource

Multiple Toolbars

What do you want to know more aboutWhat do you want to know more about

See also

The MFC General sample DOCKTOOL includes illustrations of both old and new MFC toolbars. The toolbars that use
COldToolbar require calls in step 2 to LoadBitmap (rather than LoadToolBar) and to SetButtons . The new toolbars

require calls to LoadToolBar .

The docking, floating, and tool tips calls are optional. You can remove those lines from OnCreate if you prefer. The
result is a toolbar that remains fixed, unable to float or redock and unable to display tool tips.

The default toolbar you get with the Application Wizard is based on an RT_TOOLBAR custom resource,
introduced in MFC version 4.0. You can edit this resource with the toolbar editor. The editor lets you easily add,
delete, and rearrange buttons. It contains a graphical editor for the buttons that is very similar to the general
graphics editor in Visual C++. If you edited toolbars in previous versions of Visual C++, you'll find the task much
easier now.

To connect a toolbar button to a command, you give the button a command ID, such as ID_MYCOMMAND . Specify the
command ID in the button's property page in the toolbar editor. Then create a handler function for the command
(see Mapping Messages to Functions for more information).

New CToolBar member functions work with the RT_TOOLBAR resource. LoadToolBar now takes the place of
LoadBitmap to load the bitmap of the toolbar button images, and SetButtons to set the button styles and connect
buttons with bitmap images.

For details about using the toolbar editor, see Toolbar Editor.

The Application Wizard provides you with one default toolbar. If you need more than one toolbar in your
application, you can model your code for additional toolbars based on the wizard-generated code for the default
toolbar.

If you want to display a toolbar as the result of a command, you'll need to:

Create a new toolbar resource with the toolbar editor and load it in OnCreate with the LoadToolbar
member function.

Embed a new CToolBar object in your main frame window class.

Make the appropriate function calls in OnCreate to dock or float the toolbar, set its styles, and so on.

MFC Toolbar Implementation (overview information on toolbars)

Docking and floating toolbars

Toolbar tool tips

The CToolBar and CToolBarCtrl classes

Working with the toolbar control

Using your old toolbars

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

MFC Toolbar Implementation

Docking and Floating Toolbars
3/4/2019 • 4 minutes to read • Edit Online

Enabling Docking in a Frame Window

Enabling Docking for a Toolbar

Docking the Toolbar

The Microsoft Foundation Class Library supports dockable toolbars. A dockable toolbar can be attached, or
docked, to any side of its parent window, or it can be detached, or floated, in its own mini-frame window. This
article explains how to use dockable toolbars in your applications.

If you use the Application Wizard to generate the skeleton of your application, you are asked to choose whether
you want dockable toolbars. By default, the Application Wizard generates the code that performs the three
actions necessary to place a dockable toolbar in your application:

Enable docking in a frame window.

Enable docking for a toolbar.

Dock the toolbar (to the frame window).

If any of these steps are missing, your application will display a standard toolbar. The last two steps must be
performed for each dockable toolbar in your application.

Other topics covered in this article include:

Floating the toolbar

Dynamically resizing the toolbar

Setting wrap positions for a fixed-style toolbar

See the MFC General sample DOCKTOOL for examples.

To dock toolbars to a frame window, the frame window (or destination) must be enabled to allow docking. This is
done using the CFrameWnd::EnableDocking function, which takes one DWORD parameter that is a set of style
bits indicating which side of the frame window accepts docking. If a toolbar is about to be docked and there are
multiple sides that it could be docked to, the sides indicated in the parameter passed to EnableDocking are used
in the following order: top, bottom, left, right. If you want to be able to dock control bars anywhere, pass
CBRS_ALIGN_ANY to EnableDocking .

After you have prepared the destination for docking, you must prepare the toolbar (or source) in a similar
fashion. Call CControlBar::EnableDocking for each toolbar you want to dock, specifying the destination sides to
which the toolbar should dock. If none of the sides specified in the call to CControlBar::EnableDocking match the
sides enabled for docking in the frame window, the toolbar cannot dock — it will float. Once it has been floated, it
remains a floating toolbar, unable to dock to the frame window.

If the effect you want is a permanently floating toolbar, call EnableDocking with a parameter of 0. Then call
CFrameWnd::FloatControlBar. The toolbar remains floating, permanently unable to dock anywhere.

The framework calls CFrameWnd::DockControlBar when the user attempts to drop the toolbar on a side of the
frame window that allows docking.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/docking-and-floating-toolbars.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Floating the Toolbar

Dynamically Resizing the Toolbar

Setting Wrap Positions for a Fixed-Style Toolbar

In addition, you can call this function at any time to dock control bars to the frame window. This is normally done
during initialization. More than one toolbar can be docked to a particular side of the frame window.

Detaching a dockable toolbar from the frame window is called floating the toolbar. Call
CFrameWnd::FloatControlBar to do this. Specify the toolbar to be floated, the point where it should be placed,
and an alignment style that determines whether the floating toolbar is horizontal or vertical.

The framework calls this function when a user drags a toolbar off its docked location and drops it in a location
where docking is not enabled. This can be anywhere inside or outside the frame window. As with DockControlBar ,
you can also call this function during initialization.

The MFC implementation of dockable toolbars does not provide some of the extended features found in some
applications that support dockable toolbars. Features such as customizable toolbars are not provided.

As of Visual C++ version 4.0, you can make it possible for users of your application to resize floating toolbars
dynamically. Typically, a toolbar has a long, linear shape, displayed horizontally. But you can change the toolbar's
orientation and its shape. For example, when the user docks a toolbar against one of the vertical sides of the
frame window, the shape changes to a vertical layout. It's also possible to reshape the toolbar into a rectangle
with multiple rows of buttons.

You can:

Specify dynamic sizing as a toolbar characteristic.

Specify fixed sizing as a toolbar characteristic.

To provide this support, there are two new toolbar styles for use in your calls to the CToolBar::Create member
function. They are:

CBRS_SIZE_DYNAMIC Control bar is dynamic.

CBRS_SIZE_FIXED Control bar is fixed.

The size dynamic style lets your user resize the toolbar while it is floating, but not while it is docked. The toolbar
"wraps" where needed to change shape as the user drags its edges.

The size fixed style preserves the wrap states of a toolbar, fixing the position of the buttons in each column. Your
application's user can't change the shape of the toolbar. The toolbar wraps at designated places, such as the
locations of separators between the buttons. It maintains this shape whether the toolbar is docked or floating.
The effect is a fixed palette with multiple columns of buttons.

You can also use CToolBar::GetButtonStyle to return a state and style for buttons on your toolbars. A button's
style determines how the button appears and how it responds to user input; the state tells whether the button is
in a wrapped state.

For a toolbar with the size fixed style, designate toolbar button indexes at which the toolbar will wrap. The
following code shows how to do this in your main frame window's OnCreate override:

// Get the style of the first button separator
UINT nStyle = m_wndToolBar.GetButtonStyle(3);
// Augment the state for wrapping
nStyle |= TBBS_WRAPPED;
m_wndToolBar.SetButtonStyle(3, nStyle);

// Do the same for other wrap locations ...

// Set the bar style to size fixed
m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() |
 CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_FIXED);

// Call docking/floating functions as needed ...

What do you want to know more aboutWhat do you want to know more about

See also

The MFC General sample DOCKTOOL shows how to use member functions of classes CControlBar and
CToolBar to manage dynamic layout of a toolbar. See the file EDITBAR.CPP in DOCKTOOL.

Toolbar fundamentals

Toolbar tool tips

Using your old toolbars

MFC Toolbar Implementation

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Toolbar Tool Tips
3/4/2019 • 2 minutes to read • Edit Online

Activating Tool Tips

To add the tool tip textTo add the tool tip text

NOTENOTE

Flyby Status Bar Updates

What do you want to know more aboutWhat do you want to know more about

Tool tips are the tiny popup windows that present short descriptions of a toolbar button's purpose when you
position the mouse over a button for a period of time. When you create an application with the Application
Wizard that has a toolbar, tool tip support is provided for you. This article explains both the tool tip support
created by the Application Wizard and how to add tool tip support to your application.

This article covers:

Activating tool tips

Flyby status bar updates

To activate tool tips in your application, you must do two things:

Add the CBRS_TOOLTIPS style to the other styles (such as WS_CHILD, WS_VISIBLE, and other CBRS_
styles) passed as the dwStyle parameter to the CToolBar::Create function or in SetBarStyle.

As described in the procedure below, append the toolbar tip text, separated by a newline character ('\n'), to
the string resource containing the command-line prompt for the toolbar command. The string resource
shares the ID of the toolbar button.

1. While you are editing the toolbar in the toolbar editor, open the Toolbar Button Properties window for a
given button.

2. In the Prompt box, specify the text you want to appear in the tool tip for that button.

Setting the text as a button property in the toolbar editor replaces the former procedure, in which you had to open and
edit the string resource.

If a control bar with tool tips enabled has child controls placed on it, the control bar will display a tool tip for
every child control on the control bar as long as it meets the following criteria:

The ID of the control is not - 1.

The string-table entry with the same ID as the child control in the resource file has a tool tip string.

A feature related to tool tips is "flyby" status bar updating. By default, the message on the status bar describes
only a particular toolbar button when the button is activated. By including CBRS_FLYBY in your list of styles
passed to CToolBar::Create , you can have these messages updated when the mouse cursor passes over the
toolbar without actually activating the button.

MFC Toolbar Implementation (overview information on toolbars)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/toolbar-tool-tips.md

See also

Docking and floating toolbars

The CToolBar and CToolBarCtrl classes

Working with the toolbar control

Using your old toolbars

MFC Toolbar Implementation

Working with the Toolbar Control
3/4/2019 • 2 minutes to read • Edit Online

Procedures
To access the toolbar common control underlying your CToolBar objectTo access the toolbar common control underlying your CToolBar object

C a u t i o nC a u t i o n

What do you want to know more aboutWhat do you want to know more about

See also

This article explains how you can access the CToolBarCtrl object underlying a CToolBar for greater control over
your toolbars. This is an advanced topic.

1. Call CToolBar::GetToolBarCtrl.

GetToolBarCtrl returns a reference to a CToolBarCtrl object. You can use the reference to call member functions
of the toolbar control class.

While calling CToolBarCtrl Get functions is safe, use caution if you call the Set functions. This is an advanced
topic. Normally you shouldn't need to access the underlying toolbar control.

Controls (Windows common controls)

Toolbar fundamentals

Docking and floating toolbars

Dynamically resizing the toolbar

Toolbar tool tips

Flyby status bar updates

Handling tool tip notifications

The CToolBar and CToolBarCtrl classes

Handling customization notifications

Multiple toolbars

Using your old toolbars

Control bars

For general information about using Windows common controls, see Common Controls.

MFC Toolbar Implementation

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/working-with-the-toolbar-control.md
https://docs.microsoft.com/windows/desktop/Controls/common-controls-intro

Using Your Old Toolbars
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

If you have used previous versions of Visual C++ to create customized toolbars, the new implementation of class
CToolBar could cause you problems. So that you don't have to give up your old toolbars to use the new
functionality, the old implementation is still supported.

The DOCKTOOL sample does not use the old-style toolbars, only the new-style toolbars.

You can't edit old-style toolbars with the toolbar resource editor.

Toolbar fundamentals

Docking and floating toolbars

Toolbar tool tips

Working with the toolbar control

MFC Toolbar Implementation

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-your-old-toolbars.md

Visualization Manager
11/20/2018 • 2 minutes to read • Edit Online

The visual manager is an object that controls the appearance of a whole application. It acts as a single class where
you can put all the drawing code for your application. The MFC Library includes several visual managers. You can
also create your own visual manager if you want to create a custom view for your application. The following
images show the same application when different visual managers are enabled:

MyApp that uses the CMFCVisualManagerWindows visual manager

MyApp that uses the CMFCVisualManagerVS2005 visual manager

MyApp that uses the CMFCVisualManagerOfficeXP visual manager

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/visualization-manager.md

CMFCVisualManager::SetDefaultManager (RUNTIME_CLASS (CMFCVisualManagerVS2005));

MyApp that uses the CMFCVisualManagerOffice2003 visual manager

MyApp that uses the CMFCVisualManagerOffice2007 visual manager

By default, the visual manager maintains the drawing code for several GUI elements. To provide custom UI
elements, you need to override the related drawing methods of the visual manager. For the list of these methods,
see CMFCVisualManager Class. The methods that you can override to provide a custom appearance are all the
methods that start with OnDraw .

Your application can have only one CMFCVisualManager object. To obtain a pointer to the visual manager for your
application, call the static function CMFCVisualManager::GetInstance. Because all visual managers inherit from
CMFCVisualManager , the CMFCVisualManager::GetInstance method will get a pointer to the appropriate visual

manager, even if you create a custom visual manager.

If you want to create a custom visual manager, you must derive it from a visual manager that already exists. The
default class to derive from is CMFCVisualManager . However, you can use a different visual manager if it better
resembles what you want for your application. For example, if you wanted to use the CMFCVisualManagerOffice2007

visual manager, but wanted only to change how separators look, you could derive your custom class from
CMFCVisualManagerOffice2007 . In this scenario, you should overwrite only the methods for drawing separators.

There are two possible ways to use a specific visual manager for your application. One way is to call the
CMFCVisualManager::SetDefaultManager method and pass the appropriate visual manager as a parameter. The
following code example shows how you would use the CMFCVisualManagerVS2005 visual manager with this method:

The other way to use a visual manager in your application is to create it manually. The application will then use
this new visual manager for all the rendering. However, because there can be only one CMFCVisualManager object
per application, you will have to delete the current visual manager before you create a new one. In the following

void CMyApp::SetSkin (int index)
{
 if (CMFCVisualManager::GetInstance() != NULL)
 {
 delete CMFCVisualManager::GetInstance();
 }

 switch (index)
 {
 case DEFAULT_STYLE:
 // The following statement creates a new CMFCVisualManager
 CMFCVisualManager::GetInstance();
 break;

 case CUSTOM_STYLE:
 new CMyVisualManager;
 break;

 default:
 CMFCVisualManager::GetInstance();
 break;
 }

 CMFCVisualManager::GetInstance()->RedrawAll();
}

See also

example, CMyVisualManager is a custom visual manager that is derived from CMFCVisualManager . The following
method will change what visual manager is used to display your application, depending on an index:

User Interface Elements
CMFCVisualManager Class

Windows
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

This family of articles covers window objects in the MFC framework. All MFC windows derive from class CWnd,
including frame windows, views, dialog boxes, and controls.

The first group of articles describes window objects in general. Refer to this group for general information about
C++ window objects, how they encapsulate an HWND , and how you use them when creating your own windows,
such as child windows.

The second group of articles describes frame windows—windows that put a frame around content — in particular.
Refer to this group for information about how the MFC framework manages frame windows and the contents that
they frame, including control bars and views.

Topics on Window Objects in General

Window objects

Relationship between a C++ window objects and HWND handles

Derived Window classes

Creating window objects

Destroying Window Objects

Registering window "classes"

Working with window objects

Device contexts: objects that make Windows drawing device-independent

Graphic objects: pens, brushes, fonts, bitmaps, palettes, regions

Frame Window Topics

Frame windows: window objects that provide frames

Frame windows and views

Frame-window classes

Frame-window styles

Changing the styles of a window created by MFC

What frame windows do

Using frame windows

Managing MD/Child windows (the MDICLIENT window)

Managing menus, control bars, and accelerators

CFrameWnd

CMDIFrameWnd

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows.md

See also

CMDIChildWnd

Using Views

Multiple Document Types, Views, and Frame Windows (Splitter windows)

Messages (maps and handler functions)

Create and Destroy Windows

General Window Creation Sequence

Destroy window objects

Create document frame windows

Destroy frame windows

Create Splitter Windows

Create splitter windows

Manage Child Windows and the Current View

Manage MDI child windows

Manage the current view

Manage menus, control bars, and accelerators

Work with Device Contexts and Window Styles

Use pens and other graphic objects in a device context

Change the styles of a window created by MFC

User Interface Elements
Dialog Boxes
Toolbars
Status Bars
Dialog Bars

Window Objects
3/4/2019 • 2 minutes to read • Edit Online

Functions for Operating On a CWnd

CWnd and Windows Messages

What do you want to know more aboutWhat do you want to know more about

MFC supplies class CWnd to encapsulate the HWND handle of a window. The CWnd object is a C++ window
object, distinct from the HWND that represents a Windows window but containing it. Use CWnd to derive your
own child window classes, or use one of the many MFC classes derived from CWnd . Class CWnd is the base
class for all windows, including frame windows, dialog boxes, child windows, controls, and control bars such as
toolbars. A good understanding of the relationship between a C++ window object and an HWND is crucial for
effective programming with MFC.

MFC provides some default functionality and management of windows, but you can derive your own class from
CWnd and use its member functions to customize the provided functionality. You can create child windows by

constructing a CWnd object and calling its Create member function, then customize the child windows using
CWnd member functions. You can embed objects derived from CView, such as form views or tree views, in a

frame window. And you can support multiple views of your documents via splitter panes, supplied by class
CSplitterWnd.

Each object derived from class CWnd contains a message map, through which you can map Windows messages
or command IDs to your own handlers.

The general literature on programming for Windows is a good resource for learning how to use the CWnd

member functions, which encapsulate the HWND APIs.

CWnd and its derived window classes provide constructors, destructors, and member functions to initialize the
object, create the underlying Windows structures, and access the encapsulated HWND . CWnd also provides
member functions that encapsulate Windows APIs for sending messages, accessing the window's state,
converting coordinates, updating, scrolling, accessing the Clipboard, and many other tasks. Most Windows
window-management APIs that take an HWND argument are encapsulated as member functions of CWnd . The
names of the functions and their parameters are preserved in the CWnd member function. For details about the
Windows APIs encapsulated by CWnd , see class CWnd.

One of the primary purposes of CWnd is to provide an interface for handling Windows messages, such as
WM_PAINT or WM_MOUSEMOVE. Many of the member functions of CWnd are handlers for standard
messages — those beginning with the identifier afx_msg and the prefix "On," such as OnPaint and
OnMouseMove . Message Handling and Mapping covers messages and message handling in detail. The

information there applies equally to the framework's windows and those that you create yourself for special
purposes.

The relationship between a C++ window object and an HWND

Derived window classes

Creating windows

Destroying window objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/window-objects.md

See also

Detaching a CWnd from Its HWND

Working with window objects

Device contexts: objects that make Windows drawing device independent

Graphic objects: pens, brushes, fonts, bitmaps, palettes, regions

Windows

Relationship Between a C++ Window Object and an
HWND
3/4/2019 • 2 minutes to read • Edit Online

See also

The window object is an object of the C++ CWnd class (or a derived class) that your program creates directly. It
comes and goes in response to your program's constructor and destructor calls. The Windows window, on the
other hand, is an opaque handle to an internal Windows data structure that corresponds to a window and
consumes system resources when present. A Windows window is identified by a "window handle" (HWND) and is
created after the CWnd object is created by a call to the Create member function of class CWnd . The window may
be destroyed either by a program call or by a user's action. The window handle is stored in the window object's
m_hWnd member variable. The following figure shows the relationship between the C++ window object and the
Windows window. Creating windows is discussed in Creating Windows. Destroying windows is discussed in
Destroying Window Objects.

Window Object and Windows Window

Window Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/relationship-between-a-cpp-window-object-and-an-hwnd.md

Derived Window Classes
3/4/2019 • 2 minutes to read • Edit Online

Frame Window Classes

Other Window Classes Derived from CWnd

Window Class Hierarchy

You can create windows directly from CWnd, or derive new window classes from CWnd . This is how you typically
create your own custom windows. However, most windows used in a framework program are instead created
from one of the CWnd -derived frame-window classes supplied by MFC.

CFrameWnd
Used for SDI frame windows that frame a single document and its view. The frame window is both the main
frame window for the application and the frame window for the current document.

CMDIFrameWnd
Used as the main frame window for MDI applications. The main frame window is a container for all MDI
document windows and shares its menu bar with them. An MDI frame window is a top-level window that appears
on the desktop.

CMDIChildWnd
Used for individual documents opened in an MDI main frame window. Each document and its view are framed by
an MDI child frame window contained by the MDI main frame window. An MDI child window looks much like a
typical frame window but is contained inside an MDI frame window instead of sitting on the desktop. However,
the MDI child window lacks a menu bar of its own and must share the menu bar of the MDI frame window that
contains it.

For more information, see Frame Windows.

In addition to frame windows, several other major categories of windows are derived from CWnd :

Views
Views are created using the CWnd -derived class CView (or one of its derived classes). A view is attached to a
document and acts as an intermediary between the document and the user. A view is a child window (not an MDI
child) that typically fills the client area of an SDI frame window or an MDI child frame window (or that portion of
the client area not covered by a toolbar and/or a status bar).

Dialog Boxes
Dialog boxes are created using the CWnd -derived class CDialog.

Forms
Form views based on dialog-template resources, such as dialog boxes, are created using classes CFormView,
CRecordView, or CDaoRecordView.

Controls
Controls such as buttons, list boxes, and combo boxes are created using other classes derived from CWnd . See
Control Topics.

Control Bars
Child windows that contain controls. Examples include toolbars and status bars. See Control Bars.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/derived-window-classes.md

Creating Your Own Special-Purpose Window Classes

See also

Refer to the MFC hierarchy chart in the MFC Reference. Views are explained in Document/View Architecture.
Dialog boxes are explained in Dialog Boxes.

In addition to the window classes provided by the class library, you may need special-purpose child windows. To
create such a window, create your own CWnd-derived class and make it a child window of a frame or view. Bear in
mind that the framework manages the extent of the client area of a document frame window. Most of the client
area is managed by a view, but other windows, such as control bars or your own custom windows, may share the
space with the view. You may need to interact with the mechanisms in classes CView and CControlBar for
positioning child windows in a frame window's client area.

Creating Windows discusses creation of window objects and the windows they manage.

Window Objects

Creating Windows
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

The framework automatically creates most of the windows you need in a framework program. Document/View
Creation shows how the framework creates the frame windows associated with documents and views. But for
special purposes you can create your own windows — including your own child windows of frame windows or
views — in addition to the windows supplied by the framework.

Registering window "classes" (as opposed to C++ window objects)

General window creation sequence

Destroying window objects

Working with window objects

Window Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-windows.md

Registering Window Classes
3/4/2019 • 2 minutes to read • Edit Online

Window Class Registration in Traditional Programs for Windows

Window Class Registration in MFC Programs

See also

Window "classes" in traditional programming for Windows define the characteristics of a "class" (not a C++ class)
from which any number of windows can be created. This kind of class is a template or model for creating windows.

In a traditional program for Windows, without MFC, you process all messages to a window in its "window
procedure" or " WndProc ." A WndProc is associated with a window by means of a "window class registration"
process. The main window is registered in the WinMain function, but other classes of windows can be registered
anywhere in the application. Registration depends on a structure that contains a pointer to the WndProc function
together with specifications for the cursor, background brush, and so forth. The structure is passed as a parameter,
along with the string name of the class, in a prior call to the RegisterClass function. Thus, a registration class can
be shared by multiple windows.

In contrast, most window class registration activity is done automatically in an MFC framework program. If you
are using MFC, you typically derive a C++ window class from an existing library class using the normal C++
syntax for class inheritance. The framework still uses traditional "registration classes," and it provides several
standard ones, registered for you when needed. You can register additional registration classes by calling the
AfxRegisterWndClass global function and then passing the registered class to the Create member function of
CWnd . As described here, the traditional "registration class" in Windows is not to be confused with a C++ class.

For more information, see Technical Note 1.

Creating Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/registering-window-classes.md

General Window Creation Sequence
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

What do you want to know more about

See also

When you create a window of your own, such as a child window, the framework uses much the same process as
that described in Document/View Creation.

All the window classes provided by MFC employ two-stage construction. That is, during an invocation of the C++
new operator, the constructor allocates and initializes a C++ object but does not create a corresponding Windows
window. That is done afterward by calling the Create member function of the window object.

The Create member function makes the Windows window and stores its HWND in the C++ object's public data
member m_hWnd. Create gives complete flexibility over the creation parameters. Before calling Create , you may
want to register a window class with the global function AfxRegisterWndClass in order to set the icon and class
styles for the frame.

For frame windows, you can use the LoadFrame member function instead of Create . LoadFrame makes the
Windows window using fewer parameters. It gets many default values from resources, including the frame's
caption, icon, accelerator table, and menu.

Your icon, accelerator table, and menu resources must have a common resource ID, such as IDR_MAINFRAME, for them to
be loaded by LoadFrame.

Window objects

Registering window "classes"

Destroying window objects

Creating document frame windows

Creating Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/general-window-creation-sequence.md

Destroying Window Objects
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

Care must be taken with your own child windows to destroy the C++ window object when the user is finished
with the window. If these objects are not destroyed, your application will not recover their memory. Fortunately,
the framework manages window destruction as well as creation for frame windows, views, and dialog boxes. If
you create additional windows, you are responsible for destroying them.

Window destruction sequence

Allocating and deallocating window memory

Detaching a CWnd from its HWND

General Window Creation Sequence

Destroying frame windows

Window Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/destroying-window-objects.md

Window Destruction Sequence
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

In the MFC framework, when the user closes the frame window, the window's default OnClose handler calls
DestroyWindow. The last member function called when the Windows window is destroyed is OnNcDestroy, which
does some cleanup, calls the Default member function to perform Windows cleanup, and lastly calls the virtual
member function PostNcDestroy. The CFrameWnd implementation of PostNcDestroy deletes the C++ window
object.

Allocating and deallocating window memory

Detaching a CWnd from its HWND

Destroying Window Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/window-destruction-sequence.md

Allocating and Deallocating Window Memory
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

Do not use the C++ delete operator to destroy a frame window or view. Instead, call the CWnd member function
DestroyWindow . Frame windows, therefore, should be allocated on the heap with operator new. Be careful when

allocating frame windows on the stack frame or globally. Other windows should be allocated on the stack frame
whenever possible.

Creating windows

Window destruction sequence

Detaching a CWnd from its HWND

Destroying Window Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/allocating-and-deallocating-window-memory.md

Detaching a CWnd from Its HWND
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

If you need to circumvent the object- HWND relationship, MFC provides another CWnd member function, Detach,
which disconnects the C++ window object from the Windows window. This prevents the destructor from
destroying the Windows window when the object is destroyed.

Creating windows

Window destruction sequence

Allocating and deallocating window memory

Window Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/detaching-a-cwnd-from-its-hwnd.md

Working with Window Objects
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

Working with windows calls for two kinds of activity:

Handling Windows messages

Drawing in the window

To handle Windows messages in any window, including your own child windows, see Mapping Messages to
Functions to map the messages to your C++ window class. Then write message-handler member functions in
your class.

Most drawing in a framework application occurs in the view, whose OnDraw member function is called whenever
the window's contents must be drawn. If your window is a child of the view, you might delegate some of the
view's drawing to your child window by having OnDraw call one of your window's member functions.

In any case, you will need a device context for drawing. You can use the stock pen, brush, and other graphic
objects contained in the device context associated with your window. Or you can modify these objects to get the
drawing effects you need. With your device context set up as you like, call member functions of class CDC
(device-context class) to draw lines, shapes, and text; to use colors; and to work with a coordinate system.

Message handling and mapping

Drawing in a view

Device contexts

Graphic objects

Window Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/working-with-window-objects.md

Device Contexts
3/4/2019 • 2 minutes to read • Edit Online

Mouse Drawing

What do you want to know more aboutWhat do you want to know more about

See also

A device context is a Windows data structure containing information about the drawing attributes of a device
such as a display or a printer. All drawing calls are made through a device-context object, which encapsulates the
Windows APIs for drawing lines, shapes, and text. Device contexts allow device-independent drawing in
Windows. Device contexts can be used to draw to the screen, to the printer, or to a metafile.

CPaintDC objects encapsulate the common idiom of Windows, calling the BeginPaint function, then drawing in
the device context, then calling the EndPaint function. The CPaintDC constructor calls BeginPaint for you, and
the destructor calls EndPaint . The simplified process is to create the CDC object, draw, and then destroy the CDC

object. In the framework, much of even this process is automated. In particular, your OnDraw function is passed a
CPaintDC already prepared (via OnPrepareDC), and you simply draw into it. It is destroyed by the framework and

the underlying device context is released to Windows upon return from the call to your OnDraw function.

CClientDC objects encapsulate working with a device context that represents only the client area of a window.
The CClientDC constructor calls the GetDC function, and the destructor calls the ReleaseDC function.
CWindowDC objects encapsulate a device context that represents the whole window, including its frame.

CMetaFileDC objects encapsulate drawing into a Windows metafile. In contrast to the CPaintDC passed to
OnDraw , you must in this case call OnPrepareDC yourself.

Most drawing in a framework program — and thus most device-context work — is done in the view's OnDraw
member function. However, you can still use device-context objects for other purposes. For example, to provide
tracking feedback for mouse movement in a view, you need to draw directly into the view without waiting for
OnDraw to be called.

In such a case, you can use a CClientDC device-context object to draw directly into the view.

Device contexts (definition)

Drawing in a View

Interpreting User Input Through a View

Lines and curves

Filled shapes

Fonts and text

Colors

Coordinate spaces and transformations

Window Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/device-contexts.md
https://docs.microsoft.com/windows/desktop/gdi/device-contexts
https://docs.microsoft.com/windows/desktop/gdi/lines-and-curves
https://docs.microsoft.com/windows/desktop/gdi/filled-shapes
https://docs.microsoft.com/windows/desktop/gdi/fonts-and-text
https://docs.microsoft.com/windows/desktop/gdi/colors
https://docs.microsoft.com/windows/desktop/gdi/coordinate-spaces-and-transformations

Graphic Objects
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Classes for Windows GDI ObjectsClasses for Windows GDI Objects

CLASS WINDOWS HANDLE TYPE

CPen HPEN

CBrush HBRUSH

CFont HFONT

CBitmap HBITMAP

CPalette HPALETTE

CRgn HRGN

NOTENOTE

CPen myPen;
myPen.CreatePen(PS_COSMETIC, 1, RGB(255,255,0));
HPEN hMyPen = (HPEN)myPen;

To create a graphic object in a device contextTo create a graphic object in a device context

Windows provides a variety of drawing tools to use in device contexts. It provides pens to draw lines, brushes to
fill interiors, and fonts to draw text. MFC provides graphic-object classes equivalent to the drawing tools in
Windows. The table below shows the available classes and the equivalent Windows graphics device interface
(GDI) handle types.

For more information, see the GDI+ SDK documentation at:
https://msdn.microsoft.com/library/default.aspurl=/library/gdicpp/GDIPlus/GDIPlus.asp.

This article explains the use of these graphic-object classes:

The class CImage provides enhanced bitmap support.

Each graphic-object class in the class library has a constructor that allows you to create graphic objects of that
class, which you must then initialize with the appropriate create function, such as CreatePen .

Each graphic-object class in the class library has a cast operator that will cast an MFC object to the associated
Windows handle. The resulting handle is valid until the associated object detaches it. Use the object's Detach

member function to detach the handle.

The following code casts a CPen object to a Windows handle:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/graphic-objects.md
https://msdn.microsoft.com/library/default.aspurl=/library/gdicpp/gdiplus/gdiplus.asp

NOTENOTE

What do you want to know more aboutWhat do you want to know more about

See also

1. Define a graphic object on the stack frame. Initialize the object with the type-specific create function, such
as CreatePen . Alternatively, initialize the object in the constructor. See the discussion of one-stage and
two-stage creation, which provides example code.

2. Select the object into the current device context, saving the old graphic object that was selected before.

3. When done with the current graphic object, select the old graphic object back into the device context to
restore its state.

4. Allow the frame-allocated graphic object to be deleted automatically when the scope is exited.

If you will be using a graphic object repeatedly, you can allocate it once and select it into a device context each time it is
needed. Be sure to delete such an object when you no longer need it.

One-stage and two-stage construction of graphic objects

Example of constructing a pen in one and two stages

Selecting a Graphic Object into a Device Context

Device contexts

Window Objects

One-Stage and Two-Stage Construction of Objects
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Example of Both Construction Techniques

// One-stage
 CPen myPen1(PS_DOT, 5, RGB(0,0,0));

// Two-stage: first construct the pen
 CPen myPen2;
 // Then initialize it
 if(myPen2.CreatePen(PS_DOT, 5, RGB(0,0,0)))
{
 // Use the pen
}

What do you want to know more aboutWhat do you want to know more about

See also

You have a choice between two techniques for creating graphic objects, such as pens and brushes:

One-stage construction: Construct and initialize the object in one stage, all with the constructor.

Two-stage construction: Construct and initialize the object in two separate stages. The constructor creates
the object and an initialization function initializes it.

Two-stage construction is always safer. In one-stage construction, the constructor could throw an exception if you
provide incorrect arguments or memory allocation fails. That problem is avoided by two-stage construction,
although you do have to check for failure. In either case, destroying the object is the same process.

These techniques apply to creating any objects, not just graphic objects.

The following brief example shows both methods of constructing a pen object:

Graphic objects

Selecting a graphic object into a device context

Device contexts

Drawing in a View

Graphic Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/one-stage-and-two-stage-construction-of-objects.md

Selecting a Graphic Object into a Device Context
3/4/2019 • 2 minutes to read • Edit Online

void CNewView::OnDraw(CDC* pDC)
{
 CPen penBlack; // Construct it, then initialize
 if(penBlack.CreatePen(PS_SOLID, 2, RGB(0,0,0)))
 {
 // Select it into the device context
 // Save the old pen at the same time
 CPen* pOldPen = pDC->SelectObject(&penBlack);

 // Draw with the pen
 pDC->MoveTo(20,20);
 pDC->LineTo(40,40);

 // Restore the old pen to the device context
 pDC->SelectObject(pOldPen);
 }
 else
 {
 // Alert the user that resources are low
 }
}

Lifetime of Graphic Objects

What do you want to know more aboutWhat do you want to know more about

See also

This topic applies to using graphic objects in a window's device context. After you create a drawing object, you
must select it into the device context in place of the default object stored there:

The graphic object returned by SelectObject is "temporary." That is, it will be deleted by the OnIdle member
function of class CWinApp the next time the program gets idle time. As long as you use the object returned by
SelectObject in a single function without returning control to the main message loop, you will have no problem.

Graphic objects

One-stage and two-stage construction of graphic objects

Device contexts

Drawing in a View

Graphic Objects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/selecting-a-graphic-object-into-a-device-context.md

Frame Windows
3/4/2019 • 2 minutes to read • Edit Online

Frame Windows and Views

Frame Windows and Splitter Windows

What do you want to know more aboutWhat do you want to know more about

When an application runs under Windows, the user interacts with documents displayed in frame windows. A
document frame window has two major components: the frame and the contents that it frames. A document
frame window can be a single document interface (SDI) frame window or a multiple document interface (MDI)
child window. Windows manages most of the user's interaction with the frame window: moving and resizing the
window, closing it, and minimizing and maximizing it. You manage the contents inside the frame.

The MFC framework uses frame windows to contain views. The two components — frame and contents — are
represented and managed by two different classes in MFC. A frame-window class manages the frame, and a
view class manages the contents. The view window is a child of the frame window. Drawing and other user
interaction with the document take place in the view's client area, not the frame window's client area. The frame
window provides a visible frame around a view, complete with a caption bar and standard window controls such
as a control menu, buttons to minimize and maximize the window, and controls for resizing the window. The
"contents" consist of the window's client area, which is fully occupied by a child window — the view. The
following figure shows the relationship between a frame window and a view.

Frame Window and View

Another common arrangement is for the frame window to frame multiple views, usually using a splitter window.
In a splitter window, the frame window's client area is occupied by a splitter window, which in turn has multiple
child windows, called panes, which are views.

General Frame Window Topics

Window objects

Frame window classes

The Frame-Window classes created by the Application Wizard

Frame window styles

What frame windows do

Topics on Using Frame Windows

Using frame windows

Creating document frame windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/frame-windows.md

See also

Destroying frame windows

Managing MDI child windows

Managing the current view in a frame window that contains more than one view

Managing menus, control bars, and accelerators (other objects that share the frame window's space)

Topics on Special Frame Window Capabilities

Dragging and dropping files from File Explorer or File Manager into a frame window

Responding to dynamic data exchange (DDE)

Semimodal states: Context-sensitive Windows Help (Orchestrating other window actions)

Semimodal states: printing and print preview (Orchestrating other window actions)

Topics on Other Kinds of Windows

Using Views

Dialog boxes

Controls

Windows

Frame-Window Classes
3/4/2019 • 2 minutes to read • Edit Online

Frame Windows in SDI and MDI Applications

Use the Frame-Window Class, or Derive from It

What do you want to know more aboutWhat do you want to know more about

See also

Each application has one "main frame window," a desktop window that usually has the application name in its
caption. Each document usually has one "document frame window." A document frame window contains at least
one view, which presents the document's data.

For an SDI application, there is one frame window derived from class CFrameWnd. This window is both the main
frame window and the document frame window. For an MDI application, the main frame window is derived from
class CMDIFrameWnd, and the document frame windows, which are MDI child windows, are derived from class
CMDIChildWnd.

These classes provide most of the frame-window functionality you need for your applications. Under normal
circumstances, the default behavior and appearance they provide will suit your needs. If you need additional
functionality, derive from these classes.

Frame-window classes created by the Application Wizard

Frame-window styles

Changing the styles of a window created by MFC

Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/frame-window-classes.md

Frame-Window Classes Created by the Application
Wizard
3/4/2019 • 2 minutes to read • Edit Online

See also

When you use the Application Wizard to create a skeleton application, in addition to application, document, and
view classes, the Application Wizard creates a derived frame-window class for your application's main frame
window. The class is called CMainFrame by default, and the files that contain it are named MAINFRM.H and
MAINFRM.CPP.

If your application is SDI, your CMainFrame class is derived from class CFrameWnd.

If your application is MDI, CMainFrame is derived from class CMDIFrameWnd. In this case CMainFrame implements
the main frame, which holds the menu, toolbar, and status bars. The Application Wizard does not derive a new
document frame-window class for you. Instead, it uses the default implementation in CMDIChildWnd Class. The
MFC framework creates a child window to contain each view (which can be of type CScrollView , CEditView ,
CTreeView , CListView , and so on) that the application requires. If you need to customize your document frame

window, you can create a new document frame-window class (see Adding a Class).

If you choose to support a toolbar, the class also has member variables of type CToolBar and CStatusBar and an
OnCreate message-handler function to initialize the two control bars.

These frame-window classes work as created, but to enhance their functionality, you must add member variables
and member functions. You may also want to have your window classes handle other Windows messages. For
more information, see Changing the Styles of a Window Created by MFC.

Frame-Window Classes
MFC Program or Control Source and Header Files

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/frame-window-classes-created-by-the-application-wizard.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-desktop-projects-by-using-application-wizards
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/mfc-program-or-control-source-and-header-files

Frame-Window Styles (C++)
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

The frame windows you get with the framework are suitable for most programs, but you can gain additional
flexibility by using the advanced functions PreCreateWindow and the MFC global function AfxRegisterWndClass.
PreCreateWindow is a member function of CWnd .

If you apply the WS_HSCROLL and WS_VSCROLL styles to the main frame window, they are instead applied to
the MDICLIENT window so users can scroll the MDICLIENT area.

If the window's FWS_ADDTOTITLE style bit is set (which it is by default), the view tells the frame window what
title to display in the window's title bar based on the view's document name.

Managing MDI child windows (MDICLIENT), the window within an MDI frame that contains the MDI child
windows

Changing the styles of a window created by MFC

Window styles

Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/frame-window-styles-cpp.md

Changing the Styles of a Window Created by MFC
3/4/2019 • 3 minutes to read • Edit Online

Changing Styles in a New MFC Application

Changing Styles in an Existing Application

// cs has been declared as CREATESTRUCT& cs;
cs.style &= ~WS_CAPTION;

The SDI Case

In its version of the WinMain function, MFC registers several standard window classes for you. Because you don't
normally edit MFC's WinMain , that function gives you no opportunity to change the MFC default window styles.
This article explains how you can change the styles of such a preregistered window class in an existing application.

If you're using Visual C++ 2.0 or later, you can change the default window styles in the Application Wizard when
you create your application. In the Application Wizard's User Interface Features page, you can change styles for
your main frame window and MDI child windows. For either window type, you can specify its frame thickness
(thick or thin) and any of the following:

Whether the window has Minimize or Maximize controls.

Whether the window appears initially minimized, maximized, or neither.

For main frame windows, you can also specify whether the window has a System Menu. For MDI child windows,
you can specify whether the window supports splitter panes.

If you're changing window attributes in an existing application, follow the instructions in the rest of this article
instead.

To change the default window attributes used by a framework application created with the Application Wizard,
override the window's PreCreateWindow virtual member function. PreCreateWindow allows an application to
access the creation process normally managed internally by the CDocTemplate class. The framework calls
PreCreateWindow just prior to creating the window. By modifying the CREATESTRUCT structure passed to
PreCreateWindow , your application can change the attributes used to create the window. For example, to ensure

that a window does not use a caption, use the following bitwise operation:

The CTRLBARS sample application demonstrates this technique for changing window attributes. Depending on
what your application changes in PreCreateWindow , it may be necessary to call the base class implementation of
the function.

The following discussion covers the SDI case and the MDI case.

In a single document interface (SDI) application, the default window style in the framework is a combination of
the WS_OVERLAPPEDWINDOW and FWS_ADDTOTITLE styles. FWS_ADDTOTITLE is an MFC-specific
style that instructs the framework to add the document title to the window's caption. To change the window
attributes in an SDI application, override the PreCreateWindow function in your class derived from CFrameWnd

(which the Application Wizard names CMainFrame). For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/changing-the-styles-of-a-window-created-by-mfc.md
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcreatestructa
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

BOOL CMainFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // Call the base-class version
 if(!CFrameWnd::PreCreateWindow(cs))
 return FALSE;

 // Create a window without min/max buttons or sizable border
 cs.style = WS_OVERLAPPED | WS_SYSMENU | WS_BORDER;

 // Size the window to 1/3 screen size and center it
 cs.cy = ::GetSystemMetrics(SM_CYSCREEN) / 3;
 cs.cx = ::GetSystemMetrics(SM_CXSCREEN) / 3;
 cs.y = ((cs.cy * 3) - cs.cy) / 2;
 cs.x = ((cs.cx * 3) - cs.cx) / 2;

 return TRUE;
}

The MDI Case

BOOL CChildFrame::PreCreateWindow(CREATESTRUCT& cs)
{
 // Create a child window without the maximize button
 cs.style &= ~WS_MAXIMIZEBOX;

 return CMDIChildWnd::PreCreateWindow(cs);
}

What do you want to know more aboutWhat do you want to know more about

See also

This code creates a main frame window without Minimize and Maximize buttons and without a sizable border.
The window is initially centered on the screen.

A little more work is required to change the window style of a child window in a multiple document interface
(MDI) application. By default, an MDI application created with the Application Wizard uses the default
CMDIChildWnd class defined in MFC. To change the window style of an MDI child window, you must derive a
new class from CMDIChildWnd and replace all references to CMDIChildWnd in your project with references to the
new class. Most likely, the only reference to CMDIChildWnd in the application is located in your application's
InitInstance member function.

The default window style used in an MDI application is a combination of the WS_CHILD ,
WS_OVERLAPPEDWINDOW, and FWS_ADDTOTITLE styles. To change the window attributes of an MDI
application's child windows, override the PreCreateWindow function in your class derived from CMDIChildWnd . For
example:

This code creates MDI child windows without a Maximize button.

Windows styles

Frame-window styles

Window styles

Frame-Window Styles

https://docs.microsoft.com/windows/desktop/winmsg/window-styles

What Frame Windows Do
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

Besides simply framing a view, frame windows are responsible for numerous tasks involved in coordinating the
frame with its view and with the application. CMDIFrameWnd and CMDIChildWnd inherit from CFrameWnd, so
they have CFrameWnd capabilities as well as new capabilities that they add. Examples of child windows include
views, controls such as buttons and list boxes, and control bars, including toolbars, status bars, and dialog bars.

The frame window is responsible for managing the layout of its child windows. In the MFC framework, a frame
window positions any control bars, views, and other child windows inside its client area.

The frame window also forwards commands to its views and can respond to notification messages from control
windows.

Control bars (how they fit into the frame window)

Managing menus, control bars, and accelerators (how they fit into the frame window)

Command Routing (from the frame window to its view and other command targets)

Document /View Architecture

Control bars

Controls

Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/what-frame-windows-do.md

Using Frame Windows
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

The MFC framework creates document frame windows — and their views and documents — as part of its
implementation of the New and Open commands on the File menu. Because the framework does most of the
frame-window work for you, you play only a small role in creating, using, and destroying those windows. You can,
however, explicitly create your own frame windows and child windows for special purposes.

Creating document frame windows

When to Initialize CWnd Objects

Destroying frame windows

Managing MDI child windows

Managing the current view

Managing menus, control bars, and accelerators

Dragging and dropping files in a frame window

Responding to dynamic data exchange (DDE)

Orchestrating other window actions

Managing context-sensitive help

The frame window's role in printing and print preview

Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/using-frame-windows.md

Creating Document Frame Windows
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

Document/View Creation shows how the CDocTemplate object orchestrates creating the frame window,
document, and view and connecting them all together. Three CRuntimeClass arguments to the CDocTemplate

constructor specify the frame window, document, and view classes that the document template creates
dynamically in response to user commands such as the New command on the File menu or the New Window
command on an MDI Window menu. The document template stores this information for later use when it creates
a frame window for a view and document.

For the RUNTIME_CLASS mechanism to work correctly, your derived frame-window classes must be declared
with the DECLARE_DYNCREATE macro. This is because the framework needs to create document frame
windows using the dynamic construction mechanism of class CObject .

When the user chooses a command that creates a document, the framework calls upon the document template to
create the document object, its view, and the frame window that will display the view. When it creates the
document frame window, the document template creates an object of the appropriate class — a class derived
from CFrameWnd for an SDI application or from CMDIChildWnd for an MDI application. The framework then
calls the frame-window object's LoadFrame member function to get creation information from resources and to
create the Windows window. The framework attaches the window handle to the frame-window object. Then it
creates the view as a child window of the document frame window.

Use caution in deciding when to initialize your CWnd -derived object.

Deriving a Class from CObject (its dynamic creation mechanism)

Document/View Creation (templates and frame window creation)

Destroying frame windows

Using Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/creating-document-frame-windows.md

When to Initialize CWnd Objects
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

You cannot create your own child windows or call any Windows API functions in the constructor of a CWnd -
derived object. This is because the HWND for the CWnd object has not been created yet. Most Windows-specific
initialization, such as adding child windows, must be done in an OnCreate message handler.

Creating document frame windows

Document/view creation

Using Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/when-to-initialize-cwnd-objects.md

Destroying Frame Windows
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

The MFC framework manages window destruction as well as creation for those windows associated with
framework documents and views. If you create additional windows, you are responsible for destroying them.

In the framework, when the user closes the frame window, the window's default OnClose handler calls
DestroyWindow. The last member function called when the Windows window is destroyed is OnNcDestroy,
which does some cleanup, calls the Default member function to perform Windows cleanup, and lastly calls the
virtual member function PostNcDestroy. The CFrameWnd implementation of PostNcDestroy deletes the C++
window object. You should never use the C++ delete operator on a frame window. Use DestroyWindow instead.

When the main window closes, the application closes. If there are modified unsaved documents, the framework
displays a message box to ask if the documents should be saved and ensures that the appropriate documents are
saved if necessary.

Creating document frame windows

Using Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/destroying-frame-windows.md

Managing MDI Child Windows
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See also

MDI main frame windows (one per application) contain a special child window called the MDICLIENT window.
The MDICLIENT window manages the client area of the main frame window, and itself has child windows: the
document windows, derived from CMDIChildWnd . Because the document windows are frame windows themselves
(MDI child windows), they can also have their own children. In all of these cases, the parent window manages its
child windows and forwards some commands to them.

In an MDI frame window, the frame window manages the MDICLIENT window, repositioning it in conjunction
with control bars. The MDICLIENT window, in turn, manages all MDI child frame windows. The following figure
shows the relationship between an MDI frame window, its MDICLIENT window, and its child document frame
windows.

MDI Frame Windows and Children

An MDI frame window also works in conjunction with the current MDI child window, if there is one. The MDI
frame window delegates command messages to the MDI child before it tries to handle them itself.

Creating document frame windows

Frame-window styles

Using Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/managing-mdi-child-windows.md

Managing the Current View
3/4/2019 • 2 minutes to read • Edit Online

See also

As part of the default implementation of frame windows, a frame window keeps track of a currently active view. If
the frame window contains more than one view, as for example in a splitter window, the current view is the most
recent view in use. The active view is independent of the active window in Windows or the current input focus.

When the active view changes, the framework notifies the current view by calling its OnActivateView member
function. You can tell whether the view is being activated or deactivated by examining OnActivateView 's bActivate
parameter. By default, OnActivateView sets the focus to the current view on activation. You can override
OnActivateView to perform any special processing when the view is deactivated or reactivated. For example, you

might want to provide special visual cues to distinguish the active view from other, inactive views.

A frame window forwards commands to its current (active) view, as described in Command Routing, as part of the
standard command routing.

Using Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/managing-the-current-view.md

Managing Menus, Control Bars, and Accelerators
3/4/2019 • 2 minutes to read • Edit Online

Managing Menus

Managing the Status Bar

Managing Accelerators

See also

The frame window manages updating user-interface objects, including menus, toolbar buttons, the status bar, and
accelerators. It also manages sharing the menu bar in MDI applications.

The frame window participates in updating user-interface items using the ON_UPDATE_COMMAND_UI
mechanism described in How to Update User-Interface Objects. Buttons on toolbars and other control bars are
updated during the idle loop. Menu items in drop-down menus on the menu bar are updated just before the
menu drops down.

For MDI applications, the MDI frame window manages the menu bar and caption. An MDI frame window owns
one default menu that is used as the menu bar when there are no active MDI child windows. When there are
active children, the MDI frame window's menu bar is taken over by the menu for the active MDI child window. If
an MDI application supports multiple document types, such as chart and worksheet documents, each type puts its
own menus into the menu bar and changes the main frame window's caption.

CMDIFrameWnd provides default implementations for the standard commands on the Window menu that
appears for MDI applications. In particular, the New Window command (ID_WINDOW_NEW) is implemented to
create a new frame window and view on the current document. You need to override these implementations only
if you need advanced customization.

Multiple MDI child windows of the same document type share menu resources. If several MDI child windows are
created by the same document template, they can all use the same menu resource, saving on system resources in
Windows.

The frame window also positions the status bar within its client area and manages the status bar's indicators. The
frame window clears and updates the message area in the status bar as needed and displays prompt strings as the
user selects menu items or toolbar buttons, as described in How to Display Command Information in the Status
Bar.

Each frame window maintains an optional accelerator table that does keyboard accelerator translation for you
automatically. This mechanism makes it easy to define accelerator keys (also called shortcut keys) that invoke
menu commands.

Using Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/managing-menus-control-bars-and-accelerators.md

Dragging and Dropping Files in a Frame Window
3/4/2019 • 2 minutes to read • Edit Online

See also

The frame window manages a relationship with File Explorer or File Manager.

By adding a few initializing calls in your override of the CWinApp member function InitInstance , as described in
CWinApp: The Application Class, you can have your frame window indirectly open files dragged from File Explorer
or File Manager and dropped in the frame window. See File Manager Drag and Drop.

Using Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dragging-and-dropping-files-in-a-frame-window.md

Responding to Dynamic Data Exchange (DDE)
3/4/2019 • 2 minutes to read • Edit Online

See also

The frame window can respond to dynamic data exchange (DDE) requests to open files from the File Manager (if
the file extension is registered or associated with the application). See Shell Registration.

Using Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/responding-to-dynamic-data-exchange-dde.md

Orchestrating Other Window Actions
3/4/2019 • 2 minutes to read • Edit Online

See also

The frame window orchestrates semimodal states such as context-sensitive help and print preview. For a
description of the frame window's role in print preview, see Printing and Print Preview.

Using Frame Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/orchestrating-other-window-actions.md

Windows Sockets
3/4/2019 • 2 minutes to read • Edit Online

In This Section

This family of articles covers the MFC implementation of Windows Sockets. MFC supplies two classes to support
programming network applications with the Windows Sockets API. Class CAsyncSocket encapsulates the
Windows Sockets API one for one, giving advanced network programmers the most power and flexibility. Class
CSocket provides a simplified interface for serializing data to and from a CArchive object.

Windows Sockets in MFC

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets.md

Windows Sockets in MFC
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Sockets Programming Models

Windows Sockets DLLs

MFC supports Windows Sockets 1 but does not support Windows Sockets 2. Windows Sockets 2 first shipped with
Windows 98 and is the version included with Windows 2000.

MFC supplies two models for writing network communications programs with Windows Sockets, embodied in
two MFC classes. This article describes these models and further details MFC sockets support. A "socket" is an
endpoint of communication: an object through which your application communicates with other Windows
Sockets applications across a network.

For information on Windows Sockets, including an explanation of the socket concept, see Windows Sockets:
Background.

The two MFC Windows Sockets programming models are supported by the following classes:

CAsyncSocket

This class encapsulates the Windows Sockets API. CAsyncSocket is for programmers who know network
programming and want the flexibility of programming directly to the sockets API but also want the
convenience of callback functions for notification of network events. Other than packaging sockets in
object-oriented form for use in C++, the only additional abstraction this class supplies is converting
certain socket-related Windows messages into callbacks. For more information, see Windows Sockets:
Socket Notifications.

CSocket

This class, derived from CAsyncSocket , supplies a higher level abstraction for working with sockets
through an MFC CArchive object. Using a socket with an archive greatly resembles using MFC's file
serialization protocol. This makes it easier to use than the CAsyncSocket model. CSocket inherits many
member functions from CAsyncSocket that encapsulate Windows Sockets APIs; you will have to use
some of these functions and understand sockets programming generally. But CSocket manages many
aspects of the communication that you would have to do yourself using either the raw API or class
CAsyncSocket . Most importantly, CSocket provides blocking (with background processing of Windows

messages), which is essential to the synchronous operation of CArchive .

Creating and using CSocket and CAsyncSocket objects is described in Windows Sockets: Using Sockets with
Archives and Windows Sockets: Using Class CAsyncSocket.

The Microsoft Windows operating systems supply the Windows Sockets dynamic-link libraries (DLL). Visual
C++ supplies the appropriate header files and libraries and the Windows Sockets specification.

For more information about Windows Sockets, see:

Windows Sockets: Stream Sockets

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-in-mfc.md
https://docs.microsoft.com/windows/desktop/WinSock/windows-sockets-start-page-2

See also

Windows Sockets: Datagram Sockets

Windows Sockets: Using Sockets with Archives

Windows Sockets: Sequence of Operations

Windows Sockets: Example of Sockets Using Archives

Windows Sockets: How Sockets with Archives Work

Windows Sockets: Using Class CAsyncSocket

Windows Sockets: Deriving from Socket Classes

Windows Sockets: Socket Notifications

Windows Sockets: Blocking

Windows Sockets: Byte Ordering

Windows Sockets: Converting Strings

Windows Sockets: Ports and Socket Addresses

Windows Sockets

Windows Sockets: Background
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

TIPTIP

Definition of a Socket

This article explains the nature and purpose of Windows Sockets. The article also:

Defines the term "socket".

Describes the SOCKET handle data type.

Describes uses for sockets.

The Windows Sockets specification defines a binary-compatible network programming interface for Microsoft
Windows. Windows Sockets are based on the UNIX sockets implementation in the Berkeley Software
Distribution (BSD, release 4.3) from the University of California at Berkeley. The specification includes both BSD-
style socket routines and extensions specific to Windows. Using Windows Sockets permits your application to
communicate across any network that conforms to the Windows Sockets API. On Win32, Windows Sockets
provide for thread safety.

Many network software vendors support Windows Sockets under network protocols including Transmission
Control Protocol/Internet Protocol (TCP/IP), Xerox Network System (XNS), Digital Equipment Corporation's
DECNet protocol, Novell Corporation's Internet Packet Exchange/Sequenced Packed Exchange (IPX/SPX), and
others. Although the present Windows Sockets specification defines the sockets abstraction for TCP/IP, any
network protocol can comply with Windows Sockets by supplying its own version of the dynamic-link library
(DLL) that implements Windows Sockets. Examples of commercial applications written with Windows Sockets
include X Windows servers, terminal emulators, and electronic mail systems.

The purpose of Windows Sockets is to abstract away the underlying network so that you do not have to be knowledgeable
about that network and so your application can run on any network that supports sockets. Consequently, this
documentation does not discuss the details of network protocols.

The Microsoft Foundation Class Library (MFC) supports programming with the Windows Sockets API by
supplying two classes. One of these classes, CSocket , provides a high level of abstraction to simplify your
network communications programming.

The Windows Sockets specification, Windows Sockets: An Open Interface for Network Computing Under
Microsoft Windows, now at version 1.1, was developed as an open networking standard by a large group of
individuals and corporations in the TCP/IP community and is freely available for use. The sockets programming
model supports one "communication domain" currently, using the Internet Protocol Suite. The specification is
available in the Windows SDK.

Because sockets use the Internet Protocol Suite, they are the preferred route for applications that support Internet
communications on the "information highway."

A socket is a communication endpoint — an object through which a Windows Sockets application sends or
receives packets of data across a network. A socket has a type and is associated with a running process, and it

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-background.md

NOTENOTE

The SOCKET Data Type

Uses for Sockets

TIPTIP

may have a name. Currently, sockets generally exchange data only with other sockets in the same
"communication domain," which uses the Internet Protocol Suite.

Both kinds of sockets are bidirectional; they are data flows that can be communicated in both directions
simultaneously (full-duplex).

Two socket types are available:

Stream sockets

Stream sockets provide for a data flow without record boundaries: a stream of bytes. Streams are
guaranteed to be delivered and to be correctly sequenced and unduplicated.

Datagram sockets

Datagram sockets support a record-oriented data flow that is not guaranteed to be delivered and may not
be sequenced as sent or unduplicated.

"Sequenced" means that packets are delivered in the order sent. "Unduplicated" means that you get a particular
packet only once.

Under some network protocols, such as XNS, streams can be record oriented, as streams of records rather than streams of
bytes. Under the more common TCP/IP protocol, however, streams are byte streams. Windows Sockets provides a level of
abstraction independent of the underlying protocol.

For information about these types and which kind of socket to use in which situations, see Windows Sockets:
Stream Sockets and Windows Sockets: Datagram Sockets.

Each MFC socket object encapsulates a handle to a Windows Sockets object. The data type of this handle is
SOCKET. A SOCKET handle is analogous to the HWND for a window. MFC socket classes provide operations on
the encapsulated handle.

The SOCKET data type is described in detail in the Windows SDK. See "Socket Data Type and Error Values"
under Windows Sockets.

Sockets are highly useful in at least three communications contexts:

Client/server models.

Peer-to-peer scenarios, such as messaging applications.

Making remote procedure calls (RPC) by having the receiving application interpret a message as a
function call.

The ideal case for using MFC sockets is when you are writing both ends of the communication: using MFC at both ends.
For more information on this topic, including how to manage the case when you're communicating with non-MFC
applications, see Windows Sockets: Byte Ordering.

For more information, see Windows Sockets Specification: ntohs, ntohl, htons, htonl. Also, see the following

See also

topics:

Windows Sockets: Using Sockets with Archives

Windows Sockets: Example of Sockets Using Archives

Windows Sockets: Using Class CAsyncSocket

Windows Sockets in MFC

Windows Sockets: Stream Sockets
3/4/2019 • 2 minutes to read • Edit Online

See also

This article describes stream sockets, one of the two Windows Socket types available. (The other type is the
datagram socket.)

Stream sockets provide for a data flow without record boundaries: a stream of bytes that can be bidirectional (the
application is full duplex: it can both transmit and receive through the socket). Streams can be relied upon to
deliver sequenced, unduplicated data. ("Sequenced" means that packets are delivered in the order sent.
"Unduplicated" means that you get a particular packet only once.) Receipt of stream messages is guaranteed, and
streams are well suited to handling large amounts of data.

The network transport layer may break up or group data into packets of reasonable size. The CSocket class will
handle the packing and unpacking for you.

Streams are based on explicit connections: socket A requests a connection to socket B; socket B accepts or rejects
the connection request.

A telephone call provides a good analogy for a stream. Under normal circumstances, the receiving party hears
what you say in the order that you say it, without duplication or loss. Stream sockets are appropriate, for example,
for implementations such as the File Transfer Protocol (FTP), which facilitates transferring ASCII or binary files of
arbitrary size.

Stream sockets are preferable to datagram sockets when the data must be guaranteed to arrive and when data
size is large. For more information about stream sockets, see the Windows Sockets specification. The
specification is available in the Windows SDK.

Using stream sockets can be superior to applications designed to use a datagram socket for broadcasting to all
receiving sockets on the network because

NOTENOTE

The broadcast model is subject to network flood (or "storm") problems.

The client-server model adopted subsequently is more efficient.

The stream model supplies reliable data transfer, where the datagram model does not.

The final model takes advantage of the ability to communicate between Unicode and ANSI socket
applications that class CArchive lends to class CSocket.

If you use class CSocket , you must use a stream. An MFC assertion fails if you specify the socket type as
SOCK_DGRAM.

Windows Sockets in MFC
Windows Sockets: Background

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-stream-sockets.md

Windows Sockets: Datagram Sockets
3/4/2019 • 2 minutes to read • Edit Online

See also

This article describes datagram sockets, one of the two Windows Socket types available. (The other type is the
stream socket.)

Datagram sockets support a bidirectional data flow that is not guaranteed to be sequenced or unduplicated.
Datagrams also are not guaranteed to be reliable; they can fail to arrive. Datagram data may arrive out of order
and possibly duplicated, but record boundaries in the data are preserved, as long as the records are smaller than
the receiver's internal size limit. You are responsible for managing sequencing and reliability. (Reliability tends to
be good on local-area networks [LAN] but less so on wide-area networks [WAN], such as the Internet.)

Datagrams are "connectionless", that is, no explicit connection is established; you send a datagram message to a
specified socket and you can receive messages from a specified socket.

An example of a datagram socket is an application that keeps system clocks on the network synchronized. This
illustrates an additional capability of datagram sockets in at least some settings: broadcasting messages to a large
number of network addresses.

Datagram sockets are better than stream sockets for record-oriented data. For more information about datagram
sockets, see the Windows Sockets specification, available in the Windows SDK.

Windows Sockets in MFC
Windows Sockets: Background

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-datagram-sockets.md

Windows Sockets: Using Sockets with Archives
3/4/2019 • 3 minutes to read • Edit Online

TIPTIP

NOTENOTE

The CSocket Programming Model

TIPTIP

To set up communication between a server socket and a client socketTo set up communication between a server socket and a client socket

This article describes the CSocket programming model. Class CSocket supplies socket support at a higher level
of abstraction than does class CAsyncSocket. CSocket uses a version of the MFC serialization protocol to pass
data to and from a socket object through an MFC CArchive object. CSocket provides blocking (while managing
background processing of Windows messages) and gives you access to CArchive , which manages many
aspects of the communication that you would have to do yourself using either the raw API or class
CAsyncSocket .

You can use class CSocket by itself, as a more convenient version of CAsyncSocket , but the simplest programming
model is to use CSocket with a CArchive object.

For more information about how the implementation of sockets with archives works, see Windows Sockets:
How Sockets with Archives Work. For example code, see Windows Sockets: Sequence of Operations and
Windows Sockets: Example of Sockets Using Archives. For information about some of the functionality you can
gain by deriving your own classes from the sockets classes, see Windows Sockets: Deriving from Socket
Classes.

If you are writing an MFC client program to communicate with established (non-MFC) servers, do not send C++ objects
through the archive. Unless the server is an MFC application that understands the kinds of objects you want to send, it
will not be able to receive and deserialize your objects. For related material on the subject of communicating with non-
MFC applications, also see the article Windows Sockets: Byte Ordering.

Using a CSocket object involves creating and associating together several MFC class objects. In the general
procedure below, each step is taken by both the server socket and the client socket, except for step 3, in which
each socket type requires a different action.

At run time, the server application usually starts first to be ready and "listening" when the client application seeks a
connection. If the server is not ready when the client tries to connect, you typically require the user application to try
connecting again later.

1. Construct a CSocket object.

2. Use the object to create the underlying SOCKET handle.

For a CSocket client object, you should normally use the default parameters to Create, unless you need a
datagram socket. For a CSocket server object, you must specify a port in the Create call.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-using-sockets-with-archives.md

See also

NOTENOTE

NOTENOTE

NOTENOTE

CArchive does not work with datagram sockets. If you want to use CSocket for a datagram socket, you must
use the class as you would use CAsyncSocket , that is, without an archive. Because datagrams are unreliable (not
guaranteed to arrive and may be repeated or out of sequence), they are not compatible with serialization through
an archive. You expect a serialization operation to complete reliably and in sequence. If you try to use CSocket

with a CArchive object for a datagram, an MFC assertion fails.

3. If the socket is a client, call CAsyncSocket::Connect to connect the socket object to a server socket.

-or-

If the socket is a server, call CAsyncSocket::Listen to begin listening for connect attempts from a client.
Upon receiving a connection request, accept it by calling CAsyncSocket::Accept.

The Accept member function takes a reference to a new, empty CSocket object as its parameter. You must
construct this object before you call Accept . If this socket object goes out of scope, the connection closes. Do
not call Create for this new socket object.

4. Create a CSocketFile object, associating the CSocket object with it.

5. Create a CArchive object for either loading (receiving) or storing (sending) data. The archive is associated
with the CSocketFile object.

Keep in mind that CArchive does not work with datagram sockets.

6. Use the CArchive object to pass data between the client and server sockets.

Keep in mind that a given CArchive object moves data in one direction only: either for loading
(receiving) or storing (sending). In some cases, you will use two CArchive objects: one for sending data,
the other for receiving acknowledgments.

After accepting a connection and setting up the archive, you can perform such tasks as validating
passwords.

7. Destroy the archive, socket file, and socket objects.

Class CArchive supplies the IsBufferEmpty member function specifically for use with class CSocket . If the
buffer contains multiple data messages, for example, you need to loop until all of them are read and the buffer is
cleared. Otherwise, your next notification that there is data to be received may be indefinitely delayed. Use
IsBufferEmpty to assure that you retrieve all data.

The article Windows Sockets: Sequence of Operations illustrates both sides of this process with example code.

For more information, see:

Windows Sockets: Stream Sockets

Windows Sockets: Datagram Sockets

Windows Sockets in MFC
CSocket::Create

Windows Sockets: Sequence of Operations
3/4/2019 • 3 minutes to read • Edit Online

Sequence of Operations for a Stream Socket Communication

Setting Up Communication Between a Server and a ClientSetting Up Communication Between a Server and a Client

SERVER CLIENT

// construct a socket

CSocket sockSrvr;

// construct a socket

CSocket sockClient;

// create the SOCKET

sockSrvr.Create(nPort); 1,2

// create the SOCKET

sockClient.Create(); 2

// start listening

sockSrvr.Listen();

// seek a connection

sockClient.Connect(strAddr, nPort); 3,4

// construct a new, empty socket

CSocket sockRecv;

// accept connection

sockSrvr.Accept(sockRecv); 5

// construct file object

CSocketFile file(&sockRecv);

// construct file object

CSocketFile file(&sockClient);

This article illustrates, side by side, the sequence of operations for a server socket and a client socket. Because the
sockets use CArchive objects, they are necessarily stream sockets.

Up to the point of constructing a CSocketFile object, the following sequence is accurate (with a few parameter
differences) for both CAsyncSocket and CSocket . From that point on, the sequence is strictly for CSocket . The
following table illustrates the sequence of operations for setting up communication between a client and a server.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-sequence-of-operations.md

// construct an archive

CArchive arIn(&file, CArchive::load);

-or-

CArchive arOut(&file, CArchive::store);

- or Both -

// construct an archive

CArchive arIn(&file, CArchive::load);

-or-

CArchive arOut(&file, CArchive::store);

- or Both -

// use the archive to pass data:

arIn >> dwValue;

-or-

arOut << dwValue; 6

// use the archive to pass data:

arIn >> dwValue;

-or-

arOut << dwValue; 6

SERVER CLIENT

Additional Notes About the Sequence

1. Where nPort is a port number. See Windows Sockets: Ports and Socket Addresses for details about ports.

2. The server must always specify a port so clients can connect. The Create call sometimes also specifies an
address. On the client side, use the default parameters, which ask MFC to use any available port.

3. Where nPort is a port number and strAddr is a machine address or an Internet Protocol (IP) address.

4. Machine addresses can take several forms: "ftp.microsoft.com", "microsoft.com". IP addresses use the
"dotted number" form "127.54.67.32". The Connect function checks to see if the address is a dotted
number (although it does not check to ensure the number is a valid machine on the network). If not,
Connect assumes a machine name of one of the other forms.

5. When you call Accept on the server side, you pass a reference to a new socket object. You must construct
this object first, but do not call Create for it. Keep in mind that if this socket object goes out of scope, the
connection closes. MFC connects the new object to a SOCKET handle. You can construct the socket on the
stack, as shown, or on the heap.

6. The archive and the socket file are closed when they go out of scope. The socket object's destructor also
calls the Close member function for the socket object when the object goes out of scope or is deleted.

The sequence of calls shown in the preceding table is for a stream socket. Datagram sockets, which are
connectionless, do not require the CAsyncSocket::Connect, Listen, and Accept calls (although you can optionally
use Connect). Instead, if you are using class CAsyncSocket , datagram sockets use the CAsyncSocket::SendTo and
ReceiveFrom member functions. (If you use Connect with a datagram socket, you use Send and Receive .)

Because CArchive does not work with datagrams, do not use CSocket with an archive if the socket is a datagram.

CSocketFile does not support all of CFile 's functionality; CFile members such as Seek , which make no sense
for a socket communication, are unavailable. Because of this, some default MFC Serialize functions are not
compatible with CSocketFile . This is particularly true of the CEditView class. You should not try to serialize
CEditView data through a CArchive object attached to a CSocketFile object using CEditView::SerializeRaw ; use
CEditView::Serialize instead (not documented). The SerializeRaw function expects the file object to have

functions, such as Seek , that CSocketFile does not support.

For more information, see:

See also

Windows Sockets: Using Sockets with Archives

Windows Sockets: Using Class CAsyncSocket

Windows Sockets: Ports and Socket Addresses

Windows Sockets: Stream Sockets

Windows Sockets: Datagram Sockets

Windows Sockets in MFC
CSocket Class
CAsyncSocket::Create
CAsyncSocket::Close

Windows Sockets: Example of Sockets Using Archives
3/4/2019 • 3 minutes to read • Edit Online

void PacketSerialize(long nPackets, CArchive& arData, CArchive& arAck)
{
 BYTE bValue = 0;
 WORD nCopies = 0;

 if (arData.IsStoring())
 {
 CString strText;
 errno_t err;
 unsigned int number;

 for(int p = 0; p < nPackets; p++)
 {
 err = rand_s(&number);
 // if (err == 0)...
 bValue = (BYTE)(number%256);

 err = rand_s(&number);
 // if (err == 0)...
 nCopies = (WORD)(number%32000);

 // Send header information
 arData << bValue << nCopies;
 for(int c = 0; c < nCopies; c++)
 {
 // Send data
 arData << bValue;
 }

 strText.Format(_T("Sender sent packet %d of %d (Value = %d, Copies = %d)"),
 p + 1, nPackets, (int)bValue, nCopies);

 // Send receipt string
 arData << strText;
 arData.Flush();

 // Receive acknowledgment
 arAck >> strText;
 // display it
 DisplayMessage(strText);
 }
 }
 else
 {
 CString strText;
 BYTE bCheck;

 for(int p = 0; p < nPackets; p++)
 {

This article presents an example of using class CSocket. The example employs CArchive objects to serialize data
through a socket. Note that this is not document serialization to or from a file.

The following example illustrates how you use the archive to send and receive data through CSocket objects. The
example is designed so that two instances of the application (on the same machine or on different machines on
the network) exchange data. One instance sends data, which the other instance receives and acknowledges. Either
application can initiate an exchange, and either can act as server or as client to the other application. The following
function is defined in the application's view class:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-example-of-sockets-using-archives.md

 {
 // Receive header information
 arData >> bCheck >> nCopies;
 for(int c = 0; c < nCopies; c++)
 {
 // Receive data
 arData >> bValue;
 if (bCheck != bValue)
 {
 AfxMessageBox(_T("Packet Failure"));
 }
 }

 // Receive receipt string and display it
 arData >> strText;
 DisplayMessage(strText);

 strText.Format(_T("Recipient received packet %d of %d (Value = %d, Copies = %d)"),
 p + 1, nPackets, (int)bValue, nCopies);

 // Send acknowledgment
 arAck << strText;
 arAck.Flush();
 }
 }
}

NOTENOTE

The most important thing about this example is that its structure parallels that of an MFC Serialize function.
The PacketSerialize member function consists of an if statement with an else clause. The function receives two
CArchive references as parameters: arData and arAck. If the arData archive object is set for storing (sending), the
if branch executes; otherwise, if arData is set for loading (receiving) the function takes the else branch. For more
information about serialization in MFC, see Serialization.

The arAck archive object is assumed to be the opposite of arData. If arData is for sending, arAck receives, and the converse
is true.

For sending, the example function loops for a specified number of times, each time generating some random data
for demonstration purposes. Your application would obtain real data from some source, such as a file. The arData
archive's insertion operator (<<) is used to send a stream of three consecutive chunks of data:

A "header" that specifies the nature of the data (in this case, the value of the bValue variable and how many
copies will be sent).

Both items are generated randomly for this example.

The specified number of copies of the data.

The inner for loop sends bValue the specified number of times.

A string called strText that the receiver displays to its user.

For receiving, the function operates similarly, except that it uses the archive's extraction operator (>>) to get data
from the archive. The receiving application verifies the data it receives, displays the final "Received" message, and
then sends back a message that says "Sent" for the sending application to display.

In this communications model, the word "Received", the message sent in the strText variable, is for display at the
other end of the communication, so it specifies to the receiving user that a certain number of packets of data have
been received. The receiver replies with a similar string that says "Sent", for display on the original sender's
screen. Receipt of both strings indicates that successful communication has occurred.

C a u t i o nC a u t i o n

See also

If you are writing an MFC client program to communicate with established (non-MFC) servers, do not send C++
objects through the archive. Unless the server is an MFC application that understands the kinds of objects you
want to send, it won't be able to receive and deserialize your objects. An example in the article Windows Sockets:
Byte Ordering shows a communication of this type.

For more information, see Windows Sockets Specification: htonl, htons, ntohl, ntohs. Also, for more
information, see:

Windows Sockets: Deriving from Socket Classes

Windows Sockets: How Sockets with Archives Work

Windows Sockets: Background

Windows Sockets in MFC
CArchive::IsStoring
CArchive::operator <<
CArchive::operator >>
CArchive::Flush
CObject::Serialize

Windows Sockets: How Sockets with Archives Work
3/4/2019 • 3 minutes to read • Edit Online

This article explains how a CSocket object, a CSocketFile object, and a CArchive object are combined to simplify
sending and receiving data through a Windows Socket.

The article Windows Sockets: Example of Sockets Using Archives presents the PacketSerialize function. The
archive object in the PacketSerialize example works much like an archive object passed to an MFC Serialize
function. The essential difference is that for sockets, the archive is attached not to a standard CFile object (typically
associated with a disk file) but to a CSocketFile object. Rather than connecting to a disk file, the CSocketFile

object connects to a CSocket object.

A CArchive object manages a buffer. When the buffer of a storing (sending) archive is full, an associated CFile
object writes out the buffer's contents. Flushing the buffer of an archive attached to a socket is equivalent to
sending a message. When the buffer of a loading (receiving) archive is full, the CFile object stops reading until
the buffer is available again.

Class CSocketFile derives from CFile , but it does not support CFile member functions such as the positioning
functions (Seek , GetLength , SetLength , and so on), the locking functions (LockRange , UnlockRange), or the
GetPosition function. All the CSocketFile object must do is write or read sequences of bytes to or from the

associated CSocket object. Because a file is not involved, operations such as Seek and GetPosition make no
sense. CSocketFile is derived from CFile , so it would normally inherit all of these member functions. To prevent
this, the unsupported CFile member functions are overridden in CSocketFile to throw a
CNotSupportedException.

The CSocketFile object calls member functions of its CSocket object to send or receive data.

The following figure shows the relationships among these objects on both sides of the communication.

CArchive, CSocketFile, and CSocket

The purpose of this apparent complexity is to shield you from the necessity of managing the details of the socket
yourself. You create the socket, the file, and the archive, and then begin sending or receiving data by inserting it to
the archive or extracting it from the archive. CArchive, CSocketFile, and CSocket manage the details behind the
scenes.

A CSocket object is actually a two-state object: sometimes asynchronous (the usual state) and sometimes
synchronous. In its asynchronous state, a socket can receive asynchronous notifications from the framework.
However, during an operation such as receiving or sending data the socket becomes synchronous. This means the
socket will receive no further asynchronous notifications until the synchronous operation has completed. Because

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-how-sockets-with-archives-work.md

void CMySocket::OnReceive(int nErrorCode)
{
 if (0 == nErrorCode)
 {
 CSocketFile file(this);
 CArchive ar(&file, CArchive::load);
 CString str;

 ar >> str;
 }
}

NOTENOTE

See also

it switches modes, you can, for example, do something like the following:

If CSocket were not implemented as a two-state object, it might be possible to receive additional notifications for
the same kind of event while you were processing a previous notification. For example, you might get an
OnReceive notification while processing an OnReceive . In the code fragment above, extracting str from the

archive might lead to recursion. By switching states, CSocket prevents recursion by preventing additional
notifications. The general rule is no notifications within notifications.

A CSocketFile can also be used as a (limited) file without a CArchive object. By default, the CSocketFile constructor's
bArchiveCompatible parameter is TRUE. This specifies that the file object is for use with an archive. To use the file object
without an archive, pass FALSE in the bArchiveCompatible parameter.

In its "archive compatible" mode, a CSocketFile object provides better performance and reduces the danger of a
"deadlock." A deadlock occurs when both the sending and receiving sockets are waiting on each other, or waiting
for a common resource. This situation might occur if the CArchive object worked with the CSocketFile the way it
does with a CFile object. With CFile , the archive can assume that if it receives fewer bytes than it requested, the
end of file has been reached. With CSocketFile , however, data is message based; the buffer can contain multiple
messages, so receiving fewer than the number of bytes requested does not imply end of file. The application does
not block in this case as it might with CFile , and it can continue reading messages from the buffer until the
buffer is empty. The IsBufferEmpty function in CArchive is useful for monitoring the state of the archive's buffer
in such a case.

For more information, see Windows Sockets: Using Sockets with Archives

Windows Sockets in MFC
CObject::Serialize

Windows Sockets: Using Class CAsyncSocket
3/4/2019 • 4 minutes to read • Edit Online

Creating and Using a CAsyncSocket Object
To use CAsyncSocketTo use CAsyncSocket

This article explains how to use class CAsyncSocket. Be aware that this class encapsulates the Windows Sockets
API at a very low level. CAsyncSocket is for use by programmers who know network communications in detail
but want the convenience of callbacks for notification of network events. Based on this assumption, this article
provides only basic instruction. You should probably consider using CAsyncSocket if you want Windows Sockets'
ease of dealing with multiple network protocols in an MFC application but do not want to sacrifice flexibility. You
might also feel that you can get better efficiency by programming the communications more directly yourself
than you could using the more general alternative model of class CSocket .

CAsyncSocket is documented in the MFC Reference. Visual C++ also supplies the Windows Sockets specification,
located in the Windows SDK. The details are left to you. Visual C++ does not supply a sample application for
CAsyncSocket .

If you are not highly knowledgeable about network communications and want a simple solution, use class
CSocket with a CArchive object. See Windows Sockets: Using Sockets with Archives for more information.

This article covers:

Creating and using a CAsyncSocket object.

Your responsibilities with CAsyncSocket.

CAsyncSocket sock;
sock.Create(); // Use the default parameters

CAsyncSocket* pSocket = new CAsyncSocket;
int nPort = 27;
pSocket->Create(nPort, SOCK_DGRAM);

1. Construct a CAsyncSocket object and use the object to create the underlying SOCKET handle.

Creation of a socket follows the MFC pattern of two-stage construction.

For example:

-or-

The first constructor above creates a CAsyncSocket object on the stack. The second constructor creates a
CAsyncSocket on the heap. The first Create call above uses the default parameters to create a stream

socket. The second Create call creates a datagram socket with a specified port and address. (You can use
either Create version with either construction method.)

The parameters to Create are:

A "port": a short integer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-using-class-casyncsocket.md

 Your Responsibilities with CAsyncSocket

NOTENOTE

For a server socket, you must specify a port. For a client socket, you typically accept the
default value for this parameter, which lets Windows Sockets select a port.

This is your Internet Protocol (IP) address on the network. You will probably always rely on
the default value for this parameter.

A socket type: SOCK_STREAM (the default) or SOCK_DGRAM.

A socket "address," such as "ftp.microsoft.com" or "128.56.22.8".

The terms "port" and "socket address" are explained in Windows Sockets: Ports and Socket Addresses.

2. If the socket is a client, connect the socket object to a server socket, using CAsyncSocket::Connect.

-or-

If the socket is a server, set the socket to begin listening (with CAsyncSocket::Listen) for connect attempts
from a client. Upon receiving a connection request, accept it with CAsyncSocket::Accept.

After accepting a connection, you can perform such tasks as validating passwords.

The Accept member function takes a reference to a new, empty CSocket object as its parameter. You must
construct this object before you call Accept . If this socket object goes out of scope, the connection closes. Do not
call Create for this new socket object. For an example, see the article Windows Sockets: Sequence of Operations.

3. Carry out communications with other sockets by calling the CAsyncSocket object's member functions that
encapsulate the Windows Sockets API functions.

See the Windows Sockets specification and class CAsyncSocket in the MFC Reference.

4. Destroy the CAsyncSocket object.

If you created the socket object on the stack, its destructor is called when the containing function goes out
of scope. If you created the socket object on the heap, using the new operator, you are responsible for
using the delete operator to destroy the object.

The destructor calls the object's Close member function before destroying the object.

For an example of this sequence in code (actually for a CSocket object), see Windows Sockets: Sequence of
Operations.

When you create an object of class CAsyncSocket, the object encapsulates a Windows SOCKET handle and
supplies operations on that handle. When you use CAsyncSocket , you must deal with all the issues you might
face if using the API directly. For example:

"Blocking" scenarios.

Byte order differences between the sending and receiving machines.

Converting between Unicode and multibyte character set (MBCS) strings.

For definitions of these terms and additional information, see Windows Sockets: Blocking, Windows Sockets:
Byte Ordering, Windows Sockets: Converting Strings.

See also

Despite these issues, class CAsycnSocket may be the right choice for you if your application requires all the
flexibility and control you can get. If not, you should consider using class CSocket instead. CSocket hides a lot of
detail from you: it pumps Windows messages during blocking calls and gives you access to CArchive , which
manages byte order differences and string conversion for you.

For more information, see:

Windows Sockets: Background

Windows Sockets: Stream Sockets

Windows Sockets: Datagram Sockets

Windows Sockets in MFC

Windows Sockets: Deriving from Socket Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

This article describes some of the functionality you can gain by deriving your own class from one of the socket
classes.

You can derive your own socket classes from either CAsyncSocket or CSocket to add your own functionality. In
particular, these classes supply a number of virtual member functions that you can override. These functions
include OnReceive, OnSend, OnAccept, OnConnect, and OnClose. You can override the functions in your derived
socket class to take advantage of the notifications they provide when network events occur. The framework calls
these notification callback functions to notify you of important socket events, such as the receipt of data that you
can begin reading. For more information about notification functions, see Windows Sockets: Socket Notifications.

Additionally, class CSocket supplies the OnMessagePending member function (an advanced overridable). MFC
calls this function while the socket is pumping Windows-based messages. You can override OnMessagePending to
look for particular messages from Windows and respond to them.

The default version of OnMessagePending supplied in class CSocket examines the message queue for WM_PAINT
messages while waiting for a blocking call to complete. It dispatches paint messages to improve display quality.
Aside from doing something useful, this illustrates one way you might override the function yourself. As another
example, consider using OnMessagePending for the following task. Suppose you display a modeless dialog box
while waiting for a network transaction to complete. The dialog box contains a Cancel button that the user can use
to cancel blocking transactions that take too long. Your OnMessagePending override might pump messages related
to this modeless dialog box.

In your OnMessagePending override, return either TRUE or the return from a call to the base-class version of
OnMessagePending . Call the base-class version if it performs work that you still want done.

For more information, see:

Windows Sockets: Using Sockets with Archives

Windows Sockets: Using Class CAsyncSocket

Windows Sockets: Blocking

Windows Sockets: Byte Ordering

Windows Sockets: Converting Strings

Windows Sockets in MFC

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-deriving-from-socket-classes.md

Windows Sockets: Socket Notifications
3/4/2019 • 2 minutes to read • Edit Online

This article describes the notification functions in the socket classes. These member functions are callback
functions that the framework calls to notify your socket object of important events. The notification functions are:

NOTENOTE

OnReceive: Notifies this socket that there is data in the buffer for it to retrieve by calling Receive.

OnSend: Notifies this socket that it can now send data by calling Send.

OnAccept: Notifies this listening socket that it can accept pending connection requests by calling Accept.

OnConnect: Notifies this connecting socket that its connection attempt completed: perhaps successfully or
perhaps in error.

OnClose: Notifies this socket that the socket it is connected to has closed.

An additional notification function is OnOutOfBandData. This notification tells the receiving socket that the sending
socket has "out-of-band" data to send. Out-of-band data is a logically independent channel associated with each
pair of connected stream sockets. The out-of-band channel is typically used to send "urgent" data. MFC supports
out-of-band data. Advanced users working with class CAsyncSocket might need to use the out-of-band channel,
but users of class CSocket are discouraged from using it. The easier way is to create a second socket for passing
such data. For more information about out-of-band data, see the Windows Sockets specification, available in the
Windows SDK.

If you derive from class CAsyncSocket , you must override the notification functions for those network events of
interest to your application. If you derive a class from class CSocket , it is your choice whether to override the
notification functions of interest. You can also use CSocket itself, in which case the notification functions default
to doing nothing.

These functions are overridable callback functions. CAsyncSocket and CSocket convert messages to notifications,
but you must implement how the notification functions respond if you wish to use them. The notification
functions are called at the time your socket is notified of an event of interest, such as the presence of data to be
read.

MFC calls the notification functions to let you customize your socket's behavior at the time it is notified. For
example, you might call Receive from your OnReceive notification function, that is, on being notified that there is
data to read, you call Receive to read it. This approach is not necessary, but it is a valid scenario. As an
alternative, you might use your notification function to track progress, print TRACE messages, and so on.

You can take advantage of these notifications by overriding the notification functions in a derived socket class and
providing an implementation.

During an operation such as receiving or sending data, a CSocket object becomes synchronous. During the
synchronous state, any notifications meant for other sockets are queued while the current socket waits for the
notification it wants. (For example, during a Receive call, the socket wants a notification to read.) Once the socket
completes its synchronous operation and becomes asynchronous again, other sockets can begin receiving the
queued notifications.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-socket-notifications.md

NOTENOTE

See also

In CSocket , the OnConnect notification function is never called. For connections, you call Connect , which will return
when the connection is completed (either successfully or in error). How connection notifications are handled is an MFC
implementation detail.

For details about each notification function, see the function under class CAsyncSocket in the MFC Reference. For
source code and information about MFC samples, see MFC Samples.

For more information, see:

Windows Sockets: Using Class CAsyncSocket

Windows Sockets: Deriving from Socket Classes

Windows Sockets: How Sockets with Archives Work

Windows Sockets: Blocking

Windows Sockets: Byte Ordering

Windows Sockets: Converting Strings

Windows Sockets in MFC

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Windows Sockets: Blocking
3/4/2019 • 2 minutes to read • Edit Online

Blocking

NOTENOTE

This article and two companion articles explain several issues in Windows Sockets programming. This article
covers blocking. The other issues are covered in the articles: Windows Sockets: Byte Ordering and Windows
Sockets: Converting Strings.

If you use or derive from class CAsyncSocket, you will need to manage these issues yourself. If you use or derive
from class CSocket, MFC manages them for you.

A socket can be in "blocking mode" or "nonblocking mode." The functions of sockets in blocking (or synchronous)
mode do not return until they can complete their action. This is called blocking because the socket whose function
was called cannot do anything — is blocked — until the call returns. A call to the Receive member function, for
example, might take an arbitrarily long time to complete as it waits for the sending application to send (this is if
you are using CSocket , or using CAsyncSocket with blocking). If a CAsyncSocket object is in nonblocking mode
(operating asynchronously), the call returns immediately and the current error code, retrievable with the
GetLastError member function, is WSAEWOULDBLOCK, indicating that the call would have blocked had it not
returned immediately because of the mode. (CSocket never returns WSAEWOULDBLOCK. The class manages
blocking for you.)

The behavior of sockets is different under 32-bit and 64-bit operating systems (such as Windows 95 or Windows
98) than under 16-bit operating systems (such as Windows 3.1). Unlike 16-bit operating systems, the 32-bit and
64-bit operating systems use preemptive multitasking and provide multithreading. Under the 32-bit and 64-bit
operating systems, you can put your sockets in separate worker threads. A socket in a thread can block without
interfering with other activities in your application and without spending compute time on the blocking. For
information on multithreaded programming, see the article Multithreading.

In multithreaded applications, you can use the blocking nature of CSocket to simplify your program's design without
affecting the responsiveness of the user interface. By handling user interactions in the main thread and CSocket

processing in alternate threads, you can separate these logical operations. In an application that is not multithreaded, these
two activities must be combined and handled as a single thread, which usually means using CAsyncSocket so you can
handle communications requests on demand, or overriding CSocket::OnMessagePending to handle user actions during
lengthy synchronous activity.

The rest of this discussion is for programmers targeting 16-bit operating systems:

Normally, if you are using CAsyncSocket , you should avoid using blocking operations and operate
asynchronously instead. In asynchronous operations, from the point at which you receive a
WSAEWOULDBLOCK error code after calling Receive , for example, you wait until your OnReceive member
function is called to notify you that you can read again. Asynchronous calls are made by calling back your socket's
appropriate callback notification function, such as OnReceive.

Under Windows, blocking calls are considered bad practice. By default, CAsyncSocket supports asynchronous
calls, and you must manage the blocking yourself using callback notifications. Class CSocket, on the other hand, is
synchronous. It pumps Windows messages and manages blocking for you.

For more information about blocking, see the Windows Sockets specification. For more information about "On"

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-blocking.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-support-for-older-code-visual-cpp

See also

functions, see Windows Sockets: Socket Notifications and Windows Sockets: Deriving from Socket Classes.

For more information, see:

Windows Sockets: Using Class CAsyncSocket

Windows Sockets: Using Sockets with Archives

Windows Sockets: Background

Windows Sockets: Stream Sockets

Windows Sockets: Datagram Sockets

Windows Sockets in MFC
CAsyncSocket::OnSend

Windows Sockets: Byte Ordering
3/4/2019 • 5 minutes to read • Edit Online

Byte Ordering

Big- and Little-Endian Byte OrderingBig- and Little-Endian Byte Ordering

BYTE ORDERING MEANING

Big-Endian The most significant byte is on the left end of a word.

Little-Endian The most significant byte is on the right end of a word.

When You Must Convert Byte Orders

When You Do Not Have to Convert Byte Orders

This article and two companion articles explain several issues in Windows Sockets programming. This article
covers byte ordering. The other issues are covered in the articles: Windows Sockets: Blocking and Windows
Sockets: Converting Strings.

If you use or derive from class CAsyncSocket, you will need to manage these issues yourself. If you use or derive
from class CSocket, MFC manages them for you.

Different machine architectures sometimes store data using different byte orders. For example, Intel-based
machines store data in the reverse order of Macintosh (Motorola) machines. The Intel byte order, called "little-
Endian," is also the reverse of the network standard "big-Endian" order. The following table explains these terms.

Typically, you do not have to worry about byte-order conversion for data that you send and receive over the
network, but there are situations in which you must convert byte orders.

You need to convert byte orders in the following situations:

You are passing information that needs to be interpreted by the network, as opposed to the data you are
sending to another machine. For example, you might pass ports and addresses, which the network must
understand.

The server application with which you are communicating is not an MFC application (and you do not have
source code for it). This calls for byte order conversions if the two machines do not share the same byte
ordering.

You can avoid the work of converting byte orders in the following situations:

The machines on both ends can agree not to swap bytes, and both machines use the same byte order.

The server you are communicating with is an MFC application.

You have source code for the server you're communicating with, so you can tell explicitly whether you
must convert byte orders or not.

You can port the server to MFC. This is fairly easy to do, and the result is usually smaller, faster code.

Working with CAsyncSocket, you must manage any necessary byte-order conversions yourself. Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-byte-ordering.md

NOTENOTE

A Byte-Order Conversion Example

struct Message
{
 long MagicNumber;
 unsigned short Command;
 short Param1;
 long Param2;
};

struct Message
{
 long m_lMagicNumber;
 short m_nCommand;
 short m_nParam1;
 long m_lParam2;

 void Serialize(CArchive& ar);
};

Sockets standardizes the "big-Endian" byte-order model and provides functions to convert between this order
and others. CArchive, however, which you use with CSocket, uses the opposite ("little-Endian") order, but
CArchive takes care of the details of byte-order conversions for you. By using this standard ordering in your

applications, or using Windows Sockets byte-order conversion functions, you can make your code more
portable.

The ideal case for using MFC sockets is when you are writing both ends of the communication: using MFC at
both ends. If you are writing an application that will communicate with non-MFC applications, such as an FTP
server, you will probably need to manage byte-swapping yourself before you pass data to the archive object,
using the Windows Sockets conversion routines ntohs, ntohl, htons, and htonl. An example of these functions
used in communicating with a non-MFC application appears later in this article.

When the other end of the communication is not an MFC application, you also must avoid streaming C++ objects derived
from CObject into your archive because the receiver will not be able to handle them. See the note in Windows Sockets:
Using Sockets with Archives.

For more information about byte orders, see the Windows Sockets specification, available in the Windows SDK.

The following example shows a serialization function for a CSocket object that uses an archive. It also illustrates
using the byte-order conversion functions in the Windows Sockets API.

This example presents a scenario in which you are writing a client that communicates with a non-MFC server
application for which you have no access to the source code. In this scenario, you must assume that the non-
MFC server uses standard network byte order. In contrast, your MFC client application uses a CArchive object
with a CSocket object, and CArchive uses "little-Endian" byte order, the opposite of the network standard.

Suppose the non-MFC server with which you plan to communicate has an established protocol for a message
packet like the following:

In MFC terms, this would be expressed as follows:

In C++, a struct is essentially the same thing as a class. The Message structure can have member functions, such
as the Serialize member function declared above. The Serialize member function might look like this:

void Message::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 ar << (DWORD)htonl(m_lMagicNumber);
 ar << (WORD)htons(m_nCommand);
 ar << (WORD)htons(m_nParam1);
 ar << (DWORD)htonl(m_lParam2);
 }
 else
 {
 WORD w;
 DWORD dw;
 ar >> dw;
 m_lMagicNumber = ntohl((long)dw);
 ar >> w ;
 m_nCommand = ntohs((short)w);
 ar >> w;
 m_nParam1 = ntohs((short)w);
 ar >> dw;
 m_lParam2 = ntohl((long)dw);
 }
}

Windows Sockets Byte-Order Conversion FunctionsWindows Sockets Byte-Order Conversion Functions

FUNCTION PURPOSE

ntohs Convert a 16-bit quantity from network byte order to host
byte order (big-Endian to little-Endian).

ntohl Convert a 32-bit quantity from network byte order to host
byte order (big-Endian to little-Endian).

Htons Convert a 16-bit quantity from host byte order to network
byte order (little-Endian to big-Endian).

Htonl Convert a 32-bit quantity from host byte order to network
byte order (little-Endian to big-Endian).

This example calls for byte-order conversions of data because there is a clear mismatch between the byte
ordering of the non-MFC server application on one end and the CArchive used in your MFC client application
on the other end. The example illustrates several of the byte-order conversion functions that Windows Sockets
supplies. The following table describes these functions.

Another point of this example is that when the socket application on the other end of the communication is a
non-MFC application, you must avoid doing something like the following:

ar << pMsg;

where pMsg is a pointer to a C++ object derived from class CObject . This will send extra MFC information
associated with objects and the server will not understand it, as it would if it were an MFC application.

For more information, see:

Windows Sockets: Using Class CAsyncSocket

Windows Sockets: Background

Windows Sockets: Stream Sockets

See also

Windows Sockets: Datagram Sockets

Windows Sockets in MFC

Windows Sockets: Converting Strings
3/4/2019 • 2 minutes to read • Edit Online

Converting Strings

See also

This article and two companion articles explain several issues in Windows Sockets programming. This article
covers converting strings. The other issues are covered in Windows Sockets: Blocking and Windows Sockets:
Byte Ordering.

If you use or derive from class CAsyncSocket, you will need to manage these issues yourself. If you use or derive
from class CSocket, MFC manages them for you.

If you communicate between applications that use strings stored in different wide-character formats, such as
Unicode or multibyte character sets (MBCS), or between one of these and an application using ANSI character
strings, you must manage the conversions yourself under CAsyncSocket . The CArchive object used with a
CSocket object manages this conversion for you through the capabilities of class CString. For more information,

see the Windows Sockets specification, located in the Windows SDK.

For more information, see:

Windows Sockets: Using Class CAsyncSocket

Windows Sockets: Using Sockets with Archives

Windows Sockets: Background

Windows Sockets: Stream Sockets

Windows Sockets: Datagram Sockets

Windows Sockets in MFC

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-converting-strings.md

Windows Sockets: Ports and Socket Addresses
3/4/2019 • 2 minutes to read • Edit Online

Port

Socket Address

NOTENOTE

See also

This article explains the terms "port" and "address" as used with Windows Sockets.

A port identifies a unique process for which a service can be provided. In the present context, a port is associated
with an application that supports Windows Sockets. The idea is to identify each Windows Sockets application
uniquely so you can have more than one Windows Sockets application running on a machine at the same time.

Certain ports are reserved for common services, such as FTP. You should avoid using those ports unless you are
providing that kind of service. The Windows Sockets specification details these reserved ports. The file
WINSOCK.H also lists them.

To let the Windows Sockets DLL select a usable port for you, pass 0 as the port value. MFC selects a port value
greater than 1,024 decimal. You can retrieve the port value that MFC selected by calling the
CAsyncSocket::GetSockName member function.

Each socket object is associated with an Internet Protocol (IP) address on the network. Typically, the address is a
machine name, such as "ftp.microsoft.com", or a dotted number, such as "128.56.22.8".

When you seek to create a socket, you typically do not need to specify your own address.

It is possible that your machine has multiple network cards (or your application might someday run on such a machine),
each representing a different network. If so, you might need to give an address to specify which network card the socket will
use. This is certain to be an advanced usage and a possible portability issue.

For more information, see:

Windows Sockets: Using Class CAsyncSocket

Windows Sockets: Using Sockets with Archives

Windows Sockets: How Sockets with Archives Work

Windows Sockets: Stream Sockets

Windows Sockets: Datagram Sockets

Windows Sockets in MFC

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-ports-and-socket-addresses.md

Win32 Internet Extensions (WinInet)
3/4/2019 • 2 minutes to read • Edit Online

See also

An Internet client application is a program that accesses information from a network data source (server)
using Internet protocols such as gopher, FTP, or HTTP. An Internet client application might access a server to
retrieve data such as weather maps, stock prices, or newspaper headlines, for example. The Internet client can
access the server through an external network (the Internet) or an internal network (sometimes called an
intranet).

MFC includes the Win32 Internet Extensions, or WinInet, for creating an Internet client application. MFC
encapsulates these Internet extensions in a set of standard, easy-to-use classes. You can write a WinInet client
application by calling the Win32 functions directly or by using the MFC WinInet classes.

The Microsoft Win32 Internet functions (WinInet) assist you in making the Internet an integral part of any
application. The new functions, contained in WININET.DLL, simplify accessing the Internet using HTTP
(Hypertext Transfer Protocol), FTP (File Transfer Protocol), and gopher.

The following topics discuss the process of creating an Internet client application:

How WinInet Makes It Easier to Create Internet Client Applications

How MFC Makes It Easier to Create Internet Client Applications

MFC Classes for Creating Internet Client Applications

Prerequisites for Internet Client Classes

Writing an Internet Client Application Using MFC WinInet Classes

The following topics provide steps for performing typical WinInet tasks:

Steps in a Typical Internet Client Application

Steps in a Typical FTP Client Application

Steps in a Typical FTP Client Application to Delete a File

Steps in a Typical Gopher Client Application

Steps in a Typical HTTP Client Application

MFC Internet Programming Basics
WinInet Basics

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/win32-internet-extensions-wininet.md

How WinInet Makes It Easier to Create Internet
Client Applications
3/4/2019 • 2 minutes to read • Edit Online

See also

The Win32 Internet Extensions, or WinInet, provide access to common Internet protocols, including gopher, FTP,
and HTTP. Using WinInet, you can write Internet client applications at a higher level of programming, without
having to deal with WinSock, TCP/IP, or the details of specific Internet protocols. WinInet provides a consistent set
of functions for all three protocols, with a familiar Win32 API interface. This consistency minimizes code changes
you need to make if the underlying protocol changes (for example, from FTP to HTTP).

Visual C++ provides two ways for you to use WinInet. You can call the Win32 Internet functions directly (see the
OLE documentation in the Windows SDK for more information) or you can use WinInet through the MFC
WinInet classes.

You can use WinInet to:

Download HTML pages.

HTTP is a protocol used to transfer HTML pages from a server to a client browser.

Send FTP requests to upload or download files or get directory listings.

A typical request is an anonymous logon to download a file.

Use gopher's menu system for accessing resources on the Internet.

Menu items can be several types, including other menus, an indexed database you can search, a newsgroup,
or a file.

For all three protocols, you establish a connection, make requests to the server, and close the connection.

The MFC WinInet classes make it easy to:

Read information from HTTP, FTP, and gopher servers as easily as reading files from a hard drive.

Use HTTP, FTP, and gopher protocols without programming directly to WinSock or TCP/IP.

Developers who use the Win32 Internet functions do not need to be familiar with TCP/IP or Windows
Sockets. You can still program at the socket level, using WinSock and TCP/IP protocols directly, but it's even
easier to use the MFC WinInet classes to access HTTP, FTP, and gopher protocols across the Internet. For
many common operations, developers do not need to know the details of the particular protocol they are
using.

Many operations that can be performed by your computer as a client to other computers on the Internet can take
a long time. The speed of these operations is usually limited by the speed of your network connection, but they can
also be affected by other network traffic and the complexity of the operation. Connecting to a remote FTP server,
for example, requires that your computer first look up the name of that server to find its address. Your application
will then attempt to connect to the server at that address. Once the connection is opened, your computer and the
remote server will initiate a conversation with the file transfer protocol before you can actually use the connection
to retrieve files.

Win32 Internet Extensions (WinInet)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-wininet-makes-it-easier-to-create-internet-client-applications.md

How MFC Makes It Easier to Create Internet Client Applications

How MFC Makes It Easier to Create Internet Client
Applications
3/4/2019 • 2 minutes to read • Edit Online

See also

The Microsoft Foundation Classes encapsulate the Win32 Internet Extension (WinInet) functions in a manner that
provides a familiar context for MFC programmers. MFC provides three Internet file classes (CInternetFile,
CHttpFile, and CGopherFile) derived from the CStdioFile class. Not only do these classes make retrieving and
manipulating Internet data familiar to programmers who have used CStdioFile for local files, but with these
classes you can handle local files and Internet files in a consistent, transparent manner.

The MFC WinInet classes provide the same functionality as CStdioFile for data that is transferred across the
Internet. These classes abstract the Internet protocols for HTTP, FTP, and gopher into a high-level application
programming interface, providing a fast and straightforward path to making applications Internet-aware. For
example, connecting to an FTP server still requires several steps at a low level, but as an MFC developer, you only
need to make one call to CInternetSession::GetFTPConnection to create that connection.

In addition, the MFC WinInet classes provide the following advantages:

Buffered I/O

Type-safe handles for your data

Default parameters for many functions

Exception handling for common Internet errors

Automatic cleanup of open handles and connections

Win32 Internet Extensions (WinInet)
How WinInet Makes It Easier to Create Internet Client Applications

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/how-mfc-makes-it-easier-to-create-internet-client-applications.md

MFC Classes for Creating Internet Client Applications
3/4/2019 • 2 minutes to read • Edit Online

Classes

Global Functions

See also

MFC provides the following classes and global functions for writing Internet client applications. Indentation
indicates a class is derived from the unindented class above it. CGopherFile and CHttpFile derive from
CInternetFile , for example. These classes and global functions are declared in AFXINET.H, except CFileFind ,

which is declared in AFX.H.

CInternetSession

CInternetConnection

CFtpConnection

CGopherConnection

CHttpConnection

CInternetFile

CGopherFile

CHttpFile

CFileFind

CFtpFileFind

CGopherFileFind

CGopherLocator

CInternetException

AfxParseURL

AfxGetInternetHandleType

AfxThrowInternetException

Win32 Internet Extensions (WinInet)
Prerequisites for Internet Client Classes
Writing an Internet Client Application Using MFC WinInet Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-classes-for-creating-internet-client-applications.md

Prerequisites for Internet Client Classes
3/4/2019 • 2 minutes to read • Edit Online

General Internet URL (FTP, Gopher, or HTTP)General Internet URL (FTP, Gopher, or HTTP)

ACTION PREREQUISITE

Establish a connection. Create a CInternetSession to establish the basis of an Internet
client application.

Open a URL. Establish a connection. Call CInternetSession::OpenURL. The
OpenURL function returns a read-only resource object.

Read URL data. Open the URL. Call CInternetFile::Read.

Set an Internet option. Establish a connection. Call CInternetSession::SetOption.

Set a function to be called with status information. Establish a connection. Call
CInternetSession::EnableStatusCallback. Override
CInternetSession::OnStatusCallback to handle calls.

FTPFTP

ACTION PREREQUISITE

Establish an FTP connection. Create a CInternetSession as the basis of this Internet client
application. Call CInternetSession::GetFtpConnection to create
a CFtpConnection object.

Find the first resource. Establish an FTP connection. Create a CFtpFileFind object. Call
CFtpFileFind::FindFile.

Enumerate all available resources. Find the first file. Call CFtpFileFind::FindNextFile until it returns
FALSE.

Open an FTP file. Establish an FTP connection. Call CFtpConnection::OpenFile to
create and open a CInternetFile object.

Read an FTP file. Open an FTP file with read access. Call CInternetFile::Read.

Write to an FTP file. Open an FTP file with write access. Call CInternetFile::Write.

Change the client's directory on the server. Establish an FTP connection. Call
CFtpConnection::SetCurrentDirectory.

Retrieve the client's current directory on the server. Establish an FTP connection. Call
CFtpConnection::GetCurrentDirectory.

HTTPHTTP

Some actions taken by an Internet client (reading a file, for example) have prerequisite actions (in this case,
establishing an Internet connection). The following tables list the prerequisites for some client actions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/prerequisites-for-internet-client-classes.md

ACTION PREREQUISITE

Establish an HTTP connection. Create a CInternetSession as the basis of this Internet client
application. Call CInternetSession::GetHttpConnection to
create a CHttpConnection object.

Open an HTTP file. Establish an HTTP connection. Call
CHttpConnection::OpenRequest to create a CHttpFile object.
Call CHttpFile::AddRequestHeaders. Call
CHttpFile::SendRequest.

Read an HTTP file. Open an HTTP file. Call CInternetFile::Read.

Get information about an HTTP request. Establish an HTTP connection. Call
CHttpConnection::OpenRequest to create a CHttpFile object.
Call CHttpFile::QueryInfo.

GopherGopher

ACTION PREREQUISITE

Establish a gopher connection. Create a CInternetSession as the basis of this Internet client
application. Call CInternetSession::GetGopherConnection to
create a CGopherConnection.

Find the first file in the current directory. Establish a gopher connection. Create a CGopherFileFind
object. Call CGopherConnection::CreateLocator to create a
CGopherLocator object. Pass the locator to
CGopherFileFind::FindFile. Call CGopherFileFind::GetLocator to
get the locator of a file if you need it later.

Enumerate all available files. Find the first file. Call CGopherFileFind::FindNextFile until it
returns FALSE.

Open a gopher file. Establish a gopher connection. Create a gopher locator with
CGopherConnection::CreateLocator or find a locator with
CGopherFileFind::GetLocator. Call
CGopherConnection::OpenFile.

Read a gopher file. Open a gopher file. Use CGopherFile.

See also
Win32 Internet Extensions (WinInet)
MFC Classes for Creating Internet Client Applications
Writing an Internet Client Application Using MFC WinInet Classes

Writing an Internet Client Application Using MFC
WinInet Classes
3/4/2019 • 2 minutes to read • Edit Online

What do you want to know more about

The basis of every Internet client application is the Internet session. MFC implements Internet sessions as objects
of class CInternetSession. Using this class, you can create one Internet session or several simultaneous sessions.

To communicate with a server, you need a CInternetConnection object as well as a CInternetSession . You can
create a CInternetConnection by using CInternetSession::GetFtpConnection,
CInternetSession::GetHttpConnection, or CInternetSession::GetGopherConnection. Each of these calls is specific
to the protocol type. These calls do not open a file on the server for reading or writing. If you intend to read or
write data, you must open the file as a separate step.

For most Internet sessions, the CInternetSession object works hand-in-hand with a CInternetFile object:

For an Internet session, you must create an instance of CInternetSession.

If your Internet session reads or writes data, you must create an instance of CInternetFile (or its
subclasses, CHttpFile or CGopherFile). The easiest way to read data is to call CInternetSession::OpenURL.
This function parses a Universal Resource Locator (URL) supplied by you, opens a connection to the
server specified by the URL, and returns a read-only CInternetFile object. CInternetSession::OpenURL is
not specific to one protocol type — the same call works for any FTP, HTTP, or gopher URL.
CInternetSession::OpenURL even works with local files (returning a CStdioFile instead of a CInternetFile

).

If your Internet session does not read or write data, but performs other tasks, such as deleting a file in an
FTP directory, you may not need to create an instance of CInternetFile .

There are two ways to create a CInternetFile object:

If you use CInternetSession::OpenURL to establish your server connection, the call to OpenURL returns a
CStdioFile .

If use CInternetSession::GetFtpConnection , GetGopherConnection , or GetHttpConnection to establish your
server connection, you must call CFtpConnection::OpenFile , CGopherConnection::OpenFile , or
CHttpConnection::OpenRequest , respectively, to return a CInternetFile , CGopherFile , or CHttpFile ,

respectively.

The steps in implementing an Internet client application vary depending on whether you create a generic Internet
client based on OpenURL or a protocol-specific client using one of the GetConnection functions.

How do I write an Internet client application that works generically with FTP, HTTP, and gopher

How do I write an FTP client application that opens a file

How do I write an FTP client application that does not open a file but performs a directory operation, such
as deleting a file

How do I write a gopher client application

How do I write an HTTP client application

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/writing-an-internet-client-application-using-mfc-wininet-classes.md

See also
Win32 Internet Extensions (WinInet)
MFC Classes for Creating Internet Client Applications
Prerequisites for Internet Client Classes

Steps in a Typical Internet Client Application
3/4/2019 • 2 minutes to read • Edit Online

YOUR GOAL ACTIONS YOU TAKE EFFECTS

Begin an Internet session. Create a CInternetSession object. Initializes WinInet and connects to
server.

Set an Internet query option (time-out
limit or number of retries, for example).

Use CInternetSession::SetOption. Returns FALSE if operation was
unsuccessful.

Establish a callback function to monitor
the status of the session.

Use
CInternetSession::EnableStatusCallback.

Establishes a callback to
CInternetSession::OnStatusCallback.
Override OnStatusCallback to create
your own callback routine.

Connect to an Internet server, intranet
server, or local file.

Use CInternetSession::OpenURL. Parses the URL and opens a connection
to the specified server. Returns a
CStdioFile (if you pass OpenURL a local
file name). This is the object through
which you access data retrieved from
the server or file.

Read from the file. Use CInternetFile::Read. Reads the specified number of bytes
using a buffer you supply.

Handle exceptions. Use the CInternetException class. Handles all common Internet exception
types.

End the Internet session. Dispose of the CInternetSession object. Automatically cleans up open file
handles and connections.

See also

The following table shows the steps you might perform in a typical Internet client application.

Win32 Internet Extensions (WinInet)
Prerequisites for Internet Client Classes
Writing an Internet Client Application Using MFC WinInet Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/steps-in-a-typical-internet-client-application.md

Steps in a Typical FTP Client Application
3/4/2019 • 2 minutes to read • Edit Online

YOUR GOAL ACTIONS YOU TAKE EFFECTS

Begin an FTP session. Create a CInternetSession object. Initializes WinInet and connects to
server.

Connect to an FTP server. Use
CInternetSession::GetFtpConnection.

Returns a CFtpConnection object.

Change to a new FTP directory on the
server.

Use
CFtpConnection::SetCurrentDirectory.

Changes the directory you are currently
connected to on the server.

Find the first file in the FTP directory. Use CFtpFileFind::FindFile. Finds the first file. Returns FALSE if no
files are found.

Find the next file in the FTP directory. Use CFtpFileFind::FindNextFile. Finds the next file. Returns FALSE if the
file is not found.

Open the file found by FindFile or
FindNextFile for reading or writing.

Use CFtpConnection::OpenFile, using
the file name returned by FindFile or
FindNextFile.

Opens the file on the server for reading
or writing. Returns a CInternetFile
object.

Read from or write to the file. Use CInternetFile::Read or
CInternetFile::Write.

Reads or writes the specified number of
bytes, using a buffer you supply.

Handle exceptions. Use the CInternetException class. Handles all common Internet exception
types.

End the FTP session. Dispose of the CInternetSession object. Automatically cleans up open file
handles and connections.

See also

A typical FTP client application creates a CInternetSession and a CFtpConnection object. Note that these MFC
WinInet classes do not actually control the proxy type settings; IIS does.

The following table shows the steps you might perform in a typical FTP client application.

Win32 Internet Extensions (WinInet)
Prerequisites for Internet Client Classes
Writing an Internet Client Application Using MFC WinInet Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/steps-in-a-typical-ftp-client-application.md

Steps in a Typical FTP Client Application to Delete a
File
3/4/2019 • 2 minutes to read • Edit Online

YOUR GOAL ACTIONS YOU TAKE EFFECTS

Begin an FTP session. Create a CInternetSession object. Initializes WinInet and connects to
server.

Connect to an FTP server. Use
CInternetSession::GetFtpConnection.

Returns a CFtpConnection object.

Check to make sure you're in the right
directory on the FTP server.

Use
CFtpConnection::GetCurrentDirectory
or
CFtpConnection::GetCurrentDirectoryAs
URL.

Returns the name or URL of the
directory you are currently connected
to on the server, depending on the
member function selected.

Change to a new FTP directory on the
server.

Use
CFtpConnection::SetCurrentDirectory.

Changes the directory you are currently
connected to on the server.

Find the first file in the FTP directory. Use CFtpFileFind::FindFile. Finds the first file. Returns FALSE if no
files are found.

Find the next file in the FTP directory. Use CFtpFileFind::FindNextFile. Finds the next file. Returns FALSE if the
file is not found.

Delete the file found by FindFile or
FindNextFile .

Use CFtpConnection::Remove, using the
file name returned by FindFile or
FindNextFile .

Deletes the file on the server for
reading or writing.

Handle exceptions. Use the CInternetException class. Handles all common Internet exception
types.

End the FTP session. Dispose of the CInternetSession object. Automatically cleans up open file
handles and connections.

See also

The following table shows the steps you might perform in a typical FTP client application that deletes a file.

Win32 Internet Extensions (WinInet)
Prerequisites for Internet Client Classes
Writing an Internet Client Application Using MFC WinInet Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/steps-in-a-typical-ftp-client-application-to-delete-a-file.md

Steps in a Typical Gopher Client Application
3/4/2019 • 2 minutes to read • Edit Online

YOUR GOAL ACTIONS YOU TAKE EFFECTS

Begin a gopher session. Create a CInternetSession object. Initializes WinInet and connects to
server.

Connect to a gopher server. Use
CInternetSession::GetGopherConnectio
n.

Returns a CGopherConnection object.

Find the first resource in the gopher. Use CGopherFileFind::FindFile. Finds the first file. Returns FALSE if no
files are found.

Find the next resource in the gopher. Use CGopherFileFind::FindNextFile. Finds the next file. Returns FALSE if the
file is not found.

Open the file found by FindFile or
FindNextFile for reading.

Get a gopher locator using
CGopherFileFind::GetLocator. Use
CGopherConnection::OpenFile.

Opens the file specified by the locator.
OpenFile returns a CGopherFile

object.

Open a file using a gopher locator you
supply.

Create a gopher locator using
CGopherConnection::CreateLocator.
Use CGopherConnection::OpenFile.

Opens the file specified by the locator.
OpenFile returns a CGopherFile

object.

Read from the file. Use CGopherFile. Reads the specified number of bytes,
using a buffer you supply.

Handle exceptions. Use the CInternetException class. Handles all common Internet exception
types.

End the gopher session. Dispose of the CInternetSession object. Automatically cleans up open file
handles and connections.

See also

The following table shows the steps you might perform in a typical gopher client application.

Win32 Internet Extensions (WinInet)
Prerequisites for Internet Client Classes
Writing an Internet Client Application Using MFC WinInet Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/steps-in-a-typical-gopher-client-application.md

Steps in a Typical HTTP Client Application
3/4/2019 • 2 minutes to read • Edit Online

YOUR GOAL ACTIONS YOU TAKE EFFECTS

Begin an HTTP session. Create a CInternetSession object. Initializes WinInet and connects to
server.

Connect to an HTTP server. Use
CInternetSession::GetHttpConnection.

Returns a CHttpConnection object.

Open an HTTP request. Use CHttpConnection::OpenRequest. Returns a CHttpFile object.

Send an HTTP request. Use CHttpFile::AddRequestHeaders and
CHttpFile::SendRequest.

Finds the file. Returns FALSE if the file is
not found.

Read from the file. Use CHttpFile. Reads the specified number of bytes
using a buffer you supply.

Handle exceptions. Use the CInternetException class. Handles all common Internet exception
types.

End the HTTP session. Dispose of the CInternetSession object. Automatically cleans up open file
handles and connections.

See also

The following table shows the steps you might perform in a typical HTTP client application:

Win32 Internet Extensions (WinInet)
Prerequisites for Internet Client Classes
Writing an Internet Client Application Using MFC WinInet Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/steps-in-a-typical-http-client-application.md

Hierarchy Chart
3/4/2019 • 2 minutes to read • Edit Online

The following illustration represents the MFC classes
derived from CObject :

The following illustration represents the MFC classes
derived from CWnd and CCmdTarget :

The following illustration represents the MFC classes not
derived from CObject :

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/hierarchy-chart.md

See also

You can download the complete chart from the following
location: MFC Hierarchy Charts Download.

Hierarchy Chart Categories
Class Overview

https://aka.ms/hxgg8e

Hierarchy Chart Categories
3/4/2019 • 2 minutes to read • Edit Online

See also
Hierarchy Chart
MFC Desktop Applications

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/hierarchy-chart-categories.md

Customization for MFC
3/4/2019 • 2 minutes to read • Edit Online

General Customizations

Class-Specific Customizations

Additional Customization Tips

See also

This topic provides tips for customizing an MFC application.

You can save and load the state of your application to the registry. When you enable this option, your application
will load its initial state from the registry. If you change the initial docking layout for your application, you will have
to clear the registry data for your application. Otherwise, the data in the registry will override any changes that
you made to the initial layout.

Additional customization tips can be found in the following topics:

CBasePane Class

CDockablePane Class

CDockingManager Class

CMFCBaseTabCtrl Class

Keyboard and Mouse Customization

User-defined Tools

MFC Desktop Applications
Security Implications of Customization

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/customization-for-mfc.md

Keyboard and Mouse Customization
3/4/2019 • 4 minutes to read • Edit Online

Keyboard Customization

Mouse Customization

MFC allows the user of your application to customize how it handles keyboard and mouse input. The user can
customize keyboard input by assigning keyboard shortcuts to commands. The user can also customize the mouse
input by selecting the command that should be executed when the user double-clicks inside specific windows of
the application. This topic explains how to customize the input for your application.

In the Customization dialog box, the user can change the custom controls for the mouse and the keyboard. To
display this dialog box, the user points to Customize on the View menu and then clicks Toolbars and Docking.
In the dialog box, the user clicks either the Keyboard tab or the Mouse tab.

The following illustration shows the Keyboard tab of the Customization dialog box.

Keyboard Customization Tab

The user interacts with the keyboard tab to assign one or more keyboard shortcuts to a command. The available
commands are listed on the left side of the tab. The user can select any available command from the menu. Only
menu commands can be associated with a keyboard shortcut. After the user enters a new shortcut, the Assign
button becomes enabled. When the user clicks this button, the application associates the selected command with
that shortcut.

All of the currently assigned keyboard shortcuts are listed in the list box in the right column. The user can also
select individual shortcuts and remove them, or reset all the mappings for the application.

If you want to support this customization in your application, you must create a CKeyboardManager object. To
create a CKeyboardManager object, call the function CWinAppEx::InitKeyboardManager. This method creates and
initializes a keyboard manager. If you create a keyboard manager manually, you still must call
CWinAppEx::InitKeyboardManager to initialize it.

If you use the Wizard to create your application, the Wizard will initialize the keyboard manager. After your
application initializes the keyboard manager, the framework adds a Keyboard tab to the Customization dialog
box.

The following illustration shows the Mouse tab of the Customization dialog box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/keyboard-and-mouse-customization.md

To enable mouse customizationTo enable mouse customization

Security Concerns

Mouse Customization Tab

The user interacts with this tab to assign a menu command to the mouse double-click action. The user selects a
view from the left side of the window and then uses the controls on the right side to associate a command with
the double-click action. After the user clicks Close, the application executes the associated command whenever
the user double-clicks anywhere in the view.

By default, mouse customization is not enabled when you create an application by using the Wizard.

1. Initialize a CMouseManager object by calling CWinAppEx::InitMouseManager.

2. Obtain a pointer to the mouse manager by using CWinAppEx::GetMouseManager.

3. Add views to the mouse manager by using the CMouseManager::AddView method. Do this for every view
you want to add to the mouse manager.

After your application initializes the mouse manager, the framework adds the Mouse tab to the Customize dialog
box. If you do not add any views, accessing the tab will cause an unhandled exception. After you have created a list
of views, the Mouse tab is available to the user.

When you add a new view to the mouse manager, you give it a unique ID. If you want to support mouse
customization for a window, you must process the WM_LBUTTONDBLCLICK message and call the
CWinAppEx::OnViewDoubleClick function. When you call this function, one of the parameters is the ID for that
window. It is the responsibility of the programmer to keep track of the ID numbers and the objects associated with
them.

As described in User-defined Tools, the user can associate a user-defined tool ID with the double-click event.
When the user double-clicks a view, the application looks for a user tool that matches the associated ID. If the
application finds a matching tool, it executes the tool. If the application cannot find a matching tool, it sends a
WM_COMMAND message with the ID to the view that was double-clicked.

The customized settings are stored in the registry. By editing the registry, an attacker can replace a valid user tool
ID with an arbitrary command. When the user double-clicks a view, the view processes the command that the
attacker planted. This could cause unexpected and potentially dangerous behavior.

In addition, this kind of attack can bypass user interface safeguards. For example, suppose an application has
printing disabled. That is, in its user interface, the Print menu and button are unavailable. Normally this prevents
the application from printing. But if an attacker edited the registry, a user could now could send the print
command directly by double-clicking the view, bypassing the user interface elements that are unavailable.

See also

To guard against this kind of attack, add code to your application command handler to verify that a command is
valid before it is executed. Do not depend on the user interface to prevent a command from being sent to the
application.

Customization for MFC
CKeyboardManager Class
CMouseManager Class
Security Implications of Customization

User-defined Tools
3/4/2019 • 3 minutes to read • Edit Online

Enabling user-defined tools support

MFC supports user-defined tools. A user-defined tool is a special command that executes an external, user-
specified program. You can use the customization process to manage user-defined tools. However, you cannot use
this process if your application object is not derived from CWinAppEx Class. For more information about
customization, see Customization for MFC.

If you enabled user-defined tools support, the customization dialog box automatically includes the Tools tab. The
following illustration shows the Tools page.

Customization dialog box Tools tab

To enable user-defined tools in an application, call CWinAppEx::EnableUserTools. However, you must first define
several constants in the resource files of your application to use as parameters for this call.

In the resource editor create a dummy command that uses an appropriate command ID. In the following example,
we use ID_TOOLS_ENTRY as the command ID. This command ID marks a location in one or more menus where the
framework will insert the user-defined tools.

You must set aside some consecutive IDs in the string table to represent the user-defined tools. The number of
strings that you set aside is equal to the maximum number of user tools that the users can define. In the following
example, these are named ID_USER_TOOL1 through ID_USER_TOOL10 .

You can offer suggestions to the users to help them select directories and arguments for the external programs
that will be called as tools. To do this, create two popup menus in the resource editor. In the following example
these are named IDR_MENU_ARGS and IDR_MENU_DIRS . For each command in these menus, define a string in your
application string table. The resource ID of the string must be equal to the command ID.

You can also create a derived class from CUserTool Class to replace the default implementation. To do this, pass
the runtime information for your derived class as the fourth parameter in CWinAppEx::EnableUserTools, instead
of RUNTIME_CLASS(CUserTool Class).

After you define the appropriate constants, call CWinAppEx::EnableUserTools to enable user-defined tools.

The following method call shows how to use these constants:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/user-defined-tools.md

EnableUserTools(ID_TOOLS_ENTRY, ID_USER_TOOL1, ID_USER_TOOL10, RUNTIME_CLASS(CUserTool), IDR_MENU_ARGS,
IDR_MENU_DIRS);

Including predefined toolsIncluding predefined tools

To a d d n e w t o o l s i n L o a d F r a m eTo a d d n e w t o o l s i n L o a d F r a m e

See also

In this example, the tools tab will be included on the Customization dialog box. The framework will replace any
command that matches the command ID ID_TOOLS_ENTRY in any menu with the set of currently defined user tools
whenever a user opens that menu. The command IDs ID_USER_TOOL1 through ID_USER_TOOL10 are reserved for
use for user-defined tools. The class CUserTool Class handles calls to the user tools. The tool tab of the
Customization dialog box provides buttons to the right of the argument and directory entry fields to access the
menus IDR_MENU_ARGS and IDR_MENU_DIRS.When a user selects a command from one of these menus,
the framework appends to the appropriate text box the string that has the resource ID equal to the command ID.

If you want to predefine some tools on the application startup, you must override the CFrameWnd::LoadFrame
method of the main window of your application. In that method, you must perform the following steps.

1. Obtain a pointer to the CUserToolsManager Class object by calling CWinAppEx::GetUserToolsManager.

2. For every tool that you want to create, call CUserToolsManager::CreateNewTool. This method returns a
pointer to a CUserTool Class object and adds the newly created user tool to the internal collection of tools.
If you provided the runtime information for a derived class of CUserTool Class as the fourth parameter of
CWinAppEx::EnableUserTools, CUserToolsManager::CreateNewTool will instantiate and return an instance
of that class instead.

3. For each tool, set its text label by setting CUserTool::m_strLabel and set its command by calling
CUserTool::SetCommand . The default implementation of CUserTool Class automatically retrieves available

icons from the program that is specified in the call to SetCommand .

Customization for MFC
CUserTool Class
CUserToolsManager Class
CWinAppEx Class

Security Implications of Customization
3/4/2019 • 2 minutes to read • Edit Online

Potential Security Weakness

Workarounds

See also

This topic discusses a potential security weakness in MFC.

MFC allows the user customize the look of an application user interface, for example, the appearance of buttons
and icons. MFC also supports user-defined tools, which let the user execute shell commands. A security
vulnerability arises because the customized settings of the application are saved in the user profile in the registry.
Anyone who can access the registry can edit those settings and change the application appearance or behavior. For
example, an administrator on the computer could impersonate a user by causing the user's application to execute
arbitrary programs (even from a network share).

We recommend any of these three ways to close the vulnerabilities in the registry:

Encrypt the data that is stored there

Store the data in a secure file instead of in the registry.

To accomplish either of these first two ways, derive a class from CSettingsStore Class and override its
methods to implement encryption or storage outside the registry.

You can also disable customizations in your application.

Customization for MFC

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/security-implications-of-customization.md

MFC Technical Notes
3/4/2019 • 2 minutes to read • Edit Online

See also

A technical note is a document written for programmers by programmers.

Each technical note describes a problem or feature that is beyond the scope of the rest of the MFC documentation.
The technical notes supplied reflect requests for information from users, as well as specialized information that the
MFC developers anticipate advanced users will want.

There are two ways to browse through the technical notes:

Technical Notes By Number

Technical Notes By Category

MFC Desktop Applications

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-technical-notes.md

Technical Notes by Category
3/4/2019 • 2 minutes to read • Edit Online

MFC and WindowsMFC and Windows

TN001: Window Class Registration

TN003: Mapping of Windows Handles to Objects

TN017: Destroying Window Objects

TN051: Using CTL3D Now and in the Future

MFC ArchitectureMFC Architecture

TN002: Persistent Object Data Format

TN006: Message Maps

TN016: Using C++ Multiple Inheritance with MFC

TN021: Command and Message Routing

TN022: Standard Commands Implementation

TN025: Document, View, and Frame Creation

TN026: DDX and DDV Routines

TN029: Splitter Windows

TN030: Customizing Printing and Print Preview

TN031: Control Bars

TN032: MFC Exception Mechanism

TN037: Multithreaded MFC 2.1 Applications

TN044: MFC Support for DBCS

TN046: Commenting Conventions for the MFC Classes

TN058: MFC Module State Implementation

Technical notes are divided into the following categories. For a numerical listing of the technical notes, see
Technical Notes by Number.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/technical-notes-by-category.md

TN059: Using MFC MBCS/Unicode Conversion Macros

TN066: Common MFC 3.x to 4.0 Porting Issues

MFC ControlsMFC Controls

TN014: Custom Controls

TN060: Windows Common Controls

TN061: ON_NOTIFY and WM_NOTIFY Messages

TN062: Message Reflection for Windows Controls

MFC DatabaseMFC Database

TN042: ODBC Driver Developer Recommendations

TN043: RFX Routines

TN045: MFC/Database Support for Long Varchar/Varbinary

TN047: Relaxing Database Transaction Requirements

TN048: Writing ODBC Setup and Administration Programs for MFC Database Applications

TN053: Custom DFX Routines for MFC DAO Classes

TN054: Calling DAO Directly While Using MFC DAO Classes

TN055: Migrating MFC ODBC Database Class Applications to MFC DAO Classes

TN068: Performing Transactions with the Microsoft Access 7 ODBC Driver

MFC DLLsMFC DLLs

TN011: Using MFC as Part of a DLL

TN033: DLL Version of MFC

TN056: Installation of Localized MFC Components

TN057: Localization of MFC Components

MFC OLEMFC OLE

TN038: MFC/OLE IUnknown Implementation

TN039: MFC/OLE Automation Implementation

TN040: MFC/OLE In-Place Resizing and Zooming

TN041: MFC/OLE1 Migration to MFC/OLE2

TN049: MFC/OLE MBCS to Unicode Translation Layer (MFCANS32)

TN050: MFC/OLE Common Dialogs (MFCUIx32)

TN064: Apartment-Model Threading in OLE Controls

TN065: Dual-Interface Support for OLE Automation Servers

TN071: MFC IOleCommandTarget Implementation

MFC ResourcesMFC Resources

TN020: ID Naming and Numbering Conventions

TN023: Standard MFC Resources

TN024: MFC-Defined Messages and Resources

TN028: Context-Sensitive Help Support

TN035: Using Multiple Resource Files and Header Files with Visual C++

TN036: Using CFormView with AppWizard and ClassWizard

TN070: MFC Window Class Names

MFC InternetMFC Internet

TN063: Debugging Internet MFC extension DLLs

Technical Notes by Number
10/31/2018 • 2 minutes to read • Edit Online

NUMBER TITLE

71 MFC IOleCommandTarget Implementation

70 MFC Window Class Names

68 Performing Transactions with the Microsoft Access 7
ODBC Driver

66 Common MFC 3.x to 4.0 Porting Issues

65 Dual-Interface Support for OLE Automation Servers

64 Apartment-Model Threading in OLE Controls

63 Debugging Internet MFC extension DLLs

62 Message Reflection for Windows Controls

61 ON_NOTIFY and WM_NOTIFY Messages

60 Windows Common Controls

59 Using MFC MBCS/Unicode Conversion Macros

58 MFC Module State Implementation

57 Localization of MFC Components

56 Installation of Localized MFC Components

55 Migrating MFC ODBC Database Class Applications to
MFC DAO Classes

54 Calling DAO Directly While Using MFC DAO Classes

53 Writing Custom DFX Routines for DAO Database Classes

51 Using CTL3D Now and in the Future

50 MFC/OLE Common Dialogs (MFCUIx32)

The technical notes below are listed numerically, with the most recently written technical note first. For a
listing by category, see Technical Notes by Category.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/technical-notes-by-number.md

49 MFC/OLE MBCS to Unicode Translation Layer
(MFCANS32)

48 Writing ODBC Setup and Administration Programs for
MFC Database Applications

47 Relaxing Database Transaction Requirements

46 Commenting Conventions for the MFC Classes

45 MFC/Database Support for Long Varchar/Varbinary

44 MFC Support for DBCS

43 RFX Routines

42 ODBC Driver Developer Recommendations

41 MFC/OLE1 Migration to MFC/OLE2

40 MFC/OLE In-Place Resizing and Zooming

39 MFC/OLE Automation Implementation

38 MFC/OLE IUnknown Implementation

37 Multithreaded MFC 2.1 Applications

36 Using CFormView with AppWizard and ClassWizard

35 Using Multiple Resource Files and Header Files with Visual
C++

33 DLL Version of MFC

32 MFC Exception Mechanism

31 Control Bars

30 Customizing Printing and Print Preview

29 Splitter Windows

28 Context-Sensitive Help Support

26 DDX and DDV Routines

25 Document, View, and Frame Creation

24 MFC-Defined Messages and Resources

NUMBER TITLE

23 Standard MFC Resources

22 Standard Commands Implementation

21 Command and Message Routing

20 ID Naming and Numbering Conventions

17 Destroying Window Objects

16 Using C++ Multiple Inheritance with MFC

14 Custom Controls

11 Using MFC as Part of a DLL

6 Message Maps

3 Mapping of Windows Handles to Objects

2 Persistent Object Data Format

1 Window Class Registration

NUMBER TITLE

TN001: Window Class Registration
3/4/2019 • 3 minutes to read • Edit Online

The Problem

WNDCLASS Fields

FIELD DESCRIPTION

lpfnWndProc window proc, must be an AfxWndProc

cbClsExtra not used (should be zero)

cbWndExtra not used (should be zero)

hInstance automatically filled with AfxGetInstanceHandle

hIcon icon for frame windows, see below

hCursor cursor for when mouse is over window, see below

hbrBackground background color, see below

lpszMenuName not used (should be NULL)

lpszClassName class name, see below

Provided WNDCLASSes

This note describes the MFC routines that register the special WNDCLASSes needed by Microsoft Windows.
Specific WNDCLASS attributes used by MFC and Windows are discussed.

The attributes of a CWnd object, like an HWND handle in Windows, are stored in two places: the window object and
the WNDCLASS . The name of the WNDCLASS is passed to general window creation functions such as CWnd::Create
and CFrameWnd::Create in the lpszClassName parameter.

This WNDCLASS must be registered through one of four means:

Implicitly by using a MFC provided WNDCLASS .

Implicitly by subclassing a Windows control (or some other control).

Explicitly by calling the MFC AfxRegisterWndClass or AfxRegisterClass.

Explicitly by calling the Windows routine RegisterClass.

The WNDCLASS structure consists of various fields that describe a window class. The following table shows the
fields and specifies how they are used in an MFC application:

Earlier versions of MFC (before MFC 4.0), provided several predefined Window classes. These Window classes
are no longer provided by default. Applications should use AfxRegisterWndClass with the appropriate parameters.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn001-window-class-registration.md
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclassa

Subclassing and Superclassing Controls

The AfxRegisterWndClass Function

const char* AfxRegisterWndClass(UINT nClassStyle,
 HCURSOR hCursor,
 HBRUSH hbrBackground,
 HICON hIcon);

CString strWndClass = AfxRegisterWndClass(CS_DBLCLK, ...);

...
CWnd* pWnd = new CWnd;
pWnd->Create(strWndClass, ...);

...

If the application provides a resource with the specified resource ID (for example, AFX_IDI_STD_FRAME), MFC
will use that resource. Otherwise it will use the default resource. For the icon, the standard application icon is used,
and for the cursor, the standard arrow cursor is used.

Two icons support MDI applications with single document types: one icon for the main application, the other icon
for iconic document/MDIChild windows. For multiple document types with different icons, you must register
additional WNDCLASS es or use the CFrameWnd::LoadFrame function.

CFrameWnd::LoadFrame will register a WNDCLASS using the icon ID you specify as the first parameter and the
following standard attributes:

class style : CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;

icon AFX_IDI_STD_FRAME

arrow cursor

COLOR_WINDOW background color

The values for background color and cursor for the CMDIFrameWnd are not used since the client area of the
CMDIFrameWnd is completely covered by the MDICLIENT window. Microsoft does not encourage subclassing the

MDICLIENT window so use the standard colors and cursor types when possible.

If you subclass or superclass a Windows control (for example, CButton) then your class automatically gets the
WNDCLASS attributes provided in the Windows implementation of that control.

MFC provides a helper function for registering a window class. Given a set of attributes (window class style,
cursor, background brush, and icon), a synthetic name is generated, and the resulting window class is registered.
For example,

This function returns a temporary string of the generated registered window class name. For more information
about this function, see AfxRegisterWndClass.

The returned string is a temporary pointer to a static string buffer. It is valid until the next call to
AfxRegisterWndClass . If you want to keep this string around, store it in a CString variable, as in this example:

AfxRegisterWndClass will throw a CResourceException if the window class failed to register (either because of bad
parameters, or out of Windows memory).

The RegisterClass and AfxRegisterClass Functions

See also

If you want to do anything more sophisticated than what AfxRegisterWndClass provides, you can call the Windows
API RegisterClass or the MFC function AfxRegisterClass . The CWnd , CFrameWnd and CMDIChildWnd Create

functions take a lpszClassName string name for the window class as the first parameter. You can use any
registered window class name, regardless of the method you used to register it.

It is important to use AfxRegisterClass (or AfxRegisterWndClass) in a DLL on Win32. Win32 does not
automatically unregister classes registered by a DLL, so you must explicitly unregister classes when the DLL is
terminated. By using AfxRegisterClass instead of RegisterClass this is handled automatically for you.
AfxRegisterClass maintains a list of unique classes registered by your DLL and will automatically unregister them

when the DLL terminates. When you use RegisterClass in a DLL, you must ensure that all classes are
unregistered when the DLL is terminated (in your DllMain function). Failure to do so might cause RegisterClass

to fail unexpectedly when another client application tries to use your DLL.

Technical Notes by Number
Technical Notes by Category

https://docs.microsoft.com/windows/desktop/Dlls/dllmain

TN002: Persistent Object Data Format
3/4/2019 • 7 minutes to read • Edit Online

The Problem

class CMyObject : public CObject
{
 DECLARE_SERIAL(CMyObject)
};

IMPLEMENT_SERIAL(CMyObj, CObject, 1)

// example usage (ar is a CArchive&)
CMyObject* pObj;
CArchive& ar;
ar <<pObj; // calls ar.WriteObject(pObj)
ar>> pObj; // calls ar.ReadObject(RUNTIME_CLASS(CObj))

Saving Objects to the Store (CArchive::WriteObject)

TAG DESCRIPTION

wNullTag Used for NULL object pointers (0).

This note describes the MFC routines that support persistent C++ objects and the format of the object data when
it is stored in a file. This applies only to classes with the DECLARE_SERIAL and IMPLEMENT_SERIAL macros.

The MFC implementation for persistent data stores data for many objects in a single contiguous part of a file. The
object's Serialize method translates the object's data into a compact binary format.

The implementation guarantees that all data is saved in the same format by using the CArchive Class. It uses a
CArchive object as a translator. This object persists from the time it is created until you call CArchive::Close. This

method can be called either explicitly by the programmer or implicitly by the destructor when the program exits
the scope that contains the CArchive .

This note describes the implementation of the CArchive members CArchive::ReadObject and
CArchive::WriteObject. You will find the code for these functions in Arcobj.cpp, and the main implementation for
CArchive in Arccore.cpp. User code does not call ReadObject and WriteObject directly. Instead, these objects are

used by class-specific type-safe insertion and extraction operators that are generated automatically by the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros. The following code shows how WriteObject and
ReadObject are implicitly called:

The method CArchive::WriteObject writes header data that is used to reconstruct the object. This data consists of
two parts: the type of the object and the state of the object. This method is also responsible for maintaining the
identity of the object being written out, so that only a single copy is saved, regardless of the number of pointers to
that object (including circular pointers).

Saving (inserting) and restoring (extracting) objects relies on several "manifest constants." These are values that
are stored in binary and provide important information to the archive (note the "w" prefix indicates 16-bit
quantities):

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn002-persistent-object-data-format.md

wNewClassTag Indicates class description that follows is new to this archive
context (-1).

wOldClassTag Indicates class of the object being read has been seen in this
context (0x8000).

TAG DESCRIPTION

NOTENOTE

Loading Objects from the Store (CArchive::ReadObject)

When storing objects, the archive maintains a CMapPtrToPtr (the m_pStoreMap) which is a mapping from a
stored object to a 32-bit persistent identifier (PID). A PID is assigned to every unique object and every unique
class name that is saved in the context of the archive. These PIDs are handed out sequentially starting at 1. These
PIDs have no significance outside the scope of the archive and, in particular, are not to be confused with record
numbers or other identity items.

In the CArchive class, PIDs are 32-bit, but they are written out as 16-bit unless they are larger than 0x7FFE. Large
PIDs are written as 0x7FFF followed by the 32-bit PID. This maintains compatibility with projects that were
created in earlier versions.

When a request is made to save an object to an archive (usually by using the global insertion operator), a check is
made for a NULL CObject pointer. If the pointer is NULL, the wNullTag is inserted into the archive stream.

If the pointer is not NULL and can be serialized (the class is a DECLARE_SERIAL class), the code checks the
m_pStoreMap to see whether the object has been saved already. If it has, the code inserts the 32-bit PID
associated with that object into the archive stream.

If the object has not been saved before, there are two possibilities to consider: either both the object and the exact
type (that is, class) of the object are new to this archive context, or the object is of an exact type already seen. To
determine whether the type has been seen, the code queries the m_pStoreMap for a CRuntimeClass object that
matches the CRuntimeClass object associated with the object being saved. If there is a match, WriteObject inserts
a tag that is the bit-wise OR of wOldClassTag and this index. If the CRuntimeClass is new to this archive context,
WriteObject assigns a new PID to that class and inserts it into the archive, preceded by the wNewClassTag value.

The descriptor for this class is then inserted into the archive using the CRuntimeClass::Store method.
CRuntimeClass::Store inserts the schema number of the class (see below) and the ASCII text name of the class.

Note that the use of the ASCII text name does not guarantee uniqueness of the archive across applications.
Therefore, you should tag your data files to prevent corruption. Following the insertion of the class information,
the archive puts the object into the m_pStoreMap and then calls the Serialize method to insert class-specific
data. Placing the object into the m_pStoreMap before calling Serialize prevents multiple copies of the object
from being saved to the store.

When returning to the initial caller (usually the root of the network of objects), you must call CArchive::Close. If
you plan to perform other CFileoperations, you must call the CArchive method Flush to prevent corruption of the
archive.

This implementation imposes a hard limit of 0x3FFFFFFE indices per archive context. This number represents the maximum
number of unique objects and classes that can be saved in a single archive, but a single disk file can have an unlimited
number of archive contexts.

Loading (extracting) objects uses the CArchive::ReadObject method and is the converse of WriteObject . As with
WriteObject , ReadObject is not called directly by user code; user code should call the type-safe extraction

Schema Numbers

Calling Serialize Directly

operator that calls ReadObject with the expected CRuntimeClass . This insures the type integrity of the extract
operation.

Since the WriteObject implementation assigned increasing PIDs, starting with 1 (0 is predefined as the NULL
object), the ReadObject implementation can use an array to maintain the state of the archive context. When a PID
is read from the store, if the PID is larger than the current upper bound of the m_pLoadArray, ReadObject knows
that a new object (or class description) follows.

The schema number, which is assigned to the class when the IMPLEMENT_SERIAL method of the class is
encountered, is the "version" of the class implementation. The schema refers to the implementation of the class,
not to the number of times a given object has been made persistent (usually referred to as the object version).

If you intend to maintain several different implementations of the same class over time, incrementing the schema
as you revise your object's Serialize method implementation will enable you to write code that can load objects
stored by using older versions of the implementation.

The CArchive::ReadObject method will throw a CArchiveException when it encounters a schema number in the
persistent store that differs from the schema number of the class description in memory. It is not easy to recover
from this exception.

You can use VERSIONABLE_SCHEMA combined with (bitwise OR) your schema version to keep this exception from
being thrown. By using VERSIONABLE_SCHEMA , your code can take the appropriate action in its Serialize function
by checking the return value from CArchive::GetObjectSchema.

In many cases the overhead of the general object archive scheme of WriteObject and ReadObject is not
necessary. This is the common case of serializing the data into a CDocument. In this case, the Serialize method
of the CDocument is called directly, not with the extract or insert operators. The contents of the document may in
turn use the more general object archive scheme.

Calling Serialize directly has the following advantages and disadvantages:

No extra bytes are added to the archive before or after the object is serialized. This not only makes the
saved data smaller, but allows you to implement Serialize routines that can handle any file formats.

The MFC is tuned so the WriteObject and ReadObject implementations and related collections will not be
linked into your application unless you need the more general object archive scheme for some other
purpose.

Your code does not have to recover from old schema numbers. This makes your document serialization
code responsible for encoding schema numbers, file format version numbers, or whatever identifying
numbers you use at the start of your data files.

Any object that is serialized with a direct call to Serialize must not use CArchive::GetObjectSchema or
must handle a return value of (UINT)-1 indicating that the version was unknown.

Because Serialize is called directly on your document, it is not usually possible for the sub-objects of the
document to archive references to their parent document. These objects must be given a pointer to their container
document explicitly or you must use CArchive::MapObject function to map the CDocument pointer to a PID before
these back pointers are archived.

As noted earlier, you should encode the version and class information yourself when you call Serialize directly,
enabling you to change the format later while still maintaining backward compatibility with older files. The

See also

CArchive::SerializeClass function can be called explicitly before directly serializing an object or before calling a
base class.

Technical Notes by Number
Technical Notes by Category

TN003: Mapping of Windows Handles to Objects
3/4/2019 • 2 minutes to read • Edit Online

The Problem

CWnd::FromHandle(hWnd)

Attaching Handles to MFC Objects

This note describes the MFC routines that support mapping Windows object handles to C++ objects.

Windows objects are typically represented by various HANDLE objects The MFC classes wrap Windows object
handles with C++ objects. The handle wrapping functions of the MFC class library let you find the C++ object
that is wrapping the Windows object that has a particular handle. However, sometimes an object does not have a
C++ wrapper object and at these times the system creates a temporary object to act as the C++ wrapper.

The Windows objects that use handle maps are as follows:

HWND (CWnd and CWnd -derived classes)

HDC (CDC and CDC -derived classes)

HMENU (CMenu)

HPEN (CGdiObject)

HBRUSH (CGdiObject)

HFONT (CGdiObject)

HBITMAP (CGdiObject)

HPALETTE (CGdiObject)

HRGN (CGdiObject)

HIMAGELIST (CImageList)

SOCKET (CSocket)

Given a handle to any one of these objects, you can find the MFC object that wraps the handle by calling the static
method FromHandle . For example, given an HWND called hWnd, the following line will return a pointer to the
CWnd that wraps hWnd:

If hWnd does not have a specific wrapper object, a temporary CWnd is created to wrap hWnd. This makes it
possible to obtain a valid C++ object from any handle.

After you have a wrapper object, you can retrieve its handle from a public member variable of the wrapper class.
In the case of a CWnd , m_hWnd contains the HWND for that object.

Given a newly created handle-wrapper object and a handle to a Windows object, you can associate the two by
calling the Attach function as in this example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn003-mapping-of-windows-handles-to-objects.md
https://docs.microsoft.com/windows/desktop/WinProg/windows-data-types

CWnd myWnd;
myWnd.Attach(hWnd);

myWnd.Detach();

More About Temporary Objects

Wrapper Objects and Multiple Threads

See also

This makes an entry in the permanent map associating myWnd and hWnd. Calling CWnd::FromHandle(hWnd) will
now return a pointer to myWnd. When myWnd is deleted, the destructor will automatically destroy hWnd by
calling the Windows DestroyWindow function. If this is not desired, hWnd must be detached from myWnd before
myWnd is destroyed (normally when leaving the scope at which myWnd was defined). The Detach method does
this.

Temporary objects are created whenever FromHandle is given a handle that does not already have a wrapper
object. These temporary objects are detached from their handle and deleted by the DeleteTempMap functions. By
default CWinThread::OnIdle automatically calls DeleteTempMap for each class that supports temporary handle
maps. This means that you cannot assume a pointer to a temporary object will be valid past the point of exit from
the function where the pointer was obtained.

Both temporary and permanent objects are maintained on a per-thread basis. That is, one thread cannot access
another thread's C++ wrapper objects, regardless of whether it is temporary or permanent.

To pass these objects from one thread to another, always send them as their native HANDLE type. Passing a C++
wrapper object from one thread to another will often cause unexpected results.

Technical Notes by Number
Technical Notes by Category

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-destroywindow

TN006: Message Maps
1/24/2019 • 6 minutes to read • Edit Online

The Problem

Overview

Defining a Message Map

class CMyWnd : public CMyParentWndClass
{
 // my stuff...

protected:
 //{{AFX_MSG(CMyWnd)
 afx_msg void OnPaint();
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

This note describes the MFC message map facility.

Microsoft Windows implements virtual functions in window classes that use its messaging facility. Due to the
large number of messages involved, providing a separate virtual function for each Windows message would
create a prohibitively large vtable.

Because the number of system-defined Windows messages changes over time, and because applications can
define their own Windows messages, message maps provide a level of indirection that prevents interface changes
from breaking existing code.

MFC provides an alternative to the switch statement that was used in traditional Windows-based programs to
handle messages sent to a window. A mapping from messages to methods can be defined so that when a
message is received by a window, the appropriate method is called automatically. This message-map facility is
designed to resemble virtual functions but has additional benefits not possible with C++ virtual functions.

The DECLARE_MESSAGE_MAP macro declares three members for a class.

A private array of AFX_MSGMAP_ENTRY entries called _messageEntries.

A protected AFX_MSGMAP structure called messageMap that points to the _messageEntries array.

A protected virtual function called GetMessageMap that returns the address of messageMap.

This macro should be put in the declaration of any class using message maps. By convention, it is at the end of the
class declaration. For example:

This is the format generated by AppWizard and ClassWizard when they create new classes. The //{{ and //}}
brackets are needed for ClassWizard.

The message map's table is defined by using a set of macros that expand to message map entries. A table starts
with a BEGIN_MESSAGE_MAP macro call, which defines the class that is handled by this message map and the
parent class to which unhandled messages are passed. The table ends with the END_MESSAGE_MAP macro call.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn006-message-maps.md

NOTENOTE

BEGIN_MESSAGE_MAP(CMyWnd, CMyParentWndClass)
 //{{AFX_MSG_MAP(CMyWnd)
 ON_WM_PAINT()
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

NOTENOTE

User Defined Windows Messages

 // inside the class declaration
 afx_msg LRESULT OnMyMessage(WPARAM wParam, LPARAM lParam);

 #define WM_MYMESSAGE (WM_USER + 100)

BEGIN_MESSAGE_MAP(CMyWnd, CMyParentWndClass)
 ON_MESSAGE(WM_MYMESSAGE, OnMyMessage)
END_MESSAGE_MAP()

CWnd* pWnd = ...;
pWnd->SendMessage(WM_MYMESSAGE);

Between these two macro calls is an entry for each message to be handled by this message map. Every standard
Windows message has a macro of the form ON_WM_MESSAGE_NAME that generates an entry for that message.

A standard function signature has been defined for unpacking the parameters of each Windows message and
providing type safety. These signatures may be found in the file Afxwin.h in the declaration of CWnd. Each one is
marked with the keyword afx_msg for easy identification.

ClassWizard requires that you use the afx_msg keyword in your message map handler declarations.

These function signatures were derived by using a simple convention. The name of the function always starts with
"On ". This is followed by the name of the Windows message with the "WM_" removed and the first letter of each

word capitalized. The ordering of the parameters is wParam followed by LOWORD (lParam) then HIWORD (lParam).
Unused parameters are not passed. Any handles that are wrapped by MFC classes are converted to pointers to
the appropriate MFC objects. The following example shows how to handle the WM_PAINT message and cause
the CMyWnd::OnPaint function to be called:

The message map table must be defined outside the scope of any function or class definition. It should not be put
in an extern "C" block.

ClassWizard will modify the message map entries that occur between the //{{ and //}} comment bracket.

User-defined messages may be included in a message map by using the ON_MESSAGE macro. This macro
accepts a message number and a method of the form:

In this example, we establish a handler for a custom message that has a Windows message ID derived from the
standard WM_USER base for user-defined messages. The following example shows how to call this handler:

The range of user-defined messages that use this approach must be in the range WM_USER to 0x7fff.

NOTENOTE

Registered Windows Messages

class CMyWnd : public CMyParentWndClass
{
public:
 CMyWnd();

 //{{AFX_MSG(CMyWnd)
 afx_msg LRESULT OnFind(WPARAM wParam, LPARAM lParam);
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()
};

static UINT NEAR WM_FIND = RegisterWindowMessage("COMMDLG_FIND");

BEGIN_MESSAGE_MAP(CMyWnd, CMyParentWndClass)
 //{{AFX_MSG_MAP(CMyWnd)
 ON_REGISTERED_MESSAGE(WM_FIND, OnFind)
 //}}AFX_MSG_MAP
END_MESSAGE_MAP()

NOTENOTE

Command Messages

ON_COMMAND(id, memberFxn)

ClassWizard does not support entering ON_MESSAGE handler routines from the ClassWizard user interface. You must
manually enter them from the Visual C++ editor. ClassWizard will parse these entries and let you browse them just like any
other message-map entries.

The RegisterWindowMessage function is used to define a new window message that is guaranteed to be unique
throughout the system. The macro ON_REGISTERED_MESSAGE is used to handle these messages. This macro
accepts a name of a UINT NEAR variable that contains the registered windows message ID. For example

The registered Windows message ID variable (WM_FIND in this example) must be a NEAR variable because of
the way ON_REGISTERED_MESSAGE is implemented.

The range of user-defined messages that use this approach will be in the range 0xC000 to 0xFFFF.

ClassWizard does not support entering ON_REGISTERED_MESSAGE handler routines from the ClassWizard user interface.
You must manually enter them from the text editor. ClassWizard will parse these entries and let you browse them just like
any other message-map entries.

Command messages from menus and accelerators are handled in message maps with the ON_COMMAND
macro. This macro accepts a command ID and a method. Only the specific WM_COMMAND message that has a
wParam equal to the specified command ID is handled by the method specified in the message-map entry.
Command handler member functions take no parameters and return void. The macro has the following form:

Command update messages are routed through the same mechanism, but use the ON_UPDATE_COMMAND_UI
macro instead. Command update handler member functions take a single parameter, a pointer to a CCmdUI
object, and return void. The macro has the form

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerwindowmessagea

ON_UPDATE_COMMAND_UI(id, memberFxn)

NOTENOTE

Advanced users can use the ON_COMMAND_EX macro, which is an extended form of command message
handlers. The macro provides a superset of the ON_COMMAND functionality. Extended command-handler
member functions take a single parameter, a UINT that contains the command ID, and return a BOOL. The return
value should be TRUE to indicate that the command has been handled. Otherwise routing will continue to other
command target objects.

Examples of these forms:

#define ID_MYCMD 100
#define ID_COMPLEX 101

afx_msg void OnMyCommand();
afx_msg void OnUpdateMyCommand(CCmdUI* pCmdUI);
afx_msg BOOL OnComplexCommand(UINT nID);

ON_COMMAND(ID_MYCMD, OnMyCommand)
ON_UPDATE_COMMAND_UI(ID_MYCMD, OnUpdateMyCommand)
ON_COMMAND_EX(ID_MYCMD, OnComplexCommand)

void CMyClass::OnMyCommand()
{
 // handle the command
}

void CMyClass::OnUpdateMyCommand(CCmdUI* pCmdUI)
{
 // set the UI state with pCmdUI
}

BOOL CMyClass::OnComplexCommand(UINT nID)
{
 // handle the command
 return TRUE;
}

Inside Resource.h (usually generated by Visual C++)

Inside the class declaration

Inside the message map definition

In the implementation file

Advanced users can handle a range of commands by using a single command handler: ON_COMMAND_RANGE
or ON_COMMAND_RANGE_EX. See the product documentation for more information about these macros.

ClassWizard supports creating ON_COMMAND and ON_UPDATE_COMMAND_UI handlers, but it does not support creating
ON_COMMAND_EX or ON_COMMAND_RANGE handlers. However, Class Wizard will parse and let you browse all four
command handler variants.

Control Notification Messages

ON_CONTROL(wNotificationCode, id, memberFxn)

NOTENOTE

See also

Messages that are sent from child controls to a window have an extra bit of information in their message map
entry: the control's ID. The message handler specified in a message map entry is called only if the following
conditions are true:

The control notification code (high word of lParam), such as BN_CLICKED, matches the notification code
specified in the message-map entry.

The control ID (wParam) matches the control ID specified in the message-map entry.

Custom control notification messages may use the ON_CONTROL macro to define a message map entry with a
custom notification code. This macro has the form

For advanced usage ON_CONTROL_RANGE can be used to handle a specific control notification from a range of
controls with the same handler.

ClassWizard does not support creating an ON_CONTROL or ON_CONTROL_RANGE handler in the user interface. You must
manually enter them with the text editor. ClassWizard will parse these entries and let you browse them just like any other
message map entries.

The Windows Common Controls use the more powerful WM_NOTIFY for complex control notifications. This
version of MFC has direct support for this new message by using the ON_NOTIFY and ON_NOTIFY_RANGE
macros. See the product documentation for more information about these macros.

Technical Notes by Number
Technical Notes by Category

https://docs.microsoft.com/windows/desktop/controls/wm-notify

TN011: Using MFC as Part of a DLL
3/4/2019 • 5 minutes to read • Edit Online

DLL Interfaces

API Limitations

Building Your DLL

This note describes regular MFC DLLs, which allow you to use the MFC library as part of a Windows dynamic-
link library (DLL). It assumes that you are familiar with Windows DLLs and how to build them. For information
about MFC extension DLLs, with which you can create extensions to the MFC library, see DLL Version of MFC.

regular MFC DLLs assume interfaces between the application and the DLL are specified in C-like functions or
explicitly exported classes. MFC class interfaces cannot be exported.

If both a DLL and an application want to use MFC, both have a choice to either use the shared version of the MFC
libraries or to statically link to a copy of the libraries. The application and DLL may both use one of the standard
versions of the MFC library.

regular MFC DLLs have several advantages:

The application that uses the DLL does not have to use MFC and does not have to be a Visual C++
application.

With regular MFC DLLs that statically link to MFC, the size of the DLL depends only on the MFC and C
runtime routines that are used and linked.

With regular MFC DLLs that dynamically link to MFC, the savings in memory from using the shared
version of MFC can be significant. However, you must distribute the shared DLLs, Mfc<version>.dll and
Msvvcrt<version>.dll, with your DLL.

The DLL design is independent of how classes are implemented. Your DLL design exports only to the APIs
you want. As a result, if the implementation changes, regular MFC DLLs are still valid.

With regular MFC DLLs that statically link to MFC, if both DLL and application use MFC, there are no
problems with the application that wants a different version of MFC than the DLL or vice versa. Because
the MFC library is statically linked into each DLL or EXE, there is no question about which version you
have.

Some MFC functionality does not apply to the DLL version, either because of technical limitations or because
those services are usually provided by the application. With the current version of MFC, the only function that is
not applicable is CWinApp::SetDialogBkColor .

When compiling regular MFC DLLs that statically link to MFC, the symbols _USRDLL and _WINDLL must be
defined. Your DLL code must also be compiled with the following compiler switches:

/D_WINDLL signifies the compilation is for a DLL

/D_USRDLL specifies you are building a regular MFC DLL

You must also define these symbols and use these compiler switches when you compile regular MFC DLLs that
dynamically link to MFC. Additionally, the symbol _AFXDLL must be defined and your DLL code must be compiled

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn011-using-mfc-as-part-of-a-dll.md

WinMain -> DllMain

Linking Your DLL

Sample Code

with:

/D_AFXDLL specifies that you are building a regular MFC DLL that dynamically links to MFC

The interfaces (APIs) between the application and the DLL must be explicitly exported. We recommend that you
define your interfaces to be low bandwidth, and use only C interfaces if you can. Direct C interfaces are easier to
maintain than more complex C++ classes.

Place your APIs in a separate header that can be included by both C and C++ files. See the header ScreenCap.h in
the MFC Advanced Concepts sample DLLScreenCap for an example. To export your functions, enter them in the
EXPORTS section of your module definition file (.DEF) or include __declspec(dllexport) on your function

definitions. Use __declspec(dllimport) to import these functions into the client executable.

You must add the AFX_MANAGE_STATE macro at the beginning of all the exported functions in regular MFC
DLLs that dynamically link to MFC. This macro sets the current module state to the one for the DLL. To use this
macro, add the following line of code to the beginning of functions exported from the DLL:

AFX_MANAGE_STATE(AfxGetStaticModuleState())

The MFC library defines the standard Win32 DllMain entry point that initializes your CWinApp derived object as
in a typical MFC application. Place all DLL-specific initialization in the InitInstance method as in a typical MFC
application.

Note that the CWinApp::Run mechanism does not apply to a DLL, because the application owns the main
message pump. If your DLL displays modeless dialogs or has a main frame window of its own, your application's
main message pump must call a DLL-exported routine that calls CWinApp::PreTranslateMessage.

See the DLLScreenCap sample for use of this function.

The DllMain function that MFC provides will call the CWinApp::ExitInstance method of your class that is derived
from CWinApp before the DLL is unloaded.

With regular MFC DLLs that statically link to MFC, you must link your DLL with Nafxcwd.lib or Nafxcw.lib and
with the version of the C runtimes named Libcmt.lib. These libraries are pre-built and may be installed by
specifying them when you run Visual C++ setup.

See the MFC Advanced Concepts sample program DLLScreenCap for a complete sample. Several interesting
things to note in this sample are as follows:

The compiler flags of the DLL and those of the application are different.

The link lines and .DEF files for the DLL and those for the application are different.

The application that uses the DLL does not have to be in C++.

The interface between the application and the DLL is an API that is usable by C or C++ and is exported
with DLLScreenCap.def.

The following example illustrates an API that is defined in a regular MFC DLL that statically links to MFC. In this
example, the declaration is enclosed in an extern "C" { } block for C++ users. This has several advantages. First,
it makes your DLL APIs usable by non-C++ client applications. Second, it reduces DLL overhead because C++
name mangling will not be applied to the exported name. Lastly, it makes it easier to explicitly add to a .DEF file

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */

struct TracerData
{
 BOOL bEnabled;
 UINT flags;
};

BOOL PromptTraceFlags(TracerData FAR* lpData);

#ifdef __cplusplus
}
#endif

See also

(for exporting by ordinal) without having to worry about name mangling.

The structures used by the API are not derived from MFC classes and are defined in the API header. This reduces
the complexity of the interface between the DLL and the application and makes the DLL usable by C programs.

Technical Notes by Number
Technical Notes by Category

TN014: Custom Controls
3/4/2019 • 5 minutes to read • Edit Online

Owner-Draw Controls/Menus

Self-Draw Controls and Menus

This note describes the MFC Support for custom and self-drawing controls. It also describes dynamic subclassing,
and describes the relationship between CWnd objects and HWND s.

The MFC sample application CTRLTEST illustrates how to use many custom controls. See the source code for the
MFC General sample CTRLTEST and online help.

Windows provides support for owner-draw controls and menus by using Windows messages. The parent window
of any control or menu receives these messages and calls functions in response. You can override these functions
to customize the visual appearance and behavior of your owner-draw control or menu.

MFC directly supports owner-draw with the following functions:

CWnd::OnDrawItem

CWnd::OnMeasureItem

CWnd::OnCompareItem

CWnd::OnDeleteItem

You can override these functions in your CWnd derived class to implement custom draw behavior.

This approach does not lead to reusable code. If you have two similar controls in two different CWnd classes, you
must implement the custom control behavior in two locations. The MFC-supported self-drawing control
architecture solves this problem.

MFC provides a default implementation (in the CWnd and CMenu classes) for the standard owner-draw messages.
This default implementation will decode the owner-draw parameters and delegate the owner-draw messages to
the controls or menu. This is called self-draw because the drawing code is in the class of the control or menu, not
in the owner window.

By using self-draw controls you can build reusable control classes that use owner-draw semantics to display the
control. The code for drawing the control is in the control class, not its parent. This is an object-oriented approach
to custom control programming. Add the following list of functions to your self-draw classes:

CButton:DrawItem(LPDRAWITEMSTRUCT);
// insert code to draw this button

CMenu:MeasureItem(LPMEASUREITEMSTRUCT);
// insert code to measure the size of an item in this menu
CMenu:DrawItem(LPDRAWITEMSTRUCT);
// insert code to draw an item in this menu

For self-draw buttons:

For self-draw menus:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn014-custom-controls.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Using self-draw controls and menus

Examples of Self-Drawing Controls and Menus

CListBox:MeasureItem(LPMEASUREITEMSTRUCT);
// insert code to measure the size of an item in this list box
CListBox:DrawItem(LPDRAWITEMSTRUCT);
// insert code to draw an item in this list box

CListBox:CompareItem(LPCOMPAREITEMSTRUCT);
// insert code to compare two items in this list box if LBS_SORT
CListBox:DeleteItem(LPDELETEITEMSTRUCT);
// insert code to delete an item from this list box

CComboBox:MeasureItem(LPMEASUREITEMSTRUCT);
// insert code to measure the size of an item in this combo box
CComboBox:DrawItem(LPDRAWITEMSTRUCT);
// insert code to draw an item in this combo box

CComboBox:CompareItem(LPCOMPAREITEMSTRUCT);
// insert code to compare two items in this combo box if CBS_SORT
CComboBox:DeleteItem(LPDELETEITEMSTRUCT);
// insert code to delete an item from this combo box

For self-draw list boxes:

For self-draw combo boxes:

For details on the owner-draw structures (DRAWITEMSTRUCT, MEASUREITEMSTRUCT,
COMPAREITEMSTRUCT, and DELETEITEMSTRUCT) see the MFC documentation for CWnd::OnDrawItem ,
CWnd::OnMeasureItem , CWnd::OnCompareItem , and CWnd::OnDeleteItem respectively.

For self-draw menus, you must override both the OnMeasureItem and OnDrawItem methods.

For self-draw list boxes and combo boxes, you must override OnMeasureItem and OnDrawItem . You must specify
the LBS_OWNERDRAWVARIABLE style for list boxes or CBS_OWNERDRAWVARIABLE style for combo boxes
in the dialog template. The OWNERDRAWFIXED style will not work with self-draw items because the fixed item
height is determined before self-draw controls are attached to the list box. (You can use the methods
CListBox::SetItemHeight and CComboBox::SetItemHeight to overcome this limitation.)

Switching to an OWNERDRAWVARIABLE style will force the system to apply the NOINTEGRALHEIGHT style to
the control. Because the control cannot calculate an integral height with variable sized items, the default style of
INTEGRALHEIGHT is ignored and the control is always NOINTEGRALHEIGHT. If your items are fixed height,
you can prevent partial items from being drawn by specifying the control size to be an integer multiplier of the
item size.

For self-drawing list boxes and combo boxes with the LBS_SORT or CBS_SORT style, you must override the
OnCompareItem method.

For self-drawing list boxes and combo boxes, OnDeleteItem is not usually overridden. You can override
OnDeleteItem if you want to perform any special processing. One case where this would be applicable is when

additional memory or other resources are stored with each list box or combo box item.

The MFC General sample CTRLTEST provides samples of a self-draw menu and a self-draw list box.

The most typical example of a self-drawing button is a bitmap button. A bitmap button is a button that shows one,
two, or three bitmap images for the different states. An example of this is provided in the MFC class

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmeasureitemstruct
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcompareitemstruct
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdeleteitemstruct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Dynamic Subclassing

See also

CBitmapButton.

Occasionally you will want to change the functionality of an object that already exists. The previous examples
required you to customize the controls before they were created. Dynamic subclassing enables you to customize a
control that has already been created.

Subclassing is the Windows term for replacing the WndProc of a window with a customized WndProc and calling
the old WndProc for default functionality.

This should not be confused with C++ class derivation. For clarification, the C++ terms base class and derived
class are analogous to superclass and subclass in the Windows object model. C++ derivation with MFC and
Windows subclassing are functionally similar, except C++ does not support dynamic subclassing.

The CWnd class provides the connection between a C++ object (derived from CWnd) and a Windows window
object (known as an HWND).

There are three common ways these are related:

CWnd creates the HWND . You can modify the behavior in a derived class by creating a class derived from
CWnd . The HWND is created when your application calls CWnd::Create.

The application attaches a CWnd to an existing HWND . The behavior of the existing window is not modified.
This is a case of delegation and is made possible by calling CWnd::Attach to alias an existing HWND to a
CWnd object.

CWnd is attached to an existing HWND and you can modify the behavior in a derived class. This is called
dynamic subclassing because we are changing the behavior, and therefore the class, of a Windows object at
run time.

You can achieve dynamic subclassing by using the methods CWnd::SubclassWindow andCWnd::SubclassDlgItem.

Both routines attach a CWnd object to an existing HWND . SubclassWindow takes the HWND directly. SubclassDlgItem

is a helper function that takes a control ID and the parent window. SubclassDlgItem is designed for attaching C++
objects to dialog controls created from a dialog template.

See the CTRLTEST example for several examples of when to use SubclassWindow and SubclassDlgItem .

Technical Notes by Number
Technical Notes by Category

https://msdn.microsoft.com/en-us/library/0x0kesc8(v=vs.110).aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

TN016: Using C++ Multiple Inheritance with MFC
10/31/2018 • 5 minutes to read • Edit Online

CRuntimeClass

CObject - The Root of all Classes

class CListWnd : public CFrameWnd, public CObList
{
 // ...
};
CListWnd myListWnd;

myListWnd.Dump(afxDump); // compile time error, CFrameWnd::Dump or CObList::Dump

This note describes how to use multiple inheritance (MI) with the Microsoft Foundation Classes. The use of MI is
not required with MFC. MI is not used in any MFC classes and is not required to write a class library.

The following subtopics describe how MI affects the use of common MFC idioms as well as covering some of the
restrictions of MI. Some of these restrictions are general C++ restrictions. Others are imposed by the MFC
architecture.

At the end of this technical note you will find a complete MFC application that uses MI.

The persistence and dynamic object creation mechanisms of MFC use the CRuntimeClass data structure to
uniquely identify classes. MFC associates one of these structures with each dynamic and/or serializable class in
your application. These structures are initialized when the application starts by using a special static object of type
AFX_CLASSINIT .

The current implementation of CRuntimeClass does not support MI runtime type information. This does not mean
you cannot use MI in your MFC application. However, you will have certain responsibilities when you work with
objects that have more than one base class.

The CObject::IsKindOf method will not correctly determine the type of an object if it has multiple base classes.
Therefore, you cannot use CObject as a virtual base class, and all calls to CObject member functions such as
CObject::Serialize and CObject::operator new must have scope qualifiers so that C++ can disambiguate the
appropriate function call. When a program uses MI within MFC, the class that contains the CObject base class
needs to be the left-most class in the list of base classes.

An alternative is to use the dynamic_cast operator. Casting an object with MI to one of its base classes will force
the compiler to use the functions in the supplied base class. For more information, see dynamic_cast Operator.

All significant classes derive directly or indirectly from class CObject . CObject does not have any member data,
but it does have some default functionality. When you use MI, you will typically inherit from two or more CObject

-derived classes. The following example illustrates how a class can inherit from a CFrameWnd and a CObList:

In this case CObject is included two times. This means that you need a way to disambiguate any reference to
CObject methods or operators. The operator new and operator delete are two operators that must be

disambiguated. As another example, the following code causes an error at compile time:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn016-using-cpp-multiple-inheritance-with-mfc.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/dynamic-cast-operator

Reimplementing CObject Methods

class CListWnd : public CFrameWnd, public CObList
{
public:
 void* operator new(size_t nSize)
 {
 return CFrameWnd:: operator new(nSize);
 }
 void operator delete(void* p)
 {
 CFrameWnd:: operator delete(p);
 }
 void Dump(CDumpContent& dc)
 {
 CFrameWnd::Dump(dc);
 CObList::Dump(dc);
 }
 // ...
};

Virtual Inheritance of CObject

CObject::IsKindOf and Run-Time Typing

class CListWnd : public CFrameWnd, public CObList
{
 DECLARE_DYNAMIC(CListWnd)
 // ...
};
IMPLEMENT_DYNAMIC(CListWnd, CFrameWnd)

CWnd and Message Maps

When you create a new class that has two or more CObject derived base classes, you should reimplement the
CObject methods that you want other people to use. Operators new and delete are mandatory and Dump is

recommended. The following example reimplements the new and delete operators and the Dump method:

It might seem that virtually inheriting CObject would solve the problem of function ambiguity, but that is not the
case. Because there is no member data in CObject , you do not need virtual inheritance to prevent multiple copies
of a base class member data. In the first example that was shown earlier, the Dump virtual method is still
ambiguous because it is implemented differently in CFrameWnd and CObList . The best way to remove ambiguity is
to follow the recommendations presented in the previous section.

The run-time typing mechanism supported by MFC in CObject uses the macros DECLARE_DYNAMIC,
IMPLEMENT_DYNAMIC, DECLARE_DYNCREATE, IMPLEMENT_DYNCREATE, DECLARE_SERIAL and
IMPLEMENT_SERIAL. These macros can perform a run-time type check to guarantee safe downcasts.

These macros support only a single base class and will work in a limited way for multiply inherited classes. The
base class you specify in IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL should be the first (or left-most) base
class. This placement will enable you to do type checking for the left-most base class only. The run-time type
system will know nothing about additional base classes. In the following example, the run-time systems will do
type checking against CFrameWnd , but will know nothing about CObList .

For the MFC message map system to work correctly, there are two additional requirements:

There must be only one CWnd -derived base class.

class CTwoWindows : public CFrameWnd, public CEdit
{ /* ... */ }; // error : two copies of CWnd

class CListEdit : public CObList, public CEdit
{ /* ... */ }; // error : CEdit (derived from CWnd) must be first

A Sample Program using MI

The CWnd -derived base class must be the first (or left-most) base class.

Here are some examples that will not work:

The following sample is a stand-alone application that consists of one class derived from CFrameWnd and
CWinApp. We do not recommend that you structure an application in this manner, but this is an example of the
smallest MFC application that has one class.

#include <afxwin.h>

class CHelloAppAndFrame : public CFrameWnd, public CWinApp
{
public:
 CHelloAppAndFrame() {}

 // Necessary because of MI disambiguity
 void* operator new(size_t nSize)
 { return CFrameWnd::operator new(nSize); }
 void operator delete(void* p)
 { CFrameWnd::operator delete(p); }

 // Implementation
 // CWinApp overrides
 virtual BOOL InitInstance();
 // CFrameWnd overrides
 virtual void PostNcDestroy();
 afx_msg void OnPaint();

 DECLARE_MESSAGE_MAP()
};

BEGIN_MESSAGE_MAP(CHelloAppAndFrame, CFrameWnd)
 ON_WM_PAINT()
END_MESSAGE_MAP()

// because the frame window is not allocated on the heap, we must
// override PostNCDestroy not to delete the frame object
void CHelloAppAndFrame::PostNcDestroy()
{
 // do nothing (do not call base class)
}

void CHelloAppAndFrame::OnPaint()
{
 CPaintDC dc(this);
 CRect rect;
 GetClientRect(rect);

 CString s = "Hello, Windows!";
 dc.SetTextAlign(TA_BASELINE | TA_CENTER);
 dc.SetTextColor(::GetSysColor(COLOR_WINDOWTEXT));
 dc.SetBkMode(TRANSPARENT);
 dc.TextOut(rect.right / 2, rect.bottom / 2, s);
}

// Application initialization
BOOL CHelloAppAndFrame::InitInstance()
{
 // first create the main frame
 if (!CFrameWnd::Create(NULL, "Multiple Inheritance Sample",
 WS_OVERLAPPEDWINDOW, rectDefault))
 return FALSE;

 // the application object is also a frame window
 m_pMainWnd = this;
 ShowWindow(m_nCmdShow);
 return TRUE;
}

CHelloAppAndFrame theHelloAppAndFrame;

See also

Technical Notes by Number
Technical Notes by Category

TN017: Destroying Window Objects
3/4/2019 • 4 minutes to read • Edit Online

The Problem

Destroying Windows

Auto Cleanup with CWnd::PostNcDestroy

This note describes the use of the CWnd::PostNcDestroy method. Use this method if you want to do customized
allocation of CWnd -derived objects. This note also explains why you should use CWnd::DestroyWindow to destroy
a C++ Windows object instead of the delete operator.

If you follow the guidelines in this topic, you will have few cleanup problems. These problems can result from
issues such as forgetting to delete/free C++ memory, forgetting to free system resources like HWND s, or freeing
objects too many times.

Each windows object (object of a class derived from CWnd) represents both a C++ object and an HWND . C++
objects are allocated in the application's heap and HWND s are allocated in system resources by the window
manager. Because there are several ways to destroy a window object, we must provide a set of rules that prevent
system resource or memory leaks. These rules must also prevent objects and Windows handles from being
destroyed more than one time.

The following are the two permitted ways to destroy a Windows object:

Calling CWnd::DestroyWindow or the Windows API DestroyWindow .

Explicitly deleting with the delete operator.

The first case is by far the most common. This case applies even if your code does not call DestroyWindow directly.
When the user directly closes a frame window, this action generates the WM_CLOSE message, and the default
response to this message is to call DestroyWindow. When a parent window is destroyed, Windows calls
DestroyWindow for all its children.

The second case, the use of the delete operator on Windows objects, should be rare. The following are some
cases where using delete is the correct choice.

When the system destroys a Windows window, the last Windows message sent to the window is
WM_NCDESTROY. The default CWnd handler for that message is CWnd::OnNcDestroy. OnNcDestroy will detach
the HWND from the C++ object and call the virtual function PostNcDestroy . Some classes override this function to
delete the C++ object.

The default implementation of CWnd::PostNcDestroy does nothing, which is appropriate for window objects that
are allocated on the stack frame or embedded in other objects. This is not appropriate for window objects that are
designed to be allocated on the heap without any other objects. In other words, it is not appropriate for window
objects that are not embedded in other C++ objects.

Those classes that are designed to be allocated alone on the heap override the PostNcDestroy method to perform
a delete this. This statement will free any memory associated with the C++ object. Even though the default CWnd

destructor calls DestroyWindow if m_hWnd is non-NULL, this does not lead to infinite recursion because the
handle will be detached and NULL during the cleanup phase.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn017-destroying-window-objects.md

NOTENOTE

Auto Cleanup Classes

When to Call delete

Warning: calling DestroyWindow in CWnd::~CWnd
 OnDestroy or PostNcDestroy in derived class will not be called

The system usually calls CWnd::PostNcDestroy after it processes the Windows WM_NCDESTROY message and the HWND

and the C++ window object are no longer connected. The system will also call CWnd::PostNcDestroy in the
implementation of most CWnd::Create calls if failure occurs. The auto cleanup rules are described later in this topic.

The following classes are not designed for auto-cleanup. They are typically embedded in other C++ objects or on
the stack:

All standard Windows controls (CStatic , CEdit , CListBox , and so on).

Any child windows derived directly from CWnd (for example, custom controls).

Splitter windows (CSplitterWnd).

Default control bars (classes derived from CControlBar , see Technical Note 31 for enabling auto-delete for
control bar objects).

Dialogs (CDialog) designed for modal dialogs on the stack frame.

All the standard dialogs except CFindReplaceDialog .

The default dialogs created by ClassWizard.

The following classes are designed for auto-cleanup. They are typically allocated by themselves on the heap:

Main frame windows (derived directly or indirectly from CFrameWnd).

View windows (derived directly or indirectly from CView).

If you want to break these rules, you must override the PostNcDestroy method in your derived class. To add auto-
cleanup to your class, call your base class and then do a delete this. To remove auto-cleanup from your class, call
CWnd::PostNcDestroy directly instead of the PostNcDestroy method of your direct base class.

The most common use of changing auto cleanup behavior is to create a modeless dialog that can be allocated on
the heap.

We recommend that you call DestroyWindow to destroy a Windows object, either the C++ method or the global
DestroyWindow API.

Do not call the global DestroyWindow API to destroy a MDI Child window. You should use the virtual method
CWnd::DestroyWindow instead.

For C++ Window objects that do not perform auto-cleanup, using the delete operator can cause a memory leak
when you try to call DestroyWindow in the CWnd::~CWnd destructor if the VTBL does not point to the correctly
derived class. This occurs because the system cannot find the appropriate destroy method to call. Using
DestroyWindow instead of delete avoids these problems. Because this can be a subtle error, compiling in debug

mode will generate the following warning if you are at risk.

In the case of C++ Windows objects that do perform auto-cleanup, you must call DestroyWindow . If you use the

See also

delete operator directly, the MFC diagnostic memory allocator will notify you that you are freeing memory two
times. The two occurrences are your first explicit call and the indirect call to delete this in the auto-cleanup
implementation of PostNcDestroy .

After calling DestroyWindow on a non-auto-cleanup object, the C++ object will still be around, but m_hWnd will be
NULL. After calling DestroyWindow on an auto-cleanup object, the C++ object will be gone, freed by the C++
delete operator in the auto-cleanup implementation of PostNcDestroy .

Technical Notes by Number
Technical Notes by Category

TN020: ID Naming and Numbering Conventions
3/4/2019 • 3 minutes to read • Edit Online

The ID Prefix Naming Convention

PREFIX USE

IDR_ For multiple resource types (primarily used for menus,
accelerators, and ribbons).

IDD_ For dialog template resources (for example, IDD_DIALOG1).

IDC_ For cursor resources.

IDI_ For icon resources.

IDB_ For bitmap resources.

IDS_ For string resources.

PREFIX OR LABEL USE

IDOK, IDCANCEL For standard push button IDs.

IDC_ For other dialog controls.

This note describes the ID naming and numbering conventions that MFC 2.0 uses for resources, commands,
strings, controls, and child windows.

The MFC ID naming and numbering conventions are intended to meet the following requirements:

Provide a consistent ID-naming standard used across the MFC library and MFC applications that are
supported by the Visual C++ resource editor. This makes it easier for the programmer to interpret the type
and origin of a resource from its ID.

Emphasize the strong 1-to-1 relationship between certain types of IDs.

Conform to already widely used standards for naming IDs in Windows.

Partition the ID-numbering space. ID numbers can be assigned by the programmer, MFC, Windows, and
Visual C++-edited resources. Appropriate partitioning will help avoid duplication of ID numbers.

Several types of IDs can occur in an application. The MFC ID-naming convention defines different prefixes for
different resource types.

MFC uses the prefix "IDR_" to indicate a resource ID that applies to multiple resource types. For example, for a
given frame window, MFC uses the same "IDR_" prefix to indicate a menu, accelerator, string and icon resource.
The following table shows the various prefixes and their usage:

Within a DIALOG resource, MFC follows these conventions:

The "IDC_" prefix is also used for cursors. This naming conflict is not usually a problem because a typical

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn020-id-naming-and-numbering-conventions.md

PREFIX USE

IDM_ For menu items that do not use the MFC command
architecture.

ID_ For menu commands that use the MFC command
architecture.

The ID-Numbering Convention

PREFIX RESOURCE TYPE VALID RANGE

IDR_ multiple 1 through 0x6FFF

IDD_ dialog templates 1 through 0x6FFF

IDC_,IDI_,IDB_ cursors, icons, bitmaps 1 through 0x6FFF

IDS_, IDP_ general strings 1 through 0x7FFF

ID_ commands 0x8000 through 0xDFFF

IDC_ controls 8 through 0xDFFF

application will have few cursors and many dialog controls.

Within a menu resource, MFC follows these conventions:

Commands that follow the MFC command architecture must have an ON_COMMAND command handler and
can have an ON_UPDATE_COMMAND_UI handler. If these command handlers follow the MFC command
architecture, they will function correctly whether they are bound to a menu command, a toolbar button, or a
dialog bar button. The same "ID_" prefix is also used for a menu prompt string that is displayed on the program's
message bar. Most of the menu items in your application should follow the MFC command conventions. All of the
standard command IDs (for example, ID_FILE_NEW) follow this convention.

MFC also uses "IDP_" as a specialized form of strings (instead of "IDS_"). Strings with the "IDP_" prefix are
prompts, that is, strings used in message boxes. "IDP_" strings can contain "%1" and "%2" as placeholders of
strings determined by the program. "IDP_" strings usually have help topics associated with them, and "IDS_"
strings do not. "IDP_" strings are always localized, and "IDS_" strings might not be localized.

The MFC library also uses the "IDW_" prefix as a specialized form of control IDs (instead of "IDC_"). These IDs are
assigned to child windows such as views and splitters by the framework classes. MFC implementation IDs are
prefixed with "AFX_".

The following table lists the valid ranges for the IDs of the specific types. Some of the limits are technical
implementation limits, and others are conventions that are designed to prevent your IDs from colliding with
Windows predefined IDs or MFC default implementations.

We strongly recommend that you define all IDs inside the recommended ranges. The lower limit of these ranges
is 1 because 0 is not used. We recommend that you use the common convention and use 100 or 101 as the first
ID.

Reasons for these range limits:

By convention, the ID value of 0 is not used.

See also

Windows implementation limitations restrict true resource IDs to be less than or equal to 0x7FFF.

MFC's internal framework reserves these ranges:

0x7000 through 0x7FFF (see afxres.h)

0xE000 through 0xEFFF (see afxres.h)

16000 through 18000 (see afxribbonres.h)

These ranges may change in future MFC implementations.

Several Windows system commands use the range of 0xF000 through 0xFFFF.

Control IDs of 1 through 7 are reserved for standard controls such as IDOK and IDCANCEL.

The range of 0x8000 through 0xFFFF for strings is reserved for menu prompts for commands.

Technical Notes by Number
Technical Notes by Category

TN021: Command and Message Routing
3/4/2019 • 11 minutes to read • Edit Online

NOTENOTE

Command Routing and Dispatch MFC 1.0 Functionality Evolves to
MFC 2.0 Architecture

Command IDs

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes the command routing and dispatch architecture as well as advanced topics in general window
message routing.

Please refer to Visual C++ for general details on the architectures described here, especially the distinction
between Windows messages, control notifications, and commands. This note assumes you are very familiar with
the issues described in the printed documentation and only addresses very advanced topics.

Windows has the WM_COMMAND message that is overloaded to provide notifications of menu commands,
accelerator keys and dialog-control notifications.

MFC 1.0 built on that a little by allowing a command handler (for example, "OnFileNew") in a CWnd derived class
to get called in response to a specific WM_COMMAND. This is glued together with a data structure called the
message map, and results in a very space-efficient command mechanism.

MFC 1.0 also provided additional functionality for separating control notifications from command messages.
Commands are represented by a 16-bit ID, sometimes known as a Command ID. Commands normally start from
a CFrameWnd (that is, a menu select or a translated accelerator) and get routed to a variety of other windows.

MFC 1.0 used command routing in a limited sense for the implementation of Multiple Document Interface (MDI).
(An MDI frame window delegate commands to its active MDI Child window.)

This functionality has been generalized and extended in MFC 2.0 to allow commands to be handled by a wider
range of objects (not just window objects). It provides a more formal and extensible architecture for routing
messages and reuses the command target routing for not only handling of commands, but also for updating UI
objects (like menu items and toolbar buttons) to reflect the current availability of a command.

See Visual C++ for an explanation of the command routing and binding process. Technical Note 20 contains
information on ID naming.

We use the generic prefix "ID_" for command IDs. Command IDs are >= 0x8000. The message line or status bar
will show the command description string if there is a STRINGTABLE resource with the same IDs as the
command ID.

In the resources of your application, a command ID can appears in several places:

In one STRINGTABLE resource that has the same ID as the message-line prompt.

In possibly many MENU resources that are attached to menu items that invoke the same command.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn021-command-and-message-routing.md

GOSUB Commands, Using Command Architecture in Dialogs

When ON_UPDATE_COMMAND_UI is Called

(ADVANCED) in a dialog button for a GOSUB command.

In the source code of your application, a command ID can appears in several places:

In your RESOURCE.H (or other main symbol header file) to define application-specific command IDs.

PERHAPS In an ID array used to create a toolbar.

In an ON_COMMAND macro.

PERHAPS In an ON_UPDATE_COMMAND_UI macro.

Currently, the only implementation in MFC that requires command IDs be >= 0x8000 is the implementation of
GOSUB dialogs/commands.

The command architecture of routing and enabling commands works well with frame windows, menu items,
toolbar buttons, dialog bar buttons, other control bars and other user-interface elements designed to update on
demand and route commands or control IDs to a main command target (usually the main frame window). That
main command target may route the command or control notifications to other command target objects as
appropriate.

A dialog (modal or modeless) can benefit from some of the features of the command architecture if you assign
the control ID of the dialog control to the appropriate command ID. Support for dialogs is not automatic, so you
may have to write some additional code.

Note that for all these features to work properly, your command IDs should be >= 0x8000. Since many dialogs
could get routed to the same frame, shared commands should be >= 0x8000, while the nonshared IDCs in a
specific dialog should be <= 0x7FFF.

You can place a normal button in a normal modal dialog with the IDC of the button set to the appropriate
command ID. When the user selects the button, the owner of the dialog (usually the main frame window) gets the
command just like any other command. This is called a GOSUB command since it usually is used to bring up
another dialog (a GOSUB of the first dialog).

You can also call the function CWnd::UpdateDialogControls on your dialog and pass it the address of your main
frame window. This function will enable or disable your dialog controls based on whether they have command
handlers in the frame. This function is called automatically for you for control bars in your application's idle loop,
but you must call it directly for normal dialogs that you wish to have this feature.

Maintaining the enabled/checked state of all a program's menu items all the time can be a computationally
expensive problem. A common technique is to enable/check menu items only when the user selects the POPUP.
The MFC 2.0 implementation of CFrameWnd handles the WM_INITMENUPOPUP message and uses the
command routing architecture to determine the states of menus through ON_UPDATE_COMMAND_UI handlers.

CFrameWnd also handles the WM_ENTERIDLE message to describe the current menu item selected on the status
bar (also known as the message line).

An application's menu structure, edited by Visual C++, is used to represent the potential commands available at
WM_INITMENUPOPUP time. ON_UPDATE_COMMAND_UI handlers can modify the state or text of a menu, or
for advanced uses (like the File MRU list or the OLE Verbs pop-up menu), actually modify the menu structure
before the menu is drawn.

The same sort of ON_UPDATE_COMMAND_UI processing is done for toolbars (and other control bars) when the
application enters its idle loop. See the Class Library Reference and Technical Note 31 for more information on

Nested Pop-up Menus

File>
 New>
 Sheet (ID_NEW_SHEET)
 Chart (ID_NEW_CHART)

void CMyApp::OnUpdateNewSheet(CCmdUI* pCmdUI)
{
 if (pCmdUI->m_pSubMenu != NULL)
 {
 // enable entire pop-up for "New" sheet and chart
 BOOL bEnable = m_bCanCreateSheet || m_bCanCreateChart;
 // CCmdUI::Enable is a no-op for this case, so we
 // must do what it would have done.
 pCmdUI->m_pMenu->EnableMenuItem(pCmdUI->m_nIndex,
 MF_BYPOSITION |
 (bEnable MF_ENABLED : (MF_DISABLED | MF_GRAYED)));

 return;
 }
 // otherwise just the New Sheet command
 pCmdUI->Enable(m_bCanCreateSheet);
}

void CMyApp::OnUpdateNewChart(CCmdUI* pCmdUI)
{
 pCmdUI->Enable(m_bCanCreateChart);
}

ON_COMMAND and ON_BN_CLICKED

control bars.

If you are using a nested menu structure, you will notice that the ON_UPDATE_COMMAND_UI handler for the
first menu item in the pop-up menu is called in two different cases.

First, it is called for the pop-up menu itself. This is necessary because pop-up menus do not have IDs and we use
the ID of the first menu item of the pop-up menu to refer to the entire pop-up menu. In this case, the
m_pSubMenu member variable of the CCmdUI object will be non-NULL and will point to the pop-up menu.

Second, it is called just before the menu items in the pop-up menu are to be drawn. In this case, the ID refers just
to the first menu item and the m_pSubMenu member variable of the CCmdUI object will be NULL.

This allows you to enable the pop-up menu distinct from its menu items, but requires that you write some menu
aware code. For example, in a nested menu with the following structure:

The ID_NEW_SHEET and ID_NEW_CHART commands can be independently enabled or disabled. The New pop-
up menu should be enabled if either of the two is enabled.

The command handler for ID_NEW_SHEET (the first command in the pop-up) would look something like:

The command handler for ID_NEW_CHART would be a normal update command handler and look something
like:

The message map macros for ON_COMMAND and ON_BN_CLICKED are the same. The MFC command and
control notification routing mechanism only uses the command ID to decide where to route to. Control
notifications with control notification code of zero (BN_CLICKED) are interpreted as commands.

NOTENOTE

Disabling the Automatic Disabling of Button Controls

Window Message Routing

CWnd Issues

CFrameWnd Issues

In fact, all control notification messages go through the command handler chain. For example, it is technically possible for
you to write a control notification handler for EN_CHANGE in your document class. This is not generally advisable because
the practical applications of this feature are few, the feature is not supported by ClassWizard, and use of the feature can
result in fragile code.

If you place a button control on a dialog bar, or in a dialog using where you are calling
CWnd::UpdateDialogControls on your own, you will notice that buttons which do not have ON_COMMAND
or ON_UPDATE_COMMAND_UI handlers will be automatically disabled for you by the framework. In some
cases, you will not need to have a handler, but you will want the button to remain enabled. The easiest way to
achieve this is to add a dummy command handler (easy to do with ClassWizard) and do nothing in it.

The following describes some more advanced topics on the MFC classes and how Windows message routing and
other topics impact them. The information here is only described briefly. Refer to the Class Library Reference for
details about public APIs. Please refer to the MFC library source code for more information on implementation
details.

Please refer to Technical Note 17 for details on Window cleanup, a very important topic for all CWnd-derived
classes.

The implementation member function CWnd::OnChildNotify provides a powerful and extensible architecture
for child windows (also known as controls) to hook or otherwise be informed of messages, commands, and
control notifications that go to their parent (or "owner"). If the child window (/control) is a C++ CWnd object
itself, the virtual function OnChildNotify is called first with the parameters from the original message (that is, a
MSG structure). The child window can leave the message alone, eat it, or modify the message for the parent
(rare).

The default CWnd implementation handles the following messages and uses the OnChildNotify hook to allow
child windows (controls) to first access at the message:

WM_MEASUREITEM and WM_DRAWITEM (for self-draw)

WM_COMPAREITEM and WM_DELETEITEM (for self-draw)

WM_HSCROLL and WM_VSCROLL

WM_CTLCOLOR

WM_PARENTNOTIFY

You will notice the OnChildNotify hook is used for changing owner-draw messages into self-draw messages.

In addition to the OnChildNotify hook, scroll messages have further routing behavior. Please see below for
more details on scroll bars and sources of WM_HSCROLL and WM_VSCROLL messages.

The CFrameWnd class provides most of the command routing and user-interface updating implementation. This
is primarily used for the main frame window of the application (CWinApp::m_pMainWnd) but applies to all

CMDIFrameWnd/CMDIChildWnd Issues

Scroll Bar Issues

See also

frame windows.

The main frame window is the window with the menu bar and is the parent of the status bar or message line.
Please refer to the above discussion on command routing and WM_INITMENUPOPUP.

The CFrameWnd class provides management of the active view. The following messages are routed through the
active view:

All command messages (the active view gets first access to them).

WM_HSCROLL and WM_VSCROLL messages from sibling scroll bars (see below).

WM_ACTIVATE (and WM_MDIACTIVATE for MDI) get turned into calls to the virtual function
CView::OnActivateView.

Both MDI frame window classes derive from CFrameWnd and therefore are both enabled for the same sort of
command routing and user-interface updating provided in CFrameWnd. In a typical MDI application, only the
main frame window (that is, the CMDIFrameWnd object) holds the menu bar and the status bar and therefore is
the main source of the command routing implementation.

The general routing scheme is that the active MDI child window gets first access to commands. The default
PreTranslateMessage functions handle accelerator tables for both MDI child windows (first) and the MDI frame
(second) as well as the standard MDI system-command accelerators normally handled by
TranslateMDISysAccel (last).

When handling scroll-message (WM_HSCROLL/OnHScroll and/or WM_VSCROLL/OnVScroll), you should
try to write the handler code so it does not rely on where the scroll bar message came from. This is not only a
general Windows issue, since scroll messages can come from true scroll bar controls or from
WS_HSCROLL/WS_VSCROLL scroll bars which are not scroll bar controls.

MFC extends that to allow for scroll bar controls to be either child or siblings of the window being scrolled (in fact,
the parent/child relationship between the scroll bar and window being scrolled can be anything). This is especially
important for shared scroll bars with splitter windows. Please refer to Technical Note 29 for details on the
implementation of CSplitterWnd including more information on shared scroll bar issues.

On a side note, there are two CWnd derived classes where the scroll bar styles specified at create time are
trapped and not passed to Windows. When passed to a creation routine, WS_HSCROLL and WS_VSCROLL can
be independently set, but after creation cannot be changed. Of course, you should not directly test or set the
WS_SCROLL style bits of the window that they created.

For CMDIFrameWnd the scroll bar styles you pass in to Create or LoadFrame are used to create the
MDICLIENT. If you wish to have a scrollable MDICLIENT area (like the Windows Program Manager) be sure to
set both scroll bar styles (WS_HSCROLL | WS_VSCROLL) for the style used to create the CMDIFrameWnd.

For CSplitterWnd the scroll bar styles apply to the special shared scroll bars for the splitter regions. For static
splitter windows, you will normally not set either scroll bar style. For dynamic splitter windows, you will usually
have the scroll bar style set for the direction you will split, That is, WS_HSCROLL if you can split rows,
WS_VSCROLL if you can split columns.

Technical Notes by Number
Technical Notes by Category

TN022: Standard Commands Implementation
3/4/2019 • 23 minutes to read • Edit Online

NOTENOTE

The Problem

Contents of This Technical Note

Naming Convention

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes the standard command implementations provided by MFC 2.0. Read Technical Note 21 first
because it describes the mechanisms used to implement many of the standard commands.

This description assumes knowledge of the MFC architectures, APIs, and common programming practice.
Documented as well as undocumented "implementation only" APIs are described. This is not a place to start
learning about the features of or how to program in MFC. Refer to Visual C++ for more general information and
for details of documented APIs.

MFC defines many standard command IDs in the header file AFXRES.H. Framework support for these
commands varies. Understanding where and how the framework classes handle these commands will not only
show you how the framework works internally but will provide useful information on how to customize the
standard implementations and teach you a few techniques for implementing your own command handlers.

Each command ID is described in two sections:

The title: the symbolic name of the command ID (for example, ID_FILE_SAVE) followed by the purpose of
the command (for example, "saves the current document") separated by a colon.

One or more paragraphs describing which classes implement the command, and what the default
implementation does

Most default command implementations are prewired in the framework's base class message map. There are
some command implementations that require explicit wiring in your derived class. These are described under
"Note". If you chose the right options in AppWizard, these default handlers will be connected for you in the
generated skeleton application.

Standard commands follow a simple naming convention that we recommend you use if possible. Most standard
commands are located in standard places in an application's menu bar. The symbolic name of the command
starts with "ID_" followed by the standard pop-up menu name, followed by the menu item name. The symbolic
name is in upper case with underscore word-breaks. For commands that do not have standard menu item
names, a logical command name is defined starting with "ID_" (for example, ID_NEXT_PANE).

We use the prefix "ID_" to indicate commands that are designed to be bound to menu items, toolbar buttons, or
other command user-interface objects. Command handlers handling "ID_" commands should use the
ON_COMMAND and ON_UPDATE_COMMAND_UI mechanisms of the MFC command architecture.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn022-standard-commands-implementation.md

ID Ranges

Standard Command IDs

We recommend you use the standard "IDM_" prefix for menu items which do not follow the command
architecture and need menu-specific code to enable and disable them. Of course the number of menu specific
commands should be small since following the MFC command architecture not only makes command handlers
more powerful (since they will work with toolbars) but makes the command handler code reusable.

Please refer to Technical Note 20 for more details on the use of ID ranges in MFC.

MFC standard commands fall in the range 0xE000 to 0xEFFF. Please do not rely on the specific values of these
IDs since they are subject to change in future versions of the library.

Your application should define its commands in the range 0x8000 to 0xDFFF.

For each command ID, there is a standard message line prompt string that can be found in the file
PROMPTS.RC. The string ID for that menu prompt must be the same as for the command ID.

NOTENOTE

NOTENOTE

ID_FILE_NEW Creates a new/empty document.

You must connect this to your CWinApp -derived class's message map to enable this functionality.

CWinApp::OnFileNew implements this command differently depending on the number of document
templates in the application. If there is only one CDocTemplate , CWinApp::OnFileNew will create a new
document of that type, as well as the proper frame and view class.

If there is more than one CDocTemplate , CWinApp::OnFileNew will prompt the user with a dialog
(AFX_IDD_NEWTYPEDLG) letting them select which document type to use. The selected CDocTemplate is
used to create the document.

One common customization of ID_FILE_NEW is to provide a different and more graphical choice of
document types. In this case you can implement your own CMyApp::OnFileNew and place it in your
message map instead of CWinApp::OnFileNew . There is no need to call the base class implementation.

Another common customization of ID_FILE_NEW is to provide a separate command for creating a
document of each type. In this case you should define new command IDs, for example
ID_FILE_NEW_CHART and ID_FILE_NEW_SHEET.

ID_FILE_OPEN Opens an existing document.

You must connect this to your CWinApp -derived class's message map to enable this functionality.

CWinApp::OnFileOpen has a very simple implementation of calling CWinApp::DoPromptFileName followed by
CWinApp::OpenDocumentFile with the file or path name of the file to open. The CWinApp implementation

routine DoPromptFileName brings up the standard FileOpen dialog and fills it with the file extensions
obtained from the current document templates.

One common customization of ID_FILE_OPEN is to customize the FileOpen dialog or add additional file
filters. The recommended way to customize this is to replace the default implementation with your own
FileOpen dialog, and call CWinApp::OpenDocumentFile with the document's file or path name. There is no

NOTENOTE

need to call the base class.

ID_FILE_CLOSE Closes the currently open document.

CDocument::OnFileClose calls CDocument::SaveModified to prompt the user to save the document if it has
been modified and then calls OnCloseDocument . All the closing logic, including destroying the document, is
done in the OnCloseDocument routine.

ID_FILE_CLOSE acts differently from a WM_CLOSE message or an SC_CLOSE system command sent to the
documents frame window. Closing a window will close the document only if that is the last frame window showing
the document. Closing the document with ID_FILE_CLOSE will not only close the document but will close down all
frame windows showing the document.

ID_FILE_SAVE Saves the current document.

The implementation uses a helper routine CDocument::DoSave which is used for both OnFileSave and
OnFileSaveAs . If you save a document that has not been saved before (that is, it does not have a path

name, as in the case of FileNew) or that was read from a read-only document, the OnFileSave logic will
act like the ID_FILE_SAVE_AS command and ask the user to provide a new file name. The actual process
of opening the file and doing the saving is done through the virtual function OnSaveDocument .

There are two common reasons to customize ID_FILE_SAVE. For documents that do not save, simply
remove the ID_FILE_SAVE menu items and toolbar buttons from your user interface. Also make sure that
you never dirty your document (that is, never call CDocument::SetModifiedFlag) and the framework will
never cause the document to be saved. For documents that save to someplace other than a disk file, define
a new command for that operation.

In the case of a COleServerDoc , ID_FILE_SAVE is used both for file save (for normal documents) and file
update (for embedded documents).

If your document data is stored in individual disk files, but you don't want to use the default CDocument
serialize implementation, you should override CDocument::OnSaveDocument instead of OnFileSave .

ID_FILE_SAVE_AS Saves the current document under a different file name.

The CDocument::OnFileSaveAs implementation uses the same CDocument::DoSave helper routine as
OnFileSave . The OnFileSaveAs command is handled just as ID_FILE_SAVE if the documents had no file

name before the save. COleServerDoc::OnFileSaveAs implements the logic to save a normal document data
file or to save a server document representing an OLE object embedded in some other application as a
separate file.

If you customize the logic of ID_FILE_SAVE, you will probably want to customize ID_FILE_SAVE_AS in a
similar fashion or the operation of "Save As" may not apply to your document. You can remove the menu
item from your menu bar if it is not needed.

ID_FILE_SAVE_COPY_AS Saves a copy current document under a new name.

The COleServerDoc::OnFileSaveCopyAs implementation is very similar to CDocument::OnFileSaveAs , except
that the document object is not "attached" to the underlying file after the save. That is, if the in-memory
document was "modified" before the save, it is still "modified". In addition, this command has no effect on
the path name or title stored in the document.

ID_FILE_UPDATE Notifies the container to save an embedded document.

The COleServerDoc::OnUpdateDocument implementation simply notifiies the container that the embedding

NOTENOTE

NOTENOTE

should be saved. The container then calls the appropriate OLE APIs in order to save the embedded object.

ID_FILE_PAGE_SETUP Invokes an application-specific page setup/layout dialog.

Currently there is no standard for this dialog, and the framework has no default implementation of this
command.

If you choose to implement this command, we recommend you use this command ID.

ID_FILE_PRINT_SETUP Invoke the standard Print Setup dialog.

You must connect this to your CWinApp -derived class's message map to enable this functionality.

This command invokes the standard print setup dialog that allows the user to customize the printer and
print settings for at least this document or at most all the documents in this application. You must use the
Control Panel to change the default printer settings for the entire system.

CWinApp::OnFilePrintSetup has a very simple implementation creating a CPrintDialog object and calling
the CWinApp::DoPrintDialog implementation function. This sets the application default printer setup.

The common need for customizing this command is to allow for per-document printer settings, which
should be stored with the document when saved. To do this you should add a message-map handler in
your CDocument class that creates a CPrintDialog object, initializes it with the appropriate printer
attributes (usually hDevMode and hDevNames), call the CPrintDialog::DoModal , and save the changed
printer settings. For a robust implementation, you should look at the implementation of
CWinApp::DoPrintDialog for detecting errors and CWinApp::UpdatePrinterSelection for dealing with

sensible defaults and tracking system-wide printer changes.

ID_FILE_PRINT Standard printing of the current document

You must connect this to your CView -derived class's message map to enable this functionality.

This command prints the current document, or more correctly, starts the printing process, which involves
invoking the standard print dialog and running the print engine.

CView::OnFilePrint implements this command and the main print loop. It calls the virtual
CView::OnPreparePrinting to prompt of the user with the print dialog. It then prepares the output DC to

go to the printer, brings up the printing progress dialog (AFX_IDD_PRINTDLG), and sends the StartDoc

escape to the printer. CView::OnFilePrint also contains the main page-oriented print loop. For each page,
it calls the virtual CView::OnPrepareDC followed by a StartPage escape and calling the virtual
CView::OnPrint for that page. When complete, the virtual CView::OnEndPrinting is called, and the printing

progress dialog is closed.

The MFC printing architecture is designed to hook in many different ways for printing and print preview.
You will normally find the various CView overridable functions adequate for any page-oriented printing
tasks. Only in the case of an application that uses the printer for non-page oriented output, should you
find the need to replace the ID_FILE_PRINT implementation.

ID_FILE_PRINT_PREVIEW Enter print-preview mode for the current document.

NOTENOTE
You must connect this to your CView -derived class's message map to enable this functionality.

CView::OnFilePrintPreview starts the print preview mode by calling the documented helper function
CView::DoPrintPreview . CView::DoPrintPreview is the main engine for the print preview loop, just as
OnFilePrint is the main engine for the printing loop.

The print preview operation can be customized in a variety of ways by passing different parameters to
DoPrintPreview . Please refer to Technical Note 30, which discusses some of the details of print preview

and how to customize it.

ID_FILE_MRU_FILE1...FILE16 A range of command IDs for the File MRU list.

CWinApp::OnUpdateRecentFileMenu is a update command UI handler that is one of the more advanced uses
of the ON_UPDATE_COMMAND_UI mechanism. In your menu resource, you need only define a single
menu item with ID ID_FILE_MRU_FILE1. That menu item remains initially disabled.

As the MRU list grows, more menu items are added to the list. The standard CWinApp implementation
defaults to the standard limit of the four most recently used files. You can change the default by calling
CWinApp::LoadStdProfileSettings with a larger or smaller value. The MRU list is stored in the application's

.INI file. The list is loaded in your application's InitInstance function if you call LoadStdProfileSettings ,
and is saved when your application exits. The MRU update command UI handler also will convert
absolute paths to relative paths for display on the file menu.

CWinApp::OnOpenRecentFile is the ON_COMMAND handler that performs the actual command. It simply
gets the file name from the MRU list and calls CWinApp::OpenDocumentFile , which does all the work of
opening the file and updating the MRU list.

Customization of this command handler is not recommended.

ID_EDIT_CLEAR Clears the current selection

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

CEditView provides an implementation of this command using CEdit::Clear . The command is disabled if
there is no current selection.

If you choose to implement this command, we recommend you use this command ID.

ID_EDIT_CLEAR_ALL Clears the entire document.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

If you choose to implement this command, we recommend you use this command ID. See the MFC
Tutorial sample SCRIBBLE for an example implementation.

ID_EDIT_COPY Copies the current selection to the Clipboard.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

CEditView provides an implementation of this command, which copies the currently selected text to the
Clipboard as CF_TEXT using CEdit::Copy . The command is disabled if there is no current selection.

If you choose to implement this command, we recommend you use this command ID.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ID_EDIT_CUT Cuts the current selection to the Clipboard.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

CEditView provides an implementation of this command, which cuts the currently selected text to the
Clipboard as CF_TEXT using CEdit::Cut . The command is disabled if there is no current selection.

If you choose to implement this command, we recommend you use this command ID.

ID_EDIT_FIND Begins the find operation, brings up the modeless find dialog.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

CEditView provides an implementation of this command, which calls the implementation helper function
OnEditFindReplace to use and store the previous find/replace settings in private implementation variables.

The CFindReplaceDialog class is used to manage the modeless dialog for prompting the user.

If you choose to implement this command, we recommend you use this command ID.

ID_EDIT_PASTE Inserts the current Clipboard contents.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

CEditView provides an implementation of this command, which copies the current Clipboard data
replacing the selected text using CEdit::Paste . The command is disabled if there is no CF_TEXT in the
Clipboard.

COleClientDoc just provides a update command UI handler for this command. If the Clipboard does not
contain an embeddable OLE item/object, the command will be disabled. You are responsible for writing
the handler for the actual command to do the actual pasting. If your OLE application can also paste other
formats, you should provide your own update command UI handler in your view or document (that is,
somewhere before COleClientDoc in the command target routing).

If you choose to implement this command, we recommend you use this command ID.

For replacing the standard OLE implementation, use COleClientItem::CanPaste .

ID_EDIT_PASTE_LINK Inserts a link from the current Clipboard contents.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

COleDocument just provides a update command UI handler for this command. If the Clipboard does not
contain linkable OLE item/object, the command will be disabled. You are responsible for writing the
handler for the actual command to do the actual pasting. If your OLE application can also paste other
formats, you should provide your own update command UI handler in your view or document (that is,
somewhere before COleDocument in the command target routing).

If you choose to implement this command, we recommend you use this command ID.

For replacing the standard OLE implementation, use COleClientItem::CanPasteLink .

ID_EDIT_PASTE_SPECIAL Inserts the current Clipboard contents with options.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class. MFC does not provide this dialog.

If you choose to implement this command, we recommend you use this command ID.

ID_EDIT_REPEAT Repeats the last operation.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

CEditView provides an implementation of this command to repeat the last find operation. The private
implementation variables for the last find are used. The command is disabled if a find cannot be
attempted.

If you choose to implement this command, we recommend you use this command ID.

ID_EDIT_REPLACE Begins the replace operation, brings up the modeless replace dialog.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

CEditView provides an implementation of this command, which calls the implementation helper function
OnEditFindReplace to use and store the previous find/replace settings in private implementation variables.

The CFindReplaceDialog class is used to manage the modeless dialog that prompts the user.

If you choose to implement this command, we recommend you use this command ID.

ID_EDIT_SELECT_ALL Selects the entire document.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

CEditView provides an implementation of this command, which selects all the text in the document. The
command is disabled if there is no text to select.

If you choose to implement this command, we recommend you use this command ID.

ID_EDIT_UNDO Undoes the last operation.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

CEditView provides an implementation of this command, using CEdit::Undo . The command is disabled if
CEdit::CanUndo returns FALSE.

If you choose to implement this command, we recommend you use this command ID.

ID_EDIT_REDO Redoes the last operation.

Currently there is no standard implementation for this command. You must implement this for each
CView -derived class.

If you choose to implement this command, we recommend you use this command ID.

ID_WINDOW_NEW Opens another window on the active document.

CMDIFrameWnd::OnWindowNew implements this powerful feature by using the document template of the
current document to create another frame containing another view of the current document.

Like most multiple document interface (MDI) Window menu commands, the command is disabled if there
is no active MDI child window.

Customization of this command handler is not recommended. If you wish to provide a command that
creates additional views or frame windows, you will probably be better off inventing your own command.

You can clone the code from CMDIFrameWnd::OnWindowNew and modify it to the specific frame and view
classes of your liking.

ID_WINDOW_ARRANGE Arranges icons at the bottom of an MDI window.

CMDIFrameWnd implements this standard MDI command in an implementation helper function
OnMDIWindowCmd . This helper maps command IDs to MDI Windows messages and can therefore share a

lot of code.

Like most MDI Window menu commands, the command is disabled if there is no active MDI child
window.

Customization of this command handler is not recommended.

ID_WINDOW_CASCADE Cascades windows so they overlap.

CMDIFrameWnd implements this standard MDI command in an implementation helper function
OnMDIWindowCmd . This helper maps command IDs to MDI Windows messages and can therefore share a

lot of code.

Like most MDI Window menu commands, the command is disabled if there is no active MDI child
window.

Customization of this command handler is not recommended.

ID_WINDOW_TILE_HORZ Tiles windows horizontally.

This command is implemented in CMDIFrameWnd just like ID_WINDOW_CASCADE, except a different MDI
Windows message is used for the operation.

You should pick the default tile orientation for your application. You can do this by changing the ID for the
Window "Tile" menu item to either ID_WINDOW_TILE_HORZ or ID_WINDOW_TILE_VERT.

ID_WINDOW_TILE_VERT Tiles windows vertically.

This command is implemented in CMDIFrameWnd just like ID_WINDOW_CASCADE, except a different MDI
Windows message is used for the operation.

You should pick the default tile orientation for your application. You can do this by changing the ID for the
Window "Tile" menu item to either ID_WINDOW_TILE_HORZ or ID_WINDOW_TILE_VERT.

ID_WINDOW_SPLIT Keyboard interface to splitter.

CView handles this command for the CSplitterWnd implementation. If the view is part of a splitter
window, this command will delegate to the implementation function CSplitterWnd::DoKeyboardSplit . This
will place the splitter in a mode that will allow keyboard users to split or unsplit a splitter window.

This command is disabled if the view is not in a splitter.

Customization of this command handler is not recommended.

ID_APP_ABOUT Invokes the About dialog box.

There is no standard implementation for an application's About box. The default AppWizard-created
application will create a custom dialog class for your application and use it as your About box. AppWizard
will also write the trivial command handler which handles this command and invokes the dialog.

You will almost always implement this command.

ID_APP_EXIT Exit the application.

CWinApp::OnAppExit handles this command by sending a WM_CLOSE message to the application's main

NOTENOTE

NOTENOTE

NOTENOTE

NOTENOTE

window. The standard shutting down of the application (prompting for dirty files and so on) is handled by
the CFrameWnd implementation.

Customization of this command handler is not recommended. Overriding CWinApp::SaveAllModified or
the CFrameWnd closing logic is recommended.

If you choose to implement this command, we recommend you use this command ID.

ID_HELP_INDEX Lists Help topics from .HLP file.

You must connect this to your CWinApp -derived class's message map to enable this functionality.

CWinApp::OnHelpIndex handles this command by trivially calling CWinApp::WinHelp .

Customization of this command handler is not recommended.

ID_HELP_USING Displays help on how to use Help.

You must connect this to your CWinApp -derived class's message map to enable this functionality.

CWinApp::OnHelpUsing handles this command by trivially calling CWinApp::WinHelp .

Customization of this command handler is not recommended.

ID_CONTEXT_HELP Enters SHIFT-F1 help mode.

You must connect this to your CWinApp -derived class's message map to enable this functionality.

CWinApp::OnContextHelp handles this command by setting the help mode cursor, entering a modal loop
and waiting for the user to select a window to get help on. Please refer to Technical Note 28 for more
details on the MFC Help implementation.

Customization of this command handler is not recommended.

ID_HELP Gives help on the current context

You must connect this to your CWinApp -derived class's message map to enable this functionality.

CWinApp::OnHelp handles this command by getting the right help context for the current application
context. This handles simple F1 help, help on message boxes and so on. Please refer to Technical Note 28
for more details on the MFC help implementation.

Customization of this command handler is not recommended.

ID_DEFAULT_HELP Displays default help for context

NOTENOTE
You must connect this to your CWinApp -derived class's message map to enable this functionality.

This command is usually mapped to CWinApp::OnHelpIndex .

A different command handler can be provided if a distinction between default Help and the Help index is
desired.

ID_NEXT_PANE Goes to next pane

CView handles this command for the CSplitterWnd implementation. If the view is part of a splitter
window, this command will delegate to the implementation function CSplitterWnd::OnNextPaneCmd . This
will move the active view to the next pane in the splitter.

This command is disabled if the view is not in a splitter or there is no next pane to go to.

Customization of this command handler is not recommended.

ID_PREV_PANE Goes to previous pane

CView handles this command for the CSplitterWnd implementation. If the view is part of a splitter
window, this command will delegate to the implementation function CSplitterWnd::OnNextPaneCmd . This
will move the active view to the previous pane in the splitter.

This command is disabled if the view is not in a splitter or there is no previous pane to go to.

Customization of this command handler is not recommended.

ID_OLE_INSERT_NEW Inserts a new OLE object

Currently there is no standard implementation for this command. You must implement this for your
CView -derived class to insert a new OLE item/object at the current selection.

All OLE client applications should implement this command. AppWizard, with the OLE option, will create
a skeleton implementation of OnInsertObject in your view class that you will have to complete.

See the MFC OLE sample OCLIENT example for a complete implementation of this command.

ID_OLE_EDIT_LINKS Edits OLE links

COleDocument handles this command by using the MFC-provided implementation of the standard OLE
links dialog. The implementation of this dialog is accessed through the COleLinksDialog class. If the
current document does not contain any links, the command is disabled.

Customization of this command handler is not recommended.

ID_OLE_VERB_FIRST...LAST An ID range for OLE verbs

COleDocument uses this command ID range for the verbs supported by the currently selected OLE
item/object. This must be a range since a given OLE item/object type can support zero or more custom
verbs. In your application's menu, you should have one menu item with the ID of ID_OLE_VERB_FIRST.
When the program is run, the menu will be updated with the appropriate menu verb description (or pop-
up menu with many verbs). The management of the OLE menu is handled by AfxOleSetEditMenu , done in
the update command UI handler for this command.

There are no explicit command handlers for handling each of the command ID in this range.
COleDocument::OnCmdMsg is overridden to trap all command IDs in this range, turn them into zero-based

verb numbers, and launch the server for that verb (using COleClientItem::DoVerb).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Update-Only Command Handlers

See also

Customization or other use of this command ID range is not recommended.

ID_VIEW_TOOLBAR Toggles the toolbar on and off

CFrameWnd handles this command and the update-command UI handler to toggle the visible state of the
toolbar. The toolbar must be a child window of the frame with child window ID of AFX_IDW_TOOLBAR.
The command handler actually toggles the visibility of the toolbar window. CFrameWnd::RecalcLayout is
used to redraw the frame window with the toolbar in its new state. The update-command UI handler
checks the menu item when the toolbar is visible.

Customization of this command handler is not recommended. If you wish to add additional toolbars, you
will want to clone and modify the command handler and the update-command UI handler for this
command.

ID_VIEW_STATUS_BAR Toggles the status bar on and off

This command is implemented in CFrameWnd just like ID_VIEW_TOOLBAR, except a different child
window ID (AFX_IDW_STATUS_BAR) is used.

Several standard command IDs are used as indicators in status bars. These use the same update-command UI
handling mechanism to display their current visual state during application idle time. Since they can't be selected
by the user (that is, you cannot push a status bar pane), then it makes no sense to have an ON_COMMAND
handler for these command IDs.

ID_INDICATOR_CAPS : CAP lock indicator.

ID_INDICATOR_NUM : NUM lock indicator.

ID_INDICATOR_SCRL : SCRL lock indicator.

ID_INDICATOR_KANA : KANA lock indicator (applicable only to Japanese systems).

All three of these are implemented in CFrameWnd::OnUpdateKeyIndicator , an implementation helper that uses the
command ID to map to the appropriate Virtual Key. A common implementation enables or disables (for status
panes disabled = no text) the CCmdUI object depending on whether the appropriate Virtual Key is currently
locked.

Customization of this command handler is not recommended.

ID_INDICATOR_EXT : EXTended select indicator.

ID_INDICATOR_OVR : OVeRstrike indicator.

ID_INDICATOR_REC : RECording indicator.

Currently there is no standard implementation for these indicators.

If you choose to implement these indicators, we recommend you use these indicator IDs and maintaining the
ordering of the indicators in your status bar (that is, in this order: EXT, CAP, NUM, SCRL, OVR, REC).

Technical Notes by Number
Technical Notes by Category

TN023: Standard MFC Resources
3/4/2019 • 3 minutes to read • Edit Online

Standard Resources

Using Clip-Art Resources
To use a clip-art binary resourceTo use a clip-art binary resource

This note describes the standard resources provided with and needed by the MFC library.

MFC offers two categories of predefined resources that you can use in your application: clip-art resources and
standard framework resources.

Clip-art resources are additional resources that the framework does not depend on, but which you might want to
add to your application's user interface. The following clip-art resources are contained in the MFC General sample
CLIPART:

Common.rc: A single file of resources that contains:

A large collection of icons that represent a variety of business and data-processing tasks.

Several common cursors (see also Afxres.rc).

A toolbar bitmap that contains several toolbar buttons.

The bitmap and icon resources that are used by Commdlg.dll.

Indicate.rc: Contains string resources for the status-bar key-state indicators, such as "CAP" for Caps Lock.

Prompts.rc: Contains menu-prompt string resources for each predefined command, such as "Create a new
document" for ID_FILE_NEW.

Commdlg.rc: A Visual C++ compatible .rc file that contains the standard COMMDLG dialog templates.

Standard framework resources are resources with AFX-defined IDs that the framework depends on for internal
implementations. You will rarely need to change these AFX-defined resources. If you do, you should follow the
procedure outlined later in this topic.

The following framework resources are contained in the MFC\INCLUDE directory:

Afxres.rc: Common resources used by the framework.

Afxprint.rc: Resources specific to printing.

Afxolecl.rc: Resources specific to OLE client applications.

Afxolev.rc: Resources specific to full OLE server applications.

1. Open your application's resource file in Visual C++.

2. Open Common.rc. This file contains all the binary clip-art resources. This may take some time because the
Common.rc file is compiled.

3. Hold down CTRL while you drag the resources that you want to use from Common.rc to your application's
resource file.

To use other clip-art resources, follow the same steps. The only difference is that you will open the appropriate .rc

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn023-standard-mfc-resources.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

NOTENOTE

NOTENOTE

Customizing Standard Framework ResourcesCustomizing Standard Framework Resources

#include "afxres.rc"
#include "afxprint.rc"

To c u s t o m i z e t h e c o n t e n t s o f a s t a n d a r d r e so u r c e f i l eTo c u s t o m i z e t h e c o n t e n t s o f a s t a n d a r d r e so u r c e f i l e

NOTENOTE

See also

file instead of Common.rc.

Be careful not to unintentionally move resources out of Common.rc permanently. If you hold the CTRL key while you drag
resources, you will create a copy. If you do not hold CTRL down while you drag, the resources will be moved. If you are
concerned that you might have accidentally made changes to the Common.rc file, click "No" when you are asked whether to
save the changes to Common.rc.

The .rc resource files have a special TEXTINCLUDE resource in them that will prevent you from accidentally saving on top of
the standard .rc files.

Standard framework resources are usually included in an application by using the #include command in an
application's resource file. AppWizard will generate a resource file. This file includes the appropriate standard
framework resources, depending on which AppWizard options you select. You can review, add, or remove which
resources are included by changing the compile-time directives. To do this, open the Resource menu and select
Set Includes. Look at the "Compile-Time Directives" edit item. For example:

The most common case of customizing standard framework resources is adding or removing additional includes
for printing, OLE Client, and OLE Server support.

In some rare cases you might want to customize the contents of the standard framework resources for your
particular application, not just add and remove the entire file. The followings steps show how you can limit the
resources that are included:

1. Open the resource file in Visual C++.

2. Using the Resource Set Includes command, remove the #include for the standard .rc file that you want to
customize. For example, to customize the print-preview toolbar, remove the #include "afxprint.rc" line.

3. Open the appropriate standard resources files in MFC\INCLUDE. Following the example earlier in this
topic, the appropriate file is MFC\Include\Aafxprint.rc

4. Copy all the resources from the standard .rc file to your application resource file.

5. Modify the copy of the standard resources in your application resource file.

Do not modify the resources directly in the standard .rc files. Doing so will modify the resources available in every
application, not just in the one you are currently working on.

Technical Notes by Number
Technical Notes by Category

TN024: MFC-Defined Messages and Resources
3/4/2019 • 7 minutes to read • Edit Online

NOTENOTE

wParam Not used

lParam Not used

returns 1 if processed by AfxWndProc

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes the internal Windows messages and resource formats used by MFC. This information explains
the implementation of the framework, and will assist you in debugging your application. For the adventurous,
even though all this information is officially unsupported, you may use some of this information for advanced
implementations.

This note contains MFC private implementation details; all the contents are subject to change in the future. MFC
private Windows messages have meaning in the scope of one application only but will change in the future to
contain system-wide messages.

The range of MFC private Windows messages and resource types are in the reserved "system" range set aside by
Microsoft Windows. Currently not all numbers in the ranges are used and, in the future, new numbers in the range
may be used. The currently used numbers may be changed.

MFC private Windows messages are in the range 0x360->0x37F.

MFC private resource types are in the range 0xF0->0xFF.

MFC Private Windows Messages

These Windows messages are used in place of C++ virtual functions where relatively loose coupling is required
between window objects and where a C++ virtual function would not be appropriate.

These private Windows messages and associated parameter structures are declared in the MFC private header
'AFXPRIV.H'. Be warned that any of your code that includes this header may be relying on undocumented
behavior and will likely break in future versions of MFC.

In the rare case of needing to handle one of these messages, you should use the ON_MESSAGE message map
macro and handle the message in the generic LRESULT/WPARAM/LPARAM format.

WM_QUERYAFXWNDPROC

This message is sent to a window that is being created. This is sent very early in the creation process as a method
of determining if the WndProc is AfxWndProc. AfxWndProc returns 1.

WM_SIZEPARENT

This message is sent by a frame window to its immediate children during resizing (CFrameWnd::OnSize calls

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn024-mfc-defined-messages-and-resources.md

wParam Not used

lParam Address of an AFX_SIZEPARENTPARAMS structure

returns Not used (0)

wParam String ID (or zero)

lParam LPCSTR for the string (or NULL)

returns Not used (0)

wParam BOOL bDisableIfNoHandler

lParam Not used (0)

returns Not used (0)

wParam Not used (0)

lParam Not used (0)

returns Not used

CFrameWnd::RecalcLayout which calls CWnd::RepositionBars) to reposition the control bars around the side of the
frame. The AFX_SIZEPARENTPARAMS structure contains the current available client rectangle of the parent and
a HDWP (which may be NULL) with which to call DeferWindowPos to minimize repainting.

Ignoring the message indicates that the window doesn't take part in the layout.

WM_SETMESSAGESTRING

This message is sent to a frame window to ask it to update the message line in the status bar. Either a string ID or
a LPCSTR can be specified (but not both).

WM_IDLEUPDATECMDUI

This message is sent in idle time to implement the idle-time update of update-command UI handlers. If the
window (usually a control bar) handles the message, it creates a CCmdUI object (or an object of a derived class)
and call CCmdUI::DoUpdate for each of the "items" in the window. This will in turn check for an
ON_UPDATE_COMMAND_UI handler for the objects in the command-handler chain.

bDisableIfNoHandler is nonzero to disable the UI object if there is neither an ON_UPDATE_COMMAND_UI nor
an ON_COMMAND handler.

WM_EXITHELPMODE

This message is posted to a CFrameWnd that to exit context sensitive help mode. The receipt of this message
terminates the modal loop started by CFrameWnd::OnContextHelp .

wParam Not used (0)

lParam Not used (0)

returns Not used (0)

wParam Not used (0)

lParam LPRECT rectClient, may be NULL

returns TRUE if new client rectangle returned, FALSE otherwise

wParam Not used (0)

lParam LPRECT rectNew

returns Not used (0)

WM_INITIALUPDATE

This message is sent by the document template to all descendants of a frame window when it is safe for them to
do their initial update. It maps to a call to CView::OnInitialUpdate but can be used in other CWnd -derived classes
for other one-shot updating.

WM_RECALCPARENT

This message is sent by a view to its parent window (obtained via GetParent) to force a layout recalculation
(usually, the parent will call RecalcLayout). This is used in OLE server applications where it is necessary for the
frame to grow in size as the view's total size grows.

If the parent window processes this message it should return TRUE and fill the RECT passed in lParam with the
new size of the client area. This is used in CScrollView to properly handle scrollbars (place then on the outside of
the window when they are added) when a server object is in-place activated.

WM_SIZECHILD

This message is sent by COleResizeBar to its owner window (via GetOwner) when the user resizes the resize bar
with the resize handles. COleIPFrameWnd responds to this message by attempting to reposition the frame window
as the user has requested.

The new rectangle, given in client coordinates relative to the frame window which contains the resize bar, is
pointed at by lParam.

WM_DISABLEMODAL

This message is sent to all pop-up windows owned by a frame window that is being deactivated. The frame
window uses the result to determine whether or not to disable the pop-up window.

You can use this to perform special processing in your pop-up window when the frame enters a modal state or to
keep certain pop-up windows from getting disabled. Tooltips use this message to destroy themselves when the
frame window goes into a modal state, for example.

wParam Not used (0)

lParam Not used (0)

returns Non-zero to NOT disable the window, 0 indicates the window
will be disabled

wParam Is one of the following values:

FS_SHOW

FS_HIDE

FS_ACTIVATE

FS_DEACTIVATE

FS_ENABLEFS_DISABLE

FS_SYNCACTIVE

lParam Not used (0)

WM_ACTIVATETOPLEVEL

WM_COMMANDHELP, WM_HELPHITTEST, WM_EXITHELPMODE

MFC Private Resource Formats

RT_TOOLBAR Resource Format

WM_FLOATSTATUS

This message is sent to all pop-up windows owned by a frame window when the frame is either activated or
deactivated by another top-level frame window. This is used by the implementation of MFS_SYNCACTIVE in
CMiniFrameWnd , to keep the activation of these pop-up windows in sync with the activation of the top level frame

window.

The return value should be non-zero if FS_SYNCACTIVE is set and the window syncronizes its activation with the
parent frame. CMiniFrameWnd returns non-zero when the style is set to MFS_SYNCACTIVE.

For more information, see the implementation of CMiniFrameWnd .

This message is sent to a top-level window when a window in its "top-level group" is either activated or
deactivated. A window is part of a top-level group if it is a top-level window (no parent or owner), or it is owned
by such a window. This message is similar in use to WM_ACTIVATEAPP, but works in situations where windows
belonging to different processes are mixed in a single window hierarchy (common in OLE applications).

These messages are used in the implementation of context-sensitive Help. Please refer to Technical Note 28 for
more information.

Currently, MFC defines two private resource formats: RT_TOOLBAR and RT_DLGINIT.

The default toolbar supplied by AppWizard is based on an RT_TOOLBAR custom resource, which was introduced

RT_DLGINIT Resource Format

+---------------+ \
| Control ID | UINT |
+---------------+ |
| Message # | UINT |
+---------------+ |
|length of data | DWORD |
+---------------+ | Repeated
| Data | Variable Length | for each control
| ... | and Format | and message
+---------------+ /
| 0 | BYTE
+---------------+

SendDlgItemMessage(<Control ID>, <Message #>, 0, &<Data>);

See also

in MFC 4.0. You can edit this resource using the Toolbar editor.

One MFC private resource format is used to store extra dialog initialization information. This includes the initial
strings stored in a combo box. The format of this resource is not designed to be manually edited, but is handled by
Visual C++.

Visual C++ and this RT_DLGINIT resource are not required to use the related features of MFC since there are API
alternative to using the information in the resource. Using Visual C++ makes it much easier to write, maintain,
and translate your application in the long run.

The basic structure of a RT_DLGINIT resource is as follows:

A repeated section contains the control ID to send the message to, the Message # to send (a normal Windows
message) and a variable length of data. The Windows message is sent in a form:

This is a very general format, allowing any Windows messages and data content. The Visual C++ resource editor
and MFC only support a limited subset of Windows messages: CB_ADDSTRING for the initial list-choices for
combo boxes (the data is a text string).

Technical Notes by Number
Technical Notes by Category

TN025: Document, View, and Frame Creation
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

WinApp

pTemplate = new CDocTemplate(IDR_MYDOCUMENT, ...);

AddDocTemplate(pTemplate);

DocTemplates

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes the creation and ownership issues for WinApps, DocTemplates, Documents, Frames and
Views.

There is one CWinApp object in the system.

It is statically constructed and initialized by the framework's internal implementation of WinMain . You must derive
from CWinApp to do anything useful (exception: MFC extension DLLs should not have a CWinApp instance —
initialization is done in DllMain instead).

The one CWinApp object owns a list of document templates (a CPtrList). There is one or more document
template per application. DocTemplates are usually loaded from the resource file (that is, a string array) in
CWinApp::InitInstance .

The one CWinApp object owns all frame windows in the application. The main frame window for the application
should be stored in CWinApp::m_pMainWnd ; usually you set m_pMainWnd in the InitInstance implementation if
you have not let AppWizard do it for you. For single document interface (SDI) this is one CFrameWnd that serves as
the main application frame window as well as the only document frame window. For multiple document interface
(MDI) this is an MDI-Frame (class CMDIFrameWnd) that serves as the main application frame window that contains
all the child CFrameWnd s. Each child window is of class CMDIChildWnd (derived from CFrameWnd) and serves as one
of potentially many document frame windows.

The CDocTemplate is the creator and manager of documents. It owns the documents that it creates. If your
application uses the resource-based approach described below, it will not need to derive from CDocTemplate .

For an SDI application, the class CSingleDocTemplate keeps track of one open document. For an MDI application,
the class CMultiDocTemplate keeps a list (a CPtrList) of all the currently open documents created from that
template. CDocTemplate::AddDocument and CDocTemplate::RemoveDocument provide the virtual member functions for
adding or removing a document from the template. CDocTemplate is a friend of CDocument so we can set the
protected CDocument::m_pDocTemplate back pointer to point back to the doc template that created the document.

CWinApp handles the default OnFileOpen implementation, which will in turn query all the doc templates. The
implementation includes looking for already open documents and deciding what format to open new documents

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn025-document-view-and-frame-creation.md

CDocument

CFrameWnd

See also

in.

CDocTemplate manages the UI binding for documents and frames.

CDocTemplate keeps a count of the number of unnamed documents.

A CDocument is owned by a CDocTemplate .

Documents have a list of currently open views (derived from CView) that are viewing the document (a CPtrList).

Documents do not create/destroy the views, but they are attached to each other after they are created. When a
document is closed (that is, through File/Close), all attached views will be closed. When the last view on a
document is closed (that is, Window/Close) the document will be closed.

The CDocument::AddView , RemoveView interface is used to maintain the view list. CDocument is a friend of CView so
we can set the CView::m_pDocument back pointer.

A CFrameWnd (also known as a frame) plays the same role as in MFC 1.0, but now the CFrameWnd class is designed
to be used in many cases without deriving a new class. The derived classes CMDIFrameWnd and CMDIChildWnd are
also enhanced so many standard commands are already implemented.

The CFrameWnd is responsible for creating windows in the client area of the frame. Normally there is one main
window filling the client area of the frame.

For an MDI-Frame window, the client area is filled with the MDICLIENT control which is in turn the parent of all
the MDI-Child frame windows. For an SDI-Frame window or an MDI-Child frame window, the client area is
usually filled with a CView -derived window object. In the case of CSplitterWnd , the client area of the view is filled
with the CSplitterWnd window object, and the CView -derived window objects (one per split pane) are created as
child windows of the CSplitterWnd .

Technical Notes by Number
Technical Notes by Category

TN026: DDX and DDV Routines
10/31/2018 • 7 minutes to read • Edit Online

NOTENOTE

Overview of Dialog Data Exchange

void CMyDialog::DoDataExchange(CDataExchange* pDX)
{
 CDialog::DoDataExchange(pDX); // call base class

 //{{AFX_DATA_MAP(CMyDialog)
 <data_exchange_function_call>
 <data_validation_function_call>
 //}}AFX_DATA_MAP
}

DDX_Custom(pDX, nIDC, field);

DDV_Custom(pDX, field, ...);

Notes

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes the dialog data exchange (DDX) and dialog data validation (DDV) architecture. It also
describes how you write a DDX_ or DDV_ procedure and how you can extend ClassWizard to use your routines.

All dialog data functions are done with C++ code. There are no special resources or magic macros. The heart of
the mechanism is a virtual function that is overridden in every dialog class that does dialog data exchange and
validation. It is always found in this form:

The special format AFX comments allow ClassWizard to locate and edit the code within this function. Code that is
not compatible with ClassWizard should be placed outside of the special format comments.

In the above example, <data_exchange_function_call> is in the form:

and <data_validation_function_call> is optional and is in the form:

More than one DDX_/DDV_ pair may be included in each DoDataExchange function.

See 'afxdd_.h' for a list of all the dialog data exchange routines and dialog data validation routines provided with
MFC.

Dialog data is just that: member data in the CMyDialog class. It is not stored in a struct or anything similar.

Although we call this "dialog data," all features are available in any class derived from CWnd and are not limited
to just dialogs.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn026-ddx-and-ddv-routines.md

How Does It Work

User Extensions

Initial values of data are set in the standard C++ constructor, usually in a block with //{{AFX_DATA_INIT and
//}}AFX_DATA_INIT comments.

CWnd::UpdateData is the operation that does the initialization and error handling around the call to
DoDataExchange .

You can call CWnd::UpdateData at any time to perform data exchange and validation. By default UpdateData

(TRUE) is called in the default CDialog::OnOK handler and UpdateData (FALSE) is called in the default
CDialog::OnInitDialog .

The DDV_ routine should immediately follow the DDX_ routine for that field.

You do not need to understand the following in order to use dialog data. However, understanding how this works
behind the scenes will help you write your own exchange or validation procedure.

The DoDataExchange member function is much like the Serialize member function - it is responsible for getting
or setting data to/from an external form (in this case controls in a dialog) from/to member data in the class. The
pDX parameter is the context for doing data exchange and is similar to the CArchive parameter to
CObject::Serialize . The pDX (a CDataExchange object) has a direction flag much like CArchive has a direction

flag:

If !m_bSaveAndValidate , then load the data state into the controls.

If m_bSaveAndValidate , then set the data state from the controls.

Validation only occurs when m_bSaveAndValidate is set. The value of m_bSaveAndValidate is determined by the
BOOL parameter to CWnd::UpdateData .

There are three other interesting CDataExchange members:

m_pDlgWnd : The window (usually a dialog) that contains the controls. This is to prevent callers of the DDX_
and DDV_ global functions from having to pass 'this' to every DDX/DDV routine.

PrepareCtrl , and PrepareEditCtrl : Prepares a dialog control for data exchange. Stores that control's
handle for setting the focus if a validation fails. PrepareCtrl is used for non-edit controls and
PrepareEditCtrl is used for edit controls.

Fail : Called after bringing up a message box alerting the user to the input error. This routine will restore
the focus to the last control (the last call to PrepareCtrl or PrepareEditCtrl) and throw an exception. This
member function may be called from both DDX_ and DDV_ routines.

There are several ways to extend the default DDX/DDV mechanism. You can:

CTime

void PASCAL DDX_Time(CDataExchange* pDX, int nIDC, CTime& tm);

Add new data types.

Add new exchange procedures (DDX_).

Add new validation procedures (DDV_).

//{{AFX_DATA_MAP(CMyClass)
DDX_Check(pDX, IDC_SEX, m_bFemale);
DDX_Text(pDX, IDC_EDIT1, m_age);
//}}AFX_DATA_MAP
if (m_bFemale)
 DDV_MinMax(pDX, age, 0, m_maxFemaleAge);
else
 DDV_MinMax(pDX, age, 0, m_maxMaleAge);

NOTENOTE

ClassWizard Support

void PASCAL DDV_TimeFuture(CDataExchange* pDX, CTime tm, BOOL bFuture);
// make sure time is in the future or past

DDV_MinMax(pDX, age, 0, m_maxAge);

NOTENOTE

Pass arbitrary expressions to the validation procedures.

Such arbitrary expressions cannot be edited by ClassWizard and therefore should be moved outside of the special
format comments (//{{AFX_DATA_MAP(CMyClass)).

Have the DoDialogExchange member function include conditionals or any other valid C++ statements with
intermixed exchange and validation function calls.

As shown above, such code cannot be edited by ClassWizard and should be used only outside of the special format
comments.

ClassWizard supports a subset of DDX/DDV customizations by allowing you to integrate your own DDX_ and
DDV_ routines into the ClassWizard user interface. Doing this is only cost beneficial if you plan to reuse
particular DDX and DDV routines in a project or in many projects.

To do this, special entries are made in DDX.CLW (previous versions of Visual C++ stored this information in
APSTUDIO.INI) or in your project's .CLW file. The special entries can be entered either in the [General Info]
section of your project's .CLW file or in the [ExtraDDX] section of the DDX.CLW file in the \Program
Files\Microsoft Visual Studio\Visual C++\bin directory. You may need to create the DDX.CLW file if it doesn't
already exist. If you plan to use the custom DDX_/DDV_ routines only in a certain project, add the entries to the
[General Info] section of your project .CLW file instead. If you plan to use the routines on many projects, add the
entries to the [ExtraDDX] section of DDX.CLW.

The general format of these special entries is:

ExtraDDXCount=n

where n is the number of ExtraDDX? lines to follow, of the form

ExtraDDX?=keys; vb-keys; prompt; type; initValue; DDX_Proc [; DDV_Proc; prompt1; arg1 [; prompt2; fmt2]]

where ? is a number 1 - n indicating which DDX type in the list that is being defined.

Each field is delimited by a ';' character. The fields and their purpose are described below.

CHARACTER ALLOWED CONTROL

E edit

C two-state check box

c tri-state check box

R first radio button in a group

L nonsorted list box

l sorted list box

M combo box (with edit item)

N nonsorted drop list

n sorted drop list

1 if the DDX insert should be added to head of list (default
is add to tail) This is generally used for DDX routines that
transfer the 'Control' property.

keys

A list of single characters indicating for which dialog controls this variable type is allowed.

vb-keys

This field is used only in the 16-bit product for VBX controls (VBX controls are not supported in the 32-bit
product)

prompt

String to place in the Property combo box (no quotes)

type

Single identifier for type to emit in the header file. In our example above with DDX_Time, this would be set
to CTime.

vb-keys

Not used in this version and should always be empty

initValue

Initial value — 0 or blank. If it is blank, then no initialization line will be written in the //{{AFX_DATA_INIT
section of the implementation file. A blank entry should be used for C++ objects (such as CString , CTime

, and so on) that have constructors that guarantee correct initialization.

DDX_Proc

Single identifier for the DDX_ procedure. The C++ function name must start with "DDX_," but don't
include "DDX_" in the <DDX_Proc> identifier. In the example above, the <DDX_Proc> identifier would be
Time. When ClassWizard writes the function call to the implementation file in the {{AFX_DATA_MAP

See also

section, it appends this name to DDX_, thus arriving at DDX_Time.

comment

Comment to show in dialog for variable with this DDX. Place any text you would like here, and usually
provide something that describes the operation performed by the DDX/DDV pair.

DDV_Proc

The DDV portion of the entry is optional. Not all DDX routines have corresponding DDV routines. Often, it
is more convenient to include the validation phase as an integral part of the transfer. This is often the case
when your DDV routine doesn't require any parameters, because ClassWizard does not support DDV
routines without any parameters.

arg

Single identifier for the DDV_ procedure. The C++ function name must start with "DDV_", but do not
include "DDX_" in the <DDX_Proc> identifier.

arg is followed by 1 or 2 DDV args:

CHARACTER TYPE

d int

u unsigned int

D long int (that is, long)

U long unsigned (that is, DWORD)

f float

F double

s string

promptN

String to place above the edit item (with & for accelerator).

fmtN

Format character for the arg type, one of:

Technical Notes by Number
Technical Notes by Category

TN028: Context-Sensitive Help Support
3/4/2019 • 9 minutes to read • Edit Online

NOTENOTE

Types of Help Supported

Help Files

Help Context Ranges

0x00000000 - 0x0000FFFF : user defined
0x00010000 - 0x0001FFFF : commands (menus/command buttons)
0x00010000 + ID_
(note: 0x18000-> 0x1FFFF is the practical range since command IDs are>=0x8000)
0x00020000 - 0x0002FFFF : windows and dialogs
0x00020000 + IDR_
(note: 0x20000-> 0x27FFF is the practical range since IDRs are <= 0x7FFF)
0x00030000 - 0x0003FFFF : error messages (based on error string ID)
0x00030000 + IDP_
0x00040000 - 0x0004FFFF : special purpose (non-client areas)
0x00040000 + HitTest area
0x00050000 - 0x0005FFFF : controls (those that are not commands)
0x00040000 + IDW_

Simple "Help" Commands

This note describes the rules for assigning Help contexts IDs and other help issues in MFC. Context-sensitive help
support requires the help compiler that is available in Visual C++.

In addition to implementing context-sensitive help using WinHelp, MFC also supports using HTML Help. For more
information on this support and programming with HTML Help, see HTML Help: Context-Sensitive Help for Your Programs.

There are two types of context-sensitive help implemented in Windows applications. The first, referred to as "F1
Help" involves launching WinHelp with the appropriate context based on the currently active object. The second
is "Shift+ F1" mode. In this mode, the mouse cursor changes to the help cursor, and the user proceeds to click on
an object. At that point, WinHelp is launched to give help for the object that the user clicked on.

The Microsoft Foundation Classes implement both of these forms of help. In addition, the framework supports
two simple help commands, Help Index and Using Help.

The Microsoft Foundation classes assume a single Help file. That Help file must have the same name and path as
the application. For example, if the executable is C:\MyApplication\MyHelp.exe the help file must be
C:\MyApplication\MyHelp.hlp. You set the path through the m_pszHelpFilePath member variable of the
CWinApp Class.

The default implementation of MFC requires a program to follow some rules about the assignment of Help
context IDs. These rules are a range of IDs allocated to specific controls. You can override these rules by providing
different implementations of the various Help-related member functions.

There are two simple Help commands that are implemented by the Microsoft Foundation Classes:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn028-context-sensitive-help-support.md

Context-Sensitive Help (F1 Help)

WM_COMMANDHELP

afx_msg LRESULT CWnd::OnCommandHelp(WPARAM wParam, LPARAM lParam)

ID_HELP_INDEX which is implemented by CWinApp::OnHelpIndex

ID_HELP_USING which is implemented by CWinApp::OnHelpUsing

The first command shows the Help index for the application. The second shows the user help on using the
WinHelp program.

The F1 key is usually translated to a command with an ID of ID_HELP by an accelerator placed into the main
window's accelerator table. The ID_HELP command may also be generated by a button with an ID of ID_HELP
on the main window or dialog box.

Regardless of how the ID_HELP command is generated, it is routed as a normal command until it reaches a
command handler. For more information about the MFC command-routing architecture, refer to Technical Note
21. If the application has Help enabled, the ID_HELP command will be handled by CWinApp::OnHelp. The
application object receives the help message and then routes the command appropriately. This is necessary since
the default command routing is not adequate for determining the most specific context.

CWinApp::OnHelp attempts to launch WinHelp in the following order:

1. Checks for an active AfxMessageBox call with a Help ID. If a message box is currently active, WinHelp is
launched with the context appropriate to that message box.

2. Sends a WM_COMMANDHELP message to the active window. If that window does not respond by
launching WinHelp, the same message is then sent to the ancestors of that window until the message is
processed or the current window is a top-level window.

3. Sends a ID_DEFAULT_HELP command to the main window. This invokes the default Help. This command
is generally mapped to CWinApp::OnHelpIndex .

To globally override the default ID base values (e.g. 0x10000 for commands and 0x20000 for resources such as
dialogs), the application should override CWinApp::WinHelp.

To override this functionality and the way that a Help context is determined, you should handle the
WM_COMMANDHELP message. You may wish to provide more specific Help routing than the framework
provides, as it only goes as deep as the current MDI child window. You may also want to provide more specific
help for a particular window or dialog, perhaps based on the current internal state of that object or the active
control within the dialog.

WM_COMMANDHELP is a private Windows MFC message that is received by the active window when Help is
requested. When the window receives this message, it may call CWinApp::WinHelp with context that matches the
window's internal state.

lParam
Contains the currently available Help context. lParam is zero if no Help context has been determined. An
implementation of OnCommandHelp can use the context ID in lParam to determine a different context or can just
pass it to CWinApp::WinHelp .

wParam
Is not used and will be zero.

Help Mode (Shift+F1 Help)

WM_HELPHITTEST

afx_msg LRESULT CWnd::OnHelpHitTest(
WPARAM, LPARAM lParam)

If the OnCommandHelp function calls CWinApp::WinHelp , it should return TRUE . Returning TRUE stops the routing
of this command to other classes and to other windows.

This is the second form of context-sensitive Help. Generally, this mode is entered by pressing SHIFT+F1 or via
the menu/toolbar. It is implemented as a command (ID_CONTEXT_HELP). The message filter hook is not used to
translate this command while a modal dialog box or menu is active, therefore this command is only available to
the user when the application is executing the main message pump (CWinApp::Run).

After entering this mode, the Help mouse cursor is displayed over all areas of the application, even if the
application would normally display its own cursor for that area (such as the sizing border around the window).
The user is able to use the mouse or keyboard to select a command. Instead of executing the command, Help on
that command is displayed. Also, the user can click a visible object on the screen, such as a button on the toolbar,
and Help will be displayed for that object. This mode of Help is provided by CWinApp::OnContextHelp .

During the execution of this loop, all keyboard input is inactive, except for keys that access the menu. Also,
command translation is still performed via PreTranslateMessage to allow the user to press an accelerator key and
receive help on that command.

If there are particular translations or actions taking place in the PreTranslateMessage function that shouldn't take
place during SHIFT+F1 Help mode, you should check the m_bHelpMode member of CWinApp before performing
those operations. The CDialog implementation of PreTranslateMessage checks this before calling
IsDialogMessage , for example. This disables "dialog navigation" keys on modeless dialogs during SHIFT+F1

mode. In addition, CWinApp::OnIdle is still called during this loop.

If the user chooses a command from the menu, it is handled as help on that command (through
WM_COMMANDHELP, see below). If the user clicks a visible area of the applications window, a determination is
made as to whether it is a nonclient click or a client click. OnContextHelp handles mapping of nonclient clicks to
client clicks automatically. If it is a client click, it then sends a WM_HELPHITTEST to the window that was clicked.
If that window returns a nonzero value, that value is used as the context for help. If it returns zero, OnContextHelp

tries the parent window (and failing that, its parent, and so on). If a Help context cannot be determined, the
default is to send a ID_DEFAULT_HELP command to the main window, which is then (usually) mapped to
CWinApp::OnHelpIndex .

WM_HELPHITTEST is an MFC private windows message that is received by the active window clicked during
SHIFT+F1 Help mode. When the Window receives this message, it returns a DWORD Help ID for use by
WinHelp.

LOWORD(lParam) contains the X-axis device coordinate where the mouse was clicked relative to the client area
of the window.

HIWORD(lParam) contains the Y-axis coordinate.

wParam
is not used and will be zero. If the return value is nonzero, WinHelp is called with that context. If the return value
is zero, the parent window is queried for help.

In many cases, you can leverage hit-testing code you may already have. See the implementation of

MFC Application Wizard Support and MAKEHM

#define IDD_MY_DIALOG 2000
#define ID_MY_COMMAND 150

HIDD_MY_DIALOG 0x207d0
HID_MY_COMMAND 0x10096

Adding Help Support After Running the MFC Application Wizard

Help on Message Boxes

int AFXAPI AfxMessageBox(LPCSTR lpszText,
 UINT nType,
 UINT nIDHelp);

int AFXAPI AfxMessageBox(UINT nIDPrompt,
 UINT nType,
 UINT nIDHelp);

CToolBar::OnHelpHitTest for an example of handling the WM_HELPHITTEST message (the code leverages the
hit-test code used on buttons and tooltips in CControlBar).

The MFC Application Wizard creates the necessary files to build a Help file (.cnt and .hpj files). It also includes a
number of prebuilt .rtf files that are accepted by the Microsoft Help Compiler. Many of the topics are complete,
but some may need to be modified for your specific application.

Automatic creation of a "help mapping" file is supported by a utility called MAKEHM. The MAKEHM utility can
translate an application's RESOURCE.H file to a Help mapping file. For example:

will be translated into:

This format is compatible with the Help compiler's facility, which maps context IDs (the numbers on the right
side) with topic names (the symbols on the left side).

The source code for MAKEHM is available in the MFC Programming Utilities sample MAKEHM.

The best way to add Help to your application is to check the "Context-sensitive Help" option on the Advanced
Features page of the MFC Application Wizard before creating your application. That way the MFC Application
Wizard automatically adds the necessary message map entries to your CWinApp -derived class to support Help.

Help on Message Boxes (sometimes called alerts) is supported through the AfxMessageBox function, a wrapper
for the MessageBox Windows API.

There are two versions of AfxMessageBox , one for use with a string ID and another for use with a pointer to string
(LPCSTR):

In both cases, there is an optional Help ID.

In the first case, the default for nIDHelp is 0, which indicates no Help for this message box. If the user presses F1
while such as message box is active, the user will not receive Help (even if the application supports Help). If this is
not desirable, a Help ID should be provided for nIDHelp.

In the second case, the default value for nIDHelp is -1, which indicates the Help ID is the same as nIDPrompt.
Help will work only if the application is Help-enabled, of course). You should provide 0 for nIDHelp if you wish

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

See also

that the message box have no help support. Should you want the message to be Help enabled, but desire a
different help ID than nIDPrompt, simply provide a positive value for nIDHelp different from that of nIDPrompt.

Technical Notes by Number
Technical Notes by Category

TN029: Splitter Windows
3/4/2019 • 6 minutes to read • Edit Online

Splitter Styles

Splitter Examples

This note describes the MFC CSplitterWnd Class, which provides window splits and manages the resizing of
other pane windows.

A CSplitterWnd supports two different styles of splitting windows.

In "static splitters," the splitter window creates the panes when it is created. The order and number of panes never
change. Splitter bars are used to resize the different panes. You can use this style to display a different view class
in each pane. The Visual C++ graphics editor and the Windows File Manager are examples of programs that use
this splitter style. This style of splitter window does not use splitter boxes.

In "dynamic splitters," additional panes are created and destroyed as the user splits and un-splits new views. This
splitter starts out with a single view and provides splitter boxes for the user to initiate splitting. The splitter
window dynamically creates a new view object when the view is split in one direction. This new view object
represents the new pane. If the view is split in two directions by using the keyboard interface, the splitter window
creates three new view objects for the three new panes. While the split is active, Windows displays the splitter box
as a splitter bar between the panes. Windows destroys additional view objects when the user removes a split, but
the original view remains until the splitter window itself is destroyed. Microsoft Excel and Microsoft Word are
examples of applications that use the dynamic splitter style.

When you create either kind of splitter window, you must specify the maximum number of rows and columns that
the splitter will manage. A static splitter will create panes to fill all the rows and columns. A dynamic splitter will
create only the first pane when the CSplitterWnd is created.

The maximum number of panes you can specify for static splitters is 16 rows by 16 columns. The recommended
configurations are:

1 row x 2 columns : usually with dissimilar panes

2 rows x 1 column : usually with dissimilar panes

2 rows x 2 columns : usually with similar panes

The maximum number of panes that you can specify for dynamic splitters is 2 rows by 2 columns. The
recommended configurations are:

1 row x 2 columns : for columnar data

2 rows x 1 column : for textual or other data

2 rows x 2 columns : for grid or table oriented data

Many of the MFC sample programs use splitter windows directly or indirectly. The MFC General sample VIEWEX
illustrates several uses of static splitters, including how to place a splitter in a splitter.

You can also use ClassWizard to create a new multiple document interface (MDI) Child frame window class that
contains a splitter window. For more information on splitter windows, see Multiple Document Types, Views, and
Frame Windows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn029-splitter-windows.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Terminology Used by Implementation

Shared Scroll Bars

[][][^]
[pane00][pane01][|]
[][][v]

Minimum Sizes

Here is a list of terms that are specific to splitter windows:

CSplitterWnd : A window that provides pane-splitting controls and scroll bars that are shared between all panes
on a row or column. You specify rows and columns with zero-based numbers (the first pane is row = 0 and
column = 0).

Pane: An application-specific window that a CSplitterWnd manages. A pane is usually an object that is derived
from the CView Class, but can be any CWnd object that has the appropriate child window ID.

To use a CWnd -derived object, pass the RUNTIME_CLASS of the object to the CreateView function as you would
if you were using a CView -derived class. Your class must use DECLARE_DYNCREATE and
IMPLEMENT_DYNCREATE because the framework uses dynamic creation at runtime. Although there is a lot of
code in CSplitterWnd that is specific to the CView class, CObject::IsKindOf is always used before those actions are
performed.

Splitter Bar: A control that is placed between rows and columns of panes. It may be used to adjust the sizes of
rows or columns of panes.

Splitter Box: A control in a dynamic CSplitterWnd that you can use to create new rows or columns of panes. It is
located at the top of the vertical scroll bars or to the left of the horizontal scroll bars.

Splitter Intersection: The intersection of a vertical splitter bar and a horizontal splitter bar. You can drag it to adjust
the size of a row and column of panes simultaneously.

The CSplitterWnd class also supports shared scroll bars. These scroll bar controls are children of the
CSplitterWnd and are shared with the different panes in the splitter.

For example, in a 1 row x 2 column window, you can specify WS_VSCROLL when creating the CSplitterWnd .
Windows creates a special scroll bar control that is shared between the two panes.

When the user moves the scroll bar, WM_VSCROLL messages will be sent to both views. When either view sets
the scroll bar position, the shared scroll bar will be set.

Note that shared scroll bars are most useful with similar view objects. If you mix views of different types in a
splitter, then you may have to write special code to coordinate their scroll positions. Any CView -derived class that
uses the CWnd scroll bar APIs will delegate to the shared scroll bar if it exists. The CScrollView implementation is
one example of a CView class that supports shared scroll bars. Classes that are not derived from CView , classes
that rely on non-control scroll bars, or classes that use standard Windows implementations (for example,
CEditView) will not work with the shared scroll bar feature of CSplitterWnd .

For each row there is a minimum row height, and for each column there is a minimum column width. This
minimum guarantees that a pane is not too small to be shown in complete detail.

For a static splitter window, the initial minimum row height and column width is 0. For a dynamic splitter window,
the initial minimum row height and column width are set by the sizeMin parameter of the CSplitterWnd::Create

function.

Actual vs. Ideal Sizes

Custom Controls

CView Functionality

You can change these minimum sizes by using the CSplitterWnd::SetRowInfo and CSplitterWnd::SetColumnInfo
functions.

The layout of the panes in the splitter window depends on the size of the frame that contains them. When a user
resizes the containing frame, the CSplitterWnd repositions and resizes the panes so that they fit as well as
possible.

The user can manually set the row height and column width sizes, or the program can set the ideal size by using
the CSplitterWnd class. The actual size can be smaller or larger than the ideal. Windows will adjust the actual size
if there is not enough room to display the ideal size or if there is too much empty space on the right or bottom of
the splitter window.

You can override many functions to provide customized behavior and a customized interface. You can override
this first set to provide alternate imagery for the various graphical components of a splitter window.

virtual void OnDrawSpltter(CDC* pDC, ESplitType nType, const CRect& rect);

virtual void OnInvertTracker(const CRect& rect);

You call this function to create a shared scroll bar control. You can override it to create extra controls next to the
scroll bar.

virtual BOOL CreateScrollBarCtrl(DWORD dwStyle, UINT nID);

These functions implement the logic of the dynamic splitter window. You can override these to provide more
advanced splitter logic.

virtual void DeleteView(int row, int col);

virtual BOOL SplitRow(int cyBefore);

virtual BOOL SplitColumn(int cxBefore);

virtual void DeleteRow(int rowDelete);

virtual void DeleteColumn(int colDelete);

The CView class uses the following high level commands to delegate to the CSplitterWnd implementation.
Because these commands are virtual, the standard CView implementation will not require the entire
CSplitterWnd implementation to be linked in. For applications that use CView but not CSplitterWnd , the
CSplitterWnd implementation will not be linked with the application.

virtual BOOL CanActivateNext(BOOL bPrev = FALSE);

Checks whether ID_NEXT_PANE or ID_PREV_PANE is currently possible.

virtual void ActivateNext(BOOL bPrev = FALSE);

Executes the "Next Pane" or "Previous Pane" command.

virtual BOOL DoKeyboardSplit();

Executes the keyboard split command, usually "Window Split".

See also
Technical Notes by Number
Technical Notes by Category

TN030: Customizing Printing and Print Preview
10/31/2018 • 6 minutes to read • Edit Online

NOTENOTE

The Problem

Efficient Printing

Print Banding

Print Preview: Electronic Paper with User Interface

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes the process of customizing printing and print preview and describes the purposes of the
callback routines used in CView and the callback routines and member functions of CPreviewView .

MFC provides a complete solution for most printing and print preview needs. In most cases, little additional code
is required to have a view able to print and preview. However, there are ways to optimize printing that require
significant effort on the part of the developer, and some applications need to add specific user interface elements
to the print preview mode.

When an MFC application prints using the standard methods, Windows directs all Graphical Device Interface
(GDI) output calls to an in-memory metafile. When EndPage is called, Windows plays the metafile once for each
physical band that the printer requires to print one page. During this rendering, GDI frequently queries the Abort
Procedure to determine if it should continue. Typically the abort procedure allows messages to be processed so
that the user may abort the print job using a printing dialog.

Unfortunately, this can slow the printing process. If the printing in your application must be faster than can be
achieved using the standard technique, you must implement manual banding.

In order to manually band, you must re implement the print loop such that OnPrint is called multiple times per
page (once per band). The print loop is implemented in the OnFilePrint function in viewprnt.cpp. In your CView -
derived class, you overload this function so that the message map entry for handling the print command calls your
print function. Copy the OnFilePrint routine and change the print loop to implement banding. You will probably
also want to pass the banding rectangle to your printing functions so that you can optimize drawing based on the
section of the page being printed.

Second, you must frequently call QueryAbort while drawing the band. Otherwise, the Abort Procedure will not get
called and the user will be unable to cancel the print job.

Print Preview, in essence, tries to turn the display into an emulation of a printer. By default, the client area of the
main window is used to display one or two pages fully within the window. The user is able to zoom in on an area
of the page to see it in more detail. With additional support, the user may even be allowed to edit the document in
preview mode.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn030-customizing-printing-and-print-preview.md

Customizing Print Preview

To add UI to the preview mode

OnFilePrintPreview

void CView::OnFilePrintPreview()
{
 // In derived classes, implement special window handling here
 // Be sure to Unhook Frame Window close if hooked.

 // must not create this on the frame. Must outlive this function
 CPrintPreviewState* pState = new CPrintPreviewState;

 if (!DoPrintPreview(AFX_IDD_PREVIEW_TOOLBAR, this,
 RUNTIME_CLASS(CPreviewView), pState))
 {
 // In derived classes, reverse special window handling
 // here for Preview failure case

 TRACE0("Error: DoPrintPreview failed");
 AfxMessageBox(AFX_IDP_COMMAND_FAILURE);
 delete pState; // preview failed to initialize, delete State now
 }
}

This note only deals with one aspect of modifying print preview: Adding UI to preview mode. Other modifications
are possible, but such changes are out of the scope of this discussion.

1. Derive a view class from CPreviewView .

2. Add command handlers for the UI aspects you desire.

3. If you are adding visual aspects to the display, override OnDraw and perform your drawing after calling
CPreviewView::OnDraw .

This is the command handler for print preview. Its default implementation is:

DoPrintPreview will hide the main pane of the application. Control Bars, such as the status bar, can be retained by
specifying them in the pState->dwStates member (This is a bit mask and the bits for individual control bars are
defined by AFX_CONTROLBAR_MASK(AFX_IDW_MYBAR)). The window pState->nIDMainPane is the window
that will be automatically hidden and reshown. DoPrintPreview will then create a button bar for the standard
Preview UI. If special window handling is needed, such as to hide or show other windows, that should be done
before DoPrintPreview is called.

By default, when print preview finishes, it returns the control bars to their original states and the main pane to
visible. If special handling is needed, it should be done in an override of EndPrintPreview . If DoPrintPreview fails,
also provide special handling.

DoPrintPreview is called with:

The Resource ID of the dialog template for the preview toolbar.

A pointer to the view to perform the printing for the print preview.

The run-time class of the Preview View class. This will be dynamically created in DoPrintPreview.

The CPrintPreviewState pointer. Note that the CPrintPreviewState structure (or the derived structure if the
application needs more state preserved) must not be created on the frame. DoPrintPreview is modeless
and this structure must survive until EndPrintPreview is called.

EndPrintPreview

// Any further cleanup should be done here.
CView::EndPrintPreview(pDC, pInfo, point, pView);

CWinApp::OnFilePrintSetup

Page Nomenclature

See also

NOTENOTE
If a separate view or view class is needed for printing support, a pointer to that object should be passed as the
second parameter.

This is called to terminate the print preview mode. It is often desirable to move to the page in the document that
was last displayed in print preview. EndPrintPreview is the application's chance to do that. The pInfo-
>m_nCurPage member is the page that was last displayed (leftmost if two pages were displayed), and the pointer
is a hint as to where on the page the user was interested. Since the structure of the application's view is unknown
to the framework, then you must provide the code to move to the chosen point.

You should perform most actions before calling CView::EndPrintPreview . This call reverses the effects of
DoPrintPreview and deletes pView, pDC, and pInfo.

This must be mapped for the Print Setup menu item. In most cases, it is not necessary to override the
implementation.

Another issue is that of page numbering and order. For simple word processor type applications, this is a
straightforward issue. Most print preview systems assume that each printed page corresponds to one page in the
document.

In trying to provide a generalized solution, there are several things to consider. Imagine a CAD system. The user
has a drawing that covers several E-size sheets. On an E-size (or a smaller, scaled) plotter, page numbering would
be as in the simple case. But on a laser printer, printing 16 A-size pages per sheet, what does print preview
consider a "page"

As the introductory paragraph states, Print Preview is acting like a printer. Therefore, the user will see what would
come out of the particular printer that is selected. It is up to the view to determine what image is printed on each
page.

The page description string in the CPrintInfo structure provides a means of displaying the page number to the
user if it can be represented as one number per page (as in "Page 1" or "Pages 1-2"). This string is used by the
default implementation of CPreviewView::OnDisplayPageNumber . If a different display is needed, one may override
this virtual function to provide, for example, "Sheet1, Sections A, B".

Technical Notes by Number
Technical Notes by Category

TN031: Control Bars
3/4/2019 • 9 minutes to read • Edit Online

NOTENOTE

CControlBar

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes the control bar classes in MFC: the general CControlBar, CStatusBar, CToolBar, CDialogBar,
and CDockBar .

A ControlBar is a CWnd -derived class that:

Is aligned to the top or bottom of a frame window.

May contain child items that are either HWND-based controls (for example, CDialogBar) or non- HWND

based items (for example, CToolBar , CStatusBar).

Control bars support the additional styles:

CBRS_TOP (The default) pin the control bar to the top.

CBRS_BOTTOM Pin the control bar to the bottom.

CBRS_NOALIGN Do not reposition the control bar when the parent resizes.

Classes derived from CControlBar provide more interesting implementations:

CStatusBar A status bar, items are status bar panes containing text.

CToolBar A toolbar, items are bitmap buttons aligned in a row.

CDialogBar A toolbar-like frame containing standard windows controls (created from a dialog template
resource).

CDockBar A generalized docking area for other CControlBar derived objects. The specific member
functions and variables available in this class are likely to change in future releases.

All control bar objects/windows will be child windows of some parent frame window. They are usually added as a
sibling to the client area of the frame (for example, an MDI Client or view). The child window ID of a control bar
is important. The default layout of control bar only works for control bars with IDs in the range of
AFX_IDW_CONTROLBAR_FIRST to AFX_IDW_CONTROLBAR_LAST. Note that even though there is a range of
256 control bar IDs, the first 32 of these control bar IDs are special since they are directly supported by the print
preview architecture.

The CControlBar class gives standard implementation for :

Aligning the control bar to the top, bottom, or either side of the frame.

Allocating control item arrays.

Supporting the implementation of derived classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn031-control-bars.md

NOTENOTE

// CMyControlBar is derived from CControlBar
BOOL CMyControlBar::Create(CWnd* pParentWnd,
 DWORD dwStyle,
 UINT nID)
{
 m_dwStyle = dwStyle;

.

.

.
}

CStatusBar

C++ control bar objects will usually be embedded as members of a CFrameWnd derived class, and will be cleaned
up when the parent HWND and object are destroyed. If you need to allocate a control bar object on the heap, you
can simply set the m_bAutoDestruct member to TRUE to make the control bar "delete this" when the HWND is
destroyed.

If you create your own CControlBar -derived class, rather than using one of MFC's derived classes, such as CStatusBar ,
CToolBar , or CDialogBar , you will need to set the m_dwStyle data member. This can be done in the override of
Create :

Control Bar Layout Algorithm

The control bar layout algorithm is very simple. The frame window sends a message WM_SIZEPARENT to all
children in the control bar range. Along with this message, a pointer to the parent's client rectangle is passed. This
message is sent to children in Z-order. The control-bar children use this information to position themselves and
to decrease the size of the parent's client area. The final rectangle that is left for the normal client area (less
control bars) is used to position the main client window (usually an MDI client, view or splitter window).

See CWnd::RepositionBars and CFrameWnd::RecalcLayout for more details.

MFC private Windows messages, including WM_SIZEPARENT, are documented in Technical Note 24.

A status bar is a control bar that has a row of text output panes. There are two common ways to use text output
panes:

As a message line

(for example, the standard menu help message line). These are usually accessed by a 0-based indexed

As status indicators

(for example, the CAP, NUM and SCRL indicators). These are usually accessed by string/command ID.

The font for the status bar is 10-point MS Sans Serif (dictated by the Windows Interface Application Design
Guide or the font mappers best match of a 10-point Swiss proportional font). On certain versions of Windows,
such as the Japanese edition, the fonts selected are different.

The colors used in the status bar are also consistent with the recommendation of the Windows Interface
Application Design Guide. These colors are not hard coded and are changed dynamically in response to user
customization in Control Panel.

ITEM WINDOWS COLOR VALUE DEFAULT RGB

Status bar background COLOR_BTNFACE RGB(192, 192, 192)

Status bar text COLOR_BTNTEXT RGB(000, 000, 000)

Status bar top/left edges COLOR_BTNHIGHLIGHT RGB(255, 255, 255)

Status bar bot/right edges COLOR_BTNSHADOW RGB(128, 128, 128)

CToolBar

CCmdUI Support for CStatusBar

The way indicators are usually updated is through the ON_UPDATE_COMMAND_UI mechanism. On idle time,
the status bar will call the ON_UPDATE_COMMAND_UI handler with the string ID of the indicator pane.

The ON_UPDATE_COMMAND_UI handler can call:

Enable : To enable or disable the pane. A disabled pane looks exactly like an enabled pane but the text is
invisible (that is, turns off the text indicator).

SetText : To change the text. Be careful if you use this because the pane will not automatically resize.

Refer to class CStatusBar in the Class Library Reference for details about CStatusBar creation and customization
APIs. Most customization of status bars should be done before the status bar is initially made visible.

The status bar supports only one stretchy pane, usually the first pane. The size of that pane is really a minimum
size. If the status bar is bigger than the minimum size of all the panes, any extra width will be given to the stretchy
pane. The default application with a status bar has right-aligned indicators for CAP, NUM and SCRL since the
first pane is stretchy.

A toolbar is a control bar with a row of bitmap buttons that may include separators. Two styles of buttons are
supported: pushbuttons and check box buttons. Radio group functionality can be built with check box buttons
and ON_UPDATE_COMMAND_UI.

All the bitmap buttons in the toolbar are taken from one bitmap. This bitmap must contain one image or glyph
for each button. Typically the order of the images/glyphs in the bitmap is the same order they will be drawn on
the screen. (This can be changed using the customization APIs.)

Each button must be the same size. The default is the standard 24x22 pixels. Each image/glyph must be the same
size and must be side-by-side in the bitmap. The default image/glyph size is 16x15 pixels. Therefore, for a toolbar
with 10 buttons (using standard sizes), you need a bitmap that is 160 pixels wide and 15 pixels high.

Each button has one and only one image/glyph. The different button states and styles (for example, pressed, up,
down, disabled, disabled down, indeterminate) are algorithmically generated from that one image/glyph. Any
color bitmap or DIB can be used in theory. The algorithm for generating the different button states works best if
the original image is shades of gray. Look at the standard toolbar buttons and the toolbar button clipart provided
in MFC General sample CLIPART for examples.

The colors used in the toolbar are also consistent with the recommendation of the Windows Interface Application
Design Guide. These colors are not hard coded and are changed dynamically in response to user customization in
Control Panel.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ITEM WINDOWS COLOR VALUE DEFAULT RGB

ToolBar background COLOR_BTNFACE RGB(192,192,192)

ToolBar buttons top/left edges COLOR_BTNHIGHLIGHT RGB(255,255,255)

ToolBar buttons bot/right edges COLOR_BTNSHADOW RGB(128,128,128)

RGB VALUE DYNAMICALLY MAPPED COLOR VALUE

RGB(000, 000, 000) COLOR_BTNTEXT

RGB(128, 128, 128) COLOR_BTNSHADOW

RGB(192, 192, 192) COLOR_BTNFACE

RGB(255, 255, 255) COLOR_BTNHIGHLIGHT

CCmdUI Support for CToolBar

In addition, the toolbar bitmap buttons are recolored as though they were standard Windows button controls.
This recoloring occurs when the bitmap is loaded from the resource and in response to a change in system colors
in response to user customization in Control Panel. The following colors in a toolbar bitmap will be recolored
automatically so they should be used with caution. If you do not wish to have a portion of your bitmap recolored,
then use a color that closely approximates one of the mapped RGB values. The mapping is done based on exact
RGB values.

Refer to class CToolBar the Class Library Reference for details about the CToolBar creation and customization
APIs. Most customization of toolbars should be done before the toolbar is initially made visible.

The customization APIs can be used to adjust the button IDs, styles, spacer width and which image/glyph is used
for what button. By default you do not need to use these APIs.

The way toolbar buttons are always updated is through the ON_UPDATE_COMMAND_UI mechanism. On idle
time, the toolbar will call the ON_UPDATE_COMMAND_UI handler with the command ID of that button.
ON_UPDATE_COMMAND_UI is not called for separators, but it is called for pushbuttons and check box buttons.

The ON_UPDATE_COMMAND_UI handler can call:

Enable : To enable or disable the button. This works equally for pushbuttons and check box buttons.

SetCheck : To set the check state of a button. Calling this for a toolbar button will turn it into a check box
button. SetCheck takes a parameter which can be 0 (not checked), 1 (checked) or 2 (indeterminate)

SetRadio : Shorthand for SetCheck .

Check box buttons are "AUTO" check box buttons; that is, when the user presses them they will immediately
change state. Checked is the down or depressed state. There is no built-in user interface way to change a button
into the "indeterminate" state; that must be done through code.

The customization APIs will permit you to change the state of a given toolbar button, preferably you should
change these states in the ON_UPDATE_COMMAND_UI handler for the command the toolbar button
represents. Remember, the idle processing will change the state of toolbar buttons with the
ON_UPDATE_COMMAND_UI handler, so any changes to these states made through SetButtonStyle may get lost
after the next idle.

 CDialogBar

CCmdUI Support for CDialogBar

See also

Toolbar buttons will send WM_COMMAND messages like normal buttons or menu items and are normally
handled by an ON_COMMAND handler in the same class that provides the ON_UPDATE_COMMAND_UI
handler.

There are four Toolbar button styles (TBBS_ values) used for display states:

TBBS_CHECKED: Check box is currently checked (down).

TBBS_INDETERMINATE: Check box is currently indeterminate.

TBBS_DISABLED: Button is currently disabled.

TBBS_PRESSED: Button is currently pressed.

The six official Windows Interface Application Design Guide button styles are represented by the following TBBS
values:

Up = 0

Mouse Down = TBBS_PRESSED (| any other style)

Disabled = TBBS_DISABLED

Down = TBBS_CHECKED

Down Disabled = TBBS_CHECKED | TBBS_DISABLED

Indeterminate = TBBS_INDETERMINATE

A dialog bar is a control bar that contains standard Windows controls. It acts like a dialog in that it contains the
controls and supports tabbing between them. It also acts like a dialog in that it uses a dialog template to
represent the bar.

A CDialogBar is used for the print-preview toolbar, which contains standard pushbutton controls.

Using a CDialogBar is like using a CFormView . You must define a dialog template for the dialog bar and remove
all the styles except WS_CHILD. Note that the dialog must not be visible.

The control notifications for a CDialogBar will be sent to the parent of the control bar (just like toolbar buttons).

Dialog bar buttons should be updated through the ON_UPDATE_COMMAND_UI handler mechanism. At idle
time, the dialog bar will call the ON_UPDATE_COMMAND_UI handler with the command ID of all the buttons
that have a ID >= 0x8000 (that is, in the range of command IDs).

The ON_UPDATE_COMMAND_UI handler can call:

Enable: to enable or disable the button.

SetText: to change the text of the button.

Customization can be done through standard window manager APIs.

Technical Notes by Number
Technical Notes by Category

TN032: MFC Exception Mechanism
3/4/2019 • 2 minutes to read • Edit Online

See also

Previous versions of Visual C++ did not support the standard C++ exception mechanism, and MFC provided
macros TRY/CATCH/THROW that were used instead. This version of Visual C++ fully supports C++ exceptions.
This note covered some of the advanced implementation details of the previous macros including how to
automatically cleanup stack based objects. Because C++ exceptions support stack unwinding by default, this
technical note is no longer necessary.

Refer to Exceptions: Using MFC Macros and C++ Exceptions for more information on the differences between the
MFC macros and the new C++ keywords.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn032-mfc-exception-mechanism.md

TN033: DLL Version of MFC
11/9/2018 • 27 minutes to read • Edit Online

Overview of MFCxx.DLL Support: Terminology and Files

NOTENOTE

NOTENOTE

This note describes how you can use the MFCxx.DLL and MFCxxD.DLL (where x is the MFC version number)
shared dynamic link libraries with MFC applications and MFC extension DLLs. For more information about
regular MFC DLLs, see Using MFC as Part of a DLL.

This technical note covers three aspects of DLLs. The last two are for the more advanced users:

How you build an MFC Extension DLL

How you build an MFC application that uses the DLL version of MFC

How the MFC shared dynamic-link libraries are implemented

If you are interested in building a DLL using MFC that can be used with non-MFC applications (this is called a
regular MFC DLL), refer to Technical Note 11.

Regular MFC DLL: You use a regular MFC DLL to build a stand-alone DLL using some of the MFC classes.
Interfaces across the App/DLL boundary are "C" interfaces, and the client application does not have to be an MFC
application.

This is the version of DLL support supported in MFC 1.0. It is described in Technical Note 11 and the MFC
Advanced Concepts sample DLLScreenCap.

As of Visual C++ version 4.0, the term USRDLL is obsolete and has been replaced by a regular MFC DLL that statically links
to MFC. You may also build a regular MFC DLL that dynamically links to MFC.

MFC 3.0 (and above) supports regular MFC DLLs with all the new functionality including the OLE and Database
classes.

AFXDLL: This is also referred to as the shared version of the MFC libraries. This is the new DLL support added in
MFC 2.0. The MFC library itself is in a number of DLLs (described below) and a client application or DLL
dynamically links the DLLs that it requires. Interfaces across the application/DLL boundary are C++/MFC class
interfaces. The client application MUST be an MFC application. This supports all MFC 3.0 functionality (exception:
UNICODE is not supported for the database classes).

As of Visual C++ version 4.0, this type of DLL is referred to as an "Extension DLL."

This note will use MFCxx.DLL to refer to the entire MFC DLL set, which includes:

Debug: MFCxxD.DLL (combined) and MFCSxxD.LIB (static).

Release: MFCxx.DLL (combined) and MFCSxx.L IB (static).

Unicode Debug: MFCxxUD.DLL (combined) and MFCSxxD.LIB (static).

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn033-dll-version-of-mfc.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

NOTENOTE

Pros and Cons

How to Write an MFC Extension DLL

Unicode Release: MFCxxU.DLL (combined) and MFCSxxU.LIB (static).

The MFCSxx[U][D].LIB libraries are used in conjunction with the MFC shared DLLs. These libraries contain code that must be
statically linked to the application or DLL.

An application links to the corresponding import libraries:

Debug: MFCxxD.LIB

Release: MFCxx.L IB

Unicode Debug: MFCxxUD.LIB

Unicode Release: MFCxxU.LIB

An "MFC Extension DLL" is a DLL built upon MFCxx.DLL (and/or the other MFC shared DLLs). Here the MFC
component architecture kicks in. If you derive a useful class from an MFC class, or build another MFC-like toolkit,
you can place it in a DLL. That DLL uses MFCxx.DLL, as does the ultimate client application. This permits reusable
leaf classes, reusable base classes, and reusable view/document classes.

Why should you use the shared version of MFC

Using the shared library can result in smaller applications (a minimal application that uses most of the MFC
library is less than 10K).

The shared version of MFC supports MFC Extension DLLs and regular MFC DLLs.

Building an application that uses the shared MFC libraries is faster than building a statically linked MFC
application because it is not necessary to link MFC itself. This is especially true in DEBUG builds where the
linker must compact the debug information — by linking with a DLL that already contains the debug
information, there is less debug information to compact within your application.

Why should you not use the shared version of MFC:

Shipping an application that uses the shared library requires that you ship the MFCxx.DLL (and others) library
with your program. MFCxx.DLL is freely redistributable like many DLLs, but you still must install the DLL in
your SETUP program. In addition, you must ship the MSVCRTxx.DLL, which contains the C-runtime library
which is used both by your program and the MFC DLLs themselves.

An MFC Extension DLL is a DLL containing classes and functions written to embellish the functionality of the
MFC classes. An MFC Extension DLL uses the shared MFC DLLs in the same way an application uses it, with a
few additional considerations:

The build process is similar to building an application that uses the shared MFC libraries with a few
additional compiler and linker options.

An MFC Extension DLL does not have a CWinApp -derived class.

An MFC Extension DLL must provide a special DllMain . AppWizard supplies a DllMain function that you
can modify.

An MFC Extension DLL will usually provide an initialization routine to create a CDynLinkLibrary if the MFC

NOTENOTE

Quick Note on Memory ManagementQuick Note on Memory Management

Building an MFC extension DLLBuilding an MFC extension DLL

extension DLL wishes to export CRuntimeClass es or resources to the application. A derived class of
CDynLinkLibrary may be used if per-application data must be maintained by the MFC extension DLL.

These considerations are described in more detail below. You should also refer to the MFC Advanced Concepts
sample DLLHUSK since it illustrates:

Building an application using the shared libraries. (DLLHUSK.EXE is an MFC application that dynamically
links to the MFC libraries as well as other DLLs.)

Building an MFC Extension DLL. (Note the special flags such as _AFXEXT that are used in building an MFC
extension DLL)

Two examples of MFC Extension DLLs. One shows the basic structure of an MFC Extension DLL with
limited exports (TESTDLL1) and the other shows exporting an entire class interface (TESTDLL2).

Both the client application and any MFC extension DLLs must use the same version of MFCxx.DLL. You should
follow the convention of MFC DLL and provide both a debug and retail (/release) version of your MFC extension
DLL. This permits client programs to build both debug and retail versions of their applications and link them with
the appropriate debug or retail version of all DLLs.

Because C++ name mangling and export issues, the export list from an MFC extension DLL may be different between the
debug and retail versions of the same DLL and DLLs for different platforms. The retail MFCxx.DLL has about 2000 exported
entry points; the debug MFCxxD.DLL has about 3000 exported entry points.

The section titled "Memory Management," near the end of this technical note, describes the implementation of the
MFCxx.DLL with the shared version of MFC. The information you need to know to implement just an MFC
extension DLL is described here.

MFCxx.DLL and all MFC extension DLLs loaded into a client application's address space will use the same
memory allocator, resource loading and other MFC "global" states as if they were in the same application. This is
significant because the non-MFC DLL libraries and regular MFC DLLs that statically link to MFC do the exact
opposite and have each DLL allocating out of its own memory pool.

If an MFC extension DLL allocates memory, then that memory can freely intermix with any other application-
allocated object. Also, if an application that uses the shared MFC libraries crashes, the protection of the operating
system will maintain the integrity of any other MFC application sharing the DLL.

Similarly other "global" MFC states, like the current executable file to load resources from, are also shared
between the client application and all MFC extension DLLs as well as MFCxx.DLL itself.

You can use AppWizard to create an MFC extension DLL project, and it will automatically generate the
appropriate compiler and linker settings. It was also generate a DllMain function that you can modify.

If you are converting an existing project to an MFC extension DLL, start with the standard rules for building an
application using the shared version of MFC, then do the following:

Add /D_AFXEXT to the compiler flags. On the Project Properties dialog, select the C/C++ node. Then
select the Preprocessor category. Add _AFXEXT to the Define Macros field, separating each of the items
with semicolons.

Remove the /Gy compiler switch. On the Project Properties dialog, select the C/C++ node. Then select the
Code Generation category. Ensure that the "Enable Function-Level Linking" option is not enabled. This will
make it easier to export classes because the linker will not remove unreferenced functions. If the original

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Changing your Header FilesChanging your Header Files

class AFX_EXT_CLASS CExampleExport : public CObject
{ /* ... class definition ... */ };

Not Exporting the Entire ClassNot Exporting the Entire Class

class CExampleDialog : public CDialog
{
public:
 AFX_EXT_CLASS CExampleDialog();
 AFX_EXT_CLASS int DoModal();
 // rest of class definition
 // ...
};

#define DECLARE_DYNAMIC(class_name) \
protected: \
 static CRuntimeClass* PASCAL _GetBaseClass(); \
 public: \
 static AFX_DATA CRuntimeClass class##class_name; \
 virtual CRuntimeClass* GetRuntimeClass() const; \

project is used to build a regular MFC DLL statically linked to MFC, change the /MT[d] compiler option to
/MD[d].

Build an export library with the /DLL option to L INK. This will be set when you create a new target,
specifying Win32 Dynamic-Link Library as the target type.

The goal of an MFC extension DLL is usually to export some common functionality to one or more applications
that can use that functionality. This boils down to exporting classes and global functions that are available for your
client applications.

In order to do this you must insure that each of the member functions is marked as import or export as
appropriate. This requires special declarations: __declspec(dllexport) and __declspec(dllimport) . When your
classes are used by the client applications, you want them to be declared as __declspec(dllimport) . When the
MFC extension DLL itself is being built, they should be declared as __declspec(dllexport) . In addition, the
functions must be actually exported, so that the client programs bind to them at load time.

To export your entire class, use AFX_EXT_CLASS in the class definition. This macro is defined by the framework as
__declspec(dllexport) when _AFXDLL and _AFXEXT is defined, but defined as __declspec(dllimport) when
_AFXEXT is not defined. _AFXEXT as described above, is only defined when building your MFC extension DLL. For

example:

Sometimes you may want to export just the individual necessary members of your class. For example, if you are
exporting a CDialog -derived class, you might only need to export the constructor and the DoModal call. You can
export these members using the DLL's .DEF file, but you can also use AFX_EXT_CLASS in much the same way on
the individual members you need to export.

For example:

When you do this, you may run into an additional problem because you are no longer exporting all members of
the class. The problem is in the way that MFC macros work. Several of MFC's helper macros actually declare or
define data members. Therefore, these data members will also need to be exported from your DLL.

For example, the DECLARE_DYNAMIC macro is defined as follows when building an MFC extension DLL:

The line that begins "static AFX_DATA " is declaring a static object inside of your class. To export this class correctly

#undef AFX_DATA
#define AFX_DATA AFX_EXT_CLASS
class CExampleView : public CView
{
 DECLARE_DYNAMIC()
 // ... class definition ...
};
#undef AFX_DATA
#define AFX_DATA

NOTENOTE

#undef AFX_API
#define AFX_API AFX_EXT_CLASS

/* your class declarations here */

#undef AFX_API
#define AFX_API

Limitations of _AFXEXTLimitations of _AFXEXT

and access the runtime information from a client .EXE, you need to export this static object. Because the static
object is declared with the modifier AFX_DATA , you only need to define AFX_DATA to be __declspec(dllexport)

when building your DLL and define it as __declspec(dllimport) when building your client executable.

As discussed above, AFX_EXT_CLASS is already defined in this way. You just need to re-define AFX_DATA to be the
same as AFX_EXT_CLASS around your class definition.

For example:

MFC always uses the AFX_DATA symbol on data items it defines within its macros, so this technique will work for
all such scenarios. For example, it will work for DECLARE_MESSAGE_MAP.

If you are exporting the entire class rather than selected members of the class, static data members are automatically
exported.

You can use the same technique to automatically export the CArchive extraction operator for classes that use the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros. Export the archive operator by bracketing the class
declarations (located in the .H file) with the following code:

You can use the _AFXEXT pre-processor symbol for your MFC extension DLLs as long as you do not have
multiple layers of MFC extension DLLs. If you have MFC extension DLLs that call or derive from classes in your
own MFC extension DLLs, which then derive from the MFC classes, you must use your own preprocessor symbol
to avoid ambiguity.

The problem is that in Win32, you must explicitly declare any data as __declspec(dllexport) if it is to be exported
from a DLL, and __declspec(dllimport) if it is to be imported from a DLL. When you define _AFXEXT , the MFC
headers make sure that AFX_EXT_CLASS is defined correctly.

When you have multiple layers, one symbol such as AFX_EXT_CLASS is not sufficient, since an MFC extension DLL
may be exporting new classes as well as importing other classes from another MFC extension DLL. In order to
deal with this problem, use a special preprocessor symbol that indicates that you are building the DLL itself versus
using the DLL. For example, imagine two MFC extension DLLs, A.DLL, and B.DLL. They each export some classes
in A.H and B.H, respectively. B.DLL uses the classes from A.DLL. The header files would look something like this:

/* A.H */
#ifdef A_IMPL
 #define CLASS_DECL_A __declspec(dllexport)
#else
 #define CLASS_DECL_A __declspec(dllimport)
#endif

class CLASS_DECL_A CExampleA : public CObject
{ /* ... class definition ... */ };

/* B.H */
#ifdef B_IMPL
 #define CLASS_DECL_B __declspec(dllexport)
#else
 #define CLASS_DECL_B __declspec(dllimport)
#endif

class CLASS_DECL_B CExampleB : public CExampleA
{ /* ... class definition ... */ };

Not Exporting the Entire ClassNot Exporting the Entire Class

// A.H
#ifdef A_IMPL
 #define CLASS_DECL_A _declspec(dllexport)
#else
 #define CLASS_DECL_A _declspec(dllimport)
#endif

#undef AFX_DATA
#define AFX_DATA CLASS_DECL_A

class CExampleA : public CObject
{
 DECLARE_DYNAMIC()
 CLASS_DECL_A int SomeFunction();
 // class definition
 // ...
};

#undef AFX_DATA
#define AFX_DATA

DllMainDllMain

When A.DLL is built, it is built with /DA_IMPL and when B.DLL is built, it is built with /DB_IMPL. By using
separate symbols for each DLL, CExampleB is exported and CExampleA is imported when building B.DLL.
CExampleA is exported when building A.DLL and imported when used by B.DLL (or some other client).

This type of layering cannot be done when using the built-in AFX_EXT_CLASS and _AFXEXT preprocessor symbols.
The technique described above solves this problem in a manner not unlike the mechanism MFC itself uses when
building its OLE, Database, and Network MFC extension DLLs.

Again, you will have to take special care when you are not exporting an entire class. You have to ensure that the
necessary data items created by the MFC macros are exported correctly. This can be done by re-defining
AFX_DATA to your specific class' macro. This should be done any time you are not exporting the entire class.

For example:

The following is the exact code you should place in your main source file for your MFC extension DLL. It should
come after the standard includes. Note that when you use AppWizard to create starter files for an MFC extension
DLL, it supplies a DllMain for you.

#include "afxdllx.h"

static AFX_EXTENSION_MODULE extensionDLL;

extern "C" int APIENTRY
DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID)
{
 if (dwReason == DLL_PROCESS_ATTACH)
 {
 // MFC extension DLL one-time initialization
 if (!AfxInitExtensionModule(
 extensionDLL, hInstance))
 return 0;

 // TODO: perform other initialization tasks here
 }
 else if (dwReason == DLL_PROCESS_DETACH)
 {
 // MFC extension DLL per-process termination
 AfxTermExtensionModule(extensionDLL);

 // TODO: perform other cleanup tasks here
 }
 return 1; // ok
}

Sharing Resources and ClassesSharing Resources and Classes

The call to AfxInitExtensionModule captures the modules runtime-classes (CRuntimeClass structures) as well as its
object factories (COleObjectFactory objects) for use later when the CDynLinkLibrary object is created. The
(optional) call to AfxTermExtensionModule allows MFC to cleanup the MFC extension DLL when each process
detaches (which happens when the process exits, or when the DLL is unloaded as a result of a FreeLibrary call)
from the MFC extension DLL. Since most MFC extension DLLs are not dynamically loaded (usually, they are
linked via their import libraries), the call to AfxTermExtensionModule is usually not necessary.

If your application loads and frees MFC extension DLLs dynamically, be sure to call AfxTermExtensionModule as
shown above. Also be sure to use AfxLoadLibrary and AfxFreeLibrary (instead of Win32 functions LoadLibrary

and FreeLibrary) if your application uses multiple threads or if it dynamically loads an MFC extension DLL. Using
AfxLoadLibrary and AfxFreeLibrary insures that the startup and shutdown code that executes when the MFC

extension DLL is loaded and unloaded does not corrupt the global MFC state.

The header file AFXDLLX.H contains special definitions for structures used in MFC extension DLLs, such as the
definition for AFX_EXTENSION_MODULE and CDynLinkLibrary .

The global extensionDLL must be declared as shown. Unlike the 16-bit version of MFC, you can allocate memory
and call MFC functions during this time, since the MFCxx.DLL is fully initialized by the time your DllMain is
called.

Simple MFC extension DLLs need only export a few low-bandwidth functions to the client application and nothing
more. More user-interface intensive DLLs may want to export resources and C++ classes to the client application.

Exporting resources is done through a resource list. In each application is a singly linked list of CDynLinkLibrary

objects. When looking for a resource, most of the standard MFC implementations that load resources look first at
the current resource module (AfxGetResourceHandle) and if not found walk the list of CDynLinkLibrary objects
attempting to load the requested resource.

Dynamic creation of C++ objects given a C++ class name is similar. The MFC object deserialization mechanism
needs to have all of the CRuntimeClass objects registered so that it can reconstruct by dynamically creating C++
object of the required type based on what was stored earlier.

head -> DLLHUSK.EXE - or - DLLHUSK.EXE
 | |
 TESTDLL2.DLL TESTDLL2.DLL
 | |
 TESTDLL1.DLL TESTDLL1.DLL
 | |
 | |
 MFC90D.DLL MFC90.DLL

Initializing the DLLInitializing the DLL

extern "C" extern void WINAPI InitXxxDLL()
{
 new CDynLinkLibrary(extensionDLL);
}

NOTENOTE

Exporting EntriesExporting Entries

If you want the client application to use classes in your MFC extension DLL that are DECLARE_SERIAL , then you will
need to export your classes to be visible to the client application. This is also done by walking the CDynLinkLibrary

list.

In the case of the MFC Advanced Concepts sample DLLHUSK, the list looks something like:

The MFCxx.DLL is usually last on the resource and class list. MFCxx.DLL includes all of the standard MFC
resources, including prompt strings for all the standard command IDs. Placing it at the tail of the list allows DLLs
and the client application itself to not have a their own copy of the standard MFC resources, but to rely on the
shared resources in the MFCxx.DLL instead.

Merging the resources and class names of all DLLs into the client application's name space has the disadvantage
that you have to be careful what IDs or names you pick. You can of course disable this feature by not exporting
either your resources or a CDynLinkLibrary object to the client application. The DLLHUSK sample manages the
shared resource name space by using multiple header files. See Technical Note 35 for more tips on using shared
resource files.

As mentioned above, you will usually want to create a CDynLinkLibrary object in order to export your resources
and classes to the client application. You will need to provide an exported entry point to initialize the DLL.
Minimally, this is a void routine that takes no arguments and returns nothing, but it can be anything you like.

Each client application that wants to use your DLL must call this initialization routine, if you use this approach. You
may also allocate this CDynLinkLibrary object in your DllMain just after calling AfxInitExtensionModule .

The initialization routine must create a CDynLinkLibrary object in the current application's heap, wired up to your
MFC extension DLL information. This can be done with the following:

The routine name, InitXxxDLL in this example, can be anything you want. It does not need to be extern "C", but
doing so makes the export list easier to maintain.

If you use your MFC extension DLL from a regular MFC DLL, you must export this initialization function. This function must
be called from the regular MFC DLL before using any MFC extension DLL classes or resources.

The simple way to export your classes is to use __declspec(dllimport) and __declspec(dllexport) on each class
and global function you wish to export. This makes it a lot easier, but is less efficient than naming each entry point
(described below) since you have less control over what functions are exported and you cannot export the
functions by ordinal. TESTDLL1 and TESTDLL2 use this method to export their entries.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CWinApp vs. CDynLinkLibraryCWinApp vs. CDynLinkLibrary

Using Resources in Your DLL ImplementationUsing Resources in Your DLL Implementation

Writing an Application That Uses the DLL Version
Application RequirementsApplication Requirements

Building with the Development EnvironmentBuilding with the Development Environment

A more efficient method (and the method used by MFCxx.DLL) is to export each entry by hand by naming each
entry in the .DEF file. Since we are exporting selective exports from our DLL (that is, not everything), we must
decide which particular interfaces we wish to export. This is difficult since you must specify the mangled names to
the linker in the form of entries in the .DEF file. Don't export any C++ classes unless you really need to have a
symbolic link for it.

If you have tried exporting C++ classes with a .DEF file before, you may want to develop a tool to generate this list
automatically. This can be done using a two-stage link process. Link your DLL once with no exports, and allow the
linker to generate a .MAP file. The .MAP file can be used to generate a list of functions that should be exported, so
with some rearranging, it can be used to generate your EXPORT entries for your .DEF file. The export list for
MFCxx.DLL and the OLE and Database MFC extension DLLs, several thousand in number, was generated with
such a process (although it is not completely automatic and requires some hand tuning every once in a while).

An MFC Extension DLL does not have a CWinApp -derived object of its own; instead it must work with the CWinApp

-derived object of the client application. This means that the client application owns the main message pump, the
idle loop and so on.

If your MFC Extension DLL needs to maintain extra data for each application, you can derive a new class from
CDynLinkLibrary and create it in the InitXxxDLL routine describe above. When running, the DLL can check the

current application's list of CDynLinkLibrary objects to find the one for that particular MFC extension DLL.

As mentioned above, the default resource load will walk the list of CDynLinkLibrary objects looking for the first
EXE or DLL that has the requested resource. All MFC APIs as well as all the internal code uses
AfxFindResourceHandle to walk the resource list to find any resource, no matter where it may reside.

If you wish to only load resources from a specific place, use the APIs AfxGetResourceHandle and
AfxSetResourceHandle to save the old handle and set the new handle. Be sure to restore the old resource handle

before you return to the client application. The sample TESTDLL2 uses this approach for explicitly loading a menu.

Walking the list has the disadvantages that it is slightly slower and requires managing resource ID ranges. It has
the advantage that a client application that links to several MFC extension DLLs can use any DLL-provided
resource without having to specify the DLL instance handle. AfxFindResourceHandle is an API used for walking the
resource list to look for a given match. It takes the name and type of a resource and returns the resource handle
where it was first found (or NULL).

An application that uses the shared version of MFC must follow a few simple rules:

It must have a CWinApp object and follow the standard rules for a message pump.

It must be compiled with a set of required compiler flags (see below).

It must link with the MFCxx import libraries. By setting the required compiler flags, the MFC headers
determine at link time which library the application should link with.

To run the executable, MFCxx.DLL must be on the path or in the Windows system directory.

If you are using the internal makefile with most of the standard defaults, you can easily change the project to build
the DLL version.

The following step assumes you have a correctly functioning MFC application linked with NAFXCWD.LIB (for

Building with NMAKEBuilding with NMAKE

Building the SamplesBuilding the Samples

Packaging NotesPackaging Notes

How the MFCxx.DLL Is Implemented

debug) and NAFXCW.LIB (for retail) and you want to convert it to use the shared version of the MFC library. You
are running the Visual C++ environment and have an internal project file.

1. On the Projects menu, click Properties. In the General page under Project Defaults, set Microsoft
Foundation Classes to Use MFC in a Shared DLL (MFCxx(d).dll).

If you are using the external makefile feature of the Visual C++, or are using NMAKE directly, you will have to edit
your makefile to support compiler and linker options

Required compiler flags:

/D_AFXDLL /MD /D_AFXDLL

The standard MFC headers need this symbol to be defined:

/MD The application must use the DLL version of the C run-time library

All other compiler flags follow the MFC defaults (for example, _DEBUG for debug).

Edit the linker list of libraries. Change NAFXCWD.LIB to MFCxxD.LIB and change NAFXCW.LIB to MFCxx.L IB.
Replace L IBC.L IB with MSVCRT.LIB. As with any other MFC library it is important that MFCxxD.LIB is placed
before any C-runtime libraries.

Optionally add /D_AFXDLL to both your retail and debug resource compiler options (the one that actually
compiles the resources with /R). This makes your final executable smaller by sharing the resources that are
present in the MFC DLLs.

A full rebuild is required after these changes are made.

Most of the MFC sample programs can be built from Visual C++ or from a shared NMAKE-compatible
MAKEFILE from the command line.

To convert any of these samples to use MFCxx.DLL, you can load the .MAK file into the Visual C++ and set the
Project options as described above. If you are using the NMAKE build, you can specify "AFXDLL=1" on the
NMAKE command line and that will build the sample using the shared MFC libraries.

The MFC Advanced Concepts sample DLLHUSK is built with the DLL version of MFC. This sample not only
illustrates how to build an application linked with MFCxx.DLL, but it also illustrates other features of the MFC DLL
packaging option such as MFC Extension DLLs described later in this technical note.

The retail version of the DLLs (MFCxx[U].DLL) are freely redistributable. The debug version of the DLLs are not
freely redistributable and should be used only during the development of your application.

The debug DLLs are provided with debugging information. By using the Visual C++ debugger, you can trace
execution of your application as well as the DLL. The Release DLLs (MFCxx[U].DLL) do not contain debugging
information.

If you customize or rebuild the DLLs, then you should call them something other than "MFCxx" The MFC SRC file
MFCDLL.MAK describes build options and contains the logic for renaming the DLL. Renaming the files is
necessary, since these DLLs are potentially shared by many MFC applications. Having your custom version of the
MFC DLLs replace those installed on the system may break another MFC application using the shared MFC DLLs.

Rebuilding the MFC DLLs is not recommended.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Implementation OverviewImplementation Overview

Win32 Does Most of the WorkWin32 Does Most of the Work

Impact on Library Sources, Additional FilesImpact on Library Sources, Additional Files

Memory ManagementMemory Management

Ordinals and class __declspec(dllexport) and DLL namingOrdinals and class __declspec(dllexport) and DLL naming

The following section describes how the MFC DLL (MFCxx.DLL and MFCxxD.DLL) is implemented.
Understanding the details here are also not important if all you want to do is use the MFC DLL with your
application. The details here are not essential for understanding how to write an MFC extension DLL, but
understanding this implementation may help you write your own DLL.

The MFC DLL is really a special case of an MFC Extension DLL as described above. It has a very large number of
exports for a large number of classes. There are a few additional things we do in the MFC DLL that make it even
more special than a regular MFC extension DLL.

The 16-bit version of MFC needed a number of special techniques including per-app data on the stack segment,
special segments created by some 80x86 assembly code, per-process exception contexts, and other techniques.
Win32 directly supports per-process data in a DLL, which is what you want most of the time. For the most part
MFCxx.DLL is just NAFXCW.LIB packaged in a DLL. If you look at the MFC source code, you'll find very few
#ifdef _AFXDLL, since there are very few special cases that need to be made. The special cases that are there are
specifically to deal with Win32 on Windows 3.1 (otherwise known as Win32s). Win32s does not support per-
process DLL data directly so the MFC DLL must use the thread-local storage (TLS) Win32 APIs to obtain process
local data.

The impact of the _AFXDLL version on the normal MFC class library sources and headers is relatively minor.
There is a special version file (AFXV_DLL.H) as well as an additional header file (AFXDLL_.H) included by the main
AFXWIN.H header. The AFXDLL_.H header includes the CDynLinkLibrary class and other implementation details
of both _AFXDLL applications and MFC Extension DLLs. The AFXDLLX.H header is provided for building MFC
Extension DLLs (see above for details).

The regular sources to the MFC library in MFC SRC have some additional conditional code under the _AFXDLL

#ifdef. An additional source file (DLLINIT.CPP) contains the extra DLL initialization code and other glue for the
shared version of MFC.

In order to build the shared version of MFC, additional files are provided. (See below for details on how to build
the DLL.)

Two .DEF files are used for exporting the MFC DLL entry points for debug (MFCxxD.DEF) and release
(MFCxx.DEF) versions of the DLL.

An .RC file (MFCDLL.RC) contains all the standard MFC resources and a VERSIONINFO resource for the
DLL.

A .CLW file (MFCDLL.CLW) is provided to allow browsing the MFC classes using ClassWizard. Note: this
feature is not particular to the DLL version of MFC.

An application using MFCxx.DLL uses a common memory allocator provided by MSVCRTxx.DLL, the shared C-
runtime DLL. The application, any MFC extension DLLs, and well as the MFC DLLs themselves use this shared
memory allocator. By using a shared DLL for memory allocation, the MFC DLLs can allocate memory that is later
freed by the application or vice versa. Because both the application and the DLL must use the same allocator, you
should not override the C++ global operator new or operator delete. The same rules apply to the rest of the C
run-time memory allocation routines (such as malloc, realloc, free, and others).

We do not use the class __declspec(dllexport) functionality of the C++ compiler. Instead, a list of exports is
included with the class library sources (MFCxx.DEF and MFCxxD.DEF). Only these select set of entry points
(functions and data) are exported. Other symbols, such as MFC private implementation functions or classes, are

See also

not exported All exports are done by ordinal without a string name in the resident or non-resident name table.

Using class __declspec(dllexport) may be a viable alternative for building smaller DLLs, but in the case of a
large DLL like MFC, the default exporting mechanism has efficiency and capacity limits.

What this all means is that we can package a large amount of functionality in the release MFCxx.DLL that is only
around 800 KB without compromising much execution or loading speed. MFCxx.DLL would have been 100K
larger had this technique not been used. This also makes it possible to add additional entry points at the end of the
.DEF file to allow simple versioning without compromising the speed and size efficiency of exporting by ordinal.
Major version revisions in the MFC class library will change the library name. That is, MFC30.DLL is the
redistributable DLL containing version 3.0 of the MFC class library. An upgrade of this DLL, say, in a hypothetical
MFC 3.1, the DLL would be named MFC31.DLL instead. Again, if you modify the MFC source code to produce a
custom version of the MFC DLL, use a different name (and preferably one without "MFC" in the name).

Technical Notes by Number
Technical Notes by Category

TN035: Using Multiple Resource Files and Header
Files with Visual C++
3/4/2019 • 17 minutes to read • Edit Online

NOTENOTE
The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes how the Visual C++ resource editor supports multiple resource files and header files shared
in a single project or shared across multiple projects and how you can take advantage of that support. This note
answers these questions:

When might you want to split a project into multiple resource files and/or header files, and how you do it

How do you share a common header .H file between two .RC files

How do you divide project resources into multiple .RC files

How do you (and the tools) manage build dependencies between .RC, .CPP, and .H files

You should be aware that if you add an additional resource file to your project, ClassWizard will not recognize the
resources in the added file.

This note is structured to answer the above questions as follows:

Overview of How Visual C++ Manages Resource Files and Header Files provides an overview of
how the Resource Set Includes command in Visual C++ lets you use multiple resource files and header
files in the same project.

Analysis of AppWizard-created .RC and .H Files looks at the multiple resource and header files that are
used by an AppWizard-created application. These files serve as a good model for additional resource files
and header files you might want to add to your project.

Including Additional Header Files describes where you might want to include multiple header files, and
provides details how to do so.

Sharing a Header File Between Two .RC Files shows how you can share one header file between
multiple .RC files in different projects, or perhaps in the same project.

Using Multiple Resource Files in the Same Project describes where you might want to break up your
project into multiple .RC files, and provides details how to do so.

Enforcement of Non-Editable Visual C++ Files describes how you can make sure Visual C++ does not
edit and unintentionally reformat a custom resource.

Managing Symbols Shared by Multiple Visual C++-Edited .RC Files describes how to share the same
symbols across multiple .RC files and how to avoid assigning duplicate ID numeric values.

Managing Dependencies Between .RC, .CPP, and .H Files describes how Visual C++ avoids
unnecessary recompiling .CPP files that are dependent on resource symbol files.

How Visual C++ Manages Set Includes Information provides technical details about how Visual C++

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn035-using-multiple-resource-files-and-header-files-with-visual-cpp.md

keeps track of multiple (nested) .RC files and multiple header files that are #include'd by an .RC file.

Overview of How Visual C++ Manages Resource Files and Header Files

Visual C++ manages a single .RC resource file and a corresponding .H header file as a tightly coupled pair of files.
When you edit and save resources in an .RC file, you indirectly edit and save symbols in the corresponding .H file.
Although you can open and edit multiple .RC files at a time (using Visual C++'s MDI user interface) for any given
.RC file you indirectly edit exactly one corresponding header file.

Symbol Header File

By default, Visual C++ always names the corresponding header file RESOURCE.H, regardless of the name of the
resource file (e.g., MYAPP.RC). Using the Resource Includes command from the View menu in Visual C++, you
can change the name of this header file by updating the Symbol Header File file in the Set Includes dialog box.

Read-Only Symbol Directives

Although Visual C++ only edits one header file for any given .RC file, Visual C++ supports references to symbols
defined in additional read-only header files. Using the Resource Includes command from the View menu in
Visual C++, you can specify any number of additional read-only header files as Read-Only Symbol Directives. The
"read-only" restriction means that when you add a new resource in the .RC file, you can use a symbol defined in
the read-only header file; but if you delete the resource, the symbol still remains defined in the read-only header
file. You cannot change the numeric value assigned to a read-only symbol.

Compile-Time Directives

Visual C++ also supports nesting of resource files, where one .RC file is #include'd within another. When you edit
a given .RC file using Visual C++, any resources in the #include'd files are not visible. But when you compile the
.RC file, the #include'd files are also compiled. Using the Resource Includes command from the View menu in
Visual C++, you can specify any number of #include'd .RC files as Compile-Time Directives.

Note what happens if you read into Visual C++ an .RC file that #include's another .RC file that is not specified as a
Compile-Time Directive. This situation might arise when you bring to Visual C++ an .RC file that you had been
previously maintaining manually with a text editor. When Visual C++ reads the #include'd .RC file, it merges the
#include'd resources into the parent .RC file. When you save the parent .RC file, the #include statement, in effect,
will be replaced by the #include'd resources. If you do not want this merge to happen, you should remove the
#include statement from the parent .RC file prior to reading it into Visual C++; then using Visual C++, add back
the same #include statement as a Compile-Time Directive.

Visual C++ saves in an .RC file the three kinds of above Set Includes information (Symbol Header File, Read-Only
Symbol Directives, and Compile-Time Directives) in #include directives and in TEXTINCLUDE resources. The
TEXTINCLUDE resources, an implementation detail that you do not normally need to deal with, are explained in
How Visual C++ Manages Set Includes Information.

Analysis of AppWizard-Created .RC and .H Files

Examining the application code produced by AppWizard provides insight into how Visual C++ manages multiple
resource files and header files. The code excerpts examined below are from a MYAPP application produced by
AppWizard using the default options.

An AppWizard-created application uses multiple resource files and multiple header files, as summarized in the
diagram below:

RESOURCE.H AFXRES.H
\ /
\ /
 MYAPP.RC
|
|
 RES\MYAPP.RC2
 AFXRES.RC
 AFXPRINT.RC

//Microsoft Visual C++ generated resource script
//
#include "resource.h"

Including Additional Header Files

You can view these multiple file relationships using the Visual C++ File/Set Includes command.

MYAPP.RC The application resource file that you edit using Visual C++.

RESOURCE.H is the application-specific header file. It is always named RESOURCE.H by AppWizard, consistent
with Visual C++'s default naming of the header file. The #include for this header file is the first statement in the
resource file (MYAPP.RC):

RES\MYAPP.RC2 Contains resources that will not be edited by Visual C++ but will be included in the final
compiled .EXE file. AppWizard creates no such resources by default, since Visual C++ can edit all of the standard
resources, including the version resource (a new feature in this release). An empty file is generated by AppWizard
in case you wish to add your own custom formatted resources to this file.

If you use custom formatted resources, you can add them to RES\MYAPP.RC2 and edit them using the Visual
C++ text editor.

AFXRES.RC and AFXPRINT.RC contain standard resources required by certain features of the framework. Like
RES\MYAPP.RC2, these two framework-provided resource files are #include'd at the end of MYAPP.RC, and they
are specified in the Compile-Time Directives of the Set Includes dialog box. Thus, you do not directly view or edit
these framework resources while you edit MYAPP.RC in Visual C++, but they are compiled into the application's
binary .RES file and final .EXE file. For more information on the standard framework resources, including
procedures for modifying them, see Technical Note 23.

AFXRES.H defines standard symbols, such as ID_FILE_NEW , used by the framework and specifically used in
AFXRES.RC. AFXRES.H also #include's WINRES.H, which contains a subset of WINDOWS.H that are needed by
Visual C++ generated .RC files as well as AFXRES.RC. The symbols defined in AFXRES.H are available as you edit
the application resource file (MYAPP.RC). For example, ID_FILE_NEW is used for the File New menu item in
MYAPP.RC's menu resource. You cannot change or delete these framework-defined symbols.

The AppWizard-created application includes only two header files: RESOURCE.H and AFXRES.H. Only
RESOURCE.H is application-specific. You may need to include additional read-only header files in the following
cases:

The header file is provided by an external source, or you want to share the header file among multiple projects or
multiple parts of the same project.

The header file has formatting and comments that you do not want Visual C++ to change or filter out when it
saves the file. For example, maybe you want to preserve #define's that use symbolic arithmetic such as:

#define RED 0
#define BLUE 1
#define GREEN 2
#define ID_COLOR_BUTTON 1001
#define ID_RED_BUTTON (ID_COLOR_BUTTON + RED)
#define ID_BLUE_BUTTON (ID_COLOR_BUTTON + BLUE)
#define ID_GREEN_BUTTON (ID_COLOR_BUTTON + GREEN)

#include "afxres.h"
#include "second.h"

 AFXRES.H
RESOURCE.H SECOND.H
\ /
\ /
 MYAPP.RC
|
|
 RES\MYAPP.RC2
 AFXRES.RC
 AFXPRINT.RC

 RESOURCE.H AFXRES.H RESOURCE.H
(for MYAPP1) SECOND.H (for MYAPP2)
\ / \ /
\ / \ /
 MYAPP1.RC MYAPP2.RC */ \ / \ */ \ / \
RES\MYAPP1.RC2 AFXRES.RC RES\MYAPP2.RC2
 AFXPRINT.RC

You can include additional read-only header files by using the Resource Includes command to specify the
#include statement as a second Read-Only Symbol Directive, as in:

The new file relationship diagram now looks like this:

Sharing a Header File Between Two .RC Files

You may want to share a header file between two .RC files that are in different projects, or possibly the same
project. To do so, simply apply the Read-Only Directives technique described above to both .RC files. In the case
where the two .RC files are for different applications (different projects), the result is illustrated in the following
diagram:

The case where the second header file is shared by two .RC files in the same application (project) is discussed
below.

Using Multiple Resource Files in the Same Project

Visual C++ and the Resource Compiler support multiple .RC files in the same project through #include's of one
.RC file within another. Multiple nesting is allowed. There are various reasons to split your project's resources into
multiple .RC files:

It is easier to manage a large number of resources among multiple project team members if you split the
resources into multiple .RC files. If you use a source control management package for checking out files
and checking in changes, splitting the resources into multiple .RC files will give you finer control over
managing changes to resources.

If you want to use preprocessor directives, such as #ifdef, #endif, and #define, for portions of your

#include "res\myapp.rc2" // non-Visual C++ edited resources
#include "second.rc" // THE SECOND .RC FILE

#include "afxres.rc" // Standard components
#include "afxprint.rc" // printing/print preview resources

RESOURCE.H AFXRES.H
\ /
\ /
 MYAPP.RC
|
|
 RES\MYAPP.RC2
 SECOND.RC
 AFXRES.RC
 AFXPRINT.RC

#ifdef APSTUDIO_INVOKED
#error this file is not editable by Visual C++
#endif //APSTUDIO_INVOKED

resources, you must isolate them in read-only resources that will be compiled by the Resource Compiler.

Component .RC files will load and save faster in Visual C++ than one composite .RC file.

If you want to maintain a resource with a text editor in a human-readable form, you should keep it in a .RC
file separate from the one Visual C++ edits.

If you need to keep a user-defined resource in a binary or text form that is interpretable by another
specialized data editor, then you should keep it in a separate .RC file so Visual C++ does not change the
format to hexadecimal data. The .WAV (sound) file resources in the MFC Advanced Concepts sample
SPEAKN are a good example.

You can #include a SECOND.RC in the Compile-Time Directives in the Set Includes dialog box:

The result is illustrated in the following diagram:

Using Compile-Time Directives, you can organize your Visual C++-editable and non-editable resources into
multiple .RC files, where the "master" MYAPP.RC does nothing but #include the other .RC files. If you are using a
Visual C++ project .MAK file, then you should include the "master" .RC file in the project so that all the #include'd
resources are compiled with your application.

Enforcement of Noneditable Visual C++ Files

The AppWizard-created RES\MYAPP.RC2 file is an example of a file that contains resources that you do not want
to accidentally read into Visual C++ and then write it back out with loss of formatting information. To protect
against this, place the following lines in the beginning of the RES\MYAPP.RC2 file:

When Visual C++ compiles the .RC file, it defines APSTUDIO_INVOKED as well as RC_INVOKED . If the AppWizard-
created file structure is corrupted and Visual C++ reads the #error line above, it reports a fatal error and abort the
reading of the .RC file.

Managing Symbols Shared by Multiple Visual C++-Edited .RC Files

Two issues arise when you split up your resources into multiple .RC files that you want to edit separately in Visual
C++:

You might want to share the same symbols across multiple .RC files.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

 MYAPP.RC */ \ */ \
MYSTRS.H / MYSHARED.H \ MYMENUS.H
\ / / \ \ \
\ / / \ \ \
 MYSTRS.RC MYMENUS.RC

#define _APS_NEXT_RESOURCE_VALUE 101
#define _APS_NEXT_COMMAND_VALUE 40001
#define _APS_NEXT_CONTROL_VALUE 1000
#define _APS_NEXT_SYMED_VALUE 101

You need to help Visual C++ avoid assigning the same ID numeric values to distinct resources (symbols).

The following diagram illustrates an organization of .RC and .H files that deals with the first issue:

In this example, string resources are kept in one resource file, MYSTRS.RC, and menus are kept in another,
MYMENUS.RC. Some symbols, such as for commands, may need to be shared between the two files. For
example, a ID_TOOLS_SPELL may be the menu command ID for the Spell item in a Tools menu; and it may also
be the string ID of the command prompt displayed by the framework in the application's main window status bar.

The ID_TOOLS_SPELL symbol is kept in the shared header file, MYSHARED.H. You maintain this shared header
file manually with a text editor; Visual C++ does not directly edit it. In the two resource files MYSTRS.RC and
MYMENUS.RC, you specify #include MYSHARED.H in the Read-Only Directives for MYAPP.RC, using the
Resource Includes command, as described earlier.

It is most convenient to anticipate a symbol you will share before you attempt use it to identify any resource. Add
the symbol to the shared header file and, if you have not already #include'd the shared header file in the Read-
Only Directives for the .RC file, do so before using the symbol. If you did not anticipate sharing the symbol in this
way, then you will have to manually (using a text editor) move the #define statement for the symbol from, say,
MYMENUS.H to MYSHARED.H before using it in MYSTRS.RC.

When you manage symbols in multiple .RC files, you also must help Visual C++ avoid assigning the same ID
numeric values to distinct resources (symbols). For any given .RC file, Visual C++ incrementally assigns IDs in
each of four ID domains. Between editing sessions, Visual C++ keeps track of the last ID it assigned in each of the
domains in the symbol header file for the .RC file. Here is what the APS_NEXT values are for an empty (new) .RC
file:

_APS_NEXT_RESOURCE_VALUE is the next symbol value that will be used for a dialog resource, menu resource, and so
on. The valid range for resource symbol values is 1 to 0x6FFF.

_APS_NEXT_COMMAND_VALUE is the next symbol value that will be used for a command identification. The valid range
for command symbol values is 0x8000 to 0xDFFF.

_APS_NEXT_CONTROL_VALUE is the next symbol value that will be used for a dialog control. The valid range for dialog
control symbol values is 8 to 0xDFFF.

_APS_NEXT_SYMED_VALUE is the next symbol value that will be issued when you manually assign a symbol value
using the New command in the Symbol Browser.

Visual C++ starts with slightly higher values that the lowest legal value when creating a new .RC file. AppWizard
will also initialize these values to something more appropriate for MFC applications. For more information about
ID value ranges, see Technical Note 20.

Now every time you create a new resource file, even in the same project, Visual C++ defines the same
_APS_NEXT_ values. This means that if you add, say, multiple dialogs in two different .RC files, it is highly likely that

the same #define value will be assigned to different dialogs. For example, IDD_MY_DLG1 in the first .RC file might
be assigned the same number, 101, as IDD_MY_DLG2 in a second .RC file.

#define _APS_NEXT_RESOURCE_VALUE 2000
#define _APS_NEXT_COMMAND_VALUE 42000
#define _APS_NEXT_CONTROL_VALUE 2000
#define _APS_NEXT_SYMED_VALUE 2000

//{{NO_DEPENDENCIES}}

How Visual C++ Manages Set Includes Information**

To avoid this, you should reserve a separate numeric range for each of the four domains of IDs in the respective
.RC files. Do this by manually updating the _APS_NEXT values in each of the .RC files before you start adding
resources. For example, if the first .RC file uses the default _APS_NEXT values, then you might want to assign the
following _APS_NEXT values to the second .RC file:

Of course, it is still possible that Visual C++ will assign so many IDs in the first .RC file that the numeric values
start to overlap those reserved for the second .RC file. You should reserve sufficiently large ranges so that this
does not happen.

Managing Dependencies Between .RC, .CPP, and .H Files

When Visual C++ saves an .RC file, it also saves symbol changes to the corresponding RESOURCE.H file. Any of
your .CPP files that refer to resources in the .RC file must #include the RESOURCE.H file, usually from within your
project's master header file. This leads to an undesirable side-effect because of the development environment's
internal project management which scans source files for header dependencies. Every time you add a new symbol
in Visual C++, all the .CPP file that #include RESOURCE.H would need to be recompiled.

Visual C++, circumvents the dependency on RESOURCE.H by including the following comment as the first line of
the RESOURCE.H file:

The development environment interprets this comment by ignoring the changes to RESOURCE.H so that
dependent .CPP files will not need to be recompiled.

Visual C++ always adds the //{{NO_DEPENDENCIES}} comment line to a .RC file when it saves the file. In some
cases, circumventing of the build dependency on RESOURCE.H may lead to run-time errors undetected at link
time. For example, if you use the Symbol Browser to change the numeric value assigned to a symbol for a
resource, the resource will not be correctly found and loaded at application run-time if the .CPP file referring to
the resource is not recompiled. In such cases, you should explicitly recompile any .CPP files that you know are
affected by the symbol changes in RESOURCE.H or select Rebuild All. If you have the need to frequently change
symbol values for a certain group of resources, you will probably find it more convenient and safer to break out
these symbols into a separate read-only header file, as described in the above section Including Additional Header
Files.

As discussed above, the File menu Set Includes command lets you specify three types of information:

Symbol Header File

Read-Only Symbol Directives

Compile-Time Directives

The following describes how Visual C++ maintains this information in a .RC file. You do not need this information
to use Visual C++, but it may enhance your understanding so that you can more confidently use the Set Includes
feature.

Each of the above three types of Set Includes information is stored in the .RC file in two forms: (1) as #include or

TEX TINCLUDE RESOURCE ID TYPE OF SET INCLUDES INFORMATION

1 Symbol Header File

2 Read-Only Symbol Directives

3 Compile-Time Directives

Symbol Header File

#include "resource.h"

1 TEXTINCLUDE DISCARDABLE
BEGIN
"resource.h\0"
END

Read-Only Symbol Directives

#include "afxres.h"

2 TEXTINCLUDE DISCARDABLE
BEGIN
 "#include ""afxres.h""\r\n"
 "\0"
END

Compile-Time Directives

other directives interpretable by the Resource Compiler, and (2) as special TEXTINCLUDE resources interpretable
only by Visual C++.

The purpose of the TEXTINCLUDE resource is to safely store Set Include information in a form that is readily
presentable in Visual C++'s Set Includes dialog box. TEXTINCLUDE is a resource type defined by Visual C++.
Visual C++ recognizes three specific TEXTINCLUDE resources that have the resource identification numbers 1, 2
and 3:

Each of the three types of Set Includes information is illustrated by the default MYAPP.RC and RESOURCE.H files
created by AppWizard, as described below. The extra \0 and "" tokens between BEGIN and END blocks are
required by the RC syntax to specify zero terminated strings and the double quote character respectively.

The form of the Symbol Header File information interpreted by the Resource Compiler is simply a #include
statement:

The corresponding TEXTINCLUDE resource is:

Read-Only Symbol Directives are included at the top of MYAPP.RC in the following form interpretable by the
Resource Compiler:

The corresponding TEXTINCLUDE resource is:

Compile-Time Directives are included at the end of MYAPP.RC in the following form interpretable by the

#ifndef APSTUDIO_INVOKED
///////////////////////
//
// From TEXTINCLUDE 3
//
#include "res\myapp.rc2" // non-Visual C++ edited resources

#include "afxres.rc" // Standard components
#include "afxprint.rc" // printing/print preview resources
#endif // not APSTUDIO_INVOKED

3 TEXTINCLUDE DISCARDABLE
BEGIN
"#include ""res\myapp.rc2"" // non-Visual C++ edited resources\r\n"
"\r\n"
"#include ""afxres.rc"" // Standard components\r\n"
"#include ""afxprint.rc"" // printing/print preview resources\r\n"
"\0"
END

See also

Resource Compiler:

The #ifndef APSTUDIO_INVOKED directive instructs Visual C++ to skip over Compile-Time Directives.

The corresponding TEXTINCLUDE resource is:

Technical Notes by Number
Technical Notes by Category

TN036: Using CFormView with AppWizard and
ClassWizard
3/4/2019 • 2 minutes to read • Edit Online

See also

This technical note described how to modify an AppWizard generated application so that it used a CFormView

instead of the default CView as its main view class. This is supported directly with this version of Visual C++.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn036-using-cformview-with-appwizard-and-classwizard.md

TN037: Multithreaded MFC 2.1 Applications
3/4/2019 • 2 minutes to read • Edit Online

See also

This technical note originally described the limitations of multithreaded programs with MFC 2.1, originally
provided with Visual C++ 1.0 for Windows NT. MFC 3.0 supports multithreading directly and is documented. See
that reference for more information.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn037-multithreaded-mfc-2-1-applications.md

TN038: MFC/OLE IUnknown Implementation
10/31/2018 • 20 minutes to read • Edit Online

NOTENOTE

class IUnknown
{
public:
 virtual HRESULT QueryInterface(REFIID iid, void** ppvObj) = 0;
 virtual ULONG AddRef() = 0;
 virtual ULONG Release() = 0;
};

NOTENOTE

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

At the heart of OLE 2 is the "OLE Component Object Model", or COM. COM defines a standard for how
cooperating objects communicate to one another. This includes the details of what an "object" looks like, including
how methods are dispatched on an object. COM also defines a base class, from which all COM compatible classes
are derived. This base class is IUnknown. Although the IUnknown interface is referred to as a C++ class, COM is
not specific to any one language — it can be implemented in C, PASCAL, or any other language that can support
the binary layout of a COM object.

OLE refers to all classes derived from IUnknown as "interfaces." This is an important distinction, since an
"interface" such as IUnknown carries with it no implementation. It simply defines the protocol by which objects
communicate, not the specifics of what those implementations do. This is reasonable for a system that allows for
maximum flexibility. It is MFC's job to implement a default behavior for MFC/C++ programs.

To understand MFC's implementation of IUnknown you must first understand what this interface is. A simplified
version of IUnknown is defined below:

Certain necessary calling convention details, such as __stdcall are left out for this illustration.

The AddRef and Release member functions control memory management of the object. COM uses a reference
counting scheme to keep track of objects. An object is never referenced directly as you would in C++. Instead,
COM objects are always referenced through a pointer. To release the object when the owner is done using it, the
object's Release member is called (as opposed to using operator delete, as would be done for a traditional C++
object). The reference counting mechanism allows for multiple references to a single object to be managed. An
implementation of AddRef and Release maintains a reference count on the object — the object is not deleted until
its reference count reaches zero.

AddRef and Release are fairly straightforward from an implementation standpoint. Here is a trivial
implementation:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn038-mfc-ole-iunknown-implementation.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release

ULONG CMyObj::AddRef()
{
 return ++m_dwRef;
}

ULONG CMyObj::Release()
{
 if (--m_dwRef == 0)
 {
 delete this;
 return 0;
 }
 return m_dwRef;
}

class IPrintInterface : public IUnknown
{
public:
 virtual void PrintObject() = 0;
};

IPrintInterface* pPrint = NULL;
if (pUnk->QueryInterface(IID_IPrintInterface, (void**)&pPrint) == NOERROR)
{
 pPrint->PrintObject();
 pPrint->Release();
 // release pointer obtained via QueryInterface
}

class CPrintObj : public CPrintInterface
{
 virtual HRESULT QueryInterface(REFIID iid, void** ppvObj);
 virtual ULONG AddRef();
 virtual ULONG Release();
 virtual void PrintObject();
};

The QueryInterface member function is a little more interesting. It is not very interesting to have an object whose
only member functions are AddRef and Release — it would be nice to tell the object to do more things than
IUnknown provides. This is where QueryInterface is useful. It allows you to obtain a different "interface" on the
same object. These interfaces are usually derived from IUnknown and add additional functionality by adding new
member functions. COM interfaces never have member variables declared in the interface, and all member
functions are declared as pure-virtual. For example,

To get an IPrintInterface if you only have an IUnknown, call QueryInterface using the IID of the
IPrintInterface . An IID is a 128-bit number that uniquely identifies the interface. There is an IID for each

interface that either you or OLE define. If pUnk is a pointer to an IUnknown object, the code to retrieve an
IPrintInterface from it might be:

That seems fairly easy, but how would you implement an object supporting both the IPrintInterface and
IUnknown interface In this case it is simple since the IPrintInterface is derived directly from IUnknown — by
implementing IPrintInterface, IUnknown is automatically supported. For example:

The implementations of AddRef and Release would be exactly the same as those implemented above.
CPrintObj::QueryInterface would look something like this:

https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release

HRESULT CPrintObj::QueryInterface(REFIID iid, void FAR* FAR* ppvObj)
{
 if (iid == IID_IUnknown || iid == IID_IPrintInterface)
 {
 *ppvObj = this;
 AddRef();
 return NOERROR;
 }
 return E_NOINTERFACE;
}

class IEditInterface : public IUnkown
{
public:
 virtual void EditObject() = 0;
};

class CEditPrintObj
{
public:
 CEditPrintObj();

 HRESULT QueryInterface(REFIID iid, void**);
 ULONG AddRef();
 ULONG Release();
 DWORD m_dwRef;

 class CPrintObj : public IPrintInterface
 {
 public:
 CEditPrintObj* m_pParent;
 virtual HRESULT QueryInterface(REFIID iid, void** ppvObj);
 virtual ULONG AddRef();
 virtual ULONG Release();
 } m_printObj;

 class CEditObj : public IEditInterface
 {
 public:
 CEditPrintObj* m_pParent;
 virtual ULONG QueryInterface(REFIID iid, void** ppvObj);
 virtual ULONG AddRef();
 virtual ULONG Release();
 } m_editObj;
};

CEditPrintObj::CEditPrintObj()
{
 m_editObj.m_pParent = this;

As you can see, if the interface identifier (IID) is recognized, a pointer is returned to your object; otherwise an
error occurs. Also note that a successful QueryInterface results in an implied AddRef. Of course, you'd also have
to implement CEditObj::Print. That is simple because the IPrintInterface was directly derived from the IUnknown
interface. However, if you wanted to support two different interfaces, both derived from IUnknown, consider the
following:

Although there are a number of different ways to implement a class supporting both IEditInterface and
IPrintInterface, including using C++ multiple inheritance, this note will concentrate on the use of nested classes to
implement this functionality.

The entire implementation is included below:

https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

 m_editObj.m_pParent = this;
 m_printObj.m_pParent = this;
}

ULONG CEditPrintObj::AddRef()
{
 return ++m_dwRef;
}

CEditPrintObj::Release()
{
 if (--m_dwRef == 0)
 {
 delete this;
 return 0;
 }
 return m_dwRef;
}

HRESULT CEditPrintObj::QueryInterface(REFIID iid, void** ppvObj)
{
 if (iid == IID_IUnknown || iid == IID_IPrintInterface)
 {
 *ppvObj = &m_printObj;
 AddRef();
 return NOERROR;
 }
 else if (iid == IID_IEditInterface)
 {
 *ppvObj = &m_editObj;
 AddRef();
 return NOERROR;
 }
 return E_NOINTERFACE;
}

ULONG CEditPrintObj::CEditObj::AddRef()
{
 return m_pParent->AddRef();
}

ULONG CEditPrintObj::CEditObj::Release()
{
 return m_pParent->Release();
}

HRESULT CEditPrintObj::CEditObj::QueryInterface(REFIID iid, void** ppvObj)
{
 return m_pParent->QueryInterface(iid, ppvObj);
}

ULONG CEditPrintObj::CPrintObj::AddRef()
{
 return m_pParent->AddRef();
}

ULONG CEditPrintObj::CPrintObj::Release()
{
 return m_pParent->Release();
}

HRESULT CEditPrintObj::CPrintObj::QueryInterface(REFIID iid, void** ppvObj)
{
 return m_pParent->QueryInterface(iid, ppvObj);
}

Notice that most of the IUnknown implementation is placed into the CEditPrintObj class rather than duplicating
the code in CEditPrintObj::CEditObj and CEditPrintObj::CPrintObj. This reduces the amount of code and avoids

https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

MFC Interface Maps

Interface Map Basics
To implement a class using MFC's interface mapsTo implement a class using MFC's interface maps

bugs. The key point here is that from the IUnknown interface it is possible to call QueryInterface to retrieve any
interface the object might support, and from each of those interfaces it is possible to do the same. This means
that all QueryInterface functions available from each interface must behave exactly the same way. In order for
these embedded objects to call the implementation in the "outer object", a back-pointer is used (m_pParent). The
m_pParent pointer is initialized during the CEditPrintObj constructor. Then you would implement
CEditPrintObj::CPrintObj::PrintObject and CEditPrintObj::CEditObj::EditObject as well. Quite a bit of code was
added to add one feature — the ability to edit the object. Fortunately, it is quite uncommon for interfaces to have
only a single member function (although it does happen) and in this case, EditObject and PrintObject would
usually be combined into a single interface.

That's a lot of explanation and a lot of code for such a simple scenario. The MFC/OLE classes provide a simpler
alternative. The MFC implementation uses a technique similar to the way Windows messages are wrapped with
Message Maps. This facility is called Interface Maps and is discussed in the next section.

MFC/OLE includes an implementation of "Interface Maps" similar to MFC's "Message Maps" and "Dispatch
Maps" in concept and execution. The core features of MFC's Interface Maps are as follows:

A standard implementation of IUnknown, built into the CCmdTarget class.

Maintenance of the reference count, modified by AddRef and Release

Data driven implementation of QueryInterface

In addition, interface maps support the following advanced features:

Support for creating aggregatable COM objects

Support for using aggregate objects in the implementation of a COM object

The implementation is hookable and extensible

For more information on aggregation, see the Aggregation topic.

MFC's interface map support is rooted in the CCmdTarget class. CCmdTarget "has-a" reference count as well as all
the member functions associated with the IUnknown implementation (the reference count for example is in
CCmdTarget). To create a class that supports OLE COM, you derive a class from CCmdTarget and use various

macros as well as member functions of CCmdTarget to implement the desired interfaces. MFC's implementation
uses nested classes to define each interface implementation much like the example above. This is made easier
with a standard implementation of IUnknown as well as a number of macros that eliminate some of the repetitive
code.

1. Derive a class either directly or indirectly from CCmdTarget .

2. Use the DECLARE_INTERFACE_MAP function in the derived class definition.

3. For each interface you wish to support, use the BEGIN_INTERFACE_PART and END_INTERFACE_PART
macros in the class definition.

4. In the implementation file, use the BEGIN_INTERFACE_MAP and END_INTERFACE_MAP macros to
define the class's interface map.

5. For each IID supported, use the INTERFACE_PART macro between the BEGIN_INTERFACE_MAP and
END_INTERFACE_MAP macros to map that IID to a specific "part" of your class.

https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/com/aggregation
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

class CPrintEditObj : public CCmdTarget
{
public:
 // member data and member functions for CPrintEditObj go here

// Interface Maps
protected:
 DECLARE_INTERFACE_MAP()

 BEGIN_INTERFACE_PART(EditObj, IEditInterface)
 STDMETHOD_(void, EditObject)();
 END_INTERFACE_PART(EditObj)

 BEGIN_INTERFACE_PART(PrintObj, IPrintInterface)
 STDMETHOD_(void, PrintObject)();
 END_INTERFACE_PART(PrintObj)
};

BEGIN_INTERFACE_MAP(CPrintEditObj, CCmdTarget)
 INTERFACE_PART(CPrintEditObj, IID_IPrintInterface, PrintObj)
 INTERFACE_PART(CPrintEditObj, IID_IEditInterface, EditObj)
END_INTERFACE_MAP()

6. Implement each of the nested classes that represent the interfaces you support.

7. Use the METHOD_PROLOGUE macro to access the parent, CCmdTarget -derived object.

8. AddRef, Release, and QueryInterface can delegate to the CCmdTarget implementation of these functions (
ExternalAddRef , ExternalRelease , and ExternalQueryInterface).

The CPrintEditObj example above could be implemented as follows:

The above declaration creates a class derived from CCmdTarget . The DECLARE_INTERFACE_MAP macro tells the
framework that this class will have a custom interface map. In addition, the BEGIN_INTERFACE_PART and
END_INTERFACE_PART macros define nested classes, in this case with names CEditObj and CPrintObj (the X is
used only to differentiate the nested classes from global classes which start with "C" and interface classes which
start with "I"). Two nested members of these classes are created: m_CEditObj, and m_CPrintObj, respectively. The
macros automatically declare the AddRef, Release, and QueryInterface functions; therefore you only declare the
functions specific to this interface: EditObject and PrintObject (the OLE macro STDMETHOD is used so that
_stdcall and virtual keywords are provided as appropriate for the target platform).

To implement the interface map for this class:

This connects the IID_IPrintInterface IID with m_CPrintObj and IID_IEditInterface with m_CEditObj respectively.
The CCmdTarget implementation of QueryInterface (CCmdTarget::ExternalQueryInterface) uses this map to return
pointers to m_CPrintObj and m_CEditObj when requested. It is not necessary to include an entry for
IID_IUnknown ; the framework will use the first interface in the map (in this case, m_CPrintObj) when
IID_IUnknown is requested.

Even though the BEGIN_INTERFACE_PART macro automatically declared the AddRef, Release and
QueryInterface functions for you, you still need to implement them:

https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)

ULONG FAR EXPORT CEditPrintObj::XEditObj::AddRef()
{
 METHOD_PROLOGUE(CEditPrintObj, EditObj)
 return pThis->ExternalAddRef();
}

ULONG FAR EXPORT CEditPrintObj::XEditObj::Release()
{
 METHOD_PROLOGUE(CEditPrintObj, EditObj)
 return pThis->ExternalRelease();
}

HRESULT FAR EXPORT CEditPrintObj::XEditObj::QueryInterface(
 REFIID iid,
 void FAR* FAR* ppvObj)
{
 METHOD_PROLOGUE(CEditPrintObj, EditObj)
 return (HRESULT)pThis->ExternalQueryInterface(&iid, ppvObj);
}

void FAR EXPORT CEditPrintObj::XEditObj::EditObject()
{
 METHOD_PROLOGUE(CEditPrintObj, EditObj)
 // code to "Edit" the object, whatever that means...
}

NOTENOTE

The implementation for CEditPrintObj::CPrintObj, would be similar to the above definitions for
CEditPrintObj::CEditObj. Although it would be possible to create a macro that could be used to automatically
generate these functions (but earlier in MFC/OLE development this was the case), it becomes difficult to set break
points when a macro generates more than one line of code. For this reason, this code is expanded manually.

By using the framework implementation of message maps, there are a number of things that were not necessary
to do:

Implement QueryInterface

Implement AddRef and Release

Declare either of these built-in methods on both of your interfaces

In addition, the framework uses message maps internally. This allows you to derive from a framework class, say
COleServerDoc , that already supports certain interfaces and provides either replacements or additions to the

interfaces provided by the framework. You can do this because the framework fully supports inheriting an
interface map from a base class. That is the reason why BEGIN_INTERFACE_MAP takes as its second parameter
the name of the base class.

It is generally not possible to reuse the implementation of MFC's built-in implementations of the OLE interfaces just by
inheriting the embedded specialization of that interface from the MFC version. This is not possible because the use of the
METHOD_PROLOGUE macro to get access to the containing CCmdTarget -derived object implies a fixed offset of the
embedded object from the CCmdTarget -derived object. This means, for example, you cannot derive an embedded
XMyAdviseSink from MFC's implementation in COleClientItem::XAdviseSink , because XAdviseSink relies on being at a
specific offset from the top of the COleClientItem object.

NOTENOTE

Aggregation and Interface MapsAggregation and Interface Maps

Using an Aggregate ObjectUsing an Aggregate Object

To use the INTERFACE_AGGREGATE macroTo use the INTERFACE_AGGREGATE macro

You can, however, delegate to the MFC implementation for all of the functions that you want MFC's default behavior. This is
done in the MFC implementation of IOleInPlaceFrame (XOleInPlaceFrame) in the COleFrameHook class (it delegates to
m_xOleInPlaceUIWindow for many functions). This design was chosen to reduce the runtime size of objects which
implement many interfaces; it eliminates the need for a back-pointer (such as the way m_pParent was used in the previous
section).

In addition to supporting stand-alone COM objects, MFC also supports aggregation. Aggregation itself is too
complex a topic to discuss here; refer to the Aggregation topic for more information on aggregation. This note
will simply describe the support for aggregation built into the framework and interface maps.

There are two ways to use aggregation: (1) using a COM object that supports aggregation, and (2) implementing
an object that can be aggregated by another. These capabilities can be referred to as "using an aggregate object"
and "making an object aggregatable". MFC supports both.

To use an aggregate object, there needs to be some way to tie the aggregate into the QueryInterface mechanism.
In other words, the aggregate object must behave as though it is a native part of your object. So how does this tie
into MFC's interface map mechanism In addition to the INTERFACE_PART macro, where a nested object is
mapped to an IID, you can also declare an aggregate object as part of your CCmdTarget derived class. To do so,
the INTERFACE_AGGREGATE macro is used. This allows you to specify a member variable (which must be a
pointer to an IUnknown or derived class), which is to be integrated into the interface map mechanism. If the
pointer is not NULL when CCmdTarget::ExternalQueryInterface is called, the framework will automatically call the
aggregate object's QueryInterface member function, if the IID requested is not one of the native IID s
supported by the CCmdTarget object itself.

1. Declare a member variable (an IUnknown*) which will contain a pointer to the aggregate object.

2. Include an INTERFACE_AGGREGATE macro in your interface map, which refers to the member variable
by name.

3. At some point (usually during CCmdTarget::OnCreateAggregates), initialize the member variable to
something other than NULL.

For example:

https://docs.microsoft.com/windows/desktop/com/aggregation
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)

class CAggrExample : public CCmdTarget
{
public:
 CAggrExample();

protected:
 LPUNKNOWN m_lpAggrInner;
 virtual BOOL OnCreateAggregates();

 DECLARE_INTERFACE_MAP()
 // "native" interface part macros may be used here
};

CAggrExample::CAggrExample()
{
 m_lpAggrInner = NULL;
}

BOOL CAggrExample::OnCreateAggregates()
{
 // wire up aggregate with correct controlling unknown
 m_lpAggrInner = CoCreateInstance(CLSID_Example,
 GetControllingUnknown(), CLSCTX_INPROC_SERVER,
 IID_IUnknown, (LPVOID*)&m_lpAggrInner);

 if (m_lpAggrInner == NULL)
 return FALSE;
 // optionally, create other aggregate objects here
 return TRUE;
}

BEGIN_INTERFACE_MAP(CAggrExample, CCmdTarget)
 // native "INTERFACE_PART" entries go here
 INTERFACE_AGGREGATE(CAggrExample, m_lpAggrInner)
END_INTERFACE_MAP()

Making an Object Implementation AggregatableMaking an Object Implementation Aggregatable

The m_lpAggrInner variable is initialized in the constructor to NULL. The framework ignores a NULL member
variable in the default implementation of QueryInterface. OnCreateAggregates is a good place to actually create
your aggregate objects. You'll have to call it explicitly if you are creating the object outside of the MFC
implementation of COleObjectFactory . The reason for creating aggregates in CCmdTarget::OnCreateAggregates as
well as the usage of CCmdTarget::GetControllingUnknown will become apparent when creating aggregatable objects
is discussed.

This technique will give your object all of the interfaces that the aggregate object supports plus its native
interfaces. If you only want a subset of the interfaces that the aggregate supports, you can override
CCmdTarget::GetInterfaceHook . This allows you very low-level hookability, similar to QueryInterface. Usually, you

want all the interfaces that the aggregate supports.

For an object to be aggregatable, the implementation of AddRef, Release, and QueryInterface must delegate to a
"controlling unknown." In other words, for it to be part of the object, it must delegate AddRef, Release, and
QueryInterface to a different object, also derived from IUnknown. This "controlling unknown" is provided to the
object when it is created, that is, it is provided to the implementation of COleObjectFactory . Implementing this
carries a small amount of overhead, and in some cases is not desirable, so MFC makes this optional. To enable an
object to be aggregatable, you call CCmdTarget::EnableAggregation from the object's constructor.

If the object also uses aggregates, you must also be sure to pass the correct "controlling unknown" to the
aggregate objects. Usually this IUnknown pointer is passed to the object when the aggregate is created. For
example, the pUnkOuter parameter is the "controlling unknown" for objects created with CoCreateInstance . The
correct "controlling unknown" pointer can be retrieved by calling CCmdTarget::GetControllingUnknown . The value

https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

Reference Material

CCmdTarget::EnableAggregation — Function DescriptionCCmdTarget::EnableAggregation — Function Description

void EnableAggregation();

RemarksRemarks

CCmdTarget::ExternalQueryInterface — Function DescriptionCCmdTarget::ExternalQueryInterface — Function Description

DWORD ExternalQueryInterface(
 const void FAR* lpIID,
 LPVOIDFAR* ppvObj
);

ParametersParameters

RemarksRemarks

CCmdTarget::ExternalAddRef — Function DescriptionCCmdTarget::ExternalAddRef — Function Description

DWORD ExternalAddRef();

RemarksRemarks

CCmdTarget::ExternalRelease — Function DescriptionCCmdTarget::ExternalRelease — Function Description

returned from that function, however, is not valid during the constructor. For this reason, it is suggested that you
create your aggregates only in an override of CCmdTarget::OnCreateAggregates , where the return value from
GetControllingUnknown is reliable, even if created from the COleObjectFactory implementation.

It is also important that the object manipulate the correct reference count when adding or releasing artificial
reference counts. To ensure this is the case, always call ExternalAddRef and ExternalRelease instead of
InternalRelease and InternalAddRef . It is rare to call InternalRelease or InternalAddRef on a class that

supports aggregation.

Advanced usage of OLE, such as defining your own interfaces or overriding the framework's implementation of
the OLE interfaces requires the use of the underlying interface map mechanism.

This section discusses each macro and the APIs which is used to implement these advanced features.

Call this function in the constructor of the derived class if you wish to support OLE aggregation for objects of this
type. This prepares a special IUnknown implementation that is required for aggregatable objects.

lpIID
A far pointer to an IID (the first argument to QueryInterface)

ppvObj
A pointer to an IUnknown* (second argument to QueryInterface)

Call this function in your implementation of IUnknown for each interface your class implements. This function
provides the standard data-driven implementation of QueryInterface based on your object's interface map. It is
necessary to cast the return value to an HRESULT. If the object is aggregated, this function will call the
"controlling IUnknown" instead of using the local interface map.

Call this function in your implementation of IUnknown::AddRef for each interface your class implements. The
return value is the new reference count on the CCmdTarget object. If the object is aggregated, this function will
call the "controlling IUnknown" instead of manipulating the local reference count.

DWORD ExternalRelease();

RemarksRemarks

DECLARE_INTERFACE_MAP — Macro DescriptionDECLARE_INTERFACE_MAP — Macro Description

DECLARE_INTERFACE_MAP

RemarksRemarks

BEGIN_INTERFACE_PART and END_INTERFACE_PART — Macro DescriptionsBEGIN_INTERFACE_PART and END_INTERFACE_PART — Macro Descriptions

BEGIN_INTERFACE_PART(localClass, iface);
END_INTERFACE_PART(localClass)

ParametersParameters

RemarksRemarks

BEGIN_INTERFACE_PART(MyAdviseSink, IAdviseSink)
 STDMETHOD_(void, OnDataChange)(LPFORMATETC, LPSTGMEDIUM);
 STDMETHOD_(void, OnViewChange)(DWORD, LONG);
 STDMETHOD_(void, OnRename)(LPMONIKER);
 STDMETHOD_(void, OnSave)();
 STDMETHOD_(void, OnClose)();
END_INTERFACE_PART(MyAdviseSink)

Call this function in your implementation of IUnknown::Release for each interface your class implements. The
return value indicates the new reference count on the object. If the object is aggregated, this function will call the
"controlling IUnknown" instead of manipulating the local reference count.

Use this macro in any class derived from CCmdTarget that will have an interface map. Used in much the same way
as DECLARE_MESSAGE_MAP. This macro invocation should be placed in the class definition, usually in a header
(.H) file. A class with DECLARE_INTERFACE_MAP must define the interface map in the implementation file
(.CPP) with the BEGIN_INTERFACE_MAP and END_INTERFACE_MAP macros.

localClass
The name of the class that implements the interface

iface
The name of the interface that this class implements

For each interface that your class will implement, you need to have a BEGIN_INTERFACE_PART and
END_INTERFACE_PART pair. These macros define a local class derived from the OLE interface that you define as
well as an embedded member variable of that class. The AddRef, Release, and QueryInterface members are
declared automatically. You must include the declarations for the other member functions that are part of the
interface being implemented (those declarations are placed between the BEGIN_INTERFACE_PART and
END_INTERFACE_PART macros).

The iface argument is the OLE interface that you wish to implement, such as IAdviseSink , or IPersistStorage

(or your own custom interface).

The localClass argument is the name of the local class that will be defined. An 'X' will automatically be prepended
to the name. This naming convention is used to avoid collisions with global classes of the same name. In addition,
the name of the embedded member, the same as the localClass name except it is prefixed by 'm_x'.

For example:

would define a local class called XMyAdviseSink derived from IAdviseSink, and a member of the class in which it

https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-queryinterface(q_)

NOTENOTE

BEGIN_INTERFACE_MAP and END_INTERFACE_MAP — Macro DescriptionsBEGIN_INTERFACE_MAP and END_INTERFACE_MAP — Macro Descriptions

BEGIN_INTERFACE_MAP(theClass, baseClass)
END_INTERFACE_MAP

ParametersParameters

RemarksRemarks

INTERFACE_PART — Macro DescriptionINTERFACE_PART — Macro Description

INTERFACE_PART(theClass, iid, localClass)

ParametersParameters

RemarksRemarks

IUnknown
 IOleWindow
 IOleUIWindow
 IOleInPlaceFrameWindow

is declared called m_xMyAdviseSink.Note:

The lines beginning with STDMETHOD _ are essentially copied from OLE2.H and modified slightly. Copying them from OLE2.H
can reduce errors that are hard to resolve.

theClass
The class in which the interface map is to be defined

baseClass
The class from which theClass derives from.

The BEGIN_INTERFACE_MAP and END_INTERFACE_MAP macros are used in the implementation file to
actually define the interface map. For each interface that is implemented there is one or more INTERFACE_PART
macro invocations. For each aggregate that the class uses, there is one INTERFACE_AGGREGATE macro
invocation.

theClass
The name of the class that contains the interface map.

iid
The IID that is to be mapped to the embedded class.

localClass
The name of the local class (less the 'X').

This macro is used between the BEGIN_INTERFACE_MAP macro and the END_INTERFACE_MAP macro for
each interface your object will support. It allows you to map an IID to a member of the class indicated by theClass
and localClass. The 'm_x' will be added to the localClass automatically. Note that more than one IID may be
associated with a single member. This is very useful when you are implementing only a "most derived" interface
and wish to provide all intermediate interfaces as well. A good example of this is the IOleInPlaceFrameWindow

interface. Its hierarchy looks like this:

If an object implements IOleInPlaceFrameWindow , a client may QueryInterface on any of these interfaces:
IOleUIWindow , IOleWindow , or IUnknown, besides the "most derived" interface IOleInPlaceFrameWindow (the one

you are actually implementing). To handle this you can use more than one INTERFACE_PART macro to map each

https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

BEGIN_INTERFACE_PART(CMyFrameWindow, IOleInPlaceFrameWindow)

BEGIN_INTERFACE_MAP(CMyWnd, CFrameWnd)
 INTERFACE_PART(CMyWnd, IID_IOleWindow, MyFrameWindow)
 INTERFACE_PART(CMyWnd, IID_IOleUIWindow, MyFrameWindow)
 INTERFACE_PART(CMyWnd, IID_IOleInPlaceFrameWindow, MyFrameWindow)
END_INTERFACE_MAP

INTERFACE_PART — Macro DescriptionINTERFACE_PART — Macro Description

INTERFACE_AGGREGATE(theClass, theAggr)

ParametersParameters

RemarksRemarks

See also

and every base interface to the IOleInPlaceFrameWindow interface:

in the class definition file:

in the class implementation file:

The framework takes care of IUnknown because it is always required.

theClass
The name of the class that contains the interface map,

theAggr
The name of the member variable that is to be aggregated.

This macro is used to tell the framework that the class is using an aggregate object. It must appear between the
BEGIN_INTERFACE_PART and END_INTERFACE_PART macros. An aggregate object is a separate object,
derived from IUnknown. By using an aggregate and the INTERFACE_AGGREGATE macro, you can make all the
interfaces that the aggregate supports appear to be directly supported by the object. The theAggr argument is
simply the name of a member variable of your class which is derived from IUnknown (either directly or
indirectly). All INTERFACE_AGGREGATE macros must follow the INTERFACE_PART macros when placed in an
interface map.

Technical Notes by Number
Technical Notes by Category

https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown

TN039: MFC/OLE Automation Implementation
10/31/2018 • 7 minutes to read • Edit Online

NOTENOTE

Overview of OLE IDispatch Interface

MFC DISPID assignment

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

The IDispatch interface is the means by which applications expose methods and properties such that other
applications such as Visual BASIC, or other languages, can make use of the application's features. The most
important part of this interface is the IDispatch::Invoke function. MFC uses "dispatch maps" to implement
IDispatch::Invoke . The dispatch map provides the MFC implementation information on the layout or "shape" of

your CCmdTarget -derived classes, such that it can directly manipulate the properties of the object, or call member
functions within your object to satisfy IDispatch::Invoke requests.

For the most part, ClassWizard and MFC cooperate to hide most of the details of OLE automation from the
application programmer. The programmer concentrates on the actual functionality to expose in the application and
doesn't have to worry about the underlying plumbing.

There are cases, however, where it is necessary to understand what MFC is doing behind the scenes. This note will
address how the framework assigns DISPIDs to member functions and properties. Knowledge of the algorithm
MFC uses for assigning DISPIDs is only necessary when you need to know the IDs, such as when you create a
"type library" for your application's objects.

Although the end-user of automation (a Visual Basic user, for example), sees the actual names of the automation
enabled properties and methods in their code (such as obj.ShowWindow), the implementation of
IDispatch::Invoke does not receive the actual names. For optimization reasons, it receives a DISPID , which is a

32-bit "magic cookie" that describes the method or property that is to be accessed. These DISPID values are
returned from the IDispatch implementation through another method, called IDispatch::GetIDsOfNames . An
automation client application will call GetIDsOfNames once for each member or property it intends to access, and
cache them for later calls to IDispatch::Invoke . This way, the expensive string lookup is only done once per object
use, instead of once per IDispatch::Invoke call.

MFC determines the DISPIDs for each method and property based on two things:

The distance from the top of the dispatch map (1 relative)

The distance of the dispatch map from the most derived class (0 relative)

The DISPID is divided into two parts. The LOWORD of the DISPID contains the first component, the distance
from the top of the dispatch map. The HIWORD contains the distance from the most derived class. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn039-mfc-ole-automation-implementation.md

class CDispPoint : public CCmdTarget
{
public:
 short m_x, m_y;
 // ...
 DECLARE_DISPATCH_MAP()
 // ...
};

class CDisp3DPoint : public CDispPoint
{
public:
 short m_z;
 // ...
 DECLARE_DISPATCH_MAP()
 // ...
};

BEGIN_DISPATCH_MAP(CDispPoint, CCmdTarget)
 DISP_PROPERTY(CDispPoint, "x", m_x, VT_I2)
 DISP_PROPERTY(CDispPoint, "y", m_y, VT_I2)
END_DISPATCH_MAP()

BEGIN_DISPATCH_MAP(CDisp3DPoint, CDispPoint)
 DISP_PROPERTY(CDisp3DPoint, "z", m_z, VT_I2)
END_DISPATCH_MAP()

property X (DISPID)0x00000001
property Y (DISPID)0x00000002

property Z (DISPID)0x00000001
property X (DISPID)0x00010001
property Y (DISPID)0x00010002

NOTENOTE

Advanced MFC Dispatch Map Features

As you can see, there are two classes, both of which expose OLE automation interfaces. One of these classes is
derived from the other and thus leverages the base class's functionality, including the OLE automation part ("x"
and "y" properties in this case).

MFC will generate DISPIDs for class CDispPoint as follows:

Since the properties are not in a base class, the HIWORD of the DISPID is always zero (the distance from the
most derived class for CDispPoint is zero).

MFC will generate DISPIDs for class CDisp3DPoint as follows:

The Z property is given a DISPID with a zero HIWORD since it is defined in the class that is exposing the
properties, CDisp3DPoint. Since the X and Y properties are defined in a base class, the HIWORD of the DISPID
is 1, since the class in which these properties are defined is at a distance of one derivation from the most derived
class.

The LOWORD is always determined by the position in the map, even if there exist entries in the map with explicit DISPID
(see next section for information on the _ID versions of the DISP_PROPERTY and DISP_FUNCTION macros).

There are a number of additional features that ClassWizard does not support with this release of Visual C++.

DISP_PROPERTY_NOTIFY — Macro Description
DISP_PROPERTY_NOTIFY(
 theClass,
 pszName,
 memberName,
 pfnAfterSet,
 vtPropType)

ParametersParameters

RemarksRemarks

DISP_PROPERTY_PARAM — Macro Description
DISP_PROPERTY_PARAM(
 theClass,
 pszName,
 pfnGet,
 pfnSet,
 vtPropType,
 vtsParams)

ParametersParameters

ClassWizard supports DISP_FUNCTION , DISP_PROPERTY , and DISP_PROPERTY_EX which define a method, member
variable property, and get/set member function property, respectively. These capabilities are usually all that is
needed to create most automation servers.

The following additional macros can be used when the ClassWizard supported macros are not adequate:
DISP_PROPERTY_NOTIFY , and DISP_PROPERTY_PARAM .

theClass
Name of the class.

pszName
External name of the property.

memberName
Name of the member variable in which the property is stored.

pfnAfterSet
Name of member function to call when property is changed.

vtPropType
A value specifying the property's type.

This macro is much like DISP_PROPERTY, except that it accepts an additional argument. The additional argument,
pfnAfterSet, should be a member function that returns nothing and takes no parameters, 'void
OnPropertyNotify()'. It will be called after the member variable has been modified.

theClass
Name of the class.

pszName
External name of the property.

memberGet
Name of the member function used to get the property.

RemarksRemarks

DISP_PROPERTY_PARAM(CMyObject, "item", GetItem, SetItem, VT_DISPATCH, VTS_I2 VTS_I2)

LPDISPATCH CMyObject::GetItem(short row, short col)
void CMyObject::SetItem(short row, short col, LPDISPATCH newValue)

DISP_XXXX_ID — Macro Descriptions
DISP_FUNCTION_ID(
 theClass,
 pszName,
 dispid,
 pfnMember,
 vtRetVal,
 vtsParams)
DISP_PROPERTY_ID(
 theClass,
 pszName,
 dispid,
 memberName,
 vtPropType)
DISP_PROPERTY_NOTIFY_ID(
 theClass,
 pszName,
 dispid,
 memberName,
 pfnAfterSet,
 vtPropType)
DISP_PROPERTY_EX_ID(
 theClass,
 pszName,
 dispid,
 pfnGet,
 pfnSet,
 vtPropType)
DISP_PROPERTY_PARAM_ID(
 theClass,
 pszName,
 dispid,
 pfnGet,
 pfnSet,
 vtPropType,
 vtsParams)

memberSet
Name of the member function used to set the property.

vtPropType
A value specifying the property's type.

vtsParams
A string of space separated VTS_ for each parameter.

Much like the DISP_PROPERTY_EX macro, this macro defines a property accessed with separate Get and Set
member functions. This macro, however, allows you to specify a parameter list for the property. This is useful for
implementing properties that are indexed or parameterized in some other way. The parameters will always be
placed first, followed by the new value for the property. For example:

would correspond to get and set member functions:

ParametersParameters

RemarksRemarks

BEGIN_DISPATCH_MAP(CDisp3DPoint, CCmdTarget)
 DISP_PROPERTY(CDisp3DPoint, "y", m_y, VT_I2)
 DISP_PROPERTY(CDisp3DPoint, "z", m_z, VT_I2)
 DISP_PROPERTY_ID(CDisp3DPoint, "x", 0x00020003, m_x, VT_I2)
END_DISPATCH_MAP()

property X (DISPID)0x00020003
property Y (DISPID)0x00000002
property Z (DISPID)0x00000001

Retrieving the IDispatch Interface for a COleClientItem

theClass
Name of the class.

pszName
External name of the property.

dispid
The fixed DISPID for the property or method.

pfnGet
Name of the member function used to get the property.

pfnSet
Name of the member function used to set the property.

memberName
The name of the member variable to map to the property

vtPropType
A value specifying the property's type.

vtsParams
A string of space separated VTS_ for each parameter.

These macros allow you to specify a DISPID instead of letting MFC automatically assign one. These advanced
macros have the same names except that ID is appended to the macro name (e.g. DISP_PROPERTY_ID) and the
ID is determined by the parameter specified just after the pszName parameter. See AFXDISP.H for more
information on these macros. The _ID entries must be placed at the end of the dispatch map. They will affect the
automatic DISPID generation in the same way as a non-_ID version of the macro would (the DISPIDs are
determined by position). For example:

MFC will generate DISPIDs for class CDisp3DPoint as follows:

Specifying a fixed DISPID is useful to maintain backward compatibility to a previously existing dispatch interface,
or to implement certain system defined methods or properties (usually indicated by a negative DISPID , such as
the DISPID_NEWENUM collection).

Many servers will support automation within their document objects, along with the OLE server functionality. In
order to gain access to this automation interface, it is necessary to directly access the COleClientItem::m_lpObject

member variable. The code below will retrieve the IDispatch interface for an object derived from COleClientItem .
You can include the code below in your application if you find this functionality necessary:

LPDISPATCH CMyClientItem::GetIDispatch()
{
 ASSERT_VALID(this);
 ASSERT(m_lpObject != NULL);

 LPUNKNOWN lpUnk = m_lpObject;

 Run(); // must be running

 LPOLELINK lpOleLink = NULL;
 if (m_lpObject->QueryInterface(IID_IOleLink,
 (LPVOID FAR*)&lpOleLink) == NOERROR)
 {
 ASSERT(lpOleLink != NULL);
 lpUnk = NULL;
 if (lpOleLink->GetBoundSource(&lpUnk) != NOERROR)
 {
 TRACE0("Warning: Link is not connected!\n");
 lpOleLink->Release();
 return NULL;
 }
 ASSERT(lpUnk != NULL);
 }

 LPDISPATCH lpDispatch = NULL;
 if (lpUnk->QueryInterface(IID_IDispatch, &lpDispatch) != NOERROR)
 {
 TRACE0("Warning: does not support IDispatch!\n");
 return NULL;
 }

 ASSERT(lpDispatch != NULL);
 return lpDispatch;
}

See also

The dispatch interface returned from this function could then be used directly or attached to a COleDispatchDriver

for type-safe access. If you use it directly, make sure that you call its Release member when through with the
pointer (the COleDispatchDriver destructor does this by default).

Technical Notes by Number
Technical Notes by Category

TN040: MFC/OLE In-Place Resizing and Zooming
3/4/2019 • 7 minutes to read • Edit Online

NOTENOTE

NOTENOTE

MFC Support for Zooming

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note will discuss the issues relating to in-place editing and how a server should accomplish correct zooming
and in-place resizing. With in-place activation, the WYSIWYG concept is taken one step further in that containers
and servers cooperate with each other, and in particular interpret the OLE specification in much the same way.

Because of the close interaction between a container and server supporting in-place activation there are a number
of expectations from the end-user that should be maintained:

The presentation display (the metafile drawn in the COleServerItem::OnDraw override) should look exactly
the same as when it is drawn for editing (except that editing tools are not visible).

When the container zooms, the server window should too!

Both the container and server should display objects for editing using the same metrics. This means using a
mapping mode based on the number of logical pixels per inch — not physical pixels per inch, when
rendering on the display device.

Because in-place activation only applies to items that are embedded (not linked), zooming only applies to embedded objects.
You will see APIs in both COleServerDoc and COleServerItem that are used for zooming. The reason for this dichotomy
is that only functions that are valid for both linked and embedded items are in COleServerItem (this allows you to have a
common implementation) and functions that are valid only for embedded objects are located in the COleServerDoc class
(from the server's perspective, it is the document which is embedded).

Most of the burden is placed on the server implementer, in that the server must be aware of the container's zoom
factor and modify its editing interface as appropriate. But how does the server determine the zoom factor that the
container is using

The current zoom factor can be determined by calling COleServerDoc::GetZoomFactor . Calling this when the
document is not in-place active will always result in a 100% zoom factor (or 1:1 ratio). Calling it while in-place
active may return something other than 100%.

For an example of zooming correctly see the MFC OLE sample HIERSVR. Zooming in HIERSVR is complicated
by the fact that it displays text, and text, in general, does not scale in a linear fashion (hints, typographic
conventions, design widths, and heights all complicate the matter). Still, HIERSVR is a reasonable reference for
implementing zooming correctly, and so is the MFC Tutorial SCRIBBLE (step 7).

COleServerDoc::GetZoomFactor determines the zoom factor based on a number of different metrics available either
from the container or from the implementation of your COleServerItem and COleServerDoc classes. In short, the
current zoom factor is determined by the following formula:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn040-mfc-ole-in-place-resizing-and-zooming.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Position Rectangle (PR) / Container Extent (CE)

COleServerItem::OnGetExtent

COleServerItem::OnSetExtent

COleServerDoc::OnSetItemRects

COleServerDoc::OnDraw

The POSITION RECTANGLE is determined by the container. It is returned to the server during in-place activation
when COleClientItem::OnGetItemPosition is called and is updated when the container calls the server's
COleServerDoc::OnSetItemRects (with a call to COleClientItem::SetItemRects).

The CONTAINER EXTENT is slightly more complex to calculate. If the container has called
COleServerItem::OnSetExtent (with a call to COleClientItem::SetExtent), then the CONTAINER EXTENT is this

value converted to pixels based on the number of pixels per logical inch. If the container has not called SetExtent
(which is usually the case), then the CONTAINER EXTENT is the size returned from COleServerItem::OnGetExtent .
So, if the container has not called SetExtent, the framework assumes that if it did the container would have called it
with 100% of the natural extent (the value returned from COleServerItem::GetExtent). Stated another way, the
framework assumes that the container is displaying 100% (no more, no less) of the item.

It is important to note that although COleServerItem::OnSetExtent and COleServerItem::OnGetExtent have similar
names, they do not manipulate the same attribute of the item. OnSetExtent is called to let the server know how
much of the object is visible in the container (regardless of the zoom factor) and OnGetExtent is called by the
container to determine ideal size of the object.

By looking at each of the APIs involved, you can get a clearer picture:

This function should return the "natural size" in HIMETRIC units of the item. The best way to think of the "natural
size" is to define it as the size it might appear when printed. The size returned here is constant for a particular item
contents (much like the metafile, which is constant for a particular item). This size does not change when zooming
is applied to the item. It usually does not change when the container gives the item more or less space by calling
OnSetExtent . An example of a change might be that of a simple text editor with no "margin" capability that

wrapped text based on the last extent sent by the container. If a server does change, the server should probably set
the OLEMISC_RECOMPOSEONRESIZE bit in the system registry (see the OLE SDK documentation for more
information on this option).

This function is called when the container shows "more or less" of the object. Most containers will not call this at
all. The default implementation stores the last value received from the container in 'm_sizeExtent', which is used in
COleServerDoc::GetZoomFactor when computing the CONTAINER EXTENT value described above.

This function is called only when the document is in-place active. It is called when the container updates either the
item's position or the clipping applied to the item. The POSITION RECTANGLE, as discussed above, provides the
numerator for the zoom factor calculation. A server can request that the item position be changed by calling
COleServerDoc::RequestPositionChange . The container may or may not respond to this request by calling
OnSetItemRects (with a call to COleServerItem::SetItemRects).

It is important to realize that the metafile created by overriding of COleServerItem::OnDraw produces exactly the
same metafile, regardless of the current zoom factor. The container will scale the metafile as appropriate. This is an
important distinction between the view's OnDraw and the server item's OnDraw . The view handles zooming, the
item just creates a zoomable metafile and leaves it up to the container to do the appropriate zooming.

MFC Support for In-Place Resizing

See also

The best way to insure that your server behaves correctly is to use the implementation of
COleServerDoc::GetZoomFactor if your document is in-place active.

MFC fully implements the in-place resizing interface as described in the OLE 2 specification. The user-interface is
supported by the COleResizeBar class, a custom message WM_SIZECHILD, and special handling of this message
in COleIPFrameWnd .

You may want to implement different handling of this message than what is provided by the framework. As
described above, the framework leaves the results of in-place resizing up to the container — the server responds
to the change in the zoom factor. If the container reacts by setting the both CONTAINER EXTENT and POSITION
RECTANGLE during the processing of its COleClientItem::OnChangeItemPosition (called as a result of a call to
COleServerDoc::RequestPositionChange) then the in-place resize will result in showing "more or less" of the item in

the editing window. If the container reacts by just setting the POSITION RECTANGLE during the processing of
COleClientItem::OnChangeItemPosition , the zoom factor will change and the item will be shown "zoomed in or out."

A server can control (to some degree) what happens during this negotiation. A spreadsheet, for example might
elect to show more or fewer cells when the user resizes the window while editing the item in-place. A word-
processor might elect to change the "page margins" so they are the same as the window and rewrap the text to the
new margin. Servers implement this by changing the natural extent (the size returned from
COleServerItem::OnGetExtent) when the resizing is done. This will cause both the POSITION RECTANGLE and the

CONTAINER EXTENT to change by the same amount, resulting in the same zoom factor, but a bigger or smaller
viewing area. In addition, more or less of the document will be visible in the metafile generated by OnDraw . In this
case, the document itself is changing when the user resizes the item, instead of just the viewing area.

You can implement custom resizing and still leverage the user interface provided by COleResizeBar by overriding
the WM_SIZECHILD message in your COleIPFrameWnd class. For more information on the specifics of
WM_SIZECHILD, see Technical Note 24.

Technical Notes by Number
Technical Notes by Category

TN041: MFC/OLE1 Migration to MFC/OLE 2
10/31/2018 • 27 minutes to read • Edit Online

NOTENOTE

General Issues Relating to Migration

MFC Document/View Architecture Is Important

Use MFC Implementation Instead of Your Own

Examine the MFC Sample Code

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

One of the design goals for the OLE 2 classes in MFC 2.5 (and higher) was to retain much of the same
architecture put in place in MFC 2.0 for OLE 1.0 support. As a result, many of the same OLE classes in MFC 2.0
still exist in this version of MFC (COleDocument , COleServerDoc , COleClientItem , COleServerItem). In addition,
many of the APIs in these classes are exactly the same. However, OLE 2 is drastically different from OLE 1.0 so
you can expect that some of the details have changed. If you are familiar with MFC 2.0's OLE1 support, you'll feel
at home with MFC's 2.0 support.

If you are taking an existing MFC/OLE1 application and adding OLE 2 functionality to it, you should read this note
first. This note covers some general issues you may encounter while porting your OLE1 functionality to MFC/OLE
2 and then discusses the problems uncovered while porting two applications included in MFC 2.0: the MFC OLE
samples OCLIENT and HIERSVR.

If your application does not use MFC's Document/View architecture and you want to add OLE 2 support to your
application, now is the time to move to Document/View. Many of the benefits of MFC's OLE 2 classes are only
realized once your application is using the built-in architecture and components of MFC.

Implementing a server or container without using the MFC architecture is possible, but not recommended.

MFC "canned implementation" classes such as CToolBar , CStatusBar , and CScrollView have built-in special case
code for OLE 2 support. So, if you can use these classes in your application you'll benefit from the effort put into
them to make them OLE aware. Again, it is possible to "roll-your-own" classes here for these purposes, but it is
not suggested. If you need to implement similar functionality, the MFC source code is an excellent reference for
dealing with some of the finer points of OLE (especially when it comes to in-place activation).

There are a number of MFC samples that include OLE functionality. Each of these applications implements OLE
from a different angle:

HIERSVR Meant mostly for use as a server application. It was included in MFC 2.0 as an MFC/OLE1
application and has been ported to MFC/OLE 2 and then extended such that it implements many OLE
features available in OLE 2.

OCLIENT This is a stand-alone container application, meant to demonstrate many of the OLE features
from a container standpoint. It too was ported from MFC 2.0, and then extended to support many of the

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn041-mfc-ole1-migration-to-mfc-ole-2.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Case Study: OCLIENT from MFC 2.0

NOTENOTE

Getting It Up and Running

Compile and Fix Errors
\oclient\mainview.cpp(104) : error C2660: 'Draw' : function does not take 4 parameters

\oclient\mainview.cpp(273) : error C2065: 'OLE_MAXNAMESIZE' : undeclared identifier
\oclient\mainview.cpp(273) : error C2057: expected constant expression
\oclient\mainview.cpp(280) : error C2664: 'CreateLinkFromClipboard' : cannot convert parameter 1 from 'char
[1]' to 'enum ::tagOLERENDER '
\oclient\mainview.cpp(286) : error C2664: 'CreateFromClipboard' : cannot convert parameter 1 from 'char [1]'
to 'enum ::tagOLERENDER '
\oclient\mainview.cpp(288) : error C2664: 'CreateStaticFromClipboard' : cannot convert parameter 1 from 'char
[1]' to 'enum ::tagOLERENDER '

more advanced OLE features, such as custom clipboard formats and links to embedded items.

DRAWCLI This application implements OLE container support much like OCLIENT does, except that it
does so within the framework of an existing object-oriented drawing program. It shows you how you might
implement OLE container support and integrate it into your existing application.

SUPERPAD This application, as well as being a fine stand-alone application, is also an OLE server. The
server support it implements is quite minimalist. Of particular interest is how it uses OLE clipboard
services to copy data to the clipboard, but uses the functionality built into the Windows "edit" control to
implement clipboard paste functionality. This shows an interesting mix of traditional Windows API usage as
well as integration with the new OLE APIs.

For more information on the sample applications, see the "MFC Sample Help".

As discussed above, OCLIENT was included in MFC 2.0 and implemented OLE with MFC/OLE1. The steps by
which this application was initially converted to use the MFC/OLE 2 classes are described below. A number of
features were added after the initial port was completed to better illustrate the MFC/OLE classes. These features
will not be covered here; refer to the sample itself for more information on those advanced features.

The compiler errors and step-by-step process was created with Visual C++ 2.0. Specific error messages and locations may
have changed with Visual C++ 4.0, but the conceptual information remains valid.

The approach taken to port the OCLIENT sample to MFC/OLE is to start by building it and fixing the obvious
compiler errors that will result. If you take the OCLIENT sample from MFC 2.0 and compile it under this version
of MFC, you'll find that there are not that many errors to resolve. The errors in the order in which they occurred
are described below.

The first error concerns COleClientItem::Draw . In MFC/OLE1 it took more parameters than the MFC/OLE version
takes. The extra parameters were often not necessary and usually NULL (as in this example). This version of MFC
can automatically determine the values for the lpWBounds when the CDC that is being drawn to is a metafile DC.
In addition, the pFormatDC parameter is no longer necessary since the framework will build one from the
"attribute DC" of the pDC passed in. So to fix this problem, you simply remove the two extra NULL parameters to
the Draw call.

The errors above result from the fact that all of the COleClientItem::CreateXXXX functions in MFC/OLE1 required

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

\oclient\mainview.cpp(332) : error C2065: 'AfxOleInsertDialog' : undeclared identifier
\oclient\mainview.cpp(332) : error C2064: term does not evaluate to a function
\oclient\mainview.cpp(344) : error C2057: expected constant expression
\oclient\mainview.cpp(347) : error C2039: 'CreateNewObject' : is not a member of 'CRectItem'

that a unique name be passed to represent the item. This was a requirement of the underlying OLE API. This is not
necessary in MFC/OLE 2 since OLE 2 does not use DDE as the underlying communications mechanism (the
name was used in DDE conversations). To fix this problem, you can remove the CreateNewName function as well as
all references to it. It is easy to find out what each MFC/OLE function is expecting in this version simply by placing
your cursor on the call and pressing F1.

Another area that is significantly different is OLE 2 clipboard handling. With OLE1, you used the Windows
clipboard APIs interact with the clipboard. With OLE 2 this is done with a different mechanism. The MFC/OLE1
APIs assumed that the clipboard was open before copying a COleClientItem object to the clipboard. This is no
longer necessary and will cause all MFC/OLE clipboard operations to fail. While you edit the code to remove
dependencies on CreateNewName , you should also remove the code that opens and closes the Windows clipboard.

These errors result from the CMainView::OnInsertObject handler. Handling the "Insert New Object" command is
another area where things have changed quite a bit. In this case, it is easiest to simply merge the original
implementation with that provided by AppWizard for a new OLE Container application. In fact, this is a technique
that you can apply to porting other applications. In MFC/OLE1, you displayed the "Insert Object" dialog by calling
AfxOleInsertDialog function. In this version you construct a COleInsertObject dialog object and call DoModal . In

addition, new OLE items are created with a CLSID instead of a classname string. The end result should look
something like this

COleInsertDialog dlg;
if (dlg.DoModal() != IDOK)
 return;

BeginWaitCursor();

CRectItem* pItem = NULL;
TRY
{
 // First create the C++ object
 pItem = GetDocument()->CreateItem();
 ASSERT_VALID(pItem);

 // Initialize the item from the dialog data.
 if (!dlg.CreateItem(pItem))
 AfxThrowMemoryException();
 // any exception will do
 ASSERT_VALID(pItem);

 // run the object if appropriate
 if (dlg.GetSelectionType() == COleInsertDialog::createNewItem)
 pItem->DoVerb(OLEIVERB_SHOW, this);

 // update right away
 pItem->UpdateLink();
 pItem->UpdateItemRectFromServer();

 // set selection to newly inserted item
 SetSelection(pItem);
 pItem->Invalidate();
}
CATCH (CException, e)
{
 // clean up item
 if (pItem != NULL)
 GetDocument()->DeleteItem(pItem);

 AfxMessageBox(IDP_FAILED_TO_CREATE);
}
END_CATCH

EndWaitCursor();

NOTENOTE

\oclient\mainview.cpp(367) : error C2065: 'OLEVERB_PRIMARY' : undeclared identifier
\oclient\mainview.cpp(367) : error C2660: 'DoVerb' : function does not take 1 parameters

Insert New Object may be different for your application):

It is also necessary to include <afxodlgs.h>, which contains the declaration for the COleInsertObject dialog class
as well as the other standard dialogs provided by MFC.

These errors are caused by the fact that some OLE1 constants have changed in OLE 2, even though in concept
they are the same. In this case OLEVERB_PRIMARY has changed to OLEIVERB_PRIMARY . In both OLE1 and OLE 2, the
primary verb is usually executed by a container when the user double-clicks on an item.

In addition, DoVerb now takes an extra parameter — a pointer to a view (CView *). This parameter is only used to
implement "Visual Editing" (or in-place activation). For now you set that parameter to NULL, because you are not
implementing this feature at this time.

BOOL CRectItem::CanActivate()
{
 return FALSE;
}

\oclient\rectitem.cpp(53) : error C2065: 'GetBounds' : undeclared identifier
\oclient\rectitem.cpp(53) : error C2064: term does not evaluate to a function
\oclient\rectitem.cpp(84) : error C2065: 'SetBounds' : undeclared identifier
\oclient\rectitem.cpp(84) : error C2064: term does not evaluate to a function

To make sure that the framework never attempts to in-place activate, you should override
COleClientItem::CanActivate as follows:

In MFC/OLE1, COleClientItem::GetBounds and SetBounds were used to query and manipulate the extent of an
item (the left and top members were always zero). In MFC/OLE 2 this is more directly supported by
COleClientItem::GetExtent and SetExtent , which deal with a SIZE or CSize instead.

The code for your new SetItemRectToServer, and UpdateItemRectFromServer calls look like this:

BOOL CRectItem::UpdateItemRectFromServer()
{
 ASSERT(m_bTrackServerSize);
 CSize size;
 if (!GetExtent(&size))
 return FALSE; // blank

 // map from HIMETRIC to screen coordinates
 {
 CClientDC screenDC(NULL);
 screenDC.SetMapMode(MM_HIMETRIC);
 screenDC.LPtoDP(&size);
 }
 // just set the item size
 if (m_rect.Size() != size)
 {
 // invalidate the old size/position
 Invalidate();
 m_rect.right = m_rect.left + size.cx;
 m_rect.bottom = m_rect.top + size.cy;
 // as well as the new size/position
 Invalidate();
 }
 return TRUE;
}

BOOL CRectItem::SetItemRectToServer()
{
 // set the official bounds for the embedded item
 CSize size = m_rect.Size();
 {
 CClientDC screenDC(NULL);
 screenDC.SetMapMode(MM_HIMETRIC);
 screenDC.DPtoLP(&size);
 }
 TRY
 {
 SetExtent(size); // may do a wait
 }
 CATCH(CException, e)
 {
 return FALSE; // links will not allow SetBounds
 }
 END_CATCH
 return TRUE;
}

\oclient\frame.cpp(50) : error C2039: 'InWaitForRelease' : is not a member of 'COleClientItem'
\oclient\frame.cpp(50) : error C2065: 'InWaitForRelease' : undeclared identifier
\oclient\frame.cpp(50) : error C2064: term does not evaluate to a function

Other Necessary Changes

In MFC/OLE1 synchronous API calls from a container to a server were simulated, because OLE1 was inherently
asynchronous in many cases. It was necessary to check for an outstanding asynchronous call in progress before
processing commands from the user. MFC/OLE1 provided the COleClientItem::InWaitForRelease function for
doing so. In MFC/OLE 2 this is not necessary, so you can to remove the override of OnCommand in CMainFrame
all together.

At this point OCLIENT will compile and link.

There are few things that are not done that will keep OCLIENT from running, however. It is better to fix these

if (!AfxOleInit())
{
 AfxMessageBox("Failed to initialize OLE libraries");
 return FALSE;
}

void
CRectItem::OnChange(OLE_NOTIFICATION wNotification, DWORD dwParam)
{
 if (m_bTrackServerSize && !UpdateItemRectFromServer())
 {
 // Blank object
 if (wNotification == OLE_CLOSED)
 {
 // no data received for the object - destroy it
 ASSERT(!IsVisible());
 GetDocument()->DeleteItem(this);
 return; // no update (item is gone now)
 }
 }
 if (wNotification != OLE_CLOSED)
 Dirty();
 Invalidate();
 // any change will cause a redraw
}

ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE, OnUpdatePasteMenu)
ON_UPDATE_COMMAND_UI(ID_EDIT_PASTE_LINK, OnUpdatePasteLinkMenu)
ON_UPDATE_COMMAND_UI(ID_OLE_EDIT_LINKS, OnUpdateEditLinksMenu)
ON_COMMAND(ID_OLE_EDIT_LINKS, COleDocument::OnEditLinks)
ON_UPDATE_COMMAND_UI(ID_OLE_VERB_FIRST, OnUpdateObjectVerbMenu)
ON_UPDATE_COMMAND_UI(ID_OLE_EDIT_CONVERT, OnUpdateObjectVerbMenu)
ON_COMMAND(ID_OLE_EDIT_CONVERT, OnEditConvert)

problems now instead of later.

First, it is necessary to initialize the OLE libraries. This is done by calling AfxOleInit from InitInstance :

It is also a good idea to check for virtual functions for parameter list changes. One such function is
COleClientItem::OnChange , overridden in every MFC/OLE container application. By looking at online help, you'll

see that an extra 'DWORD dwParam' was added. The new CRectItem::OnChange looks as follows:

In MFC/OLE1, container applications derived the document class from COleClientDoc . In MFC/OLE 2 this class
has been removed and replaced by COleDocument (this new organization makes it easier to build container/server
applications). There is a #define that maps COleClientDoc to COleDocument to simplify porting of MFC/OLE1
applications to MFC/OLE 2, such as OCLIENT. One of the features not supplied by COleDocument that was
provided by COleClientDoc is the standard command message map entries. This is done so that server
applications, which also use COleDocument (indirectly), do not carry with them the overhead of these command
handlers unless they are a container/server application. You need to add the following entries to the CMainDoc
message map:

The implementation of all of these commands is in COleDocument , which is the base class for your document.

At this point, OCLIENT is a functional OLE container application. It is possible to insert items of any type (OLE1 or
OLE 2). Since the necessary code to enable in-place activation is not implemented, items are edited in a separate
window much like with OLE1. The next section discusses the necessary changes to enable in-place editing
(sometimes called "Visual Editing").

Adding "Visual Editing"

CDocTemplate* pTemplate = new CMultiDocTemplate(
 IDR_OLECLITYPE,
 RUNTIME_CLASS(CMainDoc),
 RUNTIME_CLASS(CMDIChildWnd), // standard MDI child frame
 RUNTIME_CLASS(CMainView));

pTemplate->SetContainerInfo(IDR_OLECLITYPE_INPLACE);

AddDocTemplate(pTemplate);

pItem->DoVerb(OLEIVERB_SHOW, this);

m_pSelection->DoVerb(OLEIVERB_PRIMARY, this);

void CRectItem::OnGetItemPosition(CRect& rPosition)
{
 rPosition = m_rect;
}

One of the most interesting features of OLE is in-place activation (or "Visual Editing"). This feature allows the
server application to take over portions of the container's user interface to provided a more seamless editing
interface for the user. To implement in-place activation to OCLIENT, some special resources need to be added, as
well as some additional code. These resources and the code are normally provided by AppWizard — in fact, much
of the code here was borrowed directly from a fresh AppWizard application with "Container" support.

First of all, it is necessary to add a menu resource to be used when there is an item which is in-place active. You
can create this extra menu resource in Visual C++ by copying the IDR_OCLITYPE resource and removing all but
the File and Window pop-ups. Two separator bars are inserted between the File and Window pop-ups to indicate
the separation of groups (it should look like: File || Window). For more information on what these separators
mean and how the server and container menus are merged see Menus and Resources: Menu Merging.

Once you have these menus created, you need to let the framework know about them. This is done by calling
CDocTemplate::SetContainerInfo for the document template before you add it to the document template list in

your InitInstance. The new code to register the document template looks like this:

The IDR_OLECLITYPE_INPLACE resource is the special in-place resource created in Visual C++.

To enable in-place activation, there are some things that need to change in both the CView (CMainView) derived
class as well as the COleClientItem derived class (CRectItem). All of these overrides are provided by AppWizard
and most of the implementation will come directly from a default AppWizard application.

In the first step of this port, in-place activation was disabled entirely by overriding COleClientItem::CanActivate .
This override should be removed to allow in-place activation. In addition, NULL was passed to all calls to DoVerb

(there are two of them) because providing the view was only necessary for in-place activation. To fully implement
in-place activation, it is necessary to pass the correct view in the DoVerb call. One of these calls is in
CMainView::OnInsertObject :

Another is in CMainView::OnLButtonDblClk :

It is necessary to override COleClientItem::OnGetItemPosition . This tells the server where to put its window
relative to the container's window when the item is in-place activated. For OCLIENT, the implementation is trivial:

Most servers also implement what is called "in-place resizing." This allows the server window to be sized and

BOOL CRectItem::OnChangeItemPosition(const CRect& rectPos)
{
 ASSERT_VALID(this);

 if (!COleClientItem::OnChangeItemPosition(rectPos))
 return FALSE;

 Invalidate();
 m_rect = rectPos;
 Invalidate();
 GetDocument()->SetModifiedFlag();

 return TRUE;
}

// The following command handler provides the standard
// keyboard user interface to cancel an in-place
// editing session.void CMainView::OnCancelEdit()
{
 // Close any in-place active item on this view.
 COleClientItem* pActiveItem =
 GetDocument()->GetInPlaceActiveItem(this);
 if (pActiveItem != NULL)
 pActiveItem->Close();
 ASSERT(GetDocument()->GetInPlaceActiveItem(this) == NULL);
}

if (pNewSel != m_pSelection || pNewSel == NULL)
{
 COleClientItem* pActiveItem =
 GetDocument()->GetInPlaceActiveItem(this);
 if (pActiveItem != NULL&& pActiveItem != pNewSel)
 pActiveItem->Close();
}

moved while the user is editing the item. The container must participate in this action, since moving or resizing the
window usually affects the position and size within the container document itself. The implementation for
OCLIENT synchronizes the internal rectangle maintained by m_rect with the new position and size.

At this point, there is enough code to allow an item to be in-place activated and to deal with sizing and moving the
item when it is active, but no code will allow the user to exit the editing session. Although some servers will
provide this functionality themselves by handling the escape key, it is suggested that containers provide two ways
to deactivate an item: (1) by clicking outside the item, and (2) by pressing the ESCAPE key.

For the ESCAPE key, add an accelerator with Visual C++ that maps the VK_ESCAPE key to a command,
ID_CANCEL_EDIT is added to the resources. The handler for this command follows:

To handle the case where the user clicks outside the item, you add the following code to the start of
CMainView::SetSelection :

When an item is in-place active, it should have the focus. To make sure this is the case you handle OnSetFocus so
that focus is always transferred to the active item when your view receives the focus:

// Special handling of OnSetFocus and OnSize are required
// when an object is being edited in-place.
void CMainView::OnSetFocus(CWnd* pOldWnd)
{
 COleClientItem* pActiveItem =
 GetDocument()->GetInPlaceActiveItem(this);

 if (pActiveItem != NULL &&
 pActiveItem->GetItemState() == COleClientItem::activeUIState)
 {
 // need to set focus to this item if it is same view
 CWnd* pWnd = pActiveItem->GetInPlaceWindow();
 if (pWnd != NULL)
 {
 pWnd->SetFocus(); // don't call the base class
 return;
 }
 }

 CView::OnSetFocus(pOldWnd);
}

void CMainView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);
 COleClientItem* pActiveItem =
 GetDocument()->GetInPlaceActiveItem(this);
 if (pActiveItem != NULL)
 pActiveItem->SetItemRects();
}

Case Study: HIERSVR from MFC 2.0

NOTENOTE

Getting It Up and Running

Compile and Fix Errors

When the view is resized, you need to notify the active item that the clipping rectangle has changed. To do this you
provide a handler for OnSize :

HIERSVR was also included in MFC 2.0 and implemented OLE with MFC/OLE1. This note briefly describes the
steps by which this application was initially converted to use the MFC/OLE 2 classes. A number of features were
added after the initial port was completed to better illustrate the MFC/OLE 2 classes. These features will not be
covered here; refer to the sample itself for more information on those advanced features.

The compiler errors and step-by-step process was created with Visual C++ 2.0. Specific error messages and locations may
have changed with Visual C++ 4.0, but the conceptual information remains valid.

The approach taken to port the HIERSVR sample to MFC/OLE is to start by building it and fixing the obvious
compiler errors that will result. If you take the HIERSVR sample from MFC 2.0 and compile it under this version
of MFC, you'll find that there are not many errors to resolve (although there are more than with the OCLIENT
sample). The errors in the order in which they usually occur are described below.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

\hiersvr\hiersvr.cpp(83) : error C2039: 'RunEmbedded' : is not a member of 'COleTemplateServer'

// this is the GUID for HIERSVR documents
static const GUID BASED_CODE clsid =
{ 0xA0A16360L, 0xC19B, 0x101A, { 0x8C, 0xE5, 0x00, 0xDD, 0x01, 0x11, 0x3F, 0x12 } };

///
// COLEServerApp initialization

BOOL COLEServerApp::InitInstance()
{
 // OLE 2 initialization
 if (!AfxOleInit())
 {
 AfxMessageBox("Initialization of the OLE failed!");
 return FALSE;
 }

 // Standard initialization
 LoadStdProfileSettings(); // Load standard INI file options

 // Register document templates
 CDocTemplate* pDocTemplate;
 pDocTemplate = new CMultiDocTemplate(IDR_HIERSVRTYPE,
 RUNTIME_CLASS(CServerDoc),
 RUNTIME_CLASS(CMDIChildWnd),
 RUNTIME_CLASS(CServerView));
 pDocTemplate->SetServerInfo(IDR_HIERSVRTYPE_SRVR_EMB);
 AddDocTemplate(pDocTemplate);

 // create main MDI Frame window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame->LoadFrame(IDR_MAINFRAME))
 return FALSE;
 m_pMainWnd = pMainFrame;

This first error points out a much larger problem with the InitInstance function for servers. The initialization
required for an OLE server is probably one of the biggest changes you'll have to make to your MFC/OLE1
application to get it running. The best thing to do is look at what AppWizard creates for an OLE server and modify
your code as appropriate. Here are some points to keep in mind:

It is necessary to initialize the OLE libraries by calling AfxOleInit

Call SetServerInfo on the document template object to set server resource handles and runtime class information
that you can't set with the CDocTemplate constructor.

Don't show the main window of your application if /Embedding is present on the command line.

You'll need a GUID for your document. This is a unique identifier for your document's type (128 bits). AppWizard
will create one for you — so if you use the technique described here of copying the new code from a new
AppWizard generated server application, you can simply "steal" the GUID from that application. If not, you can
use the GUIDGEN.EXE utility in the BIN directory.

It is necessary to "connect" your COleTemplateServer object to the document template by calling
COleTemplateServer::ConnectTemplate .

Update the system registry when your application is run stand-alone. This way, if the user moves the .EXE for your
application, running it from its new location will update the Windows system registration database to point to the
new location.

After applying all of these changes based on what AppWizard creates for InitInstance , the InitInstance (and
related GUID) for HIERSVR should read as follows:

 m_pMainWnd = pMainFrame;

 SetDialogBkColor(); // gray look

 // enable file manager drag/drop and DDE Execute open
 m_pMainWnd->DragAcceptFiles();
 EnableShellOpen();

 m_server.ConnectTemplate(clsid, pDocTemplate, FALSE);
 COleTemplateServer::RegisterAll();

 // try to launch as an OLE server
 if (RunEmbedded())
 {
 // "short-circuit" initialization -- run as server!
 return TRUE;
 }
 m_server.UpdateRegistry();
 RegisterShellFileTypes();

 // not run as OLE server, so show the main window
 if (m_lpCmdLine[0] == '\0')
 {
 // create a new (empty) document
 OnFileNew();
 }
 else
 {
 // open an existing document
 OpenDocumentFile(m_lpCmdLine);
 }

 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

 return TRUE;
}

\hiersvr\svritem.h(60) : error C2433: 'OLESTATUS' : 'virtual' not permitted on data declarations
\hiersvr\svritem.h(60) : error C2501: 'OLESTATUS' : missing decl-specifiers
\hiersvr\svritem.h(60) : error C2146: syntax error : missing ';' before identifier 'OnSetData'
\hiersvr\svritem.h(60) : error C2061: syntax error : identifier 'OLECLIPFORMAT'
\hiersvr\svritem.h(60) : error C2501: 'OnSetData' : missing decl-specifiers

You will notice that the code above refers to a new resource ID, IDR_HIERSVRTYPE_SRVR_EMB. This is the
menu resource to be used when a document that is embedded in another container is edited. In MFC/OLE1 the
menu items specific to editing an embedded item were modified on the fly. Using an entirely different menu
structure when editing an embedded item instead of editing a file-based document makes it much easier to
provide different user interfaces for these two separate modes. As you'll see later, an entirely separate menu
resource is used when editing an embedded object in-place.

To create this resource, load the resource script into Visual C++ and copy the existing IDR_HIERSVRTYPE menu
resource. Rename the new resource to IDR_HIERSVRTYPE_SRVR_EMB (this is the same naming convention that
AppWizard uses). Next change "File Save" to "File Update"; give it command ID ID_FILE_UPDATE. Also change
"File Save As" to "File Save Copy As"; give it command ID ID_FILE_SAVE_COPY_AS. The framework provides the
implementation of both of these commands.

There are a number of errors resulting from the override of OnSetData , since it is referring to the OLESTATUS
type. OLESTATUS was the way OLE1 returned errors. This has changed to HRESULT in OLE 2, although MFC
usually converts an HRESULT into a COleException containing the error. In this particular case, the override of
OnSetData is no longer necessary, so the easiest thing to do is to remove it.

\hiersvr\svritem.cpp(30) : error C2660: 'COleServerItem::COleServerItem' : function does not take 1 parameters

\hiersvr\svritem.cpp(44) : error C2259: 'CServerItem' : illegal attempt to instantiate abstract class
\hiersvr\svritem.cpp(44) : error C2259: 'CServerItem' : illegal attempt to instantiate abstract class

BOOL CServerItem::OnDraw(CDC* pDC, CSize& rSize)
{
 // request from OLE to draw node
 pDC->SetMapMode(MM_TEXT); // always in pixels
 return DoDraw(pDC, CPoint(0, 0), FALSE);
}

BOOL CServerItem::OnGetExtent(DVASPECT dwDrawAspect, CSize& rSize)
{
 if (dwDrawAspect != DVASPECT_CONTENT)
 return COleServerItem::OnGetExtent(dwDrawAspect, rSize);

 rSize = CalcNodeSize();
 return TRUE;
}

\hiersvr\svritem.cpp(104) : error C2065: 'm_rectBounds' : undeclared identifier
\hiersvr\svritem.cpp(104) : error C2228: left of '.SetRect' must have class/struct/union type
\hiersvr\svritem.cpp(106) : error C2664: 'void __pascal __far DPtoLP(struct ::tagPOINT __far *,
 int)__far const ' : cannot convert parameter 1 from 'int __far *' to 'struct ::tagPOINT __far *'

The COleServerItem constructor takes an extra 'BOOL' parameter. This flag determines how memory
management is done on the COleServerItem objects. By setting it to TRUE, the framework handles the memory
management of these objects — deleting them when they are no longer necessary. HIERSVR uses CServerItem

(derived from COleServerItem) objects as part of its native data, so you'll set this flag to FALSE. This lets HIERSVR
determine when each server item is deleted.

As these errors imply, there are some 'pure-virtual' functions that have not been overridden in CServerItem. Most
likely this is caused by the fact that OnDraw's parameter list has changed. To fix this error, change
CServerItem::OnDraw as follows (as well as the declaration in svritem.h):

The new parameter is 'rSize'. This allows you to fill in the size of the drawing, if convenient. This size must be in
HIMETRIC. In this case, it is not convenient to fill this value in, so the framework calls OnGetExtent to retrieve the
extent. For that to work, you'll have to implement OnGetExtent :

In the CServerItem::CalcNodeSize function the item size is converted to HIMETRIC and stored in m_rectBounds.
The undocumented 'm_rectBounds' member of COleServerItem does not exist (it has been partially replaced by
m_sizeExtent, but in OLE 2 this member has a slightly different usage than m_rectBounds did in OLE1). Instead of
setting the HIMETRIC size into this member variable, you'll return it. This return value is used in OnGetExtent ,
implemented previously.

CSize CServerItem::CalcNodeSize()
{
 CClientDC dcScreen(NULL);

 m_sizeNode = dcScreen.GetTextExtent(m_strDescription,
 m_strDescription.GetLength());
 m_sizeNode += CSize(CX_INSET * 2, CY_INSET * 2);

 // set suggested HIMETRIC size
 CSize size(m_sizeNode.cx, m_sizeNode.cy);
 dcScreen.SetMapMode(MM_HIMETRIC);
 dcScreen.DPtoLP(&size);
 return size;
}

\hiersvr\svrview.cpp(325) : error C2660: 'CopyToClipboard' : function does not take 2 parameters

void CServerView::OnEditCopy()
{
 if (m_pSelectedNode == NULL)
 AfxThrowNotSupportedException();

 TRY
 {
 m_pSelectedNode->CopyToClipboard(TRUE);
 }
 CATCH_ALL(e)
 {
 AfxMessageBox("Copy to clipboard failed");
 }
 END_CATCH_ALL
}

Adding "Visual Editing"

CServerItem also overrides COleServerItem::OnGetTextData . This function is obsolete in MFC/OLE and is replaced
by a different mechanism. The MFC 3.0 version of the MFC OLE sample HIERSVR implements this functionality
by overriding COleServerItem::OnRenderFileData . This functionality is not important for this basic port, so you can
remove the OnGetTextData override.

There are many more errors in svritem.cpp that have not been addressed. They are not "real" errors — just errors
caused by previous errors.

COleServerItem::CopyToClipboard no longer supports the bIncludeNative flag. The native data (the data written
out by the server item's Serialize function) is always copied, so you remove the first parameter. In addition,
CopyToClipboard will throw an exception when an error happens instead of returning FALSE. Change the code for

CServerView::OnEditCopy as follows:

Although there were more errors resulting from the compilation of the MFC 2.0 version of HIERSVR than there
were for the same version of OCLIENT, there were actually fewer changes.

At this point HIERSVR will compile and link and function as an OLE server, but without the in-place editing
feature, which will be implemented next.

To add "Visual Editing" (or in-place activation) to this server application, there are only a few things you must take
care of:

You need a special menu resource to be used when the item is in-place active.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

pDocTemplate->SetServerInfo(IDR_HIERSVRTYPE_SRVR_EMB,
 IDR_HIERSVRTYPE_SRVR_IP,
 RUNTIME_CLASS(CInPlaceFrame));

pMenu->TrackPopupMenu(TPM_CENTERALIGN | TPM_RIGHTBUTTON,
 point.x,
 point.y,
 AfxGetApp()->m_pMainWnd);

pMenu->TrackPopupMenu(TPM_CENTERALIGN | TPM_RIGHTBUTTON,
 point.x,
 point.y,
 AfxGetMainWnd());

This application has a toolbar, so you'll need a toolbar with only a subset of the normal toolbar to match the
menu commands available from the server (matches the menu resource mentioned above).

You need a new class derived from COleIPFrameWnd that provides the in-place user interface (much like
CMainFrame, derived from CMDIFrameWnd , provides the MDI user interface).

You need to tell the framework about these special resources and classes.

The menu resource is easy to create. Run Visual C++, copy the menu resource IDR_HIERSVRTYPE to a menu
resource called IDR_HIERSVRTYPE_SRVR_IP. Modify the menu so that only the Edit and Help menu popups are
left. Add two separators to the menu in between the Edit and Help menus (it should look like: Edit || Help). For
more information on what these separators mean and how the server and container menus are merged, see
Menus and Resources: Menu Merging.

The bitmap for the subset toolbar can be easily created by copying the one from a fresh AppWizard generated
application with a "Server" option checked. This bitmap can then be imported into Visual C++. Be sure to give the
bitmap an ID of IDR_HIERSVRTYPE_SRVR_IP.

The class derived from COleIPFrameWnd can be copied from an AppWizard generated application with server
support as well. Copy both files, IPFRAME.CPP and IPFRAME.H and add them to the project. Make sure that the
LoadBitmap call refers to IDR_HIERSVRTYPE_SRVR_IP, the bitmap created in the previous step.

Now that all the new resources and classes are created, add the necessary code so that the framework knows
about these (and knows that this application now supports in-place editing). This is done by adding some more
parameters to the SetServerInfo call in the InitInstance function:

It is now ready to run in-place in any container that also supports in-place activation. But, there is one minor bug
still lurking in the code. HIERSVR supports a context menu, displayed when the user presses the right mouse
button. This menu works when HIERSVR is fully open, but does not work when editing an embedding in-place.
The reason can be pinned down to this single line of code in CServerView::OnRButtonDown:

Notice the reference to AfxGetApp()->m_pMainWnd . When the server is in-place activated, it has a main window and
m_pMainWnd is set, but it is usually invisible. Furthermore, this window refers to the main window of the
application, the MDI frame window that appears when the server is fully open or run stand-alone. It does not refer
to the active frame window — which when in-place activated is a frame window derived from COleIPFrameWnd . To
get the correct active window even when in-place editing, this version of MFC adds a new function, AfxGetMainWnd

. Generally, you should use this function instead of AfxGetApp()->m_pMainWnd . This code needs to change as follows:

Now you have an OLE server minimally enabled for functional in-place activation. But there are still many
features available with MFC/OLE 2 that were not available in MFC/OLE1. See the HIERSVR sample for more
ideas on features you might want to implement. Some of the features that HIERSVR implements are listed below:

See also

Zooming, for true WYSIWYG behavior with respect to the container.

Drag / drop and a custom clipboard format.

Scrolling the container window as the selection is changed.

The HIERSVR sample in MFC 3.0 also uses a slightly different design for its server items. This helps conserve
memory and makes your links more flexible. With the 2.0 version of HIERSVR each node in the tree is-a
COleServerItem . COleServerItem carries a bit more overhead than is strictly necessary for each of these nodes, but

a COleServerItem is required for each active link. But for the most part, there are very few active links at any given
time. To make this more efficient, the HIERSVR in this version of MFC separates the node from the
COleServerItem . It has both a CServerNode and a CServerItem class. The CServerItem (derived from
COleServerItem) is only created as necessary. Once the container (or containers) stop using that particular link to

that particular node, the CServerItem object associated with the CServerNode is deleted. This design is more
efficient and more flexible. Its flexibility comes in when dealing with multiple selection links. Neither of these two
versions of HIERSVR support multiple selection, but it would be much easier to add (and to support links to such
selections) with the MFC 3.0 version of HIERSVR, since the COleServerItem is separated from the native data.

Technical Notes by Number
Technical Notes by Category

TN042: ODBC Driver Developer Recommendations
3/4/2019 • 4 minutes to read • Edit Online

NOTENOTE

ODBC's Cursor Library

CDatabases

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes guidelines for ODBC driver writers. It outlines general requirements and assumptions of
ODBC functionality that the MFC Database classes make, and various expected semantic details. Required driver
functionality to support the three CRecordset Open modes (forwardOnly, snapshot and dynaset) are described.

The MFC Database classes present functionality to the user that in many cases surpasses the functionality
provided by most level 1 ODBC drivers. Fortunately, ODBC's Cursor Library will layer itself between the database
classes and the driver, and will automatically provide much of this additional functionality.

For instance, most 1.0 drivers do not support backward scrolling. The Cursor Library can detect this, and will cache
rows from the driver and present them as requested on FETCH_PREV calls in SQLExtendedFetch .

Another important example of cursor library dependence is positioned updates. Most 1.0 drivers also do not have
positioned updates, but the cursor library will generate update statements which identify a target row on the data
source based upon its current cached data values, or a cached timestamp value.

The class library never makes use of multiple rowsets. Therefore, the few SQLSetPos statements are always
applied to row 1 of the rowset.

Each CDatabase allocates a single HDBC. (If CDatabase 's ExecuteSQL function is used, an HSTMT is temporarily
allocated.) So if multiple CDatabase 's are required, multiple HDBCs per HENV must be supported.

The database classes require the cursor library. This is reflected in a SQLSetConnections call
SQL_ODBC_CURSORS, SQL_CUR_USE_ODBC.

SQLDriverConnect , SQL_DRIVER_COMPLETE is used by CDatabase::Open to establish the connection to the data
source.

The driver must support SQLGetInfo SQL_ODBC_API_CONFORMANCE >= SQL_OAC_LEVEL1,
SQLGetInfo SQL_ODBC_SQL_CONFORMANCE >= SQL_OSC_MINIMUM.

In order for transactions to be supported for the CDatabase and its dependent recordsets,
SQLGetInfo SQL_CURSOR_COMMIT_BEHAVIOR and SQL_CURSOR_ROLLBACK_BEHAVIOR must have

SQL_CR_PRESERVE . Otherwise, attempts to perform transaction control will be ignored.

SQLGetInfo SQL_DATA_SOURCE_READ_ONLY must be supported. If it returns "Y", no update operations will be performed
on the data source.

If the CDatabase is opened ReadOnly, an attempt to set the data source read only will be made with
SQLSetConnectOption SQL_ACCESS_MODE , SQL_MODE_READ_ONLY .

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn042-odbc-driver-developer-recommendations.md

ExecuteSQL

GetDatabaseName

BeginTrans, CommitTrans, Rollback

CRecordsets

Updating

If identifiers require quoting, this information should be returned from the driver with an
SQLGetInfo SQL_IDENTIFIER_QUOTE_CHAR call.

For debugging purposes, SQLGetInfo SQL_DBMS_VER and SQL_DBMS_NAME are retrieved from the driver.

SQLSetStmtOption SQL_QUERY_TIMEOUT and SQL_ASYNC_ENABLE may be called on a CDatabase 's HDBC.

SQLError may be called with any or all arguments NULL.

Of course, SQLAllocEnv , SQLAllocConnect , SQLDisconnect and SQLFreeConnect must be supported.

In addition to allocating and freeing a temporary HSTMT, ExecuteSQL calls SQLExecDirect , SQLFetch ,
SQLNumResultCol and SQLMoreResults . SQLCancel may be called on the HSTMT.

SQLGetInfo SQL_DATABASE_NAME will be called.

SQLSetConnectOption SQL_AUTOCOMMIT and SQLTransact SQL_COMMIT , SQL_ROLLBACK and SQL_AUTOCOMMIT
will be called if transaction requests are made.

SQLAllocStmt , SQLPrepare , SQLExecute (For Open and Requery), SQLExecDirect (for update operations),
SQLFreeStmt must be supported. SQLNumResultCols and SQLDescribeCol will be called on the results set at various

times.

SQLSetParam is used extensively for binding parameter data and DATA_AT_EXEC functionality.

SQLBindCol is used extensively to register output Column data storage locations with ODBC.

Two SQLGetData calls are used to retrieve SQL_LONG_VARCHAR and SQL_LONG_VARBINARY data. The first
call attempts to find the total length of the column value by calling SQLGetData with cbMaxValue of 0, but with a
valid pcbValue. If pcbValue holds SQL_NO_TOTAL, an exception is thrown. Otherwise, an HGLOBAL is allocated,
and another SQLGetData call made to retrieve the entire result.

If pessimistic locking is requested, SQLGetInfo SQL_LOCK_TYPES will be queried. If SQL_LCK_EXCLUSIVE is not
supported, an exception will be thrown.

Attempts to update a CRecordset (snapshot or dynaset) will cause a second HSTMT to be allocated. For drivers
that do not support second HSTMT, the cursor library will simulate this functionality. Unfortunately, this may
sometimes mean forcing the current query on the first HSTMT to completion before processing the second
HSTMT's request.

SQLFreeStmt SQL_CLOSE and SQL_RESET_PARAMS and SQLGetCursorName will be called during update
operations.

If there are CLongBinarys in the outputColumns, ODBC's DATA_AT_EXEC functionality must be supported.
This includes returning SQL_NEED_DATA from SQLExecDirect , SQLParamData and SQLPutData .

SQLRowCount is called after executing to verify that only 1 record was updated by the SQLExecDirect .

ForwardOnly Cursors

Snapshot Cursors

Dynaset Cursors

See also

Only SQLFetch is required for the Move operations. Note that forwardOnly cursors do not support updates.

Snapshot functionality requires SQLExtendedFetch support. As noted above, the ODBC cursor library will detect
when a driver does not support SQLExtendedFetch , and provide the necessary support itself.

SQLGetInfo , SQL_SCROLL_OPTIONS must support SQL_SO_STATIC.

Below is the minimum support required to open a dynaset:

SQLGetInfo , SQL_ODBC_VER must return > "01".

SQLGetInfo , SQL_SCROLL_OPTIONS must support SQL_SO_KEYSET_DRIVEN .

SQLGetInfo , SQL_ROW_UPDATES must return "Y".

SQLGetInfo , SQL_POSITIONED_UPDATES must support SQL_PS_POSITIONED_DELETE and
SQL_PS_POSITIONED_UPDATE .

In addition, if pessimistic locking is requested, a call to SQLSetPos with irow 1, fRefresh FALSE and fLock
SQL_LCK_EXCLUSIVE will be made.

Technical Notes by Number
Technical Notes by Category

TN043: RFX Routines
3/4/2019 • 5 minutes to read • Edit Online

NOTENOTE

Overview of Record Field Exchange

void CMySet::DoFieldExchange(CFieldExchange* pFX)
{
 //{{AFX_FIELD_MAP(CMySet)
 <recordset exchange field type call>
 <recordset exchange function call>
 //}}AFX_FIELD_MAP
}

pFX->SetFieldType(CFieldExchange::outputColumn);

RFX_Custom(pFX, "Col2", m_Col2);

Notes

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes the record field exchange (RFX) architecture. It also describes how you write an RFX_
procedure.

All recordset field functions are done with C++ code. There are no special resources or magic macros. The heart of
the mechanism is a virtual function that must be overridden in every derived recordset class. It is always found in
this form:

The special format AFX comments allow ClassWizard to locate and edit the code within this function. Code that is
not compatible with ClassWizard should be placed outside of the special format comments.

In the above example, <recordset_exchange_field_type_call> is in the form:

and <recordset_exchange_function_call> is in the form:

Most RFX_ functions have three arguments as shown above, but some (e.g. RFX_Text and RFX_Binary) have
additional optional arguments.

More than one RFX_ may be included in each DoDataExchange function.

See 'afxdb.h' for a list of all the recordset field exchange routines provided with MFC.

Recordset field calls are a way of registering memory locations (usually data members) to store field data for a
CMySet class.

Recordset field functions are designed to work only with the CRecordset classes. They are not generally usable by

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn043-rfx-routines.md

How Does It Work

User Extensions

any other MFC classes.

Initial values of data are set in the standard C++ constructor, usually in a block with //{{AFX_FIELD_INIT(CMylSet)
and //}}AFX_FIELD_INIT comments.

Each RFX_ function must support various operations, ranging from returning the dirty status of the field to
archiving the field in preparation for editing the field.

Each function that calls DoFieldExchange (for instance SetFieldNull , IsFieldDirty), does its own initialization
around the call to DoFieldExchange .

You do not need to understand the following in order to use record field exchange. However, understanding how
this works behind the scenes will help you write your own exchange procedure.

The DoFieldExchange member function is much like the Serialize member function — it is responsible for
getting or setting data to/from an external form (in this case columns from the result of an ODBC query) from/to
member data in the class. The pFX parameter is the context for doing data exchange and is similar to the CArchive
parameter to CObject::Serialize . The pFX (a CFieldExchange object) has an operation indicator, which is similar
to, but a generalization of the CArchive direction flag. An RFX function may have to support the following
operations:

BindParam — Indicate where ODBC should retrieve parameter data

BindFieldToColumn — Indicate where ODBC must retrieve/deposit outputColumn data

Fixup — Set CString/CByteArray lengths, set NULL status bit

MarkForAddNew — Mark dirty if value has changed since AddNew call

MarkForUpdate — Mark dirty if value has changed since Edit call

Name — Append field names for fields marked dirty

NameValue — Append "<column name>=" for fields marked dirty

Value — Append "" followed by separator, like ',' or ' '

SetFieldDirty — Set status bit dirty (i.e. changed) field

SetFieldNull — Set status bit indicating null value for field

IsFieldDirty — Return value of dirty status bit

IsFieldNull — Return value of null status bit

IsFieldNullable — Return TRUE if field can hold NULL values

StoreField — Archive field value

LoadField — Reload archived field value

GetFieldInfoValue — Return general information on a field

GetFieldInfoOrdinal — Return general information on a field

There are several ways to extend the default RFX mechanism. You can

NOTENOTE

Writing a Custom RFX

CBookmark

void AFXAPI RFX_Bigint(CFieldExchange* pFX,
 const char *szName,
 BIGINT& value);

while (posExtraFields != NULL)
{
 RFX_Text(pFX,
 m_listName.GetNext(posExtraFields),
 m_listValue.GetNext(posExtraValues));
}

Add new data types. For example:

Add new exchange procedures (RFX_).

Have the DoFieldExchange member function conditionally include additional RFX calls or any other valid
C++ statements.

Such code cannot be edited by ClassWizard and should be used only outside of the special format comments.

To write your own Custom RFX function, it is suggested that you copy an existing RFX function and modify it to
your own purposes. Selecting the right RFX to copy can make your job much easier. Some RFX functions have
some unique properties that you should take into account when deciding which to copy.

RFX_Long and RFX_Int : These are the simplest RFX functions. The data value does not need any special
interpretation, and the data size is fixed.

RFX_Single and RFX_Double : Like RFX_Long and RFX_Int above, these functions are simple and can make use of
the default implementation extensively. They are stored in dbflt.cpp instead of dbrfx.cpp, however, to enable
loading the runtime floating point library only when they are explicitly reference.

RFX_Text and RFX_Binary : These two functions preallocate a static buffer to hold string/binary information, and
must register these buffers with ODBC SQLBindCol instead of registering &value. Because of this, these two
functions have lots of special-case code.

RFX_Date : ODBC returns date and time information in their own TIMESTAMP_STRUCT data structure. This
function dynamically allocates a TIMESTAMP_STRUCT as a "proxy" for sending and receiving date time data.
Various operations must transfer the date and time information between the C++ CTime object and the
TIMESTAMP_STRUCT proxy. This complicates this function considerably, but it is a good example of how to use a
proxy for data transfer.

RFX_LongBinary : This is the only class library RFX function that does not use column binding to receive and send
data. This function ignores the BindFieldToColumn operation and instead, during the Fixup operation, allocates
storage to hold the incoming SQL_LONGVARCHAR or SQL_LONGVARBINARY data, then performs an
SQLGetData call to retrieve the value into the allocated storage. When preparing to send data values back to the
data source (such as NameValue and Value operations), this function uses ODBC's DATA_AT_EXEC functionality.
See Technical Note 45 for more information on working with SQL_LONGVARBINARY and

See also

SQL_LONGVARCHARs.

When writing your own RFX_ function, you will often be able to use CFieldExchange::Default to implement a
given operation. Look at the implementation of Default for the operation in question. If it performs the operation
you would be writing in your RFX_ function you can delegate to the CFieldExchange::Default . You can see
examples of calling CFieldExchange::Default in dbrfx.cpp

It is important to call IsFieldType at the start of your RFX function, and return immediately if it returns FALSE.
This mechanism keeps parameter operations from being performed on outputColumns, and vice versa (like calling
BindParam on an outputColumn). In addition, IsFieldType automatically keeps track of the count of

outputColumns (m_nFields) and params (m_nParams).

Technical Notes by Number
Technical Notes by Category

TN044: MFC Support for DBCS
3/4/2019 • 2 minutes to read • Edit Online

See also

This technical note described the support in MFC for "double-byte character sets" or DBCS. This information as
well as information on MFC's support for UNICODE is now available in the Class Library Reference.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn044-mfc-support-for-dbcs.md

TN045: MFC/Database Support for Long
Varchar/Varbinary
3/4/2019 • 7 minutes to read • Edit Online

NOTENOTE

Overview of Long Varchar/Varbinary Support

Binding a Long Data Column to a CString/CByteArray

NOTENOTE

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes how to retrieve and send the ODBC SQL_LONGVARCHAR and SQL_LONGVARBINARY
data types using the MFC database classes.

The ODBC SQL_LONG_VARCHAR and SQL_LONGBINARY data types (referred to here as long data columns)
can hold huge amounts of data. There are 3 ways you can handle this data:

Bind it to a CString / CByteArray .

Bind it to a CLongBinary .

Do not bind it at all and retrieve and send the long data value manually, independent of the database
classes.

Each of the three methods has advantages and disadvantages.

Long data columns are not supported for parameters to a query. They are only supported for outputColumns.

Advantages:

This approach is simple to understand, and you work with familiar classes. The framework provides CFormView

support for CString with DDX_Text . You have lots of general string or collection functionality with the CString

and CByteArray classes, and you can control the amount of memory allocated locally to hold the data value. The
framework maintains an old copy of field data during Edit or AddNew function calls, and the framework can
automatically detect changes to the data for you.

Since CString is designed for working on character data, and CByteArray for working on binary data, it is recommended
that you put the character data (SQL_LONGVARCHAR) into CString , and the binary data (SQL_LONGVARBINARY) into
CByteArray .

The RFX functions for CString and CByteArray have an additional argument which lets you override the default
size of allocated memory to hold the retrieved value for the data column. Note the nMaxLength argument in the
following function declarations:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn045-mfc-database-support-for-long-varchar-varbinary.md

void AFXAPI RFX_Text(CFieldExchange* pFX,
 const char *szName,
 CString& value,
 int nMaxLength = 255,
 int nColumnType =
 SQL_VARCHAR);

void AFXAPI RFX_Binary(CFieldExchange* pFX,
 const char *szName,
 CByteArray& value,
 int nMaxLength = 255);

NOTENOTE

Binding a Long Data Column to a CLongBinary

If you retrieve a long data column into a CString or CByteArray , the maximum returned amount of data is, by
default, 255 bytes. Anything beyond this is ignored. In this case, the framework will throw the exception
AFX_SQL_ERROR_DATA_TRUNCATED . Fortunately, you can explicitly increase nMaxLength to greater values,
up to MAXINT.

The value of nMaxLength is used by MFC to set the local buffer of the SQLBindColumn function. This is the local buffer for
storage of the data and does not actually affect the amount of data returned by the ODBC driver. RFX_Text and
RFX_Binary only make one call using SQLFetch to retrieve the data from the back-end database. Each ODBC driver has a

different limitation on the amount of data they can return in a single fetch. This limit may be much smaller than the value set
in nMaxLength, in which case the exception AFX_SQL_ERROR_DATA_TRUNCATED will be thrown. Under these
circumstances, switch to using RFX_LongBinary instead of RFX_Text or RFX_Binary so that all the data can be retrieved.

ClassWizard will bind a SQL_LONGVARCHAR to a CString , or a SQL_LONGVARBINARY to a CByteArray for
you. If you want to allocate more than 255 bytes into which you retrieve your long data column, you can then
supply an explicit value for nMaxLength.

When a long data column is bound to a CString or CByteArray , updating the field works just the same as when it
is bound to a SQL_VARCHAR or SQL_VARBINARY . During Edit , the data value is cached away and later
compared when Update is called to detect changes to the data value and set the Dirty and Null values for the
column appropriately.

If your long data column may contain more MAXINT bytes of data, you should probably consider retrieving it
into a CLongBinary .

Advantages:

This retrieves an entire long data column, up to available memory.

Disadvantages:

The data is held in memory. This approach is also prohibitively expensive for very large amounts of data. You must
call SetFieldDirty for the bound data member to ensure the field is included in an Update operation.

If you retrieve long data columns into a CLongBinary , the database classes will check the total size of the long data
column, then allocate an HGLOBAL memory segment large enough to hold it the entire data value. The database
classes then retrieve the entire data value into the allocated HGLOBAL .

If the data source cannot return the expected size of the long data column, the framework will throw the exception
AFX_SQL_ERROR_SQL_NO_TOTAL. If the attempt to allocate the HGLOBAL fails, a standard memory exception is
thrown.

How Updating a CLongBinary Works

NOTENOTE

Not Binding: Retrieving/Sending Data Directly from ODBC with
SQLGetData

ClassWizard will bind an SQL_LONGVARCHAR or SQL_LONGVARBINARY to a CLongBinary for you. Select
CLongBinary as the Variable Type in the Add Member Variable dialog. ClassWizard will then add an
RFX_LongBinary call to your DoFieldExchange call and increment the total number of bound fields.

To update long data column values, first make sure the allocated HGLOBAL is large enough to hold your new data
by calling ::GlobalSize on the m_hData member of the CLongBinary . If it is too small, release the HGLOBAL and
allocate one the appropriate size. Then set m_dwDataLength to reflect the new size.

Otherwise, if m_dwDataLength is larger than the size of the data you're replacing, you can either free and
reallocate the HGLOBAL , or leave it allocated. Make sure to indicate the number of bytes actually used in
m_dwDataLength.

It is not necessary to understand how updating a CLongBinary works, but it may be useful as an example on how
to send long data values to a data source, if you choose this third method, described below.

In order for a CLongBinary field to be included in an update, you must explicitly call SetFieldDirty for the field. If you
make any change to a field, including setting it Null, you must call SetFieldDirty . You must also call SetFieldNull , with
the second parameter being FALSE, to mark the field as having a value.

When updating a CLongBinary field, the database classes use ODBC's DATA_AT_EXEC mechanism (see ODBC
documentation on SQLSetPos 's rgbValue argument). When the framework prepares the insert or update
statement, instead of pointing to the HGLOBAL containing the data, the address of the CLongBinary is set as the
value of the column instead, and the length indicator set to SQL_DATA_AT_EXEC. Later, when the update
statement is sent to the data source, SQLExecDirect will return SQL_NEED_DATA. This alerts the framework that
the value of the param for this column is actually the address of a CLongBinary . The framework calls SQLGetData

once with a small buffer, expecting the driver to return the actual length of the data. If the driver returns the actual
length of the binary large object (the BLOB), MFC reallocates as much space as necessary to fetch the BLOB. If the
data source returns SQL_NO_TOTAL, indicating that it can't determine the size of the BLOB, MFC will create
smaller blocks. The default initial size is 64K, and subsequent blocks will be double the size; for example, the
second will be 128K, the third is 256K, and so on. The initial size is configurable.

With this method you completely bypass the database classes, and deal with the long data column yourself.

Advantages:

You can cache data to disk if necessary, or decide dynamically how much data to retrieve.

Disadvantages:

You don't get the framework's Edit or AddNew support, and you must write code yourself to perform basic
functionality (Delete does work though, since it is not a column level operation).

In this case, the long data column must be in the select list of the recordset, but should not be bound to by the
framework. One way to do this is to supply your own SQL statement via GetDefaultSQL or as the lpszSQL
argument to CRecordset 's Open function, and not bind the extra column with an RFX_ function call. ODBC
requires that unbound fields appear to the right of bound fields, so add your unbound column or columns to the
end of the select list.

NOTENOTE

See also

Because your long data column is not bound by the framework, changes to it will not be handled with
CRecordset::Update calls. You must create and send the required SQL INSERT and UPDATE statements yourself.

Technical Notes by Number
Technical Notes by Category

TN046: Commenting Conventions for the MFC
Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

This technical note originally described the conventions used to comment the MFC classes. This information is
now covered in MFC: Using the MFC Source Files.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn046-commenting-conventions-for-the-mfc-classes.md

TN047: Relaxing Database Transaction Requirements
3/4/2019 • 2 minutes to read • Edit Online

See also

This tech note, which discussed the transaction requirements of the MFC ODBC database classes, is now obsolete.
Before MFC 4.2, the database classes required that cursors be preserved on recordsets after a CommitTrans or
Rollback operation. If the ODBC driver and DBMS did not support this level of cursor preservation, then the
database classes did not enable transactions.

Beginning with MFC 4.2, the database classes have relaxed the restriction of requiring cursor preservation.
Transactions will be enabled if the driver supports them. However, you must now check the effect of a
CommitTrans or Rollback operation on open recordsets. See the member functions
CDatabase::GetCursorCommitBehavior and CDatabase::GetCursorRollbackBehavior for more information.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn047-relaxing-database-transaction-requirements.md

TN048: Writing ODBC Setup and Administration
Programs for MFC Database Applications
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

Writing an ODBC Setup Program

Writing an ODBC Administrator

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

Applications using MFC database classes will need a setup program that installs ODBC components. They may
also need an ODBC Administration program that will retrieve information about the available drivers, to specify
default drivers and to configure data sources. This note describes the use of the ODBC Installer API to write these
programs.

An MFC database application requires the ODBC Driver Manager (ODBC.DLL) and ODBC drivers to be able to
get to data sources. Many ODBC drivers also require additional network and communication DLLs. Most ODBC
drivers ship with a setup program that will install the required ODBC components. Application developers using
MFC database classes can:

Rely on the driver-specific setup programs for installing ODBC components. This will require no further
work on the developer's part — you can just redistribute the driver's setup program.

Alternatively, you can write your own setup program, which will install the driver manager and the driver.

The ODBC installer API can be used to write application-specific setup programs. The functions in the installer API
are implemented by the ODBC installer DLL — ODBCINST.DLL on 16-bit Windows and ODBCCP32.DLL on
Win32. An application can call SQLInstallODBC in the installer DLL, which will install the ODBC driver manager,
ODBC drivers, and any required translators. It then records the installed drivers and translators in the
ODBCINST.INI file (or the registry, on NT). SQLInstallODBC requires the full path to the ODBC.INF file, which
contains the list of drivers to be installed and describes the files that comprise each driver. It also contains similar
information about the driver manager and translators. ODBC.INF files are typically supplied by driver developers.

A program can also install individual ODBC components. To install the Driver Manager, a program first calls
SQLInstallDriverManager in the installer DLL to get the target directory for the Driver Manager. This is usually the

directory in which Windows DLLs reside. The program then uses the information in the [ODBC Driver Manager]
section of the ODBC.INF file to copy the Driver Manager and related files from the installation disk to this
directory. To install an individual driver, a program first calls SQLInstallDriver in the installer DLL to add the
driver specification to the ODBCINST.INI file (or the registry, on NT). SQLInstallDriver returns the driver's target
directory — usually the directory in which Windows DLLs reside. The program then uses the information in the
driver's section of the ODBC.INF file to copy the driver DLL and related files from the installation disk to this
directory.

For more information on ODBC.INF, ODBCINST.INI and using the installer API, see ODBC SDK Programmer's
Reference, Chapter 19, Installing ODBC Software.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn048-writing-odbc-setup-and-administration-programs.md

See also

An MFC database application can set up and configure ODBC data sources in one of two ways, as follows:

Use the ODBC Administrator (available as a program or as a Control Panel item).

Create your own program to configure data sources.

A program that configures data sources makes function calls to the installer DLL. The installer DLL calls a setup
DLL to configure a data source. There is one setup DLL for each driver; it may be the driver DLL itself, or a
separate DLL. The setup DLL prompts the user for information that the driver needs to connect to the data source
and the default translator, if supported. It then calls the installer DLL and Windows APIs to record this information
in the ODBC.INI file (or registry).

To display a dialog box with which a user can add, modify, and delete data sources, a program calls
SQLManageDataSources in the installer DLL. This function is invoked when the installer DLL is called from the

Control Panel. To add, modify, or delete a data source, SQLManageDataSources calls ConfigDSN in the setup DLL for
the driver associated with that data source. To directly add, modify, or delete data sources, a program calls
SQLConfigDataSource in the installer DLL. The program passes the name of the data source and an option that

specifies the action to take. SQLConfigDataSource calls ConfigDSN in the setup DLL and passes it the arguments
from SQLConfigDataSource .

For more information, see ODBC SDK Programmer's Reference, Chapter 23, Setup DLL Function Reference, and
Chapter 24, Installer DLL Function Reference.

Technical Notes by Number
Technical Notes by Category

TN049: MFC/OLE MBCS to Unicode Translation
Layer (MFCANS32)
3/4/2019 • 2 minutes to read • Edit Online

See also

This note originally described how MFCANS32.DLL provides ANSI interfaces in the primarily Unicode world of
32-bit OLE. This DLL is no longer used by MFC.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn049-mfc-ole-mbcs-to-unicode-translation-layer-mfcans32.md

TN050: MFC/OLE Common Dialogs (MFCUIx32)
3/4/2019 • 2 minutes to read • Edit Online

See also

This note originally covered some issues and the future of the OLE common dialogs provided and used by MFC.
The OLE common dialogs are now provided as a component built-in to the system (OLEDLG.DLL) and are fully
documented in the product documentation.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn050-mfc-ole-common-dialogs-mfcuix32.md

TN051: Using CTL3D Now and in the Future
3/4/2019 • 2 minutes to read • Edit Online

See also

This technical note, which previously discussed CTL3D and MFC, is now obsolete. The 3D effect for controls is
automatically implemented by MFC.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn051-using-ctl3d-now-and-in-the-future.md

TN053: Custom DFX Routines for DAO Database
Classes
3/4/2019 • 8 minutes to read • Edit Online

NOTENOTE

NOTENOTE

Example 1 — Use of DAO Record Field Exchange only

The Visual C++ environment and wizards do not support DAO (although the DAO classes are included and you can still use
them). Microsoft recommends that you use OLE DB Templates or ODBC and MFC for new projects. You should only use
DAO in maintaining existing applications.

This technical note describes the DAO record field exchange (DFX) mechanism. To help understand what is
happening in the DFX routines, the DFX_Text function will be explained in detail as an example. As an additional
source of information to this technical note, you can examine the code for the other the individual DFX functions.
You probably will not need a custom DFX routine as often as you might need a custom RFX routine (used with
ODBC database classes).

This technical note contains:

DFX Overview

Examples using DAO Record Field Exchange and Dynamic Binding

How DFX Works

What Your Custom DFX Routine Does

Details of DFX_Text

DFX Overview

The DAO record field exchange mechanism (DFX) is used to simplify the procedure of retrieving and updating
data when using the CDaoRecordset class. The process is simplified using data members of the CDaoRecordset

class. By deriving from CDaoRecordset , you can add data members to the derived class representing each field in a
table or query. This "static binding" mechanism is simple, but it may not be the data fetch/update method of
choice for all applications. DFX retrieves every bound field each time the current record is changed. If you are
developing a performance-sensitive application that does not require fetching every field when currency is
changed, "dynamic binding" via CDaoRecordset::GetFieldValue and CDaoRecordset::SetFieldValue may be the data
access method of choice.

DFX and dynamic binding are not mutually exclusive, so a hybrid use of static and dynamic binding can be used.

(assumes CDaoRecordset — derived class CMySet already open)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn053-custom-dfx-routines-for-dao-database-classes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ole-db-templates
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/odbc-and-mfc

// Add a new record to the customers table
myset.AddNew();

myset.m_strCustID = _T("MSFT");

myset.m_strCustName = _T("Microsoft");

myset.Update();

// Add a new record to the customers table
COleVariant varFieldValue1 (_T("MSFT"),
 VT_BSTRT);

//Note: VT_BSTRT flags string type as ANSI,
 instead of UNICODE default
COleVariant varFieldValue2 (_T("Microsoft"),
 VT_BSTRT);

rs.AddNew();

rs.SetFieldValue(_T("Customer_ID"),
 varFieldValue1);

rs.SetFieldValue(_T("Customer_Name"),
 varFieldValue2);

rs.Update();

// Get the employee's data so that it can be displayed
emp.MoveNext();

// If user wants to see employee's photograph,
// fetch it
COleVariant varPhoto;
if (bSeePicture)
 emp.GetFieldValue(_T("photo"),
 varPhoto);

// Display the data
PopUpEmployeeData(emp.m_strFirstName,
 emp.m_strLastName,
 varPhoto);

How DFX Works

Example 2 — Use of dynamic binding only

(assumes using CDaoRecordset class, rs , and it is already open)

Example 3 — Use of DAO Record Field Exchange and dynamic binding

(assumes browsing employee data with CDaoRecordset -derived class emp)

The DFX mechanism works in a similar fashion to the record field exchange (RFX) mechanism used by the MFC
ODBC classes. The principles of DFX and RFX are the same but there are numerous internal differences. The
design of the DFX functions was such that virtually all the code is shared by the individual DFX routines. At the
highest level DFX only does a few things.

DFX constructs the SQL SELECT clause and SQL PARAMETERS clause if necessary.

OPERATION DESCRIPTION

AddToParameterList Builds PARAMETERS clause

AddToSelectList Builds SELECT clause

BindField Sets up binding structure

BindParam Sets parameter values

Fixup Sets NULL status

AllocCache Allocates cache for dirty check

StoreField Saves current record to cache

LoadField Restores cache to member values

FreeCache Frees cache

SetFieldNull Sets field status & value to NULL

MarkForAddNew Marks fields dirty if not PSEUDO NULL

MarkForEdit Marks fields dirty if don't match cache

SetDirtyField Sets field values marked as dirty

DFX constructs the binding structure used by DAO's GetRows function (more on this later).

DFX manages the data buffer used to detect dirty fields (if double-buffering is being used)

DFX manages the NULL and DIRTY status arrays and sets values if necessary on updates.

At the heart of the DFX mechanism is the CDaoRecordset derived class's DoFieldExchange function. This function
dispatches calls to the individual DFX functions of an appropriate operation type. Before calling DoFieldExchange

the internal MFC functions set the operation type. The following list shows the various operation types and a brief
description.

In the next section, each operation will be explained in more detail for DFX_Text .

The most important feature to understand about the DAO record field exchange process is that it uses the
GetRows function of the CDaoRecordset object. The DAO GetRows function can work in several ways. This

technical note will only briefly describe GetRows as it is outside of the scope of this technical note.

DAO GetRows can work in several ways.

It can fetch multiple records and multiple fields of data at one time. This allows for faster data access with
the complication of dealing with a large data structure and the appropriate offsets to each field and for each
record of data in the structure. MFC does not take advantage of this multiple record fetching mechanism.

Another way GetRows can work is to allow programmers to specify binding addresses for the retrieved
data of each field for one record of data.

DAO will also "call back" into the caller for variable length columns in order to allow the caller to allocate

What Your Custom DFX Routine Does

Details of DFX_Text

memory. This second feature has the benefit of minimizing the number of copies of data as well as allowing
direct storage of data into members of a class (the CDaoRecordset derived class). This second mechanism is
the method MFC uses to bind to data members in CDaoRecordset derived classes.

It is apparent from this discussion that the most important operation implemented in any DFX function must be
the ability to set up the required data structures to successfully call GetRows . There are a number of other
operations that a DFX function must support as well, but none as important or complex as correctly preparing for
the GetRows call.

The use of DFX is described in the online documentation. Essentially, there are two requirements. First, members
must be added to the CDaoRecordset derived class for each bound field and parameter. Following this
CDaoRecordset::DoFieldExchange should be overridden. Note that the data type of the member is important. It

should match the data from the field in the database or at least be convertible to that type. For example a numeric
field in database, such as a long integer, can always be converted to text and bound to a CString member, but a
text field in a database may not necessarily be converted to a numeric representation, such as long integer and
bound to a long integer member. DAO and the Microsoft Jet database engine are responsible for the conversion
(rather than MFC).

As mentioned previously, the best way to explain how DFX works is to work through an example. For this purpose
going through the internals of DFX_Text should work quite well to help provide at least a basic understanding of
DFX.

AddToParameterList

This operation builds the SQL PARAMETERS clause (" Parameters <param name>, <param type> ... ; ")
required by Jet. Each parameter is named and typed (as specified in the RFX call). See the function
CDaoFieldExchange::AppendParamType function to see the names of the individual types. In the case of
DFX_Text , the type used is text.

AddToSelectList

Builds the SQL SELECT clause. This is pretty straight forward as the column name specified by the DFX
call is simply appended (" SELECT <column name>, ... ").

BindField

The most complex of the operations. As mentioned previously this is where the DAO binding structure
used by GetRows is set up. As you can see from the code in DFX_Text the types of information in the
structure include the DAO type used (DAO_CHAR or DAO_WCHAR in the case of DFX_Text).
Additionally, the type of binding used is also set up. In an earlier section GetRows was described only
briefly, but it was sufficient to explain that the type of binding used by MFC is always direct address binding
(DAOBINDING_DIRECT). In addition for variable-length column binding (like DFX_Text) callback
binding is used so that MFC can control the memory allocation and specify an address of the correct
length. What this means is that MFC can always tell DAO "where" to put the data, thus allowing binding
directly to member variables. The rest of the binding structure is filled in with things like the address of the
memory allocation callback function and the type of column binding (binding by column name).

BindParam

This is a simple operation that calls SetParamValue with the parameter value specified in your parameter
member.

TIPTIP

See also

Fixup

Fills in the NULL status for each field.

SetFieldNull

This operation only marks each field status as NULL and sets the member variable's value to
PSEUDO_NULL.

SetDirtyField

Calls SetFieldValue for each field marked dirty.

All the remaining operations only deal with using the data cache. The data cache is an extra buffer of the data in
the current record that is used to make certain things simpler. For instance, "dirty" fields can be automatically
detected. As described in the online documentation it can be turned off completely or at the field level. The
implementation of the buffer utilizes a map. This map is used to match up dynamically allocated copies of the data
with the address of the "bound" field (or CDaoRecordset derived data member).

AllocCache

Dynamically allocates the cached field value and adds it to the map.

FreeCache

Deletes the cached field value and removes it from the map.

StoreField

Copies the current field value into the data cache.

LoadField

Copies the cached value into the field member.

MarkForAddNew

Checks if current field value is non-NULL and marks it dirty if necessary.

MarkForEdit

Compares current field value with data cache and marks dirty if necessary.

Model your custom DFX routines on the existing DFX routines for standard data types.

Technical Notes by Number
Technical Notes by Category

TN054: Calling DAO Directly While Using MFC DAO
Classes
10/31/2018 • 8 minutes to read • Edit Online

NOTENOTE

When to Make Direct DAO Calls

A Brief Overview of DAO and MFC's Implementation

Description of Helpers to Make DAO Calls Easier

The Visual C++ environment and wizards do not support DAO (although the DAO classes are included and you can still use
them). Microsoft recommends that you use OLE DB Templates or ODBC and MFC for new projects. You should only use
DAO in maintaining existing applications.

When using the MFC DAO database classes, there may be situations where it is necessary to use DAO directly.
Usually, this will not be the case, but MFC has provided some helper mechanisms to facilitate making direct DAO
calls simple when combining the use of the MFC classes with direct DAO calls. Making direct DAO calls to the
methods of an MFC-managed DAO object should require only a few lines of code. If you need to create and use
DAO objects that are not managed by MFC, you will have to do a little more work by actually calling Release on
the object. This technical note explains when you might want to call DAO directly, what the MFC helpers can do to
help you, and how to use the DAO OLE interfaces. Finally, this note provides some sample functions showing
how to call DAO directly for DAO security features.

The most common situations for making direct DAO calls occur when collections need to be refreshed or when
you are implementing features not wrapped by MFC. The most significant feature not exposed by MFC is
security. If you want to implement security features, you will need to use the DAO User(s) and Group(s) objects
directly. Besides security, there are only a few other DAO features not supported by MFC. These include recordset
cloning and database replication features as well as a few late additions to DAO.

MFC's wrapping of DAO makes using DAO easier by handling many of the details so you do not have to worry
about the little things. This includes the initialization of OLE, the creation and management of the DAO objects
(especially the collection objects), error checking, and providing a strongly typed, simpler interface (no VARIANT
or BSTR arguments). You can make direct DAO calls and still take advantage of these features. All your code must
do is call Release for any objects created by direct DAO calls and not modify any of the interface pointers that
MFC may rely on internally. For example, do not modify the m_pDAORecordset member of an open
CDaoRecordset object unless you understand all the internal ramifications. You could, however, use the

m_pDAORecordset interface to call DAO directly to get the Fields collection. In this case the m_pDAORecordset
member would not be modified. You simply have to call Release on the Fields collection object when you are
finished with the object.

The helpers provided to make calling DAO easier are the same helpers that are used internally in the MFC DAO
Database classes. These helpers are used to check the return codes when making a direct DAO call, logging debug
output, checking for expected errors, and throwing appropriate exceptions if necessary. There are two underlying
helper functions and four macros that map to one of these two helpers. The best explanation would be to simply
read the code. See DAO_CHECK, DAO_CHECK_ERROR, DAO_CHECK_MEM, and DAO_TRACE in AFXDAO.H
to see the macros, and see AfxDaoCheck and AfxDaoTrace in DAOCORE.CPP.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn054-calling-dao-directly-while-using-mfc-dao-classes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ole-db-templates
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/odbc-and-mfc

Using the DAO OLE Interfaces

COleVariant varOldName;
COleVariant varNewName(_T("NewUser"), VT_BSTRT);

// Code to assign pUser to a valid value omitted
DAOUser *pUser = NULL;

// These method declarations were taken from DBDAOINT.H
// STDMETHOD(get_Name) (THIS_ BSTR FAR* pbstr) PURE;
// STDMETHOD(put_Name) (THIS_ BSTR bstr) PURE;

DAO_CHECK(pUser->get_Name(&V_BSTR (&varOldName)));
DAO_CHECK(pUser->put_Name(V_BSTR (&varNewName)));

COleVariant varName(_T("MyName"), VT_BSTRT);
CString str = V_BSTRT(&varName);

Simple Example of a Direct Call to DAO

The OLE interfaces for each object in the DAO object hierarchy are defined in the header file DBDAOINT.H, which
is found in the \Program Files\Microsoft Visual Studio .NET 2003\VC7\include directory. These interfaces
provide methods that allow you to manipulate the entire DAO hierarchy.

For many of the methods in the DAO interfaces, you will need to manipulate a BSTR object (a length-prefixed
string used in OLE automation). The BSTR object typically is encapsulated within the VARIANT data type. The
MFC class COleVariant itself inherits from the VARIANT data type. Depending on whether you build your
project for ANSI or Unicode, the DAO interfaces will return ANSI or Unicode BSTR s. Two macros, V_BSTR and
V_BSTRT, are useful for assuring that the DAO interface gets the BSTR of the expected type.

V_BSTR will extract the bstrVal member of a COleVariant . This macro is typically used when you need to pass the
contents of a COleVariant to a method of a DAO interface. The following code fragment shows both the
declarations and actual use for two methods of the DAO DAOUser interface that take advantage of the V_BSTR
macro:

Note that the VT_BSTRT argument specified in the COleVariant constructor above ensures that there will be an
ANSI BSTR in the COleVariant if you build an ANSI version of your application and a Unicode BSTR for a
Unicode version of your application. This is what DAO expects.

The other macro, V_BSTRT, will extract either an ANSI or Unicode bstrVal member of COleVariant depending on
the type of build (ANSI or Unicode). The following code demonstrates how to extract the BSTR value from a
COleVariant into a CString :

The V_BSTRT macro, along with other techniques to open other types that are stored in COleVariant , is
demonstrated in the DAOVIEW sample. Specifically, this translation is performed in the CCrack::strVARIANT

method. This method, where possible, translates the value of a COleVariant into an instance of CString .

Situations may arise when it is necessary to refresh the underlying DAO collection objects. Normally, this should
not be necessary, but it is a simple procedure if it is necessary. An example of when a collection might need to be
refreshed is when operating in a multiuser environment with multiple users creating new tabledefs. In this case
your tabledefs collection might become stale. To refresh the collection, you simply need to call the Refresh

method of the particular collection object and check for errors:

DAO_CHECK(pMyDaoDatabase->m_pDAOTableDefs->Refresh());

Using DAO Directly for DAO Security Features

void ChangeUserPassword()
{
 // Specify path to the Microsoft Access *// system database
 CString strSystemDB =
 _T("c:\\Program Files\\MSOffice\\access\\System.mdw");

 // Set system database before MFC initilizes DAO
 // NOTE: An MFC module uses only one instance
 // of a DAO database engine object. If you have
 // called a DAO object in your application prior
 // to calling the function below, you must call
 // AfxDaoTerm to destroy the existing database
 // engine object. Otherwise, the database engine
 // object already in use will be reused, and setting
 // a system datbase will have no effect.
 //
 // If you have used a DAO object prior to calling
 // this function it is important that DAO be
 // terminated with AfxDaoTerm since an MFC
 // module only gets one copy of the database engine
 // and that engine will be reused if it hasn't been
 // terminated. In other words, if you do not call
 // AfxDaoTerm and there is currently a database
 // initialized, setting the system database will
 // have no effect.
 SetSystemDB(strSystemDB);

 // User name and password manually added
 // by using Microsoft Access
 CString strUserName = _T("NewUser");
 CString strOldPassword = _T("Password");
 CString strNewPassword = _T("NewPassword");

 // Set default user so that MFC will be able
 // to log in by default using the user name and
 // password from the system database
 SetDefaultUser(strUserName, strOldPassword);

 // Change the password. You should be able to
 // call this function from anywhere in your
 // MFC application
 ChangePassword(strUserName, strOldPassword, strNewPassword);

 // ...
}

Note that currently all DAO collection object interfaces are undocumented implementation details of the MFC
DAO database classes.

The MFC DAO database classes do not wrap DAO security features. You must call methods of DAO interfaces to
use some DAO security features. The following function sets the system database and then changes the user's
password. This function calls three other functions, which are subsequently defined.

The next four examples demonstrate how to:

Set the system DAO database (.MDW file).

Set the default user and password.

Setting the System DatabaseSetting the System Database

// Set the system database that the
// DAO database engine will use

void SetSystemDB(CString& strSystemMDB)
{
 COleVariant varSystemDB(strSystemMDB, VT_BSTRT);

 // Initialize DAO for MFC
 AfxDaoInit();
 DAODBEngine* pDBEngine = AfxDaoGetEngine();

 ASSERT(pDBEngine != NULL);

 // Call put_SystemDB method to set the *// system database for DAO engine
 DAO_CHECK(pDBEngine->put_SystemDB(varSystemDB.bstrVal));
}

Setting the Default User and PasswordSetting the Default User and Password

void SetDefaultUser(CString& strUserName,
 CString& strPassword)
{
 COleVariant varUserName(strUserName, VT_BSTRT);
 COleVariant varPassword(strPassword, VT_BSTRT);

 DAODBEngine* pDBEngine = AfxDaoGetEngine();
 ASSERT(pDBEngine != NULL);

 // Set default user:
 DAO_CHECK(pDBEngine->put_DefaultUser(varUserName.bstrVal));

 // Set default password:
 DAO_CHECK(pDBEngine->put_DefaultPassword(varPassword.bstrVal));
}

Changing a User's PasswordChanging a User's Password

Change the password of a user.

Change the password of an .MDB file.

Below is a sample function to set the system database that will be used by an application. This function must be
called before any other DAO calls are made.

To set the default user and password for a system database, use the following function:

To change a user's password, use the following function:

void ChangePassword(CString &strUserName,
 CString &strOldPassword,
 CString &strNewPassword)
{
 // Create (open) a workspace
 CDaoWorkspace wsp;
 CString strWspName = _T("Temp Workspace");

 wsp.Create(strWspName, strUserName, strOldPassword);
 wsp.Append();

 // Determine how many objects there are *// in the Users collection
 short nUserCount;
 short nCurrentUser;
 DAOUser *pUser = NULL;
 DAOUsers *pUsers = NULL;

 // Side-effect is implicit OLE AddRef()
 // on DAOUser object:
 DAO_CHECK(wsp.m_pDAOWorkspace->get_Users(&pUsers));

 // Side-effect is implicit OLE AddRef()
 // on DAOUsers object
 DAO_CHECK(pUsers->getcount(&nUserCount));

 // Traverse through the list of users
 // and change password for the userid
 // used to create/open the workspace
 for(nCurrentUser = 0; nCurrentUser <nUserCount; nCurrentUser++)
 {
 COleVariant varIndex(nCurrentUser, VT_I2);
 COleVariant varName;

 // Retrieve information for user nCurrentUser
 DAO_CHECK(pUsers->get_Item(varIndex, &pUser));

 // Retrieve name for user nCurrentUser
 DAO_CHECK(pUser->get_Name(&V_BSTR(&varName)));

 CString strTemp = V_BSTRT(&varName);

 // If there is a match, change the password
 if (strTemp == strUserName)
 {
 COleVariant varOldPwd(strOldPassword, VT_BSTRT);
 COleVariant varNewPwd(strNewPassword, VT_BSTRT);

 DAO_CHECK(pUser->NewPassword(V_BSTR(&varOldPwd),
 V_BSTR(&varNewPwd)));

 TRACE("\t Password is changed\n");
 }
 }
 // Clean up: decrement the usage count
 // on the OLE objects
 pUser->Release();
 pUsers->Release();
 wsp.Close();
}

Changing the Password of an .MDB FileChanging the Password of an .MDB File
To change the password of an .MDB file, use the following function:

void SetDBPassword(LPCTSTR pDB,
 LPCTSTR pszOldPassword,
 LPCTSTR pszNewPassword)
{
 CDaoDatabase db;
 CString strConnect(_T(";pwd="));

 // the database must be opened as exclusive
 // to set a password
 db.Open(pDB, TRUE, FALSE, strConnect + pszOldPassword);

 COleVariant NewPassword(pszNewPassword, VT_BSTRT),
 OldPassword(pszOldPassword, VT_BSTRT);

 DAO_CHECK(db.m_pDAODatabase->NewPassword(V_BSTR(&OldPassword),
 V_BSTR(&NewPassword)));

 db.Close();
}

See also
Technical Notes by Number
Technical Notes by Category

TN055: Migrating MFC ODBC Database Class
Applications to MFC DAO Classes
10/31/2018 • 5 minutes to read • Edit Online

NOTENOTE

Overview

Why Migrate from ODBC to DAO

Similarities Between ODBC Database Classes and MFC DAO Database
Classes

The Visual C++ environment and wizards do not support DAO (although the DAO classes are included and you can still use
them). Microsoft recommends that you use OLE DB Templates or ODBC and MFC for new projects. You should only use
DAO in maintaining existing applications.

In many situations it may be desirable to migrate applications that use MFC's ODBC database classes to MFC's
DAO database classes. This technical note will detail most of the differences between the MFC ODBC and DAO
classes. With the differences in mind, it should not be overly difficult to migrate applications from the ODBC
classes to the MFC classes if desired.

There are a number of reasons why you might want to migrate applications from the ODBC Database Classes to
the DAO Database Classes, but the decision is not necessarily simple or obvious. One thing to keep in mind is that
the Microsoft Jet database engine that is used by DAO can read any ODBC data source for which you have an
ODBC driver. It may be more efficient to use the ODBC Database Classes or call ODBC directly yourself, but the
Microsoft Jet database engine can read ODBC data.

Some simple cases that make the ODBC/DAO decision easy. For instance, when you only need access to data in a
format that the Microsoft Jet engine can read directly (Access format, Excel format, and so on) the obvious choice
is to use the DAO Database Classes.

More complex cases arise when your data exists on a server or on a variety of different servers. In this case, the
decision to use the ODBC Database classes or the DAO Database classes is a difficult one. If you want to do things
like heterogeneous joins (join data from servers in multiple formats like SQL Server and Oracle), then the
Microsoft Jet database engine will perform the join for you rather than forcing you to do the work necessary if you
used the ODBC Database Classes or called ODBC directly. If you are using an ODBC driver that supports driver
cursors, your best choice might be the ODBC Database classes.

The choice can be complicated, so you might want to write some sample code to test the performance of various
methods given your special needs. This technical note assumes that you have made the decision to migrate from
the ODBC Database Classes to the DAO Database classes.

The original design of the MFC ODBC classes was based on the DAO object model that has been in use in
Microsoft Access and Microsoft Visual Basic. This means that there are many common features of the ODBC and
DAO MFC classes, which will not all be listed in this section. In general, the programming models are the same.

To highlight a few similarities:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn055-migrating-mfc-odbc-database-class-applications-to-mfc-dao-classes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ole-db-templates
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/odbc-and-mfc

Differences Between ODBC and DAO MFC Classes

CLASS OR FUNCTION EQUIVALENT IN MFC DAO CLASSES

CDatabase CDaoDatabase

CDatabase::ExecuteSQL CDaoDatabase::Execute

CRecordset CDaoRecordset

CRecordset::GetDefaultConnect CDaoRecordset::GetDefaultDBName

CFieldExchange CDaoFieldExchange

RFX_Bool DFX_Bool

RFX_Byte DFX_Byte

RFX_Int DFX_Short

RFX_Long DFX_Long

DFX_Currency

RFX_Single DFX_Single

RFX_Double DFX_Double

RFX_Date DFX_Date (COleDateTime -based)

RFX_Text DFX_Text

Both the ODBC and DAO classes have database objects that manage using the underlying database
management system (DBMS).

Both have recordset objects representing a set of results returned from that DBMS.

The DAO database and recordset objects have members nearly identical to the ODBC classes.

With both sets of classes, the code to retrieve data is identical except for some object and member name
changes. Changes will be required, but usually the process is a straightforward name change when
switching from the ODBC classes to DAO classes.

For example, in both models the procedure to retrieve data is to create and open a database object, create and
open a recordset object, and navigate (move) though the data performing some operation.

The DAO classes include more objects and a richer set of methods, but this section will only detail the differences
in similar classes and functionality.

Probably the most obvious differences between the classes are the name changes for similar classes and global
functions. The following list shows the name changes of the objects, methods and global functions associated with
the database classes:

1

RFX_Binary DFX_Binary

RFX_LongBinary DFX_LongBinary

CLASS OR FUNCTION EQUIVALENT IN MFC DAO CLASSES

See also

 The RFX_Date function is based on CTime and TIMESTAMP_STRUCT .1

The major changes to functionality which may affect your application and require more than simple name changes
are listed below.

NOTENOTE

The constants and macros used to specify things like recordset open type and recordset open options have
been changed.

With the ODBC classes MFC needed to define these options via macros or enumerated types.

With the DAO classes, DAO provides the definition of these options in a header file (DBDAOINT.H). Thus
the recordset type is an enumerated member of CRecordset , but with DAO it is a constant instead. For
example you would use snapshot when specifying the type of CRecordset in ODBC but
DB_OPEN_SNAPSHOT when specifying the type of CDaoRecordset .

The default recordset type for CRecordset is snapshot while the default recordset type for CDaoRecordset

is dynaset (see the Note below for an additional issue about ODBC class snapshots).

The ODBC CRecordset class has an option to create a forward-only recordset type. In the CDaoRecordset

class, forward-only is not a recordset type, but rather a property (or option) of certain types of recordsets.

An append-only recordset when opening a CRecordset object meant that the recordset's data could be read
and appended. With CDaoRecordset object, the append-only option means literally that the recordset's data
can only be appended (and not read).

The ODBC classes' transaction member functions are members of CDatabase and act at the database level.
In the DAO classes, the transaction member functions are members of a higher level class (CDaoWorkspace)
and thus may impact multiple CDaoDatabase objects sharing the same workspace (transaction space).

The exception class has been changed. CDBExceptions are thrown in the ODBC classes and CDaoExceptions

in the DAO classes.

RFX_Date uses CTime and TIMESTAMP_STRUCT objects while DFX_Date uses COleDateTime . The COleDateTime

is nearly identical to CTime , but is based on a 8-byte OLE DATE rather than a 4-byte time_t so it can hold a
much bigger range of data.

DAO (CDaoRecordset) snapshots are read-only while ODBC (CRecordset) snapshots may be updateable
depending on the driver and use of the ODBC cursor library. If you are using the cursor library, CRecordset

snapshots are updateable. If you are using any of the Microsoft drivers from Desktop Driver Pack 3.0 without the
ODBC cursor library, the CRecordset snapshots are read-only. If you are using another driver, check the driver's
documentation to see if snapshots (STATIC_CURSORS) are read-only.

Technical Notes by Number
Technical Notes by Category

TN056: Installation of Localized MFC Components
3/4/2019 • 2 minutes to read • Edit Online

See also

This tech note, which discussed the installation of localized MFC components, is now obsolete.

See TechNote 57 for more information on localizing MFC applications.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn056-installation-of-localized-mfc-components.md

TN057: Localization of MFC Components
10/31/2018 • 5 minutes to read • Edit Online

NOTENOTE

Overview

Localizing your Component's Resources

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes some of the designs and procedures you can use to localize your component, if it an
application or an OLE control or a DLL that uses MFC.

There are really two issues to resolve when localizing a component that uses MFC. First, you must localize your
own resources — strings, dialogs, and other resources that are specific to your component. Most components built
using MFC also include and use a number of resources that are defined by MFC. You must provide localized MFC
resources as well. Fortunately, several languages are already provided by MFC itself.

In addition, your component should be prepared to run in its target environment (European or DBCS-enabled
environment). For the most part, this depends on your application treating characters with the high bit set
correctly and handling strings with double byte characters. MFC is enabled, by default, for both of these
environments, such that it is possible to have a single worldwide binary that is used on all platforms with just
different resources plugged in at setup time.

Localizing your application or DLL should involve simply replacing the resources with resources that match the
target language. For your own resources, this is relatively simple: edit the resources in the resource editor and
build your application. If your code is written properly there will be no strings or text that you wish to localize
hard-coded into your C++ source code - all localization can be done by simply modifying resources. In fact, you
can implement your component such that all providing a localized version does not even involve a build of the
original code. This is more complex, but is well worth it and is the mechanism chosen for MFC itself. It is also
possible to localize an application by loading the EXE or DLL file into the resource editor and editing the resources
directly. While possible, it requires reapplication of those changes each time you build a new version of your
application.

One way to avoid that is to locate all resources in a separate DLL, sometimes called a satellite DLL. This DLL is
then loaded dynamically at runtime and the resources are loaded from that DLL instead of from the main module
with all your code. MFC directly supports this approach. Consider an application called MYAPP.EXE; it could have
all of its resources located in a DLL called MYRES.DLL. In the application's InitInstance it would perform the
following to load that DLL and cause MFC to load resources from that location:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn057-localization-of-mfc-components.md

CMyApp::InitInstance()
{
 // one of the first things in the init code
 HINSTANCE hInst = LoadLibrary("myres.dll");

 if (hInst != NULL)
 AfxSetResourceHandle(hInst);

 // other initialization code would follow
 // ...
}

NOTENOTE

Using the Provided MFC Localized Resources

From then on, MFC will load resources from that DLL instead of from myapp.exe. All resources, however, must be
present in that DLL; MFC will not search the application's instance in search of a given resource. This technique
applies equally well to regular MFC DLLs as well as OLE Controls. Your setup program would copy the
appropriate version of MYRES.DLL depending upon which resource locale the user would like.

It is relatively easy to create a resource only DLL. You create a DLL project, add your .RC file to it, and add the
necessary resources. If you have an existing project that does not use this technique, you can copy the resources
from that project. After adding the resource file to the project, you are almost ready to build the project. The only
thing you must do is set the linker options to include /NOENTRY . This tells the linker that the DLL has no entry
point - since it has no code, it has no entry point.

The resource editor in Visual C++ 4.0 and later supports multiple languages per .RC file. This can make it very easy to
manage your localization in a single project. The resources for each language are controlled by preprocessor directives
generated by the resource editor.

Any MFC application that you build reuses two things from MFC: code and resources. That is, MFC has various
error messages, built-in dialogs, and other resources that are used by the MFC classes. In order to completely
localize your application, you need to localize not only your application's resources, but also the resources that
come directly from MFC. MFC provides a number of different language resource files automatically, so that if the
language you are targeting is one of the languages MFC already supports, you just need to make sure you use
those localized resources.

As of this writing, MFC supports Chinese, German, Spanish, French, Italian, Japanese, and Korean. The files which
contain these localized versions are in the MFC\INCLUDE\L.* (the 'L' stands for localized) directories. The
German files are in MFC\INCLUDE\L.DEU, for example. To cause your application to use these RC files instead of
the files located in MFC\INCLUDE, add a
/IC:\PROGRAM FILES\MICROSOFT VISUAL STUDIO .NET 2003\VC7\MFC\INCLUDE\L.DEU to your RC command line (this is just

an example; you would need to substitute your locale of choice as well as the directory into which you installed
Visual C++).

The above instructions will work if your application links statically with MFC. Most applications link dynamically
(because that is the AppWizard default). In this scenario, not only the code is dynamically linked - so are the
resources. As a result, you can localize your resources in your application, but the MFC implementation resources
will still be loaded from the MFC7x.DLL (or a later version) or from MFC7xLOC.DLL if it exists. You can approach
this from two different angles.

The more complex approach is to ship one of the localized MFC7xLOC.DLLs (such as MFC7xDEU, for German,
MFC7xESP.DLL for Spanish, etc.), or a later version, and install the appropriate MFC7xLOC.DLL into the system
directory when the user installs your application. This can be very complex for both the developer and the end

See also

user and as such is not recommended. See Technical Note 56 for more information on this technique and its
caveats.

The simplest and safest approach is to include the localized MFC resources in your application or DLL itself (or its
satellite DLL if you are using one). This avoids the problems of installing MFC7xLOC.DLL properly. To do so, you
follow the same instructions for the static case given above (setting the RC command line properly to point to the
localized resources), except that you must also remove the /D_AFXDLL define that was added by AppWizard. When
/D_AFXDLL is defined, AFXRES.H (and the other MFC RC files) do not actually define any resources (because they

will be pulled from the MFC DLLs instead).

Technical Notes by Number
Technical Notes by Category

TN058: MFC Module State Implementation
10/31/2018 • 11 minutes to read • Edit Online

NOTENOTE

Overview

Module State Switching

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This technical note describes the implementation of MFC "module state" constructs. An understanding of the
module state implementation is critical for using the MFC shared DLLs from a DLL (or OLE in-process server).

Before reading this note, refer to "Managing the State Data of MFC Modules" in Creating New Documents,
Windows, and Views. This article contains important usage information and overview information on this subject.

There are three kinds of MFC state information: Module State, Process State, and Thread State. Sometimes these
state types can be combined. For example, MFC's handle maps are both module local and thread local. This allows
two different modules to have different maps in each of their threads.

Process State and Thread State are similar. These data items are things that have traditionally been global
variables, but have need to be specific to a given process or thread for proper Win32s support or for proper
multithreading support. Which category a given data item fits in depends on that item and its desired semantics
with regard to process and thread boundaries.

Module State is unique in that it can contain either truly global state or state that is process local or thread local. In
addition, it can be switched quickly.

Each thread contains a pointer to the "current" or "active" module state (not surprisingly, the pointer is part of
MFC's thread local state). This pointer is changed when the thread of execution passes a module boundary, such
as an application calling into an OLE Control or DLL, or an OLE Control calling back into an application.

The current module state is switched by calling AfxSetModuleState . For the most part, you will never deal directly
with the API. MFC, in many cases, will call it for you (at WinMain, OLE entry-points, AfxWndProc , etc.). This is done
in any component you write by statically linking in a special WndProc , and a special WinMain (or DllMain) that
knows which module state should be current. You can see this code by looking at DLLMODUL.CPP or
APPMODUL.CPP in the MFC\SRC directory.

It is rare that you want to set the module state and then not set it back. Most of the time you want to "push" your
own module state as the current one and then, after you are done, "pop" the original context back. This is done by
the macro AFX_MANAGE_STATE and the special class AFX_MAINTAIN_STATE .

CCmdTarget has special features for supporting module state switching. In particular, a CCmdTarget is the root
class used for OLE automation and OLE COM entry points. Like any other entry point exposed to the system,
these entry points must set the correct module state. How does a given CCmdTarget know what the "correct"
module state should be The answer is that it "remembers" what the "current" module state is when it is
constructed, such that it can set the current module state to that "remembered" value when it is later called. As a
result, the module state that a given CCmdTarget object is associated with is the module state that was current

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn058-mfc-module-state-implementation.md

AFX_MANAGE_STATE(AfxGetStaticModuleState())

when the object was constructed. Take a simple example of loading an INPROC server, creating an object, and
calling its methods.

1. The DLL is loaded by OLE using LoadLibrary .

2. RawDllMain is called first. It sets the module state to the known static module state for the DLL. For this
reason RawDllMain is statically linked to the DLL.

3. The constructor for the class factory associated with our object is called. COleObjectFactory is derived from
CCmdTarget and as a result, it remembers in which module state it was instantiated. This is important —

when the class factory is asked to create objects, it knows now what module state to make current.

4. DllGetClassObject is called to obtain the class factory. MFC searches the class factory list associated with
this module and returns it.

5. COleObjectFactory::XClassFactory2::CreateInstance is called. Before creating the object and returning it, this
function sets the module state to the module state that was current in step 3 (the one that was current when
the COleObjectFactory was instantiated). This is done inside of METHOD_PROLOGUE.

6. When the object is created, it too is a CCmdTarget derivative and in the same way COleObjectFactory

remembered which module state was active, so does this new object. Now the object knows which module
state to switch to whenever it is called.

7. The client calls a function on the OLE COM object it received from its CoCreateInstance call. When the
object is called it uses METHOD_PROLOGUE to switch the module state just like COleObjectFactory does.

As you can see, the module state is propagated from object to object as they are created. It is important to have
the module state set appropriately. If it is not set, your DLL or COM object may interact poorly with an MFC
application that is calling it, or may be unable to find its own resources, or may fail in other miserable ways.

Note that certain kinds of DLLs, specifically "MFC Extension" DLLs do not switch the module state in their
RawDllMain (actually, they usually don't even have a RawDllMain). This is because they are intended to behave "as

if" they were actually present in the application that uses them. They are very much a part of the application that is
running and it is their intention to modify that application's global state.

OLE Controls and other DLLs are very different. They do not want to modify the calling application's state; the
application that is calling them may not even be an MFC application and so there may be no state to modify. This
is the reason that module state switching was invented.

For exported functions from a DLL, such as one that launches a dialog box in your DLL, you need to add the
following code to the beginning of the function:

This swaps the current module state with the state returned from AfxGetStaticModuleState until the end of the
current scope.

Problems with resources in DLLs will occur if the AFX_MODULE_STATE macro is not used. By default, MFC uses
the resource handle of the main application to load the resource template. This template is actually stored in the
DLL. The root cause is that MFC's module state information has not been switched by the AFX_MODULE_STATE
macro. The resource handle is recovered from MFC's module state. Not switching the module state causes the
wrong resource handle to be used.

AFX_MODULE_STATE does not need to be put in every function in the DLL. For example, InitInstance can be
called by the MFC code in the application without AFX_MODULE_STATE because MFC automatically shifts the
module state before InitInstance and then switches it back after InitInstance returns. The same is true for all
message map handlers. Regular MFC DLLs actually have a special master window procedure that automatically

Process Local Data

static CString strGlobal; // at file scope

__declspec(dllexport)
void SetGlobalString(LPCTSTR lpsz)
{
 strGlobal = lpsz;
}

__declspec(dllexport)
void GetGlobalString(LPCTSTR lpsz, size_t cb)
{
 StringCbCopy(lpsz, cb, strGlobal);
}

switches the module state before routing any message.

Process local data would not be of such great concern had it not been for the difficulty of the Win32s DLL model.
In Win32s all DLLs share their global data, even when loaded by multiple applications. This is very different from
the "real" Win32 DLL data model, where each DLL gets a separate copy of its data space in each process that
attaches to the DLL. To add to the complexity, data allocated on the heap in a Win32s DLL is in fact process
specific (at least as far as ownership goes). Consider the following data and code:

Consider what happens if the above code is in located in a DLL and that DLL is loaded by two processes A and B
(it could, in fact, be two instances of the same application). A calls SetGlobalString("Hello from A") . As a result,
memory is allocated for the CString data in the context of process A. Keep in mind that the CString itself is
global and is visible to both A and B. Now B calls GetGlobalString(sz, sizeof(sz)) . B will be able to see the data
that A set. This is because Win32s offers no protection between processes like Win32 does. That is the first
problem; in many cases it is not desirable to have one application affect global data that is considered to be owned
by a different application.

There are additional problems as well. Let's say that A now exits. When A exits, the memory used by the '
strGlobal ' string is made available for the system — that is, all memory allocated by process A is freed

automatically by the operating system. It is not freed because the CString destructor is being called; it hasn't been
called yet. It is freed simply because the application which allocated it has left the scene. Now if B called
GetGlobalString(sz, sizeof(sz)) , it may not get valid data. Some other application may have used that memory

for something else.

Clearly a problem exists. MFC 3.x used a technique called thread-local storage (TLS). MFC 3.x would allocate a
TLS index that under Win32s really acts as a process-local storage index, even though it is not called that and then
would reference all data based on that TLS index. This is similar to the TLS index that was used to store thread-
local data on Win32 (see below for more information on that subject). This caused every MFC DLL to utilize at
least two TLS indices per process. When you account for loading many OLE Control DLLs (OCXs), you quickly
run out of TLS indices (there are only 64 available). In addition, MFC had to place all this data in one place, in a
single structure. It was not very extensible and was not ideal with regard to its use of TLS indices.

MFC 4.x addresses this with a set of class templates you can "wrap" around the data that should be process local.
For example, the problem mentioned above could be fixed by writing:

struct CMyGlobalData : public CNoTrackObject
{
 CString strGlobal;
};
CProcessLocal<CMyGlobalData> globalData;

__declspec(dllexport)
void SetGlobalString(LPCTSTR lpsz)
{
 globalData->strGlobal = lpsz;
}

__declspec(dllexport)
void GetGlobalString(LPCTSTR lpsz, size_t cb)
{
 StringCbCopy(lpsz, cb, globalData->strGlobal);
}

Thread Local Data

MFC implements this in two steps. First, there is a layer on top of the Win32 Tls* APIs (TlsAlloc, TlsSetValue,
TlsGetValue, etc.) which use only two TLS indexes per process, no matter how many DLLs you have. Second, the
CProcessLocal template is provided to access this data. It overrides operator-> which is what allows the intuitive

syntax you see above. All objects that are wrapped by CProcessLocal must be derived from CNoTrackObject .
CNoTrackObject provides a lower-level allocator (LocalAlloc/LocalFree) and a virtual destructor such that MFC

can automatically destroy the process local objects when the process is terminated. Such objects can have a
custom destructor if additional cleanup is required. The above example doesn't require one, since the compiler will
generate a default destructor to destroy the embedded CString object.

There are other interesting advantages to this approach. Not only are all CProcessLocal objects destroyed
automatically, they are not constructed until they are needed. CProcessLocal::operator-> will instantiate the
associated object the first time it is called, and no sooner. In the example above, that means that the ' strGlobal '
string will not be constructed until the first time SetGlobalString or GetGlobalString is called. In some instances,
this can help decrease DLL startup time.

Similar to process local data, thread local data is used when the data must be local to a given thread. That is, you
need a separate instance of the data for each thread that accesses that data. This can many times be used in lieu of
extensive synchronization mechanisms. If the data does not need to be shared by multiple threads, such
mechanisms can be expensive and unnecessary. Suppose we had a CString object (much like the sample above).
We can make it thread local by wrapping it with a CThreadLocal template:

struct CMyThreadData : public CNoTrackObject
{
 CString strThread;
};
CThreadLocal<CMyThreadData> threadData;

void MakeRandomString()
{
 // a kind of card shuffle (not a great one)
 CString& str = threadData->strThread;
 str.Empty();
 while (str.GetLength() != 52)
 {
 unsigned int randomNumber;
 errno_t randErr;
 randErr = rand_s(&randomNumber);

 if (randErr == 0)
 {
 TCHAR ch = randomNumber % 52 + 1;
 if (str.Find(ch) <0)
 str += ch; // not found, add it
 }
 }
}

See also

If MakeRandomString was called from two different threads, each would "shuffle" the string in different ways
without interfering with the other. This is because there is actually a strThread instance per thread instead of just
one global instance.

Note how a reference is used to capture the CString address once instead of once per loop iteration. The loop
code could have been written with threadData->strThread everywhere ' str ' is used, but the code would be much
slower in execution. It is best to cache a reference to the data when such references occur in loops.

The CThreadLocal class template uses the same mechanisms that CProcessLocal does and the same
implementation techniques.

Technical Notes by Number
Technical Notes by Category

TN059: Using MFC MBCS/Unicode Conversion
Macros
3/4/2019 • 6 minutes to read • Edit Online

NOTENOTE

Overview

// we want to convert an MBCS string in lpszA
int nLen = MultiByteToWideChar(CP_ACP,
 0,
 lpszA, -1,
 NULL,
 NULL);

LPWSTR lpszW = new WCHAR[nLen];
MultiByteToWideChar(CP_ACP,
 0,
 lpszA, -1,
 lpszW,
 nLen);

// use it to call OLE here
pI->SomeFunctionThatNeedsUnicode(lpszW);

// free the string
delete[] lpszW;

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes how to use the macros for MBCS/Unicode conversion, which are defined in AFXPRIV.H.
These macros are most useful if your application deals directly with the OLE API or for some reason, often needs
to convert between Unicode and MBCS.

In MFC 3.x, a special DLL was used (MFCANS32.DLL) to automatically convert between Unicode and MBCS
when OLE interfaces were called. This DLL was an almost transparent layer that allowed OLE applications to be
written as if the OLE APIs and interfaces were MBCS, even though they are always Unicode (except on the
Macintosh). While this layer was convenient and allowed applications to be quickly ported from Win16 to Win32
(MFC, Microsoft Word, Microsoft Excel, and VBA, are just some of the Microsoft applications that used this
technology), it had a sometimes significant performance hit. For this reason, MFC 4.x does not use this DLL and
instead talks directly to the Unicode OLE interfaces. To do this, MFC needs to convert to Unicode to MBCS when
making a call to an OLE interface, and often needs to convert to MBCS from Unicode when implementing an OLE
interface. In order to handle this efficiently and easily, a number of macros were created to make this conversion
easier.

One of the biggest hurdles of creating such a set of macros is memory allocation. Because the strings cannot be
converted in place, new memory to hold the converted results must be allocated. This could have been done with
code similar to the following:

This approach as a number of problems. The main problem is that it is a lot of code to write, test, and debug.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn059-using-mfc-mbcs-unicode-conversion-macros.md

#define A2W(lpa) (\
((LPCSTR)lpa == NULL) NULL : (\
 _convert = (strnlen(lpa)+1),\
 AfxA2WHelper((LPWSTR) alloca(_convert*2),
 lpa,
 _convert)\)\)

// use it to call OLE here
USES_CONVERSION;
pI->SomeFunctionThatNeedsUnicode(T2OLE(lpszA));

Generic Conversion Macros

A2CW (LPCSTR) -> (LPCWSTR)
A2W (LPCSTR) -> (LPWSTR)
W2CA (LPCWSTR) -> (LPCSTR)
W2A (LPCWSTR) -> (LPSTR)

Something that was a simple function call, is now much more complex. In addition, there is a significant runtime
overhead in doing so. Memory has to be allocated on the heap and freed each time a conversion is done. Finally,
the code above would need to have appropriate #ifdefs added for Unicode and Macintosh builds (which don't
require this conversion to take place).

The solution we came up with is to create some macros which 1) mask the difference between the various
platforms, and 2) use an efficient memory allocation scheme, and 3) are easy to insert into the existing source
code. Here is an example of one of the definitions:

Using this macro instead of the code above and things are much simpler:

There are extra calls where conversion is necessary, but using the macros is simple and effective.

The implementation of each macro uses the _alloca() function to allocate memory from the stack instead of the
heap. Allocating memory from the stack is much faster than allocating memory on the heap, and the memory is
automatically freed when the function is exited. In addition, the macros avoid calling MultiByteToWideChar (or
WideCharToMultiByte) more than one time. This is done by allocating a little bit more memory than is necessary.

We know that an MBC will convert into at most one WCHAR and that for each WCHAR we will have a maximum
of two MBC bytes. By allocating a little more than necessary, but always enough to handle the conversion the
second call second call to the conversion function is avoided. The call to the helper function AfxA2Whelper reduces
the number of argument pushes that must be done in order to perform the conversion (this results in smaller
code, than if it called MultiByteToWideChar directly).

In order to for the macros to have space to store the a temporary length, it is necessary to declare a local variable
called _convert that does this in each function that uses the conversion macros. This is done by invoking the
USES_CONVERSION macro as seen above in the example.

There are both generic conversion macros and OLE specific macros. These two different macro sets are discussed
below. All of the macros reside in AFXPRIV.H.

The generic conversion macros form the underlying mechanism. The macro example and implementation shown
in the previous section, A2W, is one such "generic" macro. It is not related to OLE specifically. The set of generic
macros is listed below:

Besides doing text conversions, there are also macros and helper functions for converting TEXTMETRIC , DEVMODE ,
BSTR , and OLE allocated strings. These macros are beyond the scope of this discussion - refer to AFXPRIV.H for

more information on those macros.

OLE Conversion Macros

T2COLE (LPCTSTR) -> (LPCOLESTR)
T2OLE (LPCTSTR) -> (LPOLESTR)
OLE2CT (LPCOLESTR) -> (LPCTSTR)
OLE2T (LPCOLESTR) -> (LPCSTR)

Other Considerations

void BadIterateCode(LPCTSTR lpsz)
{
 USES_CONVERSION;
 for (int ii = 0; ii <10000; ii++)
 pI->SomeMethod(ii, T2COLE(lpsz));

}

void MuchBetterIterateCode(LPCTSTR lpsz)
{
 USES_CONVERSION;
 LPCOLESTR lpszT = T2COLE(lpsz);

 for (int ii = 0; ii <10000; ii++)
 pI->SomeMethod(ii, lpszT);

}

The OLE conversion macros are designed specifically for handling functions that expect OLESTR characters. If
you examine the OLE headers, you will see many references to LPCOLESTR and OLECHAR. These types are
used to refer to the type of characters used in OLE interfaces in a way that is not specific to the platform.
OLECHAR maps to char in Win16 and Macintosh platforms and WCHAR in Win32.

In order to keep the number of #ifdef directives in the MFC code to a minimum we have a similar macro for each
conversion that where OLE strings are involved. The following macros are the most commonly used:

Again, there are similar macros for doing TEXTMETRIC, DEVMODE, BSTR, and OLE allocated strings. Refer to
AFXPRIV.H for more information.

Do not use the macros in a tight loop. For example, you do not want to write the following kind of code:

The code above could result in allocating megabytes of memory on the stack depending on what the contents of
the string lpsz is! It also takes time to convert the string for each iteration of the loop. Instead, move such
constant conversions out of the loop:

If the string is not constant, then encapsulate the method call into a function. This will allow the conversion buffer
to be freed each time. For example:

void CallSomeMethod(int ii, LPCTSTR lpsz)
{
 USES_CONVERSION;
 pI->SomeMethod(ii, T2COLE(lpsz));

}

void MuchBetterIterateCode2(LPCTSTR* lpszArray)
{
 for (int ii = 0; ii <10000; ii++)
 CallSomeMethod(ii, lpszArray[ii]);

}

LPTSTR BadConvert(ISomeInterface* pI)
{
 USES_CONVERSION;
 LPOLESTR lpsz = NULL;
 pI->GetFileName(&lpsz);

LPTSTR lpszT = OLE2T(lpsz);

 CoMemFree(lpsz);

return lpszT; // bad! returning alloca memory
}

CString BetterConvert(ISomeInterface* pI)
{
 USES_CONVERSION;
 LPOLESTR lpsz = NULL;
 pI->GetFileName(&lpsz);

LPTSTR lpszT = OLE2T(lpsz);

 CoMemFree(lpsz);

return lpszT; // CString makes copy
}

See also

Never return the result of one of the macros, unless the return value implies making a copy of the data before the
return. For example, this code is bad:

The code above could be fixed by changing the return value to something that copies the value:

The macros are easy to use and easy to insert into your code, but as you can tell from the caveats above, you need
to be careful when using them.

Technical Notes by Number
Technical Notes by Category

TN060: The New Windows Common Controls
3/4/2019 • 2 minutes to read • Edit Online

See also

Technical Note 60, describing the new Windows common controls and how to use them, has been incorporated
into Controls.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn060-the-new-windows-common-controls.md

TN061: ON_NOTIFY and WM_NOTIFY Messages
10/31/2018 • 7 minutes to read • Edit Online

NOTENOTE
The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This technical note provides background information on the new WM_NOTIFY message and describes the
recommended (and most common) way of handling WM_NOTIFY messages in your MFC application.

Notification Messages in Windows 3.x

In Windows 3.x, controls notify their parents of events such as mouse clicks, changes in content and selection, and
control background painting by sending a message to the parent. Simple notifications are sent as special
WM_COMMAND messages, with the notification code (such as BN_CLICKED) and control ID packed into
wParam and the control's handle in lParam. Note that since wParam and lParam are full, there is no way to pass
any additional data — these messages can be only simple notification. For instance, in the BN_CLICKED
notification, there's no way to send information about the location of the mouse cursor when the button was
clicked.

When controls in Windows 3.x need to send a notification message that includes additional data, they use a
variety of special-purpose messages, including WM_CTLCOLOR, WM_VSCROLL, WM_HSCROLL,
WM_DRAWITEM, WM_MEASUREITEM, WM_COMPAREITEM, WM_DELETEITEM, WM_CHARTOITEM,
WM_VKEYTOITEM, and so on. These messages can be reflected back to the control that sent them. For more
information, see TN062: Message Reflection for Windows Controls.

Notification Messages in Win32

For controls that existed in Windows 3.1, the Win32 API uses most of the notification messages that were used in
Windows 3.x. However, Win32 also adds a number of sophisticated, complex controls to those supported in
Windows 3.x. Frequently, these controls need to send additional data with their notification messages. Rather than
adding a new WM_* message for each new notification that needs additional data, the designers of the Win32
API chose to add just one message, WM_NOTIFY, which can pass any amount of additional data in a standardized
fashion.

WM_NOTIFY messages contain the ID of the control sending the message in wParam and a pointer to a structure
in lParam. This structure is either an NMHDR structure or some larger structure that has an NMHDR structure
as its first member. Note that since the NMHDR member is first, a pointer to this structure can be used as either a
pointer to an NMHDR or as a pointer to the larger structure depending on how you cast it.

In most cases, the pointer will point to a larger structure and you'll need to cast it when you use it. In only a few
notifications, such as the common notifications (whose names start with NM_) and the tool tip control's
TTN_SHOW and TTN_POP notifications, is an NMHDR structure actually used.

The NMHDR structure or initial member contains the handle and ID of the control sending the message and the
notification code (such as TTN_SHOW). The format of the NMHDR structure is shown below:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn061-on-notify-and-wm-notify-messages.md

typedef struct tagNMHDR {
 HWND hwndFrom;
 UINT idFrom;
 UINT code;
} NMHDR;

typedef struct tagLV_KEYDOWN {
 NMHDR hdr;
 WORD wVKey;
 UINT flags;
} LV_KEYDOWN;

NOTIFICATION CODE SENT BECAUSE

NM_CLICK User clicked left mouse button in the control

NM_DBLCLK User double-clicked left mouse button in the control

NM_RCLICK User clicked right mouse button in the control

NM_RDBLCLK User double-clicked right mouse button in the control

NM_RETURN User pressed the ENTER key while control has input focus

NM_SETFOCUS Control has been given input focus

NM_KILLFOCUS Control has lost input focus

NM_OUTOFMEMORY Control could not complete an operation because there was
not enough memory available

ON_NOTIFY: Handling WM_NOTIFY Messages in MFC Applications

For a TTN_SHOW message, the code member would be set to TTN_SHOW.

Most notifications pass a pointer to a larger structure that contains an NMHDR structure as its first member. For
instance, consider the structure used by the list view control's LVN_KEYDOWN notification message, which is sent
when a key is pressed in a list view control. The pointer points to an LV_KEYDOWN structure, which is defined as
shown below:

Note that since the NMHDR member is first in this structure, the pointer you're passed in the notification
message can be cast to either a pointer to an NMHDR or a pointer to an LV_KEYDOWN .

Notifications Common to All New Windows Controls

Some notifications are common to all of the new Windows controls. These notifications pass a pointer to an
NMHDR structure.

The function CWnd::OnNotify handles notification messages. Its default implementation checks the message map
for notification handlers to call. In general, you do not override OnNotify . Instead, you provide a handler function
and add a message-map entry for that handler to the message map of your owner window's class.

ClassWizard, via the ClassWizard property sheet, can create the ON_NOTIFY message-map entry and provide
you with a skeleton handler function. For more information on using ClassWizard to make this easier, see
Mapping Messages to Functions.

ON_NOTIFY(wNotifyCode, id, memberFxn)

afx_msg void memberFxn(NMHDR* pNotifyStruct, LRESULT* result);

Example

ON_NOTIFY(LVN_KEYDOWN, IDC_LIST1, OnKeydownList1)

void CMessageReflectionDlg::OnKeydownList1(NMHDR* pNMHDR, LRESULT* pResult)
{
 LV_KEYDOWN* pLVKeyDow = (LV_KEYDOWN*)pNMHDR;

 // TODO: Add your control notification handler
 // code here

 *pResult = 0;
}

ON_NOTIFY_RANGE

The ON_NOTIFY message-map macro has the following syntax:

where the parameters are:

wNotifyCode
The code for the notification message to be handled, such as LVN_KEYDOWN.

id
The child identifier of the control for which the notification is sent.

memberFxn
The member function to be called when this notification is sent.

Your member function must be declared with the following prototype:

where the parameters are:

pNotifyStruct
A pointer to the notification structure, as described in the section above.

result
A pointer to the result code you'll set before you return.

To specify that you want the member function OnKeydownList1 to handle LVN_KEYDOWN messages from the
CListCtrl whose ID is IDC_LIST1 , you would use ClassWizard to add the following to your message map:

In the example above, the function provided by ClassWizard is:

Note that ClassWizard provides a pointer of the proper type automatically. You can access the notification
structure through either pNMHDR or pLVKeyDow.

If you need to process the same WM_NOTIFY message for a set of controls, you can use ON_NOTIFY_RANGE
rather than ON_NOTIFY. For instance, you may have a set of buttons for which you want to perform the same
action for a certain notification message.

When you use ON_NOTIFY_RANGE, you specify a contiguous range of child identifiers for which to handle the

ON_NOTIFY_RANGE(wNotifyCode, id, idLast, memberFxn)

afx_msg void memberFxn(UINT id, NMHDR* pNotifyStruct, LRESULT* result);

ON_NOTIFY_EX, ON_NOTIFY_EX_RANGE

ON_NOTIFY_EX(nCode, id, memberFxn)
ON_NOTIFY_EX_RANGE(wNotifyCode, id, idLast, memberFxn)

notification message by specifying the beginning and ending child identifiers of the range.

ClassWizard does not handle ON_NOTIFY_RANGE; to use it, you need to edit your message map yourself.

The message-map entry and function prototype for ON_NOTIFY_RANGE are as follows:

where the parameters are:

wNotifyCode
The code for the notification message to be handled, such as LVN_KEYDOWN.

id
The first identifier in the contiguous range of identifiers.

idLast
The last identifier in the contiguous range of identifiers.

memberFxn
The member function to be called when this notification is sent.

Your member function must be declared with the following prototype:

where the parameters are:

id
The child identifier of the control that sent the notification.

pNotifyStruct
A pointer to the notification structure, as described above.

result
A pointer to the result code you'll set before you return.

If you want more than one object in the notification routing to handle a message, you can use ON_NOTIFY_EX (or
ON_NOTIFY_EX_RANGE) rather than ON_NOTIFY (or ON_NOTIFY_RANGE). The only difference between the
EX version and the regular version is that the member function called for the EX version returns a BOOL that
indicates whether or not message processing should continue. Returning FALSE from this function allows you to
process the same message in more than one object.

ClassWizard does not handle ON_NOTIFY_EX or ON_NOTIFY_EX_RANGE; if you want to use either of them,
you need to edit your message map yourself.

The message-map entry and function prototype for ON_NOTIFY_EX and ON_NOTIFY_EX_RANGE are as
follows. The meanings of the parameters are the same as for the non-EX versions.

The prototype for both of the above is the same:

afx_msg BOOL memberFxn(UINT id, NMHDR* pNotifyStruct, LRESULT* result);

See also

In both cases, id holds the child identifier of the control that sent the notification.

Your function must return TRUE if the notification message has been completely handled or FALSE if other
objects in the command routing should have a chance to handle the message.

Technical Notes by Number
Technical Notes by Category

TN062: Message Reflection for Windows Controls
10/31/2018 • 7 minutes to read • Edit Online

NOTENOTE
The following technical note has not been updated since it was first included in the online documentation. As a result,
some procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you
search for the topic of interest in the online documentation index.

This technical note describes message reflection, a new feature in MFC 4.0. It also contains directions for
creating a simple reusable control that uses message reflection.

This technical note does not discuss message reflection as it applies to ActiveX controls (formerly called OLE
controls). Please see the article ActiveX Controls: Subclassing a Windows Control.

What Is Message Reflection

Windows controls frequently send notification messages to their parent windows. For instance, many controls
send a control color notification message (WM_CTLCOLOR or one of its variants) to their parent to allow the
parent to supply a brush for painting the background of the control.

In Windows and in MFC before version 4.0, the parent window, often a dialog box, is responsible for handling
these messages. This means that the code for handling the message needs to be in the parent window's class
and that it has to be duplicated in every class that needs to handle that message. In the case above, every dialog
box that wanted controls with custom backgrounds would have to handle the control color notification message.
It would be much easier to reuse code if a control class could be written that would handle its own background
color.

In MFC 4.0, the old mechanism still works — parent windows can handle notification messages. In addition,
however, MFC 4.0 facilitates reuse by providing a feature called "message reflection" that allows these
notification messages to be handled in either the child control window or the parent window, or in both. In the
control background color example, you can now write a control class that sets its own background color by
handling the reflected WM_CTLCOLOR message — all without relying on the parent. (Note that since message
reflection is implemented by MFC, not by Windows, the parent window class must be derived from CWnd for
message reflection to work.)

Older versions of MFC did something similar to message reflection by providing virtual functions for a few
messages, such as messages for owner-drawn list boxes (WM_DRAWITEM, and so on). The new message
reflection mechanism is generalized and consistent.

Message reflection is backward compatible with code written for versions of MFC before 4.0.

If you have supplied a handler for a specific message, or for a range of messages, in your parent window's class,
it will override reflected message handlers for the same message provided you don't call the base class handler
function in your own handler. For example, if you handle WM_CTLCOLOR in your dialog box class, your
handling will override any reflected message handlers.

If, in your parent window class, you supply a handler for a specific WM_NOTIFY message or a range of
WM_NOTIFY messages, your handler will be called only if the child control sending those messages does not
have a reflected message handler through ON_NOTIFY_REFLECT() . If you use ON_NOTIFY_REFLECT_EX() in your
message map, your message handler may or may not allow the parent window to handle the message. If the
handler returns FALSE , the message will be handled by the parent as well, while a call that returns TRUE does

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn062-message-reflection-for-windows-controls.md

MAP ENTRY FUNCTION PROTOTYPE

ON_CONTROL_REFLECT(wNotifyCode , memberFxn) afx_msg void memberFxn ();

ON_NOTIFY_REFLECT(wNotifyCode , memberFxn) afx_msg void memberFxn (NMHDR * pNotifyStruct ,
LRESULT* result);

ON_UPDATE_COMMAND_UI_REFLECT(memberFxn) afx_msg void memberFxn (CCmdUI* pCmdUI);

ON_WM_CTLCOLOR_REFLECT() afx_msg HBRUSH CtlColor (CDC* pDC , UINT
nCtlColor);

ON_WM_DRAWITEM_REFLECT() afx_msg void DrawItem (LPDRAWITEMSTRUCT
lpDrawItemStruct);

not allow the parent to handle it. Note that the reflected message is handled before the notification message.

When a WM_NOTIFY message is sent, the control is offered the first chance to handle it. If any other reflected
message is sent, the parent window has the first chance to handle it and the control will receive the reflected
message. To do so, it will need a handler function and an appropriate entry in the control's class message map.

The message-map macro for reflected messages is slightly different than for regular notifications: it has
_REFLECT appended to its usual name. For instance, to handle a WM_NOTIFY message in the parent, you use
the macro ON_NOTIFY in the parent's message map. To handle the reflected message in the child control, use
the ON_NOTIFY_REFLECT macro in the child control's message map. In some cases, the parameters are
different, as well. Note that ClassWizard can usually add the message-map entries for you and provide skeleton
function implementations with correct parameters.

See TN061: ON_NOTIFY and WM_NOTIFY Messages for information on the new WM_NOTIFY message.

Message-Map Entries and Handler Function Prototypes for Reflected Messages

To handle a reflected control notification message, use the message-map macros and function prototypes listed
in the table below.

ClassWizard can usually add these message-map entries for you and provide skeleton function
implementations. See Defining a Message Handler for a Reflected Message for information about how to define
handlers for reflected messages.

To convert from the message name to the reflected macro name, prepend ON_ and append _REFLECT. For
example, WM_CTLCOLOR becomes ON_WM_CTLCOLOR_REFLECT. (To see which messages can be reflected,
do the opposite conversion on the macro entries in the table below.)

The three exceptions to the rule above are as follows:

The macro for WM_COMMAND notifications is ON_CONTROL_REFLECT.

The macro for WM_NOTIFY reflections is ON_NOTIFY_REFLECT.

The macro for ON_UPDATE_COMMAND_UI reflections is ON_UPDATE_COMMAND_UI_REFLECT.

In each of the above special cases, you must specify the name of the handler member function. In the other
cases, you must use the standard name for your handler function.

The meanings of the parameters and return values of the functions are documented under either the function
name or the function name with On prepended. For instance, CtlColor is documented in OnCtlColor . Several
reflected message handlers need fewer parameters than the similar handlers in a parent window. Just match the
names in the table below with the names of the formal parameters in the documentation.

ON_WM_MEASUREITEM_REFLECT() afx_msg void MeasureItem (LPMEASUREITEMSTRUCT
lpMeasureItemStruct);

ON_WM_DELETEITEM_REFLECT() afx_msg void DeleteItem (LPDELETEITEMSTRUCT
lpDeleteItemStruct);

ON_WM_COMPAREITEM_REFLECT() afx_msg int CompareItem (LPCOMPAREITEMSTRUCT
lpCompareItemStruct);

ON_WM_CHARTOITEM_REFLECT() afx_msg int CharToItem (UINT nKey , UINT nIndex);

ON_WM_VKEYTOITEM_REFLECT() afx_msg int VKeyToItem (UINT nKey , UINT nIndex);

ON_WM_HSCROLL_REFLECT() afx_msg void HScroll (UINT nSBCode , UINT nPos);

ON_WM_VSCROLL_REFLECT() afx_msg void VScroll (UINT nSBCode , UINT nPos);

ON_WM_PARENTNOTIFY_REFLECT() afx_msg void ParentNotify (UINT message , LPARAM
lParam);

MAP ENTRY FUNCTION PROTOTYPE

MAP ENTRY FUNCTION PROTOTYPE

ON_NOTIFY_REFLECT_EX(wNotifyCode , memberFxn) afx_msg BOOL memberFxn (NMHDR * pNotifyStruct ,
LRESULT* result);

ON_CONTROL_REFLECT_EX(wNotifyCode , memberFxn) afx_msg BOOL memberFxn ();

Handling Reflected Messages: An Example of a Reusable control

To try the example that creates a reusable controlTo try the example that creates a reusable control

The ON_NOTIFY_REFLECT and ON_CONTROL_REFLECT macros have variations that allow more than one
object (such as the control and its parent) to handle a given message.

This simple example creates a reusable control called CYellowEdit . The control works the same as a regular edit
control except that it displays black text on a yellow background. It would be easy to add member functions that
would allow the CYellowEdit control to display different colors.

1. Create a new dialog box in an existing application. For more information, see the dialog editor topic.

You must have an application in which to develop the reusable control. If you don't have an existing
application to use, create a dialog-based application using AppWizard.

2. With your project loaded into Visual C++, use ClassWizard to create a new class called CYellowEdit

based on CEdit .

3. Add three member variables to your CYellowEdit class. The first two will be COLORREF variables to hold
the text color and the background color. The third will be a CBrush object that will hold the brush for
painting the background. The CBrush object allows you to create the brush once, merely referencing it

See also

CYellowEdit::CYellowEdit()
{
 m_clrText = RGB(0, 0, 0);
 m_clrBkgnd = RGB(255, 255, 0);
 m_brBkgnd.CreateSolidBrush(m_clrBkgnd);
}

ON_WM_CTLCOLOR_REFLECT()
// Note: other code will be in between....

HBRUSH CYellowEdit::CtlColor(CDC* pDC, UINT nCtlColor)
{
 // TODO: Change any attributes of the DC here
 // TODO: Return a non-NULL brush if the
 // parent's handler should not be called
 return NULL;
}

pDC->SetTextColor(m_clrText); // text
pDC->SetBkColor(m_clrBkgnd); // text bkgnd
return m_brBkgnd; // ctl bkgnd

after that, and to destroy the brush automatically when the CYellowEdit control is destroyed.

4. Initialize the member variables by writing the constructor as follows:

5. Using ClassWizard, add a handler for the reflected WM_CTLCOLOR message to your CYellowEdit class.
Note that the equal sign in front of the message name in the list of messages you can handle indicates
that the message is reflected. This is described in Defining a Message Handler for a Reflected Message.

ClassWizard adds the following message-map macro and skeleton function for you:

6. Replace the body of the function with the following code. The code specifies the text color, the text
background color, and the background color for rest of the control.

7. Create an edit control in your dialog box, then attach it to a member variable by double-clicking the edit
control while holding a control key down. In the Add Member Variable dialog box, finish the variable
name and choose "Control" for the category, then "CYellowEdit" for the variable type. Don't forget to set
the tab order in the dialog box. Also, be sure to include the header file for the CYellowEdit control in your
dialog box's header file.

8. Build and run your application. The edit control will have a yellow background.

Technical Notes by Number
Technical Notes by Category

TN063: Debugging Internet MFC extension DLLs
3/4/2019 • 2 minutes to read • Edit Online

See also

This information is obsolete and has been removed.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn063-debugging-internet-extension-dlls.md

TN064: Apartment-Model Threading in ActiveX
Controls
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

What Is Apartment-Model Threading

Why Support Apartment-Model Threading

Protecting Shared Data

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This technical note explains how to enable apartment-model threading in an ActiveX control. Note that apartment-
model threading is only supported in Visual C++ versions 4.2 or later.

The apartment model is an approach to supporting embedded objects, such as ActiveX controls, within a
multithreaded container application. Although the application may have multiple threads, each instance of an
embedded object will be assigned to one "apartment," which will execute on only one thread. In other words, all
calls into an instance of a control will happen on the same thread.

However, different instances of the same type of control may be assigned to different apartments. So, if multiple
instances of a control share any data in common (for example, static or global data), then access to this shared
data will need to be protected by a synchronization object, such as a critical section.

For complete details on the apartment threading model, please see Processes and Threads in the OLE
Programmer's Reference.

Controls that support apartment-model threading can be used in multithreaded container applications that also
support the apartment model. If you do not enable apartment-model threading, you will limit the potential set of
containers in which your control could be used.

Enabling apartment-model threading is easy for most controls, particularly if they have little or no shared data.

If your control uses shared data, such as a static member variable, access to that data should be protected with a
critical section to prevent more than one thread from modifying the data at the same time. To set up a critical
section for this purpose, declare a static member variable of class CCriticalSection in your control's class. Use the
Lock and Unlock member functions of this critical section object wherever your code accesses the shared data.

Consider, for example, a control class that needs to maintain a string that is shared by all instances. This string can
be maintained in a static member variable and protected by a critical section. The control's class declaration would
contain the following:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn064-apartment-model-threading-in-activex-controls.md
https://docs.microsoft.com/windows/desktop/ProcThread/processes-and-threads

class CSampleCtrl : public COleControl
{
...
 static CString _strShared;
 static CCriticalSection _critSect;
};

int CString CSampleCtrl::_strShared;
CCriticalSection CSampleCtrl::_critSect;

void CSampleCtrl::SomeMethod()
{
 _critSect.Lock();
if (_strShared.Empty())
 _strShared = "<text>";
 _critSect.Unlock();

...
}

Registering an Apartment-Model-Aware Control

BOOL CSampleCtrl::CSampleCtrlFactory::UpdateRegistry(BOOL bRegister)
{
 if (bRegister)
 return AfxOleRegisterControlClass(
 AfxGetInstanceHandle(),
 m_clsid,
 m_lpszProgID,
 IDS_SAMPLE,
 IDB_SAMPLE,
 afxRegApartmentThreading,
 _dwSampleOleMisc,
 _tlid,
 _wVerMajor,
 _wVerMinor);

else
 return AfxOleUnregisterClass(m_clsid,
 m_lpszProgID);

}

The implementation for the class would include definitions for these variables:

Access to the _strShared static member can then be protected by the critical section:

Controls that support apartment-model threading should indicate this capability in the registry, by adding the
named value "ThreadingModel" with a value of "Apartment" in their class ID registry entry under the class
id\InprocServer32 key. To cause this key to be automatically registered for your control, pass the
afxRegApartmentThreading flag in the sixth parameter to AfxOleRegisterControlClass :

If your control project was generated by ControlWizard in Visual C++ version 4.1 or later, this flag will already be
present in your code. No changes are necessary to register the threading model.

If your project was generated by an earlier version of ControlWizard, your existing code will have a Boolean value
as the sixth parameter. If the existing parameter is TRUE, change it to afxRegInsertable |
afxRegApartmentThreading. If the existing parameter is FALSE, change it to afxRegApartmentThreading.

See also

If your control does not follow the rules for apartment-model threading, you must not pass
afxRegApartmentThreading in this parameter.

Technical Notes by Number
Technical Notes by Category

TN065: Dual-Interface Support for OLE Automation
Servers
10/31/2018 • 10 minutes to read • Edit Online

NOTENOTE

Dual Interfaces

Adding Dual-Interface Support to a CCmdTarget-Based Class

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note discusses how to add dual-interface support to an MFC-based OLE Automation server application. The
ACDUAL sample illustrates dual-interface support, and the example code in this note is taken from ACDUAL. The
macros described in this note, such as DECLARE_DUAL_ERRORINFO, DUAL_ERRORINFO_PART, and
IMPLEMENT_DUAL_ERRORINFO, are part of the ACDUAL sample and can be found in MFCDUAL.H.

Although OLE Automation allows you to implement an IDispatch interface, a VTBL interface, or a dual interface
(which encompasses both), Microsoft strongly recommends that you implement dual interfaces for all exposed
OLE Automation objects. Dual interfaces have significant advantages over IDispatch -only or VTBL-only
interfaces:

Binding can take place at compile time through the VTBL interface, or at run time through IDispatch .

OLE Automation controllers that can use the VTBL interface may benefit from improved performance.

Existing OLE Automation controllers that use the IDispatch interface will continue to work.

The VTBL interface is easier to call from C++.

Dual interfaces are required for compatibility with Visual Basic object support features.

A dual interface is really just a custom interface derived from IDispatch . The most straightforward way to
implement dual-interface support in a CCmdTarget -based class is to first implement the normal dispatch interface
on your class using MFC and ClassWizard, then add the custom interface later. For the most part, your custom
interface implementation will simply delegate back to the MFC IDispatch implementation.

First, modify the ODL file for your server to define dual interfaces for your objects. To define a dual interface, you
must use an interface statement, instead of the DISPINTERFACE statement that the Visual C++ wizards generate.
Rather than removing the existing DISPINTERFACE statement, add a new interface statement. By retaining the
DISPINTERFACE form, you can continue to use ClassWizard to add properties and methods to your object, but you

must add the equivalent properties and methods to your interface statement.

An interface statement for a dual interface must have the OLEAUTOMATION and DUAL attributes, and the
interface must be derived from IDispatch . You can use the GUIDGEN sample to create a IID for the dual
interface:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn065-dual-interface-support-for-ole-automation-servers.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

[uuid(0BDD0E81-0DD7-11cf-BBA8-444553540000), // IID_IDualAClick
 oleautomation,
 dual
]
interface IDualAClick : IDispatch
 {
 };

[propput, id(1)] HRESULT text([in] BSTR newText);
[propget, id(1)] HRESULT text([out, retval] BSTR* retval);

[uuid(4B115281-32F0-11cf-AC85-444553540000)]
coclass Document
{
 dispinterface IAClick;
 [default] interface IDualAClick;
};

BEGIN_DUAL_INTERFACE_PART(DualAClick, IDualAClick)
 STDMETHOD(put_text)(THIS_ BSTR newText);
 STDMETHOD(get_text)(THIS_ BSTR FAR* retval);
 STDMETHOD(put_x)(THIS_ short newX);
 STDMETHOD(get_x)(THIS_ short FAR* retval);
 STDMETHOD(put_y)(THIS_ short newY);
 STDMETHOD(get_y)(THIS_ short FAR* retval);
 STDMETHOD(put_Position)(THIS_ IDualAutoClickPoint FAR* newPosition);
 STDMETHOD(get_Position)(THIS_ IDualAutoClickPoint FAR* FAR* retval);
 STDMETHOD(RefreshWindow)(THIS);
 STDMETHOD(SetAllProps)(THIS_ short x, short y, BSTR text);
 STDMETHOD(ShowWindow)(THIS);
END_DUAL_INTERFACE_PART(DualAClick)

Once you have the interface statement in place, start adding entries for the methods and properties. For dual
interfaces, you need to rearrange the parameter lists so that your methods and property accessor functions in the
dual interface return an HRESULT and pass their return values as parameters with the attributes [retval,out] .
Remember that for properties, you will need to add both a read (propget) and write (propput) access function
with the same id. For example:

After your methods and properties are defined, you need to add a reference to the interface statement in your
coclass statement. For example:

Once your ODL file has been updated, use MFC's interface map mechanism to define an implementation class for
the dual interface in your object class and make the corresponding entries in MFC's QueryInterface mechanism.
You need one entry in the INTERFACE_PART block for each entry in the interface statement of the ODL, plus the
entries for a dispatch interface. Each ODL entry with the propput attribute needs a function named
put_propertyname . Each entry with the propget attribute needs a function named get_propertyname .

To define an implementation class for your dual interface, add a DUAL_INTERFACE_PART block to your object class
definition. For example:

To connect the dual interface to MFC's QueryInterface mechanism, add an INTERFACE_PART entry to the interface
map:

https://docs.microsoft.com/windows/desktop/com/queryinterface--navigating-in-an-object

BEGIN_INTERFACE_MAP(CAutoClickDoc, CDocument)
 INTERFACE_PART(CAutoClickDoc, DIID_IAClick, Dispatch)
 INTERFACE_PART(CAutoClickDoc, IID_IDualAClick, DualAClick)
END_INTERFACE_MAP()

STDMETHODIMP_(ULONG) CAutoClickDoc::XDualAClick::AddRef()
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 return pThis->ExternalAddRef();
}

STDMETHODIMP_(ULONG) CAutoClickDoc::XDualAClick::Release()
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 return pThis->ExternalRelease();
}

STDMETHODIMP CAutoClickDoc::XDualAClick::QueryInterface(
 REFIID iid,
 LPVOID* ppvObj)
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 return pThis->ExternalQueryInterface(&iid, ppvObj);
}

STDMETHODIMP CAutoClickDoc::XDualAClick::GetTypeInfoCount(
 UINT FAR* pctinfo)
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 LPDISPATCH lpDispatch = pThis->GetIDispatch(FALSE);
 ASSERT(lpDispatch != NULL);
 return lpDispatch->GetTypeInfoCount(pctinfo);
}

STDMETHODIMP CAutoClickDoc::XDualAClick::GetTypeInfo(
 UINT itinfo,
 LCID lcid,
 ITypeInfo FAR* FAR* pptinfo)
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 LPDISPATCH lpDispatch = pThis->GetIDispatch(FALSE);
 ASSERT(lpDispatch != NULL);

 return lpDispatch->GetTypeInfo(itinfo, lcid, pptinfo);
}

STDMETHODIMP CAutoClickDoc::XDualAClick::GetIDsOfNames(
 REFIID riid,
 OLECHAR FAR* FAR* rgszNames,
 UINT cNames,
 LCID lcid,
 DISPID FAR* rgdispid)
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 LPDISPATCH lpDispatch = pThis->GetIDispatch(FALSE);
 ASSERT(lpDispatch != NULL);

 return lpDispatch->GetIDsOfNames(riid, rgszNames, cNames, lcid, rgdispid);
}

STDMETHODIMP CAutoClickDoc::XDualAClick::Invoke(
 DISPID dispidMember,
 REFIID riid,

Next, you need to fill in the implementation of the interface. For the most part, you will be able to delegate to the
existing MFC IDispatch implementation. For example:

 REFIID riid,
 LCID lcid,
 WORD wFlags,
 DISPPARAMS FAR* pdispparams,
 VARIANT FAR* pvarResult,
 EXCEPINFO FAR* pexcepinfo,
 UINT FAR* puArgErr)
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 LPDISPATCH lpDispatch = pThis->GetIDispatch(FALSE);
 ASSERT(lpDispatch != NULL);

 return lpDispatch->Invoke(dispidMember, riid, lcid,
 wFlags, pdispparams, pvarResult, pexcepinfo, puArgErr);
}

STDMETHODIMP CAutoClickDoc::XDualAClick::put_text(BSTR newText)
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 // MFC automatically converts from Unicode BSTR to
 // Ansi CString, if necessary...
 pThis->m_str = newText;
 return NOERROR;
}

STDMETHODIMP CAutoClickDoc::XDualAClick::get_text(BSTR* retval)
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 // MFC automatically converts from Ansi CString to
 // Unicode BSTR, if necessary...
 pThis->m_str.SetSysString(retval);
 return NOERROR;
}

Passing Dual-Interface Pointers

STDMETHODIMP CAutoClickDoc::XDualAClick::put_Position(
 IDualAutoClickPoint FAR* newPosition)
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 LPDISPATCH lpDisp = NULL;
 newPosition->QueryInterface(IID_IDispatch, (LPVOID*)&lpDisp);
 pThis->SetPosition(lpDisp);
 lpDisp->Release();
 return NOERROR;
}

For your object's methods and property accessor functions, you need to fill in the implementation. Your method
and property functions can generally delegate back to the methods generated using ClassWizard. However, if you
set up properties to access variables directly, you need to write the code to get/put the value into the variable. For
example:

Passing your dual-interface pointer isn't straightforward, especially if you need to call CCmdTarget::FromIDispatch .
FromIDispatch only works on MFC's IDispatch pointers. One way to work around this is to query for the original
IDispatch pointer set up by MFC and pass that pointer to functions that need it. For example:

Before passing a pointer back through the dual-interface method, you might need to convert it from the MFC
IDispatch pointer to your dual-interface pointer. For example:

STDMETHODIMP CAutoClickDoc::XDualAClick::get_Position(
 IDualAutoClickPoint FAR* FAR* retval)
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 LPDISPATCH lpDisp;
 lpDisp = pThis->GetPosition();
 lpDisp->QueryInterface(IID_IDualAutoClickPoint, (LPVOID*)retval);
 return NOERROR;
}

Registering the Application's Type Library

Modifying Project Build Settings to Accommodate Type Library
Changes

AppWizard does not generate code to register an OLE Automation server application's type library with the
system. While there are other ways to register the type library, it is convenient to have the application register the
type library when it is updating its OLE type information, that is, whenever the application is run stand-alone.

To register the application's type library whenever the application is run stand alone:

// When a server application is launched stand-alone, it is a good idea
// to update the system registry in case it has been damaged.
m_server.UpdateRegistry(OAT_DISPATCH_OBJECT);

COleObjectFactory::UpdateRegistryAll();

// DUAL_SUPPORT_START
 // Make sure the type library is registered or dual interface won't work.
 AfxOleRegisterTypeLib(AfxGetInstanceHandle(),
 LIBID_ACDual,
 _T("AutoClik.TLB"));
// DUAL_SUPPORT_END

Include AFXCTL.H in your standard includes header file, STDAFX.H, to access the definition of the
AfxOleRegisterTypeLib function.

In your application's InitInstance function, locate the call to COleObjectFactory::UpdateRegistryAll .
Following this call, add a call to AfxOleRegisterTypeLib , specifying the LIBID corresponding to your type
library, along with the name of your type library:

To modify a project's build settings so that a header file containing UUID definitions is generated by MkTypLib
whenever the type library is rebuilt:

1. On the Build menu, click Settings, and then select the ODL file from the file list for each configuration.

2. Click the OLE Types tab and specify a filename in the Output header filename field. Use a filename that is
not already used by your project, because MkTypLib will overwrite any existing file. Click OK to close the
Build Settings dialog box.

To add the UUID definitions from the MkTypLib-generated header file to your project:

1. Include the MkTypLib-generated header file in your standard includes header file, STDAFX.H.

2. Create a new file, INITIIDS.CPP, and add it to your project. In this file, include your MkTypLib-generated
header file after including OLE2.H and INITGUID.H:

Specifying the Correct Object Class Name in the Type Library

Handling Exceptions and the Automation Error Interfaces

STDMETHODIMP CAutoClickDoc::XDualAClick::put_text(BSTR newText)
{
 METHOD_PROLOGUE(CAutoClickDoc, DualAClick)
 TRY_DUAL(IID_IDualAClick)
 {
 // MFC automatically converts from Unicode BSTR to
 // Ansi CString, if necessary...
 pThis->m_str = newText;
 return NOERROR;
 }
 CATCH_ALL_DUAL
}

// initIIDs.c: defines IIDs for dual interfaces
// This must not be built with precompiled header.
#include <ole2.h>
#include <initguid.h>
#include "acdual.h"

3. On the Build menu, click Settings, and then select INITIIDS.CPP from the file list for each configuration.

4. Click the C++ tab, click category Precompiled Headers, and select the Not using precompiled headers
radio button. Click OK to close the Build Settings dialog box.

The wizards shipped with Visual C++ incorrectly use the implementation class name to specify the coclass in the
server's ODL file for OLE-creatable classes. While this will work, the implementation class name is probably not
the class name you want users of your object to use. To specify the correct name, open the ODL file, locate each
coclass statement, and replace the implementation class name with the correct external name.

Note that when the coclass statement is changed, the variable names of CLSIDs in the MkTypLib-generated
header file will change accordingly. You will need to update your code to use the new variable names.

Your automation object's methods and property accessor functions may throw exceptions. If so, you should handle
them in your dual-interface implementation and pass information about the exception back to the controller
through the OLE Automation error-handling interface, IErrorInfo . This interface provides for detailed, contextual
error information through both IDispatch and VTBL interfaces. To indicate that an error handler is available, you
should implement the ISupportErrorInfo interface.

To illustrate the error-handling mechanism, assume that the ClassWizard-generated functions used to implement
the standard dispatch support throw exceptions. MFC's implementation of IDispatch::Invoke typically catches
these exceptions and converts them into an EXCEPTINFO structure that is returned through the Invoke call.
However, when VTBL interface is used, you are responsible for catching the exceptions yourself. As an example of
protecting your dual-interface methods:

CATCH_ALL_DUAL takes care of returning the correct error code when an exception occurs. CATCH_ALL_DUAL converts
an MFC exception into OLE Automation error-handling information using the ICreateErrorInfo interface. (An
example CATCH_ALL_DUAL macro is in the file MFCDUAL.H in the ACDUAL sample. The function it calls to handle
exceptions, DualHandleException , is in the file MFCDUAL.CPP.) CATCH_ALL_DUAL determines the error code to
return based on the type of exception that occurred:

COleDispatchException - In this case, HRESULT is constructed using the following code:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

STDMETHODIMP_(ULONG) CAutoClickDoc::XSupportErrorInfo::AddRef()
{
 METHOD_PROLOGUE(CAutoClickDoc, SupportErrorInfo)
 return pThis->ExternalAddRef();
}

STDMETHODIMP_(ULONG) CAutoClickDoc::XSupportErrorInfo::Release()
{
 METHOD_PROLOGUE(CAutoClickDoc, SupportErrorInfo)
 return pThis->ExternalRelease();
}

STDMETHODIMP CAutoClickDoc::XSupportErrorInfo::QueryInterface(
 REFIID iid,
 LPVOID* ppvObj)
{
 METHOD_PROLOGUE(CAutoClickDoc, SupportErrorInfo)
 return pThis->ExternalQueryInterface(&iid, ppvObj);
}

STDMETHODIMP CAutoClickDoc::XSupportErrorInfo::InterfaceSupportsErrorInfo(
 REFIID iid)
{
 METHOD_PROLOGUE(CAutoClickDoc, SupportErrorInfo)
 return (iid == IID_IDualAClick) S_OK : S_FALSE;
}

See also

hr = MAKE_HRESULT(SEVERITY_ERROR, FACILITY_ITF, (e->m_wCode + 0x200));

This creates an HRESULT specific to the interface that caused the exception. The error code is offset by 0x200
to avoid any conflicts with system-defined HRESULT s for standard OLE interfaces.

CMemoryException - In this case, E_OUTOFMEMORY is returned.

Any other exception - In this case, E_UNEXPECTED is returned.

To indicate that the OLE Automation error handler is used, you should also implement the ISupportErrorInfo

interface.

First, add code to your automation class definition to show it supports ISupportErrorInfo .

Second, add code to your automation class's interface map to associate the ISupportErrorInfo implementation
class with MFC's QueryInterface mechanism. The INTERFACE_PART statement matches the class defined for
ISupportErrorInfo .

Finally, implement the class defined to support ISupportErrorInfo .

(The ACDUAL sample contains three macros to help do these three steps, DECLARE_DUAL_ERRORINFO ,
DUAL_ERRORINFO_PART , and IMPLEMENT_DUAL_ERRORINFO , all contained in MFCDUAL.H.)

The following example implements a class defined to support ISupportErrorInfo . CAutoClickDoc is the name of
your automation class and IID_IDualAClick is the IID for the interface that is the source of errors reported
through the OLE Automation error object:

Technical Notes by Number
Technical Notes by Category

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

TN066: Common MFC 3.x to 4.0 Porting Issues
3/4/2019 • 2 minutes to read • Edit Online

See also

This technical note described the most common problems that can occur when attempting to port an application
written with MFC 3.x (the MFC included with Visual C++ 2.x) to MFC 4.0.

Technical Notes by Number
Technical Notes by Category

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn066-common-mfc-3-x-to-4-0-porting-issues.md

TN068: Performing Transactions with the Microsoft
Access 7 ODBC Driver
10/31/2018 • 3 minutes to read • Edit Online

NOTENOTE

Overview

Closing the Recordset after each CommitTrans or Rollback Operation

Using SQLFreeStmt

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

This note describes how to perform transactions when using the MFC ODBC database classes and the Microsoft
Access 7.0 ODBC driver included in the Microsoft ODBC Desktop Driver Pack version 3.0.

If your database application performs transactions, you must be careful to call CDatabase::BeginTrans and
CRecordset::Open in the correct sequence in your application. The Microsoft Access 7.0 driver uses the Microsoft

Jet database engine, and Jet requires that your application not begin a transaction on any database that has an
open cursor. For the MFC ODBC database classes, an open cursor equates to an open CRecordset object.

If you open a recordset before calling BeginTrans , you may not see any error messages. However, any recordset
updates your application makes become permanent after calling CRecordset::Update , and the updates will not be
rolled back by calling Rollback . To avoid this problem, you must call BeginTrans first and then open the
recordset.

MFC checks the driver functionality for cursor commit and rollback behavior. Class CDatabase provides two
member functions, GetCursorCommitBehavior and GetCursorRollbackBehavior , to determine the effect of any
transaction on your open CRecordset object. For the Microsoft Access 7.0 ODBC driver, these member functions
return SQL_CB_CLOSE because the Access driver does not support cursor preservation. Therefore, you must call
CRecordset::Requery following a CommitTrans or Rollback operation.

When you need to perform multiple transactions one after another, you cannot call Requery after the first
transaction and then start the next one. You must close the recordset before the next call to BeginTrans in order to
satisfy Jet's requirement. This technical note describes two methods of handling this situation:

Closing the recordset after each CommitTrans or Rollback operation.

Using the ODBC API function SQLFreeStmt .

Before starting a transaction, make sure the recordset object is closed. After calling BeginTrans , call the recordset's
Open member function. Close the recordset immediately after calling CommitTrans or Rollback . Note that

repeatedly opening and closing the recordset can slow an application's performance.

You can also use the ODBC API function SQLFreeStmt to explicitly close the cursor after ending a transaction. To
start another transaction, call BeginTrans followed by CRecordset::Requery . When calling SQLFreeStmt , you must

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn068-performing-transactions-with-the-microsoft-access-7-odbc-driver.md

CMyDatabase db;
db.Open("MYDATASOURCE");
CMyRecordset rs(&db);

// start transaction 1 and
// open the recordset
db.BeginTrans();
rs.Open();

// manipulate data

// end transaction 1
db.CommitTrans(); // or Rollback()

// close the cursor
::SQLFreeStmt(rs.m_hstmt, SQL_CLOSE);

// start transaction 2
db.BeginTrans();
// now get the result set
rs.Requery();

// manipulate data

// end transaction 2
db.CommitTrans();

rs.Close();
db.Close();

specify the recordset's HSTMT as the first parameter and SQL_CLOSE as the second parameter. This method is
faster than closing and opening the recordset at the start of every transaction. The following code demonstrates
how to implement this technique:

Another way to implement this technique is to write a new function, RequeryWithBeginTrans , which you can call to
start the next transaction after you commit or rollback the first one. To write such a function, do the following
steps:

1. Copy the code for CRecordset::Requery() to the new function.

2. Add the following line immediately after the call to SQLFreeStmt :

m_pDatabase->BeginTrans();

Now you can call this function between each pair of transactions:

// start transaction 1 and
// open the recordset
db.BeginTrans();

rs.Open();

// manipulate data

// end transaction 1
db.CommitTrans(); // or Rollback()

// close the cursor, start new transaction,
// and get the result set
rs.RequeryWithBeginTrans();

// manipulate data

// end transaction 2
db.CommitTrans(); // or Rollback()

NOTENOTE

See also

Do not use this technique if you need to change the recordset member variables m_strFilter or m_strSort between
transactions. In that case, you should close the recordset after each CommitTrans or Rollback operation.

Technical Notes by Number
Technical Notes by Category

TN070: MFC Window Class Names
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Afx:%x:%x
Afx:%x:%x:%x:%x:%x

See also

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

MFC windows use a dynamically created class name that reflects the features of the window. MFC generates class
names dynamically for frame windows, views, and popup windows produced by the application. Dialog boxes and
controls produced by an MFC application have the Windows-supplied name for the class of window in question.

You can replace the dynamically provided class name by registering your own window class and using it in an
override of PreCreateWindow. Their MFC-supplied class names fit one of the two following forms:

The hex digits that replace the %x characters are filled in from data from the WNDCLASS structure. MFC uses
this technique so that multiple C++ classes requiring identical WNDCLASS structures can share the same
registered window class. Unlike most simple Win32 applications, MFC applications have only one WNDPROC, so
you can easily share WNDCLASS structures to save time and memory. The replaceable values for the %x

characters shown above are as follows:

WNDCLASS.hInstance

WNDCLASS.style

WNDCLASS.hCursor

WNDCLASS.hbrBackground

WNDCLASS.hIcon

The first form (Afx:%x:%x) is used when hCursor, hbrBackground, and hIcon are all NULL.

Technical Notes by Number
Technical Notes by Category
TN020: ID Naming and Numbering Conventions

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn070-mfc-window-class-names.md
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa

TN071: MFC IOleCommandTarget Implementation
10/31/2018 • 5 minutes to read • Edit Online

NOTENOTE

MFC OLE Command Maps

The following technical note has not been updated since it was first included in the online documentation. As a result, some
procedures and topics might be out of date or incorrect. For the latest information, it is recommended that you search for
the topic of interest in the online documentation index.

The IOleCommandTarget interface enables objects and their containers to dispatch commands to each other. For
example, an object's toolbars may contain buttons for commands such as Print , Print Preview , Save , New , and
Zoom . If such an object were embedded in a container that supports IOleCommandTarget , the object could enable its

buttons and forward the commands to the container for processing when the user clicked them. If a container
wanted the embedded object to print itself, it could make this request by sending a command through the
IOleCommandTarget interface of the embedded object.

IOleCommandTarget is an Automation-like interface in that it is used by a client to invoke methods on a server.
However, using IOleCommandTarget saves the overhead of making calls via Automation interfaces because
programmers don't have to use the typically expensive Invoke method of IDispatch .

In MFC, the IOleCommandTarget interface is used by Active document servers to allow Active document containers
to dispatch commands to the server. The Active document server class, CDocObjectServerItem , uses MFC interface
maps (see TN038: MFC/OLE IUnknown Implementation) to implement the IOleCommandTarget interface.

IOleCommandTarget is also implemented in the COleFrameHook class. COleFrameHook is an undocumented MFC class
that implements the frame window functionality of in-place editing containers. COleFrameHook also uses MFC
interface maps to implement the IOleCommandTarget interface. COleFrameHook 's implementation of
IOleCommandTarget forwards OLE commands to COleDocObjectItem -derived Active document containers. This

allows any MFC Active document container to receive messages from contained Active document servers.

MFC developers can take advantage of IOleCommandTarget by using MFC OLE command maps. OLE command
maps are like message maps because they can be used to map OLE commands to member functions of the class
that contains the command map. To make this work, place macros in the command map to specify the OLE
command group of the command you want to handle, the OLE command, and the command ID of the
WM_COMMAND message that will be sent when the OLE command is received. MFC also provides a number of
predefined macros for standard OLE commands. For a list of the standard OLE commands that were originally
designed for use with Microsoft Office applications, see the OLECMDID enumeration, which is defined in
docobj.h.

When an OLE command is received by an MFC application that contains an OLE command map, MFC tries to find
the command ID and command group for the requested command in the OLE command map of the application. If
a match is found, a WM_COMMAND message is dispatched to the application containing the command map with
the ID of the requested command. (See the description of ON_OLECMD below.) In this way, OLE commands
dispatched to an application are turned into WM_COMMAND messages by MFC. The WM_COMMAND
messages are then routed through the application's message maps using the MFC standard command routing
architecture.

Unlike message maps, MFC OLE command maps are not supported by ClassWizard. MFC developers must add

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/tn071-mfc-iolecommandtarget-implementation.md
https://docs.microsoft.com/windows/desktop/menurc/wm-command

OLE Command Map Macros

DECLARE_OLECMD_MAP ()

BEGIN_OLECMD_MAP(theClass, baseClass)

END_OLECMD_MAP()

ON_OLECMD(pguid, olecmdid, id)

Example

OLE command map support and OLE command map entries by hand. OLE command maps can be added to MFC
Active document servers in any class that is in the WM_COMMAND message-routing chain at the time the Active
document is in-place active in a container. These classes include the application's classes derived from CWinApp,
CView, CDocument, and COleIPFrameWnd. In Active document containers, OLE command maps can only be
added to the COleDocObjectItem-derived class. Also, in Active document containers, the WM_COMMAND
messages will only be dispatched to the message map in the COleDocObjectItem -derived class.

Use the following macros to add command map functionality to your class:

This macro goes in the class declaration (typically in the header file) of the class that contains the command map.

theClass
Name of the class that contains the command map.

baseClass
Name of the base class of the class that contains the command map.

This macro marks the beginning of the command map. Use this macro in the implementation file for the class that
contains the command map.

This macro marks the end of the command map. Use this macro in the implementation file for the class that
contains the command map. This macro must always follow the BEGIN_OLECMD_MAP macro.

pguid
Pointer to the GUID of the OLE command's command group. This parameter is NULL for the standard OLE
command group.

olecmdid
OLE command ID of the command to be invoked.

id
ID of the WM_COMMAND message to be sent to the application containing the command map when this OLE
command is invoked.

Use the ON_OLECMD macro in the command map to add entries for the OLE commands you want to handle.
When the OLE commands are received, they will be converted to the specified WM_COMMAND message and
routed through the application's message map using the standard MFC command-routing architecture.

The following example shows how to add OLE command-handling capability to an MFC Active document server
to handle the OLECMDID_PRINT OLE command. This example assumes that you used AppWizard to generate an
MFC application that is an Active document server.

https://docs.microsoft.com/windows/desktop/api/docobj/ne-docobj-olecmdid

NOTENOTE

class CMyServerView : public CView
{
protected: // create from serialization only
 CMyServerView();
 DECLARE_DYNCREATE(CMyServerView)
 DECLARE_OLECMD_MAP()
 // . . .
};

BEGIN_OLECMD_MAP(CMyServerView, CView)

END_OLECMD_MAP()

BEGIN_OLECMD_MAP(CMyServerView, CView)
 ON_OLECMD(NULL, OLECMDID_PRINT, ID_FILE_PRINT)
END_OLECMD_MAP()

1. In your CView -derived class's header file, add the DECLARE_OLECMD_MAP macro to the class
declaration.

Use the CView -derived class because it is one of the classes in the Active document server that is in the
WM_COMMAND message-routing chain.

2. In the implementation file for the CView -derived class, add the BEGIN_OLECMD_MAP and
END_OLECMD_MAP macros:

3. To handle the standard OLE print command, add an ON_OLECMD macro to the command map specifying
the OLE command ID for the standard print command and ID_FILE_PRINT for the WM_COMMAND ID.
ID_FILE_PRINT is the standard print command ID used by AppWizard-generated MFC applications:

Note that one of the standard OLE command macros, defined in afxdocob.h, could be used in place of the
ON_OLECMD macro because OLECMDID_PRINT is a standard OLE command ID. The ON_OLECMD_PRINT
macro will accomplish the same task as the ON_OLECMD macro shown above.

When a container application sends this server an OLECMDID_PRINT command through the server's
IOleCommandTarget interface, the MFC printing command handler will be invoked in the server, causing the server

to print the application. The Active document container's code to invoke the print command added in the steps
above would look something like this:

void CContainerCntrItem::DoOleCmd()
{
 IOleCommandTarget *pCmd = NULL;
 HRESULT hr = E_FAIL;
 OLECMD ocm={OLECMDID_PRINT, 0};

 hr = m_lpObject->QueryInterface(
 IID_IOleCommandTarget,reinterpret_cast<void**>(&pCmd));

 if (FAILED(hr))
 return;

 hr = pCmd->QueryStatus(NULL, 1, &ocm, NULL);

 if (SUCCEEDED(hr) && (ocm.cmdf& OLECMDF_ENABLED))
 {
 //Command is available and enabled so call it
 COleVariant vIn;
 COleVariant vOut;
 hr = pCmd->Exec(NULL, OLECMDID_PRINT,
 OLECMDEXECOPT_DODEFAULT, &vIn, &vOut);
 ASSERT(SUCCEEDED(hr));
 }
 pCmd->Release();
}

See also
Technical Notes by Number
Technical Notes by Category

Class Library Overview
3/4/2019 • 2 minutes to read • Edit Online

This overview categorizes and describes the classes in the Microsoft Foundation Class Library (MFC)
version 9.0. The classes in MFC, taken together, constitute an application framework — the framework of an
application written for the Windows API. Your programming task is to fill in the code that is specific to your
application.

The library's classes are presented here in the following categories:

Root Class: CObject

MFC Application Architecture Classes

Application and Thread Support Classes

Command Routing Classes

Document Classes

View Classes (Architecture)

Frame Window Classes (Architecture)

Document-Template Classes

Window, Dialog, and Control Classes

Frame Window Classes (Windows)

View Classes (Windows)

Dialog Box Classes

Control Classes

Control Bar Classes

Drawing and Printing Classes

Output (Device Context) Classes

Drawing Tool Classes

Simple Data Type Classes

Array, List, and Map Classes

Template Classes for Arrays, Lists, and Maps

Ready-to-Use Array Classes

Ready-to-Use List Classes

Ready-to-Use Map Classes

File and Database Classes

File I/O Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/class-library-overview.md

See also

DAO Classes

ODBC Classes

OLE DB Classes

Internet and Networking Classes

Windows Sockets Classes

Win32 Internet Classes

OLE Classes

OLE Container Classes

OLE Server Classes

OLE Drag-and-Drop and Data Transfer Classes

OLE Common Dialog Classes

OLE Automation Classes

OLE Control Classes

Active Document Classes

OLE-Related Classes

Debugging and Exception Classes

Debugging Support Classes

Exception Classes

The section General Class Design Philosophy explains how the MFC Library was designed.

For an overview of the framework, see Using the Classes to Write Applications for Windows. Some of the
classes listed above are general-purpose classes that can be used outside of the framework and provide
useful abstractions such as collections, exceptions, files, and strings.

To see the inheritance of a class, use the Class Hierarchy Chart.

In addition to the classes listed in this overview, the MFC Library contains a number of global functions,
global variables, and macros. There is an overview and detailed listing of these in the topic MFC Macros
and Globals, which follows the alphabetical reference to the MFC classes.

MFC Desktop Applications

General Class Design Philosophy
3/4/2019 • 2 minutes to read • Edit Online

See also

Microsoft Windows was designed long before the C++ language became popular. Because thousands of
applications use the C-language Windows application programming interface (API), that interface will be
maintained for the foreseeable future. Any C++ Windows interface must therefore be built on top of the
procedural C-language API. This guarantees that C++ applications will be able to coexist with C applications.

The Microsoft Foundation Class Library is an object-oriented interface to Windows that meets the following
design goals:

Significant reduction in the effort to write an application for Windows.

Execution speed comparable to that of the C-language API.

Minimum code size overhead.

Ability to call any Windows C function directly.

Easier conversion of existing C applications to C++.

Ability to leverage from the existing base of C-language Windows programming experience.

Easier use of the Windows API with C++ than with C.

Easier to use yet powerful abstractions of complicated features such as ActiveX controls, database support,
printing, toolbars, and status bars.

True Windows API for C++ that effectively uses C++ language features.

For more on the design of the MFC Library, see:

The Application Framework

Relationship to the C-Language API

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/general-class-design-philosophy.md

Application Framework
3/4/2019 • 2 minutes to read • Edit Online

See also

The core of the Microsoft Foundation Class (MFC) Library is an encapsulation of a large portion of the Windows
API in C++ form. Library classes represent windows, dialog boxes, device contexts, common GDI objects such as
brushes and pens, controls, and other standard Windows items. These classes provide a convenient C++ member
function interface to the structures in Windows that they encapsulate. For more about using these classes, see
Window Object Topics.

But the MFC Library also supplies a layer of additional application functionality built on the C++ encapsulation of
the Windows API. This layer is a working application framework for Windows that provides most of the common
user interface expected of programs for Windows, including toolbars, status bars, printing, print preview, database
support, and ActiveX support. Using the Classes to Write Applications for Windows explains the framework in
detail.

General Class Design Philosophy

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/application-framework.md

Relationship to the C-Language API
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

The single characteristic that sets the Microsoft Foundation Class (MFC) Library apart from other class libraries for
Windows is the very close mapping to the Windows API written in the C language. Further, you can generally mix
calls to the class library freely with direct calls to the Windows API. This direct access does not, however, imply that
the classes are a complete replacement for that API. Developers must still occasionally make direct calls to some
Windows functions, such as SetCursor and GetSystemMetrics, for example. A Windows function is wrapped by a
class member function only when there is a clear advantage to doing so.

Because you sometimes need to make native Windows function calls, you should have access to the C-language
Windows API documentation. This documentation is included with Microsoft Visual C++.

For an overview of how the MFC Library framework operates, see Using the Classes to Write Applications for Windows.

General Class Design Philosophy

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/relationship-to-the-c-language-api.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setcursor
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsystemmetrics

Root Class: CObject
3/4/2019 • 2 minutes to read • Edit Online

See also

Most of the classes in the Microsoft Foundation Class (MFC) Library are derived from a single base class at the
root of the class hierarchy. CObject provides a number of useful capabilities to all classes derived from it, with very
low overhead. For more information about CObject and its capabilities, see Using CObject.

CObject
The ultimate base class of most MFC classes. Supports serializing data and obtaining run-time information about a
class.

CRuntimeClass
Structure used to determine the exact class of an object at run time.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/root-class-cobject.md

MFC Application Architecture Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

Classes in this category contribute to the architecture of a framework application. They supply functionality
common to most applications. You fill in the framework to add application-specific functionality. Typically, you do
so by deriving new classes from the architecture classes, and then adding new members or overriding existing
member functions.

Application wizards generate several types of applications, all of which use the application framework in differing
ways. SDI (single document interface) and MDI (multiple document interface) applications make full use of a part
of the framework called document/view architecture. Other types of applications, such as dialog-based
applications, form-based applications, and DLLs, use only some of document/view architecture features.

Document/view applications contain one or more sets of documents, views, and frame windows. A document-
template object associates the classes for each document/view/frame set.

Although you do not have to use document/view architecture in your MFC application, there are a number of
advantages to doing so. The MFC OLE container and server support is based on document/view architecture, as is
support for printing and print preview.

All MFC applications have at least two objects: an application object derived from CWinApp, and some sort of
main window object, derived (often indirectly) from CWnd. (Most often, the main window is derived from
CFrameWnd, CMDIFrameWnd, or CDialog, all of which are derived from CWnd .)

Applications that use document/view architecture contain additional objects. The principal objects are:

An application object derived from class CWinApp, as mentioned before.

One or more document class objects derived from class CDocument. Document class objects are
responsible for the internal representation of the data manipulated in the view. They may be associated with
a data file.

One or more view objects derived from class CView. Each view is a window that is attached to a document
and associated with a frame window. Views display and manipulate the data contained in a document class
object.

Document/view applications also contain frame windows (derived from CFrameWnd) and document templates
(derived from CDocTemplate).

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/mfc-application-architecture-classes.md

Application and Thread Support Classes
3/4/2019 • 2 minutes to read • Edit Online

Application and Thread Classes

Synchronization Object Classes

Related Classes

Each application has one and only one application object; this object coordinates other objects in the running
program and is derived from CWinApp .

The Microsoft Foundation Class (MFC) Library supports multiple threads of execution within an application. All
applications must have at least one thread; the thread used by your CWinApp object is this primary thread.

CWinThread encapsulates a portion of the operating system's threading capabilities. To make using multiple
threads easier, MFC also provides synchronization object classes to provide a C++ interface to Win32
synchronization objects.

CWinApp
Encapsulates the code to initialize, run, and terminate the application. You will derive your application object from
this class.

CWinThread
The base class for all threads. Use directly, or derive a class from CWinThread if your thread performs user-interface
functions. CWinApp is derived from CWinThread .

CSyncObject
Base class of the synchronization object classes.

CCriticalSection
A synchronization class that allows only one thread within a single process to access an object.

CSemaphore
A synchronization class that allows between one and a specified maximum number of simultaneous accesses to an
object.

CMutex
A synchronization class that allows only one thread within any number of processes to access an object.

CEvent
A synchronization class that notifies an application when an event has occurred.

CSingleLock
Used in member functions of thread-safe classes to lock on one synchronization object.

CMultiLock
Used in member functions of thread-safe classes to lock on one or more synchronization objects from an array of
synchronization objects.

CCommandLineInfo
Parses the command line with which your program was started.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/application-and-thread-support-classes.md

See also

CWaitCursor
Puts a wait cursor on the screen. Used during lengthy operations.

CDockState
Handles persistent storage of docking state data for control bars.

CRecentFileList
Maintains the most recently used (MRU) file list.

Class Overview

Command Routing Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

As the user interacts with the application by choosing menus or control-bar buttons with the mouse, the
application sends messages from the affected user-interface object to an appropriate command-target object.
Command-target classes derived from CCmdTarget include CWinApp, CWnd, CDocTemplate, CDocument, CView,
and the classes derived from them. The framework supports automatic command routing so that commands can
be handled by the most appropriate object currently active in the application.

An object of class CCmdUI is passed to your command targets' update command UI
(ON_UPDATE_COMMAND_UI) handlers to allow you to update the state of the user interface for a particular
command (for instance, to check or remove the check from menu items). You call member functions of the CCmdUI

object to update the state of the UI object. This process is the same whether the UI object associated with a
particular command is a menu item or a button or both.

CCmdTarget
Serves as the base class for all classes of objects that can receive and respond to messages.

CCmdUI
Provides a programmatic interface for updating user-interface objects such as menu items or control-bar buttons.
The command target object enables, disables, checks, and/or clears the user-interface object with this object.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/command-routing-classes.md

Document Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Classes

See also

Document class objects, created by document-template objects, manage the application's data. You will derive a
class for your documents from one of these classes.

Document class objects interact with view objects. View objects represent the client area of a window, display a
document's data, and allow users to interact with it. Documents and views are created by a document-template
object.

CDocument
The base class for application-specific documents. Derive your document class or classes from CDocument .

COleDocument
Used for compound document implementation, as well as basic container support. Serves as a container for
classes derived from CDocItem. This class can be used as the base class for container documents and is the base
class for COleServerDoc .

COleLinkingDoc
A class derived from COleDocument that provides the infrastructure for linking. You should derive the document
classes for your container applications from this class instead of from COleDocument if you want them to support
links to embedded objects.

CRichEditDoc
Maintains the list of OLE client items that are in the rich edit control. Used with CRichEditView and
CRichEditCntrItem.

COleServerDoc
Used as the base class for server-application document classes. COleServerDoc objects provide the bulk of server
support through interactions with COleServerItem objects. Visual editing capability is provided using the class
library's document/view architecture.

CHtmlEditDoc
Provides, with CHtmlEditView, the functionality of the WebBrowser HTML editing platform within the context of
the MFC document-view architecture.

Document class objects can be persistent — in other words, they can write their state to a storage medium and
read it back. MFC provides the CArchive class to facilitate transferring the document's data to a storage medium.

CArchive
Cooperates with a CFile object to implement persistent storage for objects through serialization (see
CObject::Serialize).

Documents can also contain OLE objects. CDocItem is the base class of the server and client items.

CDocItem
Abstract base class of COleClientItem and COleServerItem. Objects of classes derived from CDocItem represent
parts of documents.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/document-classes.md

Class Overview

View Classes (Architecture)
3/4/2019 • 2 minutes to read • Edit Online

Form and Record Views

Control Views

CView and its derived classes are child windows that represent the client area of a frame window. Views show data
and accept input for a document.

A view class is associated with a document class and a frame window class using a document-template object.

CView
The base class for application-specific views of a document's data. Views display data and accept user input to edit
or select the data. Derive your view class(es) from CView .

CScrollView
The base class for views with scrolling capabilities. Derive your view class from CScrollView for automatic
scrolling.

Form views are also scrolling views. They are based on a dialog box template.

Record views are derived from form views. In addition to the dialog box template, they also have a connection to a
database.

CFormView
A scroll view whose layout is defined in a dialog box template. Derive a class from CFormView to implement a user
interface based on a dialog box template.

CDaoRecordView
Provides a form view directly connected to a Data Access Object (DAO) recordset object. Like all form views, a
CDaoRecordView is based on a dialog box template.

CHtmlView
Supports a control for Web browsing within an application. The control supports dynamic HTML in MFC.

COLEDBRecordView
Provides MFC OLE DB support for form views.

CRecordView
Provides a form view directly connected to an Open Database Connectivity (ODBC) recordset object. Like all form
views, a CRecordView is based on a dialog box template.

Control views display a control as their view.

CCtrlView
The base class for all views associated with Windows controls. The views based on controls are described below.

CEditView
A view that contains a Windows standard edit control (see CEdit). Edit controls support text editing, searching,
replacing, and scrolling capabilities.

CRichEditView
A view that contains a Windows rich edit control (see CRichEditCtrl). In addition to the capabilities of an edit

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/view-classes-architecture.md

See also

control, rich edit controls support fonts, colors, paragraph formatting, and embedded OLE objects.

CListView
A view that contains a Windows list control (see CListCtrl). A list control displays icons and strings in a manner
similar to the right pane of File Explorer.

CTreeView
A view that contains a Windows tree control (see CTreeCtrl). A tree control displays icons and strings arranged in a
hierarchy in a manner similar to the left pane of File Explorer.

Class Overview

Frame Window Classes (Architecture)
3/4/2019 • 2 minutes to read • Edit Online

See also

In document/view architecture, frame windows are windows that contain a view window. They also support having
control bars attached to them.

In multiple document interface (MDI) applications, the main window is derived from CMDIFrameWnd . It indirectly
contains the documents' frames, which are CMDIChildWnd objects. The CMDIChildWnd objects, in turn, contain the
documents' views.

In single document interface (SDI) applications, the main window, derived from CFrameWnd , contains the view of
the current document.

CFrameWnd
The base class for an SDI application's main frame window. Also the base class for all other frame window classes.

CMDIFrameWnd
The base class for an MDI application's main frame window.

CMDIChildWnd
The base class for an MDI application's document frame windows.

COleIPFrameWnd
Provides the frame window for a view when a server document is being edited in place.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/frame-window-classes-architecture.md

Document-Template Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Class

See also

Document-template objects coordinate the creation of document, view, and frame window objects when a new
document or view is created.

CDocTemplate
The base class for document templates. You will never use this class directly; instead, you use one of the other
document-template classes derived from this class.

CMultiDocTemplate
A template for documents in the multiple document interface (MDI). MDI applications can have multiple
documents open at a time.

CSingleDocTemplate
A template for documents in the single document interface (SDI). SDI applications have only one document open
at a time.

CCreateContext
A structure passed by a document template to window-creation functions to coordinate the creation of document,
view, and frame-window objects.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/document-template-classes.md

Window, Dialog, and Control Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

Class CWnd and its derived classes encapsulate an HWND , a handle to a Windows window. CWnd can be used by
itself or as a base for deriving new classes. The derived classes supplied by the class library represent various kinds
of windows.

CWnd
The base class for all windows. You can use one of the classes derived from CWnd or derive your own classes
directly from it.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/window-dialog-and-control-classes.md

Frame Window Classes (Windows)
3/4/2019 • 2 minutes to read • Edit Online

Related Class

See also

Frame windows are windows that frame an application or a part of an application. Frame windows usually contain
other windows, such as views, tool bars, and status bars. In the case of CMDIFrameWnd , they may contain
CMDIChildWnd objects indirectly.

CFrameWnd
The base class for an SDI application's main frame window. Also the base class for all other frame window classes.

CMDIFrameWnd
The base class for an MDI application's main frame window.

CMDIChildWnd
The base class for an MDI application's document frame windows.

CMiniFrameWnd
A half-height frame window typically seen around floating toolbars.

COleIPFrameWnd
Provides the frame window for a view when a server document is being edited in place.

Class CMenu provides an interface through which to access your application's menus. It is useful for manipulating
menus dynamically at run time; for example, when adding or deleting menu items according to context. Although
menus are most often used with frame windows, they can also be used with dialog boxes and other nonchild
windows.

CMenu
Encapsulates an HMENU handle to the application's menu bar and pop-up menus.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/frame-window-classes-windows.md

View Classes (Windows)
3/4/2019 • 2 minutes to read • Edit Online

Form and Record Views

Control Views

CView and its derived classes are child windows that represent the client area of a frame window. Views show data
and accept input for a document.

A view class is associated with a document class and a frame window class using a document-template object.

CView
The base class for application-specific views of a document's data. Views display data and accept user input to edit
or select the data. Derive your view class or classes from CView .

CScrollView
The base class for views with scrolling capabilities. Derive your view class from CScrollView for automatic
scrolling.

Form views are also scrolling views. They are based on a dialog box template.

Record views are derived from form views. In addition to the dialog box template, they also have a connection to a
database.

CFormView
A scroll view whose layout is defined in a dialog box template. Derive a class from CFormView to implement a user
interface based on a dialog box template.

CDaoRecordView
Provides a form view directly connected to a Data Access Object (DAO) recordset object. Like all form views, a
CDaoRecordView is based on a dialog box template.

CRecordView
Provides a form view directly connected to an Open Database Connectivity (ODBC) recordset object. Like all form
views, a CRecordView is based on a dialog box template.

CHtmlEditView
A form view that provides the functionality of the WebBrowser HTML editing platform.

Control views display a control as their view.

CCtrlView
The base class for all views associated with Windows controls. The views based on controls are described below.

CEditView
A view that contains a Windows standard edit control (see CEdit). Edit controls support text editing, searching,
replacing, and scrolling capabilities.

CRichEditView
A view that contains a Windows rich edit control (see CRichEditCtrl). In addition to the capabilities of an edit
control, rich edit controls support fonts, colors, paragraph formatting, and embedded OLE objects.

CListView

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/view-classes-windows.md

Related Classes

See also

A view that contains a Windows list control (see CListCtrl). A list control displays a collection of items, each
consisting of an icon and a label, in a manner similar to the right pane of File Explorer.

CTreeView
A view that contains a Windows tree control (see CTreeCtrl). A tree control displays a hierarchical list of icons and
labels arranged in a manner similar to the left pane of File Explorer.

CSplitterWnd allows you to have multiple views within a single frame window. CPrintDialog and CPrintInfo

support the print and print preview ability of views. CRichEditDoc and CRichEditCntrItem are used with
CRichEditView to implement OLE container capabilities.

CSplitterWnd
A window that the user can split into multiple panes. These panes can be resizable by the user or fixed size.

CPrintDialog
Provides a standard dialog box for printing a file.

CPrintInfo
A structure containing information about a print or print preview job. Used by CView 's printing architecture.

CRichEditDoc
Maintains the list of OLE client items that are in a CRichEditView .

CRichEditCntrItem
Provides client-side access to an OLE item stored in a CRichEditView .

Class Overview

Dialog Box Classes
3/4/2019 • 3 minutes to read • Edit Online

Common Dialogs

OLE Common Dialogs

Class CDialog and its derived classes encapsulate dialog-box functionality. Since a dialog box is a special kind of
window, CDialog is derived from CWnd . Derive your dialog classes from CDialog or use one of the common
dialog classes for standard dialog boxes, such as opening or saving a file, printing, selecting a font or color,
initiating a search-and-replace operation, or performing various OLE-related operations.

CDialog
The base class for all dialog boxes, both modal and modeless.

CDataExchange
Supplies data exchange and validation information for dialog boxes.

These dialog box classes encapsulate the Windows common dialog boxes. They provide easy-to-use
implementations of complicated dialog boxes.

CCommonDialog
Base class for all common dialog boxes.

CFileDialog
Provides a standard dialog box for opening or saving a file.

CColorDialog
Provides a standard dialog box for selecting a color.

CFontDialog
Provides a standard dialog box for selecting a font.

CFindReplaceDialog
Provides a standard dialog box for a search-and-replace operation.

CPrintDialog
Provides a standard dialog box for printing a file.

CPrintDialogEx
Provides a Windows Print property sheet.

CPageSetupDialog
Encapsulates the services provided by the Windows common Page Setup dialog box with additional support for
setting and modifying print margins.

OLE adds several common dialog boxes to Windows. These classes encapsulate the OLE common dialog boxes.

COleDialog
Used by the framework to contain common implementations for all OLE dialog boxes. All dialog box classes in the
user-interface category are derived from this base class. COleDialog cannot be used directly.

COleInsertDialog
Displays the Insert Object dialog box, the standard user interface for inserting new OLE linked or embedded

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dialog-box-classes.md

Property Sheet Classes

HTML-based Dialog Classes

items.

COlePasteSpecialDialog
Displays the Paste Special dialog box, the standard user interface for implementing the Edit Paste Special
command.

COleLinksDialog
Displays the Edit Links dialog box, the standard user interface for modifying information about linked items.

COleChangeIconDialog
Displays the Change Icon dialog box, the standard user interface for changing the icon associated with an OLE
embedded or linked item.

COleConvertDialog
Displays the Convert dialog box, the standard user interface for converting OLE items from one type to another.

COlePropertiesDialog
Encapsulates the Windows common OLE Properties dialog box. Common OLE Properties dialog boxes provide
an easy way to display and modify the properties of an OLE document item in a manner consistent with Windows
standards.

COleUpdateDialog
Displays the Update dialog box, the standard user interface for updating all links in a document. The dialog box
contains a progress indicator to indicate how close the update procedure is to completion.

COleChangeSourceDialog
Displays the Change Source dialog box, the standard user interface for changing the destination or source of a
link.

COleBusyDialog
Displays the Server Busy and Server Not Responding dialog boxes, the standard user interface for handling calls
to busy applications. Usually displayed automatically by the COleMessageFilter implementation.

The property sheet classes allow your applications to use property sheets, also known as tabbed dialogs. Property
sheets are an efficient way to organize a large number of controls in a single dialog box.

CPropertyPage
Provides the individual pages within a property sheet. Derive a class from CPropertyPage for each page to be
added to your property sheet.

CPropertySheet
Provides the frame for multiple property pages. Derive your property sheet class from CPropertySheet to
implement your property sheets quickly.

COlePropertyPage
Displays the properties of an OLE control in a graphical interface, similar to a dialog box.

CDHtmlDialog
Used to create dialog boxes that implement their user interface with HTML rather than dialog resources.

CMultiPageDHtmlDialog
Displays multiple HTML pages sequentially and handles the events from each page.

Related Classes

See also

These classes are not dialog boxes per se, but they use dialog box templates and have much of the behavior of
dialog boxes.

CDialogBar
A control bar that is based on a dialog box template.

CFormView
A scroll view whose layout is defined in a dialog box template. Derive a class from CFormView to implement a user
interface based on a dialog box template.

CDaoRecordView
Provides a form view directly connected to a Data Access Object (DAO) recordset object. Like all form views, a
CDaoRecordView is based on a dialog box template.

CRecordView
Provides a form view directly connected to an Open Database Connectivity (ODBC) recordset object. Like all form
views, a CRecordView is based on a dialog box template.

CPrintInfo
A structure containing information about a print or print preview job. Used by the printing architecture of CView.

Class Overview

Control Classes
3/4/2019 • 3 minutes to read • Edit Online

Static Display Controls

Text Controls

Controls That Represent Numbers

Buttons

Lists

Control classes encapsulate a wide variety of standard Windows controls ranging from static text controls to tree
controls. In addition, MFC provides some new controls, including buttons with bitmaps and control bars.

The controls whose class names end in "Ctrl" were new in Windows 95 and Windows NT version 3.51.

CStatic
A static-display window. Static controls are used to label, box, or separate other controls in a dialog box or window.
They may also display graphical images rather than text or a box.

CEdit
An editable-text control window. Edit controls are used to accept textual input from the user.

CIPAddressCtrl
Supports an edit box for manipulating an Internet Protocol (IP) address.

CRichEditCtrl
A control in which the user can enter and edit text. Unlike the control encapsulated in CEdit , a rich edit control
supports character and paragraph formatting and OLE objects.

CSliderCtrl
A control containing a slider, which the user moves to select a value or set of values.

CSpinButtonCtrl
A pair of arrow buttons the user can click to increment or decrement a value.

CProgressCtrl
Displays a rectangle that is gradually filled from left to right to indicate the progress of an operation.

CScrollBar
A scroll-bar control window. The class provides the functionality of a scroll bar, for use as a control in a dialog box
or window, through which the user can specify a position within a range.

CButton
A button control window. The class provides a programmatic interface for a push button, check box, or radio
button in a dialog box or window.

CBitmapButton
A button with a bitmap rather than a text caption.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/control-classes.md

Toolbars and Status Bars

Miscellaneous Controls

CListBox
A list-box control window. A list box displays a list of items that the user can view and select.

CDragListBox
Provides the functionality of a Windows list box; allows the user to move list box items, such as filenames and
string literals, within the list box. List boxes with this capability are useful for an item list in an order other than
alphabetical, such as include pathnames or files in a project.

CComboBox
A combo-box control window. A combo box consists of an edit control plus a list box.

CComboBoxEx
Extends the combo box control by providing support for image lists.

CCheckListBox
Displays a list of items with check boxes, which the user can check or clear, next to each item.

CListCtrl
Displays a collection of items, each consisting of an icon and a label, in a manner similar to the right pane of File
Explorer.

CTreeCtrl
Displays a hierarchical list of icons and labels arranged in a manner similar to the left pane of File Explorer.

CToolBarCtrl
Provides the functionality of the Windows toolbar common control. Most MFC programs use CToolBar instead of
this class.

CStatusBarCtrl
A horizontal window, usually divided into panes, in which an application can display status information. Most MFC
programs use CStatusBar instead of this class.

CAnimateCtrl
Displays a simple video clip.

CToolTipCtrl
A small pop-up window that displays a single line of text describing the purpose of a tool in an application.

CDateTimeCtrl
Supports either an extended edit control, or a simple calendar interface control, that allows a user to choose a
specific date or time value.

CHeaderCtrl
Displays titles or labels for columns.

CMonthCalCtrl
Supports a simple calendar interface control that allows a user to select a date.

CTabCtrl
A control with tabs on which the user can click, analogous to the dividers in a notebook.

CHotKeyCtrl
Enables the user to create a hot key combination, which the user can press to perform an action quickly.

Related Classes

See also

CLinkCtrl
Renders marked-up text and launches appropriate applications when the user clicks the embedded link.

CHtmlEditCtrl
Provides the functionality of the WebBrowser ActiveX control in an MFC window.

CImageList
Provides the functionality of the Windows image list. Image lists are used with list controls and tree controls. They
can also be used to store and archive a set of same-sized bitmaps.

CCtrlView
The base class for all views associated with Windows controls. The views based on controls are described below.

CEditView
A view that contains a Windows standard edit control.

CRichEditView
A view that contains a Windows rich edit control.

CListView
A view that contains a Windows list control.

CTreeView
A view that contains a Windows tree control.

Class Overview

Control Bar Classes
3/4/2019 • 2 minutes to read • Edit Online

Framework Control Bars

Windows Control Bars

Related Classes

Control bars are attached to a frame window. They contain buttons, status panes, or a dialog template. Free-
floating control bars, also called tool palettes, are implemented by attaching them to a CMiniFrameWnd object.

These control bars are an integral part of the MFC framework. They are easier to use and more powerful than the
Windows control bars because they are integrated with the framework. Most MFC applications use these control
bars rather than the Windows control bars.

CControlBar
The base class for MFC control bars listed in this section. A control bar is a window aligned to the edge of a frame
window. The control bar contains either HWND -based child controls or controls not based on an HWND , such as
toolbar buttons.

CDialogBar
A control bar that is based on a dialog box template.

CReBar
Supports a toolbar that can contain additional child windows in the form of controls.

CToolBar
Toolbar control windows that contain bitmap command buttons not based on an HWND . Most MFC applications
use this class rather than CToolBarCtrl .

CStatusBar
The base class for status-bar control windows. Most MFC applications use this class rather than CStatusBarCtrl .

These control bars are thin wrappers for the corresponding Windows controls. Because they are not integrated
with the framework, they are harder to use than the control bars previously listed. Most MFC applications use the
control bars previously listed.

CRebarCtrl
Implements the internal control of the CRebar object.

CStatusBarCtrl
A horizontal window, usually divided into panes, in which an application can display status information.

CToolBarCtrl
Provides the functionality of the Windows toolbar common control.

CToolTipCtrl
A small pop-up window that displays a single line of text describing the purpose of a tool in an application.

CDockState
Handles persistent storage of docking state data for control bars.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/control-bar-classes.md

See also
Class Overview

Drawing and Printing Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

In Windows, all graphical output is drawn on a virtual drawing area called a device context (DC). MFC provides
classes to encapsulate the various types of DCs, as well as encapsulations for Windows drawing tools such as
bitmaps, brushes, palettes, and pens.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/drawing-and-printing-classes.md

Output (Device Context) Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Classes

These classes encapsulate the different types of device contexts available in Windows.

Most of the following classes encapsulate a handle to a Windows device context. A device context is a Windows
object that contains information about the drawing attributes of a device such as a display or a printer. All drawing
calls are made through a device-context object. Additional classes derived from CDC encapsulate specialized
device-context functionality, including support for Windows metafiles.

CDC
The base class for device contexts. Used directly for accessing the whole display and for accessing nondisplay
contexts such as printers.

CPaintDC
A display context used in OnPaint member functions of windows. Automatically calls BeginPaint on construction
and EndPaint on destruction.

CClientDC
A display context for client areas of windows. Used, for example, to draw in an immediate response to mouse
events.

CWindowDC
A display context for entire windows, including both the client and nonclient areas.

CMetaFileDC
A device context for Windows metafiles. A Windows metafile contains a sequence of graphics device interface
(GDI) commands that can be replayed to create an image. Calls made to the member functions of a CMetaFileDC

are recorded in a metafile.

CPoint
Holds coordinate (x, y) pairs.

CSize
Holds distance, relative positions, or paired values.

CRect
Holds coordinates of rectangular areas.

CRgn
Encapsulates a GDI region for manipulating an elliptical, polygonal, or irregular area within a window. Used in
conjunction with the clipping member functions in class CDC .

CRectTracker
Displays and handles the user interface for resizing and moving rectangular objects.

CColorDialog
Provides a standard dialog box for selecting a color.

CFontDialog
Provides a standard dialog box for selecting a font.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/output-device-context-classes.md

See also

CPrintDialog
Provides a standard dialog box for printing a file.

Class Overview

Drawing Tool Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes encapsulate drawing tools that are used to draw on a device context.

CGdiObject
The base class for GDI drawing tools.

CBrush
Encapsulates a GDI brush that can be selected as the current brush in a device context. Brushes are used for filling
interiors of objects being drawn.

CPen
Encapsulates a GDI pen that can be selected as the current pen in a device context. Pens are used for drawing the
border lines of objects.

CFont
Encapsulates a GDI font that can be selected as the current font in a device context.

CBitmap
Encapsulates a GDI bitmap, providing an interface for manipulating bitmaps.

CPalette
Encapsulates a GDI color palette for use as an interface between the application and a color output device such as
a display.

CRectTracker
Displays and handles the user interface for resizing and moving rectangular objects.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/drawing-tool-classes.md

Simple Data Type Classes
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

The following classes encapsulate drawing coordinates, character strings, and time and date information, allowing
convenient use of C++ syntax. These objects are used widely as parameters to the member functions of Windows
classes in the class library. Because CPoint , CSize , and CRect correspond to the POINT, SIZE , and RECT
structures, respectively, in the Windows SDK, you can use objects of these C++ classes wherever you can use these
C-language structures. The classes provide useful interfaces through their member functions. CStringT provides
very flexible dynamic character strings. CTime , COleDateTime , CTimeSpan , and COleTimeSpan represent time and
date values. For more information about these classes, see the article Date and Time.

The classes that begin with " COle " are encapsulations of data types provided by OLE. These data types can be
used in Windows programs regardless of whether other OLE features are used.

CStringT Class
Holds character strings.

CTime
Holds absolute time and date values.

COleDateTime
Wrapper for the OLE automation type DATE . Represents date and time values.

CTimeSpan
Holds relative time and date values.

COleDateTimeSpan
Holds relative COleDateTime values, such as the difference between two COleDateTime values.

CPoint
Holds coordinate (x, y) pairs.

CSize
Holds distance, relative positions, or paired values.

CRect
Holds coordinates of rectangular areas.

CImageList
Provides the functionality of the Windows image list. Image lists are used with list controls and tree controls. They
can also be used to store and archive a set of same-sized bitmaps.

COleVariant
Wrapper for the OLE automation type VARIANT. Data in VARIANTs can be stored in many formats.

COleCurrency
Wrapper for the OLE automation type CURRENCY , a fixed-point arithmetic type, with 15 digits before the
decimal point and 4 digits after.

CRect , CSize , and CPoint are usable in either ATL or MFC applications. In addition, CStringT provides an MFC-
independent CString -like class. For more information on shared utility classes, see Shared Classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/simple-data-type-classes.md

See also
Class Overview

Array, List, and Map Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

For handling aggregates of data, the class library provides a group of collection classes — arrays, lists, and maps
— that can hold a variety of object and predefined types. The collections are dynamically sized. These classes can
be used in any program, whether written for Windows or not. However, they are most useful for implementing the
data structures that define your document classes in the application framework. You can readily derive specialized
collection classes from these, or you can create them based on the template classes. For more information about
these approaches, see the article Collections. For a list of the template collection classes, see the article Template
Classes for Arrays, Lists, and Maps.

Arrays are one-dimensional data structures that are stored contiguously in memory. They support very fast
random access since the memory address of any given element can be calculated by multiplying the index of the
element by the size of an element and adding the result to the base address of the array. But arrays are very
expensive if you have to insert elements into the array, since the entire array past the element inserted has to be
moved to make room for the element to be inserted. Arrays can grow and shrink as necessary.

Lists are similar to arrays but are stored very differently. Each element in a list also includes a pointer to the
previous and next elements, making it a doubly linked list. It is very fast to add or delete items because doing so
only involves changing a few pointers. However, searching a list can be expensive since all searches need to start at
one of the list's ends.

Maps relate a key value to a data value. For instance, the key of a map could be a string and the data a pointer into
a list. You would ask the map to give you the pointer associated with a particular string. Map lookups are fast
because maps use hash tables for key lookups. Adding and deleting items is also fast. Maps are often used with
other data structures as auxiliary indices. MFC uses a special kind of map called a message map to map Windows
messages to a pointer to the handler function for that message.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/array-list-and-map-classes.md

Template Classes for Arrays, Lists, and Maps
3/4/2019 • 2 minutes to read • Edit Online

See also

These collection classes are templates whose parameters determine the types of the objects stored in the
aggregates. The CArray , CMap , and CList classes use global helper functions that must usually be customized.
For more information about these helper functions, see Collection Class Helpers. The typed pointer classes are
wrappers for other classes in the class library. By using these wrappers, you enlist the compiler's type-checking to
help you avoid errors. For more information on using these classes, see Collections.

These classes provide templates you can use to create arrays, lists, and maps using any type you like.

CArray
Template class for making arrays of arbitrary types.

CList
Template class for making lists of arbitrary types.

CMap
Template class for making maps with arbitrary key and value types.

CTypedPtrArray
Template class for type-safe arrays of pointers.

CTypedPtrList
Template class for type-safe lists of pointers.

CTypedPtrMap
Template class for type-safe maps with pointers.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/template-classes-for-arrays-lists-and-maps.md

Ready-to-Use Array Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes are ready-to-use array classes.

CByteArray
Stores elements of type BYTE in an array.

CDWordArray
Stores elements of type DWORD in an array.

CObArray
Stores pointers to objects of class CObject or to objects of classes derived from CObject in an array.

CPtrArray
Stores pointers to void (generic pointers) in an array.

CUIntArray
Stores elements of type UINT in an array.

CWordArray
Stores elements of type WORD in an array.

CStringArray
Stores CString objects in an array.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ready-to-use-array-classes.md

Ready-to-Use List Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes are ready-to-use list classes.

CObList
Stores pointers to objects of class CObject or to objects of classes derived from CObject in a linked list.

CPtrList
Stores pointers to void (generic pointers) in a linked list.

CStringList
Stores CString objects in a linked list.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ready-to-use-list-classes.md

Ready-to-Use Map Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The following classes are ready-to-use map classes.

CMapPtrToPtr
Uses void pointers as keys for finding other void pointers.

CMapPtrToWord
Uses void pointers as keys for finding data of type WORD .

CMapStringToOb
Uses CString objects as keys for finding CObject pointers.

CMapStringToPtr
Uses CString objects as keys for finding void pointers.

CMapStringToString
Uses CString objects as keys for finding other CString objects.

CMapWordToOb
Uses data of type WORD to find CObject pointers.

CMapWordToPtr
Uses data of type WORD to find void pointers.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ready-to-use-map-classes.md

File and Database Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes allow you to store information to a database or a disk file. There are three sets of database classes —
OLE DB, ODBC, and DAO — that provide similar functionality. The OLE DB group is implemented using OLE DB
and works with the OLE DB consumer templates, the DAO group is implemented using the Data Access Object,
and the ODBC group is implemented using Open Database Connectivity. There are also a set of classes for
manipulating standard files, Active streams, and HTML streams.

The following categories of classes support data persistence.

File I/O Classes

OLE DB Classes

DAO Classes

ODBC Classes

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/file-and-database-classes.md

File I/O Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Classes

See also

These classes provide an interface to traditional disk files, in-memory files, Active streams, and Windows sockets.
All of the classes derived from CFile can be used with a CArchive object to perform serialization.

Use the following classes, particularly CArchive and CFile , if you write your own input/output processing.
Normally you do not need to derive from these classes. If you use the application framework, the default
implementations of the Open and Save commands on the File menu will handle file I/O (using class CArchive),
as long as you override your document's Serialize function to supply details about how a document serializes its
contents. For more information about the file classes and serialization, see the article Files in MFC and the article
Serialization.

CFile
Provides a file interface to binary disk files.

CStdioFile
Provides a CFile interface to buffered stream disk files, usually in text mode.

CMemFile
Provides a CFile interface to in-memory files.

CSharedFile
Provides a CFile interface to shared in-memory files.

COleStreamFile
Uses the COM IStream interface to provide CFile access to compound files.

CSocketFile
Provides a CFile interface to a Windows Socket.

CArchive
Cooperates with a CFile object to implement persistent storage for objects through serialization (see
CObject::Serialize).

CArchiveException
An archive exception.

CFileException
A file-oriented exception.

CFileDialog
Provides a standard dialog box for opening or saving a file.

CRecentFileList
Maintains the most recently used (MRU) file list.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/file-i-o-classes.md

OLE DB Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The OLE DB support in MFC currently consists of the class COLEDBRecordView. COleDBRecordView displays
database records in controls, through a form view directly connected to a CRowset object. For more information
about the OLE DB consumer templates, see List of OLE DB Consumer Templates.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-db-classes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/crowset-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ole-db-consumer-templates-reference

DAO Classes
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Related Classes

These classes work with the other application framework classes to give easy access to Data Access Object (DAO)
databases, which use the same database engine as Microsoft Visual Basic and Microsoft Access. The DAO classes
can also access a wide variety of databases for which Open Database Connectivity (ODBC) drivers are available.

Programs that use DAO databases will have at least a CDaoDatabase object and a CDaoRecordset object.

The Visual C++ environment and wizards no longer support DAO (although the DAO classes are included and you can still
use them). Microsoft recommends that you use ODBC for new MFC projects. You should only use DAO in maintaining
existing applications.

CDaoWorkspace
Manages a named, password-protected database session from login to logoff. Most programs use the default
workspace.

CDaoDatabase
A connection to a database through which you can operate on the data.

CDaoRecordset
Represents a set of records selected from a data source.

CDaoRecordView
A view that displays database records in controls.

CDaoQueryDef
Represents a query definition, usually one saved in a database.

CDaoTableDef
Represents the stored definition of a base table or an attached table.

CDaoException
Represents an exception condition arising from the DAO classes.

CDaoFieldExchange
Supports the DAO record field exchange (DFX) routines used by the DAO database classes. You will normally not
directly use this class.

CLongBinary
Encapsulates a handle to storage for a binary large object (BLOB), such as a bitmap. CLongBinary objects are used
to manage large data objects stored in database tables.

COleCurrency
Wrapper for the OLE automation type CURRENCY , a fixed-point arithmetic type, with 15 digits before the
decimal point and 4 digits after.

COleDateTime
Wrapper for the OLE automation type DATE . Represents date and time values.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/dao-classes.md

See also

COleVariant
Wrapper for the OLE automation type VARIANT. Data in VARIANTs can be stored in many formats.

Class Overview

ODBC Classes
3/4/2019 • 2 minutes to read • Edit Online

Related Classes

See also

These classes work with the other application framework classes to give easy access to a wide variety of databases
for which Open Database Connectivity (ODBC) drivers are available.

Programs that use ODBC databases will have at least a CDatabase object and a CRecordset object.

CDatabase
Encapsulates a connection to a data source, through which you can operate on the data source.

CRecordset
Encapsulates a set of records selected from a data source. Recordsets enable scrolling from record to record,
updating records (adding, editing, and deleting records), qualifying the selection with a filter, sorting the selection,
and parameterizing the selection with information obtained or calculated at run time.

CRecordView
Provides a form view directly connected to a recordset object. The dialog data exchange (DDX) mechanism
exchanges data between the recordset and the controls of the record view. Like all form views, a record view is
based on a dialog template resource. Record views also support moving from record to record in the recordset,
updating records, and closing the associated recordset when the record view closes.

CDBException
An exception resulting from failures in data access processing. This class serves the same purpose as other
exception classes in the exception-handling mechanism of the class library.

CFieldExchange
Supplies context information to support record field exchange (RFX), which exchanges data between the field data
members and parameter data members of a recordset object and the corresponding table columns on the data
source. Analogous to class CDataExchange, which is used similarly for dialog data exchange (DDX).

CLongBinary
Encapsulates a handle to storage for a binary large object (BLOB), such as a bitmap. CLongBinary objects are used
to manage large data objects stored in database tables.

CDBVariant
Allows you to store a value without worrying about the value's data type. CDBVariant tracks the data type of the
current value, which is stored in a union.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/odbc-classes.md

Internet and Networking Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes allow you to exchange information with another computer using a Windows Socket or Win32
Internet (WinInet). There are also a set of classes for manipulating Windows Sockets.

The following categories of classes support connectivity.

Windows Sockets Classes

Win32 Internet Classes

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/internet-and-networking-classes.md

Windows Sockets Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

Windows Sockets provide a network protocol-independent way to communicate between two computers. These
sockets can be synchronous (your program waits until the communication is done) or asynchronous (your
program continues running while the communication is going on).

CAsyncSocket
Encapsulates the Windows Sockets API in a thin wrapper.

CSocket
Higher level abstraction derived from CAsyncSocket . It operates synchronously.

CSocketFile
Provides a CFile interface to a Windows Socket.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/windows-sockets-classes.md

Win32 Internet Classes
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

See also

MFC wraps the Win32 Internet (WinInet) and ActiveX technology to make Internet programming easier.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

CInternetSession
Creates and initializes one Internet session or several simultaneous Internet sessions and, if necessary, describes
the connection to a proxy server.

CInternetConnection
Manages your connection to an Internet server.

CInternetFile
This class and its derived classes allow access to files on remote systems that use Internet protocols.

CHttpConnection
Manages your connection to an HTTP server.

CHttpFile
Provides the functionality to find and read files on an HTTP server.

CGopherFile
Provides the functionality to find and read files on a gopher server.

CFtpConnection
Manages your connection to an FTP server.

CGopherConnection
Manages your connection to a gopher server.

CFileFind
Performs local and Internet file searches.

CFtpFileFind
Aids in Internet file searches of FTP servers.

CGopherFileFind
Aids in Internet file searches of gopher servers.

CGopherLocator
Gets a gopher "locator" from a gopher server, determines the locator's type, and makes the locator available to
CGopherFileFind .

CInternetException
Represents an exception condition related to an Internet operation.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/win32-internet-classes.md

OLE Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The OLE classes work with the other application framework classes to provide easy access to the ActiveX API,
giving your programs an easy way to provide the power of ActiveX to your users. Using ActiveX, you can:

Create compound documents, which allow users to create and edit documents containing data created by
multiple applications, including text, graphics, spreadsheets, sound, or other types of data.

Create OLE objects that can be embedded in compound documents.

Use OLE drag and drop to copy data between applications.

Use Automation to control one program with another.

Create ActiveX controls and ActiveX control containers (formerly called OLE controls and OLE control
containers, respectively).

The following categories of classes support ActiveX:

OLE Container Classes

OLE Server Classes

OLE Drag-and-Drop and Data Transfer Classes

OLE Common Dialog Classes

OLE Automation Classes

OLE Control Classes

Active Document Classes

OLE-Related Classes

To see the inheritance of a class, use the Class Hierarchy Chart.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-classes.md

OLE Container Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes are used by container applications. Both COleLinkingDoc and COleDocument manage collections of
COleClientItem objects. Rather than deriving your document class from CDocument , you'll derive it from
COleLinkingDoc or COleDocument , depending on whether you want support for links to objects embedded in your

document.

Use a COleClientItem object to represent each OLE item in your document that is embedded from another
document or is a link to another document.

COleDocObjectItem
Supports active document containment.

COleDocument
Used for compound document implementation, as well as basic container support. Serves as a container for
classes derived from CDocItem . This class can be used as the base class for container documents and is the base
class for COleServerDoc .

COleLinkingDoc
A class derived from COleDocument that provides the infrastructure for linking. You should derive the document
classes for your container applications from this class instead of from COleDocument if you want them to support
links to embedded objects.

CRichEditDoc
Maintains the list of OLE client items that are in the rich edit control. Used with CRichEditView and
CRichEditCntrItem.

CDocItem
Abstract base class of COleClientItem and COleServerItem . Objects of classes derived from CDocItem represent
parts of documents.

COleClientItem
A client item class that represents the client's side of the connection to an embedded or linked OLE item. Derive
your client items from this class.

CRichEditCntrItem
Provides client-side access to an OLE item stored in a rich edit control when used with CRichEditView and
CRichEditDoc .

COleException
An exception resulting from a failure in OLE processing. This class is used by both containers and servers.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-container-classes.md

OLE Server Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes are used by server applications. Server documents are derived from COleServerDoc rather than from
CDocument . Note that because COleServerDoc is derived from COleLinkingDoc , server documents can also be

containers that support linking.

The COleServerItem class represents a document or portion of a document that can be embedded in another
document or linked to.

COleIPFrameWnd and COleResizeBar support in-place editing while the object is in a container, and
COleTemplateServer supports creation of document/view pairs so OLE objects from other applications can be

edited.

COleServerDoc
Used as the base class for server-application document classes. COleServerDoc objects provide the bulk of server
support through interactions with COleServerItem objects. Visual editing capability is provided using the class
library's document/view architecture.

CDocItem
Abstract base class of COleClientItem and COleServerItem . Objects of classes derived from CDocItem represent
parts of documents.

COleServerItem
Used to represent the OLE interface to COleServerDoc items. There is usually one COleServerDoc object, which
represents the embedded part of a document. In servers that support links to parts of documents, there can be
many COleServerItem objects, each of which represents a link to a portion of the document.

COleIPFrameWnd
Provides the frame window for a view when a server document is being edited in place.

COleResizeBar
Provides the standard user interface for in-place resizing. Objects of this class are always used in conjunction with
COleIPFrameWnd objects.

COleTemplateServer
Used to create documents using the framework's document/view architecture. A COleTemplateServer object
delegates most of its work to an associated CDocTemplate object.

COleException
An exception resulting from a failure in OLE processing. This class is used by both containers and servers.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-server-classes.md

OLE Drag-and-Drop and Data Transfer Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes are used in OLE data transfers. They allow data to be transferred between applications by using the
Clipboard or through drag and drop.

COleDropSource
Controls the drag-and-drop operation from start to finish. This class determines when the drag operation starts
and when it ends. It also displays cursor feedback during the drag-and-drop operation.

COleDataSource
Used when an application provides data for a data transfer. COleDataSource could be viewed as an object-oriented
Clipboard object.

COleDropTarget
Represents the target of a drag-and-drop operation. A COleDropTarget object corresponds to a window on screen.
It determines whether to accept any data dropped onto it and implements the actual drop operation.

COleDataObject
Used as the receiver side to COleDataSource . COleDataObject objects provide access to the data stored by a
COleDataSource object.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-drag-and-drop-and-data-transfer-classes.md

OLE Common Dialog Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes handle common OLE tasks by implementing a number of standard OLE dialog boxes. They also
provide a consistent user interface for OLE functionality.

COleDialog
Used by the framework to contain common implementations for all OLE dialog boxes. All dialog box classes in the
user-interface category are derived from this base class. COleDialog cannot be used directly.

COleInsertDialog
Displays the Insert Object dialog box, the standard user interface for inserting new OLE linked or embedded items.

COlePasteSpecialDialog
Displays the Paste Special dialog box, the standard user interface for implementing the Edit Paste Special
command.

COleLinksDialog
Displays the Edit Links dialog box, the standard user interface for modifying information about linked items.

COleChangeIconDialog
Displays the Change Icon dialog box, the standard user interface for changing the icon associated with an OLE
embedded or linked item.

COleConvertDialog
Displays the Convert dialog box, the standard user interface for converting OLE items from one type to another.

COlePropertiesDialog
Encapsulates the Windows common OLE Properties dialog box. Common OLE Properties dialog boxes provide an
easy way to display and modify the properties of an OLE document item in a manner consistent with Windows
standards.

COleUpdateDialog
Displays the Update dialog box, the standard user interface for updating all links in a document. The dialog box
contains a progress indicator to indicate how close the update procedure is to completion.

COleChangeSourceDialog
Displays the Change Source dialog box, the standard user interface for changing the destination or source of a
link.

COleBusyDialog
Displays the Server Busy and Server Not Responding dialog boxes, the standard user interface for handling calls
to busy applications. Usually displayed automatically by the COleMessageFilter implementation.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-common-dialog-classes.md

OLE Automation Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes support automation clients (applications that control other applications). Automation servers
(applications that can be controlled by other applications) are supported through dispatch maps.

COleDispatchDriver
Used to call automation servers from your automation client. When adding a class, this class is used to create
type-safe classes for automation servers that provide a type library.

COleDispatchException
An exception resulting from an error during OLE automation. Automation exceptions are thrown by automation
servers and caught by automation clients.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-automation-classes.md

OLE Control Classes
3/4/2019 • 2 minutes to read • Edit Online

These are the primary classes you use when writing OLE controls. The COleControlModule class in an OLE control
module is like the CWinApp class in an application. Each module implements one or more OLE controls; these
controls are represented by COleControl objects. These controls communicate with their containers using
CConnectionPoint objects.

The CPictureHolder and CFontHolder classes encapsulate COM interfaces for pictures and fonts, while the
COlePropertyPage and CPropExchange classes help you implement property pages and property persistence for

your control.

COleControlModule
Replaces the CWinApp class for your OLE control module. Derive from the COleControlModule class to develop an
OLE control module object. It provides member functions for initializing your OLE control's module.

COleControl
Derive from the COleControl class to develop an OLE control. Derived from CWnd , this class inherits all the
functionality of a Windows window object plus additional OLE-specific functionality, such as event firing and the
ability to support methods and properties.

CConnectionPoint
The CConnectionPoint class defines a special type of interface used to communicate with other OLE objects, called
a connection point. A connection point implements an outgoing interface that is able to initiate actions on other
objects, such as firing events and change notifications.

CPictureHolder
Encapsulates the functionality of a Windows picture object and the IPicture COM interface; used to implement
the custom Picture property of an OLE control.

CFontHolder
Encapsulates the functionality of a Windows font object and the IFont COM interface; used to implement the
stock Font property of an OLE control.

COlePropertyPage
Displays the properties of an OLE control in a graphical interface, similar to a dialog box.

CPropExchange
Supports the implementation of property persistence for your OLE controls. Analogous to CDataExchange for
dialog boxes.

CMonikerFile
Takes a moniker, or a string representation that it can make into a moniker, and binds it synchronously to the
stream for which the moniker is a name.

CAsyncMonikerFile
Works similarly to CMonikerFile ; however, it binds the moniker asynchronously to the stream for which the
moniker is a name.

CDataPathProperty
Implements an OLE control property that can be loaded asynchronously.

CCachedDataPathProperty

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-control-classes.md

See also

Implements an OLE control property transferred asynchronously and cached in a memory file.

COleCmdUI
Allows an Active document to receive commands that originate in its container's user interface (such as FileNew,
Open, Print, and so on), and allows a container to receive commands that originate in the Active document's user
interface.

COleSafeArray
Works with arrays of arbitrary type and dimension.

Class Overview

Active Document Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

Active documents can be displayed either in the entire client window of a Web browser, such as Internet Explorer
5.5, or in an Active container, such as the Microsoft Office Binder, that supports Active documents.

CDocObjectServer
Maps the Active document interfaces, and initializes and activates an Active document object.

CDocObjectServerItem
Implements OLE server verbs specifically for Active document servers.

COleDocObjectItem
Implements Active document containment.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/active-document-classes.md

OLE-Related Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes provide a number of different services, ranging from exceptions to file input and output.

COleObjectFactory
Used to create items when requested from other containers. This class serves as the base class for more specific
types of factories, including COleTemplateServer .

COleMessageFilter
Used to manage concurrency with OLE Lightweight Remote Procedure Calls (LRPC).

COleStreamFile
Uses the COM IStream interface to provide CFile access to compound files. This class (derived from CFile)
enables MFC serialization to use OLE structured storage.

CRectTracker
Used to allow moving, resizing, and reorientation of in-place items.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/ole-related-classes.md

Debugging and Exception Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

These classes provide support for debugging dynamic memory allocation and for passing exception information
from the function where the exception is thrown to the function where it is caught.

Use classes CDumpContext and CMemoryState during development to assist with debugging, as described in
Debugging MFC Applications. Use CRuntimeClass to determine the class of any object at run time, as described in
the article Accessing Run-Time Class Information. The framework uses CRuntimeClass to create objects of a
particular class dynamically.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/debugging-and-exception-classes.md
https://docs.microsoft.com/visualstudio/debugger/mfc-debugging-techniques

Debugging Support Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

MFC provides the following classes to help you debug dynamic memory allocation problems.

CDumpContext
Provides a destination for diagnostic dumps.

CMemoryState
Structure that provides snapshots of memory use. Also used to compare earlier and later memory snapshots.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/debugging-support-classes.md

Exception Classes
3/4/2019 • 2 minutes to read • Edit Online

See also

The class library provides an exception-handling mechanism based on class CException . The application
framework uses exceptions in its code; you can also use them in yours. For more information, see the article
Exceptions. You can derive your own exception types from CException .

MFC provides an exception class from which you can derive your own exception as well as exception classes for all
of the exceptions it supports.

CException
The base class for exceptions.

CArchiveException
An archive exception.

CDaoException
An exception resulting from a failure in a DAO database operation.

CDBException
An exception resulting from a failure in ODBC database processing.

CFileException
A file-oriented exception.

CMemoryException
An out-of-memory exception.

CNotSupportedException
An exception resulting from using an unsupported feature.

COleException
An exception resulting from a failure in OLE processing. This class is used by both containers and servers.

COleDispatchException
An exception resulting from an error during automation. Automation exceptions are thrown by automation servers
and caught by automation clients.

CResourceException
An exception resulting from a failure to load a Windows resource.

CUserException
An exception used to stop a user-initiated operation. Typically, the user has been notified of the problem before
this exception is thrown.

Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/exception-classes.md

Walkthroughs (MFC)
3/4/2019 • 2 minutes to read • Edit Online

In This Section

See also

This section contains articles that walk you through various tasks associated with new MFC library features.

Walkthrough: Using the New MFC Shell Controls
In this walkthrough, you'll create an application that resembles File Explorer. You'll create a window that contains
two panes. The left pane has a CMFCShellTreeCtrl object that will display your Desktop in a hierarchical view. The
right pane has a CMFCShellListCtrl that will show the files in the folder that is selected in the left pane.

Walkthrough: Putting Controls On Toolbars
Modern MFC toolbars can host controls other than simple buttons. This article explains how to do it.

Walkthrough: Adding a D2D Object to an MFC Project
Demonstrates how to add a D2D object to a project and introduces how to use D2D.

Walkthrough: Adding Animation to an MFC Project
Demonstrates how to add a graphical object to a project and introduces how to animate it.

MFC Desktop Applications

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/walkthroughs-mfc.md

Walkthrough: Using the New MFC Shell Controls
3/4/2019 • 5 minutes to read • Edit Online

Prerequisites

To create a new MFC application by using the MFC Application WizardTo create a new MFC application by using the MFC Application Wizard

To add the shell list control to the document viewTo add the shell list control to the document view

In this walkthrough, you'll create an application that resembles File Explorer. You'll create a window that has two
panes. The left pane will hold a CMFCShellTreeCtrl object that displays your Desktop in a hierarchical view. The
right pane will hold a CMFCShellListCtrl that shows the files in the folder that is selected in the left pane.

This walkthrough assumes that you have set up Visual Studio to use General Development Settings. If you're
using a different development setting, some Visual Studio windows that we use in this walkthrough might not be
displayed by default.

1. Use the MFC Application Wizard to create a new MFC application. To run the wizard, from the File menu
select New, and then select Project. The New Project dialog box will be displayed.

2. In the New Project dialog box, expand the Visual C++ node in the Project types pane and select MFC.
Then, in the Templates pane, select MFC Application. Type a name for the project, such as
MFCShellControls and click OK. After MFC Application Wizard displays, use the following options:

a. On the Application Type pane, under Application type, clear the Tabbed documents option.
Next, select Single document and select Document/View architecture support. Under Project
style, select Visual Studio, and from the Visual style and colors drop down list select Office 2007
(Blue theme).

b. On the Compound Document Support pane, select None.

c. Don't make any changes to the Document Template Strings pane.

d. On the Database Support pane (Visual Studio 2015 and older), select None because the
application doesn't use a database.

e. On the User Interface Features pane, make sure the Use a menu bar and toolbar option is
selected. Leave all other options as they are.

f. On the Advanced Features pane, under Advanced features, select only ActiveX controls and
Common Control Manifest. Under Advanced frame panes, select only the Navigation pane
option. It will cause the wizard to create the pane to the left of the window with a CMFCShellTreeCtrl

already embedded.

g. We aren't going to make any changes to the Generated Classes pane, so click Finish to create your
new MFC project.

3. Verify that the application was created successfully by building and running it. To build the application, from
the Build menu select Build Solution. If the application builds successfully, run the application by selecting
Start Debugging from the Debug menu.

The wizard automatically creates an application that has a standard menu bar, a standard toolbar, a standard
status bar, and an Outlook bar to the left of the window with a Folders view and a Calendar view.

1. In this section, you'll add an instance of CMFCShellListCtrl to the view that the wizard created. Open the

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/walkthrough-using-the-new-mfc-shell-controls.md

#include <afxShellListCtrl.h>

// Generated message map functions

private:
CMFCShellListCtrl m_wndList;

// Attributes

public:
 CMFCShellTreeCtrl& GetShellTreeCtrl();

CMFCShellTreeCtrl& CMainFrame::GetShellTreeCtrl()
{
 return m_wndTree;
}

view header file by double-clicking MFCShellControlsView.h in the Solution Explorer.

Locate the #pragma once directive near the top of the header file. Immediately underneath it add this code
to include the header file for CMFCShellListCtrl :

Now add a member variable of type CMFCShellListCtrl . First, locate the following comment in the header
file:

Immediately above that comment, add this code:

2. The MFC Application Wizard already created a CMFCShellTreeCtrl object in the CMainFrame class, but it's
a protected member. We'll access the object later, so create an accessor for it now. Open the MainFrm.h
header file by double-clicking it in the Solution Explorer. Locate the following comment:

Immediately under it, add the following method declaration:

Next, open the MainFrm.cpp source file by double-clicking it in the Solution Explorer. At the bottom of
that file, add the following method definition:

3. Now we update the CMFCShellControlsView class to handle the WM_CREATE windows message. Open the
Class View window and select the CMFCShellControlsView class. Right-click and select Properties.

Next, in the Properties window, click the Messages icon. Scroll down until you find the WM_CREATE

message. From the drop-down list next to WM_CREATE , select <Add> OnCreate. The command creates a
message handler for us and automatically updates the MFC message map.

In the OnCreate method, we'll now create our CMFCShellListCtrl object. Find the OnCreate method
definition in the MFCShellControlsView.cpp source file, and replace its implementation with the following
code:

int CMFCShellControlsView::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CView::OnCreate(lpCreateStruct) == -1)
 return -1;

 CRect rectDummy (0, 0, 0, 0);

 m_wndList.Create(WS_CHILD | WS_VISIBLE | LVS_REPORT,
 rectDummy, this, 1);

 return 0;
}

void CMFCShellControlsView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);

 m_wndList.SetWindowPos(NULL, -1, -1, cx, cy,
 SWP_NOMOVE | SWP_NOZORDER | SWP_NOACTIVATE);
}

protected:
virtual void OnActivateView(BOOL bActivate,
 CView* pActivateView,
 CView* pDeactiveView);

void CMFCShellControlsView::OnActivateView(BOOL bActivate,
 CView* pActivateView,
 CView* pDeactiveView)
{
 if (bActivate&& AfxGetMainWnd() != NULL)
 {
 ((CMainFrame*)AfxGetMainWnd())->GetShellTreeCtrl().SetRelatedList(&m_wndList);
 }

 CView::OnActivateView(bActivate,
 pActivateView,
 pDeactiveView);
}

4. Repeat the previous step but for the WM_SIZE message. It will cause your applications view to be redrawn
whenever a user changes the size of the application window. Replace the definition for the OnSize method
with the following code:

5. The last step is to connect the CMFCShellTreeCtrl and CMFCShellListCtrl objects by using the
CMFCShellTreeCtrl::SetRelatedList method. After you call CMFCShellTreeCtrl::SetRelatedList , the
CMFCShellListCtrl will automatically display the contents of the item selected in the CMFCShellTreeCtrl . We

connect the objects in the OnActivateView method, which is overridden from CView::OnActivateView.

In the MFCShellControlsView.h header file, inside the CMFCShellControlsView class declaration, add the
following method declaration:

Next, add the definition for the method to the MFCShellControlsView.cpp source file:

Because we're calling methods from the CMainFrame class, we must add an #include directive at the top of
the MFCShellControlsView.cpp source file:

Next Steps

See also

#include "MainFrm.h"

6. Verify that the application was created successfully by building and running it. To build the application, from
the Build menu select Build Solution. If the application builds successfully, run it by selecting Start
Debugging from the Debug menu.

You should now see the details for the item selected in the CMFCShellTreeCtrl in the view pane. When you
click a node in the CMFCShellTreeCtrl , the CMFCShellListCtrl will be automatically updated. Likewise, if you
double-click a folder in the CMFCShellListCtrl , the CMFCShellTreeCtrl should be automatically updated.

Right-click any item in the tree control or in the list control. You get the same context menu as if you were
using the real File Explorer.

The wizard created an Outlook bar with both a Folders pane and a Calendar pane. It probably doesn't
make sense to have a Calendar pane in an Explorer window, so remove that pane now.

The CMFCShellListCtrl supports viewing files in different modes, such as Large Icons, Small Icons, List,
and Details. Update your application to implement this functionality. Hint: see Visual C++ Samples.

Walkthroughs

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Walkthrough: Putting Controls On Toolbars
3/4/2019 • 4 minutes to read • Edit Online

Adding Controls to Toolbars

NOTENOTE

Toolbar Controls and Customization

Example: Creating a Find Combo Box

Creating the Find ControlCreating the Find Control

This article describes how to add a toolbar button that contains a Windows control to a toolbar. In MFC, a toolbar
button must be a CMFCToolBarButton Class-derived class, for example CMFCToolBarComboBoxButton Class,
CMFCToolBarEditBoxButton Class, CMFCDropDownToolbarButton Class, or CMFCToolBarMenuButton Class.

To add a control to a toolbar, follow these steps:

1. Reserve a dummy resource ID for the button in the parent toolbar resource. For more information about
how to create buttons by using the Toolbar Editor in Visual Studio, see the Toolbar Editor article.

2. Reserve a toolbar image (button icon) for the button in all bitmaps of the parent toolbar.

3. In the message handler that processes the AFX_WM_RESETTOOLBAR message, do the following steps:

a. Construct the button control by using a CMFCToolbarButton -derived class.

b. Replace the dummy button with the new control by using CMFCToolBar::ReplaceButton. You can
construct the button object on the stack, because ReplaceButton copies the button object and
maintains the copy.

If you enabled customization in your application, you may have to reset the toolbar by using the Reset button on the
Toolbars tab of the Customize dialog box to see the updated control in your application after recompiling. The toolbar
state is saved in the Windows registry, and the registry information is loaded and applied after the ReplaceButton

method is executed during application startup.

The Commands tab of the Customize dialog box contains a list of commands that are available in the
application. By default, the Customize dialog box processes the application menus and builds a list of standard
toolbar buttons in each menu category. To keep the extended functionality that the toolbar controls provide, you
must replace the standard toolbar button with the custom control in the Customize dialog box.

When you enable customization, you create the Customize dialog box in the customization handler
OnViewCustomize by using the CMFCToolBarsCustomizeDialog Class class. Before you display the Customize

dialog box by calling CMFCToolBarsCustomizeDialog::Create, call
CMFCToolBarsCustomizeDialog::ReplaceButton to replace the standard button with the new control.

This section describes how to create a Find combo box control that appears on a toolbar and contains recent-
used search strings. The user can type a string in the control and then press the enter key to search a document,
or press the escape key to return the focus to the main frame. This example assumes that the document is
displayed in a CEditView Class-derived view.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/walkthrough-putting-controls-on-toolbars.md

Adding the Find Control to the Main ToolbarAdding the Find Control to the Main Toolbar

First, create the Find combo box control:

1. Add the button and its commands to the application resources:

NOTENOTE

a. In the application resources, add a new button with an ID_EDIT_FIND command ID to a toolbar in
your application and to any bitmaps associated with the toolbar.

b. Create a new menu item with the ID_EDIT_FIND command ID.

c. Add a new string "Find the text\nFind" to the string table and assign it an ID_EDIT_FIND_COMBO

command ID. This ID will be used as the command ID of the Find combo box button.

Because ID_EDIT_FIND is a standard command that is processed by CEditView , you are not required to
implement a special handler for this command. However, you must implement a handler for the new
command ID_EDIT_FIND_COMBO .

2. Create a new class, CFindComboBox , derived from CComboBox Class.

3. In the CFindComboBox class, override the PreTranslateMessage virtual method. This method will enable the
combo box to process the WM_KEYDOWN message. If the user hits the escape key (VK_ESCAPE), return
the focus to the main frame window. If the user hits the Enter key (VK_ENTER), post to the main frame
window a WM_COMMAND message that contains the ID_EDIT_FIND_COMBO command ID.

4. Create a class for the Find combo box button, derived from CMFCToolBarComboBoxButton Class. In this
example, it's named CFindComboButton .

5. The constructor of CMFCToolbarComboBoxButton takes three parameters: the command ID of the button, the
button image index, and the style of the combo box. Set these parameters as follows:

a. Pass the ID_EDIT_FIND_COMBO as the command ID.

b. Use CCommandManager::GetCmdImage with ID_EDIT_FIND to get the image index.

c. For a list of available combo box styles, see Combo-Box Styles.

6. In the CFindComboButton class, override the CMFCToolbarComboBoxButton::CreateCombo method. Here you
should create the CFindComboButton object and return a pointer to it.

7. Use the IMPLEMENT_SERIAL macro to make the combo button persistent. The workspace manager
automatically loads and saves the button's state in the Windows registry.

8. Implement the ID_EDIT_FIND_COMBO handler in your document view. Use
CMFCToolBar::GetCommandButtons with ID_EDIT_FIND_COMBO to retrieve all Find combo box buttons.
There can be several copies of a button with the same command ID because of customization.

9. In the ID_EDIT_FIND message handler OnFind , use CMFCToolBar::IsLastCommandFromButton to
determine whether the find command was sent from the Find combo box button. If so, find the text and
add the search string to the combo box.

To add the combo box button to the toolbar, follow these steps:

1. Implement the AFX_WM_RESETTOOLBAR message handler OnToolbarReset in the main frame window.

https://docs.microsoft.com/windows/desktop/inputdev/wm-keydown

Adding the Find Control to the Customize Dialog BoxAdding the Find Control to the Customize Dialog Box

See also

NOTENOTE

NOTENOTE

The framework sends this message to the main frame window when a toolbar is initialized during application
startup, or when a toolbar is reset during customization. In either case, you must replace the standard toolbar
button with the custom Find combo box button.

2. In the AFX_WM_RESETTOOLBAR handler, examine the toolbar ID, that is, the WPARAM of the
AFX_WM_RESETTOOLBAR message. If the toolbar ID is equal to that of the toolbar that contains the
Find combo box button, call CMFCToolBar::ReplaceButton to replace the Find button (that is, the button
with the command ID ID_EDIT_FIND) with a CFindComboButton object.

You can construct a CFindComboBox object on the stack, because ReplaceButton copies the button object and
maintains the copy.

In the customization handler OnViewCustomize , call CMFCToolBarsCustomizeDialog::ReplaceButton to replace
the Find button (that is, the button with the command ID ID_EDIT_FIND) with a CFindComboButton object.

Hierarchy Chart
Classes
CMFCToolBar Class
CMFCToolBarButton Class
CMFCToolBarComboBoxButton Class
CMFCToolBarsCustomizeDialog Class

Walkthrough: Adding a D2D Object to an MFC
Project
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

Prerequisites

To create an MFC application

To create a solid-color brush and a linear-gradient brush

This walkthrough teaches how to add a basic Direct2D (D2D) object to a Visual C++, Microsoft Foundation Class
Library (MFC) project, and then build the project into an application that prints "Hello, world" on a gradient
background.

The walkthrough shows how to accomplish these tasks:

Create an MFC application.

Create a solid-color brush and a linear-gradient brush.

Modify the gradient brush so that it will change appropriately when the window is resized.

Implement a D2D drawing handler.

Verify the results.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following
instructions. The Visual Studio edition that you have and the settings that you use determine these elements. For more
information, see Personalizing the IDE.

To complete this walkthrough, you must have Visual Studio installed with the Desktop development with C++
workload and the optional Visual C++ MFC for x86 and x64 component.

1. On the File menu, point to New and then choose Project.

2. In the New Project dialog box, in the left pane under Installed Templates, expand Visual C++ and then
select MFC. In the middle pane, select MFC Application. In the Name box, type MFCD2DWalkthrough.
Choose OK.

3. In the MFC Application Wizard, choose Finish without changing any settings.

CD2DTextFormat* m_pTextFormat;
CD2DSolidColorBrush* m_pBlackBrush;
CD2DLinearGradientBrush* m_pLinearGradientBrush;

1. In Solution Explorer, in the MFCD2DWalkthrough project, in the Header Files folder, open
MFCD2DWalkthroughView.h. Add this code to the CMFCD2DWalkthroughView class to create three data
variables:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/walkthrough-adding-a-d2d-object-to-an-mfc-project.md
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide

To modify the gradient brush so that it will change appropriately when
the window is resized

// Enable D2D support for this window:
EnableD2DSupport();

// Initialize D2D resources:
m_pBlackBrush = new CD2DSolidColorBrush(
 GetRenderTarget(),
 D2D1::ColorF(D2D1::ColorF::Black));

m_pTextFormat = new CD2DTextFormat(
 GetRenderTarget(),
 _T("Verdana"),
 50);

m_pTextFormat->Get()->SetTextAlignment(
 DWRITE_TEXT_ALIGNMENT_CENTER);

m_pTextFormat->Get()->SetParagraphAlignment(
 DWRITE_PARAGRAPH_ALIGNMENT_CENTER);

D2D1_GRADIENT_STOP gradientStops[2];

gradientStops[0].color =
 D2D1::ColorF(D2D1::ColorF::White);

gradientStops[0].position = 0.f;
gradientStops[1].color =
 D2D1::ColorF(D2D1::ColorF::Indigo);

gradientStops[1].position = 1.f;

m_pLinearGradientBrush = new CD2DLinearGradientBrush(
 GetRenderTarget(),
 gradientStops,
 ARRAYSIZE(gradientStops),
 D2D1::LinearGradientBrushProperties(
 D2D1::Point2F(0,0),
 D2D1::Point2F(0,0)));

Save the file and close it.

2. In the Source Files folder, open MFCD2DWalkthroughView.cpp. In the constructor for the
CMFCD2DWalkthroughView class, add this code:

Save the file and close it.

m_pLinearGradientBrush->SetEndPoint(CPoint(cx, cy));

1. On the Project menu, choose Class Wizard.

2. In the MFC Class Wizard, under Class name, select CMFCD2DWalkthroughView .

3. On the Messages tab, in the Messages box, select WM_SIZE and then choose Add Handler. This action
adds the OnSize message handler to the CMFCD2DWalkthroughView class.

4. In the Existing handlers box, select OnSize . Choose Edit Code to display the
CMFCD2DWalkthroughView::OnSize method. At the end of the method, add the following code.

Save the file and close it.

To implement a D2D drawing handler

To verify the results

See also

afx_msg LRESULT CMFCD2DWalkthroughView::OnDraw2D(
 WPARAM wParam,
 LPARAM lParam)
{
 CHwndRenderTarget* pRenderTarget = (CHwndRenderTarget*)lParam;
 ASSERT_VALID(pRenderTarget);

 CRect rect;
 GetClientRect(rect);

 pRenderTarget->FillRectangle(rect, m_pLinearGradientBrush);

 pRenderTarget->DrawText(
 _T("Hello, World!"),
 rect,
 m_pBlackBrush,
 m_pTextFormat);

 return TRUE;
}

1. On the Project menu, choose Class Wizard.

2. In the MFC Class Wizard, under Class name, select CMFCD2DWalkthroughView .

3. On the Messages tab, choose Add Custom Message.

4. In the Add Custom Message dialog box, in the Custom Windows Message box, type
AFX_WM_DRAW2D. In the Message handler name box, type OnDraw2D. Select the Registered
Message option and then choose OK. This action adds a message handler for the AFX_WM_DRAW2D
message to the CMFCD2DWalkthroughView class.

5. In the Existing handlers box, select OnDraw2D . Choose Edit Code to display the
CMFCD2DWalkthroughView::OnDraw2D method. Use this code for the CMFCD2DWalkthroughView::OnDrawD2D

method:

Save the file and close it.

Build and run the application. It should have a gradient rectangle that changes when you resize the window. “Hello
World!” should be displayed in the center of the rectangle.

Walkthroughs

Walkthrough: Adding Animation to an MFC Project
10/31/2018 • 6 minutes to read • Edit Online

NOTENOTE

Prerequisites

To create an MFC applicationTo create an MFC application

To add a menu and then add commands to start and stop an animationTo add a menu and then add commands to start and stop an animation

This walkthrough teaches how to add a basic animated object to a Visual C++, Microsoft Foundation Class Library
(MFC) project.

The walkthrough shows how to accomplish these tasks:

Create an MFC application.

Add a menu and then add commands to start and stop an animation.

Create handlers for the start and stop commands.

Add an animated object to the project.

Center the animated object in the window.

Verify the results.

Your computer might show different names or locations for some of the Visual Studio user interface elements in the following
instructions. The Visual Studio edition that you have and the settings that you use determine these elements. For more
information, see Personalizing the IDE.

To complete this walkthrough, you must have Visual Studio.

1. On the File menu, point to New and then click Project.

2. In the New Project dialog box, in the left pane under Installed Templates, expand Visual C++ and then
select MFC. In the middle pane, select MFC Application. In the Name box, type
MFCAnimationWalkthrough. Click OK.

3. In the MFC Application Wizard dialog box, verify that Application Type is Multiple Documents,
Project Style is Visual Studio, and the Document/View architecture support option is selected. Click
Finish.

1. On the View menu, point to Other Windows and then click Resource View.

2. In Resource View, navigate to the Menu folder and open it. Double-click the
IDR_MFCAnimationWalkthroughTYPE resource to open it for modification.

3. On the menu bar, in the Type Here box, type A&nimation to create an Animation menu.

4. Under Animation, in the Type Here box, type Start &Forward to create a Start Forward command.

5. Under Start Forward, in the Type Here box, type Start &Backward.

6. Under Start Backward, in the Type Here box, type S&top to create a Stop command.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/walkthrough-adding-animation-to-an-mfc-project.md
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide

To create handlers for the start and stop commandsTo create handlers for the start and stop commands

To add an animated object to the projectTo add an animated object to the project

lstBasicCommands.AddTail(ID_ANIMATION_STARTFORWARD);
lstBasicCommands.AddTail(ID_ANIMATION_STARTBACKWARD);
lstBasicCommands.AddTail(ID_ANIMATION_STOP);

7. Save MFCAnimationWalkthrough.rc and close it.

8. In Solution Explorer, double-click MainFrm.cpp to open it for modification. In the CMainFrame::OnCreate

method, locate the section that has several calls to lstBasicCommands.AddTail . Just after that section, add the
following code.

9. Save the file and close it.

1. On the Project menu, click Class Wizard.

2. In the MFC Class Wizard, under Class name, select CMFCAnimationWalkthroughView.

3. On the Commands tab, in the Object IDs box, select ID_ANIMATION_STARTFORWARD , and then in
the Messages box, select COMMAND . Click Add Handler.

4. In the Add Member Function dialog box, click OK.

5. In the Object IDs box, select ID_ANIMATION_STARTBACKWARD , and then in the Messages box, select
COMMAND . Click Add Handler.

6. In the Add Member Function dialog box, click OK.

7. In the Object IDs box, select ID_ANIMATION_STOP , and then in the Messages box, select COMMAND .
Click Add Handler and then click OK.

8. In the Add Member Function dialog box, click OK.

9. In the MFC Class Wizard, click OK.

10. Save MFCAnimationWalkthroughView.cpp, which is open in the editor, but don't close it.

class CCustomAnimationController : public CAnimationController
{
public:
 CCustomAnimationController()
 {
 }

 virtual BOOL OnHasPriorityTrim(CAnimationGroup* pGroupScheduled,
 CAnimationGroup* pGroupNew,
 UI_ANIMATION_PRIORITY_EFFECT priorityEffect)
 {
 return TRUE;
 }
};

1. In Solution Explorer, double-click MFCAnimationWalkthroughView.h to open it for modification. Just
before the definition of the CMFCAnimationWalkthroughView class, add the following code to create a custom
animation controller that will handle scheduling conflicts with the animation object.

2. At the end of the CMFCAnimationWalkthroughView class, add the following code.

CCustomAnimationController m_animationController;
CAnimationColor m_animationColor;
CAnimationRect m_animationRect;

void Animate(BOOL bDirection);

static int nAnimationGroup = 0;
static int nInfoAreaHeight = 40;

m_animationController.EnableAnimationTimerEventHandler();
m_animationController.EnablePriorityComparisonHandler(UI_ANIMATION_PHT_TRIM);
m_animationColor = RGB(255, 255, 255);
m_animationRect = CRect(0, 0, 0, 0);
m_animationColor.SetID(-1, nAnimationGroup);
m_animationRect.SetID(-1, nAnimationGroup);
m_animationController.AddAnimationObject(&m_animationColor);
m_animationController.AddAnimationObject(&m_animationRect);

BOOL CMFCAnimationWalkthroughView::PreCreateWindow(CREATESTRUCT& cs)
{
 // TODO: Modify the Window class or styles here by modifying
 // the CREATESTRUCT cs
 m_animationController.SetRelatedWnd(this);

 return CView::PreCreateWindow(cs);
}

3. After the DECLARE_MESSAGE_MAP() line, add the following code.

4. Save the file and close it.

5. In MFCAnimationWalkthroughView.cpp, at the top of the file after the #include statements but before any
class methods, add the following code.

6. At the end of the constructor for CMFCAnimationWalkthroughView , add the following code.

7. Locate the CAnimationWalthroughView::PreCreateWindow method and then replace it with the following code.

8. Locate the CAnimationWalkthroughView::OnDraw method and then replace it with the following code.

void CMFCAnimationWalkthroughView::OnDraw(CDC* pDC)
{
 CMFCAnimationWalkthroughDoc* pDoc = GetDocument();
 ASSERT_VALID(pDoc);
 if (!pDoc)
 return;

 // TODO: add draw code for native data here
 CMemDC dcMem(*pDC, this);
 CDC& dc = dcMem.GetDC();
 CRect rect;
 GetClientRect(rect);

 dc.FillSolidRect(rect, GetSysColor(COLOR_WINDOW));

 CString strRGB;
 strRGB.Format(_T("Fill Color is: %d; %d; %d"),
 GetRValue(m_animationColor),
 GetGValue(m_animationColor),
 GetBValue(m_animationColor));

 dc.DrawText(strRGB, rect, DT_CENTER);
 rect.top += nInfoAreaHeight;

 CBrush br;
 br.CreateSolidBrush(m_animationColor);
 CBrush* pBrushOld = dc.SelectObject(&br);

 dc.Rectangle((CRect)m_animationRect);

 dc.SelectObject(pBrushOld);
}

9. At the end of the file, add the following code.

void CMFCAnimationWalkthroughView::Animate(BOOL bDirection)
{
 static UI_ANIMATION_SECONDS duration = 3;
 static DOUBLE dblSpeed = 35.;
 static BYTE nStartColor = 50;
 static BYTE nEndColor = 255;

 BYTE nRedColorFinal = bDirection ? nStartColor : nEndColor;
 BYTE nGreenColorFinal = bDirection ? nStartColor : nEndColor;
 BYTE nBlueColorFinal = bDirection ? nStartColor : nEndColor;

 CLinearTransition* pRedTransition =
 new CLinearTransition(duration, (DOUBLE)nRedColorFinal);

 CSmoothStopTransition* pGreenTransition =
 new CSmoothStopTransition(duration, (DOUBLE)nGreenColorFinal);

 CLinearTransitionFromSpeed* pBlueTransition =
 new CLinearTransitionFromSpeed(dblSpeed, (DOUBLE)nBlueColorFinal);

 m_animationColor.AddTransition(pRedTransition,
 pGreenTransition,
 pBlueTransition);

 CRect rectClient;
 GetClientRect(rectClient);

 rectClient.top += nInfoAreaHeight;

 int nLeftFinal = bDirection ? rectClient.left : rectClient.CenterPoint().x;
 int nTopFinal = bDirection ? rectClient.top : rectClient.CenterPoint().y;
 int nRightFinal = bDirection ? rectClient.right : rectClient.CenterPoint().x;
 int nBottomFinal = bDirection ? rectClient.bottom : rectClient.CenterPoint().y;

 CLinearTransition* pLeftTransition =
 new CLinearTransition(duration, nLeftFinal);

 CLinearTransition* pTopTransition =
 new CLinearTransition(duration, nTopFinal);

 CLinearTransition* pRightTransition =
 new CLinearTransition(duration, nRightFinal);

 CLinearTransition* pBottomTransition =
 new CLinearTransition(duration, nBottomFinal);

 m_animationRect.AddTransition(pLeftTransition,
 pTopTransition,
 pRightTransition,
 pBottomTransition);

 CBaseKeyFrame* pKeyframeStart =
 CAnimationController::GetKeyframeStoryboardStart();
 CKeyFrame* pKeyFrameEnd =
 m_animationController.CreateKeyframe(nAnimationGroup,
 pBlueTransition);

 pLeftTransition->SetKeyframes(pKeyframeStart, pKeyFrameEnd);
 pTopTransition->SetKeyframes(pKeyframeStart, pKeyFrameEnd);
 pRightTransition->SetKeyframes(pKeyframeStart, pKeyFrameEnd);
 pBottomTransition->SetKeyframes(pKeyframeStart, pKeyFrameEnd);

 m_animationController.AnimateGroup(nAnimationGroup);
}

10. On the Project menu, click Class Wizard.

To center the animated object in the windowTo center the animated object in the window

BOOL CMFCAnimationWalkthroughView::OnEraseBkgnd(CDC* /*pDC*/)
{
 return TRUE;
}

void CMFCAnimationWalkthroughView::OnAnimationStartforward()
{
 Animate(TRUE);
}

void CMFCAnimationWalkthroughView::OnAnimationStartbackward()
{
 Animate(FALSE);
}

void CMFCAnimationWalkthroughView::OnAnimationStop()
{
 IUIAnimationManager* pManager = m_animationController.GetUIAnimationManager();
 if (pManager != NULL)
 {
 pManager->AbandonAllStoryboards();

 }
}

11. In the MFC Class Wizard, under Class name, select CMFCAnimationWalkthroughView.

12. On the Messages tab, in the Messages box, select WM_ERASEBKGND , click Add Handler, and then
click OK.

13. In MFCAnimationWalkthroughView.cpp, replace the implementation of OnEraseBkgnd with the following
code to reduce flickering in the animated object when it's redrawn.

14. Replace the implementations of CMFCAnimationWalkthroughView::OnAnimationStartforward ,
CMFCAnimationWalkthroughView::OnAnimationStartbackward , and
CMFCAnimationWalkthroughView::OnAnimationStop with the following code.

15. Save the file and close it.

BOOL m_bCurrentDirection;

1. In Solution Explorer, double-click MFCAnimationWalkthroughView.h to open it for modification. At the
end of the CMFCAnimationWalkthroughView class, just after the definition of m_animationRect , add the
following code.

2. Save the file and close it.

3. On the Project menu, click Class Wizard.

4. In the MFC Class Wizard, under Class name, select CMFCAnimationWalkthroughView.

5. On the Messages tab, in the Messages box, select WM_SIZE , click Add Handler, and then click OK.

6. In MFCAnimationWalkthroughView.cpp, replace the code for CMFCAnimationWalkthroughView::OnSize with
the following code.

To verify the resultsTo verify the results

See also

void CMFCAnimationWalkthroughView::OnSize(UINT nType, int cx, int cy)
{
 CView::OnSize(nType, cx, cy);
 CRect rect;
 GetClientRect(rect);

 rect.top += nInfoAreaHeight;

 CRect rectAnim = m_animationRect;
 m_animationRect = CRect(CPoint(rect.CenterPoint().x - rectAnim.Width() / 2,
 rect.CenterPoint().y - rectAnim.Height() / 2),
 rectAnim.Size());

 if (m_animationController.IsAnimationInProgress())
 {
 Animate(m_bCurrentDirection);
 }
}

m_bCurrentDirection = TRUE;

m_bCurrentDirection = bDirection;

7. At the beginning of the constructor for CMFCAnimationWalkthroughView , add the following code.

8. At the beginning of the CMFCAnimationWalkthroughView::Animate method, add the following code.

9. Save the file and close it.

1. Build and run the application. On the Animation menu, click Start Forward. A rectangle should appear and
then fill the center area. When you click Start Backward, the animation should reverse, and when you click
Stop, it should stop. The fill color of the rectangle should change as the animation progresses, and the current
color should be displayed at the top of the animation window.

Walkthroughs

MFC Classes
3/4/2019 • 34 minutes to read • Edit Online

TIPTIP

IMPORTANTIMPORTANT

In This Section

The classes in the following list are included in the Microsoft Foundation Class
(MFC) Library.

For information about CStringT and other classes that are common to both MFC and ATL
programming, see Classes Shared by MFC and ATL.

The MFC classes and their members cannot be used in applications that execute in the
Windows Runtime.

CAccelerateDecelerateTransition Class
Implements an accelerate-decelerate transition.

CAnimateCtrl Class
Provides the functionality of the Windows common animation control.

CAnimationBaseObject Class
The base class for all animation objects.

CAnimationColor Class
Implements the functionality of a color whose red, green, and blue components can
be animated.

CAnimationController Class
Implements the animation controller, which provides a central interface for creating
and managing animations.

CAnimationGroup Class
Implements the animation controller, which provides a central interface for creating
and managing animations.

CAnimationManagerEventHandler Class
Implements a callback, which is called by the Animation API when a status of an
animation manager is changed.

CAnimationPoint Class
Implements the functionality of a point whose coordinates can be animated.

CAnimationRect Class
Implements the functionality of a rectangle whose sides can be animated.

CAnimationSize Class
Implements the functionality of a size object whose dimensions can be animated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/mfc-classes.md

CAnimationStoryboardEventHandler Class
Implements a callback, which is called by the Animation API when the status of a
storyboard is changed or a storyboard is updated.

CAnimationTimerEventHandler Class
Implements a callback, which is called by the Animation API when timing events
occur.

CAnimationValue Class
Implements the functionality of animation object that has one value.

CAnimationVariable Class
Represents an animation variable.

CAnimationVariableChangeHandler Class
Implements a callback, which is called by the Animation API when the value of an
animation variable changes.

CAnimationVariableIntegerChangeHandler Class
Implements a callback, which is called by the Animation API when the value of an
animation variable changes.

CArchive Class
Lets you save a complex network of objects in a permanent binary form (usually disk
storage) that persists after those objects are deleted.

CArchiveException Class
Represents a serialization exception condition.

CArray Class
Supports arrays that resemble C arrays, but can dynamically reduce and grow as
necessary.

CAsyncMonikerFile Class
Provides functionality for the use of asynchronous monikers in ActiveX controls
(formerly OLE controls).

CAsyncSocket Class
Represents a Windows Socket, which is an endpoint of network communication.

CAutoHideDockSite Class
Extends the CDockSite Class to implement auto-hide dock panes.

CBaseKeyFrame Class
Implements the basic functionality of a keyframe.

CBasePane Class
Base class for all panes.

CBaseTabbedPane Class
Extends the functionality of the CDockablePane Class to support the creation of
tabbed windows.

CBaseTransition Class
Represents a basic transition.

CBitmap Class
Encapsulates a Windows graphics device interface (GDI) bitmap and provides
member functions to manipulate the bitmap.

CBitmapButton Class
Creates pushbutton controls labeled with bitmapped images instead of text.

CBitmapRenderTarget Class
A wrapper for ID2D1BitmapRenderTarget .

CBrush Class
Encapsulates a Windows graphics device interface (GDI) brush.

CButton Class
Provides the functionality of Windows button controls.

CByteArray Class
Supports dynamic arrays of bytes.

CCachedDataPathProperty Class
Implements an OLE control property transferred asynchronously and cached in a
memory file.

CCheckListBox Class
Provides the functionality of a Windows checklist box.

CClientDC Class
Handles the calling of the Windows functions GetDC at construction time and
ReleaseDC at destruction time.

CCmdTarget Class
Base class for the Microsoft Foundation Class Library message-map architecture.

CCmdUI Class
Used only within an ON_UPDATE_COMMAND_UI handler in a CCmdTarget -derived class.

CColorDialog Class
Lets you incorporate a color-selection dialog box into your application.

CComboBox Class
Provides the functionality of a Windows combo box.

CComboBoxEx Class
Extends the combo box control by providing support for image lists.

CCommandLineInfo Class
Aids in parsing the command line at application startup.

CCommonDialog Class
The base class for classes that encapsulate functionality of the Windows common
dialogs.

CConnectionPoint Class
Defines a special type of interface used to communicate with other OLE objects,
called a "connection point."

CConstantTransition Class
Encapsulates a constant transition.

CContextMenuManager Class
Manages shortcut menus, also known as context menus.

CControlBar Class
Base class for the control-bar classes CStatusBar Class, CToolBar Class, CDialogBar

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-releasedc

Class, CReBar Class, and COleResizeBar Class.

CCriticalSection Class
Represents a "critical section", which is a synchronization object that enables one
thread at a time to access a resource or section of code.

CCtrlView Class
Adapts the document-view architecture to the common controls supported by
Windows 98 and Windows NT versions 3.51 and later.

CCubicTransition Class
Encapsulates a cubic transition.

CCustomInterpolator Class
Implements a basic interpolator.

CCustomTransition Class
Implements a custom transition.

CD2DBitmap Class
A wrapper for ID2D1Bitmap .

CD2DBitmapBrush Class
A wrapper for ID2D1BitmapBrush .

CD2DBrush Class
A wrapper for ID2D1Brush .

CD2DBrushProperties Class
A wrapper for D2D1_BRUSH_PROPERTIES .

CD2DEllipse Class
A wrapper for D2D1_BRUSH_PROPERTIES .

CD2DGeometry Class
A wrapper for ID2D1Geometry .

CD2DGeometrySink Class
A wrapper for ID2D1GeometrySink .

CD2DGradientBrush Class
The base class of the CD2DLinearGradientBrush and the CD2DRadialGradientBrush

classes.

CD2DLayer Class
A wrapper for ID2D1Layer .

CD2DLinearGradientBrush Class
A wrapper for ID2D1LinearGradientBrush .

CD2DMesh Class
A wrapper for ID2D1Mesh .

CD2DPathGeometry Class
A wrapper for ID2D1PathGeometry .

CD2DPointF Class
A wrapper for D2D1_POINT_2F .

CD2DPointU Class

A wrapper for D2D1_POINT_2U .

CD2DRadialGradientBrush Class
A wrapper for ID2D1RadialGradientBrush .

CD2DRectF Class
A wrapper for D2D1_RECT_F .

CD2DRectU Class
A wrapper for D2D1_RECT_U .

CD2DResource Class
An abstract class that provides a interface for creating and managing D2D resources
such as brushes, layers, and texts.

CD2DRoundedRect Class
A wrapper for D2D1_ROUNDED_RECT .

CD2DSizeF Class
A wrapper for D2D1_SIZE_F .

CD2DSizeU Class
A wrapper for D2D1_SIZE_U .

CD2DSolidColorBrush Class
A wrapper for ID2D1SolidColorBrush .

CD2DTextFormat Class
A wrapper for IDWriteTextFormat .

CD2DTextLayout Class
A wrapper for IDWriteTextLayout .

CDaoDatabase Class
Represents a connection to a database through which you can operate on the data.

CDaoException Class
Represents an exception condition arising from the MFC database classes based on
data access objects (DAO).

CDaoFieldExchange Class
Supports the DAO record field exchange (DFX) routines used by the DAO database
classes.

CDaoQueryDef Class
Represents a query definition, or "querydef," usually one saved in a database.

CDaoRecordset Class
Represents a set of records selected from a data source.

CDaoRecordView Class
A view that displays database records in controls.

CDaoTableDef Class
Represents the stored definition of a base table or an attached table.

CDaoWorkspace Class
Manages a named, password-protected database session from login to logoff, by a
single user.

CDatabase Class
Represents a connection to a data source, through which you can operate on the
data source.

CDataExchange Class
Supports the dialog data exchange (DDX) and dialog data validation (DDV) routines
used by the Microsoft Foundation classes.

CDataPathProperty Class
Implements an OLE control property that can be loaded asynchronously.

CDataRecoveryHandler Class
Autosaves documents and restores them if an application unexpectedly exits.

CDateTimeCtrl Class
Encapsulates the functionality of a date and time picker control.

CDBException Class
Represents an exception condition arising from the database classes.

CDBVariant Class
Represents a variant data type for the MFC ODBC classes.

CDC Class
Defines a class of device-context objects.

CDCRenderTarget Class
A wrapper for ID2D1DCRenderTarget .

CDHtmlDialog Class
Used to create dialog boxes that use HTML rather than dialog resources to
implement their user interface.

CDialog Class
Base class used for displaying dialog boxes on the screen.

CDialogBar Class
Provides the functionality of a Windows modeless dialog box in a control bar.

CDialogEx Class
Specifies the background color and background image of a dialog box.

CDiscreteTransition Class
Encapsulates a discrete transition.

CDocItem Class
The base class for document items, which are components of a document's data.

CDockablePane Class
Implements a pane that can either be docked in a dock site or included in a tabbed
pane.

CDockablePaneAdapter Class
Provides docking support for CWnd -derived panes.

CDockingManager Class
Implements the core functionality that controls docking layout in a main frame
window.

CDockingPanesRow Class

Manages a list of panes that are located in the same horizontal or vertical row
(column) of a dock site.

CDockSite Class
Provides functionality for arranging panes that are derived from the CPane Class
into sets of rows.

CDockState Class
A serialized CObject class that loads, unloads, or clears the state of one or more
docking control bars in persistent memory (a file).

CDocObjectServer Class
Implements the additional OLE interfaces needed to make a normal COleDocument

server into a full DocObject server: IOleDocument , IOleDocumentView ,
IOleCommandTarget , and IPrint .

CDocObjectServerItem Class
Implements OLE server verbs specifically for DocObject servers.

CDocTemplate Class
An abstract base class that defines the basic functionality for document templates.

CDocument Class
Provides the basic functionality for user-defined document classes.

CDragListBox Class
In addition to providing the functionality of a Windows list box, the CDragListBox

class lets the user move list box items, such as filenames, within the list box.

CDrawingManager Class
Implements complex drawing algorithms.

CDumpContext Class
Supports stream-oriented diagnostic output in the form of human-readable text.

CDWordArray Class
Supports arrays of 32-bit doublewords.

CEdit Class
Provides the functionality of a Windows edit control.

CEditView Class
A type of view class that provides the functionality of a Windows edit control and
can be used to implement simple text-editor functionality.

CEvent Class
Represents an "event", which is a synchronization object that enables one thread to
notify another that an event has occurred.

CException Class
The base class for all exceptions in the Microsoft Foundation Class Library.

CFieldExchange Class
Supports the record field exchange (RFX) and bulk record field exchange (Bulk RFX)
routines used by the database classes.

CFile Class
The base class for Microsoft Foundation Class file classes.

CFileDialog Class
Encapsulates the common file dialog box for Windows.

CFileException Class
Represents a file-related exception condition.

CFileFind Class
Performs local file searches and is the base class for CGopherFileFind Class and
CFtpFileFind Class, which perform Internet file searches.

CFindReplaceDialog Class
Lets you implement standard string Find/Replace dialog boxes in your application.

CFolderPickerDialog Class
Implements CFileDialog in the folder picker mode.

CFont Class
Encapsulates a Windows graphics device interface (GDI) font and provides member
functions for manipulating the font.

CFontDialog Class
Lets you incorporate a font-selection dialog box into your application.

CFontHolder Class
Implements the stock Font property and encapsulates the functionality of a
Windows font object and the IFont interface.

CFormView Class
The base class used for form views.

CFrameWnd Class
Provides the functionality of a Windows single document interface (SDI) overlapped
or pop-up frame window, along with members for managing the window.

CFrameWndEx Class
Implements the functionality of a Windows single document interface (SDI)
overlapped or popup frame window, and provides members for managing the
window. It extends the CFrameWnd Class class.

CFtpConnection Class
Manages your FTP connection to an Internet server and enables direct manipulation
of directories and files on that server.

CFtpFileFind Class
Aids in Internet file searches of FTP servers.

CGdiObject Class
Provides a base class for various kinds of Windows graphics device interface (GDI)
objects such as bitmaps, regions, brushes, pens, palettes, and fonts.

CGopherConnection Class
Manages your connection to a gopher Internet server.

CGopherFile Class
Provides the functionality to find and read files on a gopher server.

CGopherFileFind Class
Aids in Internet file searches of gopher servers.

CGopherLocator Class
Gets a gopher "locator" from a gopher server, determines the locator's type, and
makes the locator available to CGopherFileFind Class.

CHeaderCtrl Class
Provides the functionality of the Windows common header control.

CHotKeyCtrl Class
Provides the functionality of the Windows common hot key control.

CHtmlEditCtrl Class
Provides the functionality of the WebBrowser ActiveX control in an MFC window.

CHtmlEditCtrlBase Class
Represents an HTML editing component.

CHtmlEditDoc Class
With CHtmlEditView Class, provides the functionality of the WebBrowser editing
platform within the context of the MFC document-view architecture.

CHtmlEditView Class
Provides the functionality of the WebBrowser editing platform within the context of
MFC's document/view architecture.

CHtmlView Class
Provides the functionality of the WebBrowser control within the context of MFC's
document/view architecture.

CHttpConnection Class
Manages your connection to an HTTP server.

CHttpFile Class
Provides the functionality to request and read files on an HTTP server.

CHwndRenderTarget Class
A wrapper for ID2D1HwndRenderTarget .

CImageList Class
Provides the functionality of the Windows common image list control.

CInstantaneousTransition Class
Encapsulates an instantaneous transition.

CInternetConnection Class
Manages your connection to an Internet server.

CInternetException Class
Represents an exception condition related to an Internet operation.

CInternetFile Class
Enables access to files on remote systems that use Internet protocols.

CInternetSession Class
Creates and initializes a single or several simultaneous Internet sessions and, if
necessary, describes your connection to a proxy server.

CInterpolatorBase Class
Implements a callback, which is called by the Animation API when it has to calculate
a new value of an animation variable.

CInvalidArgException Class
This class represents an invalid argument exception condition.

CIPAddressCtrl Class
Provides the functionality of the Windows common IP Address control.

CJumpList Class
The list of shortcuts revealed when you right click on an icon in the task bar.

CKeyboardManager Class
Manages shortcut key tables for the main frame window and child frame windows.

CKeyFrame Class
Represents an animation keyframe.

CLinearTransition Class
Encapsulates a linear transition.

CLinearTransitionFromSpeed Class
Encapsulates a linear-speed transition.

CLinkCtrl Class
Provides the functionality of the Windows common SysLink control.

CList Class
Supports ordered lists of nonunique objects accessible sequentially or by value.

CListBox Class
Provides the functionality of a Windows list box.

CListCtrl Class
Encapsulates the functionality of a "list view control," which displays a collection of
items each consisting of an icon (from an image list) and a label.

CListView Class
Simplifies use of the list control and of CListCtrl Class, the class that encapsulates
list-control functionality, with MFC's document-view architecture.

CLongBinary Class
Simplifies working with very large binary data objects (often called BLOBs, or
"binary large objects") in a database.

CMap Class
A dictionary collection class that maps unique keys to values.

CMapPtrToPtr Class
Supports maps of void pointers keyed by void pointers.

CMapPtrToWord Class
Supports maps of 16-bit words keyed by void pointers.

CMapStringToOb Class
A dictionary collection class that maps unique CString objects to CObject pointers.

CMapStringToPtr Class
Supports maps of void pointers keyed by CString objects.

CMapStringToString Class
Supports maps of CString objects keyed by CString objects.

CMapWordToOb Class
Supports maps of CObject pointers keyed by 16-bit words.

CMapWordToPtr Class
Supports maps of void pointers keyed by 16-bit words.

CMDIChildWnd Class
Provides the functionality of a Windows multiple document interface (MDI) child
window, along with members for managing the window.

CMDIChildWndEx Class
Provides the functionality of a Windows multiple document interface (MDI) child
window. It extends the functionality of CMDIChildWnd Class. The framework
requires this class when an MDI application uses certain MFC classes.

CMDIFrameWnd Class
Provides the functionality of a Windows multiple document interface (MDI) frame
window, along with members for managing the window.

CMDIFrameWndEx Class
Extends the functionality of CFrameWnd Class, a Windows Multiple Document
Interface (MDI) frame window.

CMDITabInfo Class
Used to pass parameters to CMDIFrameWndEx::EnableMDITabbedGroups method.
Set members of this class to control the behavior of MDI tabbed groups.

CMemFile Class
The CFile Class-derived class that supports memory files.

CMemoryException Class
Represents an out-of-memory exception condition.

CMenu Class
An encapsulation of the Windows HMENU .

CMenuTearOffManager Class
Manages tear-off menus. A tear-off menu is a menu on the menu bar. The user can
remove a tear-off menu from the menu bar, causing the tear-off menu to float.

CMetaFileDC Class
Implements a Windows metafile, which contains a sequence of graphics device
interface (GDI) commands that you can replay to create a desired image or text.

CMFCAcceleratorKey Class
Helper class that implements virtual key mapping and formatting.

CMFCAcceleratorKeyAssignCtrl Class
Extends the CEdit Class to support extra system buttons such as ALT, CONTROL,
and SHIFT.

CMFCAutoHideButton Class
A button that displays or hides a CDockablePane Class that is configured to hide.

CMFCBaseTabCtrl Class
Implements the base functionality for tabbed windows.

CMFCButton Class
Adds functionality to the CButton Class class such as aligning button text, combining

button text and an image, selecting a cursor, and specifying a tool tip.

CMFCCaptionBar Class
Control bar that can display three elements: a button, a text label, and a bitmap. It
can only display one element of each type at a time. You can align each element to
the left or right edges of the control or to the center. You can also apply a flat or 3D
style to the top and bottom borders of the caption bar.

CMFCCaptionButton Class
Implements a button that is displayed on the caption bar for a docking pane or a
mini-frame window. Typically, the framework creates caption buttons automatically.

CMFCColorBar Class
Represents a docking control bar that can select colors in a document or application.

CMFCColorButton Class
The CMFCColorButton and CMFCColorBar Class classes are used together to
implement a color picker control.

CMFCColorDialog Class
Represents a color selection dialog box.

CMFCColorMenuButton Class
Supports a menu command or a toolbar button that starts a color picker dialog box.

CMFCColorPickerCtrl Class
Provides functionality for a control that is used to select colors.

CMFCDesktopAlertDialog Class
Used together with the CMFCDesktopAlertWnd Class to display a custom dialog in
a popup window.

CMFCDesktopAlertWnd Class
Implements the functionality of a modeless dialog box which appears on the screen
to inform the user about an event.

CMFCDesktopAlertWndInfo Class
Used with the CMFCDesktopAlertWnd Class. It specifies the controls that are
displayed if the desktop alert window pops up.

CMFCDragFrameImpl Class
Draws the drag rectangle that appears when the user drags a pane in the standard
dock mode.

CMFCDropDownToolBar Class
A toolbar that appears when the user presses and holds a top-level toolbar button.

CMFCDropDownToolbarButton Class
A type of toolbar button that behaves like a regular button when it is clicked.
However, it opens a drop-down toolbar (CMFCDropDownToolBar Class if the user
presses and holds the toolbar button down.

CMFCDynamicLayout Class
Specifies how controls in a window are moved and resized as the user resizes the
window.

CMFCEditBrowseCtrl Class
Supports the edit browse control, which is an editable text box that optionally
contains a browse button. When the user clicks the browse button, the control

performs a custom action or displays a standard dialog box that contains a file
browser or a folder browser.

CMFCFilterChunkValueImpl Class
Simplifies both chunk and property value pair logic.

CMFCFontComboBox Class
Creates a combo box control that contains a list of fonts.

CMFCFontInfo Class
Describes the name and other attributes of a font.

CMFCHeaderCtrl Class
Supports sorting multiple columns in a header control.

CMFCImageEditorDialog Class
Supports an image editor dialog box.

CMFCKeyMapDialog Class
Supports a control that maps commands to keys on the keyboard.

CMFCLinkCtrl Class
Displays a button as a hyperlink and invokes the link's target when the button is
clicked.

CMFCListCtrl Class
Extends the functionality of CListCtrl Class class by supporting the advanced header
control functionality of the CMFCHeaderCtrl Class.

CMFCMaskedEdit Class
Supports a masked edit control, which validates user input against a mask and
displays the validated results according to a template.

CMFCMenuBar Class
A menu bar that implements docking.

CMFCMenuButton Class
A button that displays a pop-up menu and reports on the user's menu selections.

CMFCOutlookBar Class
A tabbed pane with the visual appearance of the Navigation Pane in Microsoft
Outlook 2000 or Outlook 2003. The CMFCOutlookBar object contains a
CMFCOutlookBarTabCtrl Class object and a series of tabs. The tabs can be either
CMFCOutlookBarPane Class objects or CWnd -derived objects. To the user, the
Outlook bar appears as a series of buttons and a display area. When the user clicks a
button, the corresponding control or button pane is displayed.

CMFCOutlookBarPane Class
A control derived from CMFCToolBar Class that can be inserted into an Outlook bar
(CMFCOutlookBar Class). The Outlook bar pane contains a column of large buttons.
The user can scroll up and down the list of buttons if it is larger than the pane. When
the user detaches an Outlook bar pane from the Outlook bar, it can float or dock in
the main frame window.

CMFCOutlookBarTabCtrl Class
A tab control that has the visual appearance of the Navigation Pane in Microsoft
Outlook.

CMFCPopupMenu Class
Implements Windows pop-up menu functionality and extends it by adding features
such as tear-off menus and tooltips.

CMFCPopupMenuBar Class
A menu bar embedded into a pop-up menu.

CMFCPreviewCtrlImpl Class
Implements a window that is placed on a host window provided by the Shell for Rich
Preview.

CMFCPropertyGridColorProperty Class
Supports a property list control item that opens a color selection dialog box.

CMFCPropertyGridCtrl Class
Supports an editable property grid control that can display properties in alphabetical
or hierarchical order.

CMFCPropertyGridFileProperty Class
Supports a property list control item that opens a file selection dialog box.

CMFCPropertyGridFontProperty Class
Supports a property list control item that opens a font selection dialog box.

CMFCPropertyGridProperty Class
Represents a list item in a property list control.

CMFCPropertyPage Class
Supports the display of pop-up menus on a property page.

CMFCPropertySheet Class
Supports a property sheet where each property page is denoted by a page tab, a
toolbar button, a tree control node, or a list item.

CMFCReBar Class
Control bar that provides layout, persistence, and state information for rebar
controls.

CMFCRibbonApplicationButton Class
Implements a special button located in the top-left corner of the application window.
When clicked, the button opens a menu that usually contains common File
commands like Open, Save, and Exit.

CMFCRibbonBaseElement Class
Base class for all elements that you can add to a CMFCRibbonBar Class. Examples of
ribbon elements are ribbon buttons, ribbon check boxes, and ribbon combo boxes.

CMFCRibbonButton Class
Implements buttons that you can position on ribbon bar elements such as panels,
Quick Access Toolbars, and pop-up menus.

CMFCRibbonButtonsGroup Class
Lets you organize a set of ribbon buttons into a group. All buttons in the group are
directly adjacent to each other horizontally and enclosed in a border.

CMFCRibbonCategory Class
Implements a ribbon tab that contains a group of CMFCRibbonPanel Class.

CMFCRibbonCheckBox Class

Implements a check box that you can add to a ribbon panel, Quick Access Toolbar, or
popup menu.

CMFCRibbonColorButton Class
Implements a color button that you can add to a ribbon bar. The ribbon color button
displays a drop-down menu that contains one or more color palettes.

CMFCRibbonComboBox Class
Implements a combo box control that you can add to a ribbon bar, a ribbon panel, or
a ribbon popup menu.

CMFCRibbonContextCaption Class
Implements a colored caption that appears at the top of a ribbon category or a
context category.

CMFCRibbonEdit Class
Implements an edit control that is positioned on a ribbon.

CMFCRibbonFontComboBox Class
Implements a combo box that contains a list of fonts. You place the combo box on a
ribbon panel.

CMFCRibbonGallery Class
Implements Office 2007-style ribbon galleries.

CMFCRibbonGalleryMenuButton Class
Implements a ribbon menu button that contains ribbon galleries.

CMFCRibbonLabel Class
Implements a non-clickable text label for a ribbon.

CMFCRibbonLinkCtrl Class
Implements a hyperlink that is positioned on a ribbon. The hyperlink opens a Web
page when you click it.

CMFCRibbonMainPanel Class
Implements a ribbon panel that displays when you click the
CMFCRibbonApplicationButton Class.

CMFCRibbonMiniToolBar Class
Implements a contextual popup toolbar.

CMFCRibbonPanel Class
Implements a panel that contains a set of ribbon elements. When the panel is drawn,
it displays as many elements as possible, given the size of the panel.

CMFCRibbonProgressBar Class
Implements a control that visually indicates the progress of a lengthy operation.

CMFCRibbonSlider Class
Implements a slider control that you can add to a ribbon bar or ribbon status bar.
The ribbon slider control resembles the zoom sliders that appear in Office 2007
applications.

CMFCRibbonStatusBar Class
Implements a status bar control that can display ribbon elements.

CMFCRibbonStatusBarPane Class
Implements a ribbon element that you can add to a ribbon status bar.

CMFCRibbonUndoButton Class
Implements a split button, a small button with a downward pointing triangle on the
rightmost part of the main button. Users can click the triangle to display a drop-
down list of their most recently performed actions. Users can then select one or
more actions from the drop-down list. However, if the user clicks the button, only the
last (the most recently added) action on the drop-down list is undone. You should
populate the list with actions as the user performs them.

CMFCShellListCtrl Class
Provides Windows list control functionality and expands it by including the ability to
display a list of shell items.

CMFCShellTreeCtrl Class
Extends CTreeCtrl Class functionality by displaying a hierarchy of Shell items.

CMFCSpinButtonCtrl Class
Supports a visual manager that draws a spin button control.

CMFCStatusBar Class
Implements a status bar similar to the CStatusBar class. However, the
CMFCStatusBar class has features not offered by the CStatusBar class, such as the

ability to display images, animations, and progress bars; and the ability to respond to
mouse double-clicks.

CMFCTabCtrl Class
Provides functionality for a tab control. The tab control displays a dockable window
with flat or three-dimensional tabs at its top or bottom. The tabs can display text and
an image and can change color when active.

CMFCTabToolTipInfo Structure
Provides information about the MDI tab that the user is hovering over.

CMFCTasksPane Class
Implements a list of clickable items (tasks).

CMFCTasksPaneTask Class
Helper class that represents tasks for the task pane control (CMFCTasksPane Class).
The task object represents an item in the task group (CMFCTasksPaneTaskGroup
Class). Each task can have a command that the framework executes when a user
clicks on the task and an icon that appears to the left of the task name.

CMFCTasksPaneTaskGroup Class
Helper class used by the CMFCTasksPane Class control. Objects of type
CMFCTasksPaneTaskGroup represent a task group. The task group is a list of items that

the framework displays in a separate box that has a collapse button. The box can
have an optional caption (group name). If a group is collapsed, the list of tasks is not
visible.

CMFCToolBar Class
Resembles CToolBar Class, but provides additional support for user interface
features. These include flat toolbars, toolbars with hot images, large icons, pager
buttons, locked toolbars, rebar controls, text under images, background images, and
tabbed toolbars. The CMFCToolBar class also contains built-in support for user
customization of toolbars and menus, drag-and-drop between toolbars and menus,
combo box buttons, edit box buttons, color pickers, and roll-up buttons.

CMFCToolBarImages Class

Manages toolbar images loaded from application resources or from files.

CMFCToolBarInfo Class
Contains the resource IDs of toolbar images in various states. CMFCToolBarInfo is a
helper class that is used as a parameter of the CMFCToolBar::LoadToolBarEx
method.

CMFCToolBarMenuButton Class
A toolbar button that contains a pop-up menu.

CMFCToolBarsCustomizeDialog Class
A modeless tab dialog box (CPropertySheet Class) that enables the user to
customize the toolbars, menus, keyboard shortcuts, user-defined tools, and visual
style in an application. Typically, the user accesses this dialog box by selecting
Customize from the Tools menu.

CMFCToolTipCtrl Class
An extended tooltip implementation based on the CToolTipCtrl Class. A tooltip
based on the CMFCToolTipCtrl class can display an icon, a label, and a description.
You can customize its visual appearance by using a gradient fill, custom text and
border colors, bold text, rounded corners, or a balloon style.

CMFCToolTipInfo Class
Stores information about the visual appearance of tooltips.

CMFCVisualManager Class
Provides support for changing the appearance of your application at a global level.
The CMFCVisualManager class works together with a class that provides instructions
to draw the GUI controls of your application using a consistent style. These other
classes are referred to as visual managers and they inherit from
CMFCBaseVisualManager .

CMFCVisualManagerOffice2003 Class
Gives an application a Microsoft Office 2003 appearance.

CMFCVisualManagerOffice2007 Class
Gives an application a Microsoft Office 2007 appearance.

CMFCVisualManagerVS2005 Class
Gives an application a Microsoft Visual Studio 2005 appearance.

CMFCVisualManagerWindows Class
Mimics the appearance of Microsoft Windows XP or Microsoft Vista when the user
selects a Windows XP or Vista theme.

CMFCVisualManagerWindows7 Class
Gives an application the appearance of a Windows 7 application.

CMFCWindowsManagerDialog Class
Enables a user to manage MDI child windows in a MDI application.

CMiniFrameWnd Class
Represents a half-height frame window typically seen around floating toolbars.

CMonikerFile Class
Represents a stream of data (IStream) named by an IMoniker.

CMonthCalCtrl Class

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-imoniker

Encapsulates the functionality of a month calendar control.

CMouseManager Class
Lets a user associate different commands with a particular CView Class object when
the user double-clicks inside that view.

CMultiDocTemplate Class
Defines a document template that implements the multiple document interface
(MDI).

CMultiLock Class
Represents the access-control mechanism used in controlling access to resources in
a multithreaded program.

CMultiPageDHtmlDialog Class
A multipage dialog displays multiple HTML pages sequentially and handles the
events from each page.

CMultiPaneFrameWnd Class
Extends CPaneFrameWnd Class. It can support multiple panes. Instead of a single
embedded handle to a control bar, CMultiPaneFrameWnd contains a
CPaneContainerManager Class object that enables the user to dock one
CMultiPaneFrameWnd to another and dynamically create multiple floating, tabbed

windows.

CMutex Class
Represents a mutex, which is a synchronization object that allows one thread
mutually exclusive access to a resource.

CNetAddressCtrl Class
The CNetAddressCtrl class represents the network address control, which you can
use to input and validate the format of IPv4, IPv6, and named DNS addresses.

CNotSupportedException Class
Represents an exception that is the result of a request for an unsupported feature.

CObArray Class
Supports arrays of CObject pointers.

CObject Class
The principal base class for the Microsoft Foundation Class Library.

CObList Class
Supports ordered lists of non-unique CObject pointers accessible sequentially or by
pointer value.

COccManager Class
Manages various custom control sites; implemented by COleControlContainer and
COleControlSite objects.

COleBusyDialog Class
Used for the OLE Server Not Responding or Server Busy dialog boxes.

COleChangeIconDialog Class
Used for the OLE Change Icon dialog box.

COleChangeSourceDialog Class
Used for the OLE Change Source dialog box.

COleClientItem Class
Defines the container interface to OLE items.

COleCmdUI Class
Implements a method for MFC to update the state of user-interface objects related
to the IOleCommandTarget -driven features of your application.

COleControl Class
A powerful base class for developing OLE controls.

COleControlContainer Class
Acts as a control container for ActiveX controls.

COleControlModule Class
The base class from which you derive an OLE control module object.

COleControlSite Class
Provides support for custom client-side control interfaces.

COleConvertDialog Class
For more information, see the OLEUICONVERT structure in the Windows SDK.

COleCurrency Class
Encapsulates the CURRENCY data type of OLE automation.

COleDataObject Class
Used in data transfers for retrieving data in various formats from the Clipboard,
through drag and drop, or from an embedded OLE item.

COleDataSource Class
Acts as a cache into which an application places the data that it will offer during data
transfer operations, such as Clipboard or drag-and-drop operations.

COleDBRecordView Class
A view that displays database records in controls.

COleDialog Class
Provides functionality common to dialog boxes for OLE.

COleDispatchDriver Class
Implements the client side of OLE automation.

COleDispatchException Class
Handles exceptions specific to the OLE IDispatch interface, which is a key part of
OLE automation.

COleDocObjectItem Class
Implements Active document containment.

COleDocument Class
The base class for OLE documents that support visual editing.

COleDropSource Class
Enables data to be dragged to a drop target.

COleDropTarget Class
Provides the communication mechanism between a window and the OLE libraries.

COleException Class
Represents an exception condition related to an OLE operation.

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuiconverta

COleInsertDialog Class
Used for the OLE Insert Object dialog box.

COleIPFrameWnd Class
The base for your application's in-place editing window.

COleIPFrameWndEx Class
Implements an OLE container that supports MFC. You must derive the in-place
frame window class for your application from the COleIPFrameWndEx class, instead of
deriving it from the COleIPFrameWnd class.

COleLinkingDoc Class
The base class for OLE container documents that support linking to the embedded
items they contain.

COleLinksDialog Class
Used for the OLE Edit Links dialog box.

COleMessageFilter Class
Manages the concurrency required by the interaction of OLE applications.

COleObjectFactory Class
Implements the OLE class factory, which creates OLE objects such as servers,
automation objects, and documents.

COlePasteSpecialDialog Class
Used for the OLE Paste Special dialog box.

COlePropertiesDialog Class
Encapsulates the Windows common OLE Object Properties dialog box.

COlePropertyPage Class
Used to display the properties of a custom control in a graphical interface, similar to
a dialog box.

COleResizeBar Class
A type of control bar that supports resizing of in-place OLE items.

COleSafeArray Class
A class for working with arrays of arbitrary type and dimension.

COleServerDoc Class
The base class for OLE server documents.

COleServerItem Class
Provides the server interface to OLE items.

COleStreamFile Class
Represents a stream of data (IStream) in a compound file as part of OLE Structured
Storage.

COleTemplateServer Class
Used for OLE visual editing servers, automation servers, and link containers
(applications that support links to embeddings).

COleUpdateDialog Class
Used for a special case of the OLE Edit Links dialog box, which should be used when
you need to update only existing linked or embedded objects in a document.

COleVariant Class
Encapsulates the VARIANT data type.

CPagerCtrl Class
The CPagerCtrl class wraps the Windows pager control, which can scroll into view a
contained window that does not fit the containing window.

CPageSetupDialog Class
Encapsulates the services provided by the Windows common OLE Page Setup
dialog box with additional support for setting and modifying print margins.

CPaintDC Class
A device-context class derived from CDC Class.

CPalette Class
Encapsulates a Windows color palette.

CPane Class
Enhancement of the CControlBar Class. If you are upgrading an existing MFC
project, you need to replace all occurrences of CControlBar with CPane .

CPaneContainer Class
Basic component of the docking model implemented by MFC. An object of this class
stores pointers to two docking panes or to two instances of CPaneContainer. It also
stores a pointer to the divider that separates the panes (or the containers). By nesting
containers inside containers, the framework can build a binary tree that represents
complex docking layouts. The root of the binary tree is stored in a
CPaneContainerManager Class object.

CPaneContainerManager Class
Manages the storage and display of the current docking layout.

CPaneDialog Class
Supports a modeless, dockable dialog box.

CPaneDivider Class
Divides two panes, divides two groups of panes, or separates a group of panes from
the client area of the main frame window.

CPaneFrameWnd Class
Implements a mini-frame window that contains one pane. The pane fills the client
area of the window.

CParabolicTransitionFromAcceleration Class
Encapsulates a parabolic-acceleration transition.

CPen Class
Encapsulates a Windows graphics device interface (GDI) pen.

CPictureHolder Class
Implements a Picture property, which lets the user display a picture in your control.

CPoint Class
Similar to the Windows POINT structure.

CPrintDialog Class
Encapsulates the services provided by the Windows common dialog box for printing.

CPrintDialogEx Class

https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant

Encapsulates the services provided by the Windows Print property sheet.

CProgressCtrl Class
Provides the functionality of the Windows common progress bar control.

CPropertyPage Class
Represents individual pages of a property sheet, otherwise known as a tab dialog
box.

CPropertySheet Class
Represents property sheets, also known as tab dialog boxes.

CPropExchange Class
Supports the implementation of persistence for your OLE controls.

CPtrArray Class
Supports arrays of void pointers.

CPtrList Class
Supports lists of void pointers.

CReBar Class
A control bar that provides layout, persistence, and state information for rebar
controls.

CReBarCtrl Class
Encapsulates the functionality of a rebar control, which is a container for a child
window.

CRecentDockSiteInfo Class
Helper class that stores recent state information for the CPane Class.

CRecentFileList Class
Supports control of the most recently used (MRU) file list.

CRecordset Class
Represents a set of records selected from a data source.

CRecordView Class
A view that displays database records in controls.

CRect Class
Similar to a Windows RECT structure.

CRectTracker Class
Enables an item to be displayed, moved, and resized in different fashions.

CRenderTarget Class
A wrapper for ID2D1RenderTarget .

CResourceException Class
Generated when Windows cannot find or allocate a requested resource.

CReversalTransition Class
Encapsulates a reversal transition.

CRgn Class
Encapsulates a Windows graphics device interface (GDI) region.

CRichEditCntrItem Class

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

With CRichEditView Class and CRichEditDoc Class, provides the functionality of the
rich edit control within the context of MFC's document view architecture.

CRichEditCtrl Class
Provides the functionality of the rich edit control.

CRichEditDoc Class
With CRichEditView Class and CRichEditCntrItem Class, provides the functionality
of the rich edit control within the context of MFC's document view architecture.

CRichEditView Class
With CRichEditDoc Class and CRichEditCntrItem Class, provides the functionality of
the rich edit control within the context of MFC's document view architecture.

CScrollBar Class
Provides the functionality of a Windows scroll-bar control.

CScrollView Class
A CView Class with scrolling capabilities.

CSemaphore Class
Represents a "semaphore", which is a synchronization object that allows a limited
number of threads in one or more processes to access aMaintains a count of the
number of threads currently accessing a specified resource.

CSettingsStore Class
Wraps Windows API functions, providing an object-oriented interface that you use
to access the registry.

CSettingsStoreSP Class
Helper class that you can use to create instances of the CSettingsStore Class.

CSharedFile Class
The CMemFile Class-derived class that supports shared memory files.

CShellManager Class
Implements several methods that enable you to work with pointers to identifier lists
(PIDLs).

CSimpleException Class
This class is a base class for resource-critical MFC exceptions.

CSingleDocTemplate Class
Defines a document template that implements the single document interface (SDI).

CSingleLock Class
Represents the access-control mechanism used in controlling access to a resource in
a multithreaded program.

CSinusoidalTransitionFromRange Class
Encapsulates a sinusoidal-range transition that has a given range of oscillation.

CSinusoidalTransitionFromVelocity Class
Encapsulates a sinusoidal-velocity transition that has an amplitude that is
determined by the initial velocity of the animation variable.

CSize Class
Similar to the Windows SIZE structure, which implements a relative coordinate or
position.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize

CSliderCtrl Class
Provides the functionality of the Windows common slider control.

CSmartDockingInfo Class
Defines the appearance of smart docking markers.

CSmoothStopTransition Class
Encapsulates a smooth-stop transition.

CSocket Class
Derives from CAsyncSocket , and represents a higher level of abstraction of the
Windows Sockets API.

CSocketFile Class
A CFile object used for sending and receiving data across a network via Windows
Sockets.

CSpinButtonCtrl Class
Provides the functionality of the Windows common spin button control.

CSplitButton Class
Represents a split button control. The split button control performs a default
behavior when a user clicks the main part of the button, and displays a drop-down
menu when a user clicks the drop-down arrow of the button.

CSplitterWnd Class
Provides the functionality of a splitter window, which is a window that contains
multiple panes.

CSplitterWndEx Class
Represents a customized splitter window.

CStatic Class
Provides the functionality of a Windows static control.

CStatusBar Class
A control bar with a row of text output panes, or "indicators."

CStatusBarCtrl Class
Provides the functionality of the Windows common status bar control.

CStdioFile Class
Represents a C run-time stream file as opened by the run-time function fopen,
_wfopen.

CStringArray Class
Supports arrays of CString objects.

CStringList Class
Supports lists of CString objects.

CSyncObject Class
A pure virtual class that provides functionality common to the synchronization
objects in Win32.

CTabbedPane Class
Implements the functionality of a pane with detachable tabs.

CTabCtrl Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/fopen-wfopen

Provides the functionality of the Windows common tab control.

CTabView Class
Simplifies the use of the tab control class (CTabView Class) in applications that use
MFC's document/view architecture.

CTaskDialog Class
A pop-up dialog box that functions like a message box but can display additional
information to the user. The CTaskDialog also includes functionality for gathering
information from the user.

CToolBar Class
Control bars that have a row of bitmapped buttons and optional separators.

CToolBarCtrl Class
Provides the functionality of the Windows toolbar common control.

CToolTipCtrl Class
Encapsulates the functionality of a "tool tip control," a small pop-up window that
displays a single line of text describing the purpose of a tool in an application.

CTooltipManager Class
Maintains runtime information about tooltips. The CTooltipManager class is
instantiated one time per application.

CTreeCtrl Class
Provides the functionality of the Windows common tree view control.

CTreeView Class
Simplifies use of the tree control and of CTreeCtrl Class, the class that encapsulates
tree-control functionality, with MFC's document-view architecture.

CTypedPtrArray Class
Provides a type-safe "wrapper" for objects of class CPtrArray or CObArray .

CTypedPtrList Class
Provides a type-safe "wrapper" for objects of class CPtrList .

CTypedPtrMap Class
Provides a type-safe "wrapper" for objects of the pointer-map classes CMapPtrToPtr ,
CMapPtrToWord , CMapWordToPtr , and CMapStringToPtr .

CUIntArray Class
Supports arrays of unsigned integers.

CUserException Class
Thrown to stop an end-user operation.

CUserTool Class
Menu item that runs an external application. The Tools tab of the Customize dialog
box (CMFCToolBarsCustomizeDialog Class) enables the user to add user tools, and
to specify the name, command, arguments, and initial directory for each user tool.

CUserToolsManager Class
Maintains the collection of CUserTool Class objects in an application. A user tool is a
menu item that runs an external application. The CUserToolsManager object enables
the user or developer to add new user tools to the application. It supports the
execution of the commands associated with user tools, and it also saves information

Related Sections

about user tools in the Windows registry.

CView Class
Provides the basic functionality for user-defined view classes.

CVSListBox Class
Supports an editable list control.

CWaitCursor Class
Provides a one-line way to show a wait cursor, which is usually displayed as an
hourglass, while you're doing a lengthy operation.

CWinApp Class
The base class from which you derive a Windows application object.

CWinAppEx Class
Handles the application state, saves the state to the registry, loads the state from the
registry, initializes application managers, and provides links to those same
application managers.

CWindowDC Class
Derived from CDC .

CWinFormsControl Class
Provides the basic functionality for hosting of a Windows Forms control.

CWinFormsDialog Class
A wrapper for an MFC dialog class that hosts a Windows Forms user control.

CWinFormsView Class
Provides generic functionality for hosting of a Windows Forms control as an MFC
view.

CWinThread Class
Represents a thread of execution within an application.

CWnd Class
Provides the base functionality of all window classes in the Microsoft Foundation
Class Library.

CWordArray Class
Supports arrays of 16-bit words.

MFC Desktop Applications
Contains links to topics about the classes, global functions, global variables, and
macros that make up the MFC Library.

CAccelerateDecelerateTransition Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CAccelerateDecelerateTransition : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAccelerateDecelerateTransition::CAccelerateDecelerateTransiti
on

Constructs a transition object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAccelerateDecelerateTransition::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAccelerateDecelerateTransition::m_accelerationRatio The ratio of the time spent accelerating to the duration.

CAccelerateDecelerateTransition::m_decelerationRatio The ratio of the time spent decelerating to the duration.

CAccelerateDecelerateTransition::m_duration The duration of the transition.

CAccelerateDecelerateTransition::m_finalValue The value of the animation variable at the end of the
transition.

Remarks

Implements an accelerate-decelerate transition.

During an accelerate-decelerate transition, the animation variable speeds up and then slows down over the
duration of the transition, ending at a specified value. You can control how quickly the variable accelerates and
decelerates independently, by specifying different acceleration and deceleration ratios. When the initial velocity is
zero, the acceleration ratio is the fraction of the duration that the variable will spend accelerating; likewise with the
deceleration ratio. If the initial velocity is non-zero, it is the fraction of the time between the velocity reaching zero
and the end of transition. The acceleration ratio and the deceleration ratio should sum to a maximum of 1.0.
Because all transitions are cleared automatically, it's recommended to allocated them using operator new. The
encapsulated IUIAnimationTransition COM object is created by CAnimationController::AnimateGroup, until then
it's NULL. Changing member variables after creation of this COM object has no effect.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cacceleratedeceleratetransition-class.md

Inheritance Hierarchy

Requirements

CAccelerateDecelerateTransition::CAccelerateDecelerateTransition

CAccelerateDecelerateTransition(
 UI_ANIMATION_SECONDS duration,
 DOUBLE finalValue,
 DOUBLE accelerationRatio = 0.3,
 DOUBLE decelerationRatio = 0.3);

ParametersParameters

CAccelerateDecelerateTransition::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *\not used*\);

ParametersParameters

Return ValueReturn Value

CAccelerateDecelerateTransition::m_accelerationRatio

CObject

CBaseTransition

CAccelerateDecelerateTransition

Header: afxanimationcontroller.h

Constructs a transition object.

duration
The duration of the transition.

finalValue
The value of the animation variable at the end of the transition.

accelerationRatio
The ratio of the time spent accelerating to the duration.

decelerationRatio
The ratio of the time spent decelerating to the duration.

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to an IUIAnimationTransitionLibrary interface, which defines a library of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

The ratio of the time spent accelerating to the duration.

https://docs.microsoft.com/windows/desktop/api/uianimation/nn-uianimation-iuianimationtransitionlibrary

DOUBLE m_accelerationRatio;

CAccelerateDecelerateTransition::m_decelerationRatio

DOUBLE m_decelerationRatio;

CAccelerateDecelerateTransition::m_duration

UI_ANIMATION_SECONDS m_duration;

CAccelerateDecelerateTransition::m_finalValue

DOUBLE m_finalValue;

See also

The ratio of the time spent decelerating to the duration.

The duration of the transition.

The value of the animation variable at the end of the transition.

Classes

CAnimateCtrl Class
3/5/2019 • 8 minutes to read • Edit Online

Syntax
class CAnimateCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimateCtrl::CAnimateCtrl Constructs a CAnimateCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimateCtrl::Close Closes the AVI clip.

CAnimateCtrl::Create Creates an animation control and attaches it to a
CAnimateCtrl object.

CAnimateCtrl::CreateEx Creates an animation control with the specified Windows
extended styles and attaches it to a CAnimateCtrl object.

CAnimateCtrl::IsPlaying Indicates whether an Audio-Video Interleaved (AVI) clip is
playing.

CAnimateCtrl::Open Opens an AVI clip from a file or resource and displays the first
frame.

CAnimateCtrl::Play Plays the AVI clip without sound.

CAnimateCtrl::Seek Displays a selected single frame of the AVI clip.

CAnimateCtrl::Stop Stops playing the AVI clip.

Remarks

Provides the functionality of the Windows common animation control.

This control (and therefore the CAnimateCtrl class) is available only to programs running under Windows 95,
Windows 98, and Windows NT version 3.51 and later.

An animation control is a rectangular window that displays a clip in AVI (Audio Video Interleaved) format— the
standard Windows video/audio format. An AVI clip is a series of bitmap frames, like a movie.

Animation controls can play only simple AVI clips. Specifically, the clips to be played by an animation control

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimatectrl-class.md

Inheritance Hierarchy

Requirements

CAnimateCtrl::CAnimateCtrl

CAnimateCtrl();

RemarksRemarks

ExampleExample

// This example creates a secondary thread that implements
// the methods of CAnimateCtrl. The procedure of the thread
// is MyClipThreadProc and the thread was created with the
// code AfxBeginThread(MyClipThreadProc, (LPVOID) pParentWnd).
// The example code creates and initializes an animation control,
// then proceeds to pump messages from the queue until one the

must meet the following requirements:

There must be exactly one video stream and it must have at least one frame.

There can be at most two streams in the file (typically the other stream, if present, is an audio stream,
although the animation control ignores audio information).

The clip must either be uncompressed or compressed with RLE8 compression.

No palette changes are allowed in the video stream.

You can add the AVI clip to your application as an AVI resource, or it can accompany your application as a
separate AVI file.

Because your thread continues executing while the AVI clip is displayed, one common use for an animation
control is to indicate system activity during a lengthy operation. For example, the Find dialog box of File Explorer
displays a moving magnifying glass as the system searches for a file.

If you create a CAnimateCtrl object within a dialog box or from a dialog resource using the dialog editor, it will be
automatically destroyed when the user closes the dialog box.

If you create a CAnimateCtrl object within a window, you may need to destroy it. If you create the CAnimateCtrl
object on the stack, it is destroyed automatically. If you create the CAnimateCtrl object on the heap by using the
new function, you must call delete on the object to destroy it. If you derive a new class from CAnimateCtrl and
allocate any memory in that class, override the CAnimateCtrl destructor to dispose of the allocations.

For more information on using CAnimateCtrl , see Controls and Using CAnimateCtrl.

CObject

CCmdTarget

CWnd

CAnimateCtrl

Header: afxcmn.h

Constructs a CAnimateCtrl object.

You must call the Create member function before you can perform any other operations on the object you create.

// then proceeds to pump messages from the queue until one the
// private messages WM_STOPCLIP, WM_PLAYCLIP, WM_SHOWFIRSTFRAME or
// WM_SHOWLASTFRAME is received. The appropriate action is done for
// these messages. The thread ends when the WM_STOPCLIP is received.
// NOTE: the thread parameter, pParam, is a pointer to a CWnd object
// that will be the parent of the animation control.

#define WM_STOPCLIP WM_USER+1
#define WM_PLAYCLIP WM_USER+2
#define WM_SHOWFIRSTFRAME WM_USER+3
#define WM_SHOWLASTFRAME WM_USER+4

UINT MyClipThreadProc(LPVOID pParam)
{
 // NOTE: pParentWnd is the parent window of the animation control.
 CWnd* pParentWnd = (CWnd*) pParam;
 CAnimateCtrl cAnimCtrl;

 // Create the animation control.
 if (!cAnimCtrl.Create(WS_CHILD|WS_VISIBLE|ACS_CENTER,
 CRect(10,10,100,100), pParentWnd, 1))
 {
 return false;
 }

 // Open the AVI file.
 if (!cAnimCtrl.Open(_T("MyAvi.avi")))
 {
 return false;
 }

 // Pump message from the queue until the stop play message is received.
 MSG msg;
 while (GetMessage(&msg, NULL, 0, 0) && (msg.message != WM_STOPCLIP))
 {
 switch (msg.message)
 {
 // Start playing from the first frame to the last,
 // continuously repeating.
 case WM_PLAYCLIP:
 if (!cAnimCtrl.Play(0, (UINT)-1, (UINT)-1))
 return false;
 break;

 // Show the first frame.
 case WM_SHOWFIRSTFRAME:
 if (!cAnimCtrl.Seek(0))
 return false;
 cAnimCtrl.RedrawWindow();
 break;

 // Show the last frame.
 case WM_SHOWLASTFRAME:
 if (!cAnimCtrl.Seek((UINT)-1))
 return false;
 cAnimCtrl.RedrawWindow();
 break;
 }

 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }

 cAnimCtrl.Stop();
 cAnimCtrl.Close();

 return true;
}

CAnimateCtrl::Close

BOOL Close();

Return ValueReturn Value

ExampleExample

CAnimateCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Closes the AVI clip that was previously opened in the animation control (if any) and removes it from memory.

Nonzero if successful; otherwise zero.

See the example for CAnimateCtrl::CAnimateCtrl.

Creates an animation control and attaches it to a CAnimateCtrl object.

dwStyle
Specifies the animation control's style. Apply any combination of the windows styles described in the Remarks
section below and the animation control styles described in Animation Control Styles in the Windows SDK.

rect
Specifies the animation control's position and size. It can be either a CRect object or a RECT structure.

pParentWnd
Specifies the animation control's parent window, usually a CDialog . It must not be NULL.

nID
Specifies the animation control's ID.

Nonzero if successful; otherwise zero.

You construct a CAnimateCtrl in two steps. First, call the constructor, and then call Create , which creates the
animation control and attaches it to the CAnimateCtrl object.

Apply the following window styles to an animation control.

WS_CHILD Always

WS_VISIBLE Usually

WS_DISABLED Rarely

If you want to use extended windows styles with your animation control, call CreateEx instead of Create .

In addition to the window styles listed above, you may want to apply one or more of the animation control styles
to an animation control. See the Windows SDK for more information on animation control styles.

https://docs.microsoft.com/windows/desktop/Controls/animation-control-styles
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/Controls/animation-control-styles

CAnimateCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimateCtrl::IsPlaying

BOOL IsPlaying() const;

Return ValueReturn Value

RemarksRemarks

CAnimateCtrl::Open

See the example for CAnimateCtrl::CAnimateCtrl.

Creates a control (a child window) and associates it with the CAnimateCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the dwExStyle
parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the animation control's style. Apply any combination of the window and animation control styles
described in Animation Control Styles in the Windows SDK.

rect
A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

Indicates whether an Audio-Video Interleaved (AVI) clip is playing.

TRUE if an AVI clip is playing; otherwise, FALSE.

This method sends the ACM_ISPLAYING message, which is described in the Windows SDK.

Call this function to open an AVI clip and display its first frame.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/animation-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/acm-isplaying

BOOL Open(LPCTSTR lpszFileName);
BOOL Open(UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAnimateCtrl::Play

BOOL Play(
 UINT nFrom,
 UINT nTo,
 UINT nRep);

ParametersParameters

lpszFileName
A CString object or a pointer to a null-terminated string that contains either the name of the AVI file or the
name of an AVI resource. If this parameter is NULL, the system closes the AVI clip that was previously opened for
the animation control, if any.

nID
The AVI resource identifier. If this parameter is NULL, the system closes the AVI clip that was previously opened
for the animation control, if any.

Nonzero if successful; otherwise zero.

The AVI resource is loaded from the module that created the animation control.

Open does not support sound in an AVI clip; you can open only silent AVI clips.

If the animation control has the ACS_AUTOPLAY style, the animation control will automatically start playing the clip
immediately after it opens it. It will continue to play the clip in the background while your thread continues
executing. When the clip is done playing, it will automatically be repeated.

If the animation control has the ACS_CENTER style, the AVI clip will be centered in the control and the size of the
control will not change. If the animation control does not have the ACS_CENTER style, the control will be resized
when the AVI clip is opened to the size of the images in the AVI clip. The position of the top left corner of the
control will not change, only the size of the control.

If the animation control has the ACS_TRANSPARENT style, the first frame will be drawn using a transparent
background rather than the background color specified in the animation clip.

See the example for CAnimateCtrl::CAnimateCtrl.

Call this function to play an AVI clip in an animation control.

nFrom
Zero-based index of the frame where playing begins. Value must be less than 65,536. A value of 0 means begin
with the first frame in the AVI clip.

nTo
Zero-based index of the frame where playing ends. Value must be less than 65,536. A value of - 1 means end
with the last frame in the AVI clip.

nRep

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAnimateCtrl::Seek

BOOL Seek(UINT nTo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CAnimateCtrl::Stop

BOOL Stop();

Return ValueReturn Value

ExampleExample

See also

Number of times to replay the AVI clip. A value of - 1 means replay the file indefinitely.

Nonzero if successful; otherwise zero.

The animation control will play the clip in the background while your thread continues executing. If the animation
control has ACS_TRANSPARENT style, the AVI clip will be played using a transparent background rather than the
background color specified in the animation clip.

See the example for CAnimateCtrl::CAnimateCtrl.

Call this function to statically display a single frame of your AVI clip.

nTo
Zero-based index of the frame to display. Value must be less than 65,536. A value of 0 means display the first
frame in the AVI clip. A value of -1 means display the last frame in the AVI clip.

Nonzero if successful; otherwise zero.

If the animation control has ACS_TRANSPARENT style, the AVI clip will be drawn using a transparent background
rather than the background color specified in the animation clip.

See the example for CAnimateCtrl::CAnimateCtrl.

Call this function to stop playing an AVI clip in an animation control.

Nonzero if successful; otherwise zero.

See the example for CAnimateCtrl::CAnimateCtrl.

CWnd Class
Hierarchy Chart
CAnimateCtrl::Create
ON_CONTROL

CAnimationBaseObject Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CAnimationBaseObject : public CObject;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationBaseObject::CAnimationBaseObject Overloaded. Constructs an animation object.

CAnimationBaseObject::~CAnimationBaseObject The destructor. Called when an animation object is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationBaseObject::ApplyTransitions Adds transitions to storyboard with encapsulated animation
variable.

CAnimationBaseObject::ClearTransitions Removes all related transitions.

CAnimationBaseObject::ContainsVariable Determines whether an animation object contains a particular
animation variable.

CAnimationBaseObject::CreateTransitions Creates transitions associated with an animation object.

CAnimationBaseObject::DetachFromController Detaches an animation object from parent animation
controller.

CAnimationBaseObject::EnableIntegerValueChangedEvent Sets up Integer Value Changed event handler.

CAnimationBaseObject::EnableValueChangedEvent Sets up Value Changed event handler.

CAnimationBaseObject::GetAutodestroyTransitions Tells whether related transition are destroyed automatically.

CAnimationBaseObject::GetGroupID Returns current Group ID.

CAnimationBaseObject::GetObjectID Returns current Object ID.

CAnimationBaseObject::GetUserData Returns user defined data.

The base class for all animation objects.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationbaseobject-class.md

CAnimationBaseObject::SetAutodestroyTransitions Sets a flag that orders to automatically destroy transitions.

CAnimationBaseObject::SetID Sets new IDs.

CAnimationBaseObject::SetUserData Sets user-defined data.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CAnimationBaseObject::GetAnimationVariableList Collects pointers to contained animation variables.

CAnimationBaseObject::SetParentAnimationObjects Establishes relationship between animation variables,
contained in an animation object, and their container.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CAnimationBaseObject::m_bAutodestroyTransitions Specifies whether related transitions should be automatically
destroyed.

CAnimationBaseObject::m_dwUserData Stores user-defined data.

CAnimationBaseObject::m_nGroupID Specifies the Group ID of the animation object.

CAnimationBaseObject::m_nObjectID Specifes the Object ID of the animation object.

CAnimationBaseObject::m_pParentController A pointer to the parent animation controller.

Remarks

Inheritance Hierarchy

Requirements

This class implements basic methods for all animation objects. An animation object can represent a value, point,
size, rectangle or color in an application, as well as any custom entity. Animation objects are stored in animation
groups (see CAnimationGroup). Each group can be animated separately and can be treated as an analogue of
storyboard. An animation object encapsulates one or more animation variables (see CAnimationVariable),
depending on its logical representation. For example, CAnimationRect contains four animation variables - one
variable for each side of rectangle. Each animation object class exposes overloaded AddTransition method, which
should be used to apply transitions to encapsulated animation variables. An animation object can be identified by
Object ID (optionally) and by Group ID. A Group ID is necessary in order to place an animation object to correct
group, but if a Group ID is not specified, an object is placed in the default group with ID 0. If you call SetID with
different GroupID, an animation object will be moved to another group (a new group is created if necessary).

CObject

CAnimationBaseObject

Header: afxanimationcontroller.h

CAnimationBaseObject::~CAnimationBaseObject

virtual ~CAnimationBaseObject();

CAnimationBaseObject::ApplyTransitions

virtual BOOL ApplyTransitions(
 IUIAnimationStoryboard* pStoryboard,
 BOOL bDependOnKeyframes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationBaseObject::CAnimationBaseObject

CAnimationBaseObject();

CAnimationBaseObject(
 UINT32 nGroupID,
 UINT32 nObjectID = (UINT32)-1,
 DWORD dwUserData = 0);

ParametersParameters

RemarksRemarks

CAnimationBaseObject::ClearTransitions

The destructor. Called when an animation object is being destroyed.

Adds transitions to storyboard with encapsulated animation variable.

pStoryboard
A pointer to a storyboard.

bDependOnKeyframes
With FALSE this method adds only those transitions that do not depend on keyframes.

TRUE if transitions were added successfully.

Adds related transitions, that have been added with AddTransition (overloaded methods in derived classes), to
storyboard.

Constructs an animation object.

nGroupID
Specifies Group ID.

nObjectID
Specifies Object ID.

dwUserData
User-defined data, which can be associated with animation object and retrieved later at runtime.

Constructs an animation objects and assigns default Object ID (0) and Group ID (0).

virtual void ClearTransitions(BOOL bAutodestroy);

ParametersParameters

RemarksRemarks

CAnimationBaseObject::ContainsVariable

virtual BOOL ContainsVariable(IUIAnimationVariable* pVariable);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationBaseObject::CreateTransitions

BOOL CreateTransitions();

Return ValueReturn Value

RemarksRemarks

CAnimationBaseObject::DetachFromController

Removes all related transitions.

bAutodestroy
Specifies whether to destroy transition objects automatically, or just remove them from the related list.

Removes all related transitions and destroys them if bAutodestroy or m_bAutodestroyTransitions flag is TRUE.
Transitions should be destroyed automatically only if they are not allocated on the stack. If the above flags are
FALSE, transitions are just removed from the internal list of related transitions.

Determines whether an animation object contains a particular animation variable.

pVariable
A pointer to animation variable.

TRUE if the animation variable is contained in the animation object; otherwise FALSE.

This method can be used to determine whether an animation variable specified by pVariable is contained within an
animation object. An animation object, depending on its type, may contain several animation variables. For
example, CAnimationColor contains three variables, one for each color component (red, green and blue). When a
value of animation variable has changed, Windows Animation API sends ValueChanged or IntegerValueChanged
events (if enabled), and the parameter of this event is a pointer to interface IUIAnimationVariable of animation
variable. This method helps to obtain a pointer to animation from a pointer to contained COM object.

Creates transitions associated with an animation object.

TRUE if transitions were created successfully; otherwise FALSE.

Loops over list of animation variables encapsulated in a derived animation object and creates transitions
associated with each animation variable.

Detaches an animation object from parent animation controller.

void DetachFromController();

RemarksRemarks

CAnimationBaseObject::EnableIntegerValueChangedEvent

virtual void EnableIntegerValueChangedEvent(
 CAnimationController* pController,
 BOOL bEnable);

ParametersParameters

RemarksRemarks

CAnimationBaseObject::EnableValueChangedEvent

virtual void EnableValueChangedEvent(
 CAnimationController* pController,
 BOOL bEnable);

ParametersParameters

RemarksRemarks

CAnimationBaseObject::GetAnimationVariableList

virtual void GetAnimationVariableList(
 CList<CAnimationVariable*,
 CAnimationVariable*>& lst) = 0;

This method is used internally.

Sets up Integer Value Changed event handler.

pController
A pointer to a parent controller.

bEnable
Specifies whether to enable, or disable Integer Value Changed event.

If the Integer Value Changed event handler is enabled, you can handle this event in
CAnimationController::OnAnimationIntegerValueChanged method, which should be overridden in a
CAnimationController-derived class. This method is called every time the animation integer value has changed.

Sets up Value Changed event handler.

pController
A pointer to a parent controller.

bEnable
Specifies whether to enable, or disable Value Changed event.

If the Value Changed event handler is enabled, you can handle this event in
CAnimationController::OnAnimationValueChanged method, which should be overridden in a
CAnimationController-derived class. This method is called every time the animation value has changed.

Collects pointers to contained animation variables.

ParametersParameters

RemarksRemarks

CAnimationBaseObject::GetAutodestroyTransitions

BOOL GetAutodestroyTransitions() const;

Return ValueReturn Value

RemarksRemarks

CAnimationBaseObject::GetGroupID

UINT32 GetGroupID() const;

Return ValueReturn Value

RemarksRemarks

CAnimationBaseObject::GetObjectID

UINT32 GetObjectID() const;

Return ValueReturn Value

RemarksRemarks

lst
A list that must be filled with animation variables contained in an animation object.

This is a pure virtual method that must be overridden in a derived class. An animation object, depending on its
type, contains one or more animation variables. For example, CAnimationPoint contains two variables, for X and Y
coordinates respectively. The base class CAnimationBaseObject implements some generic methods, which act on
a list of animation variables: ApplyTransitions, ClearTransitions, EnableValueChangedEvent,
EnableIntegerValueChangedEvent. These methods call GetAnimationVariableList, which is filled in a derived class
with actual animation variables contained in a particular animation object, then loop over the list and perform
necessary actions. If you create a custom animation object, you must add to lst all animation variables contained in
that object.

Tells whether related transition are destroyed automatically.

If TRUE, related transitions are destroyed automatically; if FALSE, transition objects should be deallocated by
calling application.

By default this flag is TRUE. Set this flag only if you allocated transition on the stack and/or transitions should be
deallocated by the calling application.

Returns current Group ID.

Current Group ID.

Use this method to retrieve Group ID. It's 0 if Group ID has not been set explicitly in constructor or with SetID.

Returns current Object ID.

Current Object ID.

Use this method to retrieve Object ID. It's 0 if Object ID has not been set explicitly in constructor or with SetID.

CAnimationBaseObject::GetUserData

DWORD GetUserData() const;

Return ValueReturn Value

RemarksRemarks

CAnimationBaseObject::m_bAutodestroyTransitions

BOOL m_bAutodestroyTransitions;

CAnimationBaseObject::m_dwUserData

DWORD m_dwUserData;

CAnimationBaseObject::m_nGroupID

UINT32 m_nGroupID;

CAnimationBaseObject::m_nObjectID

UINT32 m_nObjectID;

CAnimationBaseObject::m_pParentController

CAnimationController* m_pParentController;

CAnimationBaseObject::SetAutodestroyTransitions

Returns user defined data.

A value of custom data.

Call this method to retrieve the custom data at runtime. The returned value will be 0 if it was not explicitly
initialized in constructor or with SetUserData.

Specifies whether related transitions should be automatically destroyed.

Stores user-defined data.

Specifies the Group ID of the animation object.

Specifes the Object ID of the animation object.

A pointer to the parent animation controller.

Sets a flag that orders to automatically destroy transitions.

void SetAutodestroyTransitions(BOOL bValue);

ParametersParameters

RemarksRemarks

CAnimationBaseObject::SetID

void SetID(
 UINT32 nObjectID,
 UINT32 nGroupID = 0);

ParametersParameters

RemarksRemarks

CAnimationBaseObject::SetParentAnimationObjects

virtual void SetParentAnimationObjects();

RemarksRemarks

CAnimationBaseObject::SetUserData

void SetUserData (DWORD dwUserData);

ParametersParameters

bValue
Specifies the auto destroy flag.

Set this flag only if you allocated transition objects using operator new. If for some reason transition objects are
allocated on the stack, the auto destroy flag should be FALSE. By default this flag is TRUE.

Sets new IDs.

nObjectID
Specifies new Object ID.

nGroupID
Specifies new Group ID.

Allows to change Object ID and Group ID. If the new Group ID differs from the current ID, an animation object is
moved to another group (a new group will be created, if necessary).

Establishes relationship between animation variables, contained in an animation object, and their container.

This is a helper that can be used to establish relationship between animation variables, contained in an animation
object, and their container. It loops over animation variables and sets a back pointer to a parent animation object
to each animation variable. In the current implementation the actual relationship is established in
CAnimationBaseObject::ApplyTransitions, therefore back pointers are not set until you call
CAnimationGroup::Animate. Knowing the relationship may be helpful when you processing events and need to
get a parent animation object from CAnimationVariable (use CAnimationVariable::GetParentAnimationObject).

Sets user-defined data.

dwUserData

RemarksRemarks

See also

Specifies the custom data.

Use this method to associate a custom data with an animation object. This data may be retrieved later at runtime
by GetUserData.

Classes

CAnimationColor Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CAnimationColor : public CAnimationBaseObject;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationColor::CAnimationColor Overloaded. Constructs an animation color object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationColor::AddTransition Adds transitions for Red, Green and Blue components.

CAnimationColor::GetB Provides access to CAnimationVariable representing Blue
component.

CAnimationColor::GetDefaultValue Returns the default values for color components.

CAnimationColor::GetG Provides access to CAnimationVariable representing Green
component.

CAnimationColor::GetR Provides access to CAnimationVariable representing Red
component.

CAnimationColor::GetValue Returns current value.

CAnimationColor::SetDefaultValue Sets default value.

Protected MethodsProtected Methods

NAME DESCRIPTION

CAnimationColor::GetAnimationVariableList Puts the encapsulated animation variables into a list.
(Overrides CAnimationBaseObject::GetAnimationVariableList.)

Public OperatorsPublic Operators

Implements the functionality of a color whose red, green, and blue components can be animated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationcolor-class.md

NAME DESCRIPTION

CAnimationColor::operator COLORREF

CAnimationColor::operator= Assigns color to CAnimationColor.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CAnimationColor::m_bValue The encapsulated animation variable that represents Blue
component of animation color.

CAnimationColor::m_gValue The encapsulated animation variable that represents Green
component of animation color.

CAnimationColor::m_rValue The encapsulated animation variable that represents Red
component of animation color.

Remarks

Inheritance Hierarchy

Requirements

CAnimationColor::AddTransition

void AddTransition(
 CBaseTransition* pRTransition,
 CBaseTransition* pGTransition,
 CBaseTransition* pBTransition);

ParametersParameters

The CAnimationColor class encapsulates three CAnimationVariable objects and can represent in applications a
color. For example, you can use this class to animate colors of any object on the screen (like text color, background
color etc). To use this class in application, just instantiate an object of this class, add it to animation controller using
CAnimationController::AddAnimationObject and call AddTransition for each transition to be applied to Red, Green
and Blue components.

CObject

CAnimationBaseObject

CAnimationColor

Header: afxanimationcontroller.h

Adds transitions for Red, Green and Blue components.

pRTransition
Transition for Red component.

pGTransition
Transition for Green component.

RemarksRemarks

CAnimationColor::CAnimationColor

CAnimationColor();

CAnimationColor(
 COLORREF color,
 UINT32 nGroupID,
 UINT32 nObjectID = (UINT32)-1,
 DWORD dwUserData = 0);

ParametersParameters

RemarksRemarks

CAnimationColor::GetAnimationVariableList

virtual void GetAnimationVariableList(CList<CAnimationVariable*>& lst);

ParametersParameters

CAnimationColor::GetB

pBTransition
Transition for Blue component.

Call this function to add the specified transitions to the internal list of transitions to be applied to animation
variables representing color components. When you add transitions, they are not applied immediately and stored
in an internal list. Transitions are applied (added to a storyboard for a particular value) when you call
CAnimationController::AnimateGroup. If you don't need to apply a transition to one of the color components, you
can pass NULL.

Constructs a CAnimationColor object.

color
Specifies default color.

nGroupID
Specifies Group ID.

nObjectID
Specifies Object ID.

dwUserData
Specifies user-defined data.

The object is constructed with default values for red, green, blue, Object ID and Group ID, which will be set to 0.
They can be changed later at runtime using SetDefaultValue and SetID.

Puts the encapsulated animation variables into a list.

lst
When the function returns, it contains pointers to three CAnimationVariable objects representing red, green and
blue components.

Provides access to CAnimationVariable representing Blue component.

CAnimationVariable& GetB();

Return ValueReturn Value

RemarksRemarks

CAnimationColor::GetDefaultValue

COLORREF GetDefaultValue();

Return ValueReturn Value

RemarksRemarks

CAnimationColor::GetG

CAnimationVariable& GetG();

Return ValueReturn Value

RemarksRemarks

CAnimationColor::GetR

CAnimationVariable& GetR();

Return ValueReturn Value

RemarksRemarks

CAnimationColor::GetValue

BOOL GetValue(COLORREF& color);

A reference to encapsulated CAnimationVariable representing Blue component.

You can call this method to get direct access to underlying CAnimationVariable representing Blue component.

Returns the default values for color components.

A COLORREF value containing defaults for RGB components.

Call this function to retrieve default value, which was previously set by constructor or SetDefaultValue.

Provides access to CAnimationVariable representing Green component.

A reference to encapsulated CAnimationVariable representing Green component.

You can call this method to get direct access to underlying CAnimationVariable representing Green component.

Provides access to CAnimationVariable representing Red component.

A reference to encapsulated CAnimationVariable representing Red component.

You can call this method to get direct access to underlying CAnimationVariable representing Red component.

Returns current value.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationColor::m_bValue

CAnimationVariable m_bValue;

CAnimationColor::m_gValue

CAnimationVariable m_gValue;

CAnimationColor::m_rValue

CAnimationVariable m_rValue;

CAnimationColor::operator COLORREF
operator COLORREF();

Return ValueReturn Value

CAnimationColor::operator=

void operator=(COLORREF color);

ParametersParameters

RemarksRemarks

color
Output. Contains the current value when this method returns.

TRUE, if the current value was successfully retrieved; otherwise FALSE.

Call this function to retrieve the current value of animation color. If this method fails or underlying COM objects for
color components have not been initialized, color contains default value, which was previously set in constructor or
by SetDefaultValue.

The encapsulated animation variable that represents Blue component of animation color.

The encapsulated animation variable that represents Green component of animation color.

The encapsulated animation variable that represents Red component of animation color.

Assigns color to CAnimationColor.

color
Specifies new value Animation Color.

It's recommended to do that before animation start, because this operator calls SetDefaultValue, which recreates
the underlying COM objects for color components if they have been created. If you subscribed this animation

 CAnimationColor::SetDefaultValue

void SetDefaultValue(COLORREF color);

ParametersParameters

RemarksRemarks

See also

object to events (ValueChanged or IntegerValueChanged), you need to re-enable these events.

Sets default value.

color
Specifies new default values for red, green and blue components.

Use this function to set a default value to animation object. This methods assigns default values to color
components of animation color. It also recreates underlying COM objects if they have been created. If you
subscribed this animation object to events (ValueChanged or IntegerValueChanged), you need to re-enable these
events.

Classes

CAnimationController Class
3/4/2019 • 19 minutes to read • Edit Online

Syntax
class CAnimationController : public CObject;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationController::CAnimationController Constructs an animation controller.

CAnimationController::~CAnimationController The destructor. Called when animation controller object is
being destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationController::AddAnimationObject Adds an animation object to a group that belongs to the
animation controller.

CAnimationController::AddKeyframeToGroup Adds a keyframe to group.

CAnimationController::AnimateGroup Prepares a group to run animation and optionally schedules it.

CAnimationController::CleanUpGroup Overloaded. Called by the framework to clean up the group
when animation has been scheduled.

CAnimationController::CreateKeyframe Overloaded. Creates a keyframe that depends on transition
and adds it to the specified group.

CAnimationController::EnableAnimationManagerEvent Sets or releases a handler to call when animation manager's
status changes.

CAnimationController::EnableAnimationTimerEventHandler Sets or releases a handler for timing events and handler for
timing updates.

CAnimationController::EnablePriorityComparisonHandler Sets or releases the priority comparison handler to call to
determine whether a scheduled storyboard can be cancelled,
concluded, trimmed or compressed.

CAnimationController::EnableStoryboardEventHandler Sets or releases a handler for storyboard status and update
events.

Implements the animation controller, which provides a central interface for creating and managing animations.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationcontroller-class.md

CAnimationController::FindAnimationGroup Overloaded. Finds an animation group by its storyboard.

CAnimationController::FindAnimationObject Finds animation object containing a specified animation
variable.

CAnimationController::GetKeyframeStoryboardStart Returns a keyframe that identifies start of storyboard.

CAnimationController::GetUIAnimationManager Provides access to encapsulated IUIAnimationManager object.

CAnimationController::GetUIAnimationTimer Provides access to encapsulated IUIAnimationTimer object.

CAnimationController::GetUITransitionFactory A pointer to IUIAnimationTransitionFactory interface or NULL,
if creation of transition library failed.

CAnimationController::GetUITransitionLibrary Provides access to encapsulated IUIAnimationTransitionLibrary
object.

CAnimationController::IsAnimationInProgress Tells whether at least one group is playing animation.

CAnimationController::IsValid Tells whether animation controller is valid.

CAnimationController::OnAnimationIntegerValueChanged Called by the framework when integer value of animation
variable has changed.

CAnimationController::OnAnimationManagerStatusChanged Called by the framework in response to StatusChanged event
from animation manager.

CAnimationController::OnAnimationTimerPostUpdate Called by the framework after an animation update is finished.

CAnimationController::OnAnimationTimerPreUpdate Called by the framework before an animation update begins.

CAnimationController::OnAnimationTimerRenderingTooSlow Called by the framework when the rendering frame rate for an
animation falls below a minimum desirable frame rate.

CAnimationController::OnAnimationValueChanged Called by the framework when value of animation variable has
changed.

CAnimationController::OnBeforeAnimationStart Called by the framework right before the animation is
scheduled.

CAnimationController::OnHasPriorityCancel Called by the framework to resolve scheduling conflicts.

CAnimationController::OnHasPriorityCompress Called by the framework to resolve scheduling conflicts.

CAnimationController::OnHasPriorityConclude Called by the framework to resolve scheduling conflicts.

CAnimationController::OnHasPriorityTrim Called by the framework to resolve scheduling conflicts.

CAnimationController::OnStoryboardStatusChanged Called by the framework when storyboard status has
changed.

CAnimationController::OnStoryboardUpdated Called by the framework when storyboard has been updated.

NAME DESCRIPTION

CAnimationController::RemoveAllAnimationGroups Removes all animation groups from animation controller.

CAnimationController::RemoveAnimationGroup Removes an animation group with specified ID from animation
controller.

CAnimationController::RemoveAnimationObject Remove an animation object from animation controller.

CAnimationController::RemoveTransitions Removes transitions from animation objects that belong to
the specified group.

CAnimationController::ScheduleGroup Schedules an animation.

CAnimationController::SetRelatedWnd Establishes a relationship between animation controller and a
window.

CAnimationController::UpdateAnimationManager Directs the animation manager to update the values of all
animation variables.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CAnimationController::CleanUpGroup Overloaded. A helper that cleans up the group.

CAnimationController::OnAfterSchedule Called by the framework when an animation for the specified
group has just been scheduled.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CAnimationController::gkeyframeStoryboardStart A keyframe that represents start of storyboard.

CAnimationController::m_bIsValid Specifies whether an animation controller is valid or not. This
member is set to FALSE if current OS does not support
Windows Animation API.

CAnimationController::m_lstAnimationGroups A list of animation groups that belong to this animation
controller.

CAnimationController::m_pAnimationManager Stores a pointer to Animation Manager COM object.

CAnimationController::m_pAnimationTimer Stores a pointer to Animation Timer COM object.

CAnimationController::m_pRelatedWnd A pointer to a related CWnd object, which can be
automatically redrawn when the status of animation manager
has changed, or post update event has occurred. Can be
NULL.

CAnimationController::m_pTransitionFactory Stores a pointer to Transition Factory COM object.

CAnimationController::m_pTransitionLibrary Stores a pointer to Transition Library COM object.

Remarks

Inheritance Hierarchy

Requirements

CAnimationController::~CAnimationController

virtual ~CAnimationController(void);

CAnimationController::AddAnimationObject

CAnimationGroup* AddAnimationObject(CAnimationBaseObject* pObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationController::AddKeyframeToGroup

The CAnimationController class is the key class that manages animations. You may create one or more instances
of animation controller in an application and, optionally, connect an instance of animation controller to a CWnd
object using CAnimationController::SetRelatedWnd. This connection is required to send WM_PAINT messages to
the related window automatically when animation manager status has changed or animation timer has been
updated. If you do not enable this relation, you must redraw a window that displays an animation manually. For
this purpose you can derive a class from CAnimationController and override
OnAnimationManagerStatusChanged and/or OnAnimationTimerPostUpdate and invalidate one or more windows
when necessary.

CObject

CAnimationController

Header: afxanimationcontroller.h

The destructor. Called when animation controller object is being destroyed.

Adds an animation object to a group that belongs to the animation controller.

pObject
A pointer to an animation object.

A pointer to existing or new animation group where pObject has been added if function succeeds; NULL if pObject
has already been added to a group that belongs to another animation controller.

Call this method to add an animation object to the animation controller. An object will be added to a group
according to object's GroupID (see CAnimationBaseObject::SetID). The animation controller will create a new
group if it's the first object being added with the specified GroupID. An animation object can be added to one
animation controller only. If you need to add an object to another controller, call RemoveAnimationObject first. If
you call SetID with new GroupID for an object that has been already added to a group, the object will be removed
from the old group and added to another group with specified ID.

Adds a keyframe to group.

BOOL AddKeyframeToGroup(
 UINT32 nGroupID,
 CBaseKeyFrame* pKeyframe);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationController::AnimateGroup

BOOL AnimateGroup(
 UINT32 nGroupID,
 BOOL bScheduleNow = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationController::CAnimationController

CAnimationController(void);

CAnimationController::CleanUpGroup

nGroupID
Specifies Group ID.

pKeyframe
A pointer to a keyframe.

TRUE if the function succeeds; otherwise FALSE.

Usually you don't need to call this method, use CAnimationController::CreateKeyframe instead, which creates and
adds the created keyframe to a group automatically.

Prepares a group to run animation and optionally schedules it.

nGroupID
Specifies GroupID.

bScheduleNow
Specifies whether to run animation right away.

TRUE if animation was successfully scheduled and run.

This method does the actual work creating storyboard, adding animation variables, applying transitions and setting
keyframes. It's possible to delay scheduling if you set bScheduleNow to FALSE. In this case the specified group will
hold a storyboard that has been set up for animation. At that point you can setup events for the storyboard and
animation variables. When you actually need to run the animation call CAnimationController::ScheduleGroup.

Constructs an animation controller.

Called by the framework to clean up the group when animation has been scheduled.

void CleanUpGroup(UINT32 nGroupID);
void CleanUpGroup(CAnimationGroup* pGroup);

ParametersParameters

RemarksRemarks

CAnimationController::CreateKeyframe

CKeyFrame* CreateKeyframe(
 UINT32 nGroupID,
 CBaseTransition* pTransition);

CKeyFrame* CreateKeyframe(
 UINT32 nGroupID,
 CBaseKeyFrame* pKeyframe,
 UI_ANIMATION_SECONDS offset = 0.0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationController::EnableAnimationManagerEvent

virtual BOOL EnableAnimationManagerEvent(BOOL bEnable = TRUE);

nGroupID
Specifies GroupID.

pGroup
A pointer to animation group to clean.

This method removes all transitions and keyframes from the specified group, because they are not relevant after
an animation has been scheduled.

Creates a keyframe that depends on transition and adds it to the specified group.

nGroupID
Specifies Group ID for which keyframe is created.

pTransition
A pointer to transition. Keyframe will be inserted to storyboard after this transition.

pKeyframe
A pointer to base keyframe for this keyframe.

offset
Offset in seconds from the base keyframe specified by pKeyframe.

A pointer to newly created keyframe if the function succeeds.

You can store the returned pointer and base other keyframes on the newly created keyframe (see the second
overload). It's possible to begin transitions at keyframes - see CBaseTransition::SetKeyframes. You don't need to
delete keyframes created in this way, because they are deleted automatically by animation groups. Be careful when
creating keyframes based on other keyframes and transitions and avoid circular references.

Sets or releases a handler to call when animation manager's status changes.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationController::EnableAnimationTimerEventHandler

virtual BOOL EnableAnimationTimerEventHandler(
 BOOL bEnable = TRUE,
 UI_ANIMATION_IDLE_BEHAVIOR idleBehavior = UI_ANIMATION_IDLE_BEHAVIOR_DISABLE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationController::EnablePriorityComparisonHandler

virtual BOOL EnablePriorityComparisonHandler(DWORD dwHandlerType);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

bEnable
Specifies whether to set or release a handler.

TRUE if the handler was successfully set or released.

When a handler is set (enabled) Windows Animation calls OnAnimationManagerStatusChanged when animation
manager's status changes.

Sets or releases a handler for timing events and handler for timing updates.

bEnable
Specifies whether to set or release the handlers.

idleBehavior
Specifies idle behavior for timer update handler.

TRUE if handlers were successfully set or released; FALSE if this method is called for a second time without
releasing the handlers first, or if any other error occurs.

When the handlers are set (enabled) Windows Animation API calls OnAnimationTimerPreUpdate,
OnAnimationTimerPostUpdate, OnRenderingTooSlow methods. You need to enable animation timers to allow
Windows Animation API update storyboards. Otherwise you'll need to call
CAnimationController::UpdateAnimationManager in order to direct the animation manager to update the values
of all animation variables.

Sets or releases the priority comparison handler to call to determine whether a scheduled storyboard can be
cancelled, concluded, trimmed or compressed.

dwHandlerType
A combination of UI_ANIMATION_PHT_ flags (see remarks), which specifies what handlers to set or release.

TRUE if the handler was successfully set or released.

When a handler is set (enabled) Windows Animation calls the following virtual methods depending on

CAnimationController::EnableStoryboardEventHandler

virtual BOOL EnableStoryboardEventHandler(
 UINT32 nGroupID,
 BOOL bEnable = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationController::FindAnimationGroup

CAnimationGroup* FindAnimationGroup(UINT32 nGroupID);
CAnimationGroup* FindAnimationGroup(IUIAnimationStoryboard* pStoryboard);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

dwHandlerType: OnHasPriorityCancel, OnHasPriorityConclude, OnHasPriorityTrim, OnHasPriorityCompress.
dwHandler can be a combination of the following flags: UI_ANIMATION_PHT_NONE - release all handlers
UI_ANIMATION_PHT_CANCEL - set Cancel comparison handler UI_ANIMATION_PHT_CONCLUDE - set
Conclude comparison handler UI_ANIMATION_PHT_COMPRESS - set Compress comparison handler
UI_ANIMATION_PHT_TRIM - set Trim comparison handler UI_ANIMATION_PHT_CANCEL_REMOVE - remove
Cancel comparison handler UI_ANIMATION_PHT_CONCLUDE_REMOVE - remove Conclude comparison
handler UI_ANIMATION_PHT_COMPRESS_REMOVE - remove Compress comparison handler
UI_ANIMATION_PHT_TRIM_REMOVE - remove Trim comparison handler

Sets or releases a handler for storyboard status and update events.

nGroupID
Specifies Group ID.

bEnable
Specifies whether to set or release a handler.

TRUE if the handler was successfully set or released; FALSE if the specified animation group is now found or
animation for the specified group has not been initiated and its internal storyboard is NULL.

When a handler is set (enabled) Windows Animation API calls OnStoryboardStatusChanges and
OnStoryboardUpdated virtual methods. A handler must be set after CAnimationController::Animate has been
called for the specified animation group, because it creates encapsulated IUIAnimationStoryboard object.

Finds an animation group by its Group ID.

nGroupID
Specifies a GroupID.

pStoryboard
A pointer to a storyboard.

A pointer to animation group or NULL if the group with specified ID is not found.

Use this method to find an animation group at runtime. A group is created and added to the internal list of
animation groups when a first animation object with particular GroupID is being added to animation controller.

CAnimationController::FindAnimationObject

BOOL FindAnimationObject(
 IUIAnimationVariable* pVariable,
 CAnimationBaseObject** ppObject,
 CAnimationGroup** ppGroup);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationController::gkeyframeStoryboardStart

static CBaseKeyFrame gkeyframeStoryboardStart;

CAnimationController::GetKeyframeStoryboardStart

static CBaseKeyFrame* GetKeyframeStoryboardStart();

Return ValueReturn Value

RemarksRemarks

CAnimationController::GetUIAnimationManager

IUIAnimationManager* GetUIAnimationManager();

Return ValueReturn Value

Finds animation object containing a specified animation variable.

pVariable
A pointer to animation variable.

ppObject
Output. Contains a pointer to animation object or NULL.

ppGroup
Output. Contains a pointer to animation group that holds the animation object, or NULL.

TRUE if object was found; otherwise FALSE.

Called from event handlers when it's required to find an animation object from incoming animation variable.

A keyframe that represents start of storyboard.

Returns a keyframe that identifies start of storyboard.

A pointer to base keyframe, which identifies start of storyboard.

Obtain this keyframe to base any other keyframes or transitions on the moment in time when a storyboard starts.

Provides access to encapsulated IUIAnimationManager object.

A pointer to IUIAnimationManager interface or NULL, if creation of animation manager failed.

RemarksRemarks

CAnimationController::GetUIAnimationTimer

IUIAnimationTimer* GetUIAnimationTimer();

Return ValueReturn Value

RemarksRemarks

CAnimationController::GetUITransitionFactory

IUIAnimationTransitionFactory* GetUITransitionFactory();

Return ValueReturn Value

RemarksRemarks

CAnimationController::GetUITransitionLibrary

IUIAnimationTransitionLibrary* GetUITransitionLibrary();

Return ValueReturn Value

RemarksRemarks

CAnimationController::IsAnimationInProgress

virtual BOOL IsAnimationInProgress();

Return ValueReturn Value

If current OS does not support Windows Animation API, this method returns NULL and after that all subsequent
calls on CAnimationController::IsValid return FALSE. You may need to access IUIAnimationManager in order to
call its interface methods, which are not wrapped by animation controller.

Provides access to encapsulated IUIAnimationTimer object.

A pointer to IUIAnimationTimer interface or NULL, if creation of animation timer failed.

If current OS does not support Windows Animation API, this method returns NULL and after that all subsequent
calls on CAnimationController::IsValid return FALSE.

A pointer to IUIAnimationTransitionFactory interface or NULL, if creation of transition library failed.

A pointer to IUIAnimationTransitionFactory or NULL, if creation of transition factory failed.

If current OS does not support Windows Animation API, this method returns NULL and after that all subsequent
calls on CAnimationController::IsValid return FALSE.

Provides access to encapsulated IUIAnimationTransitionLibrary object.

A pointer to IUIAnimationTransitionLibrary interface or NULL, if creation of transition library failed.

If current OS does not support Windows Animation API, this method returns NULL and after that all subsequent
calls on CAnimationController::IsValid return FALSE.

Tells whether at least one group is playing animation.

RemarksRemarks

CAnimationController::IsValid

BOOL IsValid() const;

Return ValueReturn Value

RemarksRemarks

CAnimationController::m_bIsValid

BOOL m_bIsValid;

CAnimationController::m_lstAnimationGroups

CList<CAnimationGroup*, CAnimationGroup*> m_lstAnimationGroups;

CAnimationController::m_pAnimationManager

ATL::CComPtr<IUIAnimationManager> m_pAnimationManager;

CAnimationController::m_pAnimationTimer

ATL::CComPtr<IUIAnimationTimer> m_pAnimationTimer;

CAnimationController::m_pRelatedWnd

TRUE if there is an animation in progress for this animation controller; otherwise FALSE.

Checks status of animation manager and returns TRUE if the status is UI_ANIMATION_MANAGER_BUSY.

Tells whether animation controller is valid.

TRUE if animation controller is valid; otherwise FALSE.

This method returns FALSE only if Windows Animation API is not supported on the current OS and creation of
animation manager failed because it's not registered. You need to call GetUIAnimationManager at least once after
initialization of COM libraries to cause setting of this flag.

Specifies whether an animation controller is valid or not. This member is set to FALSE if current OS does not
support Windows Animation API.

A list of animation groups that belong to this animation controller.

Stores a pointer to Animation Manager COM object.

Stores a pointer to Animation Timer COM object.

A pointer to a related CWnd object, which can be automatically redrawn when the status of animation manager
has changed, or post update event has occurred. Can be NULL.

CWnd* m_pRelatedWnd;

CAnimationController::m_pTransitionFactory

ATL::CComPtr<IUIAnimationTransitionFactory> m_pTransitionFactory;

CAnimationController::m_pTransitionLibrary

ATL::CComPtr<IUIAnimationTransitionLibrary> m_pTransitionLibrary;

CAnimationController::OnAfterSchedule

virtual void OnAfterSchedule(CAnimationGroup* pGroup);

ParametersParameters

RemarksRemarks

CAnimationController::OnAnimationIntegerValueChanged

virtual void OnAnimationIntegerValueChanged(
 CAnimationGroup* pGroup,
 CAnimationBaseObject* pObject,
 IUIAnimationVariable* variable,
 INT32 newValue,
 INT32 prevValue);

ParametersParameters

Stores a pointer to Transition Factory COM object.

Stores a pointer to Transition Library COM object.

Called by the framework when an animation for the specified group has just been scheduled.

pGroup
A pointer to an animation group, which has been scheduled.

The default implementation removes keyframes from the specified group and transitions from animation variables
that belong to the specified group. Can be overridden in a derived class to take any additional actions upon
animation schedule.

Called by the framework when integer value of animation variable has changed.

pGroup
A pointer to an animation group that holds an animation object whose value has changed.

pObject
A pointer to an animation object that contains an animation variable whose value has changed.

variable
A pointer to an animation variable.

newValue

RemarksRemarks

CAnimationController::OnAnimationManagerStatusChanged

virtual void OnAnimationManagerStatusChanged(
 UI_ANIMATION_MANAGER_STATUS newStatus,
 UI_ANIMATION_MANAGER_STATUS previousStatus);

ParametersParameters

RemarksRemarks

CAnimationController::OnAnimationTimerPostUpdate

virtual void OnAnimationTimerPostUpdate();

RemarksRemarks

CAnimationController::OnAnimationTimerPreUpdate

virtual void OnAnimationTimerPreUpdate();

RemarksRemarks

CAnimationController::OnAnimationTimerRenderingTooSlow

Specifies new value.

prevValue
Specifies previous value.

This method is called if you enable animation variable events with EnableIntegerValueChangedEvent called for a
specific animation variable or animation object. It can be overridden in a derived class to take application-specific
actions.

Called by the framework in response to StatusChanged event from animation manager.

newStatus
New animation manager status.

previousStatus
Previous animation manager status.

This method is called if you enable animation manager events with EnableAnimationManagerEvent. It can be
overridden in a derived class to take application-specific actions. The default implementation updates a related
window if it has been set with SetRelatedWnd.

Called by the framework after an animation update is finished.

This method is called if you enable timer event handlers using EnableAnimationTimerEventHandler. It can be
overridden in a derived class to take application-specific actions.

Called by the framework before an animation update begins.

This method is called if you enable timer event handlers using EnableAnimationTimerEventHandler. It can be
overridden in a derived class to take application-specific actions.

Called by the framework when the rendering frame rate for an animation falls below a minimum desirable frame

virtual void OnAnimationTimerRenderingTooSlow(UINT32 fps);

ParametersParameters

RemarksRemarks

CAnimationController::OnAnimationValueChanged

virtual void OnAnimationValueChanged(
 CAnimationGroup* pGroup,
 CAnimationBaseObject* pObject,
 IUIAnimationVariable* variable,
 DOUBLE newValue,
 DOUBLE prevValue);

ParametersParameters

RemarksRemarks

CAnimationController::OnBeforeAnimationStart

virtual void OnBeforeAnimationStart(CAnimationGroup* pGroup);

ParametersParameters

rate.

fps
The current frame rate in frames per second.

This method is called if you enable timer event handlers using EnableAnimationTimerEventHandler. It can be
overridden in a derived class to take application-specific actions. The minimum desirable frame rate is specified by
calling IUIAnimationTimer::SetFrameRateThreshold.

Called by the framework when value of animation variable has changed.

pGroup
A pointer to an animation group that holds an animation object whose value has changed.

pObject
A pointer to an animation object that contains an animation variable whose value has changed.

variable
A pointer to an animation variable.

newValue
Specifies new value.

prevValue
Specifies previous value.

This method is called if you enable animation variable events with EnableValueChangedEvent called for a specific
animation variable or animation object. It can be overridden in a derived class to take application-specific actions.

Called by the framework right before the animation is scheduled.

pGroup
A pointer to an animation group whose animation is about to start.

RemarksRemarks

CAnimationController::OnHasPriorityCancel

virtual BOOL OnHasPriorityCancel(
 CAnimationGroup* pGroupScheduled,
 CAnimationGroup* pGroupNew,
 UI_ANIMATION_PRIORITY_EFFECT priorityEffect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationController::OnHasPriorityCompress

virtual BOOL OnHasPriorityCompress(
 CAnimationGroup* pGroupScheduled,
 CAnimationGroup* pGroupNew,
 UI_ANIMATION_PRIORITY_EFFECT priorityEffect);

ParametersParameters

Return ValueReturn Value

This call is routed to related CWnd and can be overridden in a derived class to perform any additional actions
before the animation starts for the specified group.

Called by the framework to resolve scheduling conflicts.

pGroupScheduled
The group that owns the currently scheduled storyboard.

pGroupNew
The group that owns the new storyboard that is in scheduling conflict with the scheduled storyboard owned by
pGroupScheduled.

priorityEffect
The potential effect on pGroupNew if pGroupScheduled has a higher priority.

Should return TRUE if storyboard owned by pGroupNew has priority. Should return FALSE if storyboard owned
by pGroupScheduled has priority.

This method is called if you enable priority comparison events using
CAnimationController::EnablePriorityComparisonHandler and specify UI_ANIMATION_PHT_CANCEL. It can be
overridden in a derived class to take application-specific actions. Read Windows Animation API documentation for
more information about Conflict Management.

Called by the framework to resolve scheduling conflicts.

pGroupScheduled
The group that owns the currently scheduled storyboard.

pGroupNew
The group that owns the new storyboard that is in scheduling conflict with the scheduled storyboard owned by
pGroupScheduled.

priorityEffect
The potential effect on pGroupNew if pGroupScheduled has a higher priority.

https://docs.microsoft.com/windows/desktop/api/uianimation/nf-uianimation-iuianimationprioritycomparison-haspriority

RemarksRemarks

CAnimationController::OnHasPriorityConclude

virtual BOOL OnHasPriorityConclude(
 CAnimationGroup* pGroupScheduled,
 CAnimationGroup* pGroupNew,
 UI_ANIMATION_PRIORITY_EFFECT priorityEffect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationController::OnHasPriorityTrim

virtual BOOL OnHasPriorityTrim(
 CAnimationGroup* pGroupScheduled,
 CAnimationGroup* pGroupNew,
 UI_ANIMATION_PRIORITY_EFFECT priorityEffect);

ParametersParameters

Should return TRUE if storyboard owned by pGroupNew has priority. Should return FALSE if storyboard owned
by pGroupScheduled has priority.

This method is called if you enable priority comparison events using
CAnimationController::EnablePriorityComparisonHandler and specify UI_ANIMATION_PHT_COMPRESS. It can
be overridden in a derived class to take application-specific actions. Read Windows Animation API documentation
for more information about Conflict Management.

Called by the framework to resolve scheduling conflicts.

pGroupScheduled
The group that owns the currently scheduled storyboard.

pGroupNew
The group that owns the new storyboard that is in scheduling conflict with the scheduled storyboard owned by
pGroupScheduled.

priorityEffect
The potential effect on pGroupNew if pGroupScheduled has a higher priority.

Should return TRUE if storyboard owned by pGroupNew has priority. Should return FALSE if storyboard owned
by pGroupScheduled has priority.

This method is called if you enable priority comparison events using
CAnimationController::EnablePriorityComparisonHandler and specify UI_ANIMATION_PHT_CONCLUDE. It can
be overridden in a derived class to take application-specific actions. Read Windows Animation API documentation
for more information about Conflict Management.

Called by the framework to resolve scheduling conflicts.

pGroupScheduled
The group that owns the currently scheduled storyboard.

pGroupNew
The group that owns the new storyboard that is in scheduling conflict with the scheduled storyboard owned by

https://docs.microsoft.com/windows/desktop/api/uianimation/nf-uianimation-iuianimationprioritycomparison-haspriority
https://docs.microsoft.com/windows/desktop/api/uianimation/nf-uianimation-iuianimationprioritycomparison-haspriority

Return ValueReturn Value

RemarksRemarks

CAnimationController::OnStoryboardStatusChanged

virtual void OnStoryboardStatusChanged(
 CAnimationGroup* pGroup,
 UI_ANIMATION_STORYBOARD_STATUS newStatus,
 UI_ANIMATION_STORYBOARD_STATUS previousStatus);

ParametersParameters

RemarksRemarks

CAnimationController::OnStoryboardUpdated

virtual void OnStoryboardUpdated(CAnimationGroup* pGroup);

ParametersParameters

RemarksRemarks

pGroupScheduled.

priorityEffect
The potential effect on pGroupNew if pGroupScheduled has a higher priority.

Should return TRUE if storyboard owned by pGroupNew has priority. Should return FALSE if storyboard owned
by pGroupScheduled has priority.

This method is called if you enable priority comparison events using
CAnimationController::EnablePriorityComparisonHandler and specify UI_ANIMATION_PHT_TRIM. It can be
overridden in a derived class to take application-specific actions. Read Windows Animation API documentation for
more information about Conflict Management.

Called by the framework when storyboard status has changed.

pGroup
A pointer to an animation group that owns the storyboard whose status has changed.

newStatus
Specifies the new status.

previousStatus
Specifies the previous status.

This method is called if you enable storyboard events using
CAnimationController::EnableStoryboardEventHandler. It can be overridden in a derived class to take application-
specific actions.

Called by the framework when storyboard has been updated.

pGroup
A pointer to a group that owns the storyboard.

This method is called if you enable storyboard events using
CAnimationController::EnableStoryboardEventHandler. It can be overridden in a derived class to take application-
specific actions.

https://docs.microsoft.com/windows/desktop/api/uianimation/nf-uianimation-iuianimationprioritycomparison-haspriority

CAnimationController::RemoveAllAnimationGroups

void RemoveAllAnimationGroups();

RemarksRemarks

CAnimationController::RemoveAnimationGroup

void RemoveAnimationGroup(UINT32 nGroupID);

ParametersParameters

RemarksRemarks

CAnimationController::RemoveAnimationObject

void RemoveAnimationObject(
 CAnimationBaseObject* pObject,
 BOOL bNoDelete = FALSE);

ParametersParameters

RemarksRemarks

CAnimationController::RemoveTransitions

Removes all animation groups from animation controller.

All groups will be deleted, their pointer, if stored at the application level, must be invalidated. If
CAnimationGroup::m_bAutodestroyAnimationObjects for a group being deleted is TRUE, all animation objects
that belong to that group will be deleted; otherwise their references to parent animation controller will be set to
NULL and they can be added to another controller.

Removes an animation group with specified ID from animation controller.

nGroupID
Specifies animation group ID.

This method removes an animation group from the internal list of groups and deletes it, therefore if you stored a
pointer to that animation group, it must be invalidated. If CAnimationGroup::m_bAutodestroyAnimationObjects is
TRUE, all animation objects that belong to that group will be deleted; otherwise their references to parent
animation controller will be set to NULL and they can be added to another controller.

Remove an animation object from animation controller.

pObject
A pointer to an animation object.

bNoDelete
If this parameter is TRUE the object will not be deleted upon remove.

Removes an animation object from animation controller and animation group. Call this function if a particular
object should not be animated anymore, or if you need to move the object to another animation controller. In the
last case bNoDelete must be TRUE.

Removes transitions from animation objects that belong to the specified group.

void RemoveTransitions(UINT32 nGroupID);

ParametersParameters

RemarksRemarks

CAnimationController::ScheduleGroup

BOOL ScheduleGroup(
 UINT32 nGroupID,
 UI_ANIMATION_SECONDS time = 0.0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationController::SetRelatedWnd

void SetRelatedWnd(CWnd* pWnd);

ParametersParameters

RemarksRemarks

CAnimationController::UpdateAnimationManager

nGroupID
Specifies Group ID.

The group loops over its animation objects and calls ClearTransitions(FALSE) for each animation object. This
method is called by the framework after animation has been scheduled.

Schedules an animation.

nGroupID
Specifies animation Group ID to schedule.

time
Specifies time to schedule.

TRUE if animation was scheduled successfully. FALSE if storyboard has not been created, or other error occurs.

You must call AnimateGroup with parameter bScheduleNow set to FALSE prior ScheduleGroup. You can specify
the desired animation time obtained from IUIAnimationTimer::GetTime. If the time parameter is 0.0, the animation
is scheduled for the current time.

Establishes a relationship between animation controller and a window.

pWnd
A pointer to window object to set.

If a related CWnd object is set, the animation controller can automatically update it (send WM_PAINT message)
when the status of animation manager has changed or timer post update event has occurred.

Directs the animation manager to update the values of all animation variables.

virtual void UpdateAnimationManager();

RemarksRemarks

See also

Calling this method advances the animation manager to current time, changing statuses of storyboards as
necessary and updating any animation variables to appropriate interpolated values. Internally this method calls
IUIAnimationTimer::GetTime(timeNow) and IUIAnimationManager::Update(timeNow). Override this method in a
derived class to customize this behavior.

Classes

CAnimationGroup Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CAnimationGroup;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationGroup::CAnimationGroup Constructs an animation group.

CAnimationGroup::~CAnimationGroup The destructor. Called when an animation group is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationGroup::Animate Animates a group.

CAnimationGroup::ApplyTransitions Applies transitions to animation objects.

CAnimationGroup::FindAnimationObject Finds an animation object that contains the specified
animation variable.

CAnimationGroup::GetGroupID Returns GroupID.

CAnimationGroup::RemoveKeyframes Removes and optionally destroys all keyframes that belong to
an animation group.

CAnimationGroup::RemoveTransitions Removes transitions from animation objects that belong to an
animation group.

CAnimationGroup::Schedule Schedules an animation at the specified time.

CAnimationGroup::SetAutodestroyTransitions Directs all animation objects that belong to group
automatically destroy transitions.

Protected MethodsProtected Methods

Implements an animation group, which combines an animation storyboard, animation objects, and transitions to
define an animation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationgroup-class.md

NAME DESCRIPTION

CAnimationGroup::AddKeyframes A helper that adds keyframes to a storyboard.

CAnimationGroup::AddTransitions A helper that adds transitions to a storyboard.

CAnimationGroup::CreateTransitions A helper that creates COM transition objects.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAnimationGroup::m_bAutoclearTransitions Specifies how to clear transitions from animation objects that
belong to group. If this member is TRUE, transitions are
removed automatically when an animation has been
scheduled. Otherwise you need to remove transitions
manually.

CAnimationGroup::m_bAutodestroyAnimationObjects Specifies how to destroy animation objects. If this parameter is
TRUE, animation objects will be destroyed automatically when
the group is destroyed. Otherwise animation objects must be
destroyed manually. The default value is FALSE. Set this value
to TRUE only if all animation objects that belong to group are
allocated dynamically with operator new.

CAnimationGroup::m_bAutodestroyKeyframes Specifies how to destroy keyframes. If this value is TRUE, all
keyframes are removed and destroyed; otherwise they are
removed from the list only. The default value is TRUE.

CAnimationGroup::m_lstAnimationObjects Contains a list of animation objects.

CAnimationGroup::m_lstKeyFrames Contains a list of keyframes.

CAnimationGroup::m_pStoryboard Points to animation storyboard. This pointer is valid only after
call on Animate.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CAnimationGroup::m_nGroupID A unique identifier of animation group.

CAnimationGroup::m_pParentController A pointer to animation controller this group belongs to.

Remarks

Inheritance Hierarchy

Animation groups are created automatically by animation controller (CAnimationController) when you add
animation objects using CAnimationController::AddAnimationObject. An animation group is identified by
GroupID, which is usually taken as a parameter to manipulate animation groups. The GroupID is taken from the
first animation object being added to a new animation group. An encapsulated animation storyboard is created
after you call CAnimationController::AnimateGroup and can be accessed via public member m_pStoryboard.

CAnimationGroup

Requirements

CAnimationGroup::~CAnimationGroup

~CAnimationGroup();

CAnimationGroup::AddKeyframes

void AddKeyframes(IUIAnimationStoryboard* pStoryboard, BOOL bAddDeep);

ParametersParameters

CAnimationGroup::AddTransitions

void AddTransitions(
 IUIAnimationStoryboard* pStoryboard,
 BOOL bDependOnKeyframes);

ParametersParameters

CAnimationGroup::Animate

BOOL Animate(
 IUIAnimationManager* pManager,
 IUIAnimationTimer* pTimer,
 BOOL bScheduleNow);

ParametersParameters

Return ValueReturn Value

Header: afxanimationcontroller.h

The destructor. Called when an animation group is being destroyed.

A helper that adds keyframes to a storyboard.

pStoryboard
A pointer to a storyboard COM object.

bAddDeep
Specifies whether this method should add to the storyboard keyframes that depend on other keyframes.

A helper that adds transitions to a storyboard.

pStoryboard
A pointer to a storyboard COM object.

bDependOnKeyframes

Animates a group.

pManager
pTimer bScheduleNow

TRUE if the method succeeds; otherwise FALSE.

RemarksRemarks

CAnimationGroup::ApplyTransitions

void ApplyTransitions();

RemarksRemarks

CAnimationGroup::CAnimationGroup

CAnimationGroup(CAnimationController* pParentController, UINT32 nGroupID);

ParametersParameters

CAnimationGroup::CreateTransitions

BOOL CreateTransitions();

Return ValueReturn Value

CAnimationGroup::FindAnimationObject

CAnimationBaseObject* FindAnimationObject(IUIAnimationVariable* pVariable);

ParametersParameters

Return ValueReturn Value

This method creates an internal storyboard, creates and applies transitions and schedules an animation if
bScheduleNow is TRUE. If bScheduleNow is FALSE, you need to call Schedule to start animation at the specified
time.

Applies transitions to animation objects.

This method ASSERTS in debug mode if storyboard has not been created. It creates all transitions first, then adds
"static" keyframes (keyframes that depend on offsets), adds transitions that do not depend on keyframes, adds
keyframes depending on transitions and other keyframes, and at last adds transitions that depend on keyframes.

Constructs an animation group.

pParentController
A pointer to animation controller that creates a group.

nGroupID
Specifies GroupID.

A helper that creates COM transition objects.

TRUE is the method succeeds, otherwise FALSE.

Finds an animation object that contains the specified animation variable.

pVariable
A pointer to animation variable.

A pointer to animation object, or NULL if animation object is not found.

CAnimationGroup::GetGroupID

UINT32 GetGroupID() const;

Return ValueReturn Value

CAnimationGroup::m_bAutoclearTransitions

BOOL m_bAutoclearTransitions;

CAnimationGroup::m_bAutodestroyAnimationObjects

BOOL m_bAutodestroyAnimationObjects;

CAnimationGroup::m_bAutodestroyKeyframes

BOOL m_bAutodestroyKeyframes;

CAnimationGroup::m_lstAnimationObjects

CObList m_lstAnimationObjects;

CAnimationGroup::m_lstKeyFrames

CObList m_lstKeyFrames;

CAnimationGroup::m_nGroupID

Returns GroupID.

A group identifier.

Specifies how to clear transitions from animation objects that belong to group. If this member is TRUE, transitions
are removed automatically when an animation has been scheduled. Otherwise you need to remove transitions
manually.

Specifies how to destroy animation objects. If this parameter is TRUE, animation objects will be destroyed
automatically when the group is destroyed. Otherwise animation objects must be destroyed manually. The default
value is FALSE. Set this value to TRUE only if all animation objects that belong to group are allocated dynamically
with operator new.

Specifies how to destroy keyframes. If this value is TRUE, all keyframes are removed and destroyed; otherwise
they are removed from the list only. The default value is TRUE.

Contains a list of animation objects.

Contains a list of keyframes.

A unique identifier of animation group.

UINT32 m_nGroupID;

CAnimationGroup::m_pParentController

CAnimationController* m_pParentController;

CAnimationGroup::m_pStoryboard

ATL::CComPtr<IUIAnimationStoryboard> m_pStoryboard;

CAnimationGroup::RemoveKeyframes

void RemoveKeyframes();

RemarksRemarks

CAnimationGroup::RemoveTransitions

void RemoveTransitions();

RemarksRemarks

CAnimationGroup::Schedule

BOOL Schedule(IUIAnimationTimer* pTimer, UI_ANIMATION_SECONDS time);

ParametersParameters

Return ValueReturn Value

A pointer to animation controller this group belongs to.

Points to animation storyboard. This pointer is valid only after call on Animate.

Removes and optionally destroys all keyframes that belong to an animation group.

If m_bAutodestroyKeyframes member is TRUE then keyframes are removed and destroyed, otherwise keyframes
are just removed from the internal list of keyframes.

Removes transitions from animation objects that belong to an animation group.

If m_bAutoclearTransitions flag is set to TRUE, this method loops over all animation objects that belong to the
group and calls CAnimationObject::ClearTransitions(FALSE).

Schedules an animation at the specified time.

pTimer
A pointer to animation timer.

time
Specifies time to schedule the animation.

RemarksRemarks

CAnimationGroup::SetAutodestroyTransitions

void SetAutodestroyTransitions(BOOL bAutoDestroy = TRUE);

ParametersParameters

RemarksRemarks

See also

TRUE if the method succeeds; FALSE if the method fails or if Animate has not been called with bScheduleNow set
to FALSE.

Call this function to schedule an animation at the specified time. You must call Animate with bScheduleNow set to
FALSE first.

Directs all animation objects that belong to group automatically destroy transitions.

bAutoDestroy
Specifies how to destroy transitions.

Set this value to FALSE only if you allocate transitions on the stack. The default value is TRUE, therefore it's highly
recommended to allocate transition objects using operator new.

Classes

CAnimationManagerEventHandler Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CAnimationManagerEventHandler : public
CUIAnimationManagerEventHandlerBase<CAnimationManagerEventHandler>;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationManagerEventHandler::CAnimationManagerEvent
Handler

Constructs a CAnimationManagerEventHandler object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationManagerEventHandler::CreateInstance Creates an instance of CAnimationManagerEventHandler

object.

CAnimationManagerEventHandler::OnManagerStatusChanged Called when a status of animation manager has changed.
(Overrides
CUIAnimationManagerEventHandlerBase::OnManagerStatusChanged

.)

CAnimationManagerEventHandler::SetAnimationController Stores a pointer to animation controller to route events.

Remarks

Inheritance Hierarchy

Requirements

Implements a callback, which is called by the Animation API when a status of an animation manager is changed.

This event handler is created and passed to IUIAnimationManager::SetManagerEventHandler method, when you
call CAnimationController::EnableAnimationManagerEvent.

CUIAnimationCallbackBase

CUIAnimationManagerEventHandlerBase

CAnimationManagerEventHandler

Header: afxanimationcontroller.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationmanagereventhandler-class.md

CAnimationManagerEventHandler::CAnimationManagerEventHandler

CAnimationManagerEventHandler();

CAnimationManagerEventHandler::CreateInstance

static COM_DECLSPEC_NOTHROW HRESULT CreateInstance(
 CAnimationController* pAnimationController,
 IUIAnimationManagerEventHandler** ppManagerEventHandler);

ParametersParameters

Return ValueReturn Value

CAnimationManagerEventHandler::OnManagerStatusChanged

IFACEMETHOD(OnManagerStatusChanged)(
 UI_ANIMATION_MANAGER_STATUS newStatus,
 UI_ANIMATION_MANAGER_STATUS previousStatus);

ParametersParameters

Return ValueReturn Value

CAnimationManagerEventHandler::SetAnimationController

Visual Studio 2010 SP1 is required.

Constructs a CAnimationManagerEventHandler object.

Visual Studio 2010 SP1 is required.

Creates an instance of CAnimationManagerEventHandler object.

pAnimationController
A pointer to animation controller, which will receive events.

ppManagerEventHandler
Output. If the method succeeds it contains a pointer to COM object that will handle status updates to an animation
manager.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Visual Studio 2010 SP1 is required.

Called when a status of animation manager has changed.

newStatus
New status.

previousStatus
Previous status.

Current implementation always returns S_OK;

Visual Studio 2010 SP1 is required.

Stores a pointer to animation controller to route events.

void SetAnimationController(CAnimationController* pAnimationController);

ParametersParameters

See also

pAnimationController
A pointer to animation controller, which will receive events.

Classes

CAnimationPoint Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CAnimationPoint : public CAnimationBaseObject;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationPoint::CAnimationPoint Overloaded. Constructs CAnimationPoint object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationPoint::AddTransition Adds transitions for X and Y coordinates.

CAnimationPoint::GetDefaultValue Returns the default values for X and Y coordinates.

CAnimationPoint::GetValue Returns current value.

CAnimationPoint::GetX Provides access to CAnimationVariable for X coordinate.

CAnimationPoint::GetY Provides access to CAnimationVariable for Y coordinate.

CAnimationPoint::SetDefaultValue Sets default value.

Protected MethodsProtected Methods

NAME DESCRIPTION

CAnimationPoint::GetAnimationVariableList Puts the encapsulated animation variables into a list.
(Overrides CAnimationBaseObject::GetAnimationVariableList.)

Public OperatorsPublic Operators

NAME DESCRIPTION

CAnimationPoint::operator CPoint Converts a CAnimationPoint to a CPoint.

CAnimationPoint::operator= Assigns ptSrc to CAnimationPoint.

Protected Data MembersProtected Data Members

Implements the functionality of a point whose coordinates can be animated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationpoint-class.md

NAME DESCRIPTION

CAnimationPoint::m_xValue The encapsulated animation variable that represents X
coordinate of animation point.

CAnimationPoint::m_yValue The encapsulated animation variable that represents Y
coordinate of animation point.

Remarks

Inheritance Hierarchy

Requirements

CAnimationPoint::AddTransition

void AddTransition(
 CBaseTransition* pXTransition,
 CBaseTransition* pYTransition);

ParametersParameters

RemarksRemarks

CAnimationPoint::CAnimationPoint

The CAnimationPoint class encapsulates two CAnimationVariable objects and can represent in applications a point.
For example, you can use this class to animate a position of any object on the screen (like text string, circle, point
etc). To use this class in application, just instantiate an object of this class, add it to animation controller using
CAnimationController::AddAnimationObject and call AddTransition for each transition to be applied to X and/or Y
coordinates.

CObject

CAnimationBaseObject

CAnimationPoint

Header: afxanimationcontroller.h

Adds transitions for X and Y coordinates.

pXTransition
A pointer to transition for X coordinates.

pYTransition
A pointer to transition for Y coordinate.

Call this function to add the specified transitions to the internal list of transitions to be applied to animation
variables for X and Y coordinates. When you add transitions, they are not applied immediately and stored in an
internal list. Transitions are applied (added to a storyboard for a particular value) when you call
CAnimationController::AnimateGroup. If you don't need to apply a transition to one of coordinates, you can pass
NULL.

Constructs CAnimationPoint object.

CAnimationPoint();

CAnimationPoint(
 const CPoint& ptDefault,
 UINT32 nGroupID,
 UINT32 nObjectID = (UINT32)-1,
 DWORD dwUserData = 0);

ParametersParameters

RemarksRemarks

CAnimationPoint::GetAnimationVariableList

virtual void GetAnimationVariableList(CList<CAnimationVariable*, CAnimationVariable*>& lst);

ParametersParameters

CAnimationPoint::GetDefaultValue

CPoint GetDefaultValue();

Return ValueReturn Value

RemarksRemarks

CAnimationPoint::GetValue

ptDefault
Specifies default point coordinates.

nGroupID
Specifies Group ID.

nObjectID
Specifies Object ID.

dwUserData
Specifies user-defined data.

Constructs CAnimationPoint object with default properties: default point coordinates, Group ID and Object ID are
set to 0.

Puts the encapsulated animation variables into a list.

lst
When the function returns, it contains pointers to two CAnimationVariable objects representing the X and Y
coordinates.

Returns the default values for X and Y coordinates.

A point containing default value.

Call this function to retrieve default value, which was previously set by constructor or SetDefaultValue.

Returns current value.

BOOL GetValue(CPoint& ptValue);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationPoint::GetX

CAnimationVariable& GetX();

Return ValueReturn Value

RemarksRemarks

CAnimationPoint::GetY

CAnimationVariable& GetY();

Return ValueReturn Value

RemarksRemarks

CAnimationPoint::m_xValue

CAnimationVariable m_xValue;

CAnimationPoint::m_yValue

CAnimationVariable m_yValue;

ptValue
Output. Contains the current value when this method returns.

TRUE, if the current value was successfully retrieved; otherwise FALSE.

Call this function to retrieve the current value of animation point. If this method fails or underlying COM objects
for X and Y coordinates have not been initialized, ptValue contains default value, which was previously set in
constructor or by SetDefaultValue.

Provides access to CAnimationVariable for X coordinate.

A reference to encapsulated CAnimationVariable representing X coordinate.

You can call this method to get direct access to underlying CAnimationVariable representing X coordinate.

Provides access to CAnimationVariable for Y coordinate.

A reference to encapsulated CAnimationVariable representing Y coordinate.

You can call this method to get direct access to underlying CAnimationVariable representing Y coordinate.

The encapsulated animation variable that represents X coordinate of animation point.

The encapsulated animation variable that represents Y coordinate of animation point.

CAnimationPoint::operator CPoint

operator CPoint();

Return ValueReturn Value

RemarksRemarks

CAnimationPoint::operator=

void operator=(const CPoint& ptSrc);

ParametersParameters

RemarksRemarks

CAnimationPoint::SetDefaultValue

void SetDefaultValue(const POINT& ptDefault);

ParametersParameters

RemarksRemarks

See also

Converts a CAnimationPoint to a CPoint.

Current value of CAnimationPoint as CPoint.

This function internally calls GetValue. If GetValue for some reason fails, the returned point will contain default
values for X and Y coordinates.

Assigns ptSrc to CAnimationPoint.

ptSrc
Refers to CPoint or POINT.

Assigns ptSrc to CAnimationPoint. It's recommended to do that before animation start, because this operator calls
SetDefaultValue, which recreates the underlying COM objects for X and Y coordinates if they have been created. If
you subscribed this animation object to events (ValueChanged or IntegerValueChanged), you need to re-enable
these events.

Sets default value.

ptDefault
Specifies the default point value.

Use this function to set a default value to animation object. This methods assigns default values to X and Y
coordinates of animation point. It also recreates underlying COM objects if they have been created. If you
subscribed this animation object to events (ValueChanged or IntegerValueChanged), you need to re-enable these
events.

Classes

CAnimationRect Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CAnimationRect : public CAnimationBaseObject;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationRect::CAnimationRect Overloaded. Constructs an animation rect object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationRect::AddTransition Adds transitions for left, top, right and bottom coordinates.

CAnimationRect::GetBottom Provides access to CAnimationVariable representing bottom
coordinate.

CAnimationRect::GetDefaultValue Returns the default values for rectangle's bounds.

CAnimationRect::GetLeft Provides access to CAnimationVariable representing left
coordinate.

CAnimationRect::GetRight Provides access to CAnimationVariable representing right
coordinate.

CAnimationRect::GetTop Provides access to CAnimationVariable representing top
coordinate.

CAnimationRect::GetValue Returns current value.

CAnimationRect::SetDefaultValue Sets default value.

Protected MethodsProtected Methods

NAME DESCRIPTION

CAnimationRect::GetAnimationVariableList Puts the encapsulated animation variables into a list.
(Overrides CAnimationBaseObject::GetAnimationVariableList.)

Public OperatorsPublic Operators

Implements the functionality of a rectangle whose sides can be animated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationrect-class.md

NAME DESCRIPTION

CAnimationRect::operator RECT Converts a CAnimationRect to RECT.

CAnimationRect::operator= Assigns rect to CAnimationRect.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAnimationRect::m_bFixedSize Specifies whether the rectangle has fixed size.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CAnimationRect::m_bottomValue The encapsulated animation variable that represents Bottom
bound of animation rectangle.

CAnimationRect::m_leftValue The encapsulated animation variable that represents Left
bound of animation rectangle.

CAnimationRect::m_rightValue The encapsulated animation variable that represents Right
bound of animation rectangle.

CAnimationRect::m_szInitial Specifies initial size of animation rectangle.

CAnimationRect::m_topValue The encapsulated animation variable that represents Top
bound of animation rectangle.

Remarks

Inheritance Hierarchy

Requirements

CAnimationRect::AddTransition

The CAnimationRect class encapsulates four CAnimationVariable objects and can represent in applications a
rectangle. To use this class in application, just instantiate an object of this class, add it to animation controller using
CAnimationController::AddAnimationObject and call AddTransition for each transition to be applied to left, right
top and bottom coordinates.

CObject

CAnimationBaseObject

CAnimationRect

Header: afxanimationcontroller.h

Adds transitions for left, top, right and bottom coordinates.

void AddTransition(
 CBaseTransition* pLeftTransition,
 CBaseTransition* pTopTransition,
 CBaseTransition* pRightTransition,
 CBaseTransition* pBottomTransition);

ParametersParameters

RemarksRemarks

CAnimationRect::CAnimationRect

CAnimationRect();

CAnimationRect(
 const CRect& rect,
 UINT32 nGroupID,
 UINT32 nObjectID = (UINT32)-1,
 DWORD dwUserData = 0);

CAnimationRect(
 const CPoint& pt,
 const CSize& sz,
 UINT32 nGroupID,
 UINT32 nObjectID = (UINT32)-1,
 DWORD dwUserData = 0);

CAnimationRect(
 int nLeft,
 int nTop,
 int nRight,
 int nBottom,
 UINT32 nGroupID,
 UINT32 nObjectID = (UINT32)-1,
 DWORD dwUserData = 0);

ParametersParameters

pLeftTransition
Specifies transition for the left side.

pTopTransition
Specifies transition for the top side.

pRightTransition
Specifies transition for the right side.

pBottomTransition
Specifies transition for the bottom side.

Call this function to add the specified transitions to the internal list of transitions to be applied to animation
variables for each rectangle sides. When you add transitions, they are not applied immediately and stored in an
internal list. Transitions are applied (added to a storyboard for a particular value) when you call
CAnimationController::AnimateGroup. If you don't need to apply a transition to one of the rectangle sides, you can
pass NULL.

Constructs a CAnimationRect object.

rect
Specifies default rectangle.

nGroupID

RemarksRemarks

CAnimationRect::GetAnimationVariableList

virtual void GetAnimationVariableList(
 CList<CAnimationVariable*,
 CAnimationVariable*>& lst);

ParametersParameters

CAnimationRect::GetBottom

CAnimationVariable& GetBottom();

Return ValueReturn Value

RemarksRemarks

Specifies Group ID.

nObjectID
Specifies Object ID.

dwUserData
Specifies user-defined data.

pt
Coordinate of top-left corner.

sz
Size of rectangle.

nLeft
Specifies coordinate of left bound.

nTop
Specifies coordinate of top bound.

nRight
Specifies coordinate of right bound.

nBottom
Specifies coordinate of bottom bound.

The object is constructed with default values for left, top, right and bottom, Object ID and Group ID, which will be
set to 0. They can be changed later at runtime using SetDefaultValue and SetID.

Puts the encapsulated animation variables into a list.

lst
When the function returns, it contains pointers to four CAnimationVariable objects representing coordinates of
rectangle.

Provides access to CAnimationVariable representing bottom coordinate.

A reference to encapsulated CAnimationVariable representing bottom coordinate.

You can call this method to get direct access to underlying CAnimationVariable representing the bottom
coordinate.

CAnimationRect::GetDefaultValue

CRect GetDefaultValue();

Return ValueReturn Value

RemarksRemarks

CAnimationRect::GetLeft

CAnimationVariable& GetLeft();

Return ValueReturn Value

RemarksRemarks

CAnimationRect::GetRight

CAnimationVariable& GetRight();

Return ValueReturn Value

RemarksRemarks

CAnimationRect::GetTop

CAnimationVariable& GetTop();

Return ValueReturn Value

RemarksRemarks

CAnimationRect::GetValue

Returns the default values for rectangle's bounds.

A CRect value containing defaults for left, right, top and bottom.

Call this function to retrieve default value, which was previously set by constructor or SetDefaultValue.

Provides access to CAnimationVariable representing left coordinate.

A reference to encapsulated CAnimationVariable representing left coordinate.

You can call this method to get direct access to underlying CAnimationVariable representing the left coordinate.

Provides access to CAnimationVariable representing right coordinate.

A reference to encapsulated CAnimationVariable representing right coordinate.

You can call this method to get direct access to underlying CAnimationVariable representing the right coordinate.

Provides access to CAnimationVariable representing top coordinate.

A reference to encapsulated CAnimationVariable representing top coordinate.

You can call this method to get direct access to underlying CAnimationVariable representing the top coordinate.

Returns current value.

BOOL GetValue(CRect& rect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationRect::m_bFixedSize

BOOL m_bFixedSize;

RemarksRemarks

CAnimationRect::m_bottomValue

CAnimationVariable m_bottomValue;

CAnimationRect::m_leftValue

CAnimationVariable m_leftValue;

CAnimationRect::m_rightValue

CAnimationVariable m_rightValue;

CAnimationRect::m_szInitial

rect
Output. Contains the current value when this method returns.

TRUE, if the current value was successfully retrieved; otherwise FALSE.

Call this function to retrieve the current value of animation rectangle. If this method fails or underlying COM
objects for left, top, right and bottom have not been initialized, rect contains default value, which was previously set
in constructor or by SetDefaultValue.

Specifies whether the rectangle has fixed size.

If this member is true, then the size of rectangle is fixed and right and bottom values are recalculated each time the
top-left corner is moved according to the fixed size. Set this value to TRUE to easily move the rectangle around the
screen. In this case transitions applied to right and bottom coordinates are ignored. The size is stored internally
when you construct the object and/or call SetDefaultValue. By default this member is set to FALSE.

The encapsulated animation variable that represents Bottom bound of animation rectangle.

The encapsulated animation variable that represents Left bound of animation rectangle.

The encapsulated animation variable that represents Right bound of animation rectangle.

Specifies initial size of animation rectangle.

CSize m_szInitial;

CAnimationRect::m_topValue

CAnimationVariable m_topValue;

CAnimationRect::operator RECT

operator RECT();

Return ValueReturn Value

RemarksRemarks

CAnimationRect::operator=

void operator=(const RECT& rect);

ParametersParameters

RemarksRemarks

CAnimationRect::SetDefaultValue

void SetDefaultValue(const CRect& rect);

ParametersParameters

RemarksRemarks

The encapsulated animation variable that represents Top bound of animation rectangle.

Converts a CAnimationRect to RECT.

Current value of animation rectangle as RECT.

This function internally calls GetValue. If GetValue for some reason fails, the returned RECT will contain default
values for all rectangle coordinates.

Assigns rect to CAnimationRect.

rect
The new value of animation rectangle.

It's recommended to do that before animation start, because this operator calls SetDefaultValue, which recreates
the underlying COM objects for color components if they have been created. If you subscribed this animation
object to events (ValueChanged or IntegerValueChanged), you need to re-enable these events.

Sets default value.

rect
Specifies new default values for left, top, right and bottom.

Use this function to set a default value to animation object. This methods assigns default values to rectangle's
bounds. It also recreates underlying COM objects if they have been created. If you subscribed this animation object

See also

to events (ValueChanged or IntegerValueChanged), you need to re-enable these events.

Classes

CAnimationSize Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CAnimationSize : public CAnimationBaseObject;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationSize::CAnimationSize Overloaded. Constructs an animation size object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationSize::AddTransition Adds transitions for Width and Height.

CAnimationSize::GetCX Provides access to CAnimationVariable representing Width.

CAnimationSize::GetCY Provides access to CAnimationVariable representing Height.

CAnimationSize::GetDefaultValue Returns the default values for Width and Height.

CAnimationSize::GetValue Returns current value.

CAnimationSize::SetDefaultValue Sets default value.

Protected MethodsProtected Methods

NAME DESCRIPTION

CAnimationSize::GetAnimationVariableList Puts the encapsulated animation variables into a list.
(Overrides CAnimationBaseObject::GetAnimationVariableList.)

Public OperatorsPublic Operators

NAME DESCRIPTION

CAnimationSize::operator CSize Converts a CAnimationSize to a CSize.

CAnimationSize::operator= Assigns szSrc to CAnimationSize.

Protected Data MembersProtected Data Members

Implements the functionality of a size object whose dimensions can be animated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationsize-class.md

NAME DESCRIPTION

CAnimationSize::m_cxValue The encapsulated animation variable that represents width of
animation size.

CAnimationSize::m_cyValue The encapsulated animation variable that represents height of
animation size.

Remarks

Inheritance Hierarchy

Requirements

CAnimationSize::AddTransition

void AddTransition(
 CBaseTransition* pCXTransition,
 CBaseTransition* pCYTransition);

ParametersParameters

RemarksRemarks

CAnimationSize::CAnimationSize

The CAnimationSize class encapsulates two CAnimationVariable objects and can represent in applications a size.
For example, you can use this class to animate a size of any two dimensional object on the screen (like rectangle,
control etc). To use this class in application, just instantiate an object of this class, add it to animation controller
using CAnimationController::AddAnimationObject and call AddTransition for each transition to be applied to
Width and/or Height.

CObject

CAnimationBaseObject

CAnimationSize

Header: afxanimationcontroller.h

Adds transitions for Width and Height.

pCXTransition
A pointer to transition for Width.

pCYTransition
A pointer to transition for Height.

Call this function to add the specified transitions to the internal list of transitions to be applied to animation
variables for Width and Height. When you add transitions, they are not applied immediately and stored in an
internal list. Transitions are applied (added to a storyboard for a particular value) when you call
CAnimationController::AnimateGroup. If you don't need to apply a transition to one of dimensions, you can pass
NULL.

Constructs an animation size object.

CAnimationSize();

CAnimationSize(
 const CSize& szDefault,
 UINT32 nGroupID,
 UINT32 nObjectID = (UINT32)-1,
 DWORD dwUserData = 0);

ParametersParameters

RemarksRemarks

CAnimationSize::GetAnimationVariableList

virtual void GetAnimationVariableList(
 CList<CAnimationVariable*,
 CAnimationVariable*>& lst);

ParametersParameters

CAnimationSize::GetCX

CAnimationVariable& GetCX();

Return ValueReturn Value

RemarksRemarks

CAnimationSize::GetCY

szDefault
Specifies default size.

nGroupID
Specifies Group ID.

nObjectID
Specifies Object ID.

dwUserData
Specifies user-defined data.

The object is constructed with default values for width, height, Object ID and Group ID, which will be set to 0. They
can be changed later at runtime using SetDefaultValue and SetID.

Puts the encapsulated animation variables into a list.

lst
When the function returns, it contains pointers to two CAnimationVariable objects representing the width and
height.

Provides access to CAnimationVariable representing Width.

A reference to encapsulated CAnimationVariable representing Width.

You can call this method to get direct access to underlying CAnimationVariable representing Width.

Provides access to CAnimationVariable representing Height.

CAnimationVariable& GetCY();

Return ValueReturn Value

RemarksRemarks

CAnimationSize::GetDefaultValue

CSize GetDefaultValue();

Return ValueReturn Value

RemarksRemarks

CAnimationSize::GetValue

BOOL GetValue(CSize& szValue);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationSize::m_cxValue

CAnimationVariable m_cxValue;

CAnimationSize::m_cyValue

CAnimationVariable m_cyValue;

A reference to encapsulated CAnimationVariable representing Height.

You can call this method to get direct access to underlying CAnimationVariable representing Height.

Returns the default values for Width and Height.

A CSize object containing default values.

Call this function to retrieve default value, which was previously set by constructor or SetDefaultValue.

Returns current value.

szValue
Output. Contains the current value when this method returns.

TRUE, if the current value was successfully retrieved; otherwise FALSE.

Call this function to retrieve the current value of animation size. If this method fails or underlying COM objects for
Width and Size have not been initialized, szValue contains default value, which was previously set in constructor or
by SetDefaultValue.

The encapsulated animation variable that represents width of animation size.

The encapsulated animation variable that represents height of animation size.

CAnimationSize::operator CSize

operator CSize();

Return ValueReturn Value

RemarksRemarks

CAnimationSize::operator=

void operator=(const CSize& szSrc);

ParametersParameters

RemarksRemarks

CAnimationSize::SetDefaultValue

void SetDefaultValue(const CSize& szDefault);

ParametersParameters

RemarksRemarks

See also

Converts a CAnimationSize to a CSize.

Current value of animation size as CSize.

This function internally calls GetValue. If GetValue for some reason fails, the returned size will contain default
values for Width and Height.

Assigns szSrc to CAnimationSize.

szSrc
Refers to CSize or S IZE.

Assigns szSrc to CAnimationSize. It's recommended to do that before animation start, because this operator calls
SetDefaultValue, which recreates the underlying COM objects for Width and Height if they have been created. If
you subscribed this animation object to events (ValueChanged or IntegerValueChanged), you need to re-enable
these events.

Sets default value.

szDefault
Specifies new default size.

Use this function to set a default value to animation object. This methods assigns default values to Width and
Height of animation size. It also recreates underlying COM objects if they have been created. If you subscribed this
animation object to events (ValueChanged or IntegerValueChanged), you need to re-enable these events.

Classes

CAnimationStoryboardEventHandler Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CAnimationStoryboardEventHandler : public
CUIAnimationStoryboardEventHandlerBase<CAnimationStoryboardEventHandler>;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationStoryboardEventHandler::CAnimationStoryboardEven
tHandler

Constructs a CAnimationStoryboardEventHandler object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationStoryboardEventHandler::CreateInstance Creates an instance of CAnimationStoryboardEventHandler

callback.

CAnimationStoryboardEventHandler::OnStoryboardStatusChang
ed

Handles OnStoryboardStatusChanged events, which occur
when a storyboard's status changes (Overrides
CUIAnimationStoryboardEventHandlerBase::OnStoryboardStatusChanged

.)

CAnimationStoryboardEventHandler::OnStoryboardUpdated Handles OnStoryboardUpdated events, which occur when a
storyboard is updated (Overrides
CUIAnimationStoryboardEventHandlerBase::OnStoryboardUpdated

.)

CAnimationStoryboardEventHandler::SetAnimationController Stores a pointer to animation controller to route events.

Remarks

Inheritance Hierarchy

Implements a callback, which is called by the Animation API when the status of a storyboard is changed or a
storyboard is updated.

This event handler is created and passed to IUIAnimationStoryboard::SetStoryboardEventHandler method, when you call
CAnimationController::EnableStoryboardEventHandler .

CUIAnimationCallbackBase

CUIAnimationStoryboardEventHandlerBase

CAnimationStoryboardEventHandler

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationstoryboardeventhandler-class.md

Requirements

CAnimationStoryboardEventHandler::CAnimationStoryboardEventHandler

CAnimationStoryboardEventHandler();

CAnimationStoryboardEventHandler::CreateInstance

static COM_DECLSPEC_NOTHROW HRESULT CreateInstance(
 CAnimationController* pAnimationController,
 IUIAnimationStoryboardEventHandler** ppHandler);

ParametersParameters

Return ValueReturn Value

CAnimationStoryboardEventHandler::OnStoryboardStatusChanged

IFACEMETHOD(OnStoryboardStatusChanged) (
 __in IUIAnimationStoryboard* storyboard,
 __in UI_ANIMATION_STORYBOARD_STATUS newStatus,
 __in UI_ANIMATION_STORYBOARD_STATUS previousStatus);

ParametersParameters

Return ValueReturn Value

CAnimationStoryboardEventHandler::OnStoryboardUpdated

IFACEMETHOD(OnStoryboardUpdated) (__in IUIAnimationStoryboard* storyboard);

Header: afxanimationcontroller.h

Constructs a CAnimationStoryboardEventHandler object.

Creates an instance of CAnimationStoryboardEventHandler callback.

pAnimationController
A pointer to animation controller, which will receive events.

ppHandler

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Handles OnStoryboardStatusChanged events, which occur when a storyboard's status changes

storyboard
A pointer to storyboard whose status has changed.

newStatus
Specifies new storyboard status.

previousStatus
Specifies previous storyboard status.

S_OK if the method succeeds; otherwise E_FAIL.

Handles OnStoryboardUpdated events, which occur when a storyboard is updated

ParametersParameters

Return ValueReturn Value

CAnimationStoryboardEventHandler::SetAnimationController

void SetAnimationController(CAnimationController* pAnimationController);

ParametersParameters

See also

storyboard
A pointer to storyboard, which was updated.

S_OK if the method succeeds; otherwise E_FAIL.

Stores a pointer to animation controller to route events.

pAnimationController
A pointer to animation controller, which will receive events.

Classes

CAnimationTimerEventHandler Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CAnimationTimerEventHandler : public CUIAnimationTimerEventHandlerBase<CAnimationTimerEventHandler>;

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationTimerEventHandler::CreateInstance Creates an instance of CAnimationTimerEventHandler

callback.

CAnimationTimerEventHandler::OnPostUpdate Handles events that occur after an animation update is
finished. (Overrides
CUIAnimationTimerEventHandlerBase::OnPostUpdate .)

CAnimationTimerEventHandler::OnPreUpdate Handles events that occur before an animation update begins.
(Overrides
CUIAnimationTimerEventHandlerBase::OnPreUpdate .)

CAnimationTimerEventHandler::OnRenderingTooSlow Handles events that occur when the rendering frame rate for
an animation falls below the minimum desirable frame rate.
(Overrides
CUIAnimationTimerEventHandlerBase::OnRenderingTooSlow

.)

CAnimationTimerEventHandler::SetAnimationController Stores a pointer to animation controller to route events.

Remarks

Inheritance Hierarchy

Requirements

Implements a callback, which is called by the Animation API when timing events occur.

This event handler is created and passed to IUIAnimationTimer::SetTimerEventHandler when you call
CAnimationController::EnableAnimationTimerEventHandler.

CUIAnimationCallbackBase

CUIAnimationTimerEventHandlerBase

CAnimationTimerEventHandler

Header: afxanimationcontroller.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationtimereventhandler-class.md

CAnimationTimerEventHandler::CreateInstance

static COM_DECLSPEC_NOTHROW HRESULT CreateInstance(
 CAnimationController* pAnimationController,
 IUIAnimationTimerEventHandler** ppTimerEventHandler);

ParametersParameters

Return ValueReturn Value

CAnimationTimerEventHandler::OnPostUpdate

IFACEMETHOD(OnPostUpdate)();

Return ValueReturn Value

CAnimationTimerEventHandler::OnPreUpdate

IFACEMETHOD(OnPreUpdate)();

Return ValueReturn Value

CAnimationTimerEventHandler::OnRenderingTooSlow

IFACEMETHOD(OnRenderingTooSlow)(UINT32 fps);

ParametersParameters

Return ValueReturn Value

CAnimationTimerEventHandler::SetAnimationController

Creates an instance of CAnimationTimerEventHandler callback.

pAnimationController
A pointer to animation controller, which will receive events.

ppTimerEventHandler

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Handles events that occur after an animation update is finished.

S_OK if the method succeeds; otherwise E_FAIL.

Handles events that occur before an animation update begins.

S_OK if the method succeeds; otherwise E_FAIL.

Handles events that occur when the rendering frame rate for an animation falls below the minimum desirable
frame rate.

fps

S_OK if the method succeeds; otherwise E_FAIL.

Stores a pointer to animation controller to route events.

void SetAnimationController(CAnimationController* pAnimationController);

ParametersParameters

See also

pAnimationController
A pointer to animation controller, which will receive events.

Classes

CAnimationValue Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CAnimationValue : public CAnimationBaseObject;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationValue::CAnimationValue Overloaded. Constructs a CAnimationValue object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationValue::AddTransition Adds a transition to be applied to a value.

CAnimationValue::GetValue Overloaded. Retrieves the current value.

CAnimationValue::GetVariable Provides access to encapsulated animation variable.

CAnimationValue::SetDefaultValue Sets default value.

Protected MethodsProtected Methods

NAME DESCRIPTION

CAnimationValue::GetAnimationVariableList Puts the encapsulated animation variable into a list. (Overrides
CAnimationBaseObject::GetAnimationVariableList.)

Public OperatorsPublic Operators

NAME DESCRIPTION

CAnimationValue::operator DOUBLE Provides conversion between CAnimationValue and DOUBLE.

CAnimationValue::operator INT32 Provides conversion between CAnimationValue and INT32.

CAnimationValue::operator= Overloaded. Assigns an INT32 value to CAnimationValue.

Protected Data MembersProtected Data Members

Implements the functionality of animation object that has one value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationvalue-class.md

NAME DESCRIPTION

CAnimationValue::m_value The encapsulated animation variable that represents
animation value.

Remarks

Inheritance Hierarchy

Requirements

CAnimationValue::AddTransition

void AddTransition(CBaseTransition* pTransition);

ParametersParameters

RemarksRemarks

CAnimationValue::CAnimationValue

CAnimationValue();

CAnimationValue(
 DOUBLE dblDefaultValue,
 UINT32 nGroupID,
 UINT32 nObjectID = (UINT32)-1,
 DWORD dwUserData = 0);

ParametersParameters

The CAnimationValue class encapsulates a single CAnimationVariable object and can represent in applications a
single animated value. For example, you can use this class for animated transparency (fade effect), angle (to rotate
objects), or for any other case when you need to create an animation depending on a single animated value. To use
this class in application, just instantiate an object of this class, add it to animation controller using
CAnimationController::AddAnimationObject and call AddTransition for each transition to be applied to the value.

CObject

CAnimationBaseObject

CAnimationValue

Header: afxanimationcontroller.h

Adds a transition to be applied to a value.

pTransition
A pointer to transition object.

Call this function to add a transition to internal list of transitions to be applied to an animation variable. When you
add transitions, they are not applied immediately and stored in an internal list. Transitions are applied (added to a
storyboard for a particular value) when you call CAnimationController::AnimateGroup.

Constructs a CAnimationValue object.

dblDefaultValue

RemarksRemarks

CAnimationValue::GetAnimationVariableList

virtual void GetAnimationVariableList(
 CList<CAnimationVariable*,
 CAnimationVariable*>& lst);

ParametersParameters

CAnimationValue::GetValue

BOOL GetValue(DOUBLE& dblValue);
BOOL GetValue(INT32& nValue);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationValue::GetVariable

CAnimationVariable& GetVariable();

Return ValueReturn Value

Specifies default value.

nGroupID
Specifies Group ID.

nObjectID
Specifies Object ID.

dwUserData
specifies user-defined data.

Constructs CAnimationValue object with default properties: default value, Group ID and Object ID are set to 0.

Puts the encapsulated animation variable into a list.

lst
When the function returns, it contains a pointer to CAnimationVariable representing the animated value.

Retrieves the current value.

dblValue
Output. When the function returns it contains a current value of animation variable.

nValue
Output. When the function returns it contains a current value of animation variable.

TRUE if the current value was retrieved successfully; otherwise FALSE.

Call this function to retrieve the current value. This implementation calls the encapsulated COM object, and if the
call fails, this method returns the default value that was previously set in constructor or with SetDefaultValue.

Provides access to encapsulated animation variable.

RemarksRemarks

CAnimationValue::m_value

CAnimationVariable m_value;

CAnimationValue::operator DOUBLE

operator DOUBLE();

Return ValueReturn Value

RemarksRemarks

CAnimationValue::operator INT32

operator INT32();

Return ValueReturn Value

RemarksRemarks

CAnimationValue::operator=

void operator=(DOUBLE dblVal);
void operator=(INT32 nVal);

ParametersParameters

A reference to encapsulated animation variable.

Use this method to access the encapsulated animation variable. From CAnimationVariable you get access to
underlying IUIAnimationVariable object, whose pointer can be NULL if animation variable has not been created.

The encapsulated animation variable that represents animation value.

Provides conversion between CAnimationValue and DOUBLE.

Current value of Animation Value.

Provides conversion between CAnimationValue and DOUBLE. This method internally calls GetValue and doesn't
check for errors. If GetValue fails, the returned value will contain a default value previously set in constructor or
with SetDefaultValue.

Provides conversion between CAnimationValue and INT32.

Current value of Animation Value as integer.

Provides conversion between CAnimationValue and INT32. This method internally calls GetValue and doesn't
check for errors. If GetValue fails, the returned value will contain a default value previously set in constructor or
with SetDefaultValue.

Assigns a DOUBLE value to CAnimationValue.

dblVal
Specifies the value to be assigned to Animation Value.

RemarksRemarks

CAnimationValue::SetDefaultValue

void SetDefaultValue(DOUBLE dblDefaultValue);

ParametersParameters

RemarksRemarks

See also

nVal
Specifies the value to be assigned to Animation Value.

Assigns a DOUBLE value to CAnimationValue. This value is set as a default value for encapsulated animation
variable. If you subscribed this animation object to events (ValueChanged or IntegerValueChanged), you need to
re-enable these events.

Sets default value.

dblDefaultValue
Specifies the default value.

Use this method to set a default value. A default value is returned to application when animation has not been
started and/or underlying COM object has not been created. If the underlying COM object encapsulated in
CAnimationVarible was already created, this method recreates it, therefore you might need to call
EnableValueChanged/EnableIntegerValueChanged methods again.

Classes

CAnimationVariable Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CAnimationVariable;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationVariable::CAnimationVariable Constructs an animation variable object.

CAnimationVariable::~CAnimationVariable The destructor. Called when a CAnimationVariable object is
being destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationVariable::AddTransition Adds a transition.

CAnimationVariable::ApplyTransitions Adds transitions from the internal list to storyboard.

CAnimationVariable::ClearTransitions Clears transitions.

CAnimationVariable::Create Creates the underlying animation variable COM object.

CAnimationVariable::CreateTransitions Creates all transitions to be applied to this animation variable.

CAnimationVariable::EnableIntegerValueChangedEvent Enables or disables the IntegerValueChanged event.

CAnimationVariable::EnableValueChangedEvent Enables or disables the ValueChanged event.

CAnimationVariable::GetDefaultValue Returns default value.

CAnimationVariable::GetParentAnimationObject Returns the parent animation object.

CAnimationVariable::GetValue Overloaded. Returns the current value of animation variable.

CAnimationVariable::GetVariable Returns a pointer to IUIAnimationVariable COM object.

CAnimationVariable::SetDefaultValue Sets default value and releases IUIAnimationVariable COM
object.

Represents an animation variable.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationvariable-class.md

Protected MethodsProtected Methods

NAME DESCRIPTION

CAnimationVariable::SetParentAnimationObject Sets the relationship between an animation variable and an
animation object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAnimationVariable::m_bAutodestroyTransitions Specifies whether related transition objects should be deleted.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CAnimationVariable::m_dblDefaultValue Specifies the default value, which is propagated to
IUIAnimationVariable.

CAnimationVariable::m_lstTransitions Contains a list of transitions that animate this animation
variable.

CAnimationVariable::m_pParentObject A pointer to an animation object that encapsulates this
animation variable.

CAnimationVariable::m_variable Stores a pointer to IUIAnimationVariable COM object. NULL if
the COM object has not been created yet, or if creation failed.

Remarks

Inheritance Hierarchy

Requirements

CAnimationVariable::~CAnimationVariable

virtual ~CAnimationVariable();

CAnimationVariable::AddTransition

The CAnimationVariable class encapsulates IUIAnimationVariable COM object. It also holds a list of transitions to
be applied to the animation variable in a storyboard. CAnimationVariable objects are embedded to animation
objects, which can represent in an application an animated value, point, size, color and rectangle.

CAnimationVariable

Header: afxanimationcontroller.h

The destructor. Called when a CAnimationVariable object is being destroyed.

Adds a transition.

void AddTransition(CBaseTransition* pTransition);

ParametersParameters

RemarksRemarks

CAnimationVariable::ApplyTransitions

void ApplyTransitions(
 CAnimationController* pController,
 IUIAnimationStoryboard* pStoryboard,
 BOOL bDependOnKeyframes);

ParametersParameters

RemarksRemarks

CAnimationVariable::CAnimationVariable

CAnimationVariable(DOUBLE dblDefaultValue = 0.0);

ParametersParameters

RemarksRemarks

CAnimationVariable::ClearTransitions

pTransition
A pointer to a transition to add.

This method is called to add a transition to the internal list of transitions to be applied to the animation variable.
This list should be cleared when an animation has been scheduled.

Adds transitions from the internal list to storyboard.

pController
A pointer to parent animation controller.

pStoryboard
A pointer to storyboard.

bDependOnKeyframes
TRUE, if this method should add transitions that depend on keyframes.

This method adds transitions from the internal list to storyboard. It's called from the top level code several times to
add transitions that do not depend on keyframes and add transitions that depend on keyframes. If the underlying
animation variable COM object has not been created, this method creates it at this stage.

Constructs an animation variable object.

dblDefaultValue
Specifies the default value.

Constructs an animation variable object and sets its default value. A default value is used when a variable is not
animated, or can't be animated.

Clears transitions.

void ClearTransitions(BOOL bAutodestroy);

ParametersParameters

RemarksRemarks

CAnimationVariable::Create

virtual BOOL Create(IUIAnimationManager* pManager);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationVariable::CreateTransitions

BOOL CreateTransitions(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *not used*\);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationVariable::EnableIntegerValueChangedEvent

bAutodestroy
Specifies whether this method should delete transition objects.

This method removes all transitions from the internal list of transitions. If bAutodestroy is TRUE, or
m_bAutodestroyTransitions is TRUE, then transitions are deleted. Otherwise the caller should deallocate the
transition objects.

Creates the underlying animation variable COM object.

pManager
A pointer to animation manager.

TRUE if the animation variable was successfully created; otherwise FALSE.

This method creates the underlying animation variable COM object and sets its default value.

Creates all transitions to be applied to this animation variable.

pLibrary
A pointer to an IUIAnimationTransitionLibrary interface, which defines a library of standard transitions.

TRUE if transitions were created successfully; otherwise FALSE.

This method is called by the framework when it needs to create transitions that have been added to the variable's
internal list of transitions.

Enables or disables the IntegerValueChanged event.

https://docs.microsoft.com/windows/desktop/api/uianimation/nn-uianimation-iuianimationtransitionlibrary

void EnableIntegerValueChangedEvent (
 CAnimationController* pController,
 BOOL bEnable);

ParametersParameters

RemarksRemarks

CAnimationVariable::EnableValueChangedEvent

void EnableValueChangedEvent (
 CAnimationController* pController,
 BOOL bEnable);

ParametersParameters

RemarksRemarks

CAnimationVariable::GetDefaultValue

DOUBLE GetDefaultValue() const;

Return ValueReturn Value

RemarksRemarks

CAnimationVariable::GetParentAnimationObject

pController
A pointer to parent controller.

bEnable
TRUE - enable event, FALSE - disable event.

When ValueChanged event is enabled, the framework calls virtual method
CAnimationController::OnAnimationIntegerValueChanged. You need to override it in a class derived from
CAnimationController in order to process this event. This method is called every time the integer value of
animation variable is changed.

Enables or disables the ValueChanged event.

pController
A pointer to parent controller.

bEnable
TRUE - enable event, FALSE - disable event.

When ValueChanged event is enabled, the framework calls virtual method
CAnimationController::OnAnimationValueChanged. You need to override it in a class derived from
CAnimationController in order to process this event. This method is called every time the value of animation
variable is changed.

Returns default value.

The default value.

Use this function to obtain default value of animation variable. The default value can be set in constructor or by
SetDefaultValue method.

CAnimationBaseObject* GetParentAnimationObject();

Return ValueReturn Value

RemarksRemarks

CAnimationVariable::GetValue

HRESULT GetValue(DOUBLE& dblValue);
HRESULT GetValue(INT32& nValue);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAnimationVariable::GetVariable

IUIAnimationVariable* GetVariable();

Return ValueReturn Value

RemarksRemarks

CAnimationVariable::m_bAutodestroyTransitions

BOOL m_bAutodestroyTransitions;

Returns the parent animation object.

A pointer to parent animation object, if relationship was established, otherwise NULL.

This method can be called to retrieve a pointer to a parent animation object (a container).

Returns the current value of animation variable.

dblValue
The current value of the animation variable.

nValue
The current value of the animation variable.

S_OK if the value was obtained successfully, or underlying animation variable has not been created. Otherwise
HRESULT error code.

This method can be called to retrieve the current value of animation variable. If the underlying COM object has not
been created, dblValue will contain a default value, when the function returns.

Returns a pointer to IUIAnimationVariable COM object.

A valid pointer to IUIAnimationVariable COM object, or NULL if animation variable was not created, or can't be
created.

Use this function to access the underlying IUIAnimationVariable COM object and call its methods directly if
needed.

Specifies whether related transition objects should be deleted.

RemarksRemarks

CAnimationVariable::m_dblDefaultValue

DOUBLE m_dblDefaultValue;

CAnimationVariable::m_lstTransitions

CObList m_lstTransitions;

CAnimationVariable::m_pParentObject

CAnimationBaseObject* m_pParentObject;

CAnimationVariable::m_variable

ATL::CComPtr<IUIAnimationVariable> m_variable;

CAnimationVariable::SetDefaultValue

void SetDefaultValue(DOUBLE dblDefaultValue);

ParametersParameters

RemarksRemarks

CAnimationVariable::SetParentAnimationObject

Set this value to TRUE to force deletion of transition objects when they are being removed from the internal list of
transitions. If this value is FALSE the transitions should be deleted by calling application. The list of transitions is
always cleared after an animation has been scheduled. The default value is FALSE.

Specifies the default value, which is propagated to IUIAnimationVariable.

Contains a list of transitions that animate this animation variable.

A pointer to an animation object that encapsulates this animation variable.

Stores a pointer to IUIAnimationVariable COM object. NULL if the COM object has not been created yet, or if
creation failed.

Sets default value and releases IUIAnimationVariable COM object.

dblDefaultValue
Specifies the new default value.

Use this method to reset the default value. This method releases the internal IUIAnimationVariable COM object,
therefore when animation variable is recreated, the underlying COM object gets the new default value. The default
value is returned by GetValue if the COM object representing the animation variable is not created, or if the
variable has not been animated.

Sets the relationship between an animation variable and an animation object.

void SetParentAnimationObject(CAnimationBaseObject* pParentObject);

ParametersParameters

RemarksRemarks

See also

pParentObject
A pointer to an animation object that contains this variable.

This method is called internally to establish one-to-one relationship between an animation variable and an
animation object that encapsulates it.

Classes

CAnimationVariableChangeHandler Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CAnimationVariableChangeHandler : public
CUIAnimationVariableChangeHandlerBase<CAnimationVariableChangeHandler>;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationVariableChangeHandler::CAnimationVariableChangeHandlerConstructs a CAnimationVariableChangeHandler object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationVariableChangeHandler::CreateInstance Creates an instance of CAnimationVariableChangeHandler

object.

CAnimationVariableChangeHandler::OnValueChanged Called when a value of an animation variable has changed.
(Overrides
CUIAnimationVariableChangeHandlerBase::OnValueChanged

.)

CAnimationVariableChangeHandler::SetAnimationController Stores a pointer to animation controller to route events.

Remarks

Inheritance Hierarchy

Requirements

Implements a callback, which is called by the Animation API when the value of an animation variable changes.

This event handler is created and passed to IUIAnimationVariable::SetVariableChangeHandler method, when you
call CAnimationVariable::EnableValueChangedEvent or CAnimationBaseObject::EnableValueChangedEvent (which
enables this event for all animation variables encapsulated in an animation object).

CUIAnimationCallbackBase

CUIAnimationVariableChangeHandlerBase

CAnimationVariableChangeHandler

Header: afxanimationcontroller.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationvariablechangehandler-class.md

CAnimationVariableChangeHandler::OnValueChanged

IFACEMETHOD(OnValueChanged) (
 __in IUIAnimationStoryboard* storyboard,
 __in IUIAnimationVariable* variable,
 __in DOUBLE newValue,
 __in DOUBLE previousValue);

ParametersParameters

Return ValueReturn Value

CAnimationVariableChangeHandler::SetAnimationController

void SetAnimationController(CAnimationController* pAnimationController);

ParametersParameters

See also

Called when a value of an animation variable has changed.

storyboard
The storyboard that is animating the variable.

variable
The animation variable that was updated.

newValue
The new value.

previousValue
The previous value.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Stores a pointer to animation controller to route events.

pAnimationController
A pointer to animation controller, which will receive events.

Classes

CAnimationVariableIntegerChangeHandler Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CAnimationVariableIntegerChangeHandler : public
CUIAnimationVariableIntegerChangeHandlerBase<CAnimationVariableIntegerChangeHandler>;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAnimationVariableIntegerChangeHandler::CAnimationVariableInt
egerChangeHandler

Constructs a CAnimationVariableIntegerChangeHandler object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAnimationVariableIntegerChangeHandler::CreateInstance Creates an instance of
CAnimationVariableIntegerChangeHandler callback.

CAnimationVariableIntegerChangeHandler::OnIntegerValueChang
ed

Called when a value of an animation variable has changed.
(Overrides
CUIAnimationVariableIntegerChangeHandlerBase::OnIntegerValueChanged

.)

CAnimationVariableIntegerChangeHandler::SetAnimationControlle
r

Stores a pointer to animation controller to route events.

Remarks

Inheritance Hierarchy

Requirements

Implements a callback, which is called by the Animation API when the value of an animation variable changes.

This event handler is created and passed to IUIAnimationVariable::SetVariableIntegerChangeHandler method, when you
call CAnimationVariable::EnableIntegerValueChangedEvent or CAnimationBaseObject::EnableIntegerValueChangedEvent
(which enables this event for all animation variables encapsulated in an animation object).

MFC Classes

CUIAnimationCallbackBase

CUIAnimationVariableIntegerChangeHandlerBase

CAnimationVariableIntegerChangeHandler

Header: afxanimationcontroller.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/canimationvariableintegerchangehandler-class.md

CAnimationVariableIntegerChangeHandler::CAnimationVariableIntegerCha
ngeHandler

CAnimationVariableIntegerChangeHandler ();

CAnimationVariableIntegerChangeHandler::CreateInstance

static COM_DECLSPEC_NOTHROW HRESULT CreateInstance(
 CAnimationController* pAnimationController,
 IUIAnimationVariableIntegerChangeHandler** ppHandler);

ParametersParameters

Return ValueReturn Value

CAnimationVariableIntegerChangeHandler::OnIntegerValueChanged

IFACEMETHOD(OnIntegerValueChanged) (
 __in IUIAnimationStoryboard* storyboard,
 __in IUIAnimationVariable* variable,
 __in INT32 newValue,
 __in INT32 previousValue);

ParametersParameters

Return ValueReturn Value

CAnimationVariableIntegerChangeHandler::SetAnimationController

void SetAnimationController(CAnimationController* pAnimationController);

Constructs a CAnimationVariableIntegerChangeHandler object.

Creates an instance of CAnimationVariableIntegerChangeHandler callback.

pAnimationController
A pointer to animation controller, which will receive events.

ppHandler

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Called when a value of an animation variable has changed.

storyboard
The storyboard that is animating the variable.

variable
The animation variable that was updated.

newValue
The new rounded value.

previousValue
The previous rounded value.

S_OK if the method succeeds; otherwise E_FAIL.

Stores a pointer to animation controller to route events.

ParametersParameters

See also

pAnimationController
A pointer to animation controller, which will receive events.

Classes

CArchive Class
3/4/2019 • 22 minutes to read • Edit Online

Syntax
class CArchive

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CArchive::CArchive Creates a CArchive object.

Public MethodsPublic Methods

NAME DESCRIPTION

CArchive::Abort Closes an archive without throwing an exception.

CArchive::Close Flushes unwritten data and disconnects from the CFile .

CArchive::Flush Flushes unwritten data from the archive buffer.

CArchive::GetFile Gets the CFile object pointer for this archive.

CArchive::GetObjectSchema Called from the Serialize function to determine the
version of the object that is being deserialized.

CArchive::IsBufferEmpty Determines whether the buffer has been emptied during a
Windows Sockets receive process.

CArchive::IsLoading Determines whether the archive is loading.

CArchive::IsStoring Determines whether the archive is storing.

CArchive::MapObject Places objects in the map that are not serialized to the file,
but that are available for subobjects to reference.

CArchive::Read Reads raw bytes.

CArchive::ReadClass Reads a class reference previously stored with
WriteClass .

Allows you to save a complex network of objects in a permanent binary form (usually disk storage) that
persists after those objects are deleted.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/carchive-class.md

CArchive::ReadObject Calls an object's Serialize function for loading.

CArchive::ReadString Reads a single line of text.

CArchive::SerializeClass Reads or writes the class reference to the CArchive object
depending on the direction of the CArchive .

CArchive::SetLoadParams Sets the size to which the load array grows. Must be called
before any object is loaded or before MapObject or
ReadObject is called.

CArchive::SetObjectSchema Sets the object schema stored in the archive object.

CArchive::SetStoreParams Sets the hash table size and the block size of the map used
to identify unique objects during the serialization process.

CArchive::Write Writes raw bytes.

CArchive::WriteClass Writes a reference to the CRuntimeClass to the
CArchive .

CArchive::WriteObject Calls an object's Serialize function for storing.

CArchive::WriteString Writes a single line of text.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CArchive::operator << Stores objects and primitive types to the archive.

CArchive::operator >> Loads objects and primitive types from the archive.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CArchive::m_pDocument

Remarks
CArchive does not have a base class.

Later you can load the objects from persistent storage, reconstituting them in memory. This process of
making data persistent is called "serialization."

You can think of an archive object as a kind of binary stream. Like an input/output stream, an archive is
associated with a file and permits the buffered writing and reading of data to and from storage. An
input/output stream processes sequences of ASCII characters, but an archive processes binary object data in
an efficient, nonredundant format.

You must create a CFile object before you can create a CArchive object. In addition, you must ensure that the

Inheritance Hierarchy

Requirements

CArchive::Abort

void Abort ();

RemarksRemarks

ExampleExample

CArchive::CArchive

CArchive(
 CFile* pFile,
 UINT nMode,
 int nBufSize = 4096,
 void* lpBuf = NULL);

archive's load/store status is compatible with the file's open mode. You are limited to one active archive per
file.

When you construct a CArchive object, you attach it to an object of class CFile (or a derived class) that
represents an open file. You also specify whether the archive will be used for loading or storing. A CArchive

object can process not only primitive types but also objects of CObject-derived classes designed for
serialization. A serializable class usually has a Serialize member function, and it usually uses the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros, as described under class CObject .

The overloaded extraction (>>) and insertion (<<) operators are convenient archive programming
interfaces that support both primitive types and CObject -derived classes.

CArchive also supports programming with the MFC Windows Sockets classes CSocket and CSocketFile.
The IsBufferEmpty member function supports that usage.

For more information on CArchive , see the articles Serialization and Windows Sockets: Using Sockets with
Archives.

CArchive

Header: afx.h

Call this function to close the archive without throwing an exception.

The CArchive destructor will normally call Close , which will flush any data that has not been saved to the
associated CFile object. This can cause exceptions.

When catching these exceptions, it is a good idea to use Abort , so that destructing the CArchive object
doesn't cause further exceptions. When handling exceptions, CArchive::Abort will not throw an exception on
failures because, unlike CArchive::Close, Abort ignores failures.

If you used new to allocate the CArchive object on the heap, then you must delete it after closing the file.

See the example for CArchive::WriteClass.

Constructs a CArchive object and specifies whether it will be used for loading or storing objects.

ParametersParameters

RemarksRemarks

ExampleExample

CFile file;
TCHAR szBuf[512];
if(!file.Open(_T("CArchive__test__file.txt"),
 CFile::modeCreate | CFile::modeWrite))
{
 #ifdef _DEBUG
 AFXDUMP(_T("Unable to open file\n"));
 exit(1);
 #endif
}
CArchive ar(&file, CArchive::store, 512, szBuf);

CArchive::Close

void Close();

RemarksRemarks

pFile
A pointer to the CFile object that is the ultimate source or destination of the persistent data.

nMode
A flag that specifies whether objects will be loaded from or stored to the archive. The nMode parameter must
have one of the following values:

CArchive::load Loads data from the archive. Requires only CFile read permission.

CArchive::store Saves data to the archive. Requires CFile write permission.

CArchive::bNoFlushOnDelete Prevents the archive from automatically calling Flush when the archive
destructor is called. If you set this flag, you are responsible for explicitly calling Close before the
destructor is called. If you do not, your data will be corrupted.

nBufSize
An integer that specifies the size of the internal file buffer, in bytes. Note that the default buffer size is 4,096
bytes. If you routinely archive large objects, you will improve performance if you use a larger buffer size that
is a multiple of the file buffer size.

lpBuf
An optional pointer to a user-supplied buffer of size nBufSize. If you do not specify this parameter, the archive
allocates a buffer from the local heap and frees it when the object is destroyed. The archive does not free a
user-supplied buffer.

You cannot change this specification after you have created the archive.

You may not use CFile operations to alter the state of the file until you have closed the archive. Any such
operation will damage the integrity of the archive. You may access the position of the file pointer at any time
during serialization by obtaining the archive's file object from the GetFile member function and then using
the CFile::GetPosition function. You should call CArchive::Flush before obtaining the position of the file
pointer.

Flushes any data remaining in the buffer, closes the archive, and disconnects the archive from the file.

ExampleExample

CArchive::Flush

void Flush();

RemarksRemarks

ExampleExample

CFile myFile(_T("CArchive__test__file.txt"),
 CFile::modeCreate | CFile::modeWrite);
CArchive ar(&myFile, CArchive::store);

// Write a string to the archive.
ar.WriteString(_T("My string."));

// Flush all of the data to the file.
ar.Flush();

CArchive::GetFile

CFile* GetFile() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

const CFile* fp = ar.GetFile();

CArchive::GetObjectSchema

No further operations on the archive are permitted. After you close an archive, you can create another
archive for the same file or you can close the file.

The member function Close ensures that all data is transferred from the archive to the file, and it makes the
archive unavailable. To complete the transfer from the file to the storage medium, you must first use
CFile::Close and then destroy the CFile object.

See the example for CArchive::WriteString.

Forces any data remaining in the archive buffer to be written to the file.

The member function Flush ensures that all data is transferred from the archive to the file. You must call
CFile::Close to complete the transfer from the file to the storage medium.

Gets the CFile object pointer for this archive.

A constant pointer to the CFile object in use.

You must flush the archive before using GetFile .

Call this function from the Serialize function to determine the version of the object that is currently being
deserialized.

UINT GetObjectSchema();

Return ValueReturn Value

RemarksRemarks

ExampleExample

IMPLEMENT_SERIAL(CSchemaObject, CObject, VERSIONABLE_SCHEMA | 1)

void CSchemaObject::Serialize(CArchive& ar)
{
 CObject::Serialize(ar);

 if (ar.IsLoading())
 {
 int nVersion = ar.GetObjectSchema();

 switch(nVersion)
 {
 case 0:
 // read in previous version of
 // this object
 break;
 case 1:
 // read in current version of
 // this object
 break;
 default:
 // report unknown version of
 // this object
 break;
 }
 }
 else
 {
 // Normal storing code goes here
 }
}

CArchive::IsBufferEmpty

BOOL IsBufferEmpty() const;

Return ValueReturn Value

During deserialization, the version of the object being read.

Calling this function is only valid when the CArchive object is being loaded (CArchive::IsLoading returns
nonzero). It should be the first call in the Serialize function and called only once. A return value of (UINT)-
1 indicates that the version number is unknown.

A CObject -derived class may use VERSIONABLE_SCHEMA combined (using bitwise OR) with the schema
version itself (in the IMPLEMENT_SERIAL macro) to create a "versionable object," that is, an object whose
Serialize member function can read multiple versions. The default framework functionality (without

VERSIONABLE_SCHEMA) is to throw an exception when the version is mismatched.

Call this member function to determine whether the archive object's internal buffer is empty.

Nonzero if the archive's buffer is empty; otherwise 0.

RemarksRemarks

CArchive::IsLoading

BOOL IsLoading() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

int i = 0;
if(ar.IsLoading())
 ar >> i;
else
 ar << i;

CArchive::IsStoring

BOOL IsStoring() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

int i = 0;
if(ar.IsStoring())
 ar << i;
else
 ar >> i;

This function is supplied to support programming with the MFC Windows Sockets class CSocketFile . You
do not need to use it for an archive associated with a CFile object.

The reason for using IsBufferEmpty with an archive associated with a CSocketFile object is that the archive's
buffer might contain more than one message or record. After receiving one message, you should use
IsBufferEmpty to control a loop that continues receiving data until the buffer is empty. For more information,

see the Receive member function of class CAsyncSocket , which shows how to use IsBufferEmpty .

For more information, see Windows Sockets: Using Sockets with Archives.

Determines whether the archive is loading data.

Nonzero if the archive is currently being used for loading; otherwise 0.

This member function is called by the Serialize functions of the archived classes.

Determines whether the archive is storing data.

Nonzero if the archive is currently being used for storing; otherwise 0.

This member function is called by the Serialize functions of the archived classes.

If the IsStoring status of an archive is nonzero, then its IsLoading status is 0, and vice versa.

 CArchive::MapObject

void MapObject(const CObject* pOb);

ParametersParameters

RemarksRemarks

ExampleExample

//MyDocument.h
class CMyDocument : public CDocument
{
public:
 DECLARE_SERIAL(CMyDocument)

 CObList m_listOfSubItems;

 virtual void Serialize(CArchive& ar);
};

//MyDocument.cpp
IMPLEMENT_SERIAL(CMyDocument, CDocument, 1)

void CMyDocument::Serialize(CArchive& ar)
{
 CDocument::Serialize(ar);

 if (ar.IsStoring())
 {
 // TODO: add storing code here
 }
 else
 {
 // TODO: add loading code here
 }

 ar.MapObject(this);

 //serialize the subitems in the document;
 //they will be able to serialize their m_pDoc
 //back pointer
 m_listOfSubItems.Serialize(ar);
}

Call this member function to place objects in the map that are not really serialized to the file, but that are
available for subobjects to reference.

pOb
A constant pointer to the object being stored.

For example, you might not serialize a document, but you would serialize the items that are part of the
document. By calling MapObject , you allow those items, or subobjects, to reference the document. Also,
serialized subitems can serialize their m_pDocument back pointer.

You can call MapObject when you store to and load from the CArchive object. MapObject adds the specified
object to the internal data structures maintained by the CArchive object during serialization and
deserialization, but unlike ReadObject and WriteObject, it does not call serialize on the object.

//SubItem.h
class CSubItem : public CObject
{
 DECLARE_SERIAL(CSubItem)
 CSubItem() : m_i(0) {};

public:
 CSubItem(CMyDocument * pDoc)
 { m_pDoc = pDoc; }

 // back pointer to owning document
 CMyDocument* m_pDoc;
 WORD m_i; // other item data

 virtual void Serialize(CArchive& ar);
};

//SubItem.cpp
IMPLEMENT_SERIAL(CSubItem, CObject, 1);

void CSubItem::Serialize(CArchive& ar)

{
 if (ar.IsStoring())
 {
 // will serialize a reference
 // to the "mapped" document pointer
 ar << (CObject *)m_pDoc;
 ar << m_i;
 }
 else
 {
 // Will load a reference to
 // the "mapped" document pointer
 ar >> (CObject *&) m_pDoc;
 ar >> m_i;
 }
}

CArchive::m_pDocument

CDocument* m_pDocument;

RemarksRemarks

ExampleExample

Set to NULL by default, this pointer to a CDocument can be set to anything the user of the CArchive instance
wants.

A common usage of this pointer is to convey additional information about the serialization process to all
objects being serialized. This is achieved by initializing the pointer with the document (a CDocument -derived
class) that is being serialized, in such a way that objects within the document can access the document if
necessary. This pointer is also used by COleClientItem objects during serialization.

The framework sets m_pDocument to the document being serialized when a user issues a File Open or Save
command. If you serialize an Object Linking and Embedding (OLE) container document for reasons other
than File Open or Save, you must explicitly set m_pDocument. For example, you would do this when
serializing a container document to the Clipboard.

CFile myFile(_T("My__test__file.dat"),
 CFile::modeCreate | CFile::modeWrite);
CArchive ar(&myFile, CArchive::store);
CMyDocument mydoc;
ar.m_pDocument = &mydoc;

// Serialize the document to the archive.
if (ar.m_pDocument != NULL)
 ar.m_pDocument->Serialize(ar);

CArchive::operator <<

friend CArchive& operator<<(
 CArchive& ar,
 const CObject* pOb);

throw(
 CArchiveException*,
 CFileException*);

CArchive& AFXAPI operator<<(
 CArchive& ar,
 const RECT& rect);

CArchive& AFXAPI operator<<(
 CArchive& ar,
 POINT point);

CArchive& AFXAPI operator<<(
 CArchive& ar,
 SIZE size);

template<typename BaseType,
 class StringTraits> CArchive& operator<<(
 const ATL::CStringT<BaseType,
 StringTraits>& str);

CArchive& operator<<(BYTE by);
CArchive& operator<<(WORD w);
CArchive& operator<<(LONG l);
CArchive& operator<<(DWORD dw);
CArchive& operator<<(float f);
CArchive& operator<<(double d);
CArchive& operator<<(int i);
CArchive& operator<<(short w);
CArchive& operator<<(char ch);
CArchive& operator<<(wchar_t ch);
CArchive& operator<<(unsigned u);
CArchive& operator<<(bool b);
CArchive& operator<<(ULONGLONG dwdw);
CArchive& operator<<(LONGLONG dwdw);

Return ValueReturn Value

RemarksRemarks

Stores the indicated object or primitive type to the archive.

A CArchive reference that enables multiple insertion operators on a single line.

The last two versions above are specifically for storing 64-bit integers.

If you used the IMPLEMENT_SERIAL macro in your class implementation, then the insertion operator
overloaded for CObject calls the protected WriteObject . This function, in turn, calls the Serialize function

ExampleExample

long l = 5;
int i = 10;
if(ar.IsStoring())
 ar << l << i;

ExampleExample

CString s("abc");
ar << s; // Prints the value (abc)

CArchive::operator >>

of the class.

The CStringT insertion operator (<<) supports diagnostic dumping and storing to an archive.

This example demonstrates the use of the CArchive insertion operator << with the int and long types.

This example 2 demonstrates the use of the CArchive insertion operator << with the CStringT type.

Loads the indicated object or primitive type from the archive.

friend CArchive& operator>>(
 CArchive& ar,
 CObject *& pOb);

throw(
 CArchiveException*,
 CFileException*,
 CMemoryException*);

friend CArchive& operator>>(
 CArchive& ar,
 const CObject *& pOb);

throw(
 CArchiveException*,
 CFileException*,
 CMemoryException*);

CArchive& AFXAPI operator>>(
 CArchive& ar,
 const RECT& rect);

CArchive& AFXAPI operator>>(
 CArchive& ar,
 POINT point);

CArchive& AFXAPI operator>>(
 CArchive& ar,
 SIZE size);

template<typename BaseType,
 class StringTraits> CArchive& operator>>(
 ATL::CStringT<BaseType,
 StringTraits>& str);

CArchive& operator>>(BYTE& by);
CArchive& operator>>(WORD& w);
CArchive& operator>>(int& i);
CArchive& operator>>(LONG& l);
CArchive& operator>>(DWORD& dw);
CArchive& operator>>(float& f);
CArchive& operator>>(double& d);
CArchive& operator>>(short& w);
CArchive& operator>>(char& ch);
CArchive& operator>>(wchar_t& ch);
CArchive& operator>>(unsigned& u);
CArchive& operator>>(bool& b);
CArchive& operator>>(ULONGLONG& dwdw);
CArchive& operator>>(LONGLONG& dwdw);

Return ValueReturn Value

RemarksRemarks

ExampleExample

A CArchive reference that enables multiple extraction operators on a single line.

The last two versions above are specifically for loading 64-bit integers.

If you used the IMPLEMENT_SERIAL macro in your class implementation, then the extraction operators
overloaded for CObject call the protected ReadObject function (with a nonzero run-time class pointer). This
function, in turn, calls the Serialize function of the class.

The CStringT extraction operator (>>) supports loading from an archive.

long l;
int i;
if(ar.IsLoading())
 ar >> l >> i;

ExampleExample

CString s;
if (ar.IsLoading())
 ar >> s;

CArchive::Read

UINT Read(void* lpBuf, UINT nMax);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

char pbRead[100];
ar.Read(pbRead, 100);

CArchive::ReadClass

CRuntimeClass* ReadClass(
 const CRuntimeClass* pClassRefRequested = NULL,
 UINT* pSchema = NULL,
 DWORD* pObTag = NULL);

ParametersParameters

This example demonstrates the use of the CArchive extraction operator >> with the int type.

This example demonstrates the use of the CArchive insertion and extraction operators << and >> with the
CStringT type.

Reads a specified number of bytes from the archive.

lpBuf
A pointer to a user-supplied buffer that is to receive the data read from the archive.

nMax
An unsigned integer specifying the number of bytes to be read from the archive.

An unsigned integer containing the number of bytes actually read. If the return value is less than the number
requested, the end of file has been reached. No exception is thrown on the end-of-file condition.

The archive does not interpret the bytes.

You can use the Read member function within your Serialize function for reading ordinary structures that
are contained in your objects.

Call this member function to read a reference to a class previously stored with WriteClass.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CArchive::ReadObject

CObject* ReadObject(const CRuntimeClass* pClass);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CArchive::ReadString

pClassRefRequested
A pointer to the CRuntimeClass structure that corresponds to the class reference requested. Can be NULL.

pSchema
A pointer to a schema of the run-time class previously stored.

pObTag
A number that refers to an object's unique tag. Used internally by the implementation of ReadObject.
Exposed for advanced programming only; pObTag normally should be NULL.

A pointer to the CRuntimeClass structure.

If pClassRefRequested is not NULL, ReadClass verifies that the archived class information is compatible with
your runtime class. If it is not compatible, ReadClass will throw a CArchiveException.

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_SERIAL; otherwise, ReadClass will throw
a CNotSupportedException.

If pSchema is NULL, the schema of the stored class can be retrieved by calling CArchive::GetObjectSchema;
otherwise, *pSchema will contain the schema of the run-time class that was previously stored.

You can use SerializeClass instead of ReadClass , which handles both reading and writing of the class
reference.

See the example for CArchive::WriteClass.

Reads object data from the archive and constructs an object of the appropriate type.

pClass
A constant pointer to the CRuntimeClass structure that corresponds to the object you expect to read.

A CObject pointer that must be safely cast to the correct derived class by using CObject::IsKindOf.

This function is normally called by the CArchive extraction (>>) operator overloaded for a CObject pointer.
ReadObject , in turn, calls the Serialize function of the archived class.

If you supply a nonzero pClass parameter, which is obtained by the RUNTIME_CLASS macro, then the
function verifies the run-time class of the archived object. This assumes you have used the
IMPLEMENT_SERIAL macro in the implementation of the class.

See the example for CArchive::WriteObject.

BOOL ReadString(CString& rString);
LPTSTR ReadString(LPTSTR lpsz, UINT nMax);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CArchive::SerializeClass

void SerializeClass(const CRuntimeClass* pClassRef);

ParametersParameters

RemarksRemarks

Call this member function to read text data into a buffer from the file associated with the CArchive object.

rString
A reference to a CString that will contain the resultant string after it is read from the file associated with the
CArchive object.

lpsz
Specifies a pointer to a user-supplied buffer that will receive a null-terminated text string.

nMax
Specifies the maximum number of characters to read. Should be one less than the size of the lpsz buffer.

In the version that returns BOOL, TRUE if successful; FALSE otherwise.

In the version that returns an LPTSTR , a pointer to the buffer containing the text data; NULL if end-of-file was
reached.

In the version of the member function with the nMax parameter, the buffer will hold up to a limit of nMax - 1
characters. Reading is stopped by a carriage return-linefeed pair. Trailing newline characters are always
removed. A null character ('\0') is appended in either case.

CArchive::Read is also available for text-mode input, but it does not terminate on a carriage return-linefeed
pair.

See the example for CArchive::WriteString.

Call this member function when you want to store and load the version information of a base class.

pClassRef
A pointer to a run-time class object for the base class.

SerializeClass reads or writes the reference to a class to the CArchive object, depending on the direction of
the CArchive . Use SerializeClass in place of ReadClass and WriteClass as a convenient way to serialize
base-class objects; SerializeClass requires less code and fewer parameters.

Like ReadClass , SerializeClass verifies that the archived class information is compatible with your runtime
class. If it is not compatible, SerializeClass will throw a CArchiveException.

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_SERIAL; otherwise, SerializeClass will
throw a CNotSupportedException.

Use the RUNTIME_CLASS macro to retrieve the value for the pRuntimeClass parameter. The base class must

ExampleExample

class CBaseClass : public CObject
{
 DECLARE_SERIAL(CBaseClass);
};
class CDerivedClass : public CBaseClass
{
public:
 virtual void Serialize(CArchive& ar);
};
void CDerivedClass::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 {
 //normal code for storing contents
 //of this object
 }
 else
 {
 //normal code for reading contents
 //of this object
 }

 //allow the base class to serialize along
 //with its version information
 ar.SerializeClass(RUNTIME_CLASS(CBaseClass));
 CBaseClass::Serialize(ar);
}

CArchive::SetLoadParams

void SetLoadParams(UINT nGrowBy = 1024);

ParametersParameters

RemarksRemarks

ExampleExample

have used the IMPLEMENT_SERIAL macro.

Call SetLoadParams when you are going to read a large number of CObject -derived objects from an archive.

nGrowBy
The minimum number of element slots to allocate if a size increase is necessary.

CArchive uses a load array to resolve references to objects stored in the archive. SetLoadParams allows you
to set the size to which the load array grows.

You must not call SetLoadParams after any object is loaded, or after MapObject or ReadObject is called.

class CMyLargeDocument : public CDocument
{
public:
 virtual void Serialize(CArchive& ar);
};
void CMyLargeDocument::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 ar.SetStoreParams(); // use large defaults
 else
 ar.SetLoadParams();

 if (ar.IsStoring())
 {
 // code for storing CMyLargeDocument
 }
 else
 {
 // code for loading CMyLargeDocument
 }
}

CArchive::SetObjectSchema

void SetObjectSchema(UINT nSchema);

ParametersParameters

RemarksRemarks

ExampleExample

ar.SetObjectSchema(2);
ASSERT(2 == ar.GetObjectSchema());

CArchive::SetStoreParams

void SetStoreParams(UINT nHashSize = 2053, UINT nBlockSize = 128);

ParametersParameters

Call this member function to set the object schema stored in the archive object to nSchema.

nSchema
Specifies the object's schema.

The next call to GetObjectSchema will return the value stored in nSchema.

Use SetObjectSchema for advanced versioning; for example, when you want to force a particular version to be
read in a Serialize function of a derived class.

Use SetStoreParams when storing a large number of CObject -derived objects in an archive.

nHashSize
The size of the hash table for interface pointer maps. Should be a prime number.

nBlockSize
Specifies the memory-allocation granularity for extending the parameters. Should be a power of 2 for the

RemarksRemarks

ExampleExample

class CMyLargeDocument : public CDocument
{
public:
 virtual void Serialize(CArchive& ar);
};
void CMyLargeDocument::Serialize(CArchive& ar)
{
 if (ar.IsStoring())
 ar.SetStoreParams(); // use large defaults
 else
 ar.SetLoadParams();

 if (ar.IsStoring())
 {
 // code for storing CMyLargeDocument
 }
 else
 {
 // code for loading CMyLargeDocument
 }
}

CArchive::Write

void Write(const void* lpBuf, INT nMax);

ParametersParameters

RemarksRemarks

ExampleExample

char pbWrite[100];
memset(pbWrite, 'a', 100);
ar.Write(pbWrite, 100);

best performance.

SetStoreParams allows you to set the hash table size and the block size of the map used to identify unique
objects during the serialization process.

You must not call SetStoreParams after any objects are stored, or after MapObject or WriteObject is called.

Writes a specified number of bytes to the archive.

lpBuf
A pointer to a user-supplied buffer that contains the data to be written to the archive.

nMax
An integer that specifies the number of bytes to be written to the archive.

The archive does not format the bytes.

You can use the Write member function within your Serialize function to write ordinary structures that are
contained in your objects.

CArchive::WriteClass

void WriteClass(const CRuntimeClass* pClassRef);

ParametersParameters

RemarksRemarks

ExampleExample

CFile myFile(_T("My__test__file.dat"),
 CFile::modeCreate | CFile::modeReadWrite);

// Create a storing archive.
CArchive arStore(&myFile, CArchive::store);

// Store the class CAge in the archive.
arStore.WriteClass(RUNTIME_CLASS(CAge));

// Close the storing archive.
arStore.Close();

// Create a loading archive.
myFile.SeekToBegin();
CArchive arLoad(&myFile, CArchive::load);

// Load a class from the archive.
CRuntimeClass* pClass = arLoad.ReadClass();
if (!pClass->IsDerivedFrom(RUNTIME_CLASS(CAge)))
{
 arLoad.Abort();
}

CArchive::WriteObject

void WriteObject(const CObject* pOb);

ParametersParameters

Use WriteClass to store the version and class information of a base class during serialization of the derived
class.

pClassRef
A pointer to the CRuntimeClass structure that corresponds to the class reference requested.

WriteClass writes a reference to the CRuntimeClass for the base class to the CArchive . Use
CArchive::ReadClass to retrieve the reference.

WriteClass verifies that the archived class information is compatible with your runtime class. If it is not
compatible, WriteClass will throw a CArchiveException.

Your runtime class must use DECLARE_SERIAL and IMPLEMENT_SERIAL; otherwise, WriteClass will
throw a CNotSupportedException.

You can use SerializeClass instead of WriteClass , which handles both reading and writing of the class
reference.

Stores the specified CObject to the archive.

pOb

RemarksRemarks

NOTENOTE

ExampleExample

CFile myFile(_T("My__test__file.dat"),
 CFile::modeCreate | CFile::modeReadWrite);
CAge age(21), *pAge;

// Create a storing archive.
CArchive arStore(&myFile, CArchive::store);

// Write the object to the archive
arStore.WriteObject(&age);

// Close the storing archive
arStore.Close();

// Create a loading archive.
myFile.SeekToBegin();
CArchive arLoad(&myFile, CArchive::load);

// Verify the object is in the archive.
pAge = (CAge*) arLoad.ReadObject(RUNTIME_CLASS(CAge));
ASSERT(age == *pAge);

CArchive::WriteString

void WriteString(LPCTSTR lpsz);

ParametersParameters

RemarksRemarks

A constant pointer to the object being stored.

This function is normally called by the CArchive insertion (<<) operator overloaded for CObject .
WriteObject , in turn, calls the Serialize function of the archived class.

You must use the IMPLEMENT_SERIAL macro to enable archiving. WriteObject writes the ASCII class name
to the archive. This class name is validated later during the load process. A special encoding scheme prevents
unnecessary duplication of the class name for multiple objects of the class. This scheme also prevents
redundant storage of objects that are targets of more than one pointer.

The exact object encoding method (including the presence of the ASCII class name) is an implementation
detail and could change in future versions of the library.

Finish creating, deleting, and updating all your objects before you begin to archive them. Your archive will be corrupted
if you mix archiving with object modification.

For a definition of the class CAge , see the example for CObList::CObList.

Use this member function to write data from a buffer to the file associated with the CArchive object.

lpsz
Specifies a pointer to a buffer containing a null-terminated text string.

The terminating null character ('\0') is not written to the file; nor is a newline automatically written.

ExampleExample

CFile myFile(_T("My__test__file.dat"),
 CFile::modeCreate | CFile::modeReadWrite);
CString str1("String1"), str2("String2"), str;

// Create a storing archive.
CArchive arStore(&myFile, CArchive::store);

// Write str1 and str2 to the archive
arStore.WriteString(str1);
arStore.WriteString(_T("\n"));
arStore.WriteString(str2);
arStore.WriteString(_T("\n"));

// Close the storing archive
arStore.Close();

// Create a loading archive.
myFile.SeekToBegin();
CArchive arLoad(&myFile, CArchive::load);

// Verify the two strings are in the archive.
arLoad.ReadString(str);
ASSERT(str == str1);
arLoad.ReadString(str);
ASSERT(str == str2);

See also

WriteString throws an exception in response to several conditions, including the disk-full condition.

Write is also available, but rather than terminating on a null character, it writes the requested number of
bytes to the file.

Hierarchy Chart
CFile Class
CObject Class
CSocket Class
CSocketFile Class

CArchiveException Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CArchiveException : public CException

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CArchiveException::CArchiveException Constructs a CArchiveException object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CArchiveException::m_cause Indicates the exception cause.

CArchiveException::m_strFileName Specifies the name of the file for this exception condition.

Remarks

Inheritance Hierarchy

Requirements

CArchiveException::CArchiveException

Represents a serialization exception condition

The CArchiveException class includes a public data member that indicates the cause of the exception.

CArchiveException objects are constructed and thrown inside CArchive member functions. You can access these
objects within the scope of a CATCH expression. The cause code is independent of the operating system. For
more information about exception processing, see Exception Handling (MFC).

CObject

CException

CArchiveException

Header: afx.h

Constructs a CArchiveException object, storing the value of cause in the object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/carchiveexception-class.md

CArchiveException(
 int cause = CArchiveException::none,
 LPCTSTR lpszArchiveName = NULL);

ParametersParameters

RemarksRemarks

CArchiveException::m_cause

int m_cause;

RemarksRemarks

cause
An enumerated type variable that indicates the reason for the exception. For a list of the enumerators, see the
m_cause data member.

lpszArchiveName
Points to a string containing the name of the CArchive object causing the exception.

You can create a CArchiveException object on the heap and throw it yourself or let the global function
AfxThrowArchiveException handle it for you.

Do not use this constructor directly; instead, call the global function AfxThrowArchiveException .

Specifies the cause of the exception.

This data member is a public variable of type int. Its values are defined by a CArchiveException enumerated
type. The enumerators and their meanings are as follows:

NOTENOTE

NOTENOTE

CArchiveException::none No error occurred.

CArchiveException::genericException Unspecified error.

CArchiveException::readOnly Tried to write into an archive opened for loading.

CArchiveException::endOfFile Reached end of file while reading an object.

CArchiveException::writeOnly Tried to read from an archive opened for storing.

CArchiveException::badIndex Invalid file format.

CArchiveException::badClass Tried to read an object into an object of the wrong type.

CArchiveException::badSchema Tried to read an object with a different version of the class.

These CArchiveException cause enumerators are distinct from the CFileException cause enumerators.

CArchiveException::generic is deprecated. Use genericException instead. If generic is used in an
application and built with /clr, there will be syntax errors that are not easy to decipher.

 CArchiveException::m_strFileName

CString m_strFileName;

See also

Specifies the name of the file for this exception condition.

CException Class
Hierarchy Chart
CArchive Class
AfxThrowArchiveException
Exception Processing

CArray Class
3/4/2019 • 13 minutes to read • Edit Online

Syntax
template <class TYPE, class ARG_TYPE = const TYPE&>
class CArray : public CObject

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CArray::CArray Constructs an empty array.

Public MethodsPublic Methods

NAME DESCRIPTION

CArray::Add Adds an element to the end of the array; grows the array if
necessary.

CArray::Append Appends another array to the array; grows the array if
necessary

CArray::Copy Copies another array to the array; grows the array if
necessary.

CArray::ElementAt Returns a temporary reference to the element pointer within
the array.

CArray::FreeExtra Frees all unused memory above the current upper bound.

CArray::GetAt Returns the value at a given index.

CArray::GetCount Gets the number of elements in this array.

CArray::GetData Allows access to elements in the array. Can be NULL.

Supports arrays that are like C arrays, but can dynamically reduce and grow as necessary.

TYPE
Template parameter that specifies the type of objects stored in the array. TYPE is a parameter that is returned by
CArray .

ARG_TYPE
Template parameter that specifies the argument type that is used to access objects stored in the array. Often a
reference to TYPE. ARG_TYPE is a parameter that is passed to CArray .

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/carray-class.md

CArray::GetSize Gets the number of elements in this array.

CArray::GetUpperBound Returns the largest valid index.

CArray::InsertAt Inserts an element (or all the elements in another array) at a
specified index.

CArray::IsEmpty Determines whether the array is empty.

CArray::RemoveAll Removes all the elements from this array.

CArray::RemoveAt Removes an element at a specific index.

CArray::SetAt Sets the value for a given index; array not allowed to grow.

CArray::SetAtGrow Sets the value for a given index; grows the array if necessary.

CArray::SetSize Sets the number of elements to be contained in this array.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

operator[] Sets or gets the element at the specified index.

Remarks

NOTENOTE

TIPTIP

Array indexes always start at position 0. You can decide whether to fix the upper bound or enable the array to
expand when you add elements past the current bound. Memory is allocated contiguously to the upper bound,
even if some elements are null.

Most methods that resize a CArray object or add elements to it use memcpy_s to move elements. This is a problem
because memcpy_s is not compatible with any objects that require the constructor to be called. If the items in the
CArray are not compatible with memcpy_s , you must create a new CArray of the appropriate size. You must then use

CArray::Copy and CArray::SetAt to populate the new array because those methods use an assignment operator instead of
memcpy_s .

As with a C array, the access time for a CArray indexed element is constant and is independent of the array size.

Before using an array, use SetSize to establish its size and allocate memory for it. If you do not use SetSize , adding
elements to your array causes it to be frequently reallocated and copied. Frequent reallocation and copying are inefficient
and can fragment memory.

If you need a dump of individual elements in an array, you must set the depth of the CDumpContext object to 1
or larger.

Certain member functions of this class call global helper functions that must be customized for most uses of the

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/memcpy-s-wmemcpy-s

Inheritance Hierarchy

Requirements

CArray::Add

INT_PTR Add(ARG_TYPE newElement);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// example for CArray::Add
CArray<CPoint,CPoint> ptArray;

CPoint pt(10,20);
ptArray.Add(pt); // Element 0
ptArray.Add(CPoint(30,40)); // Element 1

CArray::Append

INT_PTR Append(const CArray& src);

ParametersParameters

CArray class. See the topic Collection Class Helpers in the MFC Macros and Globals section.

Array class derivation is like list derivation.

For more information about how to use CArray , see the article Collections.

CObject

CArray

Header: afxtempl.h

Adds a new element to the end of an array, growing the array by 1.

ARG_TYPE
Template parameter specifying the type of arguments referencing elements in this array.

newElement
The element to be added to this array.

The index of the added element.

If SetSize has been used with an nGrowBy value greater than 1, then extra memory may be allocated. However,
the upper bound will increase by only 1.

Call this member function to add the contents of one array to the end of another.

src
Source of the elements to be appended to an array.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CArray<CPoint,CPoint> myArray1, myArray2;

// Add elements to the second array.
myArray2.Add(CPoint(11, 22));
myArray2.Add(CPoint(12, 42));

// Add elements to the first array and also append the second array.
myArray1.Add(CPoint(1, 2));
myArray1.Append(myArray2);

CArray::CArray

CArray();

RemarksRemarks

ExampleExample

CArray<CPoint,CPoint> ptArray;

CArray::Copy

void Copy(const CArray& src);

ParametersParameters

RemarksRemarks

ExampleExample

The index of the first appended element.

The arrays must be of the same type.

If necessary, Append may allocate extra memory to accommodate the elements appended to the array.

Constructs an empty array.

The array grows one element at a time.

Use this member function to copy the elements of one array to another.

src
Source of the elements to be copied to an array.

Call this member function to overwrite the elements of one array with the elements of another array.

Copy does not free memory; however, if necessary, Copy may allocate extra memory to accommodate the
elements copied to the array.

CArray<CPoint,CPoint> myArray1, myArray2;

// Add elements to the second array.
myArray2.Add(CPoint(11, 22));
myArray2.Add(CPoint(12, 42));

// Copy the elements from the second array to the first.
myArray1.Copy(myArray2);

CArray::ElementAt

TYPE& ElementAt(INT_PTR nIndex);
const TYPE& ElementAt(INT_PTR nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CArray::FreeExtra

void FreeExtra();

RemarksRemarks

ExampleExample

CArray::GetAt

TYPE& GetAt(INT_PTR nIndex);
const TYPE& GetAt(INT_PTR nIndex) const;

ParametersParameters

Returns a temporary reference to the specified element within the array.

nIndex
An integer index that is greater than or equal to 0 and less than or equal to the value returned by
GetUpperBound.

A reference to an array element.

It is used to implement the left-side assignment operator for arrays.

See the example for GetSize.

Frees any extra memory that was allocated while the array was grown.

This function has no effect on the size or upper bound of the array.

See the example for GetData.

Returns the array element at the specified index.

TYPE
Template parameter specifying the type of the array elements.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CArray<CPoint,CPoint> myArray;
CPoint pt;

// Add elements to the array.
for (int i = 0; i < 10; i++)
 myArray.Add(CPoint(i, 2 * i));

// Modify all the points in the array.
for (int i = 0; i <= myArray.GetUpperBound(); i++)
{
 pt = myArray.GetAt(i);
 pt.x = 0;
 myArray.SetAt(i, pt);
}

CArray::GetCount

INT_PTR GetCount() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CArray<CPoint,CPoint> myArray;

// Add elements to the array.
for (int i = 0; i < 10; i++)
 myArray.Add(CPoint(i, 2 * i));

// Modify all the points in the array.
for (int i = 0; i < myArray.GetCount(); i++)
{
 CPoint& pt = myArray.ElementAt(i);
 pt.x = 0;
}

CArray::GetData

nIndex
An integer index that is greater than or equal to 0 and less than or equal to the value returned by
GetUpperBound.

The array element currently at this index.

Passing a negative value or a value greater than the value returned by GetUpperBound will result in a failed
assertion.

Returns the number of array elements.

The number of items in the array.

Call this method to retrieve the number of elements in the array. Because indexes are zero-based, the size is 1
greater than the largest index. Calling this method will generate the same result as the CArray::GetSize method.

const TYPE* GetData() const;
TYPE* GetData();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CArray<CPoint,CPoint> myArray;

// Allocate memory for at least 32 elements.
myArray.SetSize(32, 128);

// Add elements to the array.
CPoint* pPt = (CPoint*) myArray.GetData();
for (int i = 0; i < 32; i++, pPt++)
 *pPt = CPoint(i, 2*i);

// Only keep first 5 elements and free extra (unused) bytes.
myArray.SetSize(5, 128);
myArray.FreeExtra();

#if _DEBUG
 afxDump.SetDepth(1);
 afxDump << "myArray: " << &myArray << "\n";
#endif

CArray::GetSize

INT_PTR GetSize() const;

RemarksRemarks

ExampleExample

Use this member function to gain direct access to the elements in an array.

TYPE
Template parameter specifying the type of the array elements.

A pointer to an array element.

If no elements are available, GetData returns a null value.

While direct access to the elements of an array can help you work more quickly, use caution when calling
GetData ; any errors you make directly affect the elements of your array.

Returns the size of the array.

Because indexes are zero-based, the size is 1 greater than the largest index. Calling this method will generate the
same result as the CArray::GetCount method.

CArray<CPoint,CPoint> myArray;

// Add elements to the array.
for (int i = 0; i < 10; i++)
 myArray.Add(CPoint(i, 2*i));

// Modify all the points in the array.
for (int i = 0; i < myArray.GetSize(); i++)
{
 CPoint& pt = myArray.ElementAt(i);
 pt.x = 0;
}

CArray::GetUpperBound

INT_PTR GetUpperBound() const;

RemarksRemarks

ExampleExample

CArray::InsertAt

void InsertAt(
 INT_PTR nIndex,
 ARG_TYPE newElement,
 INT_PTR nCount = 1);

void InsertAt(
 INT_PTR nStartIndex,
 CArray* pNewArray);

ParametersParameters

Returns the current upper bound of this array.

Because array indexes are zero-based, this function returns a value 1 less than GetSize .

The condition GetUpperBound() = -1 indicates that the array contains no elements.

See the example for CArray::GetAt.

The first version of InsertAt inserts one element (or multiple copies of an element) at a specified index in an
array.

nIndex
An integer index that may be greater than the value returned by GetUpperBound .

ARG_TYPE
Template parameter specifying the type of elements in this array.

newElement
The element to be placed in this array.

nCount
The number of times this element should be inserted (defaults to 1).

nStartIndex
An integer index that may be greater than the value returned by GetUpperBound.

RemarksRemarks

ExampleExample

// example for CArray::InsertAt

CArray<CPoint,CPoint> ptArray;

ptArray.Add(CPoint(10,20)); // Element 0
ptArray.Add(CPoint(30,40)); // Element 1 (will become element 2)
ptArray.InsertAt(1, CPoint(50,60)); // New element 1

CArray::IsEmpty

BOOL IsEmpty() const;

Return ValueReturn Value

CArray::operator []

TYPE& operator[](int_ptr nindex);
const TYPE& operator[](int_ptr nindex) const;

ParametersParameters

RemarksRemarks

ExampleExample

pNewArray
Another array that contains elements to be added to this array.

In the process, it shifts up (by incrementing the index) the existing element at this index, and it shifts up all the
elements above it.

The second version inserts all the elements from another CArray collection, starting at the nStartIndex position.

The SetAt function, in contrast, replaces one specified array element and does not shift any elements.

Determines whether the array is empty.

Nonzero if the array contains no elements; otherwise 0.

These subscript operators are a convenient substitute for the SetAt and GetAt functions.

TYPE
Template parameter specifying the type of elements in this array.

nIndex
Index of the element to be accessed.

The first operator, called for arrays that are not const, may be used on either the right (r-value) or the left (l-
value) of an assignment statement. The second, called for const arrays, may be used only on the right.

The Debug version of the library asserts if the subscript (either on the left or right side of an assignment
statement) is out of bounds.

CArray<CPoint,CPoint> myArray;

// Add elements to the array.
for (int i = 0; i < 10; i++)
 myArray.Add(CPoint(i, 2*i));

// Modify all the points in the array.
for (int i = 0; i <= myArray.GetUpperBound(); i++)
{
 myArray[i].x = 0;
}

CArray::RelocateElements

template<class TYPE, class ARG_TYPE>
AFX_INLINE void CArray<TYPE, ARG_TYPE>::RelocateElements(
 TYPE* pNewData,
 const TYPE* pData,
 INT_PTR nCount);

ParametersParameters

RemarksRemarks

CArray::RemoveAll

void RemoveAll();

RemarksRemarks

ExampleExample

Relocates data to a new buffer when the array should grow or shrink.

pNewData
A new buffer for the array of elements.

pData
The old array of elements.

nCount
Number of elements in the old array.

pNewData is always large enough to hold all the pData elements.

The CArray implementation uses this method to copy the old data to a new buffer when the array should grow
or shrink (when SetSize or FreeExtra are called). The default implementation just copies the data.

For arrays in which an element contains a pointer to one of its own members, or another structure contains a
pointer to one of the array elements, the pointers are not updated in plain copy. In this case, you can correct
pointers by implementing a specialization of RelocateElements with the relevant types. You are also responsible
for data copying.

Removes all the elements from this array.

If the array is already empty, the function still works.

CArray<CPoint,CPoint> myArray;

// Add elements to the array.
for (int i = 0; i < 10; i++)
 myArray.Add(CPoint(i, 2*i));

myArray.RemoveAll();

#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << "myArray: " << &myArray << "\n";
#endif

CArray::RemoveAt

void RemoveAt(
 INT_PTR nIndex,
 INT_PTR nCount = 1);

ParametersParameters

RemarksRemarks

ExampleExample

CArray<CPoint,CPoint> myArray;

// Add elements to the array.
for (int i = 0; i < 10; i++)
 myArray.Add(CPoint(i, 2*i));

myArray.RemoveAt(5);

#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << "myArray: " << &myArray << "\n";
#endif

CArray::SetAt

void SetAt(INT_PTR nIndex, ARG_TYPE newElement);

Removes one or more elements starting at a specified index in an array.

nIndex
An integer index that is greater than or equal to 0 and less than or equal to the value returned by
GetUpperBound.

nCount
The number of elements to remove.

In the process, it shifts down all the elements above the removed element(s). It decrements the upper bound of
the array but does not free memory.

If you try to remove more elements than are contained in the array above the removal point, then the Debug
version of the library asserts.

Sets the array element at the specified index.

ParametersParameters

RemarksRemarks

ExampleExample

CArray::SetAtGrow

void SetAtGrow(INT_PTR nIndex, ARG_TYPE newElement);

ParametersParameters

RemarksRemarks

ExampleExample

// example for CArray::SetAtGrow
CArray<CPoint,CPoint> ptArray;

ptArray.Add(CPoint(10,20)); // Element 0
ptArray.Add(CPoint(30,40)); // Element 1
// Element 2 deliberately skipped
ptArray.SetAtGrow(3, CPoint(50,60)); // Element 3

CArray::SetSize

nIndex
An integer index that is greater than or equal to 0 and less than or equal to the value returned by
GetUpperBound.

ARG_TYPE
Template parameter specifying the type of arguments used for referencing array elements.

newElement
The new element value to be stored at the specified position.

SetAt will not cause the array to grow. Use SetAtGrow if you want the array to grow automatically.

You must ensure that your index value represents a valid position in the array. If it is out of bounds, then the
Debug version of the library asserts.

See the example for GetAt.

Sets the array element at the specified index.

nIndex
An integer index that is greater than or equal to 0.

ARG_TYPE
Template parameter specifying the type of elements in the array.

newElement
The element to be added to this array. A NULL value is allowed.

The array grows automatically if necessary (that is, the upper bound is adjusted to accommodate the new
element).

Establishes the size of an empty or existing array; allocates memory if necessary.

void SetSize(
 INT_PTR nNewSize,
 INT_PTR nGrowBy = -1);

ParametersParameters

RemarksRemarks

ExampleExample

See also

nNewSize
The new array size (number of elements). Must be greater than or equal to 0.

nGrowBy
The minimum number of element slots to allocate if a size increase is necessary.

If the new size is smaller than the old size, then the array is truncated and all unused memory is released.

Use this function to set the size of your array before you begin using the array. If you do not use SetSize ,
adding elements to your array causes it to be frequently reallocated and copied. Frequent reallocation and
copying are inefficient and can fragment memory.

The nGrowBy parameter affects internal memory allocation while the array is growing. Its use never affects the
array size as reported by GetSize and GetUpperBound. If the default value is used, MFC allocates memory in a
way calculated to avoid memory fragmentation and optimize efficiency for most cases.

See the example for GetData.

MFC Sample COLLECT
CObject Class
Hierarchy Chart
CObArray Class
Collection Class Helpers

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CAsyncMonikerFile Class
3/5/2019 • 9 minutes to read • Edit Online

Syntax
class CAsyncMonikerFile : public CMonikerFile

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAsyncMonikerFile::CAsyncMonikerFile Constructs a CAsyncMonikerFile object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAsyncMonikerFile::Close Closes and releases all resources.

CAsyncMonikerFile::GetBinding Retrieves a pointer to the asynchronous transfer binding.

CAsyncMonikerFile::GetFormatEtc Retrieves the format of the data in the stream.

CAsyncMonikerFile::Open Opens a file asynchronously.

Protected MethodsProtected Methods

NAME DESCRIPTION

CAsyncMonikerFile::CreateBindStatusCallback Creates a COM object that implements
IBindStatusCallback .

CAsyncMonikerFile::GetBindInfo Called by the OLE system library to request information on
the type of bind to be created.

CAsyncMonikerFile::GetPriority Called by the OLE system library to get the priority of the
binding.

CAsyncMonikerFile::OnDataAvailable Called to provide data as it becomes available to the client
during asynchronous bind operations.

CAsyncMonikerFile::OnLowResource Called when resources are low.

CAsyncMonikerFile::OnProgress Called to indicate progress on the data downloading process.

Provides functionality for the use of asynchronous monikers in ActiveX controls (formerly OLE controls).

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/casyncmonikerfile-class.md

CAsyncMonikerFile::OnStartBinding Called when binding is starting up.

CAsyncMonikerFile::OnStopBinding Called when asynchronous transfer is stopped.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CAsyncMonikerFile::CAsyncMonikerFile

CAsyncMonikerFile();

RemarksRemarks

CAsyncMonikerFile::Close

Derived from CMonikerFile, which in turn is derived from COleStreamFile, CAsyncMonikerFile uses the
IMoniker interface to access any data stream asynchronously, including loading files asynchronously from a
URL. The files can be datapath properties of ActiveX controls.

Asynchronous monikers are used primarily in Internet-enabled applications and ActiveX controls to provide a
responsive user-interface during file transfers. A prime example of this is the use of CDataPathProperty to
provide asynchronous properties for ActiveX controls. The CDataPathProperty object will repeatedly get a
callback to indicate availability of new data during a lengthy property exchange process.

For more information about how to use asynchronous monikers and ActiveX controls in Internet applications,
see the following articles:

Internet First Steps: Asynchronous Monikers

Internet First Steps: ActiveX Controls

CObject

CFile

COleStreamFile

CMonikerFile

CAsyncMonikerFile

Header: afxole.h

Constructs a CAsyncMonikerFile object.

It does not create the IBindHost interface. IBindHost is used only if you provide it in the Open member
function.

For a description of the IBindHost interface, see the Windows SDK.

Call this function to close and release all resources.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-imoniker

virtual void Close();

RemarksRemarks

CAsyncMonikerFile::CreateBindStatusCallback

virtual IUnknown* CreateBindStatusCallback(IUnknown* pUnkControlling);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAsyncMonikerFile::GetBindInfo

virtual DWORD GetBindInfo() const;

Return ValueReturn Value

RemarksRemarks

Can be called on unopened or already closed files.

Creates a COM object that implements IBindStatusCallback .

pUnkControlling
A pointer to the controlling unknown (the outer IUnknown) or NULL if aggregation is not being used.

If pUnkControlling is not NULL, the function returns a pointer to the inner IUnknown on a new COM object
supporting IBindStatusCallback . If pUnkControlling is NULL, the function returns a pointer to an IUnknown on
a new COM object supporting IBindStatusCallback .

CAsyncMonikerFile requires a COM object that implements IBindStatusCallback . MFC implements such an
object, and it is aggregatable. You can override CreateBindStatusCallback to return your own COM object. Your
COM object can aggregate MFC's implementation by calling CreateBindStatusCallback with the controlling
unknown of your COM object. COM objects implemented using the CCmdTarget COM support can retrieve the
controlling unknown using CCmdTarget::GetControllingUnknown .

Alternately, your COM object can delegate to MFC's implementation by calling
CreateBindStatusCallback(NULL) .

CAsyncMonikerFile::Open calls CreateBindStatusCallback .

For more information about asynchronous monikers and asynchronous binding, see the IBindStatusCallback
interface and How Asynchronous Binding and Storage Work. For a discussion of aggregation, see Aggregation.
All three topics are in the Windows SDK.

Called from the client of an asynchronous moniker to tell the asynchronous moniker how it wants to bind.

Retrieves the settings for IBindStatusCallBack . For a description of the IBindStatusCallback interface, see the
Windows SDK.

The default implementation sets the binding to be asynchronous, to use a storage medium (a stream), and to
use the data-push model. Override this function if you want to change the behavior of the binding.

One reason for doing this would be to bind using the data-pull model instead of the data-push model. In a data-
pull model, the client drives the bind operation, and the moniker only provides data to the client when it is read.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/ms775060(v=vs.85)
https://docs.microsoft.com/windows/desktop/Stg/how-asynchronous-binding-and-storage-work
https://docs.microsoft.com/windows/desktop/com/aggregation

CAsyncMonikerFile::GetBinding

IBinding* GetBinding() const;

Return ValueReturn Value

RemarksRemarks

CAsyncMonikerFile::GetFormatEtc

FORMATETC* GetFormatEtc() const;

Return ValueReturn Value

CAsyncMonikerFile::GetPriority

virtual LONG GetPriority() const;

Return ValueReturn Value

RemarksRemarks

CAsyncMonikerFile::OnDataAvailable

In a data-push model, the moniker drives the asynchronous bind operation and continuously notifies the client
whenever new data is available.

Call this function to retrieve a pointer to the asynchronous transfer binding.

A pointer to the IBinding interface provided when asynchronous transfer begins. Returns NULL if for any
reason the transfer cannot be made asynchronously.

This allows you to control the data transfer process through the IBinding interface, for example, with
IBinding::Abort , IBinding::Pause , and IBinding::Resume .

For a description of the IBinding interface, see the Windows SDK.

Call this function to retrieve the format of the data in the stream.

A pointer to the Windows structure FORMATETC for the currently opened stream. Returns NULL if the moniker
has not been bound, if it is not asynchronous, or if the asynchronous operation has not begun.

Called from the client of an asynchronous moniker as the binding process starts to receive the priority given to
the thread for the binding operation.

The priority at which the asynchronous transfer will take place. One of the standard thread priority flags:
THREAD_PRIORITY_ABOVE_NORMAL, THREAD_PRIORITY_BELOW_NORMAL,
THREAD_PRIORITY_HIGHEST, THREAD_PRIORITY_IDLE, THREAD_PRIORITY_LOWEST,
THREAD_PRIORITY_NORMAL, and THREAD_PRIORITY_TIME_CRITICAL. See the Windows function
SetThreadPriority for a description of these values.

GetPriority should not be called directly. THREAD_PRIORITY_NORMAL is returned by the default
implementation.

An asynchronous moniker calls OnDataAvailable to provide data to the client as it becomes available, during
asynchronous bind operations.

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setthreadpriority

virtual void OnDataAvailable(DWORD dwSize, DWORD bscfFlag);

ParametersParameters

RemarksRemarks

ExampleExample

void CMyMoniker::OnDataAvailable(DWORD dwSize, DWORD bscfFlag)
{
 if ((bscfFlag & BSCF_FIRSTDATANOTIFICATION) != 0)
 {
 m_dwReadBefore = 0;
 m_strText.Empty();
 }

 DWORD dwArriving = dwSize - m_dwReadBefore;

 if (dwArriving > 0)
 {
 int nLen = m_strText.GetLength();
 ASSERT((DWORD)nLen == m_dwReadBefore);
 LPTSTR psz = m_strText.GetBuffer(nLen + dwArriving);
 Read(psz + nLen, dwArriving);
 m_strText.ReleaseBuffer(nLen + dwArriving);
 m_dwReadBefore = dwSize;
 }
}

CAsyncMonikerFile::OnLowResource

virtual void OnLowResource();

RemarksRemarks

CAsyncMonikerFile::OnProgress

dwSize
The cumulative amount (in bytes) of data available since the beginning of the binding. Can be zero, indicating
that the amount of data is not relevant to the operation, or that no specific amount became available.

bscfFlag
A BSCF enumeration value. Can be one or more of the following values:

BSCF_FIRSTDATANOTIFICATION Identifies the first call to OnDataAvailable for a given bind operation.

BSCF_INTERMEDIATEDATANOTIFICATION Identifies an intermediary call to OnDataAvailable for a
bind operation.

BSCF_LASTDATANOTIFICATION Identifies the last call to OnDataAvailable for a bind operation.

The default implementation of this function does nothing. See the following example for a sample
implementation.

Called by the moniker when resources are low.

The default implementation calls GetBinding()-> Abort() .

Called by the moniker repeatedly to indicate the current progress of this bind operation, typically at reasonable
intervals during a lengthy operation.

virtual void OnProgress(
 ULONG ulProgress,
 ULONG ulProgressMax,
 ULONG ulStatusCode,
 LPCTSTR szStatusText);

ParametersParameters

RemarksRemarks

BINDSTATUS_FINDINGRESOURCE The bind operation is finding the resource that holds the
object or storage being bound to. The szStatusText provides
the display name of the resource being searched for (for
example, "www.microsoft.com").

BINDSTATUS_CONNECTING The bind operation is connecting to the resource that holds
the object or storage being bound to. The szStatusText
provides the display name of the resource being connected
to (for example, an IP address).

BINDSTATUS_SENDINGREQUEST The bind operation is requesting the object or storage being
bound to. The szStatusText provides the display name of the
object (for example, a file name).

BINDSTATUS_REDIRECTING The bind operation has been redirected to a different data
location. The szStatusText provides the display name of the
new data location.

BINDSTATUS_USINGCACHEDCOPY The bind operation is retrieving the requested object or
storage from a cached copy. The szStatusText is NULL.

BINDSTATUS_BEGINDOWNLOADDATA The bind operation has begun receiving the object or
storage being bound to. The szStatusText provides the
display name of the data location.

BINDSTATUS_DOWNLOADINGDATA The bind operation continues to receive the object or
storage being bound to. The szStatusText provides the
display name of the data location.

ulProgress
Indicates the current progress of the bind operation relative to the expected maximum indicated in
ulProgressMax.

ulProgressMax
Indicates the expected maximum value of ulProgress for the duration of calls to OnProgress for this operation.

ulStatusCode
Provides additional information regarding the progress of the bind operation. Valid values are taken from the
BINDSTATUS enumeration. See Remarks for possible values.

szStatusText
Information about the current progress, depending on the value of ulStatusCode. See Remarks for possible
values.

Possible values for ulStatusCode (and the szStatusText for each value) are:

BINDSTATUS_ENDDOWNLOADDATA The bind operation has finished receiving the object or
storage being bound to. The szStatusText provides the
display name of the data location.

BINDSTATUS_CLASSIDAVAILABLE An instance of the object being bound to is just about to be
created. The szStatusText provides the CLSID of the new
object in string format, allowing the client an opportunity to
cancel the bind operation, if desired.

CAsyncMonikerFile::OnStartBinding

virtual void OnStartBinding();

RemarksRemarks

CAsyncMonikerFile::OnStopBinding

virtual void OnStopBinding(HRESULT hresult, LPCTSTR szError);

ParametersParameters

RemarksRemarks

CAsyncMonikerFile::Open

Override this function in your derived classes to perform actions when binding is starting up.

This function is called back by the moniker. The default implementation does nothing.

Called by the moniker at the end of the bind operation.

hresult
An HRESULT that is the error or warning value.

szErrort
A character string describing the error.

Override this function to perform actions when the transfer is stopped. By default, the function releases
IBinding .

For a description of the IBinding interface, see the Windows SDK.

Call this member function to open a file asynchronously.

virtual BOOL Open(
 LPCTSTR lpszURL,
 CFileException* pError = NULL);

virtual BOOL Open(
 IMoniker* pMoniker,
 CFileException* pError = NULL);

virtual BOOL Open(
 LPCTSTR lpszURL,
 IBindHost* pBindHost,
 CFileException* pError = NULL);

virtual BOOL Open(
 IMoniker* pMoniker,
 IBindHost* pBindHost,
 CFileException* pError = NULL);

virtual BOOL Open(
 LPCTSTR lpszURL,
 IServiceProvider* pServiceProvider,
 CFileException* pError = NULL);

virtual BOOL Open(
 IMoniker* pMoniker,
 IServiceProvider* pServiceProvider,
 CFileException* pError = NULL);

virtual BOOL Open(
 LPCTSTR lpszURL,
 IUnknown* pUnknown,
 CFileException* pError = NULL);

virtual BOOL Open(
 IMoniker* pMoniker,
 IUnknown* pUnknown,
 CFileException* pError = NULL);

ParametersParameters
lpszURL
A pointer to file to be opened asynchronously. The file can be any valid URL or filename.

pError
A pointer to the file exceptions. In the event of an error, it will be set to the cause.

pMoniker
A pointer to the asynchronous moniker interface IMoniker , a precise moniker that is the combination of the
document's own moniker, which you can retrieve with IOleClientSite::GetMoniker(OLEWHICHMK_CONTAINER) , and a
moniker created from the path name. The control can use this moniker to bind, but this is not the moniker the
control should save.

pBindHost
A pointer to the IBindHost interface that will be used to create the moniker from a potentially relative
pathname. If the bind host is invalid or does not provide a moniker, the call defaults to
Open(lpszFileName,pError) . For a description of the IBindHost interface, see the Windows SDK.

pServiceProvider
A pointer to the IServiceProvider interface. If the service provider is invalid or fails to provide the service for
IBindHost , the call defaults to Open(lpszFileName,pError) .

pUnknown

Return ValueReturn Value

RemarksRemarks

CMyMoniker* pMyMoniker = new CMyMoniker();
pMyMoniker->Open(_T("http://www.microsoft.com"));

CMyMoniker* pMyMoniker = new CMyMoniker();
pMyMoniker->Open(_T("file:c:\\mydata.dat"));

See also

A pointer to the IUnknown interface. If IServiceProvider is found, the function queries for IBindHost . If the
service provider is invalid or fails to provide the service for IBindHost , the call defaults to
Open(lpszFileName,pError) .

Nonzero if the file is opened successfully; otherwise 0.

This call initiates the binding process.

You can use a URL or a filename for the lpszURL parameter. For example:

- or -

CMonikerFile Class
Hierarchy Chart
CMonikerFile Class
CDataPathProperty Class

CAsyncSocket Class
3/4/2019 • 56 minutes to read • Edit Online

Syntax
class CAsyncSocket : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CAsyncSocket::CAsyncSocket Constructs a CAsyncSocket object.

Public MethodsPublic Methods

NAME DESCRIPTION

CAsyncSocket::Accept Accepts a connection on the socket.

CAsyncSocket::AsyncSelect Requests event notification for the socket.

CAsyncSocket::Attach Attaches a socket handle to a CAsyncSocket object.

CAsyncSocket::Bind Associates a local address with the socket.

CAsyncSocket::Close Closes the socket.

CAsyncSocket::Connect Establishes a connection to a peer socket.

CAsyncSocket::Create Creates a socket.

CAsyncSocket::Detach Detaches a socket handle from a CAsyncSocket object.

CAsyncSocket::FromHandle Returns a pointer to a CAsyncSocket object, given a
socket handle.

CAsyncSocket::GetLastError Gets the error status for the last operation that failed.

CAsyncSocket::GetPeerName Gets the address of the peer socket to which the socket is
connected.

CAsyncSocket::GetPeerNameEx Gets the address of the peer socket to which the socket is
connected (handles IPv6 addresses).

Represents a Windows Socket — an endpoint of network communication.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/casyncsocket-class.md

CAsyncSocket::GetSockName Gets the local name for a socket.

CAsyncSocket::GetSockNameEx Gets the local name for a socket (handles IPv6 addresses).

CAsyncSocket::GetSockOpt Retrieves a socket option.

CAsyncSocket::IOCtl Controls the mode of the socket.

CAsyncSocket::Listen Establishes a socket to listen for incoming connection
requests.

CAsyncSocket::Receive Receives data from the socket.

CAsyncSocket::ReceiveFrom Receives a datagram and stores the source address.

CAsyncSocket::ReceiveFromEx Receives a datagram and stores the source address
(handles IPv6 addresses).

CAsyncSocket::Send Sends data to a connected socket.

CAsyncSocket::SendTo Sends data to a specific destination.

CAsyncSocket::SendToEx Sends data to a specific destination (handles IPv6
addresses).

CAsyncSocket::SetSockOpt Sets a socket option.

CAsyncSocket::ShutDown Disables Send and/or Receive calls on the socket.

CASyncSocket::Socket Allocates a socket handle.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CAsyncSocket::OnAccept Notifies a listening socket that it can accept pending
connection requests by calling Accept .

CAsyncSocket::OnClose Notifies a socket that the socket connected to it has closed.

CAsyncSocket::OnConnect Notifies a connecting socket that the connection attempt is
complete, whether successfully or in error.

CAsyncSocket::OnOutOfBandData Notifies a receiving socket that there is out-of-band data to
be read on the socket, usually an urgent message.

CAsyncSocket::OnReceive Notifies a listening socket that there is data to be retrieved
by calling Receive .

CAsyncSocket::OnSend Notifies a socket that it can send data by calling Send .

Public OperatorsPublic Operators

NAME DESCRIPTION

CAsyncSocket::operator = Assigns a new value to a CAsyncSocket object.

CAsyncSocket::operator SOCKET Use this operator to retrieve the SOCKET handle of the
CAsyncSocket object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CAsyncSocket::m_hSocket Indicates the SOCKET handle attached to this
CAsyncSocket object.

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

CAsyncSocket::Accept

Class CAsyncSocket encapsulates the Windows Socket Functions API, providing an object-oriented
abstraction for programmers who want to use Windows Sockets in conjunction with MFC.

This class is based on the assumption that you understand network communications. You are responsible for
handling blocking, byte-order differences, and conversions between Unicode and multibyte character set
(MBCS) strings. If you want a more convenient interface that manages these issues for you, see class CSocket.

To use a CAsyncSocket object, call its constructor, then call the Create function to create the underlying socket
handle (type SOCKET), except on accepted sockets. For a server socket call the Listen member function, and for
a client socket call the Connect member function. The server socket should call the Accept function upon
receiving a connection request. Use the remaining CAsyncSocket functions to carry out communications
between sockets. Upon completion, destroy the CAsyncSocket object if it was created on the heap; the
destructor automatically calls the Close function. The SOCKET data type is described in the article Windows
Sockets: Background.

When using MFC sockets in secondary threads in a statically linked MFC application, you must call AfxSocketInit in
each thread that uses sockets to initialize the socket libraries. By default, AfxSocketInit is called only in the primary
thread.

For more information, see Windows Sockets: Using Class CAsyncSocket and related articles., as well as
Windows Sockets 2 API.

CObject

CAsyncSocket

Header: afxsock.h

Call this member function to accept a connection on a socket.

https://docs.microsoft.com/windows/desktop/WinSock/windows-sockets-start-page-2

virtual BOOL Accept(
 CAsyncSocket& rConnectedSocket,
 SOCKADDR* lpSockAddr = NULL,
 int* lpSockAddrLen = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAsyncSocket::AsyncSelect

rConnectedSocket
A reference identifying a new socket that is available for connection.

lpSockAddr
A pointer to a SOCKADDR structure that receives the address of the connecting socket, as known on the
network. The exact format of the lpSockAddr argument is determined by the address family established when
the socket was created. If lpSockAddr and/or lpSockAddrLen are equal to NULL, then no information about
the remote address of the accepted socket is returned.

lpSockAddrLen
A pointer to the length of the address in lpSockAddr in bytes. The lpSockAddrLen is a value-result parameter:
it should initially contain the amount of space pointed to by lpSockAddr; on return it will contain the actual
length (in bytes) of the address returned.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEFAULT The lpSockAddrLen argument is too small (less than the size of a SOCKADDR structure).

WSAEINPROGRESS A blocking Windows Sockets call is in progress.

WSAEINVAL Listen was not invoked prior to accept.

WSAEMFILE The queue is empty upon entry to accept and there are no descriptors available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not a type that supports connection-oriented service.

WSAEWOULDBLOCK The socket is marked as nonblocking and no connections are present to be
accepted.

This routine extracts the first connection in the queue of pending connections, creates a new socket with the
same properties as this socket, and attaches it to rConnectedSocket. If no pending connections are present on
the queue, Accept returns zero and GetLastError returns an error. The accepted socket (rConnectedSocket)
cannot be used to accept more connections. The original socket remains open and listening.

The argument lpSockAddr is a result parameter that is filled in with the address of the connecting socket, as
known to the communications layer. Accept is used with connection-based socket types such as
SOCK_STREAM.

Call this member function to request event notification for a socket.

https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2
https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2

BOOL AsyncSelect(long lEvent = FD_READ | FD_WRITE | FD_OOB | FD_ACCEPT | FD_CONNECT | FD_CLOSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAsyncSocket::Attach

BOOL Attach(
 SOCKET hSocket, long lEvent = FD_READ | FD_WRITE | FD_OOB | FD_ACCEPT | FD_CONNECT | FD_CLOSE);

ParametersParameters

lEvent
A bitmask which specifies a combination of network events in which the application is interested.

FD_READ Want to receive notification of readiness for reading.

FD_WRITE Want to receive notification when data is available to be read.

FD_OOB Want to receive notification of the arrival of out-of-band data.

FD_ACCEPT Want to receive notification of incoming connections.

FD_CONNECT Want to receive notification of connection results.

FD_CLOSE Want to receive notification when a socket has been closed by a peer.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEINVAL Indicates that one of the specified parameters was invalid.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

This function is used to specify which MFC callback notification functions will be called for the socket.
AsyncSelect automatically sets this socket to nonblocking mode. For more information, see the article

Windows Sockets: Socket Notifications.

Call this member function to attach the hSocket handle to an CAsyncSocket object.

hSocket
Contains a handle to a socket.

lEvent
A bitmask which specifies a combination of network events in which the application is interested.

FD_READ Want to receive notification of readiness for reading.

FD_WRITE Want to receive notification when data is available to be read.

FD_OOB Want to receive notification of the arrival of out-of-band data.

FD_ACCEPT Want to receive notification of incoming connections.

FD_CONNECT Want to receive notification of connection results.

Return ValueReturn Value

RemarksRemarks

CAsyncSocket::Bind

BOOL Bind(
 UINT nSocketPort,
 LPCTSTR lpszSocketAddress = NULL);

BOOL Bind (
 const SOCKADDR* lpSockAddr,
 int nSockAddrLen);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

FD_CLOSE Want to receive notification when a socket has been closed by a peer.

Nonzero if the function is successful.

The SOCKET handle is stored in the object's m_hSocket data member.

Call this member function to associate a local address with the socket.

nSocketPort
The port identifying the socket application.

lpszSocketAddress
The network address, a dotted number such as "128.56.22.8". Passing the NULL string for this parameter
indicates the CAsyncSocket instance should listen for client activity on all network interfaces.

lpSockAddr
A pointer to a SOCKADDR structure that contains the address to assign to this socket.

nSockAddrLen
The length of the address in lpSockAddr in bytes.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEADDRINUSE The specified address is already in use. (See the SO_REUSEADDR socket option
under SetSockOpt.)

WSAEFAULT The nSockAddrLen argument is too small (less than the size of a SOCKADDR structure).

WSAEINPROGRESS A blocking Windows Sockets call is in progress.

WSAEAFNOSUPPORT The specified address family is not supported by this port.

WSAEINVAL The socket is already bound to an address.

WSAENOBUFS Not enough buffers available, too many connections.

WSAENOTSOCK The descriptor is not a socket.

This routine is used on an unconnected datagram or stream socket, before subsequent Connect or Listen

https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2
https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2

CAsyncSocket::CAsyncSocket

CAsyncSocket();

RemarksRemarks

CAsyncSocket::Close

virtual void Close();

RemarksRemarks

CAsyncSocket::Connect

BOOL Connect(
 LPCTSTR lpszHostAddress,
 UINT nHostPort);

BOOL Connect(
 const SOCKADDR* lpSockAddr,
 int nSockAddrLen);

ParametersParameters

calls. Before it can accept connection requests, a listening server socket must select a port number and make it
known to Windows Sockets by calling Bind . Bind establishes the local association (host address/port
number) of the socket by assigning a local name to an unnamed socket.

Constructs a blank socket object.

After constructing the object, you must call its Create member function to create the SOCKET data structure
and bind its address. (On the server side of a Windows Sockets communication, when the listening socket
creates a socket to use in the Accept call, you do not call Create for that socket.)

Closes the socket.

This function releases the socket descriptor so that further references to it will fail with the error
WSAENOTSOCK. If this is the last reference to the underlying socket, the associated naming information and
queued data are discarded. The socket object's destructor calls Close for you.

For CAsyncSocket , but not for CSocket , the semantics of Close are affected by the socket options
SO_LINGER and SO_DONTLINGER. For further information, see member function GetSockOpt .

Call this member function to establish a connection to an unconnected stream or datagram socket.

lpszHostAddress
The network address of the socket to which this object is connected: a machine name such as
"ftp.microsoft.com", or a dotted number such as "128.56.22.8".

nHostPort
The port identifying the socket application.

lpSockAddr
A pointer to a SOCKADDR structure that contains the address of the connected socket.

nSockAddrLen
The length of the address in lpSockAddr in bytes.

https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2

Return ValueReturn Value

RemarksRemarks

CAsyncSocket::Create

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. If this indicates an error code of WSAEWOULDBLOCK, and your application is using the
overridable callbacks, your application will receive an OnConnect message when the connect operation is
complete. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEADDRINUSE The specified address is already in use.

WSAEINPROGRESS A blocking Windows Sockets call is in progress.

WSAEADDRNOTAVAIL The specified address is not available from the local machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with this socket.

WSAECONNREFUSED The attempt to connect was rejected.

WSAEDESTADDRREQ A destination address is required.

WSAEFAULT The nSockAddrLen argument is incorrect.

WSAEINVAL Invalid host address.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENETUNREACH The network cannot be reached from this host at this time.

WSAENOBUFS No buffer space is available. The socket cannot be connected.

WSAENOTSOCK The descriptor is not a socket.

WSAETIMEDOUT Attempt to connect timed out without establishing a connection.

WSAEWOULDBLOCK The socket is marked as nonblocking and the connection cannot be completed
immediately.

If the socket is unbound, unique values are assigned to the local association by the system, and the socket is
marked as bound. Note that if the address field of the name structure is all zeroes, Connect will return zero. To
get extended error information, call the GetLastError member function.

For stream sockets (type SOCK_STREAM), an active connection is initiated to the foreign host. When the
socket call completes successfully, the socket is ready to send/receive data.

For a datagram socket (type SOCK_DGRAM), a default destination is set, which will be used on subsequent
Send and Receive calls.

Call the Create member function after constructing a socket object to create the Windows socket and attach
it.

BOOL Create(
 UINT nSocketPort = 0,
 int nSocketType = SOCK_STREAM,
 long lEvent = FD_READ | FD_WRITE | FD_OOB | FD_ACCEPT | FD_CONNECT | FD_CLOSE,
 LPCTSTR lpszSocketAddress = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nSocketPort
A well-known port to be used with the socket, or 0 if you want Windows Sockets to select a port.

nSocketType
SOCK_STREAM or SOCK_DGRAM.

lEvent
A bitmask which specifies a combination of network events in which the application is interested.

FD_READ Want to receive notification of readiness for reading.

FD_WRITE Want to receive notification of readiness for writing.

FD_OOB Want to receive notification of the arrival of out-of-band data.

FD_ACCEPT Want to receive notification of incoming connections.

FD_CONNECT Want to receive notification of completed connection.

FD_CLOSE Want to receive notification of socket closure.

lpszSockAddress
A pointer to a string containing the network address of the connected socket, a dotted number such as
"128.56.22.8".Passing the NULL string for this parameter indicates the CAsyncSocket instance should listen
for client activity on all network interfaces.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEAFNOSUPPORT The specified address family is not supported.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAEMFILE No more file descriptors are available.

WSAENOBUFS No buffer space is available. The socket cannot be created.

WSAEPROTONOSUPPORT The specified port is not supported.

WSAEPROTOTYPE The specified port is the wrong type for this socket.

WSAESOCKTNOSUPPORT The specified socket type is not supported in this address family.

Create calls Socket and if successful, it calls Bind to bind the socket to the specified address. The following
socket types are supported:

SOCK_STREAM Provides sequenced, reliable, full-duplex, connection-based byte streams. Uses the

IMPORTANTIMPORTANT

CAsyncSocket::Detach

SOCKET Detach();

CAsyncSocket::FromHandle

static CAsyncSocket* PASCAL FromHandle(SOCKET hSocket);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAsyncSocket::GetLastError

static int PASCAL GetLastError();

Return ValueReturn Value

NOTENOTE

Transmission Control Protocol (TCP) for the Internet address family.

SOCK_DGRAM Supports datagrams, which are connectionless, unreliable packets of a fixed (typically
small) maximum length. Uses the User Datagram Protocol (UDP) for the Internet address family.

The Accept member function takes a reference to a new, empty CSocket object as its parameter. You must
construct this object before you call Accept . Keep in mind that if this socket object goes out of scope, the
connection closes. Do not call Create for this new socket object.

Create is not thread-safe. If you are calling it in a multi-threaded environment where it could be invoked
simultaneously by different threads, be sure to protect each call with a mutex or other synchronization lock.

For more information about stream and datagram sockets, see the articles Windows Sockets: Background and
Windows Sockets: Ports and Socket Addresses and Windows Sockets 2 API.

Call this member function to detach the SOCKET handle in the m_hSocket data member from the
CAsyncSocket object and set m_hSocket to NULL.

Returns a pointer to a CAsyncSocket object.

hSocket
Contains a handle to a socket.

A pointer to an CAsyncSocket object, or NULL if there is no CAsyncSocket object attached to hSocket.

When given a SOCKET handle, if a CAsyncSocket object is not attached to the handle, the member function
returns NULL.

Call this member function to get the error status for the last operation that failed.

https://docs.microsoft.com/windows/desktop/WinSock/windows-sockets-start-page-2

RemarksRemarks

CAsyncSocket::GetPeerName

BOOL GetPeerName(
 CString& rPeerAddress,
 UINT& rPeerPort);

BOOL GetPeerName(
 SOCKADDR* lpSockAddr,
 int* lpSockAddrLen);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAsyncSocket::GetPeerNameEx

The return value indicates the error code for the last Windows Sockets API routine performed by this thread.

When a particular member function indicates that an error has occurred, GetLastError should be called to
retrieve the appropriate error code. See the individual member function descriptions for a list of applicable
error codes.

For more information about the error codes, see Windows Sockets 2 API.

Call this member function to get the address of the peer socket to which this socket is connected.

rPeerAddress
Reference to a CString object that receives a dotted number IP address.

rPeerPort
Reference to a UINT that stores a port.

lpSockAddr
A pointer to the SOCKADDR structure that receives the name of the peer socket.

lpSockAddrLen
A pointer to the length of the address in lpSockAddr in bytes. On return, the lpSockAddrLen argument
contains the actual size of lpSockAddr returned in bytes.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEFAULT The lpSockAddrLen argument is not large enough.

WSAEINPROGRESS A blocking Windows Sockets call is in progress.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

To handle IPv6 addresses, use CAsyncSocket::GetPeerNameEx.

Call this member function to get the address of the peer socket to which this socket is connected (handles
IPv6 addresses).

https://docs.microsoft.com/windows/desktop/WinSock/windows-sockets-start-page-2
https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2

BOOL GetPeerNameEx(
 CString& rPeerAddress,
 UINT& rPeerPort);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAsyncSocket::GetSockName

BOOL GetSockName(
 CString& rSocketAddress,
 UINT& rSocketPort);

BOOL GetSockName(
 SOCKADDR* lpSockAddr,
 int* lpSockAddrLen);

ParametersParameters

Return ValueReturn Value

rPeerAddress
Reference to a CString object that receives a dotted number IP address.

rPeerPort
Reference to a UINT that stores a port.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEFAULT The lpSockAddrLen argument is not large enough.

WSAEINPROGRESS A blocking Windows Sockets call is in progress.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

This function is the same as CAsyncSocket::GetPeerName except that it handles IPv6 addresses as well as
older protocols.

Call this member function to get the local name for a socket.

rSocketAddress
Reference to a CString object that receives a dotted number IP address.

rSocketPort
Reference to a UINT that stores a port.

lpSockAddr
A pointer to a SOCKADDR structure that receives the address of the socket.

lpSockAddrLen
A pointer to the length of the address in lpSockAddr in bytes.

https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2

RemarksRemarks

CAsyncSocket::GetSockNameEx

BOOL GetSockNameEx(
 CString& rSocketAddress,
 UINT& rSocketPort);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEFAULT The lpSockAddrLen argument is not large enough.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEINVAL The socket has not been bound to an address with Bind .

This call is especially useful when a Connect call has been made without doing a Bind first; this call provides
the only means by which you can determine the local association which has been set by the system.

To handle IPv6 addresses, use CAsyncSocket::GetSockNameEx

Call this member function to get the local name for a socket (handles IPv6 addresses).

rSocketAddress
Reference to a CString object that receives a dotted number IP address.

rSocketPort
Reference to a UINT that stores a port.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEFAULT The lpSockAddrLen argument is not large enough.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEINVAL The socket has not been bound to an address with Bind .

This call is the same as CAsyncSocket::GetSockName except that it handles IPv6 addresses as well as older
protocols.

This call is especially useful when a Connect call has been made without doing a Bind first; this call provides
the only means by which you can determine the local association which has been set by the system.

 CAsyncSocket::GetSockOpt

BOOL GetSockOpt(
 int nOptionName,
 void* lpOptionValue,
 int* lpOptionLen,
 int nLevel = SOL_SOCKET);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Call this member function to retrieve a socket option.

nOptionName
The socket option for which the value is to be retrieved.

lpOptionValue
A pointer to the buffer in which the value for the requested option is to be returned. The value associated with
the selected option is returned in the buffer lpOptionValue. The integer pointed to by lpOptionLen should
originally contain the size of this buffer in bytes; and on return, it will be set to the size of the value returned.
For SO_LINGER, this will be the size of a LINGER structure; for all other options it will be the size of a BOOL
or an int, depending on the option. See the list of options and their sizes in the Remarks section.

lpOptionLen
A pointer to the size of the lpOptionValue buffer in bytes.

nLevel
The level at which the option is defined; the only supported levels are SOL_SOCKET and IPPROTO_TCP.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. If an option was never set with SetSockOpt , then GetSockOpt returns the default value for the
option. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEFAULT The lpOptionLen argument was invalid.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAENOPROTOOPT The option is unknown or unsupported. In particular, SO_BROADCAST is not
supported on sockets of type SOCK_STREAM, while SO_ACCEPTCONN, SO_DONTLINGER,
SO_KEEPALIVE, SO_LINGER, and SO_OOBINLINE are not supported on sockets of type
SOCK_DGRAM.

WSAENOTSOCK The descriptor is not a socket.

GetSockOpt retrieves the current value for a socket option associated with a socket of any type, in any state,
and stores the result in lpOptionValue. Options affect socket operations, such as the routing of packets, out-
of-band data transfer, and so on.

The following options are supported for GetSockOpt . The Type identifies the type of data addressed by
lpOptionValue. The TCP_NODELAY option uses level IPPROTO_TCP; all other options use level
SOL_SOCKET.

VALUE TYPE MEANING

SO_ACCEPTCONN BOOL Socket is listening.

SO_BROADCAST BOOL Socket is configured for the
transmission of broadcast messages.

SO_DEBUG BOOL Debugging is enabled.

SO_DONTLINGER BOOL If true, the SO_LINGER option is
disabled.

SO_DONTROUTE BOOL Routing is disabled.

SO_ERROR int Retrieve error status and clear.

SO_KEEPALIVE BOOL Keep-alives are being sent.

SO_LINGER struct LINGER Returns the current linger options.

SO_OOBINLINE BOOL Out-of-band data is being received in
the normal data stream.

SO_RCVBUF int Buffer size for receives.

SO_REUSEADDR BOOL The socket can be bound to an
address which is already in use.

SO_SNDBUF int Buffer size for sends.

SO_TYPE int The type of the socket (for example,
SOCK_STREAM).

TCP_NODELAY BOOL Disables the Nagle algorithm for send
coalescing.

VALUE TYPE MEANING

SO_RCVLOWAT int Receive low water mark.

SO_RCVTIMEO int Receive timeout.

SO_SNDLOWAT int Send low water mark.

SO_SNDTIMEO int Send timeout.

IP_OPTIONS Get options in IP header.

TCP_MAXSEG int Get TCP maximum segment size.

Berkeley Software Distribution (BSD) options not supported for GetSockOpt are:

Calling GetSockOpt with an unsupported option will result in an error code of WSAENOPROTOOPT being
returned from GetLastError .

 CAsyncSocket::IOCtl

BOOL IOCtl(
 long lCommand,
 DWORD* lpArgument);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Call this member function to control the mode of a socket.

lCommand
The command to perform on the socket.

lpArgument
A pointer to a parameter for lCommand.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEINVAL lCommand is not a valid command, or lpArgument is not an acceptable parameter for
lCommand, or the command is not applicable to the type of socket supplied.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAENOTSOCK The descriptor is not a socket.

This routine can be used on any socket in any state. It is used to get or retrieve operating parameters
associated with the socket, independent of the protocol and communications subsystem. The following
commands are supported:

FIONBIO Enable or disable nonblocking mode on the socket. The lpArgument parameter points at a
DWORD , which is nonzero if nonblocking mode is to be enabled and zero if it is to be disabled. If
AsyncSelect has been issued on a socket, then any attempt to use IOCtl to set the socket back to

blocking mode will fail with WSAEINVAL. To set the socket back to blocking mode and prevent the
WSAEINVAL error, an application must first disable AsyncSelect by calling AsyncSelect with the
lEvent parameter equal to 0, then call IOCtl .

FIONREAD Determine the maximum number of bytes that can be read with one Receive call from
this socket. The lpArgument parameter points at a DWORD in which IOCtl stores the result. If this
socket is of type SOCK_STREAM, FIONREAD returns the total amount of data which can be read in a
single Receive ; this is normally the same as the total amount of data queued on the socket. If this
socket is of type SOCK_DGRAM, FIONREAD returns the size of the first datagram queued on the
socket.

S IOCATMARK Determine whether all out-of-band data has been read. This applies only to a socket of
type SOCK_STREAM which has been configured for in-line reception of any out-of-band data (
SO_OOBINLINE). If no out-of-band data is waiting to be read, the operation returns nonzero.
Otherwise it returns 0, and the next Receive or ReceiveFrom performed on the socket will retrieve
some or all of the data preceding the "mark"; the application should use the SIOCATMARK operation
to determine whether any data remains. If there is any normal data preceding the "urgent" (out-of-
band) data, it will be received in order. (Note that a Receive or ReceiveFrom will never mix out-of-band

CAsyncSocket::Listen

BOOL Listen(int nConnectionBacklog = 5);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CAsyncSocket::m_hSocket

and normal data in the same call.) The lpArgument parameter points at a DWORD in which IOCtl stores
the result.

This function is a subset of ioctl() as used in Berkeley sockets. In particular, there is no command which is
equivalent to FIOASYNC, while S IOCATMARK is the only socket-level command which is supported.

Call this member function to listen for incoming connection requests.

nConnectionBacklog
The maximum length to which the queue of pending connections can grow. Valid range is from 1 to 5.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEADDRINUSE An attempt has been made to listen on an address in use.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAEINVAL The socket has not been bound with Bind or is already connected.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENOBUFS No buffer space is available.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP The referenced socket is not of a type that supports the Listen operation.

To accept connections, the socket is first created with Create , a backlog for incoming connections is specified
with Listen , and then the connections are accepted with Accept . Listen applies only to sockets that
support connections, that is, those of type SOCK_STREAM. This socket is put into "passive" mode where
incoming connections are acknowledged and queued pending acceptance by the process.

This function is typically used by servers (or any application that wants to accept connections) that could have
more than one connection request at a time: if a connection request arrives with the queue full, the client will
receive an error with an indication of WSAECONNREFUSED.

Listen attempts to continue to function rationally when there are no available ports (descriptors). It will
accept connections until the queue is emptied. If ports become available, a later call to Listen or Accept will
refill the queue to the current or most recent "backlog," if possible, and resume listening for incoming
connections.

SOCKET m_hSocket;

CAsyncSocket::OnAccept

virtual void OnAccept(int nErrorCode);

ParametersParameters

RemarksRemarks

CAsyncSocket::OnClose

virtual void OnClose(int nErrorCode);

ParametersParameters

RemarksRemarks

CAsyncSocket::OnConnect

virtual void OnConnect(int nErrorCode);

ParametersParameters

Contains the SOCKET handle for the socket encapsulated by this CAsyncSocket object.

Called by the framework to notify a listening socket that it can accept pending connection requests by calling
the Accept member function.

nErrorCode
The most recent error on a socket. The following error codes applies to the OnAccept member function:

0 The function executed successfully.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

For more information, see Windows Sockets: Socket Notifications.

Called by the framework to notify this socket that the connected socket is closed by its process.

nErrorCode
The most recent error on a socket. The following error codes apply to the OnClose member function:

0 The function executed successfully.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAECONNRESET The connection was reset by the remote side.

WSAECONNABORTED The connection was aborted due to timeout or other failure.

For more information, see Windows Sockets: Socket Notifications.

Called by the framework to notify this connecting socket that its connection attempt is completed, whether
successfully or in error.

nErrorCode

RemarksRemarks

NOTENOTE

ExampleExample

The most recent error on a socket. The following error codes apply to the OnConnect member function:

0 The function executed successfully.

WSAEADDRINUSE The specified address is already in use.

WSAEADDRNOTAVAIL The specified address is not available from the local machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with this socket.

WSAECONNREFUSED The attempt to connect was forcefully rejected.

WSAEDESTADDRREQ A destination address is required.

WSAEFAULT The lpSockAddrLen argument is incorrect.

WSAEINVAL The socket is already bound to an address.

WSAEISCONN The socket is already connected.

WSAEMFILE No more file descriptors are available.

WSAENETUNREACH The network cannot be reached from this host at this time.

WSAENOBUFS No buffer space is available. The socket cannot be connected.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is a file, not a socket.

WSAETIMEDOUT The attempt to connect timed out without establishing a connection.

In CSocket, the OnConnect notification function is never called. For connections, you simply call Connect , which will
return when the connection is completed (either successfully or in error). How connection notifications are handled is an
MFC implementation detail.

For more information, see Windows Sockets: Socket Notifications.

void CMyAsyncSocket::OnConnect(int nErrorCode) // CMyAsyncSocket is
 // derived from CAsyncSocket
{
 if (0 != nErrorCode)
 {
 switch(nErrorCode)
 {
 case WSAEADDRINUSE:
 AfxMessageBox(_T("The specified address is already in use.\n"));
 break;
 case WSAEADDRNOTAVAIL:
 AfxMessageBox(_T("The specified address is not available from ")
 _T("the local machine.\n"));
 break;
 case WSAEAFNOSUPPORT:
 AfxMessageBox(_T("Addresses in the specified family cannot be ")
 _T("used with this socket.\n"));
 break;
 case WSAECONNREFUSED:
 AfxMessageBox(_T("The attempt to connect was forcefully rejected.\n"));
 break;
 case WSAEDESTADDRREQ:
 AfxMessageBox(_T("A destination address is required.\n"));
 break;
 case WSAEFAULT:
 AfxMessageBox(_T("The lpSockAddrLen argument is incorrect.\n"));
 break;
 case WSAEINVAL:
 AfxMessageBox(_T("The socket is already bound to an address.\n"));
 break;
 case WSAEISCONN:
 AfxMessageBox(_T("The socket is already connected.\n"));
 break;
 case WSAEMFILE:
 AfxMessageBox(_T("No more file descriptors are available.\n"));
 break;
 case WSAENETUNREACH:
 AfxMessageBox(_T("The network cannot be reached from this host ")
 _T("at this time.\n"));
 break;
 case WSAENOBUFS:
 AfxMessageBox(_T("No buffer space is available. The socket ")
 _T("cannot be connected.\n"));
 break;
 case WSAENOTCONN:
 AfxMessageBox(_T("The socket is not connected.\n"));
 break;
 case WSAENOTSOCK:
 AfxMessageBox(_T("The descriptor is a file, not a socket.\n"));
 break;
 case WSAETIMEDOUT:
 AfxMessageBox(_T("The attempt to connect timed out without ")
 _T("establishing a connection. \n"));
 break;
 default:
 TCHAR szError[256];
 _stprintf_s(szError, _T("OnConnect error: %d"), nErrorCode);
 AfxMessageBox(szError);
 break;
 }
 AfxMessageBox(_T("Please close the application"));
 }
 CAsyncSocket::OnConnect(nErrorCode);
}

CAsyncSocket::OnOutOfBandData

virtual void OnOutOfBandData(int nErrorCode);

ParametersParameters

RemarksRemarks

CAsyncSocket::OnReceive

virtual void OnReceive(int nErrorCode);

ParametersParameters

RemarksRemarks

ExampleExample

Called by the framework to notify the receiving socket that the sending socket has out-of-band data to send.

nErrorCode
The most recent error on a socket. The following error codes apply to the OnOutOfBandData member function:

0 The function executed successfully.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

Out-of-band data is a logically independent channel that is associated with each pair of connected sockets of
type SOCK_STREAM. The channel is generally used to send urgent data.

MFC supports out-of-band data, but users of class CAsyncSocket are discouraged from using it. The easier
way is to create a second socket for passing such data. For more information about out-of-band data, see
Windows Sockets: Socket Notifications.

Called by the framework to notify this socket that there is data in the buffer that can be retrieved by calling the
Receive member function.

nErrorCode
The most recent error on a socket. The following error codes apply to the OnReceive member function:

0 The function executed successfully.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

For more information, see Windows Sockets: Socket Notifications.

void CMyAsyncSocket::OnReceive(int nErrorCode) // CMyAsyncSocket is
 // derived from CAsyncSocket
{
 static int i = 0;

 i++;

 TCHAR buff[4096];
 int nRead;
 nRead = Receive(buff, 4096);

 switch (nRead)
 {
 case 0:
 Close();
 break;
 case SOCKET_ERROR:
 if (GetLastError() != WSAEWOULDBLOCK)
 {
 AfxMessageBox (_T("Error occurred"));
 Close();
 }
 break;
 default:
 buff[nRead] = _T('\0'); //terminate the string
 CString szTemp(buff);
 m_strRecv += szTemp; // m_strRecv is a CString declared
 // in CMyAsyncSocket
 if (szTemp.CompareNoCase(_T("bye")) == 0)
 {
 ShutDown();
 s_eventDone.SetEvent();
 }
 }
 CAsyncSocket::OnReceive(nErrorCode);
}

CAsyncSocket::OnSend

virtual void OnSend(int nErrorCode);

ParametersParameters

RemarksRemarks

ExampleExample

Called by the framework to notify the socket that it can now send data by calling the Send member function.

nErrorCode
The most recent error on a socket. The following error codes apply to the OnSend member function:

0 The function executed successfully.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

For more information, see Windows Sockets: Socket Notifications.

// CMyAsyncSocket is derived from CAsyncSocket and defines the
// following variables:
// CString m_sendBuffer; //for async send
// int m_nBytesSent;
// int m_nBytesBufferSize;
void CMyAsyncSocket::OnSend(int nErrorCode)
{
 while (m_nBytesSent < m_nBytesBufferSize)
 {
 int dwBytes;

 if ((dwBytes = Send((LPCTSTR)m_sendBuffer + m_nBytesSent,
 m_nBytesBufferSize - m_nBytesSent)) == SOCKET_ERROR)
 {
 if (GetLastError() == WSAEWOULDBLOCK)
 {
 break;
 }
 else
 {
 TCHAR szError[256];
 _stprintf_s(szError, _T("Server Socket failed to send: %d"),
 GetLastError());
 Close();
 AfxMessageBox (szError);
 }
 }
 else
 {
 m_nBytesSent += dwBytes;
 }
 }

 if (m_nBytesSent == m_nBytesBufferSize)
 {
 m_nBytesSent = m_nBytesBufferSize = 0;
 m_sendBuffer = _T("");
 }

 CAsyncSocket::OnSend(nErrorCode);
}

CAsyncSocket::operator =

void operator=(const CAsyncSocket& rSrc);

ParametersParameters

RemarksRemarks

CAsyncSocket::operator SOCKET

Assigns a new value to a CAsyncSocket object.

rSrc
A reference to an existing CAsyncSocket object.

Call this function to copy an existing CAsyncSocket object to another CAsyncSocket object.

Use this operator to retrieve the SOCKET handle of the CAsyncSocket object.

operator SOCKET() const;

Return ValueReturn Value

RemarksRemarks

CAsyncSocket::Receive

virtual int Receive(
 void* lpBuf,
 int nBufLen,
 int nFlags = 0);

ParametersParameters

Return ValueReturn Value

If successful, the handle of the SOCKET object; otherwise, NULL.

You can use the handle to call Windows APIs directly.

Call this member function to receive data from a socket.

lpBuf
A buffer for the incoming data.

nBufLen
The length of lpBuf in bytes.

nFlags
Specifies the way in which the call is made. The semantics of this function are determined by the socket
options and the nFlags parameter. The latter is constructed by combining any of the following values with the
C++ OR operator :

MSG_PEEK Peek at the incoming data. The data is copied into the buffer but is not removed from the
input queue.

MSG_OOB Process out-of-band data.

If no error occurs, Receive returns the number of bytes received. If the connection has been closed, it returns
0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAENOTCONN The socket is not connected.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shut down; it is not possible to call Receive on a socket after
ShutDown has been invoked with nHow set to 0 or 2.

WSAEWOULDBLOCK The socket is marked as nonblocking and the Receive operation would block.

WSAEMSGSIZE The datagram was too large to fit into the specified buffer and was truncated.

RemarksRemarks

ExampleExample

CAsyncSocket::ReceiveFrom

int ReceiveFrom(
 void* lpBuf,
 int nBufLen,
 CString& rSocketAddress,
 UINT& rSocketPort,
 int nFlags = 0);

int ReceiveFrom(
 void* lpBuf,
 int nBufLen,
 SOCKADDR* lpSockAddr,
 int* lpSockAddrLen,
 int nFlags = 0);

ParametersParameters

WSAEINVAL The socket has not been bound with Bind .

WSAECONNABORTED The virtual circuit was aborted due to timeout or other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

This function is used for connected stream or datagram sockets and is used to read incoming data.

For sockets of type SOCK_STREAM, as much information as is currently available up to the size of the buffer
supplied is returned. If the socket has been configured for in-line reception of out-of-band data (socket option
SO_OOBINLINE) and out-of-band data is unread, only out-of-band data will be returned. The application can
use the IOCtlSIOCATMARK option or OnOutOfBandData to determine whether any more out-of-band data
remains to be read.

For datagram sockets, data is extracted from the first enqueued datagram, up to the size of the buffer
supplied. If the datagram is larger than the buffer supplied, the buffer is filled with the first part of the
datagram, the excess data is lost, and Receive returns a value of SOCKET_ERROR with the error code set to
WSAEMSGSIZE. If no incoming data is available at the socket, a value of SOCKET_ERROR is returned with
the error code set to WSAEWOULDBLOCK. The OnReceive callback function can be used to determine when
more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the connection gracefully, a
Receive will complete immediately with 0 bytes received. If the connection has been reset, a Receive will fail

with the error WSAECONNRESET.

Receive should be called only once for each time CAsyncSocket::OnReceive is called.

See the example for CAsyncSocket::OnReceive.

Call this member function to receive a datagram and store the source address in the SOCKADDR structure or
in rSocketAddress.

lpBuf
A buffer for the incoming data.

nBufLen
The length of lpBuf in bytes.

rSocketAddress

https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2

Return ValueReturn Value

RemarksRemarks

Reference to a CString object that receives a dotted number IP address.

rSocketPort
Reference to a UINT that stores a port.

lpSockAddr
A pointer to a SOCKADDR structure that holds the source address upon return.

lpSockAddrLen
A pointer to the length of the source address in lpSockAddr in bytes.

nFlags
Specifies the way in which the call is made. The semantics of this function are determined by the socket
options and the nFlags parameter. The latter is constructed by combining any of the following values with the
C++ OR operator :

MSG_PEEK Peek at the incoming data. The data is copied into the buffer but is not removed from the
input queue.

MSG_OOB Process out-of-band data.

If no error occurs, ReceiveFrom returns the number of bytes received. If the connection has been closed, it
returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code can be retrieved by
calling GetLastError . The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEFAULT The lpSockAddrLen argument was invalid: the lpSockAddr buffer was too small to
accommodate the peer address.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAEINVAL The socket has not been bound with Bind .

WSAENOTCONN The socket is not connected (SOCK_STREAM only).

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shut down; it is not possible to call ReceiveFrom on a socket
after ShutDown has been invoked with nHow set to 0 or 2.

WSAEWOULDBLOCK The socket is marked as nonblocking and the ReceiveFrom operation would
block.

WSAEMSGSIZE The datagram was too large to fit into the specified buffer and was truncated.

WSAECONNABORTED The virtual circuit was aborted due to timeout or other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

This function is used to read incoming data on a (possibly connected) socket and capture the address from
which the data was sent.

To handle IPv6 addresses, use CAsyncSocket::ReceiveFromEx.

https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2

 CAsyncSocket::ReceiveFromEx

int ReceiveFromEx(
 void* lpBuf,
 int nBufLen,
 CString& rSocketAddress,
 UINT& rSocketPort,
 int nFlags = 0);

ParametersParameters

Return ValueReturn Value

For sockets of type SOCK_STREAM, as much information as is currently available up to the size of the buffer
supplied is returned. If the socket has been configured for in-line reception of out-of-band data (socket option
SO_OOBINLINE) and out-of-band data is unread, only out-of-band data will be returned. The application can
use the IOCtlSIOCATMARK option or OnOutOfBandData to determine whether any more out-of-band data
remains to be read. The lpSockAddr and lpSockAddrLen parameters are ignored for SOCK_STREAM sockets.

For datagram sockets, data is extracted from the first enqueued datagram, up to the size of the buffer
supplied. If the datagram is larger than the buffer supplied, the buffer is filled with the first part of the
message, the excess data is lost, and ReceiveFrom returns a value of SOCKET_ERROR with the error code set
to WSAEMSGSIZE.

If lpSockAddr is nonzero, and the socket is of type SOCK_DGRAM, the network address of the socket which
sent the data is copied to the corresponding SOCKADDR structure. The value pointed to by lpSockAddrLen is
initialized to the size of this structure, and is modified on return to indicate the actual size of the address
stored there. If no incoming data is available at the socket, the ReceiveFrom call waits for data to arrive unless
the socket is nonblocking. In this case, a value of SOCKET_ERROR is returned with the error code set to
WSAEWOULDBLOCK. The OnReceive callback can be used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the connection gracefully, a
ReceiveFrom will complete immediately with 0 bytes received.

Call this member function to receive a datagram and store the source address in the SOCKADDR structure or
in rSocketAddress (handles IPv6 addresses).

lpBuf
A buffer for the incoming data.

nBufLen
The length of lpBuf in bytes.

rSocketAddress
Reference to a CString object that receives a dotted number IP address.

rSocketPort
Reference to a UINT that stores a port.

nFlags
Specifies the way in which the call is made. The semantics of this function are determined by the socket
options and the nFlags parameter. The latter is constructed by combining any of the following values with the
C++ OR operator :

MSG_PEEK Peek at the incoming data. The data is copied into the buffer but is not removed from the
input queue.

MSG_OOB Process out-of-band data.

https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2
https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2

RemarksRemarks

If no error occurs, ReceiveFromEx returns the number of bytes received. If the connection has been closed, it
returns 0. Otherwise, a value of SOCKET_ERROR is returned, and a specific error code can be retrieved by
calling GetLastError . The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEFAULT The lpSockAddrLen argument was invalid: the lpSockAddr buffer was too small to
accommodate the peer address.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAEINVAL The socket has not been bound with Bind .

WSAENOTCONN The socket is not connected (SOCK_STREAM only).

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shut down; it is not possible to call ReceiveFromEx on a
socket after ShutDown has been invoked with nHow set to 0 or 2.

WSAEWOULDBLOCK The socket is marked as nonblocking and the ReceiveFromEx operation would
block.

WSAEMSGSIZE The datagram was too large to fit into the specified buffer and was truncated.

WSAECONNABORTED The virtual circuit was aborted due to timeout or other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

This function is used to read incoming data on a (possibly connected) socket and capture the address from
which the data was sent.

This function is the same as CAsyncSocket::ReceiveFrom except that it handles IPv6 addresses as well as older
protocols.

For sockets of type SOCK_STREAM, as much information as is currently available up to the size of the buffer
supplied is returned. If the socket has been configured for in-line reception of out-of-band data (socket option
SO_OOBINLINE) and out-of-band data is unread, only out-of-band data will be returned. The application can
use the IOCtlSIOCATMARK option or OnOutOfBandData to determine whether any more out-of-band data
remains to be read. The lpSockAddr and lpSockAddrLen parameters are ignored for SOCK_STREAM sockets.

For datagram sockets, data is extracted from the first enqueued datagram, up to the size of the buffer
supplied. If the datagram is larger than the buffer supplied, the buffer is filled with the first part of the
message, the excess data is lost, and ReceiveFromEx returns a value of SOCKET_ERROR with the error code
set to WSAEMSGSIZE.

If lpSockAddr is nonzero, and the socket is of type SOCK_DGRAM, the network address of the socket which
sent the data is copied to the corresponding SOCKADDR structure. The value pointed to by lpSockAddrLen is
initialized to the size of this structure, and is modified on return to indicate the actual size of the address
stored there. If no incoming data is available at the socket, the ReceiveFromEx call waits for data to arrive
unless the socket is nonblocking. In this case, a value of SOCKET_ERROR is returned with the error code set
to WSAEWOULDBLOCK. The OnReceive callback can be used to determine when more data arrives.

If the socket is of type SOCK_STREAM and the remote side has shut down the connection gracefully, a
ReceiveFromEx will complete immediately with 0 bytes received.

https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2

 CAsyncSocket::Send

virtual int Send(
 const void* lpBuf,
 int nBufLen,
 int nFlags = 0);

ParametersParameters

Return ValueReturn Value

Call this member function to send data on a connected socket.

lpBuf
A buffer containing the data to be transmitted.

nBufLen
The length of the data in lpBuf in bytes.

nFlags
Specifies the way in which the call is made. The semantics of this function are determined by the socket
options and the nFlags parameter. The latter is constructed by combining any of the following values with the
C++ OR operator :

MSG_DONTROUTE Specifies that the data should not be subject to routing. A Windows Sockets
supplier can choose to ignore this flag.

MSG_OOB Send out-of-band data (SOCK_STREAM only).

If no error occurs, Send returns the total number of characters sent. (Note that this can be less than the
number indicated by nBufLen.) Otherwise, a value of SOCKET_ERROR is returned, and a specific error code
can be retrieved by calling GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEACCES The requested address is a broadcast address, but the appropriate flag was not set.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAEFAULT The lpBuf argument is not in a valid part of the user address space.

WSAENETRESET The connection must be reset because the Windows Sockets implementation
dropped it.

WSAENOBUFS The Windows Sockets implementation reports a buffer deadlock.

WSAENOTCONN The socket is not connected.

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shut down; it is not possible to call Send on a socket after
ShutDown has been invoked with nHow set to 1 or 2.

WSAEWOULDBLOCK The socket is marked as nonblocking and the requested operation would block.

WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the datagram is larger than the maximum
supported by the Windows Sockets implementation.

RemarksRemarks

ExampleExample

CAsyncSocket::SendTo

int SendTo(
 const void* lpBuf,
 int nBufLen,
 UINT nHostPort,
 LPCTSTR lpszHostAddress = NULL,
 int nFlags = 0);

int SendTo(
 const void* lpBuf,
 int nBufLen,
 const SOCKADDR* lpSockAddr,
 int nSockAddrLen,
 int nFlags = 0);

ParametersParameters

WSAEINVAL The socket has not been bound with Bind .

WSAECONNABORTED The virtual circuit was aborted due to timeout or other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

Send is used to write outgoing data on connected stream or datagram sockets. For datagram sockets, care
must be taken not to exceed the maximum IP packet size of the underlying subnets, which is given by the
iMaxUdpDg element in the WSADATA structure returned by AfxSocketInit . If the data is too long to pass

atomically through the underlying protocol, the error WSAEMSGSIZE is returned via GetLastError , and no
data is transmitted.

Note that for a datagram socket the successful completion of a Send does not indicate that the data was
successfully delivered.

On CAsyncSocket objects of type SOCK_STREAM, the number of bytes written can be between 1 and the
requested length, depending on buffer availability on both the local and foreign hosts.

See the example for CAsyncSocket::OnSend.

Call this member function to send data to a specific destination.

lpBuf
A buffer containing the data to be transmitted.

nBufLen
The length of the data in lpBuf in bytes.

nHostPort
The port identifying the socket application.

lpszHostAddress
The network address of the socket to which this object is connected: a machine name such as
"ftp.microsoft.com," or a dotted number such as "128.56.22.8".

nFlags
Specifies the way in which the call is made. The semantics of this function are determined by the socket
options and the nFlags parameter. The latter is constructed by combining any of the following values with the
C++ OR operator :

https://docs.microsoft.com/windows/desktop/api/winsock2/ns-winsock2-wsadata

Return ValueReturn Value

RemarksRemarks

MSG_DONTROUTE Specifies that the data should not be subject to routing. A Windows Sockets
supplier can choose to ignore this flag.

MSG_OOB Send out-of-band data (SOCK_STREAM only).

lpSockAddr
A pointer to a SOCKADDR structure that contains the address of the target socket.

nSockAddrLen
The length of the address in lpSockAddr in bytes.

If no error occurs, SendTo returns the total number of characters sent. (Note that this can be less than the
number indicated by nBufLen.) Otherwise, a value of SOCKET_ERROR is returned, and a specific error code
can be retrieved by calling GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEACCES The requested address is a broadcast address, but the appropriate flag was not set.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAEFAULT The lpBuf or lpSockAddr parameters are not part of the user address space, or the
lpSockAddr argument is too small (less than the size of a SOCKADDR structure).

WSAEINVAL The host name is invalid.

WSAENETRESET The connection must be reset because the Windows Sockets implementation
dropped it.

WSAENOBUFS The Windows Sockets implementation reports a buffer deadlock.

WSAENOTCONN The socket is not connected (SOCK_STREAM only).

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shut down; it is not possible to call SendTo on a socket after
ShutDown has been invoked with nHow set to 1 or 2.

WSAEWOULDBLOCK The socket is marked as nonblocking and the requested operation would block.

WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the datagram is larger than the maximum
supported by the Windows Sockets implementation.

WSAECONNABORTED The virtual circuit was aborted due to timeout or other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEADDRNOTAVAIL The specified address is not available from the local machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network cannot be reached from this host at this time.

SendTo is used on datagram or stream sockets and is used to write outgoing data on a socket. For datagram

https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2
https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2

 CAsyncSocket::SendToEx

int SendToEx(
 const void* lpBuf,
 int nBufLen,
 UINT nHostPort,
 LPCTSTR lpszHostAddress = NULL,
 int nFlags = 0);

ParametersParameters

Return ValueReturn Value

sockets, care must be taken not to exceed the maximum IP packet size of the underlying subnets, which is
given by the iMaxUdpDg element in the WSADATA structure filled out by AfxSocketInit. If the data is too long
to pass atomically through the underlying protocol, the error WSAEMSGSIZE is returned, and no data is
transmitted.

Note that the successful completion of a SendTo does not indicate that the data was successfully delivered.

SendTo is only used on a SOCK_DGRAM socket to send a datagram to a specific socket identified by the
lpSockAddr parameter.

To send a broadcast (on a SOCK_DGRAM only), the address in the lpSockAddr parameter should be
constructed using the special IP address INADDR_BROADCAST (defined in the Windows Sockets header file
WINSOCK.H) together with the intended port number. Or, if the lpszHostAddress parameter is NULL, the
socket is configured for broadcast. It is generally inadvisable for a broadcast datagram to exceed the size at
which fragmentation can occur, which implies that the data portion of the datagram (excluding headers)
should not exceed 512 bytes.

To handle IPv6 addresses, use CAsyncSocket::SendToEx.

Call this member function to send data to a specific destination (handles IPv6 addresses).

lpBuf
A buffer containing the data to be transmitted.

nBufLen
The length of the data in lpBuf in bytes.

nHostPort
The port identifying the socket application.

lpszHostAddress
The network address of the socket to which this object is connected: a machine name such as
"ftp.microsoft.com," or a dotted number such as "128.56.22.8".

nFlags
Specifies the way in which the call is made. The semantics of this function are determined by the socket
options and the nFlags parameter. The latter is constructed by combining any of the following values with the
C++ OR operator :

MSG_DONTROUTE Specifies that the data should not be subject to routing. A Windows Sockets
supplier can choose to ignore this flag.

MSG_OOB Send out-of-band data (SOCK_STREAM only).

If no error occurs, SendToEx returns the total number of characters sent. (Note that this can be less than the
number indicated by nBufLen.) Otherwise, a value of SOCKET_ERROR is returned, and a specific error code

https://docs.microsoft.com/windows/desktop/api/winsock2/ns-winsock2-wsadata

RemarksRemarks

can be retrieved by calling GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEACCES The requested address is a broadcast address, but the appropriate flag was not set.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAEFAULT The lpBuf or lpSockAddr parameters are not part of the user address space, or the
lpSockAddr argument is too small (less than the size of a SOCKADDR structure).

WSAEINVAL The host name is invalid.

WSAENETRESET The connection must be reset because the Windows Sockets implementation
dropped it.

WSAENOBUFS The Windows Sockets implementation reports a buffer deadlock.

WSAENOTCONN The socket is not connected (SOCK_STREAM only).

WSAENOTSOCK The descriptor is not a socket.

WSAEOPNOTSUPP MSG_OOB was specified, but the socket is not of type SOCK_STREAM.

WSAESHUTDOWN The socket has been shut down; it is not possible to call SendToEx on a socket
after ShutDown has been invoked with nHow set to 1 or 2.

WSAEWOULDBLOCK The socket is marked as nonblocking and the requested operation would block.

WSAEMSGSIZE The socket is of type SOCK_DGRAM, and the datagram is larger than the maximum
supported by the Windows Sockets implementation.

WSAECONNABORTED The virtual circuit was aborted due to timeout or other failure.

WSAECONNRESET The virtual circuit was reset by the remote side.

WSAEADDRNOTAVAIL The specified address is not available from the local machine.

WSAEAFNOSUPPORT Addresses in the specified family cannot be used with this socket.

WSAEDESTADDRREQ A destination address is required.

WSAENETUNREACH The network cannot be reached from this host at this time.

This method is the same as CAsyncSocket::SendTo except that it handles IPv6 addresses as well as older
protocols.

SendToEx is used on datagram or stream sockets and is used to write outgoing data on a socket. For
datagram sockets, care must be taken not to exceed the maximum IP packet size of the underlying subnets,
which is given by the iMaxUdpDg element in the WSADATA structure filled out by AfxSocketInit. If the data is
too long to pass atomically through the underlying protocol, the error WSAEMSGSIZE is returned, and no
data is transmitted.

Note that the successful completion of a SendToEx does not indicate that the data was successfully delivered.

SendToEx is only used on a SOCK_DGRAM socket to send a datagram to a specific socket identified by the
lpSockAddr parameter.

To send a broadcast (on a SOCK_DGRAM only), the address in the lpSockAddr parameter should be
constructed using the special IP address INADDR_BROADCAST (defined in the Windows Sockets header file

https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2
https://docs.microsoft.com/windows/desktop/api/winsock2/ns-winsock2-wsadata

 CAsyncSocket::SetSockOpt

BOOL SetSockOpt(
 int nOptionName,
 const void* lpOptionValue,
 int nOptionLen,
 int nLevel = SOL_SOCKET);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

WINSOCK.H) together with the intended port number. Or, if the lpszHostAddress parameter is NULL, the
socket is configured for broadcast. It is generally inadvisable for a broadcast datagram to exceed the size at
which fragmentation can occur, which implies that the data portion of the datagram (excluding headers)
should not exceed 512 bytes.

Call this member function to set a socket option.

nOptionName
The socket option for which the value is to be set.

lpOptionValue
A pointer to the buffer in which the value for the requested option is supplied.

nOptionLen
The size of the lpOptionValue buffer in bytes.

nLevel
The level at which the option is defined; the only supported levels are SOL_SOCKET and IPPROTO_TCP.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEFAULT lpOptionValue is not in a valid part of the process address space.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAEINVAL nLevel is not valid, or the information in lpOptionValue is not valid.

WSAENETRESET Connection has timed out when SO_KEEPALIVE is set.

WSAENOPROTOOPT The option is unknown or unsupported. In particular, SO_BROADCAST is not
supported on sockets of type SOCK_STREAM, while SO_DONTLINGER, SO_KEEPALIVE,
SO_LINGER, and SO_OOBINLINE are not supported on sockets of type SOCK_DGRAM.

WSAENOTCONN Connection has been reset when SO_KEEPALIVE is set.

WSAENOTSOCK The descriptor is not a socket.

SetSockOpt sets the current value for a socket option associated with a socket of any type, in any state.
Although options can exist at multiple protocol levels, this specification only defines options that exist at the
uppermost "socket" level. Options affect socket operations, such as whether expedited data is received in the
normal data stream, whether broadcast messages can be sent on the socket, and so on.

VALUE TYPE MEANING

SO_BROADCAST BOOL Allow transmission of broadcast
messages on the socket.

SO_DEBUG BOOL Record debugging information.

There are two types of socket options: Boolean options that enable or disable a feature or behavior, and
options which require an integer value or structure. To enable a Boolean option, lpOptionValue points to a
nonzero integer. To disable the option lpOptionValue points to an integer equal to zero. nOptionLen should be
equal to sizeof(BOOL) for Boolean options. For other options, lpOptionValue points to the integer or
structure that contains the desired value for the option, and nOptionLen is the length of the integer or
structure.

SO_LINGER controls the action taken when unsent data is queued on a socket and the Close function is
called to close the socket.

By default, a socket cannot be bound (see Bind) to a local address which is already in use. On occasion,
however, it may be desirable to "reuse" an address in this way. Since every connection is uniquely identified by
the combination of local and remote addresses, there is no problem with having two sockets bound to the
same local address as long as the remote addresses are different.

To inform the Windows Sockets implementation that a Bind call on a socket should not be disallowed
because the desired address is already in use by another socket, the application should set the
SO_REUSEADDR socket option for the socket before issuing the Bind call. Note that the option is
interpreted only at the time of the Bind call: it is therefore unnecessary (but harmless) to set the option on a
socket which is not to be bound to an existing address, and setting or resetting the option after the Bind call
has no effect on this or any other socket.

An application can request that the Windows Sockets implementation enable the use of "keep-alive" packets
on Transmission Control Protocol (TCP) connections by turning on the SO_KEEPALIVE socket option. A
Windows Sockets implementation need not support the use of keep-alives: if it does, the precise semantics
are implementation-specific but should conform to section 4.2.3.6 of RFC 1122: "Requirements for Internet
Hosts — Communication Layers." If a connection is dropped as the result of "keep-alives" the error code
WSAENETRESET is returned to any calls in progress on the socket, and any subsequent calls will fail with
WSAENOTCONN.

The TCP_NODELAY option disables the Nagle algorithm. The Nagle algorithm is used to reduce the number
of small packets sent by a host by buffering unacknowledged send data until a full-size packet can be sent.
However, for some applications this algorithm can impede performance, and TCP_NODELAY can be used to
turn it off. Application writers should not set TCP_NODELAY unless the impact of doing so is well-understood
and desired, since setting TCP_NODELAY can have a significant negative impact on network performance.
TCP_NODELAY is the only supported socket option which uses level IPPROTO_TCP; all other options use
level SOL_SOCKET.

Some implementations of Windows Sockets supply output debug information if the SO_DEBUG option is set
by an application.

The following options are supported for SetSockOpt . The Type identifies the type of data addressed by
lpOptionValue.

SO_DONTLINGER BOOL Don't block Close waiting for
unsent data to be sent. Setting this
option is equivalent to setting
SO_LINGER with l_onoff set to
zero.

SO_DONTROUTE BOOL Don't route: send directly to interface.

SO_KEEPALIVE BOOL Send keep-alives.

SO_LINGER struct LINGER Linger on Close if unsent data is
present.

SO_OOBINLINE BOOL Receive out-of-band data in the
normal data stream.

SO_RCVBUF int Specify buffer size for receives.

SO_REUSEADDR BOOL Allow the socket to be bound to an
address which is already in use. (See
Bind.)

SO_SNDBUF int Specify buffer size for sends.

TCP_NODELAY BOOL Disables the Nagle algorithm for send
coalescing.

VALUE TYPE MEANING

VALUE TYPE MEANING

SO_ACCEPTCONN BOOL Socket is listening

SO_ERROR int Get error status and clear.

SO_RCVLOWAT int Receive low water mark.

SO_RCVTIMEO int Receive timeout

SO_SNDLOWAT int Send low water mark.

SO_SNDTIMEO int Send timeout.

SO_TYPE int Type of the socket.

IP_OPTIONS Set options field in IP header.

CAsyncSocket::ShutDown

Berkeley Software Distribution (BSD) options not supported for SetSockOpt are:

Call this member function to disable sends, receives, or both on the socket.

BOOL ShutDown(int nHow = sends);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CASyncSocket::Socket

BOOL Socket(
 int nSocketType = SOCK_STREAM,
 long lEvent = FD_READ | FD_WRITE | FD_OOB | FD_ACCEPT | FD_CONNECT | FD_CLOSE,
 int nProtocolType = 0,
 int nAddressFormat = PF_INET);

ParametersParameters

nHow
A flag that describes what types of operation will no longer be allowed, using the following enumerated
values:

receives = 0

sends = 1

both = 2

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError. The following errors apply to this member function:

WSANOTINITIALISED A successful AfxSocketInit must occur before using this API.

WSAENETDOWN The Windows Sockets implementation detected that the network subsystem failed.

WSAEINVAL nHow is not valid.

WSAEINPROGRESS A blocking Windows Sockets operation is in progress.

WSAENOTCONN The socket is not connected (SOCK_STREAM only).

WSAENOTSOCK The descriptor is not a socket.

ShutDown is used on all types of sockets to disable reception, transmission, or both. If nHow is 0, subsequent
receives on the socket will be disallowed. This has no effect on the lower protocol layers.

For Transmission Control Protocol (TCP), the TCP window is not changed and incoming data will be accepted
(but not acknowledged) until the window is exhausted. For User Datagram Protocol (UDP), incoming
datagrams are accepted and queued. In no case will an ICMP error packet be generated. If nHow is 1,
subsequent sends are disallowed. For TCP sockets, a FIN will be sent. Setting nHow to 2 disables both sends
and receives as described above.

Note that ShutDown does not close the socket, and resources attached to the socket will not be freed until
Close is called. An application should not rely on being able to reuse a socket after it has been shut down. In

particular, a Windows Sockets implementation is not required to support the use of Connect on such a socket.

See the example for CAsyncSocket::OnReceive.

Allocates a socket handle.

Return ValueReturn Value

RemarksRemarks

See also

nSocketType
Specifies SOCK_STREAM or SOCK_DGRAM .

lEvent
A bitmask that specifies a combination of network events in which the application is interested.

FD_READ : Want to receive notification of readiness for reading.

FD_WRITE : Want to receive notification of readiness for writing.

FD_OOB : Want to receive notification of the arrival of out-of-band data.

FD_ACCEPT : Want to receive notification of incoming connections.

FD_CONNECT : Want to receive notification of completed connection.

FD_CLOSE : Want to receive notification of socket closure.

nProtocolType
Protocol to be used with the socket that is specific to the indicated address family.

nAddressFormat
Address family specification.

Returns TRUE on success, FALSE on failure.

This method allocates a socket handle. It does not call CAsyncSocket::Bind to bind the socket to a specified
address, so you need to call Bind later to bind the socket to a specified address. You can use
CAsyncSocket::SetSockOpt to set the socket option before it is bound.

CObject Class
Hierarchy Chart
CSocket Class
CSocketFile Class

CAutoHideDockSite Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CAutoHideDockSite : public CDockSite

Members
Public ConstructorsPublic Constructors

Name Description

CAutoHideDockSite::CAutoHideDockSite Constructs a CAutoHideDockSite object.

CAutoHideDockSite::~CAutoHideDockSite Destructor.

Public MethodsPublic Methods

Name Description

CAutoHideDockSite::AllowShowOnPaneMenu Indicates whether the CAutoHideDockSite is shown on the
pane menu.

CAutoHideDockSite::CanAcceptPane Determines whether a base pane object is derived from the
CMFCAutoHideBar Class.

CAutoHideDockSite::DockPane Docks a pane to this CAuotHideDockSite object.

CAutoHideDockSite::GetAlignRect Retrieves the size of the dock site in screen coordinates.

CAutoHideDockSite::RepositionPanes Redraws the pane on the CAutoHideDockSite with the
global margins and button spacing.

CAutoHideDockSite::SetOffsetLeft Sets the margin on the left side of the docking bar.

CAutoHideDockSite::SetOffsetRight Sets the margin on the right side of the docking bar.

CAutoHideDockSite::UnSetAutoHideMode Calls CMFCAutoHideBar::UnSetAutoHideMode for objects on
the CAutoHideDockSite .

Data MembersData Members

The CAutoHideDockSite extends the CDockSite Class to implement auto-hide dock panes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cautohidedocksite-class.md

Name Description

CAutoHideDockSite::m_nExtraSpace Defines the size of the space between the toolbars and the
edge of the docking bar. This space is measured from either
the left edge or the top edge, depending on the alignment
for the dock space.

Remarks

Inheritance Hierarchy

Example

CAutoHideDockSite* pParentDockBar = DYNAMIC_DOWNCAST(CAutoHideDockSite, pParentBar->GetParentDockSite());
pParentDockBar->SetOffsetLeft(10);
pParentDockBar->SetOffsetRight(10);

Requirements

CAutoHideDockSite::CanAcceptPane

virtual BOOL CanAcceptPane(const CBasePane* pBar) const;

ParametersParameters

Parameter Description

pBar [in] The base pane that the framework tests.

When you call CFrameWndEx::EnableAutoHidePanes, the framework automatically creates a CAutoHideDockSite

object. In most cases, you should not have to instantiate or use this class directly.

The docking bar is the gap between the left side of the dock pane and the left side of the CMFCAutoHideButton
Class.

CObject

CCmdTarget

CWnd

CBasePane

CDockSite

The following example demonstrates how to retrieve a CAutoHideDockSite object from a CMFCAutoHideBar object,
and how to set the left and right margins of the docking bar.

Header: afxautohidedocksite.h

Determines whether a base pane is a CMFCAutoHideBar object or derived from CMFCAutoHideBar .

Return ValueReturn Value

RemarksRemarks

CAutoHideDockSite::DockPane

virtual void DockPane(
 CPane* pWnd,
 AFX_DOCK_METHOD dockMethod,
 LPRECT lpRect = NULL);

ParametersParameters

Parameter Description

pWnd [in] The pane that the framework docks.

dockMethod [in] Docking options for the pane.

lpRect [in] A rectangle that specifies the boundaries for the docked
pane.

RemarksRemarks

CAutoHideDockSite::GetAlignRect

void GetAlignRect(CRect& rect) const;

ParametersParameters

Parameter Description

rect [in] A reference to a rectangle. The method stores the size of
the dock site in this rectangle.

RemarksRemarks

CAutoHideDockSite::m_nExtraSpace

TRUE if pBar is derived from CMFCAutoHideBar ; FALSE otherwise.

If a base pane object is derived from CMFCAutoHideBar , it can contain a CAutoHideDockSite .

Docks a pane to this CAutoHideDockSite object.

The default implementation does not use the parameter dockMethod, which is provided for future use.

If lpRect is NULL, the framework puts the pane in the default location on the dock site. If the dock site is
horizontal, the default location is at the far left of the dock site. Otherwise, the default location is at the top of the
dock site.

Retrieves the size of the dock site in screen coordinates.

The rectangle is adjusted for the offset margins so that they are not included.

static int m_nExtraSpace;

RemarksRemarks

CAutoHideDockSite::SetOffsetLeft

void SetOffsetLeft(int nOffset);

ParametersParameters

RemarksRemarks

CAutoHideDockSite::SetOffsetRight

void SetOffsetRight(int nOffset);

ParametersParameters

RemarksRemarks

CAutoHideDockSite::RepositionPanes

virtual void RepositionPanes(CRect& rectNewClientArea);

ParametersParameters

Parameter Description

The size of the space between the edges of the CAutoHideDockSite Class and the CMFCAutoHideBar Class
objects.

When a CMFCAutoHideBar is docked at a CAutoHideDockSite , it should not occupy the whole dock site. This global
variable controls the extra space between the left or top border of the CMFCAutoHideBar and the corresponding
CAutoHideDockSite edge. Whether the top or left edge is used depends on the current alignment.

Sets the margin on the left side of the docking bar.

nOffset
[in] The new offset.

CMFCAutoHideBar objects are positioned statically on the CAutoHideDockSite object. This means that the user
cannot manually change the location of CMFCAutoHideBar objects. The SetOffsetLeft method controls the
spacing between the left side of the left-most CMFCAutoHideBar and the left side of the CAutoHideDockSite .

Sets the margin on the right side of the docking bar.

nOffset
[in] The new offset.

CMFCAutoHideBar objects are positioned statically on the CAutoHideDockSite object. This means that the user
cannot manually change the location of the CMFCAutoHideBar objects. The SetOffsetRight method controls the
spacing between the right side of the right-most CMFCAutoHideBar and the right side of the CAutoHideDockSite .

Redraws the panes on the CAutoHideDockSite.

rectNewClientArea [in] A reserved value.

RemarksRemarks

CAutoHideDockSite::UnSetAutoHideMode

void UnSetAutoHideMode(CMFCAutoHideBar* pAutoHideToolbar);

ParametersParameters

Parameter Description

pAutoHideToolbar [in] A pointer to a CMFCAutoHideBar object pane located on
the CAutoHideDockSite .

RemarksRemarks

See also

The default implementation does not use rectNewClientArea. It redraws the panes with the global toolbar
margins and button spacing.

Calls CMFCAutoHideBar::UnSetAutoHideMode for objects on the dock site.

This method searches for the row that contains pAutoHideToolbar. It calls CMFCAutoHideBar.UnSetAutoHideMode for
all the CMFCAutoHideBar objects on that row. If pAutoHideToolbar is not found or it is NULL, this method calls
CMFCAutoHideBar.UnSetAutoHideMode for all the CMFCAutoHideBar objects on the CAutoHideDockSite .

Hierarchy Chart
Classes
CDockSite Class

CBaseKeyFrame Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CBaseKeyFrame : public CObject;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CBaseKeyFrame::CBaseKeyFrame Constructs a keyframe object.

Public MethodsPublic Methods

NAME DESCRIPTION

CBaseKeyFrame::AddToStoryboard Adds a keyframe to storyboard.

CBaseKeyFrame::GetAnimationKeyframe Returns the underlying keyframe value.

CBaseKeyFrame::IsAdded Tells whether a keyframe has been added to storyboard.

CBaseKeyFrame::IsKeyframeAtOffset Specifies whether the keyframe should be added to
storyboard at offset, or after transition.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CBaseKeyFrame::m_bAdded Specifies whether this keyframe has been added to a
storyboard.

CBaseKeyFrame::m_bIsKeyframeAtOffset Specifies whether this keyframe should be added to
storyboard at an offset from another existing keyframe, or at
the end of some transition.

CBaseKeyFrame::m_keyframe Represents a Windows Animation API keyframe. When a
keyframe is not initialized it is set to the predefined value
UI_ANIMATION_KEYFRAME_STORYBOARD_START.

Remarks

Implements the basic functionality of a keyframe.

Encapsulates UI_ANIMATION_KEYFRAME variable. Serves as a base class for any keyframe implementation. A
keyframe represents a moment in time within a storyboard and can be used to specify the start and end times of
transitions. There are two types of keyframes - keyframes added to storyboard at the specified offset (in time), or

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cbasekeyframe-class.md

Inheritance Hierarchy

Requirements

CBaseKeyFrame::AddToStoryboard

virtual BOOL AddToStoryboard(
 IUIAnimationStoryboard* pStoryboard,
 BOOL bDeepAdd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBaseKeyFrame::CBaseKeyFrame

CBaseKeyFrame();

CBaseKeyFrame::GetAnimationKeyframe

UI_ANIMATION_KEYFRAME GetAnimationKeyframe() const;

Return ValueReturn Value

RemarksRemarks

keyframes added after specified transition. Because durations of some transitions can't be known before animation
starts, the actual values of some keyframes are determined at runtime only. Because keyframes may depend on
transitions, which in their turn depend on keyframes, it's important to prevent infinite recursions when building
keyframe chains.

CObject

CBaseKeyFrame

Header: afxanimationcontroller.h

Adds a keyframe to storyboard.

pStoryboard
A pointer to a storyboard.

bDeepAdd
If this parameter is TRUE and the keyframe being added depends on some other keyframe or transition, this
method tries to add this keyframe or transition to storyboard first.

TRUE if keyframe was added to storyboard successfully; otherwise FALSE.

This method is called to add a keyframe to storyboard.

Constructs a keyframe object.

Returns the underlying keyframe value.

A current keyframe. The default value is UI_ANIMATION_KEYFRAME_STORYBOARD_START.

CBaseKeyFrame::IsAdded

BOOL IsAdded() const;

Return ValueReturn Value

RemarksRemarks

CBaseKeyFrame::IsKeyframeAtOffset

BOOL IsKeyframeAtOffset() const;

Return ValueReturn Value

RemarksRemarks

CBaseKeyFrame::m_bAdded

BOOL m_bAdded;

CBaseKeyFrame::m_bIsKeyframeAtOffset

BOOL m_bIsKeyframeAtOffset;

CBaseKeyFrame::m_keyframe

UI_ANIMATION_KEYFRAME m_keyframe;

See also

This is an accessor to the underlying keyframe value.

Tells whether a keyframe has been added to storyboard.

TRUE if a keyframe is added to a storyboard; otehrwise FALSE.

In the base class IsAdded always returns TRUE, but it's overridden in derived classes.

Specifies whether the keyframe should be added to storyboard at offset, or after transition.

TRUE if the keyframe should be added to storyboard at some specified offset. FALSE if the keyframe should be
added to storyboard after some transition.

Specifies whether the keyframe should be added to storyboard at offset. The offset or transition must be specified
in a derived class.

Specifies whether this keyframe has been added to a storyboard.

Specifies whether this keyframe should be added to storyboard at an offset from another existing keyframe, or at
the end of some transition.

Represents a Windows Animation API keyframe. When a keyframe is not initialized it is set to the predefined value
UI_ANIMATION_KEYFRAME_STORYBOARD_START.

Classes

CBasePane Class
3/4/2019 • 33 minutes to read • Edit Online

Syntax
class CBasePane : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CBasePane::CBasePane Default constructor.

CBasePane::~CBasePane Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CBasePane::accHitTest Called by the framework to retrieve the child element or
child object at a given point on the screen. (Overrides
CWnd::accHitTest.)

CBasePane::accLocation Called by the framework to retrieve the current screen
location for the specified object. (Overrides
CWnd::accLocation.)

CBasePane::AccNotifyObjectFocusEvent CBasePane does not use this method.

CBasePane::accSelect Called by the framework to modify the selection or move
the keyboard focus of the specified object. (Overrides
CWnd::accSelect.)

CBasePane::AddPane Adds a pane to the docking manager.

CBasePane::AdjustDockingLayout Redirects a call to the docking manager to adjust the
docking layout.

CBasePane::AdjustLayout Called by the framework when the pane should adjust its
internal layout.

CBasePane::CalcFixedLayout Calculates the horizontal size of a control bar.

CBasePane::CanAcceptPane Determines whether another pane can be docked to the
pane.

Base class for all panes in MFC.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cbasepane-class.md

CBasePane::CanAutoHide Determines whether the pane supports auto-hide mode.

CBasePane::CanBeAttached Determines whether the pane can be docked to another
pane.

CBasePane::CanBeClosed Determines whether the pane can be closed.

CBasePane::CanBeDocked Determines whether the pane can be docked to another
pane.

CBasePane::CanBeResized Determines whether the pane can be resized.

CBasePane::CanBeTabbedDocument Specifies whether the pane can be converted to an MDI
tabbed document.

CBasePane::CanFloat Determines whether the pane can float.

CBasePane::CanFocus Specifies whether the pane can receive focus.

CBasePane::CopyState Copies the state of a given pane.

CBasePane::CreateDefaultMiniframe If the pane can float, creates a mini-frame window.

CBasePane::CreateEx Creates the pane control.

CBasePane::DockPane Docks a pane to another pane or to a frame window.

CBasePane::DockPaneUsingRTTI Docks the pane by using run-time type information.

CBasePane::DockToFrameWindow Docks a dockable pane to a frame.

CBasePane::DoesAllowDynInsertBefore Determines whether another pane can be dynamically
inserted between this pane and the parent frame.

CBasePane::EnableDocking Enables docking of the pane to the main frame.

CBasePane::EnableGripper Enables or disables the gripper. If the gripper is enabled,
the user can drag it to reposition the pane.

CBasePane::FillWindowRect Used internally.

CBasePane::FloatPane Floats the pane.

CBasePane::get_accChild Called by the framework to retrieve the address of an
IDispatch interface for the specified child. (Overrides

CWnd::get_accChild.)

CBasePane::get_accChildCount Called by the framework to retrieve the number of children
that belong to this object. (Overrides
CWnd::get_accChildCount.)

NAME DESCRIPTION

CBasePane::get_accDefaultAction Called by the framework to retrieve a string that describes
the default action for the object. (Overrides
CWnd::get_accDefaultAction.)

CBasePane::get_accDescription Called by framework to retrieve a string that describes the
visual appearance of the specified object. (Overrides
CWnd::get_accDescription.)

CBasePane::get_accFocus Called by the framework to retrieve the object that has the
keyboard focus. (Overrides CWnd::get_accFocus.)

CBasePane::get_accHelp Called by the framework to retrieve a Help property string
for the object. (Overrides CWnd::get_accHelp.)

CBasePane::get_accHelpTopic Called by the framework to retrieve the full path of the
WinHelp file that is associated with the specified object and
the identifier of the appropriate topic in that file. (Overrides
CWnd::get_accHelpTopic.)

CBasePane::get_accKeyboardShortcut Called by the framework to retrieve the specified shortcut
key for the object. (Overrides
CWnd::get_accKeyboardShortcut.)

CBasePane::get_accName Called by the framework to retrieve the name of the
specified object. (Overrides CWnd::get_accName.)

CBasePane::get_accParent Called by the framework to retrieve the IDispatch

interface for the parent of the object. (Overrides
CWnd::get_accParent.)

CBasePane::get_accRole Called by the framework to retrieve information that
describes the role of the specified object. (Overrides
CWnd::get_accRole.)

CBasePane::get_accSelection Called by the framework to retrieve the selected children of
this object. (Overrides CWnd::get_accSelection.)

CBasePane::get_accState Called by the framework to retrieve the current state of
the specified object. (Overrides CWnd::get_accState.)

CBasePane::get_accValue Called by the framework to retrieve the value of the
specified object. (Overrides CWnd::get_accValue.)

CBasePane::GetCaptionHeight Returns the caption height.

CBasePane::GetControlBarStyle Returns the control bar style.

CBasePane::GetCurrentAlignment Returns the current pane alignment.

CBasePane::GetDockingMode Returns the current docking mode for the pane.

CBasePane::GetDockSiteFrameWnd Returns a pointer to the window that is the dock site for
the pane.

NAME DESCRIPTION

CBasePane::GetEnabledAlignment Returns the CBRS_ALIGN_ styles that are applied to the
pane.

CBasePane::GetMFCStyle Returns the pane styles specific to MFC.

CBasePane::GetPaneIcon Returns a handle to the pane icon.

CBasePane::GetPaneRect Used internally.

CBasePane::GetPaneRow Returns a pointer to the CDockingPanesRowobject where
the pane is docked.

CBasePane::GetPaneStyle Returns the pane style.

CBasePane::GetParentDockSite Returns a pointer to the parent dock site.

CBasePane::GetParentMiniFrame Returns a pointer to the parent mini-frame window.

CBasePane::GetParentTabbedPane Returns a pointer to the parent tabbed pane.

CBasePane::GetParentTabWnd Returns a pointer to the parent window that is inside a tab.

CBasePane::GetRecentVisibleState The framework calls this method when a pane is restored
from an archive.

CBasePane::HideInPrintPreviewMode Specifies whether the pane is hidden in print preview.

CBasePane::InsertPane Registers the specified pane with the docking manager.

CBasePane::IsAccessibilityCompatible Specifies whether the pane supports Active Accessibility.

CBasePane::IsAutoHideMode Determines whether a pane is in auto-hide mode.

CBasePane::IsDialogControl Specifies whether the pane is a dialog control.

CBasePane::IsDocked Determines whether the pane is docked.

CBasePane::IsFloating Determines whether the pane is floating.

CBasePane::IsHorizontal Determines whether the pane is docked horizontally.

CBasePane::IsInFloatingMultiPaneFrameWnd Specifies whether the pane is in a multi-pane frame
window.

CBasePane::IsMDITabbed Determines whether the pane has been added to an MDI
child window as a tabbed document.

CBasePane::IsPaneVisible Specifies whether the WS_VISIBLE flag is set for the pane.

CBasePane::IsPointNearDockSite Determines whether a specified point is near the dock site.

NAME DESCRIPTION

CBasePane::IsResizable Determines whether the pane can be resized.

CBasePane::IsRestoredFromRegistry Determines whether the pane is restored from the registry.

CBasePane::IsTabbed Determines whether the pane has been inserted in the tab
control of a tabbed window.

CBasePane::IsTooltipTopmost Used internally.

CBasePane::IsVisible Determines whether the pane is visible.

CBasePane::LoadState Loads the pane state from the registry.

CBasePane::MoveWindow Moves the pane.

CBasePane::OnAfterChangeParent Called by the framework when the pane's parent has been
changed.

CBasePane::OnBeforeChangeParent Called by the framework just before the pane changes its
parent window.

CBasePane::OnDrawCaption The framework calls this method when the caption is
drawn.

CBasePane::OnMovePaneDivider This method is currently not used.

CBasePane::OnPaneContextMenu Called by the framework when it builds a menu that has a
list of panes.

CBasePane::OnRemoveFromMiniFrame Called by the framework when a pane is removed from its
parent mini frame window.

CBasePane::OnSetAccData CBasePane does not use this method.

CBasePane::OnUpdateCmdUI Used internally.

CBasePane::PaneFromPoint Returns the pane that contains the given point.

CBasePane::PreTranslateMessage Used by class CWinApp to translate window messages
before they are dispatched to the TranslateMessage and
DispatchMessage Windows functions. (Overrides
CWnd::PreTranslateMessage.)

CBasePane::RecalcLayout CBasePane does not use this method.

CBasePane::RemovePaneFromDockManager Unregisters a pane and removes it from the list in the
docking manager.

CBasePane::SaveState Saves the pane's state to the registry.

CBasePane::SelectDefaultFont Selects the default font for a given device context.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CBasePane::Serialize Reads or writes this object from or to an archive.
(Overrides CObject::Serialize.)

CBasePane::SetControlBarStyle Sets the control bar style.

CBasePane::SetDockingMode Sets the docking mode for the pane.

CBasePane::SetMDITabbed Used internally.

CBasePane::SetPaneAlignment Sets the alignment for the pane.

CBasePane::SetPaneRect Used internally.

CBasePane::SetPaneStyle Sets the style of the pane.

CBasePane::SetRestoredFromRegistry Used internally.

CBasePane::SetWindowPos Changes the size, position, and Z-order of a pane.

CBasePane::ShowPane Shows or hides the pane.

CBasePane::StretchPane Stretches a pane vertically or horizontally.

CBasePane::UndockPane Removes the pane from the dock site, default slider, or
mini-frame window where it is currently docked.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CBasePane::DoPaint Fills the background of the pane.

Remarks

Customization Tips

If you want to create a pane class that supports the extended docking features available in MFC, you must
derive it from CBasePane or from CPane Class.

The following customization tips pertain to the CBasePane Class and any classes that inherit from it:

When you create a pane, you can apply several new styles:

AFX_CBRS_FLOAT makes the pane float.

AFX_CBRS_AUTOHIDE enables auto-hide mode.

AFX_CBRS_CLOSE enables the pane to be closed (hidden).

These are flags that you can combine with a bitwise-OR operation.

CBasePane implements the following virtual Boolean methods to reflect these flags:
CBasePane::CanBeClosed, CBasePane::CanAutoHide, CBasePane::CanFloat. You can override them in

Example

// This CMainFrame class extends the CFrameWndEx class.
// GetPane is a method in the CFrameWndEx class which
// Returns a pointer to the pane that has the specified ID.
CBasePane* pBar = GetPane(ID_VIEW_FORMATBAR);
if (pBar != NULL)
{
 // Set the docking mode, the pane alignment, and the pane style.
 pBar->SetDockingMode(DT_STANDARD);
 pBar->SetPaneAlignment(CBRS_ALIGN_LEFT);
 pBar->SetPaneStyle(pBar->GetCurrentAlignment() | CBRS_TOOLTIPS);
 pBar->ShowPane(TRUE, FALSE, FALSE);
}

Inheritance Hierarchy

Requirements

derived classes to customize their behavior.

You can customize docking behavior by overriding CBasePane::CanAcceptPane. Have your pane
return FALSE from this method to prevent another pane from docking to it.

If you want to create a static pane that cannot float and that prevents any other pane from docking
before it (similar to the Outlook bar in the OutlookDemo example), create it as non-floating and
override CBasePane::DoesAllowDynInsertBefore to return FALSE. The default implementation returns
FALSE if the pane is created without the AFX_CBRS_FLOAT style.

Create all panes with IDs other than -1.

To determine pane visibility, use CBasePane::IsVisible. It correctly handles the visibility state in tabbed
and auto-hide modes.

If you want to create a non-floating resizable pane, create it without the AFX_CBRS_FLOAT style and
call CFrameWnd::DockControlBar.

To exclude a pane from a docking layout or to remove a toolbar from its dock bar, call
CBasePane::UndockPane. Do not call this method for panes in auto-hide mode or for panes that
reside in tabs of tabbed windows.

If you want to float or undock a pane that is in auto-hide mode, you must call
CDockablePane::SetAutoHideMode with FALSE as the first argument before you call
CBasePane::FloatPane or CBasePane::UndockPane.

The following example demonstrates how to use various methods in the CBasePane class. The example
demonstrates how to retrieve a pane from the CFrameWndEx class and how to set the docking mode, the pane
alignment, and the pane style. The code is from the Word Pad sample.

CObject

CCmdTarget

CWnd

CBasePane

Header: afxbasepane.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CBasePane::AccNotifyObjectFocusEvent

virtual void AccNotifyObjectFocusEvent(int);

ParametersParameters

CBasePane::AddPane

void AddPane(CBasePane* pBar);

ParametersParameters

RemarksRemarks

CBasePane::AdjustDockingLayout

virtual void AdjustDockingLayout(HDWP hdwp=NULL);

ParametersParameters

RemarksRemarks

CBasePane::AdjustLayout

virtual void AdjustLayout();

RemarksRemarks

CBasePane does not use this method.

int
[in] Not used.

Adds a pane to the docking manager.

pBar
[in] A pointer to a pane to add.

This is a convenience method that adds a pane to a docking manager. By using this method, you do not have
to write code that analyzes the type of the parent frame.

For more information, see CDockingManager Class and CMDIFrameWndEx::AddPane.

Redirects a call to the docking manager to adjust the docking layout.

hdwp
[out] A handle to a structure containing multiple window positions.

This is a convenience method that adjusts the docking layout. By using this method, you do not have to write
code that analyzes the type of the parent frame.

For more information, see CDockingManager::AdjustDockingLayout

Called by the framework to adjust the internal layout of a pane.

The framework calls this method when a pane has to adjust its internal layout. The base implementation
does nothing.

CBasePane::CalcFixedLayout

virtual CSize CalcFixedLayout(
 BOOL bStretch,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBasePane::CanAcceptPane

virtual BOOL CanAcceptPane(const CBasePane* pBar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBasePane::CanAutoHide

virtual BOOL CanAutoHide() const;

Return ValueReturn Value

Calculates the horizontal size of a control bar.

bStretch
[in] Indicates whether the bar should be stretched to the size of the frame. The bStretch parameter is nonzero
when the bar is not a docking bar (not available for docking) and is 0 when it is docked or floating (available
for docking).

bHorz
[in] Indicates that the bar is horizontally or vertically oriented. The bHorz parameter is nonzero if the bar is
horizontally oriented and is 0 if it is vertically oriented.

The control bar size, in pixels, of a CSize object.

See the remarks section in CControlBar::CalcFixedLayout

Determines whether another pane can be docked to the pane.

pBar
[in] A pointer to the pane to dock.

TRUE if another pane can be accepted; otherwise FALSE.

The framework calls this method before it docks the pane specified by pBar to the current pane.

Use this method and the CBasePane::CanBeDocked method to control how panes dock to other panes in
your application.

The default implementation returns FALSE.

Determines whether the pane supports auto-hide mode.

TRUE if this pane supports auto-hide mode; otherwise FALSE.

RemarksRemarks

CBasePane::CanBeAttached

virtual BOOL CanBeAttached() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::CanBeClosed

virtual BOOL CanBeClosed() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::CanBeDocked

virtual BOOL CanBeDocked(CBasePane* pDockBar) const;

ParametersParameters

Return ValueReturn Value

The framework calls this function to determine whether the pane supports auto-hide mode.

During construction, you can set this ability by passing the AFX_CBRS_AUTOHIDE flag to
CBasePane::CreateEx.

The default implementation checks for the AFX_CBRS_AUTOHIDE flag. Override this method in a derived
class to customize this behavior.

Determines whether the pane can be docked to another pane or frame window.

TRUE if the pane can be docked to another pane or frame window; otherwise FALSE.

The default implementation returns FALSE. Override this method in a derived class to enable or disable the
ability to dock without calling CBasePane::EnableDocking.

Determines whether the pane can be closed.

TRUE if the pane can be closed; otherwise FALSE.

The framework calls this method to determine whether the pane can be closed. If the method returns TRUE,
a Close button is added to the pane's title bar or, if the pane is floating, to the title bar of the pane's
miniframe window.

During construction, you can set this ability by passing the AFX_CBRS_CLOSE flag to CBasePane::CreateEx.

The default implementation checks for the AFX_CBRS_CLOSE flag.

Determines whether the pane can be docked to another pane.

pDockBar
[in] A pointer to another pane.

TRUE if this pane can be docked to another pane; otherwise FALSE.

RemarksRemarks

CBasePane::CanBeResized

virtual BOOL CanBeResized() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::CanBeTabbedDocument

virtual BOOL CanBeTabbedDocument() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::CanFloat

virtual BOOL CanFloat() const;

Return ValueReturn Value

RemarksRemarks

The framework calls this method before it docks the pane specified by pDockBar to the current pane.

Use this method and the CBasePane::CanAcceptPane method to control how panes dock to other panes in
your application.

The default implementation returns FALSE.

Determines whether the pane can be resized.

TRUE if the pane can be resized; otherwise, FALSE.

This method checks for the AFX_CBRS_RESIZE flag, which is specified by default in CBasePane::OnCreate . If
this flag is not specified, the docking manager flags the pane internally as immovable instead of docking it.

Specifies whether the pane can be converted to an MDI tabbed document.

TRUE if the pane can be converted to a tabbed document; otherwise, FALSE.
CBasePane::CanBeTabbedDocument always returns FALSE.

Only objects of certain CBasePane -derived types, such as the CDockablePane Class, can be converted to
tabbed documents.

Determines whether the pane can float.

TRUE if the pane can float; otherwise FALSE.

The framework calls this method to determine whether the pane can float.

During construction, you can set this ability by passing the AFX_CBRS_FLOAT flag to CBasePane::CreateEx.

NOTENOTE

CBasePane::CanFocus

virtual BOOL CanFocus() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::CopyState

virtual void CopyState(CBasePane* pOrgBar);

ParametersParameters

RemarksRemarks

CBasePane::CreateDefaultMiniframe

virtual CPaneFrameWnd* CreateDefaultMiniframe(CRect rectInitial);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The framework assumes that non-floating panes are static and that their docking state cannot change. Therefore, the
framework does not save the docking state of non-floating panes.

The default implementation checks for the AFX_CBRS_FLOAT style.

Specifies whether the pane can receive focus.

TRUE if the pane can receive focus; otherwise FALSE.

Override this method in a derived class to control focus. For example, because toolbars cannot receive focus,
this method returns FALSE when it is called on toolbar objects.

The framework tries to set the input focus when a pane is docked or floated.

Copies the state of a given pane.

pOrgBar
[in] A pointer to another pane.

This method copies the state from pOrgBar to this pane.

If the pane can float, this method creates a mini-frame window for it.

rectInitial
[in] Specifies the initial coordinates of the mini-frame window.

A pointer to the new mini-frame window or NULL if the creation failed.

The framework calls this method when a pane switches to a floating state. The method creates a mini-frame
window and attaches the pane to this window.

 CBasePane::CreateEx

virtual BOOL CreateEx(
 DWORD dwStyleEx,
 LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 DWORD dwControlBarStyle=0,
 CCreateContext* pContext=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The default implementation returns NULL.

Creates the pane control.

dwStyleEx
[in] The extended styles (see CWnd::CreateEx for more information).

lpszClassName
[in] The window class name.

lpszWindowName
[in] The window name.

dwStyle
[in] The window style (see CWnd::CreateEx).

rect
[in] The initial rectangle.

pParentWnd
[in] A pointer to the parent window.

nID
[in] Specifies the pane ID. Must be unique.

dwControlBarStyle
[in] Style flags for panes.

pContext
[in] A pointer to CcreateContext

TRUE if the pane is created successfully; otherwise FALSE.

Creates a window of class lpszClassName . If you specify WS_CAPTION, this method clears the
WS_CAPTION style bit and sets CBasePane::m_bHasCaption to TRUE, because the library does not support
panes with captions.

You can use any combination of child window styles and MFC control bar (CBRS_) styles.

The library adds several new styles for panes. The following table describes the new styles:

STYLE DESCRIPTION

AFX_CBRS_FLOAT The pane can float.

AFX_CBRS_AUTOHIDE The pane supports auto-hide mode

AFX_CBRS_RESIZE The pane can be resized. Important: This style is not
implemented.

AFX_CBRS_CLOSE The pane can be closed.

AFX_CBRS_AUTO_ROLLUP The pane can be rolled up when it floats.

AFX_CBRS_REGULAR_TABS When one pane docks to another pane that has this style,
a regular tabbed window is created. (For more information,
see CTabbedPane Class.)

AFX_CBRS_OUTLOOK_TABS When one pane docks to another pane that has this style,
an Outlook-style tabbed window is created. (For more
information, see CMFCOutlookBar Class.)

CBasePane::DockPane

virtual BOOL DockPane(
 CBasePane* pDockBar,
 LPCRECT lpRect,
 AFX_DOCK_METHOD dockMethod);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBasePane::DockPaneUsingRTTI

To use the new styles, specify them in dwControlBarStyle.

Docks a pane to another pane or to a frame window.

pDockBar
[in] A pointer to another pane.

lpRect
[in] Specifies the destination rectangle.

dockMethod
[in] Specifies the docking method.

TRUE if the control bar was docked successfully; otherwise, FALSE.

Call this function to dock a pane to another pane or a dock bar (CDockSite Class) that is specified by
pDockBar, or to a main frame if pDockBar is NULL.

dockMethod specifies how the pane is docked. See CPane::DockPane for a list of possible values.

Docks the pane by using run-time type information.

void DockPaneUsingRTTI(BOOL bUseDockSite);

ParametersParameters

CBasePane::DockToFrameWindow

virtual BOOL DockToFrameWindow(
 DWORD dwAlignment,
 LPCRECT lpRect = NULL,
 DWORD dwDockFlags = DT_DOCK_LAST,
 CBasePane* pRelativeBar = NULL,
 int nRelativeIndex = -1,
 BOOL bOuterEdge = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBasePane::DoesAllowDynInsertBefore

virtual BOOL DoesAllowDynInsertBefore() const;

Return ValueReturn Value

bUseDockSite
[in] If TRUE, dock to the docking site. If FALSE, dock to the parent frame.

Docks a dockable pane to a frame.

dwAlignment
[in] The side of the parent frame that you want to dock the pane to.

lpRect
[in] The desired size.

dwDockFlags
[in] Ignored.

pRelativeBar
[in] Ignored.

nRelativeIndex
[in] Ignored.

bOuterEdge
[in] If TRUE and there are other dockable panes at the side specified by dwAlignment, the pane is docked
outside the other panes, closer to the edge of the parent frame. If FALSE, the pane is docked closer to the
center of the client area.

TRUE if the method was successful; otherwise FALSE.

This method fails if a pane divider (CPaneDivider Class) cannot be created. Otherwise, it always returns
TRUE.

Determines whether another pane can be dynamically inserted between this pane and the parent frame.

TRUE if a user can insert another pane; otherwise FALSE.

RemarksRemarks

CBasePane::DoPaint

virtual void DoPaint(CDC* pDC);

ParametersParameters

RemarksRemarks

CBasePane::EnableDocking

virtual void EnableDocking(DWORD dwAlignment);

ParametersParameters

RemarksRemarks

CBasePane::EnableGripper

virtual void EnableGripper(BOOL bEnable);

ParametersParameters

The framework calls this method to determine whether a user can dynamically insert a pane before this
pane.

For example, suppose your application creates a pane docked at the left side of the frame (such as the
Outlook bar). To prevent the user from docking another pane to the left of the first pane, override this
method and return FALSE.

We recommend that you override this method and return FALSE for non-floating panes derived from
CDockablePane Class.

The default implementation returns TRUE.

Fills the background of the pane.

pDC
[in] A pointer to a device context.

The default implementation calls the current visual manager to fill the background (
CMFCVisualManager::OnFillBarBackground).

Enables docking of the pane to the main frame.

dwAlignment
[in] Specifies the docking alignment to enable.

Call this method to enable docking alignment to the main frame. You can pass a combination of
CBRS_ALIGN_ flags (for more information, see CControlBar::EnableDocking).

EnableDocking sets the internal flag CBasePane::m_dwEnabledAlignment and the framework checks this flag
when a pane is docked.

Call CBasePane::GetEnabledAlignment to determine the docking alignment for a pane.

Enables or disables the gripper. If the gripper is enabled, the user can drag it to reposition the pane.

RemarksRemarks

CBasePane::FloatPane

virtual BOOL FloatPane(
 CRect rectFloat,
 AFX_DOCK_METHOD dockMethod=DM_UNKNOWN,
 bool bShow=true);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBasePane::get_accHelpTopic

virtual HRESULT get_accHelpTopic(
 BSTR* pszHelpFile,
 VARIANT varChild,
 long* pidTopic);

ParametersParameters

Return ValueReturn Value

bEnable
[in] TRUE to enable the gripper; FALSE to disable it.

The framework uses this method to enable a gripper instead of using the WS_CAPTION style.

Floats the pane.

rectFloat
[in] Specifies the screen coordinates where the floating pane appears.

dockMethod
[in] Specifies the dock method to use to float the pane.

bShow
[in] Specifies whether the floating pane is visible (TRUE) or hidden (FALSE).

TRUE if the pane was floated successfully; otherwise FALSE.

Call this method to float a pane at the screen position specified by rectFloat.

The framework calls this method to retrieve the full path of the WinHelp file that is associated with the
specified object and the identifier of the appropriate topic in that file.

pszHelpFile
[in] Address of a BSTR that receives the full path of the WinHelp file that is associated with the specified
object, if any.

varChild
[in] Specifies whether the Help topic to be retrieved is that of the object or one of the child elements of the
object. This parameter can be either CHILDID_SELF (to obtain a Help topic for the object) or a child ID (to
obtain a Help topic for one of the child elements of the object).

pidTopic
[in] Identifies the Help file topic that is associated with the specified object.

RemarksRemarks

CBasePane::get_accSelection

virtual HRESULT get_accSelection(VARIANT* pvarChildren);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBasePane::GetCaptionHeight

virtual int GetCaptionHeight() const;

Return ValueReturn Value

CBasePane::GetControlBarStyle

virtual DWORD GetControlBarStyle() const

Return ValueReturn Value

RemarksRemarks

STYLE DESCRIPTION

AFX_CBRS_FLOAT Makes the control bar float.

AFX_CBRS_AUTOHIDE Enables auto-hide mode.

CBasePane does not implement this method. Therefore, CBasePane::get_accHelpTopic always returns
S_FALSE.

This function is part of the Active Accessibility support in MFC. Override this function in a derived class to
provide help information about your object.

The framework calls this method to retrieve the selected children of this object.

pvarChildren
[in] Receives information that identifies the selected children.

CBasePane does not implement this method. If pvarChildren is NULL, this method returns E_INVALIDARG.
Otherwise, this method returns DISP_E_MEMBERNOTFOUND.

This function is part of the Active Accessibility support in MFC. Override this function in a derived class if
you have non-windowed user interface elements other than windowless ActiveX controls.

Returns the caption height.

The caption height.

Returns the control bar style.

A bitwise-OR combination of AFX_CBRS_ flags.

The return value is a combination of the following possible values.

AFX_CBRS_RESIZE Enables resizing of the control bar. When this flag is set,
the control bar can be placed in a dockable pane.

AFX_CBRS_CLOSE Enables hiding of the control bar.

STYLE DESCRIPTION

CBasePane::GetCurrentAlignment

virtual DWORD GetCurrentAlignment() const;

Return ValueReturn Value

VALUE ALIGNMENT

CBRS_ALIGN_LEFT Left alignment.

CBRS_ALIGN_RIGHT Right alignment.

CBRS_ALIGN_TOP Top alignment.

CBRS_ALIGN_BOTTOM Bottom alignment.

CBasePane::GetDockingMode

virtual AFX_DOCK_TYPE GetDockingMode() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::GetDockSiteFrameWnd

virtual CWnd* GetDockSiteFrameWnd() const;

Return ValueReturn Value

Returns the current pane alignment.

The current alignment of the control bar. The following table shows the possible values:

Returns the current docking mode for the pane.

DT_STANDARD if dragging the pane is indicated on the screen by a drag rectangle. DT_IMMEDIATE if the
contents of the pane are dragged.

The framework calls this method to determine the current docking mode of the pane.

If CBasePane::m_dockMode is undefined (DT_UNDEFINED), then the docking mode is taken from the global
docking mode (AFX_GLOBAL_DATA::m_dockModeGlobal).

By setting m_dockMode or overriding GetDockingMode you can control the docking mode for each pane.

Returns a pointer to the CDockingPanesRowobject where the pane is docked.

RemarksRemarks

CBasePane::GetEnabledAlignment

virtual DWORD GetEnabledAlignment() const;

Return ValueReturn Value

FLAG ENABLED ALIGNMENT

CBRS_ALIGN_LEFT Left.

CBRS_ALIGN_RIGHT Right.

CBRS_ALIGN_TOP Top.

CBRS_ALIGN_BOTTOM Bottom.

CBRS_ALIGN_ANY Combination of all flags.

RemarksRemarks

CBasePane::GetMFCStyle

virtual DWORD GetMFCStyle() const;

Return ValueReturn Value

CBasePane::GetPaneIcon

virtual HICON GetPaneIcon(BOOL bBigIcon);

ParametersParameters

A pointer to the dock site of the pane.

Call this method to retrieve a pointer to the dock site of the pane. The dock site can be either a main frame
window if the pane is docked to the main frame, or a mini-frame window if the pane is floating.

Returns the CBRS_ALIGN_ styles that are applied to the pane.

A combination of CBRS_ALIGN_ styles. The following table shows the possible styles:

Call this method to determine the enabled alignment for the pane. Enabled alignment means the sides of the
main frame window that a pane can be docked to.

Enable docking alignment by using CBasePane::EnableDocking.

Returns the pane styles that are specific to MFC.

A combination of library-specific (AFX_CBRS_) pane styles.

Returns a handle to the pane icon.

bBigIcon
[in] Specifies a 32 pixel by 32 pixel icon if TRUE; specifies a 16 pixel by 16 pixel icon if FALSE.

Return ValueReturn Value

RemarksRemarks

CBasePane::GetPaneRow

CDockingPanesRow* GetPaneRow();

Return ValueReturn Value

RemarksRemarks

CBasePane::GetPaneStyle

virtual DWORD GetPaneStyle() const;

Return ValueReturn Value

CBasePane::GetParentDockSite

virtual CDockSite* GetParentDockSite() const;

Return ValueReturn Value

CBasePane::GetParentMiniFrame

virtual CPaneFrameWnd* GetParentMiniFrame(BOOL bNoAssert=FALSE) const;

ParametersParameters

Return ValueReturn Value

A handle to the pane icon. If unsuccessful, returns NULL.

The default implementation calls CWnd::GetIcon.

Returns a pointer to the CDockingPanesRowobject where the pane is docked.

A pointer to CDockingPanesRow if the pane is docked, or NULL if it is floating.

Call this method to access the row where a pane is docked. For example, to arrange the panes in a particular
row, call GetPaneRow and then call CDockingPanesRow::ArrangePanes.

Returns the pane style.

A combination of control bar styles (including CBRS_ styles) that was set by the CBasePane::SetPaneStyle
method at creation time.

Returns a pointer to the parent dock site.

The parent dock site.

Returns a pointer to the parent mini-frame window.

bNoAssert
[in] If TRUE, this method does not check for non-valid pointers. If you call this method when your application
exits, set this parameter to TRUE.

A valid pointer to the parent mini-frame window if the pane is floating; otherwise NULL.

RemarksRemarks

CBasePane::GetParentTabbedPane

CBaseTabbedPane* GetParentTabbedPane() const;

Return ValueReturn Value

CBasePane::GetParentTabWnd

CMFCBaseTabCtrl* GetParentTabWnd(HWND& hWndTab) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBasePane::GetRecentVisibleState

virtual BOOL GetRecentVisibleState() const;

Return ValueReturn Value

CBasePane::HideInPrintPreviewMode

virtual BOOL HideInPrintPreviewMode() const;

Call this function to retrieve a pointer to the parent mini-frame window. This method iterates through all
parents and checks for an object derived from CPaneFrameWnd Class.

Use GetParentMiniFrame to determine whether the pane is floating.

Returns a pointer to the parent tabbed pane.

A pointer to the parent tabbed pane if it exists; otherwise NULL.

Returns a pointer to the parent window that is inside a tab.

hWndTab
[out] If the return value is not NULL, this parameter contains the handle to the parent tabbed window.

A valid pointer to the parent tabbed window or NULL.

Use this function to retrieve a pointer to the parent tabbed window. Sometimes it is not enough to call
GetParent , because a pane may be inside a docking wrapper (CDockablePaneAdapter Class) or inside a

pane adapter (CDockablePaneAdapter Class). By using GetParentTabWnd you will be able to retrieve a valid
pointer in those cases (assuming that the parent is a tabbed window).

The framework calls this method when a pane is restored from an archive.

A BOOL that specifies the recent visible state. If TRUE, the pane was visible when serialized and should be
visible when restored. If FALSE, the pane was hidden when serialized and should be hidden when restored.

Specifies whether the pane is hidden in print preview.

Return ValueReturn Value

RemarksRemarks

CBasePane::InsertPane

BOOL InsertPane(
 CBasePane* pControlBar,
 CBasePane* pTarget,
 BOOL bAfter = TRUE);

ParametersParameters

Return ValueReturn Value

CBasePane::IsAccessibilityCompatible

virtual BOOL IsAccessibilityCompatible();

Return ValueReturn Value

CBasePane::IsAutoHideMode

virtual BOOL IsAutoHideMode() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::IsDialogControl

TRUE if the pane is not shown in print preview; otherwise, FALSE.

Base panes are not shown in print preview. Therefore, this method always returns TRUE.

Registers the specified pane with the docking manager.

pControlBar
[in] A pointer to the pane to insert.

pTarget
[in] A pointer to the adjacent pane.

bAfter
[in] If TRUE, pControlBar is inserted after pTarget. If FALSE, pControlBar is inserted before pTarget.

TRUE if the method succeeds, FALSE otherwise.

Specifies whether the pane supports Active Accessibility.

TRUE if the pane supports Active Accessibility; otherwise, FALSE.

Determines whether a pane is in auto-hide mode.

TRUE if the pane is in auto-hide mode; otherwise, FALSE.

Base panes cannot auto-hide. This method always returns FALSE.

Specifies whether the pane is a dialog box control.

BOOL IsDialogControl() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::IsDocked

virtual BOOL IsDocked() const;

Return ValueReturn Value

CBasePane::IsFloating

virtual BOOL IsFloating() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::IsHorizontal

virtual BOOL IsHorizontal() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::IsInFloatingMultiPaneFrameWnd

virtual BOOL IsInFloatingMultiPaneFrameWnd() const;

Return ValueReturn Value

TRUE if the pane is a dialog box control; otherwise, FALSE.

The framework uses this method to ensure layout consistency for all panes.

Determines whether the pane is docked.

TRUE if the parent of the pane is not a mini-frame or if the pane is floating in a mini-frame with another
pane; otherwise, FALSE.

Determines whether the pane is floating.

TRUE if the pane is floating; otherwise, FALSE.

This method returns the opposite value of CBasePane::IsDocked.

Determines whether the pane is docked horizontally.

TRUE if the pane is docked horizontally; otherwise FALSE.

The default implementation checks the current docking alignment for CBRS_ORIENT_HORZ.

Specifies whether the pane is in a multi-pane frame window (CMultiPaneFrameWnd Class).

TRUE if the pane is in a multi-pane frame window; otherwise, FALSE.

RemarksRemarks

CBasePane::IsMDITabbed

virtual BOOL IsMDITabbed() const;

Return ValueReturn Value

CBasePane::IsPaneVisible

BOOL IsPaneVisible() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::IsPointNearDockSite

BOOL IsPointNearDockSite(
 CPoint point,
 DWORD& dwBarAlignment,
 BOOL& bOuterEdge) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Only dockable panes can float in a multi-pane frame window. Therefore,
CBasePane::IsInFloatingMultiPaneFrameWnd always returns FALSE.

Determines whether the pane has been added to an MDI child window as a tabbed document.

TRUE if the pane was added to an MDI child window as a tabbed document; otherwise, FALSE.

Specifies whether the WS_VISIBLE flag is set for the pane.

TRUE if WS_VISIBLE is set; otherwise, FALSE.

Use CBasePane::IsVisible to determine pane visibility.

Determines whether a specified point is near the dock site.

point
[in] The specified point.

dwBarAlignment
[out] Specifies which edge the point is near. Possible values are CBRS_ALIGN_LEFT, CBRS_ALIGN_RIGHT,
CBRS_ALIGN_TOP, and CBRS_ALIGN_BOTTOM

bOuterEdge
[out] TRUE if the point is near the outer border of the dock site; FALSE otherwise.

TRUE if the point is near the dock site; otherwise FALSE.

The point is near the dock site when it is within the sensitivity set in the docking manager. The default
sensitivity is 15 pixels.

CBasePane::IsResizable

virtual BOOL IsResizable() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::IsRestoredFromRegistry

virtual BOOL IsRestoredFromRegistry() const;

Return ValueReturn Value

CBasePane::IsTabbed

virtual BOOL IsTabbed() const;

Return ValueReturn Value

RemarksRemarks

CBasePane::IsVisible

virtual BOOL IsVisible() const;

Return ValueReturn Value

RemarksRemarks

Determines whether the pane can be resized.

TRUE if the pane can be resized by the user; otherwise, FALSE.

Panes of CDockablePane Class can be resized.

The status bar (CMFCStatusBar Class) and the dock bar (CDockSite Class) cannot be resized.

Determines whether the pane is restored from the registry.

TRUE if the pane is restored from the registry; otherwise, FALSE.

Determines whether the pane has been inserted in the tab control of a tabbed window.

TRUE if the control bar is inserted in a tab of a tabbed window; otherwise FALSE.

This method retrieves a pointer to the immediate parent and determines if the parent's runtime class is
CMFCBaseTabCtrl Class.

Determines whether the pane is visible.

TRUE if the pane is visible; otherwise FALSE.

Use this method to determine the visibility of a pane. Do not use ::IsWindowVisible .

If the pane is not tabbed (see CBasePane::IsTabbed), this method checks for the WS_VISIBLE style. If the
pane is tabbed, this method checks the visibility of the parent tabbed window. If the parent window is visible,
the function checks the visibility of the pane tab using CMFCBaseTabCtrl::IsTabVisible.

CBasePane::LoadState

virtual BOOL LoadState(
 LPCTSTR lpszProfileName=NULL,
 int nIndex=-1,
 UINT uiID=(UINT)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBasePane::MoveWindow

virtual HDWP MoveWindow(
 CRect& rect,
 BOOL bRepaint = TRUE,
 HDWP hdwp = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBasePane::OnAfterChangeParent

Loads the pane's state from the registry.

lpszProfileName
[in] Profile name.

nIndex
[in] Profile index.

uiID
[in] Pane ID.

TRUE if the pane state was loaded successfully; otherwise FALSE.

The framework calls this method to load the pane state from the registry. Override it in a derived class to
load additional information saved by CBasePane::SaveState.

Moves the pane.

rect
[in] A rectangle specifying the new location and size of the pane.

bRepaint
[in] If TRUE, the pane is repainted. If FALSE, the pane is not repainted.

hdwp
[in] Handle to a deferred window position structure.

A handle to a deferred window position structure, or NULL.

If you pass NULL as the hdwp parameter, this method moves the window normally. If you pass a handle, this
method performs a deferred window move. You can obtain a handle by calling BeginDeferWindowPos or by
storing the return value of a previous call to this method.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-begindeferwindowpos

virtual void OnAfterChangeParent(CWnd* pWndOldParent);

ParametersParameters

RemarksRemarks

CBasePane::OnBeforeChangeParent

virtual void OnBeforeChangeParent(
 CWnd* pWndNewParent,
 BOOL bDelay=FALSE);

ParametersParameters

RemarksRemarks

CBasePane::OnDrawCaption

virtual void OnDrawCaption();

RemarksRemarks

CBasePane::OnMovePaneDivider

virtual void OnMovePaneDivider(CPaneDivider* /* unused */);

ParametersParameters

Called by the framework after the pane's parent changes.

pWndOldParent
[in] A pointer to the previous parent.

The framework calls this method after the pane's parent changes, usually because of a docking or floating
operation.

The default implementation does nothing.

Called by the framework just before the pane changes its parent window.

pWndNewParent
[in] A pointer to a new parent window.

bDelay
[in] Specifies whether layout adjustments must be delayed.

The framework calls this method just before the pane's parent changes, usually because of a docking,
floating, or auto-hide operation.

The default implementation does nothing.

The framework calls this method when the caption is drawn.

This method has no functionality for the CBasePane class.

This method is currently not used.

unused

CBasePane::OnPaneContextMenu

virtual void OnPaneContextMenu(
 CWnd* pParentFrame,
 CPoint point);

ParametersParameters

RemarksRemarks

CBasePane::OnRemoveFromMiniFrame

virtual void OnRemoveFromMiniFrame(CPaneFrameWnd* pMiniFrame);

ParametersParameters

RemarksRemarks

CBasePane::OnSetAccData

virtual BOOL OnSetAccData(long lVal);

ParametersParameters

Return ValueReturn Value

[in] Not used.

Called by the framework when it builds a menu that has a list of panes.

pParentFrame
[in] A pointer to the parent frame.

point
[in] Specifies the location of the shortcut menu.

OnPaneContextMenu calls the docking manager, which maintains the list of panes that belong to the current
frame window. This method adds the names of the panes to a shortcut menu and displays it. The commands
on the menu show or hide individual panes.

Override this method to customize this behavior.

Called by the framework when a pane is removed from its parent mini frame window.

pMiniFrame
[in] A pointer to a mini-frame window from which the pane is removed.

The framework calls this method when a pane is removed from its parent mini-frame window (as a result of
docking, for example).

The default implementation does nothing.

CBasePane does not use this method.

lVal
[in] Not used.

This method always returns TRUE.

RemarksRemarks

CBasePane::PaneFromPoint

CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 bool bExactBar = false,
 CRuntimeClass* pRTCBarType = NULL) const;

ParametersParameters

Return ValueReturn Value

CBasePane::RecalcLayout

virtual void RecalcLayout();

CBasePane::RemovePaneFromDockManager

void RemovePaneFromDockManager(
 CBasePane* pBar,
 BOOL bDestroy = TRUE,
 BOOL bAdjustLayout = FALSE,
 BOOL bAutoHide = FALSE,
 CBasePane* pBarReplacement = NULL);

ParametersParameters

Returns the pane that contains the given point.

point
[in] Specifies the point, in screen coordinates, to check.

nSensitivity
[in] Increase the search area by this amount. A pane will satisfy the search criteria if the given point falls in
the increased area.

bExactBar
[in] TRUE to ignore the nSensitivity parameter; otherwise, FALSE.

pRTCBarType
[in] If not NULL, the method searches only panes of the specified type.

The CBasePane -derived object that contains the given point, or NULL if no pane was found.

CBasePane does not use this method.

Unregisters a pane and removes it from the list in the docking manager.

pBar
[in] A pointer to a pane to be removed.

bDestroy
[in] If TRUE, the removed pane is destroyed.

bAdjustLayout
[in] If TRUE, adjust the docking layout immediately.

CBasePane::SaveState

virtual BOOL SaveState(
 LPCTSTR lpszProfileName=NULL,
 int nIndex=-1,
 UINT uiID=(UINT)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBasePane::SelectDefaultFont

CFont* SelectDefaultFont(CDC* pDC);

ParametersParameters

Return ValueReturn Value

CBasePane::SetControlBarStyle

virtual void SetControlBarStyle(DWORD dwNewStyle);

ParametersParameters

bAutoHide
[in] If TRUE, the docking layout is related to the list of autohide bars. If FALSE, the docking layout is related
to the list of regular panes.

pBarReplacement
[in] A pointer to a pane that replaces the removed pane.

Saves the pane's state to the registry.

lpszProfileName
[in] Profile name.

nIndex
[in] Profile index.

uiID
[in] Pane ID.

TRUE if the state was saved successfully; otherwise FALSE.

The framework calls this method when it saves the pane's state to the registry. Override SaveState in a
derived class to store additional information.

Selects the default font for a given device context.

pDC
[in] A device context.

A pointer to the default CFont Class object.

Sets the control bar style.

STYLE DESCRIPTION

AFX_CBRS_FLOAT Makes the control bar float.

AFX_CBRS_AUTOHIDE Enables auto-hide mode.

AFX_CBRS_RESIZE Enables resizing of the control bar. When this flag is set,
the control bar can be placed in a dockable pane.

AFX_CBRS_CLOSE Enables hiding of the control bar.

CBasePane::SetDockingMode

void SetDockingMode(AFX_DOCK_TYPE dockModeNew);

ParametersParameters

RemarksRemarks

CBasePane::SetPaneAlignment

virtual void SetPaneAlignment(DWORD dwAlignment);

ParametersParameters

RemarksRemarks

VALUE ALIGNMENT

CBRS_ALIGN_LEFT Left alignment.

dwNewStyle
[in] A bitwise-OR combination of the following possible values.

Sets the docking mode for the pane.

dockModeNew
[in] Specifies the new docking mode for the pane.

The framework supports two docking modes: standard and immediate.

In the standard docking mode, panes and mini-frame windows are moved around using a drag rectangle. In
the immediate docking mode, control bars and mini-frame windows are moved immediately with their
context.

Initially, the docking mode is defined globally by CDockingManager::m_dockModeGlobal. You can set the
docking mode for each pane individually using the SetDockingMode method.

Sets the alignment for the pane.

dwAlignment
[in] Specifies the new alignment.

Usually, the framework calls this method when a pane is docked from one side of the main frame to another.

The following table shows the possible values for dwAlignment:

CBRS_ALIGN_RIGHT Right alignment.

CBRS_ALIGN_TOP Top alignment.

CBRS_ALIGN_BOTTOM Bottom alignment.

VALUE ALIGNMENT

CBasePane::SetPaneStyle

virtual void SetPaneStyle(DWORD dwNewStyle);

ParametersParameters

RemarksRemarks

CBasePane::SetWindowPos

virtual HDWP SetWindowPos(
 const CWnd* pWndInsertAfter,
 int x,
 int y,
 int cx,
 int cy,
 UINT nFlags,
 HDWP hdwp = NULL);

ParametersParameters

Sets the style of the pane.

dwNewStyle
[in] Specifies the new style to set.

This method can be used to set any of the CBRS_ styles that are defined in afxres.h. Because pane style and
pane alignment are stored together, set the new style by combining it with the current alignment as follows.

pPane->SetPaneStyle (pPane->GetCurrentAlignment() | CBRS_TOOLTIPS);

Changes the size, position, and Z-order of a pane.

pWndInsertAfter
[in] Identifies the CWnd object that comes before this CWnd object in the Z-order. For more information, see
CWnd::SetWindowPos.

x
[in] Specifies the position of the left side of the window.

y
[in] Specifies the position of the top of the window.

cx
[in] Specifies the width of the window.

cy
[in] Specifies the height of the window.

nFlags

Return ValueReturn Value

RemarksRemarks

CBasePane::ShowPane

virtual void ShowPane(
 BOOL bShow,
 BOOL bDelay,
 BOOL bActivate);

ParametersParameters

RemarksRemarks

CBasePane::StretchPane

virtual CSize StretchPane(
 int nLength,
 BOOL bVert);

ParametersParameters

Return ValueReturn Value

CBasePane::UndockPane

[in] Specifies size and position options. For more information, see CWnd::SetWindowPos.

hdwp
[in] Handle to a structure that contains size and position information for one or more windows.

A handle to an updated deferred window position structure, or NULL.

If pWndInsertAfter is NULL, this method calls CWnd::SetWindowPos. If pWndInsertAfter is non-NULL, this
method calls DeferWindowPos .

Shows or hides the pane.

bShow
[in] Specifies whether to show (TRUE) or hide (FALSE) a pane.

bDelay
[in] If TRUE, recalculating the docking layout is delayed.

bActivate
[in] If TRUE, the pane is active when shown.

This method shows or hides a pane. Use this method instead of ShowWindow because this method notifies the
relevant docking managers about changes in the pane's visibility.

Use CBasePane::IsVisible to determine the current visibility of a pane.

Stretches a pane vertically or horizontally.

nLength
[in] The length by which to stretch the pane.

bVert
[in] If TRUE, stretch the pane vertically. If FALSE, stretch the pane horizontally.

The size of the stretched pane.

 CBasePane::UndockPane

virtual void UndockPane(BOOL bDelay=FALSE);

ParametersParameters

RemarksRemarks

See also

Removes the pane from the dock site, default slider, or mini-frame window where it is currently docked.

bDelay
If TRUE, the docking layout is not recalculated immediately.

Call this method to manipulate the pane state or exclude the pane from the docking layout.

If you want to continue to use this pane, call either CBasePane::DockPane or CBasePane::FloatPane before
calling this method.

Hierarchy Chart
Classes
CPane
CWnd Class

CBaseTabbedPane Class
3/4/2019 • 12 minutes to read • Edit Online

Syntax
class CBaseTabbedPane : public CDockablePane

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CBaseTabbedPane::CBaseTabbedPane Default constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CBaseTabbedPane::AddTab Adds a new tab to a tabbed pane.

CBaseTabbedPane::AllowDestroyEmptyTabbedPane Specifies whether an empty tabbed pane can be destroyed.

CBaseTabbedPane::ApplyRestoredTabInfo Applies tab settings, which are loaded from the registry, to a
tabbed pane.

CBaseTabbedPane::CanFloat Determines whether the pane can float. (Overrides
CBasePane::CanFloat.)

CBaseTabbedPane::CanSetCaptionTextToTabName Determines whether the caption for the tabbed pane should
display the same text as the active tab.

CBaseTabbedPane::ConvertToTabbedDocument (Overrides CDockablePane::ConvertToTabbedDocument.)

CBaseTabbedPane::DetachPane Converts one or more dockable panes to MDI tabbed
documents.

CBaseTabbedPane::EnableSetCaptionTextToTabName Enables or disables the ability of the tabbed pane to
synchronize caption text with the label text on the active tab.

CBaseTabbedPane::FillDefaultTabsOrderArray Restores the internal tab order to a default state.

CBaseTabbedPane::FindBarByTabNumber Returns a pane that resides in a tab when the tab is identified
by a zero-based tab index.

CBaseTabbedPane::FindPaneByID Returns a pane that is identified by the pane ID.

Extends the functionality of the CDockablePane Class to support the creation of tabbed windows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cbasetabbedpane-class.md

CBaseTabbedPane::FloatTab Floats a pane, but only if the pane currently resides in a
detachable tab.

CBaseTabbedPane::GetDefaultTabsOrder Returns the default order of tabs in the pane.

CBaseTabbedPane::GetFirstVisibleTab Retrieves a pointer to the first displayed tab.

CBaseTabbedPane::GetMinSize Retrieves the minimum allowed size for the pane. (Overrides
CPane::GetMinSize.)

CBaseTabbedPane::GetPaneIcon Returns a handle to the pane icon. (Overrides
CBasePane::GetPaneIcon.)

CBaseTabbedPane::GetPaneList Returns a list of panes that are contained in the tabbed pane.

CBaseTabbedPane::GetTabArea Returns the bounding rectangles for the top and bottom tab
areas.

CBaseTabbedPane::GetTabsNum Returns the count of tabs in a tab window.

CBaseTabbedPane::GetUnderlyingWindow Gets the underlying (wrapped) tab window.

CBaseTabbedPane::GetVisibleTabsNum Returns the count of displayed tabs.

CBaseTabbedPane::HasAutoHideMode Determines whether the tabbed pane can be switched to
auto-hide mode.

CBaseTabbedPane::IsHideSingleTab Determines whether the tabbed pane is hidden if only one
tab is displayed.

CBaseTabbedPane::LoadSiblingPaneIDs Used internally during serialization.

CBaseTabbedPane::RecalcLayout Recalculates layout information for the pane. (Overrides
CPane::RecalcLayout.)

CBaseTabbedPane::RemovePane Removes a pane from the tabbed pane.

CBaseTabbedPane::SaveSiblingBarIDs Used internally during serialization.

CBaseTabbedPane::Serialize (Overrides CDockablePane::Serialize.)

CBaseTabbedPane::SerializeTabWindow Used internally during serialization.

CBaseTabbedPane::SetAutoDestroy Determines whether the tabbed control bar will be destroyed
automatically.

CBaseTabbedPane::SetAutoHideMode Toggles the docking pane between displayed and auto-hide
mode. (Overrides CDockablePane::SetAutoHideMode.)

CBaseTabbedPane::ShowTab Shows or hides a tab.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CBaseTabbedPane::AddTab

virtual BOOL AddTab(
 CWnd* pNewBar,
 BOOL bVisible = TRUE,
 BOOL bSetActive = TRUE,
 BOOL bDetachable = TRUE);

ParametersParameters

Return ValueReturn Value

This class is an abstract class and cannot be instantiated. It implements the services that are common to all kinds
of tabbed panes.

Currently, the library includes two derived tabbed pane classes: CTabbedPane Class and CMFCOutlookBar Class.

A CBaseTabbedPane object wraps a pointer to a CMFCBaseTabCtrl Class object. CMFCBaseTabCtrl Class then
becomes a child window of the tabbed pane.

For more information about how to create tabbed panes, see CDockablePane Class, CTabbedPane Class, and
CMFCOutlookBar Class.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CDockablePane

CBaseTabbedPane

Header: afxBaseTabbedPane.h

Adds a new tab to a tabbed pane.

pNewBar
[in, out] A pointer to the pane to add. This pointer may become invalid after you call this method. For more
information, see the Remarks section.

bVisible
[in] TRUE to make the tab visible; otherwise, FALSE.

bSetActive
[in] TRUE to make the tab the active tab; otherwise, FALSE.

bDetachable
[in] TRUE to make the tab detachable; otherwise, FALSE.

RemarksRemarks

CBaseTabbedPane::AllowDestroyEmptyTabbedPane

virtual BOOL AllowDestroyEmptyTabbedPane() const;

Return ValueReturn Value

RemarksRemarks

CBaseTabbedPane::ApplyRestoredTabInfo

virtual void ApplyRestoredTabInfo(BOOL bUseTabIndexes = FALSE);

ParametersParameters

RemarksRemarks

CBaseTabbedPane::CanFloat

virtual BOOL CanFloat() const;

Return ValueReturn Value

CBaseTabbedPane::CanSetCaptionTextToTabName

virtual BOOL CanSetCaptionTextToTabName() const;

Return ValueReturn Value

TRUE if the pane was successfully added as a tab and was not destroyed in the process. FALSE if the pane being
added is an object of type CBaseTabbedPane . For more information, see the Remarks section.

Call this method to add a pane as a new tab on a tabbed pane. If pNewBar points to an object of type
CBaseTabbedPane , all its tabs are copied onto the tabbed pane and then pNewBar is destroyed. Thus, pNewBar

becomes an invalid pointer and should not be used.

Specifies whether an empty tabbed pane can be destroyed.

TRUE if an empty tabbed pane can be destroyed; otherwise, FALSE. The default implementation always returns
TRUE.

If an empty tabbed pane is not allowed to be destroyed, the framework hides the pane instead.

Loads tab settings from the registry and applies them to a tabbed pane.

bUseTabIndexes
[in] This parameter is used internally by the framework.

This method is called by the framework when it reloads docking state information from the registry. The method
obtains information about tab order and tab names for a tabbed pane.

Specifies whether the tabbed pane can float.

TRUE if the pane can float; otherwise, FALSE.

Determines whether the caption for the tabbed pane should display the same text as the active tab.

RemarksRemarks

CBaseTabbedPane::ConvertToTabbedDocument

virtual void ConvertToTabbedDocument(BOOL bActiveTabOnly = TRUE);

ParametersParameters

CBaseTabbedPane::DetachPane

virtual BOOL DetachPane(
 CWnd* pBar,
 BOOL bHide = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBaseTabbedPane::EnableSetCaptionTextToTabName

virtual void EnableSetCaptionTextToTabName(BOOL bEnable);

ParametersParameters

CBaseTabbedPane::FillDefaultTabsOrderArray

TRUE if the caption text of the tabbed pane is set to the text of the active tab; otherwise, FALSE.

The method is used to determine whether the text displayed on the tabbed pane caption duplicates the label of
the active tab. You can enable or disable this functionality by calling
CBaseTabbedPane::EnableSetCaptionTextToTabName.

Converts one or more dockable panes to MDI tabbed documents.

bActiveTabOnly
[in] When you convert a tabbed pane, specify TRUE to convert only the active tab. Specify FALSE to convert all
tabs in the pane.

Detaches a pane from the tabbed pane.

pBar
[in] Pointer to the pane to detach.

bHide
[in] Boolean parameter that specifies whether the framework hides the pane after it is detached.

TRUE if the framework successfully detaches the pane; FALSE if pBar is NULL or refers to a pane that is not in
the tabbed pane.

The framework floats the detached pane if possible. For more information, see CBasePane::CanFloat.

Enables or disables the ability of the tabbed pane to synchronize caption text with the label text on the active tab.

bEnable
[in] TRUE to synchronize the tabbed pane caption with the active tab caption; otherwise, FALSE.

void FillDefaultTabsOrderArray();

RemarksRemarks

CBaseTabbedPane::FindPaneByID

virtual CWnd* FindPaneByID(UINT uBarID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBaseTabbedPane::FindBarByTabNumber

virtual CWnd* FindBarByTabNumber(
 int nTabNum,
 BOOL bGetWrappedBar = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBaseTabbedPane::FloatTab

Restores the internal tab order to a default state.

This method is called when the framework restores an Outlook bar to an initial state.

Returns a pane identified by the pane ID.

uBarID
[in] Specifies the ID of the pane to find.

A pointer to the pane if it was found; otherwise, NULL.

This method compares all tabs in the pane and returns the one with the ID specified by the uBarID parameter.

Returns a pane that resides in a tab.

nTabNum
[in] Specifies the zero-based index of the tab to retrieve.

bGetWrappedBar
[in] TRUE to return the underlying (wrapped) window of the pane instead of the pane itself; otherwise FALSE.
This only applies to panes derived from CDockablePaneAdapter.

If the pane is found, then a valid pointer to the pane being searched for is returned; otherwise, NULL.

Call this method to retrieve the pane residing in the tab specified by the nTabNum parameter.

Floats a pane, but only if the pane currently resides in a detachable tab.

virtual BOOL FloatTab(
 CWnd* pBar,
 int nTabID,
 AFX_DOCK_METHOD dockMethod,
 BOOL bHide = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBaseTabbedPane::GetDefaultTabsOrder

const CArray<int,int>& GetDefaultTabsOrder();

Return ValueReturn Value

RemarksRemarks

CBaseTabbedPane::GetFirstVisibleTab

virtual CWnd* GetFirstVisibleTab(int& iTabNum);

ParametersParameters

Return ValueReturn Value

pBar
[in, out] A pointer to the pane to float.

nTabID
[in] Specifies the zero-based index of the tab to float.

dockMethod
[in] Specifies the method to use to make the pane float. For more information, see the Remarks section.

bHide
[in] TRUE to hide the pane before floating; otherwise, FALSE.

TRUE if the pane floated; otherwise, FALSE.

Call this method to float a pane that currently resides in a detachable tab.

If you want to detach a pane programmatically, specify DM_SHOW for the dockMethod parameter. If you want to
float the pane in the same position where it floated previously, specify DM_DBL_CLICK as the dockMethod
parameter.

Returns the default order of tabs in the pane.

A CArray object that specifies the default order of tabs in the pane.

The framework calls this method when an Outlook bar is reset to an initial state.

Retrieves a pointer to the first displayed tab.

iTabNum
[in] A reference to an integer. This method writes the zero-based index of the first displayed tab to this parameter,
or -1 if no displayed tab is found.

CBaseTabbedPane::GetMinSize

virtual void GetMinSize(CSize& size) const;

ParametersParameters

RemarksRemarks

CBaseTabbedPane::GetPaneIcon

virtual void GetMinSize(CSize& size) const;

ParametersParameters

RemarksRemarks

CBaseTabbedPane::GetPaneList

virtual void GetPaneList(
 CObList& lst,
 CRuntimeClass* pRTCFilter = NULL);

ParametersParameters

CBaseTabbedPane::GetTabArea

If successful, a pointer to the first displayed tab; otherwise, NULL.

Retrieves the minimum allowed size for the pane.

size
[out] A CSize object that is filled with the minimum allowed size.

If consistent handling of minimum pane sizes is active (CPane::m_bHandleMinSize), size is filled with the
minimum allowed size for the active tab. Otherwise, size is filled with the return value of CPane::GetMinSize.

Retrieves the minimum allowed size for the pane.

size
[out] A CSize object that is filled with the minimum allowed size.

If consistent handling of minimum pane sizes is active (CPane::m_bHandleMinSize), size is filled with the
minimum allowed size for the active tab. Otherwise, size is filled with the return value of CPane::GetMinSize.

Returns a list of panes that are contained in the tabbed pane.

lst
[out] A CObList that is filled with the panes that are contained in the tabbed pane.

pRTCFilter
[in] If it is not NULL, the returned list contains only panes that are of the specified runtime class.

Returns the bounding rectangles for the top and bottom tab areas.

virtual void GetTabArea(
 CRect& rectTabAreaTop,
 CRect& rectTabAreaBottom) const = 0;

ParametersParameters

RemarksRemarks

CBaseTabbedPane::GetTabsNum

virtual int GetTabsNum() const;

Return ValueReturn Value

CBaseTabbedPane::GetUnderlyingWindow

virtual CMFCBaseTabCtrl* GetUnderlyingWindow();

Return ValueReturn Value

CBaseTabbedPane::GetVisibleTabsNum

virtual int GetVisibleTabsNum() const;

Return ValueReturn Value

RemarksRemarks

CBaseTabbedPane::HasAutoHideMode

virtual BOOL HasAutoHideMode() const;

rectTabAreaTop
[out] Receives the screen coordinates of the upper tab area.

rectTabAreaBottom
[out] Receives the screen coordinates of the lower tab area.

Call this method to determine the bounding rectangles, in screen coordinates, for the upper and lower tab areas.

Returns the count of tabs in a tab window.

The number of tabs in the tabbed pane.

Gets the underlying (wrapped) tab window.

A pointer to the underlying tab window.

Returns the count of visible tabs.

The number of visible tabs, which will be greater than or equal to zero.

Call this method to determine the number of visible tabs in the tabbed pane.

Determines whether the tabbed pane can be switched to autohide mode.

Return ValueReturn Value

RemarksRemarks

CBaseTabbedPane::IsHideSingleTab

virtual BOOL IsHideSingleTab() const;

Return ValueReturn Value

RemarksRemarks

CBaseTabbedPane::RemovePane

virtual BOOL RemovePane(CWnd* pBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBaseTabbedPane::SetAutoDestroy

void SetAutoDestroy(BOOL bAutoDestroy = TRUE);

ParametersParameters

RemarksRemarks

TRUE if the pane can be switched to autohide mode; otherwise, FALSE.

If autohide mode is disabled, no pin button is displayed on the tabbed pane caption.

Determines whether the tabbed pane is hidden if only one tab is displayed.

TRUE if the tab window is not shown when there is only one visible tab; otherwise, FALSE.

If the pane is not displayed because only one tab is open, you can call this method to determine whether the
tabbed pane is working correctly.

Removes a pane from the tabbed pane.

pBar
[in, out] A pointer to the pane to remove from the tabbed pane.

TRUE if the pane was successfully removed from the tabbed pane and if the tabbed pane is still valid. FALSE if the
last pane has been removed from the tabbed pane and the tabbed pane is about to be destroyed. If the return
value is FALSE, do not use the tabbed pane any more.

Call this method to remove the pane specified by the pBar parameter from the tabbed pane.

Determines whether the tabbed control bar will be destroyed automatically.

bAutoDestroy
[in] TRUE if the tabbed pane was created dynamically and you are not controlling its lifetime; otherwise, FALSE.

Set the auto-destroy mode to TRUE if you create a tabbed pane dynamically and if you are not controlling its
lifetime. If auto-destroy mode is TRUE, the tabbed pane will be destroyed automatically by the framework.

CBaseTabbedPane::ShowTab

virtual BOOL ShowTab(
 CWnd* pBar,
 BOOL bShow,
 BOOL bDelay,
 BOOL bActivate);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBaseTabbedPane::RecalcLayout

virtual void RecalcLayout();

RemarksRemarks

CBaseTabbedPane::SetAutoHideMode

virtual CMFCAutoHideToolBar* SetAutoHideMode(
 BOOL bMode,
 DWORD dwAlignment,
 CMFCAutoHideToolBar* pCurrAutoHideBar = NULL,
 BOOL bUseTimer = TRUE);

ParametersParameters

Shows or hides a tab.

pBar
[in] A pointer to the pane to show or hide.

bShow
[in] TRUE to show the pane; FALSE to hide the pane.

bDelay
[in] TRUE to delay the adjustment of the tab layout; otherwise, FALSE.

bActivate
[in] TRUE to make the tab the active tab; otherwise, FALSE.

TRUE if the tab was either shown or hidden successfully; otherwise, FALSE.

When you call this method, a pane is either shown or hidden, depending on the value of the bShow parameter. If
you hide a tab and it is the last visible tab in the underlying tab window, the tabbed pane is hidden. If you show a
tab when there were previously no tabs visible, the tabbed pane is shown.

Recalculates layout information for the pane.

If the pane is floating, this method notifies the framework to resize the pane to the current size of the mini-frame.

If the pane is docked, this method does nothing.

Sets the auto-hide mode for detachable panes in the tabbed pane.

bMode
[in] TRUE to enable auto-hide mode; FALSE to enable regular docking mode.

Return ValueReturn Value

RemarksRemarks

See also

dwAlignment
[in] Specifies the alignment of the auto-hide pane that is to be created. For a list of possible values, see
CPane::MoveByAlignment.

pCurrAutoHideBar
[in, out] A pointer to the current auto-hide toolbar. Can be NULL.

bUseTimer
[in] Specifies whether to use the auto-hide effect when the user switches the pane to auto-hide mode, or to hide
the pane immediately.

A pointer to the auto-hide toolbar that is created when switching to auto-hide mode, or NULL if no toolbar is
created.

The framework calls this method when a user chooses the pin button to switch the tabbed pane to auto-hide
mode or to regular docking mode.

Auto-hide mode is set for each detachable pane in the tabbed pane. Panes that are non-detachable are ignored.
For more information, see CMFCBaseTabCtrl::EnableTabDetach.

Call this method to switch a tabbed pane to auto-hide mode programmatically. The pane must be docked to the
main frame window (CDockablePane::GetDefaultPaneDivider must return a valid pointer to the CPaneDivider).

Hierarchy Chart
Classes
CDockablePane Class

CBaseTransition Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CBaseTransition : public CObject;

Members
Public EnumerationsPublic Enumerations

NAME DESCRIPTION

CBaseTransition::TRANSITION_TYPE Enumeration Defines the transition types currently supported by the MFC
implementation of Windows Animation API.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CBaseTransition::CBaseTransition Constructs a base transtion object.

CBaseTransition::~CBaseTransition The destructor. Called when a transition object is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CBaseTransition::AddToStoryboard Adds a transition to a storyboard.

CBaseTransition::AddToStoryboardAtKeyframes Adds a transition to a storyboard.

CBaseTransition::Clear Releases encapsulated IUIAnimationTransition COM object.

CBaseTransition::Create Creates a COM transition.

CBaseTransition::GetEndKeyframe Returns start keyframe.

CBaseTransition::GetRelatedVariable Returns a pointer to related variable.

CBaseTransition::GetStartKeyframe Returns start keyframe.

CBaseTransition::GetTransition Overloaded. Returns a pointer to underlying COM transition
object.

CBaseTransition::GetType Returns transition type.

Represents a basic transition.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cbasetransition-class.md

CBaseTransition::IsAdded Tells whether a transition has been added to a storyboard.

CBaseTransition::SetKeyframes Sets keyframes for a transition.

CBaseTransition::SetRelatedVariable Establishes a relationship between animation variable and
transition.

NAME DESCRIPTION

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CBaseTransition::m_bAdded Specifies whether a transition has been added to a
storyboard.

CBaseTransition::m_pEndKeyframe Stores a pointer to the keyframe that specifies the end of the
transition.

CBaseTransition::m_pRelatedVariable A pointer to an animation variable, which is animated with
the transition stored in m_transition.

CBaseTransition::m_pStartKeyframe Stores a pointer to the keyframe that specifies the beginning
of the transition.

CBaseTransition::m_transition Stores a pointer to IUIAnimationTransition. NULL if a COM
transition object has not been created.

CBaseTransition::m_type Stores the transition type.

Remarks

Inheritance Hierarchy

Requirements

CBaseTransition::~CBaseTransition

virtual ~CBaseTransition();

CBaseTransition::AddToStoryboard

This class encapsulates IUIAnimationTransition interface and serves as a base class for all transitions.

CObject

CBaseTransition

Header: afxanimationcontroller.h

The destructor. Called when a transition object is being destroyed.

Adds a transition to a storyboard.

BOOL AddToStoryboard(IUIAnimationStoryboard* pStoryboard);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBaseTransition::AddToStoryboardAtKeyframes

BOOL AddToStoryboardAtKeyframes(IUIAnimationStoryboard* pStoryboard);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBaseTransition::CBaseTransition

CBaseTransition();

CBaseTransition::Clear

void Clear();

RemarksRemarks

pStoryboard
A pointer to storyboard, which will animate the related variable.

TRUE, if transition was successfully added to a storyboard.

Applies the transition to the related variable in the storyboard. If this is the first transition applied to this variable
in this storyboard, the transition begins at the start of the storyboard. Otherwise, the transition is appended to
the transition added most recently to the variable.

Adds a transition to a storyboard.

pStoryboard
A pointer to storyboard, which will animate the related variable.

TRUE, if transition was successfully added to a storyboard.

Applies the transition to the related variable in the storyboard. If the start keyframe was specified, the transition
begins at that keyframe. If the end keyframe was specified, the transition begins at the start keyframe and stops
at the end keyframe. If the transition was created with a duration parameter specified, that duration is
overwritten with the duration of time between the start and end keyframes. If no keyframe was specified, the
transition is appended to the transition added most recently to the variable.

Constructs a base transtion object.

Releases encapsulated IUIAnimationTransition COM object.

This method should be called from a derived class's Create method in order to prevent IUITransition interface
leak.

CBaseTransition::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* pFactory) = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBaseTransition::GetEndKeyframe

CBaseKeyFrame* GetEndKeyframe();

Return ValueReturn Value

RemarksRemarks

CBaseTransition::GetRelatedVariable

CAnimationVariable* GetRelatedVariable();

Return ValueReturn Value

RemarksRemarks

CBaseTransition::GetStartKeyframe

CBaseKeyFrame* GetStartKeyframe();

Creates a COM transition.

pLibrary
A pointer to transition library, which creates standard transitions. It can be NULL for custom transitions.

pFactory
A pointer to transition factory, which creates custom transitions. It can be NULL for standard transitions.

TRUE if a transition COM object was created successfully; otherwise FALSE.

This is a pure virtual function that must be overridden in a derived class. It's called by the framework to
instantiate the underlying COM transition object.

Returns start keyframe.

A valid pointer to a keyframe, or NULL if a transition should not be inserted between keyframes.

This method can be used to access a keyframe object that was previously set by SetKeyframes. It's called by top
level code when transitions are being added to storyboard.

Returns a pointer to related variable.

A valid pointer to animation variable, or NULL if an animation variable has not been set by SetRelatedVariable.

This is an accessor to related animation variable.

Returns start keyframe.

Return ValueReturn Value

RemarksRemarks

CBaseTransition::GetTransition

IUIAnimationTransition* GetTransition(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* pFactory);

IUIAnimationTransition* GetTransition();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBaseTransition::GetType

TRANSITION_TYPE GetType() const;

Return ValueReturn Value

RemarksRemarks

CBaseTransition::IsAdded

BOOL IsAdded();

Return ValueReturn Value

RemarksRemarks

A valid pointer to a keyframe, or NULL if a transition should not start after a keyframe.

This method can be used to access a keyframe object that was previously set by SetKeyframes. It's called by top
level code when transitions are being added to storyboard.

Returns a pointer to underlying COM transition object.

pLibrary
A pointer to transition library, which creates standard transitions. It can be NULL for custom transitions.

pFactory
A pointer to transition factory, which creates custom transitions. It can be NULL for standard transitions.

A valid pointer to IUIAnimationTransition or NULL if underlying transition can't be created.

This method returns a pointer to underlying COM transition object and creates it if necessary.

Returns transition type.

One of TRANSITION_TYPE enumerated values.

This method can be used to identify a transition object by its type. The type is set in a constructor in a derived
class.

Tells whether a transition has been added to a storyboard.

Returns TRUE if a transition has been added to a storyboard, otherwise FALSE.

CBaseTransition::m_bAdded

BOOL m_bAdded;

CBaseTransition::m_pEndKeyframe

CBaseKeyFrame* m_pEndKeyframe;

CBaseTransition::m_pRelatedVariable

CAnimationVariable* m_pRelatedVariable;

CBaseTransition::m_pStartKeyframe

CBaseKeyFrame* m_pStartKeyframe;

CBaseTransition::m_transition

ATL::CComPtr<IUIAnimationTransition> m_transition;

CBaseTransition::m_type

TRANSITION_TYPE m_type;

CBaseTransition::SetKeyframes

void SetKeyframes(
 CBaseKeyFrame* pStart = NULL,
 CBaseKeyFrame* pEnd = NULL);

ParametersParameters

This flag is set internally when the top level code adds transitions to storyboard.

Specifies whether a transition has been added to a storyboard.

Stores a pointer to the keyframe that specifies the end of the transition.

A pointer to an animation variable, which is animated with the transition stored in m_transition.

Stores a pointer to the keyframe that specifies the beginning of the transition.

Stores a pointer to IUIAnimationTransition. NULL if a COM transition object has not been created.

Stores the transition type.

Sets keyframes for a transition.

pStart

RemarksRemarks

CBaseTransition::SetRelatedVariable

void SetRelatedVariable(CAnimationVariable* pVariable);

ParametersParameters

RemarksRemarks

CBaseTransition::TRANSITION_TYPE Enumeration

enum TRANSITION_TYPE;

RemarksRemarks

See also

A keyframe that specifies the beginning of the transition.

pEnd
A keyframe that specifies the end of the transition.

This method tells the transition to start after specified keyframe and, optionally, if pEnd is not NULL, end before
the specified keyframe. If the transition was created with a duration parameter specified, that duration is
overwritten with the duration of time between the start and end keyframes.

Establishes a relationship between animation variable and transition.

pVariable
A pointer to related animation variable.

Establishes a relationship between animation variable and transition. A transition can be applied only to one
variable.

Defines the transition types currently supported by the MFC implementation of Windows Animation API.

A transition type is set in the constructor of specific transition. For example, CSinusoidalTransitionFromRange
sets its type to SINUSOIDAL_FROM_RANGE.

Classes

CBitmap Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
class CBitmap : public CGdiObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CBitmap::CBitmap Constructs a CBitmap object.

Public MethodsPublic Methods

NAME DESCRIPTION

CBitmap::CreateBitmap Initializes the object with a device-dependent memory bitmap
that has a specified width, height, and bit pattern.

CBitmap::CreateBitmapIndirect Initializes the object with a bitmap with the width, height, and
bit pattern (if one is specified) given in a BITMAP structure.

CBitmap::CreateCompatibleBitmap Initializes the object with a bitmap so that it is compatible
with a specified device.

CBitmap::CreateDiscardableBitmap Initializes the object with a discardable bitmap that is
compatible with a specified device.

CBitmap::FromHandle Returns a pointer to a CBitmap object when given a handle
to a Windows HBITMAP bitmap.

CBitmap::GetBitmap Fills a BITMAP structure with information about the bitmap.

CBitmap::GetBitmapBits Copies the bits of the specified bitmap into the specified
buffer.

CBitmap::GetBitmapDimension Returns the width and height of the bitmap. The height and
width are assumed to have been set previously by the
SetBitmapDimension member function.

CBitmap::LoadBitmap Initializes the object by loading a named bitmap resource
from the application's executable file and attaching the bitmap
to the object.

Encapsulates a Windows graphics device interface (GDI) bitmap and provides member functions to manipulate
the bitmap.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cbitmap-class.md

CBitmap::LoadMappedBitmap Loads a bitmap and maps colors to current system colors.

CBitmap::LoadOEMBitmap Initializes the object by loading a predefined Windows bitmap
and attaching the bitmap to the object.

CBitmap::SetBitmapBits Sets the bits of a bitmap to the specified bit values.

CBitmap::SetBitmapDimension Assigns a width and height to a bitmap in 0.1-millimeter
units.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CBitmap::operator HBITMAP Returns the Windows handle attached to the CBitmap

object.

Remarks

Inheritance Hierarchy

Requirements

CBitmap::CBitmap

CBitmap();

RemarksRemarks

CBitmap::CreateBitmap

To use a CBitmap object, construct the object, attach a bitmap handle to it with one of the initialization member
functions, and then call the object's member functions.

For more information on using graphic objects like CBitmap , see Graphic Objects.

CObject

CGdiObject

CBitmap

Header: afxwin.h

Constructs a CBitmap object.

The resulting object must be initialized with one of the initialization member functions.

Initializes a device-dependent memory bitmap that has the specified width, height, and bit pattern.

BOOL CreateBitmap(
 int nWidth,
 int nHeight,
 UINT nPlanes,
 UINT nBitcount,
 const void* lpBits);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBitmap::CreateBitmapIndirect

BOOL CreateBitmapIndirect(LPBITMAP lpBitmap);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nWidth
Specifies the width (in pixels) of the bitmap.

nHeight
Specifies the height (in pixels) of the bitmap.

nPlanes
Specifies the number of color planes in the bitmap.

nBitcount
Specifies the number of color bits per display pixel.

lpBits
Points to an array of bytes that contains the initial bitmap bit values. If it is NULL, the new bitmap is left
uninitialized.

Nonzero if successful; otherwise 0.

For a color bitmap, either the nPlanes or nBitcount parameter should be set to 1. If both of these parameters are
set to 1, CreateBitmap creates a monochrome bitmap.

Although a bitmap cannot be directly selected for a display device, it can be selected as the current bitmap for a
"memory device context" by using CDC::SelectObject and copied to any compatible device context by using the
CDC::BitBlt function.

When you finish with the CBitmap object created by the CreateBitmap function, first select the bitmap out of the
device context, then delete the CBitmap object.

For more information, see the description of the bmBits field in the BITMAP structure. The BITMAP structure is
described under the CBitmap::CreateBitmapIndirect member function.

Initializes a bitmap that has the width, height, and bit pattern (if one is specified) given in the structure pointed to
by lpBitmap.

lpBitmap
Points to a BITMAP structure that contains information about the bitmap.

Nonzero if successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagbitmap
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagbitmap

CBitmap::CreateCompatibleBitmap

BOOL CreateCompatibleBitmap(
 CDC* pDC,
 int nWidth,
 int nHeight);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBitmap::CreateDiscardableBitmap

Although a bitmap cannot be directly selected for a display device, it can be selected as the current bitmap for a
memory device context by using CDC::SelectObject and copied to any compatible device context by using the
CDC::BitBlt or CDC::StretchBlt function. (The CDC::PatBlt function can copy the bitmap for the current brush
directly to the display device context.)

If the BITMAP structure pointed to by the lpBitmap parameter has been filled in by using the GetObject function,
the bits of the bitmap are not specified and the bitmap is uninitialized. To initialize the bitmap, an application can
use a function such as CDC::BitBlt or SetDIBits to copy the bits from the bitmap identified by the first parameter
of CGdiObject::GetObject to the bitmap created by CreateBitmapIndirect .

When you finish with the CBitmap object created with CreateBitmapIndirect function, first select the bitmap out
of the device context, then delete the CBitmap object.

Initializes a bitmap that is compatible with the device specified by pDC.

pDC
Specifies the device context.

nWidth
Specifies the width (in pixels) of the bitmap.

nHeight
Specifies the height (in pixels) of the bitmap.

Nonzero if successful; otherwise 0.

The bitmap has the same number of color planes or the same bits-per-pixel format as the specified device
context. It can be selected as the current bitmap for any memory device that is compatible with the one specified
by pDC.

If pDC is a memory device context, the bitmap returned has the same format as the currently selected bitmap in
that device context. A "memory device context" is a block of memory that represents a display surface. It can be
used to prepare images in memory before copying them to the actual display surface of the compatible device.

When a memory device context is created, GDI automatically selects a monochrome stock bitmap for it.

Since a color memory device context can have either color or monochrome bitmaps selected, the format of the
bitmap returned by the CreateCompatibleBitmap function is not always the same; however, the format of a
compatible bitmap for a nonmemory device context is always in the format of the device.

When you finish with the CBitmap object created with the CreateCompatibleBitmap function, first select the
bitmap out of the device context, then delete the CBitmap object.

Initializes a discardable bitmap that is compatible with the device context identified by pDC.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-setdibits

BOOL CreateDiscardableBitmap(
 CDC* pDC,
 int nWidth,
 int nHeight);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBitmap::FromHandle

static CBitmap* PASCAL FromHandle(HBITMAP hBitmap);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBitmap::GetBitmap

pDC
Specifies a device context.

nWidth
Specifies the width (in bits) of the bitmap.

nHeight
Specifies the height (in bits) of the bitmap.

Nonzero if successful; otherwise 0.

The bitmap has the same number of color planes or the same bits-per-pixel format as the specified device
context. An application can select this bitmap as the current bitmap for a memory device that is compatible with
the one specified by pDC.

Windows can discard a bitmap created by this function only if an application has not selected it into a display
context. If Windows discards the bitmap when it is not selected and the application later attempts to select it, the
CDC::SelectObject function will return NULL.

When you finish with the CBitmap object created with the CreateDiscardableBitmap function, first select the
bitmap out of the device context, then delete the CBitmap object.

Returns a pointer to a CBitmap object when given a handle to a Windows GDI bitmap.

hBitmap
Specifies a Windows GDI bitmap.

A pointer to a CBitmap object if successful; otherwise NULL.

If a CBitmap object is not already attached to the handle, a temporary CBitmap object is created and attached.
This temporary CBitmap object is valid only until the next time the application has idle time in its event loop, at
which time all temporary graphic objects are deleted. Another way of saying this is that the temporary object is
only valid during the processing of one window message.

Retrieves image properties for the attached bitmap.

int GetBitmap(BITMAP* pBitMap);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBitmap::GetBitmapBits

DWORD GetBitmapBits(
 DWORD dwCount,
 LPVOID lpBits) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBitmap::GetBitmapDimension

CSize GetBitmapDimension() const;

Return ValueReturn Value

RemarksRemarks

CBitmap::LoadBitmap

pBitMap
Pointer to a BITMAP structure that will receive the image properties. This parameter must not be NULL.

Nonzero if the method was successful; otherwise 0.

Copies the bit pattern of the attached bitmap into the specified buffer.

dwCount
The number of bytes to copy to the buffer.

lpBits
Pointer to the buffer that will receive the bitmap.

The number of bytes copied to the buffer if the method was successful; otherwise 0.

Use CBitmap::GetBitmap to determine the required buffer size.

Returns the width and height of the bitmap.

The width and height of the bitmap, measured in 0.1-millimeter units. The height is in the cy member of the
CSize object, and the width is in the cx member. If the bitmap width and height have not been set by using
SetBitmapDimension , the return value is 0.

The height and width are assumed to have been set previously by using the SetBitmapDimension member
function.

Loads the bitmap resource named by lpszResourceName or identified by the ID number in nIDResource from the
application's executable file.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagbitmap

BOOL LoadBitmap(LPCTSTR lpszResourceName);
BOOL LoadBitmap(UINT nIDResource);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

CBitmap::LoadMappedBitmap

BOOL LoadMappedBitmap(
 UINT nIDBitmap,
 UINT nFlags = 0,
 LPCOLORMAP lpColorMap = NULL,
 int nMapSize = 0);

ParametersParameters

Return ValueReturn Value

lpszResourceName
Points to a null-terminated string that contains the name of the bitmap resource.

nIDResource
Specifies the resource ID number of the bitmap resource.

Nonzero if successful; otherwise 0.

The loaded bitmap is attached to the CBitmap object.

If the bitmap identified by lpszResourceName does not exist or if there is insufficient memory to load the bitmap,
the function returns 0.

You can use the CGdiObject::DeleteObject function to delete bitmap loaded by the LoadBitmap function, or the
CBitmap destructor will delete the object for you.

Before you delete the object, make sure it is not selected into a device context.

The following bitmaps were added to Windows versions 3.1 and later:

OBM_UPARRROWIOBM_DNARROWIOBM_RGARROWIOBM_LFARROWI

These bitmaps are not found in device drivers for Windows versions 3.0 and earlier. For a complete list of bitmaps
and a display of their appearance, see the Windows SDK.

Call this member function to load a bitmap and map the colors to the current system colors.

nIDBitmap
The ID of the bitmap resource.

nFlags
A flag for a bitmap. Can be zero or CMB_MASKED.

lpColorMap
A pointer to a COLORMAP structure that contains the color information needed to map the bitmaps. If this
parameter is NULL, the function uses the default color map.

nMapSize
The number of color maps pointed to by lpColorMap.

RemarksRemarks

CBitmap::LoadOEMBitmap

BOOL LoadOEMBitmap(UINT nIDBitmap);

ParametersParameters

OBM_BTNCORNERS OBM_OLD_RESTORE

OBM_BTSIZE OBM_OLD_RGARROW

OBM_CHECK OBM_OLD_UPARROW

OBM_CHECKBOXES OBM_OLD_ZOOM

OBM_CLOSE OBM_REDUCE

OBM_COMBO OBM_REDUCED

OBM_DNARROW OBM_RESTORE

OBM_DNARROWD OBM_RESTORED

OBM_DNARROWI OBM_RGARROW

OBM_LFARROW OBM_RGARROWD

OBM_LFARROWD OBM_RGARROWI

OBM_LFARROWI OBM_SIZE

OBM_MNARROW OBM_UPARROW

OBM_OLD_CLOSE OBM_UPARROWD

OBM_OLD_DNARROW OBM_UPARROW

OBM_OLD_LFARROW OBM_ZOOM

OBM_OLD_REDUCE OBM_ZOOMD

Nonzero if successful; otherwise 0.

By default, LoadMappedBitmap will map colors commonly used in button glyphs.

For information about creating a mapped bitmap, see the Windows function CreateMappedBitmap and the
COLORMAP structure in the Windows SDK.

Loads a predefined bitmap used by Windows.

nIDBitmap
ID number of the predefined Windows bitmap. The possible values are listed below from WINDOWS.H:

http://go.microsoft.com/fwlink/p/?linkid=230562
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_colormap

Return ValueReturn Value

RemarksRemarks

CBitmap::operator HBITMAP

operator HBITMAP() const;

Return ValueReturn Value

RemarksRemarks

CBitmap::SetBitmapBits

DWORD SetBitmapBits(
 DWORD dwCount,
 const void* lpBits);

ParametersParameters

Return ValueReturn Value

CBitmap::SetBitmapDimension

CSize SetBitmapDimension(
 int nWidth,
 int nHeight);

ParametersParameters

Nonzero if successful; otherwise 0.

Bitmap names that begin with OBM_OLD represent bitmaps used by Windows versions prior to 3.0.

Note that the constant OEMRESOURCE must be defined before including WINDOWS.H in order to use any of
the OBM_ constants.

Use this operator to get the attached Windows GDI handle of the CBitmap object.

If successful, a handle to the Windows GDI object represented by the CBitmap object; otherwise NULL.

This operator is a casting operator, which supports direct use of an HBITMAP object.

For more information about using graphic objects, see Graphic Objects in the Windows SDK.

Sets the bits of a bitmap to the bit values given by lpBits.

dwCount
Specifies the number of bytes pointed to by lpBits.

lpBits
Points to the BYTE array that contains the pixel values to be copied to the CBitmap object. In order for the bitmap
to be able to render its image correctly, the values should be formatted to conform to the height, width and color
depth values that were specified when the CBitmap instance was created. For more information, see
CBitmap::CreateBitmap.

The number of bytes used in setting the bitmap bits; 0 if the function fails.

Assigns a width and height to a bitmap in 0.1-millimeter units.

https://docs.microsoft.com/windows/desktop/gdi/graphic-objects

Return ValueReturn Value

RemarksRemarks

See also

nWidth
Specifies the width of the bitmap (in 0.1-millimeter units).

nHeight
Specifies the height of the bitmap (in 0.1-millimeter units).

The previous bitmap dimensions. Height is in the cy member variable of the CSize object, and width is in the
cx member variable.

The GDI does not use these values except to return them when an application calls the GetBitmapDimension
member function.

MFC Sample MDI
CGdiObject Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CBitmapButton Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CBitmapButton : public CButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CBitmapButton::CBitmapButton Constructs a CBitmapButton object.

Public MethodsPublic Methods

NAME DESCRIPTION

CBitmapButton::AutoLoad Associates a button in a dialog box with an object of the
CBitmapButton class, loads the bitmap(s) by name, and

sizes the button to fit the bitmap.

CBitmapButton::LoadBitmaps Initializes the object by loading one or more named bitmap
resources from the application's resource file and attaching
the bitmaps to the object.

CBitmapButton::SizeToContent Sizes the button to accommodate the bitmap.

Remarks

UP DOWN FOCUSED DISABLED APPLICATION

Creates pushbutton controls labeled with bitmapped images instead of text.

CBitmapButton objects contain up to four bitmaps, which contain images for the different states a button can
assume: up (or normal), down (or selected), focused, and disabled. Only the first bitmap is required; the others are
optional.

Bitmap-button images include the border around the image as well as the image itself. The border typically plays
a part in showing the state of the button. For example, the bitmap for the focused state usually is like the one for
the up state but with a dashed rectangle inset from the border or a thick solid line at the border. The bitmap for
the disabled state usually resembles the one for the up state but has lower contrast (like a dimmed or grayed
menu selection).

These bitmaps can be of any size, but all are treated as if they were the same size as the bitmap for the up state.

Various applications demand different combinations of bitmap images:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cbitmapbutton-class.md

× Bitmap

× × Button without
WS_TABSTOP style

× × × × Dialog button with all
states

× × × Dialog button with
WS_TABSTOP style

UP DOWN FOCUSED DISABLED APPLICATION

To create a bitmap-button control in a window's client areaTo create a bitmap-button control in a window's client area

To include a bitmap-button control in a dialog boxTo include a bitmap-button control in a dialog box

When creating a bitmap-button control, set the BS_OWNERDRAW style to specify that the button is owner-
drawn. This causes Windows to send the WM_MEASUREITEM and WM_DRAWITEM messages for the button;
the framework handles these messages and manages the appearance of the button for you.

1. Create one to four bitmap images for the button.

2. Construct the CBitmapButton object.

3. Call the Create function to create the Windows button control and attach it to the CBitmapButton object.

4. Call the LoadBitmaps member function to load the bitmap resources after the bitmap button is
constructed.

1. Create one to four bitmap images for the button.

2. Create a dialog template with an owner-draw button positioned where you want the bitmap button. The
size of the button in the template does not matter.

3. Set the button's caption to a value such as " MYIMAGE" and define a symbol for the button such as
IDC_MYIMAGE.

4. In your application's resource script, give each of the images created for the button an ID constructed by
appending one of the letters "U," "D," "F," or "X" (for up, down, focused, and disabled) to the string used for
the button caption in step 3. For the button caption " MYIMAGE," for example, the IDs would be "
MYIMAGEU," " MYIMAGED," " MYIMAGEF," and " MYIMAGEX." You must specify the ID of your
bitmaps within double quotes. Otherwise the resource editor will assign an integer to the resource and
MFC will fail when loading the image.

5. In your application's dialog class (derived from CDialog), add a CBitmapButton member object.

6. In the CDialog object's OnInitDialog routine, call the CBitmapButton object's AutoLoad function, using as
parameters the button's control ID and the CDialog object's this pointer.

If you want to handle Windows notification messages, such as BN_CLICKED, sent by a bitmap-button control to
its parent (usually a class derived from CDialog), add to the CDialog -derived object a message-map entry and
message-handler member function for each message. The notifications sent by a CBitmapButton object are the
same as those sent by a CButton object.

The class CToolBar takes a different approach to bitmap buttons.

For more information on CBitmapButton , see Controls.

Inheritance Hierarchy

Requirements

CBitmapButton::AutoLoad

BOOL AutoLoad(
 UINT nID,
 CWnd* pParent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CBitmapButton myButton;

// Initialize the owner-drawn button with the id IDC_MYBUTTON as a bitmap
// button. This code is used in the OnInitDialog handler of my dialog.
myButton.AutoLoad(IDC_MYBUTTON, this);

CBitmapButton::CBitmapButton

CBitmapButton();

RemarksRemarks

CObject

CCmdTarget

CWnd

CButton

CBitmapButton

Header: afxext.h

Associates a button in a dialog box with an object of the CBitmapButton class, loads the bitmap(s) by name, and
sizes the button to fit the bitmap.

nID
The button's control ID.

pParent
Pointer to the object that owns the button.

Nonzero if successful; otherwise 0.

Use the AutoLoad function to initialize an owner-draw button in a dialog box as a bitmap button. Instructions for
using this function are in the remarks for the CBitmapButton class.

Creates a CBitmapButton object.

After creating the C++ CBitmapButton object, call CButton::Create to create the Windows button control and

ExampleExample

// Declare a bitmap button object on the stack.
CBitmapButton myButton;

// Declare a bitmap button object on the heap.
CBitmapButton* pmyButton = new CBitmapButton;

CBitmapButton::LoadBitmaps

BOOL LoadBitmaps(
 LPCTSTR lpszBitmapResource,
 LPCTSTR lpszBitmapResourceSel = NULL,
 LPCTSTR lpszBitmapResourceFocus = NULL,
 LPCTSTR lpszBitmapResourceDisabled = NULL);

BOOL LoadBitmaps(
 UINT nIDBitmapResource,
 UINT nIDBitmapResourceSel = 0,
 UINT nIDBitmapResourceFocus = 0,
 UINT nIDBitmapResourceDisabled = 0);

ParametersParameters

attach it to the CBitmapButton object.

Use this function when you want to load bitmap images identified by their resource names or ID numbers, or
when you cannot use the AutoLoad function because, for example, you are creating a bitmap button that is not
part of a dialog box.

lpszBitmapResource
Points to the null-terminated string that contains the name of the bitmap for a bitmap button's normal or "up"
state. Required.

lpszBitmapResourceSel
Points to the null-terminated string that contains the name of the bitmap for a bitmap button's selected or "down"
state. May be NULL.

lpszBitmapResourceFocus
Points to the null-terminated string that contains the name of the bitmap for a bitmap button's focused state. May
be NULL.

lpszBitmapResourceDisabled
Points to the null-terminated string that contains the name of the bitmap for a bitmap button's disabled state.
May be NULL.

nIDBitmapResource
Specifies the resource ID number of the bitmap resource for a bitmap button's normal or "up" state. Required.

nIDBitmapResourceSel
Specifies the resource ID number of the bitmap resource for a bitmap button's selected or "down" state. May be
0.

nIDBitmapResourceFocus
Specifies the resource ID number of the bitmap resource for a bitmap button's focused state. May be 0.

nIDBitmapResourceDisabled
Specifies the resource ID number of the bitmap resource for a bitmap button's disabled state. May be 0.

Return ValueReturn Value

ExampleExample

CBitmapButton* pmyButton = new CBitmapButton();

// Create the bitmap button (must include the BS_OWNERDRAW style).
pmyButton->Create(NULL, WS_CHILD|WS_VISIBLE|BS_OWNERDRAW,
 CRect(10,10,100,100), pParentWnd, 1);

// Load the bitmaps for this button.
pmyButton->LoadBitmaps(IDB_UP, IDB_DOWN, IDB_FOCUS, IDB_DISABLE);

CBitmapButton::SizeToContent

void SizeToContent();

ExampleExample

CBitmapButton* pmyButton = new CBitmapButton();

// Create the bitmap button (must include the BS_OWNERDRAW style).
pmyButton->Create(NULL, WS_CHILD|WS_VISIBLE|BS_OWNERDRAW,
 CRect(10,10,100,100), pParentWnd, 1);

// Load the bitmaps for this button.
pmyButton->LoadBitmaps(IDB_UP, IDB_DOWN, IDB_FOCUS, IDB_DISABLE);

// Resize the button to be the size of the bitmaps.
pmyButton->SizeToContent();

See also

Nonzero if successful; otherwise 0.

Call this function to resize a bitmap button to the size of the bitmap.

MFC Sample CTRLTEST
CButton Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CBitmapRenderTarget Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CBitmapRenderTarget : public CRenderTarget;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CBitmapRenderTarget::CBitmapRenderTarget Constructs a CBitmapRenderTarget object.

Public MethodsPublic Methods

NAME DESCRIPTION

CBitmapRenderTarget::Attach Attaches existing render target interface to the object

CBitmapRenderTarget::Detach Detaches render target interface from the object

CBitmapRenderTarget::GetBitmap Retrieves the bitmap for this render target. The returned
bitmap can be used for drawing operations.

CBitmapRenderTarget::GetBitmapRenderTarget Returns ID2D1BitmapRenderTarget interface

Public OperatorsPublic Operators

NAME DESCRIPTION

CBitmapRenderTarget::operator ID2D1BitmapRenderTarget* Returns ID2D1BitmapRenderTarget interface

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CBitmapRenderTarget::m_pBitmapRenderTarget A pointer to an ID2D1BitmapRenderTarget object.

Inheritance Hierarchy

A wrapper for ID2D1BitmapRenderTarget.

CObject

CRenderTarget

CBitmapRenderTarget

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cbitmaprendertarget-class.md

Requirements

CBitmapRenderTarget::Attach

void Attach(ID2D1BitmapRenderTarget* pTarget);

ParametersParameters

CBitmapRenderTarget::CBitmapRenderTarget

CBitmapRenderTarget();

CBitmapRenderTarget::Detach

ID2D1BitmapRenderTarget* Detach();

Return ValueReturn Value

CBitmapRenderTarget::GetBitmap

BOOL GetBitmap(CD2DBitmap& bitmap);

ParametersParameters

Return ValueReturn Value

CBitmapRenderTarget::GetBitmapRenderTarget

ID2D1BitmapRenderTarget* GetBitmapRenderTarget();

Return ValueReturn Value

Header: afxrendertarget.h

Attaches existing render target interface to the object

pTarget
Existing render target interface. Cannot be NULL

Constructs a CBitmapRenderTarget object.

Detaches render target interface from the object

Pointer to detached render target interface.

Retrieves the bitmap for this render target. The returned bitmap can be used for drawing operations.

bitmap
When this method returns, contains the valid bitmap for this render target. This bitmap can be used for drawing
operations.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Returns ID2D1BitmapRenderTarget interface

CBitmapRenderTarget::m_pBitmapRenderTarget

ID2D1BitmapRenderTarget* m_pBitmapRenderTarget;

CBitmapRenderTarget::operator ID2D1BitmapRenderTarget*

operator ID2D1BitmapRenderTarget*();

Return ValueReturn Value

See also

Pointer to an ID2D1BitmapRenderTarget interface or NULL if object is not initialized yet.

A pointer to an ID2D1BitmapRenderTarget object.

Returns ID2D1BitmapRenderTarget interface

Pointer to an ID2D1BitmapRenderTarget interface or NULL if object is not initialized yet.

Classes

CBrush Class
3/4/2019 • 11 minutes to read • Edit Online

Syntax
class CBrush : public CGdiObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CBrush::CBrush Constructs a CBrush object.

Public MethodsPublic Methods

NAME DESCRIPTION

CBrush::CreateBrushIndirect Initializes a brush with the style, color, and pattern specified in
a LOGBRUSH structure.

CBrush::CreateDIBPatternBrush Initializes a brush with a pattern specified by a device-
independent bitmap (DIB).

CBrush::CreateHatchBrush Initializes a brush with the specified hatched pattern and
color.

CBrush::CreatePatternBrush Initializes a brush with a pattern specified by a bitmap.

CBrush::CreateSolidBrush Initializes a brush with the specified solid color.

CBrush::CreateSysColorBrush Creates a brush that is the default system color.

CBrush::FromHandle Returns a pointer to a CBrush object when given a handle
to a Windows HBRUSH object.

CBrush::GetLogBrush Gets a LOGBRUSH structure.

Public OperatorsPublic Operators

NAME DESCRIPTION

CBrush::operator HBRUSH Returns the Windows handle attached to the CBrush object.

Remarks

Encapsulates a Windows graphics device interface (GDI) brush.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cbrush-class.md
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogbrush
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogbrush

Inheritance Hierarchy

Requirements

CBrush::CBrush

CBrush();
CBrush(COLORREF crColor);
CBrush(int nIndex, COLORREF crColor);
explicit CBrush(CBitmap* pBitmap);

ParametersParameters

RemarksRemarks

To use a CBrush object, construct a CBrush object and pass it to any CDC member function that requires a brush.

Brushes can be solid, hatched, or patterned.

For more information on CBrush , see Graphic Objects.

CObject

CGdiObject

CBrush

Header: afxwin.h

Constructs a CBrush object.

crColor
Specifies the foreground color of the brush as an RGB color. If the brush is hatched, this parameter specifies the
color of the hatching.

nIndex
Specifies the hatch style of the brush. It can be any one of the following values:

HS_BDIAGONAL Downward hatch (left to right) at 45 degrees

HS_CROSS Horizontal and vertical crosshatch

HS_DIAGCROSS Crosshatch at 45 degrees

HS_FDIAGONAL Upward hatch (left to right) at 45 degrees

HS_HORIZONTAL Horizontal hatch

HS_VERTICAL Vertical hatch

pBitmap
Points to a CBitmap object that specifies a bitmap with which the brush paints.

CBrush has four overloaded constructors.The constructor with no arguments constructs an uninitialized CBrush

object that must be initialized before it can be used.

If you use the constructor with no arguments, you must initialize the resulting CBrush object with
CreateSolidBrush, CreateHatchBrush, CreateBrushIndirect, CreatePatternBrush, or CreateDIBPatternBrush. If
you use one of the constructors that takes arguments, then no further initialization is necessary. The constructors
with arguments can throw an exception if errors are encountered, while the constructor with no arguments will

ExampleExample

always succeed.

The constructor with a single COLORREF parameter constructs a solid brush with the specified color. The color
specifies an RGB value and can be constructed with the RGB macro in WINDOWS.H.

The constructor with two parameters constructs a hatch brush. The nIndex parameter specifies the index of a
hatched pattern. The crColor parameter specifies the color.

The constructor with a CBitmap parameter constructs a patterned brush. The parameter identifies a bitmap. The
bitmap is assumed to have been created by using CBitmap::CreateBitmap, CBitmap::CreateBitmapIndirect,
CBitmap::LoadBitmap, or CBitmap::CreateCompatibleBitmap. The minimum size for a bitmap to be used in a fill
pattern is 8 pixels by 8 pixels.

https://docs.microsoft.com/windows/desktop/gdi/colorref

// CBrush::CBrush.
CBrush brush1; // Must initialize!
brush1.CreateSolidBrush(RGB(0, 0, 255)); // Blue brush.

CBrush* pTempBrush = NULL;
CBrush OrigBrush;

CRect rc;
GetClientRect(&rc);
ScreenToClient(&rc);

pTempBrush = (CBrush*)pDC->SelectObject(&brush1);
// Save original brush.
OrigBrush.FromHandle((HBRUSH)pTempBrush);

// Paint upper left corner with blue brush.
pDC->Rectangle(0, 0, rc.Width() / 2, rc.Height() / 2);

// These constructors throw resource exceptions.
try
{
 // CBrush::CBrush(COLORREF crColor)
 CBrush brush2(RGB(255, 0, 0)); // Solid red brush.

 // CBrush::CBrush(int nIndex, COLORREF crColor)
 // Hatched green brush.
 CBrush brush3(HS_DIAGCROSS, RGB(0, 255, 0));

 // CBrush::CBrush(CBitmap* pBitmap)
 CBitmap bmp;
 // Load a resource bitmap.
 bmp.LoadBitmap(IDB_BRUSH);
 CBrush brush4(&bmp);

 pTempBrush = (CBrush*)pDC->SelectObject(&brush2);

 // Paint upper right corner with red brush.
 pDC->Rectangle(rc.Width() / 2, 0, rc.Width(),
 rc.Height() / 2);

 pTempBrush = (CBrush*)pDC->SelectObject(&brush3);

 // Paint lower left corner with green hatched brush.
 pDC->Rectangle(0, rc.Height() / 2, rc.Width() / 2,
 rc.Height());

 pTempBrush = (CBrush*)pDC->SelectObject(&brush4);

 // Paint lower right corner with resource brush.
 pDC->Rectangle(rc.Width() / 2, rc.Height() / 2,
 rc.Width(), rc.Height());
}
catch(CResourceException* e)
{
 e->ReportError();
 e->Delete();
}

// Reselect original brush into device context.
pDC->SelectObject(&OrigBrush);

CBrush::CreateBrushIndirect
Initializes a brush with a style, color, and pattern specified in a LOGBRUSH structure.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogbrush

BOOL CreateBrushIndirect(const LOGBRUSH* lpLogBrush);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Initialize a LOGBRUSH structure.
LOGBRUSH logBrush;
logBrush.lbStyle = BS_HATCHED;
logBrush.lbColor = RGB(0, 192, 192);
logBrush.lbHatch = HS_CROSS;

// Declare an uninitialized CBrush ...
CBrush brush;
// ... and initialize it with the LOGBRUSH.
brush.CreateBrushIndirect(&logBrush);

// Select the brush (and perhaps a pen) into
// the device context.
CBrush* pOldBrush = (CBrush*)pDC->SelectObject(&brush);
CPen* pOldPen = (CPen*)pDC->SelectStockObject(BLACK_PEN);

// Have fun!
pDC->Pie(CRect(100, 100, 300, 300), CPoint(0, 0), CPoint(50, 200));

// Restore the original device context objects.
pDC->SelectObject(pOldBrush);
pDC->SelectObject(pOldPen);

CBrush::CreateDIBPatternBrush

BOOL CreateDIBPatternBrush(
 HGLOBAL hPackedDIB,
 UINT nUsage);

BOOL CreateDIBPatternBrush(
 const void* lpPackedDIB,
 UINT nUsage);

ParametersParameters

lpLogBrush
Points to a LOGBRUSH structure that contains information about the brush.

Nonzero if the function is successful; otherwise 0.

The brush can subsequently be selected as the current brush for any device context.

A brush created using a monochrome (1 plane, 1 bit per pixel) bitmap is drawn using the current text and
background colors. Pixels represented by a bit set to 0 will be drawn with the current text color. Pixels represented
by a bit set to 1 will be drawn with the current background color.

Initializes a brush with the pattern specified by a device-independent bitmap (DIB).

hPackedDIB
Identifies a global-memory object containing a packed device-independent bitmap (DIB).

nUsage

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogbrush

Return ValueReturn Value

RemarksRemarks

ExampleExample

Specifies whether the bmiColors[] fields of the BITMAPINFO data structure (a part of the "packed DIB") contain
explicit RGB values or indices into the currently realized logical palette. The parameter must be one of the
following values:

DIB_PAL_COLORS The color table consists of an array of 16-bit indexes.

DIB_RGB_COLORS The color table contains literal RGB values.

lpPackedDIB
Points to a packed DIB consisting of a BITMAPINFO structure immediately followed by an array of bytes defining
the pixels of the bitmap.

Nonzero if successful; otherwise 0.

The brush can subsequently be selected for any device context that supports raster operations.

The two versions differ in the way you handle the DIB:

In the first version, to obtain a handle to the DIB you call the Windows GlobalAlloc function to allocate a
block of global memory and then fill the memory with the packed DIB.

In the second version, it is not necessary to call GlobalAlloc to allocate memory for the packed DIB.

A packed DIB consists of a BITMAPINFO data structure immediately followed by the array of bytes that defines the
pixels of the bitmap. Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger, Windows
creates a fill pattern using only the bits corresponding to the first 8 rows and 8 columns of pixels in the upper-left
corner of the bitmap.

When an application selects a two-color DIB pattern brush into a monochrome device context, Windows ignores
the colors specified in the DIB and instead displays the pattern brush using the current text and background
colors of the device context. Pixels mapped to the first color (at offset 0 in the DIB color table) of the DIB are
displayed using the text color. Pixels mapped to the second color (at offset 1 in the color table) are displayed using
the background color.

For information about using the following Windows functions, see the Windows SDK:

CreateDIBPatternBrush (This function is provided only for compatibility with applications written for
versions of Windows earlier than 3.0; use the CreateDIBPatternBrushPt function.)

CreateDIBPatternBrushPt (This function should be used for Win32-based applications.)

GlobalAlloc

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagbitmapinfo
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-createdibpatternbrush
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-createdibpatternbrushpt
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalalloc

// Resource handle to bitmap.
HRSRC hRes;
// Global handles to bitmap resource.
HGLOBAL hData;
void* hLockedData;
CBrush brush;

// Find the resource handle.
hRes = ::FindResource(AfxGetResourceHandle(),
MAKEINTRESOURCE(IDB_BRUSH), RT_BITMAP);
if (hRes != NULL)
{
 // Lock and Load (or Load and Lock).
 if (((hData = ::LoadResource(AfxGetResourceHandle(),
 hRes)) != NULL) &&
 ((hLockedData = ::LockResource(hData)) != NULL))
 {
 // Initialize the brush.
 brush.CreateDIBPatternBrush((const void*)hLockedData,
 DIB_RGB_COLORS);

 // Select the brush into the device context.
 CBrush* pOldBrush = pDC->SelectObject(&brush);

 // Draw.
 pDC->Rectangle(50, 50, 200, 200);

 // Restore the original device context.
 pDC->SelectObject(pOldBrush);

 // Free the resource.
 ::FreeResource(hLockedData);
 }
}

CBrush::CreateHatchBrush

BOOL CreateHatchBrush(
 int nIndex,
 COLORREF crColor);

ParametersParameters

Initializes a brush with the specified hatched pattern and color.

nIndex
Specifies the hatch style of the brush. It can be any one of the following values:

HS_BDIAGONAL Downward hatch (left to right) at 45 degrees

HS_CROSS Horizontal and vertical crosshatch

HS_DIAGCROSS Crosshatch at 45 degrees

HS_FDIAGONAL Upward hatch (left to right) at 45 degrees

HS_HORIZONTAL Horizontal hatch

HS_VERTICAL Vertical hatch

crColor
Specifies the foreground color of the brush as an RGB color (the color of the hatches). See COLORREF in the

https://docs.microsoft.com/windows/desktop/gdi/colorref

Return ValueReturn Value

RemarksRemarks

ExampleExample

CBrush brush;
brush.CreateHatchBrush(HS_BDIAGONAL, RGB(255, 0, 0));

CBrush* pOldBrush;
CPen* pOldPen;

pOldBrush = (CBrush*)pDC->SelectObject(&brush);
pOldPen = (CPen*)pDC->SelectStockObject(NULL_PEN);
pDC->Ellipse(CRect(50, 50, 250, 250));

pDC->SelectObject(pOldBrush);
pDC->SelectObject(pOldPen);

CBrush::CreatePatternBrush

BOOL CreatePatternBrush(CBitmap* pBitmap);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Windows SDK for more information.

Nonzero if successful; otherwise 0.

The brush can subsequently be selected as the current brush for any device context.

Initializes a brush with a pattern specified by a bitmap.

pBitmap
Identifies a bitmap.

Nonzero if successful; otherwise 0.

The brush can subsequently be selected for any device context that supports raster operations. The bitmap
identified by pBitmap is typically initialized by using the CBitmap::CreateBitmap, CBitmap::CreateBitmapIndirect,
CBitmap::LoadBitmap, or CBitmap::CreateCompatibleBitmap function.

Bitmaps used as fill patterns should be 8 pixels by 8 pixels. If the bitmap is larger, Windows will only use the bits
corresponding to the first 8 rows and columns of pixels in the upper-left corner of the bitmap.

A pattern brush can be deleted without affecting the associated bitmap. This means the bitmap can be used to
create any number of pattern brushes.

A brush created using a monochrome bitmap (1 color plane, 1 bit per pixel) is drawn using the current text and
background colors. Pixels represented by a bit set to 0 are drawn with the current text color. Pixels represented by
a bit set to 1 are drawn with the current background color.

For information about using CreatePatternBrush, a Windows function, see the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-createpatternbrush

// Create a hatched bit pattern.
WORD HatchBits[8] = { 0x11, 0x22, 0x44, 0x88, 0x11,
 0x22, 0x44, 0x88 };

// Use the bit pattern to create a bitmap.
CBitmap bm;
bm.CreateBitmap(8,8,1,1, HatchBits);

// Create a pattern brush from the bitmap.
CBrush brush;
brush.CreatePatternBrush(&bm);

// Select the brush into a device context, and draw.
CBrush* pOldBrush = (CBrush*)pDC->SelectObject(&brush);
pDC->RoundRect(CRect(50, 50, 200, 200), CPoint(10,10));

// Restore the original brush.
pDC->SelectObject(pOldBrush);

CBrush::CreateSolidBrush

BOOL CreateSolidBrush(COLORREF crColor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CBrush::CreateSysColorBrush

BOOL CreateSysColorBrush(int nIndex);

ParametersParameters

Return ValueReturn Value

Initializes a brush with a specified solid color.

crColor
A COLORREF structure that specifies the color of the brush. The color specifies an RGB value and can be
constructed with the RGB macro in WINDOWS.H.

Nonzero if successful; otherwise 0.

The brush can subsequently be selected as the current brush for any device context.

When an application has finished using the brush created by CreateSolidBrush , it should select the brush out of
the device context.

See the example for CBrush::CBrush.

Initializes a brush color.

nIndex
Specifies a color index. This value corresponds to the color used to paint one of the 21 window elements. See
GetSysColor in the Windows SDK for a list of values.

Nonzero if successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsyscolor

RemarksRemarks

ExampleExample

// Declare a CBrush and initialize to a system color.
CBrush brush;
brush.CreateSysColorBrush(COLOR_BTNFACE);

// Select the brush into the device context.
CBrush* pOldBrush = (CBrush*)pDC->SelectObject(&brush);

// Draw.
CRect rect(50, 50, 150, 150);
pDC->Rectangle(rect);

// Reselect the original brush.
pDC->SelectObject(pOldBrush);

CBrush::FromHandle

static CBrush* PASCAL FromHandle(HBRUSH hBrush);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CBrush::GetLogBrush

int GetLogBrush(LOGBRUSH* pLogBrush);

ParametersParameters

The brush can subsequently be selected as the current brush for any device context.

When an application has finished using the brush created by CreateSysColorBrush , it should select the brush out
of the device context.

Returns a pointer to a CBrush object when given a handle to a Windows HBRUSH object.

hBrush
HANDLE to a Windows GDI brush.

A pointer to a CBrush object if successful; otherwise NULL.

If a CBrush object is not already attached to the handle, a temporary CBrush object is created and attached. This
temporary CBrush object is valid only until the next time the application has idle time in its event loop. At this
time, all temporary graphic objects are deleted. In other words, the temporary object is valid only during the
processing of one window message.

For more information about using graphic objects, see Graphic Objects in the Windows SDK.

See the example for CBrush::CBrush.

Call this member function to retrieve the LOGBRUSH structure.

pLogBrush
Points to a LOGBRUSH structure that contains information about the brush.

https://docs.microsoft.com/windows/desktop/gdi/graphic-objects
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogbrush

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Example for CBrush::GetLogBrush
LOGBRUSH logbrush;
brushExisting.GetLogBrush(&logbrush);
CBrush brushOther(logbrush.lbColor);

// Another example
// Declare a LOGBRUSH
LOGBRUSH logBrush;

// Using a bitmap for this example.
// The bitmap should be a project resource.
CBitmap bm;
bm.LoadBitmap(IDB_BRUSH);

try
{
 // Create a brush
 CBrush brush1(&bm);

 // Use GetLogBrush to fill the LOGBRUSH structure
 brush1.GetLogBrush(&logBrush);

 // Create a second brush using the LOGBRUSH data
 CBrush brush2;
 brush2.CreateBrushIndirect(&logBrush);

 // Use the first brush
 CBrush* pOldBrush = (CBrush*)pDC->SelectObject(&brush1);
 pDC->Rectangle(CRect(50,50,150,150));

 // The second brush has the specified characteristics
 // of the first brush
 pDC->SelectObject(&brush2);
 pDC->Ellipse(200,50,300,150);

 // Reselect the original brush
 pDC->SelectObject(pOldBrush);
}
catch(CResourceException* e)
{
 e->ReportError();
 e->Delete();
}

CBrush::operator HBRUSH

If the function succeeds, and pLogBrush is a valid pointer, the return value is the number of bytes stored into the
buffer.

If the function succeeds, and pLogBrush is NULL, the return value is the number of bytes required to hold the
information the function would store into the buffer.

If the function fails, the return value is 0.

The LOGBRUSH structure defines the style, color, and pattern of a brush.

For example, call GetLogBrush to match the particular color or pattern of a bitmap.

Use this operator to get the attached Windows GDI handle of the CBrush object.

operator HBRUSH() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

RECT rc = { 50, 50, 200, 200 };

Rectangle(pDC->GetSafeHdc(), rc.left, rc.top, rc.right, rc.bottom);

// The Win32 call to FillRect requires an HBRUSH.
// The HBRUSH operator casts the CBrush object
// to the required type.
CBrush brush;
brush.CreateSysColorBrush(COLOR_BTNFACE);
FillRect(pDC->GetSafeHdc(), &rc, (HBRUSH)brush);

See also

If successful, a handle to the Windows GDI object represented by the CBrush object; otherwise NULL.

This operator is a casting operator, which supports direct use of an HBRUSH object.

For more information about using graphic objects, see Graphic Objects in the Windows SDK.

MFC Sample PROPDLG
CGdiObject Class
Hierarchy Chart
CBitmap Class
CDC Class

https://docs.microsoft.com/windows/desktop/gdi/graphic-objects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CButton Class
3/4/2019 • 26 minutes to read • Edit Online

Syntax
class CButton : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CButton::CButton Constructs a CButton object.

Public MethodsPublic Methods

NAME DESCRIPTION

CButton::Create Creates the Windows button control and attaches it to the
CButton object.

CButton::DrawItem Override to draw an owner-drawn CButton object.

CButton::GetBitmap Retrieves the handle of the bitmap previously set with
SetBitmap.

CButton::GetButtonStyle Retrieves information about the button control style.

CButton::GetCheck Retrieves the check state of a button control.

CButton::GetCursor Retrieves the handle of the cursor image previously set with
SetCursor.

CButton::GetIcon Retrieves the handle of the icon previously set with SetIcon.

CButton::GetIdealSize Retrieves the ideal size of the button control.

CButton::GetImageList Retrieves the image list of the button control.

CButton::GetNote Retrieves the note component of the current command link
control.

CButton::GetNoteLength Retrieves the length of the note text for the current
command link control.

Provides the functionality of Windows button controls.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cbutton-class.md

CButton::GetSplitGlyph Retrieves the glyph associated with the current split button
control.

CButton::GetSplitImageList Retrieves the image list for the current split button control.

CButton::GetSplitInfo Retrieves information that defines the current split button
control.

CButton::GetSplitSize Retrieves the bounding rectangle of the drop-down
component of the current split button control.

CButton::GetSplitStyle Retrieves the split button styles that define the current split
button control.

CButton::GetState Retrieves the check state, highlight state, and focus state of
a button control.

CButton::GetTextMargin Retrieves the text margin of the button control.

CButton::SetBitmap Specifies a bitmap to be displayed on the button.

CButton::SetButtonStyle Changes the style of a button.

CButton::SetCheck Sets the check state of a button control.

CButton::SetCursor Specifies a cursor image to be displayed on the button.

CButton::SetDropDownState Sets the drop-down state of the current split button
control.

CButton::SetIcon Specifies an icon to be displayed on the button.

CButton::SetImageList Sets the image list of the button control.

CButton::SetNote Sets the note on the current command link control.

CButton::SetSplitGlyph Associates a specified glyph with the current split button
control.

CButton::SetSplitImageList Associates an image list with the current split button
control.

CButton::SetSplitInfo Specifies information that defines the current split button
control.

CButton::SetSplitSize Sets the bounding rectangle of the drop-down component
of the current split button control.

CButton::SetSplitStyle Sets the style of the current split button control.

CButton::SetState Sets the highlighting state of a button control.

NAME DESCRIPTION

CButton::SetTextMargin Sets the text margin of the button control.

NAME DESCRIPTION

Remarks

MAP ENTRY SENT TO PARENT WHEN...

ON_BN_CLICKED The user clicks a button.

ON_BN_DOUBLECLICKED The user double-clicks a button.

Inheritance Hierarchy

A button control is a small, rectangular child window that can be clicked on and off. Buttons can be used alone
or in groups and can either be labeled or appear without text. A button typically changes appearance when the
user clicks it.

Typical buttons are the check box, radio button, and pushbutton. A CButton object can become any of these,
according to the button style specified at its initialization by the Create member function.

In addition, the CBitmapButton class derived from CButton supports creation of button controls labeled with
bitmap images instead of text. A CBitmapButton can have separate bitmaps for a button's up, down, focused,
and disabled states.

You can create a button control either from a dialog template or directly in your code. In both cases, first call
the constructor CButton to construct the CButton object; then call the Create member function to create the
Windows button control and attach it to the CButton object.

Construction can be a one-step process in a class derived from CButton . Write a constructor for the derived
class and call Create from within the constructor.

If you want to handle Windows notification messages sent by a button control to its parent (usually a class
derived from CDialog), add a message-map entry and message-handler member function to the parent class
for each message.

Each message-map entry takes the following form:

ON_Notification (id, memberFxn)

where id specifies the child window ID of the control sending the notification and memberFxn is the name of
the parent member function you have written to handle the notification.

The parent's function prototype is as follows:

afx_msg void memberFxn();

Potential message-map entries are as follows:

If you create a CButton object from a dialog resource, the CButton object is automatically destroyed when
the user closes the dialog box.

If you create a CButton object within a window, you may need to destroy it. If you create the CButton object
on the heap by using the new function, you must call delete on the object to destroy it when the user closes
the Windows button control. If you create the CButton object on the stack, or it is embedded in the parent
dialog object, it is destroyed automatically.

Requirements

CButton::CButton

CButton();

ExampleExample

// Declare a button object.
CButton myButton;

CButton::Create

virtual BOOL Create(
 LPCTSTR lpszCaption,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CObject

CCmdTarget

CWnd

CButton

Header: afxwin.h

Constructs a CButton object.

Creates the Windows button control and attaches it to the CButton object.

lpszCaption
Specifies the button control's text.

dwStyle
Specifies the button control's style. Apply any combination of button styles to the button.

rect
Specifies the button control's size and position. It can be either a CRect object or a RECT structure.

pParentWnd
Specifies the button control's parent window, usually a CDialog . It must not be NULL.

nID
Specifies the button control's ID.

Nonzero if successful; otherwise 0.

You construct a CButton object in two steps. First, call the constructor and then call Create , which creates the

ExampleExample

CButton myButton1, myButton2, myButton3, myButton4;

// Create a push button.
myButton1.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
 CRect(10,10,100,30), pParentWnd, 1);

// Create a radio button.
myButton2.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_RADIOBUTTON,
 CRect(10,40,100,70), pParentWnd, 2);

// Create an auto 3-state button.
myButton3.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_AUTO3STATE,
 CRect(10,70,100,100), pParentWnd, 3);

// Create an auto check box.
myButton4.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_AUTOCHECKBOX,
 CRect(10,100,100,130), pParentWnd, 4);

CButton::DrawItem

virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

RemarksRemarks

ExampleExample

Windows button control and attaches it to the CButton object.

If the WS_VISIBLE style is given, Windows sends the button control all the messages required to activate and
show the button.

Apply the following window styles to a button control:

WS_CHILD Always

WS_VISIBLE Usually

WS_DISABLED Rarely

WS_GROUP To group controls

WS_TABSTOP To include the button in the tabbing order

Called by the framework when a visual aspect of an owner-drawn button has changed.

lpDrawItemStruct
A long pointer to a DRAWITEMSTRUCT structure. The structure contains information about the item to be
drawn and the type of drawing required.

An owner-drawn button has the BS_OWNERDRAW style set. Override this member function to implement
drawing for an owner-drawn CButton object. The application should restore all graphics device interface
(GDI) objects selected for the display context supplied in lpDrawItemStruct before the member function
terminates.

Also see the BS_ style values.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct

// NOTE: CMyButton is a class derived from CButton. The CMyButton
// object was created as follows:
//
// CMyButton myButton;
// myButton.Create(_T("My button"),
// WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON|BS_OWNERDRAW,
// CRect(10,10,100,30), pParentWnd, 1);
//

// This example implements the DrawItem method for a CButton-derived
// class that draws the button's text using the color red.
void CMyButton::DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct)
{
 UINT uStyle = DFCS_BUTTONPUSH;

 // This code only works with buttons.
 ASSERT(lpDrawItemStruct->CtlType == ODT_BUTTON);

 // If drawing selected, add the pushed style to DrawFrameControl.
 if (lpDrawItemStruct->itemState & ODS_SELECTED)
 uStyle |= DFCS_PUSHED;

 // Draw the button frame.
 ::DrawFrameControl(lpDrawItemStruct->hDC, &lpDrawItemStruct->rcItem,
 DFC_BUTTON, uStyle);

 // Get the button's text.
 CString strText;
 GetWindowText(strText);

 // Draw the button text using the text color red.
 COLORREF crOldColor = ::SetTextColor(lpDrawItemStruct->hDC, RGB(255,0,0));
 ::DrawText(lpDrawItemStruct->hDC, strText, strText.GetLength(),
 &lpDrawItemStruct->rcItem, DT_SINGLELINE|DT_VCENTER|DT_CENTER);
 ::SetTextColor(lpDrawItemStruct->hDC, crOldColor);
}

CButton::GetBitmap

HBITMAP GetBitmap() const;

Return ValueReturn Value

ExampleExample

CButton myBitmapButton;

// Create a bitmap button.
myBitmapButton.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_BITMAP,
 CRect(10,10,60,50), pParentWnd, 1);

// If no bitmap is defined for the button, define the bitmap to the
// system close bitmap.
if (myBitmapButton.GetBitmap() == NULL)
 myBitmapButton.SetBitmap(::LoadBitmap(NULL, MAKEINTRESOURCE(OBM_CLOSE)));

Call this member function to get the handle of a bitmap, previously set with SetBitmap, that is associated with
a button.

A handle to a bitmap. NULL if no bitmap is previously specified.

CButton::GetButtonStyle

UINT GetButtonStyle() const;

Return ValueReturn Value

ExampleExample

CButton myRadioButton;

// Create a radio button.
myRadioButton.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_RADIOBUTTON,
 CRect(10,10,100,30), pParentWnd, 1);

// Change the button style to use one of the "auto" styles; for
// push button, change to def push button.
UINT uStyle = myRadioButton.GetButtonStyle();
if (uStyle == BS_PUSHBUTTON)
 uStyle = BS_DEFPUSHBUTTON;
else if (uStyle == BS_RADIOBUTTON)
 uStyle = BS_AUTORADIOBUTTON;
else if (uStyle == BS_CHECKBOX)
 uStyle = BS_AUTOCHECKBOX;
else if (uStyle == BS_3STATE)
 uStyle = BS_AUTO3STATE;

// Change the button style to the one wanted.
myRadioButton.SetButtonStyle(uStyle);

CButton::GetCheck

int GetCheck() const;

Return ValueReturn Value

VALUE MEANING

BST_UNCHECKED Button state is unchecked.

BST_CHECKED Button state is checked.

BST_INDETERMINATE Button state is indeterminate (applies only if the button has
the BS_3STATE or BS_AUTO3STATE style).

ExampleExample

Retrieves information about the button control style.

Returns the button styles for this CButton object. This function returns only the BS_ style values, not any of
the other window styles.

Retrieves the check state of a radio button or check box.

The return value from a button control created with the BS_AUTOCHECKBOX, BS_AUTORADIOBUTTON,
BS_AUTO3STATE, BS_CHECKBOX, BS_RADIOBUTTON, or BS_3STATE style is one of the following values:

If the button has any other style, the return value is BST_UNCHECKED.

CButton myA3Button;

// Create an auto 3-state button.
myA3Button.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_AUTO3STATE,
 CRect(10,10,100,30), pParentWnd, 1);

// Set the check state to the next state
// (i.e. BST_UNCHECKED changes to BST_CHECKED
// BST_CHECKED changes to BST_INDETERMINATE
// BST_INDETERMINATE changes to BST_UNCHECKED).
myA3Button.SetCheck(((myA3Button.GetCheck() + 1) % 3));

CButton::GetCursor

HCURSOR GetCursor();

Return ValueReturn Value

ExampleExample

CButton myIconButton;

// Create an icon button.
myIconButton.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_ICON,
 CRect(10,10,60,50), pParentWnd, 1);

// If no image is defined for the button, define the image to the
// system arrow and question mark cursor.
if (myIconButton.GetCursor() == NULL)
 myIconButton.SetCursor(::LoadCursor(NULL, IDC_HELP));

CButton::GetIcon

HICON GetIcon() const;

Return ValueReturn Value

ExampleExample

Call this member function to get the handle of a cursor, previously set with SetCursor, that is associated with a
button.

A handle to a cursor image. NULL if no cursor is previously specified.

Call this member function to get the handle of an icon, previously set with SetIcon, that is associated with a
button.

A handle to an icon. NULL if no icon is previously specified.

CButton myIconButton2;

// Create an icon button.
myIconButton2.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_ICON,
 CRect(10,10,60,50), pParentWnd, 1);

// If no icon is defined for the button, define the icon to the
// system error icon.
if (myIconButton2.GetIcon() == NULL)
 myIconButton2.SetIcon(::LoadIcon(NULL, IDI_ERROR));

CButton::GetIdealSize

BOOL GetIdealSize(SIZE* psize);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CButton::GetImageList

BOOL GetImageList(PBUTTON_IMAGELIST pbuttonImagelist);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CButton::GetNote

Retrieves the ideal size for the button control.

psize
A pointer to the current size of the button.

Nonzero if successful; otherwise 0.

This member function emulates the functionality of the BCM_GETIDEALSIZE message, as described in the
Buttons section of the Windows SDK.

Call this method to get the image list from the button control.

pbuttonImagelist
A pointer to the image list of the CButton object.

Nonzero if successful; otherwise 0.

This member function emulates the functionality of the BCM_GETIMAGELIST message, as described in the
Buttons section of the Windows SDK.

Retrieves the note text associated with the current command link control.

https://docs.microsoft.com/windows/desktop/controls/buttons
https://docs.microsoft.com/windows/desktop/controls/buttons

CString GetNote() const;

BOOL GetNote(
 LPTSTR lpszNote,
 UINT* cchNote) const;

ParametersParameters

PARAMETER DESCRIPTION

lpszNote [out] Pointer to a buffer, which the caller is responsible for
allocating and deallocating. If the return value is TRUE, the
buffer contains the note text that is associated with the
current command link control; otherwise, the buffer is
unchanged.

cchNote [in, out] A pointer to an unsigned integer variable.

When this method is called, the variable contains the size of
the buffer specified by the lpszNote parameter.

When this method returns, if the return value is TRUE the
variable contains the size of the note associated with the
current command link control. If the return value is FALSE,
the variable contains the buffer size required to contain the
note.

Return ValueReturn Value

RemarksRemarks

CButton::GetNoteLength

UINT GetNoteLength() const;

Return ValueReturn Value

RemarksRemarks

CButton::GetSplitGlyph

In the first overload, a CString object that contains the note text associated with the current command link
control.

-or-

In the second overload, TRUE if this method is successful; otherwise, FALSE.

Use this method only with controls whose button style is BS_COMMANDLINK or BS_DEFCOMMANDLINK.

This method sends the BCM_GETNOTE message, which is described in the Windows SDK.

Retrieves the length of the note text for the current command link control.

The length of the note text, in 16-bit Unicode characters, for the current command link control.

Use this method only with controls whose button style is BS_COMMANDLINK or BS_DEFCOMMANDLINK.

This method sends the BCM_GETNOTELENGTH message, which is described in the Windows SDK.

Retrieves the glyph associated with the current split button control.

https://docs.microsoft.com/windows/desktop/Controls/bcm-getnote
https://docs.microsoft.com/windows/desktop/Controls/bcm-getnotelength

TCHAR GetSplitGlyph() const;

Return ValueReturn Value

RemarksRemarks

CButton::GetSplitImageList

CImageList* GetSplitImageList() const;

Return ValueReturn Value

RemarksRemarks

CButton::GetSplitInfo

BOOL GetSplitInfo(PBUTTON_SPLITINFO pInfo) const;

ParametersParameters

PARAMETER DESCRIPTION

pInfo [out] Pointer to a BUTTON_SPLITINFO structure that
receives information about the current split button control.
The caller is responsible for allocating the structure.

Return ValueReturn Value

RemarksRemarks

The glyph character associated with the current split button control.

A glyph is the physical representation of a character in a particular font. For example, a split button control
might be decorated with the glyph of the Unicode check mark character (U+2713).

Use this method only with controls whose button style is BS_SPLITBUTTON or BS_DEFSPLITBUTTON.

This method initializes the mask member of a BUTTON_SPLITINFO structure with the BCSIF_GLYPH flag,
and then sends that structure in the BCM_GETSPLITINFO message that is described in the Windows SDK.
When the message function returns, this method retrieves the glyph from the himlGlyph member of the
structure.

Retrieves the image list for the current split button control.

A pointer to a CImageList object.

Use this method only with controls whose button style is BS_SPLITBUTTON or BS_DEFSPLITBUTTON.

This method initializes the mask member of a BUTTON_SPLITINFO structure with the BCSIF_IMAGE flag,
and then sends that structure in the BCM_GETSPLITINFO message that is described in the Windows SDK.
When the message function returns, this method retrieves the image list from the himlGlyph member of the
structure.

Retrieves parameters that determine how Windows draws the current split button control.

TRUE if this method is successful; otherwise, FALSE.

Use this method only with controls whose button style is BS_SPLITBUTTON or BS_DEFSPLITBUTTON.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/Controls/bcm-getsplitinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/Controls/bcm-getsplitinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo

CButton::GetSplitSize

BOOL GetSplitSize(LPSIZE pSize) const;

ParametersParameters

PARAMETER DESCRIPTION

pSize [out] Pointer to a SIZE structure that receives the
description of a rectangle.

Return ValueReturn Value

RemarksRemarks

CButton::GetSplitStyle

UINT GetSplitStyle() const;

Return ValueReturn Value

RemarksRemarks

CButton::GetState

This method sends the BCM_GETSPLITINFO message, which is described in the Windows SDK.

Retrieves the bounding rectangle of the drop-down component of the current split button control.

TRUE if this method is successful; otherwise, FALSE.

Use this method only with controls whose button style is BS_SPLITBUTTON or BS_DEFSPLITBUTTON.

When the split button control is expanded, it can display a drop-down component such as a list control or
pager control. This method retrieves the bounding rectangle that contains the drop-down component.

This method initializes the mask member of a BUTTON_SPLITINFO structure with the BCSIF_SIZE flag, and
then sends that structure in the BCM_GETSPLITINFO message that is described in the Windows SDK. When
the message function returns, this method retrieves the bounding rectangle from the size member of the
structure.

Retrieves the split button styles that define the current split button control.

A bitwise combination of split button styles. For more information, see the uSplitStyle member of the
BUTTON_SPLITINFO structure.

Use this method only with controls whose button style is BS_SPLITBUTTON or BS_DEFSPLITBUTTON.

The split button styles specify the alignment, aspect ratio, and graphical format with which Windows draws a
split button icon.

This method initializes the mask member of a BUTTON_SPLITINFO structure with the BCSIF_STYLE flag,
and then sends that structure in the BCM_GETSPLITINFO message that is described in the Windows SDK.
When the message function returns, this method retrieves the split button styles from the uSplitStyle

member of the structure.

Retrieves the state of a button control.

https://docs.microsoft.com/windows/desktop/Controls/bcm-getsplitinfo
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/Controls/bcm-getsplitinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/Controls/bcm-getsplitinfo

UINT GetState() const;

Return ValueReturn Value

BUTTON STATE VALUE DESCRIPTION

BST_UNCHECKED 0x0000 The initial state.

BST_CHECKED 0x0001 The button control is checked.

BST_INDETERMINATE 0x0002 The state is indeterminate (only
possible when the button control has
three states).

BST_PUSHED 0x0004 The button control is pressed.

BST_FOCUS 0x0008 The button control has the focus.

RemarksRemarks

ExampleExample

CButton myPushButton;

// Create a push button.
myPushButton.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
 CRect(10,10,100,30), pParentWnd, 1);

// Invert the highlight state of the button.
myPushButton.SetState(!(myPushButton.GetState() & 0x0004));

CButton::GetTextMargin

BOOL GetTextMargin(RECT* pmargin);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RemarksRemarks

A bit field that contains the combination of values that indicate the current state of a button control. The
following table lists possible values.

A button control with the BS_3STATE or BS_AUTO3STATE button style creates a check box that has a third
state that is named the indeterminate state. The indeterminate state indicates that the check box is neither
checked nor unchecked.

Call this method to get the text margin of the CButton object.

pmargin
A pointer to the text margin of the CButton object.

Returns the text margin.

Nonzero if successful; otherwise 0.

CButton::SetBitmap

HBITMAP SetBitmap(HBITMAP hBitmap);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CButton myBitmapButton;

// Create a bitmap button.
myBitmapButton.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_BITMAP,
 CRect(10,10,60,50), pParentWnd, 1);

// If no bitmap is defined for the button, define the bitmap to the
// system close bitmap.
if (myBitmapButton.GetBitmap() == NULL)
 myBitmapButton.SetBitmap(::LoadBitmap(NULL, MAKEINTRESOURCE(OBM_CLOSE)));

CButton::SetButtonStyle

This member function emulates the functionality of the BCM_GETTEXTMARGIN message, as described in the
Buttons section of the Windows SDK.

Call this member function to associate a new bitmap with the button.

hBitmap
The handle of a bitmap.

The handle of a bitmap previously associated with the button.

The bitmap will be automatically placed on the face of the button, centered by default. If the bitmap is too
large for the button, it will be clipped on either side. You can choose other alignment options, including the
following:

BS_TOP

BS_LEFT

BS_RIGHT

BS_CENTER

BS_BOTTOM

BS_VCENTER

Unlike CBitmapButton, which uses four bitmaps per button, SetBitmap uses only one bitmap per the button.
When the button is pressed, the bitmap appears to shift down and to the right.

You are responsible for releasing the bitmap when you are done with it.

Changes the style of a button.

https://docs.microsoft.com/windows/desktop/controls/buttons

void SetButtonStyle(
 UINT nStyle,
 BOOL bRedraw = TRUE);

ParametersParameters

RemarksRemarks

ExampleExample

CButton myRadioButton;

// Create a radio button.
myRadioButton.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_RADIOBUTTON,
 CRect(10,10,100,30), pParentWnd, 1);

// Change the button style to use one of the "auto" styles; for
// push button, change to def push button.
UINT uStyle = myRadioButton.GetButtonStyle();
if (uStyle == BS_PUSHBUTTON)
 uStyle = BS_DEFPUSHBUTTON;
else if (uStyle == BS_RADIOBUTTON)
 uStyle = BS_AUTORADIOBUTTON;
else if (uStyle == BS_CHECKBOX)
 uStyle = BS_AUTOCHECKBOX;
else if (uStyle == BS_3STATE)
 uStyle = BS_AUTO3STATE;

// Change the button style to the one wanted.
myRadioButton.SetButtonStyle(uStyle);

CButton::SetCheck

void SetCheck(int nCheck);

ParametersParameters

VALUE MEANING

BST_UNCHECKED Set the button state to unchecked.

BST_CHECKED Set the button state to checked.

nStyle
Specifies the button style.

bRedraw
Specifies whether the button is to be redrawn. A nonzero value redraws the button. A 0 value does not redraw
the button. The button is redrawn by default.

Use the GetButtonStyle member function to retrieve the button style. The low-order word of the complete
button style is the button-specific style.

Sets or resets the check state of a radio button or check box.

nCheck
Specifies the check state. This parameter can be one of the following:

BST_INDETERMINATE Set the button state to indeterminate. This value can be
used only if the button has the BS_3STATE or
BS_AUTO3STATE style.

VALUE MEANING

RemarksRemarks

ExampleExample

CButton myA3Button;

// Create an auto 3-state button.
myA3Button.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_AUTO3STATE,
 CRect(10,10,100,30), pParentWnd, 1);

// Set the check state to the next state
// (i.e. BST_UNCHECKED changes to BST_CHECKED
// BST_CHECKED changes to BST_INDETERMINATE
// BST_INDETERMINATE changes to BST_UNCHECKED).
myA3Button.SetCheck(((myA3Button.GetCheck() + 1) % 3));

CButton::SetCursor

HCURSOR SetCursor(HCURSOR hCursor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

This member function has no effect on a pushbutton.

Call this member function to associate a new cursor with the button.

hCursor
The handle of a cursor.

The handle of a cursor previously associated with the button.

The cursor will be automatically placed on the face of the button, centered by default. If the cursor is too large
for the button, it will be clipped on either side. You can choose other alignment options, including the
following:

BS_TOP

BS_LEFT

BS_RIGHT

BS_CENTER

BS_BOTTOM

BS_VCENTER

Unlike CBitmapButton, which uses four bitmaps per button, SetCursor uses only one cursor per the button.
When the button is pressed, the cursor appears to shift down and to the right.

CButton myIconButton;

// Create an icon button.
myIconButton.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_ICON,
 CRect(10,10,60,50), pParentWnd, 1);

// If no image is defined for the button, define the image to the
// system arrow and question mark cursor.
if (myIconButton.GetCursor() == NULL)
 myIconButton.SetCursor(::LoadCursor(NULL, IDC_HELP));

CButton::SetDropDownState

BOOL SetDropDownState(BOOL fDropDown);

ParametersParameters

PARAMETER DESCRIPTION

fDropDown [in] TRUE to set BST_DROPDOWNPUSHED state; otherwise,
FALSE.

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable to access programatically defined command link control.
 CButton m_cmdLink;
 // Variable to access programatically defined split button control.
 CButton m_splitButton;

ExampleExample

/* Set the state of the split button control to indicate that
the drop-down arrow is pushed. The arrow is drawn shaded to
indicate the state.
*/
m_splitButton.SetDropDownState(TRUE);

Sets the drop-down state of the current split button control.

TRUE if this method is successful; otherwise, FALSE.

A split button control has a style of BS_SPLITBUTTON or BS_DEFSPLITBUTTON and consists of a button
and a drop-down arrow to its right. For more information, see Button Styles. Usually, the drop-down state is
set when the user clicks the drop-down arrow. Use this method to programmatically set the drop-down state
of the control. The drop-down arrow is drawn shaded to indicate the state.

This method sends the BCM_SETDROPDOWNSTATE message, which is described in the Windows SDK.

The following code example defines the variable, m_splitButton, that is used to programmatically access the
split button control. This variable is used in the following example.

The following code example sets the state of the split button control to indicate that the drop-down arrow is
pushed.

https://docs.microsoft.com/windows/desktop/Controls/button-styles
https://docs.microsoft.com/windows/desktop/Controls/bcm-setdropdownstate

CButton::SetElevationRequired

BOOL SetElevationRequired(BOOL fElevationRequired);

ParametersParameters

PARAMETER DESCRIPTION

fElevationRequired [in] TRUE to set elevation required state; otherwise,
FALSE.

Return ValueReturn Value

RemarksRemarks

CButton::SetIcon

HICON SetIcon(HICON hIcon);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Sets the state of the current button control to elevation required , which is necessary for the control to
display an elevated security icon.

TRUE if this method is successful; otherwise, FALSE.

If a button or command link control requires elevated security permission to perform an action, set the control
to elevation required state. Subsequently, Windows displays the User Account Control (UAC) shield icon on
the control. For more information, see "User Account Control" at MSDN.

This method sends the BCM_SETSHIELD message, which is described in the Windows SDK.

Call this member function to associate a new icon with the button.

hIcon
The handle of an icon.

The handle of an icon previously associated with the button.

The icon will be automatically placed on the face of the button, centered by default. If the icon is too large for
the button, it will be clipped on either side. You can choose other alignment options, including the following:

BS_TOP

BS_LEFT

BS_RIGHT

BS_CENTER

BS_BOTTOM

BS_VCENTER

Unlike CBitmapButton, which uses four bitmaps per button, SetIcon uses only one icon per the button.
When the button is pressed, the icon appears to shift down and to the right.

http://go.microsoft.com/fwlink/p/?linkid=18507
https://docs.microsoft.com/windows/desktop/Controls/bcm-setshield

ExampleExample

CButton myIconButton2;

// Create an icon button.
myIconButton2.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_ICON,
 CRect(10,10,60,50), pParentWnd, 1);

// If no icon is defined for the button, define the icon to the
// system error icon.
if (myIconButton2.GetIcon() == NULL)
 myIconButton2.SetIcon(::LoadIcon(NULL, IDI_ERROR));

CButton::SetImageList

BOOL SetImageList(PBUTTON_IMAGELIST pbuttonImagelist);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CButton::SetNote

BOOL SetNote(LPCTSTR lpszNote);

ParametersParameters

PARAMETER DESCRIPTION

lpszNote [in] Pointer to a Unicode string that is set as the note text
for the command link control.

Return ValueReturn Value

RemarksRemarks

ExampleExample

Call this method to set the image list of the CButton object.

pbuttonImagelist
A pointer to the new image list.

Returns TRUE on success, FALSE on failure.

This member function emulates the functionality of the BCM_SETIMAGELIST message, as described in the
Buttons section of the Windows SDK.

Sets the note text for the current command link control.

TRUE if this method is successful; otherwise, FALSE.

Use this method only with controls whose button style is BS_COMMANDLINK or BS_DEFCOMMANDLINK.

This method sends the BCM_SETNOTE message, which is described in the Windows SDK.

The following code example defines the variable, m_cmdLink, that is used to programmatically access the
command link control. This variable is used in the following example.

https://docs.microsoft.com/windows/desktop/controls/buttons
https://docs.microsoft.com/windows/desktop/Controls/bcm-setnote

public:
 // Variable to access programatically defined command link control.
 CButton m_cmdLink;
 // Variable to access programatically defined split button control.
 CButton m_splitButton;

ExampleExample

// Set the command link text.
m_cmdLink.SetNote(_T("This is the command link note."));

CButton::SetSplitGlyph

BOOL SetSplitGlyph(TCHAR chGlyph);

ParametersParameters

PARAMETER DESCRIPTION

chGlyph [in] A character that specifies the glyph to use as the split
button drop-down arrow.

Return ValueReturn Value

RemarksRemarks

CButton::SetSplitImageList

BOOL SetSplitImageList(CImageList* pSplitImageList);

ParametersParameters

PARAMETER DESCRIPTION

pSplitImageList [in] Pointer to a CImageList object to assign to the current
split button control.

The following code example sets the note text for the command link control.

Associates a specified glyph with the current split button control.

TRUE if this method is successful; otherwise, FALSE.

Use this method only with controls that have the button style BS_SPLITBUTTON or BS_DEFSPLITBUTTON.

A glyph is the physical representation of a character in a particular font. The chGlyph parameter is not used as
the glyph, but is instead used to select a glyph from a set of system-defined glyphs. The default drop-down
arrow glyph is specified by a character '6', and resembles the Unicode character BLACK DOWN-POINTING
TRIANGLE (U+25BC).

This method initializes the mask member of a BUTTON_SPLITINFO structure with the BCSIF_GLYPH flag
and the himlGlyph member with the chGlyph parameter, and then sends that structure in the
BCM_GETSPLITINFO message that is described in the Windows SDK.

Associates an image list with the current split button control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/Controls/bcm-getsplitinfo

Return ValueReturn Value

RemarksRemarks

CButton::SetSplitInfo

BOOL SetSplitInfo(PBUTTON_SPLITINFO pInfo);

ParametersParameters

PARAMETER DESCRIPTION

pInfo [in] Pointer to a BUTTON_SPLITINFO structure that defines
the current split button control.

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable to access programatically defined command link control.
 CButton m_cmdLink;
 // Variable to access programatically defined split button control.
 CButton m_splitButton;

ExampleExample

TRUE if this method is successful; otherwise, FALSE.

Use this method only with controls whose button style is BS_SPLITBUTTON or BS_DEFSPLITBUTTON.

This method initializes the mask member of a BUTTON_SPLITINFO structure with the BCSIF_IMAGE flag
and the himlGlyph member with the pSplitImageList parameter, and then sends that structure in the
BCM_GETSPLITINFO message that is described in the Windows SDK.

Specifies parameters that determine how Windows draws the current split button control.

TRUE if this method is successful; otherwise, FALSE.

Use this method only with controls whose button style is BS_SPLITBUTTON or BS_DEFSPLITBUTTON.

This method sends the BCM_SETSPLITINFO message, which is described in the Windows SDK.

The following code example defines the variable, m_splitButton , that is used to programmatically access the
split button control.

The following code example changes the glyph that is used for the split button drop-down arrow. The example
substitutes an up-pointing triangle glyph for the default down-pointing triangle glyph. The glyph that is
displayed depends on the character that you specify in the himlGlyph member of the BUTTON_SPLITINFO

structure. The down-pointing triangle glyph is specified by a character '6' and the up-pointing triangle glyph is
specified by a character '5'. For comparison, see the convenience method, CButton::SetSplitGlyph.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/Controls/bcm-getsplitinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/Controls/bcm-setsplitinfo

/*
The drop-down arrow glyph is a function of the specified character.
The default "down" drop-down arrow glyph is specified by a
character '6'. Set the "up" arrow glyph, which is a character '5'.
See the convenience method, SetSplitGlyph(), for comparison.
*/
BUTTON_SPLITINFO bsInfo = {0};
bsInfo.mask = BCSIF_GLYPH;
TCHAR chGlyph = _T('5'); // "up" arrow glyph
bsInfo.himlGlyph = (HIMAGELIST)chGlyph;
bRC = m_splitButton.SetSplitInfo(&bsInfo);

CButton::SetSplitSize

BOOL SetSplitSize(LPSIZE pSize);

ParametersParameters

PARAMETER DESCRIPTION

pSize [in] Pointer to a SIZE structure that describes a bounding
rectangle.

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable to access programatically defined command link control.
 CButton m_cmdLink;
 // Variable to access programatically defined split button control.
 CButton m_splitButton;

ExampleExample

Sets the bounding rectangle of the drop-down component of the current split button control.

TRUE if this method is successful; otherwise, FALSE.

Use this method only with controls whose button style is BS_SPLITBUTTON or BS_DEFSPLITBUTTON.

When the split button control is expanded, it can display a drop-down component such as a list control or
pager control. This method specifies the size of the bounding rectangle that contains the drop-down
component.

This method initializes the mask member of a BUTTON_SPLITINFO structure with the BCSIF_SIZE flag and
the size member with the pSize parameter, and then sends that structure in the BCM_GETSPLITINFO
message that is described in the Windows SDK.

The following code example defines the variable, m_splitButton , that is used to programmatically access the
split button control. This variable is used in the following example.

The following code example doubles the size of the split button drop-down arrow.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/Controls/bcm-getsplitinfo

// Double the size of the split button drop-down arrow.
SIZE sz;
bRC = m_splitButton.GetSplitSize(&sz); // current size
sz.cx = sz.cx * 2;
sz.cy = sz.cy * 2;
bRC = m_splitButton.SetSplitSize(&sz);

CButton::SetSplitStyle

BOOL SetSplitStyle(UINT uSplitStyle);

ParametersParameters

PARAMETER DESCRIPTION

uSplitStyle [in] A bitwise combination of split button styles. For more
information, see the uSplitStyle member of the
BUTTON_SPLITINFO structure.

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable to access programatically defined command link control.
 CButton m_cmdLink;
 // Variable to access programatically defined split button control.
 CButton m_splitButton;

ExampleExample

Sets the style of the current split button control.

TRUE if this method is successful; otherwise, FALSE.

Use this method only with controls whose button style is BS_SPLITBUTTON or BS_DEFSPLITBUTTON.

The split button styles specify the alignment, aspect ratio, and graphical format with which Windows draws a
split button icon. For more information, see the uSplitStyle member of the BUTTON_SPLITINFO structure.

This method initializes the mask member of a BUTTON_SPLITINFO structure with the BCSIF_STYLE flag
and the uSplitStyle member with the uSplitStyle parameter, and then sends that structure in the
BCM_GETSPLITINFO message that is described in the Windows SDK.

The following code example defines the variable, m_splitButton , that is used to programmatically access the
split button control.

The following code example sets the style of the split button drop-down arrow. The BCSS_ALIGNLEFT style
displays the arrow on the left side of the button, and the BCSS_STRETCH style retains the drop-down arrow's
proportions when you resize the button.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagbutton_splitinfo
https://docs.microsoft.com/windows/desktop/Controls/bcm-getsplitinfo

/*
Set the style of the split button drop-down arrow: Display the
arrow on the left and retain the arrow's proportions when resizing
the control.
*/
bRC = m_splitButton.SetSplitStyle(BCSS_ALIGNLEFT | BCSS_STRETCH);

CButton::SetState

void SetState(BOOL bHighlight);

ParametersParameters

RemarksRemarks

ExampleExample

CButton myPushButton;

// Create a push button.
myPushButton.Create(_T("My button"), WS_CHILD|WS_VISIBLE|BS_PUSHBUTTON,
 CRect(10,10,100,30), pParentWnd, 1);

// Invert the highlight state of the button.
myPushButton.SetState(!(myPushButton.GetState() & 0x0004));

CButton::SetTextMargin

BOOL SetTextMargin(RECT* pmargin);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Sets whether a button control is highlighted or not.

bHighlight
Specifies whether the button is to be highlighted. A nonzero value highlights the button; a 0 value removes
any highlighting.

Highlighting affects the exterior of a button control. It has no effect on the check state of a radio button or
check box.

A button control is automatically highlighted when the user clicks and holds the left mouse button. The
highlighting is removed when the user releases the mouse button.

Call this method to set the text margin of the CButton object.

pmargin
A pointer to the new text margin.

Returns TRUE on success, FALSE on failure.

This member function emulates the functionality of the BCM_SETTEXTMARGIN message, as described in the
Buttons section of the Windows SDK.

https://docs.microsoft.com/windows/desktop/controls/buttons

See also
CWnd Class
Hierarchy Chart
CWnd Class
CComboBox Class
CEdit Class
CListBox Class
CScrollBar Class
CStatic Class
CBitmapButton Class
CDialog Class

CByteArray Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CByteArray : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CObArray::CObArray Constructs an empty array.

Public MethodsPublic Methods

NAME DESCRIPTION

CObArray::Add Adds an element to the end of the array; grows the array if
necessary.

CObArray::Append Appends another array to the array; grows the array if
necessary.

CObArray::Copy Copies another array to the array; grows the array if
necessary.

CObArray::ElementAt Returns a temporary reference to the byte within the array.

CObArray::FreeExtra Frees all unused memory above the current upper bound.

CObArray::GetAt Returns the value at a given index.

CObArray::GetCount Gets the number of elements in this array.

CObArray::GetData Allows access to elements in the array. Can be NULL.

Supports dynamic arrays of bytes.

The member functions of CByteArray are similar to the member functions of class CObArray. Because of this
similarity, you can use the CObArray reference documentation for member function specifics. Wherever you
see a CObject pointer as a function parameter or return value, substitute a BYTE.

CObject* CObArray::GetAt(int <nIndex>) const;

for example, translates to

BYTE CByteArray::GetAt(int <nIndex>) const;

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cbytearray-class.md

CObArray::GetSize Gets the number of elements in this array.

CObArray::GetUpperBound Returns the largest valid index.

CObArray::InsertAt Inserts an element (or all the elements in another array) at
a specified index.

CObArray::IsEmpty Determines if the array is empty.

CObArray::RemoveAll Removes all the elements from this array.

CObArray::RemoveAt Removes an element at a specific index.

CObArray::SetAt Sets the value for a given index; array not allowed to grow.

CObArray::SetAtGrow Sets the value for a given index; grows the array if
necessary.

CObArray::SetSize Sets the number of elements to be contained in this array.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CObArray::operator [] Sets or gets the element at the specified index.

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

CByteArray incorporates the IMPLEMENT_SERIAL macro to support serialization and dumping of its
elements. If an array of bytes is stored to an archive, either with the overloaded insertion (<<) operator or
with the Serialize member function, each element is, in turn, serialized.

Before using an array, use SetSize to establish its size and allocate memory for it. If you do not use SetSize , adding
elements to your array causes it to be frequently reallocated and copied. Frequent reallocation and copying are
inefficient and can fragment memory.

If you need debug output from individual elements in the array, you must set the depth of the CDumpContext
object to 1 or greater.

For more information on using CByteArray , see the article Collections.

CObject

CByteArray

Header: afxcoll.h

See also
CObject Class
Hierarchy Chart
CObArray Class

CCachedDataPathProperty Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CCachedDataPathProperty : public CDataPathProperty

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CCachedDataPathProperty::CCachedDataPathProperty Constructs a CCachedDataPathProperty object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CCachedDataPathProperty::m_Cache CMemFile object in which to cache data.

Remarks

Inheritance Hierarchy

Implements an OLE control property transferred asynchronously and cached in a memory file.

A memory file is stored in RAM rather than on disk and is useful for fast temporary transfers.

Along with CAysncMonikerFile and CDataPathProperty , CCachedDataPathProperty provides functionality for the use
of asynchronous monikers in OLE controls. With CCachedDataPathProperty objects, you are able to transfer data
asynchronously from a URL or file source and store it in a memory file via the m_Cache public variable. All the
data is stored in the memory file, and there is no need to override OnDataAvailable unless you want to watch for
notifications and respond. For example, if you are transferring a large .GIF file and want to notify your control that
more data has arrived and it should redraw itself, override OnDataAvailable to make the notification.

The class CCachedDataPathProperty is derived from CDataPathProperty .

For more information about how to use asynchronous monikers and ActiveX controls in Internet applications, see
the following topics:

Internet First Steps: ActiveX Controls

Internet First Steps: Asynchronous Monikers

CObject

CFile

COleStreamFile

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccacheddatapathproperty-class.md

Requirements

CCachedDataPathProperty::CCachedDataPathProperty

CCachedDataPathProperty(COleControl* pControl = NULL);

CCachedDataPathProperty(
 LPCTSTR lpszPath,
 COleControl* pControl = NULL);

ParametersParameters

RemarksRemarks

CCachedDataPathProperty::m_Cache

CMemFile m_Cache;

RemarksRemarks

See also

CMonikerFile

CAsyncMonikerFile

CDataPathProperty

CCachedDataPathProperty

Header: afxctl.h

Constructs a CCachedDataPathProperty object.

pControl
A pointer to the ActiveX control object to be associated with this CCachedDataPathProperty object.

lpszPath
The path, which may be absolute or relative, used to create an asynchronous moniker that references the actual
absolute location of the property. CCachedDataPathProperty uses URLs, not filenames. If you want a
CCachedDataPathProperty object for a file, prepend file:// to the path.

The COleControl object pointed to by pControl is used by Open and retrieved by derived classes. If pControl is
NULL, the control used with Open should be set with SetControl. If lpszPath is NULL, you can pass in the path
through Open or set it with SetPath.

Contains the class name of the memory file into which data is cached.

A memory file is stored in RAM rather than on disk.

CDataPathProperty Class
Hierarchy Chart
CDataPathProperty Class

CCheckListBox Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CCheckListBox : public CListBox

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CCheckListBox::CCheckListBox Constructs a CCheckListBox object.

Public MethodsPublic Methods

NAME DESCRIPTION

CCheckListBox::Create Creates the Windows checklist box and attaches it to the
CCheckListBox object.

CCheckListBox::DrawItem Called by the framework when a visual aspect of an owner-
draw list box changes.

CCheckListBox::Enable Enables or disables a checklist box item.

CCheckListBox::GetCheck Gets the state of an item's check box.

CCheckListBox::GetCheckStyle Gets the style of the control's check boxes.

CCheckListBox::IsEnabled Determines whether an item is enabled.

CCheckListBox::MeasureItem Called by the framework when a list box with an owner-draw
style is created.

CCheckListBox::OnGetCheckPosition Called by the framework to get the position of an item's check
box.

CCheckListBox::SetCheck Sets the state of an item's check box.

CCheckListBox::SetCheckStyle Sets the style of the control's check boxes.

Remarks

Provides the functionality of a Windows checklist box.

A "checklist box" displays a list of items, such as filenames. Each item in the list has a check box next to it that the
user can check or clear.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cchecklistbox-class.md

Inheritance Hierarchy

Requirements

CCheckListBox::CCheckListBox

CCheckListBox();

RemarksRemarks

CCheckListBox is only for owner-drawn controls because the list contains more than text strings. At its simplest, a
checklist box contains text strings and check boxes, but you do not need to have text at all. For example, you could
have a list of small bitmaps with a check box next to each item.

To create your own checklist box, you must derive your own class from CCheckListBox . To derive your own class,
write a constructor for the derived class, then call Create .

If you want to handle Windows notification messages sent by a list box to its parent (usually a class derived from
CDialog), add a message-map entry and message-handler member function to the parent class for each message.

Each message-map entry takes the following form:

ON_Notification (id, memberFxn)

where id specifies the child window ID of the control sending the notification and memberFxn is the name of the
parent member function you have written to handle the notification.

The parent's function prototype is as follows:

afx_msg void memberFxn();

There is only one message-map entry that pertains specifically to CCheckListBox (but see also the message-map
entries for CListBox):

ON_CLBN_CHKCHANGE The user has changed the state of an item's checkbox.

If your checklist box is a default checklist box (a list of strings with the default-sized checkboxes to the left of each),
you can use the default CCheckListBox::DrawItem to draw the checklist box. Otherwise, you must override the
CListBox::CompareItem function and the CCheckListBox::DrawItem and CCheckListBox::MeasureItem functions.

You can create a checklist box either from a dialog template or directly in your code.

CObject

CCmdTarget

CWnd

CListBox

CCheckListBox

Header: afxwin.h

Constructs a CCheckListBox object.

You construct a CCheckListBox object in two steps. First define a class derived from CCheckListBox , then call
Create , which initializes the Windows checklist box and attaches it to the CCheckListBox object.

ExampleExample

CCheckListBox myCheckListBox;
myCheckListBox.Create(LBS_HASSTRINGS | LBS_OWNERDRAWFIXED,
 CRect(10, 10, 100, 100), this, IDC_MYCHECKLISTBOX);

CCheckListBox::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Creates the Windows checklist box and attaches it to the CCheckListBox object.

dwStyle
Specifies the style of the checklist box. The style must be LBS_HASSTRINGS and either
LBS_OWNERDRAWFIXED (all items in the list are the same height) or LBS_OWNERDRAWVARIABLE (items in
the list are of varying heights). This style can be combined with other list-box styles except LBS_USETABSTOPS.

rect
Specifies the checklist-box size and position. Can be either a CRect object or a RECT structure.

pParentWnd
Specifies the checklist box's parent window (usually a CDialog object). It must not be NULL.

nID
Specifies the checklist box's control ID.

Nonzero if successful; otherwise 0.

You construct a CCheckListBox object in two steps. First, define a class derived from CcheckListBox and then call
Create , which initializes the Windows checklist box and attaches it to the CCheckListBox . See

CCheckListBox::CCheckListBox for a sample.

When Create executes, Windows sends the WM_NCCREATE, WM_CREATE, WM_NCCALCSIZE, and
WM_GETMINMAXINFO messages to the checklist-box control.

These messages are handled by default by the OnNcCreate, OnCreate, OnNcCalcSize, and OnGetMinMaxInfo
member functions in the CWnd base class. To extend the default message handling, add a message map to the
your derived class and override the preceding message-handler member functions. Override OnCreate , for
example, to perform needed initialization for a new class.

Apply the following window styles to a checklist-box control:

WS_CHILD Always

WS_VISIBLE Usually

WS_DISABLED Rarely

WS_VSCROLL To add a vertical scroll bar

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CCheckListBox::DrawItem

virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

RemarksRemarks

CCheckListBox::Enable

void Enable(
 int nIndex,
 BOOL bEnabled = TRUE);

ParametersParameters

CCheckListBox::GetCheck

int GetCheck(int nIndex);

ParametersParameters

WS_HSCROLL To add a horizontal scroll bar

WS_GROUP To group controls

WS_TABSTOP To allow tabbing to this control

Called by the framework when a visual aspect of an owner-drawn checklist box changes.

lpDrawItemStruct
A long pointer to a DRAWITEMSTRUCT structure that contains information about the type of drawing required.

The itemAction and itemState members of the DRAWITEMSTRUCT structure define the drawing action that is to be
performed.

By default, this function draws a default checkbox list, consisting of a list of strings each with a default-sized
checkbox to the left. The checkbox list size is the one specified in Create.

Override this member function to implement drawing of owner-draw checklist boxes that are not the default, such
as checklist boxes with lists that aren't strings, with variable-height items, or with checkboxes that aren't on the left.
The application should restore all graphics device interface (GDI) objects selected for the display context supplied
in lpDrawItemStruct before the termination of this member function.

If checklist box items are not all the same height, the checklist box style (specified in Create) must be
**LBS_OWNERVARIABLE, and you must override the MeasureItem function.

Call this function to enable or disable a checklist box item.

nIndex
Index of the checklist box item to be enabled.

bEnabled
Specifies whether the item is enabled or disabled.

Retrieves the state of the specified check box.

nIndex

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct

Return ValueReturn Value

VALUE DESCRIPTION

BST_CHECKED The check box is checked.

BST_UNCHECKED The check box is not checked.

BST_INDETERMINATE The check box state is indeterminate.

CCheckListBox::GetCheckStyle

UINT GetCheckStyle();

Return ValueReturn Value

RemarksRemarks

CCheckListBox::IsEnabled

BOOL IsEnabled(int nIndex);

ParametersParameters

Return ValueReturn Value

CCheckListBox::MeasureItem

virtual void MeasureItem(LPMEASUREITEMSTRUCT lpMeasureItemStruct);

ParametersParameters

RemarksRemarks

Zero-based index of a check box that is contained in the list box.

The state of the specified check box. The following table lists possible values.

Call this function to get the checklist box's style.

The style of the control's check boxes.

For information on possible styles, see SetCheckStyle.

Call this function to determine whether an item is enabled.

nIndex
Index of the item.

Nonzero if the item is enabled; otherwise 0.

Called by the framework when a checklist box with a nondefault style is created.

lpMeasureItemStruct
A long pointer to a MEASUREITEMSTRUCT structure.

By default, this member function does nothing. Override this member function and fill in the MEASUREITEMSTRUCT

structure to inform Windows of the dimensions of checklist-box items. If the checklist box is created with the

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmeasureitemstruct

CCheckListBox::OnGetCheckPosition

virtual CRect OnGetCheckPosition(
 CRect rectItem,
 CRect rectCheckBox);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCheckListBox::SetCheck

void SetCheck(
 int nIndex,
 int nCheck);

ParametersParameters

RemarksRemarks

VALUE DESCRIPTION

BST_CHECKED Select the specified check box.

BST_UNCHECKED Clear the specified check box.

LBS_OWNERDRAWVARIABLE style, the framework calls this member function for each item in the list box.
Otherwise, this member is called only once.

The framework calls this function to get the position and size of the check box in an item.

rectItem
The position and size of the list item.

rectCheckBox
The default position and size of an item's check box.

The position and size of an item's check box.

The default implementation only returns the default position and size of the check box (rectCheckBox). By default,
a check box is aligned in the upper-left corner of an item and is the standard check box size. There may be cases
where you want the check boxes on the right, or want a larger or smaller check box. In these cases, override
OnGetCheckPosition to change the check box position and size within the item.

Sets the state of the specified check box.

nIndex
Zero-based index of a check box that is contained in the list box.

nCheck
The button state for the specified check box. See the Remarks section for possible values.

The following table lists possible values for the nCheck parameter.

BST_INDETERMINATE Set the specified check box state to indeterminate.

This state is only available if the check box style is
BS_AUTO3STATE or BS_3STATE. For more information, see
Button Styles.

VALUE DESCRIPTION

CCheckListBox::SetCheckStyle

void SetCheckStyle(UINT nStyle);

ParametersParameters

RemarksRemarks

See also

Call this function to set the style of check boxes in the checklist box.

nStyle
Determines the style of check boxes in the checklist box.

Valid styles are:

BS_CHECKBOX

BS_AUTOCHECKBOX

BS_AUTO3STATE

BS_3STATE

For information on these styles, see Button Styles.

MFC Sample TSTCON
CListBox Class
Hierarchy Chart
CListBox Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CClientDC Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CClientDC : public CDC

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CClientDC::CClientDC Constructs a CClientDC object connected to the CWnd .

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CClientDC::m_hWnd The HWND of the window for which this CClientDC is valid.

Remarks

Inheritance Hierarchy

Requirements

CClientDC::CClientDC

explicit CClientDC(CWnd* pWnd);

ParametersParameters

Takes care of calling the Windows functions GetDC at construction time and ReleaseDC at destruction time.

This means that the device context associated with a CClientDC object is the client area of a window.

For more information on CClientDC , see Device Contexts.

CObject

CDC

CClientDC

Header: afxwin.h

Constructs a CClientDC object that accesses the client area of the CWnd pointed to by pWnd.

pWnd

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cclientdc-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-releasedc

RemarksRemarks

ExampleExample

void CDCView::DrawInClientDC(CDC* pDC)
{
 UNREFERENCED_PARAMETER(pDC);

 CClientDC clientDC(this);

 clientDC.TextOut(10, 10, CString(_T("I used a client DC!")));
}

CClientDC::m_hWnd

HWND m_hWnd;

RemarksRemarks

ExampleExample

See also

The window whose client area the device context object will access.

The constructor calls the Windows function GetDC.

An exception (of type CResourceException) is thrown if the Windows GetDC call fails. A device context may not be
available if Windows has already allocated all of its available device contexts. Your application competes for the
five common display contexts available at any given time under Windows.

The HWND of the CWnd pointer used to construct the CClientDC object.

m_hWnd is a protected variable.

See the example for CClientDC::CClientDC.

MFC Sample MDI
CDC Class
Hierarchy Chart
CDC Class

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CCmdTarget Class
3/5/2019 • 14 minutes to read • Edit Online

Syntax
class CCmdTarget : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CCmdTarget::CCmdTarget Constructs a CCmdTarget object.

Public MethodsPublic Methods

NAME DESCRIPTION

CCmdTarget::BeginWaitCursor Displays the cursor as an hourglass cursor.

CCmdTarget::DoOleVerb Causes an action specified by an OLE verb to
be performed.

CCmdTarget::EnableAutomation Allows OLE automation for the CCmdTarget

object.

CCmdTarget::EnableConnections Enables event firing over connection points.

CCmdTarget::EnableTypeLib Enables an object's type library.

CCmdTarget::EndWaitCursor Returns to the previous cursor.

CCmdTarget::EnumOleVerbs Enumerates an object's OLE verbs.

CCmdTarget::FromIDispatch Returns a pointer to the CCmdTarget object
associated with the IDispatch pointer.

CCmdTarget::GetDispatchIID Gets the primary dispatch interface ID.

CCmdTarget::GetIDispatch Returns a pointer to the IDispatch object
associated with the CCmdTarget object.

CCmdTarget::GetTypeInfoCount Retrieves the number of type information
interfaces that an object provides.

The base class for the Microsoft Foundation Class Library message-map
architecture.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccmdtarget-class.md

CCmdTarget::GetTypeInfoOfGuid Retrieves the type description that
corresponds to the specified GUID.

CCmdTarget::GetTypeLib Gets a pointer to a type library.

CCmdTarget::GetTypeLibCache Gets the type library cache.

CCmdTarget::IsInvokeAllowed Enables automation method invocation.

CCmdTarget::IsResultExpected Returns nonzero if an automation function
should return a value.

CCmdTarget::OnCmdMsg Routes and dispatches command messages.

CCmdTarget::OnFinalRelease Cleans up after the last OLE reference is
released.

CCmdTarget::RestoreWaitCursor Restores the hourglass cursor.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CCmdTarget::BeginWaitCursor

A message map routes commands or messages to the member functions you write
to handle them. (A command is a message from a menu item, command button, or
accelerator key.)

Key framework classes derived from CCmdTarget include CView, CWinApp,
CDocument, CWnd, and CFrameWnd. If you intend for a new class to handle
messages, derive the class from one of these CCmdTarget -derived classes. You will
rarely derive a class from CCmdTarget directly.

For an overview of command targets and OnCmdMsg routing, see Command Targets,
Command Routing, and Mapping Messages.

CCmdTarget includes member functions that handle the display of an hourglass
cursor. Display the hourglass cursor when you expect a command to take a
noticeable time interval to execute.

Dispatch maps, similar to message maps, are used to expose OLE automation
IDispatch functionality. By exposing this interface, other applications (such as

Visual Basic) can call into your application.

CObject

CCmdTarget

Header: afxwin.h

void BeginWaitCursor();

RemarksRemarks

ExampleExample

Call this function to display the cursor as an hourglass when you expect a command
to take a noticeable time interval to execute.

The framework calls this function to show the user that it is busy, such as when a
CDocument object loads or saves itself to a file.

The actions of BeginWaitCursor are not always effective outside of a single message
handler as other actions, such as OnSetCursor handling, could change the cursor.

Call EndWaitCursor to restore the previous cursor.

// The following example illustrates the most common case
// of displaying the hourglass cursor during some lengthy
// processing of a command handler implemented in some
// CCmdTarget-derived class, such as a document or view.
void CMyView::OnBeginSleepEnd()
{
 BeginWaitCursor(); // display the hourglass cursor
 // do some lengthy processing
 Sleep(3000);
 EndWaitCursor(); // remove the hourglass cursor
}

// The next example illustrates RestoreWaitCursor.
void CMyView::OnBeginDlgRestore()
{
 BeginWaitCursor(); // display the hourglass cursor
 // do some lengthy processing
 // The dialog box will normally change the cursor to
 // the standard arrow cursor, and leave the cursor in
 // as the standard arrow cursor when the dialog box is
 // closed.
 CFileDialog dlg(TRUE);
 dlg.DoModal();

 // It is necessary to call RestoreWaitCursor here in order
 // to change the cursor back to the hourglass cursor.
 RestoreWaitCursor();
 // do some more lengthy processing
 Sleep(3000);
 EndWaitCursor(); // remove the hourglass cursor
}

// In the above example, the dialog was clearly invoked between
// the pair of calls to BeginWaitCursor and EndWaitCursor.
// Sometimes it may not be clear whether the dialog is invoked
// in between a pair of calls to BeginWaitCursor and EndWaitCursor.
// It is permissable to call RestoreWaitCursor, even if
// BeginWaitCursor was not previously called. This case is
// illustrated below, where CMyView::AnotherFunction does not
// need to know whether it was called in the context of an
// hourglass cursor.
void CMyView::OnDlgRestore()
{
 // some processing ...
 CFileDialog dlg(TRUE);
 dlg.DoModal();
 RestoreWaitCursor();

 // some more processing ...
}

// If the dialog is invoked from a member function of
// some non-CCmdTarget, then you can call CWinApp::DoWaitCursor
// with a 0 parameter value to restore the hourglass cursor.
void CMyObject::OnDlgDoWait()
{
 CFileDialog dlg(TRUE);
 dlg.DoModal();
 AfxGetApp()->DoWaitCursor(0); // same as CCmdTarget::RestoreWaitCursor
}

CCmdTarget::CCmdTarget
Constructs a CCmdTarget object.

CCmdTarget();

CCmdTarget::DoOleVerb

BOOL DoOleVerb(
 LONG iVerb,
 LPMSG lpMsg,
 HWND hWndParent,
 LPCRECT lpRect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCmdTarget::EnableAutomation

void EnableAutomation();

RemarksRemarks

CCmdTarget::EnableConnections

void EnableConnections();

RemarksRemarks

Causes an action specified by an OLE verb to be performed.

iVerb
Numerical identifier of the verb.

lpMsg
Pointer to the MSG structure describing the event (such as a double-click) that
invoked the verb.

hWndParent
Handle of the document window containing the object.

lpRect
Pointer to the RECT structure containing the coordinates, in pixels, that define an
object's bounding rectangle in hwndParent.

TRUE if successful, otherwise FALSE.

This member function is basically an implementation of IOleObject::DoVerb. The
possible actions are enumerated by CCmdTarget::EnumOleVerbs.

Call this function to enable OLE automation for an object.

This function is typically called from the constructor of your object and should only
be called if a dispatch map has been declared for the class. For more information on
automation see the articles Automation Clients and Automation Servers.

Enables event firing over connection points.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-msg
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-doverb

CCmdTarget::EnableTypeLib

void EnableTypeLib();

RemarksRemarks

CCmdTarget::EndWaitCursor

void EndWaitCursor();

RemarksRemarks

ExampleExample

To enable connection points, call this member function in the constructor of your
derived class.

Enables an object's type library.

Call this member function in the constructor of your CCmdTarget -derived object if it
provides type information.

Call this function after you have called the BeginWaitCursor member function to
return from the hourglass cursor to the previous cursor.

The framework also calls this member function after it has called the hourglass
cursor.

// The following example illustrates the most common case
// of displaying the hourglass cursor during some lengthy
// processing of a command handler implemented in some
// CCmdTarget-derived class, such as a document or view.
void CMyView::OnBeginSleepEnd()
{
 BeginWaitCursor(); // display the hourglass cursor
 // do some lengthy processing
 Sleep(3000);
 EndWaitCursor(); // remove the hourglass cursor
}

// The next example illustrates RestoreWaitCursor.
void CMyView::OnBeginDlgRestore()
{
 BeginWaitCursor(); // display the hourglass cursor
 // do some lengthy processing
 // The dialog box will normally change the cursor to
 // the standard arrow cursor, and leave the cursor in
 // as the standard arrow cursor when the dialog box is
 // closed.
 CFileDialog dlg(TRUE);
 dlg.DoModal();

 // It is necessary to call RestoreWaitCursor here in order
 // to change the cursor back to the hourglass cursor.
 RestoreWaitCursor();
 // do some more lengthy processing
 Sleep(3000);
 EndWaitCursor(); // remove the hourglass cursor
}

// In the above example, the dialog was clearly invoked between
// the pair of calls to BeginWaitCursor and EndWaitCursor.
// Sometimes it may not be clear whether the dialog is invoked
// in between a pair of calls to BeginWaitCursor and EndWaitCursor.
// It is permissable to call RestoreWaitCursor, even if
// BeginWaitCursor was not previously called. This case is
// illustrated below, where CMyView::AnotherFunction does not
// need to know whether it was called in the context of an
// hourglass cursor.
void CMyView::OnDlgRestore()
{
 // some processing ...
 CFileDialog dlg(TRUE);
 dlg.DoModal();
 RestoreWaitCursor();

 // some more processing ...
}

// If the dialog is invoked from a member function of
// some non-CCmdTarget, then you can call CWinApp::DoWaitCursor
// with a 0 parameter value to restore the hourglass cursor.
void CMyObject::OnDlgDoWait()
{
 CFileDialog dlg(TRUE);
 dlg.DoModal();
 AfxGetApp()->DoWaitCursor(0); // same as CCmdTarget::RestoreWaitCursor
}

CCmdTarget::EnumOleVerbs
Enumerates an object's OLE verbs.

BOOL EnumOleVerbs(LPENUMOLEVERB* ppenumOleVerb);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCmdTarget::FromIDispatch

static CCmdTarget* PASCAL FromIDispatch(LPDISPATCH lpDispatch);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCmdTarget::GetDispatchIID

virtual BOOL GetDispatchIID(IID* pIID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ppenumOleVerb
A pointer to a pointer to an IEnumOLEVERB interface.

TRUE if the object supports at least one OLE verb (in which case * ppenumOleVerb
points to an IEnumOLEVERB enumerator interface), otherwise FALSE.

This member function is basically an implementation of IOleObject::EnumVerbs.

Call this function to map an IDispatch pointer, received from automation member
functions of a class, into the CCmdTarget object that implements the interfaces of the
IDispatch object.

lpDispatch
A pointer to an IDispatch object.

A pointer to the CCmdTarget object associated with lpDispatch. This function returns
NULL if the IDispatch object is not recognized as a Microsoft Foundation Class
IDispatch object.

The result of this function is the inverse of a call to the member function
GetIDispatch .

Gets the primary dispatch interface ID.

pIID
A pointer to an interface ID (a GUID).

TRUE if successful, otherwise FALSE. If successful, * pIID is set to the primary
dispatch interface ID.

Derived classes should override this member function (if not overridden,
GetDispatchIID returns FALSE). See COleControl.

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ienumoleverb
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-enumverbs
https://msdn.microsoft.com/library/windows/desktop/aa373931

CCmdTarget::GetIDispatch

LPDISPATCH GetIDispatch(BOOL bAddRef);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCmdTarget::GetTypeInfoCount

virtual UINT GetTypeInfoCount();

Return ValueReturn Value

RemarksRemarks

CCmdTarget::GetTypeInfoOfGuid

HRESULT GetTypeInfoOfGuid(
 LCID lcid,
 const GUID& guid,
 LPTYPEINFO* ppTypeInfo);

ParametersParameters

Call this member function to retrieve the IDispatch pointer from an automation
method that either returns an IDispatch pointer or takes an IDispatch pointer by
reference.

bAddRef
Specifies whether to increment the reference count for the object.

The IDispatch pointer associated with the object.

For objects that call EnableAutomation in their constructors, making them
automation enabled, this function returns a pointer to the Foundation Class
implementation of IDispatch that is used by clients who communicate via the
IDispatch interface. Calling this function automatically adds a reference to the

pointer, so it is not necessary to make a call to IUnknown::AddRef.

Retrieves the number of type information interfaces that an object provides.

The number of type information interfaces.

This member function basically implements IDispatch::GetTypeInfoCount.

Derived classes should override this function to return the number of type
information interfaces provided (either 0 or 1). If not overridden, GetTypeInfoCount

returns 0. To override, use the IMPLEMENT_OLETYPELIB macro, which also
implements GetTypeLib and GetTypeLibCache .

Retrieves the type description that corresponds to the specified GUID.

lcid
A locale identifier (LCID).

https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-gettypeinfocount

Return ValueReturn Value

CCmdTarget::GetTypeLib

virtual HRESULT GetTypeLib(
 LCID lcid,
 LPTYPELIB* ppTypeLib);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCmdTarget::GetTypeLibCache

virtual CTypeLibCache* GetTypeLibCache();

Return ValueReturn Value

RemarksRemarks

CCmdTarget::IsInvokeAllowed

guid
The GUID of the type description.

ppTypeInfo
Pointer to a pointer to the ITypeInfo interface.

An HRESULT indicating the success or failure of the call. If successful, * ppTypeInfo
points to the type information interface.

Gets a pointer to a type library.

lcid
A locale identifier (LCID).

ppTypeLib
A pointer to a pointer to the ITypeLib interface.

An HRESULT indicating the success or failure of the call. If successful, * ppTypeLib
points to the type library interface.

Derived classes should override this member function (if not overridden,
GetTypeLib returns TYPE_E_CANTLOADLIBRARY). Use the

IMPLEMENT_OLETYPELIB macro, which also implements GetTypeInfoCount and
GetTypeLibCache .

Gets the type library cache.

A pointer to a CTypeLibCache object.

Derived classes should override this member function (if not overridden,
GetTypeLibCache returns NULL). Use the IMPLEMENT_OLETYPELIB macro, which

also implements GetTypeInfoCount and GetTypeLib .

This function is called by MFC's implementation of IDispatch::Invoke to determine
if a given automation method (identified by dispid) can be invoked.

https://msdn.microsoft.com/library/windows/desktop/aa373931

virtual BOOL IsInvokeAllowed(DISPID dispid);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCmdTarget::IsResultExpected

BOOL IsResultExpected();

Return ValueReturn Value

RemarksRemarks

CCmdTarget::OnCmdMsg

virtual BOOL OnCmdMsg(
 UINT nID,
 int nCode,
 void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);

ParametersParameters

dispid
A dispatch ID.

TRUE if the method can be invoked, otherwise FALSE.

If IsInvokeAllowed returns TRUE, Invoke proceeds to call the method; otherwise,
Invoke will fail, returning E_UNEXPECTED.

Derived classes can override this function to return appropriate values (if not
overridden, IsInvokeAllowed returns TRUE). See in particular
COleControl::IsInvokeAllowed.

Use IsResultExpected to ascertain whether a client expects a return value from its
call to an automation function.

Nonzero if an automation function should return a value; otherwise 0.

The OLE interface supplies information to MFC about whether the client is using or
ignoring the result of a function call, and MFC in turn uses this information to
determine the result of a call to IsResultExpected . If production of a return value is
time- or resource-intensive, you can increase efficiency by calling this function
before computing the return value.

This function returns 0 only once so that you will get valid return values from other
automation functions if you call them from the automation function that the client
has called.

IsResultExpected returns a nonzero value if called when an automation function call
is not in progress.

Called by the framework to route and dispatch command messages and to handle
the update of command user-interface objects.

Return ValueReturn Value

RemarksRemarks

NCODE VALUE PEXTRA VALUE

CN_COMMAND CCmdUI*

CN_EVENT AFX_EVENT*

CN_UPDATE_COMMAND_UI CCmdUI*

CN_OLECOMMAND COleCmdUI*

CN_OLE_UNREGISTER NULL

ExampleExample

nID
Contains the command ID.

nCode
Identifies the command notification code. See Remarks for more information about
values for nCode.

pExtra
Used according to the value of nCode. See Remarks for more information about
pExtra.

pHandlerInfo
If not NULL, OnCmdMsg fills in the pTarget and pmf members of the pHandlerInfo
structure instead of dispatching the command. Typically, this parameter should be
NULL.

Nonzero if the message is handled; otherwise 0.

This is the main implementation routine of the framework command architecture.

At run time, OnCmdMsg dispatches a command to other objects or handles the
command itself by calling the root class CCmdTarget::OnCmdMsg , which does the
actual message-map lookup. For a complete description of the default command
routing, see Message Handling and Mapping Topics.

On rare occasions, you may want to override this member function to extend the
framework's standard command routing. Refer to Technical Note 21 for advanced
details of the command-routing architecture.

If you override OnCmdMsg , you must supply the appropriate value for nCode, the
command notification code, and pExtra, which depends on the value of nCode. The
following table lists their corresponding values:

// This example illustrates extending the framework's standard command
// route from the view to objects managed by the view. This example
// is from an object-oriented drawing application, similar to the
// DRAWCLI sample application, which draws and edits "shapes".
BOOL CMyView::OnCmdMsg(UINT nID, int nCode, void* pExtra, AFX_CMDHANDLERINFO*
pHandlerInfo)
{
 // Extend the framework's command route from the view to
 // the application-specific CMyShape that is currently selected
 // in the view. m_pActiveShape is NULL if no shape object
 // is currently selected in the view.
 if ((m_pActiveShape != NULL)
 && m_pActiveShape->OnCmdMsg(nID, nCode, pExtra, pHandlerInfo))
 return TRUE;

 // If the object(s) in the extended command route don't handle
 // the command, then let the base class OnCmdMsg handle it.
 return CView::OnCmdMsg(nID, nCode, pExtra, pHandlerInfo);
}

// The command handler for ID_SHAPE_COLOR (menu command to change
// the color of the currently selected shape) was added to the message
// map of CMyShape (note, not CMyView) using the Properties window.
// The menu item will be automatically enabled or disabled, depending
// on whether a CMyShape is currently selected in the view, that is,
// depending on whether CMyView::m_pActiveView is NULL. It is not
// necessary to implement an ON_UPDATE_COMMAND_UI handler to enable
// or disable the menu item.
BEGIN_MESSAGE_MAP(CMyShape, CCmdTarget)
 ON_COMMAND(ID_SHAPE_COLOR, &CMyShape::OnShapeColor)
END_MESSAGE_MAP()

CCmdTarget::OnFinalRelease

virtual void OnFinalRelease();

RemarksRemarks

CCmdTarget::RestoreWaitCursor

void RestoreWaitCursor();

ExampleExample

Called by the framework when the last OLE reference to or from the object is
released.

Override this function to provide special handling for this situation. The default
implementation deletes the object.

Call this function to restore the appropriate hourglass cursor after the system cursor
has changed (for example, after a message box has opened and then closed while in
the middle of a lengthy operation).

// The following example illustrates the most common case
// of displaying the hourglass cursor during some lengthy
// processing of a command handler implemented in some
// CCmdTarget-derived class, such as a document or view.
void CMyView::OnBeginSleepEnd()
{
 BeginWaitCursor(); // display the hourglass cursor
 // do some lengthy processing
 Sleep(3000);
 EndWaitCursor(); // remove the hourglass cursor
}

// The next example illustrates RestoreWaitCursor.
void CMyView::OnBeginDlgRestore()
{
 BeginWaitCursor(); // display the hourglass cursor
 // do some lengthy processing
 // The dialog box will normally change the cursor to
 // the standard arrow cursor, and leave the cursor in
 // as the standard arrow cursor when the dialog box is
 // closed.
 CFileDialog dlg(TRUE);
 dlg.DoModal();

 // It is necessary to call RestoreWaitCursor here in order
 // to change the cursor back to the hourglass cursor.
 RestoreWaitCursor();
 // do some more lengthy processing
 Sleep(3000);
 EndWaitCursor(); // remove the hourglass cursor
}

// In the above example, the dialog was clearly invoked between
// the pair of calls to BeginWaitCursor and EndWaitCursor.
// Sometimes it may not be clear whether the dialog is invoked
// in between a pair of calls to BeginWaitCursor and EndWaitCursor.
// It is permissable to call RestoreWaitCursor, even if
// BeginWaitCursor was not previously called. This case is
// illustrated below, where CMyView::AnotherFunction does not
// need to know whether it was called in the context of an
// hourglass cursor.
void CMyView::OnDlgRestore()
{
 // some processing ...
 CFileDialog dlg(TRUE);
 dlg.DoModal();
 RestoreWaitCursor();

 // some more processing ...
}

// If the dialog is invoked from a member function of
// some non-CCmdTarget, then you can call CWinApp::DoWaitCursor
// with a 0 parameter value to restore the hourglass cursor.
void CMyObject::OnDlgDoWait()
{
 CFileDialog dlg(TRUE);
 dlg.DoModal();
 AfxGetApp()->DoWaitCursor(0); // same as CCmdTarget::RestoreWaitCursor
}

See also
MFC Sample ACDUAL
CObject Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Hierarchy Chart
CCmdUI Class
CDocument Class
CDocTemplate Class
CWinApp Class
CWnd Class
CView Class
CFrameWnd Class
COleDispatchDriver Class

CCmdUI Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CCmdUI

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CCmdUI::ContinueRouting Tells the command-routing mechanism to continue routing
the current message down the chain of handlers.

CCmdUI::Enable Enables or disables the user-interface item for this
command.

CCmdUI::SetCheck Sets the check state of the user-interface item for this
command.

CCmdUI::SetRadio Like the SetCheck member function, but operates on radio
groups.

CCmdUI::SetText Sets the text for the user-interface item for this command.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CCmdUI::m_nID The ID of the user-interface object.

CCmdUI::m_nIndex The index of the user-interface object.

CCmdUI::m_pMenu Points to the menu represented by the CCmdUI object.

CCmdUI::m_pOther Points to the window object that sent the notification.

CCmdUI::m_pSubMenu Points to the contained sub-menu represented by the
CCmdUI object.

Remarks

Is used only within an ON_UPDATE_COMMAND_UI handler in a CCmdTarget -derived class.

CCmdUI does not have a base class.

When a user of your application pulls down a menu, each menu item needs to know whether it should be

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccmdui-class.md

USER-INTERFACE ITEM ENABLE SETCHECK SETRADIO SETTEX T

Menu item Enables or disables Checks or unchecks Checks using a dot Sets item text

Toolbar button Enables or disables Selects, unselects, or
indeterminate

Same as SetCheck (Not applicable)

Status-bar pane Makes text visible or
invisible

Sets pop-out or
normal border

Same as SetCheck Sets pane text

Normal button in
CDialogBar

Enables or disables Checks or unchecks
check box

Same as SetCheck Sets button text

Normal control in
CDialogBar

Enables or disables (Not applicable) (Not applicable) Sets window text

Inheritance Hierarchy

Requirements

CCmdUI::ContinueRouting

void ContinueRouting();

RemarksRemarks

CCmdUI::Enable

displayed as enabled or disabled. The target of a menu command provides this information by implementing an
ON_UPDATE_COMMAND_UI handler. For each of the command user-interface objects in your application, use
the Properties window to create a message-map entry and function prototype for each handler.

When the menu is pulled down, the framework searches for and calls each ON_UPDATE_COMMAND_UI
handler, each handler calls CCmdUI member functions such as Enable and Check , and the framework then
appropriately displays each menu item.

A menu item can be replaced with a control-bar button or other command user-interface object without
changing the code within the ON_UPDATE_COMMAND_UI handler.

The following table summarizes the effect CCmdUI 's member functions have on various command user-
interface items.

For more on the use of this class, see How to Update User-Interface Objects.

CCmdUI

Header: afxwin.h

Call this member function to tell the command-routing mechanism to continue routing the current message
down the chain of handlers.

This is an advanced member function that should be used in conjunction with an ON_COMMAND_EX handler
that returns FALSE. For more information, see Technical Note 6.

Call this member function to enable or disable the user-interface item for this command.

virtual void Enable(BOOL bOn = TRUE);

ParametersParameters

ExampleExample

ON_UPDATE_COMMAND_UI(ID_FILE_SAVE, &CMyDoc::OnUpdateFileSave)

void CMyDoc::OnUpdateFileSave(CCmdUI* pCmdUI)
{
 // Enable the menu item if the file has been modified.
 pCmdUI->Enable(m_bModified);
}

CCmdUI::m_nID

UINT m_nID;

CCmdUI::m_nIndex

UINT m_nIndex;

CCmdUI::m_pMenu

CMenu* m_pMenu;

RemarksRemarks

CCmdUI::m_pSubMenu

CMenu* m_pSubMenu;

RemarksRemarks

CCmdUI::m_pOther

bOn
TRUE to enable the item, FALSE to disable it.

The ID of the menu item, toolbar button, or other user-interface object represented by the CCmdUI object.

The index of the menu item, toolbar button, or other user-interface object represented by the CCmdUI object.

Pointer (of CMenu type) to the menu represented by the CCmdUI object.

NULL if the item is not a menu.

Pointer (of CMenu type) to the contained sub-menu represented by the CCmdUI object.

NULL if the item is not a menu. If the sub menu is a pop-up, m_nID contains the ID of the first item in the pop-
up menu. For more information, see Technical Note 21.

CWnd* m_pOther;

RemarksRemarks

CCmdUI::SetCheck

virtual void SetCheck(int nCheck = 1);

ParametersParameters

RemarksRemarks

CCmdUI::SetRadio

virtual void SetRadio(BOOL bOn = TRUE);

ParametersParameters

RemarksRemarks

CCmdUI::SetText

virtual void SetText(LPCTSTR lpszText);

ParametersParameters

ExampleExample

Pointer (of type CWnd) to the window object, such as a tool or status bar, that sent the notification.

NULL if the item is a menu or a non- CWnd object.

Call this member function to set the user-interface item for this command to the appropriate check state.

nCheck
Specifies the check state to set. If 0, unchecks; if 1, checks; and if 2, sets indeterminate.

This member function works for menu items and toolbar buttons. The indeterminate state applies only to
toolbar buttons.

Call this member function to set the user-interface item for this command to the appropriate check state.

bOn
TRUE to enable the item; otherwise FALSE.

This member function operates like SetCheck , except that it operates on user-interface items acting as part of a
radio group. Unchecking the other items in the group is not automatic unless the items themselves maintain the
radio-group behavior.

Call this member function to set the text of the user-interface item for this command.

lpszText
A pointer to a text string.

void CMyRichEditView::OnUpdateLineNumber(CCmdUI *pCmdUI)
{
 int nLine = GetRichEditCtrl().LineFromChar(-1) + 1;

 CString string;
 string.Format(_T("Line %d"), nLine);
 pCmdUI->Enable(TRUE);
 pCmdUI->SetText(string);
}

See also
MFC Sample MDI
Hierarchy Chart
CCmdTarget Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CColorDialog Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CColorDialog : public CCommonDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CColorDialog::CColorDialog Constructs a CColorDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

CColorDialog::DoModal Displays a color dialog box and allows the user to make a
selection.

CColorDialog::GetColor Returns a COLORREF structure containing the values of the
selected color.

CColorDialog::GetSavedCustomColors Retrieves custom colors created by the user.

CColorDialog::SetCurrentColor Forces the current color selection to the specified color.

Protected MethodsProtected Methods

NAME DESCRIPTION

CColorDialog::OnColorOK Override to validate the color entered into the dialog box.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CColorDialog::m_cc A structure used to customize the settings of the dialog box.

Remarks

Allows you to incorporate a color-selection dialog box into your application.

A CColorDialog object is a dialog box with a list of colors that are defined for the display system. The user can
select or create a particular color from the list, which is then reported back to the application when the dialog box
exits.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccolordialog-class.md

NOTENOTE

Inheritance Hierarchy

Requirements

CColorDialog::CColorDialog

CColorDialog(
 COLORREF clrInit = 0,
 DWORD dwFlags = 0,
 CWnd* pParentWnd = NULL);

To construct a CColorDialog object, use the provided constructor or derive a new class and use your own custom
constructor.

Once the dialog box has been constructed, you can set or modify any values in the m_cc structure to initialize the
values of the dialog box's controls. The m_cc structure is of type CHOOSECOLOR.

After initializing the dialog box's controls, call the DoModal member function to display the dialog box and allow
the user to select a color. DoModal returns the user's selection of either the dialog box's OK (IDOK) or Cancel
(IDCANCEL) button.

If DoModal returns IDOK, you can use one of CColorDialog 's member functions to retrieve the information input
by the user.

You can use the Windows CommDlgExtendedError function to determine whether an error occurred during
initialization of the dialog box and to learn more about the error.

CColorDialog relies on the COMMDLG.DLL file that ships with Windows versions 3.1 and later.

To customize the dialog box, derive a class from CColorDialog , provide a custom dialog template, and add a
message map to process the notification messages from the extended controls. Any unprocessed messages
should be passed to the base class.

Customizing the hook function is not required.

On some installations the CColorDialog object will not display with a gray background if you have used the framework to
make other CDialog objects gray.

For more information on using CColorDialog , see Common Dialog Classes

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

CColorDialog

Header: afxdlgs.h

Constructs a CColorDialog object.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagchoosecolora
https://docs.microsoft.com/windows/desktop/api/commdlg/nf-commdlg-commdlgextendederror

ParametersParameters

ExampleExample

// Show the Color dialog with all the default settings.
CColorDialog dlg1;
dlg1.DoModal();

// Show the fully opened Color dialog with red as the selected color.
CColorDialog dlg2(RGB(255, 0, 0), CC_FULLOPEN);
dlg2.DoModal();

CColorDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CColorDialog::GetColor

COLORREF GetColor() const;

Return ValueReturn Value

ExampleExample

clrInit
The default color selection. If no value is specified, the default is RGB(0,0,0) (black).

dwFlags
A set of flags that customize the function and appearance of the dialog box. For more information, see the
CHOOSECOLOR structure in the Windows SDK.

pParentWnd
A pointer to the dialog box's parent or owner window.

Call this function to display the Windows common color dialog box and allow the user to select a color.

IDOK or IDCANCEL. If IDCANCEL is returned, call the Windows CommDlgExtendedError function to determine
whether an error occurred.

IDOK and IDCANCEL are constants that indicate whether the user selected the OK or Cancel button.

If you want to initialize the various color dialog-box options by setting members of the m_cc structure, you should
do this before calling DoModal but after the dialog-box object is constructed.

After calling DoModal , you can call other member functions to retrieve the settings or information input by the
user into the dialog box.

See the example for CColorDialog::CColorDialog.

Call this function after calling DoModal to retrieve the information about the color the user selected.

A COLORREF value that contains the RGB information for the color selected in the color dialog box.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagchoosecolora
https://docs.microsoft.com/windows/desktop/api/commdlg/nf-commdlg-commdlgextendederror
https://docs.microsoft.com/windows/desktop/gdi/colorref

// Get the selected color from the CColorDialog.
CColorDialog dlg;
if (dlg.DoModal() == IDOK)
{
 COLORREF color = dlg.GetColor();
 TRACE(_T("RGB value of the selected color - red = %u, ")
 _T("green = %u, blue = %u\n"),
 GetRValue(color), GetGValue(color), GetBValue(color));
}

CColorDialog::GetSavedCustomColors

static COLORREF* PASCAL GetSavedCustomColors();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Get a pointer to an array of 16 RGB color values that stores
// custom colors created by the user from CColorDialog.
CColorDialog dlg;
if (dlg.DoModal() == IDOK)
{
 COLORREF* ccolor = dlg.GetSavedCustomColors();
 for (int i=0; i < 16; i++)
 {
 TRACE(_T("RGB value of the selected color - red = %u, ")
 _T("green = %u, blue = %u\n"),
 GetRValue(ccolor[i]),
 GetGValue(ccolor[i]),
 GetBValue(ccolor[i]));
 }
}

CColorDialog::m_cc

CHOOSECOLOR m_cc;

RemarksRemarks

CColorDialog objects permit the user, in addition to choosing colors, to define up to 16 custom colors.

A pointer to an array of 16 RGB color values that stores custom colors created by the user.

The GetSavedCustomColors member function provides access to these colors. These colors can be retrieved after
DoModal returns IDOK.

Each of the 16 RGB values in the returned array is initialized to RGB(255,255,255) (white). The custom colors
chosen by the user are saved only between dialog box invocations within the application. If you wish to save these
colors between invocations of the application, you must save them in some other manner, such as in an
initialization (.INI) file.

A structure of type CHOOSECOLOR, whose members store the characteristics and values of the dialog box.

After constructing a CColorDialog object, you can use m_cc to set various aspects of the dialog box before calling
the DoModal member function.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagchoosecolora

ExampleExample

// The code below uses CColorDialog::m_cc data member to
// customize the settings of CColorDialog. The CColorDialog will
// be shown as full open and with red as the selected color.
CColorDialog dlg;
dlg.m_cc.Flags |= CC_FULLOPEN | CC_RGBINIT;
dlg.m_cc.rgbResult = RGB(255, 0, 0);
dlg.DoModal();

CColorDialog::OnColorOK

virtual BOOL OnColorOK();

Return ValueReturn Value

RemarksRemarks

ExampleExample

Override to validate the color entered into the dialog box.

Nonzero if the dialog box should not be dismissed; otherwise 0 to accept the color that was entered.

Override this function only if you want to provide custom validation of the color the user selects in the color
dialog box.

The user can select a color by one of the following two methods:

Clicking a color on the color palette. The selected color's RGB values are then reflected in the appropriate
RGB edit boxes.

Entering values in the RGB edit boxes

Overriding OnColorOK allows you to reject a color the user enters into a common color dialog box for any
application-specific reason.

Normally, you do not need to use this function because the framework provides default validation of colors and
displays a message box if an invalid color is entered.

You can call SetCurrentColor from within OnColorOK to force a color selection. Once OnColorOK has been fired
(that is, the user clicks OK to accept the color change), you can call GetColor to get the RGB value of the new
color.

// Override OnColorOK to validate the color entered to the
// Red, Green, and Blue edit controls. If the color
// is BLACK (i.e. RGB(0, 0,0)), then force the current color
// selection to be the color initially selected when the
// dialog box is created. The color dialog won't close so
// user can enter a new color.
BOOL CMyColorDlg::OnColorOK()
{
 // Value in Red edit control.
 COLORREF clrref = GetColor();
 if (RGB(0, 0, 0) == clrref)
 {
 AfxMessageBox(_T("BLACK is not an acceptable color. ")
 _T("Please enter a color again"));

 // GetColor() returns initially selected color.
 SetCurrentColor(GetColor());

 // Won't dismiss color dialog.
 return TRUE;
 }

 // OK to dismiss color dialog.
 return FALSE;
}

CColorDialog::SetCurrentColor

void SetCurrentColor(COLORREF clr);

ParametersParameters

RemarksRemarks

ExampleExample

See also

Call this function after calling DoModal to force the current color selection to the color value specified in clr.

clr
An RGB color value.

This function is called from within a message handler or OnColorOK . The dialog box will automatically update the
user's selection based on the value of the clr parameter.

See the example for CColorDialog::OnColorOK.

MFC Sample MDI
MFC Sample DRAWCLI
CCommonDialog Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CComboBox Class
3/4/2019 • 43 minutes to read • Edit Online

Syntax
class CComboBox : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComboBox::CComboBox Constructs a CComboBox object.

Public MethodsPublic Methods

NAME DESCRIPTION

CComboBox::AddString Adds a string to the end of the list in the list box of a combo
box, or at the sorted position for list boxes with the
CBS_SORT style.

CComboBox::Clear Deletes (clears) the current selection, if any, in the edit
control.

CComboBox::CompareItem Called by the framework to determine the relative position
of a new list item in a sorted owner-drawn combo box.

CComboBox::Copy Copies the current selection, if any, onto the Clipboard in
CF_TEXT format.

CComboBox::Create Creates the combo box and attaches it to the CComboBox

object.

CComboBox::Cut Deletes (cuts) the current selection, if any, in the edit control
and copies the deleted text onto the Clipboard in CF_TEXT
format.

CComboBox::DeleteItem Called by the framework when a list item is deleted from an
owner-drawn combo box.

CComboBox::DeleteString Deletes a string from the list box of a combo box.

CComboBox::Dir Adds a list of file names to the list box of a combo box.

CComboBox::DrawItem Called by the framework when a visual aspect of an owner-
drawn combo box changes.

Provides the functionality of a Windows combo box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccombobox-class.md

CComboBox::FindString Finds the first string that contains the specified prefix in the
list box of a combo box.

CComboBox::FindStringExact Finds the first list-box string (in a combo box) that matches
the specified string.

CComboBox::GetComboBoxInfo Retrieves information about the CComboBox object.

CComboBox::GetCount Retrieves the number of items in the list box of a combo
box.

CComboBox::GetCueBanner Gets the cue text that is displayed for a combo box control.

CComboBox::GetCurSel Retrieves the index of the currently selected item, if any, in
the list box of a combo box.

CComboBox::GetDroppedControlRect Retrieves the screen coordinates of the visible (dropped
down) list box of a drop-down combo box.

CComboBox::GetDroppedState Determines whether the list box of a drop-down combo box
is visible (dropped down).

CComboBox::GetDroppedWidth Retrieves the minimum allowed width for the drop-down
list-box portion of a combo box.

CComboBox::GetEditSel Gets the starting and ending character positions of the
current selection in the edit control of a combo box.

CComboBox::GetExtendedUI Determines whether a combo box has the default user
interface or the extended user interface.

CComboBox::GetHorizontalExtent Returns the width in pixels that the list-box portion of the
combo box can be scrolled horizontally.

CComboBox::GetItemData Retrieves the application-supplied 32-bit value associated
with the specified combo-box item.

CComboBox::GetItemDataPtr Retrieves the application-supplied 32-bit pointer that is
associated with the specified combo-box item.

CComboBox::GetItemHeight Retrieves the height of list items in a combo box.

CComboBox::GetLBText Gets a string from the list box of a combo box.

CComboBox::GetLBTextLen Gets the length of a string in the list box of a combo box.

CComboBox::GetLocale Retrieves the locale identifier for a combo box.

CComboBox::GetMinVisible Gets the minimum number of visible items in the drop-
down list of the current combo box.

CComboBox::GetTopIndex Returns the index of the first visible item in the list-box
portion of the combo box.

NAME DESCRIPTION

CComboBox::InitStorage Preallocates blocks of memory for items and strings in the
list-box portion of the combo box.

CComboBox::InsertString Inserts a string into the list box of a combo box.

CComboBox::LimitText Limits the length of the text that the user can enter into the
edit control of a combo box.

CComboBox::MeasureItem Called by the framework to determine combo box
dimensions when an owner-drawn combo box is created.

CComboBox::Paste Inserts the data from the Clipboard into the edit control at
the current cursor position. Data is inserted only if the
Clipboard contains data in CF_TEXT format.

CComboBox::ResetContent Removes all items from the list box and edit control of a
combo box.

CComboBox::SelectString Searches for a string in the list box of a combo box and, if
the string is found, selects the string in the list box and
copies the string to the edit control.

CComboBox::SetCueBanner Sets the cue text that is displayed for a combo box control.

CComboBox::SetCurSel Selects a string in the list box of a combo box.

CComboBox::SetDroppedWidth Sets the minimum allowed width for the drop-down list-box
portion of a combo box.

CComboBox::SetEditSel Selects characters in the edit control of a combo box.

CComboBox::SetExtendedUI Selects either the default user interface or the extended user
interface for a combo box that has the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.

CComboBox::SetHorizontalExtent Sets the width in pixels that the list-box portion of the
combo box can be scrolled horizontally.

CComboBox::SetItemData Sets the 32-bit value associated with the specified item in a
combo box.

CComboBox::SetItemDataPtr Sets the 32-bit pointer associated with the specified item in
a combo box.

CComboBox::SetItemHeight Sets the height of list items in a combo box or the height of
the edit-control (or static-text) portion of a combo box.

CComboBox::SetLocale Sets the locale identifier for a combo box.

CComboBox::SetMinVisibleItems Sets the minimum number of visible items in the drop-down
list of the current combo box.

NAME DESCRIPTION

CComboBox::SetTopIndex Tells the list-box portion of the combo box to display the
item with the specified index at the top.

CComboBox::ShowDropDown Shows or hides the list box of a combo box that has the
CBS_DROPDOWN or CBS_DROPDOWNLIST style.

NAME DESCRIPTION

Remarks

STYLE WHEN IS LIST BOX VISIBLE STATIC OR EDIT CONTROL

Simple Always Edit

Drop-down When dropped down Edit

Drop-down list When dropped down Static

A combo box consists of a list box combined with either a static control or edit control. The list-box portion of
the control may be displayed at all times or may only drop down when the user selects the drop-down arrow
next to the control.

The currently selected item (if any) in the list box is displayed in the static or edit control. In addition, if the
combo box has the drop-down list style, the user can type the initial character of one of the items in the list, and
the list box, if visible, will highlight the next item with that initial character.

The following table compares the three combo-box styles.

You can create a CComboBox object from either a dialog template or directly in your code. In both cases, first call
the constructor CComboBox to construct the CComboBox object; then call the Create member function to create
the control and attach it to the CComboBox object.

If you want to handle Windows notification messages sent by a combo box to its parent (usually a class derived
from CDialog), add a message-map entry and message-handler member function to the parent class for each
message.

Each message-map entry takes the following form:

ON_Notification (id, memberFxn)

where id specifies the child-window ID of the combo-box control sending the notification and memberFxn is
the name of the parent member function you have written to handle the notification.

The parent's function prototype is as follows:

afx_msg void memberFxn ();

The order in which certain notifications will be sent cannot be predicted. In particular, a CBN_SELCHANGE
notification may occur either before or after a CBN_CLOSEUP notification.

Potential message-map entries are the following:

ON_CBN_CLOSEUP (Windows 3.1 and later.) The list box of a combo box has closed. This notification
message is not sent for a combo box that has the CBS_SIMPLE style.

ON_CBN_DBLCLK The user double-clicks a string in the list box of a combo box. This notification
message is only sent for a combo box with the CBS_SIMPLE style. For a combo box with the

Inheritance Hierarchy

CBS_DROPDOWN or CBS_DROPDOWNLIST style, a double-click cannot occur because a single click
hides the list box.

ON_CBN_DROPDOWN The list box of a combo box is about to drop down (be made visible). This
notification message can occur only for a combo box with the CBS_DROPDOWN or
CBS_DROPDOWNLIST style.

ON_CBN_EDITCHANGE The user has taken an action that may have altered the text in the edit-control
portion of a combo box. Unlike the CBN_EDITUPDATE message, this message is sent after Windows
updates the screen. It is not sent if the combo box has the CBS_DROPDOWNLIST style.

ON_CBN_EDITUPDATE The edit-control portion of a combo box is about to display altered text. This
notification message is sent after the control has formatted the text but before it displays the text. It is not
sent if the combo box has the CBS_DROPDOWNLIST style.

ON_CBN_ERRSPACE The combo box cannot allocate enough memory to meet a specific request.

ON_CBN_SELENDCANCEL (Windows 3.1 and later.) Indicates the user's selection should be canceled.
The user clicks an item and then clicks another window or control to hide the list box of a combo box.
This notification message is sent before the CBN_CLOSEUP notification message to indicate that the
user's selection should be ignored. The CBN_SELENDCANCEL or CBN_SELENDOK notification
message is sent even if the CBN_CLOSEUP notification message is not sent (as in the case of a combo
box with the CBS_SIMPLE style).

ON_CBN_SELENDOK The user selects an item and then either presses the ENTER key or clicks the
DOWN ARROW key to hide the list box of a combo box. This notification message is sent before the
CBN_CLOSEUP message to indicate that the user's selection should be considered valid. The
CBN_SELENDCANCEL or CBN_SELENDOK notification message is sent even if the CBN_CLOSEUP
notification message is not sent (as in the case of a combo box with the CBS_SIMPLE style).

ON_CBN_KILLFOCUS The combo box is losing the input focus.

ON_CBN_SELCHANGE The selection in the list box of a combo box is about to be changed as a result of
the user either clicking in the list box or changing the selection by using the arrow keys. When
processing this message, the text in the edit control of the combo box can only be retrieved via
GetLBText or another similar function. GetWindowText cannot be used.

ON_CBN_SETFOCUS The combo box receives the input focus.

If you create a CComboBox object within a dialog box (through a dialog resource), the CComboBox object is
automatically destroyed when the user closes the dialog box.

If you embed a CComboBox object within another window object, you do not need to destroy it. If you create the
CComboBox object on the stack, it is destroyed automatically. If you create the CComboBox object on the heap by

using the new function, you must call delete on the object to destroy it when the Windows combo box is
destroyed.

Note If you want to handle WM_KEYDOWN and WM_CHAR messages, you have to subclass the combo box's
edit and list box controls, derive classes from CEdit and CListBox , and add handlers for those messages to the
derived classes. For more information, see CWnd::SubclassWindow.

CObject

CCmdTarget

CWnd

Requirements

CComboBox::AddString

int AddString(LPCTSTR lpszString);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

// Add 20 items to the combo box.
CString str;
for (int i = 0; i < 20; i++)
{
 str.Format(_T("item string %d"), i);
 m_pComboBox->AddString(str);
}

CComboBox::CComboBox

CComboBox();

ExampleExample

CComboBox

Header: afxwin.h

Adds a string to the list box of a combo box.

lpszString
Points to the null-terminated string that is to be added.

If the return value is greater than or equal to 0, it is the zero-based index to the string in the list box. The return
value is CB_ERR if an error occurs; the return value is CB_ERRSPACE if insufficient space is available to store
the new string.

If the list box was not created with the CBS_SORT style, the string is added to the end of the list. Otherwise, the
string is inserted into the list, and the list is sorted.

This function is not supported by the Windows ComboBoxEx control. For more information on this control, see
ComboBoxEx Controls in the Windows SDK.

To insert a string into a specific location within the list, use the InsertString member function.

Constructs a CComboBox object.

https://docs.microsoft.com/windows/desktop/Controls/comboboxex-controls

// Declare a local CComboBox object.
CComboBox myComboBox;

// Declare a dynamic CComboBox object.
CComboBox* pmyComboBox = new CComboBox;

CComboBox::Clear

void Clear();

RemarksRemarks

ExampleExample

// Delete all of the text from the combo box's edit control.
m_MyComboBox.SetEditSel(0, -1);
m_MyComboBox.Clear();

CComboBox::CompareItem

virtual int CompareItem(LPCOMPAREITEMSTRUCT lpCompareItemStruct);

ParametersParameters

Return ValueReturn Value

VALUE MEANING

- 1 Item 1 sorts before item 2.

0 Item 1 and item 2 sort the same.

1 Item 1 sorts after item 2.

RemarksRemarks

ExampleExample

Deletes (clears) the current selection, if any, in the edit control of the combo box.

To delete the current selection and place the deleted contents onto the Clipboard, use the Cut member function.

Called by the framework to determine the relative position of a new item in the list-box portion of a sorted
owner-draw combo box.

lpCompareItemStruct
A long pointer to a COMPAREITEMSTRUCT structure.

Indicates the relative position of the two items described in the COMPAREITEMSTRUCT structure. It can be any of the
following values:

See CWnd::OnCompareItem for a description of COMPAREITEMSTRUCT .

By default, this member function does nothing. If you create an owner-draw combo box with the LBS_SORT
style, you must override this member function to assist the framework in sorting new items added to the list
box.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcompareitemstruct

// CMyComboBox is my owner-drawn combo box derived from CComboBox. This
// example compares two items using strcmp to sort items in reverse
// alphabetical order. The combo box control was created with the
// following code:
// pmyComboBox->Create(
// WS_CHILD|WS_VISIBLE|WS_BORDER|WS_HSCROLL|WS_VSCROLL|
// CBS_SORT|CBS_OWNERDRAWVARIABLE,
// myRect, pParentWnd, 1);
//
int CMyComboBox::CompareItem(LPCOMPAREITEMSTRUCT lpCompareItemStruct)
{
 int iComp = 0;
 ASSERT(lpCompareItemStruct->CtlType == ODT_COMBOBOX);
 LPCTSTR lpszText1 = (LPCTSTR) lpCompareItemStruct->itemData1;
 ASSERT(lpszText1 != NULL);
 LPCTSTR lpszText2 = (LPCTSTR) lpCompareItemStruct->itemData2;
 ASSERT(lpszText2 != NULL);

 if (NULL != lpszText1 && NULL != lpszText2)
 {
 iComp = _tcscmp(lpszText2, lpszText1);
 }

 return iComp;
}

CComboBox::Copy

void Copy();

ExampleExample

// Copy all of the text from the combo box's edit control
// to the clipboard.
m_MyComboBox.SetEditSel(0, -1);
m_MyComboBox.Copy();

CComboBox::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Copies the current selection, if any, in the edit control of the combo box onto the Clipboard in CF_TEXT format.

Creates the combo box and attaches it to the CComboBox object.

dwStyle
Specifies the style of the combo box. Apply any combination of combo-box styles to the box.

rect
Points to the position and size of the combo box. Can be a RECT structure or a CRect object.

pParentWnd

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

Return ValueReturn Value

RemarksRemarks

ExampleExample

m_pComboBox->Create(
 WS_CHILD|WS_VISIBLE|WS_VSCROLL|CBS_DROPDOWNLIST,
 CRect(10,10,200,100), pParentWnd, 1);

CComboBox::Cut

void Cut();

RemarksRemarks

ExampleExample

Specifies the combo box's parent window (usually a CDialog). It must not be NULL.

nID
Specifies the combo box's control ID.

Nonzero if successful; otherwise 0.

You construct a CComboBox object in two steps. First, call the constructor and then call Create , which creates the
Windows combo box and attaches it to the CComboBox object.

When Create executes, Windows sends the WM_NCCREATE, WM_CREATE, WM_NCCALCSIZE, and
WM_GETMINMAXINFO messages to the combo box.

These messages are handled by default by the OnNcCreate, OnCreate, OnNcCalcSize, and OnGetMinMaxInfo
member functions in the CWnd base class. To extend the default message handling, derive a class from
CComboBox , add a message map to the new class, and override the preceding message-handler member

functions. Override OnCreate , for example, to perform needed initialization for a new class.

Apply the following window styles to a combo-box control. :

WS_CHILD Always

WS_VISIBLE Usually

WS_DISABLED Rarely

WS_VSCROLL To add vertical scrolling for the list box in the combo box

WS_HSCROLL To add horizontal scrolling for the list box in the combo box

WS_GROUP To group controls

WS_TABSTOP To include the combo box in the tabbing order

Deletes (cuts) the current selection, if any, in the combo-box edit control and copies the deleted text onto the
Clipboard in CF_TEXT format.

To delete the current selection without placing the deleted text onto the Clipboard, call the Clear member
function.

// Delete all of the text from the combo box's edit control and copy it
// to the clipboard.
m_MyComboBox.SetEditSel(0, -1);
m_MyComboBox.Cut();

CComboBox::DeleteItem

virtual void DeleteItem(LPDELETEITEMSTRUCT lpDeleteItemStruct);

ParametersParameters

RemarksRemarks

ExampleExample

// CMyComboBox is my owner-drawn combo box derived from CComboBox. This
// example simply dumps the item's text. The combo box control was
// created with the following code:
// pmyComboBox->Create(
// WS_CHILD|WS_VISIBLE|WS_BORDER|WS_HSCROLL|WS_VSCROLL|
// CBS_SORT|CBS_OWNERDRAWVARIABLE,
// myRect, pParentWnd, 1);
//
void CMyComboBox::DeleteItem(LPDELETEITEMSTRUCT lpDeleteItemStruct)
{
 ASSERT(lpDeleteItemStruct->CtlType == ODT_COMBOBOX);
 LPTSTR lpszText = (LPTSTR) lpDeleteItemStruct->itemData;
 ASSERT(lpszText != NULL);

 AFXDUMP(lpszText);
}

CComboBox::DeleteString

int DeleteString(UINT nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Called by the framework when the user deletes an item from an owner-draw CComboBox object or destroys the
combo box.

lpDeleteItemStruct
A long pointer to a Windows DELETEITEMSTRUCT structure that contains information about the deleted item.
See CWnd::OnDeleteItem for a description of this structure.

The default implementation of this function does nothing. Override this function to redraw the combo box as
needed.

Deletes the item in position nIndex from the combo box.

nIndex
Specifies the index to the string that is to be deleted.

If the return value is greater than or equal to 0, then it is a count of the strings remaining in the list. The return
value is CB_ERR if nIndex specifies an index greater than the number of items in the list.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdeleteitemstruct

ExampleExample

// Delete every item from the combo box.
for (int i = m_pComboBox->GetCount() - 1; i >= 0; i--)
{
 m_pComboBox->DeleteString(i);
}

CComboBox::Dir

int Dir(
 UINT attr,
 LPCTSTR lpszWildCard);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

All items following nIndex now move down one position. For example, if a combo box contains two items,
deleting the first item will cause the remaining item to now be in the first position. nIndex=0 for the item in the
first position.

Adds a list of filenames or drives to the list box of a combo box.

attr
Can be any combination of the enum values described in CFile::GetStatus or any combination of the following
values:

DDL_READWRITE File can be read from or written to.

DDL_READONLY File can be read from but not written to.

DDL_HIDDEN File is hidden and does not appear in a directory listing.

DDL_SYSTEM File is a system file.

DDL_DIRECTORY The name specified by lpszWildCard specifies a directory.

DDL_ARCHIVE File has been archived.

DDL_DRIVES Include all drives that match the name specified by lpszWildCard.

DDL_EXCLUSIVE Exclusive flag. If the exclusive flag is set, only files of the specified type are listed.
Otherwise, files of the specified type are listed in addition to "normal" files.

lpszWildCard
Points to a file-specification string. The string can contain wildcards (for example, *.*).

If the return value is greater than or equal to 0, it is the zero-based index of the last filename added to the list.
The return value is CB_ERR if an error occurs; the return value is CB_ERRSPACE if insufficient space is available
to store the new strings.

This function is not supported by the Windows ComboBoxEx control. For more information on this control, see
ComboBoxEx Controls in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/comboboxex-controls

// Add all the files and directories in the windows directory.
TCHAR lpszWinPath[MAX_PATH], lpszOldPath[MAX_PATH];
VERIFY(0 < ::GetWindowsDirectory(lpszWinPath, MAX_PATH));

// Make the windows directory the current directory.
::GetCurrentDirectory(MAX_PATH, lpszOldPath);
::SetCurrentDirectory(lpszWinPath);

m_pComboBox->ResetContent();
m_pComboBox->Dir(DDL_READWRITE|DDL_DIRECTORY, _T("*.*"));

// Reset the current directory to its previous path.
::SetCurrentDirectory(lpszOldPath);

CComboBox::DrawItem

virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

RemarksRemarks

ExampleExample

Called by the framework when a visual aspect of an owner-draw combo box changes.

lpDrawItemStruct
A pointer to a DRAWITEMSTRUCT structure that contains information about the type of drawing required.

The itemAction member of the DRAWITEMSTRUCT structure defines the drawing action that is to be performed.
See CWnd::OnDrawItem for a description of this structure.

By default, this member function does nothing. Override this member function to implement drawing for an
owner-draw CComboBox object. Before this member function terminates, the application should restore all
graphics device interface (GDI) objects selected for the display context supplied in lpDrawItemStruct.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct

// CMyComboBox is my owner-drawn combo box derived from CComboBox. This
// example draws an item's text centered vertically and horizontally. The
// combo box control was created with the following code:
// pmyComboBox->Create(
// WS_CHILD|WS_VISIBLE|WS_BORDER|WS_HSCROLL|WS_VSCROLL|
// CBS_SORT|CBS_OWNERDRAWVARIABLE,
// myRect, pParentWnd, 1);
//
void CMyComboBox::DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct)
{
 ASSERT(lpDrawItemStruct->CtlType == ODT_COMBOBOX);
 LPCTSTR lpszText = (LPCTSTR) lpDrawItemStruct->itemData;
 ASSERT(lpszText != NULL);
 CDC dc;

 dc.Attach(lpDrawItemStruct->hDC);

 // Save these value to restore them when done drawing.
 COLORREF crOldTextColor = dc.GetTextColor();
 COLORREF crOldBkColor = dc.GetBkColor();

 // If this item is selected, set the background color
 // and the text color to appropriate values. Erase
 // the rect by filling it with the background color.
 if ((lpDrawItemStruct->itemAction & ODA_SELECT) &&
 (lpDrawItemStruct->itemState & ODS_SELECTED))
 {
 dc.SetTextColor(::GetSysColor(COLOR_HIGHLIGHTTEXT));
 dc.SetBkColor(::GetSysColor(COLOR_HIGHLIGHT));
 dc.FillSolidRect(&lpDrawItemStruct->rcItem, ::GetSysColor(COLOR_HIGHLIGHT));
 }
 else
 {
 dc.FillSolidRect(&lpDrawItemStruct->rcItem, crOldBkColor);
 }

 // Draw the text.
 dc.DrawText(
 lpszText,
 (int)_tcslen(lpszText),
 &lpDrawItemStruct->rcItem,
 DT_CENTER|DT_SINGLELINE|DT_VCENTER);

 // Reset the background color and the text color back to their
 // original values.
 dc.SetTextColor(crOldTextColor);
 dc.SetBkColor(crOldBkColor);

 dc.Detach();
}

CComboBox::FindString

int FindString(
 int nStartAfter,
 LPCTSTR lpszString) const;

ParametersParameters

Finds, but doesn't select, the first string that contains the specified prefix in the list box of a combo box.

nStartAfter
Contains the zero-based index of the item before the first item to be searched. When the search reaches the

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The string to match.
LPCTSTR lpszmyString = _T("item");

// Delete all items that begin with the specified string.
int nItem = 0;
while ((nItem = m_pComboBox->FindString(nItem, lpszmyString)) != CB_ERR)
{
 m_pComboBox->DeleteString(nItem);
}

CComboBox::FindStringExact

int FindStringExact(
 int nIndexStart,
 LPCTSTR lpszFind) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

bottom of the list box, it continues from the top of the list box back to the item specified by nStartAfter. If -1, the
entire list box is searched from the beginning.

lpszString
Points to the null-terminated string that contains the prefix to search for. The search is case independent, so this
string can contain any combination of uppercase and lowercase letters.

If the return value is greater than or equal to 0, it is the zero-based index of the matching item. It is CB_ERR if
the search was unsuccessful.

This function is not supported by the Windows ComboBoxEx control. For more information on this control, see
ComboBoxEx Controls in the Windows SDK.

Call the FindStringExact member function to find the first list-box string (in a combo box) that matches the
string specified in lpszFind.

nIndexStart
Specifies the zero-based index of the item before the first item to be searched. When the search reaches the
bottom of the list box, it continues from the top of the list box back to the item specified by nIndexStart. If
nIndexStart is -1, the entire list box is searched from the beginning.

lpszFind
Points to the null-terminated string to search for. This string can contain a complete filename, including the
extension. The search is not case sensitive, so this string can contain any combination of uppercase and
lowercase letters.

The zero-based index of the matching item, or CB_ERR if the search was unsuccessful.

If the combo box was created with an owner-draw style but without the CBS_HASSTRINGS style,
FindStringExact attempts to match the doubleword value against the value of lpszFind.

https://docs.microsoft.com/windows/desktop/Controls/comboboxex-controls

// The string to match.
LPCTSTR lpszmyExactString = _T("item 5");

// Delete all items that exactly match the specified string.
int nDex = 0;
while ((nDex = m_pComboBox->FindStringExact(nDex, lpszmyExactString))
 != CB_ERR)
{
 m_pComboBox->DeleteString(nDex);
}

CComboBox::GetComboBoxInfo

BOOL GetComboBoxInfo(PCOMBOBOXINFO pcbi) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComboBox::GetCount

int GetCount() const;

Return ValueReturn Value

ExampleExample

// Add 10 items to the combo box.
CString strItem;
for (int i = 0; i < 10; i++)
{
 strItem.Format(_T("item %d"), i);
 m_pComboBox->AddString(strItem);
}

// Verify the 10 items were added to the combo box.
ASSERT(m_pComboBox->GetCount() == 10);

CComboBox::GetCueBanner

Retrieves information for the CComboBox object.

pcbi
A pointer to the COMBOBOXINFO structure.

Returns TRUE on success, FALSE on failure.

This member function emulates the functionality of the CB_GETCOMBOBOXINFO message, as described in
the Windows SDK.

Call this member function to retrieve the number of items in the list-box portion of a combo box.

The number of items. The returned count is one greater than the index value of the last item (the index is zero-
based). It is CB_ERR if an error occurs.

Gets the cue text that is displayed for a combo box control.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcomboboxinfo
https://docs.microsoft.com/windows/desktop/Controls/cb-getcomboboxinfo

CString GetCueBanner() const;

BOOL GetCueBanner(
 LPTSTR lpszText,
 int cchText) const;

ParametersParameters

PARAMETER DESCRIPTION

lpszText [out] Pointer to a buffer that receives the cue banner text.

cchText [in] Size of the buffer that the lpszText parameter points to.

Return ValueReturn Value

RemarksRemarks

CComboBox::GetCurSel

int GetCurSel() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Select the next item of the currently selected item
// in the combo box.
int nIndex = m_pComboBox->GetCurSel();
int nCount = m_pComboBox->GetCount();
if ((nIndex != CB_ERR) && (nCount > 1))
{
 if (++nIndex < nCount)
 m_pComboBox->SetCurSel(nIndex);
 else
 m_pComboBox->SetCurSel(0);
}

In the first overload, a CString object that contains the cue banner text if it exists; otherwise, a CString object
that has zero length.

-or-

In the second overload, TRUE if this method is successful; otherwise, FALSE.

Cue text is a prompt that is displayed in the input area of the combo box control. The cue text is displayed until
the user provides input.

This method sends the CB_GETCUEBANNER message, which is described in the Windows SDK.

Call this member function to determine which item in the combo box is selected.

The zero-based index of the currently selected item in the list box of a combo box, or CB_ERR if no item is
selected.

GetCurSel returns an index into the list.

https://docs.microsoft.com/windows/desktop/Controls/cb-getcuebanner

CComboBox::GetDroppedControlRect

void GetDroppedControlRect(LPRECT lprect) const;

ParametersParameters

ExampleExample

// This example move a combo box so that the upper left
// corner of the combo box is at a specific point.

// The point to move the combo box to.
CPoint myPoint(30, 10);

CRect r;

m_pComboBox->GetDroppedControlRect(&r);

m_pComboBox->GetParent()->ScreenToClient(&r);
r.OffsetRect(myPoint - r.TopLeft());
m_pComboBox->MoveWindow(&r);

CComboBox::GetDroppedState

BOOL GetDroppedState() const;

Return ValueReturn Value

ExampleExample

// Show the dropdown list box if it is not already dropped.
if (!m_pComboBox->GetDroppedState())
 m_pComboBox->ShowDropDown(TRUE);

CComboBox::GetDroppedWidth

int GetDroppedWidth() const;

Return ValueReturn Value

RemarksRemarks

Call the GetDroppedControlRect member function to retrieve the screen coordinates of the visible (dropped-
down) list box of a drop-down combo box.

lprect
Points to the RECT structure that is to receive the coordinates.

Call the GetDroppedState member function to determine whether the list box of a drop-down combo box is
visible (dropped down).

Nonzero if the list box is visible; otherwise 0.

Call this function to retrieve the minimum allowable width, in pixels, of the list box of a combo box.

If successful, the minimum allowable width, in pixels; otherwise, CB_ERR.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

ExampleExample

CComboBox::GetEditSel

DWORD GetEditSel() const;

Return ValueReturn Value

ExampleExample

DWORD dwSel;

// Set the selection to be all characters after the current selection.
if ((dwSel = m_MyComboBox.GetEditSel()) != CB_ERR)
{
 m_MyComboBox.SetEditSel(HIWORD(dwSel), -1);
}

CComboBox::GetExtendedUI

BOOL GetExtendedUI() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

This function only applies to combo boxes with the CBS_DROPDOWN or CBS_DROPDOWNLIST style.

By default, the minimum allowable width of the drop-down list box is 0. The minimum allowable width can be
set by calling SetDroppedWidth. When the list-box portion of the combo box is displayed, its width is the larger
of the minimum allowable width or the combo box width.

See the example for SetDroppedWidth.

Gets the starting and ending character positions of the current selection in the edit control of a combo box.

A 32-bit value that contains the starting position in the low-order word and the position of the first nonselected
character after the end of the selection in the high-order word. If this function is used on a combo box without
an edit control, CB_ERR is returned.

Call the GetExtendedUI member function to determine whether a combo box has the default user interface or
the extended user interface.

Nonzero if the combo box has the extended user interface; otherwise 0.

The extended user interface can be identified in the following ways:

Clicking the static control displays the list box only for combo boxes with the CBS_DROPDOWNLIST
style.

Pressing the DOWN ARROW key displays the list box (F4 is disabled).

Scrolling in the static control is disabled when the item list is not visible (arrow keys are disabled).

// Use the extended UI if it is not already set.
if (!m_pComboBox->GetExtendedUI())
 m_pComboBox->SetExtendedUI(TRUE);

CComboBox::GetHorizontalExtent

UINT GetHorizontalExtent() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Find the longest string in the combo box.
CString strText;
CSize sz;
UINT dxText = 0;
CDC* pDCCombo = m_pComboBox->GetDC();
for (int i = 0; i < m_pComboBox->GetCount(); i++)
{
 m_pComboBox->GetLBText(i, strText);
 sz = pDCCombo->GetTextExtent(strText);

 if (sz.cx > (LONG)dxText)
 dxText = sz.cx;
}
m_pComboBox->ReleaseDC(pDCCombo);

// Set the horizontal extent only if the current extent is not large enough.
if (m_pComboBox->GetHorizontalExtent() < dxText)
{
 m_pComboBox->SetHorizontalExtent(dxText);
 ASSERT(m_pComboBox->GetHorizontalExtent() == dxText);
}

CComboBox::GetItemData

DWORD_PTR GetItemData(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Retrieves from the combo box the width in pixels by which the list-box portion of the combo box can be scrolled
horizontally.

The scrollable width of the list-box portion of the combo box, in pixels.

This is applicable only if the list-box portion of the combo box has a horizontal scroll bar.

Retrieves the application-supplied 32-bit value associated with the specified combo-box item.

nIndex
Contains the zero-based index of an item in the combo box's list box.

The 32-bit value associated with the item, or CB_ERR if an error occurs.

ExampleExample

// If any item's data is equal to zero then reset it to -1.
for (int i = 0; i < m_pComboBox->GetCount(); i++)
{
 if (m_pComboBox->GetItemData(i) == 0)
 {
 m_pComboBox->SetItemData(i, (DWORD) -1);
 }
}

CComboBox::GetItemDataPtr

void* GetItemDataPtr(int nIndex) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

LPVOID lpmyPtr = m_pComboBox->GetItemDataPtr(5);

// Check all the items in the combo box; if an item's
// data pointer is equal to my pointer then reset it to NULL.
for (int i = 0; i < m_pComboBox->GetCount(); i++)
{
 if (m_pComboBox->GetItemDataPtr(i) == lpmyPtr)
 {
 m_pComboBox->SetItemDataPtr(i, NULL);
 }
}

CComboBox::GetItemHeight

int GetItemHeight(int nIndex) const;

ParametersParameters

The 32-bit value can be set with the dwItemData parameter of a SetItemData member function call. Use the
GetItemDataPtr member function if the 32-bit value to be retrieved is a pointer (void *).

Retrieves the application-supplied 32-bit value associated with the specified combo-box item as a pointer (void
*).

nIndex
Contains the zero-based index of an item in the combo box's list box.

Retrieves a pointer, or -1 if an error occurs.

Call the GetItemHeight member function to retrieve the height of list items in a combo box.

nIndex
Specifies the component of the combo box whose height is to be retrieved. If the nIndex parameter is -1, the
height of the edit-control (or static-text) portion of the combo box is retrieved. If the combo box has the
CBS_OWNERDRAWVARIABLE style, nIndex specifies the zero-based index of the list item whose height is to
be retrieved. Otherwise, nIndex should be set to 0.

Return ValueReturn Value

ExampleExample

// Set the height of every item so the item
// is completely visible.
CString strLBText;
CSize size;
CDC* pDC = m_pComboBox->GetDC();
for (int i = 0; i < m_pComboBox->GetCount(); i++)
{
 m_pComboBox->GetLBText(i, strLBText);
 size = pDC->GetTextExtent(strLBText);

 // Only want to set the item height if the current height
 // is not big enough.
 if (m_pComboBox->GetItemHeight(i) < size.cy)
 m_pComboBox->SetItemHeight(i, size.cy);
}
m_pComboBox->ReleaseDC(pDC);

CComboBox::GetLBText

int GetLBText(
 int nIndex,
 LPTSTR lpszText) const;

void GetLBText(
 int nIndex,
 CString& rString) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

The height, in pixels, of the specified item in a combo box. The return value is CB_ERR if an error occurs.

Gets a string from the list box of a combo box.

nIndex
Contains the zero-based index of the list-box string to be copied.

lpszText
Points to a buffer that is to receive the string. The buffer must have sufficient space for the string and a
terminating null character.

rString
A reference to a CString .

The length (in bytes) of the string, excluding the terminating null character. If nIndex does not specify a valid
index, the return value is CB_ERR.

The second form of this member function fills a CString object with the item's text.

// Dump all of the items in the combo box.
CString str1, str2;
int n;
for (int i = 0; i < m_pComboBox->GetCount(); i++)
{
 n = m_pComboBox->GetLBTextLen(i);
 m_pComboBox->GetLBText(i, str1.GetBuffer(n));
 str1.ReleaseBuffer();

 str2.Format(_T("item %d: %s\r\n"), i, str1.GetBuffer(0));
 AFXDUMP(str2);
}

CComboBox::GetLBTextLen

int GetLBTextLen(int nIndex) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CComboBox::GetLocale

LCID GetLocale() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CComboBox::GetMinVisible

int GetMinVisible() const;

Return ValueReturn Value

Gets the length of a string in the list box of a combo box.

nIndex
Contains the zero-based index of the list-box string.

The length of the string in bytes, excluding the terminating null character. If nIndex does not specify a valid
index, the return value is CB_ERR.

See the example for CComboBox::GetLBText.

Retrieves the locale used by the combo box.

The locale identifier (LCID) value for the strings in the combo box.

The locale is used, for example, to determine the sort order of the strings in a sorted combo box.

See the example for CComboBox::SetLocale.

Gets the minimum number of visible items in the drop-down list of the current combo box control.

The minimum number of visible items in the current drop-down list.

RemarksRemarks

CComboBox::GetTopIndex

int GetTopIndex() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Want an item in the bottom half to be the first visible item.
int nTop = m_pComboBox->GetCount() / 2;
if (m_pComboBox->GetTopIndex() < nTop)
{
 m_pComboBox->SetTopIndex(nTop);
 ASSERT(m_pComboBox->GetTopIndex() == nTop);
}

CComboBox::InitStorage

int InitStorage(
 int nItems,
 UINT nBytes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This method sends the CB_GETMINVISIBLE message, which is described in the Windows SDK.

Retrieves the zero-based index of the first visible item in the list-box portion of the combo box.

The zero-based index of the first visible item in the list-box portion of the combo box if successful, CB_ERR
otherwise.

Initially, item 0 is at the top of the list box, but if the list box is scrolled, another item may be at the top.

Allocates memory for storing list box items in the list-box portion of the combo box.

nItems
Specifies the number of items to add.

nBytes
Specifies the amount of memory, in bytes, to allocate for item strings.

If successful, the maximum number of items that the list-box portion of the combo box can store before a
memory reallocation is needed, otherwise CB_ERRSPACE, meaning not enough memory is available.

Call this function before adding a large number of items to the list-box portion of the CComboBox .

Windows 95/98 only: The wParam parameter is limited to 16-bit values. This means list boxes cannot contain
more than 32,767 items. Although the number of items is restricted, the total size of the items in a list box is
limited only by available memory.

This function helps speed up the initialization of list boxes that have a large number of items (more than 100). It
preallocates the specified amount of memory so that subsequent AddString, InsertString, and Dir functions take

https://docs.microsoft.com/windows/desktop/Controls/cb-setminvisible

ExampleExample

// Initialize the storage of the combo box to be 256 strings with
// about 10 characters per string, performance improvement.
int nAlloc = pmyComboBox->InitStorage(256, 10);
ASSERT(nAlloc != CB_ERRSPACE);

// Add 256 items to the combo box.
CString strAdd;
for (int i = 0; i < 256; i++)
{
 strAdd.Format(_T("item string %d"), i);
 m_pComboBox->AddString(strAdd);
}

CComboBox::InsertString

int InsertString(
 int nIndex,
 LPCTSTR lpszString);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

the shortest possible time. You can use estimates for the parameters. If you overestimate, some extra memory
is allocated; if you underestimate, the normal allocation is used for items that exceed the preallocated amount.

Inserts a string into the list box of a combo box.

nIndex
Contains the zero-based index to the position in the list box that will receive the string. If this parameter is -1,
the string is added to the end of the list.

lpszString
Points to the null-terminated string that is to be inserted.

The zero-based index of the position at which the string was inserted. The return value is CB_ERR if an error
occurs. The return value is CB_ERRSPACE if insufficient space is available to store the new string.

Unlike the AddString member function, the InsertString member function does not cause a list with the
CBS_SORT style to be sorted.

This function is not supported by the Windows ComboBoxEx control. For more information on this control, see
ComboBoxEx Controls in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/comboboxex-controls

// Insert items in between existing items.
CString strIns;
int nItems = m_pComboBox->GetCount();
for (int i = 0; i < nItems; i++)
{
 strIns.Format(_T("item string %c"), (char)('A'+i));
 m_pComboBox->InsertString(2*i, strIns);
}

CComboBox::LimitText

BOOL LimitText(int nMaxChars);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Limit the number of characters in the combo box's edit control to
// be the maximum number visible.

// Get the text metrics for the combo box; needed for the
// average character width.
TEXTMETRIC tm;
CDC* pDCCB = m_pComboBox->GetDC();
pDCCB->GetTextMetrics(&tm);
m_pComboBox->ReleaseDC(pDCCB);

CRect rect;
m_pComboBox->GetClientRect(&rect);

m_pComboBox->LimitText(rect.Width() / tm.tmAveCharWidth);

CComboBox::MeasureItem

virtual void MeasureItem(LPMEASUREITEMSTRUCT lpMeasureItemStruct);

Limits the length in bytes of the text that the user can enter into the edit control of a combo box.

nMaxChars
Specifies the length (in bytes) of the text that the user can enter. If this parameter is 0, the text length is set to
65,535 bytes.

Nonzero if successful. If called for a combo box with the style CBS_DROPDOWNLIST or for a combo box
without an edit control, the return value is CB_ERR.

If the combo box does not have the style CBS_AUTOHSCROLL, setting the text limit to be larger than the size
of the edit control will have no effect.

LimitText only limits the text the user can enter. It has no effect on any text already in the edit control when the
message is sent, nor does it affect the length of the text copied to the edit control when a string in the list box is
selected.

Called by the framework when a combo box with an owner-draw style is created.

ParametersParameters

RemarksRemarks

ExampleExample

// CMyComboBox is my owner-drawn combo box derived from CComboBox. This
// example measures an item and sets the height of the item to twice the
// vertical extent of its text. The combo box control was created with
// the following code:
// pmyComboBox->Create(
// WS_CHILD|WS_VISIBLE|WS_BORDER|WS_HSCROLL|WS_VSCROLL|
// CBS_SORT|CBS_OWNERDRAWVARIABLE,
// myRect, pParentWnd, 1);
//
void CMyComboBox::MeasureItem(LPMEASUREITEMSTRUCT lpMeasureItemStruct)
{
 ASSERT(lpMeasureItemStruct->CtlType == ODT_COMBOBOX);

 if (lpMeasureItemStruct->itemID != (UINT) -1)
 {
 LPCTSTR lpszText = (LPCTSTR) lpMeasureItemStruct->itemData;
 ASSERT(lpszText != NULL);
 CSize sz;
 CDC* pDC = GetDC();

 sz = pDC->GetTextExtent(lpszText);

 ReleaseDC(pDC);

 lpMeasureItemStruct->itemHeight = 2*sz.cy;
 }
}

CComboBox::Paste

void Paste();

RemarksRemarks

ExampleExample

lpMeasureItemStruct
A long pointer to a MEASUREITEMSTRUCT structure.

By default, this member function does nothing. Override this member function and fill in the MEASUREITEMSTRUCT

structure to inform Windows of the dimensions of the list box in the combo box. If the combo box is created
with the CBS_OWNERDRAWVARIABLE style, the framework calls this member function for each item in the
list box. Otherwise, this member is called only once.

Using the CBS_OWNERDRAWFIXED style in an owner-draw combo box created with the SubclassDlgItem
member function of CWnd involves further programming considerations. See the discussion in Technical Note
14.

See CWnd::OnMeasureItem for a description of the MEASUREITEMSTRUCT structure.

Inserts the data from the Clipboard into the edit control of the combo box at the current cursor position.

Data is inserted only if the Clipboard contains data in CF_TEXT format.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmeasureitemstruct

// Replace all of the text in the combo box's edit control with the text
// in the clipboard.
m_MyComboBox.SetEditSel(0, -1);
m_MyComboBox.Paste();

CComboBox::ResetContent

void ResetContent();

ExampleExample

// Delete all the items from the combo box.
m_pComboBox->ResetContent();
ASSERT(m_pComboBox->GetCount() == 0);

CComboBox::SelectString

int SelectString(
 int nStartAfter,
 LPCTSTR lpszString);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Removes all items from the list box and edit control of a combo box.

Searches for a string in the list box of a combo box, and if the string is found, selects the string in the list box
and copies it to the edit control.

nStartAfter
Contains the zero-based index of the item before the first item to be searched. When the search reaches the
bottom of the list box, it continues from the top of the list box back to the item specified by nStartAfter. If -1, the
entire list box is searched from the beginning.

lpszString
Points to the null-terminated string that contains the prefix to search for. The search is case independent, so this
string can contain any combination of uppercase and lowercase letters.

The zero-based index of the selected item if the string was found. If the search was unsuccessful, the return
value is CB_ERR and the current selection is not changed.

A string is selected only if its initial characters (from the starting point) match the characters in the prefix string.

Note that the SelectString and FindString member functions both find a string, but the SelectString

member function also selects the string.

// The string to match.
LPCTSTR lpszSelect = _T("item");

// Select the item that begins with the specified string.
int nSel = m_pComboBox->SelectString(0, lpszSelect);
ASSERT(nSel != CB_ERR);

CComboBox::SetCueBanner

BOOL SetCueBanner(LPCTSTR lpszText);

ParametersParameters

PARAMETER DESCRIPTION

lpszText [in] Pointer to a null-terminated buffer that contains the cue
text.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Variable to access the combo box control
CComboBox m_combobox;

ExampleExample

Sets the cue text that is displayed for a combo box control.

TRUE if the method is successful; otherwise, FALSE.

Cue text is a prompt that is displayed in the input area of the combo box control. The cue text is displayed until
the user provides input.

This method sends the CB_SETCUEBANNER message, which is described in the Windows SDK.

The following code example defines the variable, m_combobox, that is used to programmatically access the
combo box control. This variable is used in the next example.

The following code example sets the cue banner for the combo box control.

https://docs.microsoft.com/windows/desktop/Controls/cb-setcuebanner

// Add extra initialization here.

// Add 20 items to the combo box. The Resource Editor
// has already been used to set the style of the combo
// box to CBS_SORT.
CString str;
for (int i = 1; i <= 20; i++)
{
 str.Format(_T("Item %2d"), i);
 m_combobox.AddString(str);
}
// Set the minimum visible item
m_combobox.SetMinVisibleItems(10);
// Set the cue banner
m_combobox.SetCueBanner(_T("Select an item..."));

// End of extra initialization.

CComboBox::SetCurSel

int SetCurSel(int nSelect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Select the last item in the combo box.
int nLast = pmyComboBox->GetCount() - 1;
if (nLast >= 0)
 m_pComboBox->SetCurSel(nLast);

CComboBox::SetDroppedWidth

int SetDroppedWidth(UINT nWidth);

ParametersParameters

Return ValueReturn Value

Selects a string in the list box of a combo box.

nSelect
Specifies the zero-based index of the string to select. If -1, any current selection in the list box is removed and
the edit control is cleared.

The zero-based index of the item selected if the message is successful. The return value is CB_ERR if nSelect is
greater than the number of items in the list or if nSelect is set to -1, which clears the selection.

If necessary, the list box scrolls the string into view (if the list box is visible). The text in the edit control of the
combo box is changed to reflect the new selection. Any previous selection in the list box is removed.

Call this function to set the minimum allowable width, in pixels, of the list box of a combo box.

nWidth
The minimum allowable width of the list-box portion of the combo box, in pixels.

RemarksRemarks

ExampleExample

// Find the longest string in the combo box.
CString str;
CSize sz;
int dx = 0;
TEXTMETRIC tm;
CDC* pDC = m_pComboBox->GetDC();
CFont* pFont = m_pComboBox->GetFont();

// Select the listbox font, save the old font
CFont* pOldFont = pDC->SelectObject(pFont);
// Get the text metrics for avg char width
pDC->GetTextMetrics(&tm);

for (int i = 0; i < m_pComboBox->GetCount(); i++)
{
 m_pComboBox->GetLBText(i, str);
 sz = pDC->GetTextExtent(str);

 // Add the avg width to prevent clipping
 sz.cx += tm.tmAveCharWidth;

 if (sz.cx > dx)
 dx = sz.cx;
}
// Select the old font back into the DC
pDC->SelectObject(pOldFont);
m_pComboBox->ReleaseDC(pDC);

// Adjust the width for the vertical scroll bar and the left and right border.
dx += ::GetSystemMetrics(SM_CXVSCROLL) + 2*::GetSystemMetrics(SM_CXEDGE);

// Set the width of the list box so that every item is completely visible.
m_pComboBox->SetDroppedWidth(dx);

CComboBox::SetEditSel

BOOL SetEditSel(
 int nStartChar,
 int nEndChar);

ParametersParameters

Return ValueReturn Value

If successful, the new width of the list box, otherwise CB_ERR.

This function only applies to combo boxes with the CBS_DROPDOWN or CBS_DROPDOWNLIST style.

By default, the minimum allowable width of the drop-down list box is 0. When the list-box portion of the combo
box is displayed, its width is the larger of the minimum allowable width or the combo box width.

Selects characters in the edit control of a combo box.

nStartChar
Specifies the starting position. If the starting position is set to -1, then any existing selection is removed.

nEndChar
Specifies the ending position. If the ending position is set to -1, then all text from the starting position to the last
character in the edit control is selected.

RemarksRemarks

NOTENOTE

ExampleExample

CComboBox::SetExtendedUI

int SetExtendedUI(BOOL bExtended = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CComboBox::SetHorizontalExtent

void SetHorizontalExtent(UINT nExtent);

ParametersParameters

Nonzero if the member function is successful; otherwise 0. It is CB_ERR if CComboBox has the
CBS_DROPDOWNLIST style or does not have a list box.

The positions are zero-based. To select the first character of the edit control, you specify a starting position of 0.
The ending position is for the character just after the last character to select. For example, to select the first four
characters of the edit control, you would use a starting position of 0 and an ending position of 4.

This function is not supported by the Windows ComboBoxEx control. For more information on this control, see
ComboBoxEx Controls in the Windows SDK.

See the example for CComboBox::GetEditSel.

Call the SetExtendedUI member function to select either the default user interface or the extended user
interface for a combo box that has the CBS_DROPDOWN or CBS_DROPDOWNLIST style.

bExtended
Specifies whether the combo box should use the extended user interface or the default user interface. A value of
TRUE selects the extended user interface; a value of FALSE selects the standard user interface.

CB_OKAY if the operation is successful, or CB_ERR if an error occurs.

The extended user interface can be identified in the following ways:

Clicking the static control displays the list box only for combo boxes with the CBS_DROPDOWNLIST
style.

Pressing the DOWN ARROW key displays the list box (F4 is disabled).

Scrolling in the static control is disabled when the item list is not visible (the arrow keys are disabled).

See the example for CComboBox::GetExtendedUI.

Sets the width, in pixels, by which the list-box portion of the combo box can be scrolled horizontally.

nExtent
Specifies the number of pixels by which the list-box portion of the combo box can be scrolled horizontally.

https://docs.microsoft.com/windows/desktop/Controls/comboboxex-controls

RemarksRemarks

ExampleExample

// Find the longest string in the combo box.
CString str;
CSize sz;
int dx = 0;
TEXTMETRIC tm;
CDC* pDC = m_pComboBox->GetDC();
CFont* pFont = m_pComboBox->GetFont();

// Select the listbox font, save the old font
CFont* pOldFont = pDC->SelectObject(pFont);
// Get the text metrics for avg char width
pDC->GetTextMetrics(&tm);

for (int i = 0; i < m_pComboBox->GetCount(); i++)
{
 m_pComboBox->GetLBText(i, str);
 sz = pDC->GetTextExtent(str);

 // Add the avg width to prevent clipping
 sz.cx += tm.tmAveCharWidth;

 if (sz.cx > dx)
 dx = sz.cx;
}
// Select the old font back into the DC
pDC->SelectObject(pOldFont);
m_pComboBox->ReleaseDC(pDC);

// Set the horizontal extent so every character of all strings can
// be scrolled to.
m_pComboBox->SetHorizontalExtent(dx);

CComboBox::SetItemData

int SetItemData(
 int nIndex,
 DWORD_PTR dwItemData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

If the width of the list box is smaller than this value, the horizontal scroll bar will horizontally scroll items in the
list box. If the width of the list box is equal to or greater than this value, the horizontal scroll bar is hidden or, if
the combo box has the CBS_DISABLENOSCROLL style, disabled.

Sets the 32-bit value associated with the specified item in a combo box.

nIndex
Contains a zero-based index to the item to set.

dwItemData
Contains the new value to associate with the item.

CB_ERR if an error occurs.

Use the SetItemDataPtr member function if the 32-bit item is to be a pointer.

ExampleExample

// Set the data of each item to be equal to its index.
for (int i = 0; i < m_pComboBox->GetCount(); i++)
{
 m_pComboBox->SetItemData(i, i);
}

CComboBox::SetItemDataPtr

int SetItemDataPtr(
 int nIndex,
 void* pData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set the data pointer of each item to be NULL.
for (int i = 0; i < m_pComboBox->GetCount(); i++)
{
 m_pComboBox->SetItemDataPtr(i, NULL);
}

CComboBox::SetItemHeight

int SetItemHeight(
 int nIndex,
 UINT cyItemHeight);

ParametersParameters

Sets the 32-bit value associated with the specified item in a combo box to be the specified pointer (void *).

nIndex
Contains a zero-based index to the item.

pData
Contains the pointer to associate with the item.

CB_ERR if an error occurs.

This pointer remains valid for the life of the combo box, even though the item's relative position within the
combo box might change as items are added or removed. Hence, the item's index within the box can change,
but the pointer remains reliable.

Call the SetItemHeight member function to set the height of list items in a combo box or the height of the edit-
control (or static-text) portion of a combo box.

nIndex
Specifies whether the height of list items or the height of the edit-control (or static-text) portion of the combo
box is set.

If the combo box has the CBS_OWNERDRAWVARIABLE style, nIndex specifies the zero-based index of the list

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set the height of every item to be the
// vertical size of the item's text extent.
CString str;
CSize sz;
CDC* pDC = m_pComboBox->GetDC();
for (int i = 0; i < m_pComboBox->GetCount(); i++)
{
 m_pComboBox->GetLBText(i, str);
 sz = pDC->GetTextExtent(str);

 m_pComboBox->SetItemHeight(i, sz.cy);
}
m_pComboBox->ReleaseDC(pDC);

CComboBox::SetLocale

LCID SetLocale(LCID nNewLocale);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// My LCID to use.
LCID mylcid = MAKELCID(MAKELANGID(LANG_SPANISH, SUBLANG_SPANISH_MEXICAN),
 SORT_DEFAULT);

// Force the list box to use my locale.
m_pComboBox->SetLocale(mylcid);
ASSERT(m_pComboBox->GetLocale() == mylcid);

item whose height is to be set; otherwise, nIndex must be 0 and the height of all list items will be set.

If nIndex is -1, the height of the edit-control or static-text portion of the combo box is to be set.

cyItemHeight
Specifies the height, in pixels, of the combo-box component identified by nIndex.

CB_ERR if the index or height is invalid; otherwise 0.

The height of the edit-control (or static-text) portion of the combo box is set independently of the height of the
list items. An application must ensure that the height of the edit-control (or static-text) portion is not smaller
than the height of a particular list-box item.

Sets the locale identifier for this combo box.

nNewLocale
The new locale identifier (LCID) value to set for the combo box.

The previous locale identifier (LCID) value for this combo box.

If SetLocale is not called, the default locale is obtained from the system. This system default locale can be
modified by using Control Panel's Regional (or International) application.

CComboBox::SetMinVisibleItems

BOOL SetMinVisibleItems(int iMinVisible);

ParametersParameters

PARAMETER DESCRIPTION

iMinVisible [in] Specifies the minimum number of visible items.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Variable to access the combo box control
CComboBox m_combobox;

ExampleExample

// Add extra initialization here.

// Add 20 items to the combo box. The Resource Editor
// has already been used to set the style of the combo
// box to CBS_SORT.
CString str;
for (int i = 1; i <= 20; i++)
{
 str.Format(_T("Item %2d"), i);
 m_combobox.AddString(str);
}
// Set the minimum visible item
m_combobox.SetMinVisibleItems(10);
// Set the cue banner
m_combobox.SetCueBanner(_T("Select an item..."));

// End of extra initialization.

CComboBox::SetTopIndex

int SetTopIndex(int nIndex);

ParametersParameters

Sets the minimum number of visible items in the drop-down list of the current combo box control.

TRUE if this method is successful; otherwise, FALSE.

This method sends the CB_SETMINVISIBLE message, which is described in the Windows SDK.

The following code example defines the variable, m_combobox, that is used to programmatically access the
combo box control. This variable is used in the next example.

The following code example inserts 20 items into the drop-down list of a combo box control. Then it specifies
that a minimum of 10 items be displayed when a user presses the drop-down arrow.

Ensures that a particular item is visible in the list-box portion of the combo box.

https://docs.microsoft.com/windows/desktop/Controls/cb-setminvisible

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set the first visible item in the combo box to be the middle item
m_pComboBox->SetTopIndex(m_pComboBox->GetCount() / 2);

CComboBox::ShowDropDown

void ShowDropDown(BOOL bShowIt = TRUE);

ParametersParameters

RemarksRemarks

ExampleExample

See also

nIndex
Specifies the zero-based index of the list-box item.

Zero if successful, or CB_ERR if an error occurs.

The system scrolls the list box until either the item specified by nIndex appears at the top of the list box or the
maximum scroll range has been reached.

Shows or hides the list box of a combo box that has the CBS_DROPDOWN or CBS_DROPDOWNLIST style.

bShowIt
Specifies whether the drop-down list box is to be shown or hidden. A value of TRUE shows the list box. A value
of FALSE hides the list box.

By default, a combo box of this style will show the list box.

This member function has no effect on a combo box created with the CBS_SIMPLE style.

See the example for CComboBox::GetDroppedState.

MFC Sample CTRLBARS
CWnd Class
Hierarchy Chart
CWnd Class
CButton Class
CEdit Class
CListBox Class
CScrollBar Class
CStatic Class
CDialog Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CComboBoxEx Class
3/5/2019 • 9 minutes to read • Edit Online

Syntax
class CComboBoxEx : public CComboBox

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CComboBoxEx::CComboBoxEx Constructs a CComboBoxEx object.

Public MethodsPublic Methods

NAME DESCRIPTION

CComboBoxEx::Create Creates the combo box and attaches it to the CComboBoxEx

object.

CComboBoxEx::CreateEx Creates a combo box with the specified Windows extended
styles and attaches it to a ComboBoxEx object.

CComboBoxEx::DeleteItem Removes an item from a ComboBoxEx control.

CComboBoxEx::GetComboBoxCtrl Retrieves a pointer to the child combo box control.

CComboBoxEx::GetEditCtrl Retrieves the handle to the edit control portion of a
ComboBoxEx control.

CComboBoxEx::GetExtendedStyle Retrieves the extended styles that are in use for a
ComboBoxEx control.

CComboBoxEx::GetImageList Retrieves a pointer to the image list assigned to a
ComboBoxEx control.

CComboBoxEx::GetItem Retrieves item information for a given ComboBoxEx item.

CComboBoxEx::HasEditChanged Determines if the user has changed the contents of the
ComboBoxEx edit control by typing.

CComboBoxEx::InsertItem Inserts a new item in a ComboBoxEx control.

CComboBoxEx::SetExtendedStyle Sets extended styles within a ComboBoxEx control.

Extends the combo box control by providing support for image lists.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccomboboxex-class.md

CComboBoxEx::SetImageList Sets an image list for a ComboBoxEx control.

CComboBoxEx::SetItem Sets the attributes for an item in a ComboBoxEx control.

CComboBoxEx::SetWindowTheme Sets the visual style of the extended combo box control.

NAME DESCRIPTION

Remarks

Image List Support

Styles

Item Retention and Callback Item Attributes

Inheritance Hierarchy

By using CComboBoxEx to create combo box controls, you no longer need to implement your own image drawing
code. Instead, use CComboBoxEx to access images from an image list.

In a standard combo box, the owner of the combo box is responsible for drawing an image by creating the combo
box as an owner-draw control. When you use CComboBoxEx , you do not need to set the drawing styles
CBS_OWNERDRAWFIXED and CBS_HASSTRINGS because they are implied. Otherwise, you must write code to
perform drawing operations. A CComboBoxEx control supports up to three images per item: one for a selected
state, one for an unselected state, and one for an overlay image.

CComboBoxEx supports the styles CBS_SIMPLE, CBS_DROPDOWN, CBS_DROPDOWNLIST, and WS_CHILD. All
other styles passed when you create the window are ignored by the control. After the window is created, you can
provide other combo box styles by calling the CComboBoxEx member function SetExtendedStyle. With these styles,
you can:

Set string searches in the list to be case-sensitive.

Create a combo box control that uses the slash ('/'), backslash ('\'), and period ('.') characters as word
delimiters. This allow users to jump from word to word, using the keyboard shortcut CTRL+ ARROW.

Set the combo box control to either display or not display an image. If no image is displayed, the combo
box can remove the text indent that accommodates an image.

Create a narrow combo box control, including sizing it so it clips the wider combo box it contains.

These style flags are described further in Using CComboBoxEx.

Item information, such as indexes for items and images, indentation values, and text strings, is stored in the Win32
structure COMBOBOXEXITEM, as described in the Windows SDK. The structure also contains members that
correspond to callback flags.

For a detailed, conceptual discussion, see Using CComboBoxEx.

CObject

CCmdTarget

CWnd

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagcomboboxexitema

Requirements

CComboBoxEx::CComboBoxEx

CComboBoxEx();

CComboBoxEx::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComboBox

CComboBoxEx

Header: afxcmn.h

Call this member function to create a CComboBoxEx object.

Creates the combo box and attaches it to the CComboBoxEx object.

dwStyle
Specifies the combination of combo box styles applied to the combo box. See Remarks below for more
information about styles.

rect
A reference to a CRect object or RECT structure, which is the position and size of the combo box.

pParentWnd
A pointer to a CWnd object that is the parent window of the combo box (usually a CDialog). It must not be NULL.

nID
Specifies the combo box's control ID.

Nonzero if the object was created successfully; otherwise 0.

Create a CComboBoxEx object in two steps:

1. Call CComboBoxEx to construct a CComboBoxEx object.

2. Call this member function, which creates the extended Windows combo box and attaches it to the
CComboBoxEx object.

When you call Create , MFC initializes the common controls.

When you create the combo box, you can specify any or all of the following combo-box styles:

CBS_SIMPLE

CBS_DROPDOWN

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

CComboBoxEx::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComboBoxEx::DeleteItem

CBS_DROPDOWNLIST

CBS_AUTOHSCROLL

WS_CHILD

All other styles passed when you create the window are ignored. The ComboBoxEx control also supports extended
styles that provide additional features. These styles are described in ComboBoxEx control extended styles, in the
Windows SDK. Set these styles by calling SetExtendedStyle.

If you want to use extended windows styles with your control, call CreateEx instead of Create .

Call this function to create an extended combo box control (a child window) and associate it with the CComboBoxEx

object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the dwExStyle
parameter for CreateWindowEx in the Windows SDK.

dwStyle
The combo box control's style. See Create for a list of styles.

rect
A reference to a RECT structure describing the size and position of the window to be created, in client coordinates
of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

CreateEx creates the control with the extended Windows styles specified by dwExStyle. You must set extended
styles specific to an extended combo box control using SetExtendedStyle. For example, use CreateEx to set such
styles as WS_EX_CONTEXTHELP, but use SetExtendedStyle to set such styles as CBES_EX_CASESENSITIVE. For
more information, see the styles described in the topic ComboBoxEx Control Extended Styles in the Windows
SDK.

https://docs.microsoft.com/windows/desktop/Controls/comboboxex-control-extended-styles
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/comboboxex-control-extended-styles

int DeleteItem(int iIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComboBoxEx::GetComboBoxCtrl

CComboBox* GetComboBoxCtrl();

Return ValueReturn Value

RemarksRemarks

CComboBoxEx::GetEditCtrl

CEdit* GetEditCtrl();

Return ValueReturn Value

RemarksRemarks

CComboBoxEx::GetExtendedStyle

DWORD GetExtendedStyle() const;

Removes an item from a ComboBoxEx control.

iIndex
Zero-based index of the item to be removed.

The number of items remaining in the control. If iIndex is invalid, the function returns CB_ERR.

This member function implements the functionality of the message CBEM_DELETEITEM, as described in the
Windows SDK. When you call DeleteItem, a WM_NOTIFY message with CBEN_DELETEITEM notification will be
sent to the parent window.

Call this member function to get a pointer to a combo box control within a CComboBoxEx object.

A pointer to a CComboBox object.

The CComboBoxEx control consists of a parent window, which encapsulates a CComboBox .

The CComboBox object pointed to by the return value is a temporary object and is destroyed during the next idle
processing time.

Call this member function to get a pointer to the edit control for a combo box.

A pointer to a CEdit object.

A CComboBoxEx control uses an edit box when it is created with the CBS_DROPDOWN style.

The CEdit object pointed to by the return value is a temporary object and is destroyed during the next idle
processing time.

Call this member function to get the extended styles used for a CComboBoxEx control.

https://docs.microsoft.com/windows/desktop/Controls/cbem-deleteitem
https://docs.microsoft.com/windows/desktop/controls/wm-notify

Return ValueReturn Value

RemarksRemarks

CComboBoxEx::GetImageList

CImageList* GetImageList() const;

Return ValueReturn Value

RemarksRemarks

CComboBoxEx::GetItem

BOOL GetItem(COMBOBOXEXITEM* pCBItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComboBoxEx::HasEditChanged

BOOL HasEditChanged();

Return ValueReturn Value

RemarksRemarks

CComboBoxEx::InsertItem

The DWORD value that contains the extended styles that are used for the combo box control.

See ComboBoxEx Control Extended Styles in the Windows SDK for more information about these styles.

Call this member function to get a pointer to the image list used by a CComboBoxEx control.

A pointer to a CImageList object. If it fails, this member function returns NULL.

The CImageList object pointed to by the return value is a temporary object and is destroyed during the next idle
processing time.

Retrieves item information for a given ComboBoxEx item.

pCBItem
A pointer to a COMBOBOXEXITEM structure that will receive the item information.

Nonzero if the operation was successful; otherwise 0.

This member function implements the functionality of the message CBEM_GETITEM, as described in the
Windows SDK.

Determines if the user has changed the contents of the ComboBoxEx edit control by typing.

Nonzero if the user has typed in the control's edit box; otherwise 0.

This member function implements the functionality of the message CBEM_HASEDITCHANGED, as described in
the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/comboboxex-control-extended-styles
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagcomboboxexitema
https://docs.microsoft.com/windows/desktop/Controls/cbem-getitem
https://docs.microsoft.com/windows/desktop/Controls/cbem-haseditchanged

int InsertItem(const COMBOBOXEXITEM* pCBItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComboBoxEx::SetExtendedStyle

DWORD SetExtendedStyle(
 DWORD dwExMask,
 DWORD dwExStyles);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComboBoxEx::SetImageList

CImageList* SetImageList(CImageList* pImageList);

ParametersParameters

Return ValueReturn Value

Inserts a new item in a ComboBoxEx control.

pCBItem
A pointer to a COMBOBOXEXITEM structure that will receive the item information. This structure contains
callback flag values for the item.

The index at which the new item was inserted if successful; otherwise -1.

When you call InsertItem , a WM_NOTIFY message with CBEN_INSERTITEM notification will be sent to the
parent window.

Call this member function to set the extended styles used for a combo box extended control.

dwExMask
A DWORD value that indicates which styles in dwExStyles are to be affected. Only the extended styles in
dwExMask will be changed. All other styles will be maintained as is. If this parameter is zero, then all of the styles
in dwExStyles will be affected.

dwExStyles
A DWORD value that contains the combo box control extended styles to set for the control.

A DWORD value that contains the extended styles previously used for the control.

See ComboBoxEx Control Extended Styles in the Windows SDK for more information about these styles.

To create a combo box extended control with extended windows styles, use CreateEx.

Sets an image list for a ComboBoxEx control.

pImageList
A pointer to a CImageList object containing the images to use with the CComboBoxEx control.

A pointer to a CImageList object containing the images previously used by the CComboBoxEx control. NULL if no

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagcomboboxexitema
https://docs.microsoft.com/windows/desktop/controls/wm-notify
https://docs.microsoft.com/windows/desktop/Controls/cben-insertitem
https://docs.microsoft.com/windows/desktop/Controls/comboboxex-control-extended-styles

RemarksRemarks

CComboBoxEx::SetItem

BOOL SetItem(const COMBOBOXEXITEM* pCBItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CComboBoxEx::SetWindowTheme

HRESULT SetWindowTheme(LPCWSTR pszSubAppName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

image list was previously set.

This member function implements the functionality of the message CBEM_SETIMAGELIST, as described in the
Windows SDK. If you change the height of the default edit control, call the Win32 function SetWindowPos to
resize your control after you call SetImageList , or it will not display properly.

The CImageList object pointed to by the return value is a temporary object and is destroyed during the next idle
processing time.

Sets the attributes for an item in a ComboBoxEx control.

pCBItem
A pointer to a COMBOBOXEXITEM structure that will receive the item information.

Nonzero if the operation was successful; otherwise 0.

This member function implements the functionality of the message CBEM_SETITEM, as described in the
Windows SDK.

Sets the visual style of the extended combo box control.

pszSubAppName
A pointer to a Unicode string that contains the extended combo box visual style to set.

The return value is not used.

This member function emulates the functionality of the CBEM_SETWINDOWTHEME message, as described in
the Windows SDK.

MFC Sample MFCIE
CComboBox Class
Hierarchy Chart
CComboBox Class

https://docs.microsoft.com/windows/desktop/Controls/cbem-setimagelist
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowpos
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagcomboboxexitema
https://docs.microsoft.com/windows/desktop/Controls/cbem-setitem
https://docs.microsoft.com/windows/desktop/Controls/cbem-setwindowtheme
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CCommandLineInfo Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CCommandLineInfo : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CCommandLineInfo::CCommandLineInfo Constructs a default CCommandLineInfo object.

Public MethodsPublic Methods

NAME DESCRIPTION

CCommandLineInfo::ParseParam Override this callback to parse individual parameters.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CCommandLineInfo::m_bRunAutomated Indicates the command-line /Automation option was found.

CCommandLineInfo::m_bRunEmbedded Indicates the command-line /Embedding option was found.

CCommandLineInfo::m_bShowSplash Indicates if a splash screen should be shown.

CCommandLineInfo::m_nShellCommand Indicates the shell command to be processed.

CCommandLineInfo::m_strDriverName Indicates the driver name if the shell command is Print To;
otherwise empty.

CCommandLineInfo::m_strFileName Indicates the file name to be opened or printed; empty if the
shell command is New or DDE.

CCommandLineInfo::m_strPortName Indicates the port name if the shell command is Print To;
otherwise empty.

CCommandLineInfo::m_strPrinterName Indicates the printer name if the shell command is Print To;
otherwise empty.

CCommandLineInfo::m_strRestartIdentifier Indicates the unique restart identifier for the restart manager
if the restart manager restarted the application.

Aids in parsing the command line at application startup.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccommandlineinfo-class.md

Remarks

COMMAND-LINE ARGUMENT COMMAND EXECUTED

app New file.

app filename Open file.

app /p filename Print file to default printer.

app /pt filename printer driver port Print file to the specified printer.

app /dde Start up and await DDE command.

app /Automation Start up as an OLE automation server.

app /Embedding Start up to edit an embedded OLE item.

app /Register

app /Regserver

Informs the application to perform any registration tasks.

app /Unregister

app /Unregserver

Informs the application to perform any un-registration tasks.

Inheritance Hierarchy

Requirements

CCommandLineInfo::CCommandLineInfo

CCommandLineInfo();

RemarksRemarks

An MFC application will typically create a local instance of this class in the InitInstance function of its application
object. This object is then passed to CWinApp::ParseCommandLine, which repeatedly calls ParseParam to fill the
CCommandLineInfo object. The CCommandLineInfo object is then passed to CWinApp::ProcessShellCommand to

handle the command-line arguments and flags.

You can use this object to encapsulate the following command-line options and parameters:

Derive a new class from CCommandLineInfo to handle other flags and parameter values. Override ParseParam to
handle the new flags.

CObject

CCommandLineInfo

Header: afxwin.h

This constructor creates a CCommandLineInfo object with default values.

ExampleExample

CCommandLineInfo cmdInfo;
ParseCommandLine(cmdInfo);

CCommandLineInfo::m_bRunAutomated

BOOL m_bRunAutomated;

RemarksRemarks

CCommandLineInfo::m_bRunEmbedded

BOOL m_bRunEmbedded;

RemarksRemarks

CCommandLineInfo::m_bShowSplash

BOOL m_bShowSplash;

RemarksRemarks

CCommandLineInfo::m_nShellCommand

m_nShellCommand;

RemarksRemarks

The default is to show the splash screen (m_bShowSplash=TRUE) and to execute the New command on the File
menu (m_nShellCommand =NewFile).

The application framework calls ParseParam to fill data members of this object.

Indicates that the /Automation flag was found on the command line.

If TRUE, this means start up as an OLE automation server.

Indicates that the /Embedding flag was found on the command line.

If TRUE, this means start up for editing an embedded OLE item.

Indicates that the splash screen should be displayed.

If TRUE, this means the splash screen for this application should be displayed during startup. The default
implementation of ParseParam sets this data member to TRUE if m_nShellCommand is equal to
CCommandLineInfo::FileNew .

Indicates the shell command for this instance of the application.

The type for this data member is the following enumerated type, which is defined in the CCommandLineInfo class.

enum {
 FileNew,
 FileOpen,
 FilePrint,
 FilePrintTo,
 FileDDE,
 AppRegister,
 AppUnregister,
 RestartByRestartManager,
 FileNothing = -1
 };

ExampleExample

// From CMyWinApp::InitInstance

// Parse command line for standard shell commands, DDE, file open
CCommandLineInfo cmdInfo;
ParseCommandLine(cmdInfo);

// DON'T display a new MDI child window during startup!!!
cmdInfo.m_nShellCommand = CCommandLineInfo::FileNothing;

// Dispatch commands specified on the command line
if (!ProcessShellCommand(cmdInfo))
 return FALSE;

CCommandLineInfo::m_strDriverName

For a brief description of these values, see the following list.

CCommandLineInfo::FileNew Indicates that no file name was found on the command line.

CCommandLineInfo::FileOpen Indicates that a file name was found on the command line and that none of the
following flags were found on the command line: /p , /pt , /dde .

CCommandLineInfo::FilePrint Indicates that the /p flag was found on the command line.

CCommandLineInfo::FilePrintTo Indicates that the /pt flag was found on the command line.

CCommandLineInfo::FileDDE Indicates that the /dde flag was found on the command line.

CCommandLineInfo::AppRegister Indicates that the /Register or /Regserver flag was found on the
command line and the application was asked to register.

CCommandLineInfo::AppUnregister Indicates that the /Unregister or /Unregserver application was asked to
unregister.

CCommandLineInfo::RestartByRestartManager Indicates that the application was restarted by the restart
manager.

CCommandLineInfo::FileNothing Turns off the display of a new MDI child window on startup. By design,
Application Wizard-generated MDI applications display a new child window on startup. To turn off this
feature, an application can use CCommandLineInfo::FileNothing as the shell command when it calls
ProcessShellCommand. ProcessShellCommand is called by the InitInstance() of all CWinApp derived
classes.

Stores the value of the third non-flag parameter on the command line.

CString m_strDriverName;

RemarksRemarks

CCommandLineInfo::m_strFileName

CString m_strFileName;

RemarksRemarks

CCommandLineInfo::m_strPortName

CString m_strPortName;

RemarksRemarks

CCommandLineInfo::m_strPrinterName

CString m_strPrinterName;

RemarksRemarks

CCommandLineInfo::m_strRestartIdentifier

CString m_strRestartIdentifier;

RemarksRemarks

CCommandLineInfo::ParseParam

This parameter is typically the name of the printer driver for a Print To shell command. The default
implementation of ParseParam sets this data member only if the /pt flag was found on the command line.

Stores the value of the first non-flag parameter on the command line.

This parameter is typically the name of the file to open.

Stores the value of the fourth non-flag parameter on the command line.

This parameter is typically the name of the printer port for a Print To shell command. The default implementation
of ParseParam sets this data member only if the /pt flag was found on the command line.

Stores the value of the second non-flag parameter on the command line.

This parameter is typically the name of the printer for a Print To shell command. The default implementation of
ParseParam sets this data member only if the /pt flag was found on the command line.

The unique restart identifier on the command line.

The restart identifier is unique for each instance of the application.

If the restart manager exits the application and is configured to restart it, the restart manager executes the
application from the command line with the restart identifier as an optional parameter. When the restart manager
uses the restart identifier, the application can reopen the previously open documents and recover autosaved files.

virtual void ParseParam(
 const char* pszParam,
 BOOL bFlag,
 BOOL bLast);

virtual void ParseParam(
 const TCHAR* pszParam,
 BOOL bFlag,
 BOOL bLast);

ParametersParameters

RemarksRemarks

COMMAND-LINE ARGUMENT COMMAND EXECUTED

app New file.

app filename Open file.

app /p filename Print file to default printer.

app /pt filename printer driver port Print file to the specified printer.

app /dde Start up and await DDE command.

app /Automation Start up as an OLE automation server.

app /Embedding Start up to edit an embedded OLE item.

app /Register

app /Regserver

Informs the application to perform any registration tasks.

app /Unregister

app /Unregserver

Informs the application to perform any un-registration tasks.

The framework calls this function to parse/interpret individual parameters from the command line. The second
version differs from the first only in Unicode projects.

pszParam
The parameter or flag.

bFlag
Indicates whether pszParam is a parameter or a flag.

bLast
Indicates if this is the last parameter or flag on the command line.

CWinApp::ParseCommandLine calls ParseParam once for each parameter or flag on the command line, passing
the argument to pszParam. If the first character of the parameter is a ' -' or a ' /', then it is removed and bFlag is
set to TRUE. When parsing the final parameter, bLast is set to TRUE.

The default implementation of this function recognizes the following flags: /p , /pt , /dde , /Automation , and
/Embedding , as shown in the following table:

See also

This information is stored in m_bRunAutomated, m_bRunEmbedded, and m_nShellCommand. Flags are marked
by either a forward-slash ' /' or hyphen ' -'.

The default implementation puts the first non-flag parameter into m_strFileName. In the case of the /pt flag, the
default implementation puts the second, third, and fourth non-flag parameters into m_strPrinterName,
m_strDriverName, and m_strPortName, respectively.

The default implementation also sets m_bShowSplash to TRUE only in the case of a new file. In the case of a new
file, the user has taken action involving the application itself. In any other case, including opening existing files
using the shell, the user action involves the file directly. In a document-centric standpoint, the splash screen does
not need to announce the application starting up.

Override this function in your derived class to handle other flag and parameter values.

CObject Class
Hierarchy Chart
CWinApp::ParseCommandLine
CWinApp::ProcessShellCommand

CCommonDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CCommonDialog : public CDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CCommonDialog::CCommonDialog Constructs a CCommonDialog object.

Remarks

Inheritance Hierarchy

Requirements

The base class for classes that encapsulate functionality of the Windows common dialogs.

The following classes encapsulate the functionality of the Windows common dialogs:

CFileDialog

CFontDialog

CColorDialog

CPageSetupDialog

CPrintDialog

CPrintDialogEx

CFindReplaceDialog

COleDialog

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

Header: afxdlgs.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccommondialog-class.md

 CCommonDialog::CCommonDialog

explicit CCommonDialog(CWnd* pParentWnd);

ParametersParameters

RemarksRemarks

See also

Constructs a CCommonDialog object.

pParentWnd
Points to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is NULL,
the dialog object's parent window is set to the main application window.

See CDialog::CDialog for complete information.

CDialog Class
Hierarchy Chart
CFileDialog Class
CFontDialog Class
CColorDialog Class
CPageSetupDialog Class
CPrintDialog Class
CFindReplaceDialog Class
COleDialog Class

CConnectionPoint Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CConnectionPoint : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CConnectionPoint::CConnectionPoint Constructs a CConnectionPoint object.

Public MethodsPublic Methods

NAME DESCRIPTION

CConnectionPoint::GetConnections Retrieves all connection points in a connection map.

CConnectionPoint::GetContainer Retrieves the container of the control that owns the
connection map.

CConnectionPoint::GetIID Retrieves the interface ID of a connection point.

CConnectionPoint::GetMaxConnections Retrieves the maximum number of connection points
supported by a control.

CConnectionPoint::GetNextConnection Retrieves a pointer to the connection element at pos.

CConnectionPoint::GetStartPosition Starts a map iteration by returning a POSITION value that can
be passed to a GetNextConnection call.

CConnectionPoint::OnAdvise Called by the framework when establishing or breaking
connections.

CConnectionPoint::QuerySinkInterface Retrieves a pointer to the requested sink interface.

Remarks

Defines a special type of interface used to communicate with other OLE objects, called a "connection point."

Unlike normal OLE interfaces, which are used to implement and expose the functionality of an OLE control, a
connection point implements an outgoing interface that is able to initiate actions on other objects, such as firing
events and change notifications.

A connection consists of two parts: the object calling the interface, called the "source," and the object
implementing the interface, called the "sink." By exposing a connection point, a source allows sinks to establish

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cconnectionpoint-class.md

// Connection point for ISample interface
 BEGIN_CONNECTION_PART(CMyClass, SampleConnPt)
 CONNECTION_IID(IID_ISampleSink)
 END_CONNECTION_PART(SampleConnPt)

 DECLARE_CONNECTION_MAP()

BEGIN_CONNECTION_MAP(CMyClass, CCmdTarget)
 CONNECTION_PART(CMyClass, IID_ISampleSink, SampleConnPt)
END_CONNECTION_MAP()

void CMyClass::CallSinkFunc()
{
 POSITION pos = m_xSampleConnPt.GetStartPosition();
 ISampleSink* pSampleSink;
 while(pos != NULL)
 {
 pSampleSink = (ISampleSink*)(m_xSampleConnPt.GetNextConnection(pos));
 if(pSampleSink != NULL)
 pSampleSink->SinkFunc();
 }
}

connections to itself. Through the connection point mechanism, a source object obtains a pointer to the sink's
implementation of a set of member functions. For example, to fire an event implemented by the sink, the source
can call the appropriate method of the sink's implementation.

By default, a COleControl -derived class implements two connection points: one for events and one for property
change notifications. These connections are used, respectively, for event firing and for notifying a sink (for
example, the control's container) when a property value has changed. Support is also provided for OLE controls to
implement additional connection points. For each additional connection point implemented in your control class,
you must declare a "connection part" that implements the connection point. If you implement one or more
connection points, you also need to declare a single "connection map" in your control class.

The following example demonstrates a simple connection map and one connection point for the Sample OLE
control, consisting of two fragments of code: the first portion declares the connection map and point; the second
implements this map and point. The first fragment is inserted into the declaration of the control class, under the
protected section:

The BEGIN_CONNECTION_PART and END_CONNECTION_PART macros declare an embedded class,
XSampleConnPt (derived from CConnectionPoint) that implements this particular connection point. If you want to

override any CConnectionPoint member functions, or add member functions of your own, declare them between
these two macros. For example, the CONNECTION_IID macro overrides the CConnectionPoint::GetIID member
function when placed between these two macros.

The second code fragment is inserted into the implementation file (.CPP) of your control class. This code
implements the connection map, which includes the additional connection point, SampleConnPt :

Once these code fragments have been inserted, the Sample OLE control exposes a connection point for the
ISampleSink interface.

Typically, connection points support "multicasting", which is the ability to broadcast to multiple sinks connected to
the same interface. The following code fragment demonstrates how to accomplish multicasting by iterating
through each sink on a connection point:

This example retrieves the current set of connections on the SampleConnPt connection point with a call to

Inheritance Hierarchy

Requirements

CConnectionPoint::CConnectionPoint

CConnectionPoint();

CConnectionPoint::GetConnections

const CPtrArray* GetConnections();

Return ValueReturn Value

CConnectionPoint::GetContainer

virtual LPCONNECTIONPOINTCONTAINER GetContainer();

Return ValueReturn Value

RemarksRemarks

CConnectionPoint::GetIID

virtual REFIID GetIID() = 0;

Return ValueReturn Value

CConnectionPoint::GetConnections . It then iterates through the connections and calls ISampleSink::SinkFunc on
every active connection.

For more information on using CConnectionPoint , see the article Connection Points.

CObject

CCmdTarget

CConnectionPoint

Header: afxdisp.h

Constructs a CConnectionPoint object.

Call this function to retrieve all active connections for a connection point.

A pointer to an array of active connections (sinks). Some of the pointers in the array may be NULL. Each non-
NULL pointer in this array can be safely converted to a pointer to the sink interface using a cast operator.

Called by the framework to retrieve the IConnectionPointContainer for the connection point.

If successful, a pointer to the container; otherwise NULL.

This function is typically implemented by the BEGIN_CONNECTION_PART macro.

Called by the framework to retrieve the interface ID of a connection point.

RemarksRemarks

CConnectionPoint::GetMaxConnections

virtual int GetMaxConnections();

Return ValueReturn Value

RemarksRemarks

CConnectionPoint::GetNextConnection

LPUNKNOWN GetNextConnection(POSITION& pos) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CMyClass::CallSinkFunc()
{
 POSITION pos = m_xSampleConnPt.GetStartPosition();
 ISampleSink* pSampleSink;
 while(pos != NULL)
 {
 pSampleSink = (ISampleSink*)(m_xSampleConnPt.GetNextConnection(pos));
 if(pSampleSink != NULL)
 pSampleSink->SinkFunc();
 }
}

CConnectionPoint::GetStartPosition

A reference to the connection point's interface ID.

Override this function to return the interface ID for this connection point.

Called by the framework to retrieve the maximum number of connections supported by the connection point.

The maximum number of connections supported by the control, or -1 if no limit.

The default implementation returns -1, indicating no limit.

Override this function if you want to limit the number of sinks that can connect to your control.

Retrieves a pointer to the connection element at pos.

pos
Specifies a reference to a POSITION value returned by a previous GetNextConnection or GetStartPosition call.

A pointer to the connection element specified by pos, or NULL.

This function is most useful for iterating through all the elements in the connection map. When iterating, skip any
NULLs returned from this function.

Starts a map iteration by returning a POSITION value that can be passed to a GetNextConnection call.

POSITION GetStartPosition() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CConnectionPoint::OnAdvise

virtual void OnAdvise(BOOL bAdvise);

ParametersParameters

RemarksRemarks

CConnectionPoint::QuerySinkInterface

virtual HRESULT QuerySinkInterface(
 LPUNKNOWN pUnkSink,
 void** ppInterface);

ParametersParameters

Return ValueReturn Value

See also

A POSITION value that indicates a starting position for iterating the map; or NULL if the map is empty.

The iteration sequence is not predictable; therefore, the "first element in the map" has no special significance.

See the example for CConnectionPoint::GetNextConnection.

Called by the framework when a connection is being established or broken.

bAdvise
TRUE, if a connection is being established; otherwise FALSE.

The default implementation does nothing.

Override this function if you want notification when sinks connect to or disconnect from your connection point.

Retrieves a pointer to the requested sink interface.

pUnkSink
The identifier of the sink interface being requested.

ppInterface
A pointer to the interface pointer identified by pUnkSink. If the object does not support this interface, *
ppInterface is set to NULL.

A standard HRESULT value.

CCmdTarget Class
Hierarchy Chart

CConstantTransition Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CConstantTransition : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CConstantTransition::CConstantTransition Constructs a transition object and initializes its duration.

Public MethodsPublic Methods

NAME DESCRIPTION

CConstantTransition::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CConstantTransition::m_duration The duration of the transition.

Remarks

Inheritance Hierarchy

Requirements

Encapsulates a constant transition.

During a constant transition, the value of an animation variable remains at the initial value over the duration of the
transition. Because all transitions are cleared automatically, it's recommended to allocated them using operator
new. The encapsulated IUIAnimationTransition COM object is created by CAnimationController::AnimateGroup,
until then it's NULL. Changing member variables after creation of this COM object has no effect.

CObject

CBaseTransition

CConstantTransition

Header: afxanimationcontroller.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cconstanttransition-class.md

CConstantTransition::CConstantTransition

CConstantTransition (UI_ANIMATION_SECONDS duration);

ParametersParameters

CConstantTransition::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *not used*\);

ParametersParameters

Return ValueReturn Value

CConstantTransition::m_duration

UI_ANIMATION_SECONDS m_duration;

See also

Constructs a transition object and initializes its duration.

duration
The duration of the transition.

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to an IUIAnimationTransitionLibrary interface, which defines a library of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

The duration of the transition.

Classes

https://docs.microsoft.com/windows/desktop/api/uianimation/nn-uianimation-iuianimationtransitionlibrary

CContextMenuManager Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CContextMenuManager : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CContextMenuManager::CContextMenuManager Constructs a CContextMenuManager object.

CContextMenuManager::~CContextMenuManager Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CContextMenuManager::AddMenu Adds a new shortcut menu.

CContextMenuManager::GetMenuById Returns a handle to the menu associated with the provided
resource ID.

CContextMenuManager::GetMenuByName Returns a handle to the menu that matches the provided
menu name.

CContextMenuManager::GetMenuNames Returns a list of menu names.

CContextMenuManager::LoadState Loads shortcut menus stored in the Windows registry.

CContextMenuManager::ResetState Clears the shortcut menus from the context menu manager.

CContextMenuManager::SaveState Saves shortcut menus to the Windows registry.

CContextMenuManager::SetDontCloseActiveMenu Controls whether the CContextMenuManager closes the
active shortcut menu when it shows a new shortcut menu.

CContextMenuManager::ShowPopupMenu Displays the specified shortcut menu.

CContextMenuManager::TrackPopupMenu Displays the specified shortcut menu. Returns the index of
the selected menu command.

Remarks

The CContextMenuManager object manages shortcut menus, also known as context menus.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccontextmenumanager-class.md

Example

// The GetContextMenuManager method is inherited from the CWinAppEx class.
GetContextMenuManager()->AddMenu (_T("My menu"), IDR_CONTEXT_MENU);
GetContextMenuManager()->SetDontCloseActiveMenu(true);

Inheritance Hierarchy

Requirements

CContextMenuManager::AddMenu

BOOL AddMenu(
 UINT uiMenuNameResId,
 UINT uiMenuResId);

BOOL AddMenu(
 LPCTSTR lpszName,
 UINT uiMenuResId);

ParametersParameters

CContextMenuManager manages shortcut menus and makes sure that they have a consistent appearance.

You should not create a CContextMenuManager object manually. The framework of your application creates the
CContextMenuManager object. However, you should call CWinAppEx::InitContextMenuManager when your

application is initialized. After initializing the context manager, use the method
CWinAppEx::GetContextMenuManager to obtain a pointer to the context manager for your application.

You can create shortcut menus at runtime by calling AddMenu . If you want to show the menu without first
receiving user input, call ShowPopupMenu . TrackPopupMenu is used when you want to create a menu and wait for
user input. TrackPopupMenu returns the index of the selected command or 0 if the user exited without selecting
anything.

The CContextMenuManager can also save and load its state to the Windows registry.

The following example demonstrates how to add a menu to a CContextMenuManager object, and how not to close
the active pop-up menu when the CContextMenuManager object displays a new pop-up menu. This code snippet is
part of the Custom Pages sample.

CObject

CContextMenuManager

Header: afxcontextmenumanager.h

Adds a new shortcut menu to the CContextMenuManager.

uiMenuNameResId
[in] A resource ID for a string that contains the name for the new menu.

uiMenuResId
[in] The menu resource ID.

lpszName
[in] A string that contains the name for the new menu.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

RemarksRemarks

CContextMenuManager::CContextMenuManager

CContextMenuManager();

RemarksRemarks

CContextMenuManager::GetMenuById

HMENU GetMenuById(UINT nMenuResId) const;

ParametersParameters

Return ValueReturn Value

CContextMenuManager::GetMenuByName

HMENU GetMenuByName(
 LPCTSTR lpszName,
 UINT* puiOrigResID = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Nonzero if the method was successful; 0 if the method fails.

This method fails if uiMenuResId is invalid or if another menu with the same name already is in the
CContextMenuManager .

Constructs a CContextMenuManager object.

In most cases, you should not create a CContextMenuManager manually. The framework of your application
creates the CContextMenuManager object. You should call CWinAppEx::InitContextMenuManager during the
initialization of your application. To get a pointer to the context manager, call
CWinAppEx::GetContextMenuManager.

Returns a handle to the menu associated with a given resource ID.

nMenuResId
[in] The resource ID for the menu.

A handle to the associated menu or NULL if the menu is not found.

Returns a handle to a specific menu.

lpszName
[in] A string that contains the name of the menu to retrieve.

puiOrigResID
[out] A pointer to an UINT. This parameter contains the resource ID of the specified menu, if found.

A handle to the menu that matches the name that was specified by lpszName. NULL if there is no menu called
lpszName.

CContextMenuManager::GetMenuNames

void GetMenuNames(CStringList& listOfNames) const;

ParametersParameters

CContextMenuManager::LoadState

virtual BOOL LoadState(LPCTSTR lpszProfileName = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CContextMenuManager::ResetState

virtual BOOL ResetState();

Return ValueReturn Value

RemarksRemarks

CContextMenuManager::SaveState

virtual BOOL SaveState(LPCTSTR lpszProfileName = NULL);

If this method finds a menu that matches lpszName, GetMenuByName stores the menu resource ID in the
parameter puiOrigResID.

Returns the list of menu names added to the CContextMenuManager.

listOfNames
[out] A reference to a CStringList parameter. This method writes the list of menu names to this parameter.

Loads information associated with the CContextMenuManager Class from the Windows registry.

lpszProfileName
[in] A string that contains the relative path of a registry key.

Nonzero if the method is successful; otherwise 0.

The lpszProfileName parameter is not the absolute path for a registry entry. It is a relative path that is added to
the end of the default registry key for your application. To get or set the default registry key, use the methods
CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase respectively.

Use the method CContextMenuManager::SaveState to save the shortcut menus to the registry.

Clears all items from the shortcut menus associated with the CContextMenuManager Class.

TRUE if the method is successful; FALSE if a failure occurs.

This method clears the pop-up menus and removes them from the CContextMenuManager .

Saves information associated with the CContextMenuManager Class to the Windows registry.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CContextMenuManager::SetDontCloseActiveMenu

void SetDontCloseActiveMenu (BOOL bSet = TRUE);

ParametersParameters

RemarksRemarks

CContextMenuManager::ShowPopupMenu

virtual BOOL ShowPopupMenu(
 UINT uiMenuResId,
 int x,
 int y,
 CWnd* pWndOwner,
 BOOL bOwnMessage = FALSE,
 BOOL bRightAlign = FALSE);

virtual CMFCPopupMenu* ShowPopupMenu(
 HMENU hmenuPopup,
 int x,
 int y,
 CWnd* pWndOwner,
 BOOL bOwnMessage = FALSE,
 BOOL bAutoDestroy = TRUE,
 BOOL bRightAlign = FALSE);

ParametersParameters

lpszProfileName
[in] A string that contains the relative path of a registry key.

Nonzero if the method is successful; otherwise 0.

The lpszProfileName parameter is not the absolute path for a registry entry. It is a relative path that is added to
the end of the default registry key for your application. To get or set the default registry key, use the methods
CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase respectively.

Use the method CContextMenuManager::LoadState to load the shortcut menus from the registry.

Controls whether the CContextMenuManager closes the active pop-up menu when it displays a new pop-up
menu.

bSet
[in] A Boolean parameter that controls whether to close the active pop-up menu. A value of TRUE indicates the
active pop-up menu is not closed. FALSE indicates that the active pop-up menu is closed.

By default, the CContextMenuManager closes the active pop-up menu.

Displays the specified shortcut menu.

uiMenuResId
[in] The resource ID of the menu that this method will display.

x
[in] The horizontal offset for the shortcut menu in client coordinates.

Return ValueReturn Value

RemarksRemarks

CContextMenuManager::TrackPopupMenu

virtual UINT TrackPopupMenu(
 HMENU hmenuPopup,
 int x,
 int y,
 CWnd* pWndOwner,
 BOOL bRightAlign = FALSE);

ParametersParameters

y
[in] The vertical offset for the shortcut menu in client coordinates

pWndOwner
[in] A pointer to the parent window of the shortcut menu.

bOwnMessage
[in] A Boolean parameter that indicates how messages are routed. If bOwnMessage is FALSE, standard MFC
routing is used. Otherwise, pWndOwner receives the messages.

hmenuPopup
[in] The handle of the menu that this method will display.

bAutoDestroy
[in] A Boolean parameter that indicates whether the menu will be automatically destroyed.

bRightAlign
[in] A Boolean parameter that indicates how the menu items are aligned. If bRightAlign is TRUE, the menu is
right-aligned for right-to-left reading order.

The first method overload returns nonzero if the method shows the menu successfully; otherwise 0. The second
method overload returns a pointer to CMFCPopupMenu if the shortcut menu displays correctly; otherwise
NULL.

This method resembles the method CContextMenuManager::TrackPopupMenu in that both methods display a
shortcut menu. However, TrackPopupMenu returns the index of the selected menu command.

If the parameter bAutoDestroy is FALSE, you must manually call the inherited DestroyMenu method to release
memory resources. The default implementation of ShowPopupMenu does not use the parameter bAutoDestroy. It
is provided for future use or for custom classes derived from the CContextMenuManager class .

Displays the specified shortcut menu and returns the index of the selected shortcut menu command.

hmenuPopup
[in] The handle of the shortcut menu that this method displays.

x
[in] The horizontal offset for the shortcut menu in client coordinates.

y
[in] The vertical offset for the shortcut menu in client coordinates.

pWndOwner
[in] A pointer to the parent window of the shortcut menu.

Return ValueReturn Value

RemarksRemarks

See also

bRightAlign
[in] A Boolean parameter that indicates how menu items are aligned. If bRightAlign is TRUE, the menu is right-
aligned for right-to-left reading order. If bRightAlign is FALSE, the menu is left-aligned for left-to-right reading
order.

The menu command ID of the command that the user chooses; 0 if the user closes the shortcut menu without
selecting a menu command.

This method functions as a modal call to display a shortcut menu. The application will not continue to the
following line in code until the user either closes the shortcut menu or selects a command. An alternative
method that you can use to display a shortcut menu is CContextMenuManager::ShowPopupMenu. That method
is not a modal call and will not return the ID of the selected command.

Hierarchy Chart
Classes
CWinAppEx Class

CControlBar Class
3/4/2019 • 11 minutes to read • Edit Online

Syntax
class CControlBar : public CWnd

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CControlBar::CControlBar Constructs a CControlBar object.

Public MethodsPublic Methods

NAME DESCRIPTION

CControlBar::CalcDynamicLayout Returns the size of a dynamic control bar as a CSize object.

CControlBar::CalcFixedLayout Returns the size of the control bar as a CSize object.

CControlBar::CalcInsideRect Returns the current dimensions of the control bar area;
including the borders.

CControlBar::DoPaint Renders the borders and gripper of the control bar.

CControlBar::DrawBorders Renders the borders of the control bar.

CControlBar::DrawGripper Renders the gripper of the control bar.

CControlBar::EnableDocking Allows a control bar to be docked or floating.

CControlBar::GetBarStyle Retrieves the control bar style settings.

CControlBar::GetBorders Retrieves the border values of the control bar.

CControlBar::GetCount Returns the number of non- HWND elements in the control
bar.

CControlBar::GetDockingFrame Returns a pointer to the frame to which a control bar is
docked.

CControlBar::IsFloating Returns a nonzero value if the control bar in question is a
floating control bar.

The base class for the control-bar classes CStatusBar, CToolBar, CDialogBar, CReBar, and COleResizeBar.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccontrolbar-class.md

CControlBar::OnUpdateCmdUI Calls the Command UI handlers.

CControlBar::SetBarStyle Modifies the control bar style settings.

CControlBar::SetBorders Sets the border values of the control bar.

CControlBar::SetInPlaceOwner Changes the in-place owner of a control bar.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CControlBar::m_bAutoDelete If nonzero, the CControlBar object is deleted when the
Windows control bar is destroyed.

CControlBar::m_pInPlaceOwner The in-place owner of the control bar.

Remarks

Inheritance Hierarchy

Requirements

CControlBar::CalcDynamicLayout

A control bar is a window that is usually aligned to the left or right of a frame window. It may contain child
items that are either HWND-based controls, which are windows that generate and respond to Windows
messages, or non- HWND-based items, which are not windows and are managed by application code or
framework code. List boxes and edit controls are examples of HWND-based controls; status-bar panes and
bitmap buttons are examples of non- HWND-based controls.

Control-bar windows are usually child windows of a parent frame window and are usually siblings to the client
view or MDI client of the frame window. A CControlBar object uses information about the parent window's
client rectangle to position itself. It then informs the parent window as to how much space remains unallocated
in the parent window's client area.

For more information on CControlBar , see:

Control Bars

Technical Note 31: Control Bars.

CObject

CCmdTarget

CWnd

CControlBar

Header: afxext.h

The framework calls this member function to calculate the dimensions of a dynamic toolbar.

virtual CSize CalcDynamicLayout(
 int nLength,
 DWORD nMode);

ParametersParameters

LAYOUT MODE FLAGS WHAT IT MEANS

LM_STRETCH Indicates whether the control bar should be stretched to the
size of the frame. Set if the bar is not a docking bar (not
available for docking). Not set when the bar is docked or
floating (available for docking). If set, LM_STRETCH ignores
nLength and returns dimensions based on the LM_HORZ
state. LM_STRETCH works similarly to the bStretch
parameter used in CalcFixedLayout; see that member
function for more information about the relationship
between stretching and orientation.

LM_HORZ Indicates that the bar is horizontally or vertically oriented.
Set if the bar is horizontally oriented, and if it is vertically
oriented, it is not set. LM_HORZ works similarly to the bHorz
parameter used in CalcFixedLayout; see that member
function for more information about the relationship
between stretching and orientation.

LM_MRUWIDTH Most Recently Used Dynamic Width. Ignores nLength
parameter and uses the remembered most recently used
width.

LM_HORZDOCK Horizontal Docked Dimensions. Ignores nLength parameter
and returns the dynamic size with the largest width.

LM_VERTDOCK Vertical Docked Dimensions. Ignores nLength parameter and
returns the dynamic size with the largest height.

LM_LENGTHY Set if nLength indicates height (Y-direction) instead of width.

LM_COMMIT Resets LM_MRUWIDTH to current width of floating control
bar.

Return ValueReturn Value

RemarksRemarks

CControlBar::CalcFixedLayout

nLength
The requested dimension of the control bar, either horizontal or vertical, depending on dwMode.

nMode
The following predefined flags are used to determine the height and width of the dynamic control bar. Use the
bitwise-OR (|) operator to combine the flags.

The control bar size, in pixels, of a CSize object.

Override this member function to provide your own dynamic layout in classes you derive from CControlBar .
MFC classes derived from CControlBar , such as CToolbar, override this member function and provide their
own implementation.

virtual CSize CalcFixedLayout(
 BOOL bStretch,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

BSTRETCH BHORZ STRETCHING ORIENTATION
DOCKING/NOT
DOCKING

TRUE TRUE Horizontal stretching Horizontally oriented Not docking

TRUE FALSE Vertical stretching Vertically oriented Not docking

FALSE TRUE No stretching
available

Horizontally oriented Docking

FALSE FALSE No stretching
available

Vertically oriented Docking

CControlBar::CalcInsideRect

virtual void CalcInsideRect(
 CRect& rect,
 BOOL bHorz) const;

ParametersParameters

Call this member function to calculate the horizontal size of a control bar.

bStretch
Indicates whether the bar should be stretched to the size of the frame. The bStretch parameter is nonzero when
the bar is not a docking bar (not available for docking) and is 0 when it is docked or floating (available for
docking).

bHorz
Indicates that the bar is horizontally or vertically oriented. The bHorz parameter is nonzero if the bar is
horizontally oriented and is 0 if it is vertically oriented.

The control bar size, in pixels, of a CSize object.

Control bars such as toolbars can stretch horizontally or vertically to accommodate the buttons contained in the
control bar.

If bStretch is TRUE, stretch the dimension along the orientation provided by bHorz. In other words, if bHorz is
FALSE, the control bar is stretched vertically. If bStretch is FALSE, no stretch occurs. The following table shows
the possible permutations, and resulting control-bar styles, of bStretch and bHorz.

The framework calls this function to calculate the client area of the control bar.

rect
Contains the current dimensions of the control bar; including the borders.

bHorz
Indicates that the bar is horizontally or vertically oriented. The bHorz parameter is nonzero if the bar is

RemarksRemarks

CControlBar::CControlBar

CControlBar();

CControlBar::DoPaint

virtual void DoPaint(CDC* pDC);

ParametersParameters

RemarksRemarks

CControlBar::DrawBorders

virtual void DrawBorders(
 CDC* pDC,
 CRect& rect);

ParametersParameters

RemarksRemarks

CControlBar::DrawGripper

horizontally oriented and is 0 if it is vertically oriented.

This function is called before the control bar is painted.

Override this function to customize the rendering of the borders and gripper bar of the control bar.

Constructs a CControlBar object.

Called by the framework to render the borders and gripper bar of the control bar.

pDC
Points to the device context to be used for rendering the borders and gripper of the control bar.

Override this function to customize the drawing behavior of the control bar.

Another customization method is to override the DrawBorders and DrawGripper functions and add custom
drawing code for the borders and gripper. Because these methods are called by the default DoPaint method, an
override of DoPaint is not needed.

Called by the framework to render the borders of the control bar.

pDC
Points to the device context to be used for rendering the borders of the control bar.

rect
A CRect object containing the dimensions of the control bar.

Override this function to customize the appearance of the control bar borders.

Called by the framework to render the gripper of the control bar.

virtual void DrawGripper(
 CDC* pDC,
 const CRect& rect);

ParametersParameters

RemarksRemarks

CControlBar::EnableDocking

void EnableDocking(DWORD dwDockStyle);

ParametersParameters

RemarksRemarks

CControlBar::GetBarStyle

DWORD GetBarStyle();

Return ValueReturn Value

RemarksRemarks

pDC
Points to the device context to be used for rendering the control bar gripper.

rect
A CRect object containing the dimensions of the control bar gripper.

Override this function to customize the appearance of the control bar gripper.

Call this function to enable a control bar to be docked.

dwDockStyle
Specifies whether the control bar supports docking and the sides of its parent window to which the control bar
can be docked, if supported. Can be one or more of the following:

CBRS_ALIGN_TOP Allows docking at the top of the client area.

CBRS_ALIGN_BOTTOM Allows docking at the bottom of the client area.

CBRS_ALIGN_LEFT Allows docking on the left side of the client area.

CBRS_ALIGN_RIGHT Allows docking on the right side of the client area.

CBRS_ALIGN_ANY Allows docking on any side of the client area.

CBRS_FLOAT_MULTI Allows multiple control bars to be floated in a single mini-frame window.

If 0 (that is, indicating no flags), the control bar will not dock.

The sides specified must match one of the sides enabled for docking in the destination frame window, or the
control bar cannot be docked to that frame window.

Call this function to determine which CBRS_ (control bar styles) settings are currently set for the control bar.

The current CBRS_ (control bar styles) settings for the control bar. See CControlBar::SetBarStyle for the
complete list of available styles.

CControlBar::GetBorders

CRect GetBorders() const;

Return ValueReturn Value

CControlBar::GetCount

int GetCount() const;

Return ValueReturn Value

RemarksRemarks

CControlBar::GetDockingFrame

CFrameWnd* GetDockingFrame() const;

Return ValueReturn Value

RemarksRemarks

CControlBar::IsFloating

BOOL IsFloating() const;

Return ValueReturn Value

RemarksRemarks

Does not handle WS_ (window style) styles.

Returns the current border values for the control bar.

A CRect object that contains the current width (in pixels) of each side of the control bar object. For example, the
value of the left member, of CRect object, is the width of the left hand border.

Returns the number of non- HWND items on the CControlBar object.

The number of non- HWND items on the CControlBar object. This function returns 0 for a CDialogBar object.

The type of the item depends on the derived object: panes for CStatusBar objects, and buttons and separators
for CToolBar objects.

Call this member function to obtain a pointer to the current frame window to which your control bar is docked.

A pointer to a frame window if successful; otherwise NULL.

If the control bar is not docked to a frame window (that is, if the control bar is floating), this function will return
a pointer to its parent CMiniFrameWnd.

For more information about dockable control bars, see CControlBar::EnableDocking and
CFrameWnd::DockControlBar.

Call this member function to determine whether the control bar is floating or docked.

Nonzero if the control bar is floating; otherwise 0.

CControlBar::m_bAutoDelete

BOOL m_bAutoDelete;

RemarksRemarks

CControlBar::m_pInPlaceOwner

CWnd* m_pInPlaceOwner;

CControlBar::OnUpdateCmdUI

virtual void OnUpdateCmdUI(
 CFrameWnd* pTarget,
 BOOL bDisableIfNoHndler) = 0;

ParametersParameters

RemarksRemarks

CControlBar::SetBarStyle

void SetBarStyle(DWORD dwStyle);

To change the state of a control bar from docked to floating, call CFrameWnd::FloatControlBar.

If nonzero, the CControlBar object is deleted when the Windows control bar is destroyed.

m_bAutoDelete is a public variable of type BOOL.

A control-bar object is usually embedded in a frame-window object. In this case, m_bAutoDelete is 0 because
the embedded control-bar object is destroyed when the frame window is destroyed.

Set this variable to a nonzero value if you allocate a CControlBar object on the heap and you do not plan to call
delete.

The in-place owner of the control bar.

This member function is called by the framework to update the status of the toolbar or status bar.

pTarget
Points to the main frame window of the application. This pointer is used for routing update messages.

bDisableIfNoHndler
Flag that indicates whether a control that has no update handler should be automatically displayed as disabled.

To update an individual button or pane, use the ON_UPDATE_COMMAND_UI macro in your message map to
set an update handler appropriately. See ON_UPDATE_COMMAND_UI for more information about using this
macro.

OnUpdateCmdUI is called by the framework when the application is idle. The frame window to be updated must
be a child window, at least indirectly, of a visible frame window. OnUpdateCmdUI is an advanced overridable.

Call this function to set the desired CBRS_ styles for the control bar.

ParametersParameters

RemarksRemarks

CControlBar::SetBorders

void SetBorders(
 int cxLeft = 0,
 int cyTop = 0,
 int cxRight = 0,
 int cyBottom = 0);

void SetBorders(LPCRECT lpRect);

ParametersParameters

dwStyle
The desired styles for the control bar. Can be one or more of the following:

CBRS_ALIGN_TOP Allows the control bar to be docked to the top of the client area of a frame window.

CBRS_ALIGN_BOTTOM Allows the control bar to be docked to the bottom of the client area of a frame
window.

CBRS_ALIGN_LEFT Allows the control bar to be docked to the left side of the client area of a frame
window.

CBRS_ALIGN_RIGHT Allows the control bar to be docked to the right side of the client area of a frame
window.

CBRS_ALIGN_ANY Allows the control bar to be docked to any side of the client area of a frame window.

CBRS_BORDER_TOP Causes a border to be drawn on the top edge of the control bar when it would be
visible.

CBRS_BORDER_BOTTOM Causes a border to be drawn on the bottom edge of the control bar when it
would be visible.

CBRS_BORDER_LEFT Causes a border to be drawn on the left edge of the control bar when it would be
visible.

CBRS_BORDER_RIGHT Causes a border to be drawn on the right edge of the control bar when it would
be visible.

CBRS_FLOAT_MULTI Allows multiple control bars to be floated in a single mini-frame window.

CBRS_TOOLTIPS Causes tool tips to be displayed for the control bar.

CBRS_FLYBY Causes message text to be updated at the same time as tool tips.

CBRS_GRIPPER Causes a gripper, similar to that used on bands in a CReBar object, to be drawn for any
CControlBar -derived class.

Does not affect the WS_ (window style) settings.

Call this function to set the size of the control bar's borders.

cxLeft
The width (in pixels) of the control bar's left border.

cyTop
The height (in pixels) of the control bar's top border.

ExampleExample

CControlBar& m_myControlBar = m_Rebar;
m_myControlBar.SetBorders(2, 5, 2, 5);

CControlBar::SetInPlaceOwner

void SetInPlaceOwner(CWnd* pWnd);

ParametersParameters

RemarksRemarks

See also

cxRight
The width (in pixels) of the control bar's right border.

cyBottom
The height (in pixels) of the control bar's bottom border.

lpRect
A pointer to a CRect object that contains the current width (in pixels)of each border of the control bar object.

The following code example sets the top and bottom borders of the control bar to 5 pixels, and the left and right
borders to 2 pixels:

Changes the in-place owner of a control bar.

pWnd
A pointer to a CWnd object.

MFC Sample CTRLBARS
CWnd Class
Hierarchy Chart
CToolBar Class
CDialogBar Class
CStatusBar Class
CReBar Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CCreateContext Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct CCreateContext

Remarks

MEMBER TYPE WHAT IT IS FOR

m_pNewViewClass CRuntimeClass* CRuntimeClass of the new view to
create.

m_pCurrentDoc CDocument* The existing document to be associated
with the new view.

m_pNewDocTemplate CDocTemplate* The document template associated
with the creation of a new MDI frame
window.

m_pLastView CView* The original view on which additional
views are modeled, as in the creation of
splitter window views or the creation of
a second view on a document.

m_pCurrentFrame CFrameWnd* The frame window on which additional
frame windows are modeled, as in the
creation of a second frame window on
a document.

The framework uses the CCreateContext structure when it creates the frame windows and views that are
associated with a document.

CCreateContext is a structure and does not have a base class.

When you create a window, the values in this structure provide the information used to connect the components
of a document to the view of its data. You only have to use CCreateContext if you are overriding parts of the
creation process.

A CCreateContext structure contains pointers to the document, the frame window, the view, and the document
template. It also contains a pointer to a CRuntimeClass that identifies the type of view to create. The run-time
class information and the current document pointer are used to create a new view dynamically. The following
table suggests how and when each CCreateContext member might be used:

When a document template creates a document and its associated components, it validates the information
stored in the CCreateContext structure. For example, a view should not be created for a nonexistent document.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccreatecontext-structure.md

NOTENOTE

Requirements

See also

All of the pointers in CCreateContext are optional and can be NULL if unspecified or unknown.

CCreateContext is used by the member functions listed under "See Also." Consult the descriptions of these
functions for specific information if you plan to override them.

Here are a few general guidelines:

When passed as an argument for window creation, as in CWnd::Create , CFrameWnd::Create , and
CFrameWnd::LoadFrame , the create context specifies what the new window should be connected to. For most

windows, the entire structure is optional and a NULL pointer can be passed.

For overridable member functions, such as CFrameWnd::OnCreateClient , the CCreateContext argument is
optional.

For member functions involved in view creation, you must provide enough information to create the view.
For example, for the first view in a splitter window, you must supply the view class information and the
current document.

In general, if you use the framework defaults, you can ignore CCreateContext . If you attempt more advanced
modifications, the Microsoft Foundation Class Library source code or the sample programs, such as VIEWEX, will
guide you. If you do forget a required parameter, a framework assertion will tell you what you forgot.

For more information on CCreateContext , see the MFC sample VIEWEX.

Header: afxext.h

Hierarchy Chart
CFrameWnd::Create
CFrameWnd::LoadFrame
CFrameWnd::OnCreateClient
CSplitterWnd::Create
CSplitterWnd::CreateView
CWnd::Create

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CCriticalSection Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CCriticalSection : public CSyncObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CCriticalSection::CCriticalSection Constructs a CCriticalSection object.

Public MethodsPublic Methods

NAME DESCRIPTION

CCriticalSection::Lock Use to gain access to the CCriticalSection object.

CCriticalSection::Unlock Releases the CCriticalSection object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CCriticalSection::operator CRITICAL_SECTION* Retrieves a pointer to the internal CRITICAL_SECTION object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CCriticalSection::m_sect A CRITICAL_SECTION object.

Remarks

NOTENOTE

Represents a "critical section" — a synchronization object that allows one thread at a time to access a resource or
section of code.

Critical sections are useful when only one thread at a time can be allowed to modify data or some other controlled
resource. For example, adding nodes to a linked list is a process that should only be allowed by one thread at a
time. By using a CCriticalSection object to control the linked list, only one thread at a time can gain access to the
list.

The functionality of the CCriticalSection class is provided by an actual Win32 CRITICAL_SECTION object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccriticalsection-class.md

Inheritance Hierarchy

Requirements

CCriticalSection::CCriticalSection

CCriticalSection();

RemarksRemarks

ExampleExample

CCriticalSection::Lock

BOOL Lock();
BOOL Lock(DWORD dwTimeout);

Critical sections are used instead of mutexes (see CMutex) when speed is critical and the resource will not be used
across process boundaries.

There are two methods for using a CCriticalSection object: stand-alone and embedded in a class.

Stand-alone method To use a stand-alone CCriticalSection object, construct the CCriticalSection object
when it is needed. After a successful return from the constructor, explicitly lock the object with a call to Lock.
Call Unlock when you are done accessing the critical section. This method, while clearer to someone
reading your source code, is more prone to error as you must remember to lock and unlock the critical
section before and after access.

A more preferable method is to use the CSingleLock class. It also has a Lock and Unlock method, but you
don't have to worry about unlocking the resource if an exception occurs.

Embedded method You can also share a class with multiple threads by adding a CCriticalSection -type
data member to the class and locking the data member when needed.

For more information on using CCriticalSection objects, see the article Multithreading: How to Use the
Synchronization Classes.

CObject

CSyncObject

CCriticalSection

Header: afxmt.h

Constructs a CCriticalSection object.

To access or release a CCriticalSection object, create a CSingleLock object and call its Lock and Unlock member
functions. If the CCriticalSection object is being used stand-alone, call its Unlock member function to release it.

If the constructor fails to allocate the required system memory, a memory exception (of type CMemoryException)
is automatically thrown.

See the example for CCriticalSection::Lock.

Call this member function to gain access to the critical section object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-how-to-use-the-synchronization-classes

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

//Definition of critical section class
class CMyCritSectClass
{
 static CString _strShared; //shared resource
 static CCriticalSection _critSect;
public:
 CMyCritSectClass(void) {}
 ~CMyCritSectClass(void) {}
 void SomeMethod(void); //locks, modifies, and unlocks shared resource
};

//Declaration of static members and SomeMethod
CString CMyCritSectClass::_strShared;
CCriticalSection CMyCritSectClass::_critSect;

void CMyCritSectClass::SomeMethod()
{
 _critSect.Lock();
 if (_strShared == "")
 _strShared = "<text>";
 _critSect.Unlock();
}

CCriticalSection::m_sect

CRITICAL_SECTION m_sect;

CCriticalSection::operator CRITICAL_SECTION*

operator CRITICAL_SECTION*();

RemarksRemarks

dwTimeout
Lock ignores this parameter value.

Nonzero if the function was successful; otherwise 0.

Lock is a blocking call that will not return until the critical section object is signaled (becomes available).

If timed waits are necessary, you can use a CMutex object instead of a CCriticalSection object.

If Lock fails to allocate the necessary system memory, a memory exception (of type CMemoryException) is
automatically thrown.

This example demonstrates the nested critical section approach by controlling access to a shared resource (the
static _strShared object) using a shared CCriticalSection object. The SomeMethod function demonstrates
updating a shared resource in a safe manner.

Contains a critical section object that is used by all CCriticalSection methods.

Retrieves a CRITICAL_SECTION object.

 CCriticalSection::Unlock

BOOL Unlock();

Return ValueReturn Value

RemarksRemarks

ExampleExample

See also

Call this function to retrieve a pointer to the internal CRITICAL_SECTION object.

Releases the CCriticalSection object for use by another thread.

Nonzero if the CCriticalSection object was owned by the thread and the release was successful; otherwise 0.

If the CCriticalSection is being used stand-alone, Unlock must be called immediately after completing use of the
resource controlled by the critical section. If a CSingleLock object is being used, CCriticalSection::Unlock will be
called by the lock object's Unlock member function.

See the example for CCriticalSection::Lock.

CSyncObject Class
Hierarchy Chart
CMutex Class

CCtrlView Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CCtrlView : public CView

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CCtrlView::CCtrlView Constructs a CCtrlView object.

Protected MethodsProtected Methods

NAME DESCRIPTION

CCtrlView::OnDraw Called by the framework to draw using the specified device
context.

CCtrlView::PreCreateWindow Called before the creation of the Windows window attached
to this CCtrlView object.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CCtrlView::m_dwDefaultStyle Contains the default style for the view class.

CCtrlView::m_strClass Contains the Windows class name for the view class.

Remarks

Inheritance Hierarchy

Adapts the document-view architecture to the common controls supported by Windows 98 and Windows NT
versions 3.51 and later.

The class CCtrlView and its derivatives, CEditView, CListView, CTreeView, and CRichEditView, adapt the
document-view architecture to the new common controls supported by Windows 95/98 and Windows NT
versions 3.51 and later. For more information on the document-view architecture, see Document/View
Architecture.

CObject

CCmdTarget

CWnd

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cctrlview-class.md

Requirements

CCtrlView::CCtrlView

CCtrlView(
 LPCTSTR lpszClass,
 DWORD dwStyle);

ParametersParameters

RemarksRemarks

CCtrlView::m_strClass

CString m_strClass;

CCtrlView::m_dwDefaultStyle

DWORD m_dwDefaultStyle;

RemarksRemarks

CCtrlView::OnDraw

virtual void OnDraw(CDC* pDC);

ParametersParameters

CView

CCtrlView

Header: afxwin.h

Constructs a CCtrlView object.

lpszClass
Windows class name of the view class.

dwStyle
Style of the view class.

The framework calls the constructor when a new frame window is created or a window is split. Override
CView::OnInitialUpdate to initialize the view after the document is attached. Call CWnd::Create or
CWnd::CreateEx to create the Windows object.

Contains the Windows class name for the view class.

Contains the default style for the view class.

This style is applied when a window is created.

Called by the framework to draw the contents of the CCtrlView object using the specified device context.

pDC

RemarksRemarks

CCtrlView::PreCreateWindow

virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

A pointer to the device context in which the drawing occurs.

OnDraw is typically called for screen display, passing a screen device context specified by pDC.

Called before the creation of the Windows window attached to this CWnd object.

cs
A CREATESTRUCT structure.

Nonzero if the window creation should continue; 0 to indicate creation failure.

Never call this function directly.

The default implementation of this function checks for a NULL window class name and substitutes an
appropriate default. Override this member function to modify the CREATESTRUCT structure before the window is
created.

Each class derived from CCtrlView adds its own functionality to its override of PreCreateWindow . By design,
these derivations of PreCreateWindow are not documented. To determine the styles appropriate to each class and
the interdependencies between the styles, you can examine the MFC source code for your application's base
class. If you choose to override PreCreateWindow , you can determine whether the styles used in your
application's base class provide the functionality you need by using information gathered from the MFC source
code.

For more information on changing window styles, see the Changing the Styles of a Window Created by MFC.

CView Class
Hierarchy Chart
CTreeView Class
CListView Class
CRichEditView Class

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcreatestructa

CCubicTransition Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CCubicTransition : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CCubicTransition::CCubicTransition Constructs a transition object and initializes its parameters.

Public MethodsPublic Methods

NAME DESCRIPTION

CCubicTransition::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CCubicTransition::m_dblFinalValue The value of the animation variable at the end of the
transition.

CCubicTransition::m_dblFinalVelocity The velocity of the variable at the end of the transition.

CCubicTransition::m_duration The duration of the transition.

Remarks

Inheritance Hierarchy

Encapsulates a cubic transition.

During a cubic transition, the value of the animation variable changes from its initial value to a specified final value
over the duration of the transition, ending at a specified velocity. Because all transitions are cleared automatically,
it's recommended to allocated them using operator new. The encapsulated IUIAnimationTransition COM object is
created by CAnimationController::AnimateGroup, until then it's NULL. Changing member variables after creation
of this COM object has no effect.

CObject

CBaseTransition

CCubicTransition

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccubictransition-class.md

Requirements

CCubicTransition::CCubicTransition

CCubicTransition(
 UI_ANIMATION_SECONDS duration,
 DOUBLE finalValue,
 DOUBLE finalVelocity);

ParametersParameters

CCubicTransition::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *not used*\);

ParametersParameters

Return ValueReturn Value

CCubicTransition::m_dblFinalValue

DOUBLE m_dblFinalValue;

CCubicTransition::m_dblFinalVelocity

DOUBLE m_dblFinalVelocity;

CCubicTransition::m_duration

Header: afxanimationcontroller.h

Constructs a transition object and initializes its parameters.

duration
The duration of the transition.

finalValue
The value of the animation variable at the end of the transition.

finalVelocity
The velocity of the variable at the end of the transition.

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to an IUIAnimationTransitionLibrary interface, which defines a library of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

The value of the animation variable at the end of the transition.

The velocity of the variable at the end of the transition.

https://docs.microsoft.com/windows/desktop/api/uianimation/nn-uianimation-iuianimationtransitionlibrary

UI_ANIMATION_SECONDS m_duration;

See also

The duration of the transition.

Classes

CCustomInterpolator Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CCustomInterpolator;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CCustomInterpolator::CCustomInterpolator Overloaded. Constructs a custom interpolator object and
initializes duration and velocity to specified values.

Public MethodsPublic Methods

NAME DESCRIPTION

CCustomInterpolator::GetDependencies Gets the interpolator's dependencies.

CCustomInterpolator::GetDuration Gets the interpolator's duration.

CCustomInterpolator::GetFinalValue Gets the final value to which the interpolator leads.

CCustomInterpolator::Init Initializes duration and final value.

CCustomInterpolator::InterpolateValue Interpolates the value at a given offset.

CCustomInterpolator::InterpolateVelocity Interpolates the velocity at a given offset

CCustomInterpolator::SetDuration Sets the interpolator's duration.

CCustomInterpolator::SetInitialValueAndVelocity Sets the interpolator's initial value and velocity.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CCustomInterpolator::m_currentValue The interpolated value.

CCustomInterpolator::m_currentVelocity The interpolated velocity.

CCustomInterpolator::m_duration The duration of the transition.

CCustomInterpolator::m_finalValue The final value of a variable at the end of the transition.

Implements a basic interpolator.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccustominterpolator-class.md

CCustomInterpolator::m_initialValue The value of the variable at the start of the transition.

CCustomInterpolator::m_initialVelocity The velocity of the variable at the start of the transition.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CCustomInterpolator::CCustomInterpolator

CCustomInterpolator();

CCustomInterpolator(
 UI_ANIMATION_SECONDS duration,
 DOUBLE finalValue);

ParametersParameters

RemarksRemarks

CCustomInterpolator::GetDependencies

virtual BOOL GetDependencies(
 UI_ANIMATION_DEPENDENCIES* initialValueDependencies,
 UI_ANIMATION_DEPENDENCIES* initialVelocityDependencies,
 UI_ANIMATION_DEPENDENCIES* durationDependencies);

ParametersParameters

Derive a class from CCustomInterpolator and override all necessary methods in order to implement a custom
interpolation algorithm. A pointer to this class should be passed as a parameter to CCustomTransition.

CCustomInterpolator

Header: afxanimationcontroller.h

Constructs a custom interpolator object and sets all values to default 0.

duration
The duration of the transition.

finalValue

Use CCustomInterpolator::Init to initialize duration and final value later in the code.

Gets the interpolator's dependencies.

initialValueDependencies
Output. Aspects of the interpolator that depend on the initial value passed to SetInitialValueAndVelocity.

initialVelocityDependencies

Return ValueReturn Value

CCustomInterpolator::GetDuration

virtual BOOL GetDuration(UI_ANIMATION_SECONDS* duration);

ParametersParameters

Return ValueReturn Value

CCustomInterpolator::GetFinalValue

virtual BOOL GetFinalValue(DOUBLE* value);

ParametersParameters

Return ValueReturn Value

CCustomInterpolator::Init

void Init(
 UI_ANIMATION_SECONDS duration,
 DOUBLE finalValue);

ParametersParameters

Output. Aspects of the interpolator that depend on the initial velocity passed to SetInitialValueAndVelocity.

durationDependencies
Output. Aspects of the interpolator that depend on the duration passed to SetDuration.

Basic implementation always returns TRUE. Return FALSE from overridden implementation if you wish to fail the
event.

Gets the interpolator's duration.

duration
Output. The duration of the transition, in seconds.

Basic implementation always returns TRUE. Return FALSE from overridden implementation if you wish to fail the
event.

Gets the final value to which the interpolator leads.

value
Output. The final value of a variable at the end of the transition.

Basic implementation always returns TRUE. Return FALSE from overridden implementation if you wish to fail the
event.

Initializes duration and final value.

duration
The duration of the transition.

finalValue
The final value of a variable at the end of the transition.

CCustomInterpolator::InterpolateValue

virtual BOOL InterpolateValue(
 UI_ANIMATION_SECONDS */,
 DOUBLE* value);

ParametersParameters

Return ValueReturn Value

CCustomInterpolator::InterpolateVelocity

virtual BOOL InterpolateVelocity(
 UI_ANIMATION_SECONDS */,
 DOUBLE* velocity);

ParametersParameters

Return ValueReturn Value

CCustomInterpolator::m_currentValue

DOUBLE m_currentValue;

CCustomInterpolator::m_currentVelocity

DOUBLE m_currentVelocity;

CCustomInterpolator::m_duration

UI_ANIMATION_SECONDS m_duration;

Interpolates the value at a given offset.

value
Output. The interpolated value.

Basic implementation always returns TRUE. Return FALSE from overridden implementation if you wish to fail the
event.

Interpolates the velocity at a given offset

velocity
Output. The velocity of the variable at the offset.

Basic implementation always returns TRUE. Return FALSE from overridden implementation if you wish to fail the
event.

The interpolated value.

The interpolated velocity.

The duration of the transition.

CCustomInterpolator::m_finalValue

DOUBLE m_finalValue;

CCustomInterpolator::m_initialValue

DOUBLE m_initialValue;

CCustomInterpolator::m_initialVelocity

DOUBLE m_initialVelocity;

CCustomInterpolator::SetDuration

virtual BOOL SetDuration(UI_ANIMATION_SECONDS duration);

ParametersParameters

Return ValueReturn Value

CCustomInterpolator::SetInitialValueAndVelocity

virtual BOOL SetInitialValueAndVelocity(
 DOUBLE initialValue,
 DOUBLE initialVelocity);

ParametersParameters

Return ValueReturn Value

The final value of a variable at the end of the transition.

The value of the variable at the start of the transition.

The velocity of the variable at the start of the transition.

Sets the interpolator's duration.

duration
The duration of the transition.

Basic implementation always returns TRUE. Return FALSE from overridden implementation if you wish to fail the
event.

Sets the interpolator's initial value and velocity.

initialValue
The value of the variable at the start of the transition.

initialVelocity
The velocity of the variable at the start of the transition.

The basic implementation always returns TRUE. Return FALSE from overridden implementation if you wish to fail
the event.

See also
Classes

CCustomTransition Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CCustomTransition : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CCustomTransition::CCustomTransition Constructs a custom transition object.

Public MethodsPublic Methods

NAME DESCRIPTION

CCustomTransition::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

CCustomTransition::SetInitialValue Sets an initial value, which will be applied to an animation
variable associated with this transition.

CCustomTransition::SetInitialVelocity Sets an initial velocity, which will be applied to an animation
variable associated with this transition.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CCustomTransition::m_bInitialValueSpecified Specifies whether the initial value was specified with
SetInitialValue.

CCustomTransition::m_bInitialVelocitySpecified Specifies whether the initial velocity was specified with
SetInitialVelocity.

CCustomTransition::m_initialValue Stores the initial value.

CCustomTransition::m_initialVelocity Stores the initial velocity.

CCustomTransition::m_pInterpolator Stores a pointer to a custom interpolator.

Remarks

Implements a custom transition.

The CCustomTransitions class allows developers to implement custom transitions. It's created and used as a

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ccustomtransition-class.md

Inheritance Hierarchy

Requirements

CCustomTransition::CCustomTransition

CCustomTransition(CCustomInterpolator* pInterpolator);

ParametersParameters

CCustomTransition::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* */,
 IUIAnimationTransitionFactory* pFactory);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCustomTransition::m_bInitialValueSpecified

standard transition, but its constructor accepts as parameter a pointer to a custom interpolator. Perform the
following steps to use custom transitions: 1. Derive a class from CCustomInterpolator and implement at least
InterpolateValue method. 2. Ensure that the lifetime of custom interpolator object must be longer than duration of
animation where it's used. 3. Instantiate (using operator new) a CCustomTransition object and pass a pointer to
custom interpolator in the constructor. 4. Call CCustomTransition::SetInitialValue and
CCustomTransition::SetInitialVelocity if these parameters are required for custom interpolation. 5. Pass the pointer
to custom transition to AddTransition method of animation object, whose value should be animated with the
custom algorithm. 6. When the value of animation object should change Windows Animation API will call
InterpolateValue (and other relevant methods) in CCustomInterpolator.

CObject

CBaseTransition

CCustomTransition

Header: afxanimationcontroller.h

Constructs a custom transition object.

pInterpolator
A pointer to custom interpolator.

Calls the transition library to create encapsulated transition COM object.

pFactory
A pointer to transition factory, which is responsible for creation of custom transitions.

This method also can set initial value and initial velocity to be applied to an animation variable, which is associated
with this transition. For this purpose you have to call SetInitialValue and SetInitialVelocity before the framework
creates the encapsulated transition COM object (it happens when you call CAnimationController::AnimateGroup).

Specifies whether the initial value was specified with SetInitialValue.

BOOL m_bInitialValueSpecified;

CCustomTransition::m_bInitialVelocitySpecified

BOOL m_bInitialVelocitySpecified;

CCustomTransition::m_initialValue

DOUBLE m_initialValue;

CCustomTransition::m_initialVelocity

DOUBLE m_initialVelocity;

CCustomTransition::m_pInterpolator

CCustomInterpolator* m_pInterpolator;

CCustomTransition::SetInitialValue

void SetInitialValue(DOUBLE initialValue);

ParametersParameters

CCustomTransition::SetInitialVelocity

void SetInitialVelocity(DOUBLE initialVelocity);

ParametersParameters

See also

Specifies whether the initial velocity was specified with SetInitialVelocity.

Stores the initial value.

Stores the initial velocity.

Stores a pointer to a custom interpolator.

Sets an initial value, which will be applied to an animation variable associated with this transition.

initialValue

Sets an initial velocity, which will be applied to an animation variable associated with this transition.

initialVelocity

Classes

CD2DBitmap Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CD2DBitmap : public CD2DResource;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DBitmap::CD2DBitmap Overloaded. Constructs a CD2DBitmap object from HBITMAP.

CD2DBitmap::~CD2DBitmap The destructor. Called when a D2D bitmap object is being
destroyed.

Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CD2DBitmap::CD2DBitmap Overloaded. Constructs a CD2DBitmap object.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DBitmap::Attach Attaches existing resource interface to the object

CD2DBitmap::CopyFromBitmap Copies the specified region from the specified bitmap into the
current bitmap

CD2DBitmap::CopyFromMemory Copies the specified region from memory into the current
bitmap

CD2DBitmap::CopyFromRenderTarget Copies the specified region from the specified render target
into the current bitmap

CD2DBitmap::Create Creates a CD2DBitmap. (Overrides CD2DResource::Create.)

CD2DBitmap::Destroy Destroys a CD2DBitmap object. (Overrides
CD2DResource::Destroy.)

CD2DBitmap::Detach Detaches resource interface from the object

CD2DBitmap::Get Returns ID2D1Bitmap interface

A wrapper for ID2D1Bitmap.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dbitmap-class.md

CD2DBitmap::GetDPI Return the dots per inch (DPI) of the bitmap

CD2DBitmap::GetPixelFormat Retrieves the pixel format and alpha mode of the bitmap

CD2DBitmap::GetPixelSize Returns the size, in device-dependent units (pixels), of the
bitmap

CD2DBitmap::GetSize Returns the size, in device-independent pixels (DIPs), of the
bitmap

CD2DBitmap::IsValid Checks resource validity (Overrides CD2DResource::IsValid.)

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CD2DBitmap::CommonInit Initializes the object

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DBitmap::operator ID2D1Bitmap* Returns ID2D1Bitmap interface

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CD2DBitmap::m_bAutoDestroyHBMP TRUE if m_hBmpSrc should be destroyed; otherwise FALSE.

CD2DBitmap::m_hBmpSrc Source bitmap handle.

CD2DBitmap::m_lpszType Resource type.

CD2DBitmap::m_pBitmap Stores a pointer to an ID2D1Bitmap object.

CD2DBitmap::m_sizeDest Bitmap destination size.

CD2DBitmap::m_strPath Botmap file path.

CD2DBitmap::m_uiResID Bitmap resource ID.

Inheritance Hierarchy

Requirements

CObject

CD2DResource

CD2DBitmap

CD2DBitmap::~CD2DBitmap

virtual ~CD2DBitmap();

CD2DBitmap::Attach

void Attach(ID2D1Bitmap* pResource);

ParametersParameters

CD2DBitmap::CD2DBitmap

CD2DBitmap(
 CRenderTarget* pParentTarget,
 UINT uiResID,
 LPCTSTR lpszType = NULL,
 CD2DSizeU sizeDest = CD2DSizeU(0, 0),
 BOOL bAutoDestroy = TRUE);

CD2DBitmap(
 CRenderTarget* pParentTarget,
 LPCTSTR lpszPath,
 CD2DSizeU sizeDest = CD2DSizeU(0, 0),
 BOOL bAutoDestroy = TRUE);

CD2DBitmap(
 CRenderTarget* pParentTarget,
 HBITMAP hbmpSrc,
 CD2DSizeU sizeDest = CD2DSizeU(0, 0),
 BOOL bAutoDestroy = TRUE);

CD2DBitmap(
 CRenderTarget* pParentTarget,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

Header: afxrendertarget.h

The destructor. Called when a D2D bitmap object is being destroyed.

Attaches existing resource interface to the object.

pResource
Existing resource interface. Cannot be NULL.

Constructs a CD2DBitmap object from resource.

pParentTarget
A pointer to the render target.

uiResID
The resource ID number of the resource.

lpszType
Pointer to a null-terminated string that contains the resource type.

sizeDest
Destination size of the bitmap.

CD2DBitmap::CommonInit

void CommonInit();

CD2DBitmap::CopyFromBitmap

HRESULT CopyFromBitmap(
 const CD2DBitmap* pBitmap,
 const CD2DPointU* destPoint = NULL,
 const CD2DRectU* srcRect = NULL);

ParametersParameters

Return ValueReturn Value

CD2DBitmap::CopyFromMemory

HRESULT CopyFromMemory(
 const void* srcData,
 UINT32 pitch,
 const CD2DRectU* destRect = NULL);

ParametersParameters

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

lpszPath
Pointer to a null-terminated string that contains the name of file.

hbmpSrc
Handle to the bitmap.

Initializes the object.

Copies the specified region from the specified bitmap into the current bitmap.

pBitmap
The bitmap to copy from.

destPoint
In the current bitmap, the upper-left corner of the area to which the region specified by srcRect is copied.

srcRect
The area of bitmap to copy.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Copies the specified region from memory into the current bitmap.

srcData
The data to copy.

pitch
The stride, or pitch, of the source bitmap stored in srcData. The stride is the byte count of a scanline (one row of
pixels in memory). The stride can be computed from the following formula: pixel width * bytes per pixel + memory
padding.

Return ValueReturn Value

CD2DBitmap::CopyFromRenderTarget

HRESULT CopyFromRenderTarget(
 const CRenderTarget* pRenderTarget,
 const CD2DPointU* destPoint = NULL,
 const CD2DRectU* srcRect = NULL);

ParametersParameters

Return ValueReturn Value

CD2DBitmap::Create

virtual HRESULT Create(CRenderTarget* pRenderTarget);

ParametersParameters

Return ValueReturn Value

CD2DBitmap::Destroy

virtual void Destroy();

CD2DBitmap::Detach

ID2D1Bitmap* Detach();

destRect
In the current bitmap, the upper-left corner of the area to which the region specified by srcRect is copied.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Copies the specified region from the specified render target into the current bitmap.

pRenderTarget
The render target that contains the region to copy.

destPoint
In the current bitmap, the upper-left corner of the area to which the region specified by srcRect is copied.

srcRect
The area of renderTarget to copy.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Creates a CD2DBitmap.

pRenderTarget
A pointer to the render target.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Destroys a CD2DBitmap object.

Detaches resource interface from the object.

Return ValueReturn Value

CD2DBitmap::Get

ID2D1Bitmap* Get();

Return ValueReturn Value

CD2DBitmap::GetDPI

CD2DSizeF GetDPI() const;

Return ValueReturn Value

CD2DBitmap::GetPixelFormat

D2D1_PIXEL_FORMAT GetPixelFormat() const;

Return ValueReturn Value

CD2DBitmap::GetPixelSize

CD2DSizeU GetPixelSize() const;

Return ValueReturn Value

CD2DBitmap::GetSize

CD2DSizeF GetSize() const;

Return ValueReturn Value

CD2DBitmap::IsValid

Pointer to detached resource interface.

Returns ID2D1Bitmap interface.

Pointer to an ID2D1Bitmap interface or NULL if object is not initialized yet.

Return the dots per inch (DPI) of the bitmap.

The horizontal and vertical DPI of the bitmap.

Retrieves the pixel format and alpha mode of the bitmap

The pixel format and alpha mode of the bitmap.

Returns the size, in device-dependent units (pixels), of the bitmap.

The size, in pixels, of the bitmap..

Returns the size, in device-independent pixels (DIPs), of the bitmap.

The size, in DIPs, of the bitmap.

virtual BOOL IsValid() const;

Return ValueReturn Value

CD2DBitmap::m_bAutoDestroyHBMP

BOOL m_bAutoDestroyHBMP;

CD2DBitmap::m_hBmpSrc

HBITMAP m_hBmpSrc;

CD2DBitmap::m_lpszType

LPCTSTR m_lpszType;

CD2DBitmap::m_pBitmap

ID2D1Bitmap* m_pBitmap;

CD2DBitmap::m_sizeDest

CD2DSizeU m_sizeDest;

CD2DBitmap::m_strPath

CString m_strPath;

CD2DBitmap::m_uiResID

Checks resource validity.

TRUE if resource is valid; otherwise FALSE.

TRUE if m_hBmpSrc should be destroyed; otherwise FALSE.

Source bitmap handle.

Resource type.

Stores a pointer to an ID2D1Bitmap object.

Bitmap destination size.

Botmap file path.

Bitmap resource ID.

UINT m_uiResID;

CD2DBitmap::operator ID2D1Bitmap*

operator ID2D1Bitmap*();

Return ValueReturn Value

See also

Returns ID2D1Bitmap interface

Pointer to an ID2D1Bitmap interface or NULL if object is not initialized yet.

Classes

CD2DBitmapBrush Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CD2DBitmapBrush : public CD2DBrush;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DBitmapBrush::CD2DBitmapBrush Overloaded. Constructs a CD2DBitmapBrush object from file.

CD2DBitmapBrush::~CD2DBitmapBrush The destructor. Called when a D2D bitmap brush object is
being destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DBitmapBrush::Attach Attaches existing resource interface to the object

CD2DBitmapBrush::Create Creates a CD2DBitmapBrush. (Overrides
CD2DResource::Create.)

CD2DBitmapBrush::Destroy Destroys a CD2DBitmapBrush object. (Overrides
CD2DBrush::Destroy.)

CD2DBitmapBrush::Detach Detaches resource interface from the object

CD2DBitmapBrush::Get Returns ID2D1BitmapBrush interface

CD2DBitmapBrush::GetBitmap Gets the bitmap source that this brush uses to paint

CD2DBitmapBrush::GetExtendModeX Gets the method by which the brush horizontally tiles those
areas that extend past its bitmap

CD2DBitmapBrush::GetExtendModeY Gets the method by which the brush vertically tiles those
areas that extend past its bitmap

CD2DBitmapBrush::GetInterpolationMode Gets the interpolation method used when the brush bitmap is
scaled or rotated

CD2DBitmapBrush::SetBitmap Specifies the bitmap source that this brush uses to paint

A wrapper for ID2D1BitmapBrush.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dbitmapbrush-class.md

CD2DBitmapBrush::SetExtendModeX Specifies how the brush horizontally tiles those areas that
extend past its bitmap

CD2DBitmapBrush::SetExtendModeY Specifies how the brush vertically tiles those areas that extend
past its bitmap

CD2DBitmapBrush::SetInterpolationMode Specifies the interpolation mode used when the brush bitmap
is scaled or rotated

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CD2DBitmapBrush::CommonInit Initializes the object

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DBitmapBrush::operator ID2D1BitmapBrush* Returns ID2D1BitmapBrush interface

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CD2DBitmapBrush::m_pBitmap Stores a pointer to a CD2DBitmap object.

CD2DBitmapBrush::m_pBitmapBrush Stores a pointer to an ID2D1BitmapBrush object.

CD2DBitmapBrush::m_pBitmapBrushProperties Bitmap brush properties.

Inheritance Hierarchy

Requirements

CD2DBitmapBrush::~CD2DBitmapBrush

virtual ~CD2DBitmapBrush();

CD2DBitmapBrush::Attach

CObject

CD2DResource

CD2DBrush

CD2DBitmapBrush

Header: afxrendertarget.h

The destructor. Called when a D2D bitmap brush object is being destroyed.

void Attach(ID2D1BitmapBrush* pResource);

ParametersParameters

CD2DBitmapBrush::CD2DBitmapBrush

CD2DBitmapBrush(
 CRenderTarget* pParentTarget,
 D2D1_BITMAP_BRUSH_PROPERTIES* pBitmapBrushProperties = NULL,
 CD2DBrushProperties* pBrushProperties = NULL,
 BOOL bAutoDestroy = TRUE);

CD2DBitmapBrush(
 CRenderTarget* pParentTarget,
 UINT uiResID,
 LPCTSTR lpszType = NULL,
 CD2DSizeU sizeDest = CD2DSizeU(0, 0),
 D2D1_BITMAP_BRUSH_PROPERTIES* pBitmapBrushProperties = NULL,
 CD2DBrushProperties* pBrushProperties = NULL,
 BOOL bAutoDestroy = TRUE);

CD2DBitmapBrush(
 CRenderTarget* pParentTarget,
 LPCTSTR lpszImagePath,
 CD2DSizeU sizeDest = CD2DSizeU(0, 0),
 D2D1_BITMAP_BRUSH_PROPERTIES* pBitmapBrushProperties = NULL,
 CD2DBrushProperties* pBrushProperties = NULL,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

Attaches existing resource interface to the object

pResource
Existing resource interface. Cannot be NULL

Constructs a CD2DBitmapBrush object.

pParentTarget
A pointer to the render target.

pBitmapBrushProperties
A pointer to the extend modes and the interpolation mode of a bitmap brush.

pBrushProperties
A pointer to the opacity and transformation of a brush.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

uiResID
The resource ID number of the resource.

lpszType
Pointer to a null-terminated string that contains the resource type.

sizeDest
Destination size of the bitmap.

lpszImagePath
Pointer to a null-terminated string that contains the name of file.

CD2DBitmapBrush::CommonInit

void CommonInit(D2D1_BITMAP_BRUSH_PROPERTIES* pBitmapBrushProperties);

ParametersParameters

CD2DBitmapBrush::Create

virtual HRESULT Create(CRenderTarget* pRenderTarget);

ParametersParameters

Return ValueReturn Value

CD2DBitmapBrush::Destroy

virtual void Destroy();

CD2DBitmapBrush::Detach

ID2D1BitmapBrush* Detach();

Return ValueReturn Value

CD2DBitmapBrush::Get

ID2D1BitmapBrush* Get();

Return ValueReturn Value

CD2DBitmapBrush::GetBitmap

Initializes the object

pBitmapBrushProperties
A pointer to the bitmap brush properties.

Creates a CD2DBitmapBrush.

pRenderTarget
A pointer to the render target.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Destroys a CD2DBitmapBrush object.

Detaches resource interface from the object

Pointer to detached resource interface.

Returns ID2D1BitmapBrush interface

Pointer to an ID2D1BitmapBrush interface or NULL if object is not initialized yet.

Gets the bitmap source that this brush uses to paint

CD2DBitmap* GetBitmap();

Return ValueReturn Value

CD2DBitmapBrush::GetExtendModeX

D2D1_EXTEND_MODE GetExtendModeX() const;

Return ValueReturn Value

CD2DBitmapBrush::GetExtendModeY

D2D1_EXTEND_MODE GetExtendModeY() const;

Return ValueReturn Value

CD2DBitmapBrush::GetInterpolationMode

D2D1_BITMAP_INTERPOLATION_MODE GetInterpolationMode() const;

Return ValueReturn Value

CD2DBitmapBrush::m_pBitmap

CD2DBitmap* m_pBitmap;

CD2DBitmapBrush::m_pBitmapBrush

ID2D1BitmapBrush* m_pBitmapBrush;

CD2DBitmapBrush::m_pBitmapBrushProperties

Pointer to an CD2DBitmap object or NULL if object is not initialized yet.

Gets the method by which the brush horizontally tiles those areas that extend past its bitmap

A value that specifies how the brush horizontally tiles those areas that extend past its bitmap

Gets the method by which the brush vertically tiles those areas that extend past its bitmap

A value that specifies how the brush vertically tiles those areas that extend past its bitmap

Gets the interpolation method used when the brush bitmap is scaled or rotated

The interpolation method used when the brush bitmap is scaled or rotated

Stores a pointer to a CD2DBitmap object.

Stores a pointer to an ID2D1BitmapBrush object.

Bitmap brush properties.

D2D1_BITMAP_BRUSH_PROPERTIES* m_pBitmapBrushProperties;

CD2DBitmapBrush::operator ID2D1BitmapBrush*

operator ID2D1BitmapBrush*();

Return ValueReturn Value

CD2DBitmapBrush::SetBitmap

void SetBitmap(CD2DBitmap* pBitmap);

ParametersParameters

CD2DBitmapBrush::SetExtendModeX

void SetExtendModeX(D2D1_EXTEND_MODE extendModeX);

ParametersParameters

CD2DBitmapBrush::SetExtendModeY

void SetExtendModeY(D2D1_EXTEND_MODE extendModeY);

ParametersParameters

CD2DBitmapBrush::SetInterpolationMode

void SetInterpolationMode(D2D1_BITMAP_INTERPOLATION_MODE interpolationMode);

ParametersParameters

Returns ID2D1BitmapBrush interface

Pointer to an ID2D1BitmapBrush interface or NULL if object is not initialized yet.

Specifies the bitmap source that this brush uses to paint

pBitmap
The bitmap source used by the brush

Specifies how the brush horizontally tiles those areas that extend past its bitmap

extendModeX
A value that specifies how the brush horizontally tiles those areas that extend past its bitmap

Specifies how the brush vertically tiles those areas that extend past its bitmap

extendModeY
A value that specifies how the brush vertically tiles those areas that extend past its bitmap

Specifies the interpolation mode used when the brush bitmap is scaled or rotated

See also

interpolationMode
The interpolation mode used when the brush bitmap is scaled or rotated

Classes

CD2DBrush Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DBrush : public CD2DResource;

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CD2DBrush::CD2DBrush Constructs a CD2DBrush object.

CD2DBrush::~CD2DBrush The destructor. Called when a D2D brush object is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DBrush::Attach Attaches existing resource interface to the object

CD2DBrush::Destroy Destroys a CD2DBrush object. (Overrides
CD2DResource::Destroy.)

CD2DBrush::Detach Detaches resource interface from the object

CD2DBrush::Get Returns ID2D1Brush interface

CD2DBrush::GetOpacity Gets the degree of opacity of this brush

CD2DBrush::GetTransform Gets the current transform of the render target

CD2DBrush::IsValid Checks resource validity (Overrides CD2DResource::IsValid.)

CD2DBrush::SetOpacity Sets the degree of opacity of this brush

CD2DBrush::SetTransform Applies the specified transform to the render target, replacing
the existing transformation. All subsequent drawing
operations occur in the transformed space

Public OperatorsPublic Operators

A wrapper for ID2D1Brush.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dbrush-class.md

NAME DESCRIPTION

CD2DBrush::operator ID2D1Brush* Returns ID2D1Brush interface

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CD2DBrush::m_pBrush Stores a pointer to an ID2D1Brush object.

CD2DBrush::m_pBrushProperties Brush properties.

Inheritance Hierarchy

Requirements

CD2DBrush::~CD2DBrush

virtual ~CD2DBrush();

CD2DBrush::Attach

void Attach(ID2D1Brush* pResource);

ParametersParameters

CD2DBrush::CD2DBrush

CD2DBrush(
 CRenderTarget* pParentTarget,
 CD2DBrushProperties* pBrushProperties = NULL,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

CObject

CD2DResource

CD2DBrush

Header: afxrendertarget.h

The destructor. Called when a D2D brush object is being destroyed.

Attaches existing resource interface to the object.

pResource
Existing resource interface. Cannot be NULL.

Constructs a CD2DBrush object.

pParentTarget
A pointer to the render target.

CD2DBrush::Destroy

virtual void Destroy();

CD2DBrush::Detach

ID2D1Brush* Detach();

Return ValueReturn Value

CD2DBrush::Get

ID2D1Brush* Get();

Return ValueReturn Value

CD2DBrush::GetOpacity

FLOAT GetOpacity() const;

Return ValueReturn Value

CD2DBrush::GetTransform

void GetTransform(D2D1_MATRIX_3X2_F* transform) const;

ParametersParameters

pBrushProperties
A pointer to the opacity and transformation of a brush.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

Destroys a CD2DBrush object.

Detaches resource interface from the object.

Pointer to detached resource interface.

Returns ID2D1Brush interface

Pointer to an ID2D1Brush interface or NULL if object is not initialized yet.

Gets the degree of opacity of this brush

A value between zero and 1 that indicates the opacity of the brush. This value is a constant multiplier that linearly
scales the alpha value of all pixels filled by the brush. The opacity values are clamped in the range 0 to 1 before
they are multiplied together.

Gets the current transform of the render target

transform
When this returns, contains the current transform of the render target. This parameter is passed uninitialized.

CD2DBrush::IsValid

virtual BOOL IsValid() const;

Return ValueReturn Value

CD2DBrush::m_pBrush

ID2D1Brush* m_pBrush;

CD2DBrush::m_pBrushProperties

CD2DBrushProperties* m_pBrushProperties;

CD2DBrush::operator ID2D1Brush*

operator ID2D1Brush*();

Return ValueReturn Value

CD2DBrush::SetOpacity

void SetOpacity(FLOAT opacity);

ParametersParameters

CD2DBrush::SetTransform

void SetTransform(const D2D1_MATRIX_3X2_F* transform);

Checks resource validity

TRUE if resource is valid; otherwise FALSE.

Stores a pointer to an ID2D1Brush object.

Brush properties.

Returns ID2D1Brush interface

Pointer to an ID2D1Brush interface or NULL if object is not initialized yet.

Sets the degree of opacity of this brush

opacity
A value between zero and 1 that indicates the opacity of the brush. This value is a constant multiplier that linearly
scales the alpha value of all pixels filled by the brush. The opacity values are clamped in the range 0 to 1 before
they are multiplied together.

Applies the specified transform to the render target, replacing the existing transformation. All subsequent drawing
operations occur in the transformed space.

ParametersParameters

See also

transform
The transform to apply to the render target

Classes

CD2DBrushProperties Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DBrushProperties : public D2D1_BRUSH_PROPERTIES;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DBrushProperties::CD2DBrushProperties Overloaded. Creates a CD2D_BRUSH_PROPERTIES structure

Protected MethodsProtected Methods

NAME DESCRIPTION

CD2DBrushProperties::CommonInit Initializes the object

Inheritance Hierarchy

Requirements

CD2DBrushProperties::CD2DBrushProperties

CD2DBrushProperties();
CD2DBrushProperties(FLOAT _opacity);

CD2DBrushProperties(
 D2D1_MATRIX_3X2_F _transform,
 FLOAT _opacity = 1.);

ParametersParameters

A wrapper for D2D1_BRUSH_PROPERTIES .

D2D1_BRUSH_PROPERTIES

CD2DBrushProperties

Header: afxrendertarget.h

Creates a CD2D_BRUSH_PROPERTIES structure

_opacity
The base opacity of the brush. The default value is 1.0.

_transform

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dbrushproperties-class.md

 CD2DBrushProperties::CommonInit

void CommonInit();

See also

The transformation to apply to the brush

Initializes the object

Classes

CD2DEllipse Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DEllipse : public D2D1_ELLIPSE;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DEllipse::CD2DEllipse Overloaded. Constructs a CD2DEllipse object from
D2D1_ELLIPSE object.

Inheritance Hierarchy

Requirements

CD2DEllipse::CD2DEllipse

CD2DEllipse(const CD2DRectF& rect);
CD2DEllipse(const D2D1_ELLIPSE& ellipse);
 CD2DEllipse(const D2D1_ELLIPSE* ellipse);

CD2DEllipse(
 const CD2DPointF& ptCenter,
 const CD2DSizeF& sizeRadius);

ParametersParameters

A wrapper for D2D1_ELLIPSE .

D2D1_ELLIPSE

CD2DEllipse

Header: afxrendertarget.h

Constructs a CD2DEllipse object from CD2DRectF object.

rect
source rectangle

ellipse
source ellipse

ptCenter
The center point of the ellipse.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dellipse-class.md

See also

sizeRadius
The X-radius and Y-radius of the ellipse.

Classes

CD2DGeometry Class
3/4/2019 • 9 minutes to read • Edit Online

Syntax
class CD2DGeometry : public CD2DResource;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DGeometry::CD2DGeometry Constructs a CD2DGeometry object.

CD2DGeometry::~CD2DGeometry The destructor. Called when a D2D geometry object is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DGeometry::Attach Attaches existing resource interface to the object

CD2DGeometry::CombineWithGeometry Combines this geometry with the specified geometry and
stores the result in an ID2D1SimplifiedGeometrySink.

CD2DGeometry::CompareWithGeometry Describes the intersection between this geometry and the
specified geometry. The comparison is performed using the
specified flattening tolerance.

CD2DGeometry::ComputeArea Computes the area of the geometry after it has been
transformed by the specified matrix and flattened using the
specified tolerance.

CD2DGeometry::ComputeLength Calculates the length of the geometry as though each
segment were unrolled into a line.

CD2DGeometry::ComputePointAtLength Calculates the point and tangent vector at the specified
distance along the geometry after it has been transformed by
the specified matrix and flattened using the specified
tolerance.

CD2DGeometry::Destroy Destroys a CD2DGeometry object. (Overrides
CD2DResource::Destroy.)

CD2DGeometry::Detach Detaches resource interface from the object

A wrapper for ID2D1Geometry.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dgeometry-class.md

CD2DGeometry::FillContainsPoint Indicates whether the area filled by the geometry would
contain the specified point given the specified flattening
tolerance.

CD2DGeometry::Get Returns ID2D1Geometry interface

CD2DGeometry::GetBounds

CD2DGeometry::GetWidenedBounds Gets the bounds of the geometry after it has been widened
by the specified stroke width and style and transformed by
the specified matrix.

CD2DGeometry::IsValid Checks resource validity (Overrides CD2DResource::IsValid.)

CD2DGeometry::Outline Computes the outline of the geometry and writes the result
to an ID2D1SimplifiedGeometrySink.

CD2DGeometry::Simplify Creates a simplified version of the geometry that contains
only lines and (optionally) cubic Bezier curves and writes the
result to an ID2D1SimplifiedGeometrySink.

CD2DGeometry::StrokeContainsPoint Determines whether the geometry's stroke contains the
specified point given the specified stroke thickness, style, and
transform.

CD2DGeometry::Tessellate Creates a set of clockwise-wound triangles that cover the
geometry after it has been transformed using the specified
matrix and flattened using the specified tolerance.

CD2DGeometry::Widen Widens the geometry by the specified stroke and writes the
result to an ID2D1SimplifiedGeometrySink after it has been
transformed by the specified matrix and flattened using the
specified tolerance.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DGeometry::operator ID2D1Geometry* Returns ID2D1Geometry interface

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CD2DGeometry::m_pGeometry A pointer to an ID2D1Geometry.

Inheritance Hierarchy
CObject

CD2DResource

CD2DGeometry

Requirements

CD2DGeometry::~CD2DGeometry

virtual ~CD2DGeometry();

CD2DGeometry::Attach

void Attach(ID2D1Geometry* pResource);

ParametersParameters

CD2DGeometry::CD2DGeometry

CD2DGeometry(
 CRenderTarget* pParentTarget,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

CD2DGeometry::CombineWithGeometry

BOOL CombineWithGeometry(
 CD2DGeometry& inputGeometry,
 D2D1_COMBINE_MODE combineMode,
 const D2D1_MATRIX_3X2_F& inputGeometryTransform,
 ID2D1SimplifiedGeometrySink* geometrySink,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

Header: afxrendertarget.h

The destructor. Called when a D2D geometry object is being destroyed.

Attaches existing resource interface to the object

pResource
Existing resource interface. Cannot be NULL

Constructs a CD2DGeometry object.

pParentTarget
A pointer to the render target.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

Combines this geometry with the specified geometry and stores the result in an ID2D1SimplifiedGeometrySink.

inputGeometry
The geometry to combine with this instance.

combineMode
The type of combine operation to perform.

Return ValueReturn Value

CD2DGeometry::CompareWithGeometry

D2D1_GEOMETRY_RELATION CompareWithGeometry(
 CD2DGeometry& inputGeometry,
 const D2D1_MATRIX_3X2_F& inputGeometryTransform,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

Return ValueReturn Value

CD2DGeometry::ComputeArea

BOOL ComputeArea(
 const D2D1_MATRIX_3X2_F& worldTransform,
 FLOAT& area,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

inputGeometryTransform
The transform to apply to inputGeometry before combining.

geometrySink
The result of the combine operation.

flatteningTolerance
The maximum bounds on the distance between points in the polygonal approximation of the geometries. Smaller
values produce more accurate results but cause slower execution.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Describes the intersection between this geometry and the specified geometry. The comparison is performed using
the specified flattening tolerance.

inputGeometry
The geometry to test.

inputGeometryTransform
The transform to apply to inputGeometry.

flatteningTolerance
The maximum bounds on the distance between points in the polygonal approximation of the geometries. Smaller
values produce more accurate results but cause slower execution.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Computes the area of the geometry after it has been transformed by the specified matrix and flattened using the
specified tolerance.

worldTransform
The transform to apply to this geometry before computing its area.

area
When this method returns, contains a pointer to the area of the transformed, flattened version of this geometry.
You must allocate storage for this parameter.

flatteningTolerance

Return ValueReturn Value

CD2DGeometry::ComputeLength

BOOL ComputeLength(
 const D2D1_MATRIX_3X2_F& worldTransform,
 FLOAT& length,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

Return ValueReturn Value

CD2DGeometry::ComputePointAtLength

BOOL ComputePointAtLength(
 FLOAT length,
 const D2D1_MATRIX_3X2_F& worldTransform,
 CD2DPointF& point,
 CD2DPointF& unitTangentVector,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

The maximum bounds on the distance between points in the polygonal approximation of the geometry. Smaller
values produce more accurate results but cause slower execution.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Calculates the length of the geometry as though each segment were unrolled into a line.

worldTransform
The transform to apply to the geometry before calculating its length.

length
When this method returns, contains a pointer to the length of the geometry. For closed geometries, the length
includes an implicit closing segment. You must allocate storage for this parameter.

flatteningTolerance
The maximum bounds on the distance between points in the polygonal approximation of the geometry. Smaller
values produce more accurate results but cause slower execution.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Calculates the point and tangent vector at the specified distance along the geometry after it has been transformed
by the specified matrix and flattened using the specified tolerance.

length
The distance along the geometry of the point and tangent to find. If this distance is less then 0, this method
calculates the first point in the geometry. If this distance is greater than the length of the geometry, this method
calculates the last point in the geometry.

worldTransform
The transform to apply to the geometry before calculating the specified point and tangent.

point
The location at the specified distance along the geometry. If the geometry is empty, this point contains NaN as its x
and y values.

Return ValueReturn Value

CD2DGeometry::Destroy

virtual void Destroy();

CD2DGeometry::Detach

ID2D1Geometry* Detach();

Return ValueReturn Value

CD2DGeometry::FillContainsPoint

BOOL FillContainsPoint(
 CD2DPointF point,
 const D2D1_MATRIX_3X2_F& worldTransform,
 BOOL* contains,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

Return ValueReturn Value

unitTangentVector
When this method returns, contains a pointer to the tangent vector at the specified distance along the geometry. If
the geometry is empty, this vector contains NaN as its x and y values. You must allocate storage for this parameter.

flatteningTolerance
The maximum bounds on the distance between points in the polygonal approximation of the geometry. Smaller
values produce more accurate results but cause slower execution.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Destroys a CD2DGeometry object.

Detaches resource interface from the object

Pointer to detached resource interface.

Indicates whether the area filled by the geometry would contain the specified point given the specified flattening
tolerance.

point
The point to test.

worldTransform
The transform to apply to the geometry prior to testing for containment.

contains
When this method returns, contains a bool value that is TRUE if the area filled by the geometry contains point;
otherwise, FALSE. You must allocate storage for this parameter.

flatteningTolerance
The numeric accuracy with which the precise geometric path and path intersection is calculated. Points missing the
fill by less than the tolerance are still considered inside. Smaller values produce more accurate results but cause
slower execution.

CD2DGeometry::Get

ID2D1Geometry* Get();

Return ValueReturn Value

CD2DGeometry::GetBounds
BOOL GetBounds(
const D2D1_MATRIX_3X2_F& worldTransform,
CD2DRectF& bounds) const;

ParametersParameters

Return ValueReturn Value

CD2DGeometry::GetWidenedBounds

BOOL GetWidenedBounds(
 FLOAT strokeWidth,
 ID2D1StrokeStyle* strokeStyle,
 const D2D1_MATRIX_3X2_F& worldTransform,
 CD2DRectF& bounds,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

Return ValueReturn Value

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Returns ID2D1Geometry interface

Pointer to an ID2D1Geometry interface or NULL if object is not initialized yet.

worldTransform
bounds

Gets the bounds of the geometry after it has been widened by the specified stroke width and style and
transformed by the specified matrix.

strokeWidth
The amount by which to widen the geometry by stroking its outline.

strokeStyle
The style of the stroke that widens the geometry.

worldTransform
A transform to apply to the geometry after the geometry is transformed and after the geometry has been stroked.

bounds
When this method returns, contains the bounds of the widened geometry. You must allocate storage for this
parameter.

flatteningTolerance
The maximum bounds on the distance between points in the polygonal approximation of the geometries. Smaller
values produce more accurate results but cause slower execution.

CD2DGeometry::IsValid

virtual BOOL IsValid() const;

Return ValueReturn Value

CD2DGeometry::m_pGeometry

ID2D1Geometry* m_pGeometry;

CD2DGeometry::operator ID2D1Geometry*

operator ID2D1Geometry*();

Return ValueReturn Value

CD2DGeometry::Outline

BOOL Outline(
 const D2D1_MATRIX_3X2_F& worldTransform,
 ID2D1SimplifiedGeometrySink* geometrySink,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

Return ValueReturn Value

CD2DGeometry::Simplify

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Checks resource validity

TRUE if resource is valid; otherwise FALSE.

A pointer to an ID2D1Geometry.

Returns ID2D1Geometry interface

Pointer to an ID2D1Geometry interface or NULL if object is not initialized yet.

Computes the outline of the geometry and writes the result to an ID2D1SimplifiedGeometrySink.

worldTransform
The transform to apply to the geometry outline.

geometrySink
The ID2D1SimplifiedGeometrySink to which the geometry transformed outline is appended.

flatteningTolerance
The maximum bounds on the distance between points in the polygonal approximation of the geometry. Smaller
values produce more accurate results but cause slower execution.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Creates a simplified version of the geometry that contains only lines and (optionally) cubic Bezier curves and

BOOL Simplify(
 D2D1_GEOMETRY_SIMPLIFICATION_OPTION simplificationOption,
 const D2D1_MATRIX_3X2_F& worldTransform,
 ID2D1SimplifiedGeometrySink* geometrySink,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

Return ValueReturn Value

CD2DGeometry::StrokeContainsPoint

BOOL StrokeContainsPoint(
 CD2DPointF point,
 FLOAT strokeWidth,
 ID2D1StrokeStyle* strokeStyle,
 const D2D1_MATRIX_3X2_F& worldTransform,
 BOOL* contains,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

writes the result to an ID2D1SimplifiedGeometrySink.

simplificationOption
A value that specifies whether the simplified geometry should contain curves.

worldTransform
The transform to apply to the simplified geometry.

geometrySink
The ID2D1SimplifiedGeometrySink to which the simplified geometry is appended.

flatteningTolerance
The maximum bounds on the distance between points in the polygonal approximation of the geometry. Smaller
values produce more accurate results but cause slower execution.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Determines whether the geometry's stroke contains the specified point given the specified stroke thickness, style,
and transform.

point
The point to test for containment.

strokeWidth
The thickness of the stroke to apply.

strokeStyle
The style of the stroke to apply.

worldTransform
The transform to apply to the stroked geometry.

contains
When this method returns, contains a boolean value set to TRUE if the geometry's stroke contains the specified
point; otherwise, FALSE. You must allocate storage for this parameter.

flatteningTolerance
The numeric accuracy with which the precise geometric path and path intersection is calculated. Points missing the

Return ValueReturn Value

CD2DGeometry::Tessellate

BOOL Tessellate(
 const D2D1_MATRIX_3X2_F& worldTransform,
 ID2D1TessellationSink* tessellationSink,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

Return ValueReturn Value

CD2DGeometry::Widen

BOOL Widen(
 FLOAT strokeWidth,
 ID2D1StrokeStyle* strokeStyle,
 const D2D1_MATRIX_3X2_F& worldTransform,
 ID2D1SimplifiedGeometrySink* geometrySink,
 FLOAT flatteningTolerance = D2D1_DEFAULT_FLATTENING_TOLERANCE) const;

ParametersParameters

stroke by less than the tolerance are still considered inside. Smaller values produce more accurate results but
cause slower execution.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Creates a set of clockwise-wound triangles that cover the geometry after it has been transformed using the
specified matrix and flattened using the specified tolerance.

worldTransform
The transform to apply to this geometry, or NULL.

tessellationSink
The ID2D1TessellationSink to which the tessellated is appended.

flatteningTolerance
The maximum bounds on the distance between points in the polygonal approximation of the geometry. Smaller
values produce more accurate results but cause slower execution.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Widens the geometry by the specified stroke and writes the result to an ID2D1SimplifiedGeometrySink after it has
been transformed by the specified matrix and flattened using the specified tolerance.

strokeWidth
The amount by which to widen the geometry.

strokeStyle
The style of stroke to apply to the geometry, or NULL.

worldTransform
The transform to apply to the geometry after widening it.

geometrySink
The ID2D1SimplifiedGeometrySink to which the widened geometry is appended.

flatteningTolerance

Return ValueReturn Value

See also

The maximum bounds on the distance between points in the polygonal approximation of the geometry. Smaller
values produce more accurate results but cause slower execution.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Classes

CD2DGeometrySink Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CD2DGeometrySink;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DGeometrySink::CD2DGeometrySink Constructs a CD2DGeometrySink object from
CD2DPathGeometry object.

CD2DGeometrySink::~CD2DGeometrySink The destructor. Called when a D2D geometry sink object is
being destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DGeometrySink::AddArc Adds a single arc to the path geometry

CD2DGeometrySink::AddBezier Creates a cubic Bezier curve between the current point and
the specified end point.

CD2DGeometrySink::AddBeziers Creates a sequence of cubic Bezier curves and adds them to
the geometry sink.

CD2DGeometrySink::AddLine Creates a line segment between the current point and the
specified end point and adds it to the geometry sink.

CD2DGeometrySink::AddLines Creates a sequence of lines using the specified points and
adds them to the geometry sink.

CD2DGeometrySink::AddQuadraticBezier Creates a quadratic Bezier curve between the current point
and the specified end point.

CD2DGeometrySink::AddQuadraticBeziers Adds a sequence of quadratic Bezier segments as an array in a
single call.

CD2DGeometrySink::BeginFigure Starts a new figure at the specified point.

CD2DGeometrySink::Close Closes the geometry sink

CD2DGeometrySink::EndFigure Ends the current figure; optionally, closes it.

A wrapper for ID2D1GeometrySink.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dgeometrysink-class.md

CD2DGeometrySink::Get Returns ID2D1GeometrySink interface

CD2DGeometrySink::IsValid Checks geometry sink validity

CD2DGeometrySink::SetFillMode Specifies the method used to determine which points are
inside the geometry described by this geometry sink and
which points are outside.

CD2DGeometrySink::SetSegmentFlags Specifies stroke and join options to be applied to new
segments added to the geometry sink.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DGeometrySink::operator ID2D1GeometrySink* Returns ID2D1GeometrySink interface

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CD2DGeometrySink::m_pSink A pointer to an ID2D1GeometrySink.

Inheritance Hierarchy

Requirements

CD2DGeometrySink::~CD2DGeometrySink

virtual ~CD2DGeometrySink();

CD2DGeometrySink::AddArc

void AddArc(const D2D1_ARC_SEGMENT& arc);

ParametersParameters

CD2DGeometrySink::AddBezier

CD2DGeometrySink

Header: afxrendertarget.h

The destructor. Called when a D2D geometry sink object is being destroyed.

Adds a single arc to the path geometry

arc
The arc segment to add to the figure

Creates a cubic Bezier curve between the current point and the specified end point.

void AddBezier(const D2D1_BEZIER_SEGMENT& bezier);

ParametersParameters

CD2DGeometrySink::AddBeziers

void AddBeziers(
 const CArray<D2D1_BEZIER_SEGMENT,
 D2D1_BEZIER_SEGMENT>& beziers);

ParametersParameters

CD2DGeometrySink::AddLine

void AddLine(CD2DPointF point);

ParametersParameters

CD2DGeometrySink::AddLines

void AddLines(
 const CArray<CD2DPointF,
 CD2DPointF>& points);

ParametersParameters

CD2DGeometrySink::AddQuadraticBezier

bezier
A structure that describes the control points and end point of the Bezier curve to add.

Creates a sequence of cubic Bezier curves and adds them to the geometry sink.

beziers
An array of Bezier segments that describes the Bezier curves to create. A curve is drawn from the geometry sink's
current point (the end point of the last segment drawn or the location specified by BeginFigure) to the end point of
the first Bezier segment in the array. if the array contains additional Bezier segments, each subsequent Bezier
segment uses the end point of the preceding Bezier segment as its start point.

Creates a line segment between the current point and the specified end point and adds it to the geometry sink.

point
The end point of the line to draw.

Creates a sequence of lines using the specified points and adds them to the geometry sink.

points
An array of one or more points that describe the lines to draw. A line is drawn from the geometry sink's current
point (the end point of the last segment drawn or the location specified by BeginFigure) to the first point in the
array. if the array contains additional points, a line is drawn from the first point to the second point in the array,
from the second point to the third point, and so on. An array of a sequence of the end points of the lines to draw.

Creates a quadratic Bezier curve between the current point and the specified end point.

void AddQuadraticBezier(const D2D1_QUADRATIC_BEZIER_SEGMENT& bezier);

ParametersParameters

CD2DGeometrySink::AddQuadraticBeziers

void AddQuadraticBeziers(
 const CArray<D2D1_QUADRATIC_BEZIER_SEGMENT,
 D2D1_QUADRATIC_BEZIER_SEGMENT>& beziers);

ParametersParameters

CD2DGeometrySink::BeginFigure

void BeginFigure(
 CD2DPointF startPoint,
 D2D1_FIGURE_BEGIN figureBegin);

ParametersParameters

CD2DGeometrySink::CD2DGeometrySink

CD2DGeometrySink(CD2DPathGeometry& pathGeometry);

ParametersParameters

CD2DGeometrySink::Close

BOOL Close();

Return ValueReturn Value

bezier
A structure that describes the control point and the end point of the quadratic Bezier curve to add.

Adds a sequence of quadratic Bezier segments as an array in a single call.

beziers
An array of a sequence of quadratic Bezier segments.

Starts a new figure at the specified point.

startPoint
The point at which to begin the new figure.

figureBegin
Whether the new figure should be hollow or filled.

Constructs a CD2DGeometrySink object from CD2DPathGeometry object.

pathGeometry
An existing CD2DPathGeometry object.

Closes the geometry sink

CD2DGeometrySink::EndFigure

void EndFigure(D2D1_FIGURE_END figureEnd);

ParametersParameters

CD2DGeometrySink::Get

ID2D1GeometrySink* Get();

Return ValueReturn Value

CD2DGeometrySink::IsValid

BOOL IsValid() const;

Return ValueReturn Value

CD2DGeometrySink::m_pSink

ID2D1GeometrySink* m_pSink;

CD2DGeometrySink::operator ID2D1GeometrySink*

operator ID2D1GeometrySink*();

Return ValueReturn Value

CD2DGeometrySink::SetFillMode

Nonzero if successful; otherwise FALSE.

Ends the current figure; optionally, closes it.

figureEnd
A value that indicates whether the current figure is closed. If the figure is closed, a line is drawn between the
current point and the start point specified by BeginFigure.

Returns ID2D1GeometrySink interface

Pointer to an ID2D1GeometrySink interface or NULL if object is not initialized yet.

Checks geometry sink validity

TRUE if geometry sink is valid; otherwise FALSE.

A pointer to an ID2D1GeometrySink.

Returns ID2D1GeometrySink interface

Pointer to an ID2D1GeometrySink interface or NULL if object is not initialized yet.

Specifies the method used to determine which points are inside the geometry described by this geometry sink and

void SetFillMode(D2D1_FILL_MODE fillMode);

ParametersParameters

CD2DGeometrySink::SetSegmentFlags

void SetSegmentFlags(D2D1_PATH_SEGMENT vertexFlags);

ParametersParameters

See also

which points are outside.

fillMode
The method used to determine whether a given point is part of the geometry.

Specifies stroke and join options to be applied to new segments added to the geometry sink.

vertexFlags
Stroke and join options to be applied to new segments added to the geometry sink.

Classes

CD2DGradientBrush Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DGradientBrush : public CD2DBrush;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DGradientBrush::CD2DGradientBrush Constructs a CD2DGradientBrush object.

CD2DGradientBrush::~CD2DGradientBrush The destructor. Called when a D2D gradient brush object is
being destroyed.

Protected MethodsProtected Methods

NAME DESCRIPTION

CD2DGradientBrush::Destroy Destroys a CD2DGradientBrush object. (Overrides
CD2DBrush::Destroy.)

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CD2DGradientBrush::m_arGradientStops Array of the D2D1_GRADIENT_STOP structures.

CD2DGradientBrush::m_colorInterpolationGamma The space in which color interpolation between the gradient
stops is performed.

CD2DGradientBrush::m_extendMode The behavior of the gradient outside the [0,1] normalized
range.

CD2DGradientBrush::m_pGradientStops A pointer to an array of D2D1_GRADIENT_STOP structures.

Inheritance Hierarchy

The base class of the CD2DLinearGradientBrush and the CD2DRadialGradientBrush classes.

CObject

CD2DResource

CD2DBrush

CD2DGradientBrush

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dgradientbrush-class.md

Requirements

CD2DGradientBrush::~CD2DGradientBrush

virtual ~CD2DGradientBrush();

CD2DGradientBrush::CD2DGradientBrush

CD2DGradientBrush(
 CRenderTarget* pParentTarget,
 const D2D1_GRADIENT_STOP* gradientStops,
 UINT gradientStopsCount,
 D2D1_GAMMA colorInterpolationGamma = D2D1_GAMMA_2_2,
 D2D1_EXTEND_MODE extendMode = D2D1_EXTEND_MODE_CLAMP,
 CD2DBrushProperties* pBrushProperties = NULL,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

CD2DGradientBrush::Destroy

virtual void Destroy();

CD2DGradientBrush::m_arGradientStops

Header: afxrendertarget.h

The destructor. Called when a D2D gradient brush object is being destroyed.

Constructs a CD2DGradientBrush object.

pParentTarget
A pointer to the render target.

gradientStops
A pointer to an array of D2D1_GRADIENT_STOP structures.

gradientStopsCount
A value greater than or equal to 1 that specifies the number of gradient stops in the gradientStops array.

colorInterpolationGamma
The space in which color interpolation between the gradient stops is performed.

extendMode
The behavior of the gradient outside the [0,1] normalized range.

pBrushProperties
A pointer to the opacity and transformation of a brush.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

Destroys a CD2DGradientBrush object.

Array of the D2D1_GRADIENT_STOP structures.

CArray<D2D1_GRADIENT_STOP, D2D1_GRADIENT_STOP> m_arGradientStops;

CD2DGradientBrush::m_colorInterpolationGamma

D2D1_GAMMA m_colorInterpolationGamma;

CD2DGradientBrush::m_extendMode

D2D1_EXTEND_MODE m_extendMode;

CD2DGradientBrush::m_pGradientStops

ID2D1GradientStopCollection* m_pGradientStops;

See also

The space in which color interpolation between the gradient stops is performed.

The behavior of the gradient outside the [0,1] normalized range.

A pointer to an array of D2D1_GRADIENT_STOP structures.

Classes

CD2DLayer Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DLayer : public CD2DResource;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DLayer::CD2DLayer Constructs a CD2DLayer object.

CD2DLayer::~CD2DLayer The destructor. Called when a D2D layer object is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DLayer::Attach Attaches existing resource interface to the object

CD2DLayer::Create Creates a CD2DLayer. (Overrides CD2DResource::Create.)

CD2DLayer::Destroy Destroys a CD2DLayer object. (Overrides
CD2DResource::Destroy.)

CD2DLayer::Detach Detaches resource interface from the object

CD2DLayer::Get Returns ID2D1Layer interface

CD2DLayer::GetSize Returns the size of the render target in device-independent
pixels

CD2DLayer::IsValid Checks resource validity (Overrides CD2DResource::IsValid.)

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DLayer::operator ID2D1Layer* Returns ID2D1Layer interface

Protected Data MembersProtected Data Members

A wrapper for ID2D1Layer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dlayer-class.md

NAME DESCRIPTION

CD2DLayer::m_pLayer Stores a pointer to an ID2D1Layer object.

Inheritance Hierarchy

Requirements

CD2DLayer::~CD2DLayer

virtual ~CD2DLayer();

CD2DLayer::Attach

void Attach(ID2D1Layer* pResource);

ParametersParameters

CD2DLayer::CD2DLayer

CD2DLayer(
 CRenderTarget* pParentTarget,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

CD2DLayer::Create

CObject

CD2DResource

CD2DLayer

Header: afxrendertarget.h

The destructor. Called when a D2D layer object is being destroyed.

Attaches existing resource interface to the object

pResource
Existing resource interface. Cannot be NULL

Constructs a CD2DLayer object.

pParentTarget
A pointer to the render target.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

Creates a CD2DLayer.

virtual HRESULT Create(CRenderTarget* pRenderTarget);

ParametersParameters

Return ValueReturn Value

CD2DLayer::Destroy

virtual void Destroy();

CD2DLayer::Detach

ID2D1Layer* Detach();

Return ValueReturn Value

CD2DLayer::Get

ID2D1Layer* Get();

Return ValueReturn Value

CD2DLayer::GetSize

CD2DSizeF GetSize() const;

Return ValueReturn Value

CD2DLayer::IsValid

virtual BOOL IsValid() const;

Return ValueReturn Value

pRenderTarget
A pointer to the render target.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Destroys a CD2DLayer object.

Detaches resource interface from the object

Pointer to detached resource interface.

Returns ID2D1Layer interface

Pointer to an ID2D1Layer interface or NULL if object is not initialized yet.

Returns the size of the render target in device-independent pixels

The current size of the render target in device-independent pixels

Checks resource validity

CD2DLayer::m_pLayer

ID2D1Layer* m_pLayer;

CD2DLayer::operator ID2D1Layer*

operator ID2D1Layer* ();

Return ValueReturn Value

See also

TRUE if resource is valid; otherwise FALSE.

Stores a pointer to an ID2D1Layer object.

Returns ID2D1Layer interface

Pointer to an ID2D1Layer interface or NULL if object is not initialized yet.

Classes

CD2DLinearGradientBrush Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DLinearGradientBrush : public CD2DGradientBrush;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DLinearGradientBrush::CD2DLinearGradientBrush Constructs a CD2DLinearGradientBrush object.

CD2DLinearGradientBrush::~CD2DLinearGradientBrush The destructor. Called when a D2D linear gradient brush
object is being destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DLinearGradientBrush::Attach Attaches existing resource interface to the object

CD2DLinearGradientBrush::Create Creates a CD2DLinearGradientBrush. (Overrides
CD2DResource::Create.)

CD2DLinearGradientBrush::Destroy Destroys a CD2DLinearGradientBrush object. (Overrides
CD2DGradientBrush::Destroy.)

CD2DLinearGradientBrush::Detach Detaches resource interface from the object

CD2DLinearGradientBrush::Get Returns ID2D1LinearGradientBrush interface

CD2DLinearGradientBrush::GetEndPoint Retrieves the ending coordinates of the linear gradient

CD2DLinearGradientBrush::GetStartPoint Retrieves the starting coordinates of the linear gradient

CD2DLinearGradientBrush::SetEndPoint Sets the ending coordinates of the linear gradient in the
brush's coordinate space

CD2DLinearGradientBrush::SetStartPoint Sets the starting coordinates of the linear gradient in the
brush's coordinate space

Public OperatorsPublic Operators

A wrapper for ID2D1LinearGradientBrush.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dlineargradientbrush-class.md

NAME DESCRIPTION

CD2DLinearGradientBrush::operator
ID2D1LinearGradientBrush*

Returns ID2D1LinearGradientBrush interface

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CD2DLinearGradientBrush::m_LinearGradientBrushProperties The start and end points of the gradient.

CD2DLinearGradientBrush::m_pLinearGradientBrush A pointer to an ID2D1LinearGradientBrush.

Inheritance Hierarchy

Requirements

CD2DLinearGradientBrush::~CD2DLinearGradientBrush

virtual ~CD2DLinearGradientBrush();

CD2DLinearGradientBrush::Attach

void Attach(ID2D1LinearGradientBrush* pResource);

ParametersParameters

CD2DLinearGradientBrush::CD2DLinearGradientBrush

CObject

CD2DResource

CD2DBrush

CD2DGradientBrush

CD2DLinearGradientBrush

Header: afxrendertarget.h

The destructor. Called when a D2D linear gradient brush object is being destroyed.

Attaches existing resource interface to the object

pResource
Existing resource interface. Cannot be NULL

Constructs a CD2DLinearGradientBrush object.

CD2DLinearGradientBrush(
 CRenderTarget* pParentTarget,
 const D2D1_GRADIENT_STOP* gradientStops,
 UINT gradientStopsCount,
 D2D1_LINEAR_GRADIENT_BRUSH_PROPERTIES LinearGradientBrushProperties,
 D2D1_GAMMA colorInterpolationGamma = D2D1_GAMMA_2_2,
 D2D1_EXTEND_MODE extendMode = D2D1_EXTEND_MODE_CLAMP,
 CD2DBrushProperties* pBrushProperties = NULL,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

CD2DLinearGradientBrush::Create

virtual HRESULT Create(CRenderTarget* pRenderTarget);

ParametersParameters

Return ValueReturn Value

CD2DLinearGradientBrush::Destroy

virtual void Destroy();

pParentTarget
A pointer to the render target.

gradientStops
A pointer to an array of D2D1_GRADIENT_STOP structures.

gradientStopsCount
A value greater than or equal to 1 that specifies the number of gradient stops in the gradientStops array.

LinearGradientBrushProperties
The start and end points of the gradient.

colorInterpolationGamma
The space in which color interpolation between the gradient stops is performed.

extendMode
The behavior of the gradient outside the [0,1] normalized range.

pBrushProperties
A pointer to the opacity and transformation of a brush.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

Creates a CD2DLinearGradientBrush.

pRenderTarget
A pointer to the render target.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Destroys a CD2DLinearGradientBrush object.

CD2DLinearGradientBrush::Detach

ID2D1LinearGradientBrush* Detach();

Return ValueReturn Value

CD2DLinearGradientBrush::Get

ID2D1LinearGradientBrush* Get();

Return ValueReturn Value

CD2DLinearGradientBrush::GetEndPoint

CD2DPointF GetEndPoint() const;

Return ValueReturn Value

CD2DLinearGradientBrush::GetStartPoint

CD2DPointF GetStartPoint() const;

Return ValueReturn Value

CD2DLinearGradientBrush::m_LinearGradientBrushProperties

D2D1_LINEAR_GRADIENT_BRUSH_PROPERTIES m_LinearGradientBrushProperties;

CD2DLinearGradientBrush::m_pLinearGradientBrush

ID2D1LinearGradientBrush* m_pLinearGradientBrush;

Detaches resource interface from the object

Pointer to detached resource interface.

Returns ID2D1LinearGradientBrush interface

Pointer to an ID2D1LinearGradientBrush interface or NULL if object is not initialized yet.

Retrieves the ending coordinates of the linear gradient

The ending two-dimensional coordinates of the linear gradient, in the brush's coordinate space

Retrieves the starting coordinates of the linear gradient

The starting two-dimensional coordinates of the linear gradient, in the brush's coordinate space

The start and end points of the gradient.

A pointer to an ID2D1LinearGradientBrush.

CD2DLinearGradientBrush::operator ID2D1LinearGradientBrush*

operator ID2D1LinearGradientBrush*();

Return ValueReturn Value

CD2DLinearGradientBrush::SetEndPoint

void SetEndPoint(CD2DPointF point);

ParametersParameters

CD2DLinearGradientBrush::SetStartPoint

void SetStartPoint(CD2DPointF point);

ParametersParameters

See also

Returns ID2D1LinearGradientBrush interface

Pointer to an ID2D1LinearGradientBrush interface or NULL if object is not initialized yet.

Sets the ending coordinates of the linear gradient in the brush's coordinate space

point
The ending two-dimensional coordinates of the linear gradient, in the brush's coordinate space

Sets the starting coordinates of the linear gradient in the brush's coordinate space

point
The starting two-dimensional coordinates of the linear gradient, in the brush's coordinate space

Classes

CD2DMesh Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DMesh : public CD2DResource;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DMesh::CD2DMesh Constructs a CD2DMesh object.

CD2DMesh::~CD2DMesh The destructor. Called when a D2D mesh object is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DMesh::Attach Attaches existing resource interface to the object

CD2DMesh::Create Creates a CD2DMesh. (Overrides CD2DResource::Create.)

CD2DMesh::Destroy Destroys a CD2DMesh object. (Overrides
CD2DResource::Destroy.)

CD2DMesh::Detach Detaches resource interface from the object

CD2DMesh::Get Returns ID2D1Mesh interface

CD2DMesh::IsValid Checks resource validity (Overrides CD2DResource::IsValid.)

CD2DMesh::Open Opens the mesh for population.

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DMesh::operator ID2D1Mesh* Returns ID2D1Mesh interface

Protected Data MembersProtected Data Members

A wrapper for ID2D1Mesh.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dmesh-class.md

NAME DESCRIPTION

CD2DMesh::m_pMesh A pointer to an ID2D1Mesh.

Inheritance Hierarchy

Requirements

CD2DMesh::~CD2DMesh

virtual ~CD2DMesh();

CD2DMesh::Attach

void Attach(ID2D1Mesh* pResource);

ParametersParameters

CD2DMesh::CD2DMesh

CD2DMesh(
 CRenderTarget* pParentTarget,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

CD2DMesh::Create

CObject

CD2DResource

CD2DMesh

Header: afxrendertarget.h

The destructor. Called when a D2D mesh object is being destroyed.

Attaches existing resource interface to the object

pResource
Existing resource interface. Cannot be NULL

Constructs a CD2DMesh object.

pParentTarget
A pointer to the render target.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

Creates a CD2DMesh.

virtual HRESULT Create(CRenderTarget* pRenderTarget);

ParametersParameters

Return ValueReturn Value

CD2DMesh::Destroy

virtual void Destroy();

CD2DMesh::Detach

ID2D1Mesh* Detach();

Return ValueReturn Value

CD2DMesh::Get

ID2D1Mesh* Get();

Return ValueReturn Value

CD2DMesh::IsValid

virtual BOOL IsValid() const;

Return ValueReturn Value

CD2DMesh::m_pMesh

ID2D1Mesh* m_pMesh;

pRenderTarget
A pointer to the render target.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Destroys a CD2DMesh object.

Detaches resource interface from the object

Pointer to detached resource interface.

Returns ID2D1Mesh interface

Pointer to an ID2D1Mesh interface or NULL if object is not initialized yet.

Checks resource validity

TRUE if resource is valid; otherwise FALSE.

A pointer to an ID2D1Mesh.

CD2DMesh::Open

ID2D1TessellationSink* Open();

Return ValueReturn Value

CD2DMesh::operator ID2D1Mesh*

operator ID2D1Mesh*();

Return ValueReturn Value

See also

Opens the mesh for population.

A pointer to an ID2D1TessellationSink that is used to populate the mesh.

Returns ID2D1Mesh interface

Pointer to an ID2D1Mesh interface or NULL if object is not initialized yet.

Classes

CD2DPathGeometry Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DPathGeometry : public CD2DGeometry;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DPathGeometry::CD2DPathGeometry Constructs a CD2DPathGeometry object.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DPathGeometry::Attach Attaches existing resource interface to the object

CD2DPathGeometry::Create Creates a CD2DPathGeometry. (Overrides
CD2DResource::Create.)

CD2DPathGeometry::Destroy Destroys a CD2DPathGeometry object. (Overrides
CD2DGeometry::Destroy.)

CD2DPathGeometry::Detach Detaches resource interface from the object

CD2DPathGeometry::GetFigureCount Retrieves tthe number of figures in the path geometry.

CD2DPathGeometry::GetSegmentCount Retrieves the number of segments in the path geometry.

CD2DPathGeometry::Open Retrieves the geometry sink that is used to populate the path
geometry with figures and segments.

CD2DPathGeometry::Stream Copies the contents of the path geometry to the specified
ID2D1GeometrySink.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CD2DPathGeometry::m_pPathGeometry A pointer to an ID2D1PathGeometry.

Inheritance Hierarchy

A wrapper for ID2D1PathGeometry.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dpathgeometry-class.md

Requirements

CD2DPathGeometry::Attach

void Attach(ID2D1PathGeometry* pResource);

ParametersParameters

CD2DPathGeometry::CD2DPathGeometry

CD2DPathGeometry(
 CRenderTarget* pParentTarget,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

CD2DPathGeometry::Create

virtual HRESULT Create(CRenderTarget* pRenderTarget);

ParametersParameters

Return ValueReturn Value

CD2DPathGeometry::Destroy

CObject

CD2DResource

CD2DGeometry

CD2DPathGeometry

Header: afxrendertarget.h

Attaches existing resource interface to the object

pResource
Existing resource interface. Cannot be NULL

Constructs a CD2DPathGeometry object.

pParentTarget
A pointer to the render target.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

Creates a CD2DPathGeometry.

pRenderTarget
A pointer to the render target.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Destroys a CD2DPathGeometry object.

virtual void Destroy();

CD2DPathGeometry::Detach

ID2D1PathGeometry* Detach();

Return ValueReturn Value

CD2DPathGeometry::GetFigureCount

int GetFigureCount() const;

Return ValueReturn Value

CD2DPathGeometry::GetSegmentCount

int GetSegmentCount() const;

Return ValueReturn Value

CD2DPathGeometry::m_pPathGeometry

ID2D1PathGeometry* m_pPathGeometry;

CD2DPathGeometry::Open

ID2D1GeometrySink* Open();

Return ValueReturn Value

CD2DPathGeometry::Stream

Detaches resource interface from the object

Pointer to detached resource interface.

Retrieves tthe number of figures in the path geometry.

Returns the number of figures in the path geometry.

Retrieves the number of segments in the path geometry.

Returns the number of segments in the path geometry.

A pointer to an ID2D1PathGeometry.

Retrieves the geometry sink that is used to populate the path geometry with figures and segments.

A pointer to the ID2D1GeometrySink that is used to populate the path geometry with figures and segments.

Copies the contents of the path geometry to the specified ID2D1GeometrySink.

BOOL Stream(ID2D1GeometrySink* geometrySink);

ParametersParameters

Return ValueReturn Value

See also

geometrySink
The sink to which the path geometry's contents are copied. Modifying this sink does not change the contents of
this path geometry.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Classes

CD2DPointF Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DPointF : public D2D1_POINT_2F;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DPointF::CD2DPointF Overloaded. Constructs a CD2DPointF object from
D2D1_POINT_2F object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DPointF::operator CPoint Converts CD2DPointF to CPoint object.

Inheritance Hierarchy

Requirements

CD2DPointF::CD2DPointF

CD2DPointF(const CPoint& pt);
CD2DPointF(const D2D1_POINT_2F& pt);
CD2DPointF(const D2D1_POINT_2F* pt);
CD2DPointF(FLOAT fX = 0., FLOAT fY = 0.);

ParametersParameters

A wrapper for D2D1_POINT_2F .

D2D1_POINT_2F

CD2DPointF

Header: afxrendertarget.h

Constructs a CD2DPointF object from CPoint object.

pt
source point

fX
source X

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dpointf-class.md

 CD2DPointF::operator CPoint

operator CPoint();

Return ValueReturn Value

See also

fY
source Y

Converts CD2DPointF to CPoint object.

Current value of D2D point.

Classes

CD2DPointU Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DPointU : public D2D1_POINT_2U;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DPointU::CD2DPointU Overloaded. Constructs a CD2DPointU from object
D2D1_POINT_2U object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DPointU::operator CPoint Converts CD2DPointU to CPoint object.

Inheritance Hierarchy

Requirements

CD2DPointU::CD2DPointU

CD2DPointU(const CPoint& pt);
CD2DPointU(const D2D1_POINT_2U& pt);
 CD2DPointU(const D2D1_POINT_2U* pt);
CD2DPointU(UINT32 uX = 0, UINT32 uY = 0);

ParametersParameters

A wrapper for D2D1_POINT_2U .

D2D1_POINT_2U

CD2DPointU

Header: afxrendertarget.h

Constructs a CD2DPointU object from CPoint object.

pt
source point

uX
source X

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dpointu-class.md

 CD2DPointU::operator CPoint

operator CPoint();

Return ValueReturn Value

See also

uY
source Y

Converts CD2DPointU to CPoint object.

Current value of D2D point.

Classes

CD2DRadialGradientBrush Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CD2DRadialGradientBrush : public CD2DGradientBrush;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DRadialGradientBrush::CD2DRadialGradientBrush Constructs a CD2DLinearGradientBrush object.

CD2DRadialGradientBrush::~CD2DRadialGradientBrush The destructor. Called when a D2D radial gradient brush
object is being destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DRadialGradientBrush::Attach Attaches existing resource interface to the object

CD2DRadialGradientBrush::Create Creates a CD2DRadialGradientBrush. (Overrides
CD2DResource::Create.)

CD2DRadialGradientBrush::Destroy Destroys a CD2DRadialGradientBrush object. (Overrides
CD2DGradientBrush::Destroy.)

CD2DRadialGradientBrush::Detach Detaches resource interface from the object

CD2DRadialGradientBrush::Get Returns ID2D1RadialGradientBrush interface

CD2DRadialGradientBrush::GetCenter Retrieves the center of the gradient ellipse

CD2DRadialGradientBrush::GetGradientOriginOffset Retrieves the offset of the gradient origin relative to the
gradient ellipse's center

CD2DRadialGradientBrush::GetRadiusX Retrieves the x-radius of the gradient ellipse

CD2DRadialGradientBrush::GetRadiusY Retrieves the y-radius of the gradient ellipse

CD2DRadialGradientBrush::SetCenter Specifies the center of the gradient ellipse in the brush's
coordinate space

A wrapper for ID2D1RadialGradientBrush.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dradialgradientbrush-class.md

CD2DRadialGradientBrush::SetGradientOriginOffset Specifies the offset of the gradient origin relative to the
gradient ellipse's center

CD2DRadialGradientBrush::SetRadiusX Specifies the x-radius of the gradient ellipse, in the brush's
coordinate space

CD2DRadialGradientBrush::SetRadiusY Specifies the y-radius of the gradient ellipse, in the brush's
coordinate space

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DRadialGradientBrush::operator
ID2D1RadialGradientBrush*

Returns ID2D1RadialGradientBrush interface

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CD2DRadialGradientBrush::m_pRadialGradientBrush A pointer to an ID2D1RadialGradientBrush.

CD2DRadialGradientBrush::m_RadialGradientBrushProperties The center, gradient origin offset, and x-radius and y-radius of
the brush's gradient.

Inheritance Hierarchy

Requirements

CD2DRadialGradientBrush::~CD2DRadialGradientBrush

virtual ~CD2DRadialGradientBrush();

CD2DRadialGradientBrush::Attach

void Attach(ID2D1RadialGradientBrush* pResource);

CObject

CD2DResource

CD2DBrush

CD2DGradientBrush

CD2DRadialGradientBrush

Header: afxrendertarget.h

The destructor. Called when a D2D radial gradient brush object is being destroyed.

Attaches existing resource interface to the object

ParametersParameters

CD2DRadialGradientBrush::CD2DRadialGradientBrush

CD2DRadialGradientBrush(
 CRenderTarget* pParentTarget,
 const D2D1_GRADIENT_STOP* gradientStops,
 UINT gradientStopsCount,
 D2D1_RADIAL_GRADIENT_BRUSH_PROPERTIES RadialGradientBrushProperties,
 D2D1_GAMMA colorInterpolationGamma = D2D1_GAMMA_2_2,
 D2D1_EXTEND_MODE extendMode = D2D1_EXTEND_MODE_CLAMP,
 CD2DBrushProperties* pBrushProperties = NULL,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

CD2DRadialGradientBrush::Create

virtual HRESULT Create(CRenderTarget* pRenderTarget);

ParametersParameters

Return ValueReturn Value

pResource
Existing resource interface. Cannot be NULL

Constructs a CD2DLinearGradientBrush object.

pParentTarget
A pointer to the render target.

gradientStops
A pointer to an array of D2D1_GRADIENT_STOP structures.

gradientStopsCount
A value greater than or equal to 1 that specifies the number of gradient stops in the gradientStops array.

RadialGradientBrushProperties
The center, gradient origin offset, and x-radius and y-radius of the brush's gradient.

colorInterpolationGamma
The space in which color interpolation between the gradient stops is performed.

extendMode
The behavior of the gradient outside the [0,1] normalized range.

pBrushProperties
A pointer to the opacity and transformation of a brush.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

Creates a CD2DRadialGradientBrush.

pRenderTarget
A pointer to the render target.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

CD2DRadialGradientBrush::Destroy

virtual void Destroy();

CD2DRadialGradientBrush::Detach

ID2D1RadialGradientBrush* Detach();

Return ValueReturn Value

CD2DRadialGradientBrush::Get

ID2D1RadialGradientBrush* Get();

Return ValueReturn Value

CD2DRadialGradientBrush::GetCenter

CD2DPointF GetCenter() const;

Return ValueReturn Value

CD2DRadialGradientBrush::GetGradientOriginOffset

CD2DPointF GetGradientOriginOffset() const;

Return ValueReturn Value

CD2DRadialGradientBrush::GetRadiusX

FLOAT GetRadiusX() const;

Destroys a CD2DRadialGradientBrush object.

Detaches resource interface from the object

Pointer to detached resource interface.

Returns ID2D1RadialGradientBrush interface

Pointer to an ID2D1RadialGradientBrush interface or NULL if object is not initialized yet.

Retrieves the center of the gradient ellipse

The center of the gradient ellipse. This value is expressed in the brush's coordinate space

Retrieves the offset of the gradient origin relative to the gradient ellipse's center

The offset of the gradient origin from the center of the gradient ellipse. This value is expressed in the brush's
coordinate space

Retrieves the x-radius of the gradient ellipse

Return ValueReturn Value

CD2DRadialGradientBrush::GetRadiusY

FLOAT GetRadiusY() const;

Return ValueReturn Value

CD2DRadialGradientBrush::m_pRadialGradientBrush

ID2D1RadialGradientBrush* m_pRadialGradientBrush;

CD2DRadialGradientBrush::m_RadialGradientBrushProperties

D2D1_RADIAL_GRADIENT_BRUSH_PROPERTIES m_RadialGradientBrushProperties;

CD2DRadialGradientBrush::operator ID2D1RadialGradientBrush*

operator ID2D1RadialGradientBrush*();

Return ValueReturn Value

CD2DRadialGradientBrush::SetCenter

void SetCenter(CD2DPointF point);

ParametersParameters

CD2DRadialGradientBrush::SetGradientOriginOffset

void SetGradientOriginOffset(CD2DPointF gradientOriginOffset);

The x-radius of the gradient ellipse. This value is expressed in the brush's coordinate space

Retrieves the y-radius of the gradient ellipse

The y-radius of the gradient ellipse. This value is expressed in the brush's coordinate space

A pointer to an ID2D1RadialGradientBrush.

The center, gradient origin offset, and x-radius and y-radius of the brush's gradient.

Returns ID2D1RadialGradientBrush interface

Pointer to an ID2D1RadialGradientBrush interface or NULL if object is not initialized yet.

Specifies the center of the gradient ellipse in the brush's coordinate space

point
The center of the gradient ellipse, in the brush's coordinate space

Specifies the offset of the gradient origin relative to the gradient ellipse's center

ParametersParameters

CD2DRadialGradientBrush::SetRadiusX

void SetRadiusX(FLOAT radiusX);

ParametersParameters

CD2DRadialGradientBrush::SetRadiusY

void SetRadiusY(FLOAT radiusY);

ParametersParameters

See also

gradientOriginOffset
The offset of the gradient origin from the center of the gradient ellipse

Specifies the x-radius of the gradient ellipse, in the brush's coordinate space

radiusX
The x-radius of the gradient ellipse. This value is in the brush's coordinate space

Specifies the y-radius of the gradient ellipse, in the brush's coordinate space

radiusY
The y-radius of the gradient ellipse. This value is in the brush's coordinate space

Classes

CD2DRectF Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DRectF : public D2D1_RECT_F;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DRectF::CD2DRectF Overloaded. Constructs a CD2DRectF object from
D2D1_RECT_F object.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DRectF::IsNull Returns a boolean value that indicates whether an expression
contains no valid data (NULL).

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DRectF::operator CRect Converts CD2DRectF to CRect object.

Inheritance Hierarchy

Requirements

CD2DRectF::CD2DRectF

A wrapper for D2D1_RECT_F .

D2D1_RECT_F

CD2DRectF

Header: afxrendertarget.h

Constructs a CD2DRectF object from CRect object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2drectf-class.md

CD2DRectF(const CRect& rect);
CD2DRectF(const D2D1_RECT_F& rect);
 CD2DRectF(const D2D1_RECT_F* rect);

CD2DRectF(
 FLOAT fLeft = 0.,
 FLOAT fTop = 0.,
 FLOAT fRight = 0.,
 FLOAT fBottom = 0.);

ParametersParameters

CD2DRectF::IsNull

BOOL IsNull() const;

Return ValueReturn Value

CD2DRectF::operator CRect

operator CRect();

Return ValueReturn Value

See also

rect
source rectangle

fLeft
source left coordinate

fTop
source top coordinate

fRight
source right coordinate

fBottom
source bottom coordinate

Returns a Boolean value that indicates whether an expression contains no valid data (Null).

TRUE if rectangle's top, left, bottom, and right values are all equal to 0; otherwise FALSE.

Converts CD2DRectF to CRect object.

Current value of D2D rectangle.

Classes

CD2DRectU Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DRectU : public D2D1_RECT_U;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DRectU::CD2DRectU Overloaded. Constructs a CD2DRectU object from
D2D1_RECT_U object.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DRectU::IsNull Returns a boolean value that indicates whether an expression
contains no valid data (NULL).

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DRectU::operator CRect Converts CD2DRectU to CRect object.

Inheritance Hierarchy

Requirements

CD2DRectU::CD2DRectU

A wrapper for D2D1_RECT_U .

D2D1_RECT_U

CD2DRectU

Header: afxrendertarget.h

Constructs a CD2DRectU object from CRect object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2drectu-class.md

CD2DRectU(const CRect& rect);
CD2DRectU(const D2D1_RECT_U& rect);
 CD2DRectU(const D2D1_RECT_U* rect);

CD2DRectU(
 UINT32 uLeft = 0,
 UINT32 uTop = 0,
 UINT32 uRight = 0,
 UINT32 uBottom = 0);

ParametersParameters

CD2DRectU::IsNull

BOOL IsNull() const;

Return ValueReturn Value

CD2DRectU::operator CRect

operator CRect();

Return ValueReturn Value

See also

rect
source rectangle

uLeft
source left coordinate

uTop
source top coordinate

uRight
source right coordinate

uBottom
source bottom coordinate

Returns a Boolean value that indicates whether an expression contains no valid data (Null).

TRUE if rectangle's top, left, bottom, and right values are all equal to 0; otherwise FALSE.

Converts CD2DRectU to CRect object.

Current value of D2D rectangle.

Classes

CD2DResource Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DResource : public CObject;

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CD2DResource::CD2DResource Constructs a CD2DResource object.

CD2DResource::~CD2DResource The destructor. Called when a D2D resource object is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DResource::Create Creates a CD2DResource.

CD2DResource::Destroy Destroys a CD2DResource object.

CD2DResource::IsValid Checks resource validity

Protected MethodsProtected Methods

NAME DESCRIPTION

CD2DResource::IsAutoDestroy Check auto destroy flag.

CD2DResource::ReCreate Re-creates a CD2DResource.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CD2DResource::m_bIsAutoDestroy Resource will be destoyed by owner (CRenderTarget)

CD2DResource::m_pParentTarget Pointer to the parent CRenderTarget)

Inheritance Hierarchy

An abstract class that provides a interface for creating and managing D2D resources such as brushes, layers,
and texts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dresource-class.md

Requirements

CD2DResource::~CD2DResource

virtual ~CD2DResource();

CD2DResource::CD2DResource

CD2DResource(
 CRenderTarget* pParentTarget,
 BOOL bAutoDestroy);

ParametersParameters

CD2DResource::Create

virtual HRESULT Create(CRenderTarget* pRenderTarget) = 0;

ParametersParameters

Return ValueReturn Value

CD2DResource::Destroy

virtual void Destroy() = 0;

CD2DResource::IsAutoDestroy

CObject

CD2DResource

Header: afxrendertarget.h

The destructor. Called when a D2D resource object is being destroyed.

Constructs a CD2DResource object.

pParentTarget
A pointer to the render target.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

Creates a CD2DResource.

pRenderTarget
A pointer to the render target.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Destroys a CD2DResource object.

Check auto destroy flag.

BOOL IsAutoDestroy() const;

Return ValueReturn Value

CD2DResource::IsValid

virtual BOOL IsValid() const = 0;

Return ValueReturn Value

CD2DResource::m_bIsAutoDestroy

BOOL m_bIsAutoDestroy;

CD2DResource::m_pParentTarget

CRenderTarget* m_pParentTarget;

CD2DResource::ReCreate

virtual HRESULT ReCreate(CRenderTarget* pRenderTarget);

ParametersParameters

Return ValueReturn Value

See also

TRUE if the object will be destroyed by its owner; otherwise FALSE.

Checks resource validity

TRUE if resource is valid; otherwise FALSE.

Resource will be destoyed by owner (CRenderTarget)

Pointer to the parent CRenderTarget)

Re-creates a CD2DResource.

pRenderTarget
A pointer to the render target.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Classes

CD2DRoundedRect Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DRoundedRect : public D2D1_ROUNDED_RECT;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DRoundedRect::CD2DRoundedRect Overloaded. Constructs a CD2DRoundedRect object from
D2D1_ROUNDED_RECT object.

Inheritance Hierarchy

Requirements

CD2DRoundedRect::CD2DRoundedRect

CD2DRoundedRect(
 const CD2DRectF& rectIn,
 const CD2DSizeF& sizeRadius);

CD2DRoundedRect(const D2D1_ROUNDED_RECT& rectIn);
CD2DRoundedRect(const D2D1_ROUNDED_RECT* rectIn);

ParametersParameters

See also

A wrapper for D2D1_ROUNDED_RECT .

D2D1_ROUNDED_RECT

CD2DRoundedRect

Header: afxrendertarget.h

Constructs a CD2DRoundedRect object from CD2DRectF object.

rectIn
source rectangle

sizeRadius
radius size

Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2droundedrect-class.md

CD2DSizeF Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DSizeF : public D2D1_SIZE_F;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DSizeF::CD2DSizeF Overloaded. Constructs a CD2DSizeF object from
D2D1_SIZE_F object.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DSizeF::IsNull Returns a boolean value that indicates whether an expression
contains no valid data (NULL).

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DSizeF::operator CSize Converts CD2DSizeF to CSize object.

Inheritance Hierarchy

Requirements

CD2DSizeF::CD2DSizeF

A wrapper for D2D1_SIZE_F.

D2D1_SIZE_F

CD2DSizeF

Header: afxrendertarget.h

Constructs a CD2DSizeF object from CSize object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dsizef-class.md

CD2DSizeF(const CSize& size);
CD2DSizeF(const D2D1_SIZE_F& size);
 CD2DSizeF(const D2D1_SIZE_F* size);

CD2DSizeF(
 FLOAT cx = 0.,
 FLOAT cy = 0.);

ParametersParameters

CD2DSizeF::IsNull

BOOL IsNull() const;

Return ValueReturn Value

CD2DSizeF::operator CSize

operator CSize();

Return ValueReturn Value

See also

size
source size

cx
source width

cy
source height

Returns a Boolean value that indicates whether an expression contains no valid data (Null).

TRUE if width and height are empty; otherwise FALSE.

Converts CD2DSizeF to CSize object.

Current value of D2D size.

Classes

CD2DSizeU Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DSizeU : public D2D1_SIZE_U;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DSizeU::CD2DSizeU Overloaded. Constructs a CD2DSizeU object from
D2D1_SIZE_U object.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DSizeU::IsNull Returns a boolean value that indicates whether an expression
contains no valid data (NULL).

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DSizeU::operator CSize Converts CD2DSizeU to CSize object.

Inheritance Hierarchy

Requirements

CD2DSizeU::CD2DSizeU

A wrapper for D2D1_SIZE_U.

D2D1_SIZE_U

CD2DSizeU

Header: afxrendertarget.h

Constructs a CD2DSizeU object from CSize object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dsizeu-class.md

CD2DSizeU(const CSize& size);
CD2DSizeU(const D2D1_SIZE_U& size);
 CD2DSizeU(const D2D1_SIZE_U* size);

CD2DSizeU(
 UINT32 cx = 0,
 UINT32 cy = 0);

ParametersParameters

CD2DSizeU::IsNull

BOOL IsNull() const;

Return ValueReturn Value

CD2DSizeU::operator CSize

operator CSize();

Return ValueReturn Value

See also

size
source size

cx
source width

cy
source height

Returns a Boolean value that indicates whether an expression contains no valid data (Null).

TRUE if width and height are empty; otherwise FALSE.

Converts CD2DSizeU to CSize object.

Current value of D2D size.

Classes

CD2DSolidColorBrush Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DSolidColorBrush : public CD2DBrush;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DSolidColorBrush::CD2DSolidColorBrush Overloaded. Constructs a CD2DSolidColorBrush object.

CD2DSolidColorBrush::~CD2DSolidColorBrush The destructor. Called when a D2D solid brush object is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DSolidColorBrush::Attach Attaches existing resource interface to the object

CD2DSolidColorBrush::Create Creates a CD2DSolidColorBrush. (Overrides
CD2DResource::Create.)

CD2DSolidColorBrush::Destroy Destroys a CD2DSolidColorBrush object. (Overrides
CD2DBrush::Destroy.)

CD2DSolidColorBrush::Detach Detaches resource interface from the object

CD2DSolidColorBrush::Get Returns ID2D1SolidColorBrush interface

CD2DSolidColorBrush::GetColor Retrieves the color of the solid color brush

CD2DSolidColorBrush::SetColor Specifies the color of this solid color brush

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DSolidColorBrush::operator ID2D1SolidColorBrush* Returns ID2D1SolidColorBrush interface

Protected Data MembersProtected Data Members

A wrapper for ID2D1SolidColorBrush.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dsolidcolorbrush-class.md

NAME DESCRIPTION

CD2DSolidColorBrush::m_colorSolid Brush solid color.

CD2DSolidColorBrush::m_pSolidColorBrush Stores a pointer to an ID2D1SolidColorBrush object.

Inheritance Hierarchy

Requirements

CD2DSolidColorBrush::~CD2DSolidColorBrush

virtual ~CD2DSolidColorBrush();

CD2DSolidColorBrush::Attach

void Attach(ID2D1SolidColorBrush* pResource);

ParametersParameters

CD2DSolidColorBrush::CD2DSolidColorBrush

CD2DSolidColorBrush(
 CRenderTarget* pParentTarget,
 D2D1_COLOR_F color,
 CD2DBrushProperties* pBrushProperties = NULL,
 BOOL bAutoDestroy = TRUE);

CD2DSolidColorBrush(
 CRenderTarget* pParentTarget,
 COLORREF color,
 int nAlpha = 255,
 CD2DBrushProperties* pBrushProperties = NULL,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

CObject

CD2DResource

CD2DBrush

CD2DSolidColorBrush

Header: afxrendertarget.h

The destructor. Called when a D2D solid brush object is being destroyed.

Attaches existing resource interface to the object

pResource
Existing resource interface. Cannot be NULL

Constructs a CD2DSolidColorBrush object.

CD2DSolidColorBrush::Create

virtual HRESULT Create(CRenderTarget* pRenderTarget);

ParametersParameters

Return ValueReturn Value

CD2DSolidColorBrush::Destroy

virtual void Destroy();

CD2DSolidColorBrush::Detach

ID2D1SolidColorBrush* Detach();

Return ValueReturn Value

CD2DSolidColorBrush::Get

ID2D1SolidColorBrush* Get();

Return ValueReturn Value

pParentTarget
A pointer to the render target.

color
The red, green, blue, and alpha values of the brush's color.

pBrushProperties
A pointer to the opacity and transformation of a brush.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

nAlpha
The opacity of the brush's color.

Creates a CD2DSolidColorBrush.

pRenderTarget
A pointer to the render target.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Destroys a CD2DSolidColorBrush object.

Detaches resource interface from the object

Pointer to detached resource interface.

Returns ID2D1SolidColorBrush interface

Pointer to an ID2D1SolidColorBrush interface or NULL if object is not initialized yet.

CD2DSolidColorBrush::GetColor

D2D1_COLOR_F GetColor() const;

Return ValueReturn Value

CD2DSolidColorBrush::m_colorSolid

D2D1_COLOR_F m_colorSolid;

CD2DSolidColorBrush::m_pSolidColorBrush

ID2D1SolidColorBrush* m_pSolidColorBrush;

CD2DSolidColorBrush::operator ID2D1SolidColorBrush*

operator ID2D1SolidColorBrush*();

Return ValueReturn Value

CD2DSolidColorBrush::SetColor

void SetColor(D2D1_COLOR_F color);

ParametersParameters

See also

Retrieves the color of the solid color brush

The color of this solid color brush

Brush solid color.

Stores a pointer to an ID2D1SolidColorBrush object.

Returns ID2D1SolidColorBrush interface

Pointer to an ID2D1SolidColorBrush interface or NULL if object is not initialized yet.

Specifies the color of this solid color brush

color
The color of this solid color brush

Classes

CD2DTextFormat Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CD2DTextFormat : public CD2DResource;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DTextFormat::CD2DTextFormat Constructs a CD2DTextFormat object.

CD2DTextFormat::~CD2DTextFormat The destructor. Called when a D2D text format object is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DTextFormat::Create Creates a CD2DTextFormat. (Overrides
CD2DResource::Create.)

CD2DTextFormat::Destroy Destroys a CD2DTextFormat object. (Overrides
CD2DResource::Destroy.)

CD2DTextFormat::Get Returns IDWriteTextFormat interface

CD2DTextFormat::GetFontFamilyName Gets a copy of the font family name.

CD2DTextFormat::GetLocaleName Gets a copy of the locale name.

CD2DTextFormat::IsValid Checks resource validity (Overrides CD2DResource::IsValid.)

CD2DTextFormat::ReCreate Re-creates a CD2DTextFormat. (Overrides
CD2DResource::ReCreate.)

Public OperatorsPublic Operators

NAME DESCRIPTION

CD2DTextFormat::operator IDWriteTextFormat* Returns IDWriteTextFormat interface

Protected Data MembersProtected Data Members

A wrapper for IDWriteTextFormat.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dtextformat-class.md

NAME DESCRIPTION

CD2DTextFormat::m_pTextFormat A pointer to an IDWriteTextFormat.

Inheritance Hierarchy

Requirements

CD2DTextFormat::~CD2DTextFormat

virtual ~CD2DTextFormat();

CD2DTextFormat::CD2DTextFormat

CD2DTextFormat(
 CRenderTarget* pParentTarget,
 const CString& strFontFamilyName,
 FLOAT fontSize,
 DWRITE_FONT_WEIGHT fontWeight = DWRITE_FONT_WEIGHT_NORMAL,
 DWRITE_FONT_STYLE fontStyle = DWRITE_FONT_STYLE_NORMAL,
 DWRITE_FONT_STRETCH fontStretch = DWRITE_FONT_STRETCH_NORMAL,
 const CString& strFontLocale = _T(""),
 IDWriteFontCollection* pFontCollection = NULL,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

CObject

CD2DResource

CD2DTextFormat

Header: afxrendertarget.h

The destructor. Called when a D2D text format object is being destroyed.

Constructs a CD2DTextFormat object.

pParentTarget
A pointer to the render target.

strFontFamilyName
A CString object that contains the name of the font family.

fontSize
The logical size of the font in DIP ("device-independent pixel") units. A DIPequals 1/96 inch.

fontWeight
A value that indicates the font weight for the text object.

fontStyle
A value that indicates the font style for the text object.

fontStretch
A value that indicates the font stretch for the text object.

CD2DTextFormat::Create

virtual HRESULT Create(CRenderTarget* */);

Return ValueReturn Value

CD2DTextFormat::Destroy

virtual void Destroy();

CD2DTextFormat::Get

IDWriteTextFormat* Get();

Return ValueReturn Value

CD2DTextFormat::GetFontFamilyName

CString GetFontFamilyName() const;

Return ValueReturn Value

CD2DTextFormat::GetLocaleName

CString GetLocaleName() const;

Return ValueReturn Value

strFontLocale
A CString object that contains the locale name.

pFontCollection
A pointer to a font collection object. When this is NULL, indicates the system font collection.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

Creates a CD2DTextFormat.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Destroys a CD2DTextFormat object.

Returns IDWriteTextFormat interface

Pointer to an IDWriteTextFormat interface or NULL if object is not initialized yet.

Gets a copy of the font family name.

CString object that contains the current font family name.

Gets a copy of the locale name.

CString object that contains the current locale name.

CD2DTextFormat::IsValid

virtual BOOL IsValid() const;

Return ValueReturn Value

CD2DTextFormat::m_pTextFormat

IDWriteTextFormat* m_pTextFormat;

CD2DTextFormat::operator IDWriteTextFormat*

operator IDWriteTextFormat*();

Return ValueReturn Value

CD2DTextFormat::ReCreate

virtual HRESULT ReCreate(CRenderTarget* */);

Return ValueReturn Value

See also

Checks resource validity

TRUE if resource is valid; otherwise FALSE.

A pointer to an IDWriteTextFormat.

Returns IDWriteTextFormat interface

Pointer to an IDWriteTextFormat interface or NULL if object is not initialized yet.

Re-creates a CD2DTextFormat.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Classes

CD2DTextLayout Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CD2DTextLayout : public CD2DResource;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CD2DTextLayout::CD2DTextLayout Constructs a CD2DTextLayout object.

CD2DTextLayout::~CD2DTextLayout The destructor. Called when a D2D text layout object is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CD2DTextLayout::Create Creates a CD2DTextLayout. (Overrides
CD2DResource::Create.)

CD2DTextLayout::Destroy Destroys a CD2DTextLayout object. (Overrides
CD2DResource::Destroy.)

CD2DTextLayout::Get Returns IDWriteTextLayout interface

CD2DTextLayout::GetFontFamilyName Copies the font family name of the text at the specified
position.

CD2DTextLayout::GetLocaleName Gets the locale name of the text at the specified position.

CD2DTextLayout::IsValid Checks resource validity (Overrides CD2DResource::IsValid.)

CD2DTextLayout::ReCreate Re-creates a CD2DTextLayout. (Overrides
CD2DResource::ReCreate.)

CD2DTextLayout::SetFontFamilyName Sets null-terminated font family name for text within a
specified text range

CD2DTextLayout::SetLocaleName Sets the locale name for text within a specified text range

Public OperatorsPublic Operators

A wrapper for IDWriteTextLayout.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cd2dtextlayout-class.md

NAME DESCRIPTION

CD2DTextLayout::operator IDWriteTextLayout* Returns IDWriteTextLayout interface

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CD2DTextLayout::m_pTextLayout A pointer to an IDWriteTextLayout.

Inheritance Hierarchy

Requirements

CD2DTextLayout::~CD2DTextLayout

virtual ~CD2DTextLayout();

CD2DTextLayout::CD2DTextLayout

CD2DTextLayout(
 CRenderTarget* pParentTarget,
 const CString& strText,
 CD2DTextFormat& textFormat,
 const CD2DSizeF& sizeMax,
 BOOL bAutoDestroy = TRUE);

ParametersParameters

CObject

CD2DResource

CD2DTextLayout

Header: afxrendertarget.h

The destructor. Called when a D2D text layout object is being destroyed.

Constructs a CD2DTextLayout object.

pParentTarget
A pointer to the render target.

strText
A CString object that contains the string to create a new CD2DTextLayout object from.

textFormat
A CString object that contains the format to apply to the string.

sizeMax
The size of the layout box.

bAutoDestroy
Indicates that the object will be destroyed by owner (pParentTarget).

CD2DTextLayout::Create

virtual HRESULT Create(CRenderTarget* */);

Return ValueReturn Value

CD2DTextLayout::Destroy

virtual void Destroy();

CD2DTextLayout::Get

IDWriteTextLayout* Get();

Return ValueReturn Value

CD2DTextLayout::GetFontFamilyName

CString GetFontFamilyName(
 UINT32 currentPosition,
 DWRITE_TEXT_RANGE* textRange = NULL) const;

ParametersParameters

Return ValueReturn Value

CD2DTextLayout::GetLocaleName

CString GetLocaleName(
 UINT32 currentPosition,
 DWRITE_TEXT_RANGE* textRange = NULL) const;

Creates a CD2DTextLayout.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Destroys a CD2DTextLayout object.

Returns IDWriteTextLayout interface

Pointer to an IDWriteTextLayout interface or NULL if object is not initialized yet.

Copies the font family name of the text at the specified position.

currentPosition
The position of the text to examine.

textRange
The range of text that has the same formatting as the text at the position specified by currentPosition. This means
the run has the exact formatting as the position specified, including but not limited to the font family name.

CString object that contains the current font family name.

Gets the locale name of the text at the specified position.

ParametersParameters

Return ValueReturn Value

CD2DTextLayout::IsValid

virtual BOOL IsValid() const;

Return ValueReturn Value

CD2DTextLayout::m_pTextLayout

IDWriteTextLayout* m_pTextLayout;

CD2DTextLayout::operator IDWriteTextLayout*

operator IDWriteTextLayout*();

Return ValueReturn Value

CD2DTextLayout::ReCreate

virtual HRESULT ReCreate(CRenderTarget* */);

Return ValueReturn Value

CD2DTextLayout::SetFontFamilyName

currentPosition
The position of the text to inspect.

textRange
The range of text that has the same formatting as the text at the position specified by currentPosition. This means
the run has the exact formatting as the position specified, including but not limited to the locale name.

CString object that contains the current locale name.

Checks resource validity

TRUE if resource is valid; otherwise FALSE.

A pointer to an IDWriteTextLayout.

Returns IDWriteTextLayout interface

Pointer to an IDWriteTextLayout interface or NULL if object is not initialized yet.

Re-creates a CD2DTextLayout.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Sets null-terminated font family name for text within a specified text range

BOOL SetFontFamilyName(
 LPCWSTR pwzFontFamilyName,
 DWRITE_TEXT_RANGE textRange);

ParametersParameters

Return ValueReturn Value

CD2DTextLayout::SetLocaleName

BOOL SetLocaleName(
 LPCWSTR pwzLocaleName,
 DWRITE_TEXT_RANGE textRange);

ParametersParameters

Return ValueReturn Value

See also

pwzFontFamilyName
The font family name that applies to the entire text string within the range specified by textRange

textRange
Text range to which this change applies

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE

Sets the locale name for text within a specified text range

pwzLocaleName
A null-terminated locale name string

textRange
Text range to which this change applies

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE

Classes

CDaoDatabase Class
3/4/2019 • 28 minutes to read • Edit Online

Syntax
class CDaoDatabase : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDaoDatabase::CDaoDatabase Constructs a CDaoDatabase object. Call Open to connect
the object to a database.

Public MethodsPublic Methods

NAME DESCRIPTION

CDaoDatabase::CanTransact Returns nonzero if the database supports transactions.

CDaoDatabase::CanUpdate Returns nonzero if the CDaoDatabase object is updatable
(not read-only).

CDaoDatabase::Close Closes the database connection.

CDaoDatabase::Create Creates the underlying DAO database object and initializes
the CDaoDatabase object.

CDaoDatabase::CreateRelation Defines a new relation among the tables in the database.

CDaoDatabase::DeleteQueryDef Deletes a querydef object saved in the database's QueryDefs
collection.

CDaoDatabase::DeleteRelation Deletes an existing relation between tables in the database.

CDaoDatabase::DeleteTableDef Deletes the definition of a table in the database. This deletes
the actual table and all of its data.

CDaoDatabase::Execute Executes an action query. Calling Execute for a query that
returns results throws an exception.

CDaoDatabase::GetConnect Returns the connection string used to connect the
CDaoDatabase object to a database. Used for ODBC.

CDaoDatabase::GetName Returns the name of the database currently in use.

Represents a connection to a database through which you can operate on the data.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaodatabase-class.md

CDaoDatabase::GetQueryDefCount Returns the number of queries defined for the database.

CDaoDatabase::GetQueryDefInfo Returns information about a specified query defined in the
database.

CDaoDatabase::GetQueryTimeout Returns the number of seconds after which database query
operations will time out. Affects all subsequent open, add
new, update, and edit operations and other operations on
ODBC data sources (only) such as Execute calls.

CDaoDatabase::GetRecordsAffected Returns the number of records affected by the last update,
edit, or add operation or by a call to Execute .

CDaoDatabase::GetRelationCount Returns the number of relations defined between tables in
the database.

CDaoDatabase::GetRelationInfo Returns information about a specified relation defined
between tables in the database.

CDaoDatabase::GetTableDefCount Returns the number of tables defined in the database.

CDaoDatabase::GetTableDefInfo Returns information about a specified table in the database.

CDaoDatabase::GetVersion Returns the version of the database engine associated with
the database.

CDaoDatabase::IsOpen Returns nonzero if the CDaoDatabase object is currently
connected to a database.

CDaoDatabase::Open Establishes a connection to a database.

CDaoDatabase::SetQueryTimeout Sets the number of seconds after which database query
operations (on ODBC data sources only) will time out.
Affects all subsequent open, add new, update, and delete
operations.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDaoDatabase::m_pDAODatabase A pointer to the underlying DAO database object.

CDaoDatabase::m_pWorkspace A pointer to the CDaoWorkspace object that contains the
database and defines its transaction space.

Remarks
For information about the database formats supported, see the GetName member function. You can have one
or more CDaoDatabase objects active at a time in a given "workspace," represented by a CDaoWorkspace
object. The workspace maintains a collection of open database objects, called the Databases collection.

NOTENOTE

Usage

Transactions

ODBC Connections

Collections

NOTENOTE

Inheritance Hierarchy

The MFC DAO database classes are distinct from the MFC database classes based on ODBC. All DAO database class
names have the "CDao" prefix. Class CDaoDatabase supplies an interface similar to that of the ODBC class CDatabase.
The main difference is that CDatabase accesses the DBMS through Open Database Connectivity (ODBC) and an ODBC
driver for that DBMS. CDaoDatabase accesses data through a Data Access Object (DAO) based on the Microsoft Jet
database engine. In general, the MFC classes based on DAO are more capable than the MFC classes based on ODBC; the
DAO-based classes can access data, including through ODBC drivers, via their own database engine. The DAO-based
classes also support Data Definition Language (DDL) operations, such as adding tables via the classes, without having to
call DAO directly.

You can create database objects implicitly, when you create recordset objects. But you can also create database
objects explicitly. To use an existing database explicitly with CDaoDatabase , do either of the following:

Construct a CDaoDatabase object, passing a pointer to an open CDaoWorkspace object.

Or construct a CDaoDatabase object without specifying the workspace (MFC creates a temporary
workspace object).

To create a new Microsoft Jet (.MDB) database, construct a CDaoDatabase object and call its Create member
function. Do not call Open after Create .

To open an existing database, construct a CDaoDatabase object and call its Open member function.

Any of these techniques appends the DAO database object to the workspace's Databases collection and opens
a connection to the data. When you then construct CDaoRecordset, CDaoTableDef, or CDaoQueryDef objects
for operating on the connected database, pass the constructors for these objects a pointer to your
CDaoDatabase object. When you finish using the connection, call the Close member function and destroy the
CDaoDatabase object. Close closes any recordsets you have not closed previously.

Database transaction processing is supplied at the workspace level — see the BeginTrans, CommitTrans, and
Rollback member functions of class CDaoWorkspace .

The recommended way to work with ODBC data sources is to attach external tables to a Microsoft Jet (.MDB)
database.

Each database maintains its own collections of tabledef, querydef, recordset, and relation objects. Class
CDaoDatabase supplies member functions for manipulating these objects.

The objects are stored in DAO, not in the MFC database object. MFC supplies classes for tabledef, querydef, and
recordset objects but not for relation objects.

Requirements

CDaoDatabase::CanTransact

BOOL CanTransact();

Return ValueReturn Value

RemarksRemarks

CDaoDatabase::CanUpdate

BOOL CanUpdate();

Return ValueReturn Value

RemarksRemarks

CDaoDatabase::CDaoDatabase

CDaoDatabase(CDaoWorkspace* pWorkspace = NULL);

ParametersParameters

RemarksRemarks

CObject

CDaoDatabase

Header: afxdao.h

Call this member function to determine whether the database allows transactions.

Nonzero if the database supports transactions; otherwise 0.

Transactions are managed in the database's workspace.

Call this member function to determine whether the CDaoDatabase object allows updates.

Nonzero if the CDaoDatabase object allows updates; otherwise 0, indicating either that you passed TRUE in
bReadOnly when you opened the CDaoDatabase object or that the database itself is read-only. See the Open
member function.

For information about database updatability, see the topic "Updatable Property" in DAO Help.

Constructs a CDaoDatabase object.

pWorkspace
A pointer to the CDaoWorkspace object that will contain the new database object. If you accept the default value
of NULL, the constructor creates a temporary CDaoWorkspace object that uses the default DAO workspace. You
can get a pointer to the workspace object via the m_pWorkspace data member.

After constructing the object, if you are creating a new Microsoft Jet (.MDB) database, call the object's Create
member function. If you are, instead, opening an existing database, call the object's Open member function.

When you finish with the object, you should call its Close member function and then destroy the CDaoDatabase

object.

NOTENOTE

CDaoDatabase::Close

virtual void Close();

RemarksRemarks

C a u t i o nC a u t i o n

C a u t i o nC a u t i o n

CDaoDatabase::Create

virtual void Create(
 LPCTSTR lpszName,
 LPCTSTR lpszLocale = dbLangGeneral,
 int dwOptions = 0);

ParametersParameters

You might find it convenient to embed the CDaoDatabase object in your document class.

A CDaoDatabase object is also created implicitly if you open a CDaoRecordset object without passing a pointer to an
existing CDaoDatabase object. This database object is closed when you close the recordset object.

Call this member function to disconnect from a database and close any open recordsets, tabledefs, and
querydefs associated with the database.

It is good practice to close these objects yourself before you call this member function. Closing a CDaoDatabase

object removes it from the Databases collection in the associated workspace. Because Close does not destroy
the CDaoDatabase object, you can reuse the object by opening the same database or a different database.

Call the Update member function (if there are pending edits) and the Close member function on all open
recordset objects before you close a database. If you exit a function that declares CDaoRecordset or
CDaoDatabase objects on the stack, the database is closed, any unsaved changes are lost, all pending

transactions are rolled back, and any pending edits to your data are lost.

If you try to close a database object while any recordset objects are open, or if you try to close a workspace
object while any database objects belonging to that specific workspace are open, those recordset objects will be
closed and any pending updates or edits will be rolled back. If you try to close a workspace object while any
database objects belonging to it are open, the operation closes all database objects belonging to that specific
workspace object, which may result in unclosed recordset objects being closed. If you do not close your
database object, MFC reports an assertion failure in debug builds.

If the database object is defined outside the scope of a function, and you exit the function without closing it, the
database object will remain open until explicitly closed or the module in which it is defined is out of scope.

To create a new Microsoft Jet (.MDB) database, call this member function after you construct a CDaoDatabase

object.

lpszName
A string expression that is the name of the database file that you are creating. It can be the full path and
filename, such as "C:\\MYDB.MDB". You must supply a name. If you do not supply a filename extension, .MDB
is appended. If your network supports the uniform naming convention (UNC), you can also specify a network
path, such as "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB". Only Microsoft Jet (.MDB) database files can be
created using this member function. (Double backslashes are required in string literals because "\" is the C++

C a u t i o nC a u t i o n

RemarksRemarks

escape character.)

lpszLocale
A string expression used to specify collating order for creating the database. The default value is dbLangGeneral

. Possible values are:

dbLangGeneral English, German, French, Portuguese, Italian, and Modern Spanish

dbLangArabic Arabic

dbLangCyrillic Russian

dbLangCzech Czech

dbLangDutch Dutch

dbLangGreek Greek

dbLangHebrew Hebrew

dbLangHungarian Hungarian

dbLangIcelandic Icelandic

dbLangNordic Nordic languages (Microsoft Jet database engine version 1.0 only)

dbLangNorwdan Norwegian and Danish

dbLangPolish Polish

dbLangSpanish Traditional Spanish

dbLangSwedfin Swedish and Finnish

dbLangTurkish Turkish

dwOptions
An integer that indicates one or more options. Possible values are:

dbEncrypt Create an encrypted database.

dbVersion10 Create a database with Microsoft Jet database version 1.0.

dbVersion11 Create a database with Microsoft Jet database version 1.1.

dbVersion20 Create a database with Microsoft Jet database version 2.0.

dbVersion30 Create a database with Microsoft Jet database version 3.0.

If you omit the encryption constant, an unencrypted database is created. You can specify only one version
constant. If you omit a version constant, a database that uses the Microsoft Jet database version 3.0 is created.

If a database is not encrypted, it is possible, even if you implement user/password security, to directly read the
binary disk file that constitutes the database.

Create creates the database file and the underlying DAO database object and initializes the C++ object. The
object is appended to the associated workspace's Databases collection. The database object is in an open state;
do not call Open* after Create .

NOTENOTE

CDaoDatabase::CreateRelation

void CreateRelation(
 LPCTSTR lpszName,
 LPCTSTR lpszTable,
 LPCTSTR lpszForeignTable,
 long lAttributes,
 LPCTSTR lpszField,
 LPCTSTR lpszForeignField);

void CreateRelation(CDaoRelationInfo& relinfo);

ParametersParameters

With Create , you can create only Microsoft Jet (.MDB) databases. You cannot create ISAM databases or ODBC
databases.

Call this member function to establish a relation between one or more fields in a primary table in the database
and one or more fields in a foreign table (another table in the database).

lpszName
The unique name of the relation object. The name must start with a letter and can contain a maximum of 40
characters. It can include numbers and underscore characters but cannot include punctuation or spaces.

lpszTable
The name of the primary table in the relation. If the table does not exist, MFC throws an exception of type
CDaoException.

lpszForeignTable
The name of the foreign table in the relation. If the table does not exist, MFC throws an exception of type
CDaoException .

lAttributes
A long value that contains information about the relationship type. You can use this value to enforce referential
integrity, among other things. You can use the bitwise-OR operator (|) to combine any of the following values
(as long as the combination makes sense):

dbRelationUnique Relationship is one-to-one.

dbRelationDontEnforce Relationship is not enforced (no referential integrity).

dbRelationInherited Relationship exists in a noncurrent database that contains the two attached tables.

dbRelationUpdateCascade Updates will cascade (for more on cascades, see Remarks).

dbRelationDeleteCascade Deletions will cascade.

lpszField
A pointer to a null-terminated string containing the name of a field in the primary table (named by lpszTable).

lpszForeignField
A pointer to a null-terminated string containing the name of a field in the foreign table (named by
lpszForeignTable).

relinfo
A reference to a CDaoRelationInfo object that contains information about the relation you want to create.

RemarksRemarks

CDaoDatabase::DeleteQueryDef

void DeleteQueryDef(LPCTSTR lpszName);

ParametersParameters

RemarksRemarks

CDaoDatabase::DeleteRelation

void DeleteRelation(LPCTSTR lpszName);

ParametersParameters

RemarksRemarks

CDaoDatabase::DeleteTableDef

The relationship cannot involve a query or an attached table from an external database.

Use the first version of the function when the relation involves one field in each of the two tables. Use the
second version when the relation involves multiple fields. The maximum number of fields in a relation is 14.

This action creates an underlying DAO relation object, but this is an MFC implementation detail since MFC's
encapsulation of relation objects is contained within class CDaoDatabase . MFC does not supply a class for
relations.

If you set the relation object's attributes to activate cascade operations, the database engine automatically
updates or deletes records in one or more other tables when changes are made to related primary key tables.

For example, suppose you establish a cascade delete relationship between a Customers table and an Orders
table. When you delete records from the Customers table, records in the Orders table related to that customer
are also deleted. In addition, if you establish cascade delete relationships between the Orders table and other
tables, records from those tables are automatically deleted when you delete records from the Customers table.

For related information, see the topic "CreateRelation Method" in DAO Help.

Call this member function to delete the specified querydef — saved query — from the CDaoDatabase object's
QueryDefs collection.

lpszName
The name of the saved query to delete.

Afterwards, that query is no longer defined in the database.

For information about creating querydef objects, see class CDaoQueryDef. A querydef object becomes
associated with a particular CDaoDatabase object when you construct the CDaoQueryDef object, passing it a
pointer to the database object.

Call this member function to delete an existing relation from the database object's Relations collection.

lpszName
The name of the relation to delete.

Afterwards, the relation no longer exists.

For related information, see the topic "Delete Method" in DAO Help.

void DeleteTableDef(LPCTSTR lpszName);

ParametersParameters

RemarksRemarks

NOTENOTE

CDaoDatabase::Execute

void Execute(
 LPCTSTR lpszSQL,
 int nOptions = dbFailOnError);

ParametersParameters

Call this member function to delete the specified table and all of its data from the CDaoDatabase object's
TableDefs collection.

lpszName
The name of the tabledef to delete.

Afterwards, that table is no longer defined in the database.

Be very careful not to delete system tables.

For information about creating tabledef objects, see class CDaoTableDef. A tabledef object becomes associated
with a particular CDaoDatabase object when you construct the CDaoTableDef object, passing it a pointer to the
database object.

For related information, see the topic "Delete Method" in DAO Help.

Call this member function to run an action query or execute a SQL statement on the database.

lpszSQL
Pointer to a null-terminated string containing a valid SQL command to execute.

nOptions
An integer that specifies options relating to the integrity of the query. You can use the bitwise-OR operator (|)
to combine any of the following constants (provided the combination makes sense — for example, you would
not combine dbInconsistent with dbConsistent):

dbDenyWrite Deny write permission to other users.

dbInconsistent (Default) Inconsistent updates.

dbConsistent Consistent updates.

dbSQLPassThrough SQL pass-through. Causes the SQL statement to be passed to an ODBC data source
for processing.

dbFailOnError Roll back updates if an error occurs.

dbSeeChanges Generate a run-time error if another user is changing data you are editing.

NOTENOTE

RemarksRemarks

TIPTIP

CDaoDatabase::GetConnect

CString GetConnect();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

If both dbInconsistent and dbConsistent are included or if neither is included, the result is the default. For an
explanation of these constants, see the topic "Execute Method" in DAO Help.

Execute works only for action queries or SQL pass-through queries that do not return results. It does not
work for select queries, which return records.

For a definition and information about action queries, see the topics "Action Query" and "Execute Method" in
DAO Help.

Given a syntactically correct SQL statement and proper permissions, the Execute member function will not fail even if
not a single row can be modified or deleted. Therefore, always use the dbFailOnError option when using the
Execute member function to run an update or delete query. This option causes MFC to throw an exception of type

CDaoException and rolls back all successful changes if any of the records affected are locked and cannot be updated or
deleted. Note that you can always call GetRecordsAffected to see how many records were affected.

Call the GetRecordsAffected member function of the database object to determine the number of records
affected by the most recent Execute call. For example, GetRecordsAffected returns information about the
number of records deleted, updated, or inserted when executing an action query. The count returned will not
reflect changes in related tables when cascade updates or deletes are in effect.

Execute does not return a recordset. Using Execute on a query that selects records causes MFC to throw an
exception of type CDaoException . (There is no ExecuteSQL member function analogous to
CDatabase::ExecuteSQL .)

Call this member function to retrieve the connection string used to connect the CDaoDatabase object to an
ODBC or ISAM database.

The connection string if Open has been called successfully on an ODBC data source; otherwise, an empty
string. For a Microsoft Jet (.MDB) database, the string is always empty unless you set it for use with the
dbSQLPassThrough option used with the Execute member function or used in opening a recordset.

The string provides information about the source of an open database or a database used in a pass-through
query. The connection string is composed of a database type specifier and zero or more parameters separated
by semicolons.

Using the MFC DAO classes to connect to a data source via ODBC is less efficient than connecting via an attached table.

NOTENOTE

CDaoDatabase::GetName

CString GetName();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

PATHNAME POINTS TO.. DATABASE TYPE

.MDB file Microsoft Jet database (Microsoft Access)

Directory that contains .DBF file(s) dBASE database

Directory that contains .XLS file Microsoft Excel database

Directory that contains .PDX file(s) Paradox database

Directory that contains appropriately formatted text
database files

Text format database

CDaoDatabase::GetQueryDefCount

The connection string is used to pass additional information to ODBC and certain ISAM drivers as needed. It is not used
for .MDB databases. For Microsoft Jet database base tables, the connection string is an empty string ("") except when
you use it for a SQL pass-through query as described under Return Value above.

See the Open member function for a description of how the connection string is created. Once the connection
string has been set in the Open call, you can later use it to check the setting to determine the type, path, user
ID, Password, or ODBC data source of the database.

Call this member function to retrieve the name of the currently open database, which is the name of an existing
database file or the name of a registered ODBC data source.

The full path and file name of the database if successful; otherwise, an empty CString.

If your network supports the uniform naming convention (UNC), you can also specify a network path—for
example, "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB". (Double backslashes are required in string
literals because "\" is the C++ escape character.)

You might, for example, want to display this name in a heading. If an error occurs while the name is being
retrieved, MFC throws an exception of type CDaoException.

For better performance when external databases are being accessed, we recommend that you attach external database
tables to a Microsoft Jet database (.MDB) rather than connecting directly to the data source.

The database type is indicated by the file or directory that the path points to, as follows:

For ODBC databases such as SQL Server and Oracle, the database's connection string identifies a data source
name (DSN) that's registered by ODBC.

short GetQueryDefCount();

Return ValueReturn Value

RemarksRemarks

CDaoDatabase::GetQueryDefInfo

void GetQueryDefInfo(
 int nIndex,
 CDaoQueryDefInfo& querydefinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

void GetQueryDefInfo(
 LPCTSTR lpszName,
 CDaoQueryDefInfo& querydefinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

ParametersParameters

RemarksRemarks

CDaoDatabase::GetQueryTimeout

Call this member function to retrieve the number of queries defined in the database's QueryDefs collection.

The number of queries defined in the database.

GetQueryDefCount is useful if you need to loop through all querydefs in the QueryDefs collection. To obtain
information about a given query in the collection, see GetQueryDefInfo.

Call this member function to obtain various kinds of information about a query defined in the database.

nIndex
The index of the predefined query in the database's QueryDefs collection, for lookup by index.

querydefinfo
A reference to a CDaoQueryDefInfo object that returns the information requested.

dwInfoOptions
Options that specify which information about the recordset to retrieve. The available options are listed here
along with what they cause the function to return about the recordset:

AFX_DAO_PRIMARY_INFO (Default) Name, Type

AFX_DAO_SECONDARY_INFO Primary information plus: Date Created, Date of Last Update, Returns
Records, Updatable

AFX_DAO_ALL_INFO Primary and secondary information plus: SQL, Connect, ODBCTimeout

lpszName
A string containing the name of a query defined in the database, for lookup by name.

Two versions of the function are supplied so you can select a query either by index in the database's QueryDefs
collection or by the name of the query.

For a description of the information returned in querydefinfo, see the CDaoQueryDefInfo structure. This
structure has members that correspond to the items of information listed above in the description of
dwInfoOptions. If you request one level of information, you get any prior levels of information as well.

short GetQueryTimeout();

Return ValueReturn Value

RemarksRemarks

CDaoDatabase::GetRecordsAffected

long GetRecordsAffected();

Return ValueReturn Value

RemarksRemarks

CDaoDatabase::GetRelationCount

short GetRelationCount();

Return ValueReturn Value

RemarksRemarks

Call this member function to retrieve the current number of seconds to allow before subsequent operations on
the connected database are timed out.

A short integer containing the timeout value in seconds.

An operation might time out due to network access problems, excessive query processing time, and so on.
While the setting is in effect, it affects all open, add new, update, and delete operations on any recordsets
associated with this CDaoDatabase object. You can change the current timeout setting by calling
SetQueryTimeout. Changing the query timeout value for a recordset after opening does not change the value
for the recordset. For example, subsequent Move operations do not use the new value. The default value is
initially set when the database engine is initialized.

The default value for query timeouts is taken from the Windows registry. If there is no registry setting, the
default is 60 seconds. Not all databases support the ability to set a query timeout value. If you set a query
timeout value of 0, no timeout occurs; and communication with the database may stop responding. This
behavior may be useful during development. If the call fails, MFC throws an exception of type CDaoException.

For related information, see the topic "QueryTimeout Property" in DAO Help.

Call this member function to determine the number of records affected by the most recent call of the Execute
member function.

A long integer containing the number of records affected.

The value returned includes the number of records deleted, updated, or inserted by an action query run with
Execute . The count returned will not reflect changes in related tables when cascade updates or deletes are in

effect.

For related information, see the topic "RecordsAffected Property" in DAO Help.

Call this member function to obtain the number of relations defined between tables in the database.

The number of relations defined between tables in the database.

GetRelationCount is useful if you need to loop through all defined relations in the database's Relations
collection. To obtain information about a given relation in the collection, see GetRelationInfo.

CDaoDatabase::GetRelationInfo

void GetRelationInfo(
 int nIndex,
 CDaoRelationInfo& relinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

void GetRelationInfo(
 LPCTSTR lpszName,
 CDaoRelationInfo& relinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

ParametersParameters

RemarksRemarks

NOTENOTE

CDaoDatabase::GetTableDefCount

To illustrate the concept of a relation, consider a Suppliers table and a Products table, which might have a one-
to-many relationship. In this relationship, one supplier can supply more than one product. Other relations are
one-to-one and many-to-many.

Call this member function to obtain information about a specified relation in the database's Relations collection.

nIndex
The index of the relation object in the database's Relations collection, for lookup by index.

relinfo
A reference to a CDaoRelationInfo object that returns the information requested.

dwInfoOptions
Options that specify which information about the relation to retrieve. The available options are listed here
along with what they cause the function to return about the relation:

AFX_DAO_PRIMARY_INFO (Default) Name, Table, Foreign Table

AFX_DAO_SECONDARY_INFO Attributes, Field Information

The Field Information is a CDaoRelationFieldInfo object containing the fields from the primary table involved
in the relation.

lpszName
A string containing the name of the relation object, for lookup by name.

Two versions of this function provide access either by index or by name. For a description of the information
returned in relinfo, see the CDaoRelationInfo structure. This structure has members that correspond to the
items of information listed above in the description of dwInfoOptions. If you request information at one level,
you also get information at any prior levels as well.

If you set the relation object's attributes to activate cascade operations (dbRelationUpdateCascades or
dbRelationDeleteCascades), the Microsoft Jet database engine automatically updates or deletes records in one or

more other tables when changes are made to related primary key tables. For example, suppose you establish a cascade
delete relationship between a Customers table and an Orders table. When you delete records from the Customers table,
records in the Orders table related to that customer are also deleted. In addition, if you establish cascade delete
relationships between the Orders table and other tables, records from those tables are automatically deleted when you
delete records from the Customers table.

short GetTableDefCount();

Return ValueReturn Value

RemarksRemarks

CDaoDatabase::GetTableDefInfo

void GetTableDefInfo(
 int nIndex,
 CDaoTableDefInfo& tabledefinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

void GetTableDefInfo(
 LPCTSTR lpszName,
 CDaoTableDefInfo& tabledefinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

ParametersParameters

RemarksRemarks

Call this member function to retrieve the number of tables defined in the database.

The number of tabledefs defined in the database.

GetTableDefCount is useful if you need to loop through all tabledefs in the database's TableDefs collection. To
obtain information about a given table in the collection, see GetTableDefInfo.

Call this member function to obtain various kinds of information about a table defined in the database.

nIndex
The index of the tabledef object in the database's TableDefs collection, for lookup by index.

tabledefinfo
A reference to a CDaoTableDefInfo object that returns the information requested.

dwInfoOptions
Options that specify which information about the table to retrieve. The available options are listed here along
with what they cause the function to return about the relation:

AFX_DAO_PRIMARY_INFO (Default) Name, Updatable, Attributes

AFX_DAO_SECONDARY_INFO Primary information plus: Date Created, Date Last Updated, Source
Table Name, Connect

AFX_DAO_ALL_INFO Primary and secondary information plus: Validation Rule, Validation Text, Record
Count

lpszName
The name of the tabledef object, for lookup by name.

Two versions of the function are supplied so you can select a table either by index in the database's TableDefs
collection or by the name of the table.

For a description of the information returned in tabledefinfo, see the CDaoTableDefInfo structure. This
structure has members that correspond to the items of information listed above in the description of
dwInfoOptions. If you request information at one level, you get information for any prior levels as well.

NOTENOTE

CDaoDatabase::GetVersion

CString GetVersion();

Return ValueReturn Value

RemarksRemarks

CDaoDatabase::IsOpen

BOOL IsOpen() const;

Return ValueReturn Value

RemarksRemarks

CDaoDatabase::m_pDAODatabase

RemarksRemarks

CDaoDatabase::m_pWorkspace

RemarksRemarks

CDaoDatabase::Open

The AFX_DAO_ALL_INFO option provides information that can be slow to obtain. In this case, counting the records in
the table could be very time consuming if there are many records.

Call this member function to determine the version of the Microsoft Jet database file.

A CString that indicates the version of the database file associated with the object.

The value returned represents the version number in the form "major.minor"; for example, "3.0". The product
version number (for example, 3.0) consists of the version number (3), a period, and the release number (0). The
versions to date are 1.0, 1.1, 2.0, and 3.0.

For related information, see the topic "Version Property" in DAO Help.

Call this member function to determine whether the CDaoDatabase object is currently open on a database.

Nonzero if the CDaoDatabase object is currently open; otherwise 0.

Contains a pointer to the OLE interface for the DAO database object underlying the CDaoDatabase object.

Use this pointer if you need to access the DAO interface directly.

For information about calling DAO directly, see Technical Note 54.

Contains a pointer to the CDaoWorkspace object that contains the database object.

Use this pointer if you need to access the workspace directly — for example, to obtain pointers to other
database objects in the workspace's Databases collection.

You must call this member function to initialize a newly constructed CDaoDatabase object that represents an
existing database.

virtual void Open(
 LPCTSTR lpszName,
 BOOL bExclusive = FALSE,
 BOOL bReadOnly = FALSE,
 LPCTSTR lpszConnect = _T(""));

ParametersParameters

NOTENOTE

RemarksRemarks

lpszName
A string expression that is the name of an existing Microsoft Jet (.MDB) database file. If the filename has an
extension, it is required. If your network supports the uniform naming convention (UNC), you can also specify
a network path, such as "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB". (Double backslashes are
required in string literals because "\" is the C++ escape character.)

Some considerations apply when using lpszName. If it:

Refers to a database that is already open for exclusive access by another user, MFC throws an exception
of type CDaoException. Trap that exception to let your user know that the database is unavailable.

Is an empty string ("") and lpszConnect is "ODBC;", a dialog box listing all registered ODBC data source
names is displayed so the user can select a database. You should avoid direct connections to ODBC data
sources; use an attached table instead.

Otherwise does not refer to an existing database or valid ODBC data source name, MFC throws an
exception of type CDaoException .

For details about DAO error codes, see the DAOERR.H file. For related information, see the topic "Trappable Data Access
Errors" in DAO Help.

bExclusive
A Boolean value that is TRUE if the database is to be opened for exclusive (nonshared) access and FALSE if the
database is to be opened for shared access. If you omit this argument, the database is opened for shared
access.

bReadOnly
A Boolean value that is TRUE if the database is to be opened for read-only access and FALSE if the database is
to be opened for read/write access. If you omit this argument, the database is opened for read/write access. All
dependent recordsets inherit this attribute.

lpszConnect
A string expression used for opening the database. This string constitutes the ODBC connect arguments. You
must supply the exclusive and read-only arguments to supply a source string. If the database is a Microsoft Jet
database (.MDB), this string is empty (""). The syntax for the default value — _T("") — provides portability for
Unicode as well as ANSI builds of your application.

Open associates the database with the underlying DAO object. You cannot use the database object to construct
recordset, tabledef, or querydef objects until it is initialized. Open appends the database object to the
associated workspace's Databases collection.

Use the parameters as follows:

If you are opening a Microsoft Jet (.MDB) database, use the lpszName parameter and pass an empty
string for the lpszConnect parameter or pass a password string of the form ";PWD=password" if the

NOTENOTE

CDaoDatabase::SetQueryTimeout

void SetQueryTimeout(short nSeconds);

ParametersParameters

RemarksRemarks

database is password-protected (.MDB databases only).

If you are opening an ODBC data source, pass a valid ODBC connection string in lpszConnect and an
empty string in lpszName.

For related information, see the topic "OpenDatabase Method" in DAO Help.

For better performance when accessing external databases, including ISAM databases and ODBC data sources, it is
recommended that you attach external database tables to a Microsoft Jet engine database (.MDB) rather than
connecting directly to the data source.

It is possible for a connection attempt to time out if, for example, the DBMS host is unavailable. If the
connection attempt fails, Open throws an exception of type CDaoException.

The remaining remarks apply only to ODBC databases:

If the database is an ODBC database and the parameters in your Open call do not contain enough information
to make the connection, the ODBC driver opens a dialog box to obtain the necessary information from the
user. When you call Open , your connection string, lpszConnect, is stored privately and is available by calling the
GetConnect member function.

If you wish, you can open your own dialog box before you call Open to get information from the user, such as a
password, then add that information to the connection string you pass to Open . Or you might want to save the
connection string you pass (perhaps in the Windows registry) so you can reuse it the next time your application
calls Open on a CDaoDatabase object.

You can also use the connection string for multiple levels of login authorization (each for a different
CDaoDatabase object) or to convey other database-specific information.

Call this member function to override the default number of seconds to allow before subsequent operations on
the connected database time out.

nSeconds
The number of seconds to allow before a query attempt times out.

An operation might time out because of network access problems, excessive query processing time, and so on.
Call SetQueryTimeout before opening your recordset or before calling the recordset's AddNew, Update, or
Delete member functions if you want to change the query timeout value. The setting affects all subsequent
Open, AddNew , Update , and Delete calls to any recordsets associated with this CDaoDatabase object. Changing
the query timeout value for a recordset after opening does not change the value for the recordset. For example,
subsequent Move operations do not use the new value.

The default value for query timeouts is 60 seconds. Not all databases support the ability to set a query timeout
value. If you set a query timeout value of 0, no timeout occurs; the communication with the database may stop
responding. This behavior may be useful during development.

For related information, see the topic "QueryTimeout Property" in DAO Help.

See also
CObject Class
Hierarchy Chart
CDaoWorkspace Class
CDaoRecordset Class
CDaoTableDef Class
CDaoQueryDef Class
CDatabase Class
CDaoException Class

CDaoException Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CDaoException : public CException

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDaoException::CDaoException Constructs a CDaoException object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDaoException::GetErrorCount Returns the number of errors in the database engine's
Errors collection.

CDaoException::GetErrorInfo Returns error information about a particular error object in
the Errors collection.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDaoException::m_nAfxDaoError Contains an extended error code for any error in the MFC
DAO classes.

CDaoException::m_pErrorInfo A pointer to a CDaoErrorInfo object that contains
information about one DAO error object.

CDaoException::m_scode The SCODE value associated with the error.

Remarks

Represents an exception condition arising from the MFC database classes based on data access objects
(DAO).

The class includes public data members you can use to determine the cause of the exception. CDaoException

objects are constructed and thrown by member functions of the DAO database classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaoexception-class.md

NOTENOTE

Inheritance Hierarchy

Requirements

CDaoException::CDaoException

CDaoException();

RemarksRemarks

The DAO database classes are distinct from the MFC database classes based on Open Database Connectivity (ODBC).
All DAO database class names have the "CDao" prefix. You can still access ODBC data sources with the DAO classes. In
general, the MFC classes based on DAO are more capable than the MFC classes based on ODBC; the DAO-based
classes can access data, including through ODBC drivers, via their own database engine. The DAO-based classes also
support Data Definition Language (DDL) operations, such as adding tables via the classes, without having to call DAO
directly. For information on exceptions thrown by the ODBC classes, see CDBException.

You can access exception objects within the scope of a CATCH expression. You can also throw CDaoException

objects from your own code with the AfxThrowDaoException global function.

In MFC, all DAO errors are expressed as exceptions, of type CDaoException . When you catch an exception of
this type, you can use CDaoException member functions to retrieve information from any DAO error objects
stored in the database engine's Errors collection. As each error occurs, one or more error objects are placed in
the Errors collection. (Normally the collection contains only one error object; if you are using an ODBC data
source, you are more likely to get multiple error objects.) When another DAO operation generates an error,
the Errors collection is cleared, and the new error object is placed in the Errors collection. DAO operations that
do not generate an error have no effect on the Errors collection.

For DAO error codes, see the file DAOERR.H. For related information, see the topic "Trappable Data Access
Errors" in DAO Help.

For more information about exception handling in general, or about CDaoException objects, see the articles
Exception Handling (MFC) and Exceptions: Database Exceptions. The second article contains example code
that illustrates exception handling in DAO.

CObject

CException

CDaoException

Header: afxdao.h

Constructs a CDaoException object.

Ordinarily, the framework creates exception objects when its code throws an exception. You seldom need to
construct an exception object explicitly. If you want to throw a CDaoException from your own code, call the
global function AfxThrowDaoException.

However, you might want to explicitly create an exception object if you are making direct calls to DAO via the
DAO interface pointers that MFC classes encapsulate. In that case, you might need to retrieve error
information from DAO. Suppose an error occurs in DAO when you call a DAO method via the DAODatabases
interface to a workspace's Databases collection.

To r e t r i e v e t h e D A O e r r o r i n fo r m a t i o nTo r e t r i e v e t h e D A O e r r o r i n fo r m a t i o n

CDaoException::GetErrorCount

short GetErrorCount();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CDaoException::GetErrorInfo

void GetErrorInfo(int nIndex);

ParametersParameters

RemarksRemarks

1. Construct a CDaoException object.

2. Call the exception object's GetErrorCount member function to determine how many error objects are
in the database engine's Errors collection. (Normally only one, unless you are using an ODBC data
source.)

3. Call the exception object's GetErrorInfo member function to retrieve one specific error object at a time,
by index in the collection, via the exception object. Think of the exception object as a proxy for one DAO
error object.

4. Examine the current CDaoErrorInfo structure that GetErrorInfo returns in the m_pErrorInfo data
member. Its members provide information on the DAO error.

5. In the case of an ODBC data source, repeat steps 3 and 4 as needed, for more error objects.

6. If you constructed the exception object on the heap, delete it with the delete operator when you finish.

For more information about handling errors in the MFC DAO classes, see the article Exceptions: Database
Exceptions.

Call this member function to retrieve the number of DAO error objects in the database engine's Errors
collection.

The number of DAO error objects in the database engine's Errors collection.

This information is useful for looping through the Errors collection to retrieve each of the one or more DAO
error objects in the collection. To retrieve an error object by index or by DAO error number, call the
GetErrorInfo member function.

Normally there is only one error object in the Errors collection. If you are working with an ODBC data source, however,
there could be more than one.

Returns error information about a particular error object in the Errors collection.

nIndex
The index of the error information in the database engine's Errors collection, for lookup by index.

Call this member function to obtain the following kinds of information about the exception:

CDaoException::m_nAfxDaoError

RemarksRemarks

CDaoException::m_pErrorInfo

RemarksRemarks

CDAOERRORINFO MEMBER INFORMATION MEANING

m_lErrorCode Error Code The DAO error code

m_strSource Source The name of the object or application
that originally generated the error

Error code

Source

Description

Help file

Help context

GetErrorInfo stores the information in the exception object's m_pErrorInfo data member. For a brief
description of the information returned, see m_pErrorInfo. If you catch an exception of type CDaoException

thrown by MFC, the m_pErrorInfo member will already be filled in. If you choose to call DAO directly, you
must call the exception object's GetErrorInfo member function yourself to fill m_pErrorInfo . For a more
detailed description, see the CDaoErrorInfo structure.

For information about DAO exceptions, and example code, see the article Exceptions: Database Exceptions.

Contains an MFC extended error code.

This code is supplied in cases where a specific component of the MFC DAO classes has erred.

Possible values are:

NO_AFX_DAO_ERROR The most recent operation did not result in an MFC extended error. However,
the operation could have produced other errors from DAO or OLE, so you should check m_pErrorInfo
and possibly m_scode.

AFX_DAO_ERROR_ENGINE_INITIALIZATION MFC could not initialize the Microsoft Jet database
engine. OLE might have failed to initialize, or it might have been impossible to create an instance of the
DAO database engine object. These problems usually suggest a bad installation of either DAO or OLE.

AFX_DAO_ERROR_DFX_BIND An address used in a DAO record field exchange (DFX) function call
does not exist or is invalid (the address was not used to bind data). You might have passed a bad
address in a DFX call, or the address might have become invalid between DFX operations.

AFX_DAO_ERROR_OBJECT_NOT_OPEN You attempted to open a recordset based on a querydef or a
tabledef object that was not in an open state.

Contains a pointer to a CDaoErrorInfo structure that provides information on the DAO error object that you
last retrieved by calling GetErrorInfo.

This object contains the following information:

m_strDescription Description A descriptive string associated with
the error

m_strHelpFile Help File A path to a Windows Help file in
which the user can get information
about the problem

m_lHelpContext Help Context The context ID for a topic in the DAO
Help file

CDAOERRORINFO MEMBER INFORMATION MEANING

CDaoException::m_scode

RemarksRemarks

See also

For full details about the information contained in the CDaoErrorInfo object, see the CDaoErrorInfo structure.

Contains a value of type SCODE that describes the error.

This is an OLE code. You will seldom need to use this value because, in almost all cases, more specific MFC or
DAO error information is available in the other CDaoException data members.

For information about SCODE, see the topic Structure of OLE Error Codes in the Windows SDK. The SCODE
data type maps to the HRESULT data type.

CException Class
Hierarchy Chart
CException Class

https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes

CDaoFieldExchange Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CDaoFieldExchange

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CDaoFieldExchange::IsValidOperation Returns nonzero if the current operation is appropriate for
the type of field being updated.

CDaoFieldExchange::SetFieldType Specifies the type of recordset data member — column or
parameter — represented by all subsequent calls to DFX
functions until the next call to SetFieldType .

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDaoFieldExchange::m_nOperation The DFX operation being performed by the current call to the
recordset's DoFieldExchange member function.

CDaoFieldExchange::m_prs A pointer to the recordset on which DFX operations are
being performed.

Remarks

NOTENOTE

Supports the DAO record field exchange (DFX) routines used by the DAO database classes.

CDaoFieldExchange does not have a base class.

Use this class if you are writing data exchange routines for custom data types; otherwise, you will not directly use
this class. DFX exchanges data between the field data members of your CDaoRecordset object and the
corresponding fields of the current record on the data source. DFX manages the exchange in both directions,
from the data source and to the data source. See Technical Note 53 for information about writing custom DFX
routines.

The DAO database classes are distinct from the MFC database classes based on Open Database Connectivity (ODBC). All
DAO database class names have the "CDao" prefix. You can still access ODBC data sources with the DAO classes. In
general, the MFC classes based on DAO are more capable than the MFC classes based on ODBC. The DAO-based classes
can access data, including through ODBC drivers, via their own database engine. They also support Data Definition
Language (DDL) operations, such as adding tables via the classes instead of having to call DAO yourself.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaofieldexchange-class.md

NOTENOTE

Inheritance Hierarchy

Requirements

CDaoFieldExchange::IsValidOperation

BOOL IsValidOperation();

Return ValueReturn Value

RemarksRemarks

CDaoFieldExchange::m_nOperation

RemarksRemarks

DAO record field exchange (DFX) is very similar to record field exchange (RFX) in the ODBC-based MFC database classes (
CDatabase , CRecordset). If you understand RFX, you will find it easy to use DFX.

A CDaoFieldExchange object provides the context information needed for DAO record field exchange to take
place. CDaoFieldExchange objects support a number of operations, including binding parameters and field data
members and setting various flags on the fields of the current record. DFX operations are performed on
recordset-class data members of types defined by the enum FieldType in CDaoFieldExchange . Possible
FieldType values are:

CDaoFieldExchange::outputColumn for field data members.

CDaoFieldExchange::param for parameter data members.

The IsValidOperation member function is provided for writing your own custom DFX routines. You will use
SetFieldType frequently in your CDaoRecordset::DoFieldExchange functions. For details about the DFX global
functions, see Record Field Exchange Functions. For information about writing custom DFX routines for your
own data types, see Technical Note 53.

CDaoFieldExchange

Header: afxdao.h

If you write your own DFX function, call IsValidOperation at the beginning of your function to determine
whether the current operation can be performed on a particular field data member type (a
CDaoFieldExchange::outputColumn or a CDaoFieldExchange::param).

Nonzero if the current operation is appropriate for the type of field being updated.

Some of the operations performed by the DFX mechanism apply only to one of the possible field types. Follow
the model of the existing DFX functions.

For additional information on writing custom DFX routines, see Technical Note 53.

Identifies the operation to be performed on the CDaoRecordset object associated with the field exchange object.

The CDaoFieldExchange object supplies the context for a number of different DFX operations on the recordset.

NOTENOTE

OPERATION DESCRIPTION

AddToParameterList Builds the PARAMETERS clause of the SQL statement.

AddToSelectList Builds the SELECT clause of the SQL statement.

BindField Binds a field in the database to a memory location in your
application.

BindParam Sets parameter values for the recordset's query.

Fixup Sets the Null status for a field.

AllocCache Allocates the cache used to check for "dirty" fields in the
recordset.

StoreField Saves the current record to the cache.

LoadField Restores the cached data member variables in the recordset.

FreeCache Frees the cache used to check for "dirty" fields in the
recordset.

SetFieldNull Sets a field's status to Null and value to PSEUDONULL.

MarkForAddNew Marks fields "dirty" if not PSEUDONULL.

MarkForEdit Marks fields "dirty" if they do not match the cache.

SetDirtyField Sets field values marked as "dirty."

DumpField Dumps a field's contents (debug only).

MaxDFXOperation Used for input checking.

CDaoFieldExchange::m_prs

RemarksRemarks

CDaoFieldExchange::SetFieldType

The PSEUDONULL value described under the MarkForAddNew and SetFieldNull operations below is a value used to mark
fields Null. The DAO record field exchange mechanism (DFX) uses this value to determine which fields have been explicitly
marked Null. PSEUDONULL is not required for COleDateTime and COleCurrency fields.

Possible values of m_nOperation are:

Contains a pointer to the CDaoRecordset object associated with the CDaoFieldExchange object.

Call SetFieldType in your CDaoRecordset class's DoFieldExchange override.

void SetFieldType(UINT nFieldType);

ParametersParameters

RemarksRemarks

See also

nFieldType
A value of the enum FieldType, declared in CDaoFieldExchange , which can be either of the following:

CDaoFieldExchange::outputColumn

CDaoFieldExchange::param

Normally, ClassWizard writes this call for you. If you write your own function and are using the wizard to write
your DoFieldExchange function, add calls to your own function outside the field map. If you do not use the
wizard, there will not be a field map. The call precedes calls to DFX functions, one for each field data member of
your class, and identifies the field type as CDaoFieldExchange::outputColumn .

If you parameterize your recordset class, you should add DFX calls for all parameter data members (outside the
field map) and precede these calls with a call to SetFieldType . Pass the value CDaoFieldExchange::param . (You
can, instead, use a CDaoQueryDef and set its parameter values.)

In general, each group of DFX function calls associated with field data members or parameter data members
must be preceded by a call to SetFieldType . The nFieldType parameter of each SetFieldType call identifies the
type of the data members represented by the DFX function calls that follow the SetFieldType call.

Hierarchy Chart
CDaoRecordset Class

CDaoQueryDef Class
3/4/2019 • 21 minutes to read • Edit Online

Syntax
class CDaoQueryDef : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDaoQueryDef::CDaoQueryDef Constructs a CDaoQueryDef object. Next call Open or
Create , depending on your needs.

Public MethodsPublic Methods

NAME DESCRIPTION

CDaoQueryDef::Append Appends the querydef to the database's QueryDefs
collection as a saved query.

CDaoQueryDef::CanUpdate Returns nonzero if the query can update the database.

CDaoQueryDef::Close Closes the querydef object. Destroy the C++ object when
you finish with it.

CDaoQueryDef::Create Creates the underlying DAO querydef object. Use the
querydef as a temporary query, or call Append to save it in
the database.

CDaoQueryDef::Execute Executes the query defined by the querydef object.

CDaoQueryDef::GetConnect Returns the connection string associated with the querydef.
The connection string identifies the data source. (For SQL
pass-through queries only; otherwise an empty string.)

CDaoQueryDef::GetDateCreated Returns the date the saved query was created.

CDaoQueryDef::GetDateLastUpdated Returns the date the saved query was last updated.

CDaoQueryDef::GetFieldCount Returns the number of fields defined by the querydef.

CDaoQueryDef::GetFieldInfo Returns information about a specified field defined in the
query.

Represents a query definition, or "querydef," usually one saved in a database.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaoquerydef-class.md

CDaoQueryDef::GetName Returns the name of the querydef.

CDaoQueryDef::GetODBCTimeout Returns the timeout value used by ODBC (for an ODBC
query) when the querydef is executed. This determines how
long to allow for the query's action to complete.

CDaoQueryDef::GetParameterCount Returns the number of parameters defined for the query.

CDaoQueryDef::GetParameterInfo Returns information about a specified parameter to the
query.

CDaoQueryDef::GetParamValue Returns the value of a specified parameter to the query.

CDaoQueryDef::GetRecordsAffected Returns the number of records affected by an action query.

CDaoQueryDef::GetReturnsRecords Returns nonzero if the query defined by the querydef
returns records.

CDaoQueryDef::GetSQL Returns the SQL string that specifies the query defined by
the querydef.

CDaoQueryDef::GetType Returns the query type: delete, update, append, make-table,
and so on.

CDaoQueryDef::IsOpen Returns nonzero if the querydef is open and can be
executed.

CDaoQueryDef::Open Opens an existing querydef stored in the database's
QueryDefs collection.

CDaoQueryDef::SetConnect Sets the connection string for a SQL pass-through query on
an ODBC data source.

CDaoQueryDef::SetName Sets the name of the saved query, replacing the name in use
when the querydef was created.

CDaoQueryDef::SetODBCTimeout Sets the timeout value used by ODBC (for an ODBC query)
when the querydef is executed.

CDaoQueryDef::SetParamValue Sets the value of a specified parameter to the query.

CDaoQueryDef::SetReturnsRecords Specifies whether the querydef returns records. Setting this
attribute to TRUE is only valid for SQL pass-through queries.

CDaoQueryDef::SetSQL Sets the SQL string that specifies the query defined by the
querydef.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDaoQueryDef::m_pDAOQueryDef A pointer to the OLE interface for the underlying DAO
querydef object.

CDaoQueryDef::m_pDatabase A pointer to the CDaoDatabase object with which the
querydef is associated. The querydef might be saved in the
database or not.

NAME DESCRIPTION

Remarks

NOTENOTE

Usage

TIPTIP

Purposes

A querydef is a data access object that contains the SQL statement that describes a query, and its properties,
such as "Date Created" and "ODBC Timeout." You can also create temporary querydef objects without saving
them, but it is convenient — and much more efficient — to save commonly reused queries in a database. A
CDaoDatabase object maintains a collection, called the QueryDefs collection, that contains its saved querydefs.

The DAO database classes are distinct from the MFC database classes based on Open Database Connectivity (ODBC). All
DAO database class names have the "CDao" prefix. You can still access ODBC data sources with the DAO classes. In
general, the MFC classes based on DAO are more capable than the MFC classes based on ODBC; the DAO-based classes
can access data, including through ODBC drivers, via their own database engine. The DAO-based classes also support
Data Definition Language (DDL) operations, such as adding tables via the classes, without having to call DAO directly.

Use querydef objects either to work with an existing saved query or to create a new saved query or temporary
query:

1. In all cases, first construct a CDaoQueryDef object, supplying a pointer to the CDaoDatabase object to
which the query belongs.

2. Then do the following, depending on what you want:

To use an existing saved query, call the querydef object's Open member function, supplying the
name of the saved query.

To create a new saved query, call the querydef object's Create member function, supplying the
name of the query. Then call Append to save the query by appending it to the database's
QueryDefs collection. Create puts the querydef into an open state, so after calling Create you do
not call Open .

To create a temporary querydef, call Create . Pass an empty string for the query name. Do not call
Append .

When you finish using a querydef object, call its Close member function; then destroy the querydef object.

The easiest way to create saved queries is to create them and store them in your database using Microsoft Access. Then
you can open and use them in your MFC code.

You can use a querydef object for any of the following purposes:

To create a CDaoRecordset object

Querydefs and Recordsets

External Databases

TIPTIP

Inheritance Hierarchy

Requirements

CDaoQueryDef::Append

virtual void Append();

RemarksRemarks

To call the object's Execute member function to directly execute an action query or a SQL pass-through
query

You can use a querydef object for any type of query, including select, action, crosstab, delete, update, append,
make-table, data definition, SQL pass-through, union, and bulk queries. The query's type is determined by the
content of the SQL statement that you supply. For information about query types, see the Execute and GetType
member functions. Recordsets are commonly used for row-returning queries, usually those using the SELECT
... FROM keywords. Execute is most commonly used for bulk operations. For more information, see Execute
and CDaoRecordset.

To use a querydef object to create a CDaoRecordset object, you typically create or open a querydef as described
above. Then construct a recordset object, passing a pointer to your querydef object when you call
CDaoRecordset::Open. The querydef you pass must be in an open state. For more information, see class
CDaoRecordset.

You cannot use a querydef to create a recordset (the most common use for a querydef) unless it is in an open
state. Put the querydef into an open state by calling either Open or Create .

Querydef objects are the preferred way to use the native SQL dialect of an external database engine. For
example, you can create a Transact SQL query (as used on Microsoft SQL Server) and store it in a querydef
object. When you need to use a SQL query not based on the Microsoft Jet database engine, you must provide a
connection string that points to the external data source. Queries with valid connection strings bypass the
database engine and pass the query directly to the external database server for processing.

The preferred way to work with ODBC tables is to attach them to a Microsoft Jet (.MDB) database.

For related information, see the topics "QueryDef Object", "QueryDefs Collection", and "CdbDatabase Object" in
the DAO SDK.

CObject

CDaoQueryDef

Header: afxdao.h

Call this member function after you call Create to create a new querydef object.

Append saves the querydef in the database by appending the object to the database's QueryDefs collection. You

CDaoQueryDef::CanUpdate

BOOL CanUpdate();

Return ValueReturn Value

RemarksRemarks

CDaoQueryDef::CDaoQueryDef

CDaoQueryDef(CDaoDatabase* pDatabase);

ParametersParameters

RemarksRemarks

can use the querydef as a temporary object without appending it, but if you want it to persist, you must call
Append .

If you attempt to append a temporary querydef object, MFC throws an exception of type CDaoException.

Call this member function to determine whether you can modify the querydef — such as changing its name or
SQL string.

Nonzero if you are permitted to modify the querydef; otherwise 0.

You can modify the querydef if:

It is not based on a database that is open read-only.

You have update permissions for the database.

This depends on whether you have implemented security features. MFC does not provide support for
security; you must implement it yourself by calling DAO directly or by using Microsoft Access. See the
topic "Permissions Property" in DAO Help.

Constructs a CDaoQueryDef object.

pDatabase
A pointer to an open CDaoDatabase object.

The object can represent an existing querydef stored in the database's QueryDefs collection, a new query to be
stored in the collection, or a temporary query, not to be stored. Your next step depends on the type of querydef:

If the object represents an existing querydef, call the object's Open member function to initialize it.

If the object represents a new querydef to be saved, call the object's Create member function. This adds
the object to the database's QueryDefs collection. Then call CDaoQueryDef member functions to set the
object's attributes. Finally, call Append.

If the object represents a temporary querydef (not to be saved in the database), call Create , passing an
empty string for the query's name. After calling Create , initialize the querydef by directly setting its
attributes. Do not call Append .

To set the attributes of the querydef, you can use the SetName, SetSQL, SetConnect, SetODBCTimeout, and
SetReturnsRecords member functions.

When you finish with the querydef object, call its Close member function. If you have a pointer to the querydef,
use the delete operator to destroy the C++ object.

CDaoQueryDef::Close

virtual void Close();

RemarksRemarks

CDaoQueryDef::Create

virtual void Create(
 LPCTSTR lpszName = NULL,
 LPCTSTR lpszSQL = NULL);

ParametersParameters

RemarksRemarks

CDaoQueryDef::Execute

virtual void Execute(int nOptions = dbFailOnError);

ParametersParameters

Call this member function when you finish using the querydef object.

Closing the querydef releases the underlying DAO object but does not destroy the saved DAO querydef object
or the C++ CDaoQueryDef object. This is not the same as CDaoDatabase::DeleteQueryDef, which deletes the
querydef from the database's QueryDefs collection in DAO (if not a temporary querydef).

Call this member function to create a new saved query or a new temporary query.

lpszName
The unique name of the query saved in the database. For details about the string, see the topic "CreateQueryDef
Method" in DAO Help. If you accept the default value, an empty string, a temporary querydef is created. Such a
query is not saved in the QueryDefs collection.

lpszSQL
The SQL string that defines the query. If you accept the default value of NULL, you must later call SetSQL to set
the string. Until then, the query is undefined. You can, however, use the undefined query to open a recordset; see
Remarks for details. The SQL statement must be defined before you can append the querydef to the QueryDefs
collection.

If you pass a name in lpszName, you can then call Append to save the querydef in the database's QueryDefs
collection. Otherwise, the object is a temporary querydef and is not saved. In either case, the querydef is in an
open state, and you can either use it to create a CDaoRecordset object or call the querydef's Execute member
function.

If you do not supply a SQL statement in lpszSQL, you cannot run the query with Execute but you can use it to
create a recordset. In that case, MFC uses the recordset's default SQL statement.

Call this member function to run the query defined by the querydef object.

nOptions
An integer that determines the characteristics of the query. For related information, see the topic "Execute
Method" in DAO Help. You can use the bitwise-OR operator (|) to combine the following constants for this
argument:

NOTENOTE

RemarksRemarks

TIPTIP

CDaoQueryDef::GetConnect

CString GetConnect();

Return ValueReturn Value

RemarksRemarks

dbDenyWrite Deny write permission to other users.

dbInconsistent Inconsistent updates.

dbConsistent Consistent updates.

dbSQLPassThrough SQL pass-through. Causes the SQL statement to be passed to an ODBC database for
processing.

dbFailOnError Default value. Roll back updates if an error occurs and report the error to the user.

dbSeeChanges Generate a run-time error if another user is changing data you are editing.

For an explanation of the terms "inconsistent" and "consistent," see the topic "Execute Method" in DAO Help.

Querydef objects used for execution in this manner can only represent one of the following query types:

Action queries

SQL pass-through queries

Execute does not work for queries that return records, such as select queries. Execute is commonly used for
bulk operation queries, such as UPDATE , INSERT, or SELECT INTO, or for data definition language (DDL)
operations.

The preferred way to work with ODBC data sources is to attach tables to a Microsoft Jet (.MDB) database. For more
information, see the topic "Accessing External Databases with DAO" in DAO Help.

Call the GetRecordsAffected member function of the querydef object to determine the number of records
affected by the most recent Execute call. For example, GetRecordsAffected returns information about the
number of records deleted, updated, or inserted when executing an action query. The count returned will not
reflect changes in related tables when cascade updates or deletes are in effect.

If you include both dbInconsistent and dbConsistent or if you include neither, the result is the default,
dbInconsistent .

Execute does not return a recordset. Using Execute on a query that selects records causes MFC to throw an
exception of type CDaoException.

Call this member function to get the connection string associated with the querydef's data source.

A CString containing the connection string for the querydef.

This function is used only with ODBC data sources and certain ISAM drivers. It is not used with Microsoft Jet

TIPTIP

CDaoQueryDef::GetDateCreated

COleDateTime GetDateCreated();

Return ValueReturn Value

RemarksRemarks

CDaoQueryDef::GetDateLastUpdated

COleDateTime GetDateLastUpdated();

Return ValueReturn Value

RemarksRemarks

CDaoQueryDef::GetFieldCount

short GetFieldCount();

Return ValueReturn Value

RemarksRemarks

CDaoQueryDef::GetFieldInfo

(.MDB) databases; in this case, GetConnect returns an empty string. For more information, see SetConnect.

The preferred way to work with ODBC tables is to attach them to an .MDB database. For more information, see the topic
"Accessing External Databases with DAO" in DAO Help.

For information about connection strings, see the topic "Connect Property" in DAO Help.

Call this member function to get the date the querydef object was created.

A COleDateTime object containing the date and time the querydef was created.

For related information, see the topic "DateCreated, LastUpdated Properties" in DAO Help.

Call this member function to get the date the querydef object was last updated — when any of its properties
were changed, such as its name, its SQL string, or its connection string.

A COleDateTime object containing the date and time the querydef was last updated.

For related information, see the topic "DateCreated, LastUpdated Properties" in DAO Help.

Call this member function to retrieve the number of fields in the query.

The number of fields defined in the query.

GetFieldCount is useful for looping through all fields in the querydef. For that purpose, use GetFieldCount in
conjunction with GetFieldInfo.

Call this member function to obtain various kinds of information about a field defined in the querydef.

void GetFieldInfo(
 int nIndex,
 CDaoFieldInfo& fieldinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

void GetFieldInfo(
 LPCTSTR lpszName,
 CDaoFieldInfo& fieldinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

ParametersParameters

RemarksRemarks

CDaoQueryDef::GetName

CString GetName();

Return ValueReturn Value

RemarksRemarks

CDaoQueryDef::GetODBCTimeout

nIndex
The zero-based index of the desired field in the querydef's Fields collection, for lookup by index.

fieldinfo
A reference to a CDaoFieldInfo object that returns the information requested.

dwInfoOptions
Options that specify which information about the field to retrieve. The available options are listed here along
with what they cause the function to return:

AFX_DAO_PRIMARY_INFO (Default) Name, Type, Size, Attributes

AFX_DAO_SECONDARY_INFO Primary information plus: Ordinal Position, Required, Allow Zero
Length, Source Field, Foreign Name, Source Table, Collating Order

AFX_DAO_ALL_INFO Primary and secondary information plus: Default Value, Validation Text, Validation
Rule

lpszName
A string containing the name of the desired field, for lookup by name. You can use a CString.

For a description of the information returned in fieldinfo, see the CDaoFieldInfo structure. This structure has
members that correspond to the descriptive information under dwInfoOptions above. If you request one level of
information, you get any prior levels of information as well.

Call this member function to retrieve the name of the query represented by the querydef.

The name of the query.

Querydef names are unique user-defined names. For more information about querydef names, see the topic
"Name Property" in DAO Help.

Call this member function to retrieve the current time limit before a query to an ODBC data source times out.

short GetODBCTimeout();

Return ValueReturn Value

RemarksRemarks

TIPTIP

CDaoQueryDef::GetParameterCount

short GetParameterCount();

Return ValueReturn Value

RemarksRemarks

CDaoQueryDef::GetParameterInfo

void GetParameterInfo(
 int nIndex,
 CDaoParameterInfo& paraminfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

void GetParameterInfo(
 LPCTSTR lpszName,
 CDaoParameterInfo& paraminfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

ParametersParameters

The number of seconds before a query times out.

For information about this time limit, see the topic "ODBCTimeout Property" in DAO Help.

The preferred way to work with ODBC tables is to attach them to a Microsoft Jet (.MDB) database. For more information,
see the topic "Accessing External Databases with DAO" in DAO Help.

Call this member function to retrieve the number of parameters in the saved query.

The number of parameters defined in the query.

GetParameterCount is useful for looping through all parameters in the querydef. For that purpose, use
GetParameterCount in conjunction with GetParameterInfo.

For related information, see the topics "Parameter Object", "Parameters Collection", and "PARAMETERS
Declaration (SQL)" in DAO Help.

Call this member function to obtain information about a parameter defined in the querydef.

nIndex
The zero-based index of the desired parameter in the querydef's Parameters collection, for lookup by index.

paraminfo
A reference to a CDaoParameterInfo object that returns the information requested.

dwInfoOptions
Options that specify which information about the parameter to retrieve. The available option is listed here along
with what it causes the function to return:

RemarksRemarks

CDaoQueryDef::GetParamValue

virtual COleVariant GetParamValue(LPCTSTR lpszName);
virtual COleVariant GetParamValue(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDaoQueryDef::GetRecordsAffected

long GetRecordsAffected();

Return ValueReturn Value

RemarksRemarks

CDaoQueryDef::GetReturnsRecords

AFX_DAO_PRIMARY_INFO (Default) Name, Type

lpszName
A string containing the name of the desired parameter, for lookup by name. You can use a CString.

For a description of the information returned in paraminfo, see the CDaoParameterInfo structure. This structure
has members that correspond to the descriptive information under dwInfoOptions above.

For related information, see the topic "PARAMETERS Declaration (SQL)" in DAO Help.

Call this member function to retrieve the current value of the specified parameter stored in the querydef's
Parameters collection.

lpszName
The name of the parameter whose value you want, for lookup by name.

nIndex
The zero-based index of the parameter in the querydef's Parameters collection, for lookup by index. You can
obtain this value with calls to GetParameterCount and GetParameterInfo.

An object of class COleVariant that contains the parameter's value.

You can access the parameter either by name or by its ordinal position in the collection.

For related information, see the topic "PARAMETERS Declaration (SQL)" in DAO Help.

Call this member function to determine how many records were affected by the last call of Execute.

The number of records affected.

The count returned will not reflect changes in related tables when cascade updates or deletes are in effect.

For related information see the topic "RecordsAffected Property" in DAO Help.

Call this member function to determine whether the querydef is based on a query that returns records.

BOOL GetReturnsRecords();

Return ValueReturn Value

RemarksRemarks

CDaoQueryDef::GetSQL

CString GetSQL();

Return ValueReturn Value

RemarksRemarks

CDaoQueryDef::GetType

short GetType();

Return ValueReturn Value

RemarksRemarks

Nonzero if the querydef is based on a query that returns records; otherwise 0.

This member function is only used for SQL pass-through queries. For more information about SQL queries, see
the Execute member function. For more information about working with SQL pass-through queries, see the
SetReturnsRecords member function.

For related information, see the topic "ReturnsRecords Property" in DAO Help.

Call this member function to retrieve the SQL statement that defines the query on which the querydef is based.

The SQL statement that defines the query on which the querydef is based.

You will then probably parse the string for keywords, table names, and so on.

For related information, see the topics "SQL Property", "Comparison of Microsoft Jet Database Engine SQL and
ANSI SQL", and "Querying a Database with SQL in Code" in DAO Help.

Call this member function to determine the query type of the querydef.

The type of the query defined by the querydef. For values, see Remarks.

The query type is set by what you specify in the querydef's SQL string when you create the querydef or call an
existing querydef's SetSQL member function. The query type returned by this function can be one of the
following values:

dbQSelect Select

dbQAction Action

dbQCrosstab Crosstab

dbQDelete Delete

dbQUpdate Update

dbQAppend Append

dbQMakeTable Make-table

NOTENOTE

CDaoQueryDef::IsOpen

BOOL IsOpen() const;

Return ValueReturn Value

RemarksRemarks

CDaoQueryDef::m_pDatabase

RemarksRemarks

CDaoQueryDef::m_pDAOQueryDef

RemarksRemarks

CDaoQueryDef::Open

virtual void Open(LPCTSTR lpszName = NULL);

ParametersParameters

dbQDDL Data-definition

dbQSQLPassThrough Pass-through

dbQSetOperation Union

dbQSPTBulk Used with dbQSQLPassThrough to specify a query that does not return records.

To create a SQL pass-through query, don't set the dbSQLPassThrough constant. This is set automatically by the Microsoft
Jet database engine when you create a querydef object and set the connection string.

For information about SQL strings, see GetSQL. For information about query types, see Execute.

Call this member function to determine whether the CDaoQueryDef object is currently open.

Nonzero if the CDaoQueryDef object is currently open; otherwise 0.

A querydef must be in an open state before you use it to call Execute or to create a CDaoRecordset object. To
put a querydef into an open state call either Create (for a new querydef) or Open (for an existing querydef).

Contains a pointer to the CDaoDatabase object associated with the querydef object.

Use this pointer if you need to access the database directly — for example, to obtain pointers to other querydef
or recordset objects in the database's collections.

Contains a pointer to the OLE interface for the underlying DAO querydef object.

This pointer is provided for completeness and consistency with the other classes. However, because MFC rather
fully encapsulates DAO querydefs, you are unlikely to need it. If you do use it, do so cautiously — in particular,
do not change the value of the pointer unless you know what you are doing.

Call this member function to open a querydef previously saved in the database's QueryDefs collection.

lpszName

RemarksRemarks

CDaoQueryDef::SetConnect

void SetConnect(LPCTSTR lpszConnect);

ParametersParameters

RemarksRemarks

TIPTIP

CDaoQueryDef::SetName

void SetName(LPCTSTR lpszName);

ParametersParameters

RemarksRemarks

CDaoQueryDef::SetODBCTimeout

void SetODBCTimeout(short nODBCTimeout);

ParametersParameters

A string that contains the name of the saved querydef to open. You can use a CString.

Once the querydef is open, you can call its Execute member function or use the querydef to create a
CDaoRecordset object.

Call this member function to set the querydef object's connection string.

lpszConnect
A string that contains a connection string for the associated CDaoDatabase object.

The connection string is used to pass additional information to ODBC and certain ISAM drivers as needed. It is
not used for Microsoft Jet (.MDB) databases.

The preferred way to work with ODBC tables is to attach them to an .MDB database.

Before executing a querydef that represents a SQL pass-through query to an ODBC data source, set the
connection string with SetConnect and call SetReturnsRecords to specify whether the query returns records.

For more information about the connection string's structure and examples of connection string components,
see the topic "Connect Property" in DAO Help.

Call this member function if you want to change the name of a querydef that is not temporary.

lpszName
A string that contains the new name for a nontemporary query in the associated CDaoDatabase object.

Querydef names are unique, user-defined names. You can call SetName before the querydef object is appended
to the QueryDefs collection.

Call this member function to set the time limit before a query to an ODBC data source times out.

RemarksRemarks

CDaoQueryDef::SetParamValue

virtual void SetParamValue(
 LPCTSTR lpszName,
 const COleVariant& varValue);

virtual void SetParamValue(
 int nIndex,
 const COleVariant& varValue);

ParametersParameters

RemarksRemarks

CDaoQueryDef::SetReturnsRecords

void SetReturnsRecords(BOOL bReturnsRecords);

ParametersParameters

RemarksRemarks

nODBCTimeout
The number of seconds before a query times out.

This member function lets you override the default number of seconds before subsequent operations on the
connected data source "time out." An operation might time out due to network access problems, excessive query
processing time, and so on. Call SetODBCTimeout prior to executing a query with this querydef if you want to
change the query timeout value. (As ODBC reuses connections, the timeout value is the same for all clients on
the same connection.)

The default value for query timeouts is 60 seconds.

Call this member function to set the value of a parameter in the querydef at run time.

lpszName
The name of the parameter whose value you want to set.

varValue
The value to set; see Remarks.

nIndex
The ordinal position of the parameter in the querydef's Parameters collection. You can obtain this value with
calls to GetParameterCount and GetParameterInfo.

The parameter must already have been established as part of the querydef's SQL string. You can access the
parameter either by name or by its ordinal position in the collection.

Specify the value to set as a COleVariant object. For information about setting the desired value and type in
your COleVariant object, see class COleVariant.

Call this member function as part of the process of setting up a SQL pass-through query to an external
database.

bReturnsRecords
Pass TRUE if the query on an external database returns records; otherwise, FALSE.

In such a case, you must create the querydef and set its properties using other CDaoQueryDef member functions.

 CDaoQueryDef::SetSQL

void SetSQL(LPCTSTR lpszSQL);

ParametersParameters

RemarksRemarks

See also

For a description of external databases, see SetConnect.

Call this member function to set the SQL statement that the querydef executes.

lpszSQL
A string containing a complete SQL statement, suitable for execution. The syntax of this string depends on the
DBMS that your query targets. For a discussion of syntax used in the Microsoft Jet database engine, see the
topic "Building SQL Statements in Code" in DAO Help.

A typical use of SetSQL is setting up a querydef object for use in a SQL pass-through query. (For the syntax of
SQL pass-through queries on your target DBMS, see the documentation for your DBMS.)

CObject Class
Hierarchy Chart
CDaoRecordset Class
CDaoDatabase Class
CDaoTableDef Class
CDaoException Class

CDaoRecordset Class
3/4/2019 • 93 minutes to read • Edit Online

Syntax
class CDaoRecordset : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDaoRecordset::CDaoRecordset Constructs a CDaoRecordset object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDaoRecordset::AddNew Prepares for adding a new record. Call Update to
complete the addition.

CDaoRecordset::CanAppend Returns nonzero if new records can be added to the
recordset via the AddNew member function.

CDaoRecordset::CanBookmark Returns nonzero if the recordset supports bookmarks.

CDaoRecordset::CancelUpdate Cancels any pending updates due to an Edit or AddNew
operation.

CDaoRecordset::CanRestart Returns nonzero if Requery can be called to run the
recordset's query again.

CDaoRecordset::CanScroll Returns nonzero if you can scroll through the records.

CDaoRecordset::CanTransact Returns nonzero if the data source supports transactions.

CDaoRecordset::CanUpdate Returns nonzero if the recordset can be updated (you
can add, update, or delete records).

CDaoRecordset::Close Closes the recordset.

CDaoRecordset::Delete Deletes the current record from the recordset. You must
explicitly scroll to another record after the deletion.

Represents a set of records selected from a data source.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaorecordset-class.md

CDaoRecordset::DoFieldExchange Called to exchange data (in both directions) between the
field data members of the recordset and the
corresponding record on the data source. Implements
DAO record field exchange (DFX).

CDaoRecordset::Edit Prepares for changes to the current record. Call Update

to complete the edit.

CDaoRecordset::FillCache Fills all or a part of a local cache for a recordset object
that contains data from an ODBC data source.

CDaoRecordset::Find Locates the first, next, previous, or last location of a
particular string in a dynaset-type recordset that satisfies
the specified criteria and makes that record the current
record.

CDaoRecordset::FindFirst Locates the first record in a dynaset-type or snapshot-
type recordset that satisfies the specified criteria and
makes that record the current record.

CDaoRecordset::FindLast Locates the last record in a dynaset-type or snapshot-
type recordset that satisfies the specified criteria and
makes that record the current record.

CDaoRecordset::FindNext Locates the next record in a dynaset-type or snapshot-
type recordset that satisfies the specified criteria and
makes that record the current record.

CDaoRecordset::FindPrev Locates the previous record in a dynaset-type or
snapshot-type recordset that satisfies the specified
criteria and makes that record the current record.

CDaoRecordset::GetAbsolutePosition Returns the record number of a recordset object's current
record.

CDaoRecordset::GetBookmark Returns a value that represents the bookmark on a
record.

CDaoRecordset::GetCacheSize Returns a value that specifies the number of records in a
dynaset-type recordset containing data to be locally
cached from an ODBC data source.

CDaoRecordset::GetCacheStart Returns a value that specifies the bookmark of the first
record in the recordset to be cached.

CDaoRecordset::GetCurrentIndex Returns a CString containing the name of the index
most recently used on an indexed, table-type
CDaoRecordset .

CDaoRecordset::GetDateCreated Returns the date and time the base table underlying a
CDaoRecordset object was created

NAME DESCRIPTION

CDaoRecordset::GetDateLastUpdated Returns the date and time of the most recent change
made to the design of a base table underlying a
CDaoRecordset object.

CDaoRecordset::GetDefaultDBName Returns the name of the default data source.

CDaoRecordset::GetDefaultSQL Called to get the default SQL string to execute.

CDaoRecordset::GetEditMode Returns a value that indicates the state of editing for the
current record.

CDaoRecordset::GetFieldCount Returns a value that represents the number of fields in a
recordset.

CDaoRecordset::GetFieldInfo Returns specific kinds of information about the fields in
the recordset.

CDaoRecordset::GetFieldValue Returns the value of a field in a recordset.

CDaoRecordset::GetIndexCount Retrieves the number of indexes in a table underlying a
recordset.

CDaoRecordset::GetIndexInfo Returns various kinds of information about an index.

CDaoRecordset::GetLastModifiedBookmark Used to determine the most recently added or updated
record.

CDaoRecordset::GetLockingMode Returns a value that indicates the type of locking that is
in effect during editing.

CDaoRecordset::GetName Returns a CString containing the name of the
recordset.

CDaoRecordset::GetParamValue Retrieves the current value of the specified parameter
stored in the underlying DAOParameter object.

CDaoRecordset::GetPercentPosition Returns the position of the current record as a
percentage of the total number of records.

CDaoRecordset::GetRecordCount Returns the number of records accessed in a recordset
object.

CDaoRecordset::GetSQL Gets the SQL string used to select records for the
recordset.

CDaoRecordset::GetType Called to determine the type of a recordset: table-type,
dynaset-type, or snapshot-type.

CDaoRecordset::GetValidationRule Returns a CString containing the value that validates
data as it is entered into a field.

CDaoRecordset::GetValidationText Retrieves the text that is displayed when a validation rule
is not satisfied.

NAME DESCRIPTION

CDaoRecordset::IsBOF Returns nonzero if the recordset has been positioned
before the first record. There is no current record.

CDaoRecordset::IsDeleted Returns nonzero if the recordset is positioned on a
deleted record.

CDaoRecordset::IsEOF Returns nonzero if the recordset has been positioned
after the last record. There is no current record.

CDaoRecordset::IsFieldDirty Returns nonzero if the specified field in the current record
has been changed.

CDaoRecordset::IsFieldNull Returns nonzero if the specified field in the current record
is Null (having no value).

CDaoRecordset::IsFieldNullable Returns nonzero if the specified field in the current record
can be set to Null (having no value).

CDaoRecordset::IsOpen Returns nonzero if Open has been called previously.

CDaoRecordset::Move Positions the recordset to a specified number of records
from the current record in either direction.

CDaoRecordset::MoveFirst Positions the current record on the first record in the
recordset.

CDaoRecordset::MoveLast Positions the current record on the last record in the
recordset.

CDaoRecordset::MoveNext Positions the current record on the next record in the
recordset .

CDaoRecordset::MovePrev Positions the current record on the previous record in
the recordset.

CDaoRecordset::Open Creates a new recordset from a table, dynaset, or
snapshot.

CDaoRecordset::Requery Runs the recordset's query again to refresh the selected
records.

CDaoRecordset::Seek Locates the record in an indexed table-type recordset
object that satisfies the specified criteria for the current
index and makes that record the current record.

CDaoRecordset::SetAbsolutePosition Sets the record number of a recordset object's current
record.

CDaoRecordset::SetBookmark Positions the recordset on a record containing the
specified bookmark.

CDaoRecordset::SetCacheSize Sets a value that specifies the number of records in a
dynaset-type recordset containing data to be locally
cached from an ODBC data source.

NAME DESCRIPTION

CDaoRecordset::SetCacheStart Sets a value that specifies the bookmark of the first
record in the recordset to be cached.

CDaoRecordset::SetCurrentIndex Called to set an index on a table-type recordset.

CDaoRecordset::SetFieldDirty Marks the specified field in the current record as
changed.

CDaoRecordset::SetFieldNull Sets the value of the specified field in the current record
to Null (having no value).

CDaoRecordset::SetFieldValue Sets the value of a field in a recordset.

CDaoRecordset::SetFieldValueNull Sets the value of a field in a recordset to Null. (having no
value).

CDaoRecordset::SetLockingMode Sets a value that indicates the type of locking to put into
effect during editing.

CDaoRecordset::SetParamValue Sets the current value of the specified parameter stored
in the underlying DAOParameter object

CDaoRecordset::SetParamValueNull Sets the current value of the specified parameter to Null
(having no value).

CDaoRecordset::SetPercentPosition Sets the position of the current record to a location
corresponding to a percentage of the total number of
records in a recordset.

CDaoRecordset::Update Completes an AddNew or Edit operation by saving
the new or edited data on the data source.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDaoRecordset::m_bCheckCacheForDirtyFields Contains a flag indicating whether fields are automatically
marked as changed.

CDaoRecordset::m_nFields Contains the number of field data members in the
recordset class and the number of columns selected by
the recordset from the data source.

CDaoRecordset::m_nParams Contains the number of parameter data members in the
recordset class — the number of parameters passed with
the recordset's query

CDaoRecordset::m_pDAORecordset A pointer to the DAO interface underlying the recordset
object.

CDaoRecordset::m_pDatabase Source database for this result set. Contains a pointer to
a CDaoDatabase object.

CDaoRecordset::m_strFilter Contains a string used to construct a SQL WHERE
statement.

CDaoRecordset::m_strSort Contains a string used to construct a SQL ORDER BY
statement.

NAME DESCRIPTION

Remarks

NOTENOTE

Known as "recordsets," CDaoRecordset objects are available in the following three forms:

Table-type recordsets represent a base table that you can use to examine, add, change, or delete
records from a single database table.

Dynaset-type recordsets are the result of a query that can have updateable records. These
recordsets are a set of records that you can use to examine, add, change, or delete records from an
underlying database table or tables. Dynaset-type recordsets can contain fields from one or more
tables in a database.

Snapshot-type recordsets are a static copy of a set of records that you can use to find data or
generate reports. These recordsets can contain fields from one or more tables in a database but
cannot be updated.

Each form of recordset represents a set of records fixed at the time the recordset is opened. When you
scroll to a record in a table-type recordset or a dynaset-type recordset, it reflects changes made to the
record after the recordset is opened, either by other users or by other recordsets in your application. (A
snapshot-type recordset cannot be updated.) You can use CDaoRecordset directly or derive an application-
specific recordset class from CDaoRecordset . You can then:

Scroll through the records.

Set an index and quickly look for records using Seek (table-type recordsets only).

Find records based on a string comparison: "<", "<=", "=", ">=", or ">" (dynaset-type and
snapshot-type recordsets).

Update the records and specify a locking mode (except snapshot-type recordsets).

Filter the recordset to constrain which records it selects from those available on the data source.

Sort the recordset.

Parameterize the recordset to customize its selection with information not known until run time.

Class CDaoRecordset supplies an interface similar to that of class CRecordset . The main difference is that
class CDaoRecordset accesses data through a Data Access Object (DAO) based on OLE. Class CRecordset

accesses the DBMS through Open Database Connectivity (ODBC) and an ODBC driver for that DBMS.

The DAO database classes are distinct from the MFC database classes based on Open Database Connectivity
(ODBC). All DAO database class names have the "CDao" prefix. You can still access ODBC data sources with the
DAO classes; the DAO classes generally offer superior capabilities because they are specific to the Microsoft Jet
database engine.

You can either use CDaoRecordset directly or derive a class from CDaoRecordset . To use a recordset class

Inheritance Hierarchy

Requirements

CDaoRecordset::AddNew

virtual void AddNew();

RemarksRemarks

C a u t i o nC a u t i o n

in either case, open a database and construct a recordset object, passing the constructor a pointer to your
CDaoDatabase object. You can also construct a CDaoRecordset object and let MFC create a temporary
CDaoDatabase object for you. Then call the recordset's Open member function, specifying whether the

object is a table-type recordset, a dynaset-type recordset, or a snapshot-type recordset. Calling Open

selects data from the database and retrieves the first record.

Use the object's member functions and data members to scroll through the records and operate on them.
The operations available depend on whether the object is a table-type recordset, a dynaset-type recordset,
or a snapshot-type recordset, and whether it is updateable or read-only — this depends on the capability
of the database or Open Database Connectivity (ODBC) data source. To refresh records that may have
been changed or added since the Open call, call the object's Requery member function. Call the object's
Close member function and destroy the object when you finish with it.

CDaoRecordset uses DAO record field exchange (DFX) to support reading and updating of record fields
through type-safe C++ members of your CDaoRecordset or CDaoRecordset -derived class. You can also
implement dynamic binding of columns in a database without using the DFX mechanism using
GetFieldValue and SetFieldValue.

For related information, see the topic "Recordset Object" in DAO Help.

CObject

CDaoRecordset

Header: afxdao.h

Call this member function to add a new record to a table-type or dynaset-type recordset.

The record's fields are initially Null. (In database terminology, Null means "having no value" and is not the
same as NULL in C++.) To complete the operation, you must call the Update member function. Update

saves your changes to the data source.

If you edit a record and then scroll to another record without calling Update , your changes are lost
without warning.

If you add a record to a dynaset-type recordset by calling AddNew, the record is visible in the recordset
and included in the underlying table where it becomes visible to any new CDaoRecordset objects.

The position of the new record depends on the type of recordset:

In a dynaset-type recordset, where the new record is inserted is not guaranteed. This behavior
changed with Microsoft Jet 3.0 for reasons of performance and concurrency. If your goal is to make
the newly added record the current record, get the bookmark of the last modified record and move to
that bookmark:

rs.SetBookmark(rs.GetLastModifiedBookmark());

NOTENOTE

CDaoRecordset::CanAppend

BOOL CanAppend() const;

Return ValueReturn Value

RemarksRemarks

In a table-type recordset for which an index has been specified, records are returned in their proper
place in the sort order. If no index has been specified, new records are returned at the end of the
recordset.

The record that was current before you used AddNew remains current. If you want to make the new record
current and the recordset supports bookmarks, call SetBookmark to the bookmark identified by the
LastModified property setting of the underlying DAO recordset object. Doing so is useful for determining
the value for counter (auto-increment) fields in an added record. For more information, see
GetLastModifiedBookmark.

If the database supports transactions, you can make your AddNew call part of a transaction. For more
information about transactions, see class CDaoWorkspace. Note that you should call
CDaoWorkspace::BeginTrans before calling AddNew .

It is illegal to call AddNew for a recordset whose Open member function has not been called. A
CDaoException is thrown if you call AddNew for a recordset that cannot be appended. You can determine

whether the recordset is updateable by calling CanAppend.

The framework marks changed field data members to ensure they will be written to the record on the
data source by the DAO record field exchange (DFX) mechanism. Changing the value of a field generally
sets the field dirty automatically, so you will seldom need to call SetFieldDirty yourself, but you might
sometimes want to ensure that columns will be explicitly updated or inserted regardless of what value is
in the field data member. The DFX mechanism also employs the use of PSEUDO NULL. For more
information, see CDaoFieldExchange::m_nOperation.

If the double-buffering mechanism is not being used, then changing the value of the field does not
automatically set the field as dirty. In this case, it will be necessary to explicitly set the field dirty. The flag
contained in m_bCheckCacheForDirtyFields controls this automatic field checking.

If records are double-buffered (that is, automatic field checking is enabled), calling CancelUpdate will restore the
member variables to the values they had before AddNew or Edit was called.

For related information, see the topics "AddNew Method", "CancelUpdate Method", "LastModified
Property", and "EditMode Property" in DAO Help.

Call this member function to determine whether the previously opened recordset allows you to add new
records by calling the AddNew member function.

Nonzero if the recordset allows adding new records; otherwise 0. CanAppend will return 0 if you opened
the recordset as read-only.

For related information, see the topic "Append Method" in DAO Help.

CDaoRecordset::CanBookmark

BOOL CanBookmark();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::CancelUpdate

virtual void CancelUpdate();

RemarksRemarks

NOTENOTE

CDaoRecordset::CanRestart

BOOL CanRestart();

Return ValueReturn Value

RemarksRemarks

Call this member function to determine whether the previously opened recordset allows you to
individually mark records using bookmarks.

Nonzero if the recordset supports bookmarks, otherwise 0.

If you are using recordsets based entirely on Microsoft Jet database engine tables, bookmarks can be
used except on snapshot-type recordsets flagged as forward-only scrolling recordsets. Other database
products (external ODBC data sources) may not support bookmarks.

For related information, see the topic "Bookmarkable Property" in DAO Help.

The CancelUpdate member function cancels any pending updates due to an Edit or AddNew operation.

For example, if an application calls the Edit or AddNew member function and has not called Update,
CancelUpdate cancels any changes made after Edit or AddNew was called.

If records are double-buffered (that is, automatic field checking is enabled), calling CancelUpdate will restore the
member variables to the values they had before AddNew or Edit was called.

If there is no Edit or AddNew operation pending, CancelUpdate causes MFC to throw an exception. Call
the GetEditMode member function to determine if there is a pending operation that can be canceled.

For related information, see the topic "CancelUpdate Method" in DAO Help.

Call this member function to determine whether the recordset allows restarting its query (to refresh its
records) by calling the Requery member function.

Nonzero if Requery can be called to run the recordset's query again, otherwise 0.

Table-type recordsets do not support Requery .

If Requery is not supported, call Close then Open to refresh the data. You can call Requery to update a
recordset object's underlying parameter query after the parameter values have been changed.

CDaoRecordset::CanScroll

BOOL CanScroll() const;

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::CanTransact

BOOL CanTransact();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::CanUpdate

BOOL CanUpdate() const;

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::CDaoRecordset

CDaoRecordset(CDaoDatabase* pDatabase = NULL);

ParametersParameters

For related information, see the topic "Restartable Property" in DAO Help.

Call this member function to determine whether the recordset allows scrolling.

Nonzero if you can scroll through the records, otherwise 0.

If you call Open with dbForwardOnly , the recordset can only scroll forward.

For related information, see the topic "Positioning the Current Record Pointer with DAO" in DAO Help.

Call this member function to determine whether the recordset allows transactions.

Nonzero if the underlying data source supports transactions, otherwise 0.

For related information, see the topic "Transactions Property" in DAO Help.

Call this member function to determine whether the recordset can be updated.

Nonzero if the recordset can be updated (add, update, and delete records), otherwise 0.

A recordset might be read-only if the underlying data source is read-only or if you specified dbReadOnly

for nOptions when you called Open for the recordset.

For related information, see the topics "AddNew Method", "Edit Method", "Delete Method", "Update
Method", and "Updatable Property" in DAO Help.

Constructs a CDaoRecordset object.

RemarksRemarks

NOTENOTE

CDaoRecordset::Close

virtual void Close();

RemarksRemarks

CDaoRecordset::Delete

virtual void Delete();

RemarksRemarks

pDatabase
Contains a pointer to a CDaoDatabase object or the value NULL. If not NULL and the CDaoDatabase

object's Open member function has not been called to connect it to the data source, the recordset
attempts to open it for you during its own Open call. If you pass NULL, a CDaoDatabase object is
constructed and connected for you using the data source information you specified if you derived your
recordset class from CDaoRecordset .

You can either use CDaoRecordset directly or derive an application-specific class from CDaoRecordset . You
can use ClassWizard to derive your recordset classes.

If you derive a CDaoRecordset class, your derived class must supply its own constructor. In the constructor of
your derived class, call the constructor CDaoRecordset::CDaoRecordset , passing the appropriate parameters
along to it.

Pass NULL to your recordset constructor to have a CDaoDatabase object constructed and connected for
you automatically. This is a useful shortcut that does not require you to construct and connect a
CDaoDatabase object prior to constructing your recordset. If the CDaoDatabase object is not open, a

CDaoWorkspace object will also be created for you that uses the default workspace. For more
information, see CDaoDatabase::CDaoDatabase.

Closing a CDaoRecordset object removes it from the collection of open recordsets in the associated
database.

Because Close does not destroy the CDaoRecordset object, you can reuse the object by calling Open on
the same data source or a different data source.

All pending AddNew or Edit statements are canceled, and all pending transactions are rolled back. If you
want to preserve pending additions or edits, call Update before you call Close for each recordset.

You can call Open again after calling Close . This lets you reuse the recordset object. A better alternative
is to call Requery, if possible.

For related information, see the topic "Close Method" in DAO Help.

Call this member function to delete the current record in an open dynaset-type or table-type recordset
object.

After a successful deletion, the recordset's field data members are set to a Null value, and you must
explicitly call one of the recordset navigation member functions (Move, Seek, SetBookmark, and so on) in

C a u t i o nC a u t i o n

CDaoRecordset::DoFieldExchange

virtual void DoFieldExchange(CDaoFieldExchange* pFX);

ParametersParameters

RemarksRemarks

order to move off the deleted record. When you delete records from a recordset, there must be a current
record in the recordset before you call Delete ; otherwise, MFC throws an exception.

Delete removes the current record and makes it inaccessible. Although you cannot edit or use the
deleted record, it remains current. Once you move to another record, however, you cannot make the
deleted record current again.

The recordset must be updatable and there must be a valid record current in the recordset when you call
Delete . For example, if you delete a record but do not scroll to a new record before you call Delete

again, Delete throws a CDaoException.

You can undelete a record if you use transactions and you call the CDaoWorkspace::Rollback member
function. If the base table is the primary table in a cascade delete relationship, deleting the current record
may also delete one or more records in a foreign table. For more information, see the definition "cascade
delete" in DAO Help.

Unlike AddNew and Edit , a call to Delete is not followed by a call to Update .

For related information, see the topics "AddNew Method", "Edit Method", "Delete Method", "Update
Method", and "Updatable Property" in DAO Help.

The framework calls this member function to automatically exchange data between the field data
members of your recordset object and the corresponding columns of the current record on the data
source.

pFX
Contains a pointer to a CDaoFieldExchange object. The framework will already have set up this object to
specify a context for the field exchange operation.

It also binds your parameter data members, if any, to parameter placeholders in the SQL statement string
for the recordset's selection. The exchange of field data, called DAO record field exchange (DFX), works in
both directions: from the recordset object's field data members to the fields of the record on the data
source, and from the record on the data source to the recordset object. If you are binding columns
dynamically, you are not required to implement DoFieldExchange .

The only action you must normally take to implement DoFieldExchange for your derived recordset class is
to create the class with ClassWizard and specify the names and data types of the field data members. You
might also add code to what ClassWizard writes to specify parameter data members. If all fields are to be
bound dynamically, this function will be inactive unless you specify parameter data members.

When you declare your derived recordset class with ClassWizard, the wizard writes an override of
DoFieldExchange for you, which resembles the following example:

void CCustSet::DoFieldExchange(CDaoFieldExchange* pFX)
{
 pFX->SetFieldType(CDaoFieldExchange::param);
 DFX_Text(pFX, _T("Param"), m_strParam);
 pFX->SetFieldType(CDaoFieldExchange::outputColumn);
 DFX_Short(pFX, _T("EmployeeID"), m_EmployeeID);
 DFX_Text(pFX, _T("LastName"), m_LastName);
 DFX_Short(pFX, _T("Age"), m_Age);
 DFX_DateTime(pFX, _T("hire_date"), m_hire_date);
 DFX_DateTime(pFX, _T("termination_date"), m_termination_date);

 CDaoRecordset::DoFieldExchange(pFX);
}

CDaoRecordset::Edit

virtual void Edit();

RemarksRemarks

C a u t i o nC a u t i o n

Call this member function to allow changes to the current record.

Once you call the Edit member function, changes made to the current record's fields are copied to the
copy buffer. After you make the desired changes to the record, call Update to save your changes. Edit

saves the values of the recordset's data members. If you call Edit , make changes, then call Edit again,
the record's values are restored to what they were before the first Edit call.

If you edit a record and then perform any operation that moves to another record without first calling
Update , your changes are lost without warning. In addition, if you close the recordset or the parent

database, your edited record is discarded without warning.

In some cases, you may want to update a column by making it Null (containing no data). To do so, call
SetFieldNull with a parameter of TRUE to mark the field Null; this also causes the column to be updated.

If you want a field to be written to the data source even though its value has not changed, call
SetFieldDirty with a parameter of TRUE. This works even if the field had the value Null.

The framework marks changed field data members to ensure they will be written to the record on the
data source by the DAO record field exchange (DFX) mechanism. Changing the value of a field generally
sets the field dirty automatically, so you will seldom need to call SetFieldDirty yourself, but you might
sometimes want to ensure that columns will be explicitly updated or inserted regardless of what value is
in the field data member. The DFX mechanism also employs the use of PSEUDO NULL. For more
information, see CDaoFieldExchange::m_nOperation.

If the double-buffering mechanism is not being used, then changing the value of the field does not
automatically set the field as dirty. In this case, it will be necessary to explicitly set the field dirty. The flag
contained in m_bCheckCacheForDirtyFields controls this automatic field checking.

When the recordset object is pessimistically locked in a multiuser environment, the record remains locked
from the time Edit is used until the updating is complete. If the recordset is optimistically locked, the
record is locked and compared with the pre-edited record just before it is updated in the database. If the
record has changed since you called Edit , the Update operation fails and MFC throws an exception. You
can change the locking mode with SetLockingMode .

NOTENOTE

CDaoRecordset::FillCache

void FillCache(
 long* pSize = NULL,
 COleVariant* pBookmark = NULL);

ParametersParameters

RemarksRemarks

Optimistic locking is always used on external database formats, such as ODBC and installable ISAM.

The current record remains current after you call Edit . To call Edit , there must be a current record. If
there is no current record or if the recordset does not refer to an open table-type or dynaset-type
recordset object, an exception occurs. Calling Edit causes a CDaoException to be thrown under the
following conditions:

There is no current record.

The database or recordset is read-only.

No fields in the record are updatable.

The database or recordset was opened for exclusive use by another user.

Another user has locked the page containing your record.

If the data source supports transactions, you can make the Edit call part of a transaction. Note that you
should call CDaoWorkspace::BeginTrans before calling Edit and after the recordset has been opened. Also
note that calling CDaoWorkspace::CommitTrans is not a substitute for calling Update to complete the Edit

operation. For more information about transactions, see class CDaoWorkspace .

For related information, see the topics "AddNew Method", "Edit Method", "Delete Method", "Update
Method", and "Updatable Property" in DAO Help.

Call this member function to cache a specified number of records from the recordset.

pSize
Specifies the number of rows to fill in the cache. If you omit this parameter, the value is determined by the
CacheSize property setting of the underlying DAO object.

pBookmark
A COleVariant specifying a bookmark. The cache is filled starting from the record indicated by this
bookmark. If you omit this parameter, the cache is filled starting from the record indicated by the
CacheStart property of the underlying DAO object.

Caching improves the performance of an application that retrieves, or fetches, data from a remote server.
A cache is space in local memory that holds the data most recently fetched from the server on the
assumption that the data will probably be requested again while the application is running. When data is
requested, the Microsoft Jet database engine checks the cache for the data first rather than fetching it
from the server, which takes more time. Using data caching on non-ODBC data sources has no effect as
the data is not saved in the cache.

Rather than waiting for the cache to be filled with records as they are fetched, you can explicitly fill the
cache at any time by calling the FillCache member function. This is a faster way to fill the cache because

 CDaoRecordset::Find

virtual BOOL Find(
 long lFindType,
 LPCTSTR lpszFilter);

ParametersParameters

rs.Find(AFX_DAO_FIRST, _T("EmployeeID = 7"));
rs.Find(AFX_DAO_NEXT, _T("LastName = 'Jones'"));

Return ValueReturn Value

RemarksRemarks

FillCache fetches several records at once instead of one at a time. For example, while each screenful of
records is being displayed, you can have your application call FillCache to fetch the next screenful of
records.

Any ODBC database accessed with recordset objects can have a local cache. To create the cache, open a
recordset object from the remote data source, and then call the SetCacheSize and SetCacheStart

member functions of the recordset. If lSize and lBookmark create a range that is partly or wholly outside
the range specified by SetCacheSize and SetCacheStart , the portion of the recordset outside this range is
ignored and is not loaded into the cache. If FillCache requests more records than remain in the remote
data source, only the remaining records are fetched, and no exception is thrown.

Records fetched from the cache do not reflect changes made concurrently to the source data by other
users.

FillCache fetches only records not already cached. To force an update of all the cached data, call the
SetCacheSize member function with an lSize parameter equal to 0, call SetCacheSize again with the lSize

parameter equal to the size of the cache you originally requested, and then call FillCache .

For related information, see the topic "FillCache Method" in DAO Help.

Call this member function to locate a particular string in a dynaset- or snapshot-type recordset using a
comparison operator.

lFindType
A value indicating the type of Find operation desired. The possible values are:

AFX_DAO_NEXT Find the next location of a matching string.

AFX_DAO_PREV Find the previous location of a matching string.

AFX_DAO_FIRST Find the first location of a matching string.

AFX_DAO_LAST Find the last location of a matching string.

lpszFilter
A string expression (like the WHERE clause in a SQL statement without the word WHERE) used to
locate the record. For example:

Nonzero if matching records are found, otherwise 0.

You can find the first, next, previous, or last instance of the string. Find is a virtual function, so you can
override it and add your own implementation. The FindFirst , FindLast , FindNext , and FindPrev

member functions call the Find member function, so you can use Find to control the behavior of all

TIPTIP

CDaoRecordset::FindFirst

BOOL FindFirst(LPCTSTR lpszFilter);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

FIND OPERATIONS BEGIN SEARCH DIRECTION

FindFirst Beginning of recordset End of recordset

FindLast End of recordset Beginning of recordset

FindNext Current record End of recordset

FindPrevious Current record Beginning of recordset

Find operations.

To locate a record in a table-type recordset, call the Seek member function.

The smaller the set of records you have, the more effective Find will be. In general, and especially with ODBC
data, it is better to create a new query that retrieves just the records you want.

For related information, see the topic "FindFirst, FindLast, FindNext, FindPrevious Methods" in DAO Help.

Call this member function to find the first record that matches a specified condition.

lpszFilter
A string expression (like the WHERE clause in a SQL statement without the word WHERE) used to
locate the record.

Nonzero if matching records are found, otherwise 0.

The FindFirst member function begins its search from the beginning of the recordset and searches to
the end of the recordset.

If you want to include all the records in your search (not just those that meet a specific condition) use one
of the Move operations to move from record to record. To locate a record in a table-type recordset, call
the Seek member function.

If a record matching the criteria is not located, the current record pointer is undetermined, and FindFirst

returns zero. If the recordset contains more than one record that satisfies the criteria, FindFirst locates
the first occurrence, FindNext locates the next occurrence, and so on.

If you edit the current record, be sure to save the changes by calling the Update member function before
you move to another record. If you move to another record without updating, your changes are lost
without warning.

The Find member functions search from the location and in the direction specified in the following table:

NOTENOTE

CDaoRecordset::FindLast

BOOL FindLast(LPCTSTR lpszFilter);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

When you call FindLast , the Microsoft Jet database engine fully populates your recordset before beginning the
search, if this has not already been done. The first search may take longer than subsequent searches.

Using one of the Find operations is not the same as calling MoveFirst or MoveNext , however, which
simply makes the first or next record current without specifying a condition. You can follow a Find
operation with a Move operation.

Keep the following in mind when using the Find operations:

If Find returns nonzero, the current record is not defined. In this case, you must position the
current record pointer back to a valid record.

You cannot use a Find operation with a forward-only scrolling snapshot-type recordset.

You should use the U.S. date format (month-day-year) when you search for fields containing dates,
even if you are not using the U.S. version of the Microsoft Jet database engine; otherwise,
matching records may not be found.

When working with ODBC databases and large dynasets, you may discover that using the Find
operations is slow, especially when working with large recordsets. You can improve performance
by using SQL queries with customized ORDERBY or WHERE clauses, parameter queries, or
CDaoQuerydef objects that retrieve specific indexed records.

For related information, see the topic "FindFirst, FindLast, FindNext, FindPrevious Methods" in DAO Help.

Call this member function to find the last record that matches a specified condition.

lpszFilter
A string expression (like the WHERE clause in a SQL statement without the word WHERE) used to
locate the record.

Nonzero if matching records are found, otherwise 0.

The FindLast member function begins its search at the end of the recordset and searches backward
towards the beginning of the recordset.

If you want to include all the records in your search (not just those that meet a specific condition) use one
of the Move operations to move from record to record. To locate a record in a table-type recordset, call
the Seek member function.

If a record matching the criteria is not located, the current record pointer is undetermined, and FindLast

returns zero. If the recordset contains more than one record that satisfies the criteria, FindFirst locates
the first occurrence, FindNext locates the next occurrence after the first occurrence, and so on.

If you edit the current record, be sure you save the changes by calling the Update member function

 CDaoRecordset::FindNext

BOOL FindNext(LPCTSTR lpszFilter);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

before you move to another record. If you move to another record without updating, your changes are
lost without warning.

Using one of the Find operations is not the same as calling MoveFirst or MoveNext , however, which
simply makes the first or next record current without specifying a condition. You can follow a Find
operation with a Move operation.

Keep the following in mind when using the Find operations:

If Find returns nonzero, the current record is not defined. In this case, you must position the
current record pointer back to a valid record.

You cannot use a Find operation with a forward-only scrolling snapshot-type recordset.

You should use the U.S. date format (month-day-year) when you search for fields containing dates,
even if you are not using the U.S. version of the Microsoft Jet database engine; otherwise,
matching records may not be found.

When working with ODBC databases and large dynasets, you may discover that using the Find
operations is slow, especially when working with large recordsets. You can improve performance
by using SQL queries with customized ORDERBY or WHERE clauses, parameter queries, or
CDaoQuerydef objects that retrieve specific indexed records.

For related information, see the topic "FindFirst, FindLast, FindNext, FindPrevious Methods" in DAO Help.

Call this member function to find the next record that matches a specified condition.

lpszFilter
A string expression (like the WHERE clause in a SQL statement without the word WHERE) used to
locate the record.

Nonzero if matching records are found, otherwise 0.

The FindNext member function begins its search at the current record and searches to the end of the
recordset.

If you want to include all the records in your search (not just those that meet a specific condition) use one
of the Move operations to move from record to record. To locate a record in a table-type recordset, call
the Seek member function.

If a record matching the criteria is not located, the current record pointer is undetermined, and FindNext

returns zero. If the recordset contains more than one record that satisfies the criteria, FindFirst locates
the first occurrence, FindNext locates the next occurrence, and so on.

If you edit the current record, be sure you save the changes by calling the Update member function
before you move to another record. If you move to another record without updating, your changes are
lost without warning.

Using one of the Find operations is not the same as calling MoveFirst or MoveNext , however, which

 CDaoRecordset::FindPrev

BOOL FindPrev(LPCTSTR lpszFilter);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

simply makes the first or next record current without specifying a condition. You can follow a Find
operation with a Move operation.

Keep the following in mind when using the Find operations:

If Find returns nonzero, the current record is not defined. In this case, you must position the
current record pointer back to a valid record.

You cannot use a Find operation with a forward-only scrolling snapshot-type recordset.

You should use the U.S. date format (month-day-year) when you search for fields containing dates,
even if you are not using the U.S. version of the Microsoft Jet database engine; otherwise,
matching records may not be found.

When working with ODBC databases and large dynasets, you may discover that using the Find
operations is slow, especially when working with large recordsets. You can improve performance
by using SQL queries with customized ORDERBY or WHERE clauses, parameter queries, or
CDaoQuerydef objects that retrieve specific indexed records.

For related information, see the topic "FindFirst, FindLast, FindNext, FindPrevious Methods" in DAO Help.

Call this member function to find the previous record that matches a specified condition.

lpszFilter
A string expression (like the WHERE clause in a SQL statement without the word WHERE) used to
locate the record.

Nonzero if matching records are found, otherwise 0.

The FindPrev member function begins its search at the current record and searches backward towards
the beginning of the recordset.

If you want to include all the records in your search (not just those that meet a specific condition) use one
of the Move operations to move from record to record. To locate a record in a table-type recordset, call
the Seek member function.

If a record matching the criteria is not located, the current record pointer is undetermined, and FindPrev

returns zero. If the recordset contains more than one record that satisfies the criteria, FindFirst locates
the first occurrence, FindNext locates the next occurrence, and so on.

If you edit the current record, be sure you save the changes by calling the Update member function
before you move to another record. If you move to another record without updating, your changes are
lost without warning.

Using one of the Find operations is not the same as calling MoveFirst or MoveNext , however, which
simply makes the first or next record current without specifying a condition. You can follow a Find
operation with a Move operation.

Keep the following in mind when using the Find operations:

CDaoRecordset::GetAbsolutePosition

long GetAbsolutePosition();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

NOTENOTE

CDaoRecordset::GetBookmark

If Find returns nonzero, the current record is not defined. In this case, you must position the
current record pointer back to a valid record.

You cannot use a Find operation with a forward-only scrolling snapshot-type recordset.

You should use the U.S. date format (month-day-year) when you search for fields containing dates,
even if you are not using the U.S. version of the Microsoft Jet database engine; otherwise,
matching records may not be found.

When working with ODBC databases and large dynasets, you may discover that using the Find
operations is slow, especially when working with large recordsets. You can improve performance
by using SQL queries with customized ORDERBY or WHERE clauses, parameter queries, or
CDaoQuerydef objects that retrieve specific indexed records.

For related information, see the topic "FindFirst, FindLast, FindNext, FindPrevious Methods" in DAO Help.

Returns the record number of a recordset object's current record.

An integer from 0 to the number of records in the recordset. Corresponds to the ordinal position of the
current record in the recordset.

The AbsolutePosition property value of the underlying DAO object is zero-based; a setting of 0 refers to
the first record in the recordset. You can determine the number of populated records in the recordset by
calling GetRecordCount. Calling GetRecordCount may take some time because it must access all records
to determine the count.

If there is no current record, as when there are no records in the recordset, - 1 is returned. If the current
record is deleted, the AbsolutePosition property value is not defined, and MFC throws an exception if it is
referenced. For dynaset-type recordsets, new records are added to the end of the sequence.

This property is not intended to be used as a surrogate record number. Bookmarks are still the recommended way
of retaining and returning to a given position and are the only way to position the current record across all types
of recordset objects. In particular, the position of a given record changes when record(s) preceding it are deleted.
There is also no assurance that a given record will have the same absolute position if the recordset is re-created
again because the order of individual records within a recordset is not guaranteed unless it is created with a SQL
statement using an ORDERBY clause.

This member function is valid only for dynaset-type and snapshot-type recordsets.

For related information, see the topic "AbsolutePosition Property" in DAO Help.

Call this member function to obtain the bookmark value in a particular record.

COleVariant GetBookmark();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CDaoRecordset::GetCacheSize

long GetCacheSize();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::GetCacheStart

COleVariant GetCacheStart();

Return ValueReturn Value

RemarksRemarks

Returns a value representing the bookmark on the current record.

When a recordset object is created or opened, each of its records already has a unique bookmark if it
supports them. Call CanBookmark to determine whether a recordset supports bookmarks.

You can save the bookmark for the current record by assigning the value of the bookmark to a
COleVariant object. To quickly return to that record at any time after moving to a different record, call
SetBookmark with a parameter corresponding to the value of that COleVariant object.

Calling Requery changes DAO bookmarks.

For related information, see the topic "Bookmark Property" in DAO Help.

Call this member function to obtain the number of records cached.

A value that specifies the number of records in a dynaset-type recordset containing data to be locally
cached from an ODBC data source.

Data caching improves the performance of an application that retrieves data from a remote server
through dynaset-type recordset objects. A cache is a space in local memory that holds the data most
recently retrieved from the server in the event that the data will be requested again while the application
is running. When data is requested, the Microsoft Jet database engine checks the cache for the requested
data first rather than retrieving it from the server, which takes more time. Data that does not come from
an ODBC data source is not saved in the cache.

Any ODBC data source, such as an attached table, can have a local cache.

For related information, see the topic "CacheSize, CacheStart Properties" in DAO Help.

Call this member function to obtain the bookmark value of the first record in the recordset to be cached.

A COleVariant that specifies the bookmark of the first record in the recordset to be cached.

NOTENOTE

CDaoRecordset::GetCurrentIndex

CString GetCurrentIndex();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::GetDateCreated

COleDateTime GetDateCreated();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::GetDateLastUpdated

COleDateTime GetDateLastUpdated();

Return ValueReturn Value

The Microsoft Jet database engine requests records within the cache range from the cache, and it requests
records outside the cache range from the server.

Records retrieved from the cache do not reflect changes made concurrently to the source data by other users.

For related information, see the topic "CacheSize, CacheStart Properties" in DAO Help.

Call this member function to determine the index currently in use in an indexed table-type CDaoRecordset

object.

A CString containing the name of the index currently in use with a table-type recordset. Returns an
empty string if no index has been set.

This index is the basis for ordering records in a table-type recordset, and is used by the Seek member
function to locate records.

A CDaoRecordset object can have more than one index but can use only one index at a time (although a
CDaoTableDef object may have several indexes defined on it).

For related information, see the topic "Index Object" and the definition "current index" in DAO Help.

Call this member function to retrieve the date and time a base table was created.

A COleDateTime object containing the date and time the base table was created.

Date and time settings are derived from the computer on which the base table was created.

For related information, see the topic "DateCreated, LastUpdated Properties" in DAO Help.

Call this member function to retrieve the date and time the schema was last updated.

A COleDateTime object containing the date and time the base table structure (schema) was last updated.

RemarksRemarks

CDaoRecordset::GetDefaultDBName

virtual CString GetDefaultDBName();

Return ValueReturn Value

RemarksRemarks

CString CCustSet::GetDefaultDBName()
{
 return _T("c:\\mydir\\datasrc.mdb");
}

CDaoRecordset::GetDefaultSQL

virtual CString GetDefaultSQL();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::GetEditMode

short GetEditMode();

Date and time settings are derived from the computer on which the base table structure (schema) was last
updated.

For related information, see the topic "DateCreated, LastUpdated Properties" in DAO Help.

Call this member function to determine the name of the database for this recordset.

A CString that contains the path and name of the database from which this recordset is derived.

If a recordset is created without a pointer to a CDaoDatabase, then this path is used by the recordset to
open the default database. By default, this function returns an empty string. When ClassWizard derives a
new recordset from CDaoRecordset , it will create this function for you.

The following example illustrates the use of the double backslash (\\) in the string, as is required for the
string to be interpreted correctly.

The framework calls this member function to get the default SQL statement on which the recordset is
based.

A CString that contains the default SQL statement.

This might be a table name or a SQL SELECT statement.

You indirectly define the default SQL statement by declaring your recordset class with ClassWizard, and
ClassWizard performs this task for you.

If you pass a null SQL string to Open, then this function is called to determine the table name or SQL for
your recordset.

Call this member function to determine the state of editing, which is one of the following values:

Return ValueReturn Value

RemarksRemarks

VALUE DESCRIPTION

dbEditNone No editing operation is in progress.

dbEditInProgress Edit has been called.

dbEditAdd AddNew has been called.

CDaoRecordset::GetFieldCount

short GetFieldCount();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::GetFieldInfo

void GetFieldInfo(
 int nIndex,
 CDaoFieldInfo& fieldinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

void GetFieldInfo(
 LPCTSTR lpszName,
 CDaoFieldInfo& fieldinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

ParametersParameters

Returns a value that indicates the state of editing for the current record.

For related information, see the topic "EditMode Property" in DAO Help.

Call this member function to retrieve the number of fields (columns) defined in the recordset.

The number of fields in the recordset.

For related information, see the topic "Count Property" in DAO Help.

Call this member function to obtain information about the fields in a recordset.

nIndex
The zero-based index of the predefined field in the recordset's Fields collection, for lookup by index.

fieldinfo
A reference to a CDaoFieldInfo structure.

dwInfoOptions
Options that specify which information about the recordset to retrieve. The available options are listed
here along with what they cause the function to return. For best performance, retrieve only the level of
information you need:

AFX_DAO_PRIMARY_INFO (Default) Name, Type, Size, Attributes

RemarksRemarks

CDaoRecordset::GetFieldValue

virtual void GetFieldValue(
 LPCTSTR lpszName,
 COleVariant& varValue);

virtual void GetFieldValue(
 int nIndex,
 COleVariant& varValue);

virtual COleVariant GetFieldValue(LPCTSTR lpszName);
virtual COleVariant GetFieldValue(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

AFX_DAO_SECONDARY_INFO Primary information, plus: Ordinal Position, Required, Allow Zero Length,
Collating Order, Foreign Name, Source Field, Source Table

AFX_DAO_ALL_INFO Primary and secondary information, plus: Default Value, Validation Rule,
Validation Text

lpszName
The name of the field.

One version of the function lets you look up a field by index. The other version lets you look up a field by
name.

For a description of the information returned, see the CDaoFieldInfo structure. This structure has
members that correspond to the items of information listed above in the description of dwInfoOptions.
When you request information at one level, you get information for any prior levels as well.

For related information, see the topic "Attributes Property" in DAO Help.

Call this member function to retrieve data in a recordset.

lpszName
A pointer to a string that contains the name of a field.

varValue
A reference to a COleVariant object that will store the value of a field.

nIndex
A zero-based index of the field in the recordset's Fields collection, for lookup by index.

The two versions of GetFieldValue that return a value return a COleVariant object that contains the value
of a field.

You can look up a field by name or by ordinal position.

It is more efficient to call one of the versions of this member function that takes a COleVariant object reference
as a parameter, rather than calling a version that returns a COleVariant object. The latter versions of this
function are kept for backward compatibility.

CDaoRecordset::GetIndexCount

short GetIndexCount();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::GetIndexInfo

void GetIndexInfo(
 int nIndex,
 CDaoIndexInfo& indexinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

void GetIndexInfo(
 LPCTSTR lpszName,
 CDaoIndexInfo& indexinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

ParametersParameters

Use GetFieldValue and SetFieldValue to dynamically bind fields at run time rather than statically binding
columns using the DoFieldExchange mechanism.

GetFieldValue and the DoFieldExchange mechanism can be combined to improve performance. For
example, use GetFieldValue to retrieve a value that you need only on demand, and assign that call to a
"More Information" button in the interface.

For related information, see the topics "Field Object" and "Value Property" in DAO Help.

Call this member function to determine the number of indexes available on the table-type recordset.

The number of indexes in the table-type recordset.

GetIndexCount is useful for looping through all indexes in the recordset. For that purpose, use
GetIndexCount in conjunction with GetIndexInfo. If you call this member function on dynaset-type or

snapshot-type recordsets, MFC throws an exception.

For related information, see the topic "Attributes Property" in DAO Help.

Call this member function to obtain various kinds of information about an index defined in the base table
underlying a recordset.

nIndex
The zero-based index in the table's Indexes collection, for lookup by numerical position.

indexinfo
A reference to a CDaoIndexInfo structure.

dwInfoOptions
Options that specify which information about the index to retrieve. The available options are listed here
along with what they cause the function to return. For best performance, retrieve only the level of
information you need:

AFX_DAO_PRIMARY_INFO (Default) Name, Field Info, Fields

AFX_DAO_SECONDARY_INFO Primary information, plus: Primary, Unique, Clustered, IgnoreNulls,
Required, Foreign

RemarksRemarks

CDaoRecordset::GetLastModifiedBookmark

COleVariant GetLastModifiedBookmark();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::GetLockingMode

BOOL GetLockingMode();

Return ValueReturn Value

RemarksRemarks

AFX_DAO_ALL_INFO Primary and secondary information, plus: Distinct Count

lpszName
A pointer to the name of the index object, for lookup by name.

One version of the function lets you look up a index by its position in the collection. The other version lets
you look up an index by name.

For a description of the information returned, see the CDaoIndexInfo structure. This structure has
members that correspond to the items of information listed above in the description of dwInfoOptions.
When you request information at one level, you get information for any prior levels as well.

For related information, see the topic "Attributes Property" in DAO Help.

Call this member function to retrieve the bookmark of the most recently added or updated record.

A COleVariant containing a bookmark that indicates the most recently added or changed record.

When a recordset object is created or opened, each of its records already has a unique bookmark if it
supports them. Call GetBookmark to determine if the recordset supports bookmarks. If the recordset
does not support bookmarks, a CDaoException is thrown.

When you add a record, it appears at the end of the recordset, and is not the current record. To make the
new record current, call GetLastModifiedBookmark and then call SetBookmark to return to the newly added
record.

For related information, see the topic "LastModified Property" in DAO Help.

Call this member function to determine the type of locking in effect for the recordset.

Nonzero if the type of locking is pessimistic, otherwise 0 for optimistic record locking.

When pessimistic locking is in effect, the data page containing the record you are editing is locked as soon
as you call the Edit member function. The page is unlocked when you call the Update or Close member
function or any of the Move or Find operations.

When optimistic locking is in effect, the data page containing the record is locked only while the record is
being updated with the Update member function.

When working with ODBC data sources, the locking mode is always optimistic.

For related information, see the topics "LockEdits Property" and "Locking Behavior in Multiuser

CDaoRecordset::GetName

CString GetName();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::GetParamValue

virtual COleVariant GetParamValue(int nIndex);
virtual COleVariant GetParamValue(LPCTSTR lpszName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::GetPercentPosition

float GetPercentPosition();

Return ValueReturn Value

RemarksRemarks

Applications" in DAO Help.

Call this member function to retrieve the name of the recordset.

A CString containing the name of the recordset.

The name of the recordset must start with a letter and can contain a maximum of 40 characters. It can
include numbers and underscore characters but can't include punctuation or spaces.

For related information, see the topic "Name Property" in DAO Help.

Call this member function to retrieve the current value of the specified parameter stored in the underlying
DAOParameter object.

nIndex
The numerical position of the parameter in the underlying DAOParameter object.

lpszName
The name of the parameter whose value you want.

An object of class COleVariant that contains the parameter's value.

You can access the parameter either by name or by its numerical position in the collection.

For related information, see the topic "Parameter Object" in DAO Help.

When working with a dynaset-type or snapshot-type recordset, if you call GetPercentPosition before fully
populating the recordset, the amount of movement is relative to the number of records accessed as
indicated by calling GetRecordCount.

A number between 0 and 100 that indicates the approximate location of the current record in the
recordset object based on a percentage of the records in the recordset.

CDaoRecordset::GetRecordCount

long GetRecordCount();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::GetSQL

CString GetSQL() const;

You can move to the last record by calling MoveLast to complete the population of all recordsets, but this
may take a significant amount of time.

You can call GetPercentPosition on all three types of recordset objects, including tables without indexes.
However, you cannot call GetPercentPosition on forward-only scrolling snapshots, or on a recordset
opened from a pass-through query against an external database. If there is no current record, or he
current record has been deleted, a CDaoException is thrown.

For related information, see the topic "PercentPosition Property" in DAO Help.

Call this member function to find out how many records in a recordset have been accessed.

Returns the number of records accessed in a recordset object.

GetRecordCount does not indicate how many records are contained in a dynaset-type or snapshot-type
recordset until all records have been accessed. This member function call may take a significant amount of
time to complete.

Once the last record has been accessed, the return value indicates the total number of undeleted records
in the recordset. To force the last record to be accessed, call the MoveLast or FindLast member function
for the recordset. You can also use a SQL Count to determine the approximate number of records your
query will return.

As your application deletes records in a dynaset-type recordset, the return value of GetRecordCount

decreases. However, records deleted by other users are not reflected by GetRecordCount until the current
record is positioned to a deleted record. If you execute a transaction that affects the record count and
subsequently roll back the transaction, GetRecordCount will not reflect the actual number of remaining
records.

The value of GetRecordCount from a snapshot-type recordset is not affected by changes in the underlying
tables.

The value of GetRecordCount from a table-type recordset reflects the approximate number of records in
the table and is affected immediately as table records are added and deleted.

A recordset with no records returns a value of 0. When working with attached tables or ODBC databases,
GetRecordCount always returns - 1. Calling the Requery member function on a recordset resets the value

of GetRecordCount just as if the query were re-executed.

For related information, see the topic "RecordCount Property" in DAO Help.

Call this member function to get the SQL statement that was used to select the recordset's records when
it was opened.

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CDaoRecordset::GetType

short GetType();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::GetValidationRule

CString GetValidationRule();

Return ValueReturn Value

RemarksRemarks

A CString that contains the SQL statement.

This will generally be a SQL SELECT statement.

The string returned by GetSQL is typically different from any string you may have passed to the recordset
in the lpszSQL parameter to the Open member function. This is because the recordset constructs a full
SQL statement based on what you passed to Open , what you specified with ClassWizard, and what you
may have specified in the m_strFilter and m_strSort data members.

Call this member function only after calling Open .

For related information, see the topic "SQL Property" in DAO Help.

Call this member function after opening the recordset to determine the type of the recordset object.

One of the following values that indicates the type of a recordset:

dbOpenTable Table-type recordset

dbOpenDynaset Dynaset-type recordset

dbOpenSnapshot Snapshot-type recordset

For related information, see the topic "Type Property" in DAO Help.

Call this member function to determine the rule used to validate data.

A CString object containing a value that validates the data in a record as it is changed or added to a table.

This rule is text-based, and is applied each time the underlying table is changed. If the data is not legal,
MFC throws an exception. The returned error message is the text of the ValidationText property of the
underlying field object, if specified, or the text of the expression specified by the ValidationRule property
of the underlying field object. You can call GetValidationText to obtain the text of the error message.

For example, a field in a record that requires the day of the month might have a validation rule such as
"DAY BETWEEN 1 AND 31."

For related information, see the topic "ValidationRule Property" in DAO Help.

CDaoRecordset::GetValidationText

CString GetValidationText();

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::IsBOF

BOOL IsBOF() const;

Return ValueReturn Value

RemarksRemarks

Call this member function to retrieve the text of the ValidationText property of the underlying field object.

A CString object containing the text of the message that is displayed if the value of a field does not
satisfy the validation rule of the underlying field object.

For related information, see the topic "ValidationText Property" in DAO Help.

Call this member function before you scroll from record to record to learn whether you have gone before
the first record of the recordset.

Nonzero if the recordset contains no records or if you have scrolled backward before the first record;
otherwise 0.

You can also call IsBOF along with IsEOF to determine whether the recordset contains any records or is
empty. Immediately after you call Open , if the recordset contains no records, IsBOF returns nonzero.
When you open a recordset that has at least one record, the first record is the current record and IsBOF

returns 0.

If the first record is the current record and you call MovePrev , IsBOF will subsequently return nonzero. If
IsBOF returns nonzero and you call MovePrev , an exception is thrown. If IsBOF returns nonzero, the

current record is undefined, and any action that requires a current record will result in an exception.

Effect of specific methods on IsBOF and IsEOF settings:

Calling Open* internally makes the first record in the recordset the current record by calling
MoveFirst . Therefore, calling Open on an empty set of records causes IsBOF and IsEOF to return

nonzero. (See the following table for the behavior of a failed MoveFirst or MoveLast call.)

All Move operations that successfully locate a record cause both IsBOF and IsEOF to return 0.

An AddNew call followed by an Update call that successfully inserts a new record will cause IsBOF

to return 0, but only if IsEOF is already nonzero. The state of IsEOF will always remain
unchanged. As defined by the Microsoft Jet database engine, the current record pointer of an
empty recordset is at the end of a file, so any new record is inserted after the current record.

Any Delete call, even if it removes the only remaining record from a recordset, will not change the
value of IsBOF or IsEOF .

This table shows which Move operations are allowed with different combinations of IsBOF / IsEOF .

MOVEFIRST,
MOVELAST

MOVEPREV,

MOVE < 0 MOVE 0

MOVENEX T,

MOVE > 0

IsBOF =nonzero,

IsEOF =0

Allowed Exception Exception Allowed

IsBOF =0,

IsEOF =nonzero

Allowed Allowed Exception Exception

Both nonzero Exception Exception Exception Exception

Both 0 Allowed Allowed Allowed Allowed

ISBOF ISEOF

MoveFirst , MoveLast Nonzero Nonzero

Move 0 No change No change

MovePrev , Move < 0 Nonzero No change

MoveNext , Move > 0 No change Nonzero

CDaoRecordset::IsDeleted

BOOL IsDeleted() const;

Return ValueReturn Value

RemarksRemarks

Allowing a Move operation does not mean that the operation will successfully locate a record. It merely
indicates that an attempt to perform the specified Move operation is allowed and will not generate an
exception. The value of the IsBOF and IsEOF member functions may change as a result of the attempted
move.

The effect of Move operations that do not locate a record on the value of IsBOF and IsEOF settings is
shown in the following table.

For related information, see the topic "BOF, EOF Properties" in DAO Help.

Call this member function to determine whether the current record has been deleted.

Nonzero if the recordset is positioned on a deleted record; otherwise 0.

If you scroll to a record and IsDeleted returns TRUE (nonzero), then you must scroll to another record
before you can perform any other recordset operations.

NOTENOTE

CDaoRecordset::IsEOF

BOOL IsEOF() const;

Return ValueReturn Value

RemarksRemarks

You don't need to check the deleted status for records in a snapshot or table-type recordset. Because records
cannot be deleted from a snapshot, there is no need to call IsDeleted . For table-type recordsets, deleted records
are actually removed from the recordset. Once a record has been deleted, either by you, another user, or in
another recordset, you cannot scroll back to that record. Therefore, there is no need to call IsDeleted .

When you delete a record from a dynaset, it is removed from the recordset and you cannot scroll back to
that record. However, if a record in a dynaset is deleted either by another user or in another recordset
based on the same table, IsDeleted will return TRUE when you later scroll to that record.

For related information, see the topics "Delete Method", "LastModified Property", and "EditMode
Property" in DAO Help.

Call this member function as you scroll from record to record to learn whether you have gone beyond the
last record of the recordset.

Nonzero if the recordset contains no records or if you have scrolled beyond the last record; otherwise 0.

You can also call IsEOF to determine whether the recordset contains any records or is empty.
Immediately after you call Open , if the recordset contains no records, IsEOF returns nonzero. When you
open a recordset that has at least one record, the first record is the current record and IsEOF returns 0.

If the last record is the current record when you call MoveNext , IsEOF will subsequently return nonzero. If
IsEOF returns nonzero and you call MoveNext , an exception is thrown. If IsEOF returns nonzero, the

current record is undefined, and any action that requires a current record will result in an exception.

Effect of specific methods on IsBOF and IsEOF settings:

Calling Open internally makes the first record in the recordset the current record by calling
MoveFirst . Therefore, calling Open on an empty set of records causes IsBOF and IsEOF to return

nonzero. (See the following table for the behavior of a failed MoveFirst call.)

All Move operations that successfully locate a record cause both IsBOF and IsEOF to return 0.

An AddNew call followed by an Update call that successfully inserts a new record will cause IsBOF

to return 0, but only if IsEOF is already nonzero. The state of IsEOF will always remain
unchanged. As defined by the Microsoft Jet database engine, the current record pointer of an
empty recordset is at the end of a file, so any new record is inserted after the current record.

Any Delete call, even if it removes the only remaining record from a recordset, will not change the
value of IsBOF or IsEOF .

This table shows which Move operations are allowed with different combinations of IsBOF / IsEOF .

MOVEFIRST,
MOVELAST

MOVEPREV,

MOVE < 0 MOVE 0

MOVENEX T,

MOVE > 0

IsBOF =nonzero,

IsEOF =0

Allowed Exception Exception Allowed

IsBOF =0,

IsEOF =nonzero

Allowed Allowed Exception Exception

Both nonzero Exception Exception Exception Exception

Both 0 Allowed Allowed Allowed Allowed

ISBOF ISEOF

MoveFirst , MoveLast Nonzero Nonzero

Move 0 No change No change

MovePrev , Move < 0 Nonzero No change

MoveNext , Move > 0 No change Nonzero

CDaoRecordset::IsFieldDirty

BOOL IsFieldDirty(void* pv);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Allowing a Move operation does not mean that the operation will successfully locate a record. It merely
indicates that an attempt to perform the specified Move operation is allowed and will not generate an
exception. The value of the IsBOF and IsEOF member functions may change as a result of the attempted
Move.

The effect of Move operations that do not locate a record on the value of IsBOF and IsEOF settings is
shown in the following table.

For related information, see the topic "BOF, EOF Properties" in DAO Help.

Call this member function to determine whether the specified field data member of a dynaset has been
flagged as "dirty" (changed).

pv
A pointer to the field data member whose status you want to check, or NULL to determine if any of the
fields are dirty.

Nonzero if the specified field data member is flagged as dirty; otherwise 0.

The data in all dirty field data members will be transferred to the record on the data source when the

CDaoRecordset::IsFieldNull

BOOL IsFieldNull(void* pv);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

COleVariant varValue;
void* pField = &(rs.m_Age);
int nField = 2;

// this code is inefficient because data
// must be retrieved for both IsFieldNull
// and GetFieldValue
if (!rs.IsFieldNull(pField))
 rs.GetFieldValue(nField, varValue);

// this code is more efficient
rs.GetFieldValue(nField, varValue);
if (varValue.vt == VT_NULL)
 varValue.Attach(varNewVal);// do something

NOTENOTE

CDaoRecordset::IsFieldNullable

current record is updated by a call to the Update member function of CDaoRecordset (following a call to
Edit or AddNew). With this knowledge, you can take further steps, such as unflagging the field data

member to mark the column so it will not be written to the data source.

IsFieldDirty is implemented through DoFieldExchange .

Call this member function to determine whether the specified field data member of a recordset has been
flagged as Null.

pv
A pointer to the field data member whose status you want to check, or NULL to determine if any of the
fields are Null.

Nonzero if the specified field data member is flagged as Null; otherwise 0.

(In database terminology, Null means "having no value" and is not the same as NULL in C++.) If a field
data member is flagged as Null, it is interpreted as a column of the current record for which there is no
value.

In certain situations, using IsFieldNull can be inefficient, as the following code example illustrates:

If you are using dynamic record binding, without deriving from CDaoRecordset , be sure to use VT_NULL as
shown in the example.

Call this member function to determine whether the specified field data member is "nullable" (can be set
to a Null value; C++ NULL is not the same as Null, which, in database terminology, means "having no

BOOL IsFieldNullable(void* pv);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::IsOpen

BOOL IsOpen() const;

Return ValueReturn Value

RemarksRemarks

CDaoRecordset::m_bCheckCacheForDirtyFields

RemarksRemarks

CDaoRecordset::m_nFields

RemarksRemarks

value").

pv
A pointer to the field data member whose status you want to check, or NULL to determine if any of the
fields are Null.

Nonzero if the specified field data member can be made Null; otherwise 0.

A field that cannot be Null must have a value. If you attempt to set such a field to Null when adding or
updating a record, the data source rejects the addition or update, and Update will throw an exception. The
exception occurs when you call Update , not when you call SetFieldNull .

Call this member function to determine if the recordset is open.

Nonzero if the recordset object's Open or Requery member function has previously been called and the
recordset has not been closed; otherwise 0.

Contains a flag indicating whether cached fields are automatically marked as dirty (changed) and Null.

The flag defaults to TRUE. The setting in this data member controls the entire double-buffering
mechanism. If you set the flag to TRUE, you can turn off the caching on a field-by-field basis using the
DFX mechanism. If you set the flag to FALSE, you must call SetFieldDirty and SetFieldNull yourself.

Set this data member before calling Open . This mechanism is primarily for ease-of-use. Performance may
be slower because of the double-buffering of fields as changes are made.

Contains the number of field data members in the recordset class and the number of columns selected by
the recordset from the data source.

The constructor for the recordset class must initialize m_nFields with the correct number of statically
bound fields. ClassWizard writes this initialization for you when you use it to declare your recordset class.
You can also write it manually.

The framework uses this number to manage interaction between the field data members and the
corresponding columns of the current record on the data source.

NOTENOTE

CDaoRecordset::m_nParams

RemarksRemarks

NOTENOTE

CDaoRecordset::m_pDAORecordset

RemarksRemarks

CDaoRecordset::m_pDatabase

RemarksRemarks

This number must correspond to the number of output columns registered in DoFieldExchange after a call to
SetFieldType with the parameter CDaoFieldExchange::outputColumn .

You can bind columns dynamically by way of CDaoRecordset::GetFieldValue and
CDaoRecordset::SetFieldValue . If you do so, you do not need to increment the count in m_nFields to

reflect the number of DFX function calls in your DoFieldExchange member function.

Contains the number of parameter data members in the recordset class — the number of parameters
passed with the recordset's query.

If your recordset class has any parameter data members, the constructor for the class must initialize
m_nParams with the correct number. The value of m_nParams defaults to 0. If you add parameter data
members — which you must do manually — you must also manually add an initialization in the class
constructor to reflect the number of parameters (which must be at least as large as the number of ''
placeholders in your m_strFilter or m_strSort string).

The framework uses this number when it parameterizes the recordset's query.

This number must correspond to the number of "params" registered in DoFieldExchange after a call to
SetFieldType with the parameter CFieldExchange::param .

For related information, see the topic "Parameter Object" in DAO Help.

Contains a pointer to the OLE interface for the DAO recordset object underlying the CDaoRecordset

object.

Use this pointer if you need to access the DAO interface directly.

For related information, see the topic "Recordset Object" in DAO Help.

Contains a pointer to the CDaoDatabase object through which the recordset is connected to a data source.

This variable is set in two ways. Typically, you pass a pointer to an already open CDaoDatabase object
when you construct the recordset object. If you pass NULL instead, CDaoRecordset creates a
CDaoDatabase object for you and opens it. In either case, CDaoRecordset stores the pointer in this variable.

Normally you will not directly need to use the pointer stored in m_pDatabase . If you write your own
extensions to CDaoRecordset , however, you might need to use the pointer. For example, you might need
the pointer if you throw your own CDaoException (s).

For related information, see the topic "Database Object" in DAO Help.

CDaoRecordset::m_strFilter

RemarksRemarks

CDaoRecordset::m_strSort

RemarksRemarks

CDaoRecordset::Move

virtual void Move(long lRows);

ParametersParameters

RemarksRemarks

C a u t i o nC a u t i o n

NOTENOTE

Contains a string that is used to construct the WHERE clause of a SQL statement.

It does not include the reserved word WHERE to filter the recordset. The use of this data member is not
applicable to table-type recordsets. The use of m_strFilter has no effect when opening a recordset using
a CDaoQueryDef pointer.

Use the U.S. date format (month-day-year) when you filter fields containing dates, even if you are not
using the U.S. version of the Microsoft Jet database engine; otherwise, the data may not be filtered as you
expect.

For related information, see the topic "Filter Property" in DAO Help.

Contains a string containing the ORDERBY clause of a SQL statement without the reserved words
ORDERBY .

You can sort on dynaset- and snapshot-type recordset objects.

You cannot sort table-type recordset objects. To determine the sort order of a table-type recordset, call
SetCurrentIndex.

The use of m_strSort has no effect when opening a recordset using a CDaoQueryDef pointer.

For related information, see the topic "Sort Property" in DAO Help.

Call this member function to position the recordset lRows records from the current record.

lRows
The number of records to move forward or backward. Positive values move forward, toward the end of
the recordset. Negative values move backward, toward the beginning.

You can move forward or backward. Move(1) is equivalent to MoveNext , and Move(-1) is equivalent
to MovePrev .

Calling any of the Move functions throws an exception if the recordset has no records. In general, call
both IsBOF and IsEOF before a Move operation to determine whether the recordset has any records.
After you call Open or Requery , call either IsBOF or IsEOF .

If you have scrolled past the beginning or end of the recordset (IsBOF or IsEOF returns nonzero), a call to
Move throws a CDaoException .

NOTENOTE

CDaoRecordset::MoveFirst

void MoveFirst();

RemarksRemarks

C a u t i o nC a u t i o n

NOTENOTE

CDaoRecordset::MoveLast

If you call any of the Move functions while the current record is being updated or added, the updates are lost
without warning.

When you call Move on a forward-only scrolling snapshot, the lRows parameter must be a positive
integer and bookmarks are not allowed, so you can move forward only.

To make the first, last, next, or previous record in a recordset the current record, call the MoveFirst ,
MoveLast , MoveNext , or MovePrev member function.

For related information, see the topics "Move Method" and "MoveFirst, MoveLast, MoveNext,
MovePrevious Methods" in DAO Help.

Call this member function to make the first record in the recordset (if any) the current record.

You do not have to call MoveFirst immediately after you open the recordset. At that time, the first record
(if any) is automatically the current record.

Calling any of the Move functions throws an exception if the recordset has no records. In general, call
both IsBOF and IsEOF before a Move operation to determine whether the recordset has any records.
After you call Open or Requery , call either IsBOF or IsEOF .

If you call any of the Move functions while the current record is being updated or added, the updates are lost
without warning.

Use the Move functions to move from record to record without applying a condition. Use the Find
operations to locate records in a dynaset-type or snapshot-type recordset object that satisfy a certain
condition. To locate a record in a table-type recordset object, call Seek .

If the recordset refers to a table-type recordset, movement follows the table's current index. You can set
the current index by using the Index property of the underlying DAO object. If you do not set the current
index, the order of returned records is undefined.

If you call MoveLast on a recordset object based on a SQL query or querydef, the query is forced to
completion and the recordset object is fully populated.

You cannot call the MoveFirst or MovePrev member function with a forward-only scrolling snapshot.

To move the position of the current record in a recordset object a specific number of records forward or
backward, call Move .

For related information, see the topics "Move Method" and "MoveFirst, MoveLast, MoveNext,
MovePrevious Methods" in DAO Help.

void MoveLast();

RemarksRemarks
C a u t i o nC a u t i o n

NOTENOTE

CDaoRecordset::MoveNext

void MoveNext();

RemarksRemarks

C a u t i o nC a u t i o n

NOTENOTE

Call this member function to make the last record (if any) in the recordset the current record.

Calling any of the Move functions throws an exception if the recordset has no records. In general, call
both IsBOF and IsEOF before a Move operation to determine whether the recordset has any records.
After you call Open or Requery , call either IsBOF or IsEOF .

If you call any of the Move functions while the current record is being updated or added, the updates are lost
without warning.

Use the Move functions to move from record to record without applying a condition. Use the Find
operations to locate records in a dynaset-type or snapshot-type recordset object that satisfy a certain
condition. To locate a record in a table-type recordset object, call Seek .

If the recordset refers to a table-type recordset, movement follows the table's current index. You can set
the current index by using the Index property of the underlying DAO object. If you do not set the current
index, the order of returned records is undefined.

If you call MoveLast on a recordset object based on a SQL query or querydef, the query is forced to
completion and the recordset object is fully populated.

To move the position of the current record in a recordset object a specific number of records forward or
backward, call Move .

For related information, see the topics "Move Method" and "MoveFirst, MoveLast, MoveNext,
MovePrevious Methods" in DAO Help.

Call this member function to make the next record in the recordset the current record.

It is recommended that you call IsBOF before you attempt to move to the previous record. A call to
MovePrev will throw a CDaoException if IsBOF returns nonzero, indicating either that you have already

scrolled before the first record or that no records were selected by the recordset.

Calling any of the Move functions throws an exception if the recordset has no records. In general, call
both IsBOF and IsEOF before a Move operation to determine whether the recordset has any records.
After you call Open or Requery , call either IsBOF or IsEOF .

If you call any of the Move functions while the current record is being updated or added, the updates are lost
without warning.

CDaoRecordset::MovePrev

void MovePrev();

RemarksRemarks

C a u t i o nC a u t i o n

NOTENOTE

CDaoRecordset::Open

Use the Move functions to move from record to record without applying a condition. Use the Find
operations to locate records in a dynaset-type or snapshot-type recordset object that satisfy a certain
condition. To locate a record in a table-type recordset object, call Seek .

If the recordset refers to a table-type recordset, movement follows the table's current index. You can set
the current index by using the Index property of the underlying DAO object. If you do not set the current
index, the order of returned records is undefined.

To move the position of the current record in a recordset object a specific number of records forward or
backward, call Move .

For related information, see the topics "Move Method" and "MoveFirst, MoveLast, MoveNext,
MovePrevious Methods" in DAO Help.

Call this member function to make the previous record in the recordset the current record.

It is recommended that you call IsBOF before you attempt to move to the previous record. A call to
MovePrev will throw a CDaoException if IsBOF returns nonzero, indicating either that you have already

scrolled before the first record or that no records were selected by the recordset.

Calling any of the Move functions throws an exception if the recordset has no records. In general, call
both IsBOF and IsEOF before a Move operation to determine whether the recordset has any records.
After you call Open or Requery , call either IsBOF or IsEOF .

If you call any of the Move functions while the current record is being updated or added, the updates are lost
without warning.

Use the Move functions to move from record to record without applying a condition. Use the Find
operations to locate records in a dynaset-type or snapshot-type recordset object that satisfy a certain
condition. To locate a record in a table-type recordset object, call Seek .

If the recordset refers to a table-type recordset, movement follows the table's current index. You can set
the current index by using the Index property of the underlying DAO object. If you do not set the current
index, the order of returned records is undefined.

You cannot call the MoveFirst or MovePrev member function with a forward-only scrolling snapshot.

To move the position of the current record in a recordset object a specific number of records forward or
backward, call Move .

For related information, see the topics "Move Method" and "MoveFirst, MoveLast, MoveNext,
MovePrevious Methods" in DAO Help.

You must call this member function to retrieve the records for the recordset.

virtual void Open(
 int nOpenType = AFX_DAO_USE_DEFAULT_TYPE,
 LPCTSTR lpszSQL = NULL,
 int nOptions = 0);

virtual void Open(
 CDaoTableDef* pTableDef,
 int nOpenType = dbOpenTable,
 int nOptions = 0);

virtual void Open(
 CDaoQueryDef* pQueryDef,
 int nOpenType = dbOpenDynaset,
 int nOptions = 0);

ParametersParameters
nOpenType
One of the following values:

dbOpenDynaset A dynaset-type recordset with bidirectional scrolling. This is the default.

dbOpenTable A table-type recordset with bidirectional scrolling.

dbOpenSnapshot A snapshot-type recordset with bidirectional scrolling.

lpszSQL
A string pointer containing one of the following:

A NULL pointer.

The name of one or more tabledefs and/or querydefs (comma-separated).

A SQL SELECT statement (optionally with a SQL WHERE or ORDERBY clause).

A pass-through query.

nOptions
One or more of the options listed below. The default value is 0. Possible values are as follows:

dbAppendOnly You can only append new records (dynaset-type recordset only). This option means
literally that records may only be appended. The MFC ODBC database classes have an append-
only option that allows records to be retrieved and appended.

dbForwardOnly The recordset is a forward-only scrolling snapshot.

dbSeeChanges Generate an exception if another user is changing data you are editing.

dbDenyWrite Other users cannot modify or add records.

dbDenyRead Other users cannot view records (table-type recordset only).

dbReadOnly You can only view records; other users can modify them.

dbInconsistent Inconsistent updates are allowed (dynaset-type recordset only).

dbConsistent Only consistent updates are allowed (dynaset-type recordset only).

NOTENOTE

RemarksRemarks

NOTENOTE

The constants dbConsistent and dbInconsistent are mutually exclusive. You can use one or the other, but not
both in a given instance of Open .

pTableDef
A pointer to a CDaoTableDef object. This version is valid only for table-type recordsets. When using this
option, the CDaoDatabase pointer used to construct the CDaoRecordset is not used; rather, the database in
which the tabledef resides is used.

pQueryDef
A pointer to a CDaoQueryDef object. This version is valid only for dynaset-type and snapshot-type
recordsets. When using this option, the CDaoDatabase pointer used to construct the CDaoRecordset is not
used; rather, the database in which the querydef resides is used.

Before calling Open , you must construct the recordset object. There are several ways to do this:

NOTENOTE

When you construct the recordset object, pass a pointer to a CDaoDatabase object that is already
open.

When you construct the recordset object, pass a pointer to a CDaoDatabase object that is not open.
The recordset opens a CDaoDatabase object, but will not close it when the recordset object closes.

When you construct the recordset object, pass a NULL pointer. The recordset object calls
GetDefaultDBName to get the name of the Microsoft Access .MDB file to open. The recordset then

opens a CDaoDatabase object and keeps it open as long as the recordset is open. When you call
Close on the recordset, the CDaoDatabase object is also closed.

When the recordset opens the CDaoDatabase object, it opens the data source with nonexclusive access.

For the version of Open that uses the lpszSQL parameter, once the recordset is open you can retrieve
records in one of several ways. The first option is to have DFX functions in your DoFieldExchange . The
second option is to use dynamic binding by calling the GetFieldValue member function. These options
can be implemented separately or in combination. If they are combined, you will have to pass in the SQL
statement yourself on the call to Open .

When you use the second version of Open where you pass in a CDaoTableDef object, the resulting
columns will be available for you to bind via DoFieldExchange and the DFX mechanism, and/or bind
dynamically via GetFieldValue .

You can only call Open using a CDaoTableDef object for table-type recordsets.

When you use the third version of Open where you pass in a CDaoQueryDef object, that query will be
executed, and the resulting columns will be available for you to bind via DoFieldExchange and the DFX
mechanism, and/or bind dynamically via GetFieldValue .

NOTENOTE

VALUE OF THE LPSZSQL PARAMETER
RECORDS SELECTED ARE DETERMINED
BY EXAMPLE

NULL The string returned by
GetDefaultSQL .

A comma-separated list of one or
more tabledefs and/or querydef
names.

All columns represented in the
DoFieldExchange .

"Customer"

SELECT column-list FROM table-list The specified columns from the
specified tabledef(s) and/or
querydef(s).

"SELECT CustId, CustName

FROM Customer"

You can only call Open using a CDaoQueryDef object for dynaset-type and snapshot-type recordsets.

For the first version of Open that uses the lpszSQL parameter, records are selected based on criteria
shown in the following table.

The usual procedure is to pass NULL to Open ; in that case, Open calls GetDefaultSQL , an overridable
member function that ClassWizard generates when creating a CDaoRecordset -derived class. This value
gives the tabledef(s) and/or querydef name(s) you specified in ClassWizard. You can instead specify other
information in the lpszSQL parameter.

Whatever you pass, Open constructs a final SQL string for the query (the string may have SQL WHERE
and ORDERBY clauses appended to the lpszSQL string you passed) and then executes the query. You can
examine the constructed string by calling GetSQL after calling Open .

The field data members of your recordset class are bound to the columns of the data selected. If any
records are returned, the first record becomes the current record.

If you want to set options for the recordset, such as a filter or sort, set m_strSort or m_strFilter after
you construct the recordset object but before you call Open . If you want to refresh the records in the
recordset after the recordset is already open, call Requery .

If you call Open on a dynaset-type or snapshot-type recordset, or if the data source refers to a SQL
statement or a tabledef that represents an attached table, you cannot use dbOpenTable for the type
argument; if you do, MFC throws an exception. To determine whether a tabledef object represents an
attached table, create a CDaoTableDef object and call its GetConnect member function.

Use the dbSeeChanges flag if you wish to trap changes made by another user or another program on your
machine when you are editing or deleting the same record. For example, if two users start editing the
same record, the first user to call the Update member function succeeds. When Update is called by the
second user, a CDaoException is thrown. Similarly, if the second user tries to call Delete to delete the
record, and it has already been changed by the first user, a CDaoException occurs.

Typically, if the user gets this CDaoException while updating, your code should refresh the contents of the
fields and retrieve the newly modified values. If the exception occurs in the process of deleting, your code
could display the new record data to the user and a message indicating that the data has recently
changed. At this point, your code can request a confirmation that the user still wants to delete the record.

TIPTIP

CDaoRecordset::Requery

virtual void Requery();

RemarksRemarks

C a u t i o nC a u t i o n

NOTENOTE

CDaoRecordset::Seek

Use the forward-only scrolling option (dbForwardOnly) to improve performance when your application makes a
single pass through a recordset opened from an ODBC data source.

For related information, see the topic "OpenRecordset Method" in DAO Help.

Call this member function to rebuild (refresh) a recordset.

If any records are returned, the first record becomes the current record.

In order for the recordset to reflect the additions and deletions that you or other users are making to the
data source, you must rebuild the recordset by calling Requery . If the recordset is a dynaset, it
automatically reflects updates that you or other users make to its existing records (but not additions). If
the recordset is a snapshot, you must call Requery to reflect edits by other users as well as additions and
deletions.

For either a dynaset or a snapshot, call Requery any time you want to rebuild the recordset using
parameter values. Set the new filter or sort by setting m_strFilter and m_strSort before calling Requery .
Set new parameters by assigning new values to parameter data members before calling Requery .

If the attempt to rebuild the recordset fails, the recordset is closed. Before you call Requery , you can
determine whether the recordset can be requeried by calling the CanRestart member function.
CanRestart does not guarantee that Requery will succeed.

Call Requery only after you have called Open .

Calling Requery changes DAO bookmarks.

You can't call Requery on a dynaset-type or snapshot-type recordset if calling CanRestart returns 0, nor
can you use it on a table-type recordset.

If both IsBOF and IsEOF return nonzero after you call Requery , the query didn't return any records and
the recordset will contain no data.

For related information, see the topic "Requery Method" in DAO Help.

Call this member function to locate the record in an indexed table-type recordset object that satisfies the
specified criteria for the current index and make that record the current record.

BOOL Seek(
 LPCTSTR lpszComparison,
 COleVariant* pKey1,
 COleVariant* pKey2 = NULL,
 COleVariant* pKey3 = NULL);

BOOL Seek(
 LPCTSTR lpszComparison,
 COleVariant* pKeyArray,
 WORD nKeys);

ParametersParameters

NOTENOTE

Return ValueReturn Value

RemarksRemarks

lpszComparison
One of the following string expressions: "<", "<=", "=", ">=", or ">".

pKey1
A pointer to a COleVariant whose value corresponds to the first field in the index. Required.

pKey2
A pointer to a COleVariant whose value corresponds to the second field in the index, if any. Defaults to
NULL.

pKey3
A pointer to a COleVariant whose value corresponds to the third field in the index, if any. Defaults to
NULL.

pKeyArray
A pointer to an array of variants. The array size corresponds to the number of fields in the index.

nKeys
An integer corresponding to the size of the array, which is the number of fields in the index.

Do not specify wildcards in the keys. Wildcards will cause Seek to return no matching records.

Nonzero if matching records are found, otherwise 0.

Use the second (array) version of Seek to handle indexes of four fields or more.

Seek enables high-performance index searching on table-type recordsets. You must set the current index
by calling SetCurrentIndex before calling Seek . If the index identifies a nonunique key field or fields,
Seek locates the first record that satisfies the criteria. If you do not set an index, an exception is thrown.

Note that if you are not creating a UNICODE recordset, the COleVariant objects must be explicitly
declared ANSI. This can be done by using the COleVariant::COleVariant(lpszSrc , vtSrc) form of
constructor with vtSrc set to VT_BSTRT (ANSI) or by using the COleVariant function SetString(lpszSrc ,
vtSrc) with vtSrc set to VT_BSTRT .

When you call Seek , you pass one or more key values and a comparison operator ("<", "<=", "=", ">=",
or ">"). Seek searches through the specified key fields and locates the first record that satisfies the
criteria specified by lpszComparison and pKey1. Once found, Seek returns nonzero, and makes that
record current. If Seek fails to locate a match, Seek returns zero, and the current record is undefined.
When using DAO directly, you must explicitly check the NoMatch property.

 CDaoRecordset::SetAbsolutePosition

void SetAbsolutePosition(long lPosition);

ParametersParameters

RemarksRemarks

NOTENOTE

NOTENOTE

If lpszComparison is "=", ">=", or ">", Seek starts at the beginning of the index. If lpszComparison is "<"
or "<=", Seek starts at the end of the index and searches backward unless there are duplicate index
entries at the end. In this case, Seek starts at an arbitrary entry among the duplicate index entries at the
end of the index.

There does not have to be a current record when you use Seek .

To locate a record in a dynaset-type or snapshot-type recordset that satisfies a specific condition, use the
Find operations. To include all records, not just those that satisfy a specific condition, use the Move
operations to move from record to record.

You cannot call Seek on an attached table of any type because attached tables must be opened as
dynaset-type or snapshot-type recordsets. However, if you call CDaoDatabase::Open to directly open an
installable ISAM database, you can call Seek on tables in that database, although the performance may
be slow.

For related information, see the topic "Seek Method" in DAO Help.

Sets the relative record number of a recordset object's current record.

lPosition
Corresponds to the ordinal position of the current record in the recordset.

Calling SetAbsolutePosition enables you to position the current record pointer to a specific record based
on its ordinal position in a dynaset-type or snapshot-type recordset. You can also determine the current
record number by calling GetAbsolutePosition.

This member function is valid only for dynaset-type and snapshot-type recordsets.

The AbsolutePosition property value of the underlying DAO object is zero-based; a setting of 0 refers to
the first record in the recordset. Setting a value greater than the number of populated records causes
MFC to throw an exception. You can determine the number of populated records in the recordset by
calling the GetRecordCount member function.

If the current record is deleted, the AbsolutePosition property value is not defined, and MFC throws an
exception if it is referenced. New records are added to the end of the sequence.

This property is not intended to be used as a surrogate record number. Bookmarks are still the recommended way
of retaining and returning to a given position and are the only way to position the current record across all types
of recordset objects that support bookmarks. In particular, the position of a given record changes when record(s)
preceding it are deleted. There is also no assurance that a given record will have the same absolute position if the
recordset is re-created again because the order of individual records within a recordset is not guaranteed unless it
is created with a SQL statement using an ORDERBY clause.

CDaoRecordset::SetBookmark

void SetBookmark(COleVariant varBookmark);

ParametersParameters

RemarksRemarks

NOTENOTE

CDaoRecordset::SetCacheSize

void SetCacheSize(long lSize);

ParametersParameters

RemarksRemarks

For related information, see the topic "AbsolutePosition Property" in DAO Help.

Call this member function to position the recordset on the record containing the specified bookmark.

varBookmark
A COleVariant object containing the bookmark value for a specific record.

When a recordset object is created or opened, each of its records already has a unique bookmark. You can
retrieve the bookmark for the current record by calling GetBookmark and saving the value to a
COleVariant object. You can later return to that record by calling SetBookmark using the saved bookmark

value.

Calling Requery changes DAO bookmarks.

Note that if you are not creating a UNICODE recordset, the COleVariant object must be explicitly
declared ANSI. This can be done by using the COleVariant::COleVariant(lpszSrc , vtSrc) form of
constructor with vtSrc set to VT_BSTRT (ANSI) or by using the COleVariant function SetString(lpszSrc ,
vtSrc) with vtSrc set to VT_BSTRT .

For related information, see the topics "Bookmark Property" and Bookmarkable Property" in DAO Help.

Call this member function to set the number of records to be cached.

lSize
Specifies the number of records. A typical value is 100. A setting of 0 turns off caching. The setting must
be between 5 and 1200 records. The cache may use a considerable amount of memory.

A cache is a space in local memory that holds the data most recently retrieved from the server in the
event that the data will be requested again while the application is running. Data caching improves the
performance of an application that retrieves data from a remote server through dynaset-type recordset
objects. When data is requested, the Microsoft Jet database engine checks the cache for the requested
data first rather than retrieving it from the server, which takes more time. Data that does not come from
an ODBC data source is not saved in the cache.

Any ODBC data source, such as an attached table, can have a local cache. To create the cache, open a
recordset object from the remote data source, call the SetCacheSize and SetCacheStart member
functions, and then call the FillCache member function or step through the records by using one of the
Move operations. The lSize parameter of the SetCacheSize member function can be based on the number

CDaoRecordset::SetCacheStart

void SetCacheStart(COleVariant varBookmark);

ParametersParameters

RemarksRemarks

CDaoRecordset::SetCurrentIndex

void SetCurrentIndex(LPCTSTR lpszIndex);

ParametersParameters

RemarksRemarks

of records your application can work with at one time. For example, if you are using a recordset as the
source of the data to be displayed on screen, you could pass the SetCacheSize lSize parameter as 20 to
display 20 records at one time.

For related information, see the topic "CacheSize, CacheStart Properties" in DAO Help.

Call this member function to specify the bookmark of the first record in the recordset to be cached.

varBookmark
A COleVariant that specifies the bookmark of the first record in the recordset to be cached.

You can use the bookmark value of any record for the varBookmark parameter of the SetCacheStart

member function. Make the record you want to start the cache with the current record, establish a
bookmark for that record using SetBookmark, and pass the bookmark value as the parameter for the
SetCacheStart member function.

The Microsoft Jet database engine requests records within the cache range from the cache, and it requests
records outside the cache range from the server.

Records retrieved from the cache do not reflect changes made concurrently to the source data by other
users.

To force an update of all the cached data, pass the lSize parameter of SetCacheSize as 0, call
SetCacheSize again with the size of the cache you originally requested, and then call the FillCache

member function.

Note that if you are not creating a UNICODE recordset, the COleVariant object must be explicitly
declared ANSI. This can be done by using the COleVariant::COleVariant(lpszSrc , vtSrc) form of
constructor with vtSrc set to VT_BSTRT (ANSI) or by using the COleVariant function SetString(lpszSrc ,
vtSrc) with vtSrc set to VT_BSTRT .

For related information, see the topic CacheSize, CacheStart Properties" in DAO Help.

Call this member function to set an index on a table-type recordset.

lpszIndex
A pointer containing the name of the index to be set.

Records in base tables are not stored in any particular order. Setting an index changes the order of
records returned from the database, but it does not affect the order in which the records are stored. The
specified index must already be defined. If you try to use an index object that does not exist, or if the index
is not set when you call Seek, MFC throws an exception.

 CDaoRecordset::SetFieldDirty

void SetFieldDirty(
 void* pv,
 BOOL bDirty = TRUE);

ParametersParameters

RemarksRemarks

NOTENOTE

SetFieldDirty(NULL);

You can create a new index for the table by calling CDaoTableDef::CreateIndex and appending the new
index to the Indexes collection of the underlying tabledef by calling CDaoTableDef::Append, and then
reopening the recordset.

Records returned from a table-type recordset can be ordered only by the indexes defined for the
underlying tabledef. To sort records in some other order, you can open a dynaset-type or snapshot-type
recordset using a SQL ORDERBY clause stored in CDaoRecordset::m_strSort.

For related information, see the topic "Index Object" and the definition "current index" in DAO Help.

Call this member function to flag a field data member of the recordset as changed or as unchanged.

pv
Contains the address of a field data member in the recordset or NULL. If NULL, all field data members in
the recordset are flagged. (C++ NULL is not the same as Null in database terminology, which means
"having no value.")

bDirty
TRUE if the field data member is to be flagged as "dirty" (changed). Otherwise FALSE if the field data
member is to be flagged as "clean" (unchanged).

Marking fields as unchanged ensures the field is not updated.

The framework marks changed field data members to ensure they will be written to the record on the
data source by the DAO record field exchange (DFX) mechanism. Changing the value of a field generally
sets the field dirty automatically, so you will seldom need to call SetFieldDirty yourself, but you might
sometimes want to ensure that columns will be explicitly updated or inserted regardless of what value is
in the field data member. The DFX mechanism also employs the use of PSEUDONULL. For more
information, see CDaoFieldExchange::m_nOperation.

If the double-buffering mechanism is not being used, then changing the value of the field does not
automatically set the field as dirty. In this case, it will be necessary to explicitly set the field as dirty. The
flag contained in m_bCheckCacheForDirtyFields controls this automatic field checking.

Call this member function only after you have called Edit or AddNew.

Using NULL for the first argument of the function will apply the function to all outputColumn fields, not
param fields in CDaoFieldExchange . For instance, the call

will set only outputColumn fields to NULL; param fields will be unaffected.

To work on a param, you must supply the actual address of the individual param you want to work on,

SetFieldDirty(&m_strParam);

CDaoRecordset::SetFieldNull

void SetFieldNull(
 void* pv,
 BOOL bNull = TRUE);

ParametersParameters

RemarksRemarks

NOTENOTE

such as:

This means you cannot set all param fields to NULL, as you can with outputColumn fields.

SetFieldDirty is implemented through DoFieldExchange .

Call this member function to flag a field data member of the recordset as Null (specifically having no
value) or as non-Null.

pv
Contains the address of a field data member in the recordset or NULL. If NULL, all field data members in
the recordset are flagged. (C++ NULL is not the same as Null in database terminology, which means
"having no value.")

bNull
Nonzero if the field data member is to be flagged as having no value (Null). Otherwise 0 if the field data
member is to be flagged as non-Null.

SetFieldNull is used for fields bound in the DoFieldExchange mechanism.

When you add a new record to a recordset, all field data members are initially set to a Null value and
flagged as "dirty" (changed). When you retrieve a record from a data source, its columns either already
have values or are Null. If it is not appropriate to make a field Null, a CDaoException is thrown.

If you are using the double-buffering mechanism, for example, if you specifically wish to designate a field
of the current record as not having a value, call SetFieldNull with bNull set to TRUE to flag it as Null. If a
field was previously marked Null and you now want to give it a value, simply set its new value. You do not
have to remove the Null flag with SetFieldNull . To determine whether the field is allowed to be Null, call
IsFieldNullable.

If you are not using the double-buffering mechanism, then changing the value of the field does not
automatically set the field as dirty and non-Null. You must specifically set the fields dirty and non-Null.
The flag contained in m_bCheckCacheForDirtyFields controls this automatic field checking.

The DFX mechanism employs the use of PSEUDONULL. For more information, see
CDaoFieldExchange::m_nOperation.

Call this member function only after you have called Edit or AddNew.

Using NULL for the first argument of the function will apply the function only to outputColumn fields, not
param fields in CDaoFieldExchange . For instance, the call

SetFieldNull(NULL);

CDaoRecordset::SetFieldValue

virtual void SetFieldValue(
 LPCTSTR lpszName,
 const COleVariant& varValue);

virtual void SetFieldValue(
 int nIndex,
 const COleVariant& varValue);

void SetFieldValue(
 LPCTSTR lpszName,
 LPCTSTR lpszValue);

void SetFieldValue(
 int nIndex,
 LPCTSTR lpszValue);

ParametersParameters

RemarksRemarks

CDaoRecordset::SetFieldValueNull

void SetFieldValueNull(int nIndex);
void SetFieldValueNull(LPCTSTR lpszName);

will set only outputColumn fields to NULL; param fields will be unaffected.

Call this member function to set the value of a field, either by ordinal position or by changing the value of
the string.

lpszName
A pointer to a string containing the name of a field.

varValue
A reference to a COleVariant object containing the value of the field's contents.

nIndex
An integer that represents the ordinal position of the field in the recordset's Fields collection (zero-based).

lpszValue
A pointer to a string containing the value of the field's contents.

Use SetFieldValue and GetFieldValue to dynamically bind fields at run time rather than statically binding
columns using the DoFieldExchange mechanism.

Note that if you are not creating a UNICODE recordset, you must either use a form of SetFieldValue that
does not contain a COleVariant parameter, or the COleVariant object must be explicitly declared ANSI.
This can be done by using the COleVariant::COleVariant(lpszSrc , vtSrc) form of constructor with vtSrc
set to VT_BSTRT (ANSI) or by using the COleVariant function SetString(lpszSrc , vtSrc) with vtSrc set to
VT_BSTRT .

For related information, see the topics "Field Object" and "Value Property" in DAO Help.

Call this member function to set the field to a Null value.

ParametersParameters

RemarksRemarks

CDaoRecordset::SetLockingMode

void SetLockingMode(BOOL bPessimistic);

ParametersParameters

RemarksRemarks

CDaoRecordset::SetParamValue

virtual void SetParamValue(
 int nIndex,
 const COleVariant& varValue);

virtual void SetParamValue(
 LPCTSTR lpszName,
 const COleVariant& varValue);

ParametersParameters

nIndex
The index of the field in the recordset, for lookup by zero-based index.

lpszName
The name of the field in the recordset, for lookup by name.

C++ NULL is not the same as Null, which, in database terminology, means "having no value."

For related information, see the topics "Field Object" and "Value Property" in DAO Help.

Call this member function to set the type of locking for the recordset.

bPessimistic
A flag that indicates the type of locking.

When pessimistic locking is in effect, the 2K page containing the record you are editing is locked as soon
as you call the Edit member function. The page is unlocked when you call the Update or Close

member function or any of the Move or Find operations.

When optimistic locking is in effect, the 2K page containing the record is locked only while the record is
being updated with the Update member function.

If a page is locked, no other user can edit records on the same page. If you call SetLockingMode and pass a
nonzero value and another user already has the page locked, an exception is thrown when you call Edit .
Other users can read data from locked pages.

If you call SetLockingMode with a zero value and later call Update while the page is locked by another
user, an exception occurs. To see the changes made to your record by another user (and lose your
changes), call the SetBookmark member function with the bookmark value of the current record.

When working with ODBC data sources, the locking mode is always optimistic.

Call this member function to set the value of a parameter in the recordset at run time.

nIndex
The numerical position of the parameter in the querydef's Parameters collection.

RemarksRemarks

CDaoRecordset::SetParamValueNull

void SetParamValueNull(int nIndex);
void SetParamValueNull(LPCTSTR lpszName);

ParametersParameters

RemarksRemarks

CDaoRecordset::SetPercentPosition

void SetPercentPosition(float fPosition);

ParametersParameters

RemarksRemarks

var
The value to set; see Remarks.

lpszName
The name of the parameter whose value you want to set.

The parameter must already have been established as part of the recordset's SQL string. You can access
the parameter either by name or by its index position in the collection.

Specify the value to set as a COleVariant object. For information about setting the desired value and type
in your COleVariant object, see class COleVariant. Note that if you are not creating a UNICODE
recordset, the COleVariant object must be explicitly declared ANSI. This can be done by using the
COleVariant::COleVariant(lpszSrc , vtSrc) form of constructor with vtSrc set to VT_BSTRT (ANSI) or by
using the COleVariant function SetString(lpszSrc , vtSrc) with vtSrc set to VT_BSTRT .

Call this member function to set the parameter to a Null value.

nIndex
The index of the field in the recordset, for lookup by zero-based index.

lpszName
The name of the field in the recordset, for lookup by name.

C++ NULL is not the same as Null, which, in database terminology, means "having no value."

Call this member function to set a value that changes the approximate location of the current record in the
recordset object based on a percentage of the records in the recordset.

fPosition
A number between 0 and 100.

When working with a dynaset-type or snapshot-type recordset, first populate the recordset by moving to
the last record before you call SetPercentPosition . If you call SetPercentPosition before fully populating
the recordset, the amount of movement is relative to the number of records accessed as indicated by the
value of GetRecordCount. You can move to the last record by calling MoveLast .

Once you call SetPercentPosition , the record at the approximate position corresponding to that value
becomes current.

NOTENOTE

CDaoRecordset::Update

virtual void Update();

RemarksRemarks

C a u t i o nC a u t i o n

NOTENOTE

See also

Calling SetPercentPosition to move the current record to a specific record in a recordset is not recommended.
Call the SetBookmark member function instead.

For related information, see the topic "PercentPosition Property" in DAO Help.

Call this member function after a call to the AddNew or Edit member function.

This call is required to complete the AddNew or Edit operation.

Both AddNew and Edit prepare an edit buffer in which the added or edited data is placed for saving to
the data source. Update saves the data. Only those fields marked or detected as changed are updated.

If the data source supports transactions, you can make the Update call (and its corresponding AddNew or
Edit call) part of a transaction.

If you call Update without first calling either AddNew or Edit , Update throws a CDaoException . If you call
AddNew or Edit , you must call Update before you call MoveNext or close either the recordset or the data

source connection. Otherwise, your changes are lost without notification.

When the recordset object is pessimistically locked in a multiuser environment, the record remains locked
from the time Edit is used until the updating is complete. If the recordset is optimistically locked, the
record is locked and compared with the pre-edited record just before it is updated in the database. If the
record has changed since you called Edit , the Update operation fails and MFC throws an exception. You
can change the locking mode with SetLockingMode .

Optimistic locking is always used on external database formats, such as ODBC and installable ISAM.

For related information, see the topics "AddNew Method", "CancelUpdate Method", "Delete Method",
"LastModified Property", "Update Method", and "EditMode Property" in DAO Help.

CObject Class
Hierarchy Chart
CDaoTableDef Class
CDaoWorkspace Class
CDaoDatabase Class
CDaoQueryDef Class

CDaoRecordView Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class AFX_NOVTABLE CDaoRecordView : public CFormView

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CDaoRecordView::CDaoRecordView Constructs a CDaoRecordView object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDaoRecordView::IsOnFirstRecord Returns nonzero if the current record is the first record in
the associated recordset.

CDaoRecordView::IsOnLastRecord Returns nonzero if the current record is the last record in
the associated recordset.

CDaoRecordView::OnGetRecordset Returns a pointer to an object of a class derived from
CDaoRecordset . ClassWizard overrides this function for

you and creates the recordset if necessary.

CDaoRecordView::OnMove If the current record has changed, updates it on the data
source, then moves to the specified record (next, previous,
first, or last).

Remarks

A view that displays database records in controls.

The view is a form view directly connected to a CDaoRecordset object. The view is created from a dialog
template resource and displays the fields of the CDaoRecordset object in the dialog template's controls. The
CDaoRecordView object uses dialog data exchange (DDX) and DAO record field exchange (DFX) to automate

the movement of data between the controls on the form and the fields of the recordset. CDaoRecordView also
supplies a default implementation for moving to the first, next, previous, or last record and an interface for
updating the record currently in view.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaorecordview-class.md

NOTENOTE

Inheritance Hierarchy

Requirements

CDaoRecordView::CDaoRecordView

The DAO database classes are distinct from the MFC database classes based on Open Database Connectivity (ODBC).
All DAO database class names have the "CDao" prefix. You can still access ODBC data sources with the DAO classes; the
DAO classes generally offer superior capabilities because they use the Microsoft Jet database engine.

The most common way to create your record view is with the Application Wizard. The Application Wizard
creates both the record view class and its associated recordset class as part of your skeleton starter
application.

If you simply need a single form, the Application Wizard approach is easier. ClassWizard lets you decide to
use a record view later in the development process. If you don't create the record view class with the
Application Wizard, you can create it later with ClassWizard. Using ClassWizard to create a record view and a
recordset separately and then connect them is the most flexible approach because it gives you more control in
naming the recordset class and its .H/.CPP files. This approach also lets you have multiple record views on the
same recordset class.

To make it easy for end-users to move from record to record in the record view, the Application Wizard
creates menu (and optionally toolbar) resources for moving to the first, next, previous, or last record. If you
create a record view class with ClassWizard, you need to create these resources yourself with the menu and
bitmap editors.

For information about the default implementation for moving from record to record, see IsOnFirstRecord

and IsOnLastRecord and the article Using a Record View, which applies to both CRecordView and
CDaoRecordView .

CDaoRecordView keeps track of the user's position in the recordset so that the record view can update the user
interface. When the user moves to either end of the recordset, the record view disables user interface objects
— such as menu items or toolbar buttons — for moving further in the same direction.

For more information about declaring and using your record view and recordset classes, see "Designing and
Creating a Record View" in the article Record Views. For more information about how record views work and
how to use them, see the article Using a Record View. All the articles mentioned above apply to both
CRecordView and CDaoRecordView .

CObject

CCmdTarget

CWnd

CView

CScrollView

CFormView

CDaoRecordView

Header: afxdao.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/using-a-record-view-mfc-data-access
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/using-a-record-view-mfc-data-access

explicit CDaoRecordView(LPCTSTR lpszTemplateName);
explicit CDaoRecordView(UINT nIDTemplate);

ParametersParameters

RemarksRemarks

NOTENOTE

NOTENOTE

CMyDaoRecordView::CMyDaoRecordView()
 : CDaoRecordView(CMyDaoRecordView::IDD)
{
 m_pSet = NULL;
 // TODO: add construction code here

}

CDaoRecordView::IsOnFirstRecord

BOOL IsOnFirstRecord();

Return ValueReturn Value

RemarksRemarks

When you create an object of a type derived from CDaoRecordView , call either form of the constructor to
initialize the view object and identify the dialog resource on which the view is based.

lpszTemplateName
Contains a null-terminated string that is the name of a dialog template resource.

nIDTemplate
Contains the ID number of a dialog template resource.

You can either identify the resource by name (pass a string as the argument to the constructor) or by its ID
(pass an unsigned integer as the argument). Using a resource ID is recommended.

Your derived class must supply its own constructor. In the constructor of your derived class, call the constructor
CDaoRecordView::CDaoRecordView with the resource name or ID as an argument.

CDaoRecordView::OnInitialUpdate calls CWnd::UpdateData , which calls CWnd::DoDataExchange . This initial call to
DoDataExchange connects CDaoRecordView controls (indirectly) to CDaoRecordset field data members created

by ClassWizard. These data members cannot be used until after you call the base class
CFormView::OnInitialUpdate member function.

If you use ClassWizard, the wizard defines an enum value CDaoRecordView::IDD in the class declaration and uses it in
the member initialization list for the constructor.

Call this member function to determine whether the current record is the first record in the recordset object
associated with this record view.

Nonzero if the current record is the first record in the recordset; otherwise 0.

This function is useful for writing your own implementations of the default command update handlers written

CDaoRecordView::IsOnLastRecord

BOOL IsOnLastRecord();

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

CDaoRecordView::OnGetRecordset

virtual CDaoRecordset* OnGetRecordset() = 0;

Return ValueReturn Value

RemarksRemarks

CDaoRecordView::OnMove

virtual BOOL OnMove(UINT nIDMoveCommand);

ParametersParameters

by ClassWizard.

If the user moves to the first record, the framework disables any user interface objects (for example, menu
items or toolbar buttons) you have for moving to the first or the previous record.

Call this member function to determine whether the current record is the last record in the recordset object
associated with this record view.

Nonzero if the current record is the last record in the recordset; otherwise 0.

This function is useful for writing your own implementations of the default command update handlers that
ClassWizard writes to support a user interface for moving from record to record.

The result of this function is reliable except that the view may not be able to detect the end of the recordset
until the user has moved past it. The user might have to move beyond the last record before the record view
can tell that it must disable any user interface objects for moving to the next or last record. If the user moves
past the last record and then moves back to the last record (or before it), the record view can track the user's
position in the recordset and disable user interface objects correctly.

Returns a pointer to the CDaoRecordset -derived object associated with the record view.

A pointer to a CDaoRecordset -derived object if the object was successfully created; otherwise a NULL pointer.

You must override this member function to construct or obtain a recordset object and return a pointer to it. If
you declare your record view class with ClassWizard, the wizard writes a default override for you.
ClassWizard's default implementation returns the recordset pointer stored in the record view if one exists. If
not, it constructs a recordset object of the type you specified with ClassWizard and calls its Open member
function to open the table or run the query, and then returns a pointer to the object.

For more information and examples, see the article Record Views: Using a Record View.

Call this member function to move to a different record in the recordset and display its fields in the controls of
the record view.

nIDMoveCommand

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/using-a-record-view-mfc-data-access

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

See also

One of the following standard command ID values:

ID_RECORD_FIRST Move to the first record in the recordset.

ID_RECORD_LAST Move to the last record in the recordset.

ID_RECORD_NEXT Move to the next record in the recordset.

ID_RECORD_PREV Move to the previous record in the recordset.

Nonzero if the move was successful; otherwise 0 if the move request was denied.

The default implementation calls the appropriate Move member function of the CDaoRecordset object
associated with the record view.

By default, OnMove updates the current record on the data source if the user has changed it in the record view.

The Application Wizard creates a menu resource with First Record, Last Record, Next Record, and Previous
Record menu items. If you select the Initial Toolbar option, the Application Wizard also creates a toolbar with
buttons corresponding to these commands.

If you move past the last record in the recordset, the record view continues to display the last record. If you
move backward past the first record, the record view continues to display the first record.

Calling OnMove throws an exception if the recordset has no records. Call the appropriate user interface update
handler function — OnUpdateRecordFirst , OnUpdateRecordLast , OnUpdateRecordNext , or OnUpdateRecordPrev —
before the corresponding move operation to determine whether the recordset has any records.

CFormView Class
Hierarchy Chart
CDaoRecordset Class
CDaoTableDef Class
CDaoQueryDef Class
CDaoDatabase Class
CDaoWorkspace Class
CFormView Class

CDaoTableDef Class
3/4/2019 • 25 minutes to read • Edit Online

Syntax
class CDaoTableDef : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDaoTableDef::CDaoTableDef Constructs a CDaoTableDef object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDaoTableDef::Append Adds a new table to the database.

CDaoTableDef::CanUpdate Returns nonzero if the table can be updated (you can
modify the definition of fields or the table properties).

CDaoTableDef::Close Closes an open tabledef.

CDaoTableDef::Create Creates a table which can be added to the database using
Append.

CDaoTableDef::CreateField Called to create a field for a table.

CDaoTableDef::CreateIndex Called to create an index for a table.

CDaoTableDef::DeleteField Called to delete a field from a table.

CDaoTableDef::DeleteIndex Called to delete an index from a table.

CDaoTableDef::GetAttributes Returns a value that indicates one or more characteristics of
a CDaoTableDef object.

CDaoTableDef::GetConnect Returns a value that provides information about the source
of a table.

CDaoTableDef::GetDateCreated Returns the date and time the base table underlying a
CDaoTableDef object was created.

Represents the stored definition of a base table or an attached table.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaotabledef-class.md

CDaoTableDef::GetDateLastUpdated Returns the date and time of the most recent change made
to the design of the base table.

CDaoTableDef::GetFieldCount Returns a value that represents the number of fields in the
table.

CDaoTableDef::GetFieldInfo Returns specific kinds of information about the fields in the
table.

CDaoTableDef::GetIndexCount Returns the number of indexes for the table.

CDaoTableDef::GetIndexInfo Returns specific kinds of information about the indexes for
the table.

CDaoTableDef::GetName Returns the user-defined name of the table.

CDaoTableDef::GetRecordCount Returns the number of records in the table.

CDaoTableDef::GetSourceTableName Returns a value that specifies the name of the attached table
in the source database.

CDaoTableDef::GetValidationRule Returns a value that validates the data in a field as it is
changed or added to a table.

CDaoTableDef::GetValidationText Returns a value that specifies the text of the message that
your application displays if the value of a Field object does
not satisfy the specified validation rule.

CDaoTableDef::IsOpen Returns nonzero if the table is open.

CDaoTableDef::Open Opens an existing tabledef stored in the database's
TableDef's collection.

CDaoTableDef::RefreshLink Updates the connection information for an attached table.

CDaoTableDef::SetAttributes Sets a value that indicates one or more characteristics of a
CDaoTableDef object.

CDaoTableDef::SetConnect Sets a value that provides information about the source of a
table.

CDaoTableDef::SetName Sets the name of the table.

CDaoTableDef::SetSourceTableName Sets a value that specifies the name of an attached table in
the source database.

CDaoTableDef::SetValidationRule Sets a value that validates the data in a field as it is changed
or added to a table.

CDaoTableDef::SetValidationText Sets a value that specifies the text of the message that your
application displays if the value of a Field object does not
satisfy the specified validation rule.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDaoTableDef::m_pDAOTableDef A pointer to the DAO interface underlying the tabledef
object.

CDaoTableDef::m_pDatabase Source database for this table.

Remarks

To use tabledef objects either to work with an existing table or to create a new tableTo use tabledef objects either to work with an existing table or to create a new table

Each DAO database object maintains a collection, called TableDefs, that contains all saved DAO tabledef objects.

You manipulate a table definition using a CDaoTableDef object. For example, you can:

NOTENOTE

Examine the field and index structure of any local, attached, or external table in a database.

Call the SetConnect and SetSourceTableName member functions for attached tables, and use the
RefreshLink member function to update connections to attached tables.

Call the CanUpdate member function to determine if you can edit field definitions in the table.

Get or set validation conditions using the GetValidationRule and SetValidationRule , and the
GetValidationText and SetValidationText member functions.

Use the Open member function to create a table-, dynaset-, or snapshot-type CDaoRecordset object.

The DAO database classes are distinct from the MFC database classes based on Open Database Connectivity
(ODBC). All DAO database class names have the "CDao" prefix. You can still access ODBC data sources with the
DAO classes; the DAO classes generally offer superior capabilities because they are specific to the Microsoft Jet
database engine.

1. In all cases, first construct a CDaoTableDef object, supplying a pointer to a CDaoDatabase object to which
the table belongs.

2. Then do the following, depending on what you want:

TIPTIP

To use an existing saved table, call the tabledef object's Open member function, supplying the
name of the saved table.

To create a new table, call the tabledef object's Create member function, supplying the name of
the table. Call CreateField and CreateIndex to add fields and indexes to the table.

Call Append to save the table by appending it to the database's TableDefs collection. Create puts
the tabledef into an open state, so after calling Create you do not call Open .

The easiest way to create saved tables is to create them and store them in your database using Microsoft
Access. Then you can open and use them in your MFC code.

To use the tabledef object you have opened or created, create and open a CDaoRecordset object, specifying the
name of the tabledef with a dbOpenTable value in the nOpenType parameter.

Inheritance Hierarchy

Requirements

CDaoTableDef::Append

virtual void Append();

RemarksRemarks

NOTENOTE

CDaoTableDef::CanUpdate

BOOL CanUpdate();

Return ValueReturn Value

RemarksRemarks

CDaoTableDef::CDaoTableDef

To use a tabledef object to create a CDaoRecordset object, you typically create or open a tabledef as described
above, then construct a recordset object, passing a pointer to your tabledef object when you call
CDaoRecordset::Open. The tabledef you pass must be in an open state. For more information, see class
CDaoRecordset.

When you finish using a tabledef object, call its Close member function; then destroy the tabledef object.

CObject

CDaoTableDef

Header: afxdao.h

Call this member function after you call Create to create a new tabledef object to save the tabledef in the
database.

The function appends the object to the database's TableDefs collection. You can use the tabledef as a temporary
object while defining it by not appending it, but if you want to save and use it, you must call Append .

If you attempt to append an unnamed tabledef (containing a null or empty string), MFC throws an exception.

For related information, see the topic "Append Method" in DAO Help.

Call this member function to determine whether the definition of the table underlying a CDaoTableDef object
can be changed.

Nonzero if the table structure (schema) can be modified (add or delete fields and indexes), otherwise 0.

By default, a newly created table underlying a CDaoTableDef object can be updated, and an attached table
underlying a CDaoTableDef object cannot be updated. A CDaoTableDef object may be updatable, even if the
resulting recordset is not updatable.

For related information, see the topic "Updatable Property" in DAO Help.

CDaoTableDef(CDaoDatabase* pDatabase);

ParametersParameters

RemarksRemarks

CDaoTableDef::Close

virtual void Close();

RemarksRemarks

CDaoTableDef::Create

virtual void Create(
 LPCTSTR lpszName,
 long lAttributes = 0,
 LPCTSTR lpszSrcTable = NULL,
 LPCTSTR lpszConnect = NULL);

ParametersParameters

CONSTANT DESCRIPTION

dbAttachExclusive For databases that use the Microsoft Jet database engine,
indicates the table is an attached table opened for exclusive
use.

dbAttachSavePWD For databases that use the Microsoft Jet database engine,
indicates that the user ID and password for the attached
table are saved with the connection information.

Constructs a CDaoTableDef object.

pDatabase
A pointer to a CDaoDatabase object.

After constructing the object, you must call the Create or Open member function. When you finish with the
object, you must call its Close member function and destroy the CDaoTableDef object.

Call this member function to close and release the tabledef object.

Usually after calling Close , you delete the tabledef object if it was allocated with new.

You can call Open again after calling Close . This lets you reuse the tabledef object.

For related information, see the topic "Close Method" in DAO Help.

Call this member function to create a new saved table.

lpszName
A pointer to a string containing the name of the table.

lAttributes
A value corresponding to characteristics of the table represented by the tabledef object. You can use the
bitwise-OR to combine any of the following constants:

dbSystemObject Indicates the table is a system table provided by the
Microsoft Jet database engine.

dbHiddenObject Indicates the table is a hidden table provided by the
Microsoft Jet database engine.

CONSTANT DESCRIPTION

RemarksRemarks

CDaoTableDef::CreateField

void CreateField(
 LPCTSTR lpszName,
 short nType,
 long lSize,
 long lAttributes = 0);

void CreateField(CDaoFieldInfo& fieldinfo);

ParametersParameters

TYPE SIZE (BYTES) DESCRIPTION

dbBoolean 1 byte BOOL

dbByte BYTE

dbInteger 2 int

dbLong 4 long

dbCurrency 8 Currency (COleCurrency)

dbSingle 4 float

lpszSrcTable
A pointer to a string containing the source table name. By default this value is initialized as NULL.

lpszConnect
A pointer to a string containing the default connection string. By default this value is initialized as NULL.

Once you have named the tabledef, you can then call Append to save the tabledef in the database's TableDefs
collection. After calling Append , the tabledef is in an open state, and you can use it to create a CDaoRecordset
object.

For related information, see the topic "CreateTableDef Method" in DAO Help.

Call this member function to add a field to the table.

lpszName
A pointer to a string expression specifying the name of this field.

nType
A value indicating the data type of the field. The setting can be one of these values:

dbDouble 8 double

dbDate 8 Date/Time (COleDateTime)

dbText 1 - 255 Text (CString)

dbLongBinary 0 Long Binary (OLE Object),
CLongBinary or CByteArray

dbMemo 0 Memo (CString)

TYPE SIZE (BYTES) DESCRIPTION

CONSTANT DESCRIPTION

dbFixedField The field size is fixed (default for Numeric fields).

dbVariableField The field size is variable (Text fields only).

dbAutoIncrField The field value for new records is automatically incremented
to a unique long integer that cannot be changed. Only
supported for Microsoft Jet database tables.

dbUpdatableField The field value can be changed.

dbDescending The field is sorted in descending (Z - A or 100 - 0) order
(applies only to a Field object in a Fields collection of an
Index object). If you omit this constant, the field is sorted in
ascending (A - Z or 0 - 100) order (default).

RemarksRemarks

lSize
A value that indicates the maximum size, in bytes, of a field that contains text, or the fixed size of a field that
contains text or numeric values. The lSize parameter is ignored for all but text fields.

lAttributes
A value corresponding to characteristics of the field and that can be combined using a bitwise-OR.

fieldinfo
A reference to a CDaoFieldInfo structure.

A DAOField (OLE) object is created and appended to the Fields collection of the DAOTableDef (OLE) object.
Besides its use for examining object properties, you can also use CDaoFieldInfo to construct an input
parameter for creating new fields in a tabledef. The first version of CreateField is simpler to use, but if you
want finer control, you can use the second version of CreateField , which takes a CDaoFieldInfo parameter.

If you use the version of CreateField that takes a CDaoFieldInfo parameter, you must carefully set each of the
following members of the CDaoFieldInfo structure:

m_strName

m_nType

m_lSize

CDaoTableDef::CreateIndex

void CreateIndex(CDaoIndexInfo& indexinfo);

ParametersParameters

RemarksRemarks

CDaoTableDef::DeleteField

void DeleteField(LPCTSTR lpszName);
void DeleteField(int nIndex);

ParametersParameters

RemarksRemarks

m_lAttributes

m_bAllowZeroLength

The remaining members of CDaoFieldInfo should be set to 0, FALSE, or an empty string, as appropriate for the
member, or a CDaoException may occur.

For related information, see the topic "CreateField Method" in DAO Help.

Call this function to add an index to a table.

indexinfo
A reference to a CDaoIndexInfo structure.

Indexes specify the order of records accessed from database tables and whether or not duplicate records are
accepted. Indexes also provide efficient access to data.

You do not have to create indexes for tables, but in large, unindexed tables, accessing a specific record or
creating a recordset can take a long time. On the other hand, creating too many indexes slows down update,
append, and delete operations as all indexes are automatically updated. Consider these factors as you decide
which indexes to create.

The following members of the CDaoIndexInfo structure must be set:

m_strName A name must be supplied.

m_pFieldInfos Must point to an array of CDaoIndexFieldInfo structures.

m_nFields Must specify the number of fields in the array of CDaoFieldInfo structures.

The remaining members will be ignored if set to FALSE. In addition, the m_lDistinctCount member is ignored
during creation of the index.

Call this member function to remove a field and make it inaccessible.

lpszName
A pointer to a string expression that is the name of an existing field.

nIndex
The index of the field in the table's zero-based Fields collection, for lookup by index.

You can use this member function on a new object that has not been appended to the database or when
CanUpdate returns nonzero.

CDaoTableDef::DeleteIndex

void DeleteIndex(LPCTSTR lpszName);
void DeleteIndex(int nIndex);

ParametersParameters

RemarksRemarks

CDaoTableDef::GetAttributes

long GetAttributes();

Return ValueReturn Value

RemarksRemarks

CONSTANT DESCRIPTION

dbAttachExclusive For databases that use the Microsoft Jet database engine,
indicates the table is an attached table opened for exclusive
use.

dbAttachSavePWD For databases that use the Microsoft Jet database engine,
indicates that the user ID and password for the attached
table are saved with the connection information.

dbSystemObject Indicates the table is a system table provided by the
Microsoft Jet database engine.

dbHiddenObject Indicates the table is a hidden table provided by the
Microsoft Jet database engine.

dbAttachedTable Indicates the table is an attached table from a non-ODBC
database, such as a Paradox database.

For related information, see the topic "Delete Method" in DAO Help.

Call this member function to delete an index in an underlying table.

lpszName
A pointer to a string expression that is the name of an existing index.

nIndex
The array index of the index object in the database's zero-based TableDefs collection, for lookup by index.

You can use this member function on a new object that hasn't been appended to the database or when
CanUpdate returns nonzero.

For related information, see the topic "Delete Method" in DAO Help.

For a CDaoTableDef object, the return value specifies characteristics of the table represented by the
CDaoTableDef object and can be a sum of these constants:

Returns a value that indicates one or more characteristics of a CDaoTableDef object.

dbAttachedODBC Indicates the table is an attached table from an ODBC
database, such as Microsoft SQL Server.

CONSTANT DESCRIPTION

CDaoTableDef::GetConnect

CString GetConnect();

Return ValueReturn Value

RemarksRemarks

CDaoTableDef::GetDateCreated

COleDateTime GetDateCreated();

Return ValueReturn Value

RemarksRemarks

A system table is a table created by the Microsoft Jet database engine to contain various internal information.

A hidden table is a table created for temporary use by the Microsoft Jet database engine.

For related information, see the topic "Attributes Property" in DAO Help.

Call this member function to obtain the connection string for a data source.

A CString object containing the path and database type for the table.

For a CDaoTableDef object that represents an attached table, the CString object consists of one or two parts (a
database type specifier and a path to the database).

The path as shown in the table below is the full path for the directory containing the database files and must be
preceded by the identifier "DATABASE=". In some cases (as with Microsoft Jet and Microsoft Excel databases),
a specific filename is included in the database path argument.

The table in CDaoTableDef::SetConnect shows possible database types and their corresponding database
specifiers and paths:

For Microsoft Jet database base tables, the specifier is a empty string ("").

If a password is required but not provided, the ODBC driver displays a login dialog box the first time a table is
accessed and again if the connection is closed and reopened. If an attached table has the dbAttachSavePWD

attribute, the login prompt will not appear when the table is reopened.

For related information, see the topic "Connect Property" in DAO Help.

Call this function to determine the date and time the table underlying the CDaoTableDef object was created.

A value containing the date and time of the creation of the table underlying the CDaoTableDef object.

The date and time settings are derived from the computer on which the base table was created or last updated.
In a multiuser environment, users should get these settings directly from the file server to avoid discrepancies;
that is, all clients should use a "standard" time source — perhaps from one server.

For related information, see the topic "DateCreated, LastUpdated Properties" in DAO Help.

CDaoTableDef::GetDateLastUpdated

COleDateTime GetDateLastUpdated();

Return ValueReturn Value

RemarksRemarks

CDaoTableDef::GetFieldCount

short GetFieldCount();

Return ValueReturn Value

RemarksRemarks

CDaoTableDef::GetFieldInfo

void GetFieldInfo(
 int nIndex,
 CDaoFieldInfo& fieldinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

void GetFieldInfo(
 LPCTSTR lpszName,
 CDaoFieldInfo& fieldinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

ParametersParameters

Call this function to determine the date and time the table underlying the CDaoTableDef object was last
updated.

A value that contains the date and time the table underlying the CDaoTableDef object was last updated.

The date and time settings are derived from the computer on which the base table was created or last updated.
In a multiuser environment, users should get these settings directly from the file server to avoid discrepancies;
that is, all clients should use a "standard" time source — perhaps from one server.

For related information, see the topic "DateCreated, LastUpdated Properties" in DAO Help.

Call this member function to retrieve the number of fields defined in the table.

The number of fields in the table.

If its value is 0, there are no objects in the collection.

For related information, see the topic "Count Property" in DAO Help.

Call this member function to obtain various kinds of information about a field defined in the tabledef.

nIndex
The index of the field object in the table's zero-based Fields collection, for lookup by index.

fieldinfo
A reference to a CDaoFieldInfo structure.

dwInfoOptions
Options that specify which information about the field to retrieve. The available options are listed here along
with what they cause the function to return:

RemarksRemarks

CDaoTableDef::GetIndexCount

short GetIndexCount();

Return ValueReturn Value

RemarksRemarks

CDaoTableDef::GetIndexInfo

void GetIndexInfo(
 int nIndex,
 CDaoIndexInfo& indexinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

void GetIndexInfo(
 LPCTSTR lpszName,
 CDaoIndexInfo& indexinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

ParametersParameters

AFX_DAO_PRIMARY_INFO (Default) Name, Type, Size, Attributes. Use this option for fastest performance.

AFX_DAO_SECONDARY_INFO Primary information, plus: Ordinal Position, Required, Allow Zero Length,
Collating Order, Foreign Name, Source Field, Source Table

AFX_DAO_ALL_INFO Primary and secondary information, plus: Validation Rule, Validation Text, Default
Value

lpszName
A pointer to the name of the field object, for lookup by name. The name is a string with up to 64 characters that
uniquely names the field.

One version of the function lets you look up a field by index. The other version lets you look up a field by name.

For a description of the information returned, see the CDaoFieldInfo structure. This structure has members that
correspond to the items of information listed above in the description of dwInfoOptions. When you request
information at one level, you get information for any prior levels as well.

For related information, see the topic "Attributes Property" in DAO Help.

Call this member function to obtain the number of indexes for a table.

The number of indexes for the table.

If its value is 0, there are no indexes in the collection.

For related information, see the topic "Count Property" in DAO Help.

Call this member function to obtain various kinds of information about an index defined in the tabledef.

nIndex
The numeric index of the Index object in the table's zero-based Indexes collection, for lookup by its position in
the collection.

indexinfo
A reference to a CDaoIndexInfo structure.

RemarksRemarks

CDaoTableDef::GetName

CString GetName();

Return ValueReturn Value

RemarksRemarks

CDaoTableDef::GetRecordCount

long GetRecordCount();

Return ValueReturn Value

RemarksRemarks

dwInfoOptions
Options that specify which information about the index to retrieve. The available options are listed here along
with what they cause the function to return:

AFX_DAO_PRIMARY_INFO Name, Field Info, Fields. Use this option for fastest performance.

AFX_DAO_SECONDARY_INFO Primary information, plus: Primary, Unique, Clustered, Ignore Nulls, Required,
Foreign

AFX_DAO_ALL_INFO Primary and secondary information, plus: Distinct Count

lpszName
A pointer to the name of the index object, for lookup by name.

One version of the function lets you look up an index by its position in the collection. The other version lets you
look up an index by name.

For a description of the information returned, see the CDaoIndexInfo structure. This structure has members
that correspond to the items of information listed above in the description of dwInfoOptions. When you
request information at one level, you get information for any prior levels as well.

For related information, see the topic "Attributes Property" in DAO Help.

Call this member function to obtain the user-defined name of the underlying table.

A user-defined name for a table.

This name starts with a letter and can contain a maximum of 64 characters. It can include numbers and
underscore characters but cannot include punctuation or spaces.

For related information, see the topic "Name Property" in DAO Help.

Call this member function to find out how many records are in a CDaoTableDef object.

The number of records accessed in a tabledef object.

Calling GetRecordCount for a table-type CDaoTableDef object reflects the approximate number of records in the
table and is affected immediately as table records are added and deleted. Rolled back transactions will appear
as part of the record count until you call CDaoWorkSpace::CompactDatabase. A CDaoTableDef object with no
records has a record count property setting of 0. When working with attached tables or ODBC databases,
GetRecordCount always returns -1.

CDaoTableDef::GetSourceTableName

CString GetSourceTableName();

Return ValueReturn Value

RemarksRemarks

CDaoTableDef::GetValidationRule

CString GetValidationRule();

Return ValueReturn Value

RemarksRemarks

CDaoTableDef::GetValidationText

CString GetValidationText();

Return ValueReturn Value

RemarksRemarks

CDaoTableDef::IsOpen

For related information, see the topic "RecordCount Property" in DAO Help.

Call this member function to retrieve the name of an attached table in a source database.

A CString object that specifies the source name of an attached table, or an empty string if a native data table.

An attached table is a table in another database linked to a Microsoft Jet database. Data for attached tables
remains in the external database, where it can be manipulated by other applications.

For related information, see the topic "SourceTableName Property" in DAO Help.

Call this member function to retrieve the validation rule for a tabledef.

A CString object that validates the data in a field as it is changed or added to a table.

Validation rules are used in connection with update operations. If a tabledef contains a validation rule, updates
to that tabledef must match predetermined criteria before the data is changed. If the change does not match the
criteria, an exception containing the value of GetValidationText is thrown. For a CDaoTableDef object, this
CString is read-only for an attached table and read/write for a base table.

For related information, see the topic "ValidationRule Property" in DAO Help.

Call this function to retrieve the string to display when a user enters data that does not match the validation
rule.

A CString object that specifies the text displayed if the user enters data that does not match the validation rule.

For a CDaoTableDef object, this CString is read-only for an attached table and read/write for a base table.

For related information, see the topic "ValidationText Property" in DAO Help.

Call this member function to determine whether the CDaoTableDef object is currently open.

BOOL IsOpen() const;

Return ValueReturn Value

RemarksRemarks

CDaoTableDef::m_pDatabase

RemarksRemarks

CDaoTableDef::m_pDAOTableDef

RemarksRemarks

CDaoTableDef::Open

virtual void Open(LPCTSTR lpszName);

ParametersParameters

RemarksRemarks

CDaoTableDef::RefreshLink

void RefreshLink();

RemarksRemarks

CDaoTableDef::SetAttributes

Nonzero if the CDaoTableDef object is open; otherwise 0.

Contains a pointer to the CDaoDatabase object for this table.

Contains a pointer to the OLE interface for the DAO tabledef object underlying the CDaoTableDef object.

Use this pointer if you need to access the DAO interface directly.

Call this member function to open a tabledef previously saved in the database's TableDef's collection.

lpszName
A pointer to a string that specifies a table name.

Call this member function to update the connection information for an attached table.

You change the connection information for an attached table by calling SetConnect on the corresponding
CDaoTableDef object and then using the RefreshLink member function to update the information. When you

call RefreshLink , the attached table's properties are not changed.

To force the modified connect information to take effect, all open CDaoRecordset objects based on this tabledef
must be closed.

For related information, see the topic "RefreshLink Method" in DAO Help.

Sets a value that indicates one or more characteristics of a CDaoTableDef object.

void SetAttributes(long lAttributes);

ParametersParameters

CONSTANT DESCRIPTION

dbAttachExclusive For databases that use the Microsoft Jet database engine,
indicates the table is an attached table opened for exclusive
use.

dbAttachSavePWD For databases that use the Microsoft Jet database engine,
indicates that the user ID and password for the attached
table are saved with the connection information.

dbSystemObject Indicates the table is a system table provided by the
Microsoft Jet database engine.

dbHiddenObject Indicates the table is a hidden table provided by the
Microsoft Jet database engine.

RemarksRemarks

CDaoTableDef::SetConnect

void SetConnect(LPCTSTR lpszConnect);

ParametersParameters

RemarksRemarks

lAttributes
Characteristics of the table represented by the CDaoTableDef object and can be a sum of these constants:

When setting multiple attributes, you can combine them by summing the appropriate constants using the
bitwise-OR operator. Setting dbAttachExclusive on a nonattached table produces an exception. Combining the
following values also produce an exception:

dbAttachExclusive | dbAttachedODBC

dbAttachSavePWD | dbAttachedTable

For related information, see the topic "Attributes Property" in DAO Help.

For a CDaoTableDef object that represents an attached table, the string object consists of one or two parts (a
database type specifier and a path to the database).

lpszConnect
A pointer to a string expression that specifies additional parameters to pass to ODBC or installable ISAM
drivers.

The path as shown in the table below is the full path for the directory containing the database files and must be
preceded by the identifier "DATABASE=". In some cases (as with Microsoft Jet and Microsoft Excel databases),
a specific filename is included in the database path argument.

NOTENOTE

DATABASE TYPE SPECIFIER PATH

Database using the Jet database
engine

"[database];" " drive :\\ path\\ filename.MDB"

dBASE III "dBASE III;" " drive :\\ path"

dBASE IV "dBASE IV;" " drive :\\ path"

dBASE 5 "dBASE 5.0;" " drive :\\ path"

Paradox 3.x "Paradox 3.x;" " drive :\\ path"

Paradox 4.x "Paradox 4.x;" " drive :\\ path"

Paradox 5.x "Paradox 5.x;" " drive :\\ path"

Excel 3.0 "Excel 3.0;" " drive :\\ path\\ filename.XLS"

Excel 4.0 "Excel 4.0;" " drive :\\ path\\ filename.XLS"

Excel 5.0 or Excel 95 "Excel 5.0;" " drive :\\ path\\ filename.XLS"

Excel 97 "Excel 8.0;" " drive :\\ path\ filename.XLS"

HTML Import "HTML Import;" " drive :\\ path\ filename"

HTML Export "HTML Export;" " drive :\\ path"

Text "Text;" "drive:\\path"

ODBC "ODBC; DATABASE= database ;
UID= user;PWD= password; DSN=
datasourcename; LOGINTIMEOUT=
seconds;" (This may not be a complete
connection string for all servers; it is
just an example. It is very important
not to have spaces between the
parameters.)

None

Do not include whitespace around the equal sign in path statements of the form "DATABASE=drive:\\path". This will
result in an exception being thrown and the connection failing.

The following table shows possible database types and their corresponding database specifiers and paths:

Exchange "Exchange;

MAPILEVEL= folderpath;

[TABLETYPE={ 0 | 1 };]

[PROFILE= profile;]

[PWD= password;]

[DATABASE= database ;]"

"drive:\\ path\\ filename.MDB"

DATABASE TYPE SPECIFIER PATH

NOTENOTE

CDaoTableDef::SetName

void SetName(LPCTSTR lpszName);

ParametersParameters

RemarksRemarks

CDaoTableDef::SetSourceTableName

void SetSourceTableName(LPCTSTR lpszSrcTableName);

Btrieve is no longer supported as of DAO 3.5.

You must use a double backslash (\\) in the connection strings. If you have modified the properties of an
existing connection using SetConnect , you must subsequently call RefreshLink. If you are initializing the
connection properties using SetConnect , you need not call RefreshLink , but should you choose to do so, first
append the tabledef.

If a password is required but not provided, the ODBC driver displays a login dialog box the first time a table is
accessed and again if the connection is closed and reopened.

You can set the connection string for a CDaoTableDef object by providing a source argument to the Create

member function. You can check the setting to determine the type, path, user ID, password, or ODBC data
source of the database. For more information, see the documentation for the specific driver.

For related information, see the topic "Connect Property" in DAO Help.

Call this member function to set a user-defined name for a table.

lpszName
A pointer to a string expression that specifies a name for a table.

The name must start with a letter and can contain a maximum of 64 characters. It can include numbers and
underscore characters but cannot include punctuation or spaces.

For related information, see the topic "Name Property" in DAO Help.

Call this member function to specify the name of an attached table or the name of the base table on which the
CDaoTableDef object is based, as it exists in the original source of the data.

ParametersParameters

RemarksRemarks

CDaoTableDef::SetValidationRule

void SetValidationRule(LPCTSTR lpszValidationRule);

ParametersParameters

RemarksRemarks

myTableDef.SetValidationRule(_T("termination_date > hire_date"));

CDaoTableDef::SetValidationText

void SetValidationText(LPCTSTR lpszValidationText);

ParametersParameters

RemarksRemarks

lpszSrcTableName
A pointer to a string expression that specifies a table name in the external database. For a base table, the setting
is an empty string ("").

You must then call RefreshLink. This property setting is empty for a base table and read/write for an attached
table or an object not appended to a collection.

For related information, see the topic "SourceTableName Property" in DAO Help.

Call this member function to set a validation rule for a tabledef.

lpszValidationRule
A pointer to a string expression that validates an operation.

Validation rules are used in connection with update operations. If a tabledef contains a validation rule, updates
to that tabledef must match predetermined criteria before the data is changed. If the change does not match the
criteria, an exception containing the text of GetValidationText is displayed.

Validation is supported only for databases that use the Microsoft Jet database engine. The expression cannot
refer to user-defined functions, domain aggregate functions, SQL aggregate functions, or queries. A validation
rule for a CDaoTableDef object can refer to multiple fields in that object.

For example, for fields named hire_date and termination_date, a validation rule might be:

For related information, see the topic "ValidationRule Property" in DAO Help.

Call this member function to set the exception text of a validation rule for a CDaoTableDef object with an
underlying base table supported by the Microsoft Jet database engine.

lpszValidationText
A pointer to a string expression that specifies the text displayed if entered data is invalid.

You cannot set the validation text of an attached table.

For related information, see the topic "ValidationText Property" in DAO Help.

See also
CObject Class
Hierarchy Chart
CDaoDatabase Class
CDaoRecordset Class

CDaoWorkspace Class
3/4/2019 • 29 minutes to read • Edit Online

Syntax
class CDaoWorkspace : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDaoWorkspace::CDaoWorkspace Constructs a workspace object. Afterwards, call Create or
Open .

Public MethodsPublic Methods

NAME DESCRIPTION

CDaoWorkspace::Append Appends a newly created workspace to the database
engine's Workspaces collection.

CDaoWorkspace::BeginTrans Begins a new transaction, which applies to all databases
open in the workspace.

CDaoWorkspace::Close Closes the workspace and all of the objects it contains.
Pending transactions are rolled back.

CDaoWorkspace::CommitTrans Completes the current transaction and saves the changes.

CDaoWorkspace::CompactDatabase Compacts (or duplicates) a database.

CDaoWorkspace::Create Creates a new DAO workspace object.

CDaoWorkspace::GetDatabaseCount Returns the number of DAO database objects in the
workspace's Databases collection.

CDaoWorkspace::GetDatabaseInfo Returns information about a specified DAO database
defined in the workspace's Databases collection.

CDaoWorkspace::GetIniPath Returns the location of the Microsoft Jet database engine's
initialization settings in the Windows registry.

CDaoWorkspace::GetIsolateODBCTrans Returns a value that indicates whether multiple transactions
that involve the same ODBC data source are isolated via
forced multiple connections to the data source.

Manages a named, password-protected database session from login to logoff, by a single user.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaoworkspace-class.md

CDaoWorkspace::GetLoginTimeout Returns the number of seconds before an error occurs when
the user attempts to log in to an ODBC database.

CDaoWorkspace::GetName Returns the user-defined name for the workspace object.

CDaoWorkspace::GetUserName Returns the user name specified when the workspace was
created. This is the name of the workspace owner.

CDaoWorkspace::GetVersion Returns a string that contains the version of the database
engine associated with the workspace.

CDaoWorkspace::GetWorkspaceCount Returns the number of DAO workspace objects in the
database engine's Workspaces collection.

CDaoWorkspace::GetWorkspaceInfo Returns information about a specified DAO workspace
defined in the database engine's Workspaces collection.

CDaoWorkspace::Idle Allows the database engine to perform background tasks.

CDaoWorkspace::IsOpen Returns nonzero if the workspace is open.

CDaoWorkspace::Open Explicitly opens a workspace object associated with DAO's
default workspace.

CDaoWorkspace::RepairDatabase Attempts to repair a damaged database.

CDaoWorkspace::Rollback Ends the current transaction and does not save the changes.

CDaoWorkspace::SetDefaultPassword Sets the password that the database engine uses when a
workspace object is created without a specific password.

CDaoWorkspace::SetDefaultUser Sets the user name that the database engine uses when a
workspace object is created without a specific user name.

CDaoWorkspace::SetIniPath Sets the location of the Microsoft Jet database engine's
initialization settings in the Windows registry.

CDaoWorkspace::SetIsolateODBCTrans Specifies whether multiple transactions that involve the
same ODBC data source are isolated by forcing multiple
connections to the data source.

CDaoWorkspace::SetLoginTimeout Sets the number of seconds before an error occurs when the
user attempts to log in to an ODBC data source.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDaoWorkspace::m_pDAOWorkspace Points to the underlying DAO workspace object.

Remarks
In most cases, you will not need multiple workspaces, and you will not need to create explicit workspace

NOTENOTE

Capabilities

Security

Usage

objects; when you open database and recordset objects, they use DAO's default workspace. However, if needed,
you can run multiple sessions at a time by creating additional workspace objects. Each workspace object can
contain multiple open database objects in its own Databases collection. In MFC, a workspace is primarily a
transaction manager, specifying a set of open databases all in the same "transaction space."

The DAO database classes are distinct from the MFC database classes based on Open Database Connectivity (ODBC). All
DAO database class names have a "CDao" prefix. In general, the MFC classes based on DAO are more capable than the
MFC classes based on ODBC. The DAO-based classes access data through the Microsoft Jet database engine, including
ODBC drivers. They also support Data Definition Language (DDL) operations, such as creating databases and adding
tables and fields via the classes, without having to call DAO directly.

Class CDaoWorkspace provides the following:

Explicit access, if needed, to a default workspace, created by initializing the database engine. Usually you
use DAO's default workspace implicitly by creating database and recordset objects.

A transaction space in which transactions apply to all databases open in the workspace. You can create
additional workspaces to manage separate transaction spaces.

An interface to many properties of the underlying Microsoft Jet database engine (see the static member
functions). Opening or creating a workspace, or calling a static member function before open or create,
initializes the database engine.

Access to the database engine's Workspaces collection, which stores all active workspaces that have been
appended to it. You can also create and work with workspaces without appending them to the collection.

MFC does not implement the Users and Groups collections in DAO, which are used for security control. If you
need those aspects of DAO, you must program them yourself via direct calls to DAO interfaces. For
information, see Technical Note 54.

You can use class CDaoWorkspace to:

Explicitly open the default workspace.

Usually your use of the default workspace is implicit — when you open new CDaoDatabase or
CDaoRecordset objects. But you might need to access it explicitly — for example, to access database
engine properties or the Workspaces collection. See "Implicit Use of the Default Workspace" below.

Create new workspaces. Call Append if you want to add them to the Workspaces collection.

Open an existing workspace in the Workspaces collection.

Creating a new workspace that does not already exist in the Workspaces collection is described under the
Create member function. Workspace objects do not persist in any way between datababase engine sessions. If
your application links MFC statically, ending the application uninitializes the database engine. If your
application links with MFC dynamically, the database engine is uninitialized when the MFC DLL is unloaded.

Explicitly opening the default workspace, or opening an existing workspace in the Workspaces collection, is
described under the Open member function.

Transactions

Implicit Use of the Default Workspace

Other Operations

Inheritance Hierarchy

Requirements

CDaoWorkspace::Append

virtual void Append();

RemarksRemarks

End a workspace session by closing the workspace with the Close member function. Close closes any
databases you have not closed previously, rolling back any uncommitted transactions.

DAO manages transactions at the workspace level; hence, transactions on a workspace with multiple open
databases apply to all of the databases. For example, if two databases have uncommitted updates and you call
CommitTrans, all of the updates are committed. If you want to limit transactions to a single database, you need
a separate workspace object for it.

MFC uses DAO's default workspace implicitly under the following circumstances:

If you create a new CDaoDatabase object but do not do so through an existing CDaoWorkspace object,
MFC creates a temporary workspace object for you, which corresponds to DAO's default workspace. If
you do so for multiple databases, all of the database objects are associated with the default workspace.
You can access a database's workspace through a CDaoDatabase data member.

Similarly, if you create a CDaoRecordset object without supplying a pointer to a CDaoDatabase object,
MFC creates a temporary database object and, by extension, a temporary workspace object. You can
access a recordset's database, and indirectly its workspace, through a CDaoRecordset data member.

Other database operations are also provided, such as repairing a corrupted database or compacting a database.

For information about calling DAO directly and about DAO security, see Technical Note 54.

CObject

CDaoWorkspace

Header: afxdao.h

Call this member function after you call Create.

Append appends a newly created workspace object to the database engine's Workspaces collection.
Workspaces do not persist between database engine sessions; they are stored only in memory, not on disk. You
do not have to append a workspace; if you do not, you can still use it.

An appended workspace remains in the Workspaces collection, in an active, open state, until you call its Close
member function.

For related information, see the topic "Append Method" in DAO Help.

CDaoWorkspace::BeginTrans

void BeginTrans();

RemarksRemarks

CDaoWorkspace::CDaoWorkspace

CDaoWorkspace();

RemarksRemarks

CDaoWorkspace::Close

virtual void Close();

RemarksRemarks

Call this member function to initiate a transaction.

After you call BeginTrans , updates you make to your data or database structure take effect when you commit
the transaction. Because the workspace defines a single transaction space, the transaction applies to all open
databases in the workspace. There are two ways to complete the transaction:

Call the CommitTrans member function to commit the transaction and save changes to the data source.

Or call the Rollback member function to cancel the transaction.

Closing the workspace object or a database object while a transaction is pending rolls back all pending
transactions.

If you need to isolate transactions on one ODBC data source from those on another ODBC data source, see the
SetIsolateODBCTrans member function.

Constructs a CDaoWorkspace object.

After constructing the C++ object, you have two options:

Call the object's Open member function to open the default workspace or to open an existing object in
the Workspaces collection.

Or call the object's Create member function to create a new DAO workspace object. This explicitly starts
a new workspace session, which you can refer to via the CDaoWorkspace object. After calling Create , you
can call Append if you want to add the workspace to the database engine's Workspaces collection.

See the class overview for CDaoWorkspace for information about when you need to explicitly create a
CDaoWorkspace object. Usually, you use workspaces created implicitly when you open a CDaoDatabase object

without specifying a workspace or when you open a CDaoRecordset object without specifying a database
object. MFC DAO objects created in this way use DAO's default workspace, which is created once and reused.

To release a workspace and its contained objects, call the workspace object's Close member function.

Call this member function to close the workspace object.

Closing an open workspace object releases the underlying DAO object and, if the workspace is a member of the
Workspaces collection, removes it from the collection. Calling Close is good programming practice.

C a u t i o nC a u t i o n

CDaoWorkspace::CommitTrans

void CommitTrans();

RemarksRemarks

C a u t i o nC a u t i o n

NOTENOTE

CDaoWorkspace::CompactDatabase

static void PASCAL CompactDatabase(
 LPCTSTR lpszSrcName,
 LPCTSTR lpszDestName,
 LPCTSTR lpszLocale = dbLangGeneral,
 int nOptions = 0);

static void PASCAL CompactDatabase(
 LPCTSTR lpszSrcName,
 LPCTSTR lpszDestName,
 LPCTSTR lpszLocale,
 int nOptions,
 LPCTSTR lpszPassword);

ParametersParameters

Closing a workspace object closes any open databases in the workspace. This results in any recordsets open in
the databases being closed as well, and any pending edits or updates are rolled back. For related information,
see the CDaoDatabase::Close, CDaoRecordset::Close, CDaoTableDef::Close, and CDaoQueryDef::Close member
functions.

Workspace objects are not permanent; they only exist while references to them exist. This means that when the
database engine session ends, the workspace and its Databases collection do not persist. You must re-create
them for the next session by opening your workspace and database(s) again.

For related information, see the topic "Close Method" in DAO Help.

Call this member function to commit a transaction — save a group of edits and updates to one or more
databases in the workspace.

A transaction consists of a series of changes to the database's data or its structure, beginning with a call to
BeginTrans. When you complete the transaction, either commit it or roll it back (cancel the changes) with
Rollback. By default, without transactions, updates to records are committed immediately. Calling BeginTrans
causes commitment of updates to be delayed until you call CommitTrans .

Within one workspace, transactions are always global to the workspace and are not limited to only one
database or recordset. If you perform operations on more than one database or recordset within a workspace
transaction, CommitTrans commits all pending updates, and Rollback restores all operations on those
databases and recordsets.

When you close a database or workspace with pending transactions, the transactions are all rolled back.

This is not a two-phase commit mechanism. If one update fails to commit, others still will commit.

Call this member function to compact a specified Microsoft Jet (.MDB) database.

lpszSrcName
The name of an existing, closed database. It can be a full path and filename, such as "C:\\MYDB.MDB". If the
filename has an extension, you must specify it. If your network supports the uniform naming convention
(UNC), you can also specify a network path, such as "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB".
(Double backslashes are required in the path strings because "\" is the C++ escape character.)

lpszDestName
The full path of the compacted database that you are creating. You can also specify a network path as with
lpszSrcName. You cannot use the lpszDestName argument to specify the same database file as lpszSrcName.

lpszPassword
A password, used when you want to compact a password-protected database. Note that if you use the version
of CompactDatabase that takes a password, you must supply all parameters. Also, because this is a connect
parameter, it requires special formatting, as follows: ;PWD= lpszPassword. For example: ;PWD="Happy". (The
leading semicolon is required.)

lpszLocale
A string expression used to specify collating order for creating lpszDestName. If you omit this argument by
accepting the default value of dbLangGeneral (see below), the locale of the new database is the same as that of
the old database. Possible values are:

dbLangGeneral English, German, French, Portuguese, Italian, and Modern Spanish

dbLangArabic Arabic

dbLangCyrillic Russian

dbLangCzech Czech

dbLangDutch Dutch

dbLangGreek Greek

dbLangHebrew Hebrew

dbLangHungarian Hungarian

dbLangIcelandic Icelandic

dbLangNordic Nordic languages (Microsoft Jet database engine version 1.0 only)

dbLangNorwdan Norwegian and Danish

dbLangPolish Polish

dbLangSpanish Traditional Spanish

dbLangSwedfin Swedish and Finnish

dbLangTurkish Turkish

nOptions
Indicates one or more options for the target database, lpszDestName. If you omit this argument by accepting
the default value, the lpszDestName will have the same encryption and the same version as lpszSrcName. You
can combine the dbEncrypt or dbDecrypt option with one of the version options using the bitwise-OR
operator. Possible values, which specify a database format, not a database engine version, are:

dbEncrypt Encrypt the database while compacting.

dbDecrypt Decrypt the database while compacting.

C a u t i o nC a u t i o n

RemarksRemarks

C a u t i o nC a u t i o n

TIPTIP

CDaoWorkspace::Create

virtual void Create(
 LPCTSTR lpszName,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword);

ParametersParameters

dbVersion10 Create a database that uses the Microsoft Jet database engine version 1.0 while
compacting.

dbVersion11 Create a database that uses the Microsoft Jet database engine version 1.1 while
compacting.

dbVersion20 Create a database that uses the Microsoft Jet database engine version 2.0 while
compacting.

dbVersion30 Create a database that uses the Microsoft Jet database engine version 3.0 while
compacting.

You can use dbEncrypt or dbDecrypt in the options argument to specify whether to encrypt or to decrypt the
database as it is compacted. If you omit an encryption constant or if you include both dbDecrypt and
dbEncrypt , lpszDestName will have the same encryption as lpszSrcName. You can use one of the version

constants in the options argument to specify the version of the data format for the compacted database. This
constant affects only the version of the data format of lpszDestName. You can specify only one version
constant. If you omit a version constant, lpszDestName will have the same version as lpszSrcName. You can
compact lpszDestName only to a version that is the same or later than that of lpszSrcName.

If a database is not encrypted, it is possible, even if you implement user/password security, to directly read the
binary disk file that constitutes the database.

As you change data in a database, the database file can become fragmented and use more disk space than
necessary. Periodically, you should compact your database to defragment the database file. The compacted
database is usually smaller. You can also choose to change the collating order, the encryption, or the version of
the data format while you copy and compact the database.

The CompactDatabase member function will not correctly convert a complete Microsoft Access database from
one version to another. Only the data format is converted. Microsoft Access-defined objects, such as forms and
reports, are not converted. However, the data is correctly converted.

You can also use CompactDatabase to copy a database file.

For more information about compacting databases, see the topic "CompactDatabase Method" in DAO Help.

Call this member function to create a new DAO workspace object and associate it with the MFC CDaoWorkspace

object.

lpszName
A string with up to 14 characters that uniquely names the new workspace object. You must supply a name. For
related information, see the topic "Name Property" in DAO Help.

RemarksRemarks

CDaoWorkspace::GetDatabaseCount

short GetDatabaseCount();

Return ValueReturn Value

RemarksRemarks

CDaoWorkspace::GetDatabaseInfo

void GetDatabaseInfo(
 int nIndex,
 CDaoDatabaseInfo& dbinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

void GetDatabaseInfo(
 LPCTSTR lpszName,
 CDaoDatabaseInfo& dbinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

ParametersParameters

lpszUserName
The user name of the workspace's owner. For requirements, see the lpszDefaultUser parameter to the
SetDefaultUser member function. For related information, see the topic "UserName Property" in DAO Help.

lpszPassword
The password for the new workspace object. A password can be up to 14 characters long and can contain any
character except ASCII 0 (null). Passwords are case-sensitive. For related information, see the topic "Password
Property" in DAO Help.

The overall creation process is:

1. Construct a CDaoWorkspace object.

2. Call the object's Create member function to create the underlying DAO workspace. You must specify a
workspace name.

3. Optionally call Append if you want to add the workspace to the database engine's Workspaces collection.
You can work with the workspace without appending it.

After the Create call, the workspace object is in an open state, ready for use. You do not call Open after
Create . You do not call Create if the workspace already exists in the Workspaces collection. Create initializes

the database engine if it has not already been initialized for your application.

Call this member function to retrieve the number of DAO database objects in the workspace's Databases
collection — the number of open databases in the workspace.

The number of open databases in the workspace.

GetDatabaseCount is useful if you need to loop through all defined databases in the workspace's Databases
collection. To obtain information about a given database in the collection, see GetDatabaseInfo. Typical usage is
to call GetDatabaseCount for the number of open databases, then use that number as a loop index for repeated
calls to GetDatabaseInfo .

Call this member function to obtain various kinds of information about a database open in the workspace.

RemarksRemarks

CDaoWorkspace::GetIniPath

static CString PASCAL GetIniPath();

Return ValueReturn Value

RemarksRemarks

CDaoWorkspace::GetIsolateODBCTrans

BOOL GetIsolateODBCTrans();

Return ValueReturn Value

RemarksRemarks

nIndex
The zero-based index of the database object in the workspace's Databases collection, for lookup by index.

dbinfo
A reference to a CDaoDatabaseInfo object that returns the information requested.

dwInfoOptions
Options that specify which information about the database to retrieve. The available options are listed here
along with what they cause the function to return:

AFX_DAO_PRIMARY_INFO (Default) Name, Updatable, Transactions

AFX_DAO_SECONDARY_INFO Primary information plus: Version, Collating Order, Query Timeout

AFX_DAO_ALL_INFO Primary and secondary information plus: Connect

lpszName
The name of the database object, for lookup by name. The name is a string with up to 14 characters that
uniquely names the new workspace object.

One version of the function lets you look up a database by index. The other version lets you look up a database
by name.

For a description of the information returned in dbinfo, see the CDaoDatabaseInfo structure. This structure has
members that correspond to the items of information listed above in the description of dwInfoOptions. When
you request information at one level, you get information for any prior levels as well.

Call this member function to obtain the location of the Microsoft Jet database engine's initialization settings in
the Windows registry.

A CString containing the registry location.

You can use the location to obtain information about settings for the database engine. The information returned
is actually the name of a registry subkey.

For related information, see the topics "IniPath Property" and "Customizing Windows Registry Settings for
Data Access" in DAO Help.

Call this member function to get the current value of the DAO IsolateODBCTrans property for the workspace.

Nonzero if ODBC transactions are isolated; otherwise 0.

CDaoWorkspace::GetLoginTimeout

static short PASCAL GetLoginTimeout();

Return ValueReturn Value

RemarksRemarks

CDaoWorkspace::GetName

CString GetName();

Return ValueReturn Value

RemarksRemarks

CDaoWorkspace::GetUserName

In some situations, you might need to have multiple simultaneous transactions pending on the same ODBC
database. To do this, you need to open a separate workspace for each transaction. Keep in mind that although
each workspace can have its own ODBC connection to the database, this slows system performance. Because
transaction isolation is not normally required, ODBC connections from multiple workspace objects opened by
the same user are shared by default.

Some ODBC servers, such as Microsoft SQL Server, do not allow simultaneous transactions on a single
connection. If you need to have more than one transaction at a time pending against such a database, set the
IsolateODBCTrans property to TRUE on each workspace as soon as you open it. This forces a separate ODBC
connection for each workspace.

For related information, see the topic "IsolateODBCTrans Property" in DAO Help.

Call this member function to get the current value of the DAO LoginTimeout property for the workspace.

The number of seconds before an error occurs when you attempt to log in to an ODBC database.

This value represents the number of seconds before an error occurs when you attempt to log in to an ODBC
database. The default LoginTimeout setting is 20 seconds. When LoginTimeout is set to 0, no timeout occurs
and the communication with the data source might stop responding.

When you are attempting to log in to an ODBC database, such as Microsoft SQL Server, the connection may
fail as a result of network errors or because the server is not running. Rather than waiting for the default 20
seconds to connect, you can specify how long the database engine waits before it produces an error. Logging in
to the server happens implicitly as part of a number of different events, such as running a query on an external
server database.

For related information, see the topic "LoginTimeout Property" in DAO Help.

Call this member function to get the user-defined name of the DAO workspace object underlying the
CDaoWorkspace object.

A CString containing the user-defined name of the DAO workspace object.

The name is useful for accessing the DAO workspace object in the database engine's Workspaces collection by
name.

For related information, see the topic "Name Property" in DAO Help.

Call this member function to obtain the name of the owner of the workspace.

CString GetUserName();

Return ValueReturn Value

RemarksRemarks

CDaoWorkspace::GetVersion

static CString PASCAL GetVersion();

Return ValueReturn Value

RemarksRemarks

CDaoWorkspace::GetWorkspaceCount

short GetWorkspaceCount();

Return ValueReturn Value

RemarksRemarks

CDaoWorkspace::GetWorkspaceInfo

A CString that represents the owner of the workspace object.

To get or set the permissions for the workspace owner, call DAO directly to check the Permissions property
setting; this determines what permissions that user has. To work with permissions, you need a SYSTEM.MDA
file.

For information about calling DAO directly, see Technical Note 54. For related information, see the topic
"UserName Property" in DAO Help.

Call this member function to determine the version of the Microsoft Jet database engine in use.

A CString that indicates the version of the database engine associated with the object.

The value returned represents the version number in the form "major.minor"; for example, "3.0". The product
version number (for example, 3.0) consists of the version number (3), a period, and the release number (0).

For related information, see the topic "Version Property" in DAO Help.

Call this member function to retrieve the number of DAO workspace objects in the database engine's
Workspaces collection.

The number of open workspaces in the Workspaces collection.

This count does not include any open workspaces not appended to the collection. GetWorkspaceCount is useful if
you need to loop through all defined workspaces in the Workspaces collection. To obtain information about a
given workspace in the collection, see GetWorkspaceInfo. Typical usage is to call GetWorkspaceCount for the
number of open workspaces, then use that number as a loop index for repeated calls to GetWorkspaceInfo .

Call this member function to obtain various kinds of information about a workspace open in the session.

void GetWorkspaceInfo(
 int nIndex,
 CDaoWorkspaceInfo& wkspcinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

void GetWorkspaceInfo(
 LPCTSTR lpszName,
 CDaoWorkspaceInfo& wkspcinfo,
 DWORD dwInfoOptions = AFX_DAO_PRIMARY_INFO);

ParametersParameters

RemarksRemarks

CDaoWorkspace::Idle

static void PASCAL Idle(int nAction = dbFreeLocks);

ParametersParameters

RemarksRemarks

NOTENOTE

nIndex
The zero-based index of the database object in the Workspaces collection, for lookup by index.

wkspcinfo
A reference to a CDaoWorkspaceInfo object that returns the information requested.

dwInfoOptions
Options that specify which information about the workspace to retrieve. The available options are listed here
along with what they cause the function to return:

AFX_DAO_PRIMARY_INFO (Default) Name

AFX_DAO_SECONDARY_INFO Primary information plus: User Name

AFX_DAO_ALL_INFO Primary and secondary information plus: Isolate ODBCTrans

lpszName
The name of the workspace object, for lookup by name. The name is a string with up to 14 characters that
uniquely names the new workspace object.

For a description of the information returned in wkspcinfo, see the CDaoWorkspaceInfo structure. This
structure has members that correspond to the items of information listed above in the description of
dwInfoOptions. When you request information at one level, you get information for prior levels as well.

Call Idle to provide the database engine with the opportunity to perform background tasks that may not be
up-to-date because of intense data processing.

nAction
An action to take during the idle processing. Currently the only valid action is dbFreeLocks .

This is often true in multiuser, multitasking environments in which there is not enough background processing
time to keep all records in a recordset current.

Calling Idle is not necessary with databases created with version 3.0 of the Microsoft Jet database engine. Use Idle

only for databases created with earlier versions.

CDaoWorkspace::IsOpen

BOOL IsOpen() const;

Return ValueReturn Value

RemarksRemarks

CDaoWorkspace::m_pDAOWorkspace

RemarksRemarks

CDaoWorkspace::Open

virtual void Open(LPCTSTR lpszName = NULL);

ParametersParameters

RemarksRemarks

Usually, read locks are removed and data in local dynaset-type recordset objects is updated only when no other
actions (including mouse movements) are occurring. If you periodically call Idle , you provide the database
engine with time to catch up on background processing tasks by releasing unneeded read locks. Specifying the
dbFreeLocks constant as an argument delays processing until all read locks are released.

This member function is not needed in single-user environments unless multiple instances of an application are
running. The Idle member function may increase performance in a multiuser environment because it forces
the database engine to flush data to disk, releasing locks on memory. You can also release read locks by making
operations part of a transaction.

For related information, see the topic "Idle Method" in DAO Help.

Call this member function to determine whether the CDaoWorkspace object is open — that is, whether the MFC
object has been initialized by a call to Open or a call to Create.

Nonzero if the workspace object is open; otherwise 0.

You can call any of the member functions of a workspace that is in an open state.

A pointer to the underlying DAO workspace object.

Use this data member if you need direct access to the underlying DAO object. You can call the DAO object's
interfaces through this pointer.

For information about accessing DAO objects directly, see Technical Note 54.

Explicitly opens a workspace object associated with DAO's default workspace.

lpszName
The name of the DAO workspace object to open — a string with up to 14 characters that uniquely names the
workspace. Accept the default value NULL to explicitly open the default workspace. For naming requirements,
see the lpszName parameter for Create. For related information, see the topic "Name Property" in DAO Help.

After constructing a CDaoWorkspace object, call this member function to do one of the following:

Explicitly open the default workspace. Pass NULL for lpszName.

Open an existing CDaoWorkspace object, a member of the Workspaces collection, by name. Pass a valid
name for an existing workspace object.

Create GetVersion SetDefaultUser

GetIniPath Idle SetIniPath

GetLoginTimeout SetDefaultPassword SetLoginTimeout

CDaoWorkspace::RepairDatabase

static void PASCAL RepairDatabase(LPCTSTR lpszName);

ParametersParameters

RemarksRemarks

NOTENOTE

CDaoWorkspace::Rollback

Open puts the workspace object into an open state and also initializes the database engine if it has not already
been initialized for your application.

Although many CDaoWorkspace member functions can only be called after the workspace has been opened, the
following member functions, which operate on the database engine, are available after construction of the C++
object but before a call to Open :

Call this member function if you need to attempt to repair a corrupted database that accesses the Microsoft Jet
database engine.

lpszName
The path and filename for an existing Microsoft Jet engine database file. If you omit the path, only the current
directory is searched. If your system supports the uniform naming convention (UNC), you can also specify a
network path, such as: "\\\\MYSERVER\\MYSHARE\\MYDIR\\MYDB.MDB". (Double backslashes are required
in the path string because "\" is the C++ escape character.)

You must close the database specified by lpszName before you repair it. In a multiuser environment, other
users cannot have lpszName open while you are repairing it. If lpszName is not closed or is not available for
exclusive use, an error occurs.

This member function attempts to repair a database that was marked as possibly corrupt by an incomplete
write operation. This can occur if an application using the Microsoft Jet database engine is closed unexpectedly
because of a power outage or computer hardware problem. If you complete the operation and call the Close
member function or you quit the application in a usual way, the database will not be marked as possibly
corrupt.

After repairing a database, it is also a good idea to compact it using the CompactDatabase member function to
defragment the file and to recover disk space.

For more information about repairing databases, see the topic "RepairDatabase Method" in DAO Help.

Call this member function to end the current transaction and restore all databases in the workspace to their
condition before the transaction was begun.

void Rollback();

RemarksRemarks
C a u t i o nC a u t i o n

NOTENOTE

CDaoWorkspace::SetDefaultPassword

static void PASCAL SetDefaultPassword(LPCTSTR lpszPassword);

ParametersParameters

RemarksRemarks

CDaoWorkspace::SetDefaultUser

Within one workspace object, transactions are always global to the workspace and are not limited to only one
database or recordset. If you perform operations on more than one database or recordset within a workspace
transaction, Rollback restores all operations on all of those databases and recordsets.

If you close a workspace object without saving or rolling back any pending transactions, the transactions are
automatically rolled back. If you call CommitTrans or Rollback without first calling BeginTrans, an error occurs.

When you begin a transaction, the database engine records its operations in a file kept in the directory specified by the
TEMP environment variable on the workstation. If the transaction log file exhausts the available storage on your TEMP
drive, the database engine will cause MFC to throw a CDaoException (DAO error 2004). At this point, if you call
CommitTrans , an indeterminate number of operations are committed but the remaining uncompleted operations are

lost, and the operation has to be restarted. Calling Rollback releases the transaction log and rolls back all operations in
the transaction.

Call this member function to set the default password that the database engine uses when a workspace object
is created without a specific password.

lpszPassword
The default password. A password can be up to 14 characters long and can contain any character except ASCII
0 (null). Passwords are case-sensitive.

The default password that you set applies to new workspaces you create after the call. When you create
subsequent workspaces, you do not need to specify a password in the Create call.

To use this member function:

1. Construct a CDaoWorkspace object but do not call Create .

2. Call SetDefaultPassword and, if you like, SetDefaultUser.

3. Call Create for this workspace object or subsequent ones, without specifying a password.

By default, the DefaultUser property is set to "admin" and the DefaultPassword property is set to an empty
string ("").

For more about security, see the topic "Permissions Property" in DAO Help. For related information, see the
topics "DefaultPassword Property" and "DefaultUser Property" in DAO Help.

Call this member function to set the default user name that the database engine uses when a workspace object
is created without a specific user name.

static void PASCAL SetDefaultUser(LPCTSTR lpszDefaultUser);

ParametersParameters

RemarksRemarks

CDaoWorkspace::SetIniPath

static void PASCAL SetIniPath(LPCTSTR lpszRegistrySubKey);

ParametersParameters

RemarksRemarks

NOTENOTE

CDaoWorkspace::SetIsolateODBCTrans

lpszDefaultUser
The default user name. A user name can be 1 - 20 characters long and include alphabetic characters, accented
characters, numbers, spaces, and symbols except for: " (quotation marks), / (forward slash), \ (backslash), []
(brackets), : (colon), | (pipe), < (less-than sign), > (greater-than sign), + (plus sign), = (equal sign), ; (semicolon), ,
(comma), (question mark), * (asterisk), leading spaces, and control characters (ASCII 00 to ASCII 31). For
related information, see the topic "UserName Property" in DAO Help.

The default user name that you set applies to new workspaces you create after the call. When you create
subsequent workspaces, you do not need to specify a user name in the Create call.

To use this member function:

1. Construct a CDaoWorkspace object but do not call Create .

2. Call SetDefaultUser and, if you like, SetDefaultPassword.

3. Call Create for this workspace object or subsequent ones, without specifying a user name.

By default, the DefaultUser property is set to "admin" and the DefaultPassword property is set to an empty
string ("").

For related information, see the topics "DefaultUser Property" and "DefaultPassword Property" in DAO Help.

Call this member function to specify the location of Windows registry settings for the Microsoft Jet database
engine.

lpszRegistrySubkey
A string containing the name of a Windows registry subkey for the location of Microsoft Jet database engine
settings or parameters needed for installable ISAM databases.

Call SetIniPath only if you need to specify special settings. For more information, see the topic "IniPath
Property" in DAO Help.

Call SetIniPath during application installation, not when the application runs. SetIniPath must be called before you
open any workspaces, databases, or recordsets; otherwise, MFC throws an exception.

You can use this mechanism to configure the database engine with user-provided registry settings. The scope
of this attribute is limited to your application and cannot be changed without restarting your application.

void SetIsolateODBCTrans(BOOL bIsolateODBCTrans);

ParametersParameters

RemarksRemarks

CDaoWorkspace::SetLoginTimeout

static void PASCAL SetLoginTimeout(short nSeconds);

ParametersParameters

RemarksRemarks

See also

Call this member function to set the value of the DAO IsolateODBCTrans property for the workspace.

bIsolateODBCTrans
Pass TRUE if you want to begin isolating ODBC transactions. Pass FALSE if you want to stop isolating ODBC
transactions.

In some situations, you might need to have multiple simultaneous transactions pending on the same ODBC
database. To do this, you need to open a separate workspace for each transaction. Although each workspace
can have its own ODBC connection to the database, this slows system performance. Because transaction
isolation is not normally required, ODBC connections from multiple workspace objects opened by the same
user are shared by default.

Some ODBC servers, such as Microsoft SQL Server, do not allow simultaneous transactions on a single
connection. If you need to have more than one transaction at a time pending against such a database, set the
IsolateODBCTrans property to TRUE on each workspace as soon as you open it. This forces a separate ODBC
connection for each workspace.

Call this member function to set the value of the DAO LoginTimeout property for the workspace.

nSeconds
The number of seconds before an error occurs when you attempt to log in to an ODBC database.

This value represents the number of seconds before an error occurs when you attempt to log in to an ODBC
database. The default LoginTimeout setting is 20 seconds. When LoginTimeout is set to 0, no timeout occurs
and the communication with the data source might stop responding.

When you are attempting to log in to an ODBC database, such as Microsoft SQL Server, the connection may
fail as a result of network errors or because the server is not running. Rather than waiting for the default 20
seconds to connect, you can specify how long the database engine waits before it produces an error. Logging
on to the server happens implicitly as part of a number of different events, such as running a query on an
external server database. The timeout value is determined by the current setting of the LoginTimeout property.

For related information, see the topic "LoginTimeout Property" in DAO Help.

CObject Class
Hierarchy Chart
CDaoDatabase Class
CDaoRecordset Class
CDaoTableDef Class
CDaoQueryDef Class
CDaoException Class

CDatabase Class
3/4/2019 • 21 minutes to read • Edit Online

Syntax
class CDatabase : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDatabase::CDatabase Constructs a CDatabase object. You must initialize the
object by calling OpenEx or Open .

Public MethodsPublic Methods

NAME DESCRIPTION

CDatabase::BeginTrans Starts a "transaction" — a series of reversible calls to the
AddNew , Edit , Delete , and Update member functions

of class CRecordset — on the connected data source. The
data source must support transactions for BeginTrans to
have any effect.

CDatabase::BindParameters Allows you to bind parameters before calling
CDatabase::ExecuteSQL .

CDatabase::Cancel Cancels an asynchronous operation or a process from a
second thread.

CDatabase::CanTransact Returns nonzero if the data source supports transactions.

CDatabase::CanUpdate Returns nonzero if the CDatabase object is updatable (not
read-only).

CDatabase::Close Closes the data source connection.

CDatabase::CommitTrans Completes a transaction begun by BeginTrans . Commands
in the transaction that alter the data source are carried out.

CDatabase::ExecuteSQL Executes a SQL statement. No data records are returned.

CDatabase::GetBookmarkPersistence Identifies the operations through which bookmarks persist
on recordset objects.

Represents a connection to a data source, through which you can operate on the data source.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdatabase-class.md

CDatabase::GetConnect Returns the ODBC connection string used to connect the
CDatabase object to a data source.

CDatabase::GetCursorCommitBehavior Identifies the effect of committing a transaction on an open
recordset object.

CDatabase::GetCursorRollbackBehavior Identifies the effect of rolling back a transaction on an open
recordset object.

CDatabase::GetDatabaseName Returns the name of the database currently in use.

CDatabase::IsOpen Returns nonzero if the CDatabase object is currently
connected to a data source.

CDatabase::OnSetOptions Called by the framework to set standard connection options.
The default implementation sets the query timeout value.
You can establish these options ahead of time by calling
SetQueryTimeout .

CDatabase::Open Establishes a connection to a data source (through an ODBC
driver).

CDatabase::OpenEx Establishes a connection to a data source (through an ODBC
driver).

CDatabase::Rollback Reverses changes made during the current transaction. The
data source returns to its previous state, as defined at the
BeginTrans call, unaltered.

CDatabase::SetLoginTimeout Sets the number of seconds after which a data source
connection attempt will time out.

CDatabase::SetQueryTimeout Sets the number of seconds after which database query
operations will time out. Affects all subsequent recordset
Open , AddNew , Edit , and Delete calls.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDatabase::m_hdbc Open Database Connectivity (ODBC) connection handle to a
data source. Type HDBC.

Remarks
A data source is a specific instance of data hosted by some database management system (DBMS). Examples
include Microsoft SQL Server, Microsoft Access, Borland dBASE, and xBASE. You can have one or more
CDatabase objects active at a time in your application.

NOTENOTE

Inheritance Hierarchy

Requirements

CDatabase::BeginTrans

BOOL BeginTrans();

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

If you are working with the Data Access Objects (DAO) classes rather than the Open Database Connectivity (ODBC)
classes, use class CDaoDatabase instead. For more information, see the article Overview: Database Programming.

To use CDatabase , construct a CDatabase object and call its OpenEx member function. This opens a connection.
When you then construct CRecordset objects for operating on the connected data source, pass the recordset
constructor a pointer to your CDatabase object. When you finish using the connection, call the Close member
function and destroy the CDatabase object. Close closes any recordsets you have not closed previously.

For more information about CDatabase , see the articles Data Source (ODBC) and Overview: Database
Programming.

CObject

CDatabase

Header: afxdb.h

Call this member function to begin a transaction with the connected data source.

Nonzero if the call was successful and changes are committed only manually; otherwise 0.

A transaction consists of one or more calls to the AddNew , Edit , Delete , and Update member functions of a
CRecordset object. Before beginning a transaction, the CDatabase object must already have been connected to

the data source by calling its OpenEx or Open member function. To end the transaction, call CommitTrans to
accept all changes to the data source (and carry them out) or call Rollback to abort the entire transaction. Call
BeginTrans after you open any recordsets involved in the transaction and as close to the actual update

operations as possible.

Depending on your ODBC driver, opening a recordset before calling BeginTrans may cause problems when
calling Rollback . You should check the specific driver you are using. For example, when using the Microsoft
Access driver included in the Microsoft ODBC Desktop Driver Pack 3.0, you must account for the Jet database
engine's requirement that you should not begin a transaction on any database that has an open cursor. In the
MFC database classes, an open cursor means an open CRecordset object. For more information, see Technical
Note 68.

BeginTrans may also lock data records on the server, depending on the requested concurrency and the
capabilities of the data source. For information about locking data, see the article Recordset: Locking Records
(ODBC).

User-defined transactions are explained in the article Transaction (ODBC).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/data-source-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-locking-records-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc

C a u t i o nC a u t i o n

ExampleExample

CDatabase::BindParameters

virtual void BindParameters(HSTMT hstmt);

ParametersParameters

RemarksRemarks

CDatabase::Cancel

void Cancel();

RemarksRemarks

CDatabase::CanTransact

BOOL CanTransact() const;

Return ValueReturn Value

BeginTrans establishes the state to which the sequence of transactions can be rolled back (reversed). To establish
a new state for rollbacks, commit any current transaction, then call BeginTrans again.

Calling BeginTrans again without calling CommitTrans or Rollback is an error.

Call the CanTransact member function to determine whether your driver supports transactions for a given
database. You should also call GetCursorCommitBehavior and GetCursorRollbackBehavior to determine the
support for cursor preservation.

For more information about transactions, see the article Transaction (ODBC).

See the article Transaction: Performing a Transaction in a Recordset (ODBC).

Override BindParameters when you need to bind parameters before calling CDatabase::ExecuteSQL.

hstmt
The ODBC statement handle for which you want to bind parameters.

This approach is useful when you do not need the result set from a stored procedure.

In your override, call SQLBindParameters and related ODBC functions to bind the parameters. MFC calls your
override before your call to ExecuteSQL . You do not need to call SQLPrepare ; ExecuteSQL calls SQLExecDirect

and destroys the hstmt, which is used only once.

Call this member function to request that the data source cancel either an asynchronous operation in progress or
a process from a second thread.

Note that the MFC ODBC classes no longer use asynchronous processing; to perform an asychronous operation,
you must directly call the ODBC API function SQLSetConnectOption. For more information, see Asynchronous
Execution in the Windows SDK.

Call this member function to determine whether the database allows transactions.

Nonzero if recordsets using this CDatabase object allow transactions; otherwise 0.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-performing-a-transaction-in-a-recordset-odbc
https://docs.microsoft.com/previous-versions/windows/desktop/ms713564
https://docs.microsoft.com/previous-versions/windows/desktop/ms713563

RemarksRemarks

CDatabase::CanUpdate

BOOL CanUpdate() const;

Return ValueReturn Value

RemarksRemarks

CDatabase::CDatabase

CDatabase();

RemarksRemarks

ExampleExample

// This fragment is taken from the declaration for CMyDatabaseDoc
// CMyDatabaseDoc is derived from CDocument.
public:
 // Declare a CDatabase embedded in the document
 CDatabase m_dbCust;

// Initialize when needed
CDatabase* CMyDatabaseDoc::GetDatabase()
{
 // Connect the object to a data source
 if(!m_dbCust.IsOpen() && !m_dbCust.OpenEx(NULL))
 return NULL;

 return &m_dbCust;
}

CDatabase::Close

For information about transactions, see the article Transaction (ODBC).

Call this member function to determine whether the CDatabase object allows updates.

Nonzero if the CDatabase object allows updates; otherwise 0, indicating either that you passed TRUE in
bReadOnly when you opened the CDatabase object or that the data source itself is read-only. The data source is
read-only if a call to the ODBC API function SQLGetInfo for SQL_DATASOURCE_READ_ONLY returns "y".

Not all drivers support updates.

Constructs a CDatabase object.

After constructing the object, you must call its OpenEx or Open member function to establish a connection to a
specified data source.

You may find it convenient to embed the CDatabase object in your document class.

This example illustrates using CDatabase in a CDocument -derived class.

Call this member function if you want to disconnect from a data source.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc

virtual void Close();

RemarksRemarks

ExampleExample

// Close the current connection
m_dbCust.Close();

// Perhaps connect the object to a
// different data source
m_dbCust.OpenEx(_T("DSN=MFC_ODBCTest;UID=JOES"));

CDatabase::CommitTrans

BOOL CommitTrans();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDatabase::ExecuteSQL

void ExecuteSQL(LPCTSTR lpszSQL);

ParametersParameters

You must close any recordsets associated with the CDatabase object before you call this member function.
Because Close does not destroy the CDatabase object, you can reuse the object by opening a new connection to
the same data source or a different data source.

All pending AddNew or Edit statements of recordsets using the database are canceled, and all pending
transactions are rolled back. Any recordsets dependent on the CDatabase object are left in an undefined state.

Call this member function upon completing transactions.

Nonzero if the updates were successfully committed; otherwise 0. If CommitTrans fails, the state of the data
source is undefined. You must check the data to determine its state.

A transaction consists of a series of calls to the AddNew , Edit , Delete , and Update member functions of a
CRecordset object that began with a call to the BeginTrans member function. CommitTrans commits the

transaction. By default, updates are committed immediately; calling BeginTrans causes commitment of updates
to be delayed until CommitTrans is called.

Until you call CommitTrans to end a transaction, you can call the Rollback member function to abort the
transaction and leave the data source in its original state. To begin a new transaction, call BeginTrans again.

For more information about transactions, see the article Transaction (ODBC).

See the article Transaction: Performing a Transaction in a Recordset (ODBC).

Call this member function when you need to execute a SQL command directly.

lpszSQL
Pointer to a null-terminated string containing a valid SQL command to execute. You can pass a CString.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-performing-a-transaction-in-a-recordset-odbc

RemarksRemarks

ExampleExample

try
{
 m_dbCust.ExecuteSQL(
 _T("UPDATE Taxes ")
 _T("SET Rate = '36' ")
 _T("WHERE Name = 'Federal'"));
}
catch(CDBException* pe)
{
 // The error code is in pe->m_nRetCode
 pe->ReportError();
 pe->Delete();
}

CDatabase::GetBookmarkPersistence

DWORD GetBookmarkPersistence() const;

Return ValueReturn Value

RemarksRemarks

BITMASK VALUE BOOKMARK PERSISTENCE

SQL_BP_CLOSE Bookmarks are valid after a Requery operation.

SQL_BP_DELETE The bookmark for a row is valid after a Delete operation
on that row.

SQL_BP_DROP Bookmarks are valid after a Close operation.

SQL_BP_SCROLL Bookmarks are valid after any Move operation. This simply
identifies if bookmarks are supported on the recordset, as
returned by CRecordset::CanBookmark .

Create the command as a null-terminated string. ExecuteSQL does not return data records. If you want to
operate on records, use a recordset object instead.

Most of your commands for a data source are issued through recordset objects, which support commands for
selecting data, inserting new records, deleting records, and editing records. However, not all ODBC functionality
is directly supported by the database classes, so you may at times need to make a direct SQL call with
ExecuteSQL .

Call this member function to determine the persistence of bookmarks on a recordset object after certain
operations.

A bitmask that identifies the operations through which bookmarks persist on a recordset object. For details, see
Remarks.

For example, if you call CRecordset::GetBookmark and then call CRecordset::Requery , the bookmark obtained
from GetBookmark may no longer be valid. You should call GetBookmarkPersistence before calling
CRecordset::SetBookmark .

The following table lists the bitmask values that can be combined for the return value of GetBookmarkPersistence .

SQL_BP_TRANSACTION Bookmarks are valid after a transaction is committed or
rolled back.

SQL_BP_UPDATE The bookmark for a row is valid after an Update operation
on that row.

SQL_BP_OTHER_HSTMT Bookmarks associated with one recordset object are valid on
a second recordset.

BITMASK VALUE BOOKMARK PERSISTENCE

CDatabase::GetConnect

const CString GetConnect() const;

Return ValueReturn Value

RemarksRemarks

CDatabase::GetCursorCommitBehavior

int GetCursorCommitBehavior() const;

Return ValueReturn Value

RemarksRemarks

RETURN VALUE EFFECT ON CRECORDSET OBJECTS

SQL_CB_CLOSE Call CRecordset::Requery immediately following the
transaction commit.

SQL_CB_DELETE Call CRecordset::Close immediately following the
transaction commit.

SQL_CB_PRESERVE Proceed normally with CRecordset operations.

For more information about this return value, see the ODBC API function SQLGetInfo in the Windows SDK. For
more information about bookmarks, see the article Recordset: Bookmarks and Absolute Positions (ODBC).

Call this member function to retrieve the connection string used during the call to OpenEx or Open that
connected the CDatabase object to a data source.

A constCString containing the connection string if OpenEx or Open has been called; otherwise, an empty string.

See CDatabase::Open for a description of how the connection string is created.

Call this member function to determine how a CommitTrans operation affects cursors on open recordset objects.

A value indicating the effect of transactions on open recordset objects. For details, see Remarks.

The following table lists the possible return values for GetCursorCommitBehavior and the corresponding effect on
the open recordset.

For more information about this return value, see the ODBC API function SQLGetInfo in the Windows SDK. For
more information about transactions, see the article Transaction (ODBC).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-bookmarks-and-absolute-positions-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc

CDatabase::GetCursorRollbackBehavior

int GetCursorRollbackBehavior() const;

Return ValueReturn Value

RemarksRemarks

RETURN VALUE EFFECT ON CRECORDSET OBJECTS

SQL_CB_CLOSE Call CRecordset::Requery immediately following the
transaction rollback.

SQL_CB_DELETE Call CRecordset::Close immediately following the
transaction rollback.

SQL_CB_PRESERVE Proceed normally with CRecordset operations.

CDatabase::GetDatabaseName

CString GetDatabaseName() const;

Return ValueReturn Value

RemarksRemarks

CDatabase::IsOpen

BOOL IsOpen() const;

Return ValueReturn Value

Call this member function to determine how a Rollback operation affects cursors on open recordset objects.

A value indicating the effect of transactions on open recordset objects. For details, see Remarks.

The following table lists the possible return values for GetCursorRollbackBehavior and the corresponding effect
on the open recordset.

For more information about this return value, see the ODBC API function SQLGetInfo in the Windows SDK. For
more information about transactions, see the article Transaction (ODBC).

Call this member function to retrieve the name of the currently connected database (provided that the data
source defines a named object called "database").

A CString containing the database name if successful; otherwise, an empty CString .

This is not the same as the data source name (DSN) specified in the OpenEx or Open call. What GetDatabaseName

returns depends on ODBC. In general, a database is a collection of tables. If this entity has a name,
GetDatabaseName returns it.

You might, for example, want to display this name in a heading. If an error occurs while retrieving the name from
ODBC, GetDatabaseName returns an empty CString .

Call this member function to determine whether the CDatabase object is currently connected to a data source.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc

CDatabase::m_hdbc

RemarksRemarks

ExampleExample

// Using m_hdbc for a direct ODBC API call.
// m_dbCust is the CDatabase object; m_hdbc is
// its HDBC member variable
nRetCode = ::SQLGetInfo(m_dbCust.m_hdbc, SQL_ODBC_SQL_CONFORMANCE,
 &nValue, sizeof(nValue), &cbValue);

CDatabase::OnSetOptions

virtual void OnSetOptions(HSTMT hstmt);

ParametersParameters

RemarksRemarks

NOTENOTE

Nonzero if the CDatabase object is currently connected; otherwise 0.

Contains a public handle to an ODBC data source connection — a "connection handle."

Normally, you will have no need to access this member variable directly. Instead, the framework allocates the
handle when you call OpenEx or Open . The framework deallocates the handle when you call the delete operator
on the CDatabase object. Note that the Close member function does not deallocate the handle.

Under some circumstances, however, you may need to use the handle directly. For example, if you need to call
ODBC API functions directly rather than through class CDatabase , you may need a connection handle to pass as
a parameter. See the code example below.

The framework calls this member function when directly executing a SQL statement with the ExecuteSQL

member function.

hstmt
The ODBC statement handle for which options are being set.

CRecordset::OnSetOptions also calls this member function.

OnSetOptions sets the login timeout value. If there have been previous calls to the SetQueryTimeout and member
function, OnSetOptions reflects the current values; otherwise, it sets default values.

Prior to MFC 4.2, OnSetOptions also set the processing mode to either snychronous or asynchronous. Beginning with
MFC 4.2, all operations are synchronous. To perform an asynchronous operation, you must make a direct call to the ODBC
API function SQLSetPos .

You do not need to override OnSetOptions to change the timeout value. Instead, to customize the query timeout
value, call SetQueryTimeout before creating a recordset; OnSetOptions will use the new value. The values set
apply to subsequent operations on all recordsets or direct SQL calls.

Override OnSetOptions if you want to set additional options. Your override should call the base class
OnSetOptions either before or after you call the ODBC API function SQLSetStmtOption . Follow the method

illustrated in the framework's default implementation of OnSetOptions .

 CDatabase::Open

virtual BOOL Open(
 LPCTSTR lpszDSN,
 BOOL bExclusive = FALSE,
 BOOL bReadOnly = FALSE,
 LPCTSTR lpszConnect = _T("ODBC;"),
 BOOL bUseCursorLib = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

Call this member function to initialize a newly constructed CDatabase object.

lpszDSN
Specifies a data source name — a name registered with ODBC through the ODBC Administrator program. If a
DSN value is specified in lpszConnect (in the form "DSN=<data-source>"), it must not be specified again in
lpszDSN. In this case, lpszDSN should be NULL. Otherwise, you can pass NULL if you want to present the user
with a Data Source dialog box in which the user can select a data source. For further information, see Remarks.

bExclusive
Not supported in this version of the class library. Currently, an assertion fails if this parameter is TRUE. The data
source is always opened as shared (not exclusive).

bReadOnly
TRUE if you intend the connection to be read-only and to prohibit updates to the data source. All dependent
recordsets inherit this attribute. The default value is FALSE.

lpszConnect
Specifies a connection string. The connection string concatenates information, possibly including a data source
name, a user ID valid on the data source, a user authentication string (password, if the data source requires one),
and other information. The whole connection string must be prefixed by the string "ODBC;" (uppercase or
lowercase). The "ODBC;" string is used to indicate that the connection is to an ODBC data source; this is for
upward compatibility when future versions of the class library might support non-ODBC data sources.

bUseCursorLib
TRUE if you want the ODBC Cursor Library DLL to be loaded. The cursor library masks some functionality of
the underlying ODBC driver, effectively preventing the use of dynasets (if the driver supports them). The only
cursors supported if the cursor library is loaded are static snapshots and forward-only cursors. The default value
is TRUE. If you plan to create a recordset object directly from CRecordset without deriving from it, you should
not load the cursor library.

Nonzero if the connection is successfully made; otherwise 0 if the user chooses Cancel when presented a dialog
box asking for more connection information. In all other cases, the framework throws an exception.

Your database object must be initialized before you can use it to construct a recordset object.

Calling the OpenEx member function is the preferred way to connect to a data source and initialize your database object.

If the parameters in your Open call do not contain enough information to make the connection, the ODBC driver
opens a dialog box to obtain the necessary information from the user. When you call Open , your connection
string, lpszConnect, is stored privately in the CDatabase object and is available by calling the GetConnect

ExampleExample

// m_dbCust is a CDatabase object embedded in a CDocument class

if (bDefault)
{
 // Connect the object to a data source (no password)
 // the ODBC connection dialog box will always remain hidden
 m_dbCust.Open(_T("MFC_ODBCTest"), FALSE, FALSE, _T("ODBC;UID=JOES"));
}
else
{
 // ...Or, query the user for all connection information
 m_dbCust.Open(NULL);
}

CDatabase::OpenEx

virtual BOOL OpenEx(
 LPCTSTR lpszConnectString,
 DWORD dwOptions = 0);

ParametersParameters

member function.

If you wish, you can open your own dialog box before you call Open to get information from the user, such as a
password, then add that information to the connection string you pass to Open . Or you might want to save the
connection string you pass so you can reuse it the next time your application calls Open on a CDatabase object.

You can also use the connection string for multiple levels of login authorization (each for a different CDatabase

object) or to convey other data source-specific information. For more information about connection strings, see
Chapter 5 in the Windows SDK.

It is possible for a connection attempt to time out if, for example, the DBMS host is unavailable. If the connection
attempt fails, Open throws a CDBException .

Call this member function to initialize a newly constructed CDatabase object.

lpszConnectString
Specifies an ODBC connection string. This includes the data source name as well as other optional information,
such as a user ID and password. For example, "DSN=SQLServer_Source;UID=SA;PWD=abc123" is a possible
connection string. Note that if you pass NULL for lpszConnectString, a Data Source dialog box will prompt the
user to select a data source.

dwOptions
A bitmask which specifies a combination of the following values. The default value is 0, meaning that the
database will be opened as shared with write access, the ODBC Cursor Library DLL will not be loaded, and the
ODBC connection dialog box will display only if there is not enough information to make the connection.

CDatabase::openExclusive Not supported in this version of the class library. A data source is always
opened as shared (not exclusive). Currently, an assertion fails if you specify this option.

CDatabase::openReadOnly Open the data source as read-only.

CDatabase::useCursorLib Load the ODBC Cursor Library DLL. The cursor library masks some
functionality of the underlying ODBC driver, effectively preventing the use of dynasets (if the driver
supports them). The only cursors supported if the cursor library is loaded are static snapshots and

Return ValueReturn Value

RemarksRemarks

ExampleExample

// m_dbCust is a CDatabase object embedded in a CDocument class.

// Connect the object to a read-only data source where
// the ODBC connection dialog box will always remain hidden
m_dbCust.OpenEx(_T("DSN=MFC_ODBCTest;UID=JOES"),
 CDatabase::openReadOnly | CDatabase::noOdbcDialog);

CDatabase::Rollback

BOOL Rollback();

Return ValueReturn Value

RemarksRemarks

forward-only cursors. If you plan to create a recordset object directly from CRecordset without deriving
from it, you should not load the cursor library.

CDatabase::noOdbcDialog Do not display the ODBC connection dialog box, regardless of whether enough
connection information is supplied.

CDatabase::forceOdbcDialog Always display the ODBC connection dialog box.

Nonzero if the connection is successfully made; otherwise 0 if the user chooses Cancel when presented a dialog
box asking for more connection information. In all other cases, the framework throws an exception.

Your database object must be initialized before you can use it to construct a recordset object.

If the lpszConnectString parameter in your OpenEx call does not contain enough information to make the
connection, the ODBC driver opens a dialog box to obtain the necessary information from the user, provided you
have not set CDatabase::noOdbcDialog or CDatabase::forceOdbcDialog in the dwOptions parameter. When you call
OpenEx , your connection string, lpszConnectString, is stored privately in the CDatabase object and is available by

calling the GetConnect member function.

If you wish, you can open your own dialog box before you call OpenEx to get information from the user, such as
a password, and then add that information to the connection string you pass to OpenEx . Or you might want to
save the connection string you pass so you can reuse it the next time your application calls OpenEx on a
CDatabase object.

You can also use the connection string for multiple levels of login authorization (each for a different CDatabase

object) or to convey other data source-specific information. For more information about connection strings, see
Chapter 6 in the ODBC Programmer's Reference.

It is possible for a connection attempt to time out if, for example, the DBMS host is unavailable. If the connection
attempt fails, OpenEx throws a CDBException .

Call this member function to reverse the changes made during a transaction.

Nonzero if the transaction was successfully reversed; otherwise 0. If a Rollback call fails, the data source and
transaction states are undefined. If Rollback returns 0, you must check the data source to determine its state.

All CRecordset AddNew , Edit , Delete , and Update calls executed since the last BeginTrans are rolled back to
the state that existed at the time of that call.

ExampleExample

CDatabase::SetLoginTimeout

void SetLoginTimeout(DWORD dwSeconds);

ParametersParameters

RemarksRemarks

CDatabase::SetQueryTimeout

void SetQueryTimeout(DWORD dwSeconds);

ParametersParameters

RemarksRemarks

After a call to Rollback , the transaction is over, and you must call BeginTrans again for another transaction. The
record that was current before you called BeginTrans becomes the current record again after Rollback .

After a rollback, the record that was current before the rollback remains current. For details about the state of the
recordset and the data source after a rollback, see the article Transaction (ODBC).

See the article Transaction: Performing a Transaction in a Recordset (ODBC).

Call this member function — before you call OpenEx or Open — to override the default number of seconds
allowed before an attempted data source connection times out.

dwSeconds
The number of seconds to allow before a connection attempt times out.

A connection attempt might time out if, for example, the DBMS is not available. Call SetLoginTimeout after you
construct the uninitialized CDatabase object but before you call OpenEx or Open .

The default value for login timeouts is 15 seconds. Not all data sources support the ability to specify a login
timeout value. If the data source does not support timeout, you get trace output but not an exception. A value of
0 means "infinite."

Call this member function to override the default number of seconds to allow before subsequent operations on
the connected data source time out.

dwSeconds
The number of seconds to allow before a query attempt times out.

An operation might time out due to network access problems, excessive query processing time, and so on. Call
SetQueryTimeout prior to opening your recordset or prior to calling the recordset's AddNew , Update or Delete

member functions if you want to change the query timeout value. The setting affects all subsequent Open ,
AddNew , Update , and Delete calls to any recordsets associated with this CDatabase object. Changing the query

timeout value for a recordset after opening does not change the value for the recordset. For example, subsequent
Move operations do not use the new value.

The default value for query timeouts is 15 seconds. Not all data sources support the ability to set a query
timeout value. If you set a query timeout value of 0, no timeout occurs; the communication with the data source
may stop responding. This behavior may be useful during development. If the data source does not support
timeout, you get trace output but not an exception.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-performing-a-transaction-in-a-recordset-odbc

See also
CObject Class
Hierarchy Chart
CRecordset Class

CDataExchange Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CDataExchange

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDataExchange::CDataExchange Constructs a CDataExchange object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDataExchange::Fail Called when validation fails. Resets focus to the previous
control and throws an exception.

CDataExchange::PrepareCtrl Prepares the specified control for data exchange or
validation. Use for nonedit controls.

CDataExchange::PrepareEditCtrl Prepares the specified edit control for data exchange or
validation.

CDataExchange::PrepareOleCtrl Prepares the specified OLE control for data exchange or
validation. Use for nonedit controls.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDataExchange::m_bSaveAndValidate Flag for the direction of DDX and DDV.

CDataExchange::m_pDlgWnd The dialog box or window where the data exchange takes
place.

Remarks

Supports the dialog data exchange (DDX) and dialog data validation (DDV) routines used by the Microsoft
Foundation classes.

CDataExchange does not have a base class.

Use this class if you are writing data exchange routines for custom data types or controls, or if you are writing
your own data validation routines. For more information on writing your own DDX and DDV routines, see
Technical Note 26. For an overview of DDX and DDV, see Dialog Data Exchange and Validation and Dialog

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdataexchange-class.md

Inheritance Hierarchy

Requirements

CDataExchange::CDataExchange

CDataExchange(
 CWnd* pDlgWnd,
 BOOL bSaveAndValidate);

ParametersParameters

RemarksRemarks

ExampleExample

CYourDataExchange dx(this, FALSE);
try
{
 DoDataExchange(&dx);
}
catch(CUserException* pe)
{
 // some part of the exchange went wrong
 // but the user has already been notified
 pe->Delete();
}

CDataExchange::Fail

Boxes.

A CDataExchange object provides the context information needed for DDX and DDV to take place. The flag
m_bSaveAndValidate is FALSE when DDX is used to fill the initial values of dialog controls from data
members. The flag m_bSaveAndValidate is TRUE when DDX is used to set the current values of dialog
controls into data members and when DDV is used to validate the data values. If the DDV validation fails, the
DDV procedure will display a message box explaining the input error. The DDV procedure will then call Fail

to reset the focus to the offending control and throw an exception to stop the validation process.

CDataExchange

Header: afxwin.h

Call this member function to construct a CDataExchange object.

pDlgWnd
A pointer to the parent window that contains the control. Usually this is a CDialog-derived object.

bSaveAndValidate
If TRUE, this object validates data, then writes data from the controls to the members. If FALSE, this object
will move data from members to controls.

Construct a CDataExchange object yourself to store extra information in the data exchange object to pass to
your window's CWnd::DoDataExchange member function.

The framework calls this member function when a dialog data validation (DDV) operation fails.

void Fail();

RemarksRemarks

CDataExchange::m_bSaveAndValidate

BOOL m_bSaveAndValidate;

RemarksRemarks

CDataExchange::m_pDlgWnd

CWnd* m_pDlgWnd;

RemarksRemarks

CDataExchange::PrepareCtrl

HWND PrepareCtrl(int nIDC);

ParametersParameters

Fail restores the focus and selection to the control whose validation failed (if there is a control to restore).
Fail then throws an exception of type CUserException to stop the validation process. The exception causes a

message box explaining the error to be displayed. After DDV validation fails, the user can reenter data in the
offending control.

Implementors of custom DDV routines can call Fail from their routines when a validation fails.

For more information on writing your own DDX and DDV routines, see Technical Note 26. For an overview
of DDX and DDV, see Dialog Data Exchange and Validation and Dialog Box Topics.

This flag indicates the direction of a dialog data exchange (DDX) operation.

The flag is nonzero if the CDataExchange object is being used to move data from the dialog controls to dialog-
class data members after the user edits the controls. The flag is zero if the object is being used to initialize
dialog controls from dialog-class data members.

The flag is also nonzero during dialog data validation (DDV).

For more information on writing your own DDX and DDV routines, see Technical Note 26. For an overview
of DDX and DDV, see Dialog Data Exchange and Validation and Dialog Box Topics.

Contains a pointer to the CWnd object for which dialog data exchange (DDX) or validation (DDV) is taking
place.

This object is usually a CDialog object. Implementors of custom DDX or DDV routines can use this pointer to
obtain access to the dialog window that contains the controls they are operating on.

For more information on writing your own DDX and DDV routines, see Technical Note 26. For an overview
of DDX and DDV, see Dialog Data Exchange and Validation and Dialog Box Topics.

The framework calls this member function to prepare the specified control for dialog data exchange (DDX)
and validation (DDV).

Return ValueReturn Value

RemarksRemarks

CDataExchange::PrepareEditCtrl

HWND PrepareEditCtrl(int nIDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDataExchange::PrepareOleCtrl

COleControlSite* PrepareOleCtrl(int nIDC);

ParametersParameters

nIDC
The ID of the control to be prepared for DDX or DDV.

The HWND of the control being prepared for DDX or DDV.

Use PrepareEditCtrl instead for edit controls; use this member function for all other controls.

Preparation consists of storing the control's HWND in the CDataExchange class. The framework uses this
handle to restore the focus to the previously focused control in the event of a DDX or DDV failure.

Implementors of custom DDX or DDV routines should call PrepareCtrl for all non-edit controls for which
they are exchanging data via DDX or validating data via DDV.

For more information on writing your own DDX and DDV routines, see Technical Note 26. For an overview
of DDX and DDV, see Dialog Data Exchange and Validation and Dialog Box Topics.

The framework calls this member function to prepare the specified edit control for dialog data exchange
(DDX) and validation (DDV).

nIDC
The ID of the edit control to be prepared for DDX or DDV.

The HWND of the edit control being prepared for DDX or DDV.

Use PrepareCtrl instead for all non-edit controls.

Preparation consists of two things. First, PrepareEditCtrl stores the control's HWND in the CDataExchange
class. The framework uses this handle to restore the focus to the previously focused control in the event of a
DDX or DDV failure. Second, PrepareEditCtrl sets a flag in the CDataExchange class to indicate that the
control whose data is being exchanged or validated is an edit control.

Implementors of custom DDX or DDV routines should call PrepareEditCtrl for all edit controls for which
they are exchanging data via DDX or validating data via DDV.

For more information on writing your own DDX and DDV routines, see Technical Note 26. For an overview
of DDX and DDV, see Dialog Data Exchange and Validation and Dialog Box Topics.

The framework calls this member function to prepare the specified OLE control for dialog data exchange
(DDX) and validation (DDV).

Return ValueReturn Value

RemarksRemarks

See also

nIDC
The ID of the OLE control to be prepared for DDX or DDV.

A pointer to the OLE control site.

Use PrepareEditCtrl instead for edit controls or PrepareCtrl for all other non-OLE controls.

Implementors of custom DDX or DDV routines should call PrepareOleCtrl for all OLE controls for which
they are exchanging data via DDX or validating data via DDV.

For more information on writing your own DDX and DDV routines, see Technical Note 26. For an overview
of DDX and DDV, see Dialog Data Exchange and Validation and Dialog Box Topics.

MFC Sample VIEWEX
Hierarchy Chart
CWnd::DoDataExchange
CWnd::UpdateData

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CDataPathProperty Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CDataPathProperty : public CAsyncMonikerFile

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDataPathProperty::CDataPathProperty Constructs a CDataPathProperty object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDataPathProperty::GetControl Retrieves the asynchronous OLE control associated with the
CDataPathProperty object.

CDataPathProperty::GetPath Retrieves the pathname of the property.

CDataPathProperty::Open Initiates loading of the asynchronous property for the
associated ActiveX (OLE) control.

CDataPathProperty::ResetData Calls CAsyncMonikerFile::OnDataAvailable to notify the
container that the control properties have changed.

CDataPathProperty::SetControl Sets the asynchronous ActiveX (OLE) control associated with
the property.

CDataPathProperty::SetPath Sets the pathname of the property.

Remarks

Implements an OLE control property that can be loaded asynchronously.

Asynchronous properties are loaded after synchronous initiation.

The class CDataPathProperty is derived from CAysncMonikerFile . To implement asynchronous properties in your
OLE controls, derive a class from CDataPathProperty , and override OnDataAvailable.

For more information about how to use asynchronous monikers and ActiveX controls in Internet applications,
see the following articles:

Internet First Steps: ActiveX Controls

Internet First Steps: Asynchronous Monikers

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdatapathproperty-class.md

Inheritance Hierarchy

Requirements

CDataPathProperty::CDataPathProperty

CDataPathProperty(COleControl* pControl = NULL);
CDataPathProperty(LPCTSTR lpszPath, COleControl* pControl = NULL);

ParametersParameters

RemarksRemarks

CDataPathProperty::GetControl

COleControl* GetControl();

Return ValueReturn Value

CDataPathProperty::GetPath

CObject

CFile

COleStreamFile

CMonikerFile

CAsyncMonikerFile

CDataPathProperty

Header: afxctl.h

Constructs a CDataPathProperty object.

pControl
A pointer to the OLE control object to be associated with this CDataPathProperty object.

lpszPath
The path, which may be absolute or relative, used to create an asynchronous moniker that references the actual
absolute location of the property. CDataPathProperty uses URLs, not filenames. If you want a CDataPathProperty

object for a file, prepend file:// to the path.

The COleControl object pointed to by pControl is used by Open and retrieved by derived classes. If pControl is
NULL, the control used with Open should be set with SetControl . If lpszPath is NULL, you can pass in the path
through Open or set it with SetPath .

Call this member function to retrieve the COleControl object associated with the CDataPathProperty object.

Returns a pointer to the OLE control associated with the CDataPathProperty object. NULL if not control is
associated.

Call this member function to retrieve the path, set when the CDataPathProperty object was constructed, or
specified in Open , or specified in a previous call to the SetPath member function.

CString GetPath() const;

Return ValueReturn Value

CDataPathProperty::Open

virtual BOOL Open(
 COleControl* pControl,
 CFileException* pError = NULL);

virtual BOOL Open(
 LPCTSTR lpszPath,
 COleControl* pControl,
 CFileException* pError = NULL);

virtual BOOL Open(
 LPCTSTR lpszPath,
 CFileException* pError = NULL);

virtual BOOL Open(CFileException* pError = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDataPathProperty::ResetData

Returns the pathname to the property itself. Can be empty if no path has been specified.

Call this member function to initiate loading of the asynchronous property for the associated control.

pControl
A pointer to the OLE control object to be associated with this CDataPathProperty object.

pError
A pointer to a file exception. In the event of an error, will be set to the cause.

lpszPath
The path, which may be absolute or relative, used to create an asynchronous moniker that references the actual
absolute location of the property. CDataPathProperty uses URLs, not filenames. If you want a CDataPathProperty

object for a file, prepend file:// to the path.

Nonzero if successful; otherwise 0.

The function attempts to obtain the IBindHost interface from the control.

Before calling Open without a path, the value for the property's path must be set. This can be done when the
object is constructed, or by calling the SetPath member function.

Before calling Open without a control, an ActiveX control (formerly known as an OLE control) can be associated
with the object. This can be done when the object is constructed, or by calling SetControl .

All overloads of CAsyncMonikerFile::Open are also available from CDataPathProperty .

Call this function to get CAsyncMonikerFile::OnDataAvailable to notify the container that the control properties
have changed, and all the information loaded asynchronously is no longer useful.

virtual void ResetData();

RemarksRemarks

CDataPathProperty::SetControl

void SetControl(COleControl* pControl);

ParametersParameters

CDataPathProperty::SetPath

void SetPath(LPCTSTR lpszPath);

ParametersParameters

See also

Opening should be restarted. Derived classes can override this function for different defaults.

Call this member function to associate an asynchronous OLE control with the CDataPathProperty object.

pControl
A pointer to the asynchronous OLE control to be associated with the property.

Call this member function to set the pathname of the property.

lpszPath
A path, which may be absolute or relative, to the property being loaded asynchronously. CDataPathProperty uses
URLs, not filenames. If you want a CDataPathProperty object for a file, prepend file:// to the path.

MFC Sample Image
CAsyncMonikerFile Class
Hierarchy Chart
CAsyncMonikerFile Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CDataRecoveryHandler Class
3/4/2019 • 13 minutes to read • Edit Online

Syntax
class CDataRecoveryHandler : public CObject

Members
ConstructorsConstructors

CDataRecoveryHandler::CDataRecoveryHandler Constructs a CDataRecoveryHandler object.

MethodsMethods

CDataRecoveryHandler::AutosaveAllDocumentInfo Autosaves each file registered with the
CDataRecoveryHandler class.

CDataRecoveryHandler::AutosaveDocumentInfo Autosaves the specified document.

CDataRecoveryHandler::CreateDocumentInfo Adds a document to the list of open documents.

CDataRecoveryHandler::DeleteAllAutosavedFiles Deletes all the current autosaved files.

CDataRecoveryHandler::DeleteAutosavedFile Deletes the specified autosaved file.

CDataRecoveryHandler::GenerateAutosaveFileName Generates the name for an autosave file associated with the
supplied document file name.

CDataRecoveryHandler::GetAutosaveInterval Returns the interval between autosave tries.

CDataRecoveryHandler::GetAutosavePath Returns the path of the autosaved files.

CDataRecoveryHandler::GetDocumentListName Retrieves the document name from a CDocument object.

CDataRecoveryHandler::GetNormalDocumentTitle Retrieves the normal title for the specified document.

CDataRecoveryHandler::GetRecoveredDocumentTitle Creates and returns the title for the recovered document.

CDataRecoveryHandler::GetRestartIdentifier Retrieves the unique restart identifier for the application.

CDataRecoveryHandler::GetSaveDocumentInfoOnIdle Indicates whether the CDataRecoveryHandler performs an
autosave on the current idle loop.

The CDataRecoveryHandler autosaves documents and restores them if an application unexpectedly exits.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdatarecoveryhandler-class.md

CDataRecoveryHandler::GetShutdownByRestartManager Indicates whether the restart manager caused the application
to exit.

CDataRecoveryHandler::Initialize Initializes the CDataRecoveryHandler .

CDataRecoveryHandler::QueryRestoreAutosavedDocuments Displays a dialog box to the user for each document that the
CDataRecoveryHandler autosaved. The dialog box

determines whether the user wants to restore the autosaved
document.

CDataRecoveryHandler::ReadOpenDocumentList Loads the open document list from the registry.

CDataRecoveryHandler::RemoveDocumentInfo Removes the supplied document from the open document
list.

CDataRecoveryHandler::ReopenPreviousDocuments Opens the previously open documents.

CDataRecoveryHandler::RestoreAutosavedDocuments Restores the autosaved documents based on user input.

CDataRecoveryHandler::SaveOpenDocumentList Saves the current list of open documents to the Windows
registry.

CDataRecoveryHandler::SetAutosaveInterval Sets the time between autosave cycles in milliseconds.

CDataRecoveryHandler::SetAutosavePath Sets the directory where autosaved files are stored.

CDataRecoveryHandler::SetRestartIdentifier Sets the unique restart identifier for this instance of the
CDataRecoveryHandler .

CDataRecoveryHandler::SetSaveDocumentInfoOnIdle Sets whether the CDataRecoveryHandler saves the open
document information to the Windows registry during the
current idle cycle.

CDataRecoveryHandler::SetShutdownByRestartManager Sets whether the previous exit of the application was caused
by the restart manager.

CDataRecoveryHandler::UpdateDocumentInfo Updates the information for a document because the user
saved it.

Data MembersData Members

m_bRestoringPreviousOpenDocs Indicates whether the data recovery handler reopens
previously open documents.

m_bSaveDocumentInfoOnIdle Indicates whether the data recovery handler autosaves
documents on the next idle loop.

m_bShutdownByRestartManager Indicates whether the restart manager causes the application
to exit.

m_dwRestartManagerSupportFlags Flags that indicate what support the restart manager
provides for the application.

m_lstAutosavesToDelete A list of autosaved files that were not deleted when the
original documents were closed. When the application exits,
the restart manager retries deleting the files.

m_mapDocNameToAutosaveName A map of the document names to the autosaved file names.

m_mapDocNameToDocumentPtr A map of the document names to the CDocument pointers.

m_mapDocNameToRestoreBool A map of the document names to a Boolean parameter that
indicates whether to restore the autosaved document.

m_mapDocumentPtrToDocName A map of the CDocument pointers to the document names.

m_mapDocumentPtrToDocTitle A map of the CDocument pointers to the document titles.
These titles are used for saving files.

m_nAutosaveInterval Time in milliseconds between autosaves.

m_nTimerID The identifier for the autosave timer.

m_strAutosavePath The location where the autosaved documents are stored.

m_strRestartIdentifier The string representation of a GUID for the restart manager.

Remarks

Requirements

CDataRecoveryHandler::AutosaveAllDocumentInfo

The restart manager uses the CDataRecoveryHandler class to keep track of all open documents and to autosave
them as necessary. To enable autosave, use the CDataRecoveryHandler::SetSaveDocumentInfoOnIdle method.
This method directs the CDataRecoveryHandler to perform an autosave on the next idle loop. The restart manager
calls SetSaveDocumentInfoOnIdle when the CDataRecoveryHandler should perform an autosave.

All of the methods of the CDataRecoveryHandler class are virtual. Override the methods in this class to create your
own custom data recovery handler. Unless you create your own data recovery handler or restart manager, do not
instantiate a CDataRecoveryHandler. The CWinApp Class creates a CDataRecoveryHandler object as it is required.

Before you can use a CDataRecoveryHandler object, you must call CDataRecoveryHandler::Initialize.

Because the CDataRecoveryHandler class is closely connected to the restart manager, CDataRecoveryHandler

depends on the global parameter m_dwRestartManagerSupportFlags . This parameter determines what permissions
the restart manager has and how it interacts with your application. To incorporate the restart manager into an
existing application, you have to assign m_dwRestartManagerSupportFlags the appropriate value in the constructor
of your main application. For more information about how to use the restart manager, see How to: Add Restart
Manager Support.

Header: afxdatarecovery.h

Autosaves each file registered with the CDataRecoveryHandler class.

virtual BOOL AutosaveAllDocumentInfo();

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::AutosaveDocumentInfo

virtual BOOL AutosaveDocumentInfo(
 CDocument* pDocument,
 BOOL bResetModifiedFlag = TRUE);

ParametersParameters

Parameter Description

pDocument [in] A pointer to the CDocument to save.

bResetModifiedFlag [in] TRUE indicates that the CDataRecoveryHandler

considers pDocument to be modified; FALSE indicates that
the framework considers pDocument to be unmodified. See
the Remarks section for more information about the effect of
this flag.

Return ValueReturn Value

RemarksRemarks

NOTENOTE

TRUE if the CDataRecoveryHandler saved all the documents; FALSE if any document was not saved.

This method returns TRUE if there are no documents that must be saved. It also returns TRUE without saving any
documents if retrieving the CWinApp or CDocManager for the application generates an error.

To use this method, either AFX_RESTART_MANAGER_AUTOSAVE_AT_RESTART or
AFX_RESTART_MANAGER_AUTOSAVE_AT_INTERVAL must be set in m_dwRestartManagerSupportFlags . See
m_dwRestartManagerSupportFlags for more information.

Autosaves the specified document.

TRUE if the appropriate flags are set and pDocument is a valid CDocument object.

Each CDocument object has a flag that indicates if it has changed since the last save. Use CDocument::IsModified
to determine the state of this flag. If a CDocument has not changed since the last save, AutosaveDocumentInfo

deletes any autosaved files for that document. If a document has changed since the last save, closing it prompts
the user to save the document before closing.

Using bResetModifiedFlag to change the state of the document to unmodified may cause the user to lose unsaved data. If
the framework considers a document unmodified, closing it does not prompt the user to save.

This method throws an exception with the ASSERT macro if pDocument is not a valid CDocument object.

To use this method, either AFX_RESTART_MANAGER_AUTOSAVE_AT_RESTART or
AFX_RESTARTMANAGER_AUTOSAVE_AT_INTERVAL must be set in m_dwRestartManagerSupportFlags.

CDataRecoveryHandler::CDataRecoveryHandler

CDataRecoveryHandler(
 DWORD dwRestartManagerSupportFlags,
 int nAutosaveInterval);

ParametersParameters

Parameter Description

dwRestartManagerSupportFlags [in] Indicates which options of the restart manager are
supported.

nAutosaveInterval [in] The time between autosaves. This parameter is in
milliseconds.

RemarksRemarks

CDataRecoveryHandler::CreateDocumentInfo

virtual BOOL CreateDocumentInfo(CDocument* pDocument);

ParametersParameters

Parameter Description

pDocument [in] A pointer to a CDocument . This method creates the
document information for this CDocument .

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::DeleteAllAutosavedFiles

Constructs a CDataRecoveryHandler object.

The MFC framework automatically creates a CDataRecoveryHandler object for your application when you use the
New Project wizard. Unless you are customizing the data recovery behavior or the restart manager, you should
not create a CDataRecoveryHandler object.

Adds a document to the list of open documents.

The default implementation returns TRUE.

This method checks if pDocument is already in the list of documents before it adds the document. If pDocument
is already in the list, this method deletes the autosaved file associated with pDocument.

To use this method, either AFX_RESTART_MANAGER_AUTOSAVE_AT_RESTART or
AFX_RESTARTMANAGER_AUTOSAVE_AT_INTERVAL must be set in m_dwRestartManagerSupportFlags.

Deletes all the current autosaved files.

virtual BOOL DeleteAllAutosavedFiles();

Return ValueReturn Value

CDataRecoveryHandler::DeleteAutosavedFile

virtual BOOL DeleteAutosavedFile(const CString& strAutosavedFile);

ParametersParameters

Parameter Description

strAutosavedFile [in] A string that contains the autosaved file name.

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::GenerateAutosaveFileName

virtual CString GenerateAutosaveFileName(const CString& strDocumentName) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::GetAutosaveInterval

virtual int GetAutosaveInterval() const;

Return ValueReturn Value

The default implementation always returns TRUE.

Deletes the specified autosaved file.

The default implementation always return TRUE.

If this method cannot delete the autosaved file, it saves the name of the file in a list. The destructor for the
CDataRecoveryHandler tries to delete each autosaved file specified in that list.

Generates the name for an autosave file associated with the supplied document file name.

strDocumentName
[in] A string that contains the document name. GenerateAutosaveFileName uses this document name to generate a
corresponding autosave file name.

The autosave file name generated from strDocumentName.

Each document name has a one-to-one mapping with an autosave file name.

Returns the interval between autosave tries.

The number of milliseconds between autosave tries.

CDataRecoveryHandler::GetAutosavePath

virtual CString GetAutosavePath() const;

Return ValueReturn Value

CDataRecoveryHandler::GetDocumentListName

virtual CString GetDocumentListName(CDocument* pDocument) const;

ParametersParameters

Parameter Description

pDocument [in] A pointer to a CDocument . GetDocumentListName

retrieves the document name from this CDocument .

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::GetNormalDocumentTitle

virtual CString GetNormalDocumentTitle(CDocument* pDocument);

ParametersParameters

Parameter Description

pDocument [in] A pointer to a CDocument .

Return ValueReturn Value

RemarksRemarks

Returns the path of the autosaved files.

The location where the autosaved documents are stored.

Retrieves the document name from a CDocument object.

The document name from pDocument.

The CDataRecoveryHandler uses the document name as the key in m_mapDocNameToAutosaveName,
m_mapDocNameToDocumentPtr, and m_mapDocNameToRestoreBool. These parameter enable the
CDataRecoveryHandler to monitor CDocument objects, the autosave file name, and the autosave settings.

Retrieves the normal title for the specified document.

The normal title for the specified document.

The normal title of a document is usually the file name of the document without the path. This is the title in the
File name field of the Save As dialog box.

CDataRecoveryHandler::GetRecoveredDocumentTitle

virtual CString GetRecoveredDocumentTitle(const CString& strDocumentTitle) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::GetRestartIdentifier

virtual CString GetRestartIdentifier() const;

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::GetSaveDocumentInfoOnIdle

virtual BOOL GetSaveDocumentInfoOnIdle() const;

Return ValueReturn Value

CDataRecoveryHandler::GetShutdownByRestartManager

virtual BOOL GetShutdownByRestartManager() const;

Return ValueReturn Value

Creates and returns the title for the recovered document.

strDocumentTitle
[in] The normal title for the document.

The recovered document title.

By default, the recovered title of a document is the normal title with [recovered] appended to it. The recovered
title is displayed to the user when the CDataRecoveryHandler queries the user to restore autosaved documents.

Retrieves the unique restart identifier for the application.

The unique restart identifier.

The restart identifier is unique for each execution of the application.

The CDataRecoveryHandler stores information in the registry about the currently open documents. When the
restart manager exits an application and restarts it, it supplies the restart identifier to the CDataRecoveryHandler .
The CDataRecoveryHandler uses the restart identifier to retrieve the list of previously open documents. This
enables the CDataRecoveryHandler to try to find and restore autosaved files.

Indicates whether the CDataRecoveryHandler performs an autosave on the current idle loop.

TRUE indicates the CDataRecoveryHandler autosaves on the current idle loop; FALSE indicates it does not.

Indicates whether the restart manager caused the application to exit.

TRUE indicates the restart manager caused the application to exit; FALSE indicates it did not.

CDataRecoveryHandler::Initialize

virtual BOOL Initialize();

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::QueryRestoreAutosavedDocuments

virtual void QueryRestoreAutosavedDocuments();

RemarksRemarks

CDataRecoveryHandler::ReadOpenDocumentList

virtual BOOL ReadOpenDocumentList();

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::RemoveDocumentInfo

Initializes the CDataRecoveryHandler .

TRUE if the initialization is successful; otherwise FALSE.

The initialization process loads the path for storing autosave files from the registry. If the Initialize method
cannot find this directory or if the path is NULL, Initialize fails and returns FALSE .

Use CDataRecoveryHandler::SetAutosavePath to change the autosave path after your application initializes the
CDataRecoveryHandler .

The Initialize method also starts a timer to monitor when the next autosave occurs. Use
CDataRecoveryHandler::SetAutosaveInterval to change the autosave interval after your application initializes the
CDataRecoveryHandler .

Displays a dialog box to the user for each document that the CDataRecoveryHandler autosaved. The dialog box
determines whether the user wants to restore the autosaved document.

If your application is Unicode, this method displays a CTaskDialog to the user. Otherwise, the framework uses
AfxMessageBox to query the user.

After QueryRestoreAutosavedDocuments gathers all the responses from the user, it stores the information in the
member variable m_mapDocNameToRestoreBool. This method does not restore the autosaved documents.

Loads the open document list from the registry.

TRUE indicates that ReadOpenDocumentList loaded the information for at least one document from the registry;
FALSE indicates no document information was loaded.

This function loads the open document information from the registry and stores it in the member variable
m_mapDocNameToAutosaveName.

After ReadOpenDocumentList loads all the data, it deletes the document information from the registry.

virtual BOOL RemoveDocumentInfo(CDocument* pDocument);

ParametersParameters

Parameter Description

pDocument [in] A pointer to the document to remove.

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::ReopenPreviousDocuments

virtual BOOL ReopenPreviousDocuments();

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::RestoreAutosavedDocuments

virtual BOOL RestoreAutosavedDocuments();

Return ValueReturn Value

RemarksRemarks

Removes the supplied document from the open document list.

TRUE if pDocument was removed from the list; FALSE if an error occurred.

When the user closes a document, the framework uses this method to remove it from the list of open documents.

If RemoveDocumentInfo cannot find pDocument in the list of open documents, it does nothing and returns TRUE.

To use this method, AFX_RESTART_MANAGER_REOPEN_PREVIOUS_FILES must be set in
m_dwRestartManagerSupportFlags.

Opens the previously open documents.

TRUE if at least one document was opened; otherwise FALSE.

This method opens the most recent save of the previously open documents. If a document was not saved or
autosaved, ReopenPreviousDocuments opens a blank document based on the template for that file type.

To use this method, AFX_RESTART_MANAGER_REOPEN_PREVIOUS_FILES must be set in
m_dwRestartManagerSupportFlags. If this parameter is not set, ReopenPreviousDocuments does nothing and
returns FALSE.

If there are no documents stored in the list of previously open documents, ReopenPreviousDocuments does nothing
and returns FALSE.

Restores the autosaved documents based on user input.

TRUE if this method successfully restores the documents.

This method calls CDataRecoveryHandler::QueryRestoreAutosavedDocuments to determine which documents

CDataRecoveryHandler::SaveOpenDocumentList

virtual BOOL SaveOpenDocumentList();

Return ValueReturn Value

RemarksRemarks

CDataRecoveryHandler::SetAutosaveInterval

Virtual void SetAutosaveInterval(int nAutosaveInterval);

ParametersParameters

CDataRecoveryHandler::SetAutosavePath

virtual void SetAutosavePath(const CString& strAutosavePath);

ParametersParameters

Parameter Description

strAutosavePath [in] The path where autosave files are stored.

RemarksRemarks

the user wants to restore. If a user decides not to restore an autosaved document, RestoreAutosavedDocuments

deletes the autosave file. Otherwise, RestoreAutosavedDocuments replaces the open document with the autosaved
version.

To use this method, either AFX_RESTART_MANAGER_REOPEN_PREVIOUS_FILES or
AFX_RESTART_MANAGER_RESTORE_AUTOSAVED_FILES must be set in m_dwRestartManagerSupportFlags .

Saves the current list of open documents to the Windows registry.

TRUE if there are no open documents to save or if they were saved successfully. FALSE if there are documents to
save to the registry, but they were not saved because an error occurred.

The restart manager calls SaveOpenDocumentList when the application exits unexpectedly or when it exits for an
upgrade. When the application restarts, it uses CDataRecoveryHandler::ReadOpenDocumentList to retrieve the
list of open documents.

This method saves only the list of open documents. The method CDataRecoveryHandler::AutosaveDocumentInfo
is responsible for saving the documents themselves.

Sets the time between autosave cycles in milliseconds.

nAutosaveInterval
[in] The new autosave interval in milliseconds.

Sets the directory where autosaved files are stored.

Changing the autosave directory does not move currently autosaved files.

CDataRecoveryHandler::SetRestartIdentifier

virtual void SetRestartIdentifier(const CString& strRestartIdentifier);

ParametersParameters

Parameter Description

strRestartIdentifier [in] The unique identifier for the restart manager.

RemarksRemarks

CDataRecoveryHandler::SetSaveDocumentInfoOnIdle

virtual void SetSaveDocumentInfoOnIdle(BOOL bSaveOnIdle);

ParametersParameters

Parameter Description

bSaveOnIdle [in] TRUE to save document information during the current
idle cycle; FALSE to not perform a save.

CDataRecoveryHandler::SetShutdownByRestartManager

virtual void SetShutdownByRestartManager(BOOL bShutdownByRestartManager);

ParametersParameters

Parameter Description

bShutdownByRestartManager [in] TRUE to indicate that the restart manager caused the
application to exit; FALSE to indicate that the application
exited for another reason.

RemarksRemarks

Sets the unique restart identifier for this instance of the CDataRecoveryHandler .

The restart manager records information about the open documents in the registry. This information is stored
with the unique restart identifier as the key. Because the restart identifier is unique for each instance of an
application, multiple instances of an application may exit unexpectedly and the restart manager can recover each
of them.

Sets whether the CDataRecoveryHandler saves the open document information to the Windows registry during the
current idle cycle.

Sets whether the previous exit of the application was caused by the restart manager.

The framework behaves differently based on whether the previous exit was unexpected or whether it was initiated

 CDataRecoveryHandler::UpdateDocumentInfo

virtual BOOL UpdateDocumentInfo(CDocument* pDocument);

ParametersParameters

Parameter Description

pDocument [in] A pointer to the saved document.

Return ValueReturn Value

RemarksRemarks

See also

by the restart manager.

Updates the information for a document because the user saved it.

TRUE if this method deleted the autosaved document and updated the document information; FALSE if an error
occurred.

When a user saves a document, the application removes the autosaved file because it is no longer needed.
UpdateDocumentInfo deletes the autosaved file by calling CDataRecoveryHandler::RemoveDocumentInfo.
UpdateDocumentInfo then adds the information from pDocument to the list of currently open documents because
RemoveDocumentInfo deletes that information, but the saved document is still open.

To use this method, AFX_RESTART_MANAGER_REOPEN_PREVIOUS_FILES must be set in
m_dwRestartManagerSupportFlags.

Classes
Hierarchy Chart
CObject Class
How to: Add Restart Manager Support

CDateTimeCtrl Class
3/5/2019 • 16 minutes to read • Edit Online

Syntax
class CDateTimeCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDateTimeCtrl::CDateTimeCtrl Constructs a CDateTimeCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDateTimeCtrl::CloseMonthCal Closes the current date and time picker control.

CDateTimeCtrl::Create Creates the date and time picker control and attaches it to
the CDateTimeCtrl object.

CDateTimeCtrl::GetDateTimePickerInfo Retrieves information about the current date and time picker
control.

CDateTimeCtrl::GetIdealSize Returns the ideal size of the date and time picker control that
is required to display the current date or time.

CDateTimeCtrl::GetMonthCalColor Retrieves the color for a given portion of the month calendar
within the date and time picker control.

CDateTimeCtrl::GetMonthCalCtrl Retrieves the CMonthCalCtrl object associated with the
date and time picker control.

CDateTimeCtrl::GetMonthCalFont Retrieves the font currently used by the date and time picker
control's child month calendar control.

CDateTimeCtrl::GetMonthCalStyle Gets the style of the current date and time picker control.

CDateTimeCtrl::GetRange Retrieves the current minimum and maximum allowed system
times for a date and time picker control.

CDateTimeCtrl::GetTime Retrieves the currently selected time from a date and time
picker control and puts it in a specified SYSTEMTIME

structure.

Encapsulates the functionality of a date and time picker control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdatetimectrl-class.md

CDateTimeCtrl::SetFormat Sets the display of a date and time picker control in
accordance with a given format string.

CDateTimeCtrl::SetMonthCalColor Sets the color for a given portion of the month calendar
within a date and time picker control.

CDateTimeCtrl::SetMonthCalFont Sets the font that the date and time picker control's child
month calendar control will use.

CDateTimeCtrl::SetMonthCalStyle Sets the style of the current date and time picker control.

CDateTimeCtrl::SetRange Sets the minimum and maximum allowed system times for a
date and time picker control.

CDateTimeCtrl::SetTime Sets the time in a date and time picker control.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CDateTimeCtrl::CDateTimeCtrl

CDateTimeCtrl();

CDateTimeCtrl::CloseMonthCal

The date and time picker control (DTP control) provides a simple interface to exchange date and time information
with a user. This interface contains fields, each of which displays a part of the date and time information stored in
the control. The user can change the information stored in the control by changing the content of the string in a
given field. The user can move from field to field using the mouse or the keyboard.

You can customize the date and time picker control by applying a variety of styles to the object when you create it.
See Date and Time Picker Control Styles in the Windows SDK for more information about styles specific to the
date and time picker control. You can set the display format of the DTP control using format styles. These format
styles are described under "Format Styles" in the Windows SDK topic Date and Time Picker Control Styles.

The date and time picker control also uses notifications and callbacks, which are described in Using
CDateTimeCtrl.

CObject

CCmdTarget

CWnd

CDateTimeCtrl

Header: afxdtctl.h

Constructs a CDateTimeCtrl object.

https://docs.microsoft.com/windows/desktop/Controls/date-and-time-picker-control-styles
https://docs.microsoft.com/windows/desktop/Controls/date-and-time-picker-control-styles

void CloseMonthCal() const;

RemarksRemarks

ExampleExample

// Variable to access date-time control.
CDateTimeCtrl m_dateTimeCtrl;
// Variable to access the splitbutton control
CSplitButton m_splitbutton;

ExampleExample

void CCDateTimeCtrl_s1Dlg::OnXClosemonthcal()
{
 // Close the month calendar control dropdown.
 m_dateTimeCtrl.CloseMonthCal();
}

CDateTimeCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks
To c r e a t e a d a t e a n d t i m e p i c k e r c o n t r o lTo c r e a t e a d a t e a n d t i m e p i c k e r c o n t r o l

Closes the current date and time picker control.

This method sends the DTM_CLOSEMONTHCAL message, which is described in the Windows SDK.

The following code example defines the variable, m_dateTimeCtrl, that is used to programmatically access the
date and time picker control. This variable is used in the next example.

The following code example closes the drop-down calendar for the current date and time picker control.

Creates the date and time picker control and attaches it to the CDateTimeCtrl object.

dwStyle
Specifies the combination of date time control styles. See Date and Time Picker Control Styles in the Windows
SDK for more information about date and time picker styles.

rect
A reference to a RECT structure, which is the position and size of the date and time picker control.

pParentWnd
A pointer to a CWnd object that is the parent window of the date and time picker control. It must not be NULL.

nID
Specifies the date and time picker control's control ID.

Nonzero if creation was successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/Controls/dtm-closemonthcal
https://docs.microsoft.com/windows/desktop/Controls/date-and-time-picker-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

ExampleExample

// choose an arbitrary rectangle for creation
CRect rect(20, 20, 120, 45);
m_DateTimeCtrl.Create(WS_VISIBLE | WS_CHILD | WS_TABSTOP | DTS_SHOWNONE |
 DTS_SHORTDATEFORMAT, rect, this, IDC_DATETIMECTRL);

CDateTimeCtrl::GetDateTimePickerInfo

BOOL GetDateTimePickerInfo(LPDATETIMEPICKERINFO pDateTimePickerInfo) const;

ParametersParameters

PARAMETER DESCRIPTION

pDateTimePickerInfo [out] A pointer to a DATETIMEPICKERINFO structure that
receives a description of the current date and time picker
control.

The caller is responsible for allocating this structure. However,
this method initializes the cbSize member of the structure.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Variable to access date-time control.
CDateTimeCtrl m_dateTimeCtrl;
// Variable to access the splitbutton control
CSplitButton m_splitbutton;

ExampleExample

1. Call CDateTimeCtrl to construct a CDateTimeCtrl object.

2. Call this member function, which creates the Windows date and time picker control and attaches it to the
CDateTimeCtrl object.

When you call Create , the common controls are initialized.

Retrieves information about the current date and time picker control.

TRUE if this method is successful; otherwise, FALSE.

This method sends the DTM_GETDATETIMEPICKERINFO message, which is described in the Windows SDK.

The following code example defines the variable, m_dateTimeCtrl, that is used to programmatically access the
date and time picker control. This variable is used in the next example.

The following code example indicates whether it successfully retrieves information about the current date and
time picker control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagdatetimepickerinfo
https://docs.microsoft.com/windows/desktop/Controls/dtm-getdatetimepickerinfo

void CCDateTimeCtrl_s1Dlg::OnXGetdatetimepickerinfo()
{
 // Get information about the date-time picker control.
 DATETIMEPICKERINFO dtpi = {0};
 dtpi.cbSize = sizeof(DATETIMEPICKERINFO);
 BOOL rc = m_dateTimeCtrl.GetDateTimePickerInfo(&dtpi);
 if (rc == TRUE)
 AfxMessageBox(_T("Information retrieved"),
 MB_ICONEXCLAMATION);
 else
 AfxMessageBox(_T("Information was not retrieved"));
}

CDateTimeCtrl::GetMonthCalColor

COLORREF GetMonthCalColor(int iColor) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set the color for the text in the control and
// assure it was set properly. Unlike the GetMonthCalCtrl() member,
// GetMonthCalColor() and SetMonthCalColor() can be used at any time.
m_DateTimeCtrl.SetMonthCalColor(MCSC_TEXT, RGB(255, 0, 0));
VERIFY(m_DateTimeCtrl.GetMonthCalColor(MCSC_TEXT) == RGB(255, 0, 0));

CDateTimeCtrl::GetMonthCalCtrl

CMonthCalCtrl* GetMonthCalCtrl() const;

Return ValueReturn Value

RemarksRemarks

Retrieves the color for a given portion of the month calendar within the date and time picker control.

iColor
An int value specifying which color area of the month calendar to retrieve. For a list of values, see the iColor
parameter for SetMonthCalColor.

A COLORREF value that represents the color setting for the specified portion of the month calendar control if
successful. The function returns -1 if unsuccessful.

This member function implements the behavior of the Win32 message DTM_GETMCCOLOR, as described in the
Windows SDK.

Retrieves the CMonthCalCtrl object associated with the date and time picker control.

A pointer to a CMonthCalCtrl object, or NULL if unsuccessful or if the window is not visible.

Date and time picker controls create a child month calendar control when the user clicks the drop-down arrow.
When the CMonthCalCtrl object is no longer needed, it is destroyed, so your application must not rely on storing
the object representing the date time picker control's child month calendar.

https://docs.microsoft.com/windows/desktop/Controls/dtm-getmccolor

ExampleExample

void CDateTimeDlg::OnDropDownDateTimeCtrl(NMHDR* pNMHDR, LRESULT* pResult)
{
 UNREFERENCED_PARAMETER(pNMHDR);

 // note that GetMonthCalCtrl() will only return a pointer to the
 // month calendar control while the control actually exists--that is,
 // while it has been dropped-down by the user. Otherwise, the function
 // returns NULL. One appropriate time to get the control is while
 // handling the DTN_DROPDOWN notification for the date time picker
 // control.

 // get the control
 CMonthCalCtrl* pMoCalCtrl = m_DateTimeCtrl.GetMonthCalCtrl();
 ASSERT(pMoCalCtrl != NULL);

 // now, pMoCalCtrl is useful...

 *pResult = 0;
}

CDateTimeCtrl::GetMonthCalFont

CFont* GetMonthCalFont() const;

Return ValueReturn Value

RemarksRemarks

CDateTimeCtrl::GetMonthCalStyle

DWORD GetMonthCalStyle() const;

Return ValueReturn Value

RemarksRemarks

CDateTimeCtrl::GetRange

Gets the font currently used by the date and time picker control's month calendar control.

A pointer to a CFont object, or NULL if unsuccessful.

The CFont object pointed to by the return value is a temporary object and is destroyed during the next idle
processing time.

Gets the style of the drop-down month calendar control that is associated with the current date and time picker
control.

The style of the drop-down month calendar control, which is a bitwise combination (OR) of date and time picker
control styles. For more information, see Month Calendar Control Styles.

This method sends the DTM_GETMCSTYLE message, which is described in the Windows SDK.

Retrieves the current minimum and maximum allowed system times for a date and time picker control.

https://docs.microsoft.com/windows/desktop/Controls/month-calendar-control-styles
https://docs.microsoft.com/windows/desktop/Controls/dtm-getmcstyle

DWORD GetRange(
 COleDateTime* pMinRange,
 COleDateTime* pMaxRange) const;

DWORD GetRange(
 CTime* pMinRange,
 CTime* pMaxRange) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

pMinRange
A pointer to a COleDateTime object or a CTime object containing the earliest time allowed in the CDateTimeCtrl

object.

pMaxRange
A pointer to a COleDateTime object or a CTime object containing the latest time allowed in the CDateTimeCtrl

object.

A DWORD value containing flags that indicate which ranges are set. If

return value & GDTR_MAX == 0

then the second parameter is valid. Similarly, if

return value & GDTR_MIN == 0

then the first parameter is valid.

This member function implements the behavior of the Win32 message DTM_GETRANGE, as described in the
Windows SDK. In MFC's implementation, you can specify either COleDateTime or CTime usages.

https://docs.microsoft.com/windows/desktop/Controls/dtm-getrange

// This function will set several ranges in the control, then
// call the ShowRange() function to show the set ranges to the
// user.
void CDateTimeDlg::OnBnClickedRangesbutton()
{
 // Set minimum of January 1st, 1995 with no maximum.
 COleDateTime dtMin;
 COleDateTime dtMax;

 dtMin = COleDateTime(1995, 1, 1, 0, 0, 0);
 dtMax.SetStatus(COleDateTime::null);
 m_DateTimeCtrl.SetRange(&dtMin, &dtMax);
 ShowRange(&m_DateTimeCtrl);

 // Set no minimum and maximum of September 30th, 1997.
 dtMin.SetStatus(COleDateTime::null);
 dtMax = COleDateTime(1997, 9, 30, 0, 0, 0);
 m_DateTimeCtrl.SetRange(&dtMin, &dtMax);
 ShowRange(&m_DateTimeCtrl);

 // Set minimum of April 15, 1992 and maximum of June 5, 2002.
 dtMin = COleDateTime(1992, 4, 15, 0, 0, 0);
 dtMax = COleDateTime(2002, 6, 5, 0, 0, 0);
 m_DateTimeCtrl.SetRange(&dtMin, &dtMax);
 ShowRange(&m_DateTimeCtrl);
}

void CDateTimeDlg::ShowRange(CDateTimeCtrl* pCtrl)
{
 ASSERT(pCtrl != NULL);
 CString strMessage;
 COleDateTime dtMinimum;
 COleDateTime dtMaximum;

 // Get the range.
 DWORD dwResult = pCtrl->GetRange(&dtMinimum, &dtMaximum);

 // If a minimum was specified, format it.
 // Otherwise, indicate that there is no lower bound.
 if (dwResult & GDTR_MIN)
 strMessage += dtMinimum.Format(_T("Minimum range is %x %X.\r\n"));
 else
 strMessage += _T("No minimum range.\r\n");

 // Treat maximum similarly.
 if (dwResult & GDTR_MAX)
 strMessage += dtMaximum.Format(_T("Maximum range is %x %X.\r\n"));
 else
 strMessage += _T("No maximum range.\r\n");

 // Show the user.
 AfxMessageBox(strMessage);
}

CDateTimeCtrl::GetTime

BOOL GetTime(COleDateTime& timeDest) const;
DWORD GetTime(CTime& timeDest) const;
DWORD GetTime(LPSYSTEMTIME pTimeDest) const;

Retrieves the currently selected time from a date and time picker control and puts it in a specified SYSTEMTIME

structure.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CDateTimeDlg::OnBnClickedTimebutton()
{
 // get as a CTime
 CTime timeTime;
 DWORD dwResult = m_DateTimeCtrl.GetTime(timeTime);
 if (dwResult == GDT_VALID)
 {
 // the user checked the box and specified data
 CString str;

 // is it a time-only control, or a date-only control?
 if ((m_DateTimeCtrl.GetStyle() & DTS_TIMEFORMAT) == DTS_TIMEFORMAT)
 str = timeTime.Format(_T("%X"));
 else
 str = timeTime.Format(_T("%x"));
 AfxMessageBox(str);
 }
 else
 {
 // the user unmarked the "none" box
 AfxMessageBox(_T("Time not set!"));
 }

 // Calling as SYSTIME is much the same, but calling for a COleDateTime
 // has us test the state of the COleDateTime object for validity to
 // see if the user did or didn't check the "none" box.
}

CDateTimeCtrl::GetIdealSize

timeDest
In the first version, a reference to a COleDateTime object that will receive the system time information. In the
second version, a reference to a CTime object that will receive the system time information.

pTimeDest
A pointer to the SYSTEMTIME structure to receive the system time information. Must not be NULL.

In the first version, nonzero if the time is successfully written to the COleDateTime object; otherwise 0. In the
second and third versions, a DWORD value equal to the dwFlag member set in the NMDATETIMECHANGE
structure. See the Remarks section below for more information.

This member function implements the behavior of the Win32 message DTM_GETSYSTEMTIME, as described in
the Windows SDK. In the MFC implementation of GetTime , you can use COleDateTime or CTime classes, or you
can use a SYSTEMTIME structure, to store the time information.

The return value DWORD in the second and third versions, above, indicates whether or not the date and time
picker control is set to the "no date" status, as indicated in the NMDATETIMECHANGE structure member
dwFlags. If the value returned equals GDT_NONE, the control is set to "no date" status, and uses the
DTS_SHOWNONE style. If the value returned equals GDT_VALID, the system time is successfully stored in the
destination location.

Returns the ideal size of the date and time picker control that is required to display the current date or time.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagnmdatetimechange
https://docs.microsoft.com/windows/desktop/Controls/dtm-getsystemtime
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagnmdatetimechange

BOOL GetIdealSize(LPSIZE psize) const;

ParametersParameters

PARAMETER DESCRIPTION

psize [out] Pointer to a SIZE structure that contains the ideal size
for the control.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Variable to access date-time control.
CDateTimeCtrl m_dateTimeCtrl;
// Variable to access the splitbutton control
CSplitButton m_splitbutton;

ExampleExample

// Add extra initialization here

// Associate a menu with the splitbutton control.
m_splitbutton.SetDropDownMenu(IDR_MENU1, 0);

// Resize the date-time picker control.
SIZE sz;
m_dateTimeCtrl.GetIdealSize(&sz);
if ((sz.cx != 0) && (sz.cy != 0)) {
 m_dateTimeCtrl.SetWindowPos(
 this,
 0, 0, sz.cx, sz.cy,
 (SWP_NOMOVE | SWP_NOZORDER | SWP_NOREPOSITION | SWP_NOACTIVATE));
}

// End of extra initialization

CDateTimeCtrl::SetFormat

BOOL SetFormat(LPCTSTR pstrFormat);

ParametersParameters

The return value is always TRUE.

This method sends the DTM_GETIDEALSIZE message, which is described in the Windows SDK.

The following code example defines the variable, m_dateTimeCtrl, that is used to programmatically access the
date and time picker control. This variable is used in the next example.

The following code example retrieves the ideal size to display the date and time picker control.

Sets the display of a date and time picker control in accordance with a given format string.

pstrFormat
A pointer to a zero-terminated format string that defines the desired display. Setting this parameter to NULL will
reset the control to the default format string for the current style.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/Controls/dtm-getidealsize

Return ValueReturn Value

NOTENOTE

RemarksRemarks

ExampleExample

// The control will create itself with a format that matches the
// locale setting in Control Panel. But we can force a particular
// format with a call to SetFormat(). This call forces the format
// dd-MMM-yy, which would show 03-APR-98 for April 3rd, 1998.
m_DateTimeCtrl.SetFormat(_T("dd-MMM-yy"));

CDateTimeCtrl::SetMonthCalColor

COLORREF SetMonthCalColor(
 int iColor,
 COLORREF ref);

ParametersParameters

VALUE MEANING

MCSC_BACKGROUND Set the background color displayed between months.

MCSC_MONTHBK Set the background color displayed within a month.

MCSC_TEXT Set the color used to display text within a month.

MCSC_TITLEBK Set the background color displayed in the calendar's title.

MCSC_TITLETEXT Set the color used to display text within the calendar's title.

MCSC_TRAILINGTEXT Set the color used to display header and trailing-day text.
Header and trailing days are the days from the previous and
following months that appear on the current calendar.

Return ValueReturn Value

Nonzero if successful; otherwise 0.

User input does not determine success or failure for this call.

This member function implements the behavior of the Win32 message DTM_SETFORMAT, as described in the
Windows SDK.

Sets the color for a given portion of the month calendar within a date and time picker control.

iColor
int value specifying which area of the month calendar control to set. This value can be one of the following.

ref
A COLORREF value representing the color that will be set for the specified area of the month calendar.

A COLORREF value that represents the previous color setting for the specified portion of the month calendar
control if successful. Otherwise, the message returns -1.

https://docs.microsoft.com/windows/desktop/Controls/dtm-setformat

RemarksRemarks

ExampleExample

CDateTimeCtrl::SetMonthCalFont

void SetMonthCalFont(
 HFONT hFont,
 BOOL bRedraw = TRUE);

ParametersParameters

RemarksRemarks

ExampleExample

// The following code example would most likely appear
// in the OnInitDialog function of your dialog class.
// It creates a font (Arial, 10 pixels high) and if successful,
// stores the result in m_MonthFont, a member of your
// dialog class declared as follows:
// CFont m_MonthFont;
// SetMonthCalFont is then called passing in the new font,
// causing the month calendar control to display all
// text and dates with an Arial font.

//initializing the necessary members of the LOGFONT
// structure

LOGFONT lf;
memset(&lf, 0, sizeof(lf));
lf.lfHeight = 10;
_tcscpy_s(lf.lfFaceName, LF_FACESIZE, _T("Arial"));

if (m_MonthFont.CreateFontIndirect(&lf))
{
 // if successful, set the month calendar font
 m_DateTimeCtrl.SetMonthCalFont((HFONT)m_MonthFont);
}

NOTENOTE

CDateTimeCtrl::SetMonthCalStyle

This member function implements the behavior of the Win32 message DTM_SETMCCOLOR, as described in the
Windows SDK.

See the example for CDateTimeCtrl::GetMonthCalColor.

Sets the font that the date and time picker control's child month calendar control will use.

hFont
Handle to the font that will be set.

bRedraw
Specifies whether the control should be redrawn immediately upon setting the font. Setting this parameter to
TRUE causes the control to redraw itself.

This member function implements the behavior of the Win32 message DTM_SETMCFONT, as described in the
Windows SDK.

If you use this code, you'll want to make a member of your CDialog -derived class called m_MonthFont of type CFont .

https://docs.microsoft.com/windows/desktop/Controls/dtm-setmccolor
https://docs.microsoft.com/windows/desktop/Controls/dtm-setmcfont

CDateTimeCtrl::SetMonthCalStyle

DWORD SetMonthCalStyle(DWORD dwStyle);

ParametersParameters

PARAMETER DESCRIPTION

dwStyle [in] A new month calendar control style, which is a bitwise
combination (OR) of month calendar control styles. For more
information, see Month Calendar Control Styles.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Variable to access date-time control.
CDateTimeCtrl m_dateTimeCtrl;
// Variable to access the splitbutton control
CSplitButton m_splitbutton;

ExampleExample

// Set the style of the month-calendar control dropdown.
void CCDateTimeCtrl_s1Dlg::OnSetmonthcalstyleWeeknumber()
{
 m_dateTimeCtrl.SetMonthCalStyle(MCS_WEEKNUMBERS);
}

void CCDateTimeCtrl_s1Dlg::OnSetmonthcalstyleNotoday()
{
 m_dateTimeCtrl.SetMonthCalStyle(MCS_NOTODAY);
}

void CCDateTimeCtrl_s1Dlg::OnSetmonthcalstyleShortdaysofweek()
{
 m_dateTimeCtrl.SetMonthCalStyle(MCS_SHORTDAYSOFWEEK);
}

CDateTimeCtrl::SetRange

Sets the style of the drop-down month calendar control that is associated with the current date and time picker
control.

The previous style of the drop-down month calendar control.

This method sends the DTM_SETMCSTYLE message, which is described in the Windows SDK.

The following code example defines the variable, m_dateTimeCtrl, that is used to programmatically access the
date and time picker control. This variable is used in the next example.

The following code example sets the date and time picker control to display week numbers, abbreviated names of
days of the week, and no today indicator.

Sets the minimum and maximum allowed system times for a date and time picker control.

https://docs.microsoft.com/windows/desktop/Controls/month-calendar-control-styles
https://docs.microsoft.com/windows/desktop/Controls/dtm-setmcstyle

BOOL SetRange(
 const COleDateTime* pMinRange,
 const COleDateTime* pMaxRange);

BOOL SetRange(
 const CTime* pMinRange,
 const CTime* pMaxRange);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDateTimeCtrl::SetTime

BOOL SetTime(const COleDateTime& timeNew);
BOOL SetTime(const CTime* pTimeNew);
BOOL SetTime(LPSYSTEMTIME pTimeNew = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

pMinRange
A pointer to a COleDateTime object or a CTime object containing the earliest time allowed in the CDateTimeCtrl

object.

pMaxRange
A pointer to a COleDateTime object or a CTime object containing the latest time allowed in the CDateTimeCtrl

object.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message DTM_SETRANGE, as described in the
Windows SDK. In MFC's implementation, you can specify either COleDateTime or CTime usages. If the
COleDateTime object has a NULL status, the range will be removed. If the CTime pointer or the COleDateTime

pointer is NULL, the range will be removed.

See the example for CDateTimeCtrl::GetRange.

Sets the time in a date and time picker control.

timeNew
A reference to a COleDateTime object containing the to which the control will be set.

pTimeNew
In the second version above, a pointer to a CTime object containing the time to which the control will be set. In
the third version above, a pointer to a SYSTEMTIME structure containing the time to which the control will be
set.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message DTM_SETSYSTEMTIME, as described in
the Windows SDK. In the MFC implementation of SetTime , you can use the COleDateTime or CTime classes, or
you can use a SYSTEMTIME structure, to set the time information.

https://docs.microsoft.com/windows/desktop/Controls/dtm-setrange
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/Controls/dtm-setsystemtime

// set with a CTime
CTime timeTime(1998, 4, 3, 0, 0, 0);
VERIFY(m_DateTimeCtrl.SetTime(&timeTime));

// set with a COleDateTime object
COleDateTime oletimeTime(1998, 4, 3, 0, 0, 0);
VERIFY(m_DateTimeCtrl.SetTime(oletimeTime));

// set using the SYSTEMTIME
SYSTEMTIME sysTime;
memset(&sysTime, 0, sizeof(sysTime));
sysTime.wYear = 1998;
sysTime.wMonth = 4;
sysTime.wDay = 3;
VERIFY(m_DateTimeCtrl.SetTime(&sysTime));

See also
MFC Sample CMNCTRL1
CWnd Class
Hierarchy Chart
CMonthCalCtrl Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CDBException Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CDBException : public CException

Members
Public Data MembersPublic Data Members

NAME DESCRIPTION

CDBException::m_nRetCode Contains an Open Database Connectivity (ODBC) return
code, of type RETCODE.

CDBException::m_strError Contains a string that describes the error in alphanumeric
terms.

CDBException::m_strStateNativeOrigin Contains a string describing the error in terms of the error
codes returned by ODBC.

Remarks

NOTENOTE

Inheritance Hierarchy

Represents an exception condition arising from the database classes.

The class includes two public data members you can use to determine the cause of the exception or to display a
text message describing the exception. CDBException objects are constructed and thrown by member functions
of the database classes.

This class is one of MFC's Open Database Connectivity (ODBC) classes. If you are instead using the newer Data Access
Objects (DAO) classes, use CDaoException instead. All DAO class names have "CDao" as a prefix. For more information, see
the article Overview: Database Programming.

Exceptions are cases of abnormal execution involving conditions outside the program's control, such as data
source or network I/O errors. Errors that you might expect to see in the normal course of executing your
program are usually not considered exceptions.

You can access these objects within the scope of a CATCH expression. You can also throw CDBException objects
from your own code with the AfxThrowDBException global function.

For more information about exception handling in general, or about CDBException objects, see the articles
Exception Handling (MFC) and Exceptions: Database Exceptions.

CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdbexception-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl

Requirements

CDBException::m_nRetCode

RemarksRemarks

CException

CDBException

Header: afxdb.h

Contains an ODBC error code of type RETCODE returned by an ODBC application programming interface (API)
function.

This type includes SQL-prefixed codes defined by ODBC and AFX_SQL-prefixed codes defined by the database
classes. For a CDBException , this member will contain one of the following values:

AFX_SQL_ERROR_API_CONFORMANCE The driver for a CDatabase::OpenEx or CDatabase::Open call
does not conform to required ODBC API Conformance level 1 (SQL_OAC_LEVEL1).

AFX_SQL_ERROR_CONNECT_FAIL Connection to the data source failed. You passed a NULL CDatabase

pointer to your recordset constructor and the subsequent attempt to create a connection based on
GetDefaultConnect failed.

AFX_SQL_ERROR_DATA_TRUNCATED You requested more data than you have provided storage for. For
information on increasing the provided data storage for CString or CByteArray data types, see the
nMaxLength argument for RFX_Text and RFX_Binary under "Macros and Globals."

AFX_SQL_ERROR_DYNASET_NOT_SUPPORTED A call to CRecordset::Open requesting a dynaset
failed. Dynasets are not supported by the driver.

AFX_SQL_ERROR_EMPTY_COLUMN_LIST You attempted to open a table (or what you gave could not
be identified as a procedure call or SELECT statement) but there are no columns identified in record field
exchange (RFX) function calls in your DoFieldExchange override.

AFX_SQL_ERROR_FIELD_SCHEMA_MISMATCH The type of an RFX function in your DoFieldExchange

override is not compatible with the column data type in the recordset.

AFX_SQL_ERROR_ILLEGAL_MODE You called CRecordset::Update without previously calling
CRecordset::AddNew or CRecordset::Edit .

AFX_SQL_ERROR_LOCK_MODE_NOT_SUPPORTED Your request to lock records for update could not
be fulfilled because your ODBC driver does not support locking.

AFX_SQL_ERROR_MULTIPLE_ROWS_AFFECTED You called CRecordset::Update or Delete for a table
with no unique key and changed multiple records.

AFX_SQL_ERROR_NO_CURRENT_RECORD You attempted to edit or delete a previously deleted record.
You must scroll to a new current record after a deletion.

AFX_SQL_ERROR_NO_POSITIONED_UPDATES Your request for a dynaset could not be fulfilled
because your ODBC driver does not support positioned updates.

AFX_SQL_ERROR_NO_ROWS_AFFECTED You called CRecordset::Update or Delete , but when the
operation began the record could no longer be found.

AFX_SQL_ERROR_ODBC_LOAD_FAILED An attempt to load the ODBC.DLL failed; Windows could not
find or could not load this DLL. This error is fatal.

CDBException::m_strError

RemarksRemarks

CDBException::m_strStateNativeOrigin

RemarksRemarks

AFX_SQL_ERROR_ODBC_V2_REQUIRED Your request for a dynaset could not be fulfilled because a
Level 2-compliant ODBC driver is required.

AFX_SQL_ERROR_RECORDSET_FORWARD_ONLY An attempt to scroll did not succeed because the
data source does not support backward scrolling.

AFX_SQL_ERROR_SNAPSHOT_NOT_SUPPORTED A call to CRecordset::Open requesting a snapshot
failed. Snapshots are not supported by the driver. (This should only occur when the ODBC cursor library
ODBCCURS.DLL is not present.)

AFX_SQL_ERROR_SQL_CONFORMANCE The driver for a CDatabase::OpenEx or CDatabase::Open call
does not conform to the required ODBC SQL Conformance level of "Minimum" (SQL_OSC_MINIMUM).

AFX_SQL_ERROR_SQL_NO_TOTAL The ODBC driver was unable to specify the total size of a
CLongBinary data value. The operation probably failed because a global memory block could not be

preallocated.

AFX_SQL_ERROR_RECORDSET_READONLY You attempted to update a read-only recordset, or the
data source is read-only. No update operations can be performed with the recordset or the CDatabase

object it is associated with.

SQL_ERROR Function failed. The error message returned by the ODBC function SQLError is stored in
the m_strError data member.

SQL_INVALID_HANDLE Function failed due to an invalid environment handle, connection handle, or
statement handle. This indicates a programming error. No additional information is available from the
ODBC function SQLError .

The SQL-prefixed codes are defined by ODBC. The AFX-prefixed codes are defined in AFXDB.H, found in
MFC\INCLUDE.

Contains a string describing the error that caused the exception.

The string describes the error in alphanumeric terms. For more detailed information and an example, see
m_strStateNativeOrigin .

Contains a string describing the error that caused the exception.

The string is of the form "State:%s,Native:%ld,Origin:%s", where the format codes, in order, are replaced by
values that describe:

The SQLSTATE, a null-terminated string containing a five-character error code returned in the szSqlState
parameter of the ODBC function SQLError . SQLSTATE values are listed in Appendix A, ODBC Error
Codes, in the ODBC Programmer's Reference. Example: "S0022".

The native error code, specific to the data source, returned in the pfNativeError parameter of the
SQLError function. Example: 207.

The error message text returned in the szErrorMsg parameter of the SQLError function. This message
consists of several bracketed names. As an error is passed from its source to the user, each ODBC
component (data source, driver, Driver Manager) appends its own name. This information helps to

https://docs.microsoft.com/previous-versions/windows/desktop/ms714687

ExampleExample

See also

pinpoint the origin of the error. Example: [Microsoft][ODBC SQL Server Driver][SQL Server]

The framework interprets the error string and puts its components into m_strStateNativeOrigin ; if
m_strStateNativeOrigin contains information for more than one error, the errors are separated by newlines. The

framework puts the alphanumeric error text into m_strError .

For additional information about the codes used to make up this string, see the SQLError function in the ODBC
Programmer's Reference.

From ODBC: "State:S0022,Native:207,Origin:[Microsoft][ODBC SQL Server Driver][SQL Server] Invalid
column name 'ColName'"

In m_strStateNativeOrigin : "State:S0022,Native:207,Origin:[Microsoft][ODBC SQL Server Driver][SQL Server]"

In m_strError : "Invalid column name 'ColName'"

CException Class
Hierarchy Chart
CDatabase Class
CRecordset Class
CFieldExchange Class
CRecordset::Update
CRecordset::Delete
CException Class

https://docs.microsoft.com/previous-versions/windows/desktop/ms716312

CDBVariant Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CDBVariant

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDBVariant::CDBVariant Constructs a CDBVariant object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDBVariant::Clear Clears the CDBVariant object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDBVariant::m_dwType Contains the data type of the currently stored value. Type
DWORD .

Public Union MembersPublic Union Members

NAME DESCRIPTION

CDBVariant::m_boolVal Contains a value of type BOOL.

CDBVariant::m_chVal Contains a value of type unsigned char.

CDBVariant::m_dblVal Contains a value of type double.

CDBVariant::m_fltVal Contains a value of type float.

CDBVariant::m_iVal Contains a value of type short.

CDBVariant::m_lVal Contains a value of type long.

CDBVariant::m_pbinary Contains a pointer to an object of type CLongBinary .

Represents a variant data type for the MFC ODBC classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdbvariant-class.md

CDBVariant::m_pdate Contains a pointer to an object of type
TIMESTAMP_STRUCT.

CDBVariant::m_pstring Contains a pointer to an object of type CString .

CDBVariant::m_pstringA Stores a pointer to an ASCII CString object.

CDBVariant::m_pstringW Stores a pointer to a wide CString object.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CDBVariant::CDBVariant

CDBVariant();

RemarksRemarks

CDBVariant::Clear

void Clear();

RemarksRemarks

CDBVariant does not have a base class.

CDBVariant is similar to COleVariant; however, CDBVariant does not use OLE. CDBVariant allows you to store a
value without worrying about the value's data type. CDBVariant tracks the data type of the current value, which is
stored in a union.

Class CRecordset utilizes CDBVariant objects in three member functions: GetFieldValue , GetBookmark , and
SetBookmark . For example, GetFieldValue allows you to dynamically fetch data in a column. Because the data type

of the column may not be known at run time, GetFieldValue uses a CDBVariant object to store the column's data.

CDBVariant

Header: afxdb.h

Creates a NULL CDBVariant object.

Sets the m_dwType data member to DBVT_NULL.

Call this member function to clear the CDBVariant object.

If the value of the m_dwType data member is DBVT_DATE, DBVT_STRING, or DBVT_BINARY, Clear frees the
memory associated with the union pointer member. Clear sets m_dwType to DBVT_NULL.

The CDBVariant destructor calls Clear .

CDBVariant::m_boolVal

RemarksRemarks

CDBVariant::m_chVal

RemarksRemarks

CDBVariant::m_dblVal

RemarksRemarks

CDBVariant::m_dwType

RemarksRemarks

M_DW TYPE UNION DATA MEMBER

DBVT_NULL No union member is valid for access.

DBVT_BOOL m_boolVal

DBVT_UCHAR m_chVal

DBVT_SHORT m_iVal

DBVT_LONG m_lVal

DBVT_SINGLE m_fltVal

DBVT_DOUBLE m_dblVal

Stores a value of type BOOL.

The m_boolVal data member belongs to a union. Before accessing m_boolVal , first check the value of
CDBVariant::m_dwType. If m_dwType is set to DBVT_BOOL, then m_boolVal will contain a valid value; otherwise,
accessing m_boolVal will produce unreliable results.

Stores a value of type unsigned char.

The m_chVal data member belongs to a union. Before accessing m_chVal , first check the value of
CDBVariant::m_dwType. If m_dwType is set to DBVT_UCHAR, then m_chVal contains a valid value; otherwise,
accessing m_chVal will produce unreliable results.

Stores a value of type double.

The m_dblVal data member belongs to a union. Before accessing m_dblVal , first check the value of
CDBVariant::m_dwType. If m_dwType is set to DBVT_DOUBLE, then m_dblVal contains a valid value; otherwise,
accessing m_dblVal will produce unreliable results.

This data member contains the data type for the value that is currently stored in the CDBVariant object's union
data member.

Before accessing this union, you must check the value of m_dwType in order to determine which union data
member to access. The following table lists the possible values for m_dwType and the corresponding union data
member.

DBVT_DATE m_pdate

DBVT_STRING m_pstring

DBVT_BINARY m_pbinary

DBVT_ASTRING m_pstringA

DBVT_WSTRING m_pstringW

M_DW TYPE UNION DATA MEMBER

CDBVariant::m_fltVal

RemarksRemarks

CDBVariant::m_iVal

RemarksRemarks

CDBVariant::m_lVal

RemarksRemarks

CDBVariant::m_pbinary

RemarksRemarks

CDBVariant::m_pdate

RemarksRemarks

Stores a value of type float.

The m_fltVal data member belongs to a union. Before accessing m_fltVal , first check the value of
CDBVariant::m_dwType. If m_dwType is set to DBVT_SINGLE, then m_fltVal contains a valid value; otherwise,
accessing m_fltVal will produce unreliable results.

Stores a value of type short.

The m_iVal data member belongs to a union. Before accessing m_iVal , first check the value of
CDBVariant::m_dwType. If m_dwType is set to DBVT_SHORT, then m_iVal contains a valid value; otherwise,
accessing m_iVal will produce unreliable results.

Stores a value of type long.

The m_lVal data member belongs to a union. Before accessing m_lVal , first check the value of
CDBVariant::m_dwType. If m_dwType is set to DBVT_LONG, then m_lVal contains a valid value; otherwise,
accessing m_lVal will produce unreliable results.

Stores a pointer to an object of type CLongBinary.

The m_pbinary data member belongs to a union. Before accessing m_pbinary , first check the value of
CDBVariant::m_dwType. If m_dwType is set to DBVT_BINARY, then m_pbinary contains a valid pointer ; otherwise,
accessing m_pbinary will produce unreliable results.

Stores a pointer to an object of type TIMESTAMP_STRUCT.

CDBVariant::m_pstring

RemarksRemarks

CDBVariant::m_pstringA

RemarksRemarks

CDBVariant::m_pstringW

RemarksRemarks

See also

The m_pdate data member belongs to a union. Before accessing m_pdate , first check the value of
CDBVariant::m_dwType. If m_dwType is set to DBVT_DATE, then m_pdate contains a valid pointer ; otherwise,
accessing m_pdate will produce unreliable results.

For more information about the TIMESTAMP_STRUCT data type, see the topic C Data Types in Appendix D of the
ODBC Programmer's Reference in the Windows SDK.

Stores a pointer to an object of type CString.

The m_pstring data member belongs to a union. Before accessing m_pstring , first check the value of
CDBVariant::m_dwType. If m_dwType is set to DBVT_STRING, then m_pstring contains a valid pointer ; otherwise,
accessing m_pstring will produce unreliable results.

Stores a pointer to an ASCII CString object.

The m_pstringA data member belongs to a union. Before accessing m_pstringA , first check the value of
CDBVariant::m_dwType. If m_dwType is set to DBVT_ASTRING, then m_pstringA contains a valid pointer ;
otherwise, accessing m_pstringA will produce unreliable results.

Stores a pointer to a wide CString object.

The m_pstringW data member belongs to a union. Before accessing m_pstringW , first check the value of
CDBVariant::m_dwType. If m_dwType is set to DBVT_WSTRING, then m_pstringW contains a valid pointer ;
otherwise, accessing m_pstringW will produce unreliable results.

Hierarchy Chart
CRecordset Class

https://docs.microsoft.com/previous-versions/windows/desktop/ms714556

CDC Class
3/4/2019 • 187 minutes to read • Edit Online

Syntax
class CDC : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDC::CDC Constructs a CDC object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDC::AbortDoc Terminates the current print job, erasing everything the
application has written to the device since the last call of
the StartDoc member function.

CDC::AbortPath Closes and discards any paths in the device context.

CDC::AddMetaFileComment Copies the comment from a buffer into a specified
enhanced-format metafile.

CDC::AlphaBlend Displays bitmaps that have transparent or
semitransparent pixels.

CDC::AngleArc Draws a line segment and an arc, and moves the current
position to the ending point of the arc.

CDC::Arc Draws an elliptical arc.

CDC::ArcTo Draws an elliptical arc. This function is similar to Arc ,
except that the current position is updated.

CDC::Attach Attaches a Windows device context to this CDC object.

CDC::BeginPath Opens a path bracket in the device context.

CDC::BitBlt Copies a bitmap from a specified device context.

CDC::Chord Draws a chord (a closed figure bounded by the
intersection of an ellipse and a line segment).

Defines a class of device-context objects.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdc-class.md

CDC::CloseFigure Closes an open figure in a path.

CDC::CreateCompatibleDC Creates a memory-device context that is compatible with
another device context. You can use it to prepare images
in memory.

CDC::CreateDC Creates a device context for a specific device.

CDC::CreateIC Creates an information context for a specific device. This
provides a fast way to get information about the device
without creating a device context.

CDC::DeleteDC Deletes the Windows device context associated with this
CDC object.

CDC::DeleteTempMap Called by the CWinApp idle-time handler to delete any
temporary CDC object created by FromHandle . Also
detaches the device context.

CDC::Detach Detaches the Windows device context from this CDC

object.

CDC::DPtoHIMETRIC Converts device units into HIMETRIC units.

CDC::DPtoLP Converts device units into logical units.

CDC::Draw3dRect Draws a three-dimensional rectangle.

CDC::DrawDragRect Erases and redraws a rectangle as it is dragged.

CDC::DrawEdge Draws the edges of a rectangle.

CDC::DrawEscape Accesses drawing capabilities of a video display that are
not directly available through the graphics device
interface (GDI).

CDC::DrawFocusRect Draws a rectangle in the style used to indicate focus.

CDC::DrawFrameControl Draw a frame control.

CDC::DrawIcon Draws an icon.

CDC::DrawState Displays an image and applies a visual effect to indicate a
state.

CDC::DrawText Draws formatted text in the specified rectangle.

CDC::DrawTextEx Draws formatted text in the specified rectangle using
additional formats.

CDC::Ellipse Draws an ellipse.

NAME DESCRIPTION

CDC::EndDoc Ends a print job started by the StartDoc member
function.

CDC::EndPage Informs the device driver that a page is ending.

CDC::EndPath Closes a path bracket and selects the path defined by the
bracket into the device context.

CDC::EnumObjects Enumerates the pens and brushes available in a device
context.

CDC::Escape Allows applications to access facilities that are not directly
available from a particular device through GDI. Also
allows access to Windows escape functions. Escape calls
made by an application are translated and sent to the
device driver.

CDC::ExcludeClipRect Creates a new clipping region that consists of the existing
clipping region minus the specified rectangle.

CDC::ExcludeUpdateRgn Prevents drawing within invalid areas of a window by
excluding an updated region in the window from a
clipping region.

CDC::ExtFloodFill Fills an area with the current brush. Provides more
flexibility than the CDC::FloodFill member function.

CDC::ExtTextOut Writes a character string within a rectangular region
using the currently selected font.

CDC::FillPath Closes any open figures in the current path and fills the
path's interior by using the current brush and polygon-
filling mode.

CDC::FillRect Fills a given rectangle by using a specific brush.

CDC::FillRgn Fills a specific region with the specified brush.

CDC::FillSolidRect Fills a rectangle with a solid color.

CDC::FlattenPath Transforms any curves in the path selected into the
current device context, and turns each curve into a
sequence of lines.

CDC::FloodFill Fills an area with the current brush.

CDC::FrameRect Draws a border around a rectangle.

CDC::FrameRgn Draws a border around a specific region using a brush.

NAME DESCRIPTION

CDC::FromHandle Returns a pointer to a CDC object when given a handle
to a device context. If a CDC object is not attached to
the handle, a temporary CDC object is created and
attached.

CDC::GetArcDirection Returns the current arc direction for the device context.

CDC::GetAspectRatioFilter Retrieves the setting for the current aspect-ratio filter.

CDC::GetBkColor Retrieves the current background color.

CDC::GetBkMode Retrieves the background mode.

CDC::GetBoundsRect Returns the current accumulated bounding rectangle for
the specified device context.

CDC::GetBrushOrg Retrieves the origin of the current brush.

CDC::GetCharABCWidths Retrieves the widths, in logical units, of consecutive
characters in a given range from the current font.

CDC::GetCharABCWidthsI Retrieves the widths, in logical units, of consecutive glyph
indices in a specified range from the current TrueType
font.

CDC::GetCharacterPlacement Retrieves various types of information on a character
string.

CDC::GetCharWidth Retrieves the fractional widths of consecutive characters
in a given range from the current font.

CDC::GetCharWidthI Retrieves the widths, in logical coordinates, of consecutive
glyph indices in a specified range from the current font.

CDC::GetClipBox Retrieves the dimensions of the tightest bounding
rectangle around the current clipping boundary.

CDC::GetColorAdjustment Retrieves the color adjustment values for the device
context.

CDC::GetCurrentBitmap Returns a pointer to the currently selected CBitmap

object.

CDC::GetCurrentBrush Returns a pointer to the currently selected CBrush

object.

CDC::GetCurrentFont Returns a pointer to the currently selected CFont

object.

CDC::GetCurrentPalette Returns a pointer to the currently selected CPalette

object.

NAME DESCRIPTION

CDC::GetCurrentPen Returns a pointer to the currently selected CPen object.

CDC::GetCurrentPosition Retrieves the current position of the pen (in logical
coordinates).

CDC::GetDCBrushColor Retrieves the current brush color.

CDC::GetDCPenColor Retrieves the current pen color.

CDC::GetDeviceCaps Retrieves a specified kind of device-specific information
about a given display device's capabilities.

CDC::GetFontData Retrieves font metric information from a scalable font file.
The information to retrieve is identified by specifying an
offset into the font file and the length of the information
to return.

CDC::GetFontLanguageInfo Returns information about the currently selected font for
the specified display context.

CDC::GetGlyphOutline Retrieves the outline curve or bitmap for an outline
character in the current font.

CDC::GetGraphicsMode Retrieves the current graphics mode for the specified
device context.

CDC::GetHalftoneBrush Retrieves a halftone brush.

CDC::GetKerningPairs Retrieves the character kerning pairs for the font that is
currently selected in the specified device context.

CDC::GetLayout Retrieves the layout of a device context (DC). The layout
can be either left to right (default) or right to left
(mirrored).

CDC::GetMapMode Retrieves the current mapping mode.

CDC::GetMiterLimit Returns the miter limit for the device context.

CDC::GetNearestColor Retrieves the closest logical color to a specified logical
color that the given device can represent.

CDC::GetOutlineTextMetrics Retrieves font metric information for TrueType fonts.

CDC::GetOutputCharWidth Retrieves the widths of individual characters in a
consecutive group of characters from the current font
using the output device context.

CDC::GetOutputTabbedTextExtent Computes the width and height of a character string on
the output device context.

NAME DESCRIPTION

CDC::GetOutputTextExtent Computes the width and height of a line of text on the
output device context using the current font to
determine the dimensions.

CDC::GetOutputTextMetrics Retrieves the metrics for the current font from the output
device context.

CDC::GetPath Retrieves the coordinates defining the endpoints of lines
and the control points of curves found in the path that is
selected into the device context.

CDC::GetPixel Retrieves the RGB color value of the pixel at the specified
point.

CDC::GetPolyFillMode Retrieves the current polygon-filling mode.

CDC::GetROP2 Retrieves the current drawing mode.

CDC::GetSafeHdc Returns CDC::m_hDC, the output device context.

CDC::GetStretchBltMode Retrieves the current bitmap-stretching mode.

CDC::GetTabbedTextExtent Computes the width and height of a character string on
the attribute device context.

CDC::GetTextAlign Retrieves the text-alignment flags.

CDC::GetTextCharacterExtra Retrieves the current setting for the amount of
intercharacter spacing.

CDC::GetTextColor Retrieves the current text color.

CDC::GetTextExtent Computes the width and height of a line of text on the
attribute device context using the current font to
determine the dimensions.

CDC::GetTextExtentExPointI Retrieves the number of characters in a specified string
that will fit within a specified space and fills an array with
the text extent for each of those characters.

CDC::GetTextExtentPointI Retrieves the width and height of the specified array of
glyph indices.

CDC::GetTextFace Copies the typeface name of the current font into a
buffer as a null-terminated string.

CDC::GetTextMetrics Retrieves the metrics for the current font from the
attribute device context.

CDC::GetViewportExt Retrieves the x- and y-extents of the viewport.

CDC::GetViewportOrg Retrieves the x- and y-coordinates of the viewport origin.

NAME DESCRIPTION

CDC::GetWindow Returns the window associated with the display device
context.

CDC::GetWindowExt Retrieves the x- and y-extents of the associated window.

CDC::GetWindowOrg Retrieves the x- and y-coordinates of the origin of the
associated window.

CDC::GetWorldTransform Retrieves the current world-space to page-space
transformation.

CDC::GradientFill Fills rectangle and triangle structures with a gradating
color.

CDC::GrayString Draws dimmed (grayed) text at the given location.

CDC::HIMETRICtoDP Converts HIMETRIC units into device units.

CDC::HIMETRICtoLP Converts HIMETRIC units into logical units.

CDC::IntersectClipRect Creates a new clipping region by forming the intersection
of the current region and a rectangle.

CDC::InvertRect Inverts the contents of a rectangle.

CDC::InvertRgn Inverts the colors in a region.

CDC::IsPrinting Determines whether the device context is being used for
printing.

CDC::LineTo Draws a line from the current position up to, but not
including, a point.

CDC::LPtoDP Converts logical units into device units.

CDC::LPtoHIMETRIC Converts logical units into HIMETRIC units.

CDC::MaskBlt Combines the color data for the source and destination
bitmaps using the given mask and raster operation.

CDC::ModifyWorldTransform Changes the world transformation for a device context
using the specified mode.

CDC::MoveTo Moves the current position.

CDC::OffsetClipRgn Moves the clipping region of the given device.

CDC::OffsetViewportOrg Modifies the viewport origin relative to the coordinates
of the current viewport origin.

CDC::OffsetWindowOrg Modifies the window origin relative to the coordinates of
the current window origin.

NAME DESCRIPTION

CDC::PaintRgn Fills a region with the selected brush.

CDC::PatBlt Creates a bit pattern.

CDC::Pie Draws a pie-shaped wedge.

CDC::PlayMetaFile Plays the contents of the specified metafile on the given
device. The enhanced version of PlayMetaFile displays
the picture stored in the given enhanced-format metafile.
The metafile can be played any number of times.

CDC::PlgBlt Performs a bit-block transfer of the bits of color data
from the specified rectangle in the source device context
to the specified parallelogram in the given device context.

CDC::PolyBezier Draws one or more Bzier splines. The current position is
neither used nor updated.

CDC::PolyBezierTo Draws one or more Bzier splines, and moves the current
position to the ending point of the last Bzier spline.

CDC::PolyDraw Draws a set of line segments and Bzier splines. This
function updates the current position.

CDC::Polygon Draws a polygon consisting of two or more points
(vertices) connected by lines.

CDC::Polyline Draws a set of line segments connecting the specified
points.

CDC::PolylineTo Draws one or more straight lines and moves the current
position to the ending point of the last line.

CDC::PolyPolygon Creates two or more polygons that are filled using the
current polygon-filling mode. The polygons may be
disjoint or they may overlap.

CDC::PolyPolyline Draws multiple series of connected line segments. The
current position is neither used nor updated by this
function.

CDC::PtVisible Specifies whether the given point is within the clipping
region.

CDC::RealizePalette Maps palette entries in the current logical palette to the
system palette.

CDC::Rectangle Draws a rectangle using the current pen and fills it using
the current brush.

CDC::RectVisible Determines whether any part of the given rectangle lies
within the clipping region.

NAME DESCRIPTION

CDC::ReleaseAttribDC Releases m_hAttribDC , the attribute device context.

CDC::ReleaseOutputDC Releases m_hDC , the output device context.

CDC::ResetDC Updates the m_hAttribDC device context.

CDC::RestoreDC Restores the device context to a previous state saved
with SaveDC .

CDC::RoundRect Draws a rectangle with rounded corners using the
current pen and filled using the current brush.

CDC::SaveDC Saves the current state of the device context.

CDC::ScaleViewportExt Modifies the viewport extent relative to the current
values.

CDC::ScaleWindowExt Modifies the window extents relative to the current
values.

CDC::ScrollDC Scrolls a rectangle of bits horizontally and vertically.

CDC::SelectClipPath Selects the current path as a clipping region for the
device context, combining the new region with any
existing clipping region by using the specified mode.

CDC::SelectClipRgn Combines the given region with the current clipping
region by using the specified mode.

CDC::SelectObject Selects a GDI drawing object such as a pen.

CDC::SelectPalette Selects the logical palette.

CDC::SelectStockObject Selects one of the predefined stock pens, brushes, or
fonts provided by Windows.

CDC::SetAbortProc Sets a programmer-supplied callback function that
Windows calls if a print job must be aborted.

CDC::SetArcDirection Sets the drawing direction to be used for arc and
rectangle functions.

CDC::SetAttribDC Sets m_hAttribDC , the attribute device context.

CDC::SetBkColor Sets the current background color.

CDC::SetBkMode Sets the background mode.

CDC::SetBoundsRect Controls the accumulation of bounding-rectangle
information for the specified device context.

NAME DESCRIPTION

CDC::SetBrushOrg Specifies the origin for the next brush selected into a
device context.

CDC::SetColorAdjustment Sets the color adjustment values for the device context
using the specified values.

CDC::SetDCBrushColor Sets the current brush color.

CDC::SetDCPenColor Sets the current pen color.

CDC::SetGraphicsMode Sets the current graphics mode for the specified device
context.

CDC::SetLayout Changes the layout of a device context (DC).

CDC::SetMapMode Sets the current mapping mode.

CDC::SetMapperFlags Alters the algorithm that the font mapper uses when it
maps logical fonts to physical fonts.

CDC::SetMiterLimit Sets the limit for the length of miter joins for the device
context.

CDC::SetOutputDC Sets m_hDC , the output device context.

CDC::SetPixel Sets the pixel at the specified point to the closest
approximation of the specified color.

CDC::SetPixelV Sets the pixel at the specified coordinates to the closest
approximation of the specified color. SetPixelV is faster
than SetPixel because it does not need to return the
color value of the point actually painted.

CDC::SetPolyFillMode Sets the polygon-filling mode.

CDC::SetROP2 Sets the current drawing mode.

CDC::SetStretchBltMode Sets the bitmap-stretching mode.

CDC::SetTextAlign Sets the text-alignment flags.

CDC::SetTextCharacterExtra Sets the amount of intercharacter spacing.

CDC::SetTextColor Sets the text color.

CDC::SetTextJustification Adds space to the break characters in a string.

CDC::SetViewportExt Sets the x- and y-extents of the viewport.

CDC::SetViewportOrg Sets the viewport origin.

CDC::SetWindowExt Sets the x- and y-extents of the associated window.

NAME DESCRIPTION

CDC::SetWindowOrg Sets the window origin of the device context.

CDC::SetWorldTransform Sets the current world-space to page-space
transformation.

CDC::StartDoc Informs the device driver that a new print job is starting.

CDC::StartPage Informs the device driver that a new page is starting.

CDC::StretchBlt Moves a bitmap from a source rectangle and device into
a destination rectangle, stretching or compressing the
bitmap if necessary to fit the dimensions of the
destination rectangle.

CDC::StrokeAndFillPath Closes any open figures in a path, strikes the outline of
the path by using the current pen, and fills its interior by
using the current brush.

CDC::StrokePath Renders the specified path by using the current pen.

CDC::TabbedTextOut Writes a character string at a specified location,
expanding tabs to the values specified in an array of tab-
stop positions.

CDC::TextOut Writes a character string at a specified location using the
currently selected font.

CDC::TransparentBlt Transfers a bit-block of color data from the specified
source device context into a destination device context,
rendering a specified color transparent in the transfer.

CDC::UpdateColors Updates the client area of the device context by matching
the current colors in the client area to the system palette
on a pixel-by-pixel basis.

CDC::WidenPath Redefines the current path as the area that would be
painted if the path were stroked using the pen currently
selected into the device context.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CDC::operator HDC Retrieves the handle of the device context.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDC::m_hAttribDC The attribute-device context used by this CDC object.

CDC::m_hDC The output-device context used by this CDC object.

NAME DESCRIPTION

Remarks

NOTENOTE

USES M_HATTRIBDC USES M_HDC

GetTextExtent GetOutputTextExtent

GetTabbedTextExtent GetOutputTabbedTextExtent

The CDC object provides member functions for working with a device context, such as a display or printer,
as well as members for working with a display context associated with the client area of a window.

Do all drawing through the member functions of a CDC object. The class provides member functions for
device-context operations, working with drawing tools, type-safe graphics device interface (GDI) object
selection, and working with colors and palettes. It also provides member functions for getting and setting
drawing attributes, mapping, working with the viewport, working with the window extent, converting
coordinates, working with regions, clipping, drawing lines, and drawing simple shapes, ellipses, and
polygons. Member functions are also provided for drawing text, working with fonts, using printer escapes,
scrolling, and playing metafiles.

To use a CDC object, construct it, and then call its member functions that parallel Windows functions that
use device contexts.

Under Windows 95/98, all screen coordinates are limited to 16 bits. Therefore, an int passed to a CDC member
function must lie in the range -32768 to 32767.

For specific uses, the Microsoft Foundation Class Library provides several classes derived from CDC .
CPaintDC encapsulates calls to BeginPaint and EndPaint . CClientDC manages a display context

associated with a window's client area. CWindowDC manages a display context associated with an entire
window, including its frame and controls. CMetaFileDC associates a device context with a metafile.

CDC provides two member functions, GetLayout and SetLayout, for reversing the layout of a device
context, which does not inherit its layout from a window. Such right-to-left orientation is necessary for
applications written for cultures, such as Arabic or Hebrew, where the character layout is not the European
standard.

CDC contains two device contexts, m_hDC and m_hAttribDC, which, on creation of a CDC object, refer to
the same device. CDC directs all output GDI calls to m_hDC and most attribute GDI calls to m_hAttribDC .
(An example of an attribute call is GetTextColor , while SetTextColor is an output call.)

For example, the framework uses these two device contexts to implement a CMetaFileDC object that will
send output to a metafile while reading attributes from a physical device. Print preview is implemented in
the framework in a similar fashion. You can also use the two device contexts in a similar way in your
application-specific code.

There are times when you may need text-metric information from both the m_hDC and m_hAttribDC

device contexts. The following pairs of functions provide this capability:

GetTextMetrics GetOutputTextMetrics

GetCharWidth GetOutputCharWidth

USES M_HATTRIBDC USES M_HDC

Inheritance Hierarchy

Requirements

CDC::AbortDoc

int AbortDoc();

Return ValueReturn Value

RemarksRemarks

For more information on CDC , see Device Contexts.

CObject

CDC

Header: afxwin.h

Terminates the current print job and erases everything the application has written to the device since the
last call to the StartDoc member function.

A value greater than or equal to 0 if successful, or a negative value if an error has occurred. The following
list shows common error values and their meanings:

SP_ERROR General error.

SP_OUTOFDISK Not enough disk space is currently available for spooling, and no more space will
become available.

SP_OUTOFMEMORY Not enough memory is available for spooling.

SP_USERABORT User terminated the job through the Print Manager.

This member function replaces the ABORTDOC printer escape.

AbortDoc should be used to terminate the following:

Printing operations that do not specify an abort function using SetAbortProc.

Printing operations that have not yet reached their first NEWFRAME or NEXTBAND escape call.

If an application encounters a printing error or a canceled print operation, it must not attempt to terminate
the operation by using either the EndDoc or AbortDoc member functions of class CDC . GDI automatically
terminates the operation before returning the error value.

If the application displays a dialog box to allow the user to cancel the print operation, it must call
AbortDoc before destroying the dialog box.

If Print Manager was used to start the print job, calling AbortDoc erases the entire spool job — the printer
receives nothing. If Print Manager was not used to start the print job, the data may have been sent to the

ExampleExample

CDC::AbortPath

BOOL AbortPath();

Return ValueReturn Value

RemarksRemarks

CDC::AddMetaFileComment

BOOL AddMetaFileComment(
 UINT nDataSize,
 const BYTE* pCommentData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::AlphaBlend

printer before AbortDoc was called. In this case, the printer driver would have reset the printer (when
possible) and closed the print job.

See the example for CDC::StartDoc.

Closes and discards any paths in the device context.

Nonzero if the function is successful; otherwise 0.

If there is an open path bracket in the device context, the path bracket is closed and the path is discarded.
If there is a closed path in the device context, the path is discarded.

Copies the comment from a buffer into a specified enhanced-format metafile.

nDataSize
Specifies the length of the comment buffer, in bytes.

pCommentData
Points to the buffer that contains the comment.

Nonzero if the function is successful; otherwise 0.

A comment may include any private information — for example, the source of the picture and the date it
was created. A comment should begin with an application signature, followed by the data. Comments
should not contain position-specific data. Position-specific data specifies the location of a record, and it
should not be included because one metafile may be embedded within another metafile. This function can
only be used with enhanced metafiles.

Call this member function to display bitmaps that have transparent or semitransparent pixels.

BOOL AlphaBlend(
 int xDest,
 int yDest,
 int nDestWidth,
 int nDestHeight,
 CDC* pSrcDC,
 int xSrc,
 int ySrc,
 int nSrcWidth,
 int nSrcHeight,
 BLENDFUNCTION blend);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::AngleArc

xDest
Specifies the x-coordinate, in logical units, of the upper-left corner of the destination rectangle.

yDest
Specifies the y-coordinate, in logical units, of the upper-left corner of the destination rectangle.

nDestWidth
Specifies the width, in logical units, of the destination rectangle.

nDestHeight
Specifies the height, in logical units, of the destination rectangle.

pSrcDC
A pointer to the source device context.

xSrc
Specifies the x-coordinate, in logical units, of the upper-left corner of the source rectangle.

ySrc
Specifies the y-coordinate, in logical units, of the upper-left corner of the source rectangle.

nSrcWidth
Specifies the width, in logical units, of the source rectangle.

nSrcHeight
Specifies the height, in logical units, of the source rectangle.

blend
Specifies a BLENDFUNCTION structure.

TRUE if successful; otherwise FALSE.

See AlphaBlend in the Windows SDK for more information.

Draws a line segment and an arc.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_blendfunction
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-alphablend

BOOL AngleArc(
 int x,
 int y,
 int nRadius,
 float fStartAngle,
 float fSweepAngle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::Arc

x
Specifies the logical x-coordinate of the center of the circle.

y
Specifies the logical y-coordinate of the center of the circle.

nRadius
Specifies the radius of the circle in logical units. This value must be positive.

fStartAngle
Specifies the starting angle in degrees relative to the x-axis.

fSweepAngle
Specifies the sweep angle in degrees relative to the starting angle.

Nonzero if successful; otherwise 0.

The line segment is drawn from the current position to the beginning of the arc. The arc is drawn along
the perimeter of a circle with the given radius and center. The length of the arc is defined by the given start
and sweep angles.

AngleArc moves the current position to the ending point of the arc. The arc drawn by this function may
appear to be elliptical, depending on the current transformation and mapping mode. Before drawing the
arc, this function draws the line segment from the current position to the beginning of the arc. The arc is
drawn by constructing an imaginary circle with the specified radius around the specified center point. The
starting point of the arc is determined by measuring counterclockwise from the x-axis of the circle by the
number of degrees in the start angle. The ending point is similarly located by measuring counterclockwise
from the starting point by the number of degrees in the sweep angle.

If the sweep angle is greater than 360 degrees the arc is swept multiple times. This function draws lines by
using the current pen. The figure is not filled.

Draws an elliptical arc.

BOOL Arc(
 int x1,
 int y1,
 int x2,
 int y2,
 int x3,
 int y3,
 int x4,
 int y4);

BOOL Arc(
 LPCRECT lpRect,
 POINT ptStart,
 POINT ptEnd);

ParametersParameters

Return ValueReturn Value

x1
Specifies the x-coordinate of the upper-left corner of the bounding rectangle (in logical units).

y1
Specifies the y-coordinate of the upper-left corner of the bounding rectangle (in logical units).

x2
Specifies the x-coordinate of the lower-right corner of the bounding rectangle (in logical units).

y2
Specifies the y-coordinate of the lower-right corner of the bounding rectangle (in logical units).

x3
Specifies the x-coordinate of the point that defines the arc's starting point (in logical units). This point does
not have to lie exactly on the arc.

y3
Specifies the y-coordinate of the point that defines the arc's starting point (in logical units). This point
does not have to lie exactly on the arc.

x4
Specifies the x-coordinate of the point that defines the arc's endpoint (in logical units). This point does not
have to lie exactly on the arc.

y4
Specifies the y-coordinate of the point that defines the arc's endpoint (in logical units). This point does not
have to lie exactly on the arc.

lpRect
Specifies the bounding rectangle (in logical units). You can pass either an LPRECT or a CRect object for
this parameter.

ptStart
Specifies the x- and y-coordinates of the point that defines the arc's starting point (in logical units). This
point does not have to lie exactly on the arc. You can pass either a POINT structure or a CPoint object for
this parameter.

ptEnd
Specifies the x- and y-coordinates of the point that defines the arc's ending point (in logical units). This
point does not have to lie exactly on the arc. You can pass either a POINT structure or a CPoint object for
this parameter.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

RemarksRemarks

ExampleExample

void CDCView::DrawArc(CDC* pDC)
{
 // Fill the client area with a thin circle. The circle's
 // interior is not filled. The circle's perimeter is
 // blue from 6 o'clock to 3 o'clock and red from 3
 // o'clock to 6 o'clock.

 // Get the client area.
 CRect rectClient;
 GetClientRect(rectClient);

 // Make a couple of pens.
 CPen penBlue;
 CPen penRed;
 CPen* pOldPen;

 penBlue.CreatePen(PS_SOLID | PS_COSMETIC, 1, RGB(0, 0, 255));
 penRed.CreatePen(PS_SOLID | PS_COSMETIC, 1, RGB(255, 0, 0));

 // Draw from 3 o'clock to 6 o'clock, counterclockwise,
 // in a blue pen.

 pOldPen = pDC->SelectObject(&penBlue);

 pDC->Arc(rectClient,
 CPoint(rectClient.right, rectClient.CenterPoint().y),
 CPoint(rectClient.CenterPoint().x, rectClient.right));

 // Draw from 6 o'clock to 3 o'clock, counterclockwise,
 // in a red pen.
 pDC->SelectObject(&penRed);

 // Keep the same parameters, but reverse start
 // and end points.
 pDC->Arc(rectClient,
 CPoint(rectClient.CenterPoint().x, rectClient.right),
 CPoint(rectClient.right, rectClient.CenterPoint().y));

 // Restore the previous pen.
 pDC->SelectObject(pOldPen);
}

CDC::ArcTo

Nonzero if the function is successful; otherwise 0.

The arc drawn by using the function is a segment of the ellipse defined by the specified bounding
rectangle.

The actual starting point of the arc is the point at which a ray drawn from the center of the bounding
rectangle through the specified starting point intersects the ellipse. The actual ending point of the arc is
the point at which a ray drawn from the center of the bounding rectangle through the specified ending
point intersects the ellipse. The arc is drawn in a counterclockwise direction. Since an arc is not a closed
figure, it is not filled. Both the width and height of the rectangle must be greater than 2 units and less than
32,767 units.

Draws an elliptical arc.

BOOL ArcTo(
 int x1,
 int y1,
 int x2,
 int y2,
 int x3,
 int y3,
 int x4,
 int y4);

BOOL ArcTo(
 LPCRECT lpRect,
 POINT ptStart,
 POINT ptEnd);

ParametersParameters

Return ValueReturn Value

x1
Specifies the x-coordinate of the upper-left corner of the bounding rectangle (in logical units).

y1
Specifies the y-coordinate of the upper-left corner of the bounding rectangle (in logical units).

x2
Specifies the x-coordinate of the lower-right corner of the bounding rectangle (in logical units).

y2
Specifies the y-coordinate of the lower-right corner of the bounding rectangle (in logical units).

x3
Specifies the x-coordinate of the point that defines the arc's starting point (in logical units). This point does
not have to lie exactly on the arc.

y3
Specifies the y-coordinate of the point that defines the arc's starting point (in logical units). This point
does not have to lie exactly on the arc.

x4
Specifies the x-coordinate of the point that defines the arc's endpoint (in logical units). This point does not
have to lie exactly on the arc.

y4
Specifies the y-coordinate of the point that defines the arc's endpoint (in logical units). This point does not
have to lie exactly on the arc.

lpRect
Specifies the bounding rectangle (in logical units). You can pass either a pointer to a RECT data structure
or a CRect object for this parameter.

ptStart
Specifies the x- and y-coordinates of the point that defines the arc's starting point (in logical units). This
point does not have to lie exactly on the arc. You can pass either a POINT data structure or a CPoint object
for this parameter.

ptEnd
Specifies the x- and y-coordinates of the point that defines the arc's ending point (in logical units). This
point does not have to lie exactly on the arc. You can pass either a POINT data structure or a CPoint

object for this parameter.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

RemarksRemarks

CDC::Attach

BOOL Attach(HDC hDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::BeginPath

BOOL BeginPath();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// This implementation uses GDI paths to draw the outline of
// some text in a TrueType font. The path is used to record the way
// the TrueType font would be drawn. Then, the function uses the data
// returned from CDC::GetPath() to draw the font--without filling it.
void CDCView::DrawPath(CDC* pDC)
{
 // Describe a 24-point truetype font of normal weight

Nonzero if the function is successful; otherwise 0.

This function is similar to CDC::Arc , except that the current position is updated. The points (x1, y1) and (
x2, y2) specify the bounding rectangle. An ellipse formed by the given bounding rectangle defines the
curve of the arc. The arc extends counterclockwise (the default arc direction) from the point where it
intersects the radial line from the center of the bounding rectangle to (x3, y3). The arc ends where it
intersects the radial line from the center of the bounding rectangle to (x4, y4). If the starting point and
ending point are the same, a complete ellipse is drawn.

A line is drawn from the current position to the starting point of the arc. If no error occurs, the current
position is set to the ending point of the arc. The arc is drawn using the current pen; it is not filled.

Use this member function to attach an hDC to the CDC object.

hDC
A Windows device context.

Nonzero if the function is successful; otherwise 0.

The hDC is stored in both m_hDC , the output device context, and in m_hAttribDC , the attribute device
context.

Opens a path bracket in the device context.

Nonzero if the function is successful; otherwise 0.

After a path bracket is open, an application can begin calling GDI drawing functions to define the points
that lie in the path. An application can close an open path bracket by calling the EndPath member
function. When an application calls BeginPath , any previous paths are discarded.

See BeginPath in the Windows SDK for a list of the drawing functions that define points in a path.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-beginpath

 LOGFONT lf;
 memset(&lf, 0, sizeof(lf));
 lf.lfHeight = -MulDiv(24, pDC->GetDeviceCaps(LOGPIXELSY), 72);
 lf.lfWeight = FW_NORMAL;
 lf.lfOutPrecision = OUT_TT_ONLY_PRECIS;

 // create and select it
 CFont newFont;
 if (!newFont.CreateFontIndirect(&lf))
 return;
 CFont* pOldFont = pDC->SelectObject(&newFont);

 // use a path to record how the text was drawn
 pDC->BeginPath();
 pDC->TextOut(10, 10, _T("Outline this!"));
 pDC->EndPath();

 // Find out how many points are in the path. Note that
 // for long strings or complex fonts, this number might be
 // gigantic!
 int nNumPts = pDC->GetPath(NULL, NULL, 0);
 if (nNumPts == 0)
 return;

 // Allocate memory to hold points and stroke types from
 // the path.
 LPPOINT lpPoints = NULL;
 LPBYTE lpTypes = NULL;
 try
 {
 lpPoints = new POINT[nNumPts];
 lpTypes = new BYTE[nNumPts];
 }
 catch (CException* pe)
 {
 delete [] lpPoints;
 lpPoints = NULL;
 delete [] lpTypes;
 lpTypes = NULL;
 pe->Delete();
 }
 if (lpPoints == NULL || lpTypes == NULL)
 return;

 // Now that we have the memory, really get the path data.
 nNumPts = pDC->GetPath(lpPoints, lpTypes, nNumPts);

 // If it worked, draw the lines. Windows 98 doesn't support
 // the PolyDraw API, so we use our own member function to do
 // similar work. If you're targeting only later versions of
 // Windows, you can use the PolyDraw() API and avoid the
 // COutlineView::PolyDraw() member function.

 if (nNumPts != -1)
 pDC->PolyDraw(lpPoints, lpTypes, nNumPts);

 // Release the memory we used
 delete [] lpPoints;
 delete [] lpTypes;

 // Put back the old font
 pDC->SelectObject(pOldFont);

 return;
}

 CDC::BitBlt

BOOL BitBlt(
 int x,
 int y,
 int nWidth,
 int nHeight,
 CDC* pSrcDC,
 int xSrc,
 int ySrc,
 DWORD dwRop);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Copies a bitmap from the source device context to this current device context.

x
Specifies the logical x-coordinate of the upper-left corner of the destination rectangle.

y
Specifies the logical y-coordinate of the upper-left corner of the destination rectangle.

nWidth
Specifies the width (in logical units) of the destination rectangle and source bitmap.

nHeight
Specifies the height (in logical units) of the destination rectangle and source bitmap.

pSrcDC
Pointer to a CDC object that identifies the device context from which the bitmap will be copied. It must be
NULL if dwRop specifies a raster operation that does not include a source.

xSrc
Specifies the logical x-coordinate of the upper-left corner of the source bitmap.

ySrc
Specifies the logical y-coordinate of the upper-left corner of the source bitmap.

dwRop
Specifies the raster operation to be performed. Raster-operation codes define how the GDI combines
colors in output operations that involve a current brush, a possible source bitmap, and a destination
bitmap. See BitBlt in the Windows SDK for a list of the raster-operation codes for dwRop and their
descriptions

For a complete list of raster-operation codes, see About Raster Operation Codes in the Windows SDK.

Nonzero if the function is successful; otherwise 0.

The application can align the windows or client areas on byte boundaries to ensure that the BitBlt

operations occur on byte-aligned rectangles. (Set the CS_BYTEALIGNWINDOW or
CS_BYTEALIGNCLIENT flags when you register the window classes.)

BitBlt operations on byte-aligned rectangles are considerably faster than BitBlt operations on
rectangles that are not byte aligned. If you want to specify class styles such as byte-alignment for your
own device context, you will have to register a window class rather than relying on the Microsoft
Foundation classes to do it for you. Use the global function AfxRegisterWndClass.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-bitblt
https://docs.microsoft.com/windows/desktop/gdi/raster-operation-codes

ExampleExample

CDC::CDC

CDC();

CDC::Chord

BOOL Chord(
 int x1,
 int y1,
 int x2,
 int y2,
 int x3,
 int y3,
 int x4,
 int y4);

BOOL Chord(
 LPCRECT lpRect,
 POINT ptStart,
 POINT ptEnd);

ParametersParameters

GDI transforms nWidth and nHeight, once by using the destination device context, and once by using the
source device context. If the resulting extents do not match, GDI uses the Windows StretchBlt function
to compress or stretch the source bitmap as necessary.

If destination, source, and pattern bitmaps do not have the same color format, the BitBlt function
converts the source and pattern bitmaps to match the destination. The foreground and background colors
of the destination bitmap are used in the conversion.

When the BitBlt function converts a monochrome bitmap to color, it sets white bits (1) to the
background color and black bits (0) to the foreground color. The foreground and background colors of the
destination device context are used. To convert color to monochrome, BitBlt sets pixels that match the
background color to white and sets all other pixels to black. BitBlt uses the foreground and background
colors of the color device context to convert from color to monochrome.

Note that not all device contexts support BitBlt . To check whether a given device context does support
BitBlt , use the GetDeviceCaps member function and specify the RASTERCAPS index.

See the example for CDC::CreateCompatibleDC.

Constructs a CDC object.

Draws a chord (a closed figure bounded by the intersection of an ellipse and a line segment).

x1
Specifies the x-coordinate of the upper-left corner of the chord's bounding rectangle (in logical units).

y1
Specifies the y-coordinate of the upper-left corner of the chord's bounding rectangle (in logical units).

x2
Specifies the x-coordinate of the lower-right corner of the chord's bounding rectangle (in logical units).

y2

Return ValueReturn Value

RemarksRemarks

ExampleExample

Specifies the y-coordinate of the lower-right corner of the chord's bounding rectangle (in logical units).

x3
Specifies the x-coordinate of the point that defines the chord's starting point (in logical units).

y3
Specifies the y-coordinate of the point that defines the chord's starting point (in logical units).

x4
Specifies the x-coordinate of the point that defines the chord's endpoint (in logical units).

y4
Specifies the y-coordinate of the point that defines the chord's endpoint (in logical units).

lpRect
Specifies the bounding rectangle (in logical units). You can pass either a LPRECT or a CRect object for this
parameter.

ptStart
Specifies the x- and y-coordinates of the point that defines the chord's starting point (in logical units). This
point does not have to lie exactly on the chord. You can pass either a POINT structure or a CPoint object
for this parameter.

ptEnd
Specifies the x- and y-coordinates of the point that defines the chord's ending point (in logical units). This
point does not have to lie exactly on the chord. You can pass either a POINT structure or a CPoint object
for this parameter.

Nonzero if the function is successful; otherwise 0.

The (x1, y1) and (x2, y2) parameters specify the upper-left and lower-right corners, respectively, of a
rectangle bounding the ellipse that is part of the chord. The (x3, y3) and (x4, y4) parameters specify the
endpoints of a line that intersects the ellipse. The chord is drawn by using the selected pen and filled by
using the selected brush.

The figure drawn by the Chord function extends up to, but does not include the right and bottom
coordinates. This means that the height of the figure is y2 - y1 and the width of the figure is x2 - x1.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

void CDCView::DrawChord(CDC* pDC)
{
 // Fill the client area with a circle. The circle is
 // blue and filled with blue, but has a chord cut out
 // of it from 3 o'clock to 6 o'clock. That chord is
 // red and filled with a red diagonal hatch.

 // Get the client area.
 CRect rectClient;
 GetClientRect(rectClient);

 // Make a couple of pens and similar brushes.
 CPen penBlue, penRed;
 CBrush brushBlue, brushRed;
 CBrush* pOldBrush;
 CPen* pOldPen;

 brushBlue.CreateSolidBrush(RGB(0, 0, 255));
 brushRed.CreateHatchBrush(HS_FDIAGONAL, RGB(255, 0, 0));
 penBlue.CreatePen(PS_SOLID | PS_COSMETIC, 1, RGB(0, 0, 255));
 penRed.CreatePen(PS_SOLID | PS_COSMETIC, 1, RGB(255, 0, 0));

 // Draw from 3 o'clock to 6 o'clock, counterclockwise,
 // in a blue pen with a solid blue fill.
 pOldPen = pDC->SelectObject(&penBlue);
 pOldBrush = pDC->SelectObject(&brushBlue);

 pDC->Chord(rectClient,
 CPoint(rectClient.right, rectClient.CenterPoint().y),
 CPoint(rectClient.CenterPoint().x, rectClient.right));

 // Draw the remaining quarter chord from 6 o'clock
 // to 3 o'clock, counterclockwise, in a red pen
 // with the hatched brush.
 pDC->SelectObject(&penRed);
 pDC->SelectObject(&brushRed);

 // Keep the same parameters, but reverse start and
 // end points.
 pDC->Chord(rectClient,
 CPoint(rectClient.CenterPoint().x, rectClient.right),
 CPoint(rectClient.right, rectClient.CenterPoint().y));

 // Restore the previous pen.
 pDC->SelectObject(pOldPen);
}

CDC::CloseFigure

BOOL CloseFigure();

Return ValueReturn Value

RemarksRemarks

Closes an open figure in a path.

Nonzero if the function is successful; otherwise 0.

The function closes the figure by drawing a line from the current position to the first point of the figure
(usually, the point specified by the most recent call to the MoveTo member function) and connects the
lines by using the line join style. If a figure is closed by using the LineTo member function instead of
CloseFigure , end caps are used to create the corner instead of a join. CloseFigure should only be called if

 CDC::CreateCompatibleDC

BOOL CreateCompatibleDC(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

there is an open path bracket in the device context.

A figure in a path is open unless it is explicitly closed by using this function. (A figure can be open even if
the current point and the starting point of the figure are the same.) Any line or curve added to the path
after CloseFigure starts a new figure.

Creates a memory device context that is compatible with the device specified by pDC.

pDC
A pointer to a device context. If pDC is NULL, the function creates a memory device context that is
compatible with the system display.

Nonzero if the function is successful; otherwise 0.

A memory device context is a block of memory that represents a display surface. It can be used to prepare
images in memory before copying them to the actual device surface of the compatible device.

When a memory device context is created, GDI automatically selects a 1-by-1 monochrome stock bitmap
for it. GDI output functions can be used with a memory device context only if a bitmap has been created
and selected into that context.

This function can only be used to create compatible device contexts for devices that support raster
operations. See the CDC::BitBlt member function for information regarding bit-block transfers between
device contexts. To determine whether a device context supports raster operations, see the RC_BITBLT
raster capability in the member function CDC::GetDeviceCaps .

// This handler loads a bitmap from system resources,
// centers it in the view, and uses BitBlt() to paint the bitmap
// bits.
void CDCView::DrawBitmap(CDC* pDC)
{
 // load IDB_BITMAP1 from our resources
 CBitmap bmp;
 if (bmp.LoadBitmap(IDB_BITMAP1))
 {
 // Get the size of the bitmap
 BITMAP bmpInfo;
 bmp.GetBitmap(&bmpInfo);

 // Create an in-memory DC compatible with the
 // display DC we're using to paint
 CDC dcMemory;
 dcMemory.CreateCompatibleDC(pDC);

 // Select the bitmap into the in-memory DC
 CBitmap* pOldBitmap = dcMemory.SelectObject(&bmp);

 // Find a centerpoint for the bitmap in the client area
 CRect rect;
 GetClientRect(&rect);
 int nX = rect.left + (rect.Width() - bmpInfo.bmWidth) / 2;
 int nY = rect.top + (rect.Height() - bmpInfo.bmHeight) / 2;

 // Copy the bits from the in-memory DC into the on-
 // screen DC to actually do the painting. Use the centerpoint
 // we computed for the target offset.
 pDC->BitBlt(nX, nY, bmpInfo.bmWidth, bmpInfo.bmHeight, &dcMemory,
 0, 0, SRCCOPY);

 dcMemory.SelectObject(pOldBitmap);
 }
 else
 {
 TRACE0("ERROR: Where's IDB_BITMAP1?\n");
 }
}

CDC::CreateDC

BOOL CreateDC(
 LPCTSTR lpszDriverName,
 LPCTSTR lpszDeviceName,
 LPCTSTR lpszOutput,
 const void* lpInitData);

ParametersParameters

Creates a device context for the specified device.

lpszDriverName
Points to a null-terminated string that specifies the filename (without extension) of the device driver (for
example, "EPSON"). You can also pass a CString object for this parameter.

lpszDeviceName
Points to a null-terminated string that specifies the name of the specific device to be supported (for
example, "EPSON FX-80"). The lpszDeviceName parameter is used if the module supports more than one
device. You can also pass a CString object for this parameter.

Return ValueReturn Value

RemarksRemarks

CDC::CreateIC

BOOL CreateIC(
 LPCTSTR lpszDriverName,
 LPCTSTR lpszDeviceName,
 LPCTSTR lpszOutput,
 const void* lpInitData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpszOutput
Points to a null-terminated string that specifies the file or device name for the physical output medium
(file or output port). You can also pass a CString object for this parameter.

lpInitData
Points to a DEVMODE structure containing device-specific initialization data for the device driver. The
Windows DocumentProperties function retrieves this structure filled in for a given device. The lpInitData
parameter must be NULL if the device driver is to use the default initialization (if any) specified by the
user through the Control Panel.

Nonzero if the function is successful; otherwise 0.

The PRINT.H header file is required if the DEVMODE structure is used.

Device names follow these conventions: an ending colon (:) is recommended, but optional. Windows strips
the terminating colon so that a device name ending with a colon is mapped to the same port as the same
name without a colon. The driver and port names must not contain leading or trailing spaces. GDI output
functions cannot be used with information contexts.

Creates an information context for the specified device.

lpszDriverName
Points to a null-terminated string that specifies the filename (without extension) of the device driver (for
example, "EPSON"). You can pass a CString object for this parameter.

lpszDeviceName
Points to a null-terminated string that specifies the name of the specific device to be supported (for
example, "EPSON FX-80"). The lpszDeviceName parameter is used if the module supports more than one
device. You can pass a CString object for this parameter.

lpszOutput
Points to a null-terminated string that specifies the file or device name for the physical output medium
(file or port). You can pass a CString object for this parameter.

lpInitData
Points to device-specific initialization data for the device driver. The lpInitData parameter must be NULL if
the device driver is to use the default initialization (if any) specified by the user through the Control Panel.
See CreateDC for the data format for device-specific initialization.

Nonzero if successful; otherwise 0.

The information context provides a fast way to get information about the device without creating a device

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea

CDC::DeleteDC

BOOL DeleteDC();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDC::DeleteTempMap

static void PASCAL DeleteTempMap();

CDC::Detach

HDC Detach();

Return ValueReturn Value

context.

Device names follow these conventions: an ending colon (:) is recommended, but optional. Windows strips
the terminating colon so that a device name ending with a colon is mapped to the same port as the same
name without a colon. The driver and port names must not contain leading or trailing spaces. GDI output
functions cannot be used with information contexts.

In general, do not call this function; the destructor will do it for you.

Nonzero if the function completed successfully; otherwise 0.

The DeleteDC member function deletes the Windows device contexts that are associated with m_hDC in
the current CDC object. If this CDC object is the last active device context for a given device, the device is
notified and all storage and system resources used by the device are released.

An application should not call DeleteDC if objects have been selected into the device context. Objects
must first be selected out of the device context before it is deleted.

An application must not delete a device context whose handle was obtained by calling CWnd::GetDC.
Instead, it must call CWnd::ReleaseDC to free the device context. The CClientDC and CWindowDC classes
are provided to wrap this functionality.

The DeleteDC function is generally used to delete device contexts created with CreateDC, CreateIC, or
CreateCompatibleDC.

See the example for CPrintDialog::GetPrinterDC.

Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes any temporary CDC objects
created by FromHandle , but does not destroy the device context handles (hDC s) temporarily associated
with the CDC objects.

Call this function to detach m_hDC (the output device context) from the CDC object and set both m_hDC

and m_hAttribDC to NULL.

A Windows device context.

CDC::DPtoHIMETRIC

void DPtoHIMETRIC(LPSIZE lpSize) const;

ParametersParameters

RemarksRemarks

CDC::DPtoLP

void DPtoLP(
 LPPOINT lpPoints,
 int nCount = 1) const;

void DPtoLP(LPRECT lpRect) const;
void DPtoLP(LPSIZE lpSize) const;

ParametersParameters

RemarksRemarks

CDC::Draw3dRect

Use this function when you give HIMETRIC sizes to OLE, converting pixels to HIMETRIC.

lpSize
Points to a S IZE structure or CSize object.

If the mapping mode of the device context object is MM_LOENGLISH, MM_HIENGLISH,
MM_LOMETRIC, or MM_HIMETRIC, then the conversion is based on the number of pixels in the physical
inch. If the mapping mode is one of the other non-constrained modes (e.g., MM_TEXT), then the
conversion is based on the number of pixels in the logical inch.

Converts device units into logical units.

lpPoints
Points to an array of POINT structures or CPoint objects.

nCount
The number of points in the array.

lpRect
Points to a RECT structure or CRect object. This parameter is used for the simple case of converting one
rectangle from device points to logical points.

lpSize
Points to a S IZE structure or CSize object.

The function maps the coordinates of each point, or dimension of a size, from the device coordinate
system into GDI's logical coordinate system. The conversion depends on the current mapping mode and
the settings of the origins and extents for the device's window and viewport.

Call this member function to draw a three-dimensional rectangle.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize

void Draw3dRect(
 LPCRECT lpRect,
 COLORREF clrTopLeft,
 COLORREF clrBottomRight);

void Draw3dRect(
 int x,
 int y,
 int cx,
 int cy,
 COLORREF clrTopLeft,
 COLORREF clrBottomRight);

ParametersParameters

RemarksRemarks

ExampleExample

lpRect
Specifies the bounding rectangle (in logical units). You can pass either a pointer to a RECT structure or a
CRect object for this parameter.

clrTopLeft
Specifies the color of the top and left sides of the three-dimensional rectangle.

clrBottomRight
Specifies the color of the bottom and right sides of the three-dimensional rectangle.

x
Specifies the logical x-coordinate of the upper-left corner of the three-dimensional rectangle.

y
Specifies the logical y-coordinate of the upper-left corner of the three-dimensional rectangle.

cx
Specifies the width of the three-dimensional rectangle.

cy
Specifies the height of the three-dimensional rectangle.

The rectangle will be drawn with the top and left sides in the color specified by clrTopLeft and the bottom
and right sides in the color specified by clrBottomRight.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

void CDCView::Draw3dRect(CDC* pDC)
{
 // get the client area
 CRect rect;
 GetClientRect(rect);

 // shrink our rect 20 pixels on all sides
 rect.DeflateRect(20, 20);

 // draw a rectangle with red top and left sides, and
 // green right and bottom sides.
 pDC->Draw3dRect(rect, RGB(255, 0, 0), RGB(0, 255, 0));

 // This call to the four-integer override would draw
 // the same rectangle with a little less convenience:

 // pDC->Draw3dRect(rect.left, rect.top, rect.Width(), rect.Height(),
 // RGB(255, 0, 0), RGB(0, 255, 0));
}

CDC::DrawDragRect

void DrawDragRect(
 LPCRECT lpRect,
 SIZE size,
 LPCRECT lpRectLast,
 SIZE sizeLast,
 CBrush* pBrush = NULL,
 CBrush* pBrushLast = NULL);

ParametersParameters

RemarksRemarks

Call this member function repeatedly to redraw a drag rectangle.

lpRect
Points to a RECT structure or a CRect object that specifies the logical coordinates of a rectangle — in this
case, the end position of the rectangle being redrawn.

size
Specifies the displacement from the top-left corner of the outer border to the top-left corner of the inner
border (that is, the thickness of the border) of a rectangle.

lpRectLast
Points to a RECT structure or a CRect object that specifies the logical coordinates of the position of a
rectangle — in this case, the original position of the rectangle being redrawn.

sizeLast
Specifies the displacement from the top-left corner of the outer border to the top-left corner of the inner
border (that is, the thickness of the border) of the original rectangle being redrawn.

pBrush
Pointer to a brush object. Set to NULL to use the default halftone brush.

pBrushLast
Pointer to the last brush object used. Set to NULL to use the default halftone brush.

Call it in a loop as you sample mouse position, in order to give visual feedback. When you call
DrawDragRect , the previous rectangle is erased and a new one is drawn. For example, as the user drags a

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CDC::DrawEdge

BOOL DrawEdge(
 LPRECT lpRect,
 UINT nEdge,
 UINT nFlags);

ParametersParameters

Return ValueReturn Value

CDC::DrawEscape

int DrawEscape(
 int nEscape,
 int nInputSize,
 LPCSTR lpszInputData);

ParametersParameters

Return ValueReturn Value

rectangle across the screen, DrawDragRect will erase the original rectangle and redraw a new one in its
new position. By default, DrawDragRect draws the rectangle by using a halftone brush to eliminate flicker
and to create the appearance of a smoothly moving rectangle.

The first time you call DrawDragRect , the lpRectLast parameter should be NULL.

Call this member function to draw the edges of a rectangle of the specified type and style.

lpRect
A pointer to a RECT structure that contains the logical coordinates of the rectangle.

nEdge
Specifies the type of inner and outer edge to draw. This parameter must be a combination of one inner-
border flag and one outer-border flag. See DrawEdge in the Windows SDK for a table of the parameter's
types.

nFlags
The flags that specify the type of border to be drawn. See DrawEdge in the Windows SDK for a table of the
parameter's values. For diagonal lines, the BF_RECT flags specify the end point of the vector bounded by
the rectangle parameter.

Nonzero if successful; otherwise 0.

Accesses drawing capabilities of a video display that are not directly available through the graphics device
interface (GDI).

nEscape
Specifies the escape function to be performed.

nInputSize
Specifies the number of bytes of data pointed to by the lpszInputData parameter.

lpszInputData
Points to the input structure required for the specified escape.

Specifies the outcome of the function. Greater than zero if successful, except for the
QUERYESCSUPPORT draw escape, which checks for implementation only; or zero if the escape is not

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawedge

RemarksRemarks

CDC::DrawFocusRect

void DrawFocusRect(LPCRECT lpRect);

ParametersParameters

RemarksRemarks

C a u t i o nC a u t i o n

CDC::DrawFrameControl

BOOL DrawFrameControl(
 LPRECT lpRect,
 UINT nType,
 UINT nState);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

implemented; or less than zero if an error occurred.

When an application calls DrawEscape , the data identified by nInputSize and lpszInputData is passed
directly to the specified display driver.

Draws a rectangle in the style used to indicate that the rectangle has the focus.

lpRect
Points to a RECT structure or a CRect object that specifies the logical coordinates of the rectangle to be
drawn.

Since this is a Boolean XOR function, calling this function a second time with the same rectangle removes
the rectangle from the display. The rectangle drawn by this function cannot be scrolled. To scroll an area
containing a rectangle drawn by this function, first call DrawFocusRect to remove the rectangle from the
display, then scroll the area, and then call DrawFocusRect again to draw the rectangle in the new position.

DrawFocusRect works only in MM_TEXT mode. In other modes, this function does not draw the focus
rectangle correctly, but it does not return error values.

Call this member function to draw a frame control of the specified type and style.

lpRect
A pointer to a RECT structure that contains the logical coordinates of the rectangle.

nType
Specifies the type of frame control to draw. See the uType parameter in DrawFrameControl in the
Windows SDK for a list of this parameter's possible values.

nState
Specifies the initial state of the frame control. Can be one or more of the values described for the uState
parameter in DrawFrameControl in the Windows SDK. Use the nState value DFCS_ADJUSTRECT to adjust
the bounding rectangle to exclude the surrounding edge of the push button.

Nonzero if successful; otherwise 0.

In several cases, nState depends on the nType parameter. The following list shows the relationship

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawframecontrol

ExampleExample

between the four nType values and nState:

DFC_BUTTON

DFCS_BUTTON3STATE Three-state button

DFCS_BUTTONCHECK Check box

DFCS_BUTTONPUSH Push button

DFCS_BUTTONRADIO Radio button

DFCS_BUTTONRADIOIMAGE Image for radio button (nonsquare needs image)

DFCS_BUTTONRADIOMASK Mask for radio button (nonsquare needs mask)

DFC_CAPTION

DFCS_CAPTIONCLOSE Close button

DFCS_CAPTIONHELP Help button

DFCS_CAPTIONMAX Maximize button

DFCS_CAPTIONMIN Minimize button

DFCS_CAPTIONRESTORE Restore button

DFC_MENU

DFCS_MENUARROW Submenu arrow

DFCS_MENUBULLET Bullet

DFCS_MENUCHECK Check mark

DFC_SCROLL

DFCS_SCROLLCOMBOBOX Combo box scroll bar

DFCS_SCROLLDOWN Down arrow of scroll bar

DFCS_SCROLLLEFT Left arrow of scroll bar

DFCS_SCROLLRIGHT Right arrow of scroll bar

DFCS_SCROLLSIZEGRIP Size grip in bottom-right corner of window

DFCS_SCROLLUP Up arrow of scroll bar

This code draws the size gripper in the bottom-right corner of your window. It's appropriate for the
OnPaint handler of a dialog box, which has no styles and normally doesn't contain other controls (like a

status bar) that may give it a size gripper.

void CDCView::DrawFC(CDC* pDC)
{
 CRect rc;
 GetClientRect(&rc);

 rc.left = rc.right - ::GetSystemMetrics(SM_CXHSCROLL);
 rc.top = rc.bottom - ::GetSystemMetrics(SM_CYVSCROLL);

 pDC->DrawFrameControl(rc, DFC_SCROLL, DFCS_SCROLLSIZEGRIP);
}

CDC::DrawIcon

BOOL DrawIcon(
 int x,
 int y,
 HICON hIcon);

BOOL DrawIcon(
 POINT point,
 HICON hIcon);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDC::DrawState

Draws an icon on the device represented by the current CDC object.

x
Specifies the logical x-coordinate of the upper-left corner of the icon.

y
Specifies the logical y-coordinate of the upper-left corner of the icon.

hIcon
Identifies the handle of the icon to be drawn.

point
Specifies the logical x- and y-coordinates of the upper-left corner of the icon. You can pass a POINT
structure or a CPoint object for this parameter.

Nonzero if the function completed successfully; otherwise 0.

The function places the icon's upper-left corner at the location specified by x and y. The location is subject
to the current mapping mode of the device context.

The icon resource must have been previously loaded by using the functions CWinApp::LoadIcon ,
CWinApp::LoadStandardIcon , or CWinApp::LoadOEMIcon . The MM_TEXT mapping mode must be selected prior

to using this function.

See the example for CWnd::IsIconic.

Call this member function to display an image and apply a visual effect to indicate a state, such as a
disabled or default state.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

NOTENOTE
For all nFlag states except DSS_NORMAL, the image is converted to monochrome before the visual effect is
applied.

BOOL DrawState(
 CPoint pt,
 CSize size,
 HBITMAP hBitmap,
 UINT nFlags,
 HBRUSH hBrush = NULL);

BOOL DrawState(
 CPoint pt,
 CSize size,
 CBitmap* pBitmap,
 UINT nFlags,
 CBrush* pBrush = NULL);

BOOL DrawState(
 CPoint pt,
 CSize size,
 HICON hIcon,
 UINT nFlags,
 HBRUSH hBrush = NULL);

BOOL DrawState(
 CPoint pt,
 CSize size,
 HICON hIcon,
 UINT nFlags,
 CBrush* pBrush = NULL);

BOOL DrawState(
 CPoint pt,
 CSize size,
 LPCTSTR lpszText,
 UINT nFlags,
 BOOL bPrefixText = TRUE,
 int nTextLen = 0,
 HBRUSH hBrush = NULL);

BOOL DrawState(
 CPoint pt,
 CSize size,
 LPCTSTR lpszText,
 UINT nFlags,
 BOOL bPrefixText = TRUE,
 int nTextLen = 0,
 CBrush* pBrush = NULL);

BOOL DrawState(
 CPoint pt,
 CSize size,
 DRAWSTATEPROC lpDrawProc,
 LPARAM lData,
 UINT nFlags,
 HBRUSH hBrush = NULL);

BOOL DrawState(
 CPoint pt,
 CSize size,
 DRAWSTATEPROC lpDrawProc,
 LPARAM lData,
 UINT nFlags,
 CBrush* pBrush = NULL);

ParametersParameters
pt
Specifies the location of the image.

Return ValueReturn Value

CDC::DrawText

size
Specifies the size of the image.

hBitmap
A handle to a bitmap.

nFlags
Flags that specify the image type and state. See DrawState in the Windows SDK for the possible nFlags
types and states.

hBrush
A handle to a brush.

pBitmap
A pointer to a CBitmap object.

pBrush
A pointer to a CBrush object.

hIcon
A handle to an icon.

lpszText
A pointer to text.

bPrefixText
Text that may contain an accelerator mnemonic. The lData parameter specifies the address of the string,
and the nTextLen parameter specifies the length. If nTextLen is 0, the string is assumed to be null-
terminated.

nTextLen
Length of the text string pointed to by lpszText. If nTextLen is 0, the string is assumed to be null-
terminated.

lpDrawProc
A pointer to a callback function used to render an image. This parameter is required if the image type in
nFlags is DST_COMPLEX. It is optional and can be NULL if the image type is DST_TEXT. For all other
image types, this parameter is ignored. For more information about the callback function, see the
DrawStateProc function in the Windows SDK.

lData
Specifies information about the image. The meaning of this parameter depends on the image type.

Nonzero if successful; otherwise 0.

Call this member function to format text in the given rectangle. To specify additional formatting options,
use CDC::DrawTextEx.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawstatea
https://docs.microsoft.com/windows/desktop/api/winuser/nc-winuser-drawstateproc

virtual int DrawText(
 LPCTSTR lpszString,
 int nCount,
 LPRECT lpRect,
 UINT nFormat);

int DrawText(
 const CString& str,
 LPRECT lpRect,
 UINT nFormat);

ParametersParameters

NOTENOTE

Return ValueReturn Value

RemarksRemarks

lpszString
Points to the string to be drawn. If nCount is -1, the string must be null-terminated.

nCount
Specifies the number of chars in the string. If nCount is -1, then lpszString is assumed to be a long pointer
to a null-terminated string and DrawText computes the character count automatically.

lpRect
Points to a RECT structure or CRect object that contains the rectangle (in logical coordinates) in which the
text is to be formatted.

str
A CString object that contains the specified characters to be drawn.

nFormat
Specifies the method of formatting the text. It can be any combination of the values described for the
uFormat parameter in DrawText in the Windows SDK. (combine using the bitwise OR operator):

Some uFormat flag combinations can cause the passed string to be modified. Using DT_MODIFYSTRING with
either DT_END_ELLIPSIS or DT_PATH_ELLIPSIS may cause the string to be modified, causing an assertion in the
CString override. The values DT_CALCRECT, DT_EXTERNALLEADING, DT_INTERNAL, DT_NOCLIP, and

DT_NOPREFIX cannot be used with the DT_TABSTOP value.

The height of the text if the function is successful.

It formats text by expanding tabs into appropriate spaces, aligning text to the left, right, or center of the
given rectangle, and breaking text into lines that fit within the given rectangle. The type of formatting is
specified by nFormat.

This member function uses the device context's selected font, text color, and background color to draw the
text. Unless the DT_NOCLIP format is used, DrawText clips the text so that the text does not appear
outside the given rectangle. All formatting is assumed to have multiple lines unless the DT_SINGLELINE
format is given.

If the selected font is too large for the specified rectangle, the DrawText member function does not
attempt to substitute a smaller font.

If the DT_CALCRECT flag is specified, the rectangle specified by lpRect will be updated to reflect the width
and height needed to draw the text.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawtext

 CDC::DrawTextEx

virtual int DrawTextEx(
 LPTSTR lpszString,
 int nCount,
 LPRECT lpRect,
 UINT nFormat,
 LPDRAWTEXTPARAMS lpDTParams);

int DrawTextEx(
 const CString& str,
 LPRECT lpRect,
 UINT nFormat,
 LPDRAWTEXTPARAMS lpDTParams);

ParametersParameters

NOTENOTE

RemarksRemarks

If the TA_UPDATECP text-alignment flag has been set (see CDC::SetTextAlign), DrawText will display text
starting at the current position, rather than at the left of the given rectangle. DrawText will not wrap text
when the TA_UPDATECP flag has been set (that is, the DT_WORDBREAK flag will have no effect).

The text color may be set by CDC::SetTextColor.

Formats text in the given rectangle.

lpszString
Points to the string to be drawn. If nCount is -1, the string must be null terminated.

nCount
Specifies the number of chars in the string. If nCount is -1, then lpszString is assumed to be a long pointer
to a null-terminated string and DrawText computes the character count automatically.

lpRect
Points to a RECT structure or CRect object that contains the rectangle (in logical coordinates) in which the
text is to be formatted.

str
A CString object that contains the specified characters to be drawn.

nFormat
Specifies the method of formatting the text. It can be any combination of the values described for the
uFormat parameter in DrawText in the Windows SDK. (Combine using the bitwise OR operator):

Some uFormat flag combinations can cause the passed string to be modified. Using DT_MODIFYSTRING with
either DT_END_ELLIPSIS or DT_PATH_ELLIPSIS may cause the string to be modified, causing an assertion in the
CString override. The values DT_CALCRECT, DT_EXTERNALLEADING, DT_INTERNAL, DT_NOCLIP, and

DT_NOPREFIX cannot be used with the DT_TABSTOP value.

lpDTParams
Pointer to a DRAWTEXTPARAMS structure that specifies additional formatting options. This parameter
can be NULL.

It formats text by expanding tabs into appropriate spaces, aligning text to the left, right, or center of the
given rectangle, and breaking text into lines that fit within the given rectangle. The type of formatting is

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawtext
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawtextparams

CDC::Ellipse

BOOL Ellipse(
 int x1,
 int y1,
 int x2,
 int y2);

BOOL Ellipse(LPCRECT lpRect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::EndDoc

int EndDoc();

Return ValueReturn Value

RemarksRemarks

specified by nFormat and lpDTParams. For more information, see CDC::DrawText and DrawTextEx in the
Windows SDK.

The text color may be set by CDC::SetTextColor.

Draws an ellipse.

x1
Specifies the logical x-coordinate of the upper-left corner of the ellipse's bounding rectangle.

y1
Specifies the logical y-coordinate of the upper-left corner of the ellipse's bounding rectangle.

x2
Specifies the logical x-coordinate of the lower-right corner of the ellipse's bounding rectangle.

y2
Specifies the logical y-coordinate of the lower-right corner of the ellipse's bounding rectangle.

lpRect
Specifies the ellipse's bounding rectangle. You can also pass a CRect object for this parameter.

Nonzero if the function is successful; otherwise 0.

The center of the ellipse is the center of the bounding rectangle specified by x1, y1, x2, and y2, or lpRect.
The ellipse is drawn with the current pen, and its interior is filled with the current brush.

The figure drawn by this function extends up to, but does not include, the right and bottom coordinates.
This means that the height of the figure is y2 - y1 and the width of the figure is x2 - x1.

If either the width or the height of the bounding rectangle is 0, no ellipse is drawn.

Ends a print job started by a call to the StartDoc member function.

Greater than or equal to 0 if the function is successful, or a negative value if an error occurred.

This member function replaces the ENDDOC printer escape, and should be called immediately after

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawtextexa

ExampleExample

CDC::EndPage

int EndPage();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDC::EndPath

BOOL EndPath();

Return ValueReturn Value

ExampleExample

CDC::EnumObjects

int EnumObjects(
 int nObjectType,
 int (CALLBACK* lpfn)(
 LPVOID,
 LPARAM),
 LPARAM lpData);

ParametersParameters

finishing a successful print job.

If an application encounters a printing error or a canceled print operation, it must not attempt to terminate
the operation by using either EndDoc or AbortDoc. GDI automatically terminates the operation before
returning the error value.

This function should not be used inside metafiles.

See the example for CDC::StartDoc.

Informs the device that the application has finished writing to a page.

Greater than or equal to 0 if the function is successful, or a negative value if an error occurred.

This member function is typically used to direct the device driver to advance to a new page.

This member function replaces the NEWFRAME printer escape. Unlike NEWFRAME, this function is
always called after printing a page.

See the example for CDC::StartDoc.

Closes a path bracket and selects the path defined by the bracket into the device context.

Nonzero if the function is successful; otherwise 0.

See the example for CDC::BeginPath.

Enumerates the pens and brushes available in a device context.

nObjectType

Return ValueReturn Value

RemarksRemarks

ExampleExample

Specifies the object type. It can have the values OBJ_BRUSH or OBJ_PEN.

lpfn
Is the procedure-instance address of the application-supplied callback function. See the "Remarks" section
below.

lpData
Points to the application-supplied data. The data is passed to the callback function along with the object
information.

Specifies the last value returned by the callback function. Its meaning is user-defined.

For each object of a given type, the callback function that you pass is called with the information for that
object. The system calls the callback function until there are no more objects or the callback function
returns 0.

Note that new features of Microsoft Visual C++ let you use an ordinary function as the function passed to
EnumObjects . The address passed to EnumObjects is a pointer to a function exported with EXPORT and

with the Pascal calling convention. In protect-mode applications, you do not have to create this function
with the Windows MakeProcInstance function or free the function after use with the FreeProcInstance
Windows function.

You also do not have to export the function name in an EXPORTS statement in your application's
module-definition file. You can instead use the EXPORT function modifier, as in

int CALLBACK EXPORT AFunction (LPSTR, LPSTR);

to cause the compiler to emit the proper export record for export by name without aliasing. This works for
most needs. For some special cases, such as exporting a function by ordinal or aliasing the export, you still
need to use an EXPORTS statement in a module-definition file.

For compiling Microsoft Foundation programs, you will normally use the /GA and /GEs compiler options.
The /Gw compiler option is not used with the Microsoft Foundation classes. (If you do use the Windows
function MakeProcInstance , you will need to explicitly cast the returned function pointer from FARPROC
to the type needed in this API.) Callback registration interfaces are now type-safe (you must pass in a
function pointer that points to the right kind of function for the specific callback).

Also note that all callback functions must trap Microsoft Foundation exceptions before returning to
Windows, since exceptions cannot be thrown across callback boundaries. For more information about
exceptions, see the article Exceptions.

// print some info about a pen we're ready to enumerate
BOOL CALLBACK EnumObjectHandler(LPVOID lpLogObject, LPARAM /* lpData */)
{
 LOGPEN* pPen = (LOGPEN*) lpLogObject;

 switch (pPen->lopnStyle)
 {
 case PS_SOLID:
 TRACE0("PS_SOLID: ");
 break;
 case PS_DASH:
 TRACE0("PS_DASH: ");
 break;
 case PS_DOT:
 TRACE0("PS_DOT: ");
 break;
 case PS_DASHDOT:
 TRACE0("PS_DASHDOT: ");
 break;
 case PS_DASHDOTDOT:
 TRACE0("PS_DASHDOTDOT: ");
 break;
 case PS_NULL:
 TRACE0("PS_NULL: ");
 break;
 case PS_INSIDEFRAME:
 TRACE0("PS_INSIDEFRAME:");
 break;
 default:
 TRACE0("unk style:");
 }

 TRACE2("Color: 0x%8.8X, Width: %d\n", pPen->lopnColor, pPen->lopnWidth);
 return TRUE;
}

// get the default printer and enumerate the pens it has
void CDCView::OnEnumPens()
{
 CPrintDialog dlg(FALSE);
 dlg.GetDefaults();
 HDC hdc = dlg.GetPrinterDC();

 if (hdc != NULL)
 {
 CDC dc;
 dc.Attach(hdc);
 VERIFY(dc.EnumObjects(OBJ_PEN, EnumObjectHandler, 0));
 }
}

CDC::Escape
This member function is practically obsolete for Win32 programming.

virtual int Escape(
 int nEscape,
 int nCount,
 LPCSTR lpszInData,
 LPVOID lpOutData);

int Escape(
 int nEscape,
 int nInputSize,
 LPCSTR lpszInputData,
 int nOutputSize,
 LPSTR lpszOutputData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nEscape
Specifies the escape function to be performed.

For a complete list of escape functions, see Escape in the Windows SDK.

nCount
Specifies the number of bytes of data pointed to by lpszInData.

lpszInData
Points to the input data structure required for this escape.

lpOutData
Points to the structure that is to receive output from this escape. The lpOutData parameter is NULL if no
data is returned.

nInputSize
Specifies the number of bytes of data pointed to by the lpszInputData parameter.

lpszInputData
Points to the input structure required for the specified escape.

nOutputSize
Specifies the number of bytes of data pointed to by the lpszOutputData parameter.

lpszOutputData
Points to the structure that receives output from this escape. This parameter should be NULL if no data is
returned.

A positive value is returned if the function is successful, except for the QUERYESCSUPPORT escape,
which only checks for implementation. Zero is returned if the escape is not implemented. A negative value
is returned if an error occurred. The following are common error values:

SP_ERROR General error.

SP_OUTOFDISK Not enough disk space is currently available for spooling, and no more space will
become available.

SP_OUTOFMEMORY Not enough memory is available for spooling.

SP_USERABORT User ended the job through the Print Manager.

Of the original printer escapes, only QUERYESCSUPPORT is supported for Win32 applications. All other
printer escapes are obsolete and are supported only for compatibility with 16-bit applications.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-escape

 CDC::ExcludeClipRect

int ExcludeClipRect(
 int x1,
 int y1,
 int x2,
 int y2);

int ExcludeClipRect(LPCRECT lpRect);

ParametersParameters

Return ValueReturn Value

For Win32 programming, CDC now provides six member functions that supersede their corresponding
printer escapes:

CDC::AbortDoc

CDC::EndDoc

CDC::EndPage

CDC::SetAbortProc

CDC::StartDoc

CDC::StartPage

In addition, CDC::GetDeviceCaps supports Win32 indexes that supersede other printer escapes. See
GetDeviceCaps in the Windows SDK for more information.

This member function allows applications to access facilities of a particular device that are not directly
available through GDI.

Use the first version if your application uses predefined escape values. Use the second version if your
application defines private escape values. See ExtEscape in the Windows SDK for more information about
the second version.

Creates a new clipping region that consists of the existing clipping region minus the specified rectangle.

x1
Specifies the logical x-coordinate of the upper-left corner of the rectangle.

y1
Specifies the logical y-coordinate of the upper-left corner of the rectangle.

x2
Specifies the logical x-coordinate of the lower-right corner of the rectangle.

y2
Specifies the logical y-coordinate of the lower-right corner of the rectangle.

lpRect
Specifies the rectangle. Can also be a CRect object.

Specifies the new clipping region's type. It can be any of the following values:

COMPLEXREGION The region has overlapping borders.

ERROR No region was created.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getdevicecaps
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-extescape

RemarksRemarks

CDC::ExcludeUpdateRgn

int ExcludeUpdateRgn(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

CDC::ExtFloodFill

BOOL ExtFloodFill(
 int x,
 int y,
 COLORREF crColor,
 UINT nFillType);

ParametersParameters

NULLREGION The region is empty.

S IMPLEREGION The region has no overlapping borders.

The width of the rectangle, specified by the absolute value of x2 - x1, must not exceed 32,767 units. This
limit applies to the height of the rectangle as well.

Prevents drawing within invalid areas of a window by excluding an updated region in the window from
the clipping region associated with the CDC object.

pWnd
Points to the window object whose window is being updated.

The type of excluded region. It can be any one of the following values:

COMPLEXREGION The region has overlapping borders.

ERROR No region was created.

NULLREGION The region is empty.

S IMPLEREGION The region has no overlapping borders.

Fills an area of the display surface with the current brush.

x
Specifies the logical x-coordinate of the point where filling begins.

y
Specifies the logical y-coordinate of the point where filling begins.

crColor
Specifies the color of the boundary or of the area to be filled. The interpretation of crColor depends on the
value of nFillType.

nFillType
Specifies the type of flood fill to be performed. It must be either of the following values:

FLOODFILLBORDER The fill area is bounded by the color specified by crColor. This style is
identical to the filling performed by FloodFill .

Return ValueReturn Value

RemarksRemarks

CDC::ExtTextOut

virtual BOOL ExtTextOut(
 int x,
 int y,
 UINT nOptions,
 LPCRECT lpRect,
 LPCTSTR lpszString,
 UINT nCount,
 LPINT lpDxWidths);

BOOL ExtTextOut(
 int x,
 int y,
 UINT nOptions,
 LPCRECT lpRect,
 const CString& str,
 LPINT lpDxWidths);

ParametersParameters

FLOODFILLSURFACE The fill area is defined by the color specified by crColor. Filling continues
outward in all directions as long as the color is encountered. This style is useful for filling areas with
multicolored boundaries.

Nonzero if the function is successful; otherwise 0 if the filling could not be completed, if the given point
has the boundary color specified by crColor (if FLOODFILLBORDER was requested), if the given point
does not have the color specified by crColor (if FLOODFILLSURFACE was requested), or if the point is
outside the clipping region.

This member function offers more flexibility than FloodFill because you can specify a fill type in
nFillType.

If nFillType is set to FLOODFILLBORDER, the area is assumed to be completely bounded by the color
specified by crColor. The function begins at the point specified by x and y and fills in all directions to the
color boundary.

If nFillType is set to FLOODFILLSURFACE, the function begins at the point specified by x and y and
continues in all directions, filling all adjacent areas containing the color specified by crColor.

Only memory-device contexts and devices that support raster-display technology support ExtFloodFill .
For more information, see the GetDeviceCaps member function.

Call this member function to write a character string within a rectangular region using the currently
selected font.

x
Specifies the logical x-coordinate of the character cell for the first character in the specified string.

y
Specifies the logical y-coordinate of the top of the character cell for the first character in the specified
string.

nOptions
Specifies the rectangle type. This parameter can be one, both, or neither of the following values:

ETO_CLIPPED Specifies that text is clipped to the rectangle.

Return ValueReturn Value

RemarksRemarks

CDC::FillPath

BOOL FillPath();

Return ValueReturn Value

RemarksRemarks

CDC::FillRect

ETO_OPAQUE Specifies that the current background color fills the rectangle. (You can set and
query the current background color with the SetBkColor and GetBkColor member functions.)

lpRect
Points to a RECT structure that determines the dimensions of the rectangle. This parameter can be NULL.
You can also pass a CRect object for this parameter.

lpszString
Points to the specified character string to be drawn. You can also pass a CString object for this parameter.

nCount
Specifies the number of characters in the string.

lpDxWidths
Points to an array of values that indicate the distance between origins of adjacent character cells. For
instance, lpDxWidths[i] logical units will separate the origins of character cell i and character cell i + 1. If
lpDxWidths is NULL, ExtTextOut uses the default spacing between characters.

str
A CString object that contains the specified characters to be drawn.

Nonzero if the function is successful; otherwise 0.

The rectangular region can be opaque (filled with the current background color), and it can be a clipping
region.

If nOptions is 0 and lpRect is NULL, the function writes text to the device context without using a
rectangular region. By default, the current position is not used or updated by the function. If an application
needs to update the current position when it calls ExtTextOut , the application can call the CDC member
function SetTextAlign with nFlags set to TA_UPDATECP. When this flag is set, Windows ignores x and y
on subsequent calls to ExtTextOut and uses the current position instead. When an application uses
TA_UPDATECP to update the current position, ExtTextOut sets the current position either to the end of
the previous line of text or to the position specified by the last element of the array pointed to by
lpDxWidths, whichever is greater.

Closes any open figures in the current path and fills the path's interior by using the current brush and
polygon-filling mode.

Nonzero if the function is successful; otherwise 0.

After its interior is filled, the path is discarded from the device context.

Call this member function to fill a given rectangle using the specified brush.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

void FillRect(
 LPCRECT lpRect,
 CBrush* pBrush);

ParametersParameters

RemarksRemarks

CDC::FillRgn

BOOL FillRgn(
 CRgn* pRgn,
 CBrush* pBrush);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

lpRect
Points to a RECT structure that contains the logical coordinates of the rectangle to be filled. You can also
pass a CRect object for this parameter.

pBrush
Identifies the brush used to fill the rectangle.

The function fills the complete rectangle, including the left and top borders, but it does not fill the right
and bottom borders.

The brush needs to either be created using the CBrush member functions CreateHatchBrush,
CreatePatternBrush, and CreateSolidBrush, or retrieved by the GetStockObject Windows function.

When filling the specified rectangle, FillRect does not include the rectangle's right and bottom sides.
GDI fills a rectangle up to, but does not include, the right column and bottom row, regardless of the
current mapping mode. FillRect compares the values of the top , bottom , left , and right members
of the specified rectangle. If bottom is less than or equal to top , or if right is less than or equal to left

, the rectangle is not drawn.

FillRect is similar to CDC::FillSolidRect; however, FillRect takes a brush and therefore can be used to
fill a rectangle with a solid color, a dithered color, hatched brushes, or a pattern. FillSolidRect uses only
solid colors (indicated by a COLORREF parameter). FillRect usually is slower than FillSolidRect .

Fills the region specified by pRgn with the brush specified by pBrush.

pRgn
A pointer to the region to be filled. The coordinates for the given region are specified in logical units.

pBrush
Identifies the brush to be used to fill the region.

Nonzero if the function is successful; otherwise 0.

The brush must either be created using the CBrush member functions CreateHatchBrush ,
CreatePatternBrush , CreateSolidBrush , or be retrieved by GetStockObject .

See the example for CRgn::CreateRoundRectRgn.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CDC::FillSolidRect

void FillSolidRect(
 LPCRECT lpRect,
 COLORREF clr);

void FillSolidRect(
 int x,
 int y,
 int cx,
 int cy,
 COLORREF clr);

ParametersParameters

RemarksRemarks

NOTENOTE

CDC::FlattenPath

BOOL FlattenPath();

Return ValueReturn Value

Call this member function to fill the given rectangle with the specified solid color.

lpRect
Specifies the bounding rectangle (in logical units). You can pass either a pointer to a RECT data structure
or a CRect object for this parameter.

clr Specifies the color to be used to fill the rectangle.

x
Specifies the logical x-coordinate of the upper-left corner of the rectangle.

y
Specifies the logical y-coordinate of the upper-left corner of the destination rectangle.

cx
Specifies the width of the rectangle.

cy
Specifies the height of the rectangle.

FillSolidRect is very similar to CDC::FillRect; however, FillSolidRect uses only solid colors (indicated
by the COLORREF parameter), while FillRect takes a brush and therefore can be used to fill a rectangle
with a solid color, a dithered color, hatched brushes, or a pattern. FillSolidRect usually is faster than
FillRect .

When you call FillSolidRect , the background color, which was previously set using SetBkColor, is set to the
color indicated by clr.

Transforms any curves in the path selected into the current device context, and turns each curve into a
sequence of lines.

Nonzero if the function is successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CDC::FloodFill

BOOL FloodFill(
 int x,
 int y,
 COLORREF crColor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::FrameRect

void FrameRect(
 LPCRECT lpRect,
 CBrush* pBrush);

ParametersParameters

RemarksRemarks

Fills an area of the display surface with the current brush.

x
Specifies the logical x-coordinate of the point where filling begins.

y
Specifies the logical y-coordinate of the point where filling begins.

crColor
Specifies the color of the boundary.

Nonzero if the function is successful; otherwise 0 is returned if the filling could not be completed, the
given point has the boundary color specified by crColor, or the point is outside the clipping region.

The area is assumed to be bounded as specified by crColor. The FloodFill function begins at the point
specified by x and y and continues in all directions to the color boundary.

Only memory-device contexts and devices that support raster-display technology support the FloodFill

member function. For information about RC_BITBLT capability, see the GetDeviceCaps member function.

The ExtFloodFill function provides similar capability but greater flexibility.

Draws a border around the rectangle specified by lpRect.

lpRect
Points to a RECT structure or CRect object that contains the logical coordinates of the upper-left and
lower-right corners of the rectangle. You can also pass a CRect object for this parameter.

pBrush
Identifies the brush to be used for framing the rectangle.

The function uses the given brush to draw the border. The width and height of the border is always 1
logical unit.

If the rectangle's bottom coordinate is less than or equal to top , or if right is less than or equal to left

, the rectangle is not drawn.

The border drawn by FrameRect is in the same position as a border drawn by the Rectangle member

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CDC::FrameRgn

BOOL FrameRgn(
 CRgn* pRgn,
 CBrush* pBrush,
 int nWidth,
 int nHeight);

ParametersParameters

Return ValueReturn Value

ExampleExample

CDC::FromHandle

static CDC* PASCAL FromHandle(HDC hDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDC::GetArcDirection

function using the same coordinates (if Rectangle uses a pen that is 1 logical unit wide). The interior of
the rectangle is not filled by FrameRect .

Draws a border around the region specified by pRgn using the brush specified by pBrush.

pRgn
Points to the CRgn object that identifies the region to be enclosed in a border. The coordinates for the
given region are specified in logical units.

pBrush
Points to the CBrush object that identifies the brush to be used to draw the border.

nWidth
Specifies the width of the border in vertical brush strokes in device units.

nHeight
Specifies the height of the border in horizontal brush strokes in device units.

Nonzero if the function is successful; otherwise 0.

See the example for CRgn::CombineRgn.

Returns a pointer to a CDC object when given a handle to a device context.

hDC
Contains a handle to a Windows device context.

The pointer may be temporary and should not be stored beyond immediate use.

If a CDC object is not attached to the handle, a temporary CDC object is created and attached.

See the example for CPrintDialog::GetPrinterDC.

int GetArcDirection() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetAspectRatioFilter

CSize GetAspectRatioFilter() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetBkColor

COLORREF GetBkColor() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetBkMode

int GetBkMode() const;

Return ValueReturn Value

Returns the current arc direction for the device context.

Specifies the current arc direction, if successful. Following are the valid return values:

AD_COUNTERCLOCKWISE Arcs and rectangles drawn counterclockwise.

AD_CLOCKWISE Arcs and rectangles drawn clockwise.

If an error occurs, the return value is zero.

Arc and rectangle functions use the arc direction.

Retrieves the setting for the current aspect-ratio filter.

A CSize object representing the aspect ratio used by the current aspect ratio filter.

The aspect ratio is the ratio formed by a device's pixel width and height. Information about a device's
aspect ratio is used in the creation, selection, and display of fonts. Windows provides a special filter, the
aspect-ratio filter, to select fonts designed for a particular aspect ratio from all of the available fonts. The
filter uses the aspect ratio specified by the SetMapperFlags member function.

Returns the current background color.

An RGB color value.

If the background mode is OPAQUE, the system uses the background color to fill the gaps in styled lines,
the gaps between hatched lines in brushes, and the background in character cells. The system also uses
the background color when converting bitmaps between color and monochrome device contexts.

Returns the background mode.

RemarksRemarks

CDC::GetBoundsRect

UINT GetBoundsRect(
 LPRECT lpRectBounds,
 UINT flags);

ParametersParameters

Return ValueReturn Value

CDC::GetBrushOrg

CPoint GetBrushOrg() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetCharacterPlacement

The current background mode, which can be OPAQUE or TRANSPARENT.

The background mode defines whether the system removes existing background colors on the drawing
surface before drawing text, hatched brushes, or any pen style that is not a solid line.

Returns the current accumulated bounding rectangle for the specified device context.

lpRectBounds
Points to a buffer that will receive the current bounding rectangle. The rectangle is returned in logical
coordinates.

flags
Specifies whether the bounding rectangle is to be cleared after it is returned. This parameter should be
zero or set to the following value:

DCB_RESET Forces the bounding rectangle to be cleared after it is returned.

Specifies the current state of the bounding rectangle if the function is successful. It can be a combination
of the following values:

DCB_ACCUMULATE Bounding rectangle accumulation is occurring.

DCB_RESET Bounding rectangle is empty.

DCB_SET Bounding rectangle is not empty.

DCB_ENABLE Bounding accumulation is on.

DCB_DISABLE Bounding accumulation is off.

Retrieves the origin (in device units) of the brush currently selected for the device context.

The current origin of the brush (in device units) as a CPoint object.

The initial brush origin is at (0,0) of the client area. The return value specifies this point in device units
relative to the origin of the desktop window.

Retrieves various types of information on a character string.

DWORD GetCharacterPlacement(
 LPCTSTR lpString,
 int nCount,
 int nMaxExtent,
 LPGCP_RESULTS lpResults,
 DWORD dwFlags) const;

DWORD GetCharacterPlacement(
 CString& str,
 int nMaxExtent,
 LPGCP_RESULTS lpResults,
 DWORD dwFlags) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GetCharABCWidths

lpString
A pointer to the character string to process.

nCount
Specifies the length of the string. For the ANSI version, it is a BYTE count and for the Unicode function it
is a WORD count. For more information, see GetCharacterPlacement.

nMaxExtent
Specifies the maximum extent (in logical units) to which the string is processed. Characters that, if
processed, would exceed this extent are ignored. Computations for any required ordering or glyph arrays
apply only to the included characters. This parameter is used only if the GCP_MAXEXTENT value is
specified in the dwFlags parameter. As the function processes the input string, each character and its
extent is added to the output, extent, and other arrays only if the total extent has not yet exceeded the
maximum. Once the limit is reached, processing will stop.

lpResults
Pointer to a GCP_Results structure that receives the results of the function.

dwFlags
Specifies how to process the string into the required arrays. This parameter can be one or more of the
values listed in the dwFlags section of the GetCharacterPlacement topic.

str
A pointer to a CString object to process.

If the function succeeds, the return value is the width and height of the string in logical units.

If the function fails, the return value is zero.

This member function emulates the functionality of the function GetCharacterPlacement, as described in
the Windows SDK.

Retrieves the widths of consecutive characters in a specified range from the current TrueType font.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getcharacterplacementa
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taggcp_resultsa
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getcharacterplacementa
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getcharacterplacementa

BOOL GetCharABCWidths(
 UINT nFirstChar,
 UINT nLastChar,
 LPABC lpabc) const;

BOOL GetCharABCWidths(
 UINT nFirstChar,
 UINT nLastChar,
 LPABCFLOAT lpABCF) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GetCharABCWidthsI

nFirstChar
Specifies the first character in the range of characters from the current font for which character widths are
returned.

nLastChar
Specifies the last character in the range of characters from the current font for which character widths are
returned.

lpabc
Points to an array of ABC structures that receive the character widths when the function returns. This
array must contain at least as many ABC structures as there are characters in the range specified by the
nFirstChar and nLastChar parameters.

lpABCF
Points to an application-supplied buffer with an array of ABCFLOAT structures to receive the character
widths when the function returns. The widths returned by this function are in the IEEE floating-point
format.

Nonzero if the function is successful; otherwise 0.

The widths are returned in logical units. This function succeeds only with TrueType fonts.

The TrueType rasterizer provides "ABC" character spacing after a specific point size has been selected. "A"
spacing is the distance that is added to the current position before placing the glyph. "B" spacing is the
width of the black part of the glyph. "C" spacing is added to the current position to account for the white
space to the right of the glyph. The total advanced width is given by A + B + C.

When the GetCharABCWidths member function retrieves negative "A" or "C" widths for a character, that
character includes underhangs or overhangs.

To convert the ABC widths to font design units, an application should create a font whose height (as
specified in the lfHeight member of the LOGFONT structure) is equal to the value stored in the
ntmSizeEM member of the NEWTEXTMETRIC structure. (The value of the ntmSizeEM member can be

retrieved by calling the EnumFontFamilies Windows function.)

The ABC widths of the default character are used for characters that are outside the range of the currently
selected font.

To retrieve the widths of characters in non-TrueType fonts, applications should use the GetCharWidth
Windows function.

Retrieves the widths, in logical units, of consecutive glyph indices in a specified range from the current

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_abc
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_abcfloat
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagnewtextmetrica
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-enumfontfamiliesa
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getcharwidtha

BOOL GetCharABCWidthsI(
 UINT giFirst,
 UINT cgi,
 LPWORD pgi,
 LPABC lpabc) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GetCharWidth

BOOL GetCharWidth(
 UINT nFirstChar,
 UINT nLastChar,
 LPINT lpBuffer) const;

BOOL GetCharWidth(
 UINT nFirstChar,
 UINT nLastChar,
 float* lpFloatBuffer) const;

ParametersParameters

TrueType font.

giFirst
Specifies the first glyph index in the group of consecutive glyph indices from the current font. This
parameter is only used if the pgi parameter is NULL.

cgi
Specifies the number of glyph indices.

pgi
A pointer to an array containing glyph indices. If the value is NULL, the giFirst parameter is used instead.
The cgi parameter specifies the number of glyph indices in this array.

lpabc
Pointer to an array of ABC structures receiving the character widths. This array must contain at least as
many ABC structures as there are glyph indices specified by the cgi parameter.

Nonzero if the function is successful; otherwise 0.

This member function emulates the functionality of the function GetCharABCWidthsI, as described in the
Windows SDK.

Retrieves the widths of individual characters in a consecutive group of characters from the current font,
using m_hAttribDC , the input device context.

nFirstChar
Specifies the first character in a consecutive group of characters in the current font.

nLastChar
Specifies the last character in a consecutive group of characters in the current font.

lpBuffer
Points to a buffer that will receive the width values for a consecutive group of characters in the current
font.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_abc
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getcharabcwidthsi

Return ValueReturn Value

RemarksRemarks

CDC::GetCharWidthI

BOOL GetCharWidthI(
 UINT giFirst,
 UINT cgi,
 LPWORD pgi,
 LPINT lpBuffer) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GetClipBox

virtual int GetClipBox(LPRECT lpRect) const;

lpFloatBuffer
Points to a buffer to receive the character widths. The returned widths are in the 32-bit IEEE floating-point
format. (The widths are measured along the base line of the characters.)

Nonzero if the function is successful; otherwise 0.

For example, if nFirstChar identifies the letter 'a' and nLastChar identifies the letter 'z', the function
retrieves the widths of all lowercase characters.

The function stores the values in the buffer pointed to by lpBuffer. This buffer must be large enough to
hold all of the widths. That is, there must be at least 26 entries in the example given.

If a character in the consecutive group of characters does not exist in a particular font, it will be assigned
the width value of the default character.

Retrieves the widths, in logical coordinates, of consecutive glyph indices in a specified range from the
current font.

giFirst
Specifies the first glyph index in the group of consecutive glyph indices from the current font. This
parameter is only used if the pgi parameter is NULL.

cgi
Specifies the number of glyph indices.

pgi
A pointer to an array containing glyph indices. If the value is NULL, the giFirst parameter is used instead.
The cgi parameter specifies the number of glyph indices in this array.

lpBuffer
A pointer to a buffer that receives the widths.

Nonzero if the function is successful; otherwise 0.

This member function emulates the functionality of the function GetCharWidthI, as described in the
Windows SDK.

Retrieves the dimensions of the tightest bounding rectangle around the current clipping boundary.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getcharwidthi

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GetColorAdjustment

BOOL GetColorAdjustment(LPCOLORADJUSTMENT lpColorAdjust) const;

ParametersParameters

Return ValueReturn Value

CDC::GetCurrentBitmap

CBitmap* GetCurrentBitmap() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetCurrentBrush

CBrush* GetCurrentBrush() const;

Return ValueReturn Value

RemarksRemarks

lpRect
Points to the RECT structure or CRect object that is to receive the rectangle dimensions.

The clipping region's type. It can be any of the following values:

COMPLEXREGION Clipping region has overlapping borders.

ERROR Device context is not valid.

NULLREGION Clipping region is empty.

S IMPLEREGION Clipping region has no overlapping borders.

The dimensions are copied to the buffer pointed to by lpRect.

Retrieves the color adjustment values for the device context.

lpColorAdjust
Points to a COLORADJUSTMENT data structure to receive the color adjustment values.

Nonzero if the function is successful; otherwise 0.

Returns a pointer to the currently selected CBitmap object.

Pointer to a CBitmap object, if successful; otherwise NULL.

This member function may return temporary objects.

Returns a pointer to the currently selected CBrush object.

Pointer to a CBrush object, if successful; otherwise NULL.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagcoloradjustment

CDC::GetCurrentFont

CFont* GetCurrentFont() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetCurrentPalette

CPalette* GetCurrentPalette() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetCurrentPen

CPen* GetCurrentPen() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetCurrentPosition

CPoint GetCurrentPosition() const;

Return ValueReturn Value

RemarksRemarks

This member function may return temporary objects.

Returns a pointer to the currently selected CFont object.

Pointer to a CFont object, if successful; otherwise NULL.

This member function may return temporary objects.

Returns a pointer to the currently selected CPalette object.

Pointer to a CPalette object, if successful; otherwise NULL.

This member function may return temporary objects.

Returns a pointer to the currently selected CPen object.

Pointer to a CPen object, if successful; otherwise NULL.

This member function may return temporary objects.

Retrieves the current position (in logical coordinates).

The current position as a CPoint object.

The current position can be set with the MoveTo member function.

CDC::GetDCBrushColor

COLORREF GetDCBrushColor() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetDCPenColor

COLORREF GetDCPenColor() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetDeviceCaps

int GetDeviceCaps(int nIndex) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CDC::GetFontData

Retrieves the current brush color.

If the function succeeds, the return value is the COLORREF value for the current brush color.

If the function fails, the return value is CLR_INVALID.

This member function emulates the functionality of the function GetDCBrushColor, as described in the
Windows SDK.

Retrieves the current pen color.

If the function succeeds, the return value is the COLORREF value for the current pen color.

If the function fails, the return value is CLR_INVALID.

This member function utilizes the Win32 function GetDCPenColor, as described in the Windows SDK.

Retrieves a wide range of device-specific information about the display device.

nIndex
Specifies the type of information to return. See GetDeviceCaps in the Windows SDK for a list of values.

The value of the requested capability if the function is successful.

See the example for CPrintDialog::GetDefaults.

Retrieves font-metric information from a scalable font file.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getdcbrushcolor
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getdcpencolor
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getdevicecaps

DWORD GetFontData(
 DWORD dwTable,
 DWORD dwOffset,
 LPVOID lpData,
 DWORD cbData) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GetFontLanguageInfo

DWORD GetFontLanguageInfo() const;

Return ValueReturn Value

RemarksRemarks

dwTable
Specifies the name of the metric table to be returned. This parameter can be one of the metric tables
documented in the TrueType Font Files specification published by Microsoft Corporation. If this parameter
is 0, the information is retrieved starting at the beginning of the font file.

dwOffset
Specifies the offset from the beginning of the table at which to begin retrieving information. If this
parameter is 0, the information is retrieved starting at the beginning of the table specified by the dwTable
parameter. If this value is greater than or equal to the size of the table, GetFontData returns 0.

lpData
Points to a buffer that will receive the font information. If this value is NULL, the function returns the size
of the buffer required for the font data specified in the dwTable parameter.

cbData
Specifies the length, in bytes, of the information to be retrieved. If this parameter is 0, GetFontData

returns the size of the data specified in the dwTable parameter.

Specifies the number of bytes returned in the buffer pointed to by lpData if the function is successful;
otherwise -1.

The information to retrieve is identified by specifying an offset into the font file and the length of the
information to return.

An application can sometimes use the GetFontData member function to save a TrueType font with a
document. To do this, the application determines whether the font can be embedded and then retrieves
the entire font file, specifying 0 for the dwTable, dwOffset, and cbData parameters.

Applications can determine whether a font can be embedded by checking the otmfsType member of the
OUTLINETEXTMETRIC structure. If bit 1 of otmfsType is set, embedding is not permitted for the font. If
bit 1 is clear, the font can be embedded. If bit 2 is set, the embedding is read only.

If an application attempts to use this function to retrieve information for a non-TrueType font, the
GetFontData member function returns -1.

Returns information about the currently selected font for the specified display context.

The return value identifies characteristics of the currently selected font. For a complete listing of possible
values, see GetFontLanguageInfo.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_outlinetextmetrica
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getfontlanguageinfo

 CDC::GetGlyphOutline

DWORD GetGlyphOutline(
 UINT nChar,
 UINT nFormat,
 LPGLYPHMETRICS lpgm,
 DWORD cbBuffer,
 LPVOID lpBuffer,
 const MAT2* lpmat2) const;

ParametersParameters

VALUE MEANING

GGO_BITMAP Returns the glyph bitmap. When the function returns, the
buffer pointed to by lpBuffer contains a 1-bit-per-pixel
bitmap whose rows start on doubleword boundaries.

GGO_NATIVE Returns the curve data points in the rasterizer's native
format, using device units. When this value is specified,
any transformation specified in lpmat2 is ignored.

Return ValueReturn Value

This member function emulates the functionality of the function GetFontLanguageInfo, as described in
the Windows SDK.

Retrieves the outline curve or bitmap for an outline character in the current font.

nChar
Specifies the character for which information is to be returned.

nFormat
Specifies the format in which the function is to return information. It can be one of the following values, or
0:

When the value of nFormat is 0, the function fills in a GLYPHMETRICS structure but does not return
glyph-outline data.

lpgm
Points to a GLYPHMETRICS structure that describes the placement of the glyph in the character cell.

cbBuffer
Specifies the size of the buffer into which the function copies information about the outline character. If
this value is 0 and the nFormat parameter is either the GGO_BITMAP or GGO_NATIVE values, the
function returns the required size of the buffer.

lpBuffer
Points to a buffer into which the function copies information about the outline character. If nFormat
specifies the GGO_NATIVE value, the information is copied in the form of TTPOLYGONHEADER and
TTPOLYCURVE structures. If this value is NULL and nFormat is either the GGO_BITMAP or
GGO_NATIVE value, the function returns the required size of the buffer.

lpmat2
Points to a MAT2 structure that contains a transformation matrix for the character. This parameter cannot
be NULL, even when the GGO_NATIVE value is specified for nFormat.

The size, in bytes, of the buffer required for the retrieved information if cbBuffer is 0 or lpBuffer is NULL.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getfontlanguageinfo
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_glyphmetrics
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_mat2

RemarksRemarks

CDC::GetGraphicsMode

int GetGraphicsMode() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetHalftoneBrush

static CBrush* PASCAL GetHalftoneBrush();

Return ValueReturn Value

RemarksRemarks

CDC::GetKerningPairs

Otherwise, it is a positive value if the function is successful, or -1 if there is an error.

An application can rotate characters retrieved in bitmap format by specifying a 2-by-2 transformation
matrix in the structure pointed to by lpmat2.

A glyph outline is returned as a series of contours. Each contour is defined by a TTPOLYGONHEADER
structure followed by as many TTPOLYCURVE structures as are required to describe it. All points are
returned as POINTFX structures and represent absolute positions, not relative moves. The starting point
given by the pfxStart member of the TTPOLYGONHEADER structure is the point at which the outline
for a contour begins. The TTPOLYCURVE structures that follow can be either polyline records or spline
records. Polyline records are a series of points; lines drawn between the points describe the outline of the
character. Spline records represent the quadratic curves used by TrueType (that is, quadratic b-splines).

Retrieves the current graphics mode for the specified device context.

Returns the current graphics mode on success. For a list of the values that this method can return, see
GetGraphicsMode.

Returns 0 on failure.

To get extended error information, call GetLastError.

This method wraps the Windows GDI function GetGraphicsMode.

Call this member function to retrieve a halftone brush.

A pointer to a CBrush object if successful; otherwise NULL.

A halftone brush shows pixels that are alternately foreground and background colors to create a dithered
pattern. The following is an example of a dithered pattern created by a halftone brush.

Retrieves the character kerning pairs for the font that is currently selected in the specified device context.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagttpolygonheader
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagpointfx
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagttpolygonheader
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagttpolycurve
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getgraphicsmode
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getgraphicsmode

int GetKerningPairs(
 int nPairs,
 LPKERNINGPAIR lpkrnpair) const;

ParametersParameters

Return ValueReturn Value

CDC::GetLayout

DWORD GetLayout() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetMapMode

int GetMapMode() const;

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CDC::GetMiterLimit

nPairs
Specifies the number of KERNINGPAIR structures pointed to by lpkrnpair. The function will not copy
more kerning pairs than specified by nPairs.

lpkrnpair
Points to an array of KERNINGPAIR structures that receive the kerning pairs when the function returns. This
array must contain at least as many structures as specified by nPairs. If this parameter is NULL, the
function returns the total number of kerning pairs for the font.

Specifies the number of kerning pairs retrieved or the total number of kerning pairs in the font, if the
function is successful. Zero is returned if the function fails or there are no kerning pairs for the font.

Call this member function to determine the layout of the text and graphics for a device context, such as a
printer or a metafile.

If successful, the layout flags for the current device context. Otherwise, GDI_ERROR. For extended error
information, call GetLastError. For a list of the layout flags, see CDC::SetLayout.

The default layout is left to right.

Retrieves the current mapping mode.

The mapping mode.

For a description of the mapping modes, see the SetMapMode member function.

If you call SetLayout to change the DC to right-to-left layout, SetLayout automatically changes the mapping
mode to MM_ISOTROPIC. Consequently, any subsequent call to GetMapMode will return MM_ISOTROPIC.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagkerningpair
https://msdn.microsoft.com/library/windows/desktop/ms679360

float GetMiterLimit() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetNearestColor

COLORREF GetNearestColor(COLORREF crColor) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GetOutlineTextMetrics

UINT GetOutlineTextMetrics(
 UINT cbData,
 LPOUTLINETEXTMETRIC lpotm) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Returns the miter limit for the device context.

Nonzero if the function is successful; otherwise 0.

The miter limit is used when drawing geometric lines that have miter joins.

Returns the solid color that best matches a specified logical color.

crColor
Specifies the color to be matched.

An RGB (red, green, blue) color value that defines the solid color closest to the crColor value that the
device can represent.

The given device must be able to represent this color.

Retrieves metric information for TrueType fonts.

lpotm
Points to an array of OUTLINETEXTMETRIC structures. If this parameter is NULL, the function returns
the size of the buffer required for the retrieved metric data.

cbData
Specifies the size, in bytes, of the buffer to which information is returned.

lpotm
Points to an OUTLINETEXTMETRIC structure. If this parameter is NULL, the function returns the size of the
buffer required for the retrieved metric information.

Nonzero if the function is successful; otherwise 0.

The OUTLINETEXTMETRIC structure contains most of the font metric information provided with the
TrueType format, including a TEXTMETRIC structure. The last four members of the OUTLINETEXTMETRIC

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_outlinetextmetrica
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_outlinetextmetrica
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagtextmetrica

CDC::GetOutputCharWidth

BOOL GetOutputCharWidth(
 UINT nFirstChar,
 UINT nLastChar,
 LPINT lpBuffer) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GetOutputTabbedTextExtent

CSize GetOutputTabbedTextExtent(
 LPCTSTR lpszString,
 int nCount,
 int nTabPositions,
 LPINT lpnTabStopPositions) const;

CSize GetOutputTabbedTextExtent(
 const CString& str,
 int nTabPositions,
 LPINT lpnTabStopPositions) const;

ParametersParameters

structure are pointers to strings. Applications should allocate space for these strings in addition to the
space required for the other members. Because there is no system-imposed limit to the size of the strings,
the simplest method for allocating memory is to retrieve the required size by specifying NULL for lpotm
in the first call to the GetOutlineTextMetrics function.

Uses the output device context, m_hDC , and retrieves the widths of individual characters in a consecutive
group of characters from the current font.

nFirstChar
Specifies the first character in a consecutive group of characters in the current font.

nLastChar
Specifies the last character in a consecutive group of characters in the current font.

lpBuffer
Points to a buffer that will receive the width values for a consecutive group of characters in the current
font.

Nonzero if the function is successful; otherwise 0.

For example, if nFirstChar identifies the letter 'a' and nLastChar identifies the letter 'z', the function
retrieves the widths of all lowercase characters.

The function stores the values in the buffer pointed to by lpBuffer. This buffer must be large enough to
hold all of the widths; that is, there must be at least 26 entries in the example given.

If a character in the consecutive group of characters does not exist in a particular font, it will be assigned
the width value of the default character.

Call this member function to compute the width and height of a character string using m_hDC, the output
device context.

Return ValueReturn Value

RemarksRemarks

CDC::GetOutputTextExtent

CSize GetOutputTextExtent(
 LPCTSTR lpszString,
 int nCount) const;

CSize GetOutputTextExtent(const CString& str) const;

ParametersParameters

lpszString
Points to a character string to be measured. You can also pass a CString object for this parameter.

nCount
Specifies the number of characters in the string. If nCount is -1, the length is calculated.

nTabPositions
Specifies the number of tab-stop positions in the array pointed to by lpnTabStopPositions.

lpnTabStopPositions
Points to an array of integers containing the tab-stop positions in logical units. The tab stops must be
sorted in increasing order; the smallest x-value should be the first item in the array. Back tabs are not
allowed.

str
A CString object that contains the specified characters to be measured.

The dimensions of the string (in logical units) in a CSize object.

If the string contains one or more tab characters, the width of the string is based upon the tab stops
specified by lpnTabStopPositions. The function uses the currently selected font to compute the dimensions
of the string.

The current clipping region does not offset the width and height returned by the
GetOutputTabbedTextExtent function.

Since some devices do not place characters in regular cell arrays (that is, they kern the characters), the
sum of the extents of the characters in a string may not be equal to the extent of the string.

If nTabPositions is 0 and lpnTabStopPositions is NULL, tabs are expanded to eight average character
widths. If nTabPositions is 1, the tab stops will be separated by the distance specified by the first value in
the array to which lpnTabStopPositions points. If lpnTabStopPositions points to more than a single value, a
tab stop is set for each value in the array, up to the number specified by nTabPositions.

Call this member function to use the output device context, m_hDC, and compute the width and height of
a line of text, using the current font.

lpszString
Points to a string of characters. You can also pass a CString object for this parameter.

nCount
Specifies the number of characters in the string. If nCount is -1, the length is calculated.

str
A CString object that contains the specified characters to be measured.

Return ValueReturn Value

RemarksRemarks

CDC::GetOutputTextMetrics

BOOL GetOutputTextMetrics(LPTEXTMETRIC lpMetrics) const;

ParametersParameters

Return ValueReturn Value

CDC::GetPath

int GetPath(
 LPPOINT lpPoints,
 LPBYTE lpTypes,
 int nCount) const;

ParametersParameters

The dimensions of the string (in logical units) returned in a CSize object.

The current clipping region does not affect the width and height returned by GetOutputTextExtent .

Since some devices do not place characters in regular cell arrays (that is, they carry out kerning), the sum
of the extents of the characters in a string may not be equal to the extent of the string.

Retrieves the metrics for the current font using m_hDC , the output device context.

lpMetrics
Points to the TEXTMETRIC structure that receives the metrics.

Nonzero if the function is successful; otherwise 0.

Retrieves the coordinates defining the endpoints of lines and the control points of curves found in the
path that is selected into the device context.

lpPoints
Points to an array of POINT data structures or CPoint objects where the line endpoints and curve control
points are placed.

lpTypes
Points to an array of bytes where the vertex types are placed. Values are one of the following:

PT_MOVETO Specifies that the corresponding point in lpPoints starts a disjoint figure.

PT_LINETO Specifies that the previous point and the corresponding point in lpPoints are the
endpoints of a line.

PT_BEZIERTO Specifies that the corresponding point in lpPoints is a control point or ending point
for a Bzier curve.

PT_BEZIERTO types always occur in sets of three. The point in the path immediately preceding them
defines the starting point for the Bzier curve. The first two PT_BEZIERTO points are the control points,
and the third PT_BEZIERTO point is the end point (if hard-coded).

A PT_LINETO or PT_BEZIERTO type may be combined with the following flag (by using the bitwise
operator OR) to indicate that the corresponding point is the last point in a figure and that the figure
should be closed:

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagtextmetrica
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDC::GetPixel

COLORREF GetPixel(
 int x,
 int y) const;

COLORREF GetPixel(POINT point) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PT_CLOSEFIGURE Specifies that the figure is automatically closed after the corresponding line or
curve is drawn. The figure is closed by drawing a line from the line or curve endpoint to the point
corresponding to the last PT_MOVETO.

nCount
Specifies the total number of POINT data structures that may be placed in the lpPoints array. This value
must be the same as the number of bytes that may be placed in the lpTypes array.

If the nCount parameter is nonzero, the number of points enumerated. If nCount is 0, the total number of
points in the path (and GetPath writes nothing to the buffers). If nCount is nonzero and is less than the
number of points in the path, the return value is -1.

The device context must contain a closed path. The points of the path are returned in logical coordinates.
Points are stored in the path in device coordinates, so GetPath changes the points from device
coordinates to logical coordinates by using the inverse of the current transformation. The FlattenPath

member function may be called before GetPath , to convert all curves in the path into line segments.

See the example for CDC::BeginPath.

Retrieves the RGB color value of the pixel at the point specified by x and y.

x
Specifies the logical x-coordinate of the point to be examined.

y
Specifies the logical y-coordinate of the point to be examined.

point
Specifies the logical x- and y-coordinates of the point to be examined.

For either version of the function, an RGB color value for the color of the given point. It is -1 if the
coordinates do not specify a point in the clipping region.

The point must be in the clipping region. If the point is not in the clipping region, the function has no
effect and returns -1.

Not all devices support the GetPixel function. For more information, see the RC_BITBLT raster capability
under the GetDeviceCaps member function.

The GetPixel member function has two forms. The first takes two coordinate values; the second takes
either a POINT structure or a CPoint object.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

CDC::GetPolyFillMode

int GetPolyFillMode() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetROP2

int GetROP2() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetSafeHdc

HDC GetSafeHdc() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetStretchBltMode

int GetStretchBltMode() const;

Return ValueReturn Value

RemarksRemarks

Retrieves the current polygon-filling mode.

The current polygon-filled mode, ALTERNATE or WINDING, if the function is successful.

See the SetPolyFillMode member function for a description of the polygon-filling modes.

Retrieves the current drawing mode.

The drawing mode. For a list of the drawing mode values, see the SetROP2 member function.

The drawing mode specifies how the colors of the pen and the interior of filled objects are combined with
the color already on the display surface.

Call this member function to get m_hDC, the output device context.

A device context handle.

This member function also works with null pointers.

Retrieves the current bitmap-stretching mode.

The return value specifies the current bitmap-stretching mode — STRETCH_ANDSCANS,
STRETCH_DELETESCANS, or STRETCH_ORSCANS — if the function is successful.

The bitmap-stretching mode defines how information is removed from bitmaps that are stretched or
compressed by the StretchBlt member function.

 CDC::GetTabbedTextExtent

CSize GetTabbedTextExtent(
 LPCTSTR lpszString,
 int nCount,
 int nTabPositions,
 LPINT lpnTabStopPositions) const;

CSize GetTabbedTextExtent(
 const CString& str,
 int nTabPositions,
 LPINT lpnTabStopPositions) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The STRETCH_ANDSCANS and STRETCH_ORSCANS modes are typically used to preserve foreground
pixels in monochrome bitmaps. The STRETCH_DELETESCANS mode is typically used to preserve color
in color bitmaps.

Call this member function to compute the width and height of a character string using m_hAttribDC, the
attribute device context.

lpszString
Points to a character string. You can also pass a CString object for this parameter.

nCount
Specifies the number of characters in the string. If nCount is -1, the length is calculated.

nTabPositions
Specifies the number of tab-stop positions in the array pointed to by lpnTabStopPositions.

lpnTabStopPositions
Points to an array of integers containing the tab-stop positions in logical units. The tab stops must be
sorted in increasing order; the smallest x-value should be the first item in the array. Back tabs are not
allowed.

str
A CString object that contains the specified characters to be drawn.

The dimensions of the string (in logical units) in a CSize object.

If the string contains one or more tab characters, the width of the string is based upon the tab stops
specified by lpnTabStopPositions. The function uses the currently selected font to compute the dimensions
of the string.

The current clipping region does not offset the width and height returned by the GetTabbedTextExtent

function.

Since some devices do not place characters in regular cell arrays (that is, they kern the characters), the
sum of the extents of the characters in a string may not be equal to the extent of the string.

If nTabPositions is 0 and lpnTabStopPositions is NULL, tabs are expanded to eight times the average
character width. If nTabPositions is 1, the tab stops will be separated by the distance specified by the first
value in the array to which lpnTabStopPositions points. If lpnTabStopPositions points to more than a
single value, a tab stop is set for each value in the array, up to the number specified by nTabPositions.

CDC::GetTextAlign

UINT GetTextAlign() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetTextCharacterExtra

int GetTextCharacterExtra() const;

Return ValueReturn Value

RemarksRemarks

Retrieves the status of the text-alignment flags for the device context.

The status of the text-alignment flags. The return value is one or more of the following values:

TA_BASELINE Specifies alignment of the x-axis and the baseline of the chosen font within the
bounding rectangle.

TA_BOTTOM Specifies alignment of the x-axis and the bottom of the bounding rectangle.

TA_CENTER Specifies alignment of the y-axis and the center of the bounding rectangle.

TA_LEFT Specifies alignment of the y-axis and the left side of the bounding rectangle.

TA_NOUPDATECP Specifies that the current position is not updated.

TA_RIGHT Specifies alignment of the y-axis and the right side of the bounding rectangle.

TA_TOP Specifies alignment of the x-axis and the top of the bounding rectangle.

TA_UPDATECP Specifies that the current position is updated.

The text-alignment flags determine how the TextOut and ExtTextOut member functions align a string of
text in relation to the string's starting point. The text-alignment flags are not necessarily single-bit flags
and may be equal to 0. To test whether a flag is set, an application should follow these steps:

1. Apply the bitwise OR operator to the flag and its related flags, grouped as follows:

TA_LEFT, TA_CENTER, and TA_RIGHT

TA_BASELINE, TA_BOTTOM, and TA_TOP

TA_NOUPDATECP and TA_UPDATECP

2. Apply the bitwise-AND operator to the result and the return value of GetTextAlign .

3. Test for the equality of this result and the flag.

Retrieves the current setting for the amount of intercharacter spacing.

The amount of the intercharacter spacing.

GDI adds this spacing to each character, including break characters, when it writes a line of text to the
device context.

The default value for the amount of intercharacter spacing is 0.

CDC::GetTextColor

COLORREF GetTextColor() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetTextExtent

CSize GetTextExtent(
 LPCTSTR lpszString,
 int nCount) const;

CSize GetTextExtent(const CString& str) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GetTextExtentExPointI

Retrieves the current text color.

The current text color as an RGB color value.

The text color is the foreground color of characters drawn by using the GDI text-output member functions
TextOut, ExtTextOut, and TabbedTextOut.

Call this member function to compute the width and height of a line of text using the current font to
determine the dimensions.

lpszString
Points to a string of characters. You can also pass a CString object for this parameter.

nCount
Specifies the number of characters in the string.

str
A CString object that contains the specified characters.

The dimensions of the string (in logical units) in a CSize object.

The information is retrieved from m_hAttribDC, the attribute device context.

By default, GetTextExtent assumes the text for which it retrieves the dimension is set along a horizontal
line (that is, the escapement is 0). If you create a font specifying a non-zero escapement, you must convert
the angle of the text explicitly to get the dimensions of the string.

The current clipping region does not affect the width and height returned by GetTextExtent .

Since some devices do not place characters in regular cell arrays (that is, they carry out kerning), the sum
of the extents of the characters in a string may not be equal to the extent of the string.

Retrieves the number of characters in a specified string that will fit within a specified space and fills an
array with the text extent for each of those characters.

BOOL GetTextExtentExPointI(
 LPWORD pgiIn,
 int cgi,
 int nMaxExtent,
 LPINT lpnFit,
 LPINT alpDx,
 LPSIZE lpSize) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GetTextExtentPointI

BOOL GetTextExtentPointI(
 LPWORD pgiIn,
 int cgi,
 LPSIZE lpSize) const;

ParametersParameters

pgiIn
A pointer to an array of glyph indices for which extents are to be retrieved.

cgi
Specifies the number of glyphs in the array pointed to by pgiIn.

nMaxExtent
Specifies the maximum allowable width, in logical units, of the formatted string.

lpnFit
A pointer to an integer that receives a count of the maximum number of characters that will fit in the
space specified by nMaxExtent. When lpnFit is NULL, nMaxExtent is ignored.

alpDx
A pointer to an array of integers that receives partial glyph extents. Each element in the array gives the
distance, in logical units, between the beginning of the glyph indices array and one of the glyphs that fits
in the space specified by nMaxExtent. Although this array should have at least as many elements as glyph
indices specified by cgi, the function fills the array with extents only for as many glyph indices as are
specified by lpnFit. If lpnDx is NULL, the function does not compute partial string widths.

lpSize
Pointer to a S IZE structure that receives the dimensions of the glyph indices array, in logical units. This
value cannot be NULL.

Nonzero if the function is successful; otherwise 0.

This member function emulates the functionality of the function GetTextExtentExPointI, as described in the
Windows SDK.

Retrieves the width and height of the specified array of glyph indices.

pgiIn
A pointer to an array of glyph indices for which extents are to be retrieved.

cgi
Specifies the number of glyphs in the array pointed to by pgiIn.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-gettextextentexpointi

Return ValueReturn Value

RemarksRemarks

CDC::GetTextFace

int GetTextFace(
 int nCount,
 LPTSTR lpszFacename) const;

int GetTextFace(CString& rString) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GetTextMetrics

BOOL GetTextMetrics(LPTEXTMETRIC lpMetrics) const;

ParametersParameters

Return ValueReturn Value

CDC::GetViewportExt

lpSize
Pointer to a S IZE structure that receives the dimensions of the glyph indices array, in logical units. This
value cannot be NULL.

Nonzero if the function is successful; otherwise 0.

This member function emulates the functionality of the function GetTextExtentPointI, as described in the
Windows SDK.

Call this member function to copy the typeface name of the current font into a buffer.

nCount
Specifies the size of the buffer (in bytes). If the typeface name is longer than the number of bytes specified
by this parameter, the name is truncated.

lpszFacename
Points to the buffer for the typeface name.

rString
A reference to a CString object.

The number of bytes copied to the buffer, not including the terminating null character. It is 0 if an error
occurs.

The typeface name is copied as a null-terminated string.

Retrieves the metrics for the current font using the attribute device context.

lpMetrics
Points to the TEXTMETRIC structure that receives the metrics.

Nonzero if the function is successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-gettextextentpointi
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagtextmetrica

CSize GetViewportExt() const;

Return ValueReturn Value

CDC::GetViewportOrg

CPoint GetViewportOrg() const;

Return ValueReturn Value

CDC::GetWindow

CWnd* GetWindow() const;

Return ValueReturn Value

RemarksRemarks

CDC::GetWindowExt

CSize GetWindowExt() const;

Return ValueReturn Value

CDC::GetWindowOrg

CPoint GetWindowOrg() const;

Return ValueReturn Value

CDC::GetWorldTransform

Retrieves the x- and y-extents of the device context's viewport.

The x- and y-extents (in device units) as a CSize object.

Retrieves the x- and y-coordinates of the origin of the viewport associated with the device context.

The origin of the viewport (in device coordinates) as a CPoint object.

Returns the window associated with the display device context.

Pointer to a CWnd object if successful; otherwise NULL.

This is an advanced function. For example, this member function may not return the view window when
printing or in print preview. It always returns the window associated with output. Output functions that
use the given DC draw into this window.

Retrieves the x- and y-extents of the window associated with the device context.

The x- and y-extents (in logical units) as a CSize object.

Retrieves the x- and y-coordinates of the origin of the window associated with the device context.

The origin of the window (in logical coordinates) as a CPoint object.

BOOL GetWorldTransform(XFORM& rXform) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GradientFill

BOOL GradientFill(
 TRIVERTEX* pVertices,
 ULONG nVertices,
 void* pMesh,
 ULONG nMeshElements,
 DWORD dwMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::GrayString

Retrieves the current world-space to page-space transformation.

rXform
Reference to an XFORM structure that receives the current world-space to page-space transformation.

Returns a nonzero value on success.

Returns 0 on failure.

To get extended error information, call GetLastError.

This method wraps the Windows GDI function GetWorldTransform.

Call this member function to fill rectangle and triangle structures with color that smoothly fades from one
side to the other.

pVertices
Pointer to an array of TRIVERTEX structures that each define a triangle vertex.

nVertices
The number of vertices.

pMesh
Array of GRADIENT_TRIANGLE structures in triangle mode, or an array of GRADIENT_RECT structures
in rectangle mode.

nMeshElements
The number of elements (triangles or rectangles) in pMesh.

dwMode
Specifies gradient fill mode. For a list of possible values, see GradientFill in the Windows SDK.

TRUE if successful; otherwise FALSE.

For more information, see GradientFill in the Windows SDK.

Draws dimmed (gray) text at the given location by writing the text in a memory bitmap, dimming the

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagxform
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getworldtransform
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_trivertex
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_gradient_triangle
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_gradient_rect
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-gradientfill

virtual BOOL GrayString(
 CBrush* pBrush,
 BOOL (CALLBACK* lpfnOutput)(
 HDC,
 LPARAM,
 int),
 LPARAM lpData,
 int nCount,
 int x,
 int y,
 int nWidth,
 int nHeight);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

bitmap, and then copying the bitmap to the display.

pBrush
Identifies the brush to be used for dimming (graying).

lpfnOutput
Specifies the procedure-instance address of the application-supplied callback function that will draw the
string. For more information, see the description of the Windows OutputFunc callback function. If this
parameter is NULL, the system uses the Windows TextOut function to draw the string, and lpData is
assumed to be a long pointer to the character string to be output.

lpData
Specifies a far pointer to data to be passed to the output function. If lpfnOutput is NULL, lpData must be
a long pointer to the string to be output.

nCount
Specifies the number of characters to be output. If this parameter is 0, GrayString calculates the length of
the string (assuming that lpData is a pointer to the string). If nCount is -1 and the function pointed to by
lpfnOutput returns 0, the image is shown but not dimmed.

x
Specifies the logical x-coordinate of the starting position of the rectangle that encloses the string.

y
Specifies the logical y-coordinate of the starting position of the rectangle that encloses the string.

nWidth
Specifies the width (in logical units) of the rectangle that encloses the string. If nWidth is 0, GrayString

calculates the width of the area, assuming lpData is a pointer to the string.

nHeight
Specifies the height (in logical units) of the rectangle that encloses the string. If nHeight is 0, GrayString

calculates the height of the area, assuming lpData is a pointer to the string.

Nonzero if the string is drawn, or 0 if either the TextOut function or the application-supplied output
function returned 0, or if there was insufficient memory to create a memory bitmap for dimming.

The function dims the text regardless of the selected brush and background. The GrayString member
function uses the currently selected font. The MM_TEXT mapping mode must be selected before using
this function.

An application can draw dimmed (grayed) strings on devices that support a solid gray color without

CDC::HIMETRICtoDP

void HIMETRICtoDP(LPSIZE lpSize) const;

ParametersParameters

RemarksRemarks

CDC::HIMETRICtoLP

void HIMETRICtoLP(LPSIZE lpSize) const;

ParametersParameters

RemarksRemarks

calling the GrayString member function. The system color COLOR_GRAYTEXT is the solid-gray system
color used to draw disabled text. The application can call the GetSysColor Windows function to retrieve
the color value of COLOR_GRAYTEXT. If the color is other than 0 (black), the application can call the
SetTextColor member function to set the text color to the color value and then draw the string directly. If

the retrieved color is black, the application must call GrayString to dim (gray) the text.

If lpfnOutput is NULL, GDI uses the Windows TextOut function, and lpData is assumed to be a far pointer
to the character to be output. If the characters to be output cannot be handled by the TextOut member
function (for example, the string is stored as a bitmap), the application must supply its own output
function.

Also note that all callback functions must trap Microsoft Foundation exceptions before returning to
Windows, since exceptions cannot be thrown across callback boundaries. For more information about
exceptions, see the article Exceptions.

The callback function passed to GrayString must use the __stdcall calling convention and must be
exported with __declspec .

When the framework is in preview mode, a call to the GrayString member function is translated to a
TextOut call, and the callback function is not called.

Use this function when you convert HIMETRIC sizes from OLE to pixels.

lpSize
Points to a S IZE structure or CSize object.

If the mapping mode of the device context object is MM_LOENGLISH, MM_HIENGLISH,
MM_LOMETRIC or MM_HIMETRIC, then the conversion is based on the number of pixels in the physical
inch. If the mapping mode is one of the other non-constrained modes (e.g., MM_TEXT), then the
conversion is based on the number of pixels in the logical inch.

Call this function to convert HIMETRIC units into logical units.

lpSize
Points to a S IZE structure or CSize object.

Use this function when you get HIMETRIC sizes from OLE and wish to convert them to your application's
natural mapping mode.

The conversion is accomplished by first converting the HIMETRIC units into pixels and then converting
these units into logical units using the device context's current mapping units. Note that the extents of the

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-textouta
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize

CDC::IntersectClipRect

int IntersectClipRect(
 int x1,
 int y1,
 int x2,
 int y2);

int IntersectClipRect(LPCRECT lpRect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::InvertRect

void InvertRect(LPCRECT lpRect);

ParametersParameters

device's window and viewport will affect the result.

Creates a new clipping region by forming the intersection of the current region and the rectangle specified
by x1, y1, x2, and y2.

x1
Specifies the logical x-coordinate of the upper-left corner of the rectangle.

y1
Specifies the logical y-coordinate of the upper-left corner of the rectangle.

x2
Specifies the logical x-coordinate of the lower-right corner of the rectangle.

y2
Specifies the logical y-coordinate of the lower-right corner of the rectangle.

lpRect
Specifies the rectangle. You can pass either a CRect object or a pointer to a RECT structure for this
parameter.

The new clipping region's type. It can be any one of the following values:

COMPLEXREGION New clipping region has overlapping borders.

ERROR Device context is not valid.

NULLREGION New clipping region is empty.

S IMPLEREGION New clipping region has no overlapping borders.

GDI clips all subsequent output to fit within the new boundary. The width and height must not exceed
32,767.

Inverts the contents of the given rectangle.

lpRect
Points to a RECT that contains the logical coordinates of the rectangle to be inverted. You can also pass a

RemarksRemarks

ExampleExample

void CDCView::DoInvertRect(CDC* pDC)
{
 // invert rect from 20,20 to 50,50
 CRect rect(20, 20, 50, 50);
 pDC->InvertRect(rect);

 // inverting again restores to normal
 ::Sleep(1000);
 pDC->InvertRect(rect);
}

CDC::InvertRgn

BOOL InvertRgn(CRgn* pRgn);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::IsPrinting

BOOL IsPrinting() const;

Return ValueReturn Value

CDC::LineTo

CRect object for this parameter.

Inversion is a logical NOT operation and flips the bits of each pixel. On monochrome displays, the
function makes white pixels black and black pixels white. On color displays, the inversion depends on how
colors are generated for the display. Calling InvertRect twice with the same rectangle restores the display
to its previous colors.

If the rectangle is empty, nothing is drawn.

Inverts the colors in the region specified by pRgn.

pRgn
Identifies the region to be inverted. The coordinates for the region are specified in logical units.

Nonzero if the function is successful; otherwise 0.

On monochrome displays, the function makes white pixels black and black pixels white. On color displays,
the inversion depends on how the colors are generated for the display.

Determines whether the device context is being used for printing.

Nonzero if the CDC object is a printer DC; otherwise 0.

Draws a line from the current position up to, but not including, the point specified by x and y (or point).

BOOL LineTo(
 int x,
 int y);

BOOL LineTo(POINT point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDC::LPtoDP

void LPtoDP(
 LPPOINT lpPoints,
 int nCount = 1) const;

void LPtoDP(LPRECT lpRect) const;
void LPtoDP(LPSIZE lpSize) const;

ParametersParameters

RemarksRemarks

x
Specifies the logical x-coordinate of the endpoint for the line.

y
Specifies the logical y-coordinate of the endpoint for the line.

point
Specifies the endpoint for the line. You can pass either a POINT structure or a CPoint object for this
parameter.

Nonzero if the line is drawn; otherwise 0.

The line is drawn with the selected pen. The current position is set to x, y or to point.

See the example for CRect::CenterPoint.

Converts logical units into device units.

lpPoints
Points to an array of points. Each point in the array is a POINT structure or a CPoint object.

nCount
The number of points in the array.

lpRect
Points to a RECT structure or a CRect object. This parameter is used for the common case of mapping a
rectangle from logical to device units.

lpSize
Points to a S IZE structure or a CSize object.

The function maps the coordinates of each point, or dimensions of a size, from GDI's logical coordinate
system into a device coordinate system. The conversion depends on the current mapping mode and the
settings of the origins and extents of the device's window and viewport.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize

CDC::LPtoHIMETRIC

void LPtoHIMETRIC(LPSIZE lpSize) const;

ParametersParameters

RemarksRemarks

CDC::m_hAttribDC

HDC m_hAttribDC;

RemarksRemarks

CDC::m_hDC

HDC m_hDC;

RemarksRemarks

CDC::MaskBlt

The x- and y-coordinates of points are 2-byte signed integers in the range -32,768 through 32,767. In
cases where the mapping mode would result in values larger than these limits, the system sets the values
to -32,768 and 32,767, respectively.

Call this function to convert logical units into HIMETRIC units.

lpSize
Points to a SIZE structure or a CSize object.

Use this function when you give HIMETRIC sizes to OLE, converting from your application's natural
mapping mode. Note that the extents of the device's window and viewport will affect the result.

The conversion is accomplished by first converting the logical units into pixels using the device context's
current mapping units and then converting these units into HIMETRIC units.

The attribute device context for this CDC object.

By default, this device context is equal to m_hDC . In general, CDC GDI calls that request information from
the device context are directed to m_hAttribDC . See the CDC class description for more on the use of
these two device contexts.

The output device context for this CDC object.

By default, m_hDC is equal to m_hAttribDC , the other device context wrapped by CDC . In general, CDC

GDI calls that create output go to the m_hDC device context. You can initialize m_hDC and m_hAttribDC to
point to different devices. See the CDC class description for more on the use of these two device contexts.

Combines the color data for the source and destination bitmaps using the given mask and raster
operation.

BOOL MaskBlt(
 int x,
 int y,
 int nWidth,
 int nHeight,
 CDC* pSrcDC,
 int xSrc,
 int ySrc,
 CBitmap& maskBitmap,
 int xMask,
 int yMask,
 DWORD dwRop);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

x
Specifies the logical x-coordinate of the upper-left corner of the destination rectangle.

y
Specifies the logical y-coordinate of the upper-left corner of the destination rectangle.

nWidth
Specifies the width, in logical units, of the destination rectangle and source bitmap.

nHeight
Specifies the height, in logical units, of the destination rectangle and source bitmap.

pSrcDC
Identifies the device context from which the bitmap is to be copied. It must be zero if the dwRop
parameter specifies a raster operation that does not include a source.

xSrc
Specifies the logical x-coordinate of the upper-left corner of the source bitmap.

ySrc
Specifies the logical y-coordinate of the upper-left corner of the source bitmap.

maskBitmap
Identifies the monochrome mask bitmap combined with the color bitmap in the source device context.

xMask
Specifies the horizontal pixel offset for the mask bitmap specified by the maskBitmap parameter.

yMask
Specifies the vertical pixel offset for the mask bitmap specified by the maskBitmap parameter.

dwRop
Specifies both foreground and background ternary raster operation codes, which the function uses to
control the combination of source and destination data. The background raster operation code is stored in
the high byte of the high word of this value; the foreground raster operation code is stored in the low byte
of the high word of this value; the low word of this value is ignored, and should be zero. The macro
MAKEROP4 creates such combinations of foreground and background raster operation codes. See the
Remarks section for a discussion of foreground and background in the context of this function. See the
BitBlt member function for a list of common raster operation codes.

Nonzero if the function is successful; otherwise 0.

CDC::ModifyWorldTransform

BOOL ModifyWorldTransform(
 const XFORM& rXform,
 DWORD iMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::MoveTo

A value of 1 in the mask specified by maskBitmap indicates that the foreground raster operation code
specified by dwRop should be applied at that location. A value of 0 in the mask indicates that the
background raster operation code specified by dwRop should be applied at that location. If the raster
operations require a source, the mask rectangle must cover the source rectangle. If it does not, the
function will fail. If the raster operations do not require a source, the mask rectangle must cover the
destination rectangle. If it does not, the function will fail.

If a rotation or shear transformation is in effect for the source device context when this function is called,
an error occurs. However, other types of transformations are allowed.

If the color formats of the source, pattern, and destination bitmaps differ, this function converts the pattern
or source format, or both, to match the destination format. If the mask bitmap is not a monochrome
bitmap, an error occurs. When an enhanced metafile is being recorded, an error occurs (and the function
returns 0) if the source device context identifies an enhanced-metafile device context. Not all devices
support MaskBlt . An application should call GetDeviceCaps to determine whether a device supports this
function. If no mask bitmap is supplied, this function behaves exactly like BitBlt , using the foreground
raster operation code. The pixel offsets in the mask bitmap map to the point (0,0) in the source device
context's bitmap. This is useful for cases in which a mask bitmap contains a set of masks; an application
can easily apply any one of them to a mask-blitting task by adjusting the pixel offsets and rectangle sizes
sent to MaskBlt .

Changes the world transformation for a device context using the specified mode.

rXform
Reference to an XFORM structure used to modify the world transformation for the given device context.

iMode
Specifies how the transformation data modifies the current world transformation. For a list of the values
that this parameter can take, see ModifyWorldTransform.

Returns a nonzero value on success.

Returns 0 on failure.

To get extended error information, call GetLastError.

This method wraps the Windows GDI function ModifyWorldTransform.

Moves the current position to the point specified by x and y (or by point).

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagxform
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-modifyworldtransform
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-modifyworldtransform

CPoint MoveTo(
 int x,
 int y);

CPoint MoveTo(POINT point);

ParametersParameters

Return ValueReturn Value

ExampleExample

CDC::OffsetClipRgn

int OffsetClipRgn(
 int x,
 int y);

int OffsetClipRgn(SIZE size);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

x
Specifies the logical x-coordinate of the new position.

y
Specifies the logical y-coordinate of the new position.

point
Specifies the new position. You can pass either a POINT structure or a CPoint object for this parameter.

The x- and y-coordinates of the previous position as a CPoint object.

See the example for CRect::CenterPoint.

Moves the clipping region of the device context by the specified offsets.

x
Specifies the number of logical units to move left or right.

y
Specifies the number of logical units to move up or down.

size
Specifies the amount to offset.

The new region's type. It can be any one of the following values:

COMPLEXREGION Clipping region has overlapping borders.

ERROR Device context is not valid.

NULLREGION Clipping region is empty.

S IMPLEREGION Clipping region has no overlapping borders.

The function moves the region x units along the x-axis and y units along the y-axis.

CDC::OffsetViewportOrg

virtual CPoint OffsetViewportOrg(
 int nWidth,
 int nHeight);

ParametersParameters

Return ValueReturn Value

CDC::OffsetWindowOrg

CPoint OffsetWindowOrg(
 int nWidth,
 int nHeight);

ParametersParameters

Return ValueReturn Value

CDC::operator HDC

operator HDC() const;

Return ValueReturn Value

RemarksRemarks

CDC::PaintRgn

Modifies the coordinates of the viewport origin relative to the coordinates of the current viewport origin.

nWidth
Specifies the number of device units to add to the current origin's x-coordinate.

nHeight
Specifies the number of device units to add to the current origin's y-coordinate.

The previous viewport origin (in device coordinates) as a CPoint object.

Modifies the coordinates of the window origin relative to the coordinates of the current window origin.

nWidth
Specifies the number of logical units to add to the current origin's x-coordinate.

nHeight
Specifies the number of logical units to add to the current origin's y-coordinate.

The previous window origin (in logical coordinates) as a CPoint object.

Use this operator to retrieve the device context handle of the CDC object.

If successful, the handle of the device context object; otherwise, NULL.

You can use the handle to call Windows APIs directly.

Fills the region specified by pRgn using the current brush.

BOOL PaintRgn(CRgn* pRgn);

ParametersParameters

Return ValueReturn Value

CDC::PatBlt

BOOL PatBlt(
 int x,
 int y,
 int nWidth,
 int nHeight,
 DWORD dwRop);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pRgn
Identifies the region to be filled. The coordinates for the given region are specified in logical units.

Nonzero if the function is successful; otherwise 0.

Creates a bit pattern on the device.

x
Specifies the logical x-coordinate of the upper-left corner of the rectangle that is to receive the pattern.

y
Specifies the logical y-coordinate of the upper-left corner of the rectangle that is to receive the pattern.

nWidth
Specifies the width (in logical units) of the rectangle that is to receive the pattern.

nHeight
Specifies the height (in logical units) of the rectangle that is to receive the pattern.

dwRop
Specifies the raster-operation code. Raster-operation codes (ROPs) define how GDI combines colors in
output operations that involve a current brush, a possible source bitmap, and a destination bitmap. This
parameter can be one of the following values:

PATCOPY Copies pattern to destination bitmap.

PATINVERT Combines destination bitmap with pattern using the Boolean XOR operator.

DSTINVERT Inverts the destination bitmap.

BLACKNESS Turns all output black.

WHITENESS Turns all output white.

Nonzero if the function is successful; otherwise 0.

The pattern is a combination of the selected brush and the pattern already on the device. The raster-
operation code specified by dwRop defines how the patterns are to be combined. The raster operations
listed for this function are a limited subset of the full 256 ternary raster-operation codes; in particular, a
raster-operation code that refers to a source cannot be used.

 CDC::Pie

BOOL Pie(
 int x1,
 int y1,
 int x2,
 int y2,
 int x3,
 int y3,
 int x4,
 int y4);

BOOL Pie(
 LPCRECT lpRect,
 POINT ptStart,
 POINT ptEnd);

ParametersParameters

Not all device contexts support the PatBlt function. To determine whether a device context supports
PatBlt , call the GetDeviceCaps member function with the RASTERCAPS index and check the return

value for the RC_BITBLT flag.

Draws a pie-shaped wedge by drawing an elliptical arc whose center and two endpoints are joined by
lines.

x1
Specifies the x-coordinate of the upper-left corner of the bounding rectangle (in logical units).

y1
Specifies the y-coordinate of the upper-left corner of the bounding rectangle (in logical units).

x2
Specifies the x-coordinate of the lower-right corner of the bounding rectangle (in logical units).

y2
Specifies the y-coordinate of the lower-right corner of the bounding rectangle (in logical units).

x3
Specifies the x-coordinate of the arc's starting point (in logical units). This point does not have to lie
exactly on the arc.

y3
Specifies the y-coordinate of the arc's starting point (in logical units). This point does not have to lie
exactly on the arc.

x4
Specifies the x-coordinate of the arc's endpoint (in logical units). This point does not have to lie exactly on
the arc.

y4
Specifies the y-coordinate of the arc's endpoint (in logical units). This point does not have to lie exactly on
the arc.

lpRect
Specifies the bounding rectangle. You can pass either a CRect object or a pointer to a RECT structure for
this parameter.

ptStart

Return ValueReturn Value

RemarksRemarks

ExampleExample

Specifies the starting point of the arc. This point does not have to lie exactly on the arc. You can pass either
a POINT structure or a CPoint object for this parameter.

ptEnd
Specifies the endpoint of the arc. This point does not have to lie exactly on the arc. You can pass either a
POINT structure or a CPoint object for this parameter.

Nonzero if the function is successful; otherwise 0.

The center of the arc is the center of the bounding rectangle specified by x1, y1, x2, and y2 (or by lpRect).
The starting and ending points of the arc are specified by x3, y3, x4, and y4 (or by ptStart and ptEnd).

The arc is drawn with the selected pen, moving in a counterclockwise direction. Two additional lines are
drawn from each endpoint to the arc's center. The pie-shaped area is filled with the current brush. If x3
equals x4 and y3 equals y4, the result is an ellipse with a single line from the center of the ellipse to the
point (x3, y3) or (x4, y4).

The figure drawn by this function extends up to but does not include the right and bottom coordinates.
This means that the height of the figure is y2 - y1 and the width of the figure is x2 - x1. Both the width and
the height of the bounding rectangle must be greater than 2 units and less than 32,767 units.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

void CDCView::DrawPie(CDC* pDC)
{
 // Fill the client area with a simple pie chart. A
 // big blue slice covers 75% of the pie, from
 // 6 o'clock to 3 o'clock. This portion is filled
 // with blue and has a blue edge. The remaining 25%
 // is filled with a red, diagonal hatch and has
 // a red edge.

 // Get the client area.
 CRect rectClient;
 GetClientRect(rectClient);

 // Make a couple of pens and similar brushes.
 CPen penBlue, penRed;
 CBrush brushBlue, brushRed;
 CBrush* pOldBrush;
 CPen* pOldPen;

 brushBlue.CreateSolidBrush(RGB(0, 0, 255));
 brushRed.CreateHatchBrush(HS_FDIAGONAL, RGB(255, 0, 0));
 penBlue.CreatePen(PS_SOLID | PS_COSMETIC, 1, RGB(0, 0, 255));
 penRed.CreatePen(PS_SOLID | PS_COSMETIC, 1, RGB(255, 0, 0));

 // Draw from 3 o'clock to 6 o'clock, counterclockwise,
 // in a blue pen with a solid blue fill.

 pOldPen = pDC->SelectObject(&penBlue);
 pOldBrush = pDC->SelectObject(&brushBlue);

 pDC->Pie(rectClient,
 CPoint(rectClient.right, rectClient.CenterPoint().y),
 CPoint(rectClient.CenterPoint().x, rectClient.right));

 // Draw the remaining quarter slice from 6 o'clock
 // to 3 o'clock, counterclockwise, in a red pen with
 // the hatched brush.
 pDC->SelectObject(&penRed);
 pDC->SelectObject(&brushRed);

 // Same parameters, but reverse start and end points.
 pDC->Pie(rectClient,
 CPoint(rectClient.CenterPoint().x, rectClient.right),
 CPoint(rectClient.right, rectClient.CenterPoint().y));

 // Restore the previous pen.
 pDC->SelectObject(pOldPen);
}

CDC::PlayMetaFile

BOOL PlayMetaFile(HMETAFILE hMF);

BOOL PlayMetaFile(
 HENHMETAFILE hEnhMetaFile,
 LPCRECT lpBounds);

ParametersParameters

Plays the contents of the specified metafile on the device context.

hMF
Identifies the metafile to be played.

Return ValueReturn Value

RemarksRemarks

CDC::PlgBlt

BOOL PlgBlt(
 LPPOINT lpPoint,
 CDC* pSrcDC,
 int xSrc,
 int ySrc,
 int nWidth,
 int nHeight,
 CBitmap& maskBitmap,
 int xMask,
 int yMask);

ParametersParameters

hEnhMetaFile
Identifies the enhanced metafile.

lpBounds
Points to a RECT structure or a CRect object that contains the coordinates of the bounding rectangle
used to display the picture. The coordinates are specified in logical units.

Nonzero if the function is successful; otherwise 0.

The metafile can be played any number of times.

The second version of PlayMetaFile displays the picture stored in the given enhanced-format metafile.
When an application calls the second version of PlayMetaFile , Windows uses the picture frame in the
enhanced-metafile header to map the picture onto the rectangle pointed to by the lpBounds parameter.
(This picture may be sheared or rotated by setting the world transform in the output device before calling
PlayMetaFile .) Points along the edges of the rectangle are included in the picture. An enhanced-metafile

picture can be clipped by defining the clipping region in the output device before playing the enhanced
metafile.

If an enhanced metafile contains an optional palette, an application can achieve consistent colors by
setting up a color palette on the output device before calling the second version of PlayMetaFile . To
retrieve the optional palette, use the GetEnhMetaFilePaletteEntries Windows function. An enhanced
metafile can be embedded in a newly created enhanced metafile by calling the second version of
PlayMetaFile and playing the source enhanced metafile into the device context for the new enhanced

metafile.

The states of the output device context are preserved by this function. Any object created but not deleted
in the enhanced metafile is deleted by this function. To stop this function, an application can call the
CancelDC Windows function from another thread to terminate the operation. In this case, the function

returns zero.

Performs a bit-block transfer of the bits of color data from the specified rectangle in the source device
context to the specified parallelogram in the given device context.

lpPoint
Points to an array of three points in logical space that identifies three corners of the destination
parallelogram. The upper-left corner of the source rectangle is mapped to the first point in this array, the
upper-right corner to the second point in this array, and the lower-left corner to the third point. The lower-
right corner of the source rectangle is mapped to the implicit fourth point in the parallelogram.

Return ValueReturn Value

RemarksRemarks

CDC::PolyBezier

pSrcDC
Identifies the source device context.

xSrc
Specifies the x-coordinate, in logical units, of the upper-left corner of the source rectangle.

ySrc
Specifies the y-coordinate, in logical units, of the upper-left corner of the source rectangle.

nWidth
Specifies the width, in logical units, of the source rectangle.

nHeight
Specifies the height, in logical units, of the source rectangle.

maskBitmap
Identifies an optional monochrome bitmap that is used to mask the colors of the source rectangle.

xMask
Specifies the x-coordinate of the upper-left corner of the monochrome bitmap.

yMask
Specifies the y-coordinate of the upper-left corner of the monochrome bitmap.

Nonzero if the function is successful; otherwise 0.

If the given bitmask handle identifies a valid monochrome bitmap, the function uses this bitmap to mask
the bits of color data from the source rectangle.

The fourth vertex of the parallelogram (D) is defined by treating the first three points (A, B, and C) as
vectors and computing D = B + C - A.

If the bitmask exists, a value of 1 in the mask indicates that the source pixel color should be copied to the
destination. A value of 0 in the mask indicates that the destination pixel color is not to be changed.

If the mask rectangle is smaller than the source and destination rectangles, the function replicates the
mask pattern.

Scaling, translation, and reflection transformations are allowed in the source device context; however,
rotation and shear transformations are not. If the mask bitmap is not a monochrome bitmap, an error
occurs. The stretching mode for the destination device context is used to determine how to stretch or
compress the pixels, if that is necessary. When an enhanced metafile is being recorded, an error occurs if
the source device context identifies an enhanced-metafile device context.

The destination coordinates are transformed according to the destination device context; the source
coordinates are transformed according to the source device context. If the source transformation has a
rotation or shear, an error is returned. If the destination and source rectangles do not have the same color
format, PlgBlt converts the source rectangle to match the destination rectangle. Not all devices support
PlgBlt . For more information, see the description of the RC_BITBLT raster capability in the
CDC::GetDeviceCaps member function.

If the source and destination device contexts represent incompatible devices, PlgBlt returns an error.

Draws one or more Bzier splines.

BOOL PolyBezier(
 const POINT* lpPoints,
 int nCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::PolyBezierTo

BOOL PolyBezierTo(
 const POINT* lpPoints,
 int nCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

lpPoints
Points to an array of POINT data structures that contain the endpoints and control points of the spline(s).

nCount
Specifies the number of points in the lpPoints array. This value must be one more than three times the
number of splines to be drawn, because each Bzier spline requires two control points and an endpoint,
and the initial spline requires an additional starting point.

Nonzero if the function is successful; otherwise 0.

This function draws cubic Bzier splines by using the endpoints and control points specified by the lpPoints
parameter. The first spline is drawn from the first point to the fourth point by using the second and third
points as control points. Each subsequent spline in the sequence needs exactly three more points: the end
point of the previous spline is used as the starting point, the next two points in the sequence are control
points, and the third is the end point.

The current position is neither used nor updated by the PolyBezier function. The figure is not filled. This
function draws lines by using the current pen.

Draws one or more Bzier splines.

lpPoints
Points to an array of POINT data structures that contains the endpoints and control points.

nCount
Specifies the number of points in the lpPoints array. This value must be three times the number of splines
to be drawn, because each Bzier spline requires two control points and an end point.

Nonzero if the function is successful; otherwise 0.

This function draws cubic Bzier splines by using the control points specified by the lpPoints parameter.
The first spline is drawn from the current position to the third point by using the first two points as control
points. For each subsequent spline, the function needs exactly three more points, and uses the end point
of the previous spline as the starting point for the next. PolyBezierTo moves the current position to the
end point of the last Bzier spline. The figure is not filled. This function draws lines by using the current
pen.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

 CDC::PolyDraw

BOOL PolyDraw(
 const POINT* lpPoints,
 const BYTE* lpTypes,
 int nCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See the example for CDC::BeginPath.

Draws a set of line segments and Bzier splines.

lpPoints
Points to an array of POINT data structures that contains the endpoints for each line segment and the
endpoints and control points for each Bzier spline.

lpTypes
Points to an array that specifies how each point in the lpPoints array is used. Values can be one of the
following:

PT_MOVETO Specifies that this point starts a disjoint figure. This point becomes the new current
position.

PT_LINETO Specifies that a line is to be drawn from the current position to this point, which then
becomes the new current position.

PT_BEZIERTO Specifies that this point is a control point or ending point for a Bzier spline.

PT_BEZIERTO types always occur in sets of three. The current position defines the starting point for the
Bzier spline. The first two PT_BEZIERTO points are the control points, and the third PT_BEZIERTO point is
the ending point. The ending point becomes the new current position. If there are not three consecutive
PT_BEZIERTO points, an error results.

A PT_LINETO or PT_BEZIERTO type can be combined with the following constant by using the bitwise
operator OR to indicate that the corresponding point is the last point in a figure and the figure is closed:

PT_CLOSEFIGURE Specifies that the figure is automatically closed after the PT_LINETO or
PT_BEZIERTO type for this point is done. A line is drawn from this point to the most recent
PT_MOVETO or MoveTo point.

This flag is combined with the PT_LINETO type for a line, or with the PT_BEZIERTO type of ending
point for a Bzier spline, by using the bitwise OR operator. The current position is set to the ending
point of the closing line.

nCount
Specifies the total number of points in the lpPoints array, the same as the number of bytes in the lpTypes
array.

Nonzero if the function is successful; otherwise 0.

This function can be used to draw disjoint figures in place of consecutive calls to CDC::MoveTo ,
CDC::LineTo , and CDC::PolyBezierTo member functions. The lines and splines are drawn using the

current pen, and figures are not filled. If there is an active path started by calling the CDC::BeginPath

member function, PolyDraw adds to the path. The points contained in the lpPoints array and in lpTypes

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

ExampleExample

CDC::Polygon

BOOL Polygon(
 LPPOINT lpPoints,
 int nCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

indicate whether each point is part of a CDC::MoveTo , a CDC::LineTo , or a CDC::BezierTo operation. It is
also possible to close figures. This function updates the current position.

See the example for CDC::BeginPath.

Draws a polygon consisting of two or more points (vertices) connected by lines, using the current pen.

lpPoints
Points to an array of points that specifies the vertices of the polygon. Each point in the array is a POINT

structure or a CPoint object.

nCount
Specifies the number of vertices in the array.

Nonzero if the function is successful; otherwise 0.

The system closes the polygon automatically, if necessary, by drawing a line from the last vertex to the
first.

The current polygon-filling mode can be retrieved or set by using the GetPolyFillMode and
SetPolyFillMode member functions.

void CDCView::DrawPolygon(CDC* pDC)
{
 // find the client area
 CRect rect;
 GetClientRect(rect);

 // draw with a thick blue pen
 CPen penBlue(PS_SOLID, 5, RGB(0, 0, 255));
 CPen* pOldPen = pDC->SelectObject(&penBlue);

 // and a solid red brush
 CBrush brushRed(RGB(255, 0, 0));
 CBrush* pOldBrush = pDC->SelectObject(&brushRed);

 // Find the midpoints of the top, right, left, and bottom
 // of the client area. They will be the vertices of our polygon.
 CPoint pts[4];
 pts[0].x = rect.left + rect.Width()/2;
 pts[0].y = rect.top;

 pts[1].x = rect.right;
 pts[1].y = rect.top + rect.Height()/2;

 pts[2].x = pts[0].x;
 pts[2].y = rect.bottom;

 pts[3].x = rect.left;
 pts[3].y = pts[1].y;

 // Calling Polygon() on that array will draw three lines
 // between the points, as well as an additional line to
 // close the shape--from the last point to the first point
 // we specified.
 pDC->Polygon(pts, 4);

 // Put back the old objects.
 pDC->SelectObject(pOldPen);
 pDC->SelectObject(pOldBrush);
}

CDC::Polyline

BOOL Polyline(
 LPPOINT lpPoints,
 int nCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Draws a set of line segments connecting the points specified by lpPoints.

lpPoints
Points to an array of POINT structures or CPoint objects to be connected.

nCount
Specifies the number of points in the array. This value must be at least 2.

Nonzero if the function is successful; otherwise 0.

The lines are drawn from the first point through subsequent points using the current pen. Unlike the

CDC::PolylineTo

BOOL PolylineTo(
 const POINT* lpPoints,
 int nCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::PolyPolygon

BOOL PolyPolygon(
 LPPOINT lpPoints,
 LPINT lpPolyCounts,
 int nCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

LineTo member function, the Polyline function neither uses nor updates the current position.

For more information, see PolyLine in the Windows SDK.

Draws one or more straight lines.

lpPoints
Points to an array of POINT data structures that contains the vertices of the line.

nCount
Specifies the number of points in the array.

Nonzero if the function is successful; otherwise 0.

A line is drawn from the current position to the first point specified by the lpPoints parameter by using the
current pen. For each additional line, the function draws from the ending point of the previous line to the
next point specified by lpPoints. PolylineTo moves the current position to the ending point of the last line.
If the line segments drawn by this function form a closed figure, the figure is not filled.

Creates two or more polygons that are filled using the current polygon-filling mode.

lpPoints
Points to an array of POINT structures or CPoint objects that define the vertices of the polygons.

lpPolyCounts
Points to an array of integers, each of which specifies the number of points in one of the polygons in the
lpPoints array.

nCount
The number of entries in the lpPolyCounts array. This number specifies the number of polygons to be
drawn. This value must be at least 2.

Nonzero if the function is successful; otherwise 0.

The polygons may be disjoint or overlapping.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-polyline
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

CDC::PolyPolyline

BOOL PolyPolyline(
 const POINT* lpPoints,
 const DWORD* lpPolyPoints,
 int nCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::PtVisible

virtual BOOL PtVisible(
 int x,
 int y) const;

BOOL PtVisible(POINT point) const;

ParametersParameters

Each polygon specified in a call to the PolyPolygon function must be closed. Unlike polygons created by
the Polygon member function, the polygons created by PolyPolygon are not closed automatically.

The function creates two or more polygons. To create a single polygon, an application should use the
Polygon member function.

The current polygon-filling mode can be retrieved or set by using the GetPolyFillMode and
SetPolyFillMode member functions.

Draws multiple series of connected line segments.

lpPoints
Points to an array of structures that contains the vertices of the polylines. The polylines are specified
consecutively.

lpPolyPoints
Points to an array of variables specifying the number of points in the lpPoints array for the corresponding
polygon. Each entry must be greater than or equal to 2.

nCount
Specifies the total number of counts in the lpPolyPoints array.

Nonzero if the function is successful; otherwise 0.

The line segments are drawn by using the current pen. The figures formed by the segments are not filled.
The current position is neither used nor updated by this function.

Determines whether the given point is within the clipping region of the device context.

x
Specifies the logical x-coordinate of the point.

y
Specifies the logical y-coordinate of the point.

point

Return ValueReturn Value

CDC::QueryAbort

BOOL QueryAbort() const;

Return ValueReturn Value

CDC::RealizePalette

UINT RealizePalette();

Return ValueReturn Value

RemarksRemarks

CDC::Rectangle

BOOL Rectangle(
 int x1,
 int y1,
 int x2,
 int y2);

BOOL Rectangle(LPCRECT lpRect);

Specifies the point to check in logical coordinates. You can pass either a POINT structure or a CPoint

object for this parameter.

Nonzero if the specified point is within the clipping region; otherwise 0.

Calls the abort function installed by the SetAbortProc member function for a printing application and
queries whether the printing should be terminated.

The return value is nonzero if printing should continue or if there is no abort procedure. It is 0 if the print
job should be terminated. The return value is supplied by the abort function.

Maps entries from the current logical palette to the system palette.

Indicates how many entries in the logical palette were mapped to different entries in the system palette.
This represents the number of entries that this function remapped to accommodate changes in the system
palette since the logical palette was last realized.

A logical color palette acts as a buffer between color-intensive applications and the system, allowing an
application to use as many colors as needed without interfering with its own displayed colors or with
colors displayed by other windows.

When a window has the input focus and calls RealizePalette , Windows ensures that the window will
display all the requested colors, up to the maximum number simultaneously available on the screen.
Windows also displays colors not found in the window's palette by matching them to available colors.

In addition, Windows matches the colors requested by inactive windows that call the function as closely as
possible to the available colors. This significantly reduces undesirable changes in the colors displayed in
inactive windows.

Draws a rectangle using the current pen.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CDCView::DrawRectangle(CDC* pDC)
{
 // create and select a solid blue brush
 CBrush brushBlue(RGB(0, 0, 255));
 CBrush* pOldBrush = pDC->SelectObject(&brushBlue);

 // create and select a thick, black pen
 CPen penBlack;
 penBlack.CreatePen(PS_SOLID, 3, RGB(0, 0, 0));
 CPen* pOldPen = pDC->SelectObject(&penBlack);

 // get our client rectangle
 CRect rect;
 GetClientRect(rect);

 // shrink our rect 20 pixels in each direction
 rect.DeflateRect(20, 20);

 // draw a thick black rectangle filled with blue
 pDC->Rectangle(rect);

 // put back the old objects
 pDC->SelectObject(pOldBrush);
 pDC->SelectObject(pOldPen);
}

CDC::RectVisible

x1
Specifies the x-coordinate of the upper-left corner of the rectangle (in logical units).

y1
Specifies the y-coordinate of the upper-left corner of the rectangle (in logical units).

x2
Specifies the x-coordinate of the lower-right corner of the rectangle (in logical units).

y2
Specifies the y-coordinate of the lower-right corner of the rectangle (in logical units).

lpRect
Specifies the rectangle in logical units. You can pass either a CRect object or a pointer to a RECT structure
for this parameter.

Nonzero if the function is successful; otherwise 0.

The interior of the rectangle is filled using the current brush.

The rectangle extends up to, but does not include, the right and bottom coordinates. This means that the
height of the rectangle is y2 - y1 and the width of the rectangle is x2 - x1. Both the width and the height of
a rectangle must be greater than 2 units and less than 32,767 units.

Determines whether any part of the given rectangle lies within the clipping region of the display context.

virtual BOOL RectVisible(LPCRECT lpRect) const;

ParametersParameters

Return ValueReturn Value

CDC::ReleaseAttribDC

virtual void ReleaseAttribDC();

RemarksRemarks

CDC::ReleaseOutputDC

virtual void ReleaseOutputDC();

RemarksRemarks

CDC::ResetDC

BOOL ResetDC(const DEVMODE* lpDevMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpRect
Points to a RECT structure or a CRect object that contains the logical coordinates of the specified
rectangle.

Nonzero if any portion of the given rectangle lies within the clipping region; otherwise 0.

Call this member function to set m_hAttribDC to NULL.

This does not cause a Detach to occur. Only the output device context is attached to the CDC object, and
only it can be detached.

Call this member function to set the m_hDC member to NULL.

This member function cannot be called when the output device context is attached to the CDC object. Use
the Detach member function to detach the output device context.

Call this member function to update the device context wrapped by the CDC object.

lpDevMode
A pointer to a Windows DEVMODE structure.

Nonzero if the function is successful; otherwise 0.

The device context is updated from the information specified in the Windows DEVMODE structure. This
member function only resets the attribute device context.

An application will typically use the ResetDC member function when a window processes a
WM_DEVMODECHANGE message. You can also use this member function to change the paper orientation or

paper bins while printing a document.

CDC::RestoreDC

virtual BOOL RestoreDC(int nSavedDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::RoundRect

BOOL RoundRect(
 int x1,
 int y1,
 int x2,
 int y2,
 int x3,
 int y3);

BOOL RoundRect(
 LPCRECT lpRect,
 POINT point);

ParametersParameters

You cannot use this member function to change the driver name, device name, or output port. When the
user changes the port connection or device name, you must delete the original device context and create a
new device context with the new information.

Before you call this member function, you must ensure that all objects (other than stock objects) that had
been selected into the device context have been selected out.

Restores the device context to the previous state identified by nSavedDC.

nSavedDC
Specifies the device context to be restored. It can be a value returned by a previous SaveDC function call. If
nSavedDC is -1, the most recently saved device context is restored.

Nonzero if the specified context was restored; otherwise 0.

RestoreDC restores the device context by popping state information off a stack created by earlier calls to
the SaveDC member function.

The stack can contain the state information for several device contexts. If the context specified by
nSavedDC is not at the top of the stack, RestoreDC deletes all state information between the device
context specified by nSavedDC and the top of the stack. The deleted information is lost.

Draws a rectangle with rounded corners using the current pen.

x1
Specifies the x-coordinate of the upper-left corner of the rectangle (in logical units).

y1
Specifies the y-coordinate of the upper-left corner of the rectangle (in logical units).

x2
Specifies the x-coordinate of the lower-right corner of the rectangle (in logical units).

y2

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CDCView::DrawRoundRect(CDC* pDC)
{
 // create and select a solid blue brush
 CBrush brushBlue(RGB(0, 0, 255));
 CBrush* pOldBrush = pDC->SelectObject(&brushBlue);

 // create and select a thick, black pen
 CPen penBlack;
 penBlack.CreatePen(PS_SOLID, 3, RGB(0, 0, 0));
 CPen* pOldPen = pDC->SelectObject(&penBlack);

 // get our client rectangle
 CRect rect;
 GetClientRect(rect);

 // shrink our rect 20 pixels in each direction
 rect.DeflateRect(20, 20);

 // Draw a thick black rectangle filled with blue
 // corners rounded at a 17-unit radius. Note that
 // a radius of three or less is not noticeable because
 // the pen is three units wide.
 pDC->RoundRect(rect, CPoint(17, 17));

 // put back the old objects
 pDC->SelectObject(pOldBrush);
 pDC->SelectObject(pOldPen);
}

CDC::SaveDC

Specifies the y-coordinate of the lower-right corner of the rectangle (in logical units).

x3
Specifies the width of the ellipse used to draw the rounded corners (in logical units).

y3
Specifies the height of the ellipse used to draw the rounded corners (in logical units).

lpRect
Specifies the bounding rectangle in logical units. You can pass either a CRect object or a pointer to a
RECT structure for this parameter.

point
The x-coordinate of point specifies the width of the ellipse to draw the rounded corners (in logical units).
The y-coordinate of point specifies the height of the ellipse to draw the rounded corners (in logical units).
You can pass either a POINT structure or a CPoint object for this parameter.

Nonzero if the function is successful; otherwise 0.

The interior of the rectangle is filled using the current brush.

The figure this function draws extends up to but does not include the right and bottom coordinates. This
means that the height of the figure is y2 - y1 and the width of the figure is x2 - x1. Both the height and the
width of the bounding rectangle must be greater than 2 units and less than 32,767 units.

Saves the current state of the device context by copying state information (such as clipping region,

virtual int SaveDC();

Return ValueReturn Value

RemarksRemarks

CDC::ScaleViewportExt

virtual CSize ScaleViewportExt(
 int xNum,
 int xDenom,
 int yNum,
 int yDenom);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::ScaleWindowExt

selected objects, and mapping mode) to a context stack maintained by Windows.

An integer identifying the saved device context. It is 0 if an error occurs. This return value can be used to
restore the device context by calling RestoreDC .

The saved device context can later be restored by using RestoreDC .

SaveDC can be used any number of times to save any number of device-context states.

Modifies the viewport extents relative to the current values.

xNum
Specifies the amount by which to multiply the current x-extent.

xDenom
Specifies the amount by which to divide the result of multiplying the current x-extent by the value of the
xNum parameter.

yNum
Specifies the amount by which to multiply the current y-extent.

yDenom
Specifies the amount by which to divide the result of multiplying the current y-extent by the value of the
yNum parameter.

The previous viewport extents (in device units) as a CSize object.

The formulas are written as follows:

xNewVE = (xOldVE * xNum) / xDenom

yNewVE = (yOldVE * yNum) / yDenom

The new viewport extents are calculated by multiplying the current extents by the given numerator and
then dividing by the given denominator.

Modifies the window extents relative to the current values.

virtual CSize ScaleWindowExt(
 int xNum,
 int xDenom,
 int yNum,
 int yDenom);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::ScrollDC

BOOL ScrollDC(
 int dx,
 int dy,
 LPCRECT lpRectScroll,
 LPCRECT lpRectClip,
 CRgn* pRgnUpdate,
 LPRECT lpRectUpdate);

ParametersParameters

xNum
Specifies the amount by which to multiply the current x-extent.

xDenom
Specifies the amount by which to divide the result of multiplying the current x-extent by the value of the
xNum parameter.

yNum
Specifies the amount by which to multiply the current y-extent.

yDenom
Specifies the amount by which to divide the result of multiplying the current y-extent by the value of the
yNum parameter.

The previous window extents (in logical units) as a CSize object.

The formulas are written as follows:

xNewWE = (xOldWE * xNum) / xDenom

yNewWE = (yOldWE * yNum) / yDenom

The new window extents are calculated by multiplying the current extents by the given numerator and
then dividing by the given denominator.

Scrolls a rectangle of bits horizontally and vertically.

dx
Specifies the number of horizontal scroll units.

dy
Specifies the number of vertical scroll units.

lpRectScroll
Points to the RECT structure or CRect object that contains the coordinates of the scrolling rectangle.

lpRectClip

Return ValueReturn Value

RemarksRemarks

CDC::SelectClipPath

BOOL SelectClipPath(int nMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Points to the RECT structure or CRect object that contains the coordinates of the clipping rectangle.
When this rectangle is smaller than the original one pointed to by lpRectScroll, scrolling occurs only in the
smaller rectangle.

pRgnUpdate
Identifies the region uncovered by the scrolling process. The ScrollDC function defines this region; it is
not necessarily a rectangle.

lpRectUpdate
Points to the RECT structure or CRect object that receives the coordinates of the rectangle that bounds
the scrolling update region. This is the largest rectangular area that requires repainting. The values in the
structure or object when the function returns are in client coordinates, regardless of the mapping mode
for the given device context.

Nonzero if scrolling is executed; otherwise 0.

If lpRectUpdate is NULL, Windows does not compute the update rectangle. If both pRgnUpdate and
lpRectUpdate are NULL, Windows does not compute the update region. If pRgnUpdate is not NULL,
Windows assumes that it contains a valid pointer to the region uncovered by the scrolling process
(defined by the ScrollDC member function). The update region returned in lpRectUpdate can be passed
to CWnd::InvalidateRgn if required.

An application should use the ScrollWindow member function of class CWnd when it is necessary to scroll
the entire client area of a window. Otherwise, it should use ScrollDC .

Selects the current path as a clipping region for the device context, combining the new region with any
existing clipping region by using the specified mode.

nMode
Specifies the way to use the path. The following values are allowed:

RGN_AND The new clipping region includes the intersection (overlapping areas) of the current
clipping region and the current path.

RGN_COPY The new clipping region is the current path.

RGN_DIFF The new clipping region includes the areas of the current clipping region, and those of
the current path are excluded.

RGN_OR The new clipping region includes the union (combined areas) of the current clipping
region and the current path.

RGN_XOR The new clipping region includes the union of the current clipping region and the
current path, but without the overlapping areas.

Nonzero if the function is successful; otherwise 0.

 CDC::SelectClipRgn

int SelectClipRgn(CRgn* pRgn);

int SelectClipRgn(
 CRgn* pRgn,
 int nMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The device context identified must contain a closed path.

Selects the given region as the current clipping region for the device context.

pRgn
Identifies the region to be selected.

For the first version of this function, if this value is NULL, the entire client area is selected and
output is still clipped to the window.

For the second version of this function, this handle can be NULL only when the RGN_COPY mode
is specified.

nMode
Specifies the operation to be performed. It must be one of the following values:

RGN_AND The new clipping region combines the overlapping areas of the current clipping region
and the region identified by pRgn.

RGN_COPY The new clipping region is a copy of the region identified by pRgn. This is functionality
is identical to the first version of SelectClipRgn . If the region identified by pRgn is NULL, the new
clipping region becomes the default clipping region (a null region).

RGN_DIFF The new clipping region combines the areas of the current clipping region with those
areas excluded from the region identified by pRgn.

RGN_OR The new clipping region combines the current clipping region and the region identified
by pRgn.

RGN_XOR The new clipping region combines the current clipping region and the region identified
by pRgn but excludes any overlapping areas.

The region's type. It can be any of the following values:

COMPLEXREGION New clipping region has overlapping borders.

ERROR Device context or region is not valid.

NULLREGION New clipping region is empty.

S IMPLEREGION New clipping region has no overlapping borders.

Only a copy of the selected region is used. The region itself can be selected for any number of other
device contexts, or it can be deleted.

The function assumes that the coordinates for the given region are specified in device units. Some printer
devices support text output at a higher resolution than graphics output in order to retain the precision

 CDC::SelectObject

CPen* SelectObject(CPen* pPen);
CBrush* SelectObject(CBrush* pBrush);
virtual CFont* SelectObject(CFont* pFont);
CBitmap* SelectObject(CBitmap* pBitmap);
int SelectObject(CRgn* pRgn);
CGdiObject* SelectObject(CGdiObject* pObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

needed to express text metrics. These devices report device units at the higher resolution, that is, in text
units. These devices then scale coordinates for graphics so that several reported device units map to only
1 graphic unit. You should always call the SelectClipRgn function using text units.

Applications that must take the scaling of graphics objects in the GDI can use the GETSCALINGFACTOR
printer escape to determine the scaling factor. This scaling factor affects clipping. If a region is used to clip
graphics, GDI divides the coordinates by the scaling factor. If the region is used to clip text, GDI makes no
scaling adjustment. A scaling factor of 1 causes the coordinates to be divided by 2; a scaling factor of 2
causes the coordinates to be divided by 4; and so on.

Selects an object into the device context.

pPen
A pointer to a CPen object to be selected.

pBrush
A pointer to a CBrush object to be selected.

pFont
A pointer to a CFont object to be selected.

pBitmap
A pointer to a CBitmap object to be selected.

pRgn
A pointer to a CRgn object to be selected.

pObject
A pointer to a CGdiObject object to be selected.

A pointer to the object being replaced. This is a pointer to an object of one of the classes derived from
CGdiObject , such as CPen , depending on which version of the function is used. The return value is NULL

if there is an error. This function may return a pointer to a temporary object. This temporary object is only
valid during the processing of one Windows message. For more information, see CGdiObject::FromHandle .

The version of the member function that takes a region parameter performs the same task as the
SelectClipRgn member function. Its return value can be any of the following:

COMPLEXREGION New clipping region has overlapping borders.

ERROR Device context or region is not valid.

NULLREGION New clipping region is empty.

S IMPLEREGION New clipping region has no overlapping borders.

CDC::SelectPalette

CPalette* SelectPalette(
 CPalette* pPalette,
 BOOL bForceBackground);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::SelectStockObject

virtual CGdiObject* SelectStockObject(int nIndex);

ParametersParameters

Class CDC provides five versions specialized for particular kinds of GDI objects, including pens, brushes,
fonts, bitmaps, and regions. The newly selected object replaces the previous object of the same type. For
example, if pObject of the general version of SelectObject points to a CPen object, the function replaces
the current pen with the pen specified by pObject.

An application can select a bitmap into memory device contexts only and into only one memory device
context at a time. The format of the bitmap must either be monochrome or compatible with the device
context; if it is not, SelectObject returns an error.

For Windows 3.1 and later, the SelectObject function returns the same value whether it is used in a
metafile or not. Under previous versions of Windows, SelectObject returned a nonzero value for success
and 0 for failure when it was used in a metafile.

Selects the logical palette that is specified by pPalette as the selected palette object of the device context.

pPalette
Identifies the logical palette to be selected. This palette must already have been created with the CPalette

member function CreatePalette.

bForceBackground
Specifies whether the logical palette is forced to be a background palette. If bForceBackground is nonzero,
the selected palette is always a background palette, regardless of whether the window has the input focus.
If bForceBackground is 0 and the device context is attached to a window, the logical palette is a
foreground palette when the window has the input focus.

A pointer to a CPalette object identifying the logical palette replaced by the palette specified by pPalette.
It is NULL if there is an error.

The new palette becomes the palette object used by GDI to control colors displayed in the device context
and replaces the previous palette.

An application can select a logical palette into more than one device context. However, changes to a
logical palette will affect all device contexts for which it is selected. If an application selects a palette into
more than one device context, the device contexts must all belong to the same physical device.

Selects a CGdiObject object that corresponds to one of the predefined stock pens, brushes, or fonts.

nIndex
Specifies the kind of stock object desired. It can be one of the following values:

Return ValueReturn Value

CDC::SetAbortProc

int SetAbortProc(BOOL (CALLBACK* lpfn)(HDC, int));

ParametersParameters

Return ValueReturn Value

BLACK_BRUSH Black brush.

DKGRAY_BRUSH Dark gray brush.

GRAY_BRUSH Gray brush.

HOLLOW_BRUSH Hollow brush.

LTGRAY_BRUSH Light gray brush.

NULL_BRUSH Null brush.

WHITE_BRUSH White brush.

BLACK_PEN Black pen.

NULL_PEN Null pen.

WHITE_PEN White pen.

ANSI_FIXED_FONT ANSI fixed system font.

ANSI_VAR_FONT ANSI variable system font.

DEVICE_DEFAULT_FONT Device-dependent font.

OEM_FIXED_FONT OEM-dependent fixed font.

SYSTEM_FONT The system font. By default, Windows uses the system font to draw menus,
dialog-box controls, and other text. It is best, however, not to rely on SYSTEM_FONT to obtain the
font used by dialogs and windows. Instead, use the SystemParametersInfo function with the
SPI_GETNONCLIENTMETRICS parameter to retrieve the current font. SystemParametersInfo

takes into account the current theme and provides font information for captions, menus, and
message dialogs.

SYSTEM_FIXED_FONT The fixed-width system font used in Windows prior to version 3.0. This
object is available for compatibility with earlier versions of Windows.

DEFAULT_PALETTE Default color palette. This palette consists of the 20 static colors in the system
palette.

A pointer to the CGdiObject object that was replaced if the function is successful. The actual object
pointed to is a CPen, CBrush, or CFont object. If the call is unsuccessful, the return value is NULL.

Installs the abort procedure for the print job.

lpfn
A pointer to the abort function to install as the abort procedure. For more about the callback function, see
Callback Function for CDC::SetAbortProc.

Specifies the outcome of the SetAbortProc function. Some of the following values are more probable
than others, but all are possible.

RemarksRemarks

CDC::SetArcDirection

int SetArcDirection(int nArcDirection);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

SP_ERROR General error.

SP_OUTOFDISK Not enough disk space is currently available for spooling, and no more space will
become available.

SP_OUTOFMEMORY Not enough memory is available for spooling.

SP_USERABORT User ended the job through the Print Manager.

If an application is to allow the print job to be canceled during spooling, it must set the abort function
before the print job is started with the StartDoc member function. The Print Manager calls the abort
function during spooling to allow the application to cancel the print job or to process out-of-disk-space
conditions. If no abort function is set, the print job will fail if there is not enough disk space for spooling.

Note that the features of Microsoft Visual C++ simplify the creation of the callback function passed to
SetAbortProc . The address passed to the EnumObjects member function is a pointer to a function

exported with __declspec(dllexport) and with the __stdcall calling convention.

You also do not have to export the function name in an EXPORTS statement in your application's
module-definition file. You can instead use the EXPORT function modifier, as in

BOOL CALLBACK EXPORT AFunction(HDC, int);

to cause the compiler to emit the proper export record for export by name without aliasing. This works for
most needs. For some special cases, such as exporting a function by ordinal or aliasing the export, you still
need to use an EXPORTS statement in a module-definition file.

Callback registration interfaces are now type-safe (you must pass in a function pointer that points to the
right kind of function for the specific callback).

Also note that all callback functions must trap Microsoft Foundation exceptions before returning to
Windows, since exceptions cannot be thrown across callback boundaries. For more information about
exceptions, see the article Exceptions.

Sets the drawing direction to be used for arc and rectangle functions.

nArcDirection
Specifies the new arc direction. This parameter can be either of the following values:

AD_COUNTERCLOCKWISE Figures drawn counterclockwise.

AD_CLOCKWISE Figures drawn clockwise.

Specifies the old arc direction, if successful; otherwise 0.

The default direction is counterclockwise. The SetArcDirection function specifies the direction in which
the following functions draw:

ARC PIE

ArcTo Rectangle

Chord RoundRect

Ellipse

CDC::SetAttribDC

virtual void SetAttribDC(HDC hDC);

ParametersParameters

RemarksRemarks

CDC::SetBkColor

virtual COLORREF SetBkColor(COLORREF crColor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::SetBkMode

int SetBkMode(int nBkMode);

ParametersParameters

Call this function to set the attribute device context, m_hAttribDC .

hDC
A Windows device context.

This member function does not attach the device context to the CDC object. Only the output device
context is attached to a CDC object.

Sets the current background color to the specified color.

crColor
Specifies the new background color.

The previous background color as an RGB color value. If an error occurs, the return value is 0x80000000.

If the background mode is OPAQUE, the system uses the background color to fill the gaps in styled lines,
the gaps between hatched lines in brushes, and the background in character cells. The system also uses
the background color when converting bitmaps between color and monochrome device contexts.

If the device cannot display the specified color, the system sets the background color to the nearest
physical color.

Sets the background mode.

nBkMode

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDC::SetBoundsRect

UINT SetBoundsRect(
 LPCRECT lpRectBounds,
 UINT flags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::SetBrushOrg

Specifies the mode to be set. This parameter can be either of the following values:

OPAQUE Background is filled with the current background color before the text, hatched brush, or
pen is drawn. This is the default background mode.

TRANSPARENT Background is not changed before drawing.

The previous background mode.

The background mode defines whether the system removes existing background colors on the drawing
surface before drawing text, hatched brushes, or any pen style that is not a solid line.

See the example for CWnd::OnCtlColor.

Controls the accumulation of bounding-rectangle information for the specified device context.

lpRectBounds
Points to a RECT structure or CRect object that is used to set the bounding rectangle. Rectangle
dimensions are given in logical coordinates. This parameter can be NULL.

flags
Specifies how the new rectangle will be combined with the accumulated rectangle. This parameter can be
a combination of the following values:

DCB_ACCUMULATE Add the rectangle specified by lpRectBounds to the bounding rectangle (using
a rectangle-union operation).

DCB_DISABLE Turn off bounds accumulation.

DCB_ENABLE Turn on bounds accumulation. (The default setting for bounds accumulation is
disabled.)

The current state of the bounding rectangle, if the function is successful. Like flags, the return value can be
a combination of DCB_ values:

DCB_ACCUMULATE The bounding rectangle is not empty. This value will always be set.

DCB_DISABLE Bounds accumulation is off.

DCB_ENABLE Bounds accumulation is on.

Windows can maintain a bounding rectangle for all drawing operations. This rectangle can be queried and
reset by the application. The drawing bounds are useful for invalidating bitmap caches.

CPoint SetBrushOrg(
 int x,
 int y);

CPoint SetBrushOrg(POINT point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::SetColorAdjustment

BOOL SetColorAdjustment(const COLORADJUSTMENT* lpColorAdjust);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::SetDCBrushColor

COLORREF SetDCBrushColor(COLORREF crColor);

ParametersParameters

Specifies the origin that GDI will assign to the next brush that the application selects into the device
context.

x
Specifies the x-coordinate (in device units) of the new origin. This value must be in the range 0-7.

y
Specifies the y-coordinate (in device units) of the new origin. This value must be in the range 0-7.

point
Specifies the x- and y-coordinates of the new origin. Each value must be in the range 0-7. You can pass
either a POINT structure or a CPoint object for this parameter.

The previous origin of the brush in device units.

The default coordinates for the brush origin are (0, 0). To alter the origin of a brush, call the
UnrealizeObject function for the CBrush object, call SetBrushOrg , and then call the SelectObject

member function to select the brush into the device context.

Do not use SetBrushOrg with stock CBrush objects.

Sets the color adjustment values for the device context using the specified values.

lpColorAdjust
Points to a COLORADJUSTMENT data structure containing the color adjustment values.

Nonzero if successful; otherwise 0.

The color adjustment values are used to adjust the input color of the source bitmap for calls to the
CDC::StretchBlt member function when HALFTONE mode is set.

Sets the current device context (DC) brush color to the specified color value.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagcoloradjustment

Return ValueReturn Value

RemarksRemarks

CDC::SetDCPenColor

COLORREF SetDCPenColor(COLORREF crColor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::SetGraphicsMode

int SetGraphicsMode(int iMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::SetLayout

DWORD SetLayout(DWORD dwLayout);

crColor
Specifies the new brush color.

If the function succeeds, the return value specifies the previous DC brush color as a COLORREF value.

If the function fails, the return value is CLR_INVALID.

This method emulates the functionality of the function SetDCBrushColor, as described in the Windows
SDK.

Sets the current device context (DC) pen color to the specified color value.

crColor
Specifies the new pen color.

Nonzero if the function is successful; otherwise 0.

This member function utilizes the Win32 function SetDCPenColor, as described in the Windows SDK.

Sets the graphics mode for the specified device context.

iMode
Specifies the graphics mode. For a list of the values that this parameter can take, see SetGraphicsMode.

Returns the old graphics mode on success.

Returns 0 on failure. To get extended error information, call GetLastError.

This method wraps the Windows GDI function SetGraphicsMode.

Call this member function to change the layout of the text and graphics for a device context to right to left,
the standard layout for cultures such as Arabic and Hebrew.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-setdcbrushcolor
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-setdcpencolor
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-setgraphicsmode
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-setgraphicsmode

ParametersParameters

VALUE MEANING

LAYOUT_BITMAPORIENTATIONPRESERVED Disables any reflection for calls to CDC::BitBlt and
CDC::StretchBlt.

LAYOUT_RTL Sets the default horizontal layout to be right to left.

LAYOUT_LTR Sets the default layout to be left to right.

Return ValueReturn Value

RemarksRemarks

CDC::SetMapMode

virtual int SetMapMode(int nMapMode);

ParametersParameters

dwLayout
Device context layout and bitmap control flags. It can be a combination of the following values.

If successful, the previous layout of the device context.

If unsuccessful, GDI_ERROR. To get extended error information, call GetLastError.

Normally, you would not call SetLayout for a window. Rather, you control the right-to-left layout in a
window by setting the extended window styles such as WS_EX_RTLREADING. A device context, such as a
printer or a metafile, does not inherit this layout. The only way to set the device context for a right-to-left
layout is by calling SetLayout .

If you call SetLayout(LAYOUT_RTL), SetLayout automatically changes the mapping mode to
MM_ISOTROPIC. As a result, a subsequent call to GetMapMode will return MM_ISOTROPIC instead of
MM_TEXT.

In some cases, such as with many bitmaps, you may want to preserve the left-to-right layout. In these
cases, render the image by calling BitBlt or StretchBlt , then set the bitmap control flag for dwLayout
to LAYOUT_BITMAPORIENTATIONPRESERVED.

Once you change the layout with the LAYOUT_RTL flag, the flags normally specifying right or left are
reversed. To avoid confusion, you may want to define alternate names for the standard flags. For a list of
suggested alternate flag names, see SetLayout in the Windows SDK.

Sets the mapping mode.

nMapMode
Specifies the new mapping mode. It can be any one of the following values:

MM_ANISOTROPIC Logical units are converted to arbitrary units with arbitrarily scaled axes.
Setting the mapping mode to MM_ANISOTROPIC does not change the current window or
viewport settings. To change the units, orientation, and scaling, call the SetWindowExt and
SetViewportExt member functions.

MM_HIENGLISH Each logical unit is converted to 0.001 inch. Positive x is to the right; positive y is
up.

MM_HIMETRIC Each logical unit is converted to 0.01 millimeter. Positive x is to the right; positive y

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-setlayout

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CDC::SetMapperFlags

DWORD SetMapperFlags(DWORD dwFlag);

ParametersParameters

Return ValueReturn Value

is up.

MM_ISOTROPIC Logical units are converted to arbitrary units with equally scaled axes; that is, 1
unit along the x-axis is equal to 1 unit along the y-axis. Use the SetWindowExt and SetViewportExt

member functions to specify the desired units and the orientation of the axes. GDI makes
adjustments as necessary to ensure that the x and y units remain the same size.

MM_LOENGLISH Each logical unit is converted to 0.01 inch. Positive x is to the right; positive y is
up.

MM_LOMETRIC Each logical unit is converted to 0.1 millimeter. Positive x is to the right; positive y
is up.

MM_TEXT Each logical unit is converted to 1 device pixel. Positive x is to the right; positive y is
down.

MM_TWIPS Each logical unit is converted to 1/20 of a point. (Because a point is 1/72 inch, a twip
is 1/1440 inch.) Positive x is to the right; positive y is up.

The previous mapping mode.

The mapping mode defines the unit of measure used to convert logical units to device units; it also defines
the orientation of the device's x- and y-axes. GDI uses the mapping mode to convert logical coordinates
into the appropriate device coordinates. The MM_TEXT mode allows applications to work in device pixels,
where 1 unit is equal to 1 pixel. The physical size of a pixel varies from device to device.

The MM_HIENGLISH, MM_HIMETRIC, MM_LOENGLISH, MM_LOMETRIC, and MM_TWIPS modes
are useful for applications that must draw in physically meaningful units (such as inches or millimeters).
The MM_ISOTROPIC mode ensures a 1:1 aspect ratio, which is useful when it is important to preserve
the exact shape of an image. The MM_ANISOTROPIC mode allows the x- and y-coordinates to be
adjusted independently.

If you call SetLayout to change the DC (device context) to right-to-left layout, SetLayout automatically changes
the mapping mode to MM_ISOTROPIC.

See the example for CView::OnPrepareDC.

Changes the method used by the font mapper when it converts a logical font to a physical font.

dwFlag
Specifies whether the font mapper attempts to match a font's aspect height and width to the device. When
this value is ASPECT_FILTERING, the mapper selects only fonts whose x-aspect and y-aspect exactly
match those of the specified device.

RemarksRemarks

CDC::SetMiterLimit

BOOL SetMiterLimit(float fMiterLimit);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::SetOutputDC

virtual void SetOutputDC(HDC hDC);

ParametersParameters

RemarksRemarks

CDC::SetPixel

The previous value of the font-mapper flag.

An application can use SetMapperFlags to cause the font mapper to attempt to choose only a physical font
that exactly matches the aspect ratio of the specified device.

An application that uses only raster fonts can use the SetMapperFlags function to ensure that the font
selected by the font mapper is attractive and readable on the specified device. Applications that use
scalable (TrueType) fonts typically do not use SetMapperFlags .

If no physical font has an aspect ratio that matches the specification in the logical font, GDI chooses a new
aspect ratio and selects a font that matches this new aspect ratio.

Sets the limit for the length of miter joins for the device context.

fMiterLimit
Specifies the new miter limit for the device context.

Nonzero if the function is successful; otherwise 0.

The miter length is defined as the distance from the intersection of the line walls on the inside of the join
to the intersection of the line walls on the outside of the join. The miter limit is the maximum allowed ratio
of the miter length to the line width. The default miter limit is 10.0.

Call this member function to set the output device context, m_hDC .

hDC
A Windows device context.

This member function can only be called when a device context has not been attached to the CDC object.
This member function sets m_hDC but does not attach the device context to the CDC object.

Sets the pixel at the point specified to the closest approximation of the color specified by crColor.

COLORREF SetPixel(
 int x,
 int y,
 COLORREF crColor);

COLORREF SetPixel(
 POINT point,
 COLORREF crColor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::SetPixelV

BOOL SetPixelV(
 int x,
 int y,
 COLORREF crColor);

BOOL SetPixelV(
 POINT point,
 COLORREF crColor);

ParametersParameters

x
Specifies the logical x-coordinate of the point to be set.

y
Specifies the logical y-coordinate of the point to be set.

crColor
A COLORREF RGB value that specifies the color used to paint the point. See COLORREF in the Windows
SDK for a description of this value.

point
Specifies the logical x- and y-coordinates of the point to be set. You can pass either a POINT structure or a
CPoint object for this parameter.

An RGB value for the color that the point is actually painted. This value can be different from that specified
by crColor if an approximation of that color is used. If the function fails (if the point is outside the clipping
region), the return value is -1.

The point must be in the clipping region. If the point is not in the clipping region, the function does
nothing.

Not all devices support the SetPixel function. To determine whether a device supports SetPixel , call the
GetDeviceCaps member function with the RASTERCAPS index and check the return value for the

RC_BITBLT flag.

Sets the pixel at the specified coordinates to the closest approximation of the specified color.

x
Specifies the x-coordinate, in logical units, of the point to be set.

y
Specifies the y-coordinate, in logical units, of the point to be set.

https://docs.microsoft.com/windows/desktop/gdi/colorref

Return ValueReturn Value

RemarksRemarks

CDC::SetPolyFillMode

int SetPolyFillMode(int nPolyFillMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::SetROP2

int SetROP2(int nDrawMode);

ParametersParameters

crColor
Specifies the color to be used to paint the point.

point
Specifies the logical x- and y-coordinates of the point to be set. You can pass either a POINT data
structure or a CPoint object for this parameter.

Nonzero if the function is successful; otherwise 0.

The point must be in both the clipping region and the visible part of the device surface. Not all devices
support the member function. For more information, see the RC_BITBLT capability in the
CDC::GetDeviceCaps member function. SetPixelV is faster than SetPixel because it does not need to

return the color value of the point actually painted.

Sets the polygon-filling mode.

nPolyFillMode
Specifies the new filling mode. This value may be either ALTERNATE or WINDING. The default mode set
in Windows is ALTERNATE.

The previous filling mode, if successful; otherwise 0.

When the polygon-filling mode is ALTERNATE, the system fills the area between odd-numbered and
even-numbered polygon sides on each scan line. That is, the system fills the area between the first and
second side, between the third and fourth side, and so on. This mode is the default.

When the polygon-filling mode is WINDING, the system uses the direction in which a figure was drawn
to determine whether to fill an area. Each line segment in a polygon is drawn in either a clockwise or a
counterclockwise direction. Whenever an imaginary line drawn from an enclosed area to the outside of a
figure passes through a clockwise line segment, a count is incremented. When the line passes through a
counterclockwise line segment, the count is decremented. The area is filled if the count is nonzero when
the line reaches the outside of the figure.

Sets the current drawing mode.

nDrawMode
Specifies the new drawing mode. It can be any of the following values:

R2_BLACK Pixel is always black.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

Return ValueReturn Value

RemarksRemarks

CDC::SetStretchBltMode

int SetStretchBltMode(int nStretchMode);

R2_WHITE Pixel is always white.

R2_NOP Pixel remains unchanged.

R2_NOT Pixel is the inverse of the screen color.

R2_COPYPEN Pixel is the pen color.

R2_NOTCOPYPEN Pixel is the inverse of the pen color.

R2_MERGEPENNOT Pixel is a combination of the pen color and the inverse of the screen color
(final pixel = (NOT screen pixel) OR pen).

R2_MASKPENNOT Pixel is a combination of the colors common to both the pen and the inverse
of the screen (final pixel = (NOT screen pixel) AND pen).

R2_MERGENOTPEN Pixel is a combination of the screen color and the inverse of the pen color
(final pixel = (NOT pen) OR screen pixel).

R2_MASKNOTPEN Pixel is a combination of the colors common to both the screen and the
inverse of the pen (final pixel = (NOT pen) AND screen pixel).

R2_MERGEPEN Pixel is a combination of the pen color and the screen color (final pixel = pen OR
screen pixel).

R2_NOTMERGEPEN Pixel is the inverse of the R2_MERGEPEN color (final pixel = NOT(pen OR
screen pixel)).

R2_MASKPEN Pixel is a combination of the colors common to both the pen and the screen (final
pixel = pen AND screen pixel).

R2_NOTMASKPEN Pixel is the inverse of the R2_MASKPEN color (final pixel = NOT(pen AND
screen pixel)).

R2_XORPEN Pixel is a combination of the colors that are in the pen or in the screen, but not in
both (final pixel = pen XOR screen pixel).

R2_NOTXORPEN Pixel is the inverse of the R2_XORPEN color (final pixel = NOT(pen XOR screen
pixel)).

The previous drawing mode.

It can be any of the values given in the Windows SDK.

The drawing mode specifies how the colors of the pen and the interior of filled objects are combined with
the color already on the display surface.

The drawing mode is for raster devices only; it does not apply to vector devices. Drawing modes are
binary raster-operation codes representing all possible Boolean combinations of two variables, using the
binary operators AND, OR, and XOR (exclusive OR), and the unary operation NOT.

Sets the bitmap-stretching mode for the StretchBlt member function.

ParametersParameters

VALUE DESCRIPTION

BLACKONWHITE Performs a Boolean AND operation using the color values
for the eliminated and existing pixels. If the bitmap is a
monochrome bitmap, this mode preserves black pixels at
the expense of white pixels.

COLORONCOLOR Deletes the pixels. This mode deletes all eliminated lines
of pixels without trying to preserve their information.

HALFTONE Maps pixels from the source rectangle into blocks of
pixels in the destination rectangle. The average color over
the destination block of pixels approximates the color of
the source pixels.

After setting the HALFTONE stretching mode, an
application must call the Win32 function SetBrushOrgEx
to set the brush origin. If it fails to do so, brush
misalignment occurs.

STRETCH_ANDSCANS Windows 95/98: Same as BLACKONWHITE

STRETCH_DELETESCANS Windows 95/98: Same as COLORONCOLOR

STRETCH_HALFTONE Windows 95/98: Same as HALFTONE.

STRETCH_ORSCANS Windows 95/98: Same as WHITEONBLACK

WHITEONBLACK Performs a Boolean OR operation using the color values
for the eliminated and existing pixels. If the bitmap is a
monochrome bitmap, this mode preserves white pixels at
the expense of black pixels.

Return ValueReturn Value

RemarksRemarks

CDC::SetTextAlign

nStretchMode
Specifies the stretching mode. It can be any of the following values:

The previous stretching mode. It can be STRETCH_ANDSCANS, STRETCH_DELETESCANS, or
STRETCH_ORSCANS.

The bitmap-stretching mode defines how information is removed from bitmaps that are compressed by
using the function.

The BLACKONWHITE (STRETCH_ANDSCANS) and WHITEONBLACK (STRETCH_ORSCANS) modes
are typically used to preserve foreground pixels in monochrome bitmaps. The COLORONCOLOR (
STRETCH_DELETESCANS) mode is typically used to preserve color in color bitmaps.

The HALFTONE mode requires more processing of the source image than the other three modes; it is
slower than the others, but produces higher quality images. Also note that SetBrushOrgEx must be called
after setting the HALFTONE mode to avoid brush misalignment.

Additional stretching modes might also be available depending on the capabilities of the device driver.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-setbrushorgex

UINT SetTextAlign(UINT nFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::SetTextCharacterExtra

int SetTextCharacterExtra(int nCharExtra);

ParametersParameters

Sets the text-alignment flags.

nFlags
Specifies text-alignment flags. The flags specify the relationship between a point and a rectangle that
bounds the text. The point can be either the current position or coordinates specified by a text-output
function. The rectangle that bounds the text is defined by the adjacent character cells in the text string. The
nFlags parameter can be one or more flags from the following three categories. Choose only one flag
from each category. The first category affects text alignment in the x-direction:

TA_CENTER Aligns the point with the horizontal center of the bounding rectangle.

TA_LEFT Aligns the point with the left side of the bounding rectangle. This is the default setting.

TA_RIGHT Aligns the point with the right side of the bounding rectangle.

The second category affects text alignment in the y-direction:

TA_BASELINE Aligns the point with the base line of the chosen font.

TA_BOTTOM Aligns the point with the bottom of the bounding rectangle.

TA_TOP Aligns the point with the top of the bounding rectangle. This is the default setting.

The third category determines whether the current position is updated when text is written:

TA_NOUPDATECP Does not update the current position after each call to a text-output function.
This is the default setting.

TA_UPDATECP Updates the current x-position after each call to a text-output function. The new
position is at the right side of the bounding rectangle for the text. When this flag is set, the
coordinates specified in calls to the TextOut member function are ignored.

The previous text-alignment setting, if successful. The low-order byte contains the horizontal setting and
the high-order byte contains the vertical setting; otherwise 0.

The TextOut and ExtTextOut member functions use these flags when positioning a string of text on a
display or device. The flags specify the relationship between a specific point and a rectangle that bounds
the text. The coordinates of this point are passed as parameters to the TextOut member function. The
rectangle that bounds the text is formed by the adjacent character cells in the text string.

Sets the amount of intercharacter spacing.

nCharExtra
Specifies the amount of extra space (in logical units) to be added to each character. If the current mapping
mode is not MM_TEXT , nCharExtra is transformed and rounded to the nearest pixel.

Return ValueReturn Value

RemarksRemarks

CDC::SetTextColor

virtual COLORREF SetTextColor(COLORREF crColor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDC::SetTextJustification

int SetTextJustification(
 int nBreakExtra,
 int nBreakCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The amount of the previous intercharacter spacing.

GDI adds this spacing to each character, including break characters, when it writes a line of text to the
device context. The default value for the amount of intercharacter spacing is 0.

Sets the text color to the specified color.

crColor
Specifies the color of the text as an RGB color value.

An RGB value for the previous text color.

The system will use this text color when writing text to this device context and also when converting
bitmaps between color and monochrome device contexts.

If the device cannot represent the specified color, the system sets the text color to the nearest physical
color. The background color for a character is specified by the SetBkColor and SetBkMode member
functions.

See the example for CWnd::OnCtlColor.

Adds space to the break characters in a string.

nBreakExtra
Specifies the total extra space to be added to the line of text (in logical units). If the current mapping mode
is not MM_TEXT , the value given by this parameter is converted to the current mapping mode and rounded
to the nearest device unit.

nBreakCount
Specifies the number of break characters in the line.

One if the function is successful; otherwise 0.

An application can use the GetTextMetrics member functions to retrieve a font's break character.

 CDC::SetViewportExt

virtual CSize SetViewportExt(
 int cx,
 int cy);

CSize SetViewportExt(SIZE size);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

MM_HIENGLISH MM_LOMETRIC

MM_HIMETRIC MM_TEXT

After the SetTextJustification member function is called, a call to a text-output function (such as
TextOut) distributes the specified extra space evenly among the specified number of break characters.

The break character is usually the space character (ASCII 32), but may be defined by a font as some other
character.

The member function GetTextExtent is typically used with SetTextJustification . GetTextExtent

computes the width of a given line before alignment. An application can determine how much space to
specify in the nBreakExtra parameter by subtracting the value returned by GetTextExtent from the width
of the string after alignment.

The SetTextJustification function can be used to align a line that contains multiple runs in different
fonts. In this case, the line must be created piecemeal by aligning and writing each run separately.

Because rounding errors can occur during alignment, the system keeps a running error term that defines
the current error. When aligning a line that contains multiple runs, GetTextExtent automatically uses this
error term when it computes the extent of the next run. This allows the text-output function to blend the
error into the new run.

After each line has been aligned, this error term must be cleared to prevent it from being incorporated
into the next line. The term can be cleared by calling SetTextJustification with nBreakExtra set to 0.

Sets the x- and y-extents of the viewport of the device context.

cx
Specifies the x-extent of the viewport (in device units).

cy
Specifies the y-extent of the viewport (in device units).

size
Specifies the x- and y-extents of the viewport (in device units).

The previous extents of the viewport as a CSize object. When an error occurs, the x- and y-coordinates of
the returned CSize object are both set to 0.

The viewport, along with the device-context window, defines how GDI maps points in the logical
coordinate system to points in the coordinate system of the actual device. In other words, they define how
GDI converts logical coordinates into device coordinates.

When the following mapping modes are set, calls to SetWindowExt and SetViewportExt are ignored:

MM_LOENGLISH MM_TWIPS

MM_HIENGLISH MM_LOMETRIC

ExampleExample

CDC::SetViewportOrg

virtual CPoint SetViewportOrg(
 int x,
 int y);

CPoint SetViewportOrg(POINT point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDC::SetWindowExt

When MM_ISOTROPIC mode is set, an application must call the SetWindowExt member function before it
calls SetViewportExt .

See the example for CView::OnPrepareDC.

Sets the viewport origin of the device context.

x
Specifies the x-coordinate (in device units) of the origin of the viewport. The value must be within the
range of the device coordinate system.

y
Specifies the y-coordinate (in device units) of the origin of the viewport. The value must be within the
range of the device coordinate system.

point
Specifies the origin of the viewport. The values must be within the range of the device coordinate system.
You can pass either a POINT structure or a CPoint object for this parameter.

The previous origin of the viewport (in device coordinates) as a CPoint object.

The viewport, along with the device-context window, defines how GDI maps points in the logical
coordinate system to points in the coordinate system of the actual device. In other words, they define how
GDI converts logical coordinates into device coordinates.

The viewport origin marks the point in the device coordinate system to which GDI maps the window
origin, a point in the logical coordinate system specified by the SetWindowOrg member function. GDI maps
all other points by following the same process required to map the window origin to the viewport origin.
For example, all points in a circle around the point at the window origin will be in a circle around the point
at the viewport origin. Similarly, all points in a line that passes through the window origin will be in a line
that passes through the viewport origin.

See the example for CView::OnPrepareDC.

Sets the x- and y-extents of the window associated with the device context.

virtual CSize SetWindowExt(
 int cx,
 int cy);

CSize SetWindowExt(SIZE size);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDC::SetWindowOrg

CPoint SetWindowOrg(
 int x,
 int y);

CPoint SetWindowOrg(POINT point);

ParametersParameters

cx
Specifies the x-extent (in logical units) of the window.

cy
Specifies the y-extent (in logical units) of the window.

size
Specifies the x- and y-extents (in logical units) of the window.

The previous extents of the window (in logical units) as a CSize object. If an error occurs, the x- and y-
coordinates of the returned CSize object are both set to 0.

The window, along with the device-context viewport, defines how GDI maps points in the logical
coordinate system to points in the device coordinate system.

When the following mapping modes are set, calls to SetWindowExt and SetViewportExt functions are
ignored:

MM_HIENGLISH

MM_HIMETRIC

MM_LOENGLISH

MM_LOMETRIC

MM_TEXT

MM_TWIPS

When MM_ISOTROPIC mode is set, an application must call the SetWindowExt member function before
calling SetViewportExt .

See the example for CView::OnPrepareDC.

Sets the window origin of the device context.

x

Return ValueReturn Value

RemarksRemarks

CDC::SetWorldTransform

BOOL SetWorldTransform(const XFORM& rXform);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::StartDoc

int StartDoc(LPDOCINFO lpDocInfo);
int StartDoc(LPCTSTR lpszDocName);

ParametersParameters

Specifies the logical x-coordinate of the new origin of the window.

y
Specifies the logical y-coordinate of the new origin of the window.

point
Specifies the logical coordinates of the new origin of the window. You can pass either a POINT structure or
a CPoint object for this parameter.

The previous origin of the window as a CPoint object.

The window, along with the device-context viewport, defines how GDI maps points in the logical
coordinate system to points in the device coordinate system.

The window origin marks the point in the logical coordinate system from which GDI maps the viewport
origin, a point in the device coordinate system specified by the SetWindowOrg function. GDI maps all other
points by following the same process required to map the window origin to the viewport origin. For
example, all points in a circle around the point at the window origin will be in a circle around the point at
the viewport origin. Similarly, all points in a line that passes through the window origin will be in a line
that passes through the viewport origin.

Sets a two-dimensional linear transformation between world space and page space for the specified
device context. This transformation can be used to scale, rotate, shear, or translate graphics output.

rXform
Reference to an XFORM structure that contains the transformation data.

Returns a nonzero value on success.

Returns 0 on failure.

To get extended error information, call GetLastError.

This method wraps the Windows GDI function SetWorldTransform.

Informs the device driver that a new print job is starting and that all subsequent StartPage and EndPage

calls should be spooled under the same job until an EndDoc call occurs.

lpDocInfo

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagxform
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-setworldtransform

Return ValueReturn Value

RemarksRemarks

ExampleExample

Points to a DOCINFO structure containing the name of the document file and the name of the output file.

lpszDocName
Pointer to a string containing the name of the document file.

If the function succeeds, the return value is greater than zero. This value is the print job identifier for the
document.

If the function fails, the return value is less than or equal to zero.

This ensures that documents longer than one page will not be interspersed with other jobs.

For Windows versions 3.1 and later, this function replaces the STARTDOC printer escape. Using this
function ensures that documents containing more than one page are not interspersed with other print
jobs.

StartDoc should not be used inside metafiles.

This code fragment gets the default printer, opens a print job, and spools one page with "Hello, World!" on
it. Because the text printed by this code isn't scaled to the printer's logical units, the output text may be in
such small letters that the result is unreadable. The CDC scaling functions, such as SetMapMode ,
SetViewportOrg , and SetWindowExt , can be used to fix the scaling.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_docinfoa

void CDCView::DoStartDoc()
{
 // get the default printer
 CPrintDialog dlg(FALSE);
 dlg.GetDefaults();

 // is a default printer set up?
 HDC hdcPrinter = dlg.GetPrinterDC();
 if (hdcPrinter == NULL)
 {
 MessageBox(_T("Buy a printer!"));
 }
 else
 {
 // create a CDC and attach it to the default printer
 CDC dcPrinter;
 dcPrinter.Attach(hdcPrinter);

 // call StartDoc() to begin printing
 DOCINFO docinfo;
 memset(&docinfo, 0, sizeof(docinfo));
 docinfo.cbSize = sizeof(docinfo);
 docinfo.lpszDocName = _T("CDC::StartDoc() Code Fragment");

 // if it fails, complain and exit gracefully
 if (dcPrinter.StartDoc(&docinfo) < 0)
 {
 MessageBox(_T("Printer wouldn't initialize"));
 }
 else
 {
 // start a page
 if (dcPrinter.StartPage() < 0)
 {
 MessageBox(_T("Could not start page"));
 dcPrinter.AbortDoc();
 }
 else
 {
 // actually do some printing
 CGdiObject* pOldFont = dcPrinter.SelectStockObject(SYSTEM_FONT);

 dcPrinter.TextOut(50, 50, _T("Hello World!"), 12);

 dcPrinter.EndPage();
 dcPrinter.EndDoc();
 dcPrinter.SelectObject(pOldFont);
 }
 }
 }
}

CDC::StartPage

int StartPage();

Return ValueReturn Value

RemarksRemarks

Call this member function to prepare the printer driver to receive data.

Greater than or equal to 0 if the function is successful, or a negative value if an error occurred.

ExampleExample

CDC::StretchBlt

BOOL StretchBlt(
 int x,
 int y,
 int nWidth,
 int nHeight,
 CDC* pSrcDC,
 int xSrc,
 int ySrc,
 int nSrcWidth,
 int nSrcHeight,
 DWORD dwRop);

ParametersParameters

StartPage supersedes the NEWFRAME and BANDINFO escapes.

For an overview of the sequence of printing calls, see the StartDoc member function.

The system disables the ResetDC member function between calls to StartPage and EndPage .

See the example for CDC::StartDoc.

Copies a bitmap from a source rectangle into a destination rectangle, stretching or compressing the
bitmap if necessary to fit the dimensions of the destination rectangle.

x
Specifies the x-coordinate (in logical units) of the upper-left corner of the destination rectangle.

y
Specifies the y-coordinate (in logical units) of the upper-left corner of the destination rectangle.

nWidth
Specifies the width (in logical units) of the destination rectangle.

nHeight
Specifies the height (in logical units) of the destination rectangle.

pSrcDC
Specifies the source device context.

xSrc
Specifies the x-coordinate (in logical units) of the upper-left corner of the source rectangle.

ySrc
Specifies the y-coordinate (in logical units) of the upper-left corner of the source rectangle.

nSrcWidth
Specifies the width (in logical units) of the source rectangle.

nSrcHeight
Specifies the height (in logical units) of the source rectangle.

dwRop
Specifies the raster operation to be performed. Raster operation codes define how GDI combines colors
in output operations that involve a current brush, a possible source bitmap, and a destination bitmap. This
parameter may be one of the following values:

Return ValueReturn Value

RemarksRemarks

BLACKNESS Turns all output black.

DSTINVERT Inverts the destination bitmap.

MERGECOPY Combines the pattern and the source bitmap using the Boolean AND operator.

MERGEPAINT Combines the inverted source bitmap with the destination bitmap using the
Boolean OR operator.

NOTSRCCOPY Copies the inverted source bitmap to the destination.

NOTSRCERASE Inverts the result of combining the destination and source bitmaps using the
Boolean OR operator.

PATCOPY Copies the pattern to the destination bitmap.

PATINVERT Combines the destination bitmap with the pattern using the Boolean XOR operator.

PATPAINT Combines the inverted source bitmap with the pattern using the Boolean OR operator.
Combines the result of this operation with the destination bitmap using the Boolean OR operator.

SRCAND Combines pixels of the destination and source bitmaps using the Boolean AND operator.

SRCCOPY Copies the source bitmap to the destination bitmap.

SRCERASE Inverts the destination bitmap and combines the result with the source bitmap using
the Boolean AND operator.

SRCINVERT Combines pixels of the destination and source bitmaps using the Boolean XOR
operator.

SRCPAINT Combines pixels of the destination and source bitmaps using the Boolean OR operator.

WHITENESS Turns all output white.

Nonzero if the bitmap is drawn; otherwise 0.

The function uses the stretching mode of the destination device context (set by SetStretchBltMode) to
determine how to stretch or compress the bitmap.

The StretchBlt function moves the bitmap from the source device given by pSrcDC to the destination
device represented by the device-context object whose member function is being called. The xSrc, ySrc,
nSrcWidth, and nSrcHeight parameters define the upper-left corner and dimensions of the source
rectangle. The x, y, nWidth, and nHeight parameters give the upper-left corner and dimensions of the
destination rectangle. The raster operation specified by dwRop defines how the source bitmap and the bits
already on the destination device are combined.

The StretchBlt function creates a mirror image of a bitmap if the signs of the nSrcWidth and nWidth or
nSrcHeight and nHeight parameters differ. If nSrcWidth and nWidth have different signs, the function
creates a mirror image of the bitmap along the x-axis. If nSrcHeight and nHeight have different signs, the
function creates a mirror image of the bitmap along the y-axis.

The StretchBlt function stretches or compresses the source bitmap in memory and then copies the
result to the destination. If a pattern is to be merged with the result, it is not merged until the stretched
source bitmap is copied to the destination. If a brush is used, it is the selected brush in the destination
device context. The destination coordinates are transformed according to the destination device context;
the source coordinates are transformed according to the source device context.

CDC::StrokeAndFillPath

BOOL StrokeAndFillPath();

Return ValueReturn Value

RemarksRemarks

CDC::StrokePath

BOOL StrokePath();

Return ValueReturn Value

RemarksRemarks

CDC::TabbedTextOut

If the destination, source, and pattern bitmaps do not have the same color format, StretchBlt converts
the source and pattern bitmaps to match the destination bitmaps. The foreground and background colors
of the destination device context are used in the conversion.

If StretchBlt must convert a monochrome bitmap to color, it sets white bits (1) to the background color
and black bits (0) to the foreground color. To convert color to monochrome, it sets pixels that match the
background color to white (1) and sets all other pixels to black (0). The foreground and background colors
of the device context with color are used.

Not all devices support the StretchBlt function. To determine whether a device supports StretchBlt ,
call the GetDeviceCaps member function with the RASTERCAPS index and check the return value for the
RC_STRETCHBLT flag.

Closes any open figures in a path, strokes the outline of the path by using the current pen, and fills its
interior by using the current brush.

Nonzero if the function is successful; otherwise 0.

The device context must contain a closed path. The StrokeAndFillPath member function has the same
effect as closing all the open figures in the path, and stroking and filling the path separately, except that
the filled region will not overlap the stroked region even if the pen is wide.

Renders the specified path by using the current pen.

Nonzero if the function is successful; otherwise 0.

The device context must contain a closed path.

Call this member function to write a character string at the specified location, expanding tabs to the values
specified in the array of tab-stop positions.

virtual CSize TabbedTextOut(
 int x,
 int y,
 LPCTSTR lpszString,
 int nCount,
 int nTabPositions,
 LPINT lpnTabStopPositions,
 int nTabOrigin);

CSize TabbedTextOut(
 int x,
 int y,
 const CString& str,
 int nTabPositions,
 LPINT lpnTabStopPositions,
 int nTabOrigin);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

x
Specifies the logical x-coordinate of the starting point of the string.

y
Specifies the logical y-coordinate of the starting point of the string.

lpszString
Points to the character string to draw. You can pass either a pointer to an array of characters or a CString
object for this parameter.

nCount
Specifies the number of characters in the string. If nCount is -1, the length is calculated.

nTabPositions
Specifies the number of values in the array of tab-stop positions.

lpnTabStopPositions
Points to an array containing the tab-stop positions (in logical units). The tab stops must be sorted in
increasing order; the smallest x-value should be the first item in the array.

nTabOrigin
Specifies the x-coordinate of the starting position from which tabs are expanded (in logical units).

str
A CString object that contains the specified characters.

The dimensions of the string (in logical units) as a CSize object.

Text is written in the currently selected font. If nTabPositions is 0 and lpnTabStopPositions is NULL, tabs
are expanded to eight times the average character width.

If nTabPositions is 1, the tab stops are separated by the distance specified by the first value in the
lpnTabStopPositions array. If the lpnTabStopPositions array contains more than one value, a tab stop is set
for each value in the array, up to the number specified by nTabPositions. The nTabOrigin parameter allows
an application to call the TabbedTextOut function several times for a single line. If the application calls the
function more than once with the nTabOrigin set to the same value each time, the function expands all
tabs relative to the position specified by nTabOrigin.

By default, the current position is not used or updated by the function. If an application needs to update

CDC::TextOut

virtual BOOL TextOut(
 int x,
 int y,
 LPCTSTR lpszString,
 int nCount);

BOOL TextOut(
 int x,
 int y,
 const CString& str);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CDC::TransparentBlt

the current position when it calls the function, the application can call the SetTextAlign member function
with nFlags set to TA_UPDATECP. When this flag is set, Windows ignores the x and y parameters on
subsequent calls to TabbedTextOut , using the current position instead.

Writes a character string at the specified location using the currently selected font.

x
Specifies the logical x-coordinate of the starting point of the text.

y
Specifies the logical y-coordinate of the starting point of the text.

lpszString
Points to the character string to be drawn.

nCount
Specifies the number of characters in the string.

str
A CString object that contains the characters to be drawn.

Nonzero if the function is successful; otherwise 0.

Character origins are at the upper-left corner of the character cell. By default, the current position is not
used or updated by the function.

If an application needs to update the current position when it calls TextOut , the application can call the
SetTextAlign member function with nFlags set to TA_UPDATECP. When this flag is set, Windows ignores

the x and y parameters on subsequent calls to TextOut , using the current position instead.

See the example for CDC::BeginPath.

Call this member function to transfer a bit-block of the color data, which corresponds to a rectangle of
pixels from the specified source device context, into a destination device context.

BOOL TransparentBlt(
 int xDest,
 int yDest,
 int nDestWidth,
 int nDestHeight,
 CDC* pSrcDC,
 int xSrc,
 int ySrc,
 int nSrcWidth,
 int nSrcHeight,
 UINT clrTransparent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDC::UpdateColors

xDest
Specifies the x-coordinate, in logical units, of the upper-left corner of the destination rectangle.

yDest
Specifies the y-coordinate, in logical units, of the upper-left corner of the destination rectangle.

nDestWidth
Specifies the width, in logical units, of the destination rectangle.

nDestHeight
Specifies the height, in logical units, of the destination rectangle.

pSrcDC
Pointer to the source device context.

xSrc
Specifies the x-coordinate, in logical units, of the source rectangle.

ySrc
Specifies the y-coordinate, in logical units, of the source rectangle.

nSrcWidth
Specifies the width, in logical units, of the source rectangle.

nSrcHeight
Specifies the height, in logical units, of the source rectangle.

clrTransparent
The RGB color in the source bitmap to treat as transparent.

TRUE if successful; otherwise FALSE.

TransparentBlt allows for transparency; that is, the RGB color indicated by clrTransparent is rendered
transparent for the transfer.

For more information, see TransparentBlt in the Windows SDK.

Updates the client area of the device context by matching the current colors in the client area to the
system palette on a pixel-by-pixel basis.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-transparentblt

void UpdateColors();

RemarksRemarks

CDC::WidenPath

BOOL WidenPath();

Return ValueReturn Value

RemarksRemarks

See also

An inactive window with a realized logical palette may call UpdateColors as an alternative to redrawing its
client area when the system palette changes.

For more information about using color palettes, see UpdateColors in the Windows SDK.

The UpdateColors member function typically updates a client area faster than redrawing the area.
However, because the function performs the color translation based on the color of each pixel before the
system palette changed, each call to this function results in the loss of some color accuracy.

Redefines the current path as the area that would be painted if the path were stroked using the pen
currently selected into the device context.

Nonzero if the function is successful; otherwise 0.

This function is successful only if the current pen is a geometric pen created by the second version of
CreatePen member function, or if the pen is created with the first version of CreatePen and has a width,

in device units, of greater than 1. The device context must contain a closed path. Any Bzier curves in the
path are converted to sequences of straight lines approximating the widened curves. As such, no Bzier
curves remain in the path after WidenPath is called.

CObject Class
Hierarchy Chart
CPaintDC Class
CWindowDC Class
CClientDC Class
CMetaFileDC Class

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-updatecolors

CDCRenderTarget Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CDCRenderTarget : public CRenderTarget;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDCRenderTarget::CDCRenderTarget Constructs a CDCRenderTarget object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDCRenderTarget::Attach Attaches existing render target interface to the object

CDCRenderTarget::BindDC Binds the render target to the device context to which it issues
drawing commands

CDCRenderTarget::Create Creates a CDCRenderTarget.

CDCRenderTarget::Detach Detaches render target interface from the object

CDCRenderTarget::GetDCRenderTarget Returns ID2D1DCRenderTarget interface

Public OperatorsPublic Operators

NAME DESCRIPTION

CDCRenderTarget::operator ID2D1DCRenderTarget* Returns ID2D1DCRenderTarget interface

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CDCRenderTarget::m_pDCRenderTarget A pointer to an ID2D1DCRenderTarget object.

Inheritance Hierarchy

A wrapper for ID2D1DCRenderTarget.

CObject

CRenderTarget

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdcrendertarget-class.md

Requirements

CDCRenderTarget::Attach

void Attach(ID2D1DCRenderTarget* pTarget);

ParametersParameters

CDCRenderTarget::BindDC

BOOL BindDC(
 const CDC& dc,
 const CRect& rect);

ParametersParameters

Return ValueReturn Value

CDCRenderTarget::CDCRenderTarget

CDCRenderTarget();

CDCRenderTarget::Create

BOOL Create(const D2D1_RENDER_TARGET_PROPERTIES& props);

ParametersParameters

Return ValueReturn Value

CDCRenderTarget

Header: afxrendertarget.h

Attaches existing render target interface to the object

pTarget
Existing render target interface. Cannot be NULL

Binds the render target to the device context to which it issues drawing commands

dc
The device context to which the render target issues drawing commands

rect
The dimensions of the handle to a device context (HDC) to which the render target is bound

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Constructs a CDCRenderTarget object.

Creates a CDCRenderTarget.

props
The rendering mode, pixel format, remoting options, DPI information, and the minimum DirectX support required
for hardware rendering.

CDCRenderTarget::Detach

ID2D1DCRenderTarget* Detach();

Return ValueReturn Value

CDCRenderTarget::GetDCRenderTarget

ID2D1DCRenderTarget* GetDCRenderTarget();

Return ValueReturn Value

CDCRenderTarget::m_pDCRenderTarget

ID2D1DCRenderTarget* m_pDCRenderTarget;

CDCRenderTarget::operator ID2D1DCRenderTarget*

operator ID2D1DCRenderTarget*();

Return ValueReturn Value

See also

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Detaches render target interface from the object

Pointer to detached render target interface.

Returns ID2D1DCRenderTarget interface

Pointer to an ID2D1DCRenderTarget interface or NULL if object is not initialized yet.

A pointer to an ID2D1DCRenderTarget object.

Returns ID2D1DCRenderTarget interface

Pointer to an ID2D1DCRenderTarget interface or NULL if object is not initialized yet.

Classes

CDHtmlDialog Class
3/5/2019 • 20 minutes to read • Edit Online

Syntax
class CDHtmlDialog : public CDialog, public CDHtmlEventSink

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDHtmlDialog::CDHtmlDialog Constructs a CDHtmlDialog object.

CDHtmlDialog::~CDHtmlDialog Destroys a CDHtmlDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDHtmlDialog::CanAccessExternal Overridable that is called as an access check to see whether
scripting objects on the loaded page can access the external
dispatch of the control site. Checks to make sure the dispatch
is either safe for scripting or the current zone allows for
objects that are not safe for scripting.

CDHtmlDialog::CreateControlSite Overridable used to create a control site instance to host the
WebBrowser control on the dialog.

CDHtmlDialog::DDX_DHtml_AxControl Exchanges data between a member variable and the property
value of an ActiveX control on an HTML page.

CDHtmlDialog::DDX_DHtml_CheckBox Exchanges data between a member variable and a check box
on an HTML page.

CDHtmlDialog::DDX_DHtml_ElementText Exchanges data between a member variable and any HTML
element property on an HTML page.

CDHtmlDialog::DDX_DHtml_Radio Exchanges data between a member variable and a radio
button on an HTML page.

CDHtmlDialog::DDX_DHtml_SelectIndex Gets or sets the index of a list box on an HTML page.

CDHtmlDialog::DDX_DHtml_SelectString Gets or sets the display text of a list box entry (based on the
current index) on an HTML page.

Is used to create dialog boxes that use HTML rather than dialog resources to implement their user interface.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdhtmldialog-class.md

CDHtmlDialog::DDX_DHtml_SelectValue Gets or sets the value of a list box entry (based on the
current index) on an HTML page.

CDHtmlDialog::DestroyModeless Destroys a modeless dialog box.

CDHtmlDialog::EnableModeless Enables modeless dialog boxes.

CDHtmlDialog::FilterDataObject Allows the dialog to filter clipboard data objects created by
the hosted browser.

CDHtmlDialog::GetControlDispatch Retrieves the IDispatch interface on an ActiveX control
embedded in the HTML document.

CDHtmlDialog::GetControlProperty Retrieves the requested property of the specified ActiveX
control.

CDHtmlDialog::GetCurrentUrl Retrieves the Uniform Resource Locator (URL) associated with
the current document.

CDHtmlDialog::GetDHtmlDocument Retrieves the IHTMLDocument2 interface on the currently
loaded HTML document.

CDHtmlDialog::GetDropTarget Called by the contained WebBrowser control when it is being
used as a drop target to allow the dialog to supply an
alternative IDropTarget.

CDHtmlDialog::GetElement Gets an interface on an HTML element.

CDHtmlDialog::GetElementHtml Retrieves the innerHTML property of an HTML element.

CDHtmlDialog::GetElementInterface Retrieves the requested interface pointer from an HTML
element.

CDHtmlDialog::GetElementProperty Retrieves the value of an HTML element's property.

CDHtmlDialog::GetElementText Retrieves the innerText property of an HTML element.

CDHtmlDialog::GetEvent Gets the IHTMLEventObj pointer to the current event
object.

CDHtmlDialog::GetExternal Gets the host's IDispatch interface.

CDHtmlDialog::GetHostInfo Retrieves the host's UI capabilities.

CDHtmlDialog::GetOptionKeyPath Retrieves the registry key under which user preferences are
stored.

CDHtmlDialog::HideUI Hides the host's UI.

CDHtmlDialog::IsExternalDispatchSafe Indicates whether the host's IDispatch interface is safe for
scripting.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget

CDHtmlDialog::LoadFromResource Loads the specified resource into the WebBrowser control.

CDHtmlDialog::Navigate Navigates to the specified URL.

CDHtmlDialog::OnBeforeNavigate Called by the framework before a navigation event is fired.

CDHtmlDialog::OnDocumentComplete Called by the framework to notify an application when a
document has reached the READYSTATE_COMPLETE state.

CDHtmlDialog::OnDocWindowActivate Called by the framework when the document window is
activated or deactivated.

CDHtmlDialog::OnFrameWindowActivate Called by the framework when the frame window is activated
or deactivated.

CDHtmlDialog::OnInitDialog Called in response to the WM_INITDIALOG message.

CDHtmlDialog::OnNavigateComplete Called by the framework after a navigation event is
completed.

CDHtmlDialog::ResizeBorder Alerts the object that it needs to resize its border space.

CDHtmlDialog::SetControlProperty Sets the property of an ActiveX control to a new value.

CDHtmlDialog::SetElementHtml Sets the innerHTML property of an HTML element.

CDHtmlDialog::SetElementProperty Sets a property of an HTML element.

CDHtmlDialog::SetElementText Sets the innerText property of an HTML element.

CDHtmlDialog::SetExternalDispatch Sets the host's IDispatch interface.

CDHtmlDialog::SetHostFlags Sets the host's UI flags.

CDHtmlDialog::ShowContextMenu Called when a context menu is about to be displayed.

CDHtmlDialog::ShowUI Shows the host's UI.

CDHtmlDialog::TranslateAccelerator Called to process menu accelerator-key messages.

CDHtmlDialog::TranslateUrl Called to modify the URL to be loaded.

CDHtmlDialog::UpdateUI Called to notify the host that the command state has
changed.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDHtmlDialog::m_bUseHtmlTitle Indicates whether to use the HTML document's title as the
dialog caption.

CDHtmlDialog::m_nHtmlResID Resource ID of HTML resource to be displayed.

CDHtmlDialog::m_pBrowserApp A pointer to a Web browser application.

CDHtmlDialog::m_spHtmlDoc A pointer to an HTML document.

CDHtmlDialog::m_strCurrentUrl The current URL.

CDHtmlDialog::m_szHtmlResID String version of the HTML resource ID.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

DDX_DHtml Helper Macros

Data Exchange MacrosData Exchange Macros

DDX_DHtml_ElementValue Sets or retrieves the Value property from the selected control.

DDX_DHtml_ElementInnerText Sets or retrieves the text between the start and end tags of
the current element.

CDHtmlDialog can load the HTML to be displayed from either an HTML resource or a URL.

CDHtmlDialog can also do data exchange with HTML controls and handle events from HTML controls, such as
button clicks.

CObject

CDHtmlSinkHandlerBase2

CDHtmlSinkHandlerBase1

CCmdTarget

CDHtmlSinkHandler

CWnd

CDHtmlEventSink

CDialog

CDHtmlDialog

Header: afxdhtml.h

The DDX_DHtml helper macros allow easy access to the commonly used properties of controls on an HTML
page.

DDX_DHtml_ElementInnerHtml Sets or retrieves the HTML between the start and end tags of
the current element.

DDX_DHtml_Anchor_Href Sets or retrieves the destination URL or anchor point.

DDX_DHtml_Anchor_Target Sets or retrieves the target window or frame.

DDX_DHtml_Img_Src Sets or retrieves the name of an image or a video clip in the
document.

DDX_DHtml_Frame_Src Sets or retrieves the URL of the associated frame.

DDX_DHtml_IFrame_Src Sets or retrieves the URL of the associated frame.

CDHtmlDialog::CanAccessExternal

virtual BOOL CanAccessExternal();

Return ValueReturn Value

CDHtmlDialog::CDHtmlDialog

CDHtmlDialog();

CDHtmlDialog(
 LPCTSTR lpszTemplateName,
 LPCTSTR szHtmlResID,
 CWnd *pParentWnd = NULL);

CDHtmlDialog(
 UINT nIDTemplate,
 UINT nHtmlResID = 0,
 CWnd *pParentWnd = NULL);

ParametersParameters

Overridable that is called as an access check to see whether scripting objects on the loaded page can access the
external dispatch of the control site. Checks to make sure the dispatch is either safe for scripting or the current
zone allows for objects that are not safe for scripting.

Nonzero if successful; otherwise 0.

Constructs a resource-based dynamic HTML dialog box.

lpszTemplateName
The null-terminated string that is the name of a dialog-box template resource.

szHtmlResID
The null-terminated string that is the name of an HTML resource.

pParentWnd
A pointer to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is NULL,
the dialog object's parent window is set to the main application window.

nIDTemplate

RemarksRemarks

CDHtmlDialog::~CDHtmlDialog

virtual ~CDHtmlDialog();

RemarksRemarks

CDHtmlDialog::CreateControlSite

virtual BOOL CreateControlSite(
 COleControlContainer* pContainer,
 COleControlSite** ppSite,
 UINT /* nID */,
 REFCLSID /* clsid */);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::DDX_DHtml_AxControl

Contains the ID number of a dialog-box template resource.

nHtmlResID
Contains the ID number of an HTML resource.

The second form of the constructor provides access to the dialog resource through the template name. The third
form of the constructor provides access to the dialog resource through the ID of the resource template. Usually,
the ID begins with the IDD_ prefix.

Destroys a CDHtmlDialog object.

The CWnd::DestroyWindow member function must be used to destroy modeless dialog boxes that are created by
CDialog::Create.

Overridable used to create a control site instance to host the WebBrowser control on the dialog.

pContainer
A pointer to the COleControlContainer object

ppSite
A pointer to a pointer to a COleControlSite.

Nonzero if successful; otherwise 0.

You can override this member function to return an instance of your own control site class.

Exchanges data between a member variable and the property value of an ActiveX control on an HTML page.

void DDX_DHtml_AxControl(
 CDataExchange* pDX,
 LPCTSTR szId,
 DISPID dispid,
 VARIANT& var);

void DDX_DHtml_AxControl(
 CDataExchange* pDX,
 LPCTSTR szId,
 LPCTSTR szPropName,
 VARIANT& var);

ParametersParameters

ExampleExample

// COleVariant m_varSliderValue;
DDX_DHtml_AxControl(pDX, _T("slider1"), 0x0b /* Value */, m_varSliderValue);

CDHtmlDialog::DDX_DHtml_CheckBox

void DDX_DHtml_CheckBox(
 CDataExchange* pDX,
 LPCTSTR szId,
 int& value);

ParametersParameters

ExampleExample

pDX
A pointer to a CDataExchange object.

szId
The value of the object tag's ID parameter in the HTML source for the ActiveX control.

dispid
The dispatch ID of the property with which you want to exchange data.

szPropName
The name of the property.

var
The data member, of type VARIANT, COleVariant, or CComVariant, that holds the value exchanged with the
ActiveX control property.

Exchanges data between a member variable and a check box on an HTML page.

pDX
A pointer to a CDataExchange object.

szId
The value that you specified for the HTML control's ID parameter.

value
The value being exchanged.

// int m_nItalic;
DDX_DHtml_CheckBox(pDX, L"italic", m_nItalic);

CDHtmlDialog::DDX_DHtml_ElementText

void DDX_DHtml_ElementText(
 CDataExchange* pDX,
 LPCTSTR szId,
 DISPID dispid,
 CString& value);

void DDX_DHtml_ElementText(
 CDataExchange* pDX,
 LPCTSTR szId,
 DISPID dispid,
 short& value);

void DDX_DHtml_ElementText(
 CDataExchange* pDX,
 LPCTSTR szId,
 DISPID dispid,
 int& value);

void DDX_DHtml_ElementText(
 CDataExchange* pDX,
 LPCTSTR szId,
 DISPID dispid,
 long& value);

void DDX_DHtml_ElementText(
 CDataExchange* pDX,
 LPCTSTR szId,
 DISPID dispid,
 DWORD& value);

void DDX_DHtml_ElementText(
 CDataExchange* pDX,
 LPCTSTR szId,
 DISPID dispid,
 float& value);

void DDX_DHtml_ElementText(
 CDataExchange* pDX,
 LPCTSTR szId,
 DISPID dispid,
 double& value);

ParametersParameters

Exchanges data between a member variable and any HTML element property on an HTML page.

pDX
A pointer to a CDataExchange object.

szId
The value that you specified for the HTML control's ID parameter.

dispid
The dispatch ID of the HTML element with which you want to exchange data.

value
The value being exchanged.

CDHtmlDialog::DDX_DHtml_Radio

void DDX_DHtml_Radio(
 CDataExchange* pDX,
 LPCTSTR szId,
 long& value);

ParametersParameters

CDHtmlDialog::DDX_DHtml_SelectIndex

void DDX_DHtml_SelectIndex(
 CDataExchange* pDX,
 LPCTSTR szId,
 long& value);

ParametersParameters

CDHtmlDialog::DDX_DHtml_SelectString

void DDX_DHtml_SelectString(
 CDataExchange* pDX,
 LPCTSTR szId,
 CString& value);

ParametersParameters

Exchanges data between a member variable and a radio button on an HTML page.

pDX
A pointer to a CDataExchange object.

szId
The value that you specified for the HTML control's ID parameter.

value
The value being exchanged.

Gets or sets the index of a list box on an HTML page.

pDX
A pointer to a CDataExchange object.

szId
The value that you specified for the HTML control's id parameter.

value
The value being exchanged.

Gets or sets the display text of a list box entry (based on the current index) on an HTML page.

pDX
A pointer to a CDataExchange object.

szId
The value that you specified for the HTML control's ID parameter.

value

CDHtmlDialog::DDX_DHtml_SelectValue

void DDX_DHtml_SelectValue(
 CDataExchange* pDX,
 LPCTSTR szId,
 CString& value);

ParametersParameters

ExampleExample

// CString m_strBlurDir;
DDX_DHtml_SelectValue(pDX, L"blurDir", m_strBlurDir);

CDHtmlDialog::DestroyModeless

void DestroyModeless();

CDHtmlDialog::EnableModeless

STDMETHOD(EnableModeless)(BOOL fEnable);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::FilterDataObject

The value being exchanged.

Gets or sets the value of a list box entry (based on the current index) on an HTML page.

pDX
A pointer to a CDataExchange object.

szId
The value that you specified for the HTML control's ID parameter.

value
The value being exchanged.

Detaches a modeless dialog box from the CDHtmlDialog object and destroys the object.

Enables modeless dialog boxes.

fEnable
See fEnable in IDocHostUIHandler::EnableModeless in the Windows SDK.

Returns E_NOTIMPL.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::EnableModeless, as described
in the Windows SDK.

Allows the dialog to filter clipboard data objects created by the hosted browser.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753253(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753253(v=vs.85)

STDMETHOD(FilterDataObject)(
 IDataObject* pDO,
 IDataObject** ppDORet);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::GetControlDispatch

HRESULT GetControlDispatch(
 LPCTSTR szId,
 IDispatch** ppdisp);

ParametersParameters

Return ValueReturn Value

CDHtmlDialog::GetControlProperty

VARIANT GetControlProperty(
 LPCTSTR szId,
 LPCTSTR szPropName);

VARIANT GetControlProperty(
 LPCTSTR szId,
 DISPID dispid);

VARIANT GetControlProperty(
 IDispatch* pdispControl,
 DISPID dispid);

ParametersParameters

pDO
See pDO in IDocHostUIHandler::FilterDataObject in the Windows SDK.

ppDORet
See ppDORet in IDocHostUIHandler::FilterDataObject in the Windows SDK.

Returns S_FALSE.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::FilterDataObject, as described
in the Windows SDK.

Retrieves the IDispatch interface on an ActiveX control embedded in the HTML document returned by
GetDHtmlDocument.

szId
The HTML ID of an ActiveX control.

ppdisp
The IDispatch interface of the control if found in the Web page.

A standard HRESULT value.

Retrieves the requested property of the specified ActiveX control.

szId

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753254(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753254(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::GetCurrentUrl

void GetCurrentUrl(CString& szUrl);

ParametersParameters

CDHtmlDialog::GetDHtmlDocument

HRESULT GetDHtmlDocument(IHTMLDocument2 **pphtmlDoc);

ParametersParameters

Return ValueReturn Value

CDHtmlDialog::GetDropTarget

STDMETHOD(GetDropTarget)(
 IDropTarget* pDropTarget,
 IDropTarget** ppDropTarget);

ParametersParameters

The HTML ID of an ActiveX control.

szPropName
The name of a property in the default locale of the current user.

pdispControl
The IDispatch pointer of an ActiveX control.

dispid
The dispatch ID of a property.

A variant containing the requested property or an empty variant if the control or property could not be found.

The overloads are listed from least efficient at the top to most efficient at the bottom.

Retrieves the Uniform Resource Locator (URL) associated with the current document.

szUrl
A CString object containing the URL to retrieve.

Retrieves the IHTMLDocument2 interface on the currently loaded HTML document.

**pphtmlDoc A pointer to a pointer to an HTML document.

A standard HRESULT. Returns S_OK if successful.

Called by the contained WebBrowser control when it is being used as a drop target to allow the dialog to supply
an alternative IDropTarget.

pDropTarget
See pDropTarget in IDocHostUIHandler::GetDropTarget in the Windows SDK.

ppDropTarget

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa752574(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753255(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::GetElement

HRESULT GetElement(
 LPCTSTR szElementId,
 IDispatch** ppdisp,
 BOOL* pbCollection = NULL);

HRESULT GetElement(
 LPCTSTR szElementId,
 IHTMLElement** pphtmlElement);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::GetElementHtml

BSTR GetElementHtml(LPCTSTR szElementId);

ParametersParameters

See ppDropTarget in IDocHostUIHandler::GetDropTarget in the Windows SDK.

Returns E_NOTIMPL.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::GetDropTarget, as described in
the Windows SDK.

Returns an interface on the HTML element specified by szElementId.

szElementId
The ID of an HTML element.

ppdisp
An IDispatch pointer to the requested element or collection of elements.

pbCollection
A BOOL indicating whether the object represented by ppdisp is a single element or a collection of elements.

pphtmlElement
An IHTMLElement pointer to the requested element.

A standard HRESULT value.

Use the first overload if you need to handle conditions in which there may be more than one element with the
specified ID. You can use the last parameter to find out whether the returned interface pointer is to a collection or
a single item. If the interface pointer is on a collection, you can query for the IHTMLElementCollection and use its
item property to refer to the elements by ordinal position.

The second overload will fail if there is more than one element with the same ID in the page.

Retrieves the innerHTML property of the HTML element identified by szElementId.

szElementId
The ID of an HTML element.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753255(v=vs.85)

Return ValueReturn Value

CDHtmlDialog::GetElementInterface

template <class Q> HRESULT GetElementInterface(
 LPCTSTR szElementId,
 Q** ppvObj);

HRESULT GetElementInterface(
 LPCTSTR szElementId,
 REFIID riid,
 void** ppvObj);

ParametersParameters

Return ValueReturn Value

ExampleExample

CComPtr<IHTMLInputButtonElement> spBtn1;
CComPtr<IHTMLInputButtonElement> spBtn2;
HRESULT hr = S_OK;

// Use the template overload
hr = GetElementInterface(L"Button1", &spBtn1);

// Use the nontemplate overload
hr = GetElementInterface(L"Button1", IID_IHTMLInputButtonElement,
 reinterpret_cast<void**>(&spBtn2));

CDHtmlDialog::GetElementProperty

VARIANT GetElementProperty(
 LPCTSTR szElementId,
 DISPID dispid);

ParametersParameters

The innerHTML property of the HTML element identified by szElementId or NULL if the element could not be
found.

Retrieves the requested interface pointer from the HTML element identified by szElementId.

szElementId
The ID of an HTML element.

ppvObj
Address of a pointer that will be filled with the requested interface pointer if the element is found and the query
succeeds.

riid
The interface ID (IID) of the requested interface.

A standard HRESULT value.

Retrieves the value of the property identified by dispid from the HTML element identified by szElementId.

szElementId
The ID of an HTML element.

Return ValueReturn Value

CDHtmlDialog::GetElementText

BSTR GetElementText(LPCTSTR szElementId);

ParametersParameters

Return ValueReturn Value

CDHtmlDialog::GetEvent

HRESULT GetEvent(IHTMLEventObj** ppEventObj);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::GetExternal

STDMETHOD(GetExternal)(IDispatch** ppDispatch);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

dispid
The dispatch ID of a property.

The value of the property or an empty variant if the property or element could not be found.

Retrieves the innerText property of the HTML element identified by szElementId.

szElementId
The ID of an HTML element.

The innerText property of the HTML element identified by szElementId or NULL if the property or element
could not be found.

Returns the IHTMLEventObj pointer to the current event object.

ppEventObj
Address of a pointer that will be filled with the IHTMLEventObj interface pointer.

A standard HRESULT value.

This function should only be called from within a DHTML event handler.

Gets the host's IDispatch interface.

ppDispatch
See ppDispatch in IDocHostUIHandler::GetExternal in the Windows SDK.

Returns S_OK on success or E_NOTIMPL on failure.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::GetExternal, as described in the
Windows SDK.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753256(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753256(v=vs.85)

CDHtmlDialog::GetHostInfo

STDMETHOD(GetHostInfo)(DOCHOSTUIINFO* pInfo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::GetOptionKeyPath

STDMETHOD(GetOptionKeyPath)(
 LPOLESTR* pchKey,
 DWORD dw);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::HideUI

STDMETHOD(HideUI)(void);

Return ValueReturn Value

RemarksRemarks

Retrieves the host's UI capabilities.

pInfo
See pInfo in IDocHostUIHandler::GetHostInfo in the Windows SDK.

Returns S_OK.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::GetHostInfo, as described in
the Windows SDK.

Retrieves the registry key under which user preferences are stored.

pchKey
See pchKey in IDocHostUIHandler::GetOptionKeyPath in the Windows SDK.

dw
See dw in IDocHostUIHandler::GetOptionKeyPath in the Windows SDK.

Returns E_NOTIMPL.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::GetOptionKeyPath, as
described in the Windows SDK.

Hides the host's UI.

Returns E_NOTIMPL.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::HideUI, as described in the
Windows SDK.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753257(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753257(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753258(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753258(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753259(v=vs.85)

CDHtmlDialog::IsExternalDispatchSafe

virtual BOOL IsExternalDispatchSafe();

Return ValueReturn Value

CDHtmlDialog::LoadFromResource

BOOL LoadFromResource(LPCTSTR lpszResource);
BOOL LoadFromResource(UINT nRes);

ParametersParameters

Return ValueReturn Value

CDHtmlDialog::m_bUseHtmlTitle

BOOL m_bUseHtmlTitle;

RemarksRemarks

CDHtmlDialog::m_nHtmlResID

UINT m_nHtmlResID;

ExampleExample

CDHtmlDialog mydialog(IDD_MYDHTMLDLG);
mydialog.m_nHtmlResID = IDR_HTML_MYDHTMLDLG;
mydialog.DoModal();

CDHtmlDialog::m_pBrowserApp

Indicates whether the host's IDispatch interface is safe for scripting.

Returns FALSE.

Loads the specified resource into the WebBrowser control in the DHTML dialog.

lpszResource
A pointer to a string containing the name of the resource to load.

nRes
The ID of the resource to load.

TRUE if successful; otherwise FALSE.

Indicates whether to use the HTML document's title as the dialog caption.

If m_ bUseHtmlTitle is TRUE, the dialog caption is set equal to the title of the HTML document; otherwise, the
caption in the dialog resource is used.

Resource ID of HTML resource to be displayed.

A pointer to a Web browser application.

CComPtr <IWebBrowser2> m_pBrowserApp;

CDHtmlDialog::m_spHtmlDoc

CComPtr<IHTMLDocument2> m_spHtmlDoc;

CDHtmlDialog::m_strCurrentUrl

CString m_strCurrentUrl;

CDHtmlDialog::m_szHtmlResID

LPTSTR m_szHtmlResID;

ExampleExample

CDHtmlDialog mydialog(IDD_MYDHTMLDLG);
TCHAR szResID[] = _T("HTML_PAGE");
mydialog.m_szHtmlResID = szResID;
mydialog.DoModal();

CDHtmlDialog::Navigate

void Navigate(
 LPCTSTR lpszURL,
 DWORD dwFlags = 0,
 LPCTSTR lpszTargetFrameName = NULL,
 LPCTSTR lpszHeaders = NULL,
 LPVOID lpvPostData = NULL,
 DWORD dwPostDataLen = 0);

ParametersParameters

A pointer to an HTML document.

The current URL.

String version of the HTML resource ID.

Navigates to the resource identified by the URL that is specified by lpszURL.

lpszURL
A pointer to a string containing the URL to be targeted.

dwFlags
The flags of a variable that specifies whether to add the resource to the history list, whether to read to the cache
or write from the cache, and whether to display the resource in a new window. The variable can be a combination
of the values defined by the BrowserNavConstants enumeration.

lpszTargetFrameName
A pointer to a string that contains the name of the frame in which to display the resource.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa768360(v=vs.85)

CDHtmlDialog::OnBeforeNavigate

virtual void OnBeforeNavigate(
 LPDISPATCH pDisp,
 LPCTSTR szUrl);

ParametersParameters

CDHtmlDialog::OnDocumentComplete

virtual void OnDocumentComplete(
 LPDISPATCH pDisp,
 LPCTSTR szUrl);

ParametersParameters

CDHtmlDialog::OnDocWindowActivate

STDMETHOD(OnDocWindowActivate)(BOOL fActivate);

ParametersParameters

lpszHeaders
A pointer to a value that specifies the HTTP headers to send to the server. These headers are added to the default
Internet Explorer headers. The headers can specify such information as the action required of the server, the type
of data being passed to the server, or a status code. This parameter is ignored if the URL is not an HTTP URL.

lpvPostData
A pointer to the data to send with the HTTP POST transaction. For example, the POST transaction is used to send
data gathered by an HTML form. If this parameter does not specify any post data, Navigate issues an HTTP GET
transaction. This parameter is ignored if the URL is not an HTTP URL.

dwPostDataLen
Data to send with the HTTP POST transaction. For example, the POST transaction is used to send data gathered
by an HTML form. If this parameter does not specify any post data, Navigate issues an HTTP GET transaction.
This parameter is ignored if URL is not an HTTP URL.

Called by the framework to cause an event to fire before a navigation occurs.

pDisp
A pointer to an IDispatch object.

szUrl
A pointer to a string containing the URL to navigate to.

Called by the framework to notify an application when a document has achieved the READYSTATE_COMPLETE
state.

pDisp
A pointer to an IDispatch object.

szUrl
A pointer to a string containing the URL that was navigated to.

Called by the framework when the document window is activated or deactivated.

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::OnFrameWindowActivate

STDMETHOD(OnFrameWindowActivate)(BOOL fActivate);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::OnInitDialog

virtual BOOL OnInitDialog();

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::OnNavigateComplete

fActivate
See fActivate in IDocHostUIHandler::OnDocWindowActivate in the Windows SDK.

Returns E_NOTIMPL.

This member function is CDHtmlDialog's implemention of IDocHostUIHandler::OnDocWindowActivate, as
described in the Windows SDK.

Called by the framework when the frame window is activated or deactivated.

fActivate
See fActivate in IDocHostUIHandler::OnFrameWindowActivate in the Windows SDK.

Returns E_NOTIMPL.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::OnFrameWindowActivate, as
described in the Windows SDK.

Called in response to the WM_INITDIALOG message.

The default implementation returns TRUE.

This message is sent to the dialog box during the Create , CreateIndirect , or DoModal calls, which occur
immediately before the dialog box is displayed.

Override this member function if you need to perform special processing when the dialog box is initialized. In the
overridden version, first call the base class OnInitDialog but disregard its return value. You will normally return
TRUE from your overridden member function.

Windows calls the OnInitDialog function through the standard global dialog-box procedure common to all
Microsoft Foundation Class Library dialog boxes, rather than through your message map, so you do not need a
message-map entry for this member function.

Called by the framework after navigation to the specified URL is completed.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753261(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753261(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753262(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753262(v=vs.85)

virtual void OnNavigateComplete(
 LPDISPATCH pDisp,
 LPCTSTR szUrl);

ParametersParameters

CDHtmlDialog::ResizeBorder

STDMETHOD(ResizeBorder)(
 LPCRECT prcBorder,
 IOleInPlaceUIWindow* pUIWindow,
 BOOL fRameWindow);

ParametersParameters

Return ValueReturn Value

CDHtmlDialog::SetControlProperty

void SetControlProperty(
 LPCTSTR szElementId,
 DISPID dispid,
 VARIANT* pVar);

void SetControlProperty(
 IDispatch* pdispControl,
 DISPID dispid,
 VARIANT* pVar);

void SetControlProperty(
 LPCTSTR szElementId,
 LPCTSTR szPropName,
 VARIANT* pVar);

ParametersParameters

pDisp
A pointer to an IDispatch object.

szUrl
A pointer to a string containing the URL that was navigated to.

Alerts the object that it needs to resize its border space.

prcBorder
See prcBorder in IDocHostUIHandler::ResizeBorder in the Windows SDK.

pUIWindow
See pUIWindow in IDocHostUIHandler::ResizeBorder in the Windows SDK.

fFrameWindow
See fFrameWindow in IDocHostUIHandler::ResizeBorder in the Windows SDK.

Returns E_NOTIMPL.

Sets the property of an ActiveX control to a new value.

szElementId
The HTML ID of an ActiveX control.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753263(v=vs.85)

CDHtmlDialog::SetElementHtml

void SetElementHtml(
 LPCTSTR szElementId,
 BSTR bstrText);

void SetElementHtml(
 IUnknown* punkElem,
 BSTR bstrText);

ParametersParameters

CDHtmlDialog::SetElementProperty

void SetElementProperty(
 LPCTSTR szElementId,
 DISPID dispid,
 VARIANT* pVar);

ParametersParameters

CDHtmlDialog::SetElementText

dispid
The dispatch ID of the property to set.

pVar
Pointer to a VARIANT containing the new property value.

pdispControl
Pointer to an ActiveX control's IDispatch interface.

szPropName
String containing the name of the property to set.

Sets the innerHTML property of an HTML element.

szElementId
The ID of an HTML element.

bstrText
The new value of the innerHTML property.

punkElem
The IUnknown pointer of an HTML element.

Sets a property of an HTML element.

szElementId
The ID of an HTML element.

dispid
The dispatch ID of the property to set.

pVar
The new value of the property.

Sets the innerText property of an HTML element.

void SetElementText(
 LPCTSTR szElementId,
 BSTR bstrText);

void SetElementText(
 IUnknown* punkElem,
 BSTR bstrText);

ParametersParameters

CDHtmlDialog::SetExternalDispatch

void SetExternalDispatch(IDispatch* pdispExternal);

ParametersParameters

CDHtmlDialog::SetHostFlags

void SetHostFlags(DWORD dwFlags);

ParametersParameters

CDHtmlDialog::ShowContextMenu

STDMETHOD(ShowContextMenu)(
 DWORD dwID,
 POINT* ppt,
 IUnknown* pcmdtReserved,
 IDispatch* pdispReserved);

ParametersParameters

szElementId
The ID of an HTML element.

bstrText
The new value of the innerText property.

punkElem
The IUnknown pointer of an HTML element.

Sets the host's IDispatch interface.

pdispExternal
The new IDispatch interface.

Sets the host UI flags.

dwFlags
For possible values, see DOCHOSTUIFLAG in the Windows SDK.

Called when a context menu is about to be displayed.

dwID
See dwID in IDocHostUIHandler::ShowContextMenu in the Windows SDK.

ppt

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753277(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753264(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::ShowUI

STDMETHOD(ShowUI)(
 DWORD dwID,
 IOleInPlaceActiveObject* pActiveObject,
 IOleCommandTarget* pCommandTarget,
 IOleInPlaceFrame* pFrame,
 IOleInPlaceUIWindow* pDoc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::TranslateAccelerator

See ppt in IDocHostUIHandler::ShowContextMenu in the Windows SDK.

pcmdtReserved
See pcmdtReserved in IDocHostUIHandler::ShowContextMenu in the Windows SDK.

pdispReserved
See pdispReserved in IDocHostUIHandler::ShowContextMenu in the Windows SDK.

Returns S_FALSE.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::ShowContextMenu, as
described in the Windows SDK.

Shows the host's UI.

dwID
See dwID in IDocHostUIHandler::ShowUI in the Windows SDK.

pActiveObject
See d pActiveObject in IDocHostUIHandler::ShowUI in the Windows SDK.

pCommandTarget
See pCommandTarget in IDocHostUIHandler::ShowUI in the Windows SDK.

pFrame
See pFrame in IDocHostUIHandler::ShowUI in the Windows SDK.

pDoc
See pDoc in IDocHostUIHandler::ShowUI in the Windows SDK.

Returns S_FALSE.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::ShowUI, as described in the
Windows SDK.

Called to process menu accelerator-key messages.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753264(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753265(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753265(v=vs.85)

STDMETHOD(TranslateAccelerator)(
 LPMSG lpMsg,
 const GUID* pguidCmdGroup,
 DWORD nCmdID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::TranslateUrl

STDMETHOD(TranslateUrl)(
 DWORD dwTranslate,
 OLECHAR* pchURLIn,
 OLECHAR** ppchURLOut);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDHtmlDialog::UpdateUI

STDMETHOD(UpdateUI)(void);

lpMsg
See lpMsg in IDocHostUIHandler::TranslateAccelerator in the Windows SDK.

pguidCmdGroup
See pguidCmdGroup in IDocHostUIHandler::TranslateAccelerator in the Windows SDK.

nCmdID
See nCmdID in IDocHostUIHandler::TranslateAccelerator in the Windows SDK.

Returns S_FALSE.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::TranslateAccelerator, as
described in the Windows SDK.

Called to modify the URL to be loaded.

dwTranslate
See dwTranslate in IDocHostUIHandler::TranslateUrl in the Windows SDK.

pchURLIn
See pchURLIn in IDocHostUIHandler::TranslateUrl in the Windows SDK.

ppchURLOut
See ppchURLOut in IDocHostUIHandler::TranslateUrl in the Windows SDK.

Returns S_FALSE.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::TranslateUrl, as described in
the Windows SDK.

Called to notify the host that the command state has changed.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753266(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753266(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753267(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753267(v=vs.85)

Return ValueReturn Value

RemarksRemarks

See also

Returns E_NOTIMPL.

This member function is CDHtmlDialog's implementation of IDocHostUIHandler::UpdateUI, as described in the
Windows SDK.

MFC Sample DHtmlExplore
DDX_DHtml Helper Macros
Hierarchy Chart

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753268(v=vs.85)
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

DDX_DHtml Helper Macros
3/4/2019 • 3 minutes to read • Edit Online

Data Exchange MacrosData Exchange Macros

DDX_DHtml_ElementValue Sets or retrieves the Value property from the selected control.

DDX_DHtml_ElementInnerText Sets or retrieves the text between the start and end tags of
the current element.

DDX_DHtml_ElementInnerHtml Sets or retrieves the HTML between the start and end tags of
the current element.

DDX_DHtml_Anchor_Href Sets or retrieves the destination URL or anchor point.

DDX_DHtml_Anchor_Target Sets or retrieves the target window or frame.

DDX_DHtml_Img_Src Sets or retrieves the name of an image or a video clip in the
document.

DDX_DHtml_Frame_Src Sets or retrieves the URL of the associated frame.

DDX_DHtml_IFrame_Src Sets or retrieves the URL of the associated frame.

Requirements

DDX_DHtml_Anchor_Href

DDX_DHtml_Anchor_Href(
 CDataExchange* dx,
 LPCTSTR name,
 CString& var)

ParametersParameters

Remarks

The DDX_DHtml helper macros allow easy access to the commonly used properties of controls on an HTML page.

Header: afxdhtml.h

Sets or retrieves the destination URL or anchor point.

dx
A pointer to a CDataExchange object.

name
The value that you specified for the HTML control's ID parameter.

var
The value being exchanged.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ddx-dhtml-helper-macros.md

DDX_DHtml_Anchor_Target

DDX_DHtml_Anchor_Target(
 CDataExchange* dx,
 LPCTSTR name,
 CString& var)

ParametersParameters

Remarks

DDX_DHtml_ElementInnerHtml

DDX_DHtml_ElementInnerHtml(
 CDataExchange* dx,
 LPCTSTR name,
 CString& var)

ParametersParameters

Remarks

DDX_DHtml_ElementInnerText

This macro calls the CDHtmlDialog::DDX_DHtml_ElementText function using the
DISPID_IHTMLANCHORELEMENT_HREF dispatch ID.

Sets or retrieves the target window or frame.

dx
A pointer to a CDataExchange object.

name
The value that you specified for the HTML control's ID parameter.

var
The value being exchanged.

This macro calls the CDHtmlDialog::DDX_DHtml_ElementText function using the
DISPID_IHTMLANCHORELEMENT_TARGET dispatch ID.

Sets or retrieves the HTML between the start and end tags of the current element.

dx
A pointer to a CDataExchange object.

name
The value that you specified for the HTML control's ID parameter.

var
The value being exchanged.

This macro calls the CDHtmlDialog::DDX_DHtml_ElementText function using the
DISPID_IHTMLELEMENT_INNERHTML dispatch ID.

Sets or retrieves the text between the start and end tags of the current element.

DDX_DHtml_ElementInnerText(
 CDataExchange* dx,
 LPCTSTR name,
 CString& var)

ParametersParameters

Remarks

DDX_DHtml_ElementValue

DDX_DHtml_ElementValue(
 CDataExchange* dx,
 LPCTSTR name,
 var)

ParametersParameters

Remarks

DDX_DHtml_Frame_Src

DDX_DHtml_Frame_Src(
 CDataExchange* dx,
 LPCTSTR name,
 CString& var)

ParametersParameters

dx
A pointer to a CDataExchange object.

name
The value that you specified for the HTML control's ID parameter.

var
The value being exchanged.

This macro calls the CDHtmlDialog::DDX_DHtml_ElementText function using the
DISPID_IHTMLELEMENT_INNERTEXT dispatch ID.

Sets or retrieves the Value property from the selected control.

dx
A pointer to a CDataExchange object.

name
The value that you specified for the HTML control's ID parameter.

var
The value being exchanged. See value in CDHtmlDialog::DDX_DHtml_ElementText.

This macro will only succeed when run on controls that have a Value property. Controls that have a Value property
include edit boxes, list boxes, and combo boxes.

This macro calls the CDHtmlDialog::DDX_DHtml_ElementText function using the DISPID_A_VALUE dispatch ID.

Sets or retrieves the URL of the associated frame.

Remarks

DDX_DHtml_IFrame_Src

DDX_DHtml_IFrame_Src(
 CDataExchange* dx,
 LPCTSTR name,
 CString& var)

ParametersParameters

Remarks

DDX_DHtml_Img_Src

DDX_DHtml_Img_Src(
 CDataExchange* dx,
 LPCTSTR name,
 CString& var)

ParametersParameters

dx
A pointer to a CDataExchange object.

name
The value that you specified for the HTML control's ID parameter.

var
The value being exchanged.

This macro calls the CDHtmlDialog::DDX_DHtml_ElementText function using the
DISPID_IHTMLFRAMEBASE_SRC dispatch ID.

Sets or retrieves the URL of the associated frame.

dx
A pointer to a CDataExchange object.

name
The value that you specified for the HTML control's ID parameter.

var
The value being exchanged.

This macro calls the CDHtmlDialog::DDX_DHtml_ElementText function using the
DISPID_IHTMLFRAMEBASE_SRC dispatch ID.

Gets or retrieves the name of an image or a video clip in the document.

dx
A pointer to a CDataExchange object.

name
The value that you specified for the HTML control's ID parameter.

var
The value being exchanged.

Remarks

See also

When using the DDX_DHtml_Img_Src macro to retrieve the src property for an IMAGE element, the Internet
Explorer image object will return the fully escaped URL for the image source. For example, if you use the
DDX_DHtml_Img_Src macro to set the src property of an IMAGE element to the string "some interesting picture,"
when you retrieve that property, Internet Explorer will return the string
"res://d:\myapplication\myapp.exe/some%20interesting%20picture."

This macro calls the CDHtmlDialog::DDX_DHtml_ElementText function using the
DISPID_IHTMLIMGELEMENT_SRC dispatch ID.

CDHtmlDialog Class

CDialog Class
3/4/2019 • 18 minutes to read • Edit Online

Syntax
class CDialog : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDialog::CDialog Constructs a CDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDialog::Create Initializes the CDialog object. Creates a modeless
dialog box and attaches it to the CDialog object.

CDialog::CreateIndirect Creates a modeless dialog box from a dialog-box
template in memory (not resource-based).

CDialog::DoModal Calls a modal dialog box and returns when done.

CDialog::EndDialog Closes a modal dialog box.

CDialog::GetDefID Gets the ID of the default pushbutton control for a
dialog box.

CDialog::GotoDlgCtrl Moves the focus to a specified dialog-box control in
the dialog box.

CDialog::InitModalIndirect Creates a modal dialog box from a dialog-box template
in memory (not resource-based). The parameters are
stored until the function DoModal is called.

CDialog::MapDialogRect Converts the dialog-box units of a rectangle to screen
units.

CDialog::NextDlgCtrl Moves the focus to the next dialog-box control in the
dialog box.

CDialog::OnInitDialog Override to augment dialog-box initialization.

The base class used for displaying dialog boxes on the screen.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdialog-class.md

CDialog::OnSetFont Override to specify the font that a dialog-box control is
to use when it draws text.

CDialog::PrevDlgCtrl Moves the focus to the previous dialog-box control in
the dialog box.

CDialog::SetDefID Changes the default pushbutton control for a dialog
box to a specified pushbutton.

CDialog::SetHelpID Sets a context-sensitive help ID for the dialog box.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CDialog::OnCancel Override to perform the Cancel button or ESC key
action. The default closes the dialog box and DoModal

returns IDCANCEL.

CDialog::OnOK Override to perform the OK button action in a modal
dialog box. The default closes the dialog box and
DoModal returns IDOK.

Remarks
Dialog boxes are of two types: modal and modeless. A modal dialog box must be closed by the user
before the application continues. A modeless dialog box allows the user to display the dialog box and
return to another task without canceling or removing the dialog box.

A CDialog object is a combination of a dialog template and a CDialog -derived class. Use the dialog
editor to create the dialog template and store it in a resource, then use the Add Class wizard to create
a class derived from CDialog .

A dialog box, like any other window, receives messages from Windows. In a dialog box, you are
particularly interested in handling notification messages from the dialog box's controls since that is
how the user interacts with your dialog box. Use the Properties window to select which messages you
wish to handle and it will add the appropriate message-map entries and message-handler member
functions to the class for you. You only need to write application-specific code in the handler member
functions.

If you prefer, you can always write message-map entries and member functions manually.

In all but the most trivial dialog box, you add member variables to your derived dialog class to store
data entered in the dialog box's controls by the user or to display data for the user. You can use the
Add Variable wizard to create member variables and associate them with controls. At the same time,
you choose a variable type and permissible range of values for each variable. The code wizard adds
the member variables to your derived dialog class.

A data map is generated to automatically handle the exchange of data between the member variables
and the dialog box's controls. The data map provides functions that initialize the controls in the dialog
box with the proper values, retrieve the data, and validate the data.

To create a modal dialog box, construct an object on the stack using the constructor for your derived
dialog class and then call DoModal to create the dialog window and its controls. If you wish to create a

Inheritance Hierarchy

Requirements

CDialog::CDialog

modeless dialog, call Create in the constructor of your dialog class.

You can also create a template in memory by using a DLGTEMPLATE data structure as described in
the Windows SDK. After you construct a CDialog object, call CreateIndirect to create a modeless
dialog box, or call InitModalIndirect and DoModal to create a modal dialog box.

The exchange and validation data map is written in an override of CWnd::DoDataExchange that is added
to your new dialog class. See the DoDataExchange member function in CWnd for more on the
exchange and validation functionality.

Both the programmer and the framework call DoDataExchange indirectly through a call to
CWnd::UpdateData.

The framework calls UpdateData when the user clicks the OK button to close a modal dialog box. (The
data is not retrieved if the Cancel button is clicked.) The default implementation of OnInitDialog also
calls UpdateData to set the initial values of the controls. You typically override OnInitDialog to further
initialize controls. OnInitDialog is called after all the dialog controls are created and just before the
dialog box is displayed.

You can call CWnd::UpdateData at any time during the execution of a modal or modeless dialog box.

If you develop a dialog box by hand, you add the necessary member variables to the derived dialog-
box class yourself, and you add member functions to set or get these values.

A modal dialog box closes automatically when the user presses the OK or Cancel buttons or when
your code calls the EndDialog member function.

When you implement a modeless dialog box, always override the OnCancel member function and call
DestroyWindow from within it. Don't call the base class CDialog::OnCancel , because it calls EndDialog ,

which will make the dialog box invisible but will not destroy it. You should also override
PostNcDestroy for modeless dialog boxes in order to delete this, since modeless dialog boxes are

usually allocated with new. Modal dialog boxes are usually constructed on the frame and do not need
PostNcDestroy cleanup.

For more information on CDialog , see Dialog Boxes.

CObject

CCmdTarget

CWnd

CDialog

Header: afxwin.h

To construct a resource-based modal dialog box, call either public form of the constructor.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-dlgtemplate

explicit CDialog(
 LPCTSTR lpszTemplateName,
 CWnd* pParentWnd = NULL);

explicit CDialog(
 UINT nIDTemplate,
 CWnd* pParentWnd = NULL);

CDialog();

ParametersParameters

RemarksRemarks

CDialog::Create

virtual BOOL Create(
 LPCTSTR lpszTemplateName,
 CWnd* pParentWnd = NULL);

virtual BOOL Create(
 UINT nIDTemplate,
 CWnd* pParentWnd = NULL);

ParametersParameters

lpszTemplateName
Contains a null-terminated string that is the name of a dialog-box template resource.

nIDTemplate
Contains the ID number of a dialog-box template resource.

pParentWnd
Points to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is
NULL, the dialog object's parent window is set to the main application window.

One form of the constructor provides access to the dialog resource by template name. The other
constructor provides access by template ID number, usually with an IDD_ prefix (for example,
IDD_DIALOG1).

To construct a modal dialog box from a template in memory, first invoke the parameterless, protected
constructor and then call InitModalIndirect .

After you construct a modal dialog box with one of the above methods, call DoModal .

To construct a modeless dialog box, use the protected form of the CDialog constructor. The
constructor is protected because you must derive your own dialog-box class to implement a modeless
dialog box. Construction of a modeless dialog box is a two-step process. First call the constructor;
then call the Create member function to create a resource-based dialog box, or call CreateIndirect

to create the dialog box from a template in memory.

Call Create to create a modeless dialog box using a dialog-box template from a resource.

lpszTemplateName
Contains a null-terminated string that is the name of a dialog-box template resource.

pParentWnd
Points to the parent window object (of type CWnd) to which the dialog object belongs. If it is NULL,
the dialog object's parent window is set to the main application window.

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CMyDialog::OnMenuShowSimpleDialog()
{
 //m_pSimpleDialog initialized to NULL in the constructor of CMyDialog class
 m_pSimpleDlg = new CSimpleDlg();
 //Check if new succeeded and we got a valid pointer to a dialog object
 if(m_pSimpleDlg != NULL)
 {
 BOOL ret = m_pSimpleDlg->Create(IDD_SIMPLEDIALOG, this);

 if(!ret) //Create failed.
 AfxMessageBox(_T("Error creating Dialog"));

 m_pSimpleDlg->ShowWindow(SW_SHOW);
 }
 else
 {
 AfxMessageBox(_T("Error Creating Dialog Object"));
 }
}

CDialog::CreateIndirect

virtual BOOL CreateIndirect(
 LPCDLGTEMPLATE lpDialogTemplate,
 CWnd* pParentWnd = NULL,
 void* lpDialogInit = NULL);

virtual BOOL CreateIndirect(
 HGLOBAL hDialogTemplate,
 CWnd* pParentWnd = NULL);

ParametersParameters

nIDTemplate
Contains the ID number of a dialog-box template resource.

Both forms return nonzero if dialog-box creation and initialization were successful; otherwise 0.

You can put the call to Create inside the constructor or call it after the constructor is invoked.

Two forms of the Create member function are provided for access to the dialog-box template
resource by either template name or template ID number (for example, IDD_DIALOG1).

For either form, pass a pointer to the parent window object. If pParentWnd is NULL, the dialog box
will be created with its parent or owner window set to the main application window.

The Create member function returns immediately after it creates the dialog box.

Use the WS_VISIBLE style in the dialog-box template if the dialog box should appear when the parent
window is created. Otherwise, you must call ShowWindow . For further dialog-box styles and their
application, see the DLGTEMPLATE structure in the Windows SDK and Window Styles in the MFC
Reference.

Use the CWnd::DestroyWindow function to destroy a dialog box created by the Create function.

Call this member function to create a modeless dialog box from a dialog-box template in memory.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-dlgtemplate

Return ValueReturn Value

RemarksRemarks

CDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

lpDialogTemplate
Points to memory that contains a dialog-box template used to create the dialog box. This template is
in the form of a DLGTEMPLATE structure and control information, as described in the Windows SDK.

pParentWnd
Points to the dialog object's parent window object (of type CWnd). If it is NULL, the dialog object's
parent window is set to the main application window.

lpDialogInit
Points to a DLGINIT resource.

hDialogTemplate
Contains a handle to global memory containing a dialog-box template. This template is in the form of
a DLGTEMPLATE structure and data for each control in the dialog box.

Nonzero if the dialog box was created and initialized successfully; otherwise 0.

The CreateIndirect member function returns immediately after it creates the dialog box.

Use the WS_VISIBLE style in the dialog-box template if the dialog box should appear when the parent
window is created. Otherwise, you must call ShowWindow to cause it to appear. For more information
on how you can specify other dialog-box styles in the template, see the DLGTEMPLATE structure in
the Windows SDK.

Use the CWnd::DestroyWindow function to destroy a dialog box created by the CreateIndirect function.

Dialog boxes that contain ActiveX controls require additional information provided in a DLGINIT
resource.

Call this member function to invoke the modal dialog box and return the dialog-box result when done.

An int value that specifies the value of the nResult parameter that was passed to the
CDialog::EndDialog member function, which is used to close the dialog box. The return value is -1 if
the function could not create the dialog box, or IDABORT if some other error occurred, in which case
the output window will contain error information from GetLastError.

This member function handles all interaction with the user while the dialog box is active. This is what
makes the dialog box modal; that is, the user cannot interact with other windows until the dialog box
is closed.

If the user clicks one of the pushbuttons in the dialog box, such as OK or Cancel, a message-handler
member function, such as OnOK or OnCancel, is called to attempt to close the dialog box. The default
OnOK member function will validate and update the dialog-box data and close the dialog box with

result IDOK, and the default OnCancel member function will close the dialog box with result
IDCANCEL without validating or updating the dialog-box data. You can override these message-
handler functions to alter their behavior.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-dlgtemplate
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-dlgtemplate
https://msdn.microsoft.com/library/windows/desktop/ms679360

NOTENOTE

ExampleExample

void CMyDialog::OnMenuShowAboutDialog()
{
 // Construct the dialog box passing the
 // ID of the dialog template resource
 CDialog aboutDlg(IDD_ABOUTBOX);

 // Create and show the dialog box
 INT_PTR nRet = -1;
 nRet = aboutDlg.DoModal();

 // Handle the return value from DoModal
 switch (nRet)
 {
 case -1:
 AfxMessageBox(_T("Dialog box could not be created!"));
 break;
 case IDABORT:
 // Do something
 break;
 case IDOK:
 // Do something
 break;
 case IDCANCEL:
 // Do something
 break;
 default:
 // Do something
 break;
 };
}

CDialog::EndDialog

void EndDialog(int nResult);

ParametersParameters

RemarksRemarks

ExampleExample

PreTranslateMessage is now called for modal dialog box message processing.

Call this member function to terminate a modal dialog box.

nResult
Contains the value to be returned from the dialog box to the caller of DoModal .

This member function returns nResult as the return value of DoModal . You must use the EndDialog

function to complete processing whenever a modal dialog box is created.

You can call EndDialog at any time, even in OnInitDialog, in which case you should close the dialog
box before it is shown or before the input focus is set.

EndDialog does not close the dialog box immediately. Instead, it sets a flag that directs the dialog box
to close as soon as the current message handler returns.

void CMyDialog::OnMenuShowSimpleModal()
{
 CSimpleDlg myDlg;
 INT_PTR nRet = myDlg.DoModal();

 if (nRet == IDOK || nRet == 5)
 AfxMessageBox(_T("Dialog closed successfully"));
}

void CSimpleDlg::OnRButtonUp(UINT nFlags, CPoint point)
{
 UNREFERENCED_PARAMETER(nFlags);
 // Do something

 int nRet = point.x; // Just any value would do!
 EndDialog(nRet); // This value is returned by DoModal!

 // Do something

 return; // Dialog closed and DoModal returns only here!
}

CDialog::GetDefID

DWORD GetDefID() const;

Return ValueReturn Value

RemarksRemarks

CDialog::GotoDlgCtrl

void GotoDlgCtrl(CWnd* pWndCtrl);

ParametersParameters

RemarksRemarks

ExampleExample

Call the GetDefID member function to get the ID of the default pushbutton control for a dialog box.

A 32-bit value (DWORD). If the default pushbutton has an ID value, the high-order word contains
DC_HASDEFID and the low-order word contains the ID value. If the default pushbutton does not
have an ID value, the return value is 0.

This is usually an OK button.

Moves the focus to the specified control in the dialog box.

pWndCtrl
Identifies the window (control) that is to receive the focus.

To get a pointer to the control (child window) to pass as pWndCtrl, call the CWnd::GetDlgItem member
function, which returns a pointer to a CWnd object.

See the example for CWnd::GetDlgItem.

CDialog::InitModalIndirect

BOOL InitModalIndirect(
 LPCDLGTEMPLATE lpDialogTemplate,
 CWnd* pParentWnd = NULL,
 void* lpDialogInit = NULL);

 BOOL InitModalIndirect(
 HGLOBAL hDialogTemplate,
 CWnd* pParentWnd = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDialog::MapDialogRect

void MapDialogRect(LPRECT lpRect) const;

ParametersParameters

RemarksRemarks

Call this member function to initialize a modal dialog object using a dialog-box template that you
construct in memory.

lpDialogTemplate
Points to memory that contains a dialog-box template used to create the dialog box. This template is
in the form of a DLGTEMPLATE structure and control information, as described in the Windows SDK.

hDialogTemplate
Contains a handle to global memory containing a dialog-box template. This template is in the form of
a DLGTEMPLATE structure and data for each control in the dialog box.

pParentWnd
Points to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is
NULL, the dialog object's parent window is set to the main application window.

lpDialogInit
Points to a DLGINIT resource.

Nonzero if the dialog object was created and initialized successfully; otherwise 0.

To create a modal dialog box indirectly, first allocate a global block of memory and fill it with the
dialog box template. Then call the empty CDialog constructor to construct the dialog-box object.
Next, call InitModalIndirect to store your handle to the in-memory dialog-box template. The
Windows dialog box is created and displayed later, when the DoModal member function is called.

Dialog boxes that contain ActiveX controls require additional information provided in a DLGINIT
resource.

Call to convert the dialog-box units of a rectangle to screen units.

lpRect
Points to a RECT structure or CRect object that contains the dialog-box coordinates to be converted.

Dialog-box units are stated in terms of the current dialog-box base unit derived from the average
width and height of characters in the font used for dialog-box text. One horizontal unit is one-fourth

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-dlgtemplate
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CDialog::NextDlgCtrl

void NextDlgCtrl() const;

RemarksRemarks

CDialog::OnCancel

virtual void OnCancel();

RemarksRemarks

NOTENOTE

ExampleExample

of the dialog-box base-width unit, and one vertical unit is one-eighth of the dialog-box base height
unit.

The GetDialogBaseUnits Windows function returns size information for the system font, but you can
specify a different font for each dialog box if you use the DS_SETFONT style in the resource-
definition file. The MapDialogRect Windows function uses the appropriate font for this dialog box.

The MapDialogRect member function replaces the dialog-box units in lpRect with screen units (pixels)
so that the rectangle can be used to create a dialog box or position a control within a box.

Moves the focus to the next control in the dialog box.

If the focus is at the last control in the dialog box, it moves to the first control.

The framework calls this method when the user clicks Cancel or presses the ESC key in a modal or
modeless dialog box.

Override this method to perform actions (such as restoring old data) when a user closes the dialog
box by clicking Cancel or hitting the ESC key. The default closes a modal dialog box by calling
EndDialog and causing DoModal to return IDCANCEL.

If you implement the Cancel button in a modeless dialog box, you must override the OnCancel

method and call DestroyWindow inside it. Do not call the base-class method, because it calls
EndDialog , which will make the dialog box invisible but not destroy it.

You cannot override this method when you use a CFileDialog object in a program that is compiled under
Windows XP. For more information about CFileDialog , see CFileDialog Class.

void CSimpleDlg::OnCancel()
{
 // TODO: Add extra cleanup here

 // Ensure that you reset all the values back to the
 // ones before modification. This handler is called
 // when the user doesn't want to save the changes.

 if (AfxMessageBox(_T("Are you sure you want to abort the changes?"),
 MB_YESNO) == IDNO)
 {
 // Give the user a chance if he has unknowingly hit the
 // Cancel button. If he says No, return. Don't reset. If
 // Yes, go ahead and reset the values and close the dialog.
 return;
 }

 m_nMyValue = m_nPrevValue;
 m_pMyString = NULL;

 CDialog::OnCancel();
}

CDialog::OnInitDialog

virtual BOOL OnInitDialog();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

This method is called in response to the WM_INITDIALOG message.

Specifies whether the application has set the input focus to one of the controls in the dialog box. If
OnInitDialog returns nonzero, Windows sets the input focus to the default location, the first control

in the dialog box. The application can return 0 only if it has explicitly set the input focus to one of the
controls in the dialog box.

Windows sends the WM_INITDIALOG message to the dialog box during the Create, CreateIndirect, or
DoModal calls, which occur immediately before the dialog box is displayed.

Override this method if you want to perform special processing when the dialog box is initialized. In
the overridden version, first call the base class OnInitDialog but ignore its return value. You will
typically return TRUE from your overridden method.

Windows calls the OnInitDialog function by using the standard global dialog-box procedure
common to all Microsoft Foundation Class Library dialog boxes. It does not call this function through
your message map, and therefore you do not need a message map entry for this method.

You cannot override this method when you use a CFileDialog object in a program that is compiled under
Windows Vista or later operating systems. For more information about changes to CFileDialog under
Windows Vista and later, see CFileDialog Class.

BOOL CSimpleDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // TODO: Add extra initialization here
 m_cMyEdit.SetWindowText(_T("My Name")); // Initialize control values
 m_cMyList.ShowWindow(SW_HIDE); // Show or hide a control, etc.

 return TRUE; // return TRUE unless you set the focus to a control
 // EXCEPTION: OCX Property Pages should return FALSE
}

CDialog::OnOK

virtual void OnOK();

RemarksRemarks

NOTENOTE

ExampleExample

void CSimpleDlg::OnOK()
{
 // TODO: Add extra validation here

 // Ensure that your UI got the necessary input
 // from the user before closing the dialog. The
 // default OnOK will close this.
 if (m_nMyValue == 0) // Is a particular field still empty?
 {
 // Inform the user that he can't close the dialog without
 // entering the necessary values and don't close the
 // dialog.
 AfxMessageBox(_T("Please enter a value for MyValue"));
 return;
 }

 CDialog::OnOK(); // This will close the dialog and DoModal will return.
}

CDialog::OnSetFont

Called when the user clicks the OK button (the button with an ID of IDOK).

Override this method to perform actions when the OK button is activated. If the dialog box includes
automatic data validation and exchange, the default implementation of this method validates the
dialog box data and updates the appropriate variables in your application.

If you implement the OK button in a modeless dialog box, you must override the OnOK method and
call DestroyWindow inside it. Do not call the base-class method, because it calls EndDialog which
makes the dialog box invisible but does not destroy it.

You cannot override this method when you use a CFileDialog object in a program that is compiled under
Windows XP. For more information about CFileDialog , see CFileDialog Class.

Specifies the font a dialog-box control will use when drawing text.

Virtual void OnSetFont(CFont* pFont);

ParametersParameters

RemarksRemarks

NOTENOTE

CDialog::PrevDlgCtrl

void PrevDlgCtrl() const;

RemarksRemarks

CDialog::SetDefID

void SetDefID(UINT nID);

ParametersParameters

CDialog::SetHelpID

void SetHelpID(UINT nIDR);

ParametersParameters

See also

pFont
[in] Specifies a pointer to the font that will be used as the default font for all controls in this dialog box.

The dialog box will use the specified font as the default for all its controls.

The dialog editor typically sets the dialog-box font as part of the dialog-box template resource.

You cannot override this method when you use a CFileDialog object in a program that is compiled under
Windows Vista or later operating systems. For more information about changes to CFileDialog under
Windows Vista and later, see CFileDialog Class.

Sets the focus to the previous control in the dialog box.

If the focus is at the first control in the dialog box, it moves to the last control in the box.

Changes the default pushbutton control for a dialog box.

nID
Specifies the ID of the pushbutton control that will become the default.

Sets a context-sensitive help ID for the dialog box.

nIDR
Specifies the context-sensitive help ID.

MFC Sample DLGCBR32
MFC Sample DLGTEMPL

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CWnd Class
Hierarchy Chart

CDialogBar Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CDialogBar : public CControlBar

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDialogBar::CDialogBar Constructs a CDialogBar object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDialogBar::Create Creates a Windows dialog bar and attaches it to the
CDialogBar object.

Remarks

NOTENOTE

Inheritance Hierarchy

Provides the functionality of a Windows modeless dialog box in a control bar.

A dialog bar resembles a dialog box in that it contains standard Windows controls that the user can tab between.
Another similarity is that you create a dialog template to represent the dialog bar.

Creating and using a dialog bar is similar to creating and using a CFormView object. First, use the dialog editor to
define a dialog template with the style WS_CHILD and no other style. The template must not have the style
WS_VISIBLE. In your application code, call the constructor to construct the CDialogBar object, then call Create

to create the dialog-bar window and attach it to the CDialogBar object.

For more information on CDialogBar , see the article Dialog Bars and Technical Note 31, Control Bars.

In the current release, a CDialogBar object cannot host Windows Forms controls. For more information about Windows
Forms controls in Visual C++, see Using a Windows Form User Control in MFC.

CObject

CCmdTarget

CWnd

CControlBar

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdialogbar-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

Requirements

CDialogBar::CDialogBar

CDialogBar();

CDialogBar::Create

virtual BOOL Create(
 CWnd* pParentWnd,
 LPCTSTR lpszTemplateName,
 UINT nStyle,
 UINT nID);

virtual BOOL Create(
 CWnd* pParentWnd,
 UINT nIDTemplate,
 UINT nStyle,
 UINT nID);

ParametersParameters

CDialogBar

Header: afxext.h

Constructs a CDialogBar object.

Loads the dialog-box resource template specified by lpszTemplateName or nIDTemplate , creates the dialog-bar
window, sets its style, and associates it with the CDialogBar object.

pParentWnd
A pointer to the parent CWnd object.

lpszTemplateName
A pointer to the name of the CDialogBar object's dialog-box resource template.

nStyle
The toolbar style. Additional toolbar styles supported are:

CBRS_TOP Control bar is at top of the frame window.

CBRS_BOTTOM Control bar is at bottom of the frame window.

CBRS_NOALIGN Control bar is not repositioned when the parent is resized.

CBRS_TOOLTIPS Control bar displays tool tips.

CBRS_SIZE_DYNAMIC Control bar is dynamic.

CBRS_SIZE_FIXED Control bar is fixed.

CBRS_FLOATING Control bar is floating.

CBRS_FLYBY Status bar displays information about the button.

CBRS_HIDE_INPLACE Control bar is not displayed to the user.

nID

Return ValueReturn Value

RemarksRemarks

ExampleExample

int CMainFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CMDIFrameWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 EnableDocking(CBRS_ALIGN_ANY);

 // m_wndDlgBar is a CDialogBar member of CMainFrame
 // IDD_DIALOGBAR - Resource ID of the dialog
 // template. This dialog template should be created
 // with the style WS_CHILD and no other style.
 // The template must not have the style WS_VISIBLE.
 if (!m_wndDlgBar.Create(this, IDD_DIALOGBAR,
 CBRS_LEFT|CBRS_TOOLTIPS|CBRS_FLYBY, IDD_DIALOGBAR))
 {
 TRACE0("Failed to create DlgBar\n");
 return -1; // Fail to create.
 }

 return 0;
}

See also

The control ID of the dialog bar.

nIDTemplate
The resource ID of the CDialogBar object's dialog-box template.

Nonzero if successful; otherwise 0.

If you specify the CBRS_TOP or CBRS_BOTTOM alignment style, the dialog bar's width is that of the frame
window and its height is that of the resource specified by nIDTemplate. If you specify the CBRS_LEFT or
CBRS_RIGHT alignment style, the dialog bar's height is that of the frame window and its width is that of the
resource specified by nIDTemplate.

MFC Sample CTRLBARS
CControlBar Class
Hierarchy Chart
CFormView Class
CControlBar Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CDialogEx Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CDialogEx : public CDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDialogEx::CDialogEx Constructs a CDialogEx object.

CDialogEx::~CDialogEx Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CDialogEx::SetBackgroundColor Sets the background color of the dialog box.

CDialogEx::SetBackgroundImage Sets the background image of the dialog box.

Remarks

Inheritance Hierarchy

The CDialogEx class specifies the background color and background image of a dialog box.

To use the CDialogEx class, derive your dialog box class from the CDialogEx class instead of the CDialog class.

Dialog box images are stored in a resource file. The framework automatically deletes any image that is loaded
from the resource file. To programmatically delete the current background image, call the
CDialogEx::SetBackgroundImage method or implement an OnDestroy event handler. When you call the
CDialogEx::SetBackgroundImage method, pass in an HBITMAP parameter as the image handle. The CDialogEx

object will take ownership of the image and delete it if the m_bAutoDestroyBmp flag is TRUE .

A CDialogEx object can be a parent of a CMFCPopupMenu Class object. The CMFCPopupMenu Class object calls
the CDialogEx::SetActiveMenu method when the CMFCPopupMenu Class object opens. Afterward, the CDialogEx

object handles any menu event until the CMFCPopupMenu Class object is closed.

CObject

CCmdTarget

CWnd

CDialog

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdialogex-class.md

Requirements

CDialogEx::CDialogEx

CDialogEx(
 UINT nIDTemplate,
 CWnd* pParent=NULL);

CDialogEx(
 LPCTSTR lpszTemplateName,
 CWnd* pParentWnd=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDialogEx::SetBackgroundColor

void SetBackgroundColor(
 COLORREF color,
 BOOL bRepaint=TRUE);

ParametersParameters

RemarksRemarks

CDialogEx::SetBackgroundImage

CDialogEx

Header: afxdialogex.h

Constructs a CDialogEx object.

nIDTemplate
[in] The resource ID of a dialog box template.

lpszTemplateName
[in] The resource name of a dialog box template.

pParent
[in] A pointer to the parent window. The default value is NULL.

pParentWnd
[in] A pointer to the parent window. The default value is NULL.

Sets the background color of the dialog box.

color
[in] An RGB color value.

bRepaint
[in] TRUE to immediately update the screen; otherwise, FALSE. The default value is TRUE.

Sets the background image of the dialog box.

void SetBackgroundImage(
 HBITMAP hBitmap,
 BackgroundLocation location=BACKGR_TILE,
 BOOL bAutoDestroy=TRUE,
 BOOL bRepaint=TRUE);

BOOL SetBackgroundImage(
 UINT uiBmpResId,
 BackgroundLocation location=BACKGR_TILE,
 BOOL bRepaint=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

hBitmap
[in] A handle to the background image.

uiBmpResId
[in] The resource ID of the background image.

location
[in] One of the CDialogEx::BackgroundLocation values that specify the location of the image. Valid values include
BACKGR_TILE, BACKGR_TOPLEFT, BACKGR_TOPRIGHT, BACKGR_BOTTOMLEFT, and
BACKGR_BOTTOMRIGHT. The default value is BACKGR_TILE.

bAutoDestroy
[in] TRUE to automatically destroy the background image; otherwise, FALSE.

bRepaint
[in] TRUE to immediately redraw the dialog box; otherwise, FALSE.

In the second method overload syntax, TRUE if the method is successful; otherwise, FALSE.

The image that you specify is not stretched to fit the dialog box client area.

Hierarchy Chart
Classes
CMFCPopupMenu Class
CContextMenuManager Class

CDiscreteTransition Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CDiscreteTransition : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDiscreteTransition::CDiscreteTransition Constructs a discrete transition object and initializes its
parameters.

Public MethodsPublic Methods

NAME DESCRIPTION

CDiscreteTransition::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDiscreteTransition::m_dblFinalValue The value of the animation variable at the end of the
transition.

CDiscreteTransition::m_delay The amount of time by which to delay the instantaneous
switch to the final value.

CDiscreteTransition::m_hold The amount of time by which to hold the variable at its final
value.

Remarks

Inheritance Hierarchy

Encapsulates a discrete transition.

During a discrete transition, the animation variable remains at the initial value for a specified delay time, then
switches instantaneously to a specified final value and remains at that value for a given hold time. Because all
transitions are cleared automatically, it's recommended to allocated them using operator new. The encapsulated
IUIAnimationTransition COM object is created by CAnimationController::AnimateGroup, until then it's NULL.
Changing member variables after creation of this COM object has no effect.

CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdiscretetransition-class.md

Requirements

CDiscreteTransition::CDiscreteTransition

CDiscreteTransition(
 UI_ANIMATION_SECONDS delay,
 DOUBLE dblFinalValue,
 UI_ANIMATION_SECONDS hold);

ParametersParameters

CDiscreteTransition::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *not used*\);

Return ValueReturn Value

CDiscreteTransition::m_dblFinalValue

DOUBLE m_dblFinalValue;

CDiscreteTransition::m_delay

UI_ANIMATION_SECONDS m_delay;

CBaseTransition

CDiscreteTransition

Header: afxanimationcontroller.h

Constructs a discrete transition object and initializes its parameters.

delay
The amount of time by which to delay the instantaneous switch to the final value.

dblFinalValue
The value of the animation variable at the end of the transition.

hold
The amount of time by which to hold the variable at its final value.

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to an IUIAnimationTransitionLibrary interface, which defines a library of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

The value of the animation variable at the end of the transition.

The amount of time by which to delay the instantaneous switch to the final value.

https://docs.microsoft.com/windows/desktop/api/uianimation/nn-uianimation-iuianimationtransitionlibrary

 CDiscreteTransition::m_hold

UI_ANIMATION_SECONDS m_hold;

See also

The amount of time by which to hold the variable at its final value.

Classes

CDocItem Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CDocItem : public CCmdTarget

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CDocItem::GetDocument Returns the document that contains the item.

CDocItem::IsBlank Determines whether the item contains any information.

Remarks

Inheritance Hierarchy

Requirements

CDocItem::GetDocument

CDocument* GetDocument() const;

Return ValueReturn Value

RemarksRemarks

The base class for document items, which are components of a document's data.

CDocItem objects are used to represent OLE items in both client and server documents.

For more information, see the article Containers: Implementing a Container.

CObject

CCmdTarget

CDocItem

Header: afxole.h

Call this function to get the document that contains the item.

A pointer to the document that contains the item; NULL, if the item is not part of a document.

This function is overridden in the derived classes COleClientItem and COleServerItem, returning a pointer to
either a COleDocument, a COleLinkingDoc, or a COleServerDoc object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdocitem-class.md

 CDocItem::IsBlank

virtual BOOL IsBlank() const;

Return ValueReturn Value

RemarksRemarks

See also

Called by the framework when default serialization occurs.

Nonzero if the item contains no information; otherwise 0.

By default, CDocItem objects are not blank. COleClientItem objects are sometimes blank because they derive
directly from CDocItem . However, COleServerItem objects are always blank. By default, OLE applications
containing COleClientItem objects that have no x or y extent are serialized. This is done by returning TRUE from
an override of IsBlank when the item has no x or y extent.

Override this function if you want to implement other actions during serialization.

CCmdTarget Class
Hierarchy Chart
COleDocument Class
COleServerItem Class
COleClientItem Class

CDockablePane Class
3/4/2019 • 33 minutes to read • Edit Online

Syntax
class CDockablePane : public CPane

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDockablePane::CDockablePane Constructs and initializes a CDockablePane object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDockablePane::AttachToTabWnd Attaches a pane to another pane. This creates a tabbed
pane.

CDockablePane::CalcFixedLayout Returns the size of the pane rectangle.

CDockablePane::CanAcceptMiniFrame Determines whether the specified mini frame can be
docked to the pane.

CDockablePane::CanAcceptPane Determines whether another pane can be docked to the
current pane.

CDockablePane::CanAutoHide Determines whether the pane supports auto-hide mode.
(Overrides CBasePane::CanAutoHide.)

CDockablePane::CanBeAttached Determines whether the current pane can be docked to
another pane.

CDockablePane::ConvertToTabbedDocument Converts one or more dockable panes to MDI tabbed
documents.

CDockablePane::CopyState Copies the state of a dockable pane.

CDockablePane::Create Creates the Windows control and attaches it to the
CDockablePane object.

CDockablePane::CreateDefaultPaneDivider Creates a default divider for the pane as it is being
docked to a frame window.

Implements a pane that can either be docked in a dock site or included in a tabbed pane.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdockablepane-class.md

CDockablePane::CreateEx Creates the Windows control and attaches it to the
CDockablePane object.

CDockablePane::CreateTabbedPane Creates a tabbed pane from the current pane.

CDockablePane::DockPaneContainer Docks a container to the pane.

CDockablePane::DockPaneStandard Docks a pane by using outline (standard) docking.

CDockablePane::DockToFrameWindow Used internally. To dock a pane, use CPane::DockPane or
CDockablePane::DockToWindow.

CDockablePane::DockToRecentPos Docks a pane to its stored recent docking position.

CDockablePane::DockToWindow Docks one docking pane to another docking pane.

CDockablePane::EnableAutohideAll Enables or disables auto-hide mode for this pane
together with other panes in the container.

CDockablePane::EnableGripper Shows or hides the caption (gripper).

CDockablePane::GetAHRestoredRect Specifies the position of the pane when visible in auto-
hide mode.

CDockablePane::GetAHSlideMode Retrieves the auto hide slide mode for the pane.

CDockablePane::GetAutoHideButton Used internally.

CDockablePane::GetAutoHideToolBar Used internally.

CDockablePane::GetCaptionHeight Returns the height of the current caption.

CDockablePane::GetDefaultPaneDivider Returns the default pane divider for the pane's container.

CDockablePane::GetDockingStatus Determines the ability of a pane to be docked based on
the provided pointer location.

CDockablePane::GetDragSensitivity Returns the drag sensitivity of a docking pane.

CDockablePane::GetLastPercentInPaneContainer Retrieves the percentage of space that a pane occupies
within its container.

CDockablePane::GetTabArea Retrieves the tab area for the pane.

CDockablePane::GetTabbedPaneRTC Returns the runtime class information about a tabbed
window that is created when another pane docks to the
current pane.

CDockablePane::HasAutoHideMode Specifies whether a docking pane can be switched to
auto-hide mode.

NAME DESCRIPTION

CDockablePane::HitTest Specifies the specific location in a pane where the user
clicks a mouse.

CDockablePane::IsAccessibilityCompatible Used internally.

CDockablePane::IsAutohideAllEnabled Indicates whether the docking pane and all other panes
in the container can be placed in auto-hide mode.

CDockablePane::IsAutoHideMode Determines whether a pane is in auto-hide mode.

CDockablePane::IsChangeState Used internally.

CDockablePane::IsDocked Determines whether the current pane is docked.

CDockablePane::IsHideInAutoHideMode Determines the behavior of a pane that is in auto-hide
mode if it is shown (or hidden) by calling ShowPane .

CDockablePane::IsInFloatingMultiPaneFrameWnd Specifies whether the pane is in a multi-pane frame
window.

CDockablePane::IsResizable Specifies whether the pane is resizable.

CDockablePane::IsTabLocationBottom Specifies whether tabs are located at the top or bottom
of the pane.

CDockablePane::IsTracked Specifies whether a pane is being dragged by the user.

CDockablePane::IsVisible Determines whether the current pane is visible.

CDockablePane::LoadState Used internally.

CDockablePane::OnAfterChangeParent Called by the framework when the parent of a pane has
changed. (Overrides CPane::OnAfterChangeParent.)

CDockablePane::OnAfterDockFromMiniFrame Called by the framework when a floating docking bar
docks at a frame window.

CDockablePane::OnBeforeChangeParent Called by the framework when the parent of the pane is
about to change. (Overrides
CPane::OnBeforeChangeParent.)

CDockablePane::OnBeforeFloat Called by the framework when a pane is about to float.
(Overrides CPane::OnBeforeFloat.)

CDockablePane::RemoveFromDefaultPaneDividier The framework calls this method when a pane is being
undocked.

CDockablePane::ReplacePane Replaces the pane with a specified pane.

CDockablePane::RestoreDefaultPaneDivider The framework calls this method as a pane is deserialized
to restore the default pane divider.

NAME DESCRIPTION

CDockablePane::SaveState Used internally.

CDockablePane::Serialize Serializes the pane. (Overrides CBasePane::Serialize .)

CDockablePane::SetAutoHideMode Toggles the docking pane between visible and auto-hide
mode.

CDockablePane::SetAutoHideParents Sets the auto-hide button and auto-hide toolbar for the
pane.

CDockablePane::SetDefaultPaneDivider Used internally.

CDockablePane::SetLastPercentInPaneContainer Sets the percentage of space that a pane occupies within
its container.

CDockablePane::SetResizeMode Used internally.

CDockablePane::SetRestoredDefaultPaneDivider Sets the restored default pane divider.

CDockablePane::SetTabbedPaneRTC Sets the runtime class information for a tabbed window
that is created when two panes dock together.

CDockablePane::ShowPane Shows or hides a pane.

CDockablePane::Slide Shows or hides a pane with a sliding animation which
displays only when the pane is in auto-hide mode.

CDockablePane::ToggleAutoHide Toggles auto-hide mode. (Overrides
CPane::ToggleAutoHide .)

CDockablePane::UndockPane Undocks a pane from either the main frame window or a
miniframe window container.

CDockablePane::UnSetAutoHideMode Used internally. To set the auto-hide mode, use
CDockablePane::SetAutoHideMode

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CDockablePane::CheckAutoHideCondition Determines whether the docking pane is hidden (in auto-
hide mode).

CDockablePane::CheckStopSlideCondition Determines when an auto-hide docking pane should stop
sliding.

CDockablePane::DrawCaption Draws the docking pane caption (gripper).

CDockablePane::OnPressButtons Called when the user presses a caption button other than
the AFX_HTCLOSE and AFX_HTMAXBUTTON buttons.

CDockablePane::OnSlide Called by the framework to render the auto-hide slide
effect when the pane is either shown or hidden.

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CDockablePane::m_bDisableAnimation Specifies whether auto-hide animation of the dockable
pane is disabled.

CDockablePane::m_bHideInAutoHideMode Determines the behavior of the pane when the pane is in
auto-hide mode.

CDockablePane::m_nSlideSteps Specifies the animation speed of the pane when it is
being shown or hidden when in auto-hide mode.

Remarks

Customization Tips

CDockablePane implements the following functionality:

NOTENOTE

Docking a pane to a main frame window.

Switching a pane to auto-hide mode.

Attaching a pane to a tabbed window.

Floating a pane in a miniframe window.

Docking a pane to another pane that is floating in a miniframe window.

Resizing a pane.

Loading and saving state for a docking pane.

State information is saved to the Windows registry.

Creating a pane with or without a caption. The caption can have a text label and it can be filled with
a gradient color.

Dragging a pane while displaying the contents of the pane

Dragging a pane while displaying a drag rectangle.

To use a docking pane in your application, derive your pane class from the CDockablePane class. Either
embed the derived object into the main frame window object or into a window object that controls the
instance of your pane. Then call the CDockablePane::Create method or the CDockablePane::CreateEx
method when you process the WM_CREATE message in the main frame window. Finally, set up the pane
object by calling CBasePane::EnableDocking, CBasePane::DockPane, or CDockablePane::AttachToTabWnd.

The following tips apply to CDockablePane objects:

Example

// GetOwner is an inherited method.
CDockablePane* pParentBar = DYNAMIC_DOWNCAST(CDockablePane, GetOwner());

pParentBar->EnableAutohideAll();
pParentBar->EnableGripper(true);
pParentBar->SetAutoHideMode(true, CBRS_ALIGN_LEFT);
pParentBar->ShowPane(true,false,true);
pParentBar->Slide(true);

Inheritance Hierarchy

Requirements

If you call CDockablePane::AttachToTabWnd for two non-tabbed, dockable panes, a pointer to a
tabbed window will be returned in the ppTabbedControlBar parameter. You can continue to add
tabs to the tabbed window by using this parameter.

The kind of tabbed pane that is created by CDockablePane::AttachToTabWnd is determined by the
CDockablePane object in the pTabControlBarAttachTo parameter. You can call

CDockablePane::SetTabbedPaneRTC to set the kind of tabbed pane that the CDockablePane will
create. The default type is determined by the dwTabbedStyle of CDockablePane::Create when you
first create the CDockablePane . If dwTabbedStyle is AFX_CBRS_OUTLOOK_TABS the default type
is CMFCOutlookBar Class; if dwTabbedStyle is AFX_CBRS_REGULAR_TABS the default type is
CTabbedPane Class.

If you want to dock one dockable pane to another, call the CDockablePane::DockToWindow
method. The original pane must be docked somewhere before you call this method.

The member variable CDockablePane::m_bHideInAutoHideMode controls how dockable panes
behave in auto hide mode when you call CDockablePane::ShowPane. If this member variable is set
to TRUE, dockable panes and their auto hide buttons will be hidden. Otherwise, they will slide in
and out.

You can disable auto-hide animation by setting the CDockablePane::m_bDisableAnimation
member variable to TRUE.

The following example demonstrates how to configure a CDockablePane object by using various methods
in the CDockablePane class. The example illustrates how to enable the auto-hide all feature for the
dockable pane, enable the caption or the gripper, enable the auto-hide mode, show the pane, and animate
a pane that is in auto-hide mode. This code snippet is part of the Visual Studio Demo sample.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CDockablePane

Header: afxDockablePane.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

 CDockablePane::AttachToTabWnd

virtual CDockablePane* AttachToTabWnd(
 CDockablePane* pTabControlBarAttachTo,
 AFX_DOCK_METHOD dockMethod,
 BOOL bSetActive= TRUE,
 CDockablePane** ppTabbedControlBar = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Attaches the current pane to a target pane, creating a tabbed pane.

pTabControlBarAttachTo
[in, out] Specifies the target pane that the current pane attaches to. The target pane must be a dockable
pane.

dockMethod
[in] Specifies the docking method.

bSetActive
[in] TRUE to activate the tabbed pane after the attach operation; otherwise, FALSE.

ppTabbedControlBar
[out] Contains the tabbed pane that results from the attach operation.

A pointer to the current pane, if it is not a tabbed pane; otherwise a pointer to the tabbed pane that results
from the attach operation. The return value is NULL if the current pane cannot be attached, or if an error
occurs.

When one dockable pane attaches to another pane using this method, the following occurs:

1. The framework checks whether the target pane pTabControlBarAttachTo is a regular docking pane
or if it is derived from CBaseTabbedPane.

2. If the target pane is a tabbed pane, the framework adds the current pane to it as a tab.

3. If the target pane is a regular docking pane, the framework creates a tabbed pane.

The framework calls pTabControlBarAttachTo->CreateTabbedPane . The style of the new tabbed
pane depends on the m_pTabbedControlBarRTC member. By default, this member is set to the
runtime class of CTabbedPane. If you pass the AFX_CBRS_OUTLOOK_TABS style as the
dwTabbedStyle parameter to the CDockablePane::Create method, the runtime class object is
set to the runtime class of CMFCOutlookBar. You can change this member at any time to
change the style of the new pane.

When this method creates a tabbed pane, the framework replaces the pointer to
pTabControlBarAttachTo (if the pane is docked or floating in a multi-miniframe window)
with a pointer to the new tabbed pane.

The framework adds the pTabControlBarAttachTo pane to the tabbed pane as the first tab.
The framework then adds the current pane as a second tab.

4. If the current pane is derived from CBaseTabbedPane , all of its tabs are moved to
pTabControlBarAttachTo and the current pane is destroyed. Therefore, be careful when you call
this method, because a pointer to the current pane may be invalid when the method returns.

CDockablePane::CalcFixedLayout

virtual CSize CalcFixedLayout(
 BOOL bStretch,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

CDockablePane::CanAcceptMiniFrame

virtual BOOL CanAcceptMiniFrame(CPaneFrameWnd* pMiniFrame) const;

ParametersParameters

Return ValueReturn Value

CDockablePane::CanAcceptPane

virtual BOOL CanAcceptPane(const CBasePane* pBar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

If you attach one pane to another when building a docking layout, set dockMethod to DM_SHOW.

You should dock the first pane before you attach another pane to it.

Returns the size of the pane rectangle.

bStretch
[in] Not used.

bHorz
[in] Not used.

A CSize object that contains the size of the pane rectangle.

Determines whether the specified mini-frame can be docked to the pane.

pMiniFrame
[in] Pointer to a CPaneFrameWnd object.

TRUE if pMiniFrame can be docked to the pane; otherwise, FALSE.

Determines whether another pane can be docked to the current pane.

pBar
[in] Specifies the pane to dock to the current pane.

TRUE if the specified pane can be docked to this pane; otherwise, FALSE.

The framework calls this method before a pane is docked to the current pane.

Override this function in a derived class to enable or disable docking to a specific pane.

CDockablePane::CanAutoHide

virtual BOOL CanAutoHide() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::CanBeAttached

virtual BOOL CanBeAttached() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::CDockablePane

CDockablePane();

RemarksRemarks

CDockablePane::ConvertToTabbedDocument

virtual void ConvertToTabbedDocument(BOOL bActiveTabOnly = TRUE);

ParametersParameters

By default, this method returns TRUE if either pBar or its parent is of type CDockablePane .

Determines whether the pane can auto-hide.

TRUE if the pane can auto-hide; otherwise, FALSE.

CDockablePane::CanAutoHide returns FALSE in any of the following situations:

The pane has no parent.

The docking manager does not allow panes to auto-hide.

The pane is not docked.

Determines whether the current pane can be docked to another pane.

TRUE if the dockable pane can be docked to another pane or to the main frame window; otherwise,
FALSE.

By default, this method always returns TRUE. Override this method in a derived class to enable or disable
docking without calling CBasePane::EnableDocking.

Constructs and initializes a CDockablePane object.

After you construct a dockable pane object, call CDockablePane::Create or CDockablePane::CreateEx to
create it.

Converts one or more dockable panes to MDI tabbed documents.

bActiveTabOnly

CDockablePane::CheckAutoHideCondition

virtual BOOL CheckAutoHideCondition();

Return ValueReturn Value

RemarksRemarks

CDockablePane::CheckStopSlideCondition

virtual BOOL CheckStopSlideCondition(BOOL bDirection);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockablePane::CopyState

virtual void CopyState(CDockablePane* pOrgBar);

ParametersParameters

RemarksRemarks

[in] When you convert a CTabbedPane , specify TRUE to convert only the active tab. Specify FALSE to
convert all tabs in the pane.

Determines whether the docking pane is hidden (also known as autohide mode).

TRUE if the hide condition is met; otherwise, FALSE.

The framework uses a timer to periodically check whether to hide an autohide dockable pane. The method
returns TRUE when the pane is not active, the pane is not being resized, and the mouse pointer is not over
the pane.

If all the previous conditions are met, the framework calls CDockablePane::Slide to hide the pane.

Determines when an autohide docking pane should stop sliding.

bDirection
[in] TRUE if the pane is visible; FALSE if the pane is hidden.

TRUE if the stop condition is met; otherwise, FALSE.

When a dockable pane is set to autohide mode, the framework uses sliding effects to show or hide the
pane. The framework calls this function when the pane is sliding. CheckStopSlideCondition returns TRUE
when the pane is fully visible or when it is fully hidden.

Override this method in a derived class to implement custom autohide effects.

Copies the state of a dockable pane.

pOrgBar
[in] A pointer to a dockable pane.

CDockablePane::CopyState copies the state of pOrgBar to the current pane by calling the following
methods:

 CDockablePane::Create

virtual BOOL Create(
 LPCTSTR lpszCaption,
 CWnd* pParentWnd,
 const RECT& rect,
 BOOL bHasGripper,
 UINT nID,
 DWORD dwStyle,
 DWORD dwTabbedStyle = AFX_CBRS_REGULAR_TABS,
 DWORD dwControlBarStyle = AFX_DEFAULT_DOCKING_PANE_STYLE,
 CCreateContext* pContext = NULL);

virtual BOOL Create(
 LPCTSTR lpszWindowName,
 CWnd* pParentWnd,
 CSize sizeDefault,
 BOOL bHasGripper,
 UINT nID,
 DWORD dwStyle = WS_CHILD|WS_VISIBLE|CBRS_TOP|CBRS_HIDE_INPLACE,
 DWORD dwTabbedStyle = AFX_CBRS_REGULAR_TABS,
 DWORD dwControlBarStyle = AFX_DEFAULT_DOCKING_PANE_STYLE);

ParametersParameters

CPane::CopyState

CDockablePane::GetAHRestoredRect

CDockablePane::GetAHSlideMode

CDockablePane::GetLastPercentInPaneContainer

CDockablePane::IsAutohideAllEnabled

Creates the Windows control and attaches it to the CDockablePane object.

lpszCaption
[in] Specifies the window name.

pParentWnd
[in, out] Specifies the parent window.

rect
[in] Specifies the size and position of the window, in client coordinates of pParentWnd.

bHasGripper
[in] TRUE to create the pane with a caption; otherwise, FALSE.

nID
[in] Specifies the ID of the child window. This value must be unique if you want to save docking state for
this docking pane.

dwStyle
[in] Specifies the window style attributes.

dwTabbedStyle
[in] Specifies the tabbed style of a tabbed window that is created when the user drags a pane on the
caption of this pane.

dwControlBarStyle
[in] Specifies additional style attributes.

Return ValueReturn Value

RemarksRemarks

CDockablePane::CreateDefaultPaneDivider

static CPaneDivider* __stdcall CreateDefaultPaneDivider(
 DWORD dwAlignment,
 CWnd* pParent,
 CRuntimeClass* pSliderRTC = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

VALUE DESCRIPTION

CBRS_ALIGN_TOP The pane is being docked to the top of the client area of
a frame window.

pContext
[in, out] Specifies the create context of the window.

lpszWindowName
[in] Specifies the window name.

sizeDefault
[in] Specifies the size of the window.

TRUE if the dockable pane is successfully created; otherwise, FALSE.

Creates a Windows pane and attaches it to the CDockablePane object.

If the dwStyle window style has the CBRS_FLOAT_MULTI flag, the miniframe window can float with other
panes in the miniframe window. By default, docking panes can only float individually.

If the dwTabbedStyle parameter has the AFX_CBRS_OUTLOOK_TABS flag specified, the pane creates
Outlook-style tabbed panes when another pane is attached to this pane using the
CDockablePane::AttachToTabWnd method. By default, dockable panes create regular tabbed panes of type
CTabbedPane.

Creates a default divider for the pane as it is being docked to a frame window.

dwAlignment
[in] Specifies the side of the main frame to which the pane is being docked. If dwAlignment contains the
CBRS_ALIGN_LEFT or CBRS_ALIGN_RIGHT flag, this method creates a vertical (CPaneDivider::SS_VERT)
divider; otherwise, this method creates a horizontal (CPaneDivider::SS_HORZ) divider.

pParent
[in] Pointer to the parent frame.

pSliderRTC
[in] Not used.

This method returns a pointer to the newly-created divider, or NULL if divider creation fails.

dwAlignment can be any of the following values:

CBRS_ALIGN_BOTTOM The pane is being docked to the bottom of the client area
of a frame window.

CBRS_ALIGN_LEFT The pane is being docked to the left side of the client
area of a frame window.

CBRS_ALIGN_RIGHT The pane is being docked to the right side of the client
area of a frame window.

VALUE DESCRIPTION

CDockablePane::CreateEx

virtual BOOL CreateEx(
 DWORD dwStyleEx,
 LPCTSTR lpszCaption,
 CWnd* pParentWnd,
 const RECT& rect,
 BOOL bHasGripper,
 UINT nID,
 DWORD dwStyle,
 DWORD dwTabbedStyle = AFX_CBRS_REGULAR_TABS,
 DWORD dwControlBarStyle = AFX_DEFAULT_DOCKING_PANE_STYLE,
 CCreateContext* pContext = NULL);

ParametersParameters

Creates the Windows control and attaches it to the CDockablePane object.

dwStyleEx
[in] Specifies the extended style attributes for the new window.

lpszCaption
[in] Specifies the window name.

pParentWnd
[in, out] Specifies the parent window.

rect
[in] Specifies the size and position of the window, in client coordinates of pParentWnd.

bHasGripper
[in] TRUE to create the pane with a caption; otherwise, FALSE.

nID
[in] Specifies the ID of the child window. This value must be unique if you want to save the docking state
for this docking pane.

dwStyle
[in] Specifies the window style attributes.

dwTabbedStyle
[in] Specifies the tabbed style of a tabbed window that is created when the user drags a pane on the
caption of this pane.

dwControlBarStyle
[in] Specifies the additional style attributes.

pContext

Return ValueReturn Value

RemarksRemarks

CDockablePane::CreateTabbedPane

virtual CTabbedPane* CreateTabbedPane();

Return ValueReturn Value

RemarksRemarks

CDockablePane::DockPaneContainer

virtual BOOL DockPaneContainer(
 CPaneContainerManager& barContainerManager,
 DWORD dwAlignment,
 AFX_DOCK_METHOD dockMethod);

ParametersParameters

Return ValueReturn Value

[in, out] Specifies the create context of the window.

TRUE if the dockable pane is successfully created; otherwise, FALSE.

Creates a Windows pane and attaches it to the CDockablePane object.

If the dwStyle window style has the CBRS_FLOAT_MULTI flag, the miniframe window can float with other
panes in the miniframe window. By default, docking panes can only float individually.

If the dwTabbedStyle parameter has the AFX_CBRS_OUTLOOK_TABS flag specified, the pane creates
Outlook-style tabbed panes when another pane is attached to this pane using the
CDockablePane::AttachToTabWnd method. By default, dockable panes create regular tabbed panes of type
CTabbedPane.

Creates a tabbed pane from the current pane.

The new tabbed pane, or NULL if the create operation failed.

The framework calls this method when it creates a tabbed pane to replace this pane. For more
information, see CDockablePane::AttachToTabWnd.

Override this method in a derived class to customize how tabbed panes are created and initialized.

The tabbed pane is created according to the runtime class information stored in the
m_pTabbedControlBarRTC member, which is initialized by the CDockablePane::CreateEx method.

Docks a container to the pane.

barContainerManager
[in] A reference to the container manager of the container that is being docked.

dwAlignment
[in] DWORD that specifies the side of the pane to which the container is being docked.

dockMethod
[in] Not used.

TRUE if the container was successfully docked to the pane; otherwise, FALSE.

RemarksRemarks

VALUE DESCRIPTION

CBRS_ALIGN_TOP The container is being docked to the top of the pane.

CBRS_ALIGN_BOTTOM The container is being docked to the bottom of the pane.

CBRS_ALIGN_LEFT The container is being docked to the left of the pane.

CBRS_ALIGN_RIGHT The container is being docked to the right of the pane.

CDockablePane::DockPaneStandard

virtual CPane* DockPaneStandard(BOOL& bWasDocked);

ParametersParameters

Return ValueReturn Value

CDockablePane::DockToRecentPos

BOOL CDockablePane::DockToRecentPos();

Return ValueReturn Value

RemarksRemarks

CDockablePane::DockToWindow

virtual BOOL DockToWindow(
 CDockablePane* pTargetWindow,
 DWORD dwAlignment,
 LPCRECT lpRect = NULL);

ParametersParameters

dwAlignment can be any of the following values:

Docks a pane by using outline (standard) docking.

bWasDocked
[in] When the method returns, this value contains TRUE if the pane was successfully docked; otherwise, it
contains FALSE.

If the pane was docked to a tabbed window, or if a tabbed window was created as a result of docking, this
method returns a pointer to the tabbed window. If the pane was otherwise successfully docked, this
method returns the this pointer. If docking failed, this method returns NULL.

Docks a pane to its stored docking position.

TRUE if the pane is successfully docked; otherwise, FALSE.

Dockable panes store recent docking information in a CRecentDockSiteInfo object.

Docks one docking pane to another docking pane.

Return ValueReturn Value

RemarksRemarks

CDockablePane::DrawCaption

virtual void DrawCaption(
 CDC* pDC,
 CRect rectCaption);

ParametersParameters

RemarksRemarks

CDockablePane::EnableAutohideAll

void EnableAutohideAll(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CDockablePane::EnableGripper

pTargetWindow
[in, out] Specifies the dockable pane to dock this pane to.

dwAlignment
[in] Specifies the docking alignment for the pane. May be one of CBRS_ALIGN_LEFT,
CBRS_ALIGN_TOP, CBRS_ALIGN_RIGHT, CBRS_ALIGN_BOTTOM or CBRS_ALIGN_ANY. (Defined in
afxres.h.)

lpRect
[in] Specifies the docking rectangle for the pane.

TRUE if the pane was docked successfully; otherwise, FALSE.

Call this method to dock one pane to another pane with the alignment specified by dwAlignment.

Draws the caption (also called the gripper) of a docking pane.

pDC
[in] Represents the device context used for drawing.

rectCaption
[in] Specifies the bounding rectangle of the pane's caption.

The framework calls this method to draw the caption of a dockable pane.

Override this method in a derived class to customize the appearance of the caption.

Enables or disables autohide mode for this pane and for other panes in the container.

bEnable
[in] TRUE to enable the autohide all feature for the dockable pane; otherwise, FALSE.

When a user holds the Ctrl key and clicks the pin button to switch a pane to autohide mode, all other
panes in the same container are also switched to autohide mode.

Call this method with bEnable set to FALSE to disable this feature for a particular pane.

virtual void EnableGripper(BOOL bEnable);

ParametersParameters

RemarksRemarks

CDockablePane::GetAHRestoredRect

CRect GetAHRestoredRect() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::GetAHSlideMode

virtual UINT GetAHSlideMode() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::GetCaptionHeight

virtual int GetCaptionHeight() const;

Return ValueReturn Value

RemarksRemarks

Shows or hides the caption (also called the gripper).

bEnable
[in] TRUE to enable the caption; otherwise, FALSE.

When the framework creates dockable panes, they do not have the WS_STYLE window style, even if
specified. This means that the pane's caption is a non-client area that is controlled by the framework, but
this area differs from the standard window caption.

You can show or hide the caption at any time. The framework hides the caption when a pane is added as a
tab to a tabbed window or when a pane is floated in a miniframe window.

Specifies the position of the pane when in auto-hide mode.

A CRect object that contains the position of the pane when it is in auto-hide mode.

Retrieves the auto-hide slide mode for the pane.

A UINT that specifies the auto-hide slide mode for the pane. The return value can be either
AFX_AHSM_MOVE or AFX_AHSM_STRETCH, but the implementation only uses AFX_AHSM_MOVE.

Returns the height, in pixels, of the current caption.

The height of the caption, in pixels.

The caption height is 0 if the caption was hidden by the CDockablePane::EnableGripper method, or if the
pane does not have a caption.

CDockablePane::GetDefaultPaneDivider

CPaneDivider* GetDefaultPaneDivider() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::GetDockingStatus

virtual AFX_CS_STATUS GetDockingStatus(
 CPoint pt,
 int nSensitivity);

ParametersParameters

Return ValueReturn Value

AFX_CS_STATUS VALUE MEANING

CS_NOTHING The pointer is not over a dock site. The framework does
not dock the pane.

CS_DOCK_IMMEDIATELY The pointer is located over the dock site in immediate
mode (the pane uses the DT_IMMEDIATE docking mode).
The framework docks the pane immediately.

CS_DELAY_DOCK The pointer is over a dock site that is another docking
pane or is an edge of the main frame. The framework
docks the pane after a delay. See the Remarks section for
more information about this delay.

CS_DELAY_DOCK_TO_TAB The pointer is located over a dock site that causes the
pane to be docked in a tabbed window. This occurs when
the pointer is located over the caption of another
docking pane or over the tab area of a tabbed pane.

RemarksRemarks

Returns the default pane divider for the pane's container.

A valid CPaneDivider object if the dockable pane is docked to the main frame window, or NULL if the
dockable pane is not docked or if it is floating.

For more information about pane dividers, see CPaneDivider Class.

Determines the ability of a pane to be docked based on the provided pointer location.

pt
[in] The location of the pointer in screen coordinates.

nSensitivity
[in] The distance, in pixels, away from the edge of a rectangle the pointer must be to enable docking.

One of the following status values:

The framework calls this method to handle docking of a floating pane.

For floating toolbars or docking panes that use the DT_IMMEDIATE docking mode, the framework delays
the dock command to enable the user to move the window out of the client area of the parent frame

CDockablePane::GetDragSensitivity

static const CSize& GetDragSensitivity();

Return ValueReturn Value

CDockablePane::GetLastPercentInPaneContainer

int GetLastPercentInPaneContainer() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::GetTabArea

virtual void GetTabArea(
 CRect& rectTabAreaTop,
 CRect& rectTabAreaBottom) const;

ParametersParameters

before docking occurs. The length of the delay is measured in milliseconds and is controlled by the
CDockingManager::m_nTimeOutBeforeToolBarDock data member.. The default value of
CDockingManager::m_nTimeOutBeforeToolBarDock is 200. This behavior emulates the docking behavior
of Microsoft Word 2007.

For delayed docking states (CS_DELAY_DOCK and CS_DELAY_DOCK_TO_TAB), the framework does not
perform docking until the user releases the mouse button. If a pane uses the DT_STANDARD docking
mode, the framework displays a rectangle at the projected docking location. If a pane uses the DT_SMART
docking mode, the framework displays smart docking markers and semi-transparent rectangles at the
projected docking location. To specify the docking mode for your pane, call the
CBasePane::SetDockingMode method. For more information about smart docking, see
CDockingManager::GetSmartDockingParams.

Returns the drag sensitivity of a docking pane.

A CSize object that contains the width and height, in pixels, of a rectangle centered on a drag point. The
drag operation does not begin until the mouse pointer moves outside this rectangle.

Retrieves the percentage of space that a pane occupies in its container (CPaneContainer Class).

An int that specifies the percentage of space that the pane occupies in its container.

This method is used when the container adjusts its layout.

Retrieves the tab area for the pane.

rectTabAreaTop
[in] GetTabArea fills this variable with the tab area if tabs are located at the top of the pane. If tabs are
located at the bottom of the pane, this variable is filled with an empty rectangle.

rectTabAreaBottom
[in] GetTabArea fills this variable with the tab area if tabs are located at the bottom of the pane. If tabs are
located at the top of the pane, this variable is filled with an empty rectangle.

RemarksRemarks

CDockablePane::GetTabbedPaneRTC

CRuntimeClass* GetTabbedPaneRTC() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::HasAutoHideMode

virtual BOOL HasAutoHideMode() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::HitTest

virtual int HitTest(
 CPoint point,
 BOOL bDetectCaption = FALSE);

ParametersParameters

Return ValueReturn Value

This method is used only in classes that are derived from CDockablePane and have tabs. For more
information, see CTabbedPane::GetTabArea and CMFCOutlookBar::GetTabArea.

Returns the runtime class information about a tabbed window that is created when another pane docks to
the current pane.

The runtime class information for the dockable pane.

Call this method to retrieve the runtime class information for tabbed panes that are created dynamically.
This can occur when a user drags one pane to the caption of another pane, or if you call the
CDockablePane::AttachToTabWnd method to programmatically create a tabbed pane from two dockable
panes.

You can set the runtime class information by calling the CDockablePane::SetTabbedPaneRTC method.

Specifies whether a docking pane can be switched to autohide mode.

TRUE if the dockable pane can be switched to autohide mode; otherwise, FALSE.

Override this method in a derived class to disable autohide mode for a specific dockable pane.

Specifies the location in a pane where the user clicks a mouse.

point
[in] Specifies the point to test.

bDetectCaption
[in] TRUE if HTCAPTION should be returned if the point is on the pane's caption; otherwise, FALSE.

One of the following values:

HTNOWHERE if point is not in the dockable pane.

CDockablePane::IsAutohideAllEnabled

virtual BOOL IsAutohideAllEnabled() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::IsAutoHideMode

virtual BOOL IsAutoHideMode() const;

Return ValueReturn Value

CDockablePane::IsDocked

virtual BOOL IsDocked() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::IsHideInAutoHideMode

HTCLIENT if point is in the client area of the dockable pane.

HTCAPTION if point is in the caption area of the dockable pane.

AFX_HTCLOSE if point is on the close button.

HTMAXBUTTON if point is on the pin button.

Indicates whether the docking pane and all other panes in the container can be switched to autohide
mode.

TRUE if the dockable pane, and all other panes in the container, can be switched to autohide mode;
otherwise, FALSE.

A user enables autohide mode by clicking the docking pin button while holding the Ctrl key

To enable or disable this behavior, call the CDockablePane::EnableAutohideAll method.

Determines whether a pane is in autohide mode.

TRUE if the dockable pane is in autohide mode; otherwise, FALSE.

Determines whether the current pane is docked.

TRUE if the dockable pane does not belong to a miniframe window or if it is floating in a miniframe
window with another pane. FALSE if the pane is a child of a miniframe window and there are no other
panes that belong to the miniframe window.

To determine whether the pane is docked to the main frame window, call
CDockablePane::GetDefaultPaneDivider. If the method returns a non-NULL pointer, the pane is docked at
the main frame window.

Determines the behavior of a pane that is in autohide mode if it is shown (or hidden) by calling
CDockablePane::ShowPane.

virtual BOOL IsHideInAutoHideMode() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::IsInFloatingMultiPaneFrameWnd

virtual BOOL IsInFloatingMultiPaneFrameWnd() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::IsResizable

virtual BOOL IsResizable() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::IsTabLocationBottom

virtual BOOL IsTabLocationBottom() const;

Return ValueReturn Value

TRUE if the dockable pane should be hidden when in autohide mode; otherwise, FALSE.

When a dockable pane is in autohide mode, it behaves differently when you call ShowPane to hide or show
the pane. This behavior is controlled by the static member CDockablePane::m_bHideInAutoHideMode. If
this member is TRUE, the dockable pane and its related autohide toolbar or autohide button is hidden or
shown when you call ShowPane . Otherwise, the dockable pane is activated or deactivated, and its related
autohide toolbar or autohide button is always visible.

Override this method in a derived class to change the default behavior for individual panes.

The default value for m_bHideInAutoHideMode is FALSE.

Specifies whether the pane is in a multi-pane frame window (CMultiPaneFrameWnd Class).

TRUE if the pane is in a multi-pane frame window; otherwise, FALSE.

Specifies whether the pane is resizable.

TRUE if the pane is resizable; otherwise, FALSE.

By default, dockable panes are resizable. To prevent resizing, override this method in a derived class and
return FALSE. Note that a FALSE value leads to a failed ASSERT in CPane::DockPane. Use
CDockingManager::AddPane instead to dock a pane within a parent frame.

Panes that cannot be resized can neither float nor enter auto-hide mode and are always located at the
outer edge of the parent frame.

Specifies whether tabs are located at the top or bottom of the pane.

TRUE if tabs are located at the bottom of the pane; FALSE if tabs are located at the top of the pane.

RemarksRemarks

CDockablePane::IsTracked

BOOL IsTracked() const;

Return ValueReturn Value

CDockablePane::IsVisible

virtual BOOL IsVisible() const;

Return ValueReturn Value

RemarksRemarks

CDockablePane::LoadState

virtual BOOL LoadState(
 LPCTSTR lpszProfileName = NULL,
 int nIndex = -1,
 UINT uiID = (UINT) -1
);

CDockablePane::m_bDisableAnimation

AFX_IMPORT_DATA static BOOL m_bDisableAnimation;

For more information, see CTabbedPane::IsTabLocationBottom.

Specifies whether a pane is being moved by the user.

TRUE if the pane is being moved; otherwise, FALSE.

Determines whether the current pane is visible.

TRUE if the dockable pane is visible; otherwise, FALSE.

Call this method to determine whether a dockable pane is visible. You can use this method instead of
calling CWnd::IsWindowVisible or testing for the WS_VISIBLE style. The returned visibility state depends
on whether autohide mode is enabled or disabled and on the value of the
CDockablePane::IsHideInAutoHideMode property.

If the dockable pane is in autohide mode and IsHideInAutoHideMode returns FALSE the visibility state is
always FALSE.

If the dockable pane is in autohide mode and IsHideInAutoHideMode returns TRUE the visibility state
depends on the visibility state of the related autohide toolbar.

If the dockable pane is not in autohide mode, the visibility state is determined by the CBasePane::IsVisible
method.

For internal use only. For more detail see the source code located in the VC\atlmfc\src\mfc folder of your
Visual Studio installation.

Specifies whether autohide animation of the dockable pane is disabled.

CDockablePane::m_bHideInAutoHideMode

AFX_IMPORT_DATA static BOOL m_bHideInAutoHideMode;

RemarksRemarks

CDockablePane::m_nSlideSteps

AFX_IMPORT_DATA static int m_nSlideSteps;

RemarksRemarks

CDockablePane::OnAfterChangeParent

virtual void OnAfterChangeParent(CWnd* pWndOldParent);

ParametersParameters

RemarksRemarks

CDockablePane::OnAfterDockFromMiniFrame

virtual void OnAfterDockFromMiniFrame();

RemarksRemarks

CDockablePane::OnBeforeChangeParent

Determines the behavior of the pane when the pane is in autohide mode.

This value affects all docking panes in the application.

If you set this member to TRUE, dockable panes are hidden or shown with their related autohide toolbars
and buttons when you call CDockablePane::ShowPane.

If you set this member to FALSE, dockable panes are activated or deactivated when you call
CDockablePane::ShowPane.

Specifies the animation speed of the pane when it is in autohide mode.

For a faster animation effect, decrease this value. For a slower animation effect, increase this value.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio
installation.

[in] pWndOldParent

Called by the framework when a floating docking bar docks at a frame window.

By default, this method does nothing.

The framework calls this method before it changes the parent of the pane.

virtual void OnBeforeChangeParent(
 CWnd* pWndNewParent,
 BOOL bDelay = FALSE);

ParametersParameters

RemarksRemarks

CDockablePane::OnBeforeFloat

virtual BOOL OnBeforeFloat(
 CRect& rectFloat,
 AFX_DOCK_METHOD dockMethod);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockablePane::OnPressButtons

virtual void OnPressButtons(UINT nHit);

ParametersParameters

RemarksRemarks

pWndNewParent
[in] A pointer to the new parent window.

bDelay
[in] BOOL that specifies whether to delay recalculation of the docking layout if the pane is undocked. For
more information, see CDockablePane::UndockPane.

If the pane is docked and the new parent does not allow docking, this method undocks the pane.

If the pane is being converted to a tabbed document, this method stores its recent docking position. The
framework uses the recent docking position to restore the position of the pane when it is converted back
to a docked state.

The framework calls this method before a pane transitions to a floating state.

rectFloat
[in] Specifies the position and size of the pane when it is in a floating state.

dockMethod
[in] Specifies the docking method. See CPane::DockPane for a list of possible values.

TRUE if the pane can be floated; otherwise, FALSE.

This method is called by the framework when a pane is about to float. You can override this method in a
derived class if you want to perform any processing before the pane floats.

Called when the user presses a caption button other than the AFX_HTCLOSE and AFX_HTMAXBUTTON
buttons.

nHit
[in] This parameter is not used.

CDockablePane::OnSlide

virtual void OnSlide(BOOL bSlideOut);

ParametersParameters

RemarksRemarks

CDockablePane::RemoveFromDefaultPaneDividier

void RemoveFromDefaultPaneDividier();

RemarksRemarks

CDockablePane::ReplacePane

BOOL ReplacePane(
 CDockablePane* pBarToReplaceWith,
 AFX_DOCK_METHOD dockMethod,
 BOOL bRegisterWithFrame = FALSE);

ParametersParameters

Return ValueReturn Value

CDockablePane::RestoreDefaultPaneDivider

If you add a custom button to the caption of a dockable pane, override this method to receive notifications
when a user presses the button.

Called by the framework to animate the pane when it is in autohide mode.

bSlideOut
[in] TRUE to show the pane; FALSE to hide the pane.

Override this method in a derived class to implement custom autohide effects.

The framework calls this method when a pane is being undocked.

This method sets the default pane divider to NULL and removes the pane from its container.

Replaces the pane with a specified pane.

pBarToReplaceWith
[in] A pointer to a dockable pane.

dockMethod
[in] Not used.

bRegisterWithFrame
[in] If TRUE, the new pane is registered with the docking manager of the parent of the old pane. The new
pane is inserted at the index of the old pane in the list of panes that is maintained by the docking manager.

TRUE if the replacement is successful; otherwise, FALSE.

When a pane is deserialized, the framework calls this method to restore the default pane divider.

void RestoreDefaultPaneDivider();

RemarksRemarks

CDockablePane::SetAutoHideMode

virtual CMFCAutoHideBar* SetAutoHideMode(
 BOOL bMode,
 DWORD dwAlignment,
 CMFCAutoHideBar* pCurrAutoHideBar = NULL,
 BOOL bUseTimer = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockablePane::SetAutoHideParents

void SetAutoHideParents(
 CMFCAutoHideBar* pToolBar,
 CMFCAutoHideButton* pBtn);

ParametersParameters

The restored default pane divider replaces the current default pane divider, if it exists.

Toggles the docking pane between visible and autohide mode.

bMode
[in] TRUE to enable autohide mode; FALSE to enable regular docking mode.

dwAlignment
[in] Specifies the alignment of the autohide pane to create.

pCurrAutoHideBar
[in, out] A pointer to the current autohide toolbar. Can be NULL.

bUseTimer
[in] Specifies whether to use the autohide effect when the user switches the pane to autohide mode or to
hide the pane immediately.

The autohide toolbar that was created as a result of switching to autohide mode, or NULL.

The framework calls this method when a user clicks the pin button to switch the dockable pane to
autohide mode or to regular docking mode.

Call this method to switch a dockable pane to autohide mode programmatically. The pane must be docked
to the main frame window (CDockablePane::GetDefaultPaneDivider must return a valid pointer to the
CPaneDivider).

Sets the auto-hide button and auto-hide toolbar for the pane.

pToolBar
[in] Pointer to an auto-hide toolbar.

pBtn
[in] Pointer to an auto-hide button.

CDockablePane::SetLastPercentInPaneContainer

void SetLastPercentInPaneContainer(int n);

ParametersParameters

RemarksRemarks

CDockablePane::SetRestoredDefaultPaneDivider

void SetRestoredDefaultPaneDivider(HWND hRestoredSlider);

ParametersParameters

RemarksRemarks

CDockablePane::SetTabbedPaneRTC

void SetTabbedPaneRTC(CRuntimeClass* pRTC);

ParametersParameters

RemarksRemarks

Sets the percentage of space that a pane occupies in its container.

n
[in] An int that specifies the percentage of space that the pane occupies in its container.

The framework adjusts the pane to use the new value when the layout is recalculated.

Sets the restored default pane divider.

hRestoredSlider
[in] A handle to a pane divider (slider).

A restored default pane divider is obtained when a pane is deserialized. For more information, see
CDockablePane::RestoreDefaultPaneDivider.

Sets the runtime class information for a tabbed window that is created when two panes dock together.

pRTC
[in] The runtime class information for the tabbed pane.

Call this method to set the runtime class information for tabbed panes that are created dynamically. This
can occur when a user drags one pane to the caption of another pane, or if you call the
CDockablePane::AttachToTabWnd method to programmatically create a tabbed pane from two dockable
panes.

The default runtime class is set according to the dwTabbedStyle parameter of CDockablePane::Create and
CDockablePane::CreateEx. To customize the new tabbed panes, derive your class from one of the
following classes:

CBaseTabbedPane Class

CTabbedPane Class

CMFCOutlookBar Class.

CDockablePane::ShowPane

virtual void ShowPane(
 BOOL bShow,
 BOOL bDelay,
 BOOL bActivate);

ParametersParameters

RemarksRemarks

CDockablePane::Slide

virtual void Slide(
 BOOL bSlideOut,
 BOOL bUseTimer = TRUE);

ParametersParameters

RemarksRemarks

CDockablePane::ToggleAutoHide

virtual void ToggleAutoHide();

RemarksRemarks

Then, call this method with the pointer to its runtime class information.

Shows or hides a pane.

bShow
[in] TRUE to show the pane; FALSE to hide the pane.

bDelay
[in] TRUE to delay adjusting the docking layout; FALSE to adjust the docking layout immediately.

bActivate
[in] TRUE to activate the pane when shown; otherwise, FALSE.

Call this method instead of the CWnd::ShowWindow when showing or hiding dockable panes.

Animates a pane that is in autohide mode.

bSlideOut
[in] TRUE to show the pane; FALSE to hide the pane.

bUseTimer
[in] TRUE to show or hide the pane with the autohide effect; FALSE to show or hide the pane immediately.

The framework calls this method to animate a pane that is in autohide mode.

This method uses the CDockablePane::m_nSlideDefaultTimeOut value to determine the time out for the slide
effect. The default value for the time out is 1. If you customize the autohide algorithm, modify this
member to change the time out.

Toggles the pane between always visible and auto-hide mode.

This method toggles auto-hide mode for the pane by calling CDockablePane::SetAutoHideMode.

 CDockablePane::UndockPane

virtual void UndockPane(BOOL bDelay = FALSE);

ParametersParameters

RemarksRemarks

See also

Undocks a pane from either the main frame window or a miniframe window container.

bDelay
[in] TRUE to delay calculating the docking layout; FALSE to recalculate the docking layout immediately.

Call this method to undock a pane from the main frame window or from a multi-miniframe window
container (a pane that is floating in a single miniframe window with other panes).

You must undock a pane before you perform any external operation that is not performed by the
CDockingManager. For example, you must undock a pane to move it programmatically from one location
to another.

The framework automatically undocks panes before they are destroyed.

Hierarchy Chart
Classes
CPane Class

CDockablePaneAdapter Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CDockablePaneAdapter : public CDockablePane

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CDockablePaneAdapter::GetWrappedWnd Returns the wrapped window.

CDockablePaneAdapter::LoadState (Overrides CDockablePane::LoadState.)

CDockablePaneAdapter::SaveState (Overrides CDockablePane::SaveState.)

CDockablePaneAdapter::SetWrappedWnd

Remarks

Inheritance Hierarchy

Requirements

CDockablePaneAdapter::GetWrappedWnd

virtual CWnd* GetWrappedWnd() const;

Provides docking support for CWnd -derived panes.

Usually, the framework instantiates objects of this class when you use the CMFCBaseTabCtrl::AddTab or
CMFCBaseTabCtrl::InsertTab methods.

If you want to customize the CDockablePaneAdapter behavior, just derive a new class from it and set the runtime
class information to a tabbed window by using CMFCBaseTabCtrl::SetDockingBarWrapperRTC.

CObject CCmdTarget CWnd

CBasePane CPane CDockablePane

CDockablePaneAdapter

Header: afxDockablePaneAdapter.h

Returns the underlying window for the dockable pane adapter.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdockablepaneadapter-class.md

Return ValueReturn Value

RemarksRemarks

CDockablePaneAdapter::LoadState

virtual BOOL LoadState(
 LPCTSTR lpszProfileName = NULL,
 int nIndex = -1,
 UINT uiID = (UINT) -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockablePaneAdapter::SaveState

virtual BOOL SaveState(
 LPCTSTR lpszProfileName = NULL,
 int nIndex = -1,
 UINT uiID = (UINT) -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockablePaneAdapter::SetWrappedWnd

A pointer to the wrapped window.

Use this function to access the wrapped window.

Loads the state of the pane from the registry.

lpszProfileName
[in] The profile name.

nIndex
[in] The profile index.

uiID
[in] The pane ID.

Saves the state of the pane to the registry.

lpszProfileName
[in] The profile name.

nIndex
[in] The profile index (defaults to the control ID of the window).

uiID
[in] The pane ID.

Sets the underlying window for the dockable pane adapter.

virtual BOOL SetWrappedWnd(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

pWnd
[in] A pointer to the window for the pane adapter to wrap.

Hierarchy Chart
Classes
CDockablePane Class

CDockingManager Class
3/4/2019 • 26 minutes to read • Edit Online

Syntax
class CDockingManager : public CObject

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CDockingManager::AddDockSite Creates a dock pane and adds it to the list of control bars.

CDockingManager::AddHiddenMDITabbedBar Adds a handle to a bar pane to the list of hidden MDI
tabbed bar panes.

CDockingManager::AddMiniFrame Adds a frame to the list of mini frames.

CDockingManager::AddPane Registers a pane with the docking manager.

CDockingManager::AdjustDockingLayout Recalculates and adjusts the layout of all panes in a frame
window.

CDockingManager::AdjustPaneFrames Causes the WM_NCCALCSIZE message to be sent to all
panes and CPaneFrameWnd windows.

CDockingManager::AdjustRectToClientArea Adjusts the alignment of a rectangle.

CDockingManager::AlignAutoHidePane Resizes a docking pane in autohide mode so that it takes the
full width or height of the frame’s client area surrounded by
dock sites.

CDockingManager::AutoHidePane Creates an autohide toolbar.

CDockingManager::BringBarsToTop Brings the docked bars that have the specified alignment to
the top.

CDockingManager::BuildPanesMenu Adds names of docking panes and toolbars to a menu.

CDockingManager::CalcExpectedDockedRect Calculates the expected rectangle of a docked window.

CDockingManager::Create Creates a docking manager.

CDockingManager::DeterminePaneAndStatus Determines the pane that contains a given point and its
docking status.

Implements the core functionality that controls docking layout in a main frame window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdockingmanager-class.md

CDockingManager::DisableRestoreDockState Enables or disables loading of docking layout from the
registry.

CDockingManager::DockPane Docks a pane to another pane or to a frame window.

CDockingManager::DockPaneLeftOf Docks a pane to the left of another pane.

CDockingManager::EnableAutoHidePanes Enables docking of the pane to the main frame, creates a
dock pane, and adds it to the list of control bars.

CDockingManager::EnableDocking Creates a dock pane and enables docking of the pane to the
main frame.

CDockingManager::EnableDockSiteMenu Displays an additional button that opens a pop-up menu on
the captions of all docking panes.

CDockingManager::EnablePaneContextMenu Tells the library to display a special context menu that has a
list of application toolbars and docking panes when the user
clicks the right mouse button and the library is processing
the WM_CONTEXTMENU message.

CDockingManager::FindDockSite Retrieves the bar pane that is at the specified position and
that has the specified alignment.

CDockingManager::FindDockSiteByPane Returns the bar pane that has the id of the target bar pane.

CDockingManager::FindPaneByID Finds a pane by the specified control ID.

CDockingManager::FixupVirtualRects Commits all current toolbar positions to virtual rectangles.

CDockingManager::FrameFromPoint Returns the frame that contains the given point.

CDockingManager::GetClientAreaBounds Gets the rectangle that contains the bounds of the client
area.

CDockingManager::GetDockingMode Returns the current docking mode.

CDockingManager::GetDockSiteFrameWnd Gets a pointer to the parent window frame.

CDockingManager::GetEnabledAutoHideAlignment Returns the enabled alignment of the panes.

CDockingManager::GetMiniFrames Gets a list of miniframes.

CDockingManager::GetOuterEdgeBounds Gets a rectangle that contains the outer edges of the frame.

CDockingManager::GetPaneList Returns a list of panes that belong to the docking manager.
This includes all floating panes.

CDockingManager::GetSmartDockingManager Retrieves a pointer to the smart docking manager.

CDockingManager::GetSmartDockingManagerPermanent Retrieves a pointer to the smart docking manager.

NAME DESCRIPTION

CDockingManager::GetSmartDockingParams Returns the smart docking parameters for the docking
manager.

CDockingManager::GetSmartDockingTheme A static method that returns a theme used to display smart
docking markers.

CDockingManager::HideAutoHidePanes Hides a pane that is in autohide mode.

CDockingManager::InsertDockSite Creates a dock pane and inserts it into the list of control
bars.

CDockingManager::InsertPane Inserts a control pane into the list of control bars.

CDockingManager::IsDockSiteMenu Specifies whether a pop-up menu is displayed on the
captions of all panes.

CDockingManager::IsInAdjustLayout Determines if the layouts of all panes are adjusted.

CDockingManager::IsOLEContainerMode Specifies whether the docking manager is in OLE container
mode.

CDockingManager::IsPointNearDockSite Determines whether a specified point is near the dock site.

CDockingManager::IsPrintPreviewValid Determines if the print preview mode is set.

CDockingManager::LoadState Loads the docking manager's state from the registry.

CDockingManager::LockUpdate Locks the given window.

CDockingManager::OnActivateFrame Called by the framework when the frame window is made
active or is deactivated.

CDockingManager::OnClosePopupMenu Called by the framework when an active pop-up menu
processes a WM_DESTROY message.

CDockingManager::OnMoveMiniFrame Called by the framework to move a mini-frame window.

CDockingManager::OnPaneContextMenu Called by the framework when it builds a menu that has a
list of panes.

CDockingManager::PaneFromPoint Returns the pane that contains the given point.

CDockingManager::ProcessPaneContextMenuCommand Called by the framework to select or to clear a check box for
the specified command and recalculate the layout of a shown
pane.

CDockingManager::RecalcLayout Recalculates the internal layout of the controls present in the
list of controls.

CDockingManager::ReleaseEmptyPaneContainers Releases the empty pane containers.

CDockingManager::RemoveHiddenMDITabbedBar Removes the specified hidden bar pane.

NAME DESCRIPTION

CDockingManager::RemoveMiniFrame Removes a specified frame from the list of mini frames.

CDockingManager::RemovePaneFromDockManager Unregisters a pane and removes it from the list in the
docking manager.

CDockingManager::ReplacePane Replaces one pane with another.

CDockingManager::ResortMiniFramesForZOrder Resorts the frames in the list of mini frames.

CDockingManager::SaveState Saves the docking manager's state to the registry.

CDockingManager::SendMessageToMiniFrames Sends the specified message to all mini frames.

CDockingManager::Serialize Writes the docking manager to an archive. (Overrides
CObject::Serialize.)

CDockingManager::SetAutohideZOrder Sets the size, width, and height of the control bars and the
specified pane.

CDockingManager::SetDockingMode Sets the docking mode.

CDockingManager::SetDockState Sets the docking state of the control bars, the mini frames,
and the autohide bars.

CDockingManager::SetPrintPreviewMode Sets the print preview mode of the bars that are displayed in
the print preview.

CDockingManager::SetSmartDockingParams Sets the parameters that define the behavior of smart
docking.

CDockingManager::ShowDelayShowMiniFrames Shows or hides the windows of the mini frames.

CDockingManager::ShowPanes Shows or hides the panes of the control and autohide bars.

CDockingManager::StartSDocking Starts the smart docking of the specified window according
to the alignment of the smart docking manager.

CDockingManager::StopSDocking Stops smart docking.

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CDockingManager::m_bHideDockingBarsInContainerMode Specifies whether the docking manager hides panes in OLE
container mode.

CDockingManager::m_dockModeGlobal Specifies the global docking mode.

CDockingManager::m_nDockSensitivity Specifies the docking sensitivity.

CDockingManager::m_nTimeOutBeforeDockingBarDock Specifies the time, in milliseconds, before a docking pane is
docked in immediate docking mode.

CDockingManager::m_nTimeOutBeforeToolBarDock Specifies the time, in milliseconds, before a toolbar is docked
to the main frame window.

NAME DESCRIPTION

Remarks

Customization Tips

Example

CDockingManager* pDockManager = GetDockingManager();
ASSERT_VALID(pDockManager);
pDockManager->AdjustPaneFrames();
pDockManager->EnableDockSiteMenu();
pDockManager->SetDockingMode(DT_STANDARD);

Inheritance Hierarchy

Requirements

The main frame window creates and initializes this class automatically.

The docking manager object holds a list of all panes that are in the docking layout, and also a list of all
CPaneFrameWnd windows that belong to the main frame window.

The CDockingManager class implements some services that you can use to find a pane or a CPaneFrameWnd

window. You usually do not call these services directly because they are wrapped in the main frame window
object. For more information, see CPaneFrameWnd Class.

The following tips apply to CDockingManager objects:

CDockingManager Class supports these docking modes:

AFX_DOCK_TYPE::DT_IMMEDIATE

AFX_DOCK_TYPE::DT_STANDARD

AFX_DOCK_TYPE::DT_SMART

These docking modes are defined by CDockingManager::m_dockModeGlobal and are set by calling
CDockingManager::SetDockingMode.

If you want to create a non-floating, non-resizable pane, call the CDockingManager::AddPane method.
This method registers the pane with the docking manager, which is responsible for the layout of the pane.

The following example demonstrates how to use various methods in the CDockingManager class to configure a
CDockingManager object. The example shows how to display an additional button that opens a pop-up menu on

the captions of all docking panes and how to set the docking mode of the object. This code snippet is part of the
Visual Studio Demo sample.

CObject

CDockingManager

Header: afxDockingManager.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CDockingManager::AddDockSite

BOOL AddDockSite(
 const AFX_DOCKSITE_INFO& info,
 CDockSite** ppDockBar = NULL);

ParametersParameters

Return ValueReturn Value

CDockingManager::AddHiddenMDITabbedBar

void AddHiddenMDITabbedBar(CDockablePane* pBar);

ParametersParameters

CDockingManager::AddPane

BOOL AddPane(
 CBasePane* pWnd,
 BOOL bTail = TRUE,
 BOOL bAutoHide = FALSE,
 BOOL bInsertForOuterEdge = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Creates a dock pane and adds it to the list of control bars.

info
[in] A reference to an info structure that contains dock pane alignment.

ppDockBar
[out] A pointer to a pointer to the new dock pane.

TRUE if the dock pane was created successfully; FALSE otherwise.

Adds a handle to a bar pane to the list of hidden MDI tabbed bar panes.

pBar
[in] A pointer to a bar pane

Registers a pane with the docking manager.

pWnd
[in, out] Specifies the pane to add to the docking manager.

bTail
[in] TRUE to add the pane to the end of the list of panes for the docking manager; otherwise, FALSE.

bAutoHide
[in] For internal use only. Always use the default value FALSE.

bInsertForOuterEdge
[in] For internal use only. Always use the default value FALSE.

TRUE if the pane was successfully registered with the docking manager; otherwise, FALSE.

CDockingManager::AdjustDockingLayout

virtual void AdjustDockingLayout(HDWP hdwp = NULL);

ParametersParameters

RemarksRemarks

CDockingManager::AddMiniFrame

virtual BOOL AddMiniFrame(CPaneFrameWnd* pWnd);

ParametersParameters

Return ValueReturn Value

CDockingManager::AdjustPaneFrames

virtual void AdjustPaneFrames();

RemarksRemarks

CDockingManager::AdjustRectToClientArea

virtual BOOL AdjustRectToClientArea(
 CRect& rectResult,
 DWORD dwAlignment);

ParametersParameters

Return ValueReturn Value

Call this method to register non-floating, non-resizable panes with the docking manager. If you do not register
the panes, they will not appear correctly when the docking manager is laid out.

Recalculates and adjusts the layout of all panes in a frame window.

hdwp
[in] Specifies the deferred window position structure. For more information, see Windows Data Types.

Adds a frame to the list of mini frames.

pWnd
[in] A pointer to a frame.

TRUE if the frame is not in the list of mini frames and was added successfully; FALSE otherwise.

Causes the WM_NCCALCSIZE message to be sent to all panes and CPaneFrameWnd windows.

Adjusts the alignment of a rectangle.

rectResult
[in] A reference to a CRect object

dwAlignment
[in] The alignment of the CRect object

https://docs.microsoft.com/windows/desktop/WinProg/windows-data-types

RemarksRemarks

CDockingManager::AlignAutoHidePane

void AlignAutoHidePane(
 CPaneDivider* pDefaultSlider,
 BOOL bIsVisible = TRUE);

ParametersParameters

CDockingManager::AutoHidePane

CMFCAutoHideToolBar* AutoHidePane(
 CDockablePane* pBar,
 CMFCAutoHideToolBar* pCurrAutoHideToolBar = NULL);

ParametersParameters

Return ValueReturn Value

CDockingManager::BringBarsToTop

void BringBarsToTop(
 DWORD dwAlignment = 0,
 BOOL bExcludeDockedBars = TRUE);

TRUE if the alignment of the CRect object was adjusted; FALSE otherwise.

The dwAlignment parameter can have one of the following values:

CBRS_ALIGN_TOP

CBRS_ALIGN_BOTTOM

CBRS_ALIGN_LEFT

CBRS_ALIGN_RIGHT

Resizes a docking pane in autohide mode so that it takes the full width or height of the frame’s client area
surrounded by dock sites.

pDefaultSlider
[in] The docking slider pane.

bIsVisible
[in] TRUE if the docking pane is visible; FALSE otherwise.

Creates an autohide toolbar.

pBar
[in] A pointer to the bar pane.

pCurrAutoHideToolBar
[in] A pointer to an auto hide toolbar.

NULL if the auto hide toolbar was not created; otherwise a pointer to the new toolbar.

Brings the docked bars that have the specified alignment to the top.

ParametersParameters

CDockingManager::BuildPanesMenu

void BuildPanesMenu(
 CMenu& menu,
 BOOL bToolbarsOnly);

ParametersParameters

CDockingManager::CalcExpectedDockedRect

void CalcExpectedDockedRect(
 CWnd* pWnd,
 CPoint ptMouse,
 CRect& rectResult,
 BOOL& bDrawTab,
 CDockablePane** ppTargetBar);

ParametersParameters

RemarksRemarks

CDockingManager::Create

dwAlignment
[in] The alignment of the dock bars that are brought to the top of other windows.

bExcludeDockedBars
[in] TRUE to exclude the docked bars from being on top; otherwise FALSE.

Adds names of docking panes and toolbars to a menu.

menu
[in] A menu to add the names of docking panes and toolbars to.

bToolbarsOnly
[in] TRUE to add only toolbar names to the menu; FALSE otherwise.

Calculates the expected rectangle of a docked window.

pWnd
[in] A pointer to the window to dock.

ptMouse
[in] The mouse location.

rectResult
[out] The calculated rectangle.

bDrawTab
[in] TRUE to draw a tab; otherwise FALSE.

ppTargetBar
[out] A pointer to a pointer to the target pane.

This method calculates the rectangle that a window would occupy if a user dragged the window to the point
specified by ptMouse and docked it there.

Creates a docking manager.

BOOL Create(CFrameWnd* pParentWnd);

ParametersParameters

Return ValueReturn Value

CDockingManager::DeterminePaneAndStatus

virtual AFX_CS_STATUS DeterminePaneAndStatus(
 CPoint pt,
 int nSensitivity,
 DWORD dwEnabledAlignment,
 CBasePane** ppTargetBar,
 const CBasePane* pBarToIgnore,
 const CBasePane* pBarToDock);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AFX_CS_STATUS VALUE MEANING

CS_NOTHING The pointer is not over a dock site. Therefore, keep the pane
floating.

CS_DOCK_IMMEDIATELY The pointer is over the dock site in the immediate mode
(DT_IMMEDIATE style is enabled), so the pane must be
docked immediately.

pParentWnd
[in] A pointer to the parent frame of the docking manager. This value must not be NULL.

TRUE always.

Determines the pane that contains a given point and its docking status.

pt
[in] The location of the pane to check.

nSensitivity
[in] The value to increase the window rectangle of each checked pane. A pane satisfies the search criteria if the
given point is in this increased region.

dwEnabledAlignment
[in] The alignment of the docking pane.

ppTargetBar
[out] A pointer to a pointer to the target pane.

pBarToIgnore
[in] The pane that the method ignores.

pBarToDock
[in] The pane that is docked.

The docking status.

The docking status can be one of the following values:

CS_DELAY_DOCK The pointer is over a dock site that is another docking pane
or is an edge of the main frame.

CS_DELAY_DOCK_TO_TAB The pointer is over a dock site that causes the pane to be
docked in a tabbed window. This occurs when the mouse is
over a caption of another docking pane or over a tab area of
a tabbed pane.

AFX_CS_STATUS VALUE MEANING

CDockingManager::DisableRestoreDockState

void DisableRestoreDockState(BOOL bDisable = TRUE);

ParametersParameters

RemarksRemarks

CDockingManager::DockPane

void DockPane(
 CBasePane* pBar,
 UINT nDockBarID = 0,
 LPCRECT lpRect = NULL);

ParametersParameters

CDockingManager::DockPaneLeftOf

BOOL DockPaneLeftOf(
 CPane* pBarToDock,
 CPane* pTargetBar);

ParametersParameters

Enables or disables loading of docking layout from the registry.

bDisable
[in] TRUE to disable loading of docking layout from the registry; otherwise, FALSE.

Call this method when you must preserve the current layout of docking panes and toolbars when the
application state is loading.

Docks a pane to another pane or to a frame window.

pBar
[in] A pointer to a bar pane to dock to.

nDockBarID
[in] The id of the bar to dock.

lpRect
[in] The destination rectangle.

Docks a pane to the left of another pane.

pBarToDock

Return ValueReturn Value

CDockingManager::EnableAutoHidePanes

BOOL EnableAutoHidePanes(DWORD dwStyle);

ParametersParameters

Return ValueReturn Value

CDockingManager::EnableDocking

BOOL EnableDocking(DWORD dwStyle);

ParametersParameters

Return ValueReturn Value

CDockingManager::EnableDockSiteMenu

static void EnableDockSiteMenu(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

[in] A pointer to the pane to be docked to the left of pTargetBar.

pTargetBar
[in] A pointer to the target pane.

TRUE if the pane was docked successfully; otherwise, FALSE.

Enables docking of the pane to the main frame, creates a dock pane, and adds it to the list of control bars.

dwStyle
[in] The docking alignment.

TRUE if the dock pane was created successfully; FALSE otherwise.

Creates a dock pane and enables docking of the pane to the main frame.

dwStyle
[in] The docking alignment.

TRUE if the dock pane was created successfully; FALSE otherwise.

Displays an additional button that opens a pop-up menu on the captions of all docking panes.

bEnable
[in] TRUE to enable the dock site menu; otherwise, FALSE.

The dock site menu displays the following options for changing the docking state of the pane:

Floating - Floats a pane

Docking - Docks a pane at the main frame at the location where the pane was last docked

AutoHide - Switches the pane to autohide mode

CDockingManager::EnablePaneContextMenu

void EnablePaneContextMenu(
 BOOL bEnable,
 UINT uiCustomizeCmd,
 const CString& strCustomizeText,
 BOOL bToolbarsOnly = FALSE);

ParametersParameters

CDockingManager::FindDockSite

virtual CDockSite* FindDockSite(
 DWORD dwAlignment,
 BOOL bOuter);

ParametersParameters

Return ValueReturn Value

CDockingManager::FindPaneByID

Hide - Hides a pane

By default, this menu is not displayed.

Tells the library to display a special context menu that has a list of application toolbars and docking panes when
the user clicks the right mouse button and the library is processing the WM_CONTEXTMENU message.

bEnable
[in] If TRUE, the library turns on the support for automatic context menu; if FALSE the library turns off the
support for automatic context menu.

uiCustomizeCmd
[in] A command id for the Customize item in the menu.

strCustomizeText
[in] The text of the Customize item.

bToolbarsOnly
[in] If TRUE, the menu displays only a list of application toolbars; if FALSE, the library adds application docking
panes to this list.

Retrieves the bar pane that is at the specified position and that has the specified alignment.

dwAlignment
[in] The alignment of the bar pane.

bOuter
[in] If TRUE, retrieve the bar in the head position in the list of control bars. Otherwise, retrieve the bar in the tail
position in the list of control bars.

The docking pane that has the specified alignment; NULL otherwise.

Finds a pane by the specified control ID.

virtual CBasePane* FindPaneByID(
 UINT uBarID,
 BOOL bSearchMiniFrames = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockingManager::FindDockSiteByPane

virtual CDockSite* FindDockSiteByPane(CPane* pTargetBar);

ParametersParameters

Return ValueReturn Value

CDockingManager::FixupVirtualRects

virtual void FixupVirtualRects();

RemarksRemarks

CDockingManager::FrameFromPoint

virtual CPaneFrameWnd* FrameFromPoint(
 CPoint pt,
 CPaneFrameWnd* pFrameToExclude,
 BOOL bFloatMultiOnly) const;

ParametersParameters

uBarID
[in] Specifies the control ID of the pane to find.

bSearchMiniFrames
[in] TRUE to include all floating panes in the search. FALSE to include only the docked panes.

The CBasePane object that has the specified control ID, or NULL if the specified pane cannot be found.

Returns the bar pane that has the id of the target bar pane.

pTargetBar
[in] A pointer to the target bar pane.

The bar pane that has the id of the target bar pane; NULL if no such bar pane exists.

Commits all current toolbar positions to virtual rectangles.

When the user starts to drag a toolbar, the application remembers its original position in the virtual rectangle.
When the user moves a toolbar across its dock site, the toolbar may shift other toolbars. The original positions
of the other toolbars are stored in the corresponding virtual rectangles.

Returns the frame that contains the given point.

pt
[in] Specifies the point, in screen coordinates, to check.

Return ValueReturn Value

CDockingManager::GetClientAreaBounds

CRect GetClientAreaBounds() const;

void GetClientAreaBounds(CRect& rcClient);

ParametersParameters

Return ValueReturn Value

CDockingManager::GetDockingMode

static AFX_DOCK_TYPE GetDockingMode();

Return ValueReturn Value

RemarksRemarks

CDockingManager::GetDockSiteFrameWnd

CFrameWnd* GetDockSiteFrameWnd() const;

Return ValueReturn Value

CDockingManager::GetEnabledAutoHideAlignment

pFrameToExclude
[in] A pointer to a frame to exclude.

bFloatMultiOnly
[in] TRUE to exclude frames that are not instances of CMultiPaneFrameWnd ; FALSE otherwise.

The frame that contains the given point; NULL otherwise.

Gets the rectangle that contains the bounds of the client area.

rcClient
[out] A reference to the rectangle that contains the bounds of the client area.

The rectangle that contains the bounds of the client area.

Returns the current docking mode.

An enumerator value that represents the current docking mode. It can be one of the following values:

DT_STANDARD

DT_IMMEDIATE

DT_SMART

To set the docking mode, call CDockingManager::SetDockingMode.

Gets a pointer to the parent window frame.

A pointer to the parent window frame.

Returns the enabled alignment of the panes.

DWORD GetEnabledAutoHideAlignment() const;

Return ValueReturn Value

RemarksRemarks

CDockingManager::GetMiniFrames

const CObList& GetMiniFrames() const;

Return ValueReturn Value

CDockingManager::GetOuterEdgeBounds

CRect GetOuterEdgeBounds() const;

Return ValueReturn Value

CDockingManager::GetPaneList

void GetPaneList(
 CObList& lstBars,
 BOOL bIncludeAutohide = FALSE,
 CRuntimeClass* pRTCFilter = NULL,
 BOOL bIncludeTabs = FALSE);

ParametersParameters

RemarksRemarks

A bitwise combination of CBRS_ALIGN_ flags, or 0 if autohide panes are not enabled. For more information,
see CFrameWnd::EnableDocking.

The method returns the enabled alignment for autohide control bars. To enable autohide bars, call
CFrameWndEx::EnableAutoHidePanes.

Gets a list of miniframes.

A list of miniframes that contain the control bars that belong to the docking manager.

Gets a rectangle that contains the outer edges of the frame.

A rectangle that contains the outer edges of the frame.

Returns a list of panes that belong to the docking manager. This includes all floating panes.

lstBars
[in, out] Contains all the panes of the current docking manager.

bIncludeAutohide
[in] TRUE to include the panes that are in autohide mode; otherwise, FALSE.

pRTCFilter
[in] If not NULL, the returned list contains panes only of the specified runtime class.

bIncludeTabs
[in] TRUE to include tabs; otherwise, FALSE.

CDockingManager::GetSmartDockingManager

CSmartDockingManager* GetSmartDockingManager();

Return ValueReturn Value

CDockingManager::GetSmartDockingManagerPermanent

CSmartDockingManager* GetSmartDockingManagerPermanent() const;

Return ValueReturn Value

CDockingManager::GetSmartDockingParams

static CSmartDockingInfo& GetSmartDockingParams();

Return ValueReturn Value

RemarksRemarks

CDockingManager::HideAutoHidePanes

void HideAutoHidePanes(
 CDockablePane* pBarToExclude = NULL,
 BOOL bImmediately = FALSE);

ParametersParameters

If there are any tabbed panes in the docking manager, the method returns pointers to CBaseTabbedPane Class
objects and you must enumerate the tabs explicitly.

Use pRTCFilter to obtain a particular class of panes. For example, you can obtain only toolbars by setting this
value appropriately.

Retrieves a pointer to the smart docking manager.

A pointer to the smart docking manager.

Retrieves a pointer to the smart docking manager.

A pointer to the smart docking manager.

Returns the smart docking parameters for the docking manager.

The class that contains the smart docking parameters for the current docking manager. For more information,
see CSmartDockingInfo Class.

Hides a pane that is in autohide mode.

pBarToExclude
[in] A pointer to a bar to exclude from hiding.

bImmediately
[in] TRUE to hide the pane immediately; FALSE to hide the pane with the autohide effect.

CDockingManager::InsertDockSite

BOOL InsertDockSite(
 const AFX_DOCKSITE_INFO& info,
 DWORD dwAlignToInsertAfter,
 CDockSite** ppDockBar = NULL);

ParametersParameters

Return ValueReturn Value

CDockingManager::InsertPane

BOOL InsertPane(
 CBasePane* pControlBar,
 CBasePane* pTarget,
 BOOL bAfter = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockingManager::IsDockSiteMenu

static BOOL IsDockSiteMenu();

Return ValueReturn Value

Creates a dock pane and inserts it into the list of control bars.

info
[in] A structure that contains the alignment information about the dock pane.

dwAlignToInsertAfter
[in] Alignment of the dock pane.

ppDockBar
[out] A pointer to a pointer to a dock pane.

TRUE if the dock pane was created successfully; FALSE otherwise.

Inserts a control pane into the list of control bars.

pControlBar
[in] A pointer to a control pane.

pTarget
[in] A pointer to a target pane.

bAfter
[in] TRUE to insert the pane after the position of the target pane; FALSE otherwise.

TRUE if the control pane is successfully added to the list of control bars; FALSE otherwise.

This method returns false if the control pane is already in the list of control bars or if the target pane does not
exist in the list of control bars.

Specifies whether a pop-up menu is displayed on the captions of all panes.

RemarksRemarks

CDockingManager::IsInAdjustLayout

BOOL IsInAdjustLayout() const;

Return ValueReturn Value

CDockingManager::IsOLEContainerMode

BOOL IsOLEContainerMode() const;

Return ValueReturn Value

RemarksRemarks

CDockingManager::IsPointNearDockSite

BOOL IsPointNearDockSite(
 CPoint point,
 DWORD& dwBarAlignment,
 BOOL& bOuterEdge) const;

ParametersParameters

Return ValueReturn Value

CDockingManager::IsPrintPreviewValid

TRUE if a dock site menu is displayed on the captions of all docking panes; otherwise FALSE.

You can enable the dock site menu by calling CDockingManager::EnableDockSiteMenu.

Determines if the layouts of all panes are adjusted.

TRUE if the layouts of all panes are adjusted; FALSE otherwise.

Specifies whether the docking manager is in OLE container mode.

TRUE if the docking manager is in OLE container mode; otherwise, FALSE.

In OLE container mode, all docking panes and application toolbars are hidden. The panes are also hidden in this
mode if you have set CDockingManager::m_bHideDockingBarsInContainerMode to TRUE.

Determines whether a specified point is near the dock site.

point
[in] The specified point.

dwBarAlignment
[out] Specifies which edge the point is near. Possible values are CBRS_ALIGN_LEFT, CBRS_ALIGN_RIGHT,
CBRS_ALIGN_TOP, and CBRS_ALIGN_BOTTOM.

bOuterEdge
[out] TRUE if the point is near the outer border of the dock site; FALSE otherwise.

TRUE if the point is near the dock site; otherwise FALSE.

Determines if the print preview mode is set.

BOOL IsPrintPreviewValid() const;

Return ValueReturn Value

CDockingManager::LoadState

virtual BOOL LoadState(
 LPCTSTR lpszProfileName = NULL,
 UINT uiID = (UINT) -1);

ParametersParameters

Return ValueReturn Value

CDockingManager::LockUpdate

void LockUpdate(BOOL bLock);

ParametersParameters

RemarksRemarks

CDockingManager::m_bHideDockingBarsInContainerMode

AFX_IMPORT_DATA static BOOL m_bHideDockingBarsInContainerMode;

RemarksRemarks

CDockingManager::m_dockModeGlobal

TRUE if the print preview mode is set; FALSE otherwise.

Loads the docking manager's state from the registry.

lpszProfileName
[in] Profile name.

uiID
[in] The id of the docking manager.

TRUE if the docking manager state was loaded successfully; otherwise FALSE.

Locks the given window.

bLock
[in] TRUE if the window is locked; FALSE otherwise.

When a window is locked, it cannot be moved and it cannot be redrawn.

Specifies whether the docking manager hides panes in OLE container mode.

Set this value to FALSE if you want to keep all panes docked to the main frame visible when the application is in
OLE container mode. By default, this value is TRUE.

Specifies the global docking mode.

AFX_IMPORT_DATA static AFX_DOCK_TYPE m_dockModeGlobal;

RemarksRemarks

CDockingManager::m_nDockSensitivity

AFX_IMPORT_DATA static int m_nDockSensitivity;

RemarksRemarks

CDockingManager::m_nTimeOutBeforeDockingBarDock

static UINT m_nTimeOutBeforeDockingBarDock;

RemarksRemarks

CDockingManager::m_nTimeOutBeforeToolBarDock

static UINT m_nTimeOutBeforeToolBarDock;

RemarksRemarks

CDockingManager::OnActivateFrame

virtual void OnActivateFrame(BOOL bActivate);

ParametersParameters

CDockingManager::OnClosePopupMenu

By default, each docking pane uses this docking mode. For more information about the values that this field can
be set to, see CBasePane::GetDockingMode.

Specifies the docking sensitivity.

The docking sensitivity defines how close a floating pane can approach a docking pane, docking site, or another
pane before the framework changes its state to docked.

Specifies the time, in milliseconds, before a docking pane is docked in immediate docking mode.

Before a pane is docked, the framework waits the specified length of time. This prevents the pane from being
accidentally docked to a location while the user is still dragging it.

Specifies the time, in milliseconds, before a toolbar is docked to the main frame window.

Before a toolbar is docked, the framework waits the specified length of time. This prevents the toolbar from
being accidentally docked to a location while the user is still dragging it.

Called by the framework when the frame window is made active or is deactivated.

bActivate
[in] If TRUE, the frame window is made active; if FALSE, the frame window is deactivated.

Called by the framework when an active pop-up menu processes a WM_DESTROY message.

void OnClosePopupMenu();

RemarksRemarks

CDockingManager::OnMoveMiniFrame

virtual BOOL OnMoveMiniFrame(CWnd* pFrame);

ParametersParameters

Return ValueReturn Value

CDockingManager::OnPaneContextMenu

void OnPaneContextMenu(CPoint point);

ParametersParameters

CDockingManager::PaneFromPoint

virtual CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 bool bExactBar = false,
 CRuntimeClass* pRTCBarType = NULL,
 BOOL bCheckVisibility = FALSE,
 const CBasePane* pBarToIgnore = NULL) const;

virtual CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 DWORD& dwAlignment,
 CRuntimeClass* pRTCBarType = NULL,
 const CBasePane* pBarToIgnore = NULL) const;

ParametersParameters

The framework sends a WM_DESTROY message when it is about to close the current main window. Override
this method to handle notifications from CMFCPopupMenu objects that belong to the frame window when a
CMFCPopupMenu object processes a WM_DESTROY message.

Called by the framework to move a mini-frame window.

pFrame
[in] A pointer to a mini-frame window.

TRUE if the method succeeds; otherwise FALSE.

Called by the framework when it builds a menu that has a list of panes.

point
[in] Specifies the location of the menu.

Returns the pane that contains the given point.

point
[in] Specifies the point, in screen coordinates, to check.

Return ValueReturn Value

RemarksRemarks

CDockingManager::ProcessPaneContextMenuCommand

BOOL ProcessPaneContextMenuCommand(
 UINT nID,
 int nCode,
 void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);

ParametersParameters

Return ValueReturn Value

CDockingManager::RecalcLayout

nSensitivity
[in] The value to inflate the window rectangle of each checked pane. A pane satisfies the search criteria if the
given point is in this inflated region.

bExactBar
[in] TRUE to ignore the nSensitivity parameter; otherwise, FALSE.

pRTCBarType
[in] If not NULL, the method searches only the panes of the specified type.

bCheckVisibility
[in] TRUE to check only visible panes; otherwise, FALSE.

dwAlignment
[out] If a pane is found at the specified point, this parameter contains the side of the pane that was closest to the
specified point. For more information, see the Remarks section.

pBarToIgnore
[in] If not NULL, the method ignores panes specified by this parameter.

The CBasePane-derived object that contains the given point, or NULL if no pane was found.

When the function returns and a pane was found, dwAlignment contains the alignment of the specified point.
For example, if the point was closest to the top of the pane, dwAlignment is set to CBRS_ALIGN_TOP.

Called by the framework to select or to clear a check box for the specified command and recalculate the layout
of a shown pane.

nID
[in] The id of a control bar in the menu.

nCode
[in] The command notification code.

pExtra
[in] A pointer to void that is casted to a pointer to CCmdUI if nCode is CN_UPDATE_COMMAND_UI.

pHandlerInfo
[in] A pointer to an info structure. This parameter is not used.

TRUE if pEXtra is not NULL and nCode equals CN_UPDATE_COMMAND_UI, or if there is a control bar with
the specified nID.

virtual void RecalcLayout(BOOL bNotify = TRUE);

ParametersParameters

CDockingManager::ReleaseEmptyPaneContainers

void ReleaseEmptyPaneContainers();

CDockingManager::RemoveHiddenMDITabbedBar

void RemoveHiddenMDITabbedBar(CDockablePane* pBar);

ParametersParameters

CDockingManager::RemoveMiniFrame

virtual BOOL RemoveMiniFrame(CPaneFrameWnd* pWnd);

ParametersParameters

Return ValueReturn Value

CDockingManager::RemovePaneFromDockManager

void RemovePaneFromDockManager(
 CBasePane* pWnd,
 BOOL bDestroy,
 BOOL bAdjustLayout,
 BOOL bAutoHide = FALSE,
 CBasePane* pBarReplacement = NULL);

ParametersParameters

Recalculates the internal layout of the controls present in the list of controls.

bNotify
[in] This parameter is not used.

Releases the empty pane containers.

Removes the specified hidden bar pane.

pBar
[in] A pointer to a bar pane to remove.

Removes a specified frame from the list of mini frames.

pWnd
[in] A pointer to a frame to remove.

TRUE if the specified frame is removed; FALSE otherwise.

Unregisters a pane and removes it from the list in the docking manager.

pWnd
[in] A pointer to a pane to be removed.

CDockingManager::ReplacePane

BOOL ReplacePane(
 CDockablePane* pOriginalBar,
 CDockablePane* pNewBar);

ParametersParameters

Return ValueReturn Value

CDockingManager::ResortMiniFramesForZOrder

void ResortMiniFramesForZOrder();

CDockingManager::SaveState

virtual BOOL SaveState(
 LPCTSTR lpszProfileName = NULL,
 UINT uiID = (UINT) -1);

ParametersParameters

Return ValueReturn Value

bDestroy
[in] If TRUE, the removed pane is destroyed.

bAdjustLayout
[in] If TRUE, adjust the docking layout immediately.

bAutoHide
[in] If TRUE, the pane is removed from the list of autohide bars. If FALSE, the pane is removed from the list of
regular panes.

pBarReplacement
[in] A pointer to a pane that replaces the removed pane.

Replaces one pane with another.

pOriginalBar
[in] A pointer to the original pane.

pNewBar
[in] A pointer to the pane that replaces the original pane.

TRUE if the pane is successfully replaced; FALSE otherwise.

Resorts the frames in the list of mini frames.

Saves the docking manager's state to the registry.

lpszProfileName
[in] A path to a registry key.

uiID
[in] The docking manager ID.

RemarksRemarks

CDockingManager::SendMessageToMiniFrames

BOOL SendMessageToMiniFrames(
 UINT uMessage,
 WPARAM wParam = 0,
 LPARAM lParam = 0);

ParametersParameters

Return ValueReturn Value

CDockingManager::Serialize

void Serialize(CArchive& ar);

ParametersParameters

RemarksRemarks

CDockingManager::SetAutohideZOrder

void SetAutohideZOrder(CDockablePane* pAHDockingBar);

ParametersParameters

TRUE if the state was saved successfully; otherwise FALSE.

Saving the docking manager's state to the registry involves saving the states of the control bars, the states of the
autohide bars, and the states of the mini frames present in the docking manager.

Sends the specified message to all mini frames.

uMessage
[in] The message to be sent.

wParam
[in] Additional message dependent information.

lParam
[in] Additional message dependent information.

TRUE always.

Writes the docking manager to an archive.

ar
[in] A reference to an archive object.

Writing the docking manager to an archive involves determining the number of docking control bars and
sliders, and writing the control bars, the mini frames, the autohide bars, and the MDI tabbed bars to the archive.

Sets the size, width, and height of the control bars and the specified pane.

pAHDockingBar
[in] A pointer to a dockable pane.

CDockingManager::SetDockingMode

static void SetDockingMode(
 AFX_DOCK_TYPE dockMode,
 AFX_SMARTDOCK_THEME theme = AFX_SDT_DEFAULT);

ParametersParameters

RemarksRemarks

CDockingManager::SetDockState

virtual void SetDockState();

CDockingManager::SetPrintPreviewMode

void SetPrintPreviewMode(
 BOOL bPreview,
 CPrintPreviewState* pState);

ParametersParameters

CDockingManager::SetSmartDockingParams

Sets the docking mode.

dockMode
Specifies the new docking mode. For more information, see the Remarks section.

theme
Specifies the theme to be used for smart docking markers. It can be one of the following enumerated values:
AFX_SDT_DEFAULT, AFX_SDT_VS2005, AFX_SDT_VS2008.

Call this static method to set the docking mode.

dockMode can be one of following values:

DT_STANDARD - Standard docking mode as implemented in Visual Studio .NET 2003. Panes are
dragged without a dragging context.

DT_IMMEDIATE - Immediate docking mode as implemented in Microsoft Visio. Panes are dragged with
a dragging context, but no markers are displayed.

DT_SMART - Smart docking mode as implemented in Visual Studio 2005. Panes are dragged with a
dragging context and smart markers are displayed that show where the pane can be docked.

Sets the docking state of the control bars, the mini frames, and the autohide bars.

Sets the print preview mode of the bars that are displayed in the print preview.

bPreview
[in] TRUE if print preview mode is set; FALSE otherwise.

pState
[in] A pointer to a preview state. This parameter is not used.

Sets the parameters that define the behavior of smart docking.

static void SetSmartDockingParams(CSmartDockingInfo& params);

ParametersParameters

RemarksRemarks

CDockingManager::ShowDelayShowMiniFrames

void ShowDelayShowMiniFrames(BOOL bshow);

ParametersParameters

CDockingManager::ShowPanes

virtual BOOL ShowPanes(BOOL bShow);

ParametersParameters

Return ValueReturn Value

CDockingManager::StartSDocking

void StartSDocking(CWnd* pDockingWnd);

ParametersParameters

CDockingManager::StopSDocking

params
[in, out] Defines the parameters for smart docking.

Call this method if you want to customize the appearance, color, or shape of the smart docking markers.

To use the default look for smart docking markers, pass an uninitialized instance of CSmartDockingInfo Class to
params.

Shows or hides the windows of the mini frames.

bShow
[in] TRUE to make the window of the shown frame active; FALSE to hide the window of the frame.

Shows or hides the panes of the control and autohide bars.

bShow
[in] TRUE to show the panes; FALSE to hide the panes.

Always FALSE.

Starts the smart docking of the specified window according to the alignment of the smart docking manager.

pDockingWnd
[in] A pointer to a window to dock.

Stops smart docking.

void StopSDocking();

CDockingManager::GetSmartDockingTheme

static AFX_SMARTDOCK_THEME __stdcall GetSmartDockingTheme();

Return ValueReturn Value

RemarksRemarks

See also

A static method that returns a theme used to display smart docking markers.

Returns one of the following enumerated values: AFX_SDT_DEFAULT, AFX_SDT_VS2005, AFX_SDT_VS2008.

Hierarchy Chart
Classes
CObject Class
CFrameWndEx Class
CDockablePane Class
CPaneFrameWnd Class

CDockingPanesRow Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CDockingPanesRow : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDockingPanesRow::CDockingPanesRow Default constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CDockingPanesRow::AddPane

CDockingPanesRow::AddPaneFromRow

CDockingPanesRow::ArrangePanes Arranges the panes in a row according to the specified
margin and spacing parameters.

CDockingPanesRow::CalcFixedLayout

CDockingPanesRow::Create

CDockingPanesRow::ExpandStretchedPanes

CDockingPanesRow::ExpandStretchedPanesRect

CDockingPanesRow::FixupVirtualRects

CDockingPanesRow::GetAvailableLength

CDockingPanesRow::GetAvailableSpace

CDockingPanesRow::GetClientRect

CDockingPanesRow::GetDockSite

CDockingPanesRow::GetExtraSpace

Manages a list of panes that are located in the same horizontal or vertical row (column) of a dock site.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdockingpanesrow-class.md

CDockingPanesRow::GetGroupFromPane

CDockingPanesRow::GetID

CDockingPanesRow::GetMaxPaneSize

CDockingPanesRow::GetPaneCount

CDockingPanesRow::GetPaneList

CDockingPanesRow::GetRowAlignment

CDockingPanesRow::GetRowHeight

CDockingPanesRow::GetRowOffset

CDockingPanesRow::GetVisibleCount

CDockingPanesRow::GetWindowRect

CDockingPanesRow::HasPane

CDockingPanesRow::IsEmpty

CDockingPanesRow::IsExclusiveRow

CDockingPanesRow::IsHorizontal

CDockingPanesRow::IsVisible

CDockingPanesRow::Move

CDockingPanesRow::MovePane

CDockingPanesRow::OnResizePane

CDockingPanesRow::RedrawAll

CDockingPanesRow::RemovePane

CDockingPanesRow::ReplacePane

CDockingPanesRow::RepositionPanes

CDockingPanesRow::Resize

CDockingPanesRow::ResizeByPaneDivider

CDockingPanesRow::ScreenToClient

NAME DESCRIPTION

CDockingPanesRow::SetExtra

CDockingPanesRow::ShowDockSiteRow

CDockingPanesRow::ShowPane

CDockingPanesRow::UpdateVisibleState

NAME DESCRIPTION

Remarks

Example

CMFCAutoHideBar* pParentBar = new CMFCAutoHideBar();
CDockingPanesRow* pParentRow = pParentBar->GetDockSiteRow();

Inheritance Hierarchy

Requirements

CDockingPanesRow::AddPane
virtual void AddPane(
 CPane* pControlBar,
 AFX_DOCK_METHOD dockMethod,
 LPCRECT lpRect = NULL,
 BOOL bAddLast = FALSE);

ParametersParameters

RemarksRemarks

CDockingPanesRow::AddPaneFromRow

CDockingPanesRow objects are created internally by dock site objects.

The following example demonstrates how to get a CDockingPanesRow object from a CMFCAutoHideBar object.

CObject

CDockingPanesRow

Header: afxDockingPanesRow.h

[in] pControlBar

[in] dockMethod

[in] lpRect

[in] bAddLast

virtual void AddPaneFromRow(
 CPane* pControlBar,
 AFX_DOCK_METHOD dockMethod);

ParametersParameters

RemarksRemarks

CDockingPanesRow::ArrangePanes

virtual void ArrangePanes(
 int nMargin,
 int nSpacing);

ParametersParameters

RemarksRemarks

CDockingPanesRow::CalcFixedLayout
virtual CSize CalcFixedLayout(
 BOOL bStretch,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::CDockingPanesRow
CDockingPanesRow(
 CDockSite* pParentDockBar,
 int nOffset,
 int nHeight);

ParametersParameters

[in] pControlBar

[in] dockMethod

Arranges docking panes in a row according to the specified margin and spacing parameters.

nMargin
[in] Specifies the offset, in pixels, of the first pane from the upper-left corner of the row.

nSpacing
[in] Specifies the spacing, in pixels, between panes.

Call this method to arrange panes in the row where they will dock. After calling this method, you must call
CDockingPanesRow::FixupVirtualRects(FALSE, NULL) .

[in] bStretch

[in] bHorz

[in] pParentDockBar

RemarksRemarks

CDockingPanesRow::Create
virtual BOOL Create();

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::ExpandStretchedPanes
void ExpandStretchedPanes();

RemarksRemarks

CDockingPanesRow::ExpandStretchedPanesRect
void ExpandStretchedPanesRect();

RemarksRemarks

CDockingPanesRow::FixupVirtualRects
void FixupVirtualRects(
 bool bMoveBackToVirtualRect,
 CPane* pBarToExclude = NULL);

ParametersParameters

RemarksRemarks

CDockingPanesRow::GetAvailableLength
virtual int GetAvailableLength(BOOL bUseVirtualRect = FALSE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::GetAvailableSpace

[in] nOffset

[in] nHeight

[in] bMoveBackToVirtualRect

[in] pBarToExclude

[in] bUseVirtualRect

virtual void GetAvailableSpace(CRect& rect);

ParametersParameters

RemarksRemarks

CDockingPanesRow::GetClientRect
void GetClientRect(CRect& rect) const;

ParametersParameters

RemarksRemarks

CDockingPanesRow::GetDockSite
CDockSite* GetDockSite() const;

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::GetExtraSpace
int GetExtraSpace() const;

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::GetGroupFromPane
void GetGroupFromPane(
 CPane* pBar,
 CObList& lst);

ParametersParameters

RemarksRemarks

CDockingPanesRow::GetID
int GetID() const;

Return ValueReturn Value

[in] rect

[in] rect

[in] pBar

[in] lst

RemarksRemarks

CDockingPanesRow::GetMaxPaneSize
int GetMaxPaneSize(BOOL bSkipHiddenBars = TRUE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::GetPaneCount
int GetPaneCount() const;

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::GetPaneList
const CObList& GetPaneList() const;

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::GetRowAlignment
DWORD GetRowAlignment() const;

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::GetRowHeight
int GetRowHeight() const;

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::GetRowOffset
int GetRowOffset() const;

Return ValueReturn Value

RemarksRemarks

[in] bSkipHiddenBars

CDockingPanesRow::GetVisibleCount
virtual int GetVisibleCount();

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::GetWindowRect
void GetWindowRect(CRect& rect) const;

ParametersParameters

RemarksRemarks

CDockingPanesRow::HasPane
BOOL HasPane(CBasePane* pControlBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::IsEmpty
virtual BOOL IsEmpty() const;

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::IsExclusiveRow
virtual BOOL IsExclusiveRow() const;

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::IsHorizontal
bool IsHorizontal() const;

Return ValueReturn Value

RemarksRemarks

[in] rect

[in] pControlBar

CDockingPanesRow::IsVisible
virtual BOOL IsVisible() const;

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::Move
virtual void Move(int nOffset);

ParametersParameters

RemarksRemarks

CDockingPanesRow::MovePane
void MovePane(
 CPane* pControlBar,
 CPoint ptOffset,
 BOOL bSwapControlBars,
 HDWP& hdwp);

void MovePane(
 CPane* pControlBar,
 CRect rectTarget,
 HDWP& hdwp);

void MovePane(
 CPane* pControlBar,
 int nOffset,
 bool bForward,
 HDWP& hdwp);

void MovePane(
 CPane* pControlBar,
 int nAbsolutOffset,
 HDWP& hdwp);

ParametersParameters

RemarksRemarks

[in] nOffset

[in] pControlBar

[in] ptOffset

[in] bSwapControlBars

[in] hdwp

[in] rectTarget

[in] nOffset

[in] bForward

[in] nAbsolutOffset

CDockingPanesRow::OnResizePane
virtual void OnResizePane(CBasePane* pControlBar);

ParametersParameters

RemarksRemarks

CDockingPanesRow::RedrawAll
void RedrawAll();

RemarksRemarks

CDockingPanesRow::RemovePane
virtual void RemovePane(CPane* pControlBar);

ParametersParameters

RemarksRemarks

CDockingPanesRow::ReplacePane
virtual BOOL ReplacePane(
 CPane* pBarOld,
 CPane* pBarNew);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::RepositionPanes
virtual void RepositionPanes(
 CRect& rectNewParentBarArea,
 UINT nSide = (UINT)-1,
 BOOL bExpand = FALSE,
 int nOffset = 0);

ParametersParameters

[in] pControlBar

[in] pControlBar

[in] pBarOld

[in] pBarNew

[in] rectNewParentBarArea

[in] nSide

[in] bExpand

RemarksRemarks

CDockingPanesRow::Resize
virtual int Resize(int nOffset);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::ResizeByPaneDivider
virtual int ResizeByPaneDivider(int /*ignored*/);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::ScreenToClient
void ScreenToClient(CRect& rect) const;

ParametersParameters

RemarksRemarks

CDockingPanesRow::SetExtra
void SetExtra(
 int nExtraSpace,
 AFX_ROW_ALIGNMENT rowExtraAlign);

ParametersParameters

RemarksRemarks

CDockingPanesRow::ShowDockSiteRow

[in] nOffset

[in] nOffset

[in] ignored

[in] rect

[in] nExtraSpace

[in] rowExtraAlign

virtual void ShowDockSiteRow(
 BOOL bShow,
 BOOL bDelay);

ParametersParameters

RemarksRemarks

CDockingPanesRow::ShowPane
virtual BOOL ShowPane(
 CPane* pControlBar,
 BOOL bShow,
 BOOL bDelay = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockingPanesRow::UpdateVisibleState
virtual void UpdateVisibleState(BOOL bDelay);

ParametersParameters

RemarksRemarks

See also

[in] bShow

[in] bDelay

[in] pControlBar

[in] bShow

[in] bDelay

[in] bDelay

Hierarchy Chart
Classes
CObject Class
CDockSite Class
CPane Class

CDockSite Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CDockSite: public CBasePane

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CDockSite::AddRow

CDockSite::AdjustDockingLayout (Overrides CBasePane::AdjustDockingLayout.)

CDockSite::AdjustLayout (Overrides CBasePane::AdjustLayout.)

CDockSite::AlignDockSite

CDockSite::CalcFixedLayout (Overrides CBasePane::CalcFixedLayout.)

CDockSite::CanAcceptPane (Overrides CBasePane::CanAcceptPane.)

CDockSite::CreateEx (Overrides CBasePane::CreateEx.)

CDockSite::CreateRow

CDockSite::DockPane (Overrides CBasePane::DockPane.)

CDockSite::DoesAllowDynInsertBefore (Overrides CBasePane::DoesAllowDynInsertBefore.)

CDockSite::FindRowIndex

CDockSite::FixupVirtualRects

CDockSite::GetDockSiteID

CDockSite::GetDockSiteRowsList

CDockSite::IsAccessibilityCompatible (Overrides CBasePane::IsAccessibilityCompatible .)

CDockSite::IsDragMode

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

Provides functionality for arranging panes that are derived from the CPane Class into sets of rows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdocksite-class.md

CDockSite::IsLastRow

CDockSite::IsRectWithinDockSite

CDockSite::IsResizable (Overrides CBasePane::IsResizable.)

CDockSite::MovePane

CDockSite::OnInsertRow

CDockSite::OnRemoveRow

CDockSite::OnResizeRow

CDockSite::OnSetWindowPos

CDockSite::OnShowRow

CDockSite::OnSizeParent

CDockSite::PaneFromPoint Returns a pane that is docked in the dock site at the point
specified by the given parameter.

CDockSite::DockPaneLeftOf Docks a pane to the left of another pane.

CDockSite::FindPaneByID Returns the pane that is identified by the given ID.

CDockSite::GetPaneList Returns a list of panes that are docked at the dock site.

CDockSite::RectSideFromPoint

CDockSite::RemovePane

CDockSite::RemoveRow

CDockSite::ReplacePane

CDockSite::RepositionPanes

CDockSite::ResizeDockSite

CDockSite::ResizeRow

CDockSite::ShowPane Shows the pane.

CDockSite::ShowRow

CDockSite::SwapRows

NAME DESCRIPTION

Remarks

Example

AFX_DOCKSITE_INFO info;
CDockSite* pDockBar = (CDockSite*) info.pDockBarRTC->CreateObject();

Inheritance Hierarchy

Requirements

CDockSite::AddRow
CDockingPanesRow* AddRow(
 POSITION pos,
 int nHeight);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::AdjustDockingLayout
virtual void AdjustDockingLayout();

RemarksRemarks

CDockSite::AdjustLayout
virtual void AdjustLayout();

RemarksRemarks

CDockSite::AlignDockSite

The framework creates CDockSite objects automatically when you call CFrameWndEx::EnableDocking. Dock
site windows are positioned at the edge of the client area on the main frame window.

You usually do not have to call the services provided by the dock site because CFrameWndEx Class handles
these services.

The following example demonstrates how to create an object of the CDockSite class.

CObject CCmdTarget CWnd

CBasePane CDockSite

Header: afxDockSite.h

[in] pos

[in] nHeight

void AlignDockSite(
 const CRect& rectToAlignBy,
 CRect& rectResult,
 BOOL bMoveImmediately);

ParametersParameters

RemarksRemarks

CDockSite::CalcFixedLayout
virtual CSize CalcFixedLayout(
 BOOL bStretch,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::CanAcceptPane
virtual BOOL CanAcceptPane(const CBasePane* pBar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::CreateEx
virtual BOOL CreateEx(
 DWORD dwStyleEx,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 DWORD dwControlBarStyle,
 CCreateContext* pContext = NULL);

ParametersParameters

[in] rectToAlignBy

[in] rectResult

[in] bMoveImmediately

[in] bStretch

[in] bHorz

[in] pBar

[in] dwStyleEx

[in] dwStyle

[in] rect

Return ValueReturn Value

RemarksRemarks

CDockSite::CreateRow
virtual CDockingPanesRow* CreateRow(
 CDockSite* pParentDockBar,
 int nOffset,
 int nRowHeight);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::DockPane
virtual void DockPane(
 CPane* pWnd,
 AFX_DOCK_METHOD dockMethod,
 LPCRECT lpRect = NULL);

ParametersParameters

RemarksRemarks

CDockSite::DockPaneLeftOf

virtual BOOL DockPaneLeftOf(
 CPane* pBarToDock,
 CPane* pTargetBar);

ParametersParameters

[in] pParentWnd

[in] dwControlBarStyle

[in] pContext

[in] pParentDockBar

[in] nOffset

[in] nRowHeight

[in] pWnd

[in] dockMethod

[in] lpRect

Docks a pane to the left of another pane.

pBarToDock
[in, out] A pointer to the pane to be docked to the left of pTargetBar.

pTargetBar

Return ValueReturn Value

RemarksRemarks

CDockSite::DoesAllowDynInsertBefore
virtual BOOL DoesAllowDynInsertBefore() const;

Return ValueReturn Value

RemarksRemarks

CDockSite::FindPaneByID

CPane* FindPaneByID(UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::FindRowIndex
int FindRowIndex(CDockingPanesRow* pRow);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::FixupVirtualRects
virtual void FixupVirtualRects();

RemarksRemarks

CDockSite::GetDockSiteID
virtual UINT GetDockSiteID() const;

Return ValueReturn Value

[in, out] A pointer to the target pane.

TRUE if the pane is docked successfully; otherwise, FALSE.

Returns the pane with the given ID.

nID
[in] The command ID of the pane to be found.

A pointer to the pane with the specified command ID, or NULL if the pane is not found.

[in] pRow

RemarksRemarks

CDockSite::GetDockSiteRowsList
const CObList& GetDockSiteRowsList() const;

Return ValueReturn Value

RemarksRemarks

CDockSite::GetPaneList

const CObList& GetPaneList() const;

Return ValueReturn Value

CDockSite::IsAccessibilityCompatible
virtual BOOL IsAccessibilityCompatible();

Return ValueReturn Value

RemarksRemarks

CDockSite::IsDragMode
virtual BOOL IsDragMode() const;

Return ValueReturn Value

RemarksRemarks

CDockSite::IsLastRow
bool IsLastRow(CDockingPanesRow* pRow) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::IsRectWithinDockSite
BOOL IsRectWithinDockSite(
 CRect rect,
 CPoint& ptDelta);

Returns a list of panes that are docked in the dock site.

A read-only reference to the list of panes currently docked in the docking bar.

[in] pRow

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::IsResizable
virtual BOOL IsResizable() const;

Return ValueReturn Value

RemarksRemarks

CDockSite::MovePane
virtual BOOL MovePane(
 CPane* pWnd,
 UINT nFlags,
 CPoint ptOffset);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::OnInsertRow
virtual void OnInsertRow(POSITION pos);

ParametersParameters

RemarksRemarks

CDockSite::OnRemoveRow
virtual void OnRemoveRow(
 POSITION pos,
 BOOL bByShow = FALSE);

ParametersParameters

[in] rect

[in] ptDelta

[in] pWnd

[in] nFlags

[in] ptOffset

[in] pos

[in] pos

[in] bByShow

RemarksRemarks

CDockSite::OnResizeRow
virtual int OnResizeRow(
 CDockingPanesRow* pRowToResize,
 int nOffset);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::OnSizeParent
virtual void OnSizeParent(
 CRect& rectAvailable,
 UINT nSide,
 BOOL bExpand,
 int nOffset);

ParametersParameters

RemarksRemarks

CDockSite::OnSetWindowPos
virtual BOOL OnSetWindowPos(
 const CWnd* pWndInsertAfter,
 const CRect& rectWnd,
 UINT nFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::OnShowRow

[in] pRowToResize

[in] nOffset

[in] rectAvailable

[in] nSide

[in] bExpand

[in] nOffset

[in] pWndInsertAfter

[in] rectWnd

[in] nFlags

virtual void OnShowRow(
 POSITION pos,
 BOOL bShow);

ParametersParameters

RemarksRemarks

CDockSite::PaneFromPoint

virtual CPane* PaneFromPoint(CPoint pt);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::RectSideFromPoint
static int __stdcall RectSideFromPoint(
 const CRect& rect,
 const CPoint& point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::RemovePane
virtual void RemovePane(
 CPane* pWnd,
 AFX_DOCK_METHOD dockMethod);

ParametersParameters

RemarksRemarks

CDockSite::RemoveRow

[in] pos

[in] bShow

Returns a pane that is docked in the dock site at the point specified by the given parameter.

pt
[in] A point, in screen coordinates, for the pane to retrieve.

A pointer to the pane located at the specified point or NULL if no pane was present at the specified point.

[in] rect

[in] point

[in] pWnd

[in] dockMethod

CDockSite::RemoveRow
void RemoveRow(CDockingPanesRow* pRow);

ParametersParameters

RemarksRemarks

CDockSite::ReplacePane
BOOL ReplacePane(
 CPane* pOldBar,
 CPane* pNewBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::RepositionPanes
virtual void RepositionPanes(CRect& rectNewClientArea);

ParametersParameters

RemarksRemarks

CDockSite::ResizeDockSite
void ResizeDockSite(
 int nNewWidth,
 int nNewHeight);

ParametersParameters

RemarksRemarks

CDockSite::ResizeRow
int ResizeRow(
 CDockingPanesRow* pRow,
 int nNewSize,
 BOOL bAdjustLayout = TRUE);

[in] pRow

[in] pOldBar

[in] pNewBar

[in] rectNewClientArea

[in] nNewWidth

[in] nNewHeight

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::ShowPane

virtual BOOL ShowPane(
 CBasePane* pBar,
 BOOL bShow,
 BOOL bDelay,
 BOOL bActivate);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDockSite::ShowRow
void ShowRow(
 CDockingPanesRow* pRow,
 BOOL bShow,
 BOOL bAdjustLayout);

ParametersParameters

[in] pRow

[in] nNewSize

[in] bAdjustLayout

Shows the pane.

pBar
[in, out] A pointer to the pane to be shown or hidden.

bShow
[in] TRUE to specify that the pane is to be shown; FALSE to specify that the pane is to be hidden.

bDelay
[in] TRUE to specify that the layout of the pane should be delayed until after the pane is shown; otherwise,
FALSE.

bActivate
[in] This parameter is not used.

TRUE if the pane was shown or hidden successfully. FALSE if the specified pane does not belong to this dock
site.

Call this method to show or hide docked panes. Normally, you do not have to call CDockSite::ShowPane directly,
because it is called by the parent frame window or by the base pane.

[in] pRow

[in] bShow

[in] bAdjustLayout

RemarksRemarks

CDockSite::SwapRows
void SwapRows(
 CDockingPanesRow* pFirstRow,
 CDockingPanesRow* pSecondRow);

ParametersParameters

RemarksRemarks

See also

[in] pFirstRow

[in] pSecondRow

Hierarchy Chart
Classes
CBasePane Class

CDockState Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CDockState : public CObject

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CDockState::Clear Clears the dock state information.

CDockState::GetVersion Retrieves the version number of the stored bar state.

CDockState::LoadState Retrieves state information from the registry or .INI file.

CDockState::SaveState Saves state information to the registry or INI file.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDockState::m_arrBarInfo Array of pointers to the stored dock state information with
one entry for each control bar.

Remarks

A serialized CObject class that loads, unloads, or clears the state of one or more docking control bars in persistent
memory (a file).

The dock state includes the size and position of the bar and whether or not it is docked. When retrieving the stored
dock state, CDockState checks the bar's position and, if the bar is not visible with the current screen settings,
CDockState scales the bar's position so that it is visible. The main purpose of CDockState is to hold the entire state

of a number of control bars and to allow that state to be saved and loaded either to the registry, the application's
.INI file, or in binary form as part of a CArchive object's contents.

The bar can be any dockable control bar, including a toolbar, status bar, or dialog bar. CDockState objects are
written and read to or from a file via a CArchive object.

CFrameWnd::GetDockState retrieves the state information of all the frame window's CControlBar objects and
puts it into the CDockState object. You can then write the contents of the CDockState object to storage with
Serialize or CDockState::SaveState. If you later want to restore the state of the control bars in the frame window,
you can load the state with Serialize or CDockState::LoadState, then use CFrameWnd::SetDockState to apply the
saved state to the frame window's control bars.

For more information on docking control bars, see the articles Control Bars, Toolbars: Docking and Floating, and

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdockstate-class.md

Inheritance Hierarchy

Requirements

CDockState::Clear

void Clear();

RemarksRemarks

CDockState::GetVersion

DWORD GetVersion();

Return ValueReturn Value

RemarksRemarks

CDockState::LoadState

void LoadState(LPCTSTR lpszProfileName);

ParametersParameters

RemarksRemarks

Frame Windows.

CObject

CDockState

Header: afxadv.h

Call this function to clear all docking information stored in the CDockState object.

This includes not only whether the bar is docked or not, but the bar's size and position and whether or not it is
visible.

Call this function to retrieve the version number of the stored bar state.

1 if the stored bar information is older than current bar state; 2 if the stored bar information is the same as the
current bar state.

Version support enables a revised bar to add new persistent properties and still be able to detect and load the
persistent state created by an earlier version of the bar.

Call this function to retrieve state information from the registry or .INI file.

lpszProfileName
Points to a null-teminated string that specifies the name of a section in the initialization file or a key in the
Windows registry where state information is stored.

The profile name is the section of the application's .INI file or the registry that contains the bars' state information.
You can save control bar state information to the registry or .INI file with SaveState .

CDockState::m_arrBarInfo

CPtrArray m_arrBarInfo;

CDockState::SaveState

void SaveState(LPCTSTR lpszProfileName);

ParametersParameters

RemarksRemarks

See also

A CPtrArray object that is an array of pointers to the stored control bar information for each control bar that has
saved state information in the CDockState object.

Call this function to save the state information to the registry or .INI file.

lpszProfileName
Points to a null-teminated string that specifies the name of a section in the initialization file or a key in the
Windows registry where state information is stored.

The profile name is the section of the application's .INI file or the registry that contains the control bar's state
information. SaveState also saves the current screen size. You can retrieve control bar information from the
registry or .INI file with LoadState .

CObject Class
Hierarchy Chart

CDocObjectServer Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CDocObjectServer : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDocObjectServer::CDocObjectServer Constructs a CDocObjectServer object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDocObjectServer::ActivateDocObject Activates the document object server, but does not show it.

Protected MethodsProtected Methods

NAME DESCRIPTION

CDocObjectServer::OnActivateView Displays the DocObject view.

CDocObjectServer::OnApplyViewState Restores the state of the DocObject view.

CDocObjectServer::OnSaveViewState Saves the state of the DocObject view.

Remarks

Inheritance Hierarchy

Implements the additional OLE interfaces needed to make a normal COleDocument server into a full DocObject
server : IOleDocument , IOleDocumentView , IOleCommandTarget , and IPrint .

CDocObjectServer is derived from CCmdTarget and works closely with COleServerDoc to expose the interfaces.

A DocObject server document can contain CDocObjectServerItem objects, which represent the server interface
to DocObject items.

To customize your DocObject server, derive your own class from CDocObjectServer and override its view setup
functions, OnActivateView, OnApplyViewState, and OnSaveViewState. You will need to provide a new instance
of your class in response to framework calls.

For further information on DocObjects, see CDocObjectServerItem and COleCmdUI in the MFC Reference.

CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdocobjectserver-class.md

Requirements

CDocObjectServer::ActivateDocObject

void ActivateDocObject();

RemarksRemarks

CDocObjectServer::CDocObjectServer

explicit CDocObjectServer(
 COleServerDoc* pOwner,
 LPOLEDOCUMENTSITE pDocSite = NULL);

ParametersParameters

RemarksRemarks

CDocObjectServer::OnActivateView

CCmdTarget

CDocObjectServer

Header: afxdocob.h

Call this function to activate (but not show) the document object server.

ActivateDocObject calls IOleDocumentSite 's ActivateMe method, but does not show the view because it waits for
specific instructions on how to set up and display the view, given in the call to
CDocObjectServer::OnActivateView.

Together, ActivateDocObject and OnActivateView activate and display the DocObject view. DocObject activation
differs from other kinds of OLE in-place activation. DocObject activation bypasses displaying in-place hatch
borders and object adornments (such as sizing handles), ignores object extent functions, and draws scroll bars
within the view rectangle as opposed to drawing them outside that rectangle (as in normal in-place activation).

Constructs and initializes a CDocObjectServer object.

pOwner
A pointer to the client site document that is the client for the DocObject server.

pDocSite
A pointer to the IOleDocumentSite interface implemented by the container.

When a DocObject is active, the client site OLE interface (IOleDocumentSite) is what allows the DocObject server
to communicate with its client (the container). When a DocObject server is activated, it first checks that the
container implements the IOleDocumentSite interface. If so, COleServerDoc::GetDocObjectServer is called to see
if the container supports DocObjects. By default, GetDocObjectServer returns NULL. You must override
COleServerDoc::GetDocObjectServer to construct a new CDocObjectServer object or a derived object of your own,

with pointers to the COleServerDoc container and its IOleDocumentSite interface as arguments to the constructor.

Call this function to display the DocObject view.

virtual HRESULT OnActivateView();

Return ValueReturn Value

RemarksRemarks

CDocObjectServer::OnApplyViewState

virtual void OnApplyViewState(CArchive& ar);

ParametersParameters

RemarksRemarks

CDocObjectServer::OnSaveViewState

virtual void OnSaveViewState(CArchive& ar);

ParametersParameters

RemarksRemarks

See also

Returns an error or warning value. By default, returns NOERROR if successful; otherwise, E_FAIL.

This function creates an in-place frame window, draws scrollbars within the view, sets up the menus the server
shares with its container, adds frame controls, sets the active object, then finally shows the in-place frame window
and sets the focus.

Override this function to restore the state of the DocObject view.

ar
A CArchive object from which to serialize the view state.

This function is called when the view is being displayed for the first time after its instantiation. OnApplyViewState

instructs a view to reinitialize itself according to the data in the CArchive object previously saved with
OnSaveViewState. The view must validate the data in the CArchive object because the container does not
attempt to interpret the view state data in any way.

You can use OnSaveViewState to store persistent information specific to your view's state. If you override
OnSaveViewState to store information, you will want to override OnApplyViewState to read that information and

apply it to your view when it is newly activated.

Override this function to save extra state information about your DocObject view.

ar
A CArchive object to which the view state is serialized.

Your state might include properties like the view type, zoom factor, insertion and selection point, and so on. The
container typically calls this function before deactivating the view. The saved state can later be restored through
OnApplyViewState.

You can use OnSaveViewState to store persistent information specific to your view's state. If you override
OnSaveViewState to store information, you will want to override OnApplyViewState to read that information and

apply it to your view when it is newly activated.

CCmdTarget Class
Hierarchy Chart
CDocObjectServerItem Class

CDocObjectServerItem Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CDocObjectServerItem : public COleServerItem

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CDocObjectServerItem::CDocObjectServerItem Constructs a CDocObjectServerItem object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDocObjectServerItem::GetDocument Retrieves a pointer to the document that contains the item.

Protected MethodsProtected Methods

NAME DESCRIPTION

CDocObjectServerItem::OnDoVerb Throws an exception if the framework tries to hide a
DocObject item.

CDocObjectServerItem::OnHide Throws an exception if the framework tries to hide a
DocObject item.

CDocObjectServerItem::OnShow Called by the framework to make the DocObject item in-
place active. If the item is not a DocObject, calls
COleServerItem::OnShow.

Remarks

Inheritance Hierarchy

Implements OLE server verbs specifically for DocObject servers.

CDocObjectServerItem defines overridable member functions: OnHide, OnDoVerb, and OnShow.

To use CDocObjectServerItem , assure that the OnGetEmbeddedItem override in your COleServerDoc -derived
class returns a new CDocObjectServerItem object. If you need to change any functionality in your item, you can
create a new instance of your own CDocObjectServerItem -derived class.

For further information on DocObjects, see CDocObjectServer and COleCmdUI in the MFC Reference.

CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdocobjectserveritem-class.md

Requirements

CDocObjectServerItem::CDocObjectServerItem

CDocObjectServerItem(COleServerDoc* pServerDoc, BOOL bAutoDelete);

ParametersParameters

CDocObjectServerItem::GetDocument

COleServerDoc* GetDocument() const;

Return ValueReturn Value

RemarksRemarks

CDocObjectServerItem::OnHide

virtual void OnHide();

RemarksRemarks

CDocObjectServerItem::OnShow

CCmdTarget

CDocItem

COleServerItem

CDocObjectServerItem

Header: afxdocob.h

Constructs a CDocObjectServerItem object.

pServerDoc
A pointer to the document that will contain the new DocObject item.

bAutoDelete
Indicates whether the object can be deleted when a link to it is released. Set the argument to FALSE if the
CDocObjectServerItem object is an integral part of your document's data. Set it to TRUE if the object is a

secondary structure used to identify a range in your document's data that can be deleted by the framework.

Retrieves a pointer to the document that contains the item.

A pointer to the document that contains the item; NULL if the item is not part of a document.

This allows access to the server document that you passed as an argument to the CDocObjectServerItem
constructor.

Called by the framework to hide the item.

The default implementation throws an exception if the item is a DocObject. You cannot hide an active DocObject
item because it takes the whole view. You must deactivate the DocObject item to make it disappear. If the item is
not a DocObject, the default implementation calls COleServerItem::OnHide.

virtual void OnShow();

RemarksRemarks

See also

Called by the framework to instruct the server application to make the DocObject item in-place active.

If the item is not a DocObject, the default implementation calls COleServerItem::OnShow. Override this function
if you want to perform special processing when opening a DocObject item.

COleServerItem Class
Hierarchy Chart
CDocObjectServer Class
COleDocObjectItem Class

CDocTemplate Class
3/4/2019 • 15 minutes to read • Edit Online

Syntax
class CDocTemplate : public CCmdTarget

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CDocTemplate::CDocTemplate Constructs a CDocTemplate object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDocTemplate::AddDocument Adds a document to a template.

CDocTemplate::CloseAllDocuments Closes all documents associated with this template.

CDocTemplate::CreateNewDocument Creates a new document.

CDocTemplate::CreateNewFrame Creates a new frame window containing a document and
view.

CDocTemplate::CreateOleFrame Creates an OLE-enabled frame window.

CDocTemplate::CreatePreviewFrame Creates a child frame used for Rich Preview.

CDocTemplate::GetDocString Retrieves a string associated with the document type.

CDocTemplate::GetFirstDocPosition Retrieves the position of the first document associated with
this template.

CDocTemplate::GetNextDoc Retrieves a document and the position of the next one.

CDocTemplate::InitialUpdateFrame Initializes the frame window, and optionally makes it visible.

CDocTemplate::LoadTemplate Loads the resources for a given CDocTemplate or derived
class.

CDocTemplate::MatchDocType Determines the degree of confidence in the match between
a document type and this template.

An abstract base class that defines the basic functionality for document templates.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdoctemplate-class.md

CDocTemplate::OpenDocumentFile Opens a file specified by a pathname.

CDocTemplate::RemoveDocument Removes a document from a template.

CDocTemplate::SaveAllModified Saves all documents associated with this template which
have been modified.

CDocTemplate::SetContainerInfo Determines the resources for OLE containers when editing
an in-place OLE item.

CDocTemplate::SetDefaultTitle Displays the default title in the document window's title bar.

CDocTemplate::SetPreviewInfo Setups out of process preview handler.

CDocTemplate::SetServerInfo Determines the resources and classes when the server
document is embedded or edited in-place.

NAME DESCRIPTION

Remarks
You usually create one or more document templates in the implementation of your application's InitInstance
function. A document template defines the relationships among three types of classes:

A document class, which you derive from CDocument .

A view class, which displays data from the document class listed above. You can derive this class from
CView , CScrollView , CFormView , or CEditView . (You can also use CEditView directly.)

A frame window class, which contains the view. For a single document interface (SDI) application, you
derive this class from CFrameWnd . For a multiple document interface (MDI) application, you derive this
class from CMDIChildWnd . If you don't need to customize the behavior of the frame window, you can use
CFrameWnd or CMDIChildWnd directly without deriving your own class.

Your application has one document template for each type of document that it supports. For example, if your
application supports both spreadsheets and text documents, the application has two document template
objects. Each document template is responsible for creating and managing all the documents of its type.

The document template stores pointers to the CRuntimeClass objects for the document, view, and frame
window classes. These CRuntimeClass objects are specified when constructing a document template.

The document template contains the ID of the resources used with the document type (such as menu, icon, or
accelerator table resources). The document template also has strings containing additional information about
its document type. These include the name of the document type (for example, "Worksheet") and the file
extension (for example, ".xls"). Optionally, it can contain other strings used by the application's user interface,
the Windows File Manager, and Object Linking and Embedding (OLE) support.

If your application is an OLE container and/or server, the document template also defines the ID of the menu
used during in-place activation. If your application is an OLE server, the document template defines the ID of
the toolbar and menu used during in-place activation. You specify these additional OLE resources by calling
SetContainerInfo and SetServerInfo .

Because CDocTemplate is an abstract class, you cannot use the class directly. A typical application uses one of
the two CDocTemplate -derived classes provided by the Microsoft Foundation Class Library:
CSingleDocTemplate , which implements SDI, and CMultiDocTemplate , which implements MDI. See those

Inheritance Hierarchy

Requirements

CDocTemplate::AddDocument

virtual void AddDocument(CDocument* pDoc);

ParametersParameters

RemarksRemarks

CDocTemplate::CDocTemplate

CDocTemplate (
 UINT nIDResource,
 CRuntimeClass* pDocClass,
 CRuntimeClass* pFrameClass,
 CRuntimeClass* pViewClass);

ParametersParameters

classes for more information on using document templates.

If your application requires a user-interface paradigm that is fundamentally different from SDI or MDI, you
can derive your own class from CDocTemplate .

For more information on CDocTemplate , see Document Templates and the Document/View Creation Process.

CObject

CCmdTarget

CDocTemplate

Header: afxwin.h

Use this function to add a document to a template.

pDoc
A pointer to the document to be added.

The derived classes CMultiDocTemplate and CSingleDocTemplate override this function. If you derive your
own document-template class from CDocTemplate , your derived class must override this function.

Constructs a CDocTemplate object.

nIDResource
Specifies the ID of the resources used with the document type. This may include menu, icon, accelerator table,
and string resources.

The string resource consists of up to seven substrings separated by the '\n' character (the '\n' character is
needed as a place holder if a substring is not included; however, trailing '\n' characters are not necessary);
these substrings describe the document type. For information on the substrings, see GetDocString. This string
resource is found in the application's resource file. For example:

// MYCALC.RC
STRINGTABLE PRELOAD DISCARDABLE
BEGIN
 IDR_SHEETTYPE "\nSheet\nWorksheet\nWorksheets (*.myc)\n.myc\n MyCalcSheet\nMyCalc Worksheet"
END

RemarksRemarks

CDocTemplate::CloseAllDocuments

virtual void CloseAllDocuments(BOOL bEndSession);

ParametersParameters

RemarksRemarks

CDocTemplate::CreateNewDocument

virtual CDocument* CreateNewDocument();

Return ValueReturn Value

Note that the string begins with a '\n' character; this is because the first substring is not used for MDI
applications and so is not included. You can edit this string using the string editor; the entire string appears as
a single entry in the String Editor, not as seven separate entries.

pDocClass
Points to the CRuntimeClass object of the document class. This class is a CDocument -derived class you define to
represent your documents.

pFrameClass
Points to the CRuntimeClass object of the frame window class. This class can be a CFrameWnd -derived class, or
it can be CFrameWnd itself if you want default behavior for your main frame window.

pViewClass
Points to the CRuntimeClass object of the view class. This class is a CView -derived class you define to display
your documents.

Use this member function to construct a CDocTemplate object. Dynamically allocate a CDocTemplate object and
pass it to CWinApp::AddDocTemplate from the InitInstance member function of your application class.

Call this member function to close all open documents.

bEndSession
Not used.

This member function is typically used as part of the File Exit command. The default implementation of this
function calls the CDocument::DeleteContents member function to delete the document's data and then closes
the frame windows for all the views attached to the document.

Override this function if you want to require the user to perform special cleanup processing before the
document is closed. For example, if the document represents a record in a database, you may want to override
this function to close the database.

Call this member function to create a new document of the type associated with this document template.

A pointer to the newly created document, or NULL if an error occurs.

CDocTemplate::CreateNewFrame

virtual CFrameWnd* CreateNewFrame(
 CDocument* pDoc,
 CFrameWnd* pOther);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocTemplate::CreateOleFrame

CFrameWnd* CreateOleFrame(
 CWnd* pParentWnd,
 CDocument* pDoc,
 BOOL bCreateView);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocTemplate::GetDocString

Creates a new frame window containing a document and view.

pDoc
The document to which the new frame window should refer. Can be NULL.

pOther
The frame window on which the new frame window is to be based. Can be NULL.

A pointer to the newly created frame window, or NULL if an error occurs.

CreateNewFrame uses the CRuntimeClass objects passed to the constructor to create a new frame window with
a view and document attached. If the pDoc parameter is NULL, the framework outputs a TRACE message.

The pOther parameter is used to implement the Window New command. It provides a frame window on
which to model the new frame window. The new frame window is usually created invisible. Call this function to
create frame windows outside the standard framework implementation of File New and File Open.

Creates an OLE frame window.

pParentWnd
A pointer to the frame's parent window.

pDoc
A pointer to the document to which the new OLE frame window should refer.

bCreateView
Determines whether a view is created along with the frame.

A pointer to a frame window if successful; otherwise NULL.

If bCreateView is zero, an empty frame is created.

Retrieves a string associated with the document type.

virtual BOOL GetDocString(
 CString& rString,
 enum DocStringIndex index) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocTemplate::GetFirstDocPosition

rString
A reference to a CString object that will contain the string when the function returns.

index
An index of the substring being retrieved from the string that describes the document type. This parameter can
have one of the following values:

CDocTemplate::windowTitle Name that appears in the application window's title bar (for example,
"Microsoft Excel"). Present only in the document template for SDI applications.

CDocTemplate::docName Root for the default document name (for example, "Sheet"). This root, plus a
number, is used for the default name of a new document of this type whenever the user chooses the
New command from the File menu (for example, "Sheet1" or "Sheet2"). If not specified, "Untitled" is
used as the default.

CDocTemplate::fileNewName Name of this document type. If the application supports more than one type
of document, this string is displayed in the File New dialog box (for example, "Worksheet"). If not
specified, the document type is inaccessible using the File New command.

CDocTemplate::filterName Description of the document type and a wildcard filter matching documents
of this type. This string is displayed in the List Files Of Type drop-down list in the File Open dialog box
(for example, "Worksheets (*.xls)"). If not specified, the document type is inaccessible using the File
Open command.

CDocTemplate::filterExt Extension for documents of this type (for example, ".xls"). If not specified, the
document type is inaccessible using the File Open command.

CDocTemplate::regFileTypeId Identifier for the document type to be stored in the registration database
maintained by Windows. This string is for internal use only (for example, "ExcelWorksheet"). If not
specified, the document type cannot be registered with the Windows File Manager.

CDocTemplate::regFileTypeName Name of the document type to be stored in the registration database.
This string may be displayed in dialog boxes of applications that access the registration database (for
example, "Microsoft Excel Worksheet").

Nonzero if the specified substring was found; otherwise 0.

Call this function to retrieve a specific substring describing the document type. The string containing these
substrings is stored in the document template and is derived from a string in the resource file for the
application. The framework calls this function to get the strings it needs for the application's user interface. If
you have specified a filename extension for your application's documents, the framework also calls this
function when adding an entry to the Windows registration database; this allows documents to be opened
from the Windows File Manager.

Call this function only if you are deriving your own class from CDocTemplate .

Retrieves the position of the first document associated with this template.

virtual POSITION GetFirstDocPosition() const = 0;

Return ValueReturn Value

RemarksRemarks

CDocTemplate::GetNextDoc

virtual CDocument* GetNextDoc(POSITION& rPos) const = 0;

Return ValueReturn Value

ParametersParameters

RemarksRemarks

CDocTemplate::InitialUpdateFrame

virtual void InitialUpdateFrame(
 CFrameWnd* pFrame,
 CDocument* pDoc,
 BOOL bMakeVisible = TRUE);

ParametersParameters

A POSITION value that can be used to iterate through the list of documents associated with this document
template; or NULL if the list is empty.

Use this function to get the position of the first document in the list of documents associated with this
template. Use the POSITION value as an argument to CDocTemplate::GetNextDoc to iterate through the list
of documents associated with the template.

CSingleDocTemplate and CMultiDocTemplate both override this pure virtual function. Any class you derive
from CDocTemplate must also override this function.

Retrieves the list element identified by rPos, then sets rPos to the POSITION value of the next entry in the list.

A pointer to the next document in the list of documents associated with this template.

rPos
A reference to a POSITION value returned by a previous call to GetFirstDocPosition or GetNextDoc .

If the retrieved element is the last in the list, then the new value of rPos is set to NULL.

You can use GetNextDoc in a forward iteration loop if you establish the initial position with a call to
GetFirstDocPosition.

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the
Debug version of the Microsoft Foundation Class Library asserts.

Initializes the frame window, and optionally makes it visible.

pFrame
The frame window that needs the initial update.

pDoc
The document to which the frame is associated. Can be NULL.

bMakeVisible

RemarksRemarks

CDocTemplate::LoadTemplate

virtual void LoadTemplate();

RemarksRemarks

CDocTemplate::MatchDocType

virtual Confidence MatchDocType(
 LPCTSTR lpszPathName,
 CDocument*& rpDocMatch);

ParametersParameters

Return ValueReturn Value

enum Confidence
 {
 noAttempt,
 maybeAttemptForeign,
 maybeAttemptNative,
 yesAttemptForeign,
 yesAttemptNative,
 yesAlreadyOpen
 };

RemarksRemarks

Indicates whether the frame should become visible and active.

Call IntitialUpdateFrame after creating a new frame with CreateNewFrame . Calling this function causes the
views in that frame window to receive their OnInitialUpdate calls. Also, if there was not previously an active
view, the primary view of the frame window is made active; the primary view is a view with a child ID of
AFX_IDW_PANE_FIRST. Finally, the frame window is made visible if bMakeVisible is non-zero. If
bMakeVisible is zero, the current focus and visible state of the frame window will remain unchanged.

It is not necessary to call this function when using the framework's implementation of File New and File Open.

Loads the resources for a given CDocTemplate or derived class.

This member function is called by the framework to load the resources for a given CDocTemplate or derived
class. Normally it is called during construction, except when the template is being constructed globally. In that
case, the call to LoadTemplate is delayed until CWinApp::AddDocTemplate is called.

Determines the degree of confidence in the match between a document type and this template.

lpszPathName
Pathname of the file whose type is to be determined.

rpDocMatch
Pointer to a document that is assigned the matching document, if the file specified by lpszPathName is already
open.

A value from the Confidence enumeration, which is defined as follows:

Use this function to determine the type of document template to use for opening a file. If your application
supports multiple file types, for example, you can use this function to determine which of the available

CDocTemplate::OpenDocumentFile

virtual CDocument* OpenDocumentFile(LPCTSTR lpszPathName) = 0;

virtual CDocument* OpenDocumentFile(
 LPCTSTR lpszPathName,
 BOOL bAddToMRU) = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocTemplate::RemoveDocument

virtual void RemoveDocument(CDocument* pDoc);

ParametersParameters

RemarksRemarks

document templates is appropriate for a given file by calling MatchDocType for each template in turn, and
choosing a template according to the confidence value returned.

If the file specified by lpszPathName is already open, this function returns CDocTemplate::yesAlreadyOpen and
copies the file's CDocument object into the object at rpDocMatch.

If the file is not open but the extension in lpszPathName matches the extension specified by
CDocTemplate::filterExt , this function returns CDocTemplate::yesAttemptNative and sets rpDocMatch to

NULL. For more information on CDocTemplate::filterExt , see CDocTemplate::GetDocString.

If neither case is true, the function returns CDocTemplate::yesAttemptForeign .

The default implementation does not return CDocTemplate::maybeAttemptForeign or
CDocTemplate::maybeAttemptNative . Override this function to implement type-matching logic appropriate to

your application, perhaps using these two values from the Confidence enumeration.

Opens a file specified by a path.

lpszPathName
[in] Pointer to the path of the file that contains the document to be opened.

bAddToMRU
[in] TRUE indicates the document is one of the most recent files; FALSE indicates the document is not one of
the most recent files.

A pointer to the document whose file is named by lpszPathName; NULL if unsuccessful.

Opens the file whose path is specified by lpszPathName. If lpszPathName is NULL, a new file that contains a
document of the type associated with this template is created.

Removes the document pointed to by pDoc from the list of documents associated with this template.

pDoc
Pointer to the document to be removed.

The derived classes CMultiDocTemplate and CSingleDocTemplate override this function. If you derive your own
document-template class from CDocTemplate , your derived class must override this function.

CDocTemplate::SaveAllModified

virtual BOOL SaveAllModified();

Return ValueReturn Value

CDocTemplate::SetContainerInfo

void SetContainerInfo(UINT nIDOleInPlaceContainer);

ParametersParameters

RemarksRemarks

CDocTemplate::SetDefaultTitle

virtual void SetDefaultTitle(CDocument* pDocument) = 0;

ParametersParameters

RemarksRemarks

CDocTemplate::SetServerInfo

void SetServerInfo(
 UINT nIDOleEmbedding,
 UINT nIDOleInPlaceServer = 0,
 CRuntimeClass* pOleFrameClass = NULL,
 CRuntimeClass* pOleViewClass = NULL);

Saves all documents that have been modified.

Non-zero if successful; otherwise 0.

Determines the resources for OLE containers when editing an in-place OLE item.

nIDOleInPlaceContainer
The ID of the resources used when an embedded object is activated.

Call this function to set the resources to be used when an OLE object is in-place activated. These resources
may include menus and accelerator tables. This function is usually called in the CWinApp::InitInstance function
of your application.

The menu associated with nIDOleInPlaceContainer contains separators that allow the menu of the activated
in-place item to merge with the menu of the container application. For more information about merging
server and container menus, see the article Menus and Resources (OLE).

Call this function to load the document's default title and display it in the document's title bar.

pDocument
Pointer to the document whose title is to be set.

For information on the default title, see the description of CDocTemplate::docName in
CDocTemplate::GetDocString.

Determines the resources and classes when the server document is embedded or edited in-place.

ParametersParameters

RemarksRemarks

CDocTemplate::CreatePreviewFrame

CFrameWnd* CreatePreviewFrame(
 CWnd* pParentWnd,
 CDocument* pDoc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocTemplate::SetPreviewInfo

void SetPreviewInfo(
 UINT nIDPreviewFrame,
 CRuntimeClass* pPreviewFrameClass = NULL,
 CRuntimeClass* pPreviewViewClass = NULL);

ParametersParameters

nIDOleEmbedding
The ID of the resources used when an embedded object is opened in a separate window.

nIDOleInPlaceServer
The ID of the resources used when an embedded object is activated in-place.

pOleFrameClass
Pointer to a CRuntimeClass structure containing class information for the frame window object created when
in-place activation occurs.

pOleViewClass
Pointer to a CRuntimeClass structure containing class information for the view object created when in-place
activation occurs.

Call this member function to identify resources that will be used by the server application when the user
requests activation of an embedded object. These resources consist of menus and accelerator tables. This
function is usually called in the InitInstance of your application.

The menu associated with nIDOleInPlaceServer contains separators that allow the server menu to merge with
the menu of the container. For more information about merging server and container menus, see the article
Menus and Resources (OLE).

Creates a child frame used for Rich Preview.

pParentWnd
A pointer to a parent window (usually provided by the Shell).

pDoc
A pointer to a document object, whose content will be previewed.

A valid pointer to a CFrameWnd object, or NULL if the creation fails.

Sets up the out of process preview handler.

nIDPreviewFrame

RemarksRemarks

See also

Specifies a resource ID of the preview frame.

pPreviewFrameClass
Specifies a pointer to a runtime class information structure of the preview frame.

pPreviewViewClass
Specifies a pointer to a runtime class information structure of the preview view.

CCmdTarget Class
Hierarchy Chart
CSingleDocTemplate Class
CMultiDocTemplate Class
CDocument Class
CView Class
CScrollView Class
CEditView Class
CFormView Class
CFrameWnd Class
CMDIChildWnd Class

CDocument Class
3/4/2019 • 29 minutes to read • Edit Online

Syntax
class CDocument : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDocument::CDocument Constructs a CDocument object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDocument::AddView Attaches a view to the document.

CDocument::BeginReadChunks Initializes chunk reading.

CDocument::CanCloseFrame Advanced overridable; called before closing a frame
window viewing this document.

CDocument::ClearChunkList Clears the chunk list.

CDocument::ClearPathName Clears the path of the document object.

CDocument::DeleteContents Called to perform cleanup of the document.

CDocument::FindChunk Looks for a chunk with specified GUID.

CDocument::GetAdapter Returns a pointer to object implementing IDocument

interface.

CDocument::GetDocTemplate Returns a pointer to the document template that
describes the type of the document.

CDocument::GetFile Returns a pointer to the desired CFile object.

CDocument::GetFirstViewPosition Returns the position of the first in the list of views; used
to begin iteration.

CDocument::GetNextView Iterates through the list of views associated with the
document.

Provides the basic functionality for user-defined document classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdocument-class.md

CDocument::GetPathName Returns the path of the document's data file.

CDocument::GetThumbnail Called to create a bitmap to be used by thumbnail
provider to display thumbnail.

CDocument::GetTitle Returns the document's title.

CDocument::InitializeSearchContent Called to initialize search content for Search Handler.

CDocument::IsModified Indicates whether the document has been modified since
it was last saved.

CDocument::IsSearchAndOrganizeHandler Tells whether this instance of CDocument object was
created for Search & Organize handler.

CDocument::LoadDocumentFromStream Called to load document data from stream.

CDocument::OnBeforeRichPreviewFontChanged Called before Rich Preview font is changed.

CDocument::OnChangedViewList Called after a view is added to or removed from the
document.

CDocument::OnCloseDocument Called to close the document.

CDocument::OnCreatePreviewFrame Called by the framework when it needs to create a
preview frame for Rich Preview.

CDocument::OnDocumentEvent Called by the framework in response to a document
event.

CDocument::OnDrawThumbnail Override this method in a derived class to draw content
of thumbnail.

CDocument::OnLoadDocumentFromStream Called by the framework when it needs to load the
document data from stream.

CDocument::OnNewDocument Called to create a new document.

CDocument::OnOpenDocument Called to open an existing document.

CDocument::OnPreviewHandlerQueryFocus Directs the preview handler to return the HWND from
calling the GetFocus Function.

CDocument::OnPreviewHandlerTranslateAccelerator Directs the preview handler to handle a keystroke passed
up from the message pump of the process in which the
preview handler is running.

CDocument::OnRichPreviewBackColorChanged Called when Rich Preview background color has changed.

CDocument::OnRichPreviewFontChanged Called when Rich Preview font has changed.

CDocument::OnRichPreviewSiteChanged Called when Rich Preview site has changed.

NAME DESCRIPTION

CDocument::OnRichPreviewTextColorChanged Called when Rich Preview text color has changed.

CDocument::OnSaveDocument Called to save the document to disk.

CDocument::OnUnloadHandler Called by the framework when the preview handler is
being unloaded.

CDocument::PreCloseFrame Called before the frame window is closed.

CDocument::ReadNextChunkValue Reads next chunk value.

CDocument::ReleaseFile Releases a file to make it available for use by other
applications.

CDocument::RemoveChunk Removes a chunk with specified GUID.

CDocument::RemoveView Detaches a view from the document.

CDocument::ReportSaveLoadException Advanced overridable; called when an open or save
operation cannot be completed because of an exception.

CDocument::SaveModified Advanced overridable; called to ask the user whether the
document should be saved.

CDocument::SetChunkValue Sets a chunk value.

CDocument::SetModifiedFlag Sets a flag indicating that you have modified the
document since it was last saved.

CDocument::SetPathName Sets the path of the data file used by the document.

CDocument::SetTitle Sets the document's title.

CDocument::UpdateAllViews Notifies all views that document has been modified.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CDocument::OnFileSendMail Sends a mail message with the document attached.

CDocument::OnUpdateFileSendMail Enables the Send Mail command if mail support is
present.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CDocument::m_bGetThumbnailMode Specifies that CDocument object was created by dllhost
for thumbnails. Should be checked in CView::OnDraw .

CDocument::m_bPreviewHandlerMode Specifies that CDocument object was created by prevhost
for Rich Preview . Should be checked in
CView::OnDraw .

CDocument::m_bSearchMode Specifies that CDocument object was created by indexer
or other search application.

CDocument::m_clrRichPreviewBackColor Specifies background color of Rich Preview window. This
color is set by host.

CDocument::m_clrRichPreviewTextColor Specifies foreground color of Rich Preview window. This
color is set by host.

CDocument::m_lfRichPreviewFont Specifies text font for Rich Preview window. This font
information is set by host.

NAME DESCRIPTION

Remarks
A document represents the unit of data that the user typically opens with the File Open command and
saves with the File Save command.

CDocument supports standard operations such as creating a document, loading it, and saving it. The
framework manipulates documents using the interface defined by CDocument .

An application can support more than one type of document; for example, an application might support
both spreadsheets and text documents. Each type of document has an associated document template; the
document template specifies what resources (for example, menu, icon, or accelerator table) are used for
that type of document. Each document contains a pointer to its associated CDocTemplate object.

Users interact with a document through the CView object(s) associated with it. A view renders an image of
the document in a frame window and interprets user input as operations on the document. A document
can have multiple views associated with it. When the user opens a window on a document, the framework
creates a view and attaches it to the document. The document template specifies what type of view and
frame window are used to display each type of document.

Documents are part of the framework's standard command routing and consequently receive commands
from standard user-interface components (such as the File Save menu item). A document receives
commands forwarded by the active view. If the document doesn't handle a given command, it forwards the
command to the document template that manages it.

When a document's data is modified, each of its views must reflect those modifications. CDocument
provides the UpdateAllViews member function for you to notify the views of such changes, so the views
can repaint themselves as necessary. The framework also prompts the user to save a modified file before
closing it.

To implement documents in a typical application, you must do the following:

Derive a class from CDocument for each type of document.

Add member variables to store each document's data.

Implement member functions for reading and modifying the document's data. The document's
views are the most important users of these member functions.

Override the CObject::Serialize member function in your document class to write and read the

Inheritance Hierarchy

Requirements

CDocument::AddView

void AddView(CView* pView);

ParametersParameters

RemarksRemarks

ExampleExample

// The following example toggles two views in an SDI (single document
// interface) frame window. A design decision must be made as to
// whether to leave the inactive view connected to the document,
// such that the inactive view continues to receive OnUpdate
// notifications from the document. It is usually desirable to
// keep the inactive view continuously in sync with the document, even
// though it is inactive. However, doing so incurs a performance cost,
// as well as the programming cost of implementing OnUpdate hints.
// It may be less expensive, in terms of performance and/or programming,
// to re-sync the inactive view with the document only with it is
// reactivated. This example illustrates this latter approach, by
// reconnecting the newly active view and disconnecting the newly
// inactive view, via calls to CDocument::AddView and RemoveView.

void CMainFrame::OnViewChange(UINT nCmdID)
// There is an ON_COMMAND_RANGE message map entry associated with
// OnViewChange:

document's data to and from disk.

CDocument supports sending your document via mail if mail support (MAPI) is present. See the articles
MAPI and MAPI Support in MFC.

For more information on CDocument , see Serialization, Document/View Architecture Topics, and
Document/View Creation.

CObject

CCmdTarget

CDocument

Header: afxwin.h

Call this function to attach a view to the document.

pView
Points to the view being added.

This function adds the specified view to the list of views associated with the document; the function also
sets the view's document pointer to this document. The framework calls this function when attaching a
newly created view object to a document; this occurs in response to a File New, File Open, or New Window
command or when a splitter window is split.

Call this function only if you are manually creating and attaching a view. Typically you will let the
framework connect documents and views by defining a CDocTemplate object to associate a document
class, view class, and frame window class.

// OnViewChange:
// ON_COMMAND_RANGE(ID_VIEW_CHANGE1, ID_VIEW_CHANGE2, &OnViewChange)
{
 CView* pViewAdd;
 CView* pViewRemove;
 CDocument* pDoc = GetActiveDocument();

 // cvView1 and cvView2 are enum members defined in my CMainFrame class
 if((nCmdID == ID_VIEW_CHANGE1) && (m_currentView == cvView1))
 return;
 if((nCmdID == ID_VIEW_CHANGE2) && (m_currentView == cvView2))
 return;

 if (nCmdID == ID_VIEW_CHANGE2)
 {
 if (m_pView2 == NULL)
 {
 m_pView1 = GetActiveView();
 m_pView2 = new CMyView2;

 //Note that if OnSize has been overridden in CMyView2
 //and GetDocument() is used in this override it can
 //cause assertions and, if the assertions are ignored,
 //cause access violation.

 m_pView2->Create(NULL, NULL, AFX_WS_DEFAULT_VIEW, rectDefault, this,
 AFX_IDW_PANE_FIRST + 1, NULL);
 }
 pViewAdd = m_pView2;
 pViewRemove = m_pView1;
 m_currentView = cvView2;
 }
 else
 {
 pViewAdd = m_pView1;
 pViewRemove = m_pView2;
 m_currentView = cvView1;
 }

 // Set the child i.d. of the active view to AFX_IDW_PANE_FIRST,
 // so that CFrameWnd::RecalcLayout will allocate to this
 // "first pane" that portion of the frame window's client area
 // not allocated to control bars. Set the child i.d. of the
 // other view to anything other than AFX_IDW_PANE_FIRST; this
 // examples switches the child id's of the two views.

 int nSwitchChildID = pViewAdd->GetDlgCtrlID();
 pViewAdd->SetDlgCtrlID(AFX_IDW_PANE_FIRST);
 pViewRemove->SetDlgCtrlID(nSwitchChildID);

 // Show the newly active view and hide the inactive view.

 pViewAdd->ShowWindow(SW_SHOW);
 pViewRemove->ShowWindow(SW_HIDE);

 // Connect the newly active view to the document, and
 // disconnect the inactive view.
 pDoc->AddView(pViewAdd);
 pDoc->RemoveView(pViewRemove);

 SetActiveView(pViewAdd);
 RecalcLayout();
}

CDocument::BeginReadChunks
Initializes chunk reading.

virtual void BeginReadChunks ();

RemarksRemarks

CDocument::CanCloseFrame

virtual BOOL CanCloseFrame(CFrameWnd* pFrame);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocument::CDocument

CDocument();

RemarksRemarks

CDocument::ClearChunkList

virtual void ClearChunkList ();

RemarksRemarks

CDocument::ClearPathName

virtual void ClearPathName();

RemarksRemarks

Called by the framework before a frame window displaying the document is closed.

pFrame
Points to the frame window of a view attached to the document.

Nonzero if it is safe to close the frame window; otherwise 0.

The default implementation checks if there are other frame windows displaying the document. If the
specified frame window is the last one that displays the document, the function prompts the user to save
the document if it has been modified. Override this function if you want to perform special processing
when a frame window is closed. This is an advanced overridable.

Constructs a CDocument object.

The framework handles document creation for you. Override the OnNewDocument member function to
perform initialization on a per-document basis; this is particularly important in single document interface
(SDI) applications.

Clears the chunk list.

Clears the path of the document object.

Clearing the path from a CDocument object causes the application to prompt the user when the document

CDocument::DeleteContents

virtual void DeleteContents();

RemarksRemarks

ExampleExample

// This example is the handler for an Edit Clear All command.
void CExampleDoc::OnEditClearAll()
{
 DeleteContents();
 UpdateAllViews(NULL);
}

void CExampleDoc::DeleteContents()
{
 // Re-initialize document data here.
}

CDocument::FindChunk

virtual POSITION FindChunk(
 REFCLSID guid,
 DWORD pid);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocument::GetAdapter

virtual ATL::IDocument* GetAdapter();

is next saved. This makes a Save command behave like a Save As command.

Called by the framework to delete the document's data without destroying the CDocument object itself.

It is called just before the document is to be destroyed. It is also called to ensure that a document is empty
before it is reused. This is particularly important for an SDI application, which uses only one document; the
document is reused whenever the user creates or opens another document. Call this function to implement
an "Edit Clear All" or similar command that deletes all of the document's data. The default implementation
of this function does nothing. Override this function to delete the data in your document.

Looks for a chunk with a specified GUID.

guid
Specifies the GUID of a chunk to find.

pid
Specifies a PID of a chunk to find.

Position in the internal chunk list if successful. Otherwise NULL.

Returns a pointer to an object implementing the IDocument interface.

Return ValueReturn Value

RemarksRemarks

CDocument::GetDocTemplate

CDocTemplate* GetDocTemplate() const;

Return ValueReturn Value

ExampleExample

// This example accesses the doc template object to construct
// a default document name such as SHEET.XLS, where "sheet"
// is the base document name and ".xls" is the file extension
// for the document type.
CString strDefaultDocName, strBaseName, strExt;
CDocTemplate* pDocTemplate = GetDocTemplate();
if (!pDocTemplate->GetDocString(strBaseName, CDocTemplate::docName)
 || !pDocTemplate->GetDocString(strExt, CDocTemplate::filterExt))
{
 AfxThrowUserException(); // These doc template strings will
 // be available if you created the application using AppWizard
 // and specified the file extension as an option for
 // the document class produced by AppWizard.
}
strDefaultDocName = strBaseName + strExt;

CDocument::GetFile

virtual CFile* GetFile(
 LPCTSTR lpszFileName,
 UINT nOpenFlags,
 CFileException* pError);

ParametersParameters

Return ValueReturn Value

A pointer to an object implementing the IDocument interface.

Call this function to get a pointer to the document template for this document type.

A pointer to the document template for this document type, or NULL if the document is not managed by a
document template.

Call this member function to get a pointer to a CFile object.

lpszFileName
A string that is the path to the desired file. The path may be relative or absolute.

pError
A pointer to an existing file-exception object that indicates the completion status of the operation.

nOpenFlags
Sharing and access mode. Specifies the action to take when opening the file. You can combine options
listed in the CFile constructor CFile::CFile by using the bitwise OR (|) operator. One access permission and
one share option are required; the modeCreate and modeNoInherit modes are optional.

A pointer to a CFile object.

CDocument::GetFirstViewPosition

virtual POSITION GetFirstViewPosition() const;

Return ValueReturn Value

ExampleExample

//To get the first view in the list of views:
// POSITION pos = GetFirstViewPosition();
// CView* pFirstView = GetNextView(pos);
//
// This example uses CDocument::GetFirstViewPosition
// and GetNextView to repaint each view.
// An easier way to accomplish the same result is to call
// UpdateAllViews(NULL);
void CExampleDoc::OnRepaintAllViews()
{
 POSITION pos = GetFirstViewPosition();
 while (pos != NULL)
 {
 CView* pView = GetNextView(pos);
 pView->UpdateWindow();
 }
}

CDocument::GetNextView

virtual CView* GetNextView(POSITION& rPosition) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Call this function to get the position of the first view in the list of views associated with the document.

A POSITION value that can be used for iteration with the GetNextView member function.

Call this function to iterate through all of the document's views.

rPosition
A reference to a POSITION value returned by a previous call to the GetNextView or GetFirstViewPosition
member functions. This value must not be NULL.

A pointer to the view identified by rPosition.

The function returns the view identified by rPosition and then sets rPosition to the POSITION value of the
next view in the list. If the retrieved view is the last in the list, then rPosition is set to NULL.

//To get the first view in the list of views:
// POSITION pos = GetFirstViewPosition();
// CView* pFirstView = GetNextView(pos);
//
// This example uses CDocument::GetFirstViewPosition
// and GetNextView to repaint each view.
// An easier way to accomplish the same result is to call
// UpdateAllViews(NULL);
void CExampleDoc::OnRepaintAllViews()
{
 POSITION pos = GetFirstViewPosition();
 while (pos != NULL)
 {
 CView* pView = GetNextView(pos);
 pView->UpdateWindow();
 }
}

CDocument::GetPathName

const CString& GetPathName() const;

Return ValueReturn Value

CDocument::GetThumbnail

virtual BOOL GetThumbnail(
 UINT cx,
 HBITMAP* phbmp,
 DWORD* pdwAlpha);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocument::GetTitle

Call this function to get the fully qualified path of the document's disk file.

The document's fully qualified path. This string is empty if the document has not been saved or does not
have a disk file associated with it.

Creates a bitmap to be used by the thumbnail provider to display the thumbnail.

cx
Specifies the width and height of the bitmap.

phbmp
Contains a handle to a bitmap, when the function returns successfully.

pdwAlpha
Contains a DWORD specifying the alpha channel value, when the function returns successfully.

Returns TRUE if a bitmap for the thumbnail was created successfully; otherwise FALSE.

Call this function to get the document's title, which is usually derived from the document's filename.

const CString& GetTitle() const;

Return ValueReturn Value

CDocument::InitializeSearchContent

virtual void InitializeSearchContent ();

RemarksRemarks

CDocument::IsModified

virtual BOOL IsModified();

Return ValueReturn Value

CDocument::IsSearchAndOrganizeHandler

BOOL IsSearchAndOrganizeHandler() const;

Return ValueReturn Value

RemarksRemarks

CDocument::LoadDocumentFromStream

virtual HRESULT LoadDocumentFromStream(
 IStream* pStream,
 DWORD dwGrfMode);

ParametersParameters

The document's title.

Called to initialize search content for the Search Handler.

Override this method in a derived class to initialize search content. The content should be a string with
parts delimited by ";". For example, "point; rectangle; ole item".

Call this function to determine whether the document has been modified since it was last saved.

Nonzero if the document has been modified since it was last saved; otherwise 0.

Tells whether this instance of CDocument was created for the Search & Organize handler.

Returns TRUE if this instance of CDocument was created for the Search & Organize handler.

Currently this function returns TRUE only for Rich Preview handlers implemented in an out of process
server. You can set the appropriate flags (m_bPreviewHandlerMode, m_bSearchMode,
m_bGetThumbnailMode) at your application level to make this function return TRUE.

Called to load document data from a stream.

pStream
A pointer to a stream. This stream is supplied by the Shell.

Return ValueReturn Value

RemarksRemarks

CDocument::m_bGetThumbnailMode

BOOL m_bGetThumbnailMode;

RemarksRemarks

CDocument::m_bPreviewHandlerMode

BOOL m_bPreviewHandlerMode;

RemarksRemarks

CDocument::m_bSearchMode

BOOL m_bSearchMode;

RemarksRemarks

CDocument::m_clrRichPreviewBackColor

COLORREF m_clrRichPreviewBackColor;

RemarksRemarks

CDocument::m_clrRichPreviewTextColor

dwGrfMode
Access mode to the stream.

S_OK if the load operation succeeds, otherwise HRESULT with an error code.

You can override this method in a derived class to customize how to load data from the stream.

Specifies that the CDocument object was created by dllhost for thumbnails. Should be checked in
CView::OnDraw .

TRUE indicates that the document was created by dllhost for thumbnails.

Specifies that the CDocument object was created by prevhost for Rich Preview. Should be checked in
CView::OnDraw .

TRUE indicates that the document was created by prevhost for Rich Preview.

Specifies that the CDocument object was created by indexer or by another search application.

TRUE indicates that the document was created by indexer or by another search application.

Specifies the background color of the Rich Preview window. This color is set by host.

Specifies the foreground color of the Rich Preview window. This color is set by host.

COLORREF m_clrRichPreviewTextColor;

RemarksRemarks

CDocument::m_lfRichPreviewFont

CFont m_lfRichPreviewFont;

RemarksRemarks

CDocument::OnBeforeRichPreviewFontChanged

virtual void OnBeforeRichPreviewFontChanged();

RemarksRemarks

CDocument::OnChangedViewList

virtual void OnChangedViewList();

RemarksRemarks

CDocument::OnCloseDocument

virtual void OnCloseDocument();

RemarksRemarks

CDocument::OnCreatePreviewFrame

Specifies the text font for the Rich Preview window. This font information is set by host.

Called before the Rich Preview font is changed.

Called by the framework after a view is added to or removed from the document.

The default implementation of this function checks whether the last view is being removed and, if so,
deletes the document. Override this function if you want to perform special processing when the
framework adds or removes a view. For example, if you want a document to remain open even when there
are no views attached to it, override this function.

Called by the framework when the document is closed, typically as part of the File Close command.

The default implementation of this function destroys all of the frames used for viewing the document,
closes the view, cleans up the document's contents, and then calls the DeleteContents member function to
delete the document's data.

Override this function if you want to perform special cleanup processing when the framework closes a
document. For example, if the document represents a record in a database, you may want to override this
function to close the database. You should call the base class version of this function from your override.

Called by the framework when it needs to create a preview frame for Rich Preview.

virtual BOOL OnCreatePreviewFrame();

Return ValueReturn Value

RemarksRemarks

CDocument::OnDocumentEvent

virtual void OnDocumentEvent(DocumentEvent deEvent);

ParametersParameters

RemarksRemarks

VALUE CORRESPONDING EVENT

onAfterNewDocument A new document was created.

onAfterOpenDocument A new document was opened.

onAfterSaveDocument The document was saved.

onAfterCloseDocument The document was closed.

CDocument::OnDrawThumbnail

virtual void OnDrawThumbnail(
 CDC& dc,
 LPRECT lprcBounds);

ParametersParameters

RemarksRemarks

Returns TRUE if the frame is created successfully; otherwise FALSE.

Called by the framework in response to a document event.

deEvent
[in] An enumerated data type that describes the type of event.

Document events may affect multiple classes. This method is responsible for handling document events
that affect classes other than the CDocument Class. Currently, the only class that must respond to
document events is the CDataRecoveryHandler Class. The CDocument class has other overrideable
methods responsible for handling the effect on the CDocument .

The following table lists the possible values for deEvent and the events that they correspond to.

Override this method in a derived class to draw the thumbnail.

dc
A reference to a device context.

lprcBounds
Specifies a bounding rectangle of the area where the thumbnail should be drawn.

CDocument::OnFileSendMail

void OnFileSendMail();

RemarksRemarks

CDocument::OnLoadDocumentFromStream

virtual HRESULT OnLoadDocumentFromStream(
 IStream* pStream,
 DWORD grfMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocument::OnNewDocument

virtual BOOL OnNewDocument();

Return ValueReturn Value

RemarksRemarks

Sends a message via the resident mail host (if any) with the document as an attachment.

OnFileSendMail calls OnSaveDocument to serialize (save) untitled and modified documents to a
temporary file, which is then sent via electronic mail. If the document has not been modified, a temporary
file is not needed; the original is sent. OnFileSendMail loads MAPI32.DLL if it has not already been loaded.

A special implementation of OnFileSendMail for COleDocument handles compound files correctly.

CDocument supports sending your document via mail if mail support (MAPI) is present. See the articles
MAPI Topics and MAPI Support in MFC.

Called by the framework when it needs to load the document data from a stream.

pStream
A pointer to an incoming stream.

grfMode
Access mode to the stream.

S_OK if the load is successful; otherwise an error code.

Called by the framework as part of the File New command.

Nonzero if the document was successfully initialized; otherwise 0.

The default implementation of this function calls the DeleteContents member function to ensure that the
document is empty and then marks the new document as clean. Override this function to initialize the data
structure for a new document. You should call the base class version of this function from your override.

If the user chooses the File New command in an SDI application, the framework uses this function to
reinitialize the existing document, rather than creating a new one. If the user chooses File New in a multiple
document interface (MDI) application, the framework creates a new document each time and then calls this
function to initialize it. You must place your initialization code in this function instead of in the constructor

ExampleExample

// Method 1: In an MDI application, the simplest place to do
// initialization is in the document constructor. The framework
// always creates a new document object for File New or File Open.
CExampleDoc::CExampleDoc()
{
 // Do initialization of MDI document here.
}

// Method 2: In an SDI or MDI application, do all initialization
// in an override of OnNewDocument, if you are certain that
// the initialization is effectively saved upon File Save
// and fully restored upon File Open, via serialization.
BOOL CMyDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 // Do initialization of new document here.

 return TRUE;
}

// Method 3: If the initialization of your document is not
// effectively saved and restored by serialization (during File Save
// and File Open), then implement the initialization in single
// function (named InitMyDocument in this example). Call the
// shared initialization function from overrides of both
// OnNewDocument and OnOpenDocument.
BOOL CExampleDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 InitMyDocument(); // call your shared initialization function

 // If your new document object requires additional initialization
 // not necessary when the document is deserialized via File Open,
 // then perform that additional initialization here.

 return TRUE;
}

CDocument::OnOpenDocument

virtual BOOL OnOpenDocument(LPCTSTR lpszPathName);

for the File New command to be effective in SDI applications.

Note that there are cases where OnNewDocument is called twice. This occurs when the document is
embedded as an ActiveX Document Server. The function is first called by the CreateInstance method
(exposed by the COleObjectFactory -derived class) and a second time by the InitNew method (exposed by
the COleServerDoc -derived class).

The following examples illustrate alternative methods of initializing a document object.

Called by the framework as part of the File Open command.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Method 1: In an MDI application, the simplest place to do
// initialization is in the document constructor. The framework
// always creates a new document object for File New or File Open.
CExampleDoc::CExampleDoc()
{
 // Do initialization of MDI document here.
}

// Method 2: In an SDI or MDI application, do all initialization
// in an override of OnNewDocument, if you are certain that
// the initialization is effectively saved upon File Save
// and fully restored upon File Open, via serialization.
BOOL CMyDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 // Do initialization of new document here.

 return TRUE;
}

lpszPathName
Points to the path of the document to be opened.

Nonzero if the document was successfully loaded; otherwise 0.

The default implementation of this function opens the specified file, calls the DeleteContents member
function to ensure that the document is empty, calls CObject::Serialize to read the file's contents, and then
marks the document as clean. Override this function if you want to use something other than the archive
mechanism or the file mechanism. For example, you might write an application where documents
represent records in a database rather than separate files.

If the user chooses the File Open command in an SDI application, the framework uses this function to
reinitialize the existing CDocument object, rather than creating a new one. If the user chooses File Open in
an MDI application, the framework constructs a new CDocument object each time and then calls this
function to initialize it. You must place your initialization code in this function instead of in the constructor
for the File Open command to be effective in SDI applications.

The following examples illustrate alternative methods of initializing a document object.

// Method 3: If the initialization of your document is not
// effectively saved and restored by serialization (during File Save
// and File Open), then implement the initialization in single
// function (named InitMyDocument in this example). Call the
// shared initialization function from overrides of both
// OnNewDocument and OnOpenDocument.
BOOL CExampleDoc::OnNewDocument()
{
 if (!CDocument::OnNewDocument())
 return FALSE;

 InitMyDocument(); // call your shared initialization function

 // If your new document object requires additional initialization
 // not necessary when the document is deserialized via File Open,
 // then perform that additional initialization here.

 return TRUE;
}

// Additional example of OnOpenDocument()
BOOL CExampleDoc::OnOpenDocument(LPCTSTR lpszPathName)
{
 if (!CDocument::OnOpenDocument(lpszPathName))
 return FALSE;

 InitMyDocument(); // call your shared initialization function

 return TRUE;
}

CDocument::OnPreviewHandlerQueryFocus

virtual HRESULT OnPreviewHandlerQueryFocus(HWND* phwnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocument::OnPreviewHandlerTranslateAccelerator

virtual HRESULT OnPreviewHandlerTranslateAccelerator(MSG* pmsg);

ParametersParameters

Directs the preview handler to return the HWND retrieved from calling the GetFocus function.

phwnd
[out] When this method returns, contains a pointer to the HWND returned from calling the GetFocus

function from the preview handler's foreground thread.

Returns S_OK if successful; or an error value otherwise.

Directs the preview handler to handle a keystroke passed up from the message pump of the process in
which the preview handler is running.

pmsg

Return ValueReturn Value

RemarksRemarks

CDocument::OnRichPreviewBackColorChanged

virtual void OnRichPreviewBackColorChanged();

RemarksRemarks

CDocument::OnRichPreviewFontChanged

virtual void OnRichPreviewFontChanged();

RemarksRemarks

CDocument::OnRichPreviewSiteChanged

virtual void OnRichPreviewSiteChanged();

RemarksRemarks

CDocument::OnRichPreviewTextColorChanged

virtual void OnRichPreviewTextColorChanged();

RemarksRemarks

CDocument::OnSaveDocument

virtual BOOL OnSaveDocument(LPCTSTR lpszPathName);

ParametersParameters

[in] A pointer to a window message.

If the keystroke message can be processed by the preview handler, the handler processes it and returns
S_OK. If the preview handler cannot process the keystroke message, it offers it to the host via
IPreviewHandlerFrame::TranslateAccelerator . If the host processes the message, this method returns S_OK.

If the host does not process the message, this method returns S_FALSE.

Called when the Rich Preview background color has changed.

Called when the Rich Preview font has changed.

Called when the Rich Preview site has changed.

Called when the Rich Preview text color has changed.

Called by the framework as part of the File Save or File Save As command.

lpszPathName
Points to the fully qualified path to which the file should be saved.

Return ValueReturn Value

RemarksRemarks

CDocument::OnUnloadHandler

virtual void OnUnloadHandler();

RemarksRemarks

CDocument::OnUpdateFileSendMail

void OnUpdateFileSendMail(CCmdUI* pCmdUI);

ParametersParameters

RemarksRemarks

CDocument::PreCloseFrame

virtual void PreCloseFrame(CFrameWnd* pFrame);

ParametersParameters

RemarksRemarks

CDocument::ReadNextChunkValue

Nonzero if the document was successfully saved; otherwise 0.

The default implementation of this function opens the specified file, calls CObject::Serialize to write the
document's data to the file, and then marks the document as clean. Override this function if you want to
perform special processing when the framework saves a document. For example, you might write an
application where documents represent records in a database rather than separate files.

Called by the framework when the preview handler is unloaded.

Enables the ID_FILE_SEND_MAIL command if mail support (MAPI) is present.

pCmdUI
A pointer to the CCmdUI object associated with the ID_FILE_SEND_MAIL command.

Otherwise the function removes the ID_FILE_SEND_MAIL command from the menu, including separators
above or below the menu item as appropriate. MAPI is enabled if MAPI32.DLL is present in the path and,
in the [Mail] section of the WIN.INI file, MAPI=1. Most applications put this command on the File menu.

CDocument supports sending your document via mail if mail support (MAPI) is present. See the articles
MAPI Topics and MAPI Support in MFC.

This member function is called by the framework before the frame window is destroyed.

pFrame
Pointer to the CFrameWnd that holds the associated CDocument object.

It can be overridden to provide custom cleanup, but be sure to call the base class as well.

The default of PreCloseFrame does nothing in CDocument . The CDocument -derived classes COleDocument
and CRichEditDoc use this member function.

virtual BOOL ReadNextChunkValue(IFilterChunkValue** ppValue);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocument::ReleaseFile

virtual void ReleaseFile(
 CFile* pFile,
 BOOL bAbort);

ParametersParameters

RemarksRemarks

CDocument::RemoveChunk

virtual void RemoveChunk(
 REFCLSID guid,
 DWORD pid);

ParametersParameters

RemarksRemarks

Reads the next chunk value.

ppValue
[out] When the function returns, ppValue contains the value that was read.

Nonzero if successful; otherwise 0.

This member function is called by the framework to release a file, making it available for use by other
applications.

pFile
A pointer to the CFile object to be released.

bAbort
Specifies whether the file is to be released by using either CFile::Close or CFile::Abort . FALSE if the file
is to be released using CFile::Close; TRUE if the file is to be released using CFile::Abort.

If bAbort is TRUE, ReleaseFile calls CFile::Abort , and the file is released. CFile::Abort will not throw an
exception.

If bAbort is FALSE, ReleaseFile calls CFile::Close and the file is released.

Override this member function to require an action by the user before the file is released.

Removes a chunk with the specified GUID.

Guid
Specifies the GUID of a chunk to be removed.

Pid
Specifies the PID of a chunk to be removed.

CDocument::RemoveView

void RemoveView(CView* pView);

ParametersParameters

RemarksRemarks

CDocument::ReportSaveLoadException

virtual void ReportSaveLoadException(
 LPCTSTR lpszPathName,
 CException* e,
 BOOL bSaving,
 UINT nIDPDefault);

ParametersParameters

RemarksRemarks

CDocument::SaveModified

Call this function to detach a view from a document.

pView
Points to the view being removed.

This function removes the specified view from the list of views associated with the document; it also sets
the view's document pointer to NULL. This function is called by the framework when a frame window is
closed or a pane of a splitter window is closed.

Call this function only if you are manually detaching a view. Typically you will let the framework detach
documents and views by defining a CDocTemplate object to associate a document class, view class, and
frame window class.

See the example at AddView for a sample implementation.

Called if an exception is thrown (typically a CFileException or CArchiveException) while saving or loading
the document.

lpszPathName
Points to name of document that was being saved or loaded.

e
Points to the exception that was thrown. May be NULL.

bSaving
Flag indicating what operation was in progress; nonzero if the document was being saved, 0 if the
document was being loaded.

nIDPDefault
Identifier of the error message to be displayed if the function does not specify a more specific one.

The default implementation examines the exception object and looks for an error message that specifically
describes the cause. If a specific message is not found or if e is NULL, the general message specified by the
nIDPDefault parameter is used. The function then displays a message box containing the error message.
Override this function if you want to provide additional, customized failure messages. This is an advanced
overridable.

virtual BOOL SaveModified();

Return ValueReturn Value

RemarksRemarks

CDocument::SetChunkValue

virtual BOOL SetChunkValue (IFilterChunkValue* pValue);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocument::SetModifiedFlag

virtual void SetModifiedFlag(BOOL bModified = TRUE);

ParametersParameters

RemarksRemarks

CDocument::SetPathName

virtual void SetPathName(
 LPCTSTR lpszPathName,
 BOOL bAddToMRU = TRUE);

ParametersParameters

Called by the framework before a modified document is to be closed.

Nonzero if it is safe to continue and close the document; 0 if the document should not be closed.

The default implementation of this function displays a message box asking the user whether to save the
changes to the document, if any have been made. Override this function if your program requires a
different prompting procedure. This is an advanced overridable.

Sets a chunk value.

pValue
Specifies a chunk value to set.

Nonzero if successful; otherwise 0.

Call this function after you have made any modifications to the document.

bModified
Flag indicating whether the document has been modified.

By calling this function consistently, you ensure that the framework prompts the user to save changes
before closing a document. Typically you should use the default value of TRUE for the bModified
parameter. To mark a document as clean (unmodified), call this function with a value of FALSE.

Call this function to specify the fully qualified path of the document's disk file.

lpszPathName

RemarksRemarks

CDocument::SetTitle

virtual void SetTitle(LPCTSTR lpszTitle);

ParametersParameters

RemarksRemarks

CDocument::UpdateAllViews

void UpdateAllViews(
 CView* pSender,
 LPARAM lHint = 0L,
 CObject* pHint = NULL);

ParametersParameters

RemarksRemarks

Points to the string to be used as the path for the document.

bAddToMRU
Determines whether the filename is added to the most recently used (MRU) file list. If TRUE, the filename
is added; if FALSE, it is not added.

Depending on the value of bAddToMRU the path is added, or not added, to the MRU list maintained by the
application. Note that some documents are not associated with a disk file. Call this function only if you are
overriding the default implementation for opening and saving files used by the framework.

Call this function to specify the document's title (the string displayed in the title bar of a frame window).

lpszTitle
Points to the string to be used as the document's title.

Calling this function updates the titles of all frame windows that display the document.

Call this function after the document has been modified.

pSender
Points to the view that modified the document, or NULL if all views are to be updated.

lHint
Contains information about the modification.

pHint
Points to an object storing information about the modification.

You should call this function after you call the SetModifiedFlag member function. This function informs
each view attached to the document, except for the view specified by pSender, that the document has been
modified. You typically call this function from your view class after the user has changed the document
through a view.

This function calls the CView::OnUpdate member function for each of the document's views except the
sending view, passing pHint and lHint. Use these parameters to pass information to the views about the
modifications made to the document. You can encode information using lHint and/or you can define a
CObject-derived class to store information about the modifications and pass an object of that class using
pHint. Override the CView::OnUpdate member function in your CView-derived class to optimize the

ExampleExample

void CExampleDoc::OnUpdateAllViews()
{
 UpdateAllViews(NULL);
}

See also

updating of the view's display based on the information passed.

MFC Sample MDIDOCVW
MFC Sample SNAPVW
MFC Sample NPP
CCmdTarget Class
Hierarchy Chart
CCmdTarget Class
CView Class
CDocTemplate Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CDragListBox Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CDragListBox : public CListBox

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDragListBox::CDragListBox Constructs a CDragListBox object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDragListBox::BeginDrag Called by the framework when a drag operation starts.

CDragListBox::CancelDrag Called by the framework when a drag operation has been
canceled.

CDragListBox::Dragging Called by the framework during a drag operation.

CDragListBox::DrawInsert Draws the insertion guide of the drag list box.

CDragListBox::Dropped Called by the framework after the item has been dropped.

CDragListBox::ItemFromPt Returns the coordinates of the item being dragged.

Remarks

In addition to providing the functionality of a Windows list box, the CDragListBox class allows the user to move
list box items, such as filenames, within the list box.

List boxes with this capability allow users to order the items in a list in whatever manner is most useful to them. By
default, the list box will move the item to the new location in the list. However, CDragListBox objects can be
customized to copy items instead of moving them.

The list box control associated with the CDragListBox class must not have the LBS_SORT or the
LBS_MULTIPLESELECT style. For a description of list box styles, see List-Box Styles.

To use a drag list box in an existing dialog box of your application, add a list box control to your dialog template
using the dialog editor and then assign a member variable (of Category Control and Variable Type CDragListBox)
corresponding to the list box control in your dialog template.

For more information on assigning controls to member variables, see Shortcut for Defining Member Variables for

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdraglistbox-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/defining-member-variables-for-dialog-controls

Inheritance Hierarchy

Requirements

CDragListBox::BeginDrag

virtual BOOL BeginDrag(CPoint pt);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDragListBox::CancelDrag

virtual void CancelDrag(CPoint pt);

ParametersParameters

RemarksRemarks

CDragListBox::CDragListBox

Dialog Controls.

CObject

CCmdTarget

CWnd

CListBox

CDragListBox

Header: afxcmn.h

Called by the framework when an event occurs that could begin a drag operation, such as pressing the left mouse
button.

pt
A CPoint object that contains the coordinates of the item being dragged.

Nonzero if dragging is allowed, otherwise 0.

Override this function if you want to control what happens when a drag operation begins. The default
implementation captures the mouse and stays in drag mode until the user clicks the left or right mouse button or
presses ESC, at which time the drag operation is canceled.

Called by the framework when a drag operation has been canceled.

pt
A CPoint object that contains the coordinates of the item being dragged.

Override this function to handle any special processing for your list box control.

Constructs a CDragListBox object.

CDragListBox();

CDragListBox::Dragging

virtual UINT Dragging(CPoint pt);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDragListBox::DrawInsert

virtual void DrawInsert(int nItem);

ParametersParameters

RemarksRemarks

CDragListBox::Dropped

virtual void Dropped(
 int nSrcIndex,
 CPoint pt);

ParametersParameters

Called by the framework when a list box item is being dragged within the CDragListBox object.

pt
A CPoint object that contains the x and y screen coordinates of the cursor.

The resource ID of the cursor to be displayed. The following values are possible:

DL_COPYCURSOR Indicates that the item will be copied.

DL_MOVECURSOR Indicates that the item will be moved.

DL_STOPCURSOR Indicates that the current drop target is not acceptable.

The default behavior returns DL_MOVECURSOR. Override this function if you want to provide additional
functionality.

Called by the framework to draw the insertion guide before the item with the indicated index.

nItem
Zero-based index of the insertion point.

A value of - 1 clears the insertion guide. Override this function to modify the appearance or behavior of the
insertion guide.

Called by the framework when an item is dropped within a CDragListBox object.

nSrcIndex
Specifies the zero-based index of the dropped string.

pt

RemarksRemarks

CDragListBox::ItemFromPt

int ItemFromPt(
 CPoint pt,
 BOOL bAutoScroll = TRUE) const;

ParametersParameters

Return ValueReturn Value

See also

A CPoint object that contains the coordinates of the drop site.

The default behavior copies the list box item and its data to the new location and then deletes the original item.
Override this function to customize the default behavior, such as enabling copies of list box items to be dragged to
other locations within the list.

Call this function to retrieve the zero-based index of the list box item located at pt.

pt
A CPoint object containing the coordinates of a point within the list box.

bAutoScroll
Nonzero if scrolling is allowed, otherwise 0.

Zero-based index of the drag list box item.

MFC Sample TSTCON
CListBox Class
Hierarchy Chart
CListBox Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CDrawingManager Class
3/4/2019 • 19 minutes to read • Edit Online

Syntax
class CDrawingManager : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDrawingManager::CDrawingManager Constructs a CDrawingManager object.

CDrawingManager::~CDrawingManager Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CDrawingManager::CreateBitmap_32 Creates a 32-bit device-independent bitmap (DIB) that
applications can write to directly.

CDrawingManager::DrawAlpha Displays bitmaps that have transparent or semitransparent
pixels.

CDrawingManager::DrawRotated Rotates a source DC content inside the given rectangle by +/-
90 degrees

CDrawingManager::DrawEllipse Draws an ellipse with the supplied fill and border colors.

CDrawingManager::DrawGradientRing Draws a ring and fills it with a color gradient.

CDrawingManager::DrawLine, CDrawingManager::DrawLineA Draws a line.

CDrawingManager::DrawRect Draws a rectangle with the supplied fill and border colors.

CDrawingManager::DrawShadow Draws a shadow for a rectangular area.

CDrawingManager::Fill4ColorsGradient Fills a rectangular area with two color gradients.

CDrawingManager::FillGradient Fills a rectangular area with a specified color gradient.

CDrawingManager::FillGradient2 Fills a rectangular area with a specified color gradient. The
direction of the gradient's color change is also specified.

The CDrawingManager class implements complex drawing algorithms.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdrawingmanager-class.md

CDrawingManager::GrayRect Fills a rectangle with a specified gray color.

CDrawingManager::HighlightRect Highlights a rectangular area.

CDrawingManager::HLStoRGB_ONE Converts a color from a HLS representation to a RGB
representation.

CDrawingManager::HLStoRGB_TWO Converts a color from a HLS representation to a RGB
representation.

CDrawingManager::HSVtoRGB Converts a color from a HSV representation to a RGB
representation.

CDrawingManager::HuetoRGB Helper method that converts a hue value to a red, green, or
blue component.

CDrawingManager::MirrorRect Flips a rectangular area.

CDrawingManager::PixelAlpha Helper method that determines the final color for a
semitransparent pixel.

CDrawingManager::PrepareShadowMask Creates a bitmap that can be used as a shadow.

CDrawingManager::RGBtoHSL Converts a color from a RGB representation to a HSL
representation.

CDrawingManager::RGBtoHSV Converts a color from a RGB representation to a HSV
representation.

CDrawingManager::SetAlphaPixel Helper method that colors a partially transparent pixel in a
bitmap.

CDrawingManager::SetPixel Helper method that changes a single pixel in a bitmap to the
specified color.

CDrawingManager::SmartMixColors Combines two colors based on a weighted ratio.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CDrawingManager::CDrawingManager

The CDrawingManager class provides functions for drawing shadows, color gradients, and highlighted rectangles. It
also performs alpha-blending. You can use this class to directly change your application's UI.

CObject
CDrawingManager

Header: afxdrawmanager.h

CDrawingManager(CDC& dc);

ParametersParameters

CDrawingManager::CreateBitmap_32

static HBITMAP __stdcall CreateBitmap_32(
 const CSize& size,
 void** pBits);

static HBITMAP __stdcall CreateBitmap_32(
 HBITMAP bitmap,
 COLORREF clrTransparent = -1);

ParametersParameters

Parameter Description

size [in] A CSize parameter that indicates the size of the bitmap.

pBits [out] A pointer to a data pointer that receives the location of
the DIB's bit values.

bitmap A handle to the original bitmap

clrTransparent An RGB value specifying transparent color of the original
bitmap.

Return ValueReturn Value

RemarksRemarks

CDrawingManager::DrawAlpha

void DrawAlpha(
 CDC* pDstDC,
 const CRect& rectDst,
 CDC* pSrcDC,
 const CRect& rectSrc);

ParametersParameters

Constructs a CDrawingManager object.

dc
[in] A reference to a device context. The CDrawingManager uses this context for drawing.

Creates a 32-bit device-independent bitmap (DIB) that applications can write to directly.

A handle to the newly created DIB bitmap if this method is successful; otherwise NULL.

For more information about how to create a DIB bitmap, see CreateDIBSection.

Displays bitmaps that have transparent or semitransparent pixels.

pDstDC

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-createdibitmap

RemarksRemarks

CDrawingManager::DrawEllipse

void DrawEllipse(
 const CRect& rect,
 COLORREF clrFill,
 COLORREF clrLine);

ParametersParameters

RemarksRemarks

CDrawingManager::DrawGradientRing

BOOL DrawGradientRing(
 CRect rect,
 COLORREF colorStart,
 COLORREF colorFinish,
 COLORREF colorBorder,
 int nAngle,
 int nWidth,
 COLORREF clrFace = (COLORREF)-1);

ParametersParameters

[in] A pointer to the device context for the destination.

rectDst
[in] The destination rectangle.

pSrcDC
[in] A pointer to the device context for the source.

rectSrc
[in] The source rectangle.

This method performs alpha-blending for two bitmaps. For more information about alpha-blending, see
AlphaBlend in the Windows SDK.

Draws an ellipse with the supplied fill and border colors.

rect
[in] The bounding rectangle for the ellipse.

clrFill
[in] The color this method uses to fill the ellipse.

clrLine
[in] The color this method uses as the border of the ellipse.

This method returns without drawing an ellipse if either color is set to -1. It also returns without drawing an ellipse
if either dimension of the bounding rectangle is 0.

Draws a ring and fills it with a color gradient.

rect
[in] A CRect parameter that specifies the boundary for the gradient ring.

colorStart
[in] The first color for the gradient.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-alphablend

Return ValueReturn Value

RemarksRemarks

CDrawingManager::DrawLine, CDrawingManager::DrawLineA

void DrawLine(
 int x1,
 int y1,
 int x2,
 int y2,
 COLORREF clrLine);

void DrawLineA(
 double x1,
 double y1,
 double x2,
 double y2,
 COLORREF clrLine);

ParametersParameters

Parameter Description

x1 [in] The x coordinate where the line starts.

y1 [in] The y coordinate where the line starts.

x2 [in] The x coordinate where the line ends.

y2 [in] The y coordinate where the line ends.

clrLine [in] The color of the line.

RemarksRemarks

colorFinish
[in] The last color for the gradient.

colorBorder
[in] The color of the border.

nAngle
[in] A parameter that specifies the initial gradient drawing angle. This value should be between 0 and 360.

nWidth
[in] The width of the border for the ring.

clrFace
[in] The color of the interior of the ring.

Nonzero if successful; otherwise 0.

The rectangle defined by rect must be at least 5 pixels wide and 5 pixels high.

Draws a line.

This method fails if clrLine equals -1.

CDrawingManager::DrawRect

void DrawRect(
 const CRect& rect,
 COLORREF clrFill,
 COLORREF clrLine);

ParametersParameters

RemarksRemarks

CDrawingManager::DrawShadow

BOOL DrawShadow(
 CRect rect,
 int nDepth,
 int iMinBrightness = 100,
 int iMaxBrightness = 50,
 CBitmap* pBmpSaveBottom = NULL,
 CBitmap* pBmpSaveRight = NULL,
 COLORREF clrBase = (COLORREF)-1,
 BOOL bRightShadow = TRUE);

ParametersParameters

Draws a rectangle with the supplied fill and border colors.

rect
[in] The boundaries for the rectangle.

clrFill
[in] The color this method uses to fill the rectangle.

clrLine
[in] The color this method uses for the border of the rectangle.

This method returns without drawing a rectangle if either color is set to -1. It also returns if either dimension of the
rectangle is 0.

Draws a shadow for a rectangular area.

rect
[in] A rectangular area in your application. The drawing manager will draw a shadow underneath this area.

nDepth
[in] The width and height of the shadow.

iMinBrightness
[in] The minimum brightness of the shadow.

iMaxBrightness
[in] The maximum brightness of the shadow.

pBmpSaveBottom
[in] A pointer to a bitmap that contains the image for the bottom part of the shadow.

pBmpSaveRight
[in] A pointer to a bitmap that contains the image for the shadow that is drawn on the right side of the rectangle.

clrBase

Return ValueReturn Value

RemarksRemarks

ExampleExample

// CDC* pDC
// CRect rectHeader
CDrawingManager dm (*pDC);
// Draw a shadow for a rectangular area.
// second parameter is the depth of the shadow
dm.DrawShadow (rectHeader, 2);

CDrawingManager::Fill4ColorsGradient

void Fill4ColorsGradient(
 CRect rect,
 COLORREF colorStart1,
 COLORREF colorFinish1,
 COLORREF colorStart2,
 COLORREF colorFinish2,
 BOOL bHorz = TRUE,
 int nPercentage = 50);

ParametersParameters

[in] The color of the shadow.

bRightShadow
[in] A Boolean parameter that indicates how the shadow is drawn. If bRightShadow is TRUE , DrawShadow draws a
shadow on the right side of the rectangle.

Nonzero if successful; otherwise 0.

You can provide two valid bitmaps for the bottom and right shadows by using the parameters pBmpSaveBottom
and pBmpSaveRight. If these CBitmap objects have an attached GDI object, DrawShadow will use those bitmaps as
the shadows. If the CBitmap parameters do not have an attached GDI object, DrawShadow draws the shadow and
attaches the bitmaps to the parameters. In future calls to DrawShadow , you can provide these bitmaps to speed up
the drawing process. For more information about the CBitmap class and GDI objects, see Graphic Objects.

If either of these parameters is NULL , DrawShadow will automatically draw the shadow.

If you set bRightShadow to FALSE, the shadow will be drawn underneath and to the left of the rectangular area.

The following example demonstrates how to use the DrawShadow method of the CDrawingManager class. This code
snippet is part of the Prop Sheet Demo sample.

Fills a rectangular area with two color gradients.

rect
[in] The rectangle to fill.

colorStart1
[in] The initial color for the first color gradient.

colorFinish1
[in] The final color for the first color gradient.

colorStart2
[in] The initial color for the second color gradient.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CDrawingManager::FillGradient

void FillGradient(
 CRect rect,
 COLORREF colorStart,
 COLORREF colorFinish,
 BOOL bHorz = TRUE,
 int nStartFlatPercentage = 0,
 int nEndFlatPercentage = 0);

ParametersParameters

ExampleExample

// CRect rectScreen
// CDrawingManager dm
dm.FillGradient(rectScreen, RGB(114, 125, 152), RGB(178, 185, 202), TRUE);

CDrawingManager::FillGradient2

colorFinish2
[in] The final color for the second color gradient.

bHorz
[in] A Boolean parameter that indicates whether Fill4ColorsGradient colors a horizontal or vertical gradient.
TRUE indicates a horizontal gradient.

nPercentage
[in] An integer from 0-100. This value indicates the percentage of the rectangle to fill with the first color gradient.

When a rectangle is filled with two color gradients, they are either located above each other or next to each other,
depending on the value of bHorz. Each color gradient is calculated independently with the method
CDrawingManager::FillGradient.

This method generates an assertion failure if nPercentage is less than 0 or more than 100.

Fills a rectangular area with the specified color gradient.

rect
[in] The rectangular area to fill.

colorStart
[in] The first color for the gradient.

colorFinish
[in] The final color for the gradient.

bHorz
[in] A Boolean parameter that specifies whether FillGradient should draw a horizontal or vertical gradient.

nStartFlatPercentage
[in] The percentage of the rectangle that FillGradient fills with colorStart before it starts the gradient.

nEndFlatPercentage
[in] The percentage of the rectangle that FillGradient fills with colorFinish after it finishes the gradient.

The following example demonstrates how to use the FillGradient method of the CDrawingManager class. This
code snippet is part of the MS Office 2007 Demo sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CDrawingManager::FillGradient2

void FillGradient2 (
 CRect rect,
 COLORREF colorStart,
 COLORREF colorFinish,
 int nAngle = 0);

ParametersParameters

RemarksRemarks

ExampleExample

// CRect rect
// CDC* pDC
CDrawingManager dm(*pDC);
// The last parameter is the angle that specifies the direction of the color gradient.
dm.FillGradient2(rect, RGB(102, 200, 238), RGB(0, 129, 185), 45);

CDrawingManager::GrayRect

BOOL GrayRect(
 CRect rect,
 int nPercentage = -1,
 COLORREF clrTransparent = (COLORREF)-1,
 COLORREF clrDisabled = (COLORREF)-1);

ParametersParameters

Fills a rectangular area with a specified color gradient.

rect
[in] The rectangular area to fill.

colorStart
[in] The first color of the gradient.

colorFinish
[in] The last color of the gradient.

nAngle
[in] An integer between 0 and 360. This parameter specifies the direction of the color gradient.

Use nAngle to specify the direction of the color gradient. When you specify the direction of the color gradient, you
also specify where the color gradient starts. A value of 0 for nAngle indicates the gradient starts from the top of
the rectangle. As nAngle increases, the starting location for the gradient moves in a counter-clockwise direction
based on the angle.

The following example demonstrates how to use the FillGradient2 method of the CDrawingManager class. This
code snippet is part of the New Controls sample.

Fills a rectangle with a specified gray color.

rect
[in] The rectangular area to fill.

nPercentage
[in] The percentage of gray you want in the rectangle.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

RemarksRemarks

CDrawingManager::HighlightRect

BOOL HighlightRect(
 CRect rect,
 int nPercentage = -1,
 COLORREF clrTransparent = (COLORREF)-1,
 int nTolerance = 0,
 COLORREF clrBlend = (COLORREF)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDrawingManager::HLStoRGB_ONE

clrTransparent
[in] The transparent color.

clrDisabled
[in] The color that this method uses for de-saturation if nPercentage is set to -1.

TRUE if the method was successful; otherwise FALSE.

For the parameter nPercentage, a lower value indicates a darker color.

The maximum value for nPercentage is 200. A value larger than 200 does not change the appearance of the
rectangle. If the value is -1, this method uses clrDisabled to limit the saturation of the rectangle.

Highlights a rectangular area.

rect
[in] A rectangular area to highlight.

nPercentage
[in] A percentage that indicates how transparent the highlight should be.

clrTransparent
[in] The transparent color.

nTolerance
[in] An integer between 0 and 255 that indicates the color tolerance.

clrBlend
[in] The base color for blending.

TRUE if the method is successful; otherwise FALSE.

If nPercentage is between 0 and 99, HighlightRect uses the alpha blending algorithm. For more information
about alpha blending, see Alpha Blending Lines and Fills. If nPercentage is -1, this method uses the default
highlight level. If nPercentage is 100, this method does nothing and returns TRUE.

The method uses the parameter nTolerance to determine whether to highlight the rectangular area. To highlight
the rectangle, the difference between the background color of your application and clrTransparent must be less
than nTolerance in each color component (red, green, and blue).

Converts a color from a HLS representation to a RGB representation.

https://docs.microsoft.com/dotnet/framework/winforms/advanced/alpha-blending-lines-and-fills

static COLORREF __stdcall HLStoRGB_ONE(
 double H,
 double L,
 double S);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDrawingManager::HLStoRGB_TWO

static COLORREF __stdcall HLStoRGB_TWO(
 double H,
 double L,
 double S);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

H
[in] A number between 0 and 1 that represents the hue for the color.

L
[in] A number between 0 and 1 that indicates the luminosity for the color.

S
[in] A number between 0 and 1 that indicates the saturation for the color.

The RGB representation of the HLS color provided.

A color can be represented as HSV (hue, saturation, and value), HSL (hue, saturation, and luminosity), or RGB (red,
green, and blue). For more information about the different representations of color, see Color.

This method and the CDrawingManager::HLStoRGB_TWO method perform the same operation, but require different
values for the H parameter. In this method, H is a percentage of the circle. In the CDrawingManager::HLStoRGB_TWO

method, H is a degree value between 0 and 360, which both represent red. For example, with HLStoRGB_ONE , a
value of 0.25 for H is equivalent to a value of 90 with HLStoRGB_TWO .

Converts a color from a HLS representation to a RGB representation.

H
[in] A number between 0 and 360 that represents the hue for the color.

L
[in] A number between 0 and 1 that indicates the luminosity for the color.

S
[in] A number between 0 and 1 that indicates the saturation for the color.

The RGB representation of the HLS color provided.

A color can be represented as HSV (hue, saturation, and value), HSL (hue, saturation, and luminosity), or RGB (red,
green, and blue). For more information about the different representations of color, see Color.

This method and the CDrawingManager::HLStoRGB_ONE method perform the same operation, but require
different values for the H parameter. In this method, H is a degree value between 0 and 360, which both represent

http://go.microsoft.com/fwlink/p/?linkid=119126
http://go.microsoft.com/fwlink/p/?linkid=119126

CDrawingManager::HSVtoRGB

static COLORREF __stdcall HSVtoRGB(
 double H,
 double S,
 double V);

ParametersParameters

Parameter Description

H [in] A number between 0 and 360 that indicates the hue for
the color.

S [in] A number between 0 and 1 that indicates the saturation
for the color.

V [in] A number between 0 and 1 that indicates the value for the
color.

Return ValueReturn Value

RemarksRemarks

CDrawingManager::HuetoRGB

static double __stdcall HuetoRGB(
 double m1,
 double m2,
 double h);

static BYTE __stdcall HueToRGB(
 float rm1,
 float rm2,
 float rh);

ParametersParameters

red. In the CDrawingManager::HLStoRGB_ONE method, H is a percentage of the circle. For example, with
HLStoRGB_ONE , a value of 0.25 for H is equivalent to a value of 90 with HLStoRGB_TWO .

Converts a color from a HSV representation to a RGB representation.

The RGB representation of the HSV color provided.

A color can be represented as HSV (hue, saturation, and value), HSL (hue, saturation, and luminosity), or RGB (red,
green, and blue). For more information about the different representations of color, see Color.

Converts a hue value to a red, green, or blue component.

m1
[in] See Remarks.

m2
[in] See Remarks.

h

http://go.microsoft.com/fwlink/p/?linkid=119126

Return ValueReturn Value

RemarksRemarks

CDrawingManager::MirrorRect

void MirrorRect(
 CRect rect,
 BOOL bHorz = TRUE);

ParametersParameters

RemarksRemarks

CDrawingManager::PixelAlpha

[in] See Remarks.

rm1
[in] See Remarks.

rm2
[in] See Remarks.

rh
[in] See Remarks.

The individual red, green, or blue component for the provided hue.

This method is a helper method that the CDrawingManager class uses to compute the individual red, green, and blue
components of a color in a HSV or HSL representation. This method is not designed to be called directly by the
programmer. The input parameters are values that depend on the conversion algorithm.

To convert a HSV or HSL color to a RGB representation, call one of the following methods:

CDrawingManager::HSVtoRGB

CDrawingManager::HLStoRGB_ONE

CDrawingManager::HLStoRGB_TWO

Flips a rectangular area.

rect
[in] The bounding rectangle of the area to flip.

bHorz
[in] A Boolean parameter that indicates whether the rectangle flips horizontally or vertically.

This method can flip any area of the device context owned by the CDrawingManager class. If bHorz is set to TRUE,
this method flips the area horizontally. Otherwise, it flips the area vertically.

Calculates the final color for a semitransparent pixel.

static COLORREF __stdcall PixelAlpha(
 COLORREF srcPixel,
 int percent);

static COLORREF __stdcall PixelAlpha(
 COLORREF srcPixel,
 double percentR,
 double percentG,
 double percentB);

static COLORREF __stdcall PixelAlpha(
 COLORREF srcPixel,
 COLORREF dstPixel,
 int percent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDrawingManager::PrepareShadowMask

static HBITMAP __stdcall PrepareShadowMask (
 int nDepth,
 COLORREF clrBase,
 int iMinBrightness = 0,
 int iMaxBrightness = 100);

ParametersParameters

srcPixel
[in] The initial color for the pixel.

percent
[in] A number between 0 and 100 that represents the percentage of transparency. A value of 100 indicates that the
initial color is completely transparent.

percentR
[in] A number between 0 and 100 that represents the percentage of transparency for the red component.

percentG
[in] A number between 0 and 100 that represents the percentage of transparency for the green component.

percentB
[in] A number between 0 and 100 that represents the percentage of transparency for the blue component.

dstPixel
[in] The base color for the pixel.

The final color for the semitransparent pixel.

This is a helper class for coloring semitransparent bitmaps and is not designed to be called directly by the
programmer.

When you use the version of the method that has dstPixel, the final color is a combination of dstPixel and srcPixel.
The srcPixel color is the partially transparent color over the base color of dstPixel.

Creates a bitmap that can be used as a shadow.

nDepth
[in] The width and height of the shadow.

Return ValueReturn Value

RemarksRemarks

CDrawingManager::RGBtoHSL

static void __stdcall RGBtoHSL(
 COLORREF rgb,
 double* H,
 double* S,
 double* L);

ParametersParameters

Parameter Description

rgb [in] The color in RGB values.

H [out] A pointer to a double where the method stores the hue
for the color.

S [out] A pointer to a double where the method stores the
saturation for the color.

L [out] A pointer to a double where the method stores the
lightness for the color.

RemarksRemarks

CDrawingManager::RGBtoHSV

clrBase
[in] The color of the shadow.

iMinBrightness
[in] The minimum brightness of the shadow.

iMaxBrightness
[in] The maximum brightness of the shadow.

A handle to the created bitmap if this method is successful; otherwise NULL.

If nDepth is set to 0, this method exits and returns NULL. If nDepth is less than 3, the width and height of the
shadow are set to 3 pixels.

Converts a color from a red, green, and blue (RGB) representation to a hue, saturation, and lightness (HSL)
representation.

A color can be represented as HSV (hue, saturation, and value), HSL (hue, saturation, and luminosity), or RGB (red,
green, and blue). For more information about the different representations of color, see Color.

The returned value for H is represented as a fraction between 0 and 1 where both 0 and 1 represent red. The
returned values for S and L are numbers between 0 and 1.

Converts a color from a RGB representation to a HSV representation.

http://go.microsoft.com/fwlink/p/?linkid=119126

static void __stdcall RGBtoHSV(
 COLORREF rgb,
 double* H,
 double* S,
 double* V);

ParametersParameters

RemarksRemarks

CDrawingManager::SetAlphaPixel

static void __stdcall SetAlphaPixel(
 COLORREF* pBits,
 CRect rect,
 int x,
 int y,
 int percent,
 int iShadowSize,
 COLORREF clrBase = (COLORREF)-1,
 BOOL bIsRight = TRUE);

ParametersParameters

rgb
[in] The color to convert in a RGB representation.

H
[out] A pointer to a double where this method stores the resulting hue for the color.

S
[out] A pointer to a double where this method stores the resulting saturation for the color.

V
[out] A pointer to a double where this method stores the resulting value for the color.

A color can be represented as HSV (hue, saturation, and value), HSL (hue, saturation, and luminosity), or RGB (red,
green, and blue). For more information about the different representations of color, see Color.

The returned value for H is a number between 0 and 360 where both 0 and 360 indicate red. The return values for
S and V are numbers between 0 and 1.

Colors a transparent pixel in a bitmap.

pBits
[in] A pointer to the bit values for the bitmap.

rect
[in] A rectangular area in your application. The drawing manager draws a shadow underneath and to the right of
this area.

x
[in] The horizontal coordinate of the pixel to color.

y
[in] The vertical coordinate of the pixel to color.

percent
[in] The percentage of transparency.

http://go.microsoft.com/fwlink/p/?linkid=119126

RemarksRemarks

CDrawingManager::SetPixel

static void __stdcall SetPixel(
 COLORREF* pBits,
 int cx,
 int cy,
 int x,
 int y,
 COLORREF color);

ParametersParameters

Parameter Description

pBits [in] A pointer to the bit values of the bitmap.

cx [in] The total width of the bitmap.

cy [in] The total height of the bitmap.

x [in] The x-coordinate of the pixel in the bitmap to change.

y [in] The y-coordinate of the pixel in the bitmap to change.

color [in] The new color for the pixel identified by the supplied
coordinates.

CDrawingManager::SmartMixColors

iShadowSize
[in] The width and height of the shadow.

clrBase
[in] The color of the shadow.

bIsRight
[in] A Boolean parameter that indicates which pixel to color. See the Remarks section for more information.

This method is a helper method that is used by the CDrawingManager::DrawShadow method. We recommend
that if you want to draw a shadow, call CDrawingManager::DrawShadow instead.

If bIsRight is set to TRUE, the pixel to color is measured x pixels from the right edge of rect. If it is FALSE, the pixel
to color is measured x pixels from the left edge of rect.

Changes a single pixel in a bitmap to the specified color.

Combines two colors based on a weighted ratio.

static COLORREF __stdcall SmartMixColors(
 COLORREF color1,
 COLORREF color2,
 double dblLumRatio = 1.,
 int k1 = 1,
 int k2 = 1);

ParametersParameters

Parameter Description

color1 [in] The first color to mix.

color2 [in] The second color to mix.

dblLumRatio [in] The ratio for the new color's luminosity. SmartMixColors
multiplies the luminosity of the mixed color by this ratio
before determining a final color.

k1 [in] The weighted ratio for the first color.

k2 [in] The weighted ratio for the second color.

Return ValueReturn Value

RemarksRemarks

CDrawingManager::DrawRotated

void DrawRotated(
 CRect rectDest,
 CDC& dcSrc,
 BOOL bClockWise);

ParametersParameters

A color that represents a weighted mixture of the supplied colors.

This method fails with an error if either k1 or k2 is less than zero. If both of these parameters are set to 0, the
method returns RGB(0, 0, 0) .

The weighted ratio is calculated with the following formula: (color1 * k1 + color2 * k2)/(k1 + k2). After the
weighted ratio is determined, the method calculates the luminosity for the mixed color. It then multiplies the
luminosity by dblLumRatio. If the value is larger than 1.0, the method sets the luminosity for the mixed color to the
new value. Otherwise, the luminosity is set to 1.0.

Rotates a source DC content inside the given rectangle by 90 degrees.

rectDest
Destination rectangle.

dcSrc
The source device context.

bClockWise
TRUE indicates rotate +90 degrees; FALSE indicates rotate -90 degrees.

RemarksRemarks

See also
Hierarchy Chart
Classes

CDumpContext Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CDumpContext

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CDumpContext::CDumpContext Constructs a CDumpContext object.

Public MethodsPublic Methods

NAME DESCRIPTION

CDumpContext::DumpAsHex Dumps the indicated item in hexadecimal format.

CDumpContext::Flush Flushes any data in the dump context buffer.

CDumpContext::GetDepth Gets an integer corresponding to the depth of the dump.

CDumpContext::HexDump Dumps bytes contained in an array in hexadecimal format.

CDumpContext::SetDepth Sets the depth of the dump.

Public OperatorsPublic Operators

NAME DESCRIPTION

CDumpContext::operator << Inserts variables and objects into the dump context.

Remarks

Supports stream-oriented diagnostic output in the form of human-readable text.

CDumpContext does not have a base class.

You can use afxDump, a predeclared CDumpContext object, for most of your dumping. The afxDump object is
available only in the Debug version of the Microsoft Foundation Class Library.

Several of the memory diagnostic services use afxDump for their output.

Under the Windows environment, the output from the predefined afxDump object, conceptually similar to the
cerr stream, is routed to the debugger via the Windows function OutputDebugString .

The CDumpContext class has an overloaded insertion (<<) operator for CObject pointers that dumps the object's

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdumpcontext-class.md

Inheritance Hierarchy

Requirements

CDumpContext::CDumpContext

CDumpContext(CFile* pFile = NULL);

ParametersParameters

RemarksRemarks

ExampleExample

CFile f;
if (!f.Open(_T("dump.txt"), CFile::modeCreate | CFile::modeWrite))
{
 AFXDUMP(_T("Unable to open file\n"));
 exit(1);
}
CDumpContext dc(&f);

data. If you need a custom dump format for a derived object, override CObject::Dump. Most Microsoft
Foundation classes implement an overridden Dump member function.

Classes that are not derived from CObject , such as CString , CTime , and CTimeSpan , have their own overloaded
CDumpContext insertion operators, as do often-used structures such as CFileStatus , CPoint , and CRect .

If you use the IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macro in the implementation of your class,
then CObject::Dump will print the name of your CObject -derived class. Otherwise, it will print CObject .

The CDumpContext class is available with both the Debug and Release versions of the library, but the Dump

member function is defined only in the Debug version. Use #ifdef _DEBUG / #endif statements to bracket
your diagnostic code, including your custom Dump member functions.

Before you create your own CDumpContext object, you must create a CFile object that serves as the dump
destination.

For more information on CDumpContext , see Debugging MFC Applications.

#define _DEBUG

CDumpContext

Header: afx.h

Constructs an object of class CDumpContext .

pFile
A pointer to the CFile object that is the dump destination.

The afxDump object is constructed automatically.

Do not write to the underlying CFile while the dump context is active; otherwise, you will interfere with the
dump. Under the Windows environment, the output is routed to the debugger via the Windows function
OutputDebugString .

https://docs.microsoft.com/visualstudio/debugger/mfc-debugging-techniques

CDumpContext::DumpAsHex

CDumpContext& DumpAsHex(BYTE b);
CDumpContext& DumpAsHex(DWORD dw);
CDumpContext& DumpAsHex(int n);
CDumpContext& DumpAsHex(LONG l);
CDumpContext& DumpAsHex(LONGLONG n);
CDumpContext& DumpAsHex(UINT u);
CDumpContext& DumpAsHex(ULONGLONG n);
CDumpContext& DumpAsHex(WORD w);

Return ValueReturn Value

RemarksRemarks

ExampleExample

#if _DEBUG
 afxDump.DumpAsHex(115);
#endif

CDumpContext::Flush

void Flush();

ExampleExample

#if _DEBUG
 afxDump.Flush();
#endif

CDumpContext::GetDepth

int GetDepth() const;

Return ValueReturn Value

ExampleExample

CDumpContext::HexDump

Dumps the specified type formatted as hexadecimal numbers.

A reference to a CDumpContext object.

Call this member function to dump the item of the specified type as a hexadecimal number. To dump an array, call
CDumpContext::HexDump.

Forces any data remaining in buffers to be written to the file attached to the dump context.

Determines whether a deep or shallow dump is in process.

The depth of the dump as set by SetDepth .

See the example for SetDepth.

Dumps an array of bytes formatted as hexadecimal numbers.

void HexDump(
 LPCTSTR lpszLine,
 BYTE* pby,
 int nBytes,
 int nWidth);

ParametersParameters

RemarksRemarks

ExampleExample

#if _DEBUG
 TCHAR test[] = _T("This is a test of CDumpContext::HexDump\n");
 afxDump.HexDump(_T("."), (BYTE*)test, sizeof(test), 20);
#endif

CDumpContext::operator <<

CDumpContext& operator<<(const CObject* pOb);
CDumpContext& operator<<(const CObject& ob);
CDumpContext& operator<<(LPCTSTR lpsz);
CDumpContext& operator<<(const void* lp);
CDumpContext& operator<<(BYTE by);
CDumpContext& operator<<(WORD w);
CDumpContext& operator<<(DWORD dw);
CDumpContext& operator<<(int n);
CDumpContext& operator<<(double d);
CDumpContext& operator<<(float f);
CDumpContext& operator<<(LONG l);
CDumpContext& operator<<(UINT u);
CDumpContext& operator<<(LPCWSTR lpsz);
CDumpContext& operator<<(LPCSTR lpsz);
CDumpContext& operator<<(LONGLONG n);
CDumpContext& operator<<(ULONGLONG n);
CDumpContext& operator<<(HWND h);
CDumpContext& operator<<(HDC h);
CDumpContext& operator<<(HMENU h);
CDumpContext& operator<<(HACCEL h);
CDumpContext& operator<<(HFONT h);

Return ValueReturn Value

lpszLine
A string to output at the start of a new line.

pby
A pointer to a buffer containing the bytes to dump.

nBytes
The number of bytes to dump.

nWidth
Maximum number of bytes dumped per line (not the width of the output line).

To dump a single, specific item type as a hexadecimal number, call CDumpContext::DumpAsHex.

Outputs the specified data to the dump context.

A CDumpContext reference. Using the return value, you can write multiple insertions on a single line of source
code.

RemarksRemarks

ExampleExample

#if _DEBUG
 CStringList li;
 li.AddHead(_T("item 0"));
 li.AddHead(_T("item 1"));
 CString s = _T("test");
 int i = 7;
 long lo = 1000000000L;
 LONGLONG lolo = 12345678901234i64;
 afxDump << _T("list=") << &li << _T("string=")
 << s << _T("int=") << i << _T("long=") << lo
 << _T("LONGLONG=") << lolo << _T("\n");
#endif

CDumpContext::SetDepth

void SetDepth(int nNewDepth);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

#if _DEBUG
 afxDump.SetDepth(1); // Specifies deep dump
 ASSERT(afxDump.GetDepth() == 1);
#endif

See also

The insertion operator is overloaded for CObject pointers as well as for most primitive types. A pointer to
character results in a dump of string contents; a pointer to void results in a hexadecimal dump of the address
only. A LONGLONG results in a dump of a 64-bit signed integer; A ULONGLONG results in a dump of a 64-bit
unsigned integer.

If you use the IMPLEMENT_DYNAMIC or IMPLEMENT_SERIAL macro in the implementation of your class,
then the insertion operator, through CObject::Dump , will print the name of your CObject -derived class.
Otherwise, it will print CObject . If you override the Dump function of the class, then you can provide a more
meaningful output of the object's contents instead of a hexadecimal dump.

Sets the depth for the dump.

nNewDepth
The new depth value.

If you are dumping a primitive type or simple CObject that contains no pointers to other objects, then a value of
0 is sufficient. A value greater than 0 specifies a deep dump where all objects are dumped recursively. For
example, a deep dump of a collection will dump all elements of the collection. You may use other specific depth
values in your derived classes.

Circular references are not detected in deep dumps and can result in infinite loops.

Hierarchy Chart
CFile Class
CObject Class

CDWordArray Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CDWordArray : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CObArray::CObArray Constructs an empty array.

Public MethodsPublic Methods

NAME DESCRIPTION

CObArray::Add Adds an element to the end of the array; grows the array if
necessary.

CObArray::Append Appends another array to the array; grows the array if
necessary.

CObArray::Copy Copies another array to the array; grows the array if
necessary.

CObArray::ElementAt Returns a temporary reference to the byte within the array.

CObArray::FreeExtra Frees all unused memory above the current upper bound.

CObArray::GetAt Returns the value at a given index.

CObArray::GetCount Gets the number of elements in this array.

CObArray::GetData Allows access to elements in the array. Can be NULL.

Supports arrays of 32-bit doublewords.

The member functions of CDWordArray are similar to the member functions of class CObArray. Because of this
similarity, you can use the CObArray reference documentation for member function specifics. Wherever you see
a CObject pointer as a function parameter or return value, substitute a DWORD .

CObject* CObArray::GetAt(int <nIndex>) const;

for example, translates to

DWORD CDWordArray::GetAt(int <nIndex>) const;

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdwordarray-class.md

CObArray::GetSize Gets the number of elements in this array.

CObArray::GetUpperBound Returns the largest valid index.

CObArray::InsertAt Inserts an element (or all the elements in another array) at a
specified index.

CObArray::IsEmpty Determines if the array is empty.

CObArray::RemoveAll Removes all the elements from this array.

CObArray::RemoveAt Removes an element at a specific index.

CObArray::SetAt Sets the value for a given index; array not allowed to grow.

CObArray::SetAtGrow Sets the value for a given index; grows the array if necessary.

CObArray::SetSize Sets the number of elements to be contained in this array.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CObArray::operator [] Sets or gets the element at the specified index.

Remarks

NOTENOTE

Requirements

See also

CDWordArray incorporates the IMPLEMENT_SERIAL macro to support serialization and dumping of its elements. If
an array of doublewords is stored to an archive, either with the overloaded insertion (<<) operator or with the
Serialize member function, each element is, in turn, serialized.

Before using an array, use SetSize to establish its size and allocate memory for it. If you do not use SetSize , adding
elements to your array causes it to be frequently reallocated and copied. Frequent reallocation and copying are inefficient
and can fragment memory.

If you need debug output from individual elements in the array, you must set the depth of the CDumpContext
object to 1 or greater.

For more information on using CDWordArray , see the article Collections.

Header: afxcoll.h

CObject Class
Hierarchy Chart
CObArray Class

CEdit Class
3/4/2019 • 37 minutes to read • Edit Online

Syntax
class CEdit : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CEdit::CEdit Constructs a CEdit control object.

Public MethodsPublic Methods

NAME DESCRIPTION

CEdit::CanUndo Determines whether an edit-control operation can be
undone.

CEdit::CharFromPos Retrieves the line and character indexes for the character
closest to a specified position.

CEdit::Clear Deletes (clears) the current selection (if any) in the edit
control.

CEdit::Copy Copies the current selection (if any) in the edit control to
the Clipboard in CF_TEXT format.

CEdit::Create Creates the Windows edit control and attaches it to the
CEdit object.

CEdit::Cut Deletes (cuts) the current selection (if any) in the edit
control and copies the deleted text to the Clipboard in
CF_TEXT format.

CEdit::EmptyUndoBuffer Resets (clears) the undo flag of an edit control.

CEdit::FmtLines Sets the inclusion of soft line-break characters on or off
within a multiple-line edit control.

CEdit::GetCueBanner Retrieves the text that is displayed as the text cue, or tip, in
an edit control when the control is empty and does not
have focus.

CEdit::GetFirstVisibleLine Determines the topmost visible line in an edit control.

Provides the functionality of a Windows edit control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cedit-class.md

CEdit::GetHandle Retrieves a handle to the memory that is currently
allocated for a multiple-line edit control.

CEdit::GetHighlight Gets the indexes of the starting and ending characters in a
range of text that is highlighted in the current edit control.

CEdit::GetLimitText Gets the maximum amount of text this CEdit can
contain.

CEdit::GetLine Retrieves a line of text from an edit control.

CEdit::GetLineCount Retrieves the number of lines in a multiple-line edit control.

CEdit::GetMargins Gets the left and right margins for this CEdit .

CEdit::GetModify Determines whether the contents of an edit control have
been modified.

CEdit::GetPasswordChar Retrieves the password character displayed in an edit
control when the user enters text.

CEdit::GetRect Gets the formatting rectangle of an edit control.

CEdit::GetSel Gets the first and last character positions of the current
selection in an edit control.

CEdit::HideBalloonTip Hides any balloon tip associated with the current edit
control.

CEdit::LimitText Limits the length of the text that the user can enter into an
edit control.

CEdit::LineFromChar Retrieves the line number of the line that contains the
specified character index.

CEdit::LineIndex Retrieves the character index of a line within a multiple-line
edit control.

CEdit::LineLength Retrieves the length of a line in an edit control.

CEdit::LineScroll Scrolls the text of a multiple-line edit control.

CEdit::Paste Inserts the data from the Clipboard into the edit control at
the current cursor position. Data is inserted only if the
Clipboard contains data in CF_TEXT format.

CEdit::PosFromChar Retrieves the coordinates of the upper-left corner of a
specified character index.

CEdit::ReplaceSel Replaces the current selection in an edit control with the
specified text.

NAME DESCRIPTION

CEdit::SetCueBanner Sets the text that is displayed as the text cue, or tip, in an
edit control when the control is empty and does not have
focus.

CEdit::SetHandle Sets the handle to the local memory that will be used by a
multiple-line edit control.

CEdit::SetHighlight Highlights a range of text that is displayed in the current
edit control.

CEdit::SetLimitText Sets the maximum amount of text this CEdit can contain.

CEdit::SetMargins Sets the left and right margins for this CEdit .

CEdit::SetModify Sets or clears the modification flag for an edit control.

CEdit::SetPasswordChar Sets or removes a password character displayed in an edit
control when the user enters text.

CEdit::SetReadOnly Sets the read-only state of an edit control.

CEdit::SetRect Sets the formatting rectangle of a multiple-line edit control
and updates the control.

CEdit::SetRectNP Sets the formatting rectangle of a multiple-line edit control
without redrawing the control window.

CEdit::SetSel Selects a range of characters in an edit control.

CEdit::SetTabStops Sets the tab stops in a multiple-line edit control.

CEdit::ShowBalloonTip Displays a balloon tip that is associated with the current
edit control.

CEdit::Undo Reverses the last edit-control operation.

NAME DESCRIPTION

Remarks
An edit control is a rectangular child window in which the user can enter text.

You can create an edit control either from a dialog template or directly in your code. In both cases, first call
the constructor CEdit to construct the CEdit object, then call the Create member function to create the
Windows edit control and attach it to the CEdit object.

Construction can be a one-step process in a class derived from CEdit . Write a constructor for the derived
class and call Create from within the constructor.

CEdit inherits significant functionality from CWnd . To set and retrieve text from a CEdit object, use the
CWnd member functions SetWindowText and GetWindowText, which set or get the entire contents of an edit

control, even if it is a multiline control. Text lines in a multiline control are separated by '\r\n' character
sequences. Also, if an edit control is multiline, get and set part of the control's text by calling the CEdit

member functions GetLine, SetSel, GetSel, and ReplaceSel.

If you want to handle Windows notification messages sent by an edit control to its parent (usually a class
derived from CDialog), add a message-map entry and message-handler member function to the parent class
for each message.

Each message-map entry takes the following form:

ON_NOTIFICATION(id, memberFxn)

where id specifies the child window ID of the edit control sending the notification, and memberFxn is the
name of the parent member function you have written to handle the notification.

The parent's function prototype is as follows:

afx_msg void memberFxn ();

Following is a list of potential message-map entries and a description of the cases in which they would be
sent to the parent:

ON_EN_CHANGE The user has taken an action that may have altered text in an edit control. Unlike
the EN_UPDATE notification message, this notification message is sent after Windows updates the
display.

ON_EN_ERRSPACE The edit control cannot allocate enough memory to meet a specific request.

ON_EN_HSCROLL The user clicks an edit control's horizontal scroll bar. The parent window is notified
before the screen is updated.

ON_EN_KILLFOCUS The edit control loses the input focus.

ON_EN_MAXTEXT The current insertion has exceeded the specified number of characters for the edit
control and has been truncated. Also sent when an edit control does not have the ES_AUTOHSCROLL
style and the number of characters to be inserted would exceed the width of the edit control. Also sent
when an edit control does not have the ES_AUTOVSCROLL style and the total number of lines
resulting from a text insertion would exceed the height of the edit control.

ON_EN_SETFOCUS Sent when an edit control receives the input focus.

ON_EN_UPDATE The edit control is about to display altered text. Sent after the control has formatted
the text but before it screens the text so that the window size can be altered, if necessary.

ON_EN_VSCROLL The user clicks an edit control's vertical scroll bar. The parent window is notified
before the screen is updated.

If you create a CEdit object within a dialog box, the CEdit object is automatically destroyed when the user
closes the dialog box.

If you create a CEdit object from a dialog resource using the dialog editor, the CEdit object is automatically
destroyed when the user closes the dialog box.

If you create a CEdit object within a window, you may also need to destroy it. If you create the CEdit object
on the stack, it is destroyed automatically. If you create the CEdit object on the heap by using the new
function, you must call delete on the object to destroy it when the user terminates the Windows edit control.
If you allocate any memory in the CEdit object, override the CEdit destructor to dispose of the allocations.

To modify certain styles in an edit control (such as ES_READONLY) you must send specific messages to the
control instead of using ModifyStyle. See Edit Control Styles in the Windows SDK.

For more information on CEdit , see Controls.

https://docs.microsoft.com/windows/desktop/Controls/edit-control-styles

Inheritance Hierarchy

Requirements

CEdit::CanUndo

BOOL CanUndo() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CEdit::CEdit

CEdit();

RemarksRemarks

ExampleExample

// Declare a local CEdit object.
CEdit myEdit;

// Declare a dynamic CEdit object.
CEdit* pmyEdit = new CEdit;

CEdit::CharFromPos

int CharFromPos(CPoint pt) const;

CObject

CCmdTarget

CWnd

CEdit

Header: afxwin.h

Call this function to determine if the last edit operation can be undone.

Nonzero if the last edit operation can be undone by a call to the Undo member function; 0 if it cannot be
undone.

For more information, see EM_CANUNDO in the Windows SDK.

See the example for CEdit::Undo.

Constructs a CEdit object.

Use Create to construct the Windows edit control.

Call this function to retrieve the zero-based line and character indices of the character nearest the specified
point in this CEdit control

https://docs.microsoft.com/windows/desktop/Controls/em-canundo

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

// CMyEdit inherits from CEdit
void CMyEdit::OnLButtonDown(UINT nFlags, CPoint point)
{
 int n = CharFromPos(point);
 int nLineIndex = HIWORD(n);
 int nCharIndex = LOWORD(n);
 TRACE(_T("nLineIndex = %d, nCharIndex = %d\r\n"), nLineIndex, nCharIndex);

 CEdit::OnLButtonDown(nFlags, point);
}

CEdit::Clear

void Clear();

RemarksRemarks

ExampleExample

// Delete all of the text.
m_myEdit.SetSel(0, -1);
m_myEdit.Clear();

CEdit::Copy

void Copy();

RemarksRemarks

pt
The coordinates of a point in the client area of this CEdit object.

The character index in the low-order WORD, and the line index in the high-order WORD.

This member function is available beginning with Windows 95 and Windows NT 4.0.

For more information, see EM_CHARFROMPOS in the Windows SDK.

Call this function to delete (clear) the current selection (if any) in the edit control.

The deletion performed by Clear can be undone by calling the Undo member function.

To delete the current selection and place the deleted contents into the Clipboard, call the Cut member
function.

For more information, see WM_CLEAR in the Windows SDK.

Call this function to coy the current selection (if any) in the edit control to the Clipboard in CF_TEXT format.

https://docs.microsoft.com/windows/desktop/Controls/em-charfrompos
https://docs.microsoft.com/windows/desktop/dataxchg/wm-clear

ExampleExample

// Copy all of the text to the clipboard.
m_myEdit.SetSel(0, -1);
m_myEdit.Copy();

CEdit::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

For more information, see WM_COPY in the Windows SDK.

Creates the Windows edit control and attaches it to the CEdit object.

dwStyle
Specifies the edit control's style. Apply any combination of edit styles to the control.

rect
Specifies the edit control's size and position. Can be a CRect object or RECT structure.

pParentWnd
Specifies the edit control's parent window (usually a CDialog). It must not be NULL.

nID
Specifies the edit control's ID.

Nonzero if initialization is successful; otherwise 0.

You construct a CEdit object in two steps. First, call the CEdit constructor and then call Create , which
creates the Windows edit control and attaches it to the CEdit object.

When Create executes, Windows sends the WM_NCCREATE, WM_NCCALCSIZE, WM_CREATE, and
WM_GETMINMAXINFO messages to the edit control.

These messages are handled by default by the OnNcCreate, OnNcCalcSize, OnCreate, and
OnGetMinMaxInfo member functions in the CWnd base class. To extend the default message handling, derive
a class from CEdit , add a message map to the new class, and override the above message-handler member
functions. Override OnCreate , for example, to perform needed initialization for the new class.

Apply the following window styles to an edit control.

WS_CHILD Always

WS_VISIBLE Usually

WS_DISABLED Rarely

WS_GROUP To group controls

WS_TABSTOP To include edit control in the tabbing order

https://docs.microsoft.com/windows/desktop/dataxchg/wm-copy
https://docs.microsoft.com/windows/desktop/winmsg/wm-nccreate
https://docs.microsoft.com/windows/desktop/winmsg/wm-nccalcsize
https://docs.microsoft.com/windows/desktop/winmsg/wm-create
https://docs.microsoft.com/windows/desktop/winmsg/wm-getminmaxinfo

ExampleExample

// dynamically create an edit control
CEdit* pEdit = new CEdit;
pEdit->Create(ES_MULTILINE | WS_CHILD | WS_VISIBLE | WS_TABSTOP | WS_BORDER,
 CRect(10, 10, 100, 100), this, 1);

CEdit::Cut

void Cut();

RemarksRemarks

ExampleExample

// Delete all of the text and copy it to the clipboard.
m_myEdit.SetSel(0, -1);
m_myEdit.Cut();

CEdit::EmptyUndoBuffer

void EmptyUndoBuffer();

RemarksRemarks

ExampleExample

// Clear the undo buffer.
if (m_myEdit.CanUndo())
{
 m_myEdit.EmptyUndoBuffer();
 ASSERT(!m_myEdit.CanUndo());
}

CEdit::FmtLines

Call this function to delete (cut) the current selection (if any) in the edit control and copy the deleted text to
the Clipboard in CF_TEXT format.

The deletion performed by Cut can be undone by calling the Undo member function.

To delete the current selection without placing the deleted text into the Clipboard, call the Clear member
function.

For more information, see WM_CUT in the Windows SDK.

Call this function to reset (clear) the undo flag of an edit control.

The edit control will now be unable to undo the last operation. The undo flag is set whenever an operation
within the edit control can be undone.

The undo flag is automatically cleared whenever the SetWindowText or SetHandle CWnd member functions
are called.

For more information, see EM_EMPTYUNDOBUFFER in the Windows SDK.

https://docs.microsoft.com/windows/desktop/dataxchg/wm-cut
https://docs.microsoft.com/windows/desktop/Controls/em-emptyundobuffer

BOOL FmtLines(BOOL bAddEOL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CString strText;

// Add soft line-break breaks.
m_myEdit.FmtLines(TRUE);

// Dump the text of the edit control.
m_myEdit.GetWindowText(strText);
AFXDUMP(strText);

// Remove soft line-break breaks.
m_myEdit.FmtLines(FALSE);

CEdit::GetCueBanner

BOOL GetCueBanner(
 LPWSTR lpszText,
 int cchText) const;

CString GetCueBanner() const;

ParametersParameters

Return ValueReturn Value

Call this function to set the inclusion of soft line-break characters on or off within a multiple-line edit control.

bAddEOL
Specifies whether soft line-break characters are to be inserted. A value of TRUE inserts the characters; a
value of FALSE removes them.

Nonzero if any formatting occurs; otherwise 0.

A soft line break consists of two carriage returns and a linefeed inserted at the end of a line that is broken
because of word wrapping. A hard line break consists of one carriage return and a linefeed. Lines that end
with a hard line break are not affected by FmtLines .

Windows will only respond if the CEdit object is a multiple-line edit control.

FmtLines only affects the buffer returned by GetHandle and the text returned by WM_GETTEXT. It has no
impact on the display of the text within the edit control.

For more information, see EM_FMTLINES in the Windows SDK.

Retrieves the text that is displayed as the text cue, or tip, in an edit control when the control is empty.

lpszText
[out] A pointer to a string that contains the cue text.

cchText
[in] The number of characters that can be received. This number includes the terminating NULL character.

https://docs.microsoft.com/windows/desktop/winmsg/wm-gettext
https://docs.microsoft.com/windows/desktop/Controls/em-fmtlines

RemarksRemarks

CEdit::GetFirstVisibleLine

int GetFirstVisibleLine() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

int nFirstVisible = m_myEdit.GetFirstVisibleLine();

// Scroll the edit control so that the first visible line
// is the first line of text.
if (nFirstVisible > 0)
{
 m_myEdit.LineScroll(-nFirstVisible, 0);
}

CEdit::GetHandle

HLOCAL GetHandle() const;

Return ValueReturn Value

RemarksRemarks

For the first overload, TRUE if the method is successful; otherwise FALSE.

For the second overload, a CString that contains the cue text if the method is successful; otherwise, the empty
string ("").

This method sends the EM_GETCUEBANNER message, which is described in the Windows SDK. For more
information, see the Edit_GetCueBannerText macro.

Call this function to determine the topmost visible line in an edit control.

The zero-based index of the topmost visible line. For single-line edit controls, the return value is 0.

For more information, see EM_GETFIRSTVISIBLELINE in the Windows SDK.

Call this function to retrieve a handle to the memory currently allocated for a multiple-line edit control.

A local memory handle that identifies the buffer holding the contents of the edit control. If an error occurs,
such as sending the message to a single-line edit control, the return value is 0.

The handle is a local memory handle and may be used by any of the Local Windows memory functions that
take a local memory handle as a parameter.

GetHandle is processed only by multiple-line edit controls.

Call GetHandle for a multiple-line edit control in a dialog box only if the dialog box was created with the
DS_LOCALEDIT style flag set. If the DS_LOCALEDIT style is not set, you will still get a nonzero return value,
but you will not be able to use the returned value.

https://docs.microsoft.com/windows/desktop/Controls/em-getcuebanner
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-edit_getcuebannertext
https://docs.microsoft.com/windows/desktop/Controls/em-getfirstvisibleline

NOTENOTE

ExampleExample

HLOCAL h = m_myEdit.GetHandle();
LPCTSTR lpszText = (LPCTSTR) ::LocalLock(h);

// Dump the text of the edit control.
AFXDUMP(lpszText);

::LocalUnlock(h);

CEdit::GetHighlight

BOOL GetHighlight(
 int* pichStart,
 int* pichEnd) const;

ParametersParameters

PARAMETER DESCRIPTION

pichStart [out] Zero-based index of the first character in the range of
text that is highlighted.

pichEnd [out] Zero-based index of the last character in the range of
text that is highlighted.

Return ValueReturn Value

RemarksRemarks

CEdit::GetLimitText

UINT GetLimitText() const;

Return ValueReturn Value

RemarksRemarks

GetHandle will not work with Windows 95/98. If you call GetHandle in Windows 95/98, it will return NULL.
GetHandle will work as documented under Windows NT, versions 3.51 and later.

For more information, see EM_GETHANDLE in the Windows SDK.

Gets the indexes of the first and last characters in a range of text that is highlighted in the current edit control.

TRUE if this method is successful; otherwise, FALSE.

This method sends the EM_GETHILITE message, which is described in the Windows SDK. Both
SetHighlight and GetHighlight are currently enabled for UNICODE builds only.

Call this member function to get the text limit for this CEdit object.

The current text limit, in bytes, for this CEdit object.

The text limit is the maximum amount of text, in bytes, that the edit control can accept.

https://docs.microsoft.com/windows/desktop/Controls/em-gethandle
https://docs.microsoft.com/windows/desktop/Controls/em-gethilite

NOTENOTE

ExampleExample

CString strText(_T("I'm an edit control!"));
UINT nLength = strText.GetLength() * sizeof(TCHAR);

// Want the text limit to be at least the size of the new string.
if (m_myEdit.GetLimitText() < nLength)
 m_myEdit.SetLimitText(nLength);

m_myEdit.SetWindowText(strText);

CEdit::GetLine

int GetLine(
 int nIndex,
 LPTSTR lpszBuffer) const;

int GetLine(
 int nIndex,
 LPTSTR lpszBuffer,
 int nMaxLength) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

This member function is available beginning with Windows 95 and Windows NT 4.0.

For more information, see EM_GETLIMITTEXT in the Windows SDK.

Call this function to retrieve a line of text from an edit control and places it in lpszBuffer.

nIndex
Specifies the line number to retrieve from a multiple-line edit control. Line numbers are zero-based; a value
of 0 specifies the first line. This parameter is ignored by a single-line edit control.

lpszBuffer
Points to the buffer that receives a copy of the line. The first word of the buffer must specify the maximum
number of characters that can be copied to the buffer.

nMaxLength
Specifies the maximum number of bytes that can be copied to the buffer. GetLine places this value in the
first word of lpszBuffer before making the call to Windows.

The number of bytes actually copied. The return value is 0 if the line number specified by nIndex is greater
than the number of lines in the edit control.

The copied line does not contain a null-termination character.

For more information, see EM_GETLINE in the Windows SDK.

See the example for CEdit::GetLineCount.

https://docs.microsoft.com/windows/desktop/Controls/em-getlimittext
https://docs.microsoft.com/windows/desktop/Controls/em-getline

CEdit::GetLineCount

int GetLineCount() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

int i, nLineCount = m_myEdit.GetLineCount();
CString strText, strLine;
// Dump every line of text of the edit control.
for (i=0; i < nLineCount; i++)
{
 // length of line i:
 int len = m_myEdit.LineLength(m_myEdit.LineIndex(i));
 m_myEdit.GetLine(i, strText.GetBuffer(len), len);
 strText.ReleaseBuffer(len);
 strLine.Format(_T("line %d: '%s'\n"), i, strText);
 AFXDUMP(strLine);
}

CEdit::GetMargins

DWORD GetMargins() const;

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CEdit::GetModify

Call this function to retrieve the number of lines in a multiple-line edit control.

An integer containing the number of lines in the multiple-line edit control. If no text has been entered into the
edit control, the return value is 1.

GetLineCount is only processed by multiple-line edit controls.

For more information, see EM_GETLINECOUNT in the Windows SDK.

Call this member function to retrieve the left and right margins of this edit control.

The width of the left margin in the low-order WORD and the width of the right margin in the high-order
WORD.

Margins are measured in pixels.

This member function is available beginning with Windows 95 and Windows NT 4.0.

For more information, see EM_GETMARGINS in the Windows SDK.

See the example for CEditView::GetEditCtrl.

https://docs.microsoft.com/windows/desktop/Controls/em-getlinecount
https://docs.microsoft.com/windows/desktop/Controls/em-getmargins

BOOL GetModify() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Reset the modified state only if my edit has been modified.
if (m_myEdit.GetModify())
 m_myEdit.SetModify(FALSE);

CEdit::GetPasswordChar

TCHAR GetPasswordChar() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Turn on the password mode.
m_myEdit.SetPasswordChar('*');
ASSERT(m_myEdit.GetStyle() & ES_PASSWORD);
ASSERT(m_myEdit.GetPasswordChar() == '*');

CEdit::GetRect

Call this function to determine whether the contents of an edit control have been modified.

Nonzero if the edit-control contents have been modified; 0 if they have remained unchanged.

Windows maintains an internal flag indicating whether the contents of the edit control have been changed.
This flag is cleared when the edit control is first created and may also be cleared by calling the SetModify
member function.

For more information, see EM_GETMODIFY in the Windows SDK.

Call this function to retrieve the password character that is displayed in an edit control when the user enters
text.

Specifies the character to be displayed instead of the character that the user typed. The return value is NULL
if no password character exists.

If you create the edit control with the ES_PASSWORD style, the DLL that supports the control determines
the default password character. The manifest or the InitCommonControlsEx method determines which DLL
supports the edit control. If user32.dll supports the edit control, the default password character is ASTERISK
('*', U+002A). If comctl32.dll version 6 supports the edit control, the default character is BLACK CIRCLE ('●',
U+25CF). For more information about which DLL and version supports the common controls, see Shell and
Common Controls Versions.

This method sends the EM_GETPASSWORDCHAR message, which is described in the Windows SDK.

Call this function to get the formatting rectangle of an edit control.

https://docs.microsoft.com/windows/desktop/Controls/em-getmodify
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-initcommoncontrolsex
https://msdn.microsoft.com/library/windows/desktop/bb776779
https://docs.microsoft.com/windows/desktop/Controls/em-getpasswordchar

void GetRect(LPRECT lpRect) const;

ParametersParameters

RemarksRemarks

ExampleExample

CEdit::GetSel

DWORD GetSel() const;

void GetSel(
 int& nStartChar,
 int& nEndChar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set the selection to be all characters after the current selection.
DWORD dwSel = m_myEdit.GetSel();
m_myEdit.SetSel(HIWORD(dwSel), -1);

CEdit::HideBalloonTip

lpRect
Points to the RECT structure that receives the formatting rectangle.

The formatting rectangle is the limiting rectangle of the text, which is independent of the size of the edit-
control window.

The formatting rectangle of a multiple-line edit control can be modified by the SetRect and SetRectNP
member functions.

For more information, see EM_GETRECT in the Windows SDK.

See the example for CEdit::LimitText.

Call this function to get the starting and ending character positions of the current selection (if any) in an edit
control, using either the return value or the parameters.

nStartChar
Reference to an integer that will receive the position of the first character in the current selection.

nEndChar
Reference to an integer that will receive the position of the first nonselected character past the end of the
current selection.

The version that returns a DWORD returns a value that contains the starting position in the low-order word
and the position of the first nonselected character after the end of the selection in the high-order word.

For more information, see EM_GETSEL in the Windows SDK.

Hides any balloon tip associated with the current edit control.

https://docs.microsoft.com/windows/desktop/Controls/em-getrect
https://docs.microsoft.com/windows/desktop/Controls/em-getsel

BOOL HideBalloonTip();

Return ValueReturn Value

RemarksRemarks

CEdit::LimitText

void LimitText(int nChars = 0);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

// Limit the number of characters to be the maximum number visible.

// Get the text metrics for the edit; needed for the
// average character width.
TEXTMETRIC tm;
CDC* pDC = m_myEdit.GetDC();
pDC->GetTextMetrics(&tm);
m_myEdit.ReleaseDC(pDC);

CRect r;
m_myEdit.GetRect(&r);
m_myEdit.LimitText(r.Width()/tm.tmAveCharWidth);

CEdit::LineFromChar

TRUE if this method is successful; otherwise, FALSE.

This function sends the EM_HIDEBALLOONTIP message, which is described in the Windows SDK.

Call this function to limit the length of the text that the user may enter into an edit control.

nChars
Specifies the length (in bytes) of the text that the user can enter. If this parameter is 0, the text length is set to
UINT_MAX bytes. This is the default behavior.

Changing the text limit restricts only the text the user can enter. It has no effect on any text already in the edit
control, nor does it affect the length of the text copied to the edit control by the SetWindowText member
function in CWnd . If an application uses the SetWindowText function to place more text into an edit control
than is specified in the call to LimitText , the user can delete any of the text within the edit control. However,
the text limit will prevent the user from replacing the existing text with new text, unless deleting the current
selection causes the text to fall below the text limit.

In Win32 (Windows NT and Windows 95/98), SetLimitText replaces this function.

For more information, see EM_LIMITTEXT in the Windows SDK.

Call this function to retrieve the line number of the line that contains the specified character index.

https://docs.microsoft.com/windows/desktop/Controls/em-hideballoontip
https://docs.microsoft.com/windows/desktop/Controls/em-limittext

int LineFromChar(int nIndex = -1) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The index of the char to get information on.
int nIndex = 4;
CString strText;

m_myEdit.GetWindowText(strText);
strText = strText.Mid(nIndex, 1);

// Get the text extent of the character.
CDC* pDC = m_myEdit.GetDC();
CSize sz = pDC->GetTextExtent(strText);
m_myEdit.ReleaseDC(pDC);

CPoint pt = m_myEdit.PosFromChar(nIndex);

// Dump the index, character, line number, and character bounds.
TRACE(_T("nIndex = %d, character = %c, line = %d, bounds = ")
 _T("{%d, %d, %d, %d}\r\n"),
 nIndex, strText[0], m_myEdit.LineFromChar(nIndex),
 pt.x /* left */, pt.y /* top */,
 pt.x+sz.cx /* right */, pt.y+sz.cy /* bottom */);

CEdit::LineIndex

int LineIndex(int nLine = -1) const;

ParametersParameters

Return ValueReturn Value

nIndex
Contains the zero-based index value for the desired character in the text of the edit control, or contains -1. If
nIndex is -1, it specifies the current line, that is, the line that contains the caret.

The zero-based line number of the line containing the character index specified by nIndex. If nIndex is -1, the
number of the line that contains the first character of the selection is returned. If there is no selection, the
current line number is returned.

A character index is the number of characters from the beginning of the edit control.

This member function is only used by multiple-line edit controls.

For more information, see EM_LINEFROMCHAR in the Windows SDK.

Call this function to retrieve the character index of a line within a multiple-line edit control.

nLine
Contains the index value for the desired line in the text of the edit control, or contains -1. If nLine is -1, it
specifies the current line, that is, the line that contains the caret.

The character index of the line specified in nLine or -1 if the specified line number is greater than the number
of lines in the edit control.

https://docs.microsoft.com/windows/desktop/Controls/em-linefromchar

RemarksRemarks

ExampleExample

// The string for replacing.
CString strString(_T("Hi, we're the replacements."));
int nBegin, nEnd;

// Replace the second line, if it exists, of the edit control
// with the text strString.
if ((nBegin = m_myEdit.LineIndex(1)) != -1)
{
 nEnd = nBegin + m_myEdit.LineLength(nBegin);
 m_myEdit.SetSel(nBegin, nEnd);
 m_myEdit.ReplaceSel(strString);
}

CEdit::LineLength

int LineLength(int nLine = -1) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CEdit::LineScroll

The character index is the number of characters from the beginning of the edit control to the specified line.

This member function is only processed by multiple-line edit controls.

For more information, see EM_LINEINDEX in the Windows SDK.

Retrieves the length of a line in an edit control.

nLine
The zero-based index of a character in the line whose length is to be retrieved. The default value is -1.

For single-line edit controls, the return value is the length, in TCHARs, of the text in the edit control.

For multiline edit controls, the return value is the length, in TCHARs, of the line specified by the nLine
parameter. For ANSI text, the length is the number of bytes in the line; for Unicode text, the length is the
number of characters in the line. The length does not include the carriage-return character at the end of the
line.

If the nLine parameter is more than the number of characters in the control, the return value is zero.

If the nLine parameter is -1, the return value is the number of unselected characters in the lines that contain
selected characters. For example, if the selection extends from the fourth character of one line through the
eighth character from the end of the next line, the return value is 10. That is, three characters on the first line
and seven on the next.

For more information about the TCHAR type, see the TCHAR row in the table in Windows Data Types.

This method is supported by the EM_LINELENGTH message, which is described in the Windows SDK.

See the example for CEdit::LineIndex.

https://msdn.microsoft.com/library/windows/desktop/bb761611
https://docs.microsoft.com/windows/desktop/WinProg/windows-data-types
https://docs.microsoft.com/windows/desktop/Controls/em-linelength

void LineScroll(
 int nLines,
 int nChars = 0);

ParametersParameters

RemarksRemarks

ExampleExample

CEdit::Paste

void Paste();

RemarksRemarks

ExampleExample

// Replace all of the text with the text in the clipboard.
m_myEdit.SetSel(0, -1);
m_myEdit.Paste();

CEdit::PosFromChar

CPoint PosFromChar(UINT nChar) const;

ParametersParameters

Call this function to scroll the text of a multiple-line edit control.

nLines
Specifies the number of lines to scroll vertically.

nChars
Specifies the number of character positions to scroll horizontally. This value is ignored if the edit control has
either the ES_RIGHT or ES_CENTER style.

This member function is processed only by multiple-line edit controls.

The edit control does not scroll vertically past the last line of text in the edit control. If the current line plus the
number of lines specified by nLines exceeds the total number of lines in the edit control, the value is adjusted
so that the last line of the edit control is scrolled to the top of the edit-control window.

LineScroll can be used to scroll horizontally past the last character of any line.

For more information, see EM_LINESCROLL in the Windows SDK.

See the example for CEdit::GetFirstVisibleLine.

Call this function to insert the data from the Clipboard into the CEdit at the insertion point.

Data is inserted only if the Clipboard contains data in CF_TEXT format.

For more information, see WM_PASTE in the Windows SDK.

Call this function to get the position (top-left corner) of a given character within this CEdit object.

nChar
The zero-based index of the specified character.

https://docs.microsoft.com/windows/desktop/Controls/em-linescroll
https://docs.microsoft.com/windows/desktop/dataxchg/wm-paste

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CEdit::ReplaceSel

void ReplaceSel(LPCTSTR lpszNewText, BOOL bCanUndo = FALSE);

ParametersParameters

RemarksRemarks

ExampleExample

CEdit::SetCueBanner

BOOL SetCueBanner(LPCWSTR lpszText);

BOOL SetCueBanner(
 LPCWSTR lpszText,
 BOOL fDrawWhenFocused = FALSE);

ParametersParameters

The coordinates of the top-left corner of the character specified by nChar.

The character is specified by giving its zero-based index value. If nChar is greater than the index of the last
character in this CEdit object, the return value specifies the coordinates of the character position just past
the last character in this CEdit object.

This member function is available beginning with Windows 95 and Windows NT 4.0.

For more information, see EM_POSFROMCHAR in the Windows SDK.

See the example for CEdit::LineFromChar.

Call this function to replace the current selection in an edit control with the text specified by lpszNewText.

lpszNewText
Points to a null-terminated string containing the replacement text.

bCanUndo
To specify that this function can be undone, set the value of this parameter to TRUE . The default value is
FALSE.

Replaces only a portion of the text in an edit control. If you want to replace all of the text, use the
CWnd::SetWindowText member function.

If there is no current selection, the replacement text is inserted at the current cursor location.

For more information, see EM_REPLACESEL in the Windows SDK.

See the example for CEdit::LineIndex.

Sets the text that is displayed as the text cue, or tip, in an edit control when the control is empty.

https://docs.microsoft.com/windows/desktop/Controls/em-posfromchar
https://docs.microsoft.com/windows/desktop/Controls/em-replacesel

Return ValueReturn Value

RemarksRemarks

ExampleExample

m_cedit.SetCueBanner(_T("First, enter text here..."), TRUE);

CEdit::SetHandle

void SetHandle(HLOCAL hBuffer);

ParametersParameters

RemarksRemarks

lpszText
[in] Pointer to a string that contains the cue to display in the edit control.

fDrawWhenFocused
[in] If FALSE, the cue banner is not drawn when the user clicks in the edit control and gives the control the
focus.

If TRUE, the cue banner is drawn even when the control has focus. The cue banner disappears when the user
starts to type in the control.

The default value is FALSE.

TRUE if the method is successful; otherwise FALSE.

This method sends the EM_SETCUEBANNER message, which is described in the Windows SDK. For more
information, see the Edit_SetCueBannerTextFocused macro.

The following example demonstrates the CEdit::SetCueBanner method.

Call this function to set the handle to the local memory that will be used by a multiple-line edit control.

hBuffer
Contains a handle to the local memory. This handle must have been created by a previous call to the
LocalAlloc Windows function using the LMEM_MOVEABLE flag. The memory is assumed to contain a null-
terminated string. If this is not the case, the first byte of the allocated memory should be set to 0.

The edit control will then use this buffer to store the currently displayed text instead of allocating its own
buffer.

This member function is processed only by multiple-line edit controls.

Before an application sets a new memory handle, it should use the GetHandle member function to get the
handle to the current memory buffer and free that memory using the LocalFree Windows function.

SetHandle clears the undo buffer (the CanUndo member function then returns 0) and the internal
modification flag (the GetModify member function then returns 0). The edit-control window is redrawn.

You can use this member function in a multiple-line edit control in a dialog box only if you have created the
dialog box with the DS_LOCALEDIT style flag set.

https://docs.microsoft.com/windows/desktop/Controls/em-setcuebanner
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-edit_setcuebannertextfocused
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-localalloc

NOTENOTE

ExampleExample

// The string to set in the edit control.
CString strString(_T("George Frideric"));

// Initialize the new local handle.
size_t cbSize = (strString.GetLength() + 1) * sizeof(TCHAR);
HLOCAL h = ::LocalAlloc(LHND, cbSize);
LPTSTR lpszText = (LPTSTR) ::LocalLock(h);
_tcsncpy_s(lpszText, cbSize / sizeof(TCHAR), strString, _TRUNCATE);
::LocalUnlock(h);

// Free the current text handle of the edit control.
::LocalFree(m_myEdit.GetHandle());

// Set the new text handle.
m_myEdit.SetHandle(h);

CEdit::SetHighlight

void SetHighlight(
 int ichStart,
 int ichEnd);

ParametersParameters

PARAMETER DESCRIPTION

ichStart [in] Zero-based index of the first character in the range of
text to highlight.

ichEnd [in] Zero-based index of the last character in the range of
text to highlight.

RemarksRemarks

CEdit::SetLimitText

void SetLimitText(UINT nMax);

ParametersParameters

GetHandle will not work with Windows 95/98. If you call GetHandle in Windows 95/98, it will return NULL.
GetHandle will work as documented under Windows NT, versions 3.51 and later.

For more information, see EM_SETHANDLE, LocalAlloc, and LocalFree in the Windows SDK.

Highlights a range of text that is displayed in the current edit control.

This method sends the EM_SETHILITE message, which is described in the Windows SDK. This method sends
the EM_SETHILITE message, which is described in the Windows SDK. Both SetHighlight and GetHighlight

are enabled for UNICODE builds only.

Call this member function to set the text limit for this CEdit object.

https://docs.microsoft.com/windows/desktop/Controls/em-sethandle
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-localalloc
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-localfree
https://docs.microsoft.com/windows/desktop/Controls/em-sethilite
https://docs.microsoft.com/windows/desktop/Controls/em-sethilite

RemarksRemarks

ExampleExample

CEdit::SetMargins

void SetMargins(
 UINT nLeft,
 UINT nRight);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

CEdit::SetModify

void SetModify(BOOL bModified = TRUE);

ParametersParameters

nMax
The new text limit, in characters.

The text limit is the maximum amount of text, in characters, that the edit control can accept.

Changing the text limit restricts only the text the user can enter. It has no effect on any text already in the edit
control, nor does it affect the length of the text copied to the edit control by the SetWindowText member
function in CWnd . If an application uses the SetWindowText function to place more text into an edit control
than is specified in the call to LimitText , the user can delete any of the text within the edit control. However,
the text limit will prevent the user from replacing the existing text with new text, unless deleting the current
selection causes the text to fall below the text limit.

This function replaces LimitText in Win32.

For more information, see EM_SETLIMITTEXT in the Windows SDK.

See the example for CEditView::GetEditCtrl.

Call this method to set the left and right margins of this edit control.

nLeft
The width of the new left margin, in pixels.

nRight
The width of the new right margin, in pixels.

This member function is available beginning with Windows 95 and Windows NT 4.0.

For more information, see EM_SETMARGINS in the Windows SDK.

See the example for CEditView::GetEditCtrl.

Call this function to set or clear the modified flag for an edit control.

bModified
A value of TRUE indicates that the text has been modified, and a value of FALSE indicates it is unmodified. By

https://docs.microsoft.com/windows/desktop/Controls/em-setlimittext
https://docs.microsoft.com/windows/desktop/Controls/em-setmargins

RemarksRemarks

ExampleExample

CEdit::SetPasswordChar

void SetPasswordChar(TCHAR ch);

ParametersParameters

RemarksRemarks

ExampleExample

// Turn off the password mode.
m_myEdit.SetPasswordChar(0);
ASSERT(!(m_myEdit.GetStyle() & ES_PASSWORD));

CEdit::SetReadOnly

BOOL SetReadOnly(BOOL bReadOnly = TRUE);

ParametersParameters

Return ValueReturn Value

default, the modified flag is set.

The modified flag indicates whether or not the text within the edit control has been modified. It is
automatically set whenever the user changes the text. Its value may be retrieved with the GetModify member
function.

For more information, see EM_SETMODIFY in the Windows SDK.

See the example for CEdit::GetModify.

Call this function to set or remove a password character displayed in an edit control when the user types text.

ch
Specifies the character to be displayed in place of the character typed by the user. If ch is 0, the actual
characters typed by the user are displayed.

When a password character is set, that character is displayed for each character the user types.

This member function has no effect on a multiple-line edit control.

When the SetPasswordChar member function is called, CEdit will redraw all visible characters using the
character specified by ch.

If the edit control is created with the ES_PASSWORD style, the default password character is set to an
asterisk (*). This style is removed if SetPasswordChar is called with ch set to 0.

For more information, see EM_SETPASSWORDCHAR in the Windows SDK.

Calls this function to set the read-only state of an edit control.

bReadOnly
Specifies whether to set or remove the read-only state of the edit control. A value of TRUE sets the state to
read-only; a value of FALSE sets the state to read/write.

https://docs.microsoft.com/windows/desktop/Controls/em-setmodify
https://docs.microsoft.com/windows/desktop/Controls/em-setpasswordchar

RemarksRemarks

ExampleExample

// Set the edit control to be read-only.
m_myEdit.SetReadOnly(TRUE);
ASSERT(m_myEdit.GetStyle() & ES_READONLY);

CEdit::SetRect

void SetRect(LPCRECT lpRect);

ParametersParameters

RemarksRemarks

ExampleExample

Nonzero if the operation is successful, or 0 if an error occurs.

The current setting can be found by testing the ES_READONLY flag in the return value of CWnd::GetStyle.

For more information, see EM_SETREADONLY in the Windows SDK.

Call this function to set the dimensions of a rectangle using the specified coordinates.

lpRect
Points to the RECT structure or CRect object that specifies the new dimensions of the formatting rectangle.

This member is processed only by multiple-line edit controls.

Use SetRect to set the formatting rectangle of a multiple-line edit control. The formatting rectangle is the
limiting rectangle of the text, which is independent of the size of the edit-control window. When the edit
control is first created, the formatting rectangle is the same as the client area of the edit-control window. By
using the SetRect member function, an application can make the formatting rectangle larger or smaller than
the edit-control window.

If the edit control has no scroll bar, text will be clipped, not wrapped, if the formatting rectangle is made larger
than the window. If the edit control contains a border, the formatting rectangle is reduced by the size of the
border. If you adjust the rectangle returned by the GetRect member function, you must remove the size of
the border before you pass the rectangle to SetRect .

When SetRect is called, the edit control's text is also reformatted and redisplayed.

For more information, see EM_SETRECT in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/em-setreadonly
https://docs.microsoft.com/windows/desktop/Controls/em-setrect

// Flag indicating whether to redraw the edit control.
bool fRedraw = TRUE;

CRect r;

m_myEdit.GetRect(&r);

// Reduce the formatting rect of the edit control by
// 10 pixels on each side.
if ((r.Width() > 20) && (r.Height() > 20))
{
 r.DeflateRect(10, 10);

 if (fRedraw)
 m_myEdit.SetRect(&r);
 else
 m_myEdit.SetRectNP(&r);
}

CEdit::SetRectNP

void SetRectNP(LPCRECT lpRect);

ParametersParameters

RemarksRemarks

ExampleExample

CEdit::SetSel

Call this function to set the formatting rectangle of a multiple-line edit control.

lpRect
Points to a RECT structure or CRect object that specifies the new dimensions of the rectangle.

The formatting rectangle is the limiting rectangle of the text, which is independent of the size of the edit-
control window.

SetRectNP is identical to the SetRect member function except that the edit-control window is not redrawn.

When the edit control is first created, the formatting rectangle is the same as the client area of the edit-
control window. By calling the SetRectNP member function, an application can make the formatting rectangle
larger or smaller than the edit-control window.

If the edit control has no scroll bar, text will be clipped, not wrapped, if the formatting rectangle is made larger
than the window.

This member is processed only by multiple-line edit controls.

For more information, see EM_SETRECTNP in the Windows SDK.

See the example for CEdit::SetRect.

Call this function to select a range of characters in an edit control.

https://docs.microsoft.com/windows/desktop/Controls/em-setrectnp

void SetSel(
 DWORD dwSelection,
 BOOL bNoScroll = FALSE);

void SetSel(
 int nStartChar,
 int nEndChar,
 BOOL bNoScroll = FALSE);

ParametersParameters

RemarksRemarks

ExampleExample

CEdit::SetTabStops

void SetTabStops();
BOOL SetTabStops(const int& cxEachStop);

BOOL SetTabStops(
 int nTabStops,
 LPINT rgTabStops);

ParametersParameters

dwSelection
Specifies the starting position in the low-order word and the ending position in the high-order word. If the
low-order word is 0 and the high-order word is -1, all the text in the edit control is selected. If the low-order
word is -1, any current selection is removed.

bNoScroll
Indicates whether the caret should be scrolled into view. If FALSE, the caret is scrolled into view. If TRUE, the
caret is not scrolled into view.

nStartChar
Specifies the starting position. If nStartChar is 0 and nEndChar is -1, all the text in the edit control is selected.
If nStartChar is -1, any current selection is removed.

nEndChar
Specifies the ending position.

For more information, see EM_SETSEL in the Windows SDK.

See the example for CEdit::GetSel.

Call this function to set the tab stops in a multiple-line edit control.

cxEachStop
Specifies that tab stops are to be set at every cxEachStop dialog units.

nTabStops
Specifies the number of tab stops contained in rgTabStops. This number must be greater than 1.

rgTabStops
Points to an array of unsigned integers specifying the tab stops in dialog units. A dialog unit is a horizontal or
vertical distance. One horizontal dialog unit is equal to one-fourth of the current dialog base width unit, and
1 vertical dialog unit is equal to one-eighth of the current dialog base height unit. The dialog base units are
computed based on the height and width of the current system font. The GetDialogBaseUnits Windows
function returns the current dialog base units in pixels.

https://docs.microsoft.com/windows/desktop/Controls/em-setsel

Return ValueReturn Value

RemarksRemarks

ExampleExample

CEdit::ShowBalloonTip

BOOL ShowBalloonTip(PEDITBALLOONTIP pEditBalloonTip);

BOOL ShowBalloonTip(
 LPCWSTR lpszTitle,
 LPCWSTR lpszText,
 INT ttiIcon = TTI_NONE);

ParametersParameters

PARAMETER DESCRIPTION

pEditBalloonTip [in] Pointer to an EDITBALLOONTIP structure that
describes the balloon tip.

lpszTitle [in] Pointer to a Unicode string that contains the title of the
balloon tip.

lpszText [in] Pointer to a Unicode string that contains the balloon
tip text.

ttiIcon [in] An INT that specifies the type of icon to associate with
the balloon tip. The default value is TTI_NONE. For more
information, see the ttiIcon member of the
EDITBALLOONTIP structure.

Return ValueReturn Value

RemarksRemarks

Nonzero if the tabs were set; otherwise 0.

When text is copied to a multiple-line edit control, any tab character in the text will cause space to be
generated up to the next tab stop.

To set tab stops to the default size of 32 dialog units, call the parameterless version of this member function.
To set tab stops to a size other than 32, call the version with the cxEachStop parameter. To set tab stops to an
array of sizes, use the version with two parameters.

This member function is only processed by multiple-line edit controls.

SetTabStops does not automatically redraw the edit window. If you change the tab stops for text already in
the edit control, call CWnd::InvalidateRect to redraw the edit window.

For more information, see EM_SETTABSTOPS and GetDialogBaseUnits in the Windows SDK.

See the example for CEditView::SetTabStops.

Displays a balloon tip that is associated with the current edit control.

TRUE if this method is successful; otherwise, FALSE.

This function sends the EM_SHOWBALLOONTIP message, which is described in the Windows SDK. For
more information, see the Edit_ShowBalloonTip macro.

https://docs.microsoft.com/windows/desktop/Controls/em-settabstops
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdialogbaseunits
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_tageditballoontip
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_tageditballoontip
https://docs.microsoft.com/windows/desktop/Controls/em-showballoontip
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-edit_showballoontip

ExampleExample

public:
 // Variable to access the edit control.
 CEdit m_cedit;

ExampleExample

m_cedit.ShowBalloonTip(
 _T("CEdit Balloon Tip"), // title
 _T("Here's a tip!"), // text
 TTI_INFO);

CEdit::Undo

BOOL Undo();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Undo the last operation, if possible.
if (m_myEdit.CanUndo())
 m_myEdit.Undo();

See also

The following code example defines a variable, m_cedit , that is used to access the current edit control. This
variable is used in the next example.

The following code example displays a balloon tip for an edit control. The CEdit::ShowBalloonTip method
specifies a title and balloon tip text.

Call this function to undo the last edit-control operation.

For a single-line edit control, the return value is always nonzero. For a multiple-line edit control, the return
value is nonzero if the undo operation is successful, or 0 if the undo operation fails.

An undo operation can also be undone. For example, you can restore deleted text with the first call to Undo .
As long as there is no intervening edit operation, you can remove the text again with a second call to Undo .

For more information, see EM_UNDO in the Windows SDK.

MFC Sample CALCDRIV
MFC Sample CMNCTRL2
CWnd Class
Hierarchy Chart
CWnd Class
CButton Class
CComboBox Class
CListBox Class
CScrollBar Class
CStatic Class
CDialog Class

https://docs.microsoft.com/windows/desktop/Controls/em-undo
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CEditView Class
3/4/2019 • 11 minutes to read • Edit Online

Syntax
class CEditView : public CCtrlView

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CEditView::CEditView Constructs an object of type CEditView .

Public MethodsPublic Methods

NAME DESCRIPTION

CEditView::FindText Searches for a string within the text.

CEditView::GetBufferLength Obtains the length of the character buffer.

CEditView::GetEditCtrl Provides access to the CEdit portion of a CEditView

object (the Windows edit control).

CEditView::GetPrinterFont Retrieves the current printer font.

CEditView::GetSelectedText Retrieves the current text selection.

CEditView::LockBuffer Locks the buffer.

CEditView::PrintInsideRect Renders text inside a given rectangle.

CEditView::SerializeRaw Serializes a CEditView object to disk as raw text.

CEditView::SetPrinterFont Sets a new printer font.

CEditView::SetTabStops Sets tab stops for both screen display and printing.

CEditView::UnlockBuffer Unlocks the buffer.

Protected MethodsProtected Methods

A type of view class that provides the functionality of a Windows edit control and can be used to implement
simple text-editor functionality.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ceditview-class.md

NAME DESCRIPTION

CEditView::OnFindNext Finds next occurrence of a text string.

CEditView::OnReplaceAll Replaces all occurrences of a given string with a new string.

CEditView::OnReplaceSel Replaces current selection.

CEditView::OnTextNotFound Called when a find operation fails to match any further text.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CEditView::dwStyleDefault Default style for objects of type CEditView .

Remarks

GetEditCtrl().SetLimitText(nNewVal); //nNewVal, the new character limit

The CEditView class provides the following additional functions:

Print.

Find and replace.

Because class CEditView is a derivative of class CView , objects of class CEditView can be used with documents
and document templates.

Each CEditView control's text is kept in its own global memory object. Your application can have any number of
CEditView objects.

Create objects of type CEditView if you want an edit window with the added functionality listed above, or if you
want simple text-editor functionality. A CEditView object can occupy the entire client area of a window. Derive
your own classes from CEditView to add or modify the basic functionality, or to declare classes that can be
added to a document template.

The default implementation of class CEditView handles the following commands: ID_EDIT_SELECT_ALL,
ID_EDIT_FIND, ID_EDIT_REPLACE, ID_EDIT_REPEAT, and ID_FILE_PRINT.

The default character limit for CEditView is (1024 * 1024 - 1 = 1048575). This can be changed by calling the
EM_LIMITTEXT function of the underlying edit control. However, the limits are different depending on the
operating system and the type of edit control (single or multiline). For more information on these limits, see
EM_LIMITTEXT.

To change this limit in your control, override the OnCreate() function for your CEditView class and insert the
following line of code:

Objects of type CEditView (or of types derived from CEditView) have the following limitations:

CEditView does not implement true what you see is what you get (WYSIWYG) editing. Where there is a
choice between readability on the screen and matching printed output, CEditView opts for screen
readability.

CEditView can display text in only a single font. No special character formatting is supported. See class

https://docs.microsoft.com/windows/desktop/Controls/em-limittext

Inheritance Hierarchy

Requirements

CEditView::CEditView

CEditView();

RemarksRemarks

CEditView::dwStyleDefault

static const DWORD dwStyleDefault;

RemarksRemarks

CEditView::FindText

BOOL FindText(
 LPCTSTR lpszFind,
 BOOL bNext = TRUE,
 BOOL bCase = TRUE);

CRichEditView for greater capabilities.

The amount of text a CEditView can contain is limited. The limits are the same as for the CEdit control.

For more information on CEditView , see Derived View Classes Available in MFC.

CObject

CCmdTarget

CWnd

CView

CCtrlView

CEditView

Header: afxext.h

Constructs an object of type CEditView .

After constructing the object, you must call the CWnd::Create function before the edit control is used. If you
derive a class from CEditView and add it to the template using CWinApp::AddDocTemplate , the framework calls
both this constructor and the Create function.

Contains the default style of the CEditView object.

Pass this static member as the dwStyle parameter of the Create function to obtain the default style for the
CEditView object.

Call the FindText function to search the CEditView object's text buffer.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CEditView::GetBufferLength

UINT GetBufferLength() const;

Return ValueReturn Value

CEditView::GetEditCtrl

CEdit& GetEditCtrl() const;

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

ExampleExample

lpszFind
The text to be found.

bNext
Specifies the direction of the search. If TRUE, the search direction is toward the end of the buffer. If FALSE, the
search direction is toward the beginning of the buffer.

bCase
Specifies whether the search is case sensitive. If TRUE, the search is case sensitive. If FALSE, the search is not
case sensitive.

Nonzero if the search text is found; otherwise 0.

This function searches the text in the buffer for the text specified by lpszFind, starting at the current selection, in
the direction specified by bNext, and with case sensitivity specified by bCase. If the text is found, it sets the
selection to the found text and returns a nonzero value. If the text is not found, the function returns 0.

You normally do not need to call the FindText function unless you override OnFindNext , which calls FindText .

Call this member function to obtain the number of characters currently in the edit control's buffer, not including
the null terminator.

The length of the string in the buffer.

Call GetEditCtrl to get a reference to the edit control used by the edit view.

A reference to a CEdit object.

This control is of type CEdit, so you can manipulate the Windows edit control directly using the CEdit member
functions.

Using the CEdit object can change the state of the underlying Windows edit control. For example, you should
not change the tab settings using the CEdit::SetTabStops function because CEditView caches these settings for
use both in the edit control and in printing. Instead, use CEditView::SetTabStops.

void CMyEditView::OnInitialUpdate()
{
 CEditView::OnInitialUpdate();

 // get the edit control and set some initial properties for it
 CEdit& theEdit = GetEditCtrl();

 // adjust the left margin without changing the right margin
 DWORD dwMargins = theEdit.GetMargins();
 theEdit.SetMargins(20, HIWORD(dwMargins));

 // only accept 10k of text
 theEdit.SetLimitText(10 * 1024);
}

CEditView::GetPrinterFont

CFont* GetPrinterFont() const;

Return ValueReturn Value

RemarksRemarks

CEditView::GetSelectedText

void GetSelectedText(CString& strResult) const;

ParametersParameters

CEditView::LockBuffer

LPCTSTR LockBuffer() const;

Return ValueReturn Value

Call GetPrinterFont to get a pointer to a CFont object that describes the current printer font.

A pointer to a CFont object that specifies the current printer font; NULL if the printer font has not been set. The
pointer may be temporary and should not be stored for later use.

If the printer font has not been set, the default printing behavior of the CEditView class is to print using the
same font used for display.

Use this function to determine the current printer font. If it is not the desired printer font, use
CEditView::SetPrinterFont to change it.

Call GetSelectedText to copy the selected text into a CString object, up to the end of the selection or the
character preceding the first carriage-return character in the selection.

strResult
A reference to the CString object that is to receive the selected text.

Call this member function to obtain a pointer to the buffer. The buffer should not be modified.

A pointer to the edit control's buffer.

CEditView::OnFindNext

virtual void OnFindNext(
 LPCTSTR lpszFind,
 BOOL bNext,
 BOOL bCase);

ParametersParameters

RemarksRemarks

CEditView::OnReplaceAll

virtual void OnReplaceAll(
 LPCTSTR lpszFind,
 LPCTSTR lpszReplace,
 BOOL bCase);

ParametersParameters

RemarksRemarks

Searches the text in the buffer for the text specified by lpszFind, in the direction specified by bNext, with case
sensitivity specified by bCase.

lpszFind
The text to be found.

bNext
Specifies the direction of the search. If TRUE, the search direction is toward the end of the buffer. If FALSE, the
search direction is toward the beginning of the buffer.

bCase
Specifies whether the search is case sensitive. If TRUE, the search is case sensitive. If FALSE, the search is not
case sensitive.

The search starts at the beginning of the current selection and is accomplished through a call to FindText. In the
default implementation, OnFindNext calls OnTextNotFound if the text is not found.

Override OnFindNext to change the way a CEditView -derived object searches text. CEditView calls OnFindNext

when the user chooses the Find Next button in the standard Find dialog box.

CEditView calls OnReplaceAll when the user selects the Replace All button in the standard Replace dialog box.

lpszFind
The text to be found.

lpszReplace
The text to replace the search text.

bCase
Specifies whether search is case sensitive. If TRUE, the search is case sensitive. If FALSE, the search is not case
sensitive.

OnReplaceAll searches the text in the buffer for the text specified by lpszFind, with case sensitivity specified by
bCase. The search starts at the beginning of the current selection. Each time the search text is found, this
function replaces that occurrence of the text with the text specified by lpszReplace. The search is accomplished
through a call to FindText. In the default implementation, OnTextNotFound is called if the text is not found.

CEditView::OnReplaceSel

virtual void OnReplaceSel(
 LPCTSTR lpszFind,
 BOOL bNext,
 BOOL bCase,
 LPCTSTR lpszReplace);

ParametersParameters

RemarksRemarks

CEditView::OnTextNotFound

virtual void OnTextNotFound(LPCTSTR lpszFind);

ParametersParameters

CEditView::PrintInsideRect

If the current selection does not match lpszFind, the selection is updated to the first occurrence of the text
specified by lpszFind and a replace is not performed. This allows the user to confirm that this is what they want
to do when the selection does not match the text to be replaced.

Override OnReplaceAll to change the way a CEditView -derived object replaces text.

CEditView calls OnReplaceSel when the user selects the Replace button in the standard Replace dialog box.

lpszFind
The text to be found.

bNext
Specifies the direction of the search. If TRUE, the search direction is toward the end of the buffer. If FALSE, the
search direction is toward the beginning of the buffer.

bCase
Specifies whether the search is case sensitive. If TRUE, the search is case sensitive. If FALSE, the search is not
case sensitive.

lpszReplace
The text to replace the found text.

After replacing the selection, this function searches the text in the buffer for the next occurrence of the text
specified by lpszFind, in the direction specified by bNext, with case sensitivity specified by bCase. The search is
accomplished through a call to FindText. If the text is not found, OnTextNotFound is called.

Override OnReplaceSel to change the way a CEditView -derived object replaces the selected text.

Override this function to change the default implementation, which calls the Windows function MessageBeep .

lpszFind
The text to be found.

Call PrintInsideRect to print text in the rectangle specified by rectLayout.

UINT PrintInsideRect(
 CDC *pDC,
 RECT& rectLayout,
 UINT nIndexStart,
 UINT nIndexStop);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CEditView::SerializeRaw

void SerializeRaw(CArchive& ar);

ParametersParameters

RemarksRemarks

CEditView::SetPrinterFont

void SetPrinterFont(CFont* pFont);

ParametersParameters

pDC
Pointer to the printer device context.

rectLayout
Reference to a CRect object or RECT structure specifying the rectangle in which the text is to be rendered.

nIndexStart
Index within the buffer of the first character to be rendered.

nIndexStop
Index within the buffer of the character following the last character to be rendered.

The index of the next character to be printed (that is, the character following the last character rendered).

If the CEditView control does not have the style ES_AUTOHSCROLL, text is wrapped within the rendering
rectangle. If the control does have the style ES_AUTOHSCROLL, the text is clipped at the right edge of the
rectangle.

The rect.bottom element of the rectLayout object is changed so that the rectangle's dimensions define the part
of the original rectangle that is occupied by the text.

Call SerializeRaw to have a CArchive object read or write the text in the CEditView object to a text file.

ar
Reference to the CArchive object that stores the serialized text.

SerializeRaw differs from CEditView 's internal implementation of Serialize in that it reads and writes only
the text, without preceding object-description data.

Call SetPrinterFont to set the printer font to the font specified by pFont.

pFont
A pointer to an object of type CFont . If NULL, the font used for printing is based on the display font.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

RemarksRemarks

CEditView::SetTabStops

void SetTabStops(int nTabStops);

ParametersParameters

RemarksRemarks

ExampleExample

// gain a reference to the edit control
CEdit& theEdit = GetEditCtrl();

// get the font the control is using
CFont* pFont = theEdit.GetFont();
TEXTMETRIC tm;

// get the control's DC, too
CDC* pDC = theEdit.GetDC();

// Select the font that the control uses by default into the DC.
// We must do this because the control may or may not be using
// that font at this exact moment
CFont* pOldFont = pDC->SelectObject(pFont);

// Retrieve text metrics for that font and return the previously
// selected font.
pDC->GetTextMetrics(&tm);
pDC->SelectObject(pOldFont);

// Get an identity rectangle and map it to dialog units
CRect rect(0, 0, 100, 1);
::MapDialogRect((HWND)this, rect);

// We now know that 100 dialog units are rect.Width() screen units,
// so we can multiply screen units by 100 and divide by rect.Width()
// to find dialog units from screen units. tm.tmAveCharWidth is
// the width of _one_ character, so setting the tabs at every
// four characters means we also multiply by four.
SetTabStops((4 * tm.tmAveCharWidth * 100) / rect.Width());

If you want your view to always use a particular font for printing, include a call to SetPrinterFont in your class's
OnPreparePrinting function. This virtual function is called before printing occurs, so the font change takes place

before the view's contents are printed.

Call this function to set the tab stops used for display and printing.

nTabStops
Width of each tab stop, in dialog units.

Only a single tab-stop width is supported. (CEdit objects support multiple tab widths.) Widths are in dialog
units, which equal one-fourth of the average character width (based on uppercase and lowercase alphabetic
characters only) of the font used at the time of printing or displaying. You should not use CEdit::SetTabStops

because CEditView must cache the tab-stop value.

This function modifies only the tabs of the object for which it is called. To change the tab stops for each
CEditView object in your application, call each object's SetTabStops function.

This code fragment sets the tab stops in the control to every fourth character by carefully measuring the font
the control uses.

 CEditView::UnlockBuffer

void UnlockBuffer() const;

RemarksRemarks

See also

Call this member function to unlock the buffer.

Call UnlockBuffer after you have finished using the pointer returned by LockBuffer.

MFC Sample SUPERPAD
CCtrlView Class
Hierarchy Chart
CEdit Class
CDocument Class
CDocTemplate Class
CCtrlView Class
CRichEditView Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CEvent Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class CEvent : public CSyncObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CEvent::CEvent Constructs a CEvent object.

Public MethodsPublic Methods

NAME DESCRIPTION

CEvent::PulseEvent Sets the event to available (signaled), releases waiting threads,
and sets the event to unavailable (nonsignaled).

CEvent::ResetEvent Sets the event to unavailable (nonsignaled).

CEvent::SetEvent Sets the event to available (signaled) and releases any waiting
threads.

CEvent::Unlock Releases the event object.

Remarks

Represents an event, which is a synchronization object that enables one thread to notify another that an event has
occurred.

Events are useful when a thread must know when to perform its task. For example, a thread that copies data to a
data archive must be notified when new data is available. By using a CEvent object to notify the copy thread when
new data is available, the thread can perform its task as soon as possible.

CEvent objects have two types: manual and automatic.

An automatic CEvent object automatically returns to a non-signaled (unavailable) state after at least one thread is
released. By default, a CEvent object is automatic unless you pass TRUE for the bManualReset parameter during
construction.

A manual CEvent object stays in the state set by SetEvent or ResetEvent until the other function is called. To
create a manual CEvent object, pass TRUE for the bManualReset parameter during construction.

To use a CEvent object, construct the CEvent object when it is required. Specify the name of the event you want
to wait on, and also specify that your application should initially own it. You can then access the event when the
constructor returns. Call SetEvent to signal (make available) the event object and then call Unlock when you are

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cevent-class.md

Example
// The following demonstrates trivial usage of the CEvent class.
// A CEvent object is created and passed as a parameter to another
// thread. The other thread will wait for the event to be signaled
// and then exit

UINT __cdecl MyThreadProc(LPVOID lpParameter)
{
 CEvent* pEvent = (CEvent*)(lpParameter);
 VERIFY(pEvent != NULL);

 // Wait for the event to be signaled
 ::WaitForSingleObject(pEvent->m_hObject, INFINITE);

 // Terminate the thread
 ::AfxEndThread(0, FALSE);
 return 0L;
}

void CEvent_Test()
{
 // Create the CEvent object that will be passed to the thread routine
 CEvent* pEvent = new CEvent(FALSE, FALSE);

 // Create a thread that will wait on the event
 CWinThread* pThread;
 pThread = ::AfxBeginThread(&MyThreadProc, pEvent, 0, 0, CREATE_SUSPENDED, NULL);
 pThread->m_bAutoDelete = FALSE;
 pThread->ResumeThread();

 // Signal the thread to do the next work item
 pEvent->SetEvent();

 // Wait for the thread to consume the event and return
 ::WaitForSingleObject(pThread->m_hThread, INFINITE);
 delete pThread;
 delete pEvent;
}

// This example builds upon the previous one.
// A second thread is created to calculate prime numbers.
// The main thread will signal the second thread to calulate the next
// prime number in the series. The second thread signals the first

done accessing the controlled resource.

An alternative method for using CEvent objects is to add a variable of type CEvent as a data member to the class
you want to control. During construction of the controlled object, call the constructor of the CEvent data member
and specify whether the event is initially signaled, and also specifythe type of event object you want, the name of
the event (if it will be used across process boundaries), and any security attributes you want.

To access a resource controlled by a CEvent object in this manner, first create a variable of either type
CSingleLock or type CMultiLock in the access method of your resource. Then call the Lock method of the lock
object (for example, CMultiLock::Lock). At this point, your thread will either gain access to the resource, wait for
the resource to be released and gain access, or wait for the resource to be released, time out, and fail to gain
access to the resource. In any case, your resource has been accessed in a thread-safe manner. To release the
resource, call SetEvent to signal the event object, and then use the Unlock method of the lock object (for
example, CMultiLock::Unlock), or let the lock object fall out of scope.

For more information about how to use CEvent objects, see Multithreading: How to Use the Synchronization
Classes.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-how-to-use-the-synchronization-classes

// prime number in the series. The second thread signals the first
// after each number is calculated. Finally, after several iterations
// the worker thread is signaled to terminate.

class CPrimeTest
{
public:
 CPrimeTest()
 : m_pCalcNext(new CEvent(FALSE, FALSE))
 , m_pCalcFinished(new CEvent(FALSE, FALSE))
 , m_pTerminateThread(new CEvent(FALSE, FALSE))
 , m_iCurrentPrime(0)
 {
 // Create a thread that will calculate the prime numbers
 CWinThread* pThread;
 pThread = ::AfxBeginThread(&PrimeCalcProc, this, 0, 0, CREATE_SUSPENDED, NULL);
 pThread->m_bAutoDelete = FALSE;
 pThread->ResumeThread();

 // Calcuate the first 10 prime numbers in the series on the thread
 for(UINT i = 0; i < 10; i++)
 {
 // Signal the thread to do the next work item
 m_pCalcNext->SetEvent();
 // Wait for the thread to complete the current task
 ::WaitForSingleObject(m_pCalcFinished->m_hObject, INFINITE);
 // Print the result
 TRACE(_T("The value of m_iCurrentPrime is: %d\n"), m_iCurrentPrime);
 }

 // Notify the worker thread to exit and wait for it to complete
 m_pTerminateThread->SetEvent();
 ::WaitForSingleObject(pThread->m_hThread, INFINITE);
 delete pThread;
 }
 ~CPrimeTest()
 {
 delete m_pCalcNext;
 delete m_pCalcFinished;
 delete m_pTerminateThread;
 }

private:
 // Determines whether the given number is a prime number
 static BOOL IsPrime(INT ThisPrime)
 {
 if(ThisPrime < 2)
 return FALSE;

 for(INT n = 2; n < ThisPrime; n++)
 {
 if(ThisPrime % n == 0)
 return FALSE;
 }
 return TRUE;
 }

 // Calculates the next prime number in the series
 static INT NextPrime(INT ThisPrime)
 {
 while(TRUE)
 {
 if(IsPrime(++ThisPrime))
 {
 return ThisPrime;
 }
 }
 }

 // Worker thread responsible for calculating the next prime

 // Worker thread responsible for calculating the next prime
 // number in the series
 static UINT __cdecl PrimeCalcProc(LPVOID lpParameter)
 {
 CPrimeTest* pThis = static_cast<CPrimeTest*>(lpParameter);
 VERIFY(pThis != NULL);

 VERIFY(pThis->m_pCalcNext != NULL);
 VERIFY(pThis->m_pCalcFinished != NULL);
 VERIFY(pThis->m_pTerminateThread != NULL);

 // Create a CMultiLock object to wait on the various events
 // WAIT_OBJECT_0 refers to the first event in the array, WAIT_OBJECT_0+1 refers to the second
 CSyncObject* pWaitObjects[] = { pThis->m_pCalcNext, pThis->m_pTerminateThread };
 CMultiLock MultiLock(pWaitObjects, 2L);
 while(MultiLock.Lock(INFINITE, FALSE) == WAIT_OBJECT_0)
 {
 // Calculate next prime
 pThis->m_iCurrentPrime = NextPrime(pThis->m_iCurrentPrime);
 // Notify main thread calculation is complete
 pThis->m_pCalcFinished->SetEvent();
 }

 // Terminate the thread
 ::AfxEndThread(0, FALSE);
 return 0L;
 }

 CEvent* m_pCalcNext; // notifies worker thread to calculate next prime
 CEvent* m_pCalcFinished; // notifies main thread current calculation is complete
 CEvent* m_pTerminateThread; // notifies worker thread to terminate

 INT m_iCurrentPrime; // current calculated prime number
};

Inheritance Hierarchy

Requirements

CEvent::CEvent

CEvent(
 BOOL bInitiallyOwn = FALSE,
 BOOL bManualReset = FALSE,
 LPCTSTR lpszName = NULL,
 LPSECURITY_ATTRIBUTES lpsaAttribute = NULL);

ParametersParameters

CObject

CSyncObject

CEvent

Header: afxmt.h

Constructs a named or unnamed CEvent object.

bInitiallyOwn
If TRUE, the thread for the CMultilock or CSingleLock object is enabled. Otherwise, all threads wanting to access
the resource must wait.

RemarksRemarks

IMPORTANTIMPORTANT

CEvent::PulseEvent

BOOL PulseEvent();

Return ValueReturn Value

RemarksRemarks

CEvent::ResetEvent

BOOL ResetEvent();

bManualReset
If TRUE, specifies that the event object is a manual event, otherwise the event object is an automatic event.

lpszName
Name of the CEvent object. Must be supplied if the object will be used across process boundaries. If the name
matches an existing event, the constructor builds a new CEvent object which references the event of that name. If
the name matches an existing synchronization object that is not an event, the construction will fail. If NULL, the
name will be null.

lpsaAttribute
Security attributes for the event object. For a full description of this structure, see SECURITY_ATTRIBUTES in the
Windows SDK.

To access or release a CEvent object, create a CMultiLock or CSingleLock object and call its Lock and Unlock
member functions.

To change the state of a CEvent object to signaled (threads do not have to wait), call SetEvent or PulseEvent. To
set the state of a CEvent object to nonsignaled (threads must wait), call ResetEvent.

After creating the CEvent object, use GetLastError to ensure that the mutex didn't already exist. If the mutex did exist
unexpectedly, it may indicate a rogue process is squatting and may be intending to use the mutex maliciously. In this case,
the recommended security-conscious procedure is to close the handle and continue as if there was a failure in creating the
object.

Sets the state of the event to signaled (available), releases any waiting threads, and resets it to nonsignaled
(unavailable) automatically.

Nonzero if the function was successful; otherwise 0.

If the event is manual, all waiting threads are released, the event is set to nonsignaled, and PulseEvent returns. If
the event is automatic, a single thread is released, the event is set to nonsignaled, and PulseEvent returns.

If no threads are waiting, or no threads can be released immediately, PulseEvent sets the state of the event to
nonsignaled and returns.

PulseEvent uses the underlying Win32 PulseEvent function, which can be momentarily removed from the wait
state by a kernel-mode asynchronous procedure call. Therefore, PulseEvent is unreliable and should not be used
by new applications. For more information, see the PulseEvent function.

Sets the state of the event to nonsignaled until explicitly set to signaled by the SetEvent member function.

https://msdn.microsoft.com/library/windows/desktop/aa379560
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-pulseevent

Return ValueReturn Value

RemarksRemarks

CEvent::SetEvent

BOOL SetEvent();

Return ValueReturn Value

RemarksRemarks

CEvent::Unlock

BOOL Unlock();

Return ValueReturn Value

RemarksRemarks

See also

Nonzero if the function was successful; otherwise 0.

This causes all threads wishing to access this event to wait.

This member function is not used by automatic events.

Sets the state of the event to signaled, releasing any waiting threads.

Nonzero if the function was successful, otherwise 0.

If the event is manual, the event will remain signaled until ResetEvent is called. More than one thread can be
released in this case. If the event is automatic, the event will remain signaled until a single thread is released. The
system will then set the state of the event to nonsignaled. If no threads are waiting, the state remains signaled until
one thread is released.

Releases the event object.

Nonzero if the thread owned the event object and the event is an automatic event; otherwise 0.

This member function is called by threads that currently own an automatic event to release it after they are done, if
their lock object is to be reused. If the lock object is not to be reused, this function will be called by the lock object's
destructor.

CSyncObject Class
Hierarchy Chart

CException Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class AFX_NOVTABLE CException : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CException::CException Constructs a CException object.

Public MethodsPublic Methods

NAME DESCRIPTION

CException::Delete Deletes a CException object.

CException::ReportError Reports an error message in a message box to the user.

Remarks

CSimpleException A base class for resource-critical MFC exceptions

CInvalidArgException Invalid argument exception condition

CMemoryException Out-of-memory exception

CNotSupportedException Request for an unsupported operation

CArchiveException Archive-specific exception

CFileException File-specific exception

CResourceException Windows resource not found or not creatable

The base class for all exceptions in the Microsoft Foundation Class Library.

Because CException is an abstract base class you cannot create CException objects directly; you must
create objects of derived classes. If you need to create your own CException -style class, use one of the
derived classes listed above as a model. Make sure that your derived class also uses IMPLEMENT_DYNAMIC .

The derived classes and their descriptions are listed below:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cexception-class.md

COleException OLE exception

CDBException Database exception (that is, exception conditions arising
for MFC database classes based on Open Database
Connectivity)

COleDispatchException OLE dispatch (automation) exception

CUserException Exception that indicates that a resource could not be
found

CDaoException Data access object exception (that is, exception conditions
arising for DAO classes)

CInternetException Internet exception (that is, exception conditions arising for
Internet classes).

Inheritance Hierarchy

Requirements

CException::CException

explicit CException(BOOL bAutoDelete);

ParametersParameters

These exceptions are intended to be used with the THROW, THROW_LAST, try, catch, and_catch, and
end_catch macros. For more information on exceptions, see Exception Processing, or see the article
Exception Handling (MFC).

To catch a specific exception, use the appropriate derived class. To catch all types of exceptions, use
CException , and then use CObject::IsKindOf to differentiate among CException -derived classes. Note that
CObject::IsKindOf works only for classes declared with the IMPLEMENT_DYNAMIC macro, in order to

take advantage of dynamic type checking. Any CException -derived class that you create should use the
IMPLEMENT_DYNAMIC macro, too.

You can report details about exceptions to the user by calling GetErrorMessage or ReportError, two
member functions that work with any of CException 's derived classes.

If an exception is caught by one of the macros, the CException object is deleted automatically; do not delete
it yourself. If an exception is caught by using a catch keyword, it is not automatically deleted. See the article
Exception Handling (MFC) for more information about when to delete an exeption object.

CObject

CException

Header: afx.h

This member function constructs a CException object.

b_AutoDelete
Specify TRUE if the memory for the CException object has been allocated on the heap. This will cause the

RemarksRemarks

CException::Delete

void Delete();

RemarksRemarks

ExampleExample

CException object to be deleted when the Delete member function is called to delete the exception.
Specify FALSE if the CException object is on the stack or is a global object. In this case, the CException

object will not be deleted when the Delete member function is called.

You would normally never need to call this constructor directly. A function that throws an exception should
create an instance of a CException -derived class and call its constructor, or it should use one of the MFC
throw functions, such as AfxThrowFileException, to throw a predefined type. This documentation is provided
only for completeness.

This function checks to see if the CException object was created on the heap, and if so, it calls the delete
operator on the object.

When deleting a CException object, use the Delete member function to delete the exception. Do not use
the delete operator directly, because the CException object may be a global object or have been created on
the stack.

You can specify whether the object should be deleted when the object is constructed. For more information,
see CException::CException.

You only need to call Delete if you are using the C++ try- catch mechanism. If you are using the MFC
macros TRY and CATCH, then these macros will automatically call this function.

CFile* pFile = NULL;
// Constructing a CFile object with this override may throw
// a CFile exception, and won't throw any other exceptions.
// Calling CString::Format() may throw a CMemoryException,
// so we have a catch block for such exceptions, too. Any
// other exception types this function throws will be
// routed to the calling function.
// Note that this example performs the same actions as the
// example for CATCH, but uses C++ try/catch syntax instead
// of using the MFC TRY/CATCH macros. This sample must use
// CException::Delete() to delete the exception objects
// before closing the catch block, while the CATCH example
// implicitly performs the deletion via the macros.
try
{
 pFile = new CFile(_T("C:\\WINDOWS\\SYSTEM.INI"),
 CFile::modeRead | CFile::shareDenyNone);
 ULONGLONG ullLength = pFile->GetLength();
 CString str;
 str.Format(_T("Your SYSTEM.INI file is %u bytes long."), ullLength);
 AfxMessageBox(str);
}
catch(CFileException* pEx)
{
 // Simply show an error message to the user.
 pEx->ReportError();
 pEx->Delete();
}
catch(CMemoryException* pEx)
{
 // We can't recover from this memory exception, so we'll
 // just terminate the app without any cleanup. Normally, an
 // an application should do everything it possibly can to
 // clean up properly and _not_ call AfxAbort().
 pEx->Delete();
 AfxAbort();
}
// If an exception occurrs in the CFile constructor,
// the language will free the memory allocated by new
// and will not complete the assignment to pFile.
// Thus, our clean-up code needs to test for NULL.
if (pFile != NULL)
{
 pFile->Close();
 delete pFile;
}

CException::ReportError

virtual int ReportError(
 UINT nType = MB_OK,
 UINT nMessageID = 0);

ParametersParameters

Call this member function to report error text in a message box to the user.

nType
Specifies the style of the message box. Apply any combination of the message-box styles to the box. If you
don't specify this parameter, the default is MB_OK.

nMessageID
Specifies the resource ID (string table entry) of a message to display if the exception object does not have an

Return ValueReturn Value

ExampleExample

CFile fileInput;
CFileException ex;

// try to open a file for reading.
// The file will certainly not
// exist because there are too many explicit
// directories in the name.

// if the call to Open() fails, ex will be
// initialized with exception
// information. the call to ex.ReportError() will
// display an appropriate
// error message to the user, such as
// "\Too\Many\Bad\Dirs.DAT contains an
// invalid path." The error message text will be
// appropriate for the
// file name and error condition.

if (!fileInput.Open(_T("\\Too\\Many\\Bad\\Dirs.DAT"), CFile::modeRead, &ex))
{
 ex.ReportError();
}
else
{
 // the file was opened, so do whatever work
 // with fileInput we were planning...

 fileInput.Close();
}

See also

error message. If 0, the message "No error message is available" is displayed.

An AfxMessageBox value; otherwise 0 if there is not enough memory to display the message box. See
AfxMessageBox for the possible return values.

Here is an example of the use of CException::ReportError . For another example, see the example for
CATCH.

CObject Class
Hierarchy Chart
Exception Processing
How Do I: Create my Own Custom Exception Classes

http://go.microsoft.com/fwlink/p/?linkid=128045

CFieldExchange Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CFieldExchange

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CFieldExchange::IsFieldType Returns nonzero if the current operation is appropriate for
the type of field being updated.

CFieldExchange::SetFieldType Specifies the type of recordset data member — column or
parameter — represented by all following calls to RFX
functions until the next call to SetFieldType .

Remarks

NOTENOTE

Supports the record field exchange (RFX) and bulk record field exchange (Bulk RFX) routines used by the
database classes.

CFieldExchange does not have a base class.

Use this class if you are writing data exchange routines for custom data types or when you are implementing
bulk row fetching; otherwise, you will not directly use this class. RFX and Bulk RFX exchanges data between the
field data members of your recordset object and the corresponding fields of the current record on the data
source.

If you are working with the Data Access Objects (DAO) classes rather than the Open Database Connectivity (ODBC)
classes, use class CDaoFieldExchange instead. For more information, see the article Overview:Database Programming.

A CFieldExchange object provides the context information needed for record field exchange or bulk record field
exchange to take place. CFieldExchange objects support a number of operations, including binding parameters
and field data members and setting various flags on the fields of the current record. RFX and Bulk RFX
operations are performed on recordset-class data members of types defined by the enum FieldType in
CFieldExchange . Possible FieldType values are:

CFieldExchange::outputColumn for field data members.

CFieldExchange::inputParam or CFieldExchange::param for input parameter data members.

CFieldExchange::outputParam for output parameter data members.

CFieldExchange::inoutParam for input/output parameter data members.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cfieldexchange-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl

Inheritance Hierarchy

Requirements

CFieldExchange::IsFieldType

BOOL IsFieldType(UINT* pnField);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFieldExchange::SetFieldType

void SetFieldType(UINT nFieldType);

ParametersParameters

Most of the class's member functions and data members are provided for writing your own custom RFX
routines. You will use SetFieldType frequently. For more information, see the articles Record Field Exchange
(RFX) and Recordset (ODBC). For information about bulk row fetching, see the article Recordset: Fetching
Records in Bulk (ODBC). For details about the RFX and Bulk RFX global functions, see Record Field Exchange
Functions in the MFC Macros and Globals section of this reference.

CFieldExchange

Header: afxdb.h

If you write your own RFX function, call IsFieldType at the beginning of your function to determine whether
the current operation can be performed on a particular field or parameter data member type (a
CFieldExchange::outputColumn , CFieldExchange::inputParam , CFieldExchange::param ,
CFieldExchange::outputParam , or CFieldExchange::inoutParam).

pnField
The sequential number of the field or parameter data member is returned in this parameter. This number
corresponds to the data member's order in the CRecordset::DoFieldExchange or
CRecordset::DoBulkFieldExchange function.

Nonzero if the current operation can be performed on the current field or parameter type.

Follow the model of the existing RFX functions.

You need a call to SetFieldType in your recordset class's DoFieldExchange or DoBulkFieldExchange override.

nFieldType
A value of the enum FieldType , declared in CFieldExchange , which can be one of the following:

CFieldExchange::outputColumn

CFieldExchange::inputParam

CFieldExchange::param

CFieldExchange::outputParam

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

RemarksRemarks

SETFIELDTYPE PARAMETER VALUE TYPE OF PARAMETER DATA MEMBER

CFieldExchange::inputParam Input parameter. A value that is passed into the recordset's
query or stored procedure.

CFieldExchange::param same as CFieldExchange::inputParam .

CFieldExchange::outputParam Output parameter. A return value of the recordset's stored
procedure.

CFieldExchange::inoutParam Input/output parameter. A value that is passed into and
returned from the recordset's stored procedure.

ExampleExample

void CSections::DoFieldExchange(CFieldExchange* pFX)
{
 pFX->SetFieldType(CFieldExchange::outputColumn);
 RFX_Text(pFX, _T("[CourseID]"), m_CourseID);
 RFX_Text(pFX, _T("[InstructorID]"), m_InstructorID);
 RFX_Text(pFX, _T("[RoomNo]"), m_RoomNo);
 RFX_Text(pFX, _T("[Schedule]"), m_Schedule);

 // output parameter
 pFX->SetFieldType(CFieldExchange::outputParam);
 RFX_Long(pFX, _T("Instructor_Count"), m_nCountParam);

 // input parameter
 pFX->SetFieldType(CFieldExchange::inputParam);
 RFX_Text(pFX, _T("Department_Name"), m_strNameParam);
}

See also

CFieldExchange::inoutParam

For field data members, you must call SetFieldType with a parameter of CFieldExchange::outputColumn ,
followed by calls to the RFX or Bulk RFX functions. If you have not implemented bulk row fetching, then
ClassWizard places this SetFieldType call for you in the field map section of DoFieldExchange .

If you parameterize your recordset class, you must call SetFieldType again, outside any field map section,
followed by RFX calls for all the parameter data members. Each type of parameter data member must have its
own SetFieldType call. The following table distinguishes the different values you can pass to SetFieldType to
represent the parameter data members of your class:

In general, each group of RFX function calls associated with field data members or parameter data members
must be preceded by a call to SetFieldType . The nFieldType parameter of each SetFieldType call identifies the
type of the data members represented by the RFX function calls that follow the SetFieldType call.

For more information about handling output and input/output parameters, see the CRecordset member
function FlushResultSet. For more information about the RFX and Bulk RFX functions, see the topic Record
Field Exchange Functions. For related information about bulk row fetching, see the article Recordset: Fetching
Records in Bulk (ODBC).

This example shows several calls to RFX functions with accompanying calls to SetFieldType . Note that
SetFieldType is called through the pFX pointer to a CFieldExchange object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

Hierarchy Chart
CRecordset Class

CFile Class
3/4/2019 • 22 minutes to read • Edit Online

Syntax
class CFile : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFile::CFile Constructs a CFile object from a path or file handle.

Public MethodsPublic Methods

NAME DESCRIPTION

CFile::Abort Closes a file ignoring all warnings and errors.

CFile::Close Closes a file and deletes the object.

CFile::Duplicate Constructs a duplicate object based on this file.

CFile::Flush Flushes any data yet to be written.

CFile::GetFileName Retrieves the filename of the selected file.

CFile::GetFilePath Retrieves the full file path of the selected file.

CFile::GetFileTitle Retrieves the title of the selected file.

CFile::GetLength Retrieves the length of the file.

CFile::GetPosition Retrieves the current file pointer.

CFile::GetStatus Retrieves the status of the open file, or in the static
version, retrieves the status of the specified file (static,
virtual function).

CFile::LockRange Locks a range of bytes in a file.

CFile::Open Safely opens a file with an error-testing option.

CFile::Read Reads (unbuffered) data from a file at the current file
position.

The base class for Microsoft Foundation Class file classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cfile-class.md

CFile::Remove Deletes the specified file (static function).

CFile::Rename Renames the specified file (static function).

CFile::Seek Positions the current file pointer.

CFile::SeekToBegin Positions the current file pointer at the beginning of the
file.

CFile::SeekToEnd Positions the current file pointer at the end of the file.

CFile::SetFilePath Sets the full file path of the selected file.

CFile::SetLength Changes the length of the file.

CFile::SetStatus Sets the status of the specified file (static, virtual
function).

CFile::UnlockRange Unlocks a range of bytes in a file.

CFile::Write Writes (unbuffered) data in a file to the current file
position.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CFile::operator HANDLE A handle to a CFile object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CFile::hFileNull Determines if the CFile object has a valid handle.

CFile::m_hFile Usually contains the operating-system file handle.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CFile::m_pTM Pointer to CAtlTransactionManager object.

Remarks
It directly provides unbuffered, binary disk input/output services, and it indirectly supports text files and
memory files through its derived classes. CFile works in conjunction with the CArchive class to support
serialization of Microsoft Foundation Class objects.

The hierarchical relationship between this class and its derived classes allows your program to operate on
all file objects through the polymorphic CFile interface. A memory file, for example, behaves like a disk
file.

Inheritance Hierarchy

Requirements

CFile::Abort

virtual void Abort();

RemarksRemarks

ExampleExample

CStdioFile fileTest;
TCHAR* pszFileName = _T("Abort_File.dat");

// do stuff that may cause exceptions
CFileException ex;
if (!fileTest.Open(pszFileName, CFile::modeWrite, &ex))
{
 ex.ReportError();
 fileTest.Abort(); // close file safely and quietly
}

CFile::CFile

Use CFile and its derived classes for general-purpose disk I/O. Use ofstream or other Microsoft
iostream classes for formatted text sent to a disk file.

Normally, a disk file is opened automatically on CFile construction and closed on destruction. Static
member functions permit you to interrogate a file's status without opening the file.

For more information on using CFile , see the articles Files in MFC and File Handling in the Run-Time
Library Reference.

CObject

CFile

Header: afx.h

Closes the file associated with this object and makes the file unavailable for reading or writing.

If you have not closed the file before destroying the object, the destructor closes it for you.

When handling exceptions, CFile::Abort differs from CFile::Close in two important ways. First, the
Abort function will not throw an exception on failures because failures are ignored by Abort . Second,
Abort will not ASSERT if the file has not been opened or was closed previously.

If you used new to allocate the CFile object on the heap, then you must delete it after closing the file.
Abort sets m_hFile to CFile::hFileNull .

Constructs and initializes a CFile object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/file-handling

CFile();
CFile(CAtlTransactionManager* pTM);
CFile(HANDLE hFile);

CFile(
LPCTSTR lpszFileName,
UINT nOpenFlags);

CFile(
LPCTSTR lpszFileName,
UINT nOpenFlags,
CAtlTransactionManager* pTM);

ParametersParameters

RemarksRemarks

VALUE DESCRIPTION

CFile::modeRead Requests read access only.

CFile::modeWrite Requests write access only.

CFile::modeReadWrite Requests read and write access.

VALUE DESCRIPTION

CFile::typeBinary Sets binary mode (used in derived classes only).

CFile::typeText Sets text mode with special processing for carriage
return-linefeed pairs (used in derived classes only).

CFile::typeUnicode Sets Unicode mode (used in derived classes only). Text is
written to the file in Unicode format when the application
is built in a Unicode configuration. No BOM is written to
the file.

hFile
Handle of a file to attach to the CFile object.

lpszFileName
Relative or full path of a file to attach to the CFile object.

nOpenFlags
Bitwise combination (OR) of file access options for the specified file. See the Remarks section for possible
options.

pTM
Pointer to CAtlTransactionManager object

The following five tables list the possible options for the nOpenFlags parameter.

Choose only one of the following file access mode options. The default file access mode is
CFile::modeRead , which is read only.

Choose one of the following character mode options.

Choose only one of the following file share mode options. The default file share mode is

VALUE DESCRIPTION

CFile::shareDenyNone No sharing restrictions.

CFile::shareDenyRead Denies read access to all others.

CFile::shareDenyWrite Denies write access to all others.

CFile::shareExclusive Denies read and write access to all others.

VALUE DESCRIPTION

CFile::modeCreate Creates a new file if no file exists. If the file already exists,
it is overwritten and initially set to zero length.

CFile::modeNoTruncate Creates a new file if no file exists; otherwise, if the file
already exists, it is attached to the CFile object.

VALUE DESCRIPTION

CFile::osNoBuffer The system does not use an intermediate cache for the
file. This option cancels the following 2 options.

CFile::osRandomAccess The file cache is optimized for random access. Do not use
this option and the sequential scan option.

CFile::osSequentialScan The file cache is optimized for sequential access. Do not
use this option and the random access option.

CFile::osWriteThrough Write operations are performed without delay.

VALUE DESCRIPTION

CFile::modeNoInherit Prevents any child processes from using the file handle.

CFile::shareExclusive , which is exclusive.

Choose the first, or both, of the following file creation mode options. The default creation mode is
CFile::modeNoTruncate , which is open existing.

Choose the following file caching options as described. By default, the system uses a general purpose
caching scheme that is not available as an option.

Choose the following security option to prevent the file handle from being inherited. By default, any new
child processes can use the file handle.

The default constructor initializes members but does not attach a file to the CFile object. After using this
constructor, use the CFile::Open method to open a file and attach it to the CFile object.

The constructor with one parameter initializes members and attaches an existing file to the CFile object.

The constructor with two parameters initializes members and tries to open the specified file. If this
constructor successfully opens the specified file, the file is attached to the CFile object; otherwise, this
constructor throws a pointer to a CInvalidArgException object. For more information about how to handle

ExampleExample

HANDLE hFile = CreateFile(_T("CFile_File.dat"),
 GENERIC_WRITE, FILE_SHARE_READ,
 NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if (hFile == INVALID_HANDLE_VALUE)
{
 AfxMessageBox(_T("Couldn't create the file!"));
}
else
{
 // Attach a CFile object to the handle we have.
 CFile myFile(hFile);

 static const TCHAR sz[] = _T("I love CFile!");

 // write string
 myFile.Write(sz, sizeof(sz));

 // We need to call Close() explicitly. Note that there's no need to
 // call CloseHandle() on the handle returned by the API because
 // Close() automatically calls CloseHandle() for us.
 myFile.Close();

CFile::Close

virtual void Close();

RemarksRemarks

ExampleExample

CFile::Duplicate

virtual CFile* Duplicate() const;

Return ValueReturn Value

RemarksRemarks

exceptions, see Exceptions.

If a CFile object successfully opens a specified file, it will close this file automatically when the CFile

object is destroyed; otherwise, you must explicitly close the file after it is no longer attached to the CFile

object.

The following code shows how to use a CFile .

Closes the file associated with this object and makes the file unavailable for reading or writing.

If you have not closed the file before destroying the object, the destructor closes it for you.

If you used new to allocate the CFile object on the heap, then you must delete it after closing the file.
Close sets m_hFile to CFile::hFileNull .

See the example for CFile::CFile.

Constructs a duplicate CFile object for a given file.

A pointer to a duplicate CFile object.

CFile::Flush

virtual void Flush();

RemarksRemarks

ExampleExample

CFile::GetFileName

virtual CString GetFileName() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

This is equivalent to the C run-time function _dup .

Forces any data remaining in the file buffer to be written to the file.

The use of Flush does not guarantee flushing of CArchive buffers. If you are using an archive, call
CArchive::Flush first.

See the example for CFile::SetFilePath.

Call this member function to retrieve the name of a specified file.

The name of the file.

For example, when you call GetFileName to generate a message to the user about the file
c:\windows\write\myfile.wri , the filename, myfile.wri , is returned.

To return the entire path of the file, including the name, call GetFilePath. To return the title of the file (
myfile), call GetFileTitle.

This code fragment opens the SYSTEM.INI file in your WINDOWS directory. If found, the example will
print out the name and path and title, as shown under Output:

try
{
 // try to open the file
 CFile sysFile(_T("C:\\WINDOWS\\SYSTEM.INI"), CFile::modeRead);

 // print out path name and title information
 _tprintf_s(_T("Path is : \"%s\"\n"),
 (LPCTSTR) sysFile.GetFilePath());
 _tprintf_s(_T("Name is : \"%s\"\n"),
 (LPCTSTR) sysFile.GetFileName());
 _tprintf_s(_T("Title is: \"%s\"\n"),
 (LPCTSTR) sysFile.GetFileTitle());

 // close the file handle
 sysFile.Close();
}
catch (CFileException* pEx)
{
 // if an error occurs, just make a message box
 pEx->ReportError();
 pEx->Delete();
}

CFile::GetFilePath

virtual CString GetFilePath() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFile::GetFileTitle

virtual CString GetFileTitle() const;

Return ValueReturn Value

RemarksRemarks

Call this member function to retrieve the full path of a specified file.

The full path of the specified file.

For example, when you call GetFilePath to generate a message to the user about the file
c:\windows\write\myfile.wri , the file path, c:\windows\write\myfile.wri , is returned.

To return just the name of the file (myfile.wri), call GetFileName. To return the title of the file (myfile),
call GetFileTitle.

See the example for GetFileName.

Call this member function to retrieve the file title (the display name) for the file.

The title of the underlying file.

This method calls GetFileTitle to retrieve the title of the file. If successful, the method returns the string
that the system would use to display the file name to the user. Otherwise, the method calls
PathFindFileName to retrieve the file name (including the file extension) of the underlying file. Therefore,
the file extension will not always be included in the returned file title string. For more information, see

https://docs.microsoft.com/windows/desktop/api/commdlg/nf-commdlg-getfiletitlea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindfilenamea

ExampleExample

CFile::GetLength

virtual ULONGLONG GetLength() const;

Return ValueReturn Value

ExampleExample

CFile* pFile = NULL;
// Constructing a CFile object with this override may throw
// a CFile exception, and won't throw any other exceptions.
// Calling CString::Format() may throw a CMemoryException,
// so we have a catch block for such exceptions, too. Any
// other exception types this function throws will be
// routed to the calling function.
try
{
 pFile = new CFile(_T("C:\\WINDOWS\\SYSTEM.INI"),
 CFile::modeRead | CFile::shareDenyNone);
 ULONGLONG dwLength = pFile->GetLength();
 CString str;
 str.Format(_T("Your SYSTEM.INI file is %I64u bytes long."), dwLength);
 AfxMessageBox(str);
}
catch (CFileException* pEx)
{
 // Simply show an error message to the user.
 pEx->ReportError();
 pEx->Delete();
}
catch(CMemoryException* pEx)
{
 pEx->ReportError();
 pEx->Delete();
 // We can't recover from this memory exception, so we'll
 // just terminate the app without any cleanup. Normally,
 // an application should do everything it possibly can to
 // clean up properly and _not_ call AfxAbort().
 AfxAbort();
}

// If an exception occurs in the CFile constructor,
// the language will free the memory allocated by new
// and will not complete the assignment to pFile.
// Thus, our clean-up code needs to test for NULL.
if (pFile != NULL)
{
 pFile->Close();
 delete pFile;
}

GetFileTitle and PathFindFileName in the Windows SDK.

To return the entire path of the file, including the name, call GetFilePath. To return just the name of the file,
call GetFileName.

See the example for GetFileName.

Obtains the current logical length of the file in bytes.

The length of the file.

https://docs.microsoft.com/windows/desktop/api/commdlg/nf-commdlg-getfiletitlea
https://docs.microsoft.com/windows/desktop/api/shlwapi/nf-shlwapi-pathfindfilenamea

CFile::GetPosition

virtual ULONGLONG GetPosition() const;

Return ValueReturn Value

ExampleExample

CFile cfile;
cfile.Open(_T("Seek_File.dat"), CFile::modeCreate |
 CFile::modeReadWrite);
LONGLONG lOffset = 1000;
ULONGLONG lActual;
lActual = cfile.Seek(lOffset, CFile::begin);
ASSERT(cfile.GetPosition() == lActual);

CFile::GetStatus

BOOL GetStatus(CFileStatus& rStatus) const;

static BOOL PASCAL GetStatus(
 LPCTSTR lpszFileName,
 CFileStatus& rStatus,
 CAtlTransactionManager* pTM = NULL);

ParametersParameters

Return ValueReturn Value

Obtains the current value of the file pointer, which can be used in subsequent calls to Seek .

The file pointer.

This method retrieves status information related to a given CFile object instance or a given file path.

rStatus
A reference to a user-supplied CFileStatus structure that will receive the status information. The
CFileStatus structure has the following fields:

CTime m_ctime The date and time the file was created.

CTime m_mtime The date and time the file was last modified.

CTime m_atime The date and time the file was last accessed for reading.

ULONGLONG m_size The logical size of the file in bytes, as reported by the DIR command.

BYTE m_attribute The attribute byte of the file.

char m_szFullName[_MAX_PATH] The absolute filename in the Windows character set.

lpszFileName
A string in the Windows character set that is the path to the desired file. The path can be relative or
absolute, or it can contain a network path name.

pTM
Pointer to CAtlTransactionManager object

TRUE if the status information for the specified file is successfully obtained; otherwise, FALSE.

RemarksRemarks

enum Attribute {
 normal = 0x00,
 readOnly = 0x01,
 hidden = 0x02,
 system = 0x04,
 volume = 0x08,
 directory = 0x10,
 archive = 0x20
 };

ExampleExample

CFile cfile;
cfile.Open(_T("SetLength_File.dat"), CFile::modeCreate |
 CFile::modeReadWrite);
ULONGLONG dwNewLength = 10000;
cfile.SetLength(dwNewLength);
CFileStatus status;
if(cfile.GetStatus(status)) // virtual member function
{
 TRACE(_T("File size = %u\n"), status.m_size);
}
TCHAR* pszFileName = _T("SetLength_File.dat");
if(CFile::GetStatus(pszFileName, status)) // static function
{
 TRACE(_T("Full file name = %s\n"), status.m_szFullName);
}

CFile::hFileNull

static AFX_DATA const HANDLE hFileNull;

RemarksRemarks

if (myFile.m_hFile != CFile::hFileNull)
 ;//perform operations on the file
else
 ;//indicate the presence of an invalid handle

CFile::LockRange

The non-static version of GetStatus retrieves status information of the open file associated with the given
CFile object. The static version of GetStatus obtains the file status from a given file path without actually

opening the file. This is useful for testing the existence and access rights of a file.

The m_attribute member of the CFileStatus structure refers to the file attribute set. The CFile class
provides the Attribute enumeration type so file attributes can be specified symbolically:

Determines the presence of a valid file handle for the CFile object.

This constant is used to determine if the CFile object has a valid file handle.

The following example demonstrates this operation:

Locks a range of bytes in an open file, throwing an exception if the file is already locked.

virtual void LockRange(
 ULONGLONG dwPos,
 ULONGLONG dwCount);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

CFile cfile;
cfile.Open(_T("LockRange_File.dat"), CFile::modeCreate |
 CFile::modeReadWrite);
ULONGLONG dwPos = 10;
ULONGLONG dwCount = 100;
cfile.LockRange(dwPos, dwCount);

// do something with the file

cfile.UnlockRange(dwPos, dwCount);

CFile::m_hFile

HANDLE m_hFile;

RemarksRemarks

CFile::m_pTM

dwPos
The byte offset of the start of the byte range to lock.

dwCount
The number of bytes in the range to lock.

Locking bytes in a file prevents access to those bytes by other processes. You can lock more than one
region of a file, but no overlapping regions are allowed.

When you unlock the region, using the UnlockRange member function, the byte range must correspond
exactly to the region that was previously locked. The LockRange function does not merge adjacent regions;
if two locked regions are adjacent, you must unlock each region separately.

This function is not available for the CMemFile -derived class.

Contains the operating-system file handle for an open file.

m_hFile is a public variable of type UINT. It contains CFile::hFileNull (an operating-system-
independent empty file indicator) if the handle has not been assigned.

Use of m_hFile is not recommended because the member's meaning depends on the derived class.
m_hFile is made a public member for convenience in supporting nonpolymorphic use of the class.

Pointer to a CAtlTransactionManager object.

CAtlTransactionManager* m_pTM;

RemarksRemarks

CFile::Open

virtual BOOL Open(
 LPCTSTR lpszFileName,
 UINT nOpenFlags,
 CFileException* pError = NULL);

virtual BOOL Open(
 LPCTSTR lpszFileName,
 UINT nOpenFlags,
 CAtlTransactionManager* pTM,
 CFileException* pError = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PERROR ERROR ENCOUNTERED RETURN VALUE CFILEEXCEPTION CONTENT

NULL No TRUE n/a

ptr to CFileException No TRUE unchanged

Overloaded. Open is designed for use with the default CFile constructor.

lpszFileName
A string that is the path to the desired file. The path can be relative, absolute, or a network name (UNC).

nOpenFlags
A UINT that defines the file's sharing and access mode. It specifies the action to take when opening the file.
You can combine options by using the bitwise-OR (|) operator. One access permission and one share
option are required; the modeCreate and modeNoInherit modes are optional. See the CFile constructor for
a list of mode options.

pError
A pointer to an existing file-exception object that will receive the status of a failed operation.

pTM
Pointer to CAtlTransactionManager object

Nonzero if the open was successful; otherwise 0. The pError parameter is meaningful only if 0 is returned.

The two functions form a "safe" method for opening a file where a failure is a normal, expected condition.

While the CFile constructor will throw an exception in an error condition, Open will return FALSE for
error conditions. Open can still initialize a CFileException object to describe the error, however. If you don't
supply the pError parameter, or if you pass NULL for pError, Open will return FALSE and not throw a
CFileException . If you pass a pointer to an existing CFileException , and Open encounters an error, the

function will fill it with information describing that error. In neither case will Open throw an exception.

The following table describes the possible results of Open .

NULL Yes FALSE n/a

ptr to CFileException Yes FALSE initialized to describe error

PERROR ERROR ENCOUNTERED RETURN VALUE CFILEEXCEPTION CONTENT

ExampleExample

CFile f;
CFileException e;
TCHAR* pszFileName = _T("Open_File.dat");
if(!f.Open(pszFileName, CFile::modeCreate | CFile::modeWrite, &e))
{
 TRACE(_T("File could not be opened %d\n"), e.m_cause);
}

//A second example for CFile::Open.
//This function uses CFile to copy binary files.
bool BinaryFileCopy(LPCTSTR pszSource, LPCTSTR pszDest)
{
 // constructing these file objects doesn't open them
 CFile sourceFile;
 CFile destFile;

 // we'll use a CFileException object to get error information
 CFileException ex;

 // open the source file for reading
 if (!sourceFile.Open(pszSource,
 CFile::modeRead | CFile::shareDenyWrite, &ex))
 {
 // complain if an error happened
 // no need to delete the ex object

 TCHAR szError[1024];
 ex.GetErrorMessage(szError, 1024);
 _tprintf_s(_T("Couldn't open source file: %1024s"), szError);
 return false;
 }
 else
 {
 if (!destFile.Open(pszDest, CFile::modeWrite |
 CFile::shareExclusive | CFile::modeCreate, &ex))
 {
 TCHAR szError[1024];
 ex.GetErrorMessage(szError, 1024);
 _tprintf_s(_T("Couldn't open source file: %1024s"), szError);

 sourceFile.Close();
 return false;
 }

 BYTE buffer[4096];
 DWORD dwRead;

 // Read in 4096-byte blocks,
 // remember how many bytes were actually read,
 // and try to write that many out. This loop ends
 // when there are no more bytes to read.
 do
 {
 dwRead = sourceFile.Read(buffer, 4096);
 destFile.Write(buffer, dwRead);
 }
 while (dwRead > 0);

 // Close both files

 destFile.Close();
 sourceFile.Close();
 }

 return true;
}

CFile::operator HANDLE
Use this operator to pass a handle to a CFile object to functions such as ReadFileEx and GetFileTime that
expect a HANDLE .

https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-readfileex
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-getfiletime

operator HANDLE() const;

CFile::Read

virtual UINT Read(
 void* lpBuf,
 UINT nCount);

ParametersParameters

Return ValueReturn Value

ExampleExample

CFile cfile;
cfile.Open(_T("Write_File.dat"), CFile::modeCreate |
 CFile::modeReadWrite);
char pbufWrite[100];
memset(pbufWrite, 'a', sizeof(pbufWrite));
cfile.Write(pbufWrite, 100);
cfile.Flush();
cfile.SeekToBegin();
char pbufRead[100];
cfile.Read(pbufRead, sizeof(pbufRead));
ASSERT(0 == memcmp(pbufWrite, pbufRead, sizeof(pbufWrite)));

CFile::Remove

static void PASCAL Remove(
 LPCTSTR lpszFileName,
 CAtlTransactionManager* pTM = NULL);

ParametersParameters

RemarksRemarks

Reads data into a buffer from the file associated with the CFile object.

lpBuf
Pointer to the user-supplied buffer that is to receive the data read from the file.

nCount
The maximum number of bytes to be read from the file. For text-mode files, carriage return-linefeed pairs
are counted as single characters.

The number of bytes transferred to the buffer. Note that for all CFile classes, the return value may be less
than nCount if the end of file was reached.

For another example see CFile::Open.

This static function deletes the file specified by the path.

lpszFileName
A string that is the path to the desired file. The path can be relative or absolute, and can contain a network
name.

pTM
Pointer to CAtlTransactionManager object

ExampleExample

//example for CFile::Remove
TCHAR* pFileName = _T("Remove_File.dat");
try
{
 CFile::Remove(pFileName);
}
catch (CFileException* pEx)
{
 TRACE(_T("File %20s cannot be removed\n"), pFileName);
 pEx->Delete();
}

CFile::Rename

static void PASCAL Rename(
 LPCTSTR lpszOldName,
 LPCTSTR lpszNewName,
 CAtlTransactionManager* pTM = NULL);

ParametersParameters

RemarksRemarks

ExampleExample

TCHAR* pOldName = _T("Oldname_File.dat");
TCHAR* pNewName = _T("Renamed_File.dat");

try
{
 CFile::Rename(pOldName, pNewName);
}
catch(CFileException* pEx)
{
 TRACE(_T("File %20s not found, cause = %d\n"), pOldName,
 pEx->m_cause);
 pEx->Delete();
}

CFile::Seek

It will not remove a directory.

The Remove member function throws an exception if the connected file is open or if the file cannot be
removed. This is equivalent to the DEL command.

This static function renames the specified file.

lpszOldName
The old path.

lpszNewName
The new path.

pTM
Pointer to CAtlTransactionManager object

Directories cannot be renamed. This is equivalent to the REN command.

virtual ULONGLONG Seek(
LONGLONG lOff,
UINT nFrom);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

VALUE DESCRIPTION

CFile::begin Seek from the start of the file.

CFile::current Seek from the current location of the file pointer.

CFile::end Seek from the end of the file.

ExampleExample

CFile cfile;
cfile.Open(_T("Seek_File.dat"), CFile::modeCreate |
 CFile::modeReadWrite);
LONGLONG lOffset = 1000;
ULONGLONG lActual;
lActual = cfile.Seek(lOffset, CFile::begin);

CFile::SeekToBegin

void SeekToBegin();

RemarksRemarks

Repositions the file pointer in an open file.

lOff
Number of bytes to move the file pointer. Positive values move the file pointer towards the end of the file;
negative values move the file pointer towards the start of the file.

nFrom
Position to seek from. See the Remarks section for possible values.

The position of the file pointer if the method was successful; otherwise, the return value is undefined and a
pointer to a CFileException exception is thrown.

The following table lists possible values for the nFrom parameter.

When a file is opened, the file pointer is positioned at 0, the start of the file.

You can set the file pointer to a position beyond the end of a file. If you do this, the size of the file does not
increase until you write to the file.

The exception handler for this method must delete the exception object after the exception is processed.

Sets the value of the file pointer to the beginning of the file.

SeekToBegin() is equivalent to Seek(0L, CFile::begin) .

ExampleExample

CFile f;
f.Open(_T("Seeker_File.dat"), CFile::modeCreate |
 CFile::modeReadWrite);
f.SeekToBegin();
ULONGLONG ullEnd = f.SeekToEnd();

CFile::SeekToEnd

ULONGLONG SeekToEnd();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFile f;
f.Open(_T("Seeker_File.dat"), CFile::modeCreate |
 CFile::modeReadWrite);
f.SeekToBegin();
ULONGLONG ullEnd = f.SeekToEnd();

CFile::SetFilePath

virtual void SetFilePath(LPCTSTR lpszNewName);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

Sets the value of the file pointer to the logical end of the file.

The length of the file in bytes.

SeekToEnd() is equivalent to CFile::Seek(0L, CFile::end) .

Call this function to specify the path of the file; for example, if the path of a file is not available when a
CFile object is constructed, call SetFilePath to provide it.

lpszNewName
Pointer to a string specifying the new path.

SetFilePath does not open the file or create the file; it simply associates the CFile object with a path name,
which can then be used.

TCHAR* pstrName = _T("C:\\test\\SetPath_File.dat");

// open a file
HANDLE hFile = ::CreateFile(pstrName, GENERIC_WRITE, FILE_SHARE_READ,
 NULL, CREATE_ALWAYS, 0, NULL);

if (hFile != INVALID_HANDLE_VALUE)
{
 // attach a CFile object to it
 CFile myFile(hFile);

 // At this point, myFile doesn't know the path name for the file
 // it owns because Windows doesn't associate that information
 // with the handle. Any CFileExceptions thrown by this object
 // won't have complete information.

 // Calling SetFilePath() remedies that problem by letting CFile
 // know the name of the file that's associated with the object.

 myFile.SetFilePath(pstrName);

 // write something to the file and flush it immediately
 DWORD dwValue = 1234;
 myFile.Write(&dwValue, sizeof(dwValue));
 myFile.Flush();

 // destroying the CObject here will call ::CloseHandle() on the file
}

CFile::SetLength

virtual void SetLength(ULONGLONG dwNewLen);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

CFile cfile;
cfile.Open(_T("SetLength_File.dat"), CFile::modeCreate |
 CFile::modeReadWrite);
ULONGLONG dwNewLength = 10000;
cfile.SetLength(dwNewLength);

CFile::SetStatus

Call this function to change the length of the file.

dwNewLen
Desired length of the file in bytes. This value can be larger or smaller than the current length of the file.
The file will be extended or truncated as appropriate.

With CMemFile , this function could throw a CMemoryException object.

Sets the status of the file associated with this file location.

static void PASCAL SetStatus(
 LPCTSTR lpszFileName,
 const CFileStatus& status,
 CAtlTransactionManager* pTM = NULL);

ParametersParameters

RemarksRemarks

ExampleExample

TCHAR* pFileName = _T("ReadOnly_File.dat");
CFileStatus status;
CFile::GetStatus(pFileName, status);
status.m_attribute |= CFile::readOnly;
CFile::SetStatus(pFileName, status);

CFile::UnlockRange

virtual void UnlockRange(
 ULONGLONG dwPos,
 ULONGLONG dwCount);

ParametersParameters

RemarksRemarks

lpszFileName
A string that is the path to the desired file. The path can be relative or absolute, and can contain a network
name.

status
The buffer containing the new status information. Call the GetStatus member function to prefill the
CFileStatus structure with current values, then make changes as required. If a value is 0, then the

corresponding status item is not updated. See the GetStatus member function for a description of the
CFileStatus structure.

pTM
Pointer to CAtlTransactionManager object

To set the time, modify the m_mtime field of status.

Please note that when you make a call to SetStatus in an attempt to change only the attributes of the file,
and the m_mtime member of the file status structure is nonzero, the attributes may also be affected
(changing the time stamp may have side effects on the attributes). If you want to only change the
attributes of the file, first set the m_mtime member of the file status structure to zero and then make a call
to SetStatus .

Unlocks a range of bytes in an open file.

dwPos
The byte offset of the start of the byte range to unlock.

dwCount
The number of bytes in the range to unlock.

See the description of the LockRange member function for details.

NOTENOTE

ExampleExample

CFile cfile;
cfile.Open(_T("LockRange_File.dat"), CFile::modeCreate |
 CFile::modeReadWrite);
ULONGLONG dwPos = 10;
ULONGLONG dwCount = 100;
cfile.LockRange(dwPos, dwCount);

// do something with the file

cfile.UnlockRange(dwPos, dwCount);

CFile::Write

virtual void Write(
 const void* lpBuf,
 UINT nCount);

ParametersParameters

RemarksRemarks

ExampleExample

CFile cfile;
cfile.Open(_T("Write_File.dat"), CFile::modeCreate |
 CFile::modeReadWrite);
char pbufWrite[100];
memset(pbufWrite, 'a', sizeof(pbufWrite));
cfile.Write(pbufWrite, 100);
cfile.Flush();

See also

This function is not available for the CMemFile -derived class.

Writes data from a buffer to the file associated with the CFile object.

lpBuf
A pointer to the user-supplied buffer that contains the data to be written to the file.

nCount
The number of bytes to be transferred from the buffer. For text-mode files, carriage return-linefeed pairs
are counted as single characters.

Write throws an exception in response to several conditions, including the disk-full condition.

In addition, see the examples for CFile::CFile and CFile::Open.

MFC Sample DRAWCLI
CObject Class
Hierarchy Chart
CStdioFile Class
CMemFile Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CFileDialog Class
3/4/2019 • 37 minutes to read • Edit Online

Syntax
class CFileDialog : public CCommonDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFileDialog::CFileDialog Constructs a CFileDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

CFileDialog::AddCheckButton Adds a check button to the dialog.

CFileDialog::AddComboBox Adds a combo box to the dialog.

CFileDialog::AddControlItem Adds an item to a container control in the dialog.

CFileDialog::AddEditBox Adds an edit box to the dialog.

CFileDialog::AddMenu Adds a menu to the dialog.

CFileDialog::AddPlace Overloaded. Adds a folder to the list of places available for
the user to open or save items.

CFileDialog::AddPushButton Adds a button to the dialog.

CFileDialog::AddRadioButtonList Adds an option button (also known as radio button) group
to the dialog.

CFileDialog::AddSeparator Adds a separator to the dialog.

CFileDialog::AddText Adds text content to the dialog.

CFileDialog::ApplyOFNToShellDialog Updates the state of the CFileDialog to match the
parameters and flags stored in the m_ofn member
variable.

CFileDialog::DoModal Displays the dialog box and enables the user to make a
selection.

Encapsulates the common dialog box that is used for file open or file save operations.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cfiledialog-class.md

CFileDialog::EnableOpenDropDown Enables a drop-down list on the Open or Save button in
the dialog.

CFileDialog::EndVisualGroup Stops the addition of elements to a visual group in the
dialog.

CFileDialog::GetCheckButtonState Gets the current state of a check button (check box) in the
dialog.

CFileDialog::GetControlItemState Gets the current state of an item in a container control
found in the dialog.

CFileDialog::GetControlState Gets the current visibility and enabled states of a given
control.

CFileDialog::GetEditBoxText Gets the current text in an edit box control.

CFileDialog::GetFileExt Returns the extension of the selected file.

CFileDialog::GetFileName Returns the file name of the selected file.

CFileDialog::GetFileTitle Returns the title of the selected file.

CFileDialog::GetFolderPath Retrieves the path of the currently open folder or directory
for an Explorer-style Open or Save As common dialog box.

CFileDialog::GetIFileDialogCustomize Retrieves the internal COM object for a customized
CFileDialog object.

CFileDialog::GetIFileOpenDialog Retrieves the internal COM object for a CFileDialog that
is used as an Open file dialog box.

CFileDialog::GetIFileSaveDialog Retrieves the internal COM object for a CFileDialog that
is used as a Save file dialog box.

CFileDialog::GetNextPathName Returns the full path of the next selected file.

CFileDialog::GetOFN Retrieves the OPENFILENAME structure of the
CFileDialog object.

CFileDialog::GetPathName Returns the full path of the selected file.

CFileDialog::GetReadOnlyPref Returns the read-only status of the selected file.

CFileDialog::GetResult Gets the choice that the user made in the dialog.

CFileDialog::GetResults Gets the user's choices in a dialog that allows multiple
selection.

CFileDialog::GetSelectedControlItem Gets a particular item from specified container controls in
the dialog.

NAME DESCRIPTION

CFileDialog::GetStartPosition Returns the position of the first element of the file name
list.

CFileDialog::HideControl Hides the specified control in an Explorer-style Open or
Save As common dialog box.

CFileDialog::IsPickFoldersMode Determines if the current dialog in folder picker mode.

CFileDialog::MakeProminent Places a control in the dialog so that it stands out
compared to other added controls.

CFileDialog::RemoveControlItem Removes an item from a container control in the dialog.

CFileDialog::SetCheckButtonState Sets the current state of a check button (check box) in the
dialog.

CFileDialog::SetControlItemState Sets the current state of an item in a container control
found in the dialog.

CFileDialog::SetControlItemText Sets the text of a control item. For example, the text that
accompanies a radio button or an item in a menu.

CFileDialog::SetControlLabel Sets the text associated with a control, such as button text
or an edit box label.

CFileDialog::SetControlState Sets the current visibility and enabled states of a given
control.

CFileDialog::SetControlText Sets the text for the specified control in an Explorer-style
Open or Save As common dialog box.

CFileDialog::SetDefExt Sets the default file name extension for an Explorer-style
Open or Save As common dialog box.

CFileDialog::SetEditBoxText Sets the current text in an edit box control.

CFileDialog::SetProperties Provides a property store that defines the default values to
be used for the item being saved.

CFileDialog::SetSelectedControlItem Sets the selected state of a particular item in an option
button group or a combo box found in the dialog.

CFileDialog::SetTemplate Sets the dialog box template for the CFileDialog object.

CFileDialog::StartVisualGroup Declares a visual group in the dialog. Subsequent calls to
any "add" method add those elements to this group.

CFileDialog::UpdateOFNFromShellDialog Updates the data stored in the m_ofn member variable to
match the current state of the file dialog box.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CFileDialog::OnButtonClicked Called when the button is clicked.

CFileDialog::OnCheckButtonToggled Called when the check box is checked/unchecked.

CFileDialog::OnControlActivating Called when the control is being active.

CFileDialog::OnFileNameChange Handles the WM_NOTIFY CDN_SELCHANGE message.

CFileDialog::OnFileNameOK Validates the file name entered in the dialog box.

CFileDialog::OnFolderChange Handles the WM_NOTIFY CDN_FOLDERCHANGE message.

CFileDialog::OnInitDone Handles the WM_NOTIFY CDN_INITDONE message.

CFileDialog::OnItemSelected Called when the container item is being selected.

CFileDialog::OnLBSelChangedNotify Allows you to perform custom actions when the file
selection changes.

CFileDialog::OnShareViolation Handles share violations.

CFileDialog::OnTypeChange Handles the WM_NOTIFY CDN_TYPECHANGE message.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CFileDialog::m_ofn The Windows OPENFILENAME structure. Provides access to
basic file dialog box parameters.

Remarks
Common file dialog boxes let you implement file-selection dialog boxes, for example, Open File and Save As,
in a manner that is consistent with Windows standards.

You can use CFileDialog as is with the constructor provided, or you can derive your own dialog box class
from CFileDialog and write a constructor to suit your needs. In either case, these dialog boxes will behave like
standard MFC dialog boxes because they are derived from the CCommonDialog Class. CFileDialog relies on
the COMMDLG.DLL file that is included in Windows.

Both the appearance and the functionality of the CFileDialog with Windows Vista or later differ from the
earlier versions of Windows. The default CFileDialog automatically uses the new Windows Vista or later style
without code changes if a program is compiled and run under Windows Vista or later. Use the bVistaStyle
parameter in the constructor to manually override this automatic update. The exception to the automatic
update is customized dialog boxes. They will not be converted to the new style. For more information about
the constructor, see CFileDialog::CFileDialog.

NOTENOTE

NOTENOTE

The control ID system differs in Windows Vista or later from earlier versions of Windows when you use a CFileDialog .
You must update all references to CFileDialog controls in code before you can port your project from an earlier
version of Windows.

Some CFileDialog methods are not supported under Windows Vista or later. Check the individual method
topic for information about whether the method is supported. In addition, the following inherited functions
are not supported under Windows Vista or later:

CDialog::OnInitDialog

CDialog::OnSetFont

The windows messages for the CFileDialog class vary based on what operating system you are using. For
example, Windows XP does not support CDialog::OnCancel and CDialog::OnOK for the CFileDialog class.
However, Windows Vista and later operating systems do support them. For more information about the
different messages that are generated and the order in which they are received, see CFileDialog Sample:
Logging Event Order.

To use a CFileDialog object, first create the object by using the CFileDialog constructor. After the dialog box
has been constructed, you can set or modify any values in the CFileDialog::m_ofn structure to initialize the
values or states of the dialog box controls. The m_ofn structure is of type OPENFILENAME . For more
information, see the OPENFILENAME structure in the Windows SDK.

After you initialize the dialog box controls, call the CFileDialog::DoModal method to display the dialog box so
that the user can type the path and file name. DoModal returns whether the user clicked the OK (IDOK) or the
Cancel (IDCANCEL) button. If DoModal returns IDOK, you can use one of the CFileDialog public member
functions to retrieve the information put in by the user.

Under Windows Vista or later, multiple calls to IFileDialog::SetFileTypes causes an error. The second call to
SetFileTypes for any instance of a CFileDialog will return E_UNEXPECTED in Windows Vista or later. Some
CFileDialog method functions call SetFileTypes . For example, two calls to CFileDialog::DoModal for the same

instance of a CFileDialog generates ASSERT.

CFileDialog includes several protected members that let you do custom handling of share violations, file
name validation, and list-box change notification. These protected members are callback functions that most
applications do not have to use because default handling is performed automatically. Message-map entries for
these functions are not required because they are standard virtual functions.

You can use the Windows CommDlgExtendedError function to determine whether an error occurred during
initialization of the dialog box and to learn more about the error.

The destruction of CFileDialog objects is handled automatically. You do not have to call CDialog::EndDialog.

To let the user select multiple files, set the OFN_ALLOWMULTISELECT flag before you call DoModal . You
must supply your own file name buffer to accommodate the returned list of multiple file names. Do this by
replacing m_ofn.lpstrFile with a pointer to a buffer you have allocated, after you construct the CFileDialog ,
but before you call DoModal .

Additionally, you must set m_ofn.nMaxFile by using the number of characters in the buffer pointed to by
m_ofn.lpstrFile . If you set the maximum number of files to be selected to n , the required buffer size is
n * (_MAX_PATH + 1) + 1 . The first item returned in the buffer is the path to the folder where the files were

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagofna
https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nf-shobjidl_core-ifiledialog-setfiletypes
https://docs.microsoft.com/windows/desktop/api/commdlg/nf-commdlg-commdlgextendederror

#define MAX_CFileDialog_FILE_COUNT 99
#define FILE_LIST_BUFFER_SIZE ((MAX_CFileDialog_FILE_COUNT * (MAX_PATH + 1)) + 1)

CString fileName;
wchar_t* p = fileName.GetBuffer(FILE_LIST_BUFFER_SIZE);
CFileDialog dlgFile(TRUE);
OPENFILENAME& ofn = dlgFile.GetOFN();
ofn.Flags |= OFN_ALLOWMULTISELECT;
ofn.lpstrFile = p;
ofn.nMaxFile = FILE_LIST_BUFFER_SIZE;

dlgFile.DoModal();
fileName.ReleaseBuffer();

wchar_t* pBufEnd = p + FILE_LIST_BUFFER_SIZE - 2;
wchar_t* start = p;
while((p < pBufEnd) && (*p))
 p++;
if(p > start)
{
 _tprintf(_T("Path to folder where files were selected: %s\r\n\r\n"), start);
 p++;

 int fileCount = 1;
 while((p < pBufEnd) && (*p))
 {
 start = p;
 while((p < pBufEnd) && (*p))
 p++;
 if(p > start)
 _tprintf(_T("%2d. %s\r\n"), fileCount, start);
 p++;
 fileCount++;
 }
}

Inheritance Hierarchy

selected. For Windows Vista or later-style dialog boxes, the directory and file name strings are null-
terminated, with an extra null character after the last file name. This format enables the Explorer-style dialog
boxes to return long file names that include spaces. For old-style dialog boxes, the directory and file name
strings are separated by spaces and the function uses short file names for file names with spaces.

The following example demonstrates how to use a buffer to retrieve and list multiple file names.

To change the buffer size in response to the user selecting multiple file names, you must derive a new class
from CFileDialog and override the CFileDialog::OnFileNameChange method.

If you derive a new class from CFileDialog , you can use a message map to handle any messages. To extend
the default message handling, derive a class from CFileDialog , add a message map to the new class, and
provide member functions for the new messages. You do not have to provide a hook function to customize the
dialog box.

To customize the dialog box, derive a class from CFileDialog , provide a custom dialog box template, and add
a message map to process the notification messages from the extended controls. Pass any unprocessed
messages to the base class. You do not have to customize the hook function.

When you are using the Windows Vista or later style of the CFileDialog , you cannot use message maps and
dialog box templates. Instead, you must use the COM interfaces for similar functionality.

For more information about how to use CFileDialog , see Common Dialog Classes.

Requirements

CFileDialog::AddCheckButton

HRESULT AddCheckButton(
 DWORD dwIDCtl,
 const CString& strLabel,
 BOOL bChecked);

ParametersParameters

RemarksRemarks

CFileDialog::AddComboBox

HRESULT AddComboBox(DWORD dwIDCtl);

ParametersParameters

RemarksRemarks

CFileDialog::AddControlItem

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

CFileDialog

Header: afxdlgs.h

Adds a check button to the dialog.

dwIDCtl
The ID of the check button to add.

strLabel
The check button name.

bChecked
A Boolean indicating the current state of the check button. TRUE if checked; FALSE otherwise

Adds a combo box to the dialog.

dwIDCtl
The ID of the combo box to add.

Adds an item to a container control in the dialog.

HRESULT AddControlItem(
 DWORD dwIDCtl,
 DWORD dwIDItem,
 const CString& strLabel);

ParametersParameters

RemarksRemarks

CFileDialog::AddEditBox

HRESULT AddEditBox(
 DWORD dwIDCtl,
 const CString& strText);

ParametersParameters

RemarksRemarks

CFileDialog::AddMenu

HRESULT AddMenu(
 DWORD dwIDCtl,
 const CString& strLabel);

ParametersParameters

RemarksRemarks

CFileDialog::AddPlace

dwIDCtl
The ID of the container control to add the item to.

dwIDItem
The ID of the item.

strLabel
Item's text.

Adds an edit box to the dialog.

dwIDCtl
The ID of the edit box to add.

strText
The edit box name.

Adds a menu to the dialog.

dwIDCtl
The ID of the menu to add.

strLabel
The menu name.

Adds a folder to the list of places available for the user to open or save items.

void AddPlace(
 LPCWSTR lpszFolder,
 FDAP fdap = FDAP_TOP) throw();

void AddPlace(
 IShellItem* psi,
 FDAP fdap = FDAP_TOP) throw();

ParametersParameters

RemarksRemarks

CFileDialog::AddPushButton

HRESULT AddPushButton(
 DWORD dwIDCtl,
 const CString& strLabel);

ParametersParameters

RemarksRemarks

CFileDialog::AddRadioButtonList

HRESULT AddRadioButtonList(DWORD dwIDCtl);

ParametersParameters

RemarksRemarks

CFileDialog::AddSeparator

HRESULT AddSeparator(DWORD dwIDCtl);

lpszFolder
A path to the folder to be made available to the user. This can only be a folder.

fdap
Specifies where the folder is placed within the list.

psi
A pointer to an IShellItem that represents the folder to be made available to the user. This can only be a folder.

Adds a button to the dialog.

dwIDCtl
The ID of the button to add.

strLabel
The button name.

Adds an option button (also known as radio button) group to the dialog.

dwIDCtl
The ID of the option button group to add.

Adds a separator to the dialog.

ParametersParameters

RemarksRemarks

CFileDialog::AddText

HRESULT AddText(
 DWORD dwIDCtl,
 const CString& strText);

ParametersParameters

RemarksRemarks

CFileDialog::ApplyOFNToShellDialog

void ApplyOFNToShellDialog();

RemarksRemarks

ExampleExample

CFileDialog::CFileDialog

dwIDCtl
The ID of the separator add.

Adds text to the dialog.

dwIDCtl
The ID of the text to add.

strText
The text name.

Updates the current state of the CFileDialog based on the values stored in the m_ofn data structure.

In versions of Windows before Windows Vista, the member OPENFILENAME data structure was
continuously synchronized with the state of the CFileDialog . Any changes to the m_ofn member variable
were immediately reflected in the state of the dialog box. Also, any changes to the state of the dialog box
immediately update the m_ofn member variable.

In Windows Vista or later, the values in the m_ofn member variable and state of the CFileDialog are not
guaranteed to be synchronized. This function forces the state of the CFileDialog to be updated to match the
m_ofn structure. Windows calls this function automatically during CFileDialog::DoModal.

For more information about how to use the CFileDialog class under Windows Vista or later, see CFileDialog
Class.

See the example for CFileDialog::UpdateOFNFromShellDialog.

Call this function to construct a standard Windows file dialog box.

https://msdn.microsoft.com/library/ms911906.aspx

explicit CFileDialog(
 BOOL bOpenFileDialog,
 LPCTSTR lpszDefExt = NULL,
 LPCTSTR lpszFileName = NULL,
 DWORD dwFlags = OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT,
 LPCTSTR lpszFilter = NULL,
 CWnd* pParentWnd = NULL,
 DWORD dwSize = 0,
 BOOL bVistaStyle = TRUE);

ParametersParameters

RemarksRemarks

bOpenFileDialog
[in] The parameter that specifies what type of dialog box to create. Set it to TRUE to construct a File Open
dialog box. Set it to FALSE to construct a File Save As dialog box.

lpszDefExt
[in] The default file name extension. If the user does not include a known extension (one that has an
association on the user’s computer) in the Filename box, the extension specified by lpszDefExt is automatically
appended to the file name. If this parameter is NULL, no extension is appended.

lpszFileName
[in] The initial file name that appears in the Filename box. If NULL, no initial file name appears.

dwFlags
[in] A combination of one or more flags that you can use to customize the dialog box. For a description of
these flags, see the OPENFILENAME structure in the Windows SDK. If you modify the m_ofn.Flags structure
member, use a bitwise-OR operator in your changes to keep the default behavior intact.

lpszFilter
[in] A series of string pairs that specify filters you can apply to the file. If you specify file filters, only files that
match filter criteria will appear in the Files list. See the Remarks section for more information about how to
work with file filters.

pParentWnd
[in] A pointer to the parent or owner window of the file dialog box.

dwSize
[in] The size of the OPENFILENAME structure. This value depends on the operating system version. MFC used
this parameter to determine the appropriate kind of dialog box to create. The default size of 0 means that the
MFC code will determine the correct dialog box size to use based on the operating system version on which
the program is run.

bVistaStyle
[in] Note This parameter is available in Visual Studio 2008 and later and is will cause the new-style dialog to
be used only if you are running in Windows Vista or later.

The parameter that specifies the style of the file dialog. Set it to TRUE to use the new Vista style file dialogs.
Otherwise, the old style of dialog boxes will be used. See the Remarks section for more information about
running under Vista.

Either a File Open or File Save As dialog box is constructed, depending on the value of bOpenFileDialog.

Specifying a default extension using lpszDefExt may not produce the behavior that you expect, because it is
seldom predictable what extensions have file associations on the user’s computer. If you need more control
over the appending of a default extension, you can derive your own class from CFileDialog , and override the
CFileDialog::OnFileNameOK method to perform your own extension handling.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagofna

#define MAX_CFileDialog_FILE_COUNT 99
#define FILE_LIST_BUFFER_SIZE ((MAX_CFileDialog_FILE_COUNT * (MAX_PATH + 1)) + 1)

CString fileName;
wchar_t* p = fileName.GetBuffer(FILE_LIST_BUFFER_SIZE);
CFileDialog dlgFile(TRUE);
OPENFILENAME& ofn = dlgFile.GetOFN();
ofn.Flags |= OFN_ALLOWMULTISELECT;
ofn.lpstrFile = p;
ofn.nMaxFile = FILE_LIST_BUFFER_SIZE;

dlgFile.DoModal();
fileName.ReleaseBuffer();

wchar_t* pBufEnd = p + FILE_LIST_BUFFER_SIZE - 2;
wchar_t* start = p;
while((p < pBufEnd) && (*p))
 p++;
if(p > start)
{
 _tprintf(_T("Path to folder where files were selected: %s\r\n\r\n"), start);
 p++;

 int fileCount = 1;
 while((p < pBufEnd) && (*p))
 {
 start = p;
 while((p < pBufEnd) && (*p))
 p++;
 if(p > start)
 _tprintf(_T("%2d. %s\r\n"), fileCount, start);
 p++;
 fileCount++;
 }
}

static TCHAR BASED_CODE szFilter[] = _T("Chart Files (*.xlc)|*.xlc|")
 _T("Worksheet Files (*.xls)|*.xls|Data Files (*.xlc;*.xls)|")
 _T("*.xlc; *.xls|All Files (*.*)|*.*||");

To enable the user to select multiple files, set the OFN_ALLOWMULTISELECT flag before you call DoModal.
You must supply your own file name buffer to store the returned list of multiple file names. Do this by
replacing m_ofn.lpstrFile with a pointer to a buffer you have allocated, after you construct the CFileDialog,
but before you call DoModal . Additionally, you must set m_ofn.nMaxFile with the number of characters in the
buffer pointed to by m_ofn.lpstrFile . If you set the maximum number of files to be selected to n, the
necessary buffer size is n *(_MAX_PATH + 1) + 1. For example:

To enable the user to resize an Explorer-style dialog box by using either the mouse or keyboard, set the
OFN_ENABLESIZING flag. Setting this flag is necessary only if you provide a hook procedure or custom
template. The flag works only with an Explorer-style dialog box; old-style dialog boxes cannot be resized.

The lpszFilter parameter is used to determine the type of file name a file must have to be displayed in the file
list. The first string in the string pair describes the filter; the second string indicates the file name extension to
use. Multiple extensions may be specified by using a semicolon (the ';' character) as the delimiter. The string
ends with two '|' characters, followed by a NULL character. You can also use a CString object for this
parameter.

For example, Microsoft Excel allows users to open files that have extensions .xlc (chart) or .xls (worksheet),
among others. The filter for Excel could be written as:

ExampleExample

CFileDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

ExampleExample

However, if you plan to use this string to directly update the OPENFILENAME structure, you should delimit your
strings with the null character, '\0', instead of the vertical bars ('|').

The bVistaStyle parameter is applicable only when running under Windows Vista or later. Under earlier
versions of Windows, this parameter is ignored. If bVistaStyle is set to TRUE, when you compile a program
with Visual Studio 2008 or later, the new Vista style File Dialog will be used. Otherwise, the previous MFC
style File Dialog will be used.

Dialog templates are not supported on dialogs based on bVistaStyle

See the example for CFileDialog::DoModal.

Call this function to display the Windows common file dialog box and allow the user to browse files and
directories and enter a filename.

IDOK or IDCANCEL. If IDCANCEL is returned, call the Windows CommDlgExtendedError function to
determine whether an error occurred.

IDOK and IDCANCEL are constants that indicate whether the user selected the OK or Cancel button.

If you want to initialize the various file dialog-box options by setting members of the m_ofn structure, you
should do this before calling DoModal , but after the dialog object is constructed.

For example, if you want to allow the user to select multiple files, set the OFN_ALLOWMULTISELECT flag
before calling DoModal , as shown in the code example in this topic.

When the user clicks the dialog box's OK or Cancel buttons, or selects the Close option from the dialog box's
control menu, control is returned to your application. You can then call other member functions to retrieve the
settings or information the user inputs into the dialog box.

DoModal is a virtual function overridden from class CDialog .

https://docs.microsoft.com/windows/desktop/api/commdlg/nf-commdlg-commdlgextendederror

void CMyClass::OnFileOpen()
{
 // szFilters is a text string that includes two file name filters:
 // "*.my" for "MyType Files" and "*.*' for "All Files."
 TCHAR szFilters[]= _T("MyType Files (*.my)|*.my|All Files (*.*)|*.*||");

 // Create an Open dialog; the default file name extension is ".my".
 CFileDialog fileDlg(TRUE, _T("my"), _T("*.my"),
 OFN_FILEMUSTEXIST | OFN_HIDEREADONLY, szFilters);

 // Display the file dialog. When user clicks OK, fileDlg.DoModal()
 // returns IDOK.
 if(fileDlg.DoModal() == IDOK)
 {
 CString pathName = fileDlg.GetPathName();

 // Implement opening and reading file in here.

 //Change the window's title to the opened file's title.
 CString fileName = fileDlg.GetFileTitle();

 SetWindowText(fileName);
 }
}

CFileDialog::EnableOpenDropDown

HRESULT EnableOpenDropDown(DWORD dwIDCtl);

ParametersParameters

RemarksRemarks

CFileDialog::EndVisualGroup

HRESULT EndVisualGroup();

Return ValueReturn Value

RemarksRemarks

CFileDialog::GetCheckButtonState

HRESULT GetCheckButtonState(
 DWORD dwIDCtl,
 BOOL& bChecked);

Enables a drop-down list on the Open or Save button in the dialog.

dwIDCtl
The ID of the drop-down list.

Stops the addition of elements to a visual group in the dialog.

Returns S_OK if successful; an error value otherwise.

Retrieves the current state of a check button (check box) in the dialog.

ParametersParameters

RemarksRemarks

CFileDialog::GetControlItemState

HRESULT GetControlItemState(
 DWORD dwIDCtl,
 DWORD dwIDItem,
 CDCONTROLSTATEF& dwState);

ParametersParameters

RemarksRemarks

CFileDialog::GetControlState

HRESULT GetControlState(
 DWORD dwIDCtl,
 CDCONTROLSTATEF& dwState);

ParametersParameters

RemarksRemarks

CFileDialog::GetEditBoxText

dwIDCtl
The ID of the check box.

bChecked
The state of the check box. TRUE indicates checked; FALSE indicates unchecked.

Retrieves the current state of an item in a container control found in the dialog.

dwIDCtl
The ID of the container control.

dwIDItem
The ID of the item.

dwState
A reference to a variable that receives one of more values from the CDCONTROLSTATE enumeration that
indicates the current state of the control.

Retrieves the current visibility and enabled states of a given control.

dwIDCtl
The ID of the control.

dwState
A reference to a variable that receives one or more values from the CDCONTROLSTATE enumeration that
indicates the current state of the control.

Retrieves the current text in an edit box control.

HRESULT GetEditBoxText(
 DWORD dwIDCtl,
 CString& strText);

ParametersParameters

RemarksRemarks

CFileDialog::GetFileExt

CString GetFileExt() const;

Return ValueReturn Value

RemarksRemarks

CFileDialog::GetFileName

CString GetFileName() const;

Return ValueReturn Value

RemarksRemarks

CFileDialog::GetFileTitle

CString GetFileTitle() const;

dwIDCtl
The ID of the edit box.

strText
The text value.

Call this function to retrieve the extension of the filename entered into the dialog box.

The extension of the filename.

For example, if the name of the file entered is DATA.TXT, GetFileExt returns "TXT".

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, this string contains a sequence of null-
terminated strings, with the first string being the directory path of the file group selected, followed by the
names of all files selected by the user. To retrieve file pathnames, use the GetStartPosition and
GetNextPathName member functions.

Call this function to retrieve the name of the filename entered in the dialog box.

The name of the file.

The name of the file includes both the prefix and the extension. For example, GetFileName will return
"TEXT.DAT" for the file C:\FILES\TEXT.DAT.

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, you should call GetStartPosition and GetNextPathName
to retrieve a file pathname.

Call this function to retrieve the title of the file entered in the dialog box.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFileDialog::GetFolderPath

CString GetFolderPath() const;

Return ValueReturn Value

RemarksRemarks

CFileDialog::GetIFileDialogCustomize

IFileDialogCustomize* GetIFileDialogCustomize();

Return ValueReturn Value

RemarksRemarks

ExampleExample

The title of the file.

The title of the file includes only its prefix, without the path or the extension. For example, GetFileTitle will
return "TEXT" for the file C:\FILES\TEXT.DAT.

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, this string contains a sequence of null-
terminated strings, with the first string being the directory path of the file group selected, followed by the
names of all files selected by the user. For this reason, use the GetStartPosition and GetNextPathName
member functions to retrieve the next file name in the list.

See the example for CFileDialog::DoModal.

Call this member function to retrieve the path of the currently open folder or directory for an Explorer-style
Open or Save As common dialog box.

A CString object containing the currently open folder or directory.

The dialog box must have been created with the OFN_EXPLORER style; otherwise, the method will fail with
an assertion.

You can call this method only while the dialog box is being displayed. After the dialog box has been closed, this
function will no longer work, and the method will fail with an assertion.

Retrieves a pointer to the internal COM object for a given CFileDialog.

The pointer to the internal COM object for the CFileDialog . It is your responsibility to release this pointer
appropriately.

Use this function only under Windows Vista or later with an object that has bVistaStyle set to TRUE. If you use
this function when bVistaStyle is FALSE, it will return NULL in release mode and throw an assertion in debug
mode.

For more information about the IFileDialogCustomize interface, see IFileDialogCustomize.

This example retrieves the internal COM object. To run this code example, you must compile it under
Windows Vista or later.

https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nn-shobjidl_core-ifiledialogcustomize

// Get the interface pointer
IFileDialogCustomize * customDlgPtr = m_myFileDialogPtr->GetIFileDialogCustomize();

// Make sure that it is not null
if (customDlgPtr != NULL)
{
 //
 // Perform any interface functionality here
 //

 // Release the pointer
 customDlgPtr->Release();
}

CFileDialog::GetIFileOpenDialog

IFileOpenDialog* GetIFileOpenDialog();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Get the interface pointer
IFileOpenDialog * openDlgPtr = m_myFileDialogPtr->GetIFileOpenDialog();

// Make sure that it is not null
if (openDlgPtr != NULL)
{
 //
 // Perform any interface functionality here
 //

 // Release the pointer
 openDlgPtr->Release();
}

CFileDialog::GetIFileSaveDialog

IFileSaveDialog* GetIFileSaveDialog();

Retrieves a pointer to the internal COM object for a given CFileDialog .

The pointer to the internal COM object for the CFileDialog . It is your responsibility to release this pointer
appropriately.

Use this function only under Windows Vista or later with an object that has bVistaStyle set to TRUE. This
function returns NULL if the CFileDialog is not an Open dialog box or if bVistaStyle is set to FALSE. In this
final case, the function only returns NULL in release mode - in debug mode it will throw an assertion.

For more information about the IFileOpenDialog interface, see IFileOpenDialog.

This example retrieves the internal COM object. To run this code, you must compile it under Windows Vista or
later.

Retrieves a pointer to the internal COM object for a given CFileDialog .

https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nn-shobjidl_core-ifileopendialog

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Get the interface pointer
IFileSaveDialog * saveDlgPtr = m_myFileDialogPtr->GetIFileSaveDialog();

// Make sure that it is not null
if (saveDlgPtr != NULL)
{
 //
 // Perform any interface functionality here
 //

 // Release the pointer
 saveDlgPtr->Release();
}

CFileDialog::GetNextPathName

CString GetNextPathName(POSITION& pos) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFileDialog::GetOFN

The pointer to the internal COM object for the CFileDialog . It is your responsibility to release this pointer
appropriately.

Use this function only under Windows Vista or later with an object that has bVistaStyle set to TRUE. This
function will return NULL if the CFileDialog is not a Save dialog box or if bVistaStyle is set to FALSE. In this
final case, the function only returns NULL in release mode - in debug mode it will throw an assertion.

For more information about the IFileSaveDialog interface, see IFileSaveDialog.

This example retrieves the internal COM object. To run this code example, you must compile it under
Windows Vista or later.

Call this function to retrieve the next filename from the group selected in the dialog box.

pos
A reference to a POSITION value returned by a previous GetNextPathName or GetStartPosition function call.
NULL if the end of the list has been reached.

The full path of the file.

The path of the filename includes the file's title plus the entire directory path. For example, GetNextPathName
will return "C:\FILES\TEXT.DAT" for the file C:\FILES\TEXT.DAT. You can use GetNextPathName in a forward
iteration loop if you establish the initial position with a call to GetStartPosition .

If the selection consists of only one file, that file name will be returned.

Retrieves the associated OPENFILENAME structure.

https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nn-shobjidl_core-ifilesavedialog

const OPENFILENAME& GetOFN() const;

OPENFILENAME& GetOFN();

Return ValueReturn Value

RemarksRemarks

CFileDialog::GetPathName

CString GetPathName() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFileDialog::GetReadOnlyPref

BOOL GetReadOnlyPref() const;

Return ValueReturn Value

RemarksRemarks

NOTENOTE

An OPENFILENAME structure.

Use the second version of this function to initialize the appearance of a File Open or File Save As dialog box
after it is constructed but before it is displayed with the DoModal member function. For example, you can set
the lpstrTitle member of m_ofn to the caption you want the dialog box to have.

Call this function to retrieve the full path of the file entered in the dialog box.

The full path of the file.

The path of the filename includes the file's title plus the entire directory path. For example, GetPathName will
return "C:\FILES\TEXT.DAT" for the file C:\FILES\TEXT.DAT.

If m_ofn.Flags has the OFN_ALLOWMULTISELECT flag set, this string contains a sequence of null-teminated
strings, with the first string being the directory path of the file group selected, followed by the names of all
files selected by the user. For this reason, use the GetStartPosition and GetNextPathName member functions
to retrieve the next file name in the list.

See the example for CFileDialog::DoModal.

Call this function to determine whether the Read Only check box has been selected in the Windows standard
File Open and File Save As dialog boxes.

Non-zero if the Read Only check box in the dialog box is selected; otherwise 0.

You can hide the Read Only check box by setting the OFN_HIDEREADONLY style in the CFileDialog

constructor.

Windows Vista or later style CFileDialog objects do not support this function. Attempting to use this function on a
Windows Vista or later style CFileDialog will throw CNotSupportedException.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagofna

CFileDialog::GetResult

IShellItem* GetResult() throw();

Return ValueReturn Value

RemarksRemarks

CFileDialog::GetResults

IShellItemArray* GetResults() throw();

Return ValueReturn Value

RemarksRemarks

CFileDialog::GetSelectedControlItem

HRESULT GetSelectedControlItem(
 DWORD dwIDCtl,
 DWORD& dwIDItem);

ParametersParameters

RemarksRemarks

CFileDialog::GetStartPosition

POSITION GetStartPosition() const;

Return ValueReturn Value

CFileDialog::HideControl

Retrieves the choice that the user made in the dialog.

A pointer to an IShellItem that represents the user's choice.

Retrieves the user's choices in a dialog that allows multiple selection.

A pointer to an IShellItemArray through which the items selected in the dialog can be accessed.

Retrieves a particular item from the specified container control in the dialog.

dwIDCtl
The ID of the container control.

dwIDItem
The ID of the item that the user selected in the control.

Call this member function to retrieve the position of the first file pathname in the list, if m_ofn.Flags has the
OFN_ALLOWMULTISELECT flag set.

A POSITION value that can be used for iteration; NULL if the list is empty.

Call this member function to hide the specified control in an Explorer-style Open or Save As common dialog
box.

void HideControl(int nID);

ParametersParameters

RemarksRemarks

CFileDialog::IsPickFoldersMode

BOOL IsPickFoldersMode() const;

Return ValueReturn Value

RemarksRemarks

CFileDialog::m_ofn

RemarksRemarks

nID
The ID of the control to hide.

The dialog box must have been created with the OFN_EXPLORER style; otherwise, the function will fail with
an assertion.

Determines if the current dialog is in folder picker mode.

TRUE if the dialog is in folder picker mode; otherwise FALSE.

m_ofn is a structure of type OPENFILENAME . The data in this structure represents the current state of the
CFileDialog .

Use this structure to initialize the appearance of a File Open or File Save As dialog box after you construct it
but before you display it with the DoModal method. For example, you can set the lpstrTitle member of m_ofn

to the caption you want the dialog box to have.

With the Windows Vista or later style of CFileDialog, m_ofn is not guaranteed to always match the state of
the dialog box. It is synchronized with the dialog box in earlier versions of Windows. See
CFileDialog::ApplyOFNToShellDialog and CFileDialog::UpdateOFNFromShellDialog for more information
about synchronizing the m_ofn structure and the CFileDialog state under Windows Vista or later.

Windows Vista or later style file dialogs do not support certain members and flags of the CFileDialog . As a
result, these will have no effect.

The following is a list of the members that are not supported by Windows Vista or later:

lpstrCustomFilter

lpstrInitialDir

lCustData

lpfnHook

lpTemplateName

The following flags are not supported and therefore have no effect when you use the Windows Vista or later
style of CFileDialog :

OFN_ENABLEHOOK

CFileDialog::MakeProminent

HRESULT MakeProminent(DWORD dwIDCtl);

ParametersParameters

RemarksRemarks

CFileDialog::OnButtonClicked

virtual void OnButtonClicked(DWORD dwIDCtl);

ParametersParameters

RemarksRemarks

CFileDialog::OnCheckButtonToggled

virtual void OnCheckButtonToggled(
 DWORD dwIDCtl,
 BOOL bChecked);

ParametersParameters

OFN_ENABLEINCLUDENOTIFY

OFN_ENABLETEMPLATE

OFN_ENABLETEMPLATEHANDLE

OFN_EXPLORER

OFN_EXTENSIONDIFFERENT

OFN_HIDEREADONLY

OFN_LONGNAMES - effectively always on in Windows Vista or later

OFN_NOLONGNAMES - effectively always off in Windows Vista or later

OFN_NONETWORKBUTTON - effectively always on in Windows Vista or later

OFN_READONLY

OFN_SHOWHELP

For more information about this structure, see the OPENFILENAME structure in the Windows SDK.

Places a control in the dialog so that it stands out compared to other controls.

dwIDCtl
The ID of the control.

Called when the button is clicked.

dwIDCtl
The ID of the button.

Called when the check box is checked or unchecked.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagofna

RemarksRemarks

CFileDialog::OnControlActivating

virtual void OnControlActivating(DWORD dwIDCtl);

ParametersParameters

RemarksRemarks

CFileDialog::OnFileNameChange

virtual void OnFileNameChange();

RemarksRemarks

CFileDialog::OnFileNameOK

virtual BOOL OnFileNameOK();

Return ValueReturn Value

RemarksRemarks

dwIDCtl
The ID of the check box.

bChecked
Checked or unchecked.

Called when the control is activated.

dwIDCtl
The ID of the control.

Override this method if you want to handle the WM_NOTIFY CDN_SELCHANGE message.

The system sends the CDN_SELCHANGE message when the user selects a new file or folder in the file list of
the Open or Save As dialog box. Override this method if you want to perform any actions in response to this
message.

The system sends this message only if the dialog box was created with the OFN_EXPLORER flag turned on.
For more information about the notification, see CDN_SELCHANGE. For information about the
OFN_EXPLORER flag, see the OPENFILENAME structure and Open and Save As Dialog Boxes.

Override this function only if you want to provide custom validation of filenames that are entered into a
common file dialog box.

1 if the filename is not a valid filename; otherwise 0.

This function allows you to reject a filename for any application-specific reason. Normally, you do not need to
use this function because the framework provides default validation of filenames and displays a message box
if an invalid filename is entered.

If 1 is returned, the dialog box will remain displayed for the user to enter another filename. The dialog
procedure dismisses the dialog if the return is 0. Other nonzero return values are currently reserved and
should not be used.

https://docs.microsoft.com/windows/desktop/dlgbox/cdn-selchange
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagofna
https://docs.microsoft.com/windows/desktop/dlgbox/open-and-save-as-dialog-boxes

CFileDialog::OnFolderChange

virtual void OnFolderChange();

RemarksRemarks

CFileDialog::OnInitDone

virtual void OnInitDone();

RemarksRemarks

NOTENOTE

CFileDialog::OnItemSelected

virtual void OnItemSelected(
 DWORD dwIDCtl,
 DWORD dwIDItem);

ParametersParameters

RemarksRemarks

CFileDialog::OnLBSelChangedNotify

Override this function to handle the WM_NOTIFYCDN_FOLDERCHANGE message.

The notification message is sent when a new folder is opened in the Open or Save As dialog box.

Notification is sent only if the dialog box was created with the OFN_EXPLORER style. For more information
about the notification, see CDN_FOLDERCHANGE. For information about the OFN_EXPLORER style, see the
OPENFILENAME structure and Open and Save As Dialog Boxes.

Override this function to handle the WM_NOTIFY CDN_INITDONE message.

The system sends this notification message when the system has finished arranging controls in the Open or
Save As dialog box to make room for the controls of the child dialog box.

The system sends this only if the dialog box was created with the OFN_EXPLORER style. For more
information about the notification, see CDN_INITDONE. For information about the OFN_EXPLORER style,
see the OPENFILENAME structure and Open and Save As Dialog Boxes.

Windows Vista or later style file dialogs do not support this function. Attempting to use this function on a Windows
Vista or later style file dialog will throw CNotSupportedException.

Called when the container item is selected.

dwIDCtl
The ID of the container control.

dwIDItem
The ID of the item.

This function is called whenever the current selection in a list box is about to change.

https://docs.microsoft.com/windows/desktop/dlgbox/cdn-folderchange
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagofna
https://docs.microsoft.com/windows/desktop/dlgbox/open-and-save-as-dialog-boxes
https://docs.microsoft.com/windows/desktop/dlgbox/cdn-initdone
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagofna
https://docs.microsoft.com/windows/desktop/dlgbox/open-and-save-as-dialog-boxes

virtual void OnLBSelChangedNotify(
 UINT nIDBox,
 UINT iCurSel,
 UINT nCode);

ParametersParameters

RemarksRemarks

CFileDialog::OnShareViolation

virtual UINT OnShareViolation(LPCTSTR lpszPathName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFileDialog::OnTypeChange

nIDBox
The ID of the list box or combo box in which the selection occurred.

iCurSel
The index of the current selection.

nCode
The control notification code. This parameter must have one of the following values:

CD_LBSELCHANGE Specifies iCurSel is the selected item in a single-selection list box.

CD_LBSELSUB Specifies that iCurSel is no longer selected in a multiselection list box.

CD_LBSELADD Specifies that iCurSel is selected in a multiselection list box.

CD_LBSELNOITEMS Specifies that no selection exists in a multiselection list box.

Override this function to provide custom handling of selection changes in the list box. For example, you can
use this function to display the access rights or date-last-modified of each file the user selects.

Override this function to provide custom handling of share violations.

lpszPathName
The path of the file on which the share violation occurred.

One of the following values:

OFN_SHAREFALLTHROUGH The filename is returned from the dialog box.

OFN_SHARENOWARN No further action needs to be taken.

OFN_SHAREWARN The user receives the standard warning message for this error.

Normally, you do not need to use this function because the framework provides default checking of share
violations and displays a message box if a share violation occurs.

If you want to disable share violation checking, use the bitwise OR operator to combine the flag
OFN_SHAREAWARE with m_ofn.Flags .

Override this function to handle the WM_NOTIFYCDN_TYPECHANGE message.

virtual void OnTypeChange();

RemarksRemarks

CFileDialog::RemoveControlItem

HRESULT RemoveControlItem(
 DWORD dwIDCtl,
 DWORD dwIDItem);

ParametersParameters

RemarksRemarks

CFileDialog::SetCheckButtonState

HRESULT SetCheckButtonState(
 DWORD dwIDCtl,
 BOOL bChecked);

ParametersParameters

RemarksRemarks

CFileDialog::SetControlItemState

HRESULT SetControlItemState(
 DWORD dwIDCtl,
 DWORD dwIDItem,
 CDCONTROLSTATEF dwState);

ParametersParameters

The notification message is sent when the user selects a new file type from the list of file types in the Open or
Save As dialog box.

Notification is sent only if the dialog box was created with the OFN_EXPLORER style. For more information
about the notification, see CDN_TYPECHANGE. For information about the OFN_EXPLORER style, see the
OPENFILENAME structure and Open and Save As Dialog Boxes.

Removes an item from a container control in the dialog.

dwIDCtl
The ID of the container control to remove the item from.

dwIDItem
The ID of the item.

Sets the current state of a check button (check box) in the dialog.

dwIDCtl
The ID of the check box.

bChecked
The state of the check box. TRUE indicates checked; FALSE indicates Unchecked.

Sets the current state of an item in a container control found in the dialog.

https://docs.microsoft.com/windows/desktop/dlgbox/cdn-typechange
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagofna
https://docs.microsoft.com/windows/desktop/dlgbox/open-and-save-as-dialog-boxes

RemarksRemarks

CFileDialog::SetControlItemText

HRESULT SetControlItemText(
 DWORD dwIDCtl,
 DWORD dwIDItem,
 const CString& strLabel);

ParametersParameters

RemarksRemarks

CFileDialog::SetControlLabel

HRESULT SetControlLabel(
 DWORD dwIDCtl,
 const CString& strLabel);

ParametersParameters

RemarksRemarks

CFileDialog::SetControlState

HRESULT SetControlState(
 DWORD dwIDCtl,
 CDCONTROLSTATEF dwState);

dwIDCtl
The ID of the container control.

dwIDItem
The ID of the item.

dwState
One or more values from the CDCONTROLSTATE enumeration that indicate the new state of the control.

Sets the text of a control item. For example, the text that accompanies a radio button or an item in a menu.

dwIDCtl
The ID of the container control.

dwIDItem
The ID of the item.

strLabel
Item's text.

Sets the text associated with a control, such as button text or an edit box label.

dwIDCtl
The ID of the control.

strLabel
The control name.

Sets the current visibility and enabled states of a given control.

ParametersParameters

RemarksRemarks

CFileDialog::SetControlText

void SetControlText(
 int nID,
 LPCSTR lpsz);

void SetControlText(
 int nID,
 const wchar_t *lpsz);

ParametersParameters

RemarksRemarks

CFileDialog::SetDefExt

void SetDefExt(LPCSTR lpsz);

ParametersParameters

RemarksRemarks

CFileDialog::SetEditBoxText

dwIDCtl
The ID of the control.

dwState
One or more values from the CDCONTROLSTATE enumeration that indicate the current state of the control.

Call this method to set the text for the specified control in an Explorer-style Open or Save As dialog box.

nID
[in] The ID of the control for which to set the text.

lpsz
[in] A pointer to the string that contains the text to set for the control.

Both versions of this function are valid for applications that use Unicode. However, only the version with the
LPCSTR type is valid for applications that use ANSI.

To use this method, you must create the dialog box with the OFN_EXPLORER style. Otherwise, the function
will fail with an assertion.

Call this function to set the default file name extension for an Explorer-style Open or Save As common dialog
box.

lpsz
A pointer to a string containing the default extension to use for the dialog box object. This string must not
contain a period (.).

The dialog box must have been created with the OFN_EXPLORER style; otherwise, the function will fail with
an assertion.

Sets the current text in an edit box control.

HRESULT SetEditBoxText(
 DWORD dwIDCtl,
 const CString& strText);

ParametersParameters

RemarksRemarks

CFileDialog::SetProperties

BOOL SetProperties(LPCWSTR lpszPropList);

ParametersParameters

RemarksRemarks

CFileDialog::SetSelectedControlItem

HRESULT SetSelectedControlItem(
 DWORD dwIDCtl,
 DWORD dwIDItem);

ParametersParameters

RemarksRemarks

CFileDialog::SetTemplate

void SetTemplate(
 UINT nWin3ID,
 UINT nWin4ID);

void SetTemplate(
 LPCTSTR lpWin3ID,
 LPCTSTR lpWin4ID);

dwIDCtl
The ID of the edit box.

strText
The text value.

Provides a property store that defines the default values to be used for the item being saved.

lpszPropList
A list of predefined properties separated by ";". For a list of the flags, see the Flags section of
OPENFILENAME.

Sets the selected state of a particular item in an option button group or a combo box found in the dialog.

dwIDCtl
The ID of the container control.

dwIDItem
The ID of the item that the user selected in the control.

Sets the dialog box template for the CFileDialog object.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagofna

ParametersParameters

RemarksRemarks

NOTENOTE

CFileDialog::StartVisualGroup

HRESULT StartVisualGroup(
 DWORD dwIDCtl,
 const CString& strLabel);

ParametersParameters

RemarksRemarks

CFileDialog::UpdateOFNFromShellDialog

void UpdateOFNFromShellDialog();

nWin3ID
[in] Contains the ID number of the template resource for the non-Explorer CFileDialog object. This template
is only used on Windows NT 3.51 or when the OFN_EXPLORER style is not present.

nWin4ID
[in] Contains the ID number of the template resource for the Explorer CFileDialog object. This template is
used only on Windows NT 4.0 and later versions, Windows 95 and later versions, or when the
OFN_EXPLORER style is present.

lpWin3ID
[in] Contains the name of the template resource for the non-Explorer CFileDialog object. This template is
only used on Windows NT 3.51 or when the OFN_EXPLORER style is not present.

lpWin4ID
[in] Contains the name of the template resource of the Explorer CFileDialog object. This template is used only
on Windows NT 4.0 and later versions, Windows 95 and later versions, or when the OFN_EXPLORER style is
present.

The system will use only one of the specified templates. The system determines which template to use based
on the presence of the OFN_EXPLORER style and the operating system that the application is running on. By
specifying both a non-Explorer and Explorer-style template, it is easy to support Windows NT 3.51, Windows
NT 4.0 and later versions, and Windows 95 and later versions.

Windows Vista or later style file dialog boxes do not support this function. Attempting to use this function on a
Windows Vista or later style file dialog box will throw CNotSupportedException. An alternative is to use a customized
dialog. For more information about using a custom CFileDialog , see IFileDialogCustomize.

Declares a visual group in the dialog. Subsequent calls to any "add" method add those elements to this group.

dwIDCtl
The ID of the visual group.

strLabel
The group name.

Updates the m_ofn data structure of the CFileDialog based on the current state of the internal object.

https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nn-shobjidl_core-ifiledialogcustomize

RemarksRemarks

ExampleExample

// Update the m_ofn variable
m_myFileDialogPtr->UpdateOFNFromShellDialog();

// Change the title
m_myFileDialogPtr->m_ofn.lpstrTitle = L"New Dialog Title";

// Apply the changes
m_myFileDialogPtr->ApplyOFNToShellDialog();

// Show the window
LRESULT result = m_myFileDialogPtr->DoModal();

See also

In versions of Windows before Windows Vista, the member OPENFILENAME data structure was
continuously synchronized with the state of the CFileDialog . Any changes to the m_ofn member variable
directly affected the state of the dialog box. Also, any changes to the state of the dialog immediately updated
the m_ofn member variable.

In Windows Vista or later, the m_ofn data structure is not automatically updated. To guarantee the accuracy of
the data in the m_ofn member variable, you should call the UpdateOFNFromShellDialog function before
accessing the data. Windows calls this function automatically during the processing of IFileDialog::OnFileOK.

For more information about how to use the CFileDialog class under Windows Vista or later, see CFileDialog
Class.

This example updates the CFileDialog before displaying it. Before updating the m_ofn member variable, we
need to synchronize it to the current state of the dialog box.

CCommonDialog Class
Hierarchy Chart

https://msdn.microsoft.com/library/ms911906.aspx
https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nf-shobjidl_core-ifiledialogevents-onfileok

CFileException Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CFileException : public CException

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFileException::CFileException Constructs a CFileException object.

Public MethodsPublic Methods

NAME DESCRIPTION

CFileException::ErrnoToException Returns cause code corresponding to a run-time error
number.

CFileException::GetErrorMessage Retrieves the message describing an exception.

CFileException::OsErrorToException Returns a cause code corresponding to an operating system
error code.

CFileException::ThrowErrno Throws a file exception based on a runtime error number.

CFileException::ThrowOsError Throws a file exception based on an operating system error
number.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CFileException::m_cause Contains portable code corresponding to the exception
cause.

CFileException::m_lOsError Contains the related operating-system error number.

CFileException::m_strFileName Contains the name of the file for this exception.

Remarks

Represents a file-related exception condition.

The CFileException class includes public data members that hold the portable cause code and the operating-
system-specific error number. The class also provides static member functions for throwing file exceptions and

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cfileexception-class.md

Inheritance Hierarchy

Requirements

CFileException::CFileException

CFileException(
 int cause = CFileException::none,
 LONG lOsError = -1,
 LPCTSTR lpszArchiveName = NULL);

ParametersParameters

RemarksRemarks

NOTENOTE

CFileException::ErrnoToException

static int PASCAL ErrnoToException(int nErrno);

for returning cause codes for both operating-system errors and C run-time errors.

CFileException objects are constructed and thrown in CFile member functions and in member functions of
derived classes. You can access these objects within the scope of a CATCH expression. For portability, use only
the cause code to get the reason for an exception. For more information about exceptions, see the article
Exception Handling (MFC).

CObject

CException

CFileException

Header: afx.h

Constructs a CFileException object that stores the cause code and the operating-system code in the object.

cause
An enumerated type variable that indicates the reason for the exception. See CFileException::m_cause for a list of
the possible values.

lOsError
An operating-system-specific reason for the exception, if available. The lOsError parameter provides more
information than cause does.

lpszArchiveName
Points to a string containing the name of the CFile object causing the exception.

Do not use this constructor directly, but rather call the global function AfxThrowFileException.

The variable lOsError applies only to CFile and CStdioFile objects. The CMemFile class does not handle this error
code.

Converts a given run-time library error value to a CFileException enumerated error value.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

ASSERT(CFileException::ErrnoToException(EACCES) ==
 CFileException::accessDenied);

CFileException::GetErrorMessage

virtual BOOL GetErrorMessage(
 LPTSTR lpszError,
 UINT nMaxError,
 PUINT pnHelpContext = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

nErrno
An integer error code as defined in the run-time include file ERRNO.H.

Enumerated value that corresponds to a given run-time library error value.

See CFileException::m_cause for a list of the possible enumerated values.

Retrieves text that describes an exception.

lpszError
[in, out] Pointer to a buffer that receives an error message.

nMaxError
[in] The maximum number of characters the specified buffer can hold. This includes the terminating null
character.

pnHelpContext
[in, out] Pointer to an unsigned integer that receives the help context ID. If NULL , no ID is returned.

TRUE if the method was successful; otherwise FALSE.

If the specified buffer is too small, the error message is truncated.

The following example uses CFileException::GetErrorMessage .

CFile fileInput;
CFileException ex;

// try to open a file for reading.
// The file will certainly not
// exist because there are too many explicit
// directories in the name.

// if the call to Open() fails, ex will be
// initialized with exception
// information. the call to ex.GetErrorMessage()
// will retrieve an appropriate message describing
// the error, and we'll add our own text
// to make sure the user is perfectly sure what
// went wrong.

if (!fileInput.Open(_T("\\Too\\Many\\Bad\\Dirs.DAT"), CFile::modeRead, &ex))
{
 TCHAR szCause[255];
 CString strFormatted;

 ex.GetErrorMessage(szCause, 255);

 // (in real life, it's probably more
 // appropriate to read this from
 // a string resource so it would be easy to
 // localize)

 strFormatted = _T("The data file could not be opened because of this error: ");
 strFormatted += szCause;

 AfxMessageBox(strFormatted);
}
else
{
 // the file was opened, so do whatever work
 // with fileInput
 // we were planning...

 fileInput.Close();
}

CFileException::m_cause

int m_cause;

RemarksRemarks

Contains values defined by a CFileException enumerated type.

This data member is a public variable of type int. The enumerators and their meanings are as follows:

CFileException::none 0: No error occurred.

CFileException::genericException 1: An unspecified error occurred.

CFileException::fileNotFound 2: The file could not be located.

CFileException::badPath 3: All or part of the path is invalid.

CFileException::tooManyOpenFiles 4: The permitted number of open files was exceeded.

CFileException::accessDenied 5: The file could not be accessed.

ExampleExample

try
{
 CFile f(_T("M_Cause_File.dat"), CFile::modeWrite);
}
catch(CFileException* e)
{
 if(e->m_cause == CFileException::fileNotFound)
 TRACE(_T("ERROR: File not found\n"));
 e->Delete();
}

CFileException::m_lOsError

LONG m_lOsError;

RemarksRemarks

CFileException::m_strFileName

CString m_strFileName;

NOTENOTE

NOTENOTE

CFileException::invalidFile 6: There was an attempt to use an invalid file handle.

CFileException::removeCurrentDir 7: The current working directory cannot be removed.

CFileException::directoryFull 8: There are no more directory entries.

CFileException::badSeek 9: There was an error trying to set the file pointer.

CFileException::hardIO 10: There was a hardware error.

CFileException::sharingViolation 11: SHARE.EXE was not loaded, or a shared region was locked.

CFileException::lockViolation 12: There was an attempt to lock a region that was already locked.

CFileException::diskFull 14: The disk is full.

CFileException::endOfFile 15: The end of file was reached.

These CFileException cause enumerators are distinct from the CArchiveException cause enumerators.

CArchiveException::generic is deprecated. Use genericException instead. If generic is used in an application
and built with /clr, the resulting syntax errors are not easy to decipher.

Contains the operating-system error code for this exception.

See your operating-system technical manual for a listing of error codes. This data member is a public variable of
type LONG.

Contains the name of the file for this exception condition.

CFileException::OsErrorToException

static int PASCAL OsErrorToException(LONG lOsError);

ParametersParameters

Return ValueReturn Value

ExampleExample

ASSERT(CFileException::OsErrorToException(ERROR_ACCESS_DENIED) ==
 CFileException::accessDenied);

CFileException::ThrowErrno

static void PASCAL ThrowErrno(int nErrno, LPCTSTR lpszFileName = NULL);

ParametersParameters

ExampleExample

CFileException::ThrowErrno(EACCES); // "access denied"

CFileException::ThrowOsError

static void PASCAL ThrowOsError(LONG lOsError, LPCTSTR lpszFileName = NULL);

ParametersParameters

ExampleExample

Returns an enumerator that corresponds to a given lOsError value. If the error code is unknown, then the
function returns CFileException::generic .

lOsError
An operating-system-specific error code.

Enumerated value that corresponds to a given operating-system error value.

Constructs a CFileException object corresponding to a given nErrno value, then throws the exception.

nErrno
An integer error code as defined in the run-time include file ERRNO.H.

lpszFileName
A pointer to the string containing the name of the file that caused the exception, if available.

Throws a CFileException corresponding to a given lOsError value. If the error code is unknown, then the
function throws an exception coded as CFileException::generic .

lOsError
An operating-system-specific error code.

lpszFileName
A pointer to the string containing the name of the file that caused the exception, if available.

CFileException::ThrowOsError(ERROR_ACCESS_DENIED); // "access denied"

See also
CException Class
Hierarchy Chart
Exception Processing

CFileFind Class
3/4/2019 • 17 minutes to read • Edit Online

Syntax
class CFileFind : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFileFind::CFileFind Constructs a CFileFind object.

Public MethodsPublic Methods

NAME DESCRIPTION

CFileFind::Close Closes the search request.

CFileFind::FindFile Searches a directory for a specified file name.

CFileFind::FindNextFile Continues a file search from a previous call to FindFile.

CFileFind::GetCreationTime Gets the time the file was created.

CFileFind::GetFileName Gets the name, including the extension, of the found file

CFileFind::GetFilePath Gets the whole path of the found file.

CFileFind::GetFileTitle Gets the title of the found file. The title does not include the
extension.

CFileFind::GetFileURL Gets the URL, including the file path, of the found file.

CFileFind::GetLastAccessTime Gets the time that the file was last accessed.

CFileFind::GetLastWriteTime Gets the time the file was last changed and saved.

CFileFind::GetLength Gets the length of the found file, in bytes.

CFileFind::GetRoot Gets the root directory of the found file.

CFileFind::IsArchived Determines if the found file is archived.

Performs local file searches and is the base class for CGopherFileFind and CFtpFileFind, which perform Internet
file searches.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cfilefind-class.md

CFileFind::IsCompressed Determines if the found file is compressed.

CFileFind::IsDirectory Determines if the found file is a directory.

CFileFind::IsDots Determines if the name of the found file has the name "." or
"..", indicating that is actually a directory.

CFileFind::IsHidden Determines if the found file is hidden.

CFileFind::IsNormal Determines if the found file is normal (in other words, has no
other attributes).

CFileFind::IsReadOnly Determines if the found file is read-only.

CFileFind::IsSystem Determines if the found file is a system file.

CFileFind::IsTemporary Determines if the found file is temporary.

CFileFind::MatchesMask Indicates the desired file attributes of the file to be found.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CFileFind::CloseContext Closes the file specified by the current search handle.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CFileFind::m_pTM Pointer to a CAtlTransactionManager object.

Remarks

CFileFind finder;
BOOL bWorking = finder.FindFile(_T("*.*"));
while (bWorking)
{
 bWorking = finder.FindNextFile();
 TRACE(_T("%s\n"), (LPCTSTR)finder.GetFileName());
}

CFileFind includes member functions that begin a search, locate a file, and return the title, name, or path of the
file. For Internet searches, the member function GetFileURL returns the file's URL.

CFileFind is the base class for two other MFC classes designed to search particular server types:
CGopherFileFind works specifically with gopher servers, and CFtpFileFind works specifically with FTP servers.

Together, these three classes provide a seamless mechanism for the client to find files, regardless of the server
protocol, the file type, or location, on either a local machine or a remote server.

The following code will enumerate all the files in the current directory, printing the name of each file:

Inheritance Hierarchy

Requirements

CFileFind::CFileFind

CFileFind();
CFileFind(CAtlTransactionManager* pTM);

ParametersParameters

ExampleExample

CFileFind::Close

void Close();

RemarksRemarks

ExampleExample

CFileFind::CloseContext

virtual void CloseContext();

RemarksRemarks

To keep the example simple, this code uses the C++ Standard Library cout class. The cout line could be
replaced with a call to CListBox::AddString , for example, in a program with a graphical user interface.

For more information about how to use CFileFind and the other WinInet classes, see the article Internet
Programming with WinInet.

CObject

CFileFind

Header: afx.h

This member function is called when a CFileFind object is constructed.

pTM
Pointer to CAtlTransactionManager object

See the example for CFileFind::GetFileName.

Call this member function to end the search, reset the context, and release all resources.

After calling Close , you do not have to create a new CFileFind instance before calling FindFile to begin a new
search.

See the example for CFileFind::GetFileName.

Closes the file specified by the current search handle.

Closes the file specified by the current value of the search handle. Override this function to change the default
behavior.

 CFileFind::FindFile

virtual BOOL FindFile(
 LPCTSTR pstrName = NULL,
 DWORD dwUnused = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

You must call the FindFile or FindNextFile functions at least once to retrieve a valid search handle. The FindFile

and FindNextFile functions use the search handle to locate files with names that match a given name.

Call this member function to open a file search.

pstrName
A pointer to a string containing the name of the file to find. If you pass NULL for pstrName, FindFile does a
wildcard (*.*) search.

dwUnused
Reserved to make FindFile polymorphic with derived classes. Must be 0.

Nonzero if successful; otherwise 0. To get extended error information, call the Win32 function GetLastError.

After calling FindFile to begin the file search, call FindNextFile to retrieve subsequent files. You must call
FindNextFile at least once before calling any of the following attribute member functions:

GetCreationTime

GetFileName

GetFileTitle

GetFilePath

GetFileURL

GetLastAccessTime

GetLastWriteTime

GetLength

GetRoot

IsArchived

IsCompressed

IsDirectory

IsDots

IsHidden

IsNormal

IsReadOnly

IsSystem

https://msdn.microsoft.com/library/windows/desktop/ms679360

ExampleExample

CFileFind::FindNextFile

virtual BOOL FindNextFile();

Return ValueReturn Value

RemarksRemarks

IsTemporary

MatchesMask

See the example for CFileFind::IsDirectory.

Call this member function to continue a file search from a previous call to FindFile.

Nonzero if there are more files; zero if the file found is the last one in the directory or if an error occurred. To get
extended error information, call the Win32 function GetLastError. If the file found is the last file in the directory,
or if no matching files can be found, the GetLastError function returns ERROR_NO_MORE_FILES.

You must call FindNextFile at least once before calling any of the following attribute member functions:

GetCreationTime

GetFileName

GetFileTitle

GetFilePath

GetFileURL

GetLastAccessTime

GetLastWriteTime

GetLength

GetRoot

IsArchived

IsCompressed

IsDirectory

IsDots

IsHidden

IsNormal

IsReadOnly

IsSystem

IsTemporary

MatchesMask

FindNextFile wraps the Win32 function FindNextFile.

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-findnextfilea

ExampleExample

CFileFind::GetCreationTime

virtual BOOL GetCreationTime(FILETIME* pTimeStamp) const;
virtual BOOL GetCreationTime(CTime& refTime) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CFileFind::GetFileName

virtual CString GetFileName() const;

Return ValueReturn Value

RemarksRemarks

See the example for CFileFind::IsDirectory.

Call this member function to get the time the specified file was created.

pTimeStamp
A pointer to a FILETIME structure containing the time the file was created.

refTime
A reference to a CTime object.

Nonzero if successful; 0 if unsuccessful. GetCreationTime returns 0 only if FindNextFile has never been called on
this CFileFind object.

You must call FindNextFile at least once before calling GetCreationTime .

Not all file systems use the same semantics to implement the time stamp returned by this function. This function may
return the same value returned by other time stamp functions if the underlying file system or server does not support
keeping the time attribute. See the Win32_FIND_DATA structure for information about time formats. On some operation
systems, the returned time is in the time zone local to the machine were the file is located. See the Win32
FileTimeToLocalFileTime API for more information.

See the example for CFileFind::GetLength.

Call this member function to get the name of the found file.

The name of the most-recently-found file.

You must call FindNextFile at least once before calling GetFileName.

GetFileName is one of three CFileFind member functions that return some form of the file name. The following
list describes the three and how they vary:

GetFileName returns the file name, including the extension. For example, calling GetFileName to generate
a user message about the file c:\myhtml\myfile.txt returns the file name myfile.txt.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-filetimetolocalfiletime

ExampleExample

CFileFind finder;
static const TCHAR szFileToFind[] = _T("C:\\WINDOWS\\SYSTEM.INI");

BOOL bResult = finder.FindFile(szFileToFind);

if (bResult)
{
 finder.FindNextFile();

 TRACE(_T("Root of %s is %s\n"), szFileToFind,
 (LPCTSTR)finder.GetRoot());

 TRACE(_T("Title of %s is %s\n"), szFileToFind,
 (LPCTSTR)finder.GetFileTitle());

 TRACE(_T("Path of %s is %s\n"), szFileToFind,
 (LPCTSTR)finder.GetFilePath());

 TRACE(_T("URL of %s is %s\n"), szFileToFind,
 (LPCTSTR)finder.GetFileURL());

 TRACE(_T("Name of %s is %s\n"), szFileToFind,
 (LPCTSTR)finder.GetFileName());

 finder.Close();
}
else
{
 TRACE(_T("You have no %s file.\n"), szFileToFind);
}

CFileFind::GetFilePath

virtual CString GetFilePath() const;

Return ValueReturn Value

RemarksRemarks

GetFilePath returns the entire path for the file. For example, calling GetFilePath to generate a user
message about the file c:\myhtml\myfile.txt returns the file path c:\myhtml\myfile.txt.

GetFileTitle returns the file name, excluding the file extension. For example, calling GetFileTitle to
generate a user message about the file c:\myhtml\myfile.txt returns the file title myfile.

Call this member function to get the full path of the specified file.

The path of the specified file.

You must call FindNextFile at least once before calling GetFilePath .

GetFilePath is one of three CFileFind member functions that return some form of the file name. The following
list describes the three and how they vary:

GetFileName returns the file name, including the extension. For example, calling GetFileName to generate
a user message about the file c:\myhtml\myfile.txt returns the file name myfile.txt.

GetFilePath returns the entire path for the file. For example, calling GetFilePath to generate a user
message about the file c:\myhtml\myfile.txt returns the file path c:\myhtml\myfile.txt .

ExampleExample

CFileFind::GetFileTitle

virtual CString GetFileTitle() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFileFind::GetFileURL

virtual CString GetFileURL() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFileFind::GetLastAccessTime

GetFileTitle returns the file name, excluding the file extension. For example, calling GetFileTitle to
generate a user message about the file c:\myhtml\myfile.txt returns the file title myfile.

See the example for CFileFind::GetFileName.

Call this member function to get the title of the found file.

The title of the file.

You must call FindNextFile at least once before calling GetFileTitle .

GetFileTitle is one of three CFileFind member functions that return some form of the file name. The following
list describes the three and how they vary:

GetFileName returns the file name, including the extension. For example, calling GetFileName to generate
a user message about the file c:\myhtml\myfile.txt returns the file name myfile.txt.

GetFilePath returns the entire path for the file. For example, calling GetFilePath to generate a user
message about the file c:\myhtml\myfile.txt returns the file path c:\myhtml\myfile.txt.

GetFileTitle returns the file name, excluding the file extension. For example, calling GetFileTitle to
generate a user message about the file c:\myhtml\myfile.txt returns the file title myfile.

See the example for CFileFind::GetFileName.

Call this member function to retrieve the specified URL.

The complete URL.

You must call FindNextFile at least once before calling GetFileURL .

GetFileURL is similar to the member function GetFilePath, except that it returns the URL in the form
file://path . For example, calling GetFileURL to get the complete URL for myfile.txt returns the URL
file://c:\myhtml\myfile.txt .

See the example for CFileFind::GetFileName.

virtual BOOL GetLastAccessTime(CTime& refTime) const;
virtual BOOL GetLastAccessTime(FILETIME* pTimeStamp) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CFileFind::GetLastWriteTime

virtual BOOL GetLastWriteTime(FILETIME* pTimeStamp) const;
virtual BOOL GetLastWriteTime(CTime& refTime) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Call this member function to get the time that the specified file was last accessed.

refTime
A reference to a CTime object.

pTimeStamp
A pointer to a FILETIME structure containing the time the file was last accessed.

Nonzero if successful; 0 if unsuccessful. GetLastAccessTime returns 0 only if FindNextFile has never been called
on this CFileFind object.

You must call FindNextFile at least once before calling GetLastAccessTime .

Not all file systems use the same semantics to implement the time stamp returned by this function. This function may
return the same value returned by other time stamp functions if the underlying file system or server does not support
keeping the time attribute. See the Win32_FIND_DATA structure for information about time formats. On some operation
systems, the returned time is in the time zone local to the machine were the file is located. See the Win32
FileTimeToLocalFileTime API for more information.

See the example for CFileFind::GetLength.

Call this member function to get the last time the file was changed.

pTimeStamp
A pointer to a FILETIME structure containing the time the file was last written to.

refTime
A reference to a CTime object.

Nonzero if successful; 0 if unsuccessful. GetLastWriteTime returns 0 only if FindNextFile has never been called on
this CFileFind object.

You must call FindNextFile at least once before calling GetLastWriteTime .

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-filetimetolocalfiletime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime

NOTENOTE

ExampleExample

CFileFind::GetLength

ULONGLONG GetLength() const;

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

Not all file systems use the same semantics to implement the time stamp returned by this function. This function may
return the same value returned by other time stamp functions if the underlying file system or server does not support
keeping the time attribute. See the Win32_Find_Data structure for information about time formats. On some operation
systems, the returned time is in the time zone local to the machine were the file is located. See the Win32
FileTimeToLocalFileTime API for more information.

See the example for CFileFind::GetLength.

Call this member function to get the length of the found file, in bytes.

The length of the found file, in bytes.

You must call FindNextFile at least once before calling GetLength .

GetLength uses the Win32 structure WIN32_FIND_DATA to get and return the value of the file size, in bytes.

As of MFC 7.0, GetLength supports 64-bit integer types. Previously existing code built with this newer version of the
library may result in truncation warnings.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-filetimetolocalfiletime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa

// This code fragment prints out a very verbose directory
// listing for all the files in the root directory on the
// C: drive. After the file's name, each attribute of the
// file is printed, as are the creation, last access, and
// last write times.

CFileFind finder;

BOOL bWorking = finder.FindFile(_T("C:*.*"));

while (bWorking)
{
 bWorking = finder.FindNextFile();

 _tprintf_s(_T("%s\n\t"), (LPCTSTR)finder.GetFileName());
 _tprintf_s(_T("%c"), finder.IsArchived() ? 'A' : 'a');
 _tprintf_s(_T("%c"), finder.IsCompressed() ? 'C' : 'c');
 _tprintf_s(_T("%c"), finder.IsHidden() ? 'H' : 'h');
 _tprintf_s(_T("%c"), finder.IsNormal() ? 'N' : 'n');
 _tprintf_s(_T("%c"), finder.IsReadOnly() ? 'R' : 'r');
 _tprintf_s(_T("%c"), finder.IsSystem() ? 'S' : 's');
 _tprintf_s(_T("%c"), finder.IsTemporary() ? 'T' : 't');

 _tprintf_s(_T("\t%I64u byte(s)\n"), finder.GetLength());

 CTime tempTime;
 CString str;

 _tprintf_s(_T("\tCreated : "));
 if (finder.GetCreationTime(tempTime))
 {
 str = tempTime.Format(_T("%c"));
 _tprintf_s(_T("%s\n"), (LPCTSTR) str);
 }
 else
 {
 _tprintf_s(_T("(unavailable)\n"));
 }

 _tprintf_s(_T("\tLast Access: "));
 if (finder.GetLastAccessTime(tempTime))
 {
 str = tempTime.Format(_T("%c"));
 _tprintf_s(_T("%s\n"), (LPCTSTR) str);
 }
 else
 {
 _tprintf_s(_T("(unavailable)\n"));
 }

 _tprintf_s(_T("\tLast Write : "));
 if (finder.GetLastWriteTime(tempTime))
 {
 str = tempTime.Format(_T("%c"));
 _tprintf_s(_T("%s\n"), (LPCTSTR) str);
 }
 else
 {
 _tprintf_s(_T("(unavailable)\n"));
 }

 _tprintf_s(_T("\n"));
}

CFileFind::GetRoot

virtual CString GetRoot() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFileFind::IsArchived

BOOL IsArchived() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFileFind::IsCompressed

BOOL IsCompressed() const;

Return ValueReturn Value

RemarksRemarks

Call this member function to get the root of the found file.

The root of the active search.

You must call FindNextFile at least once before calling GetRoot .

This member function returns the drive specifier and path name used to start a search. For example, calling
FindFile with *.dat results in GetRoot returning an empty string. Passing a path, such as
c:\windows\system*.dll , to FindFile results GetRoot returning c:\windows\system\ .

See the example for CFileFind::GetFileName.

Call this member function to determine if the found file is archived.

Nonzero if successful; otherwise 0.

Applications mark an archive file, which is to be backed up or removed, with FILE_ATTRIBUTE_ARCHIVE, a file
attribute identified in the WIN32_FIND_DATA structure.

You must call FindNextFile at least once before calling IsArchived .

See the member function MatchesMask for a complete list of file attributes.

See the example for CFileFind::GetLength.

Call this member function to determine if the found file is compressed.

Nonzero if successful; otherwise 0.

A compressed file is marked with FILE_ATTRIBUTE_COMPRESSED, a file attribute identified in the
WIN32_FIND_DATA structure. For a file, this attribute indicates that all of the data in the file is compressed. For a
directory, this attribute indicates that compression is the default for newly created files and subdirectories.

You must call FindNextFile at least once before calling IsCompressed .

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa

ExampleExample

CFileFind::IsDirectory

BOOL IsDirectory() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

See the member function MatchesMask for a complete list of file attributes.

See the example for CFileFind::GetLength.

Call this member function to determine if the found file is a directory.

Nonzero if successful; otherwise 0.

A file that is a directory is marked with FILE_ATTRIBUTE_DIRECTORY a file attribute identified in the
WIN32_FIND_DATA structure.

You must call FindNextFile at least once before calling IsDirectory .

See the member function MatchesMask for a complete list of file attributes.

This small program recurses every directory on the C:\ drive and prints the name of the directory.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa

void Recurse(LPCTSTR pstr)
{
 CFileFind finder;

 // build a string with wildcards
 CString strWildcard(pstr);
 strWildcard += _T("*.*");

 // start working for files
 BOOL bWorking = finder.FindFile(strWildcard);

 while (bWorking)
 {
 bWorking = finder.FindNextFile();

 // skip . and .. files; otherwise, we'd
 // recur infinitely!

 if (finder.IsDots())
 continue;

 // if it's a directory, recursively search it

 if (finder.IsDirectory())
 {
 CString str = finder.GetFilePath();
 TRACE(_T("%s\n"), (LPCTSTR)str);
 Recurse(str);
 }
 }

 finder.Close();
}

void PrintDirs()
{
 Recurse(_T("C:"));
}

CFileFind::IsDots

virtual BOOL IsDots() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFileFind::IsHidden

Call this member function to test for the current directory and parent directory markers while iterating through
files.

Nonzero if the found file has the name "." or "..", which indicates that the found file is actually a directory.
Otherwise 0.

You must call FindNextFile at least once before calling IsDots .

See the example for CFileFind::IsDirectory.

Call this member function to determine if the found file is hidden.

BOOL IsHidden() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFileFind::IsNormal

BOOL IsNormal() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFileFind::IsReadOnly

BOOL IsReadOnly() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

Nonzero if successful; otherwise 0.

Hidden files, which are marked with FILE_ATTRIBUTE_HIDDEN, a file attribute identified in the
WIN32_FIND_DATA structure. A hidden file is not included in an ordinary directory listing.

You must call FindNextFile at least once before calling IsHidden .

See the member function MatchesMask for a complete list of file attributes.

See the example for CFileFind::GetLength.

Call this member function to determine if the found file is a normal file.

Nonzero if successful; otherwise 0.

Files marked with FILE_ATTRIBUTE_NORMAL, a file attribute identified in the WIN32_FIND_DATA structure. A
normal file has no other attributes set. All other file attributes override this attribute.

You must call FindNextFile at least once before calling IsNormal .

See the member function MatchesMask for a complete list of file attributes.

See the example for CFileFind::GetLength.

Call this member function to determine if the found file is read-only.

Nonzero if successful; otherwise 0.

A read-only file is marked with FILE_ATTRIBUTE_READONLY, a file attribute identified in the
WIN32_FIND_DATA structure. Applications can read such a file, but they cannot write to it or delete it.

You must call FindNextFile at least once before calling IsReadOnly .

See the member function MatchesMask for a complete list of file attributes.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa

CFileFind::IsSystem

BOOL IsSystem() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFileFind::IsTemporary

BOOL IsTemporary() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFileFind::m_pTM

CAtlTransactionManager* m_pTM;

RemarksRemarks

CFileFind::MatchesMask

See the example for CFileFind::GetLength.

Call this member function to determine if the found file is a system file.

Nonzero if successful; otherwise 0.

A system file is marked with FILE_ATTRIBUTE_SYSTEM, , a file attribute identified in the WIN32_FIND_DATA
structure. A system file is part of, or is used exclusively by, the operating system.

You must call FindNextFile at least once before calling IsSystem .

See the member function MatchesMask for a complete list of file attributes.

See the example for CFileFind::GetLength.

Call this member function to determine if the found file is a temporary file.

Nonzero if successful; otherwise 0.

A temporary file is marked with FILE_ATTRIBUTE_TEMPORARY, a file attribute identified in the
WIN32_FIND_DATA structure. A temporary file is used for temporary storage. Applications should write to the
file only if absolutely necessary. Most of the file's data remains in memory without being flushed to the media
because the file will soon be deleted.

You must call FindNextFile at least once before calling IsTemporary .

See the member function MatchesMask for a complete list of file attributes.

See the example for CFileFind::GetLength.

Pointer to a CAtlTransactionManager object.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa

virtual BOOL MatchesMask(DWORD dwMask) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// This code fragment shows all of the files in the root directory
// of drive C: which have either the hidden attribute or the system
// attribute, or both.

CFileFind finder;

BOOL bWorking = finder.FindFile(_T("C:*.*"));

while (bWorking)
{
 bWorking = finder.FindNextFile();

 if (finder.MatchesMask(FILE_ATTRIBUTE_HIDDEN |
 FILE_ATTRIBUTE_SYSTEM))
 {
 _tprintf_s(_T("%s\n"), (LPCTSTR) finder.GetFileName());
 }
}

Call this member function to test the file attributes on the found file.

dwMask
Specifies one or more file attributes, identified in the WIN32_FIND_DATA structure, for the found file. To search
for multiple attributes, use the bitwise OR (|) operator. Any combination of the following attributes is acceptable:

FILE_ATTRIBUTE_ARCHIVE The file is an archive file. Applications use this attribute to mark files for
backup or removal.

FILE_ATTRIBUTE_COMPRESSED The file or directory is compressed. For a file, this means that all of the
data in the file is compressed. For a directory, this means that compression is the default for newly created
files and subdirectories.

FILE_ATTRIBUTE_DIRECTORY The file is a directory.

FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This attribute is valid only if used alone.
All other file attributes override this attribute.

FILE_ATTRIBUTE_HIDDEN The file is hidden. It is not to be included in an ordinary directory listing.

FILE_ATTRIBUTE_READONLY The file is read only. Applications can read the file but cannot write to it or
delete it.

FILE_ATTRIBUTE_SYSTEM The file is part of or is used exclusively by the operating system.

FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary storage. Applications should write
to the file only if absolutely necessary. Most of the file's data remains in memory without being flushed to
the media because the file will soon be deleted.

Nonzero if successful; otherwise 0. To get extended error information, call the Win32 function GetLastError.

You must call FindNextFile at least once before calling MatchesMask .

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://msdn.microsoft.com/library/windows/desktop/ms679360

See also
CObject Class
Hierarchy Chart
CFtpFileFind Class
CGopherFileFind Class
CInternetFile Class
CGopherFile Class
CHttpFile Class

CFindReplaceDialog Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class CFindReplaceDialog : public CCommonDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFindReplaceDialog::CFindReplaceDialog Call this function to construct a CFindReplaceDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

CFindReplaceDialog::Create Creates and displays a CFindReplaceDialog dialog box.

CFindReplaceDialog::FindNext Call this function to determine whether the user wants to find
the next occurrence of the find string.

CFindReplaceDialog::GetFindString Call this function to retrieve the current find string.

CFindReplaceDialog::GetNotifier Call this function to retrieve the FINDREPLACE structure in
your registered message handler.

CFindReplaceDialog::GetReplaceString Call this function to retrieve the current replace string.

CFindReplaceDialog::IsTerminating Call this function to determine whether the dialog box is
terminating.

CFindReplaceDialog::MatchCase Call this function to determine whether the user wants to
match the case of the find string exactly.

CFindReplaceDialog::MatchWholeWord Call this function to determine whether the user wants to
match entire words only.

CFindReplaceDialog::ReplaceAll Call this function to determine whether the user wants all
occurrences of the string to be replaced.

CFindReplaceDialog::ReplaceCurrent Call this function to determine whether the user wants the
current word to be replaced.

Allows you to implement standard string Find/Replace dialog boxes in your application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cfindreplacedialog-class.md

CFindReplaceDialog::SearchDown Call this function to determine whether the user wants the
search to proceed in a downward direction.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CFindReplaceDialog::m_fr A structure used to customize a CFindReplaceDialog

object.

Remarks

Inheritance Hierarchy

Unlike the other Windows common dialog boxes, CFindReplaceDialog objects are modeless, allowing users to
interact with other windows while they are on screen. There are two kinds of CFindReplaceDialog objects: Find
dialog boxes and Find/Replace dialog boxes. Although the dialog boxes allow the user to input search and
search/replace strings, they do not perform any of the searching or replacing functions. You must add these to the
application.

To construct a CFindReplaceDialog object, use the provided constructor (which has no arguments). Since this is a
modeless dialog box, allocate the object on the heap using the new operator, rather than on the stack.

Once a CFindReplaceDialog object has been constructed, you must call the Create member function to create and
display the dialog box.

Use the m_fr structure to initialize the dialog box before calling Create . The m_fr structure is of type
FINDREPLACE. For more information on this structure, see the Windows SDK.

In order for the parent window to be notified of find/replace requests, you must use the Windows
RegisterWindowMessage function and use the ON_REGISTERED_MESSAGE message-map macro in your frame
window that handles this registered message.

You can determine whether the user has decided to terminate the dialog box with the IsTerminating member
function.

CFindReplaceDialog relies on the COMMDLG.DLL file that ships with Windows versions 3.1 and later.

To customize the dialog box, derive a class from CFindReplaceDialog , provide a custom dialog template, and add a
message map to process the notification messages from the extended controls. Any unprocessed messages
should be passed to the base class.

Customizing the hook function is not required.

For more information on using CFindReplaceDialog , see Common Dialog Classes.

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagfindreplacea
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerwindowmessagea

Requirements

CFindReplaceDialog::CFindReplaceDialog

CFindReplaceDialog();

RemarksRemarks

ExampleExample

// m_pFRDlg is a pointer to a class derived from CFindReplaceDialog
// which defines variables used by the FINDREPLACE structure.
// InitFindReplaceDlg creates a CFindReplaceDialog and initializes
// the m_fr with the data members from the derived class
void CMyRichEditView::InitFindReplaceDlg()
{
 if(NULL == m_pFRDlg)
 {
 m_pFRDlg = new CMyFindReplaceDialog(); // Must be created on the heap

 m_pFRDlg->Create(TRUE, _T(""), _T(""), FR_DOWN, this);

 m_pFRDlg->m_fr.lStructSize = sizeof(FINDREPLACE);
 m_pFRDlg->m_fr.hwndOwner = this->m_hWnd;
 m_pFRDlg->m_fr.lpstrFindWhat = m_pFRDlg->GetFindWhatStr();
 m_pFRDlg->m_fr.lpstrReplaceWith = m_pFRDlg->GetReplaceWithStr();
 m_pFRDlg->m_fr.wFindWhatLen = m_pFRDlg->GetFindWhatStrLen();
 m_pFRDlg->m_fr.wReplaceWithLen = m_pFRDlg->GetReplaceWithStrLen();
 }
}

CFindReplaceDialog::Create

virtual BOOL Create(
 BOOL bFindDialogOnly,
 LPCTSTR lpszFindWhat,
 LPCTSTR lpszReplaceWith = NULL,
 DWORD dwFlags = FR_DOWN,
 CWnd* pParentWnd = NULL);

ParametersParameters

CFindReplaceDialog

Header: afxdlgs.h

Constructs a CFindReplaceDialog object.

Because the CFindReplaceDialog object is a modeless dialog box, you must construct it on the heap by using the
new operator.

During destruction, the framework tries to perform a delete this on the pointer to the dialog box. If you created
the dialog box on the stack, the this pointer does not exist and undefined behavior may result.

For more information on the construction of CFindReplaceDialog objects, see the CFindReplaceDialog overview.
Use the CFindReplaceDialog::Create member function to display the dialog box.

Creates and displays either a Find or Find/Replace dialog box object, depending on the value of bFindDialogOnly .

Return ValueReturn Value

RemarksRemarks

// Message handler declared in CMyRichEditView class declaration
protected:
 afx_msg LONG OnFindReplace(WPARAM wParam, LPARAM lParam);

// Register FindReplace window message.
static UINT WM_FINDREPLACE = ::RegisterWindowMessage(FINDMSGSTRING);

// Message map entry to map from message to handler function.
ON_REGISTERED_MESSAGE(WM_FINDREPLACE, &CMyRichEditView::OnFindReplace)

ExampleExample

CFindReplaceDialog::FindNext

bFindDialogOnly
Set this parameter to TRUE to display a Find dialog box. Set it to FALSE to display a Find/Replace dialog box.

lpszFindWhat
Pointer to the default search string when the dialog box appears. If NULL, the dialog box does not contain a
default search string.

lpszReplaceWith
Pointer to the default replacement string when the dialog box appears. If NULL, the dialog box does not contain a
default replacement string.

dwFlags
One or more flags you can use to customize the settings of the dialog box, combined using the bitwise OR
operator. The default value is FR_DOWN, which specifies that the search is to proceed in a downward direction.
See the FINDREPLACE structure in the Windows SDK for more information on these flags.

pParentWnd
A pointer to the dialog box's parent or owner window. This is the window that will receive the special message
indicating that a find/replace action is requested. If NULL, the main window of the application is used.

Nonzero if the dialog box object was successfully created; otherwise 0.

In order for the parent window to be notified of find/replace requests, you must use the Windows
RegisterWindowMessage function whose return value is a message number unique to the application's instance.
Your frame window should have a message map entry that declares the callback function (OnFindReplace in the
example that follows) that handles this registered message. The following code fragment is an example of how to
do this for a frame window class named CMyRichEditView :

Within your OnFindReplace function, you interpret the intentions of the user by using the
CFindReplaceDialog::FindNext and CFindReplaceDialog::IsTerminating methods and you create the code for the
find/replace operations.

See the example for CFindReplaceDialog::CFindReplaceDialog.

Call this function from your callback function to determine whether the user wants to find the next occurrence of
the search string.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagfindreplacea
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerwindowmessagea

BOOL FindNext() const;

Return ValueReturn Value

CFindReplaceDialog::GetFindString

CString GetFindString() const;

Return ValueReturn Value

ExampleExample

LRESULT CMyRichEditView::OnFindReplace(WPARAM wparam, LPARAM lparam)
{
 UNREFERENCED_PARAMETER(wparam);

 CFindReplaceDialog *pDlg = CFindReplaceDialog::GetNotifier(lparam);

 if(NULL != pDlg)
 {
 // Use pDlg as a pointer to the existing FindReplace dlg to
 // call CFindReplaceDialog member functions
 if(pDlg->IsTerminating())
 {
 CString csFindString;
 CString csReplaceString;

 csFindString = pDlg->GetFindString();
 csReplaceString = pDlg->GetReplaceString();

 VERIFY(AfxGetApp()->WriteProfileString(AfxGetApp()->m_pszAppName,
 _T("FindString"), csFindString));
 VERIFY(AfxGetApp()->WriteProfileString(AfxGetApp()->m_pszAppName,
 _T("ReplaceString"), csReplaceString));

 VERIFY(pDlg->DestroyWindow());
 }
 }

 return 0;
}

CFindReplaceDialog::GetNotifier

static CFindReplaceDialog* PASCAL GetNotifier(LPARAM lParam);

ParametersParameters

Return ValueReturn Value

Nonzero if the user wants to find the next occurrence of the search string; otherwise 0.

Call this function from your callback function to retrieve the default string to find.

The default string to find.

Call this function to retrieve a pointer to the current Find Replace dialog box.

lParam
The lparam value passed to the frame window's OnFindReplace member function.

RemarksRemarks

ExampleExample

LRESULT CMyRichEditView::OnFindReplace(WPARAM wparam, LPARAM lparam)
{
 UNREFERENCED_PARAMETER(wparam);

 CFindReplaceDialog *pDlg = CFindReplaceDialog::GetNotifier(lparam);

 if(NULL != pDlg)
 {
 // Use pDlg as a pointer to the existing FindReplace dlg to
 // call CFindReplaceDialog member functions
 if(pDlg->IsTerminating())
 {
 CString csFindString;
 CString csReplaceString;

 csFindString = pDlg->GetFindString();
 csReplaceString = pDlg->GetReplaceString();

 VERIFY(AfxGetApp()->WriteProfileString(AfxGetApp()->m_pszAppName,
 _T("FindString"), csFindString));
 VERIFY(AfxGetApp()->WriteProfileString(AfxGetApp()->m_pszAppName,
 _T("ReplaceString"), csReplaceString));

 VERIFY(pDlg->DestroyWindow());
 }
 }

 return 0;
}

CFindReplaceDialog::GetReplaceString

CString GetReplaceString() const;

Return ValueReturn Value

ExampleExample

CFindReplaceDialog::IsTerminating

A pointer to the current dialog box.

It should be used within your callback function to access the current dialog box, call its member functions, and
access the m_fr structure.

See CFindReplaceDialog::Create for an example of how to register the OnFindReplace handler to receive
notifications from the Find Replace dialog box.

Call this function to retrieve the current replace string.

The default string with which to replace found strings.

See the example for CFindReplaceDialog::GetFindString.

Call this function within your callback function to determine whether the user has decided to terminate the dialog
box.

BOOL IsTerminating() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFindReplaceDialog::m_fr

FINDREPLACE m_fr;

RemarksRemarks

ExampleExample

CFindReplaceDialog::MatchCase

BOOL MatchCase() const;

Return ValueReturn Value

CFindReplaceDialog::MatchWholeWord

BOOL MatchWholeWord() const;

Return ValueReturn Value

CFindReplaceDialog::ReplaceAll

Nonzero if the user has decided to terminate the dialog box; otherwise 0.

If this function returns nonzero, you should call the DestroyWindow member function of the current dialog box and
set any dialog box pointer variable to NULL. Optionally, you can also store the find/replace text last entered and
use it to initialize the next find/replace dialog box.

See the example for CFindReplaceDialog::GetFindString.

Used to customize a CFindReplaceDialog object.

m_fr is a structure of type FINDREPLACE. Its members store the characteristics of the dialog-box object. After
constructing a CFindReplaceDialog object, you can use m_fr to modify various values in the dialog box.

For more information on this structure, see the FINDREPLACE structure in the Windows SDK.

See the example for CFindReplaceDialog::CFindReplaceDialog.

Call this function to determine whether the user wants to match the case of the find string exactly.

Nonzero if the user wants to find occurrences of the search string that exactly match the case of the search string;
otherwise 0.

Call this function to determine whether the user wants to match entire words only.

Nonzero if the user wants to match only the entire words of the search string; otherwise 0.

Call this function to determine whether the user wants all occurrences of the string to be replaced.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagfindreplacea

BOOL ReplaceAll() const;

Return ValueReturn Value

CFindReplaceDialog::ReplaceCurrent

BOOL ReplaceCurrent() const;

Return ValueReturn Value

CFindReplaceDialog::SearchDown

BOOL SearchDown() const;

Return ValueReturn Value

See also

Nonzero if the user has requested that all strings matching the replace string be replaced; otherwise 0.

Call this function to determine whether the user wants the current word to be replaced.

Nonzero if the user has requested that the currently selected string be replaced with the replace string; otherwise
0.

Call this function to determine whether the user wants the search to proceed in a downward direction.

Nonzero if the user wants the search to proceed in a downward direction; 0 if the user wants the search to
proceed in an upward direction.

CCommonDialog Class
Hierarchy Chart

CFolderPickerDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CFolderPickerDialog : public CFileDialog;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFolderPickerDialog::~CFolderPickerDialog Destructor.

CFolderPickerDialog::CFolderPickerDialog Constructor.

Remarks

Inheritance Hierarchy

Requirements

CFolderPickerDialog::CFolderPickerDialog

explicit CFolderPickerDialog(
 LPCTSTR lpszFolder = NULL,
 DWORD dwFlags = 0,
 CWnd* pParentWnd = NULL,
 DWORD dwSize = 0);

CFolderPickerDialog class implements CFileDialog in the folder picker mode.

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

CFileDialog

CFolderPickerDialog

Header: afxdlgs.h

Constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cfolderpickerdialog-class.md

ParametersParameters

RemarksRemarks

CFolderPickerDialog::~CFolderPickerDialog

virtual ~CFolderPickerDialog();

RemarksRemarks

See also

lpszFolder
Initial folder.

dwFlags
A combination of one or more flags that allow you to customize the dialog box.

pParentWnd
A pointer to the dialog box object's parent or owner window.

dwSize
The size of the OPENFILENAME structure.

Destructor.

Classes

CFont Class
3/4/2019 • 12 minutes to read • Edit Online

Syntax
class CFont : public CGdiObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFont::CFont Constructs a CFont object.

Public MethodsPublic Methods

NAME DESCRIPTION

CFont::CreateFont Initializes a CFont with the specified characteristics.

CFont::CreateFontIndirect Initializes a CFont object with the characteristics given in a
LOGFONT structure.

CFont::CreatePointFont Initializes a CFont with the specified height, measured in
tenths of a point, and typeface.

CFont::CreatePointFontIndirect Same as CreateFontIndirect except that the font height is
measured in tenths of a point rather than logical units.

CFont::FromHandle Returns a pointer to a CFont object when given a Windows
HFONT.

CFont::GetLogFont Fills a LOGFONT with information about the logical font
attached to the CFont object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CFont::operator HFONT Returns the Windows GDI font handle attached to the
CFont object.

Remarks

Encapsulates a Windows graphics device interface (GDI) font and provides member functions for manipulating
the font.

To use a CFont object, construct a CFont object and attach a Windows font to it with CreateFont,

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cfont-class.md

Inheritance Hierarchy

Requirements

CFont::CFont

CFont();

RemarksRemarks

ExampleExample

CFont font;

CFont::CreateFont

BOOL CreateFont(
 int nHeight,
 int nWidth,
 int nEscapement,
 int nOrientation,
 int nWeight,
 BYTE bItalic,
 BYTE bUnderline,
 BYTE cStrikeOut,
 BYTE nCharSet,
 BYTE nOutPrecision,
 BYTE nClipPrecision,
 BYTE nQuality,
 BYTE nPitchAndFamily,
 LPCTSTR lpszFacename);

ParametersParameters

CreateFontIndirect, CreatePointFont, or CreatePointFontIndirect, and then use the object's member functions to
manipulate the font.

The CreatePointFont and CreatePointFontIndirect functions are often easier to use than CreateFont or
CreateFontIndirect since they do the conversion for the height of the font from a point size to logical units

automatically.

For more information on CFont , see Graphic Objects.

CObject

CGdiObject

CFont

Header: afxwin.h

Constructs a CFont object.

The resulting object must be initialized with CreateFont , CreateFontIndirect , CreatePointFont , or
CreatePointFontIndirect before it can be used.

Initializes a CFont object with the specified characteristics.

nHeight
Specifies the desired height (in logical units) of the font. See the lfHeight member of the LOGFONTstructure
in the Windows SDK for a description. The absolute value of nHeight must not exceed 16,384 device units after
it is converted. For all height comparisons, the font mapper looks for the largest font that does not exceed the
requested size or the smallest font if all the fonts exceed the requested size.

nWidth
Specifies the average width (in logical units) of characters in the font. If nWidth is 0, the aspect ratio of the device
will be matched against the digitization aspect ratio of the available fonts to find the closest match, which is
determined by the absolute value of the difference.

nEscapement
Specifies the angle (in 0.1-degree units) between the escapement vector and the x-axis of the display surface.
The escapement vector is the line through the origins of the first and last characters on a line. The angle is
measured counterclockwise from the x-axis. See the lfEscapement member in the LOGFONT structure in the
Windows SDK for more information.

nOrientation
Specifies the angle (in 0.1-degree units) between the baseline of a character and the x-axis. The angle is
measured counterclockwise from the x-axis for coordinate systems in which the y-direction is down and
clockwise from the x-axis for coordinate systems in which the y-direction is up.

nWeight
Specifies the font weight (in inked pixels per 1000). See the lfWeight member in the LOGFONT structure in the
Windows SDK for more information. The described values are approximate; the actual appearance depends on
the typeface. Some fonts have only FW_NORMAL, FW_REGULAR, and FW_BOLD weights. If FW_DONTCARE
is specified, a default weight is used.

bItalic
Specifies whether the font is italic.

bUnderline
Specifies whether the font is underlined.

cStrikeOut
Specifies whether characters in the font are struck out. Specifies a strikeout font if set to a nonzero value.

nCharSet
Specifies the font's character setSee the lfCharSet member in the LOGFONT structure in the Windows SDK for a
list of values.

The OEM character set is system-dependent.

Fonts with other character sets may exist in the system. An application that uses a font with an unknown
character set must not attempt to translate or interpret strings that are to be rendered with that font. Instead, the
strings should be passed directly to the output device driver.

The font mapper does not use the DEFAULT_CHARSET value. An application can use this value to allow the
name and size of a font to fully describe the logical font. If a font with the specified name does not exist, a font
from any character set can be substituted for the specified font. To avoid unexpected results, applications should
use the DEFAULT_CHARSET value sparingly.

nOutPrecision
Specifies the desired output precision. The output precision defines how closely the output must match the
requested font's height, width, character orientation, escapement, and pitch. See the lfOutPrecision member in
the LOGFONT structure in the Windows SDK for a list of values and more information.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta

Return ValueReturn Value

RemarksRemarks

ExampleExample

nClipPrecision
Specifies the desired clipping precision. The clipping precision defines how to clip characters that are partially
outside the clipping region. See the lfClipPrecision member in the LOGFONT structure in the Windows SDK for
a list of values.

To use an embedded read-only font, an application must specify CLIP_ENCAPSULATE.

To achieve consistent rotation of device, TrueType, and vector fonts, an application can use the OR operator to
combine the CLIP_LH_ANGLES value with any of the other nClipPrecision values. If the CLIP_LH_ANGLES bit
is set, the rotation for all fonts depends on whether the orientation of the coordinate system is left-handed or
right-handed. (For more information about the orientation of coordinate systems, see the description of the
nOrientation parameter.) If CLIP_LH_ANGLES is not set, device fonts always rotate counterclockwise, but the
rotation of other fonts is dependent on the orientation of the coordinate system.

nQuality
Specifies the font's output quality, which defines how carefully the GDI must attempt to match the logical-font
attributes to those of an actual physical font. See the lfQuality member in the LOGFONT structure in the
Windows SDK for a list of values.

nPitchAndFamily
Specifies the pitch and family of the font. See the lfPitchAndFamily member in the LOGFONT structure in the
Windows SDK for a list of values and more information.

lpszFacename
A CString or pointer to a null-terminated string that specifies the typeface name of the font. The length of this
string must not exceed 30 characters. The Windows EnumFontFamilies function can be used to enumerate all
currently available fonts. If lpszFacename is NULL, the GDI uses a device-independent typeface.

Nonzero if successful; otherwise 0.

The font can subsequently be selected as the font for any device context.

The CreateFont function does not create a new Windows GDI font. It merely selects the closest match from the
physical fonts available to the GDI.

Applications can use the default settings for most parameters when creating a logical font. The parameters that
should always be given specific values are nHeight and lpszFacename. If nHeight and lpszFacename are not set
by the application, the logical font that is created is device-dependent.

When you finish with the CFont object created by the CreateFont function, use CDC::SelectObject to select a
different font into the device context, then delete the CFont object that is no longer needed.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-enumfontfamiliesa

// The code fragment shows how to create a font object,
// select the font object into a DC (device context) for text
// drawing, and finally delete the font object.

// Initializes a CFont object with the specified characteristics.
CFont font;
VERIFY(font.CreateFont(
 12, // nHeight
 0, // nWidth
 0, // nEscapement
 0, // nOrientation
 FW_NORMAL, // nWeight
 FALSE, // bItalic
 FALSE, // bUnderline
 0, // cStrikeOut
 ANSI_CHARSET, // nCharSet
 OUT_DEFAULT_PRECIS, // nOutPrecision
 CLIP_DEFAULT_PRECIS, // nClipPrecision
 DEFAULT_QUALITY, // nQuality
 DEFAULT_PITCH | FF_SWISS, // nPitchAndFamily
 _T("Arial"))); // lpszFacename

// Do something with the font just created...
CClientDC dc(this);
CFont* def_font = dc.SelectObject(&font);
dc.TextOut(5, 5, _T("Hello"), 5);
dc.SelectObject(def_font);

// Done with the font. Delete the font object.
font.DeleteObject();

CFont::CreateFontIndirect

BOOL CreateFontIndirect(const LOGFONT* lpLogFont);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Initializes a CFont object with the characteristics given in a LOGFONTstructure.

lpLogFont
Points to a LOGFONT structure that defines the characteristics of the logical font.

Nonzero if successful; otherwise 0.

The font can subsequently be selected as the current font for any device.

This font has the characteristics specified in the LOGFONT structure. When the font is selected by using the
CDC::SelectObject member function, the GDI font mapper attempts to match the logical font with an existing
physical font. If the font mapper fails to find an exact match for the logical font, it provides an alternative font
whose characteristics match as many of the requested characteristics as possible.

When you no longer need the CFont object created by the CreateFontIndirect function, use CDC::SelectObject

to select a different font into the device context, then delete the CFont object that is no longer needed.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta

// The code fragment shows how to create a font object,
// select the font object into a DC (device context) for text
// drawing, and finally delete the font object.

// Initializes a CFont object with the characteristics given
// in a LOGFONT structure.
CFont font;
LOGFONT lf;
memset(&lf, 0, sizeof(LOGFONT)); // zero out structure
lf.lfHeight = 12; // request a 12-pixel-height font
_tcsncpy_s(lf.lfFaceName, LF_FACESIZE,
 _T("Arial"), 7); // request a face name "Arial"
VERIFY(font.CreateFontIndirect(&lf)); // create the font

// Do something with the font just created...
CClientDC dc(this);
CFont* def_font = dc.SelectObject(&font);
dc.TextOut(5, 5, _T("Hello"), 5);
dc.SelectObject(def_font);

// Done with the font. Delete the font object.
font.DeleteObject();

CFont::CreatePointFont

BOOL CreatePointFont(
 int nPointSize,
 LPCTSTR lpszFaceName,
 CDC* pDC = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

This function provides a simple way to create a font of a specified typeface and point size.

nPointSize
Requested font height in tenths of a point. (For instance, pass 120 to request a 12-point font.)

lpszFaceName
A CString or pointer to a null-terminated string that specifies the typeface name of the font. The length of this
string must not exceed 30 characters. The Windows `EnumFontFamilies function can be used to enumerate all
currently available fonts. If lpszFaceName is NULL, the GDI uses a device-independent typeface.

pDC
Pointer to the CDC object to be used to convert the height in nPointSize to logical units. If NULL, a screen
device context is used for the conversion.

Nonzero if successful, otherwise 0.

It automatically converts the height in nPointSize to logical units using the CDC object pointed to by pDC.

When you finish with the CFont object created by the CreatePointFont function, first select the font out of the
device context, then delete the CFont object.

// The code fragment shows how to create a font object,
// select the font object into a DC (device context) for text
// drawing, and finally delete the font object.

CClientDC dc(this);

CFont font;
VERIFY(font.CreatePointFont(120, _T("Arial"), &dc));

// Do something with the font just created...
CFont* def_font = dc.SelectObject(&font);
dc.TextOut(5, 5, _T("Hello"), 5);
dc.SelectObject(def_font);

// Done with the font. Delete the font object.
font.DeleteObject();

CFont::CreatePointFontIndirect

BOOL CreatePointFontIndirect(
 const LOGFONT* lpLogFont,
 CDC* pDC = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

This function is the same as CreateFontIndirect except that the lfHeight member of the LOGFONT is interpreted
in tenths of a point rather than device units.

lpLogFont
Points to a LOGFONT structure that defines the characteristics of the logical font. The lfHeight member of the
LOGFONT structure is measured in tenths of a point rather than logical units. (For instance, set lfHeight to 120

to request a 12-point font.)

pDC
Pointer to the CDC object to be used to convert the height in lfHeight to logical units. If NULL, a screen device
context is used for the conversion.

Nonzero if successful, otherwise 0.

This function automatically converts the height in lfHeight to logical units using the CDC object pointed to by
pDC before passing the LOGFONT structure on to Windows.

When you finish with the CFont object created by the CreatePointFontIndirect function, first select the font out
of the device context, then delete the CFont object.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta

// The code fragment shows how to create a font object,
// select the font object into a DC (device context) for text
// drawing, and finally delete the font object.
LOGFONT lf;

// clear out structure.
memset(&lf, 0, sizeof(LOGFONT));

// request a 12-pixel-height font
lf.lfHeight = 120;

// request a face name "Arial".
_tcsncpy_s(lf.lfFaceName, LF_FACESIZE, _T("Arial"), 7);

CClientDC dc(this);

CFont font;
VERIFY(font.CreatePointFontIndirect(&lf, &dc));

// Do something with the font just created...
CFont* def_font = dc.SelectObject(&font);
dc.TextOut(5, 5, _T("Hello"), 5);
dc.SelectObject(def_font);

// Done with the font. Delete the font object.
font.DeleteObject();

CFont::FromHandle

static CFont* PASCAL FromHandle(HFONT hFont);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Returns a pointer to a CFont object when given an HFONT handle to a Windows GDI font object.

hFont
An HFONT handle to a Windows font.

A pointer to a CFont object if successful; otherwise NULL.

If a CFont object is not already attached to the handle, a temporary CFont object is created and attached. This
temporary CFont object is valid only until the next time the application has idle time in its event loop, at which
time all temporary graphic objects are deleted. Another way of saying this is that the temporary object is valid
only during the processing of one window message.

// The code fragment shows how to create a font object using
// Windows API CreateFontIndirect(), convert the HFONT to a
// CFont* before selecting the font object into a DC (device
// context) for text drawing, and finally delete the font object.

// Initialize a CFont object with the characteristics given
// in a LOGFONT structure.
LOGFONT lf;

// clear out structure
memset(&lf, 0, sizeof(LOGFONT));
// request a 12-pixel-height font
lf.lfHeight = 12;
// request a face name "Arial"
_tcsncpy_s(lf.lfFaceName, LF_FACESIZE, _T("Arial"), 7);
// create the font
HFONT hfont = ::CreateFontIndirect(&lf);

// Convert the HFONT to CFont*.
CFont* pfont = CFont::FromHandle(hfont);

// Do something with the font just created...
CClientDC dc(this);
CFont* def_font = dc.SelectObject(pfont);
dc.TextOut(5, 5, _T("Hello"), 5);
dc.SelectObject(def_font);

// Done with the font. Delete the font object.
::DeleteObject(hfont);

CFont::GetLogFont

int GetLogFont(LOGFONT* pLogFont);

ParametersParameters

Return ValueReturn Value

ExampleExample

// The code fragment shows how to retrieve a copy of the
// LOGFONT structure for a currently selected font of a window.

CFont* pFont = pWnd->GetFont();
if (NULL != pFont)
{
 LOGFONT lf;
 pFont->GetLogFont(&lf);
 TRACE(_T("Typeface name of font = %s\n"), lf.lfFaceName);
}

CFont::operator HFONT

Call this function to retrieve a copy of the LOGFONT structure for CFont .

pLogFont
Pointer to the LOGFONT structure to receive the font information.

Nonzero if the function succeeds, otherwise 0.

Use this operator to get the Windows GDI handle of the font attached to the CFont object.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta

operator HFONT() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The code fragment shows the usage of CFont::operator HFONT.

// Initialize a CFont object with the characteristics given
// in a LOGFONT structure.
LOGFONT lf;

// clear out structure
memset(&lf, 0, sizeof(LOGFONT));

// request a 12-pixel-height font
lf.lfHeight = 12;

// request a face name "Arial"
_tcsncpy_s(lf.lfFaceName, LF_FACESIZE, _T("Arial"), 7);

CFont font1;
font1.CreateFontIndirect(&lf); // create the font

// CFont::operator HFONT automatically converts font1 from
// CFont* to HFONT.
CFont* font2 = CFont::FromHandle(font1);

// Do something with the font just created...
CClientDC dc(this);
CFont* def_font = dc.SelectObject(font2);
dc.TextOut(5, 5, _T("Hello"), 5);
dc.SelectObject(def_font);

// Done with the font. Delete the font object.
font1.DeleteObject();

See also

The handle of the Windows GDI font object attached to CFont if successful; otherwise NULL.

Since this operator is automatically used for conversions from CFont to Fonts and Text, you can pass CFont

objects to functions that expect HFONTs.

For more information about using graphic objects, see Graphic Objects in the Windows SDK.

MFC Sample HIERSVR
CGdiObject Class
Hierarchy Chart

https://docs.microsoft.com/windows/desktop/gdi/fonts-and-text
https://docs.microsoft.com/windows/desktop/gdi/graphic-objects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CFontDialog Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class CFontDialog : public CCommonDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFontDialog::CFontDialog Constructs a CFontDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

CFontDialog::DoModal Displays the dialog and allows the user to make a selection.

CFontDialog::GetCharFormat Retrieves the character formatting of the selected font.

CFontDialog::GetColor Returns the color of the selected font.

CFontDialog::GetCurrentFont Assigns the characteristics of the currently selected font to a
LOGFONT structure.

CFontDialog::GetFaceName Returns the face name of the selected font.

CFontDialog::GetSize Returns the point size of the selected font.

CFontDialog::GetStyleName Returns the style name of the selected font.

CFontDialog::GetWeight Returns the weight of the selected font.

CFontDialog::IsBold Determines whether the font is bold.

CFontDialog::IsItalic Determines whether the font is italic.

CFontDialog::IsStrikeOut Determines whether the font is displayed with strikeout.

CFontDialog::IsUnderline Determines whether the font is underlined.

Public Data MembersPublic Data Members

Allows you to incorporate a font-selection dialog box into your application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cfontdialog-class.md

NAME DESCRIPTION

CFontDialog::m_cf A structure used to customize a CFontDialog object.

Remarks

Inheritance Hierarchy

Requirements

CFontDialog::CFontDialog

A CFontDialog object is a dialog box with a list of fonts that are currently installed in the system. The user can
select a particular font from the list, and this selection is then reported back to the application.

To construct a CFontDialog object, use the provided constructor or derive a new subclass and use your own
custom constructor.

Once a CFontDialog object has been constructed, you can use the m_cf structure to initialize the values or states
of controls in the dialog box. The m_cf structure is of type CHOOSEFONT. For more information on this
structure, see the Windows SDK.

After initializing the dialog object's controls, call the DoModal member function to display the dialog box and
allow the user to select a font. DoModal returns whether the user selected the OK (IDOK) or Cancel (IDCANCEL)
button.

If DoModal returns IDOK, you can use one of CFontDialog 's member functions to retrieve the information input
by the user.

You can use the Windows CommDlgExtendedError function to determine whether an error occurred during
initialization of the dialog box and to learn more about the error. For more information on this function, see the
Windows SDK.

CFontDialog relies on the COMMDLG.DLL file that ships with Windows versions 3.1 and later.

To customize the dialog box, derive a class from CFontDialog , provide a custom dialog template, and add a
message-map to process the notification messages from the extended controls. Any unprocessed messages
should be passed to the base class.

Customizing the hook function is not required.

For more information on using CFontDialog , see Common Dialog Classes.

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

CFontDialog

Header: afxdlgs.h

Constructs a CFontDialog object.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagchoosefonta
https://docs.microsoft.com/windows/desktop/api/commdlg/nf-commdlg-commdlgextendederror

CFontDialog(
 LPLOGFONT lplfInitial = NULL,
 DWORD dwFlags = CF_EFFECTS | CF_SCREENFONTS,
 CDC* pdcPrinter = NULL,
 CWnd* pParentWnd = NULL);

CFontDialog(
 const CHARFORMAT& charformat,
 DWORD dwFlags = CF_SCREENFONTS,
 CDC* pdcPrinter = NULL,
 CWnd* pParentWnd = NULL);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

// Show the font dialog with all the default settings.
CFontDialog dlg;
dlg.DoModal();

// Show the font dialog with 12 point "Times New Roman" as the
// selected font.
LOGFONT lf;
memset(&lf, 0, sizeof(LOGFONT));

CClientDC dc(this); // expects a CWnd that has already been initialized
lf.lfHeight = -MulDiv(12, dc.GetDeviceCaps(LOGPIXELSY), 72);
_tcscpy_s(lf.lfFaceName, LF_FACESIZE, _T("Times New Roman"));

CFontDialog fdlg(&lf);
fdlg.DoModal();

plfInitial
A pointer to a LOGFONT data structure that allows you to set some of the font's characteristics.

charFormat
A pointer to a CHARFORMAT data structure that allows you to set some of the font's characteristics in a rich edit
control.

dwFlags
Specifies one or more choose-font flags. One or more preset values can be combined using the bitwise OR
operator. If you modify the m_cf.Flag s structure member, be sure to use a bitwise OR operator in your changes
to keep the default behavior intact. For details on each of these flags, see the description of the CHOOSEFONT
structure in the Windows SDK.

pdcPrinter
A pointer to a printer-device context. If supplied, this parameter points to a printer-device context for the printer
on which the fonts are to be selected.

pParentWnd
A pointer to the font dialog box's parent or owner window.

Note that the constructor automatically fills in the members of the CHOOSEFONT structure. You should only change
these if you want a font dialog different than the default.

The first version of this function only exists when there is no rich edit control support.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charformat
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagchoosefonta

CFontDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFontDialog::GetCharFormat

void GetCharFormat(CHARFORMAT& cf) const;

ParametersParameters

CFontDialog::GetColor

COLORREF GetColor() const;

Return ValueReturn Value

ExampleExample

// Get the color of the selected font, if any.
CFontDialog dlg;
if (dlg.DoModal() == IDOK)
{
 COLORREF color = dlg.GetColor();
 TRACE(_T("Color of the selected font = %8x\n"), color);
}

CFontDialog::GetCurrentFont

Call this function to display the Windows common font dialog box and allow the user to choose a font.

IDOK or IDCANCEL. If IDCANCEL is returned, call the Windows CommDlgExtendedError function to determine
whether an error occurred.

IDOK and IDCANCEL are constants that indicate whether the user selected the OK or Cancel button.

If you want to initialize the various font dialog controls by setting members of the m_cf structure, you should do
this before calling DoModal , but after the dialog object is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the settings or information input by the
user into the dialog box.

See the examples for CFontDialog::CFontDialog and CFontDialog::GetColor.

Retrieves the character formatting of the selected font.

cf
A CHARFORMAT structure containing information about the character formatting of the selected font.

Call this function to retrieve the selected font color.

The color of the selected font.

https://docs.microsoft.com/windows/desktop/api/commdlg/nf-commdlg-commdlgextendederror
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charformat

void GetCurrentFont(LPLOGFONT lplf);

ParametersParameters

RemarksRemarks

ExampleExample

// Get the characteristics of the currently selected font, if any.
CFontDialog dlg;
if (dlg.DoModal() == IDOK)
{
 LOGFONT lf;
 dlg.GetCurrentFont(&lf);
 TRACE(_T("Face name of the selected font = %s\n"), lf.lfFaceName);
}

CFontDialog::GetFaceName

CString GetFaceName() const;

Return ValueReturn Value

ExampleExample

// Get the face name of the selected font, if any.
CFontDialog dlg;
if (dlg.DoModal() == IDOK)
{
 CString facename = dlg.GetFaceName();
 TRACE(_T("Face name of the selected font = %s\n"), facename);
}

CFontDialog::GetSize

int GetSize() const;

Return ValueReturn Value

Call this function to assign the characteristics of the currently selected font to the members of a LOGFONT
structure.

lplf
A pointer to a LOGFONT structure.

Other CFontDialog member functions are provided to access individual characteristics of the current font.

If this function is called during a call to DoModal, it returns the current selection at the time (what the user sees or
has changed in the dialog). If this function is called after a call to DoModal (only if DoModal returns IDOK), it
returns what the user actually selected.

Call this function to retrieve the face name of the selected font.

The face name of the font selected in the CFontDialog dialog box.

Call this function to retrieve the size of the selected font.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta

ExampleExample

// Get the size of the selected font, if any.
CFontDialog dlg;
if (dlg.DoModal() == IDOK)
{
 int size = dlg.GetSize();
 TRACE(_T("The size of the selected font = %d\n"), size);
}

CFontDialog::GetStyleName

CString GetStyleName() const;

Return ValueReturn Value

ExampleExample

// Get the style name of the selected font, if any.
CFontDialog dlg;
dlg.m_cf.Flags |= CF_USESTYLE;
if (dlg.DoModal() == IDOK)
{
 CString stylename = dlg.GetStyleName();
 TRACE(_T("Style name of the selected font = %s\n"), stylename);
}

CFontDialog::GetWeight

int GetWeight() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Get the weight of the selected font, if any.
CFontDialog dlg;
if (dlg.DoModal() == IDOK)
{
 int weight = dlg.GetWeight();
 TRACE(_T("Weight of the selected font = %d\n"), weight);
}

The font's size, in tenths of a point.

Call this function to retrieve the style name of the selected font.

The style name of the font.

Call this function to retrieve the weight of the selected font.

The weight of the selected font.

For more information on the weight of a font, see CFont::CreateFont.

CFontDialog::IsBold

BOOL IsBold() const;

Return ValueReturn Value

ExampleExample

// Is the selected font bold?
CFontDialog dlg;
if (dlg.DoModal() == IDOK)
{
 BOOL bold = dlg.IsBold();
 TRACE(_T("Is the selected font bold? %d\n"), bold);
}

CFontDialog::IsItalic

BOOL IsItalic() const;

Return ValueReturn Value

ExampleExample

// Is the selected font italic?
CFontDialog dlg;
if (dlg.DoModal() == IDOK)
{
 BOOL italic = dlg.IsItalic();
 TRACE(_T("Is the selected font italic? %d\n"), italic);
}

CFontDialog::IsStrikeOut

BOOL IsStrikeOut() const;

Return ValueReturn Value

ExampleExample

Call this function to determine if the selected font is bold.

Nonzero if the selected font has the Bold characteristic enabled; otherwise 0.

Call this function to determine if the selected font is italic.

Nonzero if the selected font has the Italic characteristic enabled; otherwise 0.

Call this function to determine if the selected font is displayed with strikeout.

Nonzero if the selected font has the Strikeout characteristic enabled; otherwise 0.

// Is the selected font displayed with strikeout?
CFontDialog dlg;
if (dlg.DoModal() == IDOK)
{
 BOOL strikeout = dlg.IsStrikeOut();
 TRACE(_T("Is the selected font strikeout? %d\n"), strikeout);
}

CFontDialog::IsUnderline

BOOL IsUnderline() const;

Return ValueReturn Value

ExampleExample

// Is the selected font underlined?
CFontDialog dlg;
if (dlg.DoModal() == IDOK)
{
 BOOL underline = dlg.IsUnderline();
 TRACE(_T("Is the selected font underlined? %d\n"), underline);
}

CFontDialog::m_cf

CHOOSEFONT m_cf;

RemarksRemarks

ExampleExample

Call this function to determine if the selected font is underlined.

Nonzero if the selected font has the Underline characteristic enabled; otherwise 0.

A structure whose members store the characteristics of the dialog object.

After constructing a CFontDialog object, you can use m_cf to modify various aspects of the dialog box before
calling the DoModal member function. For more information on this structure, see CHOOSEFONT in the
Windows SDK.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagchoosefonta

// The code fragment creates a font based on the information
// we got from CFontDialog::m_cf variable.

CFontDialog dlg;
if (dlg.DoModal() == IDOK)
{
 // Create the font using the selected font from CFontDialog.
 LOGFONT lf;
 memcpy(&lf, dlg.m_cf.lpLogFont, sizeof(LOGFONT));

 CFont font;
 VERIFY(font.CreateFontIndirect(&lf));

 // Do something with the font just created...
 CClientDC dc(this);
 CFont* def_font = dc.SelectObject(&font);
 dc.TextOut(5, 5, _T("Hello"), 5);
 dc.SelectObject(def_font);

 // Done with the font. Delete the font object.
 font.DeleteObject();
}

See also
MFC Sample HIERSVR
CCommonDialog Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CFontHolder Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CFontHolder

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFontHolder::CFontHolder Constructs a CFontHolder object.

Public MethodsPublic Methods

NAME DESCRIPTION

CFontHolder::GetDisplayString Retrieves the string displayed in a container's property
browser.

CFontHolder::GetFontDispatch Returns the font's IDispatch interface.

CFontHolder::GetFontHandle Returns a handle to a Windows font.

CFontHolder::InitializeFont Initializes a CFontHolder object.

CFontHolder::QueryTextMetrics Retrieves information for the related font.

CFontHolder::ReleaseFont Disconnects the CFontHolder object from the IFont and
IFontNotification interfaces.

CFontHolder::Select Selects a font resource into a device context.

CFontHolder::SetFont Connects the CFontHolder object to an IFont interface.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CFontHolder::m_pFont A pointer to the CFontHolder object's IFont interface.

Remarks

Implements the stock Font property and encapsulates the functionality of a Windows font object and the IFont

interface.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cfontholder-class.md

Inheritance Hierarchy

Requirements

CFontHolder::CFontHolder

explicit CFontHolder(LPPROPERTYNOTIFYSINK pNotify);

ParametersParameters

RemarksRemarks

CFontHolder::GetDisplayString

BOOL GetDisplayString(CString& strValue);

ParametersParameters

Return ValueReturn Value

CFontHolder::GetFontDispatch

LPFONTDISP GetFontDispatch();

Return ValueReturn Value

RemarksRemarks

CFontHolder does not have a base class.

Use this class to implement custom font properties for your control. For information on creating such properties,
see the article ActiveX Controls: Using Fonts.

CFontHolder

Header: afxctl.h

Constructs a CFontHolder object.

pNotify
Pointer to the font's IPropertyNotifySink interface.

You must call InitializeFont to initialize the resulting object before using it.

Retrieves a string that can be displayed in a container's property browser.

strValue
Reference to the CString that is to hold the display string.

Nonzero if the string is successfully retrieved; otherwise 0.

Call this function to retrieve a pointer to the font's dispatch interface.

A pointer to the CFontHolder object's IFontDisp interface. Note that the function that calls GetFontDispatch must
call IUnknown::Release on this interface pointer when done with it.

Call InitializeFont before calling GetFontDispatch .

CFontHolder::GetFontHandle

HFONT GetFontHandle();

HFONT GetFontHandle(
 long cyLogical,
 long cyHimetric);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFontHolder::InitializeFont

void InitializeFont(
 const FONTDESC* pFontDesc = NULL,
 LPDISPATCH pFontDispAmbient = NULL);

ParametersParameters

RemarksRemarks

CFontHolder::m_pFont

Call this function to get a handle to a Windows font.

cyLogical
Height, in logical units, of the rectangle in which the control is drawn.

cyHimetric
Height, in MM_HIMETRIC units, of the control.

A handle to the Font object; otherwise NULL.

The ratio of cyLogical and cyHimetric is used to calculate the proper display size, in logical units, for the font's
point size expressed in MM_HIMETRIC units:

Display size = (cyLogical / cyHimetric) X font size

The version with no parameters returns a handle to a font sized correctly for the screen.

Initializes a CFontHolder object.

pFontDesc
Pointer to a font description structure (FONTDESC) that specifies the font's characteristics.

pFontDispAmbient
Pointer to the container's ambient Font property.

If pFontDispAmbient is not NULL, the CFontHolder object is connected to a clone of the IFont interface used by
the container's ambient Font property.

If pFontDispAmbient is NULL, a new Font object is created either from the font description pointed to by
pFontDesc or, if pFontDesc is NULL, from a default description.

Call this function after constructing a CFontHolder object.

A pointer to the CFontHolder object's IFont interface.

https://docs.microsoft.com/windows/desktop/api/olectl/ns-olectl-tagfontdesc

LPFONT m_pFont;

CFontHolder::QueryTextMetrics

void QueryTextMetrics(LPTEXTMETRIC lptm);

ParametersParameters

CFontHolder::ReleaseFont

void ReleaseFont();

CFontHolder::Select

CFont* Select(
 CDC* pDC,
 long cyLogical,
 long cyHimetric);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFontHolder::SetFont

void SetFont(LPFONT pNewFont);

ParametersParameters

Retrieves information on the physical font represented by the CFontHolder object.

lptm
A pointer to a TEXTMETRIC structure that will receive the information.

This function disconnects the CFontHolder object from its IFont interface.

Call this function to select your control's font into the specified device context.

pDC
Device context into which the font is selected.

cyLogical
Height, in logical units, of the rectangle in which the control is drawn.

cyHimetric
Height, in MM_HIMETRIC units, of the control.

A pointer to the font that is being replaced.

See GetFontHandle for a discussion of the cyLogical and cyHimetric parameters.

Releases any existing font and connects the CFontHolder object to an IFont interface.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagtextmetrica

See also

pNewFont
Pointer to the new IFont interface.

Hierarchy Chart
CPropExchange Class

CFormView Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CFormView : public CScrollView

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CFormView::CFormView Constructs a CFormView object.

Public MethodsPublic Methods

NAME DESCRIPTION

CFormView::IsInitDlgCompleted Used for synchronization during initialization.

Remarks

Inheritance Hierarchy

The base class used for form views.

A form view is essentially a view that contains controls. These controls are laid out based on a dialog-
template resource. Use CFormView if you want forms in your application. These views support scrolling, as
needed, using the CScrollView functionality.

When you are Creating a Forms-Based Application, you can base its view class on CFormView , making it a
forms-based application.

You can also insert new Form Topics into document-view-based applications. Even if your application did
not initially support forms, Visual C++ will add this support when you insert a new form.

The MFC Application Wizard and the Add Class command are the preferred methods for creating forms-
based applications. If you need to create a forms-based application without using these methods, see
Creating a Forms-Based Application.

CObject

CCmdTarget

CWnd

CView

CScrollView

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cformview-class.md

Requirements

CFormView::CFormView

CFormView(LPCTSTR lpszTemplateName);
CFormView(UINT nIDTemplate);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

CFormView

Header: afxext.h

Constructs a CFormView object.

lpszTemplateName
Contains a null-terminated string that is the name of a dialog-template resource.

nIDTemplate
Contains the ID number of a dialog-template resource.

When you create an object of a type derived from CFormView , invoke one of the constructors to create the
view object and identify the dialog resource on which the view is based. You can identify the resource either
by name (pass a string as the argument to the constructor) or by its ID (pass an unsigned integer as the
argument).

The form-view window and child controls are not created until CWnd::Create is called. CWnd::Create is
called by the framework as part of the document and view creation process, which is driven by the
document template.

Your derived class must supply its own constructor. In the constructor, invoke the constructor,
CFormView::CFormView , with the resource name or ID as an argument as shown in the preceding class overview.

// MyFormView.h

// CMyFormView form view

class CMyFormView : public CFormView
{
 DECLARE_DYNCREATE(CMyFormView)

protected:
 CMyFormView(); // protected constructor used by dynamic creation
 virtual ~CMyFormView();

public:
 enum { IDD = IDD_MYFORMVIEW };
#ifdef _DEBUG
 virtual void AssertValid() const;
#ifndef _WIN32_WCE
 virtual void Dump(CDumpContext& dc) const;
#endif
#endif

protected:
 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support

 DECLARE_MESSAGE_MAP()
public:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
};

// MyFormView.cpp

#include "MyFormView.h"

// CMyFormView

IMPLEMENT_DYNCREATE(CMyFormView, CFormView)

CMyFormView::CMyFormView()
 : CFormView(CMyFormView::IDD)
{

}

CFormView::IsInitDlgCompleted

BOOL IsInitDlgCompleted() const;

Return ValueReturn Value

See also

Used by MFC to ensure that initialization is completed before performing other operations.

True if the initialization function for this dialog has completed.

MFC Sample SNAPVW
MFC Sample VIEWEX
CScrollView Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CDialog Class
CScrollView Class

CFrameWnd Class
3/4/2019 • 29 minutes to read • Edit Online

Syntax
class CFrameWnd : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFrameWnd::CFrameWnd Constructs a CFrameWnd object.

Public MethodsPublic Methods

NAME DESCRIPTION

CFrameWnd::ActivateFrame Makes the frame visible and available to the user.

CFrameWnd::BeginModalState Sets the frame window to modal.

CFrameWnd::Create Call to create and initialize the Windows frame window
associated with the CFrameWnd object.

CFrameWnd::CreateView Creates a view within a frame that is not derived from
CView .

CFrameWnd::DockControlBar Docks a control bar.

CFrameWnd::EnableDocking Allows a control bar to be docked.

CFrameWnd::EndModalState Ends the frame window's modal state. Enables all of the
windows disabled by BeginModalState .

CFrameWnd::FloatControlBar Floats a control bar.

CFrameWnd::GetActiveDocument Returns the active CDocument object.

CFrameWnd::GetActiveFrame Returns the active CFrameWnd object.

CFrameWnd::GetActiveView Returns the active CView object.

CFrameWnd::GetControlBar Retrieves the control bar.

Provides the functionality of a Windows single document interface (SDI) overlapped or pop-up frame
window, along with members for managing the window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cframewnd-class.md

CFrameWnd::GetDockState Retrieves the dock state of a frame window.

CFrameWnd::GetMenuBarState Retrieves the display state of the menu in the current
MFC application.

CFrameWnd::GetMenuBarVisibility Indicates whether the default behavior of the menu in
the current MFC application is either hidden or visible.

CFrameWnd::GetMessageBar Returns a pointer to the status bar belonging to the
frame window.

CFrameWnd::GetMessageString Retrieves message corresponding to a command ID.

CFrameWnd::GetTitle Retrieves the title of the related control bar.

CFrameWnd::InitialUpdateFrame Causes the OnInitialUpdate member function
belonging to all views in the frame window to be called.

CFrameWnd::InModalState Returns a value indicating whether or not a frame
window is in a modal state.

CFrameWnd::IsTracking Determines if splitter bar is currently being moved.

CFrameWnd::LoadAccelTable Call to load an accelerator table.

CFrameWnd::LoadBarState Call to restore control bar settings.

CFrameWnd::LoadFrame Call to dynamically create a frame window from
resource information.

CFrameWnd::NegotiateBorderSpace Negotiates border space in the frame window.

CFrameWnd::OnBarCheck Called whenever an action is performed on the specified
control bar.

CFrameWnd::OnContextHelp Handles SHIFT+F1 Help for in-place items.

CFrameWnd::OnSetPreviewMode Sets the application's main frame window into and out
of print-preview mode.

CFrameWnd::OnUpdateControlBarMenu Called by the framework when the associated menu is
updated.

CFrameWnd::RecalcLayout Repositions the control bars of the CFrameWnd object.

CFrameWnd::SaveBarState Call to save control bar settings.

CFrameWnd::SetActivePreviewView Designates the specified view to be the active view for
Rich Preview.

CFrameWnd::SetActiveView Sets the active CView object.

NAME DESCRIPTION

CFrameWnd::SetDockState Call to dock the frame window in the main window.

CFrameWnd::SetMenuBarState Sets the display state of the menu in the current MFC
application to hidden or displayed.

CFrameWnd::SetMenuBarVisibility Sets the default behavior of the menu in the current
MFC application to be either hidden or visible.

CFrameWnd::SetMessageText Sets the text of a standard status bar.

CFrameWnd::SetProgressBarPosition Sets current position for Windows 7 progress bar
displayed on taskbar.

CFrameWnd::SetProgressBarRange Sets range for Windows 7 progress bar displayed on
taskbar.

CFrameWnd::SetProgressBarState Sets the type and state of the progress indicator
displayed on a taskbar button.

CFrameWnd::SetTaskbarOverlayIcon Overloaded. Applies an overlay to a taskbar button to
indicate application status or a notification to the user.

CFrameWnd::SetTitle Sets the title of the related control bar.

CFrameWnd::ShowControlBar Call to show the control bar.

CFrameWnd::ShowOwnedWindows Shows all windows that are descendants of the
CFrameWnd object.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CFrameWnd::OnCreateClient Creates a client window for the frame.

CFrameWnd::OnHideMenuBar Called before the menu in the current MFC application
is hidden.

CFrameWnd::OnShowMenuBar Called before the menu in the current MFC application
is displayed.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CFrameWnd::m_bAutoMenuEnable Controls automatic enable and disable functionality for
menu items.

CFrameWnd::rectDefault Pass this static CRect as a parameter when creating a
CFrameWnd object to allow Windows to choose the

window's initial size and position.

Remarks
To create a useful frame window for your application, derive a class from CFrameWnd . Add member
variables to the derived class to store data specific to your application. Implement message-handler
member functions and a message map in the derived class to specify what happens when messages
are directed to the window.

There are three ways to construct a frame window:

Directly construct it using Create.

Directly construct it using LoadFrame.

Indirectly construct it using a document template.

Before you call either Create or LoadFrame , you must construct the frame-window object on the heap
using the C++ new operator. Before calling Create , you can also register a window class with the
AfxRegisterWndClass global function to set the icon and class styles for the frame.

Use the Create member function to pass the frame's creation parameters as immediate arguments.

LoadFrame requires fewer arguments than Create , and instead retrieves most of its default values
from resources, including the frame's caption, icon, accelerator table, and menu. To be accessible by
LoadFrame , all these resources must have the same resource ID (for example, IDR_MAINFRAME).

When a CFrameWnd object contains views and documents, they are created indirectly by the framework
instead of directly by the programmer. The CDocTemplate object orchestrates the creation of the frame,
the creation of the containing views, and the connection of the views to the appropriate document. The
parameters of the CDocTemplate constructor specify the CRuntimeClass of the three classes involved
(document, frame, and view). A CRuntimeClass object is used by the framework to dynamically create
new frames when specified by the user (for example, by using the File New command or the multiple
document interface (MDI) Window New command).

A frame-window class derived from CFrameWnd must be declared with DECLARE_DYNCREATE in
order for the above RUNTIME_CLASS mechanism to work correctly.

A CFrameWnd contains default implementations to perform the following functions of a main window in
a typical application for Windows:

A CFrameWnd frame window keeps track of a currently active view that is independent of the
Windows active window or the current input focus. When the frame is reactivated, the active
view is notified by calling CView::OnActivateView .

Command messages and many common frame-notification messages, including those handled
by the OnSetFocus , OnHScroll , and OnVScroll functions of CWnd , are delegated by a CFrameWnd

frame window to the currently active view.

The currently active view (or currently active MDI child frame window in the case of an MDI
frame) can determine the caption of the frame window. This feature can be disabled by turning
off the FWS_ADDTOTITLE style bit of the frame window.

A CFrameWnd frame window manages the positioning of the control bars, views, and other child
windows inside the frame window's client area. A frame window also does idle-time updating of
toolbar and other control-bar buttons. A CFrameWnd frame window also has default
implementations of commands for toggling on and off the toolbar and status bar.

A CFrameWnd frame window manages the main menu bar. When a pop-up menu is displayed,
the frame window uses the UPDATE_COMMAND_UI mechanism to determine which menu

Inheritance Hierarchy

Requirements

CFrameWnd::ActivateFrame

virtual void ActivateFrame(int nCmdShow = -1);

ParametersParameters

items should be enabled, disabled, or checked. When the user selects a menu item, the frame
window updates the status bar with the message string for that command.

A CFrameWnd frame window has an optional accelerator table that automatically translates
keyboard accelerators.

A CFrameWnd frame window has an optional help ID set with LoadFrame that is used for context-
sensitive help. A frame window is the main orchestrator of semimodal states such as context-
sensitive help (SHIFT+F1) and print-preview modes.

A CFrameWnd frame window will open a file dragged from the File Manager and dropped on the
frame window. If a file extension is registered and associated with the application, the frame
window responds to the dynamic data exchange (DDE) open request that occurs when the user
opens a data file in the File Manager or when the ShellExecute Windows function is called.

If the frame window is the main application window (that is, CWinThread::m_pMainWnd), when the
user closes the application, the frame window prompts the user to save any modified
documents (for OnClose and OnQueryEndSession).

If the frame window is the main application window, the frame window is the context for
running WinHelp. Closing the frame window will shut down WINHELP.EXE if it was launched
for help for this application.

Do not use the C++ delete operator to destroy a frame window. Use CWnd::DestroyWindow instead.
The CFrameWnd implementation of PostNcDestroy will delete the C++ object when the window is
destroyed. When the user closes the frame window, the default OnClose handler will call
DestroyWindow .

For more information on CFrameWnd , see Frame Windows.

CObject

CCmdTarget

CWnd

CFrameWnd

Header: afxwin.h

Call this member function to activate and restore the frame window so that it is visible and available to
the user.

nCmdShow
Specifies the parameter to pass to CWnd::ShowWindow. By default, the frame is shown and correctly
restored.

RemarksRemarks

ExampleExample

void CChildFrame::ActivateFrame(int nCmdShow)
{
 // Create the child frame window maximized
 nCmdShow = SW_MAXIMIZE;

 CMDIChildWnd::ActivateFrame(nCmdShow);
}

CFrameWnd::BeginModalState

virtual void BeginModalState();

CFrameWnd::CFrameWnd

CFrameWnd();

RemarksRemarks

CFrameWnd::Create

virtual BOOL Create(
 LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName,
 DWORD dwStyle = WS_OVERLAPPEDWINDOW,
 const RECT& rect = rectDefault,
 CWnd* pParentWnd = NULL,
 LPCTSTR lpszMenuName = NULL,
 DWORD dwExStyle = 0,
 CCreateContext* pContext = NULL);

ParametersParameters

This member function is usually called after a non-user interface event such as a DDE, OLE, or other
event that may show the frame window or its contents to the user.

The default implementation activates the frame and brings it to the top of the Z-order and, if necessary,
carries out the same steps for the application's main frame window.

Override this member function to change how a frame is activated. For example, you can force MDI
child windows to be maximized. Add the appropriate functionality, then call the base class version with
an explicit nCmdShow.

Call this member function to make a frame window modal.

Constructs a CFrameWnd object, but does not create the visible frame window.

Call Create to create the visible window.

Call to create and initialize the Windows frame window associated with the CFrameWnd object.

lpszClassName
Points to a null-terminated character string that names the Windows class. The class name can be any
name registered with the AfxRegisterWndClass global function or the RegisterClass Windows

Return ValueReturn Value

RemarksRemarks

CFrameWnd::CreateView

CWnd* CreateView(
 CCreateContext* pContext,
 UINT nID = AFX_IDW_PANE_FIRST);

ParametersParameters

Return ValueReturn Value

function. If NULL, uses the predefined default CFrameWnd attributes.

lpszWindowName
Points to a null-terminated character string that represents the window name. Used as text for the title
bar.

dwStyle
Specifies the window style attributes. Include the FWS_ADDTOTITLE style if you want the title bar to
automatically display the name of the document represented in the window.

rect
Specifies the size and position of the window. The rectDefault value allows Windows to specify the size
and position of the new window.

pParentWnd
Specifies the parent window of this frame window. This parameter should be NULL for top-level frame
windows.

lpszMenuName
Identifies the name of the menu resource to be used with the window. Use MAKEINTRESOURCE if the
menu has an integer ID instead of a string. This parameter can be NULL.

dwExStyle
Specifies the window extended style attributes.

pContext
Specifies a pointer to a CCreateContext structure. This parameter can be NULL.

Nonzero if initialization is successful; otherwise 0.

Construct a CFrameWnd object in two steps. First, invoke the constructor, which constructs the
CFrameWnd object, and then call Create , which creates the Windows frame window and attaches it to

the CFrameWnd object. Create initializes the window's class name and window name and registers
default values for its style, parent, and associated menu.

Use LoadFrame rather than Create to load the frame window from a resource instead of specifying its
arguments.

Call CreateView to create a view within a frame.

pContext
Specifies the type of view and document.

nID
The ID number of a view.

RemarksRemarks

CFrameWnd::DockControlBar

void DockControlBar(
 CControlBar* pBar,
 UINT nDockBarID = 0,
 LPCRECT lpRect = NULL);

ParametersParameters

RemarksRemarks

CFrameWnd::EnableDocking

void EnableDocking(DWORD dwDockStyle);

ParametersParameters

Pointer to a CWnd object if successful; otherwise NULL.

Use this member function to create "views" that are not CView -derived within a frame. After calling
CreateView , you must manually set the view to active and set it to be visible; these tasks are not

automatically performed by CreateView .

Causes a control bar to be docked to the frame window.

pBar
Points to the control bar to be docked.

nDockBarID
Determines which sides of the frame window to consider for docking. It can be 0, or one or more of the
following:

AFX_IDW_DOCKBAR_TOP Dock to the top side of the frame window.

AFX_IDW_DOCKBAR_BOTTOM Dock to the bottom side of the frame window.

AFX_IDW_DOCKBAR_LEFT Dock to the left side of the frame window.

AFX_IDW_DOCKBAR_RIGHT Dock to the right side of the frame window.

If 0, the control bar can be docked to any side enabled for docking in the destination frame window.

lpRect
Determines, in screen coordinates, where the control bar will be docked in the nonclient area of the
destination frame window.

The control bar will be docked to one of the sides of the frame window specified in the calls to both
CControlBar::EnableDocking and CFrameWnd::EnableDocking. The side chosen is determined by
nDockBarID.

Call this function to enable dockable control bars in a frame window.

dwDockStyle
Specifies which sides of the frame window can serve as docking sites for control bars. It can be one or
more of the following:

CBRS_ALIGN_TOP Allows docking at the top of the client area.

RemarksRemarks

ExampleExample

CFrameWnd::EndModalState

virtual void EndModalState();

RemarksRemarks

CFrameWnd::FloatControlBar

void FloatControlBar(
 CControlBar* pBar,
 CPoint point,
 DWORD dwStyle = CBRS_ALIGN_TOP);

ParametersParameters

RemarksRemarks

CBRS_ALIGN_BOTTOM Allows docking at the bottom of the client area.

CBRS_ALIGN_LEFT Allows docking on the left side of the client area.

CBRS_ALIGN_RIGHT Allows docking on the right side of the client area.

CBRS_ALIGN_ANY Allows docking on any side of the client area.

By default, control bars will be docked to a side of the frame window in the following order: top,
bottom, left, right.

See the example for CToolBar::Create.

Call this member function to change a frame window from modal to modeless.

EndModalState enables all of the windows disabled by BeginModalState.

Call this function to cause a control bar to not be docked to the frame window.

pBar
Points to the control bar to be floated.

point
The location, in screen coordinates, where the top left corner of the control bar will be placed.

dwStyle
Specifies whether to align the control bar horizontally or vertically within its new frame window. It can
be any one of the following:

CBRS_ALIGN_TOP Orients the control bar vertically.

CBRS_ALIGN_BOTTOM Orients the control bar vertically.

CBRS_ALIGN_LEFT Orients the control bar horizontally.

CBRS_ALIGN_RIGHT Orients the control bar horizontally.

If styles are passed specifying both horizontal and vertical orientation, the toolbar will be oriented
horizontally.

Typically, this is done at application startup when the program is restoring settings from the previous

CFrameWnd::GetActiveDocument

virtual CDocument* GetActiveDocument();

Return ValueReturn Value

CFrameWnd::GetActiveFrame

virtual CFrameWnd* GetActiveFrame();

Return ValueReturn Value

RemarksRemarks

CFrameWnd::GetActiveView

CView* GetActiveView() const;

Return ValueReturn Value

RemarksRemarks

execution.

This function is called by the framework when the user causes a drop operation by releasing the left
mouse button while dragging the control bar over a location that is not available for docking.

Call this member function to obtain a pointer to the current CDocument attached to the current active
view.

A pointer to the current CDocument. If there is no current document, returns NULL.

Call this member function to obtain a pointer to the active multiple document interface (MDI) child
window of an MDI frame window.

A pointer to the active MDI child window. If the application is an SDI application, or the MDI frame
window has no active document, the implicit this pointer will be returned.

If there is no active MDI child or the application is a single document interface (SDI), the implicit this
pointer is returned.

Call this member function to obtain a pointer to the active view (if any) attached to a frame window (
CFrameWnd).

A pointer to the current CView. If there is no current view, returns NULL.

This function returns NULL when called for an MDI main frame window (CMDIFrameWnd). In an MDI
application, the MDI main frame window does not have a view associated with it. Instead, each
individual child window (CMDIChildWnd) has one or more associated views. The active view in an MDI
application can be obtained by first finding the active MDI child window and then finding the active
view for that child window. The active MDI child window can be found by calling the function
MDIGetActive or GetActiveFrame as demonstrated in the following:

CMDIFrameWnd *pFrame = (CMDIFrameWnd*)AfxGetApp()->GetMainWnd();

// Get the active MDI child window.
CMDIChildWnd *pChild = (CMDIChildWnd*)pFrame->GetActiveFrame();

// or CMDIChildWnd *pChild = pFrame->MDIGetActive();

// Get the active view attached to the active MDI child window.
CMyView *pView = (CMyView*)pChild->GetActiveView();

CFrameWnd::GetControlBar

CControlBar* GetControlBar(UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWnd::GetDockState

void GetDockState(CDockState& state) const;

ParametersParameters

RemarksRemarks

CFrameWnd::GetMenuBarState

virtual DWORD GetMenuBarState();

Call GetControlBar to gain access to the control bar that is associated with the ID.

nID
The ID number of a control bar.

A pointer to the control bar that is associated with the ID.

The nID parameter refers to the unique identifier passed to the Create method of the control bar. For
more information on control bars, refer to the topic entitled Control Bars.

GetControlBar will return the control bar even if it is floating and thus is not currently a child window
of the frame.

Call this member function to store state information about the frame window's control bars in a
CDockState object.

state
Contains the current state of the frame window's control bars upon return.

You can then write the contents of CDockState to storage using CDockState::SaveState or Serialize .
If you later want to restore the control bars to a previous state, load the state with
CDockState::LoadState or Serialize , then call SetDockState to apply the previous state to the frame

window's control bars.

Retrieves the display state of the menu in the current MFC application.

Return ValueReturn Value

RemarksRemarks

CFrameWnd::GetMenuBarVisibility

virtual DWORD CFrameWnd::GetMenuBarVisibility();

Return ValueReturn Value

RemarksRemarks

CFrameWnd::GetMessageBar

virtual CWnd* GetMessageBar();

Return ValueReturn Value

CFrameWnd::GetMessageString

virtual void GetMessageString(
 UINT nID,
 CString& rMessage) const;

ParametersParameters

The return value can have the following values:

AFX_MBS_VISIBLE (0x01) - The menu is visible.

AFX_MBS_HIDDEN (0x02) - The menu is hidden.

If a runtime error occurs, this method asserts in Debug mode and raises an exception derived from the
CException class.

Indicates whether the default state of the menu in the current MFC application is hidden or visible.

This method returns one of the following values:

AFX_MBV_KEEPVISIBLE (0x01) - The menu is displayed at all times, and by default does not
have the focus.

AFX_MBV_DISPLAYONFOCUS (0x02) - The menu is hidden by default. If the menu is hidden,
press the ALT key to display the menu and give it the focus. If the menu is displayed, press the
ALT or ESC key to hide it.

AFX_MBV_ DISPLAYONFOCUS (0x02) | AFX_MBV_DISPLAYONF10 (0x04) (bitwise
combination (OR)) - The menu is hidden by default. If the menu is hidden, press the F10 key to
display the menu and give it the focus. If the menu is displayed, press the F10 key to toggle the
focus on or off the menu. The menu is displayed until you press the ALT or ESC key to hide it.

If a runtime error occurs, this method asserts in Debug mode and raises an exception derived from the
CException class.

Call this member function to get a pointer to the status bar.

Pointer to the status-bar window.

Override this function to provide custom strings for command IDs.

RemarksRemarks

CFrameWnd::GetTitle

CString GetTitle() const;

Return ValueReturn Value

CFrameWnd::InitialUpdateFrame

void InitialUpdateFrame(
 CDocument* pDoc,
 BOOL bMakeVisible);

ParametersParameters

RemarksRemarks

CFrameWnd::InModalState

BOOL InModalState() const;

Return ValueReturn Value

nID
Resource ID of the desired message.

rMessage
CString object into which to place the message.

The default implementation simply loads the string specified by nID from the resource file. This
function is called by the framework when the message string in the status bar needs updating.

Retrieves the title of the window object.

A CString object containing the current title of the window object.

Call IntitialUpdateFrame after creating a new frame with Create .

pDoc
Points to the document to which the frame window is associated. Can be NULL.

bMakeVisible
If TRUE, indicates that the frame should become visible and active. If FALSE, no descendants are made
visible.

This causes all views in that frame window to receive their OnInitialUpdate calls.

Also, if there was not previously an active view, the primary view of the frame window is made active.
The primary view is a view with a child ID of AFX_IDW_PANE_FIRST. Finally, the frame window is
made visible if bMakeVisible is nonzero. If bMakeVisible is 0, the current focus and visible state of the
frame window will remain unchanged. It is not necessary to call this function when using the
framework's implementation of File New and File Open.

Call this member function to check if a frame window is modal or modeless.

Nonzero if yes; otherwise 0.

CFrameWnd::IsTracking

BOOL IsTracking() const;

Return ValueReturn Value

CFrameWnd::LoadAccelTable

BOOL LoadAccelTable(LPCTSTR lpszResourceName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWnd::LoadBarState

void LoadBarState(LPCTSTR lpszProfileName);

ParametersParameters

RemarksRemarks

CFrameWnd::LoadFrame

Call this member function to determine if the splitter bar in the window is currently being moved.

Nonzero if a splitter operation is in progress; otherwise 0.

Call to load the specified accelerator table.

lpszResourceName
Identifies the name of the accelerator resource. Use MAKEINTRESOURCE if the resource is identified
with an integer ID.

Nonzero if the accelerator table was successfully loaded; otherwise 0.

Only one table can be loaded at a time.

Accelerator tables loaded from resources are freed automatically when the application terminates.

If you call LoadFrame to create the frame window, the framework loads an accelerator table along with
the menu and icon resources, and a subsequent call to this member function is then unnecessary.

Call this function to restore the settings of each control bar owned by the frame window.

lpszProfileName
Name of a section in the initialization (INI) file or a key in the Windows registry where state
information is stored.

Information restored includes visibility, horizontal/vertical orientation, docking state, and control-bar
position.

The settings you want to restore must be written to the registry before you call LoadBarState . Write
the information to the registry by calling CWinApp::SetRegistryKey. Write the information to the INI
file by calling SaveBarState.

Call to dynamically create a frame window from resource information.

virtual BOOL LoadFrame(
 UINT nIDResource,
 DWORD dwDefaultStyle = WS_OVERLAPPEDWINDOW | FWS_ADDTOTITLE,
 CWnd* pParentWnd = NULL,
 CCreateContext* pContext = NULL);

ParametersParameters

RemarksRemarks

CFrameWnd::m_bAutoMenuEnable

BOOL m_bAutoMenuEnable;

RemarksRemarks

NOTENOTE

nIDResource
The ID of shared resources associated with the frame window.

dwDefaultStyle
The frame's style. Include the FWS_ADDTOTITLE style if you want the title bar to automatically display
the name of the document represented in the window.

pParentWnd
A pointer to the frame's parent.

pContext
A pointer to a CCreateContext structure. This parameter can be NULL.

Construct a CFrameWnd object in two steps. First, invoke the constructor, which constructs the
CFrameWnd object, and then call LoadFrame , which loads the Windows frame window and associated

resources and attaches the frame window to the CFrameWnd object. The nIDResource parameter
specifies the menu, the accelerator table, the icon, and the string resource of the title for the frame
window.

Use the Create member function rather than LoadFrame when you want to specify all of the frame
window's creation parameters.

The framework calls LoadFrame when it creates a frame window using a document template object.

The framework uses the pContext argument to specify the objects to be connected to the frame
window, including any contained view objects. You can set the pContext argument to NULL when you
call LoadFrame .

When this data member is enabled (which is the default), menu items that do not have
ON_UPDATE_COMMAND_UI or ON_COMMAND handlers will be automatically disabled when the
user pulls down a menu.

Menu items that have an ON_COMMAND handler but no ON_UPDATE_COMMAND_UI handler will
be automatically enabled.

When this data member is set, menu items are automatically enabled in the same way that toolbar
buttons are enabled.

m_bAutoMenuEnable has no effect on top-level menu items.

ExampleExample

CMainFrame::CMainFrame()
 : m_hDrawMenu(NULL)
 , m_hDrawAccel(NULL)
 , m_bCheck(false)
 , m_nWindowTimer(0)
 , m_nCallbackTimer(0)
{
 // Set to FALSE so no ON_UPDATE_COMMAND_UI
 // or ON_COMMAND handlers are needed, and
 // CMenu::EnableMenuItem() will work as expected.
 m_bAutoMenuEnable = FALSE;
}

CFrameWnd::NegotiateBorderSpace

virtual BOOL NegotiateBorderSpace(
 UINT nBorderCmd,
 LPRECT lpRectBorder);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWnd::OnBarCheck

afx_msg BOOL OnBarCheck(UINT nID);

ParametersParameters

This data member simplifies the implementation of optional commands based on the current selection
and reduces the need to write ON_UPDATE_COMMAND_UI handlers for enabling and disabling
menu items.

Call this member function to negotiate border space in a frame window during OLE inplace activation.

nBorderCmd
Contains one of the following values from the enum BorderCmd :

borderGet = 1

borderRequest = 2

borderSet = 3

lpRectBorder
Pointer to a RECT structure or a CRect object that specifies the coordinates of the border.

Nonzero if successful; otherwise 0.

This member function is the CFrameWnd implementation of OLE border space negotiation.

Called whenever an action is performed on the specified control bar.

nID
The ID of the control bar being shown.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

Return ValueReturn Value

CFrameWnd::OnContextHelp

afx_msg void OnContextHelp();

RemarksRemarks

ON_COMMAND(ID_CONTEXT_HELP, &CMainFrame::OnContextHelp)

CFrameWnd::OnCreateClient

virtual BOOL OnCreateClient(
 LPCREATESTRUCT lpcs,
 CCreateContext* pContext);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Nonzero if the control bar existed; otherwise 0.

Handles SHIFT+F1 Help for in-place items.

To enable context-sensitive help, you must add an

statement to your CFrameWnd class message map and also add an accelerator-table entry, typically
SHIFT+F1, to enable this member function.

If your application is an OLE Container, OnContextHelp puts all in-place items contained within the
frame window object into Help mode. The cursor changes to an arrow and a question mark, and the
user can then move the mouse pointer and press the left mouse button to select a dialog box, window,
menu, or command button. This member function calls the Windows function WinHelp with the Help
context of the object under the cursor.

Called by the framework during the execution of OnCreate .

lpcs
A pointer to a Windows CREATESTRUCT structure.

pContext
A pointer to a CCreateContext structure.

Nonzero if successful; otherwise 0.

Never call this function.

The default implementation of this function creates a CView object from the information provided in
pContext, if possible.

Override this function to override values passed in the CCreateContext object or to change the way
controls in the main client area of the frame window are created. The CCreateContext members you
can override are described in the CCreateContext class.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcreatestructa

NOTENOTE

CFrameWnd::OnHideMenuBar

virtual void OnHideMenuBar();

RemarksRemarks

CFrameWnd::OnSetPreviewMode

virtual void OnSetPreviewMode(
 BOOL bPreview,
 CPrintPreviewState* pState);

ParametersParameters

RemarksRemarks

CFrameWnd::OnShowMenuBar

virtual void OnShowMenuBar();

RemarksRemarks

Do not replace values passed in the CREATESTRUCT structure. They are for informational use only. If you want
to override the initial window rectangle, for example, override the CWnd member function PreCreateWindow.

This function is called when the system is about to hide the menu bar in the current MFC application.

This event handler enables your application to perform custom actions when the system is about to
hide the menu. You cannot prevent the menu from being hidden, but you can, for example, call other
methods to retrieve the menu style or state.

Call this member function to set the application's main frame window into and out of print-preview
mode.

bPreview
Specifies whether or not to place the application in print-preview mode. Set to TRUE to place in print
preview, FALSE to cancel preview mode.

pState
A pointer to a CPrintPreviewState structure.

The default implementation disables all standard toolbars and hides the main menu and the main
client window. This turns MDI frame windows into temporary SDI frame windows.

Override this member function to customize the hiding and showing of control bars and other frame
window parts during print preview. Call the base class implementation from within the overridden
version.

This function is called when the system is about to display the menu bar in the current MFC
application.

This event handler enables your application to perform custom actions when the menu is about to be
displayed. You cannot prevent the menu from being displayed, but you can, for example, call other

CFrameWnd::OnUpdateControlBarMenu

afx_msg void OnUpdateControlBarMenu(CCmdUI* pCmdUI);

ParametersParameters

CFrameWnd::RecalcLayout

virtual void RecalcLayout(BOOL bNotify = TRUE);

ParametersParameters

RemarksRemarks

CFrameWnd::rectDefault

static AFX_DATA const CRect rectDefault;

CFrameWnd::SaveBarState

void SaveBarState(LPCTSTR lpszProfileName) const;

ParametersParameters

methods to retrieve the menu style or state.

Called by the framework when the associated menu is updated.

pCmdUI
A pointer to a CCmdUI object representing the menu that generated the update command. The update
handler calls the Enable member function of the CCmdUI object through pCmdUI to update the user
interface.

Called by the framework when the standard control bars are toggled on or off or when the frame
window is resized.

bNotify
Determines whether the active in-place item for the frame window receives notification of the layout
change. If TRUE, the item is notified; otherwise FALSE.

The default implementation of this member function calls the CWnd member function RepositionBars

to reposition all the control bars in the frame as well as in the main client window (usually a CView or
MDICLIENT).

Override this member function to control the appearance and behavior of control bars after the layout
of the frame window has changed. For example, call it when you turn control bars on or off or add
another control bar.

Pass this static CRect as a parameter when creating a window to allow Windows to choose the
window's initial size and position.

Call this function to store information about each control bar owned by the frame window.

lpszProfileName

RemarksRemarks

CFrameWnd::SetActivePreviewView

void SetActivePreviewView(CView* pViewNew);

ParametersParameters

RemarksRemarks

CFrameWnd::SetActiveView

void SetActiveView(
 CView* pViewNew,
 BOOL bNotify = TRUE);

ParametersParameters

RemarksRemarks

CFrameWnd::SetDockState

void SetDockState(const CDockState& state);

ParametersParameters

RemarksRemarks

Name of a section in the initialization file or a key in the Windows registry where state information is
stored.

This information can be read from the initialization file using LoadBarState. Information stored
includes visibility, horizontal/vertical orientation, docking state, and control bar position.

Designates the specified view to be the active view for Rich Preview.

pViewNew
A pointer to a view to be activated.

Call this member function to set the active view.

pViewNew
Specifies a pointer to a CView object, or NULL for no active view.

bNotify
Specifies whether the view is to be notified of activation. If TRUE, OnActivateView is called for the new
view; if FALSE, it is not.

The framework will call this function automatically as the user changes the focus to a view within the
frame window. You can explicitly call SetActiveView to change the focus to the specified view.

Call this member function to apply state information stored in a CDockState object to the frame
window's control bars.

state
Apply the stored state to the frame window's control bars.

To restore a previous state of the control bars, you can load the stored state with
CDockState::LoadState or Serialize , then use SetDockState to apply it to the frame window's control

CFrameWnd::SetMenuBarState

virtual BOOL SetMenuBarState(DWORD nState);

ParametersParameters

PARAMETER DESCRIPTION

nState [in] Specifies whether to display or hide the menu. The
nState parameter can have the following values:

- AFX_MBS_VISIBLE (0x01) - Displays the menu if it is
hidden, but has no effect if it is visible.
- AFX_MBS_HIDDEN (0x02) - Hides the menu if it is
visible, but has no effect if it is hidden.

Return ValueReturn Value

RemarksRemarks

CFrameWnd::SetMenuBarVisibility

virtual void SetMenuBarVisibility(DWORD nStyle);

ParametersParameters

PARAMETER DESCRIPTION

nStyle [in] Specifies whether the menu is by default hidden, or
is visible and has the focus. The nStyle parameter can
have the following values:

- AFX_MBV_KEEPVISIBLE (0x01) -
The menu is displayed at all times, and by default does
not have the focus.
- AFX_MBV_DISPLAYONFOCUS (0x02) -
The menu is hidden by default. If the menu is hidden,
press the ALT key to display the menu and give it the
focus. If the menu is displayed, press the ALT or ESC
key to hide menu.
- AFX_MBV_ DISPLAYONFOCUS (0x02) |
AFX_MBV_DISPLAYONF10 (0x04)
(bitwise combination (OR)) - The menu is hidden by
default. If the menu is hidden, press the F10 key to
display the menu and give it the focus. If the menu is
displayed, press the F10 key to toggle the focus on or
off the menu. The menu is displayed until you press the
ALT or ESC key to hide it.

bars. The previous state is stored in the CDockState object with GetDockState

Sets the display state of the menu in the current MFC application to hidden or displayed.

TRUE if this method successfully changes the menu state; otherwise, FALSE.

If a runtime error occurs, this method asserts in Debug mode and raises an exception derived from the
CException class.

Sets the default behavior of the menu in the current MFC application to be either hidden or visible.

RemarksRemarks

CFrameWnd::SetMessageText

void SetMessageText(LPCTSTR lpszText);
void SetMessageText(UINT nID);

ParametersParameters

RemarksRemarks

CFrameWnd::SetProgressBarPosition

void SetProgressBarPosition(int nProgressPos);

ParametersParameters

RemarksRemarks

CFrameWnd::SetProgressBarRange

void SetProgressBarRange(
 int nRangeMin,
 int nRangeMax);

ParametersParameters

RemarksRemarks

If the value of the nStyle parameter is not valid, this method asserts in Debug mode and raises
CInvalidArgException in Release mode. In case of other runtime errors, this method asserts in Debug
mode and raises an exception derived from the CException class.

This method affects the state of menus in applications written for Windows Vista and later.

Call this function to place a string in the status-bar pane that has an ID of 0.

lpszText
Points to the string to be placed on the status bar.

nID
String resource ID of the string to be placed on the status bar.

This is typically the leftmost, and longest, pane of the status bar.

Sets the current position for the Windows 7 progress bar displayed on the taskbar.

nProgressPos
Specifies the position to set. It must be within the range set by SetProgressBarRange .

Sets the range for the Windows 7 progress bar displayed on the taskbar.

nRangeMin
Minimal value.

nRangeMax
Maximal value.

CFrameWnd::SetProgressBarState

void SetProgressBarState(TBPFLAG tbpFlags);

ParametersParameters

RemarksRemarks

CFrameWnd::SetTaskbarOverlayIcon

BOOL SetTaskbarOverlayIcon(
 UINT nIDResource,
 LPCTSTR lpcszDescr);

BOOL SetTaskbarOverlayIcon(
 HICON hIcon,
 LPCTSTR lpcszDescr);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWnd::SetTitle

void SetTitle(LPCTSTR lpszTitle);

ParametersParameters

Sets the type and state of the progress indicator displayed on a taskbar button.

tbpFlags
Flags that control the current state of the progress button. Specify only one of the following flags
because all states are mutually exclusive: TBPF_NOPROGRESS, TBPF_INDETERMINATE,
TBPF_NORMAL, TBPF_ERROR, TBPF_PAUSED.

Overloaded. Applies an overlay to a taskbar button to indicate application status or to notify the user.

nIDResource
Specifies the Resource ID of an icon to use as the overlay. See description for hIcon for details.

lpcszDescr
A pointer to a string that provides an alt text version of the information conveyed by the overlay, for
accessibility purposes.

hIcon
The handle of an icon to use as the overlay. This should be a small icon, measuring 16x16 pixels at 96
dots per inch (dpi). If an overlay icon is already applied to the taskbar button, that existing overlay is
replaced. This value can be NULL. How a NULL value is handled depends on whether the taskbar
button represents a single window or a group of windows. It is the responsibility of the calling
application to free hIcon when it is no longer needed.

TRUE if successful; FALSE if OS version is less than Windows 7 or if an error occurs setting the icon.

Sets the title of the window object.

lpszTitle

CFrameWnd::ShowControlBar

void ShowControlBar(
 CControlBar* pBar,
 BOOL bShow,
 BOOL bDelay);

ParametersParameters

CFrameWnd::ShowOwnedWindows

void ShowOwnedWindows(BOOL bShow);

ParametersParameters

See also

A pointer to a character string containing the title of the window object.

Call this member function to show or hide the control bar.

pBar
Pointer to the control bar to be shown or hidden.

bShow
If TRUE, specifies that the control bar is to be shown. If FALSE, specifies that the control bar is to be
hidden.

bDelay
If TRUE, delay showing the control bar. If FALSE, show the control bar immediately.

Call this member function to show all windows that are descendants of the CFrameWnd object.

bShow
Specifies whether the owned windows are to be shown or hidden.

CWnd Class
Hierarchy Chart
CWnd Class
CMDIFrameWnd Class
CMDIChildWnd Class
CView Class
CDocTemplate Class
CRuntimeClass Structure

CFrameWndEx Class
3/4/2019 • 31 minutes to read • Edit Online

Syntax
class CFrameWndEx : public CFrameWnd

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CFrameWndEx::ActiveItemRecalcLayout Adjusts the layout of the OLE client item and the frame's
client area.

CFrameWndEx::AddDockSite This method is not used.

CFrameWndEx::AddPane Registers a control bar with the docking manager.

CFrameWndEx::AdjustDockingLayout Recalculates the layout of all panes that are docked to the
frame window.

CFrameWndEx::DelayUpdateFrameMenu Sets the frame menu and then updates it when command
processing is idle.

CFrameWndEx::DockPane Docks the specified pane to the frame window.

CFrameWndEx::DockPaneLeftOf Docks one pane to the left of another pane.

CFrameWndEx::EnableAutoHidePanes Enables the auto-hide mode for the panes when they are
docked to the specified sides of the main frame window.

CFrameWndEx::EnableDocking Enables the docking of the panes that belong to the frame
window.

CFrameWndEx::EnableFullScreenMainMenu Shows or hides the main menu in a full screen mode.

CFrameWndEx::EnableFullScreenMode Enables the full screen mode for the frame window.

CFrameWndEx::EnableLoadDockState Enables or disables the loading of the docking state.

CFrameWndEx::EnablePaneMenu Enables or disables the automatic handling of the pane menu.

CFrameWndEx::GetActivePopup Returns a pointer to the currently displayed pop-up menu.

Implements the functionality of a Windows single document interface (SDI) overlapped or popup frame window,
and provides members for managing the window. It extends the CFrameWnd class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cframewndex-class.md

CFrameWndEx::GetDefaultResId Returns the resource ID that you specified when the
framework loaded the frame window.

CFrameWndEx::GetDockingManager Retrieves the CDockingManager Class object for the frame
window.

CFrameWndEx::GetMenuBar Returns a pointer to the menu bar object attached to the
frame window.

CFrameWndEx::GetPane Returns a pointer to the pane that has the specified ID.

CFrameWndEx::GetRibbonBar Retrieves the ribbon bar control for the frame.

CFrameWndEx::GetTearOffBars Returns a list of pane objects that are in a tear-off state.

CFrameWndEx::GetToolbarButtonToolTipText Called by the framework when the application displays the
tooltip for a toolbar button.

CFrameWndEx::InsertPane Registers a pane with the docking manager.

CFrameWndEx::IsFullScreen Determines whether the frame window is in full screen mode.

CFrameWndEx::IsMenuBarAvailable Determines whether the pointer to the menu bar object is
valid.

CFrameWndEx::IsPointNearDockSite Indicates whether the point is located in an alignment zone.

CFrameWndEx::IsPrintPreview Indicates whether the frame window is in print preview mode.

CFrameWndEx::LoadFrame This method is called after construction to create the frame
window and load its resources.

CFrameWndEx::NegotiateBorderSpace Implements OLE client border negotiation.

CFrameWndEx::OnActivate The framework calls this method when user input is switched
to or away from the frame.

CFrameWndEx::OnActivateApp Called by the framework when the application is either
selected or deselected.

CFrameWndEx::OnChangeVisualManager Called by the framework when a change to the frame
requires a change to the visual manager.

CFrameWndEx::OnClose The framework calls this method to close the frame.

CFrameWndEx::OnCloseDockingPane Called by the framework when the user clicks the Close
button on a docking pane.

CFrameWndEx::OnCloseMiniFrame Called by the framework when the user clicks the Close
button on a floating mini frame window.

NAME DESCRIPTION

CFrameWndEx::OnClosePopupMenu Called by the framework when an active pop-up menu
processes a WM_DESTROY message.

CFrameWndEx::OnCmdMsg Dispatches command messages.

CFrameWndEx::OnContextHelp Called by the framework to display context related help.

CFrameWndEx::OnCreate Called by the framework after the frame is created.

CFrameWndEx::OnDestroy Called by the framework when the frame is destroyed.

CFrameWndEx::OnDrawMenuImage Called by the framework when the application draws the
image associated with a menu item.

CFrameWndEx::OnDrawMenuLogo Called by the framework when a CMFCPopupMenu object
processes a WM_PAINT message.

CFrameWndEx::OnDWMCompositionChanged Called by the framework when Desktop Window Manager
(DWM) composition has been enabled or disabled.

CFrameWndEx::OnExitSizeMove Called by the framework when the frame stops moving or
resizing.

CFrameWndEx::OnGetMinMaxInfo Called by the framework when the frame is resized to set
window dimension limits.

CFrameWndEx::OnIdleUpdateCmdUI Called by the framework to update the frame display when
command processing is idle.

CFrameWndEx::OnLButtonDown The framework calls this method when the user presses the
left mouse button.

CFrameWndEx::OnLButtonUp The framework calls this method when the user releases the
left mouse button.

CFrameWndEx::OnMenuButtonToolHitTest Called by the framework when a CMFCToolBarButton object
processes a WM_NCHITTEST message.

CFrameWndEx::OnMenuChar Called by the framework when a menu is displayed and the
user presses a key that does not correspond to a command.

CFrameWndEx::OnMouseMove The framework calls this method when the pointer moves.

CFrameWndEx::OnMoveMiniFrame Called by the framework when a pane window moves.

CFrameWndEx::OnNcActivate Called by the framework when the non-client area of the
frame must be redrawn to indicate a change in the active
state.

CFrameWndEx::OnNcCalcSize Called by the framework when the size and position of the
client area must be calculated.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/gdi/wm-paint

CFrameWndEx::OnNcHitTest Called by the framework when the pointer moves or when a
mouse button is pressed or released.

CFrameWndEx::OnNcMouseMove Called by the framework when the pointer moves in a non-
client area.

CFrameWndEx::OnNcPaint Called by the framework when the non-client area must be
painted.

CFrameWndEx::OnPaneCheck Called by the framework to control the visibility of a pane.

CFrameWndEx::OnPostPreviewFrame Called by the framework when the user has changed the
print preview mode.

CFrameWndEx::OnPowerBroadcast Called by the framework when a power management event
occurs.

CFrameWndEx::OnSetMenu Called by the framework to replace the frame window menu.

CFrameWndEx::OnSetPreviewMode Called by the framework to set the print preview mode for
the frame.

CFrameWndEx::OnSetText Called by the framework to set the text of a window.

CFrameWndEx::OnShowCustomizePane Called by the framework when a quick customize pane is
enabled.

CFrameWndEx::OnShowPanes Called by the framework to show or hide panes.

CFrameWndEx::OnShowPopupMenu Called by the framework when a pop-up menu is enabled.

CFrameWndEx::OnSize The framework calls this method after the frame's size
changes.

CFrameWndEx::OnSizing The framework calls this method when the user resizes the
frame.

CFrameWndEx::OnSysColorChange Called by the framework when the system colors change.

CFrameWndEx::OnTearOffMenu Called by the framework when a menu that has a tear-off bar
is enabled.

CFrameWndEx::OnToolbarContextMenu Called by the framework to build a toolbar context menu.

CFrameWndEx::OnToolbarCreateNew The framework calls this method to create a new toolbar.

CFrameWndEx::OnToolbarDelete Called by the framework when a toolbar is deleted.

CFrameWndEx::OnUpdateFrameMenu Called by the framework to set the frame menu.

CFrameWndEx::OnUpdateFrameTitle The framework calls this method to update the title bar of the
frame window.

NAME DESCRIPTION

CFrameWndEx::OnUpdatePaneMenu Called by the framework to update the pane menu.

CFrameWndEx::OnWindowPosChanged Called by the framework when the frame size, position, or z-
order has changed because of a call to a window
management method.

CFrameWndEx::PaneFromPoint Returns the docking pane that contains the specified point.

CFrameWndEx::PreTranslateMessage Handles specific window messages before they are
dispatched.

CFrameWndEx::RecalcLayout Adjusts the layout of the frame and its child windows.

CFrameWndEx::RemovePaneFromDockManager Unregisters a pane and removes it from the internal list in the
docking manager.

CFrameWndEx::SetDockState Restores the docking layout to the docking state stored in
the registry.

CFrameWndEx::SetPrintPreviewFrame Sets the print preview frame window.

CFrameWndEx::SetupToolbarMenu Inserts user-defined commands into a toolbar menu.

CFrameWndEx::ShowFullScreen Switches the main frame between the full screen and the
regular modes.

CFrameWndEx::ShowPane Shows or hides the specified pane.

CFrameWndEx::UpdateCaption Called by the framework to update the window frame
caption.

CFrameWndEx::WinHelp Invokes either the WinHelp application or context related
help.

NAME DESCRIPTION

Example

class CMainFrame : public CFrameWndEx
{
protected: // create from serialization only
 CMainFrame();
 DECLARE_DYNCREATE(CMainFrame)

// Attributes
public:
 HICON m_hIconDoc;
 HICON m_hIconText;
 HICON m_hIconWrite;
 HICON GetIcon(int nDocType);

// Operations
public:

The following example demonstrates how to inherit a class from the CFrameWndEx class. The example illustrates
the method signatures in the subclass, and how to override the OnShowPopupMenu method. This code snippet is
part of the Word Pad sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

 void UpdateMRUFilesList ()
 {
 m_wndTaskPane.UpdateMRUFilesList ();
 }

 void OnChangeLook ();

// Overrides
 // ClassWizard generated virtual function overrides
 //{{AFX_VIRTUAL(CMainFrame)
 public:
 virtual void ActivateFrame(int nCmdShow = -1);
 virtual BOOL LoadFrame(UINT nIDResource, DWORD dwDefaultStyle = WS_OVERLAPPEDWINDOW | FWS_ADDTOTITLE,
CWnd* pParentWnd = NULL, CCreateContext* pContext = NULL);
 protected:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual BOOL OnCommand(WPARAM wParam, LPARAM lParam);
 //}}AFX_VIRTUAL

 virtual BOOL OnShowPopupMenu (CMFCPopupMenu* pMenuPopup);
 virtual BOOL OnTearOffMenu (CMFCPopupMenu* pMenuPopup, CPane* pBar);

protected:
 void AdjustObjectSubmenu (CMFCPopupMenu* pMenuPopup);
 void AdjustColorsMenu (CMFCPopupMenu* pMenuPopup, UINT uiId);

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

public:
 CMFCMenuBar m_wndMenuBar;
 CMFCToolBar m_wndToolBar;
 CMFCStatusBar m_wndStatusBar;
 CFormatBar m_wndFormatBar;
 CRulerBar m_wndRulerBar;
 CTaskPane m_wndTaskPane;

protected: // control bar embedded members
 BOOL CreateMenuBar();
 BOOL CreateToolBar();
 BOOL CreateFormatBar();
 BOOL CreateStatusBar();
 BOOL CreateRulerBar();
 BOOL CreateTaskPane ();

// Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnSysColorChange();
 afx_msg void OnSize(UINT nType, int cx, int cy);
 afx_msg void OnMove(int x, int y);
 afx_msg void OnHelpFinder();
 afx_msg void OnDropFiles(HDROP hDropInfo);
 afx_msg void OnFontChange();
 afx_msg BOOL OnQueryNewPalette();
 afx_msg void OnPaletteChanged(CWnd* pFocusWnd);
 afx_msg void OnDevModeChange(LPTSTR lpDeviceName);
 afx_msg void OnViewCustomize();
 afx_msg void OnViewFullScreen();
 //}}AFX_MSG
 afx_msg LRESULT OnBarState(WPARAM wParam, LPARAM lParam);
 afx_msg LRESULT OnOpenMsg(WPARAM wParam, LPARAM lParam);
 afx_msg LRESULT OnHelpCustomizeToolbars(WPARAM wp, LPARAM lp);

 afx_msg LRESULT OnHelpCustomizeToolbars(WPARAM wp, LPARAM lp);
 afx_msg LRESULT OnStartCustomize(WPARAM wp, LPARAM lp);
 afx_msg LRESULT OnToolbarCreateNew(WPARAM,LPARAM);
 afx_msg LRESULT OnGetDocumentColors(WPARAM,LPARAM);
 afx_msg void OnDummy();
 afx_msg void OnAskQuestion();
 DECLARE_MESSAGE_MAP()
};

BOOL CMainFrame::OnShowPopupMenu (CMFCPopupMenu* pMenuPopup)
{
 BOOL bRes = CFrameWndEx::OnShowPopupMenu (pMenuPopup);

 if (pMenuPopup != NULL && !pMenuPopup->IsCustomizePane())
 {
 AdjustObjectSubmenu (pMenuPopup);
 AdjustColorsMenu (pMenuPopup, ID_CHAR_COLOR);
 }

 return bRes;
}

Inheritance Hierarchy

Requirements

CFrameWndEx::ActiveItemRecalcLayout

void ActiveItemRecalcLayout();

RemarksRemarks

CFrameWndEx::AddPane

BOOL AddPane(
 CBasePane* pControlBar,
 BOOL bTail=TRUE);

ParametersParameters

CObject

CCmdTarget

CWnd

CFrameWnd

CFrameWndEx

Header: afxframewndex.h

Adjusts the layout of the OLE client item and the frame's client area.

Registers a control bar with the docking manager.

pControlBar
[in] A control bar pane to register.

Return ValueReturn Value

CFrameWndEx::AdjustDockingLayout

virtual void AdjustDockingLayout(HDWP hdwp=NULL);

ParametersParameters

RemarksRemarks

CFrameWndEx::DelayUpdateFrameMenu

virtual void DelayUpdateFrameMenu(HMENU hMenuAlt);

ParametersParameters

RemarksRemarks

CFrameWndEx::DockPane

void DockPane(
 CBasePane* pBar,
 UINT nDockBarID=0,
 LPCRECT lpRect=NULL);

ParametersParameters

RemarksRemarks

bTail
[in] TRUE if you want to add the control bar pane to the end of the list; FALSE otherwise.

TRUE if the control bar was successfully registered; FALSE otherwise.

Recalculates the layout of all panes that are docked to the frame window.

hdwp
A handle to a structure that contains the positions of multiple windows. .

The hdwp structure is initialized by the BeginDeferWindowPos method.

Sets the frame menu and then updates it when command processing is idle.

hMenuAlt
[in] Handle to an alternative menu.

Docks the specified pane to the frame window.

pBar
[in] A pointer to the control bar to be docked.

nDockBarID
[in] The ID of the side of the frame window to dock to.

lpRect
[in] A pointer to a constant Rect structure that specifies the window's screen position and size.

The nDockBarID parameter can have one of the following values:

AFX_IDW_DOCKBAR_TOP

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-begindeferwindowpos

CFrameWndEx::DockPaneLeftOf

BOOL DockPaneLeftOf(
 CPane* pBar,
 CPane* pLeftOf);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::EnableAutoHidePanes

BOOL EnableAutoHidePanes(DWORD dwDockStyle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AFX_IDW_DOCKBAR_BOTTOM

AFX_IDW_DOCKBAR_LEFT

AFX_IDW_DOCKBAR_RIGHT

Docks the specified pane to the left of another pane.

pBar
[in] A pointer to the pane object to be docked.

pLeftOf
[in] A pointer to the pane to the left of which to dock the pane specified by pBar.

TRUE if pBar is docked successfully. FALSE otherwise.

The method takes the toolbar specified by the pBar parameter and docks it at the left side of the toolbar specified
by pLeftOf parameter.

Enables auto-hide mode for the pane when it is docked to the specified side of the main frame window.

dwDockStyle
[in] Specifies the side of the main frame window to which to dock the pane.

TRUE if a bar pane is successfully docked to the frame window side that is specified by dwDockStyle, FALSE
otherwise.

dwDockStyle can have one of the following values:

CBRS_ALIGN_TOP: allows the control bar to be docked to the top of the client area of a frame window.

CBRS_ALIGN_BOTTOM: allows the control bar to be docked to the bottom of the client area of a frame
window.

CBRS_ALIGN_LEFT: allows the control bar to be docked to the left side of the client area of a frame
window.

CBRS_ALIGN_RIGHT: allows the control bar to be docked to the right side of the client area of a frame
window.

CFrameWndEx::EnableDocking

BOOL EnableDocking(DWORD dwDockStyle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::EnableFullScreenMainMenu

void EnableFullScreenMainMenu(BOOL bEnableMenu);

ParametersParameters

CFrameWndEx::EnableFullScreenMode

void EnableFullScreenMode(UINT uiFullScreenCmd);

ParametersParameters

RemarksRemarks

Enables the docking of the panes of the frame window.

dwDockStyle
[in] Specifies the side of the main frame window where the pane bar docks.

TRUE if a bar pane can be successfully docked at the specified side. FALSE otherwise.

The dwDockStyle parameter can have one of the following values:

CBRS_ALIGN_TOP

CBRS_ALIGN_BOTTOM

CBRS_ALIGN_LEFT

CBRS_ALIGN_RIGHT

Shows or hides the main menu in a full screen mode.

bEnableMenu
[in] TRUE to show the main menu in a full screen mode, FALSE otherwise.

Enables the full-screen mode for the frame window.

uiFullScreenCmd
[in] The ID of a command that enables and disables the full screen mode.

In the full-screen mode, all docking control bars, toolbars and menu are hidden and the active view is resized to
occupy the full-screen.

When you enable the full-screen mode, you must specify an ID of the command that enables or disables the full-
screen mode. You can call EnableFullScreenMode from the main frame's OnCreate function. When a frame
window is being switched to a full-screen mode, the framework creates a floating toolbar with one button that
has the specified command ID.

If you want to keep the main menu on the screen, call CFrameWndEx::EnableFullScreenMainMenu.

CFrameWndEx::EnableLoadDockState

void EnableLoadDockState(BOOL bEnable=TRUE);

ParametersParameters

CFrameWndEx::EnablePaneMenu

void EnablePaneMenu(
 BOOL bEnable,
 UINT uiCustomizeCmd,
 const CString& strCustomizeLabel,
 UINT uiViewToolbarsMenuEntryID,
 BOOL bContextMenuShowsToolbarsOnly=FALSE,
 BOOL bViewMenuShowsToolbarsOnly=FALSE);

ParametersParameters

CFrameWndEx::GetActivePopup

CMFCPopupMenu* GetActivePopup() const;

Return ValueReturn Value

CFrameWndEx::GetDefaultResId

Enables or disables the loading of the docking state.

bEnable
[in] TRUE to enable the loading of the docking state, FALSE to disable the loading of the docking state.

Enables or disables the automatic handling of the pane menu.

bEnable
[in] TRUE to enable the automatic handling of the control bar pop-up menus; FALSE to disable the automatic
handling of the control bar pop-up menus.

uiCustomizeCmd
[in] The command ID of the Customize menu item.

strCustomizeLabel
[in] The label to be displayed for the Customize menu item

uiViewToolbarsMenuEntryID
[in] The ID of a toolbar menu item that opens the pop-up menu in the control bar.

bContextMenuShowsToolbarsOnly
[in] If TRUE, the control bar context menu displays the list of toolbars only. If FALSE, the menu displays the list of
the toolbars and the docking bars.

bViewMenuShowsToolbarsOnly
[in] If TRUE, the control bar menu displays the list of the toolbars only. If FALSE, the menu displays the list of the
toolbars and the docking bars.

Returns a pointer to the currently displayed pop-up menu.

A pointer to the currently displayed pop-up menu; otherwise NULL.

UINT GetDefaultResId() const;

Return ValueReturn Value

CFrameWndEx::GetDockingManager

CDockingManager* GetDockingManager();

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::GetMenuBar

const CMFCMenuBar* GetMenuBar() const;

Return ValueReturn Value

CFrameWndEx::GetPane

CBasePane* GetPane(UINT nID);

ParametersParameters

Return ValueReturn Value

CFrameWndEx::GetRibbonBar

CMFCRibbonBar* GetRibbonBar();

Return ValueReturn Value

Returns the resource ID that you specified when the framework loaded the frame window.

The resource ID value that the user specified when the framework loaded the frame window. Zero if the frame
window does not have a menu bar.

Retrieves the CDockingManager Class object for the frame window.

A pointer to the CDockingManager Class.

The frame window creates and uses a CDockingManager Class object to manage child window docking.

Returns a pointer to the menu bar object attached to the frame window.

A pointer to the menu bar object attached to the frame window.

Returns a pointer to the pane that has the specified ID.

nID
[in] The control ID.

A pointer to the pane that has the specified ID. NULL if no such pane exists.

Retrieves the ribbon bar control for the frame.

Pointer to the CMFCRibbonBar Class for the frame.

RemarksRemarks

CFrameWndEx::GetTearOffBars

const CObList& GetTearOffBars() const;

Return ValueReturn Value

CFrameWndEx::GetToolbarButtonToolTipText

virtual BOOL GetToolbarButtonToolTipText(
 CMFCToolBarButton* pButton,
 CString& strTTText);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::InsertPane

BOOL InsertPane(
 CBasePane* pControlBar,
 CBasePane* pTarget,
 BOOL bAfter=TRUE);

ParametersParameters

Return ValueReturn Value

Returns a list of pane objects that are in a tear-off state.

A reference to CObList object that contains a collection of pointers to the pane objects that are in a tear-off state.

Called by the framework when the application displays the tooltip for a toolbar button.

pButton
[in] A pointer to a toolbar button.

strTTText
[in] The tooltip text to display for the button.

TRUE if the tooltip has been displayed. FALSE otherwise.

By default, this method does nothing. Override this method if you want to display the tooltip for the toolbar
button.

Inserts a pane into a list of control bars and registers it with the docking manager.

pControlBar
A pointer to a control bar to be inserted into the list of control bars and registered with the docking manager.

pTarget
A pointer to a control bar before or after which to insert the pane.

bAfter
TRUE if you want to insert pControlBar after pTarget, FALSE otherwise.

TRUE if the control bar was successfully inserted and registered, FALSE otherwise.

RemarksRemarks

CFrameWndEx::IsFullScreen

BOOL IsFullScreen() const;

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::IsMenuBarAvailable

BOOL IsMenuBarAvailable() const;

Return ValueReturn Value

CFrameWndEx::IsPointNearDockSite

BOOL IsPointNearDockSite(
 CPoint point,
 DWORD& dwBarAlignment,
 BOOL& bOuterEdge) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CBRS_ALIGN_TOP Aligned to the top.

You must register each control bar by using the CDockingManager Class to take a part in the docking layout.

Determines whether the frame window is in full screen mode.

TRUE if the frame window is in full screen mode; otherwise FALSE.

You can set the full screen mode by calling the CFrameWndEx::EnableFullScreenMode method.

Determines whether the pointer to the menu bar object is valid.

TRUE if the frame window has a menu bar; otherwise FALSE.

Determines whether the point is located in an alignment zone.

point
[in] The position of the point.

dwBarAlignment
[out] Where the point is aligned. See the table in the Remarks section for possible values.

bOuterEdge
[out] TRUE if the point is located close to the frame border; FALSE if the point is located in a client area.

TRUE if the point is located in an alignment zone; otherwise, FALSE.

The following table lists the possible values for the dwBarAlignment parameter.

CBRS_ALIGN_RIGHT Aligned to the right.

CBRS_ALIGN_BOTTOM Aligned to the bottom.

CBRS_ALIGN_LEFT Aligned to the left.

CFrameWndEx::IsPrintPreview

BOOL IsPrintPreview();

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::LoadFrame

virtual BOOL LoadFrame(
 UINT nIDResource,
 DWORD dwDefaultStyle = WS_OVERLAPPEDWINDOW | FWS_ADDTOTITLE,
 CWnd* pParentWnd = NULL,
 CCreateContext* pContext = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::NegotiateBorderSpace

virtual BOOL NegotiateBorderSpace(
 UINT nBorderCmd,
 LPRECT lpRectBorder);

Determines whether the frame window is in print preview mode.

TRUE if the frame window is in print preview mode; otherwise, FALSE.

This method is called after construction to create the frame window and load its resources.

nIDResource
[in] The resource ID that is used to load all frame resources.

dwDefaultStyle
[in] The default frame window style.

pParentWnd
[in] Pointer to the parent window of the frame.

pContext
[in] Pointer to a CCreateContext Structure class that is used by the framework during application creation.

TRUE if the method was successful; otherwise, FALSE.

Implements OLE client border negotiation.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnActivate

afx_msg void OnActivate(
 UINT nState,
 CWnd* pWndOther,
 BOOL bMinimized);

ParametersParameters

RemarksRemarks

WA_ACTIVE The frame is selected by a method other than a mouse click.

WA_CLICKACTIVE The frame is selected by a mouse click.

WA_INACTIVE The frame is not selected.

CFrameWndEx::OnActivateApp

nBorderCmd
[in] The border negotiation command. See the Remarks section for possible values.

lpRectBorder
[in, out] Dimensions of the border.

TRUE if the layout must be recalculated; otherwise, FALSE.

The following table lists the possible values for the nBorderCmd parameter.

borderGet
Get available OLE client space.

borderRequest
Request OLE client space.

borderSet
Set OLE client space.

The framework calls this method when user input is switched to or away from the frame.

nState
[in] Whether the frame is active or inactive. See the table in the Remarks section for possible values.

pWndOther
[in] Pointer to another window that is switching user input with the current one.

bMinimized
[in] The minimized state of the frame. TRUE if the frame is minimized; otherwise, FALSE.

The following table lists the possible values for the nState parameter.

Called by the framework when the application is either selected or deselected.

afx_msg void OnActivateApp(
 BOOL bActive,
 DWORD dwThreadID);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnChangeVisualManager

afx_msg LRESULT OnChangeVisualManager(
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnClose

afx_msg void OnClose();

RemarksRemarks

CFrameWndEx::OnCloseDockingPane

virtual BOOL OnCloseDockingPane(CDockablePane* pPane);

Return ValueReturn Value

RemarksRemarks

bActive
[in] TRUE if the application is selected; FALSE if the application is not selected.

dwThreadID
[in] This parameter is not used.

Called by the framework when a change to the frame requires a change to the visual manager.

wParam
[in] This parameter is not used.

lParam
[in] This parameter is not used.

Always returns 0.

The framework calls this method to close the frame.

If the frame is in print preview mode, it sends a Windows message to close the print preview; otherwise, if the
frame hosts an OLE client, the client is deactivated.

Called by the framework when the user clicks the Close button on a docking pane.

TRUE if the docking bar can be closed. FALSE otherwise

CFrameWndEx::OnCloseMiniFrame

virtual BOOL OnCloseMiniFrame(CPaneFrameWnd* pWnd);

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnClosePopupMenu

virtual void OnClosePopupMenu(CMFCPopupMenu* pMenuPopup);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnCmdMsg

virtual BOOL OnCmdMsg(
 UINT nID,
 int nCode,
 void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);

ParametersParameters

The default implement does nothing. Override this method if you want to handle the hiding of the docking bar.

Called by the framework when the user clicks the Close button on a floating mini frame window.

TRUE if a floating mini frame window can be closed. FALSE otherwise.

The default implementation does nothing. Override this method if you want to process the hiding of a floating
mini frame window.

Called by the framework when an active pop-up menu processes a WM_DESTROY message.

pMenuPopup
A pointer to a pop-up menu.

The framework sends a WM_DESTROY message when it is about to close the window. Override this method if
you want to handle notifications from CMFCPopupMenu objects that belong to the frame window when a
CMFCPopupMenu object is processing a WM_DESTROY message sent by the framework when the window is being

closed.

Dispatches command messages.

nID
[in] The command ID.

nCode
[in] Command message category.

pExtra
[in, out] Pointer to a command object.

pHandlerInfo
[in, out] Pointer to a command handler structure.

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnContextHelp

afx_msg void OnContextHelp();

RemarksRemarks

CFrameWndEx::OnCreate

afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnDestroy

afx_msg void OnDestroy();

RemarksRemarks

CFrameWndEx::OnDrawMenuImage

virtual BOOL OnDrawMenuImage(
 CDC* pDC,
 const CMFCToolBarMenuButton* pMenuButton,
 const CRect& rectImage);

ParametersParameters

TRUE if the command message was handled; otherwise, FALSE.

Called by the framework to display context-related help.

Called by the framework after the frame is created.

lpCreateStruct
[in] A pointer to the CREATESTRUCT Structure for the new frame.

0 to continue with the frame creation; -1 to destroy the frame.

Called by the framework when the frame is destroyed.

The accelerator table and all windows are destroyed.

Called by the framework when the application draws the image associated with a menu item.

pDC
[in] A pointer to a device context.

pMenuButton
[in] A pointer to a menu button whose image is being rendered.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcreatestructa

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnDrawMenuLogo

virtual void OnDrawMenuLogo(
 CDC* pDC,
 CMFCPopupMenu* pMenu,
 const CRect& rectLogo);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnDWMCompositionChanged

afx_msg LRESULT OnDWMCompositionChanged(
 WPARAM wp,
 LPARAM lp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnExitSizeMove

rectImage
[in] A pointer to a Rect structure that specifies the screen position and size of the image.

TRUE if the framework successfully renders the image; FALSE otherwise.

Override this method if you want to customize the image rendering for the menu items that belong to the menu
bar owned by the CFrameWndEx derived object.

Called by the framework when a CMFCPopupMenu object processes a WM_PAINT message.

pDC
[in] A pointer to a device context.

pMenu
[in] A pointer to the menu item.

rectLogo
[in] A reference to a constant CRect structure that specifies the screen position and size of the menu logo.

Override this function if you want to display a logo on the pop-up menu that belongs to the menu bar owned by
the CFrameWndEx derived object.

Called by the framework when Desktop Window Manager (DWM) composition has been enabled or disabled.

wp
[in] This parameter is not used.

lp
[in] This parameter is not used.

Always returns 0.

LRESULT OnExitSizeMove(
 WPARAM wp,
 LPARAM lp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnGetMinMaxInfo

afx_msg void OnGetMinMaxInfo(MINMAXINFO FAR* lpMMI);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnIdleUpdateCmdUI

afx_msg LRESULT OnIdleUpdateCmdUI(
 WPARAM wParam = 0,
 LPARAM lParam = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnLButtonDown

Called by the framework when the frame stops moving or resizing.

wp
[in] This parameter is not used.

lp
[in] This parameter is not used.

Always returns 0.

Called by the framework when the frame is resized to set window dimension limits.

lpMMI
[in] Pointer to a MINMAXINFO structure.

Called by the framework to update the frame display when command processing is idle.

wParam
[in] This parameter is not used.

lParam
[in] This parameter is not used.

Always returns 0.

The framework calls this method when the user presses the left mouse button.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagminmaxinfo

afx_msg void OnLButtonDown(
 UINT nFlags,
 CPoint point);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnLButtonUp

afx_msg void OnLButtonUp(
 UINT nFlags,
 CPoint point);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnMenuButtonToolHitTest

virtual BOOL OnMenuButtonToolHitTest(
 CMFCToolBarButton* pButton,
 TOOLINFO* pTI);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnMenuChar

nFlags
[in] Indicates whether the user pressed modifier keys. For possible values see the parameter wParam in
WM_LBUTTONDOWN Notification.

point
[in] Specifies the x and y coordinates of the pointer, relative to the upper-left corner of the window.

The framework calls this method when the user releases the left mouse button.

nFlags
[in] Indicates whether the user pressed modifier keys. For possible values see the parameter wParam in
WM_LBUTTONUP Notification.

point
[in] Specifies the x and y coordinates of the pointer, relative to the upper-left corner of the window.

Called by the framework when a CMFCToolBarButton object processes a WM_NCHITTEST message.

pButton
[in] A pointer to the tool bar button.

pTI
[out] A pointer to a tool information structure.

TRUE if the application fills the pTI parameter. FALSE otherwise.

Override this method if you want to provide a tooltip information about a specific menu item.

https://docs.microsoft.com/windows/desktop/inputdev/wm-lbuttondown
https://docs.microsoft.com/windows/desktop/inputdev/wm-lbuttonup

afx_msg LRESULT OnMenuChar(
 UINT nChar,
 UINT nFlags,
 CMenu* pMenu);

ParametersParameters

Return ValueReturn Value

0 The framework should ignore the keystroke.

1 The framework should close the menu.

2 The framework should select one of the items displayed in
the menu. The low-order word contains the ID of the
command to select.

CFrameWndEx::OnMouseMove

afx_msg void OnMouseMove(
 UINT nFlags,
 CPoint point);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnMoveMiniFrame

Called by the framework when a menu is displayed and the user presses a key that does not correspond to a
command.

nChar
[in] Character code of the pressed key.

nFlags
[in] Contains the MF_POPUP flag if the menu displayed is a submenu; contains the MF_SYSMENU flag if the
menu displayed is a control menu.

pMenu
[in] Pointer to a menu.

The high-order word must be one of the following values.

The framework calls this method when the pointer moves.

nFlags
[in] Indicates whether a user pressed modifier keys. For possible values see the parameter wParam in
WM_MOUSEMOVE Notification.

point
[in] Specifies the x and y coordinates of the pointer relative to the upper-left corner of the window.

Called by the framework when a pane window moves.

https://docs.microsoft.com/windows/desktop/inputdev/wm-mousemove

virtual BOOL OnMoveMiniFrame(CWnd* pFrame);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnNcActivate

afx_msg BOOL OnNcActivate(BOOL bActive);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnNcCalcSize

afx_msg void OnNcCalcSize(
 BOOL bCalcValidRects,
 NCCALCSIZE_PARAMS FAR* lpncsp);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnNcHitTest

afx_msg LRESULT OnNcHitTest(CPoint point);

ParametersParameters

pFrame
[in] Pointer to the CPaneFrameWnd Class pane window.

TRUE if the pane window was not docked; FALSE if the pane window was docked.

Called by the framework when the non-client area of the frame must be redrawn to indicate a change in the
active state.

bActive
[in] TRUE to draw the frame active; FALSE to draw the frame inactive.

Nonzero to continue with default processing; 0 to prevent the non-client area from being deactivated.

Called by the framework when the size and position of the client area must be calculated.

bCalcValidRects
[in] TRUE when the application must specify a valid client area; otherwise, FALSE.

lpncsp
[in] Pointer to a NCCALCSIZE_PARAMS structure that contains frame dimension changes.

Called by the framework when the pointer moves or when a mouse button is pressed or released.

point

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnNcMouseMove

afx_msg void OnNcMouseMove(
 UINT nHitTest,
 CPoint point);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnNcPaint

afx_msg void OnNcPaint();

RemarksRemarks

CFrameWndEx::OnPaneCheck

afx_msg BOOL OnPaneCheck(UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnPostPreviewFrame

afx_msg LRESULT OnPostPreviewFrame(
 WPARAM wParam,
 LPARAM lParam);

[in] The location of the pointer in screen coordinates.

A pointer hit enumerated value. For a list of possible values see WM_NCHITTEST Notification.

Called by the framework when the pointer moves in a non-client area.

nHitTest
[in] A pointer hit enumerated value. For a list of possible values see WM_NCHITTEST Notification.

point
[in] The location of the pointer in screen coordinates.

Called by the framework when the non-client area must be painted.

Called by the framework to control the visibility of a pane.

nID
[in] Control ID of a pane.

TRUE if the command was handled; FALSE to continue with command processing.

Called by the framework when the user changes the print preview mode.

https://docs.microsoft.com/windows/desktop/inputdev/wm-nchittest
https://docs.microsoft.com/windows/desktop/inputdev/wm-nchittest

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnPowerBroadcast

afx_msg LRESULT OnPowerBroadcast(
 WPARAM wp,
 LPARAM lp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnSetMenu

afx_msg LRESULT OnSetMenu(
 WPARAM wp,
 LPARAM lp);

BOOL OnSetMenu(HMENU hmenu);

ParametersParameters

Return ValueReturn Value

wParam
[in] This parameter is not used.

lParam
[in] TRUE when the frame is in print preview mode; FALSE when print preview mode is off.

Always returns 0.

Called by the framework when a power management event occurs.

wp
[in] The power management event. For a list of possible values see WM_POWERBROADCAST Message.

lp
[in] This parameter is not used.

Result from calling the default window procedure.

Called by the framework to replace the frame window menu.

wp
[in] Handle to the new frame window menu.

lp
[in] Handle to the new window menu.

hmenu
[in] Handle to the new frame window menu.

LRESULT is the result from calling the default window procedure.

BOOL is TRUE if the event was handled; otherwise, FALSE.

https://docs.microsoft.com/windows/desktop/Power/wm-powerbroadcast

RemarksRemarks

CFrameWndEx::OnSetPreviewMode

virtual void OnSetPreviewMode(
 BOOL bPreview,
 CPrintPreviewState* pState);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnSetText

afx_msg LRESULT OnSetText(
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnShowCustomizePane

virtual BOOL OnShowCustomizePane(
 CMFCPopupMenu* pMenuPane,
 UINT uiToolbarID);

ParametersParameters

Return ValueReturn Value

Called by the framework to set the print preview mode for the frame.

bPreview
[in] TRUE to enable print preview; FALSE to disable print preview.

pState
[in] Pointer to a CPrintPreviewState frame state structure.

Called by the framework to set the text of a window.

wParam
[in] This parameter is not used.

lParam
[in] Pointer to the text for the window.

Return value from a call to DefWindowProc.

Called by the framework when it displays a QuickCustomizePane .

pMenuPane
[in] A pointer to the quick customize pane.

uiToolbarID
[in] The control ID of the toolbar to customize.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-defwindowproca

RemarksRemarks

CFrameWndEx::OnShowPanes

virtual BOOL OnShowPanes(BOOL bShow);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnShowPopupMenu

virtual BOOL OnShowPopupMenu(CMFCPopupMenu* pMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnSize

afx_msg void OnSize(
 UINT nType,
 int cx,
 int cy);

This method always return TRUE.

The quick customize menu is a pop-up menu that appears when you click the toolbar’s customize button

Called by the framework to show or hide panes.

bShow
[in] TRUE if the application shows the panes; FALSE otherwise.

This method always return FALSE.

The default implementation shows the panes if bShow is TRUE and the panes are hidden or when bShow is
FALSE and the panes are visible.

The default implementation hides the panes if bShow is TRUE and the panes are visible or when bShow is FALSE
and the panes are hidden.

Override this method in a derived class to execute custom code when the framework shows or hides panes.

Called by the framework when it displays a pop-up menu.

pMenu
[in] A pointer to a pop-up menu.

TRUE if the pop-up menu is visible; otherwise FALSE.

Override this method in a derived class to execute custom code when the framework displays a pop-up menu.
For example, override this method to change the background color of the commands in a pop-up menu.

Called by the framework after the frame's size changes.

ParametersParameters

RemarksRemarks

CFrameWndEx::OnSizing

afx_msg void OnSizing(
 UINT fwSide,
 LPRECT pRect);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnSysColorChange

void OnSysColorChange();

RemarksRemarks

CFrameWndEx::OnTearOffMenu

virtual BOOL OnTearOffMenu(
 CMFCPopupMenu* pMenuPopup,
 CPane* pBar);

ParametersParameters

Return ValueReturn Value

nType
[in] The type of resizing. For possible values see the parameter wParam in WM_SIZE Notification.

cx
[in] New width of the frame in pixels.

cy
[in] New height of the frame in pixels.

Called by the framework when the user resizes the frame.

fwSide
[in] The edge of the frame that is moved. See the parameter wParam in WM_SIZING Notification.

pRect
[in, out] Pointer to a CRect or RECT structure that contains the frame's coordinates.

Called by the framework when the system colors change.

Called by the framework when the application displays a menu that has a tear-off bar.

pMenuPopup
[in] A pointer to a pop-up menu.

pBar
[in] A pointer to a tear-off bar.

TRUE if the pop-up menu with the tear-off bar is enabled; otherwise FALSE.

https://docs.microsoft.com/windows/desktop/winmsg/wm-size
https://docs.microsoft.com/windows/desktop/winmsg/wm-sizing
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

RemarksRemarks

CFrameWndEx::OnToolbarContextMenu

afx_msg LRESULT OnToolbarContextMenu(
 WPARAM wp,
 LPARAM lp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnToolbarCreateNew

afx_msg LRESULT OnToolbarCreateNew(
 WPARAM wp,
 LPARAM lp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnToolbarDelete

afx_msg LRESULT OnToolbarDelete(
 WPARAM /* unused */,
 LPARAM lp);

ParametersParameters

Override this method in a derived class to execute custom code when the framework displays a control bar.

The default implementation does nothing and returns TRUE.

Called by the framework to build a toolbar pop-up menu.

wp
[in] This parameter is not used.

lp
[in] This parameter is not used.

Always returns 1.

The framework calls this method to create a new toolbar.

wp
[in] This parameter is not used.

lp
[in] Pointer to the text for the title bar of the toolbar.

Pointer to the new toolbar; or NULL if a toolbar was not created.

Called by the framework when a toolbar is deleted.

unused

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::OnUpdateFrameMenu

virtual void OnUpdateFrameMenu(HMENU hMenuAlt);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnUpdateFrameTitle

virtual void OnUpdateFrameTitle(BOOL bAddToTitle);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnUpdatePaneMenu

afx_msg void OnUpdatePaneMenu(CCmdUI* pCmdUI);

ParametersParameters

RemarksRemarks

CFrameWndEx::OnWindowPosChanged

afx_msg void OnWindowPosChanged(WINDOWPOS FAR* lpwndpos);

[in] This parameter is not used.

lp
[in] Pointer to a toolbar.

TRUE if the toolbar was deleted; otherwise, FALSE.

Called by the framework to set the frame menu.

hMenuAlt
[in] Handle to the alternative menu.

The framework calls this method to update the title bar of the frame window.

bAddToTitle
[in] TRUE to add the active document title to the frame window title bar; otherwise FALSE.

Called by the framework to update the pane menu.

pCmdUI
[in] Pointer to the pane user interface object.

Called by the framework when the frame size, position, or z-order has changed because of a call to a window
management method.

ParametersParameters

RemarksRemarks

CFrameWndEx::PaneFromPoint

CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 bool bExactBar,
 CRuntimeClass* pRTCBarType) const;

CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 DWORD& dwAlignment,
 CRuntimeClass* pRTCBarType) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::PreTranslateMessage

virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

lpwndpos
[in] Pointer to a WINDOWPOS structure that contains the new size and position.

Searches each pane for the given point.

point
[in] The screen coordinates of the point to check.

nSensitivity
[in] Expand the bounding rectangle of each control bar by this amount when searching for point.

bExactBar
[in] TRUE to ignore the nSensitivity parameter; otherwise, FALSE.

pRTCBarType
[in] If not NULL, the method searches only the control bars of the specified type.

dwAlignment
[out] If successful, this parameter contains the side of the control bar that is closest to the specified point.
Otherwise, this parameter is not initialized.

A pointer to a control bar that contains the point; NULL if no control is found.

This method searches all the control bars in your application for a point.

Use nSensitivity to increase the size of the search area. Use pRTCBarType to restrict the types of control bars that
the method searches.

Handles specific window messages before they are dispatched.

pMsg

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwindowpos

Return ValueReturn Value

RemarksRemarks

CFrameWndEx::RecalcLayout

virtual void RecalcLayout(BOOL bNotify = TRUE);

ParametersParameters

RemarksRemarks

CFrameWndEx::RemovePaneFromDockManager

void RemovePaneFromDockManager(
 CBasePane* pControlBar,
 BOOL bDestroy,
 BOOL bAdjustLayout,
 BOOL bAutoHide,
 CBasePane* pBarReplacement);

ParametersParameters

RemarksRemarks

[in] A pointer to a MSG structure that contains the message to process.

Non-zero if the message was handled and should not be dispatched; 0 if the message was not handled and
should be dispatched.

Adjusts the layout of the frame and its child windows.

bNotify
[in] Specifies whether to notify the OLE client item about the layout change.

This method is called when the size of the frame window has changed or when control bars are displayed or
hidden.

Unregisters a pane and removes it from the docking manager.

pControlBar
[in] A pointer to the control bar pane to remove.

bDestroy
[in] TRUE to destroy the control bar after removing it; FALSE otherwise.

bAdjustLayout
[in] TRUE to adjust the docking layout; FALSE otherwise.

bAutoHide
[in] TRUE if the control bar is in auto-hide mode; FALSE otherwise.

pBarReplacement
[in] A pointer to a pane that replaces the removed pane.

Use this method to remove a control bar from the docking layout of the frame window.

The CDockingManager Class handles the layout of control bars. You must register each control bar with the
docking manager by using the CFrameWndEx::AddPane method or the CFrameWndEx::InsertPane method.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

CFrameWndEx::SetDockState

void SetDockState(const CDockState& state);

ParametersParameters

CFrameWndEx::SetPrintPreviewFrame

void SetPrintPreviewFrame(CFrameWnd* pWnd);

ParametersParameters

RemarksRemarks

CFrameWndEx::SetupToolbarMenu

void SetupToolbarMenu(
 CMenu& menu,
 const UINT uiViewUserToolbarCmdFirst,
 const UINT uiViewUserToolbarCmdLast);

ParametersParameters

RemarksRemarks

CFrameWndEx::ShowFullScreen

void ShowFullScreen();

CFrameWndEx::ShowPane

Restores the docking layout to the docking state stored in the registry.

state
The docking state. This parameter is ignored.

Sets the print preview frame window.

pWnd
[in] Pointer to a print preview frame window.

Inserts user-defined commands into a toolbar menu.

menu
[in] A CMenu object to be modified.

uiViewUserToolbarCmdFirst
[in] The first user-defined command.

uiViewUserToolbarCmdLast
[in] The last user-defined command.

The framework stores user-defined commands in a list. Use uiViewUserToolbarCmdFirst and
uiViewUserToolbarCmdList to specify the indexes of the commands to insert.

Switches the main frame between full-screen mode and regular mode.

void ShowPane(
 CBasePane* pBar,
 BOOL bShow,
 BOOL bDelay,
 BOOL bActivate);

ParametersParameters

CFrameWndEx::UpdateCaption

void UpdateCaption();

RemarksRemarks

CFrameWndEx::WinHelp

virtual void WinHelp(
 DWORD dwData,
 UINT nCmd = HELP_CONTEXT);

ParametersParameters

RemarksRemarks

See also

Shows or hides the specified pane.

pBar
[in] A pointer to the control bar to show or hide.

bShow
[in] If TRUE, the application shows the control bar. Otherwise, the application hides the control bar.

bDelay
[in] If TRUE, delay the adjustment of the docking layout until the framework calls
CFrameWndEx::AdjustDockingLayout. Otherwise, recalculate the docking layout immediately.

bActivate
[in] If TRUE, make the control bar active. Otherwise, display the control bar in an inactive state.

Called by the framework to update the window frame caption.

Invokes either the WinHelp application or context related help.

dwData
Data that depends on the nCmd parameter. For a list of possible values see WinHelp.

nCmd
The help command. For a list of possible values see WinHelp.

Hierarchy Chart
Classes
CFrameWnd

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-winhelpa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-winhelpa

CFtpConnection Class
3/4/2019 • 14 minutes to read • Edit Online

Syntax
class CFtpConnection : public CInternetConnection

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFtpConnection::CFtpConnection Constructs a CFtpConnection object.

Public MethodsPublic Methods

NAME DESCRIPTION

CFtpConnection::Command Sends a command directly to an FTP server.

CFtpConnection::CreateDirectory Creates a directory on the server.

CFtpConnection::GetCurrentDirectory Gets the current directory for this connection.

CFtpConnection::GetCurrentDirectoryAsURL Gets the current directory for this connection as a URL.

CFtpConnection::GetFile Gets a file from the connected server

CFtpConnection::OpenFile Opens a file on the connected server.

CFtpConnection::PutFile Places a file on the server.

CFtpConnection::Remove Removes a file from the server.

CFtpConnection::RemoveDirectory Removes the specified directory from the server.

CFtpConnection::Rename Renames a file on the server.

CFtpConnection::SetCurrentDirectory Sets the current FTP directory.

Remarks

Manages your FTP connection to an Internet server and allows direct manipulation of directories and files on
that server.

FTP is one of the three Internet services recognized by the MFC WinInet classes.

To communicate with an FTP Internet server, you must first create an instance of CInternetSession, and then

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cftpconnection-class.md

Example

Inheritance Hierarchy

Requirements

CFtpConnection::CFtpConnection

CFtpConnection(
 CInternetSession* pSession,
 HINTERNET hConnected,
 LPCTSTR pstrServer,
 DWORD_PTR dwContext);

CFtpConnection(
 CInternetSession* pSession,
 LPCTSTR pstrServer,
 LPCTSTR pstrUserName = NULL,
 LPCTSTR pstrPassword = NULL,
 DWORD_PTR dwContext = 0,
 INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER,
 BOOL bPassive = FALSE);

ParametersParameters

create a CFtpConnection object. You never create a CFtpConnection object directly; rather, call
CInternetSession::GetFtpConnection, which creates the CFtpConnection object and returns a pointer to it.

To learn more about how CFtpConnection works with the other MFC Internet classes, see the article Internet
Programming with WinInet. For more information about communicating with the other two supported
services, HTTP and gopher, see the classes CHttpConnection and CGopherConnection.

See the example in the CFtpFileFind class overview.

CObject

CInternetConnection

CFtpConnection

Header: afxinet.h

This member function is called to construct a CFtpConnection object.

pSession
A pointer to the related CInternetSession object.

hConnected
The Windows handle of the current Internet session.

pstrServer
A pointer to a string containing the FTP server name.

dwContext
The context identifier for the operation. dwContext identifies the operation's status information returned by
CInternetSession::OnStatusCallback. The default is set to 1; however, you can explicitly assign a specific context
ID for the operation. The object and any work it does will be associated with that context ID.

pstrUserName

PSTRUSERNAME PSTRPASSWORD
USERNAME SENT TO FTP
SERVER

PASSWORD SENT TO FTP
SERVER

NULL or " " NULL or " " "anonymous" User's email name

Non- NULL String NULL or " " pstrUserName " "

NULL Non- NULL String ERROR ERROR

Non- NULL String Non- NULL String pstrUserName pstrPassword

RemarksRemarks

CFtpConnection::Command

CInternetFile* Command(
 LPCTSTR pszCommand,
 CmdResponseType eResponse = CmdRespNone,
 DWORD dwFlags = FTP_TRANSFER_TYPE_BINARY,
 DWORD_PTR dwContext = 1);

ParametersParameters

Pointer to a null-terminated string that specifies the name of the user to log in. If NULL, the default is
anonymous.

pstrPassword
A pointer to a null-terminated string that specifies the password to use to log in. If both pstrPassword and
pstrUserName are NULL, the default anonymous password is the user's email name. If pstrPassword is NULL
(or an empty string) but pstrUserName is not NULL, a blank password is used. The following table describes
the behavior for the four possible settings of pstrUserName and pstrPassword:

nPort
A number that identifies the TCP/IP port to use on the server.

bPassive
Specifies passive or active mode for this FTP session. If set to TRUE, it sets the Win32 API dwFlag to
INTERNET_FLAG_PASSIVE.

You never create a CFtpConnection object directly. Instead, call CInternetSession::GetFtpConnection, which
creates the CFptConnection object.

Sends a command directly to an FTP server.

pszCommand
A pointer to a string containing the command to be sent.

eResponse
Determines whether a response is expected from the FTP server. Can be one of the following values:

CmdRespNone No response is expected.

CmdRespRead A response is expected.

dwFlags
A value containing the flags that control this function. For a complete list, see FTPCommand.

dwContext

https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-ftpcommanda

Return ValueReturn Value

RemarksRemarks

CFtpConnection::CreateDirectory

BOOL CreateDirectory(LPCTSTR pstrDirName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFtpConnection::GetCurrentDirectory

BOOL GetCurrentDirectory(CString& strDirName) const;

BOOL GetCurrentDirectory(
 LPTSTR pstrDirName,
 LPDWORD lpdwLen) const;

ParametersParameters

A pointer to a value containing an application-defined value used to identify the application context in callbacks.

Nonzero if successful; otherwise 0.

This member function emulates the functionality of the FTPCommand function, as described in the Windows
SDK.

If an error occurs, MFC throws an exception of type CInternetException.

Call this member function to create a directory on the connected server.

pstrDirName
A pointer to a string containing the name of the directory to create.

Nonzero if successful; otherwise 0. If the call fails, the Windows function GetLastError may be called to
determine the cause of the error.

Use GetCurrentDirectory to determine the current working directory for this connection to the server. Do not
assume that the remote system has connected you to the root directory.

The pstrDirName parameter can be either a partially or a fully qualified filename relative to the current
directory. A backslash (\) or forward slash (/) can be used as the directory separator for either name.
CreateDirectory translates the directory name separators to the appropriate characters before they are used.

Call this member function to get the name of the current directory.

strDirName
A reference to a string that will receive the name of the directory.

pstrDirName
A pointer to a string that will receive the name of the directory.

lpdwLen
A pointer to a DWORD that contains the following information:

https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-ftpcommanda
https://msdn.microsoft.com/library/windows/desktop/ms679360

On entry The size of the buffer referenced by pstrDirName.

On return The number of characters stored to pstrDirName. If the
member function fails and ERROR_INSUFFICIENT_BUFFER is
returned, then lpdwLen contains the number of bytes that
the application must allocate in order to receive the string.

Return ValueReturn Value

RemarksRemarks

CFtpConnection::GetCurrentDirectoryAsURL

BOOL GetCurrentDirectoryAsURL(CString& strDirName) const;

BOOL GetCurrentDirectoryAsURL(
 LPTSTR pstrName,
 LPDWORD lpdwLen) const;

ParametersParameters

On entry The size of the buffer referenced by pstrDirName.

On return The number of characters stored to pstrDirName. If the
member function fails and ERROR_INSUFFICIENT_BUFFER is
returned, then lpdwLen contains the number of bytes that
the application must allocate in order to receive the string.

Return ValueReturn Value

RemarksRemarks

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

To get the directory name as a URL instead, call GetCurrentDirectoryAsURL.

The parameters pstrDirName or strDirName can be either partially qualified filenames relative to the current
directory or fully qualified. A backslash (\) or forward slash (/) can be used as the directory separator for either
name. GetCurrentDirectory translates the directory name separators to the appropriate characters before they
are used.

Call this member function to get the current directory's name as a URL.

strDirName
A reference to a string that will receive the name of the directory.

pstrDirName
A pointer to a string that will receive the name of the directory.

lpdwLen
A pointer to a DWORD that contains the following information:

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

GetCurrentDirectoryAsURL behaves the same as GetCurrentDirectory

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/ms679360

 CFtpConnection::GetFile

BOOL GetFile(
 LPCTSTR pstrRemoteFile,
 LPCTSTR pstrLocalFile,
 BOOL bFailIfExists = TRUE,
 DWORD dwAttributes = FILE_ATTRIBUTE_NORMAL,
 DWORD dwFlags = FTP_TRANSFER_TYPE_BINARY,
 DWORD_PTR dwContext = 1);

ParametersParameters

The parameter strDirName can be either partially qualified filenames relative to the current directory or fully
qualified. A backslash (\) or forward slash (/) can be used as the directory separator for either name.
GetCurrentDirectoryAsURL translates the directory name separators to the appropriate characters before they

are used.

Call this member function to get a file from an FTP server and store it on the local machine.

pstrRemoteFile
A pointer to a null-terminated string containing the name of a file to retrieve from the FTP server.

pstrLocalFile
A pointer to a null-terminated string containing the name of the file to create on the local system.

bFailIfExists
Indicates whether the file name may already be used by an existing file. If the local file name already exists, and
this parameter is TRUE, GetFile fails. Otherwise, GetFile will erase the existing copy of the file.

dwAttributes
Indicates the attributes of the file. This can be any combination of the following FILE_ATTRIBUTE_* flags.

FILE_ATTRIBUTE_ARCHIVE The file is an archive file. Applications use this attribute to mark files for
backup or removal.

FILE_ATTRIBUTE_COMPRESSED The file or directory is compressed. For a file, compression means that
all of the data in the file is compressed. For a directory, compression is the default for newly created files
and subdirectories.

FILE_ATTRIBUTE_DIRECTORY The file is a directory.

FILE_ATTRIBUTE_NORMAL The file has no other attributes set. This attribute is valid only if used alone.
All other file attributes override FILE_ATTRIBUTE_NORMAL:

FILE_ATTRIBUTE_HIDDEN The file is hidden. It is not to be included in an ordinary directory listing.

FILE_ATTRIBUTE_READONLY The file is read only. Applications can read the file but cannot write to it
or delete it.

FILE_ATTRIBUTE_SYSTEM The file is part of or is used exclusively by the operating system.

FILE_ATTRIBUTE_TEMPORARY The file is being used for temporary storage. Applications should write
to the file only if absolutely necessary. Most of the file's data remains in memory without being flushed
to the media because the file will soon be deleted.

dwFlags
Specifies the conditions under which the transfer occurs. This parameter can be any of the dwFlags values
described in FtpGetFile in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-ftpgetfilea

Return ValueReturn Value

RemarksRemarks

CFtpConnection::OpenFile

CInternetFile* OpenFile(
 LPCTSTR pstrFileName,
 DWORD dwAccess = GENERIC_READ,
 DWORD dwFlags = FTP_TRANSFER_TYPE_BINARY,
 DWORD_PTR dwContext = 1);

ParametersParameters

Return ValueReturn Value

dwContext
The context identifier for the file retrieval. See Remarks for more information about dwContext.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

GetFile is a high-level routine that handles all of the overhead associated with reading a file from an FTP
server and storing it locally. Applications that only retrieve file data, or that require close control over the file
transfer, should use OpenFile and CInternetFile::Read instead.

If dwFlags is FILE_TRANSFER_TYPE_ASCII, translation of file data also converts control and formatting
characters to Windows equivalents. The default transfer is binary mode, where the file is downloaded in the
same format as it is stored on the server.

Both pstrRemoteFile and pstrLocalFile can be either partially qualified filenames relative to the current directory
or fully qualified. A backslash (\) or forward slash (/) can be used as the directory separator for either name.
GetFile translates the directory name separators to the appropriate characters before they are used.

Override the dwContext default to set the context identifier to a value of your choosing. The context identifier is
associated with this specific operation of the CFtpConnection object created by its CInternetSession object. The
value is returned to CInternetSession::OnStatusCallback to provide status on the operation with which it is
identified. See the article Internet First Steps: WinInet for more information about the context identifier.

Call this member function to open a file located on an FTP server for reading or writing.

pstrFileName
A pointer to a string containing the name of the file to be opened.

dwAccess
Determines how the file will be accessed. Can be either GENERIC_READ or GENERIC_WRITE, but not both.

dwFlags
Specifies the conditions under which subsequent transfers occur. This can be any of the following
FTP_TRANSFER_* constants:

FTP_TRANSFER_TYPE_ASCII The file transfers using FTP ASCII (Type A) transfer method. Converts
control and formatting information to local equivalents.

FTP_TRANSFER_TYPE_BINARY The file transfers data using FTP's Image (Type I) transfer method. The
file transfers data exactly as it exists, with no changes. This is the default transfer method.

dwContext
The context identifier for opening the file. See Remarks for more information about dwContext.

https://msdn.microsoft.com/library/windows/desktop/ms679360

RemarksRemarks

CFtpConnection::PutFile

BOOL PutFile(
 LPCTSTR pstrLocalFile,
 LPCTSTR pstrRemoteFile,
 DWORD dwFlags = FTP_TRANSFER_TYPE_BINARY,
 DWORD_PTR dwContext = 1);

ParametersParameters

Return ValueReturn Value

A pointer to a CInternetFile object.

OpenFile should be used in the following situations:

An application has data that needs to be sent and created as a file on the FTP server, but that data is not
in a local file. Once OpenFile opens a file, the application uses CInternetFile::Write to send the FTP file
data to the server.

An application must retrieve a file from the server and place it into application-controlled memory,
instead of writing it to disk. The application uses CInternetFile::Read after using OpenFile to open the
file.

An application needs a fine level of control over a file transfer. For example, the application may want to
display a progress control indicate the progress of the file transfer status while downloading a file.

After calling OpenFile and until calling CInternetConnection::Close , the application can only call
CInternetFile::Read, CInternetFile::Write, CInternetConnection::Close , or CFtpFileFind::FindFile. Calls to other
FTP functions for the same FTP session will fail and set the error code to FTP_ETRANSFER_IN_PROGRESS.

The pstrFileName parameter can be either a partially qualified filename relative to the current directory or fully
qualified. A backslash (\) or forward slash (/) can be used as the directory separator for either name. OpenFile

translates the directory name separators to the appropriate characters before using it.

Override the dwContext default to set the context identifier to a value of your choosing. The context identifier is
associated with this specific operation of the CFtpConnection object created by its CInternetSession object. The
value is returned to CInternetSession::OnStatusCallback to provide status on the operation with which it is
identified. See the article Internet First Steps: WinInet for more information about the context identifier.

Call this member function to store a file on an FTP server.

pstrLocalFile
A pointer to a string containing the name of the file to send from the local system.

pstrRemoteFile
A pointer to a string containing the name of the file to create on the FTP server.

dwFlags
Specifies the conditions under which the transfer of the file occurs. Can be any of the FTP_TRANSFER_*
constants described in OpenFile.

dwContext
The context identifier for placing the file. See Remarks for more information about dwContext.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

https://msdn.microsoft.com/library/windows/desktop/ms679360

RemarksRemarks

CFtpConnection::Remove

BOOL Remove(LPCTSTR pstrFileName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFtpConnection::RemoveDirectory

BOOL RemoveDirectory(LPCTSTR pstrDirName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFtpConnection::Rename

PutFile is a high-level routine that handles all of the operations associated with storing a file on an FTP server.
Applications that only send data, or that require closer control over the file transfer, should use OpenFile and
CInternetFile::Write.

Override the dwContext default to set the context identifier to a value of your choosing. The context identifier is
associated with this specific operation of the CFtpConnection object created by its CInternetSession object. The
value is returned to CInternetSession::OnStatusCallback to provide status on the operation with which it is
identified. See the article Internet First Steps: WinInet for more information about the context identifier.

Call this member function to delete the specified file from the connected server.

pstrFileName
A pointer to a string containing the file name to remove.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

The pstrFileName parameter can be either a partially qualified filename relative to the current directory or fully
qualified. A backslash (\) or forward slash (/) can be used as the directory separator for either name. The
Remove function translates the directory name separators to the appropriate characters before they are used.

Call this member function to remove the specified directory from the connected server.

pstrDirName
A pointer to a string containing the directory to be removed.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

Use GetCurrentDirectory to determine the server's current working directory. Do not assume that the remote
system has connected you to the root directory.

The pstrDirName parameter can be either a partially or fully qualified filename relative to the current directory.
A backslash (\) or forward slash (/) can be used as the directory separator for either name. RemoveDirectory

translates the directory name separators to the appropriate characters before they are used.

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/ms679360

BOOL Rename(
 LPCTSTR pstrExisting,
 LPCTSTR pstrNew);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFtpConnection::SetCurrentDirectory

BOOL SetCurrentDirectory(LPCTSTR pstrDirName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Call this member function to rename the specified file on the connected server.

pstrExisting
A pointer to a string containing the current name of the file to be renamed.

pstrNew
A pointer to a string containing the file's new name.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

The pstrExisting and pstrNew parameters can be either a partially qualified filename relative to the current
directory or fully qualified. A backslash (\) or forward slash (/) can be used as the directory separator for either
name. Rename translates the directory name separators to the appropriate characters before they are used.

Call this member function to change to a different directory on the FTP server.

pstrDirName
A pointer to a string containing the name of the directory.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

The pstrDirName parameter can be either a partially or fully qualified filename relative to the current directory.
A backslash (\) or forward slash (/) can be used as the directory separator for either name. SetCurrentDirectory

translates the directory name separators to the appropriate characters before they are used.

Use GetCurrentDirectory to determine an FTP server's current working directory. Do not assume that the
remote system has connected you to the root directory.

CInternetConnection Class
Hierarchy Chart
CInternetConnection Class
CInternetSession Class

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/ms679360

CFtpFileFind Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CFtpFileFind : public CFileFind

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFtpFileFind::CFtpFileFind Constructs a CFtpFileFind object.

Public MethodsPublic Methods

NAME DESCRIPTION

CFtpFileFind::FindFile Finds a file on a FTP server.

CFtpFileFind::FindNextFile Continues a file search from a previous call to FindFile.

CFtpFileFind::GetFileURL Gets the URL, including path, of the found file.

Remarks

Example

Aids in Internet file searches of FTP servers.

CFtpFileFind includes member functions that begin a search, locate a file, and return the URL or other
descriptive information about the file.

Other MFC classes designed for Internet and local file searched include CGopherFileFind and CFileFind.
Together with CFtpFileFind , these classes provide a seamless mechanism for the client to find specific files,
regardless of the server protocol or file type (either a local machine or a remote server). Note that there is no
MFC class for searching on HTTP servers because HTTP does not support the direct file manipulation required
for searches.

For more information about how to use CFtpFileFind and the other WinInet classes, see the article Internet
Programming with WinInet.

The following code demonstrates how to enumerate all files in the current directory of the FTP server.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cftpfilefind-class.md

// create a session object to initialize WININET library
// Default parameters mean the access method in the registry
// (that is, set by the "Internet" icon in the Control Panel)
// will be used.

CInternetSession sess(_T("My FTP Session"));

CFtpConnection* pConnect = NULL;

try
{
 // Request a connection to ftp.microsoft.com. Default
 // parameters mean that we'll try with username = ANONYMOUS
 // and password set to the machine name @ domain name
 pConnect = sess.GetFtpConnection(_T("ftp.microsoft.com"));

 // use a file find object to enumerate files
 CFtpFileFind finder(pConnect);

 // start looping
 BOOL bWorking = finder.FindFile(_T("*"));

 while (bWorking)
 {
 bWorking = finder.FindNextFile();
 _tprintf_s(_T("%s\n"), (LPCTSTR)finder.GetFileURL());
 }
}
catch (CInternetException* pEx)
{
 TCHAR sz[1024];
 pEx->GetErrorMessage(sz, 1024);
 _tprintf_s(_T("ERROR! %s\n"), sz);
 pEx->Delete();
}

// if the connection is open, close it
if (pConnect != NULL)
{
 pConnect->Close();
 delete pConnect;
}

Inheritance Hierarchy

Requirements

CFtpFileFind::CFtpFileFind

CObject

CFileFind

CFtpFileFind

Header: afxinet.h

This member function is called to construct a CFtpFileFind object.

explicit CFtpFileFind(
 CFtpConnection* pConnection,
 DWORD_PTR dwContext = 1);

ParametersParameters

RemarksRemarks

ExampleExample

CFtpFileFind::FindFile

virtual BOOL FindFile(
 LPCTSTR pstrName = NULL,
 DWORD dwFlags = INTERNET_FLAG_RELOAD);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pConnection
A pointer to a CFtpConnection object. You can obtain an FTP connection by calling
CInternetSession::GetFtpConnection.

dwContext
The context identifier for the CFtpFileFind object. See Remarks for more information about this parameter.

The default value for dwContext is sent by MFC to the CFtpFileFind object from the CInternetSession object
that created the CFtpFileFind object. You can override the default to set the context identifier to a value of your
choosing. The context identifier is returned to CInternetSession::OnStatusCallback to provide status on the
object with which it is identified. See the article Internet First Steps: WinInet for more information about the
context identifier.

See the example in the class overview earlier in this topic.

Call this member function to find an FTP file.

pstrName
A pointer to a string containing the name of the file to find. If NULL, the call will perform a wildcard search (*).

dwFlags
The flags describing how to handle this session. These flags can be combined with the bitwise OR operator (|)
and are as follows:

INTERNET_FLAG_RELOAD Get the data from the wire even if it is locally cached. This is the default flag.

INTERNET_FLAG_DONT_CACHE Do not cache the data, either locally or in any gateways.

INTERNET_FLAG_RAW_DATA Override the default to return the raw data (WIN32_FIND_DATA
structures for FTP).

INTERNET_FLAG_SECURE Secures transactions on the wire with Secure Sockets Layer or PCT. This
flag is applicable to HTTP requests only.

INTERNET_FLAG_EXISTING_CONNECT If possible, reuse the existing connections to the server for
new FindFile requests instead of creating a new session for each request.

Nonzero if successful; otherwise 0. To get extended error information, call the Win32 function GetLastError.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://msdn.microsoft.com/library/windows/desktop/ms679360

ExampleExample

CFtpFileFind::FindNextFile

virtual BOOL FindNextFile();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CFtpFileFind::GetFileURL

CString GetFileURL() const;

Return ValueReturn Value

RemarksRemarks

See also

After calling FindFile to retrieve the first FTP file, you can call FindNextFile to retrieve subsequent FTP files.

See the earlier example in this topic.

Call this member function to continue a file search begun with a call to the FindFile member function.

Nonzero if there are more files; zero if the file found is the last one in the directory or if an error occurred. To
get extended error information, call the Win32 function GetLastError. If the file found is the last file in the
directory, or if no matching files can be found, the GetLastError function returns ERROR_NO_MORE_FILES.

You must call this function at least once before calling any attribute function (see CFileFind::FindNextFile).

FindNextFile wraps the Win32 function FindNextFile.

See the example earlier in this topic.

Call this member function to get the URL of the specified file.

The file and path of the Universal Resource Locator (URL).

GetFileURL is similar to the member function CFileFind::GetFilePath, except that it returns the URL in the form
ftp://moose/dir/file.txt .

CFileFind Class
Hierarchy Chart
CGopherFileFind Class
CInternetFile Class
CGopherFile Class
CHttpFile Class

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-findnextfilea

CGdiObject Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CGdiObject : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CGdiObject::CGdiObject Constructs a CGdiObject object.

Public MethodsPublic Methods

NAME DESCRIPTION

CGdiObject::Attach Attaches a Windows GDI object to a CGdiObject object.

CGdiObject::CreateStockObject Retrieves a handle to one of the Windows predefined stock
pens, brushes, or fonts.

CGdiObject::DeleteObject Deletes the Windows GDI object attached to the
CGdiObject object from memory by freeing all system

storage associated with the object.

CGdiObject::DeleteTempMap Deletes any temporary CGdiObject objects created by
FromHandle .

CGdiObject::Detach Detaches a Windows GDI object from a CGdiObject object
and returns a handle to the Windows GDI object.

CGdiObject::FromHandle Returns a pointer to a CGdiObject object given a handle to
a Windows GDI object.

CGdiObject::GetObject Fills a buffer with data that describes the Windows GDI
object attached to the CGdiObject object.

CGdiObject::GetObjectType Retrieves the type of the GDI object.

CGdiObject::GetSafeHandle Returns m_hObject unless this is NULL, in which case NULL
is returned.

CGdiObject::UnrealizeObject Resets the origin of a brush or resets a logical palette.

Provides a base class for various kinds of Windows graphics device interface (GDI) objects such as bitmaps,
regions, brushes, pens, palettes, and fonts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cgdiobject-class.md

Public OperatorsPublic Operators

NAME DESCRIPTION

CGdiObject::operator != Determines if two GDI objects are logically not equal.

CGdiObject::operator == Determines if two GDI objects are logically equal.

CGdiObject::operator HGDIOBJ Retrieves a HANDLE to the attached Windows GDI object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CGdiObject::m_hObject A HANDLE containing the HBITMAP, HPALETTE, HRGN,
HBRUSH, HPEN, or HFONT attached to this object.

Remarks

Inheritance Hierarchy

Requirements

CGdiObject::Attach

BOOL Attach(HGDIOBJ hObject);

ParametersParameters

Return ValueReturn Value

CGdiObject::CGdiObject

CGdiObject();

You never create a CGdiObject directly. Rather, you create an object from one of its derived classes, such as
CPen or CBrush .

For more information on CGdiObject , see Graphic Objects.

CObject

CGdiObject

Header: afxwin.h

Attaches a Windows GDI object to a CGdiObject object.

hObject
A HANDLE to a Windows GDI object (for example, HPEN or HBRUSH).

Nonzero if attachment is successful; otherwise 0.

Constructs a CGdiObject object.

RemarksRemarks

CGdiObject::CreateStockObject

BOOL CreateStockObject(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGdiObject::DeleteObject

BOOL DeleteObject();

Return ValueReturn Value

RemarksRemarks

CGdiObject::DeleteTempMap

static void PASCAL DeleteTempMap();

RemarksRemarks

ExampleExample

You never create a CGdiObject directly. Rather, you create an object from one of its derived classes, such as
CPen or Cbrush .

Retrieves a handle to one of the predefined stock Windows GDI pens, brushes, or fonts, and attaches the GDI
object to the CGdiObject object.

nIndex
A constant specifying the type of stock object desired. See the parameter fnObject for GetStockObject in the
Windows SDK for a description of appropriate values.

Nonzero if the function is successful; otherwise 0.

Call this function with one of the derived classes that corresponds to the Windows GDI object type, such as
CPen for a stock pen.

Deletes the attached Windows GDI object from memory by freeing all system storage associated with the
Windows GDI object.

Nonzero if the GDI object was successfully deleted; otherwise 0.

The storage associated with the CGdiObject object is not affected by this call. An application should not call
DeleteObject on a CGdiObject object that is currently selected into a device context.

When a pattern brush is deleted, the bitmap associated with the brush is not deleted. The bitmap must be
deleted independently.

Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes any temporary CGdiObject

objects created by FromHandle .

DeleteTempMap detaches the Windows GDI object attached to a temporary CGdiObject object before deleting
the CGdiObject object.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getstockobject

// DeleteTempMap() is a static member and so does not need to
// be called within the scope of an instantiated CGdiObject object.
CGdiObject::DeleteTempMap();

CGdiObject::Detach

HGDIOBJ Detach();

Return ValueReturn Value

CGdiObject::FromHandle

static CGdiObject* PASCAL FromHandle(HGDIOBJ hObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGdiObject::GetObject

int GetObject(
 int nCount,
 LPVOID lpObject) const;

ParametersParameters

Return ValueReturn Value

Detaches a Windows GDI object from a CGdiObject object and returns a handle to the Windows GDI object.

A HANDLE to the Windows GDI object detached; otherwise NULL if no GDI object is attached.

Returns a pointer to a CGdiObject object given a handle to a Windows GDI object.

hObject
A HANDLE to a Windows GDI object.

A pointer to a CGdiObject that may be temporary or permanent.

If a CGdiObject object is not already attached to the Windows GDI object, a temporary CGdiObject object is
created and attached.

This temporary CGdiObject object is only valid until the next time the application has idle time in its event loop,
at which time all temporary graphic objects are deleted. Another way of saying this is that the temporary object
is only valid during the processing of one window message.

Fills a buffer with data that defines a specified object.

nCount
Specifies the number of bytes to copy into the lpObject buffer.

lpObject
Points to a user-supplied buffer that is to receive the information.

The number of bytes retrieved; otherwise 0 if an error occurs.

RemarksRemarks

OBJECT BUFFER TYPE

CPen LOGPEN

CBrush LOGBRUSH

CFont LOGFONT

CBitmap BITMAP

CPalette WORD

CRgn Not supported

CGdiObject::GetObjectType

UINT GetObjectType() const;

Return ValueReturn Value

The function retrieves a data structure whose type depends on the type of graphic object, as shown by the
following list:

If the object is a CBitmap object, GetObject returns only the width, height, and color format information of the
bitmap. The actual bits can be retrieved by using CBitmap::GetBitmapBits.

If the object is a CPalette object, GetObject retrieves a WORD that specifies the number of entries in the
palette. The function does not retrieve the LOGPALETTE structure that defines the palette. An application can
get information on palette entries by calling CPalette::GetPaletteEntries.

Retrieves the type of the GDI object.

The type of the object, if successful; otherwise 0. The value can be one of the following:

OBJ_BITMAP Bitmap

OBJ_BRUSH Brush

OBJ_FONT Font

OBJ_PAL Palette

OBJ_PEN Pen

OBJ_EXTPEN Extended pen

OBJ_REGION Region

OBJ_DC Device context

OBJ_MEMDC Memory device context

OBJ_METAFILE Metafile

OBJ_METADC Metafile device context

OBJ_ENHMETAFILE Enhanced metafile

https://docs.microsoft.com/windows/desktop/api/Wingdi/ns-wingdi-taglogpen
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogbrush
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagbitmap
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogpalette

CGdiObject::GetSafeHandle

HGDIOBJ GetSafeHandle() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CGdiObject::m_hObject

HGDIOBJ m_hObject;

CGdiObject::operator !=

BOOL operator!=(const CGdiObject& obj) const;

ParametersParameters

RemarksRemarks

CGdiObject::operator ==

BOOL operator==(const CGdiObject& obj) const;

ParametersParameters

RemarksRemarks

OBJ_ENHMETADC Enhanced-metafile device context

Returns m_hObject unless this is NULL, in which case NULL is returned.

A HANDLE to the attached Windows GDI object; otherwise NULL if no object is attached.

This is part of the general handle interface paradigm and is useful when NULL is a valid or special value for a
handle.

See the example for CWnd::IsWindowEnabled.

A HANDLE containing the HBITMAP, HRGN, HBRUSH, HPEN, HPALETTE, or HFONT attached to this object.

Determines if two GDI objects are logically not equal.

obj
A pointer to an existing CGdiObject .

Determines if a GDI object on the left side is not equal to a GDI object on the right side.

Determines if two GDI objects are logically equal.

obj
A reference to an existing CGdiObject .

Determines if a GDI object on the left side is equal to a GDI object on the right side.

CGdiObject::operator HGDIOBJ

operator HGDIOBJ() const;

CGdiObject::UnrealizeObject

BOOL UnrealizeObject();

Return ValueReturn Value

RemarksRemarks

See also

Retrieves a HANDLE to the attached Windows GDI object; otherwise NULL if no object is attached.

Resets the origin of a brush or resets a logical palette.

Nonzero if successful; otherwise 0.

While UnrealizeObject is a member function of the CGdiObject class, it should be invoked only on CBrush or
CPalette objects.

For CBrush objects, UnrealizeObject directs the system to reset the origin of the given brush the next time it is
selected into a device context. If the object is a CPalette object, UnrealizeObject directs the system to realize
the palette as though it had not previously been realized. The next time the application calls the
CDC::RealizePalette function for the specified palette, the system completely remaps the logical palette to the
system palette.

The UnrealizeObject function should not be used with stock objects. The UnrealizeObject function must be
called whenever a new brush origin is set (by means of the CDC::SetBrushOrg function). The UnrealizeObject

function must not be called for the currently selected brush or currently selected palette of any display context.

Hierarchy Chart
CBitmap Class
CBrush Class
CFont Class
CPalette Class
CPen Class
CRgn Class

CGlobalUtils Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CGlobalUtils

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CGlobalUtils::AdjustRectToWorkArea

CGlobalUtils::CalcExpectedDockedRect

CGlobalUtils::CanBeAttached

CGlobalUtils::CanPaneBeInFloatingMultiPaneFrameWnd

CGlobalUtils::CheckAlignment

CGlobalUtils::CyFromString

CGlobalUtils::DecimalFromString

CGlobalUtils::FlipRect

CGlobalUtils::ForceAdjustLayout

CGlobalUtils::GetDockingManager

CGlobalUtils::GetOppositeAlignment

CGlobalUtils::GetPaneAndAlignFromPoint

CGlobalUtils::GetWndIcon

CGlobalUtils::SetNewParent

CGlobalUtils::StringFromCy

CGlobalUtils::StringFromDecimal

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cglobalutils-class.md

Remarks

Inheritance Hierarchy

Requirements

CGlobalUtils::AdjustRectToWorkArea
void AdjustRectToworkArea(
 CRect& rect,
 CRect* pRectDelta = NULL);

ParametersParameters

RemarksRemarks

CGlobalUtils::CalcExpectedDockedRect
void CalcExpectedDockedRect(
 CPaneContainerManager& barContainerManager,
 CWnd* pWndTodock,
 CPoint ptMouse,
 CRect& rectResult,
 BOOL& bDrawTab,
 CDockablePane** ppTargetBar);

ParametersParameters

RemarksRemarks

CGlobalUtils::CanBeAttached
BOOL CanBeAttached(CWnd* pWnd) const;

ParametersParameters

Return ValueReturn Value

CGlobalUtils

Header: afxglobalutils.h

[in, out] rect
[in] pRectDelta

[in] barContainerManager

[in] pWndTodock

[in] ptMouse

[out] rectResult

[out] bDrawTab

[out] ppTargetBar

[in] pWnd

RemarksRemarks

CGlobalUtils::CanPaneBeInFloatingMultiPaneFrameWnd
BOOL CanPaneBeInFloatingMultiPaneFrameWnd(CWnd* pWnd) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGlobalUtils::CheckAlignment
BOOL CheckAlignment(
 CPoint point,
 CBasePane* pBar,
 int nSensitivity,
 const CDockingManager* pDockManager,
 BOOL bOuterEdge,
 DWORD& dwAlignment,
 DWORD dwEnabledDockBars = CBRS_ALIGN_ANY,
 LPCRECT lpRectBounds = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGlobalUtils::CyFromString
BOOL CyFromString(
 CY& cy,
 LPCTSTR psz);

ParametersParameters

Return ValueReturn Value

[in] pWnd

[in] point

[in] pBar

[in] nSensitivity

[in] pDockManager

[in] bOuterEdge

[out] dwAlignment

[in] dwEnabledDockBars

[in] lpRectBounds

[out] cy

[in] psz

RemarksRemarks

CGlobalUtils::DecimalFromString
BOOL DecimalFromString(
 DECIMAL& decimal,
 LPCTSTR psz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGlobalUtils::FlipRect
void FlipRect(
 CRect& rect,
 int nDegrees);

ParametersParameters

RemarksRemarks

CGlobalUtils::ForceAdjustLayout
void ForceAdjustLayout(
 CDockingManager* pDockManager,
 BOOL bForce = FALSE,
 BOOL bForceInvisible = FALSE);

ParametersParameters

RemarksRemarks

CGlobalUtils::GetDockingManager
CDockingManager* GetDockingManager(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[out] decimal

[in] psz

[in, out] rect
[in] nDegrees

[in, out] pDockManager

[in] bForce

[in] bForceInvisible

[in] pWnd

CGlobalUtils::GetOppositeAlignment
DWORD GetOppositeAlignment(DWORD dwAlign);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGlobalUtils::GetPaneAndAlignFromPoint
BOOL GetPaneAndAlignFromPoint(
 CPaneContainerManager& barContainerManager,
 CPoint pt,
 CDockablePane** ppTargetControlBar,
 DWORD& dwAlignment,
 BOOL& bTabArea,
 BOOL& bCaption);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGlobalUtils::GetWndIcon
HICON GetWndIcon(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGlobalUtils::SetNewParent
void SetNewParent(
 CObList& lstControlBars,
 CWnd* pNewParent,
 BOOL bCheckVisibility = TRUE);

[in] dwAlign

[in] barContainerManager

[in] pt

[out] ppTargetControlBar

[out] dwAlignment

[out] bTabArea

[out] bCaption

[in] pWnd

ParametersParameters

RemarksRemarks

CGlobalUtils::StringFromCy
BOOL StringFromCy(
 CString& str,
 CY& cy);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGlobalUtils::StringFromDecimal
BOOL StringFromDecimal(
 CString& str,
 DECIMAL& decimal);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

[in] lstControlBars

[in] pNewParent

[in] bCheckVisibility

[out] str

[in] cy

[out] str

[in] decimal

Hierarchy Chart
Classes

CGopherConnection Class
3/4/2019 • 5 minutes to read • Edit Online

NOTENOTE

Syntax
class CGopherConnection : public CInternetConnection

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CGopherConnection::CGopherConnection Constructs a CGopherConnection object.

Public MethodsPublic Methods

NAME DESCRIPTION

CGopherConnection::CreateLocator Creates a CGopherLocator object to find files on a gopher
server.

CGopherConnection::GetAttribute Retrieves attribute information about the gopher object.

CGopherConnection::OpenFile Opens a gopher file.

Remarks

Manages your connection to a gopher Internet server.

The classes CGopherConnection , CGopherFile , CGopherFileFind , CGopherLocator and their members have been
deprecated because they do not work on the Windows XP platform, but they will continue to work on earlier platforms.

The gopher service is one of three Internet services recognized by the MFC WinInet classes.

The class CGopherConnection contains a constructor and three additional member functions that manage the
gopher service: OpenFile, CreateLocator, and GetAttribute.

To communicate with a gopher Internet server, you must first create an instance of CInternetSession, and then
call CInternetSession::GetGopherConnection, which creates the CGopherConnection object and returns a pointer
to it. You never create a CGopherConnection object directly.

To learn more about how CGopherConnection works with the other MFC Internet classes, see the article Internet
Programming with WinInet. For more information about using the other two supported Internet services, FTP
and HTTP see the classes CHttpConnection and CFtpConnection.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cgopherconnection-class.md

Inheritance Hierarchy

Requirements

CGopherConnection::CGopherConnection

CGopherConnection(
 CInternetSession* pSession,
 HINTERNET hConnected,
 LPCTSTR pstrServer,
 DWORD_PTR dwContext);

CGopherConnection(
 CInternetSession* pSession,
 LPCTSTR pstrServer,
 LPCTSTR pstrUserName = NULL,
 LPCTSTR pstrPassword = NULL,
 DWORD_PTR dwContext = 0,
 INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER);

ParametersParameters

CObject

CInternetConnection

CGopherConnection

Header: afxinet.h

This member function is called to construct a CGopherConnection object.

pSession
A pointer to the related CInternetSession object.

hConnected
The Windows handle of the current Internet session.

pstrServer
A pointer to a string containing the FTP server name.

dwContext
The context identifier for the operation. dwContext identifies the operation's status information returned by
CInternetSession::OnStatusCallback. The default is set to 1; however, you can explicitly assign a specific context
ID for the operation. The object and any work it does will be associated with that context ID.

pstrUserName
Pointer to a null-terminated string that specifies the name of the user to log in. If NULL, the default is
anonymous.

pstrPassword
A pointer to a null-terminated string that specifies the password to use to log in. If both pstrPassword and
pstrUserName are NULL, the default anonymous password is the user's email name. If pstrPassword is NULL
(or an empty string) but pstrUserName is not NULL, a blank password is used. The following table describes the
behavior for the four possible settings of pstrUserName and pstrPassword:

PSTRUSERNAME PSTRPASSWORD
USERNAME SENT TO FTP
SERVER

PASSWORD SENT TO FTP
SERVER

NULL or " " NULL or " " "anonymous" User's email name

Non- NULL String NULL or " " pstrUserName " "

NULL Non- NULL String ERROR ERROR

Non- NULL String Non- NULL String pstrUserName pstrPassword

RemarksRemarks

CGopherConnection::CreateLocator

CGopherLocator CreateLocator(
 LPCTSTR pstrDisplayString,
 LPCTSTR pstrSelectorString,
 DWORD dwGopherType);

static CGopherLocator CreateLocator(LPCTSTR pstrLocator);

static CGopherLocator CreateLocator(
 LPCTSTR pstrServerName,
 LPCTSTR pstrDisplayString,
 LPCTSTR pstrSelectorString,
 DWORD dwGopherType,
 INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER);

ParametersParameters

nPort
A number that identifies the TCP/IP port to use on the server.

You never create a CGopherConnection directly. Rather, call CInternetSession::GetGopherConnection, which
creates a CGopherConnection object and returns a pointer to it.

Call this member function to create a gopher locator to find or identify a file on a gopher server.

pstrDisplayString
A pointer to a string containing the name of the gopher document or directory to be retrieved. If the
pstrDisplayString parameter is NULL, the default directory for the gopher server is returned.

pstrSelectorString
A pointer to the selector string to be sent to the gopher server in order to retrieve an item. pstrSelectorString
can be NULL.

dwGopherType
This specifies whether pstrSelectorString refers to a directory or document, and whether the request is gopher
or gopher+. See the attributes for the structure GOPHER_FIND_DATA in the Windows SDK.

pstrLocator
A pointer to a string identifying the file to open. Generally, this string is returned from a call to
CGopherFileFind::GetLocator.

pstrServerName
A pointer to a string containing the gopher server name.

nPort

https://docs.microsoft.com/windows/desktop/api/wininet/ns-wininet-gopher_find_dataa

Return ValueReturn Value

RemarksRemarks

CGopherConnection::GetAttribute

BOOL GetAttribute(
 CGopherLocator& refLocator CString strRequestedAttributes,
 CString& strResult,);

ParametersParameters

Return ValueReturn Value

CGopherConnection::OpenFile

CGopherFile* OpenFile(
 CGopherLocator& refLocator,
 DWORD dwFlags = 0,
 LPCTSTR pstrView = NULL,
 DWORD_PTR dwContext = 1);

ParametersParameters

The number identifying the Internet port for this connection.

A CGopherLocator object.

The static version of the member function requires you to specify a server, while the non-static version uses the
server name from the connection object.

In order to retrieve information from a gopher server, an application must first get a gopher locator. The
application must then treat the locator as an opaque token (that is, the application can use the locator but not
directly manipulate or compare it). Normally, the application uses the locator for calls to the
CGopherFileFind::FindFile member function to retrieve a specific piece of information.

Call this member function to retrieve specific attribute information about an item from the gopher server.

refLocator
A reference to a CGopherLocator object.

strRequestedAttributes
A space-delimited string specifying the names of the requested attributes.

strResult
A reference to a CString that receives the locator type.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

Call this member function to open a file on a gopher server.

refLocator
A reference to a CGopherLocator object.

dwFlags
Any combination of INTERNET_FLAG_* flags. See CInternetSession::OpenUrl for further information on
INTERNET_FLAG_* flags.

pstrView

https://msdn.microsoft.com/library/windows/desktop/ms679360

Return ValueReturn Value

RemarksRemarks

See also

A pointer to a file-view string. If several views of the file exist at the server, this parameter specifies which file
view to open. If pstrView is NULL, the default file view is used.

dwContext
The context ID for the file being opened. See Remarks for more information about dwContext.

A pointer to the CGopherFile object to be opened.

Override the dwContext default to set the context identifier to a value of your choosing. The context identifier is
associated with this specific operation of the CGopherConnection object created by its CInternetSession object.
The value is returned to CInternetSession::OnStatusCallback to provide status on the operation with which it is
identified. See the article Internet First Steps: WinInet for more information about the context identifier.

CInternetConnection Class
Hierarchy Chart
CFtpConnection Class
CHttpConnection Class
CInternetConnection Class
CGopherLocator Class
CGopherFile Class
CInternetSession Class

CGopherFile Class
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Syntax
class CGopherFile : public CInternetFile

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CGopherFile::CGopherFile Constructs a CGopherFile object.

Remarks

Inheritance Hierarchy

Requirements

CGopherFile::CGopherFile

Provides the functionality to find and read files on a gopher server.

The classes CGopherConnection , CGopherFile , CGopherFileFind , CGopherLocator and their members have been
deprecated because they do not work on the Windows XP platform, but they will continue to work on earlier platforms.

The gopher service does not allow users to write data to a gopher file because this service functions mainly as
a menu-driven interface for finding information. The CGopherFile member functions Write , WriteString , and
Flush are not implemented for CGopherFile . Calling these functions on a CGopherFile object, returns a

CNotSupportedException.

To learn more about how CGopherFile works with the other MFC Internet classes, see the article Internet
Programming with WinInet.

CObject

CFile

CStdioFile

CInternetFile

CGopherFile

Header: afxinet.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cgopherfile-class.md

CGopherFile(
 HINTERNET hFile,
 CGopherLocator& refLocator,
 CGopherConnection* pConnection);

CGopherFile(
 HINTERNET hFile,
 HINTERNET hSession,
 LPCTSTR pstrLocator,
 DWORD dwLocLen,
 DWORD_PTR dwContext);

ParametersParameters

RemarksRemarks

See also

This member function is called to construct a CGopherFile object.

hFile
A handle to an HINTERNET file.

refLocator
A reference to a CGopherLocator object.

pConnection
A pointer to a CGopherConnection object.

hSession
A handle to the current Internet session.

pstrLocator
A pointer to a string used to locate the gopher server. See Gopher Sessions for more information about
gopher locators.

dwLocLen
A DWORD containing the number of bytes in pstrLocator.

dwContext
A pointer to the context identifier of the file being opened.

You need a CGopherFile object to read from a file during a gopher Internet session.

You never create a CGopherFile object directly. Instead, call CGopherConnection::OpenFile to open a file on a
gopher server.

CInternetFile Class
Hierarchy Chart
CInternetFile Class
CGopherLocator Class
CGopherFileFind Class
CGopherConnection Class

CGopherFileFind Class
3/4/2019 • 6 minutes to read • Edit Online

NOTENOTE

Syntax
class CGopherFileFind : public CFileFind

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CGopherFileFind::CGopherFileFind Constructs a CGopherFileFind object.

Public MethodsPublic Methods

NAME DESCRIPTION

CGopherFileFind::FindFile Finds a file on a gopher server.

CGopherFileFind::FindNextFile Continues a file search from a previous call to FindFile.

CGopherFileFind::GetCreationTime Gets the time the specified file was created.

CGopherFileFind::GetLastAccessTime Gets the time the specified file was last accessed.

CGopherFileFind::GetLastWriteTime Gets the time the specified file was last written to.

CGopherFileFind::GetLength Gets the length of the found file, in bytes.

CGopherFileFind::GetLocator Get a CGopherLocator object.

CGopherFileFind::GetScreenName Gets the name of a gopher screen.

CGopherFileFind::IsDots Tests for the current directory and parent directory markers
while iterating through files.

Remarks

Aids in Internet file searches of gopher servers.

The classes CGopherConnection , CGopherFile , CGopherFileFind , CGopherLocator and their members have been
deprecated because they do not work on the Windows XP platform, but they will continue to work on earlier platforms.

CGopherFileFind includes member functions that begin a search, locate a file, and return a file's URL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cgopherfilefind-class.md

NOTENOTE

Inheritance Hierarchy

Requirements

CGopherFileFind::CGopherFileFind

explicit CGopherFileFind(
 CGopherConnection* pConnection,
 DWORD_PTR dwContext = 1);

ParametersParameters

RemarksRemarks

Other MFC classes designed for Internet and local file searched include CFtpFileFind and CFileFind. Together
with CGopherFileFind , these classes provide a seamless mechanism for the user to find specific files, regardless
of the server protocol, file type, or location (either a local machine or a remote server.) Note that there is no
MFC class for searching on HTTP servers because HTTP does not support the direct file manipulation required
by searches.

CGopherFileFind does not support the following member functions of its base class CFileFind:

GetRoot

GetFileName

GetFilePath

GetFileTitle

GetFileURL

In addition, when used with CGopherFileFind , the CFileFind member function IsDots is always FALSE.

For more information about how to use CGopherFileFind and the other WinInet classes, see the article Internet
Programming with WinInet.

CObject

CFileFind

CGopherFileFind

Header: afxinet.h

This member function is called to construct a CGopherFileFind object.

pConnection
A pointer to a CGopherConnection object.

dwContext
The context identifier for the operation. See Remarks for more information about dwContext.

The default value for dwContext is sent by MFC to the CGopherFileFind object from the CInternetSession
object that created the CGopherFileFind object. When you construct a CGopherFileFind object, you can override
the default to set the context identifier to a value of your choosing. The context identifier is returned to

CGopherFileFind::FindFile

virtual BOOL FindFile(
 CGopherLocator& refLocator,
 LPCTSTR pstrString,
 DWORD dwFlags = INTERNET_FLAG_RELOAD);

virtual BOOL FindFile(
 LPCTSTR pstrString,
 DWORD dwFlags = INTERNET_FLAG_RELOAD);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CGopherFileFind::FindNextFile

virtual BOOL FindNextFile();

Return ValueReturn Value

CGopherFileFind::GetCreationTime

CInternetSession::OnStatusCallback to provide status on the object with which it is identified. See the article
Internet First Steps: WinInet for more information about the context identifier.

Call this member function to find a gopher file.

refLocator
A reference to a CGopherLocator object.

pstrString
A pointer to a string containing the file name.

dwFlags
The flags describing how to handle this session. The valid flags are:

INTERNET_FLAG_RELOAD Get the data from the remote server even if it is locally cached.

INTERNET_FLAG_DONT_CACHE Do not cache the data, either locally or in any gateways.

INTERNET_FLAG_SECURE Request secure transactions on the wire with Secure Sockets Layer or PCT.
This flag is applicable to HTTP requests only.

INTERNET_FLAG_USE_EXISTING If possible, reuse the existing connections to the server for new
FindFile requests, instead of creating a new session for each request.

Nonzero if successful; otherwise 0. To get extended error information, call the Win32 function GetLastError.

After calling FindFile to retrieve the first gopher object, you can call FindNextFile to retrieve subsequent
gopher files.

Call this member function to continue a file search begun with a call to CGopherFileFind::FindFile.

Nonzero if there are more files; zero if the file found is the last one in the directory or if an error occurred. To
get extended error information, call the Win32 function GetLastError. If the file found is the last file in the
directory, or if no matching files can be found, the GetLastError function returns ERROR_NO_MORE_FILES.

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://msdn.microsoft.com/library/windows/desktop/ms679360

virtual BOOL GetCreationTime(FILETIME* pTimeStamp) const;
virtual BOOL GetCreationTime(CTime& refTime) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CGopherFileFind::GetLastAccessTime

virtual BOOL GetLastAccessTime(CTime& refTime) const;
virtual BOOL GetLastAccessTime(FILETIME* pTimeStamp) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Gets the creation time for the current file.

pTimeStamp
A pointer to a FILETIME structure containing the time the file was created.

refTime
A reference to a CTime object.

Nonzero if successful; 0 if unsuccessful. GetCreationTime returns 0 only if FindNextFile has never been called
on this CGopherFileFind object.

You must call FindNextFile at least once before calling GetCreationTime .

Not all file systems use the same semantics to implement the time stamp returned by this function. This function may
return the same value returned by other time stamp functions if the underlying file system or server does not support
keeping the time attribute. See the Win32_FIND_DATA structure for information about time formats. On some operating
systems, the returned time is in the time zone local to the machine were the file is located. See the Win32
FileTimeToLocalFileTime API for more information.

Gets the time the specified file was last accessed.

refTime
A reference to a CTime object.

pTimeStamp
A pointer to a FILETIME structure containing the time the file was last accessed.

Nonzero if successful; 0 if unsuccessful. GetLastAccessTime returns 0 only if FindNextFile has never been called
on this CGopherFileFind object.

You must call FindNextFile at least once before calling GetLastAccessTime .

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-filetimetolocalfiletime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime

NOTENOTE

CGopherFileFind::GetLastWriteTime

virtual BOOL GetLastWriteTime(FILETIME* pTimeStamp) const;
virtual BOOL GetLastWriteTime(CTime& refTime) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CGopherFileFind::GetLength

virtual ULONGLONG GetLength() const;

Return ValueReturn Value

RemarksRemarks

Not all file systems use the same semantics to implement the time stamp returned by this function. This function may
return the same value returned by other time stamp functions if the underlying file system or server does not support
keeping the time attribute. See the Win32_FIND_DATA structure for information about time formats. On some operating
systems, the returned time is in the time zone local to the machine were the file is located. See the Win32
FileTimeToLocalFileTime API for more information.

Gets the last time the file was changed.

pTimeStamp
A pointer to a FILETIME structure containing the time the file was last written to.

refTime
A reference to a CTime object.

Nonzero if successful; 0 if unsuccessful. GetLastWriteTime returns 0 only if FindNextFile has never been called
on this CGopherFileFind object.

You must call FindNextFile at least once before calling GetLastWriteTime .

Not all file systems use the same semantics to implement the time stamp returned by this function. This function may
return the same value returned by other time stamp functions if the underlying file system or server does not support
keeping the time attribute. See the Win32_FIND_DATA structure for information about time formats. On some operating
systems, the returned time is in the time zone local to the machine were the file is located. See the Win32
FileTimeToLocalFileTime API for more information.

Call this member function to get the length, in bytes, of the found file.

The length, in bytes, of the found file.

GetLength uses the Win32 structure WIN32_FIND_DATA to get the value of the file size in bytes.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-filetimetolocalfiletime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa
https://docs.microsoft.com/windows/desktop/api/fileapi/nf-fileapi-filetimetolocalfiletime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-_win32_find_dataa

NOTENOTE

ExampleExample

CGopherFileFind::GetLocator

CGopherLocator GetLocator() const;

Return ValueReturn Value

CGopherFileFind::GetScreenName

CString GetScreenName() const;

Return ValueReturn Value

CGopherFileFind::IsDots

virtual BOOL IsDots() const;

Return ValueReturn Value

RemarksRemarks

See also

As of MFC 7.0, GetLength supports 64-bit integer types. Previously-existing code built with this newer version of the
library may result in truncation warnings.

See the example for CFile::GetLength (the base class implementation).

Call this member function to get the CGopherLocator object that FindFile uses to find the gopher file.

A CGopherLocator object.

Call this member function to get the name of the gopher screen.

The name of the gopher screen.

Tests for the current directory and parent directory markers while iterating through files.

Nonzero if the found file has the name "." or "..", which indicates that the found file is actually a directory.
Otherwise 0.

You must call FindNextFile at least once before calling IsDots .

CFileFind Class
Hierarchy Chart
CFtpFileFind Class
CFileFind Class
CInternetFile Class
CGopherFile Class
CHttpFile Class

CGopherLocator Class
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Syntax
class CGopherLocator : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CGopherLocator::CGopherLocator Constructs a CGopherLocator object.

Public MethodsPublic Methods

NAME DESCRIPTION

CGopherLocator::GetLocatorType Parses a gopher locator and determines its attributes.

Public OperatorsPublic Operators

NAME DESCRIPTION

CGopherLocator::operator LPCTSTR Directly accesses characters stored in a CGopherLocator

object as a C-style string.

Remarks

Gets a gopher "locator" from a gopher server, determines the locator's type, and makes the locator available to
CGopherFileFind.

The classes CGopherConnection , CGopherFile , CGopherFileFind , CGopherLocator and their members have been
deprecated because they do not work on the Windows XP platform, but they will continue to work on earlier platforms.

An application must get a gopher server's locator before it can retrieve information from that server. Once it
has the locator, it must treat the locator as an opaque token.

Each gopher locator has attributes that determine the type of file or server found. See GetLocatorType for a list
of types of gopher locators.

An application normally uses the locator for calls to CGopherFileFind::FindFile to retrieve a specific piece of
information.

To learn more about how CGopherLocator works with the other MFC Internet classes, see the article Internet
Programming with WinInet.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cgopherlocator-class.md

Inheritance Hierarchy

Requirements

CGopherLocator::CGopherLocator

CGopherLocator(const CGopherLocator& ref);

ParametersParameters

RemarksRemarks

CGopherLocator::GetLocatorType

BOOL GetLocatorType(DWORD& dwRef) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

VALUE MEANING

GOPHER_TYPE_TEXT_FILE An ASCII text file.

GOPHER_TYPE_DIRECTORY A directory of additional Gopher items.

GOPHER_TYPE_CSO A CSO phone book server.

GOPHER_TYPE_ERROR Indicates an error condition.

GOPHER_TYPE_MAC_BINHEX A Macintosh file in BINHEX format.

CObject

CGopherLocator

Header: afxinet.h

This member function is called to create a CGopherLocator object.

ref
A reference to a constant CGopherLocator object.

You never create a CGopherLocator object directly. Instead, call CGopherConnection::CreateLocator to create
and return a pointer to the CGopherLocator object.

Call this member function to get the locator type.

dwRef
A reference to a DWORD that will receive the locator type. See Remarks for a table of locator types.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

The possible types are as follows:

https://msdn.microsoft.com/library/windows/desktop/ms679360

GOPHER_TYPE_DOS_ARCHIVE A DOS archive file.

GOPHER_TYPE_UNIX_UUENCODED A UUENCODED file.

GOPHER_TYPE_INDEX_SERVER An index server.

GOPHER_TYPE_TELNET A Telnet Server.

GOPHER_TYPE_BINARY A binary file.

GOPHER_TYPE_REDUNDANT A duplicated server. The information contained within is a
duplicate of the primary server. The primary server is the
last directory entry that did not have a
GOPHER_TYPE_REDUNDANT type.

GOPHER_TYPE_TN3270 A TN3270 server.

GOPHER_TYPE_GIF A GIF graphics file.

GOPHER_TYPE_IMAGE An image file.

GOPHER_TYPE_BITMAP A bitmap file.

GOPHER_TYPE_MOVIE A movie file.

GOPHER_TYPE_SOUND A sound file.

GOPHER_TYPE_HTML An HTML document.

GOPHER_TYPE_PDF A PDF file.

GOPHER_TYPE_CALENDAR A calendar file.

GOPHER_TYPE_INLINE An inline file.

GOPHER_TYPE_UNKNOWN The item type is unknown.

GOPHER_TYPE_ASK An Ask+ item.

GOPHER_TYPE_GOPHER_PLUS A Gopher+ item.

VALUE MEANING

CGopherLocator::operator LPCTSTR

operator LPCTSTR () const;

Return ValueReturn Value

This useful casting operator provides an efficient method to access the null-terminated C string contained in a
CGopherLocator object.

A character pointer to the string's data.

RemarksRemarks

See also

No characters are copied; only a pointer is returned.

CObject Class
Hierarchy Chart
CGopherFileFind Class

CHeaderCtrl Class
3/5/2019 • 22 minutes to read • Edit Online

Syntax
class CHeaderCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CHeaderCtrl::CHeaderCtrl Constructs a CHeaderCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CHeaderCtrl::ClearAllFilters Clears all filters for a header control.

CHeaderCtrl::ClearFilter Clears the filter for a header control.

CHeaderCtrl::Create Creates a header control and attaches it to a CHeaderCtrl

object.

CHeaderCtrl::CreateDragImage Creates a transparent version of an item's image within a
header control.

CHeaderCtrl::CreateEx Creates a header control with the specified Windows
extended styles and attaches it to a CListCtrl object.

CHeaderCtrl::DeleteItem Deletes an item from a header control.

CHeaderCtrl::DrawItem Draws the specified item of a header control.

CHeaderCtrl::EditFilter Starts editing the specified filter of a header control.

CHeaderCtrl::GetBitmapMargin Retrieves the width of the margin of a bitmap in a header
control.

CHeaderCtrl::GetFocusedItem Gets the identifier of the item in the current header control
that has the focus.

CHeaderCtrl::GetImageList Retrieves the handle of an image list used for drawing
header items in a header control.

Provides the functionality of the Windows common header control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cheaderctrl-class.md

CHeaderCtrl::GetItem Retrieves information about an item in a header control.

CHeaderCtrl::GetItemCount Retrieves a count of the items in a header control.

CHeaderCtrl::GetItemDropDownRect Gets the bounding rectangle information for the specified
drop-down button in a header control.

CHeaderCtrl::GetItemRect Retrieves the bounding rectangle for a given item in a
header control.

CHeaderCtrl::GetOrderArray Retrieves the left-to-right order of items in a header control.

CHeaderCtrl::GetOverflowRect Gets the bounding rectangle of the overflow button for the
current header control.

CHeaderCtrl::HitTest Determines which header item, if any, is located at a
specified point.

CHeaderCtrl::InsertItem Inserts a new item into a header control.

CHeaderCtrl::Layout Retrieves the size and position of a header control within a
given rectangle.

CHeaderCtrl::OrderToIndex Retrieves the index value for an item based on its order in
the header control.

CHeaderCtrl::SetBitmapMargin Sets the width of the margin of a bitmap in a header control.

CHeaderCtrl::SetFilterChangeTimeout Sets the timeout interval between the time a change takes
place in the filter attributes and the posting of an
HDN_FILTERCHANGE notification.

CHeaderCtrl::SetFocusedItem Sets the focus to a specified header item in the current
header control.

CHeaderCtrl::SetHotDivider Changes the divider between header items to indicate a
manual drag and drop of a header item.

CHeaderCtrl::SetImageList Assigns an image list to a header control.

CHeaderCtrl::SetItem Sets the attributes of the specified item in a header control.

CHeaderCtrl::SetOrderArray Sets the left-to-right order of items in a header control.

NAME DESCRIPTION

Remarks
A header control is a window that is usually positioned above a set of columns of text or numbers. It contains a
title for each column, and it can be divided into parts. The user can drag the dividers that separate the parts to
set the width of each column. For an illustration of a header control, see Header Controls.

This control (and therefore the CHeaderCtrl class) is available only to programs that run under Windows 95/98
and Windows NT version 3.51 and later.

https://docs.microsoft.com/windows/desktop/Controls/header-controls

Inheritance Hierarchy

Requirements

CHeaderCtrl::CHeaderCtrl

CHeaderCtrl();

ExampleExample

// Declare a local CHeaderCtrl object.
CHeaderCtrl myHeaderCtrl;

// Declare a dynamic CHeaderCtrl object.
CHeaderCtrl* pmyHeaderCtrl = new CHeaderCtrl;

CHeaderCtrl::ClearAllFilters

BOOL ClearAllFilters();

Return ValueReturn Value

RemarksRemarks

Functionality added for Windows 95/Internet Explorer 4.0 common controls includes the following:

Header item custom ordering.

Header item drag and drop, for reordering of header items. Use the HDS_DRAGDROP style when you
create the CHeaderCtrl object.

Header column text constantly viewable during column resizing. Use the HDS_FULLDRAG style when
you create a CHeaderCtrl object.

Header hot tracking, which highlights the header item when the pointer is hovering over it. Use the
HDS_HOTTRACK style when you create the CHeaderCtrl object.

Image list support. Header items can contain images stored in a CImageList object or text.

For more information about using CHeaderCtrl , see Controls and Using CHeaderCtrl.

CObject

CCmdTarget

CWnd

CHeaderCtrl

Header: afxcmn.h

Constructs a CHeaderCtrl object.

Clears all filters for a header control.

TRUE if this method is successful; otherwise, FALSE.

This method implements the behavior of the Win32 message HDM_CLEARFILTER with a column value of -1,

https://docs.microsoft.com/windows/desktop/Controls/hdm-clearfilter

ExampleExample

m_myHeaderCtrl.ClearAllFilters();

CHeaderCtrl::ClearFilter

BOOL ClearFilter(int nColumn);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

int iFilt = m_myHeaderCtrl.ClearFilter(1);

CHeaderCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

as described in the Windows SDK.

Clears the filter for a header control.

nColumn
Column value indicating which filter to clear.

TRUE if this method is successful; otherwise, FALSE.

This method implements the behavior of the Win32 message HDM_CLEARFILTER, as described in the
Windows SDK.

Creates a header control and attaches it to a CHeaderCtrl object.

dwStyle
Specifies the header control's style. For a description of header control styles, see Header Control Styles in the
Windows SDK.

rect
Specifies the header control's size and position. It can be either a CRect object or a RECT structure.

pParentWnd
Specifies the header control's parent window, usually a CDialog . It must not be NULL.

nID
Specifies the header control's ID.

Nonzero if initialization was successful; otherwise zero.

https://docs.microsoft.com/windows/desktop/Controls/hdm-clearfilter
https://docs.microsoft.com/windows/desktop/Controls/header-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

RemarksRemarks

ExampleExample

// pParentWnd is a pointer to the parent window.
m_myHeaderCtrl.Create(WS_CHILD | WS_VISIBLE | HDS_HORZ,
 CRect(10, 10, 600, 50), pParentWnd, 1);

CHeaderCtrl::CreateEx

You construct a CHeaderCtrl object in two steps. First, call the constructor and then call Create , which creates
the header control and attaches it to the CHeaderCtrl object.

In addition to the header control styles, you can use the following common control styles to determine how the
header control positions and resizes itself (see Common Control Styles for more information):

CCS_BOTTOM Causes the control to position itself at the bottom of the parent window's client area and
sets the width to be the same as the parent window's width.

CCS_NODIVIDER Prevents a two-pixel highlight from being drawn at the top of the control.

CCS_NOMOVEY Causes the control to resize and move itself horizontally, but not vertically, in response
to a WM_SIZE message. If the CCS_NORESIZE style is used, this style does not apply. Header controls
have this style by default.

CCS_NOPARENTALIGN Prevents the control from automatically moving to the top or bottom of the
parent window. Instead, the control keeps its position within the parent window despite changes to the
size of the parent window. If the CCS_TOP or CCS_BOTTOM style is also used, the height is adjusted to
the default, but the position and width remain unchanged.

CCS_NORESIZE Prevents the control from using the default width and height when setting its initial
size or a new size. Instead, the control uses the width and height specified in the request for creation or
sizing.

CCS_TOP Causes the control to position itself at the top of the parent window's client area and sets the
width to be the same as the parent window's width.

You can also apply the following window styles to a header control (see Window Styles for more information):

WS_CHILD Creates a child window. Cannot be used with the WS_POPUP style.

WS_VISIBLE Creates a window that is initially visible.

WS_DISABLED Creates a window that is initially disabled.

WS_GROUP Specifies the first control of a group of controls in which the user can move from one
control to the next with the arrow keys. All controls defined with the WS_GROUP style after the first
control belong to the same group. The next control with the WS_GROUP style ends the style group and
starts the next group (that is, one group ends where the next begins).

WS_TABSTOP Specifies one of any number of controls through which the user can move by using the
TAB key. The TAB key moves the user to the next control specified by the WS_TABSTOP style.

If you want to use extended windows styles with your control, call CreateEx instead of Create .

Creates a control (a child window) and associate it with the CHeaderCtrl object.

https://docs.microsoft.com/windows/desktop/Controls/common-control-styles

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHeaderCtrl::CreateDragImage

CImageList* CreateDragImage(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the
dwExStyle parameter for CreateWindowEx in the Windows SDK.

dwStyle
The header control's style. For a description of header control styles, see Header Control Styles in the Windows
SDK. See Create for a list of additional styles.

rect
A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

Creates a transparent version of an item's image within a header control.

nIndex
The zero-based index of the item within the header control. The image assigned to this item is the basis for the
transparent image.

A pointer to a CImageList object if successful; otherwise NULL. The returned list contains only one image.

This member function implements the behavior of the Win32 message HDM_CREATEDRAGIMAGE, as
described in the Windows SDK. It is provided to support header item drag and drop.

The CImageList object to which the returned pointer points is a temporary object and is deleted in the next
idle-time processing.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/header-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/hdm-createdragimage

CHeaderCtrl::DeleteItem

BOOL DeleteItem(int nPos);

ParametersParameters

Return ValueReturn Value

ExampleExample

int nCount = m_myHeaderCtrl.GetItemCount();

// Delete all of the items.
for (int i=0;i < nCount;i++)
{
 m_myHeaderCtrl.DeleteItem(0);
}

CHeaderCtrl::DrawItem

virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

RemarksRemarks

ExampleExample

Deletes an item from a header control.

nPos
Specifies the zero-based index of the item to delete.

Nonzero if successful; otherwise 0.

Called by the framework when a visual aspect of an owner-draw header control changes.

lpDrawItemStruct
A pointer to a DRAWITEMSTRUCT structure describing the item to be painted.

The itemAction member of the DRAWITEMSTRUCT structure defines the drawing action that is to be performed.

By default, this member function does nothing. Override this member function to implement drawing for an
owner-draw CHeaderCtrl object.

The application should restore all graphics device interface (GDI) objects selected for the display context
supplied in lpDrawItemStruct before this member function terminates.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct

// NOTE: CMyHeaderCtrl is a class derived from CHeaderCtrl.
// The CMyHeaderCtrl object was created as follows:
//
// CMyHeaderCtrl m_myHeader;
// myHeader.Create(WS_CHILD | WS_VISIBLE | HDS_HORZ,
// CRect(10, 10, 600, 50), pParentWnd, 1);

// This example implements the DrawItem method for a
// CHeaderCtrl-derived class that draws every item as a
// 3D button using the text color red.
void CMyHeaderCtrl::DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct)
{
 // This code only works with header controls.
 ASSERT(lpDrawItemStruct->CtlType == ODT_HEADER);

 HDITEM hdi;
 const int c_cchBuffer = 256;
 TCHAR lpBuffer[c_cchBuffer];

 hdi.mask = HDI_TEXT;
 hdi.pszText = lpBuffer;
 hdi.cchTextMax = c_cchBuffer;

 GetItem(lpDrawItemStruct->itemID, &hdi);

 // Draw the button frame.
 ::DrawFrameControl(lpDrawItemStruct->hDC,
 &lpDrawItemStruct->rcItem, DFC_BUTTON, DFCS_BUTTONPUSH);

 // Draw the items text using the text color red.
 COLORREF crOldColor = ::SetTextColor(lpDrawItemStruct->hDC,
 RGB(255,0,0));
 ::DrawText(lpDrawItemStruct->hDC, lpBuffer,
 (int)_tcsnlen(lpBuffer, c_cchBuffer),
 &lpDrawItemStruct->rcItem, DT_SINGLELINE|DT_VCENTER|DT_CENTER);
 ::SetTextColor(lpDrawItemStruct->hDC, crOldColor);
}

CHeaderCtrl::EditFilter

BOOL EditFilter(
 int nColumn,
 BOOL bDiscardChanges);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Begins to edit the specified filter of a header control.

nColumn
The column to edit.

bDiscardChanges
A value that specifies how to handle the user's editing changes if the user is in the process of editing the filter
when the HDM_EDITFILTER message is sent.

Specify TRUE to discard the changes made by the user, or FALSE to accept the changes made by the user.

TRUE if this method is successful; otherwise, FALSE.

This method implements the behavior of the Win32 message HDM_EDITFILTER, as described in the Windows

https://docs.microsoft.com/windows/desktop/Controls/hdm-editfilter
https://docs.microsoft.com/windows/desktop/Controls/hdm-editfilter

ExampleExample

int iFilter = m_myHeaderCtrl.EditFilter(1, TRUE);

CHeaderCtrl::GetBitmapMargin

int GetBitmapMargin() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

int iMargin = m_myHeaderCtrl.GetBitmapMargin();

CHeaderCtrl::GetFocusedItem

int GetFocusedItem() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CHeaderCtrl m_headerCtrl;
CSplitButton m_splitButton;

ExampleExample

SDK.

Retrieves the width of the margin of a bitmap in a header control.

The width of the bitmap margin in pixels.

This member function implements the behavior of the Win32 message HDM_GETBITMAPMARGIN, as
described in the Windows SDK.

Gets the index of the item that has the focus in the current header control.

The zero-based index of the header item that has the focus.

This method sends the HDM_GETFOCUSEDITEM message, which is described in the Windows SDK.

The following code example defines the variable, m_headerCtrl , that is used to access the current header
control. This variable is used in the next example.

The following code example demonstrates the SetFocusedItem and GetFocusedItem methods. In an earlier
section of the code, we created a header control with five columns. However, you can drag a column separator
so that the column is not visible. The following example sets and then confirms the last column header as the
focus item.

https://docs.microsoft.com/windows/desktop/Controls/hdm-getbitmapmargin
https://docs.microsoft.com/windows/desktop/Controls/hdm-getfocuseditem

void CNVC_MFC_CHeaderCtrl_s4Dlg::OnXSetfocuseditem()
{
 if (controlCreated == FALSE) {
 MessageBox(_T("Header control has not been created yet."));
 return;
 }

 // Check that we get the value we set.
 int item = m_headerCtrl.GetItemCount() - 1;
 m_headerCtrl.SetFocusedItem(item);
 int itemGet = m_headerCtrl.GetFocusedItem();
 CString str = _T("Set: focused item = %d\nGet: focused item = %d");
 str.Format(str, item, itemGet);
 MessageBox(str, _T("Set/GetFocused Item"));
}

CHeaderCtrl::GetImageList

CImageList* GetImageList() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The new image list of the header control.
m_HeaderImages.Create(16, 16, ILC_COLOR, 2, 2);
m_HeaderImages.Add(AfxGetApp()->LoadIcon(IDI_ICON1));
m_HeaderImages.Add(AfxGetApp()->LoadIcon(IDI_ICON2));
m_HeaderImages.Add(AfxGetApp()->LoadIcon(IDI_ICON3));

ASSERT(m_myHeaderCtrl.GetImageList() == NULL);

m_myHeaderCtrl.SetImageList(&m_HeaderImages);
ASSERT(m_myHeaderCtrl.GetImageList() == &m_HeaderImages);

CHeaderCtrl::GetItem

BOOL GetItem(
 int nPos,
 HDITEM* pHeaderItem) const;

ParametersParameters

Retrieves the handle of an image list used for drawing header items in a header control.

A pointer to a CImageList object.

This member function implements the behavior of the Win32 message HDM_GETIMAGELIST, as described in
the Windows SDK. The CImageList object to which the returned pointer points is a temporary object and is
deleted in the next idle-time processing.

Retrieves information about a header control item.

nPos
Specifies the zero-based index of the item to retrieve.

pHeaderItem

https://docs.microsoft.com/windows/desktop/Controls/hdm-getimagelist

Return ValueReturn Value

ExampleExample

LPCTSTR lpszmyString = _T("column 2");
LPCTSTR lpszmyString2 = _T("vertical 2");

// Find the item whose text matches lpszmyString, and
// replace it with lpszmyString2.
int i, nCount = m_myHeaderCtrl.GetItemCount();
HDITEM hdi;
enum { sizeOfBuffer = 256 };
TCHAR lpBuffer[sizeOfBuffer];
bool fFound = false;

hdi.mask = HDI_TEXT;
hdi.pszText = lpBuffer;
hdi.cchTextMax = sizeOfBuffer;

for (i=0; !fFound && (i < nCount); i++)
{
 m_myHeaderCtrl.GetItem(i, &hdi);

 if (_tcsncmp(hdi.pszText, lpszmyString, sizeOfBuffer) == 0)
 {
 _tcscpy_s(hdi.pszText, sizeOfBuffer, lpszmyString2);
 m_myHeaderCtrl.SetItem(i, &hdi);
 fFound = true;
 }
}

CHeaderCtrl::GetItemCount

int GetItemCount() const;

Return ValueReturn Value

ExampleExample

CHeaderCtrl::GetItemDropDownRect

BOOL GetItemDropDownRect(
 int iItem,
 LPRECT lpRect) const;

ParametersParameters

Pointer to an HDITEM structure that receives the new item. This structure is used with the InsertItem and
SetItem member functions. Any flags set in the mask element ensure that values in the corresponding

elements are properly filled in upon return. If the mask element is set to zero, values in the other structure
elements are meaningless.

Nonzero if successful; otherwise 0.

Retrieves a count of the items in a header control.

Number of header control items if successful; otherwise - 1.

See the example for CHeaderCtrl::DeleteItem.

Gets the bounding rectangle of the drop-down button for a header item in the current header control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_hd_itema

PARAMETER DESCRIPTION

iItem [in] Zero-based index of a header item whose style is
HDF_SPLITBUTTON. For more information, see the fmt

member of the HDITEM structure.

lpRect [out] Pointer to a RECT structure to receive the bounding
rectangle information.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CHeaderCtrl m_headerCtrl;
CSplitButton m_splitButton;

ExampleExample

void CNVC_MFC_CHeaderCtrl_s4Dlg::OnXGetitemdropdownrect()
{
 if (controlCreated == FALSE) {
 MessageBox(_T("Header control has not been created yet."));
 return;
 }

// Get the dropdown rect for the first column.
 CRect rect;
 BOOL bRetVal = m_headerCtrl.GetItemDropDownRect(0, &rect);
 if (bRetVal == TRUE) {
 // Draw around the dropdown rect a rectangle that has red
 // left and top sides, and blue right and bottom sides.
 CDC* pDC = m_headerCtrl.GetDC();
 pDC->Draw3dRect(rect, RGB(255, 0, 0), RGB(0, 0, 255));
 }
}

CHeaderCtrl::GetItemRect

BOOL GetItemRect(
 int nIndex,
 LPRECT lpRect) const;

ParametersParameters

TRUE if this function is successful; otherwise, FALSE.

This method sends the HDM_GETITEMDROPDOWNRECT message, which is described in the Windows SDK.

The following code example defines the variable, m_headerCtrl , that is used to access the current header
control. This variable is used in the next example.

The following code example demonstrates the GetItemDropDownRect method. In an earlier section of the code,
we created a header control with five columns. The following code example draws a 3D rectangle around the
location on the first column that is reserved for the header drop-down button.

Retrieves the bounding rectangle for a given item in a header control.

nIndex

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_hd_itema
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/hdm-getitemdropdownrect

Return ValueReturn Value

RemarksRemarks

CHeaderCtrl::GetOrderArray

BOOL GetOrderArray(
 LPINT piArray,
 int iCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Reverse the order of the items in the header control.
// (i.e. make the first item the last one, the last item
// the first one, and so on ...).
int nCount = m_myHeaderCtrl.GetItemCount();
LPINT pnOrder = (LPINT) malloc(nCount*sizeof(int));
ASSERT(pnOrder != NULL);
if (NULL != pnOrder)
{
 m_myHeaderCtrl.GetOrderArray(pnOrder, nCount);

 int i, j, nTemp;
 for (i=0, j=nCount-1; i < j; i++, j--)
 {
 nTemp = pnOrder[i];
 pnOrder[i] = pnOrder[j];
 pnOrder[j] = nTemp;
 }

 m_myHeaderCtrl.SetOrderArray(nCount, pnOrder);
 free(pnOrder);
}

The zero-based index of the header control item.

lpRect
A pointer to the address of a RECT structure that receives the bounding rectangle information.

Nonzero if successful; otherwise 0.

This method implements the behavior of the Win32 message HDM_GETITEMRECT, as described in the
Windows SDK.

Retrieves the left-to-right order of items in a header control.

piArray
A pointer to the address of a buffer that receives the index values of the items in the header control, in the
order in which they appear from left to right.

iCount
The number of header control items. Must be non-negative.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message HDM_GETORDERARRAY, as described
in the Windows SDK. It is provided to support header item ordering.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/hdm-getitemrect
https://docs.microsoft.com/windows/desktop/Controls/hdm-getorderarray

CHeaderCtrl::GetOverflowRect

BOOL GetOverflowRect(LPRECT lpRect) const;

ParametersParameters

PARAMETER DESCRIPTION

lpRect [out] Pointer to a RECT structure that receives the bounding
rectangle information.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CHeaderCtrl m_headerCtrl;
CSplitButton m_splitButton;

ExampleExample

void CNVC_MFC_CHeaderCtrl_s4Dlg::OnXGetoverflowrect()
{
 if (controlCreated == FALSE) {
 MessageBox(_T("Header control has not been created yet."));
 return;
 }
 CRect rect;
 // Get the overflow rectangle.
 BOOL bRetVal = m_headerCtrl.GetOverflowRect(&rect);
 // Get the device context.
 CDC* pDC = m_headerCtrl.GetDC();
 // Draw around the overflow rect a rectangle that has red
 // left and top sides, and green right and bottom sides.
 pDC->Draw3dRect(rect, RGB(255, 0, 0), RGB(0, 255, 0));
}

CHeaderCtrl::HitTest

Gets the bounding rectangle of the overflow button of the current header control.

TRUE if this function is successful; otherwise, FALSE.

If the header control contains more items than can be simultaneously displayed, the control can display an
overflow button that scrolls to items that are not visible. The header control must have the HDS_OVERFLOW
and HDF_SPLITBUTTON styles to display the overflow button. The bounding rectangle encloses the overflow
button and exists only when the overflow button is displayed. For more information, see Header Control Styles.

This method sends the HDM_GETOVERFLOWRECT message, which is described in the Windows SDK.

The following code example defines the variable, m_headerCtrl , that is used to access the current header
control. This variable is used in the next example.

The following code example demonstrates the GetOverflowRect method. In an earlier section of the code, we
created a header control with five columns. However, you can drag a column separator so that the column is
not visible. If some columns are not visible, the header control draws an overflow button. The following code
example draws a 3D rectangle around the location of the overflow button.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/header-control-styles
https://docs.microsoft.com/windows/desktop/Controls/hdm-getoverflowrect

int HitTest(LPHDHITTESTINFO* phdhti);

ParametersParameters

PARAMETER DESCRIPTION

phdhti [in, out] Pointer to a HDHITTESTINFO structure that
specifies the point to test and receives the results of the
test.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CHeaderCtrl m_headerCtrl;
CSplitButton m_splitButton;

ExampleExample

void CNVC_MFC_CHeaderCtrl_s4Dlg::OnXHittest()
{
 if (controlCreated == FALSE) {
 MessageBox(_T("Header control has not been created yet."));
 return;
 }
 // Initialize HDHITTESTINFO structure.
 HDHITTESTINFO hdHitIfo;
 memset(&hdHitIfo, 0, sizeof(HDHITTESTINFO));

 CString str;
 CRect rect;
 int iRetVal = -1;
 for(int i = 0; i < m_headerCtrl.GetItemCount(); i++)
 {
 m_headerCtrl.GetItemRect(i, &rect);
 hdHitIfo.pt = rect.CenterPoint();
 // The hit test depends on whether the header item is visible.
 iRetVal = m_headerCtrl.HitTest(&hdHitIfo);
 str.AppendFormat(_T("Item = %d, Hit item = %d\n"), i, iRetVal);
 }
 MessageBox(str, _T("Hit test results"));
}

CHeaderCtrl::InsertItem

Determines which header item, if any, is located at a specified point.

The zero-based index of the header item, if any, at the specified position; otherwise, -1.

This method sends the HDM_HITTEST message, which is described in the Windows SDK.

The following code example defines the variable, m_headerCtrl , that is used to access the current header
control. This variable is used in the next example.

The following code example demonstrates the HitTest method. In an earlier section of this code example, we
created a header control with five columns. However, you can drag a column separator so that the column is
not visible. This example reports the index of the column if it is visible and -1 if the column is not visible.

Inserts a new item into a header control at the specified index.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_hd_hittestinfo
https://docs.microsoft.com/windows/desktop/Controls/hdm-hittest

int InsertItem(
 int nPos,
 HDITEM* phdi);

ParametersParameters

Return ValueReturn Value

ExampleExample

CString str;
HDITEM hdi;

hdi.mask = HDI_TEXT | HDI_WIDTH | HDI_FORMAT | HDI_IMAGE;
hdi.cxy = 100; // Make all columns 100 pixels wide.
hdi.fmt = HDF_STRING | HDF_CENTER;

// Insert 6 columns in the header control.
for (int i=0; i < 6; i++)
{
 str.Format(TEXT("column %d"), i);
 hdi.pszText = str.GetBuffer(0);
 hdi.iImage = i % 3;

 m_myHeaderCtrl.InsertItem(i, &hdi);
}

CHeaderCtrl::Layout

BOOL Layout(HDLAYOUT* pHeaderLayout);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

nPos
The zero-based index of the item to be inserted. If the value is zero, the item is inserted at the beginning of the
header control. If the value is greater than the maximum value, the item is inserted at the end of the header
control.

phdi
Pointer to an HDITEM structure that contains information about the item to be inserted.

Index of the new item if successful; otherwise - 1.

Retrieves the size and position of a header control within a given rectangle.

pHeaderLayout
Pointer to an HDLAYOUT structure, which contains information used to set the size and position of a header
control.

Nonzero if successful; otherwise 0.

This function is used to determine the appropriate dimensions for a new header control that is to occupy the
given rectangle.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_hd_itema
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_hd_layout

HDLAYOUT hdl;
WINDOWPOS wpos;
RECT rc;

// Reposition the header control so that it is placed at
// the top of its parent window's client area.
m_myHeaderCtrl.GetParent()->GetClientRect(&rc);

hdl.prc = &rc;
hdl.pwpos = &wpos;
if (m_myHeaderCtrl.Layout(&hdl))
{
 m_myHeaderCtrl.SetWindowPos(
 CWnd::FromHandle(wpos.hwndInsertAfter),
 wpos.x,
 wpos.y,
 wpos.cx,
 wpos.cy,
 wpos.flags | SWP_SHOWWINDOW);
}

CHeaderCtrl::OrderToIndex

int OrderToIndex(int nOrder) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHeaderCtrl::SetBitmapMargin

int SetBitmapMargin(int nWidth);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Retrieves the index value for an item based on its order in the header control.

nOrder
The zero-based order that the item appears in the header control, from left to right.

The index of the item, based on its order in the header control. The index counts from left to right, beginning
with 0.

This member function implements the behavior of the Win32 macro HDM_ORDERTOINDEX, as described in
the Windows SDK. It is provided to support header item ordering.

Sets the width of the margin of a bitmap in a header control.

nWidth
Width, specified in pixels, of the margin that surrounds a bitmap within an existing header control.

The width of the bitmap margin in pixels.

This member function implements the behavior of the Win32 message HDM_SETBITMAPMARGIN, as
described in the Windows SDK.

https://msdn.microsoft.com/library/windows/desktop/bb775355
https://docs.microsoft.com/windows/desktop/Controls/hdm-setbitmapmargin

ExampleExample

int iOldMargin = m_myHeaderCtrl.SetBitmapMargin(15);

CHeaderCtrl::SetFilterChangeTimeout

int SetFilterChangeTimeout(DWORD dwTimeOut);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

int iFltr = m_myHeaderCtrl.SetFilterChangeTimeout(15);

CHeaderCtrl::SetFocusedItem

BOOL SetFocusedItem(int iItem);

ParametersParameters

PARAMETER DESCRIPTION

iItem [in] Zero-based index of a header item.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CHeaderCtrl m_headerCtrl;
CSplitButton m_splitButton;

Sets the timeout interval between the time a change takes place in the filter attributes and the posting of an
HDN_FILTERCHANGE notification.

dwTimeOut
Timeout value, in milliseconds.

The index of the filter control being modified.

This member function implements the behavior of the Win32 message HDM_SETFILTERCHANGETIMEOUT,
as described in the Windows SDK.

Sets the focus to a specified header item in the current header control.

TRUE if this method is successful; otherwise, FALSE.

This method sends the HDM_SETFOCUSEDITEM message, which is described in the Windows SDK.

The following code example defines the variable, m_headerCtrl , that is used to access the current header
control. This variable is used in the next example.

https://docs.microsoft.com/windows/desktop/Controls/hdn-filterchange
https://docs.microsoft.com/windows/desktop/Controls/hdm-setfilterchangetimeout
https://docs.microsoft.com/windows/desktop/Controls/hdm-setfocuseditem

ExampleExample

void CNVC_MFC_CHeaderCtrl_s4Dlg::OnXSetfocuseditem()
{
 if (controlCreated == FALSE) {
 MessageBox(_T("Header control has not been created yet."));
 return;
 }

 // Check that we get the value we set.
 int item = m_headerCtrl.GetItemCount() - 1;
 m_headerCtrl.SetFocusedItem(item);
 int itemGet = m_headerCtrl.GetFocusedItem();
 CString str = _T("Set: focused item = %d\nGet: focused item = %d");
 str.Format(str, item, itemGet);
 MessageBox(str, _T("Set/GetFocused Item"));
}

CHeaderCtrl::SetHotDivider

int SetHotDivider(CPoint pt);
int SetHotDivider(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CMyHeaderCtrl::OnMouseMove(UINT nFlags, CPoint point)
{
 SetHotDivider(point);

 CHeaderCtrl::OnMouseMove(nFlags, point);
}

CHeaderCtrl::SetImageList

The following code example demonstrates the SetFocusedItem and GetFocusedItem methods. In an earlier
section of the code, we created a header control with five columns. However, you can drag a column separator
so that the column is not visible. The following example sets and then confirms the last column header as the
focus item.

Changes the divider between header items to indicate a manual drag and drop of a header item.

pt
The position of the pointer. The header control highlights the appropriate divider based on the pointer's
position.

nIndex
The index of the highlighted divider.

The index of the highlighted divider.

This member function implements the behavior of the Win32 message HDM_SETHOTDIVIDER, as described
in the Windows SDK. It is provided to support header item drag and drop.

Assigns an image list to a header control.

https://docs.microsoft.com/windows/desktop/Controls/hdm-sethotdivider

CImageList* SetImageList(CImageList* pImageList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CHeaderCtrl::SetItem

BOOL SetItem(
 int nPos,
 HDITEM* pHeaderItem);

ParametersParameters

Return ValueReturn Value

ExampleExample

CHeaderCtrl::SetOrderArray

BOOL SetOrderArray(
 int iCount,
 LPINT piArray);

ParametersParameters

pImageList
A pointer to a CImageList object containing the image list to be assigned to the header control.

A pointer to the CImageList object previously assigned to the header control.

This member function implements the behavior of the Win32 message HDM_SETIMAGELIST, as described in
the Windows SDK. The CImageList object to which the returned pointer points is a temporary object and is
deleted in the next idle-time processing.

See the example for CHeaderCtrl::GetImageList.

Sets the attributes of the specified item in a header control.

nPos
The zero-based index of the item to be manipulated.

pHeaderItem
Pointer to an HDITEM structure that contains information about the new item.

Nonzero if successful; otherwise 0.

See the example for CHeaderCtrl::GetItem.

Sets the left-to-right order of items in a header control.

iCount
The number of header control items.

piArray
A pointer to the address of a buffer that receives the index values of the items in the header control, in the
order in which they appear from left to right.

https://docs.microsoft.com/windows/desktop/Controls/hdm-setimagelist
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_hd_itema

Return ValueReturn Value

RemarksRemarks

ExampleExample

See also

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 macro HDM_SETORDERARRAY, as described in
the Windows SDK. It is provided to support header item ordering.

See the example for CHeaderCtrl::GetOrderArray.

CWnd Class
Hierarchy Chart
CTabCtrl Class
CListCtrl Class
CImageList Class

https://docs.microsoft.com/windows/desktop/Controls/hdm-setorderarray

CHotKeyCtrl Class
3/5/2019 • 6 minutes to read • Edit Online

Syntax
class CHotKeyCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CHotKeyCtrl::CHotKeyCtrl Constructs a CHotKeyCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CHotKeyCtrl::Create Creates a hot key control and attaches it to a CHotKeyCtrl

object.

CHotKeyCtrl::CreateEx Creates a hot key control with the specified Windows
extended styles and attaches it to a CHotKeyCtrl object.

CHotKeyCtrl::GetHotKey Retrieves the virtual key code and modifier flags of a hot key
from a hot key control.

CHotKeyCtrl::GetHotKeyName Retrieves the key name, in the local character set, assigned to
a hot key.

CHotKeyCtrl::GetKeyName Retrieves the key name, in the local character set, assigned to
the specified virtual key code.

CHotKeyCtrl::SetHotKey Sets the hot key combination for a hot key control.

CHotKeyCtrl::SetRules Defines the invalid combinations and the default modifier
combination for a hot key control.

Remarks

Provides the functionality of the Windows common hot key control.

A "hot key control" is a window that enables the user to create a hot key. A "hot key" is a key combination that
the user can press to perform an action quickly. (For example, a user can create a hot key that activates a given
window and brings it to the top of the Z order.) The hot key control displays the user's choices and ensures that
the user selects a valid key combination.

This control (and therefore the CHotKeyCtrl class) is available only to programs running under Windows 95/98

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/chotkeyctrl-class.md

Inheritance Hierarchy

Requirements

CHotKeyCtrl::CHotKeyCtrl

CHotKeyCtrl();

CHotKeyCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

and Windows NT version 3.51 and later.

When the user has chosen a key combination, the application can retrieve the specified key combination from the
control and use the WM_SETHOTKEY message to set up the hot key in the system. Whenever the user presses
the hot key thereafter, from any part of the system, the window specified in the WM_SETHOTKEY message
receives a WM_SYSCOMMAND message specifying SC_HOTKEY. This message activates the window that
receives it. The hot key remains valid until the application that called WM_SETHOTKEY exits.

This mechanism is different from the hot key support that depends on the WM_HOTKEY message and the
Windows RegisterHotKey and UnregisterHotKey functions.

For more information on using CHotKeyCtrl , see Controls and Using CHotKeyCtrl.

CObject

CCmdTarget

CWnd

CHotKeyCtrl

Header: afxcmn.h

Constructs a CHotKeyCtrl object.

Creates a hot key control and attaches it to a CHotKeyCtrl object.

dwStyle
Specifies the hot key control's style. Apply any combination of control styles. See Common Control Styles in the
Windows SDK for more information.

rect
Specifies the hot key control's size and position. It can be either a CRect object or a RECT structure.

pParentWnd
Specifies the hot key control's parent window, usually a CDialog. It must not be NULL.

nID
Specifies the hot key control's ID.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerhotkey
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-unregisterhotkey
https://docs.microsoft.com/windows/desktop/Controls/common-control-styles
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

Return ValueReturn Value

RemarksRemarks

CHotKeyCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHotKeyCtrl::GetHotKey

DWORD GetHotKey() const;

void GetHotKey(
 WORD& wVirtualKeyCode,
 WORD& wModifiers) const;

Nonzero, if initialization was successful; otherwise 0.

You construct a CHotKeyCtrl object in two steps. First, call the constructor and then call Create , which creates
the hot key control and attaches it to the CHotKeyCtrl object.

If you want to use extended windows styles with your control, call CreateEx instead of Create .

Call this function to create a control (a child window) and associate it with the CHotKeyCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the dwExStyle
parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the hot key control's style. Apply any combination of control styles. For more information, see Common
Control Styles in the Windows SDK.

rect
A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

Retrieves the virtual key code and modifier flags of a keyboard shortcut from a hot key control.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/common-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

ParametersParameters

FLAG CORRESPONDING KEY

HOTKEYF_ALT ALT key

HOTKEYF_CONTROL CTRL key

HOTKEYF_EXT Extended key

HOTKEYF_SHIFT SHIFT key

Return ValueReturn Value

RemarksRemarks

CHotKeyCtrl::GetHotKeyName

CString GetHotKeyName() const;

Return ValueReturn Value

RemarksRemarks

CHotKeyCtrl::GetKeyName

static CString GetKeyName(
 UINT vk,
 BOOL fExtended);

ParametersParameters

wVirtualKeyCode
[out] Virtual key code of the keyboard shortcut. For a list of standard virtual key codes, see Winuser.h.

wModifiers
[out] A bitwise combination (OR) of flags that indicate the modifier keys in the keyboard shortcut.

The modifier flags are as follows:

In the first overloaded method, a DWORD that contains the virtual key code and modifier flags. The low-order
byte of the low-order word contains the virtual key code, the high-order byte of the low-order word contains the
modifier flags, and the high-order word is zero.

The virtual key code and the modifier keys together define the keyboard shortcut.

Call this member function to get the localized name of the hot key.

The localized name of the currently selected hot key. If there is no selected hot key, GetHotKeyName returns an
empty string.

The name that this member function returns comes from the keyboard driver. You can install a non-localized
keyboard driver in a localized version of Windows, and vice versa.

Call this member function to get the localized name of the key assigned to a specified virtual key code.

vk
The virtual key code.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CString str;

str = CHotKeyCtrl::GetKeyName(VK_CONTROL, FALSE);

// str is now "Ctrl", or the localized equivalent.

CHotKeyCtrl::SetHotKey

void SetHotKey(
 WORD wVirtualKeyCode,
 WORD wModifiers);

ParametersParameters

FLAG CORRESPONDING KEY

HOTKEYF_ALT ALT key

HOTKEYF_CONTROL CTRL key

HOTKEYF_EXT Extended key

HOTKEYF_SHIFT SHIFT key

RemarksRemarks

CHotKeyCtrl::SetRules

fExtended
If the virtual key code is an extended key, TRUE; otherwise FALSE.

The localized name of the key specified by the vk parameter. If the key has no mapped name, GetKeyName returns
an empty string.

The key name that this function returns comes from the keyboard driver, so you can install a non-localized
keyboard driver in a localized version of Windows, and vice versa.

Sets the keyboard shortcut for a hot key control.

wVirtualKeyCode
[in] Virtual key code of the keyboard shortcut. For a list of standard virtual key codes, see Winuser.h.

wModifiers
[in] A bitwise combination (OR) of flags that indicate the modifier keys in the keyboard shortcut.

The modifier flags are as follows:

The virtual key code and the modifier keys together define the keyboard shortcut.

Call this function to define the invalid combinations and the default modifier combination for a hot key control.

void SetRules(
 WORD wInvalidComb,
 WORD wModifiers);

ParametersParameters

RemarksRemarks

See also

wInvalidComb
Array of flags that specifies invalid key combinations. It can be a combination of the following values:

HKCOMB_A ALT

HKCOMB_C CTRL

HKCOMB_CA CTRL+ALT

HKCOMB_NONE Unmodified keys

HKCOMB_S SHIFT

HKCOMB_SA SHIFT+ALT

HKCOMB_SC SHIFT+CTRL

HKCOMB_SCA SHIFT+CTRL+ALT

wModifiers
Array of flags that specifies the key combination to use when the user enters an invalid combination. For more
information on the modifier flags, see GetHotKey.

When a user enters an invalid key combination, as defined by flags specified in wInvalidComb, the system uses
the OR operator to combine the keys entered by the user with the flags specified in wModifiers. The resulting key
combination is converted into a string and then displayed in the hot key control.

CWnd Class
Hierarchy Chart

CHtmlEditCtrl Class
3/5/2019 • 2 minutes to read • Edit Online

Syntax
class CHtmlEditCtrl: public CWnd,
 public CHtmlEditCtrlBase<CHtmlEditCtrl>

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CHtmlEditCtrl::CHtmlEditCtrl Constructs a CHtmlEditCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CHtmlEditCtrl::Create Creates a WebBrowser ActiveX control and attaches it to the
CHtmlEditCtrl object. This function automatically puts the

WebBrowser ActiveX control into edit mode.

CHtmlEditCtrl::GetDHtmlDocument Retrieves the IHTMLDocument2 interface on the document
currently loaded in the contained WebBrowser control.

CHtmlEditCtrl::GetStartDocument Retrieves the URL to a default document to load in the
contained WebBrowser control.

Remarks

Inheritance Hierarchy

Requirements

Provides the functionality of the WebBrowser ActiveX control in an MFC window.

The hosted WebBrowser control is automatically put into edit mode after it is created.

CObject

CCmdTarget

CHtmlEditCtrlBase

CWnd

CHtmlEditCtrl

Header: afxhtml.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/chtmleditctrl-class.md
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa752574(v=vs.85)

CHtmlEditCtrl::CHtmlEditCtrl

CHtmlEditCtrl();

CHtmlEditCtrl::Create

virtual BOOL Create(
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 int nID,
 CCreateContext* pContext = NULL);

ParametersParameters

Return ValueReturn Value

CHtmlEditCtrl::GetDHtmlDocument

BOOL GetDHtmlDocument(IHTMLDocument2** ppDocument) const;

ParametersParameters

CHtmlEditCtrl::GetStartDocument

Constructs a CHtmlEditCtrl object.

Creates a WebBrowser ActiveX control and attaches it to the CHtmlEditCtrl object. The WebBrowser ActiveX
control automatically navigates to a default document and then is placed in edit mode by this function.

lpszWindowName
This parameter is unused.

dwStyle
This parameter is unused.

rect
Specifies the control's size and position.

pParentWnd
Specifies the control's parent window. It must not be NULL.

nID
Specifies the control's ID.

pContext
This parameter is unused.

Returns TRUE on success, FALSE on failure.

Retrieves the IHTMLDocument2 interface on the document currently loaded in the contained WebBrowser control

ppDocument
The document interface.

Retrieves the URL to a default document to load in the contained WebBrowser control.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa752574(v=vs.85)

virtual LPCTSTR GetStartDocument();

See also
Hierarchy Chart

CHtmlEditCtrlBase Class
3/5/2019 • 32 minutes to read • Edit Online

Syntax
template <class T> class CHtmlEditCtrlBase

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CHtmlEditCtrlBase::AddToGlyphTable Adds an entry to the glyph table, which specifies images to
display for specific tags in design mode.

CHtmlEditCtrlBase::Bold Toggles the bold state of the selected text.

CHtmlEditCtrlBase::Button Overwrites a button control on the current selection.

CHtmlEditCtrlBase::CheckBox Overwrites a check box control on the current selection.

CHtmlEditCtrlBase::ClearSelection Clears the current selection.

CHtmlEditCtrlBase::Copy Copies the current selection to the clipboard.

CHtmlEditCtrlBase::Cut Copies the current selection to the clipboard and then deletes
it.

CHtmlEditCtrlBase::Delete Deletes the current selection.

CHtmlEditCtrlBase::DropDownBox Overwrites a drop-down selection control on the current
selection.

CHtmlEditCtrlBase::EmptyGlyphTable Removes all entries from the glyph table, which hides all
images displayed for tags in design mode.

CHtmlEditCtrlBase::ExecCommand Executes a command.

CHtmlEditCtrlBase::Font Opens a font dialog box to enable the user to change the text
color, font, and font size of the current selection.

CHtmlEditCtrlBase::GetAbsolutePosition Returns whether an element's position property is "absolute."

CHtmlEditCtrlBase::GetBackColor Retrieves the background color of the current selection.

CHtmlEditCtrlBase::GetBlockFormat Retrieves the current block format tag.

Represents an HTML editing component.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/chtmleditctrlbase-class.md

CHtmlEditCtrlBase::GetBlockFormatNames Retrieves the strings corresponding to the available block
format tags.

CHtmlEditCtrlBase::GetBookMark Retrieves the name of a bookmark anchor.

CHtmlEditCtrlBase::GetDocument Retrieves the document object.

CHtmlEditCtrlBase::GetDocumentHTML Retrieves the HTML of the current document.

CHtmlEditCtrlBase::GetDocumentTitle Retrieves the document's title.

CHtmlEditCtrlBase::GetEvent Retrieves an interface pointer to the event object that
contains information relevant to the most recent event.

CHtmlEditCtrlBase::GetEventSrcElement Retrieves the object that fired the event.

CHtmlEditCtrlBase::GetFontFace Retrieves the font name for the current selection.

CHtmlEditCtrlBase::GetFontSize Retrieves the font size for the current selection.

CHtmlEditCtrlBase::GetForeColor Retrieves the foreground (text) color of the current selection.

CHtmlEditCtrlBase::GetFrameZone Returns the security zone of the current page in the web
browser.

CHtmlEditCtrlBase::GetIsDirty Indicates whether the HTML document has changed.

CHtmlEditCtrlBase::GetShowAlignedSiteTags Returns whether a glyph is displayed for all elements that
have a styleFloat property.

CHtmlEditCtrlBase::GetShowAllTags Returns whether the WebBrowser displays glyphs to show the
location of all tags in a document.

CHtmlEditCtrlBase::GetShowAreaTags Retrieves whether the WebBrowser displays a glyph for area
tags.

CHtmlEditCtrlBase::GetShowBRTags Retrieves whether the WebBrowser displays a glyph for br
tags.

CHtmlEditCtrlBase::GetShowCommentTags Retrieves whether the WebBrowser displays a glyph for
comment tags.

CHtmlEditCtrlBase::GetShowMiscTags Retrieves whether the WebBrowser displays all the tags shown
in Microsoft Internet Explorer 4.0.

CHtmlEditCtrlBase::GetShowScriptTags Retrieves whether the WebBrowser displays a glyph for all the
script tags.

CHtmlEditCtrlBase::GetShowStyleTags Retrieves whether the WebBrowser displays a glyph for all the
style tags.

NAME DESCRIPTION

CHtmlEditCtrlBase::GetShowUnknownTags Retrieves whether the WebBrowser displays a glyph for all
unknown tags.

CHtmlEditCtrlBase::HorizontalLine Overwrites a horizontal line on the current selection.

CHtmlEditCtrlBase::HyperLink Inserts a hyperlink on the current selection.

CHtmlEditCtrlBase::IE50Paste Performs a paste operation compatible with Microsoft
Internet Explorer 5.

CHtmlEditCtrlBase::Iframe Overwrites an inline frame on the current selection.

CHtmlEditCtrlBase::Image Overwrites an image on the current selection.

CHtmlEditCtrlBase::Indent Increases the indent of the selected text by one indentation
increment.

CHtmlEditCtrlBase::InsFieldSet Overwrites a box on the current selection.

CHtmlEditCtrlBase::InsInputButton Overwrites a button control on the current selection.

CHtmlEditCtrlBase::InsInputHidden Inserts a hidden control on the current selection.

CHtmlEditCtrlBase::InsInputImage Overwrites an image control on the current selection.

CHtmlEditCtrlBase::InsInputPassword Overwrites a password control on the current selection.

CHtmlEditCtrlBase::InsInputReset Overwrites a reset control on the current selection.

CHtmlEditCtrlBase::InsInputSubmit Overwrites a submit control on the current selection.

CHtmlEditCtrlBase::InsInputUpload Overwrites a file upload control on the current selection.

CHtmlEditCtrlBase::Is1DElement Determines if an element is statically positioned.

CHtmlEditCtrlBase::Is2DElement Determines if an element is absolutely positioned.

CHtmlEditCtrlBase::Italic Toggles the current selection between italic and nonitalic.

CHtmlEditCtrlBase::JustifyCenter Centers the format block in which the current selection is
located.

CHtmlEditCtrlBase::JustifyLeft Left-justifies the format block in which the current selection is
located.

CHtmlEditCtrlBase::JustifyRight Right-justifies the format block in which the current selection
is located.

CHtmlEditCtrlBase::ListBox Overwrites a list box selection control on the current selection.

CHtmlEditCtrlBase::Marquee Overwrites an empty marquee on the current selection.

NAME DESCRIPTION

CHtmlEditCtrlBase::NewDocument Creates a new document.

CHtmlEditCtrlBase::OrderList Toggles the current selection between an ordered list and a
normal format block.

CHtmlEditCtrlBase::Outdent Decreases by one increment the indentation of the format
block in which the current selection is located.

CHtmlEditCtrlBase::Paragraph Overwrites a line break on the current selection.

CHtmlEditCtrlBase::Paste Overwrites the contents of the clipboard on the current
selection.

CHtmlEditCtrlBase::PrintDocument Prints the current document.

CHtmlEditCtrlBase::PrintPreview Opens the Print Preview window for the current document
using either the default print preview template or a custom
template.

CHtmlEditCtrlBase::QueryStatus Call this method to query the status of commands.

CHtmlEditCtrlBase::RadioButton Overwrites a radio control on the current selection.

CHtmlEditCtrlBase::RefreshDocument Refreshes the current document.

CHtmlEditCtrlBase::RemoveFormat Removes the formatting tags from the current selection.

CHtmlEditCtrlBase::SaveAs Saves the current Web page to a file.

CHtmlEditCtrlBase::SelectAll Selects the entire document.

CHtmlEditCtrlBase::Set2DPosition Allows absolutely positioned elements to be moved by
dragging.

CHtmlEditCtrlBase::SetAbsolutePosition Sets an element's position property to "absolute" or "static."

CHtmlEditCtrlBase::SetAtomicSelection Set atomic selection mode.

CHtmlEditCtrlBase::SetAutoURLDetectMode Turns automatic URL detection on and off.

CHtmlEditCtrlBase::SetBackColor Sets the background color of the current selection.

CHtmlEditCtrlBase::SetBlockFormat Sets the current block format tag.

CHtmlEditCtrlBase::SetBookMark Creates a bookmark anchor for the current selection or
insertion point.

CHtmlEditCtrlBase::SetCSSEditingLevel Selects which CSS level (CSS1 or CSS2) the editor will support,
if any.

CHtmlEditCtrlBase::SetDefaultComposeSettings Call this method to set the default compose settings.

NAME DESCRIPTION

CHtmlEditCtrlBase::SetDesignMode Set design mode.

CHtmlEditCtrlBase::SetDisableEditFocusUI Disables the hatched border and handles around an element
that has edit focus.

CHtmlEditCtrlBase::SetDocumentHTML Sets the HTML of the current document.

CHtmlEditCtrlBase::SetFontFace Sets the font for the current selection.

CHtmlEditCtrlBase::SetFontSize Sets the font size for the current selection.

CHtmlEditCtrlBase::SetForeColor Sets the foreground (text) color of the current selection.

CHtmlEditCtrlBase::SetIE5PasteMode Sets the paste operation to be compatible with Microsoft
Internet Explorer 5.

CHtmlEditCtrlBase::SetLiveResize Causes the WebBrowser to update an element's appearance
continuously during a resizing or moving operation.

CHtmlEditCtrlBase::SetMultiSelect Enables multiple selection.

CHtmlEditCtrlBase::SetOverrideCursor Commands the WebBrowser never to change the mouse
pointer.

CHtmlEditCtrlBase::SetOverwriteMode Toggles the text-entry mode between insert and overwrite.

CHtmlEditCtrlBase::SetRespectVisInDesign Hides invisible elements in design mode.

CHtmlEditCtrlBase::SetShowAlignedSiteTags Displays a glyph for all elements that have a styleFloat

property.

CHtmlEditCtrlBase::SetShowAllTags Displays glyphs to show the location of all tags in a document.

CHtmlEditCtrlBase::SetShowAreaTags Displays a glyph for all the area tags.

CHtmlEditCtrlBase::SetShowBRTags Displays a glyph for all the br tags.

CHtmlEditCtrlBase::SetShowCommentTags Displays a glyph for all the comment tags.

CHtmlEditCtrlBase::SetShowMiscTags Displays all the tags shown in Microsoft Internet Explorer 4.0.

CHtmlEditCtrlBase::SetShowScriptTags Displays a glyph for all the script tags.

CHtmlEditCtrlBase::SetShowStyleTags Displays a glyph for all the style tags.

CHtmlEditCtrlBase::SetShowUnknownTags Displays a glyph for all the unknown tags.

CHtmlEditCtrlBase::TextArea Overwrites a multiline text input control on the current
selection.

CHtmlEditCtrlBase::TextBox Overwrites a text control on the current selection.

NAME DESCRIPTION

CHtmlEditCtrlBase::UnBookmark Removes any bookmark from the current selection.

CHtmlEditCtrlBase::Underline Toggles the current selection between underlined and not
underlined.

CHtmlEditCtrlBase::Unlink Removes any hyperlink from the current selection.

CHtmlEditCtrlBase::UnorderList Toggles the current selection between an ordered list and a
normal format block.

NAME DESCRIPTION

ParametersParameters

Remarks

Inheritance Hierarchy

Requirements

CHtmlEditCtrlBase::AddToGlyphTable

HRESULT AddToGlyphTable(
 LPCTSTR szTag,
 LPCTSTR szImgUrl,
 unsigned short nTagType,
 unsigned short nAlignment,
 unsigned short nPosInfo,
 unsigned short nDirection,
 unsigned int nImgWidth,
 unsigned int nImgHeight) const;

ParametersParameters

T
The name of the derived class.

CHtmlEditCtrlBase provides member functions for the WebBrowser's HTML editing commands, such as Bold.
(Alternately, you can call ExecCommand to execute the IDM_BOLD command.)

CHtmlEditCtrlBase is not intended to stand on its own. It is designed to be a base class for derived classes that
expose the HTML editing functionality of the WebBrowser (see CHtmlEditCtrl and CHtmlEditView).

CHtmlEditCtrlBase

Header: afxhtml.h

Adds an entry to the glyph table, which specifies images to display for specific tags in design mode.

szTag
The tag name (for example, "P" or "table").

szImgUrl
The image URL.

nTagType
Tag type: 0 means the image is for the opening tag only. 1 means the image is for the closing tag only. 2 means the
image is for both the opening and closing tags. Single tags such as br and comment must be added with the tag

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Bold

HRESULT Bold() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Button

HRESULT Button(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

type set to 0.

nAlignment
Alignment (rectangular elements only): This parameter indicates that the image is for an element with an
alignment attribute. Left = 0, center = 1, right = 2, and undefined = 3. Left, right, or center attributes must be
explicitly set on the element.

nPosInfo
Positioning information. Determines what cascading style sheets (CSS) positioning value the glyph applies to,
where static positioning = 0, absolute positioning = 1, relative positioning = 2, and all = 3. This field enables you
to specify one glyph for a tag when it is not positioned and another glyph to show an anchor point when the tag is
positioned.

nDirection
The direction. This parameter specifies the image for a tag based on the reading order of the current language. 0
specifies left to right, 1 specifies right to left, 2 specifies top to bottom, 3 specifies bottom to top, and 4 specifies all.
You normally set this field to 4.

nImgWidth
The image width in pixels.

nImgHeight
The image height in pixels.

Returns S_OK on success, or an error HRESULT on failure.

For more information on the parameters, see "Glyph Table String Format" in Using Editing Glyphs.

This method sends the IDM_ADDTOGLYPHTABLE command ID to the WebBrowser control.

Toggles the bold state of the selected text.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_BOLD command ID to the WebBrowser control.

Overwrites a button control on the current selection.

szId
The ID of the button control.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa969614(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769891(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769861(v=vs.85)

RemarksRemarks

CHtmlEditCtrlBase::CheckBox

HRESULT CheckBox(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::ClearSelection

HRESULT ClearSelection() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Copy

HRESULT Copy() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Cut

HRESULT Cut() const;

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_BUTTON command ID to the WebBrowser control.

Overwrites a check box control on the current selection.

szId
The ID of the check box control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_CHECKBOX command ID to the WebBrowser control.

Clears the current selection.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_CLEARSELECTION command ID to the WebBrowser control.

Copies the current selection to the clipboard.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_COPY command ID to the WebBrowser control.

Copies the current selection to the clipboard and then deletes it.

https://docs.microsoft.com/previous-versions/aa769966(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769972(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770038(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769872(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Delete

HRESULT Delete() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::DropDownBox

HRESULT DropDownBox(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::EmptyGlyphTable

HRESULT EmptyGlyphTable() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::ExecCommand

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_CUT command ID to the WebBrowser control.

Deletes the current selection.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_DELETE command ID to the WebBrowser control.

Overwrites a drop-down selection control on the current selection.

szId
The ID of the drop-down selection control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_DROPDOWNBOX command ID to the WebBrowser control.

Removes all entries from the glyph table, which hides all images displayed for tags in design mode.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_EMPTYGLYPHTABLE command ID to the WebBrowser control.

Executes a command.

https://docs.microsoft.com/previous-versions/aa769875(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769876(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769984(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769907(v=vs.85)

HRESULT ExecCommand(
 long cmdID,
 long cmdExecOpt,
 VARIANT* pInVar = NULL,
 VARIANT* pOutVar = NULL) const;

HRESULT ExecCommand(
 const GUID* pGuid,
 long cmdID,
 long cmdExecOpt,
 VARIANT* pInVar = NULL,
 VARIANT* pOutVar = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Font

HRESULT Font() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetAbsolutePosition

HRESULT GetAbsolutePosition(bool& bCurValue) const;

ParametersParameters

cmdID
The command ID to be executed. For a list, see MSHTML Command Identifiers.

cmdExecOpt
Values taken from the OLECMDEXECOPT enumeration, which describe how the object should execute the
command.

pInVar
The input arguments.

pOutVar
The command output.

pGuid
The GUID of the command group.

Returns S_OK on success, or an error HRESULT on failure.

This method provides the functionality of IOleCommandTarget::Exec.

Opens a font dialog box to enable the user to change the text color, font, and font size of the current selection.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_FONT command ID to the WebBrowser control.

Returns whether an element's position property is "absolute."

https://docs.microsoft.com/previous-versions/aa741315(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/docobj/ne-docobj-olecmdexecopt
https://docs.microsoft.com/windows/desktop/api/docobj/nf-docobj-iolecommandtarget-exec
https://docs.microsoft.com/previous-versions/aa769913(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetBackColor

HRESULT GetBackColor(int& nColor) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetBlockFormat

HRESULT GetBlockFormat(CString& strFormat) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetBlockFormatNames

HRESULT GetBlockFormatNames(CStringArray& sa) const;

ParametersParameters

Return ValueReturn Value

bCurValue
TRUE if the element's position property is set to "absolute."

Returns S_OK on success, or an error HRESULT on failure.

For more information, see IDM_ABSOLUTE_POSITION Command ID.

Retrieves the background color of the current selection.

nColor
The background color.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_BACKCOLOR Command ID to the WebBrowser control.

Retrieves the current block format tag.

strFormat
The current block format tag.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_BLOCKFMT command ID to the WebBrowser control.

Retrieves the strings corresponding to the available block format tags.

sa
The available block format tags, as an array of strings.

https://docs.microsoft.com/previous-versions/aa769889(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769858(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769883(v=vs.85)

RemarksRemarks

CHtmlEditCtrlBase::GetBookMark

HRESULT GetBookMark(CString& strAnchor) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetDocument

HRESULT GetDocument(IHTMLDocument2** ppDoc) const;

ParametersParameters

Return ValueReturn Value

CHtmlEditCtrlBase::GetDocumentHTML

HRESULT GetDocumentHTML(CString& szHTML) const;

ParametersParameters

Return ValueReturn Value

CHtmlEditCtrlBase::GetDocumentTitle

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_GETBLOCKFMTS command ID to the WebBrowser control.

Retrieves the name of a bookmark anchor.

strAnchor
The name of a bookmark anchor.

Returns S_OK on success, or an error HRESULT on failure.

For more information, see IDM_BOOKMARK Command ID.

Retrieves the document object.

ppDoc
The document object.

Returns S_OK on success, or an error HRESULT on failure.

Retrieves the HTML of the current document.

szHTML
The HTML.

Returns S_OK on success, or an error HRESULT on failure.

Retrieves the document's title.

https://docs.microsoft.com/previous-versions/aa769884(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769873(v=vs.85)

HRESULT GetDocumentTitle(CString& szTitle) const;

ParametersParameters

Return ValueReturn Value

CHtmlEditCtrlBase::GetEvent

HRESULT GetEvent(IHTMLEventObj** ppEventObj) const;

ParametersParameters

Return ValueReturn Value

CHtmlEditCtrlBase::GetEventSrcElement

HRESULT GetEventSrcElement(IHTMLElement** ppSrcElement) const;

ParametersParameters

Return ValueReturn Value

CHtmlEditCtrlBase::GetFontFace

HRESULT GetFontFace(CString& strFace) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

szTitle
The document's title.

Returns S_OK on success, or an error HRESULT on failure.

Retrieves an interface pointer to the event object that contains information relevant to the most recent event.

ppEventObj
The event object.

Returns S_OK on success, or an error HRESULT on failure.

Retrieves the object that fired the event.

ppSrcElement
The element that fired the event.

Returns S_OK on success, or an error HRESULT on failure.

Retrieves the font name for the current selection.

strFace
The font name.

Returns S_OK on success, or an error HRESULT on failure.

If the current selection uses more than one font, strFace will be an empty string.

CHtmlEditCtrlBase::GetFontSize

HRESULT GetFontSize(short& nSize) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetForeColor

HRESULT GetForeColor(int& nColor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetFrameZone

HRESULT GetFrameZone(short& nZone) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetIsDirty

This method sends the IDM_FONTNAME command ID to the WebBrowser control.

Retrieves the font size for the current selection.

nSize
The font size.

Returns the HTML font size (1-7). Returns 0 if the selection contains multiple font sizes.

This method sends the IDM_FONTSIZE command ID to the WebBrowser control.

Retrieves the foreground (text) color of the current selection.

nColor
The foreground color.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_FORECOLOR Command ID to the WebBrowser control.

Returns the security zone of the current page in the web browser.

nZone
The security zone.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_GETFRAMEZONE command ID to the WebBrowser control.

https://docs.microsoft.com/previous-versions/aa769880(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769881(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769882(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769916(v=vs.85)

HRESULT GetIsDirty() const;

RemarksRemarks

CHtmlEditCtrlBase::GetShowAlignedSiteTags

HRESULT GetShowAlignedSiteTags(bool& bCurValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetShowAllTags

HRESULT GetShowAllTags(bool& bCurValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetShowAreaTags

HRESULT GetShowAreaTags(bool& bCurValue) const;

ParametersParameters

Return ValueReturn Value

Indicates whether the HTML document has changed.

Indicates whether the document has changed. GetIsDirty returns an HRESULT from IPersistStorage::IsDirty.

Returns whether a glyph is displayed for all elements that have a styleFloat property.

bCurValue
TRUE if a glyph is displayed for all elements that have a styleFloat property; FALSE if no glyph is displayed.

Returns S_OK on success, or an error HRESULT on failure.

For more information, see IDM_SHOWALIGNEDSITETAGS Command ID.

Returns whether the WebBrowser displays glyphs to show the location of all tags in a document.

bCurValue
TRUE if the WebBrowser displays glyphs to show the location of all tags in a document; FALSE if it does not.

Returns S_OK on success, or an error HRESULT on failure.

For more information, see IDM_SHOWALLTAGS Command ID.

Retrieves whether the WebBrowser displays a glyph for area tags.

bCurValue
TRUE if the WebBrowser displays a glyph for area tags, FALSE if it does not.

Returns S_OK on success, or an error HRESULT on failure.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststorage-isdirty
https://docs.microsoft.com/previous-versions/aa769947(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769948(v=vs.85)

RemarksRemarks

CHtmlEditCtrlBase::GetShowBRTags

HRESULT GetShowBRTags(bool& bCurValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetShowCommentTags

HRESULT GetShowCommentTags(bool& bCurValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetShowMiscTags

HRESULT GetShowMiscTags(bool& bCurValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

For more information, see IDM_SHOWAREATAGS Command ID.

Retrieves whether the WebBrowser displays a glyph for br tags.

bCurValue
TRUE if the WebBrowser displays a glyph for br tags, FALSE if it doesn't.

Returns S_OK on success, or an error HRESULT on failure.

For more information, see IDM_SHOWWBRTAGS Command ID.

Retrieves whether the WebBrowser displays a glyph for comment tags.

bCurValue
TRUE if the WebBrowser displays a glyph for comment tags, FALSE if it doesn't.

Returns S_OK on success, or an error HRESULT on failure.

For more information, see IDM_SHOWCOMMENTTAGS Command ID.

Retrieves whether the WebBrowser displays all the tags shown in Microsoft Internet Explorer 4.0.

bCurValue
TRUE if the WebBrowser displays all the tags shown in Microsoft Internet Explorer 4.0, FALSE if it does not.

Returns S_OK on success, or an error HRESULT on failure.

For more information, see IDM_SHOWMISCTAGS Command ID.

https://docs.microsoft.com/previous-versions/aa769949(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769956(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769950(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769952(v=vs.85)

CHtmlEditCtrlBase::GetShowScriptTags

HRESULT GetShowScriptTags(bool& bCurValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetShowStyleTags

HRESULT GetShowStyleTags(bool& bCurValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::GetShowUnknownTags

HRESULT GetShowUnknownTags(bool& bCurValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::HorizontalLine

Retrieves whether the WebBrowser displays a glyph for all the script tags.

bCurValue
TRUE if the WebBrowser displays a glyph for all the script tags, FALSE if it does not.

Returns S_OK on success, or an error HRESULT on failure.

For more information, see IDM_SHOWSCRIPTTAGS Command ID.

Retrieves whether the WebBrowser displays a glyph for all the style tags.

bCurValue
TRUE if the WebBrowser displays a glyph for all the style tags, FALSE if it does not

Returns S_OK on success, or an error HRESULT on failure.

For more information, see IDM_SHOWSTYLETAGS Command ID.

Retrieves whether the WebBrowser displays a glyph for all unknown tags.

bCurValue
TRUE if the WebBrowser displays a glyph for all unknown tags, FALSE if it does not.

Returns S_OK on success, or an error HRESULT on failure.

For more information, see IDM_SHOWUNKNOWNTAGS Command ID.

Overwrites a horizontal line on the current selection.

https://docs.microsoft.com/previous-versions/aa769953(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769954(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769955(v=vs.85)

HRESULT HorizontalLine(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::HyperLink

HRESULT HyperLink(LPCTSTR szUrl = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::IE50Paste

HRESULT IE50Paste(LPCTSTR szData) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Iframe

HRESULT Iframe(LPCTSTR szId = NULL) const;

ParametersParameters

szID
The ID for the horizontal line.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_HORIZONTALLINE command ID to the WebBrowser control.

Inserts a hyperlink on the current selection.

szUrl
The hyperlink URL.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_HYPERLINK command ID to the WebBrowser control.

Performs a paste operation that's compatible with Internet Explorer 5.

szData
The string to paste.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_IE50_PASTE command ID to the WebBrowser control.

Overwrites an inline frame on the current selection.

https://docs.microsoft.com/previous-versions/aa769968(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769874(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769922(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Image

HRESULT Image(LPCTSTR szUrl = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Indent

HRESULT Indent() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::InsFieldSet

HRESULT InsFieldSet(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

szId
The ID for the inline frame.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_IFRAME command ID to the WebBrowser control.

Overwrites an image on the current selection.

szUrl
The path and file name of the image to be inserted.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_IMAGE command ID to the WebBrowser control.

Increases the indent of the selected text by one indentation increment.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_INDENT command ID to the WebBrowser control.

Overwrites a box on the current selection.

szId
The ID for the box.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_INSFIELDSET command ID to the WebBrowser control.

https://docs.microsoft.com/previous-versions/aa769969(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769970(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769963(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769967(v=vs.85)

CHtmlEditCtrlBase::InsInputButton

HRESULT InsInputButton(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::InsInputHidden

HRESULT InsInputHidden(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::InsInputImage

HRESULT InsInputImage(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::InsInputPassword

Overwrites a button control on the current selection.

szId
The ID for the button control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_INSINPUTBUTTON command ID to the WebBrowser control.

Inserts a hidden control on the current selection.

szId
The ID for the hidden control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_INSINPUTHIDDEN command ID to the WebBrowser control.

Overwrites an image control on the current selection.

szId
The ID for the image control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_INSINPUTIMAGE command ID to the WebBrowser control.

Overwrites a password control on the current selection.

https://docs.microsoft.com/previous-versions/aa769971(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769974(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769975(v=vs.85)

HRESULT InsInputPassword(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::InsInputReset

HRESULT InsInputReset(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::InsInputSubmit

HRESULT InsInputSubmit(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::InsInputUpload

HRESULT InsInputUpload(LPCTSTR szId = NULL) const;

ParametersParameters

szId
The ID for the password control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_INSINPUTPASSWORD command ID to the WebBrowser control.

Overwrites a reset control on the current selection.

szId
The ID for the reset control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_INSINPUTRESET command ID to the WebBrowser control.

Overwrites a submit control on the current selection.

szId
The ID for the submit control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_INSINPUTSUBMIT command ID to the WebBrowser control.

Overwrites a file upload control on the current selection.

https://docs.microsoft.com/previous-versions/aa769976(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769978(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769979(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Is1DElement

HRESULT Is1DElement(bool& bValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Is2DElement

HRESULT Is2DElement(bool& bValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Italic

HRESULT Italic() const;

Return ValueReturn Value

RemarksRemarks

szId
The ID for the file upload control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_INSINPUTUPLOAD command ID to the WebBrowser control.

Determines if an element is statically positioned.

bValue
TRUE if the element is statically positioned, FALSE otherwise.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_1D_ELEMENT command ID to the WebBrowser control.

Determines if an element is absolutely positioned.

bValue
TRUE if the element is absolutely positioned, FALSE otherwise.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_2D_ELEMENT command ID to the WebBrowser control.

Toggles the current selection between italic and nonitalic.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_ITALIC command ID to the WebBrowser control.

https://docs.microsoft.com/previous-versions/aa769973(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769885(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769886(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769988(v=vs.85)

CHtmlEditCtrlBase::JustifyCenter

HRESULT JustifyCenter() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::JustifyLeft

HRESULT JustifyLeft() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::JustifyRight

HRESULT JustifyRight() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::ListBox

HRESULT ListBox(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Centers the format block in which the current selection is located.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_JUSTIFYCENTER command ID to the WebBrowser control.

Left-justifies the format block in which the current selection is located.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_JUSTIFYLEFT command ID to the WebBrowser control.

Right-justifies the format block in which the current selection is located.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_JUSTIFYRIGHT command ID to the WebBrowser control.

Overwrites a list box selection control on the current selection.

szId
The ID for the list box control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_LISTBOX command ID to the WebBrowser control.

https://docs.microsoft.com/previous-versions/aa769989(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770011(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770013(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769985(v=vs.85)

CHtmlEditCtrlBase::Marquee

HRESULT Marquee(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::NewDocument

HRESULT NewDocument() const;

Return ValueReturn Value

CHtmlEditCtrlBase::OrderList

HRESULT OrderList(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Outdent

HRESULT Outdent() const;

Return ValueReturn Value

RemarksRemarks

Overwrites an empty marquee on the current selection.

szId
The ID for the marquee.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_MARQUEE command ID to the WebBrowser control.

Creates a new document.

Returns S_OK on success, or an error HRESULT on failure.

Toggles the current selection between an ordered list and a normal format block.

szId
The ID for the ordered list.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_ORDERLIST command ID to the WebBrowser control.

Decreases by one increment the indentation of the format block in which the current selection is located.

Returns S_OK on success, or an error HRESULT on failure.

https://docs.microsoft.com/previous-versions/aa769981(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769982(v=vs.85)

CHtmlEditCtrlBase::Paragraph

HRESULT Paragraph(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Paste

HRESULT Paste() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::PrintDocument

HRESULT PrintDocument() const;
HRESULT PrintDocument(LPCTSTR szPrintTemplate) const;
HRESULT PrintDocument(bool bShowPrintDialog) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::PrintPreview

This method sends the IDM_OUTDENT command ID to the WebBrowser control.

Overwrites a line break on the current selection.

szId
The ID for the paragraph.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_PARAGRAPH command ID to the WebBrowser control.

Overwrites the contents of the clipboard on the current selection.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_PASTE command ID to the WebBrowser control.

Prints the current document.

szPrintTemplate
Path to a print template; if none is specified, the default print template is used.

bShowPrintDialog
If TRUE, shows the Print dialog.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_PRINT command ID to the WebBrowser control.

https://docs.microsoft.com/previous-versions/aa770015(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769983(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770017(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769937(v=vs.85)

HRESULT PrintPreview() const;
HRESULT PrintPreview(LPCTSTR szPrintTemplate) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::QueryStatus

long QueryStatus(long cmdID) const;

ParametersParameters

Return ValueReturn Value

CHtmlEditCtrlBase::RadioButton

HRESULT RadioButton(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::RefreshDocument

HRESULT RefreshDocument() const;

Opens the Print Preview window for the current document using either the default print preview template or a
custom template.

szPrintTemplate
Path to a print template.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_PRINTPREVIEW command ID to the WebBrowser control.

Call this method to query the status of commands.

cmdID
The command ID. Command identifiers are taken from the CGID_MSHTML command group. These commands
are defined in Mshtmcid.h. You can also find the list online at MSHTML Command Identifiers.

Returns an OLECMDF indicating the status for cmdID, or 0 on failure.

Overwrites a radio control on the current selection.

szId
The ID of the radio button.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_RADIOBUTTON command ID to the WebBrowser control.

Refreshes the current document.

https://docs.microsoft.com/previous-versions/aa769938(v=vs.85)
http://go.microsoft.com/fwlink/p/?linkid=149220
https://docs.microsoft.com/windows/desktop/api/docobj/ne-docobj-olecmdf
https://docs.microsoft.com/previous-versions/aa769977(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::RemoveFormat

HRESULT RemoveFormat() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SaveAs

HRESULT SaveAs(LPCTSTR szPath = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SelectAll

HRESULT SelectAll() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Set2DPosition

HRESULT Set2DPosition(bool bNewValue) const;

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_REFRESH Command ID to the WebBrowser control.

Removes the formatting tags from the current selection.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_REMOVEFORMAT command ID to the WebBrowser control.

Saves the current Web page to a file.

szPath
The path and file name to which to save the Web page.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_SAVEAS command ID to the WebBrowser control.

Selects the entire document.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_SELECTALL command ID to the WebBrowser control.

Allows absolutely positioned elements to be moved by dragging.

https://docs.microsoft.com/previous-versions/aa770020(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770021(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770024(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770025(v=vs.85)

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetAbsolutePosition

HRESULT SetAbsolutePosition(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetAtomicSelection

HRESULT SetAtomicSelection(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetAutoURLDetectMode

HRESULT SetAutoURLDetectMode(bool bNewValue) const;

ParametersParameters

bNewValue
If TRUE, absolutely positioned elements can be moved by dragging.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_2D_POSITION command ID to the WebBrowser control.

Sets an element's position property to "absolute" or "static."

bNewValue
If TRUE, the element's position property is "absolute"; if FALSE, it is "static."

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_ABSOLUTE_POSITION command ID to the WebBrowser control.

Set atomic selection mode.

bNewValue
If TRUE, any element that has an ATOMICSELECTION attribute set to TRUE will be selectable only as a unit.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_ATOMICSELECTION command ID to the WebBrowser control.

Turns automatic URL detection on and off.

bNewValue
If TRUE, automatic URL detection is enabled.

https://docs.microsoft.com/previous-versions/aa769887(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769889(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769892(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetBackColor

HRESULT SetBackColor(int nColor) const;
HRESULT SetBackColor(LPCTSTR szColor) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetBlockFormat

HRESULT SetBlockFormat(LPCTSTR szFormat) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetBookMark

HRESULT SetBookMark(LPCTSTR szAnchorName) const;

ParametersParameters

Return ValueReturn Value

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_AUTOURLDETECT_MODE command ID to the WebBrowser control.

Sets the background color of the current selection.

nColor
The color. See pvaIn in IDM_BACKCOLOR Command ID.

szColor
The color. See pvaIn in IDM_BACKCOLOR Command ID.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_BACKCOLOR_ command ID to the WebBrowser control.

Sets the current block format tag.

szFormat
The format tag.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_BLOCKFMT_command ID to the WebBrowser control.

Creates a bookmark anchor for the current selection or insertion point.

szAnchorName
The anchor name.

https://docs.microsoft.com/previous-versions/aa769893(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769858(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769858(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769858(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769883(v=vs.85)

RemarksRemarks

CHtmlEditCtrlBase::SetCSSEditingLevel

HRESULT SetCSSEditingLevel(short nLevel) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetDefaultComposeSettings

HRESULT SetDefaultComposeSettings(
 LPCSTR szFontName = NULL,
 unsigned short nFontSize = 3,
 COLORREF crFontColor = 0xFF000000,
 COLORREF crFontBgColor = 0xFF000000,
 bool bBold = false,
 bool bItalic = false,
 bool bUnderline = false) const;

ParametersParameters

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_BOOKMARK command ID to the WebBrowser control.

Selects which CSS level (CSS1 or CSS2) the editor will support, if any.

nLevel
The CSS level. Pass 0 if you do not want CSS support.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_CSSEDITING_LEVEL command ID to the WebBrowser control.

Call this method to set the default compose settings.

szFontName
The font name.

nFontSize
The font size.

crFontColor
The font color.

crFontBgColor
The font background color.

bBold
Pass TRUE for bold text.

bItalic
Pass TRUE for italic text.

bUnderline
Pass TRUE for underlined text.

https://docs.microsoft.com/previous-versions/aa769873(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769903(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetDesignMode

BOOL SetDesignMode(BOOL bMode) const;

ParametersParameters

Return ValueReturn Value

CHtmlEditCtrlBase::SetDisableEditFocusUI

HRESULT SetDisableEditFocusUI(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetDocumentHTML

HRESULT SetDocumentHTML(LPCTSTR szHTML) const;

ParametersParameters

Return ValueReturn Value

CHtmlEditCtrlBase::SetFontFace

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_COMPOSESETTINGS command ID to the WebBrowser control.

Set design mode.

bMode
If TRUE, turns design mode on.

Returns TRUE on success, FALSE on failure.

Disables the hatched border and handles around an element that has edit focus.

bNewValue
If TRUE, disables the hatched border and handles around a site selectable element when the element has "edit
focus" in design mode; that is, when the text or contents of the element can be edited.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM_DISABLE_EDITFOCUS_UI command ID to the WebBrowser control.

Sets the HTML of the current document.

szHTML
The HTML.

Returns S_OK on success, or an error HRESULT on failure.

Sets the font for the current selection.

https://docs.microsoft.com/previous-versions/aa769901(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769905(v=vs.85)

HRESULT SetFontFace(LPCTSTR szFace) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetFontSize

HRESULT SetFontSize(unsigned short size) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetForeColor

HRESULT SetForeColor(LPCTSTR szColor) const;
HRESULT SetForeColor(int nColor) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetIE5PasteMode

szFace
The font name.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM FONTNAME Command ID to the WebBrowser control.

Sets the font size for the current selection.

size
The HTML font size (1-7). A value of 0 sets the font size to 1.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM FONTSIZE command ID to the WebBrowser control.

Sets the foreground (text) color of the current selection.

szColor
The color.

nColor
The color.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM FORECOLOR command ID to the WebBrowser control.

Sets the paste operation to be compatible with Microsoft Internet Explorer 5.

https://docs.microsoft.com/previous-versions/aa769880(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769881(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769882(v=vs.85)

HRESULT SetIE5PasteMode(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetLiveResize

HRESULT SetLiveResize(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetMultiSelect

HRESULT SetMultiSelect(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetOverrideCursor

bNewValue
If TRUE, all paste operations are compatible with Internet Explorer 5; if FALSE, paste operations are compatible
with Internet Explorer 5.5.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM IE50_PASTE_MODE command ID to the WebBrowser control.

Causes the WebBrowser to update an element's appearance continuously during a resizing or moving operation,
rather than updating only at the completion of the move or resize.

bNewValue
If TRUE, causes the WebBrowser to update an element's appearance continuously during a resizing or moving
operation; if FALSE, it updates only at the completion of the move or resize.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM LIVERESIZE command ID to the WebBrowser control.

Enables multiple selection.

bNewValue
If TRUE, allows for the selection of more than one site-selectable element at a time when the user holds down the
SHIFT or CTRL keys.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM MULTIPLESELECTION command ID to the WebBrowser control.

Commands the WebBrowser never to change the mouse pointer.

https://docs.microsoft.com/previous-versions/aa769923(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769928(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769929(v=vs.85)

HRESULT SetOverrideCursor(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetOverwriteMode

HRESULT SetOverwriteMode(bool bMode) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetRespectVisInDesign

HRESULT SetRespectVisInDesign(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetShowAlignedSiteTags

HRESULT SetShowAlignedSiteTags(bool bNewValue) const;

bNewValue
If TRUE, the WebBrowser will not change the mouse pointer.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM OVERRIDE_CURSOR command ID to the WebBrowser control.

Toggles the text-entry mode between insert and overwrite.

bMode
If TRUE, text-entry mode is overwrite; if FALSE, text-entry mode is insert.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM OVERWRITE command ID to the WebBrowser control.

Hides invisible elements in design mode.

bNewValue
If TRUE, any elements that have a visibility set to "hidden" or display property set to "none" will not be shown in
both design mode and browse mode; if FALSE, those elements will be displayed only in browse mode.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM RESPECTVISIBIL ITY_INDESIGN command ID to the WebBrowser control.

Displays a glyph for all elements that have a styleFloat property.

https://docs.microsoft.com/previous-versions/aa769932(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770016(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770023(v=vs.85)

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetShowAllTags

HRESULT SetShowAllTags(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetShowAreaTags

HRESULT SetShowAreaTags(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetShowBRTags

HRESULT SetShowBRTags(bool bNewValue) const;

ParametersParameters

bNewValue
If TRUE, displays a glyph for all elements that have a styleFloat property.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM SHOWALIGNEDSITETAGS command ID to the WebBrowser control.

Displays glyphs to show the location of all tags in a document.

bNewValue
If TRUE, displays glyphs to show the location of all tags in a document.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM SHOWALLTAGS command ID to the WebBrowser control.

Displays a glyph for all the area tags.

bNewValue
If TRUE, displays a glyph for all the area tags.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM SHOWAREATAGS command ID to the WebBrowser control.

Displays a glyph for all the br tags.

bNewValue
If TRUE, displays a glyph for all the br tags.

https://docs.microsoft.com/previous-versions/aa769947(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769948(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769949(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetShowCommentTags

HRESULT SetShowCommentTags(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetShowMiscTags

HRESULT SetShowMiscTags(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetShowScriptTags

HRESULT SetShowScriptTags(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM SHOWWBRTAGS command ID to the WebBrowser control.

Displays a glyph for all the comment tags.

bNewValue
If TRUE, displays a glyph for all the comment tags.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM SHOWCOMMENTTAGS command ID to the WebBrowser control.

Displays all the tags shown in Microsoft Internet Explorer 4.0.

bNewValue
If TRUE, displays all the tags shown in Microsoft Internet Explorer 4.0.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM SHOWMISCTAGS command ID to the WebBrowser control.

Displays a glyph for all the script tags.

bNewValue
If TRUE, displays a glyph for all the script tags.

Returns S_OK on success, or an error HRESULT on failure.

https://docs.microsoft.com/previous-versions/aa769956(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769950(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769952(v=vs.85)

CHtmlEditCtrlBase::SetShowStyleTags

HRESULT SetShowStyleTags(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::SetShowUnknownTags

HRESULT SetShowUnknownTags(bool bNewValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::TextArea

HRESULT TextArea(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::TextBox

This method sends the IDM SHOWSCRIPTTAGS command ID to the WebBrowser control.

Displays a glyph for all the style tags.

bNewValue
If TRUE, displays a glyph for all the style tags.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM SHOWSTYLETAGS command ID to the WebBrowser control.

Displays a glyph for all the unknown tags.

bNewValue
If TRUE, displays a glyph for all the unknown tags.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM SHOWUNKNOWNTAGS command ID to the WebBrowser control.

Overwrites a multiline text input control on the current selection.

szId
The ID of the multiline text input control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM TEXTAREA command ID to the WebBrowser control.

https://docs.microsoft.com/previous-versions/aa769953(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769954(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769955(v=vs.85)
https://docs.microsoft.com/previous-versions/aa769986(v=vs.85)

HRESULT TextBox(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::UnBookmark

HRESULT UnBookmark() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Underline

HRESULT Underline() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::Unlink

HRESULT Unlink() const;

Return ValueReturn Value

RemarksRemarks

CHtmlEditCtrlBase::UnorderList

Overwrites a text control on the current selection.

szId
The ID of the text control.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM TEXTBOX command ID to the WebBrowser control.

Removes any bookmark from the current selection.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM UNBOOKMARK command ID to the WebBrowser control.

Toggles the current selection between underlined and not underlined.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM UNDERLINE command ID to the WebBrowser control.

Removes any hyperlink from the current selection.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM UNLINK command ID to the WebBrowser control.

https://docs.microsoft.com/previous-versions/aa769980(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770034(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770035(v=vs.85)
https://docs.microsoft.com/previous-versions/aa770037(v=vs.85)

HRESULT UnorderList(LPCTSTR szId = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Toggles the current selection between an ordered list and a normal format block.

szId
The ID of the unordered list.

Returns S_OK on success, or an error HRESULT on failure.

This method sends the IDM UNORDERLIST command ID to the WebBrowser control.

Hierarchy Chart
HTMLEdit Sample

https://docs.microsoft.com/previous-versions/aa769987(v=vs.85)
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CHtmlEditDoc Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class AFX_NOVTABLE CHtmlEditDoc : public CDocument

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CHtmlEditDoc::CHtmlEditDoc Constructs a CHtmlEditDoc object.

Public MethodsPublic Methods

NAME DESCRIPTION

CHtmlEditDoc::GetView Retrieves the CHtmlEditView object attached to this
document.

CHtmlEditDoc::IsModified Returns whether the associated view's WebBrowser control
contains a document that has been modified by the user.

CHtmlEditDoc::OpenURL Opens a URL.

Inheritance Hierarchy

Requirements

CHtmlEditDoc::CHtmlEditDoc

CHtmlEditDoc();

With CHtmlEditView, provides the functionality of the WebBrowser editing platform within the context of the MFC
document-view architecture.

CObject

CCmdTarget

CDocument

CHtmlEditDoc

Header: afxhtml.h

Constructs a CHtmlEditDoc object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/chtmleditdoc-class.md

CHtmlEditDoc::GetView

virtual CHtmlEditView* GetView() const;

Return ValueReturn Value

CHtmlEditDoc::IsModified

virtual BOOL IsModified();

CHtmlEditDoc::OpenURL

virtual BOOL OpenURL(LPCTSTR lpszURL);

ParametersParameters

Return ValueReturn Value

See also

Retrieves the CHtmlEditView object attached to this document.

Returns a pointer to the document's CHtmlEditView object.

Returns whether the associated view's WebBrowser control contains a document that has been modified by the
user.

Opens a URL.

lpszURL
The URL to open.

Returns TRUE on success, FALSE on failure.

HTMLEdit Sample
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CHtmlEditView Class
3/5/2019 • 2 minutes to read • Edit Online

Syntax
class CHtmlEditView : public CHtmlView, public CHtmlEditCtrlBase<CHtmlEditView>

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CHtmlEditView::CHtmlEditView Constructs a CHtmlEditView object.

Public MethodsPublic Methods

NAME DESCRIPTION

CHtmlEditView::Create Creates a new window object.

CHtmlEditView::GetDHtmlDocument Returns the IHTMLDocument2 interface on the current
document.

CHtmlEditView::GetStartDocument Retrieves the name of the default document for this view.

Inheritance Hierarchy

Requirements

Provides the functionality of the WebBrowser editing platform within the context of MFC's document/view
architecture.

CObject

CCmdTarget

CWnd

CView

CScrollView

CFormView

CHtmlEditCtrlBase

CHtmlView

CHtmlEditView

Header: afxhtml.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/chtmleditview-class.md

CHtmlEditView::CHtmlEditView

CHtmlEditView();

CHtmlEditView::Create

virtual BOOL Create(
 LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 CCreateContext* pContext = NULL);

ParametersParameters

RemarksRemarks

CHtmlEditView::GetDHtmlDocument

BOOL GetDHtmlDocument(IHTMLDocument2** ppDocument) const;

ParametersParameters

Constructs a CHtmlEditView object.

Creates a new window object.

lpszClassName
Points to a null-terminated character string that names the Windows class. The class name can be any name
registered with the AfxRegisterWndClass global function or the RegisterClass Windows function. If NULL, uses
the predefined default CFrameWnd attributes.

lpszWindowName
Points to a null-terminated character string that represents the window name.

dwStyle
Specifies the window style attributes. By default, the WS_VISIBLE and WS_CHILD Windows styles are set.

rect
A reference to a RECT structure specifying the size and position of the window. The rectDefault value allows
Windows to specify the size and position of the new window.

pParentWnd
A pointer to the parent window of the control.

nID
The ID number of the view. By default, set to AFX_IDW_PANE_FIRST.

pContext
A pointer to a CCreateContext. NULL by default.

This method will also call the contained WebBrowser's Navigate method to load a default document (see
CHtmlEditView::GetStartDocument).

Returns the IHTMLDocument2 interface on the current document.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

 CHtmlEditView::GetStartDocument

virtual LPCTSTR GetStartDocument();

See also

ppDocument
The IHTMLDocument2 interface.

Retrieves the name of the default document for this view.

HTMLEdit Sample
Hierarchy Chart

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa752574(v=vs.85)
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CHtmlView Class
3/5/2019 • 40 minutes to read • Edit Online

Syntax
class CHtmlView : public CFormView

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CHtmlView::Create Creates the WebBrowser control.

CHtmlView::CreateControlSite Overridable used to create a control site instance to host a
control on the form.

CHtmlView::ExecFormsCommand Executes the specified command using the
IOleCommandTarget::Exec method.

CHtmlView::ExecWB Executes a command.

CHtmlView::GetAddressBar Determines if the Internet Explorer object's address bar is
visible. (WebBrowser control ignores; Internet Explorer only.)

CHtmlView::GetApplication Retrieves an application object representing the application
that contains the current instance of the Internet Explorer
application.

CHtmlView::GetBusy Retrieves a value indicating whether a download or other
activity is still in progress.

CHtmlView::GetContainer Retrieves the container of the WebBrowser control.

CHtmlView::GetFullName Retrieves the full name, including the path, of the resource
displayed in the web browser. (WebBrowser control ignores;
Internet Explorer only.)

CHtmlView::GetFullScreen Indicates whether the WebBrowser control is operating in full-
screen mode or in normal window mode.

CHtmlView::GetHeight Retrieves the height of the Internet Explorer main window.

CHtmlView::GetHtmlDocument Retrieves the active HTML document.

CHtmlView::GetLeft Retrieves the screen coordinate of the left edge of the
Internet Explorer main window.

Provides the functionality of the WebBrowser control within the context of MFC's document/view architecture.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/chtmlview-class.md

CHtmlView::GetLocationName Retrieves the name of the resource that WebBrowser is
currently displaying

CHtmlView::GetLocationURL Retrieves the URL of the resource that WebBrowser is
currently displaying.

CHtmlView::GetMenuBar Retrieves a value that determines whether the menu bar is
visible.

CHtmlView::GetOffline Retrieves a value that determines whether the control is
offline.

CHtmlView::GetParentBrowser Retrieves a pointer to the IDispatch interface. For more
information, see Implementing the IDispatch Interface.

CHtmlView::GetProperty Retrieves the current value of a property associated with the
given object.

CHtmlView::GetReadyState Retrieves the ready state of the web browser object.

CHtmlView::GetRegisterAsBrowser Indicates whether the WebBrowser control is registered as a
top-level browser for target name resolution.

CHtmlView::GetRegisterAsDropTarget Indicates whether the WebBrowser control is registered as a
drop target for navigation.

CHtmlView::GetSilent Indicates whether any dialog boxes can be shown.

CHtmlView::GetSource The HTML source code of the web page.

CHtmlView::GetStatusBar Indicates whether the Internet Explorer's status bar is visible.
(WebBrowser control ignores; Internet Explorer only.)

CHtmlView::GetTheaterMode Indicates whether the WebBrowser control is in theater mode.

CHtmlView::GetToolBar Retrieves a value that determines whether the toolbar is
visible.

CHtmlView::GetTop Retrieves the screen coordinate of the top edge of the
Internet Explorer main window.

CHtmlView::GetTopLevelContainer Retrieves a value indicating whether the current object is the
top-level container of the WebBrowser control.

CHtmlView::GetType Retrieves the type name of the document object.

CHtmlView::GetVisible Retrieves a value indicating whether the object is visible or
hidden.

CHtmlView::GetWidth Retrieves the width of the Internet Explorer main window.

CHtmlView::GoBack Navigates to the previous item in the history list.

NAME DESCRIPTION

https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface

CHtmlView::GoForward Navigates to the next item in the history list.

CHtmlView::GoHome Navigates to the current home or start page.

CHtmlView::GoSearch Navigates to the current search page.

CHtmlView::LoadFromResource Loads a resource in the WebBrowser control.

CHtmlView::Navigate Navigates to the resource identified by a URL.

CHtmlView::Navigate2 Navigates to the resource identified by a URL, or to the file
identified by a full path.

CHtmlView::OnBeforeNavigate2 Called before a navigation occurs in the given WebBrowser
(on either a window or frameset element).

CHtmlView::OnCommandStateChange Called to notify an application that the enabled state of a web
browser command has changed.

CHtmlView::OnDocumentComplete Called to notify an application that a document has reached
the READYSTATE_COMPLETE state.

CHtmlView::OnDocWindowActivate Called from the Internet Explorer or MSHTML implementation
of IOleInPlaceActiveObject::OnDocWindowActivate, which
notifies the active in-place object when the container's
document window is activated or deactivated.

CHtmlView::OnDownloadBegin Called to notify an application that a navigation operation is
beginning.

CHtmlView::OnDownloadComplete Called when a navigation operation finished, was halted, or
failed.

CHtmlView::OnEnableModeless Called to enable or disable modeless dialog boxes when the
container creates or destroys a modal dialog box.

CHtmlView::OnFilterDataObject Called on the host by Internet Explorer or MSHTML to allow
the host to replace Internet Explorer or MSHTML's data
object.

CHtmlView::OnFrameWindowActivate Called from
IOleInPlaceActiveObject::OnFrameWindowActivate to notify
the object when the container's top-level frame window is
activated or deactivated.

CHtmlView::OnFullScreen Called when the FullScreen property has changed.

CHtmlView::OnGetDropTarget Called by Internet Explorer or MSHTML when it is being used
as a drop target to allow the host to supply an alternative
IDropTarget.

CHtmlView::OnGetExternal Called by Internet Explorer or MSHTML to obtain the host's
IDispatch interface.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-ondocwindowactivate
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-onframewindowactivate
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget

CHtmlView::OnGetHostInfo Retrieves the UI capabilities of the Internet Explorer or
MSHTML host.

CHtmlView::OnGetOptionKeyPath Returns the registry key under which Internet Explorer or
MSHTML stores user preferences.

CHtmlView::OnHideUI Called when Internet Explorer or MSHTML removes its menus
and toolbars.

CHtmlView::OnMenuBar Called when the MenuBar property has changed.

CHtmlView::OnNavigateComplete2 Called after a navigation to a hyperlink completes (on either a
window or frameset element).

CHtmlView::OnNavigateError Called by the framework if navigation to a hyperlink fails.

CHtmlView::OnNewWindow2 Called when a new window is to be created for displaying a
resource.

CHtmlView::OnProgressChange Called to notify an application that the progress of a
download operation has been updated.

CHtmlView::OnPropertyChange Called to notify an application that the PutProperty method
has changed the value of a property.

CHtmlView::OnQuit Called to notify an application that the Internet Explorer
application is ready to quit. (Applies to Internet Explorer only)

CHtmlView::OnResizeBorder Called from the Internet Explorer or MSHTML implementation
of IOleInPlaceActiveObject::ResizeBorder, which alerts the
object that it needs to resize its border space.

CHtmlView::OnShowContextMenu Called from Internet Explorer or MSHTML when it is about to
show its context menu.

CHtmlView::OnShowUI Called before Internet Explorer or MSHTML displays its menus
and toolbars.

CHtmlView::OnStatusBar Called when the StatusBar property has changed.

CHtmlView::OnStatusTextChange Called to notify an application that the text of the status bar
associated with the WebBrowser control has changed.

CHtmlView::OnTheaterMode Called when the TheaterMode property has changed.

CHtmlView::OnTitleChange Called to notify an application if the title of a document in the
WebBrowser control becomes available or changes.

CHtmlView::OnToolBar Called when the ToolBar property has changed.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-resizeborder

CHtmlView::OnTranslateAccelerator Called by Internet Explorer or MSHTML when
IOleInPlaceActiveObject::TranslateAccelerator or
IOleControlSite::TranslateAccelerator is called to process menu
accelerator-key messages from the container's message
queue.

CHtmlView::OnTranslateUrl Called by Internet Explorer or MSHTML to allow the host an
opportunity to modify the URL to be loaded.

CHtmlView::OnUpdateUI Notifies the host that the command state has changed.

CHtmlView::OnVisible Called when the window for the WebBrowser control should
be shown/hidden.

CHtmlView::PutProperty Sets the value of a property associated with the given object.

CHtmlView::QueryFormsCommand Queries for the status of one or more commands generated
by user interface events.

CHtmlView::QueryStatusWB Queries the status of a command being processed by the
WebBrowser control.

CHtmlView::Refresh Reloads the current file.

CHtmlView::Refresh2 Reloads the current file and optionally prevents the
pragma:nocache header from being sent.

CHtmlView::SetAddressBar Shows or hides the Internet Explorer object's address bar.
(WebBrowser control ignores; Internet Explorer only.)

CHtmlView::SetFullScreen Sets a value to determine whether the control is operating in
full-screen mode or in normal window mode. (WebBrowser
control ignores; Internet Explorer only.)

CHtmlView::SetHeight Sets the height of the Internet Explorer main window.

CHtmlView::SetLeft Sets the horizontal position of the Internet Explorer main
window.

CHtmlView::SetMenuBar Sets a value to determine whether the control's menu bar is
visible. (WebBrowser control ignores; Internet Explorer only.)

CHtmlView::SetOffline Sets a value to determine whether the control is offline.

CHtmlView::SetRegisterAsBrowser Sets a value indicating whether the WebBrowser control is
registered as a top-level browser for target name resolution.

CHtmlView::SetRegisterAsDropTarget Sets a value indicating whether the WebBrowser control is
registered as a drop target for navigation.

CHtmlView::SetSilent Sets a value to determine whether the control will display
dialog boxes.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-translateaccelerator
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iolecontrolsite-translateaccelerator

CHtmlView::SetStatusBar Sets a value to determine whether the Internet Explorer's
status bar is visible. (WebBrowser control ignores; Internet
Explorer only.)

CHtmlView::SetTheaterMode Sets a value indicating whether the WebBrowser control is in
theater mode.

CHtmlView::SetToolBar Sets a value to determine whether the control's toolbar is
visible. (WebBrowser control ignores; Internet Explorer only.)

CHtmlView::SetTop Sets the vertical position of the Internet Explorer main
window.

CHtmlView::SetVisible Sets a value indicating whether the object is visible or hidden.

CHtmlView::SetWidth Sets the width of the Internet Explorer main window.

CHtmlView::Stop Stops opening a file.

NAME DESCRIPTION

Remarks

Using the CHtmlView Class in an MFC Application

NOTENOTE

The WebBrowser control is a window in which the user can browse sites on the World Wide Web, as well as
folders in the local file system and on a network. The WebBrowser control supports hyperlinking, Uniform
Resource Locator (URL) navigation, and maintains a history list.

In the standard MFC framework application (either SDI or MDI based), the view object is commonly derived from
a specialized set of classes. These classes, all derived from CView , provide specialized functionality beyond that
provided by CView .

Basing the application's view class on CHtmlView provides the view with the WebBrowser control. This effectively
makes the application a web browser. The preferred method of creating a web browser-style application is to use
the MFC Application Wizard, and specify CHtmlView as the view class. For more information on implementing
and using the WebBrowser control within MFC applications, see Creating a Web Browser-Style Application.

The WebBrowser ActiveX control (and therefore CHtmlView) is available only to programs running under Windows NT
versions 4.0 or later, in which Internet Explorer 4.0 or later has been installed.

CHtmlView is designed for applications that access the Web (and/or HTML documents). The following CHtmlView

member functions apply to the Internet Explorer application only. These functions will succeed on the
WebBrowser control, but they will have no visible effect.

GetAddressBar

GetFullName

GetStatusBar

SetAddressBar

Inheritance Hierarchy

Requirements

CHtmlView::Create

virtual BOOL Create(
 LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 CCreateContext* pContext = NULL);

ParametersParameters

SetFullScreen

SetMenuBar

SetStatusBar

SetToolBar

CObject

CCmdTarget

CWnd

CView

CScrollView

CFormView

CHtmlView

Header: afxhtml.h

Call this member function to create a WebBrowser control or container for the Internet Explorer executable.

lpszClassName
Points to a null-terminated character string that names the Windows class. The class name can be any name
registered with the AfxRegisterWndClass global function or the RegisterClass Windows function. If NULL, uses
the predefined default CFrameWnd attributes.

lpszWindowName
Points to a null-terminated character string that represents the window name.

dwStyle
Specifies the window style attributes. By default, the WS_VISIBLE and WS_CHILD Windows styles are set.

rect
A reference to a RECT structure specifying the size and position of the window. The rectDefault value allows
Windows to specify the size and position of the new window.

pParentWnd
A pointer to the parent window of the control.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

CHtmlView::CreateControlSite

virtual BOOL CreateControlSite(
 COleControlContainer* pContainer,
 COleControlSite** ppSite,
 UINT nID,
 REFCLSID clsid);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::ExecFormsCommand

HRESULT ExecFormsCommand(
 DWORD dwCommandID,
 VARIANT* pVarIn,
 VARIANT* pVarOut);

ParametersParameters

Return ValueReturn Value

nID
The ID number of the view. By default, set to AFX_IDW_PANE_FIRST.

pContext
A pointer to a CCreateContext. NULL by default.

Overridable used to create a control site instance to host a control on the form.

pContainer
A pointer to a COleControlContainer object containing the control.

ppSite
A pointer to a pointer to a COleControlSite object, providing the site for the control.

nID
The identifier of the control to be hosted.

clsid
The CLSID of the control to be hosted

Returns TRUE on success, FALSE on failure.

You can override this member function to return an instance of your own control site class.

Executes the specified command using the IOleCommandTarget::Exec method.

dwCommandID
The command to be executed. This command must belong to the CMDSETID3_Forms3 group.

pVarIn
Pointer to a VARIANT structure containing input arguments. Can be NULL.

pVarOut
Pointer to a VARIANT structure to receive command output. Can be NULL.

A standard HRESULT value. For a complete listing of possible values, see IOleCommandTarget::Exec in the

https://docs.microsoft.com/windows/desktop/api/docobj/nf-docobj-iolecommandtarget-exec

RemarksRemarks

CHtmlView::ExecWB

void ExecWB(
 OLECMDID cmdID,
 OLECMDEXECOPT cmdexecopt,
 VARIANT* pvaIn,
 VARIANT* pvaOut);

ParametersParameters

RemarksRemarks

CHtmlView::GetAddressBar

BOOL GetAddressBar() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetApplication

LPDISPATCH GetApplication() const;

Return ValueReturn Value

Windows SDK.

ExecFormsCommand implements the behavior of the IOleCommandTarget::Exec method.

Call this member function to execute a command in the WebBrowser or Internet Explorer.

cmdID
The command to execute.

cmdexecopt
The options set for executing the command.

pvaIn
A variant used for specifying command input arguments.

pvaOut
A variant used for specifying command output arguments.

See IWebBrowser2::ExecWB in the Windows SDK.

Call this member function to retrieve Internet Explorer's address bar.

Nonzero if the address bar is visible; otherwise zero.

Applies to Internet Explorer. If you use this call with a WebBrowser control, it will return no error, but it will ignore
this call.

Call this member function to retrieve the automation object supported by the application that contains the
WebBrowser control.

A pointer to the IDispatch interface of the active document object. For more information, see Implementing the

https://docs.microsoft.com/windows/desktop/api/docobj/nf-docobj-iolecommandtarget-exec
https://msdn.microsoft.com/library/aa752117.aspx
https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface

RemarksRemarks

CHtmlView::GetBusy

BOOL GetBusy() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetContainer

LPDISPATCH GetContainer() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetFullName

CString GetFullName() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetFullScreen

BOOL GetFullScreen() const;

IDispatch Interface.

Applies to Internet Explorer and WebBrowser.

Call this member function to determine whether the WebBrowser control is engaged in a navigation or
downloading operation.

Nonzero if the web browser is busy; otherwise zero.

Applies to Internet Explorer and WebBrowser.

Call this member function to retrieve an object that evaluates to the container of the web browser.

A pointer to the IDispatch interface of the active document object.

Applies to Internet Explorer and WebBrowser.

Call this member function to retrieve the full path of the file that Internet Explorer is currently displaying.

A CString object containing the path and name of the currently displayed file. If no path and filename exist,
GetFullName returns an empty CString .

Applies to Internet Explorer. If you use this call with a WebBrowser control, it will return no error, but it will ignore
this call.

Call this member function to determine whether the WebBrowser control is operating in full-screen mode or in
normal window mode.

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetHeight

long GetHeight() const;

Return ValueReturn Value

CHtmlView::GetHtmlDocument

LPDISPATCH GetHtmlDocument() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetLeft

long GetLeft() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetLocationName

CString GetLocationName() const;

Return ValueReturn Value

Nonzero if the WebBrowser is operating in full-screen mode; otherwise zero.

In full-screen mode, the Internet Explorer main window is maximized and the status bar, toolbar, menu bar, and
title bar are hidden.

Applies to Internet Explorer and WebBrowser.

Call this member function to retrieve the height, in pixels, of the WebBrowser control's frame window.

The control's frame window height, in pixels.

Call this member function to retrieve the HTML document for the active document.

A pointer to the IDispatch interface of the active document object.

Applies to Internet Explorer and WebBrowser.

Call this member function to retrieve the distance between the internal left edge of the WebBrowser control and
the left edge of its container.

The left-edge distance, in pixels.

Applies to Internet Explorer and WebBrowser.

Call this member function to get the name of the resource being displayed in the WebBrowser.

A CString object containing the name of the resource currently displayed in the WebBrowser.

RemarksRemarks

CHtmlView::GetLocationURL

CString GetLocationURL() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetMenuBar

BOOL GetMenuBar() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetOffline

BOOL GetOffline() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetParentBrowser

LPDISPATCH GetParentBrowser() const;

Return ValueReturn Value

If the resource is an HTML page on the World Wide Web, the name is the title of that page. If the resource is a
folder or file on the network or local computer, the name is the UNC or full path of the folder or file.

Applies to Internet Explorer and WebBrowser.

Call this member function to retrieve the URL of the resource that the WebBrowser control is currently displaying.

A CString object containing the URL of the resource currently displayed in the WebBrowser.

If the resource is a folder or file on the network or local computer, the name is the UNC or full path of the folder
or file.

Applies to Internet Explorer and WebBrowser.

Call this member function to determine whether the menu bar is visible.

Nonzero if the menu bar is visible; otherwise zero.

Applies to Internet Explorer and WebBrowser.

Call this member function to determine whether the web browser is operating offline.

Nonzero if the web browser is currently offline; otherwise zero.

Applies to Internet Explorer and WebBrowser.

Call this member function to retrieve a pointer to the parent object of the WebBrowser control.

RemarksRemarks

CHtmlView::GetProperty

BOOL GetProperty(
 LPCTSTR lpszProperty,
 CString& strValue);

COleVariant GetProperty(LPCTSTR lpszProperty);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetReadyState

READYSTATE GetReadyState() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetRegisterAsBrowser

BOOL GetRegisterAsBrowser() const;

Return ValueReturn Value

RemarksRemarks

A pointer to the IDispatch interface of the object that is the parent of the WebBrowser control.

Applies to Internet Explorer and WebBrowser.

Call this member function to get the value of the property currently associated with the control.

lpszProperty
A pointer to a string containing the property to retrieve.

strValue
A reference to a CString object that receives the current value of the property.

In the first version, nonzero if completed successfully; otherwise zero. In the second version, a COleVariant object.

Applies to Internet Explorer and WebBrowser.

Call this member function to retrieve the ready state of the WebBrowser object.

A READYSTATE value, as described in the Windows SDK.

Applies to Internet Explorer and WebBrowser.

Call this member function to determine whether the WebBrowser object is registered as a top-level browser for
target name resolution.

Nonzero if the browser is registered as a top-level browser; otherwise zero.

Applies to Internet Explorer and WebBrowser.

https://msdn.microsoft.com/library/aa768362.aspx

CHtmlView::GetRegisterAsDropTarget

BOOL GetRegisterAsDropTarget() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetSilent

BOOL GetSilent() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetSource

BOOL GetSource(CString& strRef);

Return ValueReturn Value

ParametersParameters

RemarksRemarks

CHtmlView::GetStatusBar

BOOL GetStatusBar() const;

Return ValueReturn Value

Call this member function to determine whether the WebBrowser control is registered as a drop target for
navigation.

Nonzero if the browser is registered as a drop target; otherwise zero.

Applies to Internet Explorer and WebBrowser.

Call this member function to determine whether any dialog boxes can be shown in the WebBrowser control.

Nonzero if dialog boxes cannot be displayed from the WebBrowser control; otherwise zero.

Applies to Internet Explorer and WebBrowser.

Call this member function to retrieve the HTML source code for the web page.

Nonzero if successful; otherwise zero.

refString
A CString that will hold the source code.

This function is equivalent to the "View Source" command in Internet Explorer, except that the source code is
returned in a CString .

Call this member function to determine whether the WebBrowser control displays a status bar.

Nonzero if the status bar can be displayed; otherwise zero.

RemarksRemarks

CHtmlView::GetTheaterMode

BOOL GetTheaterMode() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetToolBar

int GetToolBar() const;

Return ValueReturn Value

CHtmlView::GetTop

long GetTop() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetTopLevelContainer

BOOL GetTopLevelContainer() const;

Return ValueReturn Value

Applies to Internet Explorer. If you use this call with a WebBrowser control, it will return no error, but it will ignore
this call.

Call this member function to determine whether the web browser is in theater mode.

Nonzero if the web browser is in theater mode; otherwise zero.

When the web browser is in theater mode, the browser main window fills the entire screen, a toolbar with a
minimal set of navigational tools appears, and the status bar appears in the upper right-hand corner of the screen.

Applies to Internet Explorer and WebBrowser.

Call this member function to determine whether the toolbar is visible.

A value indicating whether the toolbar is visible. Nonzero if toolbar is visible; otherwise zero.

Call this member function to retrieve the screen coordinate of the top edge of the WebBrowser control's main
window.

Address of a variable that receives the screen coordinate of the main window's top edge.

Applies to Internet Explorer and WebBrowser.

Call this member function to determine whether Internet Explorer is the top-level container of the WebBrowser
control.

Nonzero the container is the top-level container; otherwise zero.

RemarksRemarks

CHtmlView::GetType

CString GetType() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetVisible

BOOL GetVisible() const;

Return ValueReturn Value

RemarksRemarks

CHtmlView::GetWidth

long GetWidth() const;

Return ValueReturn Value

CHtmlView::GoBack

void GoBack();

RemarksRemarks

CHtmlView::GoForward

void GoForward();

Applies to Internet Explorer and WebBrowser.

Call this member function to retrieve the type name of the contained active document.

A CString object containing the type name of the contained active document.

Applies to Internet Explorer and WebBrowser.

Call this member function to determine if the contained object is visible.

Nonzero if the object is visible; otherwise zero.

Applies to Internet Explorer and WebBrowser.

Retrieves the width of the Internet Explorer main window.

The current width of the window, in pixels.

Navigates backward one item in the history list.

Applies to Internet Explorer and WebBrowser.

Navigates forward one item in the history list.

CHtmlView::GoHome

void GoHome();

RemarksRemarks

CHtmlView::GoSearch

void GoSearch();

RemarksRemarks

CHtmlView::LoadFromResource

BOOL LoadFromResource(LPCTSTR lpszResource);
BOOL LoadFromResource(UINT nRes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::Navigate

void Navigate(
 LPCTSTR URL,
 DWORD dwFlags = 0,
 LPCTSTR lpszTargetFrameName = NULL,
 LPCTSTR lpszHeaders = NULL,
 LPVOID lpvPostData = NULL,
 DWORD dwPostDataLen = 0);

ParametersParameters

Navigates to the current home or start page specified in the Internet Explorer Internet Options dialog box or the
Internet Properties dialog box, accessed from the Control Panel.

Applies to Internet Explorer and WebBrowser.

Navigates to the current search page, as specified in the Internet Explorer Internet Options dialog box or the
Internet Properties dialog box, accessed from the Control Panel.

Applies to Internet Explorer and WebBrowser.

Call this member function to load the specified resource into the WebBrowser control.

lpszResource
A pointer to a string containing the name of the resource to load.

nRes
The ID of the buffer containing the name of the resource to load.

Nonzero if successful; otherwise zero.

Applies to Internet Explorer and WebBrowser.

Call this member function to navigate to the resource identified by a URL.

RemarksRemarks

CHtmlView::Navigate2

void Navigate2(
 LPITEMIDLIST pIDL,
 DWORD dwFlags = 0,
 LPCTSTR lpszTargetFrameName = NULL);

void Navigate2(
 LPCTSTR lpszURL,
 DWORD dwFlags = 0,
 LPCTSTR lpszTargetFrameName = NULL,
 LPCTSTR lpszHeaders = NULL,
 LPVOID lpvPostData = NULL,
 DWORD dwPostDataLen = 0);

void Navigate2(
 LPCTSTR lpszURL,
 DWORD dwFlags,
 CByteArray& baPostedData,
 LPCTSTR lpszTargetFrameName = NULL,
 LPCTSTR lpszHeader = NULL);

ParametersParameters

URL
A caller-allocated string that contains the URL to navigate to, or the full path of the file to display.

dwFlags
The flags of a variable that specifies whether to add the resource to the history list, whether to read to or write
from the cache, and whether to display the resource in a new window. The variable can be a combination of the
values defined by the BrowserNavConstants enumeration.

lpszTargetFrameName
A pointer to a string that contains the name of the frame in which to display the resource.

lpszHeaders
A pointer to a value that specifies the HTTP headers to send to the server. These headers are added to the default
Internet Explorer headers. The headers can specify such things as the action required of the server, the type of
data being passed to the server, or a status code. This parameter is ignored if URL is not an HTTP URL.

lpvPostData
A pointer to the data to send with the HTTP POST transaction. For example, the POST transaction is used to send
data gathered by an HTML form. If this parameter does not specify any post data, Navigate issues an HTTP GET
transaction. This parameter is ignored if URL is not an HTTP URL.

dwPostDataLen
Data to send with the HTTP POST transaction. For example, the POST transaction is used to send data gathered
by an HTML form. If this parameter does not specify any post data, Navigate issues an HTTP GET transaction.
This parameter is ignored if URL is not an HTTP URL.

Applies to Internet Explorer and WebBrowser.

Call this member function to navigate to the resource identified by a URL, or to the file identified by a full path.

pIDL
A pointer to an ITEMIDLIST structure.

dwFlags
The flags of a variable that specifies whether to add the resource to the history list, whether to read to or write

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa768360(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/shtypes/ns-shtypes-_itemidlist

RemarksRemarks

ExampleExample

void CMyHtmlView::OnGoToMicrosoft()
{
 Navigate2(_T("http://home.microsoft.com"));
}

CHtmlView::OnBeforeNavigate2

virtual void OnBeforeNavigate2(
 LPCTSTR lpszURL,
 DWORD nFlags,
 LPCTSTR lpszTargetFrameName,
 CByteArray& baPostedData,
 LPCTSTR lpszHeaders,
 BOOL* pbCancel);

ParametersParameters

from the cache, and whether to display the resource in a new window. The variable can be a combination of the
values defined by the BrowserNavConstants enumeration.

lpszTargetFrameName
A pointer to a string that contains the name of the frame in which to display the resource.

lpszURL
A pointer to a string containing the URL.

lpvPostData
Data to send with the HTTP POST transaction. For example, the POST transaction is used to send data gathered
by an HTML form. If this parameter does not specify any post data, Navigate2 issues an HTTP GET transaction.
This parameter is ignored if URL is not an HTTP or HTTPS URL.

dwPostDataLen
Length in bytes of the data pointed to by the lpvPostData parameter.

lpszHeaders
A pointer to a value that specifies the HTTP or HTTPS headers to send to the server. These headers are added to
the default Internet Explorer headers. The headers can specify such things as the action required of the server, the
type of data being passed to the server, or a status code. This parameter is ignored if URL is not an HTTP or
HTTPS URL.

baPostedData
A reference to a CByteArray object.

This member function extends the Navigate member function by supporting browsing on special folders, such as
Desktop and My Computer, that are represented by the parameter pIDL.

Applies to Internet Explorer and WebBrowser.

This member function is called by the framework to cause an event to fire before a navigation occurs in the web
browser.

lpszURL
Pointer to a string containing the URL to navigate to.

nFlags

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa768360(v=vs.85)

CHtmlView::OnCommandStateChange

virtual void OnCommandStateChange(
 long nCommand,
 BOOL bEnable);

ParametersParameters

CHtmlView::OnDocumentComplete

virtual void OnDocumentComplete(LPCTSTR lpszURL);

ParametersParameters

RemarksRemarks

Reserved for future use.

lpszTargetFrameName
A string that contains the name of the frame in which to display the resource, or NULL if no named frame is
targeted for the resource.

baPostedData
A reference to a CByteArray object containing the data to send to the server if the HTTP POST transaction is
being used.

lpszHeaders
A pointer to a string containing additional HTTP headers to send to the server (HTTP URLs only). The headers
can specify such things as the action required of the server, the type of data being passed to the server, or a status
code.

pbCancel
A pointer to a cancel flag. An application can set this parameter to nonzero to cancel the navigation operation, or
to zero to allow it to proceed.

This member function is called by the framework to notify an application that the enabled state of a web browser
command has changed.

nCommand
Identifier of the command whose enabled state has changed.

bEnable
Enabled state. This parameter is nonzero if the command is enabled, or zero if it is disabled.

This member function is called by the framework to notify an application that a document has reached the
READYSTATE_COMPLETE state.

lpszURL
A pointer to a string that evaluates to the URL, UNC file name, or a PIDL (a pointer to an item identifier list) that
was navigated to.

Not every frame will fire this event, but each frame that fires an OnDownloadBegin event will fire a
corresponding OnDocumentComplete event.

The URL indicated by lpszURL can be different from the URL that the browser was told to navigate to, because
this URL is the canonicalized and qualified URL. For example, if an application specifies a URL of
"www.microsoft.com" in a call to Navigate or Navigate2, the URL passed by OnNavigateComplete2 will be

CHtmlView::OnDocWindowActivate

virtual HRESULT OnDocWindowActivate(BOOL fActivate);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnDownloadBegin

virtual void OnDownloadBegin();

RemarksRemarks

CHtmlView::OnDownloadComplete

virtual void OnDownloadComplete();

CHtmlView::OnEnableModeless

virtual HRESULT OnEnableModeless(BOOL fEnable);

ParametersParameters

Return ValueReturn Value

"http://www.microsoft.com/". Also, if the server has redirected the browser to a different URL, the redirected URL
will be reflected here.

Called from the Internet Explorer or MSHTML implementation of IOleInPlaceActiveObject::OnDocWindowActivate ,
which notifies the active in-place object when the container's document window is activated or deactivated.

fActivate
Indicates the state of the document window. If this value is nonzero, the window is being activated. If this value is
zero, the window is being deactivated.

S_OK if successful, or an OLE-defined error code otherwise.

Override OnDocWindowActivate to react to the OnDocWindowActivate notification from the Microsoft Web Browser
control. See IDocHostUIHandler::OnDocWindowActivate in the Windows SDK for more information.

This member function is called by the framework to begin downloading a document.

This event is fired shortly after the OnBeforeNavigate2 event, unless the navigation is canceled. Any animation or
"busy" indication that the container needs to display should be connected to this event.

This member function is called by the framework to indicate that a navigation operation finished, was halted, or
failed.

Called when Internet Explorer or MSHTML displays modal UI.

fEnable
Indicates if the host's modeless dialog boxes are enabled or disabled. If this value is nonzero, modeless dialog
boxes are enabled. If this value is zero, modeless dialog boxes are disabled.

http://www.microsoft.com/
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753261(v=vs.85)

RemarksRemarks

CHtmlView::OnFilterDataObject

virtual HRESULT OnFilterDataObject(
 LPDATAOBJECT pDataObject,
 LPDATAOBJECT* ppDataObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnFrameWindowActivate

virtual HRESULT OnFrameWindowActivate(BOOL fActivate);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnFullScreen

S_OK if successful, or an OLE-defined error code otherwise.

Enables or disables modeless dialog boxes when the container creates or destroys a modal dialog box. Override
OnEnableModeless to react to the EnableModeless notification from the Microsoft Web Browser control. See

IDocHostUIHandler::EnableModeless in the Windows SDK for more information.

Called on the host by Internet Explorer or MSHTML to allow the host to replace Internet Explorer or MSHTML's
data object.

pDataObject
Address of the IDataObject interface supplied by Internet Explorer or MSHTML.

ppDataObject
Address that receives the IDataObject interface pointer supplied by the host. The contents of this parameter
should always be initialized to NULL, even if the method fails.

S_OK if the data object is replaced, S_FALSE if the data object is not replaced, or an OLE-defined error code if an
error occurs.

Override OnFilterDataObject to react to the FilterDataObject notification from the Microsoft Web Browser
control. See IDocHostUIHandler::FilterDataObject in the Windows SDK for more information.

Called from IOleInPlaceActiveObject::OnFrameWindowActivate to notify the object when the container's top-
level frame window is activated or deactivated.

fActivate
Indicates the state of the container's top-level frame window. If this value is nonzero, the window is being
activated. If this value is zero, the window is being deactivated.

S_OK if successful, or an OLE-defined error code otherwise.

Override OnFrameWindowActivate to react to the OnFrameWindowActivate notification from the Microsoft Web
Browser control. See IDocHostUIHandler::OnFrameWindowActivate in the Windows SDK for more information.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753253(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-idataobject
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753254(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-onframewindowactivate
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753262(v=vs.85)

virtual void OnFullScreen(BOOL bFullScreen);

ParametersParameters

CHtmlView::OnGetDropTarget

virtual HRESULT OnGetDropTarget(
 LPDROPTARGET pDropTarget,
 LPDROPTARGET* ppDropTarget);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnGetExternal

virtual HRESULT OnGetExternal(LPDISPATCH* lppDispatch);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnGetHostInfo

This member function is called by the framework when the FullScreen property has changed.

bFullScreen
Nonzero if Internet Explorer is in full screen mode; zero otherwise.

Called by Internet Explorer or MSHTML when it is being used as a drop target to allow the host to supply an
alternative IDropTarget .

pDropTarget
IDropTarget Internet Explorer or MSHTML proposes to use.

ppDropTarget
Address of the IDropTarget that receives the IDropTarget interface pointer the host wants to provide.

See IDocHostUIHandler::GetDropTarget in the Windows SDK for a list of return codes.

Override OnGetDropTarget to react to the GetDropTarget notification from the Microsoft Web Browser control.
See IDocHostUIHandler::GetDropTarget in the Windows SDK for more information.

Called by Internet Explorer or MSHTML to obtain the host's IDispatch interface.

lppDispatch
A pointer to the address that receives the IDispatch interface pointer of the host application. If the host exposes
an Automation interface, it can provide a reference to Internet Explorer or MSHTML through this parameter. The
contents of this parameter should always be initialized to NULL, even if the method fails.

S_OK if successful, or an OLE-defined error code otherwise.

Override OnGetExternal to react to the GetExternal notification from the Microsoft Web Browser control. See
IDocHostUIHandler::GetExternal in the Windows SDK for more information.

https://msdn.microsoft.com/library/aa752119.aspx
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753255(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753255(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753256(v=vs.85)

virtual HRESULT OnGetHostInfo(DOCHOSTUIINFO* pInfo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnGetOptionKeyPath

virtual HRESULT OnGetOptionKeyPath(
 LPOLESTR* pchKey,
 DWORD dwReserved);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnHideUI

virtual HRESULT OnHideUI();

Return ValueReturn Value

Retrieves the UI capabilities of the Internet Explorer or MSHTML host.

pInfo
Address of a DOCHOSTUIINFO structure that receives the host's UI capabilities.

S_OK if successful, or an OLE-defined error code otherwise.

Override OnGetHostInfo to react to the GetHostInfo notification from the Microsoft Web Browser control. See
IDocHostUIHandler::GetHostInfo in the Windows SDK for more information.

Call this member function to get the registry key under which Internet Explorer or MSHTML stores user
preferences.

pchKey
Address of an LPOLESTR that receives the registry subkey string where the host stores its default options. This
subkey will be under the HKEY_CURRENT_USER key. Allocate this memory using CoTaskMemAlloc. The calling
application is responsible for freeing this memory using CoTaskMemFree. This parameter should always be
initialized to NULL, even if the method fails.

dwReserved
Reserved for future use. Not currently used.

S_OK if successful, or S_FALSE otherwise. If S_FALSE, Internet Explorer or MSHTML will default to its own user
options.

Override OnGetOptionKeyPath to react to the GetOptionKeyPath notification from the Microsoft Web Browser
control. See IDocHostUIHandler::GetOptionKeyPath in the Windows SDK for more information.

This member function is called by the framework when Internet Explorer or MSHTML removes its menus and
toolbars.

S_OK if successful, or an OLE-defined error code otherwise.

https://docs.microsoft.com/previous-versions/aa770044(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753257(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemalloc
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemfree
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753258(v=vs.85)

RemarksRemarks

CHtmlView::OnMenuBar

virtual void OnMenuBar(BOOL bMenuBar);

ParametersParameters

CHtmlView::OnNavigateComplete2

virtual void OnNavigateComplete2(LPCTSTR strURL);

ParametersParameters

RemarksRemarks

CHtmlView::OnNavigateError

virtual void OnNavigateError(
 LPCTSTR lpszURL,
 LPCTSTR lpszFrame,
 DWORD dwError,
 BOOL* pbCancel);

ParametersParameters

Override OnHideUI to react to the HideUI notification from the Microsoft Web Browser control. See
IDocHostUIHandler::HideUI in the Windows SDK for more information.

This member function is called by the framework when the MenuBar property has changed.

bMenuBar
Nonzero if the Internet Explorer menu bar is visible; zero otherwise.

This member function is called by the framework after a navigation to a hyperlink completes (on either a window
or frameset element).

strURL
A string expression that evaluates to the URL, UNC file name, or PIDL (a pointer to an item identifier list) that was
navigated to.

The URL parameter can be a PIDL in the case of a shell name space entity for which there is no URL
representation.

Note that the URL contained in strURL can be different from the URL that the browser was told to navigate to,
because this URL is the canonicalized and qualified URL. For example, if an application specifies a URL of
"www.microsoft.com" in a call to Navigate or Navigate2, the URL passed by OnNavigateComplete2 will be
"http://www.microsoft.com/". Also, if the server has redirected the browser to a different URL, the redirected URL
will be reflected here.

Called by the framework if navigation to a hyperlink fails.

lpszURL
The URL for which navigation failed.

lpszFrame
The name of the frame in which the resource is to be displayed, or NULL if no named frame was targeted for the

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753259(v=vs.85)
https://msdn.microsoft.com/library/aa752131.aspx
http://www.microsoft.com/

RemarksRemarks

CHtmlView::OnNewWindow2

virtual void OnNewWindow2(
 LPDISPATCH* ppDisp,
 BOOL* Cancel);

ParametersParameters

RemarksRemarks

CHtmlView::OnProgressChange

virtual void OnProgressChange(
 long nProgress,
 long nProgressMax);

ParametersParameters

RemarksRemarks

resource.

dwError
An error status code, if available. For a list of the possible HRESULT and HTTP status codes, see NavigateError
Event Status Codes.

pbCancel
Specifies whether to cancel the navigation to an error page or any further autosearch. If TRUE (the default),
continue with navigation to an error page or autosearch; if FALSE, cancel navigation to an error page or
autosearch.

Override this method to provide custom navigation error handling.

For more information, see DWebBrowserEvents2::NavigateError

This member function is called by the framework when a new window is to be created for displaying a resource.

ppDisp
A pointer to an interface pointer that, optionally, receives the IDispatch interface pointer of a new WebBrowser
or Internet Explorer object.

Cancel
A pointer to a cancel flag. An application can set this parameter to nonzero to cancel the navigation operation, or
to zero to allow it to proceed.

This event precedes the creation of a new window from within the WebBrowser.

This member function is called by the framework to notify an application that the progress of a download
operation has been updated.

nProgress
Amount of total progress to show, or -1 when progress is complete.

nProgressMax
Maximum progress value.

The container can use the information provided by this event to display the number of bytes downloaded so far or
to update a progress indicator.

https://msdn.microsoft.com/library/aa768365.aspx
https://msdn.microsoft.com/library/aa768286.aspx

CHtmlView::OnPropertyChange

virtual void OnPropertyChange(LPCTSTR lpszProperty);

ParametersParameters

CHtmlView::OnQuit

virtual void OnQuit();

CHtmlView::OnResizeBorder

virtual HRESULT OnResizeBorder(
 LPCRECT prcBorder,
 LPOLEINPLACEUIWINDOW pUIWindow,
 BOOL fFrameWindow);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnShowContextMenu

This member function is called by the framework to notify an application that PutProperty has changed the value
of a property.

lpszProperty
A pointer to a string containing the name of the property.

This member function is called by the framework to notify an application that the Internet Explorer application is
ready to quit.

Called from the Internet Explorer or MSHTML implementation of IOleInPlaceActiveObject::ResizeBorder, which
alerts the object that it needs to resize its border space.

prcBorder
New outer rectangle for border space.

pUIWindow
A pointer to the interface for the frame or document window object whose border has changed.

fFrameWindow
TRUE if the frame window is calling IOleInPlaceActiveObject::ResizeBorder, otherwise FALSE.

S_OK if successful, or an OLE-defined error code otherwise.

Override OnResizeBorder to react to the ResizeBorder notification from the Microsoft Web Browser control. See
IDocHostUIHandler::ResizeBorder in the Windows SDK for more information.

Called from Internet Explorer or MSHTML when it is about to show its context menu.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-resizeborder
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-resizeborder
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753263(v=vs.85)

virtual HRESULT OnShowContextMenu(
 DWORD dwID,
 LPPOINT ppt,
 LPUNKNOWN pcmdtReserved,
 LPDISPATCH pdispReserved);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnShowUI

virtual HRESULT OnShowUI(
 DWORD dwID,
 LPOLEINPLACEACTIVEOBJECT pActiveObject,
 LPOLECOMMANDTARGET pCommandTarget,
 LPOLEINPLACEFRAME pFrame,
 LPOLEINPLACEUIWINDOW pDoc);

ParametersParameters

Return ValueReturn Value

dwID
Identifier of the context menu to be displayed. See IDocHostUIHandler::ShowContextMenu in the Windows SDK for a
list of values.

ppt
Screen coordinates for the menu.

pcmdtReserved
IOleCommandTarget interface used to query command status and execute commands on this object.

pdispReserved
IDispatch interface of the object at the screen coordinates. This allows a host to differentiate particular objects to
provide more specific context.

See IDocHostUIHandler::ShowContextMenu in the Windows SDK for a list of values.

Override OnShowContextMenu to react to the ShowContextMenu notification from the Microsoft Web Browser control.
See IDocHostUIHandler::ShowContextMenu in the Windows SDK for more information.

Called before Internet Explorer or MSHTML displays its menus and toolbars.

dwID
Reserved for future use.

pActiveObject
IOleInPlaceActiveObject interface of the currently active object.

pCommandTarget
IOleCommandTarget interface of the object.

pFrame
IOleInPlaceFrame interface of the object. This is needed for menus and toolbars.

pDoc
IOleInPlaceUIWindow interface for the object. This is needed for toolbars.

https://docs.microsoft.com/windows/desktop/api/docobj/nn-docobj-iolecommandtarget
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753264(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753264(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplaceactiveobject
https://docs.microsoft.com/windows/desktop/api/docobj/nn-docobj-iolecommandtarget
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplaceframe
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplaceuiwindow

RemarksRemarks

CHtmlView::OnStatusBar

virtual void OnStatusBar(BOOL bStatusBar);

ParametersParameters

CHtmlView::OnStatusTextChange

virtual void OnStatusTextChange(LPCTSTR lpszText);

ParametersParameters

CHtmlView::OnTheaterMode

virtual void OnTheaterMode(BOOL bTheaterMode);

ParametersParameters

CHtmlView::OnTitleChange

virtual void OnTitleChange(LPCTSTR lpszText);

ParametersParameters

RemarksRemarks

See IDocHostUIHandler::ShowUI in the Windows SDK for a list of values.

Override OnShowUI to react to the ShowUI notification from the Microsoft Web Browser control. See
IDocHostUIHandler::ShowUI in the Windows SDK for more information.

This member function is called by the framework when the StatusBar property has changed.

bStatusBar
Nonzero if Internet Explorer's status bar is visible or zero otherwise.

This member function is called by the framework to notify an application that the text of the status bar associated
with the WebBrowser control has changed.

lpszText
A string that contains the new status bar text.

This member function is called by the framework when the TheaterMode property has changed.

bTheaterMode
Nonzero if Internet Explorer is in theater mode; zero otherwise.

This member function is called by the framework to notify an application if the title of a document in the
WebBrowser control becomes available or changes.

lpszText
The new document title.

For HTML, the title might change; while HTML is still downloading, the URL of the document is set as the title.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753265(v=vs.85)
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753265(v=vs.85)
https://msdn.microsoft.com/library/aa768270.aspx
https://msdn.microsoft.com/library/aa768273.aspx

CHtmlView::OnToolBar

virtual void OnToolBar(BOOL bToolBar);

ParametersParameters

CHtmlView::OnTranslateAccelerator

virtual HRESULT OnTranslateAccelerator(
 LPMSG lpMsg,
 const GUID* pguidCmdGroup,
 DWORD nCmdID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnTranslateUrl

virtual HRESULT OnTranslateUrl(
 DWORD dwTranslate,
 OLECHAR* pchURLIn,
 OLECHAR** ppchURLOut);

ParametersParameters

After the real title (if there is one) is parsed from the HTML, the title is changed to reflect the actual title.

This member function is called by the framework when the ToolBar property has changed.

bToolBar
Nonzero if Internet Explorer's toolbar is visible or zero otherwise.

Called by Internet Explorer or MSHTML when IOleInPlaceActiveObject::TranslateAccelerator or
IOleControlSite::TranslateAccelerator is called to process menu accelerator-key messages from the container's
message queue.

lpMsg
Points to the message that might need to be translated.

pguidCmdGroup
Command group identifier.

nCmdID
Command identifier.

S_OK if successful, or S_FALSE otherwise.

Override OnTranslateAccelerator to react to the TranslateAccelerator notification from the Microsoft Web
Browser control. See IDocHostUIHandler::TranslateAccelerator in the Windows SDK for more information.

Called by Internet Explorer or MSHTML to allow the host an opportunity to modify the URL to be loaded.

dwTranslate
Reserved for future use.

pchURLIn

https://msdn.microsoft.com/library/aa768274.aspx
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceactiveobject-translateaccelerator
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iolecontrolsite-translateaccelerator
https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753266(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnUpdateUI

virtual HRESULT OnUpdateUI();

Return ValueReturn Value

RemarksRemarks

CHtmlView::OnVisible

virtual void OnVisible(BOOL bVisible);

ParametersParameters

RemarksRemarks

CHtmlView::PutProperty

Address of a string supplied by Internet Explorer or MSHTML that represents the URL to be translated.

ppchURLOut
Address of a string pointer that receives the address of the translated URL. The host allocates the buffer using the
task memory allocator. The contents of this parameter should always be initialized to NULL, even if the URL is not
translated or the method fails.

S_OK if the URL was translated, S_FALSE if the URL was not translated, or an OLE-defined error code if an error
occurred.

Override OnTranslateUrl to react to the TranslateUrl notification from the Microsoft Web Browser control. See
IDocHostUIHandler::TranslateUrl in the Windows SDK for more information.

Notifies the host that the command state has changed.

S_OK if successful, or an OLE-defined error code otherwise.

The host should update the state of toolbar buttons. This method is called regardless of the return value from
ShowUI . Override OnUpdateUI to react to the UpdateUI notification from the Microsoft Web Browser control.

This member function is called by the framework when the window for the WebBrowser should be shown or
hidden.

bVisible
Nonzero if the object is visible or zero otherwise.

This allows the object control host window to behave the same way the Internet Explorer window would behave.

Call this member function to set the property associated with a given object.

https://docs.microsoft.com/previous-versions/windows/internet-explorer/ie-developer/platform-apis/aa753267(v=vs.85)

void PutProperty(
 LPCTSTR lpszProperty,
 const VARIANT& vtValue);

void PutProperty(
 LPCTSTR lpszPropertyName,
 double dValue);

void PutProperty(
 LPCTSTR lpszPropertyName,
 long lValue);

void PutProperty(
 LPCTSTR lpszPropertyName,
 LPCTSTR lpszValue);

void PutProperty(
 LPCTSTR lpszPropertyName,
 short nValue);

ParametersParameters

RemarksRemarks

CHtmlView::QueryFormsCommand

HRESULT QueryFormsCommand(
 DWORD dwCommandID,
 BOOL* pbSupported,
 BOOL* pbEnabled,
 BOOL* pbChecked);

ParametersParameters

lpszProperty
A string containing the property to set.

vtValue
The new value of the property indicated by lpszProperty.

lpszPropertyName
A pointer to a string containing the name of the property to set.

dValue
The new value of the property.

lValue
The new value of the property.

lpszValue
A pointer to a string containing the new value of the property.

nValue
The new value of the property.

Applies to Internet Explorer and WebBrowser.

Queries for the status of one or more commands generated by user interface events.

dwCommandID
The identifier of the command being queried for.

Return ValueReturn Value

RemarksRemarks

CHtmlView::QueryStatusWB

OLECMDF QueryStatusWB(OLECMDID cmdID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHtmlView::Refresh

void Refresh();

RemarksRemarks

CHtmlView::Refresh2

void Refresh2(int nLevel);

pbSupported
A pointer to a BOOL specifying if the command (identified by dwCommandID) is supported. If TRUE, the
command is supported; otherwise FALSE.

pbEnabled
A pointer to a BOOL specifying if the command (identified by dwCommandID) is enabled. If TRUE, the command
is supported; otherwise FALSE.

pbChecked
A pointer to a BOOL specifying if the command (identified by dwCommandID) is checked. If TRUE, the command
is supported; otherwise FALSE.

A standard HRESULT value. For a complete listing of possible values, see IOleCommandTarget::QueryStatus in
the Windows SDK.

QueryFormsCommand implements the behavior of the IOleCommandTarget::QueryStatus method.

Call this member function to query a command status.

cmdID
The OLECMDID value of the command for which the caller needs status information.

The address of the OLECMDF value that receives the status of the command.

QueryStatusWB implements the behavior of the IOleCommandTarget::QueryStatus method.

Applies to Internet Explorer and WebBrowser.

Reloads the URL or file that the web browser is currently displaying.

Refresh contains no parameters for setting the refresh level.

Applies to Internet Explorer and WebBrowser.

Reloads the file that Internet Explorer is currently displaying.

https://docs.microsoft.com/windows/desktop/api/docobj/nf-docobj-iolecommandtarget-querystatus
https://docs.microsoft.com/windows/desktop/api/docobj/nf-docobj-iolecommandtarget-querystatus
https://docs.microsoft.com/windows/desktop/api/docobj/ne-docobj-olecmdid
https://docs.microsoft.com/windows/desktop/api/docobj/ne-docobj-olecmdf
https://docs.microsoft.com/windows/desktop/api/docobj/nf-docobj-iolecommandtarget-querystatus

ParametersParameters

RemarksRemarks

CHtmlView::SetAddressBar

void SetAddressBar(BOOL bNewValue);

ParametersParameters

RemarksRemarks

CHtmlView::SetFullScreen

void SetFullScreen(BOOL bNewValue);

ParametersParameters

RemarksRemarks

CHtmlView::SetHeight

void SetHeight(long nNewValue);

ParametersParameters

RemarksRemarks

nLevel
The address of the variable specifying the refresh level. The possible variables are defined in RefreshConstants, in
the Windows SDK.

Unlike Refresh, Refresh2 contains a parameter that specifies the refresh level.

Applies to Internet Explorer and WebBrowser.

Call this member function to show or hide the Internet Explorer object's address bar.

bNewValue
Nonzero to show address bar; otherwise zero.

Applies to Internet Explorer. If you use this call with a WebBrowser control, it will return no error, but it will ignore
this call.

Call this member function to set Internet Explorer to either full-screen or normal window mode.

bNewValue
Nonzero for full-screen mode; otherwise zero.

In full-screen mode, the Internet Explorer main window is maximized and the status bar, toolbar, menu bar, and
title bar are hidden.

Applies to Internet Explorer. If you use this call with a WebBrowser control, it will return no error, but it will ignore
this call.

Call this member function to set the height of the Internet Explorer main window.

nNewValue
The height, in pixels, of the main window.

https://msdn.microsoft.com/library/aa768363.aspx

CHtmlView::SetLeft

void SetLeft(long nNewValue);

ParametersParameters

CHtmlView::SetMenuBar

void SetMenuBar(BOOL bNewValue);

ParametersParameters

RemarksRemarks

CHtmlView::SetOffline

void SetOffline(BOOL bNewValue);

ParametersParameters

RemarksRemarks

CHtmlView::SetRegisterAsBrowser

void SetRegisterAsBrowser(BOOL bNewValue);

ParametersParameters

Applies to Internet Explorer and WebBrowser.

Sets the horizontal position of the Internet Explorer main window.

nNewValue
The screen coordinate of the left edge of the main window.

Call this member function to show or hide the Internet Explorer menu bar.

bNewValue
Nonzero to show menu bar; otherwise zero.

Applies to Internet Explorer. If you use this call with a WebBrowser control, it will return no error, but it will ignore
this call.

Call this member function to set a value indicating whether the WebBrowser control is currently operating in
offline mode.

bNewValue
Nonzero to read from the local cache; otherwise zero.

In offline mode, the browser reads HTML pages from the local cache rather than from the source document.

Applies to Internet Explorer and WebBrowser.

Call this member function to set a value indicating whether the WebBrowser control is registered as a top-level
browser for target name resolution.

bNewValue

RemarksRemarks

CHtmlView::SetRegisterAsDropTarget

void SetRegisterAsDropTarget(BOOL bNewValue);

ParametersParameters

RemarksRemarks

CHtmlView::SetSilent

void SetSilent(BOOL bNewValue);

ParametersParameters

RemarksRemarks

CHtmlView::SetStatusBar

void SetStatusBar(BOOL bNewValue);

ParametersParameters

RemarksRemarks

CHtmlView::SetTheaterMode

Determines whether Internet Explorer is registered as a top-level browser. If nonzero, the web browser is
registered as a top-level browser; if zero, it is not a top-level browser. The default value is zero.

A top-level browser is the browser set in the registry as the default browser.

Applies to Internet Explorer and WebBrowser.

Call this member function to set a value indicating whether the WebBrowser control is registered as a drop target
for navigation.

bNewValue
Determines if the WebBrowser control is registered as a drop target for navigation. If nonzero, the object is
registered as a drop target; if zero, it is not a drop target.

Applies to Internet Explorer and WebBrowser.

Call this member function to set a value indicating whether any dialog boxes can be shown.

bNewValue
If nonzero, dialog boxes will not be displayed; if zero, dialog boxes will be displayed. The default value is zero.

Applies to Internet Explorer and WebBrowser.

Call this member function to display the status bar.

bNewValue
Nonzero if the status bar is visible; otherwise zero.

Applies to Internet Explorer. If you use this call with a WebBrowser control, it will return no error, but it will ignore
this call.

void SetTheaterMode(BOOL bNewValue);

ParametersParameters

RemarksRemarks

CHtmlView::SetToolBar

void SetToolBar(int nNewValue);

ParametersParameters

RemarksRemarks

CHtmlView::SetTop

void SetTop(long nNewValue);

ParametersParameters

RemarksRemarks

CHtmlView::SetVisible

void SetVisible(BOOL bNewValue);

ParametersParameters

Call this member function to set a value indicating whether the WebBrowser control is in theater mode.

bNewValue
Nonzero to set the WebBrowser control to theater mode; otherwise zero. The default value is zero.

When the web browser is in theater mode, the browser main window fills the entire screen, a toolbar with a
minimal set of navigational tools appears, and the status bar appears in the upper right-hand corner of the screen.

Applies to Internet Explorer and WebBrowser.

Call this member function to show or hide the Internet Explorer toolbar.

nNewValue
Indicates whether to display the toolbar. Nonzero if the toolbar is to be displayed; otherwise zero.

Applies to Internet Explorer. If you use this call with a WebBrowser control, it will return no error, but it will ignore
this call.

Call this member function to set the distance between the internal top edge of the WebBrowser control and the
top edge of its container

nNewValue
The screen coordinate of the top edge of the main window.

Applies to Internet Explorer and WebBrowser.

Call this member function to set the visibility state of the WebBrowser control.

bNewValue
Nonzero if the control is visible; otherwise zero.

RemarksRemarks

CHtmlView::SetWidth

void SetWidth(long nNewValue);

ParametersParameters

CHtmlView::Stop

void Stop();

RemarksRemarks

See also

Applies to Internet Explorer and WebBrowser.

Sets the width of the Internet Explorer main window.

nNewValue
The width, in pixels, of the Internet Explorer main window.

Call this member function to cancel any pending navigation or download operation and stop any dynamic page
elements, such as background sounds and animations.

Applies to Internet Explorer and WebBrowser.

MFC Sample MFCIE
CFormView Class
Hierarchy Chart
IWebBrowser2

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/api/exdisp/nn-exdisp-iwebbrowser2

CHttpConnection Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CHttpConnection : public CInternetConnection

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CHttpConnection::CHttpConnection Creates a CHttpConnection object.

Public MethodsPublic Methods

NAME DESCRIPTION

CHttpConnection::OpenRequest Opens an HTTP request.

Remarks

Inheritance Hierarchy

Requirements

Manages your connection to an HTTP server.

HTTP is one of three Internet server protocols implemented by the MFC WinInet classes.

The class CHttpConnection contains a constructor and one member function, OpenRequest, that manages
connections to a server with an HTTP protocol.

To communicate with an HTTP server, you must first create an instance of CInternetSession, and then create a
CHttpConnection object. You never create a CHttpConnection object directly; rather, call
CInternetSession::GetHttpConnection, which creates the CHttpConnection object and returns a pointer to it.

To learn more about how CHttpConnection works with the other MFC Internet classes, see the article Internet
Programming with WinInet. For more information about connecting to servers using the other two supported
Internet protocols, gopher and FTP, see the classes CGopherConnection and CFtpConnection.

CObject

CInternetConnection

CHttpConnection

Header: afxinet.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/chttpconnection-class.md

 CHttpConnection::CHttpConnection

CHttpConnection(
 CInternetSession* pSession,
 HINTERNET hConnected,
 LPCTSTR pstrServer,
 DWORD_PTR dwContext);

CHttpConnection(
 CInternetSession* pSession,
 LPCTSTR pstrServer,
 INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER,
 LPCTSTR pstrUserName = NULL,
 LPCTSTR pstrPassword = NULL,
 DWORD_PTR dwContext = 1);

CHttpConnection(
 CInternetSession* pSession,
 LPCTSTR pstrServer,
 DWORD dwFlags,
 INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER,
 LPCTSTR pstrUserName = NULL,
 LPCTSTR pstrPassword = NULL,
 DWORD_PTR dwContext = 1);

ParametersParameters

PSTRUSERNAME PSTRPASSWORD
USERNAME SENT TO FTP
SERVER

PASSWORD SENT TO FTP
SERVER

NULL or " " NULL or " " "anonymous" User's email name

Non- NULL String NULL or " " pstrUserName " "

This member function is called to construct a CHttpConnection object.

pSession
A pointer to a CInternetSession object.

hConnected
A handle to an Internet connection.

pstrServer
A pointer to a string containing the server name.

dwContext
The context identifier for the CInternetConnection object. See Remarks for more information about dwContext.

nPort
The number that identifies the Internet port for this connection.

pstrUserName
Pointer to a null-terminated string that specifies the name of the user to log in. If NULL, the default is
anonymous.

pstrPassword
A pointer to a null-terminated string that specifies the password to use to log in. If both pstrPassword and
pstrUserName are NULL, the default anonymous password is the user's email name. If pstrPassword is NULL
(or an empty string) but pstrUserName is not NULL, a blank password is used. The following table describes
the behavior for the four possible settings of pstrUserName and pstrPassword:

NULL Non- NULL String ERROR ERROR

Non- NULL String Non- NULL String pstrUserName pstrPassword

PSTRUSERNAME PSTRPASSWORD
USERNAME SENT TO FTP
SERVER

PASSWORD SENT TO FTP
SERVER

RemarksRemarks

CHttpConnection::OpenRequest

CHttpFile* OpenRequest(
 LPCTSTR pstrVerb,
 LPCTSTR pstrObjectName,
 LPCTSTR pstrReferer = NULL,
 DWORD_PTR dwContext = 1,
 LPCTSTR* ppstrAcceptTypes = NULL,
 LPCTSTR pstrVersion = NULL,
 DWORD dwFlags = INTERNET_FLAG_EXISTING_CONNECT);

CHttpFile* OpenRequest(
 int nVerb,
 LPCTSTR pstrObjectName,
 LPCTSTR pstrReferer = NULL,
 DWORD_PTR dwContext = 1,
 LPCTSTR* ppstrAcceptTypes = NULL,
 LPCTSTR pstrVersion = NULL,
 DWORD dwFlags = INTERNET_FLAG_EXISTING_CONNECT);

ParametersParameters

dwFlags
Any combination of the INTERNET_FLAG_* flags. See the table in the Remarks section of
CHttpConnection::OpenRequest for a description of dwFlags values.

You never create a CHttpConnection directly. Rather, you create an object by calling
CInternetSession::GetHttpConnection.

Call this member function to open an HTTP connection.

pstrVerb
A pointer to a string containing the verb to use in the request. If NULL, "GET" is used.

pstrObjectName
A pointer to a string containing the target object of the specified verb. This is generally a filename, an executable
module, or a search specifier.

pstrReferer
A pointer to a string that specifies the address (URL) of the document from which the URL in the request (
pstrObjectName) was obtained. If NULL, no HTTP header is specified.

dwContext
The context identifier for the OpenRequest operation. See the Remarks section for more information about
dwContext.

ppstrAcceptTypes
A pointer to a null-terminated array of LPCTSTR pointers to strings indicating content types accepted by the
client. If ppstrAcceptTypes is NULL, the servers interpret that the client only accepts documents of type "text/*"
(that is, only text documents and not pictures or other binary files). The content type is equivalent to the CGI

HTTP REQUEST TYPE NVERB VALUE

HTTP_VERB_POST 0

HTTP_VERB_GET 1

HTTP_VERB_HEAD 2

HTTP_VERB_PUT 3

HTTP_VERB_LINK 4

HTTP_VERB_DELETE 5

HTTP_VERB_UNLINK 6

Return ValueReturn Value

RemarksRemarks

INTERNET FLAG DESCRIPTION

INTERNET_FLAG_RELOAD Forces a download of the requested file, object, or directory
listing from the origin server, not from the cache.

INTERNET_FLAG_DONT_CACHE Does not add the returned entity to the cache.

INTERNET_FLAG_MAKE_PERSISTENT Adds the returned entity to the cache as a persistent entity.
This means that standard cache cleanup, consistency
checking, or garbage collection cannot remove this item
from the cache.

INTERNET_FLAG_SECURE Uses secure transaction semantics. This translates to using
SSL/PCT and is only meaningful in HTTP requests

INTERNET_FLAG_NO_AUTO_REDIRECT Used only with HTTP, specifies that redirections should not
be automatically handled in CHttpFile::SendRequest.

variable CONTENT_TYPE, which identifies the type of data for queries that have attached information, such as
HTTP POST and PUT.

pstrVersion
A pointer to a string defining the HTTP version. If NULL, "HTTP/1.0" is used.

dwFlags
Any combination of the INTERNET_ FLAG_* flags. See the Remarks section for a description of possible
dwFlags values.

nVerb
A number associated with the HTTP request type. Can be one of the following:

A pointer to the CHttpFile object requested.

dwFlags can be one of the following:

Override the dwContext default to set the context identifier to a value of your choosing. The context identifier is
associated with this specific operation of the CHttpConnection object created by its CInternetSession object. The

See also

value is returned to CInternetSession::OnStatusCallback to provide status on the operation with which it is
identified. See the article Internet First Steps: WinInet for more information about the context identifier.

Exceptions may be thrown with this function.

CInternetConnection Class
Hierarchy Chart
CInternetConnection Class
CHttpFile Class

CHttpFile Class
3/4/2019 • 11 minutes to read • Edit Online

Syntax
class CHttpFile : public CInternetFile

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CHttpFile::CHttpFile Creates a CHttpFile object.

Public MethodsPublic Methods

NAME DESCRIPTION

CHttpFile::AddRequestHeaders Adds headers to the request sent to an HTTP server.

CHttpFile::EndRequest Ends a request sent to an HTTP server with the
SendRequestEx member function.

CHttpFile::GetFileURL Gets the URL for the specified file.

CHttpFile::GetObject Gets the target object of the verb in a request to an HTTP
server.

CHttpFile::GetVerb Gets the verb that was used in a request to an HTTP server.

CHttpFile::QueryInfo Returns the response or request headers from the HTTP
server.

CHttpFile::QueryInfoStatusCode Retrieves the status code associated with an HTTP request
and places it in the supplied dwStatusCode parameter.

CHttpFile::SendRequest Sends a request to an HTTP server.

CHttpFile::SendRequestEx Sends a request to an HTTP server using the Write or
WriteString methods of CInternetFile .

Remarks

Provides the functionality to request and read files on an HTTP server.

If your Internet session reads data from an HTTP server, you must create an instance of CHttpFile .

To learn more about how CHttpFile works with the other MFC Internet classes, see the article Internet

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/chttpfile-class.md

Inheritance Hierarchy

Requirements

CHttpFile::AddRequestHeaders

BOOL AddRequestHeaders(
 LPCTSTR pstrHeaders,
 DWORD dwFlags = HTTP_ADDREQ_FLAG_ADD_IF_NEW,
 int dwHeadersLen = -1);

BOOL AddRequestHeaders(
 CString& str,
 DWORD dwFlags = HTTP_ADDREQ_FLAG_ADD_IF_NEW);

ParametersParameters

Programming with WinInet.

CObject

CFile

CStdioFile

CInternetFile

CHttpFile

Header: afxinet.h

Call this member function to add one or more HTTP request headers to the HTTP request handle.

pstrHeaders
A pointer to a string containing the header or headers to append to the request. Each header must be
terminated by a CR/LF pair.

dwFlags
Modifies the semantics of the new headers. Can be one of the following:

HTTP_ADDREQ_FLAG_COALESCE Merges headers of the same name, using the flag to add the first
header found to the subsequent header. For example, "Accept: text/*" followed by "Accept: audio/*"
results in the formation of the single header "Accept: text/*, audio/*". It is up to the calling application to
ensure a cohesive scheme with respect to data received by requests sent with coalesced or separate
headers.

HTTP_ADDREQ_FLAG_REPLACE Performs a remove and add to replace the current header. The
header name will be used to remove the current header, and the full value will be used to add the new
header. If the header-value is empty and the header is found, it is removed. If not empty, the header-
value is replaced.

HTTP_ADDREQ_FLAG_ADD_IF_NEW Only adds the header if it does not already exist. If one exists, an
error is returned.

HTTP_ADDREQ_FLAG_ADD Used with REPLACE. Adds the header if it doesn't exist.

dwHeadersLen
The length, in characters, of pstrHeaders. If this is -1L, then pstrHeaders is assumed to be zero-terminated and
the length is computed.

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CHttpFile::CHttpFile

CHttpFile(
 HINTERNET hFile,
 HINTERNET hSession,
 LPCTSTR pstrObject,
 LPCTSTR pstrServer,
 LPCTSTR pstrVerb,
 DWORD_PTR dwContext);

CHttpFile(
 HINTERNET hFile,
 LPCTSTR pstrVerb,
 LPCTSTR pstrObject,
 CHttpConnection* pConnection);

ParametersParameters

str
A reference to a CString object containing the request header or headers to be added.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

AddRequestHeaders appends additional, free-format headers to the HTTP request handle. It is intended for use
by sophisticated clients who need detailed control over the exact request sent to the HTTP server.

The application can pass multiple headers in pstrHeaders or str for an AddRequestHeaders call using
HTTP_ADDREQ_FLAG_ADD or HTTP_ADDREQ_FLAG_ADD_IF_NEW. If the application tries to remove or replace a
header using HTTP_ADDREQ_FLAG_REMOVE or HTTP_ADDREQ_FLAG_REPLACE, only one header can be supplied in
lpszHeaders.

This member function is called to construct a CHttpFile object.

hFile
A handle to an Internet file.

hSession
A handle to an Internet session.

pstrObject
A pointer to a string containing the CHttpFile object.

pstrServer
A pointer to a string containing the name of the server.

pstrVerb
A pointer to a string containing the method to be used when sending the request. Can be POST, HEAD, or
GET.

dwContext
The context identifier for the CHttpFile object. See Remarks for more information about this parameter.

pConnection

https://msdn.microsoft.com/library/windows/desktop/ms679360

RemarksRemarks

CHttpFile::EndRequest

BOOL EndRequest(
 DWORD dwFlags = 0,
 LPINTERNET_BUFFERS lpBuffIn = NULL,
 DWORD_PTR dwContext = 1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CHttpFile::GetFileURL

virtual CString GetFileURL() const;

Return ValueReturn Value

RemarksRemarks

A pointer to a CHttpConnection object.

You never construct a CHttpFile object directly; rather call CInternetSession::OpenURL or
CHttpConnection::OpenRequest instead.

The default value for dwContext is sent by MFC to the CHttpFile object from the CInternetSession object that
created the CHttpFile object. When you call CInternetSession::OpenURL or CHttpConnection to construct a
CHttpFile object, you can override the default to set the context identifier to a value of your choosing. The

context identifier is returned to CInternetSession::OnStatusCallback to provide status on the object with which
it is identified. See the article Internet First Steps: WinInet for more information about the context identifier.

Call this member function to end a request sent to an HTTP server with the SendRequestEx member function.

dwFlags
Flags describing the operation. For a list of the appropriate flags, see HttpEndRequest in the Windows SDK.

lpBuffIn
Pointer to an initialized INTERNET_BUFFERS that describes the input buffer used for the operation.

dwContext
The context identifier for the CHttpFile operation. See Remarks for more information about this parameter.

Nonzero if successful; otherwise 0. If the call fails, determine the cause of the failure by examining the thrown
CInternetException object.

The default value for dwContext is sent by MFC to the CHttpFile object from the CInternetSession object that
created the CHttpFile object. When you call CInternetSession::OpenURL or CHttpConnection to construct a
CHttpFile object, you can override the default to set the context identifier to a value of your choosing. The

context identifier is returned to CInternetSession::OnStatusCallback to provide status on the object with which
it is identified. See article Internet First Steps: WinInet for more information about the context identifier.

Call this member function to get the name of the HTTP file as a URL.

A CString object containing a URL referencing the resource associated with this file.

Use this member function only after a successful call to SendRequest or on a CHttpFile object successfully
created by OpenURL.

https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-httpendrequesta
https://docs.microsoft.com/windows/desktop/api/wininet/ns-wininet-_internet_buffersa

CHttpFile::GetObject

CString GetObject() const;

Return ValueReturn Value

RemarksRemarks

CHttpFile::GetVerb

CString GetVerb() const;

Return ValueReturn Value

RemarksRemarks

CHttpFile::QueryInfo

BOOL QueryInfo(
 DWORD dwInfoLevel,
 LPVOID lpvBuffer,
 LPDWORD lpdwBufferLength,
 LPDWORD lpdwIndex = NULL) const;

BOOL QueryInfo(
 DWORD dwInfoLevel,
 CString& str,
 LPDWORD dwIndex = NULL) const;

BOOL QueryInfo(
 DWORD dwInfoLevel,
 SYSTEMTIME* pSysTime,
 LPDWORD dwIndex = NULL) const;

ParametersParameters

Call this member function to get the name of the object associated with this CHttpFile .

A CString object containing the name of the object.

Use this member function only after a successful call to SendRequest or on a CHttpFile object successfully
created by OpenURL.

Call this member function to get the HTTP verb (or method) associated with this CHttpFile .

A CString object containing the name of the HTTP verb (or method).

Use this member function only after a successful call to SendRequest or on a CHttpFile object successfully
created by OpenURL.

Call this member function to return response or request headers from an HTTP request.

dwInfoLevel
A combination of the attribute to query and the following flags that specify the type of information requested:

HTTP_QUERY_CUSTOM Finds the header name and returns this value in lpvBuffer on output.
HTTP_QUERY_CUSTOM throws an assertion if the header isn't found.

HTTP_QUERY_FLAG_REQUEST_HEADERS Typically, the application queries the response headers, but
an application can also query request headers by using this flag.

Return ValueReturn Value

RemarksRemarks

HTTP_QUERY_FLAG_SYSTEMTIME For those headers whose value is a date/time string, such as "Last-
Modified-Time," this flag returns the header value as a standard Win32 SYSTEMTIME structure that
does not require the application to parse the data. If you use this flag, you may want to use the
SYSTEMTIME override of the function.

HTTP_QUERY_FLAG_NUMBER For those headers whose value is a number, such as the status code,
this flag returns the data as a 32-bit number.

See the Remarks section for a list of the possible values.

lpvBuffer
A pointer to the buffer that receives the information.

lpdwBufferLength
On entry, this points to a value containing the length of the data buffer, in number of characters or bytes. See
the Remarks section for more detailed information about this parameter.

lpdwIndex
A pointer to a zero-based header index. Can be NULL. Use this flag to enumerate multiple headers with the
same name. On input, lpdwIndex indicates the index of the specified header to return. On output, lpdwIndex
indicates the index of the next header. If the next index cannot be found,
ERROR_HTTP_HEADER_NOT_FOUND is returned.

str
A reference to the CString object receiving the returned information.

dwIndex
An index value. See lpdwIndex.

pSysTime
A pointer to a Win32 SYSTEMTIME structure.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

Use this member function only after a successful call to SendRequest or on a CHttpFile object successfully
created by OpenURL.

You can retrieve the following types of data from QueryInfo :

strings (default)

SYSTEMTIME (for "Data:" "Expires:" etc, headers)

DWORD (for STATUS_CODE, CONTENT_LENGTH, etc.)

When a string is written to the buffer, and the member function succeeds, lpdwBufferLength contains the
length of the string in characters minus 1 for the terminating NULL character.

The possible dwInfoLevel values include:

HTTP_QUERY_MIME_VERSION

HTTP_QUERY_CONTENT_TYPE

HTTP_QUERY_CONTENT_TRANSFER_ENCODING

HTTP_QUERY_CONTENT_ID

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://msdn.microsoft.com/library/windows/desktop/ms679360

 CHttpFile::QueryInfoStatusCode

BOOL QueryInfoStatusCode(DWORD& dwStatusCode) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

HTTP_QUERY_CONTENT_DESCRIPTION

HTTP_QUERY_CONTENT_LENGTH

HTTP_QUERY_ALLOWED_METHODS

HTTP_QUERY_PUBLIC_METHODS

HTTP_QUERY_DATE

HTTP_QUERY_EXPIRES

HTTP_QUERY_LAST_MODIFIED

HTTP_QUERY_MESSAGE_ID

HTTP_QUERY_URI

HTTP_QUERY_DERIVED_FROM

HTTP_QUERY_LANGUAGE

HTTP_QUERY_COST

HTTP_QUERY_WWW_LINK

HTTP_QUERY_PRAGMA

HTTP_QUERY_VERSION

HTTP_QUERY_STATUS_CODE

HTTP_QUERY_STATUS_TEXT

HTTP_QUERY_RAW_HEADERS

HTTP_QUERY_RAW_HEADERS_CRLF

Call this member function to get the status code associated with an HTTP request and place it in the supplied
dwStatusCode parameter.

dwStatusCode
A reference to a status code. Status codes indicate the success or failure of the requested event. See Remarks
for a selection of status code descriptions.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to determine
the cause of the error.

Use this member function only after a successful call to SendRequest or on a CHttpFile object successfully
created by OpenURL.

HTTP status codes fall into groups indicating the success or failure of the request. The following tables outline
the status code groups and the most common HTTP status codes.

https://msdn.microsoft.com/library/windows/desktop/ms679360

GROUP MEANING

200-299 Success

300-399 Information

400-499 Request error

500-599 Server error

STATUS CODE MEANING

200 URL located, transmission follows

400 Unintelligible request

404 Requested URL not found

405 Server does not support requested method

500 Unknown server error

503 Server capacity reached

CHttpFile::SendRequest

BOOL SendRequest(
 LPCTSTR pstrHeaders = NULL,
 DWORD dwHeadersLen = 0,
 LPVOID lpOptional = NULL,
 DWORD dwOptionalLen = 0);

BOOL SendRequest(
 CString& strHeaders,
 LPVOID lpOptional = NULL,
 DWORD dwOptionalLen = 0);

ParametersParameters

Common HTTP Status Codes:

Call this member function to send a request to an HTTP server.

pstrHeaders
A pointer to a string containing the name of the headers to send.

dwHeadersLen
The length of the headers identified by pstrHeaders.

lpOptional
Any optional data to send immediately after the request headers. This is generally used for POST and PUT
operations. This can be NULL if there is no optional data to send.

dwOptionalLen
The length of lpOptional.

Return ValueReturn Value

CHttpFile::SendRequestEx

BOOL SendRequestEx(
 DWORD dwTotalLen,
 DWORD dwFlags = HSR_INITIATE,
 DWORD_PTR dwContext = 1);

BOOL SendRequestEx(
 LPINTERNET_BUFFERS lpBuffIn,
 LPINTERNET_BUFFERS lpBuffOut,
 DWORD dwFlags = HSR_INITIATE,
 DWORD_PTR dwContext = 1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

strHeaders
A string containing the name of the headers for the request being sent.

Nonzero if successful; otherwise 0. If the call fails, determine the cause of the failure by examining the thrown
CInternetException object.

Call this member function to send a request to an HTTP server.

dwTotalLen
Number of bytes to be sent in the request.

dwFlags
Flags describing the operation. For a list of appropriate flags, see HttpSendRequestEx in the Windows SDK.

dwContext
The context identifier for the CHttpFile operation. See Remarks for more information about this parameter.

lpBuffIn
Pointer to an initialized INTERNET_BUFFERS that describes the input buffer used for the operation.

lpBuffOut
Pointer to an initialized INTERNET_BUFFERS that describes the output buffer used for the operation.

Nonzero if successful. If the call fails, determine the cause of the failure by examining the thrown
CInternetException object.

This function allows your application to send data using the Write and WriteString methods of CInternetFile .
You must know the length of the data to send before calling either override of this function. The first override
allows you to specify the length of data you'd like to send. The second override accepts pointers to
INTERNET_BUFFERS structures, which can be used to describe the buffer in great detail.

After content is written to the file, call EndRequest to end the operation.

The default value for dwContext is sent by MFC to the CHttpFile object from the CInternetSession object that
created the CHttpFile object. When you call CInternetSession::OpenURL or CHttpConnection to construct a
CHttpFile object, you can override the default to set the context identifier to a value of your choosing. The

context identifier is returned to CInternetSession::OnStatusCallback to provide status on the object with which
it is identified. See the article Internet First Steps: WinInet for more information about the context identifier.

https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-httpsendrequestexa
https://docs.microsoft.com/windows/desktop/api/wininet/ns-wininet-_internet_buffersa

CString strData = _T("Some very long data to be POSTed here!");
pServer = session.GetHttpConnection(_T("localhost"));
pFile = pServer->OpenRequest(CHttpConnection::HTTP_VERB_POST,
 _T("/MFCISAPI/MFCISAPI.dll?"));
pFile->SendRequestEx(strData.GetLength());

pFile->WriteString(strData);
pFile->EndRequest();

See also

This code fragment sends the content of a string to a DLL named MFCISAPI.DLL on the LOCALHOST server.
While this example uses only one call to WriteString , using multiple calls to send data in blocks is acceptable.

CInternetFile Class
Hierarchy Chart
CInternetFile Class
CGopherFile Class
CHttpConnection Class

CHwndRenderTarget Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CHwndRenderTarget : public CRenderTarget;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CHwndRenderTarget::CHwndRenderTarget Constructs a CHwndRenderTarget object from HWND.

Public MethodsPublic Methods

NAME DESCRIPTION

CHwndRenderTarget::Attach Attaches existing render target interface to the object

CHwndRenderTarget::CheckWindowState Indicates whether the HWND associated with this render
target is occluded.

CHwndRenderTarget::Create Creates a render target associated with the window

CHwndRenderTarget::Detach Detaches render target interface from the object

CHwndRenderTarget::GetHwnd Returns the HWND associated with this render target.

CHwndRenderTarget::GetHwndRenderTarget Returns ID2D1HwndRenderTarget interface.

CHwndRenderTarget::ReCreate Re-creates a render target associated with the window

CHwndRenderTarget::Resize Changes the size of the render target to the specified pixel size

Public OperatorsPublic Operators

NAME DESCRIPTION

CHwndRenderTarget::operator ID2D1HwndRenderTarget* Returns ID2D1HwndRenderTarget interface.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CHwndRenderTarget::m_pHwndRenderTarget A pointer to an ID2D1HwndRenderTarget object.

A wrapper for ID2D1HwndRenderTarget.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/chwndrendertarget-class.md

Inheritance Hierarchy

Requirements

CHwndRenderTarget::Attach

void Attach(ID2D1HwndRenderTarget* pTarget);

ParametersParameters

CHwndRenderTarget::CheckWindowState

D2D1_WINDOW_STATE CheckWindowState() const;

Return ValueReturn Value

CHwndRenderTarget::CHwndRenderTarget

CHwndRenderTarget(HWND hwnd = NULL);

ParametersParameters

CHwndRenderTarget::Create

BOOL Create(HWND hWnd);

ParametersParameters

Return ValueReturn Value

CObject

CRenderTarget

CHwndRenderTarget

Header: afxrendertarget.h

Attaches existing render target interface to the object

pTarget
Existing render target interface. Cannot be NULL

Indicates whether the HWND associated with this render target is occluded.

A value that indicates whether the HWND associated with this render target is occluded.

Constructs a CHwndRenderTarget object from HWND.

hwnd
The HWND associated with this render target

Creates a render target associated with the window

hWnd
The HWND associated with this render target

CHwndRenderTarget::Detach

ID2D1HwndRenderTarget* Detach();

Return ValueReturn Value

CHwndRenderTarget::GetHwnd

HWND GetHwnd() const;

Return ValueReturn Value

CHwndRenderTarget::GetHwndRenderTarget

ID2D1HwndRenderTarget* GetHwndRenderTarget();

Return ValueReturn Value

CHwndRenderTarget::m_pHwndRenderTarget

ID2D1HwndRenderTarget* m_pHwndRenderTarget;

CHwndRenderTarget::operator ID2D1HwndRenderTarget*

operator ID2D1HwndRenderTarget*();

Return ValueReturn Value

CHwndRenderTarget::ReCreate

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE

Detaches render target interface from the object

Pointer to detached render target interface.

Returns the HWND associated with this render target.

The HWND associated with this render target.

Returns ID2D1HwndRenderTarget interface.

Pointer to an ID2D1HwndRenderTarget interface or NULL if object is not initialized yet.

A pointer to an ID2D1HwndRenderTarget object.

Returns ID2D1HwndRenderTarget interface.

Pointer to an ID2D1HwndRenderTarget interface or NULL if object is not initialized yet.

Re-creates a render target associated with the window

BOOL ReCreate(HWND hWnd);

ParametersParameters

Return ValueReturn Value

CHwndRenderTarget::Resize

BOOL Resize(const CD2DSizeU& size);

ParametersParameters

Return ValueReturn Value

See also

hWnd
The HWND associated with this render target

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Changes the size of the render target to the specified pixel size

size
The new size of the render target in device pixels

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Classes

CImageList Class
3/5/2019 • 23 minutes to read • Edit Online

Syntax
class CImageList : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CImageList::CImageList Constructs a CImageList object.

Public MethodsPublic Methods

NAME DESCRIPTION

CImageList::Add Adds an image or images to an image list.

CImageList::Attach Attaches an image list to a CImageList object.

CImageList::BeginDrag Begins dragging an image.

CImageList::Copy Copies an image within a CImageList object.

CImageList::Create Initializes an image list and attaches it to a CImageList

object.

CImageList::DeleteImageList Deletes an image list.

CImageList::DeleteTempMap Called by the CWinApp idle-time handler to delete any
temporary CImageList object created by
FromHandle .

CImageList::Detach Detaches an image list object from a CImageList

object and returns a handle to an image list.

CImageList::DragEnter Locks updates during a drag operation and displays the
drag image at a specified position.

CImageList::DragLeave Unlocks the window and hides the drag image so that
the window can be updated.

CImageList::DragMove Moves the image that is being dragged during a drag-
and-drop operation.

Provides the functionality of the Windows common image list control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cimagelist-class.md

CImageList::DragShowNolock Shows or hides the drag image during a drag operation,
without locking the window.

CImageList::Draw Draws the image that is being dragged during a drag-
and-drop operation.

CImageList::DrawEx Draws an image list item in the specified device context.
The function uses the specified drawing style and blends
the image with the specified color.

CImageList::DrawIndirect Draws an image from an image list.

CImageList::EndDrag Ends a drag operation.

CImageList::ExtractIcon Creates an icon based on an image and mask in an
image list.

CImageList::FromHandle Returns a pointer to a CImageList object when given
a handle to an image list. If a CImageList object is not
attached to the handle, a temporary CImageList

object is created and attached.

CImageList::FromHandlePermanent Returns a pointer to a CImageList object when given
a handle to an image list. If a CImageList object is not
attached to the handle, NULL is returned.

CImageList::GetBkColor Retrieves the current background color for an image list.

CImageList::GetDragImage Gets the temporary image list that is used for dragging.

CImageList::GetImageCount Retrieves the number of images in an image list.

CImageList::GetImageInfo Retrieves information about an image.

CImageList::GetSafeHandle Retrieves m_hImageList .

CImageList::Read Reads an image list from an archive.

CImageList::Remove Removes an image from an image list.

CImageList::Replace Replaces an image in an image list with a new image.

CImageList::SetBkColor Sets the background color for an image list.

CImageList::SetDragCursorImage Creates a new drag image.

CImageList::SetImageCount Resets the count of images in an image list.

CImageList::SetOverlayImage Adds the zero-based index of an image to the list of
images to be used as overlay masks.

CImageList::Write Writes an image list to an archive.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CImageList::operator HIMAGELIST Returns the HIMAGELIST attached to the CImageList .

Public Data MembersPublic Data Members

NAME DESCRIPTION

CImageList::m_hImageList A handle containing the image list attached to this
object.

Remarks

Inheritance Hierarchy

Requirements

CImageList::Add

int Add(
 CBitmap* pbmImage,
 CBitmap* pbmMask);

int Add(
 CBitmap* pbmImage,
 COLORREF crMask);

int Add(HICON hIcon);

ParametersParameters

An "image list" is a collection of same-sized images, each of which can be referred to by its zero-based
index. Image lists are used to efficiently manage large sets of icons or bitmaps. All images in an image
list are contained in a single, wide bitmap in screen device format. An image list may also include a
monochrome bitmap that contains masks used to draw images transparently (icon style). The Microsoft
Win32 application programming interface (API) provides image list functions that enable you to draw
images, create and destroy image lists, add and remove images, replace images, merge images, and
drag images.

This control (and therefore the CImageList class) is available only to programs running under Windows
95/98 and Windows NT version 3.51 and later.

For more information on using CImageList , see Controls and Using CImageList.

CObject

CImageList

Header: afxcmn.h

Call this function to add one or more images or an icon to an image list.

pbmImage
Pointer to the bitmap containing the image or images. The number of images is inferred from the width
of the bitmap.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Add my icons.
m_myImageList.Add(AfxGetApp()->LoadIcon(IDI_ICON1));
m_myImageList.Add(AfxGetApp()->LoadIcon(IDI_ICON2));

// Add my bitmap, make all black pixels transparent.
CBitmap bm;
bm.LoadBitmap(IDB_BITMAP1);
m_myImageList.Add(&bm, RGB(0, 0, 0));

CImageList::Attach

BOOL Attach(HIMAGELIST hImageList);

ParametersParameters

Return ValueReturn Value

ExampleExample

void AddQuestion(HIMAGELIST hmyImageList)
{
 CImageList imgList;

 // Attach the image list handle to the CImageList object.
 imgList.Attach(hmyImageList);

 // Add a new icon to the image list.
 imgList.Add(AfxGetApp()->LoadStandardIcon(IDI_QUESTION));

 // Detach the handle from the CImageList object.
 imgList.Detach();
}

pbmMask
Pointer to the bitmap containing the mask. If no mask is used with the image list, this parameter is
ignored.

crMask
Color used to generate the mask. Each pixel of this color in the given bitmap is changed to black and the
corresponding bit in the mask is set to one.

hIcon
Handle of the icon that contains the bitmap and mask for the new image.

Zero-based index of the first new image if successful; otherwise - 1.

You are responsible for releasing the icon handle when you are done with it.

Call this function to attach an image list to a CImageList object.

hImageList
A handle to an image list object.

Nonzero if the attachment was successful; otherwise 0.

CImageList::BeginDrag

BOOL BeginDrag(
 int nImage,
 CPoint ptHotSpot);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CImageListDlg::OnLButtonDown(UINT nFlags, CPoint point)
{
 // Initialize the drag image (usually called from WM_LBUTTONDOWN).
 m_myImageList.BeginDrag(0, CPoint(0, 0));
 m_myImageList.DragEnter(this, point);

 CDialog::OnLButtonDown(nFlags, point);
}

CImageList::CImageList

CImageList();

CImageList::Copy

Call this function to begin dragging an image.

nImage
Zero-based index of the image to drag.

ptHotSpot
Coordinates of the starting drag position (typically, the cursor position). The coordinates are relative to
the upper left corner of the image.

Nonzero if successful; otherwise 0.

This function creates a temporary image list that is used for dragging. The image combines the specified
image and its mask with the current cursor. In response to subsequent WM_MOUSEMOVE messages,
you can move the drag image by using the DragMove member function. To end the drag operation, you
can use the EndDrag member function.

Constructs a CImageList object.

This member function implements the behavior of the Win32 function ImageList_Copy, as described in
the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-imagelist_copy

BOOL Copy(
 int iDst,
 int iSrc,
 UINT uFlags = ILCF_MOVE);

BOOL Copy(
 int iDst,
 CImageList* pSrc,
 int iSrc,
 UINT uFlags = ILCF_MOVE);

ParametersParameters

VALUE MEANING

ILCF_MOVE The source image is copied to the destination image's
index. This operation results in multiple instances of a
given image. ILCF_MOVE is the default.

ILCF_SWAP The source and destination images exchange positions
within the image list.

Return ValueReturn Value

ExampleExample

CImageList myImageList2;
myImageList2.Create(32, 32, ILC_COLOR8, 0, 4);

// Copy the first image from myImageList2 and make it
// the first image of m_myImageList.
m_myImageList.Copy(0, &myImageList2, 0, ILCF_MOVE);

// Recopy the image to make it also the last image in m_myImageList.
m_myImageList.Copy(m_myImageList.GetImageCount() - 1, (int)0,
 (UINT)ILCF_MOVE);

CImageList::Create

iDst
The zero-based index of the image to be used as the destination of the copy operation.

iSrc
The zero-based index of the image to be used as the source of the copy operation.

uFlags
The bit flag value that specifies the type of copy operation to be made. This parameter can be one of the
following values:

pSrc
A pointer to a CImageList object that is the target of the copy operation.

Nonzero if successful; otherwise zero.

Initializes an image list and attaches it to a CImageList object.

BOOL Create(
 int cx,
 int cy,
 UINT nFlags,
 int nInitial,
 int nGrow);

BOOL Create(
 UINT nBitmapID,
 int cx,
 int nGrow,
 COLORREF crMask);

BOOL Create(
 LPCTSTR lpszBitmapID,
 int cx,
 int nGrow,
 COLORREF crMask);

BOOL Create(
 CImageList& imagelist1,
 int nImage1,
 CImageList& imagelist2,
 int nImage2,
 int dx,
 int dy);

BOOL Create(CImageList* pImageList);

ParametersParameters

VALUE MEANING

ILC_COLOR Use the default behavior if none of the other
ILC_COLOR* flags is specified. Typically, the default is
ILC_COLOR4; but for older display drivers, the default is
ILC_COLORDDB.

ILC_COLOR4 Use a 4-bit (16 color) device-independent bitmap (DIB)
section as the bitmap for the image list.

ILC_COLOR8 Use an 8-bit DIB section. The colors used for the color
table are the same colors as the halftone palette.

ILC_COLOR16 Use a 16-bit (32/64k color) DIB section.

ILC_COLOR24 Use a 24-bit DIB section.

ILC_COLOR32 Use a 32-bit DIB section.

cx
Dimensions of each image, in pixels.

cy
Dimensions of each image, in pixels.

nFlags
Specifies the type of image list to create. This parameter can be a combination of the following values,
but it can include only one of the ILC_COLOR values.

ILC_COLORDDB Use a device-dependent bitmap.

ILC_MASK Uses a mask. The image list contains two bitmaps, one
of which is a monochrome bitmap used as a mask. If
this value is not included, the image list contains only
one bitmap. See Drawing Images from an Image List for
additional information on masked images.

VALUE MEANING

Return ValueReturn Value

RemarksRemarks

ExampleExample

nInitial
Number of images that the image list initially contains.

nGrow
Number of images by which the image list can grow when the system needs to resize the list to make
room for new images. This parameter represents the number of new images the resized image list can
contain.

nBitmapID
Resource IDs of the bitmap to be associated with the image list.

crMask
Color used to generate a mask. Each pixel of this color in the specified bitmap is changed to black, and
the corresponding bit in the mask is set to one.

lpszBitmapID
A string containing the resource IDs of the images.

imagelist1
A reference to a CImageList object.

nImage1
Index of the first existing image.

imagelist2
A reference to a CImageList object.

nImage2
Index of the second existing image.

dx
Offset of the x-axis of the second image in relationship to the first image, in pixels.

dy
Offset of the y-axis of the second image in relationship to the first image, in pixels.

pImageList
A pointer to a CImageList object.

Nonzero if successful; otherwise 0.

You construct a CImageList in two steps. First, call the constructor and then call Create , which creates
the image list and attaches it to the CImageList object.

m_myImageList.Create(32, 32, ILC_COLOR8, 0, 4);

CImageList::DeleteImageList

BOOL DeleteImageList();

Return ValueReturn Value

ExampleExample

// Delete the image list and verify.
myImageList2.DeleteImageList();
ASSERT(myImageList2.GetSafeHandle() == NULL);

CImageList::DeleteTempMap

static void PASCAL DeleteTempMap();

ExampleExample

// Note that this is a static member so an instantiated CImageList
// object is unnecessary.
CImageList::DeleteTempMap();

CImageList::Detach

HIMAGELIST Detach();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CImageList::DragEnter

Call this function to delete an image list.

Nonzero if successful; otherwise 0.

Called automatically by the CWinApp idle-time handler, DeleteTempMap deletes any temporary
CImageList objects created by FromHandle, but does not destroy any handles (hImageList)

temporarily associated with the ImageList objects.

Call this function to detach an image list object from a CImageList object.

A handle to an image list object.

This function returns a handle to the image list object.

See the example for CImageList::Attach.

During a drag operation, locks updates to the window specified by pWndLock and displays the drag
image at the position specified by point.

static BOOL PASCAL DragEnter(
 CWnd* pWndLock,
 CPoint point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CImageList::DragLeave

static BOOL PASCAL DragLeave(CWnd* pWndLock);

ParametersParameters

Return ValueReturn Value

ExampleExample

CImageList::DragMove

static BOOL PASCAL DragMove(CPoint pt);

ParametersParameters

pWndLock
Pointer to the window that owns the drag image.

point
Position at which to display the drag image. Coordinates are relative to the upper left corner of the
window (not the client area).

Nonzero if successful; otherwise 0.

The coordinates are relative to the window's upper left corner, so you must compensate for the widths of
window elements, such as the border, title bar, and menu bar, when specifying the coordinates.

If pWndLock is NULL, this function draws the image in the display context associated with the desktop
window, and coordinates are relative to the upper left corner of the screen.

This function locks all other updates to the given window during the drag operation. If you need to do
any drawing during a drag operation, such as highlighting the target of a drag-and-drop operation, you
can temporarily hide the dragged image by using the CImageList::DragLeave function.

See the example for CImageList::BeginDrag.

Unlocks the window specified by pWndLock and hides the drag image, allowing the window to be
updated.

pWndLock
Pointer to the window that owns the drag image.

Nonzero if successful; otherwise 0.

See the example for CImageList::EndDrag.

Call this function to move the image that is being dragged during a drag-and-drop operation.

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CImageListDlg::OnMouseMove(UINT nFlags, CPoint point)
{
 m_myImageList.DragMove(point);

 CDialog::OnMouseMove(nFlags, point);
}

CImageList::DragShowNolock

static BOOL PASCAL DragShowNolock(BOOL bShow);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CImageList::Draw

BOOL Draw(
 CDC* pDC,
 int nImage,
 POINT pt,
 UINT nStyle);

ParametersParameters

pt
New drag position.

Nonzero if successful; otherwise 0.

This function is typically called in response to a WM_MOUSEMOVE message. To begin a drag
operation, use the BeginDrag member function.

Shows or hides the drag image during a drag operation, without locking the window.

bShow
Specifies whether the drag image is to be shown.

Nonzero if successful; otherwise 0.

The CImageList::DragEnter function locks all updates to the window during a drag operation. This
function, however, does not lock the window.

Call this function to draw the image that is being dragged during a drag-and-drop operation.

pDC
Pointer to the destination device context.

nImage
Zero-based index of the image to draw.

pt
Location at which to draw within the specified device context.

VALUE MEANING

ILD_BLEND25, ILD_FOCUS Draws the image, blending 25 percent with the system
highlight color. This value has no effect if the image list
does not contain a mask.

ILD_BLEND50, ILD_SELECTED, ILD_BLEND Draws the image, blending 50 percent with the system
highlight color. This value has no effect if the image list
does not contain a mask.

ILD_MASK Draws the mask.

ILD_NORMAL Draws the image using the background color for the
image list. If the background color is the CLR_NONE
value, the image is drawn transparently using the mask.

ILD_TRANSPARENT Draws the image transparently using the mask,
regardless of the background color.

Return ValueReturn Value

ExampleExample

CImageList::DrawEx

BOOL DrawEx(
 CDC* pDC,
 int nImage,
 POINT pt,
 SIZE sz,
 COLORREF clrBk,
 COLORREF clrFg,
 UINT nStyle);

ParametersParameters

nStyle
Flag specifying the drawing style. It can be one or more of these values:

Nonzero if successful; otherwise 0.

See the example for CImageList::SetOverlayImage.

Draws an image list item in the specified device context.

pDC
Pointer to the destination device context.

nImage
Zero-based index of the image to draw.

pt
Location at which to draw within the specified device context.

sz
Size of the portion of the image to draw relative to the upper-left corner of the image. See dx and dy in
ImageList_DrawEx in the Windows SDK.

clrBk
Background color of the image. See rgbBk in ImageList_DrawEx in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-imagelist_drawex
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-imagelist_drawex

Return ValueReturn Value

RemarksRemarks

ExampleExample

m_myImageList.DrawEx(&dc, 0, CPoint(0, 0), CSize(16, 16), CLR_DEFAULT,
 CLR_DEFAULT, ILD_IMAGE);

CImageList::DrawIndirect

BOOL DrawIndirect(IMAGELISTDRAWPARAMS* pimldp);

BOOL DrawIndirect(
 CDC* pDC,
 int nImage,
 POINT pt,
 SIZE sz,
 POINT ptOrigin,
 UINT fStyle = ILD_NORMAL,
 DWORD dwRop = SRCCOPY,
 COLORREF rgbBack = CLR_DEFAULT,
 COLORREF rgbFore = CLR_DEFAULT,
 DWORD fState = ILS_NORMAL,
 DWORD Frame = 0,
 COLORREF crEffect = CLR_DEFAULT);

ParametersParameters

clrFg
Foreground color of the image. See rgbFg in ImageList_DrawEx in the Windows SDK.

nStyle
Flag specifying the drawing style. See fStyle in ImageList_DrawEx in the Windows SDK.

Nonzero if successful; otherwise 0.

The function uses the specified drawing style and blends the image with the specified color.

Call this member function to draw an image from an image list.

pimldp
A pointer to an IMAGELISTDRAWPARAMS structure that contains information about the draw
operation.

pDC
A pointer to the destination device context. You must delete this CDC object when you are done with it.

nImage
The zero-based index of the image to be drawn.

pt
A POINT structure containing the x- and y- coordinates where the image will be drawn.

sz
A SIZE structure indicating the size of the image to be drawn.

ptOrigin
A POINT structure containing the x- and y-coordinates specifying the upper left corner of the drawing
operation with respect to the image itself. Pixels of the image that are to the left of the x-coordinate and
above the y-coordinate are not drawn.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-imagelist_drawex
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-imagelist_drawex
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_imagelistdrawparams
https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)

VALUE MEANING

CLR_DEFAULT Default background color. The image is drawn using the
image list background color.

CLR_NONE No background color. The image is drawn transparently.

VALUE MEANING

CLR_DEFAULT Default foreground color. The image is drawn using the
system highlight color as the foreground color.

CLR_NONE No blend color. The image is blended with the color of
the destination device context.

fStyle
Flag specifying the drawing style and, optionally, the overlay image. See the Remarks section for
information on the overlay image. The MFC default implementation, ILD_NORMAL, draws the image
using the background color for the image list. If the background color is the CLR_NONE value, the
image is drawn transparently using a mask.

Other possible styles are described under the fStyle member of the IMAGELISTDRAWPARAMS
structure.

dwRop
Value specifying a raster-operation code. These codes define how the color data for the source rectangle
will be combined with the color data for the destination rectangle to achieve the final color. MFC's
default implementation, SRCCOPY, copies the source rectangle directly to the destination rectangle. This
parameter is ignored if the fStyle parameter does not include the ILD_ROP flag.

Other possible values are described under the dwRop member of the IMAGELISTDRAWPARAMS
structure.

rgbBack
The image background color, by default CLR_DEFAULT. This parameter can be an application-defined
RGB value or one of the following values:

rgbFore
Image foreground color, by default CLR_DEFAULT. This parameter can be an application-defined RGB
value or one of the following values:

This parameter is used only if fStyle includes the ILD_BLEND25 or ILD_BLEND50 flag.

fState
Flag specifying the drawing state. This member can contain one or more image list state flags.

Frame
Affects the behavior of saturate and alpha-blending effects.

When used with ILS_SATURATE, this member holds the value that is added to each color component of
the RGB triplet for each pixel in the icon.

When used with ILS_APLHA, this member holds the value for the alpha channel. This value can be from
0 to 255, with 0 being completely transparent, and 255 being completely opaque.

crEffect
A COLORREF value used for glow and shadow effects.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_imagelistdrawparams
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_imagelistdrawparams
https://docs.microsoft.com/windows/desktop/gdi/colorref

Return ValueReturn Value

RemarksRemarks

ExampleExample

int i, dx, cx, cy, nCount = m_myImageList.GetImageCount();

::ImageList_GetIconSize(m_myImageList, &cx, &cy);

// Draw the images of the image list on the DC.
for (dx = 0, i = 0; i < nCount; i++)
{
 m_myImageList.DrawIndirect(&dc, i, CPoint(dx, 0),
 CSize(cx, cy), CPoint(0, 0));
 dx += cx;
}

CImageList::EndDrag

static void PASCAL EndDrag();

RemarksRemarks

ExampleExample

void CImageListDlg::OnLButtonUp(UINT nFlags, CPoint point)
{
 // Terminate the drag image (usually called from WM_LBUTTONUP).
 m_myImageList.DragLeave(this);
 m_myImageList.EndDrag();

 CDialog::OnLButtonUp(nFlags, point);
}

CImageList::ExtractIcon

HICON ExtractIcon(int nImage);

ParametersParameters

TRUE if the image is successfully drawn; otherwise FALSE.

Use the first version if you want to fill the Win32 structure yourself. Use the second version if you want
to take advantage of one or more of MFC's default arguments, or avoid managing the structure.

An overlay image is an image that is drawn on top of the primary image, specified in this member
function by the nImage parameter. Draw an overlay mask by using the Draw member function with the
one-based index of the overlay mask specified by using the INDEXTOOVERLAYMASK macro.

Call this function to end a drag operation.

To begin a drag operation, use the BeginDrag member function.

Call this function to create an icon based on an image and its related mask in an image list.

nImage
Zero-based index of the image.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-indextooverlaymask

Return ValueReturn Value

RemarksRemarks

ExampleExample

int i, dx, cx, cy, nCount = m_myImageList.GetImageCount();
HICON hIcon;

::ImageList_GetIconSize(m_myImageList, &cx, &cy);

// Draw the images of the image list on the DC.
for (dx = 0, i = 0; i < nCount; i++)
{
 hIcon = m_myImageList.ExtractIcon(i);

 dc.DrawIcon(dx, 0, hIcon);
 dx += cx;
}

CImageList::FromHandle

static CImageList* PASCAL FromHandle(HIMAGELIST hImageList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CImageList* ConvertHandle(HIMAGELIST hmyImageList)
{
 // Convert the HIMAGELIST to a CImageList*.
 ASSERT(hmyImageList != NULL);
 CImageList* pmyImageList = CImageList::FromHandle(hmyImageList);
 ASSERT(pmyImageList != NULL);

 return pmyImageList;
}

CImageList::FromHandlePermanent

Handle of the icon if successful; otherwise NULL.

This method relies on the behavior of the ImageList_ExtractIcon macro to create the icon. Refer to the
ImageList_ExtractIcon macro for more information on icon creation and cleanup.

Returns a pointer to a CImageList object when given a handle to an image list.

hImageList
Specifies the image list.

A pointer to a CImageList object if successful; otherwise NULL.

If a CImageList is not already attached to the handle, a temporary CImageList object is created and
attached. This temporary CImageList object is valid only until the next time the application has idle time
in its event loop, at which time all temporary objects are deleted.

Returns a pointer to a CImageList object when given a handle to an image list.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-imagelist_extracticon
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-imagelist_extracticon

static CImageList* PASCAL FromHandlePermanent(HIMAGELIST hImageList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CImageList* ConvertHandlePermanent(HIMAGELIST hmyImageList)
{
 // Convert the HIMAGELIST to a CImageList*.
 ASSERT(hmyImageList != NULL);
 CImageList* pmyImageList = CImageList::FromHandlePermanent(hmyImageList);
 ASSERT(pmyImageList != NULL);

 return pmyImageList;
}

CImageList::GetBkColor

COLORREF GetBkColor() const;

Return ValueReturn Value

ExampleExample

CImageList::GetDragImage

static CImageList* PASCAL GetDragImage(
 LPPOINT lpPoint,
 LPPOINT lpPointHotSpot);

ParametersParameters

Return ValueReturn Value

hImageList
Specifies the image list.

A pointer to a CImageList object if successful; otherwise NULL.

If a CImageList object is not attached to the handle, NULL is returned.

Call this function to retrieve the current background color for an image list.

The RGB color value of the CImageList object background color.

See the example for CImageList::SetBkColor.

Gets the temporary image list that is used for dragging.

lpPoint
Address of a POINT structure that receives the current drag position.

lpPointHotSpot
Address of a POINT structure that receives the offset of the drag image relative to the drag position.

If successful, a pointer to the temporary image list that is used for dragging; otherwise, NULL.

https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)

CImageList::GetImageCount

int GetImageCount() const;

Return ValueReturn Value

ExampleExample

CImageList::GetImageInfo

BOOL GetImageInfo(
 int nImage,
 IMAGEINFO* pImageInfo) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CImageList::GetSafeHandle

HIMAGELIST GetSafeHandle() const;

Return ValueReturn Value

ExampleExample

// Get the safe handle to the image list.
HIMAGELIST hImageList = m_myImageList.GetSafeHandle();

CImageList::m_hImageList

Call this function to retrieve the number of images in an image list.

The number of images.

See the example for CImageList::ExtractIcon.

Call this function to retrieve information about an image.

nImage
Zero-based index of the image.

pImageInfo
Pointer to an IMAGEINFO structure that receives information about the image. The information in this
structure can be used to directly manipulate the bitmaps for the image.

Nonzero if successful; otherwise 0.

The IMAGEINFO structure contains information about an image in an image list.

Call this function to retrieve the m_hImageList data member.

A handle to the attached image list; otherwise NULL if no object is attached.

A handle of the image list attached to this object.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_imageinfo

RemarksRemarks

ExampleExample

// Get the safe handle to the image list.
HIMAGELIST hImageList = m_myImageList.m_hImageList;

CImageList::operator HIMAGELIST

operator HIMAGELIST() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Get the safe handle to the image list.
HIMAGELIST hImageList = m_myImageList;

CImageList::Read

BOOL Read(CArchive* pArchive);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Open the archive to load the image list from.
CFile myFile(_T("myfile.data"), CFile::modeRead);
CArchive ar(&myFile, CArchive::load);
CImageList myImgList;

// Load the image list from the archive.
myImgList.Read(&ar);

CImageList::Remove

HIMAGELIST m_hImageList;

The m_hImageList data member is a public variable of type HIMAGELIST.

Use this operator to get the attached handle of the CImageList object.

If successful, a handle to the image list represented by the CImageList object; otherwise NULL.

This operator is a casting operator, which supports direct use of an HIMAGELIST object.

Call this function to read an image list from an archive.

pArchive
A pointer to a CArchive object from which the image list is to be read.

Nonzero if successful; otherwise 0.

Call this function to remove an image from an image list object.

BOOL Remove(int nImage);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Remove every other image from the image list.
for (int i = 0; i < m_myImageList.GetImageCount(); i++)
{
 m_myImageList.Remove(i);
}

CImageList::Replace

BOOL Replace(
 int nImage,
 CBitmap* pbmImage,
 CBitmap* pbmMask);

int Replace(
 int nImage,
 HICON hIcon);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nImage
Zero-based index of the image to remove.

Nonzero if successful; otherwise 0.

All items following nImage now move down one position. For example, if an image list contains two
items, deleting the first item will cause the remaining item to now be in the first position. nImage=0 for
the item in the first position.

Call this function to replace an image in an image list with a new image.

nImage
Zero-based index of the image to replace.

pbmImage
A pointer to the bitmap containing the image.

pbmMask
A pointer to the bitmap containing the mask. If no mask is used with the image list, this parameter is
ignored.

hIcon
A handle to the icon that contains the bitmap and mask for the new image.

The version returning BOOL returns nonzero if successful; otherwise 0.

The version returning int returns the zero-based index of the image if successful; otherwise - 1.

ExampleExample

CImageList::SetBkColor

COLORREF SetBkColor(COLORREF cr);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Set the background color to white.
m_myImageList.SetBkColor(RGB(255, 255, 255));
ASSERT(m_myImageList.GetBkColor() == RGB(255, 255, 255));

CImageList::SetDragCursorImage

BOOL SetDragCursorImage(
 int nDrag,
 CPoint ptHotSpot);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CImageList::SetImageCount

Call this member function after calling SetImageCount to assign the new, valid images to the
placeholder image index numbers.

See the example for CImageList::SetImageCount.

Call this function to set the background color for an image list.

cr
Background color to set. It can be CLR_NONE. In that case, images are drawn transparently using the
mask.

The previous background color if successful; otherwise CLR_NONE.

Creates a new drag image by combining the given image (typically a mouse cursor image) with the
current drag image.

nDrag
Index of the new image to be combined with the drag image.

ptHotSpot
Position of the hot spot within the new image.

Nonzero if successful; otherwise 0.

Because the dragging functions use the new image during a drag operation, you should use the
Windows ShowCursor function to hide the actual mouse cursor after calling
CImageList::SetDragCursorImage . Otherwise, the system may appear to have two mouse cursors for the

duration of the drag operation.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-showcursor

BOOL SetImageCount(UINT uNewCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set the image count of the image list to be 10 with
// all images being the system question mark icon.
m_myImageList.SetImageCount(10);
HICON hIcon = AfxGetApp()->LoadStandardIcon(IDI_QUESTION);

for (int i=0;i < 10;i++)
{
 m_myImageList.Replace(i, hIcon);
}

CImageList::SetOverlayImage

BOOL SetOverlayImage(
 int nImage,
 int nOverlay);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Call this member function to reset the number of images in a CImageList object.

uNewCount
The value specifying the new total number of images in the image list.

Nonzero if successful; otherwise zero.

If you call this member function to increase the number of images in the image list, then call Replace for
each additional image to assign the new indexes to valid images. If you fail to assign the indexes to valid
images, draw operations that create the new images will be unpredictable.

If you decrease the size of an image list by using this function, the truncated images are freed.

Call this function to add the zero-based index of an image to the list of images to be used as overlay
masks.

nImage
Zero-based index of the image to use as an overlay mask.

nOverlay
One-based index of the overlay mask.

Nonzero if successful; otherwise 0.

Up to four indices can be added to the list.

An overlay mask is an image drawn transparently over another image. Draw an overlay mask over an
image by using the CImageList::Draw member function with the one-based index of the overlay mask
specified by using the INDEXTOOVERLAYMASK macro.

ExampleExample

// Add a new image to the image list.
int nIndex = m_myImageList.Add(AfxGetApp()->LoadStandardIcon(IDI_QUESTION));

if (nIndex != -1)
{
 // Make the new image an overlay image.
 m_myImageList.SetOverlayImage(nIndex, 1);

 // Draw the first image in the image list with an overlay image.
 m_myImageList.Draw(&dc, 0, CPoint(0, 0), INDEXTOOVERLAYMASK(1));
}

CImageList::Write

BOOL Write(CArchive* pArchive);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Open the archive to store the image list in.
CFile myFile(_T("myfile.data"), CFile::modeCreate | CFile::modeWrite);
CArchive ar(&myFile, CArchive::store);

// Store the image list in the archive.
m_myImageList.Write(&ar);

See also

Call this function to write an image list object to an archive.

pArchive
A pointer to a CArchive object in which the image list is to be stored.

Nonzero if successful; otherwise 0.

CObject Class
Hierarchy Chart
CListCtrl Class
CTabCtrl Class

CInstantaneousTransition Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CInstantaneousTransition : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CInstantaneousTransition::CInstantaneousTransition Constructs a transition object and initializes its final value.

Public MethodsPublic Methods

NAME DESCRIPTION

CInstantaneousTransition::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CInstantaneousTransition::m_dblFinalValue The value of the animation variable at the end of the
transition.

Remarks

Inheritance Hierarchy

Requirements

Encapsulates an instantaneous transition.

During an instantaneous transition, the value of the animation variable changes instantly from its current value to
a specified final value. The duration of this transition is always zero. Because all transitions are cleared
automatically, it's recommended to allocated them using operator new. The encapsulated IUIAnimationTransition
COM object is created by CAnimationController::AnimateGroup, until then it's NULL. Changing member variables
after creation of this COM object has no effect.

CObject

CBaseTransition

CInstantaneousTransition

Header: afxanimationcontroller.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cinstantaneoustransition-class.md

CInstantaneousTransition::CInstantaneousTransition

CInstantaneousTransition(DOUBLE dblFinalValue);

ParametersParameters

CInstantaneousTransition::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *not used*\);

ParametersParameters

Return ValueReturn Value

CInstantaneousTransition::m_dblFinalValue

DOUBLE m_dblFinalValue;

See also

Constructs a transition object and initializes its final value.

dblFinalValue
The value of the animation variable at the end of the transition.

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to an IUIAnimationTransitionLibrary interface, which defines a library of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

The value of the animation variable at the end of the transition.

Classes

https://docs.microsoft.com/windows/desktop/api/uianimation/nn-uianimation-iuianimationtransitionlibrary

CInternetConnection Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CInternetConnection : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CInternetConnection::CInternetConnection Constructs a CInternetConnection object.

Public MethodsPublic Methods

NAME DESCRIPTION

CInternetConnection::GetContext Gets the context ID for this connection object.

CInternetConnection::GetServerName Gets the name of the server associated with the connection.

CInternetConnection::GetSession Gets a pointer to the CInternetSession object associated
with the connection.

Public OperatorsPublic Operators

NAME DESCRIPTION

CInternetConnection::operator HINTERNET A handle to an Internet session.

Remarks

Inheritance Hierarchy

Manages your connection to an Internet server.

It is the base class for MFC classes CFtpConnection, CHttpConnection, and CGopherConnection. Each of these
classes provides additional functionality for communicating with the respective FTP, HTTP, or gopher server.

To communicate directly with an Internet server, you must have a CInternetSession object and a
CInternetConnection object.

To learn more about how the WinInet classes work, see the article Internet Programming with WinInet.

CObject

CInternetConnection

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cinternetconnection-class.md

Requirements

CInternetConnection::CInternetConnection

CInternetConnection(
 CInternetSession* pSession,
 LPCTSTR pstrServer,
 INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER,
 DWORD_PTR dwContext = 1);

ParametersParameters

RemarksRemarks

CInternetConnection::GetContext

DWORD_PTR GetContext() const;

Return ValueReturn Value

RemarksRemarks

Header: afxinet.h

This member function is called when a CInternetConnection object is created.

pSession
A pointer to a CInternetSession object.

pstrServer
A pointer to a string containing the server name.

nPort
The number that identifies the Internet port for this connection.

dwContext
The context identifier for the CInternetConnection object. See Remarks for more information about
dwContext.

You never call CInternetConnection yourself; instead, call the CInternetSession member function for the type
of connection you want to establish:

CInternetSession::GetFtpConnection

CInternetSession::GetHttpConnection

CInternetSession::GetGopherConnection

The default value for dwContext is sent by MFC to the CInternetConnection -derived object from the
CInternetSession object that created the InternetConnection-derived object. The default is set to 1; however,
you can explicitly assign a specific context identifier in the CInternetSession constructor for the connection.
The object and any work it does will be associated with that context ID. The context identifier is returned to
CInternetSession::OnStatusCallback to provide status on the object with which it is identified. See the article
Internet First Steps: WinInet for more information about the context identifier.

Call this member function to get the context ID for this session.

The application-assigned context ID.

CInternetConnection::GetServerName

CString GetServerName() const;

Return ValueReturn Value

CInternetConnection::GetSession

CInternetSession* GetSession() const;

Return ValueReturn Value

CInternetConnection::operator HINTERNET

operator HINTERNET() const;

See also

The context ID is originally specified in CInternetSession and propagates to CInternetConnection - and
CInternetFile-derived classes, unless specified differently in the call to a function that opens the connection.
The context ID is associated with any operation of the given object and identifies the operation's status
information returned by CInternetSession::OnStatusCallback.

For more information about how GetContext works with other WinInet classes to give the user status
information, see the article Internet First Steps: WinInet for more information about the context identifier.

Call this member function to get the name of the server associated with this Internet connection.

The name of the server this connection object is working with.

Call this member function to get a pointer to the CInternetSession object that's associated with this
connection.

A pointer to a CInternetSession object associated with this Internet connection object.

Use this operator to get the API-level handle for the current Internet session.

CObject Class
Hierarchy Chart

CInternetException Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CInternetException : public CException

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CInternetException::CInternetException Constructs a CInternetException object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CInternetException::m_dwContext The context value associated with the operation that caused
the exception.

CInternetException::m_dwError The error that caused the exception.

Remarks

Inheritance Hierarchy

Requirements

CInternetException::CInternetException

Represents an exception condition related to an Internet operation.

The CInternetException class includes two public data members: one holds the error code associated with the
exception, and the other holds the context identifier of the Internet application associated with the error.

For more information about context identifiers for Internet applications, see the article Internet Programming
with WinInet.

CObject

CException

CInternetException

Header: afxinet.h

This member function is called when a CInternetException object is created.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cinternetexception-class.md

CInternetException(DWORD dwError);

ParametersParameters

RemarksRemarks

CInternetException::m_dwContext

DWORD_PTR m_dwContext;

RemarksRemarks

CInternetException::m_dwError

DWORD m_dwError;

RemarksRemarks

See also

dwError
The error that caused the exception.

To throw a CInternetException, call the MFC global function AfxThrowInternetException.

The context value associated with the related Internet operation.

The context identifier is originally specified in CInternetSession and passed by MFC to CInternetConnection-
and CInternetFile-derived classes. You can override this default and assign any dwContext parameter a value
of your choosing. dwContext is associated with any operation of the given object. dwContext identifies the
operation's status information returned by CInternetSession::OnStatusCallback.

The error that caused the exception.

This error value may be a system error code, found in WINERROR.H, or an error value from WININET.H.

For a list of Win32 error codes, see Error Codes. For a list of Internet-specific error messages, see . Both topics
are in the Windows SDK.

CException Class
Hierarchy Chart
CException Class

https://docs.microsoft.com/windows/desktop/Debug/system-error-codes

CInternetFile Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class CInternetFile : public CStdioFile

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CInternetFile::CInternetFile Constructs a CInternetFile object.

Public MethodsPublic Methods

NAME DESCRIPTION

CInternetFile::Abort Closes the file, ignoring all warnings and errors.

CInternetFile::Close Closes a CInternetFile and frees its resources.

CInternetFile::Flush Flushes the contents of the write buffer and makes sure the
data in memory is written to the target machine.

CInternetFile::GetLength Returns the size of the file.

CInternetFile::Read Reads the number of specified bytes.

CInternetFile::ReadString Reads a stream of characters.

CInternetFile::Seek Repositions the pointer in an open file.

CInternetFile::SetReadBufferSize Sets the size of the buffer where data will be read.

CInternetFile::SetWriteBufferSize Sets the size of the buffer where data will be written.

CInternetFile::Write Writes the number of specified bytes.

CInternetFile::WriteString Writes a null-terminated string to a file.

Public OperatorsPublic Operators

Allows access to files on remote systems that use Internet protocols.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cinternetfile-class.md

NAME DESCRIPTION

CInternetFile::operator HINTERNET A casting operator for an Internet handle.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CInternetFile::m_hFile A handle to a file.

Remarks

Inheritance Hierarchy

Requirements

CInternetFile::Abort

virtual void Abort();

RemarksRemarks

CInternetFile::CInternetFile

Provides a base class for the CHttpFile and CGopherFile file classes. You never create a CInternetFile object
directly. Instead, create an object of one of its derived classes by calling CGopherConnection::OpenFile or
CHttpConnection::OpenRequest. You also can create a CInternetFile object by calling
CFtpConnection::OpenFile.

The CInternetFile member functions Open , LockRange , UnlockRange , and Duplicate are not implemented
for CInternetFile . If you call these functions on a CInternetFile object, you will get a
CNotSupportedException.

To learn more about how CInternetFile works with the other MFC Internet classes, see the article Internet
Programming with WinInet.

CObject

CFile

CStdioFile

CInternetFile

Header: afxinet.h

Closes the file associated with this object and makes the file unavailable for reading or writing.

If you have not closed the file before destroying the object, the destructor closes it for you.

When handling exceptions, Abort differs from Close in two important ways. First, the Abort function does
not throw an exception on failures because it ignores failures. Second, Abort does not ASSERT if the file has
not been opened or was closed previously.

This member function is called when a CInternetFile object is created.

CInternetFile(
 HINTERNET hFile,
 LPCTSTR pstrFileName,
 CInternetConnection* pConnection,
 BOOL bReadMode);

CInternetFile(
 HINTERNET hFile,
 HINTERNET hSession,
 LPCTSTR pstrFileName,
 LPCTSTR pstrServer,
 DWORD_PTR dwContext,
 BOOL bReadMode);

ParametersParameters

RemarksRemarks

CInternetFile::Close

virtual void Close();

RemarksRemarks

CInternetFile::Flush

hFile
A handle to an Internet file.

pstrFileName
A pointer to a string containing the file name.

pConnection
A pointer to a CInternetConnection object.

bReadMode
Indicates whether the file is read-only.

hSession
A handle to an Internet session.

pstrServer
A pointer to a string containing the name of the server.

dwContext
The context identifier for the CInternetFile object. See WinInet Basics for more information about the
context identifier.

You never create a CInternetFile object directly. Instead, create an object of one of its derived classes by
calling CGopherConnection::OpenFile or CHttpConnection::OpenRequest. You also can create a
CInternetFile object by calling CFtpConnection::OpenFile.

Closes a CInternetFile and frees any of its resources.

If the file was opened for writing, there is an implicit call to Flush to assure that all buffered data is written to
the host. You should call Close when you are finished using a file.

Call this member function to flush the contents of the write buffer.

virtual void Flush();

RemarksRemarks

CInternetFile::GetLength

virtual ULONGLONG GetLength() const;

CInternetFile::m_hFile

HINTERNET m_hFile;

CInternetFile::operator HINTERNET

operator HINTERNET() const;

CInternetFile::Read

virtual UINT Read(
 void* lpBuf,
 UINT nCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Use Flush to assure that all data in memory has actually been written to the target machine and to assure
your transaction with the host machine has been completed. Flush is only effective on CInternetFile

objects opened for writing.

Returns the size of the file.

A handle to the file associated with this object.

Use this operator to get the Windows handle for the current Internet session.

Call this member function to read into the given memory, starting at lpvBuf, the specified number of bytes,
nCount.

lpBuf
A pointer to a memory address to which file data is read.

nCount
The number of bytes to be written.

The number of bytes transferred to the buffer. The return value may be less than nCount if the end of file was
reached.

The function returns the number of bytes actually read — a number that may be less than nCount if the file
ends. If an error occurs while reading the file, the function throws a CInternetException object that describes
the error. Note that reading past the end of the file is not considered an error and no exception will be thrown.

CInternetFile::ReadString

virtual BOOL ReadString(CString& rString);

virtual LPTSTR ReadString(
 LPTSTR pstr,
 UINT nMax);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CInternetFile::Seek

virtual ULONGLONG Seek(
 LONGLONG lOffset,
 UINT nFrom);

ParametersParameters

To ensure all data is retrieved, an application must continue to call the CInternetFile::Read method until the
method returns zero.

Call this member function to read a stream of characters until it finds a newline character.

pstr
A pointer to a string which will receive the line being read.

nMax
The maximum number of characters to be read.

rString
A reference to the CString object that receives the read line.

A pointer to the buffer containing plain data retrieved from the CInternetFile object. Regardless of the data
type of the buffer passed to this method, it does not perform any manipulations on the data (for example,
conversion to Unicode), so you must map the returned data to the structure you expect, as if the void * type
were returned.

NULL if end-of-file was reached without reading any data; or, if boolean, FALSE if end-of-file was reached
without reading any data.

The function places the resulting line into the memory referenced by the pstr parameter. It stops reading
characters when it reaches the maximum number of characters, specified by nMax. The buffer always receives
a terminating null character.

If you call ReadString without first calling SetReadBufferSize, you will get a buffer of 4096 bytes.

Call this member function to reposition the pointer in a previously opened file.

lOffset
Offset in bytes to move the read/write pointer in the file.

nFrom
Relative reference for the offset. Must be one of the following values:

CFile::begin Move the file pointer lOff bytes forward from the beginning of the file.

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CInternetFile::SetReadBufferSize

BOOL SetReadBufferSize(UINT nReadSize);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CFile::current Move the file pointer lOff bytes from the current position in the file.

CFile::end Move the file pointer lOff bytes from the end of the file. lOff must be negative to seek into
the existing file; positive values will seek past the end of the file.

The new byte offset from the beginning of the file if the requested position is legal; otherwise, the value is
undefined and a CInternetException object is thrown.

The Seek function permits random access to a file's contents by moving the pointer a specified amount,
absolutely or relatively. No data is actually read during the seek.

At this time, a call to this member function is only supported for data associated with CHttpFile objects. It is
not supported for FTP or gopher requests. If you call Seek for one of these unsupported services, it will pass
back you to the Win32 error code ERROR_INTERNET_INVALID_OPERATION.

When a file is opened, the file pointer is at offset 0, the beginning of the file.

Using Seek may cause an implicit call to Flush.

See the example for the base class implementation (CFile::Seek).

Call this member function to set the size of the temporary read buffer used by a CInternetFile -derived
object.

nReadSize
The desired buffer size in bytes.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to
determine the cause of the error.

The underlying WinInet APIs do not perform buffering, so choose a buffer size that allows your application to
read data efficiently, regardless of the amount of data to be read. If each call to Read normally involves a large
aount of data (for example, four or more kilobytes), you should not need a buffer. However, if you call Read

to get small chunks of data, or if you use ReadString to read individual lines at a time, then a read buffer
improves application performance.

By default, a CInternetFile object does not provide any buffering for reading. If you call this member
function, you must be sure that the file has been opened for read access.

You can increase the buffer size at any time, but shrinking the buffer will have no effect. If you call ReadString
without first calling SetReadBufferSize , you will get a buffer of 4096 bytes.

https://msdn.microsoft.com/library/windows/desktop/ms679360

CInternetFile::SetWriteBufferSize

BOOL SetWriteBufferSize(UINT nWriteSize);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CInternetFile::Write

virtual void Write(
 const void* lpBuf,
 UINT nCount);

ParametersParameters

RemarksRemarks

CInternetFile::WriteString

virtual void WriteString(LPCTSTR pstr);

ParametersParameters

Call this member function to set the size of the temporary write buffer used by a CInternetFile -derived
object.

nWriteSize
The size of the buffer in bytes.

Nonzero if successful; otherwise 0. If the call fails, the Win32 function GetLastError may be called to
determine the cause of the error.

The underlying WinInet APIs don't perform buffering, so choose a buffer size that allows your application to
write data efficiently regardless of the amount of data to be written. If each call to Write normally involves a
large amount of data (for example, four or more kilobytes at a time), you should not need a buffer. However, if
you call Write to write small chunks of data, a write buffer improves your application's performance.

By default, a CInternetFile object does not provide any buffering for writing. If you call this member
function, you must be sure that the file has been opened for write access. You can change the size of the write
buffer at any time, but doing so causes an implicit call to Flush.

Call this member function to write into the given memory, lpvBuf, the specified number of bytes, nCount.

lpBuf
A pointer to the first byte to be written.

nCount
Specifies the number of bytes to be written.

If any error occurs while writing the data, the function throws a CInternetException object describing the
error.

This function writes a null-terminated string to the associated file.

pstr

https://msdn.microsoft.com/library/windows/desktop/ms679360

RemarksRemarks

See also

A pointer to a string containing the contents to be written.

If any error occurs while writing the data, the function throws a CInternetException object describing the
error.

CStdioFile Class
Hierarchy Chart
CInternetConnection Class

CInternetSession Class
3/4/2019 • 16 minutes to read • Edit Online

Syntax
class CInternetSession : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CInternetSession::CInternetSession Constructs a CInternetSession object.

Public MethodsPublic Methods

NAME DESCRIPTION

CInternetSession::Close Closes the Internet connection when the Internet
session is terminated.

CInternetSession::EnableStatusCallback Establishes a status callback routine.

CInternetSession::GetContext Closes the Internet connection when the Internet
session is terminated.

CInternetSession::GetCookie Returns cookies for the specified URL and all its parent
URLs.

CInternetSession::GetCookieLength Retrieves the variable specifying the length of the
cookie stored in the buffer.

CInternetSession::GetFtpConnection Opens an FTP session with a server. Logs on the user.

CInternetSession::GetGopherConnection Opens a gopher server for an application that is trying
to open a connection.

CInternetSession::GetHttpConnection Opens an HTTP server for an application that is trying
to open a connection.

CInternetSession::OnStatusCallback Updates the status of an operation when status
callback is enabled.

CInternetSession::OpenURL Parses and opens a URL.

Creates and initializes a single or several simultaneous Internet sessions and, if necessary, describes
your connection to a proxy server.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cinternetsession-class.md

CInternetSession::SetCookie Sets a cookie for the specified URL.

CInternetSession::SetOption Sets options for the Internet session.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CInternetSession::operator HINTERNET A handle to the current Internet session.

Remarks

NOTENOTE

Inheritance Hierarchy

If your Internet connection must be maintained for the duration of an application, you can create a
CInternetSession member of the class CWinApp.

Once you have established an Internet session, you can call OpenURL. CInternetSession then parses
the URL for you by calling the global function AfxParseURL. Regardless of its protocol type,
CInternetSession interprets the URL and manages it for you. It can handle requests for local files

identified with the URL resource "file://". OpenURL will return a pointer to a CStdioFile object if the
name you pass it is a local file.

If you open a URL on an Internet server using OpenURL , you can read information from the site. If
you want to perform service-specific (for example, HTTP, FTP, or gopher) actions on files located on a
server, you must establish the appropriate connection with that server. To open a particular kind of
connection directly to a particular service, use one of the following member functions:

GetGopherConnection to open a connection to a gopher service.

GetHttpConnection to open a connection to an HTTP service.

GetFtpConnection to open a connection to an FTP service.

SetOption allows you to set the query options of your session, such as time-out values, number of
retries, and so on.

CInternetSession member functions SetCookie, GetCookie, and GetCookieLength provide the
means to manage a Win32 cookie database, through which servers and scripts maintain state
information about the client workstation.

For more information about basic Internet programming tasks, see the article Internet First Steps:
WinInet. For general information about using the MFC WinInet classes, see the article Internet
Programming with WinInet.

CInternetSession will throw an AfxThrowNotSupportedException for unsupported service types. Only the
following service types are currently supported: FTP, HTTP, gopher, and file.

CObject
 CInternetSession

Requirements

CInternetSession::CInternetSession

CInternetSession(
 LPCTSTR pstrAgent = NULL,
 DWORD_PTR dwContext = 1,
 DWORD dwAccessType = PRE_CONFIG_INTERNET_ACCESS,
 LPCTSTR pstrProxyName = NULL,
 LPCTSTR pstrProxyBypass = NULL,
 DWORD dwFlags = 0);

ParametersParameters

Header: afxinet.h

This member function is called when a CInternetSession object is created.

pstrAgent
A pointer to a string that identifies the name of the application or entity calling the Internet functions
(for example, "Microsoft Internet Browser"). If pstrAgent is NULL (the default), the framework calls
the global function AfxGetAppName, which returns a null-terminated string containing an
application's name. Some protocols use this string to identify your application to the server.

dwContext
The context identifier for the operation. dwContext identifies the operation's status information
returned by CInternetSession::OnStatusCallback. The default is set to 1; however, you can explicitly
assign a specific context ID for the operation. The object and any work it does will be associated with
that context ID.

dwAccessType
The type of access required. The following are valid values, exactly one of which may be supplied:

INTERNET_OPEN_TYPE_PRECONFIG Connect using preconfigured settings in the registry.
This access type is set as the default. To connect through a TIS proxy, set dwAccessType to this
value; you then set the registry appropriately.

INTERNET_OPEN_TYPE_DIRECT Connect directly to Internet.

INTERNET_OPEN_TYPE_PROXY Connect through a CERN proxy.

For information on connecting with different types of proxies, see Steps in a Typical FTP Client
Application.

pstrProxyName
The name of the preferred CERN proxy if dwAccessType is set as INTERNET_OPEN_TYPE_PROXY.
The default is NULL.

pstrProxyBypass
A pointer to a string containing an optional list of server addresses. These addresses may be
bypassed when using proxy access. If a NULL value is supplied, the bypass list will be read from the
registry. This parameter is meaningful only if dwAccessType is set to
INTERNET_OPEN_TYPE_PROXY.

dwFlags
Indicates various caching options. The default is set to 0. The possible values include:

INTERNET_FLAG_DONT_CACHE Do not cache the data, either locally or in any gateway

RemarksRemarks

ExampleExample

CInternetSession::Close

virtual void Close();

ExampleExample

CInternetSession::EnableStatusCallback

BOOL EnableStatusCallback(BOOL bEnable = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CInternetSession::GetContext

servers.

INTERNET_FLAG_OFFLINE Download operations are satisfied through the persistent cache
only. If the item does not exist in the cache, an appropriate error code is returned. This flag may
be combined with the bitwise OR (|) operator.

CInternetSession is the first Internet function called by an application. It initializes internal data
structures and prepares for future calls from the application.

If no Internet connection can be opened, CInternetSession throws an AfxThrowInternetException.

See the example for CFtpFileFind.

Call this member function when your application has finished using the CInternetSession object.

See the example for CFtpFileFind.

Call this member function to enable status callback.

bEnable
Specifies whether callback is enabled or disabled. The default is TRUE.

Nonzero if successful; otherwise 0. If the call fails, determine the cause of the failure by examining the
thrown CInternetException object.

When handling status callback, you can provide status about the progress of the operation (such as
resolving name, connecting to server, and so on) in the status bar of the application. Displaying
operation status is especially desirable during a long-term operation.

Because callbacks occur during the request's processing, the application should spend as little time as
possible in the callback to prevent degradation of data throughput to the network. For example,
putting up a dialog box in a callback may be such a lengthy operation that the server terminates the
request.

The status callback cannot be removed as long as any callbacks are pending.

To handle any operations asynchronously, you must either create your own thread or use the WinInet
functions without MFC.

DWORD_PTR GetContext() const;

Return ValueReturn Value

RemarksRemarks

CInternetSession::GetCookie

static BOOL GetCookie(
 LPCTSTR pstrUrl,
 LPCTSTR pstrCookieName,
 LPTSTR pstrCookieData,
 DWORD dwBufLen);

static BOOL GetCookie(
 LPCTSTR pstrUrl,
 LPCTSTR pstrCookieName,
 CString& strCookieData);

ParametersParameters

Return ValueReturn Value

Call this member function to get the context value for a particular application session.

The application-defined context Identifier.

OnStatusCallback uses the context ID returned by GetContext to report the status of a particular
application. For example, when a user activates an Internet request that involves returning status
information, the status callback uses the context ID to report status on that particular request. If the
user activates two separate Internet requests that both involve returning status information,
OnStatusCallback uses the context identifiers to return status about their corresponding requests.

Consequently, the context identifier is used for all status callback operations, and it is associated with
the session until the session is ended.

For more information about asynchronous operations, see the article Internet First Steps: WinInet.

This member function implements the behavior of the Win32 function InternetGetCookie, as
described in the Windows SDK.

pstrUrl
A pointer to a string containing the URL.

pstrCookieName
A pointer to a string containing the name of the cookie to get for the specified URL.

pstrCookieData
In the first overload, a pointer to a string containing the address of the buffer that receives the cookie
data. This value can be NULL. In the second overload, a reference to a CString object to receive the
cookie data.

dwBufLen
The variable specifying the size of the pstrCookieData buffer. If the function succeeds, the buffer
receives the amount of data copied to the pstrCookieData buffer. If pstrCookieData is NULL, this
parameter receives a value that specifies the size of the buffer necessary to copy all the cookie data.

Returns TRUE if successful, or FALSE otherwise. If the call fails, call the Win32 function GetLastError
to determine the cause of the error. The following error values apply:

ERROR_NO_MORE_ITEMS There is no cookie for the specified URL and all its parents.

https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-internetgetcookiea
https://msdn.microsoft.com/library/windows/desktop/ms679360

RemarksRemarks

CInternetSession::GetCookieLength

static DWORD GetCookieLength(
 LPCTSTR pstrUrl,
 LPCTSTR pstrCookieName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CInternetSession::GetFtpConnection

CFtpConnection* GetFtpConnection(
 LPCTSTR pstrServer,
 LPCTSTR pstrUserName = NULL,
 LPCTSTR pstrPassword = NULL,
 INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER,
 BOOL bPassive = FALSE);

ParametersParameters

ERROR_INSUFFICIENT_BUFFER The value passed in dwBufLen is insufficient to copy all the
cookie data. The value returned in dwBufLen is the size of the buffer necessary to get all the
data.

In the second overload, MFC retrieves the cookie data into the supplied CString object.

Call this member function to get the length of the cookie stored in the buffer.

pstrUrl
A pointer to a string containing the URL

pstrCookieName
A pointer to a string containing the name of the cookie.

A DWORD value indicating the length of the cookie, stored in the buffer. Zero if no cookie with the
name indicated by pstrCookieName exists.

This value is used by GetCookie.

Call this member function to establish an FTP connection and get a pointer to a CFtpConnection

object.

pstrServer
A pointer to a string containing the FTP server name.

pstrUserName
Pointer to a null-terminated string that specifies the name of the user to log in. If NULL, the default is
anonymous.

pstrPassword
A pointer to a null-terminated string that specifies the password to use to log in. If both pstrPassword
and pstrUserName are NULL, the default anonymous password is the user's email name. If
pstrPassword is NULL (or an empty string) but pstrUserName is not NULL, a blank password is used.
The following table describes the behavior for the four possible settings of pstrUserName and

PSTRUSERNAME PSTRPASSWORD
USERNAME SENT TO FTP
SERVER

PASSWORD SENT TO FTP
SERVER

NULL or " " NULL or " " "anonymous" User's email name

Non-NULL String NULL or " " pstrUserName " "

NULL Non-NULL String ERROR ERROR

Non-NULL String Non-NULL String pstrUserName pstrPassword

Return ValueReturn Value

RemarksRemarks

ExampleExample

CInternetSession::GetGopherConnection

CGopherConnection* GetGopherConnection(
 LPCTSTR pstrServer,
 LPCTSTR pstrUserName = NULL,
 LPCTSTR pstrPassword = NULL,
 INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER);

ParametersParameters

pstrPassword:

nPort
A number that identifies the TCP/IP port to use on the server.

bPassive
Specifies passive or active mode for this FTP session. If set to TRUE, it sets the Win32 API dwFlag to
INTERNET_FLAG_PASSIVE.

A pointer to a CFtpConnection object. If the call fails, determine the cause of the failure by examining
the thrown CInternetException object.

GetFtpConnection connects to an FTP server, and creates and returns a pointer to a CFTPConnection
object. It does not perform any specific operation on the server. If you intend to read or write to files,
for example, you must perform those operations as separate steps. See the classes CFtpConnection
and CFtpFileFind for information about searching for files, opening files, and reading or writing to
files. See the article Internet Programming with WinInet for steps in performing common FTP
connection tasks.

See the example for CFtpFileFind.

Call this member function to establish a new gopher connection and get a pointer to a
CGopherConnection object.

pstrServer
A pointer to a string containing the gopher server name.

pstrUserName
A pointer to a string containing the user name.

pstrPassword
A pointer to a string containing the access password.

Return ValueReturn Value

RemarksRemarks

CInternetSession::GetHttpConnection

CHttpConnection* GetHttpConnection(
 LPCTSTR pstrServer,
 INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER,
 LPCTSTR pstrUserName = NULL,
 LPCTSTR pstrPassword = NULL);

CHttpConnection* GetHttpConnection(
 LPCTSTR pstrServer,
 DWORD dwFlags,
 INTERNET_PORT nPort = INTERNET_INVALID_PORT_NUMBER,
 LPCTSTR pstrUserName = NULL,
 LPCTSTR pstrPassword = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nPort
A number that identifies the TCP/IP port to use on the server.

A pointer to a CGopherConnection object. If the call fails, determine the cause of the failure by
examining the thrown CInternetException object.

GetGopherConnection connects to a gopher server, and creates and returns a pointer to a
CGopherConnection object. It does not perform any specific operation on the server. If you intend to

read or write data, for example, you must perform those operations as separate steps. See the classes
CGopherConnection, CGopherFile, and CGopherFileFind for information about searching for files,
opening files, and reading or writing to files. For information about browsing an FTP site, see the
member function OpenURL. See the article Internet Programming with WinInet for steps in
performing common gopher connection tasks.

Call this member function to establish an HTTP connection and get a pointer to a CHttpConnection

object.

pstrServer
A pointer to a string containing the HTTP server name.

nPort
A number that identifies the TCP/IP port to use on the server.

pstrUserName
A pointer to a string containing the user name.

pstrPassword
A pointer to a string containing the access password.

dwflags
Any combination of the INTERNET_FLAG_* flags. See the table in the Remarks section of
CHttpConnection::OpenRequest for a description of dwFlags values.

A pointer to a CHttpConnection object. If the call fails, determine the cause of the failure by
examining the thrown CInternetException object.

GetHttpConnection connects to an HTTP server, and creates and returns a pointer to a

 CInternetSession::OnStatusCallback

virtual void OnStatusCallback(
 DWORD_PTR dwContext,
 DWORD dwInternetStatus,
 LPVOID lpvStatusInformation,
 DWORD dwStatusInformationLength);

ParametersParameters

RemarksRemarks

VALUE MEANING

INTERNET_STATUS_RESOLVING_NAME Looking up the IP address of the name contained in
lpvStatusInformation.

INTERNET_STATUS_NAME_RESOLVED Successfully found the IP address of the name
contained in lpvStatusInformation.

INTERNET_STATUS_CONNECTING_TO_SERVER Connecting to the socket address (SOCKADDR)
pointed to by lpvStatusInformation.

INTERNET_STATUS_CONNECTED_TO_SERVER Successfully connected to the socket address
(SOCKADDR) pointed to by lpvStatusInformation.

CHttpConnection object. It does not perform any specific operation on the server. If you intend to
query an HTTP header, for example, you must perform this operation as a separate step. See the
classes CHttpConnection and CHttpFile for information about operations you can perform by using a
connection to an HTTP server. For information about browsing an HTTP site, see the member
function OpenURL. See the article Internet Programming with WinInet for steps in performing
common HTTP connection tasks.

This member function is called by the framework to update the status when status callback is enabled
and an operation is pending.

dwContext
The context value supplied by the application.

dwInternetStatus
A status code which indicates why the callback is being made. See Remarks for a table of possible
values.

lpvStatusInformation
A pointer to a buffer containing information pertinent to this callback.

dwStatusInformationLength
The size of lpvStatusInformation.

You must first call EnableStatusCallback to take advantage of status callback.

The dwInternetStatus parameter indicates the operation being performed and determines what the
contents of lpvStatusInformation will be. dwStatusInformationLength indicates the length of the data
included in lpvStatusInformation. The following status values for dwInternetStatus are defined as
follows:

https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2

INTERNET_STATUS_SENDING_REQUEST Sending the information request to the server. The
lpvStatusInformation parameter is NULL.

INTERNET_STATUS_ REQUEST_SENT Successfully sent the information request to the server.
The lpvStatusInformation parameter is NULL.

INTERNET_STATUS_RECEIVING_RESPONSE Waiting for the server to respond to a request. The
lpvStatusInformation parameter is NULL.

INTERNET_STATUS_RESPONSE_RECEIVED Successfully received a response from the server. The
lpvStatusInformation parameter is NULL.

INTERNET_STATUS_CLOSING_CONNECTION Closing the connection to the server. The
lpvStatusInformation parameter is NULL.

INTERNET_STATUS_CONNECTION_CLOSED Successfully closed the connection to the server. The
lpvStatusInformation parameter is NULL.

INTERNET_STATUS_HANDLE_CREATED Used by the Win32 API function InternetConnect to
indicate that it has created the new handle. This lets
the application call the Win32 function
InternetCloseHandle from another thread if the
connect is taking too long. See the Windows SDKfor
more information about these functions.

INTERNET_STATUS_HANDLE_CLOSING Successfully terminated this handle value.

VALUE MEANING

NOTENOTE

AFX_MANAGE_STATE(AfxGetAppModuleState());

CInternetSession::OpenURL

CStdioFile* OpenURL(
 LPCTSTR pstrURL,
 DWORD_PTR dwContext = 1,
 DWORD dwFlags = INTERNET_FLAG_TRANSFER_ASCII,
 LPCTSTR pstrHeaders = NULL,
 DWORD dwHeadersLength = 0);

ParametersParameters

Override this member function to require some action before a status callback routine is performed.

Status callbacks need thread-state protection. If you are using MFC in a shared library, add the following line
to the beginning of your override:

For more information about asynchronous operations, see the article Internet First Steps: WinInet.

Call this member function to send the specified request to the HTTP server and allow the client to
specify additional RFC822, MIME, or HTTP headers to send along with the request.

pstrURL

https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-internetconnecta
https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-internetclosehandle

Return ValueReturn Value

URL TYPE RETURNS

file:// CStdioFile*

http:// CHttpFile*

gopher:// CGopherFile*

ftp:// CInternetFile*

RemarksRemarks

A pointer to the name of the URL to begin reading. Only URLs beginning with file:, ftp:, gopher:, or
http: are supported. Asserts if pstrURL is NULL.

dwContext
An application-defined value passed with the returned handle in callback.

dwFlags
The flags describing how to handle this connection. See Remarks for more information about the
valid flags. The valid flags are:

INTERNET_FLAG_TRANSFER_ASCII The default. Transfer the file as ASCII text.

INTERNET_FLAG_TRANSFER_BINARY Transfer the file as a binary file.

INTERNET_FLAG_RELOAD Get the data from the wire even if it is locally cached.

INTERNET_FLAG_DONT_CACHE Do not cache the data, either locally or in any gateways.

INTERNET_FLAG_SECURE This flag is applicable to HTTP requests only. It requests secure
transactions on the wire with Secure Sockets Layer or PCT.

INTERNET_OPEN_FLAG_USE_EXISTING_CONNECT If possible, reuse the existing
connections to the server for new requests generated by OpenUrl instead of creating a new
session for each connection request.

INTERNET_FLAG_PASSIVE Used for an FTP site. Uses passive FTP semantics. Used with
CInternetConnection of OpenURL .

pstrHeaders
A pointer to a string containing the headers to be sent to the HTTP server.

dwHeadersLength
The length, in characters, of the additional headers. If this is -1L and pstrHeaders is non-NULL, then
pstrHeaders is assumed to be zero terminated and the length is calculated.

Returns a file handle for FTP, GOPHER, HTTP, and FILE-type Internet services only. Returns NULL if
parsing was unsuccessful.

The pointer that OpenURL returns depends on pstrURL's type of service. The table below illustrates the
possible pointers OpenURL can return.

The parameter dwFlags must include either INTERNET_FLAG_TRANSFER_ASCII or
INTERNET_FLAG_TRANSFER_BINARY, but not both. The remaining flags can be combined with the
bitwise OR operator (|).

CInternetSession::operator HINTERNET

operator HINTERNET() const;

CInternetSession::SetCookie

static BOOL SetCookie(
 LPCTSTR pstrUrl,
 LPCTSTR pstrCookieName,
 LPCTSTR pstrCookieData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CInternetSession::SetOption

BOOL SetOption(
 DWORD dwOption,
 LPVOID lpBuffer,
 DWORD dwBufferLength,
 DWORD dwFlags = 0);

BOOL SetOption(
 DWORD dwOption,
 DWORD dwValue,
 DWORD dwFlags = 0);

OpenURL , which wraps the Win32 function InternetOpenURL , allows only downloading, retrieving, and
reading the data from an Internet server. OpenURL allows no file manipulation on a remote location,
so it requires no CInternetConnection object.

To use connection-specific (that is, protocol-specific) functions, such as writing to a file, you must open
a session, then open a particular kind of connection, then use that connection to open a file in the
desired mode. See CInternetConnection for more information about connection-specific functions.

Use this operator to get the Windows handle for the current Internet session.

Sets a cookie for the specified URL.

pstrUrl
A pointer to a null-terminated string that specifies the URL for which the cookie should be set.

pstrCookieName
A pointer to a string containing the name of the cookie.

pstrCookieData
A pointer to a string containing the actual string data to associate with the URL.

Returns TRUE if successful, or FALSE otherwise. To get the specific error code, call GetLastError.

This member function implements the behavior of the Win32 message InternetSetCookie, as
described in the Windows SDK.

Call this member function to set options for the Internet session.

https://docs.microsoft.com/windows/desktop/api/wininet/nf-wininet-internetsetcookiea

ParametersParameters

Return ValueReturn Value

See also

dwOption
The Internet option to set. See Option Flags in the Windows SDKfor a list of the possible options.

lpBuffer
A buffer that contains the option setting.

dwBufferLength
The length of lpBuffer or the size of dwValue.

dwValue
A DWORD that contains the option setting.

dwFlags
Indicates various caching options. The default is set to 0. The possible values include:

INTERNET_FLAG_DONT_CACHE Do not cache the data, either locally or in any gateway
servers.

INTERNET_FLAG_OFFLINE Download operations are satisfied through the persistent cache
only. If the item does not exist in the cache, an appropriate error code is returned. This flag may
be combined with the bitwise OR (|) operator.

If the operation was successful, a value of TRUE is returned. If an error occurred, a value of FALSE is
returned. If the call fails, the Win32 function GetLastError may be called to determine the cause of the
error.

CObject Class
Hierarchy Chart
CInternetConnection Class
CHttpConnection Class
CFtpConnection Class
CGopherConnection Class

https://docs.microsoft.com/windows/desktop/WinInet/option-flags
https://msdn.microsoft.com/library/windows/desktop/ms679360

CInterpolatorBase Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CInterpolatorBase : public CUIAnimationInterpolatorBase<CInterpolatorBase>;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CInterpolatorBase::CInterpolatorBase Constructs the CInterpolatorBase object.

Public MethodsPublic Methods

NAME DESCRIPTION

CInterpolatorBase::CreateInstance Creates an instance of CInterpolatorBase and stores a
pointer to custom interpolator, which will be handling events.

CInterpolatorBase::GetDependencies Gets the interpolator's dependencies. (Overrides
CUIAnimationInterpolatorBase::GetDependencies .)

CInterpolatorBase::GetDuration Gets the interpolator's duration. (Overrides
CUIAnimationInterpolatorBase::GetDuration .)

CInterpolatorBase::GetFinalValue Gets the final value to which the interpolator leads. (Overrides
CUIAnimationInterpolatorBase::GetFinalValue .)

CInterpolatorBase::InterpolateValue Interpolates the value at a given offset (Overrides
CUIAnimationInterpolatorBase::InterpolateValue .)

CInterpolatorBase::InterpolateVelocity Interpolates the velocity at a given offset (Overrides
CUIAnimationInterpolatorBase::InterpolateVelocity .)

CInterpolatorBase::SetCustomInterpolator Stores a pointer to custom interpolator, which will be handling
events.

CInterpolatorBase::SetDuration Sets the interpolator's duration (Overrides
CUIAnimationInterpolatorBase::SetDuration .)

CInterpolatorBase::SetInitialValueAndVelocity Sets the interpolator's initial value and velocity. (Overrides
CUIAnimationInterpolatorBase::SetInitialValueAndVelocity

.)

Implements a callback, which is called by the Animation API when it has to calculate a new value of an animation
variable.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cinterpolatorbase-class.md

Remarks

Inheritance Hierarchy

Requirements

CInterpolatorBase::CInterpolatorBase

CInterpolatorBase();

CInterpolatorBase::CreateInstance

static COM_DECLSPEC_NOTHROW HRESULT CreateInstance(
 CCustomInterpolator* pInterpolator,
 IUIAnimationInterpolator** ppHandler);

ParametersParameters

Return ValueReturn Value

CInterpolatorBase::GetDependencies

IFACEMETHOD(GetDependencies)(
 __out UI_ANIMATION_DEPENDENCIES* initialValueDependencies,
 __out UI_ANIMATION_DEPENDENCIES* initialVelocityDependencies,
 __out UI_ANIMATION_DEPENDENCIES* durationDependencies);

ParametersParameters

This handler is created and passed to IUIAnimationTransitionFactory::CreateTransition when a CCustomTransition

object is being created as a part of animation initialization process (started by CAnimationController::AnimateGroup

). Usually you don't need to use this class directly, it just routs all events to a CCustomInterpolator -derived class,
whose pointer is passed to constructor of CCustomTransition .

CUIAnimationCallbackBase

CUIAnimationInterpolatorBase

CInterpolatorBase

Header: afxanimationcontroller.h

Constructs the CInterpolatorBase object.

Creates an instance of CInterpolatorBase and stores a pointer to custom interpolator, which will be handling
events.

pInterpolator
A pointer to custom interpolator.

ppHandler
Output. Contains a pointer to instance of CInterpolatorBase when the function returns.

Gets the interpolator's dependencies.

initialValueDependencies

Return ValueReturn Value

CInterpolatorBase::GetDuration

IFACEMETHOD(GetDuration)(__out UI_ANIMATION_SECONDS* duration);

ParametersParameters

Return ValueReturn Value

CInterpolatorBase::GetFinalValue

IFACEMETHOD(GetFinalValue)(__out DOUBLE* value);

ParametersParameters

Return ValueReturn Value

CInterpolatorBase::InterpolateValue

IFACEMETHOD(InterpolateValue)(
 __in UI_ANIMATION_SECONDS offset,
 __out DOUBLE* value);

ParametersParameters

Output. Aspects of the interpolator that depend on the initial value passed to SetInitialValueAndVelocity.

initialVelocityDependencies
Output. Aspects of the interpolator that depend on the initial velocity passed to SetInitialValueAndVelocity.

durationDependencies
Output. Aspects of the interpolator that depend on the duration passed to SetDuration.

If the method succeeds, it returns S_OK. It returns E_FAIL if CCustomInterpolator is not set, or custom
implementation returns FALSE from the GetDependencies method.

Gets the interpolator's duration.

duration
Output. The duration of the transition, in seconds.

If the method succeeds, it returns S_OK. It returns E_FAIL if CCustomInterpolator is not set, or custom
implementation returns FALSE from the GetDuration method.

Gets the final value to which the interpolator leads.

value
Output. The final value of a variable at the end of the transition.

If the method succeeds, it returns S_OK. It returns E_FAIL if CCustomInterpolator is not set, or custom
implementation returns FALSE from the GetFinalValue method.

Interpolates the value at a given offset

offset
The offset from the start of the transition. The offset is always greater than or equal to zero and less than the
duration of the transition. This method is not called if the duration of the transition is zero.

Return ValueReturn Value

CInterpolatorBase::InterpolateVelocity

IFACEMETHOD(InterpolateVelocity)(
 __in UI_ANIMATION_SECONDS offset,
 __out DOUBLE* velocity);

ParametersParameters

Return ValueReturn Value

CInterpolatorBase::SetCustomInterpolator

void SetCustomInterpolator(CCustomInterpolator* pInterpolator);

ParametersParameters

CInterpolatorBase::SetDuration

IFACEMETHOD(SetDuration)(__in UI_ANIMATION_SECONDS duration);

ParametersParameters

Return ValueReturn Value

CInterpolatorBase::SetInitialValueAndVelocity

value
Output. The interpolated value.

If the method succeeds, it returns S_OK. It returns E_FAIL if CCustomInterpolator is not set, or custom
implementation returns FALSE from the InterpolateValue method.

Interpolates the velocity at a given offset

offset
The offset from the start of the transition. The offset is always greater than or equal to zero and less than or equal
to the duration of the transition. This method is not called if the duration of the transition is zero.

velocity
Output. The velocity of the variable at the offset.

If the method succeeds, it returns S_OK. It returns E_FAIL if CCustomInterpolator is not set, or custom
implementation returns FALSE from the InterpolateVelocity method.

Stores a pointer to custom interpolator, which will be handling events.

pInterpolator
A pointer to custom interpolator.

Sets the interpolator's duration

duration
The duration of the transition.

If the method succeeds, it returns S_OK. It returns E_FAIL if CCustomInterpolator is not set, or custom
implementation returns FALSE from the SetDuration method.

IFACEMETHOD(SetInitialValueAndVelocity)(
 __in DOUBLE initialValue,
 __in DOUBLE initialVelocity);

ParametersParameters

Return ValueReturn Value

See also

Sets the interpolator's initial value and velocity.

initialValue
The value of the variable at the start of the transition.

initialVelocity
The velocity of the variable at the start of the transition.

If the method succeeds, it returns S_OK. It returns E_FAIL if CCustomInterpolator is not set, or custom
implementation returns FALSE from the SetInitialValueAndVelocity method.

Classes

CInvalidArgException Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CInvalidArgException : public CSimpleException

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CInvalidArgException::CInvalidArgException The constructor.

Remarks

Inheritance Hierarchy

Requirements

CInvalidArgException::CInvalidArgException

CInvalidArgException();

RemarksRemarks

See also

This class represents an invalid argument exception condition.

A CInvalidArgException object represents an invalid argument exception condition.

For more information on Exception Handling, see the CException Class topic and Exception Handling (MFC).

CObject

CException

CSimpleException

CInvalidArgException

Header: afx.h

The constructor.

Do not use this constructor directly; call the global function AfxThrowInvalidArgException.

Hierarchy Chart

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cinvalidargexception-class.md

CSimpleException Class

CIPAddressCtrl Class
3/5/2019 • 5 minutes to read • Edit Online

Syntax
class CIPAddressCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CIPAddressCtrl::CIPAddressCtrl Constructs a CIPAddressCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CIPAddressCtrl::ClearAddress Clears the contents of the IP Address Control.

CIPAddressCtrl::Create Creates an IP Address Control and attaches it to a
CIPAddressCtrl object.

CIPAddressCtrl::CreateEx Creates an IP Address control with the specified Windows
extended styles and attaches it to a CIPAddressCtrl object.

CIPAddressCtrl::GetAddress Retrieves the address values for all four fields in the IP
Address Control.

CIPAddressCtrl::IsBlank Determines if all fields in the IP Address Control are empty.

CIPAddressCtrl::SetAddress Sets the address values for all four fields in the IP Address
Control.

CIPAddressCtrl::SetFieldFocus Sets the keyboard focus to the specified field in the IP Address
Control.

CIPAddressCtrl::SetFieldRange Sets the range in the specified field in the IP Address Control.

Remarks

Provides the functionality of the Windows common IP Address control.

An IP Address control, a control similar to an edit control, allows you to enter and manipulate a numerical address
in Internet Protocol (IP) format.

This control (and therefore the CIPAddressCtrl class) is available only to programs running under Microsoft
Internet Explorer 4.0 and later. They will also be available under future versions of Windows and Windows NT.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cipaddressctrl-class.md

Inheritance Hierarchy

Requirements

CIPAddressCtrl::CIPAddressCtrl

CIPAddressCtrl();

CIPAddressCtrl::ClearAddress

void ClearAddress();

RemarksRemarks

CIPAddressCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

For more general information about the IP Address Control, see IP Address Controls in the Windows SDK.

CObject

CCmdTarget

CWnd

CIPAddressCtrl

Header: afxcmn.h

Creates a CIPAddressCtrl object.

Clears the contents of the IP Address Control.

This member function implements the behavior of the Win32 message IPM_CLEARADDRESS, as described in
the Windows SDK.

Creates an IP Address Control and attaches it to a CIPAddressCtrl object.

dwStyle
The IP Address control's style. Apply a combination of window styles. You must include the WS_CHILD style
because the control must be a child window. See CreateWindow in the Windows SDK for a list of windows styles.

rect
A reference to the IP Address Control's size and position. It can be either a CRect object or a RECT structure.

pParentWnd
A pointer to the IP Address Control's parent window. It must not be NULL.

nID

https://docs.microsoft.com/windows/desktop/Controls/ip-address-controls
https://docs.microsoft.com/windows/desktop/Controls/ipm-clearaddress
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CIPAddressCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CIPAddressCtrl::GetAddress

The IP Address Control's ID.

Nonzero if initialization was successful; otherwise 0.

You construct a CIPAddressCtrl object in two steps.

1. Call the constructor, which creates the CIPAddressCtrl object.

2. Call Create , which creates the IP Address Control.

If you want to use extended windows styles with your control, call CreateEx instead of Create .

Call this function to create a control (a child window) and associate it with the CIPAddressCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the dwExStyle
parameter for CreateWindowEx in the Windows SDK.

dwStyle
The IP Address control's style. Apply a combination of window styles. You must include the WS_CHILD style
because the control must be a child window. See CreateWindow in the Windows SDK for a list of windows styles.

rect
A reference to a RECT structure describing the size and position of the window to be created, in client coordinates
of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

Retrieves the address values for all four fields in the IP Address Control.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

int GetAddress(
 BYTE& nField0,
 BYTE& nField1,
 BYTE& nField2,
 BYTE& nField3);

int GetAddress(DWORD& dwAddress);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

FIELD BITS CONTAINING THE FIELD VALUE

0 24 through 31

1 16 through 23

2 8 through 15

3 0 through 7

CIPAddressCtrl::IsBlank

BOOL IsBlank() const;

Return ValueReturn Value

RemarksRemarks

nField0
A reference to the field 0 value from a packed IP address.

nField1
A reference to the field 1 value from a packed IP address.

nField2
A reference to the field 2 value from a packed IP address.

nField3
A reference to the field 3 value from a packed IP address.

dwAddress
A reference to the address of a DWORD value that receives the IP address. See Remarks for a table that shows
how dwAddress is filled.

The number of non-blank fields in the IP Address Control.

This member function implements the behavior of the Win32 message IPM_GETADDRESS, as described in the
Windows SDK. In the first prototype above, the numbers in fields 0 through 3 of the control, read left to right
respectively, populate the four parameters. In the second prototype above, dwAddress is populated as follows.

Determines if all fields in the IP Address Control are empty.

Nonzero if all of the IP Address Control fields are empty; otherwise 0.

This member function implements the behavior of the Win32 message IPM_ISBLANK, as described in the

https://docs.microsoft.com/windows/desktop/Controls/ipm-getaddress
https://docs.microsoft.com/windows/desktop/Controls/ipm-isblank

CIPAddressCtrl::SetAddress

void SetAddress(
 BYTE nField0,
 BYTE nField1,
 BYTE nField2,
 BYTE nField3);

void SetAddress(DWORD dwAddress);

ParametersParameters

RemarksRemarks

FIELD BITS CONTAINING THE FIELD VALUE

0 24 through 31

1 16 through 23

2 8 through 15

3 0 through 7

CIPAddressCtrl::SetFieldFocus

void SetFieldFocus(WORD nField);

ParametersParameters

Windows SDK.

Sets the address values for all four fields in the IP Address Control.

nField0
The field 0 value from a packed IP address.

nField1
The field 1 value from a packed IP address.

nField2
The field 2 value from a packed IP address.

nField3
The field 3 value from a packed IP address.

dwAddress
A DWORD value that contains the new IP address. See Remarks for a table that shows how the DWORD value is
filled.

This member function implements the behavior of the Win32 message IPM_SETADDRESS, as described in the
Windows SDK. In the first prototype above, the numbers in fields 0 through 3 of the control, read left to right
respectively, populate the four parameters. In the second prototype above, dwAddress is populated as follows.

Sets the keyboard focus to the specified field in the IP Address Control.

nField

https://docs.microsoft.com/windows/desktop/Controls/ipm-setaddress

RemarksRemarks

CIPAddressCtrl::SetFieldRange

void SetFieldRange(
 int nField,
 BYTE nLower,
 BYTE nUpper);

ParametersParameters

RemarksRemarks

See also

Zero-based field index to which the focus should be set. If this value is greater than the number of fields, focus is
set to the first blank field. If all fields are non-blank, focus is set to the first field.

This member function implements the behavior of the Win32 message IPM_SETFOCUS, as described in the
Windows SDK.

Sets the range in the specified field in the IP Address Control.

nField
Zero-based field index to which the range will be applied.

nLower
A reference to an integer receiving the lower limit of the specified field in this IP Address Control.

nUpper
A reference to an integer receiving the upper limit of the specified field in this IP Address Control.

This member function implements the behavior of the Win32 message IPM_SETRANGE, as described in the
Windows SDK. Use the two parameters, nLower and nUpper, to indicate the lower and upper limits of the field,
instead of the wRange parameter used with the Win32 message.

CWnd Class
Hierarchy Chart

https://docs.microsoft.com/windows/desktop/Controls/ipm-setfocus
https://docs.microsoft.com/windows/desktop/Controls/ipm-setrange

CJumpList Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CJumpList;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CJumpList::CJumpList Constructs a CJumpList object.

CJumpList::~CJumpList Destroys a CJumpList object.

NAME DESCRIPTION

CJumpList::AbortList Aborts a list-building transaction without committing.

CJumpList::AddDestination Overloaded. Adds destination to the list.

CJumpList::AddKnownCategory Appends a Known Category to the list.

CJumpList::AddTask Overloaded. Adds items to the canonical Tasks category.

CJumpList::AddTasks Adds items to the canonical Tasks category.

CJumpList::AddTaskSeparator Adds a separator between tasks.

CJumpList::ClearAll Removes all tasks and destinations that have been added to
the current instance of CJumpList so far.

CJumpList::ClearAllDestinations Removes all destinations that have been added to the current
instance of CJumpList so far.

CJumpList::CommitList Ends a list-building transaction and commits the reported list
to the associated store (the registry in this case.)

CJumpList::GetDestinationList Retrieves an interface pointer to destination list.

CJumpList::GetMaxSlots Retrieves the maximum number of items, including category
headers that can display in the calling application's destination
menu.

A CJumpList is the list of shortcuts revealed when you right click on an icon in the task bar.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cjumplist-class.md

CJumpList::GetRemovedItems Returns array of items that represent removed destinations.

CJumpList::InitializeList Begins a list-building transaction.

CJumpList::SetAppID Sets the Application User Model ID for the list that will be
built.

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

CJumpList::~CJumpList

~CJumpList();

CJumpList::AbortList

void AbortList();

RemarksRemarks

CJumpList::AddDestination

BOOL AddDestination(
 LPCTSTR lpcszCategoryName,
 LPCTSTR strDestinationPath);

BOOL AddDestination(
 LPCTSTR strCategoryName,
 IShellItem* pShellItem);

BOOL AddDestination(
 LPCTSTR strCategoryName,
 IShellLink* pShellLink);

ParametersParameters

CJumpList

Header: afxadv.h

Destroys a CJumpList object.

Aborts a list-building transaction without committing.

Calling this method has the same effect as destroying CJumpList without calling CommitList .

Adds destination to the list.

lpcszCategoryName
Specifies a category name. If the specified category does not exist, it will be created.

strDestinationPath

Return ValueReturn Value

RemarksRemarks

CJumpList::AddKnownCategory

BOOL AddKnownCategory(KNOWNDESTCATEGORY category);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CJumpList::AddTask

BOOL AddTask(
 LPCTSTR strTargetExecutablePath,
 LPCTSTR strCommandLineArgs,
 LPCTSTR strTitle,
 LPCTSTR strIconLocation,
 int iIconIndex);

BOOL AddTask(IShellLink* pShellLink);

ParametersParameters

Specifies a path to destination file.

strCategoryName
Specifies a category name. If the specified category does not exist, it will be created.

pShellItem
Specifies a Shell Item representing the destination being added.

pShellLink
Specifies a Shell Link representing the destination being added.

The instance of CJumpList internally accumulates added destinations and then commits them in CommitList .

Appends a Known Category to the list.

category
Specifies a known category type. Can be either KDC_RECENT, or KDC_KNOWN.

Known Categories are the Frequent and Recent categories that we will automatically calculate for every application
that utilizes SHAddToRecentDocs (or indirectly uses it as the shell will call it on the application's behalf in some
scenarios).

Adds items to the canonical Tasks category.

strTargetExecutablePath
Specifies the target task path.

strCommandLineArgs
Specifies command line arguments of the executable specified by strTargetExecutablePath.

strTitle
Task name that will be displayed in the Destination List.

strIconLocation

Return ValueReturn Value

RemarksRemarks

CJumpList::AddTasks

BOOL AddTasks(IObjectArray* pObjectCollection);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CJumpList::AddTaskSeparator

BOOL AddTaskSeparator();

Return ValueReturn Value

CJumpList::CJumpList

CJumpList(BOOL bAutoCommit = TRUE);

ParametersParameters

CJumpList::ClearAll

Location of icon that will be displayed in the Destination List along with the title.

iIconIndex
Icon index.

pShellLink
Shell Link that represents a task to be added.

The instance of CJumpList accumulates specified tasks and adds them to the Destination List during CommitList .
Task items will appear in a category at the bottom of the application's destination menu. This category takes
precedence over all other categories when it is filled in the UI.

Adds items to the canonical Tasks category.

pObjectCollection
A collection of tasks to be added.

The instance of CJumpList accumulates specified tasks and adds them to the Destination List during CommitList .
Task items will appear in a category at the bottom of the application's destination menu. This category takes
precedence over all other categories when it is filled in the UI.

Adds a separator between tasks.

Nonzero if it is successful, 0 if it is not.

Constructs a CJumpList object.

bAutoCommit
If this parameter is FALSE the list is not automatically committed in destructor.

void ClearAll();

RemarksRemarks

CJumpList::ClearAllDestinations

void ClearAllDestinations();

RemarksRemarks

CJumpList::CommitList

BOOL CommitList();

Return ValueReturn Value

RemarksRemarks

CJumpList::GetDestinationList

ICustomDestinationList* GetDestinationList();

Return ValueReturn Value

RemarksRemarks

CJumpList::GetMaxSlots

UINT GetMaxSlots() const;

Return ValueReturn Value

Removes all tasks and destinations that have been added to the current instance of CJumpList so far.

This method clears and releases all data and internal interfaces.

Removes all destinations that have been added to the current instance of CJumpList so far.

Call this function if you need to remove all destinations that have been added so far in the current session of
destination list building and add other destinations again. If the internal ICustomDestinationList has been
initialized, it's left alive.

Ends a list-building transaction and commits the reported list to the associated store (the registry in this case).

The commit is atomic. An error will be returned if the commit fails. When CommitList is called, the current list of
removed items will be cleaned up. Calling this method resets the object so that it does not have an active list-
building transaction. To update the list, BeginList needs to be called again.

Retrieves an interface pointer to destination list.

If the jump list has not been initialized, or has been committed or aborted, the returned value will be NULL.

Retrieves the maximum number of items, including category headers that can display in the calling application's
destination menu.

RemarksRemarks

CJumpList::GetRemovedItems

IObjectArray* GetRemovedItems();

Return ValueReturn Value

RemarksRemarks

CJumpList::InitializeList

BOOL InitializeList();

Return ValueReturn Value

RemarksRemarks

CJumpList::SetAppID

void SetAppID(LPCTSTR strAppID);

ParametersParameters

See also

Applications may only report a number of items and category headers combined up to this value. If calls to
AppendCategory , AppendKnownCategory , or AddUserTasks exceed this number, they will return failure.

Returns array of items that represent removed destinations.

The removed destinations are retrieved during initialization of jump list. When generating a new destination list,
applications are expected to first process the removed destinations list, clearing their tracking data for any item
returned by the removed list enumerator. If an application attempts to provide an item that was just removed in
the transaction that the current call to BeginList started, the method call that re-added that item will fail, to ensure
that applications are respecting the removed list.

Begins a list-building transaction.

You don't need to call this method explicitly unless you wish to retrieve a pointer to ICustomDestinationList using
GetDestinationList , the number of available slots using GetMaxSlots , or list of removed items using
GetRemovedItems .

Sets the Application User Model ID for the list that will be built.

strAppID
A string that specifies the Application User Model ID.

Classes

CKeyboardManager Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CKeyboardManager : public CObject

Members
Public ConstructorsPublic Constructors

Name Description

CKeyboardManager::CKeyboardManager Constructs a CKeyboardManager object.

Public MethodsPublic Methods

Name Description

CKeyboardManager::CleanUp Clears the shortcut key tables.

CKeyboardManager::FindDefaultAccelerator Retrieves the default shortcut key for the specified command
and window.

CKeyboardManager::IsKeyHandled Determines whether a key is handled by the accelerator
table.

CKeyboardManager::IsKeyPrintable Indicates whether a character is printable.

CKeyboardManager::IsShowAllAccelerators Indicates whether menus show all shortcut keys for a
command or only the default shortcut key.

CKeyboardManager::LoadState Loads the shortcut key tables from the Windows registry.

CKeyboardManager::ResetAll Reloads the shortcut key tables from the application
resource.

CKeyboardManager::SaveState Saves the shortcut key tables to the Windows registry.

CKeyboardManager::ShowAllAccelerators Specifies whether the framework displays all the shortcut
keys for all commands, or a single shortcut key for each
command. This method does not affect commands that have
only one associated shortcut key.

CKeyboardManager::TranslateCharToUpper Converts a character to its upper register.

Manages shortcut key tables for the main frame window and child frame windows.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ckeyboardmanager-class.md

CKeyboardManager::UpdateAccelTable Updates a shortcut key table with a new shortcut key table.

Remarks

Example

// The GetKeyboardManager method is inherited from the CWinAppEx class.
CKeyboardManager* cKeyboardManager = GetKeyboardManager();
cKeyboardManager->ShowAllAccelerators();

Inheritance Hierarchy

Requirements

CKeyboardManager::CKeyboardManager

CKeyboardManager();

RemarksRemarks

CKeyboardManager::CleanUp

static void CleanUp();

The members of this class enable you to save and load shortcut key tables to the Windows registry, use a
template to update the short cut key tables, and find the default shortcut key for a command in a frame window.
In addition, the CKeyboardManager object lets you control how shortcut keys are displayed to the user.

You should not create a CKeyboardManager object manually. It will be created automatically by the framework of
your application. However, you should call CWinAppEx::InitKeyboardManager during the initialization process
of your application. To get a pointer to the keyboard manager for your application, call
CWinAppEx::GetKeyboardManager.

The following example demonstrates how to retrieve a pointer to a CKeyboardManager object from a CWinAppEx

class, and how to show all the shortcut keys associated with menu commands. This code snippet is part of the
Custom Pages sample.

CObject

CKeyboardManager

Header: afxkeyboardmanager.h

Constructs a CKeyboardManager object.

In most cases, you do not have to create a CKeyboardManager directly. By default, the framework creates one for
you. To get a pointer to the CKeyboardManager , call CWinAppEx::GetKeyboardManager. If you do create one
manually, you must initialize it with the method CWinAppEx::InitKeyboardManager.

Frees the CKeyboardManager resources and clears all shortcut key mappings.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CKeyboardManager::FindDefaultAccelerator

static BOOL FindDefaultAccelerator(
 UINT uiCmd,
 CString& str,
 CFrameWnd* pWndFrame,
 BOOL bIsDefaultFrame);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CKeyboardManager::IsKeyHandled

static BOOL __stdcall IsKeyHandled(
 WORD nKey,
 BYTE fVirt,
 CFrameWnd* pWndFrame,
 BOOL bIsDefaultFrame);

ParametersParameters

Parameter Description

nKey [in] The key to check.

fVirt [in] Specifies the behavior of the shortcut key. For a list of
possible values, see ACCEL Structure.

For more information about shortcut keys, see Keyboard and Mouse Customization.

You do not have to call this function when your application exits because the framework calls it automatically
during application exit.

Retrieves the default shortcut key for the specified command and window.

uiCmd
[in] The command ID.

str
[out] A reference to a CString object.

pWndFrame
[in] A pointer to a frame window.

bIsDefaultFrame
[in] Specifies whether the frame window is the default frame window.

Nonzero if the shortcut is found; otherwise 0.

This method looks up the command specified by uiCmd and retrieves the default shortcut key. Then the method
takes the string associated with this shortcut key and writes the value to the str parameter.

Determines whether the specified key is handled by the CKeyboardManager Class.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagaccel

pWndFrame [in] A frame window. This method determines whether a
shortcut key is handled in this frame.

bIsDefaultFrame [in] A Boolean parameter that indicates whether pWndFrame
is the default frame window.

Return ValueReturn Value

RemarksRemarks

CKeyboardManager::IsKeyPrintable

static BOOL __stdcall IsKeyPrintable(const UINT nChar);

ParametersParameters

Parameter Description

nChar [in] The character that this method checks.

Return ValueReturn Value

RemarksRemarks

CKeyboardManager::IsShowAllAccelerators

static BOOL IsShowAllAccelerators();

Return ValueReturn Value

RemarksRemarks

CKeyboardManager::LoadState

TRUE if the shortcut key is handled. FALSE if the key is not handled or if pWndFrame is NULL.

The input parameters must match the entry in the accelerator table both for nKey and fVirt to determine
whether a shortcut key is handled in pWndFrame.

Indicates whether a character is printable.

Nonzero if the character is printable, zero if it is not.

This method fails if a call to GetKeyboardState fails.

Indicates whether menus show all the shortcut keys associated with menu commands or only the default
shortcut keys.

Nonzero if the application lists all the shortcut keys for menu commands; 0 if the application displays only
default shortcut keys.

The application lists the shortcut keys for menu commands in the menu bar. Use the function
CKeyboardManager::ShowAllAccelerators to control whether the application lists all the shortcut keys or just the
default shortcut keys.

Loads the shortcut key tables from the Windows registry.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getkeyboardstate

BOOL LoadState(
 LPCTSTR lpszProfileName = NULL,
 CFrameWnd* pDefaultFrame = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CKeyboardManager::ResetAll

void ResetAll();

RemarksRemarks

CKeyboardManager::SaveState

BOOL SaveState(
 LPCTSTR lpszProfileName = NULL,
 CFrameWnd* pDefaultFrame = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpszProfileName
[in] The registry path where CKeyboardManager data is saved.

pDefaultFrame
[in] A pointer to a frame window to use as the default window.

Nonzero if the state was loaded successfully or 0 otherwise.

If the lpszProfileName parameter is NULL, this method checks the default registry location for
CKeyboardManager data. The default registry location is specified by the CWinAppEx Class. The data must be

previously written with the method CKeyboardManager::SaveState.

If you do not specify a default window, the main frame window of your application will be used.

Reloads the shortcut key tables from the application resource.

This function clears the shortcuts stored in the CKeyboardManager instance. It will then reload the state of the
keyboard manager from the application resource.

Saves the shortcut key tables to the Windows registry.

lpszProfileName
[in] The registry path for saving the CKeyboardManager state.

pDefaultFrame
[in] A pointer to a frame window that becomes the default window.

Nonzero if the keyboard manager state was saved successfully, or 0 otherwise.

If the lpszProfileName parameter is NULL, this method will write the CKeyboardManager state to the default
location specified by the CWinAppEx Class. If you specify a location, you can load the data later using the

CKeyboardManager::ShowAllAccelerators

static void ShowAllAccelerators(
 BOOL bShowAll = TRUE,
 LPCTSTR lpszDelimiter = _afxDefaultAcceleratorDelimiter);

ParametersParameters

RemarksRemarks

CKeyboardManager::TranslateCharToUpper

static UINT TranslateCharToUpper(const UINT nChar);

ParametersParameters

Return ValueReturn Value

CKeyboardManager::UpdateAccelTable

BOOL UpdateAccelTable(
 CMultiDocTemplate* pTemplate,
 LPACCEL lpAccel,
 int nSize,
 CFrameWnd* pDefaultFrame = NULL);

BOOL UpdateAccelTable(
 CMultiDocTemplate* pTemplate,
 HACCEL hAccelNew,
 CFrameWnd* pDefaultFrame = NULL);

ParametersParameters

method CKeyboardManager::LoadState.

If you do not specify a default window, the main frame window will be used as the default window.

Shows all the shortcut keys associated with menu commands.

bShowAll
[in] If TRUE, all the shortcut keys will be displayed. If FALSE, only the first shortcut key will be displayed.

lpszDelimiter
[in] A string to insert between shortcut keys. This delimiter has no effect if only one shortcut key is displayed.

By default, if a command has more than one shortcut key associated with it, only the first shortcut key will be
shown. This function enables you to list all the shortcut keys associated with all commands.

The shortcut keys will be listed next to the command in the menu bar. If all the shortcut keys are displayed, the
string provided by lpszDelimiter will separate individual shortcut keys.

Converts a character to its upper register.

nChar
[in] The character to convert.

The character that is the upper register of the input parameter.

Updates a shortcut key table with a new shortcut key table.

Return ValueReturn Value

RemarksRemarks

See also

pTemplate
[in] A pointer to a document template.

lpAccel
[in] A pointer to the new shortcut key.

nSize
[in] The size of the new shortcut table.

pDefaultFrame
[in] A pointer to the default frame window.

hAccelNew
[in] A handle to the new shortcut table.

Nonzero if the method is successful; otherwise 0.

Use this function to replace the existing shortcut table with new shortcut keys for several frame window objects.
The function receives a document template as a parameter to obtain access to all frame window objects
connected to the given document template.

Hierarchy Chart
Classes
CWinAppEx Class
CWinAppEx::InitKeyboardManager
Keyboard and Mouse Customization

CKeyFrame Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CKeyFrame : public CBaseKeyFrame;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CKeyFrame::CKeyFrame Overloaded. Constructs a keyframe that depends on other
keyframe.

Public MethodsPublic Methods

NAME DESCRIPTION

CKeyFrame::AddToStoryboard Adds a keyframe to a storyboard. (Overrides
CBaseKeyFrame::AddToStoryboard.)

CKeyFrame::AddToStoryboardAfterTransition Adds a keyframe to storyboard after transition.

CKeyFrame::AddToStoryboardAtOffset Adds a keyframe to storyboard at offset.

CKeyFrame::GetExistingKeyframe Returns a pointer to a keyframe this keyframe depends on.

CKeyFrame::GetOffset Returns an offset from other keyframe.

CKeyFrame::GetTransition Returns a pointer to a transition this keyframe depends on.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CKeyFrame::m_offset Specifies offset of this keyframe from a keyframe stored in
m_pExistingKeyFrame.

CKeyFrame::m_pExistingKeyFrame Stores a pointer to an existing keframe. This keyframe is added
to storyboard with m_offset to the existing keyframe.

CKeyFrame::m_pTransition Stores a pointer to transtion that begins at this keyframe.

Remarks

Represents an animation keyframe.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ckeyframe-class.md

Inheritance Hierarchy

Requirements

CKeyFrame::AddToStoryboard

virtual BOOL AddToStoryboard(
 IUIAnimationStoryboard* pStoryboard,
 BOOL bDeepAdd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CKeyFrame::AddToStoryboardAfterTransition

BOOL AddToStoryboardAfterTransition(
 IUIAnimationStoryboard* pStoryboard,
 BOOL bDeepAdd);

ParametersParameters

Return ValueReturn Value

This class implements an animation keyframe. A keyframe represents a moment in time within a storyboard and
can be used to specify the start and end times of transitions. A keyframe may be based on other keyframe and
have an offset (in seconds) from it, or may be based on a transition and represent a moment in time when this
transition ends.

CObject

CBaseKeyFrame

CKeyFrame

Header: afxanimationcontroller.h

Adds a keyframe to a storyboard.

pStoryboard
A pointer to a storyboard.

bDeepAdd
Specifies whether to add keyframe or transition recursively.

TRUE, if keyframe was added successfully.

This method adds a keyframe to storyboard. If it depends on other keyframe or transition and bDeepAdd is TRUE,
this method tries to add them recursively.

Adds a keyframe to storyboard after transition.

pStoryboard
A pointer to a storyboard.

bDeepAdd
Specifies whether to add a transition recursively.

RemarksRemarks

CKeyFrame::AddToStoryboardAtOffset

virtual BOOL AddToStoryboardAtOffset(
 IUIAnimationStoryboard* pStoryboard,
 BOOL bDeepAdd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CKeyFrame::CKeyFrame

CKeyFrame(CBaseTransition* pTransition);

CKeyFrame(
 CBaseKeyFrame* pKeyframe,
 UI_ANIMATION_SECONDS offset = 0.0);

ParametersParameters

RemarksRemarks

CKeyFrame::GetExistingKeyframe

CBaseKeyFrame* GetExistingKeyframe();

TRUE, if keyframe was added successfully.

This function is called by the framework to add a keyframe to storyboard after transition.

Adds a keyframe to storyboard at offset.

pStoryboard
A pointer to a storyboard.

bDeepAdd
Specifies whether to add a keyframe this keyframe depend on recursively.

TRUE, if keyframe was added successfully.

This function is called by the framework to add a keyframe to storyboard at offset.

Constructs a keyframe that depends on a transition.

pTransition
A pointer to a transition.

pKeyframe
A pointer to keyframe.

offset
Offset, in seconds, from keyframe specified by pKeyframe.

The constructed keyframe will represent a moment in time within a storyboard when the specified transition ends.

Returns a pointer to a keyframe this keyframe depends on.

Return ValueReturn Value

RemarksRemarks

CKeyFrame::GetOffset

UI_ANIMATION_SECONDS GetOffset();

Return ValueReturn Value

RemarksRemarks

CKeyFrame::GetTransition

CBaseTransition* GetTransition();

Return ValueReturn Value

RemarksRemarks

CKeyFrame::m_offset

UI_ANIMATION_SECONDS m_offset;

CKeyFrame::m_pExistingKeyFrame

CBaseKeyFrame* m_pExistingKeyFrame;

CKeyFrame::m_pTransition

CBaseTransition* m_pTransition;

A valid pointer to keyframe, or NULL if this keyframe does not depend on other keyframe.

This is an accessor to a keyframe this keyframe depends on.

Returns an offset from other keyframe.

An offset in seconds from other keyframe.

This method should be called to determine an offset in seconds from other keyframe.

Returns a pointer to a transition this keyframe depends on.

A valid pointer to transition, or NULL if this keyframe does not depend on transition.

This is an accessor to a transition this keyframe depends on.

Specifies offset of this keyframe from a keyframe stored in m_pExistingKeyFrame.

Stores a pointer to an existing keframe. This keyframe is added to storyboard with m_offset to the existing
keyframe.

Stores a pointer to transtion that begins at this keyframe.

See also
Classes

CLinearTransition Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CLinearTransition : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CLinearTransition::CLinearTransition Constructs a linear transition object and initializes it with
duration and final value.

Public MethodsPublic Methods

NAME DESCRIPTION

CLinearTransition::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CLinearTransition::m_dblFinalValue The value of the animation variable at the end of the
transition.

CLinearTransition::m_duration The duration of the transition.

Remarks

Inheritance Hierarchy

Encapsulates a linear transition.

During a linear transition, the value of the animation variable transitions linearly from its initial value to a specified
final value. Because all transitions are cleared automatically, it's recommended to allocated them using operator
new. The encapsulated IUIAnimationTransition COM object is created by CAnimationController::AnimateGroup,
until then it's NULL. Changing member variables after creation of this COM object has no effect.

CObject

CBaseTransition

CLinearTransition

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/clineartransition-class.md

Requirements

CLinearTransition::CLinearTransition

CLinearTransition(
 UI_ANIMATION_SECONDS duration,
 DOUBLE dblFinalValue);

ParametersParameters

CLinearTransition::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *not used*\);

ParametersParameters

Return ValueReturn Value

CLinearTransition::m_dblFinalValue

DOUBLE m_dblFinalValue;

CLinearTransition::m_duration

UI_ANIMATION_SECONDS m_duration;

See also

Header: afxanimationcontroller.h

Constructs a linear transition object and initializes it with duration and final value.

duration
The duration of the transition.

dblFinalValue
The value of the animation variable at the end of the transition.

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to an IUIAnimationTransitionLibrary interface, which defines a library of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

The value of the animation variable at the end of the transition.

The duration of the transition.

Classes

https://docs.microsoft.com/windows/desktop/api/uianimation/nn-uianimation-iuianimationtransitionlibrary

CLinearTransitionFromSpeed Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CLinearTransitionFromSpeed : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CLinearTransitionFromSpeed::CLinearTransitionFromSpeed Constructs a linear-speed transition object and initializes it
with speed and final value.

Public MethodsPublic Methods

NAME DESCRIPTION

CLinearTransitionFromSpeed::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CLinearTransitionFromSpeed::m_dblFinalValue The value of the animation variable at the end of the
transition.

CLinearTransitionFromSpeed::m_dblSpeed The absolute value of the variable's velocity.

Remarks

Inheritance Hierarchy

Encapsulates a linear-speed transition.

During a linear-speed transition, the value of the animation variable changes at a specified rate. The duration of the
transition is determined by the difference between the initial value and the specified final value. Because all
transitions are cleared automatically, it's recommended to allocated them using operator new. The encapsulated
IUIAnimationTransition COM object is created by CAnimationController::AnimateGroup, until then it's NULL.
Changing member variables after creation of this COM object has no effect.

CObject

CBaseTransition

CLinearTransitionFromSpeed

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/clineartransitionfromspeed-class.md

Requirements

CLinearTransitionFromSpeed::CLinearTransitionFromSpeed

CLinearTransitionFromSpeed(
 DOUBLE dblSpeed,
 DOUBLE dblFinalValue);

ParametersParameters

CLinearTransitionFromSpeed::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *not used*\);

ParametersParameters

Return ValueReturn Value

CLinearTransitionFromSpeed::m_dblFinalValue

DOUBLE m_dblFinalValue;

CLinearTransitionFromSpeed::m_dblSpeed

DOUBLE m_dblSpeed;

See also

Header: afxanimationcontroller.h

Constructs a linear-speed transition object and initializes it with speed and final value.

dblSpeed
The absolute value of the variable's velocity.

dblFinalValue
The value of the animation variable at the end of the transition.

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to an IUIAnimationTransitionLibrary interface, which defines a library of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

The value of the animation variable at the end of the transition.

The absolute value of the variable's velocity.

Classes

https://docs.microsoft.com/windows/desktop/api/uianimation/nn-uianimation-iuianimationtransitionlibrary

CLinkCtrl Class
3/4/2019 • 9 minutes to read • Edit Online

Syntax
class CLinkCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CLinkCtrl::CLinkCtrl Constructs a CLinkCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CLinkCtrl::Create Creates a link control and attaches it to a CLinkCtrl object.

CLinkCtrl::CreateEx Creates a link control with extended styles and attaches it to a
CLinkCtrl object.

CLinkCtrl::GetIdealHeight Retrieves the ideal height of the link control.

CLinkCtrl::GetIdealSize Calculates the preferred height of the link text for the current
link control, depending on the specified width of the link.

CLinkCtrl::GetItem Retrieves the states and attributes of a link control item.

CLinkCtrl::GetItemID Retrieves the ID of a link control item.

CLinkCtrl::GetItemState Retrieves the state of the link control item.

CLinkCtrl::GetItemUrl Retrieves the URL represented by the link control item.

CLinkCtrl::HitTest Determines whether the user clicked the specified link.

CLinkCtrl::SetItem Sets the states and attributes of a link control item.

CLinkCtrl::SetItemID Sets the ID of a link control item.

CLinkCtrl::SetItemState Sets the state of the link control item.

CLinkCtrl::SetItemUrl Sets the URL represented by the link control item.

Provides the functionality of the Windows common SysLink control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/clinkctrl-class.md

Remarks

Inheritance Hierarchy

Requirements

CLinkCtrl::CLinkCtrl

CLinkCtrl();

CLinkCtrl::Create

virtual BOOL Create(
 LPCTSTR lpszLinkMarkup,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

virtual BOOL Create(DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

A "link control" provides a convenient way to embed hypertext links in a window. The actual control is a window
that renders marked-up text and launches appropriate applications when the user clicks an embedded link.
Multiple links are supported within one control and can be accessed by a zero-based index.

This control (and therefore the CLinkCtrl class) is available only to programs running under Windows XP and
later.

For more information, see SysLink Control in the Windows SDK.

CObject

CCmdTarget

CWnd

CLinkCtrl

Header: afxcmn.h

Constructs a CLinkCtrl object.

Creates a link control and attaches it to a CLinkCtrl object.

lpszLinkMarkup
Pointer to a zero-terminated string that contains the marked up text to display. For more information, see the
section "Markup and Link Access" in the topic Overview of SysLink Controls.

dwStyle
Specifies the link control's style. Apply any combination of control styles. See Common Control Styles in the
Windows SDK for more information.

rect

https://docs.microsoft.com/windows/desktop/Controls/syslink-overview
https://docs.microsoft.com/windows/desktop/Controls/syslink-overview
https://docs.microsoft.com/windows/desktop/Controls/common-control-styles

Return ValueReturn Value

RemarksRemarks

ExampleExample

afx_msg void OnNMClickSyslink1(NMHDR *pNMHDR, LRESULT *pResult);
afx_msg void OnNMClickSyslink2(NMHDR *pNMHDR, LRESULT *pResult);
// Link variable associated with resource editor CLinkCtrl control.
CLinkCtrl m_Link1;
// Link variable associated with programmatic CLinkCtrl control.
CLinkCtrl m_Link2;

ExampleExample

Specifies the link control's size and position. It can be either a CRect object or a RECT structure.

pParentWnd
Specifies the link control's parent window. It must not be NULL.

nID
Specifies the link control's ID.

TRUE if initialization was successful; otherwise FALSE.

You construct a CLinkCtrl object in two steps. First, call the constructor and then call Create , which creates the
link control and attaches it to the CLinkCtrl object. If you want to use extended windows styles with your control,
call CLinkCtrl::CreateEx instead of Create .

The second form of the Create method is deprecated. Use the first form that specifies the lpszLinkMarkup
parameter.

The following code example defines two variables, named m_Link1 and m_Link2 , that are used to access two link
controls.

The following code example creates one link control based on the location of another link control. The resource
loader creates the first link control when your application starts. When your application enters the OnInitDialog
method, you create the second link control relative to the position of the first link control. Then you resize the
second link control to fit the text that it displays.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CRect rect1, rect2;
int height = 0;
SIZE sz = {0};
PTCHAR url =
 _T("Link 2) ")
 _T("")
 _T("Microsoft VC++ Home")
 _T("");
m_Link1.GetWindowRect(&rect1);
m_Link2.Create(url,
 (WS_VISIBLE | WS_TABSTOP | WS_CHILD | WS_BORDER),
 CRect(
 rect1.left, rect1.bottom + rect1.Height(),
 rect1.right, rect1.bottom + (2*rect1.Height())),
 this,
 IDC_SYSLINK2);
m_Link2.GetClientRect(&rect2);
// The return value of GetIdealSize() is the same as sz.cy
height = m_Link2.GetIdealSize(
 rect2.Width(), &sz);
if ((sz.cx != 0) && (sz.cy != 0)) {
 int rc = m_Link2.SetWindowPos(
 this,
 0, 0, sz.cx, sz.cy,
 (SWP_NOMOVE | SWP_NOZORDER | SWP_NOREPOSITION | SWP_NOACTIVATE));
}

CLinkCtrl::CreateEx

virtual BOOL CreateEx(
 LPCTSTR lpszLinkMarkup,
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

virtual BOOL CreateEx(DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Creates a link control with extended styles and attaches it to a CLinkCtrl object.

lpszLinkMarkup
Pointer to a zero-terminated string that contains the marked up text to display. For more information, see the
section "Markup and Link Access" in the topic Overview of SysLink Controls.

dwExStyle
Specifies the extended style of the link control. For a list of extended Windows styles, see the dwExStyle parameter
for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the link control's style. Apply any combination of control styles. For more information, see Common
Control Styles in the Windows SDK.

rect
Specifies the link control's size and position. It can be either a CRect object or a RECT structure.

https://docs.microsoft.com/windows/desktop/Controls/syslink-overview
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/common-control-styles
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

Return ValueReturn Value

RemarksRemarks

CLinkCtrl::GetIdealHeight

int GetIdealHeight() const;

Return ValueReturn Value

RemarksRemarks

CLinkCtrl::GetIdealSize

int GetIdealSize(
 int cxMaxWidth,
 SIZE* pSize) const;

ParametersParameters

PARAMETER DESCRIPTION

cxMaxWidth [in] The maximum width of the link, in pixels.

[out] * pSize A pointer to a Windows SIZE structure. When this method
returns, the cy member of the SIZE structure contains the
ideal link text height for the link text width that is specified by
cxMaxWidth. The cx member of the structure contains the link
text width that is actually needed.

Return ValueReturn Value

RemarksRemarks

pParentWnd
Specifies the link control's parent window. It must not be NULL.

nID
Specifies the link control's ID.

TRUE if initialization was successful; otherwise FALSE.

Use CreateEx instead of Create to apply extended Windows style constants.

The second form of the CreateEx method is deprecated. Use the first form that specifies the lpszLinkMarkup
parameter.

Retrieves the ideal height of the link control.

The ideal height of the control, in pixels.

This member function implements the behavior of the Win32 message LM_GETIDEALHEIGHT, as described in
the Windows SDK.

Calculates the preferred height of the link text for the current link control, depending on the specified width of the
link.

The preferred height of the link text, in pixels. The return value is the same as the value of the cy member of the
SIZE structure.

https://docs.microsoft.com/windows/desktop/Controls/lm-getidealheight
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize

CLinkCtrl::GetItem

BOOL GetItem(PLITEM pItem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLinkCtrl::GetItemID

BOOL GetItemID(
 int iLink,
 CString& strID) const;

BOOL GetItemID(
 int iLink,
 LPWSTR szID,
 UINT cchID) const;

ParametersParameters

Return ValueReturn Value

NOTENOTE

RemarksRemarks

For an example of the GetIdealSize method, see the example in CLinkCtrl::Create.

This method sends the LM_GETIDEALSIZE message, which is described in the Windows SDK.

Retrieves the states and attributes of a link control item.

pItem
A pointer to a L ITEM structure to receive item information.

Returns TRUE on success, FALSE on failure.

This member function implements the behavior of the Win32 message LM_GETITEM, as described in the
Windows SDK.

Retrieves the ID of a link control item.

iLink
The index of a link control item.

strID
A CStringT object containing the ID of the specified item.

szID
A null-terminated string containing the ID of the specified item.

cchID
The size in characters of the szID buffer.

Returns TRUE on success, FALSE on failure.

This function also returns FALSE if the buffer of szID or strID is smaller than MAX_LINKID_TEXT.

https://docs.microsoft.com/windows/desktop/Controls/lm-getidealsize
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglitem
https://docs.microsoft.com/windows/desktop/Controls/lm-getitem

CLinkCtrl::GetItemState

BOOL GetItemState(
 int iLink,
 UINT* pnState,
 UINT stateMask = LIS_FOCUSED | LIS_ENABLED | LIS_VISITED) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLinkCtrl::GetItemUrl

BOOL GetItemUrl(
 int iLink,
 CString& strUrl) const;

BOOL GetItemUrl(
 int iLink,
 LPWSTR szUrl,
 UINT cchUrl) const;

ParametersParameters

Retrieves the ID of a specific link control item. For more information, see the Win32 message LM_GETITEM in the
Windows SDK.

Retrieves the state of the link control item.

iLink
The index of a link control item.

pnState
The value of the specified state item.

stateMask
Combination of flags describing which state item to get. For a list of values, see the description of the state

member in the L ITEM structure. Allowable items are identical to those allowed in state .

Returns TRUE on success, FALSE on failure.

Retrieves the value of the specified state item of a specific link control item. For more information, see the Win32
message LM_GETITEM in the Windows SDK.

Retrieves the URL represented by the link control item.

iLink
The index of a link control item.

strUrl
A CStringT object containing the URL represented by the specified item

szUrl
A null-terminated string containing the URL represented by the specified item

cchUrl
The size in characters of the szURL buffer.

https://docs.microsoft.com/windows/desktop/Controls/lm-getitem
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglitem
https://docs.microsoft.com/windows/desktop/Controls/lm-getitem

Return ValueReturn Value

NOTENOTE

RemarksRemarks

CLinkCtrl::HitTest

BOOL HitTest(PLHITTESTINFO phti) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLinkCtrl::SetItem

BOOL SetItem(PLITEM pItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLinkCtrl::SetItemID

Returns TRUE on success, FALSE on failure.

This function also returns FALSE if the buffer of szUrl or strUrl is smaller than MAX_LINKID_TEXT.

Retrieves the URL represented by the specified link control item. For more information, see the Win32 message
LM_GETITEM in the Windows SDK.

Determines if the user clicked the specified link.

phti
Pointer to a LHITTESTINFO structure containing any information about the link the user clicked.

Returns TRUE on success, FALSE on failure.

This member function implements the behavior of the Win32 message LM_HITTEST, as described in the
Windows SDK.

Sets the states and attributes of a link control item.

pItem
A pointer to a L ITEM structure containing the information to set.

Returns TRUE on success, FALSE on failure.

This member function implements the behavior of the Win32 message LM_SETITEM, as described in the
Windows SDK.

Retrieves the ID of a link control item.

https://docs.microsoft.com/windows/desktop/Controls/lm-getitem
https://docs.microsoft.com/windows/desktop/Controls/lm-hittest
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglitem
https://docs.microsoft.com/windows/desktop/Controls/lm-setitem

BOOL SetItemID(
 int iLink,
 LPCWSTR szID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLinkCtrl::SetItemState

BOOL SetItemState(
 int iLink,
 UINT state,
 UINT stateMask = LIS_FOCUSED | LIS_ENABLED | LIS_VISITED);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLinkCtrl::SetItemUrl

BOOL SetItemUrl(
 int iLink,
 LPCWSTR szUrl);

ParametersParameters

iLink
The index of a link control item.

szID
A null-terminated string containing the ID of the specified item.

Returns TRUE on success, FALSE on failure.

Sets the ID of a specific link control item. For more information, see the Win32 message LM_SETITEM in the
Windows SDK.

Retrieves the state of the link control item.

iLink
The index of a link control item.

pnState
The value of the specified state item being set.

stateMask
Combination of flags describing the state item being set. For a list of values, see the description of the state

member in the L ITEM structure. Allowable items are identical to those allowed in state .

Returns TRUE on success, FALSE on failure.

Sets the value of the specified state item of a specific link control item. For more information, see the Win32
message LM_SETITEM in the Windows SDK.

Sets the URL represented by the link control item.

https://docs.microsoft.com/windows/desktop/Controls/lm-setitem
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglitem
https://docs.microsoft.com/windows/desktop/Controls/lm-setitem

Return ValueReturn Value

RemarksRemarks

See also

iLink
The index of a link control item.

szUrl
A null-terminated string containing the URL represented by the specified item

Returns TRUE on success, FALSE on failure.

Sets the URL represented by the specified link control item. For more information, see the Win32 message
LM_SETITEM in the Windows SDK.

Hierarchy Chart
CWnd Class

https://docs.microsoft.com/windows/desktop/Controls/lm-setitem

CList Class
3/4/2019 • 16 minutes to read • Edit Online

Syntax
template<class TYPE, class ARG_TYPE = const TYPE&>
class CList : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CList::CList Constructs an empty ordered list.

Public MethodsPublic Methods

NAME DESCRIPTION

CList::AddHead Adds an element (or all the elements in another list) to the
head of the list (makes a new head).

CList::AddTail Adds an element (or all the elements in another list) to the
tail of the list (makes a new tail).

CList::Find Gets the position of an element specified by pointer value.

CList::FindIndex Gets the position of an element specified by a zero-based
index.

CList::GetAt Gets the element at a given position.

CList::GetCount Returns the number of elements in this list.

CList::GetHead Returns the head element of the list (cannot be empty).

CList::GetHeadPosition Returns the position of the head element of the list.

CList::GetNext Gets the next element for iterating.

CList::GetPrev Gets the previous element for iterating.

CList::GetSize Returns the number of elements in this list.

CList::GetTail Returns the tail element of the list (cannot be empty).

Supports ordered lists of nonunique objects accessible sequentially or by value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/clist-class.md

CList::GetTailPosition Returns the position of the tail element of the list.

CList::InsertAfter Inserts a new element after a given position.

CList::InsertBefore Inserts a new element before a given position.

CList::IsEmpty Tests for the empty list condition (no elements).

CList::RemoveAll Removes all the elements from this list.

CList::RemoveAt Removes an element from this list, specified by position.

CList::RemoveHead Removes the element from the head of the list.

CList::RemoveTail Removes the element from the tail of the list.

CList::SetAt Sets the element at a given position.

NAME DESCRIPTION

ParametersParameters

Remarks

Example

TYPE
Type of object stored in the list.

ARG_TYPE
Type used to reference objects stored in the list. Can be a reference.

CList lists behave like doubly-linked lists.

A variable of type POSITION is a key for the list. You can use a POSITION variable as an iterator to traverse a list
sequentially and as a bookmark to hold a place. A position is not the same as an index, however.

Element insertion is very fast at the list head, at the tail, and at a known POSITION. A sequential search is
necessary to look up an element by value or index. This search can be slow if the list is long.

If you need a dump of individual elements in the list, you must set the depth of the dump context to 1 or greater.

Certain member functions of this class call global helper functions that must be customized for most uses of the
CList class. See Collection Class Helpers in the "Macros and Globals" section.

For more information on using CList , see the article Collections.

// CList is a template class that takes two template arguments.
// The first argument is type stored internally by the list, the
// second argument is the type used in the arguments for the
// CList methods.

// This code defines a list of ints.
CList<int,int> myIntList;

// This code defines a list of CStrings
CList<CString,CString&> myStringList;

// This code defines a list of MYTYPEs,
// NOTE: MYTYPE could be any struct, class or type definition
CList<MYTYPE,MYTYPE&> myTypeList;

Inheritance Hierarchy

Requirements

CList::AddHead

POSITION AddHead(ARG_TYPE newElement);
void AddHead(CList* pNewList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CObject

CList

Header: afxtempl.h

Adds a new element or list of elements to the head of this list.

ARG_TYPE
Template parameter specifying the type of the list element (can be a reference).

newElement
The new element.

pNewList
A pointer to another CList list. The elements in pNewList will be added to this list.

The first version returns the POSITION value of the newly inserted element.

The list can be empty before the operation.

// Declarations of the variables used in the example
CList<CString,CString&> myList;
CList<CString,CString&> myList2;

// There are two versions of CList::AddHead: one adds a single
// element to the front of the list, the second adds another list
// to the front.

// This adds the string "ABC" to the front of myList.
// myList is a list of CStrings (ie defined as CList<CString,CString&>).
myList.AddHead(CString(_T("ABC")));

// This adds the elements of myList2 to the front of myList.
myList.AddHead(&myList2);

CList::AddTail

POSITION AddTail(ARG_TYPE newElement);
void AddTail(CList* pNewList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Adds a new element or list of elements to the tail of this list.

ARG_TYPE
Template parameter specifying the type of the list element (can be a reference).

newElement
The element to be added to this list.

pNewList
A pointer to another CList list. The elements in pNewList will be added to this list.

The first version returns the POSITION value of the newly inserted element.

The list can be empty before the operation.

// Define myList and myList2.
CList<CString,CString&> myList;
CList<CString,CString&> myList2;

// Add elements to the end of myList and myList2.
myList.AddTail(CString(_T("A")));
myList.AddTail(CString(_T("B")));
myList2.AddTail(CString(_T("C")));
myList2.AddTail(CString(_T("D")));

// There are two versions of CList::AddTail: one adds a single
// element to the end of the list, the second adds another list
// to the end.

// This adds the string "ABC" to the end of myList.
// myList is a list of CStrings (ie defined as CList<CString,CString&>).
myList.AddTail(CString(_T("ABC")));
ASSERT(CString(_T("ABC")) == myList.GetTail());

// This adds the elements of myList2 to the end of myList.
myList.AddTail(&myList2);

CList::CList

CList(INT_PTR nBlockSize = 10);

ParametersParameters

RemarksRemarks

ExampleExample

// This code defines myList as a list of strings
// such that memory gets allocated in chunks of
// 16 strings.
CList<CString,CString&> myList(16);

// This code defines myList2 as a list of ints
// such that memory gets allocated in chunks of
// 128 ints.
CList<int,int> myList2(128);

CList::Find

POSITION Find(
 ARG_TYPE searchValue,
 POSITION startAfter = NULL) const;

ParametersParameters

Constructs an empty ordered list.

nBlockSize
The memory-allocation granularity for extending the list.

As the list grows, memory is allocated in units of nBlockSize entries.

Searches the list sequentially to find the first element matching the specified searchValue.

ARG_TYPE

Return ValueReturn Value

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add three elements to the list.
myList.AddHead(CString(_T("XYZ")));
myList.AddHead(CString(_T("ABC")));
myList.AddHead(CString(_T("123")));

// Find a specific element.
POSITION pos = myList.Find(CString(_T("XYZ")));
ASSERT(CString(_T("XYZ")) == myList.GetAt(pos));

CList::FindIndex

POSITION FindIndex(INT_PTR nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add three elements to the list.
myList.AddTail(CString(_T("XYZ")));
myList.AddTail(CString(_T("ABC")));
myList.AddTail(CString(_T("123")));

// Verify the first element (index 0).
ASSERT(CString(_T("XYZ")) == myList.GetAt(myList.FindIndex(0)));

// Verify the third element (index 2).
ASSERT(CString(_T("123")) == myList.GetAt(myList.FindIndex(2)));

Template parameter specifying the type of the list element (can be a reference).

searchValue
The value to be found in the list.

startAfter
The start position for the search. If no value is specified, the search begins with the head element.

A POSITION value that can be used for iteration or object pointer retrieval; NULL if the object is not found.

Uses the value of nIndex as an index into the list.

nIndex
The zero-based index of the list element to be found.

A POSITION value that can be used for iteration or object pointer retrieval; NULL if nIndex is negative or too
large.

It starts a sequential scan from the head of the list, stopping on the nth element.

CList::GetAt

TYPE& GetAt(POSITION position);
const TYPE& GetAt(POSITION position) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CList::GetCount

INT_PTR GetCount() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CList::GetHead

const TYPE& GetHead() const;

TYPE& GetHead();

ParametersParameters

Gets the list element at a given position.

TYPE
Template parameter specifying the type of object in the list.

position
The position in the list of the element to get.

See the return value description for GetHead .

GetAt returns the element (or a reference to the element) associated with a given position. It is not the same as
an index, and you cannot operate on a POSITION value yourself. A variable of type POSITION is a key for the
list.

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

See the example for CList::GetHeadPosition.

Gets the number of elements in this list.

An integer value containing the element count.

Calling this method will generate the same result as the CList::GetSize method.

See the example for CList::RemoveHead.

Gets the head element (or a reference to the head element) of this list.

TYPE

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add an element to the front of the list.
myList.AddHead(CString(_T("ABC")));

// Verify the element was added to the front of the list.
ASSERT(CString(_T("ABC")) == myList.GetHead());

CList::GetHeadPosition

POSITION GetHeadPosition() const;

Return ValueReturn Value

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add an element to the front of the list.
myList.AddHead(CString(_T("ABC")));

// Verify the element at the head position
// is the one added.
POSITION pos = myList.GetHeadPosition();
ASSERT(CString(_T("ABC")) == myList.GetAt(pos));

CList::GetNext

TYPE& GetNext(POSITION& rPosition);
const TYPE& GetNext(POSITION& rPosition) const;

ParametersParameters

Template parameter specifying the type of object in the list.

If the list is const, GetHead returns a copy of the element at the head of the list. This allows the function to be
used only on the right side of an assignment statement and protects the list from modification.

If the list is not const, GetHead returns a reference to the element at the head of the list. This allows the function
to be used on either side of an assignment statement and thus allows the list entries to be modified.

You must ensure that the list is not empty before calling GetHead . If the list is empty, then the Debug version of
the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

Gets the position of the head element of this list.

A POSITION value that can be used for iteration or object pointer retrieval; NULL if the list is empty.

Gets the list element identified by rPosition, then sets rPosition to the POSITION value of the next entry in the
list.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add two elements to the list.
myList.AddHead(CString(_T("ABC")));
myList.AddHead(CString(_T("123")));

// Dump the list elements to the debug window.
POSITION pos = myList.GetHeadPosition();
for (int i = 0; i < myList.GetCount(); i++)
{
 TRACE(_T("%s\r\n"), (LPCTSTR)myList.GetNext(pos));
}

CList::GetPrev

TYPE& GetPrev(POSITION& rPosition);
const TYPE& GetPrev(POSITION& rPosition) const;

ParametersParameters

Return ValueReturn Value

TYPE
Template parameter specifying the type of the elements in the list.

rPosition
A reference to a POSITION value returned by a previous GetNext , GetHeadPosition, or other member function
call.

If the list is const, GetNext returns a copy of an element of the list. This allows the function to be used only on
the right side of an assignment statement and protects the list from modification.

If the list is not const, GetNext returns a reference to an element of the list. This allows the function to be used
on either side of an assignment statement and thus allows the list entries to be modified.

You can use GetNext in a forward iteration loop if you establish the initial position with a call to GetHeadPosition

or Find .

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

If the retrieved element is the last in the list, then the new value of rPosition is set to NULL.

Gets the list element identified by rPosition , then sets rPosition to the POSITION value of the previous entry
in the list.

TYPE
Template parameter specifying the type of the elements in the list.

rPosition
A reference to a POSITION value returned by a previous GetPrev or other member function call.

If the list is const, GetPrev returns a copy of the element at the head of the list. This allows the function to be
used only on the right side of an assignment statement and protects the list from modification.

RemarksRemarks

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add two elements to the list.
myList.AddHead(CString(_T("ABC")));
myList.AddHead(CString(_T("123")));

// Dump the list elements to the debug window,
// in reverse order.
POSITION pos = myList.GetTailPosition();
for (int i = 0; i < myList.GetCount(); i++)
{
 TRACE(_T("%s\r\n"), (LPCTSTR)myList.GetPrev(pos));
}

CList::GetSize

INT_PTR GetSize() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add two elements to the list.
myList.AddHead(CString(_T("ABC")));
myList.AddHead(CString(_T("123")));

// Remove the head element and verify the list.
// NOTE: once the head is removed, the number of
// elements in the list will be one.
CString strHead = myList.RemoveHead();
ASSERT((CString(_T("123")) == strHead) && (myList.GetSize() == 1) &&
 (CString(_T("ABC")) == myList.GetHead()));

If the list is not const, GetPrev returns a reference to an element of the list. This allows the function to be used
on either side of an assignment statement and thus allows the list entries to be modified.

You can use GetPrev in a reverse iteration loop if you establish the initial position with a call to GetTailPosition

or Find .

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

If the retrieved element is the first in the list, then the new value of rPosition is set to NULL.

Returns the number of list elements.

The number of items in the list.

Call this method to retrieve the number of elements in the list. Calling this method will generate the same result
as the CList::GetCount method.

CList::GetTail

TYPE& GetTail();
const TYPE& GetTail() const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add an element to the end of the list.
myList.AddTail(CString(_T("ABC")));

// Verify the element was added to the end of the list.
ASSERT(CString(_T("ABC")) == myList.GetTail());

CList::GetTailPosition

POSITION GetTailPosition() const;

Return ValueReturn Value

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add an element to the end of the list.
myList.AddTail(CString(_T("ABC")));

// Verify the element at the end position
// is the one added.
POSITION pos = myList.GetTailPosition();
ASSERT(CString(_T("ABC")) == myList.GetAt(pos));

CList::InsertAfter

Gets the CObject pointer that represents the tail element of this list.

TYPE
Template parameter specifying the type of elements in the list.

See the return value description for GetHead.

You must ensure that the list is not empty before calling GetTail . If the list is empty, then the Debug version of
the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

Gets the position of the tail element of this list; NULL if the list is empty.

A POSITION value that can be used for iteration or object pointer retrieval; NULL if the list is empty.

Adds an element to this list after the element at the specified position.

POSITION InsertAfter(POSITION position, ARG_TYPE newElement);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add three elements to the list.
POSITION pos = myList.AddHead(CString(_T("XYZ")));
pos = myList.InsertAfter(pos, CString(_T("ABC")));
pos = myList.InsertAfter(pos, CString(_T("123")));

// Verify the tail element is what's expected.
ASSERT(CString(_T("123")) == myList.GetTail());

CList::InsertBefore

POSITION InsertBefore(POSITION position, ARG_TYPE newElement);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

position
A POSITION value returned by a previous GetNext , GetPrev , or Find member function call.

ARG_TYPE
Template parameter specifying the type of the list element.

newElement
The element to be added to this list.

A POSITION value that can be used for iteration or list element retrieval.

Adds an element to this list before the element at the specified position.

position
A POSITION value returned by a previous GetNext , GetPrev , or Find member function call.

ARG_TYPE
Template parameter specifying the type of the list element (can be a reference).

newElement
The element to be added to this list.

A POSITION value that can be used for iteration or list element retrieval.

If position is NULL, the element is inserted at the head of the list.

// Define myList.
CList<CString,CString&> myList;

// Add three elements to the list.
POSITION pos = myList.AddHead(CString(_T("XYZ")));
pos = myList.InsertBefore(pos, CString(_T("ABC")));
pos = myList.InsertBefore(pos, CString(_T("123")));

// Verify the head element is what's expected.
ASSERT(CString(_T("123")) == myList.GetHead());

CList::IsEmpty

BOOL IsEmpty() const;

Return ValueReturn Value

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add three elements to the list.
myList.AddTail(CString(_T("XYZ")));
myList.AddTail(CString(_T("ABC")));
myList.AddTail(CString(_T("123")));

// Remove the head element until the list is empty.
CString str;
while (!myList.IsEmpty())
{
 str = myList.RemoveHead();
 TRACE(_T("%s\r\n"), (LPCTSTR) str);
}

CList::RemoveAll

void RemoveAll();

RemarksRemarks

ExampleExample

Indicates whether this list contains no elements.

Nonzero if this list is empty; otherwise 0.

Removes all the elements from this list and frees the associated memory.

No error is generated if the list is already empty.

// Define myList.
CList<CString,CString&> myList;

// Add three elements to the list.
myList.AddTail(CString(_T("XYZ")));
myList.AddTail(CString(_T("ABC")));
myList.AddTail(CString(_T("123")));

// Remove all of the elements in the list.
myList.RemoveAll();

// Verify the list is empty.
ASSERT(myList.IsEmpty());

CList::RemoveAt

void RemoveAt(POSITION position);

ParametersParameters

RemarksRemarks

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add three elements to the list.
myList.AddTail(CString(_T("XYZ")));
myList.AddTail(CString(_T("ABC")));
myList.AddTail(CString(_T("123")));

// Remove CString("ABC") from the list.
myList.RemoveAt(myList.FindIndex(1));

// Verify CString("ABC") is not in the list.
ASSERT(myList.Find(CString(_T("ABC"))) == NULL);

CList::RemoveHead

TYPE RemoveHead();

ParametersParameters

Return ValueReturn Value

Removes the specified element from this list.

position
The position of the element to be removed from the list.

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

Removes the element from the head of the list and returns a pointer to it.

TYPE
Template parameter specifying the type of elements in the list.

The element previously at the head of the list.

RemarksRemarks

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add two elements to the list.
myList.AddHead(CString(_T("ABC")));
myList.AddHead(CString(_T("123")));

// Remove the head element and verify the list.
// NOTE: once the head is removed, the number of
// elements in the list will be one.
CString strHead = myList.RemoveHead();
ASSERT((CString(_T("123")) == strHead) && (myList.GetCount() == 1) &&
 (CString(_T("ABC")) == myList.GetHead()));

CList::RemoveTail

TYPE RemoveTail();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add two elements to the list.
myList.AddTail(CString(_T("ABC")));
myList.AddTail(CString(_T("123")));

// Remove the tail element and verify the list.
// NOTE: once the tail is removed, the number of
// elements in the list will be one.
CString strTail = myList.RemoveTail();
ASSERT((CString(_T("123")) == strTail) && (myList.GetCount() == 1) &&
 (CString(_T("ABC")) == myList.GetTail()));

CList::SetAt

You must ensure that the list is not empty before calling RemoveHead . If the list is empty, then the Debug version
of the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

Removes the element from the tail of the list and returns a pointer to it.

TYPE
Template parameter specifying the type of elements in the list.

The element that was at the tail of the list.

You must ensure that the list is not empty before calling RemoveTail . If the list is empty, then the Debug version
of the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

A variable of type POSITION is a key for the list.

void SetAt(POSITION pos, ARG_TYPE newElement);

ParametersParameters

RemarksRemarks

ExampleExample

// Define myList.
CList<CString,CString&> myList;

// Add three elements to the list.
myList.AddTail(CString(_T("XYZ")));
myList.AddTail(CString(_T("ABC")));
myList.AddTail(CString(_T("123")));

// Replace CString("ABC") with CString("CBA")
POSITION pos = myList.Find(CString(_T("ABC")));
myList.SetAt(pos, CString(_T("CBA")));

// Verify CString("ABC") is not in the list.
ASSERT(myList.Find(CString(_T("ABC"))) == NULL);

See also

pos
The POSITION of the element to be set.

ARG_TYPE
Template parameter specifying the type of the list element (can be a reference).

newElement
The element to be added to the list.

It is not the same as an index, and you cannot operate on a POSITION value yourself. SetAt writes the element
to the specified position in the list.

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

MFC Sample COLLECT
CObject Class
Hierarchy Chart
CMap Class
CArray Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CListBox Class
3/4/2019 • 40 minutes to read • Edit Online

Syntax
class CListBox : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CListBox::CListBox Constructs a CListBox object.

Public MethodsPublic Methods

NAME DESCRIPTION

CListBox::AddString Adds a string to a list box.

CListBox::CharToItem Override to provide custom WM_CHAR handling for owner-
draw list boxes which don't have strings.

CListBox::CompareItem Called by the framework to determine the position of a new
item in a sorted owner-draw list box.

CListBox::Create Creates the Windows list box and attaches it to the
CListBox object.

CListBox::DeleteItem Called by the framework when the user deletes an item
from an owner-draw list box.

CListBox::DeleteString Deletes a string from a list box.

CListBox::Dir Adds filenames, drives, or both from the current directory
to a list box.

CListBox::DrawItem Called by the framework when a visual aspect of an owner-
draw list box changes.

CListBox::FindString Searches for a string in a list box.

CListBox::FindStringExact Finds the first list-box string that matches a specified string.

CListBox::GetAnchorIndex Retrieves the zero-based index of the current anchor item in
a list box.

Provides the functionality of a Windows list box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/clistbox-class.md

CListBox::GetCaretIndex Determines the index of the item that has the focus
rectangle in a multiple-selection list box.

CListBox::GetCount Returns the number of strings in a list box.

CListBox::GetCurSel Returns the zero-based index of the currently selected
string in a list box.

CListBox::GetHorizontalExtent Returns the width in pixels that a list box can be scrolled
horizontally.

CListBox::GetItemData Returns the 32-bit value associated with the list-box item.

CListBox::GetItemDataPtr Returns a pointer to a list-box item.

CListBox::GetItemHeight Determines the height of items in a list box.

CListBox::GetItemRect Returns the bounding rectangle of the list-box item as it is
currently displayed.

CListBox::GetListBoxInfo Retrieves the number of items per column.

CListBox::GetLocale Retrieves the locale identifier for a list box.

CListBox::GetSel Returns the selection state of a list-box item.

CListBox::GetSelCount Returns the number of strings currently selected in a
multiple-selection list box.

CListBox::GetSelItems Returns the indices of the strings currently selected in a list
box.

CListBox::GetText Copies a list-box item into a buffer.

CListBox::GetTextLen Returns the length in bytes of a list-box item.

CListBox::GetTopIndex Returns the index of the first visible string in a list box.

CListBox::InitStorage Preallocates blocks of memory for list box items and strings.

CListBox::InsertString Inserts a string at a specific location in a list box.

CListBox::ItemFromPoint Returns the index of the list-box item nearest a point.

CListBox::MeasureItem Called by the framework when an owner-draw list box is
created to determine list-box dimensions.

CListBox::ResetContent Clears all the entries from a list box.

CListBox::SelectString Searches for and selects a string in a single-selection list
box.

NAME DESCRIPTION

CListBox::SelItemRange Selects or deselects a range of strings in a multiple-selection
list box.

CListBox::SetAnchorIndex Sets the anchor in a multiple-selection list box to begin an
extended selection.

CListBox::SetCaretIndex Sets the focus rectangle to the item at the specified index in
a multiple-selection list box.

CListBox::SetColumnWidth Sets the column width of a multicolumn list box.

CListBox::SetCurSel Selects a list-box string.

CListBox::SetHorizontalExtent Sets the width in pixels that a list box can be scrolled
horizontally.

CListBox::SetItemData Sets the 32-bit value associated with the list-box item.

CListBox::SetItemDataPtr Sets a pointer to the list-box item.

CListBox::SetItemHeight Sets the height of items in a list box.

CListBox::SetLocale Sets the locale identifier for a list box.

CListBox::SetSel Selects or deselects a list-box item in a multiple-selection list
box.

CListBox::SetTabStops Sets the tab-stop positions in a list box.

CListBox::SetTopIndex Sets the zero-based index of the first visible string in a list
box.

CListBox::VKeyToItem Override to provide custom WM_KEYDOWN handling for
list boxes with the LBS_WANTKEYBOARDINPUT style set.

NAME DESCRIPTION

Remarks
A list box displays a list of items, such as filenames, that the user can view and select.

In a single-selection list box, the user can select only one item. In a multiple-selection list box, a range of items
can be selected. When the user selects an item, it is highlighted and the list box sends a notification message to
the parent window.

You can create a list box either from a dialog template or directly in your code. To create it directly, construct
the CListBox object, then call the Create member function to create the Windows list-box control and attach it
to the CListBox object. To use a list box in a dialog template, declare a list-box variable in your dialog box
class, then use DDX_Control in your dialog box class's DoDataExchange function to connect the member
variable to the control. (this is done for you automatically when you add a control variable to your dialog box
class.)

Construction can be a one-step process in a class derived from CListBox . Write a constructor for the derived
class and call Create from within the constructor.

Inheritance Hierarchy

If you want to handle Windows notification messages sent by a list box to its parent (usually a class derived
from CDialog), add a message-map entry and message-handler member function to the parent class for each
message.

Each message-map entry takes the following form:

ON_Notification(id, memberFxn)

where id specifies the child window ID of the list-box control sending the notification and memberFxn is the
name of the parent member function you have written to handle the notification.

The parent's function prototype is as follows:

afx_msg void memberFxn();

Following is a list of potential message-map entries and a description of the cases in which they would be sent
to the parent:

ON_LBN_DBLCLK The user double-clicks a string in a list box. Only a list box that has the LBS_NOTIFY
style will send this notification message.

ON_LBN_ERRSPACE The list box cannot allocate enough memory to meet the request.

ON_LBN_KILLFOCUS The list box is losing the input focus.

ON_LBN_SELCANCEL The current list-box selection is canceled. This message is only sent when a list
box has the LBS_NOTIFY style.

ON_LBN_SELCHANGE The selection in the list box has changed. This notification is not sent if the
selection is changed by the CListBox::SetCurSel member function. This notification applies only to a list
box that has the LBS_NOTIFY style. The LBN_SELCHANGE notification message is sent for a multiple-
selection list box whenever the user presses an arrow key, even if the selection does not change.

ON_LBN_SETFOCUS The list box is receiving the input focus.

ON_WM_CHARTOITEM An owner-draw list box that has no strings receives a WM_CHAR message.

ON_WM_VKEYTOITEM A list box with the LBS_WANTKEYBOARDINPUT style receives a
WM_KEYDOWN message.

If you create a CListBox object within a dialog box (through a dialog resource), the CListBox object is
automatically destroyed when the user closes the dialog box.

If you create a CListBox object within a window, you may need to destroy the CListBox object. If you create
the CListBox object on the stack, it is destroyed automatically. If you create the CListBox object on the heap
by using the new function, you must call delete on the object to destroy it when the user closes the parent
window.

If you allocate any memory in the CListBox object, override the CListBox destructor to dispose of the
allocation.

CObject

CCmdTarget

CWnd

CListBox

Requirements

CListBox::AddString

int AddString(LPCTSTR lpszItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Add 10 items to the list box.
CString str;
for (int i = 0; i < 10; i++)
{
 str.Format(_T("item string %d"), i);
 m_myListBox.AddString(str);
}

CListBox::CharToItem

virtual int CharToItem(
 UINT nKey,
 UINT nIndex);

ParametersParameters

Return ValueReturn Value

Header: afxwin.h

Adds a string to a list box.

lpszItem
Points to the null-terminated string that is to be added.

The zero-based index to the string in the list box. The return value is LB_ERR if an error occurs; the return
value is LB_ERRSPACE if insufficient space is available to store the new string.

If the list box was not created with the LBS_SORT style, the string is added to the end of the list. Otherwise, the
string is inserted into the list, and the list is sorted. If the list box was created with the LBS_SORT style but not
the LBS_HASSTRINGS style, the framework sorts the list by one or more calls to the CompareItem member
function.

Use InsertString to insert a string into a specific location within the list box.

Called by the framework when the list box's parent window receives a WM_CHARTOITEM message from the
list box.

nKey
The ANSI code of the character the user typed.

nIndex
The current position of the list-box caret.

Returns - 1 or - 2 for no further action or a nonnegative number to specify an index of a list-box item on which

RemarksRemarks

ExampleExample

// CMyODListBox is my owner-drawn list box derived from CListBox. This
// example moves the caret down one item on a numeric key and up one item
// on an alphabetic key. The list box control was created with the
// following code:
// m_myODListBox.Create(
// WS_CHILD|WS_VISIBLE|WS_BORDER|WS_HSCROLL|WS_VSCROLL|
// LBS_SORT|LBS_MULTIPLESEL|LBS_OWNERDRAWVARIABLE|LBS_WANTKEYBOARDINPUT,
// CRect(10,250,200,450), pParentWnd, IDC_MYODLISTBOX);
//
int CMyODListBox::CharToItem(UINT nChar, UINT nIndex)
{
 // On a numeric key, move the caret up one item.
 if (isdigit(nChar) && (nIndex > 0))
 {
 SetCaretIndex(nIndex-1);
 }
 // On an alphabetic key, move the caret down one item.
 else if (isalpha(nChar) && (nIndex < (UINT)GetCount()))
 {
 SetCaretIndex(nIndex+1);
 }

 // Do not perform any default processing.
 return -1;
}

CListBox::CListBox

CListBox();

RemarksRemarks

to perform the default action for the keystroke. The default implementation returns - 1.

The WM_CHARTOITEM message is sent by the list box when it receives a WM_CHAR message, but only if
the list box meets all of these criteria:

Is an owner-draw list box.

Does not have the LBS_HASSTRINGS style set.

Has at least one item.

You should never call this function yourself. Override this function to provide your own custom handling of
keyboard messages.

In your override, you must return a value to tell the framework what action you performed. A return value of -
1 or - 2 indicates that you handled all aspects of selecting the item and requires no further action by the list
box. Before returning - 1 or - 2, you could set the selection or move the caret or both. To set the selection, use
SetCurSel or SetSel. To move the caret, use SetCaretIndex.

A return value of 0 or greater specifies the index of an item in the list box and indicates that the list box should
perform the default action for the keystroke on the given item.

Constructs a CListBox object.

You construct a CListBox object in two steps. First, call the constructor ClistBox and then call Create , which
initializes the Windows list box and attaches it to the CListBox .

ExampleExample

// Declare a local CListBox object.
CListBox myListBox;

// Declare a dynamic CListBox object.
CListBox* pmyListBox = new CListBox;

CListBox::CompareItem

virtual int CompareItem(LPCOMPAREITEMSTRUCT lpCompareItemStruct);

ParametersParameters

Return ValueReturn Value

VALUE MEANING

-1 Item 1 sorts before item 2.

0 Item 1 and item 2 sort the same.

1 Item 1 sorts after item 2.

RemarksRemarks

ExampleExample

Called by the framework to determine the relative position of a new item in a sorted owner-draw list box.

lpCompareItemStruct
A long pointer to a COMPAREITEMSTRUCT structure.

Indicates the relative position of the two items described in the COMPAREITEMSTRUCT structure. It may be
any of the following values:

See CWnd::OnCompareItem for a description of the COMPAREITEMSTRUCT structure.

By default, this member function does nothing. If you create an owner-draw list box with the LBS_SORT style,
you must override this member function to assist the framework in sorting new items added to the list box.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcompareitemstruct

// CMyODListBox is my owner-drawn list box derived from CListBox. This
// example compares two items using _tcscmp to sort items in reverse
// alphabetical order. The list box control was created with the
// following code:
// m_myODListBox.Create(
// WS_CHILD|WS_VISIBLE|WS_BORDER|WS_HSCROLL|WS_VSCROLL|
// LBS_SORT|LBS_MULTIPLESEL|LBS_OWNERDRAWVARIABLE|LBS_WANTKEYBOARDINPUT,
// CRect(10,250,200,450), pParentWnd, IDC_MYODLISTBOX);
//
int CMyODListBox::CompareItem(LPCOMPAREITEMSTRUCT lpCompareItemStruct)
{
 ASSERT(lpCompareItemStruct->CtlType == ODT_LISTBOX);
 LPCTSTR lpszText1 = (LPCTSTR) lpCompareItemStruct->itemData1;
 ASSERT(lpszText1 != NULL);
 LPCTSTR lpszText2 = (LPCTSTR) lpCompareItemStruct->itemData2;
 ASSERT(lpszText2 != NULL);

 return _tcscmp(lpszText2, lpszText1);
}

CListBox::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Creates the Windows list box and attaches it to the CListBox object.

dwStyle
Specifies the style of the list box. Apply any combination of list-box styles to the box.

rect
Specifies the list-box size and position. Can be either a CRect object or a RECT structure.

pParentWnd
Specifies the list box's parent window (usually a CDialog object). It must not be NULL.

nID
Specifies the list box's control ID.

Nonzero if successful; otherwise 0.

You construct a CListBox object in two steps. First, call the constructor and then call Create , which initializes
the Windows list box and attaches it to the CListBox object.

When Create executes, Windows sends the WM_NCCREATE, WM_CREATE, WM_NCCALCSIZE, and
WM_GETMINMAXINFO messages to the list-box control.

These messages are handled by default by the OnNcCreate, OnCreate, OnNcCalcSize, and OnGetMinMaxInfo
member functions in the CWnd base class. To extend the default message handling, derive a class from
CListBox , add a message map to the new class, and override the preceding message-handler member

functions. Override OnCreate , for example, to perform needed initialization for a new class.

ExampleExample

// pParentWnd is a pointer to the parent window.
m_myListBox.Create(WS_CHILD|WS_VISIBLE|LBS_STANDARD|WS_HSCROLL,
 CRect(10,10,200,200), pParentWnd, IDC_MYLISTBOX);

CListBox::DeleteItem

virtual void DeleteItem(LPDELETEITEMSTRUCT lpDeleteItemStruct);

ParametersParameters

RemarksRemarks

ExampleExample

Apply the following window styles to a list-box control.

WS_CHILD Always

WS_VISIBLE Usually

WS_DISABLED Rarely

WS_VSCROLL To add a vertical scroll bar

WS_HSCROLL To add a horizontal scroll bar

WS_GROUP To group controls

WS_TABSTOP To allow tabbing to this control

Called by the framework when the user deletes an item from an owner-draw CListBox object or destroys the
list box.

lpDeleteItemStruct
A long pointer to a Windows DELETEITEMSTRUCT structure that contains information about the deleted
item.

The default implementation of this function does nothing. Override this function to redraw an owner-draw list
box as needed.

See CWnd::OnDeleteItem for a description of the DELETEITEMSTRUCT structure.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdeleteitemstruct

// CMyODListBox is my owner-drawn list box derived from CListBox. This
// example simply frees the item's text. The list box control was created
// with the following code:
// m_myODListBox.Create(
// WS_CHILD|WS_VISIBLE|WS_BORDER|WS_HSCROLL|WS_VSCROLL|
// LBS_SORT|LBS_MULTIPLESEL|LBS_OWNERDRAWVARIABLE|LBS_WANTKEYBOARDINPUT,
// CRect(10,250,200,450), pParentWnd, IDC_MYODLISTBOX);
//
void CMyODListBox::DeleteItem(LPDELETEITEMSTRUCT lpDeleteItemStruct)
{
 ASSERT(lpDeleteItemStruct->CtlType == ODT_LISTBOX);
 LPVOID lpszText = (LPVOID) lpDeleteItemStruct->itemData;
 ASSERT(lpszText != NULL);

 free(lpszText);

 CListBox::DeleteItem(lpDeleteItemStruct);
}

CListBox::DeleteString

int DeleteString(UINT nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Delete every other item from the list box.
for (int i = 0; i < m_myListBox.GetCount(); i++)
{
 m_myListBox.DeleteString(i);
}

CListBox::Dir

int Dir(
 UINT attr,
 LPCTSTR lpszWildCard);

ParametersParameters

Deletes the item in position nIndex from the list box.

nIndex
Specifies the zero-based index of the string to be deleted.

A count of the strings remaining in the list. The return value is LB_ERR if nIndex specifies an index greater
than the number of items in the list.

All items following nIndex now move down one position. For example, if a list box contains two items, deleting
the first item will cause the remaining item to now be in the first position. nIndex=0 for the item in the first
position.

Adds a list of filenames, drives, or both to a list box.

VALUE MEANING

0x0000 File can be read from or written to.

0x0001 File can be read from but not written to.

0x0002 File is hidden and does not appear in a directory listing.

0x0004 File is a system file.

0x0010 The name specified by lpszWildCard specifies a directory.

0x0020 File has been archived.

0x4000 Include all drives that match the name specified by
lpszWildCard.

0x8000 Exclusive flag. If the exclusive flag is set, only files of the
specified type are listed. Otherwise, files of the specified
type are listed in addition to "normal" files.

Return ValueReturn Value

ExampleExample

// Add all the files and directories in the windows directory.
TCHAR lpszWinPath[MAX_PATH], lpszOldPath[MAX_PATH];
::GetWindowsDirectory(lpszWinPath, MAX_PATH);

::GetCurrentDirectory(MAX_PATH, lpszOldPath);
::SetCurrentDirectory(lpszWinPath);

m_myListBox.ResetContent();
m_myListBox.Dir(DDL_READWRITE|DDL_DIRECTORY, _T("*.*"));

::SetCurrentDirectory(lpszOldPath);

CListBox::DrawItem

virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

attr
Can be any combination of the enum values described in CFile::GetStatu s, or any combination of the
following values:

lpszWildCard
Points to a file-specification string. The string can contain wildcards (for example, *.*).

The zero-based index of the last filename added to the list. The return value is LB_ERR if an error occurs; the
return value is LB_ERRSPACE if insufficient space is available to store the new strings.

Called by the framework when a visual aspect of an owner-draw list box changes.

lpDrawItemStruct
A long pointer to a DRAWITEMSTRUCT structure that contains information about the type of drawing

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct

RemarksRemarks

ExampleExample

required.

The itemAction and itemState members of the DRAWITEMSTRUCT structure define the drawing action that is to
be performed.

By default, this member function does nothing. Override this member function to implement drawing for an
owner-draw CListBox object. The application should restore all graphics device interface (GDI) objects
selected for the display context supplied in lpDrawItemStruct before this member function terminates.

See CWnd::OnDrawItem for a description of the DRAWITEMSTRUCT structure.

// CMyODListBox is my owner-drawn list box derived from CListBox. This
// example draws an item's text centered vertically and horizontally. The
// list box control was created with the following code:
// m_myODListBox.Create(
// WS_CHILD|WS_VISIBLE|WS_BORDER|WS_HSCROLL|WS_VSCROLL|
// LBS_SORT|LBS_MULTIPLESEL|LBS_OWNERDRAWVARIABLE|LBS_WANTKEYBOARDINPUT,
// CRect(10,250,200,450), pParentWnd, IDC_MYODLISTBOX);
//
void CMyODListBox::DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct)
{
 ASSERT(lpDrawItemStruct->CtlType == ODT_LISTBOX);
 LPCTSTR lpszText = (LPCTSTR) lpDrawItemStruct->itemData;
 ASSERT(lpszText != NULL);
 CDC dc;

 dc.Attach(lpDrawItemStruct->hDC);

 // Save these value to restore them when done drawing.
 COLORREF crOldTextColor = dc.GetTextColor();
 COLORREF crOldBkColor = dc.GetBkColor();

 // If this item is selected, set the background color
 // and the text color to appropriate values. Also, erase
 // rect by filling it with the background color.
 if ((lpDrawItemStruct->itemAction | ODA_SELECT) &&
 (lpDrawItemStruct->itemState & ODS_SELECTED))
 {
 dc.SetTextColor(::GetSysColor(COLOR_HIGHLIGHTTEXT));
 dc.SetBkColor(::GetSysColor(COLOR_HIGHLIGHT));
 dc.FillSolidRect(&lpDrawItemStruct->rcItem,
 ::GetSysColor(COLOR_HIGHLIGHT));
 }
 else
 {
 dc.FillSolidRect(&lpDrawItemStruct->rcItem, crOldBkColor);
 }

 // If this item has the focus, draw a red frame around the
 // item's rect.
 if ((lpDrawItemStruct->itemAction | ODA_FOCUS) &&
 (lpDrawItemStruct->itemState & ODS_FOCUS))
 {
 CBrush br(RGB(255, 0, 0));
 dc.FrameRect(&lpDrawItemStruct->rcItem, &br);
 }

 // Draw the text.
 dc.DrawText(
 lpszText,
 (int)_tcslen(lpszText),
 &lpDrawItemStruct->rcItem,
 DT_CENTER|DT_SINGLELINE|DT_VCENTER);

 // Reset the background color and the text color back to their
 // original values.
 dc.SetTextColor(crOldTextColor);
 dc.SetBkColor(crOldBkColor);

 dc.Detach();
}

CListBox::FindString
Finds the first string in a list box that contains the specified prefix without changing the list-box selection.

int FindString(
 int nStartAfter,
 LPCTSTR lpszItem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

 // The string to match.
LPCTSTR lpszmyString = _T("item");

// Delete all items that begin with the specified string.
int nIndex = 0;
while ((nIndex = m_myListBox.FindString(nIndex, lpszmyString)) != LB_ERR)
{
 m_myListBox.DeleteString(nIndex);
}

CListBox::FindStringExact

int FindStringExact(
 int nIndexStart,
 LPCTSTR lpszFind) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nStartAfter
Contains the zero-based index of the item before the first item to be searched. When the search reaches the
bottom of the list box, it continues from the top of the list box back to the item specified by nStartAfter. If
nStartAfter is -1, the entire list box is searched from the beginning.

lpszItem
Points to the null-terminated string that contains the prefix to search for. The search is case independent, so
this string may contain any combination of uppercase and lowercase letters.

The zero-based index of the matching item, or LB_ERR if the search was unsuccessful.

Use the SelectString member function to both find and select a string.

Finds the first list-box string that matches the string specified in lpszFind.

nIndexStart
Specifies the zero-based index of the item before the first item to be searched. When the search reaches the
bottom of the list box, it continues from the top of the list box back to the item specified by nIndexStart. If
nIndexStart is -1, the entire list box is searched from the beginning.

lpszFind
Points to the null-terminated string to search for. This string can contain a complete filename, including the
extension. The search is not case sensitive, so the string can contain any combination of uppercase and
lowercase letters.

The index of the matching item, or LB_ERR if the search was unsuccessful.

ExampleExample

// The string to match.
LPCTSTR lpszmyString = _T("item string 3");

// Delete all items that exactly match the specified string.
int nIndex = 0;
while ((nIndex=m_myListBox.FindStringExact(nIndex, lpszmyString)) != LB_ERR)
{
 m_myListBox.DeleteString(nIndex);
}

CListBox::GetAnchorIndex

int GetAnchorIndex() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListBox::GetCaretIndex

int GetCaretIndex() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListBox::GetCount

int GetCount() const;

Return ValueReturn Value

If the list box was created with an owner-draw style but without the LBS_HASSTRINGS style, the
FindStringExact member function attempts to match the doubleword value against the value of lpszFind.

Retrieves the zero-based index of the current anchor item in the list box.

The index of the current anchor item, if successful; otherwise LB_ERR.

In a multiple-selection list box, the anchor item is the first or last item in a block of contiguous selected items.

See the example for CListBox::SetAnchorIndex.

Determines the index of the item that has the focus rectangle in a multiple-selection list box.

The zero-based index of the item that has the focus rectangle in a list box. If the list box is a single-selection list
box, the return value is the index of the item that is selected, if any.

The item may or may not be selected.

See the example for CListBox::SetCaretIndex.

Retrieves the number of items in a list box.

RemarksRemarks

ExampleExample

// Add 10 items to the list box.
CString str;
for (int i = 0; i < 10; i++)
{
 str.Format(_T("item %d"), i);
 m_myListBox.AddString(str);
}

// Verify that 10 items were added to the list box.
ASSERT(m_myListBox.GetCount() == 10);

CListBox::GetCurSel

int GetCurSel() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Select the next item of the currently selected one.
int nIndex = m_myListBox.GetCurSel();
int nCount = m_myListBox.GetCount();
if ((nIndex != LB_ERR) && (nCount > 1))
{
 if (++nIndex < nCount)
 m_myListBox.SetCurSel(nIndex);
 else
 m_myListBox.SetCurSel(0);
}

CListBox::GetHorizontalExtent

int GetHorizontalExtent() const;

Return ValueReturn Value

RemarksRemarks

The number of items in the list box, or LB_ERR if an error occurs.

The returned count is one greater than the index value of the last item (the index is zero-based).

Retrieves the zero-based index of the currently selected item, if any, in a single-selection list box.

The zero-based index of the currently selected item if it is a single-selection list box. It is LB_ERR if no item is
currently selected.

In a multiple-selection list box, the index of the item that has the focus.

Do not call GetCurSel for a multiple-selection list box. Use CListBox::GetSelItems instead.

Retrieves from the list box the width in pixels by which it can be scrolled horizontally.

The scrollable width of the list box, in pixels.

ExampleExample

// Find the longest string in the list box.
CString str;
CSize sz;
int dx=0;
CDC* pDC = m_myListBox.GetDC();
for (int i=0;i < m_myListBox.GetCount();i++)
{
 m_myListBox.GetText(i, str);
 sz = pDC->GetTextExtent(str);

 if (sz.cx > dx)
 dx = sz.cx;
}
m_myListBox.ReleaseDC(pDC);

// Set the horizontal extent only if the current extent is not large enough.
if (m_myListBox.GetHorizontalExtent() < dx)
{
 m_myListBox.SetHorizontalExtent(dx);
 ASSERT(m_myListBox.GetHorizontalExtent() == dx);
}

CListBox::GetItemData

DWORD_PTR GetItemData(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// If any item's data is equal to zero then reset it to -1.
for (int i=0; i < m_myListBox.GetCount(); i++)
{
 if (m_myListBox.GetItemData(i) == 0)
 {
 m_myListBox.SetItemData(i, (DWORD) -1);
 }
}

CListBox::GetItemDataPtr

This is applicable only if the list box has a horizontal scroll bar.

Retrieves the application-supplied doubleword value associated with the specified list-box item.

nIndex
Specifies the zero-based index of the item in the list box.

The 32-bit value associated with the item, or LB_ERR if an error occurs.

The doubleword value was the dwItemData parameter of a SetItemData call.

Retrieves the application-supplied 32-bit value associated with the specified list-box item as a pointer (void *).

void* GetItemDataPtr(int nIndex) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

LPVOID lpmyPtr = pParentWnd;

// Check all the items in the list box; if an item's
// data pointer is equal to my pointer then reset it to NULL.
for (int i=0; i < m_myListBox.GetCount(); i++)
{
 if (m_myListBox.GetItemDataPtr(i) == lpmyPtr)
 {
 m_myListBox.SetItemDataPtr(i, NULL);
 }
}

CListBox::GetItemHeight

int GetItemHeight(int nIndex) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

// Set the height of every item so the item
// is completely visible.
CString str;
CSize sz;
CDC* pDC = m_myListBox.GetDC();
for (int i=0;i < m_myListBox.GetCount();i++)
{
 m_myListBox.GetText(i, str);
 sz = pDC->GetTextExtent(str);

 // Only want to set the item height if the current height
 // is not big enough.
 if (m_myListBox.GetItemHeight(i) < sz.cy)
 m_myListBox.SetItemHeight(i, sz.cy);
}
m_myListBox.ReleaseDC(pDC);

nIndex
Specifies the zero-based index of the item in the list box.

Retrieves a pointer, or -1 if an error occurs.

Determines the height of items in a list box.

nIndex
Specifies the zero-based index of the item in the list box. This parameter is used only if the list box has the
LBS_OWNERDRAWVARIABLE style; otherwise, it should be set to 0.

The height, in pixels, of the items in the list box. If the list box has the LBS_OWNERDRAWVARIABLE style, the
return value is the height of the item specified by nIndex. If an error occurs, the return value is LB_ERR.

CListBox::GetItemRect

int GetItemRect(
 int nIndex,
 LPRECT lpRect) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

// Dump all of the items bounds.
CString str;
RECT r;
for (int i = 0; i < m_myListBox.GetCount(); i++)
{
 m_myListBox.GetItemRect(i, &r);

 str.Format(_T("item %d: left = %d, top = %d, right = %d, ")
 _T("bottom = %d\r\n"),
 i,
 r.left,
 r.top,
 r.right,
 r.bottom);
 AFXDUMP(str);
}

CListBox::GetListBoxInfo

DWORD GetListBoxInfo() const;

Return ValueReturn Value

RemarksRemarks

CListBox::GetLocale

Retrieves the dimensions of the rectangle that bounds a list-box item as it is currently displayed in the list-box
window.

nIndex
Specifies the zero-based index of the item.

lpRect
Specifies a long pointer to a RECT structure that receives the list-box client coordinates of the item.

LB_ERR if an error occurs.

Retrieves the number of items per column.

Number of items per column of the CListBox object.

This member function emulates the functionality of the LB_GETLISTBOXINFO message, as described in the
Windows SDK.

Retrieves the locale used by the list box.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/Controls/lb-getlistboxinfo

LCID GetLocale() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListBox::GetSel

int GetSel(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Dump all of the items select state.
 CString str;
 for (int i=0;i < m_myListBox.GetCount();i++)
 {
 str.Format(_T("item %d: select state is %s\r\n"),
 i,
 m_myListBox.GetSel(i) > 0 ? _T("true") : _T("false"));
 AFXDUMP(str);
 }

CListBox::GetSelCount

int GetSelCount() const;

Return ValueReturn Value

ExampleExample

The locale identifier (LCID) value for the strings in the list box.

The locale is used, for example, to determine the sort order of the strings in a sorted list box.

See the example for CListBox::SetLocale.

Retrieves the selection state of an item.

nIndex
Specifies the zero-based index of the item.

A positive number if the specified item is selected; otherwise, it is 0. The return value is LB_ERR if an error
occurs.

This member function works with both single- and multiple-selection list boxes.

To retrieve the index of the currently-selected list box item, use CListBox::GetCurSel.

Retrieves the total number of selected items in a multiple-selection list box.

The count of selected items in a list box. If the list box is a single-selection list box, the return value is LB_ERR.

See the example for CListBox::GetSelItems.

CListBox::GetSelItems

int GetSelItems(
 int nMaxItems,
 LPINT rgIndex) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

// Get the indexes of all the selected items.
int nCount = m_myODListBox.GetSelCount();
CArray<int,int> aryListBoxSel;

aryListBoxSel.SetSize(nCount);
m_myODListBox.GetSelItems(nCount, aryListBoxSel.GetData());

// Dump the selection array.
AFXDUMP(aryListBoxSel);

CListBox::GetText

int GetText(
 int nIndex,
 LPTSTR lpszBuffer) const;

void GetText(
 int nIndex,
 CString& rString) const;

ParametersParameters

Fills a buffer with an array of integers that specifies the item numbers of selected items in a multiple-selection
list box.

nMaxItems
Specifies the maximum number of selected items whose item numbers are to be placed in the buffer.

rgIndex
Specifies a pointer to a buffer large enough for the number of integers specified by nMaxItems.

The actual number of items placed in the buffer. If the list box is a single-selection list box, the return value is
LB_ERR .

Gets a string from a list box.

nIndex
Specifies the zero-based index of the string to be retrieved.

lpszBuffer
Points to the buffer that receives the string. The buffer must have sufficient space for the string and a
terminating null character. The size of the string can be determined ahead of time by calling the GetTextLen

member function.

rString
A reference to a CString object.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Dump all of the items in the list box.
CString str, str2;
int n;
for (int i = 0; i < m_myListBox.GetCount(); i++)
{
 n = m_myListBox.GetTextLen(i);
 m_myListBox.GetText(i, str.GetBuffer(n));
 str.ReleaseBuffer();

 str2.Format(_T("item %d: %s\r\n"), i, str.GetBuffer(0));
 AFXDUMP(str2);
}

CListBox::GetTextLen

int GetTextLen(int nIndex) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CListBox::GetTopIndex

int GetTopIndex() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

The length (in bytes) of the string, excluding the terminating null character. If nIndex does not specify a valid
index, the return value is LB_ERR.

The second form of this member function fills a CString object with the string text.

Gets the length of a string in a list-box item.

nIndex
Specifies the zero-based index of the string.

The length of the string in characters, excluding the terminating null character. If nIndex does not specify a
valid index, the return value is LB_ERR.

See the example for CListBox::GetText.

Retrieves the zero-based index of the first visible item in a list box.

The zero-based index of the first visible item in a list box if successful, LB_ERR otherwise.

Initially, item 0 is at the top of the list box, but if the list box is scrolled, another item may be at the top.

// Want an item in the bottom half to be the first visible item.
int n = m_myListBox.GetCount()/2;
if (m_myListBox.GetTopIndex() < n)
{
 m_myListBox.SetTopIndex(n);
 ASSERT(m_myListBox.GetTopIndex() == n);
}

CListBox::InitStorage

int InitStorage(
 int nItems,
 UINT nBytes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Initialize the storage of the list box to be 256 strings with
// about 10 characters per string, performance improvement.
int n = m_myListBox.InitStorage(256, 16*sizeof(TCHAR));
ASSERT(n != LB_ERRSPACE);

// Add 256 items to the list box.
CString str;
for (int i = 0; i < 256; i++)
{
 str.Format(_T("item string %d"), i);
 m_myListBox.AddString(str);
}

CListBox::InsertString

Allocates memory for storing list-box items.

nItems
Specifies the number of items to add.

nBytes
Specifies the amount of memory, in bytes, to allocate for item strings.

If successful, the maximum number of items that the list box can store before a memory reallocation is
needed, otherwise LB_ERRSPACE, meaning not enough memory is available.

Call this function before adding a large number of items to a CListBox .

This function helps speed up the initialization of list boxes that have a large number of items (more than 100).
It preallocates the specified amount of memory so that subsequent AddString, InsertString, and Dir functions
take the shortest possible time. You can use estimates for the parameters. If you overestimate, some extra
memory is allocated; if you underestimate, the normal allocation is used for items that exceed the preallocated
amount.

Windows 95/98 only: The nItems parameter is limited to 16-bit values. This means list boxes cannot contain
more than 32,767 items. Although the number of items is restricted, the total size of the items in a list box is
limited only by available memory.

int InsertString(
 int nIndex,
 LPCTSTR lpszItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Insert items in between existing items.
CString str;
int n = m_myListBox.GetCount();
for (int i = 0; i < n; i++)
{
 str.Format(_T("item string %c"), (char)('A' + i));
 m_myListBox.InsertString(2 * i, str);
}

CListBox::ItemFromPoint

UINT ItemFromPoint(
 CPoint pt,
 BOOL& bOutside) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Inserts a string into the list box.

nIndex
Specifies the zero-based index of the position to insert the string. If this parameter is -1, the string is added to
the end of the list.

lpszItem
Points to the null-terminated string that is to be inserted.

The zero-based index of the position at which the string was inserted. The return value is LB_ERR if an error
occurs; the return value is LB_ERRSPACE if insufficient space is available to store the new string.

Unlike the AddString member function, InsertString does not cause a list with the LBS_SORT style to be
sorted.

Determines the list-box item nearest the point specified in pt.

pt
Point for which to find the nearest item, specified relative to the upper-left corner of the client area of the list
box.

bOutside
Reference to a BOOL variable which will be set to TRUE if pt is outside the client area of the nearest list box
item, FALSE if pt is inside the client area of the nearest list box item.

The index of the nearest item to the point specified in pt.

You could use this function to determine which list-box item the mouse cursor moves over.

ExampleExample

CListBox::MeasureItem

virtual void MeasureItem(LPMEASUREITEMSTRUCT lpMeasureItemStruct);

ParametersParameters

RemarksRemarks

ExampleExample

// CMyODListBox is my owner-drawn list box derived from CListBox. This
// example measures an item and sets the height of the item to twice the
// vertical extent of its text. The list box control was created with the
// following code:
// m_myODListBox.Create(
// WS_CHILD|WS_VISIBLE|WS_BORDER|WS_HSCROLL|WS_VSCROLL|
// LBS_SORT|LBS_MULTIPLESEL|LBS_OWNERDRAWVARIABLE|LBS_WANTKEYBOARDINPUT,
// CRect(10,250,200,450), pParentWnd, IDC_MYODLISTBOX);
//
void CMyODListBox::MeasureItem(LPMEASUREITEMSTRUCT lpMeasureItemStruct)
{
 ASSERT(lpMeasureItemStruct->CtlType == ODT_LISTBOX);
 LPCTSTR lpszText = (LPCTSTR) lpMeasureItemStruct->itemData;
 ASSERT(lpszText != NULL);
 CSize sz;
 CDC* pDC = GetDC();

 sz = pDC->GetTextExtent(lpszText);

 ReleaseDC(pDC);

 lpMeasureItemStruct->itemHeight = 2*sz.cy;
}

CListBox::ResetContent

void ResetContent();

ExampleExample

See the example for CListBox::SetAnchorIndex.

Called by the framework when a list box with an owner-draw style is created.

lpMeasureItemStruct
A long pointer to a MEASUREITEMSTRUCT structure.

By default, this member function does nothing. Override this member function and fill in the
MEASUREITEMSTRUCT structure to inform Windows of the list-box dimensions. If the list box is created with the

LBS_OWNERDRAWVARIABLE style, the framework calls this member function for each item in the list box.
Otherwise, this member is called only once.

For further information about using the LBS_OWNERDRAWFIXED style in an owner-draw list box created
with the SubclassDlgItem member function of CWnd , see the discussion in Technical Note 14.

See CWnd::OnMeasureItem for a description of the MEASUREITEMSTRUCT structure.

Removes all items from a list box.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmeasureitemstruct

// Delete all the items from the list box.
m_myListBox.ResetContent();
ASSERT(m_myListBox.GetCount() == 0);

CListBox::SelectString

int SelectString(
 int nStartAfter,
 LPCTSTR lpszItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The string to match.
LPCTSTR lpszmyString = _T("item 5");

// Select the item that begins with the specified string.
int nIndex = m_myListBox.SelectString(0, lpszmyString);
ASSERT(nIndex != LB_ERR);

CListBox::SelItemRange

int SelItemRange(
 BOOL bSelect,
 int nFirstItem,
 int nLastItem);

Searches for a list-box item that matches the specified string, and if a matching item is found, it selects the
item.

nStartAfter
Contains the zero-based index of the item before the first item to be searched. When the search reaches the
bottom of the list box, it continues from the top of the list box back to the item specified by nStartAfter. If
nStartAfter is -1, the entire list box is searched from the beginning.

lpszItem
Points to the null-terminated string that contains the prefix to search for. The search is case independent, so
this string may contain any combination of uppercase and lowercase letters.

The index of the selected item if the search was successful. If the search was unsuccessful, the return value is
LB_ERR and the current selection is not changed.

The list box is scrolled, if necessary, to bring the selected item into view.

This member function cannot be used with a list box that has the LBS_MULTIPLESEL style.

An item is selected only if its initial characters (from the starting point) match the characters in the string
specified by lpszItem.

Use the FindString member function to find a string without selecting the item.

Selects multiple consecutive items in a multiple-selection list box.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Select half of the items.
m_myODListBox.SelItemRange(TRUE, 0, m_myODListBox.GetCount()/2);

CListBox::SetAnchorIndex

void SetAnchorIndex(int nIndex);

ParametersParameters

RemarksRemarks

ExampleExample

void CMyODListBox::OnLButtonDown(UINT nFlags, CPoint point)
{
 BOOL bOutside = TRUE;
 UINT uItem = ItemFromPoint(point, bOutside);

 if (!bOutside)
 {
 // Set the anchor to be the middle item.
 SetAnchorIndex(uItem);
 ASSERT((UINT)GetAnchorIndex() == uItem);
 }

 CListBox::OnLButtonDown(nFlags, point);
}

CListBox::SetCaretIndex

bSelect
Specifies how to set the selection. If bSelect is TRUE, the string is selected and highlighted; if FALSE, the
highlight is removed and the string is no longer selected.

nFirstItem
Specifies the zero-based index of the first item to set.

nLastItem
Specifies the zero-based index of the last item to set.

LB_ERR if an error occurs.

Use this member function only with multiple-selection list boxes. If you need to select only one item in a
multiple-selection list box — that is, if nFirstItem is equal to nLastItem — call the SetSel member function
instead.

Sets the anchor in a multiple-selection list box to begin an extended selection.

nIndex
Specifies the zero-based index of the list-box item that will be the anchor.

In a multiple-selection list box, the anchor item is the first or last item in a block of contiguous selected items.

int SetCaretIndex(
 int nIndex,
 BOOL bScroll = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set the caret to be the middle item.
m_myListBox.SetCaretIndex(m_myListBox.GetCount()/2);
ASSERT(m_myListBox.GetCaretIndex() == m_myListBox.GetCount()/2);

CListBox::SetColumnWidth

void SetColumnWidth(int cxWidth);

ParametersParameters

ExampleExample

// Find the pixel width of the largest item.
CString str;
CSize sz;
int dx = 0;
CDC* pDC = myListBox.GetDC();
for (int i=0;i < myListBox.GetCount();i++)
{
 myListBox.GetText(i, str);
 sz = pDC->GetTextExtent(str);

 if (sz.cx > dx)
 dx = sz.cx;
}
myListBox.ReleaseDC(pDC);

// Set the column width of the first column to be one and 1/3 units
// of the largest string.
myListBox.SetColumnWidth(dx*4/3);

Sets the focus rectangle to the item at the specified index in a multiple-selection list box.

nIndex
Specifies the zero-based index of the item to receive the focus rectangle in the list box.

bScroll
If this value is 0, the item is scrolled until it is fully visible. If this value is not 0, the item is scrolled until it is at
least partially visible.

LB_ERR if an error occurs.

If the item is not visible, it is scrolled into view.

Sets the width in pixels of all columns in a multicolumn list box (created with the LBS_MULTICOLUMN style).

cxWidth
Specifies the width in pixels of all columns.

CListBox::SetCurSel

int SetCurSel(int nSelect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Select the last item in the list box.
int nCount = m_myListBox.GetCount();
if (nCount > 0)
 m_myListBox.SetCurSel(nCount - 1);

CListBox::SetHorizontalExtent

void SetHorizontalExtent(int cxExtent);

ParametersParameters

RemarksRemarks

ExampleExample

Selects a string and scrolls it into view, if necessary.

nSelect
Specifies the zero-based index of the string to be selected. If nSelect is -1, the list box is set to have no
selection.

LB_ERR if an error occurs.

When the new string is selected, the list box removes the highlight from the previously selected string.

Use this member function only with single-selection list boxes.

To set or remove a selection in a multiple-selection list box, use CListBox::SetSel.

Sets the width, in pixels, by which a list box can be scrolled horizontally.

cxExtent
Specifies the number of pixels by which the list box can be scrolled horizontally.

If the size of the list box is smaller than this value, the horizontal scroll bar will horizontally scroll items in the
list box. If the list box is as large or larger than this value, the horizontal scroll bar is hidden.

To respond to a call to SetHorizontalExtent , the list box must have been defined with the WS_HSCROLL style.

This member function is not useful for multicolumn list boxes. For multicolumn list boxes, call the
SetColumnWidth member function.

// Find the longest string in the list box.
CString str;
CSize sz;
int dx = 0;
TEXTMETRIC tm;
CDC* pDC = m_myListBox.GetDC();
CFont* pFont = m_myListBox.GetFont();

// Select the listbox font, save the old font
CFont* pOldFont = pDC->SelectObject(pFont);
// Get the text metrics for avg char width
pDC->GetTextMetrics(&tm);

for (int i = 0; i < m_myListBox.GetCount(); i++)
{
 m_myListBox.GetText(i, str);
 sz = pDC->GetTextExtent(str);

 // Add the avg width to prevent clipping
 sz.cx += tm.tmAveCharWidth;

 if (sz.cx > dx)
 dx = sz.cx;
}
// Select the old font back into the DC
pDC->SelectObject(pOldFont);
m_myListBox.ReleaseDC(pDC);

// Set the horizontal extent so every character of all strings
// can be scrolled to.
m_myListBox.SetHorizontalExtent(dx);

CListBox::SetItemData

int SetItemData(
 int nIndex,
 DWORD_PTR dwItemData);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Set the data of each item to be equal to its index.
for (int i=0;i < m_myListBox.GetCount();i++)
{
 m_myListBox.SetItemData(i, i);
}

CListBox::SetItemDataPtr

Sets a 32-bit value associated with the specified item in a list box.

nIndex
Specifies the zero-based index of the item.

dwItemData
Specifies the value to be associated with the item.

LB_ERR if an error occurs.

int SetItemDataPtr(
 int nIndex,
 void* pData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set the data pointer of each item to be NULL.
for (int i=0;i < m_myListBox.GetCount();i++)
{
 m_myListBox.SetItemDataPtr(i, NULL);
}

CListBox::SetItemHeight

int SetItemHeight(
 int nIndex,
 UINT cyItemHeight);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Sets the 32-bit value associated with the specified item in a list box to be the specified pointer (void *).

nIndex
Specifies the zero-based index of the item.

pData
Specifies the pointer to be associated with the item.

LB_ERR if an error occurs.

This pointer remains valid for the life of the list box, even though the item's relative position within the list box
might change as items are added or removed. Hence, the item's index within the box can change, but the
pointer remains reliable.

Sets the height of items in a list box.

nIndex
Specifies the zero-based index of the item in the list box. This parameter is used only if the list box has the
LBS_OWNERDRAWVARIABLE style; otherwise, it should be set to 0.

cyItemHeight
Specifies the height, in pixels, of the item.

LB_ERR if the index or height is invalid.

If the list box has the LBS_OWNERDRAWVARIABLE style, this function sets the height of the item specified
by nIndex. Otherwise, this function sets the height of all items in the list box.

// Set the height of every item to be the
// vertical size of the item's text extent.
CString str;
CSize sz;
CDC* pDC = myListBox.GetDC();
for (int i = 0; i < myListBox.GetCount(); i++)
{
 myListBox.GetText(i, str);
 sz = pDC->GetTextExtent(str);

 myListBox.SetItemHeight(i, sz.cy);
}
myListBox.ReleaseDC(pDC);

CListBox::SetLocale

LCID SetLocale(LCID nNewLocale);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// My LCID to use.
LCID mylcid = MAKELCID(MAKELANGID(LANG_SPANISH, SUBLANG_SPANISH_MEXICAN),
 SORT_DEFAULT);

// Force the list box to use my locale.
m_myListBox.SetLocale(mylcid);
ASSERT(m_myListBox.GetLocale() == mylcid);

CListBox::SetSel

int SetSel(
 int nIndex,
 BOOL bSelect = TRUE);

ParametersParameters

Sets the locale identifier for this list box.

nNewLocale
The new locale identifier (LCID) value to set for the list box.

The previous locale identifier (LCID) value for this list box.

If SetLocale is not called, the default locale is obtained from the system. This system default locale can be
modified by using Control Panel's Regional (or International) application.

Selects a string in a multiple-selection list box.

nIndex
Contains the zero-based index of the string to be set. If -1, the selection is added to or removed from all
strings, depending on the value of bSelect.

bSelect

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Select all of the items with an even index and
// deselect all others.
for (int i = 0; i < m_myODListBox.GetCount(); i++)
{
 m_myODListBox.SetSel(i, ((i%2) == 0));
}

CListBox::SetTabStops

void SetTabStops();
BOOL SetTabStops(const int& cxEachStop);

BOOL SetTabStops(
 int nTabStops,
 LPINT rgTabStops);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Specifies how to set the selection. If bSelect is TRUE, the string is selected and highlighted; if FALSE, the
highlight is removed and the string is no longer selected. The specified string is selected and highlighted by
default.

LB_ERR if an error occurs.

Use this member function only with multiple-selection list boxes.

To select an item from a single-selection list box, use CListBox::SetCurSel.

Sets the tab-stop positions in a list box.

cxEachStop
Tab stops are set at every cxEachStop dialog units. See rgTabStops for a description of a dialog unit.

nTabStops
Specifies the number of tab stops to have in the list box.

rgTabStops
Points to the first member of an array of integers containing the tab-stop positions in dialog units. A dialog
unit is a horizontal or vertical distance. One horizontal dialog unit is equal to one-fourth of the current dialog
base width unit, and one vertical dialog unit is equal to one-eighth of the current dialog base height unit. The
dialog base units are computed based on the height and width of the current system font. The
GetDialogBaseUnits Windows function returns the current dialog base units in pixels. The tab stops must be

sorted in increasing order ; back tabs are not allowed.

Nonzero if all the tabs were set; otherwise 0.

To set tab stops to the default size of 2 dialog units, call the parameterless version of this member function. To
set tab stops to a size other than 2, call the version with the cxEachStop argument.

To set tab stops to an array of sizes, use the version with the rgTabStops and nTabStops arguments. A tab stop
will be set for each value in rgTabStops, up to the number specified by nTabStops.

ExampleExample

// Find the pixel width of the largest first substring.
CString str;
CSize sz;
int nIndex, dx = 0;
CDC* pDC = myListBox.GetDC();
for (int i = 0; i < myListBox.GetCount(); i++)
{
 myListBox.GetText(i, str);

 if ((nIndex = str.Find('\t')) != -1)
 str = str.Right(nIndex);

 sz = pDC->GetTextExtent(str);

 if (sz.cx > dx)
 dx = sz.cx;
}
myListBox.ReleaseDC(pDC);

// Set tab stops at every one and 1/3 units
// of the largest string.
// NOTE: Convert pixels to dialog units.
myListBox.SetTabStops((dx*4/3 * 4) / LOWORD(::GetDialogBaseUnits()));

CListBox::SetTopIndex

int SetTopIndex(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set the first visible item in the list box to be the middle item
m_myListBox.SetTopIndex(m_myListBox.GetCount()/2);

CListBox::VKeyToItem

To respond to a call to the SetTabStops member function, the list box must have been created with the
LBS_USETABSTOPS style.

Ensures that a particular list-box item is visible.

nIndex
Specifies the zero-based index of the list-box item.

Zero if successful, or LB_ERR if an error occurs.

The system scrolls the list box until either the item specified by nIndex appears at the top of the list box or the
maximum scroll range has been reached.

Called by the framework when the list box's parent window receives a WM_VKEYTOITEM message from the
list box.

virtual int VKeyToItem(
 UINT nKey,
 UINT nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

nKey
The virtual key code of the key the user pressed. For a list of standard virtual key codes, see Winuser.h

nIndex
The current position of the list-box caret.

Returns - 2 for no further action, - 1 for default action, or a nonnegative number to specify an index of a list
box item on which to perform the default action for the keystroke.

The WM_VKEYTOITEM message is sent by the list box when it receives a WM_KEYDOWN message, but only
if the list box meets both of the following:

Has the LBS_WANTKEYBOARDINPUT style set.

Has at least one item.

You should never call this function yourself. Override this function to provide your own custom handling of
keyboard messages.

You must return a value to tell the framework what action your override performed. A return value of - 2
indicates that the application handled all aspects of selecting the item and requires no further action by the list
box. Before returning - 2, you could set the selection or move the caret or both. To set the selection, use
SetCurSel or SetSel. To move the caret, use SetCaretIndex.

A return value of - 1 indicates that the list box should perform the default action in response to the
keystroke.The default implementation returns - 1.

A return value of 0 or greater specifies the index of an item in the list box and indicates that the list box should
perform the default action for the keystroke on the given item.

// CMyODListBox is my owner-drawn list box derived from CListBox. This
// example moves the caret down one item on the down key and up one item
// on the up key. The list box control was created with the following
// code:
// m_myODListBox.Create(
// WS_CHILD|WS_VISIBLE|WS_BORDER|WS_HSCROLL|WS_VSCROLL|
// LBS_SORT|LBS_MULTIPLESEL|LBS_OWNERDRAWVARIABLE|LBS_WANTKEYBOARDINPUT,
// CRect(10,250,200,450), pParentWnd, IDC_MYODLISTBOX);
//
int CMyODListBox::VKeyToItem(UINT nKey, UINT nIndex)
{
 // On key up, move the caret up one item.
 if ((nKey == VK_UP) && (nIndex > 0))
 {
 SetCaretIndex(nIndex-1);
 }
 // On key down, move the caret down one item.
 else if ((nKey == VK_DOWN) && (nIndex < (UINT)GetCount()))
 {
 SetCaretIndex(nIndex+1);
 }

 // Do not perform any default processing.
 return -2;
}

See also
MFC Sample CTRLTEST
CWnd Class
Hierarchy Chart
CWnd Class
CButton Class
CComboBox Class
CEdit Class
CScrollBar Class
CStatic Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CListCtrl Class
3/5/2019 • 77 minutes to read • Edit Online

Syntax
class CListCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CListCtrl::CListCtrl Constructs a CListCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CListCtrl::ApproximateViewRect Determines the width and height required to display the
items of a list view control.

CListCtrl::Arrange Aligns items on a grid.

CListCtrl::CancelEditLabel Cancels item text editing operation.

CListCtrl::Create Creates a list control and attaches it to a CListCtrl

object.

CListCtrl::CreateDragImage Creates a drag image list for a specified item.

CListCtrl::CreateEx Creates a list control with the specified Windows extended
styles and attaches it to a CListCtrl object.

CListCtrl::DeleteAllItems Deletes all items from the control.

CListCtrl::DeleteColumn Deletes a column from the list view control.

CListCtrl::DeleteItem Deletes an item from the control.

CListCtrl::DrawItem Called when a visual aspect of an owner-draw control
changes.

CListCtrl::EditLabel Begins in-place editing of an item's text.

Encapsulates the functionality of a "list view control," which displays a collection of items each consisting of
an icon (from an image list) and a label.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/clistctrl-class.md

CListCtrl::EnableGroupView Enables or disables whether the items in a list view control
display as a group.

CListCtrl::EnsureVisible Ensures that an item is visible.

CListCtrl::FindItem Searches for a list view item having specified
characteristics.

CListCtrl::GetBkColor Retrieves the background color of a list view control.

CListCtrl::GetBkImage Retrieves the current background image of a list view
control.

CListCtrl::GetCallbackMask Retrieves the callback mask for a list view control.

CListCtrl::GetCheck Retrieves the current display status of the state image
associated with an item.

CListCtrl::GetColumn Retrieves the attributes of a control's column.

CListCtrl::GetColumnOrderArray Retrieves the column order (left to right) of a list view
control.

CListCtrl::GetColumnWidth Retrieves the width of a column in report view or list view.

CListCtrl::GetCountPerPage Calculates the number of items that can fit vertically in a
list view control.

CListCtrl::GetEditControl Retrieves the handle of the edit control used to edit an
item's text.

CListCtrl::GetEmptyText Retrieves the string to display if the current list-view
control is empty.

CListCtrl::GetExtendedStyle Retrieves the current extended styles of a list view control.

CListCtrl::GetFirstSelectedItemPosition Retrieves the position of the first selected list view item in
a list view control.

CListCtrl::GetFocusedGroup Retrieves the group that has the keyboard focus in the
current list-view control.

CListCtrl::GetGroupCount Retrieves the number of groups in the current list-view
control.

CListCtrl::GetGroupInfo Gets the information for a specified group of the list view
control.

CListCtrl::GetGroupInfoByIndex Retrieves information about a specified group in the
current list-view control.

CListCtrl::GetGroupMetrics Retrieves the metrics of a group.

NAME DESCRIPTION

CListCtrl::GetGroupRect Retrieves the bounding rectangle for a specified group in
the current list-view control.

CListCtrl::GetGroupState Retrieves the state for a specified group in the current list-
view control.

CListCtrl::GetHeaderCtrl Retrieves the header control of a list view control.

CListCtrl::GetHotCursor Retrieves the cursor used when hot tracking is enabled for
a list view control.

CListCtrl::GetHotItem Retrieves the list view item currently under the cursor.

CListCtrl::GetHoverTime Retrieves the current hover time of a list view control.

CListCtrl::GetImageList Retrieves the handle of an image list used for drawing list
view items.

CListCtrl::GetInsertMark Retrieves the current position of the insertion mark.

CListCtrl::GetInsertMarkColor Retrieves the current color of the insertion mark.

CListCtrl::GetInsertMarkRect Retrieves the rectangle that bounds the insertion point.

CListCtrl::GetItem Retrieves a list view item's attributes.

CListCtrl::GetItemCount Retrieves the number of items in a list view control.

CListCtrl::GetItemData Retrieves the application-specific value associated with an
item.

CListCtrl::GetItemIndexRect Retrieves the bounding rectangle for all or part of a
subitem in the current list-view control.

CListCtrl::GetItemPosition Retrieves the position of a list view item.

CListCtrl::GetItemRect Retrieves the bounding rectangle for an item.

CListCtrl::GetItemSpacing Calculates the spacing between items in the current list-
view control.

CListCtrl::GetItemState Retrieves the state of a list view item.

CListCtrl::GetItemText Retrieves the text of a list view item or subitem.

CListCtrl::GetNextItem Searches for a list view item with specified properties and
with specified relationship to a given item.

CListCtrl::GetNextItemIndex Retrieves the index of the item in the current list-view
control that has a specified set of properties.

NAME DESCRIPTION

CListCtrl::GetNextSelectedItem Retrieves the index of a list view item position, and the
position of the next selected list view item for iterating.

CListCtrl::GetNumberOfWorkAreas Retrieves the current number of working areas for a list
view control.

CListCtrl::GetOrigin Retrieves the current view origin for a list view control.

CListCtrl::GetOutlineColor Retrieves the color of the border of a list view control.

CListCtrl::GetSelectedColumn Retrieves the index of the currently selected column in the
list control.

CListCtrl::GetSelectedCount Retrieves the number of selected items in the list view
control.

CListCtrl::GetSelectionMark Retrieves the selection mark of a list view control.

CListCtrl::GetStringWidth Determines the minimum column width necessary to
display all of a given string.

CListCtrl::GetSubItemRect Retrieves the bounding rectangle of an item in a list view
control.

CListCtrl::GetTextBkColor Retrieves the text background color of a list view control.

CListCtrl::GetTextColor Retrieves the text color of a list view control.

CListCtrl::GetTileInfo Retrieves information about a tile in a list view control.

CListCtrl::GetTileViewInfo Retrieves information about a list view control in tile view.

CListCtrl::GetToolTips Retrieves the tooltip control that the list view control uses
to display tooltips.

CListCtrl::GetTopIndex Retrieves the index of the topmost visible item.

CListCtrl::GetView Gets the view of the list view control.

CListCtrl::GetViewRect Retrieves the bounding rectangle of all items in the list
view control.

CListCtrl::GetWorkAreas Retrieves the current working areas of a list view control.

CListCtrl::HasGroup Determines if the list view control has the specified group.

CListCtrl::HitTest Determines which list view item is at a specified position.

CListCtrl::InsertColumn Inserts a new column in a list view control.

CListCtrl::InsertGroup Inserts a group into the list view control.

NAME DESCRIPTION

CListCtrl::InsertGroupSorted Inserts the specified group into an ordered list of groups.

CListCtrl::InsertItem Inserts a new item in a list view control.

CListCtrl::InsertMarkHitTest Retrieves the insertion point closest to a specified point.

CListCtrl::IsGroupViewEnabled Determines whether group view is enabled for a list view
control.

CListCtrl::IsItemVisible Indicates whether a specified item in the current list-view
control is visible.

CListCtrl::MapIDToIndex Maps the unique ID of an item in the current list-view
control to an index.

CListCtrl::MapIndexToID Maps the index of an item in the current list-view control
to a unique ID.

CListCtrl::MoveGroup Moves the specified group.

CListCtrl::MoveItemToGroup Moves the specified group to the specified zero based
index of the list view control.

CListCtrl::RedrawItems Forces a list view control to repaint a range of items.

CListCtrl::RemoveAllGroups Removes all groups from a list view control.

CListCtrl::RemoveGroup Removes the specified group from the list view control.

CListCtrl::Scroll Scrolls the content of a list view control.

CListCtrl::SetBkColor Sets the background color of the list view control.

CListCtrl::SetBkImage Sets the current background image of a list view control.

CListCtrl::SetCallbackMask Sets the callback mask for a list view control.

CListCtrl::SetCheck Sets the current display status of the state image
associated with an item.

CListCtrl::SetColumn Sets the attributes of a list view column.

CListCtrl::SetColumnOrderArray Sets the column order (left to right) of a list view control.

CListCtrl::SetColumnWidth Changes the width of a column in report view or list view.

CListCtrl::SetExtendedStyle Sets the current extended styles of a list view control.

CListCtrl::SetGroupInfo Sets the information for the specified group of a list view
control.

NAME DESCRIPTION

CListCtrl::SetGroupMetrics Sets the group metrics of a list view control.

CListCtrl::SetHotCursor Sets the cursor used when hot tracking is enabled for a
list view control.

CListCtrl::SetHotItem Sets the current hot item of a list view control.

CListCtrl::SetHoverTime Sets the current hover time of a list view control.

CListCtrl::SetIconSpacing Sets the spacing between icons in a list view control.

CListCtrl::SetImageList Assigns an image list to a list view control.

CListCtrl::SetInfoTip Sets the tooltip text.

CListCtrl::SetInsertMark Sets the insertion point to the defined position.

CListCtrl::SetInsertMarkColor Sets the color of the insertion point.

CListCtrl::SetItem Sets some or all of a list view item's attributes.

CListCtrl::SetItemCount Prepares a list view control for adding a large number of
items.

CListCtrl::SetItemCountEx Sets the item count for a virtual list view control.

CListCtrl::SetItemData Sets the item's application-specific value.

CListCtrl::SetItemIndexState Sets the state of an item in the current list-view control.

CListCtrl::SetItemPosition Moves an item to a specified position in a list view control.

CListCtrl::SetItemState Changes the state of an item in a list view control.

CListCtrl::SetItemText Changes the text of a list view item or subitem.

CListCtrl::SetOutlineColor Sets the color of the border of a list view control.

CListCtrl::SetSelectedColumn Sets the selected column of the list view control.

CListCtrl::SetSelectionMark Sets the selection mark of a list view control.

CListCtrl::SetTextBkColor Sets the background color of text in a list view control.

CListCtrl::SetTextColor Sets the text color of a list view control.

CListCtrl::SetTileInfo Sets the information for a tile of the list view control.

CListCtrl::SetTileViewInfo Sets information that a list view control uses in tile view.

NAME DESCRIPTION

CListCtrl::SetToolTips Sets the tooltip control that the list view control will use
to display tooltips.

CListCtrl::SetView Sets the view of the list view control.

CListCtrl::SetWorkAreas Sets the area where icons can be displayed in a list view
control.

CListCtrl::SortGroups Sorts the groups of a list view control with a user-defined
function.

CListCtrl::SortItems Sorts list view items using an application-defined
comparison function.

CListCtrl::SortItemsEx Sorts list view items using an application-defined
comparison function.

CListCtrl::SubItemHitTest Determines which list view item, if any, is at a given
position.

CListCtrl::Update Forces the control to repaint a specified item.

NAME DESCRIPTION

Remarks

Views

In addition to an icon and label, each item can have information displayed in columns to the right of the
icon and label. This control (and therefore the CListCtrl class) is available only to programs running under
Windows 95/98 and Windows NT version 3.51 and later.

The following is a brief overview of the CListCtrl class. For a detailed, conceptual discussion, see Using
CListCtrl and Controls.

List view controls can display their contents in four different ways, called "views."

Icon view

Each item appears as a full-sized icon (32 x 32 pixels) with a label below it. The user can drag the
items to any location in the list view window.

Small icon view

Each item appears as a small icon (16 x 16 pixels) with the label to the right of it. The user can drag
the items to any location in the list view window.

List view

Each item appears as a small icon with a label to the right of it. Items are arranged in columns and
cannot be dragged to any location in the list view window.

Report view

Each item appears on its own line, with additional information arranged in columns to the right. The
leftmost column contains the small icon and label, and subsequent columns contain subitems as
specified by the application. An embedded header control (class CHeaderCtrl) implements these

Extended Styles

Items and Subitems

Image Lists

columns. For more information on the header control and columns in a report view, see Using
CListCtrl: Adding Columns to the Control (Report View).

The style of the control's current list view determines the current view. For more information on these
styles and their usage, see Using CListCtrl: Changing List Control Styles.

In addition to the standard list styles, class CListCtrl supports a large set of extended styles, providing
enriched functionality. Some examples of this functionality include:

Hover selection

When enabled, allows automatic selection of an item when the cursor remains over the item for a
certain period of time.

Virtual list views

When enabled, allows the control to support up to DWORD items. This is possible by placing the
overhead of managing item data on the application. Except for the item selection and focus
information, all item information must be managed by the application. For more information, see
Using CListCtrl: Virtual List Controls.

One- and two- click activation

When enabled, allows hot tracking (automatic highlighting of the item text) and one- or two- click
activation of the highlighted item.

Drag and drop column ordering

When enabled, allows drag-and-drop reordering of columns in a list view control. Only available in
report view.

For information on using these new extended styles, see Using CListCtrl: Changing List Control Styles.

Each item in a list view control consists of an icon (from an image list), a label, a current state, and an
application-defined value (referred to as "item data"). One or more subitems can also be associated with
each item. A "subitem" is a string that, in report view, can be displayed in a column to the right of an item's
icon and label. All items in a list view control must have the same number of subitems.

Class CListCtrl provides several functions for inserting, deleting, finding, and modifying these items. For
more information, see CListCtrl::GetItem, CListCtrl::InsertItem, and CListCtrl::FindItem, Adding Items to the
Control, and Scrolling, Arranging, Sorting, and Finding in list controls.

By default, the list view control is responsible for storing an item's icon and text attributes. However, in
addition to these item types, class CListCtrl supports "callback items." A "callback item" is a list view item
for which the application — rather than the control — stores the text, icon, or both. A callback mask is used
to specify which item attributes (text and/or icon) are supplied by the application. If an application uses
callback items, it must be able to supply the text and/or icon attributes on demand. Callback items are
helpful when your application already maintains some of this information. For more information, see Using
CListCtrl: Callback Items and the Callback Mask.

The icons, header item images, and application- defined states for list view items are contained in several
image lists (implemented by class CImageList), which you create and assign to the list view control. Each

Inheritance Hierarchy

Requirements

CListCtrl::ApproximateViewRect

CSize ApproximateViewRect(
 CSize sz = CSize(-1,
-1),
 int iCount = -1) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

list view control can have up to four different types of image lists:

Large icon

Used in the icon view for full-sized icons.

Small icon

Used in the small icon, list, and report views for smaller versions of the icons used in the icon view.

Application-defined state

Contains state images, which are displayed next to an item's icon to indicate an application-defined
state.

Header item

Used in the report view for small images that appear in each header control item.

By default, a list view control destroys the image lists assigned to it when it is destroyed; however, the
developer can customize this behavior by destroying each image list when it is no longer used, as
determined by the application. For more information, see Using CListCtrl: List Items and Image Lists.

CObject

CCmdTarget

CWnd

CListCtrl

Header: afxcmn.h

Determines the width and height required to display the items of a list view control.

sz
The proposed dimensions of the control, in pixels. If dimensions are not specified, the framework uses the
current width or height values of the control.

iCount
Number of items to be displayed in the control. If this parameter is -1, the framework uses the total
number of items currently in the control.

A CSize object that contains the approximate width and height needed to display the items, in pixels.

CListCtrl::Arrange

BOOL Arrange(UINT nCode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

 // Align all of the list view control items along the top
 // of the window (the list view control must be in icon or
 // small icon mode).
 m_myListCtrl.Arrange(LVA_ALIGNTOP);

CListCtrl::CancelEditLabel

void CancelEditLabel();

RemarksRemarks

CListCtrl::CListCtrl

CListCtrl();

CListCtrl::Create

This member function implements the behavior of the Win32 macro, ListView_ApproximateViewRect, as
described in the Windows SDK.

Repositions items in an icon view so that they align on a grid.

nCode
Specifies the alignment style for the items. It can be one of the following values:

LVA_ALIGNLEFT Aligns items along the left edge of the window.

LVA_ALIGNTOP Aligns items along the top edge of the window.

LVA_DEFAULT Aligns items according to the list view's current alignment styles (the default value).

LVA_SNAPTOGRID Snaps all icons to the nearest grid position.

Nonzero if successful; otherwise zero.

The nCode parameter specifies the alignment style.

Cancels item text editing operation.

This member function emulates the functionality of the LVM_CANCELEDITLABEL message, as described
in the Windows SDK.

Constructs a CListCtrl object.

Creates a list control and attaches it to a CListCtrl object.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_approximateviewrect
https://docs.microsoft.com/windows/desktop/Controls/lvm-canceleditlabel

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

 m_myListCtrl.Create(
 WS_CHILD|WS_VISIBLE|WS_BORDER|LVS_REPORT|LVS_EDITLABELS,
 CRect(10,10,400,200), pParentWnd, IDD_MYLISTCTRL);

CListCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

dwStyle
Specifies the list control's style. Apply any combination of list control styles to the control. See List view
window styles in the Windows SDK for a complete list of these styles. Set extended styles specific to a
control using SetExtendedStyle.

rect
Specifies the list control's size and position. It can be either a CRect object or a RECT structure.

pParentWnd
Specifies the list control's parent window, usually a CDialog . It must not be NULL.

nID
Specifies the list control's ID.

Nonzero if successful; otherwise zero.

You construct a CListCtrl in two steps. First, call the constructor and then call Create , which creates the
list view control and attaches it to the CListCtrl object.

To apply extended Windows styles to the list control object, call CreateEx instead of Create .

Creates a control (a child window) and associates it with the CListCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the
dwExStyle parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the list control's style. Apply any combination of list control styles to the control. For a complete
list of these styles, see List view window styles in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/list-view-window-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/list-view-window-styles

Return ValueReturn Value

RemarksRemarks

CListCtrl::CreateDragImage

CImageList* CreateDragImage(
 int nItem,
 LPPOINT lpPoint);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

 CImageList* pImageList = m_myListCtrl.CreateDragImage(nItem, &point);

 // do something

 delete pImageList;

CListCtrl::DeleteAllItems

rect
A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended
style preface WS_EX_.

CreateEx creates the control with the extended Windows styles specified by dwExStyle. To set extended
styles specific to a control, call SetExtendedStyle. For example, use CreateEx to set such styles as
WS_EX_CONTEXTHELP, but use SetExtendedStyle to set such styles as LVS_EX_FULLROWSELECT. For
more information, see the styles described in the topic Extended List View Styles in the Windows SDK.

Creates a drag image list for the item specified by nItem.

nItem
Index of the item whose drag image list is to be created.

lpPoint
Address of a POINT structure that receives the initial location of the upper-left corner of the image, in view
coordinates.

A pointer to the drag image list if successful; otherwise NULL.

The CImageList object is permanent, and you must delete it when finished. For example:

Deletes all items from the list view control.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/extended-list-view-styles
https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)

BOOL DeleteAllItems();

Return ValueReturn Value

ExampleExample

 // Delete all of the items from the list view control.
 m_myListCtrl.DeleteAllItems();
 ASSERT(m_myListCtrl.GetItemCount() == 0);

CListCtrl::DeleteColumn

BOOL DeleteColumn(int nCol);

ParametersParameters

Return ValueReturn Value

ExampleExample

 int nColumnCount = m_myListCtrl.GetHeaderCtrl()->GetItemCount();

 // Delete all of the columns.
 for (int i=0; i < nColumnCount; i++)
 {
 m_myListCtrl.DeleteColumn(0);
 }

CListCtrl::DeleteItem

BOOL DeleteItem(int nItem);

ParametersParameters

Return ValueReturn Value

ExampleExample

Nonzero if successful; otherwise zero.

Deletes a column from the list view control.

nCol
Index of the column to be deleted.

Nonzero if successful; otherwise zero.

Deletes an item from a list view control.

nItem
Specifies the index of the item to be deleted.

Nonzero if successful; otherwise zero.

 int nCount = m_myListCtrl.GetItemCount();

 // Delete all of the items from the list view control.
 for (int i=0; i < nCount; i++)
 {
 m_myListCtrl.DeleteItem(0);
 }

CListCtrl::DrawItem

virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

RemarksRemarks

CListCtrl::EditLabel

CEdit* EditLabel(int nItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Called by the framework when a visual aspect of an owner-draw list view control changes.

lpDrawItemStruct
A long pointer to a DRAWITEMSTRUCT structure that contains information about the type of drawing required.

The itemAction member of the DRAWITEMSTRUCT structure defines the drawing action that is to be
performed.

By default, this member function does nothing. Override this member function to implement drawing for
an owner-draw CListCtrl object.

The application should restore all graphics device interface (GDI) objects selected for the display context
supplied in lpDrawItemStruct before this member function terminates.

Begins in-place editing of an item's text.

nItem
Index of the list view item that is to be edited.

If successful, a pointer to the CEdit object that is used to edit the item text; otherwise NULL.

A list view control that has the LVS_EDITLABELS window style enables a user to edit item labels in place.
The user begins editing by clicking the label of an item that has the focus.

Use this function to begin in-place editing of the specified list view item's text.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct

 // Make sure the focus is set to the list view control.
 m_myListCtrl.SetFocus();

 // Show the edit control on the label of the first
 // item in the list view control.
 CEdit* pmyEdit = m_myListCtrl.EditLabel(1);
 ASSERT(pmyEdit != NULL);

CListCtrl::EnableGroupView

LRESULT EnableGroupView(BOOL fEnable);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::EnsureVisible

BOOL EnsureVisible(
 int nItem,
 BOOL bPartialOK);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Enables or disables whether the items in a list view control display as a group.

fEnable
Indicates whether to enable a listview control to group displayed items. TRUE to enable grouping; FALSE
to disable it.

Returns one of the following values:

0 The ability to display list view items as a group is already enabled or disabled.

1 The state of the control was successfully changed.

-1 The operation failed.

This member function emulates the functionality of the LVM_ENABLEGROUPVIEW message, as described
in the Windows SDK.

Ensures that a list view item is at least partially visible.

nItem
Index of the list view item that is to be visible.

bPartialOK
Specifies whether partial visibility is acceptable.

Nonzero if successful; otherwise zero.

The list view control is scrolled if necessary. If the bPartialOK parameter is nonzero, no scrolling occurs if
the item is partially visible.

https://docs.microsoft.com/windows/desktop/Controls/lvm-enablegroupview

 // Ensure that the last item is visible.
 int nCount = m_myListCtrl.GetItemCount();
 if (nCount > 0)
 m_myListCtrl.EnsureVisible(nCount-1, FALSE);

CListCtrl::FindItem

int FindItem(
 LVFINDINFO* pFindInfo,
 int nStart = -1) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

 LVFINDINFO info;
 int nIndex;

 info.flags = LVFI_PARTIAL|LVFI_STRING;
 info.psz = _T("item");

 // Delete all of the items that begin with the string.
 while ((nIndex = m_myListCtrl.FindItem(&info)) != -1)
 {
 m_myListCtrl.DeleteItem(nIndex);
 }

CListCtrl::GetBkColor

COLORREF GetBkColor() const;

Return ValueReturn Value

ExampleExample

Searches for a list view item having specified characteristics.

pFindInfo
A pointer to an LVFINDINFO structure containing information about the item to be searched for.

nStart
Index of the item to begin the search with, or -1 to start from the beginning. The item at nStart is excluded
from the search if nStart is not equal to -1.

The index of the item if successful or -1 otherwise.

The pFindInfo parameter points to an LVFINDINFO structure, which contains information used to search for
a list view item.

Retrieves the background color of a list view control.

A 32-bit value used to specify an RGB color.

See the example for CListCtrl::SetBkColor.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvfindinfoa

CListCtrl::GetBkImage

BOOL GetBkImage(LVBKIMAGE* plvbkImage) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

 LVBKIMAGE bki;

 // If no background image is set for the list view control use
 // the Microsoft homepage image as the background image.
 if (m_myListCtrl.GetBkImage(&bki) && (bki.ulFlags == LVBKIF_SOURCE_NONE))
 {
 m_myListCtrl.SetBkImage(
 _T("http://www.microsoft.com/library/images/gifs/homepage/microsoft.gif"),
 TRUE);
 }

CListCtrl::GetCallbackMask

UINT GetCallbackMask() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::GetCheck

Retrieves the current background image of a list view control.

plvbkImage
A pointer to an LVBKIMAGE structure containing the current background image of the list view.

Returns nonzero if successful, or zero otherwise.

This method implements the behavior of the Win32 macro, ListView_GetBkImage, as described in the
Windows SDK.

Retrieves the callback mask for a list view control.

The list view control's callback mask.

A "callback item" is a list view item for which the application — rather than the control — stores the text,
icon, or both. Although a list view control can store these attributes for you, you may want to use callback
items if your application already maintains some of this information. The callback mask specifies which
item state bits are maintained by the application, and it applies to the whole control rather than to a specific
item. The callback mask is zero by default, meaning that the control tracks all item states. If an application
uses callback items or specifies a nonzero callback mask, it must be able to supply list view item attributes
on demand.

See the example for CListCtrl::SetCallbackMask.

Retrieves the current display status of the state image that is associated with an item.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_getbkimage

BOOL GetCheck(int nItem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::GetColumn

BOOL GetColumn(
 int nCol,
 LVCOLUMN* pColumn) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

 LVCOLUMN col;

 col.mask = LVCF_WIDTH;

 // Double the column width of the first column.
 if (m_myListCtrl.GetColumn(0, &col))
 {
 col.cx *= 2;
 m_myListCtrl.SetColumn(0, &col);
 }

CListCtrl::GetColumnOrderArray

nItem
The zero-based index of a list control item.

Nonzero if the item is selected, otherwise 0.

This member function implements the behavior of the Win32 macro, ListView_GetCheckState, as described
in the Windows SDK.

See the example for CListCtrl::SetCheck.

Retrieves the attributes of a list view control's column.

nCol
Index of the column whose attributes are to be retrieved.

pColumn
Address of an LVCOLUMN structure that specifies the information to retrieve and receives information
about the column. The mask member specifies which column attributes to retrieve. If the mask member
specifies the LVCF_TEXT value, the pszText member must contain the address of the buffer that receives
the item text and the cchTextMax member must specify the size of the buffer.

Nonzero if successful; otherwise zero.

The LVCOLUMN structure contains information about a column in report view.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_getcheckstate
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvcolumna

BOOL GetColumnOrderArray(
 LPINT piArray,
 int iCount = -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

 // Reverse the order of the columns in the list view control
 // (i.e. make the first column the last, the last column
 // the first, and so on...).
 CHeaderCtrl* pHeaderCtrl = m_myListCtrl.GetHeaderCtrl();

 if (pHeaderCtrl != NULL)
 {
 int nColumnCount = pHeaderCtrl->GetItemCount();
 LPINT pnOrder = (LPINT) malloc(nColumnCount*sizeof(int));
 ASSERT(pnOrder != NULL);
m_myListCtrl.GetColumnOrderArray(pnOrder, nColumnCount);

 int i, j, nTemp;
 for (i = 0, j = nColumnCount-1; i < j; i++, j--)
 {
 nTemp = pnOrder[i];
 pnOrder[i] = pnOrder[j];
 pnOrder[j] = nTemp;
 }

 m_myListCtrl.SetColumnOrderArray(nColumnCount, pnOrder);
 free(pnOrder);
 }

CListCtrl::GetColumnWidth

int GetColumnWidth(int nCol) const;

ParametersParameters

Retrieves the column order (left to right) of a list view control.

piArray
A pointer to a buffer that will contain the index values of the columns in the list view control. The buffer
must be large enough to contain the total number of columns in the list view control.

iCount
Number of columns in the list view control. If this parameter is -1, the number of columns is automatically
retrieved by the framework.

Nonzero if successful; otherwise zero.

This member function implements the behavior of the Win32 macro, ListView_GetColumnOrderArray, as
described in the Windows SDK.

Retrieves the width of a column in report view or list view.

nCol
Specifies the index of the column whose width is to be retrieved.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_getcolumnorderarray

Return ValueReturn Value

ExampleExample

 // Increase the column width of the second column by 20.
 int nWidth = m_myListCtrl.GetColumnWidth(1);
 m_myListCtrl.SetColumnWidth(1, 20 + nWidth);

CListCtrl::GetCountPerPage

int GetCountPerPage() const;

Return ValueReturn Value

ExampleExample

CListCtrl::GetEditControl

CEdit* GetEditControl() const;

Return ValueReturn Value

ExampleExample

 // The string replacing the text in the edit control.
 LPCTSTR lpszmyString = _T("custom label!");

 // If possible, replace the text in the label edit control.
 CEdit* pEdit = m_myListCtrl.GetEditControl();

 if (pEdit != NULL)
 {
 pEdit->SetWindowText(lpszmyString);
 }

CListCtrl::GetEmptyText

CString GetEmptyText() const;

Return ValueReturn Value

The width, in pixels, of the column specified by nCol.

Calculates the number of items that can fit vertically in the visible area of a list view control when in list
view or report view.

The number of items that can fit vertically in the visible area of a list view control when in list view or report
view.

See the example for CListCtrl::GetTopIndex.

Retrieves the handle of the edit control used to edit a list view item's text.

If successful, a pointer to the CEdit object that is used to edit the item text; otherwise NULL.

Retrieves the string to display if the current list-view control is empty.

A CString that contains the text to display if the control is empty.

RemarksRemarks

CListCtrl::GetExtendedStyle

DWORD GetExtendedStyle();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::GetFirstSelectedItemPosition

POSITION GetFirstSelectedItemPosition() const;

Return ValueReturn Value

ExampleExample

 POSITION pos = m_myListCtrl.GetFirstSelectedItemPosition();
 if (pos == NULL)
 {
 TRACE(_T("No items were selected!\n"));
 }
 else
 {
 while (pos)
 {
 int nItem = m_myListCtrl.GetNextSelectedItem(pos);
 TRACE(_T("Item %d was selected!\n"), nItem);
 // you could do your own processing on nItem here
 }
 }

CListCtrl::GetFocusedGroup

int GetFocusedGroup() const;

This method sends the LVM_GETEMPTYTEXT message, which is described in the Windows SDK.

Retrieves the current extended styles of a list view control.

A combination of the extended styles currently in use by the list view control. For a descriptive list of these
extended styles, see the Extended List View Styles topic in the Windows SDK.

This member function implements the behavior of the Win32 macro, ListView_GetExtendedListViewStyle,
as described in the Windows SDK.

See the example for CListCtrl::SetExtendedStyle.

Gets the position of the first selected item in the list view control.

A POSITION value that can be used for iteration or object pointer retrieval; NULL if no items are selected.

The following code sample demonstrates the usage of this function.

Retrieves the group that has the keyboard focus in the current list-view control.

https://docs.microsoft.com/windows/desktop/Controls/lvm-getemptytext
https://docs.microsoft.com/windows/desktop/Controls/extended-list-view-styles
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_getextendedlistviewstyle

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetGroupCount

int GetGroupCount()const;

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetGroupInfo

int GetGroupInfo(
 int iGroupId,
 PLVGROUP pgrp) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetGroupInfoByIndex

BOOL GetGroupInfoByIndex(
 int iIndex,
 PLVGROUP pGroup) const;

ParametersParameters

The index of the group whose state is LVGS_FOCUSED, if there is such a group; otherwise, -1.

This method sends the LVM_GETFOCUSEDGROUP message, which is described in the Windows SDK.
For more information, see the LVGS_FOCUSED value of the state member of the LVGROUP structure.

Retrieves the number of groups in the current list-view control.

The number of groups in the list-view control.

This method sends the LVM_GETGROUPCOUNT message, which is described in the Windows SDK -->.

Gets the information for a specified group of the list view control.

iGroupId
The identifier of the group whose information is to be retrieved.

pgrp
A pointer to the LVGROUP containing information on the group specified.

Returns the ID of the group if successful, or -1 otherwise.

This member function emulates the functionality of the LVM_GETGROUPINFO message, as described in
the Windows SDK.

Retrieves information about a specified group in the current list-view control.

https://docs.microsoft.com/windows/desktop/Controls/lvm-getfocusedgroup
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvgroup
https://docs.microsoft.com/windows/desktop/Controls/lvm-getgroupcount
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvgroup
https://docs.microsoft.com/windows/desktop/Controls/lvm-getgroupinfo

PARAMETER DESCRIPTION

iIndex [in] Zero-based index of a group.

pGroup [out] Pointer to an LVGROUP structure that receives
information about the group specified by the iIndex
parameter.

The caller is responsible for initializing the members of the
LVGROUP structure. Set the cbSize member to the size
of the structure, and the flags of the mask member to
specify the information to retrieve.

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable used to access the list control.
 CListCtrl m_listCtrl;

ExampleExample

TRUE if this method is successful; otherwise, FALSE.

This method sends the LVM_GETGROUPINFOBYINDEX message, which is described in the Windows
SDK -->.

The following code example defines a variable, m_listCtrl , that is used to access the current list-view
control. This variable is used in the next example.

The following code example demonstrates the GetGroupInfoByIndex method. In an earlier section of this
code example we created a list-view control that displays two columns titled "ClientID" and "Grade" in a
report view. The following code example retrieves information about the group whose index is 0, if such a
group exists.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvgroup
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvgroup
https://msdn.microsoft.com/library/windows/desktop/bb774933

 // GetGroupInfoByIndex
 const int GROUP_HEADER_BUFFER_SIZE = 40;

// Initialize the structure
 LVGROUP gInfo = {0};
 gInfo.cbSize = sizeof(LVGROUP);
 wchar_t wstrHeadGet[GROUP_HEADER_BUFFER_SIZE] = {0};
 gInfo.cchHeader = GROUP_HEADER_BUFFER_SIZE;
 gInfo.pszHeader = wstrHeadGet;
 gInfo.mask = (LVGF_ALIGN | LVGF_STATE | LVGF_HEADER | LVGF_GROUPID);
 gInfo.state = LVGS_NORMAL;
 gInfo.uAlign = LVGA_HEADER_LEFT;

 BOOL bRet = m_listCtrl.GetGroupInfoByIndex(0, &gInfo);
 if (bRet == TRUE) {
 CString strHeader = CString(gInfo.pszHeader);
 CString str;
 str.Format(_T("Header: '%s'"), strHeader);
 AfxMessageBox(str, MB_ICONINFORMATION);
 }
 else
 {
 AfxMessageBox(_T("No group information was retrieved."));
 }

CListCtrl::GetGroupMetrics

void GetGroupMetrics(PLVGROUPMETRICS pGroupMetrics) const;

ParametersParameters

RemarksRemarks

CListCtrl::GetGroupRect

BOOL GetGroupRect(
 int iGroupId,
 LPRECT lpRect,
 int iCoords = LVGGR_GROUP) const;

ParametersParameters

PARAMETER DESCRIPTION

iGroupId [in] Specifies a group.

lpRect [in, out] Pointer to a RECT structure. If this method is
successful, the structure receives the rectangle
coordinates of the group that is specified by iGroupId.

Retrieves the metrics of a group.

pGroupMetrics
A pointer to a LVGROUPMETRICS containing the group metrics information.

This member function emulates the functionality of the LVM_GETGROUPMETRICS message, as described
in the Windows SDK.

Retrieves the bounding rectangle for a specified group in the current list-view control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvgroupmetrics
https://docs.microsoft.com/windows/desktop/Controls/lvm-getgroupmetrics
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

iCoords [in] Specifies the rectangle coordinates to retrieve. Use
one of these values:

- LVGGR_GROUP - (Default) Coordinates of the entire
expanded group.
- LVGGR_HEADER - Coordinates of only the header
(collapsed group).
- LVGGR_SUBSETLINK - Coordinates of only the subset
link (markup subset).

PARAMETER DESCRIPTION

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable used to access the list control.
 CListCtrl m_listCtrl;

ExampleExample

 // GetGroupRect

 // Get the graphics rectangle that surrounds group 0.
 CRect rect;
 BOOL bRet = m_listCtrl.GetGroupRect(0, &rect, LVGGR_GROUP);
 // Draw a blue rectangle around group 0.
 if (bRet == TRUE) {
 m_listCtrl.GetDC()->Draw3dRect(&rect, RGB(0, 0, 255), RGB(0, 0, 255));
 }
 else {
 AfxMessageBox(_T("No group information was retrieved."), MB_ICONINFORMATION);
 }

CListCtrl::GetGroupState

UINT GetGroupState(
 int iGroupId,
 DWORD dwMask) const;

ParametersParameters

TRUE if this method is successful; otherwise, FALSE.

The caller is responsible for allocating the RECT structure pointed to by the pRect parameter.

This method sends the LVM_GETGROUPRECT message, which is described in the Windows SDK.

The following code example defines a variable, m_listCtrl , that is used to access the current list-view
control. This variable is used in the next example.

The following code example demonstrates the GetGroupRect method. In an earlier section of this code
example, we created a list-view control that displays two columns titled "ClientID" and "Grade" in a report
view. The following code example draws a 3D rectangle around the group whose index is 0, if such a group
exists.

Retrieves the state for a specified group in the current list-view control.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/lvm-getgrouprect

PARAMETER DESCRIPTION

iGroupId [in] Zero-based index of a group.

dwMask [in] Mask that specifies the state value to retrieve for the
specified group. For more information, see the mask

member of the LVGROUP structure.

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetHeaderCtrl

CHeaderCtrl* GetHeaderCtrl();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::GetHotCursor

HCURSOR GetHotCursor();

Return ValueReturn Value

RemarksRemarks

ExampleExample

The requested state for the specified group, or 0 if the group cannot be found.

The return value is the result of a bitwise AND operation on the dwMask parameter and the value of the
state member of an LVGROUP structure that represents the current list-view control.

This method sends the LVM_GETGROUPSTATE message, which is described in the Windows SDK. For
more information, see the ListView_GetGroupState macro.

Retrieves the header control of a list view control.

A pointer to the header control, used by the list view control.

This member function implements the behavior of the Win32 macro, ListView_GetHeader, as described in
the Windows SDK.

See the example for CListCtrl::GetColumnOrderArray.

Retrieves the cursor used when hot tracking is enabled for a list view control.

The handle to the current hot cursor resource being used by the list view control.

This member function implements the behavior of the Win32 macro, ListView_GetHotCursor, as described
in the Windows SDK. The hot cursor, only visible when hover selection is enabled, appears when the cursor
passes over any list view item. Hover selection is enabled by setting the LVS_EX_TRACKSELECT extended
style.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvgroup
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvgroup
https://docs.microsoft.com/windows/desktop/Controls/lvm-getgroupstate
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_getgroupstate
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_getheader
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_gethotcursor

 // Set the hot cursor to be the system app starting cursor.
 HCURSOR hCursor = ::LoadCursor(NULL, IDC_APPSTARTING);
 m_myListCtrl.SetHotCursor(hCursor);
 ASSERT(m_myListCtrl.GetHotCursor() == hCursor);

CListCtrl::GetHotItem

int GetHotItem();

Return ValueReturn Value

RemarksRemarks

ExampleExample

 // Set the hot item to the first item only if no other item is
 // highlighted.
 if (m_myListCtrl.GetHotItem() == -1)
 m_myListCtrl.SetHotItem(0);

CListCtrl::GetHoverTime

DWORD GetHoverTime() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

 // If the hover time is the default set to 1 sec.
 DWORD dwTime = m_myListCtrl.GetHoverTime();
 if (dwTime == -1)
 m_myListCtrl.SetHoverTime(1000);

CListCtrl::GetImageList

Retrieves the list view item currently under the cursor.

The index of the current hot item of the list view control.

This member function implements the behavior of the Win32 macro, ListView_GetHotItem, as described in
the Windows SDK. The hot item is defined as the currently selected item when hot tracking (and hover
selection) is enabled.

If hot tracking is enabled, when a user pauses over a list view item, the item label is automatically
highlighted without the use of a mouse button.

Retrieves the current hover time of a list view control.

Returns the delay, in milliseconds, which the mouse cursor must hover over an item before it is selected. If
the return value is -1, then the hover time is the default hover time.

This member function implements the behavior of the Win32 macro, ListView_GetHoverTime, as described
in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_gethotitem
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_gethovertime

CImageList* GetImageList(int nImageList) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

 ASSERT(m_myListCtrl.GetImageList(LVSIL_NORMAL) == NULL);
m_myListCtrl.SetImageList(&m_lcImageList, LVSIL_NORMAL);
 ASSERT(m_myListCtrl.GetImageList(LVSIL_NORMAL) == &m_lcImageList);

CListCtrl::GetInsertMark

BOOL GetInsertMark(LPLVINSERTMARK lvim) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetInsertMarkColor

COLORREF GetInsertMarkColor() const;

Return ValueReturn Value

RemarksRemarks

Retrieves the handle of an image list used for drawing list view items.

nImageList
Value specifying which image list to retrieve. It can be one of these values:

LVSIL_NORMAL Image list with large icons.

LVSIL_SMALL Image list with small icons.

LVSIL_STATE Image list with state images.

A pointer to the image list used for drawing list view items.

Retrieves the current position of the insertion mark.

lvim
A pointer to an LVINSERTMARK structure containing the information for the insert mark.

Returns TRUE if successful, or FALSE otherwise. FALSE is returned if the size in the cbSize member of the
LVINSERTMARK structure does not equal the actual size of the structure.

This member function emulates the functionality of the LVM_GETINSERTMARK message, as described in
the Windows SDK.

Retrieves the current color of the insertion mark.

Returns a COLORREF structure that contains the color of the insertion point.

This member function emulates the functionality of the LVM_GETINSERTMARKCOLOR message, as
described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-lvinsertmark
https://docs.microsoft.com/windows/desktop/Controls/lvm-getinsertmark
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/lvm-getinsertmarkcolor

CListCtrl::GetInsertMarkRect

int GetInsertMarkRect(LPRECT pRect) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetItem

BOOL GetItem(LVITEM* pItem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetItemCount

int GetItemCount() const;

Return ValueReturn Value

ExampleExample

CListCtrl::GetItemData

Retrieves the rectangle that bounds the insertion point.

pRect
Pointer to a RECT structure that contains the coordinates of a rectangle that bounds the insertion point.

Returns one of the following values:

0 No insertion point found.

1 Insertion point found.

This member function emulates the functionality of the LVM_GETINSERTMARKRECT message, as
described in the Windows SDK.

Retrieves some or all of a list view item's attributes.

pItem
Pointer to an LVITEM structure that receives the item's attributes.

Nonzero if successful; otherwise zero.

The LVITEM structure specifies or receives the attributes of a list view item.

Retrieves the number of items in a list view control.

The number of items in the list view control.

See the example for CListCtrl::DeleteItem.

Retrieves the 32-bit application-specific value associated with the item specified by nItem .

https://docs.microsoft.com/windows/desktop/Controls/lvm-getinsertmarkrect
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema

DWORD_PTR GetItemData(int nItem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

 // If any item's data is equal to zero then reset it to -1.
 for (int i=0; i < m_myListCtrl.GetItemCount(); i++)
 {
 if (m_myListCtrl.GetItemData(i) == 0)
 {
 m_myListCtrl.SetItemData(i, (DWORD) -1);
 }
 }

CListCtrl::GetItemIndexRect

BOOL GetItemIndexRect(
 PLVITEMINDEX pItemIndex,
 int iColumn,
 int rectType,
 LPRECT pRect) const;

ParametersParameters

PARAMETER DESCRIPTION

pItemIndex [in] Pointer to an LVITEMINDEX structure for the parent
item of the subitem.

The caller is responsible for allocating and setting the
members of the LVITEMINDEX structure. This parameter
cannot be NULL.

iColumn [in] Zero-based index of a column in the control.

nItem
Index of the list item whose data is to be retrieved.

A 32-bit application-specific value associated with the specified item.

This value is the lParam member of the LVITEM structure, as described in the Windows SDK

Retrieves the bounding rectangle for all or part of a subitem in the current list-view control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema
https://msdn.microsoft.com/library/windows/desktop/bb774762
https://msdn.microsoft.com/library/windows/desktop/bb774762

rectType [in] Portion of the list-view subitem for which the
bounding rectangle is retrieved. Specify one of the
following values:

LVIR_BOUNDS - Returns the bounding rectangle of the
entire subitem, including the icon and label.

LVIR_ICON - Returns the bounding rectangle of the icon
or small icon of the subitem.

LVIR_LABEL - Returns the bounding rectangle of the
subitem text.

pRect [out] Pointer to a RECT structure that receives information
about the bounding rectangle of the subitem.

The caller is responsible for allocating the RECT structure.
This parameter cannot be NULL.

PARAMETER DESCRIPTION

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable used to access the list control.
 CListCtrl m_listCtrl;

ExampleExample

 // GetItemIndexRect
 // Get the rectangle that bounds the second item in the first group.
 LVITEMINDEX lvItemIndex;
 lvItemIndex.iGroup = 0;
 lvItemIndex.iItem = 1;
 CRect rect;
 BOOL bRet = m_listCtrl.GetItemIndexRect(
 &lvItemIndex, 0, LVIR_BOUNDS, &rect);

 // Draw a red rectangle around the item.
 m_listCtrl.GetDC()->Draw3dRect(&rect, RGB(255, 0, 0), RGB(255, 0, 0));

CListCtrl::GetItemPosition

TRUE if this method is successful; otherwise, FALSE.

This method sends the LVM_GETITEMINDEXRECT message, which is described in the Windows SDK. For
more information, see ListView_GetItemIndexRect Macro.

The following code example defines a variable, m_listCtrl , that is used to access the current list-view
control. This variable is used in the next example.

The following code example demonstrates the GetGroupRect method. Prior to entering this code example
we created a list-view control that displays two columns titled "ClientID" and "Grade" in a report view. The
following code example draws a 3D rectangle around the second subitem in both columns.

Retrieves the position of a list view item.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/lvm-getitemindexrect
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_getitemindexrect

BOOL GetItemPosition(
 int nItem,
 LPPOINT lpPoint) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

 POINT pt;

 // Move all items in the list control 100 pixels to the right.
 UINT i, nCount = m_myListCtrl.GetItemCount();

 for (i=0; i < nCount; i++)
 {
 m_myListCtrl.GetItemPosition(i, &pt);
 pt.x += 100;
 m_myListCtrl.SetItemPosition(i, pt);
 }

CListCtrl::GetItemRect

BOOL GetItemRect(
 int nItem,
 LPRECT lpRect,
 UINT nCode) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

nItem
The index of the item whose position is to be retrieved.

lpPoint
Address of a POINT structure that receives the position of the item's upper-left corner, in view coordinates.

Nonzero if successful; otherwise zero.

Retrieves the bounding rectangle for all or part of an item in the current view.

nItem
The index of the item whose position is to be retrieved.

lpRect
Address of a RECT structure that receives the bounding rectangle.

nCode
Portion of the list view item for which to retrieve the bounding rectangle. It can be one of these values:

LVIR_BOUNDS Returns the bounding rectangle of the entire item, including the icon and label.

LVIR_ICON Returns the bounding rectangle of the icon or small icon.

LVIR_LABEL Returns the bounding rectangle of the item text.

Nonzero if successful; otherwise zero.

https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

// OnClick is the handler for the NM_CLICK notification
void CListCtrlDlg::OnClick(NMHDR* pNMHDR, LRESULT* pResult)
{
 UNREFERENCED_PARAMETER(pResult);
LPNMITEMACTIVATE pia = (LPNMITEMACTIVATE)pNMHDR;

 // Get the current mouse location and convert it to client
 // coordinates.
 CPoint pos(::GetMessagePos());
 ScreenToClient(&pos);

 // Get indexes of the first and last visible items in
 // the listview control.
 int index = m_myListCtrl.GetTopIndex();
 int last_visible_index = index + m_myListCtrl.GetCountPerPage();
 if (last_visible_index > m_myListCtrl.GetItemCount())
 last_visible_index = m_myListCtrl.GetItemCount();

 // Loop until number visible items has been reached.
 while (index <= last_visible_index)
 {
 // Get the bounding rectangle of an item. If the mouse
 // location is within the bounding rectangle of the item,
 // you know you have found the item that was being clicked.
 CRect r;
 m_myListCtrl.GetItemRect(index, &r, LVIR_BOUNDS);
 if (r.PtInRect(pia->ptAction))
 {
 UINT flag = LVIS_SELECTED | LVIS_FOCUSED;
 m_myListCtrl.SetItemState(index, flag, flag);
 break;
 }

 // Get the next item in listview control.
 index++;
 }
}

CListCtrl::GetItemSpacing

BOOL GetItemSpacing(
 BOOL fSmall,
 int* pnHorzSpacing,
 int* pnVertSpacing) const;

ParametersParameters

PARAMETER DESCRIPTION

fSmall [in] View for which to retrieve the item spacing. Specify
TRUE for small icon view, or FALSE for icon view.

pnHorzSpacing [out] Contains the horizontal spacing between items.

pnVertSpacing [out] Contains the vertical spacing between items.

Return ValueReturn Value

Calculates the spacing between items in the current list-view control.

TRUE if this method is successful; otherwise, FALSE.

RemarksRemarks

CListCtrl::GetItemState

UINT GetItemState(
 int nItem,
 UINT nMask) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::GetItemText

int GetItemText(
 int nItem,
 int nSubItem,
 LPTSTR lpszText,
 int nLen) const;

CString GetItemText(
 int nItem,
 int nSubItem) const;

ParametersParameters

This method sends the LVM_GETITEMSPACING message, which is described in the Windows SDK.

Retrieves the state of a list view item.

nItem
The index of the item whose state is to be retrieved.

nMask
Mask specifying which of the item's state flags to return.

The state flags for the specified list view item.

An item's state is specified by the state member of the LVITEM structure, as described in the Windows
SDK. When you specify or change an item's state, the stateMask member specifies which state bits you
want to change.

See the example for CListCtrl::GetTopIndex.

Retrieves the text of a list view item or subitem.

nItem
The index of the item whose text is to be retrieved.

nSubItem
Specifies the subitem whose text is to be retrieved.

lpszText
Pointer to a string that is to receive the item text.

nLen
Length of the buffer pointed to by lpszText.

https://docs.microsoft.com/windows/desktop/Controls/lvm-getitemspacing
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetNextItem

int GetNextItem(
 int nItem,
 int nFlags) const;

ParametersParameters

Return ValueReturn Value

CListCtrl::GetNextItemIndex

The version returning int returns the length of the retrieved string.

The version returning a CString returns the item text.

If nSubItem is zero, this function retrieves the item label; if nSubItem is nonzero, it retrieves the text of the
subitem. For more information on the subitem argument, see the discussion of the LVITEM structure in the
Windows SDK.

Searches for a list view item that has the specified properties and that bears the specified relationship to a
given item.

nItem
Index of the item to begin the searching with, or -1 to find the first item that matches the specified flags.
The specified item itself is excluded from the search.

nFlags
Geometric relation of the requested item to the specified item, and the state of the requested item. The
geometric relation can be one of these values:

LVNI_ABOVE Searches for an item that is above the specified item.

LVNI_ALL Searches for a subsequent item by index (the default value).

LVNI_BELOW Searches for an item that is below the specified item.

LVNI_TOLEFT Searches for an item to the left of the specified item.

LVNI_TORIGHT Searches for an item to the right of the specified item.

The state can be zero, or it can be one or more of these values:

LVNI_DROPHILITED The item has the LVIS_DROPHILITED state flag set.

LVNI_FOCUSED The item has the LVIS_FOCUSED state flag set.

LVNI_SELECTED The item has the LVIS_SELECTED state flag set.

If an item does not have all of the specified state flags set, the search continues with the next item.

The index of the next item if successful, or -1 otherwise.

Retrieves the index of the item in the current list-view control that has a specified set of properties.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema

BOOL GetNextItemIndex(
 PLVITEMINDEX pItemIndex,
 int nFlags) const;

ParametersParameters

PARAMETER DESCRIPTION

pItemIndex [in, out] Pointer to the LVITEMINDEX structure that
describes the item where the search begins, or -1 to find
the first item that matches the flags in the nFlags
parameter.

If this method is successful, the LVITEMINDEX structure
describes the item found by the search.

nFlags [in] A bitwise combination (OR) of flags that specify how
to perform the search.

The search can depend on the index, state, or appearance
of the target item, or the target item's physical position
relative to the item specified by the pItemIndex parameter.
For more information, see the flags parameter in the
LVM_GETNEXTITEMINDEX message.

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetNextSelectedItem

int GetNextSelectedItem(POSITION& pos) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

TRUE if this method is successful; otherwise, FALSE.

The caller is responsible for allocating and setting the members of the LVITEMINDEX structure pointed to by
the pItemIndex parameter.

This method sends the LVM_GETNEXTITEMINDEX message, which is described in the Windows SDK.

Gets the index of the list item identified by pos, then sets pos to the POSITION value.

pos
A reference to a POSITION value returned by a previous call to GetNextSelectedItem or
GetFirstSelectedItemPosition . The value is updated to the next position by this call.

The index of the list item identified by pos.

You can use GetNextSelectedItem in a forward iteration loop if you establish the initial position with a call
to GetFirstSelectedItemPosition .

You must ensure that your POSITION value is valid. If it is invalid, then the Debug version of the Microsoft
Foundation Class Library asserts.

https://msdn.microsoft.com/library/windows/desktop/bb774762
https://msdn.microsoft.com/library/windows/desktop/bb761059
https://msdn.microsoft.com/library/windows/desktop/bb761059

 POSITION pos = m_myListCtrl.GetFirstSelectedItemPosition();
 if (pos == NULL)
 {
 TRACE(_T("No items were selected!\n"));
 }
 else
 {
 while (pos)
 {
 int nItem = m_myListCtrl.GetNextSelectedItem(pos);
 TRACE(_T("Item %d was selected!\n"), nItem);
 // you could do your own processing on nItem here
 }
 }

CListCtrl::GetNumberOfWorkAreas

UINT GetNumberOfWorkAreas() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

 UINT i, uCount = m_myListCtrl.GetNumberOfWorkAreas();
 LPRECT lpRects = (LPRECT) malloc(uCount*sizeof(RECT));

 if (lpRects != NULL)
 {
 // Dump all of the work area dimensions.
 m_myListCtrl.GetWorkAreas(uCount, lpRects);

 for (i=0; i < uCount; i++)
 {
 TRACE(_T("Work area %d; left = %d, top = %d, right = %d, ")
 _T("bottom = %d\r\n"),
 i, lpRects[i].left, lpRects[i].top, lpRects[i].right,
 lpRects[i].bottom);
 }

 free(lpRects);
 }
 else
 {
 TRACE(_T("Couldn't allocate enough memory!"));
 }

CListCtrl::GetOutlineColor

The following code sample demonstrates the usage of this function.

Retrieves the current number of working areas for a list view control.

Not used at this time.

This member function implements the behavior of the Win32 macro, ListView_GetNumberOfWorkAreas,
as described in the Windows SDK.

Retrieves the color of the border of a list view control.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_getnumberofworkareas

COLORREF GetOutlineColor() const;

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetOrigin

BOOL GetOrigin(LPPOINT lpPoint) const;

ParametersParameters

Return ValueReturn Value

CListCtrl::GetSelectedColumn

UINT GetSelectedColumn() const;

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetSelectedCount

UINT GetSelectedCount() const;

Return ValueReturn Value

ExampleExample

Returns a COLORREF structure containing the outline color.

This member function emulates the functionality of the LVM_GETOUTLINECOLOR message, as described
in the Windows SDK.

Retrieves the current view origin for a list view control.

lpPoint
Address of a POINT structure that receives the view origin.

Nonzero if successful; otherwise zero. However, if the control is in report view, the return value is always
zero.

Retrieves the index of the currently-selected column in the list control.

The index of the selected column.

This member function emulates the functionality of the LVM_GETSELECTEDCOLUMN message, as
described in the Windows SDK.

Retrieves the number of selected items in the list view control.

The number of selected items in the list view control.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/lvm-getoutlinecolor
https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/lvm-getselectedcolumn

 UINT i, uSelectedCount = m_myListCtrl.GetSelectedCount();
 int nItem = -1;

 // Update all of the selected items.
 if (uSelectedCount > 0)
 {
 for (i=0; i < uSelectedCount; i++)
 {
 nItem = m_myListCtrl.GetNextItem(nItem, LVNI_SELECTED);
 ASSERT(nItem != -1);
 m_myListCtrl.Update(nItem);
 }
 }

CListCtrl::GetSelectionMark

int GetSelectionMark();

Return ValueReturn Value

RemarksRemarks

ExampleExample

 // Set the selection mark to the first item only if no other item is
 // selected.
 if (m_myListCtrl.GetSelectionMark() == -1)
 m_myListCtrl.SetSelectionMark(0);

CListCtrl::GetStringWidth

int GetStringWidth(LPCTSTR lpsz) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Retrieves the selection mark of a list view control.

The zero-based selection mark, or -1 if there is no selection mark.

This member function implements the behavior of the Win32 macro, ListView_GetSelectionMark, as
described in the Windows SDK.

Determines the minimum column width necessary to display all of a given string.

lpsz
Address of a null-terminated string whose width is to be determined.

The width, in pixels, of the string pointed to by lpsz.

The returned width takes into account the control's current font and column margins, but not the width of a
small icon.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_getselectionmark

 CString strColumn;
 int nWidth;

 // Insert six columns in the list view control. Make the width of
 // the column be the width of the column header plus 50%.
 for (int i = 0; i < 6; i++)
 {
 strColumn.Format(_T("column %d"), i);
 nWidth = 3*m_myListCtrl.GetStringWidth(strColumn)/2;
 m_myListCtrl.InsertColumn(i, strColumn, LVCFMT_LEFT, nWidth);
 }

CListCtrl::GetSubItemRect

BOOL GetSubItemRect(
 int iItem,
 int iSubItem,
 int nArea,
 CRect& ref);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetTextBkColor

COLORREF GetTextBkColor() const;

Retrieves the bounding rectangle of an item in a list view control.

iItem
Index of the subitem's parent item.

iSubItem
The one-based index of the subitem.

nArea
Determines the portion of the bounding rectangle (of the list view subitem) to be retrieved. The portion
(icon, label, or both) of the bounding rectangle is specified by applying the bitwise OR operator to one or
more of the following values:

LVIR_BOUNDS Returns the bounding rectangle of the entire item, including the icon and label.

LVIR_ICON Returns the bounding rectangle of the icon or small icon.

LVIR_LABEL Returns the bounding rectangle of the entire item, including the icon and label. This is
identical to LVIR_BOUNDS.

ref
Reference to a CRect object that contains the coordinates of the subitem's bounding rectangle.

Nonzero if successful; otherwise zero.

This member function implements the behavior of the Win32 macro, ListView_GetSubItemRect, as
described in the Windows SDK.

Retrieves the text background color of a list view control.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_getsubitemrect

Return ValueReturn Value

ExampleExample

CListCtrl::GetTextColor

COLORREF GetTextColor() const;

Return ValueReturn Value

ExampleExample

CListCtrl::GetTileInfo

BOOL GetTileInfo(PLVTILEINFO pti) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetTileViewInfo

BOOL GetTileViewInfo(PLVTILEVIEWINFO ptvi) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

A 32-bit value used to specify an RGB color.

See the example for CListCtrl::SetTextBkColor.

Retrieves the text color of a list view control.

A 32-bit value used to specify an RGB color.

See the example for CListCtrl::SetTextColor.

Retrieves information about a tile in a list view control.

pti
A pointer to an LVTILEINFO structure that receives the tile information.

The return value is not used.

This member function emulates the functionality of the LVM_GETTILEINFO message, as described in the
Windows SDK.

Retrieves information about a list view control in tile view.

ptvi
A pointer to an LVTILEVIEWINFO structure that receives the retrieved information.

The return value is not used.

This member function emulates the functionality of the LVM_GETTILEVIEWINFO message, as described in
the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvtileinfo
https://docs.microsoft.com/windows/desktop/Controls/lvm-gettileinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvtileviewinfo
https://docs.microsoft.com/windows/desktop/Controls/lvm-gettileviewinfo

CListCtrl::GetToolTips

CToolTipCtrl* GetToolTips() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

 CToolTipCtrl* pTip = m_myListCtrl.GetToolTips();
 if (NULL != pTip)
 {
 pTip->UpdateTipText(_T("I'm a list view!"), &m_myListCtrl,
 IDD_MYLISTCTRL);
 }

CListCtrl::GetTopIndex

int GetTopIndex() const;

Return ValueReturn Value

ExampleExample

 // Make sure the focus is set to the list view control.
 m_myListCtrl.SetFocus();

 // Select all of the items that are completely visible.
 int n = m_myListCtrl.GetTopIndex();
 int nLast = n + m_myListCtrl.GetCountPerPage();

 for (; n < nLast; n++)
 {
 m_myListCtrl.SetItemState(n, LVIS_SELECTED, LVIS_SELECTED);
 ASSERT(m_myListCtrl.GetItemState(n, LVIS_SELECTED) == LVIS_SELECTED);
 }

CListCtrl::GetView

DWORD GetView() const;

Retrieves the tooltip control that the list view control uses to display tooltips.

A pointer to a CToolTipCtrl object to be used by the list control. If the Create member function uses the
style LVS_NOTOOLTIPS, no tooltips are used, and NULL is returned.

This member function implements the behavior of the Win32 message LVM_GETTOOLTIPS, as described
in the Windows SDK. The MFC implementation of GetToolTips returns a CToolTipCtrl object, which is
used by the list control, rather than a handle to a tooltip control.

Retrieves the index of the topmost visible item when in list view or report view.

The index of the topmost visible item.

Gets the view of the list view control.

https://docs.microsoft.com/windows/desktop/Controls/lvm-gettooltips

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetViewRect

BOOL GetViewRect(LPRECT lpRect) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::GetWorkAreas

void GetWorkAreas(
 int nWorkAreas,
 LPRECT prc) const;

ParametersParameters

RemarksRemarks

ExampleExample

CListCtrl::HasGroup

BOOL HasGroup(int iGroupId) const;

ParametersParameters

The current view of the list view control.

This member function emulates the functionality of the LVM_GETVIEW message, as described in the
Windows SDK.

Retrieves the bounding rectangle of all items in the list view control.

lpRect
Address of a RECT structure.

Nonzero if successful; otherwise zero.

The list view must be in icon view or small icon view.

Retrieves the current working areas of a list view control.

nWorkAreas
The number of RECT structures contained in the prc array.

prc
A pointer to an array of RECT structures (or CRect objects) that receive the working areas of the list view
control. Values in these structures are in client coordinates.

This member function implements the behavior of the Win32 macro, ListView_GetWorkAreas, as described
in the Windows SDK.

See the example for CListCtrl::GetNumberOfWorkAreas.

Determines if the list view control has the specified group.

https://docs.microsoft.com/windows/desktop/Controls/lvm-getview
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_getworkareas

Return ValueReturn Value

RemarksRemarks

CListCtrl::HitTest

int HitTest(LVHITTESTINFO* pHitTestInfo) const;

int HitTest(
 CPoint pt,
 UINT* pFlags = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

iGroupId
The identifier of the group being requested.

Returns TRUE on success, FALSE on failure.

This member function emulates the functionality of the LVM_HASGROUP message, as described in the
Windows SDK.

Determines which list view item, if any, is at a specified position.

pHitTestInfo
Address of an LVHITTESTINFO structure that contains the position to hit test and that receives information
about the results of the hit test.

pt
Point to be tested.

pFlags
Pointer to an integer that receives information about the results of the test. See the explanation of the
flags member of the LVHITTESTINFO structure in the Windows SDK.

The index of the item at the position specified by pHitTestInfo, if any, or -1 otherwise.

You can use the LVHT_ABOVE, LVHT_BELOW, LVHT_TOLEFT, and LVHT_TORIGHT values of the
structure's flag member to determine whether to scroll the contents of a list view control. Two of these
flags can be combined, for example, if the position is above and to the left of the client area.

You can test for the LVHT_ONITEM value of the structure's flag member to determine whether a given
position is over a list view item. This value is a bitwise-OR operation on the LVHT_ONITEMICON,
LVHT_ONITEMLABEL, and LVHT_ONITEMSTATEICON values of the structure's flag member.

https://docs.microsoft.com/windows/desktop/Controls/lvm-hasgroup
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvhittestinfo

void CListCtrlDlg::OnRClick(NMHDR* pNMHDR, LRESULT* pResult)
{
 LPNMITEMACTIVATE pia = (LPNMITEMACTIVATE)pNMHDR;
 CPoint point(pia->ptAction);

 // Select the item the user clicked on.
 UINT uFlags;
 int nItem = m_myListCtrl.HitTest(point, &uFlags);

 if (uFlags & LVHT_ONITEMLABEL)
 {
 m_myListCtrl.SetItem(nItem, 0, LVIF_STATE, NULL, 0, LVIS_SELECTED,
 LVIS_SELECTED, 0);
 }

 *pResult = 0;
}

CListCtrl::InsertColumn

int InsertColumn(
 int nCol,
 const LVCOLUMN* pColumn);

int InsertColumn(
 int nCol,
 LPCTSTR lpszColumnHeading,
 int nFormat = LVCFMT_LEFT,
 int nWidth = -1,
 int nSubItem = -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Inserts a new column in a list view control.

nCol
The index of the new column.

pColumn
Address of an LVCOLUMN structure that contains the attributes of the new column.

lpszColumnHeading
Address of a string containing the column's heading.

nFormat
Integer specifying the alignment of the column. It can be one of these values: LVCFMT_LEFT,
LVCFMT_RIGHT, or LVCFMT_CENTER.

nWidth
Width of the column, in pixels. If this parameter is -1, the column width is not set.

nSubItem
Index of the subitem associated with the column. If this parameter is -1, no subitem is associated with the
column.

The index of the new column if successful or -1 otherwise.

The leftmost column in a list view control must be left-aligned.

CListCtrl::InsertGroup

LRESULT InsertGroup(
 int index,
 PLVGROUP pgrp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::InsertGroupSorted

LRESULT InsertGroupSorted(PLVINSERTGROUPSORTED pStructInsert);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::InsertItem

The LVCOLUMN structure contains the attributes of a column in report view. It is also used to receive
information about a column. This structure is described in the Windows SDK.

Inserts a group into the list view control.

index
The index of the item where the group is to be inserted.

pgrp
A pointer to an LVGROUP structure containing the group to be added.

Returns the index of the item that the group was added to, or -1 if the operation failed.

This member function emulates the functionality of the LVM_INSERTGROUP message, as described in the
Windows SDK.

Inserts the specified group into an ordered list of groups.

pStructInsert
A pointer to an LVINSERTGROUPSORTED structure that contains the group to insert.

The return value is not used.

This member function emulates the functionality of the LVM_INSERTGROUPSORTED message, as
described in the Windows SDK.

Inserts an item into the list view control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvcolumna
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvgroup
https://docs.microsoft.com/windows/desktop/Controls/lvm-insertgroup
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvinsertgroupsorted
https://docs.microsoft.com/windows/desktop/Controls/lvm-insertgroupsorted

int InsertItem(const LVITEM* pItem);

int InsertItem(
 int nItem,
 LPCTSTR lpszItem);

int InsertItem(
 int nItem,
 LPCTSTR lpszItem,
 int nImage);

int InsertItem(
 UINT nMask,
 int nItem,
 LPCTSTR lpszItem,
 UINT nState,
 UINT nStateMask,
 int nImage,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pItem
Pointer to an LVITEM structure that specifies the item's attributes, as described in the Windows SDK.

nItem
Index of the item to be inserted.

lpszItem
Address of a string containing the item's label, or LPSTR_TEXTCALLBACK if the item is a callback item. For
information on callback items, see CListCtrl::GetCallbackMask.

nImage
Index of the item's image, or I_IMAGECALLBACK if the item is a callback item. For information on callback
items, see CListCtrl::GetCallbackMask.

nMask
The nMask parameter specifies which item attributes passed as parameters are valid. It can be one or more
of the mask values described in LVITEM Structure in the Windows SDK. The valid values can be combined
with the bitwise OR operator.

nState
Indicates the item's state, state image, and overlay image. See the Windows SDK topics LVITEM Structure
for more information and List-View Item States for a list of valid flags.

nStateMask
Indicates which bits of the state member will be retrieved or modified. See LVITEM Structure in the
Windows SDK for more information.

lParam
A 32-bit application-specific value associated with the item. If this parameter is specified, you must set the
nMask attribute LVIF_PARAM.

The index of the new item if successful or -1 otherwise.

Calling this method may cause the LVM_INSERTITEM message to be sent to your control window. The
associated message handler for the control may fail to set the item text under certain conditions (such as
using window styles such as LVS_OWNERDRAW). For more information on these conditions, refer to

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema
https://docs.microsoft.com/windows/desktop/Controls/list-view-item-states
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema

ExampleExample

 CString strText;
 int nColumnCount = m_myListCtrl.GetHeaderCtrl()->GetItemCount();

 // Insert 10 items in the list view control.
 for (int i = 0; i < 10; i++)
 {
 strText.Format(TEXT("item %d"), i);

 // Insert the item, select every other item.
 m_myListCtrl.InsertItem(LVIF_TEXT | LVIF_STATE, i, strText,
 (i % 2) == 0 ? LVIS_SELECTED : 0, LVIS_SELECTED, 0, 0);

 // Initialize the text of the subitems.
 for (int j = 1; j < nColumnCount; j++)
 {
 strText.Format(TEXT("sub-item %d %d"), i, j);
 m_myListCtrl.SetItemText(i, j, strText);
 }
 }

CListCtrl::InsertMarkHitTest

int InsertMarkHitTest(
 LPPOINT pPoint,
 LPLVINSERTMARK lvim) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::IsGroupViewEnabled

BOOL IsGroupViewEnabled() const;

Return ValueReturn Value

LVM_INSERTITEM in the Windows SDK.

Retrieves the insertion point closest to a specified point.

pPoint
A pointer to a POINT structure that contains the hit test coordinates, relative to the client area of the list
control.

lvim
A pointer to an LVINSERTMARK structure that specifies the insertion point closest to the coordinates
defined by the point parameter.

The insertion point closest to the specified point.

This member function emulates the functionality of the LVM_INSERTMARKHITTEST message, as
described in the Windows SDK.

Determines whether group view is enabled for a list view control.

Returns TRUE if group view is enabled, or FALSE otherwise.

https://docs.microsoft.com/windows/desktop/Controls/lvm-insertitem
https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-lvinsertmark
https://docs.microsoft.com/windows/desktop/Controls/lvm-insertmarkhittest

RemarksRemarks

CListCtrl::IsItemVisible

BOOL IsItemVisible(int index) const;

ParametersParameters

PARAMETER DESCRIPTION

index [in] Zero-based index of an item in the current list-view
control.

Return ValueReturn Value

RemarksRemarks

CListCtrl::MapIDToIndex

UINT MapIDToIndex(UINT id) const;

ParametersParameters

PARAMETER DESCRIPTION

id [in] The unique ID of an item.

Return ValueReturn Value

RemarksRemarks

CListCtrl::MapIndexToID

This member function emulates the functionality of the LVM_ISGROUPVIEWENABLED message, as
described in the Windows SDK.

Indicates whether a specified item in the current list-view control is visible.

TRUE if the specified item is visible;otherwise, FALSE.

This method sends the LVM_ISITEMVISIBLE message, which is described in the Windows SDK.

Maps the unique ID of an item in the current list-view control to an index.

The current index for the specified ID.

A list-view control internally tracks items by index. This can present problems because indexes can change
during the control's lifetime. The list-view control can tag an item with an ID when the item is created and
you can use this ID to guarantee uniqueness during the lifetime of the list-view control.

Note that in a multithreaded environment the index is guaranteed only on the thread that hosts the list-
view control, not on background threads.

This method sends the LVM_MAPIDTOINDEX message, which is described in the Windows SDK.

Maps the index of an item in the current list-view control to a unique ID.

https://docs.microsoft.com/windows/desktop/Controls/lvm-isgroupviewenabled
https://docs.microsoft.com/windows/desktop/Controls/lvm-isitemvisible
https://msdn.microsoft.com/library/windows/desktop/bb761137

UINT MapIndexToID(UINT index) const;

ParametersParameters

PARAMETER DESCRIPTION

index [in] The zero-based index of an item.

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable used to access the list control.
 CListCtrl m_listCtrl;

ExampleExample

A unique ID for the specified item.

A list-view control internally tracks items by index. This can present problems because indexes can change
during the control's lifetime. The list-view control can tag an item with an ID when the item is created. You
can use this ID to access a specific item for the lifetime of the list-view control.

Note that in a multithreaded environment the index is guaranteed only on the thread that hosts the list-
view control, not on background threads.

This method sends the LVM_MAPINDEXTOID message, which is described in the Windows SDK.

The following code example defines a variable, m_listCtrl , that is used to access the current list-view
control. This variable is used in the next example.

The following code example demonstrates the MapIndexToID method. In an earlier section of this code
example, we created a list-view control that displays two columns titled "ClientID" and "Grade" in a report
view. The following example maps the index of each list-view item to an identification number, and then
retrieves the index for each identification number. Finally, the example reports whether the original indexes
were retrieved.

https://docs.microsoft.com/windows/desktop/Controls/lvm-mapindextoid

 // MapIndexToID
 int iCount = m_listCtrl.GetItemCount();
 UINT nId = 0;
 UINT nIndex = 0;
 for (int iIndexOriginal = 0; iIndexOriginal < iCount; iIndexOriginal++)
 {
 // Map index to ID.
 nId = m_listCtrl.MapIndexToID((UINT)iIndexOriginal);

 // Map ID to index.
 nIndex = m_listCtrl.MapIDToIndex(nId);

 if (nIndex != (UINT)(iIndexOriginal))
 {
 CString str;
 str.Format(_T("Mapped index (%d) is not equal to original index (%d)"),
 nIndex, (UINT)(iIndexOriginal));
 AfxMessageBox(str);
 return;
 }
 }
 AfxMessageBox(_T("The mapped indexes and original indexes are equal."),
 MB_ICONINFORMATION);

CListCtrl::MoveGroup

LRESULT MoveGroup(
 int iGroupId,
 int toIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::MoveItemToGroup

void MoveItemToGroup(
 int idItemFrom,
 int idGroupTo);

ParametersParameters

Moves the specified group to the specified zero based index of the list view control.

iGroupId
The identifier of the group to be moved.

toIndex
The zero-based index where the group is to be moved.

The return value is not used.

This member function emulates the functionality of the LVM_MOVEGROUP message, as described in the
Windows SDK.

Moves the specified item into the specified group.

idItemFrom
[in] The index of the item to be moved.

https://docs.microsoft.com/windows/desktop/Controls/lvm-movegroup

RemarksRemarks

NOTENOTE

CListCtrl::RedrawItems

BOOL RedrawItems(
 int nFirst,
 int nLast);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::RemoveAllGroups

void RemoveAllGroups();

RemarksRemarks

CListCtrl::RemoveGroup

LRESULT RemoveGroup(int iGroupId);

ParametersParameters

idGroupTo
[in] The identifier of the group the item will be moved to.

This method currently is not implemented.

This method emulates the functionality of the LVM_MOVEITEMTOGROUP message, as described in the
Windows SDK.

Forces a list view control to repaint a range of items.

nFirst
Index of the first item to be repainted.

nLast
Index of the last item to be repainted.

Nonzero if successful; otherwise zero.

The specified items are not actually repainted until the list view window receives a WM_PAINT message. To
repaint immediately, call the Windows UpdateWindow function after using this function.

Removes all groups from a list view control.

This member function emulates the functionality of the LVM_REMOVEALLGROUPS message, as
described in the Windows SDK.

Removes the specified group from the list view control.

iGroupId
The identifier of the group to be removed.

https://docs.microsoft.com/windows/desktop/Controls/lvm-moveitemtogroup
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-updatewindow
https://docs.microsoft.com/windows/desktop/Controls/lvm-removeallgroups

Return ValueReturn Value

RemarksRemarks

CListCtrl::Scroll

BOOL Scroll(CSize size);

ParametersParameters

Return ValueReturn Value

CListCtrl::SetBkColor

BOOL SetBkColor(COLORREF cr);

ParametersParameters

Return ValueReturn Value

ExampleExample

 // Use the 3D button face color for the background.
 COLORREF crBkColor = ::GetSysColor(COLOR_3DFACE);
 m_myListCtrl.SetBkColor(crBkColor);
 ASSERT(m_myListCtrl.GetBkColor() == crBkColor);

CListCtrl::SetBkImage

Returns the index of the group if successful, or -1 otherwise.

This member function emulates the functionality of the LVM_REMOVEGROUP message, as described in
the Windows SDK.

Scrolls the content of a list view control.

size
A CSize object specifying the amount of horizontal and vertical scrolling, in pixels. The y member of size
is divided by the height, in pixels, of the list view control's line, and the control is scrolled by the resulting
number of lines.

Nonzero if successful; otherwise zero.

Sets the background color of the list view control.

cr
Background color to set, or the CLR_NONE value for no background color. List view controls with
background colors redraw themselves significantly faster than those without background colors. For
information, see COLORREF in the Windows SDK.

Nonzero if successful; otherwise zero.

Sets the background image of a list view control.

https://docs.microsoft.com/windows/desktop/Controls/lvm-removegroup
https://docs.microsoft.com/windows/desktop/gdi/colorref

BOOL SetBkImage(LVBKIMAGE* plvbkImage);

BOOL SetBkImage(
 HBITMAP hbm,
 BOOL fTile = TRUE,
 int xOffsetPercent = 0,
 int yOffsetPercent = 0);

BOOL SetBkImage(
 LPTSTR pszUrl,
 BOOL fTile = TRUE,
 int xOffsetPercent = 0,
 int yOffsetPercent = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CListCtrl::SetCallbackMask

BOOL SetCallbackMask(UINT nMask);

ParametersParameters

plvbkImage
Address of an LVBKIMAGE structure, containing the new background image information.

hbm
Handle to a bitmap.

pszUrl
A NULL-terminated string that contains the URL of the background image.

fTile
Nonzero if the image is to be tiled in the background of the list view control; otherwise 0.

xOffsetPercent
The offset, in pixels, of the image's left edge, from origin of the list view control.

yOffsetPercent
The offset, in pixels, of the image's top edge, from origin of the list view control.

Returns nonzero if successful, or zero otherwise.

Because CListCtrl::SetBkImage makes use of OLE COM functionality, the OLE libraries must be initialized before
using SetBkImage . It is best to initialize the COM libraries when the application is initialized and uninitialize the
libraries when the application terminates. This is automatically done in MFC applications that make use of ActiveX
technology, OLE Automation, OLE Linking/Embedding, or ODBC/DAO operations.

See the example for CListCtrl::GetBkImage.

Sets the callback mask for a list view control.

nMask

Return ValueReturn Value

ExampleExample

 // Set the callback mask so that only the selected and focused states
 // are stored for each item.
 m_myListCtrl.SetCallbackMask(LVIS_SELECTED|LVIS_FOCUSED);
 ASSERT(m_myListCtrl.GetCallbackMask() ==
 (LVIS_SELECTED|LVIS_FOCUSED));

CListCtrl::SetCheck

BOOL SetCheck(
 int nItem,
 BOOL fCheck = TRUE);

ParametersParameters

Return ValueReturn Value

ExampleExample

 int nCount = m_myListCtrl.GetItemCount();
 BOOL fCheck = FALSE;

 // Set the check state of every other item to TRUE and
 // all others to FALSE.
 for (int i = 0; i < nCount; i++)
 {
 m_myListCtrl.SetCheck(i, fCheck);
 ASSERT((m_myListCtrl.GetCheck(i) && fCheck) ||
 (!m_myListCtrl.GetCheck(i) && !fCheck));
 fCheck = !fCheck;
 }

CListCtrl::SetColumn

BOOL SetColumn(
 int nCol,
 const LVCOLUMN* pColumn);

ParametersParameters

New value of the callback mask.

Nonzero if successful; otherwise zero.

Determines if the state image of a list control item is visible.

nItem
The zero-based index of a list control item.

fCheck
Specifies whether the state image of the item should be visible or not. By default, fCheck is TRUE and the
state image is visible. If fCheck is FALSE, it is not visible.

Nonzero if the item is checked, otherwise 0.

Sets the attributes of a list view column.

Return ValueReturn Value

ExampleExample

CListCtrl::SetColumnOrderArray

BOOL SetColumnOrderArray(
 int iCount,
 LPINT piArray);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::SetColumnWidth

BOOL SetColumnWidth(
 int nCol,
 int cx);

ParametersParameters

nCol
Index of the column whose attributes are to be set.

pColumn
Address of an LVCOLUMN structure that contains the new column attributes, as described in the Windows
SDK. The structure's mask member specifies which column attributes to set. If the mask member specifies
the LVCF_TEXT value, the structure's pszText member is the address of a null-terminated string and the
structure's cchTextMax member is ignored.

Nonzero if successful; otherwise zero.

See the example for CListCtrl::GetColumn.

Sets the column order (left to right) of a list view control.

piArray
A pointer to a buffer containing the index values of the columns in the list view control (from left to right).
The buffer must be large enough to contain the total number of columns in the list view control.

iCount
Number of columns in the list view control.

Nonzero if successful; otherwise zero.

This member function implements the behavior of the Win32 macro, ListView_SetColumnOrderArray, as
described in the Windows SDK.

See the example for CListCtrl::GetColumnOrderArray.

Changes the width of a column in report view or list view.

nCol
Index of the column for which the width is to be set. In list view, this parameter must be 0.

cx

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvcolumna
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_setcolumnorderarray

Return ValueReturn Value

CListCtrl::SetExtendedStyle

DWORD SetExtendedStyle(DWORD dwNewStyle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

 // Allow the header controls item to be movable by the user.
 m_myListCtrl.SetExtendedStyle
 (m_myListCtrl.GetExtendedStyle()|LVS_EX_HEADERDRAGDROP);

CListCtrl::SetGroupInfo

int SetGroupInfo(
 int iGroupId,
 PLVGROUP pgrp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::SetGroupMetrics

The new width of the column. Can be either LVSCW_AUTOSIZE or LVSCW_AUTOSIZE_USEHEADER, as
described in LVM_SETCOLUMNWIDTH in the Windows SDK.

Nonzero if successful; otherwise zero.

Sets the current extended styles of a list view control.

dwNewStyle
A combination of extended styles to be used by the list view control. For a descriptive list of these styles,
see the Extended List View Styles topic in the Windows SDK.

A combination of the previous extended styles used by the list view control.

This member function implements the behavior of the Win32 macro, ListView_SetExtendedListViewStyle,
as described in the Windows SDK.

Sets the information that describes the specified group of the current list-view control.

iGroupId
The identifier of the group whose information is set.

pgrp
Pointer to an LVGROUP structure that contains the information to set. The caller is responsible for
allocating this structure and setting its members.

The ID of the group if the method is successful; otherwise, -1.

This method sends the LVM_SETGROUPINFO message, which is described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/lvm-setcolumnwidth
https://docs.microsoft.com/windows/desktop/Controls/extended-list-view-styles
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_setextendedlistviewstyle
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvgroup
https://docs.microsoft.com/windows/desktop/Controls/lvm-setgroupinfo

void SetGroupMetrics(PLVGROUPMETRICS pGroupMetrics);

ParametersParameters

RemarksRemarks

CListCtrl::SetHotCursor

HCURSOR SetHotCursor(HCURSOR hc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::SetHotItem

int SetHotItem(int iIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Sets the group metrics of a list view control.

pGroupMetrics
A pointer to an LVGROUPMETRICS structure containing the group metrics information to be set.

This member function emulates the functionality of the LVM_SETGROUPMETRICS message, as described
in the Windows SDK.

Sets the cursor used when hot tracking is enabled for a list view control.

hc
A handle to a cursor resource, used to represent the hot cursor.

The handle to the previous hot cursor resource being used by the list view control.

This member function implements the behavior of the Win32 macro, ListView_SetHotCursor, as described
in the Windows SDK.

The hot cursor, only visible when hover selection is enabled, appears as the cursor passes over any list view
item. Hover selection is enabled by setting the LVS_EX_TRACKSELECT extended style.

See the example for CListCtrl::GetHotCursor.

Sets the current hot item of a list view control.

iIndex
Zero-based index of the item to be set as the hot item.

The zero-based index of the previously hot item.

This member function implements the behavior of the Win32 macro, ListView_SetHotItem, as described in
the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvgroupmetrics
https://docs.microsoft.com/windows/desktop/Controls/lvm-setgroupmetrics
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_sethotcursor
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_sethotitem

CListCtrl::SetHoverTime

DWORD SetHoverTime(DWORD dwHoverTime = (DWORD)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::SetIconSpacing

CSize SetIconSpacing(
 int cx,
 int cy);

CSize SetIconSpacing(CSize size);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

 // Leave lots of space between icons.
 m_myListCtrl.SetIconSpacing(CSize(100, 100));

See the example for CListCtrl::GetHotItem.

Sets the current hover time of a list view control.

dwHoverTime
The new delay, in milliseconds, which the mouse cursor must hover over an item before it is selected. If the
default value is passed, the time is set to the default hover time.

The previous hover time, in milliseconds.

This member function implements the behavior of the Win32 macro, ListView_SetHoverTime, as described
in the Windows SDK.

See the example for CListCtrl::GetHoverTime.

Sets the spacing between icons in a list view control.

cx
The distance (in pixels) between icons on the x-axis.

cy
The distance (in pixels) between icons on the y-axis.

size
A CSize object specifying the distance (in pixels) between icons on the x- and y-axes.

A CSize object containing the previous values for icon spacing.

This member function implements the behavior of the Win32 macro, ListView_SetIconSpacing, as
described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_sethovertime
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_seticonspacing

CListCtrl::SetImageList

CImageList* SetImageList(
 CImageList* pImageList,
 int nImageListType);

ParametersParameters

Return ValueReturn Value

ExampleExample

CListCtrl::SetInfoTip

BOOL SetInfoTip(PLVSETINFOTIP plvInfoTip);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::SetInsertMark

BOOL SetInsertMark(LPLVINSERTMARK lvim);

ParametersParameters

Assigns an image list to a list view control.

pImageList
Pointer to the image list to assign.

nImageListType
Type of image list. It can be one of these values:

LVSIL_NORMAL Image list with large icons.

LVSIL_SMALL Image list with small icons.

LVSIL_STATE Image list with state images.

A pointer to the previous image list.

See the example for CListCtrl::GetImageList.

Sets the tooltip text.

plvInfoTip
A pointer to an LVFSETINFOTIP structure containing the information to be set.

Returns TRUE on success, FALSE on failure.

This member function emulates the functionality of the LVM_SETINFOTIP message, as described in the
Windows SDK.

Sets the insertion point to the defined position.

lvim
A pointer to an LVINSERTMARK structure specifying where to set the insertion point.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvsetinfotip
https://docs.microsoft.com/windows/desktop/Controls/lvm-setinfotip
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-lvinsertmark

Return ValueReturn Value

RemarksRemarks

CListCtrl::SetInsertMarkColor

COLORREF SetInsertMarkColor(COLORREF color);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::SetItem

BOOL SetItem(const LVITEM* pItem);

BOOL SetItem(
 int nItem,
 int nSubItem,
 UINT nMask,
 LPCTSTR lpszItem,
 int nImage,
 UINT nState,
 UINT nStateMask,
 LPARAM lParam);

BOOL SetItem(
 int nItem,
 int nSubItem,
 UINT nMask,
 LPCTSTR lpszItem,
 int nImage,
 UINT nState,
 UINT nStateMask,
 LPARAM lParam,
 int nIndent);

ParametersParameters

Returns TRUE if successful, or FALSE otherwise. FALSE is returned if the size in the cbSize member of the
LVINSERTMARK structure does not equal the actual size of the structure, or when an insertion point does not

apply in the current view.

This member function emulates the functionality of the LVM_SETINSERTMARK message, as described in
the Windows SDK.

Sets the color of the insertion point.

color
A COLORREF structure specifying the color to set the insertion point.

Returns a COLORREF structure containing the previous color.

This member function emulates the functionality of the LVM_SETINSERTMARKCOLOR message, as
described in the Windows SDK.

Sets some or all of a list view item's attributes.

pItem
Address of an LVITEM structure that contains the new item attributes, as described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/lvm-setinsertmark
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/lvm-setinsertmarkcolor
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::SetItemCount

void SetItemCount(int nItems);

ParametersParameters

The structure's iItem and iSubItem members identify the item or subitem, and the structure's mask

member specifies which attributes to set. For more information on the mask member, see the Remarks.

nItem
Index of the item whose attributes are to be set.

nSubItem
Index of the subitem whose attributes are to be set.

nMask
Specifies which attributes are to be set (see the Remarks).

lpszItem
Address of a null-terminated string specifying the item's label.

nImage
Index of the item's image within the image list.

nState
Specifies values for states to be changed (see the Remarks).

nStateMask
Specifies which states are to be changed (see the Remarks).

lParam
A 32-bit application-specific value to be associated with the item.

nIndent
Width, in pixels, of the indentation. If nIndent is less than the system-defined minimum width, the new
width is set to the system-defined minimum

Nonzero if successful; otherwise zero.

The iItem and iSubItem members of the LVITEM structure and the nItem and nSubItem parameters
identify the item and subitem whose attributes are to be set.

The mask member of the LVITEM structure and the nMask parameter specify which item attributes are to
be set:

LVIF_TEXT The pszText member or the lpszItem parameter is the address of a null-terminated
string; the cchTextMax member is ignored.

LVIF_STATE The stateMask member or nStateMask parameter specifies which item states to change
and the state member or nState parameter contains the values for those states.

See the example for CListCtrl::HitTest.

Prepares a list view control for adding a large number of items.

RemarksRemarks

RemarksRemarks

ExampleExample

 CString str;

 // Add 1024 items to the list view control.
 m_myListCtrl.SetItemCount(1024);

 for (int i = 0; i < 1024; i++)
 {
 str.Format(TEXT("item %d"), i);
 m_myListCtrl.InsertItem(i, str);
 }

CListCtrl::SetItemCountEx

BOOL SetItemCountEx(
 int iCount,
 DWORD dwFlags = LVSICF_NOINVALIDATEALL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

nItems
Number of items that the control will ultimately contain.

To set the item count for a virtual list view control, see CListCtrl::SetItemCountEx.

This member function implements the behavior of the Win32 macro, ListView_SetItemCount, as described
in the Windows SDK.

Sets the item count for a virtual list view control.

iCount
Number of items that the control will ultimately contain.

dwFlags
Specifies the behavior of the list view control after resetting the item count. This value can be a
combination of the following:

LVSICF_NOINVALIDATEALL The list view control will not repaint unless affected items are
currently in view. This is the default value.

LVSICF_NOSCROLL The list view control will not change the scroll position when the item count
changes.

Nonzero if successful; otherwise zero.

This member function implements the behavior of the Win32 macro, ListView_SetItemCountEx, as
described in the Windows SDKand should only be called for virtual list views.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_setitemcount
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_setitemcountex

 CString str;

 // Add 1024 items to the list view control.

 // Force my virtual list view control to allocate
 // enough memory for my 1024 items.
 m_myVirtualListCtrl.SetItemCountEx(1024, LVSICF_NOSCROLL|
 LVSICF_NOINVALIDATEALL);

 for (int i = 0; i < 1024; i++)
 {
 str.Format(TEXT("item %d"), i);
 m_myVirtualListCtrl.InsertItem(i, str);
 }

CListCtrl::SetItemData

BOOL SetItemData(int nItem, DWORD_PTR dwData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

 // Set the data of each item to be equal to its index.
 for (int i = 0; i < m_myListCtrl.GetItemCount(); i++)
 {
 m_myListCtrl.SetItemData(i, i);
 }

CListCtrl::SetItemIndexState

BOOL SetItemIndexState(
 PLVITEMINDEX pItemIndex,
 DWORD dwState,
 DWORD dwMask) const;

ParametersParameters

Sets the 32-bit application-specific value associated with the item specified by nItem.

nItem
Index of the list item whose data is to be set.

dwData
A 32-bit value to be associated with the item.

Nonzero if successful; otherwise 0.

This value is the lParam member of the LVITEM structure, as described in the Windows SDK.

Sets the state of an item in the current list-view control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema

PARAMETER DESCRIPTION

pItemIndex [in] Pointer to an LVITEMINDEX structure that describes
an item. The caller is responsible for allocating this
structure and setting its members.

dwState [in] The state to set the item, which is a bitwise
combination of list view item states. Specify zero to reset,
or one to set, a state.

dwMask [in] A mask of the valid bits of the state specified by the
dwState parameter. Specify a bitwise combination (OR) of
list view item states.

Return ValueReturn Value

RemarksRemarks

CListCtrl::SetItemPosition

BOOL SetItemPosition(
 int nItem,
 POINT pt);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::SetItemState

TRUE if this method is successful; otherwise, FALSE.

For more information about the dwState parameter, see List View Item States.

For more information about the dwMask parameter, see the stateMask member of the LVITEM structure.

This method sends the LVM_SETITEMINDEXSTATE message, which is described in the Windows SDK.

Moves an item to a specified position in a list view control.

nItem
Index of the item whose position is to be set.

pt
A POINT structure specifying the new position, in view coordinates, of the item's upper-left corner.

Nonzero if successful; otherwise zero.

The control must be in icon or small icon view.

If the list view control has the LVS_AUTOARRANGE style, the list view is arranged after the position of the
item is set.

See the example for CListCtrl::GetItemPosition.

Changes the state of an item in a list view control.

https://msdn.microsoft.com/library/windows/desktop/bb774762
https://docs.microsoft.com/windows/desktop/Controls/list-view-item-states
https://docs.microsoft.com/windows/desktop/Controls/list-view-item-states
https://docs.microsoft.com/windows/desktop/Controls/list-view-item-states
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema
https://docs.microsoft.com/windows/desktop/Controls/lvm-setitemindexstate
https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)

BOOL SetItemState(
 int nItem,
 LVITEM* pItem);

BOOL SetItemState(
 int nItem,
 UINT nState,
 UINT nMask);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::SetItemText

BOOL SetItemText(
 int nItem,
 int nSubItem,
 LPCTSTR lpszText);

ParametersParameters

nItem
Index of the item whose state is to be set.

pItem
Address of an LVITEM structure, as described in the Windows SDK. The structure's stateMask member
specifies which state bits to change, and the structure's state member contains the new values for those
bits. The other members are ignored.

nState
New values for the state bits. For a list of possible values, see CListCtrl::GetNextItem and the LVITEM state
member.

nMask
Mask specifying which state bits to change. This value corresponds to the stateMask member of the
LVITEM structure.

Nonzero if successful; otherwise zero.

An item's "state" is a value that specifies the item's availability, indicates user actions, or otherwise reflects
the item's status. A list view control changes some state bits, such as when the user selects an item. An
application might change other state bits to disable or hide the item, or to specify an overlay image or state
image.

See the example for CListCtrl::GetTopIndex.

Changes the text of a list view item or subitem.

nItem
Index of the item whose text is to be set.

nSubItem
Index of the subitem, or zero to set the item label.

lpszText
Pointer to a string that contains the new item text.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::SetOutlineColor

COLORREF SetOutlineColor(COLORREF color);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::SetSelectedColumn

LRESULT SetSelectedColumn(int iCol);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::SetSelectionMark

int SetSelectionMark(int iIndex);

Nonzero if successful; otherwise zero.

This method is not intended for use with controls containing the LVS_OWNERDATA window style (in fact,
this will cause an assertion in Debug builds). For more information about this list control style, see List-
View Controls Overview.

See the example for CListCtrl::InsertItem.

Sets the color of the border of a list-view control if the LVS_EX_BORDERSELECT extended window style is
set.

color
The new COLORREF structure containing the outline color.

The previous COLORREF structure containing the outline color

This member function emulates the functionality of the LVM_SETOUTLINECOLOR message, as described
in the Windows SDK.

Sets the selected column of the list view control.

iCol
The index of the column to be selected.

The return value is not used.

This member function emulates the functionality of the LVM_SETSELECTEDCOLUMN message, as
described in the Windows SDK.

Sets the selection mark of a list view control.

https://docs.microsoft.com/windows/desktop/Controls/list-view-controls-overview
https://docs.microsoft.com/windows/desktop/Controls/list-view-window-styles
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/lvm-setoutlinecolor
https://docs.microsoft.com/windows/desktop/Controls/lvm-setselectedcolumn

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CListCtrl::SetTextBkColor

BOOL SetTextBkColor(COLORREF cr);

ParametersParameters

Return ValueReturn Value

ExampleExample

 // Use the 3D button face color for the background.
 COLORREF crBkColor = ::GetSysColor(COLOR_3DFACE);
 m_myListCtrl.SetTextBkColor(crBkColor);
 ASSERT(m_myListCtrl.GetTextBkColor() == crBkColor);

CListCtrl::SetTextColor

BOOL SetTextColor(COLORREF cr);

ParametersParameters

Return ValueReturn Value

ExampleExample

iIndex
The zero-based index of the first item in a multiple selection.

The previous selection mark, or -1 if there was no selection mark.

This member function implements the behavior of the Win32 macro, ListView_SetSelectionMark, as
described in the Windows SDK.

See the example for CListCtrl::GetSelectionMark.

Sets the background color of text in a list view control.

cr
A COLORREF specifying the new text background color. For information, see COLORREF in the Windows
SDK.

Nonzero if successful; otherwise zero.

Sets the text color of a list view control.

cr
A COLORREF specifying the new text color. For information, see COLORREF in the Windows SDK.

Nonzero if successful; otherwise zero.

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_setselectionmark
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref

 // Use the window text color for
 // the item text of the list view control.
 COLORREF crTextColor = ::GetSysColor(COLOR_WINDOWTEXT);
 m_myListCtrl.SetTextColor(crTextColor);
 ASSERT(m_myListCtrl.GetTextColor() == crTextColor);

CListCtrl::SetTileInfo

BOOL SetTileInfo(PLVTILEINFO pti);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::SetTileViewInfo

BOOL SetTileViewInfo(PLVTILEVIEWINFO ptvi);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::SetToolTips

CToolTipCtrl* SetToolTips(CToolTipCtrl* pWndTip);

ParametersParameters

Return ValueReturn Value

Sets the information for a tile of the list view control.

pti
A pointer to an LVTILEINFO structure containing the information to be set.

Returns TRUE on success, FALSE on failure.

This member function emulates the functionality of the LVM_SETTILEINFO message, as described in the
Windows SDK.

Sets information that a list view control uses in tile view.

ptvi
A pointer to an LVTILEVIEWINFO structure containing the information to set.

Returns TRUE on success, FALSE on failure.

This member function emulates the functionality of the LVM_SETTILEVIEWINFO message, as described in
the Windows SDK.

Sets the tooltip control that the list view control will use to display tooltips.

pWndTip
A pointer to a CToolTipCtrl object that the list control will use.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvtileinfo
https://docs.microsoft.com/windows/desktop/Controls/lvm-settileinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvtileviewinfo
https://docs.microsoft.com/windows/desktop/Controls/lvm-settileviewinfo

RemarksRemarks

CListCtrl::SetView

DWORD SetView(int iView);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::SetWorkAreas

void SetWorkAreas(
 int nWorkAreas,
 LPRECT lpRect);

ParametersParameters

RemarksRemarks

ExampleExample

 // Remove all working areas.
 m_myListCtrl.SetWorkAreas(0, NULL);

CListCtrl::SortGroups

A pointer to a CToolTipCtrl object containing the tooltip previously used by the control, or NULL if no
tooltips were used previously.

This member function implements the behavior of the Win32 message LVM_SETTOOLTIPS, as described
in the Windows SDK.

To not use tooltips, indicate the LVS_NOTOOLTIPS style when you create the CListCtrl object.

Sets the view of the list view control.

iView
The view to be selected.

Returns 1 if successful, or -1 otherwise. For example, -1 is returned if the view is invalid.

This member function emulates the functionality of the LVM_SETVIEW message, as described in the
Windows SDK.

Sets the area where icons can be displayed in a list view control.

nWorkAreas
The number of RECT structures (or CRect objects) in the array pointed to by lpRect.

lpRect
The address of an array of RECT structures (or CRect objects) that specify the new work areas of the list
view control. These areas must be specified in client coordinates. If this parameter is NULL, the working
area will be set to the client area of the control.

This member function implements the behavior of the Win32 macro, ListView_SetWorkAreas, as described
in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/lvm-settooltips
https://docs.microsoft.com/windows/desktop/Controls/lvm-setview
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_setworkareas

BOOL SortGroups(
 PFNLVGROUPCOMPARE _pfnGroupCompare,
 LPVOID _plv);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CListCtrl::SortItems

BOOL SortItems(
 PFNLVCOMPARE pfnCompare,
 DWORD_PTR dwData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

int CALLBACK CompareFunc(LPARAM lParam1,
 LPARAM lParam2,
 LPARAM lParamSort);

Uses an application-defined comparison function to sort groups by ID within a list view control.

_pfnGroupCompare
A pointer to the group comparison function.

_plv
A void pointer.

Returns TRUE on success, FALSE on failure.

This member function emulates the functionality of the LVM_SORTGROUPS message, as described in the
Windows SDK.

Sorts list view items by using an application-defined comparison function.

pfnCompare
[in] Address of the application-defined comparison function.

The sort operation calls the comparison function each time the relative order of two list items needs to be
determined. The comparison function must be either a static member of a class or a stand-alone function
that is not a member of any class.

dwData
[in] Application-defined value that is passed to the comparison function.

TRUE if the method successful; otherwise FALSE.

This method changes the index of each item to reflect the new sequence.

The comparison function, pfnCompare, has the following form:

The comparison function must return a negative value if the first item should precede the second, a positive
value if the first item should follow the second, or zero if the two items are equal.

The lParam1 parameter is the 32-bit value associated with the first item that is compared, and the lParam2

https://docs.microsoft.com/windows/desktop/Controls/lvm-sortgroups

ExampleExample

// Sort items by associated lParam
int CALLBACK CListCtrlDlg::MyCompareProc(LPARAM lParam1, LPARAM lParam2,
 LPARAM lParamSort)
{
 UNREFERENCED_PARAMETER(lParamSort);
return (int)(lParam1 - lParam2);
}

// Sort the items by passing in the comparison function.
void CListCtrlDlg::Sort()
{
 m_myListCtrl.SortItems(&CListCtrlDlg::MyCompareProc, 0);
}

CListCtrl::SortItemsEx

BOOL SortItemsEx(
 PFNLVCOMPARE pfnCompare,
 DWORD_PTR dwData);

ParametersParameters

PARAMETER DESCRIPTION

pfnCompare [in] Address of the application-defined comparison
function.

The sort operation calls the comparison function each
time the relative order of two list items needs to be
determined. The comparison function must be either a
static member of a class or a stand-alone function that is
not a member of any class.

dwData [in] Application-defined value passed to the comparison
function.

Return ValueReturn Value

RemarksRemarks

parameter is the value associated with the second item. These are the values that were specified in the
lParam member of the items' LVITEM structure when they were inserted into the list. The lParamSort
parameter is the same as the dwData value.

This method sends the LVM_SORTITEMS message, which is described in the Windows SDK.

The following is a simple comparison function that results in items being sorted by their lParam values.

Sorts the items of the current list-view control by using an application-defined comparison function.

TRUE if this method is successful; otherwise, FALSE.

This method changes the index of each item to reflect the new sequence.

The comparison function, pfnCompare, has the following form:

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvitema
https://docs.microsoft.com/windows/desktop/Controls/lvm-sortitems

int CALLBACK CompareFunc(LPARAM lParam1,
 LPARAM lParam2,
 LPARAM lParamSort);

NOTENOTE

ExampleExample

public:
 // Variable used to access the list control.
 CListCtrl m_listCtrl;

ExampleExample

This message is like LVM_SORTITEMS, except for the type of information passed to the comparison
function. In LVM_SORTITEMS, lParam1 and lParam2 are the values of the items to compare. In
LVM_SORTITEMSEX, lParam1 is the current index of the first item to compare and lParam2 is the current
index of the second item. You can send an LVM_GETITEMTEXT message to retrieve more information
about an item.

The comparison function must return a negative value if the first item should precede the second, a positive
value if the first item should follow the second, or zero if the two items are equal.

During the sorting process, the list-view contents are unstable. If the callback function sends any messages to the
list-view control other than LVM_GETITEM, the results are unpredictable.

This method sends the LVM_SORTITEMSEX message, which is described in the Windows SDK.

The following code example defines a variable, m_listCtrl , that is used to access the current list-view
control. This variable is used in the next example.

The following code example demonstrates the SortItemEx method. In an earlier section of this code
example, we created a list-view control that displays two columns titled "ClientID" and "Grade" in a report
view. The following code example sorts the table by using the values in the "Grade" column.

https://docs.microsoft.com/windows/desktop/Controls/lvm-sortitems
https://docs.microsoft.com/windows/desktop/Controls/lvm-sortitems
https://docs.microsoft.com/windows/desktop/Controls/lvm-sortitemsex
https://docs.microsoft.com/windows/desktop/Controls/lvm-getitemtext
https://docs.microsoft.com/windows/desktop/Controls/lvm-getitem
https://docs.microsoft.com/windows/desktop/Controls/lvm-sortitemsex

// The ListCompareFunc() method is a global function used by SortItemEx().
int CALLBACK ListCompareFunc(
 LPARAM lParam1,
 LPARAM lParam2,
 LPARAM lParamSort)
{
 CListCtrl* pListCtrl = (CListCtrl*) lParamSort;
 CString strItem1 = pListCtrl->GetItemText(static_cast<int>(lParam1), 1);
 CString strItem2 = pListCtrl->GetItemText(static_cast<int>(lParam2), 1)
 int x1 = _tstoi(strItem1.GetBuffer());
 int x2 = _tstoi(strItem2.GetBuffer());
 int result = 0;
 if ((x1 - x2) < 0)
 result = -1;
 else if ((x1 - x2) == 0)
 result = 0;
 else
 result = 1;

 return result;
}

void CCListCtrl_s2Dlg::OnBnClickedButton1()
{
 // SortItemsEx
 m_listCtrl.SortItemsEx(ListCompareFunc, (LPARAM)&m_listCtrl);
}

CListCtrl::SubItemHitTest

int SubItemHitTest(LPLVHITTESTINFO pInfo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Determines which list view item, if any, is at a given position.

pInfo
A pointer to the LVHITTESTINFO structure.

The one-based index of the item, or subitem, being tested (if any), or -1 otherwise.

This member function implements the behavior of the Win32 macro, ListView_SubItemHitTest, as
described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-taglvhittestinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-listview_subitemhittest

void CListCtrlDlg::OnDblClk(NMHDR* pNMHDR, LRESULT* pResult)
{
 UNREFERENCED_PARAMETER(pResult);
LPNMITEMACTIVATE pia = (LPNMITEMACTIVATE)pNMHDR;
 LVHITTESTINFO lvhti;

 // Clear the subitem text the user clicked on.
 lvhti.pt = pia->ptAction;
 m_myListCtrl.SubItemHitTest(&lvhti);

 if (lvhti.flags & LVHT_ONITEMLABEL)
 {
 m_myListCtrl.SetItemText(lvhti.iItem, lvhti.iSubItem, NULL);
 }
}

CListCtrl::Update

BOOL Update(int nItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

See also

Forces the list view control to repaint the item specified by nItem.

nItem
Index of the item to be updated.

Nonzero if successful; otherwise zero.

This function also arranges the list view control if it has the LVS_AUTOARRANGE style.

See the example for CListCtrl::GetSelectedCount.

MFC Sample ROWLIST
CWnd Class
Hierarchy Chart
CImageList Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CListView Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CListView : public CCtrlView

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CListView::CListView Constructs a CListView object.

Public MethodsPublic Methods

NAME DESCRIPTION

CListView::GetListCtrl Returns the list control associated with the view.

Protected MethodsProtected Methods

NAME DESCRIPTION

CListView::RemoveImageList Removes the specified image list from the list view.

Remarks

Inheritance Hierarchy

Requirements

Simplifies use of the list control and of CListCtrl, the class that encapsulates list-control functionality, with
MFC's document-view architecture.

For more information on this architecture, see the overview for the CView class and the cross-references
cited there.

CObject

CCmdTarget

CWnd

CView

CCtrlView

CListView

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/clistview-class.md

CListView::CListView

CListView();

CListView::GetListCtrl

CListCtrl& GetListCtrl() const;

Return ValueReturn Value

ExampleExample

void CMyListView::OnInitialUpdate()
{
 CListView::OnInitialUpdate();

 // this code only works for a report-mode list view
 ASSERT(GetStyle() & LVS_REPORT);

 CListCtrl& listCtrl = GetListCtrl();

 // Insert a column. This override is the most convenient.
 listCtrl.InsertColumn(0, _T("Player Name"), LVCFMT_LEFT);

 // The other InsertColumn() override requires an initialized
 // LVCOLUMN structure.
 LVCOLUMN col;
 col.mask = LVCF_FMT | LVCF_TEXT;
 col.pszText = _T("Jersey Number");
 col.fmt = LVCFMT_LEFT;
 listCtrl.InsertColumn(1, &col);

 // Set reasonable widths for our columns
 listCtrl.SetColumnWidth(0, LVSCW_AUTOSIZE_USEHEADER);
 listCtrl.SetColumnWidth(1, LVSCW_AUTOSIZE_USEHEADER);
}

CListView::RemoveImageList

void RemoveImageList(int nImageList);

ParametersParameters

See also

Header: afxcview.h

Constructs a CListView object.

Call this member function to get a reference to the list control associated with the view.

A reference to the list control associated with the view.

Removes the specified image list from the list view.

nImageList
The zero-based index of the image to remove.

MFC Sample ROWLIST
CCtrlView Class
Hierarchy Chart
CCtrlView Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CLongBinary Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CLongBinary : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CLongBinary::CLongBinary Constructs a CLongBinary object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CLongBinary::m_dwDataLength Contains the actual size in bytes of the data object whose
handle is stored in m_hData .

CLongBinary::m_hData Contains a Windows HGLOBAL handle to the actual image
object.

Remarks

NOTENOTE

Simplifies working with very large binary data objects (often called BLOBs, or "binary large objects") in a
database.

For example, a record field in a SQL table might contain a bitmap representing a picture. A CLongBinary object
stores such an object and keeps track of its size.

In general, it is better practice now to use CByteArray in conjunction with the DFX_Binary function. You can still use
CLongBinary , but in general CByteArray provides more functionality under Win32, since there is no longer the size

limitation encountered with 16-bit CByteArray . This advice applies to programming with Data Access Objects (DAO) as
well as Open Database Connectivity (ODBC).

To use a CLongBinary object, declare a field data member of type CLongBinary in your recordset class. This
member will be an embedded member of the recordset class and will be constructed when the recordset is
constructed. After the CLongBinary object is constructed, the record field exchange (RFX) mechanism loads the
data object from a field in the current record on the data source and stores it back to the record when the record
is updated. RFX queries the data source for the size of the binary large object, allocates storage for it (via the
CLongBinary object's m_hData data member), and stores an HGLOBAL handle to the data in m_hData . RFX also

stores the actual size of the data object in the m_dwDataLength data member. Work with the data in the object
through m_hData , using the same techniques you would normally use to manipulate the data stored in a

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/clongbinary-class.md

Inheritance Hierarchy

Requirements

CLongBinary::CLongBinary

CLongBinary();

CLongBinary::m_dwDataLength

SQLULEN m_dwDataLength;

RemarksRemarks

CLongBinary::m_hData

HGLOBAL m_hData;

See also

Windows HGLOBAL handle.

When you destroy your recordset, the embedded CLongBinary object is also destroyed, and its destructor
deallocates the HGLOBAL data handle.

For more information about large objects and the use of CLongBinary , see the articles Recordset (ODBC) and
Recordset: Working with Large Data Items (ODBC).

CObject

CLongBinary

Header: afxdb_.h

Constructs a CLongBinary object.

Stores the actual size in bytes of the data stored in the HGLOBAL handle in m_hData .

This size may be smaller than the size of the memory block allocated for the data. Call the Win32 GLobalSize
function to get the allocated size.

Stores a Windows HGLOBAL handle to the actual binary large object data.

CObject Class
Hierarchy Chart
CRecordset Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-working-with-large-data-items-odbc
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalsize

CMap Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
template<class KEY, class ARG_KEY, class VALUE, class ARG_VALUE>class CMap : public CObject

ParametersParameters

Members
Public StructuresPublic Structures

NAME DESCRIPTION

CMap::CPair A nested structure containing a key value and the value of
the associated object.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMap::CMap Constructs a collection that maps keys to values.

Public MethodsPublic Methods

NAME DESCRIPTION

CMap::GetCount Returns the number of elements in this map.

CMap::GetHashTableSize Returns the number of elements in the hash table.

CMap::GetNextAssoc Gets the next element for iterating.

CMap::GetSize Returns the number of elements in this map.

CMap::GetStartPosition Returns the position of the first element.

A dictionary collection class that maps unique keys to values.

KEY
Class of the object used as the key to the map.

ARG_KEY
Data type used for KEY arguments; usually a reference to KEY .

VALUE
Class of the object stored in the map.

ARG_VALUE
Data type used for VALUE arguments; usually a reference to VALUE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmap-class.md

CMap::InitHashTable Initializes the hash table and specifies its size.

CMap::IsEmpty Tests for the empty-map condition (no elements).

CMap::Lookup Looks up the value mapped to a given key.

CMap::PGetFirstAssoc Returns a pointer to the first element.

CMap::PGetNextAssoc Gets a pointer to the next element for iterating.

CMap::PLookup Returns a pointer to a key whose value matches the specified
value.

CMap::RemoveAll Removes all the elements from this map.

CMap::RemoveKey Removes an element specified by a key.

CMap::SetAt Inserts an element into the map; replaces an existing element
if a matching key is found.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CMap::operator [] Inserts an element into the map — operator substitution for
SetAt .

Remarks

Inheritance Hierarchy

Once you have inserted a key-value pair (element) into the map, you can efficiently retrieve or delete the pair
using the key to access it. You can also iterate over all the elements in the map.

A variable of type POSITION is used for alternate access to entries. You can use a POSITION to "remember" an
entry and to iterate through the map. You might think that this iteration is sequential by key value; it is not. The
sequence of retrieved elements is indeterminate.

Certain member functions of this class call global helper functions that must be customized for most uses of the
CMap class. See Collection Class Helpers in the Macros and Globals section of the MFC Reference.

CMap overrides CObject::Serialize to support serialization and dumping of its elements. If a map is stored to an
archive using Serialize , each map element is serialized in turn. The default implementation of the
SerializeElements helper function does a bitwise write. For information about serialization of pointer collection

items derived from CObject or other user defined types, see How to: Make a Type-Safe Collection.

If you need a diagnostic dump of the individual elements in the map (the keys and values), you must set the depth
of the dump context to 1 or greater.

When a CMap object is deleted, or when its elements are removed, the keys and values both are removed.

Map class derivation is similar to list derivation. See the article Collections for an illustration of the derivation of a
special-purpose list class.

Requirements

CMap::CMap

CMap(INT_PTR nBlockSize = 10);

ParametersParameters

RemarksRemarks

ExampleExample

// declares a map of ints to points
CMap<int,int,CPoint,CPoint> myMap(16);

CMap::CPair

RemarksRemarks

ExampleExample

CMap::GetCount

INT_PTR GetCount() const;

Return ValueReturn Value

ExampleExample

CObject

CMap

Header: afxtempl.h

Constructs an empty map.

nBlockSize
Specifies the memory-allocation granularity for extending the map.

As the map grows, memory is allocated in units of nBlockSize entries.

Contains a key value and the value of the associated object.

This is a nested structure within class CMap.

The structure is composed of two fields:

key The actual value of the key type.

value The value of the associated object.

It is used to store the return values from CMap::PLookup, CMap::PGetFirstAssoc, and CMap::PGetNextAssoc.

For an example of usage, see the example for CMap::PLookup.

Retrieves the number of elements in the map.

The number of elements.

CMap::GetHashTableSize

UINT GetHashTableSize() const;

Return ValueReturn Value

ExampleExample

CMap<int,int,CPoint,CPoint> myMap;

UINT uTableSize = myMap.GetHashTableSize();

CMap::GetNextAssoc

void GetNextAssoc(
 POSITION& rNextPosition,
 KEY& rKey,
 VALUE& rValue) const;

ParametersParameters

RemarksRemarks

ExampleExample

CMap::GetSize

See the example for CMap::Lookup.

Determines the number of elements in the hash table for the map.

The number of elements in the hash table.

Retrieves the map element at rNextPosition , then updates rNextPosition to refer to the next element in the map.

rNextPosition
Specifies a reference to a POSITION value returned by a previous GetNextAssoc or GetStartPosition call.

KEY
Template parameter specifying the type of the map's key.

rKey
Specifies the returned key of the retrieved element.

VALUE
Template parameter specifying the type of the map's value.

rValue
Specifies the returned value of the retrieved element.

This function is most useful for iterating through all the elements in the map. Note that the position sequence is
not necessarily the same as the key value sequence.

If the retrieved element is the last in the map, then the new value of rNextPosition is set to NULL.

See the example for CMap::SetAt.

Returns the number of map elements.

INT_PTR GetSize() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMap<int,int,CPoint,CPoint> myMap;

myMap.InitHashTable(257);

// Add 200 elements to the map.
for (int i = 0; i < 200; i++)
 myMap[i] = CPoint(i, i);

// Remove the elements with even key values.
CPoint pt;
for (int i = 0; myMap.Lookup(i, pt); i += 2)
{
 myMap.RemoveKey(i);
}

ASSERT(myMap.GetSize() == 100);
TRACE(_T("myMap with %d elements:\n"), myMap.GetCount());
 POSITION pos = myMap.GetStartPosition();
int iKey;
CPoint ptVal;
 while (pos != NULL)
 {
 myMap.GetNextAssoc(pos, iKey, ptVal);
 TRACE(_T("\t[%d] = (%d,%d)\n"), iKey, ptVal.x, ptVal.y);
}

CMap::GetStartPosition

POSITION GetStartPosition() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMap::InitHashTable

void InitHashTable(UINT hashSize, BOOL bAllocNow = TRUE);

The number of items in the map.

Call this method to retrieve the number of elements in the map.

Starts a map iteration by returning a POSITION value that can be passed to a GetNextAssoc call.

A POSITION value that indicates a starting position for iterating the map; or NULL if the map is empty.

The iteration sequence is not predictable; therefore, the "first element in the map" has no special significance.

See the example for CMap::SetAt.

Initializes the hash table.

ParametersParameters

RemarksRemarks

ExampleExample

CMap::IsEmpty

BOOL IsEmpty() const;

Return ValueReturn Value

ExampleExample

CMap::Lookup

BOOL Lookup(ARG_KEY key, VALUE& rValue) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

hashSize
Number of entries in the hash table.

bAllocNow
If TRUE, allocates the hash table upon initialization; otherwise the table is allocated when needed.

For best performance, the hash table size should be a prime number. To minimize collisions, the size should be
roughly 20 percent larger than the largest anticipated data set.

See the example for CMap::Lookup.

Determines whether the map is empty.

Nonzero if this map contains no elements; otherwise 0.

See the example for CMap::RemoveAll.

Looks up the value mapped to a given key.

ARG_KEY
Template parameter specifying the type of the key value.

key
Specifies the key that identifies the element to be looked up.

VALUE
Specifies the type of the value to be looked up.

rValue
Receives the looked-up value.

Nonzero if the element was found; otherwise 0.

Lookup uses a hashing algorithm to quickly find the map element with a key that exactly matches the given key.

CMap<int,int,CPoint,CPoint> myMap;

myMap.InitHashTable(257);

// Add 200 elements to the map.
for (int i = 0; i < 200; i++)
 myMap[i] = CPoint(i, i);

// Remove the elements with even key values.
CPoint pt;
for (int i = 0; myMap.Lookup(i, pt); i += 2)
{
 myMap.RemoveKey(i);
}

ASSERT(myMap.GetSize() == 100);
TRACE(_T("myMap with %d elements:\n"), myMap.GetCount());
 POSITION pos = myMap.GetStartPosition();
int iKey;
CPoint ptVal;
 while (pos != NULL)
 {
 myMap.GetNextAssoc(pos, iKey, ptVal);
 TRACE(_T("\t[%d] = (%d,%d)\n"), iKey, ptVal.x, ptVal.y);
}

CMap::operator []

VALUE& operator[](arg_key key);

ParametersParameters

RemarksRemarks

ExampleExample

CMap::PGetFirstAssoc

A convenient substitute for the SetAt member function.

VALUE
Template parameter specifying the type of the map value.

ARG_KEY
Template parameter specifying the type of the key value.

key
The key used to retrieve the value from the map.

Thus it can be used only on the left side of an assignment statement (an l-value). If there is no map element with
the specified key, then a new element is created.

There is no "right side" (r-value) equivalent to this operator because there is a possibility that a key may not be
found in the map. Use the Lookup member function for element retrieval.

See the example for CMap::Lookup.

Returns the first entry of the map object.

const CPair* PGetFirstAssoc() const;
CPair* PGetFirstAssoc();

Return ValueReturn Value

RemarksRemarks

ExampleExample

typedef CMap<int, int, CPoint, CPoint> CMyMap;
CMyMap myMap;

myMap.InitHashTable(257);

// Add 10 elements to the map.
for (int i = 0; i <= 10; i++)
 myMap.SetAt(i, CPoint(i, i));

// Print the element value with even key values.
int nKey = 0;
CPoint pt;
CMyMap::CPair* pCurVal;

pCurVal = myMap.PGetFirstAssoc();
while (pCurVal != NULL)
{
 if ((nKey%2) == 0)
 {
 _tprintf_s(_T("Current key value at %d: %d,%d\n"),
 pCurVal->key, pCurVal->value.x, pCurVal->value.y);
 }
 pCurVal = myMap.PGetNextAssoc(pCurVal);
 nKey++;
}

CMap::PGetNextAssoc

const CPair *PGetNextAssoc(const CPair* pAssocRet) const;

CPair *PGetNextAssoc(const CPair* pAssocRet);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

A pointer to the first entry in the map; see CMap::CPair. If the map contains no entries, the value is NULL.

Call this function to return a pointer the first element in the map object.

Retrieves the map element pointed to by pAssocRec.

pAssocRet
Points to a map entry returned by a previous PGetNextAssoc or CMap::PGetFirstAssoc call.

A pointer to the next entry in the map; see CMap::CPair. If the element is the last in the map, the value is NULL.

Call this method to iterate through all the elements in the map. Retrieve the first element with a call to
PGetFirstAssoc and then iterate through the map with successive calls to PGetNextAssoc .

CMap::PLookup

const CPair* PLookup(ARG_KEY key) const;
CPair* PLookup(ARG_KEY key);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

typedef CMap<int, int, CPoint, CPoint> CMyMap;
CMyMap myMap;

myMap.InitHashTable(257);

// Add 10 elements to the map.
for (int i = 0; i <= 10; i++)
 myMap[i] = CPoint(i, i);

// Print the element values with even key values.
CMyMap::CPair *pCurVal;

for (int i = 0; i <= myMap.GetCount() ; i += 2)
{
 pCurVal = myMap.PLookup(i);
 _tprintf_s(_T("Current key value at %d: %d,%d\n"),
 pCurVal->key, pCurVal->value.x, pCurVal->value.y);
}

CMap::RemoveAll

void RemoveAll();

RemarksRemarks

ExampleExample

See the example for CMap::PGetFirstAssoc.

Finds the value mapped to a given key.

key
Key for the element to be searched for.

A pointer to a key structure; see CMap::CPair. If no match is found, CMap::PLookup returns NULL.

Call this method to search for a map element with a key that exactly matches the given key.

Removes all the values from this map by calling the global helper function DestructElements .

The function works correctly if the map is already empty.

CMap<int,int,CPoint,CPoint> myMap;

// Add 10 elements to the map.
for (int i=0;i < 10;i++)
 myMap.SetAt(i, CPoint(i, i));

myMap.RemoveAll();

ASSERT(myMap.IsEmpty());

CMap::RemoveKey

BOOL RemoveKey(ARG_KEY key);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMap::SetAt

void SetAt(ARG_KEY key, ARG_VALUE newValue);

ParametersParameters

RemarksRemarks

Looks up the map entry corresponding to the supplied key; then, if the key is found, removes the entry.

ARG_KEY
Template parameter specifying the type of the key.

key
Key for the element to be removed.

Nonzero if the entry was found and successfully removed; otherwise 0.

The DestructElements helper function is used to remove the entry.

See the example for CMap::SetAt.

The primary means to insert an element in a map.

ARG_KEY
Template parameter specifying the type of the key parameter.

key
Specifies the key of the new element.

ARG_VALUE
Template parameter specifying the type of the newValue parameter.

newValue
Specifies the value of the new element.

First, the key is looked up. If the key is found, then the corresponding value is changed; otherwise a new key-
value pair is created.

ExampleExample

CMap<int, int, CPoint, CPoint> myMap;

// Add 10 elements to the map.
for (int i = 0; i < 10; i++)
 myMap.SetAt(i, CPoint(i, i));

// Remove the elements with even key values.
POSITION pos = myMap.GetStartPosition();
int nKey;
CPoint pt;
while (pos != NULL)
{
 myMap.GetNextAssoc(pos, nKey, pt);

 if ((nKey % 2) == 0)
 myMap.RemoveKey(nKey);
}

// Print the element values.
pos = myMap.GetStartPosition();
while (pos != NULL)
{
 myMap.GetNextAssoc(pos, nKey, pt);
 _tprintf_s(_T("Current key value at %d: %d,%d\n"),
 nKey, pt.x, pt.y);
}

See also
MFC Sample COLLECT
CObject Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMapPtrToPtr Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMapPtrToPtr : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMapStringToOb::CMapStringToOb Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMapStringToOb::GetCount Returns the number of elements in this map.

CMapStringToOb::GetHashTableSize Determines the current number of elements in the hash
table.

CMapStringToOb::GetNextAssoc Gets the next element for iterating.

CMapStringToOb::GetSize Returns the number of elements in this map.

CMapStringToOb::GetStartPosition Returns the position of the first element.

CMapStringToOb::HashKey Calculates the hash value of a specified key.

CMapStringToOb::InitHashTable Initializes the hash table.

CMapStringToOb::IsEmpty Tests for the empty-map condition (no elements).

Supports maps of void pointers keyed by void pointers.

The member functions of CMapPtrToPtr are similar to the member functions of class CMapStringToOb. Because
of this similarity, you can use the CMapStringToOb reference documentation for member function specifics.
Wherever you see a CObject pointer as a function parameter or return value, substitute a pointer to void.
Wherever you see a CString or a const pointer to char as a function parameter or return value, substitute a
pointer to void.

BOOL CMapStringToOb::Lookup(const char* <key>, CObject*& <rValue>) const;

for example, translates to

BOOL CMapPtrToPtr::Lookup(void* <key>, void*& <rValue>) const;

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmapptrtoptr-class.md

CMapStringToOb::Lookup Looks up a void pointer based on the void pointer key. The
pointer value, not the entity it points to, is used for the key
comparison.

CMapStringToOb::LookupKey Returns a reference to the key associated with the specified
key value.

CMapStringToOb::RemoveAll Removes all the elements from this map.

CMapStringToOb::RemoveKey Removes an element specified by a key.

CMapStringToOb::SetAt Inserts an element into the map; replaces an existing
element if a matching key is found.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CMapStringToOb::operator [] Inserts an element into the map — operator substitution for
SetAt .

Remarks

Inheritance Hierarchy

Requirements

See also

CMapPtrToPtr incorporates the IMPLEMENT_DYNAMIC macro to support run-time type access and dumping
to a CDumpContext object. If you need a dump of individual map elements (pointer values), you must set the
depth of the dump context to 1 or greater.

Pointer-to-pointer maps may not be serialized.

When a CMapPtrToPtr object is deleted, or when its elements are removed, only the pointers are removed, not
the entities they reference.

For more information on CMapPtrToPtr , see the article Collections.

CObject

CMapPtrToPtr

Header: afxcoll.h

CObject Class
Hierarchy Chart

CMapPtrToWord Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMapPtrToWord : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMapStringToOb::CMapStringToOb Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMapStringToOb::GetCount Returns the number of elements in this map.

CMapStringToOb::GetHashTableSize Determines the current number of elements in the hash
table.

CMapStringToOb::GetNextAssoc Gets the next element for iterating.

CMapStringToOb::GetSize Returns the number of elements in this map.

CMapStringToOb::GetStartPosition Returns the position of the first element.

CMapStringToOb::HashKey Calculates the hash value of a specified key.

CMapStringToOb::InitHashTable Initializes the hash table.

CMapStringToOb::IsEmpty Tests for the empty-map condition (no elements).

Supports maps of 16-bit words keyed by void pointers.

The member functions of CMapPtrToWord are similar to the member functions of class CMapStringToOb.
Because of this similarity, you can use the CMapStringToOb reference documentation for member function
specifics. Wherever you see a CObject pointer as a function parameter or return value, substitute WORD.
Wherever you see a CString or a const pointer to char as a function parameter or return value, substitute a
pointer to void.

BOOL CMapStringToOb::Lookup(const char* <key>, CObject*& <rValue>) const;

for example, translates to

BOOL CMapPtrToWord::Lookup(const void* <key>, WORD& <rValue>) const;

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmapptrtoword-class.md

CMapStringToOb::Lookup Looks up a void pointer based on the void pointer key. The
pointer value, not the entity it points to, is used for the key
comparison.

CMapStringToOb::LookupKey Returns a reference to the key associated with the specified
key value.

CMapStringToOb::RemoveAll Removes all the elements from this map.

CMapStringToOb::RemoveKey Removes an element specified by a key.

CMapStringToOb::SetAt Inserts an element into the map; replaces an existing element
if a matching key is found.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CMapStringToOb::operator [] Inserts an element into the map — operator substitution for
SetAt .

Remarks

Inheritance Hierarchy

Requirements

See also

CMapWordToPtr incorporates the IMPLEMENT_DYNAMIC macro to support run-time type access and dumping
to a CDumpContext object. If you need a dump of individual map elements, you must set the depth of the dump
context to 1 or greater.

Pointer-to-word maps may not be serialized.

When a CMapPtrToWord object is deleted, or when its elements are removed, the pointers and the words are
removed. The entities referenced by the key pointers are not removed.

For more information on CMapPtrToWord , see the article Collections.

CObject

CMapPtrToWord

Header: afxcoll.h

CObject Class
Hierarchy Chart

CMapStringToOb Class
3/4/2019 • 13 minutes to read • Edit Online

Syntax
class CMapStringToOb : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMapStringToOb::CMapStringToOb Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMapStringToOb::GetCount Returns the number of elements in this map.

CMapStringToOb::GetHashTableSize Determines the current number of elements in the hash table.

CMapStringToOb::GetNextAssoc Gets the next element for iterating.

CMapStringToOb::GetSize Returns the number of elements in this map.

CMapStringToOb::GetStartPosition Returns the position of the first element.

CMapStringToOb::HashKey Calculates the hash value of a specified key.

CMapStringToOb::InitHashTable Initializes the hash table.

CMapStringToOb::IsEmpty Tests for the empty-map condition (no elements).

CMapStringToOb::Lookup Looks up a void pointer based on the void pointer key. The
pointer value, not the entity it points to, is used for the key
comparison.

CMapStringToOb::LookupKey Returns a reference to the key associated with the specified
key value.

CMapStringToOb::RemoveAll Removes all the elements from this map.

CMapStringToOb::RemoveKey Removes an element specified by a key.

A dictionary collection class that maps unique CString objects to CObject pointers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmapstringtoob-class.md

CMapStringToOb::SetAt Inserts an element into the map; replaces an existing element
if a matching key is found.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CMapStringToOb::operator [] Inserts an element into the map — operator substitution for
SetAt .

Remarks

Inheritance Hierarchy

Requirements

CMapStringToOb::CMapStringToOb

CMapStringToOb(INT_PTR nBlockSize = 10);

ParametersParameters

RemarksRemarks

Once you have inserted a CString - CObject* pair (element) into the map, you can efficiently retrieve or delete
the pair using a string or a CString value as a key. You can also iterate over all the elements in the map.

A variable of type POSITION is used for alternate entry access in all map variations. You can use a POSITION to
"remember" an entry and to iterate through the map. You might think that this iteration is sequential by key value;
it is not. The sequence of retrieved elements is indeterminate.

CMapStringToOb incorporates the IMPLEMENT_SERIAL macro to support serialization and dumping of its elements.
Each element is serialized in turn if a map is stored to an archive, either with the overloaded insertion (<<)
operator or with the Serialize member function.

If you need a diagnostic dump of the individual elements in the map (the CString value and the CObject

contents), you must set the depth of the dump context to 1 or greater.

When a CMapStringToOb object is deleted, or when its elements are removed, the CString objects and the
CObject pointers are removed. The objects referenced by the CObject pointers are not destroyed.

Map class derivation is similar to list derivation. See the article Collections for an illustration of the derivation of a
special-purpose list class.

CObject

CMapStringToOb

Header: afxcoll.h

Constructs an empty CString -to- CObject* map.

nBlockSize
Specifies the memory-allocation granularity for extending the map.

CLASS MEMBER FUNCTION

CMapPtrToPtr CMapPtrToPtr(INT_PTR nBlockSize = 10);

CMapPtrToWord CMapPtrToWord(INT_PTR nBlockSize = 10);

CMapStringToPtr CMapStringToPtr(INT_PTR nBlockSize = 10);

CMapStringToString CMapStringToString(INT_PTR nBlockSize = 10);

CMapWordToOb CMapWordToOb(INT_PTR nBlockSize = 10);

CMapWordToPtr MapWordToPtr(INT_PTR nBlockSize = 10);

ExampleExample

CMapStringToOb map(20); // Map on the stack with blocksize of 20

CMapStringToOb* pm = new CMapStringToOb; // Map on the heap
 // with default blocksize

CMapStringToOb::GetCount

INT_PTR GetCount() const;

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CMapPtrToPtr INT_PTR GetCount() const;

CMapPtrToWord INT_PTR GetCount() const;

CMapStringToPtr INT_PTR GetCount() const;

CMapStringToString INT_PTR GetCount() const;

CMapWordToOb INT_PTR GetCount() const;

CMapWordToPtr INT_PTR GetCount() const;

As the map grows, memory is allocated in units of nBlockSize entries.

The following table shows other member functions that are similar to CMapStringToOb:: CMapStringToOb .

See CObList::CObList for a listing of the CAge class used in all collection examples.

Determines how many elements are in the map.

The number of elements in this map.

The following table shows other member functions that are similar to CMapStringToOb::GetCount .

ExampleExample

CMapStringToOb map;

map.SetAt(_T("Bart"), new CAge(13));
map.SetAt(_T("Homer"), new CAge(36));
ASSERT(map.GetCount() == 2);

CMapStringToOb::GetHashTableSize

UINT GetHashTableSize() const;

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CMapPtrToPtr UINT GetHashTableSize() const;

CMapPtrToWord UINT GetHashTableSize() const;

CMapStringToPtr UINT GetHashTableSize() const;

CMapStringToString UINT GetHashTableSize() const;

CMapWordToOb UINT GetHashTableSize() const;

CMapWordToPtr UINT GetHashTableSize() const;

CMapStringToOb::GetNextAssoc

void GetNextAssoc(
 POSITION& rNextPosition,
 CString& rKey,
 CObject*& rValue) const;

ParametersParameters

See CObList::CObList for a listing of the CAge class used in all collection examples.

Determines the current number of elements in the hash table.

Returns the number of elements in the hash table.

The following table shows other member functions that are similar to CMapStringToOb::GetHashTableSize .

Retrieves the map element at rNextPosition, then updates rNextPosition to refer to the next element in the map.

rNextPosition
Specifies a reference to a POSITION value returned by a previous GetNextAssoc or GetStartPosition call.

rKey
Specifies the returned key of the retrieved element (a string).

rValue

RemarksRemarks

CObject* ob;
map.GetNextAssoc(pos, key, (CObject*&)ob);

CLASS MEMBER FUNCTION

CMapPtrToPtr void GetNextAssoc(POSITION& rNextPosition , void*&
rKey , void*& rValue) const;

CMapPtrToWord void GetNextAssoc(POSITION& rNextPosition , void*&
rKey , WORD& rValue) const;

CMapStringToPtr void GetNextAssoc(POSITION& rNextPosition , CString&
rKey , void*& rValue) const;

CMapStringToString void GetNextAssoc(POSITION& rNextPosition , CString&
rKey , CString& rValue) const;

CMapWordToOb void GetNextAssoc(POSITION& rNextPosition , WORD&
rKey , CObject*& rValue) const;

CMapWordToPtr void GetNextAssoc(POSITION& rNextPosition , WORD&
rKey , void*& rValue) const;

ExampleExample

Specifies the returned value of the retrieved element (a CObject pointer). See Remarks for more about this
parameter.

This function is most useful for iterating through all the elements in the map. Note that the position sequence is
not necessarily the same as the key value sequence.

If the retrieved element is the last in the map, then the new value of rNextPosition is set to NULL.

For the rValue parameter, be sure to cast your object type to CObject*&, which is what the compiler requires, as
shown in the following example:

This is not true of GetNextAssoc for maps based on templates.

The following table shows other member functions that are similar to CMapStringToOb::GetNextAssoc .

See CObList::CObList for a listing of the CAge class used in all collection examples.

CMapStringToOb map;
POSITION pos;
CString key;
CAge* pa;

map.SetAt(_T("Bart"), new CAge(13));
map.SetAt(_T("Lisa"), new CAge(11));
map.SetAt(_T("Homer"), new CAge(36));
map.SetAt(_T("Marge"), new CAge(35));
// Iterate through the entire map, dumping both name and age.
for (pos = map.GetStartPosition(); pos != NULL;)
{
 map.GetNextAssoc(pos, key, (CObject*&)pa);
 #ifdef _DEBUG
 afxDump << key << _T(" : ") << pa << _T("\n");
 #endif
}

Lisa : a CAge at $4724 11
Marge : a CAge at $47A8 35
Homer : a CAge at $4766 36
Bart : a CAge at $45D4 13

CMapStringToOb::GetSize

INT_PTR GetSize() const;

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CMapPtrToPtr INT_PTR GetSize() const;

CMapPtrToWord INT_PTR GetSize() const;

CMapStringToPtr INT_PTR GetSize() const;

CMapStringToString INT_PTR GetSize() const;

CMapWordToOb INT_PTR GetSize() const;

CMapWordToPtr INT_PTR GetSize() const;

ExampleExample

The results from this program are as follows:

Returns the number of map elements.

The number of items in the map.

Call this method to retrieve the number of elements in the map.

The following table shows other member functions that are similar to CMapStringToOb::GetSize .

CMapStringToOb map;

map.SetAt(_T("Bart"), new CAge(13));
map.SetAt(_T("Homer"), new CAge(36));
ASSERT(map.GetSize() == 2);

CMapStringToOb::GetStartPosition

POSITION GetStartPosition() const;

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CMapPtrToPtr POSITION GetStartPosition() const;

CMapPtrToWord POSITION GetStartPosition() const;

CMapStringToPtr POSITION GetStartPosition() const;

CMapStringToString POSITION GetStartPosition() const;

CMapWordToOb POSITION GetStartPosition() const;

CMapWordToPtr POSITION GetStartPosition() const;

ExampleExample

CMapStringToOb::HashKey

UINT HashKey(LPCTSTR key) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Starts a map iteration by returning a POSITION value that can be passed to a GetNextAssoc call.

A POSITION value that indicates a starting position for iterating the map; or NULL if the map is empty.

The iteration sequence is not predictable; therefore, the "first element in the map" has no special significance.

The following table shows other member functions that are similar to CMapStringToOb::GetStartPosition .

See the example for CMapStringToOb::GetNextAssoc.

Calculates the hash value of a specified key.

key
The key whose hash value is to be calculated.

The Key's hash value

The following table shows other member functions that are similar to CMapStringToOb::HashKey .

CLASS MEMBER FUNCTION

CMapPtrToPtr UINT HashKey(void * key) const;

CMapPtrToWord UINT HashKey(void * key) const;

CMapStringToString UINT HashKey(LPCTSTR key) const;

CMapStringToPtr UINT HashKey(LPCTSTR key) const;

CMapWordToOb UINT HashKey(WORD key) const;

CMapWordToPtr UINT HashKey(WORD key) const;

CMapStringToOb::InitHashTable

void InitHashTable(
 UINT hashSize,
 BOOL bAllocNow = TRUE);

ParametersParameters

RemarksRemarks

CLASS MEMBER FUNCTION

CMapPtrToPtr void InitHashTable(UINT hashSize , BOOL bAllocNow

= TRUE);

CMapPtrToWord void InitHashTable(UINT hashSize , BOOL bAllocNow

= TRUE);

CMapStringToString void InitHashTable(UINT hashSize , BOOL bAllocNow

= TRUE);

CMapStringToPtr void InitHashTable(UINT hashSize , BOOL bAllocNow

= TRUE);

CMapWordToOb void InitHashTable(UINT hashSize , BOOL bAllocNow

= TRUE);

Initializes the hash table.

hashSize
Number of entries in the hash table.

bAllocNow
If TRUE, allocates the hash table upon initialization; otherwise the table is allocated when needed.

For best performance, the hash table size should be a prime number. To minimize collisions, the size should be
roughly 20 percent larger than the largest anticipated data set.

The following table shows other member functions that are similar to CMapStringToOb::InitHashTable .

CMapWordToPtr void InitHashTable(UINT hashSize , BOOL bAllocNow

= TRUE);

CLASS MEMBER FUNCTION

CMapStringToOb::IsEmpty

BOOL IsEmpty() const;

Return ValueReturn Value

ExampleExample

RemarksRemarks

CLASS MEMBER FUNCTION

CMapPtrToPtr BOOL IsEmpty() const;

CMapPtrToWord BOOL IsEmpty() const;

CMapStringToPtr BOOL IsEmpty() const;

CMapStringToString BOOL IsEmpty() const;

CMapWordToOb BOOL IsEmpty() const;

CMapWordToPtr BOOL IsEmpty() const;

CMapStringToOb::Lookup

BOOL Lookup(
 LPCTSTR key,
 CObject*& rValue) const;

ParametersParameters

Return ValueReturn Value

Determines whether the map is empty.

Nonzero if this map contains no elements; otherwise 0.

See the example for RemoveAll.

The following table shows other member functions that are similar to CMapStringToOb:: IsEmpty.

Returns a CObject pointer based on a CString value.

key
Specifies the string key that identifies the element to be looked up.

rValue
Specifies the returned value from the looked-up element.

Nonzero if the element was found; otherwise 0.

RemarksRemarks

CLASS MEMBER FUNCTION

CMapPtrToPtr BOOL Lookup(void * key , void*& rValue) const;

CMapPtrToWord BOOL Lookup(void * key , WORD& rValue) const;

CMapStringToPtr BOOL Lookup(LPCTSTR key , void*& rValue) const;

CMapStringToString BOOL Lookup(LPCTSTR key , CString& rValue)
const;

CMapWordToOb BOOL Lookup(WORD key , CObject*& rValue) const;

CMapWordToPtr BOOL Lookup(WORD key , void*& rValue) const;

ExampleExample

CMapStringToOb map;
CAge* pa;

map.SetAt(_T("Bart"), new CAge(13));
map.SetAt(_T("Lisa"), new CAge(11));
map.SetAt(_T("Homer"), new CAge(36));
map.SetAt(_T("Marge"), new CAge(35));
ASSERT(map.Lookup(_T("Lisa"), (CObject*&)pa)); // Is "Lisa" in the map?
ASSERT(*pa == CAge(11)); // Is she 11?

CMapStringToOb::LookupKey

BOOL LookupKey(
 LPCTSTR key,
 LPCTSTR& rKey) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Lookup uses a hashing algorithm to quickly find the map element with a key that matches exactly (CString

value).

The following table shows other member functions that are similar to CMapStringToOb::LookUp .

See CObList::CObList for a listing of the CAge class used in all collection examples.

Returns a reference to the key associated with the specified key value.

key
Specifies the string key that identifies the element to be looked up.

rKey
The reference to the associated key.

Nonzero if the key was found; otherwise 0.

Using a reference to a key is unsafe if used after the associated element was removed from the map or after the

CLASS MEMBER FUNCTION

CMapStringToPtr BOOL LookupKey(LPCTSTR key , LPCTSTR& rKey)
const;

CMapStringToString BOOL LookupKey(LPCTSTR key , LPCTSTR& rKey)
const;

CMapStringToOb::operator []

CObject*& operator[](lpctstr key);

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CMapPtrToPtr void*& operator[](void * key);

CMapPtrToWord WORD& operator[](void * key);

CMapStringToPtr void*& operator[](lpctstr key);

CMapStringToString CString& operator[](lpctstr key);

CMapWordToOb CObject*& operator[](word key);

CMapWordToPtr void*& operator[](word key);

ExampleExample

map was destroyed.

The following table shows other member functions that are similar to CMapStringToOb:: LookupKey .

A convenient substitute for the SetAt member function.

A reference to a pointer to a CObject object; or NULL if the map is empty or key is out of range.

Thus it can be used only on the left side of an assignment statement (an l-value). If there is no map element with
the specified key, then a new element is created.

There is no "right side" (r-value) equivalent to this operator because there is a possibility that a key may not be
found in the map. Use the Lookup member function for element retrieval.

The following table shows other member functions that are similar to CMapStringToOb::operator [] .

See CObList::CObList for a listing of the CAge class used in all collection examples.

CMapStringToOb map;

map[_T("Bart")] = new CAge(13);
map[_T("Lisa")] = new CAge(11);
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("Operator [] example: ") << &map << _T("\n");
#endif

Operator [] example: A CMapStringToOb with 2 elements
[Lisa] = a CAge at $4A02 11
[Bart] = a CAge at $497E 13

CMapStringToOb::RemoveAll

void RemoveAll();

RemarksRemarks

CLASS MEMBER FUNCTION

CMapPtrToPtr void RemoveAll();

CMapPtrToWord void RemoveAll();

CMapStringToPtr void RemoveAll();

CMapStringToString void RemoveAll();

CMapWordToOb void RemoveAll();

CMapWordToPtr void RemoveAll();

ExampleExample

The results from this program are as follows:

Removes all the elements from this map and destroys the CString key objects.

The CObject objects referenced by each key are not destroyed. The RemoveAll function can cause memory leaks
if you do not ensure that the referenced CObject objects are destroyed.

The function works correctly if the map is already empty.

The following table shows other member functions that are similar to CMapStringToOb::RemoveAll .

See CObList::CObList for a listing of the CAge class used in all collection examples.

{
 CMapStringToOb map;

 CAge age1(13); // Two objects on the stack
 CAge age2(36);
 map.SetAt(_T("Bart"), &age1);
 map.SetAt(_T("Homer"), &age2);
 ASSERT(map.GetCount() == 2);
 map.RemoveAll(); // CObject pointers removed; objects not removed.
 ASSERT(map.GetCount() == 0);
 ASSERT(map.IsEmpty());
} // The two CAge objects are deleted when they go out of scope.

CMapStringToOb::RemoveKey

BOOL RemoveKey(LPCTSTR key);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CMapPtrToPtr BOOL RemoveKey(void * key);

CMapPtrToWord BOOL RemoveKey(void * key);

CMapStringToPtr BOOL RemoveKey(LPCTSTR key);

CMapStringToString BOOL RemoveKey(LPCTSTR key);

CMapWordToOb BOOL RemoveKey(WORD key);

CMapWordToPtr BOOL RemoveKey(WORD key);

ExampleExample

Looks up the map entry corresponding to the supplied key; then, if the key is found, removes the entry.

key
Specifies the string used for map lookup.

Nonzero if the entry was found and successfully removed; otherwise 0.

This can cause memory leaks if the CObject object is not deleted elsewhere.

The following table shows other member functions that are similar to CMapStringToOb::RemoveKey .

See CObList::CObList for a listing of the CAge class used in all collection examples.

CMapStringToOb map;

map.SetAt(_T("Bart"), new CAge(13));
map.SetAt(_T("Lisa"), new CAge(11));
map.SetAt(_T("Homer"), new CAge(36));
map.SetAt(_T("Marge"), new CAge(35));
map.RemoveKey(_T("Lisa")); // Memory leak: CAge object not
 // deleted.
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("RemoveKey example: ") << &map << _T("\n");
#endif

RemoveKey example: A CMapStringToOb with 3 elements
[Marge] = a CAge at $49A0 35
[Homer] = a CAge at $495E 36
[Bart] = a CAge at $4634 13

CMapStringToOb::SetAt

void SetAt(
 LPCTSTR key,
 CObject* newValue);

ParametersParameters

RemarksRemarks

CLASS MEMBER FUNCTION

CMapPtrToPtr void SetAt(void * key , void * newValue);

CMapPtrToWord void SetAt(void * key , WORD newValue);

CMapStringToPtr void SetAt(LPCTSTR key , void * newValue);

CMapStringToString void SetAt(LPCTSTR key , LPCTSTR newValue);

CMapWordToOb void SetAt(WORD key , CObject * newValue);

CMapWordToPtr void SetAt(WORD key , void * newValue);

The results from this program are as follows:

The primary means to insert an element in a map.

key
Specifies the string that is the key of the new element.

newValue
Specifies the CObject pointer that is the value of the new element.

First, the key is looked up. If the key is found, then the corresponding value is changed; otherwise a new key-
value element is created.

The following table shows other member functions that are similar to CMapStringToOb::SetAt .

ExampleExample

CMapStringToOb map;
CAge* pa;

map.SetAt(_T("Bart"), new CAge(13));
map.SetAt(_T("Lisa"), new CAge(11)); // Map contains 2
 // elements.
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("before Lisa's birthday: ") << &map << _T("\n");
#endif
if (map.Lookup(_T("Lisa"), (CObject *&)pa))
{ // CAge 12 pointer replaces CAge 11 pointer.
 map.SetAt(_T("Lisa"), new CAge(12));
 delete pa; // Must delete CAge 11 to avoid memory leak.
}
#ifdef _DEBUG
 afxDump << _T("after Lisa's birthday: ") << &map << _T("\n");
#endif

before Lisa's birthday: A CMapStringToOb with 2 elements
[Lisa] = a CAge at $493C 11
[Bart] = a CAge at $4654 13
after Lisa's birthday: A CMapStringToOb with 2 elements
[Lisa] = a CAge at $49C0 12
[Bart] = a CAge at $4654 13

See also

See CObList::CObList for a listing of the CAge class used in all collection examples.

The results from this program are as follows:

CObject Class
Hierarchy Chart
CMapPtrToPtr Class
CMapPtrToWord Class
CMapStringToPtr Class
CMapStringToString Class
CMapWordToOb Class
CMapWordToPtr Class

CMapStringToPtr Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMapStringToPtr : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMapStringToOb::CMapStringToOb Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMapStringToOb::GetCount Returns the number of elements in this map.

CMapStringToOb::GetHashTableSize Determines the current number of elements in the hash
table.

CMapStringToOb::GetNextAssoc Gets the next element for iterating.

CMapStringToOb::GetSize Returns the number of elements in this map.

CMapStringToOb::GetStartPosition Returns the position of the first element.

CMapStringToOb::HashKey Calculates the hash value of a specified key.

CMapStringToOb::InitHashTable Initializes the hash table.

CMapStringToOb::IsEmpty Tests for the empty-map condition (no elements).

Supports maps of void pointers keyed by CString objects.

The member functions of CMapStringToPtr are similar to the member functions of class CMapStringToOb.
Because of this similarity, you can use the CMapStringToOb reference documentation for member function
specifics. Wherever you see a CObject pointer as a function parameter or return value, substitute a pointer to
void.

BOOL CMapStringToOb::Lookup(const char* <key>, CObject*& <rValue>) const;

for example, translates to

BOOL CMapStringToPtr::Lookup(LPCTSTR <key>, void*& <rValue>) const;

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmapstringtoptr-class.md

CMapStringToOb::Lookup Looks up a void pointer based on the void pointer key. The
pointer value, not the entity it points to, is used for the key
comparison.

CMapStringToOb::LookupKey Returns a reference to the key associated with the specified
key value.

CMapStringToOb::RemoveAll Removes all the elements from this map.

CMapStringToOb::RemoveKey Removes an element specified by a key.

CMapStringToOb::SetAt Inserts an element into the map; replaces an existing
element if a matching key is found.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CMapStringToOb::operator [] Inserts an element into the map — operator substitution
for SetAt .

Remarks

Inheritance Hierarchy

Requirements

See also

CMapStringToPtr incorporates the IMPLEMENT_DYNAMIC macro to support run-time type access and
dumping to a CDumpContext object. If you need a dump of individual map elements, you must set the depth of
the dump context to 1 or greater.

String-to-pointer maps may not be serialized.

When a CMapStringToPtr object is deleted, or when its elements are removed, the CString key objects and
the words are removed.

CObject

CMapStringToPtr

Header: afxcoll.h

CObject Class
Hierarchy Chart

CMapStringToString Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMapStringToString : public CObject

Members

Public StructuresPublic Structures

NAME DESCRIPTION

CMapStringToString::CPair A nested structure containing a key value and the value of
the associated string object.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMapStringToOb::CMapStringToOb Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMapStringToOb::GetCount Returns the number of elements in this map.

CMapStringToOb::GetHashTableSize Determines the current number of elements in the hash
table.

CMapStringToOb::GetNextAssoc Gets the next element for iterating.

CMapStringToOb::GetSize Returns the number of elements in this map.

CMapStringToOb::GetStartPosition Returns the position of the first element.

Supports maps of CString objects keyed by CString objects.

The member functions of CMapStringToString are similar to the member functions of class CMapStringToOb.
Because of this similarity, you can use the CMapStringToOb reference documentation for member function
specifics. Wherever you see a CObject pointer as a return value or "output" function parameter, substitute a
pointer to char. Wherever you see a CObject pointer as an "input" function parameter, substitute a pointer to
char.

BOOL CMapStringToOb::Lookup(const char*<key>, CObject*&<rValue>) const;

for example, translates to

BOOL CMapStringToString::Lookup(LPCTSTR<key>, CString&<rValue>) const;

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmapstringtostring-class.md

CMapStringToOb::HashKey Calculates the hash value of a specified key.

CMapStringToOb::InitHashTable Initializes the hash table.

CMapStringToOb::IsEmpty Tests for the empty-map condition (no elements).

CMapStringToOb::Lookup Looks up a void pointer based on the void pointer key. The
pointer value, not the entity it points to, is used for the key
comparison.

CMapStringToOb::LookupKey Returns a reference to the key associated with the specified
key value.

CMapStringToString::PGetFirstAssoc Gets a pointer to the first CString in the map.

CMapStringToString::PGetNextAssoc Gets a pointer to the next CString for iterating.

CMapStringToString::PLookup Returns a pointer to a CString whose value matches the
specified value.

CMapStringToOb::RemoveAll Removes all the elements from this map.

CMapStringToOb::RemoveKey Removes an element specified by a key.

CMapStringToOb::SetAt Inserts an element into the map; replaces an existing
element if a matching key is found.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CMapStringToOb::operator [] Inserts an element into the map — operator substitution
for SetAt .

Remarks

Inheritance Hierarchy

CMapStringToString incorporates the IMPLEMENT_SERIAL macro to support serialization and dumping of its
elements. Each element is serialized in turn if a map is stored to an archive, either with the overloaded
insertion (<<) operator or with the Serialize member function.

If you need a dump of individual CString - CString elements, you must set the depth of the dump context to
1 or greater.

When a CMapStringToString object is deleted, or when its elements are removed, the CString objects are
removed as appropriate.

For more information on CMapStringToString , see the article Collections.

CObject

CMapStringToString

Requirements

CMapStringToString::CPair

RemarksRemarks

ExampleExample

CMapStringToString::PGetFirstAssoc

const CPair* PGetFirstAssoc() const;

CPair* PGetFirstAssoc();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMapStringToString myMap;
CString myStr[4]={_T("One"), _T("Two"), _T("Three"), _T("Four")};
CMapStringToString::CPair* pCurVal;

myMap.InitHashTable(257);

// Add 4 elements to the map.
myMap.SetAt(myStr[0], _T("Odd"));
myMap.SetAt(myStr[1], _T("Even"));
myMap.SetAt(myStr[2], _T("Odd"));
myMap.SetAt(myStr[3], _T("Even"));

pCurVal = myMap.PGetFirstAssoc();
while (pCurVal != NULL)
{
 _tprintf_s(_T("Current key value at %s: %s\n"),
 pCurVal->key, pCurVal->value);
 pCurVal= myMap.PGetNextAssoc(pCurVal);
}

Header: afxcoll.h

Contains a key value and the value of the associated string object.

This is a nested structure within class CMapStringToString.

The structure is composed of two fields:

key The actual value of the key type.

value The value of the associated object.

It is used to store the return values from CMapStringToString::PLookup, CMapStringToString::PGetFirstAssoc,
and CMapStringToString::PGetNextAssoc.

For an example of usage, see the example for CMapStringToString::PLookup.

Returns the first entry of the map object.

A pointer to the first entry in the map; see CMapStringToString::CPair. If the map is empty, the value is NULL.

Call this function to return a pointer the first element in the map object.

CMapStringToString::PGetNextAssoc

const CPair *PGetNextAssoc(const CPair* pAssoc) const;

CPair *PGetNextAssoc(const CPair* pAssoc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMapStringToString::PLookup

const CPair* PLookup(LPCTSTR key) const;

CPair* PLookup(LPCTSTR key);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Retrieves the map element pointed to by pAssocRec.

pAssoc
Points to a map entry returned by a previous PGetNextAssoc or PGetFirstAssoc call.

A pointer to the next entry in the map; see CMapStringToString::CPair. If the element is the last in the map, the
value is NULL.

Call this method to iterate through all the elements in the map. Retrieve the first element with a call to
PGetFirstAssoc and then iterate through the map with successive calls to PGetNextAssoc .

See the example for CMapStringToString::PGetFirstAssoc.

Looks up the value mapped to a given key.

key
A pointer to the key for the element to be searched for.

A pointer to the specified key.

Call this method to search for a map element with a key that exactly matches the given key.

CMapStringToString myMap;
CString myStr[4]={_T("One"), _T("Two"), _T("Three"), _T("Four")};

myMap.InitHashTable(257);

// Add 4 elements to the map.
myMap.SetAt(myStr[0], _T("Odd"));
myMap.SetAt(myStr[1], _T("Even"));
myMap.SetAt(myStr[2], _T("Odd"));
myMap.SetAt(myStr[3], _T("Even"));

// Print the element values with odd key values.
CMapStringToString::CPair *pCurVal;

for (int i = 0; i < 4 ; i += 2)
{
 pCurVal = myMap.PLookup(myStr[i]);
 _tprintf_s(_T("Current key value at %s: %s\n"),
 pCurVal->key, pCurVal->value);
}

See also
MFC Sample COLLECT
CObject Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMapWordToOb Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMapWordToOb : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMapStringToOb::CMapStringToOb Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMapStringToOb::GetCount Returns the number of elements in this map.

CMapStringToOb::GetHashTableSize Determines the current number of elements in the hash
table.

CMapStringToOb::GetNextAssoc Gets the next element for iterating.

CMapStringToOb::GetSize Returns the number of elements in this map.

CMapStringToOb::GetStartPosition Returns the position of the first element.

CMapStringToOb::HashKey Calculates the hash value of a specified key.

CMapStringToOb::InitHashTable Initializes the hash table.

CMapStringToOb::IsEmpty Tests for the empty-map condition (no elements).

Supports maps of CObject pointers keyed by 16-bit words.

The member functions of CMapWordToOb are similar to the member functions of class CMapStringToOb.
Because of this similarity, you can use the CMapStringToOb reference documentation for member function
specifics. Wherever you see a CString or a const pointer to char as a function parameter or return value,
substitute WORD.

BOOL CMapStringToOb::Lookup(const char* <key>, CObject*&) const;`

for example, translates to

BOOL CMapWordToOb::Lookup(WORD <key>, CObject*& <rValue>) const;

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmapwordtoob-class.md

CMapStringToOb::Lookup Looks up a void pointer based on the void pointer key. The
pointer value, not the entity it points to, is used for the key
comparison.

CMapStringToOb::LookupKey Returns a reference to the key associated with the specified
key value.

CMapStringToOb::RemoveAll Removes all the elements from this map.

CMapStringToOb::RemoveKey Removes an element specified by a key.

CMapStringToOb::SetAt Inserts an element into the map; replaces an existing
element if a matching key is found.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CMapStringToOb::operator [] Inserts an element into the map — operator substitution
for SetAt .

Remarks

Inheritance Hierarchy

Requirements

See also

CMapWordToOb incorporates the IMPLEMENT_SERIAL macro to support serialization and dumping of its
elements. Each element is serialized in turn if a map is stored to an archive, either with the overloaded
insertion (<<) operator or with the Serialize member function.

If you need a dump of individual WORD- CObject elements, you must set the depth of the dump context to 1
or greater.

When a CMapWordToOb object is deleted, or when its elements are removed, the CObject pointers are removed.
The objects referenced by the CObject pointers are not destroyed.

For more information on CMapWordToOb , see the article Collections.

CObject

CMapWordToOb

Header: afxcoll.h

CObject Class
Hierarchy Chart

CMapWordToPtr Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMapWordToPtr : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMapStringToOb::CMapStringToOb Constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMapStringToOb::GetCount Returns the number of elements in this map.

CMapStringToOb::GetHashTableSize Determines the current number of elements in the hash
table.

CMapStringToOb::GetNextAssoc Gets the next element for iterating.

CMapStringToOb::GetSize Returns the number of elements in this map.

CMapStringToOb::GetStartPosition Returns the position of the first element.

CMapStringToOb::HashKey Calculates the hash value of a specified key.

CMapStringToOb::InitHashTable Initializes the hash table.

CMapStringToOb::IsEmpty Tests for the empty-map condition (no elements).

Supports maps of void pointers keyed by 16-bit words.

The member functions of CMapWordToPtr are similar to the member functions of class CMapStringToOb.
Because of this similarity, you can use the CMapStringToOb reference documentation for member function
specifics. Wherever you see a CObject pointer as a function parameter or return value, substitute a pointer to
void. Wherever you see a CString or a const pointer to char as a function parameter or return value,
substitute WORD.

BOOL CMapStringToOb::Lookup(const char* <key>, CObject*& <rValue>) const;

for example, translates to

BOOL CMapWordToPtr::Lookup(WORD <key>, void*& <rValue>) const;

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmapwordtoptr-class.md

CMapStringToOb::Lookup Looks up a void pointer based on the void pointer key. The
pointer value, not the entity it points to, is used for the key
comparison.

CMapStringToOb::LookupKey Returns a reference to the key associated with the specified
key value.

CMapStringToOb::RemoveAll Removes all the elements from this map.

CMapStringToOb::RemoveKey Removes an element specified by a key.

CMapStringToOb::SetAt Inserts an element into the map; replaces an existing
element if a matching key is found.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CMapStringToOb::operator [] Inserts an element into the map — operator substitution
for SetAt .

Remarks

Inheritance Hierarchy

Requirements

See also

CMapWordToPtr incorporates the IMPLEMENT_DYNAMIC macro to support run-time type access and
dumping to a CDumpContext object. If you need a dump of individual map elements, you must set the depth of
the dump context to 1 or greater.

Word-to-pointer maps may not be serialized.

When a CMapWordToPtr object is deleted, or when its elements are removed, the words and the pointers are
removed. The entities referenced by the pointers are not removed.

For more information on CMapWordToPtr , see the article Collections.

CObject

CMapWordToPtr

Header: afxcoll.h

CObject Class
Hierarchy Chart

CMDIChildWnd Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CMDIChildWnd : public CFrameWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMDIChildWnd::CMDIChildWnd Constructs a CMDIChildWnd object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMDIChildWnd::Create Creates the Windows MDI child window associated with
the CMDIChildWnd object.

CMDIChildWnd::GetMDIFrame Returns the parent MDI frame of the MDI client window.

CMDIChildWnd::MDIActivate Activates this MDI child window.

CMDIChildWnd::MDIDestroy Destroys this MDI child window.

CMDIChildWnd::MDIMaximize Maximizes this MDI child window.

CMDIChildWnd::MDIRestore Restores this MDI child window from maximized or
minimized size.

CMDIChildWnd::SetHandles Sets the handles for menu and accelerator resources.

Remarks

Provides the functionality of a Windows multiple document interface (MDI) child window, along with
members for managing the window.

An MDI child window looks much like a typical frame window, except that the MDI child window appears
inside an MDI frame window rather than on the desktop. An MDI child window does not have a menu bar of
its own, but instead shares the menu of the MDI frame window. The framework automatically changes the
MDI frame menu to represent the currently active MDI child window.

To create a useful MDI child window for your application, derive a class from CMDIChildWnd . Add member
variables to the derived class to store data specific to your application. Implement message-handler member
functions and a message map in the derived class to specify what happens when messages are directed to
the window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmdichildwnd-class.md

Inheritance Hierarchy

There are three ways to construct an MDI child window:

Directly construct it using Create .

Directly construct it using LoadFrame .

Indirectly construct it through a document template.

Before you call Create or LoadFrame , you must construct the frame-window object on the heap using the
C++ new operator. Before calling Create you can also register a window class with the
AfxRegisterWndClass global function to set the icon and class styles for the frame.

Use the Create member function to pass the frame's creation parameters as immediate arguments.

LoadFrame requires fewer arguments than Create , and instead retrieves most of its default values from
resources, including the frame's caption, icon, accelerator table, and menu. To be accessible by LoadFrame , all
these resources must have the same resource ID (for example, IDR_MAINFRAME).

When a CMDIChildWnd object contains views and documents, they are created indirectly by the framework
instead of directly by the programmer. The CDocTemplate object orchestrates the creation of the frame, the
creation of the containing views, and the connection of the views to the appropriate document. The
parameters of the CDocTemplate constructor specify the CRuntimeClass of the three classes involved
(document, frame, and view). A CRuntimeClass object is used by the framework to dynamically create new
frames when specified by the user (for example, by using the File New command or the MDI Window New
command).

A frame-window class derived from CMDIChildWnd must be declared with DECLARE_DYNCREATE in order
for the above RUNTIME_CLASS mechanism to work correctly.

The CMDIChildWnd class inherits much of its default implementation from CFrameWnd . For a detailed list of
these features, please refer to the CFrameWnd class description. The CMDIChildWnd class has the following
additional features:

In conjunction with the CMultiDocTemplate class, multiple CMDIChildWnd objects from the same
document template share the same menu, saving Windows system resources.

The currently active MDI child window menu entirely replaces the MDI frame window's menu, and the
caption of the currently active MDI child window is added to the MDI frame window's caption. For
further examples of MDI child window functions that are implemented in conjunction with an MDI
frame window, see the CMDIFrameWnd class description.

Do not use the C++ delete operator to destroy a frame window. Use CWnd::DestroyWindow instead. The
CFrameWnd implementation of PostNcDestroy will delete the C++ object when the window is destroyed.

When the user closes the frame window, the default OnClose handler will call DestroyWindow .

For more information on CMDIChildWnd , see Frame Windows.

CObject

CCmdTarget

CWnd

CFrameWnd

CMDIChildWnd

Requirements

CMDIChildWnd::CMDIChildWnd

CMDIChildWnd();

RemarksRemarks

ExampleExample

CMDIChildWnd::Create

virtual BOOL Create(
 LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | WS_OVERLAPPEDWINDOW,
 const RECT& rect = rectDefault,
 CMDIFrameWnd* pParentWnd = NULL,
 CCreateContext* pContext = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Header: afxwin.h

Call to construct a CMDIChildWnd object.

Call Create to create the visible window.

See the example for CMDIChildWnd::Create.

Call this member function to create a Windows MDI child window and attach it to the CMDIChildWnd object.

lpszClassName
Points to a null-terminated character string that names the Windows class (a WNDCLASS structure). The
class name can be any name registered with the AfxRegisterWndClass global function. Should be NULL for a
standard CMDIChildWnd .

lpszWindowName
Points to a null-terminated character string that represents the window name. Used as text for the title bar.

dwStyle
Specifies the window style attributes. The WS_CHILD style is required.

rect
Contains the size and position of the window. The rectDefault value allows Windows to specify the size and
position of the new CMDIChildWnd .

pParentWnd
Specifies the window's parent. If NULL, the main application window is used.

pContext
Specifies a CCreateContext structure. This parameter can be NULL.

Nonzero if successful; otherwise 0.

The currently active MDI child frame window can determine the caption of the parent frame window. This

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa

ExampleExample

// CMainFrame::OnFileNewCMdiChildWnd() is a menu command handler for the
// CMainFrame class, which in turn is a CMDIFrameWnd-derived class.
// It shows the creation of a standard Windows MDI child window using
// the registered CMDIChildWnd class.
void CMainFrame::OnFileNewMdiChildWnd()
{
 CMDIChildWnd* pMDIChildWnd = new CMDIChildWnd;
 VERIFY(pMDIChildWnd->Create(
 NULL, // standard CMDIChildWnd class
 _T("My MDIChildWnd"), // caption of MDI child window
 WS_CHILD | WS_VISIBLE | WS_OVERLAPPEDWINDOW, // window styles
 rectDefault, // default rectangle size
 this)); // parent window; can be NULL

 // the default PostNcDestroy handler will delete this object when destroyed
}

ExampleExample

// CMainFrame::OnHello() is a menu command handler for the CMainFrame
// class, which in turn is a CMDIFrameWnd-derived class.
// It shows the creation of a Windows MDI child window using a custom
// window class. The custom window class is registered in
// CHelloWnd::Create(). CHelloWnd is a CMDIChildWnd-derived class.
void CMainFrame::OnHello()
{
 CHelloWnd *pHelloWnd = new CHelloWnd;
 if (!pHelloWnd->Create(_T("Hello"),
 WS_CHILD | WS_VISIBLE | WS_OVERLAPPEDWINDOW,
 rectDefault, this))
 return;

 // the default PostNcDestroy handler will delete this object when destroyed
}

feature is disabled by turning off the FWS_ADDTOTITLE style bit of the child frame window.

The framework calls this member function in response to a user command to create a child window, and the
framework uses the pContext parameter to properly connect the child window to the application. When you
call Create , pContext can be NULL.

Example 1:

Example 2:

BOOL CHelloWnd::Create(
 LPCTSTR szTitle,
 LONG style /* = 0 */,
 const RECT& rect /* = rectDefault */,
 CMDIFrameWnd* parent /* = NULL */)
{
 // Setup the shared menu
 SetHandles(::LoadMenu(AfxGetInstanceHandle(), MAKEINTRESOURCE(IDR_HELLO)),
 NULL);

 // Register a custom WndClass and create a window.
 // This must be done because CHelloWnd has a custom icon.
 LPCTSTR lpszHelloClass =
 AfxRegisterWndClass(CS_HREDRAW | CS_VREDRAW,
 LoadCursor(NULL, IDC_ARROW),
 (HBRUSH) (COLOR_WINDOW+1),
 LoadIcon(AfxGetInstanceHandle(), MAKEINTRESOURCE(IDI_HELLO)));

 return CMDIChildWnd::Create(lpszHelloClass, szTitle, style, rect, parent);
}

CMDIChildWnd::GetMDIFrame

CMDIFrameWnd* GetMDIFrame();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMDIChildWnd::MDIActivate

void MDIActivate();

RemarksRemarks

ExampleExample

CMDIChildWnd::MDIDestroy

Call this function to return the MDI parent frame.

A pointer to the MDI parent frame window.

The frame returned is two parents removed from the CMDIChildWnd and is the parent of the window of type
MDICLIENT that manages the CMDIChildWnd object. Call the GetParent member function to return the
CMDIChildWnd object's immediate MDICLIENT parent as a temporary CWnd pointer.

See the example for CMDIFrameWnd::MDISetMenu.

Call this member function to activate an MDI child window independently of the MDI frame window.

When the frame becomes active, the child window that was last activated will be activated as well.

See the example for CMDIFrameWnd::GetWindowMenuPopup.

Call this member function to destroy an MDI child window.

void MDIDestroy();

RemarksRemarks

ExampleExample

// CMainFrame::OnCloseWindow() is a menu command handler for
// CMainFrame class, which in turn is a CMDIFrameWnd-derived
// class. It closes and destroys the current active MDI child window.
void CMainFrame::OnCloseWindow()
{
 CMDIChildWnd* child = MDIGetActive();
 if (child)
 child->MDIDestroy();
}

CMDIChildWnd::MDIMaximize

void MDIMaximize();

RemarksRemarks

ExampleExample

// CMainFrame::OnMaximizeWindow() is a menu command handler for
// CMainFrame class, which in turn is a CMDIFrameWnd-derived
// class. It maximizes the current active MDI child window.
void CMainFrame::OnMaximizeWindow()
{
 BOOL maximized;
 CMDIChildWnd* child = MDIGetActive(&maximized);
 if (child && (!maximized))
 child->MDIMaximize(); // or MDIMaximize(child);
}

CMDIChildWnd::MDIRestore

void MDIRestore();

ExampleExample

The member function removes the title of the child window from the frame window and deactivates the child
window.

Call this member function to maximize an MDI child window.

When a child window is maximized, Windows resizes it to make its client area fill the client area of the frame
window. Windows places the child window's Control menu in the frame's menu bar so that the user can
restore or close the child window and adds the title of the child window to the frame-window title.

Call this member function to restore an MDI child window from maximized or minimized size.

// CMainFrame::OnRestoreWindow() is a menu command handler for
// CMainFrame class, which in turn is a CMDIFrameWnd-derived class.
// It restores the current active MDI child window from maximized
// or minimized size.
void CMainFrame::OnRestoreWindow()
{
 BOOL maximized;
 CMDIChildWnd* child = MDIGetActive(&maximized);
 if (child && (maximized || child->IsIconic()))
 child->MDIRestore(); // or MDIRestore(child);
}

CMDIChildWnd::SetHandles

void SetHandles(
 HMENU hMenu,
 HACCEL hAccel);

ParametersParameters

RemarksRemarks

See also

Sets the handles for menu and accelerator resources.

hMenu
The handle of a menu resource.

hAccel
The handle of an accelerator resource.

Call this function to set the menu and accelerator resources used by the MDI child window object.

MFC Sample MDI
MFC Sample MDIDOCVW
MFC Sample SNAPVW
CFrameWnd Class
Hierarchy Chart
CWnd Class
CMDIFrameWnd Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMDIChildWndEx Class
3/4/2019 • 19 minutes to read • Edit Online

Syntax
class CMDIChildWndEx : public CMDIChildWnd

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMDIChildWndEx::ActivateTopLevelFrame Called internally by the framework to activate top level frame
when the application should be activated from a taskbar tab.

CMDIChildWndEx::AddDockSite This method is not used or implemented.

CMDIChildWndEx::AddPane Adds a pane.

CMDIChildWndEx::AddTabbedPane Adds a tabbed pane.

CMDIChildWndEx::AdjustDockingLayout Adjusts the docking layout.

CMDIChildWndEx::CanShowOnMDITabs

CMDIChildWndEx::CanShowOnTaskBarTabs Tells the framework whether this MDI child can be displayed
on Windows 7 taskbar tabs.

CMDIChildWndEx::CanShowOnWindowsList Returns TRUE if the MDI child window name can be displayed
in the CMFCWindowsManagerDialog Class dialog box.
Otherwise returns FALSE.

CMDIChildWndEx::CreateObject Called by the framework to create a dynamic instance of this
class type.

CMDIChildWndEx::DockPane Docks a pane.

CMDIChildWndEx::DockPaneLeftOf Docks one pane to the left of another pane.

CMDIChildWndEx::EnableAutoHidePanes Enables auto-hide mode for panes when they are docked at
the specified sides of the window.

The CMDIChildWndEx class provides the functionality of a Windows multiple document interface (MDI) child
window. It extends the functionality of CMDIChildWnd Class. The framework requires this class when an MDI
application uses certain MFC classes.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmdichildwndex-class.md

CMDIChildWndEx::EnableDocking Enables docking of the child window to the main frame.

CMDIChildWndEx::EnableTaskbarThumbnailClipRect Enables or disables automatic selection of a portion of a
window's client area to display as that window's thumbnail in
the taskbar.

CMDIChildWndEx::GetDockingManager

CMDIChildWndEx::GetDocumentName Returns the name of the document that is displayed in the
MDI child window.

CMDIChildWndEx::GetFrameIcon Called by the framework to retrieve the MDI child window
icon.

CMDIChildWndEx::GetFrameText Called by the framework to retrieve the text for the MDI child
window.

CMDIChildWndEx::GetPane Finds a pane by the specified control ID.

CMDIChildWndEx::GetRelatedTabGroup

CMDIChildWndEx::GetTabbedPane Returns a pointer to an embedded docking pane that was
converted to a tabbed document.

CMDIChildWndEx::GetTabProxyWnd Returns tab proxy window actually registered with Windows 7
taskbar tabs.

CMDIChildWndEx::GetTaskbarPreviewWnd Called by the framework when it needs to obtain a child
window (usually a view or splitter window) to be displayed on
Windows 7 taskbar tab thumbnail.

CMDIChildWndEx::GetTaskbarThumbnailClipRect Called by the framework when it needs to select a portion of
a window's client area to display as that window's thumbnail
in the taskbar.

CMDIChildWndEx::GetThisClass Called by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMDIChildWndEx::GetToolbarButtonToolTipText Called by the framework to retrieve a tooltip for a toolbar
button.

CMDIChildWndEx::InsertPane Registers the specified pane with the docking manager.

CMDIChildWndEx::InvalidateIconicBitmaps Invalidates iconic bitmap representation of MDI child.

CMDIChildWndEx::IsPointNearDockSite Determines whether a specified point is near the dock site.

CMDIChildWndEx::IsReadOnly Returns TRUE if the document that is displayed in the child
window is read-only. Otherwise returns FALSE.

CMDIChildWndEx::IsRegisteredWithTaskbarTabs Returns TRUE if MDI child was successfully registered with
Windows 7 taskbar tabs.

NAME DESCRIPTION

CMDIChildWndEx::IsTabbedPane Returns TRUE if the MDI child window contains a docking
pane. Otherwise returns FALSE.

CMDIChildWndEx::IsTaskbarTabsSupportEnabled Tells whether the MDI child can appear on Windows 7 taskbar
tabs.

CMDIChildWndEx::IsTaskbarThumbnailClipRectEnabled Tells whether automatic selection of a portion of a window's
client area to display as that window's thumbnail in the
taskbar is enabled or disabled.

CMDIChildWndEx::m_dwDefaultTaskbarTabPropertyFlags A combination of flags, which is passed by the framework to
the SetTaskbarTabProperties method, when a tab (MDI child)
is being registered with Windows 7 taskbar tabs. The default
combination is STPF_USEAPPTHUMBNAILWHENACTIVE |
STPF_USEAPPPEEKWHENACTIVE.

CMDIChildWndEx::OnGetIconicLivePreviewBitmap Called by the framework when it needs to obtain a bitmap for
live preview of MDI child.

CMDIChildWndEx::OnGetIconicThumbnail Called by the framework when it needs to obtain a bitmap for
iconic thumbnail of MDI child.

CMDIChildWndEx::OnMoveMiniFrame Called by the framework to move a mini-frame window.

CMDIChildWndEx::OnPressTaskbarThmbnailCloseButton Called by the framework when the user presses close button
on Taskbar tab thumbnail..

CMDIChildWndEx::OnSetPreviewMode Called by the framework to enter or exit print preview mode.

CMDIChildWndEx::OnTaskbarTabThumbnailActivate Called by the framework when the Taskbar tab thumbnail
should process WM_ACTIVATE message.

CMDIChildWndEx::OnTaskbarTabThumbnailMouseActivate Called by the framework when the Taskbar tab thumbnail
should process WM_MOUSEACTIVATE message.

CMDIChildWndEx::OnTaskbarTabThumbnailStretch Called by the framework when it needs to stretch a bitmap for
Windows 7 taskbar tab thumbnail preview of MDI child.

CMDIChildWndEx::OnUpdateFrameTitle Called by the framework to update the frame title. (Overrides
CMDIChildWnd::OnUpdateFrameTitle .)

CMDIChildWndEx::PaneFromPoint Returns the pane that contains the given point.

CMDIChildWndEx::PreTranslateMessage Used by class CWinApp to translate window messages before
they are dispatched to the TranslateMessage and
DispatchMessage Windows functions. (Overrides
CWnd::PreTranslateMessage.)

CMDIChildWndEx::RecalcLayout Recalculates the layout of the window.

CMDIChildWndEx::RegisterTaskbarTab Registers MDI child with Windows 7 taskbar tabs.

CMDIChildWndEx::RemovePaneFromDockManager Removes a pane from the docking manager.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CMDIChildWndEx::SetRelatedTabGroup

CMDIChildWndEx::SetTaskbarTabActive Activates corresponding Windows 7 taskbar tab.

CMDIChildWndEx::SetTaskbarTabOrder Inserts MDI child before specified window on Windows 7
taskbar tabs.

CMDIChildWndEx::SetTaskbarTabProperties Sets properties for a Windows 7 taskbar tab.

CMDIChildWndEx::SetTaskbarThumbnailClipRect Called internally by the framework to set clipping rectangle to
select a portion of a window's client area to display as that
window's thumbnail in the taskbar.

CMDIChildWndEx::ShowPane

CMDIChildWndEx::UnregisterTaskbarTab Removes MDI child from Windows 7 taskbar tabs.

CMDIChildWndEx::UpdateTaskbarTabIcon Updates Windows 7 taskbar tab icon.

NAME DESCRIPTION

Remarks

Example

class CChildFrame : public CMDIChildWndEx
{
 DECLARE_DYNCREATE(CChildFrame)
public:
 CChildFrame();

// Overrides
public:
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 virtual void ActivateFrame(int nCmdShow = -1);

 virtual BOOL IsReadOnly();
 virtual LPCTSTR GetDocumentName(CObject** pObj);

// Implementation
public:
 virtual ~CChildFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

 DECLARE_MESSAGE_MAP()
};

To take advantage of extended docking features in MDI applications, derive the MDI child window class of your
application from CMDIChildWndEx instead of CMDIChildWnd.

The following example derives a class from CMDIChildWndEx . This code snippet comes from the VisualStudioDemo
Sample: MFC Visual Studio Application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Inheritance Hierarchy

Requirements

CMDIChildWndEx::AddPane

BOOL AddPane(
 CBasePane* pControlBar,
 BOOL bTail = TRUE);

ParametersParameters

Return ValueReturn Value

CMDIChildWndEx::AddTabbedPane

void AddTabbedPane(CDockablePane* pControlBar);

ParametersParameters

CMDIChildWndEx::AdjustDockingLayout

virtual void AdjustDockingLayout(HDWP hdwp = NULL);

ParametersParameters

CObject

CCmdTarget

CWnd

CFrameWnd

CMDIChildWnd

CMDIChildWndEx

Header: afxMDIChildWndEx.h

Adds a pane.

pControlBar
[in] A pointer to the pane.

bTail
[in] TRUE to add the pane to the end of the list of panes for the docking manager; otherwise, FALSE.

TRUE if the pane was successfully registered with the docking manager; otherwise, FALSE.

Adds a tabbed pane.

pControlBar
[in] A pointer to the pane.

Adjusts the docking layout.

hdwp

CMDIChildWndEx::CanShowOnMDITabs
virtual BOOL CanShowOnMDITabs();

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::CanShowOnWindowsList

virtual BOOL CanShowOnWindowsList();

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::DockPane

void DockPane(
 CBasePane* pBar,
 UINT nDockBarID = 0,
 LPCRECT lpRect = NULL);

ParametersParameters

RemarksRemarks

CMDIChildWndEx::DockPaneLeftOf

BOOL DockPaneLeftOf(
 CPane* pBar,
 CPane* pLeftOf);

[in] Handle to a deferred window position structure.

Specifies whether the MDI child window name can be displayed in the CMFCWindowsManagerDialog Class
dialog box.

TRUE if the window can be displayed in the Windows dialog box; otherwise, FALSE.

Override this method in a derived class and return FALSE if the window should not be displayed in the Windows
dialog box. This function is called from CMFCWindowsManagerDialog .

Docks a pane.

pBar
[in] A pointer to the pane.

nDockBarID
[in] The ID of the pane.

lpRect
[in] A pointer to a rectangle.

The lpRect parameter is not used.

Docks one pane to the left of another pane.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::EnableAutoHidePanes

BOOL EnableAutoHidePanes(DWORD dwDockStyle);

ParametersParameters

Return ValueReturn Value

CMDIChildWndEx::EnableDocking

BOOL EnableDocking(DWORD dwDockStyle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::GetDockingManager

pBar
A pointer to the pane that is to be docked.

pLeftOf
A pointer to the pane that serves as the point of reference.

TRUE on success, FALSE on failure.

This method takes the pane specified by pBar and docks it at the left side of the pane specified by pLeftOf.

Call this method when you want to dock several panes in predefined order.

Enables auto-hide mode for panes when they are docked at the specified sides of the window.

dwDockStyle
[in] Specifies the sides of the main frame window that is enabled. Use one or more of the following flags.

CBRS_ALIGN_LEFT

CBRS_ALIGN_RIGHT

CBRS_ALIGN_TOP

CBRS_ALIGN_BOTTOM

TRUE if the method succeeds; otherwise FALSE.

Enables docking of the child window to the main frame.

dwDockStyle
[in] Specifies the docking alignment to enable.

TRUE if the method succeeds; otherwise FALSE.

Call this method to enable docking alignment to the main frame. You can pass a combination of CBRS_ALIGN_
flags (for more information, see CControlBar::EnableDocking).

CDockingManager* GetDockingManager();

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::GetDocumentName

virtual LPCTSTR GetDocumentName(CObject** pObj);

Return ValueReturn Value

RemarksRemarks

ExampleExample

LPCTSTR CChildFrame::GetDocumentName(CObject** pObj)
{
 if (DYNAMIC_DOWNCAST(CStartView, GetActiveView()) != NULL)
 {
 return g_strStartViewName;
 }
 return CMDIChildWndEx::GetDocumentName(pObj);
}

CMDIChildWndEx::GetFrameIcon

virtual HICON GetFrameIcon() const;

Return ValueReturn Value

Returns the name of the document that is displayed in the MDI child window.

A pointer to a string that contains the name of a document.

A document is what the MDI child window displays. Generally, the window displays data that is loaded from or
saved to a file. Therefore, the name of the document is the name of the file. The default implementation of
GetDocumentName returns a string obtained from CDocument::GetPathName .

If the window displays a document that is not loaded from a file, override this method in a derived class and
return a unique document identifier.

GetDocumentName is called by the framework when it saves the state of all opened documents. The returned string
is written to the registry.

When the framework is restoring state later, the document name is read from the registry and passed to
CMDIFrameWndEx::CreateDocumentWindow. Override this method in a CMDIFrameWndEx-derived class and
create or open a document that has this name and read in the file that has this name. If the document is not based
on a file, create the document based on the document identifier itself. You should do the preceding actions only if
you intend to save and restore documents.

The following example demonstrates the use of the GetDocumentName method. This code snippet comes from the
VisualStudioDemo Sample: MFC Visual Studio Application.

Called by the framework to retrieve the icon of the MDI child window.

A handle to the window icon.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CMDIChildWndEx::GetFrameText

virtual CString GetFrameText() const;

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::GetPane

CBasePane* GetPane(UINT nID);

ParametersParameters

Return ValueReturn Value

CMDIChildWndEx::GetRelatedTabGroup
CMFCTabCtrl* GetRelatedTabGroup();

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::GetTabbedPane

CDockablePane* GetTabbedPane() const;

Return ValueReturn Value

This method is called by the framework to determine what icon to display on the MDI tab that contains the MDI
child frame window.

By default this method returns the window icon. Override GetFrameIcon in a CMDIChildWndEx -derived class to
customize this behavior.

Called by the framework to retrieve the text for the MDI child window.

A string that contains the frame window text.

This method is called by the framework to determine what text to display on the MDI tab that contains the MDI
child frame window.

By default this method returns the window text. Override GetFrameText in a CMDIChildWndEx -derived class to
customize this behavior.

Finds a pane by the specified control ID.

nID
[in] The control ID of the pane to find.

A pointer to the pane if found, otherwise NULL.

Returns a pointer to a docking pane that is part of a group of MDI tabbed documents.

A pointer to a docking pane that is part of a group of MDI tabbed documents.

CMDIChildWndEx::GetToolbarButtonToolTipText

virtual BOOL GetToolbarButtonToolTipText(
 CMFCToolBarButton*,
 CString&);

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::InsertPane

BOOL InsertPane(
 CBasePane* pControlBar,
 CBasePane* pTarget,
 BOOL bAfter = TRUE);

ParametersParameters

Return ValueReturn Value

CMDIChildWndEx::IsPointNearDockSite

BOOL IsPointNearDockSite(
 CPoint point,
 DWORD& dwBarAlignment,
 BOOL& bOuterEdge) const;

ParametersParameters

Called by the framework to retrieve a tooltip for a toolbar button.

TRUE if the tooltip has been displayed. The default implementation returns FALSE.

Override this method if you want to display custom tool tips for toolbar buttons.

Registers the specified pane with the docking manager.

pControlBar
[in] A pointer to the pane to insert.

pTarget
[in] A pointer to the adjacent pane.

bAfter
[in] If TRUE, pControlBar is inserted after pTarget. If FALSE, pControlBar is inserted before pTarget.

TRUE if the method succeeds, FALSE otherwise.

Determines whether a specified point is near the dock site.

point
[in] The specified point.

dwBarAlignment
[in] Specifies which edge the point is near. Possible values are CBRS_ALIGN_LEFT, CBRS_ALIGN_RIGHT,
CBRS_ALIGN_TOP, and CBRS_ALIGN_BOTTOM

bOuterEdge
[in] TRUE if the point is near the outer border of the dock site; FALSE otherwise.

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::IsReadOnly

virtual BOOL IsReadOnly();

Return ValueReturn Value

RemarksRemarks

ExampleExample

BOOL CChildFrame::IsReadOnly()
{
 return DYNAMIC_DOWNCAST(CStartView, GetActiveView()) != NULL;
}

CMDIChildWndEx::IsTabbedPane

BOOL IsTabbedPane() const;

Return ValueReturn Value

CMDIChildWndEx::OnMoveMiniFrame

virtual BOOL OnMoveMiniFrame(CWnd* pFrame);

ParametersParameters

Return ValueReturn Value

TRUE if the point is near the dock site; otherwise FALSE.

The point is near the dock site when it is within the sensitivity set in the docking manager. The default sensitivity is
15 pixels.

Specifies whether the document that is displayed in the child window is read-only.

TRUE if the document is read-only; otherwise FALSE.

This function is used to prevent saving of read-only documents.

The following example demonstrates overriding the IsReadOnly method. This code snippet comes from the
VisualStudioDemo Sample: MFC Visual Studio Application.

Specifies whether the MDI child window contains a docking pane.

TRUE if the MDI child window contains a docking pane that was converted to a tabbed document; otherwise
FALSE.

Called by the framework to move a mini-frame window.

pFrame
[in] A pointer to a mini-frame window.

TRUE if the method succeeds, otherwise FALSE.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMDIChildWndEx::OnSetPreviewMode

virtual void OnSetPreviewMode(
 BOOL bPreview,
 CPrintPreviewState* pState);

ParametersParameters

CMDIChildWndEx::OnUpdateFrameTitle

virtual void OnUpdateFrameTitle(BOOL bAddToTitle);

ParametersParameters

CMDIChildWndEx::PaneFromPoint

CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 bool bExactBar,
 CRuntimeClass* pRTCBarType) const;

CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 DWORD& dwAlignment,
 CRuntimeClass* pRTCBarType) const;

ParametersParameters

Called by the framework to enter or exit print preview mode.

bPreview
[in] If TRUE, enter print preview mode. If FALSE, exit print preview mode.

pState
[in] A pointer to the print preview state structure.

Called by the framework to update the frame title.

bAddToTitle
[in] If TRUE, add the document name to the title.

Returns the pane that contains the given point.

point
[in] Specifies the point, in screen coordinates, to check.

nSensitivity
[in] Increase the search area by this amount. A pane satisfies the search criteria if the given point falls in the
increased area.

bExactBar
[in] TRUE to ignore the nSensitivity parameter; otherwise, FALSE.

pRTCBarType
[in] If not NULL, the method searches only panes of the specified type.

dwAlignment

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::RecalcLayout

virtual void RecalcLayout(BOOL bNotify = TRUE);

ParametersParameters

CMDIChildWndEx::RemovePaneFromDockManager

void RemovePaneFromDockManager(
 CBasePane* pControlBar,
 BOOL bDestroy,
 BOOL bAdjustLayout,
 BOOL bAutoHide,
 CBasePane* pBarReplacement);

ParametersParameters

CMDIChildWndEx::SetRelatedTabGroup

[in] If a pane is found at the specified point, this parameter contains the side of the pane that was closest to the
specified point. For more information, see the Remarks section.

A pointer to the CBasePane -derived object that contains the given point, or NULL if no pane was found.

Call this method to determine whether a pane contains the specified point according to the specified conditions
such as runtime class and visibility.

When the function returns and a pane was found, dwAlignment contains the alignment of the specified point. For
example, if the point was closest to the top of the pane, dwAlignment is set to CBRS_ALIGN_TOP.

Recalculates the layout of the window.

bNotify
[in] If TRUE, the active in-place item for the window receives notification of the layout change.

Removes a pane from the docking manager.

pControlBar
[in] A pointer to the pane to remove.

bDestroy
[in] If TRUE, the removed pane is destroyed.

bAdjustLayout
[in] If TRUE, adjust the docking layout immediately.

bAutoHide
[in] If TRUE, the docking layout is related to the list of autohide bars. If FALSE, the docking layout is related to the
list of regular panes.

pBarReplacement
[in] A pointer to a pane that replaces the removed pane.

void SetRelatedTabGroup(CMFCTabCtrl* p);

ParametersParameters

RemarksRemarks

CMDIChildWndEx::ShowPane
void ShowPane(
 CBasePane* pBar,
 BOOL bShow,
 BOOL bDelay,
 BOOL bActivate);

ParametersParameters

RemarksRemarks

CMDIChildWndEx::UpdateTaskbarTabIcon

virtual void UpdateTaskbarTabIcon(HICON hIcon);

ParametersParameters

RemarksRemarks

CMDIChildWndEx::UnregisterTaskbarTab

void UnregisterTaskbarTab(BOOL bCheckRegisteredMDIChildCount = TRUE);

ParametersParameters

RemarksRemarks

CMDIChildWndEx::SetTaskbarThumbnailClipRect

[in] p

[in] pBar

[in] bShow

[in] bDelay

[in] bActivate

Updates the Windows 7 taskbar tab icon.

hIcon
A handle to an icon to display on the Windows 7 taskbar tab.

Removes the MDI child from Windows 7 taskbar tabs.

bCheckRegisteredMDIChildCount
Specifies whether this function needs to check the number of MDI children registered with MDI tabs. If this
number is 0, then this function removes the clipping rectangle from the application's taskbar thumbnail.

Called by the framework to set the clipping rectangle to select a portion of a window's client area to display as that

virtual BOOL SetTaskbarThumbnailClipRect(CRect rect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::SetTaskbarTabProperties

void SetTaskbarTabProperties(DWORD dwFlags);

ParametersParameters

RemarksRemarks

CMDIChildWndEx::SetTaskbarTabOrder

void SetTaskbarTabOrder(CMDIChildWndEx* pWndBefore = NULL);

ParametersParameters

RemarksRemarks

CMDIChildWndEx::SetTaskbarTabActive

void SetTaskbarTabActive();

RemarksRemarks

CMDIChildWndEx::RegisterTaskbarTab

virtual void RegisterTaskbarTab(CMDIChildWndEx* pWndBefore = NULL);

window's thumbnail in the taskbar.

rect
Specifies the new clipping rectangle. If the rectangle is empty or null, the clipping is removed.

TRUE if successful; otherwise FALSE.

Sets properties for a Windows 7 taskbar tab.

dwFlags
A combination of STPFLAG values. For more information, see ITaskbarList4::SetTabProperties.

Inserts the MDI child before the specified window on Windows 7 taskbar tabs.

pWndBefore
A pointer to the MDI child window whose thumbnail is inserted to the left. This window must already be
registered through RegisterTaskbarTab . If this value is NULL, the new thumbnail is added to the end of the list.

Activates the corresponding Windows 7 taskbar tab.

Registers the MDI child with Windows 7 taskbar tabs.

https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nf-shobjidl_core-itaskbarlist4-settabproperties

ParametersParameters

RemarksRemarks

CMDIChildWndEx::OnTaskbarTabThumbnailStretch

virtual BOOL OnTaskbarTabThumbnailStretch(
 HBITMAP hBmpDst,
 const CRect& rectDst,
 HBITMAP hBmpSrc,
 const CRect& rectSrc);

ParametersParameters

RemarksRemarks

CMDIChildWndEx::OnTaskbarTabThumbnailMouseActivate

virtual int OnTaskbarTabThumbnailMouseActivate(
 CWnd* pDesktopWnd,
 UINT nHitTest,
 UINT message);

ParametersParameters

RemarksRemarks

pWndBefore
A pointer to the MDI child window whose thumbnail is inserted to the left. This window must already be
registered through RegisterTaskbarTab . If this value is NULL, the new thumbnail is added to the end of the list.

Called by the framework when it needs to stretch a bitmap for a Windows 7 taskbar tab thumbnail preview of the
MDI child.

hBmpDst
A handle to a destination bitmap.

rectDst
Specifies the destination rectangle.

hBmpSrc
A handle to a source bitmap.

rectSrc
Specifies the source rectangle.

Requirement : afxmdichildwndex.h

Called by the framework when the Taskbar tab thumbnail should process the WM_MOUSEACTIVATE message.

pDesktopWnd
Specifies a pointer to the top-level parent window of the window being activated. The pointer may be temporary
and should not be stored.

nHitTest
Specifies the hit-test area code. A hit test is a test that determines the location of the cursor.

message
Specifies the mouse message number.

The default implementation activates the related MDI child frame.

CMDIChildWndEx::OnTaskbarTabThumbnailActivate

virtual void OnTaskbarTabThumbnailActivate(
 UINT nState,
 CWnd* pWndOther,
 BOOL bMinimized);

ParametersParameters

RemarksRemarks

CMDIChildWndEx::OnPressTaskbarThmbnailCloseButton

virtual void OnPressTaskbarThmbnailCloseButton();

RemarksRemarks

CMDIChildWndEx::OnGetIconicThumbnail

virtual HBITMAP OnGetIconicThumbnail(
 int nWidth,
 int nHeight);

ParametersParameters

RemarksRemarks

CMDIChildWndEx::OnGetIconicLivePreviewBitmap

Called by the framework when the Taskbar tab thumbnail should process the WM_ACTIVATE message.

nState
Specifies whether the CWnd is being activated or deactivated.

pWndOther
Pointer to the CWnd being activated or deactivated. The pointer can be NULL, and it may be temporary.

bMinimized
Specifies the minimized state of the CWnd being activated or deactivated. A value of TRUE indicates the window is
minimized.

The default implementation activates the related MDI child frame.

Called by the framework when the user presses the close button on the Taskbar tab thumbnail.

Called by the framework when it needs to obtain a bitmap for the iconic thumbnail of the MDI child.

nWidth
Specifies the width of the required bitmap.

nHeight
Specifies the height of the required bitmap.

Called by the framework when it needs to obtain a bitmap for live preview of the MDI child.

virtual HBITMAP OnGetIconicLivePreviewBitmap(
 BOOL bIsMDIChildActive,
 CPoint& ptLocation);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::m_dwDefaultTaskbarTabPropertyFlags

AFX_IMPORT_DATA static DWORD m_dwDefaultTaskbarTabPropertyFlags;

RemarksRemarks

CMDIChildWndEx::IsTaskbarThumbnailClipRectEnabled

BOOL IsTaskbarThumbnailClipRectEnabled() const;

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::IsTaskbarTabsSupportEnabled

BOOL IsTaskbarTabsSupportEnabled();

Return ValueReturn Value

bIsMDIChildActive
This parameter is TRUE if the bitmap is requested for the MDI child, which is currently active and the main
window is not minimized. The default processing in this case takes a snapshot of the main window.

ptLocation
Specifies the location of the bitmap in the main (top level) window client coordinates. This point should be
provided by the callee.

If processed, returns a handle to a valid 32bpp bitmap, otherwise NULL.

Override this method in a derived class and return a valid 32bpp bitmap for live preview of MDI child. This
method is called only when the MDI child is displayed on Windows 7 taskbar tabs. If you return NULL, MFC calls
the default handlers and obtains bitmaps using PrintClient or PrintWindow .

A combination of flags, which is passed by the framework to the SetTaskbarTabProperties method, when a tab
(MDI child) is being registered with Windows 7 taskbar tabs.

The default combination is STPF_USEAPPTHUMBNAILWHENACTIVE | STPF_USEAPPPEEKWHENACTIVE.

Tells whether automatic selection of a portion of a window's client area to display as that window's thumbnail in
the taskbar is enabled or disabled.

Returns TRUE if automatic selection of a portion of a window's client area to display is enabled; otherwise FALSE.

Tells whether the MDI child can appear on Windows 7 taskbar tabs.

TRUE if the MDI child can appear on Windows 7 taskbar tabs; FALSE if the MDI child can not appear on

RemarksRemarks

CMDIChildWndEx::IsRegisteredWithTaskbarTabs

BOOL IsRegisteredWithTaskbarTabs();

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::InvalidateIconicBitmaps

BOOL InvalidateIconicBitmaps();

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::GetTaskbarThumbnailClipRect

virtual CRect GetTaskbarThumbnailClipRect() const;

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::GetTaskbarPreviewWnd

virtual CWnd* GetTaskbarPreviewWnd();

Return ValueReturn Value

Windows 7 taskbar tabs.

Returns TRUE if the MDI child was successfully registered with Windows 7 taskbar tabs.

TRUE if the MDI child is registered with Windows 7 taskbar tabs; otherwise FALSE.

Invalidates an iconic bitmap representation of a MDI child.

Returns FALSE if Windows 7 taskbar support is disabled or the MDI child is not registered with Windows 7
taskbar tabs; otherwise returns TRUE.

Should be called when the live content or size of a MDI child has changed.

Called by the framework when it needs to select a portion of a window's client area to display as that window's
thumbnail in the taskbar.

A rectangle in windows coordinates. This rectangle is mapped to the client area of the top level frame. The
rectangle should be empty to clear the clipping rectangle.

Called by the framework when it needs to obtain a child window (usually a view or splitter window) to be
displayed on a Windows 7 taskbar tab thumbnail.

Should return a valid pointer to a CWnd object, whose preview should be displayed on a Windows 7 taskbar tab
related to this MDI child. The default implementation returns a child window of this MDI child with
AFX_IDW_PANE_FIRST control ID (which is usually a CView -derived class).

RemarksRemarks

CMDIChildWndEx::GetTabProxyWnd

CMDITabProxyWnd* GetTabProxyWnd();

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::EnableTaskbarThumbnailClipRect

void EnableTaskbarThumbnailClipRect(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMDIChildWndEx::CanShowOnTaskBarTabs

virtual BOOL CanShowOnTaskBarTabs();

Return ValueReturn Value

RemarksRemarks

CMDIChildWndEx::ActivateTopLevelFrame

virtual void ActivateTopLevelFrame();

RemarksRemarks

See also

Returns the tab proxy window registered with Windows 7 taskbar tabs.

A pointer to a CMDITabProxyWnd object, which is registered with Windows 7 taskbar tabs.

Enables or disables automatic selection of a portion of a window's client area to display as that window's
thumbnail in the taskbar.

bEnable
Specifies whether to enable (TRUE), or disable (FALSE) automatic selection of a portion of a window's client area
to display.

Tells the framework whether this MDI child can be displayed on Windows 7 taskbar tabs.

TRUE if the content of the MDI child can be displayed on Windows 7 taskbar thumbnails.

Override this method in a derived class and return FALSE to disable the appearance of this MDI child on
Windows 7 taskbar tabs.

Called by the framework to activate the top level frame when the application is activated from a taskbar tab.

Hierarchy Chart
Classes

CMDIChildWnd Class
CMFCWindowsManagerDialog Class
CMDIFrameWndEx Class

CMDIFrameWnd Class
3/4/2019 • 12 minutes to read • Edit Online

Syntax
class CMDIFrameWnd : public CFrameWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMDIFrameWnd::CMDIFrameWnd Constructs a CMDIFrameWnd .

Public MethodsPublic Methods

NAME DESCRIPTION

CMDIFrameWnd::CreateClient Creates a Windows MDICLIENT window for this
CMDIFrameWnd . Called by the OnCreate member function

of CWnd .

CMDIFrameWnd::CreateNewChild Creates a new child window.

CMDIFrameWnd::GetWindowMenuPopup Returns the Window pop-up menu.

CMDIFrameWnd::MDIActivate Activates a different MDI child window.

CMDIFrameWnd::MDICascade Arranges all child windows in a cascaded format.

CMDIFrameWnd::MDIGetActive Retrieves the currently active MDI child window, along with
a flag indicating whether or not the child is maximized.

CMDIFrameWnd::MDIIconArrange Arranges all minimized document child windows.

CMDIFrameWnd::MDIMaximize Maximizes an MDI child window.

CMDIFrameWnd::MDINext Activates the child window immediately behind the currently
active child window and places the currently active child
window behind all other child windows.

CMDIFrameWnd::MDIPrev Activates the previous child window and places the currently
active child window immediately behind it.

Provides the functionality of a Windows multiple document interface (MDI) frame window, along with
members for managing the window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmdiframewnd-class.md

CMDIFrameWnd::MDIRestore Restores an MDI child window from maximized or
minimized size.

CMDIFrameWnd::MDISetMenu Replaces the menu of an MDI frame window, the Window
pop-up menu, or both.

CMDIFrameWnd::MDITile Arranges all child windows in a tiled format.

NAME DESCRIPTION

Remarks
To create a useful MDI frame window for your application, derive a class from CMDIFrameWnd . Add member
variables to the derived class to store data specific to your application. Implement message-handler member
functions and a message map in the derived class to specify what happens when messages are directed to the
window.

You can construct an MDI frame window by calling the Create or LoadFrame member function of CFrameWnd .

Before you call Create or LoadFrame , you must construct the frame window object on the heap using the C++
new operator. Before calling Create you can also register a window class with the AfxRegisterWndClass
global function to set the icon and class styles for the frame.

Use the Create member function to pass the frame's creation parameters as immediate arguments.

LoadFrame requires fewer arguments than Create , and instead retrieves most of its default values from
resources, including the frame's caption, icon, accelerator table, and menu. To be accessed by LoadFrame , all
these resources must have the same resource ID (for example, IDR_MAINFRAME).

Though MDIFrameWnd is derived from CFrameWnd , a frame window class derived from CMDIFrameWnd need not
be declared with DECLARE_DYNCREATE .

The CMDIFrameWnd class inherits much of its default implementation from CFrameWnd . For a detailed list of
these features, refer to the CFrameWnd class description. The CMDIFrameWnd class has the following additional
features:

An MDI frame window manages the MDICLIENT window, repositioning it in conjunction with control
bars. The MDI client window is the direct parent of MDI child frame windows. The WS_HSCROLL and
WS_VSCROLL window styles specified on a CMDIFrameWnd apply to the MDI client window rather than
the main frame window so the user can scroll the MDI client area (as in the Windows Program
Manager, for example).

An MDI frame window owns a default menu that is used as the menu bar when there is no active MDI
child window. When there is an active MDI child, the MDI frame window's menu bar is automatically
replaced by the MDI child window menu.

An MDI frame window works in conjunction with the current MDI child window, if there is one. For
instance, command messages are delegated to the currently active MDI child before the MDI frame
window.

An MDI frame window has default handlers for the following standard Window menu commands:

ID_WINDOW_TILE_VERT

ID_WINDOW_TILE_HORZ

ID_WINDOW_CASCADE

Inheritance Hierarchy

Requirements

CMDIFrameWnd::CMDIFrameWnd

CMDIFrameWnd();

RemarksRemarks

ExampleExample

// Create main MDI Frame window. CMainFrame is a CMDIFrameWnd-derived
// class. The default CFrameWnd::PostNcDestroy() handler will delete this
// object when destroyed.
CMainFrame* pMainFrame = new CMainFrame;

CMDIFrameWnd::CreateClient

virtual BOOL CreateClient(
 LPCREATESTRUCT lpCreateStruct,
 CMenu* pWindowMenu);

ParametersParameters

ID_WINDOW_ARRANGE

An MDI frame window also has an implementation of ID_WINDOW_NEW, which creates a new frame
and view on the current document. An application can override these default command
implementations to customize MDI window handling.

Do not use the C++ delete operator to destroy a frame window. Use CWnd::DestroyWindow instead. The
CFrameWnd implementation of PostNcDestroy will delete the C++ object when the window is destroyed. When

the user closes the frame window, the default OnClose handler will call DestroyWindow .

For more information on CMDIFrameWnd , see Frame Windows.

CObject

CCmdTarget

CWnd

CFrameWnd

CMDIFrameWnd

Header: afxwin.h

Constructs a CMDIFrameWnd object.

Call the Create or LoadFrame member function to create the visible MDI frame window.

Creates the MDI client window that manages the CMDIChildWnd objects.

lpCreateStruct
A long pointer to a CREATESTRUCT structure.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcreatestructa

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The code below is from winmdi.cpp. It shows how to
// call CMDIFrameWnd::CreateClient(). CMainFrame is a
// CMDIFrameWnd-derived class.
BOOL CMainFrame::OnCreateClient(LPCREATESTRUCT lpcs, CCreateContext* /*pContext*/)
{
 CMenu* pMenu = NULL;
 if (m_hMenuDefault == NULL)
 {
 // default implementation for MFC V1 backward compatibility
 pMenu = GetMenu();
 ASSERT(pMenu != NULL);
 // This is attempting to guess which sub-menu is the Window menu.
 // The Windows user interface guidelines say that the right-most
 // menu on the menu bar should be Help and Window should be one
 // to the left of that.
 int iMenu = pMenu->GetMenuItemCount() - 2;

 // If this assertion fails, your menu bar does not follow the guidelines
 // so you will have to override this function and call CreateClient
 // appropriately or use the MFC V2 MDI functionality.
 ASSERT(iMenu >= 0);
 pMenu = pMenu->GetSubMenu(iMenu);
 ASSERT(pMenu != NULL);
 }

 return CreateClient(lpcs, pMenu);
}

CMDIFrameWnd::CreateNewChild

CMDIChildWnd* CreateNewChild(
 CRuntimeClass* pClass,
 UINT nResource,
 HMENU hMenu = NULL,
 HACCEL hAccel = NULL);

ParametersParameters

pWindowMenu
A pointer to the Window pop-up menu.

Nonzero if successful; otherwise 0.

This member function should be called if you override the OnCreate member function directly.

Creates a new child window.

pClass
The run-time class of the child window to be created.

nResource
The ID of shared resources associated with the child window.

hMenu
The child window's menu.

hAccel

RemarksRemarks

ExampleExample

// CMainFrame is a CMDIFrameWnd-derived class,
// OnNewDraw is a menu command handler,
// CDrawFrame is a CMDIChildWnd-derived class.
void CMainFrame::OnNewDraw()
{
 CreateNewChild(RUNTIME_CLASS(CDrawFrame), IDR_DRAW, m_hDrawMenu,
 m_hDrawAccel);
}

CMDIFrameWnd::GetWindowMenuPopup

virtual HMENU GetWindowMenuPopup(HMENU hMenuBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

The child window's accelerator.

Use this function to create child windows of an MDI frame window.

Call this member function to obtain a handle to the current pop-up menu named "Window" (the pop-up menu
with menu items for MDI window management).

hMenuBar
The current menu bar.

The Window pop-up menu if one exists; otherwise NULL.

The default implementation looks for a pop-up menu containing standard Window menu commands such as
ID_WINDOW_NEW and ID_WINDOW_TILE_HORZ.

Override this member function if you have a Window menu that does not use the standard menu command
IDs.

// CMainFrame::OnActivateFirstMDIChild() is a menu command handler for
// CMainFrame class, which in turn is a CMDIFrameWnd-derived class.
// It looks for the caption of the first created MDI child window from
// the Window popup menu, and then activate the child window.
void CMainFrame::OnActivateFirstMDIChild()
{
 // Get handle to the Window pop-up menu.
 CMenu* menubar = GetMenu();
 CMenu* wmenu = CMenu::FromHandle(GetWindowMenuPopup(menubar->GetSafeHmenu()));
 if (wmenu == NULL)
 return;

 // Get the caption of the first created MDI child window.
 CString caption;
 if (!wmenu->GetMenuString(AFX_IDM_FIRST_MDICHILD, caption, MF_BYCOMMAND))
 return;

 // Get the actual name of the first created MDI child window by
 // getting rid of the number and space, e.g. "&1 MDI 1".
 int pos = caption.FindOneOf(_T(" "));
 if (pos == -1)
 return;

 caption = caption.Right(caption.GetLength() - (pos + 1));

 // Get the CWnd* of the first created MDI child window by comparing
 // the caption of each MDI child window in the MDI application.
 // Activate the first created MDI child window if found.
 CMDIChildWnd* child = MDIGetActive();
 do
 {
 CString str;
 child->GetWindowText(str);
 if (str == caption)
 {
 child->MDIActivate(); // or MDIActivate(child);
 break;
 }

 child = (CMDIChildWnd*) child->GetWindow(GW_HWNDNEXT);
 }
 while (child);
}

CMDIFrameWnd::MDIActivate

void MDIActivate(CWnd* pWndActivate);

ParametersParameters

RemarksRemarks

Activates a different MDI child window.

pWndActivate
Points to the MDI child window to be activated.

This member function sends the WM_MDIACTIVATE message to both the child window being activated and
the child window being deactivated.

This is the same message that is sent if the user changes the focus to an MDI child window by using the
mouse or keyboard.

NOTENOTE

ExampleExample

CMDIFrameWnd::MDICascade

void MDICascade();
void MDICascade(int nType);

ParametersParameters

RemarksRemarks

ExampleExample

// CMainFrame::OnWindowCommand() is a menu command handler for
// CMainFrame class, which is a CMDIFrameWnd-derived
// class. It handles menu commands for the Windows pop-up menu.
// Its entries in the message map are of the following form:
// ON_COMMAND_EX(ID_WINDOW_ARRANGE, &CMainFrame::OnWindowCommand)
BOOL CMainFrame::OnWindowCommand(UINT nID)
{
 switch (nID)
 {
 case ID_WINDOW_ARRANGE: // For Window\Arrange Icons menu item, arrange
 MDIIconArrange(); // all minimized document child windows.
 break;

 case ID_WINDOW_CASCADE: // For Window\Cascade menu item, arrange
 MDICascade(); // all the MDI child windows in a cascade format.
 break;

 case ID_WINDOW_TILE_HORZ: // For Window\Tile Horizontal menu item,
 MDITile(MDITILE_HORIZONTAL); // tile MDI child windows so that
 break; // one window appears above another.

 case ID_WINDOW_TILE_VERT: // For Window\Tile Vertical menu item,
 MDITile(MDITILE_VERTICAL); // tile MDI child windows so that
 break; // one window appears beside another.

 }

 return TRUE;
}

An MDI child window is activated independently of the MDI frame window. When the frame becomes active, the child
window that was last activated is sent a WM_NCACTIVATE message to draw an active window frame and caption bar,
but it does not receive another WM_MDIACTIVATE message.

See the example for CMDIFrameWnd::GetWindowMenuPopup.

Arranges all the MDI child windows in a cascade format.

nType
Specifies a cascade flag. Only the following flag can be specified: MDITILE_SKIPDISABLED, which prevents
disabled MDI child windows from being cascaded.

The first version of MDICascade , with no parameters, cascades all MDI child windows, including disabled ones.
The second version optionally does not cascade disabled MDI child windows if you specify
MDITILE_SKIPDISABLED for the nType parameter.

CMDIFrameWnd::MDIGetActive

CMDIChildWnd* MDIGetActive(BOOL* pbMaximized = NULL) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CMDIFrameWnd::MDIIconArrange

void MDIIconArrange();

RemarksRemarks

ExampleExample

CMDIFrameWnd::MDIMaximize

void MDIMaximize(CWnd* pWnd);

ParametersParameters

RemarksRemarks

ExampleExample

CMDIFrameWnd::MDINext

Retrieves the current active MDI child window, along with a flag indicating whether the child window is
maximized.

pbMaximized
A pointer to a BOOL return value. Set to TRUE on return if the window is maximized; otherwise FALSE.

A pointer to the active MDI child window.

See the example for CMDIChildWnd::MDIMaximize.

Arranges all minimized document child windows.

It does not affect child windows that are not minimized.

See the example for CMDIFrameWnd::MDICascade.

Maximizes the specified MDI child window.

pWnd
Points to the window to maximize.

When a child window is maximized, Windows resizes it to make its client area fill the client window. Windows
places the child window's Control menu in the frame's menu bar so the user can restore or close the child
window. It also adds the title of the child window to the frame-window title.

If another MDI child window is activated when the currently active MDI child window is maximized, Windows
restores the currently active child and maximizes the newly activated child window.

See the example for CMDIChildWnd::MDIMaximize.

void MDINext();

RemarksRemarks

ExampleExample

// CMainFrame::OnActivateNextWindow() is a menu command handler for
// CMainFrame class, which in turn is a CMDIFrameWnd-derived class.
// It activates the child window immediately behind the currently
// active child window and places the currently active child window
// behind all other child windows.
void CMainFrame::OnActivateNextWindow()
{
 MDINext();
}

CMDIFrameWnd::MDIPrev

void MDIPrev();

RemarksRemarks

CMDIFrameWnd::MDIRestore

void MDIRestore(CWnd* pWnd);

ParametersParameters

ExampleExample

CMDIFrameWnd::MDISetMenu

CMenu* MDISetMenu(
 CMenu* pFrameMenu,
 CMenu* pWindowMenu);

Activates the child window immediately behind the currently active child window and places the currently
active child window behind all other child windows.

If the currently active MDI child window is maximized, the member function restores the currently active child
and maximizes the newly activated child.

Activates the previous child window and places the currently active child window immediately behind it.

If the currently active MDI child window is maximized, the member function restores the currently active child
and maximizes the newly activated child.

Restores an MDI child window from maximized or minimized size.

pWnd
Points to the window to restore.

See the example for CMDIChildWnd::MDIRestore.

Replaces the menu of an MDI frame window, the Window pop-up menu, or both.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// CMdiView::OnReplaceMenu() is a menu command handler for CMdiView
// class, which in turn is a CView-derived class. It loads a new
// menu resource and replaces the main application window's menu
// bar with this new menu.
void CMdiView::OnReplaceMenu()
{
 // Load a new menu resource named IDR_SHORT_MENU. m_hDefaultMenu is
 // a member variable of CMdiDoc class (a CDocument-derived class).
 // Its type is HMENU.
 CMdiDoc* pdoc = (CMdiDoc*)GetDocument();
 pdoc->m_hDefaultMenu =
 ::LoadMenu(AfxGetResourceHandle(), MAKEINTRESOURCE(IDR_SHORT_MENU));
 if (pdoc->m_hDefaultMenu == NULL)
 return;

 // Get the parent window of this view window. The parent window is
 // a CMDIChildWnd-derived class. We can then obtain the MDI parent
 // frame window using the CMDIChildWnd*. Then, replace the current
 // menu bar with the new loaded menu resource.
 CMDIFrameWnd* frame = ((CMDIChildWnd*)GetParent())->GetMDIFrame();
 frame->MDISetMenu(CMenu::FromHandle(pdoc->m_hDefaultMenu), NULL);
 frame->DrawMenuBar();
}

pFrameMenu
Specifies the menu of the new frame-window menu. If NULL, the menu is not changed.

pWindowMenu
Specifies the menu of the new Window pop-up menu. If NULL, the menu is not changed.

A pointer to the frame-window menu replaced by this message. The pointer may be temporary and should not
be stored for later use.

After calling MDISetMenu , an application must call the DrawMenuBar member function of CWnd to update the
menu bar.

If this call replaces the Window pop-up menu, MDI child-window menu items are removed from the previous
Window menu and added to the new Window pop-up menu.

If an MDI child window is maximized and this call replaces the MDI frame-window menu, the Control menu
and restore controls are removed from the previous frame-window menu and added to the new menu.

Do not call this member function if you use the framework to manage your MDI child windows.

// GetDefaultMenu() is an undocumented virtual function for
// CDocument class. It allows the document to determine which
// menu to display. m_hDefaultMenu is of type HMENU. Its value
// is initialized to NULL either in the constructor or
// CDocument::OnNewDocument(). And the menu resource is destroyed
// in the destructor to avoid having too many menus loaded at once.
HMENU CMdiDoc::GetDefaultMenu()
{
 if (m_hDefaultMenu)
 return m_hDefaultMenu;

 return COleServerDoc::GetDefaultMenu();
}

// Initialize member variable(s) in the constructor. CMdiDoc is
// a CDocument-derived class.
CMdiDoc::CMdiDoc()
{
 // Use OLE compound files
 EnableCompoundFile();

 m_hDefaultMenu = NULL; // initialize to NULL
}

// Destroy menu resource in CMdiDoc's destructor. CMdiDoc is
// a CDocument-derived class.
CMdiDoc::~CMdiDoc()
{
 if (m_hDefaultMenu)
 ::DestroyMenu(m_hDefaultMenu);
}

CMDIFrameWnd::MDITile

void MDITile();
void MDITile(int nType);

ParametersParameters

RemarksRemarks

ExampleExample

See also

Arranges all child windows in a tiled format.

nType
Specifies a tiling flag. This parameter can be any one of the following flags:

MDITILE_HORIZONTAL Tiles MDI child windows so that one window appears above another.

MDITILE_SKIPDISABLED Prevents disabled MDI child windows from being tiled.

MDITILE_VERTICAL Tiles MDI child windows so that one window appears beside another.

The first version of MDITile , without parameters, tiles the windows vertically under Windows versions 3.1 and
later. The second version tiles windows vertically or horizontally, depending on the value of the nType
parameter.

See the example for CMDIFrameWnd::MDICascade.

MFC Sample MDI
MFC Sample MDIDOCVW
MFC Sample SNAPVW
CFrameWnd Class
Hierarchy Chart
CWnd Class
CMDIChildWnd Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMDIFrameWndEx Class
3/4/2019 • 37 minutes to read • Edit Online

Syntax
class CMDIFrameWndEx : public CMDIFrameWnd

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMDIFrameWndEx::ActiveItemRecalcLayout Recalculates the layout of the active item.

CMDIFrameWndEx::AddDockSite This method is not used.

CMDIFrameWndEx::AddPane Registers a pane with the docking manager.

CMDIFrameWndEx::AdjustClientArea Reduces the client area to allow for a border.

CMDIFrameWndEx::AdjustDockingLayout Recalculates the layout of all docked panes.

CMDIFrameWndEx::AreMDITabs Determines whether the MDI Tabs feature or the MDI
Tabbed Groups feature is enabled.

CMDIFrameWndEx::CanCovertControlBarToMDIChild Called by the framework to determine whether the frame
window can convert docking panes to tabbed documents.

CMDIFrameWndEx::ControlBarToTabbedDocument Converts the specified docking pane to a tabbed document.

CMDIFrameWndEx::CreateDocumentWindow Creates a child document window.

CMDIFrameWndEx::CreateNewWindow Called by the framework to create a new window.

CMDIFrameWndEx::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMDIFrameWndEx::DockPane Docks the specified pane to the frame window.

CMDIFrameWndEx::DockPaneLeftOf Docks one pane to the left of another pane.

CMDIFrameWndEx::EnableAutoHidePanes Enables auto-hide mode for panes when they are docked at
specified sides of the main frame window.

CMDIFrameWndEx::EnableDocking Enables docking of the panes that belong to the MDI frame
window.

Extends the functionality of CMDIFrameWnd, a Windows Multiple Document Interface (MDI) frame window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmdiframewndex-class.md

CMDIFrameWndEx::EnableFullScreenMainMenu Shows or hides the main menu in full-screen mode.

CMDIFrameWndEx::EnableFullScreenMode Enables full-screen mode for the frame window.

CMDIFrameWndEx::EnableLoadDockState Enables or disables the loading of the docking state.

CMDIFrameWndEx::EnableMDITabbedGroups Enables or disables the MDI Tabbed Groups feature.

CMDIFrameWndEx::EnableMDITabs Enables or disables the MDI Tabs feature. When enabled, the
frame window displays a tab for each MDI child window.

CMDIFrameWndEx::EnableMDITabsLastActiveActivation Specifies whether the last active tab should be activated
when the user closes the current tab.

CMDIFrameWndEx::EnablePaneMenu Enables or disables automatic creation and management of
the pop-up pane menu, which displays a list of application
panes. .

CMDIFrameWndEx::EnableWindowsDialog Inserts a menu item whose command ID calls a
CMFCWindowsManagerDialog dialog box.

CMDIFrameWndEx::GetActivePopup Returns a pointer to the currently displayed popup menu.

CMDIFrameWndEx::GetPane Returns a pointer to the pane that has the specified control
ID.

CMDIFrameWndEx::GetDefaultResId Returns the ID of shared resources of the MDI frame
window.

CMDIFrameWndEx::GetMDITabGroups Returns a list of MDI tabbed windows.

CMDIFrameWndEx::GetMDITabs Returns a reference to the underlined tabbed window.

CMDIFrameWndEx::GetMDITabsContextMenuAllowedItems Returns a combination of flags that determines what context
menu items are valid when the MDI Tabbed Groups feature
is enabled.

CMDIFrameWndEx::GetMenuBar Returns a pointer to a menu bar object attached to the
frame window.

CMDIFrameWndEx::GetRibbonBar Retrieves the ribbon bar control for the frame.

CMDIFrameWndEx::GetTearOffBars Returns a list of CPane-derived objects that are in a tear-off
state.

CMDIFrameWndEx::GetThisClass Called by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMDIFrameWndEx::GetToolbarButtonToolTipText Called by the framework when the application displays the
tooltip for a toolbar button.

CMDIFrameWndEx::InsertPane Registers the specified pane with the docking manager.

NAME DESCRIPTION

CMDIFrameWndEx::IsFullScreen Determines whether the frame window is in full-screen
mode.

CMDIFrameWndEx::IsMDITabbedGroup Determines whether the MDI Tabbed Groups feature is
enabled.

CMDIFrameWndEx::IsMemberOfMDITabGroup Determines whether the specified tabbed window is in the
list of windows that are in MDI Tabbed Groups.

CMDIFrameWndEx::IsMenuBarAvailable Determines whether the frame window has a menu bar.

CMDIFrameWndEx::IsPointNearDockSite Determines whether a specified point is near the dock site.

CMDIFrameWndEx::IsPrintPreview Determines whether the frame window is in print-preview
mode.

CMDIFrameWndEx::LoadFrame Creates a frame window from resource information.
(Overrides CMDIFrameWnd::LoadFrame .)

CMDIFrameWndEx::LoadMDIState Loads the specified layout of MDI Tabbed Groups and the
list of previously opened documents.

CMDIFrameWndEx::MDITabMoveToNextGroup Moves the active tab from the currently active tabbed
window to the next or previous tabbed group.

CMDIFrameWndEx::MDITabNewGroup Creates a new tabbed group that has a single window.

CMDIFrameWndEx::NegotiateBorderSpace Negotiates border space in a frame window during OLE in-
place activation.

CMDIFrameWndEx::OnCloseDockingPane Called by the framework when the user clicks the Close
button on a dockable pane.

CMDIFrameWndEx::OnCloseMiniFrame Called by the framework when the user clicks the Close
button on a floating mini frame window.

CMDIFrameWndEx::OnClosePopupMenu Called by the framework when an active pop-up menu
processes a WM_DESTROY message.

CMDIFrameWndEx::OnCmdMsg Called by the framework to route and dispatch command
messages and to update command user-interface objects.

CMDIFrameWndEx::OnDrawMenuImage Called by the framework when the image associated with a
menu item is drawn.

CMDIFrameWndEx::OnDrawMenuLogo Called by the framework when a
CMFCPopupMenuprocesses a WM_PAINT message.

CMDIFrameWndEx::OnEraseMDIClientBackground Called by the framework when the MDI frame window
processes a WM_ERASEBKGND message.

CMDIFrameWndEx::OnMenuButtonToolHitTest Called by the framework when a CMFCToolBarButtonobject
processes a WM_NCHITTEST message.

NAME DESCRIPTION

CMDIFrameWndEx::OnMoveMiniFrame Called by the framework to move a mini-frame window.

CMDIFrameWndEx::OnSetPreviewMode Sets the application's main frame window print-preview
mode. (Overrides CFrameWnd::OnSetPreviewMode.)

CMDIFrameWndEx::OnShowCustomizePane Called by the framework when a Quick Customize pane is
activated.

CMDIFrameWndEx::OnShowMDITabContextMenu Called by the framework when a context menu should be
displayed on one of the tabs. (Valid for MDI Tabbed Groups
only.)

CMDIFrameWndEx::OnShowPanes Called by the framework to show or hide panes.

CMDIFrameWndEx::OnShowPopupMenu Called by the framework when a pop-up menu is activated.

CMDIFrameWndEx::OnSizeMDIClient Called by the framework when the size of the client MDI
window is changing.

CMDIFrameWndEx::OnTearOffMenu Called by the framework when a menu that has a tear-off
bar is activated.

CMDIFrameWndEx::OnUpdateFrameMenu Called by the framework to update the frame menu.
(Overrides CMDIFrameWnd::OnUpdateFrameMenu .)

CMDIFrameWndEx::PaneFromPoint Returns the docking pane that contains the specified point.

CMDIFrameWndEx::PreTranslateMessage Used by class CWinApp to translate window messages
before they are dispatched to the TranslateMessage and
DispatchMessage Windows functions. (Overrides
CMDIFrameWnd::PreTranslateMessage .)

CMDIFrameWndEx::RecalcLayout Called by the framework to recalculate the layout of the
frame window. (Overrides CFrameWnd::RecalcLayout.)

CMDIFrameWndEx::RemovePaneFromDockManager Unregisters a pane and removes it from the docking
manager.

CMDIFrameWndEx::SaveMDIState Saves the current layout of MDI Tabbed Groups and the list
of previously opened documents.

CMDIFrameWndEx::SetPrintPreviewFrame Sets the print preview frame window.

CMDIFrameWndEx::SetupToolbarMenu Modifies a toolbar object by searching for dummy items and
replacing them with the specified user-defined items.

CMDIFrameWndEx::ShowFullScreen Switches the main frame from regular mode to full-screen
mode.

CMDIFrameWndEx::ShowPane Shows or hides the specified pane.

CMDIFrameWndEx::ShowWindowsDialog Creates a CMFCWindowsManagerDialog box and opens it.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CMDIFrameWndEx::TabbedDocumentToControlBar Converts the specified tabbed document to a docking pane.

CMDIFrameWndEx::UpdateCaption Called by the framework to update the window frame
caption.

CMDIFrameWndEx::UpdateMDITabbedBarsIcons Sets the icon for each MDI tabbed pane.

CMDIFrameWndEx::WinHelp Called by the framework to initiate the WinHelp application
or context help. (Overrides CWnd::WinHelp.)

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CMDIFrameWndEx::m_bCanCovertControlBarToMDIChild Determines whether docking panes can be converted to
MDI child windows.

CMDIFrameWndEx::m_bDisableSetRedraw Enables or disables redraw optimization for MDI child
windows.

Remarks

Example

class CMainFrame : public CMDIFrameWndEx
{
 DECLARE_DYNAMIC(CMainFrame)
public:
 struct XStyle
 {
 COLORREF clrFill;
 COLORREF clrLine;
 };

public:
 CMainFrame();

 // Attributes
public:
 CMFCRibbonBar* GetRibbonBar() {return &m_wndRibbonBar;}

 // Operations
public:
 void UpdateUI(CDrawView* pCurrView);
 void UpdateContextTab(CDrawView* pCurrView);
 void UpdateContextTabFromObject(CDrawObjList& list);

 COLORREF GetColorFromColorButton(int nButtonID);
 int GetWeightFromLineWeight(int nButtonID);
 BOOL GetStyleFromStyles(XStyle& style);

 void SetRibbonContextCategory(UINT uiCategoryID);

To take advantage of extended customization features in your MDI application, derive the MDI frame window
class of the application from CMDIFrameWndEx instead of CMDIFrameWnd .

The following example derives a class from CMDIFrameWndEx . This code snippet comes from the DrawClient
Sample: MFC Ribbon-Based OLE Object Drawing Application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

 void SetRibbonContextCategory(UINT uiCategoryID);
 void ActivateRibbonContextCategory(UINT uiCategoryID);

// Implementation
public:
 virtual ~CMainFrame();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:
 // control bar embedded members
 CMFCRibbonStatusBar m_wndStatusBar;
 CMFCRibbonBar m_wndRibbonBar;

 CMFCRibbonApplicationButton m_MainButton;

 // panel images
 CMFCToolBarImages m_PanelImages;

 // Document colors for demo:
 CList<COLORREF,COLORREF> m_lstMainColors;
 CList<COLORREF,COLORREF> m_lstAdditionalColors;
 CList<COLORREF,COLORREF> m_lstStandardColors;

 // Generated message map functions
protected:
 //{{AFX_MSG(CMainFrame)
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg void OnAppLook(UINT id);
 afx_msg void OnUpdateAppLook(CCmdUI* pCmdUI);
 afx_msg void OnWindowManager();
 afx_msg void OnMdiMoveToNextGroup();
 afx_msg void OnMdiMoveToPrevGroup();
 afx_msg void OnMdiNewHorzTabGroup();
 afx_msg void OnMdiNewVertGroup();
 afx_msg void OnMdiCancel();
 afx_msg LRESULT OnRibbonCustomize(WPARAM wp, LPARAM lp);
 afx_msg LRESULT OnHighlightRibbonListItem(WPARAM wp, LPARAM lp);
 afx_msg void OnToolsOptions();
 afx_msg void OnDummy();
 afx_msg void OnSysColorChange();
 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 virtual BOOL OnShowMDITabContextMenu(CPoint point, DWORD dwAllowedItems, BOOL bDrop);
 virtual BOOL OnShowPopupMenu(CMFCPopupMenu* pMenuPopup);

 void ShowOptions(int nPage);
 void CreateDocumentColors();

private:
 BOOL CreateRibbonBar();
 BOOL CreateStatusBar();

 void InitMainButton();
 void InitHomeCategory();
 void InitViewCategory();
 void InitTabButtons();

 void AddContextTab_Format();

 void AdjustObjectSubmenu(CMFCPopupMenu* pMenuPopup);
 void UpdateStatusBarCountPane(int nID, CString strText, int nCount);

 UINT m_nAppLook;
};

Inheritance Hierarchy

Requirements

CMDIFrameWndEx::ActiveItemRecalcLayout

void ActiveItemRecalcLayout();

CMDIFrameWndEx::AddPane

BOOL AddPane(
 CBasePane* pControlBar,
 BOOL bTail=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::AdjustClientArea

CObject

CCmdTarget

CWnd

CFrameWnd

CMDIFrameWnd

CMDIFrameWndEx

Header: afxMDIFrameWndEx.h

Recalculates the layout of the active item.

Registers a pane with the docking manager.

pControlBar
[in] Pointer to the pane to register.

bTail
[in] Specifies whether to add this pane to the end of the list.

Returns a non-zero value if the pane is registered successfully. Returns 0 if the pane is already registered with
the docking manager.

Each pane must be registered with the CDockingManager Class before it can take a part in the docking layout.
Use this method to notify the docking manager that you want to dock a specific pane. Once that pane is
registered, the docking manager aligns it based on its alignment setting and position in the list of panes
maintained by the docking manager.

Reduces the client area to allow for a border.

virtual void AdjustClientArea();

CMDIFrameWndEx::AdjustDockingLayout

virtual void AdjustDockingLayout(HDWP hdwp=NULL);

ParametersParameters

RemarksRemarks

CMDIFrameWndEx::AreMDITabs

BOOL AreMDITabs(int* pnMDITabsType=NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::CanCovertControlBarToMDIChild

virtual BOOL CanCovertControlBarToMDIChild();

Return ValueReturn Value

Recalculates the layout of all docked panes.

hdwp
[in] Identifies the multiple-window-position structure. You can obtain this value by calling BeginDeferWindowPos .

Call this member function to recalculate the layout of all panes docked to the frame window.

Determines whether the MDI tabs feature or the MDI tabbed groups feature is enabled.

pnMDITabsType
[out] A pointer to an integer variable that indicates which features are enabled:

0: All features are disabled.

1: MDI tabs is enabled.

2: MDI tabbed groups is enabled.

Returns TRUE if MDI tabs or MDI tabbed groups is enabled.

Returns FALSE if none of the above features is enabled.

Use this function to determine whether MDI tabs or MDI tabbed groups is enabled for the frame window. Use
CMDIFrameWndEx::EnableMDITabs to enable or disable the MDI tabs feature.

Use CMDIFrameWndEx::EnableMDITabbedGroups to enable or disable the MDI tabbed groups feature.

Called by the framework to determine whether the frame window can convert docking panes to tabbed
documents

Returns TRUE if the frame window can convert docking panes to tabbed documents; otherwise returns FALSE.

RemarksRemarks

CMDIFrameWndEx::ControlBarToTabbedDocument

virtual CMDIChildWndEx* ControlBarToTabbedDocument(CDockablePane* pBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::CreateDocumentWindow

virtual CMDIChildWndEx* CreateDocumentWindow(
 LPCTSTR lpcszDocName,
 CObject* pObj);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Override this method in a derived class and return TRUE to enable the conversion of docking panes to tabbed
documents. Alternatively, you can set CMDIFrameWndEx::m_bCanCovertControlBarToMDIChild to TRUE.

Converts the specified docking pane to a tabbed document.

pBar
A pointer to the docking pane to convert.

Returns a pointer to the new MDI child window that contains the docking pane.

This method converts a docking pane to a tabbed document. When you call this method, the framework creates
a CMDIChildWndEx Class object, removes the docking pane from the docking manager, and adds the docking
pane to the new MDI child window. The MDI child window resizes the docking pane to cover the entire client
area

Creates a child document window.

lpcszDocName
[in] A text string that contains a document identifier. Typically, it is the full path of a document file.

pObj
[in] A pointer to a user-defined object. For example, a developer can create an application-specific data structure
describing the document and telling how the document should be initialized at startup.

A pointer to CMDIChildWndEx .

The framework calls this method when it loads the list of documents previously saved in the registry.

Override this method in order to create documents when they are being loaded from the registry.

The following example shows how CreateDocumentWindow is used in the VisualStudioDemo Sample: MFC Visual
Studio Application.

In this example, g_strStartViewName could be the name of a "virtual document" (for example, "Start Page") that
is not actually loaded from a disk file. Therefore we need special processing to handle that case.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMainFrame::CMainFrame()
{
 CMFCPopupMenu::SetForceShadow(TRUE);

 m_bCanConvertControlBarToMDIChild = TRUE;
}

CMDIFrameWndEx::CreateNewWindow

virtual CMDIChildWndEx* CreateNewWindow(
 LPCTSTR lpcszDocName,
 CObject* pObj);

ParametersParameters

Return ValueReturn Value

CMDIFrameWndEx::DockPane

void DockPane(
 CBasePane* pBar,
 UINT nDockBarID=0,
 LPCRECT lpRect=NULL);

ParametersParameters

RemarksRemarks

ExampleExample

Called by the framework to create a new window.

lpcszDocName
[in] The document name.

pObj
[in] Reserved for future use.

A pointer to the new window.

Docks the specified pane to the frame window.

pBar
[in] Pointer to the pane to dock.

nDockBarID
[in] Specifies which sides of the frame window to dock to.

lpRect
[in] Not used.

This method docks the specified the pane to one of the sides of the frame window that was specified when
CBasePane::EnableDocking and CMDIFrameWndEx::EnableDocking were called.

The following example demonstrates the use of the DockPane method. This code snippet comes from the
VisualStudioDemo Sample: MFC Visual Studio Application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

DockPane(&m_wndMenuBar);
DockPane(&m_wndToolBar);
DockPane(&m_wndPropertiesBar);

DockPane(&m_wndToolbarBuild);

CMDIFrameWndEx::DockPaneLeftOf

BOOL DockPaneLeftOf(
 CPane* pBar,
 CPane* pLeftOf);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

DockPane(&m_wndToolbarBuild);
DockPaneLeftOf(&m_wndToolbarEdit, &m_wndToolbarBuild);

CMDIFrameWndEx::EnableAutoHidePanes

BOOL EnableAutoHidePanes(DWORD dwDockStyle);

ParametersParameters

Return ValueReturn Value

Docks one pane to the left of another pane.

pBar
[in] A pointer to the docking pane.

pLeftOf
[in] A pointer to the pane that serves as the dock site. .

Returns TRUE if the operation is successful. Otherwise returns FALSE.

Call this method to dock several pane objects in a predefined order. This method docks the pane specified by
pBar to the left of the pane specified by pLeftOf.

The following example shows how the DockPaneLeftOf method is used in the VisualStudioDemo Sample: MFC
Visual Studio Application.

Enables auto-hide mode for panes when they are docked at the specified sides of the main frame window.

dwDockStyle
[in] Specifies the sides of the main frame window that will be enabled. Use one or more of the following flags.

CBRS_ALIGN_LEFT

CBRS_ALIGN_RIGHT

CBRS_ALIGN_TOP

CBRS_ALIGN_BOTTOM

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ExampleExample

EnableAutoHidePanes(CBRS_ALIGN_ANY);

RemarksRemarks

CMDIFrameWndEx::EnableDocking

BOOL EnableDocking(DWORD dwDockStyle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

EnableDocking(CBRS_ALIGN_ANY);

CMDIFrameWndEx::EnableFullScreenMainMenu

void EnableFullScreenMainMenu(BOOL bEnableMenu);

ParametersParameters

RemarksRemarks

CMDIFrameWndEx::EnableFullScreenMode

void EnableFullScreenMode(UINT uiFullScreenCmd);

ParametersParameters

Call this function to enable auto-hide mode for panes when they are docked at the specified sides of the main
frame window.

The following example shows how the EnableAutoHidePanes method is used in the VisualStudioDemo Sample:
MFC Visual Studio Application.

Enables docking of the panes that belong to the MDI frame window.

dwDockStyle
[in] Specifies the docking style that you want to apply.

Call this function to enable docking of panes that belong to the CMDIFrameWndEx object.

The following example shows how the EnableDocking method is used in the VisualStudioDemo Sample: MFC
Visual Studio Application.

Shows or hides the main menu in full-screen mode.

bEnableMenu
[in] TRUE to show the main menu in full-screen mode, or FALSE to hide it.

Enables full-screen mode for the frame window.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CMDIFrameWndEx::EnableLoadDockState

void EnableLoadDockState(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMDIFrameWndEx::EnableMDITabbedGroups

void EnableMDITabbedGroups(
 BOOL bEnable,
 const CMDITabInfo& params);

ParametersParameters

RemarksRemarks

uiFullScreenCmd
[in] The ID of a command that enables or disables full-screen mode.

In full-screen mode, all docking control bars, toolbars and menus are hidden and the active view is resized to
occupy the full-screen.When you enable full-screen mode, you must specify an ID of the command that enables
or disables it. You can call EnableFullScreenMode from the main frame's OnCreate function. When a frame
window is being switched to full-screen mode, the framework creates a floating toolbar with one button that has
the specified command ID.If you want to keep the main menu on the screen, call
CMDIFrameWndEx::EnableFullScreenMainMenu.

Enables or disables the loading of the docking state.

bEnable
[in] TRUE to enable the loading of the docking state, FALSE to disable the loading of the docking state.

Enables or disables the MDI tabbed groups feature for the frame window.

bEnable
[in] If TRUE, the MDI tabbed groups feature is enabled; if FALSE, the MDI tabbed groups feature is disabled.

params
[in] Specifies parameters that the framework applies to child windows that are created in the MDI client area.

Use this method to enable or disable the MDI tabbed groups feature. This feature enables MDI applications to
display child windows as tabbed windows that are aligned vertically or horizontally within the MDI client area.
Groups of tabbed windows are separated by splitters. The user can resize tabbed groups by using a splitter.

The user can:

Drag individual tabs between groups.

Drag individual tabs to the edge of the window to create new groups.

Move tabs or create new groups by using a shortcut menu.

Your application can save the current layout of tabbed windows and the list of currently opened
documents.

If you call this method with bEnable set to FALSE, params is ignored.

ExampleExample

CMDITabInfo mdiTabParams;
mdiTabParams.m_bTabCustomTooltips = TRUE;

if (bMDITabsVS2005Look)
{
 mdiTabParams.m_style = CMFCTabCtrl::STYLE_3D_VS2005;
 mdiTabParams.m_bDocumentMenu = TRUE;
}
else if (bOneNoteTabs)
{
 mdiTabParams.m_style = CMFCTabCtrl::STYLE_3D_ONENOTE;
 mdiTabParams.m_bAutoColor = bMDITabColors;
}

if (bActiveTabCloseButton)
{
 mdiTabParams.m_bTabCloseButton = FALSE;
 mdiTabParams.m_bActiveTabCloseButton = TRUE;
}

EnableMDITabbedGroups(TRUE, mdiTabParams);

CMDIFrameWndEx::EnableMDITabs

void EnableMDITabs(
 BOOL bEnable=TRUE,
 BOOL bIcons=TRUE,
 CMFCTabCtrl::Location tabLocation=CMFCTabCtrl::LOCATION_BOTTOM,
 BOOL bTabCloseButton=FALSE,
 CMFCTabCtrl::Style style=CMFCTabCtrl::STYLE_3D_SCROLLED,
 BOOL bTabCustomTooltips=FALSE,
 BOOL bActiveTabCloseButton=FALSE);

ParametersParameters

Even if MDI tabbed groups is already enabled, you can call this method again to modify the settings for child
windows. Call the method with bEnable set to TRUE and modify the members of the CMDITabInfo object that
are specified by the params parameter.

For more information about how to use MDI tabbed groups, see MDI Tabbed Groups.

The following example shows how EnableMDITabbedGroups is used in the VisualStudioDemo Sample: MFC
Visual Studio Application.

Enables or disables the MDI Tabs feature for the MDI frame window. When enabled, the frame window displays
a tab for each MDI child window.

bEnable
Specifies whether tabs are enabled.

bIcons
Specifies whether icons should be displayed on the tabs.

tabLocation
Specifies the location of the tab labels.

bTabCloseButton
Specifies whether to display tab close buttons.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

ExampleExample

style
Specifies the style of tabs. Use STYLE_3D_SCROLLED for regular tabs or STYLE_3D_ONENOTE for Microsoft
OneNote tabs.

bTabCustomTooltips
Specifies whether custom tooltips are enabled.

bActiveTabCloseButton
If TRUE, a Close button will be displayed on the active tab instead of on the right corner of the tab area.

Call this method to enable or disable the MDI tabs feature for the MDI frame window. When enabled, all child
windows are displayed as tabs.

The tab labels can be located at the top or bottom of the frame, depending on the setting of the parameter
tabLocation. You may specify either CMFCTabCtrl::LOCATION_BOTTOM (the default setting) or
CMFCTabCtrl::LOCATION_TOP .

If bTabCustomTooltips is TRUE, an AFX_WM_ON_GET_TAB_TOOLTIP message will be sent to the main frame
window. Your code can handle this message and provide the framework with custom tooltips for MDI tabs.

The following example shows how EnableMDITabs is used in the MDITabsDemo Sample: MFC Tabbed MDI
Application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

void CMainFrame::UpdateMDITabs (BOOL bResetMDIChild)
{
 CMDITabInfo params;
 HWND hwndActive = NULL;

 switch (theApp.m_Options.m_nMDITabsType)
 {
 case CMDITabOptions::None:
 {
 BOOL bCascadeMDIChild = FALSE;

 if (IsMDITabbedGroup ())
 {
 EnableMDITabbedGroups (FALSE, params);
 bCascadeMDIChild = TRUE;
 }
 else if (AreMDITabs ())
 {
 EnableMDITabs (FALSE);
 bCascadeMDIChild = TRUE;
 }

 if (bCascadeMDIChild)
 {
 // CMDIClientAreaWnd m_wndClientArea
 hwndActive = (HWND) m_wndClientArea.SendMessage (WM_MDIGETACTIVE);
 m_wndClientArea.PostMessage (WM_MDICASCADE);
 m_wndClientArea.UpdateTabs(false);
 m_wndClientArea.SetActiveTab(hwndActive);
 ::BringWindowToTop (hwndActive);
 }
 }
 break;

 case CMDITabOptions::MDITabsStandard:
 hwndActive = (HWND) m_wndClientArea.SendMessage (WM_MDIGETACTIVE);
 m_wndClientArea.PostMessage (WM_MDIMAXIMIZE, LPARAM(hwndActive), 0L);
 ::BringWindowToTop (hwndActive);

 EnableMDITabs (TRUE,theApp.m_Options.m_bMDITabsIcons, theApp.m_Options.m_bTabsOnTop ?
CMFCTabCtrl::LOCATION_TOP : CMFCTabCtrl::LOCATION_BOTTOM, theApp.m_Options.m_nTabsStyle);

 GetMDITabs().EnableAutoColor (theApp.m_Options.m_bTabsAutoColor);
 GetMDITabs().EnableTabDocumentsMenu (theApp.m_Options.m_bMDITabsDocMenu);
 GetMDITabs().EnableTabSwap (theApp.m_Options.m_bDragMDITabs);
 GetMDITabs().SetTabBorderSize (theApp.m_Options.m_nMDITabsBorderSize);
 GetMDITabs().SetFlatFrame (theApp.m_Options.m_bFlatFrame);
 GetMDITabs().EnableCustomToolTips (theApp.m_Options.m_bCustomTooltips);
 GetMDITabs().EnableCustomToolTips (theApp.m_Options.m_bCustomTooltips);
 GetMDITabs().EnableActiveTabCloseButton (theApp.m_Options.m_bActiveTabCloseButton);
 break;

CMDIFrameWndEx::EnableMDITabsLastActiveActivation

void EnableMDITabsLastActiveActivation(BOOL bLastActiveTab=TRUE);

ParametersParameters

RemarksRemarks

Specifies whether the last active tab should be opened when the user closes the current tab.

bLastActiveTab
[in] If TRUE, enable activation of the last active tab. If FALSE, disable activation of the last active tab.

 CMDIFrameWndEx::EnablePaneMenu

void EnablePaneMenu(
 BOOL bEnable,
 UINT uiCustomizeCmd,
 const CString& strCustomizeLabel,
 UINT uiViewToolbarsMenuEntryID,
 BOOL bContextMenuShowsToolbarsOnly=FALSE,
 BOOL bViewMenuShowsToolbarsOnly=FALSE);

ParametersParameters

RemarksRemarks

ExampleExample

// Enable pane context menu(list of bars + customize command):
EnablePaneMenu(TRUE, ID_VIEW_CUSTOMIZE, _T("Customize..."), ID_VIEW_TOOLBARS, FALSE, TRUE);

There are two ways to open a tab when the active tab is closed:

Activate the next tab.

Activate the previously active tab.

The default implementation uses the first way.

Use EnableMDITabsLastActiveActivation to enable the second way of tab activation. It emulates the way
Windows opens MDI child windows.

Enables or disables automatic creation and management of the pop-up pane menu, which displays a list of
application panes.

bEnable
[in] If TRUE, automatic handling of the pane menu is enabled; if FALSE, automatic handling is disabled.

uiCustomizeCmd
[in] Command ID of the Customize menu item. This menu item is usually added to the end of the list of panes.

strCustomizeLabel
[in] The text to be displayed for the Customize menu item (for localization).

uiViewToolbarsMenuEntryID
[in] Specifies the ID of a toolbar menu item that opens the pane menu. Usually this is the Toolbars submenu of
the View menu.

bContextMenuShowsToolbarsOnly
[in] If TRUE, the pane menu displays only a list of toolbars. If FALSE, the menu displays a list of toolbars and
docking bars.

bViewMenuShowsToolbarsOnly
[in] If TRUE, the pane menu displays only a list of toolbars. If FALSE, the menu displays a list of toolbars and
docking bars.

The pop-up pane menu displays the list of the application's panes and lets the user show or hide individual
panes.

The following example shows how EnablePaneMenu is used in the VisualStudioDemo Sample: MFC Visual
Studio Application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMDIFrameWndEx::EnableWindowsDialog

void EnableWindowsDialog(
 UINT uiMenuId,
 LPCTSTR lpszMenuText,
 BOOL bShowAllways=FALSE,
 BOOL bShowHelpButton=FALSE);

void EnableWindowsDialog(
 UINT uiMenuId,
 UINT uiMenuTextResId,
 BOOL bShowAllways=FALSE,
 BOOL bShowHelpButton=FALSE);

ParametersParameters

RemarksRemarks

ExampleExample

// Enable windows manager:
EnableWindowsDialog(ID_WINDOW_MANAGER, _T("Windows..."), TRUE);

CMDIFrameWndEx::GetActivePopup

CMFCPopupMenu* GetActivePopup() const;

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::GetDefaultResId

Inserts a menu item whose command ID calls a CMFCWindowsManagerDialog dialog box.

uiMenuId
[in] Specifies the resource ID of a menu.

lpszMenuText
[in] Specifies the item's text.

bShowHelpButton
[in] Specifies whether to display a Help button on the windows management dialog box.

uiMenuTextResId
[in] The string resource identifier that contains the item's text string.

Use this method to insert a menu item whose command calls a MDI child window management dialog box (
CMFCWindowsManagerDialog Class). The new item is inserted into the menu specified by uiMenuId. Call
EnableWindowsDialog when you process the WM_CREATE message.

The following example shows how EnableWindowsDialog is used in the VisualStudioDemo Sample: MFC Visual
Studio Application.

Returns a pointer to the currently displayed popup menu.

A pointer to the active popup menu; NULL if no popup menu is active.

Use this function to obtain a pointer to the CMFCPopupMenu Class object that is currently displayed.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

UINT GetDefaultResId() const;

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::GetMDITabGroups

const CObList& GetMDITabGroups() const;

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::GetMDITabs

CMFCTabCtrl& GetMDITabs();

Return ValueReturn Value

CMDIFrameWndEx::GetMDITabsContextMenuAllowedItems

DWORD GetMDITabsContextMenuAllowedItems();

Return ValueReturn Value

RemarksRemarks

Returns the ID of shared resources of the MDI frame window.

A resource ID value. 0 if the frame window has no menu bar.

This method returns the resource ID that was specified when the MDI frame window was loaded by
CFrameWnd::LoadFrame.

Returns a list of MDI tabbed windows.

A reference to a CObList Class object that contains a list of tabbed windows. Do not store or modify the list.

Use this method to access the list of tabbed windows. It can be helpful if you want to change or query some
parameters of individual tabbed windows.

Returns a reference to the underlined tabbed window.

A reference to the underlined tabbed window.

Returns a combination of flags that determines what operations are valid when the MDI Tabbed Groups feature
is enabled.

A bitwise-OR combination of the following flags:

BCGP_MDI_CREATE_VERT_GROUP - can create a vertical tab group.

BCGP_MDI_CREATE_HORZ_GROUP - can create a horizontal tab group.

BCGP_MDI_CAN_MOVE_PREV - can move a tab to the previous tab group.

BCGP_MDI_CAN_MOVE_NEXT - can move a tab to the next tab group.

CMDIFrameWndEx::GetMenuBar

const CMFCMenuBar* GetMenuBar() const;

Return ValueReturn Value

CMDIFrameWndEx::GetPane

CBasePane* GetPane(UINT nID);

ParametersParameters

Return ValueReturn Value

CMDIFrameWndEx::GetRibbonBar

CMFCRibbonBar* GetRibbonBar();

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::GetTearOffBars

const CObList& GetTearOffBars() const;

When the MDI Tabbed Groups feature is enabled, you must know what operations are allowed on the tabs of a
particular window. This method analyzes the current layout of tabbed windows and returns a combination of
flags that can be used to build, for example, a shortcut menu.

You can create a new vertical tab group when all tabbed windows are aligned vertically, or when there is only
one tabbed window.

You can create a new horizontal tab group when all tabbed windows are aligned horizontally, or when there is
only one tabbed window.

You can move a tab to the previous group only if there is more than one tab in a tabbed window.

You can move a tab to the next group only if there is more than one tab in a tabbed window.

Returns a pointer to a menu bar object attached to the frame window.

A pointer to a menu bar object.

Returns a pointer to the pane that has the specified control ID.

nID
[in] The control ID.

A pointer to the pane that has the specified control ID, if it exists. Otherwise, NULL.

Retrieves the ribbon bar control for the frame.

Pointer to the CMFCRibbonBar Class for the frame.

Returns a list of tear-off menus.

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::GetToolbarButtonToolTipText

virtual BOOL GetToolbarButtonToolTipText(
 CMFCToolBarButton* pButton,
 CString& strTTText);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::InsertPane

BOOL InsertPane(
 CBasePane* pControlBar,
 CBasePane* pTarget,
 BOOL bAfter=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

A reference to a CObList Class object that contains a collection of pointers to CPane -derived objects that are in
a tear-off state.

CMDIFrameWndEx maintains a collection of tear-off menus. Use this method to retrieve a reference to this list.

Called by the framework when the application displays the tooltip for a toolbar button.

pButton
[in] A pointer to a toolbar button.

strTTText
[in] The tooltip text to display for the button.

TRUE if the tooltip has been displayed. FALSE otherwise.

Registers the specified pane with the docking manager.

pControlBar
[in] A pointer to the pane to be inserted.

pTarget
[in] A pointer to the pane before or after which to insert the pane.

bAfter
[in] If TRUE, pControlBar is inserted after pTarget. If FALSE, pControlBar is inserted before pTarget.

TRUE if the method successfully registers the pane, FALSE if the pane was already registered with the docking
manager.

Use this method to tell the docking manager about a pane specified by pControlBar. The docking manager will
align this pane according to the pane's alignment and position in the docking manager's internal list.

CMDIFrameWndEx::IsFullScreen

BOOL IsFullScreen() const;

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::IsMDITabbedGroup

BOOL IsMDITabbedGroup() const;

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::IsMemberOfMDITabGroup

BOOL IsMemberOfMDITabGroup(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

CMDIFrameWndEx::IsMenuBarAvailable

BOOL IsMenuBarAvailable() const;

Return ValueReturn Value

CMDIFrameWndEx::IsPointNearDockSite

Determines whether the frame window is in full-screen mode.

TRUE if the frame window is in full screen mode; otherwise FALSE.

You can set the full screen mode by calling the CMDIFrameWndEx::EnableFullScreenMode method.

Specifies whether the MDI Tabbed Groups feature is enabled.

TRUE if the MDI Tabbed Groups feature is enabled; otherwise FALSE.

To determine whether regular MDI tabs or the MDI Tabbed Groups feature is enabled, use
CMDIFrameWndEx::AreMDITabs.

Determines whether the specified tabbed window is in the list of windows that are in MDI Tabbed Groups.

pWnd
[in] A pointer to tabbed window.

TRUE if the specified tabbed window is in the list of tabbed windows that form MDI Tabbed Groups. Otherwise
FALSE.

Determines whether the frame window has a menu bar.

TRUE if the pointer to the menu bar object is not NULL; otherwise FALSE.

Determines whether a specified point is near the dock site.

BOOL IsPointNearDockSite(
 CPoint point,
 DWORD& dwBarAlignment,
 BOOL& bOuterEdge) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::IsPrintPreview

BOOL IsPrintPreview();

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::LoadFrame

virtual BOOL LoadFrame(
 UINT nIDResource,
 DWORD dwDefaultStyle = WS_OVERLAPPEDWINDOW | FWS_ADDTOTITLE,
 CWnd* pParentWnd = NULL,
 CCreateContext* pContext = NULL);

ParametersParameters

point
[in] The specified point in screen coordinates.

dwBarAlignment
[in] Specifies which edge the point is near. Possible values are CBRS_ALIGN_LEFT, CBRS_ALIGN_RIGHT,
CBRS_ALIGN_TOP, and CBRS_ALIGN_BOTTOM

bOuterEdge
[in] TRUE if the point is near the outer border of the dock site; FALSE otherwise.

TRUE if the point is near the dock site; otherwise FALSE.

The point is near the dock site when it is within the sensitivity set in the docking manager. The default sensitivity
is 15 pixels.

Determines whether the frame window is in print-preview mode.

TRUE if the frame window is in print-preview mode; otherwise, FALSE.

Creates a frame window from resource information.

nIDResource
[in] The ID of a shared resource associated with the frame window.

dwDefaultStyle
[in] The style of the frame window.

pParentWnd
[in] A pointer to the frame's parent.

pContext

Return ValueReturn Value

CMDIFrameWndEx::LoadMDIState

virtual BOOL LoadMDIState(LPCTSTR lpszProfileName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

[in] A pointer to a CCreateContext Structure. This parameter can be NULL.

TRUE if the method succeeds, otherwise FALSE.

Loads the specified layout of MDI Tabbed Groups and the list of previously opened documents.

lpszProfileName
[in] Specifies the profile name.

TRUE if the load succeeded; FALSE if the load failed or there is no data to load.

To load or save the state of MDI tabs and groups and the list of opened documents, do the following:

Call CMDIFrameWndEx::SaveMDIState when the main frame is being closed

Call CMDIFrameWndEx::LoadMDIState when the main frame is being created. The recommended place
for this call is before the main frame is displayed for the first time. Add
CWinAppEx::EnableLoadWindowPlacement (FALSE); before pMainFrame->LoadFrame (IDR_MAINFRAME);. Add
CBCGPWorkspace::ReloadWindowPlacement (pMainFrame); after the call to LoadMDIState to display the main

frame at the position that was stored in the registry.

Override GetDocumentName in the CMDIChildWndEx - derived class if your application displays documents
that are not stored as files. The returned string will be saved in the registry as the document identifier. The
base implementation of CMDIChildWndEx::GetDocumentName returns a value obtained from
CDocument::GetPathName.

Override CMDIFrameWndEx::CreateDocumentWindow to correctly create documents when they are
being loaded from the registry. The first parameter is the string that GetDocumentName returned.

The following example shows how LoadMDIState is used in the VisualStudioDemo Sample: MFC Visual Studio
Application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

// Parse command line for standard shell commands, DDE, file open
CCommandLineInfo cmdInfo;
ParseCommandLine(cmdInfo);

if (cmdInfo.m_nShellCommand == CCommandLineInfo::FileNew)
{
 if (!pMainFrame->LoadMDIState(GetRegSectionPath()))
 {
 m_pStartDocTemplate->OpenDocumentFile(NULL);
 }
}
else
{
 // Dispatch commands specified on the command line
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;
}

CMDIFrameWndEx::MDITabMoveToNextGroup

void MDITabMoveToNextGroup(BOOL bNext=TRUE);

ParametersParameters

CMDIFrameWndEx::MDITabNewGroup

void MDITabNewGroup(BOOL bVert=TRUE);

ParametersParameters

RemarksRemarks

ExampleExample

void CMainFrame::OnMdiNewHorzTabGroup()
{
 MDITabNewGroup(FALSE);
}

CMDIFrameWndEx::m_bCanCovertControlBarToMDIChild

Moves the active tab from the currently active tabbed window to the next or previous tabbed group.

bNext
[in] If TRUE, move the tab to the next tabbed group. If FALSE, move it to the previous tabbed group.

Creates a new tabbed group that has a single window.

bVert
[in] Specifies the new group alignment. If TRUE, the new group is aligned vertically. If FALSE, the new group is
aligned horizontally.

Use this function to create a new tabbed window (new tabbed group) and add the first tab to it.

The following example shows how MDITabNewGroup is used in the VisualStudioDemo Sample: MFC Visual
Studio Application.

Specifies whether docking panes can be converted to MDI child windows.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

BOOL m_bCanCovertControlBarToMDIChild;

RemarksRemarks

ExampleExample

CMainFrame::CMainFrame()
{
 CMFCPopupMenu::SetForceShadow(TRUE);

 m_bCanConvertControlBarToMDIChild = TRUE;
}

CMDIFrameWndEx::m_bDisableSetRedraw

AFX_IMPORT_DATA static BOOL m_bDisableSetRedraw;

RemarksRemarks

CMDIFrameWndEx::NegotiateBorderSpace

virtual BOOL NegotiateBorderSpace(
 UINT nBorderCmd,
 LPRECT lpRectBorder);

ParametersParameters

Indicates whether docking control bars can be converted to MDI child windows. If this flag is TRUE, the
framework handles the conversion automatically when the user selects the Tabbed Document command. The
flag is protected and you must explicitly enable this option either by setting m_bCanCovertControlBarToMDIChild in
a constructor of a CMDIFrameWndEx -derived class, or by overriding CanConvertControlBarToMDIChild .

The default value is FALSE .

The following example shows how m_bCanCovertControlBarToMDIChild is used in the VisualStudioDemo Sample:
MFC Visual Studio Application.

Enables or disables redraw optimization for MDI child windows.

The default value is TRUE.

Set this flag to FALSE if you want to optimize redrawing of MDI children. In this case the framework will call
SetRedraw (FALSE) for the main frame when the application is changing the active tab.

This flag can cause unwanted effects (such as background applications that become visible). Therefore we
recommend that you change the default only if you experience noticeable flickering during MDI tab activation.

Negotiates border space in a frame window during OLE in-place activation.

nBorderCmd
[in] Contains one of the following values from the enum CFrameWnd::BorderCmd :

borderGet = 1

borderRequest = 2

borderSet = 3

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::OnCloseDockingPane

virtual BOOL OnCloseDockingPane(CDockablePane* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::OnCloseMiniFrame

virtual BOOL OnCloseMiniFrame(CPaneFrameWnd*);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::OnClosePopupMenu

virtual void OnClosePopupMenu(CMFCPopupMenu* pMenuPopup);

lpRectBorder
[in, out] Pointer to a RECT Structure or a CRect Class object that specifies the coordinates of the border.

Nonzero if the method was successful; otherwise 0.

This method is an implementation of OLE border space negotiation.

Called by the framework when the user clicks the Close button on a dockable pane.

pWnd
[in] Pointer to the pane being closed.

TRUE if the docking pane can be closed. Otherwise, FALSE.

Override this method to handle hiding of docking panes. Return FALSE if you want to prevent a docking pane
from being hidden.

The default implementation does nothing and returns TRUE.

Called by the framework when the user clicks the Close button on a floating mini-frame window.

pWnd
[in] Pointer to the mini-frame window being closed.

TRUE if the floating mini-frame window can be closed. Otherwise, FALSE.

Override this method to handle hiding of floating mini-frame windows. Return FALSE if you want to prevent a
floating mini-frame window from being hidden.

The default implementation does nothing and returns TRUE.

Called by the framework when an active pop-up menu processes a WM_DESTROY message.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

ParametersParameters

RemarksRemarks

CMDIFrameWndEx::OnCmdMsg

virtual BOOL OnCmdMsg(
 UINT nID,
 int nCode,
 void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);

ParametersParameters

Return ValueReturn Value

CMDIFrameWndEx::OnDrawMenuImage

virtual BOOL OnDrawMenuImage(
 CDC* pDC,
 const CMFCToolBarMenuButton* pMenuButton,
 const CRect& rectImage);

ParametersParameters

pMenuPopup
[in] Pointer to a pop-up menu.

Override this method if you want to process notifications from CMFCPopupMenu Class objects that belong to
the MDI frame window when those objects process WM_DESTROY messages.

Called by the framework to route and dispatch command messages and to update command user-interface
objects.

nID
[in] The command ID.

nCode
[in] Identifies the command notification code. See CCmdTarget::OnCmdMsg for more information about values
for nCode.

pExtra
[in] Used according to the value of nCode. See CCmdTarget::OnCmdMsg for more information about pExtra.

pHandlerInfo
[in, out] Typically, this parameter should be NULL.If not NULL, OnCmdMsg fills in the pTarget and pmf

members of the pHandlerInfo structure instead of dispatching the command.

Nonzero if the message is handled; otherwise 0.

Called by the framework when the image associated with a menu item is drawn.

pDC
[in] Pointer to a device context.

pMenuButton
[in] Pointer to the menu button.

rectImage
[in] Bounding rectangle of the image.

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::OnDrawMenuLogo

virtual void OnDrawMenuLogo(
 CDC*,
 CMFCPopupMenu*,
 const CRect&);

RemarksRemarks

CMDIFrameWndEx::OnEraseMDIClientBackground

virtual BOOL OnEraseMDIClientBackground(CDC*);

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::OnMenuButtonToolHitTest

virtual BOOL OnMenuButtonToolHitTest(
 CMFCToolBarButton* pButton,
 TOOLINFO* pTI);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

TRUE if the method draws the image. The default implementation returns FALSE.

Override this method if you want to customize image rendering for the menu items that belong to the menu bar
owned by the CMDIFrameWndEx -derived object. The default implementation does nothing.

Called by the framework when a CMFCPopupMenuprocesses a WM_PAINT message.

Override this function to display a logo on the pop-up menu that belongs to the menu bar owned by the
CMDIFrameWndEx -derived object. The default implementation does nothing.

Called by the framework when the MDI frame window processes a WM_ERASEBKGND message.

TRUE if the application processes the message and erases the background.

Override this member function if you want to process the WM_ERASEBKGND message in a CMDIFrameWndEx -
derived class.

Called by the framework when a CMFCToolBarButtonobject processes a WM_NCHITTEST message.

pButton
[in] The toolbar button.

pTI
[out] Pointer to a TOOLINFO structure.

TRUE if the application fills the pTI parameter. The default implementation returns FALSE.

Override this method if you want to provide information about specific menu items to a tooltip. The default

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtoolinfoa

CMDIFrameWndEx::OnMoveMiniFrame

virtual BOOL OnMoveMiniFrame(CWnd* pFrame);

ParametersParameters

Return ValueReturn Value

CMDIFrameWndEx::OnSetPreviewMode

virtual void OnSetPreviewMode(
 BOOL bPreview,
 CPrintPreviewState* pState);

ParametersParameters

RemarksRemarks

CMDIFrameWndEx::OnShowCustomizePane

virtual BOOL OnShowCustomizePane(
 CMFCPopupMenu* pMenuPane,
 UINT uiToolbarID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

implementation does nothing.

Called by the framework to move a mini-frame window.

pFrame
[in] A pointer to a mini-frame window.

TRUE if the method succeeds, otherwise FALSE.

Sets the application's main frame window print-preview mode.

bPreview
[in] If TRUE, sets print-preview mode. If FALSE, cancels preview mode.

pState
[in] A pointer to a CPrintPreviewState structure.

This method overrides CFrameWnd::OnSetPreviewMode.

Called by the framework when a Quick Customize pane is activated.

pMenuPane
[in] A pointer to the Quick Customize pane.

uiToolbarID
[in] Control ID of the toolbar to customize.

This method always returns TRUE.

The Quick Customize pane is a menu that opens when the user clicks Customize on a toolbar.

 CMDIFrameWndEx::OnShowMDITabContextMenu

virtual BOOL OnShowMDITabContextMenu(
 CPoint point,
 DWORD dwAllowedItems,
 BOOL bTabDrop);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Override this method in a derived class to make changes in the Quick Customize pane.

Called by the framework before a shortcut menu is displayed on one of the tabs. Valid for MDI Tabbed Groups
only.

point
[in] The location of the menu in screen coordinates.

dwAllowedItems
[in] A bitwise-OR combination of flags that indicates what actions are allowed for the current tab:

BCGP_MDI_CREATE_VERT_GROUP - can create a vertical tab group.

BCGP_MDI_CREATE_HORZ_GROUP - can create a horizontal tab group.

BCGP_MDI_CAN_MOVE_PREV - can move a tab to the previous tab group.

BCGP_MDI_CAN_MOVE_NEXT - can move a tab to the next tab group.

BCGP_MDI_CAN_BE_DOCKED - switch a tabbed document to docked state (relevant for tabbed
documents only).

bTabDrop
[in] TRUE to display the menu as a result of dragging the tab onto another tabbed group. FALSE to display the
menu as a shortcut menu on the currently active tab.

Override this method in a CBCGPMDIFrameWnd-derived class.

If you do not process OnShowMDITabContextMenu , the shortcut menu will not be displayed. This function is
generated by the MFC Application Wizard when you enable the MDI Tabbed Groups feature.

The following example shows how OnShowMDITabContextMenu is used in the VisualStudioDemo Sample: MFC
Visual Studio Application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

BOOL CMainFrame::OnShowMDITabContextMenu(CPoint point, DWORD dwAllowedItems, BOOL bDrop)
{
 CMenu menu;
 VERIFY(menu.LoadMenu(bDrop ? IDR_POPUP_DROP_MDITABS : IDR_POPUP_MDITABS));

 CMenu* pPopup = menu.GetSubMenu(0);
 ASSERT(pPopup != NULL);

 if ((dwAllowedItems & AFX_MDI_CREATE_HORZ_GROUP) == 0)
 {
 pPopup->DeleteMenu(ID_MDI_NEW_HORZ_TAB_GROUP, MF_BYCOMMAND);
 }

 if ((dwAllowedItems & AFX_MDI_CREATE_VERT_GROUP) == 0)
 {
 pPopup->DeleteMenu(ID_MDI_NEW_VERT_GROUP, MF_BYCOMMAND);
 }

 if ((dwAllowedItems & AFX_MDI_CAN_MOVE_NEXT) == 0)
 {
 pPopup->DeleteMenu(ID_MDI_MOVE_TO_NEXT_GROUP, MF_BYCOMMAND);
 }

 if ((dwAllowedItems & AFX_MDI_CAN_MOVE_PREV) == 0)
 {
 pPopup->DeleteMenu(ID_MDI_MOVE_TO_PREV_GROUP, MF_BYCOMMAND);
 }

 if ((dwAllowedItems & AFX_MDI_CAN_BE_DOCKED) == 0)
 {
 pPopup->DeleteMenu(ID_MDI_TABBED_DOCUMENT, MF_BYCOMMAND);
 }

 CMFCPopupMenu* pPopupMenu = new CMFCPopupMenu;
 pPopupMenu->SetAutoDestroy(FALSE);
 pPopupMenu->Create(this, point.x, point.y, pPopup->GetSafeHmenu());

 return TRUE;
}

CMDIFrameWndEx::OnShowPanes

virtual BOOL OnShowPanes(BOOL bShow);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Called by the framework to show or hide panes.

bShow
[in] TRUE to show panes, FALSE to hide panes.

TRUE if the state of the panes changes as a result of calling this method, FALSE if the panes are already in the
state specified by bShow. For example, if the panes are hidden and bShow is FALSE, the return value is FALSE.

The default implementation removes the toolbar from the top-level frame window.

If CDockingManager::m_bHideDockingBarsInContainerMode is TRUE (the default), all docking panes will be
hidden.

CMDIFrameWndEx::OnShowPopupMenu

virtual BOOL OnShowPopupMenu(CMFCPopupMenu*);

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::OnSizeMDIClient

virtual void OnSizeMDIClient(
 const CRect& rectOld,
 const CRect& rectNew);

ParametersParameters

RemarksRemarks

CMDIFrameWndEx::OnTearOffMenu

virtual BOOL OnTearOffMenu(
 CMFCPopupMenu* pMenuPopup,
 CPane* pBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Called by the framework when it opens a pop-up menu.

TRUE if the pop-up menu is to be displayed. Otherwise, FALSE. The default implementation returns TRUE.

Override this method if you want to implement special processing upon pop-up menu activation. For example, if
you want to change regular menu items to color menu buttons, set up tear-off bars, and so on.

The default implementation does nothing.

Called by the framework when the size of the client MDI window is changing.

rectOld
[in] The current size of the MDI client window.

rectNew
[in] The new size of the MDI client window.

Called by the framework when a menu that has a tear-off bar is activated.

pMenuPopup
[in] A pointer to the pop-up menu.

pBar
[in] A pointer to the tear-off bar.

TRUE to allow the pop-up menu with the tear-off bar to be made activate; otherwise FALSE. The default is
TRUE.

Override this function when you want to implement a special setup for the tear-off bar. The default
implementation does nothing.

CMDIFrameWndEx::OnUpdateFrameMenu

virtual void OnUpdateFrameMenu(HMENU hMenuAlt);

ParametersParameters

CMDIFrameWndEx::PaneFromPoint

CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 bool bExactBar,
 CRuntimeClass* pRTCBarType) const;

CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 DWORD& dwAlignment,
 CRuntimeClass* pRTCBarType) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMDIFrameWndEx::RecalcLayout

virtual void RecalcLayout(BOOL bNotify = TRUE);

Called by the framework to update the frame menu.

hMenuAlt
[in] A handle to a menu.

Returns the docking pane that contains the specified point.

point
[in] The point (in screen coordinates).

nSensitivity
[in] The window rectangle of each checked pane is enlarged in all directions by this value.

bExactBar
[in] If TRUE, the nSensitivity parameter is ignored.

pRTCBarType
[in] If non- NULL, the method iterates over only the panes of the specified type.

dwAlignment
[out] If a pane is found, this parameter will specify which side of the pane is closest to the specified point.

A pointer to a docking pane, or NULL if no control contains the point specified by point.

The call is redirected to the CDockingManager Class. See CDockingManager::ControlBarFromPoint for more
information.

Called by the framework to recalculate the layout of the frame window.

ParametersParameters

RemarksRemarks

CMDIFrameWndEx::RemovePaneFromDockManager

void RemovePaneFromDockManager(
 CBasePane* pControlBar,
 BOOL bDestroy,
 BOOL bAdjustLayout,
 BOOL bAutoHide,
 CBasePane* pBarReplacement);

ParametersParameters

RemarksRemarks

CMDIFrameWndEx::SaveMDIState

virtual BOOL SaveMDIState(LPCTSTR lpszProfileName);

ParametersParameters

Return ValueReturn Value

bNotify
[in] Determines whether the active in-place item for the frame window receives notification of the layout change.
If TRUE, the item is notified; otherwise FALSE.

This method overrides CFrameWnd::RecalcLayout.

Unregisters a pane and removes it from the docking manager.

pControlBar
[in] A pointer to a pane to be removed.

bDestroy
[in] TRUE to destroy the removed pane. FALSE to not destroy it.

bAdjustLayout
[in] TRUE to adjust the docking layout immediately. If FALSE, the adjustment will occur only when a redraw
event occurs for other reasons (the user resizes the window, drags the main frame, etc.).

bAutoHide
[in] TRUE to remove the pane from the list of autohide panes. FALSE to remove the pane from the list of regular
panes.

pBarReplacement
[in] A pointer to a pane that replaces the removed pane.

You must register each pane with the docking manager to take part in the docking layout. Use
CMDIFrameWndEx::AddPane or CMDIFrameWndEx::InsertPane to register panes.

Use this method when a pane is no longer a part of the docking layout of the frame window.

Saves the current layout of MDI Tabbed Groups and the list of previously opened documents.

lpszProfileName
[in] Specifies the profile name.

TRUE if the save succeeded; FALSE if the save failed.

RemarksRemarks

ExampleExample

void CMainFrame::OnClose()
{
 SaveMDIState(theApp.GetRegSectionPath());
 CMDIFrameWndEx::OnClose();
}

CMDIFrameWndEx::SetPrintPreviewFrame

void SetPrintPreviewFrame(CFrameWnd* pWnd);

ParametersParameters

RemarksRemarks

CMDIFrameWndEx::SetupToolbarMenu

void SetupToolbarMenu(
 CMenu& menu,
 const UINT uiViewUserToolbarCmdFirst,
 const UINT uiViewUserToolbarCmdLast);

ParametersParameters

To load or save the state of MDI tabs and groups and the list of opened documents, do the following:

Call SaveMDIState when the main frame is being closed

Call CMDIFrameWndEx::LoadMDIState when the main frame is being created. The recommended
location for this call is before the main frame is displayed for the first time.

Call CWinAppEx::EnableLoadWindowPlacement(FALSE); before pMainFrame->LoadFrame (IDR_MAINFRAME);

Call CWinAppEx::ReloadWindowPlacement(pMainFrame) after LoadMDIState to display the main frame at the
position that was stored in the registry.

Override GetDocumentName in the CMDIChildWndEx - derived class if your application displays documents
that are not stored as files. The returned string will be saved in the registry as a document identifier. For
more information, see CMDIChildWndEx::GetDocumentName.

Override CMDIFrameWndEx::CreateDocumentWindow to correctly create documents when they are
loaded from the registry. The parameter to CreateDocumentWindow is the string that GetDocumentName

returned earlier.

The following example shows how SaveMDIState is used in the VisualStudioDemo Sample: MFC Visual Studio
Application.

Sets the print preview frame window.

pWnd
[in] Pointer to a print preview frame window.

Modifies a toolbar object by replacing dummy items with user-defined items.

menu
[in] A reference to a CMenu Class object to be modified.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMDIFrameWndEx::ShowFullScreen

void ShowFullScreen();

RemarksRemarks

CMDIFrameWndEx::ShowPane

void ShowPane(
 CBasePane* pBar,
 BOOL bShow,
 BOOL bDelay,
 BOOL bActivate);

ParametersParameters

RemarksRemarks

ExampleExample

void COutputList1::OnViewOutput()
{
 CBasePane* pParentBar = DYNAMIC_DOWNCAST(CBasePane, GetOwner());
 CFrameWndEx* pMainFrame = DYNAMIC_DOWNCAST(CFrameWndEx, GetTopLevelFrame());

 if (pMainFrame != NULL && pParentBar != NULL)
 {
 pMainFrame->SetFocus();
 pMainFrame->ShowPane(pParentBar, FALSE, FALSE, FALSE);
 }
}

uiViewUserToolbarCmdFirst
[in] Specifies the first user-defined command.

uiViewUserToolbarCmdLast
[in] Specifies the last user-defined command.

Switches the main frame from regular mode to full-screen mode.

Shows or hides the specified pane.

pBar
[in] Pointer to the pane to be shown or hidden.

bShow
[in] TRUE to show the pane. FALSE to hide the pane.

bDelay
[in] TRUE to delay the recalculation of the docking layout. FALSE to recalculate the docking layout immediately.

bActivate
[in] TRUE to show the pane should as active. FALSE to show the pane as inactive.

Call this method to show or hide the pane. Do not use ShowWindow for docking panes.

The following example shows how ShowPane is used in the VisualStudioDemo Sample: MFC Visual Studio
Application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMDIFrameWndEx::ShowWindowsDialog

void ShowWindowsDialog();

ExampleExample

void CMainFrame::OnWindowManager()
{
 ShowWindowsDialog();
}

CMDIFrameWndEx::TabbedDocumentToControlBar

virtual BOOL TabbedDocumentToControlBar(CMDIChildWndEx* pMDIChildWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CMainFrame::OnMdiTabbedDocument()
{
 CMDIChildWndEx* pMDIChild = DYNAMIC_DOWNCAST(CMDIChildWndEx, MDIGetActive());
 if (pMDIChild == NULL)
 {
 ASSERT(FALSE);
 return;
 }

 TabbedDocumentToControlBar(pMDIChild);
}

CMDIFrameWndEx::UpdateCaption

Creates a CMFCWindowsManagerDialog box and opens it.

The following example shows how ShowWindowsDialog is used in the VisualStudioDemo Sample: MFC Visual
Studio Application.

Converts the specified tabbed document to a docking pane.

pMDIChildWnd
A pointer to MDI child window that contains a docking pane.

TRUE if the method was successful, FALSE on failure.

Use this method to convert a tabbed document to a docking pane. The tabbed document must have been
created by using CMDIFrameWndEx::ControlBarToTabbedDocument.

The following example shows how TabbedDocumentToControlBar is used in the VisualStudioDemo Sample: MFC
Visual Studio Application.

Called by the framework to update the window frame caption.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

void UpdateCaption();

RemarksRemarks

CMDIFrameWndEx::UpdateMDITabbedBarsIcons

void UpdateMDITabbedBarsIcons();

CMDIFrameWndEx::WinHelp

virtual void WinHelp(
 DWORD dwData,
 UINT nCmd = HELP_CONTEXT);

ParametersParameters

RemarksRemarks

See also

Sets the icon for each MDI tabbed pane.

Called by the framework to initiate the WinHelp application or context help.

dwData
[in] Specifies data as required for the type of help specified by nCmd.

nCmd
[in] Specifies the type of help requested. For a list of possible values and how they affect the dwData parameter,
see the WinHelp Function in the Windows SDK.

This method overrides CWnd::WinHelp.

Hierarchy Chart
Classes
CMDIFrameWnd
CMDIChildWndEx Class

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-winhelpa

CMDITabInfo Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMDITabInfo

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMDITabInfo::CMDITabInfo Default constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMDITabInfo::Serialize Reads or writes this object from or to an archive.

Data MembersData Members

NAME DESCRIPTION

CMDITabInfo::m_bActiveTabCloseButton; Specifies whether a Close button is displayed on the label of
the active tab.

CMDITabInfo::m_bAutoColor Specifies whether to color the MDI tabs.

CMDITabInfo::m_bDocumentMenu Specifies whether the tab group displays a popup menu that
shows a list of opened documents or displays scroll buttons.

CMDITabInfo::m_bEnableTabSwap Specifies whether the user can swap the positions of tabs by
dragging.

CMDITabInfo::m_bFlatFrame Specifies whether tabs have a flat frame.

CMDITabInfo::m_bTabCloseButton Specifies whether each tab label displays a Close button.

CMDITabInfo::m_bTabCustomTooltips Specifies whether custom tooltips are enabled.

CMDITabInfo::m_bTabIcons Specifies whether to display icons on MDI tabs.

CMDITabInfo::m_nTabBorderSize Specifies the border size of each tab window.

The CMDITabInfo class is used to pass parameters to CMDIFrameWndEx::EnableMDITabbedGroups method. Set
members of this class to control the behavior of MDI tabbed groups.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmditabinfo-class.md

CMDITabInfo::m_style Specifies the style of the tab labels.

CMDITabInfo::m_tabLocation Specifies whether the tabs labels are located at the top or the
bottom of the page.

NAME DESCRIPTION

Remarks

Example

CMDITabInfo mdiTabParams;
mdiTabParams.m_style = CMFCTabCtrl::STYLE_3D_ONENOTE;
// set to FALSE to place close button at right of tab area
mdiTabParams.m_bActiveTabCloseButton = FALSE;
// set to TRUE to enable document icons on MDI taba
mdiTabParams.m_bTabIcons = TRUE;
// set to FALSE to disable auto-coloring of MDI tabs
mdiTabParams.m_bAutoColor = FALSE;
// set to TRUE to enable the document menu at the right edge of the tab area
mdiTabParams.m_bDocumentMenu = TRUE;
//set to TRUE to enable the user to change the tabs positions by dragging the tabs
mdiTabParams.m_bEnableTabSwap = TRUE;
// set to TRUE to give each tab window has a flat frame
mdiTabParams.m_bFlatFrame = TRUE;
// set to TRUE to enable each tab window to display the Close button on the right edge of the tab.
mdiTabParams.m_bTabCloseButton = FALSE;
// set to TRUE to enable the tabs to display tooltips.
mdiTabParams.m_bTabCustomTooltips = TRUE;
// Specifies that the tabs labels are located at the top of the page
mdiTabParams.m_tabLocation = CMFCTabCtrl::LOCATION_TOP;
EnableMDITabbedGroups(TRUE, mdiTabParams);

Inheritance Hierarchy

Requirements

CMDITabInfo::m_bActiveTabCloseButton;

BOOL m_bActiveTabCloseButton;

RemarksRemarks

This class specifies the parameters of the MDI tab groups that the framework creates.

The following example demonstrates how to set the values of the various member variables in CMDITabInfo class.

CMDITabInfo

Header: afxmdiclientareawnd.h

Specifies whether a Close button is displayed on the label of the active tab.

If TRUE, the label of the active tab will display a Close button. The Close button will be removed from the right
top corner of the tab area. Otherwise, the label of the active tab will not display a Close button. The Close button
will appear in the right top corner of the tab area.

CMDITabInfo::m_bAutoColor

BOOL m_bAutoColor;

RemarksRemarks

CMDITabInfo::m_bDocumentMenu

BOOL m_bDocumentMenu;

RemarksRemarks

CMDITabInfo::m_bEnableTabSwap

BOOL m_bEnableTabSwap;

RemarksRemarks

CMDITabInfo::m_bFlatFrame

BOOL m_bFlatFrame;

CMDITabInfo::m_bTabCloseButton

BOOL m_bTabCloseButton;

RemarksRemarks

CMDITabInfo::m_bTabCustomTooltips

Specifies whether each MDI tab has its own color.

If TRUE, each tab will have its own color. The set of colors is managed by the MFC library. Otherwise, the tabs are
displayed in white. The default value is FALSE.

Specifies whether each tab displays a popup menu that shows a list of opened documents at the right edge of the
tab area.

If TRUE, each tab windows displays a popup menu that shows a list of opened documents at the right edge of the
tab area; Otherwise, the tab window displays scroll buttons at the right edge of the tab area. The default value is
FALSE.

Specifies whether the user can swap the positions of tabs by dragging.

If TRUE, the user can change the tabs positions by dragging the tabs. Otherwise, the user cannot change the tabs
positions. The default value is TRUE.

Specifies whether each tab window has a flat frame.

Specifies whether each tab window displays a Close button.

If TRUE, each tab window displays the Close button on the right edge of the tab. Otherwise, the Close button is
not displayed. The default value is TRUE.

BOOL m_bTabCustomTooltips;

RemarksRemarks

CMDITabInfo::m_bTabIcons

BOOL m_bTabIcons;

RemarksRemarks

CMDITabInfo::m_nTabBorderSize

int m_nTabBorderSize;

RemarksRemarks

CMDITabInfo::m_style

CMFCTabCtrl::Style m_style

RemarksRemarks

STYLE_3D 3D style.

STYLE_3D_ONENOTE Microsoft OneNote style.

STYLE_3D_VS2005 Microsoft Visual Studio 2005 style.

STYLE_3D_SCROLLED 3D style with rectangle tab labels.

STYLE_FLAT_SHARED_HORZ_SCROLL Flat style with shared horizontal scroll bar.

STYLE_3D_ROUNDED_SCROLL 3D style with round tab labels.

Specifies whether the tabs display tooltips.

If TRUE, the application sends an AFX_WM_ON_GET_TAB_TOOLTIP message to the main frame. You can handle
this message by using the ON_REGISTERED_MESSAGE macro.

Specifies whether to display icons on MDI tabs.

If TRUE, icons are displayed on each MDI tab. Otherwise, icons are not displayed on tabs. The default value is
FALSE.

Specifies the border size, in pixels, of each tab window.

CMFCVisualManager::GetMDITabsBordersSize returns the default value.

Specifies the style of the tab labels.

Specify one of the following styles for the tab labels:

CMDITabInfo::m_tabLocation

CMFCTabCtrl::Location m_tabLocation;

RemarksRemarks

CMDITabInfo::Serialize

void Serialize(CArchive& ar);

ParametersParameters

See also

Specifies whether the tabs labels are located at the top or the bottom of the page.

Apply to the tabs one of the following location flags:

LOCATION_BOTTOM: the tabs labels are located at the bottom of the page.

LOCATION_TOP: the tabs labels are located at the top of the page

Reads or writes this object from an archive or to an archive.

ar
[in] A CArchive Class object to serialize.

CMDIFrameWndEx Class
MDI Tabbed Groups
Hierarchy Chart
Classes

CMemFile Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CMemFile : public CFile

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMemFile::CMemFile Constructs a memory file object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMemFile::Attach Attaches a block of memory to CMemFile .

CMemFile::Detach Detaches the block of memory from CMemFile and returns
a pointer to the block of memory detached.

Protected MethodsProtected Methods

NAME DESCRIPTION

CMemFile::Alloc Override to modify memory allocation behavior.

CMemFile::Free Override to modify memory deallocation behavior.

CMemFile::GrowFile Override to modify behavior when growing a file.

CMemFile::Memcpy Override to modify memory copy behavior when reading and
writing files.

CMemFile::Realloc Override to modify memory reallocation behavior.

Remarks

The CFile-derived class that supports memory files.

These memory files behave like disk files except that the file is stored in RAM rather than on disk. A memory file
is useful for fast temporary storage or for transferring raw bytes or serialized objects between independent
processes.

CMemFile objects can automatically allocate their own memory or you can attach your own memory block to the
CMemFile object by calling Attach. In either case, memory for growing the memory file automatically is allocated

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmemfile-class.md

Inheritance Hierarchy

Requirements

CMemFile::Alloc

virtual BYTE* Alloc(SIZE_T nBytes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

in nGrowBytes -sized increments if nGrowBytes is not zero.

The memory block will automatically be deleted upon destruction of the CMemFile object if the memory was
originally allocated by the CMemFile object; otherwise, you are responsible for deallocating the memory you
attached to the object.

You can access the memory block through the pointer supplied when you detach it from the CMemFile object by
calling Detach.

The most common use of CMemFile is to create a CMemFile object and use it by calling CFile member functions.
Note that creating a CMemFile automatically opens it: you do not call CFile::Open, which is only used for disk files.
Because CMemFile doesn't use a disk file, the data member CFile::m_hFile is not used.

The CFile member functions Duplicate, LockRange, and UnlockRange are not implemented for CMemFile . If you
call these functions on a CMemFile object, you will get a CNotSupportedException.

CMemFile uses the run-time library functions malloc, realloc, and free to allocate, reallocate, and deallocate
memory; and the intrinsic memcpy to block copy memory when reading and writing. If you'd like to change this
behavior or the behavior when CMemFile grows a file, derive your own class from CMemFile and override the
appropriate functions.

For more information on CMemFile , see the articles Files in MFC and Memory Management (MFC) and see File
Handling in the Run-Time Library Reference.

CObject

CFile

CMemFile

Header: afx.h

This function is called by CMemFile member functions.

nBytes
Number of bytes of memory to be allocated.

A pointer to the memory block that was allocated, or NULL if the allocation failed.

Override this function to implement custom memory allocation. If you override this function, you'll probably want
to override Free and Realloc as well.

The default implementation uses the run-time library function malloc to allocate memory.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/realloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/free
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/memcpy-wmemcpy
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/file-handling
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc

CMemFile::Attach

void Attach(
 BYTE* lpBuffer,
 UINT nBufferSize,
 UINT nGrowBytes = 0);

ParametersParameters

RemarksRemarks

CMemFile::CMemFile

CMemFile(UINT nGrowBytes = 1024);

CMemFile(
 BYTE* lpBuffer,
 UINT nBufferSize,
 UINT nGrowBytes = 0);

ParametersParameters

Call this function to attach a block of memory to CMemFile .

lpBuffer
Pointer to the buffer to be attached to CMemFile .

nBufferSize
An integer that specifies the size of the buffer in bytes.

nGrowBytes
The memory allocation increment in bytes.

This causes CMemFile to use the block of memory as the memory file.

If nGrowBytes is 0, CMemFile will set the file length to nBufferSize. This means that the data in the memory block
before it was attached to CMemFile will be used as the file. Memory files created in this manner cannot be grown.

Since the file cannot be grown, be careful not to cause CMemFile to attempt to grow the file. For example, don't
call the CMemFile overrides of CFile:Write to write past the end or don't call CFile:SetLength with a length longer
than nBufferSize.

If nGrowBytes is greater than 0, CMemFile will ignore the contents of the memory block you've attached. You'll
have to write the contents of the memory file from scratch using the CMemFile override of CFile::Write . If you
attempt to write past the end of the file or grow the file by calling the CMemFile override of CFile::SetLength ,
CMemFile will grow the memory allocation in increments of nGrowBytes. Growing the memory allocation will fail

if the memory block you pass to Attach wasn't allocated with a method compatible with Alloc. To be compatible
with the default implementation of Alloc , you must allocate the memory with the run-time library function
malloc or calloc.

The first overload opens an empty memory file.

nGrowBytes
The memory allocation increment in bytes.

lpBuffer Pointer to a buffer that receives information of the size nBufferSize.

nBufferSize
An integer that specifies the size of the file buffer, in bytes.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/calloc

RemarksRemarks

ExampleExample

CMemFile f; // Ready to use - no Open necessary.

BYTE * pBuf = (BYTE *)new char [1024];
CMemFile g(pBuf, 1024, 256);
// same as CMemFile g; g.Attach(pBuf, 1024, 256);

CMemFile::Detach

BYTE* Detach();

Return ValueReturn Value

RemarksRemarks

CMemFile::Free

virtual void Free(BYTE* lpMem);

ParametersParameters

RemarksRemarks

CMemFile::GrowFile

virtual void GrowFile(SIZE_T dwNewLen);

ParametersParameters

Note that the file is opened by the constructor and that you should not call CFile::Open.

The second overload acts the same as if you used the first constructor and immediately called Attach with the
same parameters. See Attach for details.

Call this function to get a pointer to the memory block being used by CMemFile .

A pointer to the memory block that contains the contents of the memory file.

Calling this function also closes the CMemFile . You can reattach the memory block to CMemFile by calling Attach.
If you want to reattach the file and use the data in it, you should call CFile::GetLength to get the length of the file
before calling Detach . Note that if you attach a memory block to CMemFile so that you can use its data (
nGrowBytes == 0), then you won't be able to grow the memory file.

This function is called by CMemFile member functions.

lpMem
Pointer to the memory to be deallocated.

Override this function to implement custom memory deallocation. If you override this function, you'll probably
want to override Alloc and Realloc as well.

This function is called by several of the CMemFile member functions.

dwNewLen
New size of the memory file.

RemarksRemarks

CMemFile::Memcpy

virtual BYTE* Memcpy(
 BYTE* lpMemTarget,
 const BYTE* lpMemSource,
 SIZE_T nBytes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMemFile::Realloc

virtual BYTE* Realloc(
 BYTE* lpMem,
 SIZE_T nBytes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

You can override it if you want to change how CMemFile grows its file. The default implementation calls Realloc to
grow an existing block (or Alloc to create a memory block), allocating memory in multiples of the nGrowBytes

value specified in the constructor or Attach call.

This function is called by the CMemFile overrides of CFile::Read and CFile::Write to transfer data to and from the
memory file.

lpMemTarget
Pointer to the memory block into which the source memory will be copied.

lpMemSource
Pointer to the source memory block.

nBytes
Number of bytes to be copied.

A copy of lpMemTarget.

Override this function if you want to change the way that CMemFile does these memory copies.

This function is called by CMemFile member functions.

lpMem
A pointer to the memory block to be reallocated.

nBytes
New size for the memory block.

A pointer to the memory block that was reallocated (and possibly moved), or NULL if the reallocation failed.

Override this function to implement custom memory reallocation. If you override this function, you'll probably
want to override Alloc and Free as well.

CFile Class
Hierarchy Chart

CMemoryException Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMemoryException : public CSimpleException

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMemoryException::CMemoryException Constructs a CMemoryException object.

Remarks

Inheritance Hierarchy

Requirements

CMemoryException::CMemoryException

CMemoryException();

RemarksRemarks

Represents an out-of-memory exception condition.

No further qualification is necessary or possible. Memory exceptions are thrown automatically by new. If you
write your own memory functions, using malloc , for example, then you are responsible for throwing memory
exceptions.

For more information on CMemoryException , see the article Exception Handling (MFC).

CObject

CException

CSimpleException

CMemoryException

Header: afx.h

Constructs a CMemoryException object.

Do not use this constructor directly, but rather call the global function AfxThrowMemoryException. this global
function can succeed in an out-of-memory situation because it constructs the exception object in previously
allocated memory. for more information about exception processing, see the article exceptions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmemoryexception-class.md

See also
CException Class
Hierarchy Chart

CMemoryState Structure
3/4/2019 • 4 minutes to read • Edit Online

Syntax
struct CMemoryState

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMemoryState::CMemoryState Constructs a class-like structure that controls memory
checkpoints.

Public MethodsPublic Methods

NAME DESCRIPTION

CMemoryState::Checkpoint Obtains a snapshot (checkpoint) of the current memory state.

CMemoryState::Difference Computes the difference between two objects of type
CMemoryState .

CMemoryState::DumpAllObjectsSince Dumps a summary of all currently allocated objects since a
previous checkpoint.

CMemoryState::DumpStatistics Prints memory allocation statistics for a CMemoryState

object.

Remarks

Provides a convenient way to detect memory leaks in your program.

CMemoryState is a structure and does not have a base class.

A "memory leak" occurs when memory for an object is allocated on the heap but not deallocated when it is no
longer required. Such memory leaks can eventually lead to out-of-memory errors. There are several ways to
allocate and deallocate memory in your program:

Using the malloc / free family of functions from the run-time library.

Using the Windows API memory management functions, LocalAlloc / LocalFree and GlobalAlloc /
GlobalFree .

Using the C++ new and delete operators.

The CMemoryState diagnostics only help detect memory leaks caused when memory allocated using the new
operator is not deallocated using delete. The other two groups of memory-management functions are for non-
C++ programs, and mixing them with new and delete in the same program is not recommended. An additional

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmemorystate-structure.md

NOTENOTE

Inheritance Hierarchy

Requirements

CMemoryState::Checkpoint

void Checkpoint();

RemarksRemarks

ExampleExample

CMemoryState::CMemoryState

CMemoryState();

ExampleExample

macro, DEBUG_NEW, is provided to replace the new operator when you need file and line-number tracking of
memory allocations. DEBUG_NEW is used whenever you would normally use the new operator.

As with other diagnostics, the CMemoryState diagnostics are only available in debug versions of your program. A
debug version must have the _DEBUG constant defined.

If you suspect your program has a memory leak, you can use the Checkpoint , Difference , and DumpStatistics

functions to discover the difference between the memory state (objects allocated) at two different points in
program execution. This information can be useful in determining whether a function is cleaning up all the objects
it allocates.

If simply knowing where the imbalance in allocation and deallocation occurs does not provide enough
information, you can use the DumpAllObjectsSince function to dump all objects allocated since the previous call to
Checkpoint . This dump shows the order of allocation, the source file and line where the object was allocated (if

you are using DEBUG_NEW for allocation), and the derivation of the object, its address, and its size.
DumpAllObjectsSince also calls each object's Dump function to provide information about its current state.

For more information about how to use CMemoryState and other diagnostics, see Debugging MFC Applications.

Declarations of objects of type CMemoryState and calls to member functions should be bracketed by
#if defined(_DEBUG)/#endif directives. This causes memory diagnostics to be included only in debugging builds of your

program.

CMemoryState

Header: afx.h

Takes a snapshot summary of memory and stores it in this CMemoryState object.

The CMemoryState member functions Difference and DumpAllObjectsSince use this snapshot data.

See the example for the CMemoryState constructor.

Constructs an empty CMemoryState object that must be filled in by the Checkpoint or Difference member function.

https://docs.microsoft.com/visualstudio/debugger/mfc-debugging-techniques

CMemoryState msOld;
msOld.Checkpoint();
CPerson* pper1 = new CPerson();
CPerson* pper2 = new CPerson();
msOld.DumpAllObjectsSince();

CMemoryState::Difference

BOOL Difference(
 const CMemoryState& oldState,
 const CMemoryState& newState);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMemoryState::DumpAllObjectsSince

void DumpAllObjectsSince() const;

RemarksRemarks

ExampleExample

CMemoryState::DumpStatistics

void DumpStatistics() const;

RemarksRemarks

Compares two CMemoryState objects, then stores the difference into this CMemoryState object.

oldState
The initial memory state as defined by a CMemoryState checkpoint.

newState
The new memory state as defined by a CMemoryState checkpoint.

Nonzero if the two memory states are different; otherwise 0.

Checkpoint must have been called for each of the two memory-state parameters.

See the example for the CMemoryState constructor.

Calls the Dump function for all objects of a type derived from class CObject that were allocated (and are still
allocated) since the last Checkpoint call for this CMemoryState object.

Calling DumpAllObjectsSince with an uninitialized CMemoryState object will dump out all objects currently in
memory.

See the example for the CMemoryState constructor.

Prints a concise memory statistics report from a CMemoryState object that is filled by the Difference member
function.

ExampleExample

static CMemoryState oldstate, newstate, diffstate;

oldstate.Checkpoint();

newstate.Checkpoint();
if (diffstate.Difference(oldstate, newstate))
{
 TRACE(_T("Memory leaked\n"));
 diffstate.DumpStatistics();
}

See also

The report, which is printed on the afxDump device, shows the following:

A sample report gives information on the number (or amount) of:

free blocks

normal blocks

CRT blocks

ignore blocks

client blocks

maximum memory used by the program at any one time (in bytes)

total memory currently used by the program (in bytes)

Free blocks are the number of blocks whose deallocation was delayed if afxMemDF was set to delayFreeMemDF . For
more information, see afxMemDF, in the "MFC Macros and Globals" section.

The following code should be placed in projnameApp.cpp. Define the following global variables:

In the InitInstance function, add the line:

Add a handler for the ExitInstance function and use the following code:

You can now run the program in Debug mode to see the output of the DumpStatistics function.

Hierarchy Chart

CMenu Class
3/4/2019 • 44 minutes to read • Edit Online

Syntax
class CMenu : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMenu::CMenu Constructs a CMenu object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMenu::AppendMenu Appends a new item to the end of this menu.

CMenu::Attach Attaches a Windows menu handle to a CMenu object.

CMenu::CheckMenuItem Places a check mark next to or removes a check mark from a
menu item in the pop-up menu.

CMenu::CheckMenuRadioItem Places a radio button next to a menu item and removes the
radio button from all of the other menu items in the group.

CMenu::CreateMenu Creates an empty menu and attaches it to a CMenu object.

CMenu::CreatePopupMenu Creates an empty pop-up menu and attaches it to a CMenu

object.

CMenu::DeleteMenu Deletes a specified item from the menu. If the menu item has
an associated pop-up menu, destroys the handle to the pop-
up menu and frees the memory used by it.

CMenu::DeleteTempMap Deletes any temporary CMenu objects created by the
FromHandle member function.

CMenu::DestroyMenu Destroys the menu attached to a CMenu object and frees
any memory that the menu occupied.

CMenu::Detach Detaches a Windows menu handle from a CMenu object and
returns the handle.

An encapsulation of the Windows HMENU .

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmenu-class.md

CMenu::DrawItem Called by the framework when a visual aspect of an owner-
drawn menu changes.

CMenu::EnableMenuItem Enables, disables, or dims (grays) a menu item.

CMenu::FromHandle Returns a pointer to a CMenu object given a Windows menu
handle.

CMenu::GetDefaultItem Determines the default menu item on the specified menu.

CMenu::GetMenuContextHelpId Retrieves the help context ID associated with the menu.

CMenu::GetMenuInfo Retrieves information on a specific menu.

CMenu::GetMenuItemCount Determines the number of items in a pop-up or top-level
menu.

CMenu::GetMenuItemID Obtains the menu-item identifier for a menu item located at
the specified position.

CMenu::GetMenuItemInfo Retrieves information about a menu item.

CMenu::GetMenuState Returns the status of the specified menu item or the number
of items in a pop-up menu.

CMenu::GetMenuString Retrieves the label of the specified menu item.

CMenu::GetSafeHmenu Returns the m_hMenu wrapped by this CMenu object.

CMenu::GetSubMenu Retrieves a pointer to a pop-up menu.

CMenu::InsertMenu Inserts a new menu item at the specified position, moving
other items down the menu.

CMenu::InsertMenuItem Inserts a new menu item at the specified position in a menu.

CMenu::LoadMenu Loads a menu resource from the executable file and attaches
it to a CMenu object.

CMenu::LoadMenuIndirect Loads a menu from a menu template in memory and
attaches it to a CMenu object.

CMenu::MeasureItem Called by the framework to determine menu dimensions
when an owner-drawn menu is created.

CMenu::ModifyMenu Changes an existing menu item at the specified position.

CMenu::RemoveMenu Deletes a menu item with an associated pop-up menu from
the specified menu.

CMenu::SetDefaultItem Sets the default menu item for the specified menu.

NAME DESCRIPTION

CMenu::SetMenuContextHelpId Sets the help context ID to be associated with the menu.

CMenu::SetMenuInfo Sets information on a specific menu.

CMenu::SetMenuItemBitmaps Associates the specified check-mark bitmaps with a menu
item.

CMenu::SetMenuItemInfo Changes information about a menu item.

CMenu::TrackPopupMenu Displays a floating pop-up menu at the specified location
and tracks the selection of items on the pop-up menu.

CMenu::TrackPopupMenuEx Displays a floating pop-up menu at the specified location
and tracks the selection of items on the pop-up menu.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CMenu::operator HMENU Retrieves the handle of the menu object.

CMenu::operator != Determines if two menu objects are not equal.

CMenu::operator == Determines if two menu objects are equal.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CMenu::m_hMenu Specifies the handle to the Windows menu attached to the
CMenu object.

Remarks

Inheritance Hierarchy

It provides member functions for creating, tracking, updating, and destroying a menu.

Create a CMenu object on the stack frame as a local, then call CMenu 's member functions to manipulate the new
menu as needed. Next, call CWnd::SetMenu to set the menu to a window, followed immediately by a call to the
CMenu object's Detach member function. The CWnd::SetMenu member function sets the window's menu to the

new menu, causes the window to be redrawn to reflect the menu change, and also passes ownership of the
menu to the window. The call to Detach detaches the HMENU from the CMenu object, so that when the local
CMenu variable passes out of scope, the CMenu object destructor does not attempt to destroy a menu it no

longer owns. The menu itself is automatically destroyed when the window is destroyed.

You can use the LoadMenuIndirect member function to create a menu from a template in memory, but a menu
created from a resource by a call to LoadMenu is more easily maintained, and the menu resource itself can be
created and modified by the menu editor.

CObject

Requirements

CMenu::AppendMenu

BOOL AppendMenu(
 UINT nFlags,
 UINT_PTR nIDNewItem = 0,
 LPCTSTR lpszNewItem = NULL);

BOOL AppendMenu(
 UINT nFlags,
 UINT_PTR nIDNewItem,
 const CBitmap* pBmp);

ParametersParameters

NFLAGS INTERPRETATION OF LPSZNEWITEM

MF_OWNERDRAW Contains an application-supplied 32-bit value that the
application can use to maintain additional data associated
with the menu item. This 32-bit value is available to the
application when it processes WM_MEASUREITEM and
WM_DRAWITEM messages. The value is stored in the
itemData member of the structure supplied with those

messages.

MF_STRING Contains a pointer to a null-terminated string. This is the
default interpretation.

MF_SEPARATOR The lpszNewItem parameter is ignored (not needed).

Return ValueReturn Value

RemarksRemarks

CMenu

Header: afxwin.h

Appends a new item to the end of a menu.

nFlags
Specifies information about the state of the new menu item when it is added to the menu. It consists of one or
more of the values listed in the Remarks section.

nIDNewItem
Specifies either the command ID of the new menu item or, if nFlags is set to MF_POPUP, the menu handle (
HMENU) of a pop-up menu. The nIDNewItem parameter is ignored (not needed) if nFlags is set to

MF_SEPARATOR.

lpszNewItem
Specifies the content of the new menu item. The nFlags parameter is used to interpret lpszNewItem in the
following way:

pBmp
Points to a CBitmap object that will be used as the menu item.

Nonzero if the function is successful; otherwise 0.

ExampleExample

CMenu::Attach

The application can specify the state of the menu item by setting values in nFlags. When nIDNewItem specifies a
pop-up menu, it becomes part of the menu to which it is appended. If that menu is destroyed, the appended
menu will also be destroyed. An appended menu should be detached from a CMenu object to avoid conflict.
Note that MF_STRING and MF_OWNERDRAW are not valid for the bitmap version of AppendMenu .

The following list describes the flags that may be set in nFlags:

MF_CHECKED Acts as a toggle with MF_UNCHECKED to place the default check mark next to the item.
When the application supplies check-mark bitmaps (see the SetMenuItemBitmaps member function), the
"check mark on" bitmap is displayed.

MF_UNCHECKED Acts as a toggle with MF_CHECKED to remove a check mark next to the item. When
the application supplies check-mark bitmaps (see the SetMenuItemBitmaps member function), the "check
mark off" bitmap is displayed.

MF_DISABLED Disables the menu item so that it cannot be selected but does not dim it.

MF_ENABLED Enables the menu item so that it can be selected and restores it from its dimmed state.

MF_GRAYED Disables the menu item so that it cannot be selected and dims it.

MF_MENUBARBREAK Places the item on a new line in static menus or in a new column in pop-up
menus. The new pop-up menu column will be separated from the old column by a vertical dividing line.

MF_MENUBREAK Places the item on a new line in static menus or in a new column in pop-up menus.
No dividing line is placed between the columns.

MF_OWNERDRAW Specifies that the item is an owner-draw item. When the menu is displayed for the
first time, the window that owns the menu receives a WM_MEASUREITEM message, which retrieves the
height and width of the menu item. The WM_DRAWITEM message is the one sent whenever the owner
must update the visual appearance of the menu item. This option is not valid for a top-level menu item.

MF_POPUP Specifies that the menu item has a pop-up menu associated with it. The ID parameter
specifies a handle to a pop-up menu that is to be associated with the item. This is used for adding either a
top-level pop-up menu or a hierarchical pop-up menu to a pop-up menu item.

MF_SEPARATOR Draws a horizontal dividing line. Can only be used in a pop-up menu. This line cannot
be dimmed, disabled, or highlighted. Other parameters are ignored.

MF_STRING Specifies that the menu item is a character string.

Each of the following groups lists flags that are mutually exclusive and cannot be used together:

MF_DISABLED, MF_ENABLED, and MF_GRAYED

MF_STRING, MF_OWNERDRAW, MF_SEPARATOR, and the bitmap version

MF_MENUBARBREAK and MF_MENUBREAK

MF_CHECKED and MF_UNCHECKED

Whenever a menu that resides in a window is changed (whether or not the window is displayed), the application
should call CWnd::DrawMenuBar.

See the example for CMenu::CreateMenu.

Attaches an existing Windows menu to a CMenu object.

BOOL Attach(HMENU hMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMenu mnu;
HMENU hmnu = AfxGetMainWnd()->GetMenu()->GetSafeHmenu();
mnu.Attach(hmnu);

// Now you can manipulate the window's menu as a CMenu
// object...

mnu.Detach();

CMenu::CheckMenuItem

UINT CheckMenuItem(
 UINT nIDCheckItem,
 UINT nCheck);

ParametersParameters

Return ValueReturn Value

hMenu
Specifies a handle to a Windows menu.

Nonzero if the operation was successful; otherwise 0.

This function should not be called if a menu is already attached to the CMenu object. The menu handle is stored
in the m_hMenu data member.

If the menu you want to manipulate is already associated with a window, you can use the CWnd::GetMenu
function to get a handle to the menu.

Adds check marks to or removes check marks from menu items in the pop-up menu.

nIDCheckItem
Specifies the menu item to be checked, as determined by nCheck.

nCheck
Specifies how to check the menu item and how to determine the item's position in the menu. The nCheck
parameter can be a combination of MF_CHECKED or MF_UNCHECKED with MF_BYPOSITION or
MF_BYCOMMAND flags. These flags can be combined by using the bitwise OR operator. They have the
following meanings:

MF_BYCOMMAND Specifies that the parameter gives the command ID of the existing menu item. This is
the default.

MF_BYPOSITION Specifies that the parameter gives the position of the existing menu item. The first
item is at position 0.

MF_CHECKED Acts as a toggle with MF_UNCHECKED to place the default check mark next to the item.

MF_UNCHECKED Acts as a toggle with MF_CHECKED to remove a check mark next to the item.

RemarksRemarks

ExampleExample

CMenu::CheckMenuRadioItem

BOOL CheckMenuRadioItem(
 UINT nIDFirst,
 UINT nIDLast,
 UINT nIDItem,
 UINT nFlags);

ParametersParameters

NFLAGS INTERPRETATION

MF_BYCOMMAND Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF_BYCOMMAND nor MF_BYPOSITION is set.

MF_BYPOSITION Specifies that the parameter gives the position of the existing
menu item. The first item is at position 0.

Return ValueReturn Value

RemarksRemarks

ExampleExample

The previous state of the item: MF_CHECKED or MF_UNCHECKED, or 0xFFFFFFFF if the menu item did not
exist.

The nIDCheckItem parameter specifies the item to be modified.

The nIDCheckItem parameter may identify a pop-up menu item as well as a menu item. No special steps are
required to check a pop-up menu item. Top-level menu items cannot be checked. A pop-up menu item must be
checked by position since it does not have a menu-item identifier associated with it.

See the example for CMenu::GetMenuState.

Checks a specified menu item and makes it a radio item.

nIDFirst
Specifies (as an ID or offset, depending on the value of nFlags) the first menu item in the radio button group.

nIDLast
Specifies (as an ID or offset, depending on the value of nFlags) the last menu item in the radio button group.

nIDItem
Specifies (as an ID or offset, depending on the value of nFlags) the item in the group which will be checked with
a radio button.

nFlags
Specifies interpretation of nIDFirst, nIDLast, and nIDItem in the following way:

Nonzero if successful; otherwise 0

At the same time, the function unchecks all other menu items in the associated group and clears the radio-item
type flag for those items. The checked item is displayed using a radio button (or bullet) bitmap instead of a check
mark bitmap.

See the example for ON_COMMAND_RANGE.

CMenu::CMenu

CMenu();

RemarksRemarks

CMenu::CreateMenu

BOOL CreateMenu();

Return ValueReturn Value

RemarksRemarks

ExampleExample

Creates an empty menu and attaches it to a CMenu object.

The menu is not created until you call one of the create or load member functions of CMenu:

CreateMenu

CreatePopupMenu

LoadMenu

LoadMenuIndirect

Attach

Creates a menu and attaches it to the CMenu object.

Nonzero if the menu was created successfully; otherwise 0.

The menu is initially empty. Menu items can be added by using the AppendMenu or InsertMenu member
function.

If the menu is assigned to a window, it is automatically destroyed when the window is destroyed.

Before exiting, an application must free system resources associated with a menu if the menu is not assigned to
a window. An application frees a menu by calling the DestroyMenu member function.

// The code fragment below shows how to create a new menu for the
// application window using CreateMenu() and CreatePopupMenu().
// Then, the created menu will replace the current menu of the
// application. The old menu will be destroyed with DestroyMenu().
// NOTE: The code fragment below is done in a CFrameWnd-derived class.

// Create a new menu for the application window.
VERIFY(m_NewMenu.CreateMenu());

// Create a "File" popup menu and insert this popup menu to the
// new menu of the application window. The "File" menu has only
// one menu item, i.e. "Exit".
VERIFY(m_FileMenu.CreatePopupMenu());
m_FileMenu.AppendMenu(MF_STRING, ID_APP_EXIT, _T("E&xit"));
m_NewMenu.AppendMenu(MF_POPUP, (UINT_PTR)m_FileMenu.m_hMenu, _T("&File"));

// Remove and destroy old menu
SetMenu(NULL);
CMenu* old_menu = CMenu::FromHandle(m_hMenuDefault);
old_menu->DestroyMenu();

// Add new menu.
SetMenu(&m_NewMenu);

// Assign default menu
m_hMenuDefault = m_NewMenu.m_hMenu;

CMenu::CreatePopupMenu

BOOL CreatePopupMenu();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMenu::DeleteMenu

Creates a pop-up menu and attaches it to the CMenu object.

Nonzero if the pop-up menu was successfully created; otherwise 0.

The menu is initially empty. Menu items can be added by using the AppendMenu or InsertMenu member
function. The application can add the pop-up menu to an existing menu or pop-up menu. The TrackPopupMenu

member function may be used to display this menu as a floating pop-up menu and to track selections on the
pop-up menu.

If the menu is assigned to a window, it is automatically destroyed when the window is destroyed. If the menu is
added to an existing menu, it is automatically destroyed when that menu is destroyed.

Before exiting, an application must free system resources associated with a pop-up menu if the menu is not
assigned to a window. An application frees a menu by calling the DestroyMenu member function.

See the example for CMenu::CreateMenu.

Deletes an item from the menu.

BOOL DeleteMenu(
 UINT nPosition,
 UINT nFlags);

ParametersParameters

NFLAGS INTERPRETATION OF NPOSITION

MF_BYCOMMAND Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF_BYCOMMAND nor MF_BYPOSITION is set.

MF_BYPOSITION Specifies that the parameter gives the position of the existing
menu item. The first item is at position 0.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMenu::DeleteTempMap

static void PASCAL DeleteTempMap();

RemarksRemarks

ExampleExample

// DeleteTempMap() is a static member and does not need
// an instantiated CMenu object.
CMenu::DeleteTempMap();

CMenu::DestroyMenu

nPosition
Specifies the menu item that is to be deleted, as determined by nFlags.

nFlags
Is used to interpret nPosition in the following way:

Nonzero if the function is successful; otherwise 0.

If the menu item has an associated pop-up menu, DeleteMenu destroys the handle to the pop-up menu and
frees the memory used by the pop-up menu.

Whenever a menu that resides in a window is changed (whether or not the window is displayed), the application
must call CWnd::DrawMenuBar.

See the example for CWnd::GetMenu.

Called automatically by the CWinApp idle-time handler, deletes any temporary CMenu objects created by the
FromHandle member function.

DeleteTempMap detaches the Windows menu object attached to a temporary CMenu object before deleting the
CMenu object.

Destroys the menu and any Windows resources that were used.

BOOL DestroyMenu();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMenu::Detach

HMENU Detach();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMenu mnu;
HMENU hmnu = AfxGetMainWnd()->GetMenu()->GetSafeHmenu();
mnu.Attach(hmnu);

// Now you can manipulate the window's menu as a CMenu
// object...

mnu.Detach();

CMenu::DrawItem

virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

RemarksRemarks

Nonzero if the menu is destroyed; otherwise 0.

The menu is detached from the CMenu object before it is destroyed. The Windows DestroyMenu function is
automatically called in the CMenu destructor.

See the example for CMenu::CreateMenu.

Detaches a Windows menu from a CMenu object and returns the handle.

The handle, of type HMENU, to a Windows menu, if successful; otherwise NULL.

The m_hMenu data member is set to NULL.

Called by the framework when a visual aspect of an owner-drawn menu changes.

lpDrawItemStruct
A pointer to a DRAWITEMSTRUCT structure that contains information about the type of drawing required.

The itemAction member of the DRAWITEMSTRUCT structure defines the drawing action that is to be performed.
Override this member function to implement drawing for an owner-draw CMenu object. The application should
restore all graphics device interface (GDI) objects selected for the display context supplied in lpDrawItemStruct
before the termination of this member function.

See CWnd::OnDrawItem for a description of the DRAWITEMSTRUCT structure.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct

ExampleExample

// Override DrawItem() to implement drawing for an owner-draw CMenu object.
// CColorMenu is a CMenu-derived class.
void CColorMenu::DrawItem(LPDRAWITEMSTRUCT lpDIS)
{
 CDC* pDC = CDC::FromHandle(lpDIS->hDC);
 COLORREF cr = (COLORREF)lpDIS->itemData; // RGB in item data

 if (lpDIS->itemAction & ODA_DRAWENTIRE)
 {
 // Paint the color item in the color requested
 CBrush br(cr);
 pDC->FillRect(&lpDIS->rcItem, &br);
 }

 if ((lpDIS->itemState & ODS_SELECTED) &&
 (lpDIS->itemAction & (ODA_SELECT | ODA_DRAWENTIRE)))
 {
 // item has been selected - hilite frame
 COLORREF crHilite = RGB(255-GetRValue(cr),
 255-GetGValue(cr), 255-GetBValue(cr));
 CBrush br(crHilite);
 pDC->FrameRect(&lpDIS->rcItem, &br);
 }

 if (!(lpDIS->itemState & ODS_SELECTED) &&
 (lpDIS->itemAction & ODA_SELECT))
 {
 // Item has been de-selected -- remove frame
 CBrush br(cr);
 pDC->FrameRect(&lpDIS->rcItem, &br);
 }
}

CMenu::EnableMenuItem

UINT EnableMenuItem(
 UINT nIDEnableItem,
 UINT nEnable);

ParametersParameters

The following code is from the MFC CTRLTEST sample:

Enables, disables, or dims a menu item.

nIDEnableItem
Specifies the menu item to be enabled, as determined by nEnable. This parameter can specify pop-up menu
items as well as standard menu items.

nEnable
Specifies the action to take. It can be a combination of MF_DISABLED, MF_ENABLED, or MF_GRAYED, with
MF_BYCOMMAND or MF_BYPOSITION. These values can be combined by using the bitwise OR operator.
These values have the following meanings:

MF_BYCOMMAND Specifies that the parameter gives the command ID of the existing menu item. This is
the default.

MF_BYPOSITION Specifies that the parameter gives the position of the existing menu item. The first
item is at position 0.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The code fragment below shows how to disable (and gray out) the
// File\New menu item.
// NOTE: m_bAutoMenuEnable is set to FALSE in the constructor of
// CMainFrame so no ON_UPDATE_COMMAND_UI or ON_COMMAND handlers are
// needed, and CMenu::EnableMenuItem() will work as expected.

CMenu* mmenu = GetMenu();
CMenu* submenu = mmenu->GetSubMenu(0);
submenu->EnableMenuItem(ID_FILE_NEW, MF_BYCOMMAND | MF_DISABLED | MF_GRAYED);

CMenu::FromHandle

static CMenu* PASCAL FromHandle(HMENU hMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

MF_DISABLED Disables the menu item so that it cannot be selected but does not dim it.

MF_ENABLED Enables the menu item so that it can be selected and restores it from its dimmed state.

MF_GRAYED Disables the menu item so that it cannot be selected and dims it.

Previous state (MF_DISABLED, MF_ENABLED, or MF_GRAYED) or -1 if not valid.

The CreateMenu, InsertMenu, ModifyMenu, and LoadMenuIndirect member functions can also set the state
(enabled, disabled, or dimmed) of a menu item.

Using the MF_BYPOSITION value requires an application to use the correct CMenu . If the CMenu of the menu
bar is used, a top-level menu item (an item in the menu bar) is affected. To set the state of an item in a pop-up or
nested pop-up menu by position, an application must specify the CMenu of the pop-up menu.

When an application specifies the MF_BYCOMMAND flag, Windows checks all pop-up menu items that are
subordinate to the CMenu ; therefore, unless duplicate menu items are present, using the CMenu of the menu bar
is sufficient.

Returns a pointer to a CMenu object given a Windows handle to a menu.

hMenu
A Windows handle to a menu.

A pointer to a CMenu that may be temporary or permanent.

If a CMenu object is not already attached to the Windows menu object, a temporary CMenu object is created and
attached.

This temporary CMenu object is only valid until the next time the application has idle time in its event loop, at
which time all temporary objects are deleted.

See the example for CMenu::CreateMenu.

CMenu::GetDefaultItem

UINT GetDefaultItem(
 UINT gmdiFlags,
 BOOL fByPos = FALSE);

ParametersParameters

VALUE MEANING

GMDI_GOINTOPOPUPS Specifies that, if the default item is one that opens a
submenu, the function is to search in the corresponding
submenu recursively. If the submenu has no default item, the
return value identifies the item that opens the submenu.

By default, the function returns the first default item on the
specified menu, regardless of whether it is an item that
opens a submenu.

GMDI_USEDISABLED Specifies that the function is to return a default item, even if
it is disabled.

By default, the function skips disabled or grayed items.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMenu::GetMenuContextHelpId

DWORD GetMenuContextHelpId() const;

Return ValueReturn Value

ExampleExample

Determines the default menu item on the specified menu.

gmdiFlags
Value specifying how the function searches for menu items. This parameter can be none, one, or a combination
of the following values:

fByPos
Value specifying whether to retrieve the menu item's identifier or its position. If this parameter is FALSE, the
identifier is returned. Otherwise, the position is returned.

If the function succeeds, the return value is the identifier or position of the menu item. If the function fails, the
return value is - 1.

This member function implements the behavior of the Win32 function GetMenuDefaultItem, as described in the
Windows SDK.

See the example for CMenu::InsertMenu.

Retrieves the context help ID associated with CMenu .

The context help ID currently associated with CMenu if it has one; zero otherwise.

See the example for CMenu::InsertMenu.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getmenudefaultitem

CMenu::GetMenuInfo

BOOL GetMenuInfo(LPMENUINFO lpcmi) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMenu::GetMenuItemCount

UINT GetMenuItemCount() const;

Return ValueReturn Value

ExampleExample

CMenu::GetMenuItemID

UINT GetMenuItemID(int nPos) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CMenu::GetMenuItemInfo

Retrieves information for a menu.

lpcmi
A pointer to a MENUINFO structure containing information for the menu.

If the function succeeds, the return value is nonzero; otherwise, the return value is zero.

Call this function to retrieve information about the menu.

Determines the number of items in a pop-up or top-level menu.

The number of items in the menu if the function is successful; otherwise -1.

See the example for CWnd::GetMenu.

Obtains the menu-item identifier for a menu item located at the position defined by nPos.

nPos
Specifies the position (zero-based) of the menu item whose ID is being retrieved.

The item ID for the specified item in a pop-up menu if the function is successful. If the specified item is a pop-up
menu (as opposed to an item within the pop-up menu), the return value is -1. If nPos corresponds to a
SEPARATOR menu item, the return value is 0.

See the example for CMenu::InsertMenu.

Retrieves information about a menu item.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmenuinfo

BOOL GetMenuItemInfo(
 UINT uItem,
 LPMENUITEMINFO lpMenuItemInfo,
 BOOL fByPos = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// CMainFrame::OnToggleTestMenuInfo() is a menu command handler for
// "Toggle Info" menu item (whose resource id is ID_MENU_TOGGLEINFO). It
// toggles the checked or unchecked state of the "Toggle Info" menu item.
// CMainFrame is a CFrameWnd-derived class.
void CMainFrame::OnToggleTestMenuItemInfo()
{
 // Get the popup menu which contains the "Toggle Info" menu item.
 CMenu* mmenu = GetMenu();
 CMenu* submenu = mmenu->GetSubMenu(4);

 // Check the state of the "Toggle Info" menu item. Check the menu item
 // if it is currently unchecked. Otherwise, uncheck the menu item
 // if it is not currently checked.
 MENUITEMINFO info;
 info.cbSize = sizeof (MENUITEMINFO); // must fill up this field
 info.fMask = MIIM_STATE; // get the state of the menu item
 VERIFY(submenu->GetMenuItemInfo(ID_MENU_TOGGLEINFO, &info));

 if (info.fState & MF_CHECKED)
 submenu->CheckMenuItem(ID_MENU_TOGGLEINFO, MF_UNCHECKED | MF_BYCOMMAND);
 else
 submenu->CheckMenuItem(ID_MENU_TOGGLEINFO, MF_CHECKED | MF_BYCOMMAND);
}

CMenu::GetMenuState

uItem
Identifier or position of the menu item to get information about. The meaning of this parameter depends on the
value of ByPos .

lpMenuItemInfo
A pointer to a MENUITEMINFO, as described in the Windows SDK, that contains information about the menu.

fByPos
Value specifying the meaning of nIDItem . By default, ByPos is FALSE, which indicates that uItem is a menu item
identifier. If ByPos is not set to FALSE, it indicates a menu item position.

If the function succeeds, the return value is nonzero. If the function fails, the return value is zero. To get extended
error information, use the Win32 function GetLastError, as described in the Windows SDK.

This member function implements the behavior of the of the Win32 function GetMenuItemInfo, as described in
the Windows SDK. Note that in the MFC implementation of GetMenuItemInfo , you do not use a handle to a
menu.

Returns the status of the specified menu item or the number of items in a pop-up menu.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmenuiteminfoa
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getmenuiteminfoa

UINT GetMenuState(
 UINT nID,
 UINT nFlags) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

nID
Specifies the menu item ID, as determined by nFlags.

nFlags
Specifies the nature of nID. It can be one of the following values:

MF_BYCOMMAND Specifies that the parameter gives the command ID of the existing menu item. This is
the default.

MF_BYPOSITION Specifies that the parameter gives the position of the existing menu item. The first
item is at position 0.

The value 0xFFFFFFFF if the specified item does not exist. If nId identifies a pop-up menu, the high-order byte
contains the number of items in the pop-up menu and the low-order byte contains the menu flags associated
with the pop-up menu. Otherwise the return value is a mask (Boolean OR) of the values from the following list
(this mask describes the status of the menu item that nId identifies):

MF_CHECKED Acts as a toggle with MF_UNCHECKED to place the default check mark next to the item.
When the application supplies check-mark bitmaps (see the SetMenuItemBitmaps member function), the
"check mark on" bitmap is displayed.

MF_DISABLED Disables the menu item so that it cannot be selected but does not dim it.

MF_ENABLED Enables the menu item so that it can be selected and restores it from its dimmed state.
Note that the value of this constant is 0; an application should not test against 0 for failure when using
this value.

MF_GRAYED Disables the menu item so that it cannot be selected and dims it.

MF_MENUBARBREAK Places the item on a new line in static menus or in a new column in pop-up
menus. The new pop-up menu column will be separated from the old column by a vertical dividing line.

MF_MENUBREAK Places the item on a new line in static menus or in a new column in pop-up menus.
No dividing line is placed between the columns.

MF_SEPARATOR Draws a horizontal dividing line. Can only be used in a pop-up menu. This line cannot
be dimmed, disabled, or highlighted. Other parameters are ignored.

MF_UNCHECKED Acts as a toggle with MF_CHECKED to remove a check mark next to the item. When
the application supplies check-mark bitmaps (see the SetMenuItemBitmaps member function), the "check
mark off" bitmap is displayed. Note that the value of this constant is 0; an application should not test
against 0 for failure when using this value.

// CMainFrame::OnToggleTestMenuState() is a menu command handler for
// "Toggle State" menu item (whose resource id is ID_MENU_TOGGLESTATE).
// It toggles the checked or unchecked state of the "Toggle State" menu item.
// CMainFrame is a CFrameWnd-derived class.
void CMainFrame::OnToggleTestMenuState()
{
 // Get the popup menu which contains the "Toggle State" menu item.
 CMenu* mmenu = GetMenu();
 CMenu* submenu = mmenu->GetSubMenu(4);

 // Check the state of the "Toggle State" menu item. Check the menu item
 // if it is currently unchecked. Otherwise, uncheck the menu item
 // if it is not currently checked.
 UINT state = submenu->GetMenuState(ID_MENU_TOGGLESTATE, MF_BYCOMMAND);
 ASSERT(state != 0xFFFFFFFF);

 if (state & MF_CHECKED)
 submenu->CheckMenuItem(ID_MENU_TOGGLESTATE, MF_UNCHECKED | MF_BYCOMMAND);
 else
 submenu->CheckMenuItem(ID_MENU_TOGGLESTATE, MF_CHECKED | MF_BYCOMMAND);
}

CMenu::GetMenuString

int GetMenuString(
 UINT nIDItem,
 LPTSTR lpString,
 int nMaxCount,
 UINT nFlags) const;

int GetMenuString(
 UINT nIDItem,
 CString& rString,
 UINT nFlags) const;

ParametersParameters

NFLAGS INTERPRETATION OF NIDITEM

Copies the label of the specified menu item to the specified buffer.

nIDItem
Specifies the integer identifier of the menu item or the offset of the menu item in the menu, depending on the
value of nFlags.

lpString
Points to the buffer that is to receive the label.

rString
A reference to a CString object that is to receive the copied menu string.

nMaxCount
Specifies the maximum length (in characters) of the label to be copied. If the label is longer than the maximum
specified in nMaxCount, the extra characters are truncated.

nFlags
Specifies the interpretation of the nIDItem parameter. It can be one of the following values:

MF_BYCOMMAND Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF_BYCOMMAND nor MF_BYPOSITION is set.

MF_BYPOSITION Specifies that the parameter gives the position of the existing
menu item. The first item is at position 0.

NFLAGS INTERPRETATION OF NIDITEM

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMenu::GetSafeHmenu

HMENU GetSafeHmenu() const;

ExampleExample

CMenu::GetSubMenu

CMenu* GetSubMenu(int nPos) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CMenu::InsertMenu

Specifies the actual number of characters copied to the buffer, not including the null terminator.

The nMaxCount parameter should be one larger than the number of characters in the label to accommodate the
null character that terminates a string.

See the example for CMenu::InsertMenu.

Returns the HMENU wrapped by this CMenu object, or a NULL CMenu pointer.

See the example for CMenu::LoadMenu.

Retrieves the CMenu object of a pop-up menu.

nPos
Specifies the position of the pop-up menu contained in the menu. Position values start at 0 for the first menu
item. The pop-up menu's identifier cannot be used in this function.

A pointer to a CMenu object whose m_hMenu member contains a handle to the pop-up menu if a pop-up menu
exists at the given position; otherwise NULL. If a CMenu object does not exist, then a temporary one is created.
The CMenu pointer returned should not be stored.

See the example for CMenu::TrackPopupMenu.

Inserts a new menu item at the position specified by nPosition and moves other items down the menu.

BOOL InsertMenu(
 UINT nPosition,
 UINT nFlags,
 UINT_PTR nIDNewItem = 0,
 LPCTSTR lpszNewItem = NULL);

BOOL InsertMenu(
 UINT nPosition,
 UINT nFlags,
 UINT_PTR nIDNewItem,
 const CBitmap* pBmp);

ParametersParameters

NFLAGS INTERPRETATION OF NPOSITION

MF_BYCOMMAND Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF_BYCOMMAND nor MF_BYPOSITION is set.

MF_BYPOSITION Specifies that the parameter gives the position of the existing
menu item. The first item is at position 0. If nPosition is -1,
the new menu item is appended to the end of the menu.

NFLAGS INTERPRETATION OF LPSZNEWITEM

MF_OWNERDRAW Contains an application-supplied 32-bit value that the
application can use to maintain additional data associated
with the menu item. This 32-bit value is available to the
application in the itemData member of the structure
supplied by the WM_MEASUREITEM and WM_DRAWITEM
messages. These messages are sent when the menu item is
initially displayed or is changed.

MF_STRING Contains a long pointer to a null-terminated string. This is
the default interpretation.

MF_SEPARATOR The lpszNewItem parameter is ignored (not needed).

nPosition
Specifies the menu item before which the new menu item is to be inserted. The nFlags parameter can be used to
interpret nPosition in the following ways:

nFlags
Specifies how nPosition is interpreted and specifies information about the state of the new menu item when it is
added to the menu. For a list of the flags that may be set, see the AppendMenu member function. To specify
more than one value, use the bitwise OR operator to combine them with the MF_BYCOMMAND or
MF_BYPOSITION flag.

nIDNewItem
Specifies either the command ID of the new menu item or, if nFlags is set to MF_POPUP, the menu handle (
HMENU) of the pop-up menu. The nIDNewItem parameter is ignored (not needed) if nFlags is set to
MF_SEPARATOR.

lpszNewItem
Specifies the content of the new menu item. nFlags can be used to interpret lpszNewItem in the following ways:

pBmp

https://docs.microsoft.com/windows/desktop/Controls/wm-measureitem
https://docs.microsoft.com/windows/desktop/Controls/wm-drawitem

Return ValueReturn Value

RemarksRemarks

ExampleExample

// CMainFrame::OnChangeFileMenu() is a menu command handler for
// CMainFrame class, which in turn is a CFrameWnd-derived class.
// It modifies the File menu by inserting, removing and renaming
// some menu items. Other operations include associating a context
// help id and setting default menu item to the File menu.
// CMainFrame is a CFrameWnd-derived class.
void CMainFrame::OnChangeFileMenu()
{
 // Get the menu from the application window.
 CMenu* mmenu = GetMenu();

 // Look for "File" menu.
 int pos = FindMenuItem(mmenu, _T("&File"));
 if (pos == -1)
 return;

 // Remove "New" menu item from the File menu.
 CMenu* submenu = mmenu->GetSubMenu(pos);
 pos = FindMenuItem(submenu, _T("&New\tCtrl+N"));
 if (pos > -1)
 submenu->RemoveMenu(pos, MF_BYPOSITION);

 // Look for "Open" menu item from the File menu. Insert a new
 // menu item called "Close" right after the "Open" menu item.
 // ID_CLOSEFILE is the command id for the "Close" menu item.
 pos = FindMenuItem(submenu, _T("&Open...\tCtrl+O"));
 if (pos > -1)
 submenu->InsertMenu(pos + 1, MF_BYPOSITION, ID_CLOSEFILE, _T("&Close"));

 // Rename menu item "Exit" to "Exit Application".
 pos = FindMenuItem(submenu, _T("E&xit"));
 if (pos > -1)
 {
 UINT id = submenu->GetMenuItemID(pos);
 submenu->ModifyMenu(id, MF_BYCOMMAND, id, _T("E&xit Application"));
 }

 // Associate a context help ID with File menu, if one is not found.
 // ID_FILE_CONTEXT_HELPID is the context help ID for the File menu
 // that is defined in resource file.

Points to a CBitmap object that will be used as the menu item.

Nonzero if the function is successful; otherwise 0.

The application can specify the state of the menu item by setting values in nFlags.

Whenever a menu that resides in a window is changed (whether or not the window is displayed), the application
should call CWnd::DrawMenuBar .

When nIDNewItem specifies a pop-up menu, it becomes part of the menu in which it is inserted. If that menu is
destroyed, the inserted menu will also be destroyed. An inserted menu should be detached from a CMenu object
to avoid conflict.

If the active multiple document interface (MDI) child window is maximized and an application inserts a pop-up
menu into the MDI application's menu by calling this function and specifying the MF_BYPOSITION flag, the
menu is inserted one position farther left than expected. This happens because the Control menu of the active
MDI child window is inserted into the first position of the MDI frame window's menu bar. To position the menu
properly, the application must add 1 to the position value that would otherwise be used. An application can use
the WM_MDIGETACTIVE message to determine whether the currently active child window is maximized.

 if (submenu->GetMenuContextHelpId() == 0)
 submenu->SetMenuContextHelpId(ID_FILE_CONTEXT_HELPID);

 // Set "Open" menu item as the default menu item for the File menu,
 // if one is not found. So, when a user double-clicks the File
 // menu, the system sends a command message to the menu's owner
 // window and closes the menu as if the File\Open command item had
 // been chosen.
 if (submenu->GetDefaultItem(GMDI_GOINTOPOPUPS, TRUE) == -1)
 {
 pos = FindMenuItem(submenu, _T("&Open...\tCtrl+O"));
 submenu->SetDefaultItem(pos, TRUE);
 }
}

// FindMenuItem() will find a menu item string from the specified
// popup menu and returns its position (0-based) in the specified
// popup menu. It returns -1 if no such menu item string is found.
int FindMenuItem(CMenu* Menu, LPCTSTR MenuString)
{
 ASSERT(Menu);
 ASSERT(::IsMenu(Menu->GetSafeHmenu()));

 int count = Menu->GetMenuItemCount();
 for (int i = 0; i < count; i++)
 {
 CString str;
 if (Menu->GetMenuString(i, str, MF_BYPOSITION) &&
 str.Compare(MenuString) == 0)
 return i;
 }

 return -1;
}

CMenu::InsertMenuItem

BOOL InsertMenuItem(
 UINT uItem,
 LPMENUITEMINFO lpMenuItemInfo,
 BOOL fByPos = FALSE);

ParametersParameters

RemarksRemarks

CMenu::LoadMenu

Inserts a new menu item at the specified position in a menu.

uItem
See description of uItem in InsertMenuItem in the Windows SDK.

lpMenuItemInfo
See description of lpmii in InsertMenuItem in the Windows SDK.

fByPos
See description of fByPosition in InsertMenuItem in the Windows SDK.

This function wraps InsertMenuItem, described in the Windows SDK.

Loads a menu resource from the application's executable file and attaches it to the CMenu object.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-insertmenuitema
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-insertmenuitema

BOOL LoadMenu(LPCTSTR lpszResourceName);
BOOL LoadMenu(UINT nIDResource);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// CMainFrame::OnReplaceMenu() is a menu command handler for CMainFrame
// class, which in turn is a CFrameWnd-derived class. It loads a new
// menu resource and replaces the SDI application window's menu bar with
// this new menu. CMainFrame is a CFrameWnd-derived class.
void CMainFrame::OnReplaceMenu()
{
 // Load the new menu.
 m_ShortMenu.LoadMenu(IDR_SHORT_MENU);
 ASSERT(m_ShortMenu);

 // Remove and destroy the old menu
 SetMenu(NULL);
 ::DestroyMenu(m_hMenuDefault);

 // Add the new menu
 SetMenu(&m_ShortMenu);

 // Assign default menu
 m_hMenuDefault = m_ShortMenu.GetSafeHmenu(); // or m_ShortMenu.m_hMenu;
}

CMenu::LoadMenuIndirect

BOOL LoadMenuIndirect(const void* lpMenuTemplate);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpszResourceName
Points to a null-terminated string that contains the name of the menu resource to load.

nIDResource
Specifies the menu ID of the menu resource to load.

Nonzero if the menu resource was loaded successfully; otherwise 0.

Before exiting, an application must free system resources associated with a menu if the menu is not assigned to
a window. An application frees a menu by calling the DestroyMenu member function.

Loads a resource from a menu template in memory and attaches it to the CMenu object.

lpMenuTemplate
Points to a menu template (which is a single MENUITEMTEMPLATEHEADER structure and a collection of one
or more MENUITEMTEMPLATE structures). For more information on these two structures, see the Windows
SDK.

Nonzero if the menu resource was loaded successfully; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-menuitemtemplateheader
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-menuitemtemplate

ExampleExample

// CMainFrame::OnLoadMenuIndirect() is a menu command handler for
// CMainFrame class, which in turn is a CFrameWnd-derived class. It
// shows how to use LoadMenuIndirect() to load a resource from a
// menu template in memory.
void CMainFrame::OnLoadMenuIndirect()
{
 // For simplicity, allocate 500 bytes from stack. May use
 // GlobalAlloc() to allocate memory bytes from heap.
 BYTE milist[500];
 memset(milist, 0, 500);
 int bytes_left = sizeof(milist);

 // Fill up the MENUITEMTEMPLATEHEADER structure.
 MENUITEMTEMPLATEHEADER* mheader = (MENUITEMTEMPLATEHEADER*) milist;
 mheader->versionNumber = 0;
 mheader->offset = 0;

 int bytes_used = sizeof(MENUITEMTEMPLATEHEADER);
 bytes_left -= bytes_used;

 // Add the following menu items to menu bar:
 // File Edit
 // Exit Copy
 // Paste
 bytes_used += AddMenuItem(milist + bytes_used, bytes_left, L"&File", 0,
 TRUE, FALSE);
 bytes_left -= bytes_used;
 bytes_used += AddMenuItem(milist + bytes_used, bytes_left, L"E&xit",
 ID_APP_EXIT, FALSE, TRUE);
 bytes_left -= bytes_used;
 bytes_used += AddMenuItem(milist + bytes_used, bytes_left, L"&Edit", 0,
 TRUE, TRUE);
 bytes_left -= bytes_used;
 bytes_used += AddMenuItem(milist + bytes_used, bytes_left, L"&Copy",
 ID_EDIT_COPY, FALSE, FALSE);
 bytes_left -= bytes_used;
 bytes_used += AddMenuItem(milist + bytes_used, bytes_left, L"&Paste",
 ID_EDIT_PASTE, FALSE, TRUE);
 bytes_left -= bytes_used;

 // Load resource from a menu template in memory.
 ASSERT(m_IndiMenu.LoadMenuIndirect(milist));

 // Remove and destroy old menu
 SetMenu(NULL);
 ::DestroyMenu(m_hMenuDefault);

 // Add new menu.
 SetMenu(&m_IndiMenu);

A menu template is a header followed by a collection of one or more MENUITEMTEMPLATE structures, each of
which may contain one or more menu items and pop-up menus.

The version number should be 0.

The mtOption flags should include MF_END for the last item in a pop-up list and for the last item in the main
list. See the AppendMenu member function for other flags. The mtId member must be omitted from the
MENUITEMTEMPLATE structure when MF_POPUP is specified in mtOption .

The space allocated for the MENUITEMTEMPLATE structure must be large enough for mtString to contain the
name of the menu item as a null-terminated string.

Before exiting, an application must free system resources associated with a menu if the menu is not assigned to
a window. An application frees a menu by calling the DestroyMenu member function.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-menuitemtemplate

 // Assign default menu
 m_hMenuDefault = m_IndiMenu.m_hMenu;
}

// This is a helper function for adding a menu item (either a popup
// or command item) to the specified menu template.
//
// MenuTemplate - pointer to a menu template
// TemplateBytes - space remaining in MenuTemplate
// MenuString - string for the menu item to be added
// MenuID - id for the command item. Its value is ignored if
// IsPopup is TRUE.
// IsPopup - TRUE for popup menu (or submenu); FALSE for command
// item
// LastItem - TRUE if MenuString is the last item for the popup;
// FALSE otherwise.
UINT AddMenuItem(LPVOID MenuTemplate, int TemplateBytes, WCHAR* MenuString,
 WORD MenuID, BOOL IsPopup, BOOL LastItem)
{
 MENUITEMTEMPLATE* mitem = (MENUITEMTEMPLATE*) MenuTemplate;

 UINT bytes_used = 0;
 if (IsPopup) // for popup menu
 {
 if (LastItem)
 mitem->mtOption = MF_POPUP | MF_END;
 else
 mitem->mtOption = MF_POPUP;
 bytes_used += sizeof (mitem->mtOption);

 mitem = (MENUITEMTEMPLATE*) ((BYTE*) MenuTemplate + bytes_used);
 // a popup doesn't have mtID!!!

 TemplateBytes -= bytes_used;
 wcscpy_s((WCHAR*) mitem, TemplateBytes / sizeof(WCHAR), MenuString);
 bytes_used += (UINT)(sizeof (WCHAR) * (wcslen(MenuString) + 1)); // include '\0'
 }
 else // for command item
 {
 mitem->mtOption = LastItem ? MF_END : 0;
 mitem->mtID = MenuID;
 TemplateBytes -= bytes_used;
 wcscpy_s(mitem->mtString, TemplateBytes / sizeof(WCHAR), MenuString);
 bytes_used += (UINT)(sizeof (mitem->mtOption) + sizeof (mitem->mtID) +
 sizeof (WCHAR) * (wcslen(MenuString) + 1)); // include '\0'
 }

 return bytes_used;
}

CMenu::m_hMenu

HMENU m_hMenu;

ExampleExample

CMenu::MeasureItem

Specifies the HMENU handle of the Windows menu attached to the CMenu object.

See the example for CMenu::LoadMenu.

Called by the framework when a menu with the owner-draw style is created.

virtual void MeasureItem(LPMEASUREITEMSTRUCT lpMeasureItemStruct);

ParametersParameters

RemarksRemarks

ExampleExample

// Override MeasureItem() to return the size of the menu item.
// CColorMenu is a CMenu-derived class.

#define COLOR_BOX_WIDTH 20
#define COLOR_BOX_HEIGHT 20

void CColorMenu::MeasureItem(LPMEASUREITEMSTRUCT lpMIS)
{
 // all items are of fixed size
 lpMIS->itemWidth = COLOR_BOX_WIDTH;
 lpMIS->itemHeight = COLOR_BOX_HEIGHT;
}

CMenu::ModifyMenu

BOOL ModifyMenu(
 UINT nPosition,
 UINT nFlags,
 UINT_PTR nIDNewItem = 0,
 LPCTSTR lpszNewItem = NULL);

BOOL ModifyMenu(
 UINT nPosition,
 UINT nFlags,
 UINT_PTR nIDNewItem,
 const CBitmap* pBmp);

ParametersParameters

NFLAGS INTERPRETATION OF NPOSITION

MF_BYCOMMAND Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF_BYCOMMAND nor MF_BYPOSITION is set.

lpMeasureItemStruct
A pointer to a MEASUREITEMSTRUCT structure.

By default, this member function does nothing. Override this member function and fill in the MEASUREITEMSTRUCT

structure to inform Windows of the menu's dimensions.

See CWnd::OnMeasureItem for a description of the MEASUREITEMSTRUCT structure.

The following code is from the MFC CTRLTEST sample:

Changes an existing menu item at the position specified by nPosition.

nPosition
Specifies the menu item to be changed. The nFlags parameter can be used to interpret nPosition in the following
ways:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

MF_BYPOSITION Specifies that the parameter gives the position of the existing
menu item. The first item is at position 0.

NFLAGS INTERPRETATION OF NPOSITION

NFLAGS INTERPRETATION OF LPSZNEWITEM

MF_OWNERDRAW Contains an application-supplied 32-bit value that the
application can use to maintain additional data associated
with the menu item. This 32-bit value is available to the
application when it processes MF_MEASUREITEM and
MF_DRAWITEM.

MF_STRING Contains a long pointer to a null-terminated string or to a
CString .

MF_SEPARATOR The lpszNewItem parameter is ignored (not needed).

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMenu::operator HMENU

nFlags
Specifies how nPosition is interpreted and gives information about the changes to be made to the menu item.
For a list of flags that may be set, see the AppendMenu member function.

nIDNewItem
Specifies either the command ID of the modified menu item or, if nFlags is set to MF_POPUP, the menu handle
(HMENU) of a pop-up menu. The nIDNewItem parameter is ignored (not needed) if nFlags is set to
MF_SEPARATOR.

lpszNewItem
Specifies the content of the new menu item. The nFlags parameter can be used to interpret lpszNewItem in the
following ways:

pBmp
Points to a CBitmap object that will be used as the menu item.

Nonzero if the function is successful; otherwise 0.

The application specifies the new state of the menu item by setting values in nFlags. If this function replaces a
pop-up menu associated with the menu item, it destroys the old pop-up menu and frees the memory used by
the pop-up menu.

When nIDNewItem specifies a pop-up menu, it becomes part of the menu in which it is inserted. If that menu is
destroyed, the inserted menu will also be destroyed. An inserted menu should be detached from a CMenu object
to avoid conflict.

Whenever a menu that resides in a window is changed (whether or not the window is displayed), the application
should call CWnd::DrawMenuBar . To change the attributes of existing menu items, it is much faster to use the
CheckMenuItem and EnableMenuItem member functions.

See the example for CMenu::InsertMenu.

Use this operator to retrieve the handle of the CMenu object.

operator HMENU() const;

Return ValueReturn Value

RemarksRemarks

CMenu::operator !=

BOOL operator!=(const CMenu& menu) const;

ParametersParameters

RemarksRemarks

CMenu::operator ==

BOOL operator==(const CMenu& menu) const;

ParametersParameters

RemarksRemarks

CMenu::RemoveMenu

BOOL RemoveMenu(
 UINT nPosition,
 UINT nFlags);

ParametersParameters

NFLAGS INTERPRETATION OF NPOSITION

If successful, the handle of the CMenu object; otherwise, NULL.

You can use the handle to call Windows APIs directly.

Determines if two menus are logically not equal.

menu
A CMenu object for comparison.

Tests if a menu object on the left side is not equal to a menu object on the right side.

Determines if two menus are logically equal.

menu
A CMenu object for comparison.

Tests if a menu object on the left side is equal (in terms of the HMENU value) to a menu object on the right side.

Deletes a menu item with an associated pop-up menu from the menu.

nPosition
Specifies the menu item to be removed. The nFlags parameter can be used to interpret nPosition in the
following ways:

MF_BYCOMMAND Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF_BYCOMMAND nor MF_BYPOSITION is set.

MF_BYPOSITION Specifies that the parameter gives the position of the existing
menu item. The first item is at position 0.

NFLAGS INTERPRETATION OF NPOSITION

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMenu::SetDefaultItem

BOOL SetDefaultItem(
 UINT uItem,
 BOOL fByPos = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMenu::SetMenuContextHelpId

nFlags
Specifies how nPosition is interpreted.

Nonzero if the function is successful; otherwise 0.

It does not destroy the handle for a pop-up menu, so the menu can be reused. Before calling this function, the
application may call the GetSubMenu member function to retrieve the pop-up CMenu object for reuse.

Whenever a menu that resides in a window is changed (whether or not the window is displayed), the application
must call CWnd::DrawMenuBar .

See the example for CMenu::InsertMenu.

Sets the default menu item for the specified menu.

uItem
Identifier or position of the new default menu item or - 1 for no default item. The meaning of this parameter
depends on the value of fByPos.

fByPos
Value specifying the meaning of uItem. If this parameter is FALSE, uItem is a menu item identifier. Otherwise, it
is a menu item position.

If the function succeeds, the return value is nonzero. If the function fails, the return value is zero. To get extended
error information, use the Win32 function GetLastError, as described in the Windows SDK.

This member function implements the behavior of the Win32 function SetMenuDefaultItem, as described in the
Windows SDK.

See the example for CMenu::InsertMenu.

https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setmenudefaultitem

BOOL SetMenuContextHelpId(DWORD dwContextHelpId);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMenu::SetMenuInfo

BOOL SetMenuInfo(LPCMENUINFO lpcmi);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMenu::SetMenuItemBitmaps

BOOL SetMenuItemBitmaps(
 UINT nPosition,
 UINT nFlags,
 const CBitmap* pBmpUnchecked,
 const CBitmap* pBmpChecked);

ParametersParameters

NFLAGS INTERPRETATION OF NPOSITION

Associates a context help ID with CMenu .

dwContextHelpId
Context help ID to associate with CMenu .

Nonzero if successful; otherwise 0

All items in the menu share this identifier — it is not possible to attach a help context identifier to the individual
menu items.

See the example for CMenu::InsertMenu.

Sets information for a menu.

lpcmi
A pointer to a MENUINFO structure containing information for the menu.

If the function succeeds, the return value is nonzero; otherwise, the return value is zero.

Call this function to set specific information about the menu.

Associates the specified bitmaps with a menu item.

nPosition
Specifies the menu item to be changed. The nFlags parameter can be used to interpret nPosition in the following
ways:

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmenuinfo

MF_BYCOMMAND Specifies that the parameter gives the command ID of the
existing menu item. This is the default if neither
MF_BYCOMMAND nor MF_BYPOSITION is set.

MF_BYPOSITION Specifies that the parameter gives the position of the existing
menu item. The first item is at position 0.

NFLAGS INTERPRETATION OF NPOSITION

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The code fragment below is from CMainFrame::OnCreate and shows
// how to associate bitmaps with the "Bitmap" menu item.
// Whether the "Bitmap" menu item is checked or unchecked, Windows
// displays the appropriate bitmap next to the menu item. Both
// IDB_CHECKBITMAP and IDB_UNCHECKBITMAP bitmaps are loaded
// in OnCreate() and destroyed in the destructor of CMainFrame class.
// CMainFrame is a CFrameWnd-derived class.

// Load bitmaps from resource. Both m_CheckBitmap and m_UnCheckBitmap
// are member variables of CMainFrame class of type CBitmap.
ASSERT(m_CheckBitmap.LoadBitmap(IDB_CHECKBITMAP));
ASSERT(m_UnCheckBitmap.LoadBitmap(IDB_UNCHECKBITMAP));

// Associate bitmaps with the "Bitmap" menu item.
CMenu* mmenu = GetMenu();
CMenu* submenu = mmenu->GetSubMenu(4);
ASSERT(submenu->SetMenuItemBitmaps(ID_MENU_BITMAP, MF_BYCOMMAND,
 &m_CheckBitmap, &m_UnCheckBitmap));

nFlags
Specifies how nPosition is interpreted.

pBmpUnchecked
Specifies the bitmap to use for menu items that are not checked.

pBmpChecked
Specifies the bitmap to use for menu items that are checked.

Nonzero if the function is successful; otherwise 0.

Whether the menu item is checked or unchecked, Windows displays the appropriate bitmap next to the menu
item.

If either pBmpUnchecked or pBmpChecked is NULL, then Windows displays nothing next to the menu item for
the corresponding attribute. If both parameters are NULL, Windows uses the default check mark when the item
is checked and removes the check mark when the item is unchecked.

When the menu is destroyed, these bitmaps are not destroyed; the application must destroy them.

The Windows GetMenuCheckMarkDimensions function retrieves the dimensions of the default check mark used for
menu items. The application uses these values to determine the appropriate size for the bitmaps supplied with
this function. Get the size, create your bitmaps, and then set them.

// This code fragment is taken from CMainFrame::~CMainFrame

// Destroy the bitmap objects if they are loaded successfully
// in OnCreate().
if (m_CheckBitmap.m_hObject)
 m_CheckBitmap.DeleteObject();

if (m_UnCheckBitmap.m_hObject)
 m_UnCheckBitmap.DeleteObject();

CMenu::SetMenuItemInfo

BOOL SetMenuItemInfo(
 UINT uItem,
 LPMENUITEMINFO lpMenuItemInfo,
 BOOL fByPos = FALSE);

ParametersParameters

RemarksRemarks

CMenu::TrackPopupMenu

BOOL TrackPopupMenu(
 UINT nFlags,
 int x,
 int y,
 CWnd* pWnd,
 LPCRECT lpRect = 0);

ParametersParameters

Changes information about a menu item.

uItem
See description of uItem in SetMenuItemInfo in the Windows SDK.

lpMenuItemInfo
See description of lpmii in SetMenuItemInfo in the Windows SDK.

fByPos
See description of fByPosition in SetMenuItemInfo in the Windows SDK.

This function wraps SetMenuItemInfo, described in the Windows SDK.

Displays a floating pop-up menu at the specified location and tracks the selection of items on the pop-up menu.

nFlags
Specifies screen-position and mouse-position flags. See TrackPopupMenu for a list of available flags.

x
Specifies the horizontal position in screen coordinates of the pop-up menu. Depending on the value of the
nFlags parameter, the menu can be left-aligned, right-aligned, or centered relative to this position.

y
Specifies the vertical position in screen coordinates of the top of the menu on the screen.

pWnd
Identifies the window that owns the pop-up menu. This parameter cannot be NULL, even if the

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setmenuiteminfoa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setmenuiteminfoa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackpopupmenu

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The code fragment shows how to get the File menu from the
// application window and displays it as a floating popup menu
// when the right mouse button is clicked in view.
// CMdiView is a CView-derived class.
void CMdiView::OnRButtonDown(UINT nFlags, CPoint point)
{
 CView::OnRButtonDown(nFlags, point);

 CMenu* menu_bar = AfxGetMainWnd()->GetMenu();
 CMenu* file_menu = menu_bar->GetSubMenu(0);
 ASSERT(file_menu);

 ClientToScreen(&point);
 file_menu->TrackPopupMenu(TPM_LEFTALIGN |TPM_RIGHTBUTTON, point.x,
 point.y, this);
}

CMenu::TrackPopupMenuEx

BOOL TrackPopupMenuEx(
 UINT fuFlags,
 int x,
 int y,
 CWnd* pWnd,
 LPTPMPARAMS lptpm);

ParametersParameters

TPM_NONOTIFY flag is specified. This window receives all WM_COMMAND messages from the menu. In
Windows versions 3.1 and later, the window does not receive WM_COMMAND messages until TrackPopupMenu

returns. In Windows 3.0, the window receives WM_COMMAND messages before TrackPopupMenu returns.

lpRect
Ignored.

This method returns the result of calling TrackPopupMenu in the Windows SDK.

A floating pop-up menu can appear anywhere on the screen.

Displays a floating pop-up menu at the specified location and tracks the selection of items on the pop-up menu.

fuFlags
Specifies various functions for the extended menu. For a listing of all values and their meaning, see
TrackPopupMenuEx.

x
Specifies the horizontal position in screen coordinates of the pop-up menu.

y
Specifies the vertical position in screen coordinates of the top of the menu on the screen.

pWnd
A pointer to the window owning the pop-up menu and receiving the messages from the created menu. This
window can be any window from the current application but cannot be NULL. If you specify TPM_NONOTIFY
in the fuFlags parameter, the function does not send any messages to pWnd. The function must return for the

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackpopupmenu
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackpopupmenuex

Return ValueReturn Value

RemarksRemarks

See also

window pointed to by pWnd to receive the WM_COMMAND message.

lptpm
Pointer to a TPMPARAMS structure that specifies an area of the screen the menu should not overlap. This
parameter can be NULL.

If you specify TPM_RETURNCMD in the fuFlags parameter, the return value is the menu-item identifier of the
item that the user selected. If the user cancels the menu without making a selection, or if an error occurs, then
the return value is 0.

If you do not specify TPM_RETURNCMD in the fuFlags parameter, the return value is nonzero if the function
succeeds and 0 if it fails. To get extended error information, call GetLastError.

A floating pop-up menu can appear anywhere on the screen. For more information on handling errors when
creating the pop-up menu, see TrackPopupMenuEx.

MFC Sample CTRLTEST
MFC Sample DYNAMENU
CObject Class
Hierarchy Chart
CObject Class

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagtpmparams
https://msdn.microsoft.com/library/windows/desktop/ms679360
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackpopupmenuex
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMenuTearOffManager Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMenuTearOffManager : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMenuTearOffManager::CMenuTearOffManager Constructs a CMenuTearOffManager object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMenuTearOffManager::Build

CMenuTearOffManager::GetRegPath

CMenuTearOffManager::Initialize Initializes a CMenuTearOffManager object.

CMenuTearOffManager::IsDynamicID

CMenuTearOffManager::Parse

CMenuTearOffManager::Reset

CMenuTearOffManager::SetInUse

CMenuTearOffManager::SetupTearOffMenus

Remarks

Example

Manages tear-off menus. A tear-off menu is a menu on the menu bar. The user can remove a tear-off menu from
the menu bar, causing the tear-off menu to float.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

In order to use tear-off menus in your application, you must have a CMenuTearOffManager object. In most cases,
you won't create or initialize a CMenuTearOffManager object directly. This is handled for you when you call the
CWinAppEx::EnableTearOffMenus function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmenutearoffmanager-class.md

// The EnableTearOffMenus method is inherited from the CWinAppEx class.
EnableTearOffMenus (NULL, ID_FREE_TEAROFF1, ID_FREE_TEAROFF2);

Inheritance Hierarchy

Requirements

CMenuTearOffManager::Build
void Build(
 UINT uiTearOffBarID,
 CString& strText);

ParametersParameters

RemarksRemarks

CMenuTearOffManager::CMenuTearOffManager

CMenuTearOffManager();

RemarksRemarks

CMenuTearOffManager::GetRegPath
LPCTSTR GetRegPath() const;

Return ValueReturn Value

RemarksRemarks

CMenuTearOffManager::Initialize

The following example demonstrates how to construct and initialize a CMenuTearOffManager object by calling the
CWinAppEX::EnableTearOffMenus method. This code snippet is part of the Word Pad sample.

CObject

CMenuTearOffManager

Header: afxmenutearoffmanager.h

[in] uiTearOffBarID

[in] strText

Constructs a CMenuTearOffManager object.

In most cases, you should not create a CMenuTearOffManager manually. The framework of your application creates
the CMenuTearOffManager object when you call CWinAppEx::EnableTearOffMenus.

Initializes a CMenuTearOffManager object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

BOOL Initialize(
 LPCTSTR lpszRegEntry,
 UINT uiTearOffMenuFirst,
 UINT uiTearOffMenuLast);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMenuTearOffManager::IsDynamicID
BOOL IsDynamicID(UINT uiID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMenuTearOffManager::Parse
UINT Parse(CString& str);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMenuTearOffManager::Reset
void Reset(HMENU hmenu);

ParametersParameters

RemarksRemarks

lpszRegEntry
[in] A string that contains the path of a registry entry. Your applications stores the settings for tear-off bars in this
registry entry.

uiTearOffMenuFirst
[in] The first menu ID for a tear-off menu.

uiTearOffMenuLast
[in] The last menu ID for a tear-off menu.

Nonzero if successful; otherwise 0.

The range of menu IDs from uiTearOffMenuFirst to uiTearOffMenuLast must be a continuous interval. The
interval defines the number of tear-off menus that can appear at the same time in the application.

[in] uiID

[in] str

[in] hmenu

CMenuTearOffManager::SetInUse
void SetInUse(
 UINT uiCmdId,
 BOOL bUse = TRUE);

ParametersParameters

RemarksRemarks

CMenuTearOffManager::SetupTearOffMenus
void SetupTearOffMenus(HMENU hMenu);

ParametersParameters

RemarksRemarks

See also

[in] uiCmdId

[in] bUse

[in] hMenu

Hierarchy Chart
Classes
CWinAppEx Class

CMetaFileDC Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CMetaFileDC : public CDC

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMetaFileDC::CMetaFileDC Constructs a CMetaFileDC object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMetaFileDC::Close Closes the device context and creates a metafile handle.

CMetaFileDC::CloseEnhanced Closes an enhanced-metafile device context and creates an
enhanced-metafile handle.

CMetaFileDC::Create Creates the Windows metafile device context and attaches it
to the CMetaFileDC object.

CMetaFileDC::CreateEnhanced Creates a metafile device context for an enhanced-format
metafile.

Remarks

Implements a Windows metafile, which contains a sequence of graphics device interface (GDI) commands that
you can replay to create a desired image or text.

To implement a Windows metafile, first create a CMetaFileDC object. Invoke the CMetaFileDC constructor, then call
the Create member function, which creates a Windows metafile device context and attaches it to the CMetaFileDC

object.

Next send the CMetaFileDC object the sequence of CDC GDI commands that you intend for it to replay. Only
those GDI commands that create output, such as MoveTo and LineTo , can be used.

After you have sent the desired commands to the metafile, call the Close member function, which closes the
metafile device contexts and returns a metafile handle. Then dispose of the CMetaFileDC object.

CDC::PlayMetaFile can then use the metafile handle to play the metafile repeatedly. The metafile can also be
manipulated by Windows functions such as CopyMetaFile, which copies a metafile to disk.

When the metafile is no longer needed, delete it from memory with the DeleteMetaFile Windows function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmetafiledc-class.md
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-copymetafilea
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-deletemetafile

Inheritance Hierarchy

Requirements

CMetaFileDC::Close

HMETAFILE Close();

Return ValueReturn Value

RemarksRemarks

CMetaFileDC::CloseEnhanced

HENHMETAFILE CloseEnhanced();

Return ValueReturn Value

RemarksRemarks

You can also implement the CMetaFileDC object so that it can handle both output calls and attribute GDI calls such
as GetTextExtent . Such a metafile is more flexible and can more easily reuse general GDI code, which often
consists of a mix of output and attribute calls. The CMetaFileDC class inherits two device contexts, m_hDC and
m_hAttribDC , from CDC. The m_hDC device context handles all CDC GDI output calls and the m_hAttribDC device

context handles all CDC GDI attribute calls. Normally, these two device contexts refer to the same device. In the
case of CMetaFileDC , the attribute DC is set to NULL by default.

Create a second device context that points to the screen, a printer, or device other than a metafile, then call the
SetAttribDC member function to associate the new device context with m_hAttribDC . GDI calls for information

will now be directed to the new m_hAttribDC . Output GDI calls will go to m_hDC , which represents the metafile.

For more information on CMetaFileDC , see Device Contexts.

CObject

CDC

CMetaFileDC

Header: afxext.h

Closes the metafile device context and creates a Windows metafile handle that can be used to play the metafile by
using the CDC::PlayMetaFile member function.

A valid HMETAFILE if the function is successful; otherwise NULL.

The Windows metafile handle can also be used to manipulate the metafile with Windows functions such as
CopyMetaFile.

Delete the metafile after use by calling the Windows DeleteMetaFile function.

Closes an enhanced-metafile device context and returns a handle that identifies an enhanced-format metafile.

A handle of an enhanced metafile, if successful; otherwise NULL.

An application can use the enhanced-metafile handle returned by this function to perform the following tasks:

Display a picture stored in an enhanced metafile

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-copymetafilea
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-deletemetafile

CMetaFileDC::CMetaFileDC

CMetaFileDC();

RemarksRemarks

CMetaFileDC::Create

BOOL Create(LPCTSTR lpszFilename = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMetaFileDC::CreateEnhanced

BOOL CreateEnhanced(
 CDC* pDCRef,
 LPCTSTR lpszFileName,
 LPCRECT lpBounds,
 LPCTSTR lpszDescription);

Create copies of the enhanced metafile

Enumerate, edit, or copy individual records in the enhanced metafile

Retrieve an optional description of the metafile contents from the enhanced-metafile header

Retrieve a copy of the enhanced-metafile header

Retrieve a binary copy of the enhanced metafile

Enumerate the colors in the optional palette

Convert an enhanced-format metafile into a Windows-format metafile

When the application no longer needs the enhanced metafile handle, it should release the handle by calling the
Win32 DeleteEnhMetaFile function.

Construct a CMetaFileDC object in two steps.

First, call CMetaFileDC , then call Create , which creates the Windows metafile device context and attaches it to the
CMetaFileDC object.

Construct a CMetaFileDC object in two steps.

lpszFilename
Points to a null-terminated character string. Specifies the filename of the metafile to create. If lpszFilename is
NULL, a new in-memory metafile is created.

Nonzero if the function is successful; otherwise 0.

First, call the constructor CMetaFileDC , then call Create , which creates the Windows metafile device context and
attaches it to the CMetaFileDC object.

Creates a device context for an enhanced-format metafile.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

pDCRef
Identifies a reference device for the enhanced metafile.

lpszFileName
Points to a null-terminated character string. Specifies the filename for the enhanced metafile to be created. If this
parameter is NULL, the enhanced metafile is memory based and its contents lost when the object is destroyed or
when the Win32 DeleteEnhMetaFile function is called.

lpBounds
Points to a RECT data structure or a CRect object that specifies the dimensions in HIMETRIC units (in .01-
millimeter increments) of the picture to be stored in the enhanced metafile.

lpszDescription
Points to a zero-terminated string that specifies the name of the application that created the picture, as well as the
picture's title.

A handle of the device context for the enhanced metafile, if successful; otherwise NULL.

This DC can be used to store a device-independent picture.

Windows uses the reference device identified by the pDCRef parameter to record the resolution and units of the
device on which a picture originally appeared. If the pDCRef parameter is NULL, it uses the current display device
for reference.

The left and top members of the RECT data structure pointed to by the lpBounds parameter must be smaller than
the right and bottom members, respectively. Points along the edges of the rectangle are included in the picture. If
lpBounds is NULL, the graphics device interface (GDI) computes the dimensions of the smallest rectangle that can
enclose the picture drawn by the application. The lpBounds parameter should be supplied where possible.

The string pointed to by the lpszDescription parameter must contain a null character between the application
name and the picture name and must terminate with two null characters —for example, "XYZ Graphics
Editor\0Bald Eagle\0\0," where \0 represents the null character. If lpszDescription is NULL, there is no
corresponding entry in the enhanced-metafile header.

Applications use the DC created by this function to store a graphics picture in an enhanced metafile. The handle
identifying this DC can be passed to any GDI function.

After an application stores a picture in an enhanced metafile, it can display the picture on any output device by
calling the CDC::PlayMetaFile function. When displaying the picture, Windows uses the rectangle pointed to by
the lpBounds parameter and the resolution data from the reference device to position and scale the picture. The
device context returned by this function contains the same default attributes associated with any new DC.

Applications must use the Win32 GetWinMetaFileBits function to convert an enhanced metafile to the older
Windows metafile format.

The filename for the enhanced metafile should use the .EMF extension.

CDC Class
Hierarchy Chart

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CMFCAcceleratorKey Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCAcceleratorKey : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCAcceleratorKey::CMFCAcceleratorKey Constructs a CMFCAcceleratorKey object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCAcceleratorKey::Format Translates the ACCEL structure to its visual representation.

CMFCAcceleratorKey::SetAccelerator Sets the shortcut key for the CMFCAcceleratorKey object.

Remarks

Example

CString strKey;
ACCEL accel;
accel.fVirt = FVIRTKEY | FCONTROL;
accel.key = VK_DOWN;

CMFCAcceleratorKey helper(&accel);
helper.Format(strKey);

Inheritance Hierarchy

A helper class that implements virtual key mapping and formatting.

Accelerator keys are also known as shortcut keys. If you want to display keyboard shortcuts that a user enters, the
CMFCAcceleratorKeyAssignCtrl Class maps keyboard shortcuts, such as Alt+Shift+S, to a custom text format,
such as "Alt + Shift + S". Each CMFCAcceleratorKey object maps a single shortcut key to a text format.

For more information about how to use shortcut keys and accelerator tables, see CKeyboardManager Class.

The following example demonstrates how to construct a CMFCAcceleratorKey object and how to use its Format

method.

CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcacceleratorkey-class.md

Requirements

CMFCAcceleratorKey::CMFCAcceleratorKey

CMFCAcceleratorKey();
CMFCAcceleratorKey(LPACCEL lpAccel);

ParametersParameters

RemarksRemarks

CMFCAcceleratorKey::Format

void Format(CString& str) const;

ParametersParameters

RemarksRemarks

CMFCAcceleratorKey::SetAccelerator

void SetAccelerator(LPACCEL lpAccel);

ParametersParameters

RemarksRemarks

See also

CMFCAcceleratorKey

Header: afxacceleratorkey.h

Constructs a CMFCAcceleratorKey object.

lpAccel
[in] A pointer to a shortcut key.

If you do not provide a shortcut key when you create a CMFCAccleratorKey , use the
CMFCAcceleratorKey::SetAccelerator method to associate a shortcut key with your CMFCAcceleratorKey object.

Translates the ACCEL structure to its associated string value.

str
[out] A reference to a CString object where the method writes the translated shortcut key.

This method retrieves the string format of the associated shortcut key. You can set the string format of a
CMFCAcceleratorKey object using either the constructor or the method CMFCAcceleratorKey::SetAccelerator.

Sets the shortcut key for the CMFCAcceleratorKey object.

lpAccel
[in] A pointer to a shortcut key.

Use this method to set the shortcut key for a CMFCAcceleratorKey if you did not provide a shortcut key when you
created the CMFCAcceleratorKey .

Hierarchy Chart

Classes
CKeyboardManager Class

CMFCAcceleratorKeyAssignCtrl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCAcceleratorKeyAssignCtrl : public CEdit

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCAcceleratorKeyAssignCtrl::CMFCAcceleratorKeyAssignCt
rl

Constructs a CMFCAcceleratorKeyAssignCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCAcceleratorKeyAssignCtrl::GetAccel Retrieves the ACCEL structure for a shortcut key pressed in
the CMFCAcceleratorKeyAssignCtrl object.

CMFCAcceleratorKeyAssignCtrl::IsFocused

CMFCAcceleratorKeyAssignCtrl::IsKeyDefined Determines whether a shortcut key has been defined.

CMFCAcceleratorKeyAssignCtrl::PreTranslateMessage Used by class CWinApp to translate window messages before
they are dispatched to the TranslateMessage and
DispatchMessage Windows functions. (Overrides
CWnd::PreTranslateMessage.)

CMFCAcceleratorKeyAssignCtrl::ResetKey Resets the shortcut key.

Remarks

Example

The CMFCAcceleratorKeyAssignCtrl class extends the CEdit Class to support extra system buttons such as ALT,
CONTROL, and SHIFT.

This class extends the functionality of the CEdit class by supporting shortcut keys, also known as accelerator
keys. The CMFCAcceleratorKeyAssignCtrl class functions as a CEdit Class and it can also recognize system buttons.

This class maps physical shortcut key combinations to string values. For example, assume the key combination
ALT + B is mapped to the string "Alt + B". When the user presses this key combination in a
CMFCAcceleratorKeyAssignCtrl object, "Alt + B" is displayed to the user. For more information about the mapping

between shortcut keys and a string format, see CMFCAcceleratorKey Class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcacceleratorkeyassignctrl-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CMFCAcceleratorKeyAssignCtrl* accelCtrl = new CMFCAcceleratorKeyAssignCtrl();
accelCtrl->ResetKey();

Inheritance Hierarchy

Requirements

CMFCAcceleratorKeyAssignCtrl::CMFCAcceleratorKeyAssignCtrl

CMFCAcceleratorKeyAssignCtrl();

CMFCAcceleratorKeyAssignCtrl::GetAccel

ACCEL const* GetAccel() const;

Return ValueReturn Value

RemarksRemarks

CMFCAcceleratorKeyAssignCtrl::IsFocused

BOOL IsFocused() const;

Return ValueReturn Value

RemarksRemarks

CMFCAcceleratorKeyAssignCtrl::IsKeyDefined

The following example demonstrates how to construct a CMFCAcceleratorKeyAssignCtrl object and use its
ResetKey method to reset the shortcut key.

CObject

CCmdTarget

CWnd

CEdit

CMFCAcceleratorKeyAssignCtrl

Header: afxacceleratorkeyassignctrl.h

Constructs a CMFCAcceleratorKeyAssignCtrl object.

Retrieves the ACCEL structure for a shortcut key pressed in the CMFCAcceleratorKeyAssignCtrl object.

An ACCEL structure that describes the shortcut key.

Use this function to retrieve the ACCEL structure for a shortcut key that the user entered into your
CMFCAcceleratorKeyAssignCtrl object.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

BOOL IsKeyDefined() const;

Return ValueReturn Value

RemarksRemarks

CMFCAcceleratorKeyAssignCtrl::PreTranslateMessage

virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCAcceleratorKeyAssignCtrl::ResetKey

void ResetKey();

RemarksRemarks

See also

Determines whether a shortcut key has been defined in the CMFCAcceleratorKeyAssignCtrl object.

Nonzero if the user has already pressed a valid combination of keys that define a shortcut key; otherwise 0.

Use this function to determine whether the user entered a valid shortcut key in your
CMFCAcceleratorKeyAssignCtrl object. If a shortcut key exists, you can use

CMFCAcceleratorKeyAssignCtrl::GetAccel method to obtain the ACCEL structure associated with this shortcut key.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] pMsg

Resets the shortcut key.

The function clears the edit control text. This includes any shortcut keys that the user pressed.

Hierarchy Chart
Classes
CMFCAcceleratorKey Class

CMFCAutoHideBar Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMFCAutoHideBar : public CPane

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCAutoHideBar::CMFCAutoHideBar

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCAutoHideBar::AddAutoHideWindow

CMFCAutoHideBar::AllowShowOnPaneMenu (Overrides CPane::AllowShowOnPaneMenu .)

CMFCAutoHideBar::CalcFixedLayout (Overrides CBasePane::CalcFixedLayout.)

CMFCAutoHideBar::Create Creates a control bar and attaches it to the CPane object.
(Overrides CPane::Create.)

CMFCAutoHideBar::GetFirstAHWindow

CMFCAutoHideBar::GetVisibleCount

CMFCAutoHideBar::OnShowControlBarMenu Called by the framework when a special pane menu is about
to be displayed. (Overrides CPane::OnShowControlBarMenu.)

CMFCAutoHideBar::RemoveAutoHideWindow

CMFCAutoHideBar::SetActiveInGroup (Overrides CPane::SetActiveInGroup.)

CMFCAutoHideBar::SetRecentVisibleState

CMFCAutoHideBar::ShowAutoHideWindow

CMFCAutoHideBar::StretchPane Stretches a pane vertically or horizontally. (Overrides
CBasePane::StretchPane.)

The CMFCAutoHideBar class is a special toolbar class that implements the auto-hide feature.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcautohidebar-class.md

CMFCAutoHideBar::UnSetAutoHideMode

CMFCAutoHideBar::UpdateVisibleState

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CMFCAutoHideBar::m_nShowAHWndDelay The time delay between the moment when the user places
the mouse cursor over a CMFCAutoHideButton Class and
the moment when the framework shows the associated
window.

Remarks

Example

CMFCAutoHideBar* pParentBar = new CMFCAutoHideBar();
CDockingPanesRow* pParentRow = pParentBar->GetDockSiteRow();

Inheritance Hierarchy

Requirements

When the user switches a dock pane to auto-hide mode, the framework automatically creates a CMFCAutoHideBar

object. It also creates the necessary CAutoHideDockSite and CMFCAutoHideButton objects. Each
CAutoHideDockSite object is associated with an individual CMFCAutoHideButton .

The CMFCAutoHideBar class implements the display of a CAutoHideDockSite when a user's mouse hovers over a
CMFCAutoHideButton . When the toolbar receives a WM_MOUSEMOVE message, CMFCAutoHideBar starts a timer.

When the timer finishes, it sends the toolbar a WM_TIMER event notification. The toolbar handles this event by
checking whether the mouse pointer is positioned over the same auto-hide button that it was positioned over
when the timer started. If it is, the attached CAutoHideDockSite is displayed.

You can control the length of the timer's delay by setting m_nShowAHWndDelay . The default value is 400 ms.

The following example demonstrates how to construct a CMFCAutoHideBar object and use its GetDockSiteRow

method.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCAutoHideBar

Header: afxautohidebar.h

CMFCAutoHideBar::AddAutoHideWindow

CMFCAutoHideButton* AddAutoHideWindow(
 CDockablePane* pAutoHideWnd,
 DWORD dwAlignment);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideBar::AllowShowOnPaneMenu
virtual BOOL AllowShowOnPaneMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideBar::CalcFixedLayout
virtual CSize CalcFixedLayout(
 BOOL bStretch,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideBar::CMFCAutoHideBar

Adds functionality to a CDockablePane window that enables it to auto-hide.

pAutoHideWnd
[in] The window that you want to hide.

dwAlignment
[in] A value that specifies the alignment of the auto-hide button with the application window.

The dwAlignment parameter indicates where the auto-hide button resides in the application. The parameter can
be any one of the following values:

CBRS_ALIGN_LEFT

CBRS_ALIGN_RIGHT

CBRS_ALIGN_TOP

CBRS_ALIGN_BOTTOM

[in] bStretch

[in] bHorz

Constructs a CMFCAutoHideBar object.

CMFCAutoHideBar();

RemarksRemarks

CMFCAutoHideBar::Create
virtual BOOL Create(
 LPCTSTR lpszClassName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 DWORD dwControlBarStyle = AFX_DEFAULT_PANE_STYLE,
 CCreateContext* pContext = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideBar::GetFirstAHWindow

CDockablePane* GetFirstAHWindow();

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideBar::GetVisibleCount

int GetVisibleCount();

Return ValueReturn Value

RemarksRemarks

lpszClassName

dwStyle

rect

pParentWnd

nID

dwControlBarStyle

pContext

Returns a pointer to the first auto-hide window in the application.

The first auto-hide window in the application, or NULL if there isn't one.

Gets the number of visible auto-hide buttons.

Returns the number of visible auto-hide buttons.

CMFCAutoHideBar::m_nShowAHWndDelay

int CMFCAutoHideBar::m_nShowAHWndDelay = 400;

RemarksRemarks

CMFCAutoHideBar::OnShowControlBarMenu
virtual BOOL OnShowControlBarMenu(CPoint);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideBar::RemoveAutoHideWindow

 BOOL RemoveAutoHideWindow(CDockablePane* pAutoHideWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideBar::SetActiveInGroup

virtual void SetActiveInGroup(BOOL bActive);

ParametersParameters

RemarksRemarks

CMFCAutoHideBar::SetRecentVisibleState

The time delay between the moment when the user places the mouse cursor over a CMFCAutoHideButton Class
and the moment when the framework shows the associated window.

When the user places the mouse cursor over a CMFCAutoHideButton , there is a slight delay before the framework
displays the associated window. This parameter determines the length of that delay in milliseconds.

[in] CPoint

Removes and destroys the auto-hide window.

CDockablePane* pAutoHideWnd The auto-hide window to remove.

TRUE if successful; otherwise FALSE.

Flags an auto-hide bar as active.

[in] BOOL bActive TRUE to set to active; otherwise FALSE.

See CPane::SetActiveInGroup.

void SetRecentVisibleState(BOOL bState);

ParametersParameters

RemarksRemarks

CMFCAutoHideBar::ShowAutoHideWindow

BOOL ShowAutoHideWindow(
 CDockablePane* pAutoHideWnd,
 BOOL bShow,
 BOOL bDelay);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideBar::StretchPane

virtual CSize StretchPane(
 int nLength,
 BOOL bVert);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

bState
[in] State to set.

Shows the auto-hide window.

pAutoHideWnd
[in] Window to show.

bShow
[in] TRUE to show the window.

bDelay
[in] This parameter is ignored.

TRUE if successful; otherwise FALSE.

Resizes the auto-hide bar in its collapsed state to fit the CMFCAutoHideButton object.

nLength
[in] The value is unused in the base implementation. In derived implementations, use this value to indicate the
length of the resized pane.

bVert
[in] The value is unused in the base implementation. In derived implementations, use TRUE to handle the case
where the auto-hide bar is collapsed vertically, and FALSE for the case where the auto-hide bar is collapsed
horizontally.

The resulting size of the resized pane.

CMFCAutoHideBar::UnSetAutoHideMode

void UnSetAutoHideMode(CDockablePane* pFirstBarInGroup)

ParametersParameters

RemarksRemarks

CMFCAutoHideBar::UpdateVisibleState

void UpdateVisibleState();

RemarksRemarks

See also

Derived classes can override this method to customize the behavior.

Disables auto-hide mode for a group of auto-hide bars.

[in] pFirstBarInGroup A pointer to the first auto-hide bar in the group.

Called by the framework when the auto-hide bar needs to be redrawn.

Hierarchy Chart
Classes
CPane Class
CAutoHideDockSite Class
CMFCAutoHideButton Class

CMFCAutoHideButton Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CMFCAutoHideButton : public CObject

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCAutoHideButton::BringToTop

CMFCAutoHideButton::Create Creates and initializes the auto-hide button.

CMFCAutoHideButton::GetAlignment Retrieves the alignment of the auto-hide button.

CMFCAutoHideButton::GetAutoHideWindow Returns the CDockablePane object associated with the auto-
hide button.

CMFCAutoHideButton::GetParentToolBar

CMFCAutoHideButton::GetRect

CMFCAutoHideButton::GetSize Determines the size of the auto-hide button.

CMFCAutoHideButton::GetTextSize Returns the size of the text label for the auto-hide button.

CMFCAutoHideButton::HighlightButton Highlights auto hide button.

CMFCAutoHideButton::IsActive Indicates whether the auto-hide button is active.

CMFCAutoHideButton::IsHighlighted Returns highlight state of auto hide button.

CMFCAutoHideButton::IsHorizontal Determines whether the auto-hide button is horizontal or
vertical.

CMFCAutoHideButton::IsTop

CMFCAutoHideButton::IsVisible Indicates whether the button is visible.

CMFCAutoHideButton::Move

A button that displays or hides a CDockablePane Class that is configured to hide.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcautohidebutton-class.md

CMFCAutoHideButton::OnDraw The framework calls this method when it draws the auto-hide
button.

CMFCAutoHideButton::OnDrawBorder The framework calls this method when it draws the border of
an auto-hide button.

CMFCAutoHideButton::OnFillBackground The framework calls this method when it fills the background
of an auto-hide button.

CMFCAutoHideButton::ReplacePane

CMFCAutoHideButton::ShowAttachedWindow Shows or hides the associated CDockablePane Class.

CMFCAutoHideButton::ShowButton Shows or hides the auto-hide button.

CMFCAutoHideButton::UnSetAutoHideMode

NAME DESCRIPTION

Remarks

Example

CMFCAutoHideButton* autoHideButton = new CMFCAutoHideButton();
CDockablePane cPane;
// CMFCAutoHideBar* pParentBar
if (!autoHideButton->Create(pParentBar, &cPane, CBRS_ALIGN_LEFT))
{
 return 0;
}
autoHideButton->ShowAttachedWindow(true);
autoHideButton->ShowButton(true);

Inheritance Hierarchy

Requirements

On creation, the CMFCAutoHideButton object is attached to a CDockablePane Class. The CDockablePane object is
hidden or displayed as the user interacts with the CMFCAutoHideButton object.

By default, the framework automatically creates a CMFCAutoHideButton when the user turns on auto-hide. The
framework can create an element of a custom UI class instead of the CMFCAutoHideButton class. To specify which
custom UI class the framework should use, set the static member variable
CMFCAutoHideBar::m_pAutoHideButtonRTS equal to the custom UI class. By default, this variable is set to
CMFCAutoHideButton .

The following example demonstrates how to construct a CMFCAutoHideButton object and use various methods in
the CMFCAutoHideButton class. The example shows how to initialize a CMFCAutoHideButton object by using its
Create method, show the associated CDockablePane class, and show the auto-hide button.

CObject

CMFCAutoHideButton

CMFCAutoHideButton::BringToTop
void BringToTop();

RemarksRemarks

CMFCAutoHideButton::Create

virtual BOOL Create(
 CMFCAutoHideBar* pParentBar,
 CDockablePane* pAutoHideWnd,
 DWORD dwAlignment);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideButton::GetAlignment

DWORD GetAlignment() const;

Return ValueReturn Value

RemarksRemarks

Header: afxautohidebutton.h

Creates and initializes an auto-hide button.

pParentBar
[in] A pointer to the parent toolbar.

pAutoHideWnd
[in] A pointer to a CDockablePane object. This auto-hide button hides and shows that CDockablePane .

dwAlignment
[in] A value that specifies the alignment of the button with the main frame window.

Nonzero if successful; otherwise 0.

When you create a CMFCAutoHideButton object, you must associate the auto-hide button with a specific
CDockablePane . The user can use the auto-hide button to hide and show the associated CDockablePane .

The dwAlignment parameter indicates where the auto-hide button resides in the application. The parameter can
be any one of the following values:

CBRS_ALIGN_LEFT

CBRS_ALIGN_RIGHT

CBRS_ALIGN_TOP

CBRS_ALIGN_BOTTOM

Retrieves the alignment of the auto-hide button.

A DWORD value that contains the current alignment of the auto-hide button.

CMFCAutoHideButton::GetAutoHideWindow

CDockablePane* GetAutoHideWindow() const;

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideButton::GetParentToolBar
CMFCAutoHideBar* GetParentToolBar();

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideButton::GetRect
CRect GetRect() const;

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideButton::GetSize

CSize GetSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideButton::GetTextSize

The alignment of the auto-hide button indicates where the button resides on the application. It can be any one of
the following values:

CBRS_ALIGN_LEFT

CBRS_ALIGN_RIGHT

CRBS_ALIGN_TOP

CBRS_ALIGN_BOTTOM

Returns the CDockablePane object associated with the auto-hide button.

A pointer to the associated CDockablePane object.

To associate an auto-hide button with a CDockablePane , pass the CDockablePane as a parameter to the
CMFCAutoHideButton::Create method.

Determines the size of the auto-hide button.

A CSize object that contains the button size.

The calculated size includes the size of the border of the auto-hide button.

virtual CSize GetTextSize() const;

Return ValueReturn Value

CMFCAutoHideButton::IsActive

BOOL IsActive() const;

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideButton::IsHorizontal

BOOL IsHorizontal() const;

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideButton::IsTop
BOOL IsTop() const;

Return ValueReturn Value

RemarksRemarks

CMFCAutoHideButton::IsVisible

virtual BOOL IsVisible() const;

Return ValueReturn Value

CMFCAutoHideButton::OnDraw

Returns the size of the text label for the auto-hide button.

A CSize object that contains the size of the text for the auto-hide button.

Indicates whether the auto-hide button is active.

TRUE if the auto-hide button is active; FALSE otherwise.

An auto-hide button is active when the associated CDockablePane Class window is shown.

Determines whether the auto-hide button is horizontal or vertical.

Nonzero if the button is horizontal; 0 otherwise.

The framework sets the orientation of a CMFCAutoHideButton object when you create it. You can control the
orientation by using the dwAlignment parameter in the CMFCAutoHideButton::Create method.

Indicates whether the auto-hide button is visible.

TRUE if the button is visible; FALSE otherwise.

virtual void OnDraw(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCAutoHideButton::OnDrawBorder

virtual void OnDrawBorder(
 CDC* pDC,
 CRect rectBounds,
 CRect rectBorderSize);

ParametersParameters

RemarksRemarks

CMFCAutoHideButton::OnFillBackground

virtual void OnFillBackground(
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

The framework calls this method when it draws the auto-hide button.

pDC
[in] A pointer to a device context.

If you want to customize the appearance of auto-hide buttons in your application, create a new class derived
from CMFCAutoHideButton . In your derived class, override this method.

The framework calls this method when it draws the border of an auto-hide button.

pDC
[in] A pointer to a device context.

rectBounds
[in] The bounding rectangle of the auto-hide button.

rectBorderSize
[in] The border thickness for each side of the auto-hide button.

If you want to customize the border of each auto-hide button in your application, create a new class derived from
the CMFCAutoHideButton . In your derived class, override this method.

The framework calls this method when it fills the background of an auto-hide button.

pDC
[in] A pointer to a device context.

rect
[in] The bounding rectangle of the auto-hide button.

If you want to customize the background for auto-hide buttons in your application, create a new class derived
from the CMFCAutoHideButton . In your derived class, override this method.

CMFCAutoHideButton::ShowAttachedWindow

void ShowAttachedWindow(BOOL bShow);

ParametersParameters

CMFCAutoHideButton::ShowButton

virtual void ShowButton(BOOL bShow);

ParametersParameters

CMFCAutoHideButton::Move
void Move(int nOffset);

ParametersParameters

RemarksRemarks

CMFCAutoHideButton::ReplacePane
void ReplacePane(CDockablePane* pNewBar);

ParametersParameters

RemarksRemarks

CMFCAutoHideButton::UnSetAutoHideMode

virtual void UnSetAutoHideMode(CDockablePane* pFirstBarInGroup);

ParametersParameters

RemarksRemarks

CMFCAutoHideButton::HighlightButton

Shows or hides the associated CDockablePane Class.

bShow
[in] A Boolean that specifies whether this method shows the attached CDockablePane .

Shows or hides the auto-hide button.

bShow
[in] A Boolean that specifies whether to show the auto-hide button.

[in] nOffset

[in] pNewBar

Disable auto-hide mode.

pFirstBarInGroup
[in] A pointer to the first bar in the group.

CMFCAutoHideButton::HighlightButton

virtual void HighlightButton(BOOL bHighlight);

ParametersParameters

RemarksRemarks

CMFCAutoHideButton::IsHighlighted

virtual BOOL IsHighlighted() const;

Return ValueReturn Value

RemarksRemarks

See also

Highlights the auto hide button.

bHighlight
Specifies the new auto hide button state. TRUE indicates the button is highlighted, FALSE indicates the button is
not highlighted.

Returns the highlight state of the auto hide button.

Returns TRUE if the auto hide button is highlighted; otherwise FALSE.

Hierarchy Chart
Classes
CMFCAutoHideBar Class
CAutoHideDockSite Class

CMFCBaseTabCtrl Class
3/4/2019 • 30 minutes to read • Edit Online

Syntax
class CMFCBaseTabCtrl : public CWnd

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCBaseTabCtrl::AddIcon

CMFCBaseTabCtrl::AddTab Adds a new tab to the tabbed window.

CMFCBaseTabCtrl::ApplyRestoredTabInfo

CMFCBaseTabCtrl::AutoDestroyWindow

CMFCBaseTabCtrl::CalcRectEdit

CMFCBaseTabCtrl::CleanUp

CMFCBaseTabCtrl::ClearImageList

CMFCBaseTabCtrl::DetachTab Detaches a tab from a tabbed window.

CMFCBaseTabCtrl::EnableActivateLastActive

CMFCBaseTabCtrl::EnableAutoColor Enables or disables automatic tab coloring.

CMFCBaseTabCtrl::EnableCustomToolTips Enables or disables custom tooltips for tabs.

CMFCBaseTabCtrl::EnableInPlaceEdit Enables or disables direct editing of tab labels.

CMFCBaseTabCtrl::EnableTabDetach Enables detachable tabs.

CMFCBaseTabCtrl::EnableTabSwap Enables or disables whether the user can change the tab
order by using a mouse.

CMFCBaseTabCtrl::EnsureVisible Scrolls the tabs until the specified tab is visible. This method
has no effect if the specified tab is already visible.

Implements the base functionality for tabbed windows. For more detail see the source code located in the
VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcbasetabctrl-class.md

CMFCBaseTabCtrl::EnterDragMode

CMFCBaseTabCtrl::FindTargetWnd Returns a pane that contains a specified point.

CMFCBaseTabCtrl::FireChangeActiveTab

CMFCBaseTabCtrl::FireChangingActiveTab

CMFCBaseTabCtrl::GetActiveTab Returns the index of the active tab.

CMFCBaseTabCtrl::GetActiveTabColor Returns the background color of the active tab.

CMFCBaseTabCtrl::GetActiveTabTextColor Returns the text color of the active tab.

CMFCBaseTabCtrl::GetActiveWnd Returns a pointer the active page of the tab control.

CMFCBaseTabCtrl::GetAutoColors Returns a reference to the array of colors that are used for
automatic coloring.

CMFCBaseTabCtrl::GetFirstVisibleTab Returns a pointer to the first visible tab.

CMFCBaseTabCtrl::GetFirstVisibleTabNum

CMFCBaseTabCtrl::GetHighlightedTab Returns the index of the currently highlighted tab.

CMFCBaseTabCtrl::GetImageList

CMFCBaseTabCtrl::GetImageSize

CMFCBaseTabCtrl::GetLastVisibleTab

CMFCBaseTabCtrl::GetLocation Returns a variable of the LOCATION data type that
indicates where the tab area is positioned relative to the tab
control. For example, on the top or on the bottom.

CMFCBaseTabCtrl::GetMaxWindowSize

CMFCBaseTabCtrl::GetTabArea Returns the size and the position of the tab area in the
tabbed window. The position of the tab area is defined by
using coordinates.

CMFCBaseTabCtrl::GetTabBkColor Returns the background color of the specified tab.

CMFCBaseTabCtrl::GetTabBorderSize Returns the size of the tab borders in the tab control.

CMFCBaseTabCtrl::GetTabByID Returns the index of the tab that is identified by a specified
ID.

CMFCBaseTabCtrl::GetTabCloseButton

NAME DESCRIPTION

CMFCBaseTabCtrl::GetTabFromHwnd Returns the index of a tab that contains a specified HWND
object.

CMFCBaseTabCtrl::GetTabFromPoint Returns the tab that contains a specified point.

CMFCBaseTabCtrl::GetTabFullWidth

CMFCBaseTabCtrl::GetTabHicon Returns the icon associated with the specified tab.

CMFCBaseTabCtrl::GetTabID Returns the ID of a tab by using the index of the tab.

CMFCBaseTabCtrl::GetTabIcon Returns the icon ID for a specified tab.

CMFCBaseTabCtrl::GetTabLabel Returns the text of a specified tab.

CMFCBaseTabCtrl::GetTabRect Retrieves the size and position of a specified tab.

CMFCBaseTabCtrl::GetTabsHeight

CMFCBaseTabCtrl::GetTabsRect

CMFCBaseTabCtrl::GetTabTextColor Returns the text color of a specified tab.

CMFCBaseTabCtrl::GetTabWnd Returns the pointer to a pane that resides on a specified tab
page.

CMFCBaseTabCtrl::GetTabWndNoWrapper Returns the direct pointer to a control that resides on a
specified tab page, even if the control has a wrapper.

CMFCBaseTabCtrl::GetTabsNum Returns the number of tabs that are contained in the tab
control.

CMFCBaseTabCtrl::GetToolTipCtrl Returns a reference to the tooltip control associated with
the CMFCBaseTabCtrl object.

CMFCBaseTabCtrl::GetVisibleTabsNum Returns the number of visible tabs.

CMFCBaseTabCtrl::HasImage

CMFCBaseTabCtrl::HideSingleTab Sets an option that hides a window tab, but only if the
tabbed window displays a just one visible tab.

CMFCBaseTabCtrl::InsertTab Inserts a new tab.

CMFCBaseTabCtrl::InvalidateTab

CMFCBaseTabCtrl::IsActiveTabCloseButton

CMFCBaseTabCtrl::IsAutoColor Returns a value that indicates whether a tabbed window is
in automatic-color mode.

NAME DESCRIPTION

CMFCBaseTabCtrl::IsAutoDestroyWindow

CMFCBaseTabCtrl::IsColored

CMFCBaseTabCtrl::IsDialogControl

CMFCBaseTabCtrl::IsDrawNoPrefix

CMFCBaseTabCtrl::IsFlatFrame Returns a value that indicates whether the frame for the tab
area is flat or 3D.

CMFCBaseTabCtrl::IsFlatTab

CMFCBaseTabCtrl::IsHideSingleTab Returns a value that indicates whether the tab control is
configured to hide a tab, but only if a tabbed window has
just one visible tab.

CMFCBaseTabCtrl::IsIconAdded

CMFCBaseTabCtrl::IsInPlaceEdit Indicates whether users can modify the label on a tab.

CMFCBaseTabCtrl::IsLeftRightRounded

CMFCBaseTabCtrl::IsMDITab

CMFCBaseTabCtrl::IsOneNoteStyle Indicates whether a tabbed window displays tabs in
Microsoft OneNote style.

CMFCBaseTabCtrl::IsPtInTabArea Checks whether a specified point exists in the tab area.

CMFCBaseTabCtrl::IsTabCloseButtonHighlighted

CMFCBaseTabCtrl::IsTabCloseButtonPressed

CMFCBaseTabCtrl::IsTabDetachable Indicates whether a tab is detachable.

CMFCBaseTabCtrl::IsTabIconOnly Indicates whether tabs display icons but not labels.

CMFCBaseTabCtrl::IsTabSwapEnabled Indicates whether the user can change tab positions by
dragging tabs.

CMFCBaseTabCtrl::IsTabVisible Indicates whether a specified tab is visible.

CMFCBaseTabCtrl::IsVS2005Style

CMFCBaseTabCtrl::MoveTab

CMFCBaseTabCtrl::OnChangeTabs Called by the framework when the number of tabs changes.

CMFCBaseTabCtrl::OnDragEnter

NAME DESCRIPTION

CMFCBaseTabCtrl::OnDragLeave

CMFCBaseTabCtrl::OnDragOver

CMFCBaseTabCtrl::OnDrop

CMFCBaseTabCtrl::OnRenameTab

CMFCBaseTabCtrl::PreTranslateMessage Used by class CWinApp to translate window messages
before they are dispatched to the TranslateMessage and
DispatchMessage Windows functions. (Overrides
CWnd::PreTranslateMessage.)

CMFCBaseTabCtrl::RecalcLayout Recalculates the internal layout of a tabbed window.

CMFCBaseTabCtrl::RemoveAllTabs Removes all tabs from the tabbed window.

CMFCBaseTabCtrl::RemoveTab Removes a tab from a tabbed window.

CMFCBaseTabCtrl::RenameTab

CMFCBaseTabCtrl::ResetImageList Resets the image list that is attached to a tabbed window.

CMFCBaseTabCtrl::Serialize Reads or writes this object from or to an archive. (Overrides
CObject::Serialize.)

CMFCBaseTabCtrl::SetActiveTab Activates a tab.

CMFCBaseTabCtrl::SetActiveTabColor Sets the background color for the currently active tab.

CMFCBaseTabCtrl::SetActiveTabTextColor Sets the text color for active tabs.

CMFCBaseTabCtrl::SetAutoColors Sets the tab control colors that are applied in automatic
color mode.

CMFCBaseTabCtrl::SetDockingBarWrapperRTC Sets the wrapper class that is used for any objects that are
not derived from the CDockablePane Class.

CMFCBaseTabCtrl::SetDrawNoPrefix Enables and disables the processing of prefix characters
when tab labels are drawn.

CMFCBaseTabCtrl::SetImageList Sets the icon image list.

CMFCBaseTabCtrl::SetLocation

CMFCBaseTabCtrl::SetTabBkColor Sets the background color for a specified tab.

CMFCBaseTabCtrl::SetTabBorderSize Sets a new tab border size.

CMFCBaseTabCtrl::SetTabHicon Sets a tab icon.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CMFCBaseTabCtrl::SetTabIcon Sets a tab icon ID.

CMFCBaseTabCtrl::SetTabIconOnly Enables and disables the "icon only" mode for a specified
tab.

CMFCBaseTabCtrl::SetTabLabel Sets a tab label equal to a specified string value.

CMFCBaseTabCtrl::SetTabsHeight

CMFCBaseTabCtrl::SetTabTextColor Sets the text color for a specified tab.

CMFCBaseTabCtrl::SetTabsOrder Arranges tabs in the specified order.

CMFCBaseTabCtrl::ShowTab Shows or hides the specified tab.

CMFCBaseTabCtrl::StartRenameTab

CMFCBaseTabCtrl::SwapTabs

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCBaseTabCtrl::CreateWrapper Creates a wrapper for an object derived from CWnd that is
not derived from CDockablePane . To dock a
CMFCBaseTabCtrl object, every embedded control must

either have a docking wrapper or be derived from
CDockablePane .

You set the class of the wrapper by using
SetDockingBayWrapperRTC .

Data MembersData Members

NAME DESCRIPTION

CMFCBaseTabCtrl::m_bActivateTabOnRightClick Specifies whether tabs are selected by using a left mouse
click or a right mouse click.

CMFCBaseTabCtrl::m_bAutoDestroyWindow Specifies whether the panes that are contained in the tabs
are destroyed automatically.

Remarks

Customization Tips

The CMFCBaseTabCtrl class is an abstract class. Therefore, it cannot be instantiated. To create a tabbed window,
you must derive a class from CMFCBaseTabCtrl . The MFC library contains some derived class examples, two of
which are CMFCTabCtrl Class and CMFCOutlookBarTabCtrl Class.

Starting with Visual Studio 2015, this class supports Microsoft Active Accessibility.

The following tips pertain to the CMFCBaseTabCtrl Class and any classes that inherit from it:

Inheritance Hierarchy

Requirements

CMFCBaseTabCtrl::AddIcon

void AddIcon(
 HICON hIcon,
 int iIcon);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::AddTab

If you enable detachable tabs, do not keep pointers to the tabbed windows. These detachable tabs can
be created and destroyed dynamically. Therefore, pointers can become invalid.

You can configure the tab control so that users can move tabs dynamically on a tab control by using the
mouse. This functionality is built into the CMFCBaseTabCtrl class. To enable it, call
CMFCBaseTabCtrl::EnableTabSwap.

By default, tabs are detachable when you add them to a tab control. You can also add non-detachable
tabs by using CMFCBaseTabCtrl::AddTab. If you set the parameter bDetachable to FALSE , the tab will
not be detachable. You can also change whether tabs are detachable by calling the method
CMFCBaseTabCtrl::EnableTabDetach.

Objects that are derived from the CWnd Class can be put on a dockable control bar or dockable tab.
For the whole control to be docked, you must make the CWnd object dockable. To accomplish this, MFC
uses a wrapper class. This wrapper class is the CDockablePaneAdapter Class. Any CWnd objects that
are added to a dockable control bar or dockable tab will be wrapped inside a CDockablePaneAdapter

object. You can disable the automatic wrapping by setting the parameter m_bEnableWrapping of your
CMFCBaseTablCtrl object to FALSE . You can also change the class that your application will use as a

wrapper by using the method CMFCBaseTabCtrl::SetDockingBarWrapperRTC.

CObject

CCmdTarget

CWnd

CMFCBaseTabCtrl

Header: afxbasetabctrl.h

Adds an icon to the list of icons in the protected CMap m_mapAddedIcons member.

hIcon
[in] A handle to the icon to be added.

iIcon
[in] Zero-based index of the icon in the protected CImageList m_Images member.

Adds a new tab to the tab control.

virtual void AddTab(
 CWnd* pTabWnd,
 LPCTSTR lpszTabLabel,
 UINT uiImageId = (UINT)-1,,
 BOOL bDetachable = TRUE);

virtual void AddTab(
 CWnd* pTabWnd,
 UINT uiResTabLabel,
 UINT uiImageId = (UINT)-1,
 BOOL bDetachable = TRUE);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::ApplyRestoredTabInfo
virtual void ApplyRestoredTabInfo(BOOL bUseTabIndexes = FALSE);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::AutoDestroyWindow
void AutoDestroyWindow(BOOL bAutoDestroy = TRUE);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::CalcRectEdit

pTabWnd
[in] A pointer to the window that this method represents as a new tab.

lpszTabLabel
[in] A string that contains the label for the new tab.

uiImageId
[in] An image ID from the image list. The tab control uses this image as the icon for the new tab.

uiResTabLabel
[in] The resource ID for the label.

bDetachable
[in] A Boolean parameter that determines whether the new tab is detachable.

If pTabWnd points to an object that is not derived from the CDockablePane Class and if bDetachable is TRUE,
the framework automatically creates a wrapper for the pTabWnd object. The wrapper makes the pTabWnd
object detachable. By default, the wrapper is an instance of the CDockablePaneAdapter Class. If the
functionality offered by the default wrapper is unacceptable, use the
CMFCBaseTabCtrl::SetDockingBarWrapperRTC method to specify a different wrapper.

[in] bUseTabIndexes

[in] bAutoDestroy

virtual void CalcRectEdit(CRect& rectEdit);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::CleanUp
virtual void CleanUp();

RemarksRemarks

CMFCBaseTabCtrl::ClearImageList
virtual void ClearImageList();

RemarksRemarks

CMFCBaseTabCtrl::CreateWrapper

virtual CWnd* CreateWrapper(
 CWnd* pWndToWrap,
 LPCTSTR lpszTabLabel,
 BOOL bDetachable);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] rectEdit

Creates a wrapper for a frame window that is derived from the CWnd Class but is not derived from the
CDockablePane Class.

pWndToWrap
[in] A pointer to the frame window that is wrapped.

lpszTabLabel
[in] A string that contains the label for the window.

bDetachable
[in] A Boolean parameter that indicates whether the window is detachable.

A pointer to wrapper derived from the CDockablePane class if CreateWrapper successfully creates a wrapper
class for pWndToWrap. If the method fails, it retruns pWndToWrap.

A tabbed window can dock any object derived from CWnd . However, in order for a CMFCBaseTabCtrl Class

object to be dockable, each object on the CMFCBaseTabCtrl must be detachable. Therefore, CMFCBaseTabCtrl

automatically wraps any objects that are not derived from CDockablePane .

By default, the CMFCBaseTabCtrl creates instances of the CDockablePaneAdapter Class. To change the
wrapper's default class, call CMFCBaseTabCtrl::SetDockingBarWrapperRTC.

If pWndToWrap is derived from CDockablePane , this method will not create a wrapper. Instead, it will fail and

CMFCBaseTabCtrl::DetachTab

virtual BOOL DetachTab(
 AFX_DOCK_METHOD dockMethod,
 int nTabNum = -1,
 BOOL bHide = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::EnableActivateLastActive
void EnableActivateLastActive(BOOL bLastActive = TRUE);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::EnableAutoColor

void EnableAutoColor(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

return pWndToWrap.

The framework calls this method to detach a tab from the tab control.

dockMethod
[in] An enumerated data type provided by the CBasePane Class. This data type specifies the method that was
used to detach the tab.

nTabNum
[in] The zero-based index of the tab to be detached.

bHide
[in] A Boolean parameter that indicates whether the framework should hide the detached tab.

Nonzero if successful; otherwise 0.

If the tab specified by nTabNum is non-detachable, this function fails and returns FALSE.

[in] bLastActive

Controls whether the framework uses the automatic background colors when drawing a tab.

bEnable
[in] A Boolean parameter that determines whether the framework uses automatic colors.

A tab control has an array of several predefined colors. When the framework uses automatic colors, each tab
in a series of tabs is assigned the next color from this array.

By default, the automatic colors are determined by the library-defined colors. You can provide a custom array
of colors by calling CMFCBaseTabCtrl::SetAutoColors.

CMFCBaseTabCtrl::EnableCustomToolTips

BOOL EnableCustomToolTips(BOOL bEnable = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::EnableInPlaceEdit

virtual void EnableInPlaceEdit(BOOL bEnable) = 0;

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::EnableTabDetach

virtual BOOL EnableTabDetach(
 int iTab,
 BOOL bEnable);

ParametersParameters

Enables custom tooltips for the tab control.

bEnable
[in] A Boolean that determines whether to use custom tooltips.

TRUE if successful; otherwise FALSE.

If custom tooltips are enabled, the tab control sends the AFX_WM_ON_GET_TAB_TOOLTIP message to the
main frame. If you want to support custom tooltips in your application, the main frame window must handle
this method and provide the custom tooltip text. For more information about providing custom tooltip text,
see CMFCTabToolTipInfo Structure.

Enables direct editing of the tab labels by the user.

bEnable
[in] A Boolean parameter that specifies whether to enable direct editing of the tab labels.

By default, direct editing of the tab labels is disabled for tab controls.

You can enable direct editing for a subset of the tabs on the tab control. To do this, override the method
CMFCBaseTabCtrl::StartRenameTab . StartRenameTab should return a nonzero value for all tabs that support

direct editing of tab labels.

In the CMFCBaseTabCtrl Class , this method is a pure virtual function and has no implementation. If you derive
a class from CMFCBaseTabCtrl , you must implement this function.

Enables detachable tabs.

iTab
[in] The zero-based index of a tab.

bEnable
[in] A Boolean that indicates whether to make the tab detachable.

Return ValueReturn Value

CMFCBaseTabCtrl::EnableTabSwap

void EnableTabSwap(BOOL bEnable);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::EnsureVisible

virtual BOOL EnsureVisible(int iTab);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::EnterDragMode
void EnterDragMode();

RemarksRemarks

CMFCBaseTabCtrl::FindTargetWnd

virtual CWnd* FindTargetWnd(const CPoint& pt) = 0;

ParametersParameters

TRUE if successful; otherwise FALSE.

Enables the user to change the tab order using a mouse.

bEnable
[in] A Boolean that indicates whether to enable tab swapping.

When tab swapping is enabled, the user can drag a tab and change its relative position in the tab control.

Scrolls the tabs until the specified tab is visible.

iTab
[in] The zero-based index of a tab.

Nonzero if successful; otherwise 0.

This method has no effect if the tab indicated by iTab is already visible.

By default, this method is not supported by the CMFCBaseTabCtrl Class . You should implement this function in
a custom class derived from CMFCBaseTabCtrl if that custom tab control supports tab scrolling. This method is
supported by the CMFCTabCtrl Class.

Identifies the pane that contains a specified point.

pt
[in] A point that is defined by using client-area coordinates of the CMFCBaseTabCtrl object.

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::FireChangeActiveTab
virtual void FireChangeActiveTab(int nNewTab);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::FireChangingActiveTab
virtual BOOL FireChangingActiveTab(int nNewTab);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetActiveTab

virtual int GetActiveTab() const;

Return ValueReturn Value

CMFCBaseTabCtrl::GetActiveTabColor

virtual COLORREF GetActiveTabColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetActiveTabTextColor

A pointer to a CWnd object if successful; otherwise NULL.

In the CMFCBaseTabCtrl class, this method is a pure virtual function: you must implement it if you derive a class
from CMFCBaseTabCtrl .

[in] nNewTab

[in] nNewTab

Retrieves the index of the currently active tab.

The zero-based index of the active tab; -1 if there is no active tab.

Retrieves the background color of the currently active tab.

A COLORREF value that specifies the background color of the active tab.

By default, the background color of the active tab is COLOR_WINDOW. You can change the background color
for the active tab by using the method CMFCBaseTabCtrl::SetActiveTabColor.

https://docs.microsoft.com/windows/desktop/gdi/colorref

virtual COLORREF GetActiveTabTextColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetActiveWnd

virtual CWnd* GetActiveWnd() const;

Return ValueReturn Value

CMFCBaseTabCtrl::GetAutoColors

const CArray<COLORREF,COLORREF>& GetAutoColors() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetFirstVisibleTab

virtual CWnd* GetFirstVisibleTab(int& iTabNum);

virtual CWnd* GetFirstVisibleTab(
 int iStartFrom,
 int& iTabNum);

ParametersParameters

Retrieves the text color for the active tab.

A COLORREF value that specifies the text color of the active tab.

By default, the text color for active tabs is COLOR_WINDOWTEXT. You can change the text color with the
method CMFCBaseTabCtrl::SetActiveTabTextColor.

Retrieves a pointer to the currently active tab window.

A pointer to a window.

Retrieves the array of colors used for automatic coloring.

A reference to an array of COLORREF values that the CMFCBaseTabCtrl object uses for automatic tab
coloring.

By default, the framework initializes the array of colors to library-defined colors. You can provide a custom
array of colors by calling the method CMFCBaseTabCtrl::SetAutoColors.

Retrieves a pointer to the first visible tab.

iTabNum
[out] A reference to an integer. This method writes the zero-based index of the first visible tab to this
parameter.

iStartFrom
[in] The zero-based index of the first tab to check.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetFirstVisibleTabNum
virtual int GetFirstVisibleTabNum() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetHighlightedTab

int GetHighlightedTab() const;

Return ValueReturn Value

CMFCBaseTabCtrl::GetImageList
virtual const CImageList* GetImageList() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetImageSize
virtual CSize GetImageSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetLastVisibleTab
virtual CWnd* GetLastVisibleTab(int& iTabNum);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

A pointer to the first visible tab if successful; otherwise NULL.

If this method fails, it writes the value -1 to iStartFrom.

If iStartFrom is larger than or equal to the number of tabs in the tab control, GetFirstVisibleTab automatically
fails.

Retrieves the index of the currently highlighted tab.

The zero-based index of the highlighted tab.

[in] iTabNum

CMFCBaseTabCtrl::GetLocation

Location GetLocation() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetMaxWindowSize
virtual CSize GetMaxWindowSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetTabArea

virtual void GetTabArea(
 CRect& rectTabAreaTop,
 CRect& rectTabAreaBottom) const = 0;

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::GetTabBkColor

virtual COLORREF GetTabBkColor(int iTab) const;

ParametersParameters

Retrieves the location of the tab area portion of the tab control.

The location of the tab area.

Possible tab area location values are LOCATION_BOTTOM and LOCATION_TOP.

Retrieves the size and position of the tab area of the tab control.

rectTabAreaTop
[in] A reference to a CRect object. GetTabArea uses this object to store the size and position of the top tab
area.

rectTabAreaBottom
[in] A reference to a CRect object. GetTabArea uses this object to store the size and position of the bottom tab
area.

After GetTabArea returns, the CRect parameters contain the size and position of the tab area in client
coordinates of the tab control. If there is no tab area at the top or bottom of the tab control, rectTabAreaTop or
rectTabAreaBottom are empty.

In the CMFCBaseTabCtrl Class , this method is a pure virtual function and has no implementation. If you derive
a class from CMFCBaseTabCtrl , you have to implement this function.

Retrieves the background color of the specified tab.

Return ValueReturn Value

CMFCBaseTabCtrl::GetTabBorderSize

virtual int GetTabBorderSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetTabByID

virtual int GetTabByID(int id) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetTabCloseButton
CRect GetTabCloseButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetTabFromHwnd

virtual int GetTabFromHwnd(HWND hwnd) const;

ParametersParameters

iTab
[in] The zero-based index of the tab.

A COLORREF value that indicates the background color of the specified tab; -1 if iTab is out of range.

Retrieves the size of the tab borders in the tab control.

The size of the tab border, in pixels.

The default size for the tab border is three pixels. You can change this border size with the method
CMFCBaseTabCtrl::SetTabBorderSize.

Retrieves the index of a tab based on a tab ID.

id
[in] A tab ID.

The zero-based index of a tab if it is found; -1 if the tab ID is not found.

The tab IDs are assigned automatically when tabs are added to a tab control.

Retrieves the index of the tab that contains the specified HWND object.

hwnd

https://docs.microsoft.com/windows/desktop/gdi/colorref

Return ValueReturn Value

CMFCBaseTabCtrl::GetTabFromPoint

virtual int GetTabFromPoint(CPoint& pt) const;

ParametersParameters

Return ValueReturn Value

CMFCBaseTabCtrl::GetTabFullWidth
virtual int GetTabFullWidth(int iTab) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetTabHicon

virtual HICON GetTabHicon(int iTab) const;

ParametersParameters

Return ValueReturn Value

CMFCBaseTabCtrl::GetTabIcon

virtual UINT GetTabIcon(int iTab) const;

ParametersParameters

[in] A handle to a window.

The zero-based index of the tab if successful; -1 if no tab contains hwnd.

Retrieves the tab that contains a specified point.

pt
[in] A point in client coordinates of the tab control.

The index of the tab that contains pt; -1 if no tab contains pt.

[in] iTab

Returns the HICON associated with the specified tab.

iTab
[in] The zero-based index for the tab.

The HICON associated with a tab label if successful; NULL if there is no HICON or if the method fails.

Retrieves the icon associated with the specified tab.

iTab
[in] The zero-based index of the tab.

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetTabID

int GetTabID(int iTab) const;

ParametersParameters

Return ValueReturn Value

CMFCBaseTabCtrl::GetTabLabel

virtual BOOL GetTabLabel(
 int iTab,
 CString& strLabel) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetTabRect

virtual BOOL GetTabRect(
 int iTab,
 CRect& rect) const;

ParametersParameters

The icon ID for the specified tab if successful; -1 if the index is invalid.

The CMFCBaseTabCtrl object stores the icons in the internal CImageList object.

Retrieves the ID for a tab specified by the tab index.

iTab
[in] The zero-based index of the tab.

An ID of the tab or -1 if iTab is out of range.

Retrieves the text of a tab label.

iTab
[in] The zero-based index of the tab.

strLabel
[out] A reference to a CString object. This method stores the label of the tab in this parameter.

TRUE if successful; FALSE otherwise.

This method fails if the index iTab is invalid.

You set the label for a tab when you create the tab by using CMFCBaseTabCtrl::AddTab. You can also change
the label after creation with the method CMFCBaseTabCtrl::SetTabLabel.

Retrieves the size and position of the specified tab.

iTab

Return ValueReturn Value

CMFCBaseTabCtrl::GetTabsHeight
virtual int GetTabsHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetTabsNum

virtual int GetTabsNum() const;

Return ValueReturn Value

CMFCBaseTabCtrl::GetTabsRect
virtual void GetTabsRect(CRect& rect) const;

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::GetTabTextColor

virtual COLORREF GetTabTextColor(int iTab) const;

ParametersParameters

Return ValueReturn Value

CMFCBaseTabCtrl::GetTabWnd

[in] The zero-based index of the tab.

rect
[out] A reference to a CRect object. This method stores the size and position of the tab in this parameter.

TRUE if successful; FALSE if the tab index is invalid.

Retrieves the number of tabs in the tab control.

The number of tabs in the tab control.

[in] rect

Retrieves the text color for the specified tab.

iTab
[in] The zero-based index of the tab.

A COLORREF parameter that indicates the text color of the specified tab; -1 if iTab is out of range.

Returns the pointer to the pane that resides on the specified tab.

https://docs.microsoft.com/windows/desktop/gdi/colorref

virtual CWnd* GetTabWnd(int iTab) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetTabWndNoWrapper

virtual CWnd* GetTabWndNoWrapper(int iTab) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::GetToolTipCtrl

CToolTipCtrl& GetToolTipCtrl() const;

Return ValueReturn Value

CMFCBaseTabCtrl::GetVisibleTabsNum

iTab
[in] The zero-based index of a tab.

A pointer to the CWnd object that resides on the tab that iTab specifies. NULL if iTab is invalid.

The returned object is the one that the application added when it called either CMFCBaseTabCtrl::AddTab or
CMFCBaseTabCtrl::InsertTab.

If the object on a tab has a wrapper, this method will return the wrapper for the object. For more information
about wrappers, see CMFCBaseTabCtrl::CreateWrapper. If you want to access a pointer to the direct object
without the wrapper, use the method CMFCBaseTabCtrl::GetTabWndNoWrapper.

Returns a pointer to the control that resides on a tab, even if the control has a wrapper.

iTab
[in] The zero-based index of a tab.

A pointer to the CWnd object that resides on the specified tab; NULL if iTab is invalid.

This method retrieves a direct pointer to the CWnd object that you added by using either the method
CMFCBaseTabCtrl::AddTab or CMFCBaseTabCtrl::InsertTab. GetTabWndNoWrapper will retrieve a pointer to the
added CWnd , even if the framework added a wrapper for the object. For more information about wrappers and
the CMFCBaseTabCtrl Class, see CMFCBaseTabCtrl::CreateWrapper.

Use the method CMFCBaseTabCtrl::GetTabWnd if you do not want to ignore the wrapper class.

Retrieves a reference to the tooltip contorl.

A reference to the tooltip control.

Retrieves the number of currently visible tabs.

virtual int GetVisibleTabsNum() const;

Return ValueReturn Value

CMFCBaseTabCtrl::HasImage
virtual BOOL HasImage(int iTab) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::HideSingleTab

virtual void HideSingleTab(BOOL bHide = TRUE);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::InsertTab

Virtual void InsertTab(
 CWnd* pNewWnd,
 LPCTSTR lpszTabLabel,
 int nInsertAt,
 UINT uiImageId = (UINT)-1,
 BOOL bDetachable = TRUE);

virtual void InsertTab(
 CWnd* pNewWnd,
 UINT uiResTabLabel,
 int nInsertAt,
 UINT uiImageId = (UINT)-1,
 BOOL bDetachable = TRUE);

ParametersParameters

The number of visible tabs.

[in] iTab

Sets the option to hide the tabs for the tab control when there is one visible tab.

bHide
[in] A Boolean that specifies whether to enable hiding single tabs.

When your application is configured to hide single tabs, the framework automatically displays tabs when a
second tab is added to the tab control.

Inserts a tab into the tab control.

pNewWnd
[in] A pointer to the window that this method adds as a new tab.

lpszTabLabel
[in] A string that contains the label for the new tab.

RemarksRemarks

CMFCBaseTabCtrl::InvalidateTab
void InvalidateTab(int iTab);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::IsActiveTabCloseButton
virtual BOOL IsActiveTabCloseButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsAutoColor

BOOL IsAutoColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsAutoDestroyWindow
BOOL IsAutoDestroyWindow() const;

nInsertAt
[in] The zero-based index of the new tab.

uiImageId
[in] An image ID from the image list. The tab control uses this image as the icon for the new tab.

bDetachable
[in] A Boolean parameter that determines whether the new tab is detachable.

uiResTabLabel
[in] The resource ID for the label.

If the object indicated by pNewWnd is not derived from the CDockablePane Class and if the bDetachable
parameter is TRUE, the framework creates a special wrapper for the new tab. By default, the wrapper is an
instance of the CDockablePaneAdapter Class. Use the CMFCBaseTabCtrl::SetDockingBarWrapperRTC
method to create a different wrapper class. Any custom wrapper class needs to be derived from
CDockablePaneAdapter .

[in] iTab

Determines whether the tab control is in autocolor mode.

TRUE if the tab control is in autocolor mode; FALSE otherwise.

You can enable or disable the autocolor mode by using the CMFCBaseTabCtrl::EnableAutoColor method.

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsColored
virtual BOOL IsColored() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsDialogControl
BOOL IsDialogControl() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsDrawNoPrefix
BOOL IsDrawNoPrefix() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsFlatFrame

virtual BOOL IsFlatFrame() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsFlatTab
virtual BOOL IsFlatTab() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsHideSingleTab

Indicates whether the frame of the tab control is rendered in a flat style or in a 3D style.

TRUE if the frame of the tab control is rendered in a flat style; FALSE if the frame is rendered in a 3D style.

Use CMFCTabCtrl::SetFlatFrame to change the style for the frame of the tab control.

Tab controls that use the Outlook style cannot be rendered with flat frames. This includes the
CMFCOutlookBarTabCtrl Class and any classes derived from that class.

virtual BOOL IsHideSingleTab() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsIconAdded
BOOL IsIconAdded(
 HICON hIcon,
 int& iIcon);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsInPlaceEdit

virtual BOOL IsInPlaceEdit() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsLeftRightRounded
virtual BOOL IsLeftRightRounded() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsMDITab
BOOL IsMDITab() const;

Return ValueReturn Value

RemarksRemarks

Determines whether the tab control hides the tab label if there is only one tab.

TRUE if the tab control hides the tab label when it has one tab; otherwise FALSE.

Use the method CMFCBaseTabCtrl::HideSingleTab to enable hiding the tab label when there is only one tab.

[in] hIcon

[in] iIcon

Indicates whether the tab control is configured to enable the user to dynamically modify the tab labels.

Nonzero if in-place editing is enabled; otherwise 0.

You can enable or disable in-place editing by calling the method CMFCBaseTabCtrl::EnableInPlaceEdit.

CMFCBaseTabCtrl::IsOneNoteStyle

virtual BOOL IsOneNoteStyle() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsPtInTabArea

virtual BOOL IsPtInTabArea(CPoint point) const = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsTabCloseButtonHighlighted
BOOL IsTabCloseButtonHighlighted() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsTabCloseButtonPressed
BOOL IsTabCloseButtonPressed() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsTabDetachable

Determines whether tabs are displayed in the style of Microsoft OneNote.

TRUE if tabs are displayed in the style of Microsoft OneNote; otherwise FALSE.

Call the method CMDIFrameWndEx::EnableMDITabs to enable the Microsoft OneNote style. You can also
enable this style when you instantiate the CMFCTabCtrl Class: simply pass the style STYLE_3D_ONENOTE to
the method CMFCTabCtrl::Create.

By default, the Microsoft OneNote style is not supported in a custom class derived from the
CMFCBaseTabCtrl Class . However, it is supported in the CMFCTabCtrl class.

Determines if a point is inside the tab area.

point
[in] The point to test.

Nonzero if the point is in the tab area; 0 otherwise.

In the CMFCBaseTabCtrl Class , this method is a pure virtual function and has no implementation. If you derive
a class from CMFCBaseTabCtrl , you have to implement this function.

virtual BOOL IsTabDetachable(int iTab) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsTabIconOnly

virtual BOOL IsTabIconOnly(int iTab) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsTabSwapEnabled

BOOL IsTabSwapEnabled() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::IsTabVisible

virtual BOOL IsTabVisible(int iTab) const;

ParametersParameters

Determines whether a tab is detachable.

iTab
[in] The zero-based index of the tab to check.

TRUE if the tab is detachable; FALSE otherwise.

To make a tab detachable, use the method CMFCBaseTabCtrl::EnableTabDetach.

Determines whether a tab label contains only icons and no text.

iTab
[in] The zero-based index of the tab.

TRUE if a tab label has only icons; FALSE otherwise.

To set the tabs in your application to display only icons, call the method CMFCBaseTabCtrl::SetTabIconOnly.

Determines whether the tab control allows the user to change tab positions by using the mouse.

Nonzero if tab positions can be changed by the user; otherwise 0.

By default, users cannot change the order of tabs in a tab control. Use the CMFCBaseTabCtrl::EnableTabSwap
method to enable this functionality.

Indicates whether the specified tab is visible.

iTab

Return ValueReturn Value

CMFCBaseTabCtrl::IsVS2005Style
virtual BOOL IsVS2005Style() const;

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::m_bActivateTabOnRightClick

BOOL m_bActivateTabOnRightClick;

RemarksRemarks

CMFCBaseTabCtrl::m_bAutoDestroyWindow

BOOL m_bAutoDestroyWindow;

RemarksRemarks

CMFCBaseTabCtrl::MoveTab
virtual void MoveTab(
 int nSource,
 int nDest);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::OnChangeTabs

virtual void OnChangeTabs();

[in] The zero-based index of the tab to check.

Nonzero if the specified tab is visible; otherwise 0.

m_bActivateTabOnRightClick determines whether tabs are in focus when the user clicks on a tab label by using
the right mouse button.

The default value for this data member is FALSE.

m_bAutoDestroyWindow determines whether the framework automatically destroys the objects on tabs when the
tabs are removed.

By default, this member is FALSE.

[in] nSource

[in] nDest

The framework calls this method when the number of tabs on a tab control changes.

RemarksRemarks

CMFCBaseTabCtrl::OnDrop
virtual BOOL OnDrop(
 COleDataObject*,
 DROPEFFECT,
 CPoint);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::OnDragOver
virtual DROPEFFECT OnDragOver(
 COleDataObject*,
 DWORD,
 CPoint);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::OnDragLeave
virtual void OnDragLeave();

RemarksRemarks

CMFCBaseTabCtrl::OnDragEnter
virtual DROPEFFECT OnDragEnter(
 COleDataObject*,
 DWORD,
 CPoint);

ParametersParameters

By default, this method does nothing. Override this method to execute custom code when the number of tabs
on the tab control changes.

[in] COleDataObject*

[in] DROPEFFECT

[in] CPoint

[in] COleDataObject*

[in] DWORD

[in] CPoint

[in] COleDataObject*

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::OnRenameTab
virtual BOOL OnRenameTab(int, CString&);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::PreTranslateMessage
virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::RecalcLayout

virtual void RecalcLayout() = 0;

RemarksRemarks

CMFCBaseTabCtrl::RemoveAllTabs

virtual void RemoveAllTabs();

RemarksRemarks

CMFCBaseTabCtrl::RemoveTab

[in] DWORD

[in] CPoint

[in] int

[in] CString&

[in] pMsg

Recalculates the internal layout of the tab control.

In the CMFCBaseTabCtrl Class , this method is a pure virtual function. If you derive a class from
CMFCBaseTabCtrl , you have to implement this function.

Removes all the tabs from the tab control.

If CMFCBaseTabCtrl::m_bAutoDestroyWindow is TRUE, the framework deletes all the CWnd objects attached
to the removed tabs.

virtual BOOL RemoveTab(
 int iTab,
 BOOL bRecalcLayout = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::RenameTab
virtual BOOL RenameTab();

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::ResetImageList

void ResetImageList();

CMFCBaseTabCtrl::Serialize
virtual void Serialize(CArchive& ar);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::SetActiveTab

virtual BOOL SetActiveTab(int iTab) = 0;

ParametersParameters

Removes a tab from the tab control.

iTab
[in] The zero-based index of a tab.

bRecalcLayout
[in] A Boolean parameter that specifies whether to recalculate the layout of the tab.

TRUE if the method removes the tab successfully; otherwise FALSE.

If CMFCBaseTabCtrl::m_bAutoDestroyWindow is TRUE, RemoveTab destroys the CWnd object associated with
the specified tab.

Resets the image list for an instance of the CMFCBaseTabCtrl Class.

[in] ar

Activates the specified tab.

iTab

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::SetActiveTabColor

virtual void SetActiveTabColor(COLORREF clr);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::SetActiveTabTextColor

virtual void SetActiveTabTextColor(COLORREF clr);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::SetAutoColors

void SetAutoColors(const CArray<COLORREF,COLORREF>& arColors);

ParametersParameters

RemarksRemarks

[in] The zero-based index of a tab. SetActiveTab makes the tab with this index active.

TRUE if successful; otherwise FALSE.

In the CMFCBaseTabCtrl Class , this method is a pure virtual function. If you derive a class from
CMFCBaseTabCtrl , you have to implement this function.

Sets the background color for the active tab.

clr
[in] Specifies the new background color.

The framework obtains the default background color for active tabs from the GetSysColormethod.

Sets the text color for active tabs.

clr
[in] A COLORREF parameter that specifies the new text color.

By default, the framework obtains the text color from GetSysColor. Override this default color by using the
SetActiveTabTextColor method.

Sets the colors of the tab control that the framework uses in automatic color mode.

arColors
[in] An array of RGB colors.

If you provide a custom array of colors, the default array of colors is ignored. If the parameter arColors is
empty, the framework reverts to the default array of colors.

To enable autocolor mode, use the CMFCBaseTabCtrl::EnableAutoColor method.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsyscolor
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsyscolor

CMFCBaseTabCtrl::SetDockingBarWrapperRTC

void SetDockingBarWrapperRTC(CRuntimeClass* pRTC);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::SetDrawNoPrefix

void SetDrawNoPrefix(
 BOOL bNoPrefix,
 BOOL bRedraw = TRUE);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::SetImageList

virtual BOOL SetImageList(
 UINT uiID,
 int cx = 15,
 COLORREF clrTransp = RGB(255, 0, 255));

virtual BOOL SetImageList(HIMAGELIST hImageList);

ParametersParameters

Sets the wrapper class that is used for any objects that are not derived from the CDockablePane Class.

pRTC
[in] The runtime class information for the new wrapper class.

You add tabs to a tab control by using the methods CMFCBaseTabCtrl::AddTab and
CMFCBaseTabCtrl::InsertTab. When you add a tab, each control on that tab must be dockable. Any objects that
are not derived from CDockablePane must be wrapped. AddTab and InsertTab create a wrapper for these
objects. The default wrapper class is the CDockablePaneAdapter Class. The method SetDockingBarWrapperRTC

enables you to change the class that is used as a wrapper class. The wrapper class that you provide must be
derived from CDockablePaneAdapter .

Enables and disables the processing of prefix characters in tab labels.

bNoPrefix
[in] TRUE if you want to process prefix characters; otherwise FALSE.

bRedraw
[in] TRUE if you want to redraw the tabbed window; otherwise FALSE.

A prefix character is a mnemonic character that is preceded by an ampersand (&).

Sets the icon image list for the tab control.

uiID
[in] A bitmap resource ID. SetImageList loads the image list from this resource.

cx
[in] The width of each image in pixels.

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::SetLocation
virtual void SetLocation(Location location);

ParametersParameters

RemarksRemarks

CMFCBaseTabCtrl::SetTabBkColor

virtual BOOL SetTabBkColor(
 int iTab,
 COLORREF color = (COLORREF)-1);

ParametersParameters

Return ValueReturn Value

CMFCBaseTabCtrl::SetTabBorderSize

virtual void SetTabBorderSize(
 int nTabBorderSize,
 BOOL bRepaint = TRUE);

ParametersParameters

clrTransp
[in] A COLORREF parameter that indicates the transparent color of the image.

hImageList
[in] A handle to a preloaded image list.

Nonzero if the method was successful; 0 otherwise.

The images from the icon image list are displayed alongside the labels for the tab. To display an icon, you must
specify its index when you call CMFCBaseTabCtrl::AddTab.

SetImageList will fail if the tab control was created with a flat style. It will also fail if the framework cannot
load the image indicated by uiID.

This method recalculates the height of the tab according to the image and text sizes.

[in] location

Sets the background color for the specified tab.

iTab
[in] The zero-based index of the tab.

color
[in] The color to set.

TRUE if successful; FALSE otherwise.

Sets a new border size for the tab control.

https://docs.microsoft.com/windows/desktop/gdi/colorref

CMFCBaseTabCtrl::SetTabHicon

virtual BOOL SetTabHicon(
 int iTab,
 HICON hIcon);

ParametersParameters

Return ValueReturn Value

CMFCBaseTabCtrl::SetTabIcon

virtual BOOL SetTabIcon(
 int iTab,
 UINT uiIcon);

ParametersParameters

Return ValueReturn Value

CMFCBaseTabCtrl::SetTabIconOnly

virtual BOOL SetTabIconOnly(
 int iTab,
 BOOL bIconOnly = TRUE,
 BOOL bShowTooltipAlways = FALSE);

ParametersParameters

nTabBorderSize
[in] The new border size, in pixels.

bRepaint
[in] A Boolean parameter that indicates whether the framework redraws the control.

Sets the icon for a tab label.

iTab
[in] The zero-based index of a tab. This method changes the icon for this tab.

hIcon
[in] A handle to an icon.

TRUE if successful; otherwise FALSE.

Sets the icon for a tab.

iTab
[in] The zero-based index of the tab to update.

uiIcon
[in] The icon ID for the new icon. This ID references the internal CImageList object.

TRUE if successful; otherwise FALSE.

Enables displaying only an icon (and no text label) on a specific tab.

iTab
[in] The zero-based index of the tab to change.

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::SetTabLabel

virtual BOOL SetTabLabel(
 int iTab,
 const CString& strLabel);

ParametersParameters

Return ValueReturn Value

CMFCBaseTabCtrl::SetTabsHeight
virtual void SetTabsHeight();

RemarksRemarks

CMFCBaseTabCtrl::SetTabsOrder

BOOL SetTabsOrder(const CArray<int,int>& arOrder);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

bIconOnly
[in] A Boolean parameter that determines whether to display only icons.

bShowTooltipAlways
[in] A Boolean parameter that determines whether the framework shows tooltips for a tab label that displays
only icons.

TRUE if successful; otherwise FALSE.

By default, a tab control displays the icon and text label for each tab.

Sets the text for a tab label.

iTab
[in] The zero-based index of the tab to update.

strLabel
[in] A reference to a string that contains the new text for the tab label.

Nonzero if successful; 0 otherwise.

Arranges the tabs in the specified order.

arOrder
[in] An array of zero-based indexes that defines the new tab order.

TRUE if successful; FAIL otherwise.

The size of the arOrder array must be equal to the number of tabs in the tab control.

CMFCBaseTabCtrl::SetTabTextColor

virtual BOOL SetTabTextColor(
 int iTab,
 COLORREF color = (COLORREF)-1);

ParametersParameters

Return ValueReturn Value

CMFCBaseTabCtrl::ShowTab

virtual BOOL ShowTab(
 int iTab,
 BOOL bShow = TRUE,
 BOOL bRecalcLayout = TRUE,
 BOOL bActivate = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::StartRenameTab
virtual BOOL StartRenameTab(int iTab);

ParametersParameters

Sets the text color for a specific tab.

iTab
[in] The zero-based index of the tab.

color
[in] A COLORREF parameter that indicates the new text color.

Nonzero if successful; 0 otherwise.

Shows or hides the specified tab.

iTab
[in] The index of the tab that ShowTab will show or hide.

bShow
[in] A Boolean parameter that indicates whether to show the tab.

bRecalcLayout
[in] A Boolean parameter that indicates whether to immediately recalculate the window layout.

bActivate
[in] A Boolean parameter that indicates whether to select the tab specified by iTab.

Nonzero if successful; otherwise 0.

The parameter bActivate only applies if bShow is TRUE. If bActivate is TRUE and if ShowTab is successful,
ShowTab will send the message AFX_WM_CHANGE_ACTIVE_TAB to the parent of the tab window.

[in] iTab

https://docs.microsoft.com/windows/desktop/gdi/colorref

Return ValueReturn Value

RemarksRemarks

CMFCBaseTabCtrl::SwapTabs
virtual void SwapTabs(
 int nFisrtTabID,
 int nSecondTabID);

ParametersParameters

RemarksRemarks

See also

[in] nFisrtTabID

[in] nSecondTabID

Hierarchy Chart
Classes
CMFCTabCtrl Class
CMFCOutlookBarTabCtrl Class

CMFCBaseToolBar Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCBaseToolBar : public CPane

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCBaseToolBar::CMFCBaseToolBar Default constructor.

CMFCBaseToolBar::~CMFCBaseToolBar Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCBaseToolBar::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCBaseToolBar::GetDockingMode Returns the docking mode. (Overrides
CBasePane::GetDockingMode.)

CMFCBaseToolBar::GetMinSize Returns the minimum size of a toolbar. (Overrides
CPane::GetMinSize.)

CMFCBaseToolBar::OnAfterChangeParent Called by the framework after the pane's parent changes.
(Overrides CBasePane::OnAfterChangeParent.)

Inheritance Hierarchy

Requirements

Base class for toolbars.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCBaseToolBar

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcbasetoolbar-class.md

CMFCBaseToolBar::GetDockingMode

virtual AFX_DOCK_TYPE GetDockingMode() const;

Return ValueReturn Value

CMFCBaseToolBar::GetMinSize

virtual void GetMinSize(CSize& size) const;

ParametersParameters

CMFCBaseToolBar::OnAfterChangeParent

virtual void OnAfterChangeParent(CWnd* pWndOldParent);

ParametersParameters

See also

Header: afxbasetoolbar.h

Returns the docking mode.

The docking mode.

Returns the minimum size of a toolbar.

size
[out] The minimum size of a toolbar.

Called by the framework after the pane's parent changes.

pWndOldParent
[in] A pointer to the previous parent window.

Hierarchy Chart
Classes

CMFCBaseVisualManager Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CMFCBaseVisualManager: public CObject

Members
Public ConstructorsPublic Constructors

Name Description

CMFCBaseVisualManager::CMFCBaseVisualManager Constructs and initializes a CMFCBaseVisualManager object.

CMFCBaseVisualManager::~CMFCBaseVisualManager Destructor.

Public MethodsPublic Methods

Name Description

CMFCBaseVisualManager::DrawCheckBox Draws a check box control by using the current Windows
theme.

CMFCBaseVisualManager::DrawComboBorder Draws a combo box border using the current Windows
theme.

CMFCBaseVisualManager::DrawComboDropButton Draws a combo box drop-down button using the current
Windows theme.

CMFCBaseVisualManager::DrawPushButton Draws a push button using the current Windows theme.

CMFCBaseVisualManager::DrawRadioButton Draws a radio button control by using the current Windows
theme.

CMFCBaseVisualManager::DrawStatusBarProgress Draws a progress bar on a status bar control (
CMFCStatusBar Class) using the current Windows theme.

CMFCBaseVisualManager::FillReBarPane Fills the background of the rebar control by using the current
Windows theme.

A layer between derived visual managers and the Windows Theme API.

CMFCBaseVisualManager loads UxTheme.dll, if available, and manages access to Windows Theme API methods.

This class is for internal use only.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcbasevisualmanager-class.md

CMFCBaseVisualManager::GetStandardWindowsTheme Gets the current Windows theme.

Protected MethodsProtected Methods

Name Description

CMFCBaseVisualManager::CleanUpThemes Calls CloseThemeData for all handles obtained in
UpdateSystemColors .

CMFCBaseVisualManager::UpdateSystemColors Calls OpenThemeData to obtain handles for drawing various
controls: windows, toolbars, buttons, and so on.

Remarks

Inheritance Hierarchy

Requirements

CMFCBaseVisualManager::CleanUpThemes

void CleanUpThemes();

RemarksRemarks

CMFCBaseVisualManager::CMFCBaseVisualManager

CMFCBaseVisualManager();

CMFCBaseVisualManager::DrawCheckBox

You do not have to instantiate objects of this class directly.

Because it is a base class for all visual managers, you can just call CMFCVisualManager::GetInstance, obtain a
pointer to the current Visual Manager, and access the methods for CMFCBaseVisualManager using that pointer.
However, if you have to display a control by using the current Windows theme, it is better to use the
CMFCVisualManagerWindows interface.

CObject

CMFCBaseVisualManager

Header: afxvisualmanager.h

Calls CloseThemeData for all handles obtained in UpdateSystemColors .

For internal use only.

Constructs and initializes a CMFCBaseVisualManager object.

Draws a check box control by using the current Windows theme.

virtual BOOL DrawCheckBox(
 CDC* pDC,
 CRect rect,
 BOOL bHighlighted,
 int nState,
 BOOL bEnabled,
 BOOL bPressed);

);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NSTATE CHECK BOX STYLE

0 CBS_UNCHECKEDNORMAL

1 CBS_CHECKEDNORMAL

2 CBS_MIXEDNORMAL

CMFCBaseVisualManager::DrawComboBorder

virtual BOOL DrawComboBorder(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted);

ParametersParameters

pDC
[in] A pointer to a device context

rect
[in] The bounding rectangle of the check box.

bHighlighted
[in] Specifies whether the check box is highlighted.

nState
[in] 0 for unchecked, 1 for checked normal,

2 for mixed normal.

bEnabled
[in] Specifies whether the check box is enabled.

bPressed
[in] Specifies whether the check box is pressed.

TRUE if Theme API is enabled; otherwise FALSE.

The values of nState correspond to the following check box styles.

Draws the combo box border using the current Windows theme.

Return ValueReturn Value

CMFCBaseVisualManager::DrawComboDropButton

virtual BOOL DrawComboDropButton(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted);

ParametersParameters

PARAMETER DESCRIPTION

pDC [in] A pointer to a device context.

rect [in] The bounding rectangle of the combo box drop-down
button.

bDisabled [in] Specifies whether the combo box drop-down button is
disabled.

bIsDropped [in] Specifies whether the combo box drop-down button is
dropped down.

bIsHighlighted [in] Specifies whether the combo box drop-down button is
highlighted.

Return ValueReturn Value

CMFCBaseVisualManager::DrawPushButton

pDC
[in] A pointer to a device context.

rect
[in] Bounding rectangle of the combo box border.

bDisabled
[in] Specifies whether the combo box border is disabled.

bIsDropped
[in] Specifies whether the combo box border is dropped down.

bIsHighlighted
[in] Specifies whether the combo box border is highlighted.

TRUE if Theme API is enabled; otherwise FALSE.

Draws a combo box drop-down button using the current Windows theme.

TRUE if Theme API is enabled; otherwise FALSE.

Draws a push button using the current Windows theme.

virtual BOOL DrawPushButton(
 CDC* pDC,
 CRect rect,
 CMFCButton* pButton,
 UINT uiState);

ParametersParameters

Return ValueReturn Value

CMFCBaseVisualManager::DrawRadioButton

virtual BOOL DrawRadioButton(
 CDC* pDC,
 CRect rect,
 BOOL bHighlighted,
 BOOL bChecked,
 BOOL bEnabled,
 BOOL bPressed);

ParametersParameters

Return ValueReturn Value

pDC
[in] A pointer to a device context.

rect
[in] The bounding rectangle of the push button.

pButton
[in] A pointer to the CMFCButton Class object to draw.

uiState
[in] Ignored. The state is taken from pButton.

TRUE if Theme API is enabled; otherwise FALSE.

Draws a radio button control by using the current Windows theme.

pDC
[in] A pointer to a device context.

rect
[in] The bounding rectangle of the radio button.

bHighlighted
[in] Specifies whether the radio button is highlighted.

bChecked
[in] Specifies whether the radio button is checked.

bEnabled
[in] Specifies whether the radio button is enabled.

bPressed
[in] Specifies whether the radio button is pressed.

TRUE if Theme API is enabled; otherwise FALSE.

CMFCBaseVisualManager::DrawStatusBarProgress

virtual BOOL DrawStatusBarProgress(
 CDC* pDC,
 CMFCStatusBar* pStatusBar,
 CRect rectProgress,
 int nProgressTotal,
 int nProgressCurr,
 COLORREF clrBar,
 COLORREF clrProgressBarDest,
 COLORREF clrProgressText,
 BOOL bProgressText);

ParametersParameters

Return ValueReturn Value

CMFCBaseVisualManager::FillReBarPane

virtual void FillReBarPane(
 CDC* pDC,
 CBasePane* pBar,
 CRect rectClient);

ParametersParameters

Draws progress bar on status bar control (CMFCStatusBar Class) using the current Windows theme.

pDC
[in] A pointer to a device context.

pStatusBar
[in] A pointer to status bar. This value is ignored.

rectProgress
[in] The bounding rectangle of the progress bar in pDC coordinates.

nProgressTotal
[in] The total progress value.

nProgressCurr
[in] The current progress value.

clrBar
[in] The start color. CMFCBaseVisualManager ignores this. Derived classes can use it for color gradients.

clrProgressBarDest
[in] The end color. CMFCBaseVisualManager ignores this. Derived classes can use it for color gradients.

clrProgressText
[in] Progress text color. CMFCBaseVisualManager ignores this. The text color is defined by afxGlobalData.clrBtnText .

bProgressText
[in] Specifies whether to display progress text.

TRUE if Theme API is enabled; otherwise FALSE.

Fills the background of the rebar control by using the current Windows theme.

pDC

Return ValueReturn Value

CMFCBaseVisualManager::GetStandardWindowsTheme

virtual WinXpTheme GetStandardWindowsTheme();

Return ValueReturn Value

CMFCBaseVisualManager::UpdateSystemColors

void UpdateSystemColors();

RemarksRemarks

See also

[in] A pointer to a device context.

pBar
[in] A pointer to a pane whose background should be drawn.

rectClient
[in] The bounding rectangle of the area to be filled.

TRUE if Theme API is enabled; otherwise FALSE.

Gets the current Windows theme.

The currently selected Windows Theme color. Can be one of the following enumerated values:

WinXpTheme_None - there is no theme enabled.

WinXpTheme_NonStandard - non standard theme is selected (meaning a theme is selected, but none from the
list below).

WinXpTheme_Blue - blue theme (Luna).

WinXpTheme_Olive - olive theme.

WinXpTheme_Silver - silver theme.

Calls OpenThemeData to obtain handles for drawing various controls: windows, toolbars, buttons, and so on.

For internal use only.

Hierarchy Chart
Classes

CMFCButton Class
3/4/2019 • 17 minutes to read • Edit Online

Syntax
class CMFCButton : public CButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCButton::CMFCButton Default constructor.

CMFCButton::~CMFCButton Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCButton::CleanUp Resets internal variables and frees allocated resources such as
images, bitmaps, and icons.

CMFCButton::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCButton::DrawItem Called by the framework when a visual aspect of an owner-
drawn button has changed. (Overrides CButton::DrawItem.)

CMFCButton::EnableFullTextTooltip Specifies whether to display the full text of a tooltip in a large
tooltip window or a truncated version of the text in a small
tooltip window.

CMFCButton::EnableMenuFont Specifies whether the button text font is the same as the
application menu font.

CMFCButton::EnableWindowsTheming Specifies whether the style of the button border corresponds
to the current Windows theme.

CMFCButton::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCButton::GetToolTipCtrl Returns a reference to the underlying tooltip control.

CMFCButton::IsAutoCheck Indicates whether a check box or radio button is an
automatic button.

The CMFCButton class adds functionality to the CButton class such as aligning button text, combining button text
and an image, selecting a cursor, and specifying a tool tip.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcbutton-class.md

CMFCButton::IsAutorepeatCommandMode Indicates whether a button is set to auto-repeat mode.

CMFCButton::IsCheckBox Indicates whether a button is a check box button.

CMFCButton::IsChecked Indicates whether the current button is checked.

CMFCButton::IsHighlighted Indicates whether a button is highlighted.

CMFCButton::IsPressed Indicates whether a button is pushed and highlighted.

CMFCButton::IsPushed Indicates whether a button is pushed.

CMFCButton::IsRadioButton Indicates whether a button is a radio button.

CMFCButton::IsWindowsThemingEnabled Indicates whether the style of the button border corresponds
to the current Windows theme.

CMFCButton::OnDrawParentBackground Draws the background of a button's parent in the specified
area. (Overrides AFX_GLOBAL_DATA::DrawParentBackground

CMFCButton::PreTranslateMessage Translates window messages before they are dispatched to
the TranslateMessage and DispatchMessage Windows
functions. (Overrides CWnd::PreTranslateMessage.)

CMFCButton::SetAutorepeatMode Sets a button to auto-repeat mode.

CMFCButton::SetCheckedImage Sets the image for a checked button.

CMFCButton::SetFaceColor Sets the background color for the button text.

CMFCButton::SetImage Sets the image for a button.

CMFCButton::SetMouseCursor Sets the cursor image.

CMFCButton::SetMouseCursorHand Sets the cursor to the image of a hand.

CMFCButton::SetStdImage Uses a CMenuImages object to set the button image.

CMFCButton::SetTextColor Sets the color of the button text for a button that is not
selected.

CMFCButton::SetTextHotColor Sets the color of the button text for a button that is selected.

CMFCButton::SetTooltip Associates a tooltip with a button.

CMFCButton::SizeToContent Resizes a button to contain its button text and image.

NAME DESCRIPTION

Protected MethodsProtected Methods

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

NAME DESCRIPTION

CMFCButton::OnDraw Called by the framework to draw a button.

CMFCButton::OnDrawBorder Called by the framework to draw the border of a button.

CMFCButton::OnDrawFocusRect Called by the framework to draw the focus rectangle for a
button.

CMFCButton::OnDrawText Called by the framework to draw the button text.

CMFCButton::OnFillBackground Called by the framework to draw the background of the
button text.

CMFCButton::SelectFont Retrieves the font that is associated with the specified device
context.

Data MembersData Members

NAME DESCRIPTION

CMFCButton::m_nAlignStyle Specifies the alignment of the button text.

CMFCButton::m_bDontUseWinXPTheme Specifies whether to use Windows XP themes.

CMFCButton::m_bDrawFocus Indicates whether to draw a focus rectangle around a button.

CMFCButton::m_nFlatStyle Specifies the style of the button, such as borderless, flat,
semi-flat, or 3D.

CMFCButton::m_bGrayDisabled When TRUE, enables a disabled button to be drawn as
grayed-out.

CMFCButton::m_bHighlightChecked Indicates whether to highlight a BS_CHECKBOX-style button
when the cursor hovers over it.

CMFCButton::m_bResponseOnButtonDown Indicates whether to respond to button down events.

CMFCButton::m_bRightImage Indicates whether to display an image on the right side of the
button.

CMFCButton::m_bTopImage Indicates whether the image is on top of the button.

CMFCButton::m_bTransparent Indicates whether the button is transparent.

CMFCButton::m_bWasDblClk Indicates whether the last click event was a double-click.

Remarks
Other types of buttons are derived from the CMFCButton class, such as the CMFCURLLinkButton class, which
supports hyperlinks, and the CMFCColorButton class, which supports a color picker dialog box.

The style of a CMFCButton object can be 3D, flat, semi-flat or no border. Button text can be aligned at the left, top,
or center of a button. At run time, you can control whether the button displays text, an image, or text and an

Example

CMFCButton m_Button;

// int m_iImage
// IDB_BTN1_32, IDB_BTN1_HOT_32, IDB_BTN1, IDB_BTN1_HOT are int macros that are #define.
if (m_iImage == 1)
{
 m_Button.SetImage((HBITMAP) NULL);
}
else
{
 m_Button.SetImage(IDB_BTN1_32, IDB_BTN1_HOT_32);
}

// int m_iImage
if (m_iImage == 0)
{
 m_Button.SetWindowText(_T(""));
}
else
{
 m_Button.SetWindowText(_T("Button"));
}

// Resize the button.
m_Button.SizeToContent();
m_Button.EnableFullTextTooltip(true);
// Use the application menu font at the button text font.
m_Button.EnableMenuFont();
// Use the current Windows theme to draw the button borders.
m_Button.EnableWindowsTheming(true);
// Set the button to auto-repeat mode.
m_Button.SetAutorepeatMode();
// Set the background color for the button text.
m_Button.SetFaceColor(RGB(255,0,0),true);
m_Button.SetTextColor(RGB(0,0,255));
// Set the tooltip of the button.
m_Button.SetTooltip(_T("this is a button!"));

Inheritance Hierarchy

image. You can also specify that a particular cursor image be displayed when the cursor hovers over a button.

Create a button control either directly in your code, or by using the MFC Class Wizard tool and a dialog box
template. If you create a button control directly, add a CMFCButton variable to your application, and then call the
constructor and Create methods of the CMFCButton object. If you use the MFC Class Wizard, add a CButton

variable to your application, and then change the type of the variable from CButton to CMFCButton .

To handle notification messages in a dialog box application, add a message map entry and an event handler for
each notification. The notifications sent by a CMFCButton object are the same as those sent by a CButton object.

The following example demonstrates how to configure the properties of the button by using various methods in
the CMFCButton class. The example is part of the New Controls sample.

CObject

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CMFCButton::CleanUp

virtual void CleanUp();

CMFCButton::EnableFullTextTooltip

void EnableFullTextTooltip(BOOL bOn=TRUE);

ParametersParameters

RemarksRemarks

CMFCButton::EnableMenuFont

void EnableMenuFont(
 BOOL bOn=TRUE,
 BOOL bRedraw=TRUE);

ParametersParameters

RemarksRemarks

CMFCButton::EnableWindowsTheming

CCmdTarget

CWnd

CButton

CMFCButton

Header: afxbutton.h

Resets internal variables and frees allocated resources such as images, bitmaps, and icons.

Specifies whether to display the full text of a tooltip in a large tooltip window or a truncated version of the text in
a small tooltip window.

bOn
[in] TRUE to display all of the text; FALSE to display truncated text.

Specifies whether the button text font is the same as the application menu font.

bOn
[in] TRUE to use the application menu font as the button text font; FALSE to use the system font. The default is
TRUE.

bRedraw
[in] TRUE to immediately redraw the screen; otherwise, FALSE. The default is TRUE.

If you do not use this method to specify the button text font, you can specify the font with the CWnd::SetFont
method. If you do not specify a font at all, the framework sets a default font.

Specifies whether the style of the button border corresponds to the current Windows theme.

static void EnableWindowsTheming(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMFCButton::GetToolTipCtrl

CToolTipCtrl& GetToolTipCtrl();

Return ValueReturn Value

RemarksRemarks

CMFCButton::IsAutoCheck

BOOL IsAutoCheck() const;

Return ValueReturn Value

RemarksRemarks

CMFCButton::IsAutorepeatCommandMode

BOOL IsAutorepeatCommandMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCButton::IsCheckBox

BOOL IsCheckBox() const;

Return ValueReturn Value

bEnable
[in] TRUE to use the current Windows theme to draw button borders; FALSE to not use the Windows theme. The
default is TRUE.

This method affects all buttons in your application that are derived from the CMFCButton class.

Returns a reference to the underlying tooltip control.

A reference to the underlying tooltip control.

Indicates whether a check box or radio button is an automatic button.

TRUE if the button has style BS_AUTOCHECKBOX or BS_AUTORADIOBUTTON; otherwise, FALSE.

Indicates whether a button is set to auto-repeat mode.

TRUE if the button is set to auto-repeat mode; otherwise, FALSE.

Use the CMFCButton::SetAutorepeatMode method to set a button to auto-repeat mode.

Indicates whether a button is a check box button.

RemarksRemarks

CMFCButton::IsChecked

BOOL IsChecked() const;

Return ValueReturn Value

RemarksRemarks

CMFCButton::IsHighlighted

BOOL IsHighlighted() const;

Return ValueReturn Value

RemarksRemarks

CMFCButton::IsPressed

BOOL IsPressed() const;

Return ValueReturn Value

RemarksRemarks

CMFCButton::IsPushed

BOOL IsPushed() const;

Return ValueReturn Value

RemarksRemarks

CMFCButton::IsRadioButton

TRUE if the button has either BS_CHECKBOX or BS_AUTOCHECKBOX style; otherwise, FALSE.

Indicates whether the current button is checked.

TRUE if the current button is checked; otherwise, FALSE.

The framework uses different ways to indicate that different kinds of buttons are checked. For example, a radio
button is checked when it contains a dot; a check box is checked when it contains an X.

Indicates whether a button is highlighted.

TRUE if the button is highlighted; otherwise, FALSE.

A button becomes highlighted when the mouse hovers over the button.

Indicates whether a button is pushed and highlighted.

TRUE if the button is pressed; otherwise, FALSE.

Indicates whether a button is pushed.

TRUE if the button is pushed; otherwise, FALSE.

BOOL IsRadioButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCButton::IsWindowsThemingEnabled

static BOOL IsWindowsThemingEnabled();

Return ValueReturn Value

CMFCButton::m_bDontUseWinXPTheme

BOOL m_bDontUseWinXPTheme;

CMFCButton::m_bDrawFocus

BOOL m_bDrawFocus;

RemarksRemarks

CMFCButton::m_bGrayDisabled

BOOL m_bGrayDisabled;

CMFCButton::m_bHighlightChecked

BOOL m_bHighlightChecked;

RemarksRemarks

Indicates whether a button is a radio button.

TRUE if the button style is BS_RADIOBUTTON or BS_AUTORADIOBUTTON; otherwise, FALSE.

Indicates whether the style of the button border corresponds to the current Windows theme.

TRUE if the style of the button border corresponds to the current Windows theme; otherwise, FALSE.

Specifies whether to use Windows XP themes when drawing the button.

Indicates whether to draw a focus rectangle around a button.

Set the m_bDrawFocus member to TRUE to specify that the framework will draw a focus rectangle around the
button's text and image if the button receives focus.

The CMFCButton constructor initializes this member to TRUE.

When TRUE, enables a disabled button to be drawn as grayed-out.

Indicates whether to highlight a BS_CHECKBOX-style button when the cursor hovers over it.

CMFCButton::m_bResponseOnButtonDown

BOOL m_bResponseOnButtonDown;

CMFCButton::m_bRightImage

BOOL m_bRightImage;

CMFCButton::m_bTopImage](#m_bTopImage)

BOOL m_bTopImage;

RemarksRemarks

CMFCButton::m_bTransparent

BOOL m_bTransparent;

RemarksRemarks

CMFCButton::m_nAlignStyle

AlignStyle m_nAlignStyle;

RemarksRemarks

VALUE DESCRIPTION

ALIGN_CENTER (Default) Aligns the button text to the center of the button.

ALIGN_LEFT Aligns the button text to the left side of the button.

Set the m_bHighlightChecked member to TRUE to specify that the framework will highlight a BS_CHECKBOX-
style button when the mouse hovers over it.

Indicates whether to respond to button down events.

Indicates whether to display an image on the right side of the button.

Indicates whether the image is on top of the button.

Set the m_bRightImage member to TRUE to specify that the framework will display the button's image to the right
of the button's text label.

Indicates whether the button is transparent.

Set the m_bTransparent member to TRUE to specify that the framework will make the button transparent. The
CMFCButton constructor initializes this member to FALSE.

Specifies the alignment of the button text.

Use one of the following CMFCButton::AlignStyle enumeration values to specify the alignment of the button text:

ALIGN_RIGHT Aligns the button text to the right side of the button.

VALUE DESCRIPTION

CMFCButton::m_bWasDblClk](#m_bWasDblClk)|

BOOL m_bWasDblClk;

CMFCButton::m_nFlatStyle

FlatStyle m_nFlatStyle;

RemarksRemarks

VALUE DESCRIPTION

BUTTONSTYLE_3D (Default) The button appears to have high, three-dimensional
sides. When the button is clicked, the button appears to be
pressed into a deep indentation.

BUTTONSTYLE_FLAT When the mouse does not pause over the button, the
button appears to be two-dimensional and does not have
raised sides. When the mouse pauses over the button, the
button appears to have low, three-dimensional sides. When
the button is clicked, the button appears to be pressed into a
shallow indentation.

BUTTONSTYLE_SEMIFLAT The button appears to have low, three-dimensional sides.
When the button is clicked, the button appears to be pressed
into a deep indentation.

BUTTONSTYLE_NOBORDERS The button does not have raised sides and always appears
two-dimensional. The button does not appear to be pressed
into an indentation when it is clicked.

ExampleExample

CMFCButton m_Button;

The CMFCButton constructor initializes this member to ALIGN_CENTER.

Indicates whether the last click event was a double-click.|

Specifies the style of the button, such as borderless, flat, semi-flat, or 3D.

The following table lists the CMFCButton::m_nFlatStyle enumeration values that specify the appearance of a
button.

The CMFCButton constructor initializes this member to BUTTONSTYLE_3D.

The following example demonstrates how to set the values of the m_nFlatStyle member variable in the
CMFCButton class. This example is part of the New Controls sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

//int m_iBorderStyle
switch (m_iBorderStyle)
{
case 0:
 m_Button.m_nFlatStyle = CMFCButton::BUTTONSTYLE_FLAT;
 break;

case 1:
 m_Button.m_nFlatStyle = CMFCButton::BUTTONSTYLE_SEMIFLAT;
 break;

case 2:
 m_Button.m_nFlatStyle = CMFCButton::BUTTONSTYLE_3D;
}

CMFCButton::OnDraw

virtual void OnDraw(
 CDC* pDC,
 const CRect& rect,
 UINT uiState);

ParametersParameters

RemarksRemarks

CMFCButton::OnDrawBorder

virtual void OnDrawBorder(
 CDC* pDC,
 CRect& rectClient,
 UINT uiState);

ParametersParameters

Called by the framework to draw a button.

pDC
[in] A pointer to a device context.

rect
[in] A reference to a rectangle that bounds the button.

uiState
[in] The current button state. For more information, see the itemState member of the DRAWITEMSTRUCT
Structure topic.

Override this method to use your own code to draw a button.

Called by the framework to draw the border of a button.

pDC
[in] A pointer to a device context.

rectClient
[in] A reference to a rectangle that bounds the button.

uiState
[in] The current button state. For more information, see the itemState member of the DRAWITEMSTRUCT

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct

RemarksRemarks

CMFCButton::OnDrawFocusRect

virtual void OnDrawFocusRect(
 CDC* pDC,
 const CRect& rectClient);

ParametersParameters

RemarksRemarks

CMFCButton::OnDrawText

virtual void OnDrawText(
 CDC* pDC,
 const CRect& rect,
 const CString& strText,
 UINT uiDTFlags,
 UINT uiState);

ParametersParameters

RemarksRemarks

CMFCButton::OnFillBackground

Structure topic.

Override this method to use your own code to draw the border.

Called by the framework to draw the focus rectangle for a button.

pDC
[in] A pointer to a device context.

rectClient
[in] A reference to a rectangle that bounds the button.

Override this method to use your own code to draw the focus rectangle.

Called by the framework to draw the button text.

pDC
[in] A pointer to a device context.

rect
[in] A reference to a rectangle that bounds the button.

strText
[in] The text to draw.

uiDTFlags
[in] Flags that specify how to format the text. For more information, see the nFormat parameter of the
CDC::DrawText method.

uiState
[in] Reserved.

Override this method to use your own code to draw the button text.

virtual void OnFillBackground(
 CDC* pDC,
 const CRect& rectClient);

ParametersParameters

RemarksRemarks

CMFCButton::SelectFont

virtual CFont* SelectFont(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCButton::SetAutorepeatMode

void SetAutorepeatMode(int nTimeDelay=500);

ParametersParameters

RemarksRemarks

CMFCButton::SetCheckedImage

Called by the framework to draw the background of the button text.

pDC
[in] A pointer to a device context.

rectClient
[in] A reference to a rectangle that bounds the button.

Override this method to use your own code to draw the background of a button.

Retrieves the font that is associated with the specified device context.

pDC
[in] A pointer to a device context.

Override this method to use your own code to retrieve the font.

Sets a button to auto-repeat mode.

nTimeDelay
[in] A nonnegative number that specifies the interval between messages that are sent to the parent window. The
interval is measured in milliseconds and its default value is 500 milliseconds. Specify zero to disable auto-repeat
message mode.

This method causes the button to constantly send WM_COMMAND messages to the parent window until the
button is released, or the nTimeDelay parameter is set to zero.

Sets the image for a checked button.

void SetCheckedImage(
 HICON hIcon,
 BOOL bAutoDestroy=TRUE,
 HICON hIconHot=NULL,
 HICON hIconDisabled=NULL,
 BOOL bAlphaBlend=FALSE);

void SetCheckedImage(
 HBITMAP hBitmap,
 BOOL bAutoDestroy=TRUE,
 HBITMAP hBitmapHot=NULL,
 BOOL bMap3dColors=TRUE,
 HBITMAP hBitmapDisabled=NULL);

void SetCheckedImage(
 UINT uiBmpResId,
 UINT uiBmpHotResId=0,
 UINT uiBmpDsblResID=0);

ParametersParameters

RemarksRemarks

CMFCButton::SetFaceColor

hIcon
[in] Handle to the icon that contains the bitmap and mask for the new image.

bAutoDestroy
[in] TRUE to specify that bitmap resources be destroyed automatically; otherwise, FALSE. The default is TRUE.

hIconHot
[in] Handle to the icon that contains the image for the selected state.

hBitmap
[in] Handle to the bitmap that contains the image for the non-selected state.

hBitmapHot
[in] Handle to the bitmap that contains the image for the selected state.

bMap3dColors
[in] Specifies a transparent color for the button background; that is, the face of the button. TRUE to use the color
value RGB(192, 192, 192); FALSE to use the color value defined by AFX_GLOBAL_DATA::clrBtnFace .

uiBmpResId
[in] Resource ID for the non-selected image.

uiBmpHotResId
[in] Resource ID for the selected image.

hIconDisabled
[in] Handle to the icon for the disabled image.

hBitmapDisabled
[in] Handle to the bitmap that contains the disabled image.

uiBmpDsblResID
[in] Resource ID of the disabled bitmap.

bAlphaBlend
[in] TRUE to use only 32-bit images that use the alpha channel; FALSE, to not use only alpha channel images.
The default is FALSE.

CMFCButton::SetFaceColor

void SetFaceColor(
 COLORREF crFace,
 BOOL bRedraw=TRUE);

ParametersParameters

RemarksRemarks

CMFCButton::SetImage

void SetImage(
 HICON hIcon,
 BOOL bAutoDestroy=TRUE,
 HICON hIconHot=NULL,
 HICON hIconDisabled=NULL,
 BOOL bAlphaBlend=FALSE);

void SetImage(
 HBITMAP hBitmap,
 BOOL bAutoDestroy=TRUE,
 HBITMAP hBitmapHot=NULL,
 BOOL bMap3dColors=TRUE,
 HBITMAP hBitmapDisabled=NULL);

void SetImage(
 UINT uiBmpResId,
 UINT uiBmpHotResId=0,
 UINT uiBmpDsblResID=0);

ParametersParameters

Sets the background color for the button text.

crFace
[in] An RGB color value.

bRedraw
[in] TRUE to redraw the screen immediately; otherwise, FALSE.

Use this method to define a new fill color for the button background (face). Note that the background is not filled
when the CMFCButton::m_bTransparent member variable is TRUE.

Sets the image for a button.

hIcon
[in] Handle to the icon that contains the bitmap and mask for the new image.

bAutoDestroy
[in] TRUE to specify that bitmap resources be destroyed automatically; otherwise, FALSE. The default is TRUE.

hIconHot
[in] Handle to the icon that contains the image for the selected state.

hBitmap
[in] Handle to the bitmap that contains the image for the non-selected state.

hBitmapHot
[in] Handle to the bitmap that contains the image for the selected state.

RemarksRemarks

ExampleExample

CMFCButton m_Button;

// int m_iImage
// IDB_BTN1_32, IDB_BTN1_HOT_32, IDB_BTN1, IDB_BTN1_HOT are int macros that are #define.
if (m_iImage == 1)
{
 m_Button.SetImage((HBITMAP) NULL);
}
else
{
 m_Button.SetImage(IDB_BTN1_32, IDB_BTN1_HOT_32);
}

CMFCButton::SetMouseCursor

void SetMouseCursor(HCURSOR hcursor);

ParametersParameters

RemarksRemarks

uiBmpResId
[in] Resource ID for the non-selected image.

uiBmpHotResId
[in] Resource ID for the selected image.

bMap3dColors
[in] Specifies a transparent color for the button background; that is, the face of the button. TRUE to use the color
value RGB(192, 192, 192); FALSE to use the color value defined by AFX_GLOBAL_DATA::clrBtnFace .

hIconDisabled
[in] Handle to the icon for the disabled image.

hBitmapDisabled
[in] Handle to the bitmap that contains the disabled image.

uiBmpDsblResID
[in] Resource ID of the disabled bitmap.

bAlphaBlend
[in] TRUE to use only 32-bit images that use the alpha channel; FALSE, to not use only alpha channel images.
The default is FALSE.

The following example demonstrates how to use various versions of the SetImage method in the CMFCButton

class. The example is part of the New Controls sample.

Sets the cursor image.

hcursor
[in] The handle of a cursor.

Use this method to associate a cursor image, such as the hand cursor, with the button. The cursor is loaded from
the application resources.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ExampleExample

CMFCButton m_Button;

// int m_iCursor
void CPage1::OnSetCursor()
{
 UpdateData();

 switch (m_iCursor)
 {
 case 0:
 m_Button.SetMouseCursor(NULL);
 break;

 case 1:
 m_Button.SetMouseCursorHand();
 break;

 case 2:
 m_Button.SetMouseCursor(AfxGetApp()->LoadCursor(IDC_CURSOR));
 break;
 }
}

CMFCButton::SetMouseCursorHand

void SetMouseCursorHand();

RemarksRemarks

CMFCButton::SetStdImage

void SetStdImage(
 CMenuImages::IMAGES_IDS id,
 CMenuImages::IMAGE_STATE state=CMenuImages::ImageBlack,
 CMenuImages::IMAGES_IDS idDisabled=(CMenuImages::IMAGES_IDS)0);

ParametersParameters

The following example demonstrates how to use the SetMouseCursor method in the CMFCButton class. The
example is part of the code in the New Controls sample.

Sets the cursor to the image of a hand.

Use this method to associate the cursor image of a hand with the button. The cursor is loaded from the
application resources.

Uses a CMenuImages object to set the button image.

id
[in] One of the button image identifiers that is defined in the CMenuImage::IMAGES_IDS enumeration. The image
values specify images such as arrows, pins, and radio buttons.

state
[in] One of the button image state identifiers that is defined in the CMenuImages::IMAGE_STATE enumeration. The
image states specify button colors such as black, gray, light gray, white, and dark gray. The default value is
CMenuImages::ImageBlack .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CMFCButton::SetTextColor

void SetTextColor(COLORREF clrText);

ParametersParameters

RemarksRemarks

CMFCButton::SetTextHotColor

void SetTextHotColor(COLORREF clrTextHot);

ParametersParameters

RemarksRemarks

CMFCButton::SetTooltip

void SetTooltip(LPCTSTR lpszToolTipText);

ParametersParameters

RemarksRemarks

CMFCButton::SizeToContent

virtual CSize SizeToContent(BOOL bCalcOnly=FALSE);

ParametersParameters

idDisabled
[in] One of the button image identifiers that is defined in the CMenuImage::IMAGES_IDS enumeration. The image
indicates that the button is disabled. The default value is the first button image (CMenuImages::IdArrowDown).

Sets the color of the button text for a button that is not selected.

clrText
[in] An RGB color value.

Sets the color of the button text for a button that is selected.

clrTextHot
[in] An RGB color value.

Associates a tooltip with a button.

lpszToolTipText
[in] Pointer to the text for the tooltip. Specify NULL to disable the tooltip.

Resizes a button to contain its button text and image.

bCalcOnly
[in] TRUE to calculate, but not change, the new size of the button; FALSE to change the size of the button. The
default is FALSE.

Return ValueReturn Value

RemarksRemarks

See also

A CSize object that contains the new size of the button.

By default, this method calculates a new size that includes a horizontal margin of 10 pixels and a vertical margin
of 5 pixels.

Hierarchy Chart
Classes
CMFCLinkCtrl Class
CMFCColorButton Class
CMFCMenuButton Class

CMFCCaptionBar Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
class CMFCCaptionBar : public CPane

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCCaptionBar::Create Creates the caption bar control and attaches it to the
CMFCCaptionBar object.

CMFCCaptionBar::DoesAllowDynInsertBefore Indicates whether another pane can be dynamically inserted
between the caption bar and its parent frame. (Overrides
CBasePane::DoesAllowDynInsertBefore.)

CMFCCaptionBar::EnableButton Enables or disables the button on the caption bar.

CMFCCaptionBar::GetAlignment Returns the alignment of the specified element.

CMFCCaptionBar::GetBorderSize Returns the border size of the caption bar.

CMFCCaptionBar::GetButtonRect Retrieves the bounding rectangle of the button on the
caption bar.

CMFCCaptionBar::GetMargin Returns the distance between the edge of the caption bar
elements and the edge of the caption bar control.

CMFCCaptionBar::IsMessageBarMode Specifies whether the caption bar is in the message bar mode.

CMFCCaptionBar::RemoveBitmap Removes the bitmap image from the caption bar.

CMFCCaptionBar::RemoveButton Removes the button from the caption bar.

CMFCCaptionBar::RemoveIcon Removes the icon from the caption bar.

CMFCCaptionBar::RemoveText Removes the text label from the caption bar.

CMFCCaptionBar::SetBitmap Sets the bitmap image for the caption bar.

CMFCCaptionBar::SetBorderSize Sets the border size of the caption bar.

A CMFCCaptionBar object is a control bar that can display three elements: a button, a text label, and a bitmap. It can
only display one element of each type at a time. You can align each element to the left or right edges of the control
or to the center. You can also apply a flat or 3D style to the top and bottom borders of the caption bar.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfccaptionbar-class.md

CMFCCaptionBar::SetButton Sets the button for the caption bar.

CMFCCaptionBar::SetButtonPressed Specifies whether the button stays pressed.

CMFCCaptionBar::SetButtonToolTip Sets the tooltip for the button.

CMFCCaptionBar::SetFlatBorder Sets the border style of the caption bar.

CMFCCaptionBar::SetIcon Sets the icon for a caption bar.

CMFCCaptionBar::SetImageToolTip Sets the tooltip for the image for the caption bar.

CMFCCaptionBar::SetMargin Sets the distance between the edge of the caption bar
element and the edge of the caption bar control.

CMFCCaptionBar::SetText Sets the text label for the caption bar.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCCaptionBar::OnDrawBackground Called by the framework to fill the background of the caption
bar.

CMFCCaptionBar::OnDrawBorder Called by the framework to draw the border of the caption
bar.

CMFCCaptionBar::OnDrawButton Called by the framework to draw the caption bar button.

CMFCCaptionBar::OnDrawImage Called by the framework to draw the caption bar image.

CMFCCaptionBar::OnDrawText Called by the framework to draw the caption bar text.

Data MembersData Members

NAME DESCRIPTION

CMFCCaptionBar::m_clrBarBackground The background color of the caption bar.

CMFCCaptionBar::m_clrBarBorder The color of the border of the caption bar.

CMFCCaptionBar::m_clrBarText The color of the caption bar text.

Remarks
To create a caption bar, follow these steps:

1. Construct the CMFCCaptionBar object. Typically, you would add the caption bar to a frame window class.

2. Call the CMFCCaptionBar::Create method to create the caption bar control and attach it to the
CMFCCaptionBar object.

Example

CMFCCaptionBar m_wndMessageBar;

BOOL CMainFrame::CreateMessageBar()
{
 // The this pointer points to a CMainFrame class which extends the CFrameWndEx class.
 if (!m_wndMessageBar.Create(WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS, this, ID_VIEW_MESSAGEBAR, -1, TRUE))
 {
 TRACE0("Failed to create caption bar\n");
 return FALSE;
 }

 m_wndMessageBar.SetFlatBorder(FALSE);
 m_wndMessageBar.SetMargin(10);
 m_wndMessageBar.SetButton(_T("Options..."), ID_TOOLS_OPTIONS, CMFCCaptionBar::ALIGN_LEFT, FALSE);
 m_wndMessageBar.SetButtonToolTip(_T("Click here to see more options"));

 m_wndMessageBar.SetText(_T("Welcome to the MFC MSOffice2007 demonstration!"), CMFCCaptionBar::ALIGN_LEFT);

 m_wndMessageBar.SetBitmap(IDB_INFO, RGB(255, 255, 255), FALSE, CMFCCaptionBar::ALIGN_LEFT);
 m_wndMessageBar.SetImageToolTip(_T("Important"), _T("Please take a look at MSOffice2007Demo source code to
learn how to create advanced user interface in minutes."));

 return TRUE;
}

Inheritance Hierarchy

3. Call CMFCCaptionBar::SetButton, CMFCCaptionBar::SetText, CMFCCaptionBar::SetIcon, and
CMFCCaptionBar::SetBitmap to set the caption bar elements.

When you set the button element, you must assign a command ID to the button. When the user clicks the button,
the caption bar routes the WM_COMMAND messages that have this ID to the parent frame window.

The caption bar can also work in message bar mode, which emulates the message bar that appears in Microsoft
Office 2007 applications. In message bar mode, the caption bar displays a bitmap, a message, and a button (which
typically opens a dialog box.) You can assign a tooltip to the bitmap.

To enable message bar mode, call CMFCCaptionBar::Create and set the fourth parameter (bIsMessageBarMode)
to TRUE.

The following example demonstrates how to use various methods in the CMFCCaptionBar class. The example
shows how to create the caption bar control, set a 3D border of the caption bar, set the distance, in pixels, between
the edge of the caption bar elements and the edge of the caption bar control, set the button for the caption bar, set
the tooltip for the button, set the text label for the caption bar, set the bitmap image for the caption bar, and set the
tooltip for the image in the caption bar. This code snippet is part of the MS Office 2007 Demo sample.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCCaptionBar

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CMFCCaptionBar::Create

BOOL Create(
 DWORD dwStyle,
 CWnd* pParentWnd,
 UINT uID,
 int nHeight=-1,
 BOOL bIsMessageBarMode=FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCCaptionBar::DoesAllowDynInsertBefore

virtual BOOL DoesAllowDynInsertBefore() const;

Return ValueReturn Value

RemarksRemarks

CMFCCaptionBar::EnableButton

Header: afxcaptionbar.h

Creates the caption bar control and attaches it to the CMFCCaptionBar object.

dwStyle
The logical OR combination of the caption bar styles.

pParentWnd
The parent window of the caption bar control.

uID
The ID of caption bar control.

nHeight
The height, in pixels, of the caption bar control. If it is -1, the height is calculated according to the height of the
icon, the text and the button that the caption bar control displays.

bIsMessageBarMode
TRUE if the caption bar is in the message bar mode; FALSE otherwise.

TRUE if the caption bar control is created successfully; FALSE otherwise.

You construct a CMFCCaptionBar object in two steps. First you call the constructor, and then you call the Create
method, which creates the Windows control and attaches it to the CMFCCaptionBar object.

Indicates whether another pane can be dynamically inserted between the caption bar and its parent frame.

Returns FALSE unless overridden.

Enables or disables the button on the caption bar.

void EnableButton(BOOL bEnable=TRUE);

ParametersParameters

CMFCCaptionBar::GetAlignment

BarElementAlignment GetAlignment(BarElement elem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCCaptionBar::GetBorderSize

int GetBorderSize() const;

Return ValueReturn Value

CMFCCaptionBar::GetButtonRect

CRect GetButtonRect() const;

Return ValueReturn Value

CMFCCaptionBar::GetMargin

bEnable
[in] TRUE to enable the button, FALSE to disable the button.

Returns the alignment of the specified element.

elem
[in] A caption bar element for which to retrieve alignment.

The alignment of an element, such as a button, a bitmap, text, or an icon.

The alignment of the element can be one of the following values:

ALIGN_INVALID

ALIGN_LEFT

ALIGN_RIGHT

ALIGN_CENTER

Returns the border size of the caption bar.

The size, in pixels, of the border.

Retrieves the bounding rectangle of the button on the caption bar.

A CRect object that contains the coordinates of the bounding rectangle of the button on the caption bar.

Returns the distance between the edge of the caption bar elements and the edge of the caption bar control.

int GetMargin() const;

Return ValueReturn Value

CMFCCaptionBar::IsMessageBarMode

BOOL IsMessageBarMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCCaptionBar::m_clrBarBackground

COLORREF m_clrBarBackground

CMFCCaptionBar::m_clrBarBorder

COLORREF m_clrBarBorder

CMFCCaptionBar::m_clrBarText

COLORREF m_clrBarText

CMFCCaptionBar::OnDrawBackground

virtual void OnDrawBackground(
 CDC* pDC,
 CRect rect);

ParametersParameters

The distance, in pixels, between the edge of the caption bar elements and the edge of the caption bar control.

Specifies whether the caption bar is in the message bar mode.

TRUE if the caption bar is in the message bar mode; FALSE otherwise.

In the message bar mode, the caption bar displays an image with a tooltip, a message text, and a button.

The background color of the caption bar.

The color of the border of the caption bar.

The color of the caption bar text.

Called by the framework to fill the background of the caption bar.

pDC
[in] A pointer to the device context of the caption bar.

rect
[in] The bounding rectangle to fill.

RemarksRemarks

CMFCCaptionBar::OnDrawBorder

virtual void OnDrawBorder(
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCCaptionBar::OnDrawButton

virtual void OnDrawButton(
 CDC* pDC,
 CRect rect,
 const CString& strButton,
 BOOL bEnabled);

ParametersParameters

RemarksRemarks

CMFCCaptionBar::OnDrawImage

The OnDrawBackground method is called when the background of the caption bar is about to be filled. The default
implementation fills the background by using the CMFCCaptionBar::m_clrBarBackground color.

Override this method in a CMFCCaptionBar derived class to customize the appearance of the caption bar.

Called by the framework to draw the border of the caption bar.

pDC
[in] A device context that is used to display the borders.

rect
[in] The bounding rectangle.

By default, the borders have the flat style.

Override this method in a CMFCCaptionBar derived class to customize the appearance of the caption bar's borders.

Called by the framework to draw the caption bar button.

pDC
[in] A pointer to a device context that is used to display the button.

rect
[in] The bounding rectangle of the button.

strButton
[in] The button's text label.

bEnabled
[in] TRUE if the button is enabled; FALSE otherwise.

Override this method in a CMFCCaptionBar derived class to customize the appearance of the caption bar's button.

Called by the framework to draw the caption bar image.

virtual void OnDrawImage(
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCCaptionBar::OnDrawText

virtual void OnDrawText(
 CDC* pDC,
 CRect rect,
 const CString& strText);

ParametersParameters

RemarksRemarks

CMFCCaptionBar::RemoveBitmap

void RemoveBitmap();

CMFCCaptionBar::RemoveButton

void RemoveButton();

RemarksRemarks

pDC
[in] A pointer to a device context that is used to display the image.

rect
[in] Specifies the bounding rectangle of the image.

Override this method in a CMFCCaptionBar derived class to customize the image appearance.

Called by the framework to draw the caption bar text.

pDC
[in] A pointer to a device context that is used to display the button.

rect
[in] The bounding rectangle of the text.

strText
[in] The text string to display.

The default implementation displays the text by using CDC::DrawText and CMFCCaptionBar::m_clrBarText color.

Override this method in a CMFCCaptionBar derived class to customize the appearance of the caption bar's text.

Removes the bitmap image from the caption bar.

Removes the button from the caption bar.

The layout of caption bar elements are adjusted automatically.

CMFCCaptionBar::RemoveIcon

void RemoveIcon();

CMFCCaptionBar::RemoveText

void RemoveText();

CMFCCaptionBar::SetBitmap

void SetBitmap(
 HBITMAP hBitmap,
 COLORREF clrTransparent,
 BOOL bStretch=FALSE,
 BarElementAlignment bmpAlignment=ALIGN_RIGHT);

void SetBitmap(
 UINT uiBmpResID,
 COLORREF clrTransparent,
 BOOL bStretch=FALSE,
 BarElementAlignment bmpAlignment=ALIGN_RIGHT);

ParametersParameters

RemarksRemarks

Removes the icon from the caption bar.

Removes the text label from the caption bar.

Sets the bitmap image for the caption bar.

hBitmap
[in] The handle to the bitmap to set.

clrTransparent
[in] An RGB value that specifies the transparent color of the bitmap.

bStretch
[in] If TRUE, the bitmap is stretched if it does not fit to the image bounding rectangle. Otherwise the bitmap is not
stretched.

bmpAlignment
[in] The alignment of the bitmap.

Use this method to set a bitmap on a caption bar.

The previous bitmap is destroyed automatically. If the caption bar displays an icon because you called the
CMFCCaptionBar::SetIcon method, the bitmap will not be displayed unless you remove the icon by calling
CMFCCaptionBar::RemoveIcon.

The bitmap is aligned as specified by the bmpAlignment parameter. This parameter can be one of the following
BarElementAlignment values:

ALIGN_INVALID

ALIGN_LEFT

CMFCCaptionBar::SetBorderSize

void SetBorderSize(int nSize);

ParametersParameters

CMFCCaptionBar::SetButton

void SetButton(
 LPCTSTR lpszLabel,
 UINT uiCmdUI,
 BarElementAlignment btnAlignmnet=ALIGN_LEFT,
 BOOL bHasDropDownArrow=TRUE);

ParametersParameters

CMFCCaptionBar::SetButtonPressed

void SetButtonPressed(BOOL bPresed=TRUE);

ParametersParameters

CMFCCaptionBar::SetButtonToolTip

ALIGN_RIGHT

ALIGN_CENTER

Sets the border size of the caption bar.

nSize
[in] The new size, in pixels, of the caption bar border.

Sets the button for the caption bar.

lpszLabel
The button's command label.

uiCmdUI
The button's command ID.

btnAlignmnet
The button's alignment.

bHasDropDownArrow
TRUE if the button displays a drop down arrow, FALSE otherwise.

Specifies whether the button stays pressed.

bPresed
TRUE if the button keeps its pressed state, FALSE otherwise.

Sets the tooltip for the button.

void SetButtonToolTip(
 LPCTSTR lpszToolTip,
 LPCTSTR lpszDescription=NULL);

ParametersParameters

CMFCCaptionBar::SetFlatBorder

void SetFlatBorder(BOOL bFlat=TRUE);

ParametersParameters

CMFCCaptionBar::SetIcon

void SetIcon(
 HICON hIcon,
 BarElementAlignment iconAlignment=ALIGN_RIGHT);

ParametersParameters

RemarksRemarks

CMFCCaptionBar::SetImageToolTip

lpszToolTip
[in] The tooltip caption.

lpszDescription
[in] The tooltip description.

Sets the border style of the caption bar.

bFlat
[in] TRUE if the border of a caption bar is flat. FALSE if the border is 3D.

Sets the icon for a caption bar.

hIcon
[in] The handle to the icon to set.

iconAlignment
[in] The alignment of the icon.

Caption bars can display either icons or bitmaps. See CMFCCaptionBar::SetBitmap to find out how to display a
bitmap. If you set both an icon and a bitmap, the icon is always displayed. Call CMFCCaptionBar::RemoveIcon to
remove an icon from the caption bar.

The icon is aligned according to the iconAlignment parameter. It can be one of the following BarElementAlignment
values:

ALIGN_INVALID

ALIGN_LEFT

ALIGN_RIGHT

ALIGN_CENTER

void SetImageToolTip(
 LPCTSTR lpszToolTip,
 LPCTSTR lpszDescription=NULL);

ParametersParameters

CMFCCaptionBar::SetMargin

void SetMargin(int nMargin);

ParametersParameters

CMFCCaptionBar::SetText

void SetText(
 const CString& strText,
 BarElementAlignment textAlignment=ALIGN_RIGHT);

ParametersParameters

RemarksRemarks

See also

Sets the tooltip for the image in the caption bar.

lpszToolTip
[in] The text of the tooltip.

lpszDescription
[in] The tooltip description.

Sets the distance between the edge of the caption bar element and the edge of the caption bar control.

nMargin
[in] The distance, in pixels, between the edge of the caption bar elements and the edge of the caption bar control.

Sets the text label for the caption bar.

strText
[in] The text string to set.

textAlignment
[in] The text alignment.

The text label is aligned as specified by the textAlignment parameter. It can be one of the following
BarElementAlignment values:

ALIGN_INVALID

ALIGN_LEFT

ALIGN_RIGHT

ALIGN_CENTER

Hierarchy Chart
Classes

CMFCCaptionButton Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCCaptionButton : public CObject

Members
ConstructorsConstructors

NAME DESCRIPTION

CMFCCaptionButton::CMFCCaptionButton Constructs a CMFCCaptionButton object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCCaptionButton::GetHit Returns the command represented by the button.

CMFCCaptionButton::GetIconID Returns the image ID associated with the button.

CMFCCaptionButton::GetRect Returns the rectangle occupied by the button.

CMFCCaptionButton::GetSize Returns the width and height of the button.

CMFCCaptionButton::IsMiniFrameButton Indicates whether the title bar height is set to mini size.

CMFCCaptionButton::Move Sets the button draw location and window show state.

CMFCCaptionButton::OnDraw Draws the caption button.

CMFCCaptionButton::SetMiniFrameButton Sets the mini size of the title bar.

Remarks

The CMFCCaptionButton class implements a button that is displayed on the caption bar for a docking pane or a
mini-frame window. Typically, the framework creates caption buttons automatically.

You can derive a class from CPaneFrameWnd Class and use the protected method, AddButton , to add caption
buttons to a mini frame window.

CPaneFrameWnd.h defines command IDs for two types of caption buttons:

AFX_CAPTION_BTN_PIN, which displays a pin button when the docking pane supports auto-hide mode.

AFX_CAPTION_BTN_CLOSE, which displays a Close button when the pane can be closed or hidden.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfccaptionbutton-class.md

Example

CMFCCaptionButton* captionButton = new CMFCCaptionButton(AFX_HTCLOSE);
captionButton->SetMiniFrameButton(true);

Inheritance Hierarchy

Requirements

CMFCCaptionButton::CMFCCaptionButton

CMFCCaptionButton();

CMFCCaptionButton(
 UINT nHit,
 BOOL bLeftAlign = FALSE);

ParametersParameters

VALUE COMMAND

AFX_HTCLOSE Close button.

HTMINBUTTON Minimize button.

HTMAXBUTTON Maximize button.

AFX_HTLEFTBUTTON Left arrow button.

AFX_HTRIGHTBUTTON Right arrow button.

AFX_HTMENU Down arrow menu button.

HTNOWHERE The default value; represents no command.

RemarksRemarks

The following example demonstrates how to construct a CMFCCaptionButton object and set the mini size of the title
bar.

CObject

CMFCCaptionButton

Header: afxcaptionbutton.h

Constructs a CMFCCaptionButton object.

nHit
[in] The command associated with the button.

bLeftAlign
[in] Specifies whether the button is aligned to the left.

The following table lists possible values for the nHit parameter.

CMFCCaptionButton::GetHit

UINT GetHit() const;

Return ValueReturn Value

VALUE COMMAND

AFX_HTCLOSE Close button.

HTMINBUTTON Minimize button.

HTMAXBUTTON Maximize button.

AFX_HTLEFTBUTTON Left arrow button.

AFX_HTRIGHTBUTTON Right arrow button.

AFX_HTMENU Down arrow menu button.

HTNOWHERE The default value; represents no command.

CMFCCaptionButton::GetIconID

virtual CMenuImages::IMAGES_IDS GetIconID(
 BOOL bHorz,
 BOOL bMaximized = FALSE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCCaptionButton::GetRect

By default, caption buttons are not associated with a command.

Caption buttons are aligned either on the right or left.

Returns the command represented by the button.

The command represented by the button.

The following table lists possible return values.

Returns the image ID associated with the button.

bHorz
[in] TRUE for left or right arrow image IDs; FALSE for up or down arrow image IDs.

bMaximized
[in] TRUE for a maximize image ID; FALSE for a minimize image ID.

The image ID.

The parameters specify image IDs for minimize or maximize caption buttons.

virtual CRect GetRect() const;

Return ValueReturn Value

RemarksRemarks

CMFCCaptionButton::GetSize

static CSize GetSize();

Return ValueReturn Value

RemarksRemarks

CMFCCaptionButton::IsMiniFrameButton

BOOL IsMiniFrameButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCCaptionButton::Move

void Move(
 const CPoint& ptTo,
 BOOL bHide = FALSE);

ParametersParameters

CMFCCaptionButton::OnDraw

Returns the rectangle occupied by the button.

The rectangle that represents the location of the button.

If you cannot see the button, the size returned is 0.

Returns the width and height of the button.

The outer dimensions of the button.

The size returned includes button margin and border.

Indicates whether the title bar height is set to mini size.

TRUE if the caption is set to mini size; otherwise FALSE.

Sets the button draw location and window show state.

ptTo
[in] The new location.

bHide
[in] Whether to show the button.

Draws the caption button.

virtual void OnDraw(
 CDC* pDC,
 BOOL bActive,
 BOOL bHorz = TRUE,
 BOOL bMaximized = TRUE,
 BOOL bDisabled = FALSE);

ParametersParameters

RemarksRemarks

CMFCCaptionButton::SetMiniFrameButton

void SetMiniFramebutton(BOOL bSet = TRUE);

ParametersParameters

See also

pDC
[in] Pointer to a device context for the button.

bActive
[in] Whether to draw an active button image.

bHorz
[in] Reserved for use in a derived class.

bMaximized
[in] Whether to draw a maximized button image.

bDisabled
[in] Whether to draw an enabled button image.

The bMaximized parameter is used when the button is a maximize or minimize button.

Sets the mini size of the title bar.

bSet
[in] TRUE for mini title bar height; FALSE for default title bar height.

Hierarchy Chart
Classes
CPaneFrameWnd Class
CDockablePane Class

CMFCCmdUsageCount Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMFCCmdUsageCount : public CObject

Members
Public ConstructorsPublic Constructors

Name Description

CMFCCmdUsageCount::CMFCCmdUsageCount Default constructor.

CMFCCmdUsageCount::~CMFCCmdUsageCount Destructor.

Public MethodsPublic Methods

Name Description

CMFCCmdUsageCount::AddCmd Increments by one the counter that is associated with the
given command.

CMFCCmdUsageCount::GetCount Retrieves the usage count that is associated with the given
command ID.

CMFCCmdUsageCount::HasEnoughInformation Determines whether this object has collected the minimum
amount of tracking data.

CMFCCmdUsageCount::IsFreqeuntlyUsedCmd Determines whether the given command is frequently used.

CMFCCmdUsageCount::Reset Clears the usage count of all commands.

CMFCCmdUsageCount::Serialize Reads this object from an archive or writes it to an archive.
(Overrides CObject::Serialize.)

CMFCCmdUsageCount::SetOptions Sets the values of shared CMFCCmdUsageCount class data
members.

Data MembersData Members

Name Description

Tracks the usage count of Windows messages, such as when the user selects an item from a menu.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfccmdusagecount-class.md

m_CmdUsage A CMap object that maps commands to their usage counts.

m_nMinUsagePercentage The minimum usage percentage for a command to be
frequently used.

m_nStartCount The start counter that is used to determine whether this
object has collected the minimum amount of tracking data.

m_nTotalUsage The count of all tracked commands.

RemarksRemarks

Inheritance Hierarchy

Requirements

CMFCCmdUsageCount::AddCmd

void AddCmd(UINT uiCmd);

ParametersParameters

Parameter Description

uiCmd [in] Specifies the command counter to increment.

RemarksRemarks

The CMFCCmdUsageCount class maps each numeric Windows message identifier to a 32-bit unsigned integer counter.
CMFCToolBar uses this class to display frequently-used toolbar items. For more information about CMFCToolBar ,

see CMFCToolBar Class.

You can persist CMFCCmdUsageCount class data between runs of your program. Use the
CMFCCmdUsageCount::Serialize method to serialize class member data and the
CMFCCmdUsageCount::SetOptions method to set shared member data.

CObject

CMFCCmdUsageCount

Header: afxcmdusagecount.h

Increments by one the counter that is associated with the given command.

This method adds a new entry to the map structure of command counts, m_CmdUsage , if the entry does not already
exist.

This method does nothing in the following cases:

The toolbar framework is in customization mode (the CMFCToolBar::IsCustomizeMode method returns a
nonzero value).

The command refers to a submenu or menu separator (uiCmd equals 0 or -1).

CMFCCmdUsageCount::GetCount

UINT GetCount(UINT uiCmd) const;

ParametersParameters

Parameter Description

uiCmd [in] The ID of the command counter to retrieve.

Return ValueReturn Value

CMFCCmdUsageCount::HasEnoughInformation

BOOL HasEnoughInformation() const;

Return ValueReturn Value

RemarksRemarks

CMFCCmdUsageCount::IsFreqeuntlyUsedCmd

BOOL IsFreqeuntlyUsedCmd(UINT uiCmd) const;

ParametersParameters

Parameter Description

uiCmd [in] Specifies the command to check.

Return ValueReturn Value

RemarksRemarks

uiCmd refers to a standard command (the global IsStandardCommand function returns a nonzero value).

Retrieves the usage count that is associated with the given command ID.

The usage count that is associated with the given command ID.

Determines whether this object has received the minimum amount of tracking data.

Nonzero if this object has received the minimum amount of tracking data; otherwise 0.

This method returns a nonzero value if the total count, m_nTotalUsage , of all tracked commands is equal to or
larger than the initial count, m_nStartCount . By default, the framework sets the initial count 0. You can override this
value by using the CMFCCmdUsageCount::SetOptions method.

This method is used by CMFCMenuBar::IsShowAllCommands to determine whether to show all available menu
commands.

Determines whether the given command is frequently used.

Nonzero if the command is frequently used; otherwise 0.

CMFCCmdUsageCount::Reset

void Reset();

RemarksRemarks

CMFCCmdUsageCount::Serialize

virtual void Serialize(CArchive& ar);

ParametersParameters

Parameter Description

ar [in] A CArchive object to serialize from or to.

RemarksRemarks

CMFCCmdUsageCount::SetOptions

static BOOL __stdcall SetOptions(
 UINT nStartCount,
 UINT nMinUsagePercentage);

ParametersParameters

Parameter Description

nStartCount [in] The new initial count of all tracked commands.

This method returns 0 if the total command usage, m_nTotalUsage , is 0. Otherwise, this method returns nonzero if
the percentage of which the specified command is used is larger than the minimum percentage,
m_nMinUsagePercentage . By default, the framework sets the minimum percentage to 5. You can override this value

by using the CMFCCmdUsageCount::SetOptions method. If the minimum percentage is 0, this method returns
nonzero if the specified command count is larger than 0.

CMFCToolBar::IsCommandRarelyUsed uses this method to determine whether a command is rarely used.

Clears the usage count of all commands.

Call this method to clear all entries from the map structure of command counts, m_CmdUsage , and to reset the total
command usage, m_nTotalUsage , counter to 0.

Reads this object from an archive, or writes it to an archive.

This method serializes the map structure of command counts, m_CmdUsage , and the total command usage,
m_nTotalUsage , counter from or to the specified archive.

For serialization examples, see Serialization: Serializing an Object.

Sets the values of shared CMFCCmdUsageCount class data members.

nMinUsagePercentage [in] The new minimum usage percentage.

Return ValueReturn Value

RemarksRemarks

See also

TRUE if the method succeeds, FALSE if the nMinUsagePercentage parameter is larger than or equal to 100.

This method sets the shared CMFCCmdUsageCount class data members m_nStartCount and m_nMinUsagePercentage to
nStartCount and nMinUsagePercentage, respectively. m_nStartCount is used by the
CMFCCmdUsageCount::HasEnoughInformation method to determine whether this object has collected the
minimum amount of tracking data. m_nMinUsagePercentage is used by the
CMFCCmdUsageCount::IsFreqeuntlyUsedCmd method to determine whether a given command is frequently
used.

In Debug builds this method generates an assertion failure if the nMinUsagePercentage parameter is larger than
or equal to 100.

Hierarchy Chart
Classes
CMFCToolBar Class

CMFCColorBar Class
3/4/2019 • 18 minutes to read • Edit Online

Syntax
class CMFCColorBar : public CMFCPopupMenuBar

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CMFCColorBar::CMFCColorBar Constructs a CMFCColorBar object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCColorBar::ContextToSize Calculates the vertical and horizontal margins that are
required to contain the buttons on the color bar control and
then adjusts the location of those buttons.

CMFCColorBar::CreateControl Creates a color bar control window, attaches it to the
CMFCColorBar object, and resizes the control to contain the

specified palette of colors.

CMFCColorBar::Create Creates a color bar control window and attaches it to the
CMFCColorBar object.

CMFCColorBar::EnableAutomaticButton Shows or hides the automatic button.

CMFCColorBar::EnableOtherButton Enables or disables the display of a dialog box that lets the
user select more colors.

CMFCColorBar::GetColor Retrieves the currently selected color.

CMFCColorBar::GetCommandID Retrieves the command ID of the current color bar control.

CMFCColorBar::GetHighlightedColor Retrieves the color that signifies that a color button has the
focus; that is, the button is hot.

CMFCColorBar::GetHorzMargin Retrieves the horizontal margin, which is the space between
the left or right color cell and the client area boundary.

CMFCColorBar::GetVertMargin Retrieves the vertical margin, which is the space between the
top or bottom color cell and the client area boundary.

The CMFCColorBar class represents a docking control bar that can select colors in a document or application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfccolorbar-class.md

CMFCColorBar::IsTearOff Indicates whether the current color bar is dockable.

CMFCColorBar::SetColor Sets the color that is currently selected.

CMFCColorBar::SetColorName Sets a new name for a specified color.

CMFCColorBar::SetCommandID Sets a new command ID for a color bar control.

CMFCColorBar::SetDocumentColors Sets the list of colors that are used in the current document.

CMFCColorBar::SetHorzMargin Sets the horizontal margin, which is the space between the
left or right color cell and the client area boundary.

CMFCColorBar::SetVertMargin Sets the vertical margin, which is the space between the top
or bottom color cell and the client area boundary.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCColorBar::AdjustLocations Adjusts the positions of the color buttons on the color bar
control.

CMFCColorBar::AllowChangeTextLabels Indicates whether the text label of color buttons can change.

CMFCColorBar::AllowShowOnList Indicates whether the color bar control object can appear in a
toolbar list during the customization process.

CMFCColorBar::CalcSize Called by the framework as part of the layout calculation
process.

CMFCColorBar::CreatePalette Initializes a palette with the colors in a specified array of
colors.

CMFCColorBar::GetColorGridSize Calculates the number of rows and columns in the grid of a
color bar control.

CMFCColorBar::GetExtraHeight Calculates the additional height that the current color bar
requires to display miscellaneous user interface elements
such as the Other button, document colors, and so on.

CMFCColorBar::InitColors Initializes an array of colors with the colors in a specified
palette or the system default palette.

CMFCColorBar::OnKey Called by the framework when a user presses a keyboard
button.

CMFCColorBar::OnSendCommand Called by the framework to close a hierarchy of popup
controls.

CMFCColorBar::OnUpdateCmdUI Called by the framework to enable or disable a user-interface
item of a color bar control before the item is displayed.

CMFCColorBar::OpenColorDialog Opens a color dialog box.

CMFCColorBar::Rebuild Completely redraws the color bar control.

CMFCColorBar::SelectPalette Sets the logical palette of the specified device context to the
palette of the parent button of the current color bar control.

CMFCColorBar::SetPropList Sets the m_pWndPropList protected data member to the
specified pointer to a property grid control.

CMFCColorBar::ShowCommandMessageString Requests the frame window that owns the color bar control
to update the message line in the status bar.

NAME DESCRIPTION

Protected Data MembersProtected Data Members

NAME DESCRIPTION

m_bInternal A Boolean field that determines whether mouse events are
processed. Typically, mouse events are processed when this
field is TRUE and customization mode is FALSE.

m_bIsEnabled A Boolean that indicates whether a control is enabled.

m_bIsTearOff A Boolean that indicates whether the color bar control
supports docking.

m_BoxSize A CSize object that specifies the size of a cell in a color bar
grid.

m_bShowDocColorsWhenDocked A Boolean that indicates whether to show document colors
when the color bar is docked. For more information, see
CMFCColorBar::SetDocumentColors.

m_bStdColorDlg A Boolean that indicates whether to show the standard
system color dialog box or the CMFCColorDialog dialog box.
For more information, see
CMFCColorBar::EnableOtherButton.

m_ColorAutomatic A COLORREF that stores the current automatic color. For
more information, see CMFCColorBar::EnableOtherButton.

m_ColorNames An CMap object that associates a set of RGB colors with their
names.

m_colors A CArray of COLORREF values that contains the colors that
are displayed in the color bar control.

m_ColorSelected A COLORREF value that is the color that the user has
currently selected from the color bar control.

m_lstDocColors A CList of COLORREF values that contains the colors that are
currently used in a document.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref

m_nCommandID An unsigned integer that is the command ID of a color
button.

m_nHorzMargin An integer that is the horizontal margin between the color
buttons in a grid of colors.

m_nHorzOffset An integer that is the horizontal offset to the center of the
color button. This value is significant if the button displays
text or an image in addition to a color.

m_nNumColumns An integer that is the number of columns in a color bar
control grid of colors.

m_nNumColumnsVert An integer that is the number of columns in a vertically
oriented grid of colors.

m_nNumRowsHorz An integer that is the number of columns in a horizontally
oriented grid of colors.

m_nRowHeight An integer that is the height of a row of color buttons in a
grid of colors.

m_nVertMargin An integer that is the vertical margin between the color
buttons in a grid of colors.

m_nVertOffset An integer that is the vertical offset to the center of the color
button. This value is significant if the button displays text or
an image in addition to a color.

m_Palette A CPalette of the colors that are used in the color bar
control.

m_pParentBtn A pointer to a CMFCColorButton object that is the parent of
the current button. This value is significant if the color button
is in a hierarchy of toolbar controls or is in a color property
grid control.

m_pParentRibbonBtn A pointer to a CMFCRibbonColorButton object that is on the
ribbon and is the parent button of the current button. This
value is significant if the color button is in a hierarchy of
toolbar controls or is in a color property grid control.

m_pWndPropList A pointer to a CMFCPropertyGridCtrl object.

m_strAutoColor A CString that is the text that is displayed on the Automatic
button. For more information, see
CMFCColorBar::EnableAutomaticButton.

m_strDocColors A CString that is the text that is displayed on the document
colors button. For more information, see
CMFCColorBar::SetDocumentColors.

NAME DESCRIPTION

m_strOtherColor A CString that is the text that is displayed on the other
button. For more information, see
CMFCColorBar::EnableOtherButton.

NAME DESCRIPTION

Remarks

Example

CMFCColorBar m_wndColorBar;

Usually, you do not create a CMFCColorBar object directly. Instead, the CMFCColorMenuButton Class (used in
menus and toolbars) or the CMFCColorButton Class creates the CMFCColorBar object.

The CMFCColorBar class provides the following functionality:

Automatically adjusts the list of document colors.

Saves and restores its state, together with the document state.

Manages the "automatic" button.

Uses the CMFCColorPickerCtrl Class control to select a custom color.

Supports a "tear-off" state (if it is created by using the CMFCColorMenuButton Class).

To incorporate the CMFCColorBar functionality into your application:

1. Create a regular menu button and assign it an ID, for example ID_CHAR_COLOR.

2. In your frame window class, override the CFrameWndEx::OnShowPopupMenu method and replace the
regular menu button with a CMFCColorMenuButton Class object (by calling
CMFCToolBar::ReplaceButton).

3. Set all the styles and enable or disable the features of the CMFCColorBar object during
CMFCColorMenuButton Class creation. The CMFCColorMenuButton object dynamically creates the
CMFCColorBar object after the framework calls the CreatePopupMenu method.

When the user clicks a color bar control button, the framework uses the ON_COMMAND macro to notify the parent
of the color bar control. In the macro, the command ID parameter is the value that you assigned to the color bar
control button in step 1 (ID_CHAR_COLOR in this example). For more information, see the
CMFCColorMenuButton Class, CMFCColorButton Class, CMFCColorPickerCtrl Class, CFrameWndEx Class, and
CMFCToolBar Class classes.

The following example demonstrates how to configure a color bar by using various methods in the
CMFCColorBar class. The methods set the horizontal and vertical margins, enable the other button, create a color

bar control window, and sets the currently selected color. This example is part of the New Controls sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

// set the margins
m_wndColorBar.SetHorzMargin(0);
m_wndColorBar.SetVertMargin(0);
// enable the display of a dialog box that
// lets the user select more colors
m_wndColorBar.EnableOtherButton(_T("Other..."));
// create a color bar control window
m_wndColorBar.CreateControl(this, rectColorBar, IDC_COLORBAR, 5 /* columns */);
// set the currently selected color
m_wndColorBar.SetColor(RGB(255, 0, 0));

Inheritance Hierarchy

Requirements

CMFCColorBar::AdjustLocations

virtual void AdjustLocations();

RemarksRemarks

CMFCColorBar::AllowChangeTextLabels

virtual BOOL AllowChangeTextLabels() const;

Return ValueReturn Value

RemarksRemarks

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCBaseToolBar

CMFCToolBar

CMFCPopupMenuBar

CMFCColorBar

Header: afxcolorbar.h

Adjusts the positions of the color buttons on the color bar control.

This method is called by the framework during WM_SIZE message processing.

Indicates whether the text label of color buttons can change.

Always FALSE.

By default, this method always returns FALSE, which means text labels cannot be modified. Override this method
to enable modifying text labels.

CMFCColorBar::AllowShowOnList

virtual BOOL AllowShowOnList() const;

Return ValueReturn Value

RemarksRemarks

CMFCColorBar::CalcSize

virtual CSize CalcSize(BOOL bVertDock);

ParametersParameters

Return ValueReturn Value

CMFCColorBar::CMFCColorBar

Indicates whether the color bar control object can appear in a toolbar list during the customization process.

Always TRUE.

By default, this method always returns TRUE, which means the framework can display the color bar control
during the customization process. Override this method to implement a different behavior.

Called by the framework as part of the layout calculation process.

bVertDock
[in] TRUE to specify that the color bar control is docked vertically; FALSE to specify that the color bar control is
docked horizontally.

The size of the array of color buttons in a color bar control.

Constructs a CMFCColorBar object.

CMFCColorBar(
 const CArray<COLORREF,COLORREF>& colors,
 COLORREF color,
 LPCTSTR lpszAutoColor,
 LPCTSTR lpszOtherColor,
 LPCTSTR lpszDocColors,
 CList<COLORREF,COLORREF>& lstDocColors,
 int nColumns,
 int nRowsDockHorz,
 int nColDockVert,
 COLORREF colorAutomatic,
 UINT nCommandID,
 CMFCColorButton* pParentBtn);

CMFCColorBar(
 const CArray<COLORREF,COLORREF>& colors,
 COLORREF color,
 LPCTSTR lpszAutoColor,
 LPCTSTR lpszOtherColor,
 LPCTSTR lpszDocColors,
 CList<COLORREF,COLORREF>& lstDocColors,
 int nColumns,
 COLORREF colorAutomatic,
 UINT nCommandID,
 CMFCRibbonColorButton* pParentRibbonBtn);

CMFCColorBar(
 CMFCColorBar& src,
 UINT uiCommandID);

ParametersParameters
colors
[in] An array of colors that the framework displays on the color bar control.

color
[in] The initially selected color.

lpszAutoColor
[in] The text label of the automatic (default) color button, or NULL.

The standard label for the automatic button is Automatic.

lpszOtherColor
[in] The text label of the other button, which displays more color choices, or NULL.

The standard label for the other button is More Colors....

lpszDocColors
[in] The text label of the document colors button. The document colors palette lists all the colors that the
document currently uses.

lstDocColors
[in] A list of colors that the document currently uses.

nColumns
[in] The number of columns that the array of colors has.

nRowsDockHorz
[in] The number of rows that the color bar has when it is docked horizontally.

nColDockVert
[in] The number of columns that the color bar has when it is docked vertically.

CMFCColorBar::ContextToSize

void ContextToSize(
 BOOL bSquareButtons = TRUE,
 BOOL bCenterButtons = TRUE);

ParametersParameters

PARAMETER DESCRIPTION

bSquareButtons [in] TRUE to specify that the shape of the buttons on a color
bar control are square; otherwise, FALSE. The default value is
TRUE.

bCenterButtons [in] TRUE to specify that the content on the face of a color
bar control button is centered; otherwise, FALSE. The default
value is TRUE.

RemarksRemarks

CMFCColorBar::Create

virtual BOOL Create(
 CWnd* pParentWnd,
 DWORD dwStyle,
 UINT nID,
 CPalette* pPalette=NULL,
 int nColumns=0,
 int nRowsDockHorz=0,
 int nColDockVert=0);

ParametersParameters

colorAutomatic
[in] The default color that the framework applies when you click the automatic button.

nCommandID
[in] The color bar control command ID.

pParentBtn
[in] A pointer to a parent button.

src
[in] An existing CMFCColorBar object to be copied into the new CMFCColorBar object.

uiCommandID
[in] The command ID.

Calculates the vertical and horizontal margins that are required to contain the buttons on the color bar control,
and adjusts the location of those buttons.

Creates a color bar control window and attaches it to the CMFCColorBar object.

pParentWnd
[in] Pointer to the parent window.

dwStyle
[in] A bitwise combination (OR) of window styles.

Return ValueReturn Value

RemarksRemarks

CMFCColorBar::CreateControl

virtual BOOL CreateControl(
 CWnd* pParentWnd,
 const CRect& rect,
 UINT nID,
 int nColumns=-1,
 CPalette* pPalette=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nID
[in] The command ID.

pPalette
[in] Pointer to a palette of colors. The default is NULL.

nColumns
[in] The number of columns in the color bar control. The default is 0.

nRowsDockHorz
[in] The number of rows in the color bar control when it is docked horizontally. The default is 0.

nColDockVert
[in] The number of columns in the color bar control when it is docked vertically. The default is 0.

TRUE if this method is successful; otherwise, FALSE.

To construct a CMFCColorBar object, call the class constructor then this method. The Create method creates the
Windows control and initializes a list of colors.

Creates a color bar control window, attaches it to the CMFCColorBar object, and resizes the control window to
contain the specified palette of colors.

pParentWnd
[in] Pointer to the parent window. Cannot be NULL.

rect
[in] A bounding rectangle that specifies where to draw the color bar control.

nID
[in] The control ID.

nColumns
[in] The ideal number of columns in the color bar control. This method modifies that number to fit the specified
palette of colors. The default is -1, which means this parameter is not specified.

pPalette
[in] Pointer to a palette of colors, or NULL. If this parameter is NULL, this method calculates the size of the color
bar control as if 20 colors were specified. The default is NULL.

TRUE if this method succeeds; otherwise FALSE.

This method uses the rect, nColumns, and pPalette parameters to calculate the appropriate number or rows and

CMFCColorBar::CreatePalette

static BOOL CreatePalette(
 const CArray<COLORREF, COLORREF>& arColors,
 CPalette& palette);

ParametersParameters

PARAMETER DESCRIPTION

arColors [in] An array of colors.

palette [in] A palette of colors.

Return ValueReturn Value

CMFCColorBar::EnableAutomaticButton

void EnableAutomaticButton(
 LPCTSTR lpszLabel,
 COLORREF colorAutomatic,
 BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCColorBar::EnableOtherButton

void EnableOtherButton(
 LPCTSTR lpszLabel,
 BOOL bAltColorDlg=TRUE,
 BOOL bEnable=TRUE);

columns in the color bar control, and then calls the CMFCColorBar::Create method.

Initializes a palette with the colors in a specified array of colors.

TRUE if this method is successful; otherwise, FALSE.

Shows or hides the automatic button.

lpszLabel
[in] The text label of the automatic (default) color button, or NULL.

The standard label for the automatic button is Automatic.

colorAutomatic
[in] The default color that the framework applies when you click the automatic button.

bEnable
[in] TRUE to enable the automatic button; FALSE to disable the automatic button. The default value is TRUE.

The text label of the automatic button is deleted if the lpszLabel parameter is NULL or the bEnable parameter is
FALSE.

Enables or disables the display of a dialog box that lets the user select more colors.

ParametersParameters

CMFCColorBar::GetColor

COLORREF GetColor() const;

Return ValueReturn Value

CMFCColorBar::GetColorGridSize

CSize GetColorGridSize(BOOL bVertDock) const;

ParametersParameters

PARAMETER DESCRIPTION

bVertDock [in] TRUE to perform the calculation for a vertically docked
color bar control; otherwise, perform the calculation for a
horizontally docked control.

Return ValueReturn Value

CMFCColorBar::GetCommandID

UINT GetCommandID() const;

Return ValueReturn Value

RemarksRemarks

lpszLabel
[in] The text label of the other button, which displays more color choices, or NULL.

The standard label for this button is More Colors....

bAltColorDlg
[in] TRUE to display the CMFCColorDialog dialog box; FALSE to display the standard CColorDialog dialog box.
The default value is TRUE.

bEnable
[in] TRUE to enable the button; FALSE to disable the button. The default value is TRUE.

Retrieves the currently selected color.

The currently selected color.

Calculates the number of rows and columns in the grid of a color bar control.

A CSize object whose cx component contains the number of columns and whose cy component contains the
number of rows.

Retrieves the command ID of the current color bar control.

A command ID.

When the user selects a new color, the framework sends the command ID in a WM_COMMAND message to
notify the parent of the CMFCColorBar object.

CMFCColorBar::GetExtraHeight

int GetExtraHeight(int nNumColumns) const;

ParametersParameters

PARAMETER DESCRIPTION

nNumColumns [in] If the color bar control contains document colors, the
number of columns to display in the grid of document colors.
Otherwise, this value is not used.

Return ValueReturn Value

CMFCColorBar::GetHighlightedColor

COLORREF GetHighlightedColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCColorBar::GetHorzMargin

int GetHorzMargin();

Return ValueReturn Value

CMFCColorBar::GetVertMargin

int GetVertMargin() const;

Return ValueReturn Value

CMFCColorBar::InitColors

Calculates the additional height that the current color bar requires to display miscellaneous user interface
elements, such as the Other button or document colors.

The calculated extra height that is required.

Retrieves the color that signifies that a color button has the focus; that is, the button is hot.

An RGB value.

Retrieves the horizontal margin, which is the space between the left or right color cell and the client area
boundary.

The horizontal margin.

Retrieves the vertical margin, which is the space between the top or bottom color cell and the client area
boundary.

The vertical margin.

static int InitColors(
 CPalette* pPalette,
 CArray<COLORREF, COLORREF>& arColors);

ParametersParameters

PARAMETER DESCRIPTION

pPalette [in] A pointer to a palette object, or NULL. If this parameter is
NULL, this method uses the default palette of the operating
system.

arColors [in] An array of colors.

Return ValueReturn Value

CMFCColorBar::IsTearOff

BOOL IsTearOff() const;

Return ValueReturn Value

RemarksRemarks

CMFCColorBar::OnKey

virtual BOOL OnKey(UINT nChar);

ParametersParameters

Return ValueReturn Value

CMFCColorBar::OnSendCommand

virtual BOOL OnSendCommand(const CMFCToolBarButton* pButton);

ParametersParameters

Initializes an array of colors with the colors in a specified palette, or with the system default palette.

The number of elements in the array of colors.

Indicates whether the current color bar is dockable.

TRUE if the current color bar control is dockable; otherwise, FALSE.

If the color bar control is dockable, it can be torn off a control bar and docked at another location.

Called by the framework when a user presses a keyboard button.

nChar
[in] The virtual-key code for the key that a user pressed.

TRUE if this method processes the specified key; otherwise, FALSE.

Called by the framework to close a hierarchy of pop-up controls.

PARAMETER DESCRIPTION

pButton [in] Pointer to a control that resides on a toolbar.

Return ValueReturn Value

CMFCColorBar::OnUpdateCmdUI

virtual void OnUpdateCmdUI(
 CFrameWnd* pTarget,
 BOOL bDisableIfNoHndler);

ParametersParameters

RemarksRemarks

CMFCColorBar::OpenColorDialog

virtual BOOL OpenColorDialog(
 const COLORREF colorDefault,
 COLORREF& colorRes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCColorBar::Rebuild

TRUE if this method is successful; otherwise, FALSE.

Called by the framework to enable or disable a user-interface item of a color bar control before the item is
displayed.

pTarget
[in] Pointer to a window that contains a user-interface item to update.

bDisableIfNoHndler
[in] TRUE to disable the user-interface item if no handler is defined in a message map; otherwise, FALSE.

When a user of your application clicks a user-interface item, the item must know whether it should be displayed
as enabled or disabled. The target of the command message provides this information by implementing an
ON_UPDATE_COMMAND_UI command handler. Use this method to help process the command. For more
information, see CCmdUI Class.

Opens a color dialog box.

colorDefault
[in] The color that is selected by default when the color dialog box opens.

colorRes
[out] The color that a user selected.

TRUE if the user selected a color; FALSE if the user canceled the color dialog box.

Completely redraws the color bar control.

virtual void Rebuild();

CMFCColorBar::SelectPalette

CPalette* SelectPalette(CDC* pDC);

ParametersParameters

PARAMETER DESCRIPTION

pDC [in] Pointer to the device context of the parent button of the
current color bar control.

Return ValueReturn Value

CMFCColorBar::SetColor

void SetColor(COLORREF color);

ParametersParameters

CMFCColorBar::SetColorName

static void SetColorName(
 COLORREF color,
 const CString& strName);

ParametersParameters

RemarksRemarks

CMFCColorBar::SetCommandID

Sets the logical palette of the specified device context to the palette of the parent button of the current color bar
control.

Pointer to the palette that is replaced by the palette of the parent button of the current color bar control.

Sets the color that is currently selected.

color
[in] An RGB color value.

Sets a new name for a specified color.

color
[in] The RGB value of a color.

strName
[in] The new name for the specified color.

This method changes the name of the specified color in all CMFCColorBar objects in your application.

Sets a new command ID for a color bar control.

void SetCommandID(UINT nCommandID);

ParametersParameters

RemarksRemarks

CMFCColorBar::SetDocumentColors

void SetDocumentColors(
 LPCTSTR lpszCaption,
 CList<COLORREF,COLORREF>& lstDocColors,
 BOOL bShowWhenDocked=FALSE);

ParametersParameters

RemarksRemarks

CMFCColorBar::SetHorzMargin

void SetHorzMargin(int nHorzMargin);

ParametersParameters

RemarksRemarks

CMFCColorBar::SetPropList

nCommandID
[in] A command ID.

Call this method to modify the command ID of a color bar control and to notify the parent window of the control
that the ID has changed.

Sets the list of colors that are used in the current document.

lpszCaption
[in] A caption that is displayed when the color bar control is not docked.

lstDocColors
[in] A list of colors that replaces the current document colors.

bShowWhenDocked
[in] TRUE to show document colors when the color bar control is docked; otherwise, FALSE. The default value is
FALSE.

Document colors are the colors that are currently used in a document. The framework automatically maintains a
list of document colors, but you can use this method to modify the list.

Sets the horizontal margin, which is the space between the left or right color cell and the boundary of the client
area.

nHorzMargin
[in] The horizontal margin, in pixels.

By default, the CMFCColorBar::CMFCColorBar constructor sets the horizontal margin to 4 pixels.

Sets the m_pWndPropList protected data member to the specified pointer to a property grid control.

void SetPropList(CMFCPropertyGridCtrl* pWndList);

ParametersParameters

PARAMETER DESCRIPTION

pWndList [in] Pointer to property grid control object.

CMFCColorBar::SetVertMargin

void SetVertMargin(int nVertMargin);

ParametersParameters

RemarksRemarks

CMFCColorBar::ShowCommandMessageString

virtual void ShowCommandMessageString(UINT uiCmdId);

ParametersParameters

RemarksRemarks

See also

Sets the vertical margin, which is the space between the top or bottom color cell and the client area boundary.

nVertMargin
[in] The vertical margin, in pixels.

By default, the CMFCColorBar::CMFCColorBar constructor sets the vertical margin to 4 pixels.

Requests the frame window that owns the color bar control to update the message line in the status bar.

uiCmdId
[in] A command ID. (This parameter is ignored.)

This method sends the WM_SETMESSAGESTRING message to the owner of the color bar control.

Hierarchy Chart
Classes

CMFCColorButton Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class CMFCColorButton : public CMFCButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCColorButton::CMFCColorButton Constructs a new CMFCColorButton object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCColorButton::EnableAutomaticButton Enables and disables an "automatic" button that is positioned
above the regular color buttons. (The standard system
automatic button is labeled Automatic.)

CMFCColorButton::EnableOtherButton Enables and disables an "other" button that is positioned
below the regular color buttons. (The standard system "other"
button is labeled More Colors.)

CMFCColorButton::GetAutomaticColor Retrieves the current automatic color.

CMFCColorButton::GetColor Retrieves a button's color.

CMFCColorButton::SetColor Sets a button's color.

CMFCColorButton::SetColorName Sets a color name.

CMFCColorButton::SetColumnsNumber Sets the number of columns on the color picker dialog box.

CMFCColorButton::SetDocumentColors Specifies a list of document-specific colors that are displayed
on the color picker dialog box.

CMFCColorButton::SetPalette Specifies a palette of standard display colors.

CMFCColorButton::SizeToContent Changes the size of the button control, depending on its text
and image size.

Protected MethodsProtected Methods

The CMFCColorButton and CMFCColorBar Class classes are used together to implement a color picker control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfccolorbutton-class.md

NAME DESCRIPTION

CMFCColorButton::IsDrawXPTheme Indicates whether the current color button is displayed in the
visual style of Windows XP.

CMFCColorButton::OnDraw Called by the framework to display an image of the button.

CMFCColorButton::OnDrawBorder Called by the framework to display the button's border.

CMFCColorButton::OnDrawFocusRect Called by the framework to display a focus rectangle when
the button has a focus.

CMFCColorButton::OnShowColorPopup Called by the framework when the color picker dialog box is
about to be displayed.

CMFCColorButton::RebuildPalette Initializes the m_pPalette protected data member to the
specified palette or the default system palette.

CMFCColorButton::UpdateColor Called by the framework when the user selects a color from
the palette of the color picker dialog box.

Data MembersData Members

NAME DESCRIPTION

m_bAltColorDlg A Boolean. If TRUE, the framework displays the
CMFCColorDialog color dialog box when the other button is
clicked, or if FALSE, the system color dialog box. The default
value is TRUE. For more information, see
CMFCColorButton::EnableOtherButton.

m_bAutoSetFocus A Boolean. If TRUE, the framework sets the focus on the color
menu when the menu is displayed, or if FALSE, does not
change the focus. The default value is TRUE.

CMFCColorButton::m_bEnabledInCustomizeMode Indicates whether customization mode is enabled for the
color button.

m_Color A COLORREF value. Contains the currently selected color.

m_ColorAutomatic A COLORREF value. Contains the currently selected default
color.

m_Colors A CArray of COLORREF values. Contains the currently
available colors.

m_lstDocColors A CList of COLORREF values. Contains the current document
colors.

m_nColumns An integer. Contains the number of columns to display in the
grid of colors in a color selection menu.

m_pPalette A pointer to a CPalette. Contains the colors that are available
in the current color selection menu.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref

m_pPopup A pointer to a CMFCColorPopupMenu Class object. The color
selection menu that is displayed when you click the color
button.

m_strAutoColorText A string. The label of the "automatic" button in a color
selection menu.

m_strDocColorsText A string. The label of the button in a color selection menu
that displays the document colors.

m_strOtherText A string. The label of the "other" button in a color selection
menu.

NAME DESCRIPTION

Remarks

Example

CMFCColorButton m_wndTextColor;

m_wndTextColor.EnableAutomaticButton (_T("Default"), afxGlobalData.clrBtnText);
m_wndTextColor.EnableOtherButton (_T("Other..."));
m_wndTextColor.SetColor ((COLORREF)-1);
m_wndTextColor.SetColorName((COLORREF)-1, "Default Color");
m_wndTextColor.SetColumnsNumber(3);

Requirements

CMFCColorButton::CMFCColorButton

By default, the CMFCColorButton class behaves as a push button that opens a color picker dialog box. The color
picker dialog box contains an array of small color buttons and an "other" button that displays a custom color
picker. (The standard system "other" button is labeled More Colors.) When a user selects a new color, the
CMFCColorButton object reflects the change and displays the selected color.

Create a color button control either directly in your code, or by using the ClassWizard tool and a dialog box
template. If you create a color button control directly, add a CMFCColorButton variable to your application, and
then call the constructor and Create methods of the CMFCColorButton object. If you use the ClassWizard, add a
CButton variable to your application, and then change the type of the variable from CButton to CMFCColorButton .

The color picker dialog box (CMFCColorBar Class) is displayed by the CMFCColorButton::OnShowColorPopup
method when the framework calls the OnLButtonDown event handler. The CMFCColorButton::OnShowColorPopup
method can be overridden to support custom color selection.

The CMFCColorButton object notifies its parent that a color is changing by sending it a WM_COMMAND |
BN_CLICKED notification. The parent uses the CMFCColorButton::GetColor method to retrieve the current color.

The following example demonstrates how to configure a color button by using various methods in the
CMFCColorButton class. The methods set the color of the color button and its number of columns, and enable the

automatic and the other buttons. This example is part of the Status Bar Demo sample.

Header: afxcolorbutton.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCColorButton();

CMFCColorButton::EnableAutomaticButton

void EnableAutomaticButton(
 LPCTSTR lpszLabel,
 COLORREF colorAutomatic,
 BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCColorButton::EnableOtherButton

void EnableOtherButton(
 LPCTSTR lpszLabel,
 BOOL bAltColorDlg=TRUE,
 BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCColorButton::GetAutomaticColor

Constructs a new CMFCColorButton object.

Enable or disable the "automatic" button of a color picker control and set the automatic (default) color.

lpszLabel
[in] Specifies the automatic button's text.

colorAutomatic
[in] An RGB value that specifies the automatic button's default color.

bEnable
[in] Specifies whether the automatic button is enabled or disabled.

Enable or disable the "other" button, which appears below regular color buttons.

lpszLabel
[in] Specifies the button's text.

bAltColorDlg
[in] Specifies whether the CMFCColorDialog dialog box or the system color dialog box is opened when the user
clicks the button.

bEnable
[in] Specifies whether the "other" button is enabled or disabled.

Click the "other" button to display a color dialog box. If the bAltColorDlg parameter is TRUE, the
CMFCColorDialog Class is displayed; otherwise, the system color dialog box is displayed.

Retrieves the current automatic (default) color.

COLORREF GetAutomaticColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCColorButton::GetColor

COLORREF GetColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCColorButton::IsDrawXPTheme

BOOL IsDrawXPTheme() const;

Return ValueReturn Value

CMFCColorButton::m_bEnabledInCustomizeMode

BOOL m_bEnabledInCustomizeMode;

RemarksRemarks

CMFCColorButton::OnDraw

virtual void OnDraw(
 CDC* pDC,
 const CRect& rect,
 UINT uiState);

ParametersParameters

An RGB value representing the current automatic color.

The current automatic color is set by the CMFCColorButton::EnableAutomaticButton method.

Retrieves the currently selected color.

An RGB value.

Indicates whether the current color button is displayed in the visual style of Windows XP.

TRUE if visual styles are supported and the current color button is displayed in the visual style of Windows XP;
otherwise, FALSE.

Sets a color button to customization mode.

If you need to add a color button to a customization dialog's page (or allow the user to make another color
selection during customization), enable the button by setting the m_bEnabledInCustomizeMode member to TRUE. By
default, this member is set to FALSE.

Called by the framework to render an image of the button.

RemarksRemarks

CMFCColorButton::OnDrawBorder

virtual void OnDrawBorder(
 CDC* pDC,
 CRect& rectClient,
 UINT uiState);

ParametersParameters

RemarksRemarks

CMFCColorButton::OnDrawFocusRect

virtual void OnDrawFocusRect(
 CDC* pDC,
 const CRect& rectClient);

ParametersParameters

RemarksRemarks

CMFCColorButton::OnShowColorPopup

pDC
[in] Points to the device context that is used to render the image of the button.

rect
[in] A rectangle that bounds the button.

uiState
[in] Specifies the visual state of the button.

Override this method to customize the rendering process.

Called by the framework to display the border of the button.

pDC
[in] Points to the device context used to draw the border.

rectClient
[in] A rectangle in the device context that is specified by the pDC parameter that defines the boundaries of the
button to be drawn.

uiState
[in] Specifies the visual state of the button.

Override this function to customize the color button's border appearance.

Called by the framework to display a focus rectangle when the button has focus.

pDC
[in] Points to the device context used to draw the focus rectangle.

rectClient
[in] A rectangle in the device context specified by the pDC parameter that defines the boundaries of the button.

Override this method to customize appearance of the focus rectangle.

virtual void OnShowColorPopup();

RemarksRemarks

CMFCColorButton::RebuildPalette

void RebuildPalette(CPalette* pPal);

ParametersParameters

PARAMETER DESCRIPTION

pPal [in] A pointer to a logical palette or NULL. If NULL, the default
system palette is used.

CMFCColorButton::SetColor

void SetColor(COLORREF color);

ParametersParameters

RemarksRemarks

CMFCColorButton::SetColorName

static void SetColorName(
 COLORREF color,
 const CString& strName);

ParametersParameters

RemarksRemarks

CMFCColorButton::SetColumnsNumber

Called before the popup color bar is displayed.

Initializes the m_pPalette protected data member to the specified palette or the default system palette.

Specifies the color of the button.

color
[in] An RGB value.

Specifies the name of a color.

color
[in] The color's RGB value.

strName
[in] The color's name.

The list of color names is global per application. Consequently, this method transfers its parameters to
CMFCColorBar::SetColorName.

void SetColumnsNumber(int nColumns);

ParametersParameters

RemarksRemarks

CMFCColorButton::SetDocumentColors

void SetDocumentColors(
 LPCTSTR lpszLabel,
 CList<COLORREF,COLORREF>& lstColors);

ParametersParameters

RemarksRemarks

CMFCColorButton::SetPalette

void SetPalette(CPalette* pPalette);

ParametersParameters

RemarksRemarks

CMFCColorButton::SizeToContent

virtual CSize SizeToContent(BOOL bCalcOnly=FALSE);

ParametersParameters

Defines the number of columns that are displayed in the table of colors that is presented to the user during the
user's color selection process.

nColumns
[in] Specifies the number of columns.

The user can select a color from a popup color bar that displays a table of predefined colors. Use this method to
define the number of columns in the table.

Specifies a set of colors and the set's name. The set of colors is displayed using a CMFCColorBar Class object.

lpszLabel
[in] Specifies the label to be displayed with the set of document colors.

lstColors
[in] A reference to a list of RGB values.

A CMFCColorButton object maintains a list of RGB values that are transferred to a CMFCColorBar Class object.
When the color bar is displayed, these colors are shown in a special section whose label is specified by the
lpszLabel parameter.

Specifies the standard colors to display on the popup color bar.

pPalette
[in] A pointer to a color palette.

Resizes the button control to fit its text and image.

Return ValueReturn Value

RemarksRemarks

CMFCColorButton::UpdateColor

virtual void UpdateColor(COLORREF color);

ParametersParameters

RemarksRemarks

See also

bCalcOnly
[in] If nonzero, the new size of the button control is calculated but the actual size is not changed.

A CSize object that specifies a new button control size.

Called by the framework when the user selects a color from the color bar that displays when the user clicks the
color button.

color
[in] A color selected by the user.

The UpdateColor function changes the currently selected button's color and notifies its parent by sending a
WM_COMMAND message with a BN_CLICKED standard notification. Use the CMFCColorButton::GetColor
method to retrieve the selected color.

Hierarchy Chart
Classes
CMFCButton Class
CMFCColorBar Class
CMFCColorButton::OnShowColorPopup
COLORREF
CPalette Class
CArray Class
CList Class
CString

https://docs.microsoft.com/windows/desktop/gdi/colorref

CMFCColorDialog Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCColorDialog : public CDialogEx

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCColorDialog::CMFCColorDialog Constructs a CMFCColorDialog object.

CMFCColorDialog::~CMFCColorDialog Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCColorDialog::GetColor Returns the current selected color.

CMFCColorDialog::GetPalette Returns the color's palette.

CMFCColorDialog::PreTranslateMessage Translates window messages before they are dispatched to
the TranslateMessage and DispatchMessage Windows
functions. For syntax and more information, see
CWnd::PreTranslateMessage. (Overrides
CDialogEx::PreTranslateMessage .)

CMFCColorDialog::RebuildPalette Derives a palette from the system palette.

CMFCColorDialog::SetCurrentColor Sets the current selected color.

CMFCColorDialog::SetNewColor Sets the color most equivalent to a specified RGB value.

CMFCColorDialog::SetPageOne Selects an RGB value for the first property page.

CMFCColorDialog::SetPageTwo Selects an RGB value for the second property page.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

The CMFCColorDialog class represents a color selection dialog box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfccolordialog-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

m_bIsMyPalette TRUE if the color selection dialog box uses its own color
palette, or FALSE if the dialog box uses a palette that is
specified in the CMFCColorDialog constructor.

m_bPickerMode TRUE while the user is selecting a color from the selection
dialog box; otherwise, FALSE.

m_btnColorSelect The color button that the user has selected.

m_CurrentColor The currently selected color.

m_hcurPicker The cursor that is used to pick a color.

m_NewColor The prospective selected color, which can be permanently
selected or reverted to the original color.

m_pColourSheetOne A pointer to the first property page of the color selection
property sheet.

m_pColourSheetTwo A pointer to the second property page of the color selection
property sheet.

m_pPalette The current logical palette.

m_pPropSheet A pointer to the property sheet for the color selection dialog
box.

m_wndColors A color picker control object.

m_wndStaticPlaceHolder A static control that is a placeholder for the color picker
property sheet.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

The color selection dialog box is displayed as a property sheet with two pages. On the first page, you select a
standard color from the system palette; on the second page, you select a custom color.

You can construct a CMFCColorDialog object on the stack and then call DoModal , passing the initial color as a
parameter to the CMFCColorDialog constructor. The color selection dialog box then creates several
CMFCColorPickerCtrl Class objects to handle each color palette.

CObject

CCmdTarget

CWnd

CDialog

CDialogEx

CMFCColorDialog

Example

// COLORREF m_Color
CMFCColorDialog dlg(m_Color, 0, this);
dlg.SetCurrentColor(RGB(0,255,0));
dlg.SetNewColor(RGB(0,0,255));
// set the red, green, and blue components of a selected
// color on the two property pages of the color dialog
dlg.SetPageOne(255,0,0);
dlg.SetPageTwo(0,255,0);

Requirements

CMFCColorDialog::CMFCColorDialog

CMFCColorDialog(
 COLORREF clrInit=0,
 DWORD dwFlags=0,
 CWnd* pParentWnd=NULL,
 HPALETTE hPal=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCColorDialog::GetColor

COLORREF GetColor() const;

Return ValueReturn Value

The following example demonstrates how to configure a color dialog by using various methods in the
CMFCColorDialog class. The example shows how to set the current and the new colors of the dialog, and how to

set the red, green, and blue components of a selected color on the two property pages of the color dialog. This
example is part of the New Controls sample.

Header: afxcolordialog.h

Constructs a CMFCColorDialog object.

clrInit
[in] The default color selection. If no value is specified, the default is RGB(0,0,0) (black).

dwFlags
[in] Reserved.

pParentWnd
[in] A pointer to the dialog box's parent or owner window.

hPal
[in] A handle to a color palette.

Retrieves the color that the user selects from the color dialog.

A COLORREF value that contains the RGB information for the color selected in the color dialog box.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/gdi/colorref

RemarksRemarks

CMFCColorDialog::GetPalette

CPalette* GetPalette() const;

Return ValueReturn Value

RemarksRemarks

CMFCColorDialog::RebuildPalette

void RebuildPalette();

CMFCColorDialog::SetCurrentColor

void SetCurrentColor(COLORREF rgb);

ParametersParameters

RemarksRemarks

CMFCColorDialog::SetNewColor

void SetNewColor(COLORREF rgb);

ParametersParameters

RemarksRemarks

CMFCColorDialog::SetPageOne

Call this function after you call the DoModal method.

Retrieves the color palette that is available in the current color dialog.

A pointer to the CPalette object that was specified in the CMFCColorDialog constructor.

The color palette specifies the colors that the user can choose.

Derives a palette from the system palette.

Sets the current color of the dialog box.

rgb
[in] An RGB color value

Sets the current color to the color in the current palette that is most similar.

rgb
[in] A COLORREF that specifies an RGB color.

Explicitly specifies the red, green, and blue components of a selected color on the first property page of a color
dialog.

https://docs.microsoft.com/windows/desktop/gdi/colorref

void SetPageOne(
 BYTE R,
 BYTE G,
 BYTE B);

ParametersParameters

RemarksRemarks

CMFCColorDialog::SetPageTwo

void SetPageTwo(
 BYTE R,
 BYTE G,
 BYTE B);

ParametersParameters

RemarksRemarks

See also

R
[in] Specifies the red component of the RGB value.

G
[in] Specifies the green component of the RGB value.

B
[in] Specifies the blue component of the RGB value.

Explicitly specifies the red, green, and blue components of a selected color on the second property page of a
color dialog.

R
[in] Specifies a red component of the RGB value

G
[in] Specifies a green component of an RGB value

B
[in] Specifies a blue component of an RGB value

Hierarchy Chart
Classes
CMFCColorPickerCtrl Class

CMFCColorMenuButton Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class CMFCColorMenuButton : public CMFCToolBarMenuButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCColorMenuButton::CMFCColorMenuButton Constructs a CMFCColorMenuButton object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCColorMenuButton::EnableAutomaticButton Enables and disables an "automatic" button that is positioned
above the regular color buttons. (The standard system
automatic button is labeled Automatic.)

CMFCColorMenuButton::EnableDocumentColors Enables the display of document-specific colors instead of
system colors.

CMFCColorMenuButton::EnableOtherButton Enables and disables an "other" button that is positioned
below the regular color buttons. (The standard system
"other" button is labeled More Colors.)

CMFCColorMenuButton::EnableTearOff Enables the ability to tear off a color pane.

CMFCColorMenuButton::GetAutomaticColor Retrieves the current automatic color.

CMFCColorMenuButton::GetColor Retrieves the current button's color.

CMFCColorMenuButton::GetColorByCmdID Retrieves the color that corresponds to a specified command
ID.

CMFCColorMenuButton::OnChangeParentWnd Called by the framework when the parent window changes.

CMFCColorMenuButton::OpenColorDialog Opens a color selection dialog box.

CMFCColorMenuButton::SetColor Sets the color of the current color button.

CMFCColorMenuButton::SetColorByCmdID Sets the color of the specified color menu button.

The CMFCColorMenuButton class supports a menu command or a toolbar button that starts a color picker dialog
box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfccolormenubutton-class.md

CMFCColorMenuButton::SetColorName Sets a new name for the specified color.

CMFCColorMenuButton::SetColumnsNumber Sets the number of columns that are displayed by a
CMFCColorBar object.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCColorMenuButton::CopyFrom Copies another toolbar button to the current button.

CMFCColorMenuButton::CreatePopupMenu Creates a color picker dialog box.

CMFCColorMenuButton::IsEmptyMenuAllowed Indicates whether empty menus are supported.

CMFCColorMenuButton::OnDraw Called by the framework to display an image on a button.

CMFCColorMenuButton::OnDrawOnCustomizeList Called by the framework before a CMFCColorMenuButton

object is displayed in the list of a toolbar customization dialog
box.

Remarks

Example

CPalette m_palColorPicker; // Palette for color picker
int m_nNumColours;

To replace the original menu command or toolbar button with a CMFCColorMenuButton object, create the
CMFCColorMenuButton object, set any appropriate CMFCColorBar Class styles, and then call the ReplaceButton

method of the CMFCToolBar Class class. If you customize a toolbar, call the
CMFCToolBarsCustomizeDialog::ReplaceButton method.

The color picker dialog box is created during the processing of the CMFCColorMenuButton::CreatePopupMenu
event handler. The event handler notifies the parent frame with a WM_COMMAND message. The
CMFCColorMenuButton object sends the control ID that is assigned to the original menu command or toolbar

button.

The following example demonstrates how to create and configure a color menu button by using various methods
in the CMFCColorMenuButton class. In the example, a CPalette object is first created and then used to construct an
object of the CMFCColorMenuButton class. The CMFCColorMenuButton object is then configured by enabling its
automatic and other buttons, and setting its color and the number of columns. This code is part of the Word Pad
sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCColorMenuButton* CFormatBar::CreateColorButton ()
{
 if (m_palColorPicker.GetSafeHandle () == NULL)
 {
 m_nNumColours = sizeof (crColours)/sizeof(ColourTableEntry);
 ASSERT(m_nNumColours <= MAX_COLOURS);
 if (m_nNumColours > MAX_COLOURS)
 m_nNumColours = MAX_COLOURS;

 // Create the palette
 struct
 {
 LOGPALETTE LogPalette;
 PALETTEENTRY PalEntry[MAX_COLOURS];
 }pal;

 LOGPALETTE* pLogPalette = (LOGPALETTE*) &pal;
 pLogPalette->palVersion = 0x300;
 pLogPalette->palNumEntries = (WORD) m_nNumColours;

 for (int i = 0; i < m_nNumColours; i++)
 {
 pLogPalette->palPalEntry[i].peRed = GetRValue(crColours[i].crColour);
 pLogPalette->palPalEntry[i].peGreen = GetGValue(crColours[i].crColour);
 pLogPalette->palPalEntry[i].peBlue = GetBValue(crColours[i].crColour);
 pLogPalette->palPalEntry[i].peFlags = 0;
 }

 m_palColorPicker.CreatePalette (pLogPalette);
 }

 CMFCColorMenuButton* pColorButton = new
 CMFCColorMenuButton (ID_CHAR_COLOR, _T("Text Color..."), &m_palColorPicker);

 pColorButton->EnableAutomaticButton (_T("Automatic"), RGB (0, 0, 0));
 pColorButton->EnableOtherButton (_T("More Colors..."));
 pColorButton->EnableDocumentColors (_T("Document's Colors"));
 pColorButton->EnableTearOff (ID_COLOR_TEAROFF, 5, 2);
 pColorButton->SetColumnsNumber (8);
 pColorButton->SetColor(RGB(0,0,255));

 // Initialize color names:
 for (int i = 0; i < m_nNumColours; i++)
 {
 CMFCColorMenuButton::SetColorName (crColours[i].crColour, crColours[i].szName);
 }

 return pColorButton;
}

Inheritance Hierarchy

Requirements

CObject

CMFCToolBarButton

CMFCToolBarMenuButton

CMFCColorMenuButton

Header: afxcolormenubutton.h

CMFCColorMenuButton::CMFCColorMenuButton

CMFCColorMenuButton();

CMFCColorMenuButton(
 UINT uiCmdID,
 LPCTSTR lpszText,
 CPalette* pPalette=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCColorMenuButton::CopyFrom

virtual void CopyFrom(const CMFCToolBarButton& src);

ParametersParameters

RemarksRemarks

CMFCColorMenuButton::CreatePopupMenu

virtual CMFCPopupMenu* CreatePopupMenu();

Return ValueReturn Value

RemarksRemarks

Constructs a CMFCColorMenuButton object.

uiCmdID
[in] A button command ID.

lpszText
[in] The button text.

pPalette
[in] A pointer to the button's color palette.

The first constructor is the default constructor. The object's current color and automatic color are initialized to
black (RGB(0, 0, 0)).

The second constructor initializes the button to the color that corresponds to the specified command ID.

Copies one CMFCToolBarMenuButton Class-derived object to another.

src
[in] Source button to copy.

Override this method to copy objects that are derived from the CMFCColorMenuButton object.

Creates a color picker dialog box.

An object that represents a color picker dialog box.

This method is called by the framework when the user presses a color menu button.

CMFCColorMenuButton::EnableAutomaticButton

void EnableAutomaticButton(
 LPCTSTR lpszLabel,
 COLORREF colorAutomatic,
 BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCColorMenuButton::EnableDocumentColors

void EnableDocumentColors(
 LPCTSTR lpszLabel,
 BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCColorMenuButton::EnableOtherButton

void EnableOtherButton(
 LPCTSTR lpszLabel,
 BOOL bAltColorDlg=TRUE,
 BOOL bEnable=TRUE);

ParametersParameters

Enables and disables an "automatic" button that is positioned above the regular color buttons. (The standard
system automatic button is labeled Automatic.)

lpszLabel
[in] Specifies the button text that is displayed when the button becomes automatic.

colorAutomatic
[in] Specifies a new automatic color.

bEnable
[in] Specifies whether the button is automatic or not.

The automatic button applies the current default color.

Enables the display of document-specific colors instead of system colors.

lpszLabel
[in] Specifies the button text.

bEnable
[in] TRUE to display document-specific colors or FALSE to display system colors.

Use this method to display the current document colors or the system palette colors when the user clicks a color
menu button.

Enables and disables an "other" button that is positioned below the regular color buttons. (The standard system
"other" button is labeled More Colors.)

lpszLabel

RemarksRemarks

CMFCColorMenuButton::EnableTearOff

void EnableTearOff(
 UINT uiID,
 int nVertDockColumns=-1,
 int nHorzDockRows=-1);

ParametersParameters

RemarksRemarks

CMFCColorMenuButton::GetAutomaticColor

COLORREF GetAutomaticColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCColorMenuButton::GetColor

COLORREF GetColor() const;

Return ValueReturn Value

[in] Specifies the button text.

bAltColorDlg
[in] Specify TRUE to display the CMFCColorDialog dialog box, or FALSE to display the standard system color
dialog box.

bEnable
[in] Specify TRUE to display the "other" button; otherwise, FALSE. The default is TRUE.

Enables the ability to tear off a color pane.

uiID
[in] Specifies the ID for the tear-off pane.

nVertDockColumns
[in] Specifies the number of columns in the vertically docked color pane while in tear-off state.

nHorzDockRows
[in] Specifies the number of rows for the horizontally docked color pane while in tear-off state.

Call this method to enable the "tear-off" feature for the color pane that pops up when the CMFCColorMenuButton

button is pressed.

Retrieves the current automatic color.

An RGB color value that represents the current automatic color.

Call this method to obtain the automatic color that is set by CMFCColorMenuButton::EnableAutomaticButton.

Retrieves the current button's color.

The color of the button.

RemarksRemarks

CMFCColorMenuButton::GetColorByCmdID

static COLORREF GetColorByCmdID(UINT uiCmdID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCColorMenuButton::IsEmptyMenuAllowed

virtual BOOL IsEmptyMenuAllowed() const;

Return ValueReturn Value

RemarksRemarks

CMFCColorMenuButton::OnChangeParentWnd

virtual void OnChangeParentWnd(CWnd* pWndParent);

ParametersParameters

RemarksRemarks

CMFCColorMenuButton::OnDraw

Retrieves the color that corresponds to a specified command ID.

uiCmdID
[in] A command ID.

The color that corresponds to the specified command ID.

Use this method when you have several color buttons in an application. When the user clicks a color button, the
button sends its command ID in a WM_COMMAND message to its parent. The GetColorByCmdID method uses
the command ID to retrieve the corresponding color.

Indicates whether empty menus are supported.

Nonzero if empty menus are allowed; otherwise, zero.

Empty menus are supported by default. Override this method to change this behavior in derived class.

Called by the framework when the parent window changes.

pWndParent
[in] A pointer to the new parent window.

Called by the framework to display an image on a button.

virtual void OnDraw(
 CDC* pDC,
 const CRect& rect,
 CMFCToolBarImages* pImages,
 BOOL bHorz=TRUE,
 BOOL bCustomizeMode=FALSE,
 BOOL bHighlight=FALSE,
 BOOL bDrawBorder=TRUE,
 BOOL bGrayDisabledButtons=TRUE);

ParametersParameters

RemarksRemarks

CMFCColorMenuButton::OnDrawOnCustomizeList

virtual int OnDrawOnCustomizeList(
 CDC* pDC,
 const CRect& rect,
 BOOL bSelected);

ParametersParameters

Return ValueReturn Value

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that bounds the area to be redrawn.

pImages
[in] Points to a list of toolbar images.

bHorz
[in] TRUE to specify that the toolbar is in a horizontal docked state; otherwise, FALSE. The default is TRUE.

bCustomizeMode
[in] TRUE to specify that the application is in customization mode; otherwise, FALSE. The default is FALSE.

bHighlight
[in] TRUE to specify that the button is highlighted; otherwise, FALSE. The default is FALSE.

bDrawBorder
[in] TRUE to specify that the button's border is displayed; otherwise, FALSE. The default is TRUE.

bGrayDisabledButtons
[in] TRUE to specify that disabled buttons are grayed (dimmed) out; otherwise, FALSE. The default is TRUE.

Called by the framework before a CMFCColorMenuButton object is displayed in the list of a toolbar customization
dialog box.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that bounds the button to be drawn.

bSelected
[in] TRUE specifies that the button is in selected state; otherwise, FALSE.

RemarksRemarks

CMFCColorMenuButton::OpenColorDialog

virtual BOOL OpenColorDialog(
 const COLORREF colorDefault,
 COLORREF& colorRes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCColorMenuButton::SetColor

virtual void SetColor(
 COLORREF clr,
 BOOL bNotify=TRUE);

ParametersParameters

RemarksRemarks

CMFCColorMenuButton::SetColorByCmdID

The width of the button.

This method is called by the framework when a CMFCColorMenuButton object is displayed in the list box during the
toolbar customization process.

Opens a color selection dialog box.

colorDefault
[in] The default color that is selected in the color dialog box.

colorRes
[out] Returns the color that the user selects from the color dialog box.

Nonzero if the user selects a new color; otherwise, zero.

When the menu button is clicked, call this method to open a color dialog box. If the return value is nonzero, the
color that the user selects is stored in the colorRes parameter. Use the
CMFCColorMenuButton::EnableOtherButton method to switch between the standard color dialog box and the
CMFCColorDialog Class dialog box.

Sets the color of the current color button.

clr
[in] An RGB color value.

bNotify
[in] TRUE to apply the clr parameter color to any associated menu button or toolbar button; otherwise, FALSE.

Call this method to change the color of the current color button. If the bNotify parameter is nonzero, the color of
the corresponding button on any associated popup menu or toolbar is changed to the color specified by the clr
parameter.

Sets the color of the specified color menu button.

static void SetColorByCmdID(
 UINT uiCmdID,
 COLORREF color);

ParametersParameters

CMFCColorMenuButton::SetColorName

static void SetColorName(
 COLORREF color,
 const CString& strName);

ParametersParameters

RemarksRemarks

CMFCColorMenuButton::SetColumnsNumber

void SetColumnsNumber(int nColumns);

ParametersParameters

RemarksRemarks

See also

uiCmdID
[in] The resource ID of a color menu button.

color
[in] An RGB color value.

Sets a new name for the specified color.

color
[in] The RGB value of the color whose name changes.

strName
[in] The new name of the color.

Sets the number of columns to display in a color selection control (CMFCColorBar object).

nColumns
[in] The number of columns to display.

Hierarchy Chart
Classes
CMFCColorBar Class
CMFCToolBar Class
CMFCToolBarsCustomizeDialog Class
CMFCColorButton Class

CMFCColorPickerCtrl Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CMFCColorPickerCtrl : public CButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCColorPickerCtrl::CMFCColorPickerCtrl Constructs a CMFCColorPickerCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCColorPickerCtrl::GetColor Retrieves the color that the user selects.

CMFCColorPickerCtrl::GetHLS Retrieves the hue, luminance and saturation values of the
color that the user selects.

CMFCColorPickerCtrl::GetHue Retrieves the hue component of the color that the user
selects.

CMFCColorPickerCtrl::GetLuminance Retrieves the luminance component of the color that the user
selects.

CMFCColorPickerCtrl::GetSaturation Retrieves the saturation component of the color that the user
selects.

CMFCColorPickerCtrl::SelectCellHexagon Sets the current color to the color defined by the specified
RGB color components or the specified cell hexagon.

CMFCColorPickerCtrl::SetColor Sets the current color to the specified RGB color value.

CMFCColorPickerCtrl::SetHLS Sets the current color to the specified HLS color value.

CMFCColorPickerCtrl::SetHue Changes the hue component of the currently selected color.

CMFCColorPickerCtrl::SetLuminance Changes the luminance component of the currently selected
color.

CMFCColorPickerCtrl::SetLuminanceBarWidth Sets the width of the luminance bar in the color picker
control.

The CMFCColorPickerCtrl class provides functionality for a control that is used to select colors.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfccolorpickerctrl-class.md

CMFCColorPickerCtrl::SetOriginalColor Sets the initial selected color.

CMFCColorPickerCtrl::SetPalette Sets the current color palette.

CMFCColorPickerCtrl::SetSaturation Changes the saturation component of the currently selected
color.

CMFCColorPickerCtrl::SetType Sets the type of color picker control to display.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCColorPickerCtrl::DrawCursor Called by the framework before a cursor that points to the
selected color is displayed.

Remarks

Example

Standard colors are selected from a hexagonal color palette, and custom colors are selected from a luminance bar
where colors are specified using either red/green/blue notation or hue/satuaration/luminance notation.

The following illustration depicts several CMFCColorPickerCtrl objects.

The CMFCColorPickerCtrl supports two pairs of styles. The HEX and HEX_GREYSCALE styles are appropriate for
standard color selection. The PICKER and LUMINANCE styles are appropriate for custom color selection.

Perform the following steps to incorporate the CMFCColorPickerCtrl control into your dialog box:

1. If you use the ClassWizard, insert a new button control into your dialog box template (because the
CMFCColorPickerCtrl class is inherited from the CButton class).

2. Insert a member variable that is associated with the new button control into your dialog box class. Then
change the variable type from CButton to CMFCColorPickerCtrl .

3. Insert the WM_INITDIALOG message handler for the dialog box class. In the handler, set the type, palette, and
initial selected color of the CMFCColorPickerCtrl control.

The following example demonstrates how to configure a CMFCColorPickerCtrl object by using various methods in

CMFCColorPickerCtrl m_wndLum;

// CPalette m_palSys
// set the type of the color picker control
m_wndLum.SetType(CMFCColorPickerCtrl::LUMINANCE);
m_wndLum.SetPalette(&m_palSys);
// set the color, hue, luminance and saturation of the color picker control
m_wndLum.SetColor(RGB(0, 255, 0));
m_wndLum.SetHue(0.5);
m_wndLum.SetLuminance(2.5);
m_wndLum.SetLuminanceBarWidth(10);
m_wndLum.SetSaturation(0.5);

Inheritance Hierarchy

Requirements

CMFCColorPickerCtrl::CMFCColorPickerCtrl

CMFCColorPickerCtrl();

Return ValueReturn Value

RemarksRemarks

CMFCColorPickerCtrl::DrawCursor

virtual void DrawCursor(
 CDC* pDC,
 const CRect& rect);

ParametersParameters

the CMFCColorPickerCtrl class. The example demonstrates how to set the type of the picker control, and how to
set its color, hue, luminance, and saturation. The example is part of the New Controls sample.

CObject

CCmdTarget

CWnd

CButton

CMFCColorPickerCtrl

Header: afxcolorpickerctrl.h

Constructs a CMFCColorPickerCtrl object.

Called by the framework before a cursor that points to the selected color is displayed.

pDC
[in] Pointer to a device context.

rect

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CMFCColorPickerCtrl::GetColor

COLORREF GetColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCColorPickerCtrl::GetHLS

void GetHLS(
 double* hue,
 double* luminance,
 double* saturation);

ParametersParameters

RemarksRemarks

CMFCColorPickerCtrl::GetHue

double GetHue() const;

Return ValueReturn Value

RemarksRemarks

CMFCColorPickerCtrl::GetLuminance

double GetLuminance() const;

[in] Specifies a rectangular area around the selected color.

Override this method when you need to change the shape of the cursor that points to the selected color.

Retrieves the color that the user selects.

The RGB value of the selected color.

Retrieves the hue, luminance and saturation values of the color that the user selects.

hue
[out] Pointer to a variable of type double that receives hue information.

luminance
[out] Pointer to a variable of type double that receives luminance information.

saturation
[out] Pointer to a variable of type double that receives saturation information.

Retrieves the hue component of the color that the user selects.

The hue component of the selected color.

Retrieves the luminance component of the color that the user selects.

Return ValueReturn Value

RemarksRemarks

CMFCColorPickerCtrl::GetSaturation

double GetSaturation() const;

Return ValueReturn Value

RemarksRemarks

CMFCColorPickerCtrl::SelectCellHexagon

void SelectCellHexagon(
 BYTE R,
 BYTE G,
 BYTE B);

BOOL SelectCellHexagon(
 int x,
 int y);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCColorPickerCtrl::SetColor

The luminance component of the selected color.

Retrieves the saturation value of the color that the user selects.

The saturation component of the selected color.

Sets the current color to the color defined by the specified RGB color components or the specified cell hexagon.

R
[in] The red color component.

G
[in] The green color component.

B
[in] The blue color component.

x
[in] The x-coordinate of the cursor, which points to a cell hexagon.

y
[in] The y-coordinate of the cursor, which points to a cell hexagon.

The second overload of this method always returns FALSE.

The first overload of this method sets the current color to the color that corresponds to the color selection
control's specified red, green, and blue color components.

The second overload of this method sets the current color to the color of the cell hexagon that is pointed to by the
specified cursor location.

void SetColor(COLORREF Color);

ParametersParameters

RemarksRemarks

CMFCColorPickerCtrl::SetHLS

void SetHLS(
 double hue,
 double luminance,
 double saturation,
 BOOL bInvalidate=TRUE);

ParametersParameters

RemarksRemarks

CMFCColorPickerCtrl::SetHue

void SetHue(double Hue);

ParametersParameters

RemarksRemarks

CMFCColorPickerCtrl::SetLuminance

void SetLuminance(double Luminance);

ParametersParameters

Sets the current color to the specified RGB color value.

Color
[in] An RGB color value.

Sets the current color to the specified HLS color value.

hue
[in] A hue value.

luminance
[in] A luminance value.

saturation
[in] A saturation value.

bInvalidate
[in] TRUE to force the window to immediately update to the new color; otherwise, FALSE. The default is TRUE.

Changes the hue of the currently selected color.

Hue
[in] A hue value.

Changes the luminance of the currently selected color.

RemarksRemarks

CMFCColorPickerCtrl::SetLuminanceBarWidth

void SetLuminanceBarWidth(int w);

ParametersParameters

RemarksRemarks

CMFCColorPickerCtrl::SetOriginalColor

void SetOriginalColor(COLORREF ref);

ParametersParameters

RemarksRemarks

CMFCColorPickerCtrl::SetPalette

void SetPalette(CPalette* pPalette);

ParametersParameters

RemarksRemarks

CMFCColorPickerCtrl::SetSaturation

void SetSaturation(double Saturation);

Luminance
[in] A luminance value.

Sets the width of the luminance bar in the color picker control.

w
[in] The width of the luminance bar measured in pixels.

Use this method to resize the luminance bar, which is on the Custom tab of the color picker control. The w
parameter specifies the new width of the luminance bar. The width value is ignored if it exceeds three-fourths of
the client area width.

Sets the initial selected color.

ref
[in] An RGB color value.

Call this method when the color picker control is initialized.

Sets the current color palette.

pPalette
[in] Pointer to a color palette.

The color palette defines the array of colors that is presented in the color picker control.

Changes the saturation of the currently selected color.

ParametersParameters

RemarksRemarks

CMFCColorPickerCtrl::SetType

void SetType(COLORTYPE colorType);

ParametersParameters

RemarksRemarks

See also

Saturation
[in] A saturation value.

Sets the type of color picker control to display.

colorType
[in] A color picker control type.

The types are defined by the CMFCColorPickerCtrl::COLORTYPE enumeration. The possible types are LUMINANCE,
PICKER, HEX and HEX_GREYSCALE. The default type is PICKER.

To specify a color picker control type, call this method before the Windows control is created.

Hierarchy Chart
Classes
CMFCColorDialog Class

CMFCColorPopupMenu Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCColorPopupMenu : public CMFCPopupMenu

Members
Public ConstructorsPublic Constructors

Name Description

CMFCColorPopupMenu::CMFCColorPopupMenu Constructs a CMFCColorPopupMenu object.

CMFCColorPopupMenu::~CMFCColorPopupMenu Destructor.

Public MethodsPublic Methods

Name Description

CMFCColorPopupMenu::CreateTearOffBar Creates a dockable tear-off color bar. (Overrides
CMFCPopupMenu::CreateTearOffBar.)

CMFCColorPopupMenu::GetMenuBar Returns the CMFCPopupMenuBar that is embedded inside
the pop-up menu. (Overrides
CMFCPopupMenu::GetMenuBar.)

CMFCColorPopupMenu::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCColorPopupMenu::SetPropList Sets the property grid control object of the embedded
CMFCColorBar object.

Data MembersData Members

Name Description

m_bEnabledInCustomizeMode A Boolean value that determines whether to show the color
bar.

m_wndColorBar The CMFCColorBar object that provides color selection.

RemarksRemarks

Represents a pop-up menu that users use to select colors in a document or application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfccolorpopupmenu-class.md

Inheritance Hierarchy

Requirements

CMFCColorPopupMenu::CMFCColorPopupMenu

This class inherits the pop-up menu functionality of the CMFCPopupMenu class and manages a CMFCColorBar object
that provides color selection. When the toolbar framework is in customization mode and the
m_bEnabledInCustomizeMode member is set to FALSE, the color bar object is not shown. For more information about

customization mode, see CMFCToolBar::IsCustomizeMode

For more information about CMFCColorBar , see CMFCColorBar Class.

CObject

CCmdTarget

CWnd

CFrameWnd

CMiniFrameWnd

CMFCPopupMenu

CMFCColorPopupMenu

Header: afxcolorpopupmenu.h

Constructs a CMFCColorPopupMenu object.

CMFCColorPopupMenu(
 const CArray<COLORREF, COLORREF>& colors,
 COLORREF color,
 LPCTSTR lpszAutoColor,
 LPCTSTR lpszOtherColor,
 LPCTSTR lpszDocColors, CList<COLORREF, COLORREF>& lstDocColors,
 int nColumns,
 int nHorzDockRows,
 int nVertDockColumns,
 COLORREF colorAutomatic,
 UINT uiCommandID,
 BOOL bStdColorDlg = FALSE);

CMFCColorPopupMenu(
 CMFCColorButton* pParentBtn,
 const CArray<COLORREF, COLORREF>& colors,
 COLORREF color,
 LPCTSTR lpszAutoColor,
 LPCTSTR lpszOtherColor,
 LPCTSTR lpszDocColors, CList<COLORREF, COLORREF>& lstDocColors,
 int nColumns,
 COLORREF colorAutomatic);

CMFCColorPopupMenu(
 CMFCRibbonColorButton* pParentBtn,
 const CArray<COLORREF, COLORREF>& colors,
 COLORREF color,
 LPCTSTR lpszAutoColor,
 LPCTSTR lpszOtherColor,
 LPCTSTR lpszDocColors, CList<COLORREF, COLORREF>& lstDocColors,
 int nColumns,
 COLORREF colorAutomatic,
 UINT nID);

ParametersParameters
colors
[in] An array of colors that the framework displays on the pop-up menu.

color
[in] The default selected color.

lpszAutoColor
[in] The text label of the automatic (default) color button, or NULL.

The standard label for the automatic button is Automatic.

lpszOtherColor
[in] The text label of the other button, which displays more color choices, or NULL.

The standard label for the other button is More Colors....

lpszDocColors
[in] The text label of the document colors button. The document colors palette lists all the colors that the document
currently uses.

lstDocColors
[in] A list of colors that the document currently uses.

nColumns
[in] The number of columns that the array of colors has.

nHorzDockRows

RemarksRemarks

ExampleExample

COLORREF color;
CArray<COLORREF, COLORREF> colors;
CString strAutoColorText;
CString strOtherText;
CString strDocColorsText;
CList<COLORREF,COLORREF> lstDocColors;
COLORREF colorAutomatic;
int nColumns;
CMFCColorButton colorButton;
CMFCColorPopupMenu* pPopup = new CMFCColorPopupMenu(&colorButton, colors, color, strAutoColorText,
strOtherText, strDocColorsText, lstDocColors, nColumns, colorAutomatic);

CMFCColorPopupMenu::CreateTearOffBar

virtual CPane* CreateTearOffBar(
 CFrameWnd* pWndMain,
 UINT uiID,
 LPCTSTR lpszName);

ParametersParameters

Parameter Description

pWndMain [in] Pointer to the parent window of the tear-off bar.

uiID [in] The command ID of the tear-off bar.

[in] The number of rows that the color bar has when it is docked horizontally.

nVertDockColumns
[in] The number of columns that the color bar has when it is docked vertically.

colorAutomatic
[in] The default color that the framework applies when you click the automatic button.

uiCommandID
[in] The color bar control command ID.

bStdColorDlg
[in] A Boolean that indicates whether to show the standard system color dialog box or the CMFCColorDialog
dialog box.

pParentBtn
[in] A pointer to a parent button.

nID
[in] The command ID.

Each overloaded constructor sets the m_bEnabledInCustomizeMode member to FALSE.

The following example demonstrates how to construct a CMFCColorPopupMenu object.

Creates a dockable tear-off color bar.

lpszName [in] The window text of the tear-off bar.

Return ValueReturn Value

RemarksRemarks

CMFCColorPopupMenu::GetMenuBar

virtual CMFCPopupMenuBar* GetMenuBar();

Return ValueReturn Value

RemarksRemarks

CMFCColorPopupMenu::SetPropList

void SetPropList(CMFCPropertyGridCtrl* pWndList);

ParametersParameters

See also

A pointer to the new tear-off control bar object.

This method creates a CMFCColorBar Class object and casts it to a CPane Class pointer. You can cast this value
back to a CMFCColorBar Class pointer by using one of the casting macros described in Type Casting of MFC Class
Objects.

Returns the CMFCPopupMenuBar that is embedded inside the pop-up menu.

A pointer to the embedded CMFCPopupMenuBar .

The color pop-up menu has an embedded CMFCPopupMenuBar Class object. Override this method in a derived
class if your application uses a different embedded type.

Sets the property grid control object of the embedded CMFCColorBar object.

pWndList
[in] Pointer to a property grid control object.

Hierarchy Chart
Classes

CMFCCustomColorsPropertyPage Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCCustomColorsPropertyPage : public CPropertyPage

Members
Public ConstructorsPublic Constructors

Name Description

CMFCCustomColorsPropertyPage::CMFCCustomColorsPropertyPageDefault constructor.

Public MethodsPublic Methods

Name Description

CMFCCustomColorsPropertyPage::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCCustomColorsPropertyPage::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCCustomColorsPropertyPage::Setup Sets the color components of the property page.

RemarksRemarks

Example

CMFCCustomColorsPropertyPage* colourSheet = new CMFCCustomColorsPropertyPage();
colourSheet->Setup(0,0,255);

Inheritance Hierarchy

Represents a property page that can select custom colors in a color dialog box.

The CMFCColorDialog class uses this class to display the custom color property page. For more information about
CMFCColorDialog , see CMFCColorDialog Class.

The following example demonstrates how to construct a CMFCCustomColorsPropertyPage object and set the color
components of the property page.

CObject

CCmdTarget

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfccustomcolorspropertypage-class.md

Requirements

CMFCCustomColorsPropertyPage::Setup

void Setup(
 BYTE R,
 BYTE G,
 BYTE B);

ParametersParameters

Parameter Description

R [in] The red component of the RGB value.

G [in] The green component of the RGB value.

B [in] The blue component of the RGB value.

RemarksRemarks

See also

CWnd

CDialog

CPropertyPage

CMFCCustomColorsPropertyPage

Header: afxcustomcolorspropertypage.h

Sets the color components of the property page.

This method updates the current RGB and the associated HLS (hue, lightness, and saturation) color values of the
property page. The CMFCColorDialog::SetPageTwo method calls this method when the framework initializes the
color dialog box or the user presses the left mouse button. For more information about CMFCColorDialog , see
CMFCColorDialog Class.

Hierarchy Chart
Classes
CMFCColorDialog Class
CMFCStandardColorsPropertyPage Class

CMFCDesktopAlertDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCDesktopAlertDialog : public CDialogEx

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCDesktopAlertDialog::CreateFromParams

CMFCDesktopAlertDialog::GetDlgSize

CMFCDesktopAlertDialog::HasFocus

CMFCDesktopAlertDialog::PreTranslateMessage (Overrides CDialogEx::PreTranslateMessage .)

RemarksRemarks

Inheritance Hierarchy

The CMFCDesktopAlertDialog class is used together with the CMFCDesktopAlertWnd Class to display a custom
dialog in a popup window.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

Perform the following steps to display a custom dialog in a popup window:

1. Derive a class from CMFCDesktopAlertDialog .

2. Create a child dialog template in the resources of the project.

3. Call CMFCDesktopAlertWnd::Create with the resource ID of the dialog template and a pointer to the
runtime class information of the derived class as parameters.

4. Program the custom dialog to handle all notifications that are coming from the hosted controls, or program
the hosted controls to handle these notifications directly.

CObject

CCmdTarget

CWnd

CDialog

CDialogEx

CMFCDesktopAlertDialog

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcdesktopalertdialog-class.md

Requirements

CMFCDesktopAlertDialog::CreateFromParams
BOOL CreateFromParams(
 CMFCDesktopAlertWndInfo& params,
 CMFCDesktopAlertWnd* pParent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertDialog::GetDlgSize
CSize GetDlgSize();

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertDialog::HasFocus
BOOL HasFocus() const;

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertDialog::PreTranslateMessage
virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Header: afxDesktopAlertDialog.h

[in] params

[in] pParent

[in] pMsg

Hierarchy Chart
Classes
CMFCDesktopAlertWnd Class
CMFCDesktopAlertWndInfo Class
CDialogEx Class

CMFCDesktopAlertWnd Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CMFCDesktopAlertWnd : public CWnd

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCDesktopAlertWnd::Create Creates and initializes the desktop alert window.

CMFCDesktopAlertWnd::GetAnimationSpeed Returns the animation speed.

CMFCDesktopAlertWnd::GetAnimationType Returns the animation type.

CMFCDesktopAlertWnd::GetAutoCloseTime Returns the auto-close time out.

CMFCDesktopAlertWnd::GetCaptionHeight Returns the height of the caption.

CMFCDesktopAlertWnd::GetDialogSize

CMFCDesktopAlertWnd::GetLastPos Returns the last valid position of the desktop alert window on
the screen.

CMFCDesktopAlertWnd::GetTransparency Returns the transparency level.

CMFCDesktopAlertWnd::HasSmallCaption Determines whether the desktop alert window is displayed
with the small caption.

CMFCDesktopAlertWnd::OnBeforeShow

CMFCDesktopAlertWnd::OnClickLinkButton Called by the framework when the user clicks a link button
located on the desktop alert menu.

CMFCDesktopAlertWnd::OnCommand The framework calls this member function when the user
selects an item from a menu, when a child control sends a
notification message, or when an accelerator keystroke is
translated. (Overrides CWnd::OnCommand.)

CMFCDesktopAlertWnd::OnDraw

The CMFCDesktopAlertWnd class implements the functionality of a modeless dialog box which appears on the
screen to inform the user about an event.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcdesktopalertwnd-class.md

CMFCDesktopAlertWnd::ProcessCommand

CMFCDesktopAlertWnd::SetAnimationSpeed Sets the new animation speed.

CMFCDesktopAlertWnd::SetAnimationType Sets the animation type.

CMFCDesktopAlertWnd::SetAutoCloseTime Sets the auto-close time out.

CMFCDesktopAlertWnd::SetSmallCaption Switches between small and normal captions.

CMFCDesktopAlertWnd::SetTransparency Sets the transparency level.

NAME DESCRIPTION

Remarks

Example

A desktop alert window can be transparent, it can appear with animation effects, and it can disappear (after a
specified delay or when the user dismisses it by clicking the close button).

A desktop alert window can also contain a default dialog that in turn contains an icon, message text (a label), and
a link. Alternatively, a desktop alert window can contain a custom dialog from the application's resources.

You create a desktop alert window in two steps. First, call the constructor to construct the CMFCDesktopAlertWnd

object. Second, call the CMFCDesktopAlertWnd::Create member function to create the window and attach it to
the CMFCDesktopAlertWnd object.

The CMFCDesktopAlertWnd object creates a special child dialog box that fills the client area of the desktop alert
window. The dialog owns all the controls that are positioned on it.

To display a custom dialog box on the popup window, follow these steps:

1. Derive a class from CMFCDesktopAlertDialog .

2. Create a child dialog box template in the resources.

3. Call CMFCDesktopAlertWnd::Create using the resource ID of the dialog box template and a pointer to the
runtime class information of the derived class.

4. Program the custom dialog box to handle all notifications coming from the hosted controls, or program
the hosted controls to handle these notifications directly.

Use the following functions to control the behavior of the desktop alert window:

Set the animation type by calling CMFCDesktopAlertWnd::SetAnimationType. Valid options include
unfold, slide, and fade.

Set the animation frame speed by calling CMFCDesktopAlertWnd::SetAnimationSpeed.

Set the transparency level by calling CMFCDesktopAlertWnd::SetTransparency.

Change the size of the caption to small by calling CMFCDesktopAlertWnd::SetSmallCaption. The small
caption is 7 pixels high.

The following example illustrates how to use various methods in the CMFCDesktopAlertWnd class to configure a
CMFCDesktopAlertWnd object. The example shows how to set an animation type, set the transparency of the pop-up

CMFCDesktopAlertWnd* pPopup = new CMFCDesktopAlertWnd;

// int m_nAnimation
pPopup->SetAnimationType ((CMFCPopupMenu::ANIMATION_TYPE) m_nAnimation);

// int m_nAnimationSpeed
pPopup->SetAnimationSpeed (m_nAnimationSpeed);

// int m_nTransparency
pPopup->SetTransparency ((BYTE)m_nTransparency);

// BOOL m_bSmallCaption
pPopup->SetSmallCaption (m_bSmallCaption);

// BOOL m_bAutoClose, int m_nAutoCloseTime
pPopup->SetAutoCloseTime (m_bAutoClose ? m_nAutoCloseTime * 1000 : 0);

// int m_nPopupSource
if (m_nPopupSource == 0)
{
 // int m_nVisualMngr
 // CPoint m_ptPopup
 // The this pointer points to a CDesktopAlertDemoDlg class which extends the CDialogEx class.
 if (m_nVisualMngr == 5) // MSN-style
 {
 pPopup->Create (this, IDD_DIALOG2, NULL,
 m_ptPopup, RUNTIME_CLASS (CMSNDlg));
 }
 else
 {
 pPopup->Create (this, IDD_DIALOG1,
 m_menuPopup.GetSubMenu (0)->GetSafeHmenu (),
 m_ptPopup, RUNTIME_CLASS (CMyPopupDlg));
 }
}

Inheritance Hierarchy

Requirements

CMFCDesktopAlertWnd::Create

window, specify that the alert window displays a small caption, and set the time that elapses before the alert
window automatically closes. The example also demonstrates how to create and initialize the desktop alert
window. This code snippet is part of the Desktop Alert Demo sample.

CObject

CCmdTarget

CWnd

CMFCDesktopAlertWnd

Header: afxDesktopAlertWnd.h

Creates and initializes the desktop alert window.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

virtual BOOL Create(
 CWnd* pWndOwner,
 UINT uiDlgResID,
 HMENU hMenu = NULL,
 CPoint ptPos = CPoint(-1,-1),
 CRuntimeClass* pRTIDlgBar = RUNTIME_CLASS(CMFCDesktopAlertDialog));

virtual BOOL Create(
 CWnd* pWndOwner,
 CMFCDesktopAlertWndInfo& params,
 HMENU hMenu = NULL,
 CPoint ptPos = CPoint(-1,-1));

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertWnd::GetAnimationSpeed

UINT GetAnimationSpeed() const;

Return ValueReturn Value

pWndOwner
[in, out] Specifies the owner of the alert window. That owner will then receive all notifications for the desktop
alert window. This value cannot be NULL.

uiDlgResID
[in] Specifies the resource ID of the alert window.

hMenu
[in] Specifies the menu that displays when the user clicks the menu button. If NULL, the menu button is not
displayed.

ptPos
[in] Specifies the initial position where the alert window is displayed, using screen coordinates. If this parameter
is (-1, -1), the alert window is displayed in the lower-right corner of the screen.

pRTIDlgBar
[in] Runtime class information for a custom dialog box class that covers the alert window's client area.

params
[in] Specifies parameters that are used to create an alert window.

TRUE if the alert window was created successfully; otherwise, FALSE.

Call this method to create an alert window. The client area of the alert window contains a child dialog box that
hosts all controls that are displayed to the user.

The first method overload creates an alert window that contains a child dialog box that is loaded from the
application's resources. The first method overload can also specify runtime class information for a custom dialog
box class.

The second method overload creates an alert window that contains default controls. You can specify which
controls to display by modifying the CMFCDesktopAlertWndInfo Class.

Returns the animation speed.

The animation speed of the alert window, in milliseconds.

RemarksRemarks

CMFCDesktopAlertWnd::GetAnimationType

CMFCPopupMenu::ANIMATION_TYPE GetAnimationType();

Return ValueReturn Value

CMFCDesktopAlertWnd::GetAutoCloseTime

int GetAutoCloseTime() const;

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertWnd::GetCaptionHeight

virtual int GetCaptionHeight();

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertWnd::GetLastPos

The animation speed describes how fast the alert window opens and closes.

Returns the animation type.

One of the following animation types:

NO_ANIMATION

UNFOLD

SLIDE

FADE

SYSTEM_DEFAULT_ANIMATION

Returns the auto-close time out.

The time, in milliseconds, after which the alert window will automatically close.

Use this method to determine how much time should elapse before the alert window will automatically close.

Returns the height of the caption.

The height, in pixels, of the caption.

This method can be overridden in a derived class. The default implementation either: returns the small caption
height value (7 pixels) if the popup window should display the small caption, or the value obtained from the
Windows API function GetSystemMetrics(SM_CYSMCAPTION) .

Returns the last position of the desktop alert window on the screen.

CPoint GetLastPos() const;

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertWnd::GetTransparency

BYTE GetTransparency() const;

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertWnd::HasSmallCaption

BOOL HasSmallCaption() const;

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertWnd::OnBeforeShow
virtual BOOL OnBeforeShow(CPoint&);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertWnd::OnClickLinkButton

A point, in screen coordinates.

This method returns the last valid position of the alert window on the screen.

Returns the transparency level.

A transparency level between 0 and 255, inclusive. The greater the value, the more opaque the window.

Use this method to retrieve the current transparency level of the alert window.

Determines whether the desktop alert window has a small caption or a regular-size caption.

TRUE if the popup window is displayed with a small caption; FALSE if the popup window is displayed with a
regular-sized caption.

Use this method to determine whether the popup window has a small caption or a regular-size caption. By
default, the small caption is 7 pixels high. You can obtain the height of the regular-size caption by calling the
Windows API function GetSystemMetrics(SM_CYCAPTION) .

[in] CPoint&

Called by the framework when the user clicks a link button located on the desktop alert menu.

virtual BOOL OnClickLinkButton(UINT uiCmdID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertWnd::OnCommand
virtual BOOL OnCommand(
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertWnd::OnDraw
virtual void OnDraw(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCDesktopAlertWnd::ProcessCommand
BOOL ProcessCommand(HWND hwnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertWnd::SetAnimationSpeed

uiCmdID
[in] This parameter is not used.

Always FALSE.

Override this method in a derived class if you want to be notified when a user clicks the link on the alert window.

[in] wParam

[in] lParam

[in] pDC

[in] hwnd

Sets the new animation speed.

void SetAnimationSpeed(UINT nSpeed);

ParametersParameters

RemarksRemarks

CMFCDesktopAlertWnd::SetAnimationType

void SetAnimationType(CMFCPopupMenu::ANIMATION_TYPE type);

ParametersParameters

RemarksRemarks

CMFCDesktopAlertWnd::SetAutoCloseTime

void SetAutoCloseTime(int nTime);

ParametersParameters

RemarksRemarks

CMFCDesktopAlertWnd::SetSmallCaption

void SetSmallCaption(BOOL bSmallCaption = TRUE);

ParametersParameters

nSpeed
[in] Specifies the new animation speed, in milliseconds.

Call this method to set the animation speed for the alert window. The default animation speed is 30 milliseconds.

Sets the animation type.

type
[in] Specifies the animation type.

Call this method to set animation type. You can specify one of the following values:

NO_ANIMATION

UNFOLD

SLIDE

FADE

SYSTEM_DEFAULT_ANIMATION

Sets the auto-close time out.

nTime
[in] The time, in milliseconds, that elapses before the alert window automatically closes.

The alert window is automatically closed after the specified time if the user does not interact with the window.

Switches between small and regular-size captions.

RemarksRemarks

CMFCDesktopAlertWnd::SetTransparency

void SetTransparency(BYTE nTransparency);

ParametersParameters

RemarksRemarks

CMFCDesktopAlertWnd::GetDialogSize
virtual CSize GetDialogSize();

Return ValueReturn Value

RemarksRemarks

See also

bSmallCaption
[in] TRUE to specify that the alert window displays a small caption; otherwise, FALSE to specify that the alert
window displays a regular-size caption.

Call this method to display the small or regular-size caption. By default, the small caption is 7 pixels high. You can
obtain the size of the regular caption by calling the Windows API function GetSystemMetrics(SM_CYCAPTION) .

Sets the transparency level of the popup window.

nTransparency
[in] Specifies the transparency level. This value must be between 0 and 255, inclusive. The greater the value, the
more opaque the window.

Call this function to set the transparency level of the popup window.

Hierarchy Chart
Classes
CMFCDesktopAlertWndInfo Class
CMFCDesktopAlertDialog Class
CWnd Class

CMFCDesktopAlertWndButton Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCDesktopAlertWndButton : public CMFCButton

Members
Public ConstructorsPublic Constructors

Name Description

CMFCDesktopAlertWndButton::CMFCDesktopAlertWndButton Default constructor.

CMFCDesktopAlertWndButton::~CMFCDesktopAlertWndButton Destructor.

Public MethodsPublic Methods

Name Description

CMFCDesktopAlertWndButton::IsCaptionButton Determines whether the button is displayed in the caption
area of the alert dialog box.

CMFCDesktopAlertWndButton::IsCloseButton Determines whether the button closes the alert dialog box.

Data MembersData Members

Name Description

CMFCDesktopAlertWndButton::m_bIsCaptionButton A Boolean value that specifies whether the button is displayed
in the caption area of the alert dialog box.

CMFCDesktopAlertWndButton::m_bIsCloseButton A Boolean value that specifies whether the button closes the
alert dialog box.

RemarksRemarks

Allows buttons to be added to a desktop alert dialog box.

By default, the constructor sets the m_bIsCaptionButton and m_bIsCloseButton data members to FALSE. The parent
CMFCDesktopAlertDialog object sets m_bIsCaptionButton to TRUE if the button is positioned in the caption area of

the alert dialog box. The CMFCDesktopAlertDialog class creates a CMFCDesktopAlertWndButton object that serves as
the button that closes the alert dialog box and sets m_bIsCloseButton to TRUE.

Add CMFCDesktopAlertWndButton objects to a CMFCDesktopAlertDialog object as you would add any button. For

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcdesktopalertwndbutton-class.md

Example

CMFCDesktopAlertWndButton m_btnFlag;

m_btnFlag.SetImage (IDB_FLAG);

Inheritance Hierarchy

Requirements

CMFCDesktopAlertWndButton::IsCaptionButton

BOOL IsCaptionButton() const;

Return ValueReturn Value

CMFCDesktopAlertWndButton::IsCloseButton

BOOL IsCloseButton() const;

Return ValueReturn Value

See also

more information about CMFCDesktopAlertDialog , see CMFCDesktopAlertDialog Class.

The following example demonstrates how to use the SetImage method in the CMFCDesktopAlertWndButton class.
This code snippet is part of the Desktop Alert Demo sample.

CObject

CCmdTarget

CWnd

CButton

CMFCButton

CMFCDesktopAlertWndButton

Header: afxdesktopalertwnd.h

Determines whether the button is displayed in the caption area of the alert dialog box.

Nonzero if the button is displayed in the caption area of the alert dialog box; otherwise, 0.

Determines whether the button closes the alert dialog box.

Nonzero if the button closes the alert dialog box; otherwise, 0.

Hierarchy Chart
Classes
CMFCDesktopAlertDialog Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCDesktopAlertWndInfo Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCDesktopAlertWndInfo

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCDesktopAlertWndInfo::~CMFCDesktopAlertWndInfo Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCDesktopAlertWndInfo::operator=

Data MembersData Members

NAME DESCRIPTION

CMFCDesktopAlertWndInfo::m_hIcon A handle to the icon that is displayed.

CMFCDesktopAlertWndInfo::m_nURLCmdID The command ID associated with a link on the desktop alert
window.

CMFCDesktopAlertWndInfo::m_strText The text that is displayed on the desktop alert window.

CMFCDesktopAlertWndInfo::m_strURL The link that is displayed on the desktop alert window.

Remarks

The CMFCDesktopAlertWndInfo class is used with the CMFCDesktopAlertWnd Class. It specifies the controls that
are displayed if the desktop alert window pops up.

The CMFCDesktopAlertWndInfo class is passed to the CMFCDesktopAlertWnd::Create method to specify the
elements that are displayed on the default dialog of the desktop alert window. The default dialog can contain three
items:

An icon, which is set by calling CMFCDesktopAlertWndInfo::m_hIcon.

A label, or text message, which is set by calling CMFCDesktopAlertWndInfo::m_strText.

A link, which is set by calling CMFCDesktopAlertWndInfo::m_strURL. To set the command that is executed
when the link is clicked, call CMFCDesktopAlertWndInfo::m_nURLCmdID.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcdesktopalertwndinfo-class.md

Example

CMFCDesktopAlertWndInfo params;
// int m_nIcon
if (m_nIcon > 0)
{
 // CMFCToolBarImages m_Icons
 params.m_hIcon = m_Icons.ExtractIcon (m_nIcon - 1);
}

// CString m_strText
params.m_strText = m_strText;
// CString m_strLink
params.m_strURL = m_strLink;
params.m_nURLCmdID = 101;

Inheritance Hierarchy

Requirements

CMFCDesktopAlertWndInfo::operator=

CMFCDesktopAlertWndInfo& operator=(CMFCDesktopAlertWndInfo& src);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDesktopAlertWndInfo::m_hIcon

HICON m_hIcon;

RemarksRemarks

If the default dialog is not sufficient, you can create a custom dialog and pass it to the
CMFCDesktopAlertWnd::Create method instead of using this class. For more information, see
CMFCDesktopAlertDialog Class.

The following example demonstrates how to use various members in the CMFCDesktopAlertWndInfo class. The
example demonstrates how to set the handle to the icon that is displayed, the text that is displayed on the desktop
alert window, the link that is displayed on the desktop alert window, and the command ID that is associated with a
link on the desktop alert window. This example is part of the Desktop Alert Demo sample.

CMFCDesktopAlertWndInfo

Header: afxDesktopAlertDialog.h

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] src

A handle to the icon that is displayed.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCDesktopAlertWndInfo::m_nURLCmdID

UINT m_nURLCmdID;

RemarksRemarks

CMFCDesktopAlertWndInfo::m_strText

CString m_strText;

RemarksRemarks

CMFCDesktopAlertWndInfo::m_strURL

CString m_strURL;

RemarksRemarks

See also

The command ID associated with a link on the desktop alert window.

The command ID is sent to the owner of the popup window when the user clicks on the link specified by
CMFCDesktopAlertWndInfo::m_strURL.

The text that is displayed on the desktop alert window.

The link that is displayed on the desktop alert window.

When the user clicks the link, the command that has the CMFCDesktopAlertWndInfo::m_nURLCmdID command
ID will be sent to the owner of the pop-up window.

Hierarchy Chart
Classes
CMFCDesktopAlertWnd Class
CMFCDesktopAlertWnd::Create
CMFCDesktopAlertDialog Class

CMFCDisableMenuAnimation Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCDisableMenuAnimation

Members
Public ConstructorsPublic Constructors

Name Description

CMFCDisableMenuAnimation::CMFCDisableMenuAnimation Constructs a CMFCDisableMenuAnimation object.

CMFCDisableMenuAnimation::~CMFCDisableMenuAnimation Destructor.

Public MethodsPublic Methods

Name Description

CMFCDisableMenuAnimation::Restore Restores the previous animation that the framework used to
display a pop-up menu.

Data MembersData Members

Name Description

CMFCDisableMenuAnimation::m_animType Stores the previous pop-up menu animation type.

RemarksRemarks

Disables pop-up menu animation.

Use this helper class to temporarily disable pop-up menu animation (for example, when you process mouse or
keyboard commands).

A CMFCDisableMenuAnimation object disables pop-up menu animation during its lifetime. The constructor stores the
current pop-up menu animation type in the m_animType field and sets the current animation type to
CMFCPopupMenu::NO_ANIMATION . The destructor restores the previous animation type.

You can create a CMFCDisableMenuAnimation object on the stack to disable pop-up menu animation throughout a
single function. If you want to disable popup menu animation between functions, create a
CMFCDisableMenuAnimation object on the heap and then delete it when you want to restore pop-up menu animation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcdisablemenuanimation-class.md

Example

void CMyApp::ProcessCommand()
{
 // Temporarily disable menu animation.
 CMFCDisableMenuAnimation disableMenuAnimation;

 // TODO: Process the command here.

 // When the CMFCDisableMenuAnimation object leaves scope,
 // the destructor will restore the previous animation type.
}

Inheritance Hierarchy

Requirements

CMFCDisableMenuAnimation::Restore

void Restore ();

RemarksRemarks

See also

The following example shows how to use the stack to temporarily disable menu animation.

CMFCDisableMenuAnimation

Header: afxpopupmenu.h

Restores the previous animation that the framework used to display a pop-up menu.

This method is called by the CMFCDisableMenuAnimation destructor to restore the previous animation that the
framework used to display a pop-up menu.

Hierarchy Chart
Classes
CMFCPopupMenu Class

CMFCDragFrameImpl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCDragFrameImpl

Remarks

Inheritance Hierarchy

Requirements

CMFCDragFrameImpl::EndDrawDragFrame
void EndDrawDragFrame(BOOL bClearInternalRects = TRUE);

ParametersParameters

RemarksRemarks

CMFCDragFrameImpl::Init
void Init(CWnd* pDraggedWnd);

ParametersParameters

RemarksRemarks

CMFCDragFrameImpl::MoveDragFrame

The CMFCDragFrameImpl class draws the drag rectangle that appears when the user drags a pane in the standard
dock mode. For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio
installation.

An object of this class is embedded in each CPane Class object. Thus, each pane that uses the CanFloat method
displays a drag rectangle when the user drags it.

You can control the thickness of the drag rectangle by using AFX_GLOBAL_DATA::m_nDragFrameThicknessFloat
and AFX_GLOBAL_DATA::m_nDragFrameThicknessDock.

CMFCDragFrameImpl

Header: afxdragframeimpl.h

[in] bClearInternalRects

[in] pDraggedWnd

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcdragframeimpl-class.md

void MoveDragFrame(BOOL bForceMove = FALSE);

ParametersParameters

RemarksRemarks

CMFCDragFrameImpl::PlaceTabPreDocking
void PlaceTabPreDocking(
 CBaseTabbedPane* pTabbedBar,
 BOOL bFirstTime);

void PlaceTabPreDocking(CWnd* pCBarToPlaceOn);

ParametersParameters

RemarksRemarks

CMFCDragFrameImpl::RemoveTabPreDocking
void RemoveTabPreDocking(CDockablePane* pOldTargetBar = NULL);

ParametersParameters

RemarksRemarks

CMFCDragFrameImpl::ResetState
void ResetState();

RemarksRemarks

See also

[in] bForceMove

[in] pTabbedBar

[in] bFirstTime

[in] pCBarToPlaceOn

[in] pOldTargetBar

Hierarchy Chart
Classes
CPane Class

CMFCDropDownFrame Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCDropDownFrame : public CMiniFrameWnd

Members
Public ConstructorsPublic Constructors

Name Description

CMFCDropDownFrame::CMFCDropDownFrame Default constructor.

CMFCDropDownFrame::~CMFCDropDownFrame Destructor.

Public MethodsPublic Methods

Name Description

CMFCDropDownFrame::Create Creates a CMFCDropDownFrame object.

CMFCDropDownFrame::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCDropDownFrame::GetParentMenuBar Retrieves the parent menu bar of the drop-down frame.

CMFCDropDownFrame::GetParentPopupMenu Retrieves the parent pop-up menu of the drop-down frame.

CMFCDropDownFrame::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCDropDownFrame::RecalcLayout Repositions the drop-down frame.

CMFCDropDownFrame::SetAutoDestroy Sets whether the child drop-down toolbar window is
destroyed automatically.

RemarksRemarks

Provides drop-down frame window functionality to drop-down toolbars and drop-down toolbar buttons.

This class is not intended to be used directly from your code.

The framework uses this class to provide frame behavior to the CMFCDropDownToolbar and
CMFCDropDownToolbarButton classes. For more information about these classes, see CMFCDropDownToolBar Class

and CMFCDropDownToolbarButton Class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcdropdownframe-class.md

Example

CFrameWnd* pTopFrame = AFXGetParentFrame(this);
if (pTopFrame == NULL)
{
 return FALSE;
}

CMFCDropDownFrame* pDropFrame = DYNAMIC_DOWNCAST(CMFCDropDownFrame, pTopFrame);
pDropFrame->SetAutoDestroy(true);

Inheritance Hierarchy

Requirements

CMFCDropDownFrame::Create

virtual BOOL Create(
 CWnd* pWndParent,
 int x,
 int y,
 CMFCDropDownToolBar* pWndOriginToolbar);

ParametersParameters

Parameter Description

pWndParent [in] The parent window of the drop-down frame.

x [in] The horizontal screen coordinate for the location of the
down-down frame.

y [in] The vertical screen coordinate for the location of the
down-down frame.

The following example demonstrates how to retrieve a pointer to a CMFCDropDownFrame object from a CFrameWnd

class, and how to set the child drop-down toolbar window to be destroyed automatically.

CObject

CCmdTarget

CWnd

CFrameWnd

CMiniFrameWnd

CMFCDropDownFrame

Header: afxdropdowntoolbar.h

Creates a CMFCDropDownFrame object.

pWndOriginToolbar [in] The toolbar that has the drop-down buttons that this
method uses to populate the new drop-down frame object.

Return ValueReturn Value

RemarksRemarks

CMFCDropDownFrame::GetParentMenuBar

CMFCMenuBar* GetParentMenuBar() const;

Return ValueReturn Value

RemarksRemarks

CMFCDropDownFrame::GetParentPopupMenu

CMFCDropDownFrame* GetParentPopupMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCDropDownFrame::RecalcLayout

virtual void RecalcLayout(BOOL bNotify = TRUE);

ParametersParameters

TRUE if the drop-down frame was successfully created; otherwise FALSE.

This method calls the base CMiniFrameWnd::CreateEx method to create the drop-down frame window with the
WS_POPUP style. The drop-down frame window appears at the specified screen coordinates. This method fails if
the CMiniFrameWnd::CreateEx method returns FALSE.

The CMFCDropDownFrame class creates a copy of the provided CMFCDropDownToolBar parameter. This method copies
the button images and button states from the pWndOriginToolbar parameter to the m_pWndOriginToolbar data
member.

Retrieves the parent menu bar of the drop-down frame.

A pointer to the parent menu bar of the drop-down frame, or NULL if the frame has no parent.

This method retrieves the parent menu bar from the parent button. This method returns NULL if the drop-down
frame has no parent button or the parent button has no parent menu bar.

Retrieves the parent pop-up menu of the drop-down frame.

A pointer to the parent drop-down menu of the drop-down frame, or NULL if the frame has no parent.

This method retrieves the parent menu from the parent button. This method returns NULL if the drop-down frame
has no parent button or the parent button has no parent menu.

Repositions the drop-down frame.

Parameter Description

bNotify [in] Unused.

RemarksRemarks

CMFCDropDownFrame::SetAutoDestroy

void SetAutoDestroy(BOOL bAutoDestroy = TRUE);

ParametersParameters

RemarksRemarks

See also

The framework calls this method when the drop-down frame is created or the parent window is resized. This
method calculates the position and size of the drop-down frame by using the position and size of the parent
window.

Sets whether the child drop-down toolbar window is destroyed automatically.

bAutoDestroy
[in] TRUE to automatically destroy the associated drop-down toolbar window; otherwise, FALSE.

If bAutoDestroy is TRUE, then the CMFCDropDownFrame destructor destroys the associated drop-down toolbar
window. The default value is TRUE.

Hierarchy Chart
Classes
CMFCDropDownToolBar Class
CMFCDropDownToolbarButton Class

CMFCDropDownToolBar Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCDropDownToolBar : public CMFCToolBar

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCDropDownToolBar::AllowShowOnPaneMenu (Overrides CPane::AllowShowOnPaneMenu .)

CMFCDropDownToolBar::LoadBitmap (Overrides CMFCToolBar::LoadBitmap.)

CMFCDropDownToolBar::LoadToolBar (Overrides CMFCToolBar::LoadToolBar.)

CMFCDropDownToolBar::OnLButtonUp

CMFCDropDownToolBar::OnMouseMove

CMFCDropDownToolBar::OnSendCommand (Overrides CMFCToolBar::OnSendCommand .)

CMFCDropDownToolBar::OnUpdateCmdUI (Overrides CMFCToolBar::OnUpdateCmdUI.

RemarksRemarks

A toolbar that appears when the user presses and holds a top-level toolbar button.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

A CMFCDropDownToolBar object combines the visual appearance of a toolbar with the behavior of a popup menu.
When a user presses and holds a drop-down toolbar button (see CMFCDropDownToolbarButton Class), a drop-
down toolbar appears, and the user can select a button from the drop-down toolbar by scrolling to it and
releasing the mouse button. After the user selects a button in the drop-down toolbar, that button is displayed as
the current button on the top-level toolbar.

A drop-down toolbar cannot be customized or docked, and it does not have a tear-off state.

The following illustration shows a CMFCDropDownToolBar object:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcdropdowntoolbar-class.md

Example

CMFCDropDownToolBar m_wndToolbarResource;

// Create Resource toolbar:
// The this pointer points to CMainFrame class which extends the CMDIFrameWndEx class
if (!m_wndToolbarResource.Create(this,
WS_CHILD|CBRS_TOP|CBRS_TOOLTIPS|CBRS_FLYBY|CBRS_HIDE_INPLACE|CBRS_SIZE_DYNAMIC| CBRS_GRIPPER |
CBRS_BORDER_3D, IDR_TOOLBAR_RESOURCE) || !m_wndToolbarResource.LoadToolBar(IDR_TOOLBAR_RESOURCE))
{
 TRACE0("Failed to create build toolbar\n");
 return FALSE; // fail to create
}

Inheritance Hierarchy

You create a CMFCDropDownToolBar object the same way you create an ordinary toolbar (see CMFCToolBar Class).

To insert the drop-down toolbar into a parent toolbar:

1. Reserve a dummy resource ID for the button in the parent toolbar resource.

2. Create a CMFCDropDownToolBarButton object that contains the drop-down toolbar (for more information, see
CMFCDropDownToolbarButton::CMFCDropDownToolbarButton).

3. Replace the dummy button with the CMFCDropDownToolBarButton object by using
CMFCToolBar::ReplaceButton.

For more information about toolbar buttons, see Walkthrough: Putting Controls On Toolbars. For an example of
a drop-down toolbar, see the sample project VisualStudioDemo.

The following example demonstrates how to use the Create method in the CMFCDropDownToolBar class. This code
snippet is part of the Visual Studio Demo sample.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCBaseToolBar

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CMFCDropDownToolBar::AllowShowOnPaneMenu
virtual BOOL AllowShowOnPaneMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolBar::LoadBitmap

virtual BOOL LoadBitmap(
 UINT uiResID,
 UINT uiColdResID=0,
 UINT uiMenuResID=0,
 BOOL bLocked=FALSE,
 UINT uiDisabledResID=0,
 UINT uiMenuDisabledResID=0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar

CMFCDropDownToolBar

Header: afxdropdowntoolbar.h

Loads toolbar images from application resources.

uiResID
[in] The resource ID of the bitmap that refers to the hot toolbar images.

uiColdResID
[in] The resource ID of the bitmap that refers to the cold toolbar images.

uiMenuResID
[in] The resource ID of the bitmap that refers to the regular menu images.

bLocked
[in] TRUE to lock the toolbar; otherwise FALSE.

uiDisabledResID
[in] The resource ID of the bitmap that refers to the disabled toolbar images.

uiMenuDisabledResID
[in] The resource ID of the bitmap that refers to the disabled menu images.

Nonzero if the method succeeds; otherwise 0.

The CMFCToolBar::LoadToolBarEx method calls this method to load the images that are associated with the
toolbar. Override this method to perform custom loading of image resources.

Call the LoadBitmapEx method to load additional images after you create the toolbar.

CMFCDropDownToolBar::LoadToolBar
virtual BOOL LoadToolBar(
 UINT uiResID,
 UINT uiColdResID = 0,
 UINT uiMenuResID = 0,
 BOOL = FALSE,
 UINT uiDisabledResID = 0,
 UINT uiMenuDisabledResID = 0,
 UINT uiHotResID = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolBar::OnLButtonUp
afx_msg void OnLButtonUp(
 UINT nFlags,
 CPoint point);

ParametersParameters

RemarksRemarks

CMFCDropDownToolBar::OnMouseMove
afx_msg void OnMouseMove(
 UINT nFlags,
 CPoint point);

ParametersParameters

RemarksRemarks

CMFCDropDownToolBar::OnSendCommand

[in] uiResID

[in] uiColdResID

[in] uiMenuResID

[in] BOOL

[in] uiDisabledResID

[in] uiMenuDisabledResID

[in] uiHotResID

[in] nFlags

[in] point

[in] nFlags

[in] point

virtual BOOL OnSendCommand(const CMFCToolBarButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolBar::OnUpdateCmdUI
virtual void OnUpdateCmdUI(
 CFrameWnd* pTarget,
 BOOL bDisableIfNoHndler);

ParametersParameters

RemarksRemarks

See also

[in] pButton

[in] pTarget

[in] bDisableIfNoHndler

Hierarchy Chart
Classes
CMFCToolBar Class
CMFCToolBar::Create
CMFCToolBar::ReplaceButton
CMFCDropDownToolbarButton Class
Walkthrough: Putting Controls On Toolbars

CMFCDropDownToolbarButton Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
class CMFCDropDownToolbarButton : public CMFCToolBarButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCDropDownToolbarButton::CMFCDropDownToolbarButt
on

Constructs a CMFCDropDownToolbarButton object.

CMFCDropDownToolbarButton::~CMFCDropDownToolbarButton Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCDropDownToolbarButton::CopyFrom Copies the properties of another toolbar button to the
current button. (Overrides CMFCToolBarButton::CopyFrom.)

CMFCDropDownToolbarButton::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCDropDownToolbarButton::DropDownToolbar Opens a drop-down toolbar.

CMFCDropDownToolbarButton::ExportToMenuButton Copies text from the toolbar button to a menu. (Overrides
CMFCToolBarButton::ExportToMenuButton.)

CMFCDropDownToolbarButton::GetDropDownToolBar Retrieves the drop-down toolbar that is associated with the
button.

CMFCDropDownToolbarButton::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCDropDownToolbarButton::IsDropDown Determines whether the drop-down toolbar is currently
open.

CMFCDropDownToolbarButton::IsExtraSize Determines whether the button can be displayed with an
extended border. (Overrides CMFCToolBarButton::IsExtraSize.)

A type of toolbar button that behaves like a regular button when it is clicked. However, it opens a drop-down
toolbar (CMFCDropDownToolBar Class if the user presses and holds the toolbar button down.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcdropdowntoolbarbutton-class.md

CMFCDropDownToolbarButton::OnCalculateSize Called by the framework to calculate the size of the button
for the specified device context and docking state. (Overrides
CMFCToolBarButton::OnCalculateSize.)

CMFCDropDownToolbarButton::OnCancelMode Called by the framework to handle the WM_CANCELMODE
message. (Overrides CMCToolBarButton::OnCancelMode .)

CMFCDropDownToolbarButton::OnChangeParentWnd Called by the framework when the button is inserted into a
new toolbar. (Overrides
CMFCToolBarButton::OnChangeParentWnd.)

CMFCDropDownToolbarButton::OnClick Called by the framework when the user clicks the mouse
button. (Overrides CMFCToolBarButton::OnClick.)

CMFCDropDownToolbarButton::OnClickUp Called by the framework when the user releases the mouse
button. (Overrides CMFCToolBarButton::OnClickUp.)

CMFCDropDownToolbarButton::OnContextHelp Called by the framework when the parent toolbar handles a
WM_HELPHITTEST message. (Overrides
CMFCToolBarButton::OnContextHelp.)

CMFCDropDownToolbarButton::OnCustomizeMenu Modifies the provided menu when the application displays a
shortcut menu on the parent toolbar. (Overrides
CMFCToolBarButton::OnCustomizeMenu.)

CMFCDropDownToolbarButton::OnDraw Called by the framework to draw the button by using the
specified styles and options. (Overrides
CMFCToolBarButton::OnDraw.)

CMFCDropDownToolbarButton::OnDrawOnCustomizeList Called by the framework to draw the button in the
Commands pane of the Customize dialog box. (Overrides
CMFCToolBarButton::OnDrawOnCustomizeList.)

CMFCDropDownToolbarButton::Serialize Reads this object from an archive or writes it to an archive.
(Overrides CMFCToolBarButton::Serialize.)

CMFCDropDownToolbarButton::SetDefaultCommand Sets the default command that the framework uses when a
user clicks the button.

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CMFCDropDownToolbarButton::m_uiShowBarDelay Specifies the length of time that a user must hold the mouse
button down before the drop-down toolbar appears.

Remarks
A CMFCDropDownToolBarButton differs from an ordinary button in that it has a small arrow in the lower-right corner
of the button. After the user selects a button from the drop-down toolbar, the framework displays its icon on the
top-level toolbar button (the button with the small arrow in the lower-right corner).

For information about how to implement a drop-down toolbar, see CMFCDropDownToolBar Class.

https://docs.microsoft.com/windows/desktop/winmsg/wm-cancelmode

Inheritance Hierarchy

Requirements

CMFCDropDownToolbarButton::CopyFrom

virtual void CopyFrom(const CMFCToolBarButton& src);

ParametersParameters

RemarksRemarks

CMFCDropDownToolbarButton::CMFCDropDownToolbarButton

CMFCDropDownToolbarButton();

CMFCDropDownToolbarButton(
 LPCTSTR lpszName,
 CMFCDropDownToolBar* pToolBar);

ParametersParameters

RemarksRemarks

The CMFCDropDownToolBarButton object can be exported to a CMFCToolBarMenuButton Class object and
displayed as a menu button with a pop-up menu.

CObject

CMFCToolBarButton

CMFCDropDownToolbarButton

Header: afxdropdowntoolbar.h

Copies the properties of another toolbar button to the current button.

src
[in] A reference to the source button from which to copy.

Call this method to copy another toolbar button to this toolbar button. src must be of type
CMFCDropDownToolbarButton .

Constructs a CMFCDropDownToolbarButton object.

lpszName
[in] The default text of the button.

pToolBar
[in] A pointer to the CMFCDropDownToolBar object that is displayed when the user presses the button.

The second overload of the constructor copies to the drop-down button the first button from the toolbar that
pToolBar specifies.

Typically, a drop-down toolbar button uses the text from the most recently used button in the toolbar that
pToolBar specifies. It uses the text specified by lpszName when the button is converted to a menu button or is
displayed in the Commands tab of the Customize dialog box. For more information about the Customize
dialog box, see CMFCToolBarsCustomizeDialog Class.

ExampleExample

// Add dropdown resources button
// CMFCToolBarsCustomizeDialog* pDlgCust
// CMFCDropDownToolBar m_wndToolbarResource
pDlgCust->AddButton(_T("Build"), CMFCDropDownToolbarButton(_T("Add Resource"), &m_wndToolbarResource));

CMFCDropDownToolbarButton::DropDownToolbar

BOOL DropDownToolbar(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolbarButton::ExportToMenuButton

virtual BOOL ExportToMenuButton(CMFCToolBarMenuButton& menuButton) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The following example demonstrates how to construct an object of the CMFCDropDownToolbarButton class. This
code snippet is part of the Visual Studio Demo sample.

Opens a drop-down toolbar.

pWnd
[in] The parent window of the drop-down frame, or NULL to use the parent window of the drop-down toolbar
button.

Nonzero if the method is successful; otherwise 0.

The CMFCDropDownToolbarButton::OnClick method calls this method to open the drop-down toolbar when the
user presses and holds the toolbar button down.

This methods creates the drop-down toolbar by using the CMFCDropDownFrame::Create method. If the parent
toolbar is docked vertically, this method positions the drop-down toolbar either to the left-hand or right-hand
side of the parent toolbar, depending on the fit. Otherwise, this method positions the drop-down toolbar
underneath the parent toolbar.

This method fails if pWnd is NULL and the drop-down toolbar button does not have a parent window.

Copies text from the toolbar button to a menu.

menuButton
[in] A reference to the target menu button.

Nonzero if the method succeeds; otherwise 0.

This method calls the base class implementation (CMFCToolBarButton::ExportToMenuButton) and then appends
to the target menu button a pop-up menu that contains each toolbar menu item in this button. This method does
not append sub-menus to the pop-up menu.

This method fails if the parent toolbar, m_pToolBar , is NULL or the base class implementation returns FALSE.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCDropDownToolbarButton::GetDropDownToolBar

CMFCToolBar* GetDropDownToolBar() const;

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolbarButton::IsDropDown

BOOL IsDropDown() const;

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolbarButton::IsExtraSize

virtual BOOL IsExtraSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolbarButton::m_uiShowBarDelay

static UINT m_uiShowBarDelay;

RemarksRemarks

CMFCDropDownToolbarButton::OnCalculateSize

Retrieves the drop-down toolbar that is associated with the button.

The drop-down toolbar that is associated with the button.

This method returns the m_pToolBar data member.

Determines whether the drop-down toolbar is currently open.

Nonzero if the drop-down toolbar is currently open; otherwise 0.

The framework opens the drop-down toolbar by using the CMFCDropDownToolbarButton::DropDownToolbar
method. The framework closes the drop-down toolbar when the user presses the left-mouse button in the non-
client area of the drop-down toolbar.

Determines whether the button can be displayed with an extended border.

Nonzero if the toolbar button can be displayed with an extended border; otherwise 0.

For more information about extended borders, see CMFCToolBarButton::IsExtraSize.

Specifies the length of time that a user must hold the mouse button down before the drop-down toolbar appears.

The delay time is measured in milliseconds. The default value is 500. You can set another delay by changing the
value of this shared data member.

Called by the framework to calculate the size of the button for the specified device context and docking state.

virtual SIZE OnCalculateSize(
 CDC* pDC,
 const CSize& sizeDefault,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolbarButton::OnChangeParentWnd

virtual void OnChangeParentWnd(CWnd* pWndParent);

ParametersParameters

RemarksRemarks

CMFCDropDownToolbarButton::OnClick

virtual BOOL OnClick(
 CWnd* pWnd,
 BOOL bDelay = TRUE);

ParametersParameters

pDC
[in] The device context that displays the button.

sizeDefault
[in] The default size of the button.

bHorz
[in] The dock state of the parent toolbar. This parameter is TRUE if the toolbar is docked horizontally or is
floating, or FALSE if the toolbar is docked vertically.

A SIZE structure that contains the dimensions of the button, in pixels.

This method extends the base class implementation (CMFCToolBarButton::OnCalculateSize) by adding the width
of the drop-down arrow to the horizontal dimension of the button size.

Called by the framework when the button is inserted into a new toolbar.

pWndParent
[in] The new parent window.

This method overrides the base class implementation (CMFCToolBarButton::OnChangeParentWnd) by clearing
the text label (CMFCToolBarButton::m_strText) and setting the CMFCToolBarButton::m_bText and
CMFCToolBarButton::m_bUserButton data members to FALSE.

Called by the framework when the user clicks the mouse button.

pWnd
[in] The parent window of the toolbar button.

bDelay
[in] TRUE if the message should be handled with a delay.

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolbarButton::OnClickUp

virtual BOOL OnClickUp();

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolbarButton::OnContextHelp

virtual BOOL OnContextHelp(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolbarButton::OnCustomizeMenu

Nonzero if the button processes the click message; otherwise 0.

This method extends the base class implementation, CMFCToolBarButton::OnClick, by updating the state of the
drop-down toolbar.

When a user clicks the toolbar button, this method creates a timer that waits the length of time specified by the
CMFCDropDownToolbarButton::m_uiShowBarDelay data member and then opens the drop-down toolbar by
using the CMFCDropDownToolbarButton::DropDownToolbar method. This method closes the drop-down
toolbar the second time the user clicks the toolbar button.

Called by the framework when the user releases the mouse button.

Nonzero if the button processes the click message; otherwise 0.

This method extends the base class implementation, CMFCToolBarButton::OnClickUp, by updating the state of
the drop-down toolbar.

This method stops the drop-down toolbar timer if it is active. It closes the drop-down toolbar if it is open.

For more information about the drop-down toolbar and drop-down toolbar timer, see
CMFCDropDownToolbarButton::OnClick.

Called by the framework when the parent toolbar handles a WM_HELPHITTEST message.

pWnd
[in] The parent window of the toolbar button.

Nonzero if the button processes the help message; otherwise 0.

This method extends the base class implementation (CMFCToolBarButton::OnContextHelp) by calling the
CMFCDropDownToolbarButton::OnClick method with bDelay set to FALSE. This method returns the value that is
returned by CMFCDropDownToolbarButton::OnClick.

For more information about the WM_HELPHITTEST message, see TN028: Context-Sensitive Help Support.

Modifies the provided menu when the application displays a shortcut menu on the parent toolbar.

virtual BOOL OnCustomizeMenu(CMenu* pMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolbarButton::OnDraw

virtual void OnDraw(
 CDC* pDC,
 const CRect& rect,
 CMFCToolBarImages* pImages,
 BOOL bHorz = TRUE,
 BOOL bCustomizeMode = FALSE,
 BOOL bHighlight = FALSE,
 BOOL bDrawBorder = TRUE,
 BOOL bGrayDisabledButtons = TRUE);

ParametersParameters

pMenu
[in] The menu to customize.

This method returns TRUE.

This method extends the base class implementation (CMFCToolBarButton::OnCustomizeMenu) by disabling the
following menu items:

Copy Button Image

Button Appearance

Image

Text

Image and Text

Override this method to modify the shortcut menu that the framework displays in customization mode.

Called by the framework to draw the button by using the specified styles and options.

pDC
[in] The device context that displays the button.

rect
[in] The bounding rectangle of the button.

pImages
[in] The collection of toolbar images that is associated with the button.

bHorz
[in] The dock state of the parent toolbar. This parameter is TRUE when the button is docked horizontally and
FALSE when the button is docked vertically.

bCustomizeMode
[in] Specifies whether the toolbar is in customization mode. This parameter is TRUE when the toolbar is in
customization mode and FALSE when the toolbar is not in customization mode.

RemarksRemarks

CMFCDropDownToolbarButton::OnDrawOnCustomizeList

virtual int OnDrawOnCustomizeList(
 CDC* pDC,
 const CRect& rect,
 BOOL bSelected);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDropDownToolbarButton::Serialize

virtual void Serialize(CArchive& ar);

ParametersParameters

bHighlight
[in] Specifies whether the button is highlighted. This parameter is TRUE when the button is highlighted and
FALSE when the button is not highlighted.

bDrawBorder
[in] Specifies whether the button should display its border. This parameter is TRUE when the button should
display its border and FALSE when the button should not display its border.

bGrayDisabledButtons
[in] Specifies whether to shade disabled buttons or use the disabled images collection. This parameter is TRUE
when disabled buttons should be shaded and FALSE when this method should use the disabled images
collection.

Override this method to customize toolbar button drawing.

Called by the framework to draw the button in the Commands pane of the Customize dialog box.

pDC
[in] The device context that displays the button.

rect
[in] The bounding rectangle of the button.

bSelected
[in] Whether the button is selected. If this parameter is TRUE, the button is selected. If this parameter is FALSE,
the button is not selected.

The width, in pixels, of the button on the specified device context.

This method is called by the customization dialog box (Commands tab) when the button is required to display
itself on the owner-draw list box.

This method extends the base class implementation (CMFCToolBarButton::OnDrawOnCustomizeList) by
changing the text label of the button to the name of the button (that is,to the value of the lpszName parameter
that you passed to the constructor).

Reads this object from an archive or writes it to an archive.

ar

RemarksRemarks

CMFCDropDownToolbarButton::SetDefaultCommand

void SetDefaultCommand(UINT uiCmd);

ParametersParameters

RemarksRemarks

See also

[in] The CArchive object from which or to which to serialize.

This method extends the base class implementation (CMFCToolBarButton::Serialize) by serializing the resource
ID of the parent toolbar. When the archive is loading (CArchive::IsLoading returns a nonzero value), this method
sets the m_pToolBar data member to the toolbar that contains the serialized resource ID.

Sets the default command that the framework uses when a user clicks the button.

uiCmd
[in] The ID of the default command.

Call this method to specify a default command that the framework executes when the user clicks the button. An
item with the command ID specified by uiCmd must be located in the parent drop-down toolbar.

Hierarchy Chart
Classes
CMFCDropDownToolBar Class
CMFCToolBar Class
CMFCToolBarMenuButton Class
Walkthrough: Putting Controls On Toolbars

CMFCDynamicLayout Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CMFCDynamicLayout : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCDynamicLayout::CMFCDynamicLayout Constructs a CMFCDynamicLayout object.

CMFCDynamicLayout::~CMFCDynamicLayout Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCDynamicLayout::AddItem Adds a child window, typically a control, to the list of windows
that are controlled by the dynamic layout manager.

CMFCDynamicLayout::Adjust Adds a child window, typically a control, to the list of windows
that are controlled by the dynamic layout manager.

CMFCDynamicLayout::Create Stores and validates the host window.

CMFCDynamicLayout::GetHostWnd Returns a pointer to a host window.

CMFCDynamicLayout::GetMinSize Returns the window size below which layout is not adjusted.

CMFCDynamicLayout::GetWindowRect Retrieves the rectangle for the window's current client area.

CMFCDynamicLayout::HasItem Checks if a child control was added to dynamic layout.

CMFCDynamicLayout::IsEmpty Checks if a dynamic layout has no child windows added.

CMFCDynamicLayout::LoadResource Reads the dynamic layout from AFX_DIALOG_LAYOUT
resource and then applies the layout to the host window.

static CMFCDynamicLayout::MoveHorizontal Gets a MoveSettings value that defines how much a child
control is moved horizontally when the user resizes its hosting
window.

Specifies how controls in a window are moved and resized as the user resizes the window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcdynamiclayout-class.md

static CMFCDynamicLayout::MoveHorizontalAndVertical Gets a MoveSettings value that defines how much a child
control is moved horizontally when the user resizes its hosting
window.

static CMFCDynamicLayout::MoveNone Gets a MoveSettings value that represents no motion, vertical
or horizontal, for a child control.

static CMFCDynamicLayout::MoveVertical Gets a MoveSettings value that defines how much a child
control is moved vertically when the user resizes its hosting
window.

CMFCDynamicLayout::SetMinSize Sets the window size below which layout is not adjusted.

static CMFCDynamicLayout::SizeHorizontal Gets a SizeSettings value that defines how much a child
control is resized horizontally when the user resizes its hosting
window.

static CMFCDynamicLayout::SizeHorizontalAndVertical Gets a SizeSettings value that defines how much a child
control is resized horizontally when the user resizes its hosting
window.

static CMFCDynamicLayout::SizeNone Gets a SizeSettings value that represents no change in size for
a child control.

static CMFCDynamicLayout::SizeVertical Gets a SizeSettings value that defines how much a child
control is resized vertically when the user resizes its hosting
window.

NAME DESCRIPTION

Nested Types
NAME DESCRIPTION

CMFCDynamicLayout::MoveSettings Structure Encapsulates move data for controls in a dynamic layout.

CMFCDynamicLayout::SizeSettings Structure Encapsulates size change data for controls in a dynamic
layout.

Remarks

Inheritance Hierarchy

Requirements

CMFCDynamicLayout::AddItem

CObject

CMFCDynamicLayout

Header: afxlayout.h

Adds a child window, typically a control, to the list of windows that are controlled by the dynamic layout manager.

BOOL AddItem(
 HWND hwnd,
 MoveSettings moveSettings SizeSettings sizeSettings);

BOOL AddItem(
 int nID,
 MoveSettings moveSettings SizeSettings sizeSettings);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::Adjust

void Adjust();

RemarksRemarks

CMFCDynamicLayout::Create

BOOL Create(CWnd* pHostWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::GetHostWnd

hwnd
The handle to the window to add.

nID
The ID of the child control to add.

moveSettings
A structure that describes how the control should be moved as the window size changes.

sizeSettings
A structure that describes how the control should be resized as the window size changes.

TRUE if the item was added successfully; otherwise FALSE.

The position and size of a child control is changed dynamically when a hosting window is being resized.

Adds a child window, typically a control, to the list of windows that are controlled by the dynamic layout manager.

The position and size of a child control is changed dynamically when a hosting window is being resized.

Stores and validates the host window.

pHostWnd
A pointer to the host window.

TRUE if creation succeeded; otherwise FALSE.

Returns a pointer to a host window.

CWnd* GetHostWnd();

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::GetMinSize

CSize GetMinSize();

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::GetWindowRect

void GetHostWndRect(CRect& rect,);

ParametersParameters

RemarksRemarks

CMFCDynamicLayout::HasItem

BOOL HasItem(HWND hwnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::IsEmpty

A pointer to the host window.

By default all child control positions recalculated relative to this window.

Returns the window size below which layout is not adjusted.

The window size below which layout is not adjusted.

The position and size of a child control is changed dynamically when a hosting window is being resized, but there
is a minimum size below which the layout is not adjusted. The user can resize the window to a smaller size, but
parts of the window are then hidden from view.

Retrieves the rectangle for the window's current client area.

rect
After the function returns, this parameter contains the bounding rectangle of the layout area. This is an out
parameter ; the input value is overwritten.

Checks if a child control was added to dynamic layout.

hwnd
The window handle for the control.

TRUE if layout already has this item; otherwise FALSE.

BOOL IsEmpty();

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::LoadResource

static BOOL LoadResource(CWnd* pHostWnd,
 LPVOID lpResource,
 DWORD dwSize);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::MoveHorizontal

static MoveSettings MoveHorizontal(int nRatio);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::MoveHorizontalAndVertical

Checks if a dynamic layout has no child windows added.

TRUE if layout has no items; otherwise FALSE.

Reads the dynamic layout from AFX_DIALOG_LAYOUT resource and then applies the layout to the host window.

pHostWnd
A pointer to the host window.

lpResource
A pointer to the buffer that contains the AFX_DIALOG_LAYOUT resource.

dwSize
The buffer size in bytes.

TRUE if resource is loaded and applied to the host window; otherwise FALSE.

Gets a MoveSettings value that defines how much a child control is moved horizontally when the user resizes its
hosting window.

nRatio
Defines as a percentage how far a child control is moved horizontally when the user resizes the host window.

A MoveSettings value that encapsulates the requested move ratio.

Gets a MoveSettings value that defines how much a child control is moved horizontally when the user resizes its
hosting window.

static MoveSettings MoveHorizontalAndVertical(int nXRatio int nYRatio);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::MoveNone

static MoveSettings MoveNone();

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::MoveSettings Structure

struct CMFCDynamicLayout::MoveSettings;

RemarksRemarks

CMFCDynamicLayout::MoveSettings::IsHorizontal

BOOL IsHorizontal() const

Return Value

CMFCDynamicLayout::MoveSettings::IsNone

BOOL IsNone() const

nXRatio
Defines as a percentage how far a child control is moved horizontally when the user resizes the host window.

nYRatio
Defines as a percentage how far a child control is moved vertically when the user resizes the host window.

A MoveSettings value that encapsulates the requested move ratio.

Gets a MoveSettings value that represents no motion, vertical or horizontal, for a child control.

A MoveSettings value that fixes the control in place, so that it does not move as the user resizes the host window.

Encapsulates move data for controls in a dynamic layout.

This is a nested class inside CMFCDynamicLayout .

Check if the move data specifies a nonzero horizontal move.

TRUE if the MoveSettings object specifies a nonzero horizontal move.

Check if the move data specifies no movement.

Return Value

CMFCDynamicLayout::MoveSettings::IsVertical

BOOL IsVertical() const

Return Value

CMFCDynamicLayout::MoveVertical

static MoveSettings MoveVertical(int nRatio);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::SetMinSize

void SetMinSize(const CSize& size);

ParametersParameters

RemarksRemarks

CMFCDynamicLayout::SizeHorizontal

static SizeSettings SizeHorizontal(int nRatio);

TRUE if the MoveSettings object specifies no movement.

Check if the move data specifies a nonzero vertical movement.

TRUE if the MoveSettings object specifies a nonzero vertical movement.

Gets a MoveSettings value that defines how much a child control is moved vertically when the user resizes its
hosting window.

nRatio
Defines as a percentage how far a child control is moved vertically when the user resizes the host window.

A MoveSettings value that encapsulates the requested move ratio.

Sets the window size below which layout is not adjusted.

size
The desired size below which layout is not adjusted.

The position and size of a child control is changed dynamically when a hosting window is being resized, but there
is a minimum size below which the layout is not adjusted. The user can resize the window to a smaller size, but
parts of the window are then hidden from view.

Gets a SizeSettings value that defines how much a child control is resized horizontally when the user resizes its
hosting window.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::SizeHorizontalAndVertical

static SizeSettings SizeHorizontalAndVertical(int nXRatio int nYRatio);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::SizeNone

static SizeSettings SizeNone();

Return ValueReturn Value

RemarksRemarks

CMFCDynamicLayout::SizeSettings Structure

struct CMFCDynamicLayout::SizeSettings;

RemarksRemarks

CMFCDynamicLayout::SizeSettings::IsHorizontal

nRatio
Defines as a percentage how far a child control is resized horizontally when the user resizes the host window.

A SizeSettings value that encapsulates the requested size ratio.

Gets a SizeSettings value that defines how much a child control is resized horizontally when the user resizes its
hosting window.

nXRatio
Defines as a percentage how far a child control is resized horizontally when the user resizes the host window.

nYRatio
Defines as a percentage how far a child control is resized vertically when the user resizes the host window.

A SizeSettings value that encapsulates the requested size ratio.

Gets a SizeSettings value that represents no change in size for a child control.

A SizeSettings value that fixes the control at a certain size, so that it does not change size as the user resizes the
host window.

Encapsulates size change data for controls in a dynamic layout.

This is a nested class inside CMFCDynamicLayout .

Checks if the resize data specifies a nonzero horizontal resizing.

BOOL IsHorizontal() const

Return Value

CMFCDynamicLayout::SizeSettings::IsNone

BOOL IsNone() const

Return Value

CMFCDynamicLayout::SizeSettings::IsVertical

BOOL IsVertical() const

Return Value

CMFCDynamicLayout::SizeVertical

static SizeSettings SizeVertical(int nRatio);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

TRUE if the SizeSettings object specifies a nonzero horizontal resizing.

Checks if the resize data specifies no resizing.

TRUE if the SizeSettings object specifies no resizing.

Checks if the resize data specifies a nonzero vertical resizing.

TRUE if the SizeSettings object specifies a nonzero vertical resizing.

Gets a SizeSettings value that defines how much a child control is resized vertically when the user resizes its
hosting window.

nRatio
Defines as a percentage how far a child control is resized vertically when the user resizes the host window.

A SizeSettings value that encapsulates the requested size ratio.

Hierarchy Chart
Classes

CMFCEditBrowseCtrl Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CMFCEditBrowseCtrl : public CEdit

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCEditBrowseCtrl::CMFCEditBrowseCtrl Default constructor.

CMFCEditBrowseCtrl::~CMFCEditBrowseCtrl Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCEditBrowseCtrl::EnableBrowseButton Enables or disables (hides) the browse button.

CMFCEditBrowseCtrl::EnableFileBrowseButton Enables the browse button and puts the edit browse control
in file browse mode.

CMFCEditBrowseCtrl::EnableFolderBrowseButton Enables the browse button and puts the edit browse control
in folder browse mode.

CMFCEditBrowseCtrl::GetMode Returns the current browse mode.

CMFCEditBrowseCtrl::OnAfterUpdate Called by the framework after the edit browse control is
updated with the result of a browse action.

CMFCEditBrowseCtrl::OnBrowse Called by the framework after the user clicks the browse
button.

CMFCEditBrowseCtrl::OnChangeLayout Redraws the current edit browse control.

CMFCEditBrowseCtrl::OnDrawBrowseButton Called by the framework to draw the browse button.

CMFCEditBrowseCtrl::OnIllegalFileName Called by the framework when an illegal file name was entered
in the edit control.

The CMFCEditBrowseCtrl class supports the edit browse control, which is an editable text box that optionally
contains a browse button. When the user clicks the browse button, the control performs a custom action or
displays a standard dialog box that contains a file browser or a folder browser.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfceditbrowsectrl-class.md

CMFCEditBrowseCtrl::PreTranslateMessage Translates window messages before they are dispatched to
the TranslateMessage and DispatchMessage Windows
functions. For syntax and more information, see
CWnd::PreTranslateMessage.

CMFCEditBrowseCtrl::SetBrowseButtonImage Sets a custom image for the browse button.

NAME DESCRIPTION

Remarks

How-To: Specify an Edit Browse Control

Use an edit browse control to select a file or folder name. Optionally, use the control to perform a custom action
such as to display a dialog box. You can display or not display the browse button, and you can apply a custom label
or image on the button.

The browse mode of the edit browse control determines whether it displays a browse button and what action
occurs when the button is clicked. For more information, see the GetMode method.

The CMFCEditBrowseCtrl class supports the following modes.

custom mode

A custom action is performed when the user clicks the browse button. For example, you can display an
application-specific dialog box.

file mode

A standard file selection dialog box is displayed when the user clicks the browse button.

folder mode

A standard folder selection dialog box is displayed when the user clicks the browse button.

Perform the following steps to incorporate an edit browse control in your application:

1. If you want to implement a custom browse mode, derive your own class from the CMFCEditBrowseCtrl class
and then override the CMFCEditBrowseCtrl::OnBrowse method. In the overridden method, execute a
custom browse action and update the edit browse control with the result.

2. Embed either the CMFCEditBrowseCtrl object or the derived edit browse control object into the parent
window object.

3. If you use the Class Wizard to create a dialog box, add an edit control (CEdit) to the dialog box form.
Also, add a variable to access the control in your header file. In your header file, change the type of the
variable from CEdit to CMFCEditBrowseCtrl . The edit browse control will be created automatically. If you do
not use the Class Wizard, add a CMFCEditBrowseCtrl variable to your header file and then call its Create

method.

4. If you add an edit browse control to a dialog box, use the ClassWizard tool to set up data exchange.

5. Call the EnableFolderBrowseButton, EnableFileBrowseButton, or EnableBrowseButton method to set the
browse mode and display the browse button. Call the GetMode method to obtain the current browse mode.

6. To provide a custom image for the browse button, call the SetBrowseButtonImage method or override the
OnDrawBrowseButton method.

7. To remove the browse button from the edit browse control, call the EnableBrowseButton method with the

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

Inheritance Hierarchy

Example

CMFCEditBrowseCtrl m_wndFolderEdit;
CMFCEditBrowseCtrl m_wndFileEdit;

// enable the browse button and put the control in file browse mode
m_wndFolderEdit.EnableFolderBrowseButton();
// enable the browse button and put the control in the folder browse mode
m_wndFileEdit.EnableFileBrowseButton();

Requirements

CMFCEditBrowseCtrl::EnableBrowseButton

void EnableBrowseButton(
 BOOL bEnable=TRUE,
 LPCTSTR szLabel=_T("..."));

ParametersParameters

RemarksRemarks

bEnable parameter set to FALSE.

CObject

CCmdTarget

CWnd

CEdit

CMFCEditBrowseCtrl

The following example demonstrates how to use two methods in the CMFCEditBrowseCtrl class:
EnableFolderBrowseButton and EnableFileBrowseButton . This example is part of the New Controls sample.

Header: afxeditbrowsectrl.h

Displays or does not display the browse button on the current edit browse control.

bEnable
TRUE to display the browse button; FALSE not to display the browse button. The default value is TRUE.

szLabel
The label that is displayed on the browse button. The default value is " ...".

If the bEnable parameter is TRUE, implement a custom action to perform when the browse button is clicked. To
implement a custom action, derive a class from the CMFCEditBrowseCtrl class and then override its OnBrowse
method.

If the bEnable parameter is TRUE, the browse mode of the control is BrowseMode_Default ; otherwise, the browse
mode is BrowseMode_None . For more information about browse modes, see the GetMode method.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCEditBrowseCtrl::EnableFileBrowseButton

void EnableFileBrowseButton(
 LPCTSTR lpszDefExt=NULL,
 LPCTSTR lpszFilter=NULL,
 DWORD dwFlags = OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT);

ParametersParameters

RemarksRemarks

CMFCEditBrowseCtrl::EnableFolderBrowseButton

void EnableFolderBrowseButton();

RemarksRemarks

CMFCEditBrowseCtrl::GetMode

CMFCEditBrowseCtrl::BrowseMode GetMode() const;

Return ValueReturn Value

VALUE DESCRIPTION

BrowseMode_Default custom mode. A programmer-defined action is performed.

Displays the browse button on the current edit browse control and puts the control in file browse mode.

lpszDefExt
Specifies the default file name extension that is used in the file selection dialog box. The default value is NULL.

lpszFilter
Specifies the default filter string that is used in the file selection dialog box. The default value is NULL.

dwFlags
Dialog box flags. The default value is a bitwise combination (OR) of OFN_HIDEREADONLY and
OFN_OVERWRITEPROMPT.

When the edit browse control is in file browse mode and the user clicks the browse button, the control displays the
standard file selection dialog box.

For a full list of available flags, see OPENFILENAME structure.

Displays the browse button on the current edit browse control and puts the control in folder browse mode.

When the edit browse control is in folder browse mode and the user clicks the browse button, the control displays
the standard folder selection dialog box.

Retrieves the browse mode of the current edit browse control.

One of the enumeration values that specifies the current mode of the edit browse control. The browse mode
determines whether the framework displays the browse button and what action occurs when a user clicks that
button.

The following table lists the possible return values.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagofna

BrowseMode_File file mode. The standard file browser dialog box is displayed.

BrowseMode_Folder folder mode. The standard folder browser dialog box is
displayed.

BrowseMode_None The browse button is not displayed.

VALUE DESCRIPTION

RemarksRemarks

CMFCEditBrowseCtrl::OnAfterUpdate

virtual void OnAfterUpdate();

RemarksRemarks

CMFCEditBrowseCtrl::OnBrowse

virtual void OnBrowse();

RemarksRemarks

CMFCEditBrowseCtrl::OnChangeLayout

virtual void OnChangeLayout();

RemarksRemarks

CMFCEditBrowseCtrl::OnDrawBrowseButton

By default, a CMFCEditBrowseCtrl object is initialized to BrowseMode_None mode. Modify the browse mode with the
CMFCEditBrowseCtrl::EnableBrowseButton, CMFCEditBrowseCtrl::EnableFileBrowseButton, and
CMFCEditBrowseCtrl::EnableFolderBrowseButton methods.

Called by the framework after the edit browse control is updated with the result of a browse action.

Override this method in a derived class to implement a custom action.

Called by the framework after the user clicks the browse button of the edit browse control.

Use this method to execute custom code when the user clicks the browse button of the edit browse control. Derive
your own class from the CMFCEditBrowseCtrl class and override its OnBrowse method. In that method, implement a
custom browse action and optionally update the text box of the edit browse control. In your application, use the
EnableBrowseButton method to put the edit browse control in custom browse mode.

Redraws the current edit browse control.

The framework calls this method when the browse mode of the edit browse control changes. For more
information, see CMFCEditBrowseCtrl::GetMode.

Called by the framework to draw the browse button on the edit browse control.

virtual void OnDrawBrowseButton(
 CDC* pDC,
 CRect rect,
 BOOL bIsButtonPressed,
 BOOL bIsButtonHot);

ParametersParameters

RemarksRemarks

CMFCEditBrowseCtrl::SetBrowseButtonImage

void SetBrowseButtonImage(
 HICON hIcon,
 BOOL bAutoDestroy= TRUE);

void SetBrowseButtonImage(
 HBITMAP hBitmap,
 BOOL bAutoDestroy= TRUE);

void SetBrowseButtonImage(UINT uiBmpResId);

ParametersParameters

RemarksRemarks

CMFCEditBrowseCtrl::OnIllegalFileName

pDC
A pointer to a device context.

Rect
The bounding rectangle of the browse button.

bIsButtonPressed
TRUE if the button is pressed; otherwise, FALSE.

bIsButtonHot
TRUE if the button is highlighted; otherwise, FALSE.

Override this function in a derived class to customize the appearance of the browse button.

Sets a custom image on the browse button of the edit browse control.

hIcon
The handle of an icon.

hBitmap
The handle of a bitmap.

uiBmpResId
The resource ID of a bitmap.

bAutoDestroy
TRUE to delete the specified icon or bitmap when this method exits; otherwise, FALSE. The default value is TRUE.

Use this method to apply a custom image to the browse button. By default, the framework obtains a standard
image when the edit browse control is in file browse or folder browse mode.

Called by the framework when an illegal file name was entered in the edit control.

virtual BOOL OnIllegalFileName(CString& strFileName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

strFileName
Specifies the illegal file name.

Should return FALSE if this file name can not be passed further to the file dialog. In this case, focus is set back to
the edit control and the user should continue editing. The default implementation displays a message box telling
the user about the illegal file name and returns FALSE. You can override this method, correct the file name, and
return TRUE for further processing.

Hierarchy Chart
Classes

CMFCFilterChunkValueImpl Class
3/4/2019 • 11 minutes to read • Edit Online

Syntax
class CMFCFilterChunkValueImpl : public ATL::IFilterChunkValue;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCFilterChunkValueImpl::~CMFCFilterChunkValueImpl Destructs the object.

CMFCFilterChunkValueImpl::CMFCFilterChunkValueImpl Constructs the object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCFilterChunkValueImpl::Clear Clears the ChunkValue.

CMFCFilterChunkValueImpl::CopyChunk Copies this chunk to a structure describing the characteristics
of a chunk.

CMFCFilterChunkValueImpl::CopyFrom Initializes this chunk value from the other value.

CMFCFilterChunkValueImpl::GetChunkGUID Retrieves the chunk GUID.

CMFCFilterChunkValueImpl::GetChunkPID Retrieves the chunk PID (property ID).

CMFCFilterChunkValueImpl::GetChunkType Gets chunk type.

CMFCFilterChunkValueImpl::GetString Retrieves the string value.

CMFCFilterChunkValueImpl::GetValue Retrieves the value as an allocated propvariant.

CMFCFilterChunkValueImpl::GetValueNoAlloc Returns non-allocated (internal value) value.

CMFCFilterChunkValueImpl::IsValid Checks whether this property value is valid or not.

CMFCFilterChunkValueImpl::SetBoolValue Overloaded. Sets the property by key to a Boolean.

CMFCFilterChunkValueImpl::SetDwordValue Sets the property by key to a DWORD.

This is a class which simplifies both chunk and property value pair logic.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcfilterchunkvalueimpl-class.md

CMFCFilterChunkValueImpl::SetFileTimeValue Sets the property by key to a filetime.

CMFCFilterChunkValueImpl::SetInt64Value Sets the property by key to an int64.

CMFCFilterChunkValueImpl::SetIntValue Sets the property by key to an int.

CMFCFilterChunkValueImpl::SetLongValue Sets the property by key to a LONG.

CMFCFilterChunkValueImpl::SetSystemTimeValue Sets the property by key to a SystemTime.

CMFCFilterChunkValueImpl::SetTextValue Sets the property by key to a Unicode string.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCFilterChunkValueImpl::SetChunk A helper function that sets the chunk's common properties.

Remarks

Inheritance Hierarchy

Requirements

CMFCFilterChunkValueImpl::Clear

void Clear();

RemarksRemarks

CMFCFilterChunkValueImpl::CMFCFilterChunkValueImpl

To use, you simply create a CMFCFilterChunkValueImpl class of the right kind

Example:

CMFCFilterChunkValueImpl chunk;

hr = chunk.SetBoolValue(PKEY_IsAttachment, true);

or

hr = chunk.SetFileTimeValue(PKEY_ItemDate, ftLastModified);

ATL::IFilterChunkValue

CMFCFilterChunkValueImpl

Header: afxwin.h

Clears the ChunkValue.

Constructs the object.

CMFCFilterChunkValueImpl();

RemarksRemarks

CMFCFilterChunkValueImpl::~CMFCFilterChunkValueImpl

virtual ~CMFCFilterChunkValueImpl();

RemarksRemarks

CMFCFilterChunkValueImpl::CopyChunk

HRESULT CopyChunk(STAT_CHUNK* pStatChunk);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::CopyFrom

void CopyFrom (IFilterChunkValue* pValue);

ParametersParameters

RemarksRemarks

CMFCFilterChunkValueImpl::GetChunkGUID

REFGUID GetChunkGUID() const;

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::GetChunkPID

Destructs the object.

Copies this chunk to a structure describing the characteristics of a chunk.

pStatChunk
A pointer to destination value describing the characteristics of the chunk.

S_OK if successful; otherwise an error code.

Initializes this chunk value from the other value.

pValue
Specifies the source value to copy from.

Retrieves the chunk GUID.

A reference to a GUID identifying the chunk.

DWORD GetChunkPID() const;

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::GetChunkType

CHUNKSTATE GetChunkType() const;

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::GetString

CString &GetString();

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::GetValue

HRESULT GetValue(PROPVARIANT** ppPropVariant);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::GetValueNoAlloc

Retrieves the chunk PID (property ID).

A DWORD value containing the property ID.

Retrieves the chunk type.

A CHUNKSTATE enumerated value, which specifies whether the current chunk is a text-type property or a value-
type property.

Retrieves the string value.

A string containing the chunk value.

Retrieves the value as an allocated propvariant.

ppPropVariant
When the function returns, this parameter contains the chunk value.

S_OK if PROPVARIANT was allocated successfully and the chunk value was successfully copied to ppPropVariant;
otherwise an error code.

Returns the non-allocated (internal value) value.

PROPVARIANT GetValueNoAlloc ();

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::IsValid

BOOL IsValid() const;

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::SetBoolValue

HRESULT SetBoolValue(
 REFPROPERTYKEY pkey,
 BOOL bVal,
 CHUNKSTATE chunkType = CHUNK_VALUE,
 LCID locale = 0,
 DWORD cwcLenSource = 0,
 DWORD cwcStartSource = 0,
 CHUNK_BREAKTYPE chunkBreakType = CHUNK_NO_BREAK);

HRESULT SetBoolValue(
 REFPROPERTYKEY pkey,
 VARIANT_BOOL bVal,
 CHUNKSTATE chunkType = CHUNK_VALUE,
 LCID locale = 0,
 DWORD cwcLenSource = 0,
 DWORD cwcStartSource = 0,
 CHUNK_BREAKTYPE chunkBreakType = CHUNK_NO_BREAK);

ParametersParameters

Returns the current chunk value.

Checks whether this property value is valid or not.

TRUE if the current chunk value is valid; otherwise FALSE.

Overloaded. Sets the property by key to a Boolean.

pkey
Specifies a property key.

bVal
Specifies the chunk value to set.

chunkType
Flags indicate whether this chunk contains a text-type or a value-type property. Flag values are taken from the
CHUNKSTATE enumeration.

locale
The language and sublanguage associated with a chunk of text. Chunk locale is used by document indexers to
perform proper word breaking of text. If the chunk is neither text-type nor a value-type with data type
VT_LPWSTR, VT_LPSTR, or VT_BSTR, this field is ignored.

cwcLenSource

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::SetChunk

HRESULT SetChunk(
 REFPROPERTYKEY pkey,
 CHUNKSTATE chunkType=CHUNK_VALUE,
 LCID locale=0,
 DWORD cwcLenSource=0,
 DWORD cwcStartSource=0,
 CHUNK_BREAKTYPE chunkBreakType=CHUNK_NO_BREAK);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The length in characters of the source text from which the current chunk was derived. A zero value signifies
character-by-character correspondence between the source text and the derived text. A nonzero value means that
no such direct correspondence exists.

cwcStartSource
The offset from which the source text for a derived chunk starts in the source chunk.

chunkBreakType
The type of break that separates the previous chunk from the current chunk. Values are from the
CHUNK_BREAKTYPE enumeration.

S_OK if successful; otherwise an error code.

A helper function that sets the chunk's common properties.

pkey
Specifies a property key.

chunkType
Flags indicate whether this chunk contains a text-type or a value-type property. Flag values are taken from the
CHUNKSTATE enumeration.

locale
The language and sublanguage associated with a chunk of text. Chunk locale is used by document indexers to
perform proper word breaking of text. If the chunk is neither text-type nor a value-type with data type
VT_LPWSTR, VT_LPSTR, or VT_BSTR, this field is ignored.

cwcLenSource
The length in characters of the source text from which the current chunk was derived. A zero value signifies
character-by-character correspondence between the source text and the derived text. A nonzero value means that
no such direct correspondence exists.

cwcStartSource
The offset from which the source text for a derived chunk starts in the source chunk.

chunkBreakType
The type of break that separates the previous chunk from the current chunk. Values are from the
CHUNK_BREAKTYPE enumeration.

S_OK if successful; otherwise error code.

CMFCFilterChunkValueImpl::SetDwordValue

HRESULT SetDwordValue(
 REFPROPERTYKEY pkey,
 DWORD dwVal,
 CHUNKSTATE chunkType = CHUNK_VALUE,
 LCID locale = 0,
 DWORD cwcLenSource = 0,
 DWORD cwcStartSource = 0,
 CHUNK_BREAKTYPE chunkBreakType = CHUNK_NO_BREAK);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::SetFileTimeValue

Set the property by key to a DWORD.

pkey
Specifies a property key.

dwVal
Specifies the chunk value to set.

chunkType
Flags indicate whether this chunk contains a text-type or a value-type property. Flag values are taken from the
CHUNKSTATE enumeration.

locale
The language and sublanguage associated with a chunk of text. Chunk locale is used by document indexers to
perform proper word breaking of text. If the chunk is neither text-type nor a value-type with data type
VT_LPWSTR, VT_LPSTR, or VT_BSTR, this field is ignored.

cwcLenSource
The length in characters of the source text from which the current chunk was derived. A zero value signifies
character-by-character correspondence between the source text and the derived text. A nonzero value means that
no such direct correspondence exists.

cwcStartSource
The offset from which the source text for a derived chunk starts in the source chunk.

chunkBreakType
The type of break that separates the previous chunk from the current chunk. Values are from the
CHUNK_BREAKTYPE enumeration.

S_OK if successful; otherwise an error code.

Set the property by key to a filetime.

HRESULT SetFileTimeValue(
 REFPROPERTYKEY pkey,
 FILETIME dtVal,
 CHUNKSTATE chunkType = CHUNK_VALUE,
 LCID locale = 0,
 DWORD cwcLenSource = 0,
 DWORD cwcStartSource = 0,
 CHUNK_BREAKTYPE chunkBreakType = CHUNK_NO_BREAK);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::SetInt64Value

HRESULT SetInt64Value(
 REFPROPERTYKEY pkey,
 __int64 nVal,
 CHUNKSTATE chunkType = CHUNK_VALUE,
 LCID locale = 0,
 DWORD cwcLenSource = 0,
 DWORD cwcStartSource = 0,
 CHUNK_BREAKTYPE chunkBreakType = CHUNK_NO_BREAK);

ParametersParameters

pkey
Specifies a property key.

dtVal
Specifies the chunk value to set.

chunkType
Flags indicate whether this chunk contains a text-type or a value-type property. Flag values are taken from the
CHUNKSTATE enumeration.

locale
The language and sublanguage associated with a chunk of text. Chunk locale is used by document indexers to
perform proper word breaking of text. If the chunk is neither text-type nor a value-type with data type
VT_LPWSTR, VT_LPSTR, or VT_BSTR, this field is ignored.

cwcLenSource
The length in characters of the source text from which the current chunk was derived. A zero value signifies
character-by-character correspondence between the source text and the derived text. A nonzero value means that
no such direct correspondence exists.

cwcStartSource
The offset from which the source text for a derived chunk starts in the source chunk.

chunkBreakType
The type of break that separates the previous chunk from the current chunk. Values are from the
CHUNK_BREAKTYPE enumeration.

S_OK if successful; otherwise an error code.

Set the property by key to an int64.

pkey

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::SetIntValue

HRESULT SetIntValue(
 REFPROPERTYKEY pkey,
 int nVal,
 CHUNKSTATE chunkType = CHUNK_VALUE,
 LCID locale = 0,
 DWORD cwcLenSource = 0,
 DWORD cwcStartSource = 0,
 CHUNK_BREAKTYPE chunkBreakType = CHUNK_NO_BREAK);

ParametersParameters

Specifies a property key.

nVal
Specifies the chunk value to set.

chunkType
Flags indicate whether this chunk contains a text-type or a value-type property. Flag values are taken from the
CHUNKSTATE enumeration.

locale
The language and sublanguage associated with a chunk of text. Chunk locale is used by document indexers to
perform proper word breaking of text. If the chunk is neither text-type nor a value-type with data type
VT_LPWSTR, VT_LPSTR, or VT_BSTR, this field is ignored.

cwcLenSource
The length in characters of the source text from which the current chunk was derived. A zero value signifies
character-by-character correspondence between the source text and the derived text. A nonzero value means that
no such direct correspondence exists.

cwcStartSource
The offset from which the source text for a derived chunk starts in the source chunk.

chunkBreakType
The type of break that separates the previous chunk from the current chunk. Values are from the
CHUNK_BREAKTYPE enumeration.

S_OK if successful; otherwise an error code.

Set the property by key to an int.

pkey
Specifies a property key.

nVal
Specifies the chunk value to set.

chunkType
Flags indicate whether this chunk contains a text-type or a value-type property. Flag values are taken from the
CHUNKSTATE enumeration.

locale
The language and sublanguage associated with a chunk of text. Chunk locale is used by document indexers to
perform proper word breaking of text. If the chunk is neither text-type nor a value-type with data type

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::SetLongValue

HRESULT SetLongValue(
 REFPROPERTYKEY pkey,
 long lVal,
 CHUNKSTATE chunkType = CHUNK_VALUE,
 LCID locale = 0,
 DWORD cwcLenSource = 0,
 DWORD cwcStartSource = 0,
 CHUNK_BREAKTYPE chunkBreakType = CHUNK_NO_BREAK);

ParametersParameters

VT_LPWSTR, VT_LPSTR, or VT_BSTR, this field is ignored.

cwcLenSource
The length in characters of the source text from which the current chunk was derived. A zero value signifies
character-by-character correspondence between the source text and the derived text. A nonzero value means that
no such direct correspondence exists.

cwcStartSource
The offset from which the source text for a derived chunk starts in the source chunk.

chunkBreakType
The type of break that separates the previous chunk from the current chunk. Values are from the
CHUNK_BREAKTYPE enumeration.

S_OK if successful; otherwise an error code.

Set the property by key to a LONG.

pkey
Specifies a property key.

lVal
Specifies the chunk value to set.

chunkType
Flags indicate whether this chunk contains a text-type or a value-type property. Flag values are taken from the
CHUNKSTATE enumeration.

locale
The language and sublanguage associated with a chunk of text. Chunk locale is used by document indexers to
perform proper word breaking of text. If the chunk is neither text-type nor a value-type with data type
VT_LPWSTR, VT_LPSTR, or VT_BSTR, this field is ignored.

cwcLenSource
The length in characters of the source text from which the current chunk was derived. A zero value signifies
character-by-character correspondence between the source text and the derived text. A nonzero value means that
no such direct correspondence exists.

cwcStartSource
The offset from which the source text for a derived chunk starts in the source chunk.

chunkBreakType
The type of break that separates the previous chunk from the current chunk. Values are from the

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::SetSystemTimeValue

HRESULT SetSystemTimeValue(
 REFPROPERTYKEY pkey,
 const SYSTEMTIME& systemTime,
 CHUNKSTATE chunkType = CHUNK_VALUE,
 LCID locale=0,
 DWORD cwcLenSource=0,
 DWORD cwcStartSource=0,
 CHUNK_BREAKTYPE chunkBreakType=CHUNK_NO_BREAK);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCFilterChunkValueImpl::SetTextValue

CHUNK_BREAKTYPE enumeration.

S_OK if successful; otherwise an error code.

Sets the property by key to a SystemTime.

pkey
Specifies a property key.

systemTime
Specifies the chunk value to set.

chunkType
Flags indicate whether this chunk contains a text-type or a value-type property. Flag values are taken from the
CHUNKSTATE enumeration.

locale
The language and sublanguage associated with a chunk of text. Chunk locale is used by document indexers to
perform proper word breaking of text. If the chunk is neither text-type nor a value-type with data type
VT_LPWSTR, VT_LPSTR, or VT_BSTR, this field is ignored.

cwcLenSource
The length in characters of the source text from which the current chunk was derived. A zero value signifies
character-by-character correspondence between the source text and the derived text. A nonzero value means that
no such direct correspondence exists.

cwcStartSource
The offset from which the source text for a derived chunk starts in the source chunk.

chunkBreakType
The type of break that separates the previous chunk from the current chunk. Values are from the
CHUNK_BREAKTYPE enumeration.

S_OK if successful; otherwise an error code.

Sets the property by key to a Unicode string.

HRESULT SetTextValue(
 REFPROPERTYKEY pkey,
 LPCTSTR pszValue,
 CHUNKSTATE chunkType = CHUNK_VALUE,
 LCID locale = 0,
 DWORD cwcLenSource = 0,
 DWORD cwcStartSource = 0,
 CHUNK_BREAKTYPE chunkBreakType = CHUNK_NO_BREAK);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

pkey
Specifies a property key.

pszValue
Specifies the chunk value to set.

chunkType
Flags indicate whether this chunk contains a text-type or a value-type property. Flag values are taken from the
CHUNKSTATE enumeration.

locale
The language and sublanguage associated with a chunk of text. Chunk locale is used by document indexers to
perform proper word breaking of text. If the chunk is neither text-type nor a value-type with data type
VT_LPWSTR, VT_LPSTR, or VT_BSTR, this field is ignored.

cwcLenSource
The length in characters of the source text from which the current chunk was derived. A zero value signifies
character-by-character correspondence between the source text and the derived text. A nonzero value means that
no such direct correspondence exists.

cwcStartSource
The offset from which the source text for a derived chunk starts in the source chunk.

chunkBreakType
The type of break that separates the previous chunk from the current chunk. Values are from the
CHUNK_BREAKTYPE enumeration.

S_OK if successful; otherwise an error code.

Classes

CMFCFontComboBox Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCFontComboBox : public CComboBox

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCFontComboBox::CMFCFontComboBox Constructs a CMFCFontComboBox object.

CMFCFontComboBox::~CMFCFontComboBox Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCFontComboBox::CompareItem Called by the framework to determine the relative position of
a new item in the sorted list box of the current font combo
box control. (Overrides CComboBox::CompareItem.)

CMFCFontComboBox::DrawItem Called by the framework to draw a specified item in the
current font combo box control. (Overrides
CComboBox::DrawItem.)

CMFCFontComboBox::GetSelFont Retrieves information about the currently selected font.

CMFCFontComboBox::MeasureItem Called by the framework to inform Windows of the
dimensions of the list box in the current font combo box
control. (Overrides CComboBox::MeasureItem.)

CMFCFontComboBox::PreTranslateMessage Translates window messages before they are dispatched to the
TranslateMessage and DispatchMessage Windows functions.
(Overrides CWnd::PreTranslateMessage.)

CMFCFontComboBox::SelectFont Selects the font that matches the specified criteria from the
font combo box.

CMFCFontComboBox::Setup Initializes the list of items in the font combo box.

Data MembersData Members

The CMFCFontComboBox class creates a combo box control that contains a list of fonts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcfontcombobox-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

NAME DESCRIPTION

CMFCFontComboBox::m_bDrawUsingFont Indicates to the framework which font to use to draw the item
labels in the current font combo box.

Remarks

Inheritance Hierarchy

Requirements

CMFCFontComboBox::CMFCFontComboBox

CMFCFontComboBox();

Return ValueReturn Value

RemarksRemarks

CMFCFontComboBox::GetSelFont

CMFCFontInfo* GetSelFont() const;

Return ValueReturn Value

RemarksRemarks

CMFCFontComboBox::m_bDrawUsingFont

To use a CMFCFontComboBox object in a dialog box, add a CMFCFontComboBox variable to the dialog box class. Then in
the OnInitDialog method of the dialog box class, call the CMFCFontComboBox::Setup method to initialize the list
of items in the combo box control.

CObject

CCmdTarget

CWnd

CComboBox

CMFCFontComboBox

Header: afxfontcombobox.h

Constructs a CMFCFontComboBox object.

Retrieves information about the currently selected font.

A pointer to CMFCFontInfo Class object that describes a font. It can be NULL if no font is selected in the combo
box.

Indicates to the framework which font to use to draw the item labels in the current font combo box.

static BOOL m_bDrawUsingFont;

RemarksRemarks

CMFCFontComboBox::SelectFont

BOOL SelectFont(CMFCFontInfo* pDesc);

BOOL SelectFont(
 LPCTSTR lpszName,
 BYTE nCharSet=DEFAULT_CHARSET);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMFCFontComboBox m_wndFont;

m_wndFont.SelectFont(_T("Arial"));

CMFCFontComboBox::Setup

BOOL Setup(
 int nFontType=DEVICE_FONTTYPE|RASTER_FONTTYPE|TRUETYPE_FONTTYPE,
 BYTE nCharSet=DEFAULT_CHARSET,
 BYTE nPitchAndFamily=DEFAULT_PITCH);

Set this member to TRUE to direct the framework to use the same font to draw each item label. Set this member
to FALSE to direct the framework to draw each item label with the font whose name is the same as the label. The
default value of this member is FALSE.

Selects the font that matches the specified criteria from the font combo box.

pDesc
[in] Points to a font description object.

lpszName
[in] Specifies a font name.

nCharSet
[in] Specifies a character set. The default value is DEFAULT_CHARSET. For more information, see the lfCharSet

member of the LOGFONT structure.

TRUE if an item in the font combo box matches the specified font description object or font name and charset;
otherwise, FALSE.

Use this method to select and scroll to the item in the font combo box that corresponds to the specified font.

The following example demonstrates how to use the SelectFont method in the CMFCFontComboBox class. This
example is part of the New Controls sample.

Initializes the list of items in the font combo box.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMFCFontComboBox m_wndFont;

// specify the font type
// BOOL m_bTrueType: true font type
// BOOL m_bRaster: raster font type
// BOOL m_bDeviceFont: device font type
int nFontType = 0;

if (m_bTrueType)
{
 nFontType |= TRUETYPE_FONTTYPE;
}

if (m_bRaster)
{
 nFontType |= RASTER_FONTTYPE;
}

if (m_bDeviceFont)
{
 nFontType |= DEVICE_FONTTYPE;
}

CWaitCursor wait;
m_wndFont.Setup(nFontType);

See also

nFontType
[in] Specifies the font type. The default value is the bitwise combination (OR) of DEVICE_FONTTYPE,
RASTER_FONTTYPE, and TRUETYPE_FONTTYPE.

nCharSet
[in] Specifies the font character set. The default value is DEFAULT_CHARSET.

nPitchAndFamily
[in] Specifies the font pitch and family. The default value is DEFAULT_PITCH.

TRUE if the font combo box was initialized successfully; otherwise, FALSE.

This method initializes the font combo box by enumerating the currently installed fonts that match the specified
parameters and inserting those font names in the font combo box.

The following example demonstrates how to use the Setup method in the CMFCFontComboBox class. This example is
part of the New Controls sample.

Hierarchy Chart
Classes
CMFCToolBarFontComboBox Class
CMFCFontInfo Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCFontInfo Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCFontInfo : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCFontInfo Constructs a CMFCFontInfo object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCFontInfo::GetFullName Retrieves the concatenated names of a font and its character
set (script).

Data MembersData Members

NAME DESCRIPTION

CMFCFontInfo::m_nCharSet A value that specifies the character set (script) associated with
the font.

CMFCFontInfo::m_nPitchAndFamily A value that specifies the pitch and family of the font.

CMFCFontInfo::m_nType A value that specifies the type of the font.

CMFCFontInfo::m_strName The name of the font; for example, Arial.

CMFCFontInfo::m_strScript The name of a character set (script) associated with the font.

Remarks

Example

The CMFCFontInfo class describes the name and other attributes of a font.

You can attach a CMFCFontInfo object to an item of the CMFCToolBarFontComboBox Class class. Call the
CMFCToolBarFontComboBox::GetFontDesc method to retrieve a pointer to a CMFCFontInfo object.

The following example demonstrates how to use various members of the CMFCFontInfo class. The example
demonstrates how to get a CMFCFontInfo object from a CMFCRibbonFontComboBox , and how to access its local
variables. This example is part of the MSOffice 2007 Demo sample.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcfontinfo-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

 CMFCRibbonFontComboBox* pFontCombo = DYNAMIC_DOWNCAST(CMFCRibbonFontComboBox, pRibbon-
>FindByID(ID_FONT_FONT));
 if (pFontCombo == NULL)
 {
 return;
 }

 CCharFormat cf;
 cf.szFaceName[0] = NULL;
 cf.dwMask = CFM_FACE | CFM_CHARSET;

 const CMFCFontInfo* pDesc = pFontCombo->GetFontDesc();
 ASSERT_VALID(pDesc);
 ASSERT(pDesc->m_strName.GetLength() < LF_FACESIZE);

#if _MSC_VER >= 1300
 lstrcpyn(cf.szFaceName, pDesc->m_strName, LF_FACESIZE);
#else
 lstrcpynA(cf.szFaceName, T2A((LPTSTR)(LPCTSTR) pDesc->m_strName), LF_FACESIZE);
#endif

 cf.bCharSet = pDesc->m_nCharSet;
 cf.bPitchAndFamily = pDesc->m_nPitchAndFamily;

Requirements

CMFCFontInfo::CMFCFontInfo

CMFCFontInfo(
 LPCTSTR lpszName,
 LPCTSTR lpszScript,
 BYTE nCharSet,
 BYTE nPitchAndFamily,
 int nType);

CMFCFontInfo(const CMFCFontInfo& src);

ParametersParameters

Header: afxtoolbarfontcombobox.h

Constructs a CMFCFontInfo object.

lpszName
[in] The name of the font. For more information, see the lfFaceName member of the LOGFONT structure.

lpszScript
[in] The name of the script (character set) of the font.

nCharSet
[in] A value that specifies the character set (script) of the font. For more information, see the lfCharSet member
of the LOGFONT structure.

nPitchAndFamily
[in] A value that specifies the pitch and family of the font. For more information, see the lfPitchAndFamily

member of the LOGFONT structure.

nType
[in] A value that specifies the font type. This parameter can be a bitwise combination (OR) of
DEVICE_FONTTYPE, RASTER_FONTTYPE, and TRUETYPE_FONTTYPE.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta

Return ValueReturn Value

RemarksRemarks

CMFCFontInfo::GetFullName

CString GetFullName() const;

Return ValueReturn Value

RemarksRemarks

CMFCFontInfo::m_nCharSet

const BYTE m_nCharSet;

RemarksRemarks

CMFCFontInfo::m_nPitchAndFamily

const BYTE m_nPitchAndFamily;

RemarksRemarks

CMFCFontInfo::m_nType

const int m_nType;

RemarksRemarks

src
[in] An existing CMFCFontInfo object whose members are used to construct this CMFCFontInfo object.

This documentation uses the terms character set and script interchangeably. A script, which is also known as a
writing system, is a collection of characters and rules for writing those characters in one or more languages. The
collection of characters includes the alphabet and punctuation used in that script. For example, Latin script is used
for English as it is spoken in the United States, and its alphabet includes the characters from A through Z. The
lfCharSet member of the LOGFONT structure specifies a character set. For example, the value ANSI_CHARSET

specifies the ANSI character set, which includes the alphabet of the Latin script.

Retrieves the concatenated names of a font and its character set (script).

A string that contains the font name and script.

Use this method to obtain the full name of the font. For example, if the font name is Arial and the font script is
Cyrillic, this method returns "Arial (Cyrillic)".

A value that specifies the character set (script) associated with the font.

For more information, see the nCharSet parameter of the CMFCFontInfo::CMFCFontInfo constructor.

A value that specifies the pitch (point size) and family (for example, serif, sans-serif, and monospace) of the font.

For more information, see the nPitchAndFamily parameter of the CMFCFontInfo::CMFCFontInfo constructor.

A value that specifies the type of the font.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta

CMFCFontInfo::m_strName

const CString m_strName;

RemarksRemarks

CMFCFontInfo::m_strScript

const CString m_strScript;

RemarksRemarks

See also

For more information, see the nType parameter of the CMFCFontInfo::CMFCFontInfo constructor.

The name of the font: for example, Arial.

For more information, see the lpszName parameter of the CMFCFontInfo::CMFCFontInfo constructor.

The name of a character set (script) associated with the font.

For more information, see the lpszScript parameter of the CMFCFontInfo::CMFCFontInfo constructor.

Hierarchy Chart
Classes
CMFCToolBarFontComboBox Class
CMFCToolBarFontSizeComboBox Class

CMFCHeaderCtrl Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CMFCHeaderCtrl : public CHeaderCtrl

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCHeaderCtrl::CMFCHeaderCtrl Constructs a CMFCHeaderCtrl object.

CMFCHeaderCtrl::~CMFCHeaderCtrl Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCHeaderCtrl::EnableMultipleSort Enables or disables multiple column sort mode for the
current header control.

CMFCHeaderCtrl::GetColumnState Indicates whether a column is not sorted, or is sorted in
ascending or descending order.

CMFCHeaderCtrl::GetSortColumn Retrieves the zero-based index of the first sorted column in
the header control.

CMFCHeaderCtrl::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCHeaderCtrl::IsAscending Indicates whether any column in the header control is sorted
in ascending order.

CMFCHeaderCtrl::IsDialogControl Indicates whether the parent window of the current header
control is a dialog box.

CMFCHeaderCtrl::IsMultipleSort Indicates whether the current header control is in multiple
column sort mode.

CMFCHeaderCtrl::RemoveSortColumn Removes the specified column from the list of sort columns.

CMFCHeaderCtrl::SetSortColumn Sets the sort order of a specified column in a header control.

Protected MethodsProtected Methods

The CMFCHeaderCtrl class supports sorting multiple columns in a header control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcheaderctrl-class.md

NAME DESCRIPTION

CMFCHeaderCtrl::OnDrawItem Called by the framework to draw a header control column.

CMFCHeaderCtrl::OnDrawSortArrow Called by the framework to draw the sort arrow.

CMFCHeaderCtrl::OnFillBackground Called by the framework to fill the background of a header
control column.

Example

CMFCHeaderCtrl* headerCtrl = new CMFCHeaderCtrl();
headerCtrl->EnableMultipleSort();

Remarks

Inheritance Hierarchy

Requirements

CMFCHeaderCtrl::CMFCHeaderCtrl

CMFCHeaderCtrl::CMFCHeaderCtrl()

RemarksRemarks

MEMBER VARIABLE VALUE

m_bIsMousePressed FALSE

The following example demonstrates how to construct an object of the CMFCHeaderCtrl class, and how to enable
multiple column sort mode for the current header control.

The CMFCHeaderCtrl class draws a sort arrow on a header control column to indicate that the column is sorted.
Use multiple column sort mode if a set of columns in the parent list control (CMFCListCtrl Class) can be sorted
at the same time.

CObject

CCmdTarget

CWnd

CHeaderCtrl

CMFCHeaderCtrl

Header: afxheaderctrl.h

Constructs a CMFCHeaderCtrl object.

This constructor initializes the following member variables to the specified values:

m_bMultipleSort FALSE

m_bAscending TRUE

m_nHighlightedItem -1

m_bTracked FALSE

m_bIsDlgControl FALSE

m_hFont NULL

MEMBER VARIABLE VALUE

CMFCHeaderCtrl::EnableMultipleSort

void EnableMultipleSort(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCHeaderCtrl::GetColumnState

int GetColumnState(int iColumn) const;

ParametersParameters

Return ValueReturn Value

VALUE DESCRIPTION

-1 Sorted in descending order.

0 Not sorted.

1 Sorted in ascending order.

RemarksRemarks

Enables or disables multiple column sort mode for the current header control.

bEnable
[in] TRUE to enable multiple column sort mode; FALSE to disable multiple column sort mode and to remove
any columns from the list of sorted columns. The default value is TRUE.

Use this method to enable or disable multiple column sort mode. Two or more columns can participate in a sort
if the header control is in multiple column sort mode.

Indicates whether a column is unsorted, or is sorted in ascending or descending order.

iColumn
[in] The zero-based index of a column.

A value that indicate the sort status of the specified column. The following table lists the possible values:

CMFCHeaderCtrl::GetSortColumn

int GetSortColumn() const;

Return ValueReturn Value

RemarksRemarks

CMFCHeaderCtrl::IsAscending

BOOL IsAscending() const;

Return ValueReturn Value

RemarksRemarks

CMFCHeaderCtrl::IsDialogControl

BOOL IsDialogControl() const;

Return ValueReturn Value

CMFCHeaderCtrl::IsMultipleSort

BOOL IsMultipleSort() const;

Return ValueReturn Value

RemarksRemarks

CMFCHeaderCtrl::OnDrawItem

Retrieves the zero-based index of the first sorted column in the header control.

The index of a sorted column, or -1 if no sorted column is found.

If the header control is in multiple column sort mode and you compiled the application in debug mode, this
method asserts and advises you to use the CMFCHeaderCtrl::GetColumnState method instead. If the header
control is in multiple column sort mode and you compiled the application in retail mode, this method returns -1.

Indicates whether any column in the header control is sorted in ascending order.

TRUE if any column in the header control is sorted in ascending order; otherwise, FALSE.

The value that this method returns is used to display the appropriate sort arrow on the header control item. Use
the CMFCHeaderCtrl::SetSortColumn method to set the sort order.

Indicates whether the parent window of the current header control is a dialog box.

TRUE if the parent window of the current header control is a dialog box; otherwise, FALSE.

Indicates whether the current header control is in multiple column sort mode.

TRUE if multiple column sort mode is enabled; otherwise, FALSE.

Use the CMFCHeaderCtrl::EnableMultipleSort method to enable or disable multiple column sort mode. Two or
more columns can participate in a sort if the header control is in multiple column sort mode.

virtual void OnDrawItem(
 CDC* pDC,
 int iItem,
 CRect rect,
 BOOL bIsPressed,
 BOOL bIsHighlighted);

ParametersParameters

CMFCHeaderCtrl::OnDrawSortArrow

virtual void OnDrawSortArrow(
 CDC* pDC,
 CRect rectArrow);

ParametersParameters

CMFCHeaderCtrl::OnFillBackground

virtual void OnFillBackground(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCHeaderCtrl::RemoveSortColumn

Called by the framework to draw a header control column.

pDC
[in] A pointer to a device context.

iItem
[in] The zero-based index of the item to draw.

rect
[in] The bounding rectangle of the item to draw.

bIsPressed
[in] TRUE to draw the item in pressed state; otherwise, FALSE.

bIsHighlighted
[in] TRUE to draw the item in highlighted state; otherwise, FALSE.

Called by the framework to draw the sort arrow.

pDC
[in] A pointer to a device context.

rectArrow
[in] The bounding rectangle of the sort arrow.

Called by the framework to fill the background of a header control column.

pDC
[in] A pointer to a device context.

Removes the specified column from the list of sort columns.

void RemoveSortColumn(int iColumn);

ParametersParameters

CMFCHeaderCtrl::SetSortColumn

void SetSortColumn(
 int iColumn,
 BOOL bAscending=TRUE,
 BOOL bAdd=FALSE);

ParametersParameters

RemarksRemarks

See also

iColumn
[in] The zero-based index of the column to remove.

Sets the sort order of a specified column in a header control.

iColumn
[in] The zero-based index of a header control column. If this parameter is less than zero, this method removes all
columns from the list of sort columns.

bAscending
[in] Specifies the sort order of the column that the iColumn parameter specifies. TRUE to set ascending order;
FALSE to set descending order. The default value is TRUE.

bAdd
[in] TRUE to set the sort order of the column that the iColumn parameter specifies.

If the current header control is in multiple column sort mode, this method adds the specified column to the list of
sort columns. Use CMFCHeaderCtrl::EnableMultipleSort to set multiple column sort mode.

If multiple column sort mode is not set and this method is compiled in debug mode, this method asserts. If
multiple column sort mode is not set and this method is compiled in retail mode, this method first removes all
columns from the list of sort columns, and then adds the specified column to the list.

FALSE to first remove all columns from the list of sort columns, and then add the specified column to the list.
The default value is FALSE.

Use this method to set the sort order of a column. If necessary, this method adds the column to the list of sort
columns. The header control uses the sort order to draw a sort arrow that points up or down.

Hierarchy Chart
Classes
CMFCListCtrl Class

CMFCImageEditorDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCImageEditorDialog : public CDialogEx

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCImageEditorDialog::CMFCImageEditorDialog Constructs a CMFCImageEditorDialog object.

Remarks

The CMFCImageEditorDialog class supports an image editor dialog box.

The CMFCImageEditorDialog class provides a dialog box that includes:

A picture area that you use to modify individual pixels in an image.

Drawing tools to modify the pixels in the picture area.

A color palette to specify the color that is used by the drawing tools.

A preview area that displays the effect of your edit.

The following illustration shows an image editor dialog box.

One way to use a CMFCImageEditorDialog object is to pass it a CBitmap image to be edited. Do not create a large
image because the image editing area has a limited size and the logical pixel size is adjusted to fit the area. Call
the DoModal method to start a modal dialog box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcimageeditordialog-class.md

Inheritance Hierarchy

Requirements

CMFCImageEditorDialog::CMFCImageEditorDialog

CMFCImageEditorDialog(
 CBitmap* pBitmap,
 CWnd* pParent=NULL,
 int nBitsPixel=-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// CBitmap m_bmpImage
HBITMAP hBmpCopy = (HBITMAP) ::CopyImage(m_bmpImage.GetSafeHandle(), IMAGE_BITMAP, 0, 0, 0);

// this points to Page3 class which extends the CMFCPropertyPage class
CMFCImageEditorDialog dlg(CBitmap::FromHandle(hBmpCopy), this);

CObject

CCmdTarget

CWnd

CDialog

CDialogEx

CMFCImageEditorDialog

Header: afximageeditordialog.h

Constructs a CMFCImageEditorDialog object.

pBitmap
Pointer to an image.

pParent
Pointer to the parent window of the current image editor dialog box.

nBitsPixel
The number of bits used to represent the color of a single pixel, which is also referred to as color depth. If the
nBitsPixel parameter is -1, the color depth is derived from the image specified by the pBitmap parameter. The
default value is -1.

To modify an image, pass an image pointer to the CMFCImageEditorDialog constructor. Then call the DoModal
method to open a modal dialog box. When the DoModal method returns, the bitmap contains the new image.

The following example demonstrates how to construct an object of the CMFCImageEditorDialog class. This example
is part of the New Controls sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

See also
Hierarchy Chart
Classes
CMFCToolBar Class

CMFCImageEditorPaletteBar Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCImageEditorPaletteBar : public CMFCToolBar

Members
Public MethodsPublic Methods

Name Description

CMFCImageEditorPaletteBar::GetRowHeight Returns the height of toolbar buttons. (Overrides
CMFCToolBar::GetRowHeight.)

CMFCImageEditorPaletteBar::IsButtonExtraSizeAvailable Determines whether the toolbar can display buttons that have
extended borders. (Overrides
CMFCToolBar::IsButtonExtraSizeAvailable.)

RemarksRemarks

Inheritance Hierarchy

Requirements

Provides palette bar functionality to an image editor dialog box.

This class is not intended to be used directly from your code.

The framework uses this class to display a palette bar in an image editor dialog box. For more information about
the image editor dialog box, see CMFCImageEditorDialog Class.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCBaseToolBa

CMFCToolBar

CMFCImageEditorPaletteBar

Header: afximageeditordialog.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcimageeditorpalettebar-class.md

CMFCImageEditorPaletteBar::GetRowHeight

virtual int GetRowHeight() const;

Return ValueReturn Value

CMFCImageEditorPaletteBar::IsButtonExtraSizeAvailable

virtual BOOL IsButtonExtraSizeAvailable() const;

Return ValueReturn Value

See also

Returns the height of toolbar buttons.

The height of each button on the toolbar.

Determines whether the toolbar can display buttons that have extended borders.

This method returns FALSE.

Hierarchy Chart
Classes
CMFCImageEditorDialog Class

CMFCImagePaintArea Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCImagePaintArea : public CButton

Members
Public ConstructorsPublic Constructors

Name Description

CMFCImagePaintArea::CMFCImagePaintArea Constructs a CMFCImagePaintArea object.

CMFCImagePaintArea::~CMFCImagePaintArea Destructor.

Public MethodsPublic Methods

Name Description

CMFCImagePaintArea::GetMode Retrieves the current drawing mode.

CMFCImagePaintArea::SetBitmap Sets the bitmap image for the picture area.

CMFCImagePaintArea::SetColor Sets the current drawing color.

CMFCImagePaintArea::SetMode Sets the current drawing mode.

RemarksRemarks

Example

Provides the picture area that you use to modify an image in an image editor dialog box.

This class is not intended to be used directly from your code.

The framework uses this class to display the picture area in an image editor dialog box. For more information
about the image editor dialog box, see CMFCImageEditorDialog Class.

The following example demonstrates how to construct an object of the CMFCImagePaintArea class, set the current
drawing color, set the current drawing mode, and set the bitmap image for the picture area.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcimagepaintarea-class.md

COLORREF mcolor(RGB(0,255,0));
//CBitmap bitmap;
CMFCImageEditorDialog* dialog = new CMFCImageEditorDialog(&bitmap);
CMFCImagePaintArea* wndLargeDrawArea = new CMFCImagePaintArea(dialog);
wndLargeDrawArea->SetColor(mcolor);
wndLargeDrawArea->SetMode(CMFCImagePaintArea::IMAGE_EDIT_MODE_PEN);
wndLargeDrawArea->SetBitmap(&bitmap);

Inheritance Hierarchy

Requirements

CMFCImagePaintArea::CMFCImagePaintArea

CMFCImagePaintArea(CMFCImageEditorDialog* pParentDlg);

ParametersParameters

Parameter Description

pParentDlg [in] A pointer to the dialog box that is the parent of the image
editor.

CMFCImagePaintArea::GetMode

IMAGE_EDIT_MODE GetMode() const;

Return ValueReturn Value

CMFCImagePaintArea::SetBitmap

void SetBitmap(CBitmap* pBitmap);

CObject

CCmdTarget

CWnd

CButton

CMFCImagePaintArea

Header: afximagepaintarea.h

Constructs a CMFCImagePaintArea object.

Retrieves the current drawing mode.

An IMAGE_EDIT_MODE value that specifies the current drawing mode.

Sets the bitmap image for the picture area.

ParametersParameters

Parameter Description

pBitmap [in] The new bitmap image to display.

RemarksRemarks

CMFCImagePaintArea::SetColor

void SetColor(COLORREF color);

ParametersParameters

Parameter Description

color [in] The new drawing color.

RemarksRemarks

CMFCImagePaintArea::SetMode

void SetMode(IMAGE_EDIT_MODE mode);

ParametersParameters

Parameter Description

mode [in] An IMAGE_EDIT_MODE value that specifies the current
drawing mode.

See also

If pBitmap is NULL, this method sets the size of the modifiable paint area to zero. Otherwise, it sets the size of the
modifiable paint area to the size of the provided bitmap image.

Sets the current drawing color.

When you select a color from the image editor palette bar or color picker, the framework calls this method to
update the current drawing color. The initial drawing color is black (a COLORREF value of 0).

The drawing color is used by the image editor dialog box for all drawing modes except for
IMAGE_EDIT_MODE_COLOR. For more information about drawing modes, see
CMFCImagePaintArea::IMAGE_EDIT_MODE Enumeration.

Sets the current drawing mode.

Hierarchy Chart
Classes
CMFCImageEditorDialog Class

CMFCKeyMapDialog Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CMFCKeyMapDialog : public CDialogEx

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCKeyMapDialog::CMFCKeyMapDialog Constructs a CMFCKeyMapDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCKeyMapDialog::DoModal Displays a keyboard mapping dialog box.

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCKeyMapDialog::FormatItem Called by the framework to build a string that describes a key
mapping. By default, the string contains the command name,
the shortcut keys used, and the shortcut key description.

CMFCKeyMapDialog::GetCommandKeys Retrieves a string that contains a list of shortcut keys
associated with the specified command.

CMFCKeyMapDialog::OnInsertItem Called by the framework before a new item is inserted into the
internal list control that supports the keyboard mapping
control.

CMFCKeyMapDialog::OnPrintHeader Called by the framework to print the header for the keyboard
map on a new page.

CMFCKeyMapDialog::OnPrintItem Called by the framework to print a keyboard mapping item.

CMFCKeyMapDialog::OnSetColumns Called by the framework to set captions for the columns in the
internal list control that supports the keyboard mapping
control.

CMFCKeyMapDialog::PrintKeyMap Called by the framework when a user clicks the Print button.

The CMFCKeyMapDialog class supports a control that maps commands to keys on the keyboard.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfckeymapdialog-class.md

CMFCKeyMapDialog::SetColumnsWidth Called by the framework to set the width of the columns in
the internal list control that supports the keyboard mapping
control.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CMFCKeyMapDialog::CMFCKeyMapDialog

CMFCKeyMapDialog(
 CFrameWnd* pWndParentFrame,
 BOOL bEnablePrint=FALSE);

ParametersParameters

RemarksRemarks

ExampleExample

Use the CMFCKeyMapDialog class to implement a resizable keyboard mapping dialog box. The dialog box uses a list
view control to display keyboard shortcuts and their associated commands.

To use the CMFCKeyMapDialog class in an application, pass in a pointer to the main frame window as a parameter to
the CMFCKeyMapDialog constructor. Then call the DoModal method to start a modal dialog box.

CObject

CCmdTarget

CWnd

CDialog

CDialogEx

CMFCKeyMapDialog

Header: afxkeymapdialog.h

Constructs a CMFCKeyMapDialog object.

pWndParentFrame
[in] A pointer to the parent window of the CMFCKeyMapDialog object.

bEnablePrint
[in] TRUE if the list of accelerator keys can be printed; otherwise, FALSE. The default is FALSE.

The following example demonstrates how to construct an object of the CMFCKeyMapDialog class. This example is
part of the Visual Studio Demo sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

// this points to a CMainFrame class which extends the
// CMDIFrameWndEx class
CMFCKeyMapDialog dlg(this, TRUE /* Enable Print */);

CMFCKeyMapDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

CMFCKeyMapDialog::FormatItem

virtual CString FormatItem(int nItem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCKeyMapDialog::GetCommandKeys

virtual CString GetCommandKeys(UINT uiCmdID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCKeyMapDialog::OnInsertItem

Displays a keyboard mapping dialog box.

A signed integer, such as IDOK or IDCANCEL, that is passed to the CDialog::EndDialog method. The method, in
turn, closes the dialog box. For more information, see CDialog::DoModal.

The keyboard mapping dialog box enables you to select and assign accelerator keys to various categories of
commands. In addition, you can copy the selected accelerator keys and their description to the clipboard.

Called by the framework to build a string that describes a key mapping. By default, the string contains the
command name, the shortcut keys used, and the shortcut key description.

nItem
[in] The zero-based index of an item in the internal list of key mappings.

A CString object that contains the formatted item text.

Retrieves a string value. The string contains a list of shortcut keys that are associated with a specified command.

uiCmdID
[in] A command ID.

A semicolon-delimited (';') list of shortcut keys that is associated with the specified command.

Called by the framework before a new item is inserted into an internal list control that supports the keyboard

virtual void OnInsertItem(
 CMFCToolBarButton* pButton,
 int nItem);

ParametersParameters

RemarksRemarks

CMFCKeyMapDialog::OnPrintHeader

virtual int OnPrintHeader(
 CDC& dc,
 int nPage,
 int cx) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCKeyMapDialog::OnPrintItem

virtual int OnPrintItem(
 CDC& dc,
 int nItem,
 int y,
 int cx,
 BOOL bCalcHeight) const;

ParametersParameters

mapping control.

pButton
[in] A pointer to a toolbar button that is used to map a keyboard key combination to a command name and
description. The key map item is stored in an internal list control.

nItem
[in] A zero-based index that specifies where to insert the new key map item in the internal list control.

Called by the framework to print the header for the keyboard map on a new page.

dc
[in] The device context for the printer.

nPage
[in] The page number to print.

cx
[in] The horizontal offset of the header, in pixels.

If successful, the height of the printed text. For more information, see the Return Value section of CDC::DrawText.

The framework uses this method to print the keyboard map. By default, this method prints the page number,
application name, and dialog box title.

Called by the framework to print a keyboard mapping item.

dc

Return ValueReturn Value

RemarksRemarks

CMFCKeyMapDialog::OnSetColumns

virtual void OnSetColumns();

RemarksRemarks

CMFCKeyMapDialog::PrintKeyMap

virtual void PrintKeyMap();

RemarksRemarks

CMFCKeyMapDialog::SetColumnsWidth

virtual void SetColumnsWidth();

RemarksRemarks

[in] The device context of the printer.

nItem
[in] The zero-based index of the item to print.

y
[in] The vertical offset between the top of the page and the position of the item.

cx
[in] The horizontal offset between the left of the page and the position of the item.

bCalcHeight
[in] TRUE to calculate the best height for the print item; FALSE to truncate the print item so that it fits the default
space.

The height of the printed item.

The framework calls this method to print a key map dialog box item. By default, this method prints the item's
command name, shortcut keys, and command description.

Called by the framework to set captions for the columns in the internal list control that supports the keyboard
mapping control.

By default, this method obtains the captions for the columns from three resources. The command column caption
is from IDS_AFXBARRES_COMMAND, the key column caption is from IDS_AFXBARRES_KEYS, and the
description column caption is from IDS_AFXBARRES_DESCRIPTION.

Called by the framework when a user clicks the Print button.

The PrintKeyMap method prints the key map. It initiates a new print job and then repeatedly calls the
CMFCKeyMapDialog::OnPrintHeader and CMFCKeyMapDialog::OnPrintItem methods until all the key mappings
are printed.

Called by the framework to set the width of the columns in the internal list control that supports the keyboard
mapping control.

See also

This method sets the internal list control's columns to default widths. First, the width of the shortcut keys column is
calculated. Then one-third of the remaining width is allocated to the command column and the remaining two-
thirds is allocated to the description column.

Hierarchy Chart
Classes
CKeyboardManager Class

CMFCLinkCtrl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCLinkCtrl : public CMFCButton

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCLinkCtrl::SetURL Displays a specified URL as the button text.

CMFCLinkCtrl::SetURLPrefix Sets the implicit protocol (for example, "http:") of the URL.

CMFCLinkCtrl::SizeToContent Resizes the button to contain the button text or bitmap.

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCLinkCtrl::OnDrawFocusRect Called by the framework before the focus rectangle of the
button is drawn.

Remarks

Example

CMFCLinkCtrl m_btnLink;

m_btnLink.SetURL(_T("http://www.microsoft.com"));
m_btnLink.SetTooltip(_T("Visit Microsoft site"));
// resize the button to contain the button text or bitmap
m_btnLink.SizeToContent();

Inheritance Hierarchy

The CMFCLinkCtrl class displays a button as a hyperlink and invokes the link's target when the button is clicked.

When you click a button that is derived from the CMFCLinkCtrl class, the framework passes the URL of the button
as a parameter to the ShellExecute method. Then the ShellExecute method opens the target of the URL.

The following example demonstrates how to set the size of a CMFCLinkCtrl object, and how to set a url and a
tooltip in a CMFCLinkCtrl object. This example is part of the New Controls sample.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfclinkctrl-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CMFCLinkCtrl::OnDrawFocusRect

virtual void OnDrawFocusRect(
 CDC* pDC,
 const CRect& rectClient);

ParametersParameters

RemarksRemarks

CMFCLinkCtrl::SetURL

void SetURL(LPCTSTR lpszURL);

ParametersParameters

RemarksRemarks

CMFCLinkCtrl::SetURLPrefix

void SetURLPrefix(LPCTSTR lpszPrefix);

ParametersParameters

CObject

CCmdTarget

CWnd

CButton

CMFCButton

CMFCLinkCtrl

Header: afxlinkctrl.h

Called by the framework before the focus rectangle of the button is drawn.

pDC
[in] A pointer to a device context.

rectClient
[in] A rectangle that bounds the link control.

Override this method when you want to use your own code to draw the button's focus rectangle.

Displays a specified URL as the button text.

lpszURL
[in] The button text to display.

Sets the implicit protocol (for example, "http:") of the URL.

lpszPrefix
[in] The prefix of the URL protocol.

RemarksRemarks

CMFCLinkCtrl::SizeToContent

virtual CSize SizeToContent(
 BOOL bVCenter=FALSE,
 BOOL bHCenter=FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Use this method to set the URL prefix. The prefix is not displayed on the button's face, but you can use it to help
browse to the URL's target.

Resizes the button to contain the button text or bitmap.

bVCenter
[in] TRUE to center the button text and bitmap vertically between the top and bottom of the link control;
otherwise, FALSE. The default value is FALSE.

bHCenter
[in] TRUE to center the button text and bitmap horizontally between the left and right sides of the link control;
otherwise, FALSE. The default value is FALSE.

A CSize object that contains the new size of the link control.

Hierarchy Chart
Classes
CLinkCtrl Class
CMFCButton Class

CMFCListCtrl Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CMFCListCtrl : public CListCtrl

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCListCtrl::EnableMarkSortedColumn Enables the ability to mark a sorted column with a different
background color.

CMFCListCtrl::EnableMultipleSort Enables multiple sort mode.

CMFCListCtrl::GetHeaderCtrl Returns a reference to the underlined header control.

CMFCListCtrl::IsMultipleSort Checks if the list control is in multiple sort mode.

CMFCListCtrl::OnCompareItems Called by the framework when it must compare two list
control items.

CMFCListCtrl::OnGetCellBkColor Called by the framework when it must determine the
background color of an individual cell.

CMFCListCtrl::OnGetCellFont Called by the framework when it must obtain the font for the
cell being drawn.

CMFCListCtrl::OnGetCellTextColor Called by the framework when it must determine the text
color of an individual cell.

CMFCListCtrl::RemoveSortColumn Removes a sort column from the list of sorted columns.

CMFCListCtrl::SetSortColumn Sets the current sorted column and the sort order.

CMFCListCtrl::Sort Sorts the list control.

Remarks

The CMFCListCtrl class extends the functionality of CListCtrl Class class by supporting the advanced header
control functionality of the CMFCHeaderCtrl Class.

CMFCListCtrl offers two enhancements to CListCtrl Class class. First, it indicates that column sorting is an
available option by automatically drawing a sort arrow on the header. Second, it supports data sorting on
multiple columns at the same time.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfclistctrl-class.md

Example

CMFCListCtrl m_wndWatch;

// DWORD dwStyle
// CRect rectDummy
m_wndWatch.Create(dwStyle, rectDummy, this, ID_LIST_1);
m_wndWatch.SendMessage(LVM_SETEXTENDEDLISTVIEWSTYLE, 0, LVS_EX_FULLROWSELECT | LVS_EX_GRIDLINES);
m_wndWatch.InsertColumn(0, _T("Variable"), LVCFMT_LEFT, 100);
m_wndWatch.InsertColumn(1, _T("Value"), LVCFMT_LEFT, 100);

m_wndWatch.InsertItem(0, _T("m_nCount"));
m_wndWatch.SetItemText(0, 1, _T("100"));

m_wndWatch.SetFont(&m_Font);

Inheritance Hierarchy

Requirements

CMFCListCtrl::EnableMarkSortedColumn

void EnableMarkSortedColumn(
 BOOL bMark = TRUE,
 BOOL bRedraw = TRUE);

ParametersParameters

RemarksRemarks

The following example demonstrates how to use various methods in the CMFCListCtrl class. The example shows
how to create a list control, insert columns, insert items, set the text of an item, and set the font of the list control.
This code snippet is part of the Visual Studio Demo sample.

CObject

CCmdTarget

CWnd

CListCtrl

CMFCListCtrl

Header: afxlistctrl.h

Marks the sorted columns with a different background color.

bMark
[in] A Boolean parameter that determines whether to enable a different background color.

bRedraw
[in] A Boolean parameter that determines whether to redraw the control immediately.

EnableMarkSortedColumn uses the method CDrawingManager::PixelAlpha to calculate what color to use for sorted
columns. The color picked is based upon the regular background color.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCListCtrl::EnableMultipleSort

void EnableMultipleSort(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMFCListCtrl::GetHeaderCtrl

virtual CMFCHeaderCtrl& GetHeaderCtrl();

Return ValueReturn Value

RemarksRemarks

CMFCListCtrl::IsMultipleSort

BOOL IsMultipleSort() const;

Return ValueReturn Value

RemarksRemarks

CMFCListCtrl::OnCompareItems

virtual int OnCompareItems(
 LPARAM lParam1,
 LPARAM lParam2,
 int iColumn);

ParametersParameters

Enables sorting the rows of data in the list control by multiple columns.

bEnable
[in] A Boolean that specifies whether to enable multiple column sort mode.

When you enable sorting based on multiple columns, the columns do have a hierarchy. The rows of data will first
be sorted by the primary column. Any equivalent values are then sorted by each subsequent column based on
priority.

Returns a reference to the header control.

A reference to the underlying CMFCHeaderCtrl object.

The header control for a list control is the window that contains the titles for the columns. It is usually positioned
directly above the columns.

Checks whether the list control currently supports sorting on multiple columns.

TRUE if the list control supports multiple sort; FALSE otherwise.

When a CMFCListCtrl Class supports multiple sorting, the user can sort the data in the list control by multiple
columns. To enable multiple sorting, call CMFCListCtrl::EnableMultipleSort.

The framework calls this method when it compares two items.

Return ValueReturn Value

RemarksRemarks

CMFCListCtrl::OnGetCellBkColor

virtual COLORREF OnGetCellBkColor(
 int nRow,
 int nColumn);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCListCtrl::OnGetCellFont

virtual HFONT OnGetCellFont(
 int nRow,
 int nColumn,
 DWORD dwData = 0);

ParametersParameters

lParam1
[in] The first item to compare.

lParam2
[in] The second item to compare.

iColumn
[in] The index of the column that this method is sorting.

An integer that indicates the relative position of the two items. A negative value indicates that the first item should
precede the second, positive value indicates that the first item should follow the second, and zero means that the
two items are equivalent.

The default implementation always returns 0. You must override this function to provide a sorting algorithm.

The framework calls this method when it must determine the background color of an individual cell.

nRow
[in] The row of the cell in question.

nColumn
[in] The column of the cell in question.

A COLOREF value that specifies the background color of the cell.

The default implementation of OnGetCellBkColor does not use the supplied input parameters and instead simply
calls GetBkColor . Therefore, by default, the whole list control will have the same background color. You can
override OnGetCellBkColor in a derived class to mark individual cells with a separate background color.

The framework calls this method when it obtains the font for an individual cell.

nRow
[in] The row of the cell in question.

nColumn
[in] The column of the cell in question.

Return ValueReturn Value

RemarksRemarks

CMFCListCtrl::OnGetCellTextColor

virtual COLORREF OnGetCellTextColor(
 int nRow,
 int nColumn);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCListCtrl::RemoveSortColumn

void RemoveSortColumn(int iColumn);

ParametersParameters

RemarksRemarks

CMFCListCtrl::SetSortColumn

dwData
[in] User-defined data. The default implementation does not use this parameter.

A handle to the font that is used for the current cell.

By default, this method returns NULL. All of the cells in a list control have the same font. Override this method in
order to provide different fonts for different cells.

The framework calls this method when it must determine the text color of an individual cell.

nRow
[in] The row of the cell in question.

nColumn
[in] The column of the cell in question.

A COLOREF value that specifies the text color of the cell.

By default, this method calls GetTextColor regardless of input parameters. The whole list control will have the
same text color. You can override OnGetCellTextColor in a derived class to mark individual cells with a separate
text color.

Removes a sort column from the list of sorted columns.

iColumn
[in] The column to remove.

This method removes a sort column from the header control. It calls CMFCHeaderCtrl::RemoveSortColumn.

Sets the current sorted column and the sort order.

void SetSortColumn(
 int iColumn,
 BOOL bAscending = TRUE,
 BOOL bAdd = FALSE);

ParametersParameters

RemarksRemarks

CMFCListCtrl::Sort

virtual void Sort(
 int iColumn,
 BOOL bAscending = TRUE,
 BOOL bAdd = FALSE);

ParametersParameters

See also

iColumn
[in] The column to sort.

bAscending
[in] A Boolean that specifies the sort order.

bAdd
[in] A Boolean that specifies whether the method adds the column indicated by iColumn to the list of sort
columns.

This method passes the input parameters to the header control by using the method
CMFCHeaderCtrl::SetSortColumn.

Sorts the list control.

iColumn
[in] The column to sort.

bAscending
[in] A Boolean that specifies the sort order.

bAdd
[in] A Boolean that specifies whether this method adds the column indicated by iColumn to the list of sort
columns.

Hierarchy Chart
Classes
CListCtrl Class

CMFCMaskedEdit Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CMFCMaskedEdit : public CEdit

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCMaskedEdit::CMFCMaskedEdit Default constructor.

CMFCMaskedEdit::~CMFCMaskedEdit Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCMaskedEdit::DisableMask Disables validating user input.

CMFCMaskedEdit::EnableGetMaskedCharsOnly Specifies whether the GetWindowText method retrieves only
masked characters.

CMFCMaskedEdit::EnableMask Initializes the masked edit control.

CMFCMaskedEdit::EnableSelectByGroup Specifies whether the masked edit control selects particular
groups of user input, or all user input.

CMFCMaskedEdit::EnableSetMaskedCharsOnly Specifies whether the text is validated against only masked
characters, or against the whole mask.

CMFCMaskedEdit::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCMaskedEdit::GetWindowText Retrieves validated text from the masked edit control.

CMFCMaskedEdit::SetValidChars Specifies a string of valid characters that the user can enter.

CMFCMaskedEdit::SetWindowText Displays a prompt in the masked edit control.

Protected MethodsProtected Methods

The CMFCMaskedEdit class supports a masked edit control, which validates user input against a mask and displays
the validated results according to a template.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcmaskededit-class.md

NAME DESCRIPTION

CMFCMaskedEdit::IsMaskedChar Called by the framework to validate the specified character
against the corresponding mask character.

Remarks

Example

CMFCMaskedEdit m_wndMaskEdit1;
CMFCMaskedEdit m_wndMaskEdit2;
CMFCMaskedEdit m_wndMaskEdit3;
CMFCMaskedEdit m_wndMaskEdit4;
CMFCMaskedEdit m_wndMaskEdit5;

CString m_strValue1;
CString m_strValue2;
CString m_strValue3;
CString m_strValue4;
CString m_strValue5;

Perform the following steps to use the CMFCMaskedEdit control in your application:

1. Embed a CMFCMaskedEdit object into your window class.

2. Call the CMFCMaskedEdit::EnableMask method to specify the mask.

3. Call the CMFCMaskedEdit::SetValidChars method to specify the list of valid characters.

4. Call the CMFCMaskedEdit::SetWindowText method to specify the default text for the masked edit control.

5. Call the CMFCMaskedEdit::GetWindowText method to retrieve the validated text.

If you do not call one or more methods to initialize the mask, valid characters, and default text, the masked edit
control behaves just as the standard edit control behaves.

The following example demonstrates how to set up a mask (for example a phone number) by using the
EnableMask method to create the mask for the masked edit control, the SetValidChars method to specify a string

of valid characters that the user can enter, and SetWindowText method to display a prompt in the masked edit
control. This example is part of the New Controls sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

BOOL CPage4::OnInitDialog()
{
 CMFCPropertyPage::OnInitDialog();

 // Mask 1: phone number
 m_wndMaskEdit1.EnableMask(_T(" ddd ddd dddd"), // The mask string
 _T("(___) ___-____"), // Literal, "_" char = character entry
 _T(' ')); // Default char
 m_wndMaskEdit1.SetValidChars(NULL); // Valid string characters
 m_wndMaskEdit1.SetWindowText(_T("(123) 123-1212"));

 // Mask 2: State, Zip Code
 m_wndMaskEdit2.EnableMask(_T(" cc ddddd-dddd"), // The mask string
 _T("State: __, Zip: _____-____"), // Literal, "_" char = character entry
 _T(' ')); // Backspace replace char
 m_wndMaskEdit2.SetValidChars(NULL); // Valid string characters
 m_wndMaskEdit2.SetWindowText(_T("State: NY, Zip: 12345-6789"));
 // Mask 3: serial code
 m_wndMaskEdit3.EnableMask(_T(" AAAA AAAA AAAA AAAA"), // The mask string
 _T("S/N: ____-____-____-____"), // Literal, "_" char = character entry
 T('')); // Backspace replace char
 m_wndMaskEdit3.SetValidChars(NULL); // Valid string characters
 m_wndMaskEdit3.SetWindowText(_T("S/N: FPR5-5678-1234-8765"));

 // Mask 4: 0xFFFF
 m_wndMaskEdit4.EnableMask(_T(" AAAA"), // The mask string
 _T("0x____"), // Literal, "_" char = character entry
 T('')); // Backspace replace char
 m_wndMaskEdit4.SetValidChars(_T("1234567890ABCDEFabcdef")); // Valid string characters
 m_wndMaskEdit4.SetWindowText(_T("0x01AF"));

 // Mask 5: digits only
 m_wndMaskEdit5.DisableMask(); // Don't use the mask
 m_wndMaskEdit5.SetValidChars(_T("1234567890")); // Valid string characters
 m_wndMaskEdit5.SetWindowText(_T("1234567890"));

 return TRUE; // return TRUE unless you set the focus to a control
}

void CPage4::OnButtonGet()
{
 m_wndMaskEdit1.GetWindowText(m_strValue1);
 m_wndMaskEdit2.GetWindowText(m_strValue2);
 m_wndMaskEdit3.GetWindowText(m_strValue3);
 m_wndMaskEdit4.GetWindowText(m_strValue4);
 m_wndMaskEdit5.GetWindowText(m_strValue5);
 UpdateData(FALSE);
}

Inheritance Hierarchy

Requirements

CObject

CCmdTarget

CWnd

CEdit

CMFCMaskedEdit

Header: afxmaskededit.h

CMFCMaskedEdit::DisableMask

void DisableMask();

RemarksRemarks

CMFCMaskedEdit::EnableGetMaskedCharsOnly

void EnableGetMaskedCharsOnly(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCMaskedEdit::EnableMask

void EnableMask(
 LPCTSTR lpszMask,
 LPCTSTR lpszInputTemplate,
 TCHAR chMaskInputTemplate=_T('_'),
 LPCTSTR lpszValid=NULL);

ParametersParameters

Disables validating user input.

If user input validation is disabled, the masked edit control behaves like the standard edit control.

Specifies whether the GetWindowText method retrieves only masked characters.

bEnable
[in] TRUE to specify that the CMFCMaskedEdit::GetWindowText method retrieve only masked characters; FALSE
to specify that the method retrieve the whole text. The default value is TRUE.

Use this method to enable retrieving masked characters. Then create a masked edit control that corresponds to the
telephone number, such as (425) 555-0187. If you call the GetWindowText method, it returns "4255550187". If you
disable retrieving masked characters, the GetWindowText method returns the text that is displayed in the edit
control, for example "(425) 555-0187".

Initializes the masked edit control.

lpszMask
[in] A mask string that specifies the type of character that can appear at each position in the user input. The length
of the lpszInputTemplate and lpszMask parameter strings must be the same. See the Remarks section for more
detail about mask characters.

lpszInputTemplate
[in] A mask template string that specifies the literal characters that can appear at each position in the user input.
Use the underscore character ('_') as a character placeholder. The length of the lpszInputTemplate and lpszMask
parameter strings must be the same.

chMaskInputTemplate
[in] A default character that the framework substitutes for each invalid character in the user input. The default
value of this parameter is underscore ('_').

lpszValid
[in] A string that contains a set of valid characters. NULL indicates that all characters are valid. The default value of

RemarksRemarks

MASK CHARACTER DEFINITION

D Digit.

d Digit or space.

+ Plus ('+'), minus ('-'), or space.

C Alphabetic character.

c Alphabetic character or space.

A Alphanumeric character.

a Alphanumeric character or space.

* A printable character.

CMFCMaskedEdit::EnableSelectByGroup

void EnableSelectByGroup(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

m_wndMaskEdit.EnableMask(
 _T(" ddd ddd dddd"), // Mask string
 _T("(___) ___-____"), // Template string
 _T(' ')); // Default char

m_wndMaskEdit.SetValidChars(NULL); // All characters are valid.

m_wndMaskEdit.SetWindowText(_T("(425) 555-0187")); // Prompt

this parameter is NULL.

Use this method to create the mask for the masked edit control. Derive a class from the CMFCMaskedEdit class and
override the CMFCMaskedEdit::IsMaskedChar method to use your own code for custom mask processing.

The following table list the default mask characters:

Specifies whether the masked edit control allows the user to select particular groups input, or all input.

bEnable
[in] TRUE to select only groups; FALSE to select the whole text. The default value is TRUE.

Use this function to specify whether the masked edit control allows a user to select by group or the whole text.

By default, selection by group is enabled. In this case the user can select only continuous groups of valid
characters.

For example, you might use the following masked edit control to validate a telephone number:

If selection by group is enabled, the user can retrieve only the "425", "555", or "0187" string groups. If group
selection is disabled the user can retrieve the whole text of the telephone number: "(425) 555-0187".

CMFCMaskedEdit::EnableSetMaskedCharsOnly

void EnableSetMaskedCharsOnly(BOOL bEnable=TRUE);

ParametersParameters

CMFCMaskedEdit::GetWindowText

int GetWindowText(
 LPTSTR lpszStringBuf,
 int nMaxCount) const;

void GetWindowText(CString& rstrString) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMaskedEdit::IsMaskedChar

virtual BOOL IsMaskedChar(
 TCHAR chChar,
 TCHAR chMaskChar) const;

ParametersParameters

Specifies whether the text is validated against only the masked characters, or against the whole mask.

bEnable
[in] TRUE to validate the user input against only masked characters; FALSE to validate against the whole mask.
The default value is TRUE.

Retrieves validated text from the masked edit control.

lpszStringBuf
[out] A pointer to a buffer that receives the text from the edit control.

nMaxCount
[in] The maximum number of characters to receive.

rstrString
[out] A reference to the string object that receives the text from the edit control.

The first method overload returns the number of bytes of the string that is copied to the lpszStringBuf parameter
buffer ; 0 if the masked edit control has no text.

This method copies the text from the masked edit control to the lpszStringBuf buffer or the rstrString string.

This method redefines CWnd::GetWindowText.

Called by the framework to validate the specified character against the corresponding mask character.

chChar
[in] The character to be validated.

chMaskChar

Return ValueReturn Value

RemarksRemarks

CMFCMaskedEdit::SetValidChars

void SetValidChars(LPCTSTR lpszValid=NULL);

ParametersParameters

RemarksRemarks

//Mask: 0xFFFF
m_wndMaskEdit.EnableMask(
 _T(" AAAA"), // The mask string.
 _T("0x____"), // The literal template string.
 T('')); // The default character that
 // replaces the backspace character.
// Valid string characters
m_wndMaskEdit.SetValidChars(_T("1234567890ABCDEFabcdef"));m_wndMaskEdit.SetWindowText(_T("0x01AF"));

CMFCMaskedEdit::SetWindowText

void SetWindowText(LPCTSTR lpszString);

ParametersParameters

RemarksRemarks

See also

[in] The corresponding character from the mask string.

TRUE if the chChar parameter is the type of character permitted by the chMaskChar parameter; otherwise, FALSE.

Override this method to validate input characters on your own. For more information about mask characters, see
the CMFCMaskedEdit::EnableMask method.

Specifies a string of valid characters that the user can enter.

lpszValid
[in] A string that contains the set of valid input characters. NULL means that all characters are valid. The default
value of this parameter is NULL.

Use this method to define a list of valid characters. If an input character is not in this list, masked edit control will
not accept it.

The following code example accepts only hexadecimal numbers.

Displays a prompt in the masked edit control.

lpszString
[in] Points to a null-terminated string that will be used as a prompt.

This method sets the control text.

This method redefines CWnd::SetWindowText.

Hierarchy Chart
Classes

CEdit Class

CMFCMenuBar Class
3/4/2019 • 16 minutes to read • Edit Online

Syntax
class CMFCMenuBar : public CMFCToolbar

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCMenuBar::AdjustLocations (Overrides CMFCToolBar::AdjustLocations .)

CMFCMenuBar::AllowChangeTextLabels Specifies whether text labels can be shown under images on
the toolbar buttons. (Overrides
CMFCToolBar::AllowChangeTextLabels.)

CMFCMenuBar::AllowShowOnPaneMenu (Overrides CPane::AllowShowOnPaneMenu .)

CMFCMenuBar::CalcFixedLayout Calculates the horizontal size of the toolbar. (Overrides
CMFCToolBar::CalcFixedLayout.)

CMFCMenuBar::CalcLayout (Overrides CMFCToolBar::CalcLayout .)

CMFCMenuBar::CalcMaxButtonHeight Calculates the maximum height of buttons in the toolbar.
(Overrides CMFCToolBar::CalcMaxButtonHeight.)

CMFCMenuBar::CanBeClosed Specifies whether a user can close the toolbar. (Overrides
CMFCToolBar::CanBeClosed.)

CMFCMenuBar::CanBeRestored Determines whether the system can restore a toolbar to its
original state after customization. (Overrides
CMFCToolBar::CanBeRestored.)

CMFCMenuBar::Create Creates a menu control and attaches it to a CMFCMenuBar

object.

CMFCMenuBar::CreateEx Creates a CMFCMenuBar object with additional style options.

CMFCMenuBar::CreateFromMenu Initializes a CMFCMenuBar object. Accepts a HMENU
parameter that acts as a template for a populated
CMFCMenuBar .

A menu bar that implements docking. For more detail see the source code located in the VC\atlmfc\src\mfc
folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcmenubar-class.md

CMFCMenuBar::EnableHelpCombobox Enables a Help combo box that is located on the right side of
the menu bar.

CMFCMenuBar::EnableMenuShadows Specifies whether to display shadows for pop-up menus.

CMFCMenuBar::GetAvailableExpandSize (Overrides CPane::GetAvailableExpandSize.)

CMFCMenuBar::GetColumnWidth Returns the width of the toolbar buttons. (Overrides
CMFCToolBar::GetColumnWidth.)

CMFCMenuBar::GetDefaultMenu Returns a handle to the original menu in the resource file.

CMFCMenuBar::GetDefaultMenuResId Returns the resource identifier for the original menu in the
resource file.

CMFCMenuBar::GetFloatPopupDirection

CMFCMenuBar::GetForceDownArrows

CMFCMenuBar::GetHelpCombobox Returns a pointer to the Help combo box.

CMFCMenuBar::GetHMenu Returns the handle to the menu that is attached to the
CMFCMenuBar object.

CMFCMenuBar::GetMenuFont Returns the current global font for menu objects.

CMFCMenuBar::GetMenuItem Returns the toolbar button associated with the provided item
index.

CMFCMenuBar::GetRowHeight Returns the height of toolbar buttons. (Overrides
CMFCToolBar::GetRowHeight.)

CMFCMenuBar::GetSystemButton

CMFCMenuBar::GetSystemButtonsCount

CMFCMenuBar::GetSystemMenu

CMFCMenuBar::HighlightDisabledItems Indicates whether disabled menu items are highlighted.

CMFCMenuBar::IsButtonExtraSizeAvailable Determines whether the toolbar can display buttons that
have extended borders. (Overrides
CMFCToolBar::IsButtonExtraSizeAvailable.)

CMFCMenuBar::IsHighlightDisabledItems Indicates whether disabled items are highlighted.

CMFCMenuBar::IsMenuShadows Indicates whether shadows are drawn for pop-up menus.

CMFCMenuBar::IsRecentlyUsedMenus Indicates whether recently used menu commands are
displayed on the menu bar.

CMFCMenuBar::IsShowAllCommands Indicates whether pop-up menus display all commands.

NAME DESCRIPTION

CMFCMenuBar::IsShowAllCommandsDelay Indicates whether menus display all the commands after a
short delay.

CMFCMenuBar::LoadState Loads the state of the CMFCMenuBar object from the
registry.

CMFCMenuBar::OnChangeHot Called by the framework when a user selects a button on the
toolbar. (Overrides CMFCToolBar::OnChangeHot.)

CMFCMenuBar::OnDefaultMenuLoaded Called by the framework when a frame window loads the
default menu from the resource file.

CMFCMenuBar::OnSendCommand (Overrides CMFCToolBar::OnSendCommand .)

CMFCMenuBar::OnSetDefaultButtonText Called by the framework when a menu is in customization
mode and the user changes a menu item's text.

CMFCMenuBar::OnToolHitTest (Overrides CMFCToolBar::OnToolHitTest .)

CMFCMenuBar::PreTranslateMessage (Overrides CMFCToolBar::PreTranslateMessage .)

CMFCMenuBar::RestoreOriginalstate Called by the framework when a menu is in customization
mode and the user selects Reset for a menu bar.

CMFCMenuBar::SaveState Saves the state of the CMFCMenuBar object to the registry.

CMFCMenuBar::SetDefaultMenuResId Sets the original menu in the resource file.

CMFCMenuBar::SetForceDownArrows

CMFCMenuBar::SetMaximizeMode Called by the framework when an MDI child window changes
its display mode. If the MDI child window is newly maximized
or is no longer maximized, this method updates the menu
bar.

CMFCMenuBar::SetMenuButtonRTC Sets the runtime class information that is generated when the
user dynamically creates menu buttons.

CMFCMenuBar::SetMenuFont Sets the font for all menus in the application.

CMFCMenuBar::SetRecentlyUsedMenus Specifies whether a menu bar displays recently used menu
commands.

CMFCMenuBar::SetShowAllCommands Specifies whether the menu bar shows all commands.

NAME DESCRIPTION

Remarks
The CMFCMenuBar class is a menu bar that implements docking functionality. It resembles a toolbar, although it
cannot be closed - it is always displayed.

CMFCMenuBar supports the option of displaying recently used menu item objects. If this option is enabled, the
CMFCMenuBar displays only a subset of the available commands on first viewing. Thereafter, recently used

Example

CMFCMenuBar m_wndMenuBar;

m_wndMenuBar.SetPaneStyle(m_wndMenuBar.GetPaneStyle() | CBRS_SIZE_DYNAMIC);
m_wndMenuBar.EnableCustomizeButton (TRUE, -1, _T(""));
// first parameter is the command ID for the button of the Help combo box
// third parameter is the width of the button for the combo box in pixels.
m_wndMenuBar.EnableHelpCombobox(1,_T("enter text here"),30);
m_wndMenuBar.EnableMenuShadows();
m_wndMenuBar.SetMaximizeMode(true);

Inheritance Hierarchy

Requirements

CMFCMenuBar::AdjustLocations

virtual void AdjustLocations();

RemarksRemarks

commands are displayed together with the original subset of commands. In addition, the user can always expand
the menu to view all available commands. Thus, each available command is configured to display constantly, or to
display only if it has been recently selected.

To use a CMFCMenuBar object, embed it in the main window frame object. When processing the WM_CREATE

message, call CMFCMenuBar::Create or CMFCMenuBar::CreateEx . Regardless of which create function you use, pass
in a pointer to the main frame window. Then enable docking by calling CFrameWndEx::EnableDocking. Dock this
menu by calling CFrameWndEx::DockPane.

The following example demonstrates how to use various methods in the CMFCMenuBar class. The example shows
how to set the style of the pane, enable the customize button, enable a Help box, enable shadows for pop-up
menus, and update the menu bar. This code snippet is part of the IE Demo sample.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCBaseToolBar

CMFCToolBar

CMFCMenuBar

Header: afxmenubar.h

Adjusts the positions of the menu items on the menu bar.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCMenuBar::AllowChangeTextLabels

virtual BOOL AllowChangeTextLabels() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::AllowShowOnPaneMenu
virtual BOOL AllowShowOnPaneMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::CalcFixedLayout
virtual CSize CalcFixedLayout(
 BOOL bStretch,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::CalcLayout
virtual CSize CalcLayout(
 DWORD dwMode,
 int nLength = -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::CalcMaxButtonHeight
virtual int CalcMaxButtonHeight();

Determines whether text labels are allowed under images in the menu bar.

Returns TRUE if the user can choose to show text labels under images.

[in] bStretch

[in] bHorz

[in] dwMode

[in] nLength

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::CanBeClosed
virtual BOOL CanBeClosed() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::CanBeRestored
virtual BOOL CanBeRestored() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::Create

virtual BOOL Create(
 CWnd* pParentWnd,
 DWORD dwStyle = AFX_DEFAULT_TOOLBAR_STYLE,
 UINT nID = AFX_IDW_MENUBAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::CreateEx

Creates a menu control and attaches it to a CMFCMenuBar object.

pParentWnd
[in] Pointer to the parent window for the new CMFCMenuBar object.

dwStyle
[in] The style of the new menu bar.

nID
[in] The ID for the child window of the menu bar.

TRUE if successful; otherwise FALSE.

After you construct a CMFCMenuBar object, you must call Create . This method creates the CMFCMenuBar control
and attaches it to the CMFCMenuBar object.

For more information about toolbar styles, see CBasePane::SetPaneStyle.

Creates a CMFCMenuBar object with specified extended styles.

virtual BOOL CreateEx(
 CWnd* pParentWnd,
 DWORD dwCtrlStyle = TBSTYLE_FLAT,
 DWORD dwStyle = AFX_DEFAULT_TOOLBAR_STYLE,
 CRect rcBorders = CRect(1,
 1,
 1,
 1),
 UINT nID =AFX_IDW_MENUBAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMFCMenuBar m_wndMenuBar;

// The this pointer points to CMainFrame class which extends the CFrameWnd class.
if (!m_wndMenuBar.CreateEx (this, TBSTYLE_TRANSPARENT))
{
 TRACE0("Failed to create menubar\n");
 return -1; // fail to create
}

CMFCMenuBar::CreateFromMenu

pParentWnd
[in] Pointer to the parent window of the new CMFCMenuBar object.

dwCtrlStyle
[in] Additional styles for the new menu bar.

dwStyle
[in] The main style of the new menu bar.

rcBorders
[in] A CRect parameter that specifies the sizes for the borders of the CMFCMenuBar object.

nID
[in] The ID for the child window of the menu bar.

Nonzero if the method is successful; otherwise 0.

You should use this function instead of CMFCMenuBar::Create when you want to specify styles in addition to the
toolbar style. Some frequently used additional styles are TBSTYLE_TRANSPARENT and CBRS_TOP.

For lists of additional styles, see Toolbar Control and Button Styles, common control styles, and common window
styles.

The following example demonstrates how to use the CreateEx method of the CMFCMenuBar class. This code
snippet is part of the IE Demo sample.

Initializes a CMFCMenuBar object. This method models the CMFCMenuBar object after a HMENU parameter.

https://docs.microsoft.com/windows/desktop/Controls/toolbar-control-and-button-styles
https://docs.microsoft.com/windows/desktop/Controls/common-control-styles
https://docs.microsoft.com/windows/desktop/winmsg/window-styles
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

virtual void CreateFromMenu(
 HMENU hMenu,
 BOOL bDefaultMenu = FALSE,
 BOOL bForceUpdate = FALSE);

ParametersParameters

RemarksRemarks

CMFCMenuBar::EnableHelpCombobox

void EnableHelpCombobox(
 UINT uiID,
 LPCTSTR lpszPrompt = NULL,
 int nComboBoxWidth = 150);

ParametersParameters

RemarksRemarks

CMFCMenuBar::EnableMenuShadows

static void EnableMenuShadows(BOOL bEnable = TRUE);

ParametersParameters

hMenu
[in] A handle to a menu resource. CreateFromMenu uses this resource as a template for the CMFCMenuBar .

bDefaultMenu
[in] A Boolean that indicates whether the new menu is the default menu.

bForceUpdate
[in] A Boolean that indicates whether this method forces a menu update.

Use this method if you want a menu control to have the same menu items as a menu resource. You call this
method after you call either CMFCMenuBar::Create or CMFCMenuBar::CreateEx.

Enables a Help combo box that is located on the right side of the menu bar.

uiID
[in] The command ID for the button of the Help combo box.

lpszPrompt
[in] A string that contains the text that the framework displays in the combo box if it is empty and not active. For
example, "Enter the text here".

nComboBoxWidth
[in] The width of the button for the combo box in pixels.

The Help combo box resembles the Help combo box in the menu bar of Microsoft Word.

When you call this method with uiID set to 0, this method hides the combo box. Otherwise, this method displays
the combo box automatically on the right side of your menu bar. After you call this method, call
CMFCMenuBar::GetHelpCombobox to obtain a pointer to the inserted CMFCToolBarComboBoxButton object.

Enables shadows for pop-up menus.

bEnable

RemarksRemarks

CMFCMenuBar::GetAvailableExpandSize
virtual int GetAvailableExpandSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::GetColumnWidth
virtual int GetColumnWidth() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::GetDefaultMenu

HMENU GetDefaultMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::GetDefaultMenuResId

UINT GetDefaultMenuResId() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::GetFloatPopupDirection
int GetFloatPopupDirection(CMFCToolBarMenuButton* pButton);

ParametersParameters

[in] A Boolean parameter that indicates whether shadows should be enabled for pop-up menus.

The algorithm that this method uses is complex and may decrease the performance of your application on slower
systems.

Retrieves a handle to the original menu. The framework loads the original menu from the resource file.

A handle to a menu resource.

If your application customizes a menu, you can use this method to retrieve a handle to the original menu.

Retrieves the resource identifier for the default menu.

A menu resource identifier.

The framework loads the default menu for the CMFCMenuBar object from the resource file.

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::GetForceDownArrows
BOOL GetForceDownArrows();

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::GetHelpCombobox

CMFCToolBarComboBoxButton* GetHelpCombobox();

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::GetHMenu

HMENU GetHMenu() const;

CMFCMenuBar::GetMenuFont

static const CFont& GetMenuFont(BOOL bHorz = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::GetMenuItem

[in] pButton

Returns a pointer to the Help combo box.

A pointer to the Help combo box. NULL if the Help combo box is hidden or not enabled.

The Help combo box is located on the right side of the menu bar. Call the method
CMFCMenuBar::EnableHelpCombobox to enable this combo box.

Retrieves the handle to the menu attached to the CMFCMenuBar object.

Retrieves the current menu font.

bHorz
[in] A Boolean parameter that specifies whether to return the horizontal or vertical font. TRUE indicates the
horizontal font.

A pointer to a CFont parameter that contains the current menu bar font.

The returned font is a global parameter for the application. Two global fonts are maintained for all CMFCMenuBar

objects. These separate fonts are used for horizontal and vertical menu bars.

CMFCToolBarButton* GetMenuItem(int iItem) const;

ParametersParameters

Return ValueReturn Value

CMFCMenuBar::GetRowHeight
virtual int GetRowHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::GetSystemButton
CMFCToolBarMenuButtonsButton* GetSystemButton(
 UINT uiBtn,
 BOOL bByCommand = TRUE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::GetSystemButtonsCount
int GetSystemButtonsCount() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::GetSystemMenu
CMFCToolBarSystemMenuButton* GetSystemMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::HighlightDisabledItems

Retrieves a CMFCToolBarButton object on a menu bar based on the item index.

iItem
[in] The index of the menu item to return.

A pointer to the CMFCToolBarButton object that matches the index specified by iItem. NULL if the index is invalid.

[in] uiBtn

[in] bByCommand

Controls whether the framework highlights disabled menu items.

static void HighlightDisabledItems(BOOL bHighlight = TRUE);

ParametersParameters

RemarksRemarks

CMFCMenuBar::IsButtonExtraSizeAvailable
virtual BOOL IsButtonExtraSizeAvailable() const;

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::IsHighlightDisabledItems

static BOOL IsHighlightDisabledItems();

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::IsMenuShadows

static BOOL IsMenuShadows();

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::IsRecentlyUsedMenus

static BOOL IsRecentlyUsedMenus();

Return ValueReturn Value

bHighlight
[in] A Boolean parameter that indicates whether the framework highlights unavailable menu items.

By default, the framework does not highlight unavailable menu items when the user positions the mouse pointer
over them.

Indicates whether the framework highlights unavailable menu items.

TRUE if unavailable menu items are highlighted; otherwise FALSE.

By default, the framework does not highlight unavailable menu items when the user positions the mouse pointer
over them. Use the CMFCMenuBar::HighlightDisabledItems method to enable this feature.

Indicates whether the framework draws shadows for pop-up menus.

TRUE if the framework draws menu shadows; otherwise FALSE.

Use the CMFCMenuBar::EnableMenuShadows method to enable or disable this feature.

Indicates whether recently used menu commands are displayed on the menu bar.

RemarksRemarks

CMFCMenuBar::IsShowAllCommands

static BOOL IsShowAllCommands();

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::IsShowAllCommandsDelay

static BOOL IsShowAllCommandsDelay();

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::LoadState

virtual BOOL LoadState(
 LPCTSTR lpszProfileName = NULL,
 int nIndex = -1,
 UINT uiID = (UINT)-1);

Nonzero if the CMFCMenuBar object shows recently used menu commands; otherwise 0.

Use the function CMFCMenuBar::SetRecentlyUsedMenus to control whether the menu bar shows recently used
menu commands.

Indicates whether menus display all commands.

Nonzero if the CMFCMenuBar displays all commands; otherwise 0.

A CMFCMenuBar object can be configured to either show all commands or show only a subset of commands. For
more information about this feature, see CMFCMenuBar Class.

IsShowAllCommands will tell you how this feature is configured for the CMFCMenuBar object. To control which menu
commands are shown, use the methods CMFCMenuBar::SetShowAllCommands and
CMFCMenuBar::SetRecentlyUsedMenus.

Indicates whether the CMFCMenuBar object displays all the commands after a short delay.

Nonzero if the menu bar displays full menus after a short delay; otherwise 0.

When you configure a menu bar to display recently used items, the menu bar displays the full menu in one of
two ways:

Display the full menu after a programmed delay from when the user hovers the cursor over the arrow at
the bottom of the menu.

Display the full menu after the user clicks the arrow at the bottom of the menu.

By default, all CMFCMenuBar objects use the option to display the full menu after a short delay. This option cannot
be changed programmatically in the CMFCMenuBar class. However, a user can change the behavior during toolbar
customization by using the Customize dialog box..

Loads the state of the menu bar from the Windows registry.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::OnChangeHot
virtual void OnChangeHot(int iHot);

ParametersParameters

RemarksRemarks

CMFCMenuBar::OnDefaultMenuLoaded

virtual void OnDefaultMenuLoaded(HMENU hMenu);

ParametersParameters

RemarksRemarks

CMFCMenuBar::OnSendCommand
virtual BOOL OnSendCommand(const CMFCToolBarButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpszProfileName
[in] A string that contains the path of a Windows registry key.

nIndex
[in] The control ID for the menu bar.

uiID
[in] A reserved value.

TRUE if the method was successful; otherwise FALSE.

Use the CMFCMenuBar::SaveState method to save the state of the menu bar to the registry. The saved
information includes the menu items, the dock state, and the position of the menu bar.

In most cases your application does not call LoadState . The framework calls this method when it initializes the
workspace.

[in] iHot

The framework calls this method when it loads the menu resource from the resource file.

hMenu
[in] The handle for the menu attached to the CMFCMenuBar object.

The default implementation of this function does nothing. Override this function to execute custom code after the
framework loads a menu resource from the resource file.

[in] pButton

CMFCMenuBar::OnSetDefaultButtonText

virtual BOOL OnSetDefaultButtonText(CMFCToolBarButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::OnToolHitTest
virtual INT_PTR OnToolHitTest(
 CPoint point,
 TOOLINFO* pTI) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::PreTranslateMessage
virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::RestoreOriginalstate

virtual BOOL RestoreOriginalstate();

Return ValueReturn Value

RemarksRemarks

The framework calls this method when the user changes the text of an item on the menu bar.

pButton
[in] A pointer to the CMFCToolBarButton object that the user wants to customize.

TRUE if the framework applies the user changes to the menu bar; otherwise FALSE.

The default implementation for this method changes the text of the button to the text that the user provides.

[in] point

[in] pTI

[in] pMsg

Called by the framework when the user selects Reset from the Customize dialog box.

Nonzero if the method is successful; otherwise 0.

This method is called when the user selects Reset from the customization menu. You can also manually call this

CMFCMenuBar::SaveState

virtual BOOL SaveState (
 LPCTSTR lpszProfileName = NULL,
 int nIndex = -1,
 UINT uiID = (UINT)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::SetDefaultMenuResId

void SetDefaultMenuResId(UINT uiResId);

ParametersParameters

RemarksRemarks

CMFCMenuBar::SetForceDownArrows
void SetForceDownArrows(BOOL bValue);

ParametersParameters

method to programmatically reset the state of the menu bar. This method loads the original state from the
resource file.

Override this method if you want to do any processing when the user selects the Reset option.

Saves the state of the CMFCMenuBar object to the Windows registry.

lpszProfileName
[in] A string that contains the path of a Windows registry key.

nIndex
[in] The control ID for the menu bar.

uiID
[in] A reserved value.

TRUE if successful; otherwise FALSE;

Usually, your application does not call SaveState . The framework calls this method when the workspace is
serialized. For more information, see CWinAppEx::SaveState.

The saved information includes the menu items, the dock state, and the position of the menu bar.

Sets the default menu for a CMFCMenuBar object based on the resource ID.

uiResId
[in] The resource ID for the new default menu.

The CMFCMenuBar::RestoreOriginalstate method restores the default menu from the resource file.

Use the CMFCMenuBar::GetDefaultMenuResId method to retrieve the default menu without restoring it.

[in] bValue

RemarksRemarks

CMFCMenuBar::SetMaximizeMode

void SetMaximizeMode(
 BOOL bMax,
 CWnd* pWnd = NULL,
 BOOL bRecalcLayout = TRUE);

ParametersParameters

RemarksRemarks

CMFCMenuBar::SetMenuButtonRTC

void SetMenuButtonRTC(CRuntimeClass* pMenuButtonRTC);

ParametersParameters

RemarksRemarks

CMFCMenuBar::SetMenuFont

static BOOL SetMenuFont(
 LPLOGFONT lpLogFont,
 BOOL bHorz = TRUE);

ParametersParameters

The framework calls this method when a MDI changes its display mode and the menu bar must be updated.

bMax
[in] A Boolean that specifies the mode. See the Remarks section for more information.

pWnd
[in] A pointer to the MDI child window that is changing.

bRecalcLayout
[in] A Boolean that specifies whether the layout of the menu bar should be recalculated immediately.

When an MDI child window is maximized, a menu bar attached to the MDI main frame window displays the
system menu and the Minimize, Maximize and Close buttons. If bMax is TRUE and pWnd is not NULL, the
MDI child window is maximized and the menu bar must incorporate the extra controls. Otherwise, the menu bar
returns to its regular state.

Sets the runtime class information that the framework uses when the user creates menu buttons.

pMenuButtonRTC
[in] The CRuntimeClass information for a class derived from the CMFCMenuButton Class.

When a user adds new buttons to the menu bar, the framework creates the buttons dynamically. By default, it
creates CMFCMenuButton objects. Override this method to change the type of button objects that the framework
creates.

Sets the font for all menu bars in your application.

lpLogFont
[in] A pointer to a LOGFONT structure that defines the font to set.

https://docs.microsoft.com/windows/desktop/api/dimm/ns-dimm-__midl___midl_itf_dimm_0000_0000_0003

Return ValueReturn Value

RemarksRemarks

CMFCMenuBar::SetRecentlyUsedMenus

static void SetRecentlyUsedMenus (BOOL bOn = TRUE);

ParametersParameters

CMFCMenuBar::SetShowAllCommands

static void SetShowAllCommands(BOOL bShowAllCommands = TRUE);

ParametersParameters

RemarksRemarks

See also

bHorz
[in] TRUE if you want the lpLogFont parameter to be used for the vertical font, FALSE if you want it to be used
for horizontal font.

TRUE if the method was successful; otherwise FALSE.

Two fonts are used for all CMFCMenuBar objects. These separate fonts are used for horizontal and vertical menu
bars.

The font settings are global variables and affect all CMFCMenuBar objects.

Controls whether a menu bar displays recently used menu commands.

bOn
[in] A Boolean that controls whether recently used menu commands are displayed.

Controls whether a menu shows all the available commands.

bShowAllCommands
[in] A Boolean parameter that specifies whether the pop-up menu shows all the menu commands.

If a menu does not display all the menu commands, it hides the commands that are rarely used. For more
information about displaying menu commands, see CMFCMenuBar Class.

Hierarchy Chart
Classes
CMFCToolBar Class

CMFCMenuButton Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCMenuButton : public CMFCButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCMenuButton::CMFCMenuButton Constructs a CMFCMenuButton object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCMenuButton::PreTranslateMessage Called by the framework to translate window messages before
they are dispatched. (Overrides
CMFCButton::PreTranslateMessage .)

CMFCMenuButton::SizeToContent Changes the size of the button according to its text and
image size.

Data MembersData Members

NAME DESCRIPTION

CMFCMenuButton::m_bOSMenu Specifies whether to display the default system pop-up menu
or to use CContextMenuManager::TrackPopupMenu.

CMFCMenuButton::m_bRightArrow Specifies whether the pop-up menu will appear underneath or
to the right of the button.

CMFCMenuButton::m_bStayPressed Specifies whether the menu button changes its state after the
user releases the button.

CMFCMenuButton::m_hMenu A handle to the attached Windows menu.

CMFCMenuButton::m_nMenuResult An identifier that indicates which item the user selected from
the pop-up menu.

Remarks

A button that displays a pop-up menu and reports on the user's menu selections.

The CMFCMenuButton class is derived from the CMFCButton Class which is, in turn, derived from the CButton

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcmenubutton-class.md

Example

CMFCMenuButton m_btnMenu;

// CMenu m_menu
m_btnMenu.m_hMenu = m_menu.GetSubMenu(0)->GetSafeHmenu();
m_btnMenu.SizeToContent();
// set to FALSE so that the framework calls CContextMenuManager::TrackPopupMenu
// to display its menu
m_btnMenu.m_bOSMenu = FALSE;

Inheritance Hierarchy

Requirements

CMFCMenuButton::CMFCMenuButton

CMFCMenuButton();

CMFCMenuButton::m_bOSMenu

BOOL m_bOSMenu;

RemarksRemarks

Class. Therefore, you can use CMFCMenuButton in your code the same way you would use CButton .

When you create a CMFCMenuButton , you must pass in a handle to the associated pop-up menu. Next, call the
function CMFCMenuButton::SizeToContent . CMFCMenuButton::SizeToContent checks that the button size is sufficient to
include an arrow that points to the location where the pop-up window will appear - namely, underneath or to the
right of the button.

The following example demonstrates how to set the handle of the menu attached to the button, resize the button
according to its text and image size, and set the pop-up menu that is displayed by the framework. This code
snippet is part of the New Controls sample.

CObject

CCmdTarget

CWnd

CButton

CMFCButton

CMFCMenuButton

Header: afxmenubutton.h

Constructs a new CMFCMenuButton object.

A Boolean member variable that indicates which pop-up menu the framework displays.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCMenuButton::m_bRightArrow

BOOL m_bRightArrow;

RemarksRemarks

CMFCMenuButton::m_bStayPressed

BOOL m_bStayPressed;

RemarksRemarks

CMFCMenuButton::m_hMenu

HMENU m_hMenu;

RemarksRemarks

CMFCMenuButton::m_nMenuResult

int m_nMenuResult;

RemarksRemarks

CMFCMenuButton::PreTranslateMessage

If m_bOSMenu is TRUE, the framework calls the inherited TrackPopupMenu method for this object. Otherwise, the
framework calls CContextMenuManager::TrackPopupMenu.

A Boolean member variable that indicates the location of the pop-up menu.

When the user presses the menu button, the application shows a pop-up menu. The framework will display the
pop-up menu either under the button or to the right of the button. The button also has a small arrow that
indicates where the pop-up menu will appear. If m_bRightArrow is TRUE, the framework displays the pop-up menu
to the right of the button. Otherwise, it displays the pop-up menu under the button.

A Boolean member variable that indicates whether the menu button appears pressed while the user makes a
selection from the pop-up menu.

If the m_bStayPressed member is FALSE, the menu button does not become pressed when the uses clicks the
button. In this case, the framework displays only the pop-up menu.

If the m_bStayPressed member is TRUE, the menu button becomes pressed when the user clicks the button. It
stays pressed until after the user closes the pop-up menu, either by making a selection or canceling.

The handle to the attached menu.

The framework displays the menu indicated by this member variable when the user clicks the menu button.

An integer that indicates which item the user selects from the pop-up menu.

The value of this member variable is zero if the user cancels the menu without making a selection or if an error
occurs.

virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCMenuButton::SizeToContent

virtual CSize SizeToContent(BOOL bCalcOnly = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Called by the framework to translate window messages before they are dispatched.

pMsg
[in] Points to a MSG structure that contains the message to process.

Nonzero if the message was translated and should not be dispatched; 0 if the message was not translated and
should be dispatched.

Changes the size of the button according to its text size and image size.

bCalcOnly
[in] A Boolean parameter that indicates whether this method resizes the button .

A CSize object that specifies the new size for the button.

If you call this function and bCalcOnly is TRUE, SizeToContent will calculate only the new size of the button.

The new size of the button is calculated to fit the button text, image, and arrow. The framework also adds in
predefined margins of 10 pixels for the horizontal edge and 5 pixels for the vertical edge.

Hierarchy Chart
Classes
CMFCButton Class

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

CMFCOutlookBar Class
3/4/2019 • 11 minutes to read • Edit Online

Syntax
class CMFCOutlookBar : public CBaseTabbedPane

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCOutlookBar::CMFCOutlookBar Default constructor.

CMFCOutlookBar::~CMFCOutlookBar Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCOutlookBar::AllowDestroyEmptyTabbedPane Specifies whether an empty tabbed pane can be destroyed.
(Overrides
CBaseTabbedPane::AllowDestroyEmptyTabbedPane.)

CMFCOutlookBar::CanAcceptPane Determines whether another pane can be docked to the
Outlook bar pane. (Overrides
CDockablePane::CanAcceptPane.)

CMFCOutlookBar::CanSetCaptionTextToTabName Determines whether the caption for the tabbed pane
displays the same text as the active tab. (Overrides
CBaseTabbedPane::CanSetCaptionTextToTabName.)

CMFCOutlookBar::Create Creates the Outlook bar control.

CMFCOutlookBar::CreateCustomPage Creates a custom Outlook bar tab.

CMFCOutlookBar::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCOutlookBar::DoesAllowDynInsertBefore Determines whether a user can dock a control bar at the
outer edge of the Outlook bar.

A tabbed pane with the visual appearance of the Navigation Pane in Microsoft Outlook 2000 or Outlook
2003. The CMFCOutlookBar object contains a CMFCOutlookBarTabCtrl Class object and a series of tabs. The
tabs can be either CMFCOutlookBarPane Class objects or CWnd -derived objects. To the user, the Outlook bar
appears as a series of buttons and a display area. When the user clicks a button, the corresponding control or
button pane is displayed.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcoutlookbar-class.md

CMFCOutlookBar::FloatTab Floats a pane, but only if the pane currently resides in a
detachable tab. (Overrides CBaseTabbedPane::FloatTab.)

CMFCOutlookBar::GetButtonsFont Returns the font of the text on the buttons of the Outlook
bar.

CMFCOutlookBar::GetTabArea Returns the size and position of the tab areas on the
Outlook bar. (Overrides CBaseTabbedPane::GetTabArea.)

CMFCOutlookBar::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCOutlookBar::IsMode2003 Determines whether the behavior of the Outlook bar
mimics that of Microsoft Office Outlook 2003 (see
Remarks).

CMFCOutlookBar::OnAfterAnimation Called by CMFCOutlookBarTabCtrl::SetActiveTab after the
active tab has been set using animation.

CMFCOutlookBar::OnBeforeAnimation Called by CMFCOutlookBarTabCtrl::SetActiveTab before a
tab page is set as the active tab using animation.

CMFCOutlookBar::OnScroll Called by the framework if the Outlook bar is scrolling up or
down.

CMFCOutlookBar::RemoveCustomPage Removes a custom Outlook bar tab.

CMFCOutlookBar::SetButtonsFont Sets the font of the text on the buttons of the Outlook bar.

CMFCOutlookBar::SetMode2003 Specifies whether the behavior of the Outlook bar mimics
that of Outlook 2003 (see Remarks).

NAME DESCRIPTION

Remarks

Implementing the Outlook Bar

For an example of an Outlook bar, see the OutlookDemo Sample: MFC OutlookDemo Application.

To use the CMFCOutlookBar control in your application, follow these steps:

class CMainFrame : public CMDIFrameWnd
{
 // ...
 CMFCOutlookBar m_wndOutlookBar;
 CMFCOutlookBarPane m_wndOutlookPane;
 // ...
};

1. Embed a CMFCOutlookBar object into the main frame window class.

2. When processing the WM_CREATE message in the main frame, call the CMFCOutlookBar::Create
method to create the Outlook bar tab control.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

NOTENOTE

Outlook 2003 Mode

m_wndOutlookBar.Create (_T("Shortcuts"),
 this,
 CRect (0, 0, 100, 100),
 ID_VIEW_OUTLOOKBAR,
 WS_CHILD | WS_VISIBLE | CBRS_LEFT);

CMFCOutlookBarTabCtrl* pOutlookBar = (CMFCOutlookBarTabCtrl*) m_wndOutlookBar.GetUnderlyingWindow
();

m_wndOutlookPane.Create(&m_wndOutlookBar,
 AFX_DEFAULT_TOOLBAR_STYLE,
 ID_OUTLOOK_PANE_GENERAL,
 AFX_CBRS_FLOAT | AFX_CBRS_RESIZE);

// make the Outlook pane detachable (enable docking)
m_wndOutlookPane.EnableDocking(CBRS_ALIGN_ANY);

// add buttons
m_wndOutlookPane.AddButton(theApp.LoadIcon (IDR_MAINFRAME),
 "About",
 ID_APP_ABOUT);

m_wndOutlookPane.AddButton (theApp.LoadIcon (IDR_CUSTOM_OPEN_ICON),
 "Open",
 ID_FILE_OPEN);

pOutlookBar->AddTab (&m_wndOutlookPane, "General", (UINT) -1, TRUE);

3. Obtain a pointer to the underlying CMFCOutlookBarTabCtrl by using
CBaseTabbedPane::GetUnderlyingWindow.

4. Create a CMFCOutlookBarPane Class object for each tab that contains buttons.

5. Call CMFCOutlookBarTabCtrl::AddTab to add each new tab. Set the bDetachable parameter to FALSE
to make a page non-detachable. Or, use CMFCOutlookBarTabCtrl::AddControl to add detachable pages.

6. To add a CWnd -derived control (for example, CMFCShellTreeCtrl Class) as a tab, create the control and
call CMFCOutlookBarTabCtrl::AddTab to add it to the Outlook bar.

You should use unique control IDs for each CMFCOutlookBarPane Class object and for each CWnd -derived object.

To dynamically add or delete new pages at runtime, use CMFCOutlookBar::CreateCustomPage and
CMFCOutlookBar::RemoveCustomPage.

In Outlook 2003 mode, the tab buttons are positioned at the bottom of the Outlook bar pane. When there is
not sufficient room to display the buttons, they are displayed as icons in a toolbar-like area along the bottom
of the pane.

Use CMFCOutlookBar::SetMode2003 to enable Outlook 2003 mode. Use
CMFCOutlookBarTabCtrl::SetToolbarImageList to set the bitmap that contains the icons that are displayed on
the bottom of the Outlook bar. The icons in the bitmap must be ordered by tab index.

Inheritance Hierarchy

Requirements

CMFCOutlookBar::AllowDestroyEmptyTabbedPane

virtual BOOL AllowDestroyEmptyTabbedPane() const;

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBar::CanAcceptPane

virtual BOOL CanAcceptPane(const CBasePane* pBar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CObject

CCmdTarget

CWnd

CBasePane

CPane

CDockablePane

CBaseTabbedPane

CMFCOutlookBar

Header: afxoutlookbar.h

Specifies whether an empty tabbed pane can be destroyed.

TRUE if an empty tabbed pane can be destroyed; otherwise, FALSE. The default implementation always
returns TRUE.

If an empty tabbed pane cannot be destroyed, the framework hides it instead.

Determines whether another pane can be docked to the Outlook bar pane.

pBar
[in] A pointer to another pane that is being docked to this pane.

TRUE if another pane can be docked to the Outlook bar pane; otherwise FALSE.

If the Outlook bar is in Outlook 2003 mode, docking is not supported, so the return value is FALSE.

If the pBar parameter is NULL, this method returns FALSE.

Otherwise, this method behaves as the base method CBasePane::CanAcceptPane, except that even if docking is
not enabled, an Outlook bar can still enable another Outlook bar to be docked over it.

CMFCOutlookBar::CanSetCaptionTextToTabName

virtual BOOL CanSetCaptionTextToTabName() const;

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBar::Create

virtual BOOL Create(
 LPCTSTR lpszCaption,
 CWnd* pParentWnd,
 const RECT& rect,
 UINT nID,
 DWORD dwStyle,
 DWORD dwControlBarStyle=AFX_CBRS_RESIZE,
 CCreateContext* pContext=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Determines whether the caption for the tabbed pane displays the same text as the active tab.

TRUE if the Outlook bar window caption is automatically set to the text of the active tab; otherwise FALSE.

Use CBaseTabbedPane::EnableSetCaptionTextToTabName to enable or disable this functionality.

In Outlook 2003 mode, this setting is always enabled.

Creates the Outlook bar control.

lpszCaption
[in] Specifies the window caption.

pParentWnd
[in] Specifies a pointer to a parent window. It must not be NULL.

rect
[in] Specifies the outlook bar size and position in pixels.

nID
[in] Specifies the control ID. Must be distinct from other control IDs used in the application.

dwStyle
[in] Specifies the desired control bar style. For possible values, see Window Styles.

dwControlBarStyle
[in] Specifies the special library-defined styles.

pContext
[in] Create context.

Nonzero if the method is successful; otherwise 0.

You construct a CMFCOutlookBar object in two steps. First call the constructor, and then call Create , which
creates the outlook bar control and attaches it to the CMFCOutlookBar object.

See CBasePane::CreateEx for the list of the available library-defined styles to be specified by

ExampleExample

CMFCOutlookBar m_wndShortcutsBar;

// int nInitialWidth
// CString strCaption
if (!m_wndShortcutsBar.Create (strCaption, this,
 CRect (0, 0, nInitialWidth, nInitialWidth),
 ID_VIEW_OUTLOOKBAR, WS_CHILD | WS_VISIBLE | CBRS_LEFT))
{
 TRACE0("Failed to create outlook bar\n");
 return FALSE; // fail to create
}

CMFCOutlookBar::CreateCustomPage

CMFCOutlookBarPane* CreateCustomPage(
 LPCTSTR lpszPageName,
 BOOL bActivatePage=TRUE,
 DWORD dwEnabledDocking=CBRS_ALIGN_ANY,
 BOOL bEnableTextLabels=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBar::DoesAllowDynInsertBefore

dwControlBarStyle.

The following example demonstrates how to use the Create method of the CMFCOutlookBar class. This code
snippet is part of the Outlook Multi Views sample.

Creates a custom Outlook bar tab.

lpszPageName
[in] The page label.

bActivatePage
[in] If TRUE, the page becomes active upon creation.

dwEnabledDocking
[in] A combination of CBRS_ALIGN_ flags that specifies the enabled docking sides when the page is detached.

bEnableTextLabels
[in] If TRUE, the text labels are enabled for the buttons that reside on the page.

A pointer to the newly created page, or NULL if the creation failed.

Use this method to enable the users to create custom Outlook bar pages. You can create up to 100 pages per
application. The page control IDs start from 0xF000. The creation fails if the total number of custom Outlook
bar pages exceeds 100.

Use CMFCOutlookBar::RemoveCustomPage to delete custom pages.

Specifies whether a user can dock a pane at the outer edge of the Outlook bar.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

DECLARE_MESSAGE_MAP virtual BOOL DoesAllowDynInsertBefore() const;

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CMFCOutlookBar::FloatTab

virtual BOOL FloatTab(
 CWnd* pBar,
 int nTabID,
 AFX_DOCK_METHOD dockMethod,
 BOOL bHide);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBar::GetButtonsFont

The default implementation returns FALSE.

The framework calls the DoesAllowDynInsertBefore method when it looks for a location to dock a dynamic
pane. If the function returns FALSE, the framework does not allow the docking of any dynamic pane at the
outer edges of the pane.

Usually, you create an Outlook bar as a static non-floating control. You can override this function in a derived
class and return TRUE to change this behavior.

Because dynamic panes check the status of docked static panes when docking, you should dock dynamic panes after
static panes whenever possible.

Floats a pane.

pBar
[in] A pointer to the pane to float.

nTabID
[in] The zero-based index of the tab to float.

dockMethod
[in] Specifies the method to use to make the pane float. For more information, see CBaseTabbedPane::FloatTab.

bHide
[in] TRUE to hide the pane before floating; otherwise, FALSE. Unlike the base class version of this method, this
parameter does not have a default value.

TRUE if the pane floated; otherwise, FALSE.

This method is like CBaseTabbedPane::FloatTab except that it does not enable the last remaining tab on an
Outlook bar control to float.

Returns the font of the text on the page button tabs of the Outlook bar.

CFont* GetButtonsFont() const;

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBar::GetTabArea

virtual void GetTabArea(
 CRect& rectTabAreaTop,
 CRect& rectTabAreaBottom) const;

ParametersParameters

RemarksRemarks

CMFCOutlookBar::IsMode2003

BOOL IsMode2003() const;

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBar::OnAfterAnimation

A pointer to the font object that is used to display text on Outlook bar page button tabs.

Use this function to retrieve the font that is used to display the text on Outlook page button tabs. You can set
the font by calling on CMFCOutlookBar::SetButtonsFont.

Determines the size and position of the tab areas on the Outlook bar.

rectTabAreaTop
[out] Contains the size and position (in the client coordinates) of the top tab area when the function returns.

rectTabAreaBottom
[out] Contains the size and position (in the client coordinates) of the bottom tab area when the function
returns.

The framework calls this method to determine the type of docking to the target pane. When the framework
determines that the user drags the pane to be docked over the tab area of the target pane, it tries to add the
first pane as a new tab of the target pane. Otherwise, it tries to dock the first pane at an appropriate side of the
target pane. The framework creates a new container with a slider to accommodate the additional docked pane.

The default implementation of GetTabArea returns the whole client area of the Outlook bar if the Outlook bar
is static; that is, if the Outlook bar cannot float. Otherwise, it returns the area that page buttons take at the top
and bottom of the Outlook bar control.

Override this method in class derived from CMFCOutlookBar to change this behavior.

Specifies whether the behavior of the Outlook bar mimics that of Microsoft Office Outlook 2003.

Nonzero if the Outlook bar is running in Microsoft Office 2003 mode; otherwise 0.

You can enable this mode by using CMFCOutlookBar::SetMode2003.

Called by CMFCOutlookBarTabCtrl::SetActiveTab after the active tab has been set using animation.

virtual void OnAfterAnimation(int nPage);

ParametersParameters

RemarksRemarks

CMFCOutlookBar::OnBeforeAnimation

virtual BOOL OnBeforeAnimation(int nPage);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBar::OnScroll

virtual void OnScroll(BOOL bDown);

ParametersParameters

RemarksRemarks

CMFCOutlookBar::RemoveCustomPage

BOOL RemoveCustomPage(
 UINT uiPage,
 CMFCOutlookBarTabCtrl* pTargetWnd);

ParametersParameters

nPage
[in] The zero-based index of the tab page that has been made active.

The visual effect of setting the active tab depends on whether you have enabled animation. For more
information, see CMFCOutlookBarTabCtrl::EnableAnimation.

Called by CMFCOutlookBarTabCtrl::SetActiveTab before a tab page is set as the active tab using animation.

nPage
[in] The zero-based index of the tab page that is about to be set active.

Returns TRUE if animation should be used in setting the new active tab, or FALSE if animation should be
disabled.

Called by the framework if the Outlook bar is scrolling up or down.

bDown
[in] TRUE if the Outlook bar is scrolling down, or FALSE if it is scrolling up.

Removes a custom Outlook bar tab page.

uiPage
[in] Zero-based index of the page in the parent Outlook window.

pTargetWnd
[in] Pointerto the parent Outlook window.

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBar::SetButtonsFont

void SetButtonsFont(
 CFont* pFont,
 BOOL bRedraw=TRUE);

ParametersParameters

RemarksRemarks

CMFCOutlookBar::SetMode2003

void SetMode2003(BOOL bMode2003=TRUE);

ParametersParameters

RemarksRemarks

NOTENOTE

Nonzero if the custom page has been removed successfully; otherwise 0.

Call this function to delete custom pages. When the page is removed its control ID is returned to the pool of
available IDs.

You must provide a pointer to CMFCOutlookBarTabCtrl Class object in which the page to be removed
currently resides. Note that a user can move detachable pages between different Outlook bars, but the
information about a custom page resides in the Outlook bar object for which you have called
CMFCOutlookBar::CreateCustomPage.

Use CBaseTabbedPane::GetUnderlyingWindow to obtain a pointer to the Outlook window.

Sets the font of the text on the buttons of the Outlook bar.

pFont
[in] Specifies the new font.

bRedraw
[in] If TRUE, the Outlook bar will be redrawn.

Use this method to set a font for the text displayed on outlook tab page buttons.

Specifies whether the behavior of the Outlook bar mimics that of Outlook 2003.

bMode2003
[in] If TRUE, Office 2003 mode is enabled.

Use this function to enable or disable Office 2003 mode. In this mode, the Outlook bar has an additional
toolbar with a customization button. The behavior of the Outlook bar conforms to the behavior of the Outlook
bar in Microsoft Office 2003.

By default, this mode is disabled.

This function must be called before CMFCOutlookBar::Create.

See also
Hierarchy Chart
Classes
CBaseTabbedPane Class
CMFCOutlookBarTabCtrl Class
CMFCOutlookBarPane Class

CMFCOutlookBarPane Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CMFCOutlookBarPane : public CMFCToolBar

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCOutlookBarPane::CMFCOutlookBarPane Default constructor.

CMFCOutlookBarPane::~CMFCOutlookBarPane Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCOutlookBarPane::AddButton Adds a button to the Outlook bar pane.

CMFCOutlookBarPane::CanBeAttached Determines whether the pane can be docked to another pane
or frame window. (Overrides CBasePane::CanBeAttached.)

CMFCOutlookBarPane::CanBeRestored Determines whether the system can restore a toolbar to its
original state after customization. (Overrides
CMFCToolBar::CanBeRestored.)

CMFCOutlookBarPane::ClearAll Frees the resources used by the images in the Outlook bar
pane.

CMFCOutlookBarPane::Create Creates the Outlook bar pane.

CMFCOutlookBarPane::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCOutlookBarPane::Dock Called by the framework to dock the Outlook bar pane.
(Overrides CPane::Dock .)

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

A control derived from CMFCToolBar Class that can be inserted into an Outlook bar (CMFCOutlookBar Class).
The Outlook bar pane contains a column of large buttons. The user can scroll up and down the list of buttons if it
is larger than the pane. When the user detaches an Outlook bar pane from the Outlook bar, it can float or dock in
the main frame window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcoutlookbarpane-class.md

CMFCOutlookBarPane::EnablePageScrollMode Specifies whether the scroll arrows on the Outlook bar pane
advance the list of buttons by page, or by button.

CMFCOutlookBarPane::GetRegularColor Returns the regular (non-selected) text color of the Outlook
bar pane.

CMFCOutlookBarPane::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCOutlookBarPane::IsBackgroundTexture Determines whether there is a background image loaded for
the Outlook bar pane.

CMFCOutlookBarPane::IsChangeState Determines whether a floating pane may be docked.
(Overrides CPane::IsChangeState .)

CMFCOutlookBarPane::IsDrawShadedHighlight Determines whether the button border is shaded when a
button is highlighted and a background image is displayed.

CMFCOutlookBarPane::OnBeforeFloat Called by the framework when a pane is about to float.
(Overrides CPane::OnBeforeFloat.)

CMFCOutlookBarPane::RemoveButton Removes the button that has a specified command ID.

CMFCOutlookBarPane::RestoreOriginalstate Restores the original state of a toolbar. (Overrides
CMFCToolBar::RestoreOriginalState.)

CMFCOutlookBarPane::SetBackColor Sets the background color.

CMFCOutlookBarPane::SetBackImage Sets the background image.

CMFCOutlookBarPane::SetDefaultState Resets the Outlook bar pane to the original set of buttons.

CMFCOutlookBarPane::SetExtraSpace Sets the number of pixels of padding used around buttons in
the Outlook bar pane.

CMFCOutlookBarPane::SetTextColor Sets the colors of regular and highlighted text in the Outlook
bar pane.

CMFCOutlookBarPane::SetTransparentColor Sets the transparent color for the Outlook bar pane.

CMFCOutlookBarPane::SmartUpdate Used internally to update the Outlook bar. (Overrides
CMFCToolBar::SmartUpdate .)

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCOutlookBarPane::EnableContextMenuItems Specifies which shortcut menu items are displayed in
customization mode.

CMFCOutlookBarPane::RemoveAllButtons Removes all the buttons from the Outlook bar pane.
(Overrides CMFCToolBar::RemoveAllButtons.)

Remarks

Example

CMFCOutlookBarPane m_wndShortcutsPane1;

CImageList images;
images.Create (IDB_SHORTCUTS, 32, 0, RGB (255, 0, 255));

// Create first page:
m_wndShortcutsPane1.Create (&m_wndShortcutsBar, AFX_DEFAULT_TOOLBAR_STYLE, ID_SHORTCUTS_PANE_1);
// The this pointer points to a CMainFrame class which extends the CFrameWnd class
m_wndShortcutsPane1.SetOwner (this);
m_wndShortcutsPane1.EnableTextLabels ();
m_wndShortcutsPane1.EnableDocking (CBRS_ALIGN_ANY);
m_wndShortcutsPane1.EnablePageScrollMode();
m_wndShortcutsPane1.SetBackColor(RGB(0,255,0));

m_wndShortcutsPane1.AddButton (images.ExtractIcon (0), _T("View 1"), ID_SHORTCUT_1);
m_wndShortcutsPane1.AddButton (images.ExtractIcon (1), _T("View 2"), ID_SHORTCUT_2);
m_wndShortcutsPane1.AddButton (images.ExtractIcon (2), _T("View 3"), ID_SHORTCUT_3);
m_wndShortcutsPane1.AddButton (images.ExtractIcon (3), _T("View 4"), ID_SHORTCUT_4);

Inheritance Hierarchy

Requirements

CMFCOutlookBarPane::AddButton

For information about how to implement an Outlook bar, see CMFCOutlookBar Class.

For an example of an Outlook bar, see the OutlookDemo sample project.

The following example demonstrates how to use various methods of the CMFCOutlookBarPane class. The example
shows how to create an Outlook bar pane, enable the page scroll mode, enable docking, and set the background
color of the Outlook bar. This code snippet is part of the Outlook Multi Views sample.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCBaseToolBar

CMFCToolBar

CMFCOutlookBarPane

Header: afxoutlookbarpane.h

Adds a button to the Outlook bar pane.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

BOOL AddButton(
 UINT uiImage,
 LPCTSTR lpszLabel,
 UINT iIdCommand,
 int iInsertAt=-1);

BOOL AddButton(
 UINT uiImage,
 UINT uiLabel,
 UINT iIdCommand,
 int iInsertAt=-1);

BOOL AddButton(
 LPCTSTR szBmpFileName,
 LPCTSTR szLabel,
 UINT iIdCommand,
 int iInsertAt=-1);

BOOL AddButton(
 HBITMAP hBmp,
 LPCTSTR lpszLabel,
 UINT iIdCommand,
 int iInsertAt=-1);

BOOL AddButton(
 HICON hIcon,
 LPCTSTR lpszLabel,
 UINT iIdCommand,
 int iInsertAt=-1,
 BOOL bAlphaBlend=FALSE);

ParametersParameters

Return ValueReturn Value

uiImage
[in] Specifies the resource identifier of a bitmap.

lpszLabel
[in] Specifies the button's text.

iIdCommand
[in] Specifies the button control's ID.

iInsertAt
[in] Specifies the zero-based index on the outlook bar's page at which to insert the button.

uiLabel
[in] A string resource ID.

szBmpFileName
[in] Specifies the name of the disk image file to load.

szLabel
[in] Specifies the button's text.

hBmp
[in] A handle to a button's bitmap.

hIcon
[in] A handle to a buttons' icon.

TRUE if a button was added successfully; otherwise FALSE.

RemarksRemarks

CMFCOutlookBarPane::CanBeAttached

virtual BOOL CanBeAttached() const;

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBarPane::ClearAll

void ClearAll();

RemarksRemarks

CMFCOutlookBarPane::Create

virtual BOOL Create(
 CWnd* pParentWnd,
 DWORD dwStyle=AFX_DEFAULT_TOOLBAR_STYLE,
 UINT uiID=(UINT)-1,
 DWORD dwControlBarStyle=0);

ParametersParameters

Return ValueReturn Value

Use this method to insert a new button into an Outlook bar's page. The button's image can be loaded either from
the application resources or from a disk file.

If the page ID specified by uiPageID is -1, the button is inserted into the first page.

If the index specified by iInsertAt is -1, the button is added at the end of the page.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

Frees the resources used by the images on the Outlook bar pane.

This method directly calls CMFCToolBarImages::Clear, which is called on the images that are used by the Outlook
bar pane.

Creates the Outlook bar pane.

pParentWnd
[in] Specifies the parent window of the Outlook bar pane control. Must not be NULL.

dwStyle
[in] The window style. For a list of window styles, see Window Styles.

uiID
[in] The control ID. Must be unique to enable saving of the control's state.

dwControlBarStyle
[in] Specifies special styles that define the behavior of the Outlook bar pane control when it is detached from the
Outlook bar.

TRUE if the method was successful; otherwise FALSE.

RemarksRemarks

CMFCOutlookBarPane::EnableContextMenuItems

virtual BOOL EnableContextMenuItems(
 CMFCToolBarButton* pButton,
 CMenu* pPopup);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CMFCOutlookBarPane::EnablePageScrollMode

void EnablePageScrollMode(BOOL bPageScroll=TRUE);

ParametersParameters

CMFCOutlookBarPane::GetRegularColor

DECLARE_MESSAGE_MAPCOLORREF GetRegularColor() const;

To construct a CMFCOutlookBarPane object, first call the constructor, and then call Create , which creates the
Outlook bar pane control and attaches it to the CMFCOutlookBarPane object.

For more information about dwControlBarStyle see CBasePane::CreateEx.

Specifies which shortcut menu items are displayed in customization mode.

pButton
[in] A pointer to a toolbar button that a user clicked.

pPopup
[in] A pointer to the shortcut menu.

Returns TRUE if the shortcut menu should be displayed; otherwise FALSE.

Override this method to modify the framework standard shortcut menu that the framework displays in
customization mode.

The default implementation checks the customization mode (CMFCToolBar::IsCustomizeMode) and if it is set to
TRUE, disables all the shortcut menu items except Delete. Then, it just passes the input parameters to
CMFCToolBar::EnableContextMenuItems .

Context menu is a synonym for shortcut menu.

Specifies whether the scroll arrows on the Outlook bar pane advance the list of buttons page by page, or button
by button.

bPageScroll
[in] If TRUE, enable the page scroll mode. If FALSE, disable the page scroll mode.

Returns the regular (that is, non-selected) text color of the Outlook bar pane.

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBarPane::IsBackgroundTexture

BOOL IsBackgroundTexture() const;

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBarPane::IsDrawShadedHighlight

BOOL IsDrawShadedHighlight() const;

Return ValueReturn Value

CMFCOutlookBarPane::RemoveAllButtons

virtual void RemoveAllButtons();

CMFCOutlookBarPane::RemoveButton

BOOL RemoveButton(UINT iIdCommand);

ParametersParameters

Return ValueReturn Value

The current text color as an RGB color value.

Use CMFCOutlookBarPane::SetTextColor to set the current (regular and selected) text color of the Outlook bar.
You can obtain the default text color by calling the GetSysColor function with the COLOR_WINDOW index.

Determines whether there is a background image loaded for the Outlook bar pane.

TRUE if there is background image to display; otherwise FALSE.

You can add a background image by calling CMFCOutlookBarPane::SetBackImage function.

If there is no background image, the background is painted with a color specified by using
CMFCOutlookBarPane::SetBackColor.

Determines whether the button border is shaded when a button is highlighted and a background image is
displayed.

TRUE if button's borders are shaded; otherwise FALSE.

Removes all the buttons from the Outlook bar pane.

Removes the button that has a specified command ID.

iIdCommand
[in] Specifies the command ID of a button to remove.

TRUE if the button was successfully removed; FALSE if the specified command ID is not valid.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsyscolor

CMFCOutlookBarPane::SetBackColor

void SetBackColor(COLORREF color);

ParametersParameters

RemarksRemarks

CMFCOutlookBarPane::SetBackImage

void SetBackImage(UINT uiImageID);

ParametersParameters

RemarksRemarks

CMFCOutlookBarPane::SetDefaultState

void SetDefaultState();

RemarksRemarks

CMFCOutlookBarPane::SetExtraSpace

void SetExtraSpace()

CMFCOutlookBarPane::SetTextColor

Sets the background color of the Outlook bar.

color
[in] Specifies the new background color.

Call this function to set the current background color for the Outlook bar. The background color is used only if
there is no background image.

Sets the background image.

uiImageID
[in] Specifies the image resource ID.

Call this method to set the Outlook bar's background image. The list of background images is managed by the
embedded CMFCToolBarImages Class object.

Resets the Outlook bar pane to the original set of buttons.

This method restores the Outlook bar buttons to the original set. This method is like
CMFCOutlookBarPane::RestoreOriginalstate , except that it does not trigger a redraw of the Outlook bar pane.

Sets the number of pixels of padding used around buttons in the Outlook bar pane.

Sets the colors of regular and highlighted text in the Outlook bar pane.

void SetTextColor(
 COLORREF clrRegText,
 COLORREF clrSelText=0);

ParametersParameters

CMFCOutlookBarPane::SetTransparentColor

void SetTransparentColor(COLORREF color);

ParametersParameters

RemarksRemarks

See also

clrRegText
[in] Specifies the new color for non-selected text.

clrSelText
[in] Specifies the new color for selected text.

Sets the transparent color for the Outlook bar pane.

color
Specifies the new transparent color.

The transparent color is required to display transparent images. Any occurrence of this color in an image is
painted with the background color instead. There is no blending of background and foreground images.

Hierarchy Chart
Classes
CMFCToolBar Class
CMFCOutlookBar Class
CMFCOutlookBarTabCtrl Class

CMFCOutlookBarTabCtrl Class
3/4/2019 • 9 minutes to read • Edit Online

Syntax
class CMFCOutlookBarTabCtrl : public CMFCBaseTabCtrl

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCOutlookBarTabCtrl::CMFCOutlookBarTabCtrl Default constructor.

CMFCOutlookBarTabCtrl::~CMFCOutlookBarTabCtrl Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCOutlookBarTabCtrl::AddControl Adds a Windows control as a new tab in the Outlook bar.

CMFCOutlookBarTabCtrl::CalcRectEdit Called by the framework to determine the dimensions of the
edit box that appears when a user renames a tab. (Overrides
CMFCBaseTabCtrl::CalcRectEdit .)

CMFCOutlookBarTabCtrl::CanShowFewerPageButtons Called by the framework during resizing operations to
determine if fewer Outlook bar tab page buttons can be
displayed than are currently visible.

CMFCOutlookBarTabCtrl::CanShowMorePageButtons Called by the framework during resizing operations to
determine if more Outlook bar tab page buttons can be
displayed than are currently visible.

CMFCOutlookBarTabCtrl::Create Creates the Outlook bar tab control.

CMFCOutlookBarTabCtrl::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCOutlookBarTabCtrl::EnableAnimation Specifies whether the animation that occurs during the
switch between active tabs is enabled.

CMFCOutlookBarTabCtrl::EnableInPlaceEdit Specifies whether a user can modify the text labels on the tab
buttons of the Outlook bar. (Overrides
CMFCBaseTabCtrl::EnableInPlaceEdit.)

A tab control that has the visual appearance of the Navigation Pane in Microsoft Outlook. For more detail see
the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcoutlookbartabctrl-class.md

CMFCOutlookBarTabCtrl::EnableScrollButtons Called by the framework to enable buttons that allow the
user to scroll through buttons on the Outlook bar pane.

CMFCOutlookBarTabCtrl::FindTargetWnd Identifies the pane that contains a specified point. (Overrides
CMFCBaseTabCtrl::FindTargetWnd.)

CMFCOutlookBarTabCtrl::GetBorderSize Returns the border size of the Outlook tab control.

CMFCOutlookBarTabCtrl::GetTabArea Retrieves the size and position of the tab area of the tab
control. (Overrides CMFCBaseTabCtrl::GetTabArea.)

CMFCOutlookBarTabCtrl::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCOutlookBarTabCtrl::GetVisiblePageButtons

CMFCOutlookBarTabCtrl::IsAnimation Determines whether the animation that occurs during the
switch between active tabs is enabled.

CMFCOutlookBarTabCtrl::IsMode2003 Determines if the Outlook bar tab control is in a mode that
emulates Microsoft Outlook 2003.

CMFCOutlookBarTabCtrl::IsPtInTabArea Determines if a point is inside the tab area. (Overrides
CMFCBaseTabCtrl::IsPtInTabArea.)

CMFCOutlookBarTabCtrl::IsTabDetachable Determines whether a tab is detachable. (Overrides
CMFCBaseTabCtrl::IsTabDetachable.)

CMFCOutlookBarTabCtrl::OnChangeTabs Called by the framework when a tab is inserted or removed.
(Overrides CMFCBaseTabCtrl::OnChangeTabs .)

CMFCOutlookBarTabCtrl::OnShowFewerPageButtons Called by the framework to decrease the number of tab page
buttons that are visible.

CMFCOutlookBarTabCtrl::OnShowMorePageButtons Called by the framework to increase the number of tab page
buttons that are visible.

CMFCOutlookBarTabCtrl::OnShowOptions Displays the Navigation Pane Options dialog.

CMFCOutlookBarTabCtrl::RecalcLayout Recalculates the internal layout of the tab control. (Overrides
CMFCBaseTabCtrl::RecalcLayout.)

CMFCOutlookBarTabCtrl::SetActiveTab Sets the active tab. (Overrides
CMFCBaseTabCtrl::SetActiveTab.)

CMFCOutlookBarTabCtrl::SetBorderSize Sets the border size of the Outlook tab control.

CMFCOutlookBarTabCtrl::SetPageButtonTextAlign Sets the alignment of the text labels on the tab buttons of
the Outlook bar.

CMFCOutlookBarTabCtrl::SetToolbarImageList Sets the bitmap that contains the icons that are displayed on
the bottom of the Outlook bar in Outlook 2003 mode (see
CMFCOutlookBar Class).

NAME DESCRIPTION

CMFCOutlookBarTabCtrl::SetVisiblePageButtons

NAME DESCRIPTION

Remarks

Example

// CMFCOutlookBar& bar
CMFCOutlookBarTabCtrl* pOutlookBar = (CMFCOutlookBarTabCtrl*)bar.GetUnderlyingWindow();

pOutlookBar->EnableInPlaceEdit(TRUE);
pOutlookBar->EnableAnimation();
pOutlookBar->EnableScrollButtons();
pOutlookBar->SetBorderSize(10);
pOutlookBar->SetPageButtonTextAlign(TA_LEFT);

Inheritance Hierarchy

Requirements

CMFCOutlookBarTabCtrl::AddControl

void AddControl(
 CWnd* pWndCtrl,
 LPCTSTR lpszName,
 int nImageID=-1,
 BOOL bDetachable=TRUE,
 DWORD dwControlBarStyle=AFX_CBRS_FLOAT | AFX_CBRS_CLOSE | AFX_CBRS_RESIZE | CBRS_AFX_AUTOHIDE);

ParametersParameters

To create an Outlook bar that has docking support, use a CMFCOutlookBar object to host the Outlook bar tab
control. For more information, see CMFCOutlookBar Class.

The following example demonstrates how to initialize a CMFCOutlookBarTabCtrl object and use various methods
in the CMFCOutlookBarTabCtrl class. The example shows how to enable the in-place editing of the text label on the
tab page buttons of the Outlook bar, enable the animation, enable scroll handles that enable the user to scroll
through buttons on the Outlook bar pane, set the border size of the Outlook tab control, and set the alignment of
the text labels on the tab buttons of the Outlook bar. This code snippet is part of the Outlook Demo sample.

CObject

CCmdTarget

CWnd

CMFCBaseTabCtrl

CMFCOutlookBarTabCtrl

Header: afxoutlookbartabctrl.h

Adds a Windows control as a new tab in the Outlook bar.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

ExampleExample

// CMFCOutlookBarTabCtrl* pOutlookBar
// DWORD dwStyle = AFX_CBRS_FLOAT | AFX_CBRS_AUTOHIDE | AFX_CBRS_RESIZE
// CMFCOutlookBarPane pane1
// The third parameter is the image index.
pOutlookBar->AddControl(&pane1, _T("General"), 0, TRUE, dwStyle);

CMFCOutlookBarTabCtrl::CanShowFewerPageButtons

virtual BOOL CanShowFewerPageButtons() const;

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBarTabCtrl::CanShowMorePageButtons

virtual BOOL CanShowMorePageButtons() const;

pWndCtrl
[in] A pointer to a control to add.

lpszName
[in] Specifies the name of tab.

bDetachable
[in] If TRUE, the page will be created as detachable.

nImageID
[in] Image index in the internal image list for the image to be displayed in the new tab.

dwControlBarStyle
[in] Specifies the AFX_ CBRS_* style for wrapped docking panes.

Use this function to add a control as a new page of an outlook bar.

This function internally calls on CMFCBaseTabCtrl::AddTab.

If you set bDetachable to TRUE, AddControl internally creates a CDockablePaneAdapter object and wraps the
added control. It automatically sets the runtime class of the tabbed window to the runtime class of
CMFCOutlookBar and the runtime class of the floating frame to CMultiPaneFrameWnd .

The following example demonstrates how to use the AddControl method in the CMFCOutlookBarTabCtrl class.
This code snippet is part of the Outlook Demo sample.

Called by the framework during resizing operations to determine whether fewer Outlook bar tab page buttons
can be displayed than are currently visible.

TRUE if there is more than one button; otherwise FALSE.

The Outlook bar tab control dynamically adds or removes tabs from the display depending on how much room
is available. This method is used by the framework to assist in that process.

Called by the framework during resizing operations to determine whether more Outlook bar tab page buttons
can be displayed than are currently visible.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBarTabCtrl::Create

virtual BOOL Create(
 const CRect& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBarTabCtrl::EnableAnimation

static void EnableAnimation(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCOutlookBarTabCtrl::EnableInPlaceEdit

TRUE if there are buttons that are not currently visible; otherwise FALSE.

The Outlook bar tab control dynamically adds or removes tabs from the display, depending on how much room
is available. This method is used by the framework to assist in that process.

Creates the Outlook bar tab control.

rect
[in] Specifies the initial size and position, in pixels.

pParentWnd
[in] Points to the parent window. Must not be NULL.

nID
[in] The control ID.

Nonzero if the control has been created successfully; otherwise 0.

Usually, outlook bar tab controls are created when CMFCOutlookBar Class controls the WM_CREATE message
of the process.

Specifies whether the animation that occurs during the switch between active tabs is enabled.

bEnable
[in] Specifies whether the animation should be enabled or disabled.

Call this function to enable and disable animation. When the user opens a tab page, the page's caption slides up
or down if animation is enabled. If animation is disabled, the page becomes active immediately.

By the default, the animation is enabled.

Specifies whether a user can modify the text labels on the tab page buttons of the Outlook bar.

virtual void EnableInPlaceEdit(BOOL bEnable);

ParametersParameters

RemarksRemarks

CMFCOutlookBarTabCtrl::EnableScrollButtons

void EnableScrollButtons(
 BOOL bEnable = TRUE,
 BOOL bIsUp = TRUE,
 BOOL bIsDown = TRUE);

ParametersParameters

RemarksRemarks

CMFCOutlookBarTabCtrl::GetBorderSize

int GetBorderSize() const;

Return ValueReturn Value

CMFCOutlookBarTabCtrl::GetVisiblePageButtons
int GetVisiblePageButtons() const;

Return ValueReturn Value

RemarksRemarks

bEnable
If TRUE, enable the in-place editing of the text label. If FALSE, disable the in-place editing.

Call this function to enable or disable in-place editing of text labels on tab page buttons. By default the in-place
editing is disabled.

Called by the framework to enable scroll handles that allow the user to scroll through buttons on the Outlook
bar pane.

bEnable
[in] Determines whether the scroll buttons are displayed.

bIsUp
[in] Determines whether the top scrollbar is displayed.

bIsDown
[in] Determines whether the bottom scrollbar is displayed.

Enables the display of the scroll buttons. This method is called by the framework when the active tab changes to
restore the scroll buttons.

Returns the border size of the Outlook tab control.

The border size, in pixels.

CMFCOutlookBarTabCtrl::IsAnimation

static BOOL IsAnimation();

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBarTabCtrl::IsMode2003

BOOL IsMode2003() const;

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBarTabCtrl::OnShowFewerPageButtons

virtual void OnShowFewerPageButtons();

RemarksRemarks

CMFCOutlookBarTabCtrl::OnShowMorePageButtons

virtual void OnShowMorePageButtons();

RemarksRemarks

CMFCOutlookBarTabCtrl::OnShowOptions

virtual void OnShowOptions();

RemarksRemarks

Specifies whether the animation that occurs during the switch between active tabs is enabled.

Nonzero if the animation is enabled; otherwise 0.

Call the CMFCOutlookBarTabCtrl::EnableAnimation function to enable or disable animation.

Determines whether the Outlook bar tab control is in a mode that emulates Microsoft Outlook 2003.

TRUE if the Outlook bar tab control is in Outlook 2003 mode; otherwise FALSE;

This value is set by CMFCOutlookBar::SetMode2003.

Called by the framework to decrease the number of tab page buttons that are visible.

This method adjusts the number of visible page tab buttons when the control is resized.

Called by the framework to increase the number of tab page buttons that are visible.

This method adjust the number of tab page buttons that are visible when the control is resized.

Displays the Navigation Pane Options dialog box.

The Navigation Pane Options dialog box allows the user to select which tab page buttons are to be displayed,

CMFCOutlookBarTabCtrl::SetActiveTab

virtual BOOL SetActiveTab(int iTab);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBarTabCtrl::SetBorderSize

void SetBorderSize(int nBorderSize);

ParametersParameters

RemarksRemarks

CMFCOutlookBarTabCtrl::SetPageButtonTextAlign

void SetPageButtonTextAlign(
 UINT uiAlign,
 BOOL bRedraw=TRUE);

ParametersParameters

RemarksRemarks

and the order in which they are displayed.

This method is called by the framework when the user selects the Navigation Pane Options menu item from
the control's customization menu.

Sets the active tab. The active tab is the one that is open, with its contents visible.

iTab
[in] The zero-based index of a tab to be opened.

Nonzero if the specified tab has been opened successfully; otherwise 0.

The visual effect of setting the active tab depends on whether you have enabled animation. For more
information, see CMFCOutlookBarTabCtrl::EnableAnimation.

Sets the border size of the Outlook tab control.

nBorderSize
[in] Specifies the new border size in pixels.

Sets the new border size and recalculates the outlook window layout.

Sets the alignment of the text labels on the tab buttons of the Outlook bar.

uiAlign
[in] Specifies the text alignment.

bRedraw
[in] If TRUE, the outlook window will be redrawn.

Use this function to change text alignment for page buttons.

CONSTANT MEANING

TA_LEFT Left alignment

TA_CENTER Center alignment

TA_RIGHT Right alignment

CMFCOutlookBarTabCtrl::SetToolbarImageList

BOOL SetToolbarImageList(
 UINT uiID,
 int cx,
 COLORREF clrTransp=RGB(255, 0, 255));

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCOutlookBarTabCtrl::SetVisiblePageButtons
void SetVisiblePageButtons(int nVisiblePageButtons);

ParametersParameters

RemarksRemarks

See also

uiAlign can be one of the following values:

The default value is TA_CENTER.

Sets the bitmap that contains the icons that are displayed on the bottom of the Outlook bar in Outlook 2003
mode.

uiID
[in] Specifies the resource ID of the image to load.

cx
[in] Specifies the width of an image in the image list, in pixels.

clrTransp
[in] An RGB value that specifies the transparent color.

Returns TRUE if successful; otherwise returns FALSE.

Use this function to attach an image list whose images will be displayed on toolbar buttons in Microsoft Office
2003 mode. Image indexes should correspond to page indexes.

This method should not be called if not in Microsoft Office 2003 mode. For more information, see
CMFCOutlookBar Class.

[in] nVisiblePageButtons

Hierarchy Chart

Classes
CMFCBaseTabCtrl Class
CMFCOutlookBar Class
CMFCOutlookBarPane Class

CMFCPopupMenu Class
3/4/2019 • 17 minutes to read • Edit Online

Syntax
class CMFCPopupMenu : public CMiniFrameWnd

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CMFCPopupMenu::CMFCPopupMenu Constructs a CMFCPopupMenu object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCPopupMenu::ActivatePopupMenu

CMFCPopupMenu::AlwaysShowEmptyToolsEntry Sets whether a pop-up menu is enabled to show empty
entries for user-defined tools.

CMFCPopupMenu::AreAllCommandsShown

CMFCPopupMenu::CheckArea Determines the location of a point relative to the pop-up
menu.

CMFCPopupMenu::CloseMenu

CMFCPopupMenu::Create Creates a pop-up menu and attaches it to the
CMFCPopupMenu object.

CMFCPopupMenu::DefaultMouseClickOnClose

CMFCPopupMenu::EnableMenuLogo Initializes the logo for a pop-up menu.

CMFCPopupMenu::EnableMenuSound Enables menu sound.

CMFCPopupMenu::EnableResize

CMFCPopupMenu::EnableScrolling

Implements Windows pop-up menu functionality and extends it by adding features such as tear-off menus
and tooltips. For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual
Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcpopupmenu-class.md

CMFCPopupMenu::EnableVertResize

CMFCPopupMenu::FindSubItemByCommand

CMFCPopupMenu::GetActiveMenu Returns the currently active menu.

CMFCPopupMenu::GetAnimationSpeed Returns the animation speed for pop-up menus.

CMFCPopupMenu::GetAnimationType Returns the current type of pop-up menu animation.

CMFCPopupMenu::GetDropDirection

CMFCPopupMenu::GetForceMenuFocus Indicates whether the focus is returned to the menu bar
when a pop-up menu is displayed.

CMFCPopupMenu::GetForceShadow

CMFCPopupMenu::GetHMenu Returns a handle to the attached menu resource.

CMFCPopupMenu::GetMenuBar Returns the CMFCPopupMenuBar embedded inside the
pop-up menu.

CMFCPopupMenu::GetMenuItem Returns a pointer to the menu item at the specified index.

CMFCPopupMenu::GetMenuItemCount Returns the number of items in a popup menu.

CMFCPopupMenu::GetMessageWnd Returns a pointer to the window where the framework
routes the pop-up menu messages.

CMFCPopupMenu::GetParentArea

CMFCPopupMenu::GetParentButton Returns a pointer to the parent toolbar button.

CMFCPopupMenu::GetParentPopupMenu Returns a pointer to the parent pop-up menu.

CMFCPopupMenu::GetParentRibbonElement

CMFCPopupMenu::GetParentToolBar Returns a pointer to the parent toolbar.

CMFCPopupMenu::GetQuickCustomizeType

CMFCPopupMenu::GetSelItem Returns a pointer to the currently selected menu
command.

CMFCPopupMenu::HasBeenResized

CMFCPopupMenu::HideRarelyUsedCommands Indicates whether the pop-up menu can hide rarely used
commands.

CMFCPopupMenu::InCommand

NAME DESCRIPTION

CMFCPopupMenu::InsertItem Inserts a new item into the pop-up menu at the specified
location.

CMFCPopupMenu::InsertSeparator Inserts a separator into the pop-up menu at the specified
location.

CMFCPopupMenu::IsAlwaysClose

CMFCPopupMenu::IsAlwaysShowEmptyToolsEntry

CMFCPopupMenu::IsCustomizePane Indicates whether the pop-up menu is functioning as a
QuickCustomizePane.

CMFCPopupMenu::IsEscClose

CMFCPopupMenu::IsIdle Indicates whether a pop-up menu is currently idle.

CMFCPopupMenu::IsMenuSound

CMFCPopupMenu::IsQuickCustomize Determines whether the associated
CMFCToolBarMenuButton Class is in QuickCustomize
mode.

CMFCPopupMenu::IsResizeble

CMFCPopupMenu::IsRightAlign Indicates whether the menu is right-aligned or left-
aligned.

CMFCPopupMenu::IsScrollable

CMFCPopupMenu::IsSendMenuSelectMsg Indicates whether the framework notifies the parent frame
when the user selects a command from the pop-up menu.

CMFCPopupMenu::IsShown Indicates whether the pop-up menu is currently visible.

CMFCPopupMenu::MoveTo

CMFCPopupMenu::OnCmdMsg (Overrides CFrameWnd::OnCmdMsg .)

CMFCPopupMenu::PostCommand

CMFCPopupMenu::PreTranslateMessage (Overrides CFrameWnd::PreTranslateMessage .)

CMFCPopupMenu::RecalcLayout Called by the framework when the standard control bars
are toggled on or off or when the frame window is resized.
(Overrides CFrameWnd::RecalcLayout.)

CMFCPopupMenu::RemoveAllItems Clears all the items from a pop-up menu.

CMFCPopupMenu::RemoveItem Removes the specified item from a pop-up menu.

CMFCPopupMenu::SaveState

NAME DESCRIPTION

CMFCPopupMenu::SetAnimationSpeed Sets the animation speed for pop-up menus.

CMFCPopupMenu::SetAnimationType Sets the animation type for the pop-up menu.

CMFCPopupMenu::SetAutoDestroy

CMFCPopupMenu::SetDefaultItem Sets the default command for the pop-up menu.

CMFCPopupMenu::SetForceMenuFocus Forces the input focus to return to the menu bar when a
pop-up menu is displayed.

CMFCPopupMenu::SetForceShadow Forces the framework to draw menu shadows when pop-
up menus appear outside the main frame.

CMFCPopupMenu::SetMaxWidth Set the maximum width for the pop-up menu.

CMFCPopupMenu::SetMessageWnd

CMFCPopupMenu::SetParentRibbonElement

CMFCPopupMenu::SetQuickCustomizeType

CMFCPopupMenu::SetQuickMode

CMFCPopupMenu::SetRightAlign Sets the menu alignment for pop-up menus.

CMFCPopupMenu::SetSendMenuSelectMsg Sets a flag that controls whether the pop-up menu notifies
its parent frame when the user selects a command.

CMFCPopupMenu::ShowAllCommands Forces the pop-up menu to display all commands.

CMFCPopupMenu::TriggerResize

CMFCPopupMenu::UpdateAllShadows Updates the shadows for all opened pop-up menus.

CMFCPopupMenu::UpdateShadow Updates the shadow for the pop-up menu.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCPopupMenu::CreateTearOffBar

CMFCPopupMenu::OnChangeHot

CMFCPopupMenu::OnChooseItem

RemarksRemarks
Normally, MFC creates pop-up menus automatically. If you want to create a CMFCPopupMenu object manually,
allocate one on the heap and then call CMFCPopupMenu::Create.

Example

// 30 is the size of the logo in pixels.
pPopupMenu->EnableMenuLogo(30);
pPopupMenu->EnableMenuSound();
// 500 is the animation speed in milliseconds.
pPopupMenu->SetAnimationSpeed(500);
pPopupMenu->SetAnimationType(CMFCPopupMenu::SLIDE);
pPopupMenu->SetForceShadow(true);
// 200 is the maximum width of the pop-up menu in pixels.
pPopupMenu->SetMaxWidth(200);
pPopupMenu->SetRightAlign();
pPopupMenu->InsertSeparator();

Inheritance Hierarchy

Requirements

CMFCPopupMenu::ActivatePopupMenu
static BOOL __stdcall ActivatePopupMenu(
 CFrameWnd* pTopFrame,
 CMFCPopupMenu* pPopupMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::AlwaysShowEmptyToolsEntry

static void AlwaysShowEmptyToolsEntry(BOOL bShow = TRUE);

The following example demonstrates how to configure a pop-up menu object. The example shows how to
set the logo and the sound of the pop-up menu, set the animation speed and type, draw menu shadows
when the pop-up menu appears outside the main frame, set the maximum width, and set the right menu
alignment of the pop-up menu. This code snippet is part of the Custom Pages sample.

CObject

CCmdTarget

CWnd

CFrameWnd

CMiniFrameWnd

CMFCPopupMenu

Header: afxpopupmenu.h

[in] pTopFrame
[in] pPopupMenu

Sets whether a pop-up menu is enabled to show empty entries for user-defined tools.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ParametersParameters

CMFCPopupMenu::AreAllCommandsShown
BOOL AreAllCommandsShown() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::CheckArea

MENUAREA_TYPE CheckArea(const CPoint& ptScreen) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::CloseMenu
void CloseMenu(BOOL bSetFocusToBar = FALSE);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::CMFCPopupMenu

bShow
[in] TRUE if the pop-up menu can display empty entries; FALSE otherwise.

Determines the location of a point relative to the pop-up menu.

ptScreen
[in] A point, in screen coordinates.

A MENUAREA_TYPE parameter that indicates where the point is relative to the pop-up menu.

A MENUAREA_TYPE parameter can have any one of the following values.

OUTSIDE - ptScreen is outside the pop-up menu.

LOGO - ptScreen is over a logo area.

TEAROFF_CAPTION - ptScreen is over the tear-off caption.

SHADOW_BOTTOM - ptScreen is over the bottom shadow of the pop-up menu.

SHADOW_RIGHT - ptScreen is over the right shadow of the pop-up menu.

MENU - ptScreen is over a command.

[in] bSetFocusToBar

Constructs a CMFCPopupMenu object.

CMFCPopupMenu(
 CMFCToolBarsMenuPropertyPage* pCustPage,
 LPCTSTR lpszTitle);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::Create

virtual BOOL Create(
 CWnd* pWndParent,
 int x,
 int y,
 HMENU hMenu,
 BOOL bLocked = FALSE,
 BOOL bOwnMessage = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pCustPage
[in] A pointer to a customization page.

lpszTitle
[in] A string that contains the menu caption.

This method allocates the resources for a CMFCPopupMenu . To create the pop-up menu item, call
CMFCPopupMenu::Create.

Creates a pop-up menu and attaches it to a CMFCPopupMenu object.

pWndParent
[in] The parent window for the CMFCPopupMenu .

x
[in] The horizontal screen coordinate for the location of the pop-up menu

y
[in] The vertical screen coordinate for the location of the pop-menu.

hMenu
[in] A handle to a menu resource.

bLocked
[in] A Boolean parameter that indicates whether the menu is customizable. FALSE indicates that the pop-up
menu is customizable.

bOwnMessage
[in] A Boolean parameter that indicates how the framework routes the menu messages. See the Remarks
section for more details.

TRUE if the method is successful; otherwise FALSE.

If bOwnMessage is TRUE, the framework routes any menu messages to pWndParent. pWndParent must
not be NULL if bOwnMessage is TRUE. If bOwnMessage is FALSE, the framework routes the menu
messages to the parent pop-up menu.

ExampleExample

CMFCPopupMenu* pPopupMenu = new CMFCPopupMenu;
// CPoint point
// CMenu* pPopup
// The this pointer points to CMainFrame class which extends the CFrameWnd class.
pPopupMenu->Create (this, point.x, point.y, pPopup->Detach ());

CMFCPopupMenu::CreateTearOffBar
virtual CPane* CreateTearOffBar(
 CFrameWnd* pWndMain,
 UINT uiID,
 LPCTSTR lpszName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::DefaultMouseClickOnClose
virtual BOOL DefaultMouseClickOnClose() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::EnableMenuLogo

void EnableMenuLogo(
 int iLogoSize,
 LOGO_LOCATION nLogoLocation = MENU_LOGO_LEFT);

ParametersParameters

RemarksRemarks

The following example demonstrates how to use the Create method of the CMFCPopuMenu class. This code
snippet is part of the Custom Pages sample.

[in] pWndMain
[in] uiID
[in] lpszName

Initializes the logo for a pop-up menu.

iLogoSize
[in] The size of the logo, in pixels.

nLogoLocation
[in] An enumerated data type that indicates the location of the logo.

To display the logo, implement the method CFrameWndEx::OnDrawMenuLogo in the main frame window.

The possible values for nLogoLocation are MENU_LOGO_LEFT, MENU_LOGO_RIGHT,
MENU_LOGO_TOP, and MENU_LOGO_BOTTOM.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCPopupMenu::EnableMenuSound

static void EnableMenuSound(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::EnableResize
void EnableResize(CSize sizeMinResize);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::EnableScrolling
void EnableScrolling(BOOL = TRUE);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::EnableVertResize
void EnableVertResize(int nMinResize);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::FindSubItemByCommand
CMFCToolBarMenuButton* FindSubItemByCommand(UINT uiCmd) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Enables menu sound.

bEnable
[in] TRUE to enable sound, FALSE otherwise.

If you enable sound, the framework calls the PlaySound method when a user opens a pop-up menu or
selects a menu command. By default, this feature is enabled.

[in] sizeMinResize

[in] BOOL

[in] nMinResize

[in] uiCmd

https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nf-shobjidl_core-iusernotification-playsound

CMFCPopupMenu::GetActiveMenu

static CMFCPopupMenu* GetActiveMenu();

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetAnimationSpeed

static UINT GetAnimationSpeed();

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetAnimationType

static CMFCPopupMenu::ANIMATION_TYPE GetAnimationType(BOOL bNoSystem = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NO_ANIMATION The pop-up menu is not animated and appears
immediately.

UNFOLD The framework reveals the pop-up menu from the upper-
left corner to the lower right corner.

Returns the currently active menu.

A pointer to the active pop-up menu, or NULL if no pop-up menu is currently active.

Each application can have at most one active pop-up menu.

Returns the animation speed for pop-up menus.

An integer that indicates the time, in milliseconds, that a pop-up menu animation takes to finish.

The animation speed is a global value. Use CMFCPopupMenu::SetAnimationSpeed to change the animation
speed for pop-up menus.

Returns the current type of pop-up animation.

bNoSystem
[in] A Boolean parameter that indicates whether this method checks the global value. FALSE if you want this
method to return the animation style for this instance of the CMFCPopupMenu Class.

An enumerated value that describes the animation type.

The style of animation for pop-up menus is global for your application. Use
CMFCPopupMenu::SetAnimationType to set the animation style.

The following table lists the possible animation types.

SLIDE The pop-up menu moves from top to bottom.

FADE The pop-up menu first appears transparent and gradually
solidifies.

CMFCPopupMenu::GetDropDirection
DROP_DIRECTION GetDropDirection() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetForceMenuFocus

static BOOL GetForceMenuFocus();

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetForceShadow
static BOOL __stdcall GetForceShadow();

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetHMenu

HMENU GetHMenu();

CMFCPopupMenu::GetMenuBar

virtual CMFCPopupMenuBar* GetMenuBar();

Return ValueReturn Value

Indicates whether the focus is returned to the menu bar when a pop-up menu is displayed.

TRUE if the input focus is returned to the menu bar when a pop-up menu is displayed; FALSE if the pop-up
menu retains the focus.

By default, your application does not return focus to the menu bar. To change this setting, use
CMFCPopupMenu::SetForceMenuFocus.

Returns a handle to the attached menu resource.

Returns the CMFCPopupMenuBar embedded inside the pop-up menu.

RemarksRemarks

CMFCPopupMenu::GetMenuItem

CMFCToolBarMenuButton* GetMenuItem(int iIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetMenuItemCount

int GetMenuItemCount() const;

Return ValueReturn Value

CMFCPopupMenu::GetMessageWnd

CWnd* GetMessageWnd() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetParentArea
virtual CWnd* GetParentArea(CRect& rectParentBtn);

ParametersParameters

A pointer to the embedded CMFCPopupMenuBar .

The pop-up menu has an embedded CMFCPopupMenuBar object. You must override this method in a derived
class if you are using a different embedded class.

Returns a pointer to the menu item at the specified index.

iIndex
[in] The zero-based index of a menu item.

A pointer to a menu item. NULL if the index is invalid.

Menu items are represented by the CMFCToolBarMenuButton Class. When you call this method, it returns
a pointer to the appropriate CMFCToolBarMenuButton .

Returns the number of items in a pop-up menu.

The number of items in the menu.

Returns a pointer to the window where the framework routes the pop-up menu messages.

A pointer to the window that receives the pop-up menu messages; NULL if there is no window.

When you use the method CMFCPopupMenu::Create to create a pop-up menu, you specify what window
receives the menu messages.

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetParentButton

CMFCToolBarMenuButton* GetParentButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetParentPopupMenu

CMFCPopupMenu* GetParentPopupMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetParentRibbonElement
CMFCRibbonBaseElement* GetParentRibbonElement() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetParentToolBar

CMFCToolBar* GetParentToolBar() const;

Return ValueReturn Value

RemarksRemarks

[in] rectParentBtn

Returns a pointer to the parent toolbar button.

A pointer to the parent toolbar button. NULL if the pop-up menu has no parent toolbar button.

A CMFCPopupMenu can be associated with a button on the menu. In this scenario, the pop-up menu appears
when a user selects the parent toolbar button.

If the pop-up menu is a shortcut menu, it will have no parent toolbar button.

Returns a pointer to the parent pop-up menu.

A pointer to the parent CMFCPopupMenu object; NULL if there is no parent pop-up menu.

A pop-up menu has a parent CMFCPopupMenu object only if it is a submenu.

Returns a pointer to the parent toolbar.

A pointer to the parent toolbar. NULL if the pop-up menu has no parent toolbar.

If the CMFCPopupMenu is a shortcut menu, then it has no parent toolbar.

CMFCPopupMenu::GetQuickCustomizeType
QUICK_CUSTOMIZE_TYPE GetQuickCustomizeType() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::GetSelItem

CMFCToolBarMenuButton* GetSelItem();

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::HasBeenResized
BOOL HasBeenResized() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::HideRarelyUsedCommands

BOOL HideRarelyUsedCommands() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::InCommand
virtual BOOL InCommand();

Return ValueReturn Value

Returns a pointer to the currently selected menu command.

A pointer to the currently selected menu command; NULL if no item is selected.

The menu commands on a pop-up menu are represented by the CMFCToolBarMenuButton Class, or a class
derived from CMFCToolBarMenuButton .

Indicates whether the pop-up menu can hide rarely used commands.

TRUE if the pop-up menu can hide the rarely used commands; otherwise FALSE.

This method specifies only whether a pop-up menu can hide rarely used commands, not if that
configuration is enabled. A pop-up menu can hide rarely used commands if it has a parent button and the
parent window is derived from the CMFCMenuBar Class. Use CMFCMenuBar::SetRecentlyUsedMenus to
enable this feature and CMFCMenuBar::IsRecentlyUsedMenus to determine if this feature is currently
enabled. You must call both of these methods for the parent window.

RemarksRemarks

CMFCPopupMenu::InsertItem

int InsertItem(
 const CMFCToolBarMenuButton& button,
 int iInsertA = -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::InsertSeparator

int InsertSeparator(int iInsertAt = -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::IsAlwaysClose
virtual BOOL IsAlwaysClose() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::IsAlwaysShowEmptyToolsEntry

Inserts a new item into the pop-up menu at the specified location.

button
[in] A reference to the menu item to add.

iInsertAt
[in] The zero-based index for the new item. If iInsertAt is -1, the item is added to the end of the menu.

The zero-based index of the position where the item was inserted. -1 if the method fails.

This method will fail if you provide an invalid value for iInsertAt, such as an integer larger than the number
of items currently on the pop-up menu.

Inserts a separator into the pop-up menu at the specified location.

iInsertAt
[in] The zero-based index of the position where this method will insert the separator.

The zero-based index of the position where the separator was inserted. -1 if this method fails.

A value of -1 for iInsertAt means this method will add the separator to the end of the pop-up menu.

This method fails if iInsertAt is an invalid value.

static BOOL __stdcall IsAlwaysShowEmptyToolsEntry();

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::IsCustomizePane

BOOL IsCustomizePane();

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::IsEscClose
BOOL IsEscClose();

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::IsIdle

virtual BOOL IsIdle() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::IsMenuSound
static UINT __stdcall IsMenuSound();

Return ValueReturn Value

RemarksRemarks

Indicates whether the pop-up menu is functioning as a QuickCustomizePane.

TRUE if the pop-up is a QuckCustomizePane; otherwise FALSE.

Use the QuickCustomizePane to enable the user to directly customize the pop-up menu. The
QuickCustomizePane is a CMFCPopupMenu that appears when the user clicks on a toolbar button to edit it
directly.

Your application should call this method during CMDIFrameWndEx::OnShowCustomizePane.

Indicates whether a pop-up menu is currently idle.

TRUE if the pop-up menu is in idle mode; otherwise FALSE.

By default, a pop-up menu is in idle mode if the display animation is complete and the user is not scrolling
the pop-up menu.

CMFCPopupMenu::IsQuickCustomize

BOOL IsQuickCustomize();

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::IsResizeble
BOOL IsResizeble() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::IsRightAlign

BOOL IsRightAlign() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::IsScrollable
BOOL IsScrollable() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::IsSendMenuSelectMsg

static BOOL IsSendMenuSelectMsg();

Determines whether the associated CMFCToolBarMenuButton Class is in QuickCustomize mode.

TRUE if the associated menu button is in QuickCustomize mode; otherwise FALSE. This method will also
return FALSE if the pop-up menu is not associated with a CMFCToolBarMenuButton .

In QuickCustomize mode the user selects a button on a toolbar to customize the button directly.

Indicates whether the menu is right-aligned or left-aligned.

TRUE if the menu is right-aligned; FALSE if the menu left-aligned.

You can use CMFCPopupMenu::SetRightAlign to set the menu alignment. By default, pop-up menus use
left-alignment.

Menu alignment is not a global setting and can vary between pop-up menus.

Indicates whether the framework notifies the parent frame when the user selects a command from the pop-
up menu.

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::IsShown

BOOL IsShown() const;

Return ValueReturn Value

CMFCPopupMenu::MoveTo
void MoveTo(const CPoint& pt);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::OnChangeHot
virtual void OnChangeHot(int nHot);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::OnChooseItem
virtual void OnChooseItem(UINT uidCmdID);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::OnCmdMsg
virtual BOOL OnCmdMsg(
 UINT nID,
 int nCode,
 void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);

TRUE if the framework notifies the parent frame; otherwise FALSE.

The framework notifies the parent frame by sending it the WM_MENUSELECT message when a used
selects a menu command.

Indicates whether the pop-up menu is currently visible.

TRUE if a pop-up menu is visible; otherwise FALSE.

[in] pt

[in] nHot

[in] uidCmdID

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::PostCommand
BOOL PostCommand(UINT uiCommandID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::PreTranslateMessage
virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::RecalcLayout
virtual void RecalcLayout(BOOL bNotify = TRUE);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::RemoveAllItems

void RemoveAllItems();

CMFCPopupMenu::RemoveItem

[in] nID
[in] nCode
[in] pExtra
[in] pHandlerInfo

[in] uiCommandID

[in] pMsg

[in] bNotify

Clears all the items from a pop-up menu.

Removes the specified item from the pop-up menu.

BOOL RemoveItem(int iIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenu::SaveState
virtual void SaveState();

RemarksRemarks

CMFCPopupMenu::SetAnimationSpeed

static void SetAnimationSpeed(UINT nElapse);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::SetAnimationType

static void SetAnimationType(CMFCPopupMenu::ANIMATION_TYPE type);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::SetAutoDestroy

iIndex
[in] The zero-based index of the item to delete.

TRUE if the method is successful; otherwise FALSE.

This method automatically arranges any separators that are affected by the removal of an item. For more
information about how the framework rearranges separators, see CMFCToolBar::RemoveButton.

Sets the animation speed for pop-up menus.

nElapse
[in] The new animation speed, in milliseconds.

The animation speed is a global value and affects all the pop-up menus in the application. This value
specifies how long it takes for the animation for a pop-up menu to finish.

By default, this parameter is set to 30 milliseconds. The range of valid values for nElapse is from 0 to 200.

Sets the animation type for this pop-up menu.

type
[in] An enumerated data type that specifies the type of animation.

See CMFCPopupMenu::GetAnimationType for a list of valid values for type.

void SetAutoDestroy(BOOL bAutoDestroy = TRUE);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::SetDefaultItem

void SetDefaultItem(UINT uiCmd);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::SetForceMenuFocus

static void SetForceMenuFocus(BOOL bValue);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::SetForceShadow

static void SetForceShadow(BOOL bValue);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::SetMaxWidth

[in] bAutoDestroy

Sets the default command for the pop-up menu.

uiCmd
[in] The menu command ID of the new default command.

The default command in the pop-up menu is the command that is selected when the pop-up menu appears.

Forces the input focus to return to the menu bar when a pop-up menu is displayed.

bValue
[in] TRUE if you want the framework to force the input focus to the menu bar when a pop-up menu is
displayed. FALSE if you want the pop-up menu to retain the focus.

This method sets a flag that is global for all pop-up menus in the application. By default, this feature is not
enabled.

Forces the framework to draw menu shadows when pop-up menus appear outside the main frame.

bValue
[in] TRUE if you want the framework to draw menu shadows, FALSE otherwise.

When you call this method, it sets a global flag in your application. This flag affects all pop-up menus in your
application.

void SetMaxWidth(int iMaxWidth);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::SetMessageWnd
void SetMessageWnd(CWnd* pMsgWnd);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::SetParentRibbonElement
void SetParentRibbonElement(CMFCRibbonBaseElement* pElem);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::SetQuickCustomizeType
void SetQuickCustomizeType(QUICK_CUSTOMIZE_TYPE Type);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::SetQuickMode
void SetQuickMode();

RemarksRemarks

CMFCPopupMenu::SetRightAlign

Set the maximum width for the pop-up menu.

iMaxWidth
[in] The maximum width for the pop-up menu, in pixels.

If the text associated with a menu command will not fit in the maximum width, it is truncated and the part
that does not fit is replaced by three dots.

[in] pMsgWnd

[in] pElem

[in] Type

Sets the menu alignment for pop-up menus.

void SetRightAlign(BOOL bRightAlign = TRUE);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::SetSendMenuSelectMsg

static void SetSendMenuSelectMsg(BOOL bSet = TRUE);

ParametersParameters

RemarksRemarks

CMFCPopupMenu::ShowAllCommands

void ShowAllCommands();

RemarksRemarks

CMFCPopupMenu::TriggerResize
void TriggerResize();

RemarksRemarks

CMFCPopupMenu::UpdateAllShadows

static void UpdateAllShadows(LPRECT lprectScreen = NULL);

ParametersParameters

bRightAlign
[in] A Boolean that indicates the menu alignment. TRUE indicates right alignment, FALSE indicates left
alignment.

By default, all pop-up menus are left-aligned.

Sets a flag that controls whether the pop-up menu notifies its parent frame when the user selects a
command.

bSet
[in] TRUE if the pop-up menu notifies its parent frame, FALSE otherwise.

This is a global option for all the pop-up menus in an application. If it is enabled, the pop-up menus will
send a WM_MENUSELECT message to the parent frame when the user selects a command.

Forces the pop-up menu to display all commands.

This is not a global setting and affects only the current pop-up menu.

Updates the shadows for all opened pop-up menus.

lprectScreen
[in] A rectangle that specifies the region to update, in screen coordinates.

RemarksRemarks

CMFCPopupMenu::UpdateShadow

void UpdateShadow(LPRECT lprectScreen = NULL);

ParametersParameters

RemarksRemarks

See also

This method is useful when pop-up menus are displayed over animated controls or other windows that
have dynamic content.

Updates the shadow for the pop-up menu.

lprectScreen
[in] A rectangle, in screen coordinates, that specifies the boundaries of the region to update.

Call this method when a pop-up menu that has a shadow overlaps an animated image.

Hierarchy Chart
Classes
CMFCPopupMenuBar Class

CMFCPopupMenuBar Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CMFCPopupMenuBar : public CMFCToolBar

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCPopupMenuBar::AdjustSizeImmediate Immediately recalculates the layout of a pane. (Overrides
CPane::AdjustSizeImmediate.)

CMFCPopupMenuBar::BuildOrigItems Loads popup menu items from a specified menu resource.

CMFCPopupMenuBar::CloseDelayedSubMenu Closes a delayed popup menu button.

CMFCPopupMenuBar::ExportToMenu Builds a menu from the popup-menu buttons.

CMFCPopupMenuBar::FindDestintationToolBar Locates the toolbar where a specified point lies.

CMFCPopupMenuBar::GetCurrentMenuImageSize Indicates the size of menu-button images.

CMFCPopupMenuBar::GetDefaultMenuId Returns the identifier of the default menu item.

CMFCPopupMenuBar::GetLastCommandIndex Gets the index of the most recently invoked menu command.

CMFCPopupMenuBar::GetOffset Gets the row offset of the popup menu bar.

CMFCPopupMenuBar::ImportFromMenu Imports popup menu buttons from a specified menu.

CMFCPopupMenuBar::IsDropDownListMode Indicates whether the popup menu bar is in drop-down-list
mode.

CMFCPopupMenuBar::IsPaletteMode Indicates whether the popup menu bar is in palette mode.

CMFCPopupMenuBar::IsRibbonPanel Indicates whether this is a ribbon panel (FALSE by default).

CMFCPopupMenuBar::IsRibbonPanelInRegularMode Indicates whether this is a ribbon panel in regular mode
(FALSE by default).

CMFCPopupMenuBar::LoadFromHash Loads an archived menu.

A menu bar embedded into a pop-up menu.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcpopupmenubar-class.md

CMFCPopupMenuBar::RestoreDelayedSubMenu Restores a delayed menu button for closing the popup menu
bar.

CMFCPopupMenuBar::SetButtonStyle Sets the style of the toolbar button at the given index.
(Overrides CMFCToolBar::SetButtonStyle.)

CMFCPopupMenuBar::SetOffset Sets the row offset of the popup menu bar.

CMFCPopupMenuBar::StartPopupMenuTimer Starts the timer for a specified delayed popup menu button.

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CMFCPopupMenuBar::m_bDisableSideBarInXPMode Specifies whether the gray sidebar will be displayed when the
application has a Windows XP appearance.

Remarks

Example

// CMFCPopupMenu* pMenuPopup
CMFCPopupMenuBar* pMenuBar = pMenuPopup->GetMenuBar();

Inheritance Hierarchy

Requirements

The CMFCPopupMenuBar is created at the same time as a CMFCPopupMenu Class and embedded inside it. The
CMFCPopupMenuBar covers the entire client area of the CMFCPopupMenu object. It supports keyboard and mouse

input. It also communicates that input to the CMFCPopupMenu and to the top-level frame window.

The following example demonstrates how to initialize a CMFCPopupMenuBar object from a CMFCPopupMenu object.
This code snippet is part of the Draw Client sample.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCBaseToolBar

CMFCToolBar

CMFCPopupMenuBar

Header: afxpopupmenubar.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCPopupMenuBar::AdjustSizeImmediate

virtual void AdjustSizeImmediate(BOOL bRecalcLayout);

ParametersParameters

RemarksRemarks

CMFCPopupMenuBar::BuildOrigItems

BOOL BuildOrigItems(UINT uiMenuResID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenuBar::CloseDelayedSubMenu

virtual void CloseDelayedSubMenu();

RemarksRemarks

CMFCPopupMenuBar::ExportToMenu

virtual HMENU ExportToMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenuBar::FindDestintationToolBar

CMFCToolBar* FindDestintationToolBar(CPoint point);

Immediately recalculates the layout of the popup menu bar pane. (Overrides CPane::AdjustSizeImmediate.

bRecalcLayout
[in] TRUE to automatically recalculate the layout of the popup menu bar pane; otherwise, FALSE.

Loads popup menu items from a specified menu resource.

uiMenuResID
[in] Specifies the menu ID of the menu resource to load.

Returns TRUE if successful or FALSE if not.

Closes a popup menu button that has been delayed.

Builds a menu from the popup menu buttons.

Returns a handle to the new menu.

Locates the toolbar where a specified point lies.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenuBar::GetCurrentMenuImageSize

virtual CSize GetCurrentMenuImageSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenuBar::GetDefaultMenuId

UINT GetDefaultMenuId() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenuBar::GetLastCommandIndex

static int __stdcall GetLastCommandIndex();

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenuBar::GetOffset

int GetOffset() const;

Return ValueReturn Value

RemarksRemarks

point
[in] A point on the screen.

Returns a handle to the toolbar where the point lies, if there is one, or NULL if not.

Indicates the size of menu-button images.

Returns the size of menu-button images in the toolbar.

Returns the identifier of the default menu item.

Returns the identifier of the default menu item in the popup menu bar.

Gets the index of the most recently invoked menu command.

Returns the index of the last menu command that has been invoked.

Gets the row offset of the popup menu bar.

Returns the row offset of the popup menu bar.

This value is set using CMFCPopupMenuBar::SetOffset.

CMFCPopupMenuBar::ImportFromMenu

virtual BOOL ImportFromMenu(
 HMENU hMenu,
 BOOL bShowAllCommands = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenuBar::IsDropDownListMode

BOOL IsDropDownListMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenuBar::IsPaletteMode

BOOL IsPaletteMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenuBar::IsRibbonPanel

virtual BOOL IsRibbonPanel() const;

Return ValueReturn Value

Imports popup menu buttons from a specified menu.

hMenu
[in] The menu from which to import the popup menu buttons.

bShowAllCommands
[in] TRUE if all commands on the menu are to be imported, or FALSE if rarely used ones may be hidden.

Returns TRUE if the menu buttons were successfully imported from the menu, or FALSE if not.

Indicates whether the popup menu bar is in drop-down-list mode.

Returns TRUE if the popup menu bar is in drop-down-list mode, or FALSE if not.

Indicates whether the popup menu bar is in palette mode.

Returns TRUE if palette mode is enabled, or FALSE if not.

When the menu bar is set to palette mode, menu items appear in multiple columns and a limited number of
rows.

Indicates whether this is a ribbon panel (FALSE by default).

Returns FALSE by default, indicating that this is not a ribbon panel.

RemarksRemarks

CMFCPopupMenuBar::IsRibbonPanelInRegularMode

virtual BOOL IsRibbonPanelInRegularMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenuBar::LoadFromHash

BOOL LoadFromHash(HMENU hMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPopupMenuBar::m_bDisableSideBarInXPMode

BOOL m_bDisableSideBarInXPMode;

RemarksRemarks

CMFCPopupMenuBar::RestoreDelayedSubMenu

virtual void RestoreDelayedSubMenu();

RemarksRemarks

CMFCPopupMenuBar::SetButtonStyle

Indicates whether this is a ribbon panel in regular mode (FALSE by default).

Returns FALSE by default, indicating that this is not a ribbon panel in regular mode.

Loads an archived menu.

hMenu
[in] A handle to the archived menu to load.

Returns TRUE if the menu is loaded successfully, or FALSE if not.

A Boolean parameter that indicates whether your application has a gray sidebar when it has a Windows XP
appearance.

If this member variable is set to FALSE and your application has a Windows XP appearance, the framework
draws a gray sidebar in your application.

The default value is FALSE.

Restores a delayed menu button for closing the popup menu bar.

Sets the style of the toolbar button at the given index. (Overrides CMFCToolBar::SetButtonStyle.)

virtual void SetButtonStyle(
 int nIndex,
 UINT nStyle);

ParametersParameters

RemarksRemarks

CMFCPopupMenuBar::SetOffset

void SetOffset(int iOffset);

ParametersParameters

RemarksRemarks

CMFCPopupMenuBar::StartPopupMenuTimer

void StartPopupMenuTimer(
 CMFCToolBarMenuButton* pMenuButton,
 int nDelayFactor = 1);

ParametersParameters

RemarksRemarks

See also

nIndex
[in] The zero-based index of the toolbar button whose style is to be set.

nStyle
[in] The style of the button. See ToolBar Control Styles for the list of available toolbar button styles.

Sets the row offset of the popup menu bar.

iOffset
[in] The number of rows that the popup menu bar should be offset.

Starts the timer for a specified delayed popup menu button.

pMenuButton
[in] Pointer to the menu button for which to set the delay timer.

nDelayFactor
[in] A delay factor, equal to at least one, to multiply by the standard menu delay time (generally between a half
second and five seconds).

Hierarchy Chart
Classes
CMFCColorBar Class
CMFCPopupMenu Class

CMFCPreviewCtrlImpl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCPreviewCtrlImpl : public CWnd;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCPreviewCtrlImpl::~CMFCPreviewCtrlImpl Destructs a preview control object.

CMFCPreviewCtrlImpl::CMFCPreviewCtrlImpl Constructs a preview control object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCPreviewCtrlImpl::Create Overloaded. Called by a Rich Preview handler to create the
Windows window.

CMFCPreviewCtrlImpl::Destroy Called by a Rich Preview handler when it needs to destroy this
control.

CMFCPreviewCtrlImpl::Focus Sets input focus to this control.

CMFCPreviewCtrlImpl::GetDocument Returns a document connected to this preview control.

CMFCPreviewCtrlImpl::Redraw Tells this control to redraw.

CMFCPreviewCtrlImpl::SetDocument Called by the preview handler to create a relationship between
the document implementation and the preview control.

CMFCPreviewCtrlImpl::SetHost Sets a new parent for this control.

CMFCPreviewCtrlImpl::SetPreviewVisuals Called by a Rich Preview handler when it needs to set visuals
of rich preview content.

CMFCPreviewCtrlImpl::SetRect Sets a new bounding rectangle for this control.

Protected MethodsProtected Methods

This class implements a window that is placed on a host window provided by the Shell for Rich Preview.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcpreviewctrlimpl-class.md

NAME DESCRIPTION

CMFCPreviewCtrlImpl::DoPaint Called by the framework to render the preview.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CMFCPreviewCtrlImpl::m_clrBackColor Background color of preview window.

CMFCPreviewCtrlImpl::m_clrTextColor Text color of preview window.

CMFCPreviewCtrlImpl::m_font Font used to display text in the preview window.

CMFCPreviewCtrlImpl::m_pDocument A pointer to a document whose content is previewed in the
control.

Requirements

Inheritance Hierarchy

CMFCPreviewCtrlImpl::CMFCPreviewCtrlImpl

SyntaxSyntax

CMFCPreviewCtrlImpl::Create

SyntaxSyntax

virtual BOOL Create(
 HWND hWndParent,
 const RECT* prc
);
virtual BOOL Create(
 HWND hWndParent,
 const RECT* prc,
 CCreateContext* pContext
);

ParametersParameters

Header: afxwin.h

CObject

CCmdTarget

CWnd

CMFCPreviewCtrlImpl

Constructs a preview control object.

CMFCPreviewCtrlImpl();

Overloaded. Called by a Rich Preview handler to create the Windows window.

hWndParent

Return ValueReturn Value

CMFCPreviewCtrlImpl::Destroy

SyntaxSyntax

virtual void Destroy();

CMFCPreviewCtrlImpl::DoPaint

SyntaxSyntax

virtual void DoPaint(
 CPaintDC* pDC
);

ParametersParameters

CMFCPreviewCtrlImpl::Focus

SyntaxSyntax

virtual void Focus();

CMFCPreviewCtrlImpl::GetDocument

SyntaxSyntax

ATL::IDocument* GetDocument();

Return ValueReturn Value

CMFCPreviewCtrlImpl::m_clrBackColor

A handle to the host window supplied by the Shell for Rich Preview.

prc
Specifies the initial size and position of the window.

pContext
A pointer to a creation context.

TRUE if creation succeeded; otherwise FALSE.

Called by a Rich Preview handler when it needs to destroy this control.

Called by the framework to render the preview.

pDC
A pointer to a device context for painting.

Sets input focus to this control.

Returns a document connected to this preview control.

A pointer to a document, whose content is previewed in the control.

SyntaxSyntax

COLORREF m_clrBackColor;

CMFCPreviewCtrlImpl::m_clrTextColor

SyntaxSyntax

COLORREF m_clrTextColor;

CMFCPreviewCtrlImpl::m_font Font used to display text in the preview
window.
SyntaxSyntax

CFont m_font;

CMFCPreviewCtrlImpl::m_pDocument

SyntaxSyntax

ATL::IDocument* m_pDocument;

CMFCPreviewCtrlImpl::Redraw

SyntaxSyntax

virtual void Redraw();

CMFCPreviewCtrlImpl::SetDocument

SyntaxSyntax

void SetDocument(
 IDocument* pDocument
);

ParametersParameters

Background color of the preview window.

Text color of the preview window.

A pointer to a document whose content is previewed in the control.

Tells this control to redraw.

Called by the preview handler to create a relationship between the document implementation and the preview
control.

pDocument
A pointer to the document implementation.

CMFCPreviewCtrlImpl::SetHost

SyntaxSyntax

virtual void SetHost(
 HWND hWndParent
);

ParametersParameters

CMFCPreviewCtrlImpl::SetPreviewVisuals

SyntaxSyntax

virtual void SetPreviewVisuals(
 COLORREF clrBack,
 COLORREF clrText,
 const LOGFONTW *plf
);

ParametersParameters

CMFCPreviewCtrlImpl::SetRect

SyntaxSyntax

virtual void SetRect(
 const RECT* prc,
 BOOL bRedraw
);

ParametersParameters

RemarksRemarks

Sets a new parent for this control.

hWndParent
A handle to the new parent window.

Called by a Rich Preview handler when it needs to set visuals of rich preview content.

clrBack
Background color of preview window.

clrText
Text color of preview window.

plf
Font used to display text in the preview window.

Sets a new bounding rectangle for this control.

prc
Specifies the new size and position of the preview control.

bRedraw
Specifies whether the control should be redrawn.

Usually a new bounding rectangle is set when the host control is resized.

 CMFCPreviewCtrlImpl::~CMFCPreviewCtrlImpl

SyntaxSyntax

virtual ~CMFCPreviewCtrlImpl();

Destructs a preview control object.

CMFCPrintPreviewToolBar Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCPrintPreviewToolBar : public CMFCToolBar

Members
Public ConstructorsPublic Constructors

Name Description

CMFCPrintPreviewToolBar::~CMFCPrintPreviewToolBar Destructor.

Public MethodsPublic Methods

Name Description

CMFCPrintPreviewToolBar::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

Inheritance Hierarchy

Requirements

See also

The toolbar on the print preview.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCBaseToolBar

CMFCToolBar

CMFCPrintPreviewToolBar

Header: afxpreviewviewex.h

Hierarchy Chart

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcprintpreviewtoolbar-class.md

Classes

CMFCPropertyGridColorProperty Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCPropertyGridColorProperty : public CMFCPropertyGridProperty

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCPropertyGridColorProperty::CMFCPropertyGridColorPro
perty

Constructs a CMFCPropertyGridColorProperty object.

CMFCPropertyGridColorProperty::~CMFCPropertyGridColorPropertyDestructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCPropertyGridColorProperty::EnableAutomaticButton Enables the automatic button on the color selection dialog
box. (The standard automatic button is labeled Automatic.)

CMFCPropertyGridColorProperty::EnableOtherButton Enables the other button on the color selection dialog box.
(The standard other button is labeled More Colors.)

CMFCPropertyGridColorProperty::FormatProperty Formats the text representation of a property value.
(Overrides CMFCPropertyGridProperty::FormatProperty.)

CMFCPropertyGridColorProperty::GetColor Gets the current color of the property.

CMFCPropertyGridColorProperty::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCPropertyGridColorProperty::OnClickButton Called by the framework when the user clicks a button that is
contained in a property. (Overrides
CMFCPropertyGridProperty::OnClickButton.)

CMFCPropertyGridColorProperty::OnDrawValue Called by the framework to display the property value.
(Overrides CMFCPropertyGridProperty::OnDrawValue.)

CMFCPropertyGridColorProperty::OnEdit Called by the framework when the user is about to modify a
property value. (Overrides
CMFCPropertyGridProperty::OnEdit.)

The CMFCPropertyGridColorProperty class supports a property list control item that opens a color selection dialog
box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcpropertygridcolorproperty-class.md

CMFCPropertyGridColorProperty::OnUpdateValue Called by the framework when the value of an editable
property has changed. (Overrides
CMFCPropertyGridProperty::OnUpdateValue.)

CMFCPropertyGridColorProperty::SetColor Sets a new color for the property.

CMFCPropertyGridColorProperty::SetColumnsNumber Specifies the number of columns in the current color property
grid.

CMFCPropertyGridColorProperty::SetOriginalValue Sets the original value of an editable property.

NAME DESCRIPTION

Remarks

Example

CMFCPropertyGridColorProperty* pColorProp = new CMFCPropertyGridColorProperty(_T("Window Color"), RGB(210,
192, 254), NULL, _T("Specifies the default dialog color"));
pColorProp->EnableOtherButton(_T("Other..."));
pColorProp->EnableAutomaticButton(_T("Default"), ::GetSysColor(COLOR_3DFACE));
pColorProp->SetColor(RGB(255,0,0));
pColorProp->SetColumnsNumber(3);

Inheritance Hierarchy

Requirements

CMFCPropertyGridColorProperty::CMFCPropertyGridColorProperty

CMFCPropertyGridColorProperty(
 const CString& strName,
 const COLORREF& color,
 CPalette* pPalette = NULL,
 LPCTSTR lpszDescr = NULL,
 DWORD_PTR dwData = 0);

The CMFCPropertyGridColorProperty class supports a color property that can be added to a property list control.
For more information, see the CMFCPropertyGridCtrl Class.

The following example demonstrates how to construct an object of the CMFCPropertyGridColorProperty class and
configure this object by using various methods of the CMFCPropertyGridColorProperty class. The code explains how
to enable the automatic and other buttons, and how to set the color and the columns number. This example is part
of the New Controls sample.

CObject

CMFCPropertyGridProperty

CMFCPropertyGridColorProperty

Header: afxpropertygridctrl.h

Constructs a CMFCPropertyGridColorProperty object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ParametersParameters

CMFCPropertyGridColorProperty::EnableAutomaticButton

void EnableAutomaticButton(
 LPCTSTR lpszLabel,
 COLORREF colorAutomatic,
 BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridColorProperty::EnableOtherButton

void EnableOtherButton(
 LPCTSTR lpszLabel,
 BOOL bAltColorDlg = TRUE,
 BOOL bEnable = TRUE);

ParametersParameters

strName
[in] The name of the property.

color
[in] The color value of the property.

pPalette
[in] Pointer to a palette of colors. The default value is NULL.

lpszDescr
[in] The property description. The default value is NULL.

dwData
[in] Application-specific data, such as an integer or a pointer to other data that is associated with the property. The
default value is 0.

Enables the automatic button on the color selection dialog box. (The standard automatic button is labeled
Automatic.)

lpszLabel
[in] The label text of the automatic button.

colorAutomatic
[in] The RGB color value of the automatic (default) color.

bEnable
[in] TRUE to enable the automatic button; otherwise, FALSE. The default value is TRUE.

Enables the other button on the color selection dialog box. (The standard other button is labeled More Colors.)

lpszLabel
[in] The label text of the other button.

bAltColorDlg
[in] TRUE to display the CMFCColorDialog dialog box; FALSE to display the standard color selection dialog box. The
default value is TRUE.

RemarksRemarks

CMFCPropertyGridColorProperty::GetColor

COLORREF GetColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridColorProperty::SetColor

void SetColor(COLORREF color);

ParametersParameters

RemarksRemarks

CMFCPropertyGridColorProperty::SetColumnsNumber

void SetColumnsNumber(int nColumnsNumber);

ParametersParameters

RemarksRemarks

CMFCPropertyGridColorProperty::SetOriginalValue

virtual void SetOriginalValue(const COleVariant& varValue);

ParametersParameters

RemarksRemarks

bEnable
[in] TRUE to display the other button; otherwise, FALSE. The default value is TRUE.

Gets the current color of the property.

An RGB color value.

Sets a new color for the property.

color
[in] An RGB color value.

Specifies the number of columns in the current color property grid.

nColumnsNumber
[in] The preferred number of columns in the color property grid.

This method sets the value of the m_nColumnsNumber protected data member.

Sets the original value of an editable property.

varValue
[in] A value.

See also

Use the CMFCPropertyGridProperty::ResetOriginalValue method to reset the original value of an edited property.

Hierarchy Chart
Classes
CMFCPropertyGridCtrl Class
CMFCPropertyGridProperty Class

CMFCPropertyGridCtrl Class
3/4/2019 • 28 minutes to read • Edit Online

Syntax
class CMFCPropertyGridCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCPropertyGridCtrl::CMFCPropertyGridCtrl Constructs a CMFCPropertyGridCtrl object.

CMFCPropertyGridCtrl::~CMFCPropertyGridCtrl Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCPropertyGridCtrl::accHitTest Called by the framework to retrieve the child element or child
object at a given point on the screen. (Overrides
CWnd::accHitTest.)

CMFCPropertyGridCtrl::accLocation Called by the framework to retrieve the specified object's
current screen location. (Overrides CWnd::accLocation.)

CMFCPropertyGridCtrl::accSelect Called by the framework to modify the selection or move the
keyboard focus of the specified object. (Overrides
CWnd::accSelect.)

CMFCPropertyGridCtrl::AddProperty Adds a new property to a property grid control.

CMFCPropertyGridCtrl::AlwaysShowUserToolTip

CMFCPropertyGridCtrl::CloseColorPopup Closes the color selection dialog box.

CMFCPropertyGridCtrl::Create Creates a property grid control and attaches it to the
property grid control object.

CMFCPropertyGridCtrl::DeleteProperty Deletes the specified property from the property grid control.

CMFCPropertyGridCtrl::DrawControlBarColors

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

Supports an editable property grid control that can display properties in alphabetical or hierarchical order.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcpropertygridctrl-class.md

CMFCPropertyGridCtrl::EnableDescriptionArea Enables or disables the description area that is displayed
underneath the list of properties.

CMFCPropertyGridCtrl::EnableHeaderCtrl Enables or disables the header control at the top of the
property grid control.

CMFCPropertyGridCtrl::EnsureVisible Scrolls a property grid control and expands property items
until the specified property is visible.

CMFCPropertyGridCtrl::ExpandAll Expands or collapses all property grid control nodes.

CMFCPropertyGridCtrl::FindItemByData Retrieves the property that is associated with a user-defined
DWORD value.

CMFCPropertyGridCtrl::get_accChild Called by the framework to retrieve the address of an
IDispatch interface for the specified child. (Overrides

CWnd::get_accChild.)

CMFCPropertyGridCtrl::get_accChildCount Called by the framework to retrieve the number of children
belonging to this object. (Overrides
CWnd::get_accChildCount.)

CMFCPropertyGridCtrl::get_accDefaultAction Called by the framework to retrieve a string that describes
the object's default action. (Overrides
CWnd::get_accDefaultAction.)

CMFCPropertyGridCtrl::get_accDescription Called by framework to retrieve a string that describes the
visual appearance of the specified object. (Overrides
CWnd::get_accDescription.)

CMFCPropertyGridCtrl::get_accFocus Called by the framework to retrieve the object that has the
keyboard focus. (Overrides CWnd::get_accFocus.)

CMFCPropertyGridCtrl::get_accHelp Called by the framework to retrieve an object's Help
property string. (Overrides CWnd::get_accHelp.)

CMFCPropertyGridCtrl::get_accHelpTopic Called by the framework to retrieve the full path of the
WinHelp file associated with the specified object and the
identifier of the appropriate topic within that file. (Overrides
CWnd::get_accHelpTopic.)

CMFCPropertyGridCtrl::get_accKeyboardShortcut Called by the framework to retrieve the specified object's
shortcut key or access key. (Overrides
CWnd::get_accKeyboardShortcut.)

CMFCPropertyGridCtrl::get_accName Called by the framework to retrieve the name of the specified
object. (Overrides CWnd::get_accName.)

CMFCPropertyGridCtrl::get_accRole Called by the framework to retrieve information that
describes the role of the specified object. (Overrides
CWnd::get_accRole.)

CMFCPropertyGridCtrl::get_accSelection Called by the framework to retrieve the selected children of
this object. (Overrides CWnd::get_accSelection.)

NAME DESCRIPTION

CMFCPropertyGridCtrl::get_accState Called by the framework to retrieve the current state of the
specified object. (Overrides CWnd::get_accState.)

CMFCPropertyGridCtrl::get_accValue Called by the framework to retrieve the value of the specified
object. (Overrides CWnd::get_accValue.)

CMFCPropertyGridCtrl::GetBkColor Retrieves the background color of the current property grid
control.

CMFCPropertyGridCtrl::GetBoldFont Retrieves the Windows font that of text in the current
property grid control in bold style.

CMFCPropertyGridCtrl::GetCurSel Retrieves the currently selected property.

CMFCPropertyGridCtrl::GetCustomColors Retrieves the custom colors that are currently defined for
property grid control elements.

CMFCPropertyGridCtrl::GetDescriptionHeight Retrieves the height of the description area located at the
bottom of the property grid control.

CMFCPropertyGridCtrl::GetDescriptionRows Retrieves the number of rows in the description area of the
current property grid control.

CMFCPropertyGridCtrl::GetHeaderCtrl Retrieves the internal CMFCHeaderCtrl object that the
framework uses to display the current property grid control.

CMFCPropertyGridCtrl::GetHeaderHeight Retrieves the height of the property grid control header.

CMFCPropertyGridCtrl::GetLeftColumnWidth Retrieves the width of the left column of the current property
grid control, which contains the name of each property.

CMFCPropertyGridCtrl::GetListRect Retrieves the bounding rectangle of the property grid
control.

CMFCPropertyGridCtrl::GetProperty Retrieves a pointer to the property object that corresponds
to the specified index of a property grid control item.

CMFCPropertyGridCtrl::GetPropertyColumnWidth Retrieves the current width of the column that contains
property values.

CMFCPropertyGridCtrl::GetPropertyCount Retrieves the number of properties in a property grid control.

CMFCPropertyGridCtrl::GetRowHeight Retrieves the height of a row in the property grid control.

CMFCPropertyGridCtrl::GetScrollBarCtrl Retrieves a pointer to the scroll bar control in the property
grid control. (Overrides CWnd::GetScrollBarCtrl.)

CMFCPropertyGridCtrl::GetTextColor Retrieves the color of the text of property items in the
current property grid control.

CMFCPropertyGridCtrl::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

NAME DESCRIPTION

CMFCPropertyGridCtrl::HitTest Retrieves a pointer to the property object that corresponds
to a property grid control item if a specified point is in the
item. This method also indicates the area in the property grid
control that contains the point.

CMFCPropertyGridCtrl::InitHeader Initializes the internal CMFCHeaderCtrl object that the
framework uses to display the current property grid control.

CMFCPropertyGridCtrl::IsAlphabeticMode Indicates whether a property grid control is in alphabetic
mode.

CMFCPropertyGridCtrl::IsAlwaysShowUserToolTip

CMFCPropertyGridCtrl::IsDescriptionArea Indicates whether the description area of the property grid
control is displayed.

CMFCPropertyGridCtrl::IsGroupNameFullWidth Indicates whether each property group name is displayed
across the width of the current property grid control.

CMFCPropertyGridCtrl::IsHeaderCtrl Indicates whether the header control is displayed.

CMFCPropertyGridCtrl::IsMarkModifiedProperties Indicates how the property grid control displays modified
properties.

CMFCPropertyGridCtrl::IsShowDragContext Indicates whether the framework redraws the name and
value columns of the current property grid control when a
user resizes the columns.

CMFCPropertyGridCtrl::IsVSDotNetLook Indicates whether the appearance of the property grid
control is in the style that is used by VS .NET.

CMFCPropertyGridCtrl::MarkModifiedProperties Specifies how to display modified properties.

CMFCPropertyGridCtrl::PreTranslateMessage Used by class CWinApp to translate window messages before
they are dispatched to the TranslateMessage and
DispatchMessage Windows functions. (Overrides
CWnd::PreTranslateMessage.)

CMFCPropertyGridCtrl::RemoveAll Removes all property objects from a property grid control.

CMFCPropertyGridCtrl::ResetOriginalValues Restores the original value of all properties.

CMFCPropertyGridCtrl::SetAlphabeticMode Sets or resets alphabetical mode.

CMFCPropertyGridCtrl::SetBoolLabels Specifies the text of Boolean labels.

CMFCPropertyGridCtrl::SetCurSel Selects a property in a property grid control.

CMFCPropertyGridCtrl::SetCustomColors Specifies custom colors for various property grid control
elements.

CMFCPropertyGridCtrl::SetDescriptionRows Specifies the number of rows to display in the description
section of the current property grid control.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CMFCPropertyGridCtrl::SetGroupNameFullWidth Specifies whether to display the full width of the category
name for a group of properties in the current property grid
control.

CMFCPropertyGridCtrl::SetListDelimiter Defines a character that will be used as a delimiter in a list of
property values.

CMFCPropertyGridCtrl::SetShowDragContext Specifies whether the framework redraws the name and value
columns of the current property grid control when a user
resizes the columns.

CMFCPropertyGridCtrl::SetVSDotNetLook Sets the appearance of the property grid control to the style
that is used in VS .NET.

CMFCPropertyGridCtrl::UpdateColor Sets the color value of the currently selected color property.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCPropertyGridCtrl::AdjustLayout Redraws the property grid control and its properties.

CMFCPropertyGridCtrl::CompareProps Called by the property grid control to sort properties.

CMFCPropertyGridCtrl::EditItem Called by the framework when the user starts to modify a
property.

CMFCPropertyGridCtrl::EndEditItem Called by the framework when the user stops modifying a
property.

CMFCPropertyGridCtrl::Init Called by the framework to initialize a property grid control.

CMFCPropertyGridCtrl::OnChangeSelection Called by the framework when the current selection is
changed.

CMFCPropertyGridCtrl::OnClickButton Called by the framework when a property button is clicked.

CMFCPropertyGridCtrl::OnDrawBorder Called by the framework to draw a border around a property
grid control.

CMFCPropertyGridCtrl::OnDrawDescription Called by the framework to draw the description area and
display the description text.

CMFCPropertyGridCtrl::OnDrawList Called by the framework to display the list of properties in
the property grid control.

CMFCPropertyGridCtrl::OnDrawProperty Called by the framework to display a property.

CMFCPropertyGridCtrl::OnPropertyChanged Called by the framework when the value of a property is
changed.

CMFCPropertyGridCtrl::OnSelectCombo Called by the framework when a property that contains a
combo box control is selected.

CMFCPropertyGridCtrl::ValidateItemData Called by the framework to validate property data.

NAME DESCRIPTION

Remarks

Selection Properties

CLASS DESCRIPTION

CMFCPropertyGridProperty Class A general purpose property that is used to specify the value
of strings, Booleans, dates and so on.

CMFCPropertyGridColorProperty Class A property that is used to select a color value.

CMFCPropertyGridFileProperty Class A property that is used to select a file.

CMFCPropertyGridFontProperty Class A property that is used to select a font.

Illustrations

The CMFCPropertyGridCtrl class displays a property grid control that contains editable properties derived from
the CMFCPropertyGridProperty class. Each property can represent a type and it can contain subitems. The
property grid control supports a resizable area at the bottom that can display the description of a selected
property.

To use a property grid control, construct a CMFCPropertyGridCtrl object and then call the
CMFCPropertyGridCtrl::Create method. Use the CMFCPropertyGridCtrl::AddProperty method to add properties
to the list.

Instead of representing a value, a property item can start a dialog box that enables the user to select a color, file,
or font.

The following table lists four selection property types:

The following illustrations depict a property grid control that displays properties in two ways. The first
illustration displays properties hierarchically and the second displays properties alphabetically.

Example

CMFCPropertyGridCtrl m_wndPropList;

m_wndPropList.EnableHeaderCtrl();
m_wndPropList.EnableDescriptionArea();
m_wndPropList.SetVSDotNetLook(m_bDotNetLook);
// BOOL m_bMarkChanged
m_wndPropList.MarkModifiedProperties(m_bMarkChanged);
// BOOL m_bPropListCategorized
m_wndPropList.SetAlphabeticMode(!m_bPropListCategorized);
// BOOL m_bShowDragContext
m_wndPropList.SetShowDragContext(m_bShowDragContext);

// BOOL m_bMarkSortedColumn
m_wndList.EnableMarkSortedColumn(m_bMarkSortedColumn);

// BOOL m_bPropListCustomColors
// set custom colors for various elements of the property grid control
if (m_bPropListCustomColors)
{
 m_wndPropList.SetCustomColors(RGB(228, 243, 254), RGB(46, 70, 165), RGB(200, 236, 209), RGB(33, 102, 49),
RGB(255, 229, 216), RGB(128, 0, 0), RGB(159, 159, 255));
}
else
{
 COLORREF c = (COLORREF)-1;
 m_wndPropList.SetCustomColors(c, c, c, c, c, c, c);
}

m_wndPropList.RedrawWindow();

// restore original values of the properties
m_wndPropList.ResetOriginalValues();

Inheritance Hierarchy

Requirements

The following example demonstrates how to configure a property grid control object by using various methods
in the CMFCPropertyGridCtrl class. The example demonstrates how to enable the header control, enable the
description area, and set the appearance of the property grid control. The example also shows how to set the
alphabetic mode for the control whereby the control sorts all the properties it contains by their property name,
and how to set the custom colors for various elements of the property grid control. This example is part of the
New Controls sample.

CObject

CCmdTarget

CWnd

CMFCPropertyGridCtrl

Header: afxpropertygridctrl.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCPropertyGridCtrl::accSelect
virtual HRESULT accSelect(
 long flagsSelect,
 VARIANT varChild);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::AddProperty

int AddProperty(
 CMFCPropertyGridProperty* pProp,
 BOOL bRedraw=TRUE,
 BOOL bAdjustLayout=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::AdjustLayout

virtual void AdjustLayout();

RemarksRemarks

[in] flagsSelect
[in] varChild

Adds a new property to a property grid control.

pProp
[in] Pointer to a property.

bRedraw
[in] TRUE to redraw the property immediately; otherwise, FALSE. The default value is TRUE.

bAdjustLayout
[in] TRUE to recalculate how to draw the text and value of the property, and then draw the property; FALSE to
use existing calculations to draw the property. The default value is TRUE.

If this method succeeds, the zero-based index of the position in the property grid control where the property is
added; otherwise, -1.

This method adds a pointer to the specified property to the end of the list of properties in the property grid
control. Do not destroy the properties or allow them to go out of scope before the grid control is destroyed.
When you are done with the property grid control, call CMFCPropertyGridCtrl::RemoveAll to delete all the
added properties. The AddProperty method fails if the specified property has already been added to the list.

Redraws the property grid control and its properties.

This method recalculates how to draw the entire property grid control and its properties, including images, fonts,
and controls.

CMFCPropertyGridCtrl::AlwaysShowUserToolTip
void AlwaysShowUserToolTip(BOOL bShow = TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::CloseColorPopup

virtual void CloseColorPopup();

RemarksRemarks

CMFCPropertyGridCtrl::CMFCPropertyGridCtrl

CMFCPropertyGridCtrl();

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::CompareProps

virtual int CompareProps(
 const CMFCPropertyGridProperty* pProp1,
 const CMFCPropertyGridProperty* pProp2) const;

ParametersParameters

Return ValueReturn Value

RETURN VALUE DESCRIPTION

< 0 The name of the pProp1 parameter is less than the name of
the pProp2 parameter.

0 The name of the pProp1 parameter is equal to the name of
the pProp2 parameter.

[in] bShow

Closes the color selection dialog box.

For more information about the color selection dialog box, see CMFCPropertyGridColorProperty Class.

Constructs a CMFCPropertyGridCtrl object.

Called by the property grid control to sort properties.

pProp1
A pointer to a property.

pProp2
A pointer to a property.

> 0 The name of the pProp1 object is greater than the name of
the pProp2 parameter.

RETURN VALUE DESCRIPTION

RemarksRemarks

CMFCPropertyGridCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// CRect rectPropList
// CMFCPropertyGridCtrl m_wndPropList
// The this pointer points to a CPage5 class which extends the CMFCPropertyPage class.
m_wndPropList.Create(WS_CHILD | WS_VISIBLE | WS_TABSTOP | WS_BORDER, rectPropList, this, (UINT)-1);

CMFCPropertyGridCtrl::DeleteProperty

By default, this method uses the CString::Compare method to compare the CMFCPropertyGridProperty::m_strName

members of the specified parameters.

Creates a property grid control and attaches it to the property grid control object.

dwStyle
[in] A bitwise combination (OR) of window styles.

rect
[in] A bounding rectangle that specifies the size and position of the window, in client coordinates of pParentWnd.

pParentWnd
[in] Pointer to the parent window. Must not be NULL.

nID
[in] The ID of the child window.

TRUE if the window was created successfully; otherwise, FALSE.

To create a property grid control, first call CMFCPropertyGridCtrl::CMFCPropertyGridCtrl to construct a
property grid object. Then call CMFCPropertyGridCtrl::Create .

The following example demonstrates how to use the Create method in CMFCPropertyGridCtrl class. This
example is part of the New Controls sample.

Deletes the specified property from the property grid control.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

BOOL DeleteProperty(
 CMFCPropertyGridProperty*& pProp,
 BOOL bRedraw=TRUE,
 BOOL bAdjustLayout=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::DrawControlBarColors
BOOL DrawControlBarColors() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::EditItem

virtual BOOL EditItem(
 CMFCPropertyGridProperty* pProp,
 LPPOINT lptClick=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::EnableDescriptionArea

pProp
[in] Pointer to a property.

bRedraw
[in] TRUE to redraw the property grid control; otherwise, FALSE. The default value is TRUE.

bAdjustLayout
[in] TRUE to recalculate how to draw all the text, images, and items in the property grid control, and then draw
the control; otherwise, FALSE. The default value is TRUE.

TRUE if this method is successful; otherwise, FALSE.

Use this method to delete a property, and any sub-items, from the property grid control.

Called by the framework when the user starts to modify a property.

pProp
[in] Pointer to a property.

lptClick
[in] The point on the property grid control that the user clicked to begin the edit operation. The point is in the
client coordinates of the control. The default value is NULL.

TRUE if method is successful; otherwise, FALSE.

Enables or disables the description area that is displayed underneath the list of properties in the property grid

void EnableDescriptionArea(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::EnableHeaderCtrl

void EnableHeaderCtrl(
 BOOL bEnable=TRUE,
 LPCTSTR lpszLeftColumn=_T("Property"),
 LPCTSTR lpszRightColumn=_T("Value"));

ParametersParameters

CMFCPropertyGridCtrl::EndEditItem

virtual BOOL EndEditItem(BOOL bUpdateData=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::EnsureVisible

control.

bEnable
[in] TRUE to enable the description area; FALSE to disable the description area. The default value is TRUE.

The description area is displayed at the bottom of the property grid control. By default, the description area is
disabled and not visible.

Enables or disables the header control at the top of the property grid control.

bEnable
[in] TRUE to enable the header control; FALSE to disable the header control. The default value is TRUE.

lpszLeftColumn
[in] The title of the left column of the header control. The default value is Property.

lpszRightColumn
[in] The title of the right column of the header control. The default value is Value.

Called by the framework when the user finishes modifying a property.

bUpdateData
[in] TRUE to specify that the modified property data must be validated when the edit operation is complete;
otherwise, FALSE. The default value is TRUE.

TRUE if the edit operation ends successfully; FALSE if the modified property data is not valid or if the editing
operation should continue.

Scrolls a property grid control and expands property items until the specified property is visible.

void EnsureVisible(
 CMFCPropertyGridProperty* pProp,
 BOOL bExpandParents=FALSE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::ExpandAll

void ExpandAll(BOOL bExpand=TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::FindItemByData

CMFCPropertyGridProperty* FindItemByData(
 DWORD_PTR dwData,
 BOOL bSearchSubItems=TRUE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::get_accChildCount
virtual HRESULT get_accChildCount(long* pcountChildren);

ParametersParameters

pProp
[in] Pointer to a property.

bExpandParents
[in] TRUE to expand parent items to make the specified property visible; otherwise, FALSE. The default is FALSE.

Expands or collapses all property grid control nodes.

bExpand
[in] TRUE to expand all nodes; FALSE to collapse all nodes. The default value is TRUE.

Retrieves the property that is associated with a user-defined DWORD value.

dwData
[in] A DWORD value.

bSearchSubItems
[in] TRUE to search property sub-items; otherwise, FALSE. The default value is TRUE.

A pointer to the associated property object if this method succeeds; otherwise, NULL.

Use the CMFCPropertyGridCtrl::CMFCPropertyGridCtrl constructor or CMFCPropertyGridProperty::SetData
method to associate a DWORD with a property.

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::get_accFocus
virtual HRESULT get_accFocus(VARIANT* pvarChild);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::get_accHelp
virtual HRESULT get_accHelp(
 VARIANT varChild,
 BSTR* pszHelp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::get_accHelpTopic
virtual HRESULT get_accHelpTopic(
 BSTR* pszHelpFile,
 VARIANT varChild,
 long* pidTopic);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::get_accKeyboardShortcut
virtual HRESULT get_accKeyboardShortcut(
 VARIANT varChild,
 BSTR* pszKeyboardShortcut);

ParametersParameters

[in] pcountChildren

[in] pvarChild

[in] varChild
[in] pszHelp

[in] pszHelpFile
[in] varChild
[in] pidTopic

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::get_accSelection
virtual HRESULT get_accSelection(VARIANT* pvarChildren);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetBkColor

COLORREF GetBkColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetBoldFont

CFont& GetBoldFont();

Return ValueReturn Value

CMFCPropertyGridCtrl::GetCurSel

CMFCPropertyGridProperty* GetCurSel() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetCustomColors

[in] varChild
[in] pszKeyboardShortcut

[in] pvarChildren

Retrieves the background color of the current property grid control.

An RGB color value.

This method retrieves the color that the framework uses to draw the background of the current property grid
control. The CMFCPropertyGridCtrl::GetTextColor method retrieves the foreground color.

Retrieves the Windows font that is used to draw text in the current property grid control in bold style.

A reference to a CFont object that describes the characteristics of a bold font.

Retrieves the currently selected property.

A pointer to the property object that corresponds to the selected item in the property grid control.

void GetCustomColors(
 COLORREF& clrBackground,
 COLORREF& clrText,
 COLORREF& clrGroupBackground,
 COLORREF& clrGroupText,
 COLORREF& clrDescriptionBackground,
 COLORREF& clrDescriptionText,
 COLORREF& clrLine);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::GetDescriptionHeight

int GetDescriptionHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetDescriptionRows

Retrieves the custom colors that are currently defined for property grid control elements.

clrBackground
[out] The background color of property values.

clrText
[out] The color of property names and property value text.

clrGroupBackground
[out] The background color of a property group.

clrGroupText
[out] The color of text in the property group.

clrDescriptionBackground
[out] The background color of the description area.

clrDescriptionText
[out] The color of text in the description area.

clrLine
[out] The color of lines that are drawn between properties.

Use the CMFCPropertyGridCtrl::SetCustomColors method to set custom colors.

Retrieves the height of the description area, which is located at the bottom of the property grid control.

The height of the description area, in pixels.

The height of the description area is calculated automatically and is set to 1/4 the height of the property grid
control.

Use the CMFCPropertyGridCtrl::EnableDescriptionArea method to display or hide the description area. Use the
CMFCPropertyGridCtrl::IsDescriptionArea method to determine whether the description area is displayed or
hidden.

Retrieves the number of rows in the description area of the current property grid control.

int GetDescriptionRows() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetHeaderCtrl

virtual CMFCHeaderCtrl& GetHeaderCtrl();

Return ValueReturn Value

CMFCPropertyGridCtrl::GetHeaderHeight

int GetHeaderHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetLeftColumnWidth

int GetLeftColumnWidth() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetListRect

CRect GetListRect() const;

Return ValueReturn Value

The number of rows in the description area of the current property grid control.

The CMFCPropertyGridCtrl::CMFCPropertyGridCtrl constructor initializes the description area to 3 rows.

Retrieves the internal CMFCHeaderCtrl object that the framework uses to display the current property grid
control.

A reference to a CMFCHeaderCtrl object.

Retrieves the height of the header of a property grid control.

The height of the header, in pixels.

Retrieves of the width of the left column of the current property grid control, which contains the name of each
property.

The width of the name column.

The right column of a property grid control contains the value of each property.

Retrieves the bounding rectangle of the property grid control.

The bounding rectangle of the property grid control. This rectange does not include the description area and

RemarksRemarks

CMFCPropertyGridCtrl::GetProperty

CMFCPropertyGridProperty* GetProperty(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetPropertyColumnWidth

int GetPropertyColumnWidth() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetPropertyCount

int GetPropertyCount() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetRowHeight

header.

Retrieves a pointer to the property object that corresponds to the specified index of an item in a property grid
control.

nIndex
[in] The zero-based index of a property grid control item.

This method asserts if the nIndex parameter is less than zero or greater than or equal to the number of
properties.

A pointer to the property object that corresponds to the specified index if this method is successful; otherwise,
NULL .

Retrieves the current width of the column that contains property values.

The current width of the column that contains property values.

The column on the right in the property grid control contains the property values. A customer can use the split
box of the property grid control to change the width of the values column.

Retrieves the number of properties in a property grid control.

The number of properties.

Retrieves the height of a row in the property grid control.

int GetRowHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetScrollBarCtrl

virtual CScrollBar* GetScrollBarCtrl(int nBar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::GetTextColor

COLORREF GetTextColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::HitTest

CMFCPropertyGridProperty* HitTest(
 CPoint pt,
 CMFCPropertyGridProperty::ClickArea* pnArea=NULL,
 BOOL bPropsOnly=FALSE) const;

ParametersParameters

The height of a row.

The height of a row is equal to the current font height plus 4 pixels.

Retrieves a pointer to the scroll bar control in the property grid control.

nBar
[in] The orientation of the scroll bar, which must be SB_VERT.

A pointer to a scroll bar object, or NULL if there is no scroll bar or the scroll bar orientation is SB_HORZ.

Use this method to gain direct access to the vertical scroll bar control.

Retrieves the color that is used to draw the text of property items in the current property grid control.

An RGB color value.

This method retrieves the color that the framework uses to draw the foreground of the current property grid
control. The CMFCPropertyGridCtrl::GetBkColor method retrieves the background color.

Retrieves a pointer to the property object that corresponds to a property grid control item if a specified point is
in the item. This method also indicates the area in the property grid control that contains the point.

pt
[in] A point, in client coordinates.

Return ValueReturn Value

RemarksRemarks

VALUE AREA

ClickArea::ClickExpandBox Property expand box control.

ClickArea::ClickName Property name.

ClickArea::ClickValue Property value.

CMFCPropertyGridProperty::ClickDescription Property grid control description area.

CMFCPropertyGridCtrl::Init

virtual void Init();

RemarksRemarks

CMFCPropertyGridCtrl::InitHeader

virtual void InitHeader();

CMFCPropertyGridCtrl::IsAlphabeticMode

pnArea
[in, out] A pointer to a ClickArea variable. When this method returns, the variable indicates the property area
that contains the specified point. For more information about a property area, see Remarks.

bPropsOnly
[in] TRUE to test only the property area; FALSE to test the description area if the specified point is not in the
property area. The default value is FALSE. For more information about the description area, see Remarks.

If the bPropsOnly parameter is TRUE and the specified point is in a property area, the return value is a pointer to
the corresponding property object. In addition, the pnArea parameter is set to the particular area that contains
the specified point. Otherwise, the return value is NULL and the pnArea parameter is not modified.

If the bPropsOnly parameter is FALSE, the return value is always NULL. However, if the specified point is in the
description area, the pnArea parameter is set to CMFCPropertyGridProperty::ClickDescription .

The term property area refers to any one of the name, value, or expand box areas of a property grid control item.
The description area is the zone at the bottom of a property grid control. When you click a property grid control
item, the description area displays a description of the corresponding property.

This method sets the value of the variable that the pnArea parameter points to. The following table lists the
possible values and corresponding areas.

Called by the framework to initialize a property grid control.

Initializes the internal CMFCHeaderCtrl object that the framework uses to display the current property grid
control.

Indicates whether a property grid control is in alphabetic mode.

BOOL IsAlphabeticMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::IsAlwaysShowUserToolTip
BOOL IsAlwaysShowUserToolTip() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::IsDescriptionArea

BOOL IsDescriptionArea() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::IsGroupNameFullWidth

BOOL IsGroupNameFullWidth() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::IsHeaderCtrl

BOOL IsHeaderCtrl() const;

TRUE if the property grid control is in alphabetic mode; otherwise FALSE.

When the property grid control is in alphabetic mode, all properties are sorted alphabetically by their names.
Otherwise, properties are grouped under their parent nodes.

Use the CMFCPropertyGridCtrl::SetAlphabeticMode method to enable or disable alphabetic mode.

Indicates whether the description area of the property grid control is displayed.

TRUE if the description area is displayed; otherwise, FALSE.

Use the CMFCPropertyGridCtrl::EnableDescriptionArea method to hide or display the description area.

Indicates whether each property group name is displayed across the width of the current property grid control.

TRUE if group names are displayed across the width of the property grid control; FALSE if group names are
truncated by the right (value) column of the control.

A group is a collection of related properties in a property grid control. If the control is displayed hierarchically,
the group name is displayed as a category title in the row above the group.

Indicates whether the header control is displayed.

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::IsMarkModifiedProperties

BOOL IsMarkModifiedProperties() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::IsShowDragContext

BOOL IsShowDragContext() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::IsVSDotNetLook

BOOL IsVSDotNetLook() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridCtrl::MarkModifiedProperties

TRUE if the header control is displayed; otherwise FALSE.

Use the CMFCPropertyGridCtrl::EnableHeaderCtrl method to hide or display the header control.

Indicates how the property grid control displays modified properties.

TRUE if bold style is used to display modified properties; FALSE if regular style is used to display modified
properties.

Indicates whether the framework redraws the name and value columns of the current property grid control when
a user resizes the columns.

TRUE if the framework redraws the name and value columns during a resize operation; FALSE if the framework
redraws the columns after the drag operation is completed.

The user can resize the name and value columns of a property grid control by dragging the split bar that is
between the columns. If the drag context is displayed, the name and value columns are resized as long as the
user drags the split bar. Otherwise, the split bar moves but the columns are not redrawn until the drag operation
is completed.

Indicates whether the appearance of the property grid control is in the style of Visual Studio .NET.

TRUE if the property grid control is in the style of Visual Studio .NET; otherwise, FALSE.

Use the CMFCPropertyGridCtrl::SetVSDotNetLook method to set the property grid control to the style of Visual
Studio .NET.

Specifies how to display modified properties.

void MarkModifiedProperties(
 BOOL bMark=TRUE,
 BOOL bRedraw=TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::OnChangeSelection

virtual void OnChangeSelection(
 CMFCPropertyGridProperty* pNewSel,
 CMFCPropertyGridProperty* pOldSel);

ParametersParameters

PARAMETER DESCRIPTION

pNewSel [in] Pointer to the newly selected property.

pOldSel [in] Pointer to the previously selected property.

RemarksRemarks

CMFCPropertyGridCtrl::OnClickButton

virtual void OnClickButton(CPoint point);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::OnDrawBorder

virtual void OnDrawBorder(CDC* pDC);

bMark
[in] TRUE to display modified properties in bold style; FALSE to display modified properties in regular style. The
default value is TRUE.

bRedraw
[in] TRUE to redraw the property grid control immediately; otherwise, FALSE. The default value is TRUE.

Called by the framework when the current selection is changed.

The default implementation of this method does nothing.

Called by the framework when a property button is clicked.

point
[in] A point, in client coordinates.

By default, this method updates the current property value.

Called by the framework to draw a border around a property grid control.

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::OnDrawDescription

virtual void OnDrawDescription(
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::OnDrawList

virtual void OnDrawList(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::OnDrawProperty

virtual int OnDrawProperty(
 CDC* pDC,
 CMFCPropertyGridProperty* pProp) const;

ParametersParameters

Return ValueReturn Value

pDC
[in] A pointer to a device context.

Called by the framework to draw the description area and display the description text.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies where to draw the description area.

Use the CMFCPropertyGridCtrl::EnableDescriptionArea method to display the description area.

Called by the framework to display the list of properties in the property grid control.

pDC
[in] A pointer to a device context.

Called by the framework to display a property.

pDC
[in] A pointer to a device context.

pProp
[in] A pointer to a property object.

TRUE if this method is successful; otherwise, FALSE.

RemarksRemarks

CMFCPropertyGridCtrl::OnPropertyChanged

virtual void OnPropertyChanged(CMFCPropertyGridProperty* pProp) const;

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::OnSelectCombo

void OnSelectCombo();

RemarksRemarks

CMFCPropertyGridCtrl::RemoveAll

void RemoveAll();

RemarksRemarks

CMFCPropertyGridCtrl::ResetOriginalValues

void ResetOriginalValues(BOOL bRedraw=TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::SetAlphabeticMode

void SetAlphabeticMode(BOOL bSet=TRUE);

ParametersParameters

Called by the framework when the value of a property is changed.

pProp
[in] A pointer to a property object whose value has changed.

By default, this method sends the AFX_WM_PROPERTY_CHANGED message to the owner of the property grid
control.

Called by the framework when a property that contains a combo box control is selected.

Removes all property objects from a property grid control.

Restores the original values of all properties.

bRedraw
[in] TRUE to redraw the property list; otherwise, FALSE. The default value is TRUE.

Sets or resets alphabetic mode.

RemarksRemarks

CMFCPropertyGridCtrl::SetBoolLabels

void SetBoolLabels(
 LPCTSTR lpszTrue,
 LPCTSTR lpszFalse);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::SetCurSel

void SetCurSel(
 CMFCPropertyGridProperty* pProp,
 BOOL bRedraw=TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::SetCustomColors

void SetCustomColors(
 COLORREF clrBackground,
 COLORREF clrText,
 COLORREF clrGroupBackground,
 COLORREF clrGroupText,
 COLORREF clrDescriptionBackground,
 COLORREF clrDescriptionText,
 COLORREF clrLine);

bSet
[in] TRUE to set alphabetic mode; FALSE reset alphabetic mode. The default value is TRUE.

When the property grid control is in alphabetic mode, the control sorts all the properties it contains by their
property name.

Specifies the text of Boolean labels.

lpszTrue
[in] The text string to display for the Boolean value of true.

lpszFalse
[in] The text string to display for the Boolean value of false.

Selects a property in a property grid control.

pProp
[in] A pointer to a property object.

bRedraw
[in] TRUE to redraw the property grid control immediately; otherwise, FALSE. The default value is TRUE.

Use this method to cancel the selection of the current item in the property grid control and then select the item
that corresponds to the specified property.

Specifies custom colors for various elements of the property grid control.

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::SetDescriptionRows

void SetDescriptionRows(int nDescRows);

ParametersParameters

CMFCPropertyGridCtrl::SetGroupNameFullWidth

void SetGroupNameFullWidth(
 BOOL bGroupNameFullWidth = TRUE,
 BOOL bRedraw = TRUE);

ParametersParameters

clrBackground
[in] The background color of property values.

clrText
[in] The color of property names and property value text.

clrGroupBackground
[in] The background color of a property group.

clrGroupText
[in] The new text color of property group.

clrDescriptionBackground
[in] The background color of the description area.

clrDescriptionText
[in] The color of text in the description area.

clrLine
[in] The color of lines that are drawn between properties.

For any parameter, specify the ((COLORREF)-1) color value to use the default color for that element of the
property grid control.

To customize the appearance of a specific property, derive a class from the CMFCPropertyGridProperty class and
then override the CMFCPropertyGridProperty::OnDrawName, CMFCPropertyGridProperty::OnDrawValue,
CMFCPropertyGridProperty::OnDrawExpandBox, and CMFCPropertyGridProperty::OnDrawButton methods.

Specifies the number of rows to display in the description section of the current property grid control.

nDescRows
[in] The number of rows to display in the property description.

Specifies whether to display the full width of the category name for a group of properties in the current property
grid control.

bGroupNameFullWidth
[in] TRUE to display the complete width of the category name regardless of the width of the property name
column. FALSE to limit the width of the category name to the width of the property name column. The default
value is TRUE.

RemarksRemarks

CMFCPropertyGridCtrl::SetListDelimiter

void SetListDelimiter(TCHAR c);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::SetShowDragContext

void SetShowDragContext(BOOL bShowDragContext = TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::SetVSDotNetLook

bRedraw
[in] TRUE to update the property grid control immediately; FALSE to update the control when the next redraw
event occurs. The default value is TRUE.

The property grid control consists of a resizable property name column and a property value column. The end of
the name column is also the start of the value column. To resize the columns, drag the border between the
columns.

The terms group name and category name are used interchangeably in this method. The category name is
displayed on a row that heads a set of related properties and values. This method specifies whether the width of
the property name column also specifies the width of the displayed category name.

Defines a character that is used as a delimiter in a list of property values.

c
[in] A character to serve as a delimiter.

Use this method to define a delimiter character in a list of property values that are used in the
CMFCPropertyGridProperty::CMFCPropertyGridProperty constructor. In that constructor, set the bIsValueList
parameter to TRUE.

By default, the CMFCPropertyGridCtrl::CMFCPropertyGridCtrl constructor sets the delimiter character to
comma (',').

Specifies whether the framework redraws the name and value columns of the current property grid control when
a user resizes the columns.

bShowDragContext
[in] TRUE to redraw the name and value columns during a resize operation; FALSE to redraw the columns after
the drag operation is completed. The default value is TRUE.

The user can resize the name and value columns of a property grid control by dragging the split bar that is
between the columns. If the drag context is displayed, the name and value columns are resized as long as the
user drags the split bar. Otherwise, the split bar moves but the columns are not redrawn until the drag operation
is completed.

Sets the appearance of the property grid control to the style that is used in Visual Studio .NET.

void SetVSDotNetLook(BOOL bSet=TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::UpdateColor

virtual void UpdateColor(COLORREF color);

ParametersParameters

RemarksRemarks

CMFCPropertyGridCtrl::ValidateItemData

virtual BOOL ValidateItemData(CMFCPropertyGridProperty* pProp);

ParametersParameters

PARAMETER DESCRIPTION

pProp [in] Pointer to a property. This parameter is not used.

Return ValueReturn Value

RemarksRemarks

See also

bSet
[in] TRUE to set the property grid control to the style that is used in Visual Studio .NET; otherwise, FALSE. The
default value is TRUE.

Sets the color value of the currently selected color property.

color
[in] An RGB color value.

This method asserts in debug mode if the currently selected property of the property grid control is not a color
property.

Called by the framework to validate property data.

Always TRUE.

The CMFCPropertyGridCtrl::EndEditItem method calls this method to validate data. By default, this method does
not use its pProp parameter and its return value is always TRUE.

If you override this method, return TRUE if the specified property data is valid. Otherwise, return FALSE, in
which case the framework does not update the property.

Hierarchy Chart
Classes

CMFCPropertyGridFileProperty Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCPropertyGridFileProperty : public CMFCPropertyGridProperty

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCPropertyGridFileProperty::CMFCPropertyGridFilePropert
y

Constructs a CMFCPropertyGridFileProperty object.

CMFCPropertyGridFileProperty::~CMFCPropertyGridFilePropertyDestructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCPropertyGridFileProperty::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCPropertyGridFileProperty::OnClickButton (Overrides CMFCPropertyGridProperty::OnClickButton.)

RemarksRemarks

Inheritance Hierarchy

Requirements

CMFCPropertyGridFileProperty::CMFCPropertyGridFileProperty

The CMFCPropertyGridFileProperty class supports a property list control item that opens a file selection dialog box.

CObject

CMFCPropertyGridProperty

CMFCPropertyGridFileProperty

Header: afxpropertygridctrl.h

Constructs a CMFCPropertyGridFileProperty object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcpropertygridfileproperty-class.md

CMFCPropertyGridFileProperty(
 const CString& strName,
 BOOL bOpenFileDialog,
 const CString& strFileName,
 LPCTSTR lpszDefExt=NULL,
 DWORD dwFlags=OFN_HIDEREADONLY|OFN_OVERWRITEPROMPT,
 LPCTSTR lpszFilter=NULL,
 LPCTSTR lpszDescr=NULL,
 DWORD_PTR dwData=0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// CMFCPropertyGridProperty* pGroup3
static TCHAR BASED_CODE szFilter[] = _T("Icon Files(*.ico)|*.ico|All Files(*.*)|*.*||");
pGroup3->AddSubItem(new CMFCPropertyGridFileProperty(_T("Icon"), TRUE, _T(""), _T("ico"), 0, szFilter,
_T("Specifies the dialog icon")));

See also

strName
[in] The property name.

bOpenFileDialog
[in] TRUE to open an Open File dialog box; FALSE to open a Save File dialog box.

strFileName
[in] The initial file name.

lpszDefExt
[in] A string of one or more file name extensions. The default value is NULL.

dwFlags
[in] Dialog box flags. The default value is a bitwise combination (OR) of OFN_HIDEREADONLY and
OFN_OVERWRITEPROMPT.

lpszFilter
[in] A string of one or more file filters. The default value is NULL.

lpszDescr
[in] The property item description. The default value is NULL.

dwData
[in] Application-specific data that is associated with the property item. For example, a 32-bit integer or a pointer to
other data. The default value is 0.

For a full list of available flags, see OPENFILENAME structure.

The following example demonstrates how to create an object using the constructor of the
CMFCPropertyGridFileProperty class. This example is part of the Visual Studio Demo sample.

Hierarchy Chart
Classes
CMFCPropertyGridCtrl Class
CMFCPropertyGridProperty Class

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagofna
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCPropertyGridFontProperty Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCPropertyGridFontProperty : public CMFCPropertyGridProperty

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCPropertyGridFontProperty::CMFCPropertyGridFontProp
erty

Constructs a CMFCPropertyGridFontProperty object.

CMFCPropertyGridFontProperty::~CMFCPropertyGridFontPropertyDestructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCPropertyGridFontProperty::FormatProperty Formats the text representation of a property value.
(Overrides CMFCPropertyGridProperty::FormatProperty.)

CMFCPropertyGridFontProperty::GetColor Retrieves the font color that the user selects from the font
dialog box.

CMFCPropertyGridFontProperty::GetLogFont Retrieves the font that the user selects from the font dialog
box.

CMFCPropertyGridFontProperty::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCPropertyGridFontProperty::OnClickButton Called by the framework when the user clicks a button that is
contained in a property. (Overrides
CMFCPropertyGridProperty::OnClickButton.)

Remarks

Inheritance Hierarchy

The CMFCPropertyGridFileProperty class supports a property list control item that opens a font selection dialog
box.

CObject

CMFCPropertyGridProperty

CMFCPropertyGridFontProperty

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcpropertygridfontproperty-class.md

Requirements

CMFCPropertyGridFontProperty::CMFCPropertyGridFontProperty

CMFCPropertyGridFontProperty(
 const CString& strName,
 LOGFONT& lf,
 DWORD dwFontDialogFlags = CF_EFFECTS | CF_SCREENFONTS,
 LPCTSTR lpszDescr = NULL,
 DWORD_PTR dwData = 0,
 COLORREF color = (COLORREF)-1);

ParametersParameters

RemarksRemarks

ExampleExample

// LOGFONT lf
// CMFCPropertyGridProperty* pGroupFont
pGroupFont->AddSubItem(new CMFCPropertyGridFontProperty(_T("Font"), lf, CF_EFFECTS | CF_SCREENFONTS,
_T("Specifies the default font for the dialog")));

CMFCPropertyGridFontProperty::GetColor

COLORREF GetColor() const;

Header: afxpropertygridctrl.h

Constructs a CMFCPropertyGridFontProperty object.

strName
[in] The name of the property.

lf
[in] A logical font structure that specifies the attributes of the font.

dwFontDialogFlags
[in] Styles that are applied to the font dialog box that is displayed when you click the property value drop-down
button. The default value is the bitwise combination (OR) of CF_EFFECTS and CF_SCREENFONTS. For more
information, see the Flags parameter of the CHOOSEFONT Structure.

lpszDescr
[in] Description of the font property. The default value is NULL.

dwData
[in] Application-specific data, such as an integer or a pointer to other data that is associated with the property. The
default value is 0.

color
[in] The color of the font. The default value is the default color.

A CMFCPropertyGridFontProperty object represents a font property in a property grid font control.

The following example demonstrates how construct an object of the CMFCPropertyGridFontProperty class. This
example is part of the New Controls sample.

Retrieves the font color that the user selects from the font dialog box.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagchoosefonta
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridFontProperty::GetLogFont

LPLOGFONT GetLogFont();

Return ValueReturn Value

RemarksRemarks

See also

An RGB color value that represents the selected font color.

Retrieves the font that the user selects from the font dialog box.

A pointer to a LOGFONT structure that describes the selected font.

Hierarchy Chart
Classes
CMFCPropertyGridCtrl Class
CMFCPropertyGridProperty Class

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta

CMFCPropertyGridProperty Class
3/4/2019 • 24 minutes to read • Edit Online

Syntax
class CMFCPropertyGridProperty : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCPropertyGridProperty::CMFCPropertyGridProperty Constructs a CMFCPropertyGridProperty object.

CMFCPropertyGridProperty::~CMFCPropertyGridProperty Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCPropertyGridProperty::AddOption Adds a new list item to a property list control.

CMFCPropertyGridProperty::AddSubItem Adds a child item to a property.

CMFCPropertyGridProperty::AdjustButtonRect Called by the parent property list control to tell a property
to resize the bounding rectangle of an embedded button.

CMFCPropertyGridProperty::AdjustInPlaceEditRect Retrieves the boundaries of the text box and optional spin
button control that are used to set a property value.

CMFCPropertyGridProperty::AllowEdit Makes a property either editable or read-only.

CMFCPropertyGridProperty::CreateInPlaceEdit Called by the framework to create an editable control for a
property.

CMFCPropertyGridProperty::CreateSpinControl Called by the framework to create an editable spin button
control.

CMFCPropertyGridProperty::Enable Enables or disables a property.

CMFCPropertyGridProperty::EnableSpinControl Enables or disables a spin button control that is used to
modify a property value.

A CMFCPropertyGridProperty object represents a list item in a property list control.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcpropertygridproperty-class.md

CMFCPropertyGridProperty::Expand Expands or collapses a property that contains sub-
properties.

CMFCPropertyGridProperty::FormatProperty Formats the text representation of a property value.

CMFCPropertyGridProperty::GetData Retrieves a DWORD value that is associated with a property.

CMFCPropertyGridProperty::GetDescription Retrieves a property description.

CMFCPropertyGridProperty::GetExpandedSubItems Retrieves the number of expanded sub-items.

CMFCPropertyGridProperty::GetHierarchyLevel Retrieves the zero-based index of the property's hierarchy
level.

CMFCPropertyGridProperty::GetName Retrieves the name of the property.

CMFCPropertyGridProperty::GetNameTooltip Called by the framework to display the name of the property
in a tooltip.

CMFCPropertyGridProperty::GetOption Retrieves the text of the option that is specified by an index.

CMFCPropertyGridProperty::GetOptionCount Retrieves the number of options that belong to a property.

CMFCPropertyGridProperty::GetOriginalValue Retrieves the initial value of the current property.

CMFCPropertyGridProperty::GetParent Retrieves a pointer to a parent property.

CMFCPropertyGridProperty::GetRect Retrieves the bounding rectangle of a property.

CMFCPropertyGridProperty::GetSubItem Retrieves a sub-property identified by a zero-based index.

CMFCPropertyGridProperty::GetSubItemsCount Retrieves the number of sub-items.

CMFCPropertyGridProperty::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCPropertyGridProperty::GetValue Retrieves a property value.

CMFCPropertyGridProperty::GetValueTooltip Called by the framework to retrieve the text representation
of the property value that is then displayed in a tooltip.

CMFCPropertyGridProperty::HitTest Points to the property object that corresponds to the
property list item that corresponds to a point.

CMFCPropertyGridProperty::IsAllowEdit Indicates whether a property is editable.

CMFCPropertyGridProperty::IsEnabled Indicates whether a property is enabled or disabled.

CMFCPropertyGridProperty::IsExpanded Indicates whether a property is expanded or collapsed.

CMFCPropertyGridProperty::IsGroup Indicates whether the current property represents a group.

NAME DESCRIPTION

CMFCPropertyGridProperty::IsInPlaceEditing Indicates whether the current property is editable.

CMFCPropertyGridProperty::IsModified Indicates whether the current property is modified.

CMFCPropertyGridProperty::IsParentExpanded Indicates whether the parents of the current property are
expanded.

CMFCPropertyGridProperty::IsSelected Indicates whether the current property is selected.

CMFCPropertyGridProperty::IsVisible Indicates whether the current property is visible.

CMFCPropertyGridProperty::OnClickButton Called by the framework when the user clicks a button that
is contained in a property.

CMFCPropertyGridProperty::OnClickName Called by a parent property list control when a user clicks
the name field of a property.

CMFCPropertyGridProperty::OnClickValue Called by a parent property list control when a user clicks
the value field of a property.

CMFCPropertyGridProperty::OnCloseCombo Called by the framework when a combo box that is
contained in a property is closed.

CMFCPropertyGridProperty::OnDblClk Called by the framework when the user double clicks a
property.

CMFCPropertyGridProperty::OnDrawButton Called by the framework to draw a button that is contained
in a property.

CMFCPropertyGridProperty::OnDrawDescription Called by the framework to display the property description.

CMFCPropertyGridProperty::OnDrawExpandBox Called by the framework to draw an expand box control near
a property that contains sub-properties.

CMFCPropertyGridProperty::OnDrawName Called by the framework to display the property name.

CMFCPropertyGridProperty::OnDrawValue Called by the framework to display the property value.

CMFCPropertyGridProperty::OnEdit Called by the framework when the user is about to modify a
property value.

CMFCPropertyGridProperty::OnEndEdit Called by the framework when the user is finished modifying
a property value.

CMFCPropertyGridProperty::OnKillSelection

CMFCPropertyGridProperty::OnPosSizeChanged

CMFCPropertyGridProperty::OnRClickName Called by the framework when the user clicks the right
mouse button in the property name area.

NAME DESCRIPTION

CMFCPropertyGridProperty::OnRClickValue Called by the framework when the user clicks the right
mouse button in the property value area.

CMFCPropertyGridProperty::OnSelectCombo Called by the framework when the user selects an item from
the editable combo box.

CMFCPropertyGridProperty::OnSetCursor Called by the framework when the mouse pointer moves to
a property item.

CMFCPropertyGridProperty::OnSetSelection

CMFCPropertyGridProperty::OnUpdateValue Called by the framework when the value of an editable
property has changed.

CMFCPropertyGridProperty::PushChar Called from the property list control when the property is
selected and the user enters a new character.

CMFCPropertyGridProperty::Redraw Redraws the property.

CMFCPropertyGridProperty::RemoveAllOptions Removes all options (items) from a property.

CMFCPropertyGridProperty::RemoveSubItem Removes the specified sub-item.

CMFCPropertyGridProperty::ResetOriginalValue Restores the original value of an edited property.

CMFCPropertyGridProperty::SetData Associates a DWORD value with a property.

CMFCPropertyGridProperty::SetDescription Specifies the text that describes the current property.

CMFCPropertyGridProperty::SetName Sets the name of a property.

CMFCPropertyGridProperty::SetOriginalValue Sets the original value of an editable property.

CMFCPropertyGridProperty::SetValue Sets the value of a property grid property.

CMFCPropertyGridProperty::Show Shows or hides a property.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCPropertyGridProperty::CreateCombo Called by the framework to add a combo box to a property.

CMFCPropertyGridProperty::HasButton Indicates whether a property contains a button.

CMFCPropertyGridProperty::Init Called by the framework to initialize a property object.

CMFCPropertyGridProperty::IsSubItem Indicates whether the specified property is a sub-item of the
current property.

CMFCPropertyGridProperty::IsValueChanged Indicates whether the value of the current property has
changed.

CMFCPropertyGridProperty::OnCtlColor Called by the framework when it must retrieve a brush to fill
the background color of a property.

CMFCPropertyGridProperty::OnDestroyWindow Called by the framework when a property is destroyed or
when editing is finished.

CMFCPropertyGridProperty::OnKillFocus Called by the framework when the property loses the input
focus.

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CMFCPropertyGridProperty::m_strFormatDouble Format string for a value of type double.

CMFCPropertyGridProperty::m_strFormatFloat Format string for a value of type float.

CMFCPropertyGridProperty::m_strFormatLong Format string for a value of type long.

CMFCPropertyGridProperty::m_strFormatShort Format string for a value of type short.

Remarks

Example

Use a CMFCPropertyGridProperty object to represent a property, which you then add to a property list control.
For more information, see CMFCPropertyGridCtrl Class.

A property object can represent data types such as strings, dates, and Boolean or integer values. It can contain
child properties, or it can contain a control such as a combo box or a button control.

The following example demonstrates how to construct a CMFCPropertyGridProperty object. The example also
demonstrates how to use various methods in the CMFCPropertyGridProperty class to add an option, add a sub-
item, enable a property, and show a property. This example is part of the New Controls sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCPropertyGridProperty* pGroup1 = new CMFCPropertyGridProperty(_T("Appearance"));

// construct a COleVariant object.
COleVariant var3DLook((short)VARIANT_FALSE, VT_BOOL);

pGroup1->AddSubItem(new CMFCPropertyGridProperty(_T("3D Look"), var3DLook,
 _T("Specifies the dialog's font will be nonbold and controls will have a 3D border")));

CMFCPropertyGridProperty* pProp = new CMFCPropertyGridProperty(_T("Border"),
 _T("Dialog Frame"), _T("One of: None, Thin, Resizable, or Dialog Frame"));
pProp->AddOption(_T("None"));
pProp->AddOption(_T("Thin"));
pProp->AddOption(_T("Resizable"));
pProp->AddOption(_T("Dialog Frame"));
pProp->AllowEdit(FALSE);

pGroup1->AddSubItem(pProp);
pGroup1->AddSubItem(new CMFCPropertyGridProperty(_T("Caption"), (COleVariant) _T("About NewControlsDemo"),
_T("Specifies the text that will be displayed in the dialog's title bar")));
pGroup1->AdjustButtonRect();
pGroup1->AllowEdit();
pGroup1->Enable();
pGroup1->Show();
pGroup1->Redraw();

Inheritance Hierarchy

Requirements

CMFCPropertyGridProperty::AddOption

BOOL AddOption(
 LPCTSTR lpszOption,
 BOOL bInsertUnique=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::AddSubItem

CObject

CMFCPropertyGridProperty

Header: afxpropertygridctrl.h

Adds a new list item to a property list control.

lpszOption
[in] The list item (option) to add.

bInsertUnique
[in] TRUE to add the list item only if it does not already exist; otherwise, FALSE. The default value is TRUE.

TRUE, which means that the list item is added. Otherwise, FALSE, which means that the list item is not added
because the bInsertUnique parameter is TRUE and the list item specified by the lpszOption parameter already
exists.

BOOL AddSubItem(CMFCPropertyGridProperty* pProp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::AdjustButtonRect

virtual void AdjustButtonRect();

RemarksRemarks

CMFCPropertyGridProperty::AdjustInPlaceEditRect

virtual void AdjustInPlaceEditRect(
 CRect& rectEdit,
 CRect& rectSpin);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::AllowEdit

Adds a child item to a property.

pProp
[in] Pointer to a property to add.

TRUE if the specified property is successfully added as a child property. FALSE if the property is not added
because it already occurs in the parent property.

Use this method to create a hierarchical list of parent and child properties. After a child property is added, the
parent property automatically displays an expand box control that is designated by a plus sign (+). When the
user clicks the plus sign, the parent property expands and displays any child property items.

Called by the parent property list control to tell a property to resize the bounding rectangle of an embedded
button.

By default, this method:

Adjusts the width of the button equal to the height of the button plus 3 pixels.

Moves the bounding rectangle of the button to the right edge of the property

Shifts the button 1 pixel below the top edge of the property.

Retrieves the boundaries of the text box and optional spin button control that are used to set a property value.

rectEdit
[out] When this method returns, a rectangle that specifies the boundaries of the text box for the property value.

rectSpin
[out] When this method returns, a rectangle that specifies the boundaries of the spin button control for the
property value. Or, if the property does not support a spin button, an empty rectangle.

The value area of a property consists of a text box and possibly an option button, such as a spin button control.
This method calculates the dimensions of the text box and option button and then returns those values in the
specified parameters.

CMFCPropertyGridProperty::AllowEdit

void AllowEdit(BOOL bAllow=TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::CMFCPropertyGridProperty

CMFCPropertyGridProperty(
 const CString& strGroupName,
 DWORD_PTR dwData=0,
 BOOL bIsValueList=FALSE);

CMFCPropertyGridProperty(
 const CString& strName,
 const _variant_t& varValue,
 LPCTSTR lpszDescr=NULL,
 DWORD_PTR dwData=0,
 LPCTSTR lpszEditMask=NULL,
 LPCTSTR lpszEditTemplate=NULL,
 LPCTSTR lpszValidChars=NULL);

ParametersParameters

Makes a property either editable or read-only.

bAllow
[in] TRUE to make the property editable; FALSE to make the property read-only. The default value is TRUE.

Constructs a CMFCPropertyGridProperty object.

strGroupName
[in] The group name. A group is a collection of related properties in a property grid control. If the control is
displayed hierarchically, the group name is displayed as a category title in the row above the group.

dwData
[in] Application-specific data, such as an integer or a pointer to other data that is associated with the property.
The default value is 0.

strName
[in] The name of the property.

varValue
[in] The property value.

lpszDescr
[in] The property description. The default value is NULL.

lpszEditMask
[in] The edit mask, if the property is a masked edit control. The default value is NULL.

lpszEditTemplate
[in] The edit template, if the property is a masked edit control. The default value is NULL.

lpszValidChars
[in] A list of valid characters, if the property is a masked edit control. The default value is NULL.

bIsValueList

RemarksRemarks

CMFCPropertyGridProperty::CreateCombo

virtual CComboBox* CreateCombo(
 CWnd* pWndParent,
 CRect rect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::CreateInPlaceEdit

virtual CWnd* CreateInPlaceEdit(
 CRect rectEdit,
 BOOL& bDefaultFormat);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::CreateSpinControl

[in] TRUE if the property represents a list of values; FALSE if the property represents a single value. The default
value is FALSE.

Called by the framework to add a combo box to a property.

pWndParent
[in] Pointer to the parent window of the combo box.

rect
[in] The bounding rectangle of the combo box.

Pointer to a new CComboBox object.

Called by the framework to create an editable control for a property.

rectEdit
[in] The bounding rectangle of the editable control.

bDefaultFormat
[in] TRUE to use the default property format to set the text of the editable control; otherwise, FALSE.

A pointer to the editable control if this method succeeds; otherwise, NULL.

This method uses the values of the varValue, lpszEditMask, lpszEditTemplate, and lpszValidChars parameters
that are specified in the CMFCPropertyGridProperty class constructor. By default, this method supports the
varValue variant types. This includes VT_BSTR, VT_R4, VT_R8, VT_UI1, VT_I2, VT_INT, VT_UINT, VT_I4,
VT_UI2, VT_UI4, and VT_BOOL.

This method creates a CMFCMaskedEdit control if one or more of the lpszEditMask, lpszEditTemplate, or
lpszValidChars parameters are specified; otherwise, it creates a CEdit control.

Called by the framework to create an editable spin button control.

virtual CSpinButtonCtrl* CreateSpinControl(CRect rectSpin);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::Enable

void Enable(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::EnableSpinControl

void EnableSpinControl(
 BOOL bEnable=TRUE,
 int nMin=0,
 int nMax=0);

ParametersParameters

RemarksRemarks

rectSpin
[in] A rectangle that defines where the editable spin button control is created.

A pointer to a new CMFCSpinButtonCtrl object that is cast as a pointer to a CSpinButtonCtrl object.

Call the CMFCPropertyGridProperty::EnableSpinControl method to display an editable spin button control at
the right edge of the property.

Enables or disables a property.

bEnable
[in] TRUE to enable the property; FALSE to disable the property. Disabled properties do not respond to mouse
or keyboard input. The default value is TRUE.

Enables or disables a spin button control that is used to modify a property value.

bEnable
[in] TRUE to enable the spin button control; FALSE to disable the spin button control. The default value is TRUE.

nMin
[in] The minimum value of the spin button control. The default value is 0.

nMax
[in] The maximum value of the spin button control. The default value is 0.

The framework automatically creates a spin button control when a property is about to be edited.

The property type, which is specified by the varValue parameter of the
CMFCPropertyGridProperty::CMFCPropertyGridProperty constructor, must be a supported variant type.
Otherwise, this method asserts in debug mode. The supported types include VT_INT, VT_UINT, VT_I2, VT_I4,
VT_UI2, and VT_UI4.

CMFCPropertyGridProperty::Expand

void Expand(BOOL bExpand=TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::FormatProperty

virtual CString FormatProperty();

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetData

DWORD_PTR GetData() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetDescription

const CString& GetDescription() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetExpandedSubItems

Expands or collapses a property that contains sub-properties.

bExpand
[in] TRUE to expand the property; FALSE to collapse the property. The default value is TRUE.

Formats the text representation of a property value.

The text representation of the property value.

This method is called by the framework before the property value is displayed.

Retrieves a DWORD value that is associated with a property.

A DWORD value.

The data that is returned is an application-specific value, such as a number or a pointer to other data. Specify the
data value when you construct the property or when you call the CMFCPropertyGridProperty::SetData method.

Retrieves a property description.

A text string that contains the property description.

Property list control also uses this method to display the description of the property.

int GetExpandedSubItems(BOOL bIncludeHidden=TRUE) const;

ParametersParameters

PARAMETER DESCRIPTION

bIncludeHidden [in] TRUE to include the hidden sub-items in the count;
otherwise, FALSE. The default value is TRUE.

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetHierarchyLevel

int GetHierarchyLevel() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetName

LPCTSTR GetName() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetNameTooltip

virtual CString GetNameTooltip();

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetOption

Retrieves the number of expanded sub-items.

The number of expanded sub-items.

Retrieves the zero-based index of the property's hierarchy level.

The property's hierarchical level.

Retrieves the name of the property.

Pointer to a string that contains the name of the property.

Called by the framework to display the name of the property in a tooltip.

A string that contains the property name. By default, the return value is the empty string.

Retrieves the text of the option that is specified by an index.

LPCTSTR GetOption(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetOptionCount

int GetOptionCount() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetOriginalValue

const COleVariant& GetOriginalValue() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetParent

CMFCPropertyGridProperty* GetParent() const;

Return ValueReturn Value

RemarksRemarks

nIndex
The zero-based index of the property list item (option) to retrieve.

Pointer to a string that contains the option text.

Retrieves the number of options that belong to a property.

The number of property list items (options) that are contained in the property control.

Call the CMFCPropertyGridProperty::AddOption method to add items to the property list. Call the
CMFCPropertyGridProperty::RemoveAllOptions method to remove all items.

Retrieves the initial value of the current property.

The original value of the current property.

Use this method to undo the effect of an edit operation that changes the value of the current property.

The original value of the current property is set by the
CMFCPropertyGridProperty::CMFCPropertyGridProperty constructor, modified by the
CMFCPropertyGridProperty::SetOriginalValue method, and reset by the
CMFCPropertyGridProperty::ResetOriginalValue method.

Retrieves a pointer to a parent property.

A pointer to a parent property object, or NULL for the top-level property.

CMFCPropertyGridProperty::GetRect

CRect GetRect() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetSubItem

CMFCPropertyGridProperty* GetSubItem(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetSubItemsCount

int GetSubItemsCount() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::GetValue

virtual const _variant_t& GetValue() const;

Return ValueReturn Value

RemarksRemarks

Retrieves the bounding rectangle of a property.

A CRect object that describes the bounding rectangle.

Retrieves a sub-property identified by a zero-based index.

nIndex
[in] The zero-based index of the property to retrieve. This parameter is invalid if it is less than zero or greater
than or equal to the number of sub-properties.

A pointer to a property object that is a child item of this property.

-or-

In retail mode, NULL if the nIndex parameter is invalid. In debug mode, this method asserts.

Retrieves the number of sub-items.

The number of child items.

Retrieves a property value.

A variant that contains the property value.

CMFCPropertyGridProperty::GetValueTooltip

virtual CString GetValueTooltip();

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::HasButton

virtual BOOL HasButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::HitTest

CMFCPropertyGridProperty* HitTest(
 CPoint point,
 CMFCPropertyGridProperty::ClickArea* pnArea=NULL);

CMFCPropertyGridProperty* HitTest(
 CPoint pt,
 CMFCPropertyGridProperty::ClickArea* pnArea=NULL,
 BOOL bPropsOnly=FALSE) const;

ParametersParameters

Return ValueReturn Value

Called by the framework to retrieve the text representation of the property value that is then displayed in a
tooltip.

A CString object containing the textual representation of the property value. By default, this value is the empty
string.

Indicates whether a property contains a button.

TRUE if a property contains a button (or property list); otherwise, FALSE.

Points to the property object that corresponds to the property list item that corresponds to a point.

point
[in] The point to test, in client coordinates. This parameter is typically the current mouse pointer location.

pt
[in] The point to test, in client coordinates.

pnArea
[out] When this method returns, indicates the area that contains the specified point. For more information, see
Remarks. The default value is NULL.

bPropsOnly
[in] TRUE to test any area in the property control; FALSE to test only the description area. The default value is
FALSE.

A pointer to a property object or NULL.

RemarksRemarks

AREA DESCRIPTION

ClickArea::ClickExpandBox The expand box control, which is designated by a plus sign
(+).

ClickArea::ClickName The property name.

ClickArea::ClickValue The property value.

CMFCPropertyGridProperty::Init

void Init();

RemarksRemarks

CMFCPropertyGridProperty::IsAllowEdit

BOOL IsAllowEdit() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::IsEnabled

BOOL IsEnabled() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::IsExpanded

BOOL IsExpanded() const;

By default, this method tests property sub-items if the specified point is not found within any of the property
items.

The following table lists the values that can be returned to the pnArea parameter.

Called by the framework to initialize a property object.

Indicates whether a property is editable.

TRUE if the property is editable; otherwise FALSE.

Indicates whether a property is enabled or disabled.

TRUE if the property is enabled; FALSE if the property is disabled.

Tells whether a property is enabled or disabled.

Indicates whether a property is expanded or collapsed.

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::IsGroup

BOOL IsGroup() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::IsInPlaceEditing

BOOL IsInPlaceEditing() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::IsModified

BOOL IsModified() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::IsParentExpanded

BOOL IsParentExpanded() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::IsSelected

TRUE if the property is expanded; FALSE if the property is collapsed.

Indicates whether the current property represents a group.

TRUE if the current property object represents a group; FALSE if the property represents a value.

A group is a collection of related properties in a property grid control. If the control is displayed hierarchically,
the group name is displayed as a category title in the row above the group.

Indicates whether the current property is editable.

TRUE if the current property is editable; otherwise, FALSE.

Indicates whether the current property is modified.

TRUE if the property is modified; otherwise, FALSE.

Indicates whether the parents of the current property are expanded.

TRUE if all parents of the current property are expanded; FALSE if the parent properties are collapsed.

virtual BOOL IsSelected() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::IsSubItem

BOOL IsSubItem(CMFCPropertyGridProperty* pProp) const;

ParametersParameters

Return ValueReturn Value

CMFCPropertyGridProperty::IsValueChanged

virtual BOOL IsValueChanged() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::IsVisible

BOOL IsVisible() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::m_strFormatDouble

static CString m_strFormatDouble;

RemarksRemarks

Indicates whether the current property is selected.

TRUE if the current property is selected; otherwise, FALSE.

Indicates whether the specified property is a sub-item of the current property.

pProp
[in] A pointer to a property.

TRUE if the specified property is a sub-item of the current property; otherwise, FALSE.

Indicates whether the value of the current property has changed.

TRUE if the value of the current property has changed; otherwise, FALSE.

Indicates whether the current property is visible.

TRUE if the current property is visible; otherwise; FALSE.

Holds a format string for a value of type double.

CMFCPropertyGridProperty::m_strFormatFloat

static CString m_strFormatFloat;

RemarksRemarks

CMFCPropertyGridProperty::m_strFormatLong

static CString m_strFormatLong;

RemarksRemarks

CMFCPropertyGridProperty::m_strFormatShort

static CString m_strFormatShort;

RemarksRemarks

CMFCPropertyGridProperty::OnClickButton

virtual void OnClickButton(CPoint point);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::OnClickName

virtual void OnClickName(CPoint C);

ParametersParameters

PARAMETER DESCRIPTION

C [in] A point, in client coordinates.

RemarksRemarks

Holds a format string for a value of type float.

Holds a format string for a value of type long.

Holds a format string for a value of type short.

Called by the framework when the user clicks a button that is contained in a property.

point
[in] A point, in client coordinates.

By default, this method does nothing.

Called by a parent property list control when a user clicks the name field of a property.

By default, this method does nothing.

CMFCPropertyGridProperty::OnClickValue

virtual BOOL OnClickValue(
 UINT uiMsg,
 CPoint point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::OnCloseCombo

virtual void OnCloseCombo();

RemarksRemarks

CMFCPropertyGridProperty::OnCtlColor

virtual HBRUSH OnCtlColor(
 CDC* pDC,
 UINT nCtlColor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::OnDblClk

Called by a parent property list control when a user clicks the value field of a property.

uiMsg
[in] A mouse message.

point
[in] A point, in client coordinates.

TRUE if the specified mouse message is processed by this method; otherwise, FALSE.

By default, this method returns FALSE if the current property is not editable. Otherwise, the edit or spin control
that is associated with this property processes the specified mouse message, and then this method returns
TRUE.

Called by the framework when a combo box that is contained in a property is closed.

Called by the framework when it must retrieve a brush to fill the background color of a property.

pDC
[in] Pointer to a device context.

nCtlColor
[in] (This parameter is not used.)

The handle to a brush if this method is successful; otherwise, NULL.

Called by the framework when the user double clicks a property.

virtual BOOL OnDblClk(CPoint point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::OnDestroyWindow

virtual void OnDestroyWindow();

RemarksRemarks

CMFCPropertyGridProperty::OnDrawButton

virtual void OnDrawButton(
 CDC* pDC,
 CRect rectButton);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::OnDrawDescription

virtual void OnDrawDescription(
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

point
[in] A point, in client coordinates.

TRUE if this method is successful; otherwise, FALSE.

By default, this method selects the next property item in the property list control.

Called by the framework when a property is destroyed or when editing is finished.

Called by the framework to draw a button that is contained in a property.

pDC
[in] A pointer to a device context.

rectButton
[in] A bounding rectangle that specifies where to draw a button.

Called by the framework to draw the property description.

pDC
[in] A pointer to a device context.

rect
[in] A bounding rectangle that specifies where to draw the property description.

CMFCPropertyGridProperty::OnDrawExpandBox

virtual void OnDrawExpandBox(
 CDC* pDC,
 CRect rectExpand);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::OnDrawName

virtual void OnDrawName(
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::OnDrawValue

virtual void OnDrawValue(
 CDC* pDC,
 CRect rect);

ParametersParameters

By default, this method draws the property name and description in the font used by the parent property list
control. The property description is drawn in regular style and the property name is drawn in bold style.

Called by the framework to draw an expand box control near a property that contains sub-properties.

pDC
[in] A pointer to a device context.

rectExpand
[in] A bounding rectangle that specifies where to draw the expand box control.

Click the expand box control to expand or collapse a list of sub-properties. The expand box control is designated
by a square that contains a plus (+) or minus (-) sign. A plus sign indicates that the property can be expanded to
show a list of sub-properties. A minus sign indicates that the list can be collapsed to show only the property.

Called by the framework to display the property name.

pDC
[in] A pointer to a device context.

rect
[in] A bounding rectangle that specifies where to draw the property name.

Called by the framework to display the property value.

pDC
[in] A pointer to a device context.

rect
[in] A bounding rectangle that specifies where to draw the property value.

RemarksRemarks

CMFCPropertyGridProperty::OnEdit

virtual BOOL OnEdit(LPPOINT lptClick);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::OnEndEdit

virtual BOOL OnEndEdit();

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::OnKillFocus

virtual BOOL OnKillFocus(CWnd*);

ParametersParameters

PARAMETER DESCRIPTION

CWnd [in] (Not used.) Pointer to a window.

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::OnKillSelection

Called by the framework when the user is about to modify a property value.

lptClick
[in] (This parameter is not used.) A pointer to a point, in client coordinates.

TRUE if the edit operation starts successfully; otherwise, FALSE.

This function is called by the framework when the user is about to modify a property value. By default, this
method starts the appropriate editor for a combo box control or a spin control.

Called by the framework when the user is finished modifying a property value.

This method always returns TRUE.

By default, this method destroys the current editing control and then returns TRUE.

Called by the framework when the property loses the input focus.

This method always returns TRUE.

By default, this method does nothing and then returns TRUE. If you override this method, return TRUE if the
framework can end the edit operation when the property loses the input focus.

virtual void OnKillSelection(CMFCPropertyGridProperty*);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::OnPosSizeChanged
virtual void OnPosSizeChanged(CRect);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::OnRClickName

virtual void OnRClickName(CPoint C);

ParametersParameters

PARAMETER DESCRIPTION

C [in] A point, in client coordinates.

RemarksRemarks

CMFCPropertyGridProperty::OnRClickValue

virtual void OnRClickValue(
 CPoint C,
 BOOL B);

ParametersParameters

PARAMETER DESCRIPTION

C [in] A point, in client coordinates.

B [in] A Boolean.

RemarksRemarks

[in] CMFCPropertyGridProperty*

By default, this method does nothing.

[in] CRect

By default, this method does nothing.

Called by the framework when the user clicks the right mouse button in the property name area.

By default, this method does nothing.

Called by the framework when the user clicks the right mouse button in the property value area.

By default, this method does nothing and the B parameter has no predefined purpose.

CMFCPropertyGridProperty::OnSelectCombo

virtual void OnSelectCombo();

RemarksRemarks

CMFCPropertyGridProperty::OnSetCursor

virtual BOOL OnSetCursor() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::OnSetSelection
virtual void OnSetSelection CMFCPropertyGridProperty*);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::OnUpdateValue

virtual BOOL OnUpdateValue();

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::PushChar

virtual BOOL PushChar(UINT nChar);

Called by the framework when the user selects an item from the editable combo box.

By default, this method uses the text of the selected item to update the property value.

Called by the framework when the mouse pointer moves to a property item.

TRUE if the current property is a variant type or a list of values, and this method successfully loads the insertion
point (I-beam) mouse cursor; otherwise, FALSE.

This method supports the following variant types: VT_INT, VT_I2, VT_I4, VT_UINT, VT_UI1, VT_UI2, VT_UI4,
VT_R4, VT_R8, and VT_BSTR.

[in] CMFCPropertyGridProperty*

By default, this method does nothing.

Called by the framework when the value of an editable property has changed.

TRUE if this method is successful; otherwise, FALSE.

Called from the property list control when the property is selected and the user enters a new character.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::Redraw

void Redraw();

RemarksRemarks

CMFCPropertyGridProperty::RemoveAllOptions

void RemoveAllOptions();

RemarksRemarks

CMFCPropertyGridProperty::RemoveSubItem

BOOL RemoveSubItem(
 CMFCPropertyGridProperty*& pProp,
 BOOL bDelete=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertyGridProperty::ResetOriginalValue

nChar
[in] A character.

TRUE if the edit operation is continuing; otherwise, FALSE.

This method supports a property that is either a list of values or one of the following variant types: VT_INT,
VT_I2, VT_I4, VT_UINT, VT_UI1, VT_UI2, VT_UI4, VT_R4, VT_R8, and VT_BSTR.

Redraws the property.

Removes all options (items) from a property.

Options are also known as the list items of a property list control.

Removes the specified sub-item.

pProp
[in] Pointer to a property sub-item.

bDelete
[in] TRUE to delete the property object that is specified by the pProp parameter; otherwise, FALSE. The default
value is TRUE.

Specify FALSE for the bDelete parameter if you intend to move the specified sub-item; that is, remove the sub-
item and then add it elsewhere.

Restores the original value of an edited property.

virtual void ResetOriginalValue();

RemarksRemarks

CMFCPropertyGridProperty::SetData

void SetData(DWORD_PTR dwData);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::SetDescription

void SetDescription(const CString& strDescr);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::SetName

void SetName(
 LPCTSTR lpszName,
 BOOL bRedraw=TRUE);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::SetOriginalValue

Associates a DWORD value with a property.

dwData
[in] An application-specific 32-bit value, such as an integer or a pointer to other data.

Use the CMFCPropertyGridProperty::GetData method to retrieve the DWORD value. Use the
CMFCPropertyGridCtrl::FindItemByData method to locate the property list item that is associated with the
specified DWORD value.

Specifies the text that describes the current property.

strDescr
[in] Text that describes the current property.

Sets the name of a property.

lpszName
[in] The property name.

bRedraw
[in] TRUE to redraw the property immediately; otherwise, FALSE. The default value is TRUE.

Sets the original value of an editable property.

virtual void SetOriginalValue(const COleVariant& varValue);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::SetValue

virtual void SetValue(const _variant_t& varValue);

ParametersParameters

RemarksRemarks

CMFCPropertyGridProperty::Show

void Show(
 BOOL bShow=TRUE,
 BOOL bAdjustLayout=TRUE);

ParametersParameters

See also

varValue
[in] A value.

Use the CMFCPropertyGridProperty::ResetOriginalValue method to reset the original value of an edited
property.

Sets the value of a property grid property.

varValue
[in] A reference to a value.

Shows or hides a property.

bShow
[in] TRUE to display the current property and its sub-items; FALSE to hide the current property and its sub-
items. The default value is TRUE.

bAdjustLayout
[in] TRUE to recalculate how to draw the label and value of a property and then draw the property; FALSE to
use existing calculations to draw the property. The default value is TRUE.

Hierarchy Chart
Classes
CMFCPropertyGridCtrl Class

CMFCPropertyGridToolTipCtrl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCPropertyGridToolTipCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

Name Description

CMFCPropertyGridToolTipCtrl::CMFCPropertyGridToolTipCtrl Constructs a CMFCPropertyGridToolTipCtrl object.

CMFCPropertyGridToolTipCtrl::~CMFCPropertyGridToolTipCtrl Destructor.

Public MethodsPublic Methods

Name Description

CMFCPropertyGridToolTipCtrl::Create Creates a window for the tooltip control.

CMFCPropertyGridToolTipCtrl::Deactivate Deactivates and hides the tooltip control.

CMFCPropertyGridToolTipCtrl::GetLastRect Returns the coordinates of the last position of the tooltip
control.

CMFCPropertyGridToolTipCtrl::Hide Hides the tooltip control.

CMFCPropertyGridToolTipCtrl::PreTranslateMessage Used by class CWinApp to translate window messages before
they are dispatched to the TranslateMessage and
DispatchMessage Windows functions. (Overrides
CWnd::PreTranslateMessage.)

CMFCPropertyGridToolTipCtrl::SetTextMargin Sets the spacing between the tooltip text and the border of
the tooltip window.

CMFCPropertyGridToolTipCtrl::Track Displays the tooltip control.

Remarks

Implements a tooltip control that the CMFCPropertyGridCtrl Class uses to display tooltips.

Tooltips are displayed when the pointer rests on a property name. The CMFCPropertyGridToolTipCtrl class
displays a tooltip so that it is easily readable by the user. Usually, the position of a tooltip is determined by the

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcpropertygridtooltipctrl-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

Example

CMFCPropertyGridToolTipCtrl* pToolTipCtrl = new CMFCPropertyGridToolTipCtrl();
CRect crect(1,1,50,50);
pToolTipCtrl->Track(crect, _T("this is a tool tip control"));

Inheritance Hierarchy

Requirements

CMFCPropertyGridToolTipCtrl::CMFCPropertyGridToolTipCtrl

CMFCPropertyGridToolTipCtrl::CMFCPropertyGridToolTipCtrl();

CMFCPropertyGridToolTipCtrl::Create

BOOL Create(CWnd* pWndParent);

ParametersParameters

Return ValueReturn Value

CMFCPropertyGridToolTipCtrl::Deactivate

void Deactivate();

position of the pointer. By using this class, the tooltip appears over the property name and resembles the natural
property extension, so that the property name is fully visible.

MFC automatically creates this control and uses it in the CMFCPropertyGridCtrl Class.

The following example demonstrates how to construct an object of the CMFCPropertyGridToolTipCtrl class, and
how to display the tooltip control.

CObject

CCmdTarget

CWnd

CMFCPropertyGridToolTipCtrl

Header: afxpropertygridtooltipctrl.h

Constructs a CMFCPropertyGridToolTipCtrl object.

Creates a window for the tooltip control.

pWndParent
[in] A pointer to the parent window.

TRUE if the window was successfully created; otherwise, FALSE.

Deactivates and hides the tooltip control.

RemarksRemarks

CMFCPropertyGridToolTipCtrl::GetLastRect

void GetLastRect(CRect& rect) const;

ParametersParameters

CMFCPropertyGridToolTipCtrl::Hide

void Hide();

CMFCPropertyGridToolTipCtrl::SetTextMargin

void SetTextMargin(int nTextMargin);

ParametersParameters

CMFCPropertyGridToolTipCtrl::Track

void Track(
 CRect rect,
 const CString& strText);

ParametersParameters

RemarksRemarks

This method sets the last position and text to empty values, so that future calls to
CMFCPropertyGridToolTipCtrl::Track display the tooltip.

Returns the coordinates of the last position of the tooltip control.

rect
[out] Contains the last position of the tooltip control.

Hides the tooltip control.

Sets the spacing between the tooltip text and the border of the tooltip window.

nTextMargin
[in] Specifies the spacing between the tooltip control text and the border of the tooltip window. The default value is
10 pixels.

Displays the tooltip control.

rect
[in] Specifies the position and size of the tooltip control.

strText
[in] Specifies the text to be shown in the tooltip.

This method displays the tooltip control at the position and size specified by rect. If the position, size, and text have
not changed since the last time this method was called, this method has no effect.

See also
Hierarchy Chart
Classes

CMFCPropertyPage Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCPropertyPage : public CPropertyPage

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCPropertyPage::CMFCPropertyPage Constructs a CMFCPropertyPage object.

CMFCPropertyPage::~CMFCPropertyPage Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCPropertyPage::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCPropertyPage::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCPropertyPage::OnSetActive This member function is called by the framework when the
page is chosen by the user and becomes the active page.
(Overrides CPropertyPage::OnSetActive.)

CMFCPropertyPage::PreTranslateMessage Translates window messages before they are dispatched to
the TranslateMessage and DispatchMessage Windows
functions. For more information and method syntax, see
CWnd::PreTranslateMessage. (Overrides
CPropertyPage::PreTranslateMessage .)

Remarks

Inheritance Hierarchy

The CMFCPropertyPage class supports the display of pop-up menus on a property page.

The CMFCPropertyPage class represents individual pages of a property sheet, otherwise known as a tab dialog box.

Use the CMFCPropertyPage class together with the CMFCPropertySheet class. To use menus on a property page,
replace all occurrences of the CPropertyPage class with the CMFCPropertyPage class.

CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcpropertypage-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

Requirements

CMFCPropertyPage::CMFCPropertyPage

CMFCPropertyPage(
 UINT nIDTemplate,
 UINT nIDCaption=0);

CMFCPropertyPage(
 LPCTSTR lpszTemplateName,
 UINT nIDCaption=0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

CCmdTarget

CWnd

CDialog

CPropertyPage

CMFCPropertyPage

Header: afxpropertypage.h

Constructs a CMFCPropertyPage object.

nIDTemplate
Resource ID of the template for this page.

nIDCaption
Resource ID of the label to put in the tab for this page. If 0, the name is obtained from the dialog box template for
this page. The default value is 0.

lpszTemplateName
Points to the name of the template for this page. Cannot be NULL.

For more information about the constructor parameters, see CPropertyPage::CPropertyPage.

Hierarchy Chart
Classes
CMFCPropertySheet Class

CMFCPropertySheet Class
3/4/2019 • 11 minutes to read • Edit Online

Syntax
class CMFCPropertySheet : public CPropertySheet

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCPropertySheet::CMFCPropertySheet Constructs a CMFCPropertySheet object.

CMFCPropertySheet::~CMFCPropertySheet Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCPropertySheet::AddPage Adds a page to the property sheet.

CMFCPropertySheet::AddPageToTree Adds a new property page to the tree control.

CMFCPropertySheet::AddTreeCategory Adds a new node to the tree control.

CMFCPropertySheet::EnablePageHeader Reserves space at the top of each page to draw a custom
header.

CMFCPropertySheet::GetHeaderHeight Retrieves the height of the current header.

CMFCPropertySheet::GetLook Retrieves an enumeration value that specifies the appearance
of the current property sheet.

CMFCPropertySheet::GetNavBarWidth Retries the width of the navigation bar in pixels.

CMFCPropertySheet::GetTab Retrieves the internal tab control object that supports the
current property sheet control.

CMFCPropertySheet::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCPropertySheet::InitNavigationControl Initializes the appearance of the current property sheet
control.

The CMFCPropertySheet class supports a property sheet where each property page is denoted by a page tab, a
toolbar button, a tree control node, or a list item.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcpropertysheet-class.md

CMFCPropertySheet::OnActivatePage Called by the framework when a property page is enabled.

CMFCPropertySheet::OnDrawPageHeader Called by the framework to draw a custom property page
header.

CMFCPropertySheet::OnInitDialog Handles the WM_INITDIALOG message. (Overrides
CPropertySheet::OnInitDialog.)

CMFCPropertySheet::OnRemoveTreePage Called by the framework to remove a property page from a
tree control.

CMFCPropertySheet::PreTranslateMessage Translates window messages before they are dispatched to
the TranslateMessage and DispatchMessage Windows
functions. (Overrides
CPropertySheet::PreTranslateMessage .)

CMFCPropertySheet::RemoveCategory Removes a node from the tree control.

CMFCPropertySheet::RemovePage Removes a property page from the property sheet.

CMFCPropertySheet::SetIconsList Specifies the list of images that are used in the navigation
control of the Outlook pane.

CMFCPropertySheet::SetLook Specifies the appearance of the property sheet.

NAME DESCRIPTION

Remarks

Illustrations

The CMFCPropertySheet class represents property sheets, also known as tab dialog boxes. The CMFCPropertySheet

class can display a property page in a variety of ways.

Perform the following steps to use the CMFCPropertySheet class in your application:

1. Derive a class from the CMFCPropertySheet class and name the class, for example, CMyPropertySheet.

2. Construct a CMFCPropertyPage object for each property page.

3. Call the CMFCPropertySheet::SetLook method in the CMyPropertySheet constructor. A parameter of that
method specifies that property pages shall be displayed either as tabs along the top or left of the property
sheet; tabs in the style of a Microsoft OneNote property sheet; buttons on a Microsoft Outlook toolbar
control; nodes on a tree control; or as a list of items on the left side of the property sheet.

4. If you create a property sheet in the style of a Microsoft Outlook toolbar, call the
CMFCPropertySheet::SetIconsList method to associate an image list together with the property pages.

5. Call the CMFCPropertySheet::AddPage method for each property page.

6. Create a CMFCPropertySheet control and call its DoModal method.

The following illustration depicts a property sheet that is in the style of an embedded Microsoft Outlook toolbar.
The Outlook toolbar appears on the left side of the property sheet.

https://docs.microsoft.com/windows/desktop/dlgbox/wm-initdialog
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

The following illustration depicts a property sheet that contains a CMFCPropertyGridCtrl Class object. That object
is a property sheet in the style of a standard common controls property sheet.

The following illustration depicts a property sheet that is in the style of a tree control.

Inheritance Hierarchy

Requirements

CMFCPropertySheet::AddPage

void AddPage(CPropertyPage* pPage);

ParametersParameters

RemarksRemarks

CMFCPropertySheet::AddPageToTree

void AddPageToTree(
 CMFCPropertySheetCategoryInfo* pCategory,
 CMFCPropertyPage* pPage,
 int nIconNum=-1,
 int nSelIconNum=-1);

ParametersParameters

CObject

CCmdTarget

CWnd

CPropertySheet

CMFCPropertySheet

Header: afxpropertysheet.h

Adds a page to the property sheet.

pPage
[in] Pointer to a page object. This parameter cannot be NULL.

This method adds the specified property page as the rightmost tab in the property sheet. Therefore, use this
method to add pages in left-to-right order.

If the property sheet is in the style of Microsoft Outlook, the framework displays a list of navigation buttons at the
left of the property sheet. After this method adds a property page, it adds a corresponding button to the list. To
display a property page, click its corresponding button. For more information about styles of property sheets, see
CMFCPropertySheet::SetLook.

Adds a new property page to the tree control.

pCategory
[in] Pointer to a parent tree node, or NULL to associate the specified page with the top-level node. Call the
CMFCPropertySheet::AddTreeCategory method to obtain this pointer.

pPage
[in] Pointer to a property page object.

nIconNum
[in] Zero-based index of an icon, or -1 if no icon is used. The icon is displayed next to the tree control property
page when the page is not selected. The default value is -1.

RemarksRemarks

CMFCPropertySheet::AddTreeCategory

CMFCPropertySheetCategoryInfo* AddTreeCategory(
 LPCTSTR lpszLabel,
 int nIconNum=-1,
 int nSelectedIconNum=-1,
 const CMFCPropertySheetCategoryInfo* pParentCategory=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCPropertySheet::CMFCPropertySheet

nSelIconNum
[in] Zero-based index of an icon, or -1 if no icon is used. The icon is displayed next to the tree control property
page when the page is selected. The default value is -1.

This method adds a property page as a leaf of a tree control. To add a property page, create a CMFCPropertySheet

object, call the CMFCPropertySheet::SetLook method with the look parameter set to
CMFCPropertySheet::PropSheetLook_Tree , and then use this method to add the property page.

Adds a new node to the tree control.

lpszLabel
[in] The name of the node.

nIconNum
[in] Zero-based index of an icon, or -1 if no icon is used. The icon is displayed next to the tree control property
page when the page is not selected. The default value is -1.

nSelectedIconNum
[in] Zero-based index of an icon, or -1 if no icon is used. The icon is displayed next to the tree control property
page when the page is selected. The default value is -1.

pParentCategory
[in] Pointer to a parent tree node, or NULL to associate the specified page with the top-level node. Set this
parameter with the CMFCPropertySheet::AddTreeCategory method.

A pointer to the new node in the tree control.

Use this method to add a new node, which is also referred to as a category, to the tree control. To add a node,
create a CMFCPropertySheet object, call the CMFCPropertySheet::SetLook method with the look parameter set to
CMFCPropertySheet::PropSheetLook_Tree , and then use this method to add the node.

Use the return value of this method in subsequent calls to CMFCPropertySheet::AddPageToTree and
CMFCPropertySheet::AddTreeCategory.

Constructs a CMFCPropertySheet object.

CMFCPropertySheet(
 UINT nIDCaption,
 CWnd* pParentWnd=NULL,
 UINT iSelectPage=0);

CMFCPropertySheet(
 LPCTSTR pszCaption,
 CWnd* pParentWnd=NULL,
 UINT iSelectPage=0);

ParametersParameters

RemarksRemarks

CMFCPropertySheet::EnablePageHeader

void EnablePageHeader(int nHeaderHeight);

ParametersParameters

RemarksRemarks

CMFCPropertySheet::GetHeaderHeight

int GetHeaderHeight() const;

Return ValueReturn Value

RemarksRemarks

pszCaption
[in] A string that contains the property sheet caption. Cannot be NULL.

nIDCaption
[in] A resource ID that contains the property sheet caption.

pParentWnd
[in] Pointer to the parent window of the property sheet, or NULL if the parent window is the main window of the
application. The default value is NULL.

iSelectPage
[in] The zero-based index of the top property page. The default value is 0.

For more information, see the parameters for the CPropertySheet::CPropertySheet constructor.

Reserves space at the top of each page to draw a custom header.

nHeaderHeight
[in] The height of the header, in pixels.

To use the value of the nHeaderHeight parameter to draw a custom header, override the
CMFCPropertySheet::OnDrawPageHeader method.

Retrieves the height of the current header.

The height of the header, in pixels.

Call the CMFCPropertySheet::EnablePageHeader method before you call this method.

CMFCPropertySheet::GetLook

PropSheetLook GetLook() const;

Return ValueReturn Value

CMFCPropertySheet::GetNavBarWidth

int GetNavBarWidth() const;

Return ValueReturn Value

CMFCPropertySheet::GetTab

CMFCTabCtrl& GetTab() const;

Return ValueReturn Value

RemarksRemarks

CMFCPropertySheet::InitNavigationControl

virtual CWnd* InitNavigationControl();

Return ValueReturn Value

RemarksRemarks

Retrieves an enumeration value that specifies the appearance of the current property sheet.

One of the enumeration values that specifies the appearance of the property sheet. For a list of possible values,
see the enumeration table in the Remarks section of CMFCPropertySheet::SetLook.

Gets the width of the navigation bar.

The width of the navigation bar in pixels.

Retrieves the internal tab control object that supports the current property sheet control.

An internal tab control object.

You can set a property sheet so that it appears in different styles, such as a tree control, a list of navigation
buttons, or a set of tabbed pages.

Before you call this method, call the CMFCPropertySheet::SetLook method to set the appearance of the property
sheet control. Then call the CMFCPropertySheet::InitNavigationControl method to initialize the internal tab
control object. Use this method to retrieve the tab control object and then use that object to work with the tabs on
the property sheet.

This method asserts in debug mode if the property sheet control is not set to appear in the style of Microsoft
OneNote.

Initializes the appearance of the current property sheet control.

A pointer to the window of the property sheet control.

A property sheet control can appear in several different forms, such as a set of tabbed pages, a tree control, or a

CMFCPropertySheet::OnActivatePage

virtual void OnActivatePage(CPropertyPage* pPage);

ParametersParameters

RemarksRemarks

CMFCPropertySheet::OnDrawPageHeader

virtual void OnDrawPageHeader(
 CDC* pDC,
 int nPage,
 CRect rectHeader);

ParametersParameters

RemarksRemarks

CMFCPropertySheet::OnRemoveTreePage

virtual BOOL OnRemoveTreePage(CPropertyPage* pPage);

ParametersParameters

Return ValueReturn Value

list of navigation buttons. Use the CMFCPropertySheet::SetLook method to specify the appearance of the
property sheet control.

Called by the framework when a property page is enabled.

pPage
[in] Pointer to a property page object that represents the enabled property page.

By default, this method ensures that the enabled property page is scrolled into view. If the style of the current
property sheet contains a Microsoft Outlook pane, this method sets the corresponding Outlook button to the
checked state.

Called by the framework to draw the header for a custom property page.

pDC
[in] Pointer to a device context.

nPage
[in] The zero-based property page number.

rectHeader
[in] A bounding rectangle that specifies where to draw the header.

By default, this method does nothing. If you override this method, call the
CMFCPropertySheet::EnablePageHeader method before the framework calls this method.

Called by the framework to remove a property page from a tree control.

pPage
[in] Pointer to a property page object that represents the property page to remove.

TRUE if this method is successful; otherwise, FALSE.

CMFCPropertySheet::RemoveCategory

void RemoveCategory(CMFCPropertySheetCategoryInfo* pCategory);

ParametersParameters

RemarksRemarks

CMFCPropertySheet::RemovePage

void RemovePage(CPropertyPage* pPage);
void RemovePage(int nPage);

ParametersParameters

RemarksRemarks

CMFCPropertySheet::SetIconsList

BOOL SetIconsList(
 UINT uiImageListResID,
 int cx,
 COLORREF clrTransparent=RGB(255, 0, 255));
void SetIconsList(HIMAGELIST hIcons);

ParametersParameters

Removes a node from the tree control.

pCategory
[in] Pointer to a category (node) to remove.

Use this method to remove a node, which is also referred to as a category, from a tree control. Use the
CMFCPropertySheet::AddTreeCategory method to add a node to a tree control.

Removes a property page from the property sheet.

pPage
[in] Pointer to property page object that represents the property page to remove. Cannot be NULL.

nPage
[in] Zero-based index of the page to remove.

This method removes the specified property page and destroys its associated window. The property page object
that the pPage parameter specifies is not destroyed until the CMFCPropertySheet window is closed.

Specifies the list of images that are used in the navigation control of the Outlook pane.

uiImageListResID
[in] The resource ID of an image list.

cx
[in] The width, in pixels, of icons in the image list.

clrTransparent
[in] The transparent image color. The parts of the image that are this color will be transparent. The default value is
the color magenta, RGB(255,0,255).

hIcons

Return ValueReturn Value

RemarksRemarks

CMFCPropertySheet::SetLook

void SetLook(
 PropSheetLook look,
 int nNavControlWidth=100);

ParametersParameters

RemarksRemarks

VALUE DESCRIPTION

CMFCPropertySheet::PropSheetLook_Tabs (Default) Displays a tab for each property page. Tabs are
displayed at the top of the property sheet and are stacked if
there are more tabs than will fit in a single row.

CMFCPropertySheet::PropSheetLook_OutlookBar Displays a list of navigation buttons, in the style of the
Microsoft Outlook bar, at the left side of the property sheet.
Each button in the list corresponds to a property page. The
framework displays scroll arrows if there are more buttons
than will fit in the visible area of the list.

CMFCPropertySheet::PropSheetLook_Tree Displays a tree control at the left side of the property sheet.
Each parent or child node of the tree control corresponds to a
property page. The framework displays scroll arrows if there
are more nodes than will fit in the visible area of the tree
control.

[in] A handle to an existing image list.

In the first method overload syntax, TRUE if this method is successful; otherwise, FALSE.

If the property sheet is in the style of Microsoft Outlook, the framework displays a list of navigation buttons,
called the Outlook pane control, at the left of the property sheet. Use this method to set the image list to be used
by the Outlook pane control.

For more information about the methods that support this method, see CImageList::Create and CImageList::Add.
For more information about how to set the style of a property sheet, see CMFCPropertySheet::SetLook.

Specifies the appearance of the property sheet.

look
[in] One of the enumeration values that specifies the appearance of the property sheet. The default style for a
property sheet is CMFCPropertySheet::PropSheetLook_Tabs . For more information, see the table in the Remarks
section of this topic.

nNavControlWidth
[in] The width of the navigation control, in pixels. The default value is 100.

To display a property sheet in a style other than the default, call this method before you create the property sheet
window.

The following table lists the enumeration values that can be specified in the look parameter.

CMFCPropertySheet::PropSheetLook_OneNoteTabs Displays a tab, in the style of Microsoft OneNote, for each
property page. The framework displays tabs at the top of the
property sheet and scroll arrows if there are more tabs than
will fit in a single row.

CMFCPropertySheet::PropSheetLook_List Displays a list at the left side of the property sheet. Each list
item corresponds to a property page. The framework displays
scroll arrows if there are more list items than will fit in the
visible area of the list.

VALUE DESCRIPTION

See also
Hierarchy Chart
Classes
CMFCPropertyPage Class
CMFCOutlookBar Class

CMFCReBar Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCReBar : public CPane

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCReBar::AddBar Adds a band to a rebar.

CMFCReBar::CalcFixedLayout (Overrides CBasePane::CalcFixedLayout.)

CMFCReBar::CanFloat (Overrides CBasePane::CanFloat.)

CMFCReBar::Create Creates the rebar control and attaches it to the CMFCReBar

object.

CMFCReBar::EnableDocking (Overrides CBasePane::EnableDocking.)

CMFCReBar::GetReBarBandInfoSize

CMFCReBar::GetReBarCtrl Provides direct access to the underlying CReBarCtrl common
control.

CMFCReBar::OnShowControlBarMenu (Overrides CPane::OnShowControlBarMenu.)

CMFCReBar::OnToolHitTest (Overrides CWnd::OnToolHitTest.)

CMFCReBar::OnUpdateCmdUI (Overrides CBasePane::OnUpdateCmdUI.)

CMFCReBar::SetPaneAlignment (Overrides CBasePane::SetPaneAlignment.)

Remarks

A CMFCReBar object is a control bar that provides layout, persistence, and state information for rebar controls. For
more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

A CMFCReBar object can contain a variety of child windows. This includes edit boxes, toolbars, and list boxes. You
can resize the rebar programmatically, or the user can manually resize the rebar by dragging its gripper bar. You
can also set the background of a rebar object to a bitmap of your choice.

A rebar object behaves similarly to a toolbar object. A rebar control can contain one or more bands, and each band
can contain a gripper bar, a bitmap, a text label, and a child window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcrebar-class.md

Example

CMFCReBar m_wndReBar;

// Each rebar pane will ocupy its own row:
DWORD dwStyle = RBBS_GRIPPERALWAYS | RBBS_FIXEDBMP | RBBS_BREAK;
// CMFCMenuBar m_wndMenuBar
// CMFCToolBar m_wndToolBar
if (!m_wndReBar.Create(this) ||
 !m_wndReBar.AddBar (&m_wndMenuBar) ||
 !m_wndReBar.AddBar (&m_wndToolBar, NULL, NULL, dwStyle))
{
 TRACE0("Failed to create rebar\n");
 return -1; // fail to create
}

Inheritance Hierarchy

Requirements

CMFCReBar::AddBar

BOOL AddBar(
 CWnd* pBar,
 LPCTSTR pszText = NULL,
 CBitmap* pbmp = NULL,
 DWORD dwStyle = RBBS_GRIPPERALWAYS | RBBS_FIXEDBMP);

BOOL AddBar(
 CWnd* pBar,
 COLORREF clrFore,
 COLORREF clrBack,
 LPCTSTR pszText = NULL,
 DWORD dwStyle = RBBS_GRIPPERALWAYS);

ParametersParameters

The following example demonstrates how to use various methods in the CMFCReBar class. The example shows how
to create a rebar control and add a band to it. The band functions as an internal toolbar. This code snippet is part of
the Rebar Test sample.

CObject CCmdTarget CWnd

CBasePane CPane CMFCReBar

Header: afxRebar.h

Adds a band to a rebar.

pBar
[in, out] A pointer to the child window that is to be inserted into the rebar. The referenced object must have the
WS_CHILD window style.

pszText
[in] Specifies the text to appear on the rebar. The text is not part of the child window. Rather, it is displayed on the
rebar itself.

pbmp

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

CMFCReBar::Create

BOOL Create(
 CWnd* pParentWnd,
 DWORD dwCtrlStyle = RBS_BANDBORDERS,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS | WS_CLIPCHILDREN | CBRS_TOP,
 UINT nID = AFX_IDW_REBAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCReBar::GetReBarCtrl

CReBarCtrl& GetReBarCtrl() const;

Return ValueReturn Value

RemarksRemarks

[in, out] Specifies the bitmap to be displayed on the rebar background.

dwStyle
[in] Contains the style to apply to the band. For a complete list of band styles, see the description for fStyle in the
REBARBANDINFO structure in the Windows SDK documentation.

clrFore
[in] Represents the foreground color of the rebar.

clrBack
[in] Represents the background color of the rebar.

TRUE if the band was successfully added to the rebar; otherwise, FALSE.

Creates the rebar control and attaches it to the CMFCReBar object.

pParentWnd
[in, out] A pointer to the parent window of this rebar control.

dwCtrlStyle
[in] Specifies the style for the rebar control. The default style value is RBS_BANDBORDERS, which displays
narrow lines to separate adjacent bands on the rebar control. For a list of valid styles, see Rebar Control Styles in
the Windows SDK documentation.

dwStyle
[in] The window style of the rebar control. For a list of valid styles, see Window Styles.

nID
[in] The rebar's child-window ID.

TRUE if the rebar was created successfully; otherwise, FALSE.

Provides direct access to CReBarCtrl the underlying common control for CMFCReBar objects.

A reference to the underlying CReBarCtrl object.

Call this method to take advantage of the Windows rebar common control functionality when customizing your

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagrebarbandinfoa
https://docs.microsoft.com/windows/desktop/Controls/rebar-control-styles

CMFCReBar::CalcFixedLayout
virtual CSize CalcFixedLayout(
 BOOL bStretch,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCReBar::CanFloat
virtual BOOL CanFloat() const;

Return ValueReturn Value

RemarksRemarks

CMFCReBar::EnableDocking
void EnableDocking(DWORD dwDockStyle);

ParametersParameters

RemarksRemarks

CMFCReBar::GetReBarBandInfoSize
UINT GetReBarBandInfoSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCReBar::OnShowControlBarMenu
virtual BOOL OnShowControlBarMenu(CPoint);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

rebar.

[in] bStretch
[in] bHorz

[in] dwDockStyle

[in] CPoint

CMFCReBar::OnToolHitTest
virtual INT_PTR OnToolHitTest(
 CPoint point,
 TOOLINFO* pTI) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCReBar::OnUpdateCmdUI
virtual void OnUpdateCmdUI(
 CFrameWnd* pTarget,
 BOOL bDisableIfNoHndler);

ParametersParameters

RemarksRemarks

CMFCReBar::SetPaneAlignment
virtual void SetPaneAlignment(DWORD dwAlignment);

ParametersParameters

RemarksRemarks

See also

[in] point
[in] pTI

[in] pTarget
[in] bDisableIfNoHndler

[in] dwAlignment

Hierarchy Chart
Classes
CReBarCtrl Class
CPane Class

CMFCRibbonApplicationButton Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonApplicationButton : public CMFCRibbonButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonApplicationButton::CMFCRibbonApplicationButto
n

Constructs and initializes a CMFCRibbonApplicationButton

object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonApplicationButton::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCRibbonApplicationButton::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCRibbonApplicationButton::SetImage Assigns an image to the ribbon application button.

Example

CMFCRibbonApplicationButton m_MainButton;

m_MainButton.SetImage(IDB_RIBBON_MAIN);
m_MainButton.SetToolTipText(_T("File"));
// Set the short cut keyboard text.
m_MainButton.SetText(_T("f"));

Inheritance Hierarchy

Implements a special button located in the top-left corner of the application window. When clicked, the button
opens a menu that usually contains common File commands like Open, Save, and Exit.

The following example demonstrates how to use various methods in the CMFCRibbonApplicationButton class. The
example shows how to assign an image to the application button, and how to set its tooltip. This code snippet is
part of the Draw Client sample.

CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonapplicationbutton-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CMFCRibbonApplicationButton::CMFCRibbonApplicationButton

CMFCRibbonApplicationButton();
CMFCRibbonApplicationButton(UINT uiBmpResID);
 CMFCRibbonApplicationButton(HBITMAP hBmp);

ParametersParameters

RemarksRemarks

CMFCRibbonApplicationButton::SetImage

void SetImage(UINT uiBmpResID);
void SetImage(HBITMAP hBmp);

ParametersParameters

RemarksRemarks

See also

CMFCRibbonBaseElement

CMFCRibbonButton

CMFCRibbonApplicationButton

Header: afxRibbonBar.h

Constructs and initializes a CMFCRibbonApplicationButton object.

uiBmpResID
The resource ID of the image to display on the application button.

hBmp
A handle to a bitmap to display on the application button.

The ribbon application button is a special button that is located in the upper-left corner of the application window.
When a user clicks this button, the application opens a menu that usually contains common File commands, such
as Open, Save, and Exit.

Assigns an image to the application button.

uiBmpResID
[in] The resource ID of the image to display on the application button.

hBmp
[in] A handle to a bitmap to display on the application button.

Use this method to assign a new image to the ribbon application button after you create the button. The
application button is located in the upper-left corner of the application window.

Hierarchy Chart
Classes
CMFCRibbonButton Class

CMFCRibbonBar Class
3/4/2019 • 29 minutes to read • Edit Online

Syntax
class CMFCRibbonBar : public CPane

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonBar::CMFCRibbonBar Default constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonBar::ActivateContextCategory Activates a context category that is already visible.

CMFCRibbonBar::AddCategory Adds a new ribbon category to the ribbon.

CMFCRibbonBar::AddContextCategory Adds a context category.

CMFCRibbonBar::AddMainCategory Adds a new main ribbon category.

CMFCRibbonBar::AddPrintPreviewCategory

CMFCRibbonBar::AddQATOnlyCategory

CMFCRibbonBar::AddToTabs Add a ribbon element to the right side of a ribbon bar.

CMFCRibbonBar::CreateEx Creates a control bar and attaches it to the CPane object.
(Overrides CPane::CreateEx.)

CMFCRibbonBar::Create Creates a ribbon bar control and attaches it to a ribbon bar.

CMFCRibbonBar::DeactivateKeyboardFocus

CMFCRibbonBar::DrawMenuImage

CMFCRibbonBar::DWMCompositionChanged

CMFCRibbonBar::EnableKeyTips Enable or disable key tips for the ribbon control.

The CMFCRibbonBar class implements a ribbon bar similar to that used in Office 2007.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonbar-class.md

CMFCRibbonBar::EnablePrintPreview Enable the Print Preview tab.

CMFCRibbonBar::EnableToolTips Enables or disables tooltips and tooltip descriptions on the
ribbon bar.

CMFCRibbonBar::FindByData Find a ribbon element by using data that a user specifies.

CMFCRibbonBar::FindByID Finds a ribbon element that has the specified command id.

CMFCRibbonBar::FindCategoryIndexByData Finds the index of the ribbon category that contains the
user-defined data.

CMFCRibbonBar::ForceRecalcLayout

CMFCRibbonBar::GetActiveCategory Gets a pointer to an active category.

CMFCRibbonBar::GetCaptionHeight Returns the caption height. (Overrides
CBasePane::GetCaptionHeight.)

CMFCRibbonBar::GetCategory Gets the pointer to a category located at a specified index.

CMFCRibbonBar::GetCategoryCount Gets the number of the ribbon categories in the ribbon bar.

CMFCRibbonBar::GetCategoryHeight

CMFCRibbonBar::GetCategoryIndex Returns the index of a ribbon category.

CMFCRibbonBar::GetContextName Retrieves the name of the context category caption that you
specify by using an ID.

CMFCRibbonBar::GetDroppedDown

CMFCRibbonBar::GetElementsByID Gets an array that contains the pointers to all the ribbon
elements that have the specified ID.

CMFCRibbonBar::GetApplicationButton Gets a pointer to a ribbon button.

CMFCRibbonBar::GetFocused Returns a focused element.

CMFCRibbonBar::GetHideFlags

CMFCRibbonBar::GetItemIDsList

CMFCRibbonBar::GetKeyboardNavigationLevel

CMFCRibbonBar::GetKeyboardNavLevelCurrent

CMFCRibbonBar::GetKeyboardNavLevelParent

CMFCRibbonBar::GetMainCategory Returns a pointer to the ribbon category that is currently
selected.

NAME DESCRIPTION

CMFCRibbonBar::GetQATCommandsLocation

CMFCRibbonBar::GetQATDroppedDown

CMFCRibbonBar::GetQuickAccessCommands Fills a list that contains the command IDs of all the elements
that appear on the Quick Access Toolbar.

CMFCRibbonBar::GetQuickAccessToolbarLocation

CMFCRibbonBar::GetTabTrancateRatio

CMFCRibbonBar::GetTooltipFixedWidthLargeImage

CMFCRibbonBar::GetTooltipFixedWidthRegular

CMFCRibbonBar::GetVisibleCategoryCount

CMFCRibbonBar::HideAllContextCategories Hides all the categories that are active and visible.

CMFCRibbonBar::HideKeyTips

CMFCRibbonBar::HitTest Finds a pointer to the ribbon element that is located at the
specified point in the ribbon bar's client coordinates.

CMFCRibbonBar::IsKeyTipEnabled Determines whether keytips are enabled.

CMFCRibbonBar::IsMainRibbonBar

CMFCRibbonBar::IsPrintPreviewEnabled Determines whether the Print Preview tab is enabled.

CMFCRibbonBar::IsQATEmpty

CMFCRibbonBar::IsQuickAccessToolbarOnTop Specifies whether the Quick Access Toolbar is located above
the ribbon bar.

CMFCRibbonBar::IsReplaceFrameCaption Determines whether the ribbon bar replaces the main frame
caption, or is added below the frame caption.

CMFCRibbonBar::IsShowGroupBorder

CMFCRibbonBar::IsToolTipDescrEnabled Determines whether the tooltip descriptions are enabled.

CMFCRibbonBar::IsToolTipEnabled Determines whether the tooltips for the ribbon bar are
enabled.

CMFCRibbonBar::IsTransparentCaption

CMFCRibbonBar::IsWindows7Look Indicates whether the ribbon has Windows 7-style look
(small rectangular application button).

CMFCRibbonBar::LoadFromResource Overloaded. Loads a Ribbon Bar from application resources.

NAME DESCRIPTION

CMFCRibbonBar::OnClickButton

CMFCRibbonBar::OnEditContextMenu

CMFCRibbonBar::OnRTLChanged (Overrides CPane::OnRTLChanged .)

CMFCRibbonBar::OnSetAccData (Overrides CBasePane::OnSetAccData.)

CMFCRibbonBar::OnShowRibbonContextMenu

CMFCRibbonBar::OnShowRibbonQATMenu

CMFCRibbonBar::OnSysKeyDown

CMFCRibbonBar::OnSysKeyUp

CMFCRibbonBar::PopTooltip

CMFCRibbonBar::PreTranslateMessage (Overrides CBasePane::PreTranslateMessage .)

CMFCRibbonBar::RecalcLayout (Overrides CPane::RecalcLayout.)

CMFCRibbonBar::RemoveAllCategories Removes all the ribbon categories from the ribbon bar.

CMFCRibbonBar::RemoveAllFromTabs Removes all ribbon elements from the tab area.

CMFCRibbonBar::RemoveCategory Removes the ribbon category that is located at the specified
index.

CMFCRibbonBar::SaveToXMLBuffer Saves the Ribbon Bar to a buffer.

CMFCRibbonBar::SaveToXMLFile Saves the Ribbon Bar to XML file.

CMFCRibbonBar::SetActiveCategory Sets a specified ribbon category to active.

CMFCRibbonBar::SetActiveMDIChild

CMFCRibbonBar::SetElementKeys Sets the specified keytips for all ribbon elements that have
the specified command ID.

CMFCRibbonBar::SetApplicationButton Assigns an application ribbon button to the ribbon bar.

CMFCRibbonBar::SetKeyboardNavigationLevel

CMFCRibbonBar::SetMaximizeMode

CMFCRibbonBar::SetQuickAccessCommands Adds one or more ribbon elements to the Quick Access
Toolbar.

CMFCRibbonBar::SetQuickAccessDefaultState Specifies the default state for the Quick Access Toolbar.

NAME DESCRIPTION

CMFCRibbonBar::SetQuickAccessToolbarOnTop Positions the Quick Access Toolbar (QAT) above or below the
ribbon bar.

CMFCRibbonBar::SetTooltipFixedWidth

CMFCRibbonBar::SetWindows7Look Enable/disable ribbon Windows 7-style look (small
rectangular application button)

CMFCRibbonBar::ShowCategory Shows or hides the specified ribbon category.

CMFCRibbonBar::ShowContextCategories Shows or hides the context categories that have the
specified ID.

CMFCRibbonBar::ShowKeyTips

CMFCRibbonBar::ToggleMimimizeState Toggles the ribbon bar between the minimized and
maximized states..

CMFCRibbonBar::TranslateChar

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

Microsoft introduced the Office Fluent Ribbon when it simultaneously released Microsoft Office 2007. This
ribbon bar is not just a new control. It represents a new user-interface paradigm. The ribbon is a pane that
contains a set of tabs called categories. Each category is logically split into ribbon panels and each panel can
contain various controls and command buttons.

The elements that appear on the ribbon bar expand and contract to make the best use of available space. For
example, if a ribbon panel has insufficient space to display its elements, it becomes a menu button that displays
subitems on a pop-up menu. The ribbon bar behaves as a static (non-floating) control bar and can be docked at
the top of a frame.

You can use the CMFCRibbonStatusBar class to implement a status bar similar to the one used in Office 2007. A
ribbon category contains (and displays) a group of ribbon panels. Each ribbon panel contains one or more
ribbon elements, which are derived from CMFCRibbonBaseElement.

For information about how to add a ribbon bar to your existing MFC application, see Walkthrough: Updating
the MFC Scribble Application.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCRibbonBar

CMFCRibbonBar::ActivateContextCategory

BOOL ActivateContextCategory(UINT uiContextID);

ParametersParameters

Return ValueReturn Value

CMFCRibbonBar::AddCategory

CMFCRibbonCategory* AddCategory(
 LPCTSTR lpszName,
 UINT uiSmallImagesResID,
 UINT uiLargeImagesResID,
 CSize sizeSmallImage= CSize(16,
 16),
 CSize sizeLargeImage= CSize(32,
 32),
 int nInsertAt = -1,
 CRuntimeClass* pRTI= NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Header: afxribbonbar.h

Activates a context category that is already visible.

uiContextID
[in] The context category ID.

TRUE if a context category with uiContextID is found and activated; otherwise FALSE.

Creates and initializes a new ribbon category for the ribbon bar.

lpszName
[in] Name of the ribbon category.

uiSmallImagesResID
[in] Resource ID of the small image list for the ribbon category.

uiLargeImagesResID
[in] Resource ID of the large image list for the ribbon category.

sizeSmallImage
[in] Specifies the size of small images for the ribbon category.

sizeLargeImage
[in] Specifies the size of large images for the ribbon category.

nInsertAt
[in] Zero based index of the category location.

pRTI
[in] Pointer to a CMFCRibbonCategory Class run-time class to dynamically create a ribbon category at run-
time.

A pointer to the new ribbon category if the method was successful; otherwise, NULL.

ExampleExample

// Add "Home" category.
// CMFCRibbonBar m_wndRibbonBar
strTemp.LoadString(IDS_RIBBON_HOME);
CMFCRibbonCategory* pCategoryHome = m_wndRibbonBar.AddCategory(strTemp,
 IDB_WRITESMALL, IDB_WRITELARGE);

CMFCRibbonBar::AddContextCategory

CMFCRibbonCategory* AddContextCategory(
 LPCTSTR lpszName,
 LPCTSTR lpszContextName,
 UINT uiContextID,
 AFX_RibbonCategoryColor clrContext,
 UINT uiSmallImagesResID,
 UINT uiLargeImagesResID,
 CSize sizeSmallImage = CSize(16,
 16),
 CSize sizeLargeImage = CSize(32,
 32),
 CRuntimeClass* pRTI = NULL);

ParametersParameters

Return ValueReturn Value

If the pRTI parameter is not NULL, the new ribbon category is created dynamically using the run-time class.

The following example demonstrates how to use the AddCategory method in the CMFCRibbonBar class.

Creates and initializes a new context category for the ribbon bar.

lpszName
[in] Name of the category.

lpszContextName
[in] Name of the context category caption.

uiContextID
[in] Context ID.

clrContext
[in] Color of the context category caption.

uiSmallImagesResID
[in] Resource ID of the small image of a context category.

uiLargeImagesResID
[in] Resource ID of the large image of a context category.

sizeSmallImage
[in] Size of a small image.

sizeLargeImage
[in] Size of a large image.

pRTI
[in] Pointer to a runtime class.

A pointer to the newly created category, or NULL if the CreateObject method of pRTI cannot create the

RemarksRemarks

CMFCRibbonBar::AddMainCategory

CMFCRibbonMainPanel* AddMainCategory(
 LPCTSTR lpszName,
 UINT uiSmallImagesResID,
 UINT uiLargeImagesResID,
 CSize sizeSmallImage = CSize(16,
 16),
 CSize sizeLargeImage = CSize(32,
 32));

ParametersParameters

Return ValueReturn Value

RemarksRemarks

specified category.

Use this function to add a context category. Context categories are a special type of category that can be shown
or hidden at runtime, depending on the current application context. For example, when the user selects an
object, you can display special tabs with context categories which you use to change the specific selected object.

The color of a context category can be one of the following values:

AFX_CategoryColor_None

AFX_CategoryColor_Red

AFX_CategoryColor_Orange

AFX_CategoryColor_Yellow

AFX_CategoryColor_Green

AFX_CategoryColor_Blue

AFX_CategoryColor_Indigo

AFX_CategoryColor_Violet

Creates a new main ribbon category for the ribbon bar.

lpszName
[in] Name of the main ribbon category.

uiSmallImagesResID
[in] Resource ID of small images.

uiLargeImagesResID
[in] Resource ID of large images.

sizeSmallImage
[in] The size of small images.

sizeLargeImage
[in] The size of large images.

Pointer to the new main ribbon category if the method was successful; otherwise, NULL.

If a main ribbon category already exists, it is deleted.

ExampleExample

// m_wndRibbonBar is declared as a protected member variable
// CMFCRibbonBar m_wndRibbonBar.
// strTemp is a CString variable.
strTemp.LoadString(IDS_RIBBON_FILE);
CMFCRibbonMainPanel* pMainPanel = m_wndRibbonBar.AddMainCategory(strTemp,
 IDB_FILESMALL, IDB_FILELARGE);

CMFCRibbonBar::AddPrintPreviewCategory

CMFCRibbonCategory* AddPrintPreviewCategory();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::AddQATOnlyCategory

CMFCRibbonCategory* AddQATOnlyCategory(
 LPCTSTR lpszName,
 UINT uiSmallImagesResID,
 CSize sizeSmallImage = CSize(16,
 16));

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::AddToTabs

void AddToTabs(CMFCRibbonBaseElement* pElement);

The following example demonstrates how to use the AddMainCategory method in the CMFCRibbonBar class.

Creates a print preview category on the ribbon bar.

A pointer to the new ribbon category if the method was successful; otherwise, NULL.

This method creates a ribbon category and the controls that it needs in order to provide a print preview.

Creates a quick access toolbar ribbon category.

lpszName
[in] Name of the category.

uiSmallImagesResID
[in] Resource ID of the image list for the category.

sizeSmallImage
[in] Size of images for ribbon elements in the category.

A pointer to the new category if the method was successful; otherwise, NULL.

The quick access toolbar ribbon category is only used on the quick access toolbar customization dialog box.

Adds the specified ribbon element to the tabs row of the ribbon bar.

ParametersParameters

RemarksRemarks

CMFCRibbonBar::CMFCRibbonBar

CMFCRibbonBar(BOOL bReplaceFrameCaption = TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonBar::Create

BOOL Create(
 CWnd* pParentWnd,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | CBRS_TOP,
 UINT nID = AFX_IDW_RIBBON_BAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// CMFCRibbonBar m_wndRibbonBar
m_wndRibbonBar.Create(this,WS_CHILD|CBRS_TOP);

CMFCRibbonBar::CreateEx

pElement
[in] Pointer to a ribbon element.

The ribbon element is positioned before any system buttons.

Constructs and initializes a CMFCRibbonBar object.

bReplaceFrameCaption
[in] TRUE for the ribbon bar to replace the caption of the main frame window; FALSE to locate the ribbon bar
under the caption of the main frame window.

Creates a window for the ribbon bar.

pParentWnd
[in] Pointer to the parent window for the ribbon bar.

dwStyle
[in] A logical combination of styles for the new window.

nID
[in] ID of the new window.

TRUE if the window was created; otherwise FALSE.

The following example demonstrates how to use the Create method of the CMFCRibbonBar class.

Creates a window for the ribbon bar.

BOOL CreateEx(
 CWnd* pParentWnd,
 DWORD dwCtrlStyle = 0,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | CBRS_TOP,
 UINT nID = AFX_IDW_RIBBON_BAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::DeactivateKeyboardFocus

void DeactivateKeyboardFocus(BOOL bSetFocus = TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonBar::DrawMenuImage

BOOL DrawMenuImage(
 CDC* pDC,
 const CMFCToolBarMenuButton* pMenuItem,
 const CRect& rectImage);

ParametersParameters

Return ValueReturn Value

pParentWnd
[in] Pointer to the parent window for the ribbon bar.

dwCtrlStyle
[in] This parameter is not used.

dwStyle
[in] A logical combination of styles for the new window.

nID
[in] ID of the new window.

TRUE if the window was created; otherwise FALSE.

Closes all keytip controls on the ribbon bar.

bSetFocus
[in] TRUE to set the focus to the parent window of the ribbon bar.

Draws the image for a menu button.

pDC
[in] Pointer to a device context for the menu button.

pMenuItem
[in] Pointer to a toolbar menu button.

rectImage
[in] The display rectangle for a menu button.

RemarksRemarks

CMFCRibbonBar::DWMCompositionChanged

virtual void DWMCompositionChanged();

RemarksRemarks

CMFCRibbonBar::EnableKeyTips

void EnableKeyTips(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonBar::EnablePrintPreview

void EnablePrintPreview(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonBar::EnableToolTips

void EnableToolTips(
 BOOL bEnable = TRUE,
 BOOL bEnableDescr = TRUE);

ParametersParameters

TRUE if the image was drawn; otherwise FALSE.

Adjusts the display of the ribbon bar when Desktop Window Manager (DWM) composition is enabled or
disabled.

Enables or disables the keytip feature for the ribbon bar.

bEnable
[in] TRUE to enable the keytips feature; FALSE to disable the keytips feature.

When you enable this feature, key tips are displayed when the user presses the ALT or F10 button. When the
user presses ALT key, key tips are displayed with a 200 millisecond delay. This delay allows for shortcuts to be
executed so that the pressed ALT key does not interfere with other combinations that include the ALT key.

Enables or disables the Print Preview feature.

bEnable
[in] TRUE to enable the Print Preview feature; FALSE to disable the Print Preview feature.

If bEnable is FALSE and a print preview category exists, it is deleted.

By default the Print Preview feature is enabled.

Enables or disables tooltips and optional tooltip descriptions on the ribbon bar.

RemarksRemarks

CMFCRibbonBar::FindByData

CMFCRibbonBaseElement* FindByData(
 DWORD_PTR dwData,
 BOOL bVisibleOnly = TRUE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::FindByID

CMFCRibbonBaseElement* FindByID(
 UINT uiCmdID,
 BOOL bVisibleOnly = TRUE,
 BOOL bExcludeQAT = FALSE) const;

ParametersParameters

Return ValueReturn Value

bEnable
[in] TRUE to enable tooltips on the ribbon bar; FALSE to disable tooltips on the ribbon bar.

bEnableDescr
[in] TRUE to enable tooltip descriptions on the tooltip; FALSE to disable tooltip descriptions on the tooltip.

The bEnable parameter determines whether tooltips are displayed when the mouse hovers over a ribbon
element. The bEnableDescr parameter determines whether additional descriptive text appears with the tooltip
text.

Retrieves a pointer to a ribbon element if it has the specified data and visibility.

dwData
[in] The data associated with a ribbon element.

bVisibleOnly
[in] TRUE to search visible ribbon elements only; FALSE to search all ribbon elements.

A pointer to a ribbon element if it has the specified data and visibility; otherwise NULL.

A ribbon element is any control that you can add to the ribbon, such as a ribbon button, or a ribbon category, or
a ribbon slider.

Retrieves a pointer to the ribbon element that has the specified command ID and search values.

uiCmdID
[in] Command ID for a ribbon element.

bVisibleOnly
[in] TRUE to search visible ribbon elements only; FALSE to search all ribbon elements.

bExcludeQAT
[in] TRUE to exclude quick access toolbar elements from the search; otherwise, FALSE.

A pointer to a ribbon element if it has the specified command ID and search values; otherwise, NULL.

RemarksRemarks

CMFCRibbonBar::FindCategoryIndexByData

int FindCategoryIndexByData(DWORD dwData) const;

ParametersParameters

Return ValueReturn Value

CMFCRibbonBar::ForceRecalcLayout

void ForceRecalcLayout();

RemarksRemarks

CMFCRibbonBar::GetActiveCategory

CMFCRibbonCategory* GetActiveCategory() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetApplicationButton

CMFCRibbonApplicationButton* GetApplicationButton() const;

Return ValueReturn Value

A ribbon element is any ribbon control that can be added to the ribbon, such as a ribbon button, or a ribbon
category, or a ribbon slider.

In general, there can be more than one ribbon element that has the same command ID. If you want to obtain
pointers to all ribbon elements that use a specified command ID, use the CMFCRibbonBar::GetElementsByID
method.

Retrieves the index of the ribbon category that contains the specified data.

dwData
[in] The data associated with a ribbon category.

The zero-based index of a ribbon category if the method was successful; otherwise -1.

Adjusts the layout of all items in the ribbon bar and parent window and redraws the whole window.

Retrieves a pointer to the active ribbon category.

A pointer to the active ribbon category; or NULL if no category is active.

A category is active if it has the focus. By default, the active category is the first category on the left side of the
ribbon bar.

The main category is displayed when the user presses the application button and it cannot be the active
category.

Retrieves a pointer to the application button.

CMFCRibbonBar::GetCaptionHeight

int GetCaptionHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetCategory

CMFCRibbonCategory* GetCategory(int nIndex) const;

ParametersParameters

Return ValueReturn Value

CMFCRibbonBar::GetCategoryCount

int GetCategoryCount() const;

Return ValueReturn Value

CMFCRibbonBar::GetCategoryHeight

int GetCategoryHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetCategoryIndex

A pointer to the application button; or NULL if the button has not been set.

Retrieves the height of the caption area for the ribbon bar.

The height, in pixels, of the caption area for the ribbon bar.

Retrieves a pointer to the ribbon category at the specified index.

nIndex
[in] The zero-based index of a ribbon category in the list of ribbon categories that is contained in the ribbon bar.

A pointer to the ribbon category at the specified index; otherwise, NULL if nIndex was out of range.

Retrieves the number of ribbon categories in the ribbon bar.

The number of the ribbon categories in the ribbon bar.

Retrieves the height of the category.

The height of the category.

The category height includes the height of the category tab.

Retrieves the index of the specified ribbon category.

int GetCategoryIndex(CMFCRibbonCategory* pCategory) const;

ParametersParameters

Return ValueReturn Value

CMFCRibbonBar::GetContextName

BOOL GetContextName(
 UINT uiContextID,
 CString& strName) const;

ParametersParameters

Return ValueReturn Value

CMFCRibbonBar::GetDroppedDown

virtual CMFCRibbonBaseElement* GetDroppedDown();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetElementsByID

void GetElementsByID(
 UINT uiCmdID,
 CArray<CMFCRibbonBaseElement*,CMFCRibbonBaseElement*>& arButtons);

ParametersParameters

pCategory
[in] Pointer to a ribbon category.

The zero-based index of a ribbon category specified by pCategory; or -1 if the ribbon category is not found.

Retrieves the name of the context category caption specified by a context ID.

uiContextID
[in] A ribbon category context ID.

strName
[out] The name of a context category caption.

TRUE if the method was successful; otherwise, FALSE if uiContextID was zero or the context category caption
was not found.

Retrieves the ribbon element that is currently dropped down.

The ribbon element that is currently dropped down; or NULL if no ribbon element is currently dropped down.

Retrieves an array of pointers to all ribbon elements that have a specific command ID.

uiCmdID
[in] Command ID of a ribbon element.

arButtons

RemarksRemarks

CMFCRibbonBar::GetHideFlags

DWORD GetHideFlags() const;

Return ValueReturn Value

RemarksRemarks

AFX_RIBBONBAR_HIDE_ELEMENTS The ribbon bar is minimized vertically and only the category
tabs, main button, and quick access toolbar are visible.

AFX_RIBBONBAR_HIDE_ALL The width of the ribbon bar is less than the minimum width
and is completely hidden.

CMFCRibbonBar::GetItemIDsList

void GetItemIDsList(CList<UINT, UINT>& lstItems,
 BOOL bHiddenOnly = FALSE) const;

ParametersParameters

RemarksRemarks

CMFCRibbonBar::GetKeyboardNavigationLevel

int GetKeyboardNavigationLevel() const;

Return ValueReturn Value

[out] An array of pointers to ribbon elements.

Multiple ribbon elements can have the same command ID because some ribbon elements can be copied to the
quick access toolbar.

Retrieves the flags that indicate how much of the ribbon bar is visible.

The flags that indicate how much of the ribbon bar is visible.

The following table lists the possible combination of flags for the return value:

Retrieves the command IDs for the specified collection of ribbon elements on the ribbon bar.

lstItems
[out] The list of command IDs for ribbon elements that are contained in the ribbon bar.

bHiddenOnly
[in] TRUE to exclude ribbon elements that are displayed; FALSE to include all ribbon elements in the ribbon bar.

Retrieves the current navigation level as the user presses the keytips that are contained on the ribbon bar.

The current navigation level as the user presses the keytips that are contained on the ribbon bar. The following
table lists possible return values:

-1 Keytips are not displayed.

0 Keytips are displayed.

1 User has pressed a displayed keytip.

RemarksRemarks

CMFCRibbonBar::GetKeyboardNavLevelCurrent

CObject* GetKeyboardNavLevelCurrent() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetKeyboardNavLevelParent

CObject* GetKeyboardNavLevelParent() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetMainCategory

CMFCRibbonCategory* GetMainCategory() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetQATCommandsLocation

Retrieves the current keyboard navigation object on the ribbon bar.

The current keyboard navigation object on the ribbon bar; otherwise NULL if no object currently displays
keytips.

The object that is currently displaying keytips is the current keyboard navigation object.

Retrieves the parent keyboard navigation object on the ribbon bar.

The parent keyboard navigation object on the ribbon bar; otherwise NULL.

When the user presses a keytip on the ribbon bar, the current keyboard navigation object becomes the parent
keyboard navigation object.

Retrieves a pointer to the main ribbon category.

A pointer to the main ribbon category.

The main ribbon category contains the main ribbon panel.

Retrieves the display rectangle for the commands section of the quick access toolbar.

CRect GetQATCommandsLocation() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetQATDroppedDown

CMFCRibbonBaseElement* GetQATDroppedDown();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetQuickAccessCommands

void GetQuickAccessCommands(CList<UINT,UINT>& lstCommands);

ParametersParameters

RemarksRemarks

CMFCRibbonBar::GetQuickAccessToolbarLocation

CRect GetQuickAccessToolbarLocation() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetTabTrancateRatio

int GetTabTrancateRatio() const;

Return ValueReturn Value

The display rectangle for the commands section of the quick access toolbar.

The commands section of the display rectangle does not include the customization button.

Retrieves a pointer to the ribbon element on the quick access toolbar that has its pop-up menu dropped down.

A pointer to the ribbon element on the quick access toolbar that has its pop-up menu dropped down.

Retrieves a list of command IDs for the ribbon elements on the quick access toolbar.

lstCommands
[out] The list of command IDs for the ribbon elements on the quick access toolbar.

The list does not contain ribbon elements that are control separators.

Retrieves the display rectangle for the quick access toolbar.

The display rectangle for the quick access toolbar.

Retrieves the percent size reduction in the display width of the category tabs.

RemarksRemarks

CMFCRibbonBar::GetTooltipFixedWidthLargeImage

int GetTooltipFixedWidthLargeImage() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetTooltipFixedWidthRegular

int GetTooltipFixedWidthRegular() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetVisibleCategoryCount

int GetVisibleCategoryCount() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::HideAllContextCategories

BOOL HideAllContextCategories();

Return ValueReturn Value

RemarksRemarks

The percent size reduction in the display width of the category tabs.

Category tabs are reduced in width when there is not enough width on the ribbon bar.

Retrieves the large size of tooltip width for the ribbon bar.

The large size of tooltip width in pixels.

If the large size of tooltip width is 0, the width varies.

Retrieves the regular size of tooltip width for the ribbon bar.

The regular size of tooltip width in pixels.

If the regular size of tooltip width is 0, the width varies.

Retrieves the number of visible categories on the ribbon bar.

The number of visible categories on the ribbon bar.

Hides all the context categories on the ribbon bar.

TRUE if at least one context category was hidden; otherwise, FALSE.

If a context category is active, the active category is reset to the first visible category in the category list.

CMFCRibbonBar::HideKeyTips

void HideKeyTips();

RemarksRemarks

CMFCRibbonBar::HitTest

virtual CMFCRibbonBaseElement* HitTest(
 CPoint point,
 BOOL bCheckActiveCategory= FALSE,
 BOOL bCheckPanelCaption= FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::IsKeyTipEnabled

BOOL IsKeyTipEnabled() const;

Return ValueReturn Value

CMFCRibbonBar::IsMainRibbonBar

virtual BOOL IsMainRibbonBar() const;

Return ValueReturn Value

Hides all keytips on the ribbon bar.

Retrieves a pointer to the ribbon element specified by the location of the point.

point
[in] Location of the point in ribbon bar coordinates.

bCheckActiveCategory
[in] TRUE to search the active category; FALSE not to search the active category.

bCheckPanelCaption
[in] TRUE to test the caption of the ribbon panel with the point located in it; FALSE not to test the caption of the
ribbon panel with the point located in it. See the Remarks section for more information.

A pointer to the ribbon element located at the specified point; otherwise NULL if the point is not located in a
ribbon element.

The caption of the ribbon panel with the point located in it is not tested unless the bCheckActiveCategory
parameter is TRUE.

Indicates whether the keytips feature is enabled.

TRUE if the keytips feature is enabled; otherwise FALSE.

Indicates whether the ribbon bar is the primary ribbon bar.

RemarksRemarks

CMFCRibbonBar::IsPrintPreviewEnabled

BOOL IsPrintPreviewEnabled() const;

Return ValueReturn Value

CMFCRibbonBar::IsQATEmpty

BOOL IsQATEmpty() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::IsQuickAccessToolbarOnTop

BOOL IsQuickAccessToolbarOnTop() const;

Return ValueReturn Value

CMFCRibbonBar::IsReplaceFrameCaption

BOOL IsReplaceFrameCaption() const;

Return ValueReturn Value

CMFCRibbonBar::IsShowGroupBorder

Always returns TRUE.

By default this method always returns TRUE. Override this method to indicate whether the ribbon bar is the
primary ribbon bar.

Indicates whether the Print Preview feature is enabled.

TRUE if the Print Preview feature is enabled; otherwise FALSE.

Indicates whether the quick access toolbar contains command buttons.

TRUE if the quick access toolbar contains command buttons; otherwise FALSE.

Indicates whether the quick access toolbar is located over or under the ribbon bar.

TRUE if the quick access toolbar is located over the ribbon bar; FALSE if the quick access toolbar is located
under the ribbon bar.

Indicates whether the ribbon bar replaces or is under the caption of the main frame window.

TRUE if the ribbon bar replaces the caption of the main frame window; FALSE if ribbon bar is under the caption
of the main frame window.

Indicates whether button groups located on the ribbon bar display a group border.

virtual BOOL IsShowGroupBorder(CMFCRibbonButtonsGroup* pGroup) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::IsToolTipDescrEnabled

BOOL IsToolTipDescrEnabled() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::IsToolTipEnabled

BOOL IsToolTipEnabled() const;

Return ValueReturn Value

CMFCRibbonBar::IsTransparentCaption

BOOL IsTransparentCaption() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::OnClickButton

pGroup
[in] This parameter is not used.

Always returns FALSE.

By default this method always returns FALSE. Override this method to indicate whether button groups located
on the ribbon bar display a group border.

Indicates whether tooltip descriptions are enabled.

TRUE if tooltip descriptions are enabled; FALSE if tooltip descriptions are disabled.

Tooltip descriptions are additional descriptive text displayed with the tooltip text.

Indicates whether tooltips are enabled or disabled for the ribbon bar.

TRUE if tooltips are enabled; FALSE if tooltips are disabled.

Indicates whether the display is set for Windows Aero color scheme.

TRUE if the color scheme is Windows Aero; otherwise FALSE.

This method is retained for backward compatibility with existing applications and should not be used for new
development.

virtual void OnClickButton(
 CMFCRibbonButton* pButton,
 CPoint point);

ParametersParameters

RemarksRemarks

CMFCRibbonBar::OnEditContextMenu
virtual void OnEditContextMenu(
 CMFCRibbonRichEditCtrl* pEdit,
 CPoint point);

ParametersParameters

RemarksRemarks

CMFCRibbonBar::OnRTLChanged

virtual void OnRTLChanged(BOOL bIsRTL);

ParametersParameters

RemarksRemarks

CMFCRibbonBar::OnSetAccData

BOOL OnSetAccData(long lVal);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pButton
[in] Pointer to the button that was clicked.

point
[in] This parameter is not used.

[in] pEdit
[in] point

Called by the framework when the layout changes direction.

bIsRTL
[in] TRUE if the layout is right-to-left; FALSE if the layout is left-to-right.

This method adjusts the layout of all controls on the ribbon bar for the new layout direction.

This method is internal to the Framework and is not intended to be called from user code.

long lVal The index of the accessible object.

S_OK if successful; otherwise FALSE or S_FALSE.

CMFCRibbonBar::OnShowRibbonContextMenu
virtual BOOL OnShowRibbonContextMenu(
 CWnd* pWnd,
 int x,
 int y,
 CMFCRibbonBaseElement* pHit);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::OnShowRibbonQATMenu
virtual BOOL OnShowRibbonQATMenu(
 CWnd* pWnd,
 int x,
 int y,
 CMFCRibbonBaseElement* pHit);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::OnSysKeyDown

BOOL OnSysKeyDown(
 CFrameWnd* pFrameWnd,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

[in] pWnd
[in] x
[in] y
[in] pHit

[in] pWnd
[in] x
[in] y
[in] pHit

Called by the framework when the user presses the F10 key or holds down the ALT key and then presses
another key.

pFrameWnd
[in] Pointer to the parent main frame window of the ribbon bar.

wParam
[in] Virtual key code of the key being pressed.

lParam
[in] Keyboard state flags when the key was pressed.

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::OnSysKeyUp

BOOL OnSysKeyUp(
 CFrameWnd* pFrameWnd,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::PopTooltip

void PopTooltip();

RemarksRemarks

CMFCRibbonBar::PreTranslateMessage

virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::RecalcLayout

TRUE if the keystroke event was processed; otherwise FALSE.

Called by the framework when the user releases the F10 key, the ALT key, or a key that was pressed when the
ALT key was held down.

pFrameWnd
[in] Pointer to the parent main frame window of the ribbon bar.

wParam
[in] Virtual key code of the key being released.

lParam
[in] This parameter is not used.

TRUE if the keystroke event was processed; otherwise FALSE.

Removes a tooltip from view.

Determines if the specified message is processed by the ribbon bar.

pMsg
[in] Pointer to a message.

TRUE if the message was processed by the ribbon bar; otherwise FALSE.

virtual void RecalcLayout();

RemarksRemarks

CMFCRibbonBar::RemoveAllCategories

void RemoveAllCategories();

RemarksRemarks

CMFCRibbonBar::RemoveAllFromTabs

void RemoveAllFromTabs();

RemarksRemarks

CMFCRibbonBar::RemoveCategory

BOOL RemoveCategory(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::SetActiveCategory

BOOL SetActiveCategory(
 CMFCRibbonCategory* pCategory,
 BOOL bForceRestore= FALSE);

ParametersParameters

Adjusts the layout of all controls on the ribbon bar.

After layout adjustment, the display of the ribbon bar is updated.

Deletes all ribbon categories from the ribbon bar.

This method deletes all ribbon categories from memory and from the category list.

Removes all ribbon elements from the tab area.

Use this function if you want to remove all the elements that you added to the tab area by using
CMFCRibbonBar::AddToTabs method.

Deletes the specified ribbon category from the ribbon bar.

nIndex
[in] The zero-based index of a category in the list of ribbon categories that is contained in the ribbon bar.

TRUE if the specified ribbon category was deleted; otherwise FALSE.

The specified ribbon category is deleted from memory and from the category list.

Sets the specified ribbon category as the active category.

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::SetActiveMDIChild

void SetActiveMDIChild(CWnd* pWnd);

ParametersParameters

RemarksRemarks

CMFCRibbonBar::SetApplicationButton

void SetApplicationButton(
 CMFCRibbonApplicationButton* pButton,
 CSize sizeButton);

ParametersParameters

RemarksRemarks

ExampleExample

pCategory
[in] A ribbon category that is contained in the ribbon bar.

bForceRestore
[in] TRUE to maximize the ribbon bar if it is minimized; FALSE to display the active category in a pop-up
window if the ribbon bar is minimized.

TRUE if the specified category was set as the active category; otherwise FALSE.

The main ribbon category cannot be the active category.

If the category specified by pCategory is not displayed, it cannot be set as the active category.

Associates the system buttons on the ribbon bar that belong to a multiple-document interface (MDI) child
window to the specified MDI child window.

pWnd
[in] Pointer to an MDI child window.

Assigns an application ribbon button to the ribbon bar.

pButton
[in] A pointer to the application ribbon button.

sizeButton
[in] The size of the application ribbon button.

The application ribbon button is a large rounded button located at the upper-left corner of Ribbon control.

The following example demonstrates how to use the SetApplicationButton method in the CMFCRibbonBar class.

// Init main button:
// CMFCRibbonApplicationButton m_MainButton
m_MainButton.SetImage(IDB_MAIN);
m_MainButton.SetText(_T("\nf"));
m_MainButton.SetToolTipText(strTemp);

// CMFCRibbonBar m_wndRibbonBar
m_wndRibbonBar.SetApplicationButton(&m_MainButton, CSize (45, 45));

CMFCRibbonBar::SetElementKeys

BOOL SetElementKeys(
 UINT uiCmdID,
 LPCTSTR lpszKeys,
 LPCTSTR lpszMenuKeys= NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::SetKeyboardNavigationLevel

void SetKeyboardNavigationLevel(
 CObject* pLevel,
 BOOL bSetFocus = TRUE);

ParametersParameters

RemarksRemarks

Sets the keytips for all ribbon elements that have the specified command ID.

uiCmdID
[in] The command ID of a ribbon element.

lpszKeys
[in] The keytip.

lpszMenuKeys
[in] The menu keytip.

TRUE if the keytips of at least one ribbon element are set; otherwise FALSE.

The optional menu keytip is for ribbon elements with a split button that opens a popup menu.

Sets the keyboard navigation level as the user presses the keytips that are contained on the ribbon bar.

pLevel
[in] Pointer to the current keyboard navigation object.

bSetFocus
[in] TRUE to set the keyboard focus to the ribbon bar.

Keyboard navigation of the ribbon bar starts when the user presses the ALT or F10 key. The user selects the
next navigation level by pressing a keytip on the ribbon bar. The user can return to the previous navigation level
by pressing the escape key.

CMFCRibbonBar::SetMaximizeMode

void SetMaximizeMode(
 BOOL bMax,
 CWnd* pWnd = NULL);

ParametersParameters

RemarksRemarks

CMFCRibbonBar::SetQuickAccessCommands

void SetQuickAccessCommands(
 const CList<UINT,UINT>& lstCommands,
 BOOL bRecalcLayout=TRUE);

ParametersParameters

ExampleExample

// Add quick access commands to the toolbar
CList<UINT, UINT> lstQATCmds;

lstQATCmds.AddTail(ID_FILE_NEW);
lstQATCmds.AddTail(ID_FILE_OPEN);
lstQATCmds.AddTail(ID_FILE_SAVE);
lstQATCmds.AddTail(ID_FILE_PRINT_DIRECT);

// CMFCRibbonBar m_wndRibbonBar
m_wndRibbonBar.SetQuickAccessCommands(lstQATCmds);

CMFCRibbonBar::SetQuickAccessDefaultState

Adjusts the ribbon bar when the window size of a multiple-document interface (MDI) child window enters or
leaves the maximized state.

bMax
[in] TRUE to display the system buttons for an MDI child window on the ribbon bar; FALSE to remove the
system buttons for an MDI child window from the ribbon bar.

pWnd
[in] Pointer to the main frame window for the ribbon bar.

The ribbon bar displays system buttons for an MDI child window in the tab row when an MDI child window is
maximized.

Adds one or more ribbon elements to the Quick Access Toolbar.

lstCommands
[in] The list of commands to be placed on the Quick Access Toolbar.

bRecalcLayout
[in] TRUE if want to redraw the ribbon after you add the ribbon elements; FALSE otherwise.

The following example demonstrates how to use the SetQuickAccessCommands method in the CMFCRibbonBar

class.

Sets the quick access toolbar to the default state.

void SetQuickAccessDefaultState(const CMFCRibbonQuickAccessToolBarDefaultState& state);

ParametersParameters

RemarksRemarks

ExampleExample

CMFCRibbonQuickAccessToolBarDefaultState* qaToolBarState =
 new CMFCRibbonQuickAccessToolBarDefaultState();
qaToolBarState->AddCommand(ID_FILE_NEW, true);
qaToolBarState->AddCommand(ID_FILE_OPEN, true);
// CMFCRibbonBar m_wndRibbonBar
m_wndRibbonBar.SetQuickAccessDefaultState(*qaToolBarState);

CMFCRibbonBar::SetQuickAccessToolbarOnTop

void SetQuickAccessToolbarOnTop(BOOL bOnTop);

ParametersParameters

CMFCRibbonBar::SetTooltipFixedWidth

void SetTooltipFixedWidth(
 int nWidthRegular,
 int nWidthLargeImage);

ParametersParameters

RemarksRemarks

CMFCRibbonBar::ShowCategory

state
[in] The quick access toolbar default state.

The quick access toolbar state includes a list of commands and their visibility.

The following example demonstrates how to use the SetQuickAccessDefaultState method in the CMFCRibbonBar

class.

Positions the quick access toolbar above or below the ribbon bar.

bOnTop
[in] TRUE to position the quick access toolbar above the ribbon bar; FALSE to position the quick access toolbar
below the ribbon bar.

Sets the regular and large sizes of tooltip fixed widths for the ribbon bar.

nWidthRegular
[in] The width, in pixels, of a regular fixed sized tooltip.

nWidthLargeImage
[in] The width, in pixels, of a large fixed sized tooltip.

Setting a parameter to 0 causes the corresponding width to vary.

Shows or hides the specified ribbon category.

void ShowCategory(
 int nIndex,
 BOOL bShow=TRUE);

ParametersParameters

CMFCRibbonBar::ShowContextCategories

void ShowContextCategories(
 UINT uiContextID,
 BOOL bShow=TRUE);

ParametersParameters

CMFCRibbonBar::ShowKeyTips

void ShowKeyTips();

RemarksRemarks

CMFCRibbonBar::ToggleMimimizeState

void ToggleMimimizeState();

RemarksRemarks

CMFCRibbonBar::TranslateChar

nIndex
[in] The index of the ribbon category.

bShow
[in] If TRUE, show the ribbon category; otherwise, hide the ribbon category.

Shows or hides the context categories that have the specified ID.

uiContextID
[in] The context category ID.

bShow
[in] If TRUE, show the categories that have the specified ID; otherwise, hide the categories that have the
specified ID.

Shows the keytips for each ribbon element on the ribbon bar.

Toggles the ribbon bar between the minimized and maximized states.

The misspelling in the method name is a known issue.

In the minimized state, the ribbon control is hidden and only the tabs are displayed. When the user clicks a tab,
the ribbon control is displayed as a popup window. The window closes when the user clicks away or executes a
command.

Determines whether the specified keystroke character code is processed by the ribbon bar.

virtual BOOL TranslateChar(UINT nChar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::GetFocused

virtual CMFCRibbonBaseElement* GetFocused();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::IsWindows7Look

BOOL IsWindows7Look() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::LoadFromResource

virtual BOOL LoadFromResource(
 UINT uiXMLResID,
 LPCTSTR lpszResType = RT_RIBBON,
 HINSTANCE hInstance = NULL);

virtual BOOL LoadFromResource(
 LPCTSTR lpszXMLResID,
 LPCTSTR lpszResType = RT_RIBBON,
 HINSTANCE hInstance = NULL);

ParametersParameters

nChar
[in] A user keystroke character code.

TRUE if the character code was processed by the ribbon bar; otherwise FALSE.

The keytips feature enables users to navigate the ribbon bar by using the keyboard.

Returns a focused element.

A pointer to a focused element or NULL.

Indicates whether the ribbon has Windows 7 look (small rectangular application button).

TRUE if the ribbon has Windows 7 look; otherwise FALSE.

Overloaded. Loads a Ribbon Bar from application resources.

uiXMLResID
Specifies resource ID of XML string with Ribbon Bar information.

lpszResType

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::SaveToXMLBuffer

UINT SaveToXMLBuffer(LPBYTE* ppBuffer) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::SaveToXMLFile

BOOL SaveToXMLFile(LPCTSTR lpszFilePath) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBar::SetWindows7Look

void SetWindows7Look(
 BOOL bWindows7Look,
 BOOL bRecalc = TRUE);

ParametersParameters

Specifies type of the resource located at uiXMLResID.

hInstance
Handle to the module whose executable file contains the resource. If hInstance is NULL, the system loads the
resource from the module that was used to create the current process.

lpszXMLResID
Specifies resource ID (in string form) with Ribbon Bar information.

TRUE if load succeeds; otherwise FALSE.

Saves the Ribbon Bar to a buffer.

ppBuffer
When this function returns, ppBuffer points to a buffer allocated by this method and contains Ribbon Bar
information in XML format.

TRUE if successful; otherwise FALSE.

Saves the Ribbon Bar to an XML file.

lpszFilePath
Specifies the output file.

TRUE if successful; otherwise FALSE.

Enables or disables Windows 7 look (small rectangular application button) for the Ribbon.

RemarksRemarks

See also

bWindows7Look
TRUE sets Windows 7 look; FALSE otherwise.

bRecalc
TRUE recalculates the ribbon layout; FALSE otherwise.

Hierarchy Chart
Classes
CPane Class
CMFCRibbonCategory Class
CMFCRibbonPanel Class
CMFCRibbonBaseElement Class
Walkthrough: Updating the MFC Scribble Application

CMFCRibbonBaseElement Class
3/4/2019 • 30 minutes to read • Edit Online

Syntax
class CMFCRibbonBaseElement : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonBaseElement Constructs a CMFCRibbonBaseElement object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonBaseElement::AddToKeyList Adds a keytip for the ribbon element to an array of keytips.

CMFCRibbonBaseElement::AddToListBox Adds a ribbon element to the specified ribbon commands
list box.

CMFCRibbonBaseElement::CanBeAddedToQuickAccessToolB
ar

Indicates whether the ribbon element can be added to the
quick access toolbar.

CMFCRibbonBaseElement::CanBeCompacted Indicates whether the size of the ribbon element can be
compact.

CMFCRibbonBaseElement::CanBeStretched Indicates whether the height of the ribbon element can
increase vertically to the height of a ribbon row.

CMFCRibbonBaseElement::CanBeStretchedHorizontally Indicates whether the width of the ribbon element can
change.

CMFCRibbonBaseElement::CleanUpSizes Cleans up the dimension settings for the ribbon element.

CMFCRibbonBaseElement::ClosePopupMenu Closes the popup menu for the ribbon element.

CMFCRibbonBaseElement::CopyFrom Copies the state of the specified CMFCRibbonBaseElement

to the current object.

CMFCRibbonBaseElement::DestroyCtrl Destroys the ribbon element.

CMFCRibbonBaseElement::DrawImage Draws the image for the ribbon element.

The CMFCRibbonBaseElement class is the base class for all elements that you can add to a ribbon bar. Examples of
ribbon elements are ribbon buttons, ribbon check boxes, and ribbon combo boxes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonbaseelement-class.md

CMFCRibbonBaseElement::Find Returns the specified pointer to the ribbon element if it
points to the current object.

CMFCRibbonBaseElement::FindByData Retrieves a pointer to the ribbon element if it contains the
specified data.

CMFCRibbonBaseElement::FindByID Retrieves a pointer to the ribbon element if that element is
identified by the specified command ID.

CMFCRibbonBaseElement::FindByOriginal Retrieves a pointer to the ribbon element if its original
ribbon element matches the specified ribbon element.

CMFCRibbonBaseElement::GetCompactSize Returns the compact size of the ribbon element.

CMFCRibbonBaseElement::GetData Retrieves the user-defined data associated with the ribbon
element.

CMFCRibbonBaseElement::GetDescription Returns the description of the ribbon element.

CMFCRibbonBaseElement::GetDroppedDown Retrieves a pointer to the ribbon element if its pop-up
menu is dropped down.

CMFCRibbonBaseElement::GetElements Adds the current ribbon element to the specified array.

CMFCRibbonBaseElement::GetElementsByID Adds the current ribbon element to the specified array if the
current ribbon element contains the specified command ID.

CMFCRibbonBaseElement::GetHighlighted Retrieves a pointer to the ribbon element if it is highlighted.

CMFCRibbonBaseElement::GetID Returns the command ID of the ribbon element.

CMFCRibbonBaseElement::GetImageSize Returns the image size of the ribbon element.

CMFCRibbonBaseElement::GetIntermediateSize Returns the size of the ribbon element in its intermediate
state.

CMFCRibbonBaseElement::GetKeys Returns the keytip associated with the ribbon element.

CMFCRibbonBaseElement::GetKeyTipRect Retrieves the keytip boundary rectangle for the ribbon
element.

CMFCRibbonBaseElement::GetKeyTipSize Retrieves the size of the keytip text.

CMFCRibbonBaseElement::GetLocationInGroup Indicates the display location of the ribbon element in a
ribbon group.

CMFCRibbonBaseElement::GetMenuKeys Returns the keytips associated with a button.

CMFCRibbonBaseElement::GetNotifyID Retrieves the notification command ID for the ribbon
element.

CMFCRibbonBaseElement::GetOriginal Retrieves the original ribbon element.

NAME DESCRIPTION

CMFCRibbonBaseElement::GetParentCategory Retrieves the ribbon category for the ribbon element.

CMFCRibbonBaseElement::GetParentPanel Retrieves the ribbon panel that contains the ribbon element.

CMFCRibbonBaseElement::GetParentRibbonBar Retrieves the parent ribbon bar for the ribbon element.

CMFCRibbonBaseElement::GetParentWnd Retrieves the parent window for the ribbon element.

CMFCRibbonBaseElement::GetPressed Retrieves a pointer to the ribbon element if the user
currently presses it.

CMFCRibbonBaseElement::GetQuickAccessToolBarID Retrieves the command ID of the ribbon element when it is
located in the quick access toolbar.

CMFCRibbonBaseElement::GetRect Returns the bounding rectangle of the ribbon element.

CMFCRibbonBaseElement::GetRegularSize Returns the regular size of the ribbon element.

CMFCRibbonBaseElement::GetSize Returns the current size of the ribbon element.

CMFCRibbonBaseElement::GetText Returns the text associated with the ribbon element.

CMFCRibbonBaseElement::GetToolTipText Returns tooltip text of the ribbon element.

CMFCRibbonBaseElement::GetTopLevelRibbonBar Retrieves the top level ribbon bar for the ribbon element.

CMFCRibbonBaseElement::HasCompactMode Specifies whether the ribbon element has a compact mode.

CMFCRibbonBaseElement::HasFocus Indicates whether the parent element has keyboard focus.

CMFCRibbonBaseElement::HasIntermediateMode Specifies whether the ribbon element has an intermediate
mode.

CMFCRibbonBaseElement::HasLargeMode Specifies whether the ribbon element has a large mode.

CMFCRibbonBaseElement::HasMenu Indicates whether the ribbon element has a menu.

CMFCRibbonBaseElement::HitTest Retrieves a pointer to the ribbon element if the specified
point is located in it.

CMFCRibbonBaseElement::IsAlignByColumn Indicates whether the ribbon element is aligned vertically
with other ribbon elements.

CMFCRibbonBaseElement::IsAlwaysLargeImage Indicates whether the ribbon element image size is always
large.

CMFCRibbonBaseElement::IsAutoRepeatMode Indicates whether the ribbon element is in auto repeat
mode.

CMFCRibbonBaseElement::IsChecked Specifies whether the ribbon element is checked.

NAME DESCRIPTION

CMFCRibbonBaseElement::IsCompactMode Specifies whether the ribbon element is in a compact mode.

CMFCRibbonBaseElement::IsDefaultMenuLook

CMFCRibbonBaseElement::IsDisabled Specifies whether the ribbon element is disabled.

CMFCRibbonBaseElement::IsDroppedDown Determines whether the ribbon element displays a popup
menu and is dropped down.

CMFCRibbonBaseElement::IsFocused Specifies whether the ribbon element has the focus.

CMFCRibbonBaseElement::IsGalleryIcon Indicates whether the ribbon element is contained in a
ribbon gallery.

CMFCRibbonBaseElement::IsHighlighted Specifies whether ribbon element is highlighted.

CMFCRibbonBaseElement::IsIntermediateMode Indicates whether the current image for the ribbon element
is intermediate size.

CMFCRibbonBaseElement::IsLargeMode Indicates whether the current image for the ribbon element
is large sized.

CMFCRibbonBaseElement::IsMenuMode Indicates whether the ribbon element is contained in a
menu.

CMFCRibbonBaseElement::IsPressed Indicates whether the user has clicked the ribbon element.

CMFCRibbonBaseElement::IsQATMode Indicates whether the ribbon element is contained in the
quick access toolbar.

CMFCRibbonBaseElement::IsSeparator Indicates whether the ribbon element is a display separator.

CMFCRibbonBaseElement::IsShowGroupBorder Indicates whether the ribbon element is contained in a
group that displays a common border.

CMFCRibbonBaseElement::IsShowTooltipOnBottom Indicates whether the tooltip is displayed under the ribbon
element.

CMFCRibbonBaseElement::IsTabStop Indicates whether the ribbon element can be selected with
the keyboard.

CMFCRibbonBaseElement::IsTextAlwaysOnRight Indicates whether the text for the ribbon element is
displayed on the right.

CMFCRibbonBaseElement::IsVisible Indicates whether the ribbon element is currently displayed.

CMFCRibbonBaseElement::IsWholeRowHeight Indicates whether the display heigth of the ribbon element
is the same as the display height of the ribbon panel that
contains it.

CMFCRibbonBaseElement::NotifyCommand Sends a command notification to the parent window of the
ribbon element.

NAME DESCRIPTION

CMFCRibbonBaseElement::NotifyHighlightListItem Notifies the parent window of the ribbon bar when a user
highlights a ribbon element that is located in a list.

CMFCRibbonBaseElement::OnAddToQAToolbar Adds the ribbon element to the specified quick access
toolbar.

CMFCRibbonBaseElement::OnAfterChangeRect Updates the tooltip for the ribbon element.

CMFCRibbonBaseElement::OnAutoRepeat Updates the ribbon element in response to sustained user
input.

CMFCRibbonBaseElement::OnCalcTextSize Calculates the size of the text for the ribbon element.

CMFCRibbonBaseElement::OnChangeMenuHighlight Called by the framework when the highlight changes for a
ribbon element that is located in a menu.

CMFCRibbonBaseElement::OnDraw Called by the framework to draw the ribbon element.

CMFCRibbonBaseElement::OnDrawKeyTip Called by the framework to draw the keytip for the ribbon
element.

CMFCRibbonBaseElement::OnDrawMenuImage Called by the framework when the menu image for the
ribbon element is drawn.

CMFCRibbonBaseElement::OnDrawOnList Called by the framework to draw the ribbon element in a
commands list box.

CMFCRibbonBaseElement::OnKey Called by the framework when the user presses a keytip and
the ribbon element has the focus.

CMFCRibbonBaseElement::OnMenuKey

CMFCRibbonBaseElement::OnRTLChanged Called by the framework when the layout changes direction.

CMFCRibbonBaseElement::OnShow Called by the framework to show or hide the ribbon
element.

CMFCRibbonBaseElement::OnShowPopupMenu Called by the framework when the ribbon element is going
to display a popup menu.

CMFCRibbonBaseElement::PostMenuCommand

CMFCRibbonBaseElement::Redraw Updates the display for the ribbon element.

CMFCRibbonBaseElement::SetACCData Sets the accessibility data for the ribbon element.

CMFCRibbonBaseElement::SetCompactMode Sets the display size for the ribbon element.

CMFCRibbonBaseElement::SetData Associates a data item with the ribbon element.

CMFCRibbonBaseElement::SetDefaultMenuLook

NAME DESCRIPTION

CMFCRibbonBaseElement::SetDescription Sets the description for the ribbon element.

CMFCRibbonBaseElement::SetID Sets the command ID of the ribbon element.

CMFCRibbonBaseElement::SetInitialMode Sets the initial display size for the ribbon element.

CMFCRibbonBaseElement::SetKeys Sets a keytip for the ribbon element.

CMFCRibbonBaseElement::SetOriginal Sets the original ribbon element for the ribbon element.

CMFCRibbonBaseElement::SetParentCategory Sets the parent category for the ribbon element.

CMFCRibbonBaseElement::SetParentMenu Sets the parent menu container for the ribbon element.

CMFCRibbonBaseElement::SetParentRibbonBar Sets the parent ribbon bar for the ribbon element.

CMFCRibbonBaseElement::SetRect Sets the dimensions fot he display rectangle for the ribbon
element.

CMFCRibbonBaseElement::SetText Sets the text for the ribbon element.

CMFCRibbonBaseElement::SetTextAlwaysOnRight Sets the text for the ribbon element to display on the right.

CMFCRibbonBaseElement::SetToolTipText Sets the tooltip text for the ribbon element.

CMFCRibbonBaseElement::SetVisible Sets the visibility state of the ribbon element.

CMFCRibbonBaseElement::StretchHorizontally Stretches the width of the ribbon element.

CMFCRibbonBaseElement::StretchToWholeRow Changes the display height of the ribbon element to the
specified row height.

CMFCRibbonBaseElement::UpdateTooltipInfo Updates the tooltip text by using the command resource for
the ribbon element.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCRibbonBaseElement::OnProcessKey Called by the framework when the user presses a shortcut
key.

CMFCRibbonBaseElement::OnSetFocus Called by the framework when a ribbon element receives or
loses the input focus.

Remarks
The CMFCRibbonBaseElement class defines the properties that are common to all ribbon elements that include
command ID, text label, tooltip text, element description, and state (which can be focused, highlighted, pressed,
disabled, checked, or dropped down).

The image size of a ribbon element is defined by the RibbonImageType member, which can be one of the

Example

// CMFCRibbonStatusBar m_wndStatusBar
CMFCRibbonBaseElement* pPane = m_wndStatusBar.FindByID(nID);

pPane->SetDescription(_T("a pane"));
// CString strText
pPane->SetText(strText);
pPane->SetKeys(_T("p"));
pPane->SetToolTipText(_T("this is a pane"));

Inheritance Hierarchy

Requirements

CMFCRibbonBaseElement::AddToKeyList

virtual void AddToKeyList(
 CArray<CMFCRibbonKeyTip*, CMFCRibbonKeyTip*>& arElems);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::AddToListBox

following values:

RibbonImageLarge

RibbonImageSmall

Depending on its size, a ribbon element displays either a small or large image.

The following example demonstrates how to use various methods in the CMFCRibbonBaseElement class. The
example shows how to get a CMFCRibbonBaseElement object from a CMFCRibbonStatusBar class, set the
description for the ribbon element, set the text, set a keytip, and set the tooltip text for the ribbon element. This
code snippet is part of the Draw Client sample.

CObject

CMFCRibbonBaseElement

Header: afxbaseribbonelement.h

Adds a keytip for the ribbon element to an array of keytips.

arElems
[in] Reference to a CArray of keytips.

When the ribbon keytips feature is enabled, the framework displays ribbon keytips when the user presses the
ALT key or the F10 key.

Adds a ribbon element to the specified ribbon commands list box.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

virtual int AddToListBox(
 CMFCRibbonCommandsListBox* pWndListBox,
 BOOL bDeep);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::CanBeAddedToQuickAccessToolBar

virtual BOOL CanBeAddedToQuickAccessToolBar() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::CanBeCompacted

virtual BOOL CanBeCompacted() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::CanBeStretched

virtual BOOL CanBeStretched();

Return ValueReturn Value

RemarksRemarks

pWndListBox
[in] Pointer to a commands list box.

bDeep
[in] This parameter is not used.

The zero-based index of the added ribbon element.

The framework adds ribbon elements to a commands list box to enable the user to customize the user
interface.

Indicates whether the ribbon element can be added to the quick access toolbar.

TRUE if the element can be added; otherwise, FALSE.

Indicates whether the size of the ribbon element can be compact.

TRUE if the size of the ribbon element can be compact; otherwise, FALSE.

The size of a ribbon element can be compact, intermediate, or large.

Indicates whether the height of the ribbon element can increase vertically to the height of a ribbon row.

Always returns TRUE.

By default this method always returns TRUE. Override this method to indicate whether the height of the ribbon

CMFCRibbonBaseElement::CanBeStretchedHorizontally

virtual BOOL CanBeStretchedHorizontally();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::CleanUpSizes

virtual void CleanUpSizes();

RemarksRemarks

CMFCRibbonBaseElement::ClosePopupMenu

virtual void ClosePopupMenu();

RemarksRemarks

CMFCRibbonBaseElement::CopyFrom

virtual void CopyFrom(const CMFCRibbonBaseElement& src);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::DestroyCtrl

virtual void DestroyCtrl();

element can increase vertically to the height of a ribbon row.

Indicates whether the width of the ribbon element can change.

Always returns FALSE.

By default this method always returns FALSE. Override this method to indicate whether the width of the
ribbon element can change.

Cleans up the dimension settings for the ribbon element.

By default this method does nothing. Override this method in a derived class to reset the dimension settings
for the ribbon element.

Closes the pop-up menu for the ribbon element.

Copies the state of the specified CMFCRibbonBaseElement to the current object.

src
[in] The source CMFCRibbonBaseElement object.

Destroys the ribbon element.

RemarksRemarks

CMFCRibbonBaseElement::DrawImage

virtual void DrawImage(
 CDC* pDC,
 RibbonImageType type,
 CRect rectImage);

ParametersParameters

RemarksRemarks

RibbonImageLarge Large 32x32 pixel image size.

RibbonImageSmall Small 16x16 pixel image size.

CMFCRibbonBaseElement::Find

virtual CMFCRibbonBaseElement* Find(const CMFCRibbonBaseElement* pElement);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::FindByData

By default this method does nothing. Override this method in a derived class to destroy the ribbon element.

Draws the image for the ribbon element.

pDC
[in] Pointer to a device context.

type
[in] An image type enumerated value. See the Remarks section for a list of possible values.

rectImage
[in] The image rectangle.

By default this method does nothing. Override this method in a derived class to draw the image for the ribbon
element.

The following table lists possible values for the type parameter :

Returns the specified pointer if it points to the current object.

pElement
[in] Pointer to a ribbon element.

A pointer to the ribbon element if pElement points to the current object; otherwise NULL.

Retrieves a pointer to the ribbon element if it contains the specified data.

virtual CMFCRibbonBaseElement* FindByData(DWORD_PTR dwData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::FindByID

virtual CMFCRibbonBaseElement* FindByID(UINT uiCmdID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::FindByOriginal

virtual CMFCRibbonBaseElement* FindByOriginal(CMFCRibbonBaseElement* pOriginal);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::GetCompactSize

virtual CSize GetCompactSize(CDC* pDC);

ParametersParameters

dwData
[in] The data associated with a ribbon element.

A pointer to the ribbon element if it contains the specified data; otherwise NULL.

Retrieves a pointer to the ribbon element if that element is identified by the specified command ID.

uiCmdID
[in] Command ID for a ribbon element.

A pointer to the ribbon element if that element is identified by the specified command ID; otherwise NULL.

Retrieves a pointer to the current ribbon element if its original ribbon element matches the specified ribbon
element.

pOriginal
[in] Pointer to a ribbon element.

A pointer to the ribbon element if its original ribbon element matches the specified ribbon element; otherwise
NULL.

Ribbon elements that are copied to another container retain a pointer to the original ribbon element.

Returns the compact size of the ribbon element.

Return ValueReturn Value

NOTENOTE

CMFCRibbonBaseElement::GetData

DWORD_PTR GetData() const;

Return ValueReturn Value

CMFCRibbonBaseElement::GetDescription

virtual CString GetDescription() const;

Return ValueReturn Value

CMFCRibbonBaseElement::GetDroppedDown

virtual CMFCRibbonBaseElement* GetDroppedDown();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::GetElements

virtual void GetElements(
 CArray<CMFCRibbonBaseElement*, CMFCRibbonBaseElement*>& arElements);

ParametersParameters

pDC
[in] A pointer to a device context.

The compact size of a ribbon element.

The compact size means that the ribbon element is truncated (it displays a small image, or an image without a text).

Retrieves the user-defined data associated with the ribbon element.

The user-defined data associated with the ribbon element.

Returns the description of the ribbon element.

The ribbon element description. The description is displayed either on the status bar, or in a tooltip, or under
the menu button if the ribbon element is located on the CMFCRibbonMainPanel Class.

Retrieves a pointer to the ribbon element if its pop-up menu is dropped down.

A pointer to the ribbon element if its pop-up menu is dropped down; otherwise NULL.

Adds the current ribbon element to the specified array.

arElements
[in, out] An array of ribbon elements.

RemarksRemarks

CMFCRibbonBaseElement::GetElementsByID

virtual void GetElementsByID(
 UINT uiCmdID,
 CArray<CMFCRibbonBaseElement*, CMFCRibbonBaseElement*>& arElements);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::GetHighlighted

virtual CMFCRibbonBaseElement* GetHighlighted();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::GetID

UINT GetID() const;

Return ValueReturn Value

CMFCRibbonBaseElement::GetImageSize

virtual CSize GetImageSize(RibbonImageType R) const;

Return ValueReturn Value

CMFCRibbonBaseElement::GetIntermediateSize

Adds the current ribbon element to the specified array if the current ribbon element contains the specified
command ID.

uiCmdID
[in] Command ID of a ribbon element.

arElements
[in] An array of ribbon elements.

Retrieves a pointer to the ribbon element if it is highlighted.

A pointer to the ribbon element if it is highlighted; otherwise NULL.

Returns the command ID of the ribbon element.

The command ID of the ribbon element.

Returns the image size of the ribbon element.

The image size of the ribbon element.

Returns the size of the ribbon element in its intermediate state.

virtual CSize GetIntermediateSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

CMFCRibbonBaseElement::GetKeys

LPCTSTR GetKeys() const;

Return ValueReturn Value

CMFCRibbonBaseElement::GetKeyTipRect

virtual CRect GetKeyTipRect(
 CDC* pDC,
 BOOL bIsMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::GetKeyTipSize

virtual CSize GetKeyTipSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

pDC
[in] A pointer to a device context.

The size of the ribbon element in its intermediate state.

Returns the keytip associated with the ribbon element.

A keytip associated with the ribbon element.

Retrieves the keytip boundary rectangle for the ribbon element.

pDC
[in] Pointer to a device context.

bIsMenu
[in] TRUE if the ribbon element displays a pop-up menu; otherwise FALSE.

Always returns a rectangle with 0 values.

Override this method in a derived class to return the keytip boundary rectangle.

Retrieves the size of the keytip text.

pDC
[in] Pointer to a device context.

The size of the keytip text.

RemarksRemarks

CMFCRibbonBaseElement::GetLocationInGroup

RibbonElementLocation GetLocationInGroup() const;

Return ValueReturn Value

VALUE DESCRIPTION

RibbonElementNotInGroup The ribbon element is not contained in a ribbon group.

RibbonElementSingleInGroup The ribbon element is displayed as the only item in a ribbon
group.

RibbonElementFirstInGroup The ribbon element is displayed on the left end of a ribbon
group.

RibbonElementLastInGroup The ribbon element is displayed on the right end of a ribbon
group.

RibbonElementMiddleInGroup The ribbon element is not displayed on either end of a
ribbon group.

RemarksRemarks

CMFCRibbonBaseElement::GetMenuKeys

LPCTSTR GetMenuKeys() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::GetNotifyID

virtual UINT GetNotifyID();

Return ValueReturn Value

RemarksRemarks

Indicates the display location of the ribbon element in a ribbon group.

A RibbonElementLocation enumerated value. The following table lists possible values.

Ribbon element groups are only aligned horizontally.

Returns the menu keytip for the ribbon element.

The menu keytip associated with the ribbon element.

When invoked, a menu keytip displays a pop-up menu.

Retrieves the notification command ID for the ribbon element.

The notification command ID.

CMFCRibbonBaseElement::GetOriginal

CMFCRibbonBaseElement* GetOriginal() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::GetParentCategory

CMFCRibbonCategory* GetParentCategory() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::GetParentPanel

virtual CMFCRibbonPanel* GetParentPanel() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::GetParentRibbonBar

CMFCRibbonBar* GetParentRibbonBar() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::GetParentWnd

virtual CWnd* GetParentWnd() const;

Return ValueReturn Value

Retrieves the original ribbon element.

A pointer to the original ribbon element.

Ribbon elements that are copied to another container retain a pointer to the original ribbon element.

Retrieves the ribbon category for the ribbon element.

A pointer to the ribbon category.

Retrieves the ribbon panel that contains the ribbon element.

A pointer to the ribbon panel that contains the ribbon element.

Retrieves the parent ribbon bar for the ribbon element.

A pointer to the parent ribbon bar for the ribbon element.

Retrieves the parent window for the ribbon element.

RemarksRemarks

CMFCRibbonBaseElement::GetPressed

virtual CMFCRibbonBaseElement* GetPressed();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::GetQuickAccessToolBarID

virtual UINT GetQuickAccessToolBarID() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::GetRect

CRect GetRect() const;

Return ValueReturn Value

CMFCRibbonBaseElement::GetRegularSize

virtual CSize GetRegularSize(CDC* pDC) = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

A pointer to the parent window for the ribbon element if the method was successful; otherwise, NULL.

The parent window for a ribbon element is a CMFCRibbonBar Class or a CMFCRibbonPanelMenuBar.

Retrieves a pointer to the ribbon element if the user currently presses it.

A pointer to the ribbon element if the user currently presses it; otherwise, NULL.

Retrieves the command ID of the ribbon element when it is located in the quick access toolbar.

The command ID of the ribbon element when it is located in the quick access toolbar.

Returns the bounding rectangle of the ribbon element.

The bounding rectangle of the ribbon element. The position of the rectangle is in the coordinates of the parent
Ribbon control.

Returns the regular size of the ribbon element.

pDC
[in] A pointer to a device context.

The regular size of the ribbon element.

NOTENOTE

CMFCRibbonBaseElement::GetSize

virtual CSize GetSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

CMFCRibbonBaseElement::GetText

LPCTSTR GetText() const;

Return ValueReturn Value

CMFCRibbonBaseElement::GetToolTipText

virtual CString GetToolTipText() const;

Return ValueReturn Value

CMFCRibbonBaseElement::GetTopLevelRibbonBar

CMFCRibbonBar* GetTopLevelRibbonBar() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::HasCompactMode

The regular size is the maximal possible size of the ribbon element.

Returns the current size of the ribbon element.

pDC
[in] A pointer to a device context.

The current size of the ribbon element.

Returns the text associated with the ribbon element.

The text associated with the ribbon element.

Returns tooltip text of the ribbon element.

The tooltip text of the ribbon element.

Retrieves the top level ribbon bar for the ribbon element.

A pointer to the top level ribbon bar for the ribbon element if the method was successful; otherwise, NULL.

Specifies whether the ribbon element has a compact mode.

virtual BOOL HasCompactMode() const;

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CMFCRibbonBaseElement::HasIntermediateMode

virtual BOOL HasIntermediateMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::HasLargeMode

virtual BOOL HasLargeMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::HasMenu

virtual BOOL HasMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::HitTest

TRUE if the ribbon element has a compact mode. FALSE otherwise.

In the compact mode, an element displays a small image only.

Specifies whether the ribbon element has an intermediate mode.

TRUE if the ribbon element has an intermediate mode, FALSE otherwise. In the intermediate mode, an
element displays a small image and text on the right of the image.

Determines whether the ribbon element has a large mode.

TRUE if the ribbon element has a large mode. FALSE otherwise.

In the large mode, an element can take the full height of the parent panel.

Indicates whether the ribbon element has a menu.

Always returns FALSE.

By default this method always returns FALSE. Override this method in a derived class to indicate whether the
ribbon element has a menu.

Retrieves a pointer to the ribbon element if the specified point is located in it.

virtual CMFCRibbonBaseElement* HitTest(CPoint point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsAlignByColumn

virtual BOOL IsAlignByColumn() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsAlwaysLargeImage

virtual BOOL IsAlwaysLargeImage() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsAutoRepeatMode

virtual BOOL IsAutoRepeatMode(int& nDelay) const;

ParametersParameters

Return ValueReturn Value

point
[in] This parameter is not used.

A pointer to the ribbon element if it exists; otherwise FALSE.

By default this method always returns a valid pointer to the ribbon element when it exists. Override this
method to indicate if the point resides in the ribbon element.

Indicates whether the ribbon element is aligned vertically with other ribbon elements.

Always returns TRUE.

By default this method always returns TRUE. Override this method in a derived class to indicate whether the
derived ribbon element is aligned vertically with other ribbon elements.

Indicates whether the ribbon element image size is always large.

TRUE if the ribbon element image size is always large; otherwise FALSE.

Large image size is 32 x 32 pixels.

Indicates whether the ribbon element is in auto repeat mode.

nDelay
[in] This parameter is not used.

Always returns FALSE.

RemarksRemarks

CMFCRibbonBaseElement::IsChecked

virtual BOOL IsChecked() const;

Return ValueReturn Value

CMFCRibbonBaseElement::IsCompactMode

BOOL IsCompactMode() const;

Return ValueReturn Value

CMFCRibbonBaseElement::IsDefaultMenuLook

BOOL IsDefaultMenuLook() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsDisabled

virtual BOOL IsDisabled() const;

Return ValueReturn Value

CMFCRibbonBaseElement::IsDroppedDown

virtual BOOL IsDroppedDown() const;

By default this method always returns FALSE. Override this method to indicate whether the ribbon element is
in auto repeat mode.

In auto repeat mode, the ribbon element responds at a set interval, measured in milliseconds, to sustained user
input.

Specifies whether the ribbon element is checked.

TRUE if the ribbon element is checked; otherwise FALSE.

Specifies whether the ribbon element is in a compact mode.

TRUE if the ribbon element is in a compact mode; otherwise FALSE.

Indicates whether the ribbon element is set to appear as a pop-up command.

TRUE if the ribbon element is set to appear as a pop-up command; otherwise FALSE.

Specifies whether the ribbon element is disabled.

TRUE if the ribbon element is disabled; otherwise FALSE.

Specifies whether the ribbon element displays a pop-up menu and is dropped down.

Return ValueReturn Value

CMFCRibbonBaseElement::IsFocused

virtual BOOL IsFocused() const;

Return ValueReturn Value

CMFCRibbonBaseElement::IsGalleryIcon

virtual BOOL IsGalleryIcon() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsHighlighted

virtual BOOL IsHighlighted() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsIntermediateMode

BOOL IsIntermediateMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsLargeMode

TRUE if the ribbon element is dropped down and displays a pop-up menu; otherwise FALSE.

Specifies whether the ribbon element has the focus.

TRUE if the ribbon element has the focus; otherwise FALSE.

Indicates whether the ribbon element is contained in a ribbon gallery.

Always returns FALSE.

By default this method always returns FALSE. Override this method in a derived class to indicate whether the
ribbon element is contained in a ribbon gallery.

Specifies whether ribbon element is highlighted.

TRUE if the ribbon element is highlighted; otherwise FALSE.

Indicates whether the current image for the ribbon element is intermediate size.

TRUE if the image for the ribbon element is intermediate size; otherwise FALSE.

Intermediate image size is 16 x 16 pixels.

Indicates whether the current image for the ribbon element is large size.

BOOL IsLargeMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsMenuMode

BOOL IsMenuMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsPressed

virtual BOOL IsPressed() const;

Return ValueReturn Value

CMFCRibbonBaseElement::IsQATMode

BOOL IsQATMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsSeparator

virtual BOOL IsSeparator() const;

Return ValueReturn Value

RemarksRemarks

TRUE if the image for the ribbon element is large size; otherwise FALSE.

Large image size is 32 x 32 pixels.

Indicates whether the ribbon element is contained in a menu.

TRUE if the ribbon element is contained in a menu; otherwise, FALSE.

Indicates whether the user has clicked the ribbon element.

TRUE if the user has clicked the ribbon element; otherwise FALSE.

Indicates whether the ribbon element is contained in the quick access toolbar.

TRUE if the ribbon element is contained in the quick access toolbar; otherwise, FALSE.

Indicates whether the ribbon element is a display separator.

TRUE if the ribbon element is a display separator; otherwise FALSE.

CMFCRibbonBaseElement::IsShowGroupBorder

BOOL IsShowGroupBorder() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsShowTooltipOnBottom

virtual BOOL IsShowTooltipOnBottom() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsTabStop

virtual BOOL IsTabStop() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsTextAlwaysOnRight

BOOL IsTextAlwaysOnRight() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsVisible

BOOL IsVisible() const;

Indicates whether the ribbon element is contained in a group that displays a common border.

TRUE if the ribbon element is contained in a group that displays a common border; otherwise, FALSE.

Indicates whether the tooltip is displayed under the ribbon element.

TRUE if the tooltip is displayed under the ribbon element; FALSE if the tooltip is displayed near the pointer.

Indicates whether the ribbon element can be selected with the keyboard.

Always returns TRUE.

By default this method always returns TRUE. Override this method to indicate whether the ribbon element can
be selected with the keyboard.

Indicates whether the text for the ribbon element is displayed on the right.

TRUE if the text for the ribbon element is displayed on the right; otherwise, FALSE.

Indicates whether the ribbon element is currently displayed.

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::IsWholeRowHeight

virtual BOOL IsWholeRowHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::NotifyCommand

BOOL NotifyCommand(BOOL bWithDelay = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::NotifyHighlightListItem

virtual void NotifyHighlightListItem(int nIndex);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::OnAddToQAToolbar

virtual BOOL OnAddToQAToolbar(CMFCRibbonQuickAccessToolBar& qat);

TRUE if the ribbon element is currently displayed; otherwise, FALSE.

Indicates whether the display height of the ribbon element is the same as the display height of the ribbon panel
that contains it.

Always returns FALSE.

By default this method always returns FALSE. Override this method to indicate whether the display height of
the ribbon element is the same as the display height of the ribbon panel that contains it.

Sends a command notification to the parent window of the ribbon element.

bWithDelay
[in] TRUE to add the command notification to the message queue of the parent window; FALSE to send the
message immediately to the parent window.

TRUE if the message was sent; otherwise, FALSE.

Notifies the parent window of the ribbon bar when a user highlights a ribbon element that is located in a list.

nIndex
[in] The index of the ribbon element in the list.

Adds the ribbon element to the specified quick access toolbar.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::OnAfterChangeRect

virtual void OnAfterChangeRect(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::OnAutoRepeat

virtual BOOL OnAutoRepeat();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::OnCalcTextSize

virtual void OnCalcTextSize(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::OnChangeMenuHighlight

qat
[in] The quick access toolbar.

Always returns TRUE indicating the ribbon element was added to the quick access toolbar.

Updates the tooltip for the ribbon element.

pDC
[in] This parameter is not used.

By default this method updates the tooltip for the ribbon element. Override this method to update the ribbon
element after its display rectangle has changed.

Updates the ribbon element in response to sustained user input.

Always returns FALSE.

By default this method always return FALSE. Override this method to process sustained user input.

Calculates the size of the text for the ribbon element.

pDC
[in] This parameter is not used.

By default this method does nothing. Override this method to calculate the size of the text for the ribbon
element.

Called by the framework when the highlight changes for a ribbon element that is located in a menu.

virtual void OnChangeMenuHighlight(CMFCRibbonPanelMenuBar* pPanelMenuBar
 CMFCRibbonBaseElement* pHot);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::OnDraw

virtual void OnDraw(CDC* pDC) = 0;

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::OnDrawKeyTip

virtual void OnDrawKeyTip(
 CDC* pDC,
 const CRect& rect,
 BOOL bIsMenu);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::OnDrawMenuImage

pPanelMenuBar
[in] This parameter is not used.

pHot
[in] This parameter is not used.

By default this method does nothing. Override this method to update a ribbon element that is located in a
menu when the highlight changes.

Called by the framework to draw the ribbon element.

pDC
[in] A pointer to a device context.

Override this method in a derived class if you want to customize the drawing of a specific ribbon element.

Called by the framework to draw the keytip for the ribbon element.

pDC
[in] Pointer to a device context.

rect
[in] Boundary rectangle for the keytip.

bIsMenu
[in] TRUE if the keytip is for a pop-up menu button; otherwise, FALSE.

Called by the framework when the menu image for the ribbon element is drawn.

virtual BOOL OnDrawMenuImage(
 CDC* pDC,
 CRect rect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::OnDrawOnList

virtual void OnDrawOnList(
 CDC* pDC,
 CString strText,
 int nTextOffset,
 CRect rect,
 BOOL bIsSelected,
 BOOL bHighlighted);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::OnKey

virtual BOOL OnKey(BOOL bIsMenuKey);

pDC
[in] Pointer to a device context.

rect
[in] Menu image rectangle.

Always returns TRUE to indicate the image was drawn.

Called by the framework to draw the ribbon element in a commands list box.

pDC
[in] Pointer to a device context for the ribbon element.

strText
[in] The display text.

nTextOffset
[in] Distance, in pixels, from the left side of the list box to the display text.

rect
[in] The display rectangle for the ribbon element.

bIsSelected
[in] This parameter is not used.

bHighlighted
[in] This parameter is not used.

The commands list box displays ribbon elements to enable users to customize the quick access toolbar.

Called by the framework when the user presses a keytip and the ribbon element has the focus.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::OnMenuKey

virtual BOOL OnMenuKey(UINT nUpperChar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::OnProcessKey

virtual BOOL OnProcessKey(UINT nChar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::OnRTLChanged

virtual void OnRTLChanged(BOOL bIsRTL);

ParametersParameters

RemarksRemarks

bIsMenuKey
[in] TRUE if the keytip displays a pop-up menu; otherwise, FALSE.

TRUE if the event was handled; otherwise FALSE.

Called by the framework when the user presses a menu keytip on the main panel.

nUpperChar
[in] This parameter is not used.

Always returns FALSE.

By default this method always returns FALSE. Override this method to respond when a user presses a menu
keytip on the main panel.

Called by the framework when the user presses a shortcut key.

nChar
[in] This parameter is not used.

Always returns FALSE.

Override this method if you want the ribbon element to process a shortcut key.

Called by the framework when the layout changes direction.

bIsRTL
[in] This parameter is not used.

CMFCRibbonBaseElement::OnSetFocus

virtual void OnSetFocus(BOOL B);

RemarksRemarks

CMFCRibbonBaseElement::OnShow

virtual void OnShow(BOOL bShow);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::OnShowPopupMenu

virtual void OnShowPopupMenu();

RemarksRemarks

CMFCRibbonBaseElement::PostMenuCommand

void PostMenuCommand(UINT uiCmdId);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::Redraw

By default this method does nothing. Override this method to adjust the ribbon element when the layout
changes direction. The default layout direction is left-to-right.

Called by the framework when a ribbon element receives or loses the input focus.

Override this method in a derived class if you want your application to handle a change in the focus of a ribbon
element.

Called by the framework to show or hide the ribbon element.

bShow
[in] This parameter is not used.

By default this method does nothing. Override this method to show or hide the ribbon element.

Called by the framework before the ribbon element shows a pop-up menu.

This method notifies the parent window of the ribbon bar that the ribbon element will show a pop-up menu.

Closes the pop-up menu for the ribbon element and sends a close message to the parent menu.

uiCmdId
[in] The parameter is not used.

The close message is only sent if the ribbon element is located on a pop-up menu.

Updates the display for the ribbon element.

virtual void Redraw();

RemarksRemarks

CMFCRibbonBaseElement::SetACCData

virtual BOOL SetACCData(
 CWnd* pParent,
 CAccessibilityData& data);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::SetCompactMode

virtual void SetCompactMode(BOOL bCompactMode = TRUE);

ParametersParameters

RemarksRemarks

BCOMPACTMODE CURRENT RIBBON ELEMENT SIZE NEW RIBBON ELEMENT SIZE

TRUE Compact No change.

TRUE Intermediate Compact if it is possible.

TRUE Large Intermediate if it is possible.

This method redraws the display rectangle for the ribbon element by calling CWnd::RedrawWindow with the
RDW_INVALIDATE, RDW_ERASE, and RDW_UPDATENOW flags set.

Sets the accessibility data for the ribbon element.

pParent
The parent window for the ribbon element.

data
The accessibility data for the ribbon element.

Always returns TRUE.

By default this method sets the accessibility data for the ribbon element and always returns TRUE. Override
this method to set the accessibility data and return a value that indicates success or failure.

Sets the display size for the ribbon element.

bCompactMode
[in] TRUE to reduce the display size of the ribbon element; FALSE to increase the display size of the ribbon
element.

The following table summarizes the logic for this method.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-redrawwindow

FALSE Compact Intermediate if it is possible; otherwise
large.

BCOMPACTMODE CURRENT RIBBON ELEMENT SIZE NEW RIBBON ELEMENT SIZE

CMFCRibbonBaseElement::SetData

void SetData(DWORD_PTR dwData);

ParametersParameters

CMFCRibbonBaseElement::SetDefaultMenuLook

void SetDefaultMenuLook(BOOL bIsDefaultMenuLook = TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::SetDescription

virtual void SetDescription(LPCTSTR lpszText);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::SetID

virtual void SetID(UINT nID);

ParametersParameters

Associates a data item with the ribbon element.

dwData
[in] The data value.

Sets the ribbon element to appear as a pop-up command.

bIsDefaultMenuLook
[in] TRUE to set the ribbon element to appear as a pop-up command; otherwise FALSE.

Sets the description for the ribbon element.

lpszText
[in] The description for the ribbon element.

The framework displays the new description either on the status bar, or in the tooltip, or under the menu
button.

Sets the command ID of the ribbon element.

nID
[in] The command ID.

CMFCRibbonBaseElement::SetInitialMode

virtual void SetInitialMode(BOOL bOneRow = FALSE);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::SetKeys

virtual void SetKeys(
 LPCTSTR lpszKeys,
 LPCTSTR lpszMenuKeys=NULL);

ParametersParameters

CMFCRibbonBaseElement::SetOriginal

virtual void SetOriginal(CMFCRibbonBaseElement* pOriginal);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::SetParentCategory

virtual void SetParentCategory(CMFCRibbonCategory* pParent);

ParametersParameters

RemarksRemarks

Sets the initial display size for the ribbon element.

bOneRow
[in] TRUE to limit the display size for the ribbon element to compact or intermediate; otherwise, FALSE.

The display size of ribbon elements can be compact, intermediate, or large.

Sets the keytips for the ribbon element.

lpszKeys
[in] The keytip for the ribbon element.

lpszMenuKeys
[in] The keytip for the pop-up menu of the ribbon element.

Sets the original ribbon element for the ribbon element.

pOriginal
[in] Pointer to a ribbon element.

Ribbon elements that are copied to another container retain a pointer to the original ribbon element.

Sets the parent category for the ribbon element.

pParent
[in] Pointer to a ribbon category.

CMFCRibbonBaseElement::SetParentMenu

virtual void SetParentMenu(CMFCRibbonPanelMenuBar* pMenuBar);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::SetParentRibbonBar

virtual void SetParentRibbonBar(CMFCRibbonBar* pRibbonBar);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::SetRect

void SetRect(CRect rect);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::SetText

virtual void SetText(LPCTSTR lpszText);

ParametersParameters

RemarksRemarks

The tabbed groups in ribbon controls are called categories.

Sets the parent menu container for the ribbon element.

pMenuBar
[in] The parent menu.

Sets the parent ribbon bar for the ribbon element.

pRibbonBar
[in] Pointer to the parent ribbon bar.

Sets the dimensions of the display rectangle for the ribbon element.

rect
[in] The dimensions of the rectangle.

Sets the text and keytip for the ribbon element.

lpszText
[in] The text and keytip for the ribbon element.

To set the keytip for the ribbon element, append the newline escape sequence followed by the keytip characters
to lpszText.

ExampleExample

//Set the text for the ribbon element
SetText(_T("Margins"))
//Set the text and a single-letter keytip
SetText(_T("Margins\nm"))
//Set the text and a multiple-letter keytip
SetText(_T("Line Numbers\nln"))

CMFCRibbonBaseElement::SetTextAlwaysOnRight

virtual void SetTextAlwaysOnRight(BOOL bSet = TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::SetToolTipText

virtual void SetToolTipText(LPCTSTR lpszText);

ParametersParameters

CMFCRibbonBaseElement::SetVisible

void SetVisible(BOOL bIsVisible);

ParametersParameters

RemarksRemarks

CMFCRibbonBaseElement::StretchHorizontally

virtual void StretchHorizontally();

RemarksRemarks

Sets the text for the ribbon element to display on the right.

bSet
[in] TRUE to display the text on the right; otherwise FALSE.

Sets the tooltip text for the ribbon element.

lpszText
[in] The tooltip text.

Sets the visibility of the ribbon element.

bIsVisible
[in] TRUE to display the ribbon element; FALSE to hide the ribbon element.

Stretches the width of the ribbon element.

By default this method generates an assertion failure in debug builds and therefore should not be called.
Override this method to stretch the width of the ribbon element.

CMFCRibbonBaseElement::StretchToWholeRow

virtual BOOL StretchToWholeRow(
 CDC* pDC,
 int nHeight);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonBaseElement::UpdateTooltipInfo

virtual void UpdateTooltipInfo();

RemarksRemarks

CMFCRibbonBaseElement::HasFocus

virtual BOOL HasFocus() const;

Return ValueReturn Value

RemarksRemarks

See also

Changes the display height of the ribbon element to the specified row height.

pDC
[in] This parameter is not used.

nHeight
[in] The height of the row.

TRUE if the display height was set; otherwise, FALSE.

Override this method to change the display height of the ribbon element to the specified row height.

Updates the tooltip text by using the command resource for the ribbon element.

Indicates whether the parent element has keyboard focus.

TRUE if the ribbon element is focused; otherwise FALSE.

Hierarchy Chart
Classes

CMFCRibbonButton Class
3/4/2019 • 9 minutes to read • Edit Online

Syntax
class CMFCRibbonButton : public CMFCRibbonBaseElement

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonButton::CMFCRibbonButton Constructs a ribbon button object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonButton::AddSubItem Adds a menu item to the pop-up menu that is associated
with the button.

CMFCRibbonButton::CanBeStretched (Overrides CMFCRibbonBaseElement::CanBeStretched.)

CMFCRibbonButton::CleanUpSizes (Overrides CMFCRibbonBaseElement::CleanUpSizes.)

CMFCRibbonButton::ClosePopupMenu (Overrides CMFCRibbonBaseElement::ClosePopupMenu.)

CMFCRibbonButton::DrawBottomText

CMFCRibbonButton::DrawImage (Overrides CMFCRibbonBaseElement::DrawImage.)

CMFCRibbonButton::DrawRibbonText

CMFCRibbonButton::FindSubItemIndexByID Returns the index of a pop-up menu item that is associated
with the specified command ID.

CMFCRibbonButton::GetCommandRect

CMFCRibbonButton::GetCompactSize Returns the compact size of the ribbon element. (Overrides
CMFCRibbonBaseElement::GetCompactSize.)

CMFCRibbonButton::GetIcon

The CMFCRibbonButton class implements buttons that you can position on ribbon bar elements such as panels,
Quick Access Toolbars, and pop-up menus.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonbutton-class.md

CMFCRibbonButton::GetImageIndex Returns the index of the image that is associated with the
button.

CMFCRibbonButton::GetImageSize Returns the image size of the ribbon element. (Overrides
CMFCRibbonBaseElement::GetImageSize.)

CMFCRibbonButton::GetIntermediateSize Returns the size of the ribbon element in its intermediate
state. (Overrides
CMFCRibbonBaseElement::GetIntermediateSize.)

CMFCRibbonButton::GetMenu Returns a handle to a Windows menu that is assigned to the
ribbon button.

CMFCRibbonButton::GetMenuRect

CMFCRibbonButton::GetRegularSize Returns the regular size of the ribbon element. (Overrides
CMFCRibbonBaseElement::GetRegularSize.)

CMFCRibbonButton::GetSubItems

CMFCRibbonButton::GetTextRowHeight

CMFCRibbonButton::GetToolTipText Returns tooltip text of the ribbon element. (Overrides
CMFCRibbonBaseElement::GetToolTipText.)

CMFCRibbonButton::HasCompactMode Specifies whether the ribbon element has a compact mode.
(Overrides CMFCRibbonBaseElement::HasCompactMode.)

CMFCRibbonButton::HasIntermediateMode Specifies whether the ribbon element has an intermediate
mode. (Overrides
CMFCRibbonBaseElement::HasIntermediateMode.)

CMFCRibbonButton::HasLargeMode Determines whether the ribbon element has a large mode.
(Overrides CMFCRibbonBaseElement::HasLargeMode.)

CMFCRibbonButton::HasMenu (Overrides CMFCRibbonBaseElement::HasMenu.)

CMFCRibbonButton::IsAlwaysDrawBorder

CMFCRibbonButton::IsAlwaysLargeImage (Overrides CMFCRibbonBaseElement::IsAlwaysLargeImage.)

CMFCRibbonButton::IsApplicationButton

CMFCRibbonButton::IsCommandAreaHighlighted

CMFCRibbonButton::IsDefaultCommand Determines whether you have enabled the default
command for a ribbon button.

CMFCRibbonButton::IsDefaultPanelButton

CMFCRibbonButton::IsDrawTooltipImage

NAME DESCRIPTION

CMFCRibbonButton::IsLargeImage

CMFCRibbonButton::IsMenuAreaHighlighted

CMFCRibbonButton::IsMenuOnBottom

CMFCRibbonButton::IsPopupDefaultMenuLook

CMFCRibbonButton::IsRightAlignMenu Determines whether the menu is right-aligned.

CMFCRibbonButton::IsSingleLineText

CMFCRibbonButton::OnCalcTextSize (Overrides CMFCRibbonBaseElement::OnCalcTextSize.)

CMFCRibbonButton::OnDrawBorder

CMFCRibbonButton::OnDraw Called by the framework to draw the ribbon element.
(Overrides CMFCRibbonBaseElement::OnDraw.)

CMFCRibbonButton::OnFillBackground

CMFCRibbonButton::RemoveAllSubItems Removes all menu items from the pop-up menu.

CMFCRibbonButton::RemoveSubItem Removes a menu item from the pop-up menu.

CMFCRibbonButton::SetACCData (Overrides CMFCRibbonBaseElement::SetACCData.)

CMFCRibbonButton::SetAlwaysLargeImage Specifies whether the button displays a large or a small
image when the user collapses the button.

CMFCRibbonButton::SetDefaultCommand Enables the default command for the ribbon button.

CMFCRibbonButton::SetDescription Sets the description for the ribbon element. (Overrides
CMFCRibbonBaseElement::SetDescription.)

CMFCRibbonButton::SetImageIndex Assigns an index to the image of the button.

CMFCRibbonButton::SetMenu Assigns a pop-up menu to the ribbon button.

CMFCRibbonButton::SetParentCategory (Overrides CMFCRibbonBaseElement::SetParentCategory.)

CMFCRibbonButton::SetRightAlignMenu Aligns the pop-up menu to the right of the button.

CMFCRibbonButton::SetText Sets the text for the ribbon element. (Overrides
CMFCRibbonBaseElement::SetText.)

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCRibbonButton::OnClick Called by the framework when the user clicks the button.

Example

strTemp.LoadString(IDS_RIBBON_STYLE);
// The first parameter is the command ID of the button.
// The third parameter is a zero-based index of the button's small image in the
// image list of the parent category.
// The fourth parameter is a zero-based index of the button's large image in the
// image list of the parent category.
CMFCRibbonButton* pVisualStyleButton = new CMFCRibbonButton(1, strTemp, -1, -1);

pVisualStyleButton->SetMenu(IDR_THEME_MENU, TRUE, TRUE);

strTemp.LoadString(IDS_RIBBON_STYLE_TIP);
pVisualStyleButton->SetToolTipText(strTemp);
strTemp.LoadString(IDS_RIBBON_STYLE_DESC);
pVisualStyleButton->SetDescription(strTemp);
pVisualStyleButton->RemoveSubItem(0);
pVisualStyleButton->SetRightAlignMenu(TRUE);

Remarks

CMFCRibbonPanel* pPanel = pCategory->AddPanel (
 _T("Clipboard"), // Panel name
 m_PanelIcons.ExtractIcon (0)); // Panel icon

// Create the first button ("Paste"):
CMFCRibbonButton* pPasteButton =
 new CMFCRibbonButton (ID_EDIT_PASTE, _T("Paste"), -1, 0);

// The third parameter (-1) disables small images for button.
// This button is always displayed with a large image
// Associate a pop-up menu with the "Paste" button:
pPasteButton->SetMenu (IDR_CONTEXT_MENU);

// Add buttons to the panel. These buttons have only small images.
pPanel->Add (new CMFCRibbonButton (ID_EDIT_CUT, _T("Cut"), 1));
pPanel->Add (new CMFCRibbonButton (ID_EDIT_COPY, _T("Copy"), 2));
pPanel->Add (new CMFCRibbonButton (ID_EDIT_PAINT, _T("Paint"), 9));

Inheritance Hierarchy

Requirements

CMFCRibbonButton::AddSubItem

The following example demonstrates how to use the various methods in the CMFCRibbonButton class. The
example shows how to construct an object of the CMFCRibbonButton class, assign a pop-up menu to the ribbon
button, set the description of the button, remove a menu item from the pop-up menu, and right align the pop-
up menu to the edge of the button.

To use a ribbon button in an application, construct the button object and add it to the appropriate ribbon panel.

CObject

CMFCRibbonBaseElement

CMFCRibbonButton

Header: afxribbonbutton.h

void AddSubItem(
 CMFCRibbonBaseElement* pSubItem,
 int nIndex=-1);

ParametersParameters

CMFCRibbonButton::CanBeStretched
virtual BOOL CanBeStretched();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::CleanUpSizes
virtual void CleanUpSizes();

RemarksRemarks

CMFCRibbonButton::ClosePopupMenu
virtual void ClosePopupMenu();

RemarksRemarks

CMFCRibbonButton::CMFCRibbonButton

CMFCRibbonButton(
 UINT nID,
 LPCTSTR lpszText,
 int nSmallImageIndex=-1,
 int nLargeImageIndex=-1,
 BOOL bAlwaysShowDescription=FALSE);

CMFCRibbonButton(
 UINT nID,
 LPCTSTR lpszText,
 HICON hIcon,
 BOOL bAlwaysShowDescription=FALSE,
 HICON hIconSmall=NULL,
 BOOL bAutoDestroyIcon=FALSE,
 BOOL bAlphaBlendIcon=FALSE);

Adds a menu item to the pop-up menu that is associated with the button.

pSubItem
[in] Specifies a pointer to the new element to add.

nIndex
[in] Specifies the index at which to add the element to the array of menu items of the button; -1 to add the
element at the end of the array of menu items.

Constructs a ribbon button object.

ParametersParameters

ExampleExample

strTemp.LoadString(IDS_RIBBON_CUT);
CMFCRibbonButton* butn = new CMFCRibbonButton(ID_EDIT_CUT, strTemp, 1);
butn ->SetKeys(_T("k"));

CMFCRibbonButton::DrawBottomText
CSize DrawBottomText(
 CDC* pDC,
 BOOL bCalcOnly);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::DrawImage
virtual void DrawImage(
 CDC* pDC,
 RibbonImageType type,
 CRect rectImage);

ParametersParameters

RemarksRemarks

CMFCRibbonButton::DrawRibbonText

nID
[in] Specifies the command ID of the button.

lpszText
[in] Specifies the text label of the button.

nSmallImageIndex
[in] Specifies a zero-based index of the button's small image in the image list of the parent category.

nLargeImageIndex
[in] Specifies a zero-based index of the button's large image in the image list of the parent category.

hIcon
[in] Specifies a handle to the icon that the application uses as the button's image.

The following example demonstrates how to construct a CMFCRibbonButton object.

[in] pDC
[in] bCalcOnly

[in] pDC
[in] type
[in] rectImage

virtual int DrawRibbonText(
 CDC* pDC,
 const CString& strText,
 CRect rectText,
 UINT uiDTFlags,
 COLORREF clrText = (COLORREF)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::FindSubItemIndexByID

int FindSubItemIndexByID(UINT uiID) const;

ParametersParameters

Return ValueReturn Value

CMFCRibbonButton::GetCommandRect
CRect GetCommandRect() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::GetCompactSize
virtual CSize GetCompactSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::GetIcon

[in] pDC
[in] strText
[in] rectText
[in] uiDTFlags
[in] clrText

Returns the index of a pop-up menu item that is associated with the specified command ID.

uiID
[in] Specifies the command ID of the pop-up menu item.

The zero-based index of the sub-item that is associated with the uiID. -1 if there is no such sub-item.

[in] pDC

HICON GetIcon(BOOL bLargeIcon = TRUE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::GetImageIndex

int GetImageIndex(BOOL bLargeImage) const;

ParametersParameters

Return ValueReturn Value

CMFCRibbonButton::GetImageSize
virtual CSize GetImageSize(RibbonImageType type) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::GetIntermediateSize
virtual CSize GetIntermediateSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::GetMenu

HMENU GetMenu() const;

Return ValueReturn Value

[in] bLargeIcon

Returns the index of the image that is associated with the button.

bLargeImage
[in] If TRUE, returns the image index in the image list that contains the large images; otherwise returns the
image index in the image list that contains the small images.

The index of the button's image in the associated image list.

[in] type

[in] pDC

Returns a handle to a Windows menu that is assigned to the ribbon button.

CMFCRibbonButton::GetMenuRect
CRect GetMenuRect() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::GetRegularSize
virtual CSize GetRegularSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::GetSubItems
const CArray<CMFCRibbonBaseElement*, CMFCRibbonBaseElement*>& GetSubItems() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::GetTextRowHeight
int GetTextRowHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::GetToolTipText
virtual CString GetToolTipText() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::HasCompactMode
virtual BOOL HasCompactMode() const;

Return ValueReturn Value

RemarksRemarks

A handle to a Windows menu assigned to the button; NULL if there is no menu assigned.

[in] pDC

CMFCRibbonButton::HasIntermediateMode
virtual BOOL HasIntermediateMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::HasLargeMode
virtual BOOL HasLargeMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::HasMenu
virtual BOOL HasMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::IsAlwaysDrawBorder
virtual BOOL IsAlwaysDrawBorder() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::IsAlwaysLargeImage
virtual BOOL IsAlwaysLargeImage() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::IsApplicationButton
virtual BOOL IsApplicationButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::IsCommandAreaHighlighted

virtual BOOL IsCommandAreaHighlighted() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::IsDefaultCommand

BOOL IsDefaultCommand() const;

Return ValueReturn Value

CMFCRibbonButton::IsDefaultPanelButton
virtual BOOL IsDefaultPanelButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::IsDrawTooltipImage
virtual BOOL IsDrawTooltipImage() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::IsLargeImage
BOOL IsLargeImage() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::IsMenuAreaHighlighted
virtual BOOL IsMenuAreaHighlighted() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::IsMenuOnBottom
BOOL IsMenuOnBottom() const;

Specifies whether the default command for a ribbon button is enabled.

TRUE if you have enabled the default command for a ribbon button; FALSE otherwise.

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::IsPopupDefaultMenuLook
virtual BOOL IsPopupDefaultMenuLook() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::IsRightAlignMenu

BOOL IsRightAlignMenu() const;

Return ValueReturn Value

CMFCRibbonButton::IsSingleLineText
BOOL IsSingleLineText() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::OnCalcTextSize
virtual void OnCalcTextSize(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonButton::OnClick

virtual void OnClick(CPoint point);

ParametersParameters

RemarksRemarks

Specifies whether the menu is right-aligned.

TRUE if menu is right-aligned; otherwise FALSE.

[in] pDC

Called by the framework when the user clicks the button.

point
[in] Specifies the position of the mouse click.

Override this method in a derived class if you want to handle this event.

CMFCRibbonButton::OnDraw
virtual void OnDraw(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonButton::OnDrawBorder
virtual void OnDrawBorder(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonButton::OnFillBackground
virtual COLORREF OnFillBackground(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::RemoveAllSubItems

void RemoveAllSubItems();

CMFCRibbonButton::RemoveSubItem

BOOL RemoveSubItem(int nIndex);

ParametersParameters

Return ValueReturn Value

CMFCRibbonButton::SetACCData

[in] pDC

[in] pDC

[in] pDC

Removes all menu items from the pop-up menu.

Removes a menu item from the pop-up menu.

nIndex
[in] Specifies the zero-based index of the menu item that you want to remove.

TRUE if the specified item has been removed successfully; otherwise FALSE if nIndex is negative or exceeds the
number of menu items in the pop-up menu.

virtual BOOL SetACCData(
 CWnd* pParent,
 CAccessibilityData& data);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButton::SetAlwaysLargeImage

void SetAlwaysLargeImage(BOOL bSet=TRUE);

ParametersParameters

CMFCRibbonButton::SetDefaultCommand

void SetDefaultCommand(BOOL bSet=TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonButton::SetDescription
virtual void SetDescription(LPCTSTR lpszText);

ParametersParameters

Sets the accessibility data for the ribbon button.

pParent
The parent window for the ribbon element.

data
The accessibility data for the ribbon element.

Returns TRUE if successful; otherwise FALSE.

Specifies whether the button displays a large or a small image when the user collapses the button.

bSet
[in] If TRUE, the button displays a large image. Otherwise, the button displays a small image.

Enables the default command for the ribbon button.

bSet
[in] If TRUE, the button can execute its default command. If FALSE, the button cannot execute its default
command.

bSet is relevant only when the button has a menu. If bSet is TRUE, the button can execute its default command
and the assigned pop-up menu appears only when a user clicks the arrow at the right edge of the button.
Otherwise, the button cannot execute its default command, and the pop-up menu appears regardless of which
area of the button the user clicks.

[in] lpszText

RemarksRemarks

CMFCRibbonButton::SetImageIndex

void SetImageIndex(
 int nIndex,
 BOOL bLargeImage);

ParametersParameters

CMFCRibbonButton::SetMenu

void SetMenu(
 HMENU hMenu,
 BOOL bIsDefaultCommand=FALSE,
 BOOL bRightAlign=FALSE);

void SetMenu(
 UINT uiMenuResID,
 BOOL bIsDefaultCommand=FALSE,
 BOOL bRightAlign=FALSE);

ParametersParameters

RemarksRemarks

CMFCRibbonButton::SetParentCategory
virtual void SetParentCategory(CMFCRibbonCategory* pParent);

Assigns an index to the image of the button.

nIndex
[in] Specifies the image index.

bLargeImage
[in] If TRUE, the specified index refers to the list of large images. Otherwise, the index refers to the list of the
small images.

Assigns a pop-up menu to the ribbon button.

hMenu
A handle to a Windows menu.

bIsDefaultCommand
If TRUE, the button can execute its default command; otherwise, the button displays a pop-up menu.

bRightAlign
If TRUE, the menu is right-aligned. Otherwise, the menu is left-aligned.

uiMenuResID
A menu resource ID.

When the application assigns the menu to the button, the button displays an arrow on its right side. If
bIsDefaultCommand is TRUE, the menu appears only when the user clicks the arrow. If the user clicks the
button, its default command is executed. If bIsDefaultCommand is FALSE, the menu appears by clicking
anywhere on the button.

ParametersParameters

RemarksRemarks

CMFCRibbonButton::SetRightAlignMenu

void SetRightAlignMenu(BOOL bSet=TRUE);

ParametersParameters

CMFCRibbonButton::SetText
virtual void SetText(LPCTSTR lpszText);

ParametersParameters

RemarksRemarks

See also

[in] pParent

Aligns the pop-up menu to the edge of the button.

bSet
[in] If TRUE, the menu is right-aligned. Otherwise, the menu is left-aligned

[in] lpszText

Hierarchy Chart
Classes

CMFCRibbonButtonsGroup Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCRibbonButtonsGroup : public CMFCRibbonBaseElement

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonButtonsGroup::CMFCRibbonButtonsGroup Constructs a CMFCRibbonButtonsGroup object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonButtonsGroup::AddButton Adds a button to a group.

CMFCRibbonButtonsGroup::AddButtons Adds a list of buttons to a group.

CMFCRibbonButtonsGroup::GetButton Returns a pointer to the button that is located at a specified
index.

CMFCRibbonButtonsGroup::GetCount Returns the number of buttons in the group.

CMFCRibbonButtonsGroup::GetImageSize Returns the image size of the normal images in the ribbon
group (overrides CMFCRibbonBaseElement::GetImageSize.)

CMFCRibbonButtonsGroup::GetRegularSize Returns the regular size of the ribbon element (overrides
CMFCRibbonBaseElement::GetRegularSize.)

CMFCRibbonButtonsGroup::HasImages Reports whether the CMFCRibbonButtonsGroup object
contains toolbar images.

CMFCRibbonButtonsGroup::OnDrawImage Draws the appropriate image for a specified button,
depending on whether the button is normal, highlighted or
disabled.

CMFCRibbonButtonsGroup::RemoveAll Removes all buttons from the CMFCRibbonButtonsGroup

object.

CMFCRibbonButtonsGroup::SetImages Assigns images to the group.

The CMFCRibbonButtonsGroup class allows you to organize a set of ribbon buttons into a group. All buttons in the
group are directly adjacent to each other horizontally and enclosed in a border.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonbuttonsgroup-class.md

CMFCRibbonButtonsGroup::SetParentCategory Sets the parent CMFCRibbonCategory of the
CMFCRibbonButtonsGroup object and all the buttons within it

(overrides CMFCRibbonBaseElement::SetParentCategory.)

NAME DESCRIPTION

Remarks

Example

 CMFCRibbonButtonsGroup* pSBGroup = new CMFCRibbonButtonsGroup;

 CMFCToolBarImages images;
 images.SetImageSize(CSize(14, 14));

 CMFCToolBarImages hotimages;
 hotimages.SetImageSize(CSize(14, 14));

 if (images.Load(IDB_STATUSBAR_1) && hotimages.Load(IDB_STATUSBAR_2))
 {
 pSBGroup->SetImages(&images, &hotimages, NULL);
 }

 pSBGroup->AddButton(new CMFCRibbonButton(ID_FILE_PRINT_PREVIEW, _T(""), 0));
 pSBGroup->AddButton(new CMFCRibbonButton(ID_FILE_SUMMARYINFO, _T(""), 1));

 // CMFCRibbonStatusBar m_wndStatusBar
 m_wndStatusBar.AddExtendedElement(pSBGroup, _T("View Shortcuts"));

Inheritance Hierarchy

Requirements

CMFCRibbonButtonsGroup::AddButton

void AddButton(CMFCRibbonBaseElement* pButton);

ParametersParameters

The group is derived from CMFCBaseRibbonElement and can be manipulated as a single entity. You can position
the group on any panel or popup menu.

The following example demonstrates how to use various methods in the CMFCRibbonButtonsGroup class. The
example shows how to construct a CMFCRibbonButtonsGroup object, assign images to the group of ribbon buttons,
and add a button to the group of ribbon buttons. This code snippet is part of the Draw Client sample.

CObject

CMFCRibbonBaseElement

CMFCRibbonButtonsGroup

Header: afxribbonbuttonsgroup.h

Adds a button to a group.

pButton

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCRibbonButtonsGroup::AddButtons

void AddButtons(
 const CList<CMFCRibbonBaseElement*,CMFCRibbonBaseElement*>& lstButtons);

ParametersParameters

CMFCRibbonButtonsGroup::CMFCRibbonButtonsGroup

CMFCRibbonButtonsGroup();
CMFCRibbonButtonsGroup(CMFCRibbonBaseElement* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButtonsGroup::GetButton

CMFCRibbonBaseElement* GetButton(int i) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButtonsGroup::GetCount

int GetCount() const;

Return ValueReturn Value

[in] A pointer to a button to add.

Adds a list of buttons to a group.

lstButtons
[in] A list of pointers to the buttons that you want to add.

Constructs a CMFCRibbonButtonsGroup object.

pButton
[in] Specifies a button to add to the newly created CMFCRibbonButtonsGroup object.

Returns a pointer to the button that is located at a specified index.

i
[in] A zero-based index of a button to return.

A pointer to the button that is located at the specified index. NULL if the specified index is out of range.

Returns the number of buttons in the group.

The number of buttons in the group.

CMFCRibbonButtonsGroup::GetImageSize

const CSize GetImageSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButtonsGroup::GetRegularSize

virtual CSize GetRegularSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButtonsGroup::HasImages

BOOL HasImages() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonButtonsGroup::OnDrawImage

virtual void OnDrawImage(
 CDC* pDC,
 CRect rectImage,
 CMFCRibbonBaseElement* pButton,
 int nImageIndex);

ParametersParameters

Retrieves the source image size of the protected CMFCToolBarImages member m_Images .

Returns the source image size of the toolbar images, if any are present, or a CSize of zero if not.

Retrieves the maximum possible size of the ribbon group element.

pDC
[in] Pointer to the device context of the ribbon group.

Reports whether the CMFCRibbonButtonsGroup object contains toolbar images.

Returns TRUE if the protected CMFCToolBarImages member m_Images contains any images, or FALSE if not.

Draws the appropriate image for a specified button, depending on whether the button is normal, highlighted or
disabled.

pDC
[in] Pointer to the device context of the CMFCRibbonButtonsGroup object.

rectImage
[in] The rectangle within which to draw the image.

RemarksRemarks

CMFCRibbonButtonsGroup::RemoveAll

void RemoveAll();

RemarksRemarks

CMFCRibbonButtonsGroup::SetImages

void SetImages(
 CMFCToolBarImages* pImages,
 CMFCToolBarImages* pHotImages,
 CMFCToolBarImages* pDisabledImages);

ParametersParameters

RemarksRemarks

NOTENOTE

CMFCRibbonButtonsGroup::SetParentCategory

virtual void SetParentCategory(CMFCRibbonCategory* pCategory);

ParametersParameters

pButton
[in] The button for which to draw the image.

nImageIndex
[in] The index of the image to draw on the button (in one of the three image arrays for normal, highlighted or
disabled buttons).

Removes all buttons from the CMFCRibbonButtonsGroup object.

Assigns images to the group of ribbon buttons.

pImages
[in] Regular images.

pHotImages
[in] Hot images.

pDisabledImages
[in] Disabled images.

Call SetImages before you add buttons to a group. The number of images must be greater or equal to the number
of buttons to be added to the group.

Hot images are images that are displayed when the user hovers over the button. Disabled images are images that are
displayed when the button is disabled.

Sets the parent CMFCRibbonCategory of the CMFCRibbonButtonsGroup object and all the buttons within it.

pCategory

RemarksRemarks

See also

[in] Pointer to the parent category to set (the tabbed groups in ribbon controls are called categories).

Hierarchy Chart
Classes

CMFCRibbonCategory Class
3/4/2019 • 18 minutes to read • Edit Online

Syntax
class CMFCRibbonCategory : public CObject

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CMFCRibbonCategory::CMFCRibbonCategory The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonCategory::AddHidden Adds a hidden element to the ribbon category.

CMFCRibbonCategory::AddPanel Adds a new panel to the ribbon category.

CMFCRibbonCategory::CopyFrom

CMFCRibbonCategory::FindByData

CMFCRibbonCategory::FindByID

CMFCRibbonCategory::FindPanelWithElem

CMFCRibbonCategory::GetContextID Returns the context ID of the ribbon category.

CMFCRibbonCategory::GetData Returns the user-defined data that is associated with the
ribbon category.

CMFCRibbonCategory::GetDroppedDown

CMFCRibbonCategory::GetElements

CMFCRibbonCategory::GetElementsByID

CMFCRibbonCategory::GetFirstVisibleElement Obtain a first visible element that belong to the ribbon
category.

CMFCRibbonCategory::GetFocused Returns a focused element.

The CMFCRibbonCategory class implements a ribbon tab that contains a group of ribbon panels.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribboncategory-class.md

CMFCRibbonCategory::GetHighlighted Returns a highlighted element.

CMFCRibbonCategory::GetImageCount

CMFCRibbonCategory::GetImageSize

CMFCRibbonCategory::GetItemIDsList

CMFCRibbonCategory::GetLastVisibleElement Obtain a last visible element that belong to the ribbon
category

CMFCRibbonCategory::GetLargeImages Returns a reference to the list of large images that the ribbon
category uses.

CMFCRibbonCategory::GetMaxHeight

CMFCRibbonCategory::GetName

CMFCRibbonCategory::GetPanel Returns a pointer to the ribbon panel that is located at the
specified index.

CMFCRibbonCategory::GetPanelCount Returns the number of ribbon panels in the ribbon category.

CMFCRibbonCategory::GetPanelFromPoint

CMFCRibbonCategory::GetPanelIndex Returns the index of the specified ribbon panel.

CMFCRibbonCategory::GetParentButton

CMFCRibbonCategory::GetParentMenuBar

CMFCRibbonCategory::GetParentRibbonBar

CMFCRibbonCategory::GetRect

CMFCRibbonCategory::GetSmallImages Returns a reference to the list of small images that the
category uses.

CMFCRibbonCategory::GetTabColor Returns the current color of the ribbon category tab.

CMFCRibbonCategory::GetTabRect

CMFCRibbonCategory::GetTextTopLine

CMFCRibbonCategory::GetVisibleElements Obtain all visible elements that belong to the ribbon
category.

CMFCRibbonCategory::HighlightPanel

CMFCRibbonCategory::HitTest

NAME DESCRIPTION

CMFCRibbonCategory::HitTestEx

CMFCRibbonCategory::HitTestScrollButtons

CMFCRibbonCategory::IsActive

CMFCRibbonCategory::IsVisible Determines whether the ribbon category is visible.

CMFCRibbonCategory::IsWindows7Look Indicates whether the parent ribbon has Windows 7-style
look (small rectangular application button)

CMFCRibbonCategory::NotifyControlCommand

CMFCRibbonCategory::OnCancelMode

CMFCRibbonCategory::OnDraw

CMFCRibbonCategory::OnDrawImage

CMFCRibbonCategory::OnDrawMenuBorder

CMFCRibbonCategory::OnKey Called by the framework when a user presses a keyboard
button.

CMFCRibbonCategory::OnLButtonDown

CMFCRibbonCategory::OnLButtonUp

CMFCRibbonCategory::OnMouseMove

CMFCRibbonCategory::OnRTLChanged

CMFCRibbonCategory::OnScrollHorz

CMFCRibbonCategory::OnUpdateCmdUI

CMFCRibbonCategory::RecalcLayout

CMFCRibbonCategory::RemovePanel

CMFCRibbonCategory::ReposPanels

CMFCRibbonCategory::SetCollapseOrder Defines the collapse order of the ribbon panels that are
present in the ribbon category.

CMFCRibbonCategory::SetData Stores the user defined data in the ribbon category.

CMFCRibbonCategory::SetKeys Assigns a keytip to the ribbon category.

CMFCRibbonCategory::SetName

NAME DESCRIPTION

CMFCRibbonCategory::SetTabColor Sets the color of the ribbon category.

NAME DESCRIPTION

Remarks

// Create a new ribbon category and get a pointer to it`
CMFCRibbonCategory* pCategory = m_wndRibbonBar.AddCategory
 (_T("&Write"), // Category name
 IDB_WRITE, // Category small images (16 x 16)
 IDB_WRITE_LARGE); // Category large images (32 x 32)

// Add a panel to the new category
CMFCRibbonPanel* pPanel = pCategory->AddPanel (
 _T("Clipboard"), // Panel name
 m_PanelIcons.ExtractIcon (0)); // Panel icon

Inheritance Hierarchy

Requirements

CMFCRibbonCategory::AddHidden

Typically, you create a ribbon category indirectly by calling CMFCRibbonBar::AddCategory, which returns a
pointer to the newly created ribbon category. You add panels to the category by calling
CMFCRibbonCategory::AddPanel.

The CMFCRibbonTab class draws ribbon categories. It is derived from CMFCRibbonBaseElement Class.

This following example demonstrates how to create a ribbon category and add a panel to it.

The following diagram shows a figure of the Home category from the RibbonApp sample application.

CObject

CMFCRibbonCategory

Header: afxribboncategory.h

Adds the specified ribbon element to the array of ribbon elements that are displayed on the customization dialog
box.

void AddHidden(CMFCRibbonBaseElement* pElem);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::AddPanel

CMFCRibbonPanel* AddPanel(
 LPCTSTR lpszPanelName,
 HICON hIcon = 0,
 CRuntimeClass* pRTI = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Create "Favorites" panel:
strTemp.LoadString(IDS_RIBBON_FAVORITES);
// CMFCRibbonCategory* pCategoryCustom
CMFCRibbonPanel* pPanelFavorites = pCategoryCustom->AddPanel(strTemp,
 m_PanelImages.ExtractIcon(15));

CMFCRibbonCategory::CMFCRibbonCategory

pElem
[in] Pointer to a ribbon element.

Ribbon elements on the customization dialog box are the commands that you can add to the quick access toolbar.

Creates a ribbon panel for the ribbon category.

lpszPanelName
[in] Pointer to the name of the new ribbon panel.

hIcon
[in] Handle to the default icon for the new ribbon panel.

pRTI
[in] Pointer to runtime class information for a custom ribbon panel.

Pointer to the new ribbon panel if the method was successful; otherwise NULL if the panel was not created.

If you want to create a custom ribbon panel, you must specify its runtime class information in pRTI. The custom
ribbon panel class must be derived from the CMFCRibbonPanel class.

The default icon for the ribbon panel is displayed when there is insufficient space to display the ribbon elements.

The following example demonstrates how to use the AddPanel method in the CMFCRibbonCategory class.

Constructs and initializes a CMFCRibbonCategory object.

CMFCRibbonCategory(
 CMFCRibbonBar* pParenrRibbonBar,
 LPCTSTR lpszName,
 UINT uiSmallImagesResID,
 UINT uiLargeImagesResID,
 CSize sizeSmallImage = CSize(16,
 16),
 CSize sizeLargeImage = CSize(32,
 32));

ParametersParameters

CMFCRibbonCategory::CopyFrom

virtual void CopyFrom(CMFCRibbonCategory& src);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::FindByData

CMFCRibbonBaseElement* FindByData(
 DWORD_PTR dwData,
 BOOL bVisibleOnly = TRUE) const;

ParametersParameters

pParenrRibbonBar
[in] Pointer to the parent ribbon bar of the ribbon category.

lpszName
[in] Name of the ribbon category.

uiSmallImagesResID
[in] Resource ID of the image list for small images that are used by ribbon elements in the ribbon category.

uiLargeImagesResID
[in] Resource ID of the image list for large images that are used by ribbon elements in the ribbon category.

sizeSmallImage
[in] Default size of small images for ribbon elements in the ribbon category.

sizeLargeImage
[in] Default size of large images for ribbon elements in the ribbon category.

Copies the state of the specified CMFCRibbonCategory to the current CMFCRibbonCategory object.

src
[in] The source CMFCRibbonCategory object.

Retrieves the ribbon element associated with the specified data.

dwData
[in] The data associated with a ribbon element.

bVisibleOnly
[in] TRUE to include quick access ribbon elements in the search; FALSE to exclude quick access ribbon elements

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::FindByID

CMFCRibbonBaseElement* FindByID(
 UINT uiCmdID,
 BOOL bVisibleOnly = TRUE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::FindPanelWithElem

CMFCRibbonPanel* FindPanelWithElem(const CMFCRibbonBaseElement* pElement);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetContextID

UINT GetContextID() const;

Return ValueReturn Value

RemarksRemarks

in the search.

Pointer to a ribbon element if the method was successful; otherwise NULL.

Retrieves the ribbon element associated with the specified command ID.

uiCmdID
[in] Command ID associated with a ribbon element.

bVisibleOnly
[in] TRUE to include quick access ribbon elements in the search; FALSE to exclude quick access ribbon elements
in the search.

Pointer to a ribbon element if the method was successful; otherwise NULL.

Retrieves the ribbon panel that contains the specified ribbon element.

pElement
[in] Pointer to a ribbon element.

Pointer to a ribbon panel if the method was successful; otherwise NULL.

Retrieves the context ID of the ribbon category.

Context ID of the ribbon category.

The context ID is 0 if the ribbon category is not a context ribbon category.

CMFCRibbonCategory::GetData

DWORD_PTR GetData() const;

Return ValueReturn Value

CMFCRibbonCategory::GetDroppedDown

CMFCRibbonBaseElement* GetDroppedDown();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetElements

void GetElements(
 CArray <CMFCRibbonBaseElement*, CMFCRibbonBaseElement*>& arElements);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::GetElementsByID

void GetElementsByID(
 UINT uiCmdID,
 CArray <CMFCRibbonBaseElement*, CMFCRibbonBaseElement*>& arElements);

ParametersParameters

RemarksRemarks

Retrieves the user-defined data that is associated with the ribbon category.

The user-defined data that is associated with the ribbon category.

Retrieves a pointer to the ribbon element that currently has its pop-up menu displayed.

Pointer to a ribbon element if the method was successful; otherwise NULL.

Retrieves all ribbon elements in the ribbon category.

arElements
[in, out] Reference to a CArray of ribbon elements.

Ribbon elements that are designed for use on the quick access toolbar are included in the array.

Retrieves all ribbon elements that are associated with the specified command ID.

uiCmdID
[in] Command ID associated with a ribbon element.

arElements
[in, out] Reference to a CArray of ribbon elements.

Ribbon elements that are designed for use on the quick access toolbar are included in the array.

CMFCRibbonCategory::GetFirstVisibleElement

CMFCRibbonBaseElement* GetFirstVisibleElement() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetFocused

CMFCRibbonBaseElement* GetFocused();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetHighlighted

CMFCRibbonBaseElement* GetHighlighted();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetImageCount

int GetImageCount(BOOL bIsLargeImage) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetImageSize

Retrieves the first visible element that belongs to the ribbon category.

Pointer to the first visible element; may be NULL if category does not have any visible elements.

Returns a focused element.

A pointer to a focused element or NULL.

Returns a highlighted element.

A pointer to a highlighted element or NULL if no elements are highlighted.

Retrieves the number of images in the specified image list that is contained in the ribbon category.

bIsLargeImage
[in] TRUE for the number of images in the large image list; FALSE for the number of images in the small image
list.

The number of images in the specified image list.

Retrieves the size of an image in the specified image list that is contained in the ribbon category.

CSize GetImageSize(BOOL bIsLargeImage) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetItemIDsList

void GetItemIDsList(
 CList<UINT, UINT>& lstItems,
 BOOL bHiddenOnly = FALSE) const;

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::GetLargeImages

CMFCToolBarImages& GetLargeImages();

Return ValueReturn Value

CMFCRibbonCategory::GetLastVisibleElement

CMFCRibbonBaseElement* GetLastVisibleElement() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetMaxHeight

bIsLargeImage
[in] TRUE for the size of large images; FALSE for the size of small images.

The size of an image in the specified image list.

The size retrieved includes the global image scale factor.

Retrieves the command IDs for the ribbon elements that are contained in the ribbon category.

lstItems
[out] The list of command IDs for the ribbon elements in the ribbon category.

bHiddenOnly
[in] TRUE to exclude ribbon elements displayed on the ribbon panels in the ribbon category; FALSE to include all
ribbon elements in the ribbon category.

Retrieves the list of large images that are contained in the ribbon category.

The list of large images that are contained in the ribbon category.

Retrieves the last visible element that belongs to the ribbon category.

Pointer to the last visible element; may be NULL if the category does not have any visible elements.

int GetMaxHeight(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetName

LPCTSTR GetName() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetPanel

CMFCRibbonPanel* GetPanel(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetPanelCount

int GetPanelCount() const;

Return ValueReturn Value

CMFCRibbonCategory::GetPanelFromPoint

Retrieves the maximum height of the ribbon panels that are contained in the ribbon category.

pDC
[in] Pointer to a device context for the ribbon panels.

The maximum height of the ribbon panels that are contained in the ribbon category.

The value retrieved includes the height of the top and bottom margins for the ribbon panels.

Retrieves the name of the ribbon category.

The name of the ribbon category.

Returns a pointer to the ribbon panel that is located at the specified index.

nIndex
[in] The zero-based index of a ribbon panel.

Pointer to the ribbon panel that is located at the specified index.

An exception is thrown if nIndex is out of range.

Returns the number of ribbon panels in the ribbon category.

The number of ribbon panels in the ribbon category.

CMFCRibbonPanel* GetPanelFromPoint(CPoint point) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetPanelIndex

int GetPanelIndex(const CMFCRibbonPanel* pPanel) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetParentButton

CMFCRibbonBaseElement* GetParentButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetParentMenuBar

CMFCRibbonPanelMenuBar* GetParentMenuBar() const;

Return ValueReturn Value

RemarksRemarks

Retrieves a pointer to a ribbon panel if the specified point is located in it.

point
[in] The x and y coordinates of the pointer, relative to the upper-left corner of the window.

Pointer to a ribbon panel if the method was successful; otherwise NULL.

Only ribbon panels that are contained in the ribbon category are tested.

Retrieves the zero-based index of the specified ribbon panel.

pPanel
[in] Pointer to a ribbon panel.

Zero-based index of the specified ribbon panel if the method was successful; otherwise -1.

Only ribbon panels that are contained in the ribbon category are searched.

Retrieves the parent ribbon element of the ribbon category.

Returns a pointer to the parent ribbon element, or NULL if there is no parent element.

Returns a pointer to the parent menu bar of the CMFCRibbonCategory object.

Returns the contents of the m_pParentMenuBar protected member.

CMFCRibbonCategory::GetParentRibbonBar

CMFCRibbonBar* GetParentRibbonBar() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetRect

CRect GetRect() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetSmallImages

CMFCToolBarImages& GetSmallImages();

Return ValueReturn Value

CMFCRibbonCategory::GetTabColor

AFX_RibbonCategoryColor GetTabColor() const;

Return ValueReturn Value

RemarksRemarks

Retrieves the parent ribbon bar for the ribbon category.

Pointer to the parent ribbon bar for the ribbon category.

Retrieves the display rectangle for the ribbon category.

The display rectangle for the ribbon category.

The display rectangle for the ribbon category does not include the category tab.

Retrieves the list of small images that are contained in the ribbon category.

The list of small images that are contained in the ribbon category.

Returns the current color of the ribbon category tab.

The current color of the ribbon category tab.

The returned value can be one of the following enumerated values:

AFX_CategoryColor_Red

AFX_CategoryColor_Orange

AFX_CategoryColor_Yellow

AFX_CategoryColor_Green

AFX_CategoryColor_Blue

CMFCRibbonCategory::GetTabRect

CRect GetTabRect() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetTextTopLine

int GetTextTopLine() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::GetVisibleElements

void GetVisibleElements(
 CArray <CMFCRibbonBaseElement*,
 CMFCRibbonBaseElement*>& arElements);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::HighlightPanel

CMFCRibbonPanel* HighlightPanel(
 CMFCRibbonPanel* pHLPanel,
 CPoint point);

ParametersParameters

AFX_CategoryColor_Indigo

AFX_CategoryColor_Violet

Retrieves the display rectangle for the ribbon category tab.

The display rectangle for the ribbon category tab.

Retrieves the vertical location of text on ribbon buttons in the ribbon category that display large images.

The vertical location of text, in pixels, on ribbon buttons that display large images.

Retrieves all visible elements that belong to the ribbon category.

arElements
Array of all visible elements.

Highlights the specified ribbon panel.

pHLPanel
[in] Pointer to the ribbon panel to highlight.

point
[in] The x and y coordinates of the pointer, relative to the upper-left corner of the window.

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::HitTest

CMFCRibbonBaseElement* HitTest(
 CPoint point,
 BOOL bCheckPanelCaption = FALSE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::HitTestEx

int HitTestEx(CPoint point) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::HitTestScrollButtons

CMFCRibbonBaseElement* HitTestScrollButtons(CPoint point) const;

ParametersParameters

Pointer to the previously highlighted ribbon panel; otherwise NULL if no ribbon panel is highlighted when this
method is invoked.

For more information about highlighting a ribbon panel, see CMFCRibbonPanel::Highlight.

Retrieves a pointer to a ribbon element if the specified point is located in it.

point
[in] The x and y coordinates of the mouse pointer, relative to the upper-left corner of the window.

bCheckPanelCaption
[in] TRUE to test the ribbon panel caption; FALSE to exclude the ribbon panel caption.

Pointer to a ribbon element if the method was successful; otherwise NULL.

Only ribbon elements that are contained in the ribbon category are tested.

Retrieves the zero-based index of a ribbon element if the specified point is located in it.

point
[in] The x and y coordinates of the mouse pointer, relative to the upper-left corner of the window.

Zero-based index of a ribbon element if the method was successful; otherwise -1.

Only ribbon elements that are contained in the ribbon category are tested.

If a point falls within a ribbon category’s left or right scroll button, returns a pointer to that button.

point

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::IsActive

BOOL IsActive() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::IsVisible

BOOL IsVisible() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::IsWindows7Look

BOOL IsWindows7Look() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::NotifyControlCommand

virtual BOOL NotifyControlCommand(
 BOOL bAccelerator,
 int nNotifyCode,
 WPARAM wParam,
 LPARAM lParam);

[in] The point to test.

If point falls within the bounding rectangle of either the left or the right scroll button of the ribbon category,
returns a pointer to that button, or otherwise, returns NULL.

Indicates whether the ribbon category is the active category on the ribbon bar.

TRUE if the ribbon category is the active category; otherwise FALSE.

The active ribbon category displays its ribbon panels.

Indicates whether the ribbon category is visible.

TRUE if the ribbon category is visible; otherwise FALSE.

Ribbon categories that are visible display a category tab.

Indicates whether the parent ribbon has Windows 7 look (small rectangular application button).

TRUE if the parent ribbon has Windows 7 look; otherwise FALSE.

Delivers a WM_NOTIFY command message to all CMFCRibbonPanel elements in the CMFCRibbonCategory until the
message is handled.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::OnCancelMode

virtual void OnCancelMode();

RemarksRemarks

CMFCRibbonCategory::OnDraw

virtual void OnDraw(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::OnDrawImage

virtual BOOL OnDrawImage(
 CDC* pDC,
 CRect rect,
 CMFCRibbonBaseElement* pElement,
 BOOL bIsLargeImage,
 BOOL nImageIndex,
 BOOL bCenter);

ParametersParameters

bAccelerator
[in] TRUE if this command originated from an accelerator, or FALSE otherwise.

nNotifyCode
[in] The notification code.

wParam
[in] The WPARAM field of the message.

lParam
[in] The LPARAM field of the message.

Returns TRUE if the message was handled, or FALSE if not.

Invokes cancel mode in all the CMFCRibbonPanel elements of the CMFCRibbonCategory .

Called by the framework to draw the ribbon category.

pDC
[in] Pointer to a device context for the ribbon category.

Called by the framework to draw the specified image on the ribbon category.

pDC
[in] Pointer to a device context for the image.

rect

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::OnDrawMenuBorder

virtual void OnDrawMenuBorder(
 CDC* pDC,
 CMFCRibbonPanelMenuBar* pMenuBar);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::OnKey

virtual BOOL OnKey(UINT nChar);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::OnLButtonDown

[in] Display rectangle for the image.

pElement
[in] Pointer to the ribbon element that contains the image.

bIsLargeImage
[in] TRUE if the image is the large size; FALSE if the image is the small size.

nImageIndex
[in] Zero-based index of the image in the image array that is contained in the ribbon category.

bCenter
[in] TRUE to center the image in the display rectangle; FALSE to draw the image in the upper-left corner of the
display rectangle.

TRUE if the method was successful; otherwise FALSE.

Called by the framework to draw the border of a popup menu.

pDC
[in] This parameter is not used.

pMenuBar
[in] This parameter is not used.

By default this method does nothing. Override this method to draw the border of a popup menu.

Called by the framework when a user presses a keyboard button.

nChar
The virtual key code for the key that a user pressed.

Called by the framework to retrieve the ribbon element under the specified point when the user presses the left
mouse button.

virtual CMFCRibbonBaseElement* OnLButtonDown(CPoint point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::OnLButtonUp

virtual void OnLButtonUp(CPoint point);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::OnMouseMove

virtual void OnMouseMove(CPoint point);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::OnRTLChanged

virtual void OnRTLChanged(BOOL bIsRTL);

ParametersParameters

RemarksRemarks

point
[in] The x and y coordinates of the mouse pointer, relative to the upper-left corner of the window.

Pointer to a ribbon element if the method was successful; otherwise NULL.

Called by the framework when the user releases the left mouse button and the pointer is over the ribbon
category.

point
[in] The x and y coordinates of the pointer, relative to the upper-left corner of the window.

Called by the framework when the pointer moves on the ribbon bar in order to update the ribbon category
display.

point
[in] The x and y coordinates of the pointer, relative to the upper-left corner of the window.

Called by the framework when the layout changes direction.

bIsRTL
[in] TRUE if the layout is right-to-left; FALSE if the layout is left-to-right.

This method adjusts the layout of all ribbon panels and ribbon elements that are contained in the ribbon
category.

CMFCRibbonCategory::OnScrollHorz

virtual BOOL OnScrollHorz(
 BOOL bScrollLeft,
 int nScrollOffset = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCategory::OnUpdateCmdUI

virtual void OnUpdateCmdUI(
 CMFCRibbonCmdUI* pCmdUI,
 CFrameWnd* pTarget,
 BOOL bDisableIfNoHndler);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::RecalcLayout

virtual void RecalcLayout(CDC* pDC);

ParametersParameters

RemarksRemarks

Scrolls the ribbon category in the horizontal direction.

bScrollLeft
[in] TRUE to scroll to the left; FALSE to scroll to the right.

nScrollOffset
[in] The scroll distance in pixels.

TRUE if the ribbon category moved in a horizontal direction; otherwise FALSE.

Calls the OnUpdateCmdUI member function in each of the CMFCRibbonPanel elements of the CMFCRibbonCategory to
enable or disable the user-interface elements in them.

pCmdUI
[in] Pointer to the CMFCRibbonCmdUI object that specifies which user-interface elements are to be enabled and
which are to be disabled.

pTarget
[in] Pointer to the window that controls the enabling or disabling of the user-interface elements.

bDisableIfNoHndler
[in] TRUE to disable the user-interface item if no handler is defined in a message map; otherwise, FALSE.

Adjusts the layout of all controls on the ribbon category.

pDC
[in] Pointer to a device context for the ribbon category.

CMFCRibbonCategory::RemovePanel

BOOL RemovePanel(
 int nIndex,
 BOOL bDelete = TRUE);

ParametersParameters

Return ValueReturn Value

CMFCRibbonCategory::ReposPanels

virtual void ReposPanels(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::SetCollapseOrder

void SetCollapseOrder(const CArray<int,int>& arCollapseOrder);

ParametersParameters

RemarksRemarks

ExampleExample

Removes a ribbon panel from the ribbon category.

nIndex
[in] The index number of the panel to remove. Obtained by calling the CMFCRibbonCategory::GetPanelIndex
method.

bDelete
[in] TRUE to delete the panel object from memory; FALSE to remove the panel object without deleting it.

TRUE if the method was successful; otherwise, FALSE.

Adjusts the layout of all controls on the ribbon panels that are contained in the ribbon category.

pDC
[in] Pointer to a device context for the ribbon panels that are contained in the ribbon category.

Defines the order in which the ribbon panels of the ribbon category collapse.

arCollapseOrder
[in] Specifies the collapse order. The array contains zero-based indexes of ribbon panels.

The library defines the collapse order. However, you can customize this behavior by providing the category with
the list of indexes that specifies the collapse order.

When the category detects that it has to collapse a ribbon panel, it looks for the next element in the specified list.
If the list is empty, or you have not specified enough elements, then the category uses the internal algorithm.

For example, the category has three ribbon panels and can be collapsed several times until all panels are in the
fully collapsed state. You can set the following collapse order: 0, 0, 2, 2. In this case, the category will collapse the
panel 0 two times, the panel 2 two times. The panel that has the index of 1 remains uncollapsed.

CArray<int,int> arCollapseOrder;
arCollapseOrder.Add(0);
arCollapseOrder.Add(1);
arCollapseOrder.Add(2);
// CMFCRibbonCategory* pCategoryHome
pCategoryHome->SetCollapseOrder(arCollapseOrder);

CMFCRibbonCategory::SetData

void SetData(DWORD_PTR dwData);

ParametersParameters

CMFCRibbonCategory::SetKeys

void SetKeys(LPCTSTR lpszKeys);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::SetName

void SetName(LPCTSTR lpszName);

ParametersParameters

RemarksRemarks

CMFCRibbonCategory::SetTabColor

The following example demonstrates how to use the SetCollapseOrder method in the CMFCRibbonCategory class.
The example shows how to construct an array for the collapse order, and how to set the collapse order to the
ribbon category.

Sets the user-defined data to be associated with the ribbon category.

dwData
[in] The user-defined data.

Assigns a keytip to the ribbon category.

lpszKeys
[in] The keytip text.

Keytips are displayed when the user presses the Alt key or the F10 key.

Assigns a name and keytip to the ribbon category.

lpszName
[in] The name and keytip of the ribbon category.

To set the keytip for the ribbon category, append a newline escape sequence followed by the keytip characters to
lpszName.

Sets the color of the ribbon category.

void SetTabColor(AFX_RibbonCategoryColor color);

ParametersParameters

RemarksRemarks

See also

color
[in] Specifies the new color of the ribbon category.

Color can be one of the following values:

AFX_CategoryColor_None

AFX_CategoryColor_Red

AFX_CategoryColor_Orange

AFX_CategoryColor_Yellow

AFX_CategoryColor_Green

AFX_CategoryColor_Blue

AFX_CategoryColor_Indigo

AFX_CategoryColor_Violet

Hierarchy Chart
Classes
CObject Class

CMFCRibbonCheckBox Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCRibbonCheckBox : public CMFCRibbonButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonCheckBox::CMFCRibbonCheckBox The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonCheckBox::GetCompactSize (Overrides CMFCRibbonButton::GetCompactSize.)

CMFCRibbonCheckBox::GetIntermediateSize (Overrides CMFCRibbonButton::GetIntermediateSize.)

CMFCRibbonCheckBox::GetRegularSize (Overrides CMFCRibbonButton::GetRegularSize.)

CMFCRibbonCheckBox::IsDrawTooltipImage (Overrides CMFCRibbonButton::IsDrawTooltipImage .)

CMFCRibbonCheckBox::OnDraw (Overrides CMFCRibbonButton::OnDraw.)

CMFCRibbonCheckBox::OnDrawMenuImage (Overrides CMFCRibbonBaseElement::OnDrawMenuImage.)

CMFCRibbonCheckBox::OnDrawOnList (Overrides CMFCRibbonButton::OnDrawOnList .)

CMFCRibbonCheckBox::SetACCData (Overrides CMFCRibbonButton::SetACCData.)

Remarks

CMFCRibbonCheckBox (UINT nID, LPCTSTR lpszText)

The CMFCRibbonCheckBox class implements a check box that you can add to a ribbon panel, Quick Access Toolbar, or
popup menu.

To use a CMFCRibbonCheckBox in your application, add the following constructor to your code:

where nID is the check box command ID and lpszText is the text label of the check box.

You can add a check box to a ribbon panel by using CMFCRibbonPanel::Add.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribboncheckbox-class.md

Inheritance Hierarchy

Requirements

CMFCRibbonCheckBox::CMFCRibbonCheckBox

CMFCRibbonCheckBox(
 UINT nID,
 LPCTSTR lpszText);

ParametersParameters

Return ValueReturn Value

ExampleExample

strTemp.LoadString(IDS_RIBBON_STATUSBAR);
CMFCRibbonButton* pBtnStatusBar = new CMFCRibbonCheckBox(ID_VIEW_STATUS_BAR, strTemp);

CMFCRibbonCheckBox::GetCompactSize

virtual CSize GetCompactSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CObject

CMFCRibbonBaseElement

CMFCRibbonButton

CMFCRibbonCheckBox

Header: afxribboncheckbox.h

Constructor of a ribbon check box object

nID
[in] Specifies command ID.

lpszText
[in] Specifies text label.

Constructs a ribbon check box object.

The following example demonstrates how to construct an object of the CMFCRibbonCheckBox class.

When overridden, gets the compact size of the check box.

pDC
[in] Pointer to the CDC associated with the check box.

Returns a CSize object that contains the compact size of the check box.

If not overridden, returns the intermediate size of the check box.

CMFCRibbonCheckBox::GetIntermediateSize

virtual CSize GetIntermediateSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCheckBox::GetRegularSize

virtual CSize GetRegularSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCheckBox::IsDrawTooltipImage

virtual BOOL IsDrawTooltipImage() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCheckBox::OnDraw

virtual void OnDraw(CDC* pDC);

ParametersParameters

Gets the intermediate size of the check box.

pDC
[in] Pointer to the CDC associated with this check box.

A CSize object containing the intermediate size of the check box.

If not overridden, calculates the intermediate size as the default check box size (AFX_CHECK_BOX_DEFAULT_SIZE) plus
the text size, plus margins.

Gets the regular size of the check box.

pDC
[in] Pointer to the CDC object associated with this check box.

Returns a CSize object that contains the regular size of the check box.

If not overridden, returns the intermediate size of the check box.

Indicates whether there is a tooltip image associated with the check box.

Returns TRUE if there is a tooltip image associated with the check box, or FALSE if not.

Called by the framework to draw the check box using a specified device context.

RemarksRemarks

CMFCRibbonCheckBox::OnDrawMenuImage

virtual BOOL OnDrawMenuImage(CDC*, CRect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonCheckBox::OnDrawOnList

virtual void OnDrawOnList(
 CDC* pDC,
 CString strText,
 int nTextOffset,
 CRect rect,
 BOOL bIsSelected,
 BOOL bHighlighted);

ParametersParameters

RemarksRemarks

pDC
[in] Pointer to the CDC in which to draw the check box.

Called by the framework to draw a menu image for the check box.

[in] CDC*
Pointer to the CDC associated with the check box.

CRect
[in] A CRect object specifying the rectangle in which to draw the menu image.

Returns TRUE if the image was drawn, or FALSE if not.

If not overridden, returns FALSE.

Called by the framework to draw the check box in a commands list box.

pDC
[in] Pointer to the device context in which to draw the check box.

strText
[in] The display text.

nTextOffset
[in] The distance, in pixels, from the left side of the list box to the display text.

rect
[in] The display rectangle for the check box.

bIsSelected
[in] TRUE if the check box is selected, or FALSE if not.

bHighlighted
[in] TRUE if the check box is highlighted, or FALSE if not.

 CMFCRibbonCheckBox::SetACCData

virtual BOOL SetACCData(
 CWnd* pParent,
 CAccessibilityData& data);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Sets the accessibility data for the check box.

pParent
The parent window of the check box.

data
The accessibility data for the check box.

Always returns TRUE.

By default this method sets the accessibility data for the check box and always returns TRUE. Override this method
to set the accessibility data and return a value that indicates success or failure.

Hierarchy Chart
Classes
CMFCRibbonPanel Class

CMFCRibbonColorButton Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CMFCRibbonColorButton : public CMFCRibbonGallery

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonColorButton::CMFCRibbonColorButton

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonColorButton::AddColorsGroup Adds a group of colors to the regular color area.

CMFCRibbonColorButton::EnableAutomaticButton Specifies whether the Automatic button is enabled.

CMFCRibbonColorButton::EnableOtherButton Enables the Other button.

CMFCRibbonColorButton::GetAutomaticColor

CMFCRibbonColorButton::GetColor Returns the currently selected color.

CMFCRibbonColorButton::GetColorBoxSize Returns the size of the color elements that appear on the
color bar.

CMFCRibbonColorButton::GetColumns

CMFCRibbonColorButton::GetHighlightedColor Returns the color of the currently selected element on the
popup color palette.

CMFCRibbonColorButton::RemoveAllColorGroups Removes all color groups from the regular color area.

CMFCRibbonColorButton::SetColor Selects a color from the regular color area.

CMFCRibbonColorButton::SetColorBoxSize Sets the size of all the color elements that appear on the color
bar.

CMFCRibbonColorButton::SetColorName

The CMFCRibbonColorButton class implements a color button that you can add to a ribbon bar. The ribbon color
button displays a drop-down menu that contains one or more color palettes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribboncolorbutton-class.md

CMFCRibbonColorButton::SetColumns

CMFCRibbonColorButton::SetDocumentColors Specifies a list of RGB values to display in the document color
area.

CMFCRibbonColorButton::SetPalette

CMFCRibbonColorButton::UpdateColor

NAME DESCRIPTION

Remarks

Example

// Create the "Paper Color" button
CMFCRibbonColorButton* pBtnPaperColor = new CMFCRibbonColorButton(ID_VIEW_PAPERCOLOR, _T("Paper Color\ng"),
TRUE, 13, 1);
pBtnPaperColor->SetAlwaysLargeImage();
pBtnPaperColor->EnableAutomaticButton(_T("&Automatic"), RGB(255, 255, 255));
pBtnPaperColor->EnableOtherButton(_T("&More Colors..."), _T("More Colors"));
pBtnPaperColor->SetColumns(10);
pBtnPaperColor->SetColorBoxSize(CSize(17, 17));
// CList<COLORREF,COLORREF> m_lstMainColors
pBtnPaperColor->AddColorsGroup(_T("Theme Colors"), m_lstMainColors, TRUE);
// CList<COLORREF,COLORREF> m_lstAdditionalColors
pBtnPaperColor->AddColorsGroup(_T(""), m_lstAdditionalColors, FALSE);
// CList<COLORREF,COLORREF> m_lstStandardColors
pBtnPaperColor->AddColorsGroup(_T("Standard Colors"), m_lstStandardColors, TRUE);
CList<COLORREF,COLORREF> lstColors;
lstColors.AddTail(RGB(255,0,0));
lstColors.AddTail(RGB(0,255,0));
lstColors.AddTail(RGB(0,0,255));
pBtnPaperColor->SetDocumentColors(_T("Document Colors"), lstColors);

Inheritance Hierarchy

The ribbon color button displays a color bar when a user presses it. By default, this color bar contains a color
selection palette called the regular color area. Optionally, the color bar can display an Automatic button, which
allows the user to select a default color, and an Other button, which displays a popup color palette that contains
additional colors.

The following example demonstrates how to use various methods in the CMFCRibbonColorButton class. The
example shows how to construct a CMFCRibbonColorButton object, set the large image, enable the Automatic
button, enable the Other button, set the number of columns, set the size of all the color elements that appear on
the color bar, add a group of colors to the regular color area, and specify a list of RGB values to display in the
document color area. This code snippet is part of the Draw Client sample.

CObject

CMFCRibbonBaseElement

CMFCRibbonButton

CMFCRibbonGallery

CMFCRibbonColorButton

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CMFCRibbonColorButton::AddColorsGroup

void AddColorsGroup(
 LPCTSTR lpszName,
 const CList<COLORREF,COLORREF>& lstColors,
 BOOL bContiguousColumns=FALSE);

ParametersParameters

RemarksRemarks

CMFCRibbonColorButton::CMFCRibbonColorButton

CMFCRibbonColorButton();

CMFCRibbonColorButton(
 UINT nID,
 LPCTSTR lpszText,
 int nSmallImageIndex,
 COLORREF color = RGB(0, 0, 0));

CMFCRibbonColorButton(
 UINT nID,
 LPCTSTR lpszText,
 BOOL bSimpleButtonLook,
 int nSmallImageIndex,
 int nLargeImageIndex,
 COLORREF color = RGB(0, 0, 0));

ParametersParameters

Header: afxribboncolorbutton.h

Adds a group of colors to the regular color area.

lpszName
[in] The group name.

lstColors
[in] The list of colors.

bContiguousColumns
[in] Controls how the color items are displayed in the group. If TRUE, the color items are drawn without a vertical
spacing. If FALSE, the color items are drawn with a vertical spacing.

Use this function to make the color pop-up display several groups of colors. You can control how the colors are
displayed in group.

Constructs a CMFCRibbonColorButton object.

nID
[in] Specifies the command ID of the command to execute when a user clicks the button.

lpszText
[in] Specifies the text to appear on the button.

nSmallImageIndex
[in] The zero-based index of the small image to appear on the button.

Return ValueReturn Value

RemarksRemarks

CMFCRibbonColorButton::EnableAutomaticButton

void EnableAutomaticButton(
 LPCTSTR lpszLabel,
 COLORREF colorAutomatic,
 BOOL bEnable=TRUE,
 LPCTSTR lpszToolTip=NULL,
 BOOL bOnTop=TRUE,
 BOOL bDrawBorder=FALSE);

ParametersParameters

CMFCRibbonColorButton::EnableOtherButton

void EnableOtherButton(
 LPCTSTR lpszLabel,
 LPCTSTR lpszToolTip=NULL);

ParametersParameters

color
[in] The color of the button (defaults to black).

bSimpleButtonLook
[in] If TRUE, the button is drawn as a simple rectangle.

nLargeImageIndex
[in] The zero-based index of the large image to appear on the button.

Specifies whether the Automatic button is enabled.

lpszLabel
[in] The label for the Automatic button.

colorAutomatic
[in] An RGB value that specifies the Automatic button's default color.

bEnable
[in] TRUE if the Automatic button is enabled; FALSE if it is disabled.

lpszToolTip
[in] The tooltip of the Automatic button.

bOnTop
[in] Specifies whether the Automatic button is at the top, before color palette.

bDrawBorder
[in] TRUE if the application draws a border around the color bar on the ribbon color button. Color bar displays the
currently selected color. FALSE if the application does not draw a border

Enables the Other button.

lpszLabel
The button's label.

lpszToolTip

RemarksRemarks

CMFCRibbonColorButton::GetAutomaticColor

COLORREF GetAutomaticColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonColorButton::GetColor

COLORREF GetColor() const;

Return ValueReturn Value

CMFCRibbonColorButton::GetColorBoxSize

CSize GetColorBoxSize() const;

Return ValueReturn Value

CMFCRibbonColorButton::GetColumns

int GetColumns() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonColorButton::GetHighlightedColor

The tooltip text for the Other button.

The Other button is the button that is displayed below the group of colors. When the user clicks the Other button,
it displays a color dialog.

Retrieves the current automatic-button color.

An RGB color value that represents the current automatic-button color.

The automatic-button color is set by the colorAutomatic parameter passed to the
CMFCRibbonColorButton::EnableAutomaticButton method.

Returns the currently selected color.

The color selected by clicking the button.

Returns the size of the color elements that appear on the color bar.

The size of the color buttons in the drop-down color palette.

Gets the number of items in a row of the ribbon color button’s gallery display.

Returns the number of icons in each row.

Returns the color of the currently selected element on the pop-up color palette.

COLORREF GetHighlightedColor() const;

Return ValueReturn Value

CMFCRibbonColorButton::RemoveAllColorGroups

void RemoveAllColorGroups();

CMFCRibbonColorButton::SetColor

void SetColor(COLORREF color);

ParametersParameters

CMFCRibbonColorButton::SetColorBoxSize

void SetColorBoxSize(CSize sizeBox);

ParametersParameters

CMFCRibbonColorButton::SetColorName

static void __stdcall SetColorName(
 COLORREF color,
 const CString& strName);

ParametersParameters

RemarksRemarks

The color of currently selected element on the pop-up color palette.

Removes all color groups from the regular color area.

Selects a color from the regular color area.

color
[in] A color to set.

Sets the size of all the color elements that appear on the color bar.

sizeBox
[in] The new size of the color buttons in the color palette.

Sets a new name for a specified color.

color
[in] The RGB value of a color.

strName
[in] The new name for the specified color.

Because it calls CMFCColorBar::SetColorName , this method changes the name of the specified color in all
CMFCColorBar objects in your application.

CMFCRibbonColorButton::SetColumns

void SetColumns(int nColumns);

ParametersParameters

RemarksRemarks

CMFCRibbonColorButton::SetDocumentColors

void SetDocumentColors(
 LPCTSTR lpszLabel,
 CList<COLORREF,COLORREF>& lstColors);

ParametersParameters

CMFCRibbonColorButton::SetPalette

void SetPalette(CPalette* pPalette);

ParametersParameters

RemarksRemarks

CMFCRibbonColorButton::UpdateColor

void UpdateColor(COLORREF color);

ParametersParameters

RemarksRemarks

Sets the number of columns displayed in the table of colors that is presented to the user during the user's color
selection process.

nColumns
[in] The number of color icons to display in each row.

Specifies a list of RGB values to display in the document color area.

lpszLabel
[in] The text to be displayed with the document colors.

lstColors
[in] A reference to a list of RGB values.

Specifies the standard colors to display in the color table that the color button displays.

pPalette
[in] A pointer to a color palette.

Called by the framework when the user selects a color from the color table displayed when the user clicks the
color button.

color
[in] A color selected by the user.

See also

The CMFCRibbonColorButton::UpdateColor method changes the currently selected button's color and notifies its
parent by sending a WM_COMMAND message with a BN_CLICKED standard notification. Use the
CMFCRibbonColorButton::GetColor method to retrieve the selected color.

Hierarchy Chart
Classes
CMFCRibbonGallery Class

CMFCRibbonComboBox Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CMFCRibbonComboBox : public CMFCRibbonEdit

Members
ConstructorsConstructors

NAME DESCRIPTION

CMFCRibbonComboBox::CMFCRibbonComboBox Constructs a CMFCRibbonComboBox object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonComboBox::AddItem Appends a unique item to the list box.

CMFCRibbonComboBox::DeleteItem Deletes a specified item from the list box.

CMFCRibbonComboBox::EnableDropDownListResize Specifies whether the list box can change size when it drops
down.

CMFCRibbonComboBox::FindItem Returns the index of the first item in the list box that matches
a specified string.

CMFCRibbonComboBox::GetCount Returns the number of items in the list box.

CMFCRibbonComboBox::GetCurSel Gets the index of the currently selected item in the list box.

CMFCRibbonComboBox::GetDropDownHeight Gets the height of the list box when the list box is dropped
down.

CMFCRibbonComboBox::GetIntermediateSize Returns the size of the combo box as displayed in
intermediate mode.

CMFCRibbonComboBox::GetItem Returns the string associated with an item at a specified index
in the list box.

CMFCRibbonComboBox::GetItemData Returns the data associated with an item at a specified index
in the list box.

CMFCRibbonComboBox::HasEditBox Indicates whether the control contains an edit box.

The CMFCRibbonComboBox class implements a combo box control that you can add to a ribbon bar, a ribbon panel, or
a ribbon popup menu.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribboncombobox-class.md

CMFCRibbonComboBox::IsResizeDropDownList Indicates whether or not the list box can be resized.

CMFCRibbonComboBox::OnSelectItem Called by the framework when the user selects an item in the
list box.

CMFCRibbonComboBox::RemoveAllItems Deletes all items from the list box and clears the edit box.

CMFCRibbonComboBox::SelectItem Selects an item in the list box.

CMFCRibbonComboBox::SetDropDownHeight Sets the height of the list box when it is dropped down.

NAME DESCRIPTION

Remarks

Example

// Create a simple combo box with two entries:
// The first parameter is the id of the combo box.
// The third parameter is the width of the combo box in pixels.
// The fourth parameter is the display label of the combo box.
// The fifth parameter is the index of the small image of the combo box.
CMFCRibbonComboBox *pComboSimple = new CMFCRibbonComboBox(-1, FALSE, -1, 0, -1);

// Add two items to the combo box and select the first item in the list:
pComboSimple->AddItem(_T("Hi!"));
pComboSimple->AddItem(_T("Hello!"));
pComboSimple->SelectItem(0);

// Add combo button to "Favorites" panel:
// CMFCRibbonPanel* pPanelFavorites
pPanelFavorites->Add(pComboSimple);

Inheritance Hierarchy

Requirements

CMFCRibbonComboBox::AddItem

The ribbon combo box consists of a list box combined with either a static label or label that can be edited by the
user. You must specify which type you want when you create your ribbon combo box.

The following example demonstrates how to construct an object of the CMFCRibbonComboBox class, add an item to
the combo box, select an item in the combo box, and add a combo box to a panel.

CObject

CMFCRibbonBaseElement

CMFCRibbonButton

CMFCRibbonEdit

CMFCRibbonComboBox

Header: afxribboncombobox.h

virtual INT_PTR AddItem(
 LPCTSTR lpszItem,
 DWORD_PTR dwData=0);

ParametersParameters

Return ValueReturn Value

CMFCRibbonComboBox::CMFCRibbonComboBox

public:
CMFCRibbonComboBox(
 UINT nID,
 BOOL bHasEditBox=TRUE,
 Int nWidth=-1,
 LPCTSTR lpszLabel=NULL,
 Int nImage=-1);

protected:
CMFCRibbonComboBox();

ParametersParameters

RemarksRemarks

CMFCRibbonComboBox::DeleteItem

Appends a unique item to the list box.

lpszItem
[in] The string of the item to add.

dwData
[in] The data associated with the item to add.

The zero-based index of the appended item.

Constructs a CMFCRibbonComboBox object.

nID
[in] The ID of the combo box.

bHasEditBox
[in] TRUE if you want an edit box within the control; FALSE otherwise.

nWidth
[in] Width of the combo box in pixels; or -1 for the default width.

lpszLabel
[in] The display label of the combo box.

nImage
[in] The small image index of the combo box.

The default width is 108 pixels.

Deletes a specified item from the list box.

BOOL DeleteItem(int iIndex);
BOOL DeleteItem(DWORD_PTR dwData);

BOOL DeleteItem(LPCTSTR lpszText);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonComboBox::EnableDropDownListResize

void EnableDropDownListResize(BOOL bEnable=FALSE);

ParametersParameters

RemarksRemarks

CMFCRibbonComboBox::FindItem

int FindItem(LPCTSTR lpszText) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonComboBox::GetCount

iIndex
[in] The zero-based index of the item to be deleted.

dwData
[in] The data associated with the item to be deleted.

lpszText
[in] The string of the item to be deleted. If there are multiple items with the same string, the first item is deleted.

TRUE if the specified item has been deleted; otherwise, FALSE.

Specifies whether the list box can change size when it drops down.

bEnable
[in] TRUE to enable resizing; FALSE to disable resizing.

When resizing is enabled, the list box will change size to fit the items it displays.

Returns the index of the first item in the list box that matches a specified string.

lpszText
[in] The string of an item in the list box.

The zero-based index of the item; or -1 if the item is not found.

Returns the number of items in the list box.

INT_PTR GetCount() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonComboBox::GetCurSel

int GetCurSel() const;

Return ValueReturn Value

CMFCRibbonComboBox::GetDropDownHeight

int GetDropDownHeight();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonComboBox::GetIntermediateSize

virtual CSize GetIntermediateSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonComboBox::GetItem

LPCTSTR GetItem(int iIndex) const;

ParametersParameters

The number of items in the list box, or 0 if the list box contains no items.

Gets the index of the currently selected item in the list box.

The zero-based index of the currently selected item in the list box; or -1 if no item is selected.

Gets the height of the list box when the list box is dropped down.

The height, in pixels, of the list box.

Returns the size of the combo box as displayed in intermediate mode.

pDC
[in] Pointer to a device context for the combo box.

The size of the combo box.

The size returned is based on the size of the combo box when it displays small images.

Returns the string associated with an item at a specified index in the list box.

Return ValueReturn Value

RemarksRemarks

CMFCRibbonComboBox::GetItemData

DWORD_PTR GetItemData(int iIndex) const;

ParametersParameters

Return ValueReturn Value

CMFCRibbonComboBox::HasEditBox

BOOL HasEditBox() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonComboBox::IsResizeDropDownList

BOOL IsResizeDropDownList() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonComboBox::OnSelectItem

virtual void OnSelectItem(int nItem);

iIndex
[in] The zero-based index of an item in the list box.

A pointer to the string that is associated with the item; otherwise, NULL if the index parameter is invalid, or if the
index parameter is -1 and there is no item selected in the combo box.

Returns the data associated with an item at a specified index in the list box.

iIndex
[in] The zero-based index of an item in the list box.

The data associated with the item; or 0 if the item does not exist, or if the index parameter is -1 and there is no
selected item in the list box.

Indicates whether the control contains an edit box.

TRUE if the control contains an edit box; otherwise, FALSE.

Indicates whether or not the list box can be resized.

TRUE if the list box can be resized; otherwise FALSE. CMFCRibbonComboBox::EnableDropDownListResize

You can enable list box resizing by using the CMFCRibbonComboBox::EnableDropDownListResize method.

Called by the framework when a user selects an item in the list box.

ParametersParameters

RemarksRemarks

CMFCRibbonComboBox::RemoveAllItems

void RemoveAllItems();

RemarksRemarks

CMFCRibbonComboBox::SelectItem

BOOL SelectItem(int iIndex);
BOOL SelectItem(DWORD_PTR dwData);

BOOL SelectItem(LPCTSTR lpszText);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonComboBox::SetDropDownHeight

void SetDropDownHeight(int nHeight);

ParametersParameters

RemarksRemarks

See also

nItem
[in] The index of the selected item.

Override this method if you want to process a user input selection.

Deletes all items from the list box and clears the edit box.

Selects an item in the list box.

iIndex
[in] The zero-based index of an item in the list box.

dwData
[in] The data associated with an item in the list box.

lpszText
[in] The string of an item in the list box.

TRUE if the method was successful; otherwise FALSE.

Sets the height of the list box when it is dropped down.

nHeight
[in] The height, in pixels, of the list box.

The default height is 150 pixels.

Hierarchy Chart
Classes
CMFCRibbonEdit Class

CMFCRibbonContextCaption Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonContextCaption : public CMFCRibbonButton

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonContextCaption::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCRibbonContextCaption::GetColor Returns the color of the caption.

CMFCRibbonContextCaption::GetRightTabX

CMFCRibbonContextCaption::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

Remarks

Inheritance Hierarchy

Requirements

CMFCRibbonContextCaption::GetColor

Implements a colored caption that appears at the top of a ribbon category or a context category.

This class cannot be directly instantiated. The CMFCRibbonBar Class class uses this class internally to add color to
ribbon categories.

To set the color for ribbon categories, call CMFCRibbonCategory::SetTabColor. To set the color for context
categories, call CMFCRibbonBar::AddContextCategory.

CObject

CMFCRibbonBaseElement

CMFCRibbonButton

CMFCRibbonContextCaption

Header: afxRibbonBar.h

Returns the background color of the caption.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribboncontextcaption-class.md

AFX_RibbonCategoryColor GetColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonContextCaption::GetRightTabX

int GetRightTabX() const;

Return ValueReturn Value

RemarksRemarks

See also

The returned value can be one of the following enumerated values:

AFX_CategoryColor_None

AFX_CategoryColor_Red

AFX_CategoryColor_Orange

AFX_CategoryColor_Yellow

AFX_CategoryColor_Green

AFX_CategoryColor_Blue

AFX_CategoryColor_Indigo

AFX_CategoryColor_Violet

The color of the caption can be set by calling CMFCRibbonCategory::SetTabColor or
CMFCRibbonBar::AddContextCategory.

Retrieves the position of the right-hand edge of the category’s ribbon tab.

Returns the right-hand X-value of the enclosing rectangle of the CMFCRibbonCategory object’s ribbon tab, or a value
of -1 if the tab is truncated.

Hierarchy Chart
Classes
CMFCRibbonButton Class
CMFCRibbonCategory Class
CMFCRibbonBar Class

CMFCRibbonCustomizeDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonCustomizeDialog : public CMFCPropertySheet

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonCustomizeDialog::CMFCRibbonCustomizeDialog Constructs a CMFCRibbonCustomizeDialog object.

CMFCRibbonCustomizeDialog::~CMFCRibbonCustomizeDialog Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonCustomizeDialog::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

Remarks

Inheritance Hierarchy

Displays the ribbon Customize page.

MFC instantiates this class automatically if you do not process the AFX_WM_ON_RIBBON_CUSTOMIZE
message, or if you return 0 from the message handler.

If you want to use this class in your application to display the ribbon Customize dialog box, just instantiate it and
call the DoModal method.

Because this class is derived from CMFCPropertySheet Class, you can add custom pages by using the
CMFCPropertySheet API.

CObject

CCmdTarget

CWnd

CPropertySheet

CMFCPropertySheet

CMFCRibbonCustomizeDialog

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribboncustomizedialog-class.md

Requirements

CMFCRibbonCustomizeDialog::CMFCRibbonCustomizeDialog

CMFCRibbonCustomizeDialog(
 CWnd* pWndParent,
 CMFCRibbonBar* pRibbon);

ParametersParameters

ExampleExample

// CMFCRibbonBar m_wndRibbonBar
// this points to CMainFrame
CMFCRibbonCustomizeDialog* cDialog = new CMFCRibbonCustomizeDialog(this, &m_wndRibbonBar);

RemarksRemarks

See also

Header: afxribboncustomizedialog.h

Constructs a CMFCRibbonCustomizeDialog object.

pWndParent
[in] A pointer to the parent window (usually the main frame).

pRibbon
[in] A pointer to the CMFCRibbonBar that is to be customized.

The following example demonstrates how to construct a CMFCRibbonCustomizeDialog object.

The constructor instantiates a CMFCRibbonCustomizePropertyPage Class object and adds it to the collection of
property sheet pages.

Hierarchy Chart
Classes

CMFCRibbonCustomizePropertyPage Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonCustomizePropertyPage: public CMFCPropertyPage

Members
Public ConstructorsPublic Constructors

Name Description

CMFCRibbonCustomizePropertyPage::CMFCRibbonCustomize
PropertyPage

Constructs a CMFCRibbonCustomizePropertyPage object.

CMFCRibbonCustomizePropertyPage::~CMFCRibbonCustomizePropertyPageDestructor.

Public MethodsPublic Methods

Name Description

CMFCRibbonCustomizePropertyPage::AddCustomCategory Adds a custom category to the Commands combo box.

CMFCRibbonCustomizePropertyPage::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCRibbonCustomizePropertyPage::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCRibbonCustomizePropertyPage::OnOK Called by the system when a user clicks OK on the Customize
dialog box.

Remarks

Example

Implements a custom page for the Customize dialog box in Ribbon-based applications.

If you want to add custom commands to the Customize dialog box, you must handle the
AFX_WM_ON_RIBBON_CUSTOMIZE message. In the message handler, instantiate a
CMFCRibbonCustomizePropertyPage object on the stack. Create a list of custom commands, and then call
AddCustomCategory to add the new page to the Customize dialog box.

The following example demonstrates how to construct a CMFCRibbonCustomizePropertyPage object and to add a
custom category.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribboncustomizepropertypage-class.md

// Create "Customize" page
// CMFCRibbonBar m_wndRibbonBar
CMFCRibbonCustomizePropertyPage pageCustomize(&m_wndRibbonBar);

// Create a list of popular items:
CList<UINT, UINT> lstPopular;
lstPopular.AddTail(ID_FILE_NEW);
lstPopular.AddTail(ID_FILE_OPEN);

// add a custom category
pageCustomize.AddCustomCategory(_T("Popular Commands"), lstPopular);

Inheritance Hierarchy

Requirements

CMFCRibbonCustomizePropertyPage::AddCustomCategory

void AddCustomCategory(
 LPCTSTR lpszName,
 const CList<UINT, UINT>& lstIDS);

ParametersParameters

Parameter Description

lpszName [in] Specifies the custom category name.

lstIDS [in] Contains ribbon command IDs to be shown in the custom
category.

RemarksRemarks

CMFCRibbonCustomizePropertyPage::CMFCRibbonCustomizePropert

CObject

CCmdTarget

CWnd

CDialog

CPropertyPage

CMFCPropertyPage

CMFCRibbonCustomizePropertyPage

Header: afxribboncustomizedialog.h

Adds a custom category to the Commands combo box.

This method adds a category named lpszName to the Commands combo box. When the user selects the
category, the commands specified in lstIDS appear in the command list.

yPage

CMFCRibbonCustomizePropertyPage(CMFCRibbonBar* pRibbonBar = NULL);

ParametersParameters

CMFCRibbonCustomizePropertyPage::OnOK

virtual void OnOK();

RemarksRemarks

See also

Constructs a CMFCRibbonCustomizePropertyPage object.

pRibbonBar
[in] A pointer to a ribbon control for which the options to customize.

Calleld by the system when a user clicks OK on the Customize dialog box.

The default implementation applies the options selected in the Customize dialog box to the Quick Access Toolbar.

Hierarchy Chart
Classes

CMFCRibbonEdit Class
3/4/2019 • 9 minutes to read • Edit Online

Syntax
class CMFCRibbonEdit : public CMFCRibbonButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonEdit::CMFCRibbonEdit Constructs a CMFCRibbonEdit object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonEdit::CanBeStretched Indicates whether the height of the CMFCRibbonEdit

control can increase vertically to the height of a ribbon row.

CMFCRibbonEdit::CMFCRibbonEdit Constructs a CMFCRibbonEdit object.

CMFCRibbonEdit::CopyFrom Copies the state of the specified CMFCRibbonEdit object to
the current CMFCRibbonEdit object.

CMFCRibbonEdit::CreateEdit Creates a new text box for the CMFCRibbonEdit object.

CMFCRibbonEdit::DestroyCtrl Destroys the CMFCRibbonEdit object.

CMFCRibbonEdit::DropDownList Drops down a list box.

CMFCRibbonEdit::EnableSpinButtons Enables and sets the range of the spin button for the text
box.

CMFCRibbonEdit::GetCompactSize Retrieves the compact size of the CFMCRibbonEdit object.

CMFCRibbonEdit::GetEditText Retrieves the text in the text box.

CMFCRibbonEdit::GetIntermediateSize Retrieves the intermediate size of the CMFCRibbonEdit

object.

CMFCRibbonEdit::GetTextAlign Retrieves the alignment of the text in the text box.

Implements an edit control that is located on a ribbon bar.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonedit-class.md

CMFCRibbonEdit::GetWidth Retrieves the width, in pixels, of the CMFCRibbonEdit

control.

CMFCRibbonEdit::HasCompactMode Indicates whether the display size for the CMFCRibbonEdit

control can be compact.

CMFCRibbonEdit::HasFocus Indicates whether the CMFCRIbbonEdit control has the
focus.

CMFCRibbonEdit::HasLargeMode Indicates whether the display size for the CMFCRibbonEdit

control can be large.

CMFCRibbonEdit::HasSpinButtons Indicates whether the text box has a spin button.

CMFCRibbonEdit::IsHighlighted Indicates whether the CMFCRibbonEdit control is
highlighted.

CMFCRibbonEdit::OnAfterChangeRect Called by the framework when the dimensions of the
display rectangle for the CMFCRibbonEdit control changes.

CMFCRibbonEdit::OnDraw Called by the framework to draw the CMFCRibbonEdit

control.

CMFCRibbonEdit::OnDrawLabelAndImage Called by the framework to draw the label and image for
the CMFCRibbonEdit control.

CMFCRibbonEdit::OnDrawOnList Called by the framework to draw the CMFCRibbonEdit

control in a commands list box.

CMFCRibbonEdit::OnEnable Called by the framework to enable or disable the
CMFCRibbonEdit control.

CMFCRibbonEdit::OnHighlight Called by the framework when the pointer enters or leaves
the bounds of the CMFCRibbonEdit control.

CMFCRibbonEdit::OnKey Called by the framework when the user presses a keytip and
the CMFCRibbonEdit control has the focus.

CMFCRibbonEdit::OnLButtonDown Called by the framework to update the CMFCRibbonEdit

control when the user presses the left mouse button on the
control.

CMFCRibbonEdit::OnLButtonUp Called by the framework when the user releases the left
mouse button.

CMFCRibbonEdit::OnRTLChanged Called by the framework to update the CMFCRibbonEdit

control when the layout changes direction.

CMFCRibbonEdit::OnShow Called by the framework to show or hide the
CMFCRibbonEdit control.

CMFCRibbonEdit::Redraw Updates the display of the CMFCRibbonEdit control.

NAME DESCRIPTION

CMFCRibbonEdit::SetACCData Sets the accessibility data for the CMFCRibbonEdit object.

CMFCRibbonEdit::SetEditText Sets the text in the text box.

CMFCRibbonEdit::SetTextAlign Sets the text alignment of the text box.

CMFCRibbonEdit::SetWidth Sets the width of the text box for the CMFCRibbonEdit

control.

NAME DESCRIPTION

Remarks

Example

CMFCRibbonEdit* pEditIndentLeft = new CMFCRibbonEdit(ID_PAGELAYOUT_INDENT_LEFT, 72, _T("Left:\nil"), 13);
// specify the min and max value of the spin button control
pEditIndentLeft->EnableSpinButtons(0, 1000);
// set the text of the edit control
pEditIndentLeft->SetEditText(_T("0"));

Requirements

CMFCRibbonEdit::CanBeStretched

virtual BOOL CanBeStretched();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::CMFCRibbonEdit

CMFCRibbonEdit(
 UINT nID,
 int nWidth,
 LPCTSTR lpszLabel = NULL,
 int nImage = -1);

CMFCRibbonEdit();

ParametersParameters

The following example demonstrates how to construct a CMFCRibbonEdit object, show spin buttons next to the
edit control, and set the text of the edit control. This code snippet is part of the MS Office 2007 Demo sample.

Header: afxRibbonEdit.h

Indicates whether the height of the CMFCRibbonEdit control can increase vertically to the height of a ribbon
row.

Always returns FALSE.

Constructs a CMFCRibbonEdit object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CMFCRibbonEdit::CopyFrom

virtual void CopyFrom(const CMFCRibbonBaseElement& src);

ParametersParameters

RemarksRemarks

CMFCRibbonEdit::CreateEdit

virtual CMFCRibbonRichEditCtrl* CreateEdit(
 CWnd* pWndParent,
 DWORD dwEditStyle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nID
[in] Command ID for the CMFCRibbonEdit control.

nWidth
[in] The width, in pixels, of the text box for the CMFCRibbonEdit control.

lpszLabel
[in] The label for the CMFCRibbonEdit control.

nImage
[in] Index of the small image to use for the CMFCRibbonEdit control. The collection of small images is
maintained by the parent ribbon category.

The CMFCRibbonEdit control does not use a large image.

Copies the state of the specified CMFCRibbonEdit object to the current CMFCRibbonEdit object.

src
[in] The source CMFCRibbonEdit object.

The src parameter must be of type CMFCRibbonEdit .

Creates a new text box for the CMFCRibbonEdit object.

pWndParent
[in] A pointer to the parent window of the CMFCRibbonEdit object.

dwEditStyle
[in] Specifies the style of the text box. You can combine the window styles listed in the Remarks section with
the edit control styles that are described in the Windows SDK.

A pointer to the new text box if the method was successful; otherwise, NULL.

Override this method in a derived class to create a custom text box.

You can apply the following Window Styles to a text box:

WS_CHILD

https://docs.microsoft.com/windows/desktop/Controls/edit-control-styles

CMFCRibbonEdit::DestroyCtrl

virtual void DestroyCtrl();

RemarksRemarks

CMFCRibbonEdit::DropDownList

virtual void DropDownList();

RemarksRemarks

CMFCRibbonEdit::EnableSpinButtons

void EnableSpinButtons(
 int nMin,
 int nMax);

ParametersParameters

RemarksRemarks

CMFCRibbonEdit::GetCompactSize

virtual CSize GetCompactSize(CDC* pDC);

ParametersParameters

WS_VISIBLE

WS_DISABLED

WS_GROUP

WS_TABSTOP

Destroys the CMFCRibbonEdit object.

Drops down a list box.

By default this method does nothing. Override this method to drop down a list box.

Enables and sets the range of the spin button for the text box.

nMin
[in] The minimum value of the spin button.

nMax
[in] The maximum value of the spin button.

Spin buttons display an up and down arrow and enable users to move through a fixed set of values.

Retrieves the compact size of the CMFCRibbonEdit object.

pDC
[in] Pointer to a device context for the CMFCRibbonEdit object.

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::GetEditText

CString GetEditText() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::GetIntermediateSize

virtual CSize GetIntermediateSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::GetTextAlign

int GetTextAlign() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::GetWidth

The compact size of the CMFCRibbonEdit object.

Retrieves the text in the text box.

The text in the text box.

Retrieves the intermediate size of the CMFCRibbonEdit object.

pDC
[in] Pointer to a device context for the CMFCRibbonEdit object.

The intermediate size of the CMFCRibbonEdit object.

Retrieves the alignment of the text in the text box.

A text alignment enumerated value. See the Remarks section for possible values.

The returned value is one of the following edit control styles:

ES_LEFT for left alignment

ES_CENTER for center alignment

ES_RIGHT for right alignment

For more information about these styles, see Edit Control Styles.

Retrieves the width, in pixels, of the CMFCRibbonEdit control.

https://docs.microsoft.com/windows/desktop/Controls/edit-control-styles

int GetWidth(BOOL bInFloatyMode = FALSE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::HasCompactMode

virtual BOOL HasCompactMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::HasFocus

virtual BOOL HasFocus() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::HasLargeMode

virtual BOOL HasLargeMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::HasSpinButtons

bInFloatyMode
[in] TRUE if the CMFCRibbonEdit control is in floating mode; otherwise, FALSE.

The width, in pixels, of the CMFCRibbonEdit control.

Indicates whether the display size for the CMFCRibbonEdit control can be compact.

Always returns TRUE.

By default this method always returns TRUE. Override this method to indicate whether the display size can be
compact.

Indicates whether the CMFCRibbonEdit control has the focus.

TRUE if the CMFCRibbonEdit control has the focus; otherwise FALSE.

Indicates whether the display size for the CMFCRibbonEdit control can be large.

Always returns FALSE.

By default this method always returns FALSE. Override this method to indicate whether the display size can be
large.

Indicates whether the text box has a spin button.

virtual BOOL HasSpinButtons() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::IsHighlighted

virtual BOOL IsHighlighted() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::OnAfterChangeRect

virtual void OnAfterChangeRect(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonEdit::OnDraw

virtual void OnDraw(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonEdit::OnDrawLabelAndImage

virtual void OnDrawLabelAndImage(CDC* pDC);

ParametersParameters

TRUE if the text box has a spin button; otherwise FALSE.

Indicates whether the CMFCRibbonEdit control is highlighted.

TRUE if the CMFCRibbonEdit control is highlighted; otherwise FALSE.

Called by the framework when the dimensions of the display rectangle for the CMFCRibbonEdit control
change.

pDC
[in] Pointer to a device context for the CMFCRibbonEdit control.

Called by the framework to draw the CMFCRibbonEdit control.

pDC
[in] Pointer to a device context for the CMFCRibbonEdit control.

Called by the framework to draw the label and image for the CMFCRibbonEdit control.

pDC

RemarksRemarks

CMFCRibbonEdit::OnDrawOnList

virtual void OnDrawOnList(
 CDC* pDC,
 CString strText,
 int nTextOffset,
 CRect rect,
 BOOL bIsSelected,
 BOOL bHighlighted);

ParametersParameters

RemarksRemarks

CMFCRibbonEdit::OnEnable

virtual void OnEnable(BOOL bEnable);

ParametersParameters

RemarksRemarks

CMFCRibbonEdit::OnHighlight

virtual void OnHighlight(BOOL bHighlight);

[in] Pointer to a device context for the CMFCRibbonEdit control.

Called by the framework to draw the CMFCRibbonEdit control in a commands list box.

pDC
[in] Pointer to a device context for the CMFCRibbonEdit control.

strText
[in] The display text .

nTextOffset
[in] Distance, in pixels, from the left side of the list box to the display text.

rect
[in] The display rectangle for the CMFCRibbonEdit control.

bIsSelected
[in] This parameter is not used.

bHighlighted
[in] This parameter is not used.

The commands list box displays ribbon controls to enable users to customize the quick access toolbar.

Called by the framework to enable or disable the CMFCRibbonEdit control.

bEnable
[in] TRUE to enable the control; FALSE to disable the control.

Called by the framework when the pointer enters or leaves the bounds of the CMFCRibbonEdit control.

ParametersParameters

RemarksRemarks

CMFCRibbonEdit::OnKey

virtual BOOL OnKey(BOOL bIsMenuKey);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::OnLButtonDown

virtual void OnLButtonDown(CPoint point);

ParametersParameters

RemarksRemarks

CMFCRibbonEdit::OnLButtonUp

virtual void OnLButtonUp(CPoint point);

ParametersParameters

RemarksRemarks

CMFCRibbonEdit::OnRTLChanged

virtual void OnRTLChanged(BOOL bIsRTL);

ParametersParameters

bHighlight
[in] TRUE if the pointer is in the bounds of the CMFCRibbonEdit control; otherwise, FALSE.

Called by the framework when the user presses a keytip and the CMFCRibbonEdit control has the focus.

bIsMenuKey
[in] TRUE if the keytip displays a pop-up menu; otherwise, FALSE.

TRUE if the event was handled; otherwise, FALSE.

Called by the framework to update the CMFCRibbonEdit control when the user presses the left mouse button
on the control.

point
[in] This parameter is not used.

Called by the framework when the user releases the left mouse button.

point
[in] This parameter is not used.

Called by the framework to update the CMFCRibbonEdit control when the layout changes direction.

RemarksRemarks

CMFCRibbonEdit::OnShow

virtual void OnShow(BOOL bShow);

ParametersParameters

RemarksRemarks

CMFCRibbonEdit::Redraw

virtual void Redraw();

RemarksRemarks

CMFCRibbonEdit::SetACCData

virtual BOOL SetACCData(
 CWnd* pParent,
 CAccessibilityData& data);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonEdit::SetEditText

void SetEditText(CString strText);

bIsRTL
[in] TRUE if the layout is right-to-left; FALSE if the layout is left-to-right.

Called by the framework to show or hide the CMFCRibbonEdit control.

bShow
[in] TRUE to show the control; FALSE to hide the control.

Updates the display of the CMFCRibbonEdit control.

This method redraws the display rectangle for the CMFCRibbonEdit object by indirectly calling
CWnd::RedrawWindow with the RDW_INVALIDATE, RDW_ERASE, and RDW_UPDATENOW flags set.

Sets the accessibility data for the CMFCRibbonEdit object.

pParent
Pointer to the parent window for the CMFCRibbonEdit object.

data
The accessibility data for the CMFCRibbonEdit object.

Always returns TRUE.

Sets the text in the text box.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-redrawwindow

ParametersParameters

CMFCRibbonEdit::SetTextAlign

void SetTextAlign(int nAlign);

ParametersParameters

RemarksRemarks

CMFCRibbonEdit::SetWidth

void SetWidth(
 int nWidth,
 BOOL bInFloatyMode = FALSE);

ParametersParameters

RemarksRemarks

See also

strText
[in] The text for the text box.

Sets the text alignment of the text box.

nAlign
[in] A text alignment enumerated value. See the Remarks section for possible values.

The parameter nAlign is one of the following edit control styles:

ES_LEFT for left alignment

ES_CENTER for center alignment

ES_RIGHT for right alignment

For more information about these styles, see Edit Control Styles.

Sets the width of the text box for the CMFCRibbonEdit control.

nWidth
[in] The width, in pixels, of the text box.

bInFloatyMode
TRUE to set the width for floating mode; FALSE to set the width for regular mode.

The CMFCRibbonEdit control has two widths depending on its display mode: floating mode and regular mode.

Hierarchy Chart
Classes
CMFCRibbonButton Class
CMFCRibbonBar Class

https://docs.microsoft.com/windows/desktop/Controls/edit-control-styles

CMFCRibbonFontComboBox Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCRibbonFontComboBox : public CMFCRibbonComboBox

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonFontComboBox::~CMFCRibbonFontComboBox Destructor.

Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CMFCRibbonFontComboBox::CMFCRibbonFontComboBox Constructs and initializes a CMFCRibbonFontComboBox object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonFontComboBox::BuildFonts Populates the ribbon font combo box with fonts of the
specified font type, character set, and pitch and family.

CMFCRibbonFontComboBox::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCRibbonFontComboBox::GetCharSet Returns the specified character set.

CMFCRibbonFontComboBox::GetFontDesc

CMFCRibbonFontComboBox::GetFontType Returns which font types to display in the combo box. Valid
options are DEVICE_FONTTYPE, RASTER_FONTTYPE, and
TRUETYPE_FONTTYPE, or any bitwise combination thereof.

CMFCRibbonFontComboBox::GetPitchAndFamily Returns the pitch and the family of the fonts that are
displayed in the combo box.

CMFCRibbonFontComboBox::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCRibbonFontComboBox::RebuildFonts Populates the ribbon font combo box with fonts of the
previously specified font type, character set, and pitch and
family.

Implements a combo box that contains a list of fonts. You place the combo box on a ribbon panel.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonfontcombobox-class.md

CMFCRibbonFontComboBox::SetFont Selects the specified font in the combo box.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CMFCRibbonFontComboBox::BuildFonts

void BuildFonts(
 int nFontType = DEVICE_FONTTYPE | RASTER_FONTTYPE | TRUETYPE_FONTTYPE,
 BYTE nCharSet = DEFAULT_CHARSET,
 BYTE nPitchAndFamily = DEFAULT_PITCH);

ParametersParameters

CMFCRibbonFontComboBox::CMFCRibbonFontComboBox

CMFCRibbonFontComboBox(
 UINT nID,
 int nFontType = DEVICE_FONTTYPE | RASTER_FONTTYPE | TRUETYPE_FONTTYPE,
 BYTE nCharSet = DEFAULT_CHARSET,
 BYTE nPitchAndFamily = DEFAULT_PITCH,
 int nWidth = -1);

After you create a CMFCRibbonFontComboBox object, add it to a ribbon panel by calling CMFCRibbonPanel::Add.

CObject

CMFCRibbonBaseElement

CMFCRibbonButton

CMFCRibbonEdit

CMFCRibbonComboBox

CMFCRibbonFontComboBox

Header: afxRibbonComboBox.h

Populates the combo box on the ribbon with fonts.

nFontType
[in] Specifies the font type of the fonts to add.

nCharSet
[in] Specifies the character set of the fonts to add.

nPitchAndFamily
[in] Specifies the pitch and family of the fonts to add.

Constructs and initializes a CMFCRibbonFontComboBox object.

ParametersParameters

RemarksRemarks

CMFCRibbonFontComboBox::GetFontDesc

const CMFCFontInfo* GetFontDesc(int iIndex = -1) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonFontComboBox::RebuildFonts

void RebuildFonts();

RemarksRemarks

CMFCRibbonFontComboBox::SetFont

nID
[in] The command ID of the command that executes when the user selects an item from the combo box.

nFontType
[in] Specifies which font types to display in the combo box. Valid options are DEVICE_FONTTYPE,
RASTER_FONTTYPE, and TRUETYPE_FONTTYPE, or any bitwise combination thereof.

nCharSet
[in] Filters the fonts in the combo box to those that belong to the specified character set..

nPitchAndFamily
[in] Specifies the pitch and the family of the fonts that are displayed in the combo box.

nWidth
[in] Specifies the width, in pixels, of the combo box.

For more information about possible nFontType parameter values, see EnumFontFamProc in the Windows SDK
documentation.

For more information about valid character sets that can be assigned to nCharSet, and valid values that can be
assigned to nPitchAndFamily, see LOGFONT in the Windows SDK documentation.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] iIndex

Populates the combo box on the ribbon with fonts of a previously specified font type, character set, and pitch and
family.

You can specify the font type, character set, and pitch and family of the fonts to include in the ribbon font combo
box in the constructor for this class, or by calling CMFCRibbonFontComboBox::BuildFonts.

Selects the specified font in the combo box.

https://msdn.microsoft.com/library/windows/desktop/dd162621
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta

BOOL SetFont(
 LPCTSTR lpszName,
 BYTE nCharSet = DEFAULT_CHARSET,
 BOOL bExact = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonFontComboBox::GetCharSet

BYTE GetCharSet() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonFontComboBox::GetFontType

int GetFontType() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonFontComboBox::GetPitchAndFamily

BYTE GetPitchAndFamily() const;

Return ValueReturn Value

RemarksRemarks

`lpszName* Specifies the name of the font to select.

nCharSet
Specifies the character set for the selected font.

bExact
TRUE to specify that the character set must match when selecting a font; FALSE to specify that the character set
can be ignored when selecting a font.

Nonzero if the specified font was found and selected; otherwise, zero.

Returns the specified character set.

Character set (see LOGFONT in the Windows SDK documentation).

Returns which font types to display in the combo box. Valid options are DEVICE_FONTTYPE,
RASTER_FONTTYPE, and TRUETYPE_FONTTYPE, or any bitwise combination thereof.

Font types (see EnumFontFamProc in the Windows SDK documentation).

Returns the pitch and the family of the fonts that are displayed in the combo box.

Pitch and the family (see LOGFONT in the Windows SDK documentation).

See also
Hierarchy Chart
Classes
CMFCRibbonComboBox Class

CMFCRibbonGallery Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
class CMFCRibbonGallery : public CMFCRibbonButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonGallery::CMFCRibbonGallery Constructs and initializes a CMFCRibbonGallery object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonGallery::AddGroup Adds a new group to the gallery.

CMFCRibbonGallery::AddSubItem Adds a new menu item to the drop-down menu.

CMFCRibbonGallery::Clear Clears the content of the gallery.

CMFCRibbonGallery::EnableMenuResize Enables or disables resizing of the menu panel.

CMFCRibbonGallery::EnableMenuSideBar Enables or disables the side bar to the left of the popup
menu.

CMFCRibbonGallery::GetCompactSize (Overrides CMFCRibbonButton::GetCompactSize.)

CMFCRibbonGallery::GetDroppedDown (Overrides CMFCRibbonBaseElement::GetDroppedDown.)

CMFCRibbonGallery::GetGroupName Returns the name of the group that is located at the specified
index.

CMFCRibbonGallery::GetGroupOffset

CMFCRibbonGallery::GetIconsInRow Returns the number of items in a row of the ribbon gallery.

CMFCRibbonGallery::GetItemToolTip Returns the tooltip text that is associated with an item in the
gallery.

CMFCRibbonGallery::GetLastSelectedItem Returns the index of the last item in the gallery that the user
selected.

Implements Office 2007-style ribbon galleries. For more detail see the source code located in the
VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbongallery-class.md

CMFCRibbonGallery::GetPaletteID Returns the command ID of the current gallery.

CMFCRibbonGallery::GetRegularSize (Overrides CMFCRibbonButton::GetRegularSize.)

CMFCRibbonGallery::GetSelectedItem

CMFCRibbonGallery::HasMenu (Overrides CMFCRibbonButton::HasMenu.)

CMFCRibbonGallery::IsButtonMode Specifies whether the gallery is contained in a gallery button.

CMFCRibbonGallery::IsMenuResizeEnabled Specifies whether menu resizing is enabled or disabled.

CMFCRibbonGallery::IsMenuResizeVertical

CMFCRibbonGallery::IsMenuSideBar Specifies whether the side bar is enabled or disabled.

CMFCRibbonGallery::OnAfterChangeRect (Overrides CMFCRibbonButton::OnAfterChangeRect .)

CMFCRibbonGallery::OnDraw (Overrides CMFCRibbonButton::OnDraw.)

CMFCRibbonGallery::OnEnable (Overrides CMFCRibbonBaseElement::OnEnable .)

CMFCRibbonGallery::OnRTLChanged (Overrides CMFCRibbonBaseElement::OnRTLChanged.)

CMFCRibbonGallery::RedrawIcons Redraws the gallery.

CMFCRibbonGallery::RemoveItemToolTips Removes the tooltips from all items in the gallery.

CMFCRibbonGallery::SelectItem

CMFCRibbonGallery::SetACCData (Overrides CMFCRibbonButton::SetACCData.)

CMFCRibbonGallery::SetButtonMode Specifies whether to display the ribbon gallery as a drop-
down button or as a palette directly on the ribbon.

CMFCRibbonGallery::SetGroupName Sets the name of a group.

CMFCRibbonGallery::SetIconsInRow Defines the number of items per row in the gallery.

CMFCRibbonGallery::SetItemToolTip Sets the tooltip text for an item in the gallery.

CMFCRibbonGallery::SetPalette Attaches a palette to a ribbon gallery.

CMFCRibbonGallery::SetPaletteID Defines the command ID that is sent in the WM_COMMAND
message when a gallery item has been selected.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCRibbonGallery::OnDrawPaletteIcon Called by the framework when a gallery icon is drawn.

Remarks

Example

CMFCRibbonGallery* pBtnStyles = new CMFCRibbonGallery(ID_OBJECT_STYLES, _T("Styles\nk"), 0, 0, IDB_STYLES,
40);
pBtnStyles->SetIconsInRow(7);
pBtnStyles->EnableMenuResize(TRUE, TRUE);
pBtnStyles->EnableMenuSideBar();
pBtnStyles->SetButtonMode(false);
pBtnStyles->RedrawIcons();

Inheritance Hierarchy

Requirements

CMFCRibbonGallery::AddGroup

void AddGroup(
 LPCTSTR lpszGroupName,
 UINT uiImagesPaletteResID,
 int cxPaletteImage);

void AddGroup(
 LPCTSTR lpszGroupName,
 CMFCToolBarImages& imagesGroup);

void AddGroup(
 LPCTSTR lpszGroupName,
 int nIconsNum);

ParametersParameters

A gallery button behaves just like a regular menu button except that it displays a gallery when a user opens it.
When you select an item in a gallery, the framework sends the WM_COMMAND message together with
command ID of the button. When you handle the message, you should call
CMFCRibbonGallery::GetLastSelectedItem to determine which item was selected from the gallery.

The following example demonstrates how to use various methods in the CMFCRibbonGallery class to configure a
CMFCRibbonGallery object. The example illustrates how to specify the number of items per row in the gallery,

enable resizing of the menu panel, enable the side bar to the left of the pop-up menu, and display the ribbon
gallery as a palette directly on the ribbon bar. This code snippet is part of the Draw Client sample.

CObject CMFCRibbonBaseElement CMFCRibbonButton

CMFCRibbonGallery

Header: afxRibbonPaletteGallery.h

Adds a new group to the gallery.

lpszGroupName
[in] Specifies the name of the group.

uiImagesPaletteResID
[in] Specifies the resource ID of the image list that contains the images for the group.

cxPaletteImage

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CMFCRibbonGallery::AddSubItem

void AddSubItem(
 CMFCRibbonBaseElement* pSubItem,
 int nIndex=-1,
 BOOL bOnTop=FALSE);

ParametersParameters

RemarksRemarks

NOTENOTE

CMFCRibbonGallery::Clear

virtual void Clear();

RemarksRemarks

[in] Specifies the width in pixels of an image.

imagesGroup
[in] A reference to image list that contains group images.

nIconsNum
[in] Specifies the number of icons in the group. This parameter should be specified only for custom (owner
drawn) groups.

You can divide the items on a ribbon gallery into multiple groups by calling this method. Each group can have a
caption.

Adds a new menu item to the drop-down menu.

pSubItem
[in] A pointer to the item to add to the menu.

nIndex
[in] Specifies the zero-based index of a location where to insert the item.

bOnTop
[in] TRUE to specify that the item should be inserted before the ribbon gallery; otherwise, FALSE.

You can combine popup galleries with popup menu items by calling this method. Menu items can be placed
before or after the gallery.

To insert the item before the gallery, set bOnTop to TRUE. Set bOnTop to FALSE to insert the item below the
gallery.

The parameter nIndex specifies the insertion index both at the top of the gallery and at the bottom of the gallery. For
example, if you need to insert an item one position before the gallery, set nIndex to 1 and bOnTop to TRUE. Similarly, if you
need to insert an item one position below the gallery, set nIndex to 1 and bOnTop to FALSE.

Clears the content of the gallery.

Call this method to remove all content from the ribbon gallery. This must be done before you attach a new ribbon
gallery or set of groups to the ribbon gallery.

 CMFCRibbonGallery::CMFCRibbonGallery

CMFCRibbonGallery (
 UINT nID,
 LPCTSTR lpszText,
 int nSmallImageIndex,
 int nLargeImageIndex,
 CMFCToolBarImages& imagesPalette);

CMFCRibbonGallery (
 UINT nID,
 LPCTSTR lpszText,
 int nSmallImageIndex,
 int nLargeImageIndex,
 UINT uiImagesPaletteResID=0,
 int cxPaletteImage=0);

CMFCRibbonGallery (
 UINT nID,
 LPCTSTR lpszText,
 int nSmallImageIndex,
 int nLargeImageIndex,
 CSize sizeIcon,
 int nIconsNum,
 BOOL bDefaultButtonStyle=TRUE);

ParametersParameters

RemarksRemarks

Constructs and initializes a CMFCRibbonGallery object.

nID
Specifies the command ID of the command to execute when a user clicks the button.

lpszText
Specifies the text to appear on the button.

nSmallImageIndex
The zero-based index of the small image to appear on the button.

nLargeImageIndex
The zero-based index of the large image to appear on the button.

imagesPalette
A reference to the CMFCToolBarImages object that contains the images to appear on the gallery.

uiImagesPaletteResID
The resource ID of the list of images to display on the gallery.

cxPaletteImage
Specifies the width, in pixels, of the image on the gallery.

sizeIcon
Specifies the size, in pixels, of the gallery image.

nIconsNum
Specifies the number of icons in the gallery.

bDefaultButtonStyle
Specifies whether to use the default or the owner-drawn button style.

CMFCRibbonGallery::EnableMenuResize

void EnableMenuResize(
 BOOL bEnable = TRUE,
 BOOL bVertcalOnly = FALSE);

ParametersParameters

RemarksRemarks

CMFCRibbonGallery::EnableMenuSideBar

void EnablMenuSideBar(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonGallery::GetCompactSize
virtual CSize GetCompactSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::GetDroppedDown
virtual CMFCRibbonBaseElement* GetDroppedDown();

Return ValueReturn Value

RemarksRemarks

Enables or disables resizing of the menu panel.

bEnable
[in] TRUE to enable resizing the menu; otherwise, FALSE.

bVertcalOnly
[in] TRUE to specify that the gallery can be resized only vertically; FALSE to specify that the gallery can be resized
both vertically and horizontally.

Use this method to enable or disable resizing the ribbon gallery. When resizing is enabled, the ribbon gallery
displays a gripper that a user can use to resize it.

Enables or disables the side bar to the left of the popup menu.

bEnable
[in] TRUE to specify that the side bar is enabled; otherwise, FALSE.

Call this method to enable or disable the Office XP-style side bar at the left side of the menu.

[in] pDC

CMFCRibbonGallery::GetGroupName

LPCTSTR GetGroupName(int nGroupIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::GetGroupOffset
virtual int GetGroupOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::GetIconsInRow

int GetIconsInRow() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::GetItemToolTip

LPCTSTR GetItemToolTip(int nItemIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::GetLastSelectedItem

Returns the name of the group that is located at the specified index.

nGroupIndex
[in] Specifies the zero-based index for the group whose name you want to retrieve.

The name of the group located at the specified index. Passing an invalid index will result in a failed assertion.

Returns the number of items in a row of the ribbon gallery.

The number of items in a row.

Returns the tooltip text that is associated with an item in the gallery.

nItemIndex
[in] Specifies the zero-based index of the item for which to retrieve the tooltip text.

A pointer to the tooltip string assigned to an item in the ribbon gallery. It can be NULL if no tooltip is assigned to
that item.

Returns the index of the last item in the ribbon gallery that the user selected.

static int GetLastSelectedItem(UINT uiCmdID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::GetPaletteID

int GetPaletteID() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::GetRegularSize
virtual CSize GetRegularSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::GetSelectedItem
int GetSelectedItem() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::HasMenu
virtual BOOL HasMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::IsButtonMode

uiCmdID
[in] Specifies the command ID of the menu item that opened the ribbon gallery.

When the user selects any item in the ribbon gallery, the library sends the WM_COMMAND message along with
Command ID of the menu button that opened the ribbon gallery.

Returns the command ID of the current palette.

The command ID of the currently selected palette.

[in] pDC

BOOL IsButtonMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::IsMenuResizeEnabled

BOOL IsMenuResizeEnabled() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::IsMenuResizeVertical
BOOL IsMenuResizeVertical() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::IsMenuSideBar

BOOL IsMenuSideBar() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::OnAfterChangeRect
virtual void OnAfterChangeRect(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonGallery::OnDraw

Specifies whether the palette is contained in a gallery button.

TRUE if the palette is displayed as a drop-down menu button; FALSE if the palette is displayed directly on the
ribbon.

Specifies whether menu resizing is enabled.

TRUE if menu resizing has been enabled; otherwise, FALSE.

Specifies whether the side bar is enabled or disabled.

TRUE if the Office XP-style side bar is drawn at the left side of the popup menu; otherwise, FALSE.

[in] pDC

virtual void OnDraw(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonGallery::OnDrawPaletteIcon

virtual void OnDrawPaletteIcon(
 CDC* pDC,
 CRect rectIcon,
 int nIconIndex,
 CMFCRibbonGalleryIcon* pIcon,
 COLORREF clrText);

ParametersParameters

RemarksRemarks

CMFCRibbonGallery::OnEnable
virtual void OnEnable(BOOL bEnable);

ParametersParameters

RemarksRemarks

CMFCRibbonGallery::OnRTLChanged
virtual void OnRTLChanged(BOOL bIsRTL);

ParametersParameters

[in] pDC

Called by the framework when a gallery icon is drawn.

pDC
[in] A pointer to the device context that is used for drawing.

rectIcon
[in] Specifies the bounding rectangle of the icon to draw.

nIconIndex
[in] Specifies the zero-based index in the image list of gallery icons of the icon to draw.

pIcon
[in] A pointer to the icon being drawn.

clrText
[in] Specifies the color for the text of the item to draw.

You can override this method in a derived class to customize the appearance of a ribbon gallery.

[in] bEnable

[in] bIsRTL

RemarksRemarks

CMFCRibbonGallery::RedrawIcons

void RedrawIcons();

RemarksRemarks

CMFCRibbonGallery::RemoveItemToolTips

void RemoveItemToolTips();

RemarksRemarks

CMFCRibbonGallery::SelectItem
void SelectItem(int nItemIndex);

ParametersParameters

RemarksRemarks

CMFCRibbonGallery::SetACCData

virtual BOOL SetACCData(
 CWnd* pParent,
 CAccessibilityData& data);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGallery::SetButtonMode

Redraws the gallery.

Call this function to redraw the gallery. You must call this method if you have changed the contents of the gallery
at runtime.

Removes the tooltips from all items in the gallery.

[in] nItemIndex

Populates the specified CAccessibilityData object by using accessibility data from the ribbon gallery.

pParent
[in] The parent window of the ribbon gallery window.

data
[out] A CAccessibilityData object that receives the accessibility data from the ribbon gallery.

TRUE if the method is successful; otherwise, FALSE.

Determines whether to display the ribbon gallery as a drop-down button or as a palette directly on the ribbon.

void SetButtonMode(BOOL bSet=TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonGallery::SetGroupName

void SetGroupName(
 int nGroupIndex,
 LPCTSTR lpszGroupName);

ParametersParameters

RemarksRemarks

CMFCRibbonGallery::SetIconsInRow

void SetIconsInRow(int nIconsInRow);

ParametersParameters

RemarksRemarks

CMFCRibbonGallery::SetItemToolTip

void SetItemToolTip(
 int nItemIndex,
 LPCTSTR lpszToolTip);

ParametersParameters

bSet
[in] TRUE to display the ribbon gallery as a drop-down menu button; FALSE to display the contents of the ribbon
gallery directly on the ribbon.

Sets the name of a group.

nGroupIndex
[in] Specifies the zero-based index for the group for which the name is being changed.

lpszGroupName
[in] Specifies the new name for the group.

The group whose name is being changed must have been added using the CMFCRibbonGallery::AddGroup
method.

Specifies the number of items per row in the gallery.

nIconsInRow
[in] Specifies the number of items to appear in each row of the gallery.

Use this method to specify the width of the ribbon gallery.

Sets the tooltip text for an item in the gallery.

nItemIndex
[in] The zero-based index of the palette item with which to associate the tooltip.

RemarksRemarks

CMFCRibbonGallery::SetPalette

void SetPalette(CMFCToolBarImages& imagesPalette);

void SetPalette(
 UINT uiImagesPaletteResID,
 int cxPaletteImage);

ParametersParameters

RemarksRemarks

CMFCRibbonGallery::SetPaletteID

void SetPaletteID(UINT nID);

ParametersParameters

RemarksRemarks

See also

lpszToolTip
[in] The text to appear on the tooltip.

Attaches a palette to a ribbon gallery.

imagesPalette
[in] Specifies the image list that contains the icons to appear on the gallery.

uiImagesPaletteResID
[in] Specifies the resource ID of the image list that contains the icons to appear on the gallery.

cxPaletteImage
[in] Specifies the width, in pixels, of an image on the gallery.

Defines the command ID that is sent in the WM_COMMAND message when a user selects a gallery item.

nID
[in] Specifies the command ID that is sent in the WM_COMMAND message when a user selects a gallery item.

To determine the specific item that a user selected from the gallery, call the
CMFCRibbonGallery::GetLastSelectedItem static method.

Hierarchy Chart
Classes
CMFCRibbonButton Class
CMFCRibbonGalleryMenuButton Class

CMFCRibbonGalleryMenuButton Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonGalleryMenuButton : public CMFCToolBarMenuButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonGalleryMenuButton::CMFCRibbonGalleryMenuB
utton

Constructs and initializes a CMFCRibbonGalleryMenuButton

object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonGalleryMenuButton::CopyFrom (Overrides CMFCToolBarMenuButton::CopyFrom.)

CMFCRibbonGalleryMenuButton::CreatePopupMenu (Overrides CMFCToolBarMenuButton::CreatePopupMenu.)

CMFCRibbonGalleryMenuButton::GetPalette

CMFCRibbonGalleryMenuButton::HasButton (Overrides CMFCToolBarMenuButton::HasButton .)

CMFCRibbonGalleryMenuButton::IsEmptyMenuAllowed (Overrides CMFCToolBarMenuButton::IsEmptyMenuAllowed.)

RemarksRemarks

Example

Implements a ribbon menu button that contains ribbon galleries. For more detail see the source code located in
the VC\atlmfc\src\mfc folder of your Visual Studio installation.

The gallery menu button is displayed as a pop-up menu with an arrow. When the user clicks this button, a gallery
of images is displayed. When you construct a gallery menu button, you must specify an image list that contains
those images.

The following example demonstrates how to display a gallery of bullets in a menu button:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbongallerymenubutton-class.md

BOOL CMainFrame::OnShowPopupMenu (CMFCPopupMenu* pMenuPopup)
{
 int nBulletIndex = pMenuBar->CommandToIndex (ID_PARA_BULLETS);

 if (nBulletIndex>= 0)
{
 CMFCToolBarButton* pExButton =
 pMenuBar->GetButton(nBulletIndex);
ASSERT_VALID (pExButton);

 CMFCRibbonGalleryMenuButton paletteBullet (
 pExButton->m_nID,
 pExButton->GetImage (),
 pExButton->m_strText);

InitBulletPalette (&paletteBullet.GetPalette ());

 pMenuBar->ReplaceButton (ID_PARA_BULLETS,
 paletteBullet);

}
}

Inheritance Hierarchy

Requirements

CMFCRibbonGalleryMenuButton::CopyFrom
virtual void CopyFrom(const CMFCToolBarButton& src);

ParametersParameters

RemarksRemarks

CMFCRibbonGalleryMenuButton::CMFCRibbonGalleryMenuButton

CMFCRibbonGalleryMenuButton(
 UINT uiID,
 int iImage,
 LPCTSTR lpszText,
 CMFCToolBarImages& imagesPalette);

CMFCRibbonGalleryMenuButton(
 UINT uiID,
 int iImage,
 LPCTSTR lpszText,
 UINT uiImagesPaletteResID = 0,
 int cxPaletteImage = 0);

ParametersParameters

CObject CMFCToolBarButton CMFCToolBarMenuButton CMFCRibbonGalleryMenuButton

Header: afxRibbonPaletteGallery.h

[in] src

Constructs and initializes a CMFCRibbonGalleryMenuButton object.

RemarksRemarks

ExampleExample

// CMFCToolBarButton pExButton
CMFCRibbonGalleryMenuButton paletteBullet(pExButton->m_nID, pExButton->GetImage(), pExButton->m_strText);

CMFCRibbonGalleryMenuButton::CreatePopupMenu
virtual CMFCPopupMenu* CreatePopupMenu();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGalleryMenuButton::GetPalette
CMFCRibbonGallery& GetPalette();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonGalleryMenuButton::HasButton
virtual BOOL HasButton() const;

Return ValueReturn Value

RemarksRemarks

uiID
The command ID of the button. This is the value sent in the WM_COMMAND message when the user clicks this
button.

iImage
The index of the image to display with the gallery menu button. The images are stored in the imagesPalette
parameter.

lpszText
The text to display on the menu button.

imagesPalette
Contains the list of images to display on the gallery.

uiImagesPaletteResID
The resource ID of the image list for the images to display on the gallery.

cxPaletteImage
Specifies the width in pixels of the image to display on the gallery.

The gallery menu button is displayed as a pop-up menu that has an arrow. When the user clicks this button, a
gallery of images is displayed.

The following example demonstrates how to use the constructor of the CMFCRibbonGalleryMenuButton class. This
code snippet is part of the MS Office 2007 Demo sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

 CMFCRibbonGalleryMenuButton::IsEmptyMenuAllowed
virtual BOOL IsEmptyMenuAllowed() const;

Return ValueReturn Value

RemarksRemarks

See also
Hierarchy Chart
Classes
CMFCToolBarMenuButton Class
CMFCRibbonGallery Class

CMFCRibbonLabel Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonLabel : public CMFCRibbonButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonLabel::CMFCRibbonLabel Constructs and initializes a CMFCRibbonLabel object with the
specified text string.

CMFCRibbonLabel::~CMFCRibbonLabel Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonLabel::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCRibbonLabel::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCRibbonLabel::SetACCData Determines the accessibility data for the current ribbon label
element. (Overrides CMFCRibbonButton::SetACCData.)

RemarksRemarks

Inheritance Hierarchy

Requirements

Implements a non-clickable text label for a ribbon.

After you create a ribbon label, add it to a panel by calling CMFCRibbonPanel::Add.

You cannot add a ribbon label to the Quick Access Toolbar.

CObject

CMFCRibbonBaseElement

CMFCRibbonButton

CMFCRibbonLabel

Header: afxRibbonLabel.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonlabel-class.md

CMFCRibbonLabel::CMFCRibbonLabel

CMFCRibbonLabel(
 LPCTSTR lpszText,
 BOOL bIsMultiLine = FALSE);

ParametersParameters

CMFCRibbonLabel::SetACCData

virtual BOOL SetACCData(
 CWnd* pParent,
 CAccessibilityData& data);

ParametersParameters

Return ValueReturn Value

See also

Constructs and initializes a CMFCRibbonLabel object that displays the specified text string.

lpszText
[in] The text to appear in the label.

bIsMultiLine
[in] TRUE to specify that the label is a multi-line label; otherwise, FALSE.

Determines the accessibility data for the current ribbon label element.

pParent
[in] Represents the parent window of the current ribbon label.

data
[out] An object of type CAccessibilityData that is populated with the accessibility data of the current ribbon label.

TRUE if the data parameter was successfully populated with the accessibility data of the current ribbon label;
otherwise, FALSE.

Hierarchy Chart
Classes
CMFCRibbonButton Class

CMFCRibbonLinkCtrl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonLinkCtrl : public CMFCRibbonButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonLinkCtrl::CMFCRibbonLinkCtrl Constructs and initializes a CMFCRibbonLinkCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonLinkCtrl::CopyFrom (Overrides CMFCRibbonButton::CopyFrom .)

CMFCRibbonLinkCtrl::GetCompactSize (Overrides CMFCRibbonButton::GetCompactSize.)

CMFCRibbonLinkCtrl::GetLink Returns the value of the hyperlink.

CMFCRibbonLinkCtrl::GetRegularSize (Overrides CMFCRibbonButton::GetRegularSize.)

CMFCRibbonLinkCtrl::GetToolTipText (Overrides CMFCRibbonButton::GetToolTipText.)

CMFCRibbonLinkCtrl::IsDrawTooltipImage (Overrides CMFCRibbonButton::IsDrawTooltipImage .)

CMFCRibbonLinkCtrl::OnDraw (Overrides CMFCRibbonButton::OnDraw.)

CMFCRibbonLinkCtrl::OnDrawMenuImage (Overrides CMFCRibbonBaseElement::OnDrawMenuImage.)

CMFCRibbonLinkCtrl::OnMouseMove (Overrides CMFCRibbonButton::OnMouseMove .)

CMFCRibbonLinkCtrl::OnSetIcon

CMFCRibbonLinkCtrl::OpenLink Opens the Web page specified in the hyperlink.

CMFCRibbonLinkCtrl::SetLink Sets the value of the hyperlink.

Remarks

Implements a hyperlink that is positioned on a ribbon. The hyperlink opens a Web page when you click it. For
more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonlinkctrl-class.md

Inheritance Hierarchy

Requirements

CMFCRibbonLinkCtrl::CMFCRibbonLinkCtrl

CMFCRibbonLinkCtrl(
 UINT nID,
 LPCTSTR lpszText,
 LPCTSTR lpszLink);

ParametersParameters

ExampleExample

// CMFCRibbonPanel* pPanel3
pPanel3->Add(new CMFCRibbonLinkCtrl(ID_RIBBON_OBTN_2, _T("Send e-mail"), _T("mailto:info@microsoft.com")));

CMFCRibbonLinkCtrl::CopyFrom
virtual void CopyFrom(const CMFCRibbonBaseElement& src);

ParametersParameters

RemarksRemarks

CMFCRibbonLinkCtrl::GetCompactSize
virtual CSize GetCompactSize(CDC* pDC);

ParametersParameters

After you create a hyperlink, add it to a panel by calling CMFCRibbonPanel::Add.

CObject CMFCRibbonBaseElement

CMFCRibbonButton CMFCRibbonLinkCtrl

Header: afxRibbonLinkCtrl.h

Constructs and initializes a CMFCRibbonLinkCtrl object.

nID
[in] Specifies the command ID of the command that executes when the link control is clicked.

lpszText
[in] Specifies the label to display on the link control.

lpszLink
[in] Specifies the hyperlink associated with the link control.

The following example demonstrates how to use the constructor of the CMFCRibbonLinkCtrl class. This code
snippet is part of the Ribbon Gadgets sample.

[in] src

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

RemarksRemarks

CMFCRibbonLinkCtrl::GetLink

LPCTSTR GetLink() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonLinkCtrl::GetRegularSize
virtual CSize GetRegularSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonLinkCtrl::GetToolTipText
virtual CString GetToolTipText() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonLinkCtrl::OnDrawMenuImage
virtual BOOL OnDrawMenuImage(CDC*, CRect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonLinkCtrl::IsDrawTooltipImage
virtual BOOL IsDrawTooltipImage() const;

Return ValueReturn Value

[in] pDC

Returns the value of the hyperlink.

The current value of the hyperlink.

[in] pDC

[in] CDC*
[in] CRect

RemarksRemarks

CMFCRibbonLinkCtrl::OnDraw
virtual void OnDraw(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonLinkCtrl::OnMouseMove
virtual void OnMouseMove(CPoint point);

ParametersParameters

RemarksRemarks

CMFCRibbonLinkCtrl::OnSetIcon
virtual void OnSetIcon();

RemarksRemarks

CMFCRibbonLinkCtrl::OpenLink

BOOL OpenLink();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonLinkCtrl::SetLink

void SetLink(LPCTSTR lpszLink);

ParametersParameters

See also

[in] pDC

[in] point

Opens the Web page specified in the hyperlink.

TRUE if the associated webpage was opened successfully; otherwise, FALSE.

Opens a webpage using the hyperlink associated with the CMFCRibbonLinkCtrl object.

Sets the value of the hyperlink.

lpszLink
[in] Specifies the hyperlink text.

Hierarchy Chart
Classes
CMFCRibbonButton Class

CMFCRibbonMainPanel Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonMainPanel : public CMFCRibbonPanel

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonMainPanel::CMFCRibbonMainPanel Default constructor.

CMFCRibbonMainPanel::~CMFCRibbonMainPanel Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonMainPanel::Add Adds a ribbon element to the left pane of the application
button panel. (Overrides CMFCRibbonPanel::Add.)

CMFCRibbonMainPanel::AddRecentFilesList Adds a text string to the recent files list menu.

CMFCRibbonMainPanel::AddToBottom Adds a ribbon element to the bottom pane of the ribbon
application panel.

CMFCRibbonMainPanel::AddToRight Adds a ribbon element to the right pane of the application
button panel.

CMFCRibbonMainPanel::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCRibbonMainPanel::GetCommandsFrame Returns a rectangle that represents the area of the ribbon
main panel.

CMFCRibbonMainPanel::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

Remarks

Implements a ribbon panel that displays when you click the CMFCRibbonApplicationButton.

The framework displays the CMFCRibbonMainPanel when you open the application panel. It contains three panes:

The left pane contains commands associated with files, such as Open, Save, Print, and Close. To add a
command to this pane, call CMFCRibbonMainPanel::Add.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonmainpanel-class.md

Inheritance Hierarchy

Requirements

CMFCRibbonMainPanel::Add

virtual void Add(CMFCRibbonBaseElement* pElem);

ParametersParameters

RemarksRemarks

CMFCRibbonMainPanel::AddRecentFilesList

void AddRecentFilesList(
 LPCTSTR lpszLabel,
 int nWidth = 300);

ParametersParameters

RemarksRemarks

CMFCRibbonMainPanel::AddToBottom

The right pane contains options that modify the command that you click in the left pane. For example, if you
click Save As from the left pane, the right pane can display available file types. To add an item to this pane,
call CMFCRibbonMainPanel::AddToRight.

The bottom pane contains buttons that allow you to change the application's settings and to exit the
program. To add an item to this pane, call CMFCRibbonMainPanel::AddToBottom.

CObject

CMFCRibbonPanel

CMFCRibbonMainPanel

Header: afxRibbonMainPanel.h

Adds a ribbon element to the left pane of the application button panel.

pElem
[in, out] A pointer to the ribbon element to add to the main panel.

Adds a ribbon element to the panel. Elements added using this method will be located in the left column of the
main panel.

Adds a text string to the recent files list menu.

lpszLabel
Specifies the string to add to the recent files list.

nWidth
Specifies the width, in pixels, of the recent files list panel.

Adds a ribbon element to the bottom pane of the ribbon application panel.

void AddToBottom(CMFCRibbonMainPanelButton* pElem);

ParametersParameters

RemarksRemarks

CMFCRibbonMainPanel::AddToRight

void AddToRight(
 CMFCRibbonBaseElement* pElem,
 int nWidth = 300);

ParametersParameters

RemarksRemarks

CMFCRibbonMainPanel::GetCommandsFrame

CRect GetCommandsFrame() const;

Return ValueReturn Value

See also

pElem
[in, out] A pointer to the ribbon element to add to the bottom of the main panel.

Adds a ribbon element to the right pane of the application button panel.

pElem
A pointer to a ribbon element to be added to the right side of the main panel.

nWidth
Specifies the width, in pixels, of the right panel.

Use this function to add a ribbon element to the right panel. The right panel typically displays the recent files list,
but you can add any other ribbon element here.

Returns a rectangle that represents the area of the ribbon main panel.

A rectangle that represents the area of the ribbon main panel.

Hierarchy Chart
Classes
CMFCRibbonPanel Class

CMFCRibbonMiniToolBar Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonMiniToolBar : public CMFCRibbonPanelMenu

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonMiniToolBar::CMFCRibbonMiniToolBar Default constructor.

CMFCRibbonMiniToolBar::~CMFCRibbonMiniToolBar Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonMiniToolBar::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCRibbonMiniToolBar::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCRibbonMiniToolBar::IsContextMenuMode

CMFCRibbonMiniToolBar::IsRibbonMiniToolBar (Overrides CMFCPopupMenu::IsRibbonMiniToolBar .)

CMFCRibbonMiniToolBar::SetCommands Sets the list of commands to be displayed on the toolbar.

CMFCRibbonMiniToolBar::Show Displays the mini toolbar at the specified screen coordinates.

CMFCRibbonMiniToolBar::ShowWithContextMenu Displays the mini toolbar together with a context menu.

Remarks

Inheritance Hierarchy

Implements a contextual popup toolbar.

The mini toolbar is typically displayed after the user selects an object in a document. For example, after the user
selects a block of text in a word processing program, the application displays a mini toolbar that contains text
formatting commands.

The mini toolbar becomes transparent when the mouse pointer is out of the bounds of the mini toolbar.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonminitoolbar-class.md

Requirements

CMFCRibbonMiniToolBar::SetCommands

void SetCommands(
 CMFCRibbonBar* pRibbonBar,
 const CList<UINT,UINT>& lstCommands);

ParametersParameters

RemarksRemarks

ExampleExample

CObject

CCmdTarget

CWnd

CFrameWnd

CMiniFrameWnd

CMFCPopupMenu

CMFCRibbonPanelMenu

CMFCRibbonMiniToolBar

Header: afxRibbonMiniToolBar.h

Sets the list of commands to be displayed on the toolbar.

pRibbonBar
[in] The ribbon bar that the mini toolbar searches for the buttons to display.

lstCommands
[in] The list of commands to be displayed on the mini toolbar. All ribbon categories are searched to find the
associated buttons.

Use this function to set the list of commands to be displayed in the mini toolbar.

The following example demonstrates how to use the SetCommands method of the CMFCRibbonMiniToolBar class. This
code snippet is part of the MS Office 2007 Demo sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

// CMFCRibbonMiniToolBar* pFloaty
CList<UINT, UINT> lstCmds;

lstCmds.AddTail(ID_FONT_FONT);
lstCmds.AddTail(ID_FONT_FONTSIZE);
lstCmds.AddTail(ID_FONT_GROWFONT);
lstCmds.AddTail(ID_FONT_SHRINK);
lstCmds.AddTail(ID_WRITE_CHANGESTYLES);
lstCmds.AddTail(ID_EDIT_COPYFORMAT);
lstCmds.AddTail(ID_FONT_BOLD);
lstCmds.AddTail(ID_FONT_ITALIC);
lstCmds.AddTail(ID_PARA_CENTER);
lstCmds.AddTail(ID_FONT_TEXTHIGHLIGHT);
lstCmds.AddTail(ID_FONT_COLOR);
lstCmds.AddTail(ID_PARA_DECREASEINDENT);
lstCmds.AddTail(ID_PARA_INCREASEINDENT);
lstCmds.AddTail(ID_PARA_BULLETS);

pFloaty->SetCommands(((CMainFrame*) GetTopLevelFrame())->GetRibbonBar(), lstCmds);

CMFCRibbonMiniToolBar::Show

BOOL Show(
 int x,
 int y);

ParametersParameters

Return ValueReturn Value

CMFCRibbonMiniToolBar::ShowWithContextMenu

BOOL ShowWithContextMenu(
 int x,
 int y,
 UINT uiMenuResID,
 CWnd* pWndOwner);

ParametersParameters

Displays the mini toolbar at the specified screen coordinates.

x
[in] Specifies the horizontal position of the mini toolbar in screen coordinates.

y
[in] Specifies the vertical position of the mini toolbar in screen coordinates.

TRUE if the mini toolbar was displayed successfully; otherwise, FALSE.

Displays the mini toolbar together with a context menu.

x
[in] Specifies the horizontal position of the context menu in screen coordinates.

y
[in] Specifies the vertical position of the context menu in screen coordinates.

uiMenuResID
[in] Specifies the resource ID of the context menu to display.

Return ValueReturn Value

RemarksRemarks

CMFCRibbonMiniToolBar::IsContextMenuMode

BOOL IsContextMenuMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonMiniToolBar::IsRibbonMiniToolBar

virtual BOOL IsRibbonMiniToolBar() const;

Return ValueReturn Value

RemarksRemarks

See also

pWndOwner
[in] Identifies the window which receives messages from the context menu.

TRUE if the context menu was displayed successfully; otherwise, FALSE.

Use this function to display a mini toolbar that has a context menu. The context menu is positioned 15 pixels below
the mini toolbar.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

Hierarchy Chart
Classes

CMFCRibbonPanel Class
3/4/2019 • 17 minutes to read • Edit Online

Syntax
class CMFCRibbonPanel : public CObject

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CMFCRibbonPanel::CMFCRibbonPanel Constructs and initializes a CMFCRibbonPanel object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonPanel::Add Adds a ribbon element to the panel.

CMFCRibbonPanel::AddSeparator Adds a separator to the ribbon panel.

CMFCRibbonPanel::AddToolBar Adds a toolbar to the ribbon panel.

CMFCRibbonPanel::FindByData

CMFCRibbonPanel::FindByID Returns an element identified by a specified command ID.

CMFCRibbonPanel::GetCaptionHeight

CMFCRibbonPanel::GetCount Returns the number of elements in the ribbon panel.

CMFCRibbonPanel::GetData Returns the user-defined data associated with the panel.

CMFCRibbonPanel::GetDefaultButton

CMFCRibbonPanel::GetDroppedDown

CMFCRibbonPanel::GetElement Returns the ribbon element located at a specified index.

CMFCRibbonPanel::GetElements Retrieves all elements that are contained in the ribbon panel.

Implements a panel that contains a set of ribbon elements. When the panel is drawn, it displays as many
elements as possible, given the size of the panel.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonpanel-class.md

CMFCRibbonPanel::GetElementsByID

CMFCRibbonPanel::GetFocused Returns a focused element.

CMFCRibbonPanel::GetGalleryRect Returns a bounding rectangle of Gallery element.

CMFCRibbonPanel::GetHighlighted

CMFCRibbonPanel::GetIndex

CMFCRibbonPanel::GetItemIDsList

CMFCRibbonPanel::GetName

CMFCRibbonPanel::GetParentButton

CMFCRibbonPanel::GetParentCategory Returns the parent category of the ribbon panel.

CMFCRibbonPanel::GetParentMenuBar

CMFCRibbonPanel::GetPreferedMenuLocation

CMFCRibbonPanel::GetPressed

CMFCRibbonPanel::GetRect

CMFCRibbonPanel::GetVisibleElements Obtains an array of visible elements.

CMFCRibbonPanel::HasElement

CMFCRibbonPanel::HitTest

CMFCRibbonPanel::HitTestEx

CMFCRibbonPanel::Insert Inserts a ribbon element at the given position.

CMFCRibbonPanel::InsertSeparator Inserts a separator at the given position.

CMFCRibbonPanel::IsCenterColumnVert Specifies whether all panel elements should be centered
(aligned) vertically, by column.

CMFCRibbonPanel::IsCollapsed

CMFCRibbonPanel::IsHighlighted

CMFCRibbonPanel::IsJustifyColumns Specifies whether all panel columns have the same width.

CMFCRibbonPanel::IsMainPanel

CMFCRibbonPanel::IsMenuMode

NAME DESCRIPTION

CMFCRibbonPanel::MakeGalleryItemVisible Scrolls the gallery to make the specified Ribbon element
visible.

CMFCRibbonPanel::OnKey

CMFCRibbonPanel::RecalcWidths

CMFCRibbonPanel::Remove Removes and optionally deletes an element located at the
specified index.

CMFCRibbonPanel::RemoveAll Removes all elements from the ribbon panel.

CMFCRibbonPanel::Replace Replaces one element with another based on their respective
index values.

CMFCRibbonPanel::ReplaceByID Replaces one element with another based on a specified
command ID.

CMFCRibbonPanel::SetCenterColumnVert Orders the panel to align elements vertically, by column.

CMFCRibbonPanel::SetData Associates user-defined data with the ribbon panel.

CMFCRibbonPanel::SetElementMenu Assigns a popup menu to the element that has the given
command ID.

CMFCRibbonPanel::SetElementRTC Adds a ribbon element specified by the provided runtime
class information to the ribbon panel.

CMFCRibbonPanel::SetElementRTCByID Adds a ribbon element specified by the provided runtime
class information to the ribbon panel.

CMFCRibbonPanel::SetFocused Sets focus to the specified Ribbon element.

CMFCRibbonPanel::SetJustifyColumns Enables or disables column justification.

CMFCRibbonPanel::SetKeys Sets the keyboard shortcut that displays the ribbon panel.

CMFCRibbonPanel::ShowPopup

NAME DESCRIPTION

Remarks

Example

Ribbon panels are logical groupings of related tasks that you create within ribbon categories. As the size of the
ribbon changes, the panel layout automatically adjusts to display as many elements as possible.

You can get a ribbon panels that is contained in a ribbon category by calling the
CMFCRibbonCategory::GetPanel method.

The following example demonstrates how to configure a CMFCRibbonPanel object by using various methods in
the CMFCRibbonPanel class. The example shows how to set the keyboard shortcut that displays the ribbon panel,
align elements in the panel vertically by column, and enable column justification. This code snippet is part of the

// CMFCRibbonCategory* pCategory
// CMFCToolBarImages m_PanelImages
CMFCRibbonPanel* pPanelClipboard = pCategory->AddPanel(_T("Clipboard"), m_PanelImages.ExtractIcon(1));
pPanelClipboard->SetKeys(_T("zc"));
pPanelClipboard->SetCenterColumnVert();
pPanelClipboard->SetJustifyColumns();

Inheritance Hierarchy

Requirements

CMFCRibbonPanel::Add

virtual void Add(CMFCRibbonBaseElement* pElem);

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::AddSeparator

virtual void AddSeparator();

RemarksRemarks

CMFCRibbonPanel::AddToolBar

CMFCRibbonButtonsGroup* AddToolBar(
UINT uiToolbarResID,
UINT uiColdResID = 0,
UINT uiHotResID = 0,
UINT uiDisabledResID = 0);

ParametersParameters

MS Office 2007 Demo sample.

CObject

CMFCRibbonPanel

Header: afxRibbonPanel.h

Appends the specified ribbon element to the array of ribbon elements that is contained in the ribbon panel.

pElem
[in, out] Pointer to a ribbon element.

Adds a separator to the ribbon panel.

Call this method to add a separator to the ribbon panel. The separator will be added next to the ribbon element
that was added by the previous call to CMFCRibbonPanel::Add. To insert a separator at a given position, call
CMFCRibbonPanel::InsertSeparator.

Adds a toolbar to the ribbon panel.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::CMFCRibbonPanel

CMFCRibbonPanel(
LPCTSTR lpszName = NULL,
HICON hIcon = NULL);

CMFCRibbonPanel(CMFCRibbonGallery* pPaletteButton);

ParametersParameters

CMFCRibbonPanel::FindByData

CMFCRibbonBaseElement* FindByData(DWORD_PTR dwData) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::FindByID

uiToolbarResID
[in] Specifies the resource ID of the toolbar to add.

uiColdResID
[in] Specifies the resource ID of the toolbar's cold images.

uiHotResID
[in] Specifies the resource ID of the toolbar's hot images.

uiDisabledResID
[in] Specifies the resource ID of the toolbar's disabled images.

Call this method to add a toolbar to the ribbon panel. The toolbar will be added next to the ribbon element
added by the previous call to CMFCRibbonPanel::Add.

For more information about toolbars, hot images, cold images, and disabled images, see CMFCToolBar Class.

Constructs and initializes a CMFCRibbonPanel object.

lpszName
[in] The name of the ribbon panel.

hIcon
[in] Handle to the icon of the default button for the ribbon panel.

pPaletteButton
[in] Pointer to a ribbon gallery for the ribbon panel.

Retrieves the ribbon element that is associated with the specified data.

dwData
[in] The data associated with a ribbon element.

Pointer to a ribbon element if the method was successful; otherwise NULL.

CMFCRibbonBaseElement* FindByID(UINT uiCmdID) const;

ParametersParameters

Return ValueReturn Value

CMFCRibbonPanel::GetCaptionHeight

int GetCaptionHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::GetCount

int GetCount() const;

Return ValueReturn Value

CMFCRibbonPanel::GetData

DWORD_PTR GetData() const;

Return ValueReturn Value

CMFCRibbonPanel::GetDefaultButton

CMFCRibbonButton& GetDefaultButton();

Return ValueReturn Value

RemarksRemarks

Retrieves the ribbon element that is identified by the specified command ID.

uiCmdID
[in] The command ID of a ribbon element.

The ribbon element that is identified by the specified command ID; otherwise NULL if no ribbon element is
identified with the specified command ID.

Retrieves the height of a caption for the ribbon panel.

The height, in pixels, of a caption for the ribbon panel.

Retrieves the number of ribbon elements that are contained in the ribbon panel.

The number of ribbon elements that are contained in the ribbon panel.

Returns the user-defined data associated with the panel.

The user-defined data associated with the panel.

Retrieves the default button for the ribbon panel.

The default button for the ribbon panel.

CMFCRibbonPanel::GetDroppedDown

CMFCRibbonBaseElement* GetDroppedDown() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::GetElement

CMFCRibbonBaseElement* GetElement(int nIndex) const;

ParametersParameters

Return ValueReturn Value

CMFCRibbonPanel::GetElements

void GetElements(CArray<CMFCRibbonBaseElement*, CMFCRibbonBaseElement*>& arElements);

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::GetElementsByID

void GetElementsByID(
UINT uiCmdID,
CArray<CMFCRibbonBaseElement*, CMFCRibbonBaseElement*>& arElements);

ParametersParameters

The default button is displayed when a ribbon panel has insufficient space to display its ribbon elements.

Retrieves a pointer to a ribbon element if its pop-up menu is dropped down.

Pointer to the ribbon element that has its pop-up menu dropped down; otherwise NULL if no ribbon element
has its pop-up menu dropped down.

Only ribbon elements that are contained in the ribbon panel are tested.

Returns the ribbon element located at a specified index.

nIndex
[in] Specifies the zero-based index of the element to retrieve.

A valid pointer to the base ribbon element located at position nIndex in the ribbon panel, or NULL if there is no
element at the specified index.

Retrieves all ribbon elements that are contained in the ribbon panel.

arElements
[out] An array to fill with all the ribbon elements that are contained in the ribbon panel.

Adds ribbon elements that have the specified command ID to the specified array.

uiCmdID
[in] Command ID for a ribbon element.

RemarksRemarks

CMFCRibbonPanel::GetHighlighted

CMFCRibbonBaseElement* GetHighlighted() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::GetIndex

virtual int GetIndex(CMFCRibbonBaseElement* pElem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::GetItemIDsList

void GetItemIDsList(CList<UINT, UINT>& lstItems) const;

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::GetName

LPCTSTR GetName() const;

Return ValueReturn Value

arElements
[in] Array of ribbon elements.

Only ribbon elements that are contained in the ribbon panel are tested.

Retrieves the ribbon element that is highlighted on the ribbon panel.

Pointer to the ribbon element that is highlighted on the ribbon panel.

Retrieves the zero-based index of the specified ribbon element from the array of ribbon elements that are
contained in the ribbon panel.

pElem
[in] Pointer to a ribbon element.

Zero-based index of the specified ribbon element if the method was successful; otherwise -1.

Retrieves the command IDs for all ribbon elements in the ribbon panel.

lstItems
[out] The list of command IDs for ribbon elements that are contained in the ribbon panel.

Retrieves the name of the ribbon panel.

RemarksRemarks

CMFCRibbonPanel::GetParentButton
CMFCRibbonBaseElement* GetParentButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::GetParentCategory

CMFCRibbonCategory* GetParentCategory() const;

Return ValueReturn Value

CMFCRibbonPanel::GetParentMenuBar
CMFCRibbonPanelMenuBar* GetParentMenuBar() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::GetPreferedMenuLocation

virtual BOOL GetPreferedMenuLocation(CRect& rect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::GetPressed

CMFCRibbonBaseElement* GetPressed() const;

The name of the ribbon panel.

Returns the parent category of the ribbon panel.

A pointer to the ribbon category that contains this ribbon panel.

Retrieves the preferred display rectangle for the pop-up menu of the ribbon panel.

rect
[out] This parameter is not used.

Always returns FALSE.

This method always returns FALSE. Override this method to retrieve the preferred display rectangle for the pop-
up menu of the ribbon panel.

Retrieves a pointer to a ribbon element on the ribbon panel if the user currently presses it.

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::GetRect

const CRect& GetRect() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::HasElement

BOOL HasElement(const CMFCRibbonBaseElement* pElem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::Highlight

virtual void Highlight(
BOOL bHighlight,
CPoint point);

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::HitTest

A pointer to a ribbon element if the user currently presses it; otherwise NULL.

Retrieves the display rectangle for the ribbon panel.

The display rectangle for the ribbon panel.

Indicates whether the ribbon panel contains the specified ribbon element.

pElem
[in] Pointer to a ribbon element.

TRUE if the ribbon panel contains the specified ribbon element; otherwise FALSE.

Sets the highlight color for the selected ribbon panel and for the ribbon element specified by the point.

bHighlight
[in] TRUE to highlight the ribbon panel; FALSE to unhighlight the ribbon panel.

point
[in] The x and y coordinates of the pointer, relative to the upper-left corner of the window.

Retrieves a ribbon element if the specified point is located in it.

virtual CMFCRibbonBaseElement* HitTest(
CPoint point,
BOOL bCheckPanelCaption = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::HitTestEx

virtual int HitTestEx(CPoint point) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::Insert

virtual BOOL Insert(
CMFCRibbonBaseElement* pElem,
int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

point
[in] The x and y coordinates of the pointer, relative to the upper-left corner of the window.

bCheckPanelCaption
[in] TRUE to test the ribbon panel caption; otherwise FALSE.

Pointer to a ribbon element if the specified point is located in it; otherwise NULL.

Only ribbon elements that are contained in the ribbon panel are tested.

Retrieves the zero-based index of the ribbon element that has the specified point located in it.

point
[in] The x and y coordinates of the pointer, relative to the upper-left corner of the window.

The zero-based index of the ribbon element that has the specified point located in it; otherwise -1.

Only ribbon elements that are contained in the ribbon panel are tested.

Inserts the specified ribbon element at the specified position in the array of ribbon elements that is contained in
the ribbon panel.

pElem
[in, out] Pointer to a ribbon element.

nIndex
[in] Zero-based value, ranging from -1 to the number of ribbon elements that are contained in the array.

TRUE if the ribbon element was inserted successfully; otherwise FALSE.

CMFCRibbonPanel::InsertSeparator

virtual BOOL InsertSeparator(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::IsCenterColumnVert

BOOL IsCenterColumnVert() const;

Return ValueReturn Value

CMFCRibbonPanel::IsCollapsed

BOOL IsCollapsed() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::IsHighlighted

BOOL IsHighlighted() const;

Return ValueReturn Value

RemarksRemarks

If the value of nIndex is -1, or if nIndex equals the number of ribbon elements in the array, the specified ribbon
element is added to the end of the array. If the value of nIndex is out of range, the method will fail.

Inserts a separator at the given position.

nIndex
[in] Specifies the zero-based index where the separator is inserted.

TRUE if the separator has been inserted successfully; otherwise, FALSE.

Call this method to insert a separator at the position specified by nIndex. To insert a separator next to the most
recently added ribbon element, call CMFCRibbonPanel::AddSeparator.

Indicates whether the vertical positions of ribbon elements are centered within their display rectangle.

TRUE if the vertical positions of ribbon elements are centered within their display rectangle; otherwise FALSE.

Indicates whether the display size of the ribbon panel is minimized in the horizontal direction.

TRUE if the display size of the ribbon panel is minimized in the horizontal direction; otherwise FALSE.

When a ribbon panel is collapsed, it only displays its default button, its name, and a drop-down arrow.

Indicates whether the display of the ribbon panel is highlighted.

TRUE if the display of the ribbon panel is highlighted; otherwise FALSE.

CMFCRibbonPanel::IsJustifyColumns

BOOL IsJustifyColumns() const;

Return ValueReturn Value

CMFCRibbonPanel::IsMainPanel

virtual BOOL IsMainPanel() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::IsMenuMode
BOOL IsMenuMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::OnKey
virtual BOOL OnKey(UINT nChar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::RecalcWidths

The display of a ribbon panel is highlighted when the pointer is over it.

Indicates whether the display dimensions of ribbon elements that are in the same column in the ribbon panel
are set to the same width.

TRUE if the display dimensions of ribbon elements that are in the same column in the ribbon panel are set to
the same width; otherwise FALSE.

Indicates whether the ribbon panel is the main ribbon panel.

Always returns FALSE.

This method always returns FALSE. Override this method to indicate whether the ribbon panel is the main
ribbon panel.

The main ribbon panel is displayed when the user selects the application button.

[in] nChar

Recalculates the width of each display layout configuration for the ribbon panel.

virtual void RecalcWidths(
CDC* pDC,
int nHeight);

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::Remove

BOOL Remove(
int nIndex,
BOOL bDelete = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::RemoveAll

void RemoveAll();

RemarksRemarks

CMFCRibbonPanel::Replace

BOOL Replace(
int nIndex,
CMFCRibbonBaseElement* pElem);

pDC
[in] Pointer to a device context for the ribbon panel.

nHeight
[in] The height of the ribbon panel.

A ribbon panel changes its layout configuration as the available width changes.

Removes and optionally deletes an element located at the specified index.

nIndex
[in] Specifies the zero-based index of the element that is removed from the ribbon panel.

bDelete
[in] TRUE to delete the element being removed; otherwise, FALSE.

TRUE if the element has been removed and deleted (if bDelete is TRUE); FALSE if the element was not removed
or if there is no ribbon element located at nIndex.

Call this method to remove an element from the ribbon panel.

Deletes all ribbon elements from the ribbon panel.

All ribbon elements are deleted from the ribbon panel and destroyed.

Replaces one element with another based on their index value.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::ReplaceByID

BOOL ReplaceByID(
UINT uiCmdID,
CMFCRibbonBaseElement* pElem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::SetCenterColumnVert

void SetCenterColumnVert(BOOL bSet = TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::SetData

nIndex
[in] Specifies the zero-based index of the element to replace.

pElem
[in, out] A valid pointer to the element that replaces the original element.

TRUE if the original ribbon element has been replaced successfully by the new ribbon element; FALSE if the
ribbon element was not replaced or if there is no element at the specified index.

To replace a ribbon element by command ID, call CMFCRibbonPanel::ReplaceByID.

Replaces one element with another based on a specified command ID.

uiCmdID
[in] Specifies the command ID of the element to replace.

pElem
[in, out] A valid pointer to the element that will replace the original element.

TRUE if the original ribbon element has been replaced successfully by the new ribbon element; FALSE if the
ribbon element was not replaced or if no element with the specified command ID actually exists.

To replace a ribbon element based on position, call CMFCRibbonPanel::Replace.

Enables or disables the centering of the vertical positions of ribbon elements within their display rectangle.

bSet
[in] TRUE to center the vertical positions of ribbon elements within their display rectangle; FALSE to disable this
feature.

Associates user-defined data with the ribbon panel.

void SetData(DWORD_PTR dwData);

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::SetElementMenu

BOOL SetElementMenu(
UINT uiCmdID,
HMENU hMenu,
BOOL bIsDefautCommand = FALSE,
BOOL bRightAlign = FALSE);

BOOL SetElementMenu(
UINT uiCmdID,
UINT uiMenuResID,
BOOL bIsDefautCommand = FALSE,
BOOL bRightAlign = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::SetElementRTC

dwData
[in] Specifies the user-defined data to set.

Call this method to associate user-defined data with the ribbon panel.

Assigns a popup menu to the element that has the given command ID.

uiCmdID
[in] Specifies the command ID of the ribbon element where the menu is added.

hMenu
[in] Specifies the handle to the Windows menu to add to the ribbon panel.

bIsDefautCommand
[in] TRUE to specify that the command associated with the ribbon element should be executed if the ribbon
element is clicked. In this case, the menu is only opened when the user clicks the arrow next to the ribbon
element. FALSE to specify that the command associated with the ribbon element should not be executed if the
ribbon element is clicked. In this case, the popup menu appears regardless of where the user clicks on the
element.

bRightAlign
[in] TRUE to specify that the popup menu is right-aligned; otherwise, FALSE.

uiMenuResID
[in] Specifies the resource ID of the menu to add to the ribbon panel.

TRUE if the menu has been assigned to the ribbon element; otherwise, FALSE.

Call this method to assign a popup menu to the ribbon element that has the given command ID.

Adds the ribbon element that is specified by the provided runtime class information to the ribbon panel.

CMFCRibbonBaseElement* SetElementRTC(
int nIndex,
CRuntimeClass* pRTC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::SetElementRTCByID

CMFCRibbonBaseElement* SetElementRTCByID(
UINT uiCmdID,
CRuntimeClass* pRTC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

nIndex
[in] Specifies the zero-based index of the ribbon element to add.

pRTC
[in, out] A pointer to the runtime class information for the ribbon element that is added to the ribbon panel.

The ribbon element that was created by using the specified runtime class information.

If you want to add a custom element (for example, a color button) to the ribbon panel, you must specify the
custom element's runtime class information. The ribbon stores this information, creates the custom element, and
replaces an existing element that is located (identified by) the specified command ID. The ribbon then returns a
pointer to the newly created element.

Adds a ribbon element that is specified by the provided runtime class information to the ribbon panel.

uiCmdID
[in] Specifies the command ID of the ribbon element to add.

pRTC
[in, out] A pointer to the runtime class information associated with the ribbon element that is added to the
ribbon panel.

The ribbon element that was created by using the specified runtime class information.

If you want to add a custom element (for example, a color button) to the ribbon panel, you must specify the
custom element's runtime class information. The ribbon stores this information, creates the custom element, and
replaces an existing element located by the specified command ID. It then returns a pointer to the newly created
element.

The following example shows how to use the SetElementRTCByID method:

// Load and add toolbar with standard buttons. This toolbar
// should display a custom color button with id ID_CHAR_COLOR:

pPanel->AddToolBar(IDR_MAINFRAME,
 IDB_MAINFRAME256);

CMFCRibbonColorButton* pColorButton =
(CMFCRibbonColorButton*)pPanel->SetElementRTCByID(
ID_CHAR_COLOR,
 RUNTIME_CLASS (CMFCRibbonColorButton));

// SetElementRTCByID sets runtime class and returns a pointer
// to the newly created custom button,
 which can be set up immediately:
pColorButton->EnableAutomaticButton(_T("Automatic"),
 RGB (0,
 0,
 0));

CMFCRibbonPanel::SetJustifyColumns

void SetJustifyColumns(BOOL bSet = TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::SetKeys

void SetKeys(LPCTSTR lpszKeys);

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::ShowPopup

CMFCRibbonPanelMenu* ShowPopup(CMFCRibbonDefaultPanelButton* pButton = NULL);

Enables or disables the adjustment of the width of ribbon elements in the same column.

bSet
[in] TRUE to adjust the width of ribbon elements in the same column to the width of the largest ribbon element
in the column; FALSE to disable this width adjustment.

When this feature is enabled in a ribbon panel, the widths of ribbon elements in the same column are adjusted
to the width of the largest ribbon element in the same column.

Sets the keytip for the default button of the ribbon panel.

lpszKeys
[in] The keytip for the default button of the ribbon panel.

The default button is displayed when a ribbon panel has insufficient space to display its ribbon elements.

Creates and displays a pop-up menu for the ribbon panel.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::SetFocused

void SetFocused(CMFCRibbonBaseElement* pNewFocus);

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::MakeGalleryItemVisible

void MakeGalleryItemVisible(CMFCRibbonBaseElement* pItem);

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::IsWindows7Look

BOOL IsWindows7Look() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::GetVisibleElements

void GetVisibleElements(
CArray<CMFCRibbonBaseElement*,
CMFCRibbonBaseElement*>& arElements);

pButton
[in] Pointer to the default button for the ribbon panel.

Pointer to the pop-up menu for the ribbon panel if the method was successful; otherwise NULL.

The pop-up menu for the ribbon panel is only available when the display of the ribbon panel is collapsed.

Sets focus to the specified Ribbon element.

pNewFocus
A pointer to a Ribbon element that receives focus.

Scrolls the gallery to make the specified Ribbon element visible.

pItem
A pointer to a Ribbon element to show.

Indicates whether the parent ribbon has Windows 7 look (small rectangular application button).

TRUE if the parent ribbon has Windows 7 look; otherwise FALSE.

Retrieves an array of visible elements.

ParametersParameters

RemarksRemarks

CMFCRibbonPanel::GetGalleryRect

CRect GetGalleryRect();

Return ValueReturn Value

RemarksRemarks

CMFCRibbonPanel::GetFocused

CMFCRibbonBaseElement* GetFocused() const;

Return ValueReturn Value

RemarksRemarks

See also

arElements
When the function returns, this parameter contains an array of visible elements.

Returns a bounding rectangle of a Gallery element.

Size and position of the Gallery element within this panel.

Returns a focused element.

A pointer to a focused element or NULL.

Hierarchy Chart
Classes
CObject Class
CMFCRibbonCategory Class
CMFCRibbonBaseElement Class

CMFCRibbonProgressBar Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCRibbonProgressBar : public CMFCRibbonBaseElement

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonProgressBar::CMFCRibbonProgressBar Constructs and initializes a CMFCRibbonProgressBar object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonProgressBar::GetPos Returns the current progress.

CMFCRibbonProgressBar::GetRangeMax Returns the maximum value of the current range.

CMFCRibbonProgressBar::GetRangeMin Returns the minimum value of the current range.

CMFCRibbonProgressBar::GetRegularSize Returns the regular size of the ribbon element. (Overrides
CMFCRibbonBaseElement::GetRegularSize.)

CMFCRibbonProgressBar::IsInfiniteMode Specifies whether the progress bar is working in infinite mode.

CMFCRibbonProgressBar::OnDraw Called by the framework to draw the ribbon element.
(Overrides CMFCRibbonBaseElement::OnDraw.)

CMFCRibbonProgressBar::SetInfiniteMode Sets the progress bar to work in infinite mode.

CMFCRibbonProgressBar::SetPos Sets the current progress.

CMFCRibbonProgressBar::SetRange Sets the minimum and maximum values.

Remarks

Implements a control that visually indicates the progress of a lengthy operation.

A CMFCRibbonProgressBar can operate in two modes: regular and infinite. In regular mode, the progress bar is filled
from left to right and stops when it reaches the maximum value. In infinite mode, the progress bar is repeatedly
filled from the minimum value to the maximum value. You might use infinite mode to indicate that an operation is
ongoing, but that the completion time is unknown.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonprogressbar-class.md

Example

// int cxProgress
// BOOL m_bInfiniteProgressMode
CMFCRibbonProgressBar* pProgressBar = new CMFCRibbonProgressBar(ID_STATUSBAR_PROGRESS, cxProgress);

pProgressBar->SetInfiniteMode(m_bInfiniteProgressMode);
pProgressBar->SetRange(0,200);
pProgressBar->SetPos(200,true);

Inheritance Hierarchy

Requirements

CMFCRibbonProgressBar::CMFCRibbonProgressBar

CMFCRibbonProgressBar();

CMFCRibbonProgressBar(
 UINT nID,
 int nWidth = 90,
 int nHeight = 22);

ParametersParameters

CMFCRibbonProgressBar::GetPos

int GetPos () const;

Return ValueReturn Value

The following example demonstrates how to use various methods in the CMFCRibbonProgressBar class. The
example shows how to set the progress bar to work in infinite mode (where the completion time of an operation
is unknown), set the minimum and maximum values for the progress bar, and set the current position of the
progress bar. This code snippet is part of the MS Office 2007 Demo sample.

CObject

CMFCRibbonBaseElement

CMFCRibbonProgressBar

Header: afxRibbonProgressBar.h

Constructs and initializes a CMFCRibbonProgressBar object.

nID
[in] Specifies the command ID for the ribbon progress bar.

nWidth
[in] Specifies the width, in pixels, of the ribbon progress bar.

nHeight
[in] Specifies the height, in pixels, of the ribbon progress bar.

Returns the current position of the progress bar.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CMFCRibbonProgressBar::GetRangeMax

int GetRangeMax() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonProgressBar::GetRangeMin

int GetRangeMin() const;

Return ValueReturn Value

CMFCRibbonProgressBar::GetRegularSize

virtual CSize GetRegularSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonProgressBar::IsInfiniteMode

BOOL IsInfiniteMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonProgressBar::OnDraw

A value representing the current position of the progress bar.

The range being set must be within the range specified by the CMFCRibbonProgressBar::SetRange method.

Returns the progress bar's current maximum value.

The maximum value of the current range.

Returns the progress bar's current minimum range value.

The minimum value of the current range.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] pDC

Specifies whether the progress bar is working in infinite mode.

TRUE if the progress bar is in infinite mode; otherwise, FALSE.

In infinite mode, the progress bar fills repeatedly from the minimum value to the maximum value. You might use
infinite mode to indicate that an operation is ongoing, but that the completion time is unknown.

virtual void OnDraw(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonProgressBar::SetInfiniteMode

void SetInfiniteMode(BOOL bSet = TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonProgressBar::SetPos

void SetPos(
 int nPos,
 BOOL bRedraw = TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonProgressBar::SetRange

void SetRange(
 int nMin,
 int nMax);

ParametersParameters

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] pDC

Sets the progress bar to work in infinite mode.

bSet
[in] TRUE to specify that the progress bar is in infinite mode; otherwise, FALSE.

Usually, if the progress bar is in infinite mode, it is telling the user that an operation is ongoing, but that the
completion time is unknown. Thus, the progress bar fills repeatedly from the minimum value to the maximum
value.

Sets the current position of the progress bar.

nPos
[in] Specifies the position to which the progress bar is set.

bRedraw
[in] Specifies whether the progress bar should be redrawn.

The range being set must be within the range specified by the CMFCRibbonProgressBar::SetRange method.

Sets the minimum and maximum values for the progress bar.

nMin

RemarksRemarks

See also

[in] Specifies the minimum value of the range.

nMax
[in] Specifies the maximum value of the range.

Use this method to define the range of the progress bar by setting minimum and maximum values.

Hierarchy Chart
Classes
CMFCRibbonBaseElement Class
CMFCRibbonBar Class

CMFCRibbonQuickAccessToolBarDefaultState Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonQuickAccessToolBarDefaultState

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonQuickAccessToolBarDefaultState::CMFCRibbonQu
ickAccessToolBarDefaultState

Constructs a CMFCRibbonQuickAccessToolbarDefaultState

object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonQuickAccessToolBarDefaultState::AddCommand Adds a command to the default state for the Quick Access
Toolbar. This does not change the toolbar itself.

CMFCRibbonQuickAccessToolBarDefaultState::CopyFrom Copies the properties of one Quick Access Toolbar to another.

CMFCRibbonQuickAccessToolBarDefaultState::RemoveAll Removes all commands from the Quick Access Toolbar. This
does not change the toolbar itself.

Remarks

Inheritance Hierarchy

Example

A helper class that manages default state for the Quick Access Toolbar that is positioned on the ribbon bar (
CMFCRibbonBar Class).

After you create the Quick Access Toolbar in your application, we recommend that you set its default state by
calling CMFCRibbonBar::SetQuickAccessDefaultState. This default state is restored when a user clicks the Reset
button on the Customize page of your application's Options dialog box.

CMFCRibbonQuickAccessToolBarDefaultState

The following example demonstrates how to construct an object of the CMFCRibbonQuickAccessToolbarDefaultState

class and how to add a command to the default state for the Quick Access Toolbar.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonquickaccesstoolbardefaultstate-class.md

CMFCRibbonQuickAccessToolBarDefaultState* qaToolBarState =
 new CMFCRibbonQuickAccessToolBarDefaultState();
qaToolBarState->AddCommand(ID_FILE_NEW, true);
qaToolBarState->AddCommand(ID_FILE_OPEN, true);

Requirements

CMFCRibbonQuickAccessToolBarDefaultState::AddCommand

void AddCommand(
 UINT uiCmd,
 BOOL bIsVisible=TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonQuickAccessToolBarDefaultState::CopyFrom

void CopyFrom(const CMFCRibbonQuickAccessToolBarDefaultState& src);

ParametersParameters

RemarksRemarks

CMFCRibbonQuickAccessToolBarDefaultState::CMFCRibbonQuickAcce
ssToolBarDefaultState

Header: afxribbonquickaccesstoolbar.h

Adds a command to the default state for the Quick Access Toolbar.

[in] uiCmd
Specifies command ID.

[in] bIsVisible
Sets the visibility of the command when the Quick Access Toolbar is in the default state.

Adding a command to the CMFCRibbonQuickAccessToolBarDefaultState accomplishes three results. First, each
added command is listed on the dropdown on the right side of the Quick Access Toolbar. In this manner, a user can
easily add or remove that command from the Quick Access Toolbar. Second, the Quick Access Toolbar is reset to
show only those commands that are listed as visible in the default state when the user clicks the Reset button in
the Customize dialog box. Third, if you have not called CMFCRibbonBar::SetQuickAccessCommands, the Quick
Access Toolbar uses the visible commands from this list as the default visible commands the first time a user runs
your application. After you have added all the commands that you want, call
CMFCRibbonBar::SetQuickAccessDefaultState to set this instance as the default state for the Quick Access Toolbar
of that Ribbon Bar.

Copies the properties of one Quick Access Toolbar to another.

src
[in] A reference to the source CMFCRibbonQuickAccessToolBarDefaultState object to copy from.

This method copies each command from the source CMFCRibbonQuickAccessToolBarDefaultState object to this object
by using the CMFCRibbonQuickAccessToolBarDefaultState::AddCommand method.

CMFCRibbonQuickAccessToolBarDefaultState();

RemarksRemarks

CMFCRibbonQuickAccessToolBarDefaultState::RemoveAll

void RemoveAll();

RemarksRemarks

See also

Constructs the Quick Access Toolbar default state object.

By default, the list of commands that the new instance of CMFRibbonQuickAccessToolBarDefaultState contains is
empty.

Clears the list of default commands in the Quick Access Toolbar.

This function removes from this instance all the commands that the previous calls to
CMFCRibbonQuickAccessToolBarDefaultState::AddCommand added.

Hierarchy Chart
Classes
CMFCRibbonBar Class

CMFCRibbonSeparator Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonSeparator : public CMFCRibbonBaseElement

Members
Public ConstructorsPublic Constructors

Name Description

CMFCRibbonSeparator::CMFCRibbonSeparator Constructs a CMFCRibbonSeparator object.

Public MethodsPublic Methods

Name Description

CMFCRibbonSeparator::AddToListBox Adds a separator to the Commands list in the Customize
dialog box. (Overrides
CMFCRibbonBaseElement::AddToListBox.)

CMFCRibbonSeparator::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCRibbonSeparator::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

Protected MethodsProtected Methods

Name Description

CMFCRibbonSeparator::CopyFrom A copy method that sets a separator's member variables from
another object.

CMFCRibbonSeparator::GetRegularSize Returns the size of a separator.

CMFCRibbonSeparator::IsSeparator Indicates whether this is a separator.

CMFCRibbonSeparator::IsTabStop Indicates whether this is a tab stop.

Implements the ribbon separator.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonseparator-class.md

CMFCRibbonSeparator::OnDraw Called by the system to draw the separator on either the
ribbon or the Quick Access Toolbar.

CMFCRibbonSeparator::OnDrawOnList Called by the system to draw the separator on the
Commands list.

Remarks

CMFCRibbonMainPanel* pMainPanel = m_wndRibbonBar.AddMainCategory(_T("Main Menu"),
 IDB_FILESMALL,
 IDB_FILELARGE);

...
pMainPanel->Add(new CMFCRibbonSeparator(TRUE));

Inheritance Hierarchy

Requirements

CMFCRibbonSeparator::AddToListBox

virtual int AddToListBox(
 CMFCRibbonCommandsListBox* pWndListBox,
 BOOL bDeep);

ParametersParameters

Return ValueReturn Value

A ribbon separator is a vertical or horizontal line that logically separates ribbon elements. A separator can be
drawn on the ribbon control, the main application menu, the ribbon status bar, and the Quick Access Toolbar.

To use a separator in your application, construct the new object and add it to the main application menu as shown
here:

Call CMFCRibbonPanel::AddSeparator to add separators to ribbon panels. The separators are allocated and added
internally by the AddSeparator method.

CObject

CMFCRibbonBaseElement

CMFCRibbonSeparator

Header: afxbaseribbonelement.h

Adds a separator to the Commands list in the Customize dialog box.

pWndListBox
[in] A pointer to the Commands list where the separator is added.

bDeep
[in] Ignored.

Zero-based index to the string in the list box specified by pWndListBox.

CMFCRibbonSeparator::CMFCRibbonSeparator

CMFCRibbonSeparator(BOOL bIsHoriz = FALSE);

ParametersParameters

RemarksRemarks

ExampleExample

// CMFCRibbonMainPanel* pMainPanel
pMainPanel->Add(new CMFCRibbonSeparator(TRUE));

CMFCRibbonSeparator::CopyFrom

virtual void CopyFrom(const CMFCRibbonBaseElement& src);

ParametersParameters

CMFCRibbonSeparator::GetRegularSize

virtual CSize GetRegularSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

CMFCRibbonSeparator::IsSeparator

virtual BOOL IsSeparator() const;

Return ValueReturn Value

Constructs a CMFCRibbonSeparator object.

bIsHoriz
[in] If TRUE, the separator is horizontal; if FALSE, the separator is vertical.

Horizontal separators are used in application menus. Vertical separators are used in toolbars.

The following example demonstrates how to construct an object of the CMFCRibbonSeparator class.

A copy method that sets a separator's member variables from another object.

Src
[in] The source ribbon element to copy from.

Returns the size of a separator.

pDC
[in] A pointer to a device content.

The size of the separator on the given device context.

Indicates whether this is a separator.

Always TRUE for this class.

CMFCRibbonSeparator::IsTabStop

virtual BOOL IsTabStop() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonSeparator::OnDraw

virtual void OnDraw(CDC* pDC);

ParametersParameters

CMFCRibbonSeparator::OnDrawOnList

virtual void OnDrawOnList(
 CDC* pDC,
 CString strText,
 int nTextOffset,
 CRect rect,
 BOOL bIsSelected,
 BOOL bHighlighted);

ParametersParameters

Parameter Description

pDC [in] A pointer to a device context.

strText [in] Text displayed on the list.

nTextOffset [in] Spacing between the text and the left side of the bounding
rectangle.

rect [in] Specifies the bounding rectangle.

bIsSelected [in] Ignored.

bHighlighted [in] Ignored.

Indicates whether this is a tab stop.

Always FALSE for this class.

A ribbon separator is not a tab stop.

Called by the system to draw the separator on either the ribbon or the Quick Access Toolbar.

pDC
[in] A pointer to a device context.

Called by the system to draw the separator on the Commands list.

See also
Hierarchy Chart
Classes

CMFCRibbonSlider Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCRibbonSlider : public CMFCRibbonBaseElement

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonSlider::CMFCRibbonSlider Constructs and initializes a ribbon slider control.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonSlider::GetPos Returns the current position of the slider control.

CMFCRibbonSlider::GetRangeMax Returns the maximum value of the slider.

CMFCRibbonSlider::GetRangeMin Returns the minimum value of the slider.

CMFCRibbonSlider::GetRegularSize Returns the regular size of the ribbon element. (Overrides
CMFCRibbonBaseElement::GetRegularSize.)

CMFCRibbonSlider::GetZoomIncrement Returns the size of the zoom increment for the slider control.

CMFCRibbonSlider::HasZoomButtons Specifies whether the slider has zoom buttons.

CMFCRibbonSlider::OnDraw Called by the framework to draw the ribbon element.
(Overrides CMFCRibbonBaseElement::OnDraw.)

CMFCRibbonSlider::SetPos Sets the current position of the slider control.

CMFCRibbonSlider::SetRange Specifies the range of the slider control by setting the
minimum and maximum values.

CMFCRibbonSlider::SetZoomButtons Shows or hides the zoom buttons.

CMFCRibbonSlider::SetZoomIncrement Sets size of the zoom increment for the slider control.

Remarks

The CMFCRibbonSlider class implements a slider control that you can add to a ribbon bar or ribbon status bar. The
ribbon slider control resembles the zoom sliders that appear in Office 2007 applications.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonslider-class.md

Example

// Create a ribbon slider.
CMFCRibbonSlider* ribbonSlider = new CMFCRibbonSlider();
// Set the various properties of the slider.
ribbonSlider->SetZoomButtons(true);
ribbonSlider->SetPos(50, TRUE);
ribbonSlider->SetRange(0, 100);
// Add the ribbon slider to the Favorites panel.
// CMFCRibbonPanel* pPanelFavorites
pPanelFavorites->Add(ribbonSlider);

Inheritance Hierarchy

Requirements

CMFCRibbonSlider::CMFCRibbonSlider

CMFCRibbonSlider(
 UINT nID,
 int nWidth=100);

ParametersParameters

RemarksRemarks

You can use the SetRange method to configure the range of zoom increments for the slider. You can set current
position of the slider by using the SetPos method.

You can display circular zoom buttons on the left and right side of the slider control by using the SetZoomButtons

method. By default, the slider is horizontal, the left zoom button displays a minus sign and the right zoom button
displays a plus sign.

The SetZoomIncrement method defines the increment to add to or subtract from the current position when a user
clicks the zoom buttons.

The following example demonstrates how to use various methods in the CMFCRibbonSlider class to set the
properties of the slider. The example shows how to construct a CMFCRibbonSlider object, display zoom buttons,
set the current position of the slider control, and set the range of values for the slider control.

CObject

CMFCRibbonBaseElement

CMFCRibbonSlider

Header: afxribbonslider.h

Construct a ribbon slider.

nID
[in] Slider ID.

[in]. nWidth Slider width in pixels.

Constructs a ribbon slider that is nWidth pixels wide in the panel category where the slider is added. By default,
the slider is horizontal.

CMFCRibbonSlider::GetPos

int GetPos() const;

Return ValueReturn Value

CMFCRibbonSlider::GetRangeMax

int GetRangeMax() const;

Return ValueReturn Value

CMFCRibbonSlider::GetRangeMin

int GetRangeMin() const;

Return ValueReturn Value

CMFCRibbonSlider::GetRegularSize

virtual CSize GetRegularSize(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonSlider::GetZoomIncrement

int GetZoomIncrement() const;

Return ValueReturn Value

CMFCRibbonSlider::HasZoomButtons

Returns the current position of the slider control.

The current position of the slider control, which is a position relative to the beginning of the slider.

Obtains the maximum increment of the slider that the slider can travel on the slider control.

The maximum increment of the slider that the slider can travel on the slider control.

Returns the minimum increment that the slider can travel on the slider control.

The minimum increment that the slider can travel on the slider control.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] pDC

Obtain the zoom increment for the slider control.

The zoom increment for the slider control.

BOOL HasZoomButtons() const;

Return ValueReturn Value

CMFCRibbonSlider::OnDraw

virtual void OnDraw(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCRibbonSlider::SetPos

void SetPos(
 int nPos,
 BOOL bRedraw=TRUE);

ParametersParameters

CMFCRibbonSlider::SetRange

void SetRange(
 int nMin,
 int nMax);

ParametersParameters

RemarksRemarks

CMFCRibbonSlider::SetZoomButtons

Specifies whether the slider has zoom buttons.

TRUE if the slider has zoom buttons; FALSE otherwise.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] pDC

Set the current position of the slider control.

nPos
[in] Specifies the position to set for the slider. The position is relative to the beginning of the slider.

bRedraw
[in] If TRUE, the slider will be redrawn.

Set the range of values for the slider control.

nMin
[in] Specifies minimum value of the slider control.

nMax
[in] Specifies maximum value of the slider control.

Specifies the range of values for the slider control by setting the minimum and maximum values.

void SetZoomButtons(BOOL bSet=TRUE);

ParametersParameters

CMFCRibbonSlider::SetZoomIncrement

void SetZoomIncrement(int nZoomIncrement);

ParametersParameters

See also

Display or hide zoom buttons.

[in]. bSet TRUE to display zoom buttons; FALSE to hide them.

Set the zoom increment for the slider control.

nZoomIncrement
[in] Specifies the zoom increment of the slider control.

Hierarchy Chart
Classes
CMFCRibbonBaseElement Class

CMFCRibbonStatusBar Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CMFCRibbonStatusBar : public CMFCRibbonBar

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonStatusBar::AddDynamicElement Adds a dynamic element to the ribbon status bar.

CMFCRibbonStatusBar::AddElement Adds a new ribbon element to the ribbon status bar.

CMFCRibbonStatusBar::AddExtendedElement Adds a ribbon element to the extended area of the ribbon
status bar.

CMFCRibbonStatusBar::AddSeparator Adds a separator to the ribbon status bar.

CMFCRibbonStatusBar::Create Creates a ribbon status bar.

CMFCRibbonStatusBar::CreateEx Creates a ribbon status bar with an extended style.

CMFCRibbonStatusBar::FindByID

CMFCRibbonStatusBar::FindElement Returns a pointer to the element that has the specified
command ID.

CMFCRibbonStatusBar::GetCount Returns the number of elements that are located in the main
area of the ribbon status bar.

CMFCRibbonStatusBar::GetElement Returns a pointer to the element that is located at a specified
index.

CMFCRibbonStatusBar::GetExCount Returns the number of elements that are located in the
extended area of the ribbon status bar.

CMFCRibbonStatusBar::GetExElement Returns a pointer to the element that is located at a specified
index in the extended area of the ribbon status bar.

CMFCRibbonStatusBar::GetExtendedArea

CMFCRibbonStatusBar::GetSpace

The CMFCRibbonStatusBar class implements a status bar control that can display ribbon elements.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonstatusbar-class.md

CMFCRibbonStatusBar::IsBottomFrame

CMFCRibbonStatusBar::IsExtendedElement

CMFCRibbonStatusBar::IsInformationMode Determines whether information mode is enabled for the
ribbon status bar.

CMFCRibbonStatusBar::RecalcLayout (Overrides CMFCRibbonBar::RecalcLayout.)

CMFCRibbonStatusBar::RemoveAll Removes all elements from the ribbon status bar.

CMFCRibbonStatusBar::RemoveElement Removes the element that has a specified command ID from
the ribbon status bar.

CMFCRibbonStatusBar::SetInformation Enables or disables the information mode for the ribbon
status bar.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCRibbonStatusBar::OnDrawInformation Displays the information string that appears on the ribbon
status bar when the information mode is enabled.

Remarks

Example

// CMFCRibbonStatusBar m_wndStatusBar
m_wndStatusBar.AddElement(rsbp, strTitlePane1);
m_wndStatusBar.AddExtendedElement(new CMFCRibbonStatusBarPane(ID_STATUSBAR_PANE2, strTitlePane2, TRUE),
 strTitlePane2);

m_wndStatusBar.AddSeparator();
m_wndStatusBar.SetInformation(NULL);

Inheritance Hierarchy

Users can change the visibility of ribbon elements on a ribbon status bar by using the built-in context menu for the
ribbon status bar. You can add or remove elements dynamically.

A ribbon status bar has two areas: a main area and an extended area. The extended area is displayed on the right
side of the ribbon status bar and appears in a different color than the main area does.

Typically, the main area of the status bar displays status notifications, and the extended area displays view controls.
The extended area remains visible as long as possible when the user resizes the ribbon status bar.

The following example demonstrates how to use various methods in the CMFCRibbonStatusBar class. The example
shows how to add a new ribbon element to the ribbon status bar, add a ribbon element to the extended area of the
ribbon status bar, add a separator, and enable the regular mode for the ribbon status bar.

Requirements

CMFCRibbonStatusBar::AddDynamicElement

void AddDynamicElement(CMFCRibbonBaseElement* pElement);

ParametersParameters

RemarksRemarks

CMFCRibbonStatusBar::AddElement

void AddElement(
 CMFCRibbonBaseElement* pElement,
 LPCTSTR lpszLabel,
 BOOL bIsVisible=TRUE);

ParametersParameters

CMFCRibbonStatusBar::AddExtendedElement

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCRibbonBar

CMFCRibbonStatusBar

Header: afxribbonstatusbar.h

Adds a dynamic element to the ribbon status bar.

pElement
[in] A pointer to a dynamic element.

Unlike regular elements, dynamic elements are not customizable and the customize menu of the status bar does
not display them.

Adds a new ribbon element to the ribbon status bar.

pElement
[in] A pointer to the added element.

lpszLabel
[in] A text label of the element.

bIsVisible
[in] TRUE if you want to add the element as visible, FALSE if you want to add the element as hidden.

Adds a ribbon element to the extended area of the ribbon status bar.

void AddExtendedElement(
 CMFCRibbonBaseElement* pElement,
 LPCTSTR lpszLabel,
 BOOL bIsVisible=TRUE);

ParametersParameters

RemarksRemarks

CMFCRibbonStatusBar::AddSeparator

void AddSeparator();

RemarksRemarks

CMFCRibbonStatusBar::Create

BOOL Create(
 CWnd* pParentWnd,
 DWORD dwStyle=WS_CHILD|WS_VISIBLE|CBRS_BOTTOM,
 UINT nID=AFX_IDW_STATUS_BAR);

ParametersParameters

Return ValueReturn Value

CMFCRibbonStatusBar::CreateEx

pElement
[in] A pointer to the added element.

lpszLabel
[in] The text label of the element.

bIsVisible
[in] TRUE if you want to add the element as visible, FALSE if you want to add the element as hidden.

The extended area is on the right side of the status bar control.

Adds a separator to the ribbon status bar.

The framework adds a separator after the method CMFCRibbonStatusBar::AddElement. inserts the last element.

Creates a ribbon status bar.

pParentWnd
[in] A pointer to the parent window.

dwStyle
[in] A logical OR combination of control styles.

nID
[in] The control ID of the status bar.

TRUE if the status bar is created successfully, FALSE otherwise.

Creates a ribbon status bar that has an extended style.

BOOL CreateEx(
 CWnd* pParentWnd,
 DWORD dwCtrlStyle=0,
 DWORD dwStyle=WS_CHILD|WS_VISIBLE|CBRS_BOTTOM,
 UINT nID=AFX_IDW_STATUS_BAR);

ParametersParameters

Return ValueReturn Value

CMFCRibbonStatusBar::FindByID

CMFCRibbonBaseElement* FindByID(UINT uiCmdID, BOOL = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonStatusBar::FindElement

CMFCRibbonBaseElement* FindElement(UINT uiID);

ParametersParameters

Return ValueReturn Value

CMFCRibbonStatusBar::GetCount

pParentWnd
A pointer to the parent window.

dwCtrlStyle
A logical OR combination of additional styles for creating the status bar object.

dwStyle
The control style of the status bar.

nID
The control ID of the status bar.

TRUE if the status bar is created successfully, FALSE otherwise.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] uiCmdID
[in] BOOL

Returns a pointer to the element that has the specified command ID.

uiID
[in] The ID of the element.

A pointer to the element that has the specified command ID. NULL if there is no such element.

Returns the number of elements that are located in the main area of the ribbon status bar.

int GetCount() const;

Return ValueReturn Value

CMFCRibbonStatusBar::GetElement

CMFCRibbonBaseElement* GetElement(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonStatusBar::GetExCount

int GetExCount() const;

Return ValueReturn Value

CMFCRibbonStatusBar::GetExElement

CMFCRibbonBaseElement* GetExElement(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonStatusBar::GetExtendedArea

The number of elements that are located in the main area of the ribbon status bar.

Returns a pointer to the element that is located at a specified index.

nIndex
[in] Specifies a zero-based index of an element that is located in the main area of the status bar control.

A pointer to the element that is located at the specified index. NULL if the index is negative or exceeds the number
of elements in the status bar.

Returns the number of elements that are located in the extended area of the ribbon status bar.

The number of elements that are located in the extended area of the ribbon status bar.

Returns a pointer to the element that is located at a specified index in the extended area of the ribbon status bar.
The extended area is on the right side of the status bar control.

nIndex
[in] Specifies the zero-based index of an element that is located in the extended area of the status bar control.

A pointer to the element that is located at a specified index in the extended area of the ribbon status bar. NULL if
nIndex is negative or exceeds the number of elements in the extended area of the ribbon status bar.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

virtual BOOL GetExtendedArea(CRect& rect) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonStatusBar::GetSpace

int GetSpace() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonStatusBar::IsBottomFrame

BOOL IsBottomFrame() const;

Return ValueReturn Value

RemarksRemarks

CMFCRibbonStatusBar::IsExtendedElement

BOOL IsExtendedElement(CMFCRibbonBaseElement* pElement) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonStatusBar::IsInformationMode

BOOL IsInformationMode() const;

Return ValueReturn Value

RemarksRemarks

[in] rect

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] pElement

Determines whether information mode is enabled for the ribbon status bar.

TRUE if the status bar can work in information mode; otherwise FALSE.

In information mode, the status bar hides all regular panes and displays a message string.

CMFCRibbonStatusBar::OnDrawInformation

virtual void OnDrawInformation(
 CDC* pDC,
 CString& strInfo,
 CRect rectInfo);

ParametersParameters

RemarksRemarks

CMFCRibbonStatusBar::RecalcLayout

virtual void RecalcLayout();

RemarksRemarks

CMFCRibbonStatusBar::RemoveAll

void RemoveAll();

CMFCRibbonStatusBar::RemoveElement

BOOL RemoveElement(UINT uiID);

ParametersParameters

Return ValueReturn Value

CMFCRibbonStatusBar::SetInformation

Displays the string that appears on the ribbon status bar when the information mode is enabled.

pDC
[in] A pointer to a device context.

strInfo
[in] The information string.

rectInfo
[in] The bounding rectangle.

Override this method in a derived class if you want to customize the appearance of the information string on the
status bar. Use the CMFCRibbonStatusBar::SetInformation method to put the status bar in information mode. In
this mode, the status bar hides all panes and displays the information string specified by strInfo.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

Removes all elements from the ribbon status bar.

Removes the element that has a specified command ID from the ribbon status bar.

uiID
[in] The ID of the element to remove from the status bar.

TRUE if an element with the specified uiID is removed. FALSE otherwise.

void SetInformation(LPCTSTR lpszInfo);

ParametersParameters

RemarksRemarks

See also

Enables or disables the information mode for the ribbon status bar.

lpszInfo
[in] The information string.

Use this method to put the status bar in the information mode. In this mode, the status bar hides all panes and
displays the information string specified by lpszInfo.

When lpszInfo is NULL, the status bar reverts to regular mode.

Hierarchy Chart
Classes
CMFCRibbonBar Class
CMFCRibbonBaseElement Class
CMFCRibbonBar Class

CMFCRibbonStatusBarPane Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMFCRibbonStatusBarPane : public CMFCRibbonButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonStatusBarPane::CMFCRibbonStatusBarPane Constructs and initializes a CMFCRibbonStatusBarPane

object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonStatusBarPane::GetAlmostLargeText Returns the string that defines the longest text string that can
be displayed in the pane without truncation.

CMFCRibbonStatusBarPane::GetTextAlign Returns the current setting of the text alignment.

CMFCRibbonStatusBarPane::IsAnimation Determines whether the animation is in progress.

CMFCRibbonStatusBarPane::IsExtended Determines whether the pane is located in the extended area
of the ribbon status bar.

CMFCRibbonStatusBarPane::OnDrawBorder (Overrides CMFCRibbonButton::OnDrawBorder.)

CMFCRibbonStatusBarPane::OnFillBackground (Overrides CMFCRibbonButton::OnFillBackground.)

CMFCRibbonStatusBarPane::SetAlmostLargeText Defines the longest text string that can be displayed in the
pane without truncation.

CMFCRibbonStatusBarPane::SetAnimationList Assigns to the pane an image list that can be used for
animation.

CMFCRibbonStatusBarPane::SetTextAlign Sets the text alignment.

CMFCRibbonStatusBarPane::StartAnimation Starts the animation that is assigned to the pane.

CMFCRibbonStatusBarPane::StopAnimation Stops the animation that is assigned to the pane. .

Protected MethodsProtected Methods

The CMFCRibbonStatusBarPane class implements a ribbon element that you can add to a ribbon status bar.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonstatusbarpane-class.md

NAME DESCRIPTION

CMFCRibbonStatusBarPane::OnFinishAnimation Called by the framework when the animation that is assigned
to the pane stops.

Example

CString strTitlePane1;
CString strTitlePane2;
strTitlePane1.LoadString(IDS_STATUS_PANE1);
strTitlePane2.LoadString(IDS_STATUS_PANE2);

CMFCRibbonStatusBarPane* rsbp = new CMFCRibbonStatusBarPane(ID_STATUSBAR_PANE1, strTitlePane1, TRUE);
rsbp->SetTextAlign(TA_CENTER);
rsbp->SetAlmostLargeText(_T("Status bar"));
CBitmap bitmap;
bitmap.LoadBitmapW(IDB_FILESMALL);
rsbp->SetAnimationList((HBITMAP)bitmap);
rsbp->StartAnimation();

Inheritance Hierarchy

Requirements

CMFCRibbonStatusBarPane::CMFCRibbonStatusBarPane

The following example demonstrates how to use the various methods in the CMFCRibbonStatusBarPane class. The
example shows how to construct a CMFCRibbonStatusBarPane object, set the text alignment of the label of the status
bar pane, define the longest text that can be displayed in the status bar pane without truncation, attach to the
status bar pane an image list that can be used for animation, and start the animation.

CObject

CMFCRibbonBaseElement

CMFCRibbonButton

CMFCRibbonStatusBarPane

Header: afxribbonstatusbarpane.h

Construct a pane object in the status bar.

CMFCRibbonStatusBarPane(
 UINT nCmdID,
 LPCTSTR lpszText,
 BOOL bIsStatic=FALSE,
 HICON hIcon=NULL,
 LPCTSTR lpszAlmostLargeText=NULL);

CMFCRibbonStatusBarPane(
 UINT nCmdID,
 LPCTSTR lpszText,
 HBITMAP hBmpAnimationList,
 int cxAnimation=16,
 COLORREF clrTrnsp=RGB(192,192 1,192) 1,
 HICON hIcon=NULL,
 BOOL bIsStatic=FALSE);

CMFCRibbonStatusBarPane(
 UINT nCmdID,
 LPCTSTR lpszText,
 UINT uiAnimationListResID,
 int cxAnimation=16,
 COLORREF clrTrnsp=RGB(192, 192 1, 192) 1,
 HICON hIcon=NULL,
 BOOL bIsStatic=FALSE);

ParametersParameters

CMFCRibbonStatusBarPane::GetAlmostLargeText

LPCTSTR GetAlmostLargeText() const;

Return ValueReturn Value

nCmdID
[in] Specifies the command ID of the pane.

lpszText
[in] Specifies text string to be displayed on pane.

bIsStatic
[in] If TRUE, the status pane cannot be highlighted or selected by clicking it.

hIcon
[in] Specifies a handle to an icon to be displayed on the pane.

lpszAlmostLargeText
[in] Specifies the longest text string that can be displayed by the pane.

hBmpAnimationList
[in] Specifies a handle to an image list that is used for animation.

cxAnimation
[in] Specifies the width, in pixels, of the icon in the image list that is used for animation.

clrTrnsp
[in] Specifies the transparent color of images in the image list that are used for animation.

uiAnimationListResID
[in] Specifies a resource ID of an image list that is used for animation.

Gets the longest text string that the status bar pane can display.

CMFCRibbonStatusBarPane::GetTextAlign

int GetTextAlign() const;

Return ValueReturn Value

CMFCRibbonStatusBarPane::IsAnimation

BOOL IsAnimation() const;

Return ValueReturn Value

CMFCRibbonStatusBarPane::IsExtended

BOOL IsExtended() const;

Return ValueReturn Value

CMFCRibbonStatusBarPane::OnDrawBorder

virtual void OnDrawBorder(CDC*);

ParametersParameters

RemarksRemarks

CMFCRibbonStatusBarPane::OnFillBackground

virtual COLORREF OnFillBackground(CDC* pDC);

The longest text string that the status bar pane can display.

Gets the current setting of the text alignment of the label of the status bar pane.

The current text alignment which can be one of the following:

TA_LEFT

TA_CENTER

TA_RIGHT.

Determines whether the animation is in progress.

TRUE if animation is in progress; FALSE otherwise.

Determine whether the pane is located in the extended area of the ribbon status bar.

TRUE if pane is on status bar extended area. FALSE otherwise.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] CDC*

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCRibbonStatusBarPane::OnFinishAnimation

virtual void OnFinishAnimation();

RemarksRemarks

CMFCRibbonStatusBarPane::SetAlmostLargeText

void SetAlmostLargeText(LPCTSTR lpszAlmostLargeText);

ParametersParameters

RemarksRemarks

CMFCRibbonStatusBarPane::SetAnimationList

void SetAnimationList(
 HBITMAP hBmpAnimationList,
 int cxAnimation=16,
 COLORREF clrTransp=RGB(192, 192 1, 192) 1);

BOOL SetAnimationList(
 UINT uiAnimationListResID,
 int cxAnimation=16,
 COLORREF clrTransp=RGB(192, 192 1, 192) 1);

ParametersParameters

[in] pDC

Framework calls this method when the animation that is assigned to the pane ends.

StopAnimation method calls the OnFinishAnimation method, which you can use to clean up data when the
animation ends.

Define the longest text that can be displayed in the status bar pane without truncation.

lpszAlmostLargeText
[in] Specifies the longest string that can be displayed on the status bar pane without truncation.

The library calculates the size of text that lpszAlmostLargeText specifies and resizes the pane accordingly. The text
will be truncated if it still does not fit in the pane.

Attaches to the status bar pane an image list that can be used for animation.

hBmpAnimationList
[in] Specifies a handle to an image list.

cxAnimation
[in] Specifies the width, in pixels, of the frame in the image list.

clrTransp
[in] Specifies the transparent color of the image list.

Return ValueReturn Value

CMFCRibbonStatusBarPane::SetTextAlign

void SetTextAlign(int nAlign);

ParametersParameters

RemarksRemarks

CMFCRibbonStatusBarPane::StartAnimation

void StartAnimation(
 UINT nFrameDelay=500,
 UINT nDuration=-1);

ParametersParameters

RemarksRemarks

CMFCRibbonStatusBarPane::StopAnimation

void StopAnimation();

See also

uiAnimationListResID
[in] Specifies the resource ID of the image list.

TRUE if the image list is successfully attached to the status bar pane; FALSE otherwise.

Sets the text alignment of the label of the status bar pane.

nAlign
[in] Specifies the text alignment.

nAlign can have one of the following values:

TA_LEFT: left alignment

TA_CENTER: center alignment

TA_RIGHT: right alignment

Starts the animation that you assign to the pane.

nFrameDelay
[in] Specifies the animation frame rate, in milliseconds.

nDuration
[in] Specifies how long to play the animation, in milliseconds. Use -1 for an infinite loop.

You must specify a handle to an image list before you call StartAnimation by using SetAnimationList .

Stops the animation that you assigned to the status bar pane.

Hierarchy Chart
Classes

CMFCRibbonButton Class
CMFCRibbonStatusBar Class

CMFCRibbonUndoButton Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCRibbonUndoButton : public CMFCRibbonGallery

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCRibbonUndoButton::CMFCRibbonUndoButton Constructs a new CMFCRibbonUndoButton object by using
the command ID that you specify, text label and images from
the image list of the parent object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCRibbonUndoButton::AddUndoAction Adds a new action to the list of actions.

CMFCRibbonUndoButton::CleanUpUndoList Clears the action list, which is the drop-down list.

CMFCRibbonUndoButton::GetActionNumber Determines the number of items that a user selected from the
drop-down list.

CMFCRibbonUndoButton::HasMenu Indicates whether the object contains a menu.

Remarks

Example

The CMFCRibbonUndoButton class implements a drop-down list button that contains the most recent user
commands. Users can select one or more of the most recent commands from the drop-down list to either redo or
undo them.

The CMFCRibbonUndoButton class uses a stack to represent the drop-down list.

The following example demonstrates how to construct an object of the CMFCRibbonUndoButton class, and add a new
action to the list of actions. This code snippet is part of the Ribbon Gadgets sample.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcribbonundobutton-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

// The third parameter is the zero-based index in the image list of the parent
// object for the button's small image.
// The fourth parameter is the zero-based index in the image list of the parent object
// for the of button's large image.
CMFCRibbonUndoButton* pBtn1 = new CMFCRibbonUndoButton(ID_RIBBON_OBTN_1, _T("Undo"), 0, 0);
for (int i = 0; i < 20; i++)
{
 CString str;
 str.Format(_T("Action %d"), i + 1);
 pBtn1->AddUndoAction(str);
}

Inheritance Hierarchy

Requirements

CMFCRibbonUndoButton::AddUndoAction

void AddUndoAction(LPCTSTR lpszLabel);

ParametersParameters

CMFCRibbonUndoButton::CleanUpUndoList

void CleanUpUndoList();

CMFCRibbonUndoButton::CMFCRibbonUndoButton

CObject

CMFCRibbonBaseElement

CMFCRibbonButton

CMFCRibbonGallery

CMFCRibbonUndoButton

Header: afxribbonundobutton.h

Adds a new action to the list of actions.

lpszLabel
[in] The action label that will be displayed in the drop-down list.

Clears the action list, which is the drop-down list.

Constructs a new CMFCRibbonUndoButton object by using the command ID that you specify, text label and images
from the image list of the parent object.

CMFCRibbonUndoButton(
 UINT nID,
 LPCTSTR lpszText,
 int nSmallImageIndex=-1,
 int nLargeImageIndex=-1);

CMFCRibbonUndoButton(
 UINT nID,
 LPCTSTR lpszText,
 HICON hIcon);

ParametersParameters

CMFCRibbonUndoButton::GetActionNumber

int GetActionNumber() const;

Return ValueReturn Value

CMFCRibbonUndoButton::HasMenu

virtual BOOL HasMenu() const;

Return ValueReturn Value

RemarksRemarks

See also

nID
[in] Specifies the command identifier.

lpszText
[in] Specifies the text label of the button.

nSmallImageIndex
[in] Zero-based index in the image list of the parent object for the button's small image.

nLargeImageIndex
[in] Zero-based index in the image list of the parent object for the of button's large image.

hIcon
[in] A handle to an icon that you can use as a button's image.

Determines the number of items that a user selected from the drop-down list.

The number of items that a user selected.

Indicates whether the object contains a menu.

Always returns TRUE.

Hierarchy Chart
Classes
CMFCRibbonGallery Class
CMFCRibbonButton Class

CMFCShellListCtrl Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CMFCShellListCtrl : public CMFCListCtrl

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCShellListCtrl::DisplayFolder Displays a list of items that are contained in a provided
folder.

CMFCShellListCtrl::DisplayParentFolder Displays a list of items that are contained in the folder that is
the parent of the currently displayed folder.

CMFCShellListCtrl::EnableShellContextMenu Enables or disables the shortcut menu.

CMFCShellListCtrl::GetCurrentFolder Retrieves the path of the current folder.

CMFCShellListCtrl::GetCurrentFolderName Retrieves the name of the current folder.

CMFCShellListCtrl::GetCurrentItemIdList Returns the PIDL of the current list control item.

CMFCShellListCtrl::GetCurrentShellFolder Returns a pointer to the current Shell folder.

CMFCShellListCtrl::GetItemPath Returns the textual path of an item.

CMFCShellListCtrl::GetItemTypes Returns Shell item types that are displayed by the list control.

CMFCShellListCtrl::IsDesktop Checks if the currently selected folder is the desktop folder.

CMFCShellListCtrl::OnCompareItems The framework calls this method when it compares two
items. (Overrides CMFCListCtrl::OnCompareItems.)

CMFCShellListCtrl::OnFormatFileDate Called when the framework retrieves the file date displayed
by the list control.

CMFCShellListCtrl::OnFormatFileSize Called when the framework converts the file size of a list
control.

CMFCShellListCtrl::OnGetItemIcon Called when the framework retrieves the icon of a list control
item.

The CMFCShellListCtrl class provides Windows list control functionality and expands it by including the ability
to display a list of shell items.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcshelllistctrl-class.md

CMFCShellListCtrl::OnGetItemText Called when the framework converts the text of a list control
item.

CMFCShellListCtrl::OnSetColumns Called by the framework when it sets the names of the
columns.

CMFCShellListCtrl::Refresh Refreshes and repaints the list control.

CMFCShellListCtrl::SetItemTypes Sets the type of items displayed by the list control.

NAME DESCRIPTION

Remarks

Example

CMFCShellListCtrl m_wndList;

CRect rectDummy (0, 0, 0, 0);
// The this pointer points to CExplorerView class which extends the CView class.
m_wndList.Create (WS_CHILD | WS_VISIBLE | LVS_REPORT, rectDummy, this, 1);

m_wndList.DisplayParentFolder ();

Inheritance Hierarchy

Requirements

The CMFCShellListCtrl class extends the functionality of the CMFCListCtrl Class by enabling your program to
list Windows shell items. The display format that is used is like that of a list view for an Explorer window.

A CMFCShellTreeCtrl object can be associated with a CMFCShellListCtrl object to create a complete Explorer
window. Then, selecting an item in the CMFCShellTreeCtrl will cause the CMFCShellListCtrl object to list the
contents of the selected item.

The following example demonstrates how to create an object of the CMFCShellListCtrl class and how to display
the parent folder of the currently displayed folder. This code snippet is part of the Explorer sample.

CObject

CCmdTarget

CWnd

CListCtrl

CMFCListCtrl

CMFCShellListCtrl

Header: afxshelllistCtrl.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCShellListCtrl::DisplayFolder

virtual HRESULT DisplayFolder(LPCTSTR lpszPath);
virtual HRESULT DisplayFolder(LPAFX_SHELLITEMINFO lpItemInfo);

ParametersParameters

Return ValueReturn Value

CMFCShellListCtrl::DisplayParentFolder

virtual HRESULT DisplayParentFolder();

Return ValueReturn Value

CMFCShellListCtrl::EnableShellContextMenu

void EnableShellContextMenu(BOOL bEnable = TRUE);

ParametersParameters

CMFCShellListCtrl::GetCurrentFolder

BOOL GetCurrentFolder(CString& strPath) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Displays a list of items that are contained in the provided folder.

lpszPath
[in] A string that contains the path of a folder.

lpItemInfo
[in] A pointer to a LPAFX_SHELLITEMINFO structure that describes a folder to display.

S_OK if successful; E_FAIL otherwise.

Updates the CMFCShellListCtrl object to display the parent folder of the currently displayed folder.

S_OK if successful; E_FAIL otherwise.

Enables the shortcut menu.

bEnable
[in] A Boolean that specifies whether the framework enables the shortcut menu.

Retrieves the path of the currently selected folder in the CMFCShellListCtrl object.

strPath
[out] A reference to a string parameter where the method writes the path.

Nonzero if successful; 0 otherwise.

This method fails if there is no folder selected in the CMFCShellListCtrl .

CMFCShellListCtrl::GetCurrentFolderName

BOOL GetCurrentFolderName(CString& strName) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCShellListCtrl::GetCurrentItemIdList

LPITEMIDLIST GetCurrentItemIdList() const;

Return ValueReturn Value

CMFCShellListCtrl::GetCurrentShellFolder

const IShellFolder* GetCurrentShellFolder() const;

Return ValueReturn Value

RemarksRemarks

CMFCShellListCtrl::GetItemPath

BOOL GetItemPath(
 CString& strPath,
 int iItem) const;

ParametersParameters

Retrieves the name of the currently selected folder in the CMFCShellListCtrl object.

strName
[out] A reference to a string parameter where the method writes the name.

Nonzero if successful; 0 otherwise.

This method fails if there is no folder selected in the CMFCShellListCtrl .

Returns the PIDL of the currently selected item.

The PIDL of the current item.

Gets a pointer to the currently selected item in the CMFCShellListCtrl object.

A pointer to the IShellFolder Interface for the selected object.

This method returns NULL if no object is currently selected.

Retrieves the path for an item.

strPath
[out] A reference to a string that receives the path.

iItem
[in] The index of the list item.

https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nn-shobjidl_core-ishellfolder

Return ValueReturn Value

RemarksRemarks

CMFCShellListCtrl::GetItemTypes

SHCONTF GetItemTypes() const;

Return ValueReturn Value

RemarksRemarks

CMFCShellListCtrl::IsDesktop

BOOL IsDesktop() const;

Return ValueReturn Value

CMFCShellListCtrl::OnCompareItems

virtual int OnCompareItems(
 LPARAM lParam1,
 LPARAM lParam2,
 int iColumn);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCShellListCtrl::OnFormatFileDate

virtual void OnFormatFileDate(
 const CTime& tmFile,
 CString& str);

TRUE if successful; FALSE otherwise.

The index supplied by iItem is based on the items currently displayed by the CMFCShellListCtrl Class object.

Returns the type of items displayed by the CMFCShellListCtrl object.

A SHCONTF value that contains the type of items listed in the CMFCShellListCtrl .

To set the type of items listed in a CMFCShellListCtrl , call CMFCShellListCtrl::SetItemTypes.

Determines if the folder that is displayed in the CMFCShellListCtrl object is the desktop folder.

TRUE if the displayed folder is the desktop folder; FALSE otherwise.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] lParam1
[in] lParam2
[in] iColumn

The framework calls this method when it must convert the date associated with an object into a string.

https://docs.microsoft.com/windows/desktop/api/shobjidl_core/ne-shobjidl_core-_shcontf

ParametersParameters

RemarksRemarks

CMFCShellListCtrl::OnFormatFileSize

virtual void OnFormatFileSize(
 long lFileSize,
 CString& str);

ParametersParameters

RemarksRemarks

CMFCShellListCtrl::OnGetItemIcon

virtual int OnGetItemIcon(
 int iItem,
 LPAFX_SHELLITEMINFO pItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

tmFile
[in] The date associated with a file.

str
[out] A string that contains the formatted file date.

When a CMFCShellListCtrl Class object displays the date associated with a file, it must convert that date to a
string format. The CMFCShellListCtrl uses this method to make that conversion. By default, this method uses
the current locale to format the date into a string.

The framework calls this method when it converts the size of an object to a string.

lFileSize
[in] The size of the file that the framework will display.

str
[out] A string that contains the formatted file size.

When a CMFCShellListCtrl Class object needs to display the size of a file, it needs to convert the file size into a
string format. The CMFCShellListCtrl uses this method to make that conversion. By default, this method
converts the file size from bytes to kilobytes and then uses the current locale to format the size into string.

The framework calls this method to retrieve the icon associated with a shell list item.

iItem
[in] The item index.

pItem
[in] A LPAFX_SHELLITEMINFO parameter that describes the item.

The index of the icon image if successful; -1 if the function fails.

The icon image index is based on the system image list.

By default, this method relies on the pItem parameter. The value of iItem is not used in the default

CMFCShellListCtrl::OnGetItemText

virtual CString OnGetItemText(
 int iItem,
 int iColumn,
 LPAFX_SHELLITEMINFO pItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCShellListCtrl::OnSetColumns

virtual void OnSetColumns();

RemarksRemarks

CMFCShellListCtrl::Refresh

virtual HRESULT Refresh();

Return ValueReturn Value

RemarksRemarks

implementation. You can use iItem to implement custom behavior.

The framework calls this method when it must retrieve the text of a shell item.

iItem
[in] The item index.

iColumn
[in] The column of interest.

pItem
[in] A LPAFX_SHELLITEMINFO parameter that describes the item.

A CString that contains the text associated with the item.

Each item in the CMFCShellListCtrl object may have text in one or more columns. When the framework calls
this method, it specifies the column that it is interested in. If you call this function manually, you must also
specify the column that you are interested in.

By default, this method relies on the pItem parameter to determine which item to process. The value of iItem is
not used in the default implementation.

The framework calls this method when it sets the names of the columns.

By default, the framework creates four columns in a CMFCShellListCtrl object. The names of these columns are
Name, Size, Type, and Modified. You can override this method to customize the number of columns and their
names.

Refreshes and repaints the CMFCShellListCtrl object.

S_OK if successful; otherwise an error value.

 CMFCShellListCtrl::SetItemTypes

void SetItemTypes(SHCONTF nTypes);

ParametersParameters

RemarksRemarks

See also

Call this method to refresh the list of items displayed by the CMFCShellListCtrl object.

Sets the type of items that are listed in the CMFCShellListCtrl object.

nTypes
[in] A list of item types that the CMFCShellListCtrl object supports.

For more information about the list of item types, see SHCONTF.

Hierarchy Chart
Classes
CMFCListCtrl Class
CMFCShellTreeCtrl Class

https://docs.microsoft.com/windows/desktop/api/shobjidl_core/ne-shobjidl_core-_shcontf

CMFCShellTreeCtrl Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMFCShellTreeCtrl : public CTreeCtrl

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCShellTreeCtrl::EnableShellContextMenu Enables or disables the shortcut menu.

CMFCShellTreeCtrl::GetFlags Returns a combination of flags that are passed to
IShellFolder::EnumObjects.

CMFCShellTreeCtrl::GetItemPath Retrieves the path to an item.

CMFCShellTreeCtrl::GetRelatedList Returns a pointer to the CMFCShellListCtrl Class object that
is used together with this CMFCShellTreeCtrl object to
create an Explorer-like window.

CMFCShellTreeCtrl::OnChildNotify This member function is called by this window's parent
window when it receives a notification message that applies
to this window. (Overrides CWnd::OnChildNotify.)

CMFCShellTreeCtrl::OnGetItemIcon

CMFCShellTreeCtrl::OnGetItemText

CMFCShellTreeCtrl::Refresh Refreshes and repaints the current CMFCShellTreeCtrl

object.

CMFCShellTreeCtrl::SelectPath Selects the appropriate tree control item based on a supplied
PIDL or string path.

CMFCShellTreeCtrl::SetFlags Sets flags to filter the tree context (similar to the flags used
by IShellFolder::EnumObjects).

CMFCShellTreeCtrl::SetRelatedList Sets a relation between the current CMFCShellTreeCtrl

object and a CMFCShellListCtrl object.

Remarks

The CMFCShellTreeCtrl class extends CTreeCtrl Class functionality by displaying a hierarchy of Shell items.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcshelltreectrl-class.md
https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nf-shobjidl_core-ishellfolder-enumobjects

Inheritance Hierarchy

Requirements

Example

CMFCShellTreeCtrl m_wndShellTree;

// const int idTree = 1
CRect rectDummy (0, 0, 0, 0);
const DWORD dwViewStyle = WS_CHILD | WS_VISIBLE | TVS_HASLINES |
 TVS_LINESATROOT | TVS_HASBUTTONS;

// The this pointer points to CFolderBar class which extends the CDockablePane class
m_wndShellTree.Create (dwViewStyle, rectDummy, this, idTree);

CMFCShellTreeCtrl::EnableShellContextMenu

void EnableShellContextMenu(BOOL bEnable = TRUE);

ParametersParameters

CMFCShellTreeCtrl::GetFlags

DWORD GetFlags() const;

Return ValueReturn Value

This class extends the CTreeCtrl class by enabling your program to include Windows Shell items in the tree.
This class can be associated with a CMFCShellListCtrl object to create a complete Explorer window. Then,
selecting an item in the tree will display a list of Windows Shell items in the associated list.

CObject

CCmdTarget

CWnd

CTreeCtrl

CMFCShellTreeCtrl

Header: afxshelltreeCtrl.h

The following example demonstrates how to create an object of the CMFCShellTreeCtrl class. This code snippet is
part of the Explorer sample.

Enables the shortcut menu.

bEnable
[in] A Boolean that specifies whether to enable the shortcut menu.

Returns the flags set for the CMFCShellTreeCtrl Class object.

A DWORD value that specifies the combination of flags currently set.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CMFCShellTreeCtrl::GetItemPath

BOOL GetItemPath(
 CString& strPath,
 HTREEITEM htreeItem = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCShellTreeCtrl::GetRelatedList

CMFCShellListCtrl* GetRelatedList() const;

Return ValueReturn Value

RemarksRemarks

CMFCShellTreeCtrl::OnChildNotify
virtual BOOL OnChildNotify(
 UINT message,
 WPARAM wParam,
 LPARAM lParam,
 LRESULT* pLResult);

ParametersParameters

The flags set in the CMFCShellTreeCtrl are sent to the method IShellFolder::EnumObjects whenever the object is
refreshed. You can change the flags with the CMFCShellTreeCtrl::SetFlags method.

Retrieves the path of an item in the CMFCShellTreeCtrl Class object.

strPath
[out] A reference to a string parameter. The method writes the path of the item to this parameter.

htreeItem
[in] The method retrieves the path for this tree control item.

Nonzero if successful; 0 otherwise.

If this method fails, strPath contains the empty string.

If you do not specify hTreeItem, this method tries to obtain the string for the currently selected item. If no item is
selected and hTreeItem is NULL, this method fails.

Returns a pointer to the CMFCShellListCtrl Class object that is associated with this CMFCShellTreeCtrl object.

A pointer to the CMFCShellListCtrl object that is associated with this tree control object.

By using a CMFCShellListCtrl object together with a CMFCShellTreeCtrl object, you can create an Explorer-like
window. Use the method CMFCShellTreeCtrl::SetRelatedList to associate the two classes. After they are
associated, the framework automatically updates the CMFCShellListCtrl if the selection in the CMFCShellTreeCtrl

changes.

[in] message

https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nf-shobjidl_core-ishellfolder-enumobjects

Return ValueReturn Value

RemarksRemarks

CMFCShellTreeCtrl::OnGetItemIcon
virtual int OnGetItemIcon(
 LPAFX_SHELLITEMINFO pItem,
 BOOL bSelected);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCShellTreeCtrl::OnGetItemText
virtual CString OnGetItemText(LPAFX_SHELLITEMINFO pItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCShellTreeCtrl::Refresh

void Refresh();

RemarksRemarks

CMFCShellTreeCtrl::SelectPath

BOOL SelectPath(LPCTSTR lpszPath);
BOOL SelectPath(LPCITEMIDLIST lpidl);

ParametersParameters

[in] wParam
[in] lParam
[in] pLResult

[in] pItem
[in] bSelected

[in] pItem

Refreshes and repaints the CMFCShellTreeCtrl.

Call this method to refresh the hierarchy of the items displayed in the CMFCShellTreeCtrl .

Selects an item in the CMFCShellTreeCtrl Class based on the supplied path.

lpszPath
[in] A string that specifies the path of an item.

lpidl

Return ValueReturn Value

CMFCShellTreeCtrl::SetFlags

void SetFlags(
 DWORD dwFlags,
 BOOL bRefresh = TRUE);

ParametersParameters

RemarksRemarks

CMFCShellTreeCtrl::SetRelatedList

void SetRelatedList(CMFCShellListCtrl* pShellList);

ParametersParameters

RemarksRemarks

See also

[in] A PIDL that specifies the item

S_OK if successful; E_FAIL otherwise.

Sets flags to filter the tree context.

dwFlags
[in] The flags to set.

bRefresh
[in] A Boolean that specifies whether the CMFCShellTreeCtrl should be refreshed immediately.

The CMFCShellTreeCtrl passes all set flags to IShellFolder::EnumObjects. For more information about the values
of different flags, see IShellFolder::EnumObjects.

Associates a CMFCShellListCtrl object with a CMFCShellTreeCtrl object.

pShellList
[in] A pointer to a CMFCShellListCtrl object.

This method associates a CMFCShellListCtrl with a CMFCShellTreeCtrl . These objects may be displayed as an
Explorer-like window: if the user selects an object in the CMFCShellTreeCtrl , the associated items in the
CMFCShellListCtrl will be automatically updated.

Use the method CMFCShellTreeCtrl::GetRelatedList to retrieve the CMFCShellListCtrl associated with a
CMFCShellTreeCtrl .

Hierarchy Chart
Classes
CTreeCtrl Class
CMFCShellListCtrl Class

https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nf-shobjidl_core-ishellfolder-enumobjects
https://docs.microsoft.com/windows/desktop/api/shobjidl_core/nf-shobjidl_core-ishellfolder-enumobjects

CMFCSpinButtonCtrl Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCSpinButtonCtrl : public CSpinButtonCtrl

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCSpinButtonCtrl::CMFCSpinButtonCtrl Default constructor.

CMFCSpinButtonCtrl::~CMFCSpinButtonCtrl Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCSpinButtonCtrl::OnDraw Repaints the current spin button control.

Remarks

Example

CMFCSpinButtonCtrl* pWndSpin = new CMFCSpinButtonCtrl;
CRect rectSpin(1,1,10,10);
CMFCPropertyGridCtrl* pWndList = new CMFCPropertyGridCtrl();
if (!pWndSpin->Create(WS_CHILD | WS_VISIBLE | UDS_ARROWKEYS | UDS_SETBUDDYINT | UDS_NOTHOUSANDS, rectSpin,
pWndList, AFX_PROPLIST_ID_INPLACE))
{
 return 0;
}

Inheritance Hierarchy

The CMFCSpinButtonCtrl class supports a visual manager that draws a spin button control.

To use a visual manager to draw a spin button control in your application, replace all instances of the
CSpinButtonCtrl class with the CMFCSpinButtonCtrl class.

The following example demonstrates how to create an object of the CMFCSpinButtonCtrl class and use its Create

method.

CObject

CCmdTarget

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcspinbuttonctrl-class.md

Requirements

CMFCSpinButtonCtrl::OnDraw

virtual void OnDraw(CDC* pDC);

ParametersParameters

RemarksRemarks

See also

CWnd

CSpinButtonCtrl

CMFCSpinButtonCtrl

Header: afxspinbuttonctrl.h

Repaints the current spin button control.

pDC
[in] A pointer to a device context.

The framework calls the CMFCSpinButtonCtrl::OnPaint method to handle the CWnd::OnPaint message, and that
method in turn calls this CMFCSpinButtonCtrl::OnDraw method. Override this method to customize the way the
framework draws the spin button control.

Hierarchy Chart
Classes
CMFCVisualManager Class

CMFCStandardColorsPropertyPage Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCStandardColorsPropertyPage : public CPropertyPage

Members
Public ConstructorsPublic Constructors

Name Description

CMFCStandardColorsPropertyPage::CMFCStandardColorsPropertyPageDefault constructor.

Public MethodsPublic Methods

Name Description

CMFCStandardColorsPropertyPage::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCStandardColorsPropertyPage::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

RemarksRemarks

Inheritance Hierarchy

Requirements

Represents a property page that users use to select standard colors in a color dialog box.

The CMFCColorDialog class uses this class to display the standard color property page. For more information about
CMFCColorDialog , see CMFCColorDialog Class.

CObject

CCmdTarget

CWnd

CDialog

CPropertyPage

CMFCStandardColorsPropertyPage

Header: afxstandardcolorspropertypage.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcstandardcolorspropertypage-class.md

See also
Hierarchy Chart
Classes
CMFCColorDialog Class
CMFCCustomColorsPropertyPage Class

CMFCStatusBar Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
class CMFCStatusBar : public CPane

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCStatusBar::CalcFixedLayout (Overrides CBasePane::CalcFixedLayout.)

CMFCStatusBar::CommandToIndex

CMFCStatusBar::Create Creates a control bar and attaches it to the CPane object.
(Overrides CPane::Create.)

CMFCStatusBar::CreateEx Creates a control bar and attaches it to the CPane object.
(Overrides CPane::CreateEx.)

CMFCStatusBar::DoesAllowDynInsertBefore Determines whether another pane can be dynamically
inserted between this pane and the parent frame. (Overrides
CBasePane::DoesAllowDynInsertBefore.)

CMFCStatusBar::EnablePaneDoubleClick Enables or disables the handling of mouse double-clicks on
the status bar.

CMFCStatusBar::EnablePaneProgressBar Displays a progress bar on the specified pane.

CMFCStatusBar::GetCount Returns the number of panes on the status bar.

CMFCStatusBar::GetDrawExtendedArea

CMFCStatusBar::GetExtendedArea

CMFCStatusBar::GetItemID

CMFCStatusBar::GetItemRect

CMFCStatusBar::GetPaneInfo

The CMFCStatusBar class implements a status bar similar to the CStatusBar class. However, the CMFCStatusBar

class has features not offered by the CStatusBar class, such as the ability to display images, animations, and
progress bars; and the ability to respond to mouse double-clicks.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcstatusbar-class.md

CMFCStatusBar::GetPaneProgress

CMFCStatusBar::GetPaneStyle Returns the pane style. (Overrides CBasePane::GetPaneStyle.)

CMFCStatusBar::GetPaneText

CMFCStatusBar::GetPaneWidth Returns the width, in pixels, of the specified pane of the
status bar.

CMFCStatusBar::GetTipText Returns the tool tip text for the specified pane of the status
bar.

CMFCStatusBar::InvalidatePaneContent Invalidates the specified pane and redraws its content.

CMFCStatusBar::PreCreateWindow Called by the framework before the creation of the Windows
window attached to this CWnd object. (Overrides
CWnd::PreCreateWindow.)

CMFCStatusBar::SetDrawExtendedArea

CMFCStatusBar::SetIndicators

CMFCStatusBar::SetPaneAnimation Assigns an animation to the specified pane.

CMFCStatusBar::SetPaneBackgroundColor Sets the background color for the specified pane of the
status bar.

CMFCStatusBar::SetPaneIcon Sets the indicator icon for the specified pane of the status
bar.

CMFCStatusBar::SetPaneInfo

CMFCStatusBar::SetPaneProgress Sets the current progress of the progress bar for the
specified pane of the status bar.

CMFCStatusBar::SetPaneStyle Sets the style of the pane. (Overrides
CBasePane::SetPaneStyle.)

CMFCStatusBar::SetPaneText

CMFCStatusBar::SetPaneTextColor Sets the text color for the specified pane of the status bar.

CMFCStatusBar::SetPaneWidth Sets the width in pixels of the specified pane of the status
bar.

CMFCStatusBar::SetTipText Sets the tool tip text for the specified pane of the status bar.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCStatusBar::OnDrawPane Called by the framework when it redraws the pane of the
status bar.

NAME DESCRIPTION

Remarks

Example

int m_nProgressCurr;
BOOL m_bInProgress;

CImageList m_imlStatusAnimation;
BOOL m_bInAnimation;

CBitmap m_bmpIcon1;
CBitmap m_bmpIcon2;

Example

// in MainFrm.h
public:
 CMFCStatusBar& GetStatusBar ()
 {
 return m_wndStatusBar;
 }

// in StatusBarDemoView.h
CMFCStatusBar& GetStatusBar () const
{
 return ((CMainFrame*) AfxGetMainWnd ())->GetStatusBar ();
}

Example

The following diagram shows a figure of the status bar from Status Bar Demo sample application.

The following example demonstrates the local variables that the application uses to call various methods in the
CMFCStatusBar class. These variables are declared in StatusBarDemoView.h. The main frame is declared in

MainFrm.h, the document is declared in StatusBarDemoDoc.h, and the view is declared in
StatusBarDemoView.h. This code snippet is part of the Status Bar Demo sample.

The following example demonstrates how to get a reference to CMFCStatusBar object by introducing the
GetStatusBar method in MainFrm.h and then calling this method from the GetStatusBar method in

StatusBarDemoView.h. This code snippet is part of the Status Bar Demo sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

// in MainFrm.h
const int nStatusIcon = 0;
const int nStatusInfo = 1;
const int nStatusProgress = 2;
const int nStatusLabel = 3;
const int nStatusAnimation = 4;

// in StatusBarDemoView.cpp
GetStatusBar ().SetPaneIcon (nStatusIcon, m_bmpIcon1);
GetStatusBar ().SetTipText (nStatusIcon, _T("This is a tooltip"));

GetStatusBar ().EnablePaneProgressBar (nStatusProgress, PROGRESS_MAX);

GetStatusBar ().SetPaneAnimation (nStatusAnimation, NULL);

GetStatusBar ().SetPaneAnimation (nStatusAnimation, m_imlStatusAnimation);
GetStatusBar ().SetPaneText (nStatusAnimation, _T(""));
GetStatusBar ().SetPaneWidth (nStatusAnimation, 16);

GetStatusBar ().SetPaneProgress (nStatusProgress, m_nProgressCurr);

Inheritance Hierarchy

Requirements

CMFCStatusBar::CalcFixedLayout
virtual CSize CalcFixedLayout(
 BOOL bStretch,
 BOOL bHorz);

The following example demonstrates how to call various methods in the CMFCStatusBar class in
StatusBarDemoView.cpp. The constants are declared in MainFrm.h. The example shows how to set the icon, set
the tooltip text of the status bar pane, display a progress bar on the specified pane, assign an animation to the
specified pane, set the text and the width of the status bar pane, and set the current progress indicator of the
progress bar for the status bar pane. This code snippet is part of the Status Bar Demo sample.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCStatusBar

Header: afxstatusbar.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::CommandToIndex
int CommandToIndex(UINT nIDFind) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::Create
BOOL Create(
 CWnd* pParentWnd,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | CBRS_BOTTOM,
 UINT nID = AFX_IDW_STATUS_BAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::CreateEx
BOOL CreateEx(
 CWnd* pParentWnd,
 DWORD dwCtrlStyle = 0,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | CBRS_BOTTOM,
 UINT nID = AFX_IDW_STATUS_BAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::DoesAllowDynInsertBefore

[in] bStretch
[in] bHorz

[in] nIDFind

[in] pParentWnd
[in] dwStyle
[in] nID

[in] pParentWnd
[in] dwCtrlStyle
[in] dwStyle
[in] nID

virtual BOOL DoesAllowDynInsertBefore() const;

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::EnablePaneDoubleClick

void EnablePaneDoubleClick(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCStatusBar::EnablePaneProgressBar

void EnablePaneProgressBar(
 int nIndex,
 long nTotal=100,
 BOOL bDisplayText=FALSE,
 COLORREF clrBar=-1,
 COLORREF clrBarDest=-1,
 COLORREF clrProgressText=-1);

ParametersParameters

RemarksRemarks

Enables or disables the handling of mouse double-clicks on the status bar.

bEnable
[in] If TRUE, enable the processing of the mouse double-click. Otherwise disable the processing of the mouse
double-click.

If the status bar is enabled to process double clicks, Windows sends the WM_COMMAND notification together
with a resource ID to the owner of the status bar every time that the user double clicks on the status bar pane.

Display a progress bar on the specified pane.

nIndex
[in] Specifies the index of the pane whose progress bar to enable.

nTotal
[in] Specifies the maximum value for the progress bar.

bDisplayText
[in] Specifies whether the progress bar should display the current progress value.

clrBar
[in] Specifies the background color of the progress bar.

clrBarDest
[in] Specifies the secondary color of the progress bar background. Use different value than clrBar to fill by a
color blended into a gradient.

clrProgressText
[in] Specifies the color of the text of the progress bar.

If you want to disable the progress bar call EnablePaneProgressBar with nTotal set to -1. By default nTotal is set

CMFCStatusBar::GetCount

int GetCount() const;

Return ValueReturn Value

CMFCStatusBar::GetDrawExtendedArea
BOOL GetDrawExtendedArea() const;

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::GetExtendedArea
virtual BOOL GetExtendedArea(CRect& rect) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::GetItemID
UINT GetItemID(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::GetItemRect
void GetItemRect(
 int nIndex,
 LPRECT lpRect) const;

ParametersParameters

to 100. Therefore, you do not need any additional calculations to display progress as percentage.

You should pass different values for clrBar and clrBarDest so that the background color of the progress bar
displays a color blended into a gradient. .

To set the current progress, call the CMFCStatusBar::SetPaneProgress method.

Retrieves the number of panes in the status bar.

The number of panes in the status bar.

[in] rect

[in] nIndex

RemarksRemarks

CMFCStatusBar::GetPaneInfo
void GetPaneInfo(
 int nIndex,
 UINT& nID,
 UINT& nStyle,
 int& cxWidth) const;

ParametersParameters

RemarksRemarks

CMFCStatusBar::GetPaneProgress
long GetPaneProgress(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::GetPaneStyle
UINT GetPaneStyle(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::GetPaneText
void GetPaneText(
 int nIndex,
 CString& s) const;

CString GetPaneText(int nIndex) const;

ParametersParameters

[in] nIndex
[in] lpRect

[in] nIndex
[in] nID
[in] nStyle
[in] cxWidth

[in] nIndex

[in] nIndex

[in] nIndex
[in] s

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::GetPaneWidth

int GetPaneWidth(int nIndex) const;

ParametersParameters

Return ValueReturn Value

CMFCStatusBar::GetTipText

CString GetTipText(int nIndex) const;

ParametersParameters

Return ValueReturn Value

CMFCStatusBar::InvalidatePaneContent

void InvalidatePaneContent(int nIndex);

ParametersParameters

RemarksRemarks

CMFCStatusBar::OnDrawPane

Retrieves the width of the pane of a status bar.

nIndex
[in] Specifies the index of the status bar pane.

The width of the status bar pane that nIndex specifies; otherwise, zero if a status-bar pane does not exist.

Retrieve the tooltip text of a status bar's pane.

nIndex
[in] Specifies the index of the pane for which to retrieve tool tip text.

The tooltip text of the status-bar pane that nIndex specifies. Otherwise, the empty string if a status bar pane does
not exist for the specified nIndex or if its tooltip text is empty.

Invalidate the status bar pane and redraw its content.

nIndex
[in] Specifies the index of the pane whose content is to be invalidated and redrawn.

When the status bar is invalidated, it is marked for redrawing. Windows redraws it when the UpdateWindow

method sends a WM_PAINT message to the OnPaint method.

Redraw the pane of the status bar.

virtual void OnDrawPane(
 CDC* pDC,
 CMFCStatusBarPaneInfo* pPane);

ParametersParameters

RemarksRemarks

CMFCStatusBar::PreCreateWindow
virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::SetDrawExtendedArea
void SetDrawExtendedArea(BOOL bSet = TRUE);

ParametersParameters

RemarksRemarks

CMFCStatusBar::SetIndicators
BOOL SetIndicators(
 const UINT* lpIDArray,
 int nIDCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::SetPaneAnimation

pDC
[in] A pointer to a device context for drawing.

pPane
[in] A pointer to a CMFCStatusBarPaneInfo structure that contains the information about the pane to be redrawn.

By default, OnDrawPane redraws the pane by using the device context pDC according to the pane's style and
content.

Override this method in a CMFCStatusBar -derived class to customize the appearance of a pane.

[in] cs

[in] bSet

[in] lpIDArray
[in] nIDCount

void SetPaneAnimation(
 int nIndex,
 HIMAGELIST hImageList,
 UINT nFrameRate=500,
 BOOL bUpdate=TRUE);

ParametersParameters

RemarksRemarks

CMFCStatusBar::SetPaneBackgroundColor

void SetPaneBackgroundColor(
 int nIndex,
 COLORREF clrBackground=(COLORREF)-1,
 BOOL bUpdate=TRUE);

ParametersParameters

CMFCStatusBar::SetPaneIcon

Assigns an animation to the specified pane.

nIndex
[in] Specifies the index of the pane to which you want to assign to it an animation.

hImageList
[in] Specifies a handle to the image list that holds the animation frames.

nFrameRate
[in] Specifies the frame rate, in milliseconds, for the animation.

bUpdate
[in] If TRUE, update the pane content immediately. Otherwise, the pane content is updated when it is invalidated.

If you want to disable the current animation, call SetPaneAnimation with hImageList set to NULL.

Sets the background color of the status bar pane.

nIndex
[in] Specifies the index of the pane for which to set a new background color.

clrBackground
[in] Specifies the new background color.

bUpdate
[in] If TRUE, update the pane content immediately. Otherwise, do not update the pane content until the pane is
invalidated by another method.

Set the icon of the status bar pane.

void SetPaneIcon(
 int nIndex,
 HICON hIcon,
 BOOL bUpdate=TRUE);

void SetPaneIcon(
 int nIndex,
 HBITMAP hBmp,
 COLORREF clrTransparent=RGB(255, 0, 255),
 BOOL bUpdate=TRUE);

ParametersParameters

RemarksRemarks

CMFCStatusBar::SetPaneInfo
void SetPaneInfo(
 int nIndex,
 UINT nID,
 UINT nStyle,
 int cxWidth);

ParametersParameters

RemarksRemarks

CMFCStatusBar::SetPaneProgress

nIndex
[in] Specifies the index of the pane for which to set the image.

hIcon
[in] Specifies a handle to the icon to be set as the pane image.

bUpdate
[in] Specifies whether to update the pane content immediately.

hBmp
[in] Specifies a handle to the bitmap to be set as the pane image.

clrTransparent
[in] Specifies the transparent color of the bitmap that the hBmp indicates.

You can pass either HICON or HBITMAP together with the transparent color to set the pane's image. If you do
not want to display the image any longer, pass the NULL value as the image handle.

If there is any running animation that CMFCStatusBar::SetPaneAnimation has set, the animation will be
stopped.

[in] nIndex
[in] nID
[in] nStyle
[in] cxWidth

Set the current progress indicator of the progress bar for the specified pane.

void SetPaneProgress(
 int nIndex,
 long nCurr,
 BOOL bUpdate=TRUE);

ParametersParameters

RemarksRemarks

CMFCStatusBar::SetPaneStyle
void SetPaneStyle(
 int nIndex,
 UINT nStyle);

ParametersParameters

RemarksRemarks

CMFCStatusBar::SetPaneText
virtual BOOL SetPaneText(
 int nIndex,
 LPCTSTR lpszNewText,
 BOOL bUpdate = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCStatusBar::SetPaneTextColor

nIndex
[in] Specifies the index of the pane for which to update the progress indicator.

nCurr
[in] Specifies the current value of the progress indicator.

bUpdate
[in] Specifies whether the pane should be updated immediately.

Call this method when you want to update the progress indicator for the progress bar in the specified pane.

To use this function for the given pane, you must call CMFCStatusBar::EnablePaneProgressBar first.

[in] nIndex
[in] nStyle

[in] nIndex
[in] lpszNewText
[in] bUpdate

Sets the text color of the specified pane.

void SetPaneTextColor(
 int nIndex,
 COLORREF clrText=(COLORREF)-1,
 BOOL bUpdate=TRUE);

ParametersParameters

CMFCStatusBar::SetPaneWidth

void SetPaneWidth(
 int nIndex,
 int cx);

ParametersParameters

CMFCStatusBar::SetTipText

void SetTipText(
 int nIndex,
 LPCTSTR pszTipText);

ParametersParameters

See also

nIndex
[in] Specifies the index of the pane to which you want to assign a new text color.

clrText
[in] Specifies the text color.

bUpdate
[in] If TRUE, update the pane content immediately. Otherwise, do not update the pane content until the pane is
invalidated by another method.

Set the width of the status bar pane.

nIndex
[in] The index of the status bar pane for which to set a new width.

cx
[in] The new width of the status bar pane, in pixels.

Set the tooltip text of a status bar pane.

nIndex
[in] The index of the pane to which you want to assign the tooltip text.

pszTipText
[in] The new tooltip text.

Hierarchy Chart
Classes
CPane Class
CStatusBar Class

CMFCTabCtrl Class
3/4/2019 • 22 minutes to read • Edit Online

Syntax
class CMFCTabCtrl : public CMFCBaseTabCtrl

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCTabCtrl::CMFCTabCtrl Default constructor.

CMFCTabCtrl::~CMFCTabCtrl Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCTabCtrl::ActivateMDITab Displays the specified tab of the current tab control and sets
the focus on that tab.

CMFCTabCtrl::AllowDestroyEmptyTabbedPane

CMFCTabCtrl::AutoSizeWindow Specifies whether the framework is to resize the client area of
all tab control windows when a user interface element of the
tab control changes.

CMFCTabCtrl::CalcRectEdit Deflates the size of the specified tab area. (Overrides
CMFCBaseTabCtrl::CalcRectEdit .)

CMFCTabCtrl::Create Creates the tab control and attaches it to the CMFCTabCtrl

object.

CMFCTabCtrl::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCTabCtrl::EnableActiveTabCloseButton Shows or hides a Close button (X) on the active tab.

CMFCTabCtrl::EnableInPlaceEdit Enables or disables editable tab labels. (Overrides
CMFCBaseTabCtrl::EnableInPlaceEdit.)

The CMFCTabCtrl class provides functionality for a tab control. The tab control displays a dockable window with
flat or three-dimensional tabs at its top or bottom. The tabs can display text and an image and can change color
when active.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctabctrl-class.md

CMFCTabCtrl::EnableTabDocumentsMenu Replaces two buttons that scroll the window tabs with a
button that opens a menu of tabbed windows.

CMFCTabCtrl::EnsureVisible Ensures that a tab is visible.

CMFCTabCtrl::GetDocumentIcon Retrieves the symbol that is associated with a tab in a popup
menu of tabbed windows.

CMFCTabCtrl::GetFirstVisibleTabNum Retrieves the index of the first tab that is visible in the current
tab control.

CMFCTabCtrl::GetResizeMode Retrieves a value that specifies how the current tab control
can be resized.

CMFCTabCtrl::GetScrollBar Retrieves a pointer to the scroll bar object that is associated
with the tab control.

CMFCTabCtrl::GetTabArea Retrieves the bounding rectangle of the tab label area at the
top or bottom of the tab control. (Overrides
CMFCBaseTabCtrl::GetTabArea.)

CMFCTabCtrl::GetTabFromPoint Retrieves the tab that contains a specified point. (Overrides
CMFCBaseTabCtrl::GetTabFromPoint.)

CMFCTabCtrl::GetTabMaxWidth Retrieves the maximum width of a tab.

CMFCTabCtrl::GetTabsHeight Retrieves the height of the tab area of the current tab
control.

CMFCTabCtrl::GetTabsRect Retrieves a rectangle that bounds the tab area of the current
tab control. (Overrides CMFCBaseTabCtrl::GetTabsRect.)

CMFCTabCtrl::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCTabCtrl::GetWndArea Retrieves the boundary of the client area of the current tab
control.

CMFCTabCtrl::HideActiveWindowHorzScrollBar Hides the horizontal scroll bar, if any, of the active window.

CMFCTabCtrl::HideInactiveWindow Specifies whether the framework is to display inactive tab
control windows.

CMFCTabCtrl::HideNoTabs Enables or disables drawing the tab area if there are no visible
tabs.

CMFCTabCtrl::HideSingleTab Enables or disables drawing a tab when there is a single
tabbed window. (Overrides CMFCBaseTabCtrl::HideSingleTab.)

CMFCTabCtrl::IsActiveInMDITabGroup Indicates whether the current tab of a tab control is the
active tab in an multiple document interface tab group.

NAME DESCRIPTION

CMFCTabCtrl::IsActiveTabBoldFont Indicates whether the text of the active tab is displayed using
a bold font.

CMFCTabCtrl::IsActiveTabCloseButton Indicates whether the Close button (X) is displayed on an
active tab or the upper-right corner of the tab area.

CMFCTabCtrl::IsDrawFrame Indicates whether the tabbed window draws a frame
rectangle around embedded panes.

CMFCTabCtrl::IsFlatFrame Indicates whether the frame around the tab area is flat or 3D.

CMFCTabCtrl::IsFlatTab Indicates whether the appearance of the tabs in the current
tab control is flat or not.

CMFCTabCtrl::IsLeftRightRounded Indicates whether the appearance of the left and right side of
a tab in the current tab control is rounded.

CMFCTabCtrl::IsMDITabGroup Indicates whether the current tab control is contained in the
client area of a multiple-document interface window.

CMFCTabCtrl::IsOneNoteStyle Indicates whether the current tab control is displayed in the
style of Microsoft OneNote.

CMFCTabCtrl::IsPtInTabArea Determines if a point is inside the tab area. (Overrides
CMFCBaseTabCtrl::IsPtInTabArea.)

CMFCTabCtrl::IsSharedScroll Indicates whether the current tab control has a scroll bar that
can scroll its tabs as a group.

CMFCTabCtrl::IsTabDocumentsMenu Indicates whether the tab control displays scroll buttons or a
button that displays a menu of tabbed windows.

CMFCTabCtrl::IsVS2005Style Indicates whether tabs are displayed in the style of Visual
Studio .NET 2005.

CMFCTabCtrl::ModifyTabStyle Specifies the appearance of tabs in the current tab control.

CMFCTabCtrl::MoveTab Moves a tab to another tab position. (Overrides
CMFCBaseTabCtrl::MoveTab.)

CMFCTabCtrl::OnDragEnter Called by the framework when the cursor is first dragged into
the tab control window.

CMFCTabCtrl::OnDragOver Called by the framework during a drag operation when the
mouse is moved over the drop target window. (Overrides
CMFCBaseTabCtrl::OnDragOver.)

CMFCTabCtrl::OnShowTabDocumentsMenu Displays a popup menu of tabbed windows, waits until the
user selects a tab, and makes the selected tab the active tab.

CMFCTabCtrl::PreTranslateMessage Translates window messages before they are dispatched to
the TranslateMessage and DispatchMessage Windows
functions. (Overrides
CMFCBaseTabCtrl::PreTranslateMessage.)

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CMFCTabCtrl::RecalcLayout Recalculates the internal layout of the tab control. (Overrides
CMFCBaseTabCtrl::RecalcLayout.)

CMFCTabCtrl::SetActiveInMDITabGroup Sets the current tab of a tab control as the active tab in an
multiple document interface tab group.

CMFCTabCtrl::SetActiveTab Activates a tab. (Overrides CMFCBaseTabCtrl::SetActiveTab.)

CMFCTabCtrl::SetActiveTabBoldFont Enables or disables use of a bold font on active tabs.

CMFCTabCtrl::SetDrawFrame Enables or disables drawinga frame rectangle around an
embedded bar.

CMFCTabCtrl::SetFlatFrame Specifies whether to draw a flat or a 3D frame around the tab
area.

CMFCTabCtrl::SetImageList Specifies an image list. (Overrides
CMFCBaseTabCtrl::SetImageList.)

CMFCTabCtrl::SetResizeMode Specifies how the current tab control can be resized and then
redisplays the control.

CMFCTabCtrl::SetTabMaxWidth Specifies the maximum tab width in a tabbed window.

CMFCTabCtrl::StopResize Terminates the current resize operation on the tab control.

CMFCTabCtrl::SwapTabs Swaps a pair of tabs. (Overrides CMFCBaseTabCtrl::SwapTabs.)

CMFCTabCtrl::SynchronizeScrollBar Draws a horizontal scroll bar on a tab control that displays
flat tabs.

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CMFCTabCtrl::m_bEnableActivate Prevents the active view from losing focus when a new tab is
inserted and enabled.

Remarks
The CMFCTabCtrl class supports:

Tab control styles that include 3D, flat, and flat with a shared horizontal scroll bar.

Tabs located at the top or the bottom of the window.

Tabs that display text, images, or text and images.

Tabs that change color when the tab is active.

Border size changes for adjustable tabs.

Detachable tabbed windows.

The CMFCTabCtrl class can be used with a dialog box, but is intended for applications that use docking control

Inheritance Hierarchy

Example

CMFCTabCtrl m_wndTabs;

// Attach list windows to tab:
// CListCtrl m_wndList1
// CListCtrl m_wndList2
// CListCtrl m_wndList3
m_wndTabs.AddTab (&m_wndList1, _T("Output 1"), (UINT)-1);
m_wndTabs.AddTab (&m_wndList2, _T("Output 2"), (UINT)-1);
m_wndTabs.AddTab (&m_wndList3, _T("Output 3"), (UINT)-1);

m_wndTabs.EnableActiveTabCloseButton();
m_wndTabs.EnableInPlaceEdit(true);
m_wndTabs.EnableTabDocumentsMenu();
m_wndTabs.SetActiveTab(1);
m_wndTabs.SetDrawFrame();
m_wndTabs.SetFlatFrame();

Requirements

bars like Microsoft Excel and Visual Studio. For more information, see CDockablePane Class.

Follow these steps to add a resizable, docking tab control in your application:

1. Create an instance of CTabbedPane Class.

2. Call CDockablePane::Create.

3. Use CBaseTabbedPane::AddTab or CMFCBaseTabCtrl::InsertTab to add new tabs.

4. Call CBasePane::EnableDocking so that the current docking tab control can dock at the main frame
window.

5. Call CFrameWndEx::DockPane to dock the tabbed window at the main frame.

For an example of how to create a tabbed window as a docking control bar, see CTabbedPane Class. To use
CMFCTabCtrl as a non-docking control, create a CMFCTabCtrl object and then call CMFCTabCtrl::Create.

CObject

CCmdTarget

CWnd

CMFCBaseTabCtrl

CMFCTabCtrl

The following example demonstrates how to use various methods in the CMFCTabCtrl class to configure a
CMFCTabCtrl object. The example explains how to add a tab, show the Close button on the active tab, enable

editable tab labels, and display a pop-up menu of tabbed window labels. This example is part of the State
Collection sample.

Header: afxtabctrl.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCTabCtrl::ActivateMDITab

void ActivateMDITab(int nTab = -1);

ParametersParameters

CMFCTabCtrl::AllowDestroyEmptyTabbedPane

virtual BOOL AllowDestroyEmptyTabbedPane() const;

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::AutoSizeWindow

void AutoSizeWindow(BOOL bAutoSize = TRUE);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::Create

BOOL Create(
 Style style,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 Location location=LOCATION_BOTTOM,
 BOOL bCloseBtn=FALSE);

ParametersParameters

Displays the specified tab of the current tab control and sets the focus on that tab.

nTab
[in] The zero-based index of a tab to display, or -1 to specify the currently active tab.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

Always TRUE.

Specifies whether the framework is to resize the client area of all tab control windows when a user interface
element of the tab control changes.

bAutoSize
[in] TRUE to automatically resize tab control windows; otherwise, FALSE. The default value is TRUE.

Creates the tab control and attaches it to the CMFCTabCtrl object.

style
[in] The style of the tab control. For more information, see Remarks.

rect
[in] A rectangle that bounds the tab control.

Return ValueReturn Value

RemarksRemarks

STYLE DESCRIPTION

STYLE_3D Creates a tab control with a three-dimensional appearance.

STYLE_FLAT Creates a tab control with flat tabs.

STYLE_FLAT_SHARED_HORZ_SCROLL Creates a tab control with flat tabs and a scroll bar that can
scroll the tabs if they are clipped by a parent window.

STYLE_3D_ONENOTE Creates a tab control in the style of Microsoft OneNote.

STYLE_3D_VS2005 Creates a tab control in the style of Microsoft Visual Studio
2005.

STYLE_3D_ROUNDED Creates a tab control with rounded tabs in the style of
Microsoft Visual Studio 2005.

STYLE_3D_ROUNDED_SCROLL Creates a tab control with rounded tabs and scroll buttons in
the style of Microsoft Visual Studio 2005.

LOCATION DESCRIPTION

LOCATION_BOTTOM Tabs are located at the bottom of the tab control.

LOCATION_TOP Tabs are located at the top of the tab control.

ExampleExample

CMFCTabCtrl m_wndTabs;

pParentWnd
[in] A pointer to a parent window. Must not be NULL.

nID
[in] The ID of the tab control.

location
[in] The location of tabs. The default value is LOCATION_BOTTOM. For more information, see Remarks.

bCloseBtn
[in] TRUE to display a close button on the tab; otherwise, FALSE. The default value is FALSE.

TRUE if successful; otherwise, FALSE.

The following table describes the values you can specify for the style parameter.

The following table lists the values you can specify for the location parameter.

The following example demonstrates how to use the Create method in the CMFCTabCtrl class. This example is
part of the State Collection sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

// Create tabs window:
// CRect rectDummy
// this is a pointer to a parent window
// fourth parameter is the id of the tab control
if (!m_wndTabs.Create (CMFCTabCtrl::STYLE_FLAT, rectDummy, this, 1))
{
 TRACE0("Failed to create output tab window\n");
 return -1; // fail to create
}

CMFCTabCtrl::CalcRectEdit

virtual void CalcRectEdit(CRect& rectEdit);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::EnableActiveTabCloseButton

void EnableActiveTabCloseButton(BOOL bEnable=TRUE);

ParametersParameters

CMFCTabCtrl::EnableInPlaceEdit

virtual void EnableInPlaceEdit(BOOL bEnable);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::EnableTabDocumentsMenu

Deflates the size of the specified tab area.

rectEdit
[in] A rectangle that specifies the area of a tab.

This method is called when you change the label of a tab. This method deflates the left and right sides of the
specified rectangle by one-half the current tab height, and deflates the top and bottom by one unit.

Shows or hides a Close button (X) on the active tab.

bEnable
[in] TRUE to display the Close button on the active tab; FALSE to display the Close button on the upper-right
corner of the tab area. The default value is TRUE.

Enables or disables editable tab labels.

bEnable
[in] TRUE to enable editable tab labels; FALSE to disable editable tab labels.

Toggles between a user interface that uses two buttons to scroll the window tabs and an interface that displays a
pop-up menu of tabbed windows.

void EnableTabDocumentsMenu(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::EnsureVisible

virtual BOOL EnsureVisible(int iTab);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::GetDocumentIcon

static HICON __stdcall GetDocumentIcon(UINT nCmdID);

ParametersParameters

Return ValueReturn Value

CMFCTabCtrl::GetFirstVisibleTabNum

virtual int GetFirstVisibleTabNum() const;

Return ValueReturn Value

RemarksRemarks

bEnable
[in] TRUE to display a pop-up menu of tabbed window labels; FALSE to display forward and backward scroll
buttons. The default value is TRUE.

When the user clicks a tab label, the framework displays the corresponding tabbed window. If the tab label is
visible, the tabbed window is opened without changing its position. If the user selects a document from the pop-
up menu and the corresponding tabbed window is off screen, the tabbed window becomes the first tab.

Ensures that a tab is visible.

iTab
[in] The zero-based index of a tab.

TRUE if it is successful; FALSE if the iTab parameter index is invalid.

Use this method to guarantee that the specified tab is visible. The tab control will scroll if it is required.

Retrieves the image that is associated with a tab in a pop-up menu of tabbed windows.

nCmdID
[in] The command ID of a tab in a pop-up menu of tabbed windows.

The handle of a bitmap image.

Retrieves the index of the first tab that is visible in the current tab control.

The zero-based index of a tab in the tab control.

CMFCTabCtrl::GetResizeMode

ResizeMode GetResizeMode() const;

Return ValueReturn Value

CMFCTabCtrl::GetScrollBar

CScrollBar* GetScrollBar();

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::GetTabArea

void GetTabArea(
 CRect& rectTabAreaTop,
 CRect& rectTabAreaBottom) const;

ParametersParameters

RemarksRemarks

CMFCTabCtrl::GetTabMaxWidth

Use this method only when the tab control is displayed in the style of Microsoft OneNote. Use the
CMFCTabCtrl::IsOneNoteStyle method to determine the style.

Retrieves a value that specifies how the current tab control can be resized.

One of the CMFCTabCtrl::ResizeMode enumeration values that specifies how the tab control can be resized. For a
list of possible values, see the Remarks section of the CMFCTabCtrl::SetResizeMode method.

Retrieves a pointer to the scroll bar object that is associated with the tab control.

A pointer to a scrollbar object, or a NULL if the tab control was not created by using the
STYLE_FLAT_SHARED_HORZ_SCROLL style.

Use this method to access the tab control's embedded scroll bar. A scroll bar object is created only when the tab
control has the STYLE_FLAT_SHARED_HORZ_SCROLL style.

Retrieves the bounding rectangle of the tab label area at the top or bottom of the tab control.

rectTabAreaTop
[out] When this method returns, this reference contains a rectangle that bounds the top tab label area. The
rectangle is in client coordinates. This reference is empty if no tab label area exists at the top of the tab control.

rectTabAreaBottom
[out] When this method returns, this reference contains a rectangle that bounds the bottom tab label area. The
rectangle is in client coordinates. This reference is empty if no tab label area exists at the bottom of the tab
control.

Use this method to determine the size and position of the tab area in the tabbed window.

Retrieves the maximum width of a tab.

int GetTabMaxWidth() const;

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::GetTabsHeight

virtual int GetTabsHeight() const;

Return ValueReturn Value

CMFCTabCtrl::GetTabsRect

virtual void GetTabsRect(CRect& rect) const;

ParametersParameters

CMFCTabCtrl::GetWndArea

void GetWndArea(CRect& rect) const;

ParametersParameters

RemarksRemarks

CMFCTabCtrl::HideActiveWindowHorzScrollBar

void HideActiveWindowHorzScrollBar();

RemarksRemarks

CMFCTabCtrl::HideInactiveWindow

Maximum width of a tab, in pixels. If the return value is 0, the tab width is unlimited.

Use the CMFCTabCtrl::SetTabMaxWidth method to set maximum tab width.

Retrieves the height of the tab area of the current tab control.

The height of the tab area if any tab is visible, or zero if no tab is visible.

Retrieves a rectangle that bounds the tab area of the current tab control.

rect
[out] When this method returns, the rect parameter contains a rectangle that bounds the tab area.

Retrieves the boundary of the client area of the current tab control.

rect
[in, out] When this method returns, this parameter contains a rectangle that bounds the current tab control.

Hides the horizontal scroll bar, if any, in the active window.

Use this method to prevent the tab control from blinking when the user switches between tab control pages.

void HideInactiveWindow(BOOL bHide = TRUE);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::HideNoTabs

void HideNoTabs(BOOL bHide=TRUE);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::HideSingleTab

virtual void HideSingleTab(BOOL bHide=TRUE);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::IsActiveInMDITabGroup

BOOL IsActiveInMDITabGroup() const;

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::IsActiveTabBoldFont

Specifies whether the framework displays inactive tab control windows.

bHide
[in] TRUE not to display an inactive window; FALSE to display an inactive window. The default value is TRUE.

Enables or disables drawing of the tab area if there are no visible tabs.

bHide
[in] TRUE to enable drawing the tab area; FALSE to disable drawing. The default value is TRUE.

Enables or disables tab drawing if there is a single tabbed window.

bHide
[in] TRUE to not draw a tab for a single tabbed window; FALSE to draw a single tab. The default value is TRUE.

Indicates whether the current tab of a tab control is the active tab in a multiple document interface tab group.

TRUE if the current tab of a tab control is the active tab in an MDI tab group; otherwise, FALSE.

You can organize multiple document windows into either vertical or horizontal tab groups and easily shuffle
documents from one tab group to another.

Indicates whether the text of the active tab is displayed using a bold font.

BOOL IsActiveTabBoldFont() const;

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::IsActiveTabCloseButton

virtual BOOL IsActiveTabCloseButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::IsDrawFrame

BOOL IsDrawFrame() const;

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::IsFlatFrame

BOOL IsFlatFrame() const;

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::IsFlatTab

virtual BOOL IsFlatTab() const;

TRUE if the active tab is displayed using the bold font; otherwise, FALSE.

Use the CMFCTabCtrl::SetActiveTabBoldFont method to change the active tab font.

Indicates whether the Close button (X) is displayed on an active tab or on the upper-right corner of the tab area.

TRUE if the Close button is displayed on the active tab; FALSE if the Close button is displayed on the upper-right
corner of the tab area.

Indicates whether the tabbed window draws a frame rectangle around embedded panes.

TRUE if a frame rectangle is drawn; otherwise, FALSE.

Use the CMFCTabCtrl::SetDrawFrame method to enable or disable drawing a frame rectangle.

Indicates whether the frame around the tab area is flat or 3D.

TRUE if the frame around the tab area is flat; FALSE if the frame is three-dimensional.

Use the CMFCTabCtrl::SetFlatFrame method to change how the frame is drawn.

Indicates whether the appearance of the tabs in the current tab control is flat or not.

Return ValueReturn Value

CMFCTabCtrl::IsLeftRightRounded

virtual BOOL IsLeftRightRounded() const;

Return ValueReturn Value

CMFCTabCtrl::IsMDITabGroup

virtual BOOL IsMDITabGroup() const;

Return ValueReturn Value

CMFCTabCtrl::IsOneNoteStyle

virtual BOOL IsOneNoteStyle() const;

Return ValueReturn Value

CMFCTabCtrl::IsSharedScroll

BOOL IsSharedScroll() const;

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::IsTabDocumentsMenu

BOOL IsTabDocumentsMenu() const;

Return ValueReturn Value

TRUE if the appearance of the tabs in the current tab control is flat; otherwise, FALSE.

Indicates whether the appearance of the left and right side of a tab in the current tab control is rounded.

TRUE if the sides of each tab is rounded; otherwise, FALSE.

Indicates whether the current tab control is contained in the client area of a multiple-document interface window.

TRUE if the current tab control is in an MDI client area window; otherwise, FALSE.

Indicates whether the current tab control is displayed in the style of Microsoft OneNote.

TRUE if the tab control is displayed in the style of Microsoft OneNote; otherwise, FALSE.

Indicates whether the current tab control has a scroll bar that can scroll its tabs as a group.

TRUE if the tab control has a shared scroll bar; otherwise, FALSE.

This method returns TRUE if the style parameter of the CMFCTabCtrl::Create method is
STYLE_FLAT_SHARED_HORZ_SCROLL.

Indicates whether the tab control displays scroll buttons or a button that displays a menu of tabbed windows.

RemarksRemarks

CMFCTabCtrl::IsVS2005Style

virtual BOOL IsVS2005Style() const;

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::m_bEnableActivate

static BOOL m_bEnableActivate;

RemarksRemarks

CMFCTabCtrl::ModifyTabStyle

BOOL ModifyTabStyle(Style style);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NAME DESCRIPTION

STYLE_3D Displays three-dimensional, rectangular tabs that have round
corners.

TRUE if tabbed windows are scrolled using a popup menu of tabbed window labels; FALSE if tabbed windows
are scrolled using forward and backward scroll buttons.

Use the CMFCTabCtrl::EnableTabDocumentsMenu method to specify the method of scrolling tabbed windows.

Indicates whether tabs are drawn using the style of Visual Studio 2005.

TRUE if tabs are drawn using the style of Visual Studio 2005; otherwise, FALSE.

Use the style parameter of the CMFCTabCtrl::Create method to specify how tabs are drawn.

Prevents the active view from losing focus when a new tab is inserted and enabled.

The focus is usually taken by a new tabbed window when the tab is inserted and made active. Set the
CMFCTabCtrl::m_bEnableActivate member variable to FALSE to retain the original focus. The default value is

TRUE.

Specifies the appearance of tabs in the current tab control.

style
[in] One of the enumeration values that specifies the appearance of the tab control. For more information, see the
table in Remarks.

Always TRUE.

The value of the style parameter can be one of the following CMFCTabCtrl::Style enumerations.

STYLE_3D_ONENOTE Displays three-dimensional tabs that have one vertical side
and one slanted side and that have rounded corners.

STYLE_3D_ROUNDED Displays three-dimensional tabs that have slanted sides and
rounded corners.

STYLE_3D_ROUNDED_SCROLL Displays three-dimensional tabs that have slanted sides and
rounded corners. If there are more tabs than can be
displayed at the same time, the framework displays a drop-
down arrow and a menu of tabs to make active.

STYLE_3D_SCROLLED Displays three-dimensional, rectangular tabs. If there are
more tabs than can be displayed at the same time, the
framework displays a drop-down arrow and a menu of tabs
to make active.

STYLE_3D_VS2005 Displays three-dimensional, rounded tabs that have one
slanted side and one vertical side.

STYLE_FLAT Displays two-dimensional tabs that have slanted left and
right sides.

STYLE_FLAT_SHARED_HORZ_SCROLL Displays two-dimensional tabs. If there are more tabs than
can be displayed at the same time, the framework displays
scroll arrows at the ends of the tab area.

NAME DESCRIPTION

CMFCTabCtrl::OnDragEnter

virtual DROPEFFECT OnDragEnter(
 COleDataObject* pDataObject,
 DWORD dwKeyState,
 CPoint point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Called by the framework during a drag-and-drop operation when the cursor first enters the window of the
current tab control.

pDataObject
[in] Points to a data object that contains data that the user drags.

dwKeyState
[in] Contains the state of the modifier keys. This parameter is a bitwise combination (OR) of the following values:
MK_CONTROL, MK_SHIFT, MK_ALT, MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON. For more
information, see the Message Parameters section of About Mouse Input.

point
[in] Contains the current location of the cursor in client coordinates.

Always DROPEFFECT_NONE, which means that the drop target cannot accept the data.

Use this method to support a drag-and-drop operation. Override this method to implement your own custom

https://docs.microsoft.com/windows/desktop/inputdev/about-mouse-input

CMFCTabCtrl::OnDragOver

virtual DROPEFFECT OnDragOver(
 COleDataObject* pDataObject,
 DWORD dwKeyState,
 CPoint point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::OnShowTabDocumentsMenu

virtual void OnShowTabDocumentsMenu(CPoint point);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::SetActiveInMDITabGroup

void SetActiveInMDITabGroup(BOOL bActive);

ParametersParameters

behavior.

By default, this method only calls CMFCTabCtrl::OnDragOver , which always returns DROPEFFECT_NONE.

Called by the framework during a drag operation when the mouse is moved over the drop target window.

pDataObject
[in] Pointer to a COleDataObject object that is being dragged over the drop target.

dwKeyState
[in] The state of the modifier keys, which is a bitwise combination (OR) of MK_CONTROL, MK_SHIFT, MK_ALT,
MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON. For more information, see "Message Parameters" in About
Mouse Input.

point
[in] The current mouse position.

Always DROPEFFECT_NONE.

Override this method with your custom implementation. For more information, see the CView::OnDragOver
method.

Displays a pop-up menu of tabbed windows, waits until the user selects a tab, and makes the selected tab the
active tab.

point
[in] The coordinates of where to display the pop-up menu.

Sets the current tab of a tab control as the active tab in a multiple document interface tab group.

bActive
[in] TRUE to make the current tab the active tab; FALSE to make the current tab inactive.

https://docs.microsoft.com/windows/desktop/inputdev/about-mouse-input

RemarksRemarks

CMFCTabCtrl::SetActiveTab

virtual BOOL SetActiveTab(int iTab);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::SetActiveTabBoldFont

void SetActiveTabBoldFont(BOOL bIsBold=TRUE);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::SetDrawFrame

void SetDrawFrame(BOOL bDraw=TRUE);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::SetFlatFrame

You can organize multiple document windows into either vertical or horizontal tab groups and easily shuffle
documents from one tab group to another.

Activates a tab.

iTab
[in] Specifies the zero-based index of the tab to activate.

TRUE if the specified tab was made active; FALSE if the specified iTab parameter value is invalid.

This method does not send the AFX_WM_CHANGE_ACTIVE_TAB notification to the parent window of the tab
control.

The SetActiveTab method automatically calls the CMFCTabCtrl::HideActiveWindowHorzScrollBar method to
prevent the screen from blinking.

Enables or disables use of a bold font on active tabs.

bIsBold
[in] TRUE to use a bold font to display the label of the active tab; FALSE to use the standard font to display the
label. The default value is TRUE.

Specifies whether a frame rectangle is drawn around an embedded bar.

bDraw
[in] TRUE to display a frame rectangle around an embedded bar; otherwise, FALSE. The default value is TRUE.

Specifies whether to draw a flat or a 3D frame around the tab area.

void SetFlatFrame(
 BOOL bFlat=TRUE,
 BOOL bRepaint=TRUE);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::SetImageList

virtual BOOL SetImageList(
 UINT uiID,
 int cx=15,
 COLORREF clrTransp=RGB(255, 0, 255));

virtual BOOL SetImageList(HIMAGELIST hImageList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTabCtrl::SetResizeMode

bFlat
[in] TRUE to draw a flat (2D) frame around the tab area; FALSE to draw a three-dimensional (3D) frame. The
default value is TRUE.

bRepaint
[in] TRUE to redraw the window immediately; otherwise, FALSE. The default value is TRUE.

Specifies an image list.

uiID
[in] The ID of a bitmap resource that contains the image list.

cx
[in] The width of each image, in pixels. The default value is 15.

clrTransp
[in] The transparent image color. The parts of the image that are this color will be transparent. The default value is
the color magenta, RGB(255,0,255).

hImageList
[in] A handle to a preloaded image list.

TRUE if this method is successful. FALSE if the tab control is created by using a flat style or if the first method
overload cannot load the bitmap that is specified by the uiID parameter.

Use this method to set an image list for the tab control. The images from the image list are displayed next to the
tab label. This method recalculates the tab height so that the tab is sized to contain both the image and the text.

Use the CMFCBaseTabCtrl::AddTab method that is inherited by the tab control to specify the index of the image
to display.

Specifies how the current tab control can be resized and then redisplays the control.

void SetResizeMode(ResizeMode resizeMode);

ParametersParameters

RemarksRemarks

NAME DESCRIPTION

RESIZE_NO The tab control cannot be resized.

RESIZE_VERT The tab control can be resized vertically but not horizontally.

RESIZE_HORIZ The tab control can be resized horizontally but not vertically.

CMFCTabCtrl::SetTabMaxWidth

void SetTabMaxWidth(int nTabMaxWidth);

ParametersParameters

RemarksRemarks

CMFCTabCtrl::StopResize

void StopResize(BOOL bCancel);

ParametersParameters

CMFCTabCtrl::SynchronizeScrollBar

BOOL SynchronizeScrollBar(SCROLLINFO* pScrollInfo = NULL);

resizeMode
[in] One of the CMFCTabCtrl::ResizeMode enumeration values that specifies how the tab control can be resized. For
a list of possible values, see the table in Remarks.

The resizeMode parameter can be one of the following ResizeMode enumeration values.

Specifies the maximum tab width in a tabbed window.

nTabMaxWidth
[in] The maximum tab width, in pixels.

Use this method to limit the width of each tab in a tabbed window. This method is useful if tabs have very long
labels. The CMFCTabCtrl class constructor initializes the maximum tab width to 0, which actually means that the
width is not limited.

Terminates the current resize operation on the tab control.

bCancel
[in] TRUE to abandon the current resize operation; FALSE to complete the current resize operation. In either case,
the framework stops drawing the resize rectangle.

Draws a horizontal scroll bar on a tab control that displays flat tabs.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

pScrollInfo
[out] Pointer to a SCROLLINFO structure or NULL. When this method returns, and if this parameter is not
NULL, the structure contains all the parameters of the scroll bar. The default value is NULL.

TRUE if this method succeeds; otherwise, FALSE.

This method affects only a tab control that displays flat tabs. The scroll bar influences all the tabs at the same
time.

Hierarchy Chart
Classes
CDockablePane Class
CDockablePane Class
CMFCBaseTabCtrl Class

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagscrollinfo

CMFCTabDropTarget Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMFCTabDropTarget : public COleDropTarget

Members
Public ConstructorsPublic Constructors

Name Description

CMFCTabDropTarget::CMFCTabDropTarget Default constructor.

Public MethodsPublic Methods

Name Description

CMFCTabDropTarget::OnDragEnter Called by the framework when the user drags an object into a
tab window. (Overrides COleDropTarget::OnDragEnter.)

CMFCTabDropTarget::OnDragLeave Called by the framework when the user drags an object
outside of the tab window that has focus. (Overrides
COleDropTarget::OnDragLeave.)

CMFCTabDropTarget::OnDragOver Called by the framework when the user drags an object onto
the tab window that has focus. (Overrides
COleDropTarget::OnDragOver.)

CMFCTabDropTarget::OnDropEx Called by the framework when the user releases the mouse
button at the end of a drag operation. (Overrides
COleDropTarget::OnDropEx.)

CMFCTabDropTarget::Register Registers the control as one that can be the target of an OLE
drag-and-drop operation.

RemarksRemarks

Provides the communication mechanism between a tab control and the OLE libraries.

This class provides drag-and-drop support to the CMFCBaseTabCtrl class. If your application initializes the OLE
libraries by using the AfxOleInit function, CMFCBaseTabCtrl objects register themselves for drag-and-drop
operations.

The CMFCTabDropTarget class extends its base class by making the tab that is under the cursor when a drag
operation occurs active. For more information about drag-and-drop operations, see Drag and Drop (OLE).

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctabdroptarget-class.md

Example

HWND hWndTab = NULL;
CBasePane* basePane = new CBasePane();
CMFCBaseTabCtrl* pTabParent = basePane->GetParentTabWnd(hWndTab);
CMFCTabDropTarget* dropTarget = new CMFCTabDropTarget();
dropTarget->Register(pTabParent);

Inheritance Hierarchy

Requirements

CMFCTabDropTarget::OnDragEnter

virtual DROPEFFECT OnDragEnter(
 CWnd* pWnd,
 COleDataObject* pDataObject,
 DWORD dwKeyState,
 CPoint point);

ParametersParameters

Parameter Description

pWnd [in] Unused.

pDataObject [in] A pointer to the object that the user drags.

dwKeyState [in] Contains the state of the modifier keys. This is a
combination of any number of the following: MK_CONTROL,
MK_SHIFT, MK_ALT, MK_LBUTTON, MK_MBUTTON, and
MK_RBUTTON.

point [in] The location of the cursor in client coordinates.

Return ValueReturn Value

The following example demonstrates how to construct a CMFCTabDropTarget object and use its Register method.

CObject

CCmdTarget

COleDropTarget

CMFCTabDropTarget

Header: afxbasetabctrl.h

Called by the framework when the user drags an object into a tab window.

The effect that results if the drop occurs at the location specified by point. It can be one or more of the following:

DROPEFFECT_NONE

DROPEFFECT_COPY

RemarksRemarks

CMFCTabDropTarget::OnDragLeave

virtual void OnDragLeave(CWnd* pWnd);

ParametersParameters

Parameter Description

pWnd [in] Unused.

RemarksRemarks

CMFCTabDropTarget::OnDragOver

virtual DROPEFFECT OnDragOver(
 CWnd* pWnd,
 COleDataObject* pDataObject,
 DWORD dwKeyState,
 CPoint point);

ParametersParameters

Parameter Description

pWnd [in] Unused.

pDataObject [in] A pointer to the object that the user drags.

dwKeyState [in] Contains the state of the modifier keys. This is a
combination of any number of the following: MK_CONTROL,
MK_SHIFT, MK_ALT, MK_LBUTTON, MK_MBUTTON, and
MK_RBUTTON.

DROPEFFECT_MOVE

DROPEFFECT_LINK

DROPEFFECT_SCROLL

This method returns DROPEFFECT_NONE if the toolbar framework is not in customization mode or the Clipboard
data format is unavailable. Otherwise, it returns the result of calling CMFCBaseTabCtrl::OnDragEnter with the
provided parameters.

For more information about customization mode, see CMFCToolBar::IsCustomizeMode. For more information
about Clipboard data formats, see COleDataObject::IsDataAvailable.

Called by the framework when the user drags an object outside of the tab window that has focus.

This method calls the CMFCBaseTabCtrl::OnDragLeave method to perform the drag operation.

Called by the framework when the user drags an object onto the tab window that has focus.

point [in] The location of the mouse pointer in client coordinates.

Return ValueReturn Value

RemarksRemarks

CMFCTabDropTarget::OnDropEx

virtual DROPEFFECT OnDropEx(
 CWnd* pWnd,
 COleDataObject* pDataObject,
 DROPEFFECT dropEffect,
 DROPEFFECT dropList,
 CPoint point);

ParametersParameters

Parameter Description

pWnd [in] Unused.

pDataObject [in] A pointer to the object that the user drags.

dropEffect [in] The default drop operation.

dropList [in] Unused.

point [in] The location of the mouse pointer in client coordinates.

Return ValueReturn Value

The effect that results if the drop occurs at the location specified by point. It can be one or more of the following:

DROPEFFECT_NONE

DROPEFFECT_COPY

DROPEFFECT_MOVE

DROPEFFECT_LINK

DROPEFFECT_SCROLL

This method makes the tab that is under the cursor when a drag operation occurs active. It returns
DROPEFFECT_NONE if the toolbar framework is not in customization mode or the Clipboard data format is
unavailable. Otherwise, it returns the result of calling CMFCBaseTabCtrl::OnDragOver with the provided parameters.

For more information about customization mode, see CMFCToolBar::IsCustomizeMode. For more information
about Clipboard data formats, see COleDataObject::IsDataAvailable.

Called by the framework when the user releases the mouse button at the end of a drag operation.

The resulting drop effect. It can be one or more of the following:

DROPEFFECT_NONE

DROPEFFECT_COPY

RemarksRemarks

CMFCTabDropTarget::Register

BOOL Register(CMFCBaseTabCtrl *pOwner);

ParametersParameters

Parameter Description

pOwner [in] The tab control to register as a drop target.

Return ValueReturn Value

RemarksRemarks

See also

DROPEFFECT_MOVE

DROPEFFECT_LINK

DROPEFFECT_SCROLL

This method calls CMFCBaseTabCtrl::OnDrop if the toolbar framework is in customization mode and the Clipboard
data format is available. If the call to CMFCBaseTabCtrl::OnDrop returns a nonzero value, this method returns the
default drop effect specified by dropEffect. Otherwise, this method returns DROPEFFECT_NONE. For more
information about drop effects, see COleDropTarget::OnDropEx.

For more information about customization mode, see CMFCToolBar::IsCustomizeMode. For more information
about Clipboard data formats, see COleDataObject::IsDataAvailable.

Registers the control as one that can be the target of an OLE drag-and-drop operation.

Nonzero if registration was successful; otherwise 0.

This method calls COleDropTarget::Register to register the control for drag-and-drop operations.

Hierarchy Chart
Classes
Drag and Drop (OLE)

CMFCTabToolTipInfo Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct CMFCTabToolTipInfo

Members
Data MembersData Members

NAME DESCRIPTION

CMFCTabToolTipInfo::m_nTabIndex Specifies the index of the tab control.

CMFCTabToolTipInfo::m_pTabWnd A pointer to the tab control.

CMFCTabToolTipInfo::m_strText The tooltip text.

Remarks

Example

LRESULT CMainFrame::OnGetTabToolTip(WPARAM /*wp*/, LPARAM lp)
{
 CMFCTabToolTipInfo* pInfo = (CMFCTabToolTipInfo*) lp;
 ASSERT (pInfo != NULL);

 if (pInfo)
 {
 ASSERT_VALID (pInfo->m_pTabWnd);
 if (!pInfo->m_pTabWnd->IsMDITab ())
 {
 return 0;
 }
 pInfo->m_strText.Format (_T("Tab #%d Custom Tooltip"), pInfo->m_nTabIndex + 1);
 }

 return 0;
}

Inheritance Hierarchy

This structure provides information about the MDI tab that the user is hovering over.

A pointer to a CMFCTabToolTipInfo structure is passed as a parameter of the AFX_WM_ON_GET_TAB_TOOLTIP
message. This message is generated when MDI tabs are enabled and the user hovers over a tab control.

The following example shows how CMFCTabToolTipInfo is used in the MDITabsDemo Sample: MFC Tabbed MDI
Application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctabtooltipinfo-structure.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CMFCTabToolTipInfo::m_nTabIndex

int m_nTabIndex;

RemarksRemarks

ExampleExample

LRESULT CMainFrame::OnGetTabToolTip(WPARAM /*wp*/, LPARAM lp)
{
 CMFCTabToolTipInfo* pInfo = (CMFCTabToolTipInfo*) lp;
 ASSERT (pInfo != NULL);

 if (pInfo)
 {
 ASSERT_VALID (pInfo->m_pTabWnd);
 if (!pInfo->m_pTabWnd->IsMDITab ())
 {
 return 0;
 }
 pInfo->m_strText.Format (_T("Tab #%d Custom Tooltip"), pInfo->m_nTabIndex + 1);
 }

 return 0;
}

CMFCTabToolTipInfo::m_pTabWnd

CMFCBaseTabCtrl* m_pTabWnd;

ExampleExample

CMFCTabToolTipInfo

Header: afxbasetabctrl.h

Specifies the index of the tab control.

Index of the tab over which the user is hovering.

The following example shows how m_nTabIndex is used in the MDITabsDemo Sample: MFC Tabbed MDI
Application.

A pointer to the tab control.

The following example shows how m_pTabWnd is used in the MDITabsDemo Sample: MFC Tabbed MDI
Application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

LRESULT CMainFrame::OnGetTabToolTip(WPARAM /*wp*/, LPARAM lp)
{
 CMFCTabToolTipInfo* pInfo = (CMFCTabToolTipInfo*) lp;
 ASSERT (pInfo != NULL);

 if (pInfo)
 {
 ASSERT_VALID (pInfo->m_pTabWnd);
 if (!pInfo->m_pTabWnd->IsMDITab ())
 {
 return 0;
 }
 pInfo->m_strText.Format (_T("Tab #%d Custom Tooltip"), pInfo->m_nTabIndex + 1);
 }

 return 0;
}

CMFCTabToolTipInfo::m_strText

CString m_strText;

RemarksRemarks

ExampleExample

LRESULT CMainFrame::OnGetTabToolTip(WPARAM /*wp*/, LPARAM lp)
{
 CMFCTabToolTipInfo* pInfo = (CMFCTabToolTipInfo*) lp;
 ASSERT (pInfo != NULL);

 if (pInfo)
 {
 ASSERT_VALID (pInfo->m_pTabWnd);
 if (!pInfo->m_pTabWnd->IsMDITab ())
 {
 return 0;
 }
 pInfo->m_strText.Format (_T("Tab #%d Custom Tooltip"), pInfo->m_nTabIndex + 1);
 }

 return 0;
}

See also

The tooltip text.

If the string is empty, the tooltip is not displayed.

The following example shows how m_strText is used in the MDITabsDemo Sample: MFC Tabbed MDI
Application.

Hierarchy Chart
Classes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCTasksPane Class
3/4/2019 • 26 minutes to read • Edit Online

Syntax
class CMFCTasksPane : public CDockablePane

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCTasksPane::CMFCTasksPane Constructs a CMFCTasksPane object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCTasksPane::AddGroup Adds a new group of tasks to the task pane control.

CMFCTasksPane::AddLabel Adds a new static label into the specified task group.

CMFCTasksPane::AddMRUFilesList Adds tasks specified by a Most Recently Used (MRU) file list
into a group.

CMFCTasksPane::AddPage Adds a new page to the task pane.

CMFCTasksPane::AddSeparator

CMFCTasksPane::AddTask Adds a new task to the specified task group.

CMFCTasksPane::AddWindow Adds a child window to the task pane.

CMFCTasksPane::CollapseAllGroups

CMFCTasksPane::CollapseGroup Programmatically collapses a group.

CMFCTasksPane::CreateDefaultMiniframe (Overrides CPane::CreateDefaultMiniframe.)

CMFCTasksPane::CreateMenu Called by the framework to create a menu for the Other
Tasks Panes menu button.

CMFCTasksPane::EnableAnimation Enables or disables animation while collapsing or expanding
task groups.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

The CMFCTasksPane class implements a list of clickable items (tasks).

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctaskspane-class.md

CMFCTasksPane::EnableGroupCollapse Specifies whether tasks groups can be collapsed.

CMFCTasksPane::EnableHistoryMenuButtons Enables or disables drop-down menus in Next and Previous
navigation buttons.

CMFCTasksPane::EnableNavigationToolbar Enables or disables the navigation toolbar.

CMFCTasksPane::EnableOffsetCustomControls

CMFCTasksPane::EnableScrollButtons Enables scroll buttons instead of a scrollbar.

CMFCTasksPane::EnableWrapLabels Enables or disables word wrapping for labels.

CMFCTasksPane::EnableWrapTasks Enables or disables word wrapping for tasks.

CMFCTasksPane::GetActivePage Returns the zero-based index for the active page.

CMFCTasksPane::GetGroupCaptionHeight Returns the height of the group captions.

CMFCTasksPane::GetGroupCaptionHorzOffset Returns the current offset of a group caption from the left
and right edges of the task pane.

CMFCTasksPane::GetGroupCaptionVertOffset Returns the current offset of a group caption from the top
and bottom edges of the task pane.

CMFCTasksPane::GetGroupCount Returns the total number of groups.

CMFCTasksPane::GetGroupLocation Returns the internal group index for a given group.

CMFCTasksPane::GetGroupVertOffset Returns the vertical offset of a group.

CMFCTasksPane::GetHorzMargin Returns the horizontal spacing between a task pane and the
edges of the client area.

CMFCTasksPane::GetNextPages

CMFCTasksPane::GetPageByGroup Retrieves the page index for a specified group.

CMFCTasksPane::GetPagesCount Returns the number of pages.

CMFCTasksPane::GetPreviousPages

CMFCTasksPane::GetScrollBarCtrl (Overrides CWnd::GetScrollBarCtrl.)

CMFCTasksPane::GetTask Retrieves a task.

CMFCTasksPane::GetTaskCount Returns the number of task items in a specified group.

CMFCTasksPane::GetTaskGroup Returns a task group for a given group index.

CMFCTasksPane::GetTaskLocation Returns the group and the index for a given task.

NAME DESCRIPTION

CMFCTasksPane::GetTasksHorzOffset Returns the horizontal offset of tasks from the left and right
edges of their parent groups.

CMFCTasksPane::GetTasksIconHorzOffset

CMFCTasksPane::GetTasksIconVertOffset

CMFCTasksPane::GetVertMargin Returns the vertical spacing between a task pane and the
edges of the client area.

CMFCTasksPane::IsAccessibilityCompatible (Overrides CDockablePane::IsAccessibilityCompatible .)

CMFCTasksPane::IsAnimationEnabled Indicates whether animation is enabled.

CMFCTasksPane::IsBackButtonEnabled Indicates whether the back button is enabled.

CMFCTasksPane::IsForwardButtonEnabled Indicates whether the forward button is enabled.

CMFCTasksPane::IsGroupCollapseEnabled

CMFCTasksPane::IsHistoryMenuButtonsEnabled Indicates whether the Next and Previous navigation
buttons have drop-down menus.

CMFCTasksPane::IsNavigationToolbarEnabled Indicates whether the navigation toolbar is enabled.

CMFCTasksPane::IsToolBox

CMFCTasksPane::IsWrapLabelsEnabled Indicates whether the task pane wraps words in labels.

CMFCTasksPane::IsWrapTasksEnabled Indicates whether the task pane wraps words in tasks.

CMFCTasksPane::LoadState (Overrides CDockablePane::LoadState.)

CMFCTasksPane::OnCancel

CMFCTasksPane::OnClickTask Called by the framework when the user clicks an item in the
task pane.

CMFCTasksPane::OnOK

CMFCTasksPane::OnPressBackButton Called by the framework when the user clicks the back
button.

CMFCTasksPane::OnPressForwardButton Called by the framework when the user clicks the forward
navigation button.

CMFCTasksPane::OnPressHomeButton Called by the framework when the user clicks the home
navigation button

CMFCTasksPane::OnPressOtherButton

NAME DESCRIPTION

 CDockablePane::Ser ialize

CMFCTasksPane::OnSetAccData (Overrides CBasePane::OnSetAccData.)

CMFCTasksPane::OnUpdateCmdUI (Overrides CDockablePane::OnUpdateCmdUI.)

CMFCTasksPane::PreTranslateMessage (Overrides CDockablePane::PreTranslateMessage.)

CMFCTasksPane::RecalcLayout (Overrides CPane::RecalcLayout.)

CMFCTasksPane::RemoveAllGroups Removes all groups on the specified page.

CMFCTasksPane::RemoveAllPages Removes all pages from the task pane except the default
(first) page.

CMFCTasksPane::RemoveAllTasks Removes all tasks from the group.

CMFCTasksPane::RemoveGroup Removes a group.

CMFCTasksPane::RemovePage Removes a specified page from the task pane.

CMFCTasksPane::RemoveTask Removes a task from a task group.

CMFCTasksPane::SaveState (Overrides CDockablePane::SaveState.)

CMFCTasksPane::Serialize (Overrides .)

CMFCTasksPane::SetActivePage Activates a specified page in the task pane.

CMFCTasksPane::SetCaption Sets the caption name of a task pane.

CMFCTasksPane::SetGroupCaptionHeight Sets the height of a group caption.

CMFCTasksPane::SetGroupCaptionHorzOffset Sets the horizontal offset of a group caption.

CMFCTasksPane::SetGroupCaptionVertOffset Sets the vertical offset of a group caption.

CMFCTasksPane::SetGroupName Sets a group name.

CMFCTasksPane::SetGroupTextColor Sets the text color for a group caption.

CMFCTasksPane::SetGroupVertOffset Sets the vertical offset for a group.

CMFCTasksPane::SetHorzMargin Sets the horizontal spacing between a task pane and the
edges of the client area.

CMFCTasksPane::SetIconsList Sets the image list associated with tasks.

CMFCTasksPane::SetPageCaption Sets the caption text for a task pane page.

CMFCTasksPane::SetTaskName Sets the name for a task.

NAME DESCRIPTION

CMFCTasksPane::SetTasksIconHorzOffset

CMFCTasksPane::SetTasksIconVertOffset

CMFCTasksPane::SetTaskTextColor Sets the text color for a task.

CMFCTasksPane::SetTasksHorzOffset Sets the horizontal offset of tasks from the left and right
edges of their parent groups.

CMFCTasksPane::SetVertMargin Sets the vertical spacing between a task pane and the edges
of the client area.

CMFCTasksPane::SetWindowHeight Sets the height for a window.

CMFCTasksPane::ShowCommandMessageString

CMFCTasksPane::ShowTask Shows or hides a task.

CMFCTasksPane::ShowTaskByCmdId Shows or hides a task based on its command ID.

CMFCTasksPane::Update Updates the GUI elements that belong to a task pane.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCTasksPane::OnActivateTasksPanePage Called by the framework when a new task pane page is
activated.

Remarks
The CMFCTasksPane class implements the following functionality:

Items can be grouped and each item grouping can have an associated caption.

Item groupings can be collapsed or expanded.

An icon can be assigned to each item in the task pane.

Individual items can be associated with a command ID which executes when a user clicks the item. When
the click occurs, the WM_COMMAND message is sent to the owner of the task pane control.

To use the CMFCTasksPane control in your application, follow these steps:

1. Embed a CMFCTasksPane object into the main frame window class.

2. When processing the WM_CREATE message, call the Create method. You can use the regular
CControlBar styles. For more information, see CControlBar::Create .

3. Call the CMFCTasksPane::AddGroup method to add various groups.

4. Call the CMFCTasksPane::AddTask, CMFCTasksPane::AddLabel or CMFCTasksPane::AddMRUFilesList
member functions to add new items (tasks) to each group.

5. Call CMFCTasksPane::EnableGroupCollapse to specify whether item groups can collapse.

Example

The following illustration shows a typical task pane control. The first group is a special group and its caption is a
darker color. The third group is collapsed. The last group is aligned to the bottom of the task pane and has no
caption, and the last task in the group is a simple label:

You can customize the appearance of the task pane by adjusting various margins and offsets. The following
illustration clarifies the meaning of these variables:

The following example demonstrates how to construct a CMFCTasksPane object and use various methods in the
CMFCTasksPane class. The example shows how to enable the collapsing of task groups, enable the drop-down

menus on the Next and Previous navigation buttons, enable the scroll buttons instead of a scroll bar, enable the
word wrapping for the text in labels, set the caption name of the task pane, set the text color for a group caption,
and set the horizontal and vertical margins.

CMFCTasksPane* tPane = new CMFCTasksPane();
tPane->EnableGroupCollapse(true);
tPane->EnableHistoryMenuButtons(true);
tPane->EnableScrollButtons(true);
tPane->EnableWrapLabels(true);
tPane->SetCaption(_T("Task Pane"));
tPane->SetGroupTextColor(0,RGB(0,0,128));
tPane->SetHorzMargin(15);
tPane->SetVertMargin(15);
tPane->Update();

Inheritance Hierarchy

Requirements

CMFCTasksPane::AddGroup

int AddGroup(
 int nPageIdx,
 LPCTSTR lpszGroupName,
 BOOL bBottomLocation = FALSE,
 BOOL bSpecial = FALSE,
 HICON hIcon = NULL);

int AddGroup(
 LPCTSTR lpszGroupName,
 BOOL bBottomLocation = FALSE,
 BOOL bSpecial = FALSE,
 HICON hIcon = NULL);

ParametersParameters

Return ValueReturn Value

CObject CCmdTarget CWnd

CBasePane CPane CDockablePane

CMFCTasksPane

Header: afxTasksPane.h

Adds a new group of tasks to the task pane control.

nPageIdx
[in] Specifies the zero-based page index.

lpszGroupName
[in] Specifies the group name.

bBottomLocation
[in] TRUE to create the group at the bottom of the task pane control; otherwise, FALSE.

bSpecial
[in] TRUE to mark this group as a special group; otherwise, FALSE. For more information about special groups,
see the Remarks section of CMFCTasksPane .

hIcon
[in] Specifies the icon to display in the group caption.

RemarksRemarks

CMFCTasksPane::AddLabel

int AddLabel(
 int nGroup,
 LPCTSTR lpszLabelName,
 int nTaskIcon = -1,
 BOOL bIsBold = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::AddMRUFilesList

int AddMRUFilesList(
 int nGroup,
 int nMaxFiles = 4);

ParametersParameters

The zero-based index of the group in the internal list of groups that the class maintains.

Call this method to create a group of tasks and to add that group to the task pane control.

The framework displays task groups at the top of the task pane control or at the bottom. The framework can
display only one group at the bottom; this group must be added last.

Adds a label to the specified task group.

nGroup
[in] Specifies the index of the group where the label is added.

lpszLabelName
[in] Specifies the name of the label.

nTaskIcon
[in] Specifies the icon to display next to the label. The framework stores icons in a list of images. This parameter
is an index into that list.

bIsBold
[in] TRUE to display the label in bold text; otherwise, FALSE.

The zero-based index of the group where the label was added, or -1 if the group specified by nGroup does not
exist.

The framework handles tasks and labels differently. When a user clicks on a task, the framework executes a
command. When a user clicks on a label, no command is executed. For more information, see
CMFCTasksPane::AddTask.

Adds a task for each file stored in a Most Recently Used (MRU) files list into a group.

nGroup
[in] Specifies the index of a group. This method adds the MRU files list to the group specified by this parameter.

nMaxFiles
[in] Specifies the number of files to display in the MRU files list.

Return ValueReturn Value

CMFCTasksPane::AddPage

int AddPage(LPCTSTR lpszPageLabel);

ParametersParameters

Return ValueReturn Value

CMFCTasksPane::AddSeparator
int AddSeparator(int nGroup);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::AddTask

int AddTask(
 int nGroup,
 LPCTSTR lpszTaskName,
 int nTaskIcon = -1,
 UINT uiCommandID = 0,
 DWORD dwUserData = 0);

ParametersParameters

The zero-based index of the group where the MRU files list was added, or -1 if the group specified by nGroup
does not exist.

Adds a page to the task pane.

lpszPageLabel
[in] Specifies the label for the page.

The zero-based index of the new page.

[in] nGroup

Adds a task to the specified task group.

nGroup
[in] Specifies the group index where the task is added.

lpszTaskName
[in] Specifies the name of the task.

nTaskIcon
[in] Specifies the icon to display next to the task. The framework stores icons in a list of images. This parameter
is an index into that list.

uiCommandID
[in] Specifies the command ID of the command to execute when the user clicks the task. The task is treated as a
label if uiCommandID is 0.

Return ValueReturn Value

CMFCTasksPane::AddWindow

int AddWindow(
 int nGroup,
 HWND hwndTask,
 int nWndHeight,
 BOOL bAutoDestroyWindow = FALSE,
 DWORD dwUserData = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::CMFCTasksPane

CMFCTasksPane();

CMFCTasksPane::CollapseAllGroups

dwUserData
[in] Specifies the user-defined data to be associated with the task.

The zero-based index of the group where the task was added, or -1 if the group specified by nGroup does not
exist.

Adds a child window to the task pane.

nGroup
[in] Specifies the group index where the window is added.

hwndTask
[in] Specifies the handle of the window to add.

nWndHeight
[in] Specifies the height of the window.

bAutoDestroyWindow
[in] TRUE to destroy the window when the task is removed; otherwise, FALSE.

dwUserData
[in] Specifies the user-defined data associated with the task.

The zero-based index of the group where the window was added, or -1 if the group specified by nGroup does
not exist.

Call this method to add a control to a task pane. For example, you can add an edit control that functions like a
search bar.

Constructs a CMFCTasksPane object.

void CollapseAllGroups(BOOL bCollapse = TRUE);

void CollapseAllGroups(
 int nPageIdx,
 BOOL bCollapse);

ParametersParameters

RemarksRemarks

CMFCTasksPane::CollapseGroup

BOOL CollapseGroup(
 CMFCTasksPaneTaskGroup* pGroup,
 BOOL bCollapse = TRUE);

BOOL CollapseGroup(
 int nGroup,
 BOOL bCollapse = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::CreateDefaultMiniframe
virtual CPaneFrameWnd* CreateDefaultMiniframe(CRect rectInitial);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::CreateMenu

[in] bCollapse
[in] nPageIdx

Collapses or expands a group.

pGroup
[in] Specifies the group to collapse.

bCollapse
[in] TRUE to collapse the group; FALSE to expand the group.

nGroup
[in] Specifies the zero-based index of the group to collapse in the internal list of groups.

TRUE if the group collapses or expands successfully; otherwise, FALSE.

A collapsed group shows only the group caption; the list of tasks is hidden.

[in] rectInitial

Creates a menu that appears when a user clicks the Other Tasks Panes menu button.

HMENU CreateMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::EnableAnimation

void EnableAnimation(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMFCTasksPane::EnableGroupCollapse

void EnableGroupCollapse(BOOL bEnable);

ParametersParameters

RemarksRemarks

CMFCTasksPane::EnableHistoryMenuButtons

void EnableHistoryMenuButtons(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

A handle to the new menu.

Override this method in a derived class to customize the menu for a task pane.

The pop-up menu that this method creates contains the list of pages in the task pane. The menu displays a check
mark next to the active page.

Enables or disables the animation that occurs when a task group expands or collapses.

bEnable
[in] TRUE to enable the animation that occurs when a task group expands or collapses; otherwise, FALSE.

By default, the animation that occurs when a task group expands or collapses is enabled.

Specifies whether a user can collapse task groups.

bEnable
[in] TRUE if users can collapse task groups; otherwise, FALSE.

A task group that is collapsed displays only the group caption; the list of tasks is hidden.

Enables drop-down menus on the Next and Previous navigation buttons.

bEnable
[in] TRUE to enable drop-down menus on the Next and Previous navigation buttons; otherwise, FALSE.

By default, the drop-down menus on the Next and Previous buttons are disabled.

The menus contain the history of tasks pages that the user used.

CMFCTasksPane::EnableNavigationToolbar

void EnableNavigationToolbar(
 BOOL bEnable = TRUE,
 UINT uiToolbarBmpRes = 0,
 CSize sizeToolbarImage = CSize(0,
 0),
 CSize sizeToolbarButton = CSize(0,
 0));

ParametersParameters

RemarksRemarks

CMFCTasksPane::EnableOffsetCustomControls
void EnableOffsetCustomControls(BOOL bEnable);

ParametersParameters

RemarksRemarks

CMFCTasksPane::EnableScrollButtons

void EnableScrollButtons(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

Enables or disables the navigation toolbar.

bEnable
[in] TRUE to enable the navigation toolbar; otherwise, FALSE.

uiToolbarBmpRes
[in] Specifies the resource ID of the bitmap that contains the images to display on the toolbar.

sizeToolbarImage
[in] Specifies the size of a toolbar image.

sizeToolbarButton
[in] Specifies the size of a toolbar button.

The navigation toolbar is a toolbar that the framework displays at the top of the task pane. The navigation
toolbar contains the Back, Forward, and Home navigation buttons and a menu button that contains the list of
available pages.

By default, the framework does not display the navigation toolbar. If the navigation toolbar is not displayed, the
navigation buttons are located on the caption of the docking bar.

[in] bEnable

Enables scroll buttons instead of a scroll bar.

bEnable
[in] TRUE to display scroll buttons in the task pane instead of a scroll bar; otherwise, FALSE.

By default, the framework displays scroll buttons in the task pane.

CMFCTasksPane::EnableWrapLabels

void EnableWrapLabels(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMFCTasksPane::EnableWrapTasks

void EnableWrapTasks(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMFCTasksPane::GetActivePage

int GetActivePage() const;

Return ValueReturn Value

CMFCTasksPane::GetGroupCaptionHeight

int GetGroupCaptionHeight() const;

Return ValueReturn Value

CMFCTasksPane::GetGroupCaptionHorzOffset

int GetGroupCaptionHorzOffset() const;

Enables or disables word wrapping for the text in labels.

bEnable
[in] TRUE to wrap the text in labels that appear on the task pane; otherwise, FALSE.

By default, the framework does not wrap the text in labels. When word wrapping is enabled, the text in labels can
appear in multiple lines. The label can include line breaking markers such as \n and the underline marker & .

Enables or disables word wrapping for the text in tasks.

bEnable
[in] TRUE to wrap tasks in the task pane; otherwise, FALSE.

By default, word wrapping for tasks is disabled.

Returns the zero-based index for the active page.

The zero-based index of the active page.

Returns the height of the group caption.

The height of the group caption, in pixels.

Returns the horizontal offset of a group caption.

Return ValueReturn Value

CMFCTasksPane::GetGroupCaptionVertOffset

int GetGroupCaptionVertOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::GetGroupCount

int GetGroupCount() const;

Return ValueReturn Value

CMFCTasksPane::GetGroupLocation

BOOL GetGroupLocation(
 CMFCTasksPaneTaskGroup* pGroup,
 int& nGroup) const;

ParametersParameters

Return ValueReturn Value

CMFCTasksPane::GetGroupVertOffset

int GetGroupVertOffset() const;

Return ValueReturn Value

The horizontal offset of a group caption. The horizontal offset is the distance in pixels from the left or right edge
of the task pane.

Returns the vertical offset of a group caption.

The vertical offset of a group caption from the top and bottom edges of the task pane.

The default value for the vertical offset is 7 pixels.

Returns the total number of groups.

The total number of groups in the task pane.

Returns the internal group index for the specified group.

pGroup
[in] Specifies the task group whose location is retrieved.

nGroup
[out] Contains the zero-based index of the task group.

TRUE if the task group was found; otherwise, FALSE.

Returns the vertical offset of a group.

The vertical offset of a group, in pixels.

CMFCTasksPane::GetHorzMargin

int GetHorzMargin() const;

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::GetNextPages
void GetNextPages(CStringList& lstNextPages) const;

ParametersParameters

RemarksRemarks

CMFCTasksPane::GetPageByGroup

BOOL GetPageByGroup(
 int nGroup,
 int& nPage) const;

ParametersParameters

Return ValueReturn Value

CMFCTasksPane::GetPagesCount

int GetPagesCount() const;

Return ValueReturn Value

CMFCTasksPane::GetPreviousPages

Returns the horizontal spacing between a task pane and the edge of the client area.

The horizontal spacing between a task pane and the edge of the client area.

The default spacing between a task pane and the edge of the client area is 12 pixels.

[in] lstNextPages

Retrieves the page index for a specified group.

nGroup
[in] Specifies the zero-based index of the task group.

nPage
[out] Contains the page index for the specified group. If the task group only contains a default page, the returned
value is 0.

TRUE if the group nGroup exists; otherwise, FALSE.

Returns the number of pages.

The number of pages in the task pane.

void GetPreviousPages(CStringList& lstPrevPages) const;

ParametersParameters

RemarksRemarks

CMFCTasksPane::GetScrollBarCtrl
virtual CScrollBar* GetScrollBarCtrl(int nBar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::GetTask

CMFCTasksPaneTask* GetTask(
 int nGroup,
 int nTask) const;

ParametersParameters

Return ValueReturn Value

CMFCTasksPane::GetTaskCount

int GetTaskCount(int nGroup) const;

ParametersParameters

Return ValueReturn Value

CMFCTasksPane::GetTaskGroup

[in] lstPrevPages

[in] nBar

Retrieves a task.

nGroup
[in] Specifies the zero-based index of the group that contains the task.

nTask
[in] Specifies the zero-based index of the task in the list specified by nGroup.

The task at the specified index.

Returns the number of tasks in a specified group.

nGroup
[in] Specifies the index of the task group.

The number of tasks in the specified group, or 0 if nGroup is invalid.

Returns a task group for a specified group index.

CMFCTasksPaneTaskGroup* GetTaskGroup(int nGroup) const;

ParametersParameters

Return ValueReturn Value

CMFCTasksPane::GetTaskLocation

BOOL GetTaskLocation(
 UINT uiCommandID,
 int& nGroup,
 int& nTask) const;

BOOL GetTaskLocation(
 HWND hwndTask,
 int& nGroup,
 int& nTask) const;

BOOL GetTaskLocation(
 CMFCTasksPaneTask* pTask,
 int& nGroup,
 int& nTask) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::GetTasksHorzOffset

nGroup
[in] Specifies the zero-based index of the group to retrieve.

The task group at the specified index.

Returns the group and the index for a specified task.

uiCommandID
[in] Specifies the command ID of the task to find.

nGroup
[out] Contains the group index of the task.

nTask
[out] Contains the index of the task in the task group.

hwndTask
[in] Specifies the window associated with the task.

pTask
[in] Specifies the task to find.

TRUE if the task location was found; FALSE if the specified task does not exist.

This method retrieves the group index and task index for the specified task. If the method returns FALSE,
nGroup and nTask are set to -1.

Returns the horizontal offset of tasks.

int GetTasksHorzOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::GetTasksIconHorzOffset
int GetTasksIconHorzOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::GetTasksIconVertOffset
int GetTasksIconVertOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::GetVertMargin

int GetVertMargin() const;

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::IsAccessibilityCompatible
virtual BOOL IsAccessibilityCompatible();

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::IsAnimationEnabled

BOOL IsAnimationEnabled() const;

The horizontal offset of tasks from the left and right edges of their parent groups.

The default horizontal offset of tasks is 12 pixels.

Returns the vertical margin between a task pane and the edges of the client area.

The vertical margin between a task pane and the edges of the client area.

The vertical margin is the space between a task pane and the edges of the client area. The default value of the
vertical margin is 12 pixels.

Indicates whether animation is enabled.

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::IsBackButtonEnabled

BOOL IsBackButtonEnabled() const;

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::IsForwardButtonEnabled

BOOL IsForwardButtonEnabled() const;

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::IsGroupCollapseEnabled
BOOL IsGroupCollapseEnabled() const;

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::IsHistoryMenuButtonsEnabled

BOOL IsHistoryMenuButtonsEnabled() const;

Return ValueReturn Value

CMFCTasksPane::IsNavigationToolbarEnabled

TRUE if the animation that occurs when a user expands or collapses a group is enabled; otherwise, FALSE.

Call CMFCTasksPane::EnableAnimation to enable or disable animation.

Indicates whether the back button is enabled.

TRUE if the back button is enabled; otherwise, FALSE.

When a user clicks the back button, the framework displays the previous task page.

Indicates whether the forward button is enabled.

TRUE if the forward button is enabled; otherwise, FALSE.

The forward button enables forward navigation in the history of task pages.

Indicates whether the Next and Previous navigation buttons have drop-down menus.

TRUE if the Next and Previous navigation buttons have drop-down menus; otherwise, FALSE.

Indicates whether the navigation toolbar is enabled.

BOOL IsNavigationToolbarEnabled() const;

Return ValueReturn Value

CMFCTasksPane::IsToolBox
virtual BOOL IsToolBox() const;

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::IsWrapLabelsEnabled

BOOL IsWrapLabelsEnabled() const;

Return ValueReturn Value

CMFCTasksPane::IsWrapTasksEnabled

BOOL IsWrapTasksEnabled() const;

Return ValueReturn Value

CMFCTasksPane::LoadState
virtual BOOL LoadState(
 LPCTSTR lpszProfileName = NULL,
 int nIndex = -1,
 UINT uiID = (UINT) -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::OnActivateTasksPanePage

TRUE if the navigation toolbar is enabled; otherwise, FALSE.

Indicates whether the task pane wraps words in labels.

TRUE if words in labels are wrapped; otherwise, FALSE.

Specifies whether the framework wraps the task string.

TRUE if the task string is wrapped; otherwise, FALSE.

[in] lpszProfileName
[in] nIndex
[in] uiID

Called by the framework when it makes a task pane page active.

virtual void OnActivateTasksPanePage();

RemarksRemarks

CMFCTasksPane::OnCancel
virtual void OnCancel();

RemarksRemarks

CMFCTasksPane::OnClickTask

virtual void OnClickTask(
 int nGroupNumber,
 int nTaskNumber,
 UINT uiCommandID,
 DWORD dwUserData);

ParametersParameters

RemarksRemarks

CMFCTasksPane::OnOK
virtual void OnOK();

RemarksRemarks

CMFCTasksPane::OnPressBackButton

Override this method in a derived class to customize the appearance of the task pane page.

Called by the framework when the user clicks an item in the task pane.

nGroupNumber
[in] Specifies the zero-based index of the group that contains the clicked task.

nTaskNumber
[in] Specifies the zero-based index of the clicked task.

uiCommandID
[in] Specifies the command ID associated with the task.

dwUserData
[in] Contains user-defined data associated with the clicked task.

The framework calls this method when a user clicks a task. By default, the framework checks the command ID
associated with the clicked task and, if it is not zero, sends the WM_COMMAND message to the owner of the
task pane control.

Override this method in a derived class to execute custom code when a task is clicked.

Called by the framework when the user clicks the back button.

virtual void OnPressBackButton();

RemarksRemarks

CMFCTasksPane::OnPressForwardButton

virtual void OnPressForwardButton();

RemarksRemarks

CMFCTasksPane::OnPressHomeButton

virtual void OnPressHomeButton();

RemarksRemarks

CMFCTasksPane::OnPressOtherButton
virtual void OnPressOtherButton(
 CMFCCaptionMenuButton* pbtn,
 CWnd* pWndOwner);

ParametersParameters

RemarksRemarks

CMFCTasksPane::OnSetAccData
virtual BOOL OnSetAccData(long lVal);

ParametersParameters

Return ValueReturn Value

By default, the framework displays the previously viewed page.

Override this method in a derived class to execute custom code when the user clicks the back button.

Called by the framework when the user clicks the forward navigation button.

By default, the framework displays the page that the user viewed before clicking the Back button.

Override this method in a derived class to execute custom code when the user clicks the forward button.

Called by the framework when the user clicks the home navigation button.

By default, the framework displays the default page for the task group.

Override this method in a derived class to execute custom code when the user clicks the home navigation
button.

[in] pbtn
[in] pWndOwner

[in] lVal

RemarksRemarks

CMFCTasksPane::OnUpdateCmdUI
virtual void OnUpdateCmdUI(
 CFrameWnd* pTarget,
 BOOL bDisableIfNoHndler);

ParametersParameters

RemarksRemarks

CMFCTasksPane::PreTranslateMessage
virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::RecalcLayout
void RecalcLayout(BOOL bRedraw = TRUE);

ParametersParameters

RemarksRemarks

CMFCTasksPane::RemoveAllGroups

void RemoveAllGroups(int nPageIdx = 0);

ParametersParameters

RemarksRemarks

CMFCTasksPane::RemoveAllPages

[in] pTarget
[in] bDisableIfNoHndler

[in] pMsg

[in] bRedraw

Removes all groups on the specified page.

nPageIdx
[in] Specifies the zero-based index of the page.

Removes all groups on the page specified by nPageIdx, or all groups if there is only a default page.

Removes all pages from the task pane except the default (first) page.

void RemoveAllPages();

CMFCTasksPane::RemoveAllTasks

void RemoveAllTasks(int nGroup);

ParametersParameters

CMFCTasksPane::RemoveGroup

void RemoveGroup(int nGroup);

ParametersParameters

RemarksRemarks

CMFCTasksPane::RemovePage

void RemovePage(int nPageIdx);

ParametersParameters

CMFCTasksPane::RemoveTask

BOOL RemoveTask(
 int nGroup,
 int nTask,
 BOOL bRedraw = TRUE);

ParametersParameters

Removes all tasks from the specified group.

nGroup
[in] Specifies the zero-based index of the group.

Removes a group.

nGroup
[in] Specifies the zero-based index of the group to remove.

This method removes a single group. To remove all groups, call CMFCTasksPane::RemoveAllGroups instead.

When the framework removes a group, all tasks and user windows associated with it are destroyed.

Removes a specified page from the task pane.

nPageIdx
[in] Specifies the zero-based index of the page to remove.

Removes a task from a task group.

nGroup
[in] Specifies the zero-based index of the task group that contains the task to remove.

Return ValueReturn Value

CMFCTasksPane::SaveState
virtual BOOL SaveState(
 LPCTSTR lpszProfileName = NULL,
 int nIndex = -1,
 UINT uiID = (UINT) -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::Serialize
virtual void Serialize(CArchive& ar);

ParametersParameters

RemarksRemarks

CMFCTasksPane::SetActivePage

void SetActivePage(int nPageIdx);

ParametersParameters

RemarksRemarks

CMFCTasksPane::SetCaption

void SetCaption(LPCTSTR lpszName);

nTask
[in] Specifies the zero-based index of the task to remove.

bRedraw
[in] TRUE to redraw the task pane; otherwise, FALSE.

TRUE if the function succeeds; FALSE if nGroup or nTask is invalid.

[in] lpszProfileName
[in] nIndex
[in] uiID

[in] ar

Makes the specified page in the task pane active.

nPageIdx
[in] Specifies the zero-based index of the page to display.

This method asserts if the nPageIdx is invalid.

Sets the caption name of a task pane.

ParametersParameters

RemarksRemarks

CMFCTasksPane::SetGroupCaptionHeight

void SetGroupCaptionHeight(int n = -1);

ParametersParameters

RemarksRemarks

CMFCTasksPane::SetGroupCaptionHorzOffset

void SetGroupCaptionHorzOffset(int n = -1);

ParametersParameters

CMFCTasksPane::SetGroupCaptionVertOffset

void SetGroupCaptionVertOffset(int n = -1);

ParametersParameters

CMFCTasksPane::SetGroupName

BOOL SetGroupName(
 int nGroup,
 LPCTSTR lpszGroupName);

lpszName
[in] Specifies the caption name.

If a task pane has multiple pages, the default page has the caption that was set by using this function.

Sets the height of a group caption.

n
[in] Specifies the caption height.

Call this method to customize the margins of the task pane elements.

If n is -1, the framework determines the margin value by using the visual manager (
CMFCVisualManager::GetTasksPaneGroupCaptionHeight). The default caption height is 25 pixels.

Sets the horizontal offset of a group caption.

n
[in] Specifies the horizontal offset of the group caption.

Sets the vertical offset of a group caption.

n
[in] Specifies the vertical offset, in pixels, of the group caption.

Sets a group name.

ParametersParameters

Return ValueReturn Value

CMFCTasksPane::SetGroupTextColor

BOOL SetGroupTextColor(
 int nGroup,
 COLORREF color,
 COLORREF colorHot = (COLORREF)-1);

ParametersParameters

Return ValueReturn Value

CMFCTasksPane::SetGroupVertOffset

void SetGroupVertOffset(int n = -1);

ParametersParameters

RemarksRemarks

CMFCTasksPane::SetHorzMargin

nGroup
[in] Specifies the zero-based index of the group.

lpszGroupName
[in] Specifies the name of the group.

TRUE if the group name was successfully set; otherwise, FALSE.

Sets the text color for a group caption.

nGroup
[in] Specifies the zero-based index of the group.

color
[in] Specifies the text color.

colorHot
[in] Specifies the text color for the highlighted group. If -1, the default highlight color is used.

TRUE if the group text color was successfully changed; otherwise, FALSE.

Sets the vertical offset for a group.

n
[in] Specifies the vertical offset.

The vertical offset is the distance between a task group and the border of the task pane.

Call this method to customize the margins of task pane elements. If n is -1, the framework determines the
margin value by using the visual manager (CMFCVisualManager::GetTasksPaneGroupVertOffset). The default offset
is 15 pixels.

Sets the horizontal margin.

void SetHorzMargin(int n = -1);

ParametersParameters

RemarksRemarks

CMFCTasksPane::SetIconsList

BOOL SetIconsList(
 UINT uiImageListResID,
 int cx,
 COLORREF clrTransparent = RGB(255, 0, 255));

void SetIconsList(HIMAGELIST hIcons);

ParametersParameters

RemarksRemarks

CMFCTasksPane::SetPageCaption

void SetPageCaption(
 int nPageIdx,
 LPCTSTR lpszName);

ParametersParameters

n
[in] Specifies the margin, in pixels.

The horizontal margin is the distance between a task pane and the top or bottom edge of the client area.

If n is -1, and the framework determines the margin value by using the visual manager (
CMFCVisualManager::GetTasksPaneHorzMargin). The default horizontal margin is 12 pixels.

Sets the image list.

uiImageListResID
[in] Specifies the resource ID of the image list.

cx
[in] Specifies the size of icons in the image list.

clrTransparent
[in] Specifies the transparent color.

hIcons
[in] Specifies the image list that contains the icons for the task pane.

The framework stores icons in an image list. Tasks are associated with icons that are stored in that list.

This method associates an image list with the task pane control. To set the icon for a task when you call
CMFCTasksPane::AddTask, set nTaskIcon to the appropriate zero-based index in this image list.

Sets the caption text for a task pane page.

nPageIdx
[in] Specifies the zero-based index of the page.

lpszName

RemarksRemarks

CMFCTasksPane::SetTaskName

BOOL SetTaskName(
 int nGroup,
 int nTask,
 LPCTSTR lpszTaskName);

ParametersParameters

Return ValueReturn Value

CMFCTasksPane::SetTasksHorzOffset

void SetTasksHorzOffset(int n = -1);

ParametersParameters

RemarksRemarks

CMFCTasksPane::SetTasksIconHorzOffset
void SetTasksIconHorzOffset(int n = -1);

ParametersParameters

RemarksRemarks

[in] Specifies the caption text to display on the page.

If a task pane has multiple pages, the default page has the caption that was set by using this method.

Sets the name for a task.

nGroup
[in] Specifies the zero-based index of the task group.

nTask
[in] Specifies the zero-based index of the task.

lpszTaskName
[in] Specifies the task name.

TRUE if the task name was successfully set; otherwise, FALSE.

Sets the horizontal offset for tasks.

n
[in] Specifies the horizontal offset.

The horizontal offset is the distance in pixels from the left and right edges of a group.

If n is -1, this method sets the horizontal offset to the value returned by the
CMFCVisualManager::GetTasksPaneTaskHorzOffset method.

The default horizontal offset is 12 pixels.

[in] n

CMFCTasksPane::SetTasksIconVertOffset
void SetTasksIconVertOffset(int n = -1);

ParametersParameters

RemarksRemarks

CMFCTasksPane::SetTaskTextColor

BOOL SetTaskTextColor(
 int nGroup,
 int nTask,
 COLORREF color,
 COLORREF colorHot = (COLORREF)-1);

ParametersParameters

Return ValueReturn Value

CMFCTasksPane::SetVertMargin

void SetVertMargin(int n = -1);

ParametersParameters

RemarksRemarks

CMFCTasksPane::SetWindowHeight

[in] n

Sets the text color for a task.

nGroup
[in] Specifies the zero-based index of the task group that contains the task.

nTask
[in] Specifies the zero-based index of the task.

color
[in] Specifies the text color for the task.

colorHot
[in] Specifies the text color for the highlighted group. If -1, this method uses the default highlight color.

TRUE if the text color for the task was successfully set; otherwise, FALSE.

Sets the vertical margin.

n
[in] Specifies the vertical margin to set.

The vertical margin is the distance between a task pane and the vertical edges of the client area.

If n is -1, the framework determines the margin value by using the visual manager (
CMFCVisualManager::GetTasksPaneVertMargin). The default margin is 12 pixels.

Sets the height for a window control.

BOOL SetWindowHeight(
 int nGroup,
 HWND hwndTask,
 int nWndHeight);

BOOL SetWindowHeight(
 HWND hwndTask,
 int nWndHeight);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::ShowCommandMessageString
virtual void ShowCommandMessageString(UINT uiCmdId);

ParametersParameters

RemarksRemarks

CMFCTasksPane::ShowTask

BOOL ShowTask(
 int nGroup,
 int nTask,
 BOOL bShow = TRUE,
 BOOL bRedraw = TRUE);

ParametersParameters

nGroup
[in] Specifies the zero-based index of the group that contains the window control.

hwndTask
[in] Specifies the handle to the window control.

nWndHeight
[in] Specifies the height to set.

TRUE if the height of the window control was successfully set; FALSE if nGroup is invalid or if hwndTask does
not exist.

Call CMFCTasksPane::AddWindow to add tasks with window controls.

[in] uiCmdId

Shows or hides a task.

nGroup
[in] Specifies the zero-based index of the group.

nTask
[in] Specifies the zero-based index of the task to show or hide.

bShow
[in] TRUE to show the task; FALSE to hide the task.

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::ShowTaskByCmdId

BOOL ShowTaskByCmdId(
 UINT uiCommandID,
 BOOL bShow = TRUE,
 BOOL bRedraw = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCTasksPane::Update

virtual void Update();

RemarksRemarks

See also

bRedraw
[in] TRUE to redraw the task pane; otherwise, FALSE.

TRUE if the task was successfully shown or hidden; FALSE if the specified group or task does not exist.

Use CMFCTasksPane::ShowTaskByCmdId to show or hide a task based on its command ID.

Shows or hides a task based on its command ID.

uiCommandID
[in] Specifies the command ID of the task to show or hide.

bShow
[in] TRUE to show the task; FALSE to hide the task.

bRedraw
[in] TRUE to redraw the task pane; otherwise, FALSE.

TRUE if the task was successfully shown or hidden; FALSE if a task with the specified command ID does not
exist.

Use CMFCTasksPane::ShowTask to show or hide a task based on its command ID.

Refreshes all of the controls in a task pane.

This method updates the task pane caption, adjusts the scroll bar, repositions all tasks, and redraws all of the task
pane controls.

Override this method in a derived class to execute custom code when the framework refreshes the task pane.

Hierarchy Chart
Classes
CMFCTasksPaneTaskGroup Class
CMFCTasksPaneTask Class
CMFCOutlookBar Class

CMFCVisualManager Class

CMFCTasksPaneTask Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCTasksPaneTask : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCTasksPaneTask::CMFCTasksPaneTask Creates and initializes a CMFCTasksPaneTask object.

CMFCTasksPaneTask::~CMFCTasksPaneTask Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCTasksPaneTask::SetACCData Determines the accessibility data for the current task.

Data MembersData Members

NAME DESCRIPTION

CMFCTasksPaneTask::m_bAutoDestroyWindow Determines whether the task window is automatically
destroyed.

CMFCTasksPaneTask::m_bIsBold Determines whether the framework draws a task label in bold
text.

CMFCTasksPaneTask::m_dwUserData Contains user-defined data that the framework associates
with the task. Set to zero if the task has no associated data.

CMFCTasksPaneTask::m_hwndTask A handle to the task window.

CMFCTasksPaneTask::m_nIcon The index in the image list of the image that the framework
displays next to the task.

CMFCTasksPaneTask::m_nWindowHeight The height of the task window. If the task has no task window,
this value is zero.

The CMFCTasksPaneTask class is a helper class that represents tasks for the task pane control (CMFCTasksPane).
The task object represents an item in the task group (CMFCTasksPaneTaskGroup). Each task can have a
command that the framework executes when a user clicks on the task and an icon that appears to the left of the
task name.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctaskspanetask-class.md

CMFCTasksPaneTask::m_pGroup A pointer to the CMFCTasksPaneTaskGroup that this task
belongs to.

CMFCTasksPaneTask::m_rect Specifies the bounding rectangle of the task.

CMFCTasksPaneTask::m_strName The name of the task.

CMFCTasksPaneTask::m_uiCommandID Specifies the command ID of the command that the
framework executes when the user clicks the task. If this value
is not a valid command ID, the task is treated as a simple
label.

NAME DESCRIPTION

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

CMFCTasksPaneTask::CMFCTasksPaneTask

CMFCTasksPaneTask(
 CMFCTasksPaneTaskGroup* pGroup,
 LPCTSTR lpszName,
 int nIcon,
 UINT uiCommandID,
 DWORD dwUserData = 0,
 HWND hwndTask = NULL,
 BOOL bAutoDestroyWindow = FALSE,
 int nWindowHeight = 0);

ParametersParameters

The following illustration shows a task group that contains three tasks:

If a task does not have a valid command ID, it is treated as a simple label.

CObject

CMFCTasksPaneTask

Header: afxTasksPane.h

Creates and initializes a CMFCTasksPaneTask object.

pGroup
Specifies the CMFCTasksPaneTaskGroup to which the task belongs.

RemarksRemarks

CMFCTasksPaneTask::m_bAutoDestroyWindow

BOOL m_bAutoDestroyWindow;

RemarksRemarks

CMFCTasksPaneTask::m_bIsBold

BOOL m_bIsBold;

RemarksRemarks

CMFCTasksPaneTask::m_dwUserData

DWORD m_dwUserData;

RemarksRemarks

CMFCTasksPaneTask::m_hwndTask

lpszName
Specifies the name of the task.

nIcon
Specifies the index of the task's image in the image list.

uiCommandID
Specifies the command ID of the command that is executed when the task is clicked.

dwUserData
User-defined data.

hwndTask
Specifies the handle to the task window.

bAutoDestroyWindow
If TRUE, the task window will be destroyed automatically.

nWindowHeight
Specifies the height of the task window.

Determines whether the task window is automatically destroyed.

Set to TRUE to specify that the task window (CMFCTasksPaneTask::m_hwndTask) should be destroyed
automatically; otherwise, FALSE.

Determines whether a task label is drawn in bold text.

Set this member to TRUE to display bold text for the task label.

Contains user-defined data that is associated with the task. Set to zero if no data is associated with the task.

A handle to the task window.

HWND m_hwndTask;

RemarksRemarks

CMFCTasksPaneTask::m_nIcon

int m_nIcon;

RemarksRemarks

CMFCTasksPaneTask::m_nWindowHeight

int m_nWindowHeight;

RemarksRemarks

CMFCTasksPaneTask::m_pGroup

CMFCTasksPaneTaskGroup* m_pGroup;

RemarksRemarks

CMFCTasksPaneTask::m_rect

CRect m_rect;

RemarksRemarks

CMFCTasksPaneTask::m_strName

CString m_strName;

RemarksRemarks

To add a task window, call CMFCTasksPane::AddWindow.

The index position in an image list that identifies an image that is displayed next to the specified task.

The image list is set by CMFCTasksPane::SetIconsList.

Set m_nIcon to -1 if you want to display the task without an image.

The height of the task window. If the task has no task window, this value is zero.

Pointer to the CMFCTasksPaneTaskGroup to which this task belongs.

Every task must have a parent group. You add groups to a task pane by calling CMFCTasksPane::AddGroup.

Specifies the bounding rectangle of the task.

This value is calculated by the framework when the task is drawn.

The name of the task.

CMFCTasksPaneTask::m_uiCommandID

UINT m_uiCommandID;

RemarksRemarks

CMFCTasksPaneTask::SetACCData

virtual BOOL SetACCData(
 CWnd* pParent,
 CAccessibilityData& data);

ParametersParameters

Return ValueReturn Value

See also

Specifies the command ID of the command that is executed when the user clicks the task. If this value is not a
valid command ID, the task is treated as a simple label.

Determines the accessibility data for the current task.

pParent
[in] Represents the parent window of the current task.

data
[out] An object of type CAccessibilityData that is populated with the accessibility data of the current task.

TRUE if the data parameter was successfully populated with the accessibility data of the current task; otherwise,
FALSE.

Hierarchy Chart
Classes
CObject Class

CMFCTasksPaneTaskGroup Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMFCTasksPaneTaskGroup : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCTasksPaneTaskGroup::CMFCTasksPaneTaskGroup Constructs a CMFCTasksPaneTaskGroup object.

CMFCTasksPaneTaskGroup::~CMFCTasksPaneTaskGroup Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCTasksPaneTaskGroup::SetACCData Determines the accessibility data for the current task group.

Data MembersData Members

NAME DESCRIPTION

CMFCTasksPaneTaskGroup::m_bIsBottom Determines whether the task group is aligned to the bottom
of the task pane control.

CMFCTasksPaneTaskGroup::m_bIsCollapsed Determines whether the task group is collapsed.

CMFCTasksPaneTaskGroup::m_bIsSpecial Determines whether the task group is special. The
framework displays special captions in a different color.

CMFCTasksPaneTaskGroup::m_lstTasks Contains the internal list of tasks.

CMFCTasksPaneTaskGroup::m_rect Specifies the bounding rectangle of the group caption.

CMFCTasksPaneTaskGroup::m_rectGroup Specifies the bounding rectangle of the group.

CMFCTasksPaneTaskGroup::m_strName Specifies the name of the group.

The CMFCTasksPaneTaskGroup class is a helper class used by the CMFCTasksPane control. Objects of type
CMFCTasksPaneTaskGroup represent a task group. The task group is a list of items that the framework displays in a

separate box that has a collapse button. The box can have an optional caption (group name). If a group is
collapsed, the list of tasks is not visible.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctaskspanetaskgroup-class.md

Remarks

Inheritance Hierarchy

Requirements

CMFCTasksPaneTaskGroup::CMFCTasksPaneTaskGroup

CMFCTasksPaneTaskGroup(
 LPCTSTR lpszName,
 BOOL bIsBottom,
 BOOL bIsSpecial=FALSE,
 BOOL bIsCollapsed=FALSE,
 CMFCTasksPanePropertyPage* pPage=NULL,
 HICON hIcon=NULL);

The following illustration shows an expanded task group:

The following illustration shows a collapsed task group:

The following illustration shows a task group without a caption:

The following illustration shows two task groups. The first task group is marked as special by setting the
m_bIsSpecial flag to TRUE, while the second task group is not special. Note how the caption for the first task

group is darker than the second task group:

CObject

CMFCTasksPaneTaskGroup

Header: afxTasksPane.h

Constructs a CMFCTasksPaneTaskGroup object.

ParametersParameters

RemarksRemarks

CMFCTasksPaneTaskGroup::m_bIsBottom

BOOL m_bIsBottom;

RemarksRemarks

CMFCTasksPaneTaskGroup::m_bIsCollapsed

BOOL m_bIsCollapsed;

RemarksRemarks

CMFCTasksPaneTaskGroup::m_bIsSpecial

BOOL m_bIsSpecial;

RemarksRemarks

lpszName
Specifies the name of the group in the group caption.

bIsBottom
Specifies whether the group is aligned to the bottom of the task pane control.

bIsSpecial
Specifies whether the group is designated as special and thus, whether the group caption is filled with a different
color.

bIsCollapsed
Specifies whether the group is collapsed.

pPage
Specifies the property page that this task group belongs to.

hIcon
Specifies the icon that displays in the group caption.

Determines whether the task group is aligned to the bottom of the task pane control.

Only one group can be aligned to the bottom of the task pane control. This task group must be added last. For
more information, see CMFCTasksPane::AddGroup.

Determines whether the task group is collapsed.

You can enable or disable the ability to collapse groups on the task pane by calling
CMFCTasksPane::EnableGroupCollapse.

Determines whether the task group is special and whether the caption for a special task group should be
identified by a different color.

If your application is using the Windows XP visual theme and m_bIsSpecial is FALSE, the framework calls
DrawThemeBackground with the EBP_NORMALGROUPBACKGROUND flag. If m_bIsSpecial is TRUE, the

framework calls DrawThemeBackground with the EBP_SPECIALGROUPBACKGROUND flag.

CMFCTasksPaneTaskGroup::m_lstTasks

CObList m_lstTasks;

RemarksRemarks

CMFCTasksPaneTaskGroup::m_rect

CRect m_rect;

RemarksRemarks

CMFCTasksPaneTaskGroup::m_rectGroup

CRect m_rectGroup;

RemarksRemarks

CMFCTasksPaneTaskGroup::m_strName

CString m_strName;

RemarksRemarks

CMFCTasksPaneTaskGroup::SetACCData

virtual BOOL SetACCData(
 CWnd* pParent,
 CAccessibilityData& data);

ParametersParameters

Contains the internal list of tasks.

To fill this list, call CMFCTasksPane::AddTask.

Specifies the bounding rectangle of the group caption.

This value is automatically calculated by the framework.

Specifies the bounding rectangle of the group.

This value is calculated automatically by the framework.

Specifies the name of the group.

If this value is empty, the group caption is not displayed and the group cannot be collapsed.

Determines the accessibility data for the current task group.

pParent
[in] Represents the parent window of the current task group.

data
[out] An object of type CAccessibilityData that is populated with the accessibility data of the current task group.

Return ValueReturn Value

See also

TRUE if the data parameter was successfully populated with the accessibility data of the current task group;
otherwise, FALSE.

Hierarchy Chart
Classes
CMFCTasksPane Class
CMFCTasksPaneTask Class
CMFCOutlookBar Class
CObject Class

CMFCToolBar Class
3/4/2019 • 69 minutes to read • Edit Online

Syntax
class CMFCToolBar : public CMFCBaseToolBar

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCToolBar::CMFCToolBar Default constructor.

CMFCToolBar::~CMFCToolBar Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolBar::AddBasicCommand Adds a menu command to the list of commands that are
always displayed when a user opens a menu.

CMFCToolBar::AddCommandUsage Increments by one the counter that is associated with the
given command.

CMFCToolBar::AddToolBarForImageCollection Adds images from the user interface resources to the
collection of images in the application.

CMFCToolBar::AdjustLayout Recalculates the size and position of a toolbar. (Overrides
CBasePane::AdjustLayout).

CMFCToolBar::AdjustSize Recalculates the size of the toolbar.

CMFCToolBar::AllowChangeTextLabels Specifies whether text labels can be shown under images
on the toolbar buttons.

CMFCToolBar::AreTextLabels Specifies whether text labels under images are currently
displayed on the toolbar buttons.

The CMFCToolBar class resembles CToolBar Class, but provides additional support for user interface
features. These include flat toolbars, toolbars with hot images, large icons, pager buttons, locked toolbars,
rebar controls, text under images, background images, and tabbed toolbars. The CMFCToolBar class also
contains built-in support for user customization of toolbars and menus, drag-and-drop between toolbars
and menus, combo box buttons, edit box buttons, color pickers, and roll-up buttons.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio
installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbar-class.md

CMFCToolBar::AutoGrayInactiveImages Enable or disables the automatic generation of inactive
button images.

CMFCToolBar::ButtonToIndex Returns the index of a specified CMFCToolBarButton Class
object in this toolbar.

CMFCToolBar::CalcFixedLayout Calculates the horizontal size of the toolbar. (Overrides
CBasePane::CalcFixedLayout.)

CMFCToolBar::CalcSize Called by the framework as part of the layout calculation
process. (Overrides CPane::CalcSize.)

CMFCToolBar::CanHandleSiblings Determines whether the toolbar and its sibling are
positioned on the same pane.

CMFCToolBar::CleanUpImages Frees the system resources allocated for toolbar images.

CMFCToolBar::CleanUpLockedImages Frees the system resources allocated for locked toolbar
images.

CMFCToolBar::CanBeClosed Specifies whether a user can close the toolbar. (Overrides
CBasePane::CanBeClosed.)

CMFCToolBar::CanBeRestored Determines whether the system can restore a toolbar to
its original state after customization.

CMFCToolBar::CanFocus Specifies whether the pane can receive focus. (Overrides
CBasePane::CanFocus.)

CMFCToolBar::CanHandleSiblings Determines whether the toolbar and its sibling are
positioned on the same pane.

CMFCToolBar::CommandToIndex Returns the index of the button in the toolbar with a
specified command ID.

CMFCToolBar::Create Creates a CMFCToolBar object.

CMFCToolBar::CreateEx Creates a CMFCToolBar object that uses additional style
options, such as large icons.

CMFCToolBar::Deactivate Deactivates the toolbar.

CMFCToolBar::EnableCustomizeButton Enables or disables the Add or Remove Buttons button
that appears on the end of the toolbar.

CMFCToolBar::EnableDocking Enables docking of the pane to the main frame.
(Overrides CBasePane::EnableDocking.)

CMFCToolBar::EnableLargeIcons Enables or disables large icons on toolbar buttons.

CMFCToolBar::EnableQuickCustomization Enables or disables the quick customization of toolbars so
that the user can press the Alt key and drag a button to
a new location.

NAME DESCRIPTION

CMFCToolBar::EnableReflections Enables or disables command reflection.

CMFCToolBar::EnableTextLabels Enables or disables text labels under toolbar button
images.

CMFCToolBar::FromHandlePermanent Retrieves a pointer to the CMFCToolBar object that
contains the given window handle.

CMFCToolBar::GetAllButtons Returns a read-only list of buttons in a toolbar.

CMFCToolBar::GetAllToolbars Returns a read-only list of all toolbars in the application.

CMFCToolBar::GetBasicCommands Returns a read-only list of the basic commands defined in
the application.

CMFCToolBar::GetButton Returns a pointer to the CMFCToolBarButton object that
has a specified toolbar button index.

CMFCToolBar::GetButtonInfo Returns the command ID, style, and image index of the
button at a specified index.

CMFCToolBar::GetButtonSize Returns the dimensions of each button on the toolbar.

CMFCToolBar::GetButtonStyle Returns the current style of the toolbar button that is
located at the specified index.

CMFCToolBar::GetButtonText Returns the text label of a button that has a specified
index.

CMFCToolBar::GetColdImages Returns a pointer to the collection of cold toolbar button
images in the application.

CMFCToolBar::GetColumnWidth Returns the width of the toolbar buttons.

CMFCToolBar::GetCommandButtons Returns a list of buttons that have a specified command
ID from all toolbars in the application.

CMFCToolBar::GetCount Returns the number of buttons and separators on the
toolbar.

CMFCToolBar::GetCustomizeButton Retrieves a pointer to the CMFCCustomizeButton object
that is associated with the toolbar.

CMFCToolBar::GetDefaultImage Returns the index of the default image for a toolbar
button with a specified command ID.

CMFCToolBar::GetDisabledImages Returns a pointer to the collection of images that are
used for disabled toolbar buttons in the application.

CMFCToolBar::GetDisabledMenuImages Returns a pointer to the collection of images that are
used for disabled menu buttons in the application.

NAME DESCRIPTION

CMFCToolBar::GetDroppedDownMenu Retrieves a pointer to the menu button object that is
currently displaying its sub-menu.

CMFCToolBar::GetGrayDisabledButtons Specifies whether the images of disabled buttons are
dimmed versions of the regular button images, or taken
from the collection of disabled button images.

CMFCToolBar::GetHighlightedButton Returns a pointer to the toolbar button that is currently
highlighted.

CMFCToolBar::GetHotBorder Determines whether the toolbar buttons are hot-tracked.

CMFCToolBar::GetHotTextColor Returns the text color of the highlighted toolbar buttons.

CMFCToolBar::GetHwndLastFocus Returns a handle to the window that had the input focus
just before the toolbar did.

CMFCToolBar::GetIgnoreSetText Specifies whether calls to set button labels are ignored.

CMFCToolBar::GetImageSize Returns the current size of toolbar button images.

CMFCToolBar::GetImages Returns a pointer to the collection of default button
images in the application.

CMFCToolBar::GetImagesOffset Returns the index offset used to find the toolbar button
images for this toolbar in the global list of toolbar button
images.

CMFCToolBar::GetInvalidateItemRect Retrieves the region of the client area that must be
redrawn for the button at the given index.

CMFCToolBar::GetItemID Returns the command ID of the toolbar button at a
specified index.

CMFCToolBar::GetItemRect Returns the bounding rectangle of the button at a
specified index.

CMFCToolBar::GetLargeColdImages Returns a pointer to the collection of large cold toolbar
button images in the application.

CMFCToolBar::GetLargeDisabledImages Returns a pointer to the collection of large disabled
toolbar button images in the application.

CMFCToolBar::GetLargeImages Returns a pointer to the collection of large toolbar button
images in the application.

CMFCToolBar::GetLockedColdImages Returns a pointer to the collection of locked cold images
in the toolbar.

CMFCToolBar::GetLockedDisabledImages Returns a pointer to the collection of locked disabled
images in the toolbar.

NAME DESCRIPTION

CMFCToolBar::GetLockedImages Returns a pointer to the collection of locked button
images in the toolbar.

CMFCToolBar::GetLockedImageSize Returns the default size of locked toolbar images.

CMFCToolBar::GetLockedMenuImages Returns a pointer to the collection of locked toolbar menu
images in the toolbar.

CMFCToolBar::GetMenuButtonSize Returns the size of menu buttons in the application.

CMFCToolBar::GetMenuImageSize Returns the size of menu button images in the
application.

CMFCToolBar::GetMenuImages Returns a pointer to the collection of menu button
images in the application.

CMFCToolBar::GetOrigButtons Retrieves the collection of non-customized buttons of the
toolbar.

CMFCToolBar::GetOrigResetButtons Retrieves the collection of non-customized reset buttons
of the toolbar.

CMFCToolBar::GetResourceID Retrieves the resource ID of the toolbar.

CMFCToolBar::GetRouteCommandsViaFrame Determines which object, the parent frame or the owner,
sends commands to the toolbar.

CMFCToolBar::GetRowHeight Returns the height of toolbar buttons.

CMFCToolBar::GetShowTooltips Specifies whether tool tips are displayed for toolbar
buttons.

CMFCToolBar::GetSiblingToolBar Retrieves the sibling of the toolbar.

CMFCToolBar::GetUserImages Returns a pointer to the collection of user-defined toolbar
button images in the application.

CMFCToolBar::HitTest Returns the index of the toolbar button that is located at
the specified position.

CMFCToolBar::InsertButton Inserts a button into the toolbar.

CMFCToolBar::InsertSeparator Inserts a separator into the toolbar.

CMFCToolBar::InvalidateButton Invalidates the client area of the toolbar button that exists
at the provided index.

CMFCToolBar::IsAddRemoveQuickCustomize Determines whether a user can add or remove toolbar
buttons by using the Customize menu option.

CMFCToolBar::IsAltCustomizeMode Specifies whether quick customization is being used to
drag a button.

NAME DESCRIPTION

CMFCToolBar::IsAutoGrayInactiveImages Specifies whether the automatic generation of inactive
(non-highlighted) button images is enabled.

CMFCToolBar::IsBasicCommand Determines whether a command is on the list of basic
commands.

CMFCToolBar::IsButtonExtraSizeAvailable Determines whether the toolbar can display buttons that
have extended borders.

CMFCToolBar::IsButtonHighlighted Determines whether a button on the toolbar is
highlighted.

CMFCToolBar::IsCommandPermitted Determines whether a command is permitted.

CMFCToolBar::IsCommandRarelyUsed Determines whether a command is rarely used (see
CMFCToolBar::SetCommandUsageOptions).

CMFCToolBar::IsCustomizeMode Specifies whether the toolbar framework is in
customization mode.

CMFCToolBar::IsDragButton Determines whether a toolbar button is being dragged.

CMFCToolBar::IsExistCustomizeButton Determines whether the toolbar contains the Customize
button.

CMFCToolBar::IsFloating Determines whether the toolbar is floating.

CMFCToolBar::IsLargeIcons Specifies whether toolbars in the application currently
display large icons.

CMFCToolBar::IsLastCommandFromButton Determines whether the most recently executed
command was sent from the specified toolbar button.

CMFCToolBar::IsLocked Determines whether the toolbar is locked.

CMFCToolBar::IsOneRowWithSibling Determines whether the toolbar and its sibling toolbar are
positioned on the same row.

CMFCToolBar::IsUserDefined Specifies whether the toolbar is user-defined.

CMFCToolBar::LoadBitmap Loads toolbar images from application resources.

CMFCToolBar::LoadBitmapEx Loads toolbar images from application resources. Includes
large images.

CMFCToolBar::LoadParameters Loads global toolbar options from the Windows registry.

CMFCToolBar::LoadState Loads the toolbar state information from the Windows
registry. (Overrides CPane::LoadState.)

CMFCToolBar::LoadToolBar Loads the toolbar from application resources.

NAME DESCRIPTION

CMFCToolBar::LoadToolBarEx Loads the toolbar from application resources by using the
CMFCToolBarInfo helper class to enable the application

to use large images.

CMFCToolBar::OnChangeHot Called by the framework when a user selects a button on
the toolbar.

CMFCToolBar::OnFillBackground Called by the framework from CBasePane::DoPaint to fill
the toolbar background.

CMFCToolBar::OnReset Restores the toolbar to its original state.

CMFCToolBar::OnSetAccData (Overrides CBasePane::OnSetAccData.)

CMFCToolBar::OnSetDefaultButtonText Restores the text of a toolbar button to its default state.

CMFCToolBar::OnUpdateCmdUI Used internally.

CMFCToolBar::RemoveAllButtons Removes all buttons from the toolbar.

CMFCToolBar::RemoveButton Removes the button with the specified index from the
toolbar.

CMFCToolBar::RemoveStateFromRegistry Deletes the state information for the toolbar from the
Windows registry.

CMFCToolBar::ReplaceButton Replaces a toolbar button with another toolbar button.

CMFCToolBar::ResetAll Restores all toolbars to their original states.

CMFCToolBar::ResetAllImages Clears all toolbar image collections in the application.

CMFCToolBar::RestoreOriginalState Restores the original state of a toolbar.

CMFCToolBar::SaveState Saves the state information for the toolbar in the
Windows registry. (Overrides CPane::SaveState.)

CMFCToolBar::Serialize (Overrides CBasePane::Serialize .)

CMFCToolBar::SetBasicCommands Sets the list of commands that are always displayed when
a user opens a menu.

CMFCToolBar::SetButtonInfo Sets the command ID, style, and image ID of a toolbar
button.

CMFCToolBar::SetButtonStyle Sets the style of the toolbar button at the given index.

CMFCToolBar::SetButtonText Sets the text label of a toolbar button.

CMFCToolBar::SetButtons Sets the buttons for the toolbar.

NAME DESCRIPTION

CMFCToolBar::SetCommandUsageOptions Specifies when rarely used commands do not appear in
the menu of the application.

CMFCToolBar::SetCustomizeMode Enables or disables customization mode for all toolbars in
the application.

CMFCToolBar::SetGrayDisabledButtons Specifies whether the disabled buttons on the toolbar are
dimmed or if disabled images are used for the disabled
buttons.

CMFCToolBar::SetHeight Sets the height of the toolbar.

CMFCToolBar::SetHotBorder Specifies whether toolbar buttons are hot-tracked.

CMFCToolBar::SetHotTextColor Sets the text color for hot toolbar buttons.

CMFCToolBar::SetLargeIcons Specifies whether toolbar buttons display large icons.

CMFCToolBar::SetLockedSizes Sets the sizes of locked buttons and locked images on the
toolbar.

CMFCToolBar::SetMenuSizes Sets the size of toolbar menu buttons and their images.

CMFCToolBar::SetNonPermittedCommands Sets the list of commands that cannot be executed by the
user.

CMFCToolBar::SetOneRowWithSibling Positions the toolbar and its sibling on the same row.

CMFCToolBar::SetPermament Specifies whether a user can close the toolbar.

CMFCToolBar::SetRouteCommandsViaFrame Specifies whether the parent frame or the owner sends
commands to the toolbar.

CMFCToolBar::SetShowTooltips Specifies whether the framework displays tool tips.

CMFCToolBar::SetSiblingToolBar Specifies the sibling of the toolbar.

CMFCToolBar::SetSizes Specifies the sizes of buttons and images on all toolbars.

CMFCToolBar::SetToolBarBtnText Specifies properties of a button on the toolbar.

CMFCToolBar::SetTwoRowsWithSibling Positions the toolbar and its sibling on separate rows.

CMFCToolBar::SetUserImages Sets the collection of user-defined images in the
application.

CMFCToolBar::StretchPane Stretches the toolbar vertically or horizontally. (Overrides
CBasePane::StretchPane.)

CMFCToolBar::TranslateChar Executes a button command if the specified key code
corresponds to a valid keyboard shortcut.

NAME DESCRIPTION

CMFCToolBar::UpdateButton Updates the state of the specified button.

CMFCToolBar::WrapToolBar Repositions toolbar buttons within the given dimensions.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCToolBar::AllowShowOnList Determines whether the toolbar is displayed in the list on
the Toolbars pane of the Customize dialog box.

CMFCToolBar::CalcMaxButtonHeight Calculates the maximum height of a button in the toolbar.

CMFCToolBar::DoPaint Repaints a toolbar.

CMFCToolBar::DrawButton Repaints a toolbar button.

CMFCToolBar::DrawSeparator Repaints a separator on a toolbar.

CMFCToolBar::OnUserToolTip Called by the framework when the tooltip for a button is
about to be displayed.

Data MembersData Members

NAME DESCRIPTION

CMFCToolBar::m_bDontScaleImages Specifies whether to scale or not toolbar images in high
DPI mode.

CMFCToolBar::m_dblLargeImageRatio Specifies the ratio between the dimension (height or
width) of large images and the dimension of regular
images.

Remarks

Example

To incorporate a CMFCToolBar object into your application, follow these steps:

1. Add a CMFCToolBar object to the main frame window.

2. When you process the WM_CREATE message for the main frame window, call either
CMFCToolBar::Create or CMFCToolBar::CreateEx to create the toolbar and specify its style.

3. Call CBasePane::EnableDocking to specify the docking style.

To insert a special button, such as a combo box or drop-down toolbar, reserve a dummy button in the
parent resource, and replace the dummy button at runtime by using CMFCToolBar::ReplaceButton. For
more information, see Walkthrough: Putting Controls On Toolbars.

CMFCToolBar is the base class for the MFC Library classes CMFCMenuBar Class, CMFCPopupMenuBar
Class, and CMFCDropDownToolBar Class.

CMFCToolBar m_wndToolBar;

m_wndToolBar.SetWindowText (_T("Standard"));
m_wndToolBar.SetBorders ();

//------------------------------------
// Remove toolbar gripper and borders:
//------------------------------------
m_wndToolBar.SetPaneStyle (m_wndToolBar.GetPaneStyle() &
 ~(CBRS_GRIPPER | CBRS_BORDER_TOP | CBRS_BORDER_BOTTOM | CBRS_BORDER_LEFT | CBRS_BORDER_RIGHT));

m_wndToolBar.EnableCustomizeButton (TRUE, ID_VIEW_CUSTOMIZE, _T("Customize..."));

Requirements

Inheritance Hierarchy

CMFCToolBar::AddBasicCommand

static void __stdcall AddBasicCommand(UINT uiCmd);

ParametersParameters

RemarksRemarks

The following example demonstrates how to use various methods in the CMFCToolBar class. The example
shows how to set the text of the window label of the tool bar, set the borders, set the style of the pane, and
enable the Add or Remove Buttons button that appears on the end of the toolbar. This code snippet is
part of the IE Demo sample.

Header: afxtoolbar.h

CObject

CCmdTarget

CWnd

CBasePane

CPane

CMFCBaseToolBar

CMFCToolBar

Adds a menu command to the list of commands that are always displayed when a user opens a menu.

uiCmd
[in] Specifies the command to add.

A basic command is always displayed when the menu is opened. This method is meaningful when the user
chooses to view recently used commands.

Use the CMFCToolBar::SetBasicCommands method to set the list of commands that are always displayed
when a user opens a menu. Use the CMFCToolBar::GetBasicCommands method to retrieve the list of basic
commands that is used by your application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCToolBar::AddCommandUsage

static void __stdcall AddCommandUsage(UINT uiCommand);

ParametersParameters

RemarksRemarks

CMFCToolBar::AddToolBarForImageCollection

static BOOL __stdcall AddToolBarForImageCollection(
 UINT uiResID,
 UINT uiBmpResID=0,
 UINT uiColdResID=0,
 UINT uiMenuResID=0,
 UINT uiDisabledResID=0,
 UINT uiMenuDisabledResID=0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Increments by one the counter that is associated with the given command.

uiCommand
[in] Specifies the command counter to increment.

The framework calls this method when the user selects a menu item.

The framework uses command counters to display recently used menu items.

This method increments the command counter by using the CMFCCmdUsageCount::AddCmd method.

Adds images from the user interface resources to the collection of images in the application.

uiResID
[in] Resource ID of a toolbar with images to load.

uiBmpResID
[in] Resource ID of a bitmap with toolbar images.

uiColdResID
[in] Resource ID of a bitmap with "cold" toolbar images.

uiMenuResID
[in] Resource ID of a bitmap with menu images.

uiDisabledResID
[in] Resource ID of a bitmap with disabled toolbar images.

uiMenuDisabledResID
[in] Resource ID of a bitmap with disabled menu images.

TRUE if the method succeeds; FALSE if uiResID or uiBmpResID do not specify valid resources, or another
error occurs.

Call this method to load a bitmap with toolbar images and add it to the collection of toolbar images. This
method creates a temporary toolbar object and calls CMFCToolBar::LoadToolBar.

CMFCToolBar::AdjustLayout

virtual void AdjustLayout();

RemarksRemarks

CMFCToolBar::AdjustSize

void AdjustSize();

RemarksRemarks

CMFCToolBar::AllowChangeTextLabels

virtual BOOL AllowChangeTextLabels() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::AllowShowOnList

virtual BOOL AllowShowOnList() const;

Recalculates the size and position of a toolbar.

Call this method when the toolbar has been created to recalculate its size and position.

The framework calls this method every time that the layout of the toolbar must be changed. For example,
the layout must change when the user moves another control bar, resizes an application window, or
customizes the toolbar.

Override this method to provide your own dynamic layout in classes that you derive from CMFCToolbar .

Recalculates the size of the toolbar.

This method makes sure that the toolbar fits in the bounds of the parent frame. This method does nothing
if the toolbar has no parent frame.

The CMFCToolBar::AdjustLayout method calls this method to recalculate the size if the parent of the
toolbar is not a CMFCReBar object.

Specifies whether text labels can be shown under images on the toolbar buttons.

TRUE if it is allowed to display text labels below images; otherwise FALSE.

This method is called by the customization dialog box to determine whether to enable a Show text labels
check-box on the Toolbars page for the selected toolbar.

The default implementation returns TRUE.

Override this method in an object derived from CMFCToolBar and return FALSE when you do not want the
user to decide whether text labels are displayed on toolbar buttons under the images.

Determines whether the toolbar is displayed in the list of toolbars on the Toolbars pane of the Customize
dialog box.

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::AreTextLabels

BOOL AreTextLabels() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::AutoGrayInactiveImages

static void AutoGrayInactiveImages(
 BOOL bEnable=TRUE,
 int nGrayImagePercentage=0,
 BOOL bRedrawAllToolbars=TRUE);

ParametersParameters

RemarksRemarks

TRUE if the toolbar object can be displayed in the list box on the toolbar customization page; otherwise
FALSE.

This method is called by the framework to determine whether the list on the toolbar customization page
should include a particular object derived from CMFCToolBar .

The default implementation always returns TRUE. Override this method when you do not want a toolbar
to appear in the toolbars list in the customization dialog box.

Specifies whether text labels under images are currently displayed on the toolbar buttons.

TRUE if the toolbar buttons display text labels below images; otherwise FALSE.

Use CMFCToolBar::EnableTextLabels to specify whether the text is displayed. The default value is FALSE.
Call CMFCToolBar::AllowChangeTextLabels to specify whether the user can change this setting in the
customization dialog box.

Enable or disables the automatic generation of inactive button images.

bEnable
[in] A Boolean value that specifies whether to dim inactive images. If this parameter is TRUE, inactive
images are dimmed. Otherwise, inactive images are not dimmed.

nGrayImagePercentage
[in] Specifies the luminance percentage for inactive images. If bEnable is FALSE, this value is ignored.

bRedrawAllToolbars
[in] A Boolean value that specifies whether to redraw all toolbars in the application. If this parameter is
TRUE, this method redraws all toolbars.

If bEnable is TRUE, the framework uses nGrayImagePercentage to generate inactive images from the
regular images. Otherwise, you must provide the set of inactive images by using the
CMFCToolBar::GetColdImages method. By default, this option is disabled.

For more information about the nGrayImagePercentage parameter, see
CMFCToolBarImages::GrayImages.

CMFCToolBar::ButtonToIndex

int ButtonToIndex(const CMFCToolBarButton* pButton) const;

ParametersParameters

Return ValueReturn Value

CMFCToolBar::CalcFixedLayout

virtual CSize CalcFixedLayout(
 BOOL bStretch,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::CalcMaxButtonHeight

virtual int CalcMaxButtonHeight();

Return ValueReturn Value

RemarksRemarks

Returns the index of a specified CMFCToolBarButton Class object in this toolbar.

pButton
[in] A pointer to the toolbar button object.

Index of pButton in the internal list of toolbar buttons; or -1 if the specified button is not on this toolbar.

Calculates the horizontal size of the toolbar.

bStretch
[in] TRUE to stretch the toolbar to the size of the parent frame.

bHorz
[in] TRUE to orient the toolbar horizontally; FALSE to orient the toolbar vertically.

A CSize object that specifies the size of the toolbar.

This method calculates the size of the toolbar by using the CMFCToolBar::CalcLayout method. It passes the
LM_STRETCH flag for the dwMode parameter if bStretch is TRUE. It passes the LM_HORZ flag if bHorz is
TRUE.

See the VisualStudioDemo sample for an example that uses this method.

Calculates the maximum height of buttons in the toolbar.

The maximum height of buttons.

This method calculates the maximum height among all toolbar buttons on the toolbar. The height may vary
depending on factors such as the current toolbar docking state.

Override this method in a class derived from CMFCToolBar to provide your own height calculation.

CMFCToolBar::CalcSize

virtual CSize CalcSize(BOOL bVertDock);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::CanBeClosed

virtual BOOL CanBeClosed() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::CanBeRestored

virtual BOOL CanBeRestored() const;

Return ValueReturn Value

RemarksRemarks

Called by the framework as part of the layout calculation process.

bVertDock
[in] TRUE to specify that the toolbar is docked vertically; FALSE to specify that the toolbar is docked
horizontally.

A CSize object that specifies the overall size of the buttons on the toolbar.

This method considers the attributes that affect the size of each button, such as the area of the text label
and the border size.

If the toolbar contains no buttons, this method returns the reserved size of a single button by using the
CMFCToolBar::GetButtonSize method.

Specifies whether a user can close the toolbar.

TRUE if the toolbar can be closed by the user; otherwise FALSE.

The framework calls this method to determine whether the user can close a toolbar. If the method returns
TRUE, the framework enables the SC_CLOSE command in the system menu of the toolbar and the user
can close the toolbar by using a check box in the list of toolbars in the customization dialog box.

The default implementation returns TRUE. Override this method in a class derived from CMFCToolBar to
make toolbar objects that cannot be closed by the user.

Determines whether the system can restore a toolbar to its original state after customization.

TRUE if the toolbar can be restored from the application resources; otherwise FALSE.

The framework calls this method to determine whether a toolbar can be returned to its original state after
customization. The original state is loaded from the application resources.

If CanBeRestored returns TRUE, the Toolbars page of the customization dialog box enables the Reset
button for the selected toolbar.

CMFCToolBar::CanFocus

virtual BOOL CanFocus() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::CanHandleSiblings

BOOL CanHandleSiblings();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::CleanUpImages

static void CMFCToolBar::CleanUpImages();

RemarksRemarks

CMFCToolBar::CleanUpLockedImages

void CleanUpLockedImages();

The default implementation returns TRUE if the original resource ID of the toolbar when it was loaded is
non-zero. Usually, only user-defined toolbars cannot be restored.

You can override the CanBeRestored method to customize this behavior in derived classes.

Specifies whether the pane can receive focus.

This method returns FALSE.

This method overrides the base class implementation, CBasePane::CanFocus, because toolbar objects
cannot receive focus.

Determines whether the toolbar and its sibling are positioned on the same pane.

TRUE if the toolbar has a sibling and the toolbar and its sibling are positioned on the same pane; otherwise
FALSE.

The internal CMFCCustomizeButton::CreatePopupMenu method calls this method to determine how to
show the Customize pop-up menu. If this method returns TRUE, the framework displays the Show
Buttons on One Row or Show Buttons on Two Rows buttons.

You typically do not have to use this method. To enable the Customize button that appears on the toolbar,
call the CMFCToolBar::EnableCustomizeButton method. To enable the Show Buttons on One Row or
Show Buttons on Two Rows buttons, call CMFCToolBar::SetSiblingToolBar.

Frees the system resources allocated for toolbar images.

The framework calls this method when an application shuts down.

Frees the system resources allocated for locked toolbar images.

RemarksRemarks

CMFCToolBar::CommandToIndex

int CommandToIndex(
 UINT nIDFind,
 int iIndexFirst=0) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::Create

virtual BOOL Create(
 CWnd* pParentWnd,
 DWORD dwStyle=AFX_DEFAULT_TOOLBAR_STYLE,
 UINT nID=AFX_IDW_TOOLBAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Call this method when the visual style of your application changes. See the VisualStudioDemo sample for
an example that uses this method.

Returns the index of the button in the toolbar with a specified command ID.

nIDFind
[in] Specifies the command ID.

iIndexFirst
[in] Specifies the initial index to start from.

Zero-based index of the toolbar button if the method was successful; -1 if there is no button with the
specified ID.

A CMFCToolBar object maintains an internal list of the buttons on the toolbar. Call this function to retrieve
the index of a button in the list given the command ID of the button.

If iIndex is greater than 0, this method ignores any button on the toolbar that has an index less than iIndex.

Creates a CMFCToolBar object.

pParentWnd
[in] A pointer to the parent window of the toolbar.

dwStyle
[in] The toolbar style. See Toolbar Control and Button Styles in the Windows SDK for the list of styles.

nID
[in] The ID of the child window of the toolbar.

TRUE if this method succeeds; otherwise FALSE.

This method creates a control bar and attaches it to the toolbar. It creates the control bar with the
TBSTYLE_FLAT style. Call CMFCToolBar::CreateEx if you want a different control bar style.

https://docs.microsoft.com/windows/desktop/Controls/toolbar-control-and-button-styles

CMFCToolBar::CreateEx

virtual BOOL CreateEx(
 CWnd* pParentWnd,
 DWORD dwCtrlStyle=TBSTYLE_FLAT,
 DWORD dwStyle=AFX_DEFAULT_TOOLBAR_STYLE,
 CRect rcBorders=CRect(1,
 1,
 1,
 1),
 UINT nID=AFX_IDW_TOOLBAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMFCToolBar m_wndToolBar;

// The this pointer points to CMainFrame class which extends the CFrameWnd class.
if (!m_wndToolBar.CreateEx (this, TBSTYLE_TRANSPARENT) ||
 !m_wndToolBar.LoadToolBar (IDR_MAINFRAME, uiToolbarColdID, uiMenuID,
 FALSE /* Not locked */, 0, 0, uiToolbarHotID))
{
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
}

CMFCToolBar::Deactivate

Creates a CMFCToolBar object that uses additional style options, such as large icons.

pParentWnd
[in] A pointer to the parent window of the toolbar.

dwCtrlStyle
[in] Additional styles for creating the embedded control bar object.

dwStyle
[in] The toolbar style. See Toolbar Control and Button Styles for a list of appropriate styles.

rcBorders
[in] A CRect object that specifies the widths of the toolbar window borders.

nID
[in] The ID of the child window of the toolbar.

Nonzero if this method succeeds; otherwise 0.

This method creates a control bar and attaches it to the toolbar.

Call this method instead of CMFCToolBar::Create when you want to provide specific styles. For example,
set dwCtrlStyle to TBSTYLE_FLAT | TBSTYLE_TRANSPARENT to create a toolbar that resembles the
toolbars that are used by Internet Explorer 4.

The following example demonstrates how to use the CreateEx method of the CMFCToolBar class. This code
snippet is part of the IE Demo sample.

https://docs.microsoft.com/windows/desktop/Controls/toolbar-control-and-button-styles
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

virtual void Deactivate();

RemarksRemarks

CMFCToolBar::DoPaint

virtual void DoPaint(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCToolBar::DrawButton

virtual BOOL DrawButton(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CMFCToolBarImages* pImages,
 BOOL bHighlighted,
 BOOL bDrawDisabledImages);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Deactivates the toolbar.

This method deactivates the toolbar by removing the focus from the highlighted toolbar button. The
framework calls this method when the toolbar loses focus or is destroyed.

Repaints a toolbar.

pDC
[in] A pointer to a device context.

This method is called by the framework when a part of the toolbar must be repainted.

Override this method to customize the appearance of an object derived from CMFCToolBar .

Repaints a toolbar button.

pDC
[in] A pointer to a device context.

pButton
[in] A pointer to a button to draw.

pImages
[in] A pointer to the toolbar images.

bHighlighted
[in] TRUE if the button is highlighted; otherwise FALSE.

bDrawDisabledImages
[in] TRUE if disabled buttons are dimmed; otherwise FALSE.

TRUE if the button was repainted; FALSE if the button is hidden.

CMFCToolBar::DrawSeparator

virtual void DrawSeparator(
 CDC* pDC,
 const CRect& rect,
 BOOL bHorz);

ParametersParameters

RemarksRemarks

CMFCToolBar::EnableCustomizeButton

void EnableCustomizeButton(
 BOOL bEnable,
 int iCustomizeCmd,
 const CString& strCustomizeText,
 BOOL bQuickCustomize=TRUE);

void EnableCustomizeButton(
 BOOL bEnable,
 int iCustomizeCmd,
 UINT uiCustomizeTextResId,
 BOOL bQuickCustomize=TRUE);

ParametersParameters

The CMFCToolBar::DrawButton method calls this method when a toolbar button must be repainted.

Override this method if you want to customize the appearance of buttons on your toolbar.

Repaints a separator on a toolbar.

pDC
[in] A pointer to a device context.

rect
[in] The bounding rectangle of the location where the separator is drawn, in pixels.

bHorz
[in] TRUE if the separator is horizontal, FALSE if the separator is vertical.

CMFCToolBar::DoPaint calls this method for each CMFCToolBar::DrawSeparator object that has the
TBBS_SEPARATOR style, instead of calling CMFCToolBar::DrawButton for those buttons.

Override this method in a class derived from CMFCToolBar to customize the appearance of separators on
the toolbar. The default implementation calls CMFCVisualManager::OnDrawSeparator to draw a separator
whose appearance is determined by the current visual manager.

Enables or disables the Customize button that appears on the toolbar.

bEnable
[in] Enables or disables the Customize button.

iCustomizeCmd
[in] The command ID of the Customize button.

strCustomizeText
[in] The text label of the Customize button.

RemarksRemarks

CMFCToolBar::EnableDocking

virtual void EnableDocking(DWORD dwAlignment);

ParametersParameters

RemarksRemarks

CMFCToolBar::EnableLargeIcons

void EnableLargeIcons(BOOL bEnable);

ParametersParameters

RemarksRemarks

CMFCToolBar::EnableQuickCustomization

uiCustomizeTextResId
[in] The resource string ID of the Customize button label.

bQuickCustomize
[in] Enables or disables the Add or Remove Buttons option on the menu that drops down from the
button.

If iCustomizeCmd is -1, the framework displays the Customize button when multiple toolbar buttons do
not fit in the toolbar area. The button displays a double left-pointing arrow, or chevron, which indicates that
there are more buttons.

If iCustomizeCmd specifies a valid command ID, and bEnable is TRUE, the Customize button is always
displayed. The button has a small down arrow and opens a menu that contains a command. This command
uses the text label specified by strCustomizeText. If bQuickCustomize is also TRUE, the menu displays the
Add or Remove Buttons option.

The framework dynamically adds to the menu any buttons that do not fit in the toolbar area before the
item that is specified by iCustomizeCmd. The chevron is displayed next to the down arrow.

Enables docking of the pane to the main frame.

dwAlignment
[in] Specifies the docking alignment to enable.

This method extends the base class implementation, CBasePane::EnableDocking, by setting the
CBasePane::m_dwControlBarStyle data member to AFX_CBRS_FLOAT. This method then passes

dwAlignment to the base class implementation.

Enables or disables large icons on toolbar buttons.

bEnable
[in] TRUE to enable large icons, FALSE to disable large icons.

By default, large icons are enabled.

Enables or disables the quick customization of toolbars so that the user can press the Alt key and drag a
button to a new location.

static void EnableQuickCustomization(BOOL bEnable=TRUE);

ParametersParameters

CMFCToolBar::EnableReflections

void EnableReflections(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBar::EnableTextLabels

void EnableTextLabels(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBar::FromHandlePermanent

static CMFCToolBar* __stdcall FromHandlePermanent(HWND hwnd);

ParametersParameters

Return ValueReturn Value

bEnable
[in] TRUE to enable quick customization, FALSE to disable quick customization.

Enables or disables command reflection.

bEnable
[in] TRUE to enable command reflection; FALSE to disable command reflection.

Call this method to enable command reflection for toolbar buttons that contain embedded controls, such
as combo boxes.

For more information about command reflection, see TN062: Message Reflection for Windows Controls.

Enables or disables text labels under toolbar button images.

bEnable
TRUE if text labels appear under toolbar button images; otherwise FALSE.

If text labels are enabled, all buttons on the toolbar are enlarged to provide space for the labels to be
displayed under the images. The customization dialog box has a Show text label check-box on the
Toolbars page. When the user selects a toolbar and checks this option, the framework calls
EnableTextLabels for the selected toolbar. You can disable the check-box for an object derived from

CMFCToolBar by returning FALSE from CMFCToolBar::AllowChangeTextLabels .

Retrieves a pointer to the CMFCToolBar object that contains the given window handle.

hwnd
[in] The window handle to look for.

RemarksRemarks

CMFCToolBar::GetAllButtons

const CObList& GetAllButtons() const;

Return ValueReturn Value

CMFCToolBar::GetAllToolbars

static const CObList& GetAllToolbars();

Return ValueReturn Value

CMFCToolBar::GetBasicCommands

static const CList<UINT,UINT>& GetBasicCommands();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetButton

CMFCToolBarButton* GetButton(int iIndex) const;

ParametersParameters

Return ValueReturn Value

A pointer to the CMFCToolBar object that contains the given window handle, or NULL if no corresponding
CMFCToolBar object exists.

This shared method examines each toolbar in the application for the CMFCToolBar object that contains the
given window handle.

Returns a read-only list of buttons in a toolbar.

A constant reference to a CObList Class object, which contains a collection of CMFCToolBarButton Class
objects.

Returns a read-only list of all toolbars in the application.

A const reference to a CObList Class object that contains a collection of CMFCToolBar objects.

Returns a read-only list of the basic commands defined in the application.

A const reference to a CList Class object that contains a collection of basic commands.

Add basic commands by calling CMFCToolBar::AddBasicCommand or CMFCToolBar::SetBasicCommands.

Returns a pointer to the CMFCToolBarButton Class object at a specified index.

iIndex
[in] Specifies the index of the button to return.

A pointer to the toolbar button if it exists; or NULL if there is no such button.

CMFCToolBar::GetButtonInfo

void GetButtonInfo(
 int nIndex,
 UINT& nID,
 UINT& nStyle,
 int& iImage) const;

ParametersParameters

RemarksRemarks

CMFCToolBar::GetButtonSize

CSize GetButtonSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetButtonStyle

UINT GetButtonStyle(int nIndex) const;

ParametersParameters

Return ValueReturn Value

Returns the command ID, style, and image index of the button at a specified index.

nIndex
[in] Specifies the index of the button in the list of buttons on the toolbar.

nID
[out] The command ID of a button.

nStyle
[out] The style of the button.

iImage
[out] The index of the image for the button.

The GetButtonInfo method finds a toolbar button at the specified index and retrieves the command ID,
style and image index of the button.

If the button at the specified index does not exist, the framework sets nID and nStyle to 0, and iImage to -1
when the method returns.

Returns the dimensions of each button on the toolbar.

A CSize Class object that specifies the dimensions of each button on the toolbar.

Call CMFCToolBar::SetSizes or CMFCToolBar::SetLockedSizes to set the dimensions of each button on the
toolbar.

Returns the current style of the toolbar button that is located at the specified index.

nIndex
[in] Specifies the index of a toolbar button.

RemarksRemarks

CMFCToolBar::GetButtonText

CString GetButtonText(int nIndex) const;

void GetButtonText(
 int nIndex,
 CString& rString) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetColdImages

static CMFCToolBarImages* GetColdImages();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetColumnWidth

virtual int GetColumnWidth() const;

Return ValueReturn Value

RemarksRemarks

A value that specifies the style of the toolbar button. . See ToolBar Control Styles for a list of possible styles.

Call CMFCToolBar::SetButtonStyle to set the style of a toolbar button

Returns the text label of a button that has a specified index.

nIndex
[in] The index of a toolbar button.

rString
[out] The label text of the toolbar button.

The label text of the toolbar button.

Call CMFCToolBar::SetButtonText or CMFCToolBar::SetToolBarBtnText to set the text label.

Returns a pointer to the collection of cold toolbar button images in the application.

A pointer to the collection of cold toolbar button images.

Cold images are the images that are used when the user is not interacting with the toolbar buttons. Call
CMFCToolBar::LoadBitmapEx or CMFCToolBar::LoadBitmap to load the cold images.

Returns the width of the toolbar buttons.

A value that specifies the width of toolbar buttons.

The framework calls this method to calculate toolbar layout. Override this method in a derived class to
specify a different column width for your toolbar.

CMFCToolBar::GetCommandButtons

static int GetCommandButtons(
 UINT uiCmd,
 CObList& listButtons);

ParametersParameters

Return ValueReturn Value

CMFCToolBar::GetCount

int GetCount() const;

Return ValueReturn Value

CMFCToolBar::GetCustomizeButton

CMFCCustomizeButton* GetCustomizeButton();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetDefaultImage

static int GetDefaultImage(UINT uiID);

ParametersParameters

Returns a list of buttons that have a specified command ID from all toolbars in the application.

uiCmd
[in] The command ID of the buttons.

listButtons
[out] A reference to a CObList Class object that receives the list of toolbar buttons.

The number of buttons that have the specified command ID.

Returns the number of buttons and separators on the toolbar.

The number of buttons and separators on the toolbar.

Retrieves a pointer to the CMFCCustomizeButton object that is associated with the toolbar.

A pointer to the CMFCCustomizeButton object that is associated with the toolbar.

This method retrieves the Customize button that appears at the end of the toolbar. Use the
CMFCToolBar::EnableCustomizeButton method to add the Customize button to your toolbar.

You can call the CMFCToolBar::IsExistCustomizeButton method to determine whether the toolbar contains
a valid CMFCCustomizeButton object.

Returns the index of the default image for a toolbar button with a specified command ID.

uiID
[in] Specifies the command ID of the button.

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetDisabledImages

static CMFCToolBarImages* __stdcall GetDisabledImages();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetDisabledMenuImages

static CMFCToolBarImages* __stdcall GetDisabledMenuImages();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetDroppedDownMenu

CMFCToolBarMenuButton* GetDroppedDownMenu(int* pIndex = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The index of the toolbar image in the shared list of images.

Use this shared method to retrieve the index of the default image for a toolbar button with the specified
command ID. The return value is an index into the shared collection of toolbar button images for all
toolbars in the application. Call the CMFCToolBar::GetImages method to obtain a pointer to this collection.

Returns a pointer to the collection of images that are used for disabled toolbar buttons in the application.

A pointer to the collection of disabled toolbar button images.

Load the disabled toolbar button images by using the CMFCToolBarEditBoxButton Class and
CMFCToolBar::LoadBitmap methods.

Returns a pointer to the collection of images that are used for disabled menu buttons in the application.

A pointer to the collection of disabled menu images.

Load the disabled images by using the CMFCToolBarEditBoxButton Class method.

Retrieves a pointer to the menu button object that is currently displaying its sub-menu.

pIndex
[out] Receives the index of the button in the collection of toolbar buttons.

A pointer to the menu button object that is displaying its sub-menu or NULL if no menu is displaying its
sub-menu.

If this method returns a non- NULL value and pIndex is not NULL, the value pointed to by pIndex is set to
the index of the menu button in the collection of toolbar buttons.

CMFCToolBar::GetGrayDisabledButtons

BOOL GetGrayDisabledButtons() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetHighlightedButton

CMFCToolBarButton* GetHighlightedButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetHotBorder

BOOL GetHotBorder() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetHotTextColor

static COLORREF GetHotTextColor();

Return ValueReturn Value

Specifies whether the images of disabled buttons are dimmed versions of the regular button images, or
taken from the collection of disabled button images.

TRUE to dim the images of disabled buttons; FALSE to obtain images from the collection of disabled
images.

Use CMFCToolBar::SetGrayDisabledButtons to switch between dimmed images and the images from the
collection of disabled images.

Returns a pointer to the toolbar button that is currently highlighted.

A pointer to a toolbar button object; or NULL if no button is highlighted.

A toolbar button is highlighted if it has keyboard focus. A toolbar button is also highlighted if the toolbar
buttons are hot-tracked in this application (for more information, see CMFCToolBar::GetHotBorder and
CMFCToolBar::SetHotBorder) and the mouse is pointing at it when no toolbar button or menu item has
keyboard focus.

Determines whether the toolbar buttons are hot-tracked. If a button is hot-tracked, it is highlighted when
the mouse moves across it.

TRUE if the toolbar buttons are hot-tracked; otherwise, FALSE.

By default, toolbar buttons are hot-tracked.

Returns the text color of the highlighted toolbar buttons.

A COLORREF value that represent the current highlighted text color.

https://docs.microsoft.com/windows/desktop/gdi/colorref

RemarksRemarks

CMFCToolBar::GetHwndLastFocus

HWND GetHwndLastFocus() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetIgnoreSetText

BOOL GetIgnoreSetText() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetImages

static CMFCToolBarImages* GetImages();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetImageSize

CSize GetImageSize() const;

Return ValueReturn Value

Call CMFCToolBar::SetHotTextColor to set a new text color for highlighted toolbar buttons.

Returns a handle to the window that had the input focus just before the toolbar did.

A handle to window that is not derived from CMFCBaseToolBar Class, which previously had the input
focus; or NULL if there is no such window.

When a CMFCToolBar control receives the input focus, it stores a handle to the window that lost the focus
so that it can restore it later.

Specifies whether calls to set button labels are ignored.

TRUE if calls to set button labels are ignored; otherwise, FALSE.

Returns a pointer to the collection of default button images in the application.

A pointer to the CMFCToolBarImages Class object that contains the collection of default images for all
toolbars in the application.

This shared method provides access to the collection of all default toolbar images for the application. Call
the CMFCToolBar::LoadBitmap method to add images to the collection.

Returns the current size of toolbar button images.

A CSize Class object that represents the current size of toolbar button images.

CMFCToolBar::GetImagesOffset

int GetImagesOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetInvalidateItemRect

virtual void GetInvalidateItemRect(
 int nIndex,
 LPRECT lpRect) const;

ParametersParameters

RemarksRemarks

CMFCToolBar::GetItemID

UINT GetItemID(int nIndex) const;

ParametersParameters

Return ValueReturn Value

CMFCToolBar::GetItemRect

Returns the index offset used to find the toolbar button images for this toolbar in the global list of toolbar
button images.

The index offset of the toolbar images.

All toolbar default images are stored in the global CMFCToolBarImages Class list. The images for each
button in the toolbar are stored consecutively in that list. To compute the index of the image, add the index
of the button in the toolbar to the offset of the beginning of the list of images for that toolbar button.

Call CMFCToolBar::ButtonToIndex to obtain the index of a toolbar button given a pointer to the button.

Call CMFCToolBar::GetImages to obtain a pointer to the collection of toolbar images.

Retrieves the region of the client area that must be redrawn for the button at the given index.

nIndex
[in] The index of the button for which to retrieve the client area.

lpRect
[out] A pointer to a RECT object that receives the region of the client area.

The lpRect parameter must not be NULL. If no button exists at the provided index, lpRect receives a RECT
object that is initialized to zero.

Returns the command ID of the toolbar button at a specified index.

nIndex
[in] Specifies the index of the toolbar button.

The command ID of the toolbar button; or zero if the button with the specified index does not exist.

virtual void GetItemRect(
 int nIndex,
 LPRECT lpRect) const;

ParametersParameters

RemarksRemarks

ExampleExample

CMFCToolBar m_wndToolBar;

CRect rectToolBar;
m_wndToolBar.GetItemRect(0, &rectToolBar);

CMFCToolBar::GetLargeColdImages

static CMFCToolBarImages* GetLargeColdImages();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetLargeDisabledImages

static CMFCToolBarImages* GetLargeDisabledImages();

Return ValueReturn Value

RemarksRemarks

Returns the bounding rectangle of the button at a specified index.

nIndex
[in] Specifies the index of a toolbar button.

lpRect
[out] A pointer to CRect object that receives the coordinates of the image bounding rectangle.

The CRect object to which lpRect points is set to 0 if a button at the specified index does not exist.

The following example demonstrates how to use the GetItemRect method of the CMFCToolBar class. This
code snippet is part of the IE Demo sample.

Returns a pointer to the collection of large cold toolbar button images in the application.

A pointer to the collection of large cold images.

Cold images are the images that are used when the user is not interacting with the toolbar buttons. Call
CMFCToolBar::LoadBitmapEx to load the large cold images.

Returns a pointer to the collection of large disabled toolbar button images in the application.

A pointer to the collection of large disabled toolbar button images.

Large images are large versions of the regular toolbar button images. Call CMFCToolBar::LoadBitmapEx or
CMFCToolBar::LoadBitmap to load the large images.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCToolBar::GetLargeImages

static CMFCToolBarImages* GetLargeImages();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetLockedColdImages

CMFCToolBarImages* GetLockedColdImages();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetLockedDisabledImages

CMFCToolBarImages* GetLockedDisabledImages();

Return ValueReturn Value

RemarksRemarks

Returns a pointer to the collection of large toolbar button images in the application.

A pointer to the collection of large toolbar button images.

Large images are large versions of the regular toolbar button images. Call CMFCToolBar::LoadBitmapEx to
load the large images.

Returns a pointer to the collection of locked cold images in the toolbar.

A pointer to the collection of locked cold images, or NULL if the toolbar is not locked.

Locked images are versions of the regular toolbar button images that the framework uses when the user
cannot customize the toolbar. Cold images are the images that are used when the user is not interacting
with the toolbar buttons.

This method returns NULL if the toolbar is not locked. This method also generates an assertion failure in
Debug builds if the toolbar is not locked. For more information about locked toolbars, see
CMFCToolBar::IsLocked.

Call the CMFCToolBar::LoadBitmapEx method to load the locked cold images.

Returns a pointer to the collection of locked disabled images in the toolbar.

A pointer to the collection of locked disabled images, or NULL if the toolbar is not locked.

Locked images are versions of the regular toolbar button images that the framework uses when the user
cannot customize the toolbar. Disabled images are the images that the framework uses when a button has
the TBBS_DISABLED style.

This method returns NULL if the toolbar is not locked. This method also generates an assertion failure in
Debug builds if the toolbar is not locked. For more information about locked toolbars, see
CMFCToolBar::IsLocked.

Call the CMFCToolBar::LoadBitmapEx method to load the locked disabled images.

CMFCToolBar::GetLockedImages

CMFCToolBarImages* GetLockedImages();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetLockedImageSize

CSize GetLockedImageSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetLockedMenuImages

CMFCToolBarImages* GetLockedMenuImages();

Return ValueReturn Value

RemarksRemarks

Returns a pointer to the collection of locked button images in the toolbar.

A pointer to the collection of locked toolbar button images, or NULL if the toolbar is not locked.

Locked images are versions of the regular toolbar button images that the framework uses when the user
cannot customize the toolbar.

This method returns NULL if the toolbar is not locked. This method also generates an assertion failure in
Debug builds if the toolbar is not locked. For more information about locked toolbars, see
CMFCToolBar::IsLocked.

Returns the default size of locked toolbar images.

A CSize structure that specifies the size of locked toolbar images or an empty CSize structure if the
toolbar is not locked.

Locked images are versions of the regular toolbar button images that the framework uses when the user
cannot customize the toolbar.

This method returns a CSize structure with zero width and zero height if the toolbar is not locked. This
method also generates an assertion failure in Debug builds if the toolbar is not locked. For more
information about locked toolbars, see CMFCToolBar::IsLocked.

Call the CMFCToolBar::SetLockedSizes method to specify the locked image size.

Returns a pointer to the collection of locked toolbar menu images in the toolbar.

A pointer to the collection of locked toolbar menu images, or NULL if the toolbar is not locked.

Locked images are versions of the regular toolbar menu images that the framework uses when the user
cannot customize the toolbar.

This method returns NULL if the toolbar is not locked. This method also generates an assertion failure in
Debug builds if the toolbar is not locked. For more information about locked toolbars, see
CMFCToolBar::IsLocked.

CMFCToolBar::GetMenuButtonSize

static CSize GetMenuButtonSize();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetMenuImages

static CMFCToolBarImages* GetMenuImages();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetMenuImageSize

static CSize GetMenuImageSize();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetOrigButtons

const CObList& GetOrigButtons() const;

Return ValueReturn Value

Call the CMFCToolBar::LoadBitmapEx method to load the locked menu images.

Returns the size of menu buttons in the application.

A CSize object that represents the size of menu buttons, in pixels.

The size of menu buttons on toolbars is maintained as a global variable and can be retrieved by this static
method.

Call CMFCToolBar::SetMenuSizes to set this global variable.

Returns a pointer to the collection of menu button images in the application.

A pointer to the collection of menu images.

Call the CMFCToolBar::LoadBitmapEx method to load the menu images.

Call the CMFCToolBar::SetMenuSizes method to set the size of buttons and their images.

Returns the size of menu button images in the application.

A CSize object that represents the size of menu images.

This method returns the size of images on toolbar menu buttons that is maintained as a global variable.
Call CMFCToolBar::SetMenuSizes to set this global variable.

Retrieves the collection of non-customized buttons of the toolbar.

A reference to the list of non-customized buttons of the toolbar.

RemarksRemarks

CMFCToolBar::GetOrigResetButtons

const CObList& GetOrigResetButtons() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetResourceID

UINT GetResourceID() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetRouteCommandsViaFrame

BOOL GetRouteCommandsViaFrame();

Return ValueReturn Value

RemarksRemarks

The framework creates a copy of toolbar buttons before they are customized by the user. The
CMFCToolBar::SetButtons method adds a copy of each button in the provided array to the list of original
buttons. The CMFCToolBar::RestoreOriginalState method restores the original state of the toolbar by
loading it from the resource file.

To set the list of original buttons for your toolbar, call the CMFCToolBar::SetOrigButtons method.

Retrieves the collection of non-customized reset buttons of the toolbar.

A reference to the list of non-customized reset buttons of the toolbar.

When the user clicks the Reset button during customization mode, the framework uses this method to
restore buttons that were removed from the toolbar.

The CMFCToolBar::SetButtons method adds a copy of each toolbar button to the list of original reset
buttons after it calls the CMFCToolBar::OnReset method. You can override the CMFCToolBar::OnReset
method to customize the appearance of buttons after the user presses the Reset button.

Retrieves the resource ID of the toolbar.

The resource ID of the toolbar.

Call the CMFCToolBar::LoadToolBarEx method to set the resource ID of the toolbar.

Determines which object, the parent frame or the owner, sends commands to the toolbar.

Nonzero if the parent frame sends commands to the toolbar; 0 if the owner sends commands to the
toolbar.

By default, the parent frame sends commands to the toolbar. Call
CMFCToolBar::SetRouteCommandsViaFrame to change this behavior.

If this method returns a nonzero value, you can retrieve a pointer to the parent frame object by using the

CMFCToolBar::GetRowHeight

virtual int GetRowHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetShowTooltips

static BOOL GetShowTooltips();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetSiblingToolBar

CMFCToolBar* GetSiblingToolBar();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetUserImages

static CMFCToolBarImages* GetUserImages();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::GetCommandTarget method. See the VisualStudioDemo sample for an example that uses this
method.

Returns the height of toolbar buttons.

The height of toolbar buttons, in pixels.

The framework calls this method to calculate toolbar layout. Override this method in a derived class to
specify a different height for your toolbar.

Specifies whether tool tips are displayed for toolbar buttons.

TRUE if tool tips are shown for toolbar buttons; otherwise FALSE.

By default tool tips are shown. You can change this static flag by calling CMFCToolBar::SetShowTooltips.

Retrieves the sibling of the toolbar.

A pointer to the sibling toolbar.

For more information about how to enable the Show Buttons on One Row and Show Buttons on Two
Rows buttons, see CMFCToolBar::SetSiblingToolBar.

Returns a pointer to the collection of user-defined toolbar button images in the application.

A pointer to the collection of user-defined toolbar button images for all toolbars in the application.

CMFCToolBar::HitTest

virtual int HitTest(CPoint point);

ParametersParameters

Return ValueReturn Value

CMFCToolBar::InsertButton

virtual int InsertButton(
 const CMFCToolBarButton& button,
 INT_PTR iInsertAt=-1);

virtual int InsertButton(
 CMFCToolBarButton* pButton,
 int iInsertAt=-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::InsertSeparator

virtual int InsertSeparator(INT_PTR iInsertAt=-1);

ParametersParameters

Call the CMFCToolBar::SetUserImages method to set the collection of user-defined images in the
application.

Returns the index of the toolbar button that is located at the specified position.

point
[in] The point to be tested, in client coordinates.

The index of the button that is located at the specified position, or -1 if there is no such button or the
button is a separator.

Inserts a button into the toolbar.

button
[in] Specifies the button to insert.

iInsertAt
[in] Specifies the zero-based position to insert the button at.

The position at which the button was inserted or -1 if an error occurs.

If iInsertAt is -1, this method adds the button to the end of the list of toolbar buttons.

Call the CMFCToolBar::InsertSeparator method to insert a separator into the toolbar.

Inserts a separator into the toolbar.

iInsertAt
[in] Specifies the zero-based position to insert the separator at. This parameter must be larger than 0.

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::InvalidateButton

CMFCToolBarButton* InvalidateButton(int nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsAddRemoveQuickCustomize

BOOL IsAddRemoveQuickCustomize();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsAltCustomizeMode

static BOOL __stdcall IsAltCustomizeMode();

Return ValueReturn Value

RemarksRemarks

The position at which the separator was inserted or -1 if an error occurs.

Call this method to insert a separator between two existing buttons. If iInsertAt is -1, this method adds the
separator to the end of the list of toolbar buttons.

You cannot use this method to add a separator to an empty toolbar.

Call the CMFCToolBar::InsertButton method to insert a button into the toolbar.

Invalidates the client area of the toolbar button that exists at the provided index.

nIndex
[in] The zero-based index of the button in the toolbar.

A pointer to the CMFCToolBarButton object that exists at the provided index or NULL if no such object
exists.

The framework calls this method when it updates the client area that is associated with a toolbar button. It
calls the CWnd::InvalidateRect method with the client rectangle of the CMFCToolBarButton object that exists
at the provided index.

Determines whether a user can add or remove toolbar buttons by using the Customize menu option.

TRUE if a user can use the Customize menu option to modify the toolbar; otherwise, FALSE.

Specifies whether quick customization is being used to drag a button. When quick customization is
enabled, a user can press and hold the Alt key and drag a button to a new location.

TRUE if quick customization is being used to drag a button; otherwise, FALSE.

CMFCToolBar::IsAutoGrayInactiveImages

static BOOL IsAutoGrayInactiveImages();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsBasicCommand

static BOOL IsBasicCommand(UINT uiCmd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsButtonExtraSizeAvailable

virtual BOOL IsButtonExtraSizeAvailable() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsButtonHighlighted

Specifies whether the automatic generation of inactive (non-highlighted) button images is enabled.

TRUE if the option to automatically dim inactive images is enabled; otherwise FALSE.

You can enable or disable automatic dimming of inactive images by calling
CMFCToolBar::AutoGrayInactiveImages.

Determines whether a command is on the list of basic commands.

uiCmd
[in] Specifies the command to check.

TRUE if the specified command belongs to the list of basic commands; otherwise FALSE.

This static method determines whether the command specified by uiCmd belongs to the global list of basic
commands. You can change the list of basic commands by calling CMFCToolBar::AddBasicCommand or
CMFCToolBar::SetBasicCommands.

Determines whether the toolbar can display buttons that have extended borders.

TRUE if the bar can display buttons with the extra border size; otherwise FALSE.

The toolbar object returns TRUE if it can display buttons that have extended borders. A toolbar button calls
this method when it handles the CMFCToolBarButton::OnChangeParentWnd notification and will set its
internal extra border size flag accordingly. This internal flag may be retrieved later by calling
CMFCToolBarButton::IsExtraSize.

Override this method in a class derived from CMFCToolBar and return TRUE if your bar can display the
toolbar buttons with the extra border size and return FALSE otherwise. The default implementation returns
TRUE.

BOOL IsButtonHighlighted(int iButton) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsCommandPermitted

static BOOL IsCommandPermitted(UINT uiCmd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsCommandRarelyUsed

static BOOL IsCommandRarelyUsed(UINT uiCmd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Determines whether the specified button is highlighted.

iButton
[in] Specifies the index of a toolbar button.

TRUE if the specified button is highlighted; otherwise, FALSE.

Determines whether a command is permitted.

uiCmd
[in] Specifies the command to check.

TRUE if the specified command is permitted; otherwise FALSE.

This static method determines whether the command specified by uiCmd belongs to the global list of non-
permitted commands.

You can change the list of non-permitted commands by calling
CMFCToolBar::SetNonPermittedCommands.

Determines whether a command is rarely used.

uiCmd
[in] Specifies the command to check.

TRUE if the specified command is rarely used; otherwise FALSE.

The IsCommandRarelyUsed method returns FALSE when one or more of the following conditions occur:

The specified command belongs to the list of basic commands

The specified command is one of the standard commands

The framework is in customization mode

CMFCToolBar::IsCustomizeMode

static BOOL IsCustomizeMode();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsDragButton

BOOL IsDragButton(const CMFCToolBarButton* pButton) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsExistCustomizeButton

BOOL IsExistCustomizeButton();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsFloating

The list of basic commands is empty

More than 20% of command calls are calls to the specified command.

Specifies whether the toolbar framework is in customization mode.

TRUE if the framework is in customization mode; otherwise FALSE.

You can toggle customization mode by calling CMFCToolBar::SetCustomizeMode.

The framework changes the mode when the user invokes the customization dialog box (
CMFCToolBarsCustomizeDialog Class).

Determines whether a toolbar button is being dragged.

pButton
[in] Pointer to a toolbar button.

TRUE if the specified button is being dragged; otherwise, FALSE.

Determines whether the toolbar contains the Customize button.

TRUE if the toolbar contains the Customize button; otherwise FALSE.

If this method returns TRUE, the CMFCToolBar::GetCustomizeButton method returns a pointer to the
Customize button that appears at the end of the toolbar.

Use the CMFCToolBar::EnableCustomizeButton method to add the Customize button to your toolbar.

Determines whether the toolbar is floating.

virtual BOOL IsFloating() const;

Return ValueReturn Value

CMFCToolBar::IsLargeIcons

static BOOL IsLargeIcons();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsLastCommandFromButton

static BOOL IsLastCommandFromButton(CMFCToolBarButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsLocked

BOOL IsLocked() const;

Return ValueReturn Value

RemarksRemarks

TRUE if the toolbar is floating; otherwise, FALSE.

Specifies whether toolbars in the application currently display large icons.

TRUE if the application is using large icons; otherwise FALSE.

Call CMFCToolBar::SetLargeIcons to toggle between large icons and regular icons.

The framework automatically changes the mode when the user toggles the Large icons check-box on the
Options page of the Customization dialog box.

Determines whether the most recently executed command was sent from the specified toolbar button.

pButton
[in] Pointer to button.

TRUE if the last command was sent from the button that pButton specifies; otherwise FALSE.

This method obtains a pointer to a MSG Structure by calling CWnd::GetCurrentMessage . It then compares
the HWND of the button with the MSG::lParam and MSG::hwnd members to determine whether the button
was the source of the command.

Determines whether the toolbar is locked.

TRUE if the toolbar is locked; otherwise, FALSE.

This method returns TRUE when the user cannot perform customization tasks such as repositioning
toolbar buttons.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

CMFCToolBar::IsOneRowWithSibling

BOOL IsOneRowWithSibling();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsResourceChanged
virtual BOOL IsResourceChanged() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsSibling
BOOL IsSibling();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::IsUserDefined

BOOL IsUserDefined() const;

Return ValueReturn Value

CMFCToolBar::LoadBitmap

Locked toolbars use separate image lists. For more information about these image lists, see
CMFCToolBar::LoadBitmapEx.

Determines whether the toolbar and its sibling toolbar are positioned on the same row.

TRUE if the toolbar and its sibling are positioned on the same row; otherwise FALSE.

The CMFCCustomizeButton::CreatePopupMenu method calls this method to determine how to show the
Customize pop-up menu. If this method returns TRUE, the framework displays the Show Buttons on
One Row button. Otherwise, the framework displays the Show Buttons on Two Rows button.

You typically do not have to use this method. To enable the Show Buttons on One Row or Show
Buttons on Two Rows buttons, call CMFCToolBar::SetSiblingToolBar.

Specifies whether the toolbar is user-defined.

TRUE if the toolbar was created by the user; otherwise FALSE.

Loads toolbar images from application resources.

virtual BOOL LoadBitmap(
 UINT uiResID,
 UINT uiColdResID=0,
 UINT uiMenuResID=0,
 BOOL bLocked=FALSE,
 UINT uiDisabledResID=0,
 UINT uiMenuDisabledResID=0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::LoadBitmapEx
virtual BOOL LoadBitmapEx(
 CMFCToolBarInfo& params,
 BOOL bLocked = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::LoadLargeIconsState
static BOOL __stdcall LoadLargeIconsState(LPCTSTR lpszProfileName = NULL);

ParametersParameters

uiResID
[in] The resource ID of the bitmap that refers to the hot toolbar images.

uiColdResID
[in] The resource ID of the bitmap that refers to the cold toolbar images.

uiMenuResID
[in] The resource ID of the bitmap that refers to the regular menu images.

bLocked
[in] TRUE to lock the toolbar; otherwise FALSE.

uiDisabledResID
[in] The resource ID of the bitmap that refers to the disabled toolbar images.

uiMenuDisabledResID
[in] The resource ID of the bitmap that refers to the disabled menu images.

Nonzero if the method succeeds; otherwise 0.

The CMFCToolBar::LoadToolBarEx method calls this method to load the images that are associated with
the toolbar. Override this method to perform custom loading of image resources.

Call the LoadBitmapEx method to load additional images after you create the toolbar.

[in] params
[in] bLocked

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::LoadParameters

static BOOL LoadParameters(LPCTSTR lpszProfileName=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::LoadState

virtual BOOL LoadState(
 LPCTSTR lpszProfileName=NULL,
 int nIndex=-1,
 UINT uiID=(UINT)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::LoadToolBar

[in] lpszProfileName

Loads global toolbar options from the Windows registry.

lpszProfileName
[in] Specifies the relative path of the Windows registry key.

Nonzero if the method succeeds; otherwise 0.

This method loads global parameters such as the menu animation type, the menu shadow style, and
whether to display large icons from the Windows registry.

The CWinAppEx::LoadState method calls this method as a part of the initialization process of the
application.

Loads the toolbar state information from the Windows registry.

lpszProfileName
[in] Specifies the relative path of the Windows registry key.

nIndex
[in] Specifies the control ID of the toolbar.

uiID
[in] Specifies the resource ID of the toolbar.

Nonzero if the method succeeds; otherwise 0.

The framework calls this method as a part of the initialization process of the application. For more
information, see CWinAppEx::LoadState.

Loads the toolbar from application resources.

virtual BOOL LoadToolBar(
 UINT uiResID,
 UINT uiColdResID=0,
 UINT uiMenuResID=0,
 BOOL bLocked=FALSE,
 UINT uiDisabledResID=0,
 UINT uiMenuDisabledResID=0,
 UINT uiHotResID=0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMFCToolBar m_wndToolBar;

// The this pointer points to CMainFrame class which extends the CFrameWnd class.
if (!m_wndToolBar.CreateEx (this, TBSTYLE_TRANSPARENT) ||
 !m_wndToolBar.LoadToolBar (IDR_MAINFRAME, uiToolbarColdID, uiMenuID,
 FALSE /* Not locked */, 0, 0, uiToolbarHotID))
{
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
}

CMFCToolBar::LoadToolBarEx

uiResID
[in] The resource ID of the toolbar.

uiColdResID
[in] The resource ID of the bitmap that refers to the cold toolbar images.

uiMenuResID
[in] The resource ID of the bitmap that refers to the regular menu images.

bLocked
[in] A Boolean value that specifies whether the toolbar is locked or not. If this parameter is TRUE, the
toolbar is locked. Otherwise, the toolbar is not locked.

uiDisabledResID
[in] The resource ID of the bitmap that refers to the disabled toolbar images.

uiMenuDisabledResID
[in] The resource ID of the bitmap that refers to the disabled menu images.

uiHotResID
[in] The resource ID of the bitmap that refers to the hot toolbar images.

Nonzero if the method succeeds; otherwise 0.

The framework calls this method during initialization to load the images that are associated with the
toolbar.

The following example demonstrates how to use the LoadToolBar method in the CMFCToolBar class. This
code snippet is part of the IE Demo sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

virtual BOOL LoadToolBarEx(
 UINT uiToolbarResID,
 CMFCToolBarInfo& params,
 BOOL bLocked=FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::m_dblLargeImageRatio

AFX_IMPORT_DATA static double m_dblLargeImageRatio;

RemarksRemarks

CMFCToolBar::NextMenu
virtual BOOL NextMenu();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::OnBeforeRemoveButton
virtual BOOL OnBeforeRemoveButton(
 CMFCToolBarButton* pButton,
 DROPEFFECT dropEffect);

Loads the toolbar from application resources by using the CMFCToolBarInfo helper class to enable the
application to use large images.

uiToolbarResID
[in] The resource ID of the toolbar.

params
[in] A reference to a CMFCToolBarInfo object that contains the resource IDs for the toolbar images.

bLocked
[in] A Boolean value that specifies whether the toolbar is locked or not. If this parameter is TRUE, the
toolbar is locked. Otherwise, the toolbar is not locked.

Nonzero if the method succeeds; otherwise 0.

Call this method to load toolbar images from the application resources.

Specifies the ratio between the dimension (height or width) of large images and the dimension of regular
images.

The default ratio is 2. You can change this value to make large toolbar images larger or smaller.

The framework uses this data member when you do not specify a set of large images. For example, if you
provide only the set of small images with size 16x16 and want the large images to have the size 24x24, set
this data member to 1.5.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::OnChangeHot

virtual void OnChangeHot(int iHot);

ParametersParameters

RemarksRemarks

CMFCToolBar::OnChangeVisualManager
virtual void OnChangeVisualManager();

RemarksRemarks

CMFCToolBar::OnFillBackground

virtual void OnFillBackground(CDC* pDC);

ParametersParameters

RemarksRemarks

CMFCToolBar::OnGlobalFontsChanged
virtual void OnGlobalFontsChanged();

RemarksRemarks

pButton
[in] Unused.

dropEffect
[in] Unused.

Called by the framework when a user selects a button on the toolbar.

iHot
[in] Specifies the index of the toolbar button that is selected; or -1 if no toolbar button is selected.

Override this method to process notifications that the user selected a button on a toolbar.

Called by the framework from CBasePane::DoPaint to fill the toolbar background.

pDC
[in] A pointer to a device context.

CMFCToolBar::DoPaint calls this method when the background of a toolbar has been filled. The default
implementation does nothing.

Override this method to draw custom background in derived classes.

CMFCToolBar::OnReset

virtual void OnReset();

RemarksRemarks

CMFCToolBar::OnSetAccData
virtual BOOL OnSetAccData(long lVal);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::OnSetDefaultButtonText

virtual BOOL OnSetDefaultButtonText(CMFCToolBarButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::OnUserToolTip

virtual BOOL OnUserToolTip(
 CMFCToolBarButton* pButton,
 CString& strTTText) const;

ParametersParameters

Restores the toolbar to its original state.

Override this method to handle notification about a toolbar reset.

The default implementation does nothing. Override OnReset in a class derived from CMFCToolBar when
the toolbar has dummy buttons that must be replaced when the toolbar returns to its original state.

[in] lVal

Restores the text of a toolbar button to its default state.

pButton
[in] Points to a button, whose text is being set.

TRUE ifthe text was successfully restored; otherwise FALSE.

Override this method to process notifications that the text of a toolbar button is being changed to its
default.

The default implementation loads the text of a button from the application resources.

Called by the framework when the tooltip for a button is about to be displayed.

pButton

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::PrevMenu
virtual BOOL PrevMenu();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::ProcessCommand

BOOL ProcessCommand(CMFCToolBarButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::RemoveAllButtons

virtual void RemoveAllButtons();

RemarksRemarks

CMFCToolBar::RemoveButton

[in] Points to a toolbar button for which a tooltip is to be displayed.

strTTText
[out] A reference to CString object that receives the text of the tooltip.

TRUE if strTTText was populated with tooltip text; otherwise FALSE.

The framework calls this method when the tooltip for a toolbar button is about to be displayed. If
OnUserToolTip returns TRUE, the framework displays a tooltip which contains the text returned by
OnUserToolTip in strTTText. Otherwise, the tooltip contains the button text.

Override OnUserToolTip to customize tool tips of toolbar buttons. The default implementation calls
CMFCToolBar::OnUserToolTip to obtain the tooltip text.

Posts a WM_COMMAND message to the window that owns the toolbar.

pButton
[in] Pointer to a button on the toolbar.

This method should always return TRUE. MFC uses FALSE values internally.

This method posts a WM_COMMAND message to the window that owns the toolbar by calling
CWnd::PostMessage and passing the command ID of the specified button as the wParam parameter.

Use the ON_COMMAND macro to map the WM_COMMAND message to a member function.

Removes all buttons and separators from the toolbar.

The framework calls this method when it recreates or destroys a toolbar.

virtual BOOL RemoveButton(int iIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::RemoveStateFromRegistry

virtual BOOL RemoveStateFromRegistry(
 LPCTSTR lpszProfileName=NULL,
 int nIndex=-1,
 UINT uiID=(UINT)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::ReplaceButton

Removes from the toolbar the button that has the specified index.

iIndex
[in] Specifies the zero-based index of the button to remove.

TRUE if the method succeeds, or FALSE if the specified index is invalid or the index refers to the
Customize button.

This method updates additional toolbar attributes that are affected by the removal of the button. For
example, this method removes nonessential separators from the toolbar and rebuilds the table of shortcut
keys.

For more information about the Customize button, see CMFCToolBar::EnableCustomizeButton.

Deletes the state information for the toolbar from the Windows registry.

lpszProfileName
[in] Specifies the registry key where the state information is located.

nIndex
[in] The control ID of the toolbar.

uiID
[in] The resource ID of the toolbar. If this parameter is -1, this method uses the CWnd::GetDlgCtrlID
method to retrieve the resource ID.

Nonzero if the method succeeds; otherwise 0.

The framework calls this method when it deletes a user-defined toolbar.

Override this method if you store additional state information in the Windows registry.

Replaces a toolbar button with another toolbar button.

int ReplaceButton(
 UINT uiCmd,
 const CMFCToolBarButton& button,
 BOOL bAll=FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMFCToolBar m_wndToolBar;

// CMenu menuHistory
// CString str
m_wndToolBar.ReplaceButton (ID_GO_BACK,
 CMFCToolBarMenuButton (ID_GO_BACK, menuHistory,
 GetCmdMgr ()->GetCmdImage (ID_GO_BACK), str));

CMFCToolBar::ResetAll

static void __stdcall ResetAll();

RemarksRemarks

CMFCToolBar::ResetAllImages

uiCmd
[in] The command ID of the button to replace.

button
[in] A reference to the CMFCToolBarButton to insert.

bAll
[in] A Boolean value that specifies whether to replace all buttons that have the command ID specified by
uiCmd. If this parameter is TRUE, all buttons that have the specified command ID are replaced. Otherwise,
the first button is replaced.

The number of buttons that are replaced. This method returns 0 if a button with the specified command ID
does not exist on the toolbar.

Call this method when you want to add toolbar buttons that cannot be loaded from resources. You can
create a placeholder button at design-time and replace that button with a custom button when you
initialize the toolbar. See the VisualStudioDemo sample for an example that uses this method.

The following example demonstrates how to use the ReplaceButton method in the CMFCToolBar class. This
code snippet is part of the IE Demo sample.

Restores all toolbars to their original states.

This method calls the CMFCToolBar::RestoreOriginalState method on each toolbar in the application that
can be restored. It uses the CMFCToolBar::CanBeRestored method to determine whether a toolbar can be
restored.

Clears all toolbar image collections in the application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

static void __stdcall ResetAllImages();

RemarksRemarks

CMFCToolBar::ResetImages
virtual void ResetImages();

RemarksRemarks

CMFCToolBar::RestoreFocus
virtual void RestoreFocus();

RemarksRemarks

CMFCToolBar::RestoreOriginalState

virtual BOOL RestoreOriginalState();

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::SaveParameters
static BOOL __stdcall SaveParameters(LPCTSTR lpszProfileName = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::SaveState

This method clears the image collections that are initialized by the CMFCToolBar::LoadToolBar and
CMFCToolBar::LoadBitmap methods.

Restores the original state of a toolbar.

TRUE if the method succeeds, or FALSE if the method fails or the toolbar is user-defined.

This method loads the toolbar from the resource file by using the CMFCToolBar::LoadToolBar method.

The framework calls this method when the user chooses the Reset All button on the Toolbars page of a
customization dialog box.

[in] lpszProfileName

Saves the state information for the toolbar in the Windows registry.

virtual BOOL SaveState(
 LPCTSTR lpszProfileName=NULL,
 int nIndex=-1,
 UINT uiID=(UINT)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::SetBasicCommands

static void __stdcall SetBasicCommands(CList<UINT,UINT>& lstCommands);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetButtonInfo

void SetButtonInfo(
 int nIndex,
 UINT nID,
 UINT nStyle,
 int iImage);

ParametersParameters

lpszProfileName
[in] Specifies the relative path of the Windows registry key.

nIndex
[in] The control ID of the toolbar.

uiID
[in] The resource ID of the toolbar.

Nonzero if the method succeeds; otherwise 0.

The framework calls this method when it saves the application state to the registry. For more information,
see CWinAppEx::SaveState.

Sets the list of commands that are always displayed when a user opens a menu.

lstCommands
[in] A reference to a CList object that contains a collection of commands.

A basic command is always displayed when the menu is opened. This method is meaningful when the user
chooses to view recently used commands.

Use the CMFCToolBar::AddBasicCommand method to add a command to the list of basic commands. Use
the CMFCToolBar::GetBasicCommands method to retrieve the list of basic commands that is used by your
application.

See the Explorer sample for an example that uses this method.

Sets the command ID, style, and image ID of a toolbar button.

nIndex

RemarksRemarks

CMFCToolBar::SetButtons

virtual BOOL SetButtons(
 const UINT* lpIDArray,
 int nIDCount,
 BOOL bRemapImages=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::SetButtonStyle

virtual void SetButtonStyle(
 int nIndex,
 UINT nStyle);

[in] The zero-based index of the button whose properties are set.

nID
[in] The command ID of the button.

nStyle
[in] The style of the button. See ToolBar Control Styles for the list of available toolbar button styles.

iImage
[in] The zero-based image index of the button (that is, the index in the collection of toolbar images).

Call this method to set the properties of a toolbar button.

In Debug builds, this method generates an assertion failure if the index that is specified by nIndex is
invalid.

Call the CMFCToolBar::SetButtonStyle method to set only the style of the button.

Sets the buttons for the toolbar.

lpIDArray
[in] A pointer to the array of command IDs of the buttons to insert.

nIDCount
[in] The number of items in lpIDArray.

bRemapImages
[in] A Boolean value that specifies whether to associate the existing button images with the inserted
buttons. If this parameter is TRUE, the images are remapped.

Nonzero if the method succeeds; otherwise 0.

Call this method to remove existing buttons from a toolbar and insert a collection of new buttons.

This method adds the Customize button to the toolbar and sends the AFX_WM_RESETTOOLBAR
message to the parent window of the toolbar. For more information about the Customize button, see
CMFCToolBar::EnableCustomizeButton.

Sets the style of the toolbar button at the given index.

ParametersParameters

RemarksRemarks

CMFCToolBar::SetButtonText

BOOL SetButtonText(
 int nIndex,
 LPCTSTR lpszText);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::SetCommandUsageOptions

static BOOL SetCommandUsageOptions(
 UINT nStartCount,
 UINT nMinUsagePercentage=5);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nIndex
[in] The zero-based index of the toolbar button whose style is to be set.

nStyle
[in] The style of the button. See ToolBar Control Styles for the list of available toolbar button styles.

This method removes the TBBS_PRESSED style if nStyle is TBBS_DISABLED because the user cannot
click a disabled button.

Sets the text label of a toolbar button.

nIndex
[in] The index of the toolbar button.

lpszText
[in] The text label of the toolbar button. Must be non- NULL.

TRUE if the method succeeds; otherwise FALSE.

This method returns FALSE if the provided index does not refer to a valid toolbar button.

Specifies when rarely used commands do not appear in the menu of the application.

nStartCount
[in] Specifies the number of times that commands must be executed before the framework shows only the
basic and recently-used commands.

nMinUsagePercentage
[in] The percentage of times that a command must be executed to be considered a recently-used
command.

FALSE if nMinUsagePercentage is equal to or larger than 100; otherwise TRUE.

Call this method to customize the algorithm that the framework uses to determine how basic and recently

CMFCToolBar::SetCustomizeMode

static BOOL __stdcall SetCustomizeMode(BOOL bSet=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::SetGrayDisabledButtons

void SetGrayDisabledButtons(BOOL bGrayDisabledButtons);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetHeight

void SetHeight(int cyHeight);

ParametersParameters

RemarksRemarks

used menu items appear. For more information about basic commands, see
CMFCToolBar::AddBasicCommand.

This class uses the CMFCCmdUsageCount class to track the usage count of commands. For more information
about this class, see CMFCCmdUsageCount Class.

Enables or disables customization mode for all toolbars in the application.

bSet
[in] A Boolean value that specifies whether to enable or disable customization mode. Set this parameter to
TRUE to enable customization mode or FALSE to disable it.

TRUE if calling this method changes the customization mode; otherwise FALSE.

This method adjusts the layout of and redraws each toolbar in the application. Call the
CMFCToolBar::IsCustomizeMode method to determine whether the application is in customization mode,

Specifies whether unavailable buttons on the toolbar are dimmed, or whether button-unavailable images
are used.

bGrayDisabledButtons
[in] A Boolean value that specifies how to display unavailable buttons. If this parameter is TRUE, the
framework dims the buttons. Otherwise, the framework uses the collection of button-unavailable images.

By default, unavailable buttons are dimmed.

Sets the height of the toolbar.

cyHeight
[in] The height of the toolbar, in pixels.

This method redraws the toolbar after it sets the height.

CMFCToolBar::SetHelpMode
static void __stdcall SetHelpMode(BOOL bOn = TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetHot
BOOL SetHot(CMFCToolBarButton* pMenuButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::SetHotBorder

void SetHotBorder(BOOL bShowHotBorder);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetHotTextColor

static void SetHotTextColor(COLORREF clrText);

ParametersParameters

RemarksRemarks

[in] bOn

[in] pMenuButton

Specifies whether toolbar buttons are hot-tracked.

bShowHotBorder
[in] A Boolean value that specifies whether to hot-track toolbar buttons. If this parameter is TRUE, the
toolbar hot-tracks its buttons. Otherwise, the toolbar does not hot-track its buttons.

If a button is hot-tracked, the framework highlights the button when the mouse moves across it. By default,
each toolbar hot-tracks its buttons.

Call the CMFCToolBar::GetHotBorder method to determine whether the toolbar hot-tracks its buttons.

Sets the text color for hot toolbar buttons.

clrText
[in] Specifies the text color for toolbar buttons that are hot-tracked.

For more information about hot-tracked toolbar buttons, see CMFCToolBar::GetHotBorder and
CMFCToolBar::SetHotBorder.

CMFCToolBar::SetIgnoreSetText
void SetIgnoreSetText(BOOL bValue);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetLargeIcons

static void SetLargeIcons(BOOL bLargeIcons=TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetLockedSizes

void SetLockedSizes(
 SIZE sizeButton,
 SIZE sizeImage,
 BOOL bDontScale = FALSE);

ParametersParameters

RemarksRemarks

[in] bValue

Specifies whether toolbar buttons display large icons.

bLargeIcons
[in] A Boolean value that specifies which icons to use. If this parameter is TRUE, the framework displays
large icons. Otherwise, the framework displays regular icons.

The framework calls this method when the user changes the state of the Large Icons check box in the
Options tab of the Customize dialog box. This method resizes all toolbars in the application.

By default, the framework displays regular icons.

For more information about the Customize dialog box, see CMFCToolBarsCustomizeDialog Class.

Sets the sizes of locked buttons and locked images on the toolbar.

sizeButton
[in] Specifies the size of locked toolbar buttons.

sizeImage
[in] Specifies the size of locked toolbar images.

bDontScale
Specifies whether to scale or not locked toolbar images in high DPI mode.

The default size of locked buttons is 23x22 pixels. The default size of locked images is 16x15 pixels.

Call the CMFCToolBar::GetLockedImageSize method to retrieve the size of locked images. Call the
CMFCToolBar::GetButtonSize method to retrieve the size of locked toolbar buttons.

CMFCToolBar::SetMaskMode
void SetMaskMode(BOOL bMasked);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetMenuSizes

static void __stdcall SetMenuSizes(
 SIZE sizeButton,
 SIZE sizeImage);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetNonPermittedCommands

static void SetNonPermittedCommands(CList<UINT,UINT>& lstCommands);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetOneRowWithSibling

[in] bMasked

Sets the size of toolbar menu buttons and their images.

sizeButton
[in] Specifies the size of toolbar buttons, in pixels.

sizeImage
[in] Specifies the size of toolbar images, in pixels.

By default, menu buttons and their images have an undefined size.

Call the CMFCToolBar::GetMenuButtonSize method to determine the size of menu buttons and the
CMFCToolBar::GetMenuImageSize method to determine the size of menu button images.

See the IEDemo and MSMoneyDemo samples for examples that use this method.

Sets the list of commands that cannot be executed by the user.

lstCommands
[in] A reference to a CList object that contains the commands that cannot be executed by the user.

Call this method to prevent the user from selecting certain commands. For example, you might want to
prevent the user from selecting certain commands for security reasons. See the MDITabsDemo and
MenuSubSet samples for examples that use this method.

This method clears the previous list of non-permitted commands. By default, the list of non-permitted
commands is empty.

Positions the toolbar and its sibling on the same row.

void SetOneRowWithSibling();

RemarksRemarks

CMFCToolBar::SetOrigButtons
void SetOrigButtons(const CObList& lstOrigButtons);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetPermament

void SetPermament(BOOL bPermament=TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetRouteCommandsViaFrame

void SetRouteCommandsViaFrame(BOOL bValue);

ParametersParameters

RemarksRemarks

The framework calls this method when the user clicks the Show Buttons on One Row button.

Call the CMFCToolBar::SetSiblingToolBar method to enable the Show Buttons on One Row or Show
Buttons on Two Rows buttons. If you call CMFCToolBar::SetSiblingToolBar for this toolbar, the sibling
toolbar is moved to the row of this toolbar. Otherwise, this toolbar is moved to the row of the sibling.

The framework calls the CMFCToolBar::SetTwoRowsWithSibling method when the user clicks the Show
Buttons on Two Rows button.

[in] lstOrigButtons

Specifies whether a user can close the toolbar.

bPermament
[in] A Boolean value that specifies whether a user can close the toolbar. If this parameter is TRUE, a user
cannot close the toolbar. Otherwise, a user can close the toolbar.

By default, a user can close each toolbar.

Call the CMFCToolBar::CanBeClosed method to determine whether a user can close the toolbar.

Specifies whether the parent frame or the owner sends commands to the toolbar.

bValue
[in] If this parameter is TRUE, the parent frame sends commands to the toolbar. Otherwise, the owner
sends commands to the toolbar.

By default, the parent frame sends commands to the toolbar. Call the
CMFCToolBar::GetRouteCommandsViaFrame method to determine whether the parent frame or the

CMFCToolBar::SetShowTooltips

static void SetShowTooltips(BOOL bValue);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetSiblingToolBar

void SetSiblingToolBar(CMFCToolBar* pBrotherToolbar);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetSizes

static void __stdcall SetSizes(
 SIZE sizeButton,
 SIZE sizeImage);

ParametersParameters

RemarksRemarks

owner sends commands to the toolbar.

Specifies whether the framework displays tool tips.

bValue
[in] If this parameter is TRUE, the framework shows tool tips. Otherwise, the framework hides tool tips.

By default, the framework shows tool tips.

Call the CMFCToolBar::GetShowTooltips method to determine whether the framework shows tool tips.

Specifies the sibling of the toolbar.

pBrotherToolbar
[in] A pointer to the sibling toolbar.

This method enables the Show Buttons on One Row or Show Buttons on Two Rows buttons that are
shown when the user displays the Customize pop-up menu. Call this method when you want to enable
the user to specify whether related toolbars appear on the same row or on different rows.

Call this method after you enable the Customize button that appears on the toolbar. To enable the
Customize button, call the CMFCToolBar::EnableCustomizeButton method.

To retrieve the sibling of a toolbar, call CMFCToolBar::GetSiblingToolBar.

Specifies the sizes of buttons and images on all toolbars.

sizeButton
[in] The size of toolbar buttons, in pixels.

sizeImage
[in] The size of toolbar button images, in pixels.

The default size of toolbar buttons is 23x22 pixels. The default size of toolbar button images is 16x15

CMFCToolBar::SetToolBarBtnText

void SetToolBarBtnText(
 UINT nBtnIndex,
 LPCTSTR szText=NULL,
 BOOL bShowText=TRUE,
 BOOL bShowImage=TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBar::SetTwoRowsWithSibling

void SetTwoRowsWithSibling();

RemarksRemarks

CMFCToolBar::SetUserImages

pixels.

Call the CMFCToolBar::GetImageSize method to retrieve the size of toolbar button images. Call the
CMFCToolBar::GetButtonSize method to retrieve the size of toolbar buttons.

Specifies properties of a button on the toolbar.

nBtnIndex
[in] The zero-based index of the toolbar button in the list of toolbar buttons.

szText
[in] Specifies the text label of the toolbar button.

bShowText
[in] If this parameter is TRUE, the framework shows the text label. Otherwise, the framework hides the text
label.

bShowImage
[in] If this parameter is TRUE, the framework shows the toolbar button image. Otherwise, the framework
hides the toolbar button image.

By default, the framework shows the images of toolbar buttons but does not show the text label of toolbar
buttons.

In Debug builds, this method generates an assertion failure if nBtnIndex does not refer to a valid toolbar
button or the toolbar button is a separator.

Positions the toolbar and its sibling on separate rows.

The framework calls this method when the user clicks the Show Buttons on Two Rows button.

Call the CMFCToolBar::SetSiblingToolBar method to enable the Show Buttons on One Row or Show
Buttons on Two Rows buttons. If you call CMFCToolBar::SetSiblingToolBar for this toolbar, the sibling
toolbar is moved to a separate row. Otherwise, this toolbar is moved to a separate row.

The framework calls the CMFCToolBar::SetOneRowWithSibling method when the user clicks the Show
Buttons on One Row button.

static BOOL SetUserImages(CMFCToolBarImages* pUserImages);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::StretchPane

virtual CSize StretchPane(
 int nLength,
 BOOL bVert);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::TranslateChar

Sets the collection of user-defined images in the application.

pUserImages
[in] A pointer to the collection of user-defined images.

Nonzero if the method succeeds; otherwise 0 if the specified CMFCToolBarImages object is not valid or has
an image size that differs from the default image size of the toolbar.

The framework uses user-defined images to draw toolbar buttons that are customized by the user. The
image list specified by pUserImages is shared among all toolbars in the application.

This method generates an assertion failure in Debug builds if the specified CMFCToolBarImages object is not
valid or has an image size that differs from the default image size of the toolbar.

The OutlookDemo, ToolTipDemo, and VisualStudioDemo samples use this method to set the global
collection of user-defined images. They load the file that is named UserImages.bmp, which is located in the
working directory of the application.

Call the CMFCToolBar::GetUserImages method to retrieve the collection of user-defined images in the
application.

Stretches the toolbar vertically or horizontally, and repositions the buttons if necessary.

nLength
[in] The amount, in pixels, by which to stretch the pane.

bVert
[in] If TRUE, stretches the pane vertically. If FALSE, stretches the pane horizontally.

A CSize object that specifies the size of the toolbar client area.

This method calls CMFCToolBar::WrapToolBar to reposition the buttons within the stretched toolbar.

The return value is determined by calling CMFCToolBar::CalcSize.

Executes a button command if the specified key code corresponds to a valid keyboard shortcut.

virtual BOOL TranslateChar(UINT nChar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBar::UpdateButton

void UpdateButton(int nIndex);

ParametersParameters

RemarksRemarks

CMFCToolBar::WrapToolBar

int WrapToolBar(
 int nWidth,
 int nHeight = 32767,
 CDC* pDC = NULL,
 int nColumnWidth = -1,
 int nRowHeight = -1);

ParametersParameters

Return ValueReturn Value

nChar
[in] Specifies a virtual key code. For a list of standard virtual key codes, see Winuser.h

FALSE if the specified key code is either unprintable or does not correspond to a valid keyboard shortcut;
TRUE if the specified key code corresponds to a drop-down menu option; otherwise, the return value from
CMFCToolBar::ProcessCommand.

The framework calls this method when a key is pressed together with the Alt key.

Updates the state of the specified button.

nIndex
[in] Specifies the zero-based index of the button to update.

Repositions toolbar buttons within the given dimensions.

nWidth
[in] Maximum width of the toolbar.

nHeight
[in] Maximum height of the toolbar. Not used if the toolbar is floating.

pDC
[in] Pointer to a device context. If NULL, the device context for the toolbar is used.

nColumnWidth
[in] Button width. If -1, the current width is used.

[in] m nRowHeight Button height. If -1, the current height is used.

The number of rows of buttons on the toolbar.

RemarksRemarks

CMFCToolBar::m_bDontScaleImages

AFX_IMPORT_DATA static BOOL m_bDontScaleImages;

RemarksRemarks

See also

This method repositions buttons within the toolbar, wrapping buttons to additional rows if necessary.

Specifies whether or not to scale toolbar images in high DPI mode.

Hierarchy Chart
Classes
CMFCMenuBar Class
CMFCPopupMenuBar Class
CMFCDropDownToolBar Class
Walkthrough: Putting Controls On Toolbars

CMFCToolBarButton Class
3/4/2019 • 33 minutes to read • Edit Online

Syntax
class CMFCToolBarButton : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCToolBarButton::CMFCToolBarButton Constructs and initializes a CMFCToolBarButton object.

CMFCToolBarButton::~CMFCToolBarButton Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolBarButton::CanBeDropped Specifies whether a user can position a button on a
toolbar or menu during customization.

CMFCToolBarButton::CanBeStored Specifies whether the button can be stored.

CMFCToolBarButton::CanBeStretched Specifies whether a user can stretch the button during
customization.

CMFCToolBarButton::CompareWith Compares this instance with the provided
CMFCToolBarButton object.

CMFCToolBarButton::CopyFrom Copies the properties of another toolbar button to the
current button.

CMFCToolBarButton::CreateFromOleData Creates a CMFCToolBarButton object from the provided
COleDataObject object.

CMFCToolBarButton::CreateObject Used by the framework to create a dynamic instance of
this class type.

CMFCToolBarButton::EnableWindow Enables or disables mouse and keyboard input.

CMFCToolBarButton::ExportToMenuButton Copies text from the toolbar button to a menu.

CMFCToolBarButton::GetClipboardFormat Retrieves the global clipboard format for the application.

Provides button functionality to toolbars.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbarbutton-class.md

CMFCToolBarButton::GetHwnd Retrieves the window handle that is associated with the
toolbar button.

CMFCToolBarButton::GetImage Retrieves the image index of the button.

CMFCToolBarButton::GetInvalidateRect Retrieves the region of the client area of the button that
must be redrawn.

CMFCToolBarButton::GetParentWnd Retrieves the parent window of the button.

CMFCToolBarButton::GetProtectedCommands Retrieves the list of commands that the user cannot
customize.

CMFCToolBarButton::GetTextSize Retrieves the size of the button text.

CMFCToolBarButton::HasFocus Determines whether the button has the current input
focus.

CMFCToolBarButton::HaveHotBorder Determines whether a border of the button is displayed
when a user selects the button.

CMFCToolBarButton::IsDrawImage Determines whether an image is displayed on the button.

CMFCToolBarButton::IsDrawText Determines whether a text label is displayed on the
button.

CMFCToolBarButton::IsDroppedDown Determines whether the button displays a submenu.

CMFCToolBarButton::IsEditable Determines whether the button can be customized.

CMFCToolBarButton::IsExtraSize Determines whether the button can be displayed with an
extended border.

CMFCToolBarButton::IsFirstInGroup Determines whether the button is in the first position in
its button group.

CMFCToolBarButton::IsHidden Determines whether the button is hidden.

CMFCToolBarButton::IsHorizontal Determines whether the button is located on a horizontal
toolbar.

CMFCToolBarButton::IsLastInGroup Specifies whether the button is in the last position in its
button group.

CMFCToolBarButton::IsLocked Determines whether the button is on a locked (non-
customizable) toolbar.

CMFCToolBarButton::IsOwnerOf Determines whether the button is the owner of the
provided window handle.

CMFCToolBarButton::IsVisible Determines whether the toolbar button is visible.

NAME DESCRIPTION

CMFCToolBarButton::IsWindowVisible Determines whether the underlying window handle of the
button is visible.

CMFCToolBarButton::NotifyCommand Specifies whether the button processes the
WM_COMMAND message.

CMFCToolBarButton::OnAddToCustomizePage Called by the framework when the button is added to a
Customize dialog box.

CMFCToolBarButton::OnBeforeDrag Specifies whether the button can be dragged.

CMFCToolBarButton::OnBeforeDrop Specifies whether a user can drop the button onto the
target toolbar.

CMFCToolBarButton::OnCalculateSize Called by the framework to calculate the size of the
button for the specified device context and docking state.

CMFCToolBarButton::OnCancelMode Called by the framework to handle the
WM_CANCELMODE message.

CMFCToolBarButton::OnChangeParentWnd Called by the framework when the button is inserted into
a new toolbar.

CMFCToolBarButton::OnClick Called by the framework when the user clicks the mouse
button.

CMFCToolBarButton::OnClickUp Called by the framework when the user releases the
mouse button.

CMFCToolBarButton::OnContextHelp Called by the framework when the parent toolbar handles
a WM_HELPHITTEST message.

CMFCToolBarButton::OnCtlColor Called by the framework when the parent toolbar handles
a WM_CTLCOLOR message.

CMFCToolBarButton::OnCustomizeMenu Allows the button to modify the provided menu when the
application displays a shortcut menu on the parent
toolbar.

CMFCToolBarButton::OnDblClk Called by the framework when the parent toolbar handles
a WM_LBUTTONDBLCLK message.

CMFCToolBarButton::OnDraw Called by the framework to draw the button by using the
specified styles and options.

CMFCToolBarButton::OnDrawOnCustomizeList Called by the framework to draw the button in the
Commands pane of the Customize dialog box.

CMFCToolBarButton::OnGetCustomToolTipText Called by the framework to retrieve the custom tooltip
text for the button.

CMFCToolBarButton::OnGlobalFontsChanged Called by the framework when the global font has
changed.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/menurc/wm-command
https://docs.microsoft.com/windows/desktop/winmsg/wm-cancelmode
https://docs.microsoft.com/windows/desktop/inputdev/wm-lbuttondblclk

CMFCToolBarButton::OnMove Called by the framework when the parent toolbar moves.

CMFCToolBarButton::OnShow Called by the framework when the button becomes visible
or invisible.

CMFCToolBarButton::OnSize Called by the framework when the parent toolbar changes
its size or position and this change requires the button to
change size.

CMFCToolBarButton::OnToolHitTest Called by the framework when the parent toolbar must
determine whether a point is in the bounding rectangle of
the button.

CMFCToolBarButton::OnUpdateToolTip Called by the framework when the parent toolbar updates
its tooltip text.

CMFCToolBarButton::PrepareDrag Called by the framework when the button is about to
perform a drag-and-drop operation.

CMFCToolBarButton::Rect Retrieves the bounding rectangle of the button.

CMFCToolBarButton::ResetImageToDefault Sets to the default value the image that is associated with
the button.

CMFCToolBarButton::SaveBarState Saves the state of the toolbar button.

CMFCToolBarButton::Serialize Reads this object from an archive or writes it to an archive.
(Overrides CObject::Serialize.)

CMFCToolBarButton::SetACCData Populates the provided CAccessibilityData object with
accessibility data from the toolbar button.

CMFCToolBarButton::SetClipboardFormatName Renames the global clipboard format.

CMFCToolBarButton::SetImage Sets the image index of the button.

CMFCToolBarButton::SetProtectedCommands Sets the list of commands that the user cannot customize.

CMFCToolBarButton::SetRadio Called by the framework when a button changes its
checked state.

CMFCToolBarButton::SetRect Sets the bounding rectangle of the button.

CMFCToolBarButton::SetStyle Sets the style of the button.

CMFCToolBarButton::SetVisible Specifies whether the button is visible.

CMFCToolBarButton::Show Shows or hides the button.

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CMFCToolBarButton::m_bImage Specifies whether an image is displayed on the button.

CMFCToolBarButton::m_bText Specifies whether a text label is displayed on the button.

CMFCToolBarButton::m_bTextBelow Specifies whether the text label is displayed underneath
the image on the button.

CMFCToolBarButton::m_bUserButton Specifies whether the button has a user-defined image.

CMFCToolBarButton::m_bWholeText Specifies whether the button displays its full text label
even if it does not fit in the bounding rectangle.

CMFCToolBarButton::m_bWrap Specifies whether the button next to a separator will be
put on the next row.

CMFCToolBarButton::m_bWrapText Specifies whether multi-line text labels are enabled.

CMFCToolBarButton::m_nID The command ID of the button.

CMFCToolBarButton::m_nStyle The style of the button.

CMFCToolBarButton::m_strText The text label of the button.

Remarks

Example

A CMFCToolbarButton object is a control that resides on a toolbar. Its behavior resembles that of an ordinary
button. You can assign an image and a text label to this object. A toolbar button can also have a command
ID. When the user clicks the toolbar button, the framework executes the command that this ID specifies.

Typically, toolbar buttons can be customized: the user can drag buttons from one toolbar to another, and
copy, paste, delete, and edit text labels and images. To prevent the user from customizing the toolbar, you
can lock the toolbar in one of two ways. Either set the bLocked flag to TRUE when you call
CMFCToolBar::LoadToolBar, or add the command ID of an individual button to the global list of protected
commands by using the CMFCToolBarButton::SetProtectedCommands method.

CMFCToolBarButton objects display images from the global collections of toolbar images in the application.
These collections are maintained by the parent toolbar, CMFCToolBar Class. For more information, see
CMFCToolBarImages Class.

When the user clicks a toolbar button, its parent toolbar processes the mouse message and communicates
the appropriate actions to the button. If the button has a valid command ID, the parent toolbar sends the
WM_COMMAND message to the parent frame.

The CMFCToolBarButton class is the base class for other toolbar button classes, such as
CMFCToolBarMenuButton Class, CMFCToolBarEditBoxButton Class, and CMFCToolBarComboBoxButton
Class.

The following example demonstrates how to configure a CMFCToolBarButton object by using various
methods in the CMFCToolBarButton class. The example illustrates how to enable the mouse and keyboard
input, set the image index of the button, set the bounding rectangle of the button, and make the button

CMFCToolBarButton* pOffice2007 = NULL;
int nIndex = -1;

for (UINT uiCmd = ID_VIEW_APPLOOK_2007_1; uiCmd <= ID_VIEW_APPLOOK_2007_4; uiCmd++)
{
 // CMFCToolBar m_wndToolBarTheme
 nIndex = m_wndToolBarTheme.CommandToIndex (uiCmd);

 CMFCToolBarButton* pButton = m_wndToolBarTheme.GetButton (nIndex);

 if (pButton != NULL)
 {
 pOffice2007 = pButton;
 break;
 }
}

pOffice2007->EnableWindow();
pOffice2007->SetImage(1);
pOffice2007->SetRect(CRect(1,1,1,1));
pOffice2007->SetVisible();
pOffice2007->Show(true);

Inheritance Hierarchy

Requirements

CMFCToolBarButton::CanBeDropped

virtual BOOL CanBeDropped(CMFCToolBar* pToolbar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::CanBeStored

visible. This code snippet is part of the Tab Control sample.

CObject

CMFCToolBarButton

Header: afxtoolbarbutton.h

Specifies whether a user can position a button on a toolbar or menu during customization.

pToolbar
[in] Unused.

This method returns TRUE.

By default, a toolbar button can be dropped on every customizable (that is, non-locked) toolbar.

The default implementation of this method returns TRUE. Override this method and return FALSE if you
want to prevent the user from repositioning the button.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

virtual BOOL CanBeStored() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::CanBeStretched

virtual BOOL CanBeStretched() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::CMFCToolBarButton

CMFCToolBarButton(
 UINT uiID,
 int iImage,
 LPCTSTR lpszText=NULL,
 BOOL bUserButton=FALSE,
 BOOL bLocked=FALSE);

ParametersParameters

Determines whether the button can be stored.

This method returns TRUE.

The framework uses this method to determine whether the button can participate in a drag-and-drop
operation.

The default implementation returns TRUE. Override this method if your button cannot be stored as part of
a drag-and-drop operation. For more information about drag-and-drop operations, see Drag and Drop
(OLE).

Specifies whether a user can stretch the button during customization.

This method returns FALSE.

This method is used by the framework to determine whether the button can be stretched in customization
mode.

The default implementation of this method returns FALSE. Override this method to return TRUE for a
variable-width control such as a combo box or slider.

For more information about customization mode, see CMFCToolBar::SetCustomizeMode.

Constructs and initializes a CMFCToolBarButton object.

uiID
[in] The command ID of the button.

iImage
[in] The image index of the button in the collection of images.

lpszText
[in] The text label of the button. Can be NULL.

bUserButton

CMFCToolBarButton::CompareWith

virtual BOOL CompareWith(const CMFCToolBarButton& other) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::CopyFrom

virtual void CopyFrom(const CMFCToolBarButton& src);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::CreateFromOleData

static CMFCToolBarButton* __stdcall CreateFromOleData(COleDataObject* pDataObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] A Boolean value that determines whether the button is user-defined. If this parameter is TRUE, the
button is user-defined. Otherwise, the button image is loaded from a resource.

bLocked
[in] A Boolean value that determines whether the button can be customized. If this parameter is TRUE, the
button cannot be customized. Otherwise, the button can be customized.

Compares this instance with the provided CMFCToolBarButton object.

other
[in] Reference to the object to compare with this instance.

Nonzero if the provided object equals the value of this instance; otherwise, 0.

The default implementation determines whether the command ID of the provided object equals the
command ID of this instance. Override this method if you must perform additional processing to determine
whether two CMFCToolBarButton objects are equal.

Copies the properties of another toolbar button to the current button.

src
[in] A reference to the source button from which to copy.

Call this method to copy another toolbar button to this toolbar button.

Creates a CMFCToolBarButton object from the provided COleDataObject object.

pDataObject
[in] The source OLE data object.

The created CMFCToolBarButton object.

CMFCToolBarButton::EnableWindow

virtual void EnableWindow(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::ExportToMenuButton

virtual BOOL ExportToMenuButton(CMFCToolBarMenuButton& menuButton) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::GetClipboardFormat

static CLIPFORMAT __stdcall GetClipboardFormat();

Return ValueReturn Value

RemarksRemarks

This method is used by the framework to perform data transfer in various formats. For example, the
CMFCOutlookBarPane::OnDragOver method uses this method to perform drag-and-drop operations.

Enables or disables mouse and keyboard input.

bEnable
[in] Set this parameter to TRUE to enable input, or to FALSE to disable input.

This method calls the EnableWindow function to enable or disable input. For more information, see
EnableWindow in the Windows SDK.

Copies text from the toolbar button to a menu.

menuButton
[in] A reference to the target menu button.

This method returns TRUE.

The framework calls this method to copy the text from a toolbar button to a menu button. The default
implementation copies the text label of the button. If the text label is empty, this method copies the tooltip
text of the button.

The default implementation of this method returns TRUE. Override this method if you want to take
additional actions when the framework converts an object that is derived from CMFCToolbarButton to a
menu button.

Retrieves the global clipboard format for the application.

The global CLIPFORMAT value for the application.

The framework calls this method to retrieve the clipboard format for OLE data transfer operations. For
example, the CMFCToolBarButton::CreateFromOleData method uses this method to copy data from a
source OLE data object.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-enablewindow

CMFCToolBarButton::GetHwnd

virtual HWND GetHwnd();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::GetImage

int GetImage() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::GetInvalidateRect

virtual const CRect GetInvalidateRect() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::GetParentWnd

This method sets the global CLIPFORMAT value the first time this method is called. All subsequent calls to
this method return this value.

To allow drag-and-drop operations to occur between applications, call the
CMFCToolBarButton::SetClipboardFormatName method.

For more information about clipboards in MFC, see Clipboard.

Retrieves the window handle that is associated with the toolbar button.

The window handle that is associated with the toolbar button or NULL if the toolbar button has no
associated window handle.

The default implementation of this method returns NULL. Override this method to return the window
handle of your specific control.

Retrieves the image index of the button.

The index of the image associated with this button.

If the button has a user-defined image (that is, if bUserButton was TRUE in the constructor), the returned
index specifies an image in the collection of user-defined images (see CMFCToolBar::GetUserImages).
Otherwise, the index specifies an image in the collection of images that are loaded from a resource file (see
CMFCToolBar::GetImages). For more information about resource files, see Working with Resource Files.

Retrieves the region of the client area of the button that must be redrawn.

A CRect object that specifies the region that must be redrawn.

The default implementation of this method returns the whole client area. Override this method if you want
a different area to be redrawn.

CWnd* GetParentWnd() const;

Return ValueReturn Value

CMFCToolBarButton::GetProtectedCommands

static const CList<UINT,UINT>& GetProtectedCommands();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::GetTextSize

SIZE GetTextSize() const;

Return ValueReturn Value

CMFCToolBarButton::HasFocus

virtual BOOL HasFocus() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::HaveHotBorder

virtual BOOL HaveHotBorder() const;

Retrieves the parent window of the button.

The parent window of the button.

Retrieves the list of commands that the user cannot customize.

The list of protected commands.

In customization mode, the framework disables toolbar button commands that are protected. The user
cannot perform drag-and-drop and edit operations on disabled toolbar buttons.

Use the CMFCToolBarButton::SetProtectedCommands method to define the list of protected commands.

Retrieves the size of the button text.

A SIZE object that contains the size, in pixels, of the button text.

Determines whether the button has the current input focus.

Nonzero if the button has the input focus; otherwise 0.

The default implementation of this method returns nonzero if the button has the input focus or is a child or
descendant window of the window that has the input focus. You can override this function to customize this
behavior.

Determines whether a border of the button is displayed when a user selects the button.

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsDrawImage

BOOL IsDrawImage() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsDrawText

BOOL IsDrawText() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsDroppedDown

virtual BOOL IsDroppedDown() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsEditable

This method returns TRUE.

The framework calls this method to determine whether the toolbar button should display its border when a
user selects it.

The default implementation returns TRUE. You can override this method to customize this behavior.

Determines whether an image is displayed on the button.

Nonzero if an image is displayed on the button; otherwise 0.

This method returns FALSE if the toolbar button has no associated image (CMFCToolBarButton::GetImage
returns -1) or if CMFCToolBarButton::m_bImage is set to FALSE.

Determines whether a text label is displayed on the button.

Nonzero if a text label is displayed; otherwise 0.

This method returns FALSE if the toolbar button has no associated text label (
CMFCToolBarButton::m_strText is empty) or CMFCToolBarButton::m_bText is set to FALSE.

Determines whether the button displays a submenu.

This method returns FALSE.

The default implementation of this method returns FALSE. Override this method to return TRUE if your
control displays a submenu.

Determines whether the button can be customized.

virtual BOOL IsEditable() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsExtraSize

virtual BOOL IsExtraSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsFirstInGroup

virtual BOOL IsFirstInGroup() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsHidden

Nonzero if a button can be customized by the user; otherwise 0.

The framework calls this method to determine whether the user can customize the toolbar button by using
drag-and-drop or edit operations.

The default implementation returns FALSE if the command ID of the button is a standard command (you
can determine this by calling the IsStandardCommand function) or if the command ID is in the list of
protected commands. For more information about protected commands, see
CMFCToolBarButton::GetProtectedCommands and CMFCToolBarButton::SetProtectedCommands.

Override this method to customize its behavior.

Determines whether the button can be displayed with an extended border.

Nonzero if the toolbar button can be displayed with an extended border; otherwise 0.

Several skins use extra size for the borders of toolbar buttons (for example, round buttons).

If the user moves this button from one toolbar to another, the framework calls the
CMFCToolBarButton::OnChangeParentWnd method. The CMFCToolBarButton::OnChangeParentWnd
method sets the extra size flag to that of the new parent toolbar (for more information, see
CMFCToolBar::IsButtonExtraSizeAvailable).

Determines whether the button is in the first position in its button group.

TRUE if the button is the first button in its button group; otherwise FALSE.

This method defines a button group as a neighboring set of buttons that are positioned on the same row
and are bounded by separators or the border of the toolbar. This method returns FALSE if the toolbar
button refers to the Customize button. For more information about the Customize button, see
CMFCToolBar::GetCustomizeButton.

Call the CMFCToolBarButton::IsLastInGroup method to determine whether the button is in the last position
in its button group.

BOOL IsHidden() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsHorizontal

BOOL IsHorizontal() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsLastInGroup

virtual BOOL IsLastInGroup() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsLocked

Determines whether the button is hidden.

Nonzero if the button is hidden (invisible); otherwise 0.

The framework calls this method when the parent toolbar is stretched to determine whether the toolbar
button is visible.

If you set the button to be invisible by using the CMFCToolBarButton::SetVisible method, use
CMFCToolBarButton::IsVisible to determine whether the toolbar button is visible.

By default, all toolbar buttons are visible. Use the CMFCToolBarButton::Show method to hide or show
toolbar buttons.

Determines whether the button is located on a horizontal toolbar.

Nonzero if a toolbar button is located on a horizontal toolbar; otherwise 0.

The framework calls this method to determine the layout of toolbar buttons.

This method returns the m_bHorz data member. The default value of the m_bHorz data member is TRUE; it
is reset on each call to the CMFCToolBarButton::OnDraw method.

Specifies whether the button is in the last position in its button group.

TRUE if the button is the last button in its button group; otherwise FALSE.

This method defines a button group as a neighboring set of buttons that are positioned on the same row
and are bounded by separators or the border of the toolbar This method returns FALSE if the toolbar
button has no parent toolbar or the toolbar button refers to the Customize button. For more information
about the Customize button, see CMFCToolBar::GetCustomizeButton.

Call the CMFCToolBarButton::IsFirstInGroup method to determine whether the button is in the first
position in its button group.

Determines whether the button is on a locked (non-customizable) toolbar.

BOOL IsLocked() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsOwnerOf

virtual BOOL IsOwnerOf(HWND hwnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsVisible

BOOL IsVisible() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::IsWindowVisible

virtual BOOL IsWindowVisible();

Return ValueReturn Value

Nonzero if the button is on a locked toolbar; otherwise 0.

The framework calls this method to determine whether the user can customize the toolbar button by using
drag-and-drop or edit operations. Set the locked attribute on the parent toolbar by using the
CMFCToolBar::LoadToolBar method. The framework passes the value of this attribute to the constructor of
each toolbar button (CMFCToolbarButton) that it inserts into the parent toolbar.

Determines whether the button is the owner of the provided window handle.

hwnd
[in] A window handle.

Nonzero if the button is the owner of the provided window handle; otherwise 0.

This method returns nonzero if hwnd either refers to the direct window handle or is a child of the window
handle that is associated with the button. This method returns 0 if hwnd is NULL.

Determines whether the toolbar button is visible.

Nonzero if the toolbar button is visible; otherwise 0.

You can show or hide the toolbar button by using the CMFCToolBarButton::SetVisible method. Call the
CPane::AdjustSizeImmediate method on the parent toolbar after you call CMFCToolBarButton::SetVisible
to recalculate the layout of a parent toolbar.

Determines whether the underlying window handle of the button is visible.

Nonzero if the underlying window handle of the button is visible; otherwise 0.

RemarksRemarks

CMFCToolBarButton::m_bImage

BOOL m_bImage;

RemarksRemarks

CMFCToolBarButton::m_bText

BOOL m_bText;

RemarksRemarks

CMFCToolBarButton::m_bTextBelow

BOOL m_bTextBelow;

RemarksRemarks

CMFCToolBarButton::m_bUserButton

BOOL m_bUserButton;

RemarksRemarks

CMFCToolBarButton::m_bWholeText

This method returns nonzero if the styles attribute of the underlying window handle contains the
WS_VISIBLE style. This method returns FALSE if the underlying window handle of the button is NULL.

Specifies whether an image is displayed on the button.

If this data member is set to TRUE, the framework displays the image that is associated with the toolbar
button; otherwise the framework does not display the image. This member affects the return value of the
CMFCToolBarButton::m_bImage method.

Specifies whether a text label is displayed on the button.

If this data member is set to TRUE, the framework displays the text label of the toolbar button; otherwise
the framework does not display the text label. This member affects the return value of the
CMFCToolBarButton::m_bText method.

Specifies whether the text label is displayed underneath the image on the button.

If this member variable is set to TRUE, the framework displays the text of the button underneath the image.
The default value of this member is FALSE.

Specifies whether the button has a user-defined image

This data member is set to TRUE when the button has a user-defined image associated with it.

Specifies whether the button displays its full text label even if it does not fit in the bounding rectangle.

BOOL m_bWholeText;

RemarksRemarks

CMFCToolBarButton::m_bWrap

BOOL m_bWrap;

RemarksRemarks

CMFCToolBarButton::m_bWrapText

AFX_IMPORT_DATA static BOOL m_bWrapText;

RemarksRemarks

CMFCToolBarButton::m_nID

UINT m_nID;

RemarksRemarks

CMFCToolBarButton::m_nStyle

UINT m_nStyle;

RemarksRemarks

If this data member is set to TRUE, the framework displays the full text label by enlarging the button.
Otherwise, the framework truncates and appends an ellipsis (...) to the text label.

Specifies whether the button next to a separator will be put on the next row.

The framework sets this data member to TRUE when the toolbar button does not fit on the current row or
when you specify a layout (for example, a specific number of toolbar buttons per row).

The framework places this button on the next row if this data member is set to TRUE and the toolbar is
docked horizontally or floating.

The default value of this data member is FALSE.

Specifies whether multi-line text labels are enabled.

If this static member variable is TRUE, the framework enables all toolbars to display multi-line text labels on
toolbar buttons.

The default value of this data member is FALSE.

The command ID of the button.

A command ID of -1 indicates that the button is a separator. All button separators have the
TBBS_SEPARATOR style. See CMFCToolBarButton::m_nStyle for more information about button styles.

The style of the button.

CMFCToolBarButton::m_strText

CString m_strText;

RemarksRemarks

CMFCToolBarButton::NotifyCommand

virtual BOOL NotifyCommand(int iNotifyCode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::OnAddToCustomizePage

virtual void OnAddToCustomizePage();

RemarksRemarks

CMFCToolBarButton::OnBeforeDrag

virtual BOOL OnBeforeDrag() const;

Return ValueReturn Value

RemarksRemarks

See ToolBar Control Styles for the list of available toolbar button styles.

The text label of the button.

This data member contains the text label of the button. The text label can be empty.

Specifies whether the button processes the WM_COMMAND message.

iNotifyCode
[in] The notification message that is associated with the command.

This method returns FALSE.

The framework calls this method when it is about to send a WM_COMMAND message to the parent
window.

By default, this method returns FALSE. Override this method to return TRUE if you want to process the
WM_COMMAND message or FALSE to indicate that the parent toolbar should handle the message.

Called by the framework when the button is added to a Customize dialog box.

The default implementation of this method does nothing. Override this method if you want to perform
some action when the button is added to a Customize dialog box.

Specifies whether the button can be dragged.

TRUE if the button can be dragged; otherwise FALSE.

https://docs.microsoft.com/windows/desktop/menurc/wm-command
https://docs.microsoft.com/windows/desktop/menurc/wm-command

CMFCToolBarButton::OnBeforeDrop

virtual BOOL OnBeforeDrop(CMFCToolBar* pTarget);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::OnCalculateSize

virtual SIZE OnCalculateSize(
 CDC* pDC,
 const CSize& sizeDefault,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The framework calls this method before the user starts to drag the button.

The default implementation of this method returns TRUE. Override this method to return FALSE to disable
dragging of the button.

Specifies whether a user can drop the button onto the target toolbar.

pTarget
[in] The target of the drag-and-drop operation.

TRUE if the button can be dropped onto the provided target toolbar; otherwise FALSE.

The framework calls this method before the button is dropped onto a toolbar.

The default implementation of this method returns TRUE. Override this method to return FALSE to disable
the drop operation on the specified target.

Called by the framework to calculate the size of the button for the specified device context and docking
state.

pDC
[in] The device context that displays the button.

sizeDefault
[in] The default size of the button.

bHorz
[in] The dock state of the parent toolbar. This parameter is TRUE if the toolbar is docked horizontally or is
floating, or FALSE if the toolbar is docked vertically.

A SIZE structure that contains the dimensions of the button, in pixels.

The framework calls this method to determine the size of the toolbar button for the specified device context
and dock state.

The default implementation considers the text and image sizes (if they are displayed), the text and image
positions (the text below or at the right-hand side of the image), and the toolbar dock state.

CMFCToolBarButton::OnCancelMode

virtual void OnCancelMode();

RemarksRemarks

CMFCToolBarButton::OnChangeParentWnd

virtual void OnChangeParentWnd(CWnd* pWndParent);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::OnClick

virtual BOOL OnClick(
 CWnd* pWnd,
 BOOL bDelay=TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Override this method if you want to provide the size of a non-standard button (for example, an edit box
button).

Called by the framework to handle the WM_CANCELMODE message.

The default implementation of this method does nothing. Override this method if you want to handle the
WM_CANCELMODE message.

Called by the framework when the button is inserted into a new toolbar.

pWndParent
[in] The new parent window.

The button is inserted into a toolbar, for example, when the user drags it from one toolbar to another
toolbar.

The default implementation of this method does nothing.

Called by the framework when the user clicks the mouse button.

pWnd
[in] The parent window of the toolbar button.

bDelay
[in] TRUE if the message should be handled with a delay.

This method returns FALSE.

The framework calls this method when the user clicks the toolbar button.

The default implementation does nothing and returns FALSE. Override this method to return a nonzero
value if the button processes the click message.

https://docs.microsoft.com/windows/desktop/winmsg/wm-cancelmode
https://docs.microsoft.com/windows/desktop/winmsg/wm-cancelmode

CMFCToolBarButton::OnClickUp

virtual BOOL OnClickUp();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::OnContextHelp

virtual BOOL OnContextHelp(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::OnCtlColor

virtual HBRUSH OnCtlColor(
 CDC* pDC,
 UINT nCtlColor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Called by the framework when the user releases the mouse button.

This method returns FALSE.

The framework calls this method when the user releases the toolbar button.

The default implementation does nothing and returns FALSE. Override this method to return a nonzero
value if the button processes the click message.

Called by the framework when the parent toolbar handles a WM_HELPHITTEST message.

pWnd
[in] The parent window of the toolbar button.

This method returns FALSE.

The default implementation of this method does nothing and returns FALSE. Override this method to
return a nonzero value if the button processes the help message.

For more information about the WM_HELPHITTEST message, see TN028: Context-Sensitive Help Support.

Called by the framework when the parent toolbar handles a WM_CTLCOLOR message.

pDC
[in] The device context that displays the button.

nCtlColor
[in] The specific color notification.

A handle to the brush object that the framework uses to paint the background of the button.

CMFCToolBarButton::OnCustomizeMenu

virtual BOOL OnCustomizeMenu(CMenu* pMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::OnDblClk

virtual void OnDblClk(CWnd* pWnd);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::OnDraw

The framework calls this method when the parent toolbar processes the WM_CTLCOLOR message for a
toolbar button that contains a Windows control. The framework does not call this method if the toolbar
button is windowless.

The framework calls this method when the toolbar framework is in customization mode and the toolbar
button is unlocked. For more information about customization mode, see
CMFCToolBar::SetCustomizeMode. For more information about locking toolbar buttons, see
CMFCToolBarButton::IsLocked.

The default implementation does nothing and returns NULL.

Allows the button to modify the provided menu when the application displays a shortcut menu on the
parent toolbar.

pMenu
[in] The menu to customize.

This method returns FALSE.

The default implementation does nothing and returns FALSE. Override this method and return a nonzero
value if you want to modify the contents of the provided menu.

Called by the framework when the parent toolbar handles a WM_LBUTTONDBLCLK message.

pWnd
[in] - The parent window of the button.

This method is called by the CMFCToolBar::OnLButtonDblClk method when the parent toolbar handles a
WM_LBUTTONDBLCLK message.

The default implementation of this method does nothing.

Called by the framework to draw the button by using the specified styles and options.

https://docs.microsoft.com/windows/desktop/inputdev/wm-lbuttondblclk
https://docs.microsoft.com/windows/desktop/inputdev/wm-lbuttondblclk

virtual void OnDraw(
 CDC* pDC,
 const CRect& rect,
 CMFCToolBarImages* pImages,
 BOOL bHorz=TRUE,
 BOOL bCustomizeMode=FALSE,
 BOOL bHighlight=FALSE,
 BOOL bDrawBorder=TRUE,
 BOOL bGrayDisabledButtons=TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::OnDrawOnCustomizeList

virtual int OnDrawOnCustomizeList(
 CDC* pDC,
 const CRect& rect,
 BOOL bSelected);

ParametersParameters

pDC
[in] The device context that displays the button.

rect
[in] The bounding rectangle of the button.

pImages
[in] The collection of toolbar images that is associated with the button.

bHorz
[in] The dock state of the parent toolbar. This parameter is TRUE when the button is docked horizontally
and FALSE when the button is docked vertically.

bCustomizeMode
[in] Specifies whether the toolbar is in customization mode. This parameter is TRUE when the toolbar is in
customization mode and FALSE when the toolbar is not in customization mode.

bHighlight
[in] Specifies whether the button is highlighted. This parameter is TRUE when the button is highlighted and
FALSE when the button is not highlighted.

bDrawBorder
[in] Specifies whether the button should display its border. This parameter is TRUE when the button should
display its border and FALSE when the button should not display its border.

bGrayDisabledButtons
[in] Specifies whether to shade disabled buttons or use the disabled images collection. This parameter is
TRUE when disabled buttons should be shaded and FALSE when this method should use the disabled
images collection.

Override this method to customize toolbar button drawing.

Called by the framework to draw the button in the Commands pane of the Customize dialog box.

pDC
[in] The device context that displays the button.

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::OnGetCustomToolTipText

virtual BOOL OnGetCustomToolTipText(CString& strToolTip);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::OnGlobalFontsChanged

virtual void OnGlobalFontsChanged();

RemarksRemarks

CMFCToolBarButton::OnMove

rect
[in] The bounding rectangle of the button.

bSelected
[in] Specifies whether the button is selected. If this parameter is TRUE, the button is selected. If this
parameter is FALSE, the button is not selected.

The width, in pixels, of the button on the specified device context.

This method is called by the customization dialog box (Commands tab) when the button is about to
display itself on the owner-draw list box.

The default implementation of this method displays the image and text label of the button if they are
available. If the text label of the button is not available, the method displays the tooltip text.

Override this method to perform custom drawing.

Called by the framework to retrieve the custom tooltip text for the button.

strToolTip
[out] A CString object that receives the custom tooltip text.

This method returns FALSE.

The framework calls this method when it displays the tooltip for the toolbar button. If this method returns
FALSE, the framework uses a default tooltip.

The default implementation does nothing and returns FALSE. Override this method and return a nonzero
value to provide custom tooltip text for the toolbar button.

Called by the framework when the global font has changed.

The default implementation of this method does nothing. Override this method to update the font that is
used to display the button text.

Called by the framework when the parent toolbar moves.

virtual void OnMove();

RemarksRemarks

CMFCToolBarButton::OnShow

virtual void OnShow(BOOL bShow);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::OnSize

virtual void OnSize(int iSize);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::OnToolHitTest

virtual BOOL OnToolHitTest(
 const CWnd* pWnd,
 TOOLINFO* pTI);

ParametersParameters

The default implementation of this method does nothing. Override this method to reposition the button
when the parent toolbar moves.

Called by the framework when the button becomes visible or invisible.

bShow
[in] Specifies whether the button is visible. If this parameter is TRUE, the button is visible. Otherwise, the
button is not visible.

The default implementation of this method does nothing. Override this method to update the visibility of
the button.

Called by the framework when the parent toolbar changes its size or position and this change causes the
button to change size.

iSize
[in] The new width of the button.

The default implementation of this method does nothing. Override this method to resize the button when
the size or position of the parent toolbar changes.

Called by the framework when the parent toolbar must determine whether a point is in the bounding
rectangle of the button.

pWnd
[in] The parent window of the button. Can be NULL.

pTI
[in] A TOOLINFO structure that contains information about a tool in a tooltip control.

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::OnUpdateToolTip

virtual BOOL OnUpdateToolTip(
 CWnd* pWndParent,
 int iButtonIndex,
 CToolTipCtrl& wndToolTip,
 CString& str);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::PrepareDrag

virtual BOOL PrepareDrag(COleDataSource& srcItem);

ParametersParameters

Return ValueReturn Value

The result of OnMenuButtonToolHitTest if the button can retrieve a pointer to the parent frame window;
otherwise FALSE.

This method calls one of the following methods if it can convert the parent window to a valid frame object:

CMDIFrameWndEx::OnMenuButtonToolHitTest

CFrameWndEx::OnMenuButtonToolHitTest

COleIPFrameWndEx::OnMenuButtonToolHitTest

Called by the framework when the parent toolbar updates its tooltip text.

pWndParent
[in] The parent window.

iButtonIndex
[in] The zero-based index of the button in the parent button collection.

wndToolTip
[in] The control that displays the tooltip text.

str
[out] A CString object that receives the updated tooltip text.

This method returns FALSE.

The default implementation of this method does nothing and returns FALSE. Override this method to
return a nonzero value if you provide a tooltip text string.

Called by the framework when the button is about to perform a drag-and-drop operation.

srcItem
[in] A COleDataSource object that stores state information about the drag-and-drop operation.

TRUE if the operation succeeds; otherwise FALSE.

RemarksRemarks

CMFCToolBarButton::Rect

const CRect& Rect() const;

Return ValueReturn Value

CMFCToolBarButton::ResetImageToDefault

virtual void ResetImageToDefault();

RemarksRemarks

CMFCToolBarButton::SaveBarState

virtual void SaveBarState();

RemarksRemarks

CMFCToolBarButton::Serialize

The framework calls this method to prepare the toolbar button to store its state in the provided
COleDataSource object. This method stores its state by serializing itself to a shared file and then passing that

file to the COleDataSource::CacheGlobalData method. For more information about toolbar button
serialization, see CMFCToolBarButton::Serialize.

This method does nothing and returns TRUE if the button cannot be stored (the
CMFCToolBarButton::CanBeStored method returns FALSE). It returns FALSE if an exception occurs during
object serialization.

For more information about OLE drag-and-drop operations, see Drag and Drop (OLE).

Retrieves the bounding rectangle of the button.

A CRect object that contains the bounding rectangle of a button.

Sets to the default value the image that is associated with the button.

This method retrieves the default image from its parent toolbar by using the
CMFCToolBar::GetDefaultImage method. If the button has no associated default image, this method sets
the text label of the button according to its string resource by using the CStringT::LoadString method. For
more information about string resources, see Working with Resource Files.

This method does nothing if the button has a user-defined image.

Saves the state of the toolbar button.

The framework calls this method when it creates a CMFCToolBarButton object as the result of a drag-and-
drop operation.

The default implementation of this method does nothing. Override this method to save the state of the
toolbar button to an external data source.

Reads this object from an archive or writes it to an archive.

virtual void Serialize(CArchive& ar);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::SetACCData

virtual BOOL SetACCData(
 CWnd* pParent,
 CAccessibilityData& data);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarButton::SetClipboardFormatName

static void __stdcall SetClipboardFormatName(LPCTSTR lpszName);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::SetImage

ar
[in] The CArchive object from which or to which to serialize.

This method supports data transfer processes such as clipboard or drag-and-drop operations. It reads or
writes properties of the button such as the ID, text label, and image ID from or to the provided CArchive

object.

For serialization examples, see Serialization: Serializing an Object.

Populates the provided CAccessibilityData object with accessibility data from the toolbar button.

pParent
[in] The parent window of the toolbar button.

data
[in] A CAccessibilityData object that is populated with the accessibility data of the toolbar button.

This method returns TRUE.

Override this method to return FALSE if your toolbar button does not provide accessibility data.

Renames the global clipboard format.

lpszName
[in] The new name of the global clipboard format. Cannot be NULL.

This method makes it possible for drag-and-drop operations to occur among multiple applications. Each
application must supply the same clipboard format name.

You must call this method before the framework calls CMFCToolBarButton::GetClipboardFormat.

Sets the image index of the button.

virtual void SetImage(int iImage);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::SetProtectedCommands

static void SetProtectedCommands(const CList<UINT,UINT>& lstCmds);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::SetRadio

virtual void SetRadio();

RemarksRemarks

CMFCToolBarButton::SetRect

void SetRect(const CRect rect);

ParametersParameters

RemarksRemarks

iImage
[in] The index of the image in the collection of toolbar images.

If the toolbar button is a separator, iImage refers to the new width of the separator button.

If iImage is less than zero, this method disables drawing of the image and enables drawing of the text label
of the button.

Sets the list of commands that the user cannot customize.

lstCmds
[in] The list of protected commands.

In customization mode, the framework disables toolbar button commands that are protected. The user
cannot perform drag-and-drop and edit operations on disabled toolbar buttons.

Use the CMFCToolBarButton::GetProtectedCommands method to retrieve the list of protected commands.

Called by the framework when a button changes its checked state.

The default implementation of this method does nothing. Override this method to perform a custom action
when the button changes its checked state.

Sets the bounding rectangle of the button.

rect
[in] The new bounding rectangle of the button.

This method calls the CMFCToolBarButton::OnMove method after it sets the new bounding rectangle.

CMFCToolBarButton::SetStyle

virtual void SetStyle(UINT nStyle);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::SetVisible

void SetVisible(BOOL bShow=TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBarButton::Show

void Show(BOOL bShow);

ParametersParameters

RemarksRemarks

Sets the style of the button.

nStyle
[in] The new style of the button.

The default implementation sets the CMFCToolBarButton::m_nStyle data member to nStyle. Override this
method if you want to perform additional processing to handle the change in style. See ToolBar Control
Styles for a list of valid style flags.

Specifies whether the button is visible.

bShow
[in] A Boolean value that specifies whether to show or hide the button. If this parameter is TRUE, the button
is shown. If the parameter is FALSE, the button is hidden.

Use this function to hide or show a particular toolbar button. Call the CPane::AdjustSizeImmediate method
after you call this method.

Shows or hides the button.

bShow
[in] A Boolean value that specifies whether to show or hide the button. If this parameter is TRUE, the button
is shown. If the parameter is FALSE, the button is hidden.

The framework calls this method to update the visibility of toolbar buttons when their parent toolbar is
resized. The framework calls this method with bShow set to FALSE when the button no longer fits within
the bounds of the toolbar. The framework calls this method with bShow set to TRUE when after resizing the
button again fits within the bounds of the toolbar.

Use the CMFCToolBarButton::SetVisible method to set the general visibility of the button.

This method calls the CMFCToolBarButton::OnShow method after it updates the visibility state of the
button.

See also
Hierarchy Chart
Classes
CMFCToolBar Class
CMFCToolBarImages Class

CMFCToolBarComboBoxButton Class
3/4/2019 • 19 minutes to read • Edit Online

Syntax
class CMFCToolBarComboBoxButton : public CMFCToolBarButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCToolBarComboBoxButton::CMFCToolBarComboBoxBut
ton

Constructs a CMFCToolBarComboBoxButton .

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolBarComboBoxButton::AddItem Adds an item to the end of the combo box list.

CMFCToolBarComboBoxButton::AddSortedItem Adds an item to the combo box list. The order of items in
the list is specified by Compare .

CMFCToolBarComboBoxButton::Compare Compares two items. Called to sort items that
AddSortedItems adds to the combo box list.

CMFCToolBarComboBoxButton::CreateEdit Creates a new edit control for the combo box button.

CMFCToolBarComboBoxButton::DeleteItem Deletes an item from the combo box list.

CMFCToolBarComboBoxButton::FindItem Returns the index of the item that contains a specified string.

CMFCToolBarComboBoxButton::GetByCmd Returns a pointer to the combo box button with a specified
command ID.

CMFCToolBarComboBoxButton::GetComboBox Returns a pointer to the combo box control that is
embedded in the combo box button.

CMFCToolBarComboBoxButton::GetCount Returns the number of items in the combo box list.

CMFCToolBarComboBoxButton::GetCountAll Finds the combo box button that has a specified command
ID. Returns the number of items in the combo box list of
that button.

CMFCToolBarComboBoxButton::GetCurSel Returns the index of the selected item in the combo box list.

A toolbar button that contains a combo box control (CComboBox Class).

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbarcomboboxbutton-class.md

CMFCToolBarComboBoxButton::GetCurSelAll Finds the combo box button that has a specified command
ID, and returns the index of the selected item in the combo
box list of that button.

CMFCToolBarComboBoxButton::GetEditCtrl Returns a pointer to the edit control that is embedded in the
combo box button.

CMFCToolBarComboBoxButton::GetItem Returns the string that is associated with a specified index in
the combo box list.

CMFCToolBarComboBoxButton::GetItemAll Finds the combo box button that has a specified command
ID, and returns the string that is associated with an index in
the combo box list of that button.

CMFCToolBarComboBoxButton::GetItemData Returns the 32-bit value that is associated with a specified
index in the combo box list.

CMFCToolBarComboBoxButton::GetItemDataAll Finds the combo box button that has a specified command
ID, and returns the 32-bit value that is associated with an
index in the combo box list of that button.

CMFCToolBarComboBoxButton::GetItemDataPtrAll Finds the combo box button that has a specified command
ID. Retrieves the 32-bit value that is associated an index in
the combo box list of that button, and returns the 32-bit
value as a pointer.

CMFCToolBarComboBoxButton::GetText Returns the text from the edit control of the combo box.

CMFCToolBarComboBoxButton::GetTextAll Finds the combo box button that has a specified command
ID, and returns the text from edit control of that button.

CMFCToolBarComboBoxButton::IsCenterVert Determines whether combo box buttons in the application
are centered or aligned with the top of the toolbar.

CMFCToolBarComboBoxButton::IsFlatMode Determines whether combo box buttons in the application
have a flat appearance.

CMFCToolBarComboBoxButton::RemoveAllItems Removes all items from the list box and edit control of the
combo box.

CMFCToolBarComboBoxButton::SelectItem Selects an item in the combo box according to its index, 32-
bit value, or string, and notifies the combo box control about
the selection.

CMFCToolBarComboBoxButton::SelectItemAll Finds the combo box button that has a specified command
ID. Calls SelectItem to select an item in the combo box of
that button according to its string, index, or 32-bit value.

CMFCToolBarComboBoxButton::SetCenterVert Specifies whether combo box buttons in the application are
centered vertically or aligned with the top of the toolbar.

CMFCToolBarComboBoxButton::SetDropDownHeight Sets the height of the drop-down list box.

NAME DESCRIPTION

CMFCToolBarComboBoxButton::SetFlatMode Specifies whether combo box buttons in the application have
a flat appearance.

NAME DESCRIPTION

Remarks

Example

// CObList listButtons
// POSITION posCombo
CMFCToolBarComboBoxButton* pCombo = DYNAMIC_DOWNCAST(CMFCToolBarComboBoxButton,
listButtons.GetNext(posCombo));

pCombo->EnableWindow(true);
pCombo->SetCenterVert();
pCombo->SetDropDownHeight(25);
pCombo->SetFlatMode();
pCombo->SetText(_T("this is a combo box"));

Inheritance Hierarchy

Requirements

CMFCToolBarComboBoxButton::AddItem

To add a combo box button to a toolbar, follow these steps:

1. Reserve a dummy resource ID for the button in the parent toolbar resource.

2. Construct a CMFCToolBarComboBoxButton object.

3. In the message handler that processes the AFX_WM_RESETTOOLBAR message, replace the dummy
button with the new combo box button by using CMFCToolBar::ReplaceButton.

For more information, see Walkthrough: Putting Controls On Toolbars. For an example of a combo box toolbar
button, see the example project VisualStudioDemo.

The following example demonstrates how to use various methods in the CMFCToolBarComboBoxButton class. The
example shows how to enable the edit and combo boxes, set the vertical position of combo box buttons in the
application, set the height of the list box when it is dropped down, set the flat style appearance of combo box
buttons in the application, and set the text in the edit box of the combo box button. This code snippet is part of
the Visual Studio Demo sample.

CObject

CMFCToolBarButton

CMFCToolBarComboBoxButton

Header: afxtoolbarcomboboxbutton.h

Appends a unique item to the list box.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

virtual INT_PTR AddItem(
 LPCTSTR lpszItem,
 DWORD_PTR dwData=0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::AddSortedItem

virtual INT_PTR AddSortedItem(
 LPCTSTR lpszItem,
 DWORD_PTR dwData=0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::CanBeStretched

virtual BOOL CanBeStretched() const;

Return ValueReturn Value

CMFCToolBarComboBoxButton::CMFCToolBarComboBoxButton

lpszItem
[in] The text of the item to add to the list box.

dwData
[in] The data associated with the item to add to the list box.

The index of the last item in the list box.

Do not use this method when the list box style is sorted.

If the item text is already in the list box, the new data is stored with the existing item. The search for the item is
case sensitive.

Adds an item to the list box in the order that is defined by the Compare method.

lpszItem
[in] The text of the item to add to the list box.

dwData
[in] The data associated with the item to add to the list box.

Index of the item that was added to the list box.

Use this function to add items to the list box in a specific order.

Indicates whether the combo box button size can change.

Returns TRUE.

Constructs a CMFCToolBarComboBoxButton object.

CMFCToolBarComboBoxButton(
 UINT uiID,
 int iImage,
 DWORD dwStyle=CBS_DROPDOWNLIST,
 int iWidth=0);

ParametersParameters

RemarksRemarks

CMFCToolBarComboBoxButton::ClearData

virtual void ClearData();

RemarksRemarks

CMFCToolBarComboBoxButton::Compare

virtual int Compare(
 LPCTSTR lpszItem1,
 LPCTSTR lpszItem2);

ParametersParameters

Return ValueReturn Value

uiID
[in] The command ID of the new button.

iImage
[in] The image index of the image associated with the new button.

dwStyle
[in] The style of the new button.

iWidth
[in] The width, in pixels, of the new button.

The default width is 150 pixels.

For a list of toolbar button styles see ToolBar Control Styles

Deletes user-defined data.

By default this method does nothing. Override this method in a derived class if you want to delete any user-
defined data.

Compares two strings.

lpszItem1
[in] The first string to compare.

lpszItem2
[in] The second string to compare.

A value that indicates the case-sensitive lexicographic relationship between the strings. The following table lists
the possible values:

VALUE DESCRIPTION

<0 The first string is less than the second.

0 The first string equals the second.

>0 The first string is greater than the second.

RemarksRemarks

CMFCToolBarComboBoxButton::CopyFrom

virtual void CopyFrom(const CMFCToolBarButton& src);

ParametersParameters

CMFCToolBarComboBoxButton::CreateCombo

virtual CComboBox* CreateCombo(
 CWnd* pWndParent,
 const CRect& rect);

ParametersParameters

Return ValueReturn Value

CMFCToolBarComboBoxButton::CreateEdit

virtual CMFCToolBarComboBoxEdit* CreateEdit(
 CWnd* pWndParent,
 const CRect& rect,
 DWORD dwEditStyle);

ParametersParameters

Override this method to change how items are sorted in the list box.

The comparison is case-sensitive.

This method is called only from the AddSortedItem method.

Copies the state of the specified CMFCToolBarComboBoxButton to the current object.

src
[in] The source CMFCToolBarComboBoxButton object.

Creates a new combo box for the combo box button.

pWndParent
[in] A pointer to the parent window of the button.

rect
[in] Bounding rectangle of the combo box.

A pointer to the new combo box if the method was successful; otherwise, NULL.

Creates a new edit box for the combo box button.

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::DeleteItem

BOOL DeleteItem(int iIndex);
BOOL DeleteItem(DWORD_PTR dwData);
 BOOL DeleteItem(LPCTSTR lpszText);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::DuplicateData

virtual void DuplicateData();

RemarksRemarks

CMFCToolBarComboBoxButton::EnableWindow

virtual void EnableWindow(BOOL bEnable = TRUE);

pWndParent
[in] A pointer to the parent window of the button.

rect
[in] Bounding rectangle of the new edit box.

dwEditStyle
[in] Control style of the new edit box.

A pointer to the new edit box if the method was successful; otherwise, NULL.

The framework calls this method when it creates a new edit box for a combo box button. Override this method
to change how CMFCToolBarComboBoxEdit is created.

Deletes a specified item from the list box.

iIndex
[in] The zero-based index of the item to be deleted.

dwData
[in] The data associated with the item to be deleted.

lpszText
[in] The text of the item to be deleted. If there are multiple items with the same text, the first item is deleted.

TRUE if the item was located and successfully deleted; otherwise, FALSE.

Duplicates user-defined data.

By default this method does nothing. Override this method in a derived class if you want to copy any user-
defined data.

Enables or disables the edit and combo boxes.

ParametersParameters

RemarksRemarks

CMFCToolBarComboBoxButton::ExportToMenuButton

virtual BOOL ExportToMenuButton(CMFCToolBarMenuButton& menuButton) const;

ParametersParameters

Return ValueReturn Value

CMFCToolBarComboBoxButton::FindItem

int FindItem(LPCTSTR lpszText) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetByCmd

static CMFCToolBarComboBoxButton* GetByCmd(
 UINT uiCmd,
 BOOL bIsFocus=FALSE);

ParametersParameters

Return ValueReturn Value

bEnable
[in] TRUE to enable the edit and combo boxes; FALSE to disable the edit and combo boxes.

When disabled, the controls cannot become active and cannot accept user input.

Copies a string from the application string table to the specified menu using the combo box button command
ID.

menuButton
[out] Reference to a menu button.

Always TRUE.

Returns the index of the first item in the list box that contains a specified string.

lpszText
[in] The text for which to search in the list box.

The index of the item; or CB_ERR if the item is not found.

Gets a pointer to the combo box button that has a specified command ID.

uiCmd
[in] The command ID of a combo box button.

bIsFocus
[in] TRUE to search only focused buttons; FALSE to search all buttons.

A pointer to a combo box button; or NULL if the button is not found.

RemarksRemarks

CMFCToolBarComboBoxButton::GetComboBox

CComboBox* GetComboBox() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetContextMenuID

UINT GetContextMenuID();

Return ValueReturn Value

CMFCToolBarComboBoxButton::GetCount

INT_PTR GetCount() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetCountAll

static int GetCountAll(UINT uiCmd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetCurSel

Returns a pointer to the combo box in the combo box button.

A pointer to the CComboBox Class object if the method was successful; otherwise NULL.

Gets the shortcut menu resource ID for the combo box button.

The shortcut menu resource ID.

Returns the number of items in the list box.

The number of items in the list box.

Gets the number of items in the list box of a combo box button that has a specified command ID.

uiCmd
[in] The command ID of a combo box button.

The number of items in the list box; otherwise, CB_ERR if the combo box button is not found.

Gets the index of the currently selected item in the list box.

int GetCurSel() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetCurSelAll

static int GetCurSelAll(UINT uiCmd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetEditCtrl

virtual CEdit* GetEditCtrl();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetHwnd

virtual HWND GetHwnd();

Return ValueReturn Value

CMFCToolBarComboBoxButton::GetItem

The index of the currently selected item in the list box; or CB_ERR if no item is selected.

The list box index is zero-based.

Returns the index of the currently selected item in the list box of a combo box button that has a specified
command ID.

uiCmd
[in] The command ID of a combo box button.

The index of the currently selected item in the list box; otherwise, CB_ERR if no item is selected or a combo box
button is not found.

The list box index is zero-based.

Returns a pointer to the edit box in the combo box button.

A pointer to the edit box if the method was successful; otherwise, NULL.

Returns the window handle for the combo box.

The window handle, or NULL if the combo box is not associated with a window object.

Returns the string associated with an item at a specified index in the list box.

LPCTSTR GetItem(int iIndex=-1) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetItemAll

static LPCTSTR GetItemAll(
 UINT uiCmd,
 int iIndex=-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetItemData

DWORD_PTR GetItemData(int iIndex=-1) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

iIndex
[in] Zero-based index of an item in the list box.

A pointer to the string that is associated with the item; otherwise, NULL if the index parameter is invalid, or if
the index parameter is -1 and there is no selected item in the combo box.

An index parameter of -1 returns the string of the item that is currently selected.

Returns the string associated with an item at a specified index in the list box of a combo box button that has a
specified command ID.

uiCmd
[in] The command ID of a combo box button.

iIndex
[in] The zero-based index of an item in the list box.

A pointer to the item's string if the method was successful; otherwise, NULL if the index is invalid, a combo box
button is not found, or if index is -1 and there is no selected item in the combo box.

An index value of -1 returns the string of the item that is currently selected.

Returns the data associated with an item at a specific index in the list box.

iIndex
[in] The zero-based index of an item in the list box.

The data associated with the item; or 0 if the item does not exist.

An index parameter of -1 returns the data associated with the currently selected item.

CMFCToolBarComboBoxButton::GetItemDataAll

static DWORD_PTR GetItemDataAll(
 UINT uiCmd,
 int iIndex=-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetItemDataPtrAll

static void* GetItemDataPtrAll(
 UINT uiCmd,
 int iIndex=-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetPrompt

virtual CString GetPrompt() const;

Return ValueReturn Value

Returns the data associated with an item at a specific index in the list box of a combo box button that has a
specific command ID.

uiCmd
[in] The command ID of a combo box button.

iIndex
[in] The zero-based index of an item in the list box.

The data associated with the item if the method was successful; otherwise, 0 if the specified index is not valid, or
CB_ERR if the combo box button is not found.

An index parameter of -1 returns the data associated with the currently selected item.

Returns the data associated with an item at a specific index in the list box of a combo box button that has a
specific command ID. This data is returned as a pointer.

uiCmd
[in] The command ID of the combo box button.

iIndex
[in] The zero-based index of an item in the list box.

A pointer associated with the item if the method was successful; otherwise, -1 if an error occurs, or NULL if the
combo box button is not found.

Returns the prompt string for the combo box button.

The prompt string.

RemarksRemarks

CMFCToolBarComboBoxButton::GetText

LPCTSTR GetText() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::GetTextAll

static LPCTSTR GetTextAll(UINT uiCmd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::HasFocus

virtual BOOL HasFocus() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::IsCenterVert

static BOOL IsCenterVert();

Return ValueReturn Value

RemarksRemarks

This method is currently not implemented.

Gets the text in the edit box.

The text in the edit box.

Gets the text in the edit box of a combo box button that has a specified command ID.

uiCmd
[in] The command ID of a specific combo box button.

The text in the edit box if the method was successful; otherwise, NULL.

Indicates whether the combo box currently has the focus.

TRUE if the combo box currently has the focus; otherwise, FALSE.

This method also returns TRUE if any child window of the combo box currently has the focus.

Returns the vertical position of combo box buttons in the application.

TRUE if the buttons are centered; FALSE if the buttons are aligned at the top.

 CMFCToolBarComboBoxButton::IsFlatMode

static BOOL IsFlatMode();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::IsOwnerOf

virtual BOOL IsOwnerOf(HWND hwnd);

ParametersParameters

Return ValueReturn Value

CMFCToolBarComboBoxButton::IsRibbonButton

BOOL IsRibbonButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::IsWindowVisible

virtual BOOL IsWindowVisible();

Return ValueReturn Value

CMFCToolBarComboBoxButton::NotifyCommand

Returns the flat style appearance of combo box buttons in the application.

TRUE if the buttons have a flat style; otherwise, FALSE.

The default flat style for combo box buttons is FALSE.

Indicates whether the specified handle is associated with the combo box button, or one of its children.

hwnd
[in] A window handle.

TRUE if the handle is assocated with the combo box button, or one of its children; otherwise, FALSE.

Indicates whether the combo box button resides on a ribbon panel.

Always FALSE.

By default, this method always returns FALSE, which means the combo box button is never displayed on a
ribbon panel.

Returns the visibility state of the combo box button.

The visibility state of the combo box button.

Indicates whether the combo box button processes the message.

virtual BOOL NotifyCommand(int iNotifyCode);

ParametersParameters

Return ValueReturn Value

CMFCToolBarComboBoxButton::OnAddToCustomizePage

virtual void OnAddToCustomizePage();

CMFCToolBarComboBoxButton::OnCalculateSize

virtual SIZE OnCalculateSize(
 CDC* pDC,
 const CSize& sizeDefault,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

CMFCToolBarComboBoxButton::OnChangeParentWnd

virtual void OnChangeParentWnd(CWnd* pWndParent);

ParametersParameters

CMFCToolBarComboBoxButton::OnClick

iNotifyCode
[in] The notification message that is associated with the command.

Whether the combo box button processes the message.

Called by the framework when the button is added to the Customize dialog box.

Called by the framework to calculate the size of the button.

pDC
[in] The device context that displays the combo box button.

sizeDefault
[in] The default size of the combo box button.

bHorz
[in] The dock state of the parent toolbar. TRUE when the toolbar is docked horizontally and FALSE when the
toolbar is docked vertically.

A SIZE structure that contains the dimensions of the combo box button, in pixels.

Called by the framework when the combo box button is inserted into a new toolbar.

pWndParent
[in] Pointer to the new parent toolbar.

Called by the framework when the user clicks the combo box button.

virtual BOOL OnClick(
 CWnd* pWnd,
 BOOL bDelay = TRUE);

ParametersParameters

Return ValueReturn Value

CMFCToolBarComboBoxButton::OnCtlColor

virtual HBRUSH OnCtlColor(
 CDC* pDC,
 UINT nCtlColor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::OnDraw

virtual void OnDraw(
 CDC* pDC,
 const CRect& rect,
 CMFCToolBarImages* pImages,
 BOOL bHorz = TRUE,
 BOOL bCustomizeMode = FALSE,
 BOOL bHighlight = FALSE,
 BOOL bDrawBorder = TRUE,
 BOOL bGrayDisabledButtons = TRUE);

ParametersParameters

pWnd
[in] Pointer to the parent window of the combo box button.

bDelay
[in] Reserved for use in a derived class.

TRUE if the method handles the event; otherwise, FALSE.

Called by the framework when the user changes the parent toolbar color to set the combo box button color.

pDC
[in] The device context that displays the combo box button.

nCtlColor
[in] Unused.

Handle to the brush that the framework uses to paint the background of the combo box button.

This method also sets the combo box button text color.

Called by the framework to draw the combo box button by using the specified styles and options.

Pdc
[in] The device context that displays the button.

rect
[in] The bounding rectangle of the button.

CMFCToolBarComboBoxButton::OnDrawOnCustomizeList

virtual int OnDrawOnCustomizeList(
 CDC* pDC,
 const CRect& rect,
 BOOL bSelected);

ParametersParameters

Return ValueReturn Value

CMFCToolBarComboBoxButton::OnGlobalFontsChanged

virtual void OnGlobalFontsChanged();

CMFCToolBarComboBoxButton::OnMove

virtual void OnMove();

CMFCToolBarComboBoxButton::OnShow

pImages
[in] The collection of images that is associated with the button.

bHorz
[in] The dock state of the parent toolbar. TRUE when the toolbar is docked horizontally and FALSE when the
toolbar is docked vertically.

bCustomizeMode
[in] Whether the application is in customization mode.

bHighlight
[in] Whether to draw the combo box button highlighted.

bDrawBorder
[in] Whether to draw the combo box button with a border.

bGrayDisabledButtons
[in] TRUE to draw shaded disabled buttons; FALSE to use the disabled images collection.

Called by the framework to draw the combo box button in the Commands pane of the Customize dialog box.

pDC
[in] The device context that displays the combo box button.

rect
[in] The bounding rectangle of the combo box button.

bSelected
[in] TRUE if the combo box button is selected; otherwise, FALSE.

The width, in pixels, of the combo box button.

Called by the framework to set the combo box button font when the application font changes.

Called by the framework to change the location of the combo box button when the parent toolbar moves.

virtual void OnShow(BOOL bShow);

ParametersParameters

CMFCToolBarComboBoxButton::OnSize

virtual void OnSize(int iSize);

ParametersParameters

CMFCToolBarComboBoxButton::OnUpdateToolTip

virtual BOOL OnUpdateToolTip(
 CWnd* pWndParent,
 int iButtonIndex,
 CToolTipCtrl& wndToolTip,
 CString& str);

ParametersParameters

Return ValueReturn Value

CMFCToolBarComboBoxButton::RemoveAllItems

void RemoveAllItems();

RemarksRemarks

Called by the framework when the combo box button is hidden or displayed.

bShow
[in] Whether to hide or display the combo box button.

Called by the framework to change the size of the combo box button when the parent toolbar changes size.

iSize
[in] The new width of the combo box button.

Called by the framework when the user changes the tool tip for the combo box button.

pWndParent
[in] Pointer to the parent window for the combo box button.

iButtonIndex
[in] ID of the combo box button.

wndToolTip
[in] The tool tip to associate with the combo box button.

str
[in] The tool tip text.

TRUE if the method handles the event; otherwise, FALSE.

Deletes all items from the list and edit boxes.

Removes all items from the list box and edit control of a combo box.

CMFCToolBarComboBoxButton::SelectItem

BOOL SelectItem(
 int iIndex,
 BOOL bNotify=TRUE);

BOOL SelectItem(DWORD_PTR dwData);
BOOL SelectItem(LPCTSTR lpszText);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::SelectItemAll

static BOOL SelectItemAll(
 UINT uiCmd,
 int iIndex);

static BOOL SelectItemAll(
 UINT uiCmd,
 DWORD_PTR dwData);

static BOOL SelectItemAll(
 UINT uiCmd,
 LPCTSTR lpszText);

ParametersParameters

Selects an item in the list box.

iIndex
[in] The zero-based index of an item in the list box.

bNotify
[in] TRUE to notify the combo box button of the selection; otherwise FALSE.

dwData
[in] The data associated with an item in the list box.

lpszText
[in] The text of an item in the list box.

TRUE if the method was successful; otherwise FALSE.

Selects an item in the list box of a combo box button that has a specified command ID.

uiCmd
[in] The command ID of the combo box button that contains the list box.

iIndex
[in] The zero-based index of the item in the list box. A value of -1 removes any current selection in the list box
and clears the edit box.

dwData
[in] The data of an item in the list box.

lpszText
[in] The text of an item in the list box.

Return ValueReturn Value

RemarksRemarks

CMFCToolBarComboBoxButton::Serialize

virtual void Serialize(CArchive& ar);

ParametersParameters

RemarksRemarks

CMFCToolBarComboBoxButton::SetACCData

virtual BOOL SetACCData(
 CWnd* pParent,
 CAccessibilityData& data);

ParametersParameters

Return ValueReturn Value

CMFCToolBarComboBoxButton::SetCenterVert

static void SetCenterVert(BOOL bCenterVert=TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBarComboBoxButton::SetContextMenuID

TRUE if the method was successful; otherwise FALSE.

Reads this object from an archive or writes it to an archive.

ar
[in, out] The CArchive object to serialize.

Settings in the CArchive object determine whether this method reads or writes to the archive.

Populates the specified CAccessibilityData object by using accessibility data from the combo box button.

pParent
[in] The parent window of the combo box button.

data
[out] A CAccessibilityData object that receives the accessibility data from the combo box button.

TRUE if the method was successful; otherwise FALSE.

Sets the vertical position of combo box buttons in the application.

bCenterVert
[in] TRUE to center the combo box button in the toolbar; FALSE to align the combo box button to the top of the
toolbar.

By default, combo box buttons are aligned to the top.

Sets the shortcut menu resource ID for the combo box button.

void SetContextMenuID(UINT uiResID);

ParametersParameters

CMFCToolBarComboBoxButton::SetDropDownHeight

void SetDropDownHeight(int nHeight);

ParametersParameters

RemarksRemarks

CMFCToolBarComboBoxButton::SetFlatMode

static void SetFlatMode(BOOL bFlat=TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBarComboBoxButton::SetStyle

virtual void SetStyle(UINT nStyle);

ParametersParameters

RemarksRemarks

CMFCToolBarComboBoxButton::SetText

uiResID
[in] The shortcut menu resource ID.

Sets the height of the list box when it is dropped down.

nHeight
[in] The height, in pixels, of the list box.

The default height is 150 pixels.

Sets the flat style appearance of combo box buttons in the application.

bFlat
[in] TRUE for a flat style appearance; otherwise FALSE.

The default flat style for combo box buttons is FALSE.

Sets the specified style for the combo box button and redraws the control if it is not disabled.

nStyle
[in] A bitwise combination (OR) of toolbar styles.

For a list of toolbar button styles see ToolBar Control Styles

Sets the text in the edit box of the combo box button.

void SetText(LPCTSTR lpszText);

ParametersParameters

See also

lpszText
[in] Pointer to a string that contains the text for the edit box.

Hierarchy Chart
Classes
CMFCToolBarButton Class
CComboBox Class
CMFCToolBar::ReplaceButton
Walkthrough: Putting Controls On Toolbars

CMFCToolBarComboBoxEdit Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCToolBarComboBoxEdit : public CEdit

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCToolBarComboBoxEdit::CMFCToolBarComboBoxEdit Constructs a CMFCToolBarComboBoxEdit object.

CMFCToolBarComboBoxEdit::~CMFCToolBarComboBoxEdit Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolBarComboBoxEdit::PreTranslateMessage Translates window messages before they are dispatched to the
TranslateMessage and DispatchMessage Windows functions.
(Overrides CWnd::PreTranslateMessage.)

RemarksRemarks

Inheritance Hierarchy

Requirements

CMFCToolBarComboBoxEdit::CMFCToolBarComboBoxEdit

The framework uses the CMFCToolBarComboBoxEdit class to create a toolbar button that behaves like an editable
combo box control.

Derive a class from the CMFCToolBarComboBoxEdit class to customize its edit operations.

CObject

CCmdTarget

CWnd

CEdit

CMFCToolBarComboBoxEdit

Header: afxtoolbarcomboboxbutton.h

Constructs a CMFCToolBarComboBoxEdit object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbarcomboboxedit-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CMFCToolBarComboBoxEdit(CMFCToolBarComboBoxButton& combo);

ParametersParameters

ExampleExample

CMFCToolBarComboBoxButton* pButton = new CMFCToolBarComboBoxButton();
CMFCToolBarComboBoxEdit* pWndEdit = new CMFCToolBarComboBoxEdit(*pButton);

See also

combo
[in] A reference to a CMFCToolBarComboBoxButton object, which is a toolbar button that contains a combo box
control.

The following example demonstrates how to construct an object of the CMFCToolBarComboBoxEdit class. This code
snippet is part of the IE Demo sample.

Hierarchy Chart
Classes
CMFCToolBarComboBoxButton Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCToolBarDateTimeCtrl Class
3/4/2019 • 12 minutes to read • Edit Online

Syntax
class CMFCToolBarDateTimeCtrl : public CMFCToolBarButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCToolBarDateTimeCtrl::CMFCToolBarDateTimeCtrl Constructs a CMFCToolBarDateTimeCtrl object.

CMFCToolBarDateTimeCtrl::~CMFCToolBarDateTimeCtrl Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolBarDateTimeCtrl::CanBeStretched Specifies whether a user can stretch the button during
customization. (Overrides
CMFCToolBarButton::CanBeStretched.)

CMFCToolBarDateTimeCtrl::CopyFrom Copies the properties of another toolbar button to the
current button. (Overrides CMFCToolBarButton::CopyFrom.)

CMFCToolBarDateTimeCtrl::DuplicateData Reserved for future use.

CMFCToolBarButton::ExportToMenuButton Copies text from the toolbar button to a menu.

CMFCToolBarDateTimeCtrl::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCToolBarDateTimeCtrl::GetByCmd Retrieves the first CMFCToolBarDateTimeCtrl object in the
application that has the specified command ID.

CMFCToolBarDateTimeCtrl::GetDateTimeCtrl Returns a pointer to the date and time picker control.

CMFCToolBarDateTimeCtrl::GetHwnd Retrieves the window handle that is associated with the
toolbar button. (Overrides CMFCToolBarButton::GetHwnd.)

CMFCToolBarDateTimeCtrl::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

A toolbar button that contains a date and time picker control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbardatetimectrl-class.md

CMFCToolBarDateTimeCtrl::GetTime Gets the selected time from a date and time picker control
and puts it in a specified SYSTEMTIME structure.

CMFCToolBarDateTimeCtrl::GetTimeAll Returns the selected time from the time picker control button
that has a specified command ID.

CMFCToolBarDateTimeCtrl::HaveHotBorder Determines whether a border of the button is displayed when
a user selects the button. (Overrides
CMFCToolBarButton::HaveHotBorder.)

CMFCToolBarDateTimeCtrl::NotifyCommand Specifies whether the button processes the WM_COMMAND
message. (Overrides CMFCToolBarButton::NotifyCommand.)

CMFCToolBarDateTimeCtrl::OnAddToCustomizePage Called by the framework when the button is added to a
Customize dialog box. (Overrides
CMFCToolBarButton::OnAddToCustomizePage.)

CMFCToolBarDateTimeCtrl::OnCalculateSize Called by the framework to calculate the size of the button for
the specified device context and docking state. (Overrides
CMFCToolBarButton::OnCalculateSize.)

CMFCToolBarDateTimeCtrl::OnChangeParentWnd Called by the framework when the button is inserted into a
new toolbar. (Overrides
CMFCToolBarButton::OnChangeParentWnd.)

CMFCToolBarDateTimeCtrl::OnClick Called by the framework when the user clicks the control.
(Overrides CMFCToolBarButton::OnClick.)

CMFCToolBarDateTimeCtrl::OnCtlColor Called by the framework when the parent toolbar handles a
WM_CTLCOLOR message. (Overrides
CMFCToolBarButton::OnCtlColor.)

CMFCToolBarDateTimeCtrl::OnDraw Called by the framework to draw the button by using the
specified styles and options. (Overrides
CMFCToolBarButton::OnDraw.)

CMFCToolBarDateTimeCtrl::OnDrawOnCustomizeList Called by the framework to draw the button in the
Commands pane of the Customize dialog box. (Overrides
CMFCToolBarButton::OnDrawOnCustomizeList.)

CMFCToolBarDateTimeCtrl::OnGlobalFontsChanged Called by the framework when the global font has changed.
(Overrides CMFCToolBarButton::OnGlobalFontsChanged.)

CMFCToolBarDateTimeCtrl::OnMove Called by the framework when the parent toolbar moves.
(Overrides CMFCToolBarButton::OnMove.)

CMFCToolBarDateTimeCtrl::OnShow Called by the framework when the button becomes visible or
invisible. (Overrides CMFCToolBarButton::OnShow.)

CMFCToolBarDateTimeCtrl::OnSize Called by the framework when the parent toolbar changes its
size or position and this change causes the button to change
size. (Overrides CMFCToolBarButton::OnSize.)

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/menurc/wm-command

CMFCToolBarDateTimeCtrl::OnUpdateToolTip Called by the framework when the parent toolbar updates its
tooltip text. (Overrides
CMFCToolBarButton::OnUpdateToolTip.)

CMFCToolBarDateTimeCtrl::Serialize Reads this object from an archive or writes it to an archive,
(Overrides CMFCToolBarButton::Serialize.)

CMFCToolBarDateTimeCtrl::SetStyle Sets the style of the toolbar button. (Overrides
CMFCToolBarButton::SetStyle.)

CMFCToolBarDateTimeCtrl::SetTime Sets the time and date in the time picker control.

CMFCToolBarDateTimeCtrl::SetTimeAll Sets the time and date in all instances of the time picker
control that have a specified command ID.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CMFCToolBarDateTimeCtrl::CanBeStretched

virtual BOOL CanBeStretched() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::CMFCToolBarDateTimeCtrl

For an example of how to use a date and time picker control, see the ToolbarDateTimePicker sample project. For
information about how to add control buttons to toolbars, see Walkthrough: Putting Controls On Toolbars.

CObject

CMFCToolBarButton

CMFCToolBarDateTimeCtrl

Header: afxtoolbardatetimectrl.h

Specifies whether a user can stretch the button during customization.

This method returns TRUE.

By default, the framework does not allow the user to stretch a toolbar button during customization. This method
extends the base class implementation (CMFCToolBarButton::CanBeStretched) by allowing the user to stretch a
date and time toolbar button during customization.

Creates and initializes a CMFCToolBarDateTimeCtrl object.

CMFCToolBarDateTimeCtrl(
 UINT uiID,
 int iImage,
 DWORD dwStyle=0,
 int iWidth=0);

ParametersParameters

RemarksRemarks

ExampleExample

CMFCToolBarDateTimeCtrl dateButton (ID_DATE,
 GetCmdMgr ()->GetCmdImage (ID_DATE, FALSE));

CMFCToolBarDateTimeCtrl::CopyFrom

virtual void CopyFrom(const CMFCToolBarButton& src);

ParametersParameters

RemarksRemarks

CMFCToolBarDateTimeCtrl::ExportToMenuButton

virtual BOOL ExportToMenuButton(CMFCToolBarMenuButton& menuButton) const;

uiID
[in] The control ID.

iImage
[in] The index of the image in the toolbar's CMFCToolBarImages object.

dwStyle
[in] The style of the CMFCToolBarDateTimeCtrlImpl window that is created when a user clicks the button.

iWidth
[in] The width of the control, in pixels.

This object is initialized to the system date and time. The window style of the internal CMFCToolBarDateTimeCtrlImpl

object includes the dwStyle parameter and the WS_CHILD and WS_VISIBLE styles. You cannot change these
styles by using CMFCToolBarDateTimeCtrl::SetStyle . Use SetStyle to change the style of the
CMFCToolBarDateTimeCtrl control.

The following example demonstrates how to construct an object of the CMFCToolBarDateTimeCtrl class. This code
snippet is part of the Toolbar Date Time Picker sample.

Copies the properties of another toolbar button to the current button.

src
[in] A reference to the source button from which to copy.

Call this method to copy another toolbar button to this toolbar button. src must be of type
CMFCToolBarDateTimeCtrl .

Copies text from the toolbar button to a menu.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::GetByCmd

static CMFCToolBarDateTimeCtrl* __stdcall GetByCmd(UINT uiCmd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::GetDateTimeCtrl

CDateTimeCtrl* GetDateTimeCtrl() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::GetHwnd

virtual HWND GetHwnd();

Return ValueReturn Value

menuButton
[in] A reference to the target menu button.

This method returns TRUE.

This method overrides the base class implementation (CMFCToolBarButton::ExportToMenuButton) by loading the
string resource that is associated with the command ID of the control. For more information about string
resources, see CStringT::LoadString.

Retrieves the first CMFCToolBarDateTimeCtrl object in the application that has the specified command ID.

uiCmd
[in] The command ID of the button to retrieve.

The first CMFCToolBarDateTimeCtrl object in the application that has the specified command ID, or NULL if no
CMFCToolBarDateTimeCtrl objects have the specified command ID.

This shared utility method is used by methods such as CMFCToolBarDateTimeCtrl::SetTimeAll and
CMFCToolBarDateTimeCtrl::GetTimeAll to set or get the time and date of all instances of the time picker control
that have a specified command ID.

Returns a pointer to the date and time picker control.

A pointer to date and time picker control; or NULL if the control does not exist.

The CMFCToolBarDateTimeCtrl class initializes the m_pWndDateTime data member when you insert a
CMFCToolBarDateTimeCtrl object into a toolbar.

Retrieves the window handle that is associated with the toolbar button.

RemarksRemarks

CMFCToolBarDateTimeCtrl::GetTime

BOOL GetTime(COleDateTime& timeDest) const;
DWORD GetTime(CTime& timeDest) const;
DWORD GetTime(LPSYSTEMTIME pTimeDest) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::GetTimeAll

static BOOL GetTimeAll(
 UINT uiCmd,
 COleDateTime& timeDest);

static DWORD GetTimeAll(
 UINT uiCmd,
 CTime& timeDest);

static DWORD GetTimeAll(
 UINT uiCmd,
 LPSYSTEMTIME pTimeDest);

ParametersParameters

The window handle that is associated with the date and time toolbar button.

This method overrides the CMFCToolBarButton::GetHwnd method.

Gets the selected time from the associated date and time picker control and puts it in a specified SYSTEMTIME
structure

timeDest
[out] In the first overload, a COleDateTime Class object that will receive the system time information. In the second
overload, a CTime object that will receive the system time information.

pTimeDest
[out] A pointer to the SYSTEMTIME structure to receive the system time information. Must not be NULL.

In the first overload, nonzero if the time is successfully written to the COleDateTime Class object; otherwise 0. In
the second and third overloads, the return value is a DWORD that is equal to the dwFlag member that was set in
the NMDATETIMECHANGE structure.

The method sets the NMDATETIMECHANGE structure member dwFlags to indicate whether the date and time
picker is set to a date and time. If the value equals GDT_NONE, the control is set to no date status, and uses the
DTS_SHOWNONE style. If the value returned equals GDT_VALID, the system time is successfully stored in the
destination location.

Returns the time selected by the user from the time picker control button that has a specified command ID.

uiCmd
[in] Specifies a toolbar button's command ID.

timeDest
[out] In the first overload, a COleDateTime Class object that will receive the system time information. In the second

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagnmdatetimechange
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagnmdatetimechange

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::HaveHotBorder

virtual BOOL HaveHotBorder() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::NotifyCommand

virtual BOOL NotifyCommand(int iNotifyCode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::OnAddToCustomizePage

overload, a CTime object that will receive the system time information.

pTimeDest
[out] A pointer to the SYSTEMTIME structure to receive the system time information. Must not be NULL.

If the framework cannot find a toolbar button that matches the command ID uiCmd, the return value is zero in the
first overload, and GDT_NONE in the other overloads. If the toolbar button is found, the return value is the same
as the return value from a call to CMFCToolBarDateTimeCtrl::GetTime on that button. A return value of zero or
GDT_NONE can occur when the button is found, which indicates that the call to GetTime did not return a valid
date for some other reason.

This method looks for a toolbar button that has the specified command ID and calls
CMFCToolBarDateTimeCtrl::GetTime method on that button.

Determines whether a border of the button is displayed when a user selects the button.

Nonzero if a button displays its border when selected; otherwise 0.

This method returns a nonzero value if the control is visible.

Specifies whether the button processes the WM_COMMAND message.

iNotifyCode
[in] The notification message that is associated with the command.

TRUE if the button processes the WM_COMMAND message, or FALSE to indicate that the message should be
handled by the parent toolbar.

The framework calls this method when it is about to send a WM_COMMAND message to the parent window.

This method extends the base class implementation (CMFCToolBarButton::NotifyCommand) by processing the
DTN_DATETIMECHANGE notification. It updates the internal time status and updates the time property of all
CMFCToolBarDateTimeCtrl objects with the same command ID.

Called by the framework when the button is added to a Customize dialog box.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/menurc/wm-command
https://docs.microsoft.com/windows/desktop/menurc/wm-command
https://docs.microsoft.com/windows/desktop/Controls/dtn-datetimechange

virtual void OnAddToCustomizePage();

RemarksRemarks

CMFCToolBarDateTimeCtrl::OnChangeParentWnd

virtual void OnChangeParentWnd(CWnd* pWndParent);

ParametersParameters

RemarksRemarks

CMFCToolBarDateTimeCtrl::OnClick

virtual BOOL OnClick(
 CWnd* pWnd,
 BOOL bDelay = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::OnCtlColor

virtual HBRUSH OnCtlColor(
 CDC* pDC,
 UINT nCtlColor);

This method extends the base class implementation, CMFCToolBarButton::OnAddToCustomizePage, by copying
the properties from the first date and time control in any toolbar that has the same command ID as this object.
This method does nothing if no toolbar has a date and time control that has the same command ID as this object.

For more information about the Customize dialog box, see CMFCToolBarsCustomizeDialog Class.

Called by the framework when the button is inserted into a new toolbar.

pWndParent
[in] The new parent window.

This method overrides the base class implementation (CMFCToolBarButton::OnChangeParentWnd) by recreating
the internal CMFCToolBarDateTimeCtrlImpl object.

Called by the framework when the user clicks the control.

pWnd
[in] Unused.

bDelay
[in] Unused.

Nonzero if the button processes the click message; otherwise 0.

This method overrides the base class implementation, CMFCToolBarButton::OnClick, by returning a nonzero value
if the internal CMFCToolBarDateTimeCtrlImpl object is visible.

Called by the framework when the parent toolbar handles a WM_CTLCOLOR message.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::OnGlobalFontsChanged

virtual void OnGlobalFontsChanged();

RemarksRemarks

CMFCToolBarDateTimeCtrl::OnMove

virtual void OnMove();

RemarksRemarks

CMFCToolBarDateTimeCtrl::OnShow

virtual void OnShow(BOOL bShow);

ParametersParameters

RemarksRemarks

pDC
[in] The device context that displays the button.

nCtlColor
[in] Unused.

A handle to the global brush that the framework uses to paint the background of the button.

This method overrides the base class implementation, CMFCToolBarButton::OnCtlColor, by setting the text and
background colors of the provided device context to the global text and background colors, respectively.

For more information about global options that are available to your application, see AFX_GLOBAL_DATA
Structure.

Called by the framework when the global font has changed.

This method extends the base class implementation (CMFCToolBarButton::OnGlobalFontsChanged) by changing
the font of the control to that of the global font.

For more information about global options that are available to your application, see AFX_GLOBAL_DATA
Structure.

Called by the framework when the parent toolbar moves.

This method overrides the default class implementation (CMFCToolBarButton::OnMove) by updating the position
of the internal CMFCToolBarDateTimeCtrlImpl object.

Called by the framework when the button becomes visible or invisible.

bShow
[in] Specifies whether the button is visible. If this parameter is TRUE, the button is visible. Otherwise, the button is
not visible.

CMFCToolBarDateTimeCtrl::OnSize

virtual void OnSize(int iSize);

ParametersParameters

RemarksRemarks

CMFCToolBarDateTimeCtrl::OnUpdateToolTip

virtual BOOL OnUpdateToolTip(
 CWnd* pWndParent,
 int iButtonIndex,
 CToolTipCtrl& wndToolTip,
 CString& str);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::SetTime

This method extends the base class implementation (CMFCToolBarButton::OnShow) by displaying the button if
bShow is TRUE. Otherwise, this method hides the button.

Called by the framework when the parent toolbar changes its size or position and this change causes the button to
change size.

iSize
[in] The new width of the button, in pixels.

This method overrides the default class implementation (CMFCToolBarButton::OnSize) by updating the size and
position of the internal CMFCToolBarDateTimeCtrlImpl object.

Called by the framework when the parent toolbar updates its tooltip text.

pWndParent
[in] The parent window.

iButtonIndex
[in] The zero-based index of the button in the parent button collection.

wndToolTip
[in] The control that displays the tooltip text.

str
[out] A CString object that receives the updated tooltip text.

Nonzero if the method updates the tooltip text; otherwise 0.

This method extends the base class implementation (CMFCToolBarButton::OnUpdateToolTip) by displaying the
tooltip text that is associated with the button. If the button is not docked horizontally, this method does nothing and
returns FALSE.

Sets the time and date in the time picker control.

BOOL SetTime(const COleDateTime& timeNew);
BOOL SetTime(const CTime* timeNew);
BOOL SetTime(LPSYSTEMTIME pTimeNew=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarDateTimeCtrl::SetTimeAll

static BOOL SetTimeAll(
 UINT uiCmd,
 const COleDateTime& timeNew);

static BOOL SetTimeAll(
 UINT uiCmd,
 const CTime* pTimeNew);

static BOOL SetTimeAll(
 UINT uiCmd,
 LPSYSTEMTIME pTimeNew=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

timeNew
[in] In the first version, a reference to a COleDateTime Class object that contains the time to which the control will
be set. In the second version, a pointer to a CTime object that contains the time to which the control will be set.

pTimeNew
[in] A pointer to the SYSTEMTIME structure that contains the time to which the control will be set.

Nonzero if successful; otherwise 0.

Sets the time in a date and time picker control by calling CDateTimeCtrl::SetTime.

Sets the time and date in all instances of the time picker control that have a specified command ID.

uiCmd
[in] Specifies a toolbar button's command ID.

timeNew
[in] In the first version, a COleDateTime Class object that contains the time to which the control will be set. In the
second version, a pointer to a CTime object that contains the time to which the control will be set.

pTimeNew
[in] A pointer to the SYSTEMTIME structure that contains the time to which the control will be set.

Nonzero if successful; otherwise 0.

Looks for a toolbar button with the specified command ID and sets the time in a date and time picker control by
calling CMFCToolBarDateTimeCtrl::SetTime.

Hierarchy Chart
Classes

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime

CMFCToolBarButton Class
Walkthrough: Putting Controls On Toolbars

CMFCToolBarEditBoxButton Class
3/4/2019 • 12 minutes to read • Edit Online

Syntax
class CMFCToolBarEditBoxButton : public CMFCToolBarButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCToolBarEditBoxButton::CMFCToolBarEditBoxButton Constructs a CMFCToolBarEditBoxButton object.

CMFCToolBarEditBoxButton::~CMFCToolBarEditBoxButton Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolBarEditBoxButton::CanBeStretched Specifies whether a user can stretch the button during
customization. (Overrides
CMFCToolBarButton::CanBeStretched.)

CMFCToolBarEditBoxButton::CopyFrom Copies the properties of another toolbar button to the
current button. (Overrides CMFCToolBarButton::CopyFrom.)

CMFCToolBarEditBoxButton::

CMFCToolBarEditBoxButton::CreateEdit
Creates a new edit control in the button.

CMFCToolBarEditBoxButton::CreateObject Used by the framework to create a dynamic instance of this
class type.

CMFCToolBarEditBoxButton::GetByCmd Retrieves the first CMFCToolBarEditBoxButton object in the
application that has the specified command ID.

CMFCToolBarEditBoxButton::GetContentsAll Retrieves the text of the first edit box toolbar control that has
the specified command ID.

CMFCToolBarEditBoxButton::GetContextMenuID Retrieves the resource ID of the shortcut menu that is
associated with the button.

CMFCToolBarEditBoxButton::GetEditBorder Retrieves the bounding rectangle of the edit part of the edit
box button.

CMFCToolBarEditBoxButton::

CMFCToolBarEditBoxButton::GetEditBox
Returns a pointer to the edit control that is embedded in the
button.

A toolbar button that contains an edit control (CEdit Class).

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbareditboxbutton-class.md

CMFCToolBarEditBoxButton::GetHwnd Retrieves the window handle that is associated with the
toolbar button. (Overrides CMFCToolBarButton::GetHwnd.)

CMFCToolBarEditBoxButton::GetInvalidateRect Retrieves the region of the client area of the button that must
be redrawn. (Overrides
CMFCToolBarButton::GetInvalidateRect.)

CMFCToolBarEditBoxButton::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCToolBarEditBoxButton::HaveHotBorder Determines whether a border of the button is displayed when
a user clicks the button. (Overrides
CMFCToolBarButton::HaveHotBorder.)

CMFCToolBarEditBoxButton::IsFlatMode Determines whether edit box buttons have a flat style.

CMFCToolBarEditBoxButton::NotifyCommand Specifies whether the button processes the WM_COMMAND
message. (Overrides CMFCToolBarButton::NotifyCommand.)

CMFCToolBarEditBoxButton::OnAddToCustomizePage Called by the framework when the button is added to a
Customize dialog box. (Overrides
CMFCToolBarButton::OnAddToCustomizePage.)

CMFCToolBarEditBoxButton::OnCalculateSize Called by the framework to calculate the size of the button
for the specified device context and docking state. (Overrides
CMFCToolBarButton::OnCalculateSize.)

CMFCToolBarEditBoxButton::OnChangeParentWnd Called by the framework when the button is inserted into a
new toolbar. (Overrides
CMFCToolBarButton::OnChangeParentWnd.)

CMFCToolBarEditBoxButton::OnClick Called by the framework when the user clicks the mouse
button. (Overrides CMFCToolBarButton::OnClick.)

CMFCToolBarEditBoxButton::OnCtlColor Called by the framework when the parent toolbar handles a
WM_CTLCOLOR message. (Overrides
CMFCToolBarButton::OnCtlColor.)

CMFCToolBarEditBoxButton::OnDraw Called by the framework to draw the button by using the
specified styles and options. (Overrides
CMFCToolBarButton::OnDraw.)

CMFCToolBarEditBoxButton::OnDrawOnCustomizeList Called by the framework to draw the button in the
Commands pane of the Customize dialog box. (Overrides
CMFCToolBarButton::OnDrawOnCustomizeList.)

CMFCToolBarEditBoxButton::OnGlobalFontsChanged Called by the framework when the global font has changed.
(Overrides CMFCToolBarButton::OnGlobalFontsChanged.)

CMFCToolBarEditBoxButton::OnMove Called by the framework when the parent toolbar moves.
(Overrides CMFCToolBarButton::OnMove.)

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/menurc/wm-command

CMFCToolBarEditBoxButton::OnShow Called by the framework when the button becomes visible or
invisible. (Overrides CMFCToolBarButton::OnShow.)

CMFCToolBarEditBoxButton::OnSize Called by the framework when the parent toolbar changes its
size or position and this change causes the button to change
size. (Overrides CMFCToolBarButton::OnSize.)

CMFCToolBarEditBoxButton::OnUpdateToolTip Called by the framework when the parent toolbar updates its
tooltip text. (Overrides
CMFCToolBarButton::OnUpdateToolTip.)

CMFCToolBarEditBoxButton::Serialize Reads this object from an archive or writes it to an archive.
(Overrides CMFCToolBarButton::Serialize.)

CMFCToolBarEditBoxButton::SetACCData Populates the provided CAccessibilityData object with
accessibility data from the toolbar button. (Overrides
CMFCToolBarButton::SetACCData.)

CMFCToolBarEditBoxButton::

CMFCToolBarEditBoxButton::SetContents
Sets the text in the edit control of the button.

CMFCToolBarEditBoxButton::

CMFCToolBarEditBoxButton::SetContentsAll
Finds the edit control button that has a specified command
ID, and sets the text in the edit control of that button.

CMFCToolBarEditBoxButton::SetContextMenuID Specifies the resource ID of the shortcut menu that is
associated with the button.

CMFCToolBarEditBoxButton::SetFlatMode Specifies the flat style appearance of edit box buttons in the
application.

CMFCToolBarEditBoxButton::

CMFCToolBarEditBoxButton::SetStyle
Specifies the style of the button. (Overrides
CMFCToolBarButton::SetStyle.)

NAME DESCRIPTION

Remarks

Example

To add an edit box button to a toolbar, follow these steps:

1. Reserve a dummy resource ID for the button in the parent toolbar resource.

2. Construct a CMFCToolBarEditBoxButton object.

3. In the message handler that processes the AFX_WM_RESETTOOLBAR message, replace the dummy
button with the new combo box button by using CMFCToolBar::ReplaceButton.

For more information, see Walkthrough: Putting Controls On Toolbars.

The following example demonstrates how to use various methods in the CMFCToolBarEditBoxButton class. The
example shows how to specify that a user can stretch the button during customization, specify that a border of the
button is displayed when a user clicks the button, set the text in the text box control, specify the flat style
appearance of edit box buttons in the application, and specify the style of a toolbar edit box control.

CMFCToolBarEditBoxButton* boxButton = new CMFCToolBarEditBoxButton();
boxButton->CanBeStretched();
boxButton->HaveHotBorder();
boxButton->SetContents(_T("edit box button"));
boxButton->SetFlatMode(true);
boxButton->SetStyle(TBBS_PRESSED);

Inheritance Hierarchy

Requirements

CMFCToolBarEditBoxButton::CanBeStretched

virtual BOOL CanBeStretched() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::CMFCToolBarEditBoxButton

CMFCToolBarEditBoxButton(
 UINT uiID,
 int iImage,
 DWORD dwStyle=ES_AUTOHSCROLL,
 int iWidth=0);

ParametersParameters

CObject

CMFCToolBarButton

CMFCToolBarEditBoxButton

Header: afxtoolbareditboxbutton.h

Specifies whether a user can stretch the button during customization.

This method returns TRUE.

By default, the framework does not allow the user to stretch a toolbar button during customization. This method
extends the base class implementation (CMFCToolBarButton::CanBeStretched) by allowing the user to stretch an
edit box toolbar button during customization.

Constructs a CMFCToolBarEditBoxButton object.

uiID
[in] Specifies the control ID.

iImage
[in] Specifies the zero-based index of a toolbar image. The image is located in the CMFCToolBarImages Class
object that CMFCToolBar Class class maintains.

dwStyle
[in] Specifies the edit control style.

iWidth

RemarksRemarks

CMFCToolBarEditBoxButton::CopyFrom

virtual void CopyFrom(const CMFCToolBarButton& src);

ParametersParameters

RemarksRemarks

CMFCToolBarEditBoxButton::CreateEdit

virtual CEdit* CreateEdit(
 CWnd* pWndParent,
 const CRect& rect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::GetByCmd

static CMFCToolBarEditBoxButton* __stdcall GetByCmd(UINT uiCmd);

ParametersParameters

[in] Specifies the width in pixels of the edit control.

The default constructor sets the edit control style to the following combination:

WS_CHILD | WS_VISIBLE | ES_AUTOHSCROLL

The default width of the control is 150 pixels.

Copies the properties of another toolbar button to the current button.

src
[in] A reference to the source button from which to copy.

Call this method to copy another toolbar button to this toolbar button. src must be of type
CMFCToolBarEditBoxButton .

Creates a new edit control in the button.

pWndParent
[in] Specifies the parent window of the edit control. It must not be NULL.

rect
[in] Specifies the edit control's size and position.

A pointer to the newly created edit control; it is NULL if the control's creation and attachment fail.

You construct a CMFCToolBarEditBoxButton object in two steps. First call the constructor, and then call CreateEdit ,
which creates the Windows edit control and attaches it to the CMFCToolBarEditBoxButton object.

Retrieves the first CMFCToolBarEditBoxButton object in the application that has the specified command ID.

uiCmd

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::GetContentsAll

static CString __stdcall GetContentsAll(UINT uiCmd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::GetContextMenuID

UINT GetContextMenuID();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::GetEditBorder

virtual void GetEditBorder(CRect& rectBorder);

ParametersParameters

RemarksRemarks

[in] The command ID of the button to retrieve.

The first CMFCToolBarEditBoxButton object in the application that has the specified command ID, or NULL if no
such object exists.

This shared utility method is used by methods such as CMFCToolBarEditBoxButton::SetContentsAll and
CMFCToolBarEditBoxButton::GetContentsAll to set or get the text of the first edit box toolbar control that has the
specified command ID.

Retrieves the text of the first edit box toolbar control that has the specified command ID.

uiCmd
[in] The command ID of the button from which to retrieve contents.

A CString object that contains the text of the first edit box toolbar control that has the specified command ID.

This method returns the empty string if no CMFCToolBarEditBoxButton objects have the specified command ID.

Retrieves the resource ID of the shortcut menu that is associated with the button.

The resource ID of the shortcut menu that is associated with the button or 0 if the button has no associated
shortcut menu.

The framework uses the resource ID to create the shortcut menu when the user right-clicks on the button.

Retrieves the bounding rectangle of the edit part of the edit box button.

rectBorder
[out] A reference to the CRect object that receives the bounding rectangle.

This method retrieves the bounding rectangle of the edit control in client coordinates. It expands the size of the

CMFCToolBarEditBoxButton::GetEditBox

CEdit* GetEditBox() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::GetHwnd

virtual HWND GetHwnd();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::GetInvalidateRect

virtual const CRect GetInvalidateRect() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::HaveHotBorder

virtual BOOL HaveHotBorder() const;

Return ValueReturn Value

rectangle in each direction by one pixel.

The CMFCVisualManager::OnDrawEditBorder method calls this method when it draws the border around a
CMFCToolBarEditBoxButton object.

Returns a pointer to the CEdit Class control that is embedded in the button.

A pointer to the CEdit Class control that the button contains. It is NULL if the CEdit control has not been created
yet.

You create the CEdit control by calling CMFCToolBarEditBoxButton::CreateEdit.

Retrieves the window handle that is associated with the toolbar button.

The window handle that is associated with the button.

This method overrides the CMFCToolBarButton::GetHwnd method by returning the window handle of the edit
control part of the edit box button.

Retrieves the region of the client area of the button that must be redrawn.

A CRect object that specifies the region that must be redrawn.

This method extends the base class implementation, CMFCToolBarButton::GetInvalidateRect, by including in the
region the area of the text label.

Determines whether a border of the button is displayed when a user clicks the button.

RemarksRemarks

CMFCToolBarEditBoxButton::IsFlatMode

static BOOL __stdcall IsFlatMode();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::NotifyCommand

virtual BOOL NotifyCommand(int iNotifyCode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::OnAddToCustomizePage

virtual void OnAddToCustomizePage();

RemarksRemarks

Nonzero if a button displays its border when selected; otherwise 0.

This method extends the base class implementation, CMFCToolBarButton::HaveHotBorder, by returning a
nonzero value if the control is visible.

Determines whether edit box buttons have a flat style.

Nonzero if the buttons have a flat style; otherwise, 0.

By default, edit box buttons have a flat style. Use the CMFCToolBarEditBoxButton::SetFlatMode method to
change the flat style appearance for your application.

Specifies whether the button processes the WM_COMMAND message.

iNotifyCode
[in] The notification message that is associated with the command.

TRUE if the button processes the WM_COMMAND message, or FALSE to indicate that the message must be
handled by the parent toolbar.

The framework calls this method when it is about to send a WM_COMMAND message to the parent window.

This method extends the base class implementation (CMFCToolBarButton::NotifyCommand) by processing the
EN_UPDATE notification. For each edit box with the same command ID as this object, it sets its text label to the
text label of this object.

Called by the framework when the button is added to a Customize dialog box.

This method extends the base class implementation (CMFCToolBarButton::OnAddToCustomizePage) by copying
the properties from the edit box control in any toolbar that has the same command ID as this object. This method
does nothing if no toolbar has an edit box control that has the same command ID as this object.

For more information about the Customize dialog box, see CMFCToolBarsCustomizeDialog Class.

https://docs.microsoft.com/windows/desktop/menurc/wm-command
https://docs.microsoft.com/windows/desktop/menurc/wm-command
https://docs.microsoft.com/windows/desktop/Controls/en-update

CMFCToolBarEditBoxButton::OnChangeParentWnd

virtual void OnChangeParentWnd(CWnd* pWndParent);

ParametersParameters

RemarksRemarks

CMFCToolBarEditBoxButton::OnClick

virtual BOOL OnClick(
 CWnd* pWnd,
 BOOL bDelay = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::OnCtlColor

virtual HBRUSH OnCtlColor(
 CDC* pDC,
 UINT nCtlColor);

ParametersParameters

Return ValueReturn Value

Called by the framework when the button is inserted into a new toolbar.

pWndParent
[in] A pointer to the new parent window.

This method overrides the base class implementation (CMFCToolBarButton::OnChangeParentWnd) by
recreating the internal CEdit object.

Called by the framework when the user clicks the mouse button.

pWnd
[in] Unused.

bDelay
[in] Unused.

Nonzero if the button processes the click message; otherwise 0.

This method overrides the base class implementation (CMFCToolBarButton::OnClick) by returning a nonzero
value if the internal CEdit object is visible.

Called by the framework when the parent toolbar handles a WM_CTLCOLOR message.

pDC
[in] The device context that displays the button.

nCtlColor
[in] Unused.

A handle to the global window brush.

RemarksRemarks

CMFCToolBarEditBoxButton::OnGlobalFontsChanged

virtual void OnGlobalFontsChanged();

RemarksRemarks

CMFCToolBarEditBoxButton::OnMove

virtual void OnMove();

RemarksRemarks

CMFCToolBarEditBoxButton::OnShow

virtual void OnShow(BOOL bShow);

ParametersParameters

RemarksRemarks

CMFCToolBarEditBoxButton::OnSize

virtual void OnSize(int iSize);

This method overrides the base class implementation (CMFCToolBarButton::OnCtlColor) by setting the text and
background colors of the provided device context to the global text and background colors, respectively.

For more information about global options that are available to your application, see AFX_GLOBAL_DATA
Structure.

Called by the framework when the global font has changed.

This method extends the base class implementation (CMFCToolBarButton::OnGlobalFontsChanged) by changing
the font of the control to that of the global font.

For more information about global options that are available to your application, see AFX_GLOBAL_DATA
Structure.

Called by the framework when the parent toolbar moves.

This method overrides the default class implementation (CMFCToolBarButton::OnMove) by updating the
position of the internal CEdit object

Called by the framework when the button becomes visible or invisible.

bShow
[in] Specifies whether the button is visible. If this parameter is TRUE, the button is visible. Otherwise, the button is
not visible.

This method extends the base class implementation (CMFCToolBarButton::OnShow) by displaying the button if
bShow is TRUE. Otherwise, this method hides the button.

Called by the framework when the parent toolbar changes its size or position and this change causes the button
to change size.

ParametersParameters

RemarksRemarks

CMFCToolBarEditBoxButton::OnUpdateToolTip

virtual BOOL OnUpdateToolTip(
 CWnd* pWndParent,
 int iButtonIndex,
 CToolTipCtrl& wndToolTip,
 CString& str);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarEditBoxButton::SetContents

virtual void SetContents(const CString& sContents);

ParametersParameters

CMFCToolBarEditBoxButton::SetContentsAll

iSize
[in] The new width of the button, in pixels.

This method overrides the default class implementation, CMFCToolBarButton::OnSize, by updating the size and
position of the internal CEdit object.

Called by the framework when the parent toolbar updates its tooltip text.

pWndParent
[in] Unused.

iButtonIndex
[in] Unused.

wndToolTip
[in] The control that displays the tooltip text.

str
[out] A CString object that receives the updated tooltip text.

Nonzero if the method updates the tooltip text; otherwise 0.

This method extends the base class implementation (CMFCToolBarButton::OnUpdateToolTip) by displaying the
tooltip text that is associated with the edit part of the button. If the internal CEdit object is NULL or the window
handle of the CEdit object does not identify an existing window, this method does nothing and returns FALSE.

Sets the text in the text box control.

sContents
[in] Specifies the new text to set.

Finds a CMFCToolBarEditBoxButton object that has a specified command ID and sets the specified text within its
text box.

static BOOL SetContentsAll(
 UINT uiCmd,
 const CString& strContents);

ParametersParameters

Return ValueReturn Value

CMFCToolBarEditBoxButton::SetContextMenuID

void SetContextMenuID(UINT uiResID);

ParametersParameters

RemarksRemarks

CMFCToolBarEditBoxButton::SetFlatMode

static void __stdcall SetFlatMode(BOOL bFlat = TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBarEditBoxButton::SetStyle

virtual void SetStyle(UINT nStyle);

ParametersParameters

uiCmd
[in] Specifies the command ID of the control for which the text will be changed.

strContents
[in] Specifies the new text to set.

Nonzero if the text was set; 0 if the CMFCToolBarEditBoxButton control with the specified command ID does not
exist.

Specifies the resource ID of the shortcut menu that is associated with the button.

uiCmd
[in] The resource ID of the shortcut menu.

The framework uses the resource ID to create the shortcut menu when the user right-clicks the toolbar button.

Specifies the flat style appearance of edit box buttons in the application.

bFlat
[in] The flat style for edit box buttons. If this parameter is TRUE, the flat style appearance is enabled; otherwise
the flat style appearance is disabled.

The default flat style for edit box buttons is TRUE. Use the CMFCToolBarEditBoxButton::IsFlatMode method to
retrieve the flat style appearance for your application.

Specifies the style of a toolbar edit box control.

nStyle

RemarksRemarks

See also

[in] A new style to set.

This method sets CMFCToolBarButton::m_nStyle to nStyle It also disables the text box when the application is in
Customize mode, and enables it when the application is not in Customize mode (see
CMFCToolBar::SetCustomizeMode and CMFCToolBar::IsCustomizeMode). See ToolBar Control Styles for a list of
valid style flags.

Hierarchy Chart
Classes
CMFCToolBarButton Class
CEdit Class
CMFCToolBar::ReplaceButton
Walkthrough: Putting Controls On Toolbars

CMFCToolBarFontComboBox Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMFCToolBarFontComboBox : public CMFCToolBarComboBoxButton

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CMFCToolBarFontComboBox::CMFCToolBarFontComboBox Constructs a CMFCToolBarFontComboBox object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolBarFontComboBox::GetFontDesc Returns a pointer to the CMFCFontInfo object for a specified
index in the combo box.

CMFCToolBarFontComboBox::SetFont Selects a font in the font combo box according to either the
name of the font, or the prefix and character set of the font.

Data MembersData Members

Remarks

A toolbar button that contains a combo box control that enables the user to select a font from a list of system
fonts.

CMFCToolBarFontComboBox::m_nFontHeight
The height of the characters in the font combo box.

To add a font combo box button to a toolbar, follow these steps:

1. Reserve a dummy resource ID for the button in the parent toolbar resource.

2. Construct a CMFCToolBarFontComboBox object.

3. In the message handler that processes the AFX_WM_RESETTOOLBAR message, replace the original
button with the new combo box button by using CMFCToolBar::ReplaceButton.

4. Synchronize the font that is selected in the combo box with the font in the document by using the
CMFCToolBarFontComboBox::SetFont method.

To synchronize the document's font with the font selected in the combo box, use the
CMFCToolBarFontComboBox::GetFontDesc method to retrieve the attributes of the selected font, and use those
attributes to create a CFont Class object.

The font combo box button calls the Win32 function EnumFontFamiliesEx to determine the screen and printer

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbarfontcombobox-class.md
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-enumfontfamiliesexa

Inheritance Hierarchy

Requirements

CMFCToolBarFontComboBox::CMFCToolBarFontComboBox

public:
CMFCToolBarFontComboBox(
 UINT uiID,
 int iImage,
 int nFontType = DEVICE_FONTTYPE | RASTER_FONTTYPE | TRUETYPE_FONTTYPE,
 BYTE nCharSet = DEFAULT_CHARSET,
 DWORD dwStyle = CBS_DROPDOWN,
 int iWidth = 0,
 BYTE nPitchAndFamily = DEFAULT_PITCH);

protected:
CMFCToolBarFontComboBox(
 CObList* pLstFontsExternal,
 int nFontType,
 BYTE nCharSet,
 BYTE nPitchAndFamily);

CMFCToolBarFontComboBox();

ParametersParameters

fonts available to the system.

CObject

CMFCToolBarButton

CMFCToolBarComboBoxButton

CMFCToolBarFontComboBox

Header: afxtoolbarfontcombobox.h

Constructs a CMFCToolBarFontComboBox object.

uiID
[in] The command ID of the combo box.

iImage
[in] The zero-based index of a toolbar image. The image is located in the CMFCToolBarImages Class object that
CMFCToolBar Class class maintains.

nFontType
[in] The types of fonts that the combo box contains. This parameter can be a combination (boolean OR) of the
following values:

DEVICE_FONTTYPE

RASTER_FONTTYPE

TRUETYPE_FONTTYPE

nCharSet
[in] If set to DEFAULT_CHARSET, the combo box contains all uniquely-named fonts in all character sets. (If there
are two fonts with the same name, the combo box contains one of them.) If set to a valid character set value, the

RemarksRemarks

ExampleExample

CMFCToolBarFontComboBox* CFormatBar::CreateFontComboButton ()
{
 // CSize m_szBaseUnits
 return new CMFCToolBarFontComboBox (IDC_FONTNAME,
 GetCmdMgr ()->GetCmdImage (IDC_FONTNAME, FALSE),
 TRUETYPE_FONTTYPE | DEVICE_FONTTYPE,
 DEFAULT_CHARSET,
 WS_VISIBLE | WS_TABSTOP | WS_VSCROLL | CBS_DROPDOWN |
 CBS_AUTOHSCROLL | CBS_HASSTRINGS | CBS_OWNERDRAWFIXED,
 (3*LF_FACESIZE*m_szBaseUnits.cx)/2);
}

CMFCToolBarFontComboBox::GetFontDesc

const CMFCFontInfo* GetFontDesc(int iIndex=-1) const;

ParametersParameters

Return ValueReturn Value

CMFCToolBarFontComboBox::m_nFontHeight

combo box contains only fonts in the specified character set. See LOGFONT for a listing of possible character
sets.

dwStyle
[in] The style of the combo box. (see Combo-Box Styles)

iWidth
[in] The width in pixels of the edit control.

nPitchAndFamily
[in] If set to DEFAULT_PITCH, the combo box contains fonts regardless of pitch. If set to FIXED_PITCH or
VARIABLE_PITCH, the combo box contains only fonts with that pitch type. Filtering based on font family is not
currently supported.

pLstFontsExternal
[out] Pointer to a CObList Class object that stores the available fonts.

Usually, CMFCToolBarFontComboBox objects store the list of available fonts in a single shared CObList object. If you
use the second overload of the constructor and provide a valid pointer to pLstFontsExternal, that
CMFCToolBarFontComboBox object will instead fill the CObList that pLstFontsExternal points to with available fonts.

The following example demonstrates how to construct a CMFCToolBarFontComboBox object. This code snippet is part
of the Word Pad sample.

Returns a pointer to the CMFCFontInfo object for a specified index in the combo box.

iIndex
[in] Specifies the zero-based index of a combo box item.

A pointer to a CMFCFontInfo object. If iIndex does not specify a valid item index, the return value is NULL.

Specifies the height, in pixels, of characters in the font combo box if the combo box has owner draw style.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

static int m_nFontHeight

RemarksRemarks

CMFCToolBarFontComboBox::SetFont

BOOL SetFont(
 LPCTSTR lpszName,
 BYTE nCharSet=DEFAULT_CHARSET,
 BOOL bExact=FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

If the m_nFontHeight variable is 0, the height is calculated automatically according to the default font of the
combo box. The height includes both the ascent of characters above the baseline and the descent of characters
underneath the baseline.

Selects the font in the font combo box according to the font name and character set that are specified in the
parameters.

lpszName
[in] Specifies the font name or prefix.

nCharSet
[in] Specifies the character set.

bExact
[in] Specifies whether lpszName contains the font name or the font prefix.

Nonzero if the font was selected successfully; otherwise 0.

If bExact is TRUE, this method selects a font that exactly matches the name that you specified as lpszName. If
bExact is FALSE, this method selects a font that starts with the text specified as lpszName and that uses the
character set that you specified as nCharSet. If nCharSet is set to DEFAULT_CHARSET, the character set will be
ignored and only lpszName will be used to select a font.

Hierarchy Chart
Classes
CMFCToolBar Class
CMFCToolBarButton Class
CMFCToolBarComboBoxButton Class
CMFCFontInfo Class
CMFCToolBar::ReplaceButton
Walkthrough: Putting Controls On Toolbars

CMFCToolBarFontSizeComboBox Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCToolBarFontSizeComboBox : public CMFCToolBarComboBoxButton

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CMFCToolBarFontSizeComboBox::CMFCToolBarFontSizeComb
oBox

Constructs a CMFCToolBarFontSizeComboBox object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolBarFontSizeComboBox::GetTwipSize Returns the selected font size in twips.

CMFCToolBarFontSizeComboBox::RebuildFontSizes Fills the combo box list with all supported font sizes for a
specified font.

CMFCToolBarFontSizeComboBox::SetTwipSize Sets the font size in twips.

Remarks

Example

A toolbar button that contains a combo box control that enables the user to select a font size.

You can use a CMFCToolBarFontSizeComboBox object together with a CMFCToolBarFontComboBox Class object to
enable a user to select a font and font size.

You can add a font size combo box button to a toolbar just as you add a font combo box button. For more
information, see CMFCToolBarFontComboBox Class.

When the user selects a new font in a CMFCToolBarFontComboBox object, you can fill the font size combo box with the
supported sizes for that font by using the CMFCToolBarFontSizeComboBox::RebuildFontSizes method.

The following example demonstrates how to use various methods in the CMFCToolBarFontSizeComboBox class to
configure a CMFCToolBarFontSizeComboBox object. The example illustrates how to retrieve the font size, in twips, from
the text box, fill the font size combo box with all valid sizes of the given font, and specify the font size in twips. This
code snippet is part of the Word Pad sample.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbarfontsizecombobox-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCToolBarFontSizeComboBox* pSizeCombo =
 DYNAMIC_DOWNCAST (CMFCToolBarFontSizeComboBox, CMFCToolBarFontSizeComboBox::GetByCmd (IDC_FONTSIZE));
if (pSizeCombo != NULL)
{
 int nSize = pSizeCombo->GetTwipSize();
 // CMFCFontInfo* pDesc
 pSizeCombo->RebuildFontSizes (pDesc->m_strName);
 pSizeCombo->SetTwipSize (nSize);
}

Inheritance Hierarchy

Requirements

CMFCToolBarFontSizeComboBox::CMFCToolBarFontSizeComboBox

CMFCToolBarFontSizeComboBox();

CMFCToolBarFontSizeComboBox::GetTwipSize

int GetTwipSize() const;

Return ValueReturn Value

CMFCToolBarFontSizeComboBox::RebuildFontSizes

void RebuildFontSizes(const CString& strFontName);

ParametersParameters

RemarksRemarks

CObject

CMFCToolBarButton

CMFCToolBarComboBoxButton

CMFCToolBarFontSizeComboBox

Header: afxtoolbarfontcombobox.h

Constructs a CMFCToolBarFontSizeComboBox object.

Retrieves the font size, in twips, from the text box of a font size combo box.

If the return value is positive, it is the font size in twips. It is -1 if the text box of the combo box is empty. It is -2 if an
error occurs.

Fills a font size combo box with all valid sizes of the given font.

strFontName
[in] Specifies a font name.

Call this function when you want to synchronize between selection in a font combo box and a font size combo box,
such as a CMFCToolBarFontComboBox Class.

 CMFCToolBarFontSizeComboBox::SetTwipSize

void SetTwipSize(int nSize);

ParametersParameters

RemarksRemarks

See also

Rounds the specified size (in twips) to the nearest size in points, and then sets the selected size in the combo box to
that value.

nSize
[in] Specifies the font size (in twips) to set.

You can retrieve the previous valid font size later by calling the CMFCToolBarFontSizeComboBox::GetTwipSize
method.

Hierarchy Chart
Classes
CMFCToolBar Class
CMFCToolBarButton Class
CMFCToolBarComboBoxButton Class
CMFCFontInfo Class
CMFCToolBar::ReplaceButton
Walkthrough: Putting Controls On Toolbars

CMFCToolBarImages Class
3/4/2019 • 15 minutes to read • Edit Online

Syntax
class CMFCToolBarImages : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCToolBarImages::CMFCToolBarImages Constructs a CMFCToolBarImages object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolBarImages::AdaptColors

CMFCToolBarImages::AddIcon Adds an icon to the toolbar images.

CMFCToolBarImages::AddImage Adds a bitmap to the toolbar images.

CMFCToolBarImages::CleanUp

CMFCToolBarImages::Clear Frees the system resources that were allocated to this object.

CMFCToolBarImages::ConvertTo32Bits Converts underlined bitmaps to 32 bpp images.

CMFCToolBarImages::CopyImageToClipboard

CMFCToolBarImages::CopyTo

CMFCToolBarImages::CreateFromImageList Initializes the toolbar images from an image list (CImageList
Class).

CMFCToolBarImages::CreateRegionFromImage

CMFCToolBarImages::DeleteImage Deletes the image that has a specified index from the toolbar
images if this set of toolbar images contains user-defined
images.

The images on a toolbar. The CMFCToolBarImages class manages toolbar images loaded from application
resources or from files. For more detail see the source code located in the VC\atlmfc\src\mfc folder of your
Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbarimages-class.md

CMFCToolBarImages::Draw Draws a single toolbar image (button).

CMFCToolBarImages::DrawEx

CMFCToolBarImages::EnableRTL

CMFCToolBarImages::EndDrawImage Frees system resources after a toolbar image is drawn.

CMFCToolBarImages::ExtractIcon Returns the icon that has a specified image index from the
toolbar images.

CMFCToolBarImages::FillDitheredRect Fills a rectangle by using a brush that has the toolbar
background colors.

CMFCToolBarImages::GetAlwaysLight

CMFCToolBarImages::GetBitsPerPixel Returns current resolution of underlined images.

CMFCToolBarImages::GetCount Returns the number of images on the toolbar.

CMFCToolBarImages::GetDisabledImageAlpha Returns the alpha channel value that is used for disabled
images.

CMFCToolBarImages::GetFadedImageAlpha

CMFCToolBarImages::GetImageSize Retrieves either the size of the toolbar images that are stored
in memory (source size), or the size of the toolbar images
that are drawn on the screen (destination size).

CMFCToolBarImages::GetImageWell Returns the handle to the bitmap that contains all the
toolbar images.

CMFCToolBarImages::GetImageWellLight

CMFCToolBarImages::GetLastImageRect

CMFCToolBarImages::GetLightPercentage

CMFCToolBarImages::GetMapTo3DColors

CMFCToolBarImages::GetMask

CMFCToolBarImages::GetResourceOffset Returns the image index for a specified resource ID.

CMFCToolBarImages::GetScale Returns current scale ratio of underlined images.

CMFCToolBarImages::GetTransparentColor

CMFCToolBarImages::GrayImages Grays the toolbar images to make them look disabled.

NAME DESCRIPTION

CMFCToolBarImages::Is32BitTransparencySupported Determines whether the operating system supports 32-bit
alpha blending.

CMFCToolBarImages::IsPreMultiplyAutoCheck

CMFCToolBarImages::IsRTL Determines whether right-to-left (RTL) support is enabled.

CMFCToolBarImages::IsReadOnly Determines whether the toolbar images are read-only.

CMFCToolBarImages::IsScaled Tells whether the underlined images are scaled or not.

CMFCToolBarImages::IsUserImagesList Determines whether this set of toolbar images contains user-
defined images.

CMFCToolBarImages::IsValid Determines whether this set of toolbar images contains a
valid toolbar image.

CMFCToolBarImages::Load Loads toolbar images from system resources or from a file.

CMFCToolBarImages::LoadStr

CMFCToolBarImages::MapFromSysColor

CMFCToolBarImages::MapTo3dColors

CMFCToolBarImages::MapToSysColor

CMFCToolBarImages::MapToSysColorAlpha

CMFCToolBarImages::Mirror Horizontally mirrors all of the toolbar images.

CMFCToolBarImages::MirrorBitmap Horizontally mirrors a bitmap.

CMFCToolBarImages::MirrorBitmapVert

CMFCToolBarImages::MirrorVert

CMFCToolBarImages::OnSysColorChange

CMFCToolBarImages::PrepareDrawImage Allocates the resources that are required to draw a toolbar
image at a specified size.

CMFCToolBarImages::Save Stores the toolbar images in a file if this set of toolbar images
contains user-defined images.

CMFCToolBarImages::SetAlwaysLight

CMFCToolBarImages::SetDisabledImageAlpha Sets the alpha channel value that is used for disabled images.

CMFCToolBarImages::SetFadedImageAlpha

NAME DESCRIPTION

CMFCToolBarImages::SetImageSize Sets the size of a toolbar image (source size).

CMFCToolBarImages::SetLightPercentage

CMFCToolBarImages::SetMapTo3DColors

CMFCToolBarImages::SetPreMultiplyAutoCheck

CMFCToolBarImages::SetSingleImage

CMFCToolBarImages::SetTransparentColor Sets the transparent color of the toolbar images.

CMFCToolBarImages::SmoothResize Smoothly resizes underlined images.

CMFCToolBarImages::UpdateImage Updates a user-defined toolbar image from a bitmap.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCToolBarImages::PreMultiplyAlpha

Data MembersData Members

NAME DESCRIPTION

CMFCToolBarImages::m_bDisableTrueColorAlpha TRUE if truecolor alpha blending (32-bit color) is disabled.

Remarks

Example

CMFCToolBarImages m_Image;

m_Image.SetImageSize (CSize (32, 32));
m_Image.Load(IDR_START);
m_Image.SetTransparentColor(RGB(255, 0, 255));

Inheritance Hierarchy

The full bitmap of toolbar images managed by CMFCToolbarImages consists of one or more small toolbar images
(buttons) of a fixed size.

The following example demonstrates how to configure a CMFCToolBarImages object by using various methods in
the CMFCToolBarImages class. The example shows how to set the size of the toolbar image, load an image, and set
the transparent color of the image. This code snippet is part of the Visual Studio Demo sample.

CObject

CMFCToolBarImages

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CMFCToolBarImages::AdaptColors
void AdaptColors(
 COLORREF clrBase,
 COLORREF clrTone);

ParametersParameters

RemarksRemarks

CMFCToolBarImages::AddIcon

int AddIcon(
 HICON hIcon,
 BOOL bAlphaBlend=FALSE);

ParametersParameters

Return ValueReturn Value

CMFCToolBarImages::AddImage

int AddImage(
 HBITMAP hbmp,
 BOOL bSetBitPerPixel=FALSE);

int AddImage(
 const CMFCToolBarImages& imageList,
 int nIndex);

ParametersParameters

Header: afxtoolbarimages.h

[in] clrBase
[in] clrTone

Adds an icon to the list of toolbar images.

hIcon
[in] A handle to the icon to be added.

bAlphaBlend
[in] TRUE if this icon is used with alpha blending; otherwise FALSE.

The zero-based index of the toolbar image that was added if the method is successful; otherwise -1.

Adds a bitmap to the toolbar images.

hbmp
[in] The handle to the bitmap to add.

bSetBitPerPixel
[in] TRUE if the CMFCToolBarImages object uses the color depth (bits per pixel) of the new image; FALSE if the
CMFCToolbarImages object keeps the current color depth.

imageList

Return ValueReturn Value

CMFCToolBarImages::CleanUp
static void __stdcall CleanUp();

RemarksRemarks

CMFCToolBarImages::Clear

void Clear();

CMFCToolBarImages::CMFCToolBarImages

CMFCToolBarImages();

RemarksRemarks

CMFCToolBarImages::CopyImageToClipboard
BOOL CopyImageToClipboard(int iImage);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::CopyTo
BOOL CopyTo(CMFCToolBarImages& imageList);

ParametersParameters

Return ValueReturn Value

[in] A reference to a CMFCToolbarImages object that contains the image to add.

nIndex
[in] The index in the source CMFCToolbarImages object of the image to add.

The number of toolbar images that the CMFCToolBarImages object maintains after the new bitmap was added
successfully; -1 if the operation failed.

Frees the system resources that the CMFCToolbarImages object allocated.

Constructs a CMFCToolBarImages object.

Constructs a CMFCToolBarImages object, initializes its rendering engine and sets the image size to its default value
16x15 pixels. Use CMFCToolBarImages::SetImageSize to change the image size before you add images.

[in] iImage

[in] imageList

RemarksRemarks

CMFCToolBarImages::CreateFromImageList

BOOL CreateFromImageList(const CImageList& imageList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::CreateRegionFromImage
static HRGN __stdcall CreateRegionFromImage(
 HBITMAP bmp,
 COLORREF clrTransparent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::DeleteImage

BOOL DeleteImage(int iImage);

ParametersParameters

Return ValueReturn Value

CMFCToolBarImages::Draw

Initializes the toolbar images from a CImageList Class object.

imageList
[in] The image list to be used as a source for toolbar images.

Always returns TRUE.

Use this function to quickly initialize the toolbar images list from an external image list.

[in] bmp
[in] clrTransparent

Deletes the user-defined image that has a specified index from the toolbar images.

iImage
[in] Specifies the zero-based index of the image to delete.

TRUE if the image was deleted successfully; FALSE if the image index is invalid, the CMFCToolbarImages object is
temporary, the CMFCToolbarImages object does not contain user-defined images, or if some other error occurred.

Draws a single toolbar image.

BOOL Draw(
 CDC* pDC,
 int x,
 int y,
 int iImageIndex,
 BOOL bHilite=FALSE,
 BOOL bDisabled=FALSE,
 BOOL bIndeterminate=FALSE,
 BOOL bShadow=FALSE,
 BOOL bInactive=FALSE,
 BYTE alphaSrc=255);

ParametersParameters

Return ValueReturn Value

CMFCToolBarImages::DrawEx

pDC
[in] A pointer to a device context.

x
[in] The X coordinate of the left side of the rectangle where the image is to be drawn.

y
[in] The Y coordinate of the top of the rectangle where the image is to be drawn.

iImageIndex
[in] The zero-based index of the image to be displayed.

bHilite
[in] TRUE if the image is to be highlighted; otherwise FALSE.

bDisabled
[in] TRUE if the image is to be drawn in the disabled style; otherwise FALSE.

bIndeterminate
[in] TRUE if the image is to be drawn in the indeterminate state style; otherwise FALSE.

bShadow
[in] TRUE if the image is to be drawn with a drop shadow; otherwise FALSE.

bInactive
[in] TRUE if the image is to be drawn in the inactive state style; otherwise FALSE.

alphaSrc
[in] The alpha channel (opacity) value. A value of 255 means the image is drawn opaque. A value of 0 means the
image is drawn transparent. This value is used only for 32 bit color images and for images that displayed a
Windows Vista glass style.

TRUE if the specified image was displayed successfully; FALSE if the image index was invalid or some other
error occurred.

BOOL DrawEx(
 CDC* pDC,
 CRect rect,
 int iImageIndex,
 ImageAlignHorz horzAlign = ImageAlignHorzLeft,
 ImageAlignVert vertAlign = ImageAlignVertTop,
 CRect rectSrc = CRect(0, 0, 0, 0),
 BYTE alphaSrc = 255);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::EnableRTL
static void __stdcall EnableRTL(BOOL bIsRTL = TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBarImages::EndDrawImage

void EndDrawImage(CAfxDrawState& ds);

ParametersParameters

CMFCToolBarImages::ExtractIcon

HICON ExtractIcon(int nIndex);

ParametersParameters

Return ValueReturn Value

[in] pDC
[in] rect
[in] iImageIndex
[in] horzAlign
[in] vertAlign
[in] rectSrc
[in] alphaSrc

[in] bIsRTL

Frees system resources that CMFCToolBarImages::PrepareDrawImage allocated after you draw a toolbar image
by calling CMFCToolBarImages::Draw.

ds
[in] A reference to the CAfxDrawState object that was passed to the PrepareDrawImage method.

Returns the icon that has a specified image index from the toolbar images.

nIndex
[in] The zero-based index in the image list at which the image to be extracted as an icon is located.

CMFCToolBarImages::FillDitheredRect

static void FillDitheredRect(
 CDC* pDC,
 const CRect& rect);

ParametersParameters

RemarksRemarks

CMFCToolBarImages::GetAlwaysLight
BOOL GetAlwaysLight() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::GetCount

int GetCount() const;

Return ValueReturn Value

CMFCToolBarImages::GetDisabledImageAlpha

static BYTE GetDisabledImageAlpha();

Return ValueReturn Value

RemarksRemarks

A handle to the extracted icon, or NULL if nIndex is out of range.

Fills a rectangle with the toolbar background colors.

pDC
[in] A pointer to a device context.

rect
[in] The coordinates of a rectangle to fill.

Use this method to fill a rectangle with a color that is the average of the system colors COLOR_BTNFACE and
COLOR_BTNHIGHLIGHT. If the system is using 256 or fewer colors, the rectangle will be filled with a dithered
pattern of those two colors instead.

Returns the number of images in the toolbar images list.

The number of images in the CMFCToolBarImages object.

Returns the alpha channel (opacity) value that is used for disabled images.

The current alpha channel value.

You can call CMFCToolBarImages::SetDisabledImageAlpha to change the alpha channel value.

CMFCToolBarImages::GetFadedImageAlpha
static BYTE __stdcall GetFadedImageAlpha();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::GetImageSize

SIZE GetImageSize(BOOL bDest=FALSE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::GetImageWell

HBITMAP GetImageWell() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::GetImageWellLight
HBITMAP GetImageWellLight() const;

Return ValueReturn Value

RemarksRemarks

Retrieves either the size of the toolbar images that are stored in memory (source size), or the size of the toolbar
images that are drawn on the screen (destination size).

bDest
[in] TRUE to retrieve the destination size; FALSE to retrieve the source image size.

A SIZE structure, which specifies the size of an image in pixels.

The size of the source image is the size of the images that are stored in the CMFCToolbarImages object. You can
call CMFCToolBarImages::SetImageSize to set the source size. The default value is 16x15 pixels.

By default, the destination image size is 0x0. You specify the destination size when you call
CMFCToolBarImages::PrepareDrawImage. The CMFCToolBarImages::EndDrawImage method resets the
destination size to the default value.

Returns the handle to the bitmap that contains all the toolbar images.

A handle to a bitmap that contains toolbar images.

The toolbar images are stored in a row in a single bitmap that is known as an image well. To find a toolbar image
in the image well, multiply the index of the image by the width of the toolbar images (see
CMFCToolBarImages::GetImageSize) to obtain the horizontal offset of the image inside the image well.

CMFCToolBarImages::GetLastImageRect
CRect GetLastImageRect() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::GetLightPercentage
int GetLightPercentage() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::GetMapTo3DColors
BOOL GetMapTo3DColors() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::GetMask
HBITMAP GetMask(int iImage);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::GetResourceOffset

int GetResourceOffset(UINT uiResId) const;

ParametersParameters

Return ValueReturn Value

CMFCToolBarImages::GetTransparentColor

[in] iImage

Returns the image index for a specified resource ID.

uiResId
[in] An image resource ID.

An image index if the method was successful; -1 if the image with the specified resource ID does not exist.

COLORREF GetTransparentColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::GrayImages

BOOL GrayImages(int nGrayImageLuminancePercentage);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CMFCToolBarImages::Is32BitTransparencySupported

static BOOL Is32BitTransparencySupported();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::IsPreMultiplyAutoCheck
BOOL IsPreMultiplyAutoCheck() const;

Return ValueReturn Value

RemarksRemarks

Grays the toolbar images to make them look disabled.

nGrayImageLuminancePercentage
[in] Luminance percentage.

TRUE if images in the collection were grayed successfully; otherwise FALSE.

This method modifies the toolbar images by averaging the red, green, and blue components of each pixel and
multiplying the result by nGrayImageLuminancePercentage divided by 100. If
nGrayImageLuminancePercentage is zero or negative, the default value of 130 is used instead.

If you want to undo the change, you must reload the images from the source. You can do this by calling
CMFCToolBarImages::Load or CMFCToolBarImages::UpdateImage (only for user-defined images), or by calling
CMFCToolBarImages::Clear and adding the images again by calling CMFCToolBarImages::AddIcon or
CMFCToolBarImages::AddImage.

Specifies whether the operating system supports 32-bit alpha blending.

TRUE if 32-bit alpha blending is supported; otherwise FALSE.

Use this static method to determine at runtime whether the operating system supports 32-bit alpha blending.
This feature is supported on Windows 2000 and later versions.

CMFCToolBarImages::IsReadOnly

BOOL IsReadOnly() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::IsRTL

static BOOL IsRTL();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::IsUserImagesList

BOOL IsUserImagesList() const;

Return ValueReturn Value

CMFCToolBarImages::IsValid

BOOL IsValid() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::Load

Specifies whether the toolbar images are read-only.

TRUE if the toolbar images are read-only, otherwise FALSE.

The CMFCToolbarImages object is read-only when the bitmap with toolbar images was loaded from a read-only
file, or when the bitmap was copied in using the CMFCToolBarImages::CopyTemp method.

Specifies whether right-to-left (RTL) support is enabled.

TRUE if RTL support is enabled; otherwise FALSE.

RTL support is used when the application is localized to a language that is read from right to left, such as Arabic,
Hebrew, Persian, or Urdu.

Specifies whether this set of toolbar images contains user-defined images.

TRUE if the CMFCToolBarImages object contains user-defined toolbar images; otherwise FALSE.

Indicates whether this set of toolbar images contains a valid toolbar image.

TRUE if a CMFCToolBarImages object is valid; otherwise FALSE.

The CMFCToolBarImages object is not valid when its handle to a bitmap with toolbar images is NULL.

Loads toolbar images from system resources or from a file.

BOOL Load(
 UINT uiResID,
 HINSTANCE hinstRes=NULL,
 BOOL bAdd=FALSE);

BOOL Load(
 LPCTSTR lpszBmpFileName,
 DWORD nMaxFileSize = 819200);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::LoadStr
BOOL LoadStr(
 LPCTSTR lpszResourceName,
 HINSTANCE hinstRes = NULL,
 BOOL bAdd = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::MapFromSysColor
static COLORREF __stdcall MapFromSysColor(
 COLORREF color,
 BOOL bUseRGBQUAD = TRUE);

ParametersParameters

uiResID
[in] The ID of a bitmap resource.

hinstRes
[in] An instance of the resource DLL.

bAdd
[in] TRUE to add the loaded bitmap to the existing bitmap, or FALSE to replace the existing bitmap.

lpszBmpFileName
[in] A path to a disk file from which to load the bitmap.

nMaxFileSize
[in] Maximum number of bytes in the bitmap file; or 0 to load the bitmap regardless of file size. If the size of the
file exceeds this maximum size, the method returns FALSE and does not load the bitmap.

TRUE if the bitmap was loaded successfully; otherwise FALSE.

If the file has the read-only attribute, the image list is marked as read-only.

[in] lpszResourceName
[in] hinstRes
[in] bAdd

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::MapTo3dColors
BOOL MapTo3dColors(
 BOOL bUseRGBQUAD = TRUE,
 COLORREF clrSrc = (COLORREF)-1,
 COLORREF clrDest = (COLORREF)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::MapToSysColor
static COLORREF __stdcall MapToSysColor(
 COLORREF color,
 BOOL bUseRGBQUAD = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::MapToSysColorAlpha
static COLORREF __stdcall MapToSysColorAlpha(COLORREF color);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::Mirror

BOOL Mirror();

Return ValueReturn Value

[in] color
[in] bUseRGBQUAD

[in] bUseRGBQUAD
[in] clrSrc
[in] clrDest

[in] color
[in] bUseRGBQUAD

[in] color

Replaces the toolbar images with their horizontal mirror image.

RemarksRemarks

CMFCToolBarImages::MirrorBitmap

static BOOL MirrorBitmap(
 HBITMAP& hbmp,
 int cxImage);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::MirrorBitmapVert
static BOOL __stdcall MirrorBitmapVert(
 HBITMAP& hbmp,
 int cyImage);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::MirrorVert
BOOL MirrorVert();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::OnSysColorChange
void OnSysColorChange();

RemarksRemarks

TRUE if the images were successfully mirrored; otherwise FALSE.

This method is used to support right-to-left writing systems.

Replaces a bitmap with its horizontal mirror image.

hbmp
[in, out] A handle to bitmap to mirror.

cxImage
[in] Width of the image in pixels.

TRUE if the image was successfully mirrored; otherwise FALSE.

This function is used to support right-to-left writing systems.

[in] hbmp
[in] cyImage

CMFCToolBarImages::PreMultiplyAlpha
static BOOL __stdcall PreMultiplyAlpha(
 HBITMAP hbmp,
 BOOL bAutoCheckPremlt);

BOOL PreMultiplyAlpha(HBITMAP hbmp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::m_bDisableTrueColorAlpha

static BOOL m_bDisableTrueColorAlpha;

RemarksRemarks

CMFCToolBarImages::PrepareDrawImage

BOOL PrepareDrawImage(
 CAfxDrawState& ds,
 CSize sizeImageDest=CSize(0,
 0)
 BOOL bFadeInactive=FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] hbmp
[in] bAutoCheckPremlt

TRUE if truecolor alpha blending (32-bit color) is disabled.

Set this member variable to FALSE to enable truecolor alpha-blending for toolbar images.

The default value is TRUE for backward compatibility.

Allocates the resources that are required to draw a toolbar image at a specified size.

ds
[in] A reference to CAfxDrawState structure, which stores the allocated resources between image rendering
stages.

sizeImageDest
[in] Specifies the size of a destination image.

bFadeInactive
[in] TRUE if you want inactive images to be drawn faded.

TRUE if the resources required to draw the toolbar image were allocated successfully, otherwise FALSE.

After you call this method, you can call CMFCToolBarImages::Draw any number of times. After you finished
drawing, you must call CMFCToolBarImages::EndDrawImage to release the resources allocated by
PrepareDrawImage .

CMFCToolBarImages::Save

BOOL Save(LPCTSTR lpszBmpFileName=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::SetAlwaysLight
void SetAlwaysLight(BOOL bAlwaysLight = TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBarImages::SetDisabledImageAlpha

static void SetDisabledImageAlpha(BYTE nValue);

ParametersParameters

RemarksRemarks

CMFCToolBarImages::SetFadedImageAlpha
static void __stdcall SetFadedImageAlpha(BYTE nValue);

ParametersParameters

RemarksRemarks

Stores the toolbar images in a file if this set of toolbar images contains user-defined images.

lpszBmpFileName
A path to a disk file.

TRUE if the toolbar images were saved successfully; otherwise FALSE.

Call this method to store the user-defined images into a disk file. If lpszBmpFileName is NULL, the method
stores the bitmap into the file from which the bitmap was loaded by the CMFCToolBarImages::Load method.

[in] bAlwaysLight

Sets the alpha channel (opacity) value that is used for disabled images.

nValue
[in] The new value of the alpha channel.

Use this method to set a custom alpha value for disabled images. The default value is 127, which causes disabled
button images to be semitransparent. If you set a value of 0, disabled images will be completely transparent. If
you set a value of 255, disabled images will be completely opaque.

[in] nValue

CMFCToolBarImages::SetImageSize

void SetImageSize(
 SIZE sizeImage,
 BOOL bUpdateCount=FALSE);

ParametersParameters

RemarksRemarks

CMFCToolBarImages::SetLightPercentage
void SetLightPercentage(int nValue);

ParametersParameters

RemarksRemarks

CMFCToolBarImages::SetMapTo3DColors
void SetMapTo3DColors(BOOL bMapTo3DColors);

ParametersParameters

RemarksRemarks

CMFCToolBarImages::SetPreMultiplyAutoCheck
void SetPreMultiplyAutoCheck(BOOL bAuto = TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBarImages::SetSingleImage
void SetSingleImage();

RemarksRemarks

CMFCToolBarImages::SetTransparentColor

Sets the size of each toolbar image (source size).

sizeImage
[in] The new size of toolbar images.

By default the size of the toolbar image is 16x15 pixels. Call this method if you want to use toolbar images of a
different size.

[in] nValue

[in] bMapTo3DColors

[in] bAuto

COLORREF SetTransparentColor(COLORREF clrTransparent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::UpdateImage

BOOL UpdateImage(
 int iImage,
 HBITMAP hbmp);

ParametersParameters

Return ValueReturn Value

CMFCToolBarImages::ConvertTo32Bits

BOOL ConvertTo32Bits(COLORREF clrTransparent = (COLORREF)-1);

ParametersParameters

RemarksRemarks

CMFCToolBarImages::GetBitsPerPixel

int GetBitsPerPixel() const;

Return ValueReturn Value

Sets the transparent color of the toolbar images.

clrTransparent
[in] An RGB value.

The previous transparent color.

When you or the framework call CMFCToolBarImages::Draw, the method does not draw any pixel that matches
the color specified by clrTransparent.

Updates a user-defined toolbar image from a bitmap.

iImage
[in] The zero-based index of the image to update.

hbmp
[in] A handle to the bitmap from which to update the image.

TRUE if the image was updated successfully; FALSE if the image list is not user-defined or temporary.

Converts underlined bitmaps to 32 bpp images.

clrTransparent
Specifies transparent color of underlined bitmaps.

Returns current resolution of underlined images.

RemarksRemarks

CMFCToolBarImages::GetScale

double GetScale() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::IsScaled

BOOL IsScaled () const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarImages::SmoothResize

BOOL SmoothResize(double dblImageScale);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

An integer value representing the current resolution of underlined images, in bits per pixel (bpp).

Returns the current scale ratio of underlined images.

A value representing the current scale ratio.

Tells whether the underlined images are scaled or not.

TRUE if underlined images are scaled; otherwise FALSE.

Smoothly resizes underlined images.

dblImageScale
Scale ratio.

TRUE if resize succeeds; otherwise FALSE.

Hierarchy Chart
Classes
CObject Class
CMFCToolBar Class
CMFCToolBarButton Class

CMFCToolBarMenuButton Class
3/4/2019 • 14 minutes to read • Edit Online

Syntax
class CMFCToolBarMenuButton : public CMFCToolBarButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCToolBarMenuButton::CMFCToolBarMenuButton Constructs a CMFCToolBarMenuButton object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolBarMenuButton::CompareWith Compares this instance with the provided
CMFCToolBarButton object. (Overrides

CMFCToolBarButton::CompareWith.)

CMFCToolBarMenuButton::CopyFrom Copies the properties of another toolbar button to the
current button. (Overrides CMFCToolBarButton::CopyFrom.)

CMFCToolBarMenuButton::CreateFromMenu Initializes the toolbar menu from a Windows menu handle.

CMFCToolBarMenuButton::CreateMenu Creates a Windows menu that consists of the commands in
the toolbar menu. Returns a handle to the Windows menu.

CMFCToolBarMenuButton::CreatePopupMenu Creates a pop-up menu object (CMFCPopupMenu Class) to
display the toolbar menu.

CMFCToolBarMenuButton::EnableQuickCustomize

CMFCToolBarMenuButton::GetCommands Gives read-only access to the list of commands in the
toolbar menu.

CMFCToolBarMenuButton::GetImageRect Retrieves the bounding rectangle for the button image.

CMFCToolBarMenuButton::GetPaletteRows Returns the number of rows in the pop-up menu when the
menu is in palette mode.

CMFCToolBarMenuButton::GetPopupMenu Returns a pointer to the pop-up menu object that is
associated with the button.

A toolbar button that contains a pop-up menu. For more detail see the source code located in the
VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbarmenubutton-class.md

CMFCToolBarMenuButton::HasButton

CMFCToolBarMenuButton::HaveHotBorder Determines whether a border of the button is displayed
when a user selects the button. (Overrides
CMFCToolBarButton::HaveHotBorder.)

CMFCToolBarMenuButton::IsBorder

CMFCToolBarMenuButton::IsClickedOnMenu

CMFCToolBarMenuButton::IsDroppedDown Determines whether the pop-up menu is displayed.

CMFCToolBarMenuButton::IsEmptyMenuAllowed Called by the framework to determine whether a user can
open a submenu from the selected menu item.

CMFCToolBarMenuButton::IsExclusive Determines whether the button is in exclusive mode, that is,
whether the pop-up menu remains open even when the
user moves the pointer over another toolbar or button.

CMFCToolBarMenuButton::IsMenuPaletteMode Determines whether the pop-up menu is in palette mode.

CMFCToolBarMenuButton::IsQuickMode

CMFCToolBarMenuButton::IsTearOffMenu Determines whether the pop-up menu has a tear-off bar.

CMFCToolBarMenuButton::OnAfterCreatePopupMenu

CMFCToolBarMenuButton::OnBeforeDrag Specifies whether the button can be dragged. (Overrides
CMFCToolBarButton::OnBeforeDrag.)

CMFCToolBarMenuButton::OnCalculateSize Called by the framework to calculate the size of the button
for the specified device context and docking state.
(Overrides CMFCToolBarButton::OnCalculateSize.)

CMFCToolBarMenuButton::OnCancelMode Called by the framework to handle the WM_CANCELMODE
message. (Overrides CMFCToolBarButton::OnCancelMode.)

CMFCToolBarMenuButton::OnChangeParentWnd Called by the framework when the button is inserted into a
new toolbar. (Overrides
CMFCToolBarButton::OnChangeParentWnd.)

CMFCToolBarMenuButton::OnClick Called by the framework when the user clicks the mouse
button. (Overrides CMFCToolBarButton::OnClick.)

CMFCToolBarMenuButton::OnClickMenuItem Called by the framework when the user selects an item in
the pop-up menu.

CMFCToolBarMenuButton::OnContextHelp Called by the framework when the parent toolbar handles a
WM_HELPHITTEST message. (Overrides
CMFCToolBarButton::OnContextHelp.)

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/winmsg/wm-cancelmode

CMFCToolBarMenuButton::OnDraw Called by the framework to draw the button by using the
specified styles and options. (Overrides
CMFCToolBarButton::OnDraw.)

CMFCToolBarMenuButton::OnDrawOnCustomizeList Called by the framework to draw the button in the
Commands pane of the Customize dialog box. (Overrides
CMFCToolBarButton::OnDrawOnCustomizeList.)

CMFCToolBarMenuButton::OpenPopupMenu Called by the framework when the user opens the pop-up
menu.

CMFCToolBarMenuButton::ResetImageToDefault Sets to the default value the image that is associated with
the button. (Overrides
CMFCToolBarButton::ResetImageToDefault.)

CMFCToolBarMenuButton::SaveBarState Saves the state of the toolbar button. (Overrides
CMFCToolBarButton::SaveBarState.)

CMFCToolBarMenuButton::Serialize Reads this object from an archive or writes it to an archive.
(Overrides CMFCToolBarButton::Serialize.)

CMFCToolBarMenuButton::SetACCData Populates the provided CAccessibilityData object with
accessibility data from the toolbar button. (Overrides
CMFCToolBarButton::SetACCData.)

CMFCToolBarMenuButton::SetMenuOnly Specifies whether the button can be added to a toolbar.

CMFCToolBarMenuButton::SetMenuPaletteMode Specifies whether the pop-up menu is in palette mode.

CMFCToolBarMenuButton::SetMessageWnd

CMFCToolBarMenuButton::SetRadio Forces the toolbar menu button to display an icon
indicating that it is selected.

CMFCToolBarMenuButton::SetTearOff Specifies a tear-off bar ID for the pop-up menu.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCToolBarMenuButton::DrawDocumentIcon Draws an icon on the menu button.

Data MembersData Members

NAME DESCRIPTION

CMFCToolBarMenuButton::m_bAlwaysCallOwnerDraw If TRUE, the framework always calls
CFrameWndEx::OnDrawMenuImage when a button is
drawn.

Remarks
A CMFCToolBarMenuButton can appear as a menu, a menu item that has a sub-menu, a button that either

Example

pBorderType->SetMenuPaletteMode (TRUE, 2 /* Rows number */);
pBorderType->SetTearOff (ID_BORDER_TEAROFF);

Inheritance Hierarchy

Requirements

CMFCToolBarMenuButton::CMFCToolBarMenuButton

CMFCToolBarMenuButton();
CMFCToolBarMenuButton(const CMFCToolBarMenuButton& src);

CMFCToolBarMenuButton(
 UINT uiID,
 HMENU hMenu,
 int iImage,
 LPCTSTR lpszText=NULL,
 BOOL bUserButton=FALSE);

ParametersParameters

executes a command or displays a menu, or a button that displays only a menu. You determine the behavior
and appearance of the menu button by specifying parameters such as the image, text, menu handle, and
command ID that is associated with the button in the constructor
CMFCToolbarMenuButton::CMFCToolbarMenuButton .

A custom class derived from the CMFCToolbarMenuButton class must use the DECLARE_SERIAL macro. The
DECLARE_DYNCREATE macro generates an error when the application closes.

The following example demonstrates how to configure a CMFCToolBarMenuButton object. The code illustrates
how to specify that the drop-down menu is in palette mode, and specify the ID for the tear-off bar that is
created when the user drags the menu button off of a menu bar. This code snippet is part of the Word Pad
sample.

CObject

CMFCToolBarButton

CMFCToolBarMenuButton

Header: afxtoolbarmenubutton.h

Constructs a CMFCToolBarMenuButton object.

src
[in] An existing CMFCToolBarMenuButton object to be copied into this CMFCToolBarMenuButton object.

uiID
[in] The ID of the command to execute when a user clicks the button; or (UINT)-1 for a menu button that does
not directly execute a command.

hMenu
[in] A handle to a menu; or NULL if the button does not have a menu.

iImage

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

ExampleExample

CMFCToolBarMenuButton* pBorderType = new
 CMFCToolBarMenuButton (ID_BORDER_1, pPopup->GetSafeHmenu (),
 GetCmdMgr ()->GetCmdImage (ID_BORDER_1, FALSE),
 _T("Borders"));

CMFCToolBarMenuButton::CompareWith
virtual BOOL CompareWith(const CMFCToolBarButton& other) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::CopyFrom
virtual void CopyFrom(const CMFCToolBarButton& src);

ParametersParameters

RemarksRemarks

CMFCToolBarMenuButton::CreateFromMenu

virtual void CreateFromMenu(HMENU hMenu);

[in] Index of the image for the button; or -1 if this button does not have an icon or uses the icon for the
command specified by uiID. The index is the same for each CMFCToolBarImages object in your application.

lpszText
[in] The text of the toolbar menu button.

bUserButton
[in] TRUE if the button displays a user-defined image; FALSE if the button displays a predefined image
associated with the command specified by uiID.

If uiID is a valid command ID, the button performs that command when the user clicks it. If hMenu is a valid
menu handle, the button provides a drop-down menu when it appears in a toolbar or a submenu when it
appears in a menu. If both uiID and hMenu are valid, the button is a split-button with a portion that will
perform the command when the user clicks on it and a portion with a down arrow that will drop-down a menu
when the user clicks on it. However, if hMenu is valid, a user will not be able to click the button to perform a
command when the button is inserted into a menu.

The following example demonstrates how to construct an object of the CMFCToolBarMenuButton class. This code
snippet is part of the Word Pad sample.

[in] other

[in] src

Initializes the toolbar menu from a Windows menu handle.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ParametersParameters

RemarksRemarks

CMFCToolBarMenuButton::CreateMenu

virtual HMENU CreateMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::CreatePopupMenu

virtual CMFCPopupMenu* CreatePopupMenu();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::DrawDocumentIcon

void DrawDocumentIcon(
 CDC* pDC,
 const CRect& rectImage,
 HICON hIcon);

ParametersParameters

hMenu
[in] A handle to a menu.

A toolbar menu button can display a drop-down submenu.

The framework calls this method to initialize the commands in the submenu from a menu.

Creates a menu that consists of the commands in the toolbar menu. Returns a handle to the menu.

A handle to the menu if success. NULL if the list of commands associated with the toolbar menu button is
empty.

You can override this method in a derived class to customize the way the menu is generated.

Creates a CMFCPopupMenu object to display the toolbar menu.

A pointer to a CMFCPopupMenu object that displays the drop-down menu associated with the toolbar menu
button.

This method is called by the framework to prepare the display of the drop-down menu associated with the
button.

The default implementation just constructs and returns a new CMFCPopupMenu object. Override this method if
you want to use a derived type of CMFCPopupMenu Class or to perform additional initialization.

Draws a document icon on the menu button.

pDC
[in] A pointer to the device context.

rectImage

RemarksRemarks

CMFCToolBarMenuButton::EnableQuickCustomize
void EnableQuickCustomize();

RemarksRemarks

CMFCToolBarMenuButton::HasButton
virtual BOOL HasButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::HaveHotBorder
virtual BOOL HaveHotBorder() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::IsBorder
virtual BOOL IsBorder() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::IsClickedOnMenu
BOOL IsClickedOnMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::IsQuickMode
BOOL IsQuickMode();

[in] Coordinates of the image bounding rectangle.

hIcon
[in] A handle to the icon.

This method takes a document icon and draws it on the menu button, centered in the area specified by
rectImage.

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::GetCommands

const CObList& GetCommands() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::GetImageRect

void GetImageRect(CRect& rectImage);

ParametersParameters

CMFCToolBarMenuButton::GetPaletteRows

int GetPaletteRows() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::GetPopupMenu

CMFCPopupMenu* GetPopupMenu() const;

Return ValueReturn Value

Gives read-only access to the list of commands in the toolbar menu.

A const reference to a CObList Class object, which contains a collection of CMFCToolBarButton Class objects.

A toolbar menu button can display a submenu. You can provide the list of commands in the submenu in the
constructor or in CMFCToolBarMenuButton::CreateFromMenu as a handle to a menu (HMENU). The menu is
converted to a list of objects that are derived from CMFCToolBarButton Class and stored in the internal
CObList object. You can access this list by calling this method.

Retrieves the bounding rectangle for the button image.

rectImage
[out] A reference to a CRect object that receives the coordinates of the image bounding rectangle.

Returns the number of rows in the drop-down menu when the menu is in palette mode.

The number of rows in the palette.

When the menu button is set to palette mode, menu items will appear in multiple columns with only a limited
number of rows. Call this method to obtain the number of rows. You can enable or disable palette mode and
specify the number of rows using CMFCToolBarMenuButton::SetMenuPaletteMode.

Returns a pointer to the CMFCPopupMenu Class object that represents the drop-down menu of the button.

A pointer to a CMFCPopupMenu Class object that was created when the framework drew the submenu of the

RemarksRemarks

CMFCToolBarMenuButton::IsDroppedDown

virtual BOOL IsDroppedDown() const;

Return ValueReturn Value

CMFCToolBarMenuButton::IsEmptyMenuAllowed

virtual BOOL IsEmptyMenuAllowed() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::IsExclusive

virtual BOOL IsExclusive() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::IsMenuPaletteMode

toolbar menu button; NULL if no submenu is displayed.

When a toolbar menu button displays a drop-down menu, the button creates a CMFCPopupMenu Class object
to represent the menu. Call this method to obtain a pointer to the CMFCPopupMenu object. You should not store
the returned pointer, because it is temporary and becomes invalid when the user closes the drop-down menu.

Indicates whether the pop-up menu is currently displayed.

TRUE if the toolbar menu button displays its submenu; otherwise FALSE.

Specifies whether menu items shows empty submenus.

TRUE if the framework opens a submenu from the currently selected menu item even when the submenu is
empty; otherwise FALSE.

The framework calls this method when a user tries to open the submenu from the currently selected menu
item. If the submenu is empty and IsEmptyMenuAllowed returns FALSE, the submenu will not open.

The default implementation returns FALSE. Override this method to customize this behavior.

Indicates whether the button is in exclusive mode.

TRUE if the button is working in exclusive mode; otherwise FALSE.

When a user opens a popup menu for a button and then moves the mouse pointer over another toolbar or
menu button, the popup menu closes unless the button is in exclusive mode.

The default implementation always returns FALSE. Override this method in a derived class if you want to turn
on exclusive mode.

Determines whether the drop-down menu is in palette mode.

BOOL IsMenuPaletteMode() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::IsTearOffMenu

virtual BOOL IsTearOffMenu() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::m_bAlwaysCallOwnerDraw

static BOOL m_bAlwaysCallOwnerDraw;

RemarksRemarks

CMFCToolBarMenuButton::OnAfterCreatePopupMenu
virtual void OnAfterCreatePopupMenu();

RemarksRemarks

CMFCToolBarMenuButton::OnBeforeDrag
virtual BOOL OnBeforeDrag() const;

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::OnCalculateSize

TRUE if the palette mode is enabled, otherwise FALSE.

When the menu button is set to palette mode, menu items appear in multiple columns with only a limited
number of rows. Call this method to obtain the number of rows. You can enable or disable the palette mode by
calling CMFCToolBarMenuButton::SetMenuPaletteMode.

Indicates whether the drop-down menu has a tear-off bar.

TRUE if the toolbar menu button has a tear-off bar; otherwise FALSE.

To enable the tear-off feature and set the tear-off bar ID, call CMFCToolBarMenuButton::SetTearOff.

Specifies whether the framework always calls CFrameWndEx::OnDrawMenuImage when a button is drawn.

When this member variable is set to TRUE, the button always calls CFrameWndEx::OnDrawMenuImage
method to display the image on the button. When m_bAlwaysCallOwnerDraw is FALSE, the button itself draws the
image if the image is predefined. Otherwise, it calls OnDrawMenuImage .

virtual SIZE OnCalculateSize(
 CDC* pDC,
 const CSize& sizeDefault,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::OnCancelMode
virtual void OnCancelMode();

RemarksRemarks

CMFCToolBarMenuButton::OnChangeParentWnd
virtual void OnChangeParentWnd(CWnd* pWndParent);

ParametersParameters

RemarksRemarks

CMFCToolBarMenuButton::OnClick
virtual BOOL OnClick(
 CWnd* pWnd,
 BOOL bDelay = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::OnClickMenuItem

virtual BOOL OnClickMenuItem();

Return ValueReturn Value

[in] pDC
[in] sizeDefault
[in] bHorz

[in] pWndParent

[in] pWnd
[in] bDelay

Called by the framework when the user selects an item in the drop-down menu.

FALSE if the framework should continue the default menu item processing; otherwise TRUE. The default
implementation always returns FALSE.

RemarksRemarks

CMFCToolBarMenuButton::OnContextHelp
virtual BOOL OnContextHelp(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::OnDraw
virtual void OnDraw(
 CDC* pDC,
 const CRect& rect,
 CMFCToolBarImages* pImages,
 BOOL bHorz = TRUE,
 BOOL bCustomizeMode = FALSE,
 BOOL bHighlight = FALSE,
 BOOL bDrawBorder = TRUE,
 BOOL bGrayDisabledButtons = TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBarMenuButton::OnDrawOnCustomizeList
virtual int OnDrawOnCustomizeList(
 CDC* pDC,
 const CRect& rect,
 BOOL bSelected);

ParametersParameters

When the user clicks a menu item, the framework executes a command that is associated with that item.

To customize the menu item processing, override OnClickMenuItem in a class derived from
CMFCToolBarMenuButton class. You must also override CFrameWndEx::OnShowPopupMenu and replace the

menu buttons that require special processing with instances of the derived class.

[in] pWnd

[in] pDC
[in] rect
[in] pImages
[in] bHorz
[in] bCustomizeMode
[in] bHighlight
[in] bDrawBorder
[in] bGrayDisabledButtons

[in] pDC
[in] rect
[in] bSelected

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::OpenPopupMenu

virtual BOOL OpenPopupMenu(CWnd* pWnd=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::ResetImageToDefault
virtual void ResetImageToDefault();

RemarksRemarks

CMFCToolBarMenuButton::SaveBarState
virtual void SaveBarState();

RemarksRemarks

CMFCToolBarMenuButton::Serialize
virtual void Serialize(CArchive& ar);

ParametersParameters

RemarksRemarks

CMFCToolBarMenuButton::SetACCData

Called by the framework when the user opens the drop-down menu of a toolbar menu button.

pWnd
[in] Specifies the window that receives the drop-down menu commands. It can be NULL only if the toolbar
menu button has a parent window.

TRUE when a CMFCPopupMenu Class object was created and opened successfully; otherwise FALSE.

This function is called by the framework when the user opens a drop-down menu from a toolbar menu button.

The framework calls this method when it creates a toolbar button as the result of a drag-and-drop operation.
This method calls the CMFCPopupMenu::SaveState method of the top-level pop-up menu, which causes the
parent button of the pop-up menu to recreate its menu.

[in] ar

Sets the accessibility data for the ribbon element.

virtual BOOL SetACCData(
 CWnd* pParent,
 CAccessibilityData& data);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarMenuButton::SetMenuOnly

void SetMenuOnly(BOOL bMenuOnly);

ParametersParameters

RemarksRemarks

CMFCToolBarMenuButton::SetMenuPaletteMode

void SetMenuPaletteMode(
 BOOL bMenuPaletteMode=TRUE,
 int nPaletteRows=1);

ParametersParameters

RemarksRemarks

pParent
The parent window for the ribbon element.

data
The accessibility data for the ribbon element.

Always returns TRUE.

By default this method sets the accessibility data for the ribbon element and always returns TRUE. Override
this method to set the accessibility data and return a value that indicates success or failure.

Specifies whether the button is drawn as a menu button or a split button when it has both a valid command ID
and a submenu.

bMenuOnly
[in] TRUE to show this button as a menu button when it has both a valid command ID and a submenu, FALSE
to show this button as a split button when it has both a valid command ID and a submenu.

Typically, when a toolbar menu button has both a submenu and a command ID, the menu appears to be a split
button that has a main button and an attached down arrow button. If you call this method and bMenuOnly is
TRUE, the button instead appears to be a single menu button with a down arrow in the button. When the user
clicks the arrow in either mode, the submenu opens, and when the user clicks the non-arrow part of the button
in either mode the framework executes the command .

Specifies whether the drop-down menu is in palette mode.

bMenuPaletteMode
[in] Specifies whether the drop-down menu is in palette mode.

nPaletteRows
[in] Number of rows in palette.

CMFCToolBarMenuButton::SetMessageWnd
void SetMessageWnd(CWnd* pWndMessage);

ParametersParameters

RemarksRemarks

CMFCToolBarMenuButton::SetRadio

virtual void SetRadio();

RemarksRemarks

CMFCToolBarMenuButton::SetTearOff

virtual void SetTearOff(UINT uiBarID);

ParametersParameters

RemarksRemarks

See also

In the palette mode, all menu items are displayed as a multicolumn palette. You specify the number of rows by
using nPaletteRows.

[in] pWndMessage

Sets the toolbar menu button to display a radio button style icon when it is checked.

When the menu button is drawn while it is checked, it calls CMFCVisualManager::OnDrawMenuCheck to draw
a checkmark icon. By default, OnDrawMenuCheck requests that the current visual manager draws a checkbox style
checkmark on the menu button. After you call this method, the current visual manager instead draws a radio
button style checkmark on the menu button. This change cannot be undone.

When you call this method and the menu button is currently being displayed, it will refresh.

Specifies the ID of the tear-off bar for the drop-down menu.

uiBarID
[in] Specifies a new tear-off bar ID.

Call this method to specify the ID for the tear-off bar that is created when the user drags the menu button off
of a menu bar. If the uiBarID parameter is 0, the user cannot tear off the menu button.

Call CWinAppEx::EnableTearOffMenus to enable the tear-off menu feature in your application.

Hierarchy Chart
Classes
CMFCToolBarButton Class
CMFCToolBar Class
CMFCPopupMenu Class

CMFCToolBarInfo Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCToolBarInfo

Members
Data MembersData Members

NAME DESCRIPTION

CMFCToolBarInfo::m_uiColdResID Resource ID of the toolbar bitmap that contains regular (cold)
toolbar images.

CMFCToolBarInfo::m_uiDisabledResID Resource ID of the toolbar bitmap that contains disabled
toolbar images.

CMFCToolBarInfo::m_uiHotResID Resource ID of the toolbar bitmap that contains selected (hot)
toolbar images.

CMFCToolBarInfo::m_uiLargeColdResID Resource ID of the toolbar bitmap that contains large, regular
toolbar images.

CMFCToolBarInfo::m_uiLargeDisabledResID Resource ID of the toolbar bitmap that contains large,
disabled toolbar images.

CMFCToolBarInfo::m_uiLargeHotResID Resource ID of the toolbar bitmap that contains large, selected
toolbar images.

CMFCToolBarInfo::m_uiMenuDisabledResID Resource ID of the toolbar bitmap that contains disabled
menu images.

CMFCToolBarInfo::m_uiMenuResID Resource ID of the toolbar bitmap that contains menu images.

Remarks

Inheritance Hierarchy

Contains the resource IDs of toolbar images in various states. CMFCToolBarInfo is a helper class that is used as a
parameter of the CMFCToolBar::LoadToolBarEx method.

A full toolbar bitmap consists of small toolbar images (buttons) of a fixed size. Each resource ID that is stored in a
CMFCToolBarInfo object is a bitmap that contains a full set of toolbar images in a single state (for example, selected,

disabled, large, or menu images).

CMFCToolBarInfo

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbarinfo-class.md

Requirements

CMFCToolBarInfo::m_uiColdResID

UINT m_uiColdResID;

CMFCToolBarInfo::m_uiDisabledResID

UINT m_uiDisabledResID;

CMFCToolBarInfo::m_uiHotResID

UINT m_uiHotResID

CMFCToolBarInfo::m_uiLargeColdResID

UINT m_uiLargeColdResID

CMFCToolBarInfo::m_uiLargeDisabledResID

UINT m_uiLargeDisabledResID;

CMFCToolBarInfo::m_uiLargeHotResID

UINT m_uiLargeHotResID;

CMFCToolBarInfo::m_uiMenuDisabledResID

UINT m_uiMenuDisabledResID;

CMFCToolBarInfo::m_uiMenuResID

Header: afxtoolbar.h

Specifies a resource ID for all the regular button images of a toolbar.

Specifies a resource ID for the button-unavailable images of a toolbar.

Specifies a resource ID for all the highlighted button images of a toolbar.

Specifies a resource ID for all the large regular button images of a toolbar.

Specifies a resource ID for all the large disabled button images of a toolbar.

Specifies a resource ID for all the large highlighted images of a toolbar.

Specifies a resource ID for the command-unavailable images of a toolbar.

UINT m_uiMenuResID;

See also

Specifies a resource ID for all the regular menu item images of a toolbar.

Hierarchy Chart
Classes
CMFCToolBar Class

CMFCToolBarsCustomizeDialog Class
3/4/2019 • 17 minutes to read • Edit Online

Syntax
class CMFCToolBarsCustomizeDialog : public CPropertySheet

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCToolBarsCustomizeDialog::CMFCToolBarsCustomizeDia
log

Constructs a CMFCToolBarsCustomizeDialog object.

CMFCToolBarsCustomizeDialog::~CMFCToolBarsCustomizeDialogDestructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::AddButton
Inserts a toolbar button into the list of commands on the
Commands page

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::AddMenu
Loads a menu from the resources and calls
CMFCToolBarsCustomizeDialog::AddMenuCommands to add
that menu to the list of commands on the Commands page.

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::AddMenuCommands
Loads a menu from the resources and calls
CMFCToolBarsCustomizeDialog::AddMenuCommands to add
that menu to the list of commands on the Commands page.

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::AddToolBar
Loads a toolbar from the resources. Then, for each command
in the menu calls the
CMFCToolBarsCustomizeDialog::AddButton method to insert
a button in the list of commands on the Commands page
under the specified category.

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::Create
Displays the Customization dialog box.

CMFCToolBarsCustomizeDialog::EnableTools Reserved for future use.

A modeless tab dialog box (CPropertySheet Class) that enables the user to customize the toolbars, menus,
keyboard shortcuts, user-defined tools, and visual style in an application. Typically, the user accesses this dialog
box by selecting Customize from the Tools menu.

The Customize dialog box has six tabs: Commands, Toolbars, Tools, Keyboard, Menu, and Options.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctoolbarscustomizedialog-class.md

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::EnableUserDefinedToolbars
Enables or disables creating new toolbars by using the
Customize dialog box.

CMFCToolBarsCustomizeDialog::FillAllCommandsList Populates the provided CListBox object with the
commands in the All Commands category.

CMFCToolBarsCustomizeDialog::FillCategoriesComboBox Populates the provided CComboBox object with the name of
each command category in the Customize dialog box.

CMFCToolBarsCustomizeDialog::FillCategoriesListBox Populates the provided CListBox object with the name of
each command category in the Customize dialog box.

CMFCToolBarsCustomizeDialog::GetCommandName Retrieves the name that is associated with the given
command ID.

CMFCToolBarsCustomizeDialog::GetCountInCategory Retrieves the number of items in the provided list that have
a given text label.

CMFCToolBarsCustomizeDialog::GetFlags Retrieves the set of flags that affect the behavior of the
dialog box.

CMFCToolBarsCustomizeDialog::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::OnEditToolbarMenuImage
Starts an image editor so that a user can customize a toolbar
button or menu item icon.

CMFCToolBarsCustomizeDialog::OnInitDialog Overrides to augment property sheet initialization.
(Overrides CPropertySheet::OnInitDialog.)

CMFCToolBarsCustomizeDialog::PostNcDestroy Called by the framework after the window has been
destroyed. (Overrides CPropertySheet::PostNcDestroy .)

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::RemoveButton
Removes the button with the specified command ID from
the specified category, or from all categories.

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::RenameCategory
Renames a category in the list box of categories on the
Commands tab.

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::ReplaceButton
Replaces a button in the list of commands on the
Commands tab with a new toolbar button object.

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::SetUserCategory
Adds a category to the list of categories that will be
displayed on the Commands tab.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::CheckToolsValidity
Called by the framework to determine whether the list of
user-defined tools is valid.

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::OnAfterChangeTool
Called by the framework when the properties of a user-
defined tool change.

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::OnAssignKey
Determines whether a specified keyboard shortcut can be
assigned to an action.

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::OnBeforeChangeTool
Determines whether a user-defined tool can be changed.

CMFCToolBarsCustomizeDialog::

CMFCToolBarsCustomizeDialog::OnInitToolsPage
Called by the framework when the user chooses the Tools
tab is requested.

NAME DESCRIPTION

Remarks

Example

pDlgCust->ReplaceButton (ID_FAVORITS_DUMMY,
 CMFCToolBarMenuButton ((UINT)-1, menuFavorites, -1, strFavorites));
pDlgCust->EnableUserDefinedToolbars();
pDlgCust->Create ();

Inheritance Hierarchy

Requirements

CMFCToolBarsCustomizeDialog::AddButton

To display the Customize dialog box, create a CMFCToolBarsCustomizeDialog object and call the
CMFCToolBarsCustomizeDialog::Create method.

While the Customize dialog box is active, the application works in a special mode that limits the user to
customization tasks.

The following example demonstrates how to use various methods in the CMFCToolBarsCustomizeDialog class. The
example shows how to replace a toolbar button in the list box of commands on the Commands page, enable
creating new toolbars by using the Customize dialog box, and display the Customization dialog box. This code
snippet is part of the IE Demo sample.

CObject

CCmdTarget

CWnd

CPropertySheet

CMFCToolBarsCustomizeDialog

Header: afxToolBarsCustomizeDialog.h

Inserts a toolbar button into the list of commands on the Commands page.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

void AddButton(
 UINT uiCategoryId,
 const CMFCToolBarButton& button,
 int iInsertBefore=-1);

void AddButton(
 LPCTSTR lpszCategory,
 const CMFCToolBarButton& button,
 int iInsertBefore=-1);

ParametersParameters

RemarksRemarks

ExampleExample

CMFCToolBarsCustomizeDialog* pDlgCust = new CMFCToolBarsCustomizeDialog (this,
 TRUE /* Automatic menus scaning */);

CSliderButton btnSlider (ID_SLIDER);
btnSlider.SetRange (0, 100);

pDlgCust->AddButton (_T("Edit"), btnSlider);

CMFCToolBarsCustomizeDialog::AddMenu

BOOL AddMenu(UINT uiMenuResId);

ParametersParameters

uiCategoryId
[in] Specifies the category ID into which to insert the button.

button
[in] Specifies the button to insert.

iInsertBefore
[in] Specifies the zero-based index of a toolbar button before which the button is inserted.

lpszCategory
[in] Specifies the category string to insert the button.

The AddButton method ignores buttons that have the standard command IDs (such as ID_FILE_MRU_FILE1),
commands that are not permitted (see CMFCToolBar::IsCommandPermitted) and dummy buttons.

This method creates a new object of the same type as button (usually a CMFCToolBarButton Class) by using
the runtime class of the button. It then calls CMFCToolBarButton::CopyFrom to copy the data members of
button, and inserts the copy into the specified category.

When the new button is inserted, it receives the OnAddToCustomizePage notification.

If iInsertBefore is -1, the button is appended to the list of categories; otherwise it is inserted before the item
with the specified index.

The following example demonstrates how to use the AddButton method of the CMFCToolBarsCustomizeDialog

class. This code snippet is part of the Slider sample.

Loads a menu from the resources and calls CMFCToolBarsCustomizeDialog::AddMenuCommands to add that
menu to the list of commands on the Commands page.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

RemarksRemarks

CMFCToolBarsCustomizeDialog::AddMenuCommands

void AddMenuCommands(
 const CMenu* pMenu,
 BOOL bPopup,
 LPCTSTR lpszCategory=NULL,
 LPCTSTR lpszMenuPath=NULL);

ParametersParameters

RemarksRemarks

CMFCToolBarsCustomizeDialog::AddToolBar

uiMenuResId
[in] Specifies the resource ID of a menu to load.

TRUE if a menu was added successfully; otherwise FALSE.

In the call to AddMenuCommands , bPopup is FALSE. As a result, that method does not add menu items that contain
submenus to the list of commands. This method does add the menu items in the submenus to the list of
commands.

Adds items to the list of commands in the Commands page to represent all the items in the specified menu.

pMenu
[in] A pointer to the CMenu object to add.

bPopup
[in] Specifies whether to insert the popup menu items to the list of commands.

lpszCategory
[in] The name of the category to insert the menu.

lpszMenuPath
[in] A prefix that is added to the name when the command is shown in the All Categories list.

The AddMenuCommands method loops over all menu items of pMenu. For each menu item that does not contain a
submenu, this method creates a CMFCToolBarButton Class object and calls the
CMFCToolBarsCustomizeDialog::AddButton method to add the menu item as a toolbar button to the list of
commands on the Commands page. Separators are ignored in this process.

If bPopup is TRUE, for each menu item that contains a submenu this method creates a
CMFCToolBarMenuButton Class object and inserts it into the list of commands by calling AddButton . Otherwise
menu items that contain submenus are not displayed in the list of commands. In either case, when
AddMenuCommands encounters a menu item with a submenu it calls itself recursively, passing a pointer to the

submenu as the pMenu parameter and appending the label of the submenu to lpszMenuPath.

Loads a toolbar from the resources. Then, for each command in the menu calls the
CMFCToolBarsCustomizeDialog::AddButton method to insert a button in the list of commands on the
Commands page under the specified category.

BOOL AddToolBar(
 UINT uiCategoryId,
 UINT uiToolbarResId);

BOOL AddToolBar(
 LPCTSTR lpszCategory,
 UINT uiToolbarResId);

ParametersParameters

Return ValueReturn Value

ExampleExample

CMFCToolBarsCustomizeDialog* pDlgCust = new CMFCToolBarsCustomizeDialog (this,
 TRUE /* Automatic menus scaning */,
 AFX_CUSTOMIZE_MENU_SHADOWS | AFX_CUSTOMIZE_TEXT_LABELS |
 AFX_CUSTOMIZE_MENU_ANIMATIONS);

pDlgCust->AddToolBar (_T("Format"), IDR_FORMATBAR);

RemarksRemarks

CMFCToolBarsCustomizeDialog::CheckToolsValidity

virtual BOOL CheckToolsValidity(const CObList& lstTools);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

uiCategoryId
[in] Specifies the resource ID of the category to add the toolbar to.

uiToolbarResId
[in] Specifies the resource ID of a toolbar whose commands are inserted into the list of commands.

lpszCategory
[in] Specifies the name of the category to which to add the toolbar.

TRUE if the method is successful; otherwise FALSE.

The following example demonstrates how to use the AddToolBar method in the CMFCToolBarsCustomizeDialog

class. This code snippet is part of the Word Pad sample.

The control that is used to represent each command is a CMFCToolBarButton Class object. After you add the
toolbar, you can replace the button with a control of a derived type by calling
CMFCToolBarsCustomizeDialog::ReplaceButton.

Verifies the validity of the list of user tools.

lstTools
[in] The list of user-defined tools to check.

Returns TRUE if the list of user-defined tools is valid; otherwise FALSE. The default implementation always
returns TRUE.

The framework calls this method to verify the validity of objects that represent user-defined tools returned by
CMFCToolBarsCustomizeDialog::CheckToolsValidity.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

 CMFCToolBarsCustomizeDialog::CMFCToolBarsCustomizeDialog

CMFCToolBarsCustomizeDialog(
 CFrameWnd* pWndParentFrame,
 BOOL bAutoSetFromMenus = FALSE,
 UINT uiFlags = (AFX_CUSTOMIZE_MENU_SHADOWS | AFX_CUSTOMIZE_TEXT_LABELS | AFX_CUSTOMIZE_MENU_ANIMATIONS |
AFX_CUSTOMIZE_NOHELP),
 CList <CRuntimeClass*, CRuntimeClass*>* p listCustomPages = NULL);

ParametersParameters

RemarksRemarks

Override the CheckToolsValidity method in a class derived from CMFCToolBarsCustomizeDialog if you want to
validate the user tools before the user closes the dialog box. If this method returns FALSE when the user clicks
either the Close button in the upper-right corner of the dialog box or the button labeled Close in the lower-right
corner of the dialog box, the dialog box displays the Tools tab instead of closing. If this method returns FALSE
when the user clicks a tab to navigate away from the Tools tab, the navigation does not occur. You should
display an appropriate message box to inform the user of the problem that caused validation to fail.

Constructs a CMFCToolBarsCustomizeDialog object.

pWndParentFrame
[in] A pointer to the parent frame. This parameter must not be NULL.

bAutoSetFromMenus
[in] A Boolean value that specifies whether to add the menu commands from all menus to the list of commands
on the Commands page. If this parameter is TRUE, the menu commands are added. Otherwise, the menu
commands are not added.

uiFlags
[in] A combination of flags that affect the behavior of the dialog box. This parameter can be one or more of the
following values:

AFX_CUSTOMIZE_MENU_SHADOWS

AFX_CUSTOMIZE_TEXT_LABELS

AFX_CUSTOMIZE_MENU_ANIMATIONS

AFX_CUSTOMIZE_NOHELP

AFX_CUSTOMIZE_CONTEXT_HELP

AFX_CUSTOMIZE_NOTOOLS

AFX_CUSTOMIZE_MENUAMPERS

AFX_CUSTOMIZE_NO_LARGE_ICONS

plistCustomPages
[in] A pointer to a list of CRuntimeClass objects that specify additional custom pages.

The plistCustomPages parameter refers to the list of CRuntimeClass objects that specify additional custom
pages. The constructor adds more pages to the dialog box by using the CRuntimeClass::CreateObject method.
See the CustomPages sample for an example that adds more pages to the Customize dialog box.

For more information about the values that you can pass in the uiFlags parameter, see
CMFCToolBarsCustomizeDialog::GetFlags.

ExampleExample

CMFCToolBarsCustomizeDialog* pDlgCust = new CMFCToolBarsCustomizeDialog (this,
 TRUE /* Automatic menus scaning */,
 AFX_CUSTOMIZE_MENU_SHADOWS | AFX_CUSTOMIZE_TEXT_LABELS |
 AFX_CUSTOMIZE_MENU_ANIMATIONS, // default parameters
 &lstCustomPages); // pointer to the list of runtime classes of the custom property pages

CMFCToolBarsCustomizeDialog::Create

virtual BOOL Create();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarsCustomizeDialog::EnableUserDefinedToolbars

void EnableUserDefinedToolbars(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

CMFCToolBarsCustomizeDialog::FillAllCommandsList

virtual void FillAllCommandsList(CListBox& wndListOfCommands) const;

ParametersParameters

RemarksRemarks

The following example demonstrates how to construct an object of the CMFCToolBarsCustomizeDialog class. This
code snippet is part of the Custom Pages sample.

Displays the Customization dialog box.

TRUE if the customization property sheet is created successfully; otherwise FALSE.

Call the Create method only after you fully initialize the class.

Enables or disables creating new toolbars by using the Customize dialog box.

bEnable
[in] TRUE to enable the user-defined toolbars; FALSE to disable the toolbars.

If bEnable is TRUE, the New, Rename and Delete buttons are displayed on the Toolbars page.

By default, or if bEnable is FALSE, these buttons are not displayed and the user cannot define new toolbars.

Populates the provided CListBox object with the commands in the All Commands category.

wndListOfCommands
[out] A reference to the CListBox object to populate.

The All Commands category contains the commands of all categories. The
CMFCToolBarsCustomizeDialog::AddButton method adds the command that is associated with the provided
button to the All Commands category for you.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCToolBarsCustomizeDialog::FillCategoriesComboBox

void FillCategoriesComboBox(
 CComboBox& wndCategory,
 BOOL bAddEmpty = TRUE) const;

ParametersParameters

RemarksRemarks

CMFCToolBarsCustomizeDialog::FillCategoriesListBox

void FillCategoriesListBox(
 CListBox& wndCategory,
 BOOL bAddEmpty = TRUE) const;

ParametersParameters

RemarksRemarks

This method clears the contents of the provided CListBox object before populating it with the commands in the
All Commands category.

The CMFCMousePropertyPage class uses this method to populate the double-click event list box.

Populates the provided CComboBox object with the name of each command category in the Customize dialog
box.

wndCategory
[out] A reference to the CComboBox object to populate.

bAddEmpty
[in] A Boolean value that specifies whether to add categories to the combo box that do not have commands. If
this parameter is TRUE, empty categories are added to the combo box. Otherwise, empty categories are not
added.

This method is like the CMFCToolBarsCustomizeDialog::FillCategoriesListBox method except that this method
works with a CComboBox object.

This method does not clear the contents of the CComboBox object before populating it. It guarantees that the All
Commands category is the final item in the combo box.

You can add new command categories by using the CMFCToolBarsCustomizeDialog::AddButton method. You
can change the name of an existing category by using the CMFCToolBarsCustomizeDialog::RenameCategory
method.

The CMFCToolBarsKeyboardPropertyPage and CMFCKeyMapDialog classes use this method to categorize keyboard
mappings.

Populates the provided CListBox object with the name of each command category in the Customize dialog
box.

wndCategory
[out] A reference to the CListBox object to populate.

bAddEmpty
[in] A Boolean value that specifies whether to add categories to the list box that do not have commands. If this
parameter is TRUE, empty categories are added to the list box. Otherwise, empty categories are not added.

CMFCToolBarsCustomizeDialog::GetCommandName

LPCTSTR GetCommandName(UINT uiCmd) const;

ParametersParameters

Return ValueReturn Value

CMFCToolBarsCustomizeDialog::GetCountInCategory

int GetCountInCategory(
 LPCTSTR lpszItemName,
 const CObList& lstCommands) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarsCustomizeDialog::GetFlags

UINT GetFlags() const;

This method is like the CMFCToolBarsCustomizeDialog::FillCategoriesComboBox method except that this
method works with a CListBox object.

This method does not clear the contents of the CListBox object before populating it. It guarantees that the All
Commands category is the final item in the list box.

You can add new command categories by using the CMFCToolBarsCustomizeDialog::AddButton method. You
can change the name of an existing category by using the CMFCToolBarsCustomizeDialog::RenameCategory
method.

The CMFCToolBarsCommandsPropertyPage class uses this method to show the list of commands that is associated
with each command category.

Retrieves the name that is associated with the given command ID.

uiCmd
[in] The ID of the command to retrieve.

The name that is associated with the given command ID, or NULL if the command does not exist.

Retrieves the number of items in the provided list that have a given text label.

lpszItemName
[in] The text label to match.

lstCommands
[in] A reference to a list that contains CMFCToolBarButton objects.

The number of items in the provided list whose text label equals lpszItemName.

Each element in the provided object list must be of type CMFCToolBarButton . This method compares
lpszItemName with the CMFCToolBarButton::m_strText data member.

Retrieves the set of flags that affect the behavior of the dialog box.

Return ValueReturn Value

RemarksRemarks

AFX_CUSTOMIZE_MENU_SHADOWS Allows the user to specify the shadow appearance of the
menu.

AFX_CUSTOMIZE_TEXT_LABELS Allows the user to specify whether text labels are shown
underneath the toolbar button images.

AFX_CUSTOMIZE_MENU_ANIMATIONS Allows the user to specify the menu animation style.

AFX_CUSTOMIZE_NOHELP Removes the help button from the customization dialog box.

AFX_CUSTOMIZE_CONTEXT_HELP Enables the WS_EX_CONTEXTHELP visual style.

AFX_CUSTOMIZE_NOTOOLS Removes the Tools page from the customization dialog box.
This flag is valid if your application uses the
CUserToolsManager class.

AFX_CUSTOMIZE_MENUAMPERS Allows button captions to contain the ampersand (&)
character.

AFX_CUSTOMIZE_NO_LARGE_ICONS Removes the Large Icons option from the customization
dialog box.

CMFCToolBarsCustomizeDialog::OnAfterChangeTool

virtual void OnAfterChangeTool(CUserTool* pSelTool);

ParametersParameters

RemarksRemarks

CMFCToolBarsCustomizeDialog::OnAssignKey

virtual BOOL OnAssignKey(ACCEL* pAccel);

The set of flags that affect the behavior of the dialog box.

This method retrieves the value of the uiFlags parameter that is passed to the constructor. The return value can
be one or more of the following values:

For more information about the WS_EX_CONTEXTHELP visual style, see Extended Window Styles.

Responds to a change in a user tool immediately after it occurs.

pSelTool
[in, out] A pointer to the user tool object that has been changed.

This method is called by the framework when a user changes the properties of a user-defined tool. The default
implementation does nothing. Override this method in a class derived from CMFCToolBarsCustomizeDialog to
perform processing after a change to a user tool occurs.

Validates keyboard shortcuts as a user defines them.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarsCustomizeDialog::OnBeforeChangeTool

virtual void OnBeforeChangeTool(CUserTool* pSelTool);

ParametersParameters

RemarksRemarks

CMFCToolBarsCustomizeDialog::OnEditToolbarMenuImage

virtual BOOL OnEditToolbarMenuImage(
 CWnd* pWndParent,
 CBitmap& bitmap,
 int nBitsPerPixel);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pAccel
[in, out] Pointer to the proposed keyboard assigment that is expressed as an ACCEL struct.

TRUE if the key can be assigned, or FALSE if the key cannot be assigned. The default implementation always
returns TRUE.

Override this method in a derived class to perform extra processing when a user assigns a new keyboard
shortcut, or to validate keyboard shortcuts as the user defines them. To prevent a shortcut from being assigned,
return FALSE. You should also display a message box or otherwise inform the user of the reason why the
keyboard shortcut was rejected.

Performs custom processing when a change to a user tool when the user is about to apply a change.

pSelTool
[in, out] A pointer to the user tool object that is about to be replaced.

This method is called by the framework when the properties of a user-defined tool is about to change. The
default implementation does nothing. Override the OnBeforeChangeTool method in a class derived from
CMFCToolBarsCustomizeDialog if you want to perform processing before a change to a user tool occurs, such as

releasing resources that pSelTool uses.

Starts an image editor so that a user can customize a toolbar button or menu item icon.

pWndParent
[in] A pointer to the parent window.

bitmap
[in] A reference to a bitmap object to be edited.

nBitsPerPixel
[in] Bitmap color resolution, in bits per pixel.

TRUE if a change is being committed; otherwise FALSE. The default implementation displays a dialog box and
returns TRUE if the user clicks OK, or FALSE if the user clicks Cancel or the Close button.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagaccel

CMFCToolBarsCustomizeDialog::OnInitDialog

virtual BOOL OnInitDialog();

Return ValueReturn Value

RemarksRemarks

CMFCToolBarsCustomizeDialog::OnInitToolsPage

virtual void OnInitToolsPage();

RemarksRemarks

CMFCToolBarsCustomizeDialog::PostNcDestroy

virtual void PostNcDestroy();

RemarksRemarks

CMFCToolBarsCustomizeDialog::RemoveButton

int RemoveButton(
 UINT uiCategoryId,
 UINT uiCmdId);

int RemoveButton(
 LPCTSTR lpszCategory,
 UINT uiCmdId);

This method is called by the framework when the user runs the image editor. The default implementation
displays CMFCImageEditorDialog Class dialog box. Override OnEditToolbarMenuImage in a derived class to use a
custom image editor.

Overrides to augment property sheet initialization.

The result of calling the CPropertySheet::OnInitDialog method.

This method extends the base class implementation, CPropertySheet::OnInitDialog, by displaying the Close
button, by making sure that the dialog box fits the current screen size, and by moving the Help button to the
lower-left corner of the dialog box.

Handles the notification from the framework that the Tools page is about to be initialized.

The default implementation does nothing. Override this method in a derived class to process this notification.

Called by the framework after the window has been destroyed.

This method extends the base class implementation, CPropertySheet::PostNcDestroy , by restoring the application
to the previous mode.

The CMFCToolBarsCustomizeDialog::Create method puts the application in a special mode that limits the user
to customization tasks.

Removes the button with the specified command ID from the specified category, or from all categories.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarsCustomizeDialog::RenameCategory

BOOL RenameCategory(
 LPCTSTR lpszCategoryOld,
 LPCTSTR lpszCategoryNew);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolBarsCustomizeDialog::ReplaceButton

void ReplaceButton(
 UINT uiCmd,
 const CMFCToolBarButton& button);

ParametersParameters

RemarksRemarks

uiCategoryId
[in] Specifies the category ID from which to remove the button.

uiCmdId
[in] Specifies the command ID of the button.

lpszCategory
[in] Specifies the name of the category from which to remove the button.

The zero-based index of the removed button, or -1 if the specified command ID was not found in the specified
category. If uiCategoryId is -1, the return value is 0.

To remove a button from all categories, call the first overload of this method and set uiCategoryId to -1.

Renames a category in the list box of categories on the Commands page.

lpszCategoryOld
[in] The category name to change.

lpszCategoryNew
[in] The new category name.

TRUE if the method was successful; otherwise FALSE.

The category name must be unique.

Replaces a toolbar button in the list box of commands on the Commands page.

uiCmd
[in] Specifies the command of the button to be replaced.

button
[in] A const reference to the toolbar button object that replaces the old button.

When CMFCToolBarsCustomizeDialog::AddMenu, CMFCToolBarsCustomizeDialog::AddMenuCommands, or

ExampleExample

// CMFCToolBarsCustomizeDialog* pDlgCust
// CMFCToolBarComboBoxButton comboButtonConfig
pDlgCust->ReplaceButton(ID_DUMMY_SELECT_ACTIVE_CONFIGURATION, comboButtonConfig);

CMFCToolBarsCustomizeDialog::SetUserCategory

BOOL SetUserCategory(LPCTSTR lpszCategory);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

CMFCToolBarsCustomizeDialog::AddToolBar adds a command to the Commands page, that command is in the
form of a CMFCToolBarButton Class object (or a CMFCToolBarMenuButton Class object for a menu item that
contains a submenu added by AddMenuCommands). The framework also calls these three methods to add
commands automatically. If you want a command to be represented by a derived type instead, call
ReplaceButton and pass in a button of the derived type.

The following example demonstrates how to use the ReplaceButton method in the CMFCToolBarsCustomizeDialog

class. This code snippet is part of the Visual Studio Demo sample.

Specifies which category in the list of categories on the Commands page is the user category. You must call this
function before you call CMFCToolBarsCustomizeDialog::Create.

lpszCategory
[in] The name of the category.

TRUE if the method is successful; otherwise FALSE.

The user category setting is not currently used by the framework.

Hierarchy Chart
Classes
CPropertySheet Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCToolTipCtrl Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CMFCToolTipCtrl : public CToolTipCtrl

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCToolTipCtrl::CMFCToolTipCtrl Default constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolTipCtrl::GetIconSize Returns the size of an icon in a tooltip.

CMFCToolTipCtrl::GetParams Returns the display settings of a tooltip.

CMFCToolTipCtrl::OnDrawBorder Draws the border of a tooltip.

CMFCToolTipCtrl::OnDrawDescription

CMFCToolTipCtrl::OnDrawIcon Displays an icon in a tooltip.

CMFCToolTipCtrl::OnDrawLabel Draws the label of a tooltip, or calculates the size of the label.

CMFCToolTipCtrl::OnDrawSeparator Draws the separator between the label and the description in
a tooltip.

CMFCToolTipCtrl::OnFillBackground Fills the tooltip background.

CMFCToolTipCtrl::SetDescription Sets the description to be displayed by the tooltip.

CMFCToolTipCtrl::SetFixedWidth

CMFCToolTipCtrl::SetHotRibbonButton

CMFCToolTipCtrl::SetLocation

An extended tooltip implementation based on the CToolTipCtrl Class. A tooltip based on the CMFCToolTipCtrl

class can display an icon, a label, and a description. You can customize its visual appearance by using a gradient
fill, custom text and border colors, bold text, rounded corners, or a balloon style.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctooltipctrl-class.md

CMFCToolTipCtrl::SetParams Specifies the visual appearance of a tooltip by using a
CMFCToolTipInfo object.

NAME DESCRIPTION

Remarks

CMFCToolTipInfo params;
 params.m_bBoldLabel = FALSE;
 params.m_bDrawDescription = FALSE;
 params.m_bDrawIcon = FALSE;
 params.m_bRoundedCorners = TRUE;
 params.m_bDrawSeparator = FALSE;
 if (m_bCustomColors)
{
 params.m_clrFill = RGB (255,
 255,
 255);

 params.m_clrFillGradient = RGB (228,
 228,
 240);

 params.m_clrText = RGB (61,
 83,
 80);

 params.m_clrBorder = RGB (144,
 149,
 168);

}

theApp.GetTooltipManager ()->SetTooltipParams (AFX_TOOLTIP_TYPE_ALL,
 RUNTIME_CLASS (CMFCToolTipCtrl), ¶ms);

myApp.GetTooltipManager ()->SetTooltipParams (AFX_TOOLTIP_TYPE_ALL,
 RUNTIME_CLASS (CMyToolTipCtrl))

Use CMFCToolTipCtrl , CMFCToolTipInfo , and CTooltipManager Class objects together to implement customized
tooltips in your application.

For example, to use balloon-style tooltips, follow these steps:

1. Use the CWinAppEx Class method to initialize the tooltip manager in your application.

2. Create a CMFCToolTipInfo structure to specify the visual style that you want:

3. Use the CTooltipManager::SetTooltipParams method to set the visual style for all tooltips in the application by
using the styles defined in the CMFCToolTipInfo object:

You can also derive a new class from CMFCToolTipCtrl to control tooltip behavior and rendering. To specify a new
tooltip control class, use the CTooltipManager::SetTooltipParams method:

To restore the default tooltip control class and reset the tooltip appearance to its default state, specify NULL in the

theApp.GetTooltipManager ()->SetTooltipParams (AFX_TOOLTIP_TYPE_ALL,
 NULL,
 NULL);

Example

CMFCToolTipInfo* params = new CMFCToolTipInfo();

params->m_bBoldLabel = FALSE;
params->m_bDrawDescription = FALSE;
params->m_bDrawIcon = FALSE;
params->m_bRoundedCorners = TRUE;
params->m_bDrawSeparator = FALSE;
params->m_clrFill = RGB (255, 255, 255);
params->m_clrFillGradient = RGB (228, 228, 240);
params->m_clrText = RGB (61, 83, 80);
params->m_clrBorder = RGB (144, 149, 168);

CMFCToolTipCtrl* tipCtrl = new CMFCToolTipCtrl(params);
tipCtrl->SetDescription(_T("tool tip control"));
tipCtrl->SetFixedWidth(100,150);

Inheritance Hierarchy

Requirements

CMFCToolTipCtrl::CMFCToolTipCtrl
CMFCToolTipCtrl(CMFCToolTipInfo* pParams = NULL);

ParametersParameters

RemarksRemarks

CMFCToolTipCtrl::GetIconSize

runtime class and tooltip info parameters of SetTooltipParams :

The following example demonstrates how to construct a CMFCToolTipCtrl object, set the description that the
tooltip displays, and set the width of the tooltip control.

CObject

CCmdTarget

CWnd

CToolTipCtrl

CMFCToolTipCtrl

Header: afxtooltipctrl.h

[in] pParams

Returns the size of an icon in a tooltip.

virtual CSize GetIconSize();

Return ValueReturn Value

CMFCToolTipCtrl::GetParams

const CMFCToolTipInfo& GetParams() const;

Return ValueReturn Value

CMFCToolTipCtrl::OnDrawBorder

virtual void OnDrawBorder(
 CDC* pDC,
 CRect rect,
 COLORREF clrLine);

ParametersParameters

RemarksRemarks

CMFCToolTipCtrl::OnDrawDescription
virtual CSize OnDrawDescription(
 CDC* pDC,
 CRect rect,
 BOOL bCalcOnly);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The size of the icon, in pixels.

Returns the display settings of a tooltip.

The current tooltip display settings , which are stored in a CMFCToolTipInfo Class object.

Draws the border of a tooltip.

pDC
[in] Pointer to a device context.

rect
[in] The bounding rectangle of the tooltip.

clrLine
[in] Border color.

Override this method in a derived class to customize the appearance of the tooltip border.

[in] pDC
[in] rect
[in] bCalcOnly

CMFCToolTipCtrl::OnDrawIcon

virtual BOOL OnDrawIcon(
 CDC* pDC,
 CRect rectImage);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolTipCtrl::OnDrawLabel

virtual CSize OnDrawLabel(
 CDC* pDC,
 CRect rect,
 BOOL bCalcOnly);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCToolTipCtrl::OnDrawSeparator

Displays an icon in a tooltip.

pDC
[in] A pointer to a device context.

rectImage
[in] Coordinates of the icon.

TRUE if the icon was drawn. Otherwise FALSE.

Override this method in a derived class to display a custom icon. You must also override
CMFCToolTipCtrl::GetIconSize to enable the tooltip to correctly calculate the layout of text and description.

Draws the label of a tooltip, or calculates the size of the label.

pDC
[in] A pointer to a device context.

rect
[in] Bounding rectangle of the label area.

bCalcOnly
[in] If TRUE, the label will not be drawn.

Size of the label, in pixels.

Override this method in a derived class if you want to customize the appearance of the tooltip label.

Draws the separator between the label and the description in a tooltip.

virtual void OnDrawSeparator(
 CDC* pDC,
 int x1,
 int x2,
 int y);

ParametersParameters

RemarksRemarks

CMFCToolTipCtrl::OnFillBackground

virtual void OnFillBackground(
 CDC* pDC,
 CRect rect,
 COLORREF& clrText,
 COLORREF& clrLine);

ParametersParameters

RemarksRemarks

CMFCToolTipCtrl::SetDescription

pDC
[in] A pointer to a device context.

x1
[in] Horizontal coordinate of the left end of the separator.

x2
[in] Horizontal coordinate of the right end of the separator.

Y
[in] Vertical coordinate of the separator.

The default implementation draws a line from the point (x1, y) to the point (x2, y).

Override this method in a derived class to customize the appearance of the separator.

Fills the tooltip background.

pDC
[in] A pointer to a device context.

rect
[in] Specifies the bounding rectangle of the area to fill.

clrText
[in] Tooltip foreground color.

clrLine
[in] Color of borders and the delimiter line between label and description.

The default implementation fills the rectangle that is specified by rect with the color or pattern specified by the
most recent call to CMFCToolTipCtrl::SetParams.

Override this method in a derived class if you want to customize the appearance of the tooltip.

Sets the description to be displayed by the tooltip.

virtual void SetDescription(const CString strDesrciption);

ParametersParameters

RemarksRemarks

CMFCToolTipCtrl::SetFixedWidth
void SetFixedWidth(
 int nWidthRegular,
 int nWidthLargeImage);

ParametersParameters

RemarksRemarks

CMFCToolTipCtrl::SetHotRibbonButton
void SetHotRibbonButton(CMFCRibbonButton* pRibbonButton);

ParametersParameters

RemarksRemarks

CMFCToolTipCtrl::SetLocation
void SetLocation(CPoint pt);

ParametersParameters

RemarksRemarks

CMFCToolTipCtrl::SetParams

void SetParams(CMFCToolTipInfo* pParams);

ParametersParameters

RemarksRemarks

strDesrciption
[in] Description text.

The description text is displayed on the tooltip under the separator.

[in] nWidthRegular
[in] nWidthLargeImage

[in] pRibbonButton

[in] pt

Specifies the visual appearance of a tooltip by using a CMFCToolTipInfo Class object.

pParams
[in] Pointer to a CMFCToolTipInfo Class object that contains the display parameters.

See also

Whenever the tooltip is displayed, it is drawn by using the colors and visual styles that pParams specifies. The
value of pParams is stored in the protected member m_Params , which can be accessed by a derived class that
overrides CMFCToolTipCtrl::OnDrawBorder, CMFCToolTipCtrl::OnDrawIcon, CMFCToolTipCtrl::OnDrawLabel,
CMFCToolTipCtrl::OnDrawSeparator, or CMFCToolTipCtrl::OnFillBackground to maintain the specified
appearance.

Hierarchy Chart
Classes
CToolTipCtrl Class
CTooltipManager Class
CMFCToolTipInfo Class
CWinAppEx Class

CMFCToolTipInfo Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMFCToolTipInfo

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCToolTipInfo::operator=

Data MembersData Members

NAME DESCRIPTION

CMFCToolTipInfo::m_bBalloonTooltip A Boolean variable that indicates whether the tooltip has a
balloon appearance.

CMFCToolTipInfo::m_bBoldLabel A Boolean variable that indicates whether tooltip labels are
displayed in a bold font.

CMFCToolTipInfo::m_bDrawDescription A Boolean variable that indicates whether the tooltip contains
a description.

CMFCToolTipInfo::m_bDrawIcon A Boolean variable that indicates whether the tooltip contains
an icon.

CMFCToolTipInfo::m_bDrawSeparator A Boolean variable that indicates whether a separator is
displayed between the tooltip label and the tooltip
description.

CMFCToolTipInfo::m_bRoundedCorners A Boolean variable that indicates whether the tooltip has
rounded corners.

CMFCToolTipInfo::m_bVislManagerTheme A Boolean variable that indicates whether the appearance of
the tooltip should be controlled by a visual manager (see
CMFCVisualManager Class).

CMFCToolTipInfo::m_clrBorder The color of the tooltip border.

CMFCToolTipInfo::m_clrFill The color of the tooltip background.

CMFCToolTipInfo::m_clrFillGradient The color of the gradient fill in the tooltip.

Stores information about the visual appearance of tooltips.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfctooltipinfo-class.md

CMFCToolTipInfo::m_clrText The text color in the tooltip.

CMFCToolTipInfo::m_nGradientAngle The angle of the gradient fill in the tooltip.

CMFCToolTipInfo::m_nMaxDescrWidth The maximum possible width, in pixels, of the description in
the tooltip.

NAME DESCRIPTION

Remarks

Example

CMFCToolTipInfo* params = new CMFCToolTipInfo();

params->m_bBoldLabel = FALSE;
params->m_bDrawDescription = FALSE;
params->m_bDrawIcon = FALSE;
params->m_bRoundedCorners = TRUE;
params->m_bDrawSeparator = FALSE;
params->m_clrFill = RGB (255, 255, 255);
params->m_clrFillGradient = RGB (228, 228, 240);
params->m_clrText = RGB (61, 83, 80);
params->m_clrBorder = RGB (144, 149, 168);

Inheritance Hierarchy

Requirements

CMFCToolTipInfo::m_bBalloonTooltip

BOOL m_bBalloonTooltip;

RemarksRemarks

CMFCToolTipInfo::m_bBoldLabel

Use CMFCToolTipCtrl Class, CMFCToolTipInfo , and CTooltipManager Class together to implement customized
tooltips in your application. For an example of how to use these tooltip classes, see the CMFCToolTipCtrl Class
topic.

The following example demonstrates how to set the values of the various member variables in the
CMFCToolTipInfo class.

CMFCToolTipInfo

Header: afxtooltipctrl.h

Specifies the display style of all tooltips.

TRUE indicates that tooltips use the balloon style, FALSE indicates that tooltips use the rectangular style.

Specifies whether the font of the tooltip text is bold.

BOOL m_bBoldLabel;

RemarksRemarks

CMFCToolTipInfo::m_bDrawDescription

BOOL m_bDrawDescription;

RemarksRemarks

CMFCToolTipInfo::m_bDrawIcon

BOOL m_bDrawIcon;

RemarksRemarks

CMFCToolTipInfo::m_bDrawSeparator

BOOL m_bDrawSeparator;

RemarksRemarks

CMFCToolTipInfo::m_bRoundedCorners

BOOL m_bRoundedCorners;

RemarksRemarks

CMFCToolTipInfo::m_clrBorder

Set this member to TRUE to display tooltip text with bold font, or FALSE to display tooltip labels with non-bold
font.

Specifies whether each tooltip displays description text.

Set this member to TRUE to display the description, or FALSE to hide the description. You can specify the
description on a tooltip by calling CMFCToolTipCtrl::SetDescription

Specifies whether all tooltips display icons.

Set this member to TRUE to display an icon on each tooltip, or FALSE to display tooltips without icons.

Specifies whether each tooltip has a separator between its label and its description.

Set this member to TRUE to display separator between tooltip label and description, or FALSE to display tooltips
with no separator.

Specifies whether all tooltips have rounded corners.

Set this member to TRUE to display rounded corners on tooltips, or FALSE to display rectangular corners on
tooltips.

Specifies the color of the borders on all tooltips.

COLORREF m_clrBorder;

CMFCToolTipInfo::m_clrFill

COLORREF m_clrFill;

RemarksRemarks

CMFCToolTipInfo::m_clrFillGradient

COLORREF m_clrFillGradient;

RemarksRemarks

CMFCToolTipInfo::m_clrText

COLORREF m_clrText;

CMFCToolTipInfo::m_nGradientAngle

int m_nGradientAngle;

RemarksRemarks

CMFCToolTipInfo::m_nMaxDescrWidth

Specifies the color of tooltip backgrounds.

If CMFCToolTipInfo::m_clrFillGradient is -1, the tooltip background color is m_clrFill . Otherwise, m_clrFill

specifies the color of the beginning of the gradient and m_clrFillGradient specifies the color of the end of the
gradient. CMFCToolTipInfo::m_nGradientAngle determines the direction of the gradient.

Specifies the end color for a gradient background for tooltips.

If m_clrFillGradient is -1, there is no gradient. Otherwise, the gradient initial color is specified by
CMFCToolTipInfo::m_clrFill and the gradient finish color is specified by m_clrFillGradient .
CMFCToolTipInfo::m_nGradientAngle determines the direction of the gradient.

Specifies text color of all tooltips.

Specifies the angle at which a gradient is drawn on the background of tooltips.

m_nGradientAngle specifies the angle, in degrees, that the gradient on the background of tooltips is offset from
horizontal. If m_nGradientAngle is 0, the gradient is drawn from left to right. If m_nGradientAngle is between 1 and
360, the gradient is rotating clockwise by that number of degrees. If m_nGradientAngle is -1, which is the default
value, the gradient is drawn from top to bottom. This is the same as setting m_nGradientAngle to 90.

CMFCToolTipInfo::m_clrFill clrFill specifies the color of the beginning of the gradient and
CMFCToolTipInfo::m_clrFillGradient clrFillGradient specifies the color of the end of the gradient. If
m_clrFillGradient is -1, there is no gradient.

Specifies the maximum width of the description that it displayed in each tooltip. If the description width exceeds

int m_nMaxDescrWidth;

CMFCToolTipInfo::m_bVislManagerTheme

BOOL m_bVislManagerTheme;

RemarksRemarks

CMFCToolTipInfo::operator=

CMFCToolTipInfo& operator=(CMFCToolTipInfo& src);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

the specified value, the text is wrapped.

Specifies whether the visual manager of the application controls the appearance of all tooltips.

If m_bVislManagerTheme is TRUE, every tooltip requests a new CMFCToolTipInfo from the visual manager of the
application before they appear on the screen, and uses the values in that object to determine their appearance.
The other members of your CMFCToolTipInfo are ignored.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] src

Hierarchy Chart
Classes
CTooltipManager Class
CMFCToolTipCtrl Class

CMFCVisualManager Class
3/4/2019 • 72 minutes to read • Edit Online

Syntax
class CMFCVisualManager : public CMFCBaseVisualManager

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCVisualManager::CMFCVisualManager Default constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCVisualManager::AdjustFrames

CMFCVisualManager::AdjustToolbars

CMFCVisualManager::AlwaysHighlight3DTabs Called by the framework to determine whether 3D tabs
should always be drawn by using a highlight color.

CMFCVisualManager::DestroyInstance

CMFCVisualManager::DoDrawHeaderSortArrow

CMFCVisualManager::DrawComboDropButtonWinXP

CMFCVisualManager::DrawPushButtonWinXP

CMFCVisualManager::DrawTextOnGlass

CMFCVisualManager::GetAutoHideButtonTextColor Called by the framework to retrieve the text color for an
auto-hide button.

CMFCVisualManager::GetButtonExtraBorder Called by the framework to retrieve the increased button
size that the current visual manager requires to draw a
button.

Provides support for changing the appearance of your application at a global level. The CMFCVisualManager

class works together with a class that provides instructions to draw the GUI controls of your application using
a consistent style. These other classes are referred to as visual managers and they inherit from
CMFCBaseVisualManager .

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcvisualmanager-class.md

CMFCVisualManager::GetCaptionBarTextColor Called by the framework to retrieve the text color of a
caption bar.

CMFCVisualManager::GetDockingTabsBordersSize Called by the framework to retrieve the size for the border
of a docked tabbed bar.

CMFCVisualManager::GetHighlightedMenuItemTextColor

CMFCVisualManager::GetInstance Returns a pointer to the CMFCVisualManager object.

CMFCVisualManager::GetMDITabsBordersSize Called by the framework to retrieve the border size of the
MDITabs window.

CMFCVisualManager::GetMenuItemTextColor

CMFCVisualManager::GetMenuShadowDepth Returns a value that determines the width and height of a
menu shadow.

CMFCVisualManager::GetNcBtnSize Called by the framework to determine the size of the system
buttons based on the current visual manager. The system
buttons are the buttons in the caption of the main frame
that map to the commands Close, Minimize, Maximize,
and Restore.

CMFCVisualManager::GetPopupMenuBorderSize Called by the framework to retrieve the size of the border
for a popup menu.

CMFCVisualManager::GetPropertyGridGroupColor Called by the framework to retrieve the background color of
a property list.

CMFCVisualManager::GetPropertyGridGroupTextColor Called by the framework to retrieve the text color of a
property list.

CMFCVisualManager::GetRibbonHyperlinkTextColor

CMFCVisualManager::GetRibbonPopupBorderSize

CMFCVisualManager::GetRibbonQuickAccessToolBarTextCol
or

CMFCVisualManager::GetRibbonSliderColors

CMFCVisualManager::GetShowAllMenuItemsHeight

CMFCVisualManager::GetSmartDockingBaseGuideColors

CMFCVisualManager::GetSmartDockingHighlightToneColor

CMFCVisualManager::GetSmartDockingTheme Returns a theme used to display smart docking markers.

CMFCVisualManager::GetStatusBarPaneTextColor

NAME DESCRIPTION

CMFCVisualManager::GetTabFrameColors Called by the framework to retrieve the set of colors to use
when it draws a tab frame.

CMFCVisualManager::GetTabTextColor

CMFCVisualManager::GetToolbarButtonTextColor Called by the framework to retrieve the current color of the
text on the toolbar button. This color varies based on the
current visual manager and the button state.

CMFCVisualManager::GetToolbarDisabledTextColor Called by the framework to determine the color of the text
that is displayed on disabled toolbar elements.

CMFCVisualManager::GetToolbarHighlightColor

CMFCVisualManager::GetToolTipInfo

CMFCVisualManager::HasOverlappedAutoHideButtons Specifies whether auto-hide buttons overlap.

CMFCVisualManager::IsDockingTabHasBorder Specifies whether the current visual manager draws a border
around tabbed docking bars.

CMFCVisualManager::IsEmbossDisabledImage Specifies whether disabled images should be embossed.

CMFCVisualManager::IsFadeInactiveImage Called by the framework to determine whether inactive
images on a toolbar or menu appear dimmed.

CMFCVisualManager::IsMenuFlatLook Specifies whether menu buttons have a flattened
appearance.

CMFCVisualManager::IsOfficeXPStyleMenus Specifies whether the visual manager implements Office XP-
style menus.

CMFCVisualManager::IsOwnerDrawCaption Specifies whether the current visual manager implements
owner-drawn captions of a frame window.

CMFCVisualManager::IsShadowHighlightedImage Specifies whether a highlighted image has a shadow.

CMFCVisualManager::OnDrawAutoHideButtonBorder Called by the framework when it draws the border for an
auto-hide button.

CMFCVisualManager::OnDrawBarGripper Called by the framework when it draws the gripper of a
control bar. The user must click the gripper in order to move
the control bar.

CMFCVisualManager::OnDrawBrowseButton Called by the framework when it draws a browse button
that belongs to an edit control (CMFCEditBrowseCtrl Class).

CMFCVisualManager::OnDrawButtonBorder Called by the framework when it draws the border of a
toolbar button.

CMFCVisualManager::OnDrawButtonSeparator

NAME DESCRIPTION

CMFCVisualManager::OnDrawCaptionBarBorder Called by the framework when it draws the caption bar
border.

CMFCVisualManager::OnDrawCaptionBarButtonBorder

CMFCVisualManager::OnDrawCaptionBarInfoArea

CMFCVisualManager::OnDrawCaptionButton Called by the framework when it draws a caption button.

CMFCVisualManager::OnDrawCheckBox

CMFCVisualManager::OnDrawCheckBoxEx

CMFCVisualManager::OnDrawComboBorder Called by the framework when it draws the border of a
combo box button.

CMFCVisualManager::OnDrawComboDropButton Called by the framework when it draws a combo box drop
button.

CMFCVisualManager::OnDrawControlBorder

CMFCVisualManager::OnDrawDefaultRibbonImage Called by the framework when it draws the default ribbon
image.

CMFCVisualManager::OnDrawEditBorder Called by the framework when it draws a border around a
CMFCToolBarEditBoxButton object.

CMFCVisualManager::OnDrawExpandingBox

CMFCVisualManager::OnDrawFloatingToolbarBorder Called by the framework when it draws the borders of a
floating toolbar. The floating toolbar is a toolbar that
appears as a mini-frame window.

CMFCVisualManager::OnDrawHeaderCtrlBorder Called by the framework when it draws the border that
contains the header control.

CMFCVisualManager::OnDrawHeaderCtrlSortArrow Called by the framework when it draws the header control
sort arrow.

CMFCVisualManager::OnDrawMenuArrowOnCustomizeList

CMFCVisualManager::OnDrawMenuBorder Called by the framework when it draws a menu border.

CMFCVisualManager::OnDrawMenuCheck

CMFCVisualManager::OnDrawMenuItemButton

CMFCVisualManager::OnDrawMenuLabel

CMFCVisualManager::OnDrawMenuResizeBar

NAME DESCRIPTION

CMFCVisualManager::OnDrawMenuScrollButton Called by the framework when it draws a menu scroll
button.

CMFCVisualManager::OnDrawMenuShadow

CMFCVisualManager::OnDrawMenuSystemButton Called by the framework when it draws the menu system
buttons Close, Minimize, Maximize, and Restore.

CMFCVisualManager::OnDrawMiniFrameBorder

CMFCVisualManager::OnDrawOutlookBarSplitter Called by the framework when it draws the splitter for an
Outlook bar. The splitter is a horizontal bar used to group
controls.

CMFCVisualManager::OnDrawOutlookPageButtonBorder Called by the framework when it draws the border of an
Outlook page button. Outlook page buttons appear if the
Outlook bar pane contains more buttons than it can display.

CMFCVisualManager::OnDrawPaneBorder Called by the framework when it draws the border of a
CPane Class.

CMFCVisualManager::OnDrawPaneCaption Called by the framework when it draws the caption for a
CPane .

CMFCVisualManager::OnDrawPaneDivider

CMFCVisualManager::OnDrawPopupWindowBorder

CMFCVisualManager::OnDrawPopupWindowButtonBorder

CMFCVisualManager::OnDrawPopupWindowCaption

CMFCVisualManager::OnDrawRibbonApplicationButton Called by the framework when it draws the Main Button on
the ribbon.

CMFCVisualManager::OnDrawRibbonButtonBorder Called by the framework when it draws the border of a
ribbon button.

CMFCVisualManager::OnDrawRibbonButtonsGroup Called by the framework when it draws a group of buttons
on the ribbon.

CMFCVisualManager::OnDrawRibbonCaption Called by the framework when it draws the caption of the
main frame, but only if the ribbon bar is integrated with the
frame.

CMFCVisualManager::OnDrawRibbonCaptionButton Called by the framework when it draws a caption button
located on the ribbon bar.

CMFCVisualManager::OnDrawRibbonCategory Called by the framework when it draws a ribbon category.

CMFCVisualManager::OnDrawRibbonCategoryCaption Called by the framework when it draws the caption for a
ribbon category.

NAME DESCRIPTION

CMFCVisualManager::OnDrawRibbonCategoryScroll

CMFCVisualManager::OnDrawRibbonCategoryTab Called by the framework when it draws the tab for a ribbon
category.

CMFCVisualManager::OnDrawRibbonCheckBoxOnList

CMFCVisualManager::OnDrawRibbonColorPaletteBox

CMFCVisualManager::OnDrawRibbonDefaultPaneButtonCo
ntext

CMFCVisualManager::OnDrawRibbonDefaultPaneButton Called by the framework when it draws the ribbon pane
default button. The default button appears when the user
shrinks a ribbon panel so that it is too small to display the
ribbon elements. The default button is drawn instead and
the ribbon elements are added as items on a drop down
menu.

CMFCVisualManager::OnDrawRibbonDefaultPaneButtonIndi
cator

CMFCVisualManager::OnDrawRibbonGalleryBorder

CMFCVisualManager::OnDrawRibbonGalleryButton

CMFCVisualManager::OnDrawRibbonKeyTip

CMFCVisualManager::OnDrawRibbonLabel Called by the framework when it draws the ribbon label.

CMFCVisualManager::OnDrawRibbonMainPanelButtonBord
er

Called by the framework when it draws the border of a
ribbon button that is positioned on the Main panel. The
Main panel is the panel that appears when a user clicks the
Main Button.

CMFCVisualManager::OnDrawRibbonMainPanelFrame Called by the framework when it draws the frame around
the Main panel.

CMFCVisualManager::OnDrawRibbonMenuCheckFrame

CMFCVisualManager::OnDrawRibbonPanel Called by the framework when it draws a ribbon panel.

CMFCVisualManager::OnDrawRibbonPanelCaption Called by the framework when it draws the caption of a
ribbon panel.

CMFCVisualManager::OnDrawRibbonProgressBar Called by the framework when it draws a
CMFCRibbonProgressBar object.

CMFCVisualManager::OnDrawRibbonQuickAccessToolBarSe
parator

Called by the framework when it draws a separator on a
ribbon's Quick Access Toolbar.

CMFCVisualManager::OnDrawRibbonRecentFilesFrame Called by the framework when it draws a frame around a
recent files list.

NAME DESCRIPTION

CMFCVisualManager::OnDrawRibbonSliderChannel Called by the framework when it draws the channel of a
CMFCRibbonSlider object.

CMFCVisualManager::OnDrawRibbonSliderThumb Called by the framework when it draws the thumb of a
CMFCRibbonSlider object.

CMFCVisualManager::OnDrawRibbonSliderZoomButton Called by the framework when it draws the zoom buttons of
a CMFCRibbonSlider object.

CMFCVisualManager::OnDrawRibbonStatusBarPane Called by the framework when it draws the status-bar pane
of a ribbon.

CMFCVisualManager::OnDrawRibbonTabsFrame Called by the framework when it draws a frame around a set
of ribbon tabs.

CMFCVisualManager::OnDrawScrollButtons

CMFCVisualManager::OnDrawSeparator Called by the framework when it draws a separator. The
separator is typically used on a control bar to separate
groups of icons.

CMFCVisualManager::OnDrawShowAllMenuItems

CMFCVisualManager::OnDrawSpinButtons Called by the framework when it draws spin buttons.

CMFCVisualManager::OnDrawSplitterBorder Called by the framework when it draws the border of a split
window.

CMFCVisualManager::OnDrawSplitterBox Called by the framework when it draws the splitter drag box
for a split window.

CMFCVisualManager::OnDrawStatusBarPaneBorder Called by the framework when it draws the border for a
status-bar pane.

CMFCVisualManager::OnDrawStatusBarProgress Called by the framework when it draws the status-bar
progress indicator.

CMFCVisualManager::OnDrawStatusBarSizeBox Called by the framework when it draws the status-bar size
box.

CMFCVisualManager::OnDrawTab Called by the framework when it draws a CMFCTabCtrl
object.

CMFCVisualManager::OnDrawTabCloseButton Called by the framework when it draws the Close button on
the active tab.

CMFCVisualManager::OnDrawTabContent Called by the framework when it draws the tab interior
(images, texts).

CMFCVisualManager::OnDrawTabsButtonBorder Called by the framework when it draws the border of a tab
button.

NAME DESCRIPTION

CMFCVisualManager::OnDrawTask Called by the framework when it draws a task on the task
pane.

CMFCVisualManager::OnDrawTasksGroupAreaBorder Called by the framework when it draws a border around a
group area on the task pane.

CMFCVisualManager::OnDrawTasksGroupCaption Called by the framework when it draws the caption for a
task group on the task pane.

CMFCVisualManager::OnDrawTasksGroupIcon

CMFCVisualManager::OnDrawTearOffCaption Called by the framework when it draws the tear-off caption
for a tear-off bar.

CMFCVisualManager::OnDrawToolBoxFrame

CMFCVisualManager::OnEraseMDIClientArea Called by the framework when it erases the MDI client area.

CMFCVisualManager::OnErasePopupWindowButton

CMFCVisualManager::OnEraseTabsArea Called by the framework when it erases the tab area in a tab
window.

CMFCVisualManager::OnEraseTabsButton Called by the framework when it erases the icon and text of
a tab button.

CMFCVisualManager::OnEraseTabsFrame Called by the framework when it erases a tab frame.

CMFCVisualManager::OnFillAutoHideButtonBackground Called by the framework when it fills the background of an
auto-hide button.

CMFCVisualManager::OnFillBarBackground Called by the framework when it fills the background of a
control bar.

CMFCVisualManager::OnFillButtonInterior Called by the framework when it fills the background of a
toolbar button.

CMFCVisualManager::OnFillCaptionBarButton

CMFCVisualManager::OnFillCommandsListBackground Called by the framework when it fills the background of a
toolbar button that belongs to a command list that, in turn,
is part of a customization dialog box.

CMFCVisualManager::OnFillHeaderCtrlBackground Called by the framework when it fills the background of a
header control.

CMFCVisualManager::OnFillMiniFrameCaption Called by the framework when it fills the caption of a mini
frame window.

CMFCVisualManager::OnFillOutlookBarCaption Called by the framework when it fills the background of an
Outlook bar caption.

NAME DESCRIPTION

CMFCVisualManager::OnFillOutlookPageButton Called by the framework when it fills the interior of an
Outlook page button.

CMFCVisualManager::OnFillPopupWindowBackground Called by the framework when it fills the background of a
popup window.

CMFCVisualManager::OnFillRibbonButton Called by the framework when it fills the interior of a ribbon
button.

CMFCVisualManager::OnFillRibbonEdit Called by the framework when it fills the interior of a ribbon
edit control.

CMFCVisualManager::OnFillRibbonMainPanelButton Called by the framework when it fills the interior of a ribbon
button located on the Main panel.

CMFCVisualManager::OnFillRibbonMenuFrame Called by the framework when it fills the menu frame of the
main ribbon panel.

CMFCVisualManager::OnFillRibbonQuickAccessToolBarPopu
p

CMFCVisualManager::OnFillSplitterBackground Called by the framework when it fills the background of a
split window.

CMFCVisualManager::OnFillTab Called by the framework when it fills the background of a
tab.

CMFCVisualManager::OnFillTasksGroupInterior Called by the framework when it fills the interior of a
CMFCTasksPaneTaskGroup object on the CMFCTasksPane.

CMFCVisualManager::OnFillTasksPaneBackground Called by the framework when it fills the background of a
CMFCTasksPane control.

CMFCVisualManager::OnHighlightMenuItem Called by the framework when it draws a highlighted menu
item.

CMFCVisualManager::OnHighlightRarelyUsedMenuItems Called by the framework when it draws a highlighted and
rarely used menu item.

CMFCVisualManager::OnNcPaint Called by the framework when it draws the non-client area.

CMFCVisualManager::OnSetWindowRegion Called by the framework when it sets a region that contains
frames and popup menus.

CMFCVisualManager::OnUpdateSystemColors Called by the framework when it changes the system color
setting.

CMFCVisualManager::RedrawAll Redraws all control bars in the application.

CMFCVisualManager::RibbonCategoryColorToRGB

CMFCVisualManager::SetDefaultManager Sets the default visual manager.

NAME DESCRIPTION

CMFCVisualManager::SetEmbossDisabledImage Enables or disables the embossed mode for disabled toolbar
images.

CMFCVisualManager::SetFadeInactiveImage Enables or disables the lighting effect for inactive images on
a menu or toolbar.

CMFCVisualManager::SetMenuFlatLook Sets a flag indicating whether the application menu buttons
have a flattened appearance.

CMFCVisualManager::SetMenuShadowDepth Sets the width and height of the menu shadow.

CMFCVisualManager::SetShadowHighlightedImage Sets a flag that indicates whether to display the shadow
when rendering highlighted images.

NAME DESCRIPTION

Remarks

Example

Because the CMFCVisualManager class controls the application's GUI, each application can have either one
instance of a CMFCVisualManager , or one instance of a class derived from CMFCVisualManager . Your application
can also function without a CMFCVisualManager . Use the static method GetInstance to obtain a pointer to the
current CMFCVisualManager -derived object.

To change the appearance of your application you must use other classes that provide methods for drawing all
of the visual elements of your application. Some examples of these classes are CMFCVisualManagerOfficeXP
Class, CMFCVisualManagerOffice2003 Class, and CMFCVisualManagerOffice2007 Class. When you want to
change the appearance of your application, pass one of these visual managers into the method
SetDefaultManager . For an example that demonstrates how your application can mimic the appearance of

Microsoft Office 2003, see CMFCVisualManagerOffice2003 Class.

All of the drawing methods are virtual. This enables you to create a custom visual style for the GUI of your
application. If you want to create your own visual style, derive a class from one of the visual manager classes
and override the drawing methods that you want to change.

This sample demonstrates how to instantiate the standard and custom CMFCVisualManager objects.

void CMFCSkinsApp::SetSkin (int iIndex)
{ // destroy the current visual manager
 if (CMFCVisualManager::GetInstance () != NULL)
 {
 delete CMFCVisualManager::GetInstance ();
 }
 switch (iIndex)
 {
 case 0:
 CMFCVisualManager::GetInstance ();
 // create the standard visual manager
 break;
 case 1:
 new CMyVisualManager ();
 // create the first custom visual manager
 break;
 case 2:
 new CMacStyle ();
 // create the second custom visual manager
 break;
 }
 // access the manager and set it properly
 CMFCVisualManager::GetInstance ()->SetLook2000 ();
 CMFCVisualManager::GetInstance ()->RedrawAll ();
}

Example

int m_nVMargin;
int m_nHMargin;
int m_nGroupSpacing;
int m_nTaskSpacing;
int m_nCaptionHeight;
int m_nTaskOffset;
int m_nIconOffset;

Inheritance Hierarchy

Requirements

CMFCVisualManager::AdjustFrames
static void __stdcall AdjustFrames();

RemarksRemarks

The following example demonstrates how to retrieve the default values of a CMFCVisualManager object. This
code snippet is part of the Tasks Pane sample.

CObject

CMFCBaseVisualManager

CMFCVisualManager

Header: afxvisualmanager.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCVisualManager::AdjustToolbars
static void __stdcall AdjustToolbars();

RemarksRemarks

CMFCVisualManager::AlwaysHighlight3DTabs

virtual BOOL AlwaysHighlight3DTabs() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::CMFCVisualManager
CMFCVisualManager(BOOL bTemporary = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManager::DestroyInstance
static void __stdcall DestroyInstance(BOOL bAutoDestroyOnly = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManager::DoDrawHeaderSortArrow
void DoDrawHeaderSortArrow(
 CDC* pDC,
 CRect rect,
 BOOL bIsUp,
 BOOL bDlgCtrl);

ParametersParameters

The framework calls this method to determine whether 3D tabs should always be highlighted in the
application.

TRUE if 3D tabs should be highlighted.

Override this function in a derived visual manager and return TRUE if 3D tabs should always be highlighted.
The default implementation of this method returns FALSE.

[in] bTemporary

[in] bAutoDestroyOnly

[in] pDC
[in] rect
[in] bIsUp

RemarksRemarks

CMFCVisualManager::DrawComboBorderWinXP
virtual BOOL DrawComboBorderWinXP(CDC*,
 CRect,
 BOOL,
 BOOL,
 BOOL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::DrawComboDropButtonWinXP
virtual BOOL DrawComboDropButtonWinXP(CDC*,
 CRect,
 BOOL,
 BOOL,
 BOOL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::DrawPushButtonWinXP
virtual BOOL DrawPushButtonWinXP(CDC*,
 CRect,
 CMFCButton*,
 UINT);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] bDlgCtrl

[in] CDC*
[in] CRect
[in] BOOL

[in] CDC*
[in] CRect
[in] BOOL

[in] CDC*
[in] CRect
[in] CMFCButton*
[in] UINT

CMFCVisualManager::DrawTextOnGlass
virtual BOOL DrawTextOnGlass(
 CDC* pDC,
 CString strText,
 CRect rect,
 DWORD dwFlags,
 int nGlowSize = 0,
 COLORREF clrText = (COLORREF)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::EnableToolbarButtonFill
void EnableToolbarButtonFill(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CMFCVisualManager::GetAutoHideButtonTextColor

virtual COLORREF GetAutoHideButtonTextColor(CMFCAutoHideButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetButtonExtraBorder

[in] pDC
[in] strText
[in] rect
[in] dwFlags
[in] nGlowSize
[in] clrText

[in] bEnable

The framework calls this method to retrieve the text color of an auto-hide button.

pButton
[in] A pointer to an auto-hide button.

A COLORREF parameter that specifies the text color of pButton.

Override this method in a derived class to customize the text color of an auto-hide button in your application.
To do this, return the color that you want your application to use as the text color.

The framework calls this method when it draws a toolbar button.

https://docs.microsoft.com/windows/desktop/gdi/colorref

virtual CSize GetButtonExtraBorder() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetCaptionBarTextColor

virtual COLORREF GetCaptionBarTextColor(CMFCCaptionBar* pBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetCaptionButtonExtraBorder
virtual CSize GetCaptionButtonExtraBorder() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetDockingPaneCaptionExtraHeight
virtual int GetDockingPaneCaptionExtraHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetDockingTabsBordersSize

virtual int GetDockingTabsBordersSize();

Return ValueReturn Value

A CSize object that contains the extra size of the border for toolbar buttons.

Some skins have to extend the borders of toolbar buttons. Override this method in a custom visual manager to
extend the borders of toolbar buttons in your application. The default implementation of this method returns
an empty size.

The framework calls this method to retrieve the color of the text in the caption bar.

pBar
[in] A pointer to a caption bar.

A COLORREF parameter that indicates the color of the text in pBar.

Override this method in your derived class to customize the text color for a caption bar. In your overridden
method, return the desired color.

The framework calls this method when it draws a pane that is docked and tabbed.

https://docs.microsoft.com/windows/desktop/gdi/colorref

RemarksRemarks

CMFCVisualManager::GetHighlightedMenuItemTextColor
virtual COLORREF GetHighlightedMenuItemTextColor(CMFCToolBarMenuButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetInstance

static CMFCVisualManager* GetInstance();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetMDITabsBordersSize

virtual int GetMDITabsBordersSize();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetMenuImageMargin
virtual int GetMenuImageMargin() const;

An integer that indicates the border size of a pane that is docked and tabbed.

A docked pane becomes tabbed when the user docks multiple panes to the same location in your application.

Override this method in a custom visual manager to change the border size of docked tabbed control bars. The
default implementation returns -1.

[in] pButton

Returns a pointer to the current CMFCVisualManager Class object for the application.

A pointer to a CMFCVisualManager object.

An application can only have one CMFCVisualManager object associated with it. This includes any object derived
from the CMFCVisualManager class. This method returns a pointer to the associated CMFCVisualManager object. If
the application does not have an associated CMFCVisualManager object, this method will create one and
associate it with the application.

The framework calls this method to determine the border size of a MDITabs window before it draws the
window.

The border size of the MDITabs window.

Override this function in a derived class to customize the border size of the MDITabs window.

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetMenuItemTextColor
virtual COLORREF GetMenuItemTextColor(
 CMFCToolBarMenuButton* pButton,
 BOOL bHighlighted,
 BOOL bDisabled);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetMenuShadowDepth

int GetMenuShadowDepth() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetNcBtnSize

virtual CSize GetNcBtnSize(BOOL bSmall) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetPopupMenuBorderSize

[in] pButton
[in] bHighlighted
[in] bDisabled

Retrieves the width and height of the menu shadow.

The width and height of the menu shadow in pixels.

The width and height of the menu shadow are equivalent. The default value is 7 pixels.

Called by the framework when it has to retrieve the size of the system buttons.

bSmall
[in] A Boolean parameter that indicates whether GetNcBtnSize should retrieve the size of a small or large
system button. If bSmall is TRUE, GetNcBtnSize returns the size of a small system button. Otherwise, it returns
the size of a large system button.

A CSize parameter that indicate the size of the system buttons.

The system buttons are the buttons in the caption of the frame window that map to the commands Close,
Minimize, Maximize, and Restore. The size of these buttons depends on the current visual manager.
Override this method if you want to customize the size of the system buttons in your application.

virtual int GetPopupMenuBorderSize() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetPopupMenuGap
virtual int GetPopupMenuGap() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetPropertyGridGroupColor

virtual COLORREF GetPropertyGridGroupColor(CMFCPropertyGridCtrl* pPropList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetPropertyGridGroupTextColor

virtual COLORREF GetPropertyGridGroupTextColor(CMFCPropertyGridCtrl* pPropList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetRibbonHyperlinkTextColor

The framework calls this method to obtain the border size of pop-up menus.

An integer that specifies the border size of pop-up menus.

Override this method to customize the border size of pop-up menus in your application.

The framework calls this method to get the background color of a property list.

pPropList
[in] A pointer to the property list that the framework is drawing.

A COLORREF parameter that indicates the background color of pPropList.

Override this function to customize the background color of a property list in your application.

The framework calls this method to retrieve the text color of a property list.

pPropList
[in] A pointer to the property list.

A COLORREF parameter that indicates the text color of the property list.

Override this function to customize the text color of a property list in your application.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref

virtual COLORREF GetRibbonHyperlinkTextColor(CMFCRibbonLinkCtrl* pHyperLink);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetRibbonPopupBorderSize
virtual int GetRibbonPopupBorderSize(const CMFCRibbonPanelMenu*) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetRibbonQuickAccessToolBarChevronOffset
virtual int GetRibbonQuickAccessToolBarChevronOffset();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetRibbonQuickAccessToolBarRightMargin
virtual int GetRibbonQuickAccessToolBarRightMargin();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetRibbonQuickAccessToolBarTextColor
virtual COLORREF GetRibbonQuickAccessToolBarTextColor(BOOL bDisabled = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetRibbonSliderColors

[in] pHyperLink

[in] CMFCRibbonPanelMenu*

[in] bDisabled

virtual void GetRibbonSliderColors(
 CMFCRibbonSlider* pSlider,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 BOOL bIsDisabled,
 COLORREF& clrLine,
 COLORREF& clrFill);

ParametersParameters

RemarksRemarks

CMFCVisualManager::GetRibbonStatusBarTextColor
virtual COLORREF GetRibbonStatusBarTextColor(CMFCRibbonStatusBar* pStatusBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetShowAllMenuItemsHeight
virtual int GetShowAllMenuItemsHeight(
 CDC* pDC,
 const CSize& sizeDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetSmartDockingBaseGuideColors
virtual void GetSmartDockingBaseGuideColors(
 COLORREF& clrBaseGroupBackground,
 COLORREF& clrBaseGroupBorder);

ParametersParameters

RemarksRemarks

[in] pSlider
[in] bIsHighlighted
[in] bIsPressed
[in] bIsDisabled
[in] clrLine
[in] clrFill

[in] pStatusBar

[in] pDC
[in] sizeDefault

[in] clrBaseGroupBackground
[in] clrBaseGroupBorder

CMFCVisualManager::GetSmartDockingHighlightToneColor
virtual COLORREF GetSmartDockingHighlightToneColor();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetSmartDockingTheme

virtual AFX_SMARTDOCK_THEME GetSmartDockingTheme();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetStatusBarPaneTextColor
virtual COLORREF GetStatusBarPaneTextColor(
 CMFCStatusBar* pStatusBar,
 CMFCStatusBarPaneInfo* pPane);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetTabFrameColors

virtual void GetTabFrameColors(
 const CMFCBaseTabCtrl* pTabWnd,
 COLORREF& clrDark,
 COLORREF& clrBlack,
 COLORREF& clrHighlight,
 COLORREF& clrFace,
 COLORREF& clrDarkShadow,
 COLORREF& clrLight,
 CBrush*& pbrFace,
 CBrush*& pbrBlack);

ParametersParameters

Returns a theme used to display smart docking markers.

Returns one of the following enumerated values: AFX_SDT_DEFAULT, AFX_SDT_VS2005, AFX_SDT_VS2008.

[in] pStatusBar
[in] pPane

The framework calls this function when it has to retrieve the set of colors for drawing a tab window.

pTabWnd
[in] A pointer to the tabbed window where the frame is drawing a tab.

clrDark
[out] A reference to a COLORREF parameter where this method stores the color for the dark border of a tab.

https://docs.microsoft.com/windows/desktop/gdi/colorref

RemarksRemarks

CMFCVisualManager::GetTabHorzMargin
virtual int GetTabHorzMargin(const CMFCBaseTabCtrl*);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetTabTextColor
virtual COLORREF GetTabTextColor(
 const CMFCBaseTabCtrl*,
 int,
 BOOL);

ParametersParameters

Return ValueReturn Value

clrBlack
[out] A reference to a COLORREF parameter where this method stores the color for the border of the tab
window. The default color for the border is black.

clrHighlight
[out] A reference to a COLORREF parameter where this method stores the color for the highlight state of the
tab window.

clrFace
[out] A reference to a COLORREF parameter where this method stores the color for face of the tab window.

clrDarkShadow
[out] A reference to a COLORREF parameter where this method stores the color for the shadow of the tab
window.

clrLight
[out] A reference to a COLORREF parameter where this method stores the color for the light edge of the tab
window.

pbrFace
[out] A pointer to a reference for a brush. This method stores the brush that it uses to fill the face of the tab
window in this parameter.

pbrBlack
[out] A pointer to a reference for a brush. This method stores the brush it uses to fill the black edge of the tab
window in this parameter.

Override this function in a derived class if you want to customize the set of colors that the framework uses
when it draws a tab window.

[in] CMFCBaseTabCtrl*

[in] CMFCBaseTabCtrl*
[in] int
[in] BOOL

RemarksRemarks

CMFCVisualManager::GetTasksPaneGroupCaptionHeight
int GetTasksPaneGroupCaptionHeight() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetTasksPaneGroupCaptionHorzOffset
int GetTasksPaneGroupCaptionHorzOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetTasksPaneGroupCaptionVertOffset
int GetTasksPaneGroupCaptionVertOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetTasksPaneGroupVertOffset
int GetTasksPaneGroupVertOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetTasksPaneHorzMargin
int GetTasksPaneHorzMargin() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetTasksPaneIconHorzOffset
int GetTasksPaneIconHorzOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetTasksPaneIconVertOffset

int GetTasksPaneIconVertOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetTasksPaneTaskHorzOffset
int GetTasksPaneTaskHorzOffset() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetTasksPaneVertMargin
int GetTasksPaneVertMargin() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetToolbarButtonTextColor

virtual COLORREF GetToolbarButtonTextColor(
 CMFCToolBarButton* pButton,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetToolBarCustomizeButtonMargin
virtual int GetToolBarCustomizeButtonMargin() const;

Return ValueReturn Value

RemarksRemarks

The framework calls this method to determine the text color of a toolbar button.

pButton
[in] A pointer to the toolbar button.

state
[in] The state of the toolbar button.

The text color of pButton when it has the state indicated by state.

The text color of a CMFCToolBarButton Class object depends on the state of the button. The possible states of
a toolbar button are ButtonsIsRegular , ButtonsIsPressed , or ButtonsIsHighlighted .

Override this function to customize the text color of a toolbar button in your application.

CMFCVisualManager::GetToolbarDisabledColor
virtual COLORREF GetToolbarDisabledColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetToolbarDisabledTextColor

virtual COLORREF GetToolbarDisabledTextColor();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetToolbarHighlightColor
virtual COLORREF GetToolbarHighlightColor();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::GetToolTipInfo
virtual BOOL GetToolTipInfo(
 CMFCToolTipInfo& params,
 UINT nType = (UINT)(-1));

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::HasOverlappedAutoHideButtons

virtual BOOL HasOverlappedAutoHideButtons() const;

Return ValueReturn Value

The framework calls this function to determine the text color of toolbar buttons that are unavailable.

The color that the framework uses for the text color of toolbar buttons that are unavailable.

Override this method in a custom visual manager to set the text color of toolbar buttons that are unavailable .

[in] params
[in] nType

Returns whether auto-hide buttons overlap in the current visual manager.

TRUE if auto-hide buttons overlap; FALSE if they do not.

CMFCVisualManager::IsAutoDestroy
BOOL IsAutoDestroy() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsDefaultWinXPPopupButton
virtual BOOL IsDefaultWinXPPopupButton(CMFCDesktopAlertWndButton*) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsDockingTabHasBorder

virtual BOOL IsDockingTabHasBorder();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsEmbossDisabledImage

BOOL IsEmbossDisabledImage() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsFadeInactiveImage

BOOL IsFadeInactiveImage() const;

Return ValueReturn Value

[in] CMFCDesktopAlertWndButton*

Returns whether the current visual manager draws borders around panes that are docked and tabbed.

TRUE if the visual manager draws borders around panes that are docked and tabbed; FALSE otherwise.

Docked panes become tabbed when multiple panes are docked to the same location.

Specifies whether the framework embosses images that are unavailable.

Nonzero if the framework embosses images that are unavailable; otherwise 0.

This method is called by CMFCToolBarImages::Draw when it draws an image on the toolbar that is unavailable.

The framework calls this method when it draws inactive images on the toolbar or in a menu.

Nonzero if the framework uses the lighting effect when it draws inactive images on the toolbar or in a menu;

RemarksRemarks

CMFCVisualManager::IsFrameMenuCheckedItems
BOOL IsFrameMenuCheckedItems() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsHighlightOneNoteTabs
virtual BOOL IsHighlightOneNoteTabs() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsHighlightWholeMenuItem
virtual BOOL IsHighlightWholeMenuItem();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsLayeredRibbonKeyTip
virtual BOOL IsLayeredRibbonKeyTip() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsMenuFlatLook

BOOL IsMenuFlatLook() const;

Return ValueReturn Value

RemarksRemarks

otherwise 0.

You can activate or deactivate the lighting effect by calling CMFCVisualManager::SetFadeInactiveImage. The
lighting effect is what makes unavailable images appear faded.

Indicates whether menu buttons appear flat.

Nonzero if menu buttons appear flat; 0 otherwise.

By default, menu buttons do not appear flat. Use the CMFCVisualManager::SetMenuFlatLook method to
change this behavior. When menu buttons appear flat, they do not change appearance when the user clicks on
them.

CMFCVisualManager::IsOfficeXPStyleMenus

virtual BOOL IsOfficeXPStyleMenus() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsOffsetPressedButton
virtual BOOL IsOffsetPressedButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsOwnerDrawCaption

virtual BOOL IsOwnerDrawCaption();

Return ValueReturn Value

CMFCVisualManager::IsOwnerDrawMenuCheck
virtual BOOL IsOwnerDrawMenuCheck();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsShadowHighlightedImage

BOOL IsShadowHighlightedImage() const;

Return ValueReturn Value

CMFCVisualManager::IsToolbarButtonFillEnabled

Indicates whether the visual manager implements Office XP-style menus.

Nonzero if the visual manager displays Office XP-style menus; otherwise 0.

The CMFCPopupMenu Class calls this method when it has to draw the menu and shadow. By default, this
method returns FALSE. If you want to use pop-up menus similar to the pop-up menus in Office XP, override
this method in a custom visual manager and return TRUE.

Indicates whether the current visual manager implements owner-drawn captions.

TRUE if all the frame windows in the application have owner-draw captions; FALSE otherwise.

Indicates whether the visual manager displays shadows when rendering highlighted images.

Nonzero when the visual manager displays shadows under highlighted images; 0 otherwise.

BOOL IsToolbarButtonFillEnabled() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsToolbarRoundShape
virtual BOOL IsToolbarRoundShape(CMFCToolBar*);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::IsWindowsThemingSupported
virtual BOOL IsWindowsThemingSupported() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnActivateApp
virtual void OnActivateApp(
 CWnd* pWnd,
 BOOL bActive);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawAutoHideButtonBorder

virtual void OnDrawAutoHideButtonBorder(
 CDC* pDC,
 CRect rectBounds,
 CRect rectBorderSize,
 CMFCAutoHideButton* pButton);

ParametersParameters

[in] CMFCToolBar*

[in] pWnd
[in] bActive

The framework calls this method when it draws the border of an auto-hide button.

pDC
[in] A pointer to a device context.

rectBounds
[in] The size and location of the auto-hide button.

RemarksRemarks

CMFCVisualManager::OnDrawBarGripper

virtual void OnDrawBarGripper(
 CDC* pDC,
 CRect rectGripper,
 BOOL bHorz,
 CBasePane* pBar);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawBrowseButton

virtual BOOL OnDrawBrowseButton(
 CDC* pDC,
 CRect rect,
 CMFCEditBrowseCtrl* pEdit,
 CMFCVisualManager::AFX_BUTTON_STATE state,
 COLORREF& clrText);

ParametersParameters

rectBorderSize
[in] A CRect parameter that contains the sizes of the borders.

pButton
[in] A pointer to the auto-hide button. The framework is drawing the border for this button.

Override this method in a derived class if you want to customize the appearance of the border of an auto-hide
button. By default, this method fills a flat border with the default shadow color for your application.

The rectBorderSize parameter does not contain the coordinates of the border. It contains the size of the border
in the top , bottom , left , and right data members. A value less than or equal to 0 indicates no border on
that side of the auto-hide button.

Called by the framework when it draws the gripper for a control bar.

pDC
[in] A pointer to the device context for a control bar.

rectGripper
[in] The bounding rectangle for the control bar.

bHorz
[in] A Boolean parameter that specifies whether the control bar is docked horizontally or vertically.

pBar
[in] A pointer to a control bar. The visual manager draws the gripper of this control bar.

The default implementation of this method displays the standard gripper. To customize the appearance of the
gripper, override this method in a custom class derived from the CMFCVisualManager class.

The framework calls this method when it draws the browse button for an edit control.

pDC
[in] A pointer to a device context.

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnDrawButtonBorder

virtual void OnDrawButtonBorder(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawButtonSeparator

rect
[in] A rectangle that specifies the boundary for the browse button.

pEdit
[in] A pointer to an edit control. The visual manager draws the browse button for this edit control.

state
[in] An enumerated value that specifies the state of the button.

clrText
[out] A reference to a COLORREF parameter. This is a reserved value and is currently unused.

TRUE if successful; otherwise FALSE.

Override this function in a derived class if you want to customize the appearance of browse buttons in
instances of the CMFCEditBrowseCtrl Class. The possible values for the state of the button are
ButtonsIsRegular , ButtonsIsPressed , and ButtonsIsHighlighted .

The framework calls this method when it draws the border of a toolbar button.

pDC
[in] A pointer to the device context of a toolbar button.

pButton
[in] A pointer to a toolbar button. The framework draws the border of this button.

rect
[in] A rectangle that specifies the boundaries of the toolbar button.

state
[in] An enumerated data type that specifies the current state of the toolbar button.

The default implementation of this method displays the standard border. Override this method in a derived
visual manager to customize the appearance of the border of a toolbar button.

The possible states of a toolbar button are ButtonsIsRegular , ButtonsIsPressed , or ButtonsIsHighlighted .

https://docs.microsoft.com/windows/desktop/gdi/colorref

virtual void OnDrawButtonSeparator(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state,
 BOOL bHorz);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawCaptionBarBorder

virtual void OnDrawCaptionBarBorder(
 CDC* pDC,
 CMFCCaptionBar* pBar,
 CRect rect,
 COLORREF clrBarBorder,
 BOOL bFlatBorder);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawCaptionBarButtonBorder

[in] pDC
[in] pButton
[in] rect
[in] state
[in] bHorz

The framework calls this method when it draws the border of a CMFCCaptionBar Class object.

pDC
[in] A pointer to a device context.

pBar
[in] A pointer to a CMFCCaptionBar object. The framework draws this caption bar.

rect
[in] A rectangle that specifies the boundaries of the caption bar.

clrBarBorder
[in] The color of the border.

bFlatBorder
[in] A Boolean parameter that specifies whether the border has a flat, 2D appearance.

Override this method in a derived class to customize the appearance of the border of a caption bar.

virtual void OnDrawCaptionBarButtonBorder(
 CDC* pDC,
 CMFCCaptionBar* pBar,
 CRect rect,
 BOOL bIsPressed,
 BOOL bIsHighlighted,
 BOOL bIsDisabled,
 BOOL bHasDropDownArrow,
 BOOL bIsSysButton);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawCaptionBarInfoArea
virtual void OnDrawCaptionBarInfoArea(
 CDC* pDC,
 CMFCCaptionBar* pBar,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawCaptionButton

virtual void OnDrawCaptionButton (
 CDC* pDC,
 CMFCCaptionButton* pButton,
 BOOL bActive,
 BOOL bHorz,
 BOOL bMaximized,
 BOOL bDisabled,
 int nImageID = -1);

ParametersParameters

[in] pDC
[in] pBar
[in] rect
[in] bIsPressed
[in] bIsHighlighted
[in] bIsDisabled
[in] bHasDropDownArrow
[in] bIsSysButton

[in] pDC
[in] pBar
[in] rect

The framework calls this method when it draws a CMFCCaptionButton object.

pDC
[in] A pointer to a device context.

pButton
[in] A pointer to a CMFCCaptionButton object. The framework draws this caption button.

RemarksRemarks

CMFCVisualManager::OnDrawCheckBox
virtual void OnDrawCheckBox(
 CDC* pDC,
 CRect rect,
 BOOL bHighlighted,
 BOOL bChecked,
 BOOL bEnabled);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawCheckBoxEx
virtual void OnDrawCheckBoxEx(
 CDC* pDC,
 CRect rect,
 int nState,
 BOOL bHighlighted,
 BOOL bPressed,
 BOOL bEnabled);

ParametersParameters

bActive
[in] A Boolean parameter that specifies whether the button is active.

bHorz
[in] A Boolean parameter that specifies whether the caption is horizontal.

bMaximized
[in] A Boolean parameter that specifies whether the parent pane is maximized.

bDisabled
[in] A Boolean parameter that specifies whether the caption button is disabled.

nImageID
[in] The image index for the icon to use for the button. If nImageID is -1, this method uses the image index
recorded in pButton.

The default implementation of this method displays a small button from the global instance of the
CMenuImages class. The buttons are listed in the header file for CMenuImages . Some examples include
CMenuImages::IdClose , CMenuImages::IdArowLeft , CMenuImages::IdArowRight , CMenuImages::IdArowDown ,
CMenuImages::IdArowUp , and CMenuImages::IdPinHorz .

Override this method in a derived class to customize the appearance of caption buttons.

[in] pDC
[in] rect
[in] bHighlighted
[in] bChecked
[in] bEnabled

[in] pDC
[in] rect
[in] nState

RemarksRemarks

CMFCVisualManager::OnDrawComboBorder

virtual void OnDrawComboBorder(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted,
 CMFCToolBarComboBoxButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawComboDropButton

virtual void OnDrawComboDropButton(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted,
 CMFCToolBarComboBoxButton* pButton);

ParametersParameters

[in] bHighlighted
[in] bPressed
[in] bEnabled

The framework calls this method when it draws the border around an instance of the
CMFCToolBarComboBoxButton Class.

pDC
[in] A pointer to the device context of a combo box button.

rect
[in] A rectangle that specifies the boundaries of the combo box button.

bDisabled
[in] A Boolean parameter that indicates whether the combo box button is unavailable.

bIsDropped
[in] A Boolean parameter that indicates whether the combo box is dropped down.

bIsHighlighted
[in] A Boolean parameter that indicates whether the combo box button is highlighted.

pButton
[in] A pointer to a CMFCToolBarComboBoxButton object. The framework draws this combo box button.

Override this method in your derived visual manager to customize the appearance of the border of the combo
box.

The framework calls this method when it draws the drop button of a CMFCToolBarComboBoxButton.

pDC
[in] A pointer to a device context.

RemarksRemarks

CMFCVisualManager::OnDrawControlBorder
virtual void OnDrawControlBorder(CWnd* pWndCtrl);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawDefaultRibbonImage

virtual void OnDrawDefaultRibbonImage(
 CDC* pDC,
 CRect rectImage,
 BOOL bIsDisabled = FALSE,
 BOOL bIsPressed = FALSE,
 BOOL bIsHighlighted = FALSE);

ParametersParameters

rect
[in] A rectangle that specifies the boundaries of the drop button.

bDisabled
[in] A Boolean parameter that indicates whether the drop button is unavailable.

bIsDropped
[in] A Boolean parameter that indicates whether the combo box is dropped down.

bIsHighlighted
[in] A Boolean parameter that indicates whether the drop button is highlighted.

pButton
[in] A pointer to a CMFCToolBarComboBoxButton object. The framework draws the drop button for this combo box
button.

Override this method in your derived visual manager to customize the appearance of the drop button of a
combo box button.

[in] pWndCtrl

The framework calls this method when it draws the default image that is used for the ribbon button.

pDC
[in] A pointer to a device context.

rectImage
[in] A rectangle that specifies the boundaries of the default image.

bIsDisabled
[in] A Boolean parameter that indicates whether the ribbon button is unavailable.

bIsPressed
[in] A Boolean parameter that indicates whether the ribbon button is pressed.

bIsHighlighted
[in] A Boolean parameter that indicates whether the ribbon button is highlighted.

RemarksRemarks

CMFCVisualManager::OnDrawEditBorder

virtual void OnDrawEditBorder(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsHighlighted,
 CMFCToolBarEditBoxButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawExpandingBox
virtual void OnDrawExpandingBox(
 CDC* pDC,
 CRect rect,
 BOOL bIsOpened,
 COLORREF colorBox);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawFloatingToolbarBorder

Override this method in a derived visual manager if you want to customize the image that is used for the
ribbon button.

The framework calls this method when it draws the border around an instance of the
CMFCToolBarEditBoxButton Class.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the CMFCToolBarEditBoxButton object.

bDisabled
[in] A Boolean parameter that indicates whether the button is unavailable.

bIsHighlighted
[in] A Boolean parameter that indicates whether the button is highlighted.

pButton
[in] A pointer to a CMFCToolBarEditBoxButton object. The framework draws the border of this edit box button.

Override this method in a derived visual manager to customize the border of a CMFCToolBarEditBoxButton

object.

[in] pDC
[in] rect
[in] bIsOpened
[in] colorBox

The framework calls this method when it draws the border of a floating toolbar.

virtual void OnDrawFloatingToolbarBorder(
 CDC* pDC,
 CMFCBaseToolBar* pToolBar,
 CRect rectBorder,
 CRect rectBorderSize);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawHeaderCtrlBorder

virtual void OnDrawHeaderCtrlBorder(
 CMFCHeaderCtrl* pCtrl,
 CDC* pDC,
 CRect& rect,
 BOOL bIsPressed,
 BOOL bIsHighlighted);

ParametersParameters

RemarksRemarks

pDC
[in] A pointer to a device context.

pToolBar
[in] A pointer to the floating toolbar.

rectBorder
[in] A rectangle that specifies the boundaries of the floating toolbar.

rectBorderSize
[in] A rectangle that specifies the border size of the toolbar.

A floating toolbar is a toolbar that appears as a mini-frame window. Usually, this occurs when a user drags a
toolbar so that it is no longer docked.

The size of the border is specified by the corresponding parameter in rectBorderSize. For example, the width of
the top border of the toolbar is specified by rectBorderSize.top .

Override this method in a derived visual manager to customize the appearance of the border of a floating
toolbar.

The framework calls this method when it draws the border around an instance of the CMFCHeaderCtrl Class.

pCtrl
[in] A pointer to a CMFCHeaderCtrl object. The framework draws the border of this header control.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the header control.

bIsPressed
[in] A Boolean parameter that indicates whether the header control is pressed.

bIsHighlighted
[in] A Boolean parameter that indicates whether the header control is highlighted.

CMFCVisualManager::OnDrawHeaderCtrlSortArrow

virtual void OnDrawHeaderCtrlSortArrow(
 CMFCHeaderCtrl* pCtrl,
 CDC* pDC,
 CRect& rect,
 BOOL bIsUp);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawMenuArrowOnCustomizeList
virtual void OnDrawMenuArrowOnCustomizeList(
 CDC* pDC,
 CRect rectCommand,
 BOOL bSelected);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawMenuBorder

virtual void OnDrawMenuBorder(
 CDC* pDC,
 CMFCPopupMenu* pMenu,
 CRect rect);

ParametersParameters

Override this method in a derived visual manager to customize the border of the header control.

The framework calls this function when it draws the sort arrow of a header control.

pCtrl
[in] A pointer to a header control. The visual manager draws the sort arrow of this CMFCHeaderCtrl Class
object.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the sort arrow.

bIsUp
[in] A Boolean that specifies the direction of the sort arrow.

If bIsUp is TRUE, the visual manager draws an up sort arrow. If it is FALSE, the visual manager draws a down
sort arrow. Override OnDrawHeaderCtrlSortArrow in a derived class to customize the appearance of the sort
button.

[in] pDC
[in] rectCommand
[in] bSelected

The framework calls this method when it draws the border of a CMFCPopupMenu.

RemarksRemarks

CMFCVisualManager::OnDrawMenuCheck
virtual void OnDrawMenuCheck(
 CDC* pDC,
 CMFCToolBarMenuButton* pButton,
 CRect rect,
 BOOL bHighlight,
 BOOL bIsRadio);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawMenuItemButton
virtual void OnDrawMenuItemButton(
 CDC* pDC,
 CMFCToolBarMenuButton* pButton,
 CRect rectButton,
 BOOL bHighlight,
 BOOL bDisabled);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawMenuLabel
virtual COLORREF OnDrawMenuLabel(
 CDC* pDC,
 CRect rect);

pDC
[in] A pointer to the device context for a CMFCPopupMenu object.

pMenu
[in] A pointer to a CMFCPopupMenu object. The framework draws a border around this popup menu.

rect
[in] A rectangle that specifies the boundaries of the popup menu.

The default implementation of this method displays the standard menu border. Override this method in a
derived visual manager to customize the appearance of the menu border.

[in] pDC
[in] pButton
[in] rect
[in] bHighlight
[in] bIsRadio

[in] pDC
[in] pButton
[in] rectButton
[in] bHighlight
[in] bDisabled

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnDrawMenuResizeBar
virtual void OnDrawMenuResizeBar(
 CDC* pDC,
 CRect rect,
 int nResizeFlags);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawMenuScrollButton

virtual void OnDrawMenuScrollButton(
 CDC* pDC,
 CRect rect,
 BOOL bIsScrollDown,
 BOOL bIsHighlited,
 BOOL bIsPressed,
 BOOL bIsDisabled);

ParametersParameters

RemarksRemarks

[in] pDC
[in] rect

[in] pDC
[in] rect
[in] nResizeFlags

The framework calls this method when it draws a menu scroll button.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the scroll button.

bIsScrollDown
[in] A Boolean that indicates which type of button the visual manager draws. A value of TRUE indicates the
visual manager draws a down button.

bIsHighlited
[in] A Boolean that indicates whether the button is highlighted.

bIsPressed
[in] A Boolean that indicates whether the button is pressed.

bIsDisabled
[in] A Boolean that indicates whether the button is disabled.

Override this method in a derived visual manager to customize the appearance of menu scroll buttons. Menu
scroll buttons appear on the edge of pop-up menus when the total height of the menu items exceeds the

CMFCVisualManager::OnDrawMenuShadow
virtual void OnDrawMenuShadow(
 CDC* pDC,
 const CRect& rectClient,
 const CRect& rectExclude,
 int nDepth,
 int iMinBrightness,
 int iMaxBrightness,
 CBitmap* pBmpSaveBottom,
 CBitmap* pBmpSaveRight,
 BOOL bRTL);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawMenuSystemButton

virtual void OnDrawMenuSystemButton(
 CDC* pDC,
 CRect rect,
 UINT uiSystemCommand,
 UINT nStyle,
 BOOL bHighlight);

ParametersParameters

height of the pop-up menu.

[in] pDC
[in] rectClient
[in] rectExclude
[in] nDepth
[in] iMinBrightness
[in] iMaxBrightness
[in] pBmpSaveBottom
[in] pBmpSaveRight
[in] bRTL

The framework calls this method when it draws a menu system button for the application.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the button.

uiSystemCommand
[in] A flag that specifies which system command is associated with the button. Possible values are SC_CLOSE,
SC_MINIMIZE, and SC_RESTORE.

nStyle
[in] A flag that specifies the current style of the button. Possible values are TBBS_PRESSED, TBBS_DISABLED,
and 0.

bHighlight
[in] A Boolean parameter that specifies whether the button is highlighted.

RemarksRemarks

CMFCVisualManager::OnDrawMiniFrameBorder
virtual void OnDrawMiniFrameBorder(
 CDC* pDC,
 CPaneFrameWnd* pFrameWnd,
 CRect rectBorder,
 CRect rectBorderSize);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawOutlookBarSplitter

virtual void OnDrawOutlookBarSplitter(
 CDC* pDC,
 CRect rectSplitter);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawOutlookPageButtonBorder

virtual void OnDrawOutlookPageButtonBorder(
 CDC* pDC,
 CRect& rectBtn,
 BOOL bIsHighlighted,
 BOOL bIsPressed);

ParametersParameters

The menu system buttons are the Close, Minimize, Maximize, and Restore buttons located on the title bar.

The default implementation for this method calls CDC::DrawFrameControl with the DFC_CAPTION type.
Override this method in your derived visual manager class to customize the appearance of system buttons.

[in] pDC
[in] pFrameWnd
[in] rectBorder
[in] rectBorderSize

The framework calls this method when it draws the splitter for an Outlook bar.

pDC
[in] A pointer to a device context.

rectSplitter
[in] A rectangle that specifies the boundaries of the splitter.

Override this method in a derived visual manager to customize the appearance of splitters on an Outlook bar.

Called by the framework when it draws the border of an Outlook page button.

pDC
[in] A pointer to a device context.

RemarksRemarks

CMFCVisualManager::OnDrawPaneBorder

virtual void OnDrawPaneBorder(
 CDC* pDC,
 CBasePane* pBar,
 CRect& rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawPaneCaption

virtual COLORREF OnDrawPaneCaption(
 CDC* pDC,
 CDockablePane* pBar,
 BOOL bActive,
 CRect rectCaption,
 CRect rectButtons);

ParametersParameters

rectBtn
[in] A rectangle that specifies the boundary of the Outlook page button.

bIsHighlighted
[in] A Boolean that specifies whether the button is highlighted.

bIsPressed
[in] A Boolean that specifies whether the button is pressed.

Override this method in a custom visual manager to change the appearance of the Outlook page button.

The framework calls this method when it draws the border of a CPane Class object.

pDC
[in] A pointer to the device context of a control bar.

pBar
[in] A pointer to a pane. The visual manager draws the border of this pane.

rect
[in] A rectangle that indicates the boundaries of the pane.

The default implementation of this method displays the standard border. Override this method in a derived
class to customize the appearance of the border.

The framework calls this method when it draws a caption for an instance of the CDockablePane Class.

pDC
[in] A pointer to a device context.

pBar
[in] A pointer to a CDockablePane object. The framework draws the caption for this pane.

bActive
[in] A Boolean parameter that indicates whether the control bar is active.

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnDrawPaneDivider
virtual void OnDrawPaneDivider(
 CDC* pDC,
 CPaneDivider* pSlider,
 CRect rect,
 BOOL bAutoHideMode);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawPopupWindowBorder
virtual void OnDrawPopupWindowBorder(
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawPopupWindowButtonBorder
virtual void OnDrawPopupWindowButtonBorder(
 CDC* pDC,
 CRect rectClient,
 CMFCDesktopAlertWndButton* pButton);

ParametersParameters

RemarksRemarks

rectCaption
[in] A rectangle that specifies the boundaries of the caption.

rectButtons
[in] A rectangle that specifies the boundaries of the caption buttons.

A COLORREF parameter that indicates the text color of the caption.

Override this method in a derived visual manager to customize the appearance of pane captions.

[in] pDC
[in] pSlider
[in] rect
[in] bAutoHideMode

[in] pDC
[in] rect

[in] pDC
[in] rectClient
[in] pButton

https://docs.microsoft.com/windows/desktop/gdi/colorref

CMFCVisualManager::OnDrawPopupWindowCaption
virtual COLORREF OnDrawPopupWindowCaption(
 CDC* pDC,
 CRect rectCaption,
 CMFCDesktopAlertWnd* pPopupWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnDrawRibbonApplicationButton

virtual void OnDrawRibbonApplicationButton(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonButtonBorder

virtual void OnDrawRibbonButtonBorder(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonButtonsGroup

[in] pDC
[in] rectCaption
[in] pPopupWnd

The framework calls this method when it draws the Main Button on the ribbon.

pDC
[in] A pointer to a device context.

pButton
[in] A pointer to the Main Button on the ribbon.

Override this method in a derived visual manager if you want to customize the appearance of the Main
Button.

The framework calls this method when it draws the border of a button on the ribbon.

pDC
[in] A pointer to a device context.

pButton
[in] A pointer to a CMFCRibbonButton object. The framework draws the border for this ribbon button.

Override this method in a derived visual manager to customize the appearance of a CMFCRibbonButton .

virtual COLORREF OnDrawRibbonButtonsGroup(
 CDC* pDC,
 CMFCRibbonButtonsGroup* pGroup,
 CRect rectGroup);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnDrawRibbonCaption

virtual void OnDrawRibbonCaption(
 CDC* pDC,
 CMFCRibbonBar* pBar,
 CRect rect,
 CRect rectText);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonCaptionButton

The framework calls this method when it draws a group of buttons on the ribbon.

pDC
[in] A pointer to a device context.

pGroup
[in] A pointer to a group of buttons on the ribbon. The framework draws this group of buttons.

rectGroup
[in] A rectangle that specifies the boundaries of the group.

A reserved value. The default implementation returns -1.

Override this method in a derived visual manager to customize the appearance of a group of buttons on the
ribbon.

The framework calls this method when it draws the caption bar of the main frame window. The framework
calls this method only if the ribbon is integrated with the main frame.

pDC
[in] A pointer to a device context.

pBar
[in] A pointer to a ribbon bar. The visual manager draws this ribbon bar.

rect
[in] A rectangle that specifies the boundaries of the ribbon bar.

rectText
[in] A rectangle that specifies the boundaries for the text of the caption bar.

Override this function in a derived visual manager to customize the appearance of the caption bar. This method
affects the caption bar only if the ribbon is integrated with the main frame window.

The framework calls this method when it draws a caption button located on the ribbon bar.

virtual void OnDrawRibbonCaptionButton(
 CDC* pDC,
 CMFCRibbonCaptionButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonCategory

virtual void OnDrawRibbonCategory(
 CDC* pDC,
 CMFCRibbonCategory* pCategory,
 CRect rectCategory);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonCategoryCaption

virtual COLORREF OnDrawRibbonCategoryCaption(
 CDC* pDC,
 CMFCRibbonContextCaption* pContextCaption);

ParametersParameters

pDC
A pointer to a device context.

pButton
A pointer to a CMFCRibbonCaptionButton class. The framework draws this caption button.

Override this method in a derived visual manager to customize the appearance of a caption button on the
ribbon.

The framework calls this method when it draws a CMFCRibbonCategory object.

pDC
[in] A pointer to a device context.

pCategory
[in] A pointer to a CMFCRibbonCategory object. The framework draws this ribbon category.

rectCategory
[in] A rectangle that specifies the boundary of all the category panels on the ribbon.

A ribbon category is a logical grouping of menu commands. For more information about ribbon categories,
see CMFCRibbonCategory Class.

Override this method in a derived visual manager to customize the appearance of a ribbon category.

The framework calls this method when it draws the caption bar for a ribbon category.

pDC
[in] The drawing context.

pContextCaption
[in] A pointer to a caption bar. The visual manager draws this CMFCRibbonContextCaption Class object.

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnDrawRibbonCategoryScroll
virtual void OnDrawRibbonCategoryScroll(
 CDC* pDC,
 CRibbonCategoryScroll* pScroll);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonCategoryTab

virtual COLORREF OnDrawRibbonCategoryTab(
 CDC* pDC,
 CMFCRibbonTab* pTab,
 BOOL bIsActive);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnDrawRibbonCheckBoxOnList
virtual void OnDrawRibbonCheckBoxOnList(
 CDC* pDC,
 CMFCRibbonCheckBox* pCheckBox,
 CRect rect,
 BOOL bIsSelected,
 BOOL bHighlighted);

A COLORREF parameter that indicates the color of the text on the caption bar.

Override this method in a derived class to customize the appearance of the caption bar for a ribbon category.
For more information about the caption bar, see CMFCRibbonContextCaption Class.

[in] pDC
[in] pScroll

The framework calls this method when it draws the tab for a ribbon category.

pDC
[in] A pointer to a device context.

pTab
[in] A pointer to an instance of the CMFCRibbonTab class. The framework draws this tab.

bIsActive
[in] A Boolean parameter that indicates whether the tab is active.

The color that is used for text on the ribbon category tab.

Override this method in a derived visual manager to customize the appearance of a ribbon category tab. For
more information about ribbon categories, see CMFCRibbonCategory Class.

https://docs.microsoft.com/windows/desktop/gdi/colorref

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonColorPaletteBox
virtual void OnDrawRibbonColorPaletteBox(
 CDC* pDC,
 CMFCRibbonColorButton* pColorButton,
 CMFCRibbonGalleryIcon* pIcon,
 COLORREF color,
 CRect rect,
 BOOL bDrawTopEdge,
 BOOL bDrawBottomEdge,
 BOOL bIsHighlighted,
 BOOL bIsChecked,
 BOOL bIsDisabled);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonDefaultPaneButton

virtual void OnDrawRibbonDefaultPaneButton(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

RemarksRemarks

[in] pDC
[in] pCheckBox
[in] rect
[in] bIsSelected
[in] bHighlighted

[in] pDC
[in] pColorButton
[in] pIcon
[in] color
[in] rect
[in] bDrawTopEdge
[in] bDrawBottomEdge
[in] bIsHighlighted
[in] bIsChecked
[in] bIsDisabled

The framework calls this method when it draws the default button for the ribbon pane.

pDC
[in] A pointer to a device context.

pButton
[in] A pointer to the default button for the ribbon pane.

The framework displays the default button when a ribbon pane is resized to its minimal size and there is no
area to display the content for the panel. When the user clicks on the default button, the framework displays a

CMFCVisualManager::OnDrawRibbonDefaultPaneButtonContext
virtual void OnDrawRibbonDefaultPaneButtonContext(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonDefaultPaneButtonIndicator
virtual void OnDrawRibbonDefaultPaneButtonIndicator(
 CDC* pDC,
 CMFCRibbonButton* pButton,
 CRect rect,
 BOOL bIsSelected,
 BOOL bHighlighted);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonGalleryBorder
virtual void OnDrawRibbonGalleryBorder(
 CDC* pDC,
 CMFCRibbonGallery* pButton,
 CRect rectBorder);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonGalleryButton
virtual void OnDrawRibbonGalleryButton(
 CDC* pDC,
 CMFCRibbonGalleryIcon* pButton);

drop down menu that contains the content for the panel.

Override this method in a derived visual manager to customize the appearance of the default button.

[in] pDC
[in] pButton

[in] pDC
[in] pButton
[in] rect
[in] bIsSelected
[in] bHighlighted

[in] pDC
[in] pButton
[in] rectBorder

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonKeyTip
virtual void OnDrawRibbonKeyTip(
 CDC* pDC,
 CMFCRibbonBaseElement* pElement,
 CRect rect,
 CString str);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonLabel

virtual void OnDrawRibbonLabel(
 CDC* pDC,
 CMFCRibbonLabel* pLabel,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonMainPanelButtonBorder

virtual void OnDrawRibbonMainPanelButtonBorder(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

[in] pDC
[in] pButton

[in] pDC
[in] pElement
[in] rect
[in] str

The framework calls this method when it draws the label of the ribbon.

pDC
[in] A pointer to a device context.

pLabel
[in] A pointer to a CMFCRibbonLabel object. The framework draws this ribbon label.

rect
[in] A rectangle that specifies the boundaries of the ribbon panel.

Override this method in a derived class to customize the ribbon label.

The framework calls this method when it draws the border of a CMFCRibbonButton that is positioned on the
Main panel.

RemarksRemarks

CMFCVisualManager::OnDrawRibbonMainPanelFrame

virtual void OnDrawRibbonMainPanelFrame(
 CDC* pDC,
 CMFCRibbonMainPanel* pPanel,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonMenuCheckFrame
virtual void OnDrawRibbonMenuCheckFrame(
 CDC* pDC,
 CMFCRibbonButton* pButton,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonPanel

pDC
[in] A pointer to a device context.

pButton
[in] A pointer to a CMFCRibbonButton located on the main panel of the ribbon. The framework draws the border
for this button.

Override this method in a derived visual manager to customize the appearance of the border for a
CMFCRibbonButton on the Main panel.

The framework calls this method when it draws the frame around the CMFCRibbonMainPanel.

pDC
[in] A pointer to a device context.

pPanel
[in] A pointer to the CMFCRibbonMainPanel .

rect
[in] A rectangle that specifies the boundaries of the CMFCRibbonMainPanel .

Override this method in a derived visual manager to customize the appearance of the frame for the
CMFCRibbonMainPanel .

[in] pDC
[in] pButton
[in] rect

The framework calls this method when it draws a CMFCRibbonPanel object.

virtual COLORREF OnDrawRibbonPanel(
 CDC* pDC,
 CMFCRibbonPanel* pPanel,
 CRect rectPanel,
 CRect rectCaption);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnDrawRibbonPanelCaption

virtual void OnDrawRibbonPanelCaption(
 CDC* pDC,
 CMFCRibbonPanel* pPanel,
 CRect rectCaption);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonProgressBar

pDC
[in] A pointer to a device context.

pPanel
[in] A pointer to a CMFCRibbonPanel object. The framework draws this ribbon panel.

rectPanel
[in] A rectangle that specifies the boundaries of the panel.

rectCaption
[in] A rectangle that specifies the boundaries of the caption for the panel.

The color of text on the ribbon panel.

Override this method in a derived class to customize the appearance of a ribbon panel.

The framework calls this method when it draws the caption of a CMFCRibbonPanel Class.

pDC
[in] A pointer to a device context.

pPanel
[in] A pointer to a CMFCRibbonPanel object. The framework draws the caption for this ribbon panel.

rectCaption
[in] A rectangle that specifies the boundaries of the caption for the ribbon panel.

Override this method in a derived class to customize the appearance of captions for ribbon panels.

The framework calls this method when it draws a CMFCRibbonProgressBar Class.

virtual void OnDrawRibbonProgressBar(
 CDC* pDC,
 CMFCRibbonProgressBar* pProgress,
 CRect rectProgress,
 CRect rectChunk,
 BOOL bInfiniteMode);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonQuickAccessToolBarSeparator

virtual void OnDrawRibbonQuickAccessToolBarSeparator(
 CDC* pDC,
 CMFCRibbonSeparator* pSeparator,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonRecentFilesFrame

pDC
[in] A pointer to a device context.

pProgress
[in] A pointer to a CMFCRibbonProgressBar object. The framework draws this progress bar.

rectProgress
[in] A rectangle that specifies the boundaries of the progress bar.

rectChunk
[in] A rectangle that specifies the boundaries of the area surrounding the progress bar.

bInfiniteMode
[in] A Boolean parameter that indicates the mode of the progress bar. A value of TRUE means the bar is in
infinite mode. The default implementation does not use this parameter.

Override this method in a derived class to customize the appearance of a progress bar.

The framework calls this method when it draws a separator on the Quick Access Toolbar of a ribbon.

pDC
[in] A pointer to a device context.

pSeparator
[in] A pointer to a CMFCRibbonSeparator object. The framework draws this ribbon separator.

rect
[in] A rectangle that specifies the boundaries of the separator.

Override this method in a derived class to customize the appearance of ribbon separators on the Quick
Access Toolbar.

The framework calls this method when it draws a frame around a list of recent files.

virtual void OnDrawRibbonRecentFilesFrame(
 CDC* pDC,
 CMFCRibbonMainPanel* pPanel,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonSliderChannel

virtual void OnDrawRibbonSliderChannel(
 CDC* pDC,
 CMFCRibbonSlider* pSlider,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawRibbonSliderThumb

virtual void OnDrawRibbonSliderThumb(
 CDC* pDC,
 CMFCRibbonSlider* pSlider,
 CRect rect,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 BOOL bIsDisabled);

ParametersParameters

pDC
[in] A pointer to a device context.

pPanel
[in] A pointer to the Main panel on the ribbon.

rect
[in] A rectangle that specifies the boundaries of the frame for the list of recent files.

Override this method in a derived visual manager to customize the appearance of the list of recent files.

The framework calls this method when it draws the channel of a CMFCRibbonSlider Class.

pDC
[in] A pointer to a device context.

pSlider
[in] A pointer to a CMFCRibbonSlider object. The framework draws the channel for this ribbon slider.

rect
[in] A rectangle that specifies the boundaries for the channel of the ribbon slider.

Override this method in a derived class to customize the appearance of the channel of the ribbon slider.

The framework calls this method when it draws the thumb of a CMFCRibbonSlider object.

pDC
[in] A pointer to a device context.

RemarksRemarks

CMFCVisualManager::OnDrawRibbonSliderZoomButton

virtual void OnDrawRibbonSliderZoomButton(
 CDC* pDC,
 CMFCRibbonSlider* pSlider,
 CRect rect,
 BOOL bIsZoomOut,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 BOOL bIsDisabled);

ParametersParameters

RemarksRemarks

pSlider
[in] A pointer to a CMFCRibbonSlider . The framework draws the thumb for this ribbon slider.

rect
[in] A rectangle that specifies the boundaries of the thumb for the ribbon slider.

bIsHighlighted
[in] A Boolean parameter that indicates if the thumb is highlighted.

bIsPressed
[in] A Boolean parameter that indicates if the thumb is pressed.

bIsDisabled
[in] A Boolean parameter that indicates if the thumb is unavailable.

Override this method in a derived visual manager to customize the appearance of the thumb for a
CMFCRibbonSlider .

The framework calls this method when it draws the zoom buttons for a CMFCRibbonSlider object.

pDC
[in] A pointer to a device context.

pSlider
[in] A pointer to a CMFCRibbonSlider object. The framework draws this ribbon slider.

rect
[in] A rectangle that specifies the boundaries of the zoom buttons on the ribbon slider.

bIsZoomOut
[in] A Boolean parameter that indicates which button the framework draws. A value of TRUE indicates the left
button with a "-" for zoom out. A value of FALSE indicates the right button with a "+" for zoom in.

bIsHighlighted
[in] A Boolean parameter that indicates whether the button is highlighted.

bIsPressed
[in] A Boolean parameter that indicates whether the button is pressed.

bIsDisabled
[in] A Boolean parameter that indicates whether the button is unavailable.

By default, the zoom buttons on the ribbon slider are a circle with either a + or - sign in the center. To
customize the appearance of zoom buttons, override this method in a derived visual manager.

CMFCVisualManager::OnDrawRibbonStatusBarPane

virtual COLORREF OnDrawRibbonStatusBarPane(
 CDC* pDC,
 CMFCRibbonStatusBar* pBar,
 CMFCRibbonStatusBarPane* pPane);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnDrawRibbonTabsFrame

virtual COLORREF OnDrawRibbonTabsFrame(
 CDC* pDC,
 CMFCRibbonBar* pWndRibbonBar,
 CRect rectTab);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnDrawScrollButtons

The framework calls this method when it draws a pane on the status bar.

pDC
[in] A pointer to a device context.

pBar
[in] A pointer to the status bar that contains the pane.

pPane
[in] A pointer to a status bar pane. The framework draws this CMFCRibbonStatusBarPane object.

A reserved value. The default implementation returns -1.

Override this method in a derived visual manager to customize the appearance of a pane on the status bar.

The framework calls this method when it draws the frame around a set of ribbon tabs.

pDC
A pointer to a device context.

pWndRibbonBar
A pointer to a CMFCRibbonBar object. The framework draws the frame for this ribbon bar.

rectTab
A rectangle that specifies the boundaries of the ribbon tabs.

A reserved value. By default, this method returns -1.

Override this method in a derived visual manager to customize the frame around a set of tabs on the ribbon.

virtual void OnDrawScrollButtons(
 CDC* pDC,
 const CRect& rect,
 const int nBorderSize,
 int iImage,
 BOOL bHilited);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawSeparator

virtual void OnDrawSeparator(
 CDC* pDC,
 CBasePane* pBar,
 CRect rect,
 BOOL bIsHoriz);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawShowAllMenuItems
virtual void OnDrawShowAllMenuItems(
 CDC* pDC,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

[in] pDC
[in] rect
[in] nBorderSize
[in] iImage
[in] bHilited

The framework calls this method when it draws a separator.

pDC
[in] A pointer to the device context for a control bar.

pBar
[in] A pointer to a pane that contains the separator.

rect
[in] A rectangle that specifies the boundaries of the separator.

bIsHoriz
[in] A Boolean parameter that indicates the orientation of a docked pane. A value of TRUE indicates that the
pane is docked horizontally. A value of FALSE indicates that the pane is docked vertically.

Separators are used on control bars to separate groups of related icons. The default implementation for this
method displays the standard separator. Override this method in a derived visual manager to customize the
appearance of the separator.

[in] pDC

RemarksRemarks

CMFCVisualManager::OnDrawSpinButtons

virtual void OnDrawSpinButtons(
 CDC* pDC,
 CRect rectSpin,
 int nState,
 BOOL bOrientation,
 CMFCSpinButtonCtrl* pSpinCtrl);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawSplitterBorder

virtual void OnDrawSplitterBorder(
 CDC* pDC,
 CSplitterWndEx* pSplitterWnd,
 CRect rect);

ParametersParameters

[in] rect
[in] state

The framework calls this method when it draws an instance of the CMFCSpinButtonCtrl Class.

pDC
[in] A pointer to a device context.

rectSpin
[in] A rectangle that specifies the boundaries of the spin control.

nState
[in] A flag that indicates the state of the spin control. See the Remarks section for more information.

bOrientation
[in] A Boolean parameter that specifies the orientation of the spin control. A value of TRUE indicates the spin
control is horizontal. Otherwise, it is vertical.

pSpinCtrl
[in] A pointer to a spin control. The framework draws the buttons for this control.

The nState parameter indicates the state of the spin control. The parameter is one of the following values:

AFX_SPIN_PRESSEDUP

AFX_SPIN_PRESSEDDOWN

AFX_SPIN_HIGHLIGHTEDUP

AFX_SPIN_HIGHLIGHTEDDOWN

AFX_SPIN_DISABLED

Override this method in a derived visual manager to customize the appearance of a spin control.

The framework calls this method when it draws the border around an instance of the CSplitterWndEx Class.

RemarksRemarks

CMFCVisualManager::OnDrawSplitterBox

virtual void OnDrawSplitterBox(
 CDC* pDC,
 CSplitterWndEx* pSplitterWnd,
 CRect& rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawStatusBarPaneBorder

virtual void OnDrawStatusBarPaneBorder(
 CDC* pDC,
 CMFCStatusBar* pBar,
 CRect rectPane,
 UINT uiID,
 UINT nStyle);

ParametersParameters

pDC
[in] A pointer to a device context.

pSplitterWnd
[in] A pointer to a splitter window. The framework draws the border for this window.

rect
[in] A rectangle that specifies the boundaries of the splitter window.

Override this method in a derived visual manager to customize the appearance of the border for a splitter
window.

The framework calls this method when it draws the drag box for an instance of the CSplitterWndEx Class. The
drag box appears when the user selects the splitter bar and changes the dimensions of the child windows.

pDC
[in] A pointer to a device context.

pSplitterWnd
[in] A pointer to a splitter window. The framework draws the box for this splitter window.

rect
[in] A rectangle that specifies the boundaries of the splitter window.

Override this method in a derived visual manager to customize the appearance of the drag box for a splitter
window.

The framework calls this method when it draws the border for a CMFCStatusBar object.

pDC
[in] A pointer to a device context.

pBar
[in] A pointer to a CMFCStatusBar object. The framework draws this status bar object.

rectPane

RemarksRemarks

CMFCVisualManager::OnDrawStatusBarProgress

virtual void OnDrawStatusBarProgress(
 CDC* pDC,
 CMFCStatusBar* pStatusBar,
 CRect rectProgress,
 int nProgressTotal,
 int nProgressCurr,
 COLORREF clrBar,
 COLORREF clrProgressBarDest,
 COLORREF clrProgressText,
 BOOL bProgressText);

ParametersParameters

[in] A rectangle that specifies the boundaries of the status bar.

uiID
[in] The ID of the status bar.

nStyle
[in] The style of the status bar.

Override this method in a derived visual manager to customize the appearance of the border for a
CMFCStatusBar object.

The framework calls this method when it draws the progress indicator on the CMFCStatusBar object.

pDC
[in] A pointer to the device context for the status bar.

pStatusBar
[in] The CMFCStatusBar object that contains the progress bar.

rectProgress
[in] A rectangle that specifies the boundaries of the progress bar.

nProgressTotal
[in] The total number for the progress bar.

nProgressCurr
[in] The current progress for the progress bar.

clrBar
[in] A COLORREF parameter that indicates the initial color for the progress bar. The value is either the start of
a color gradient or the complete color of the progress bar.

clrProgressBarDest
[in] A COLORREF parameter that indicates the end of a color gradient for the progress bar. If
clrProgressBarDest is -1, the framework does not draw the progress bar as a color gradient. Instead, it fills the
whole progress bar with the color specified by clrBar.

clrProgressText
[in] A COLORREF parameter that indicates the text color for the textual representation of the current progress.
This parameter is ignored if bProgressText is set to FALSE.

bProgressText
[in] A Boolean parameter that indicates whether to display the textual representation of the current progress.

https://docs.microsoft.com/windows/desktop/gdi/colorref

RemarksRemarks

CMFCVisualManager::OnDrawStatusBarSizeBox

virtual void OnDrawStatusBarSizeBox(
 CDC* pDC,
 CMFCStatusBar* pStatBar,
 CRect rectSizeBox);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawTab

virtual void OnDrawTab(
 CDC* pDC,
 CRect rectTab,
 int iTab,
 BOOL bIsActive,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

Override this method in a derived visual manager to customize the appearance of the CMFCStatusBar object.

The framework calls this method when it draws the size box for a CMFCStatusBar.

pDC
[in] A pointer to a device context.

pStatBar
[in] A pointer to a status bar. The framework draws the size box for this status bar.

rectSizeBox
[in] A rectangle that specifies the boundaries of the size box.

Override this method in a derived visual manager to customize the appearance of the size box on a
CMFCStatusBar .

The framework calls this method when it draws the tabs for a CMFCBaseTabCtrl object.

pDC
[in] A pointer to a device context.

rectTab
[in] A rectangle that specifies the boundaries of the tab control.

iTab
[in] The index of the tab that the framework draws.

bIsActive
[in] A Boolean parameter that specifies whether the tab is active.

pTabWnd
[in] A pointer to a CMFCBaseTabCtrl object. The framework draws this tab control.

A CMFCBaseTabCtrl object calls this method when it processes the WM_PAINT message.

CMFCVisualManager::OnDrawTabCloseButton

virtual void OnDrawTabCloseButton(
 CDC* pDC,
 CRect rect,
 const CMFCBaseTabCtrl* pTabWnd,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 BOOL bIsDisabled);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawTabContent

virtual void OnDrawTabContent(
 CDC* pDC,
 CRect rectTab,
 int iTab,
 BOOL bIsActive,
 const CMFCBaseTabCtrl* pTabWnd,
 COLORREF clrText);

ParametersParameters

Override this method in a derived class to customize the look of tabs.

The framework calls this method when it draws the Close button on the active tab.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the Close button.

pTabWnd
[in] A pointer to a tab control. The framework draws the Close button for this tab control.

bIsHighlighted
[in] A Boolean parameter that indicates whether the Close button is highlighted.

bIsPressed
[in] A Boolean parameter that indicates whether the Close button is pressed.

bIsDisabled
[in] A Boolean parameter that indicates whether the Close button is disabled.

Override this method in a derived visual manager to customize the appearance of the Close button on the
active tab of pTabWnd.

The framework calls this method when it draws the contents located on the interior of an instance of the
CMFCBaseTabCtrl Class.

pDC
[in] A pointer to a device context.

rectTab
[in] A rectangle that specifies the boundaries of the tab interior.

RemarksRemarks

CMFCVisualManager::OnDrawTabsButtonBorder

virtual void OnDrawTabsButtonBorder(
 CDC* pDC,
 CRect& rect,
 CMFCButton* pButton,
 UINT uiState,
 CMFCBaseTabCtrl* pWndTab);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawTask

virtual void OnDrawTask(
 CDC* pDC,
 CMFCTasksPaneTask* pTask,
 CImageList* pIcons,
 BOOL bIsHighlighted = FALSE,
 BOOL bIsSelected = FALSE);

iTab
[in] The zero-based index of the tab. The framework draws the interior of this tab.

bIsActive
[in] A Boolean parameter that indicates whether a tab is active.

pTabWnd
[in] A pointer to the tabbed control that contains the tab being drawn.

clrText
[in] The color of text on the interior of the tab.

The interior of a tab contains the text and icons of the tab. Override this method in a derived visual manager to
customize the appearance of tabs.

The framework calls this method when it draws the border of a tab button.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the tab button.

pButton
[in] A pointer to a CMFCButton object. The framework draws the border for this CMFCButton instance.

uiState
[in] An unsigned integer that specifies the state of the button.

pWndTab
[in] A pointer to the parent tab window.

Override this method in a derived visual manager to customize the appearance of the border of the tab button.

The framework calls this method when it draws a CMFCTasksPane object.

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawTasksGroupAreaBorder

virtual void OnDrawTasksGroupAreaBorder(
 CDC* pDC,
 CRect rect,
 BOOL bSpecial = FALSE,
 BOOL bNoTitle = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawTasksGroupCaption

pDC
[in] A pointer to a device context.

pTask
[in] A pointer to a CMFCTasksPaneTask object. The framework draws this task.

pIcons
[in] A pointer to the image list associated with the task pane. Each task contains an index for an image in this
list.

bIsHighlighted
[in] A Boolean parameter that specifies whether the displayed task is highlighted.

bIsSelected
[in] A Boolean parameter that specifies whether the displayed task is selected.

The framework displays tasks on the task bar as both an icon and text. The pIcons parameter contains the icon
for the task indicated by pTask.

Override this method in a derived class to customize the appearance of tasks on the task bar.

The framework calls this method when it draws a border around a group on a CMFCTasksPane Class.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the group area on the task pane.

bSpecial
[in] A Boolean parameter that specifies if the border is highlighted. A value of TRUE indicates that the border is
highlighted.

bNoTitle
[in] A Boolean parameter that specifies whether the group area has a title. A value of TRUE indicates that the
group area does not have a title.

Override this function in a derived class to customize the border around a group area on the task pane.

The framework calls this method when it draws the caption for a CMFCTasksPaneTaskGroup object.

virtual void OnDrawTasksGroupCaption(
 CDC* pDC,
 CMFCTasksPaneTaskGroup* pGroup,
 BOOL bIsHighlighted = FALSE,
 BOOL bIsSelected = FALSE,
 BOOL bCanCollapse = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawTasksGroupIcon
virtual void OnDrawTasksGroupIcon(
 CDC* pDC,
 CMFCTasksPaneTaskGroup* pGroup,
 int nIconHOffset = 5,
 BOOL bIsHighlighted = FALSE,
 BOOL bIsSelected = FALSE,
 BOOL bCanCollapse = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawTearOffCaption

pDC
[in] A pointer to a device context.

pGroup
[in] A pointer to a CMFCTasksPaneTaskGroup object. The framework draws the caption for this group.

bIsHighlighted
[in] A Boolean parameter that indicates whether the group is highlighted.

bIsSelected
[in] A Boolean parameter that indicates whether the group is currently selected.

bCanCollapse
[in] A Boolean parameter that indicates whether the group can be collapsed.

The task groups appear on the CMFCTasksPane object.

Override this method in a derived class to customize the caption for a CMFCTasksPaneTaskGroup .

[in] pDC
[in] pGroup
[in] nIconHOffset
[in] bIsHighlighted
[in] bIsSelected
[in] bCanCollapse

The framework calls this method when it draws the caption for a CMFCPopupMenu Class.

virtual void OnDrawTearOffCaption(
 CDC* pDC,
 CRect rect,
 BOOL bIsActive);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnDrawToolBoxFrame
virtual void OnDrawToolBoxFrame(
 CDC* pDC,
 const CRect& rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnEraseMDIClientArea

virtual BOOL OnEraseMDIClientArea(
 CDC* pDC,
 CRect rectClient);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the caption.

bIsActive
[in] TRUE if the caption is active; FALSE otherwise.

This function is called by the framework when a CMFCPopupMenu object processes a WM_PAINT message and
must draw a tear-off caption.

Override this method in a derived class to customize the look of captions for tear-off bars.

[in] pDC
[in] rect

The framework calls this method when it erases the MDI client area.

pDC
[in] A pointer to a device context.

rectClient
[in] A rectangle that specifies the boundaries of the MDI client area.

A reserved value. The default implementation returns FALSE.

Override this method to execute custom code when the visual manager erases the MDI client area.

CMFCVisualManager::OnErasePopupWindowButton
virtual void OnErasePopupWindowButton(
 CDC* pDC,
 CRect rectClient,
 CMFCDesktopAlertWndButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnEraseTabsArea

virtual void OnEraseTabsArea(
 CDC* pDC,
 CRect rect,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnEraseTabsButton

virtual void OnEraseTabsButton(
 CDC* pDC,
 CRect rect,
 CMFCButton* pButton,
 CMFCBaseTabCtrl* pWndTab);

ParametersParameters

[in] pDC
[in] rectClient
[in] pButton

The framework calls this method when it erases the tab area of a tab window.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the tab area.

pTabWnd
[in] A pointer to a tab window. The framework erases the tab area for the specified tab window.

This function is called by the framework when a CMFCBaseTabCtrl Class object processes a WM_PAINT
message and erases the tab area.

Override this method in a derived visual manager to customize the appearance of tabs.

The framework calls this method when it erases the text and icon of a tab button.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the tab button.

RemarksRemarks

CMFCVisualManager::OnEraseTabsFrame

virtual BOOL OnEraseTabsFrame(
 CDC* pDC,
 CRect rect,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnFillAutoHideButtonBackground

virtual void OnFillAutoHideButtonBackground(
 CDC* pDC,
 CRect rect,
 CMFCAutoHideButton* pButton);

ParametersParameters

pButton
[in] A pointer to a tab button. The framework erases the text and icon for this button.

pWndTab
[in] A pointer to the tab control that contains the tab button.

The framework erases the text and icon for a button when a CMFCBaseTabCtrl object processes the
WM_ERASEBKGND message.

Override this method in a derived visual manager to customize the appearance of tab buttons.

The framework calls this method when it erases a frame on a CMFCBaseTabCtrl Class.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the tab window.

pTabWnd
[in] A pointer to a tab window. The framework erases a frame for this CMFCBaseTabCtrl .

TRUE if the method is successful; FALSE otherwise.

This method fills the area indicated by rect with the background color of the active tab. It is called when a
CMFCBaseTabCtrl object processes a WM_PAINT message and erases a tab frame.

The framework calls this method when it fills the background of an auto-hide button.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the auto-hide button.

pButton
[in] A pointer to a CMFCAutoHideButton object. The framework fills the background for this auto-hide button.

RemarksRemarks

CMFCVisualManager::OnFillBarBackground

virtual void OnFillBarBackground(
 CDC* pDC,
 CBasePane* pBar,
 CRect rectClient,
 CRect rectClip,
 BOOL bNCArea = FALSE);

ParametersParameters

RemarksRemarks

ExampleExample

// CDC* pDC
// CRect rectClient
// The this pointer points to a CMailBar class which extends the CPaneDialog class.
CMFCVisualManager::GetInstance()->OnFillBarBackground(pDC, this, rectClient, rectClient);

CMFCVisualManager::OnFillButtonInterior

virtual void OnFillButtonInterior(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

Override this method in a derived visual manager to customize the appearance of an auto-hide button.

The framework calls this method when it fills the background of a CBasePane object.

pDC
[in] A pointer to the device context for a control bar.

pBar
[in] A pointer to a CBasePane object. The framework fills the background of this pane.

rectClient
[in] A rectangle that specifies the boundaries of the pane.

rectClip
[in] A rectangle that specifies the clipping area of the pane.

bNCArea
[in] A reserved value.

The default implementation of this method fills the background of the bar with the 3d background color from
the global variable afxGlobalData . Override this method in a derived visual manager to customize the
background of a pane.

The following example demonstrates how to use the OnFillBarBackground in the CMFCVisualManager class. This
code snippet is part of the Outlook Demo sample.

The framework calls this method when it fills the background of a toolbar button.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CMFCVisualManager::OnFillCaptionBarButton
virtual COLORREF OnFillCaptionBarButton(
 CDC* pDC,
 CMFCCaptionBar* pBar,
 CRect rect,
 BOOL bIsPressed,
 BOOL bIsHighlighted,
 BOOL bIsDisabled,
 BOOL bHasDropDownArrow,
 BOOL bIsSysButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnFillCommandsListBackground

virtual COLORREF OnFillCommandsListBackground(
 CDC* pDC,
 CRect rect,
 BOOL bIsSelected = FALSE);

ParametersParameters

pDC
[in] A pointer to the device context of a toolbar button.

pButton
[in] A pointer to a CMFCToolBarButton. The framework fills the background for this button.

rect
[in] A rectangle that specifies the boundaries of the toolbar button.

state
[in] The state of the toolbar button.

The default implementation of this method uses the default color to fill the background. Override this method
in a derived visual manager to customize the background of a toolbar button.

The possible states of a toolbar button are ButtonsIsRegular , ButtonsIsPressed , or ButtonsIsHighlighted .

[in] pDC
[in] pBar
[in] rect
[in] bIsPressed
[in] bIsHighlighted
[in] bIsDisabled
[in] bHasDropDownArrow
[in] bIsSysButton

The framework calls this method when it fills the background of a toolbar button that belongs to a command
list. This command list is part of the customization dialog.

pDC

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnFillHeaderCtrlBackground

virtual void OnFillHeaderCtrlBackground(
 CMFCHeaderCtrl* pCtrl,
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnFillMiniFrameCaption

virtual COLORREF OnFillMiniFrameCaption(
 CDC* pDC,
 CRect rectCaption,
 CPaneFrameWnd* pFrameWnd,
 BOOL bActive);

ParametersParameters

[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the button.

bIsSelected
[in] A Boolean parameter that indicates whether the button is selected.

The text color for the toolbar button.

For more information about the customization list, see CMFCToolBarButton::OnDrawOnCustomizeList. The
default implementation for this method fills the background based on the color scheme of the currently
selected skin.

The framework calls this method when it fills the background of a header control.

pCtrl
[in] A pointer to a CMFCHeaderCtrl object. The framework fills the background for this header control.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the header control.

Override this method in a derived visual manager to customize the appearance of a header control.

The framework calls this method when it fills the caption bar of a mini frame window.

pDC
[in] A pointer to a device context.

rectCaption
[in] A rectangle that specifies the boundaries of the caption bar.

pFrameWnd

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnFillOutlookBarCaption

virtual void OnFillOutlookBarCaption(
 CDC* pDC,
 CRect rectCaption,
 COLORREF& clrText);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnFillOutlookPageButton

virtual void OnFillOutlookPageButton(
 CDC* pDC,
 const CRect& rect,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 COLORREF& clrText);

ParametersParameters

[in] A pointer to a mini frame window. The framework draws the caption bar for this window.

bActive
[in] A Boolean parameter that indicates if the window is active.

The color that is used to fill the background of the caption bar.

The default implementation for this method fills the caption bar with the current caption color for the active
skin.

The framework calls this method when it fills the background of an Outlook caption bar.

pDC
[in] A pointer to a device context.

rectCaption
[in] A rectangle that specifies the boundaries of the caption bar.

clrText
[out] A reference to a COLORREF parameter. The method writes the color of text on the caption bar to this
parameter.

The default implementation of this method fills the caption bar with the color for shadows based on the current
skin. Override this method in a derived visual manager to customize the color of the Outlook caption bar.

The framework calls this method when it fills the interior of an Outlook page button.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the Outlook page button.

bIsHighlighted
[in] A Boolean parameter that specifies whether the button is highlighted.

https://docs.microsoft.com/windows/desktop/gdi/colorref

RemarksRemarks

CMFCVisualManager::OnFillPopupWindowBackground

virtual void OnFillPopupWindowBackground(
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnFillRibbonButton

virtual COLORREF OnFillRibbonButton(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnFillRibbonEdit

bIsPressed
[in] A Boolean parameter that specifies whether the button is pressed.

clrText
[out] A reference to a COLORREF parameter. This method stores the text color of the outlook page button in
this parameter.

Override this function in a derived visual manager to customize the appearance of Outlook page buttons.

The framework calls this method when it fills the background of a pop-up window.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the popup window.

Override this method in a derived visual manager to customize the appearance of pop-up windows.

The framework calls this method when it fills the interior of a ribbon button.

pDC
[in] A pointer to a device context.

pButton
[in] A pointer to a CMFCRibbonButton object. The framework fills the interior of this ribbon button.

The color of text for the ribbon button specified by pButton if the ribbon button supports text. A value of -1 if
text is invalid for the ribbon button.

Override this method in a derived visual manager to customize the appearance of ribbon buttons.

The framework calls this method when it fills the interior of an instance of the CMFCRibbonRichEditCtrl class.

https://docs.microsoft.com/windows/desktop/gdi/colorref

virtual void OnFillRibbonEdit(
 CDC* pDC,
 CMFCRibbonRichEditCtrl* pEdit,
 CRect rect,
 BOOL bIsHighlighted,
 BOOL bIsPaneHighlighted,
 BOOL bIsDisabled,
 COLORREF& clrText,
 COLORREF& clrSelBackground,
 COLORREF& clrSelText);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnFillRibbonMainPanelButton

virtual COLORREF OnFillRibbonMainPanelButton(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

pDC
[in] A pointer to a device context.

pEdit
[in] A pointer to a CMFCRibbonRichEditCtrl object. The framework fills the interior of this edit control.

rect
[in] A rectangle that specifies the boundaries of the edit control.

bIsHighlighted
[in] A Boolean parameter that indicates whether the edit control is highlighted.

bIsPaneHighlighted
[in] A Boolean parameter that indicates whether the parent pane is highlighted.

bIsDisabled
[in] A Boolean parameter that indicates whether the edit control is unavailable.

clrText
[in] A reference to the text color of the edit control.

clrSelBackground
[in] A reference to the background color of the edit control when it is highlighted.

clrSelText
[in] A reference to the color of selected text on the edit control.

The CMFCRibbonRichEditCtrl indicated by pEdit can be a part of a combo box button on the ribbon.

Override this method in a derived visual manager to customize the appearance of a CMFCRibbonRichEditCtrl .

The framework calls this method when it fills the interior of a ribbon button located on the Main panel.

pDC
[in] A pointer to a device context.

pButton

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnFillRibbonMenuFrame

virtual void OnFillRibbonMenuFrame(
 CDC* pDC,
 CMFCRibbonMainPanel* pPanel,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnFillRibbonQuickAccessToolBarPopup
virtual void OnFillRibbonQuickAccessToolBarPopup(
 CDC* pDC,
 CMFCRibbonPanelMenuBar* pMenuBar,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnFillSplitterBackground

[in] A pointer to a CMFCRibbonButton Class object. The framework fills this ribbon button.

The color of text for the ribbon button specified by pButton if the ribbon button supports text. A value of -1 if
text is invalid for the ribbon button.

Override this method in a derived visual manager to customize the appearance of ribbon buttons on the Main
panel.

The framework calls this method when it fills the menu frame of the ribbon panel.

pDC
[in] A pointer to a device context.

pPanel
[in] A pointer to an instance of the CMFCRibbonMainPanel Class. The framework fills the menu frame for this
ribbon panel.

rect
[in] A rectangle that specifies the boundaries of the menu frame.

Override this method in a derived visual manager to customize the appearance of the menu bar for the
CMFCRibbonMainPanel .

[in] pDC
[in] pMenuBar
[in] rect

The framework calls this method when it fills the background of a splitter window.

virtual void OnFillSplitterBackground(
 CDC* pDC,
 CSplitterWndEx* pSplitterWnd,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnFillTab

virtual void OnFillTab(
 CDC* pDC,
 CRect rectFill,
 CBrush* pbrFill,
 int iTab,
 BOOL bIsActive,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnFillTasksGroupInterior

pDC
[in] A pointer to a device context.

pSplitterWnd
[in] A pointer to an instance of the CSplitterWndEx Class. The framework fills the background for this splitter
window.

rect
[in] A rectangle that specifies the boundaries of the splitter window.

Override this method in a derived visual manager to customize the appearance of a splitter window.

The framework calls this method when it fills the background of a tab window.

pDC
[in] A pointer to a device context.

rectFill
[in] A rectangle that specifies the boundaries for the tab window.

pbrFill
[in] A pointer to a brush. The framework uses this brush to fill the tab window.

iTab
[in] The zero-based tab index of a tab for which the framework fills the background.

bIsActive
[in] TRUE if the tab is active; otherwise FALSE.

pTabWnd
[in] A pointer to the parent tab control.

Override this method in a derived visual manager to customize the appearance of tabs.

The framework calls this method when it fills the interior of a CMFCTasksPaneTaskGroup object.

virtual void OnFillTasksGroupInterior(
 CDC* pDC,
 CRect rect,
 BOOL bSpecial = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnFillTasksPaneBackground

virtual void OnFillTasksPaneBackground(
 CDC* pDC,
 CRect rectWorkArea);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnHighlightMenuItem

virtual void OnHighlightMenuItem(
 CDC* pDC,
 CMFCToolBarMenuButton* pButton,
 CRect rect,
 COLORREF& clrText);

ParametersParameters

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the task group.

bSpecial
[in] A Boolean that indicates if the interior is filled with a special color.

Override this method in a derived visual manager to customize the appearance of a task group.

The framework calls this method when it fills the background of a CMFCTasksPane control.

pDC
[in] A pointer to a device context.

rectWorkArea
[in] A rectangle that specifies the boundaries of the task pane.

Override this method in a derived visual manager to customize the appearance of a CMFCTasksPane object.

The framework calls this method when it draws a highlighted menu item.

pDC
[in] A pointer to the device context for a menu.

pButton
[in] A pointer to a CMFCToolBarMenuButton object to display. The default implementation does not use this
parameter.

rect

RemarksRemarks

CMFCVisualManager::OnHighlightRarelyUsedMenuItems

virtual void OnHighlightRarelyUsedMenuItems(
 CDC* pDC,
 CRect rectRarelyUsed);

ParametersParameters

RemarksRemarks

CMFCVisualManager::OnNcActivate
virtual BOOL OnNcActivate(
 CWnd* pWnd,
 BOOL bActive);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnNcPaint

virtual BOOL OnNcPaint(
 CWnd* pWnd,
 const CObList& lstSysButtons,
 CRect rectRedraw);

ParametersParameters

[in] A rectangle that specifies the boundaries of the menu item.

clrText
[in] The current text color of highlighted menu items. The default implementation does not use this parameter.

The default implementation of this method does not use the parameters pButton or clrText. It fills the rectangle
specified by rect with the standard background color.

Override this method in a derived visual manager to customize the appearance of highlighted menu items. Use
the clrText parameter to modify the text color of a highlighted menu item.

The framework calls this method when it draws a highlighted menu command.

pDC
[in] A pointer to a device context.

rectRarelyUsed
[in] A rectangle that specifies the boundaries of the highlighted command.

Override this method in a derived visual manager to customize the appearance of highlighted menu
commands.

[in] pWnd
[in] bActive

The framework calls this method when it draws the non-client area.

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnSetWindowRegion

virtual BOOL OnSetWindowRegion(
 CWnd* pWnd,
 CSize sizeWindow);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::OnUpdateSystemColors

virtual void OnUpdateSystemColors();

RemarksRemarks

CMFCVisualManager::RedrawAll

pWnd
[in] A pointer to the window whose non-client area the framework draws.

lstSysButtons
[in] A list of system buttons. These are also known as caption buttons.

rectRedraw
[in] A rectangle that specifies the boundaries of the non-client area.

A reserved value. The default implementation returns FALSE.

Override this method in a derived visual manager to customize the appearance of the window frame and
caption buttons.

The framework calls this method after it sets a region that contains frames and pop-up menus.

pWnd
[in] A pointer to the window with the region that changed.

sizeWindow
[in] The size of the window.

TRUE if the method is successful; FALSE otherwise.

The framework calls this method to notify the visual manager that a region has been set for frames and pop-up
menus. For more information, see CWindow::SetWindowRgn.

The framework calls this function when it changes the system colors.

The framework calls this method as a part of processing the WM_SYSCOLORCHANGE message. The default
implementation does nothing. Override this method in a derived visual manager if you want to execute custom
code when the colors change in your application.

Immediately redraws all the control bars in the application.

static void RedrawAll();

CMFCVisualManager::RibbonCategoryColorToRGB
virtual COLORREF RibbonCategoryColorToRGB(AFX_RibbonCategoryColor color);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManager::SetDefaultManager

static void SetDefaultManager(CRuntimeClass* pRTI);

ParametersParameters

RemarksRemarks

CMFCVisualManager::SetEmbossDisabledImage

void SetEmbossDisabledImage (BOOL bEmboss = TRUE);

ParametersParameters

RemarksRemarks

CMFCVisualManager::SetFadeInactiveImage

void SetFadeInactiveImage(BOOL bFade = TRUE);

[in] color

Sets the default manager.

pRTI
[in] A pointer to the runtime information for a visual manager.

Use the CMFCVisualManager class and any derived visual managers to customize the appearance of your
application. After you set the default visual manager, this method redraws your application by using the new
visual manager. For more information about how to use visual managers, see Visualization Manager.

Use this method to change the visual manager that your application uses.

Enables or disables the embossed mode for disabled toolbar images.

bEmboss
[in] A Boolean parameter that indicates whether to enable embossed mode for disabled toolbar images.

Use the function CMFCVisualManager::IsEmbossDisabledImage to determine whether embossed mode is
enabled.

Enables or disables the lighting effect for inactive images on a menu or toolbar.

ParametersParameters

RemarksRemarks

CMFCVisualManager::SetMenuFlatLook

void SetMenuFlatLook(BOOL bMenuFlatLook = TRUE);

ParametersParameters

RemarksRemarks

CMFCVisualManager::SetMenuShadowDepth

void SetMenuShadowDepth(int nDepth);

ParametersParameters

RemarksRemarks

CMFCVisualManager::SetShadowHighlightedImage

void SetShadowHighlightedImage(BOOL bShadow = TRUE);

ParametersParameters

RemarksRemarks

See also

bFade
[in] A Boolean parameter that specifies whether to enable the lighting effect.

This feature controls whether inactive images appear faded on a menu or toolbar. Use the method
CMFCVisualManager::IsFadeInactiveImage to determine whether this feature is enabled.

Sets a flag that indicates whether the menu buttons appear flat. Otherwise, they appear three-dimensional.

bMenuFlatLook
[in] A Boolean parameter that indicates whether the menu buttons appear flat.

By default, this feature is not enabled.

Sets the width and height of the menu shadow.

nDepth
[in] An integer that specifies the depth of the menu shadow in pixels.

The height and width of the menu shadow must be identical. The default value is 7 pixels.

Sets a flag that indicates whether the CMFCVisualManager displays shadows for highlighted images.

bShadow
[in] A Boolean parameter that indicates whether the visual manager displays a shadow under highlighted
images.

By default, this feature is disabled.

Hierarchy Chart

Classes
CMFCVisualManager::GetInstance
Visualization Manager

CMFCVisualManagerOffice2003 Class
3/4/2019 • 42 minutes to read • Edit Online

Syntax
class CMFCVisualManagerOffice2003 : public CMFCVisualManagerOfficeXP

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCVisualManagerOffice2003::DrawComboBorderWinXP Draws the combo box border using the current Windows XP
theme. (Overrides
CMFCVisualManager::DrawComboBorderWinXP.)

CMFCVisualManagerOffice2003::DrawComboDropButtonWinXP Draws a combo box drop-down button using the current
Windows XP theme. (Overrides
CMFCVisualManager::DrawComboDropButtonWinXP.)

CMFCVisualManagerOffice2003::DrawCustomizeButton Draws a customize button.

CMFCVisualManagerOffice2003::DrawPushButtonWinXP Draws a push button using the current Windows XP theme.
(Overrides CMFCVisualManager::DrawPushButtonWinXP.)

CMFCVisualManagerOffice2003::GetBaseThemeColor Gets the base theme color.

CMFCVisualManagerOffice2003::GetHighlightMenuItemColor Gets the color used for the highlighted menu item.

CMFCVisualManagerOffice2003::GetPropertyGridGroupColor The framework calls this method to get the background color of
a property list. (Overrides
CMFCVisualManagerOfficeXP::GetPropertyGridGroupColor .)

CMFCVisualManagerOffice2003::GetPropertyGridGroupTextColor The framework calls this method to retrieve the text color of a
property list. (Overrides
CMFCVisualManagerOfficeXP::GetPropertyGridGroupTextColor

.)

CMFCVisualManagerOffice2003::GetShowAllMenuItemsHeight Returns the height of all menu items. (Overrides
CMFCVisualManager::GetShowAllMenuItemsHeight.)

CMFCVisualManagerOffice2003::GetSmartDockingBaseGuideCol
ors

Sets the specified base group background color and border color.
(Overrides
CMFCVisualManagerOfficeXP::GetSmartDockingBaseGuideColors

.)

CMFCVisualManagerOffice2003::GetSmartDockingHighlightTone
Color

Gets the highlight tone color. (Overrides
CMFCVisualManager::GetSmartDockingHighlightToneColor.)

CMFCVisualManagerOffice2003 gives an application a Microsoft Office 2003 appearance.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcvisualmanageroffice2003-class.md

CMFCVisualManagerOffice2003::GetTabFrameColors The framework calls this function when it has to retrieve the set
of colors for drawing a tab window. (Overrides
CMFCVisualManager::GetTabFrameColors.)

CMFCVisualManagerOffice2003::GetToolBarCustomizeButtonMa
rgin

Gets the margin of the toolbar Customize button. (Overrides
CMFCVisualManager::GetToolBarCustomizeButtonMargin .)

CMFCVisualManagerOffice2003::GetToolbarDisabledColor Gets the disabled color for the toolbar. (Overrides
CMFCVisualManager::GetToolbarDisabledColor .)

CMFCVisualManagerOffice2003::GetToolTipInfo Called by the framework to get tooltip information. (Overrides
CMFCVisualManager::GetToolTipInfo.)

CMFCVisualManagerOffice2003::IsDefaultWinXPColorsEnabled Indicates whether the visual manager uses native Windows XP
theme colors.

CMFCVisualManagerOffice2003::IsDockingTabHasBorder Returns whether the current visual manager draws borders
around panes that are docked and tabbed. (Overrides
CMFCVisualManager::IsDockingTabHasBorder.)

CMFCVisualManagerOffice2003::IsHighlightOneNoteTabs Indicates whether OneNote tabs should be highlighted.
(Overrides CMFCVisualManager::IsHighlightOneNoteTabs .)

CMFCVisualManagerOffice2003::IsOffsetPressedButton Called by the framework when drawing a toolbar button.
(Overrides CMFCVisualManager::IsOffsetPressedButton .)

CMFCVisualManagerOffice2003::IsStatusBarOfficeXPLook Indicates whether there is a status bar with an Office XP look.

CMFCVisualManagerOffice2003::IsToolbarRoundShape Indicates whether a specified toolbar has a round shape.
(Overrides CMFCVisualManager::IsToolbarRoundShape.)

CMFCVisualManagerOffice2003::IsUseGlobalTheme Indicates whether a global Windows XP theme is used.

CMFCVisualManagerOffice2003::IsWindowsThemingSupported Indicates whether Windows theming is supported. (Overrides
CMFCVisualManager::IsWindowsThemingSupported.)

CMFCVisualManagerOffice2003::OnDrawAutoHideButtonBorder The framework calls this method when it draws the border of an
auto-hide button. (Overrides
CMFCVisualManager::OnDrawAutoHideButtonBorder.)

CMFCVisualManagerOffice2003::OnDrawBarGripper Called by the framework when it draws the gripper for a control
bar. (Overrides
CMFCVisualManagerOfficeXP::OnDrawBarGripper .)

CMFCVisualManagerOffice2003::OnDrawBrowseButton The framework calls this method when it draws the browse
button for an edit control. (Overrides
CMFCVisualManagerOfficeXP::OnDrawBrowseButton .)

CMFCVisualManagerOffice2003::OnDrawButtonBorder The framework calls this method when it draws the border of a
toolbar button. (Overrides
CMFCVisualManagerOfficeXP::OnDrawButtonBorder .)

CMFCVisualManagerOffice2003::OnDrawCaptionBarBorder The framework calls this method when it draws the border of a
CMFCCaptionBar Class object. (Overrides
CMFCVisualManager::OnDrawCaptionBarBorder.)

NAME DESCRIPTION

CMFCVisualManagerOffice2003::OnDrawCheckBoxEx The framework calls this method when it draws a checkbox.
(Overrides CMFCVisualManager::OnDrawCheckBoxEx.)

CMFCVisualManagerOffice2003::OnDrawComboBorder The framework calls this method when it draws the border
around a CMFCToolBarComboBoxButton Class object. (Overrides
CMFCVisualManagerOfficeXP::OnDrawComboBorder .)

CMFCVisualManagerOffice2003::OnDrawComboDropButton The framework calls this method when it draws the drop button
of a CMFCToolBarComboBoxButton Class. (Overrides
CMFCVisualManagerOfficeXP::OnDrawComboDropButton .)

CMFCVisualManagerOffice2003::OnDrawControlBorder The framework calls this method when it draws the border of a
control. (Overrides CMFCVisualManager::OnDrawControlBorder.)

CMFCVisualManagerOffice2003::OnDrawExpandingBox The framework calls this method when it draws an expanding
box. (Overrides CMFCVisualManager::OnDrawExpandingBox.)

CMFCVisualManagerOffice2003::OnDrawHeaderCtrlBorder The framework calls this method when it draws the border
around an instance of the CMFCHeaderCtrl Class. (Overrides
CMFCVisualManager::OnDrawHeaderCtrlBorder.)

CMFCVisualManagerOffice2003::OnDrawMenuBorder The framework calls this method when it draws the border of a
CMFCPopupMenu Class. (Overrides
CMFCVisualManagerOfficeXP::OnDrawMenuBorder .)

CMFCVisualManagerOffice2003::OnDrawOutlookBarSplitter The framework calls this method when it draws the splitter for an
Outlook bar. (Overrides
CMFCVisualManager::OnDrawOutlookBarSplitter.)

CMFCVisualManagerOffice2003::OnDrawOutlookPageButtonBor
der

Called by the framework when it draws the border of an Outlook
page button. (Overrides
CMFCVisualManager::OnDrawOutlookPageButtonBorder.)

CMFCVisualManagerOffice2003::OnDrawPaneBorder The framework calls this method when it draws the border of a
CPane Class object. (Overrides
CMFCVisualManagerOfficeXP::OnDrawPaneBorder .)

CMFCVisualManagerOffice2003::OnDrawPaneCaption The framework calls this method when it draws a caption for a
CDockablePane Class object. (Overrides
CMFCVisualManagerOfficeXP::OnDrawPaneCaption .)

CMFCVisualManagerOffice2003::OnDrawPopupWindowBorder The framework calls this method when it draws the border of a
popup window. (Overrides
CMFCVisualManagerOfficeXP::OnDrawPopupWindowBorder .)

CMFCVisualManagerOffice2003::OnDrawPopupWindowButtonB
order

The framework calls this method when it draws the border of a
button in a popup window. (Overrides
CMFCVisualManagerOfficeXP::OnDrawPopupWindowButtonBorder

.)

CMFCVisualManagerOffice2003::OnDrawPopupWindowCaption The framework calls this method when it draws the caption of a
popup window. (Overrides
CMFCVisualManagerOfficeXP::OnDrawPopupWindowCaption .)

CMFCVisualManagerOffice2003::OnDrawRibbonButtonsGroup The framework calls this method when it draws a group of
buttons on the ribbon. (Overrides
CMFCVisualManager::OnDrawRibbonButtonsGroup.)

NAME DESCRIPTION

CMFCVisualManagerOffice2003::OnDrawRibbonCategoryCaptio
n

The framework calls this method when it draws the caption bar
for a ribbon category. (Overrides
CMFCVisualManager::OnDrawRibbonCategoryCaption.)

CMFCVisualManagerOffice2003::OnDrawRibbonCategoryTab The framework calls this method when it draws the tab for a
ribbon category. (Overrides
CMFCVisualManager::OnDrawRibbonCategoryTab.)

CMFCVisualManagerOffice2003::OnDrawRibbonProgressBar The framework calls this method when it draws a
CMFCRibbonProgressBar Class. (Overrides
CMFCVisualManager::OnDrawRibbonProgressBar.)

CMFCVisualManagerOffice2003::OnDrawRibbonQuickAccessTool
BarSeparator

The framework calls this method when it draws a separator on
the Quick Access Toolbar of a ribbon. (Overrides
CMFCVisualManagerOfficeXP::OnDrawRibbonQuickAccessToolBarSeparator

.)

CMFCVisualManagerOffice2003::OnDrawRibbonSliderChannel The framework calls this method when it draws the channel of a
CMFCRibbonSlider Class. (Overrides
CMFCVisualManager::OnDrawRibbonSliderChannel.)

CMFCVisualManagerOffice2003::OnDrawRibbonSliderThumb The framework calls this method when it draws the thumb of a
CMFCRibbonSlider object. (Overrides
CMFCVisualManager::OnDrawRibbonSliderThumb.)

CMFCVisualManagerOffice2003::OnDrawRibbonSliderZoomButto
n

The framework calls this method when it draws the zoom
buttons for a CMFCRibbonSlider object. (Overrides
CMFCVisualManager::OnDrawRibbonSliderZoomButton.)

CMFCVisualManagerOffice2003::OnDrawRibbonStatusBarPane The framework calls this method when it draws a pane on the
status bar. (Overrides
CMFCVisualManagerOfficeXP::OnDrawRibbonStatusBarPane .)

CMFCVisualManagerOffice2003::OnDrawScrollButtons The framework calls this method when it draws scroll buttons.
(Overrides
CMFCVisualManagerOfficeXP::OnDrawScrollButtons .)

CMFCVisualManagerOffice2003::OnDrawSeparator The framework calls this method when it draws a separator.
(Overrides CMFCVisualManagerOfficeXP::OnDrawSeparator .)

CMFCVisualManagerOffice2003::OnDrawShowAllMenuItems The framework calls this method when it draws all the items in a
menu. (Overrides
CMFCVisualManager::OnDrawShowAllMenuItems.)

CMFCVisualManagerOffice2003::OnDrawStatusBarPaneBorder The framework calls this method when it draws the border for a
CMFCStatusBar Class object. (Overrides
CMFCVisualManagerOfficeXP::OnDrawStatusBarPaneBorder .)

CMFCVisualManagerOffice2003::OnDrawStatusBarProgress The framework calls this method when it draws the progress
indicator on the CMFCStatusBar object. (Overrides
CMFCVisualManager::OnDrawStatusBarProgress.)

CMFCVisualManagerOffice2003::OnDrawStatusBarSizeBox The framework calls this method when it draws the size box for a
CMFCStatusBar. (Overrides
CMFCVisualManager::OnDrawStatusBarSizeBox.)

NAME DESCRIPTION

CMFCVisualManagerOffice2003::OnDrawTab The framework calls this method when it draws the tabs for a
CMFCBaseTabCtrl Class object. (Overrides
CMFCVisualManagerOfficeXP::OnDrawTab .)

CMFCVisualManagerOffice2003::OnDrawTabsButtonBorder The framework calls this method when it draws the border of a
tab button. (Overrides
CMFCVisualManagerOfficeXP::OnDrawTabsButtonBorder .)

CMFCVisualManagerOffice2003::OnDrawTask The framework calls this method when it draws a
CMFCTasksPaneTask Class object. (Overrides
CMFCVisualManagerOfficeXP::OnDrawTask .)

CMFCVisualManagerOffice2003::OnDrawTasksGroupAreaBorder The framework calls this method when it draws a border around
a group on a CMFCTasksPane Class object. (Overrides
CMFCVisualManagerOfficeXP::OnDrawTasksGroupAreaBorder .)

CMFCVisualManagerOffice2003::OnDrawTasksGroupCaption The framework calls this method when it draws the caption for a
CMFCTasksPaneTaskGroup Class object. (Overrides
CMFCVisualManagerOfficeXP::OnDrawTasksGroupCaption .)

CMFCVisualManagerOffice2003::OnDrawTearOffCaption The framework calls this method when it draws the caption for a
CMFCPopupMenu Class object. (Overrides
CMFCVisualManagerOfficeXP::OnDrawTearOffCaption .)

CMFCVisualManagerOffice2003::OnErasePopupWindowButton The framework calls this method when it erases a button in a
popup window. (Overrides
CMFCVisualManagerOfficeXP::OnErasePopupWindowButton .)

CMFCVisualManagerOffice2003::OnEraseTabsArea The framework calls this method when it erases the tab area of a
tab window. (Overrides
CMFCVisualManagerOfficeXP::OnEraseTabsArea .)

CMFCVisualManagerOffice2003::OnEraseTabsButton The framework calls this method when it erases the text and icon
of a tab button. (Overrides
CMFCVisualManagerOfficeXP::OnEraseTabsButton .)

CMFCVisualManagerOffice2003::OnEraseTabsFrame The framework calls this method when it erases a frame on a
CMFCBaseTabCtrl Class. (Overrides
CMFCVisualManager::OnEraseTabsFrame.)

CMFCVisualManagerOffice2003::OnFillAutoHideButtonBackgrou
nd

The framework calls this method when it fills the background of
an auto-hide button. (Overrides
CMFCVisualManager::OnFillAutoHideButtonBackground.)

CMFCVisualManagerOffice2003::OnFillBarBackground The framework calls this method when it fills the background of a
CBasePane Class object. (Overrides
CMFCVisualManagerOfficeXP::OnFillBarBackground .)

CMFCVisualManagerOffice2003::OnFillButtonInterior The framework calls this method when it fills the background of a
toolbar button. (Overrides
CMFCVisualManagerOfficeXP::OnFillButtonInterior .)

CMFCVisualManagerOffice2003::OnFillCommandsListBackgroun
d

The framework calls this method when it fills the background of a
toolbar button that belongs to a command list. (Overrides
CMFCVisualManagerOfficeXP::OnFillCommandsListBackground

.)

NAME DESCRIPTION

CMFCVisualManagerOffice2003::OnFillHeaderCtrlBackground The framework calls this method when it fills the background of a
header control. (Overrides
CMFCVisualManager::OnFillHeaderCtrlBackground.)

CMFCVisualManagerOffice2003::OnFillHighlightedArea The framework calls this method when it fills the highlighted area
of a toolbar button. (Overrides
CMFCVisualManagerOfficeXP::OnFillHighlightedArea .)

CMFCVisualManagerOffice2003::OnFillOutlookBarCaption The framework calls this method when it fills the background of
an Outlook caption bar. (Overrides
CMFCVisualManager::OnFillOutlookBarCaption.)

CMFCVisualManagerOffice2003::OnFillOutlookPageButton The framework calls this method when it fills the interior of an
Outlook page button. (Overrides
CMFCVisualManager::OnFillOutlookPageButton.)

CMFCVisualManagerOffice2003::OnFillPopupWindowBackgroun
d

The framework calls this method when it fills the background of a
pop-up window. (Overrides
CMFCVisualManagerOfficeXP::OnFillPopupWindowBackground .)

CMFCVisualManagerOffice2003::OnFillTab The framework calls this method when it fills the background of a
tab window. (Overrides
CMFCVisualManagerOfficeXP::OnFillTab .)

CMFCVisualManagerOffice2003::OnFillTasksGroupInterior The framework calls this method when it fills the interior of a
CMFCTasksPaneTaskGroup Class object. (Overrides
CMFCVisualManagerOfficeXP::OnFillTasksGroupInterior .)

CMFCVisualManagerOffice2003::OnFillTasksPaneBackground The framework calls this method when it fills the background of a
CMFCTasksPane control. (Overrides
CMFCVisualManager::OnFillTasksPaneBackground.)

CMFCVisualManagerOffice2003::OnHighlightQuickCustomizeMe
nuButton

The framework calls this method when it draws a highlighted
quick-customize menu button. (Overrides
CMFCVisualManagerOfficeXP::OnHighlightQuickCustomizeMenuButton

.)

CMFCVisualManagerOffice2003::OnHighlightRarelyUsedMenuIte
ms

The framework calls this method when it draws a highlighted
menu command. (Overrides
CMFCVisualManagerOfficeXP::OnHighlightRarelyUsedMenuItems

.)

CMFCVisualManagerOffice2003::OnUpdateSystemColors The framework calls this function when the system colors change.
(Overrides
CMFCVisualManagerOfficeXP::OnUpdateSystemColors .)

CMFCVisualManagerOffice2003::SetDefaultWinXPColors Specifies whether the visual manager should use native Windows
XP theme colors or colors obtained from GetSysColor.

CMFCVisualManagerOffice2003::SetStatusBarOfficeXPLook Specifies that the Windows XP global theme should be used.

CMFCVisualManagerOffice2003::SetUseGlobalTheme Specifies whether the visual manager uses a global theme.

NAME DESCRIPTION

Remarks
You use the CMFCVisualManagerOffice2003 class to change the visual appearance of your application to resemble
Microsoft Office 2003.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsyscolor

Example

CMFCVisualManager::SetDefaultManager (RUNTIME_CLASS (CMFCVisualManagerOffice2003));

Inheritance Hierarchy

Requirements

CMFCVisualManagerOffice2003::DrawComboBorderWinXP

virtual BOOL DrawComboBorderWinXP(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::DrawComboDropButtonWinXP

The following example demonstrates how to set the office 2003 visual manager. This code snippet is part of the
Desktop Alert Demo sample.

CObject

CMFCBaseVisualManager

CMFCVisualManager

CMFCVisualManagerOfficeXP

CMFCVisualManagerOffice2003

Header: afxvisualmanageroffice2003.h

Draws the combo box border using the current Windows XP theme.

pDC
[in] A pointer to a device context.

rect
[in] Bounding rectangle of the combo box border.

bDisabled
[in] Specifies whether the combo box border is disabled.

bIsDropped
[in] Specifies whether the combo box border is dropped down.

bIsHighlighted
[in] Specifies whether the combo box border is highlighted.

Returns TRUE if the theme API is enabled or FALSE if not.

Draws a combo box drop-down button using the current Windows XP theme.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

virtual BOOL DrawComboDropButtonWinXP(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::DrawCustomizeButton

virtual void DrawCustomizeButton(
 CDC* pDC,
 CRect rect,
 BOOL bIsHorz,
 CMFCVisualManager::AFX_BUTTON_STATE state,
 BOOL bIsCustomize,
 BOOL bIsMoreButtons);

ParametersParameters

RemarksRemarks

pDC
[in] A pointer to a device context.

rect
[in] The bounding rectangle of the combo box drop-down button.

bDisabled
[in] Specifies whether the combo box drop-down button is disabled.

bIsDropped
[in] Specifies whether the combo box drop-down button is dropped down.

bIsHighlighted
[in] Specifies whether the combo box drop-down button is highlighted.

Returns TRUE if the theme API is enabled or FALSE if not.

Draws a customize button.

pDC
[in] Pointer to a display context.

rect
[in] The bounding rectangle of the button

bIsHorz
[in] TRUE if the button is horizontal, or FALSE if it is vertical.

state
[in] The state of the button as it is to be drawn (regular, pressed or highlighted).

bIsCustomize
[in] TRUE if the customize arrow-down or arrow-left image should be drawn in the button rectangle, or FALSE if not.

bIsMoreButtons
[in] TRUE if the horizontal or vertical customize More-Buttons image should be drawn in the button rectangle, or
FALSE if not.

CMFCVisualManagerOffice2003::DrawPushButtonWinXP

virtual BOOL DrawPushButtonWinXP(
 CDC* pDC,
 CRect rect,
 CMFCButton* pButton,
 UINT uiState);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::GetBaseThemeColor

virtual COLORREF GetBaseThemeColor();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::GetHighlightMenuItemColor

virtual COLORREF GetHighlightMenuItemColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::GetPropertyGridGroupColor

virtual COLORREF GetPropertyGridGroupColor(CMFCPropertyGridCtrl* pPropList);

ParametersParameters

Draws a push button using the current Windows XP theme.

pDC
[in] A pointer to a device context.

rect
[in] The bounding rectangle of the push button.

pButton
[in] A pointer to the CMFCButton Class object to draw.

uiState
[in] Ignored. The state is taken from pButton.

TRUE if the Theme API is enabled; otherwise FALSE.

Gets the base theme color.

Returns the theme color of the base theme, if one is set, or the color-bar face color.

Gets the color used for the highlighted menu item.

Returns the color used for the highlighted menu item.

The framework calls this method to get the background color of a property list.

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::GetPropertyGridGroupTextColor

virtual COLORREF GetPropertyGridGroupTextColor(CMFCPropertyGridCtrl* pPropList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::GetShowAllMenuItemsHeight

virtual int GetShowAllMenuItemsHeight(
 CDC* pDC,
 const CSize& sizeDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::GetSmartDockingBaseGuideColors

virtual void GetSmartDockingBaseGuideColors(
 COLORREF& clrBaseGroupBackground,
 COLORREF& clrBaseGroupBorder);

ParametersParameters

pPropList
[in] A pointer to the property list that the framework is drawing.

Returns the background color of pPropList.

Override this function to customize the background color of a property list in your application.

The framework calls this method to retrieve the text color of a property list.

pPropList
[in] A pointer to the property list.

Returns the text color of the specified property list.

Override this function to customize the text color of a property list in your application.

Returns the height of all menu items.

pDC
[in] A pointer to the device context.

sizeDefault
[in] Default menu size.

By default, returns the height of all menu images plus margins.

Sets the specified base group background color and border color.

clrBaseGroupBackground
[in] Reference to a COLORREF to set to the background color.

https://docs.microsoft.com/windows/desktop/gdi/colorref

RemarksRemarks

CMFCVisualManagerOffice2003::GetSmartDockingHighlightToneColor

virtual COLORREF GetSmartDockingHighlightToneColor();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::GetTabFrameColors

virtual void GetTabFrameColors(
 const CMFCBaseTabCtrl* pTabWnd,
 COLORREF& clrDark,
 COLORREF& clrBlack,
 COLORREF& clrHighlight,
 COLORREF& clrFace,
 COLORREF& clrDarkShadow,
 COLORREF& clrLight,
 CBrush*& pbrFace,
 CBrush*& pbrBlack);

ParametersParameters

clrBaseGroupBorder
[in] Reference to a COLORREF to set to the border color.

Returns the highlight tone color.

Returns a COLORREF that contains the highlight tone color.

The framework calls this function when it has to retrieve the set of colors for drawing a tab window.

pTabWnd
[in] A pointer to the tabbed window where the frame is drawing a tab.

clrDark
[out] A reference to a COLORREF parameter where this method stores the color for the dark border of a tab.

clrBlack
[out] A reference to a COLORREF parameter where this method stores the color for the border of the tab window. The
default color for the border is black.

clrHighlight
[out] A reference to a COLORREF parameter where this method stores the color for the highlight state of the tab
window.

clrFace
[out] A reference to a COLORREF parameter where this method stores the color for face of the tab window.

clrDarkShadow
[out] A reference to a COLORREF parameter where this method stores the color for the shadow of the tab window.

clrLight
[out] A reference to a COLORREF parameter where this method stores the color for the light edge of the tab window.

pbrFace
[out] A pointer to a reference for a brush. This method stores the brush that it uses to fill the face of the tab window in
this parameter.

pbrBlack

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref

RemarksRemarks

CMFCVisualManagerOffice2003::GetToolBarCustomizeButtonMargin

virtual int GetToolBarCustomizeButtonMargin() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::GetToolbarDisabledColor

virtual COLORREF GetToolbarDisabledColor() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::GetToolTipInfo

virtual BOOL GetToolTipInfo(
 CMFCToolTipInfo& params,
 UINT nType = (UINT)(-1));

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::IsDefaultWinXPColorsEnabled

static BOOL IsDefaultWinXPColorsEnabled();

Return ValueReturn Value

RemarksRemarks

[out] A pointer to a reference for a brush. This method stores the brush it uses to fill the black edge of the tab window in
this parameter.

Gets the margin for the toolbar Customize button.

Returns the margin for the toolbar Customize button.

Gets the disabled color for the toolbar.

Returns a COLORREF that contains the disabled color.

Called by the framework to get tooltip information.

params
[out] A reference to a CMFCToolTipInfo Class object where this method returns tooltip information.

nType
[in] Type information for the tooltip information to be returned.

Returns TRUE if tooltip information is returned, and FALSE otherwise.

Indicates whether the visual manager uses theme colors that are native to Windows XP.

TRUE if the visual manager uses native colors; otherwise, FALSE.

https://docs.microsoft.com/windows/desktop/gdi/colorref

CMFCVisualManagerOffice2003::IsDockingTabHasBorder

virtual BOOL IsDockingTabHasBorder();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::IsHighlightOneNoteTabs

virtual BOOL IsHighlightOneNoteTabs() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::IsOffsetPressedButton

virtual BOOL IsOffsetPressedButton() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::IsStatusBarOfficeXPLook

static BOOL __stdcall IsStatusBarOfficeXPLook();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::IsToolbarRoundShape

virtual BOOL IsToolbarRoundShape(CMFCToolBar* pToolBar);

ParametersParameters

For more information about native colors, see CMFCVisualManagerOffice2003::SetDefaultWinXPColors.

Returns whether the current visual manager draws borders around panes that are docked and tabbed.

TRUE if the visual manager draws borders around panes that are docked and tabbed; FALSE otherwise.

Indicates whether OneNote tabs should be highlighted.

Returns TRUE.

Called by the framework while drawing a toolbar button.

The default implementation returns FALSE.

Indicates whether there is a status bar with an Office XP look.

Returns TRUE if there is a status bar with an Office XP look, or FALSE if not.

Indicates whether a specified toolbar is round.

pToolBar

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::IsUseGlobalTheme

static BOOL IsUseGlobalTheme();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::IsWindowsThemingSupported

virtual BOOL IsWindowsThemingSupported() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawAutoHideButtonBorder

virtual void OnDrawAutoHideButtonBorder(
 CDC* pDC,
 CRect rectBounds,
 CRect rectBorderSize,
 CMFCAutoHideButton* pButton);

ParametersParameters

RemarksRemarks

[in] Pointer to the toolbar in question.

Returns TRUE if the toolbar is round, or FALSE if it is a menu bar.

Indicates whether your application uses a Windows XP theme.

TRUE if the visual manager uses a Windows XP theme; otherwise, FALSE.

Use the method CMFCVisualManagerOffice2003::SetUseGlobalTheme to change whether your visual manager uses a
Windows XP theme.

Indicates whether Windows theming is supported.

Returns TRUE if Windows theming is supported, or FALSE if not.

The framework calls this method when it draws the border of an auto-hide button.

pDC
[in] A pointer to a device context.

rectBounds
[in] The size and location of the auto-hide button.

rectBorderSize
[in] The sizes of the borders.

pButton
[in] A pointer to the auto-hide button. The framework is drawing the border for this button.

Override this method in a derived class if you want to customize the appearance of the border of an auto-hide button.
By default, this method fills a flat border with the default shadow color for your application.

CMFCVisualManagerOffice2003::OnDrawBarGripper

virtual void OnDrawBarGripper(
 CDC* pDC,
 CRect rectGripper,
 BOOL bHorz,
 CBasePane* pBar);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawBrowseButton

virtual BOOL OnDrawBrowseButton(
 CDC* pDC,
 CRect rect,
 CMFCEditBrowseCtrl* pEdit,
 CMFCVisualManager::AFX_BUTTON_STATE state,
 COLORREF& clrText);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawButtonBorder

The rectBorderSize parameter does not contain the coordinates of the border. It contains the size of the border in the
top , bottom , left , and right data members. A value less than or equal to 0 indicates no border on that side of the

auto-hide button.

Called by the framework when it draws the gripper for a control bar.

pDC
[in] A pointer to the device context for a control bar.

rectGripper
[in] The bounding rectangle for the control bar.

bHorz
[in] A Boolean parameter that specifies whether the control bar is docked horizontally or vertically.

pBar
[in] A pointer to a control bar. The visual manager draws the gripper of this control bar.

The default implementation of this method displays the standard gripper. To customize the appearance of the gripper,
override this method in a custom class derived from the CMFCVisualManagerOffice2003 Class.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] pDC
[in] rect
[in] pEdit
[in] state
[in] clrText

The framework calls this method when it draws the border of a toolbar button.

virtual void OnDrawButtonBorder(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawCaptionBarBorder

virtual void OnDrawCaptionBarBorder(
 CDC* pDC,
 CMFCCaptionBar* pBar,
 CRect rect,
 COLORREF clrBarBorder,
 BOOL bFlatBorder);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawCheckBoxEx

pDC
[in] A pointer to the device context of a toolbar button.

pButton
[in] A pointer to a toolbar button. The framework draws the border of this button.

rect
[in] A rectangle that specifies the boundaries of the toolbar button.

state
[in] An enumerated data type that specifies the current state of the toolbar button.

The default implementation of this method displays the standard border. Override this method in a derived visual
manager to customize the appearance of the border of a toolbar button.

The possible states of a toolbar button are ButtonsIsRegular , ButtonsIsPressed , or ButtonsIsHighlighted .

The framework calls this method when it draws the border of a CMFCCaptionBar Class object.

pDC
[in] A pointer to a device context.

pBar
[in] A pointer to a CMFCCaptionBar Class object. The framework draws this caption bar.

rect
[in] A rectangle that specifies the boundaries of the caption bar.

clrBarBorder
[in] The color of the border.

bFlatBorder
[in] TRUE if the border should have a flat, 2D appearance, or FALSE if not.

Override this method in a derived class to customize the appearance of the border of a caption bar.

Called by the framework when drawing a checkbox.

virtual void OnDrawCheckBoxEx(
 CDC* pDC,
 CRect rect,
 int nState,
 BOOL bHighlighted,
 BOOL bPressed,
 BOOL bEnabled);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawComboBorder

virtual void OnDrawComboBorder(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted,
 CMFCToolBarComboBoxButton* pButton);

ParametersParameters

pDC
[in] Pointer to a device context.

rect
[in] The bounding rectangle of the checkbox.

nState
[in] The state of the checkbox: 0 if unchecked, 1 if checked, 2 if checked mixed.

bHighlighted
[in] TRUE if the checkbox is highlighted, or FALSE if not.

bPressed
[in] TRUE if the checkbox is pressed, or FALSE if not.

bEnabled
[in] TRUE if the checkbox is enabled, or FALSE if not.

The framework calls this method when it draws the border around an instance of a CMFCToolBarComboBoxButton
Class.

pDC
[in] A pointer to the device context of a combo box button.

rect
[in] A rectangle that specifies the boundaries of the combo box button.

bDisabled
[in] A Boolean parameter that indicates whether the combo box button is unavailable.

bIsDropped
[in] A Boolean parameter that indicates whether the combo box is dropped down.

bIsHighlighted
[in] A Boolean parameter that indicates whether the combo box button is highlighted.

pButton
[in] A pointer to a CMFCToolBarComboBoxButton object. The framework draws this combo box button.

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawComboDropButton

virtual void OnDrawComboDropButton(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted,
 CMFCToolBarComboBoxButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawControlBorder

virtual void OnDrawControlBorder(CWnd* pWndCtrl);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawExpandingBox

Override this method in your derived visual manager to customize the appearance of the border of the combo box.

The framework calls this method when it draws the drop button of a CMFCToolBarComboBoxButton Class.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the drop button.

bDisabled
[in] A Boolean parameter that indicates whether the drop button is unavailable.

bIsDropped
[in] A Boolean parameter that indicates whether the combo box is dropped down.

bIsHighlighted
[in] A Boolean parameter that indicates whether the drop button is highlighted.

pButton
[in] A pointer to a CMFCToolBarComboBoxButton object. The framework draws the drop button for this combo box button

Override this method in your derived visual manager to customize the appearance of the drop button of a combo box
button.

The framework calls this method when it draws the border of a control.

pWndCtrl
[in] Pointer to a CWnd Class object representing the control for which to draw the border.

Called by the framework while drawing an expanding box.

virtual void OnDrawExpandingBox(
 CDC* pDC,
 CRect rect,
 BOOL bIsOpened,
 COLORREF colorBox);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawHeaderCtrlBorder

virtual void OnDrawHeaderCtrlBorder(
 CMFCHeaderCtrl* pCtrl,
 CDC* pDC,
 CRect& rect,
 BOOL bIsPressed,
 BOOL bIsHighlighted);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawMenuBorder

virtual void OnDrawMenuBorder(
 CDC* pDC,
 CMFCPopu* pMenu,
 CRect rect);

ParametersParameters

pDC
[in] Pointer to the display context in which the expanding box is to be drawn.

rect
[in] The bounding rectangle of the expanding box to be drawn.

bIsOpened
[in] TRUE if the box to be drawn is opened, or FALSE if not.

colorBox
[in] The color of the outside border of the box to be drawn.

The framework calls this method when it draws the border around an instance of the CMFCHeaderCtrl Class.

pCtrl
[in] A pointer to a CMFCHeaderCtrl Class object. The framework draws the border of this header control.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the header control.

[in] bIsPressed
[in] bIsHighlighted
A Boolean parameter that indicates whether the header control is pressed.

Override this method in a derived visual manager to customize the border of the header control.

The framework calls this method when it draws the border of a CMFCPopupMenu Class.

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawOutlookBarSplitter

virtual void OnDrawOutlookBarSplitter(
 CDC* pDC,
 CRect rectSplitter);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawOutlookPageButtonBorder

virtual void OnDrawOutlookPageButtonBorder(
 CDC* pDC,
 CRect& rectBtn,
 BOOL bIsHighlighted,
 BOOL bIsPressed);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawPaneBorder

pDC
[in] A pointer to the device context for a CMFCPopupMenu Class object.

pMenu
[in] A pointer to a CMFCPopupMenu Class object. The framework draws a border around this popup menu.

rect
[in] A rectangle that specifies the boundaries of the popup menu.

The default implementation of this method displays the standard menu border. Override this method in a derived visual
manager to customize the appearance of the menu border.

The framework calls this method when it draws the splitter for an Outlook bar.

pDC
[in] A pointer to a device context.

rectSplitter
[in] A rectangle that specifies the boundaries of the splitter.

Override this method in a derived visual manager to customize the appearance of splitters on an Outlook bar.

Called by the framework when it draws the border of an Outlook page button.

pDC
[in] A pointer to a device context.

rectBtn
[in] A rectangle that specifies the boundary of the Outlook page button.

bIsHighlighted
[in] A Boolean that specifies whether the button is highlighted.

bIsPressed
[in] A Boolean that specifies whether the button is pressed.

Override this method in a custom visual manager to change the appearance of the Outlook page button.

virtual void OnDrawPaneBorder(
 CDC* pDC,
 CBasePane* pBar,
 CRect& rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawPaneCaption

virtual COLORREF OnDrawPaneCaption(
 CDC* pDC,
 CDockablePane* pBar,
 BOOL bActive,
 CRect rectCaption,
 CRect rectButtons);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawPopupWindowBorder

The framework calls this method when it draws the border of a CPane Class object.

pDC
[in] A pointer to the device context of a control bar.

pBar
[in] A pointer to a pane. The visual manager draws the border of this pane.

rect
[in] A rectangle that indicates the boundaries of the pane.

The default implementation of this method displays the standard border. Override this method in a derived class to
customize the appearance of the border.

The framework calls this method when it draws a caption for a CDockablePane Class object.

pDC
[in] A pointer to a device context.

pBar
[in] A pointer to a CDockablePane Class object. The framework draws the caption for this pane.

bActive
[in] A Boolean parameter that indicates whether the control bar is active.

rectCaption
[in] A rectangle that specifies the boundaries of the caption.

rectButtons
[in] A rectangle that specifies the boundaries of the caption buttons.

A COLORREF parameter that indicates the text color of the caption.

The framework calls this method when it draws the border of a popup window.

https://docs.microsoft.com/windows/desktop/gdi/colorref

virtual void OnDrawPopupWindowBorder(
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawPopupWindowButtonBorder

virtual void OnDrawPopupWindowButtonBorder(
 CDC* pDC,
 CRect rectClient,
 CMFCDesktopAlertWndButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawPopupWindowCaption

virtual COLORREF OnDrawPopupWindowCaption(
 CDC* pDC,
 CRect rectCaption,
 CMFCDesktopAlertWnd* pPopupWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pDC
[in] Pointer to the device context of the popup window.

rect
[in] The bounding rectangle of the popup window.

The framework calls this method when it draws the border of button in a popup window.

pDC
[in] Pointer to the device context of the button.

rectClient
[in] Bounding rectangle of the button.

pButton
[in] Pointer to the button (a CMFCDesktopAlertWndButton Class object).

The framework calls this method when it draws the caption of a popup window.

pDC
[in] Pointer to the device context of the caption.

rectCaption
[in] Bounding rectangle of the caption.

pPopupWnd
[in] Pointer to the popup window for which the caption is to be drawn.

The text color of the caption.

Override this method in a derived visual manager to customize the appearance of popup-window captions.

CMFCVisualManagerOffice2003::OnDrawRibbonButtonsGroup

virtual COLORREF OnDrawRibbonButtonsGroup(
 CDC* pDC,
 CMFCRibbonButtonsGroup* pGroup,
 CRect rectGroup);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawRibbonCategoryCaption

virtual COLORREF OnDrawRibbonCategoryCaption(
 CDC* pDC,
 CMFCRibbonContextCaption* pContextCaption);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawRibbonCategoryTab

virtual COLORREF OnDrawRibbonCategoryTab(
 CDC* pDC,
 CMFCRibbonTab* pTab,
 BOOL bIsActive);

ParametersParameters

The framework calls this method when it draws a group of buttons on the ribbon.

pDC
[in] A pointer to a device context.

pGroup
[in] A pointer to a group of buttons on the ribbon. The framework draws this group of buttons.

rectGroup
[in] A rectangle that specifies the boundaries of the group.

A reserved value. The default implementation returns -1.

Override this method in a derived visual manager to customize the appearance of a group of buttons on the ribbon.

The framework calls this method when it draws the caption bar for a ribbon category.

pDC
[in] A pointer to the device context of the ribbon category.

pContextCaption
[in] A pointer to a caption bar. The visual manager draws this CMFCRibbonContextCaption Class.

A COLORREF parameter that indicates the color of the text on the caption bar.

Override this method in a derived class to customize the appearance of the caption bar for a ribbon category.

The framework calls this method when it draws the tab for a ribbon category.

pDC

https://docs.microsoft.com/windows/desktop/gdi/colorref

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawRibbonProgressBar

virtual void OnDrawRibbonProgressBar(
 CDC* pDC,
 CMFCRibbonProgressBar* pProgress,
 CRect rectProgress,
 CRect rectChunk,
 BOOL bInfiniteMode);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawRibbonQuickAccessToolBarSepa
rator

virtual void OnDrawRibbonQuickAccessToolBarSeparator(
 CDC* pDC,
 CMFCRibbonSeparator* pSeparator,
 CRect rect);

ParametersParameters

[in] A pointer to a device context.

pTab
[in] A pointer to a ribbon tab object. The framework draws this tab.

bIsActive
[in] TRUE if the tab is active, or FALSE if not.

The color that is used for text on the ribbon category tab.

Override this method in a derived visual manager to customize the appearance of a ribbon category tab.

The framework calls this method when it draws a CMFCRibbonProgressBar Classobject.

pDC
[in] A pointer to a device context.

pProgress
[in] A pointer to a CMFCRibbonProgressBar Class object. The framework draws this progress bar.

rectProgress
[in] A rectangle that specifies the boundaries of the progress bar.

rectChunk
[in] A rectangle that specifies the boundaries of the area surrounding the progress bar.

bInfiniteMode
[in] TRUE if the bar is in infinite mode, or FALSE if not. The default implementation does not use this parameter.

Override this method in a derived class to customize the appearance of a progress bar

The framework calls this method when it draws a separator on the Quick Access Toolbar of a ribbon.

pDC
[in] A pointer to a device context.

pSeparator

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawRibbonSliderChannel

virtual void OnDrawRibbonSliderChannel(
 CDC* pDC,
 CMFCRibbonSlider* pSlider,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawRibbonSliderThumb

virtual void OnDrawRibbonSliderThumb(
 CDC* pDC,
 CMFCRibbonSlider* pSlider,
 CRect rect,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 BOOL bIsDisabled);

ParametersParameters

[in] A pointer to a CMFCRibbonSeparator Class object. The framework draws this ribbon separator.

rect
[in] A rectangle that specifies the boundaries of the separator.

Override this method in a derived class to customize the appearance of ribbon separators on the Quick Access Toolbar.

The framework calls this method when it draws the channel of a CMFCRibbonSlider Class.

pDC
[in] Pointer to a device context.

pSlider
[in] A pointer to a CMFCRibbonSlider Class object. The framework draws the channel for this ribbon slider.

rect
[in] A rectangle that specifies the boundaries for the channel of the ribbon slider.

Override this method in a derived class to customize the appearance of the channel of the ribbon slider.

The framework calls this method when it draws the thumb of a CMFCRibbonSlider Class object

pDC
[in] A pointer to a device context.

pSlider
[in] A pointer to a CMFCRibbonSlider Class. The framework draws the thumb for this ribbon slider.

rect
[in] A rectangle that specifies the boundaries of the thumb for the ribbon slider.

bIsHighlighted
[in] A Boolean parameter that indicates whether the thumb is highlighted.

bIsPressed
[in] A Boolean parameter that indicates whether the thumb is pressed.

bIsDisabled
[in] A Boolean parameter that indicates whether the thumb is unavailable.

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawRibbonSliderZoomButton

virtual void OnDrawRibbonSliderZoomButton(
 CDC* pDC,
 CMFCRibbonSlider* pSlider,
 CRect rect,
 BOOL bIsZoomOut,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 BOOL bIsDisabled);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawRibbonStatusBarPane

virtual COLORREF OnDrawRibbonStatusBarPane(
 CDC* pDC,
 CMFCRibbonStatusBar* pBar,
 CMFCRibbonStatusBarPane* pPane);

ParametersParameters

Override this method in a derived visual manager to customize the appearance of the thumb for a ribbon slider.

The framework calls this method when it draws the zoom buttons for a CMFCRibbonSlider Class object.

pDC
[in] A pointer to a device context.

pSlider
[in] A pointer to a CMFCRibbonSlider Class object. The framework draws this ribbon slider.

rect
[in] A rectangle that specifies the boundaries of the zoom buttons on the ribbon slider.

bIsZoomOut
[in] TRUE if the framework should draw the left button with a " -" for zoom out, or FALSE if the framework should draw
the right button with a " +" for zoom in.

bIsHighlighted
[in] A Boolean parameter that indicates whether the button is highlighted.

bIsPressed
[in] A Boolean parameter that indicates whether the button is pressed.

bIsDisabled
[in] A Boolean parameter that indicates whether the button is unavailable.

By default, the zoom buttons on the ribbon slider are a circle with either a + or - sign in the center. To customize the
appearance of zoom buttons, override this method in a derived visual manager.

The framework calls this method when it draws a pane on the status bar.

pDC
[in] A pointer to a device context.

pBar
[in] A pointer to the status bar that contains the pane.

pPane

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawScrollButtons

virtual void OnDrawScrollButtons(
 CDC* pDC,
 const CRect& rect,
 const int nBorderSize,
 int iImage,
 BOOL bHilited);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawSeparator

virtual void OnDrawSeparator(
 CDC* pDC,
 CBasePane* pBar,
 CRect rect,
 BOOL bIsHoriz);

ParametersParameters

[in] A pointer to a status bar pane. The framework draws this CMFCRibbonStatusBarPane Class object.

A reserved value. The default implementation returns -1.

Override this method in a derived visual manager to customize the appearance of a pane on the status bar.

The framework calls this method when it draws scroll buttons.

pDC
[in] Pointer to a device context.

rect
[in] The bounding rectangle of the scroll buttons.

nBorderSize
[in] The size of the border to draw around the scroll buttons.

iImage
[in] An identifier of the image to draw in the scroll buttons.

bHilited
[in] TRUE if the scroll buttons are highlighted, or FALSE if not.

The framework calls this method when it draws a separator.

pDC
[in] A pointer to the device context for a control bar.

pBar
[in] A pointer to a pane that contains the separator.

rect
[in] A rectangle that specifies the boundaries of the separator.

bIsHoriz
[in] TRUE if the pane is docked horizontally, or FALSE if the pane is docked vertically.

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawShowAllMenuItems

virtual void OnDrawShowAllMenuItems(
 CDC* pDC,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawStatusBarPaneBorder

virtual void OnDrawStatusBarPaneBorder(
 CDC* pDC,
 CMFCStatusBar* pBar,
 CRect rectPane,
 UINT uiID,
 UINT nStyle);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawStatusBarProgress

Separators are used on control bars to separate groups of related icons. The default implementation for this method
displays the standard separator. Override this method in a derived visual manager to customize the appearance of the
separator.

The framework calls this method when it draws all the items in a menu

pDC
[in] Pointer to a device context.

rect
[in] The bounding rectangle of the menu to be drawn.

state
[in] The button state.

The framework calls this method when it draws the border for a CMFCStatusBar Class object.

pDC
[in] A pointer to a device context.

pBar
[in] A pointer to a CMFCStatusBar Class object. The framework draws this status bar object.

rectPane
[in] A rectangle that specifies the boundaries of the status bar.

uiID
[in] The ID of the status bar.

nStyle
[in] The style of the status bar.

Override this method in a derived visual manager to customize the appearance of the border for a CMFCStatusBar

object.

virtual void OnDrawStatusBarProgress(
 CDC* pDC,
 CMFCStatusBar* pStatusBar,
 CRect rectProgress,
 int nProgressTotal,
 int nProgressCurr,
 COLORREF clrBar,
 COLORREF clrProgressBarDest,
 COLORREF clrProgressText,
 BOOL bProgressText);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawStatusBarSizeBox

virtual void OnDrawStatusBarSizeBox(
 CDC* pDC,
 CMFCStatusBar* pStatBar,
 CRect rectSizeBox);

ParametersParameters

RemarksRemarks

The framework calls this method when it draws the progress indicator on the CMFCStatusBar Class object

pDC
[in] A pointer to the device context for the status bar

pStatusBar
[in] The CMFCStatusBar Class object that contains the progress bar.

rectProgress
[in] A rectangle that specifies the boundaries of the progress bar.

nProgressTotal
[in] The total number for the progress bar.

nProgressCurr
[in] The current progress for the progress bar.

clrBar
[in] The initial color for the progress bar. The value is either the start of a color gradient or the complete color of the
progress bar.

[in] clrProgressBarDest
[in] clrProgressText
[in] bProgressText

Override this method in a derived visual manager to customize the appearance of the progress bar on a status bar.

The framework calls this method when it draws the size box for a CMFCStatusBar Class.

pDC
[in] A pointer to a device context.

pStatBar
[in] A pointer to a status bar. The framework draws the size box for this status bar.

rectSizeBox
[in] A rectangle that specifies the boundaries of the size box.

CMFCVisualManagerOffice2003::OnDrawTab

virtual void OnDrawTab(
 CDC* pDC,
 CRect rectTab,
 int iTab,
 BOOL bIsActive,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawTabsButtonBorder

virtual void OnDrawTabsButtonBorder(
 CDC* pDC,
 CRect& rect,
 CMFCButton* pButton,
 UINT uiState,
 CMFCBaseTabCtrl* pWndTab);

ParametersParameters

Override this method in a derived visual manager to customize the appearance of the size box on a status bar.

The framework calls this method when it draws the tabs for a CMFCBaseTabCtrl Class object.

pDC
[in] A pointer to a device context.

rectTab
[in] A rectangle that specifies the boundaries of the tab control.

iTab
[in] The index of the tab that the framework draws.

bIsActive
[in] A Boolean parameter that specifies whether the tab is active.

pTabWnd
[in] A pointer to a CMFCBaseTabCtrl Class object. The framework draws this tab control.

A CMFCBaseTabCtrl object calls this method when it processes the WM_PAINT message.Override this method in a
derived class to customize the look of tabs.

The framework calls this method when it draws the border of a tab button.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the tab button.

pButton
[in] A pointer to the CMFCButton Class for which the framework draws the border.

uiState
[in] The state of the button (see CButton::GetState).

pWndTab
[in] A pointer to the parent tab window.

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawTask

virtual void OnDrawTask(
 CDC* pDC,
 CMFCTasksPaneTask* pTask,
 CImageList* pIcons,
 BOOL bIsHighlighted = FALSE,
 BOOL bIsSelected = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawTasksGroupAreaBorder

virtual void OnDrawTasksGroupAreaBorder(
 CDC* pDC,
 CRect rect,
 BOOL bSpecial = FALSE,
 BOOL bNoTitle = FALSE);

ParametersParameters

Override this method in a derived visual manager to customize the appearance of the border of the tab button.

The framework calls this method when it draws a CMFCTasksPaneTask Class object.

pDC
[in] A pointer to a device context.

pTask
[in] A pointer to a CMFCTasksPaneTask Class object. The framework draws this task.

pIcons
[in] A pointer to the image list associated with the task pane. Each task contains an index for an image in this list.

bIsHighlighted
[in] A Boolean parameter that specifies whether the displayed task is highlighted.

bIsSelected
[in] A Boolean parameter that specifies whether the displayed task is selected.

The framework displays tasks on the task bar as both an icon and text. The pIcons parameter contains the icon for the
task indicated by pTask. Override this method in a derived class to customize the appearance of tasks on the task bar.

The framework calls this method when it draws a border around a group on a CMFCTasksPane Class object.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the group area on the task pane.

bSpecial
[in] A Boolean parameter that specifies if the border is highlighted. A value of TRUE indicates that the border is
highlighted.

bNoTitle
[in] A Boolean parameter that specifies whether the group area has a title. A value of TRUE indicates that the group
area does not have a title.

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawTasksGroupCaption

virtual void OnDrawTasksGroupCaption(
 CDC* pDC,
 CMFCTasksPaneTaskGroup* pGroup,
 BOOL bIsHighlighted = FALSE,
 BOOL bIsSelected = FALSE,
 BOOL bCanCollapse = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnDrawTearOffCaption

virtual void OnDrawTearOffCaption(
 CDC* pDC,
 CRect rect,
 BOOL bIsActive);

ParametersParameters

RemarksRemarks

Override this function in a derived class to customize the border around a group area on the task pane.

The framework calls this method when it draws the caption for a CMFCTasksPaneTaskGroup Class object.

pDC
[in] A pointer to a device context.

pGroup
[in] A pointer to a CMFCTasksPaneTaskGroup Class object. The framework draws the caption for this group.

bIsHighlighted
[in] A Boolean parameter that indicates whether the group is highlighted.

bIsSelected
[in] A Boolean parameter that indicates whether the group is currently selected.

bCanCollapse
[in] A Boolean parameter that indicates whether the group can be collapsed.

Override this method in a derived class to customize the caption for a CMFCTasksPaneTaskGroup .

The framework calls this method when it draws the caption for a CMFCPopupMenu Class object.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the caption.

bIsActive
[in] TRUE if the caption is active; FALSE otherwise.

This function is called by the framework when a CMFCPopupMenu Class object processes a WM_PAINT message and
must draw a tear-off caption.

Override this method in a derived class to customize the look of captions for tear-off bars.

CMFCVisualManagerOffice2003::OnErasePopupWindowButton

virtual void OnErasePopupWindowButton(
 CDC* pDC,
 CRect rectClient,
 CMFCDesktopAlertWndButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnEraseTabsArea

virtual void OnEraseTabsArea(
 CDC* pDC,
 CRect rect,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnEraseTabsButton

virtual void OnEraseTabsButton(
 CDC* pDC,
 CRect rect,
 CMFCButton* pButton,
 CMFCBaseTabCtrl* pWndTab);

ParametersParameters

The framework calls this method when it erases a button in a popup window.

pDC
[in] A pointer to a device context.

rectClient
[in] The rectangle that specifies the client area of the popup window.

pButton
[in] Pointer to the button to be erased.

The framework calls this method when it erases the tab area of a tab window.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the tab area.

pTabWnd
[in] A pointer to a tab window. The framework erases the tab area for the specified tab window.

This function is called by the framework when a CMFCBaseTabCtrl Class object processes a WM_PAINT message and
erases the tab area.

Override this method in a derived visual manager to customize the appearance of tabs.

The framework calls this method when it erases the text and icon of a tab button.

pDC
[in] A pointer to a device context.

RemarksRemarks

CMFCVisualManagerOffice2003::OnEraseTabsFrame

virtual BOOL OnEraseTabsFrame(
 CDC* pDC,
 CRect rect,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillAutoHideButtonBackground

virtual void OnFillAutoHideButtonBackground(
 CDC* pDC,
 CRect rect,
 CMFCAutoHideButton* pButton);

ParametersParameters

rect
[in] A rectangle that specifies the boundaries of the tab button.

pButton
[in] A pointer to a tab button. The framework erases the text and icon for this button.

pWndTab
[in] A pointer to the tab control that contains the tab button.

The framework erases the text and icon for a button when a CMFCBaseTabCtrl Class object processes the
WM_ERASEBKGND message

Override this method in a derived visual manager to customize the appearance of tab buttons.

The framework calls this method when it erases a frame on a CMFCBaseTabCtrl Class object.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the tab window.

pTabWnd
[in] A pointer to a tab window. The framework erases a frame for this CMFCBaseTabCtrl Class.

TRUE if the method is successful or FALSE if not.

This method fills the area indicated by rect with the background color of the active tab. It is called when a
CMFCBaseTabCtrl object processes a WM_PAINT message and erases a tab frame.

The framework calls this method when it fills the background of an auto-hide button.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the auto-hide button.

pButton

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillBarBackground

virtual void OnFillBarBackground(
 CDC* pDC,
 CBasePane* pBar,
 CRect rectClient,
 CRect rectClip,
 BOOL bNCArea = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillButtonInterior

virtual void OnFillButtonInterior(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

[in] A pointer to a CMFCAutoHideButton Class object. The framework fills the background for this auto-hide button.

Override this method in a derived visual manager to customize the appearance of an auto-hide button.

The framework calls this method when it fills the background of a CBasePane Class object.

pDC
[in] A pointer to the device context for a control bar.

pBar
[in] A pointer to a CBasePane Class object. The framework fills the background of this pane.

rectClient
[in] A rectangle that specifies the boundaries of the pane.

rectClip
[in] A rectangle that specifies the clipping area of the pane.

bNCArea
[in] A reserved value.

The default implementation of this method fills the background of the bar with the 3d background color from the global
variable afxGlobalData .

Override this method in a derived visual manager to customize the background of a pane.

The framework calls this method when it fills the background of a toolbar button.

pDC
[in] A pointer to the device context of a toolbar button.

pButton
[in] A pointer to the button for which the framework is filling the background.

rect
[in] A rectangle that specifies the boundaries of the toolbar button.

state
[in] The state of the toolbar button (the possible states of a toolbar button are ButtonsIsRegular , ButtonsIsPressed , or

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillCommandsListBackground

virtual COLORREF OnFillCommandsListBackground(
 CDC* pDC,
 CRect rect,
 BOOL bIsSelected = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillHeaderCtrlBackground

virtual void OnFillHeaderCtrlBackground(
 CMFCHeaderCtrl* pCtrl,
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillHighlightedArea

ButtonsIsHighlighted).

The default implementation of this method uses the default color to fill the background. Override this method in a
derived visual manager to customize the background of a toolbar button.

The framework calls this method when it fills the background of a toolbar button that belongs to a command list. This
command list is part of the customization dialog.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the button.

bIsSelected
[in] A Boolean parameter that indicates whether the button is selected.

The text color for the toolbar button.

For more information about the customization list, see CMFCToolBarButton::OnDrawOnCustomizeList. The default
implementation for this method fills the background based on the color scheme of the currently selected skin.

The framework calls this method when it fills the background of a header control.

pCtrl
[in] A pointer to a CMFCHeaderCtrl Class object. The framework fills the background for this header control.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the header control.

Override this method in a derived visual manager to customize the appearance of a header control.

The framework calls this method when it fills the highlighted area of a toolbar button.

virtual void OnFillHighlightedArea(
 CDC* pDC,
 CRect rect,
 CBrush* pBrush,
 CMFCToolBarButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillOutlookBarCaption

virtual void OnFillOutlookBarCaption(
 CDC* pDC,
 CRect rectCaption,
 COLORREF& clrText);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillOutlookPageButton

virtual void OnFillOutlookPageButton(
 CDC* pDC,
 const CRect& rect,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 COLORREF& clrText);

ParametersParameters

pDC
[in] Pointer to a device context.

rect
[in] The bounding rectangle of the highlighted area to fill.

pBrush
[in] The brush to use in filling the highlighted area.

pButton
[in] Pointer to the CMFCToolBarButton Class object for which to fill the highlighted area.

The framework calls this method when it fills the background of an Outlook caption bar.

pDC
[in] A pointer to a device context.

rectCaption
[in] A rectangle that specifies the boundaries of the caption bar.

clrText
[out] A reference to a COLORREF object to which this method writes the color of text on the caption bar.

The default implementation of this method fills the caption bar with the color for shadows based on the current skin.

Override this method in a derived visual manager to customize the color of the Outlook caption bar.

The framework calls this method when it fills the interior of an Outlook page button.

pDC
[in] A pointer to a device context.

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillPopupWindowBackground

virtual void OnFillPopupWindowBackground(
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillTab

virtual void OnFillTab(
 CDC* pDC,
 CRect rectFill,
 CBrush* pbrFill,
 int iTab,
 BOOL bIsActive,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

rect
[in] A rectangle that specifies the boundaries of the Outlook page button.

bIsHighlighted
[in] A Boolean parameter that specifies whether the button is highlighted.

bIsPressed
[in] A Boolean parameter that specifies whether the button is pressed.

clrText
[out] A reference to a COLORREF object where this method stores the text color of the outlook page button.

Override this function in a derived visual manager to customize the appearance of Outlook page buttons.

The framework calls this method when it fills the background of a pop-up window.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the popup window.

Override this method in a derived visual manager to customize the appearance of pop-up windows.

The framework calls this method when it fills the background of a tab window.

pDC
[in] A pointer to a device context.

rectFill
[in] A rectangle that specifies the boundaries for the tab window.

pbrFill
[in] A pointer to the brush that the framework is using to fill the tab window.

iTab
[in] The zero-based tab index of a tab for which the framework fills the background.

bIsActive
[in] TRUE if the tab is active or FALSE if not.

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillTasksGroupInterior

virtual void OnFillTasksGroupInterior(
 CDC* pDC,
 CRect rect,
 BOOL bSpecial = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnFillTasksPaneBackground

virtual void OnFillTasksPaneBackground(
 CDC* pDC,
 CRect rectWorkArea);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnHighlightQuickCustomizeMenuButto
n

virtual void OnHighlightQuickCustomizeMenuButton(
 CDC* pDC,
 CMFCToolBarMenuButton* pButton,
 CRect rect);

pTabWnd
[in] A pointer to the parent tab control.

Override this method in a derived visual manager to customize the appearance of tabs.

The framework calls this method when it fills the interior of a CMFCTasksPaneTaskGroup Class object.

pDC
[in] A pointer to a device context.

rect
[in] A rectangle that specifies the boundaries of the task group.

bSpecial
[in] A Boolean that indicates if the interior is filled with a special color.

Override this method in a derived visual manager to customize the appearance of a task group.

The framework calls this method when it fills the background of a CMFCTasksPane Class control.

pDC
[in] A pointer to a device context.

rectWorkArea
[in] A rectangle that specifies the boundaries of the task pane.

Override this method in a derived visual manager to customize the appearance of a CMFCTasksPane Class object.

The framework calls this method when it draws a highlighted quick-customize menu button.

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnHighlightRarelyUsedMenuItems

virtual void OnHighlightRarelyUsedMenuItems(
 CDC* pDC,
 CRect rectRarelyUsed);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::OnUpdateSystemColors

virtual void OnUpdateSystemColors();

RemarksRemarks

CMFCVisualManagerOffice2003::SetDefaultWinXPColors

static void SetDefaultWinXPColors(BOOL bDefaultWinXPColors = TRUE);

ParametersParameters

RemarksRemarks

pDC
[in] A pointer to the device context for the button.

pButton
[in] A pointer to the button.

rect
[in] The bounding rectangle of the button.

The framework calls this method when it draws a highlighted menu command.

pDC
[in] A pointer to a device context.

rectRarelyUsed
[in] A rectangle that specifies the boundaries of the highlighted command.

Override this method in a derived visual manager to customize the appearance of highlighted menu commands.

The framework calls this function when the system colors change.

The framework calls this method as a part of processing the WM_SYSCOLORCHANGE message. Override this method
in a derived visual manager if you want to execute custom code when the colors change in your application.

Specifies whether the visual manager should use native Windows XP theme colors or colors obtained from
GetSysColor.

bDefaultWinXPColors
[in] Specifies whether the visual manager will use native Windows XP colors.

If bDefaultWinXPColors is TRUE, the visual manager will use native Windows XP colors such as blue, olive, or silver.
Otherwise, the visual manager will use the colors obtained from GetSysColor . The visual manager uses visual elements
such as COLOR_3DFACE, COLOR_3DSHADOW, COLOR_3DHIGHLIGHT, COLOR_3DDKSHADOW, and
COLOR_3DLIGHT.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsyscolor

CMFCVisualManagerOffice2003::SetStatusBarOfficeXPLook

static void __stdcall SetStatusBarOfficeXPLook(BOOL bStatusBarOfficeXPLook = TRUE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2003::SetUseGlobalTheme

static void SetUseGlobalTheme(BOOL bUseGlobalTheme = TRUE);

ParametersParameters

RemarksRemarks

See also

By default, a CMFCVisualManagerOffice2003 object uses native Windows XP theme colors.

Specifies that the Windows XP global theme should be used.

bStatusBarOfficeXPLook
[in] TRUE if the Windows XP global theme should be used (the default), or FALSE if not.

Specifies whether the visual manager uses a global theme.

bUseGlobalTheme
[in] TRUE if you want the visual manager to use a global theme; FALSE otherwise.

If a CMFCVisualManagerOffice2003 object uses a global theme, it draws the GUI elements by using the
CMFCVisualManagerWindows Class.

If a CMFCVisualManagerOffice2003 object does not use a global theme, it draws the GUI elements by using the
CMFCVisualManagerOfficeXP Class.

Hierarchy Chart
Classes
CMFCVisualManager Class
CMFCVisualManagerOfficeXP Class
CMFCVisualManagerWindows Class

CMFCVisualManagerOffice2007 Class
3/4/2019 • 12 minutes to read • Edit Online

Syntax
class CMFCVisualManagerOffice2007 : public CMFCVisualManagerOffice2003

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCVisualManagerOffice2007::AlwaysHighlight3DTabs

CMFCVisualManagerOffice2007::CleanStyle

CMFCVisualManagerOffice2007::GetCaptionBarTextColor

CMFCVisualManagerOffice2007::GetHighlightedMenuItemTex
tColor

CMFCVisualManagerOffice2007::GetMenuItemTextColor

CMFCVisualManagerOffice2007::GetNcBtnSize

CMFCVisualManagerOffice2007::GetRibbonBar

CMFCVisualManagerOffice2007::GetRibbonHyperlinkTextColo
r

CMFCVisualManagerOffice2007::GetRibbonPopupBorderSize

CMFCVisualManagerOffice2007::GetRibbonQuickAccessToolB
arChevronOffset

CMFCVisualManagerOffice2007::GetRibbonQuickAccessToolB
arRightMargin

CMFCVisualManagerOffice2007::GetRibbonQuickAccessToolB
arTextColor

CMFCVisualManagerOffice2007::GetRibbonStatusBarTextColo
r

CMFCVisualManagerOffice2007 gives an application a Microsoft Office 2007 appearance.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcvisualmanageroffice2007-class.md

CMFCVisualManagerOffice2007::GetShowAllMenuItemsHeigh
t

CMFCVisualManagerOffice2007::GetStatusBarPaneTextColor

CMFCVisualManagerOffice2007::GetStyle Returns the current color scheme of the
CMFCVisualManagerOffice2007 GUI which, in turn, mimics

the Microsoft Office 2007 GUI.

CMFCVisualManagerOffice2007::GetTabFrameColors

CMFCVisualManagerOffice2007::GetTabHorzMargin

CMFCVisualManagerOffice2007::GetTabTextColor

CMFCVisualManagerOffice2007::GetToolbarButtonTextColor

CMFCVisualManagerOffice2007::GetToolbarDisabledTextColor

CMFCVisualManagerOffice2007::GetToolTipInfo

CMFCVisualManagerOffice2007::IsHighlightWholeMenuItem

CMFCVisualManagerOffice2007::IsLayeredRibbonKeyTip

CMFCVisualManagerOffice2007::IsOwnerDrawCaption

CMFCVisualManagerOffice2007::IsOwnerDrawMenuCheck

CMFCVisualManagerOffice2007::IsRibbonPresent

CMFCVisualManagerOffice2007::OnDrawBarGripper

CMFCVisualManagerOffice2007::OnDrawButtonBorder

CMFCVisualManagerOffice2007::OnDrawButtonSeparator

CMFCVisualManagerOffice2007::OnDrawCaptionBarInfoArea

CMFCVisualManagerOffice2007::OnDrawCheckBoxEx

CMFCVisualManagerOffice2007::OnDrawComboBorder

CMFCVisualManagerOffice2007::OnDrawComboDropButton

CMFCVisualManagerOffice2007::OnDrawDefaultRibbonImage

CMFCVisualManagerOffice2007::OnDrawEditBorder

CMFCVisualManagerOffice2007::OnDrawFloatingToolbarBord
er

NAME DESCRIPTION

CMFCVisualManagerOffice2007::OnDrawHeaderCtrlBorder

CMFCVisualManagerOffice2007::OnDrawMenuBorder

CMFCVisualManagerOffice2007::OnDrawMenuCheck

CMFCVisualManagerOffice2007::OnDrawMenuItemButton

CMFCVisualManagerOffice2007::OnDrawMenuLabel

CMFCVisualManagerOffice2007::OnDrawMenuResizeBar

CMFCVisualManagerOffice2007::OnDrawMenuScrollButton

CMFCVisualManagerOffice2007::OnDrawMenuSystemButton

CMFCVisualManagerOffice2007::OnDrawMiniFrameBorder

CMFCVisualManagerOffice2007::OnDrawOutlookBarSplitter

CMFCVisualManagerOffice2007::OnDrawOutlookPageButton
Border

CMFCVisualManagerOffice2007::OnDrawPaneCaption

CMFCVisualManagerOffice2007::OnDrawPopupWindowCapti
on

CMFCVisualManagerOffice2007::OnDrawPropertySheetListIte
m

CMFCVisualManagerOffice2007::OnDrawRibbonApplicationBu
tton

CMFCVisualManagerOffice2007::OnDrawRibbonButtonBorder

CMFCVisualManagerOffice2007::OnDrawRibbonButtonsGrou
p

CMFCVisualManagerOffice2007::OnDrawRibbonCaption

CMFCVisualManagerOffice2007::OnDrawRibbonCaptionButto
n

CMFCVisualManagerOffice2007::OnDrawRibbonCategory

CMFCVisualManagerOffice2007::OnDrawRibbonCategoryCap
tion

CMFCVisualManagerOffice2007::OnDrawRibbonCategoryScro
ll

NAME DESCRIPTION

CMFCVisualManagerOffice2007::OnDrawRibbonCategoryTab

CMFCVisualManagerOffice2007::OnDrawRibbonCheckBoxOn
List

CMFCVisualManagerOffice2007::OnDrawRibbonDefaultPaneB
utton

CMFCVisualManagerOffice2007::OnDrawRibbonDefaultPaneB
uttonIndicator

CMFCVisualManagerOffice2007::OnDrawRibbonGalleryBorder

CMFCVisualManagerOffice2007::OnDrawRibbonGalleryButton

CMFCVisualManagerOffice2007::OnDrawRibbonKeyTip

CMFCVisualManagerOffice2007::OnDrawRibbonMainPanelBu
ttonBorder

CMFCVisualManagerOffice2007::OnDrawRibbonMainPanelFra
me

CMFCVisualManagerOffice2007::OnDrawRibbonMenuCheckF
rame

CMFCVisualManagerOffice2007::OnDrawRibbonPanel

CMFCVisualManagerOffice2007::OnDrawRibbonPanelCaption

CMFCVisualManagerOffice2007::OnDrawRibbonProgressBar

CMFCVisualManagerOffice2007::OnDrawRibbonRecentFilesFr
ame

CMFCVisualManagerOffice2007::OnDrawRibbonSliderChannel

CMFCVisualManagerOffice2007::OnDrawRibbonSliderThumb

CMFCVisualManagerOffice2007::OnDrawRibbonSliderZoomB
utton

CMFCVisualManagerOffice2007::OnDrawRibbonStatusBarPan
e

CMFCVisualManagerOffice2007::OnDrawRibbonTabsFrame

CMFCVisualManagerOffice2007::OnDrawScrollButtons

CMFCVisualManagerOffice2007::OnDrawSeparator

CMFCVisualManagerOffice2007::OnDrawShowAllMenuItems

NAME DESCRIPTION

CMFCVisualManagerOffice2007::OnDrawStatusBarPaneBorde
r

CMFCVisualManagerOffice2007::OnDrawStatusBarSizeBox

CMFCVisualManagerOffice2007::OnDrawTab

CMFCVisualManagerOffice2007::OnDrawTabsButtonBorder

CMFCVisualManagerOffice2007::OnDrawTask

CMFCVisualManagerOffice2007::OnDrawTasksGroupCaption

CMFCVisualManagerOffice2007::OnDrawTearOffCaption

CMFCVisualManagerOffice2007::OnEraseMDIClientArea

CMFCVisualManagerOffice2007::OnEraseTabsArea

CMFCVisualManagerOffice2007::OnEraseTabsButton

CMFCVisualManagerOffice2007::OnEraseTabsFrame

CMFCVisualManagerOffice2007::OnFillBarBackground

CMFCVisualManagerOffice2007::OnFillButtonInterior

CMFCVisualManagerOffice2007::OnFillCaptionBarButton

CMFCVisualManagerOffice2007::OnFillHighlightedArea

CMFCVisualManagerOffice2007::OnFillMiniFrameCaption

CMFCVisualManagerOffice2007::OnFillOutlookBarCaption

CMFCVisualManagerOffice2007::OnFillOutlookPageButton

CMFCVisualManagerOffice2007::OnFillPopupWindowBackgro
und

CMFCVisualManagerOffice2007::OnFillRibbonButton

CMFCVisualManagerOffice2007::OnFillRibbonEdit

CMFCVisualManagerOffice2007::OnFillRibbonMainPanelButto
n

CMFCVisualManagerOffice2007::OnFillRibbonMenuFrame

CMFCVisualManagerOffice2007::OnFillRibbonQuickAccessTool
BarPopup

NAME DESCRIPTION

CMFCVisualManagerOffice2007::OnFillTab

CMFCVisualManagerOffice2007::OnHighlightMenuItem

CMFCVisualManagerOffice2007::OnHighlightRarelyUsedMen
uItems

CMFCVisualManagerOffice2007::OnNcActivate

CMFCVisualManagerOffice2007::OnNcPaint

CMFCVisualManagerOffice2007::OnSetWindowRegion

CMFCVisualManagerOffice2007::OnUpdateSystemColors

CMFCVisualManagerOffice2007::SetResourceHandle

CMFCVisualManagerOffice2007::SetStyle Sets the color scheme of the CMFCVisualManagerOffice2007

GUI.

NAME DESCRIPTION

Remarks

Example

CMFCVisualManagerOffice2007::SetStyle (CMFCVisualManagerOffice2007::Office2007_LunaBlue);
CMFCVisualManager::SetDefaultManager (RUNTIME_CLASS (CMFCVisualManagerOffice2007));

Inheritance Hierarchy

Requirements

Use CMFCVisualManagerOffice2007 to change the visual appearance of your application to resemble that of
Microsoft Office 2007. This visual manager requires that you set the style before you use it. Before you pass this
visual manager to CMFCVisualManager::SetDefaultManager , you must call the static function
CMFCVisualManagerOffice2007::SetStyle .

The following example demonstrates how to use the visual manager Office 2007. This code snippet is part of the
Desktop Alert Demo sample.

CObject

CMFCBaseVisualManager

CMFCVisualManager

CMFCVisualManagerOfficeXP

CMFCVisualManagerOffice2003

CMFCVisualManagerOffice2007

Header: afxvisualmanageroffice2007.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCVisualManagerOffice2007::AlwaysHighlight3DTabs
virtual BOOL AlwaysHighlight3DTabs() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::CleanStyle
static void __stdcall CleanStyle();

RemarksRemarks

CMFCVisualManagerOffice2007::GetCaptionBarTextColor
virtual COLORREF GetCaptionBarTextColor(CMFCCaptionBar* pBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetHighlightedMenuItemTextColor
virtual COLORREF GetHighlightedMenuItemTextColor(CMFCToolBarMenuButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetMenuItemTextColor
virtual COLORREF GetMenuItemTextColor(
 CMFCToolBarMenuButton* pButton,
 BOOL bHighlighted,
 BOOL bDisabled);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] pBar

[in] pButton

[in] pButton
[in] bHighlighted
[in] bDisabled

CMFCVisualManagerOffice2007::GetNcBtnSize
virtual CSize GetNcBtnSize(BOOL bSmall) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetRibbonBar
CMFCRibbonBar* GetRibbonBar(CWnd* pWnd) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetRibbonHyperlinkTextColor
virtual COLORREF GetRibbonHyperlinkTextColor(CMFCRibbonLinkCtrl* pHyperLink);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetRibbonPopupBorderSize
virtual int GetRibbonPopupBorderSize(const CMFCRibbonPanelMenu* pPopup) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetRibbonQuickAccessToolBarChevr
onOffset

virtual int GetRibbonQuickAccessToolBarChevronOffset();

Return ValueReturn Value

RemarksRemarks

[in] bSmall

[in] pWnd

[in] pHyperLink

[in] pPopup

CMFCVisualManagerOffice2007::GetRibbonQuickAccessToolBarRight
Margin

virtual int GetRibbonQuickAccessToolBarRightMargin();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetRibbonQuickAccessToolBarTextCo
lor

virtual COLORREF GetRibbonQuickAccessToolBarTextColor(BOOL bDisabled = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetRibbonStatusBarTextColor
virtual COLORREF GetRibbonStatusBarTextColor(CMFCRibbonStatusBar* pStatusBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetShowAllMenuItemsHeight
virtual int GetShowAllMenuItemsHeight(
 CDC* pDC,
 const CSize& sizeDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetStatusBarPaneTextColor
virtual COLORREF GetStatusBarPaneTextColor(
 CMFCStatusBar* pStatusBar,
 CMFCStatusBarPaneInfo* pPane);

[in] bDisabled

[in] pStatusBar

[in] pDC
[in] sizeDefault

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetTabFrameColors
virtual void GetTabFrameColors(
 const CMFCBaseTabCtrl* pTabWnd,
 COLORREF& clrDark,
 COLORREF& clrBlack,
 COLORREF& clrHighlight,
 COLORREF& clrFace,
 COLORREF& clrDarkShadow,
 COLORREF& clrLight,
 CBrush*& pbrFace,
 CBrush*& pbrBlack);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::GetTabHorzMargin
virtual int GetTabHorzMargin(const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetTabTextColor
virtual COLORREF GetTabTextColor(
 const CMFCBaseTabCtrl* pTabWnd,
 int iTab,
 BOOL bIsActive);

ParametersParameters

[in] pStatusBar
[in] pPane

[in] pTabWnd
[in] clrDark
[in] clrBlack
[in] clrHighlight
[in] clrFace
[in] clrDarkShadow
[in] clrLight
[in] pbrFace
[in] pbrBlack

[in] pTabWnd

[in] pTabWnd
[in] iTab

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetToolbarButtonTextColor
virtual COLORREF GetToolbarButtonTextColor(
 CMFCToolBarButton* pButton,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetToolbarDisabledTextColor
virtual COLORREF GetToolbarDisabledTextColor();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::GetToolTipInfo
virtual BOOL GetToolTipInfo(
 CMFCToolTipInfo& params,
 UINT nType = (UINT)(-1));

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::IsHighlightWholeMenuItem
virtual BOOL IsHighlightWholeMenuItem();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::IsLayeredRibbonKeyTip
virtual BOOL IsLayeredRibbonKeyTip() const;

[in] bIsActive

[in] pButton
[in] state

[in] params
[in] nType

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::IsOwnerDrawCaption
virtual BOOL IsOwnerDrawCaption();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::IsOwnerDrawMenuCheck
virtual BOOL IsOwnerDrawMenuCheck();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::IsRibbonPresent
BOOL IsRibbonPresent(CWnd* pWnd) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawBarGripper
virtual void OnDrawBarGripper(
 CDC* pDC,
 CRect rectGripper,
 BOOL bHorz,
 CBasePane* pBar);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawButtonBorder

[in] pWnd

[in] pDC
[in] rectGripper
[in] bHorz
[in] pBar

virtual void OnDrawButtonBorder(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawButtonSeparator
virtual void OnDrawButtonSeparator(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state,
 BOOL bHorz);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawCaptionBarInfoArea
virtual void OnDrawCaptionBarInfoArea(
 CDC* pDC,
 CMFCCaptionBar* pBar,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawCheckBoxEx

[in] pDC
[in] pButton
[in] rect
[in] state

[in] pDC
[in] pButton
[in] rect
[in] state
[in] bHorz

[in] pDC
[in] pBar
[in] rect

virtual void OnDrawCheckBoxEx(
 CDC* pDC,
 CRect rect,
 int nState,
 BOOL bHighlighted,
 BOOL bPressed,
 BOOL bEnabled);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawComboBorder
virtual void OnDrawComboBorder(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted,
 CMFCToolBarComboBoxButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawComboDropButton
virtual void OnDrawComboDropButton(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted,
 CMFCToolBarComboBoxButton* pButton);

ParametersParameters

[in] pDC
[in] rect
[in] nState
[in] bHighlighted
[in] bPressed
[in] bEnabled

[in] pDC
[in] rect
[in] bDisabled
[in] bIsDropped
[in] bIsHighlighted
[in] pButton

[in] pDC
[in] rect
[in] bDisabled
[in] bIsDropped
[in] bIsHighlighted

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawDefaultRibbonImage
virtual void OnDrawDefaultRibbonImage(
 CDC* pDC,
 CRect rectImage,
 BOOL bIsDisabled = FALSE,
 BOOL bIsPressed = FALSE,
 BOOL bIsHighlighted = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawEditBorder
virtual void OnDrawEditBorder(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsHighlighted,
 CMFCToolBarEditBoxButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawFloatingToolbarBorder
virtual void OnDrawFloatingToolbarBorder(
 CDC* pDC,
 CMFCBaseToolBar* pToolBar,
 CRect rectBorder,
 CRect rectBorderSize);

ParametersParameters

RemarksRemarks

[in] pButton

[in] pDC
[in] rectImage
[in] bIsDisabled
[in] bIsPressed
[in] bIsHighlighted

[in] pDC
[in] rect
[in] bDisabled
[in] bIsHighlighted
[in] pButton

[in] pDC
[in] pToolBar
[in] rectBorder
[in] rectBorderSize

CMFCVisualManagerOffice2007::OnDrawHeaderCtrlBorder
virtual void OnDrawHeaderCtrlBorder(
 CMFCHeaderCtrl* pCtrl,
 CDC* pDC,
 CRect& rect,
 BOOL bIsPressed,
 BOOL bIsHighlighted);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawMenuBorder
virtual void OnDrawMenuBorder(
 CDC* pDC,
 CMFCPopu* pMenu,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawMenuCheck
virtual void OnDrawMenuCheck(
 CDC* pDC,
 CMFCToolBarMenuButton* pButton,
 CRect rect,
 BOOL bHighlight,
 BOOL bIsRadio);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawMenuItemButton

[in] pCtrl
[in] pDC
[in] rect
[in] bIsPressed
[in] bIsHighlighted

[in] pDC
[in] pMenu
[in] rect

[in] pDC
[in] pButton
[in] rect
[in] bHighlight
[in] bIsRadio

virtual void OnDrawMenuItemButton(
 CDC* pDC,
 CMFCToolBarMenuButton* pButton,
 CRect rectButton,
 BOOL bHighlight,
 BOOL bDisabled);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawMenuLabel
virtual COLORREF OnDrawMenuLabel(
 CDC* pDC,
 CRect rect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawMenuResizeBar
virtual void OnDrawMenuResizeBar(
 CDC* pDC,
 CRect rect,
 int nResizeFlags);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawMenuScrollButton
virtual void OnDrawMenuScrollButton(
 CDC* pDC,
 CRect rect,
 BOOL bIsScrollDown,
 BOOL bIsHighlited,
 BOOL bIsPressed,
 BOOL bIsDisabled);

[in] pDC
[in] pButton
[in] rectButton
[in] bHighlight
[in] bDisabled

[in] pDC
[in] rect

[in] pDC
[in] rect
[in] nResizeFlags

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawMenuSystemButton
virtual void OnDrawMenuSystemButton(
 CDC* pDC,
 CRect rect,
 UINT uiSystemCommand,
 UINT nStyle,
 BOOL bHighlight);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawMiniFrameBorder
virtual void OnDrawMiniFrameBorder(
 CDC* pDC,
 CPaneFrameWnd* pFrameWnd,
 CRect rectBorder,
 CRect rectBorderSize);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawOutlookBarSplitter
virtual void OnDrawOutlookBarSplitter(
 CDC* pDC,
 CRect rectSplitter);

ParametersParameters

[in] pDC
[in] rect
[in] bIsScrollDown
[in] bIsHighlited
[in] bIsPressed
[in] bIsDisabled

[in] pDC
[in] rect
[in] uiSystemCommand
[in] nStyle
[in] bHighlight

[in] pDC
[in] pFrameWnd
[in] rectBorder
[in] rectBorderSize

[in] pDC
[in] rectSplitter

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawOutlookPageButtonBorder
virtual void OnDrawOutlookPageButtonBorder(
 CDC* pDC,
 CRect& rectBtn,
 BOOL bIsHighlighted,
 BOOL bIsPressed);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawPaneCaption
virtual COLORREF OnDrawPaneCaption(
 CDC* pDC,
 CDockablePane* pBar,
 BOOL bActive,
 CRect rectCaption,
 CRect rectButtons);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawPopupWindowCaption
virtual COLORREF OnDrawPopupWindowCaption(
 CDC* pDC,
 CRect rectCaption,
 CMFCDesktopAlertWnd* pPopupWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawPropertySheetListItem

[in] pDC
[in] rectBtn
[in] bIsHighlighted
[in] bIsPressed

[in] pDC
[in] pBar
[in] bActive
[in] rectCaption
[in] rectButtons

[in] pDC
[in] rectCaption
[in] pPopupWnd

virtual COLORREF OnDrawPropertySheetListItem(
 CDC* pDC,
 CMFCPropertySheet* pParent,
 CRect rect,
 BOOL bIsHighlihted,
 BOOL bIsSelected);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonApplicationButton
virtual void OnDrawRibbonApplicationButton(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonButtonBorder
virtual void OnDrawRibbonButtonBorder(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonButtonsGroup
virtual COLORREF OnDrawRibbonButtonsGroup(
 CDC* pDC,
 CMFCRibbonButtonsGroup* pGroup,
 CRect rectGroup);

ParametersParameters

[in] pDC
[in] pParent
[in] rect
[in] bIsHighlihted
[in] bIsSelected

[in] pDC
[in] pButton

[in] pDC
[in] pButton

[in] pDC
[in] pGroup
[in] rectGroup

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonCaption
virtual void OnDrawRibbonCaption(
 CDC* pDC,
 CMFCRibbonBar* pBar,
 CRect rectCaption,
 CRect rectText);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonCaptionButton
virtual void OnDrawRibbonCaptionButton(
 CDC* pDC,
 CMFCRibbonCaptionButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonCategory
virtual void OnDrawRibbonCategory(
 CDC* pDC,
 CMFCRibbonCategory* pCategory,
 CRect rectCategory);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonCategoryCaption
virtual COLORREF OnDrawRibbonCategoryCaption(
 CDC* pDC,
 CMFCRibbonContextCaption* pContextCaption);

ParametersParameters

[in] pDC
[in] pBar
[in] rectCaption
[in] rectText

[in] pDC
[in] pButton

[in] pDC
[in] pCategory
[in] rectCategory

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonCategoryScroll
virtual void OnDrawRibbonCategoryScroll(
 CDC* pDC,
 CRibbonCategoryScroll* pScroll);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonCategoryTab
virtual COLORREF OnDrawRibbonCategoryTab(
 CDC* pDC,
 CMFCRibbonTab* pTab,
 BOOL bIsActive);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonCheckBoxOnList
virtual void OnDrawRibbonCheckBoxOnList(
 CDC* pDC,
 CMFCRibbonCheckBox* pCheckBox,
 CRect rect,
 BOOL bIsSelected,
 BOOL bHighlighted);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonDefaultPaneButton

[in] pDC
[in] pContextCaption

[in] pDC
[in] pScroll

[in] pDC
[in] pTab
[in] bIsActive

[in] pDC
[in] pCheckBox
[in] rect
[in] bIsSelected
[in] bHighlighted

virtual void OnDrawRibbonDefaultPaneButton(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonDefaultPaneButtonInd
icator

virtual void OnDrawRibbonDefaultPaneButtonIndicator(
 CDC* pDC,
 CMFCRibbonButton* pButton,
 CRect rect,
 BOOL bIsSelected,
 BOOL bHighlighted);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonGalleryBorder
virtual void OnDrawRibbonGalleryBorder(
 CDC* pDC,
 CMFCRibbonGallery* pButton,
 CRect rectBorder);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonGalleryButton
virtual void OnDrawRibbonGalleryButton(
 CDC* pDC,
 CMFCRibbonGalleryIcon* pButton);

ParametersParameters

[in] pDC
[in] pButton

[in] pDC
[in] pButton
[in] rect
[in] bIsSelected
[in] bHighlighted

[in] pDC
[in] pButton
[in] rectBorder

[in] pDC
[in] pButton

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonKeyTip
virtual void OnDrawRibbonKeyTip(
 CDC* pDC,
 CMFCRibbonBaseElement* pElement,
 CRect rect,
 CString str);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonMainPanelButtonBord
er

virtual void OnDrawRibbonMainPanelButtonBorder(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonMainPanelFrame
virtual void OnDrawRibbonMainPanelFrame(
 CDC* pDC,
 CMFCRibbonMainPanel* pPanel,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonMenuCheckFrame
virtual void OnDrawRibbonMenuCheckFrame(
 CDC* pDC,
 CMFCRibbonButton* pButton,
 CRect rect);

ParametersParameters

[in] pDC
[in] pElement
[in] rect
[in] str

[in] pDC
[in] pButton

[in] pDC
[in] pPanel
[in] rect

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonPanel
virtual COLORREF OnDrawRibbonPanel(
 CDC* pDC,
 CMFCRibbonPanel* pPanel,
 CRect rectPanel,
 CRect rectCaption);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonPanelCaption
virtual void OnDrawRibbonPanelCaption(
 CDC* pDC,
 CMFCRibbonPanel* pPanel,
 CRect rectCaption);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonProgressBar
virtual void OnDrawRibbonProgressBar(
 CDC* pDC,
 CMFCRibbonProgressBar* pProgress,
 CRect rectProgress,
 CRect rectChunk,
 BOOL bInfiniteMode);

ParametersParameters

RemarksRemarks

[in] pDC
[in] pButton
[in] rect

[in] pDC
[in] pPanel
[in] rectPanel
[in] rectCaption

[in] pDC
[in] pPanel
[in] rectCaption

[in] pDC
[in] pProgress
[in] rectProgress
[in] rectChunk
[in] bInfiniteMode

CMFCVisualManagerOffice2007::OnDrawRibbonRecentFilesFrame
virtual void OnDrawRibbonRecentFilesFrame(
 CDC* pDC,
 CMFCRibbonMainPanel* pPanel,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonSliderChannel
virtual void OnDrawRibbonSliderChannel(
 CDC* pDC,
 CMFCRibbonSlider* pSlider,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonSliderThumb
virtual void OnDrawRibbonSliderThumb(
 CDC* pDC,
 CMFCRibbonSlider* pSlider,
 CRect rect,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 BOOL bIsDisabled);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonSliderZoomButton

[in] pDC
[in] pPanel
[in] rect

[in] pDC
[in] pSlider
[in] rect

[in] pDC
[in] pSlider
[in] rect
[in] bIsHighlighted
[in] bIsPressed
[in] bIsDisabled

virtual void OnDrawRibbonSliderZoomButton(
 CDC* pDC,
 CMFCRibbonSlider* pSlider,
 CRect rect,
 BOOL bIsZoomOut,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 BOOL bIsDisabled);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonStatusBarPane
virtual COLORREF OnDrawRibbonStatusBarPane(
 CDC* pDC,
 CMFCRibbonStatusBar* pBar,
 CMFCRibbonStatusBarPane* pPane);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawRibbonTabsFrame
virtual COLORREF OnDrawRibbonTabsFrame(
 CDC* pDC,
 CMFCRibbonBar* pWndRibbonBar,
 CRect rectTab);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawScrollButtons

[in] pDC
[in] pSlider
[in] rect
[in] bIsZoomOut
[in] bIsHighlighted
[in] bIsPressed
[in] bIsDisabled

[in] pDC
[in] pBar
[in] pPane

[in] pDC
[in] pWndRibbonBar
[in] rectTab

virtual void OnDrawScrollButtons(
 CDC* pDC,
 const CRect& rect,
 const int nBorderSize,
 int iImage,
 BOOL bHilited);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawSeparator
virtual void OnDrawSeparator(
 CDC* pDC,
 CBasePane* pBar,
 CRect rect,
 BOOL bIsHoriz);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawShowAllMenuItems
virtual void OnDrawShowAllMenuItems(
 CDC* pDC,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawStatusBarPaneBorder

[in] pDC
[in] rect
[in] nBorderSize
[in] iImage
[in] bHilited

[in] pDC
[in] pBar
[in] rect
[in] bIsHoriz

[in] pDC
[in] rect
[in] state

virtual void OnDrawStatusBarPaneBorder(
 CDC* pDC,
 CMFCStatusBar* pBar,
 CRect rectPane,
 UINT uiID,
 UINT nStyle);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawStatusBarSizeBox
virtual void OnDrawStatusBarSizeBox(
 CDC* pDC,
 CMFCStatusBar* pStatBar,
 CRect rectSizeBox);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawTab
virtual void OnDrawTab(
 CDC* pDC,
 CRect rectTab,
 int iTab,
 BOOL bIsActive,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawTabsButtonBorder

[in] pDC
[in] pBar
[in] rectPane
[in] uiID
[in] nStyle

[in] pDC
[in] pStatBar
[in] rectSizeBox

[in] pDC
[in] rectTab
[in] iTab
[in] bIsActive
[in] pTabWnd

virtual void OnDrawTabsButtonBorder(
 CDC* pDC,
 CRect& rect,
 CMFCButton* pButton,
 UINT uiState,
 CMFCBaseTabCtrl* pWndTab);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawTask
virtual void OnDrawTask(
 CDC* pDC,
 CMFCTasksPaneTask* pTask,
 CImageList* pIcons,
 BOOL bIsHighlighted = FALSE,
 BOOL bIsSelected = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawTasksGroupCaption
virtual void OnDrawTasksGroupCaption(
 CDC* pDC,
 CMFCTasksPaneTaskGroup* pGroup,
 BOOL bIsHighlighted = FALSE,
 BOOL bIsSelected = FALSE,
 BOOL bCanCollapse = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnDrawTearOffCaption

[in] pDC
[in] rect
[in] pButton
[in] uiState
[in] pWndTab

[in] pDC
[in] pTask
[in] pIcons
[in] bIsHighlighted
[in] bIsSelected

[in] pDC
[in] pGroup
[in] bIsHighlighted
[in] bIsSelected
[in] bCanCollapse

virtual void OnDrawTearOffCaption(
 CDC* pDC,
 CRect rect,
 BOOL bIsActive);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnEraseMDIClientArea
virtual BOOL OnEraseMDIClientArea(
 CDC* pDC,
 CRect rectClient);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnEraseTabsArea
virtual void OnEraseTabsArea(
 CDC* pDC,
 CRect rect,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnEraseTabsButton
virtual void OnEraseTabsButton(
 CDC* pDC,
 CRect rect,
 CMFCButton* pButton,
 CMFCBaseTabCtrl* pWndTab);

ParametersParameters

[in] pDC
[in] rect
[in] bIsActive

[in] pDC
[in] rectClient

[in] pDC
[in] rect
[in] pTabWnd

[in] pDC
[in] rect
[in] pButton
[in] pWndTab

RemarksRemarks

CMFCVisualManagerOffice2007::OnEraseTabsFrame
virtual BOOL OnEraseTabsFrame(
 CDC* pDC,
 CRect rect,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillBarBackground
virtual void OnFillBarBackground(
 CDC* pDC,
 CBasePane* pBar,
 CRect rectClient,
 CRect rectClip,
 BOOL bNCArea = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillButtonInterior
virtual void OnFillButtonInterior(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillCaptionBarButton

[in] pDC
[in] rect
[in] pTabWnd

[in] pDC
[in] pBar
[in] rectClient
[in] rectClip
[in] bNCArea

[in] pDC
[in] pButton
[in] rect
[in] state

virtual COLORREF OnFillCaptionBarButton(
 CDC* pDC,
 CMFCCaptionBar* pBar,
 CRect rect,
 BOOL bIsPressed,
 BOOL bIsHighlighted,
 BOOL bIsDisabled,
 BOOL bHasDropDownArrow,
 BOOL bIsSysButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillHighlightedArea
virtual void OnFillHighlightedArea(
 CDC* pDC,
 CRect rect,
 CBrush* pBrush,
 CMFCToolBarButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillMiniFrameCaption
virtual COLORREF OnFillMiniFrameCaption(
 CDC* pDC,
 CRect rectCaption,
 CPaneFrameWnd* pFrameWnd,
 BOOL bActive);

ParametersParameters

Return ValueReturn Value

[in] pDC
[in] pBar
[in] rect
[in] bIsPressed
[in] bIsHighlighted
[in] bIsDisabled
[in] bHasDropDownArrow
[in] bIsSysButton

[in] pDC
[in] rect
[in] pBrush
[in] pButton

[in] pDC
[in] rectCaption
[in] pFrameWnd
[in] bActive

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillOutlookBarCaption
virtual void OnFillOutlookBarCaption(
 CDC* pDC,
 CRect rectCaption,
 COLORREF& clrText);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillOutlookPageButton
virtual void OnFillOutlookPageButton(
 CDC* pDC,
 const CRect& rect,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 COLORREF& clrText);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillPopupWindowBackground
virtual void OnFillPopupWindowBackground(
 CDC* pDC,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillRibbonButton
virtual COLORREF OnFillRibbonButton(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

[in] pDC
[in] rectCaption
[in] clrText

[in] pDC
[in] rect
[in] bIsHighlighted
[in] bIsPressed
[in] clrText

[in] pDC
[in] rect

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillRibbonEdit
virtual void OnFillRibbonEdit(
 CDC* pDC,
 CMFCRibbonRichEditCtrl* pEdit,
 CRect rect,
 BOOL bIsHighlighted,
 BOOL bIsPaneHighlighted,
 BOOL bIsDisabled,
 COLORREF& clrText,
 COLORREF& clrSelBackground,
 COLORREF& clrSelText);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillRibbonMainPanelButton
virtual COLORREF OnFillRibbonMainPanelButton(
 CDC* pDC,
 CMFCRibbonButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillRibbonMenuFrame
virtual void OnFillRibbonMenuFrame(
 CDC* pDC,
 CMFCRibbonMainPanel* pPanel,
 CRect rect);

ParametersParameters

[in] pDC
[in] pButton

[in] pDC
[in] pEdit
[in] rect
[in] bIsHighlighted
[in] bIsPaneHighlighted
[in] bIsDisabled
[in] clrText
[in] clrSelBackground
[in] clrSelText

[in] pDC
[in] pButton

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillRibbonQuickAccessToolBarPop
up

virtual void OnFillRibbonQuickAccessToolBarPopup(
 CDC* pDC,
 CMFCRibbonPanelMenuBar* pMenuBar,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnFillTab
virtual void OnFillTab(
 CDC* pDC,
 CRect rectFill,
 CBrush* pbrFill,
 int iTab,
 BOOL bIsActive,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnHighlightMenuItem
virtual void OnHighlightMenuItem(
 CDC* pDC,
 CMFCToolBarMenuButton* pButton,
 CRect rect,
 COLORREF& clrText);

ParametersParameters

[in] pDC
[in] pPanel
[in] rect

[in] pDC
[in] pMenuBar
[in] rect

[in] pDC
[in] rectFill
[in] pbrFill
[in] iTab
[in] bIsActive
[in] pTabWnd

[in] pDC
[in] pButton
[in] rect
[in] clrText

RemarksRemarks

CMFCVisualManagerOffice2007::OnHighlightRarelyUsedMenuItems
virtual void OnHighlightRarelyUsedMenuItems(
 CDC* pDC,
 CRect rectRarelyUsed);

ParametersParameters

RemarksRemarks

CMFCVisualManagerOffice2007::OnNcActivate
virtual BOOL OnNcActivate(
 CWnd* pWnd,
 BOOL bActive);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnNcPaint
virtual BOOL OnNcPaint(
 CWnd* pWnd,
 const CObList& lstSysButtons,
 CRect rectRedraw);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnSetWindowRegion
virtual BOOL OnSetWindowRegion(
 CWnd* pWnd,
 CSize sizeWindow);

ParametersParameters

[in] pDC
[in] rectRarelyUsed

[in] pWnd
[in] bActive

[in] pWnd
[in] lstSysButtons
[in] rectRedraw

[in] pWnd
[in] sizeWindow

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerOffice2007::OnUpdateSystemColors
virtual void OnUpdateSystemColors();

RemarksRemarks

CMFCVisualManagerOffice2007::SetResourceHandle
static void __stdcall SetResourceHandle(HINSTANCE hinstRes);

ParametersParameters

RemarksRemarks

See also

[in] hinstRes

Hierarchy Chart
Classes
CMFCVisualManager Class
CMFCVisualManagerOfficeXP Class
CMFCVisualManagerWindows Class

CMFCVisualManagerOfficeXP Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCVisualManagerOfficeXP : public CMFCVisualManager

Members

Remarks

Example

CMFCVisualManager::SetDefaultManager (RUNTIME_CLASS (CMFCVisualManagerOfficeXP));

Inheritance Hierarchy

Requirements

See also

The CMFCVisualManagerOfficeXP gives an application a Microsoft Office XP appearance.

All of the members of this class are virtual functions that are derived from the ancestor of this class,
CMFCVisualManager Class.

You use the CMFCVisualManagerOfficeXP class to change the visual appearance of your application to resemble
that of Microsoft Office XP.

The following example demonstrates how to use CMFCVisualManagerOfficeXP . This code snippet is part of the
Desktop Alert Demo sample.

CObject

CMFCBaseVisualManager

CMFCVisualManager

CMFCVisualManagerOfficeXP

Header: afxvisualmanagerofficexp.h

Hierarchy Chart
Classes
CMFCVisualManager Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcvisualmanagerofficexp-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMFCVisualManagerVS2005 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCVisualManagerVS2005 : public CMFCVisualManagerOffice2003

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMFCVisualManagerVS2005::GetDockingTabsBordersSize The framework calls this method when it draws a pane that is
docked and tabbed. (Overrides
CMFCVisualManager::GetDockingTabsBordersSize.)

CMFCVisualManagerVS2005::GetMDITabsBordersSize The framework calls this method to determine the border size
of a MDITabs window before it draws the window. (Overrides
CMFCVisualManager::GetMDITabsBordersSize.)

CMFCVisualManagerVS2005::GetPropertyGridGroupColor (Overrides
CMFCVisualManagerOffice2003::GetPropertyGridGroupColor.)

CMFCVisualManagerVS2005::GetTabFrameColors (Overrides
CMFCVisualManagerOffice2003::GetTabFrameColors.)

CMFCVisualManagerVS2005::HasOverlappedAutoHideButton
s

Returns whether auto-hide buttons overlap in the current
visual manager. (Overrides
CMFCVisualManager::HasOverlappedAutoHideButtons.)

CMFCVisualManagerVS2005::OnDrawAutoHideButtonBorder (Overrides
CMFCVisualManagerOffice2003::OnDrawAutoHideButtonBord
er.)

CMFCVisualManagerVS2005::OnDrawCaptionButton (Overrides
CMFCVisualManagerOfficeXP::OnDrawCaptionButton .)

CMFCVisualManagerVS2005::OnDrawPaneCaption (Overrides
CMFCVisualManagerOffice2003::OnDrawPaneCaption.)

CMFCVisualManagerVS2005::OnDrawSeparator (Overrides
CMFCVisualManagerOffice2003::OnDrawSeparator.)

CMFCVisualManagerVS2005::OnDrawTab (Overrides CMFCVisualManagerOffice2003::OnDrawTab.)

CMFCVisualManagerVS2005::OnDrawToolBoxFrame (Overrides CMFCVisualManager::OnDrawToolBoxFrame.)

CMFCVisualManagerVS2005 gives an application a Microsoft Visual Studio 2005 appearance.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcvisualmanagervs2005-class.md

CMFCVisualManagerVS2005::OnEraseTabsArea (Overrides CMFCVisualManagerOffice2003::OnEraseTabsArea.)

CMFCVisualManagerVS2005::OnFillAutoHideButtonBackgrou
nd

(Overrides
CMFCVisualManagerOffice2003::OnFillAutoHideButtonBackgr
ound.)

CMFCVisualManagerVS2005::OnFillHighlightedArea (Overrides
CMFCVisualManagerOffice2003::OnFillHighlightedArea.)

CMFCVisualManagerVS2005::OnFillMiniFrameCaption (Overrides
CMFCVisualManagerOfficeXP::OnFillMiniFrameCaption .)

CMFCVisualManagerVS2005::OnUpdateSystemColors (Overrides
CMFCVisualManagerOffice2003::OnUpdateSystemColors.)

NAME DESCRIPTION

Remarks

Example

CMFCVisualManager::SetDefaultManager (RUNTIME_CLASS (CMFCVisualManagerVS2005));

Inheritance Hierarchy

Requirements

CMFCVisualManagerVS2005::GetDockingTabsBordersSize
virtual int GetDockingTabsBordersSize();

You use the CMFCVisualManagerVS2005 class to change the visual appearance of your application to resemble
that of the Microsoft Visual Studio 2005.

All of the members of this class are virtual functions that are derived from the ancestor of this class,
CMFCVisualManager Class.

The following example demonstrates how to use the visual manager VS 2005. This code snippet is part of the
Desktop Alert Demo sample.

CObject

CMFCBaseVisualManager

CMFCVisualManager

CMFCVisualManagerOfficeXP

CMFCVisualManagerOffice2003

CMFCVisualManagerVS2005

Header: afxvisualmanagervs2005.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerVS2005::GetMDITabsBordersSize
virtual int GetMDITabsBordersSize();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerVS2005::GetPropertyGridGroupColor
virtual COLORREF GetPropertyGridGroupColor(CMFCPropertyGridCtrl* pPropList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerVS2005::GetTabFrameColors
virtual void GetTabFrameColors(
 const CMFCBaseTabCtrl* pTabWnd,
 COLORREF& clrDark,
 COLORREF& clrBlack,
 COLORREF& clrHighlight,
 COLORREF& clrFace,
 COLORREF& clrDarkShadow,
 COLORREF& clrLight,
 CBrush*& pbrFace,
 CBrush*& pbrBlack);

ParametersParameters

RemarksRemarks

CMFCVisualManagerVS2005::HasOverlappedAutoHideButtons
virtual BOOL HasOverlappedAutoHideButtons() const;

Return ValueReturn Value

[in] pPropList

[in] pTabWnd
[in] clrDark
[in] clrBlack
[in] clrHighlight
[in] clrFace
[in] clrDarkShadow
[in] clrLight
[in] pbrFace
[in] pbrBlack

RemarksRemarks

CMFCVisualManagerVS2005::OnDrawAutoHideButtonBorder
virtual void OnDrawAutoHideButtonBorder(
 CDC* pDC,
 CRect rectBounds,
 CRect rectBorderSize,
 CMFCAutoHideButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerVS2005::OnDrawCaptionButton
virtual void OnDrawCaptionButton(
 CDC* pDC,
 CMFCCaptionButton* pButton,
 BOOL bActive,
 BOOL bHorz,
 BOOL bMaximized,
 BOOL bDisabled,
 int nImageID = -1);

ParametersParameters

RemarksRemarks

CMFCVisualManagerVS2005::OnDrawPaneCaption
virtual COLORREF OnDrawPaneCaption(
 CDC* pDC,
 CDockablePane* pBar,
 BOOL bActive,
 CRect rectCaption,
 CRect rectButtons);

ParametersParameters

[in] pDC
[in] rectBounds
[in] rectBorderSize
[in] pButton

[in] pDC
[in] pButton
[in] bActive
[in] bHorz
[in] bMaximized
[in] bDisabled
[in] nImageID

[in] pDC
[in] pBar
[in] bActive
[in] rectCaption

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerVS2005::OnDrawSeparator
virtual void OnDrawSeparator(
 CDC* pDC,
 CBasePane* pBar,
 CRect rect,
 BOOL bIsHoriz);

ParametersParameters

RemarksRemarks

CMFCVisualManagerVS2005::OnDrawTab
virtual void OnDrawTab(
 CDC* pDC,
 CRect rectTab,
 int iTab,
 BOOL bIsActive,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

CMFCVisualManagerVS2005::OnDrawToolBoxFrame
virtual void OnDrawToolBoxFrame(
 CDC* pDC,
 const CRect& rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerVS2005::OnEraseTabsArea

[in] rectButtons

[in] pDC
[in] pBar
[in] rect
[in] bIsHoriz

[in] pDC
[in] rectTab
[in] iTab
[in] bIsActive
[in] pTabWnd

[in] pDC
[in] rect

virtual void OnEraseTabsArea(
 CDC* pDC,
 CRect rect,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

CMFCVisualManagerVS2005::OnFillAutoHideButtonBackground
virtual void OnFillAutoHideButtonBackground(
 CDC* pDC,
 CRect rect,
 CMFCAutoHideButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerVS2005::OnFillHighlightedArea
virtual void OnFillHighlightedArea(
 CDC* pDC,
 CRect rect,
 CBrush* pBrush,
 CMFCToolBarButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerVS2005::OnFillMiniFrameCaption
virtual COLORREF OnFillMiniFrameCaption(
 CDC* pDC,
 CRect rectCaption,
 CPaneFrameWnd* pFrameWnd,
 BOOL bActive);

ParametersParameters

[in] pDC
[in] rect
[in] pTabWnd

[in] pDC
[in] rect
[in] pButton

[in] pDC
[in] rect
[in] pBrush
[in] pButton

[in] pDC
[in] rectCaption

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerVS2005::OnUpdateSystemColors
virtual void OnUpdateSystemColors();

RemarksRemarks

See also

[in] pFrameWnd
[in] bActive

Hierarchy Chart
Classes
CMFCVisualManager Class
CMFCVisualManagerOfficeXP Class
CMFCVisualManagerWindows Class
CMFCVisualManagerOffice2003 Class

CMFCVisualManagerWindows Class
3/4/2019 • 9 minutes to read • Edit Online

Syntax
class CMFCVisualManagerWindows : public CMFCVisualManagerOfficeXP

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCVisualManagerWindows::CMFCVisualManagerWindows Default constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCVisualManagerWindows::AlwaysHighlight3DTabs The framework calls this method to determine whether 3D
tabs should always be highlighted in the application.
(Overrides CMFCVisualManager::AlwaysHighlight3DTabs.)

CMFCVisualManagerWindows::DrawComboBorderWinXP (Overrides CMFCVisualManager::DrawComboBorderWinXP .)

CMFCVisualManagerWindows::DrawComboDropButtonWinX
P

(Overrides
CMFCVisualManager::DrawComboDropButtonWinXP.)

CMFCVisualManagerWindows::DrawPushButtonWinXP (Overrides CMFCVisualManager::DrawPushButtonWinXP.)

CMFCVisualManagerWindows::GetButtonExtraBorder The framework calls this method when it draws a toolbar
button. (Overrides
CMFCVisualManager::GetButtonExtraBorder.)

CMFCVisualManagerWindows::GetCaptionButtonExtraBorder (Overrides
CMFCVisualManager::GetCaptionButtonExtraBorder.)

CMFCVisualManagerWindows::GetDockingPaneCaptionExtra
Height

(Overrides
CMFCVisualManager::GetDockingPaneCaptionExtraHeight .)

CMFCVisualManagerWindows::GetHighlightedMenuItemText
Color

(Overrides
CMFCVisualManagerOfficeXP::GetHighlightedMenuItemTextColor

.)

CMFCVisualManagerWindows mimics the appearance of Microsoft Windows XP or Microsoft Vista when the user
selects a Windows XP or Vista theme.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcvisualmanagerwindows-class.md

CMFCVisualManagerWindows::GetPopupMenuGap (Overrides CMFCVisualManagerOfficeXP::GetPopupMenuGap

.)

CMFCVisualManagerWindows::GetToolbarButtonTextColor (Overrides
CMFCVisualManagerOfficeXP::GetToolbarButtonTextColor

.)

CMFCVisualManagerWindows::IsDefaultWinXPPopupButton (Overrides
CMFCVisualManager::IsDefaultWinXPPopupButton.)

CMFCVisualManagerWindows::IsHighlightWholeMenuItem (Overrides
CMFCVisualManagerOfficeXP::IsHighlightWholeMenuItem .)

CMFCVisualManagerWindows::IsOfficeStyleMenus

CMFCVisualManagerWindows::IsOfficeXPStyleMenus Indicates whether the visual manager implements Office XP-
style menus. (Overrides
CMFCVisualManager::IsOfficeXPStyleMenus.)

CMFCVisualManagerWindows::IsWindowsThemingSupported (Overrides
CMFCVisualManager::IsWindowsThemingSupported .)

CMFCVisualManagerWindows::IsWinXPThemeAvailable Indicates whether a Windows theme is available.

CMFCVisualManagerWindows::OnDrawBarGripper (Overrides
CMFCVisualManagerOfficeXP::OnDrawBarGripper .)

CMFCVisualManagerWindows::OnDrawBrowseButton (Overrides
CMFCVisualManagerOfficeXP::OnDrawBrowseButton .)

CMFCVisualManagerWindows::OnDrawButtonBorder (Overrides
CMFCVisualManagerOfficeXP::OnDrawButtonBorder .)

CMFCVisualManagerWindows::OnDrawButtonSeparator (Overrides
CMFCVisualManagerOfficeXP::OnDrawButtonSeparator .)

CMFCVisualManagerWindows::OnDrawCaptionButton (Overrides
CMFCVisualManagerOfficeXP::OnDrawCaptionButton .)

CMFCVisualManagerWindows::OnDrawCaptionButtonIcon (Overrides
CMFCVisualManagerOfficeXP::OnDrawCaptionButtonIcon .)

CMFCVisualManagerWindows::OnDrawCheckBoxEx (Overrides CMFCVisualManager::OnDrawCheckBoxEx.)

CMFCVisualManagerWindows::OnDrawComboBorder (Overrides
CMFCVisualManagerOfficeXP::OnDrawComboBorder .)

CMFCVisualManagerWindows::OnDrawComboDropButton (Overrides
CMFCVisualManagerOfficeXP::OnDrawComboDropButton .)

CMFCVisualManagerWindows::OnDrawControlBorder (Overrides CMFCVisualManager::OnDrawControlBorder.)

NAME DESCRIPTION

CMFCVisualManagerWindows::OnDrawEditBorder (Overrides
CMFCVisualManagerOfficeXP::OnDrawEditBorder .)

CMFCVisualManagerWindows::OnDrawExpandingBox (Overrides CMFCVisualManager::OnDrawExpandingBox.)

CMFCVisualManagerWindows::OnDrawFloatingToolbarBorde
r

(Overrides
CMFCVisualManagerOfficeXP::OnDrawFloatingToolbarBorder

.)

CMFCVisualManagerWindows::OnDrawHeaderCtrlBorder The framework calls this method when it draws the border
around an instance of the CMFCHeaderCtrl Class. (Overrides
CMFCVisualManager::OnDrawHeaderCtrlBorder.)

CMFCVisualManagerWindows::OnDrawHeaderCtrlSortArrow The framework calls this function when it draws the sort
arrow of a header control. (Overrides
CMFCVisualManager::OnDrawHeaderCtrlSortArrow.)

CMFCVisualManagerWindows::OnDrawMenuBorder (Overrides
CMFCVisualManagerOfficeXP::OnDrawMenuBorder .)

CMFCVisualManagerWindows::OnDrawMenuSystemButton (Overrides
CMFCVisualManagerOfficeXP::OnDrawMenuSystemButton .)

CMFCVisualManagerWindows::OnDrawMiniFrameBorder (Overrides
CMFCVisualManagerOfficeXP::OnDrawMiniFrameBorder .)

CMFCVisualManagerWindows::OnDrawOutlookPageButtonB
order

Called by the framework when it draws the border of an
Outlook page button. (Overrides
CMFCVisualManager::OnDrawOutlookPageButtonBorder.)

CMFCVisualManagerWindows::OnDrawPaneBorder (Overrides
CMFCVisualManagerOfficeXP::OnDrawPaneBorder .)

CMFCVisualManagerWindows::OnDrawPaneCaption (Overrides
CMFCVisualManagerOfficeXP::OnDrawPaneCaption .)

CMFCVisualManagerWindows::OnDrawPopupWindowButton
Border

(Overrides
CMFCVisualManagerOfficeXP::OnDrawPopupWindowButtonBorder

.)

CMFCVisualManagerWindows::OnDrawScrollButtons (Overrides
CMFCVisualManagerOfficeXP::OnDrawScrollButtons .)

CMFCVisualManagerWindows::OnDrawSeparator (Overrides CMFCVisualManagerOfficeXP::OnDrawSeparator

.)

CMFCVisualManagerWindows::OnDrawSpinButtons (Overrides
CMFCVisualManagerOfficeXP::OnDrawSpinButtons .)

CMFCVisualManagerWindows::OnDrawStatusBarPaneBorder (Overrides
CMFCVisualManagerOfficeXP::OnDrawStatusBarPaneBorder

.)

NAME DESCRIPTION

CMFCVisualManagerWindows::OnDrawStatusBarProgress The framework calls this method when it draws the progress
indicator on the CMFCStatusBar object. (Overrides
CMFCVisualManager::OnDrawStatusBarProgress.)

CMFCVisualManagerWindows::OnDrawStatusBarSizeBox The framework calls this method when it draws the size box
for a CMFCStatusBar. (Overrides
CMFCVisualManager::OnDrawStatusBarSizeBox.)

CMFCVisualManagerWindows::OnDrawTab (Overrides CMFCVisualManagerOfficeXP::OnDrawTab .)

CMFCVisualManagerWindows::OnDrawTabCloseButton (Overrides
CMFCVisualManagerOfficeXP::OnDrawTabCloseButton .)

CMFCVisualManagerWindows::OnDrawTabsButtonBorder (Overrides
CMFCVisualManagerOfficeXP::OnDrawTabsButtonBorder .)

CMFCVisualManagerWindows::OnDrawTask (Overrides CMFCVisualManagerOfficeXP::OnDrawTask .)

CMFCVisualManagerWindows::OnDrawTasksGroupAreaBord
er

(Overrides
CMFCVisualManagerOfficeXP::OnDrawTasksGroupAreaBorder

.)

CMFCVisualManagerWindows::OnDrawTasksGroupCaption (Overrides
CMFCVisualManagerOfficeXP::OnDrawTasksGroupCaption .)

CMFCVisualManagerWindows::OnDrawTearOffCaption (Overrides
CMFCVisualManagerOfficeXP::OnDrawTearOffCaption .)

CMFCVisualManagerWindows::OnErasePopupWindowButton (Overrides
CMFCVisualManagerOfficeXP::OnErasePopupWindowButton .)

CMFCVisualManagerWindows::OnEraseTabsArea (Overrides CMFCVisualManagerOfficeXP::OnEraseTabsArea

.)

CMFCVisualManagerWindows::OnEraseTabsButton (Overrides
CMFCVisualManagerOfficeXP::OnEraseTabsButton .)

CMFCVisualManagerWindows::OnEraseTabsFrame The framework calls this method when it erases a frame on a
CMFCBaseTabCtrl Class. (Overrides
CMFCVisualManager::OnEraseTabsFrame.)

CMFCVisualManagerWindows::OnFillBarBackground (Overrides
CMFCVisualManagerOfficeXP::OnFillBarBackground .)

CMFCVisualManagerWindows::OnFillButtonInterior (Overrides
CMFCVisualManagerOfficeXP::OnFillButtonInterior .)

CMFCVisualManagerWindows::OnFillCommandsListBackgrou
nd

(Overrides
CMFCVisualManagerOfficeXP::OnFillCommandsListBackground

.)

CMFCVisualManagerWindows::OnFillMiniFrameCaption (Overrides
CMFCVisualManagerOfficeXP::OnFillMiniFrameCaption .)

NAME DESCRIPTION

CMFCVisualManagerWindows::OnFillOutlookPageButton The framework calls this method when it fills the interior of an
Outlook page button. (Overrides
CMFCVisualManager::OnFillOutlookPageButton.)

CMFCVisualManagerWindows::OnFillTasksGroupInterior (Overrides
CMFCVisualManagerOfficeXP::OnFillTasksGroupInterior .)

CMFCVisualManagerWindows::OnFillTasksPaneBackground The framework calls this method when it fills the background
of a CMFCTasksPane control. (Overrides
CMFCVisualManager::OnFillTasksPaneBackground.)

CMFCVisualManagerWindows::OnHighlightMenuItem (Overrides
CMFCVisualManagerOfficeXP::OnHighlightMenuItem .)

CMFCVisualManagerWindows::OnHighlightRarelyUsedMenuI
tems

(Overrides
CMFCVisualManagerOfficeXP::OnHighlightRarelyUsedMenuItems

.)

CMFCVisualManagerWindows::OnUpdateSystemColors (Overrides
CMFCVisualManagerOfficeXP::OnUpdateSystemColors .)

CMFCVisualManagerWindows::SetOfficeStyleMenus

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CMFCVisualManagerWindows::m_b3DTabsXPTheme Specifies whether the Windows XP theme displays 3D tabs.

Remarks

Example

CMFCVisualManager::SetDefaultManager (RUNTIME_CLASS (CMFCVisualManagerWindows));

Inheritance Hierarchy

Use the CMFCVisualManagerWindows class to change the appearance of your application to mimic the current theme
on the computer where the application runs.

However, a Windows theme might be unavailable if your application is running on a version of Windows earlier
than Windows XP or if themes are disabled because the user is using the Classic view. If no theme is available,
the application uses the default visual manager defined in CMFCVisualManager.

The following example demonstrates how to use CMFCVisualManagerWindows . This code snippet is part of the
Desktop Alert Demo sample.

CObject

CMFCBaseVisualManager

CMFCVisualManager

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CMFCVisualManagerWindows::AlwaysHighlight3DTabs
virtual BOOL AlwaysHighlight3DTabs() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::CMFCVisualManagerWindows
CMFCVisualManagerWindows(BOOL bIsTemporary = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::DrawComboBorderWinXP
virtual BOOL DrawComboBorderWinXP(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::DrawComboDropButtonWinXP
virtual BOOL DrawComboDropButtonWinXP(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted);

CMFCVisualManagerOfficeXP

CMFCVisualManagerWindows

Header: afxvisualmanagerwindows.h

[in] bIsTemporary

[in] pDC
[in] rect
[in] bDisabled
[in] bIsDropped
[in] bIsHighlighted

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::DrawPushButtonWinXP
virtual BOOL DrawPushButtonWinXP(
 CDC* pDC,
 CRect rect,
 CMFCButton* pButton,
 UINT uiState);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::GetButtonExtraBorder
virtual CSize GetButtonExtraBorder() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::GetCaptionButtonExtraBorder
virtual CSize GetCaptionButtonExtraBorder() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::GetDockingPaneCaptionExtraHeight
virtual int GetDockingPaneCaptionExtraHeight() const;

Return ValueReturn Value

RemarksRemarks

[in] pDC
[in] rect
[in] bDisabled
[in] bIsDropped
[in] bIsHighlighted

[in] pDC
[in] rect
[in] pButton
[in] uiState

CMFCVisualManagerWindows::GetHighlightedMenuItemTextColor
virtual COLORREF GetHighlightedMenuItemTextColor(CMFCToolBarMenuButton* pButton);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::GetPopupMenuGap
virtual int GetPopupMenuGap() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::GetToolbarButtonTextColor
virtual COLORREF GetToolbarButtonTextColor(
 CMFCToolBarButton* pButton,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::IsDefaultWinXPPopupButton
virtual BOOL IsDefaultWinXPPopupButton(CMFCDesktopAlertWndButton* pButton) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::IsHighlightWholeMenuItem
virtual BOOL IsHighlightWholeMenuItem();

Return ValueReturn Value

RemarksRemarks

[in] pButton

[in] pButton
[in] state

[in] pButton

CMFCVisualManagerWindows::IsOfficeStyleMenus
BOOL IsOfficeStyleMenus() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::IsOfficeXPStyleMenus
virtual BOOL IsOfficeXPStyleMenus() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::IsWindowsThemingSupported
virtual BOOL IsWindowsThemingSupported() const;

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::IsWinXPThemeAvailable

static BOOL IsWinXPThemeAvailible();

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::m_b3DTabsXPTheme

AFX_IMPORT_DATA static BOOL m_b3DTabsXPTheme;

CMFCVisualManagerWindows::OnDrawBarGripper

Determines whether a Windows theme is available.

Nonzero if a theme is available; otherwise 0.

This method is valid for all Windows XP and later themes.

IsWinXPThemeAvailable is identical to CMFCVisualManagerWindows::IsWindowsThemingAvailable except that
IsWinXPThemeAvailable is a static method. Therefore, it will create a temporary visual manager if one does not

exist.

IsWinXPThemeAvailable always return 0s for versions of Windows earlier than Windows XP.

A Boolean parameter that determines whether the visual manager displays 3D tabs.

virtual void OnDrawBarGripper(
 CDC* pDC,
 CRect rectGripper,
 BOOL bHorz,
 CBasePane* pBar);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawBrowseButton
virtual BOOL OnDrawBrowseButton(
 CDC* pDC,
 CRect rect,
 CMFCEditBrowseCtrl* pEdit,
 CMFCVisualManager::AFX_BUTTON_STATE state,
 COLORREF& clrText);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::OnDrawButtonBorder
virtual void OnDrawButtonBorder(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawButtonSeparator

[in] pDC
[in] rectGripper
[in] bHorz
[in] pBar

[in] pDC
[in] rect
[in] pEdit
[in] state
[in] clrText

[in] pDC
[in] pButton
[in] rect
[in] state

virtual void OnDrawButtonSeparator(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state,
 BOOL bHorz);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawCaptionButton
virtual void OnDrawCaptionButton(
 CDC* pDC,
 CMFCCaptionButton* pButton,
 BOOL bActive,
 BOOL bHorz,
 BOOL bMaximized,
 BOOL bDisabled,
 int nImageID = -1);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawCaptionButtonIcon
virtual void OnDrawCaptionButtonIcon(
 CDC* pDC,
 CMFCCaptionButton* pButton,
 CMenuImages::IMAGES_IDS id,
 BOOL bActive,
 BOOL bDisabled,
 CPoint ptImage);

ParametersParameters

[in] pDC
[in] pButton
[in] rect
[in] state
[in] bHorz

[in] pDC
[in] pButton
[in] bActive
[in] bHorz
[in] bMaximized
[in] bDisabled
[in] nImageID

[in] pDC
[in] pButton
[in] id
[in] bActive
[in] bDisabled

RemarksRemarks

CMFCVisualManagerWindows::OnDrawCheckBoxEx
virtual void OnDrawCheckBoxEx(
 CDC* pDC,
 CRect rect,
 int nState,
 BOOL bHighlighted,
 BOOL bPressed,
 BOOL bEnabled);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawComboBorder
virtual void OnDrawComboBorder(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted,
 CMFCToolBarComboBoxButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawComboDropButton
virtual void OnDrawComboDropButton(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsDropped,
 BOOL bIsHighlighted,
 CMFCToolBarComboBoxButton* pButton);

ParametersParameters

[in] ptImage

[in] pDC
[in] rect
[in] nState
[in] bHighlighted
[in] bPressed
[in] bEnabled

[in] pDC
[in] rect
[in] bDisabled
[in] bIsDropped
[in] bIsHighlighted
[in] pButton

RemarksRemarks

CMFCVisualManagerWindows::OnDrawControlBorder
virtual void OnDrawControlBorder(CWnd* pWndCtrl);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawEditBorder
virtual void OnDrawEditBorder(
 CDC* pDC,
 CRect rect,
 BOOL bDisabled,
 BOOL bIsHighlighted,
 CMFCToolBarEditBoxButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawExpandingBox
virtual void OnDrawExpandingBox(
 CDC* pDC,
 CRect rect,
 BOOL bIsOpened,
 COLORREF colorBox);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawFloatingToolbarBorder

[in] pDC
[in] rect
[in] bDisabled
[in] bIsDropped
[in] bIsHighlighted
[in] pButton

[in] pWndCtrl

[in] pDC
[in] rect
[in] bDisabled
[in] bIsHighlighted
[in] pButton

[in] pDC
[in] rect
[in] bIsOpened
[in] colorBox

virtual void OnDrawFloatingToolbarBorder(
 CDC* pDC,
 CMFCBaseToolBar* pToolBar,
 CRect rectBorder,
 CRect rectBorderSize);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawHeaderCtrlBorder
virtual void OnDrawHeaderCtrlBorder(
 CMFCHeaderCtrl* pCtrl,
 CDC* pDC,
 CRect& rect,
 BOOL bIsPressed,
 BOOL bIsHighlighted);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawHeaderCtrlSortArrow
virtual void OnDrawHeaderCtrlSortArrow(
 CMFCHeaderCtrl* pCtrl,
 CDC* pDC,
 CRect& rect,
 BOOL bIsUp);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawMenuBorder

[in] pDC
[in] pToolBar
[in] rectBorder
[in] rectBorderSize

[in] pCtrl
[in] pDC
[in] rect
[in] bIsPressed
[in] bIsHighlighted

[in] pCtrl
[in] pDC
[in] rect
[in] bIsUp

virtual void OnDrawMenuBorder(
 CDC* pDC,
 CMFCPopu* pMenu,
 CRect rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawMenuSystemButton
virtual void OnDrawMenuSystemButton(
 CDC* pDC,
 CRect rect,
 UINT uiSystemCommand,
 UINT nStyle,
 BOOL bHighlight);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawMiniFrameBorder
virtual void OnDrawMiniFrameBorder(
 CDC* pDC,
 CPaneFrameWnd* pFrameWnd,
 CRect rectBorder,
 CRect rectBorderSize);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawOutlookPageButtonBorder
virtual void OnDrawOutlookPageButtonBorder(
 CDC* pDC,
 CRect& rectBtn,
 BOOL bIsHighlighted,
 BOOL bIsPressed);

[in] pDC
[in] pMenu
[in] rect

[in] pDC
[in] rect
[in] uiSystemCommand
[in] nStyle
[in] bHighlight

[in] pDC
[in] pFrameWnd
[in] rectBorder
[in] rectBorderSize

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawPaneBorder
virtual void OnDrawPaneBorder(
 CDC* pDC,
 CBasePane* pBar,
 CRect& rect);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawPaneCaption
virtual COLORREF OnDrawPaneCaption(
 CDC* pDC,
 CDockablePane* pBar,
 BOOL bActive,
 CRect rectCaption,
 CRect rectButtons);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::OnDrawPopupWindowButtonBorder
virtual void OnDrawPopupWindowButtonBorder(
 CDC* pDC,
 CRect rectClient,
 CMFCDesktopAlertWndButton* pButton);

ParametersParameters

[in] pDC
[in] rectBtn
[in] bIsHighlighted
[in] bIsPressed

[in] pDC
[in] pBar
[in] rect

[in] pDC
[in] pBar
[in] bActive
[in] rectCaption
[in] rectButtons

[in] pDC
[in] rectClient
[in] pButton

RemarksRemarks

CMFCVisualManagerWindows::OnDrawScrollButtons
virtual void OnDrawScrollButtons(
 CDC* pDC,
 const CRect& rect,
 const int nBorderSize,
 int iImage,
 BOOL bHilited);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawSeparator
virtual void OnDrawSeparator(
 CDC* pDC,
 CBasePane* pBar,
 CRect rect,
 BOOL bIsHoriz);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawSpinButtons
virtual void OnDrawSpinButtons(
 CDC* pDC,
 CRect rectSpin,
 int nState,
 BOOL bOrientation,
 CMFCSpinButtonCtrl* pSpinCtrl);

ParametersParameters

RemarksRemarks

[in] pDC
[in] rect
[in] nBorderSize
[in] iImage
[in] bHilited

[in] pDC
[in] pBar
[in] rect
[in] bIsHoriz

[in] pDC
[in] rectSpin
[in] nState
[in] bOrientation
[in] pSpinCtrl

CMFCVisualManagerWindows::OnDrawStatusBarPaneBorder
virtual void OnDrawStatusBarPaneBorder(
 CDC* pDC,
 CMFCStatusBar* pBar,
 CRect rectPane,
 UINT uiID,
 UINT nStyle);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawStatusBarProgress
virtual void OnDrawStatusBarProgress(
 CDC* pDC,
 CMFCStatusBar* pStatusBar,
 CRect rectProgress,
 int nProgressTotal,
 int nProgressCurr,
 COLORREF clrBar,
 COLORREF clrProgressBarDest,
 COLORREF clrProgressText,
 BOOL bProgressText);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawStatusBarSizeBox
virtual void OnDrawStatusBarSizeBox(
 CDC* pDC,
 CMFCStatusBar* pStatBar,
 CRect rectSizeBox);

ParametersParameters

[in] pDC
[in] pBar
[in] rectPane
[in] uiID
[in] nStyle

[in] pDC
[in] pStatusBar
[in] rectProgress
[in] nProgressTotal
[in] nProgressCurr
[in] clrBar
[in] clrProgressBarDest
[in] clrProgressText
[in] bProgressText

[in] pDC
[in] pStatBar

RemarksRemarks

CMFCVisualManagerWindows::OnDrawTab
virtual void OnDrawTab(
 CDC* pDC,
 CRect rectTab,
 int iTab,
 BOOL bIsActive,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawTabCloseButton
virtual void OnDrawTabCloseButton(
 CDC* pDC,
 CRect rect,
 const CMFCBaseTabCtrl* pTabWnd,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 BOOL bIsDisabled);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawTabsButtonBorder
virtual void OnDrawTabsButtonBorder(
 CDC* pDC,
 CRect& rect,
 CMFCButton* pButton,
 UINT uiState,
 CMFCBaseTabCtrl* pWndTab);

ParametersParameters

[in] rectSizeBox

[in] pDC
[in] rectTab
[in] iTab
[in] bIsActive
[in] pTabWnd

[in] pDC
[in] rect
[in] pTabWnd
[in] bIsHighlighted
[in] bIsPressed
[in] bIsDisabled

[in] pDC
[in] rect
[in] pButton

RemarksRemarks

CMFCVisualManagerWindows::OnDrawTask
virtual void OnDrawTask(
 CDC* pDC,
 CMFCTasksPaneTask* pTask,
 CImageList* pIcons,
 BOOL bIsHighlighted = FALSE,
 BOOL bIsSelected = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawTasksGroupAreaBorder
virtual void OnDrawTasksGroupAreaBorder(
 CDC* pDC,
 CRect rect,
 BOOL bSpecial = FALSE,
 BOOL bNoTitle = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnDrawTasksGroupCaption
virtual void OnDrawTasksGroupCaption(
 CDC* pDC,
 CMFCTasksPaneTaskGroup* pGroup,
 BOOL bIsHighlighted = FALSE,
 BOOL bIsSelected = FALSE,
 BOOL bCanCollapse = FALSE);

ParametersParameters

[in] uiState
[in] pWndTab

[in] pDC
[in] pTask
[in] pIcons
[in] bIsHighlighted
[in] bIsSelected

[in] pDC
[in] rect
[in] bSpecial
[in] bNoTitle

[in] pDC
[in] pGroup
[in] bIsHighlighted
[in] bIsSelected
[in] bCanCollapse

RemarksRemarks

CMFCVisualManagerWindows::OnDrawTearOffCaption
virtual void OnDrawTearOffCaption(
 CDC* pDC,
 CRect rect,
 BOOL bIsActive);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnErasePopupWindowButton
virtual void OnErasePopupWindowButton(
 CDC* pDC,
 CRect rectClient,
 CMFCDesktopAlertWndButton* pButton);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnEraseTabsArea
virtual void OnEraseTabsArea(
 CDC* pDC,
 CRect rect,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnEraseTabsButton
virtual void OnEraseTabsButton(
 CDC* pDC,
 CRect rect,
 CMFCButton* pButton,
 CMFCBaseTabCtrl* pWndTab);

ParametersParameters

[in] pDC
[in] rect
[in] bIsActive

[in] pDC
[in] rectClient
[in] pButton

[in] pDC
[in] rect
[in] pTabWnd

RemarksRemarks

CMFCVisualManagerWindows::OnEraseTabsFrame
virtual BOOL OnEraseTabsFrame(
 CDC* pDC,
 CRect rect,
 const CMFCBaseTabCtrl* pTabWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::OnFillBarBackground
virtual void OnFillBarBackground(
 CDC* pDC,
 CBasePane* pBar,
 CRect rectClient,
 CRect rectClip,
 BOOL bNCArea = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnFillButtonInterior
virtual void OnFillButtonInterior(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

[in] pDC
[in] rect
[in] pButton
[in] pWndTab

[in] pDC
[in] rect
[in] pTabWnd

[in] pDC
[in] pBar
[in] rectClient
[in] rectClip
[in] bNCArea

[in] pDC
[in] pButton
[in] rect
[in] state

RemarksRemarks

CMFCVisualManagerWindows::OnFillCommandsListBackground
virtual COLORREF OnFillCommandsListBackground(
 CDC* pDC,
 CRect rect,
 BOOL bIsSelected = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::OnFillMiniFrameCaption
virtual COLORREF OnFillMiniFrameCaption(
 CDC* pDC,
 CRect rectCaption,
 CPaneFrameWnd* pFrameWnd,
 BOOL bActive);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows::OnFillOutlookPageButton
virtual void OnFillOutlookPageButton(
 CDC* pDC,
 const CRect& rect,
 BOOL bIsHighlighted,
 BOOL bIsPressed,
 COLORREF& clrText);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnFillTasksGroupInterior

[in] pDC
[in] rect
[in] bIsSelected

[in] pDC
[in] rectCaption
[in] pFrameWnd
[in] bActive

[in] pDC
[in] rect
[in] bIsHighlighted
[in] bIsPressed
[in] clrText

virtual void OnFillTasksGroupInterior(
 CDC* pDC,
 CRect rect,
 BOOL bSpecial = FALSE);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnFillTasksPaneBackground
virtual void OnFillTasksPaneBackground(
 CDC* pDC,
 CRect rectWorkArea);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnHighlightMenuItem
virtual void OnHighlightMenuItem(
 CDC* pDC,
 CMFCToolBarMenuButton* pButton,
 CRect rect,
 COLORREF& clrText);

ParametersParameters

RemarksRemarks

CMFCVisualManagerWindows::OnHighlightRarelyUsedMenuItems
virtual void OnHighlightRarelyUsedMenuItems(
 CDC* pDC,
 CRect rectRarelyUsed);

ParametersParameters

RemarksRemarks

[in] pDC
[in] rect
[in] bSpecial

[in] pDC
[in] rectWorkArea

[in] pDC
[in] pButton
[in] rect
[in] clrText

[in] pDC
[in] rectRarelyUsed

CMFCVisualManagerWindows::OnUpdateSystemColors
virtual void OnUpdateSystemColors();

RemarksRemarks

CMFCVisualManagerWindows::SetOfficeStyleMenus
void SetOfficeStyleMenus(BOOL bOn = TRUE);

ParametersParameters

RemarksRemarks

See also

[in] bOn

Hierarchy Chart
Classes
CMFCVisualManager Class
CMFCVisualManagerOfficeXP Class

CMFCVisualManagerWindows7 Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCVisualManagerWindows7 : public CMFCVisualManagerWindows;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCVisualManagerWindows7::CMFCVisualManagerWindow
s7

Default constructor.

CMFCVisualManagerWindows7::~CMFCVisualManagerWindo
ws7

Default destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CMFCVisualManagerWindows7::CleanStyle Clears the current visual style and resets the default visual
style.

CMFCVisualManagerWindows7::CleanUp Clears all of the objects in the user interface and resets the
menus.

CMFCVisualManagerWindows7::DrawNcBtn Draws a button in the non-client area on the frame. The
framework uses this method to draw minimize, maximize,
close and restore buttons in the upper right corner of the
window frame. This method is not called when the program
uses a non-Aero theme.

CMFCVisualManagerWindows7::DrawNcText Draws text in the non-client area on the frame. The framework
uses this method to draw the application title in the title bar
at the top of the frame window.

CMFCVisualManagerWindows7::DrawSeparator Draws a separator on the CMFCToolBar Class.

CMFCVisualManagerWindows7::GetRibbonBar Retrieves the CMFCRibbonBar Class associated with the user
interface.

CMFCVisualManagerWindows7::GetRibbonEditBackgroundCol
or

Obtains a Ribbon edit box background color.

CMFCVisualManagerWindows7::GetRibbonPopupBorderSize Overrides CMFCVisualManager::GetRibbonPopupBorderSize

The CMFCVisualManagerWindows7 gives an application the appearance of a Windows 7 application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcvisualmanagerwindows7-class.md

CMFCVisualManagerWindows7::GetRibbonQuickAccessToolBarChevronOffsetOverrides
CMFCVisualManager::GetRibbonQuickAccessToolBarChevron
Offset

CMFCVisualManagerWindows7::GetRibbonQuickAccessToolBarRightMarginOverrides
CMFCVisualManager::GetRibbonQuickAccessToolBarRightMar
gin

CMFCVisualManagerWindows7::IsHighlightWholeMenuItem Overrides
CMFCVisualManagerWindows::IsHighlightWholeMenuItem

CMFCVisualManagerWindows7::IsOwnerDrawMenuCheck Overrides CMFCVisualManager::IsOwnerDrawMenuCheck

CMFCVisualManagerWindows7::IsRibbonPresent Determines whether a CMFCRibbonBar is present and visible.

CMFCVisualManagerWindows7::OnDrawButtonBorder Overrides
CMFCVisualManagerWindows::OnDrawButtonBorder

CMFCVisualManagerWindows7::OnDrawCheckBoxEx Overrides CMFCVisualManagerWindows::OnDrawCheckBoxEx

CMFCVisualManagerWindows7::OnDrawComboDropButton Overrides
CMFCVisualManagerWindows::OnDrawComboDropButton

CMFCVisualManagerWindows7::OnDrawDefaultRibbonImage Overrides CMFCVisualManager::OnDrawDefaultRibbonImage

CMFCVisualManagerWindows7::OnDrawMenuBorder Overrides CMFCVisualManagerWindows::OnDrawMenuBorder

CMFCVisualManagerWindows7::OnDrawMenuCheck Overrides CMFCVisualManager::OnDrawMenuCheck

CMFCVisualManagerWindows7::OnDrawMenuLabel Overrides CMFCVisualManager::OnDrawMenuLabel

CMFCVisualManagerWindows7::OnDrawRadioButton Overrides CMFCVisualManager::OnDrawRadioButton

CMFCVisualManagerWindows7::OnDrawRibbonApplicationButton Overrides
CMFCVisualManager::OnDrawRibbonApplicationButton

CMFCVisualManagerWindows7::OnDrawRibbonButtonBorder Overrides CMFCVisualManager::OnDrawRibbonButtonBorder

CMFCVisualManagerWindows7::OnDrawRibbonCaption Overrides CMFCVisualManager::OnDrawRibbonCaption

CMFCVisualManagerWindows7::OnDrawRibbonCaptionButton Overrides CMFCVisualManager::OnDrawRibbonCaptionButton

CMFCVisualManagerWindows7::OnDrawRibbonCategory Overrides CMFCVisualManager::OnDrawRibbonCategory

CMFCVisualManagerWindows7::OnDrawRibbonCategoryTab Overrides CMFCVisualManager::OnDrawRibbonCategoryTab

CMFCVisualManagerWindows7::OnDrawRibbonDefaultPaneButton Overrides
CMFCVisualManager::OnDrawRibbonDefaultPaneButton

CMFCVisualManagerWindows7::OnDrawRibbonGalleryButton Overrides CMFCVisualManager::OnDrawRibbonGalleryButton

NAME DESCRIPTION

CMFCVisualManagerWindows7::OnDrawRibbonLaunchButton Overrides CMFCVisualManager::OnDrawRibbonLaunchButton

CMFCVisualManagerWindows7::OnDrawRibbonMenuCheckFrame Overrides
CMFCVisualManager::OnDrawRibbonMenuCheckFrame

CMFCVisualManagerWindows7::OnDrawRibbonPanel Overrides CMFCVisualManager::OnDrawRibbonPanel

CMFCVisualManagerWindows7::OnDrawRibbonPanelCaption Overrides CMFCVisualManager::OnDrawRibbonPanelCaption

CMFCVisualManagerWindows7::OnDrawRibbonProgressBar Overrides CMFCVisualManager::OnDrawRibbonProgressBar

CMFCVisualManagerWindows7::OnDrawRibbonRecentFilesFrame Overrides
CMFCVisualManager::OnDrawRibbonRecentFilesFrame

CMFCVisualManagerWindows7::OnDrawRibbonSliderChannel Overrides CMFCVisualManager::OnDrawRibbonSliderChannel

CMFCVisualManagerWindows7::OnDrawRibbonSliderThumb Overrides CMFCVisualManager::OnDrawRibbonSliderThumb

CMFCVisualManagerWindows7::OnDrawRibbonSliderZoomButton Overrides
CMFCVisualManager::OnDrawRibbonSliderZoomButton

CMFCVisualManagerWindows7::OnDrawRibbonStatusBarPane Overrides CMFCVisualManager::OnDrawRibbonStatusBarPane

CMFCVisualManagerWindows7::OnDrawRibbonTabsFrame Overrides CMFCVisualManager::OnDrawRibbonTabsFrame

CMFCVisualManagerWindows7::OnDrawStatusBarSizeBox Overrides
CMFCVisualManagerWindows::OnDrawStatusBarSizeBox

CMFCVisualManagerWindows7::OnFillBarBackground Overrides CMFCVisualManagerWindows::OnFillBarBackground

CMFCVisualManagerWindows7::OnFillButtonInterior Overrides CMFCVisualManagerWindows::OnFillButtonInterior

CMFCVisualManagerWindows7::OnFillMenuImageRect The framework calls this method when it fills area around
menu item images.

CMFCVisualManagerWindows7::OnFillRibbonButton Overrides CMFCVisualManager::OnFillRibbonButton

CMFCVisualManagerWindows7::OnFillRibbonQuickAccessToolBarPopupOverrides
CMFCVisualManager::OnFillRibbonQuickAccessToolBarPopup

CMFCVisualManagerWindows7::OnHighlightMenuItem Overrides
CMFCVisualManagerWindows::OnHighlightMenuItem

CMFCVisualManagerWindows7::OnNcActivate Overrides CMFCVisualManager::OnNcActivate

CMFCVisualManagerWindows7::OnNcPaint Overrides CMFCVisualManager::OnNcPaint

CMFCVisualManagerWindows7::OnUpdateSystemColors Overrides
CMFCVisualManagerWindows::OnUpdateSystemColors

NAME DESCRIPTION

CMFCVisualManagerWindows7::SetResourceHandle Sets the resource handle that describes the attributes of the
visual manager.

CMFCVisualManagerWindows7::SetStyle Sets the color scheme of the CMFCVisualManagerWindows7

GUI.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CMFCVisualManagerWindows7::~CMFCVisualManagerWindows7

virtual ~CMFCVisualManagerWindows7();

CMFCVisualManagerWindows7::CMFCVisualManagerWindows7

CMFCVisualManagerWindows7();

CMFCVisualManagerWindows7::GetRibbonEditBackgroundColor

Use the CMFCVisualManagerWindows7 class to change the appearance of your application to mimic a default
Windows 7 application. This class might not be valid if your application is running on a version of Windows earlier
than Windows 7. In that scenario, the application uses the default visual manager defined in CMFCVisualManager.

The CMFCVisualManagerWindows7 inherits multiple methods from both the CMFCVisualManagerWindows
Class and the CMFCVisualManager class. The methods listed in the previous section are methods new to the
CMFCVisualManagerWindows7 class.

CObject

CMFCBaseVisualManager

CMFCVisualManager

CMFCVisualManagerOfficeXP

CMFCVisualManagerWindows

CMFCVisualManagerWindows7

Header: afxvisualmanagerwindows7.h

Default destructor.

Default constructor.

Obtains the background color of a ribbon edit box.

virtual COLORREF GetRibbonEditBackgroundColor (
 CMFCRibbonRichEditCtrl* pEdit,
 BOOL bIsHighlighted,
 BOOL bIsPaneHighlighted,
 BOOL bIsDisabled);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMFCVisualManagerWindows7::OnFillMenuImageRect

virtual void OnFillMenuImageRect(
 CDC* pDC,
 CMFCToolBarButton* pButton,
 CRect rect,
 CMFCVisualManager::AFX_BUTTON_STATE state);

ParametersParameters

RemarksRemarks

See also

pEdit
[in] A pointer to the edit control. This value cannot be NULL.

bIsHighlighted
[out] Returns whether the ribbon box is highlighted.

bIsPaneHighlighted
[out] Returns TRUE if the ribbon panel that contains pEdit is highlighted.

bIsDisabled
[out] Returns whether pEdit is disabled.

The background color of the edit box pEdit.

The framework calls this method when it fills area around a menu item image.

pDC
[in] A pointer to the device context of a menu button.

pButton
[in] A pointer to a CMFCToolBarButton . The framework fills the background for this button.

rect
[in] A rectangle that specifies the boundaries of the menu button image area.

state
[in] The button state.

Hierarchy Chart
Classes
CMFCVisualManager Class
CMFCVisualManagerWindows Class

CMFCWindowsManagerDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMFCWindowsManagerDialog : public CDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMFCWindowsManagerDialog::CMFCWindowsManagerDialo
g

Constructs a CMFCWindowsManagerDialog object.

Remarks

Example

void CMainFrame::OnWindowManager()
{
 ShowWindowsDialog();
}

Inheritance Hierarchy

The CMFCWindowsManagerDialog object enables a user to manage MDI child windows in a MDI application.

The CMFCWindowsManagerDialog contains a list of MDI child windows that are currently open in the application.
The user can manually control the state of the MDI child windows by using this dialog box.

CMFCWindowsManagerDialog is embedded inside the CMDIFrameWndEx Class. The CMFCWindowsManagerDialog is
not a class that you should create manually. Instead, call the function CMDIFrameWndEx::ShowWindowsDialog,
and it will create and display a CMFCWindowsManagerDialog object.

The following example demonstrates how to construct a CMFCWindowsManagerDialog object by calling
CMDIFrameWndEx::ShowWindowsDialog . This code snippet is part of the Visual Studio Demo sample.

CObject

CCmdTarget

CWnd

CDialog

CMFCWindowsManagerDialog

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcwindowsmanagerdialog-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CMFCWindowsManagerDialog::CMFCWindowsManagerDialog

CMFCWindowsManagerDialog(
 CMDIFrameWndEx* pMDIFrame,
 BOOL bHelpButton = FALSE);

ParametersParameters

RemarksRemarks

See also

Header: afxWindowsManagerDialog.h

Constructs a CMFCWindowsManagerDialog object.

pMDIFrame
[in] A pointer to the parent or owner window.

bHelpButton
[in] A Boolean parameter that specifies whether the framework displays a Help button.

For more information about visual managers, see Visualization Manager.

Hierarchy Chart
Classes
CMDIFrameWndEx Class

CMiniFrameWnd Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMiniFrameWnd : public CFrameWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMiniFrameWnd::CMiniFrameWnd Constructs a CMiniFrameWnd object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMiniFrameWnd::Create Creates a CMiniFrameWnd object after construction.

CMiniFrameWnd::CreateEx Creates a CMiniFrameWnd object (with additional options)
after construction.

Remarks

Inheritance Hierarchy

Requirements

Represents a half-height frame window typically seen around floating toolbars.

These mini-frame windows behave like normal frame windows, except that they do not have minimize/maximize
buttons or menus and you only have to single-click on the system menu to dismiss them.

To use a CMiniFrameWnd object, first define the object. Then call the Create member function to display the mini-
frame window.

For more information on how to use CMiniFrameWnd objects, see the article Docking and Floating Toolbars.

CObject

CCmdTarget

CWnd

CFrameWnd

CMiniFrameWnd

Header: afxwin.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cminiframewnd-class.md

CMiniFrameWnd::CMiniFrameWnd

CMiniFrameWnd();

RemarksRemarks

CMiniFrameWnd::Create

virtual BOOL Create(
 LPCTSTR lpClassName,
 LPCTSTR lpWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd = NULL,
 UINT nID = 0);

ParametersParameters

Constructs a CMiniFrameWnd object, but does not create the window.

To create the window, call CMiniFrameWnd::Create.

Creates the Windows mini-frame window and attaches it to the CMiniFrameWnd object.

lpClassName
Points to a null-terminated character string that names the Windows class. The class name can be any name
registered with the global AfxRegisterWndClass function. If NULL, the window class will be registered for you by
the framework. MFC gives the default class the following styles and attributes:

Sets style bit CS_DBLCLKS, which sends double-click messages to the window procedure when the user
double-clicks the mouse.

Sets style bits CS_HREDRAW and CS_VREDRAW, which direct the contents of the client area to be
redrawn when the window changes size.

Sets the class cursor to the Windows standard IDC_ARROW.

Sets the class background brush to NULL, so the window will not erase its background.

Sets the class icon to the standard, waving-flag Windows logo icon.

Sets the window to the default size and position, as indicated by Windows.

lpWindowName
Points to a null-terminated character string that contains the window name.

dwStyle
Specifies the window style attributes. These can include standard window styles and one or more of the
following special styles:

MFS_MOVEFRAME Allows the mini-frame window to be moved by clicking on any edge of the window,
not just the caption.

MFS_4THICKFRAME Disables resizing of the mini-frame window.

MFS_SYNCACTIVE Synchronizes the activation of the mini-frame window to the activation of its parent
window.

MFS_THICKFRAME Allows the mini-frame window to be sized as small as the contents of the client area

Return ValueReturn Value

RemarksRemarks

CMiniFrameWnd::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 LPCTSTR lpClassName,
 LPCTSTR lpWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd = NULL,
 UINT nID = 0);

ParametersParameters

allow.

MFS_BLOCKSYSMENU Disables access to the system menu and the control menu, and converts them to
part of the caption (title bar).

See CWnd::Create for a description of possible window style values. The typical combination used for mini-frame
windows is WS_POPUP|WS_CAPTION|WS_SYSMENU.

rect
A RECT structure specifying the desired dimensions of the window.

pParentWnd
Points to the parent window. Use NULL for top-level windows.

nID
If the mini-frame window is created as a child window, this is the identifier of the child control; otherwise 0.

Nonzero if successful; otherwise 0.

Create initializes the window's class name and window name and registers default values for its style and
parent.

Creates a CMiniFrameWnd object.

dwExStyle
Specifies the extended style of the CMiniFrameWnd being created. Apply any of the extended window styles to the
window.

lpClassName
Points to a null-terminated character string that names the Windows class (a WNDCLASS structure). The class
name can be any name registered with the global AfxRegisterWndClass function or any of the predefined
control-class names. It must not be NULL.

lpWindowName
Points to a null-terminated character string that contains the window name.

dwStyle
Specifies the window style attributes. See Window Styles and CWnd::Create for a description of the possible
values.

rect
The size and position of the window, in client coordinates of pParentWnd.

pParentWnd

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa

Return ValueReturn Value

RemarksRemarks

See also

Points to the parent window object.

nID
The identifier of the child window.

Returns TRUE on success, FALSE on failure.

The CreateEx parameters specify the WNDCLASS, window style, and (optionally) initial position and size of the
window. CreateEx also specifies the window's parent (if any) and ID.

When CreateEx executes, Windows sends the WM_GETMINMAXINFO, WM_NCCREATE, WM_NCCALCSIZE,
and WM_CREATE messages to the window.

To extend the default message handling, derive a class from CMiniFrameWnd , add a message map to the new class,
and provide member functions for the above messages. Override OnCreate , for example, to perform needed
initialization for a new class.

Override further On Message message handlers to add further functionality to your derived class.

If the WS_VISIBLE style is given, Windows sends the window all the messages required to activate and show the
window. If the window style specifies a title bar, the window title pointed to by the lpszWindowName parameter
is displayed in the title bar.

The dwStyle parameter can be any combination of window styles.

The old style Palette toolbox windows are no longer supported. The old style, which did not have an "X" Close
button, was supported when running an MFC application on previous versions of Windows, but is no longer
supported in Visual C++.NET. Only the new WS_EX_TOOLWINDOW style is now supported; for a description
of this style, see Extended Window Styles.

CFrameWnd Class
Hierarchy Chart
CFrameWnd Class

CMonikerFile Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMonikerFile : public COleStreamFile

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMonikerFile::CMonikerFile Constructs a CMonikerFile object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMonikerFile::Close Detaches and releases the stream and releases the moniker.

CMonikerFile::Detach Detaches the IMoniker from this CMonikerFile object.

CMonikerFile::GetMoniker Returns the current moniker.

CMonikerFile::Open Opens the specified file to obtain a stream.

Protected MethodsProtected Methods

NAME DESCRIPTION

CMonikerFile::CreateBindContext Obtains the bind context or creates a default initialized bind
context.

Remarks

Represents a stream of data (IStream) named by an IMoniker.

A moniker contains information much like a pathname to a file. If you have a pointer to a moniker object's
IMoniker interface, you can get access to the identified file without having any other specific information about

where the file is actually located.

Derived from COleStreamFile , CMonikerFile takes a moniker or a string representation it can make into a
moniker and binds to the stream for which the moniker is a name. You can then read and write to that stream.
The real purpose of CMonikerFile is to provide simple access to IStream s named by IMoniker s so that you do
not have to bind to a stream yourself, yet have CFile functionality to the stream.

CMonikerFile cannot be used to bind to anything other than a stream. If you want to bind to storage or an
object, you must use the IMoniker interface directly.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmonikerfile-class.md
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-imoniker

Inheritance Hierarchy

Requirements

CMonikerFile::Close

virtual void Close();

RemarksRemarks

CMonikerFile::CMonikerFile

CMonikerFile();

CMonikerFile::CreateBindContext

IBindCtx* CreateBindContext(CFileException* pError);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

For more information on streams and monikers, see COleStreamFile in the MFC Reference and IStream and
IMoniker in the Windows SDK.

CObject

CFile

COleStreamFile

CMonikerFile

Header: afxole.h

Call this function to detach and release the stream and to release the moniker.

Can be called on unopened or already closed streams.

Constructs a CMonikerFile object.

Call this function to create a default initialized bind context.

pError
A pointer to a file exception. In the event of an error, it will be set to the cause.

A pointer to the bind context IBindCtx to bind with if successful; otherwise NULL. If the instance was opened
with an IBindHost interface, the bind context is retrieved from the IBindHost . If there is no IBindHost interface
or the interface fails to return a bind context, a bind context is created. For a description of the IBindHost
interface, see the Windows SDK.

A bind context is an object that stores information about a particular moniker binding operation. You can
override this function to provide a custom bind context.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-imoniker
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-ibindctx
https://msdn.microsoft.com/library/ie/ms775076

CMonikerFile::Detach

BOOL Detach(CFileException* pError = NULL);

ParametersParameters

Return ValueReturn Value

CMonikerFile::GetMoniker

IMoniker* GetMoniker() const;

Return ValueReturn Value

RemarksRemarks

CMonikerFile::Open

virtual BOOL Open(
 LPCTSTR lpszURL,
 CFileException* pError = NULL);

virtual BOOL Open(
 IMoniker* pMoniker,
 CFileException* pError = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Call this function to close the stream.

pError
A pointer to a file exception. In the event of an error, it will be set to the cause.

Nonzero if successful; otherwise 0.

Call this function to retrieve a pointer to the current moniker.

A pointer to the current moniker interface (IMoniker).

Since CMonikerFile is not an interface, the pointer returned does not increment the reference count (through
AddRef), and the moniker is released when the CMonikerFile object is released. If you want to hold onto the
moniker or release it yourself, you must AddRef it.

Call this member function to open a file or moniker object.

lpszURL
A URL or filename of the file to be opened.

pError
A pointer to a file exception. In the event of an error, it will be set to the cause.

pMoniker
A pointer to the moniker interface IMoniker to be used to obtain a stream.

Nonzero if successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-imoniker
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref

CMyMoniker* pMyMoniker = new CMyMoniker();
pMyMoniker->Open(_T("http://www.microsoft.com"));

CMyMoniker* pMyMoniker = new CMyMoniker();
pMyMoniker->Open(_T("file:c:\\mydata.dat"));

See also

The lpszURL parameter cannot be used on a Macintosh. Only the pMoniker form of Open can be used on a
Macintosh.

You can use a URL or a filename for the lpszURL parameter. For example:

- or -

COleStreamFile Class
Hierarchy Chart
CAsyncMonikerFile Class

CMonthCalCtrl Class
3/5/2019 • 29 minutes to read • Edit Online

Syntax
class CMonthCalCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMonthCalCtrl::CMonthCalCtrl Constructs a CMonthCalCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMonthCalCtrl::Create Creates a month calendar control and attaches it to the
CMonthCalCtrl object.

CMonthCalCtrl::GetCalendarBorder Retrieves the width of the border of the current month
calendar control.

CMonthCalCtrl::GetCalendarCount Retrieves the number of calendars displayed in the current
month calendar control.

CMonthCalCtrl::GetCalendarGridInfo Retrieves information about the current month calendar
control.

CMonthCalCtrl::GetCalID Retrieves the calendar identifier for the current month
calendar control.

CMonthCalCtrl::GetColor Gets the color of a specified area of a month calendar
control.

CMonthCalCtrl::GetCurrentView Retrieves the view that is currently displayed by the current
month calendar control.

CMonthCalCtrl::GetCurSel Retrieves the system time as indicated by the currently-
selected date.

CMonthCalCtrl::GetFirstDayOfWeek Gets the first day of the week to be displayed in the leftmost
column of the calendar.

CMonthCalCtrl::GetMaxSelCount Retrieves the current maximum number of days that can be
selected in a month calendar control.

Encapsulates the functionality of a month calendar control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmonthcalctrl-class.md

CMonthCalCtrl::GetMaxTodayWidth Retrieves the maximum width of the "Today" string for the
current month calendar control.

CMonthCalCtrl::GetMinReqRect Retrieves the minimum size required to show a full month in
a month calendar control.

CMonthCalCtrl::GetMonthDelta Retrieves the scroll rate for a month calendar control.

CMonthCalCtrl::GetMonthRange Retrieves date information representing the high and low
limits of a month calendar control's display.

CMonthCalCtrl::GetRange Retrieves the current minimum and maximum dates set in a
month calendar control.

CMonthCalCtrl::GetSelRange Retrieves date information representing the upper and lower
limits of the date range currently selected by the user.

CMonthCalCtrl::GetToday Retrieves the date information for the date specified as
"today" for a month calendar control.

CMonthCalCtrl::HitTest Determines which section of a month calendar control is at a
given point on the screen.

CMonthCalCtrl::IsCenturyView Indicates whether the current view of the current month
calendar control is the century view.

CMonthCalCtrl::IsDecadeView Indicates whether the current view of the current month
calendar control is the decade view.

CMonthCalCtrl::IsMonthView Indicates whether the current view of the current month
calendar control is the month view.

CMonthCalCtrl::IsYearView Indicates whether the current view of the current month
calendar control is the year view.

CMonthCalCtrl::SetCalendarBorder Sets the width of the border of the current month calendar
control.

CMonthCalCtrl::SetCalendarBorderDefault Sets the default width of the border of the current month
calendar control.

CMonthCalCtrl::SetCalID Sets the calendar identifier for the current month calendar
control.

CMonthCalCtrl::SetCenturyView Sets the current month calendar control to display the
century view.

CMonthCalCtrl::SetColor Sets the color of a specified area of a month calendar control.

CMonthCalCtrl::SetCurrentView Sets the current month calendar control to display the
specified view.

CMonthCalCtrl::SetCurSel Sets the currently selected date for a month calendar control.

NAME DESCRIPTION

CMonthCalCtrl::SetDayState Sets the display for days in a month calendar control.

CMonthCalCtrl::SetDecadeView Sets the current month calendar control to the decade view.

CMonthCalCtrl::SetFirstDayOfWeek Sets the day of week to be displayed in the leftmost column
of the calendar.

CMonthCalCtrl::SetMaxSelCount Sets the maximum number of days that can be selected in a
month calendar control.

CMonthCalCtrl::SetMonthDelta Sets the scroll rate for a month calendar control.

CMonthCalCtrl::SetMonthView Sets the current month calendar control to display the
month view.

CMonthCalCtrl::SetRange Sets the minimum and maximum allowed dates for a month
calendar control.

CMonthCalCtrl::SetSelRange Sets the selection for a month calendar control to a given
date range.

CMonthCalCtrl::SetToday Sets the calendar control for the current day.

CMonthCalCtrl::SetYearView Sets the current month calendar control to year view.

CMonthCalCtrl::SizeMinReq Repaints the month calendar control to its minimum, one-
month size.

CMonthCalCtrl::SizeRectToMin For the current month calendar control, calculates the
smallest rectangle that can contain all the calendars that fit in
a specified rectangle.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

The month calendar control provides the user with a simple calendar interface, from which the user can select a
date. The user can change the display by:

Scrolling backward and forward, from month to month.

Clicking the Today text to display the current day (if the MCS_NOTODAY style is not used).

Picking a month or a year from a pop-up menu.

You can customize the month calendar control by applying a variety of styles to the object when you create it.
These styles are described in Month Calendar Control Styles in the Windows SDK.

The month calendar control can display more than one month, and it can indicate special days (such as holidays)
by bolding the date.

For more information on using the month calendar control, see Using CMonthCalCtrl.

CObject

https://docs.microsoft.com/windows/desktop/Controls/month-calendar-control-styles

Requirements

CMonthCalCtrl::CMonthCalCtrl

CMonthCalCtrl();

RemarksRemarks

CMonthCalCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

virtual BOOL Create(
 DWORD dwStyle,
 const POINT& pt,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CCmdTarget

CWnd

CMonthCalCtrl

Header: afxdtctl.h

Constructs a CMonthCalCtrl object.

You must call Create after you construct the object.

Creates a month calendar control and attaches it to the CMonthCalCtrl object.

dwStyle
Specifies the combination of Windows styles applied to the month calendar control. See Month Calendar
Control Styles in the Windows SDK for more information about the styles.

rect
A reference to a RECT structure. Contains the position and size of the month calendar control.

pt
A reference to a POINT structure that identifies the location of the month calendar control.

pParentWnd
A pointer to a CWnd object that is the parent window of the month calendar control. It must not be NULL.

nID
Specifies the month calendar control's control ID.

Nonzero if initialization was successful; otherwise 0.

Create a month calendar control in two steps:

https://docs.microsoft.com/windows/desktop/Controls/month-calendar-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)

ExampleExample

// Given two member objects m_calCtrl1 and m_calCtrl2, we can
// create them in one of two ways.

// Providing a point has the control with its top-left corner
// at that point and sized automatically to show one month
// page.

CPoint pt(10, 10);
VERIFY(m_calCtrl1.Create(WS_TABSTOP | WS_CHILD | WS_VISIBLE |
 WS_BORDER | MCS_DAYSTATE, pt, this, IDC_MONTHCALCTRL1));

// Providing a rectangle lets us completely control the size.
// The control will paint as many complete month pages in the
// control's area as possible.

CRect rect(300, 100, 470, 200);
VERIFY(m_calCtrl2.Create(WS_TABSTOP | WS_CHILD | WS_VISIBLE |
 WS_BORDER | MCS_MULTISELECT, rect, this, IDC_MONTHCALCTRL2));

CMonthCalCtrl::GetCalendarBorder

int GetCalendarBorder() const;

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::GetCalendarCount

int GetCalendarCount() const;

Return ValueReturn Value

RemarksRemarks

1. Call CMonthCalCtrl to construct a CMonthCalCtrl object.

2. Call this member function, which creates a month calendar control and attaches it to the CMonthCalCtrl

object.

When you call Create , the common controls are initialized. The version of Create you call determines how it is
sized:

To have MFC automatically size the control to one month, call the override that uses the pt parameter.

To size the control yourself, call the override of this function that uses the rect parameter.

Retrieves the width of the border of the current month calendar control.

The width of the control border, in pixels.

This method sends the MCM_GETCALENDARBORDER message, which is described in the Windows SDK.

Retrieves the number of calendars displayed in the current month calendar control.

The number of calendars currently displayed in the month calendar control. The maximum allowed number of
calendars is 12.

https://docs.microsoft.com/windows/desktop/Controls/mcm-getcalendarborder

CMonthCalCtrl::GetCalendarGridInfo

BOOL GetCalendarGridInfo(PMCGRIDINFO pmcGridInfo) const;

ParametersParameters

PARAMETER DESCRIPTION

pmcGridInfo [out] Pointer to a MCGRIDINFO structure that receives
information about the current month calendar control. The
caller is responsible for allocating and initializing this
structure.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Variable used to reference the month calendar control.
CMonthCalCtrl m_monthCalCtrl;
// Variable used to reference the splitbutton control.
CSplitButton m_splitButton;

ExampleExample

WCHAR name[26];
name[0] = _T('\0');
MCGRIDINFO gridInfo;
gridInfo.cbSize = sizeof(MCGRIDINFO);
gridInfo.dwPart = MCGIP_CALENDARHEADER;
gridInfo.dwFlags = MCGIF_NAME;
gridInfo.iCalendar = 0;
gridInfo.pszName = reinterpret_cast<PWSTR>(&name);
gridInfo.cchName = sizeof(name);

m_monthCalCtrl.GetCalendarGridInfo(&gridInfo);

CString str;
CString calendarDate(name);
str.Format(_T("Calendar date: '%s'"), calendarDate);
AfxMessageBox(str, MB_ICONINFORMATION);

CMonthCalCtrl::GetCalID

This method sends the MCM_GETCALENDARCOUNT message, which is described in the Windows SDK.

Retrieves information about the current month calendar control.

TRUE if this method is successful; otherwise, FALSE.

This method sends the MCM_GETCALENDARGRIDINFO message, which is described in the Windows SDK.

The following code example defines the variable, m_monthCalCtrl , that is used to programmatically access the
month calendar control. This variable is used in the next example.

The following code example uses the GetCalendarGridInfo method to retrieve the calendar date that the current
month calendar control displays.

Retrieves the calendar identifier for the current month calendar control.

https://docs.microsoft.com/windows/desktop/Controls/mcm-getcalendarcount
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagmcgridinfo
https://docs.microsoft.com/windows/desktop/Controls/mcm-getcalendargridinfo

CALID GetCalID() const;

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::GetColor

COLORREF GetColor(int nRegion) const;

ParametersParameters

Return ValueReturn Value

CMonthCalCtrl::GetCurrentView

DWORD GetCurrentView() const;

Return ValueReturn Value

VALUE MEANING

MCMV_MONTH Monthly view

MCMV_YEAR Annual view

MCMV_DECADE Decade view

MCMV_CENTURY Century view

RemarksRemarks

ExampleExample

One of the calendar identifier constants.

A calendar identifier denotes a region-specific calendar, such as the Gregorian (localized), Japanese, or Hijri
calendars. Your application can use a calendar identifier that has various language support functions.

This method sends the MCM_GETCALID message, which is described in the Windows SDK.

Retrieves the color of an area of the month calendar control specified by nRegion.

nRegion
The region of the month calendar control from which the color is retrieved. For a list of values, see the nRegion
parameter of SetColor.

A COLORREF value specifying the color associated with the portion of the month calendar control, if successful.
Otherwise, this member function returns -1.

Retrieves the view that is currently displayed by the current month calendar control.

The current view, which is indicated by one of the following values:

This method sends the MCM_GETCURRENTVIEW message, which is described in the Windows SDK.

The following code example defines the variable, m_monthCalCtrl , that is used to programmatically access the
month calendar control. This variable is used in the next example.

https://docs.microsoft.com/windows/desktop/Intl/calendar-identifiers
https://docs.microsoft.com/windows/desktop/Controls/mcm-getcalid
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/mcm-getcurrentview

// Variable used to reference the month calendar control.
CMonthCalCtrl m_monthCalCtrl;
// Variable used to reference the splitbutton control.
CSplitButton m_splitButton;

ExampleExample

CString str;
CString msg = _T("The current calendar displays %s view.");
DWORD view = m_monthCalCtrl.GetCurrentView();
switch (view) {
 case MCMV_MONTH:
 str.Format(msg, _T("month"));
 break;
 case MCMV_YEAR:
 str.Format(msg, _T("year"));
 break;
 case MCMV_DECADE:
 str.Format(msg, _T("decade"));
 break;
 case MCMV_CENTURY:
 str.Format(msg, _T("century"));
 break;
 default:
 str.Format(msg, _T("an unknown"));
 break;
}
AfxMessageBox(str, MB_ICONINFORMATION);

CMonthCalCtrl::GetCurSel

BOOL GetCurSel(COleDateTime& refDateTime) const; BOOL GetCurSel(CTime& refDateTime) const;

BOOL GetCurSel(LPSYSTEMTIME pDateTime) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

The following code example reports which view the month calendar control currently displays.

Retrieves the system time as indicated by the currently-selected date.

refDateTime
A reference to a COleDateTime object or a CTime object. Receives the current time.

pDateTime
A pointer to a SYSTEMTIME structure that will receive the currently-selected date information. This parameter
must be a valid address and cannot be NULL.

Nonzero if successful; otherwize 0.

This member function implements the behavior of the Win32 message MCM_GETCURSEL, as described in the
Windows SDK.

This member function fails if the style MCS_MULTISELECT is set.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/Controls/mcm-getcursel

CMonthCalCtrl::GetFirstDayOfWeek

int GetFirstDayOfWeek(BOOL* pbLocal = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

VALUE DAY OF THE WEEK

0 Monday

1 Tuesday

2 Wednesday

3 Thursday

4 Friday

5 Saturday

6 Sunday

ExampleExample

CMonthCalCtrl::GetMaxSelCount

int GetMaxSelCount() const;

Return ValueReturn Value

RemarksRemarks

In MFC's implementation of GetCurSel , you can specify a COleDateTime usage, a CTime usage, or a SYSTEMTIME

structure usage.

Gets the first day of the week to be displayed in the leftmost column of the calendar.

pbLocal
A pointer to a BOOL value. If the value is non-zero, the control's setting does not match the setting in the control
panel.

An integer value that represents the first day of the week. See Remarks for more information on what these
integers represent.

This member function implements the behavior of the Win32 message MCM_GETFIRSTDAYOFWEEK, as
described in the Windows SDK. The days of the week are represented as integers, as follows.

See the example for CMonthCalCtrl::SetFirstDayOfWeek.

Retrieves the current maximum number of days that can be selected in a month calendar control.

An integer value that represents the total number of days that can be selected for the control.

This member function implements the behavior of the Win32 message MCM_GETMAXSELCOUNT, as

https://docs.microsoft.com/windows/desktop/Controls/mcm-getfirstdayofweek
https://docs.microsoft.com/windows/desktop/Controls/mcm-getmaxselcount

ExampleExample

CMonthCalCtrl::GetMaxTodayWidth

DWORD GetMaxTodayWidth() const;

Return ValueReturn Value

ExampleExample

// Variable used to reference the month calendar control.
CMonthCalCtrl m_monthCalCtrl;
// Variable used to reference the splitbutton control.
CSplitButton m_splitButton;

ExampleExample

DWORD width = m_monthCalCtrl.GetMaxTodayWidth();
CString str;
str.Format(_T("The maximum today width is %d."), width);
AfxMessageBox(str, MB_ICONINFORMATION);

RemarksRemarks

CMonthCalCtrl::GetMinReqRect

BOOL GetMinReqRect(RECT* pRect) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

described in the Windows SDK. Use this member function for controls with the MCS_MULTISELECT style set.

See the example for CMonthCalCtrl::SetMaxSelCount.

Retrieves the maximum width of the "Today" string for the current month calendar control.

The width of the "Today" string, in pixels.

The following code example defines the variable, m_monthCalCtrl , that is used to programmatically access the
month calendar control. This variable is used in the next example.

The following code example demonstrates the GetMaxTodayWidth method.

The user can return to the current date by clicking the "Today" string, which is displayed at the bottom of the
month calendar control. The "Today" string includes label text and date text.

This method sends the MCM_GETMAXTODAYWIDTH message, which is described in the Windows SDK.

Retrieves the minimum size required to show a full month in a month calendar control.

pRect
A pointer to a RECT structure that will receive bounding rectangle information. This parameter must be a valid
address and cannot be NULL.

If successful, this member function returns nonzero and lpRect receives the applicable bounding information. If
unsuccessful, the member function returns 0.

https://docs.microsoft.com/windows/desktop/Controls/mcm-getmaxtodaywidth
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

CMonthCalCtrl::GetMonthDelta

int GetMonthDelta() const;

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::GetMonthRange

int GetMonthRange(
 COleDateTime& refMinRange,
 COleDateTime& refMaxRange,
 DWORD dwFlags) const;

int GetMonthRange(
 CTime& refMinRange,
 CTime& refMaxRange,
 DWORD dwFlags) const;

int GetMonthRange(
 LPSYSTEMTIME pMinRange,
 LPSYSTEMTIME pMaxRange,
 DWORD dwFlags) const;

ParametersParameters

VALUE MEANING

GMR_DAYSTATE Include preceding and trailing months of visible range that
are only partially displayed.

This member function implements the behavior of the Win32 message MCM_GETMINREQRECT, as described
in the Windows SDK.

Retrieves the scroll rate for a month calendar control.

The scroll rate for the month calendar control. The scroll rate is the number of months that the control moves its
display when the user clicks a scroll button once.

This member function implements the behavior of the Win32 message MCM_GETMONTHDELTA, as described
in the Windows SDK.

Retrieves date information representing the high and low limits of a month calendar control's display.

refMinRange
A reference to a COleDateTime or CTime object containing the minimum date allowed.

refMaxRange
A reference to a COleDateTime or CTime object containing the maximum date allowed.

pMinRange
A pointer to a SYSTEMTIME structure containing the date at the lowest end of the range.

pMaxRange
A pointer to a SYSTEMTIME structure containing the date at the highest end of the range.

dwFlags
Value specifying the scope of the range limits to be retrieved. This value must be one of the following.

https://docs.microsoft.com/windows/desktop/Controls/mcm-getminreqrect
https://docs.microsoft.com/windows/desktop/Controls/mcm-getmonthdelta
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime

GMR_VISIBLE Include only those months that are entirely displayed.

VALUE MEANING

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMonthCalCtrl::GetRange

DWORD GetRange(
 COleDateTime* pMinRange,
 COleDateTime* pMaxRange) const;

DWORD GetRange(
 CTime* pMinRange,
 CTime* pMaxRange) const;

DWORD GetRange(
 LPSYSTEMTIME pMinRange,
 LPSYSTEMTIME pMaxRange) const;

ParametersParameters

Return ValueReturn Value

VALUE MEANING

GDTR_MAX A maximum limit is set for the control; pMaxRange is valid
and contains the applicable date information.

GDTR_MIN A minimum limit is set for the control; pMinRange is valid
and contains the applicable date information.

RemarksRemarks

An integer that represents the range, in months, spanned by the two limits indicated by refMinRange and
refMaxRange in the first and second versions, or pMinRange and pMaxRange in the third version.

This member function implements the behavior of the Win32 message MCM_GETMONTHRANGE, as
described in the Windows SDK. In MFC's implementation of GetMonthRange , you can specify COleDateTime

usage, a CTime usage, or a SYSTEMTIME structure usage.

See the example for CMonthCalCtrl::SetDayState.

Retrieves the current minimum and maximum dates set in a month calendar control.

pMinRange
A pointer to a COleDateTime object, a CTime object, or SYSTEMTIME structure containing the date at the lowest
end of the range.

pMaxRange
A pointer to a COleDateTime object, a CTime object, or SYSTEMTIME structure containing the date at the highest
end of the range.

A DWORD that can be zero (no limits are set) or a combination of the following values that specify limit
information.

This member function implements the behavior of the Win32 message MCM_GETRANGE, as described in the

https://docs.microsoft.com/windows/desktop/Controls/mcm-getmonthrange
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/Controls/mcm-getrange

ExampleExample

// This code fragment sets a variety of ranges in the
// control, and calls a separate function to show the
// set range to the user.

void CMonthCalDlg::OnBnClickedRangebutton()
{
 // set minimum of January 1st, 1995 with no maximum
 COleDateTime dtMin;
 COleDateTime dtMax;

 dtMin = COleDateTime(1995, 1, 1, 0, 0, 0);
 dtMax.SetStatus(COleDateTime::null);
 m_calCtrl1.SetRange(&dtMin, &dtMax);
 ShowRange(&m_calCtrl1);

 // set no minimum and a maximum of September 30th, 1997
 dtMin.SetStatus(COleDateTime::null);
 dtMax = COleDateTime(1997, 9, 30, 0, 0, 0);
 m_calCtrl1.SetRange(&dtMin, &dtMax);
 ShowRange(&m_calCtrl1);

 // set minimum of April 15, 1992 and maximum of June 5, 2002
 dtMin = COleDateTime(1992, 4, 15, 0, 0, 0);
 dtMax = COleDateTime(2002, 6, 5, 0, 0, 0);
 m_calCtrl1.SetRange(&dtMin, &dtMax);
 ShowRange(&m_calCtrl1);
}

void CMonthCalDlg::ShowRange(CMonthCalCtrl* pMoCalCtrl)
{
 ASSERT(pMoCalCtrl != NULL);
 CString strMessage;
 COleDateTime dtMinimum;
 COleDateTime dtMaximum;

 // Get the range
 DWORD dwResult = pMoCalCtrl->GetRange(&dtMinimum, &dtMaximum);

 // If a minimum was specified, format it
 // otherwise, indicate that there is no lower bound
 if (dwResult & GDTR_MIN)
 strMessage += dtMinimum.Format(_T("Minimum range is %x %X.\r\n"));
 else
 strMessage += _T("No minimum range.\r\n");

 // Treat maximum similarly
 if (dwResult & GDTR_MAX)
 strMessage += dtMaximum.Format(_T("Maximum range is %x %X.\r\n"));
 else
 strMessage += _T("No maximum range.\r\n");

 // Show the user
 AfxMessageBox(strMessage);
}

CMonthCalCtrl::GetSelRange

Windows SDK. In MFC's implementation of GetRange , you can specify a COleDateTime usage, a CTime usage, or
a SYSTEMTIME structure usage.

Retrieves date information representing the upper and lower limits of the date range currently selected by the
user.

BOOL GetSelRange(
 COleDateTime& refMinRange,
 COleDateTime& refMaxRange) const;

BOOL GetSelRange(
 CTime& refMinRange,
 CTime& refMaxRange) const;

BOOL GetSelRange(
 LPSYSTEMTIME pMinRange,
 LPSYSTEMTIME pMaxRange) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::GetToday

BOOL GetToday(COleDateTime& refDateTime) const; BOOL GetToday(COleDateTime& refDateTime) const;

BOOL GetToday(LPSYSTEMTIME pDateTime) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

refMinRange
A reference to a COleDateTime or CTime object containing the minimum date allowed.

refMaxRange
A reference to a COleDateTime or CTime object containing the maximum date allowed.

pMinRange
A pointer to a SYSTEMTIME structure containing the date at the lowest end of the range.

pMaxRange
A pointer to a SYSTEMTIME structure containing the date at the highest end of the range.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message MCM_GETSELRANGE, as described in
the Windows SDK. GetSelRange will fail if applied to a month calendar control that does not use the
MCS_MULTISELECT style.

In MFC's implementation of GetSelRange , you can specify COleDateTime usage, a CTime usage, or a SYSTEMTIME

structure usage.

Retrieves the date information for the date specified as "today" for a month calendar control.

refDateTime
A reference to a COleDateTime or CTime object indicating the current day.

pDateTime
A pointer to a SYSTEMTIME structure that will receive the date information. This parameter must be a valid
address and cannot be NULL.

Nonzero if successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/Controls/mcm-getselrange
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime

ExampleExample

void CMonthCalDlg::OnBnClickedGettodaybutton()
{
 COleDateTime timeToday;
 if (m_calCtrl1.GetToday(timeToday))
 {
 // Format the date information from the value we received
 // and post a message box about it.
 CString str = timeToday.Format(VAR_DATEVALUEONLY);
 AfxMessageBox(str);

 // Set the control's "today" indicator to be five
 // days previous.
 timeToday -= 5;
 m_calCtrl1.SetToday(timeToday);
 }
 else
 {
 // Something is wrong!
 ASSERT(FALSE);
 }
}

CMonthCalCtrl::HitTest

DWORD HitTest(PMCHITTESTINFO pMCHitTest);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::IsCenturyView

BOOL IsCenturyView() const;

Return ValueReturn Value

RemarksRemarks

This member function implements the behavior of the Win32 message MCM_GETTODAY, as described in the
Windows SDK. In MFC's implementation of GetToday , you can specify a COleDateTime usage, a CTime usage, or
a SYSTEMTIME structure usage.

Determines which month calendar control, if any, is at a specified position.

pMCHitTest
A pointer to a MCHITTESTINFO structure containing hit testing points for the month calendar control.

A DWORD value. Equal to the uHit member of the MCHITTESTINFO structure.

HitTest uses the MCHITTESTINFO structure, which contains information about the hit test.

Indicates whether the current view of the current month calendar control is the century view.

TRUE if the current view is the century view; otherwise, FALSE.

This method sends the MCM_GETCURRENTVIEW message, which is described in the Windows SDK. If that
message returns MCMV_CENTURY, this method returns TRUE.

https://docs.microsoft.com/windows/desktop/Controls/mcm-gettoday
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-mchittestinfo
https://docs.microsoft.com/windows/desktop/Controls/mcm-getcurrentview

CMonthCalCtrl::IsDecadeView

BOOL IsDecadeView() const;

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::IsMonthView

BOOL IsMonthView() const;

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::IsYearView

BOOL IsYearView() const;

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::SetCalendarBorder

void SetCalendarBorder(int cxyBorder);

ParametersParameters

PARAMETER DESCRIPTION

cxyBorder [in] The width of the border, in pixels.

Indicates whether the current view of the current month calendar control is the decade view.

TRUE if the current view is the decade view; otherwise, FALSE.

This method sends the MCM_GETCURRENTVIEW message, which is described in the Windows SDK. If that
message returns MCMV_DECADE, this method returns TRUE.

Indicates whether the current view of the current month calendar control is the month view.

TRUE if the current view is the month view; otherwise, FALSE.

This method sends the MCM_GETCURRENTVIEW message, which is described in the Windows SDK. If that
message returns MCMV_MONTH, this method returns TRUE.

Indicates whether the current view of the current month calendar control is the year view.

TRUE if the current view is the year view; otherwise, FALSE.

This method sends the MCM_GETCURRENTVIEW message, which is described in the Windows SDK. If that
message returns MCMV_YEAR, this method returns TRUE.

Sets the width of the border of the current month calendar control.

https://docs.microsoft.com/windows/desktop/Controls/mcm-getcurrentview
https://docs.microsoft.com/windows/desktop/Controls/mcm-getcurrentview
https://docs.microsoft.com/windows/desktop/Controls/mcm-getcurrentview

RemarksRemarks

ExampleExample

// Variable used to reference the month calendar control.
CMonthCalCtrl m_monthCalCtrl;
// Variable used to reference the splitbutton control.
CSplitButton m_splitButton;

ExampleExample

// Use the GetCalendarBorder() method to determine whether
// this method succeeded or failed.
m_monthCalCtrl.SetCalendarBorder(8);

CMonthCalCtrl::SetCalendarBorderDefault

void SetCalendarBorderDefault();

RemarksRemarks

CMonthCalCtrl::SetCalID

BOOL SetCalID(CALID calid);

ParametersParameters

PARAMETER DESCRIPTION

calid [in] One of the calendar identifier constants.

Return ValueReturn Value

RemarksRemarks

If this method succeeds, the border width is set to the cxyBorder parameter. Otherwise, the border width is reset
to the default value that is specified by the current theme, or zero if themes are not used.

This method sends the MCM_SETCALENDARBORDER message, which is described in the Windows SDK.

The following code example defines the variable, m_monthCalCtrl , that is used to programmatically access the
month calendar control. This variable is used in the next example.

The following code example sets the border width of the month calendar control to eight pixels. Use the
CMonthCalCtrl::GetCalendarBorder method to determine whether this method succeeded.

Sets the default width of the border of the current month calendar control.

The border width is set to the default value specified by the current theme, or zero if themes are not used.

This method sends the MCM_SETCALENDARBORDER message, which is described in the Windows SDK.

Sets the calendar identifier for the current month calendar control.

TRUE if this method is successful; otherwise, FALSE.

A calendar identifier specifies a region-specific calendar, such as the Gregorian (localized), Japanese, or Hijri
calendars. Use the SetCalID method to display a calendar that is specified by the calid parameter if the locale

https://docs.microsoft.com/windows/desktop/Controls/visual-styles-overview
https://docs.microsoft.com/windows/desktop/Controls/mcm-setcalendarborder
https://docs.microsoft.com/windows/desktop/Controls/visual-styles-overview
https://docs.microsoft.com/windows/desktop/Controls/mcm-setcalendarborder
https://docs.microsoft.com/windows/desktop/Intl/calendar-identifiers

ExampleExample

// Variable used to reference the month calendar control.
CMonthCalCtrl m_monthCalCtrl;
// Variable used to reference the splitbutton control.
CSplitButton m_splitButton;

ExampleExample

BOOL rc = m_monthCalCtrl.SetCalID(CAL_JAPAN);
CString str = _T("Calendar change ");;
if (rc == TRUE)
 str += _T("succeeded.");
else {
 str += _T("failed.\n");
 str += _T("Perhaps this locale is not installed.");
}
AfxMessageBox(str, MB_ICONINFORMATION);

CMonthCalCtrl::SetCenturyView

BOOL SetCenturyView();

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::SetColor

COLORREF SetColor(
 int nRegion,
 COLORREF ref);

ParametersParameters

that contains the calendar is installed on your computer.

This method sends the MCM_SETCALID message, which is described in the Windows SDK.

The following code example defines the variable, m_monthCalCtrl , that is used to programmatically access the
month calendar control. This variable is used in the next example.

The following code example sets the month calendar control to display the Japanese Emperor Era calendar. The
SetCalID method succeeds only if that calendar is installed on your computer.

Sets the current month calendar control to display the century view.

TRUE if this method is successful; otherwise, FALSE.

This method uses the CMonthCalCtrl::SetCurrentView method to set the view to MCMV_CENTURY , which
represents the century view.

Sets the color of a specified area of a month calendar control.

nRegion
An integer value specifying which month calendar color to set. This value can be one of the following.

https://docs.microsoft.com/windows/desktop/Controls/mcm-setcalid

VALUE MEANING

MCSC_BACKGROUND The background color displayed between months.

MCSC_MONTHBK The background color displayed within the month.

MCSC_TEXT The color used to display text within a month.

MCSC_TITLEBK The background color displayed in the calendar's title.

MCSC_TITLETEXT The color used to display text within the calendar's title.

MCSC_TRAILINGTEXT The color used to display header and trailing-day text.
Header and trailing days are the days from the previous and
following months that appear on the current calendar.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set colors for title text and title background to match
// the Control Panel settings for inactive window captions.
m_calCtrl1.SetColor(MCSC_TITLETEXT, ::GetSysColor(COLOR_INACTIVECAPTIONTEXT));
m_calCtrl1.SetColor(MCSC_TITLEBK, ::GetSysColor(COLOR_INACTIVECAPTION));

CMonthCalCtrl::SetCurrentView

BOOL SetCurrentView(DWORD dwNewView);

ParametersParameters

PARAMETER DESCRIPTION

dwNewView [in] One of the following values that specifies a monthly,
annual, decade, or century view.

MCMV_MONTH: Monthly view

MCMV_YEAR: Annual view

MCMV_DECADE: Decade view

MCMV_CENTURY: Century view

ref
A COLORREF value for the new color setting for the specified portion of the month calendar control.

A COLORREF value that represents the previous color setting for the specified portion of the month calendar
control, if successful. Otherwise this message returns -1.

This member function implements the behavior of the Win32 message MCM_SETCOLOR, as described in the
Windows SDK.

Sets the current month calendar control to display the specified view.

https://docs.microsoft.com/windows/desktop/Controls/mcm-setcolor

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::SetCurSel

BOOL SetCurSel(const COleDateTime& refDateTime);
BOOL SetCurSel(const CTime& refDateTime);
 BOOL SetCurSel(const LPSYSTEMTIME pDateTime);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CMonthCalDlg::OnBnClickedCurselbutton()
{
 // All of these calls set the current selection to March 15, 1998.

 // with a COleDateTime
 COleDateTime dt1(1998, 3, 15, 0, 0, 0);
 m_calCtrl1.SetCurSel(dt1);

 // with a CTime
 CTime dt2(1998, 3, 15, 0, 0, 0);
 m_calCtrl1.SetCurSel(dt2);

 // with a SYSTEMTIME structure

 SYSTEMTIME sysTime;

 // set everything to zero
 memset(&sysTime, 0, sizeof(sysTime));

 // except for the date we want
 sysTime.wYear = 1998;
 sysTime.wMonth = 3;
 sysTime.wDay = 15;

 m_calCtrl1.SetCurSel(&sysTime);
}

TRUE if this method is successful; otherwise, FALSE.

This method sends the MCM_SETCURRENTVIEW message, which is described in the Windows SDK.

Sets the currently selected date for a month calendar control.

refDateTime
A reference to a COleDateTime or CTime object indicating the currently-selected month calendar control.

pDateTime
Pointer to a SYSTEMTIME structure that contains the date to be set as the current selection.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message MCM_SETCURSEL, as described in the
Windows SDK. In MFC's implementation of SetCurSel , you can specify a COleDateTime usage, a CTime usage,
or a SYSTEMTIME structure usage.

https://docs.microsoft.com/windows/desktop/Controls/mcm-setcurrentview
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/Controls/mcm-setcursel

 CMonthCalCtrl::SetDayState

BOOL SetDayState(
 int nMonths,
 LPMONTHDAYSTATE pStates);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Sets the display for days in a month calendar control.

nMonths
Value indicating how many elements are in the array that pStates points to.

pStates
A pointer to a MONTHDAYSTATE array of values that define how the month calendar control will draw each day
in its display. The MONTHDAYSTATE data type is a bit field, where each bit (1 through 31) represents the state of
a day in a month. If a bit is on, the corresponding day will be displayed in bold; otherwise it will be displayed with
no emphasis.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message MCM_SETDAYSTATE, as described in the
Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/monthdaystate
https://docs.microsoft.com/windows/desktop/Controls/mcm-setdaystate

void CMonthCalDlg::OnBnClickedDaystatebutton()
{
 // First, we must find the visible range. The array we pass to the
 // SetDayState() function must be large enough to hold days for all
 // of the visible months. Even if a month is _partially_ visible,
 // we must have MONTHDAYSTATE data for it in the array we pass.
 // GetMonthRange() returns the range of days currently visible in
 // the control, along with a count of visible months. This array
 // will be up to 2 months larger than the number of "pages" visible
 // in the control.

 SYSTEMTIME timeFrom;
 SYSTEMTIME timeUntil;
 int nCount = m_calCtrl1.GetMonthRange(&timeFrom, &timeUntil, GMR_DAYSTATE);

 // Allocate the state array based on the return value.

 LPMONTHDAYSTATE pDayState;
 pDayState = new MONTHDAYSTATE[nCount];
 memset(pDayState, 0, sizeof(MONTHDAYSTATE) * nCount);

 // Find the first fully visible month.

 int nIndex = (timeFrom.wDay == 1) ? 0 : 1;

 // Set the 4th day, 19th day, and 26th day of the first
 // _fully_ visible month as bold.

 pDayState[nIndex] |= 1 << 3; // 4th day
 pDayState[nIndex] |= 1 << 18; // 19th day
 pDayState[nIndex] |= 1 << 25; // 25th day

 // Set state and clean up

 VERIFY(m_calCtrl1.SetDayState(nCount, pDayState));
 delete [] pDayState;
}

CMonthCalCtrl::SetDecadeView

BOOL SetDecadeView();

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::SetFirstDayOfWeek

BOOL SetFirstDayOfWeek(
 int iDay,
 int* lpnOld = NULL);

Sets the current month calendar control to the decade view.

TRUE if this method is successful; otherwise, FALSE.

This method uses the CMonthCalCtrl::SetCurrentView method to set the view to MCMV_DECADE , which represents
the decade view.

Sets the day of week to be displayed in the leftmost column of the calendar.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// This work isn't normally necessary, since the control will set
// the day of the week to match the system locale by itself.

// Ask the system for the first day of the week
TCHAR sz[2];
GetLocaleInfo(LOCALE_SYSTEM_DEFAULT, LOCALE_IFIRSTDAYOFWEEK, sz, 2);

// Convert from string result
int nFirstDay = _ttoi(sz);

// Set it and assert that it was successful.
m_calCtrl1.SetFirstDayOfWeek(nFirstDay);
ASSERT(m_calCtrl1.GetFirstDayOfWeek() == nFirstDay);

CMonthCalCtrl::SetMaxSelCount

BOOL SetMaxSelCount(int nMax);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

iDay
An integer value representing which day is to be set as the first day of the week. This value must be one of the
day numbers. See GetFirstDayOfWeek for a description of the day numbers.

lpnOld
A pointer to an integer indicating the first day of the week previously set.

Nonzero if the previous first day of the week is set to a value other than that of LOCALE_IFIRSTDAYOFWEEK,
which is the day indicated in the control panel setting. Otherwise, this function returns 0.

This member function implements the behavior of the Win32 message MCM_SETFIRSTDAYOFWEEK, as
described in the Windows SDK.

Sets the maximum number of days that can be selected in a month calendar control.

nMax
The value that will be set to represent the maximum number of selectable days.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message MCM_SETMAXSELCOUNT, as
described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/mcm-setfirstdayofweek
https://docs.microsoft.com/windows/desktop/Controls/mcm-setmaxselcount

// The control needs to have the MCS_MULTISELECT style
// for the following code to work.

// change the maximum selection count
m_calCtrl2.SetMaxSelCount(10);

// check that the change was really made
ASSERT(m_calCtrl2.GetMaxSelCount() == 10);

CMonthCalCtrl::SetMonthDelta

int SetMonthDelta(int iDelta);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::SetMonthView

BOOL SetMonthView();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Variable used to reference the month calendar control.
CMonthCalCtrl m_monthCalCtrl;
// Variable used to reference the splitbutton control.
CSplitButton m_splitButton;

ExampleExample

Sets the scroll rate for a month calendar control.

iDelta
The number of months to be set as the control's scroll rate. If this value is zero, the month delta is reset to the
default, which is the number of months displayed in the control.

The previous scroll rate. If the scroll rate has not been previously set, the return value is 0.

This member function implements the behavior of the Win32 message MCM_SETMONTHDELTA, as described
in the Windows SDK.

Sets the current month calendar control to display the month view.

TRUE if this method is successful; otherwise, FALSE.

This method uses the CMonthCalCtrl::SetCurrentView method to set the view to MCMV_MONTH, which
represents the month view.

The following code example defines the variable, m_monthCalCtrl , that is used to programmatically access the
month calendar control. This variable is used in the next example.

The following code example sets the month calendar control to display the month, year, decade, and century
views.

https://docs.microsoft.com/windows/desktop/Controls/mcm-setmonthdelta

void CCMonthCalCtrl_s1Dlg::OnSetviewSetmonthview()
{
 m_monthCalCtrl.SetMonthView();
}

void CCMonthCalCtrl_s1Dlg::OnSetviewSetyearview()
{
 m_monthCalCtrl.SetYearView();
}

void CCMonthCalCtrl_s1Dlg::OnSetviewSetdecadeview()
{
 m_monthCalCtrl.SetDecadeView();
}

void CCMonthCalCtrl_s1Dlg::OnSetviewSetcenturyview()
{
 m_monthCalCtrl.SetCenturyView();
}

CMonthCalCtrl::SetRange

BOOL SetRange(
 const COleDateTime* pMinRange,
 const COleDateTime* pMaxRange);

BOOL SetRange(
 const CTime* pMinRange,
 const CTime* pMaxRange);

BOOL SetRange(
 const LPSYSTEMTIME pMinRange,
 const LPSYSTEMTIME pMaxRange);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMonthCalCtrl::SetSelRange

Sets the minimum and maximum allowable dates for a month calendar control.

pMinRange
A pointer to a COleDateTime object, a CTime object, or SYSTEMTIME structure containing the date at the lowest
end of the range.

pMaxRange
A pointer to a COleDateTime object, a CTime object, or SYSTEMTIME structure containing the date at the highest
end of the range.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message MCM_SETRANGE, as described in the
Windows SDK. In MFC's implementation of SetRange , you can specify COleDateTime usage, a CTime usage, or a
SYSTEMTIME structure usage.

See the example for CMonthCalCtrl::GetRange.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/Controls/mcm-setrange

BOOL SetSelRange(
 const COleDateTime& pMinRange,
 const COleDateTime& pMaxRange);

BOOL SetSelRange(
 const CTime& pMinRange,
 const CTime& pMaxRange);

BOOL SetSelRange(
 const LPSYSTEMTIME pMinRange,
 const LPSYSTEMTIME pMaxRange);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::SetToday

void SetToday(const COleDateTime& refDateTime);
void SetToday(const CTime* pDateTime);
 void SetToday(const LPSYSTEMTIME pDateTime);

ParametersParameters

RemarksRemarks

ExampleExample

CMonthCalCtrl::SetYearView

Sets the selection for a month calendar control to a given date range.

pMinRange
A pointer to a COleDateTime object, a CTime object, or SYSTEMTIME structure containing the date at the lowest
end of the range.

pMaxRange
A pointer to a COleDateTime object, a CTime object, or SYSTEMTIME structure containing the date at the highest
end of the range.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message MCM_SETSELRANGE, as described in
the Windows SDK. In MFC's implementation of SetSelRange , you can specify COleDateTime usage, a CTime

usage, or a SYSTEMTIME structure usage.

Sets the calendar control for the current day.

refDateTime
A reference to a COleDateTime object that contains the current date.

pDateTime
In the second version, a pointer to a CTime object containing the current date information. In the third version, a
pointer to a SYSTEMTIME structure that contains the current date information.

This member function implements the behavior of the Win32 message MCM_SETTODAY, as described in the
Windows SDK.

See the example for CMonthCalCtrl::GetToday.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/Controls/mcm-setselrange
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/Controls/mcm-settoday

BOOL SetYearView();

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::SizeMinReq

BOOL SizeMinReq(BOOL bRepaint = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMonthCalCtrl::SizeRectToMin

LPRECT SizeRectToMin(LPRECT lpRect);

ParametersParameters

PARAMETER DESCRIPTION

lpRect [in] Pointer to a RECT structure that defines a rectangle that
contains the desired number of calendars.

Return ValueReturn Value

RemarksRemarks

Sets the current month calendar control to year view.

TRUE if this method is successful; otherwise, FALSE.

This method uses the CMonthCalCtrl::SetCurrentView method to set the view to MCMV_YEAR, which
represents the annual view.

Displays the month calendar control to the minimum size that displays one month.

bRepaint
Specifies whether the control is to be repainted. By default, TRUE. If FALSE, no repainting occurs.

Nonzero if the month calendar control is sized to its minimum; otherwise 0.

Calling SizeMinReq successfully displays the entire month calendar control for one month's calendar.

For the current month calendar control, calculates the smallest rectangle that can contain all the calendars that fit
in a specified rectangle.

Pointer to a RECT structure that defines a rectangle whose size is less than or equal to the rectangle defined by
the lpRect parameter.

This method calculates how many calendars can fit in the rectangle specified by the lpRect parameter, and then
returns the smallest rectangle that can contain that number of calendars. In effect, this method shrinks the
specified rectangle to exactly fit the desired number of calendars.

This method sends the MCM_SIZERECTTOMIN message, which is described in the Windows SDK.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/mcm-sizerecttomin

See also
MFC Sample CMNCTRL1
CWnd Class
Hierarchy Chart
CDateTimeCtrl Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMouseManager Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class CMouseManager : public CObject

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMouseManager::AddView Adds a CView object to the Customization dialog box. The
Customization dialog box enables the user to associate a
double-click with a command for each of the listed views.

CMouseManager::GetViewDblClickCommand Returns the command that is executed when the user
double-clicks inside the provided view.

CMouseManager::GetViewIconId Returns the icon associated with the provided view ID.

CMouseManager::GetViewIdByName Returns the view ID associated with the provided view name.

CMouseManager::GetViewNames Retrieves a list of all added view names.

CMouseManager::LoadState Loads the CMouseManager state from the Windows registry.

CMouseManager::SaveState Writes the CMouseManager state to the Windows registry.

CMouseManager::SetCommandForDblClk Associates the provided command and the provided view.

Remarks

Allows a user to associate different commands with a particular CView object when the user double-clicks inside
that view.

The CMouseManager class maintains a collection of CView objects. Each view is identified by a name and by an ID.
These views are shown in the Customization dialog box. The user can change the command that is associated
with any view through the Customization dialog box. The associated command is executed when the user
double-clicks in that view. To support this from a coding perspective, you must process the
WM_LBUTTONDBLCLK message and call the CWinAppEx::OnViewDoubleClick function in the code for that
CView object..

You should not create a CMouseManager object manually. It will be created by the framework of your application.
It will also be destroyed automatically when the user exits the application. To get a pointer to the mouse manager
for your application, call CWinAppEx::GetMouseManager.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmousemanager-class.md

Inheritance Hierarchy

Requirements

CMouseManager::AddView

BOOL AddView(
 int iViewId,
 UINT uiViewNameResId,
 UINT uiIconId = 0);

BOOL AddView(
 int iId,
 LPCTSTR lpszViewName,
 UINT uiIconId = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CObject

CMouseManager

Header: afxmousemanager.h

Registers a CView object with the CMouseManager Class to support custom mouse behavior.

iViewId
[in] A view ID.

uiViewNameResId
[in] A resource string ID that references the view name.

uiIconId
[in] A view icon ID.

iId
[in] A view ID.

lpszViewName
[in] A view name.

Nonzero if successful; otherwise 0.

In order to support custom mouse behavior, a view must be registered with the CMouseManager object. Any
object derived from the CView class can be registered with the mouse manager. The string and icon associated
with a view are displayed in the Mouse tab of the Customize dialog box.

It is the responsibility of the programmer to create and maintain view IDs such as iViewId and iId.

For more information about how to provide custom mouse behavior, see Keyboard and Mouse Customization.

The following example demonstrates how to retrieve a pointer to a CMouseManager object by using the
CWinAppEx::GetMouseManager method and the AddView method in the CMouseManager class. This code snippet is

part of the State Collection sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

GetMouseManager()->AddView (IDR_MAINFRAME, _T("My view"), IDR_MAINFRAME);

CMouseManager::GetViewDblClickCommand

UINT GetViewDblClickCommand(int iId) const;

ParametersParameters

Return ValueReturn Value

CMouseManager::GetViewIconId

UINT GetViewIconId(int iViewId) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMouseManager::GetViewIdByName

int GetViewIdByName(LPCTSTR lpszName) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMouseManager::GetViewNames

Returns the command that is executed when the user double-clicks inside the provided view.

iId
[in] The view ID.

The command identifier if the view is associated with a command; otherwise 0.

Retrieves the icon associated with a view ID.

iViewId
[in] The view ID.

An icon resource identifier if successful; otherwise 0.

This method will fail if the view is not first registered by using CMouseManager::AddView.

Retrieves the view ID associated with a view name.

lpszName
[in] The view name.

A view ID if successful; otherwise 0.

This method searches through views registered by using CMouseManager::AddView.

Retrieves a list of all the registered view names.

void GetViewNames(CStringList& listOfNames) const;

ParametersParameters

RemarksRemarks

CMouseManager::LoadState

BOOL LoadState(LPCTSTR lpszProfileName = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMouseManager::SaveState

BOOL SaveState(LPCTSTR lpszProfileName = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

listOfNames
[out] A reference to CStringList object.

This method fills the parameter listOfNames with the names of all the views registered by using
CMouseManager::AddView.

Loads the state of the CMouseManager Class from the registry.

lpszProfileName
[in] A path of a registry key.

Nonzero if successful; otherwise 0.

The state information loaded from the registry includes the registered views, view identifiers, and the associated
commands. If the parameter lpszProfileName is NULL, this function loads the CMouseManager data from the
default registry location controlled by the CWinAppEx Class.

In most cases, you do not have to call this function directly. It is called as a part of the workspace initialization
process. For more information about the workspace initialization process, see CWinAppEx::LoadState.

Writes the state of the CMouseManager Class to the registry.

lpszProfileName
[in] A path of a registry key.

Nonzero if successful; otherwise 0.

The state information written to the registry includes all registered views, view identifiers, and the associated
commands. If the parameter lpszProfileName is NULL, this function writes the CMouseManager data to the default
registry location controlled by the CWinAppEx Class.

In most cases, you do not have to call this function directly. It is called as a part of the workspace serialization
process. For more information about the workspace serialization process, see CWinAppEx::SaveState.

 CMouseManager::SetCommandForDblClk

void SetCommandForDblClk(
 int iViewId,
 UINT uiCmd);

ParametersParameters

RemarksRemarks

See also

Associates a custom command with a view that is first registered with the mouse manager.

iViewId
[in] The view identifier.

uiCmd
[in] The command identifier.

In order to associate a custom command with a view, you must first register the view by using
CMouseManager::AddView. The AddView method requires a view identifier as an input parameter. Once you
register a view, you can call CMouseManager::SetCommandForDblClk with the same view identifier input parameter
that you supplied to AddView . Thereafter, when the user double-clicks the mouse in the registered view, the
application will execute the command indicated by uiCmd. To support the custom mouse behavior, you will also
need to customize the view registered with the mouse manager. For more information about custom mouse
behavior, see Keyboard and Mouse Customization.

If uiCmd is set to 0, the specified view is no longer associated with a command.

Hierarchy Chart
Classes
CWinAppEx Class
Keyboard and Mouse Customization

CMultiDocTemplate Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CMultiDocTemplate : public CDocTemplate

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMultiDocTemplate::CMultiDocTemplate Constructs a CMultiDocTemplate object.

Remarks

Defines a document template that implements the multiple document interface (MDI).

An MDI application uses the main frame window as a workspace in which the user can open zero or more
document frame windows, each of which displays a document. For a more detailed description of the MDI, see
Windows Interface Guidelines for Software Design.

A document template defines the relationships among three types of classes:

A document class, which you derive from CDocument.

A view class, which displays data from the document class listed above. You can derive this class from
CView, CScrollView , CFormView , or CEditView . (You can also use CEditView directly.)

A frame window class, which contains the view. For an MDI document template, you can derive this class
from CMDIChildWnd , or, if you don't need to customize the behavior of the document frame windows, you
can use CMDIChildWnd directly without deriving your own class.

An MDI application can support more than one type of document, and documents of different types can be open
at the same time. Your application has one document template for each document type that it supports. For
example, if your MDI application supports both spreadsheets and text documents, the application has two
CMultiDocTemplate objects.

The application uses the document template(s) when the user creates a new document. If the application
supports more than one type of document, then the framework gets the names of the supported document
types from the document templates and displays them in a list in the File New dialog box. Once the user has
selected a document type, the application creates a document class object, a frame window object, and a view
object and attaches them to each other.

You do not need to call any member functions of CMultiDocTemplate except the constructor. The framework
handles CMultiDocTemplate objects internally.

For more information on CMultiDocTemplate , see Document Templates and the Document/View Creation
Process.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmultidoctemplate-class.md

Inheritance Hierarchy

Requirements

CMultiDocTemplate::CMultiDocTemplate

CMultiDocTemplate(
 UINT nIDResource,
 CRuntimeClass* pDocClass,
 CRuntimeClass* pFrameClass,
 CRuntimeClass* pViewClass);

ParametersParameters

// MYCALC.RC
STRINGTABLE PRELOAD DISCARDABLE
BEGIN
 IDR_SHEETTYPE "\nSheet\nWorksheet\nWorksheets (*.myc)\n.myc\n MyCalcSheet\nMyCalc Worksheet"
END

CObject

CCmdTarget

CDocTemplate

CMultiDocTemplate

Header: afxwin.h

Constructs a CMultiDocTemplate object.

nIDResource
Specifies the ID of the resources used with the document type. This may include menu, icon, accelerator table,
and string resources.

The string resource consists of up to seven substrings separated by the '\n' character (the '\n' character is needed
as a place holder if a substring is not included; however, trailing '\n' characters are not necessary); these
substrings describe the document type. For information on the substrings, see CDocTemplate::GetDocString.
This string resource is found in the application's resource file. For example:

Note that the string begins with a '\n' character; this is because the first substring is not used for MDI
applications and so is not included. You can edit this string using the string editor; the entire string appears as a
single entry in the String Editor, not as seven separate entries.

For more information about these resource types, see Resource Editors.

pDocClass
Points to the CRuntimeClass object of the document class. This class is a CDocument -derived class you define to
represent your documents.

pFrameClass
Points to the CRuntimeClass object of the frame-window class. This class can be a CMDIChildWnd -derived class, or
it can be CMDIChildWnd itself if you want default behavior for your document frame windows.

pViewClass
Points to the CRuntimeClass object of the view class. This class is a CView -derived class you define to display
your documents.

RemarksRemarks

ExampleExample

// Code fragment from CMyApp::InitInstance

// Establish all of the document types
// supported by the application

AddDocTemplate(new CMultiDocTemplate(IDR_BRUSHDOCTYPE,
 RUNTIME_CLASS(CBrushDoc),
 RUNTIME_CLASS(CChildFrame),
 RUNTIME_CLASS(CBrushView)));

AddDocTemplate(new CMultiDocTemplate(IDR_DCDOCTYPE,
 RUNTIME_CLASS(CDCDoc),
 RUNTIME_CLASS(CChildFrame),
 RUNTIME_CLASS(CDCView)));

// Code fragment taken from CMyApp::InitInstance

// Normally, an application creates a document
// template and registers it with MFC as a part
// of its initialization.

// IDR_EXAMPLEDOCTYPE is a resource ID string; see
// the CDocTemplate class overview documentation
// for more information on its format.

// The next three parameters use the RUNTIME_CLASS()
// macro to get runtime type information for the doc,
// frame, and view classes that will be associated
// by the template.

pDocTemplate = new CMultiDocTemplate(IDR_EXAMPLEDOCTYPE,
 RUNTIME_CLASS(CExampleDoc),
 RUNTIME_CLASS(CChildFrame),
 RUNTIME_CLASS(CExampleView));
if (!pDocTemplate)
 return FALSE;

// After the following call, MFC is aware of the doc
// template and will free it when the application is
// shut down. The doc templates known to MFC will
// automatically be used when CWinApp:OnFileOpen()
// or CWinApp::OnFileNew() are called.

AddDocTemplate(pDocTemplate);

See also

Dynamically allocate one CMultiDocTemplate object for each document type that your application supports and
pass each one to CWinApp::AddDocTemplate from the InitInstance member function of your application class.

Here is a second example.

CDocTemplate Class
Hierarchy Chart
CDocTemplate Class
CSingleDocTemplate Class
CWinApp Class

CMultiLock Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMultiLock

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMultiLock::CMultiLock Constructs a CMultiLock object.

Public MethodsPublic Methods

NAME DESCRIPTION

CMultiLock::IsLocked Determines if a specific synchronization object in the array is
locked.

CMultiLock::Lock Waits on the array of synchronization objects.

CMultiLock::Unlock Releases any owned synchronization objects.

Remarks

Represents the access-control mechanism used in controlling access to resources in a multithreaded program.

CMultiLock does not have a base class.

To use the synchronization classes CSemaphore, CMutex, and CEvent, you can create either a CMultiLock or
CSingleLock object to wait on and release the synchronization object. Use CMultiLock when there are multiple
objects that you could use at a particular time. Use CSingleLock when you only need to wait on one object at a
time.

To use a CMultiLock object, first create an array of the synchronization objects that you wish to wait on. Next, call
the CMultiLock object's constructor inside a member function in the controlled resource's class. Then call the
Lock member function to determine if a resource is available (signaled). If one is, continue with the remainder of
the member function. If no resource is available, either wait for a specified amount of time for a resource to be
released, or return failure. After use of a resource is complete, either call the Unlock function if the CMultiLock

object is to be used again, or allow the CMultiLock object to be destroyed.

CMultiLock objects are most useful when a thread has a large number of CEvent objects it can respond to.
Create an array containing all the CEvent pointers, and call Lock . This will cause the thread to wait until one of
the events is signaled.

For more information on how to use CMultiLock objects, see the article Multithreading: How to Use the

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmultilock-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-how-to-use-the-synchronization-classes

Inheritance Hierarchy

Requirements

CMultiLock::CMultiLock

CMultiLock(
 CSyncObject* ppObjects [],
 DWORD dwCount,
 BOOL bInitialLock = FALSE);

ParametersParameters

RemarksRemarks

CMultiLock::IsLocked

BOOL IsLocked(DWORD dwItem);

ParametersParameters

Return ValueReturn Value

CMultiLock::Lock

Synchronization Classes.

CMultiLock

Header: afxmt.h

Constructs a CMultiLock object.

ppObjects
Array of pointers to the synchronization objects to be waited on. Cannot be NULL.

dwCount
Number of objects in ppObjects. Must be greater than 0.

bInitialLock
Specifies whether to initially attempt to access any of the supplied objects.

This function is called after creating the array of synchronization objects to be waited on. It is usually called from
within the thread that must wait for one of the synchronization objects to become available.

Determines if the specified object is nonsignaled (unavailable).

dwItem
The index in the array of objects corresponding to the object whose state is being queried.

Nonzero if the specified object is locked; otherwise 0.

Call this function to gain access to one or more of the resources controlled by the synchronization objects
supplied to the CMultiLock constructor.

DWORD Lock(
 DWORD dwTimeOut = INFINITE,
 BOOL bWaitForAll = TRUE,
 DWORD dwWakeMask = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMultiLock::Unlock

dwTimeOut
Specifies the amount of time to wait for the synchronization object to be available (signaled). If INFINITE, Lock

will wait until the object is signaled before returning.

bWaitForAll
Specifies whether all objects waited on must become signaled at the same time before returning. If FALSE, Lock

will return when any one of the objects waited on is signaled.

dwWakeMask
Specifies other conditions that are allowed to abort the wait. For a full list of the available options for this
parameter, see MsgWaitForMultipleObjects in the Windows SDK.

If Lock fails, it returns - 1. If successful, it returns one of the following values:

Between WAIT_OBJECT_0 and WAIT_OBJECT_0 + (number of objects - 1)

If bWaitForAll is TRUE, all objects are signaled (available). If bWaitForAll is FALSE, the return value -
WAIT_OBJECT_0 is the index in the array of objects of the object that is signaled (available).

WAIT_OBJECT_0 + (number of objects)

An event specified in dwWakeMask is available in the thread's input queue.

Between WAIT_ABANDONED_0 and WAIT_ABANDONED_0 + (number of objects - 1)

If bWaitForAll is TRUE, all objects are signaled, and at least one of the objects is an abandoned mutex
object. If bWaitForAll is FALSE, the return value - WAIT_ABANDONED_0 is the index in the array of
objects of the abandoned mutex object that satisfied the wait.

WAIT_TIMEOUT

The timeout interval specified in dwTimeOut expired without the wait succeeding.

If bWaitForAll is TRUE, Lock will return successfully as soon as all the synchronization objects become signaled
simultaneously. If bWaitForAll is FALSE, Lock will return as soon as one or more of the synchronization objects
becomes signaled.

If Lock is not able to return immediately, it will wait for no more than the number of milliseconds specified in the
dwTimeOut parameter before returning. If dwTimeOut is INFINITE, Lock will not return until access to an
object is gained or a condition specified in dwWakeMask was met. Otherwise, if Lock was able to acquire a
synchronization object, it will return successfully; if not, it will return failure.

Releases the synchronization object owned by CMultiLock .

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-msgwaitformultipleobjects

BOOL Unlock();

BOOL Unlock(
 LONG lCount,
 LPLONG lPrevCount = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

lCount
Number of reference counts to release. Must be greater than 0. If the specified amount would cause the object's
count to exceed its maximum, the count is not changed and the function returns FALSE.

lPrevCount
Points to a variable to receive the previous count for the synchronization object. If NULL, the previous count is
not returned.

Nonzero if the function was successful; otherwise 0.

This function is called by CMultiLock 's destructor.

The first form of Unlock tries to unlock the synchronization object managed by CMultiLock . The second form of
Unlock tries to unlock the CSemaphore objects owned by CMultiLock . If CMultiLock does not own any locked
CSemaphore object, the function returns FALSE; otherwise, it returns TRUE. lCount and lpPrevCount are exactly

the same as the parameters of CSingleLock::Unlock. The second form of Unlock is rarely applicable to multilock
situations.

Hierarchy Chart

CMultiPageDHtmlDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMultiPageDHtmlDialog : public CDHtmlDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMultiPageDHtmlDialog::CMultiPageDHtmlDialog Constructs a multipage (wizard-style) DHTML dialog object.

CMultiPageDHtmlDialog::~CMultiPageDHtmlDialog Destroys a multipage DHTML dialog object.

Remarks

Example

class CMyMultiPageDlg : public CMultiPageDHtmlDialog
{
public:
 // Declare the DHTML event handlers:
 HRESULT OnPage1Next(IHTMLElement *pElement);
 HRESULT OnPage2Next(IHTMLElement *pElement);
 HRESULT OnPage2Back(IHTMLElement *pElement);
 HRESULT OnPage3Back(IHTMLElement *pElement);

 DECLARE_DHTML_URL_EVENT_MAP()

 // rest of class declaration omitted

A multipage dialog displays multiple HTML pages sequentially and handles the events from each page.

The mechanism for doing this is a DHTML and URL event map, which contains embedded event maps for each
page.

This multipage dialog assumes three HTML resources that define simple wizard-like functionality. The first page
has a Next button, the second a Prev and Next button, and the third a Prev button. When one of the buttons is
pressed, a handler function calls CDHtmlDialog::LoadFromResource to load the appropriate new page.

The pertinent parts of the class declaration (in CMyMultiPageDlg.h):

The pertinent parts of the class implementation (in CMyMultipageDlg.cpp):

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmultipagedhtmldialog-class.md

BEGIN_DHTML_URL_EVENT_MAP(CMyMultiPageDlg)

 BEGIN_EMBED_DHTML_EVENT_MAP(CMyMultiPageDlg, Page1)
 DHTML_EVENT_ONCLICK(_T("Next"), OnPage1Next)
 END_EMBED_DHTML_EVENT_MAP()

 BEGIN_EMBED_DHTML_EVENT_MAP(CMyMultiPageDlg, Page2)
 DHTML_EVENT_ONCLICK(_T("Back"), OnPage2Back)
 DHTML_EVENT_ONCLICK(_T("Next"), OnPage2Next)
 END_EMBED_DHTML_EVENT_MAP()

 BEGIN_EMBED_DHTML_EVENT_MAP(CMyMultiPageDlg, Page3)
 DHTML_EVENT_ONCLICK(_T("Back"), OnPage3Back)
 END_EMBED_DHTML_EVENT_MAP()

 BEGIN_URL_ENTRIES(CMyMultiPageDlg)
 URL_EVENT_ENTRY(CMyMultiPageDlg, _T("153"), Page1)
 URL_EVENT_ENTRY(CMyMultiPageDlg, _T("154"), Page2)
 URL_EVENT_ENTRY(CMyMultiPageDlg, _T("155"), Page3)
 // Note: IDR_PAGE1 = 153, IDR_PAGE2 = 154, IDR_PAGE3 = 155
 END_URL_ENTRIES()

END_DHTML_URL_EVENT_MAP(CMyMultiPageDlg)

HRESULT CMyMultiPageDlg::OnPage1Next(IHTMLElement *pElement)
{
 UNREFERENCED_PARAMETER(pElement);
 LoadFromResource(IDR_PAGE2);
 return S_OK;
}

HRESULT CMyMultiPageDlg::OnPage2Next(IHTMLElement *pElement)
{
 UNREFERENCED_PARAMETER(pElement);
 LoadFromResource(IDR_PAGE3);
 return S_OK;
}

HRESULT CMyMultiPageDlg::OnPage2Back(IHTMLElement *pElement)
{
 UNREFERENCED_PARAMETER(pElement);
 LoadFromResource(IDR_PAGE1);
 return S_OK;
}

HRESULT CMyMultiPageDlg::OnPage3Back(IHTMLElement *pElement)
{
 UNREFERENCED_PARAMETER(pElement);
 LoadFromResource(IDR_PAGE2);
 return S_OK;
}

Inheritance Hierarchy
CObject

CDHtmlSinkHandlerBase2

CDHtmlSinkHandlerBase1

CCmdTarget

CDHtmlSinkHandler

CWnd

Requirements

CMultiPageDHtmlDialog::CMultiPageDHtmlDialog

CMultiPageDHtmlDialog(
 LPCTSTR lpszTemplateName,
 LPCTSTR szHtmlResID = NULL,
 CWnd* pParentWnd = NULL);

CMultiPageDHtmlDialog(
 UINT nIDTemplate,
 UINT nHtmlResID = 0,
 CWnd* pParentWnd = NULL);

CMultiPageDHtmlDialog();

ParametersParameters

CMultiPageDHtmlDialog::~CMultiPageDHtmlDialog

virtual ~CMultiPageDHtmlDialog();

See also

CDHtmlEventSink

CDialog

CDHtmlDialog

CMultiPageDHtmlDialog

Header: afxdhtml.h

Constructs a multipage (wizard-style) DHTML dialog object.

lpszTemplateName
The null-terminated string that is the name of a dialog-box template resource.

szHtmlResID
The null-terminated string that is the name of an HTML resource.

pParentWnd
A pointer to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is NULL,
the dialog object's parent window is set to the main application window.

nIDTemplate
Contains the ID number of a dialog-box template resource.

nHtmlResID
Contains the ID number of an HTML resource.

Destroys a multipage DHTML dialog object.

CDHtmlDialog Class

CMultiPaneFrameWnd Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CMultiPaneFrameWnd : public CPaneFrameWnd

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CMultiPaneFrameWnd::AddPane Adds a pane. (Overrides CPaneFrameWnd::AddPane.)

CMultiPaneFrameWnd::AddRecentPane

CMultiPaneFrameWnd::AdjustLayout Adjusts the layout of the mini-frame window. (Overrides
CPaneFrameWnd::AdjustLayout.)

CMultiPaneFrameWnd::AdjustPaneFrames (Overrides CPaneFrameWnd::AdjustPaneFrames.)

CMultiPaneFrameWnd::CalcExpectedDockedRect Calculates the expected rectangle of a docked window.
(Overrides CPaneFrameWnd::CalcExpectedDockedRect.)

CMultiPaneFrameWnd::CanBeAttached Determines whether the current pane can dock to another
pane or frame window. (Overrides
CPaneFrameWnd::CanBeAttached.)

CMultiPaneFrameWnd::CanBeDockedToPane Determines whether the mini-frame window can dock to a
pane. (Overrides CPaneFrameWnd::CanBeDockedToPane.)

CMultiPaneFrameWnd::CheckGripperVisibility (Overrides CPaneFrameWnd::CheckGripperVisibility.)

CMultiPaneFrameWnd::CloseMiniFrame (Overrides CPaneFrameWnd::CloseMiniFrame .)

CMultiPaneFrameWnd::ConvertToTabbedDocument Converts the pane to a tabbed document. (Overrides
CPaneFrameWnd::ConvertToTabbedDocument.)

CMultiPaneFrameWnd::DockFrame

CMultiPaneFrameWnd::DockPane Docks the pane. (Overrides CPaneFrameWnd::DockPane.)

The CMultiPaneFrameWnd class extends CPaneFrameWnd Class. It can support multiple panes. Instead of a single
embedded handle to a control bar, CMultiPaneFrameWnd contains a CPaneContainerManager Class object that
enables the user to dock one CMultiPaneFrameWnd to another and dynamically create multiple floating, tabbed
windows.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmultipaneframewnd-class.md

CMultiPaneFrameWnd::DockRecentPaneToMainFrame

CMultiPaneFrameWnd::GetCaptionText Returns the caption text. (Overrides
CPaneFrameWnd::GetCaptionText.)

CMultiPaneFrameWnd::GetPaneContainerManager Returns a reference to the internal container manager object.

CMultiPaneFrameWnd::GetFirstVisiblePane Returns the first visible pane that is contained in a mini-frame
window. (Overrides CPaneFrameWnd::GetFirstVisiblePane.)

CMultiPaneFrameWnd::GetPane Returns a pane that is contained in the mini-frame window.
(Overrides CPaneFrameWnd::GetPane.)

CMultiPaneFrameWnd::GetPaneCount Returns the number of panes that are contained in a mini-
frame window. (Overrides CPaneFrameWnd::GetPaneCount.)

CMultiPaneFrameWnd::GetVisiblePaneCount Returns the number of visible panes that are contained in a
mini-frame window. (Overrides
CPaneFrameWnd::GetVisiblePaneCount.)

CMultiPaneFrameWnd::InsertPane

CMultiPaneFrameWnd::LoadState Loads the pane's state from the registry. (Overrides
CPaneFrameWnd::LoadState.)

CMultiPaneFrameWnd::OnDockToRecentPos Docks the mini-frame window at its most recent position.
(Overrides CPaneFrameWnd::OnDockToRecentPos.)

CMultiPaneFrameWnd::OnKillRollUpTimer Stops the rollup timer. (Overrides
CPaneFrameWnd::OnKillRollUpTimer.)

CMultiPaneFrameWnd::OnPaneRecalcLayout Adjusts the layout of a pane inside a mini-frame window.
(Overrides CPaneFrameWnd::OnPaneRecalcLayout.)

CMultiPaneFrameWnd::OnSetRollUpTimer Sets the rollup timer. (Overrides
CPaneFrameWnd::OnSetRollUpTimer.)

CMultiPaneFrameWnd::OnShowPane Called by the framework when a pane in the mini-frame
window is hidden or displayed. (Overrides
CPaneFrameWnd::OnShowPane.)

CMultiPaneFrameWnd::PaneFromPoint Returns a pane if it contains a user-supplied point inside a
mini-frame window. (Overrides
CPaneFrameWnd::PaneFromPoint.)

CMultiPaneFrameWnd::RemoveNonValidPanes Called by the framework to remove non-valid panes.
(Overrides CPaneFrameWnd::RemoveNonValidPanes.)

CMultiPaneFrameWnd::RemovePane Removes a pane from the mini-frame window. (Overrides
CPaneFrameWnd::RemovePane.)

CMultiPaneFrameWnd::ReplacePane Replaces one pane with another. (Overrides
CPaneFrameWnd::ReplacePane.)

NAME DESCRIPTION

CMultiPaneFrameWnd::SaveState Saves the pane's state to the registry. (Overrides
CPaneFrameWnd::SaveState.)

CMultiPaneFrameWnd::Serialize (Overrides CPaneFrameWnd::Serialize .)

CMultiPaneFrameWnd::SetDockState Sets the docking state. (Overrides
CPaneFrameWnd::SetDockState.)

CMultiPaneFrameWnd::SetLastFocusedPane

CMultiPaneFrameWnd::SetPreDockState Sets the predocking state. (Overrides
CPaneFrameWnd::SetPreDockState.)

CMultiPaneFrameWnd::StoreRecentDockSiteInfo (Overrides CPaneFrameWnd::StoreRecentDockSiteInfo.)

CMultiPaneFrameWnd::StoreRecentTabRelatedInfo (Overrides CPaneFrameWnd::StoreRecentTabRelatedInfo.)

NAME DESCRIPTION

Remarks

Example

// CDockablePane* pBar
CMultiPaneFrameWnd* pParentMiniFrame =
 DYNAMIC_DOWNCAST (CMultiPaneFrameWnd, pBar->GetParentMiniFrame ()) ;

Inheritance Hierarchy

Requirements

Most of the methods in this class override methods in the CPaneFrameWnd Class class.

If a pane uses the AFX_CBRS_AUTO_ROLLUP style and the user docks that pane to a multi-pane frame window,
the user can roll up the window regardless of the style settings of the other docked panes.

The framework automatically creates a CMultiPaneFrameWnd object when the user floats a pane that uses the
CBRS_FLOAT_MULTI style.

For information about deriving a class from the CPaneFrameWnd class and creating it dynamically, see
CPaneFrameWnd.

The following example demonstrates how to retrieve a pointer to a CMultiPaneFrameWnd object. This code snippet
is part of the Set Pane Size sample.

CObject

CCmdTarget

CWnd

CPaneFrameWnd

CMultiPaneFrameWnd

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CMultiPaneFrameWnd::AddPane
virtual void AddPane(CBasePane* pWnd);

ParametersParameters

RemarksRemarks

CMultiPaneFrameWnd::AddRecentPane
virtual BOOL AddRecentPane(CDockablePane* pBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::AdjustLayout
virtual void AdjustLayout();

RemarksRemarks

CMultiPaneFrameWnd::AdjustPaneFrames
virtual void AdjustPaneFrames();

RemarksRemarks

CMultiPaneFrameWnd::CalcExpectedDockedRect
virtual void CalcExpectedDockedRect(
 CWnd* pWndToDock,
 CPoint ptMouse,
 CRect& rectResult,
 BOOL& bDrawTab,
 CDockablePane** ppTargetBar);

ParametersParameters

RemarksRemarks

Header: afxMultiPaneFrameWnd.h

[in] pWnd

[in] pBar

[in] pWndToDock
[in] ptMouse
[in] rectResult
[in] bDrawTab
[in] ppTargetBar

CMultiPaneFrameWnd::CanBeAttached
virtual BOOL CanBeAttached() const;

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::CanBeDockedToPane
virtual BOOL CanBeDockedToPane(const CDockablePane* pDockingBar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::CheckGripperVisibility
virtual void CheckGripperVisibility();

RemarksRemarks

CMultiPaneFrameWnd::CloseMiniFrame
virtual void CloseMiniFrame();

RemarksRemarks

CMultiPaneFrameWnd::ConvertToTabbedDocument
virtual void ConvertToTabbedDocument();

RemarksRemarks

CMultiPaneFrameWnd::DockFrame
virtual BOOL DockFrame(
 CPaneFrameWnd* pDockedFrame,
 AFX_DOCK_METHOD dockMethod);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] pDockingBar

[in] pDockedFrame
[in] dockMethod

CMultiPaneFrameWnd::DockPane
virtual BOOL DockPane(CDockablePane* pDockedBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::DockRecentPaneToMainFrame
virtual void DockRecentPaneToMainFrame(CDockablePane* pBar);

ParametersParameters

RemarksRemarks

CMultiPaneFrameWnd::GetCaptionText
virtual CString GetCaptionText();

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::GetFirstVisiblePane
virtual CWnd* GetFirstVisiblePane() const;

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::GetPane
virtual CWnd* GetPane() const;

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::GetPaneContainerManager

CPaneContainerManager& GetPaneContainerManager();

Return ValueReturn Value

[in] pDockedBar

[in] pBar

Returns a reference to the internal container manager object.

RemarksRemarks

CMultiPaneFrameWnd::GetPaneCount
virtual int GetPaneCount() const;

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::GetVisiblePaneCount
virtual int GetVisiblePaneCount() const;

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::InsertPane
virtual BOOL InsertPane(
 CBasePane* pControlBar,
 CBasePane* pTarget,
 BOOL bAfter);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::LoadState
virtual BOOL LoadState(
 LPCTSTR lpszProfileName = NULL,
 UINT uiID = (UINT) -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::OnDockToRecentPos

A reference to the internal container manager object.

This method can be used to access the internal CPaneContainerManager Class object.

[in] pControlBar
[in] pTarget
[in] bAfter

[in] lpszProfileName
[in] uiID

virtual void OnDockToRecentPos();

RemarksRemarks

CMultiPaneFrameWnd::OnKillRollUpTimer
virtual void OnKillRollUpTimer();

RemarksRemarks

CMultiPaneFrameWnd::OnPaneRecalcLayout
virtual void OnPaneRecalcLayout();

RemarksRemarks

CMultiPaneFrameWnd::OnSetRollUpTimer
virtual void OnSetRollUpTimer();

RemarksRemarks

CMultiPaneFrameWnd::OnShowPane
virtual void OnShowPane(
 CDockablePane* pBar,
 BOOL bShow);

ParametersParameters

RemarksRemarks

CMultiPaneFrameWnd::PaneFromPoint
virtual CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 BOOL bCheckVisibility);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] pBar
[in] bShow

[in] point
[in] nSensitivity
[in] bCheckVisibility

CMultiPaneFrameWnd::RemoveNonValidPanes
virtual void RemoveNonValidPanes();

RemarksRemarks

CMultiPaneFrameWnd::RemovePane
virtual void RemovePane(
 CBasePane* pBar,
 BOOL bDestroy = FALSE,
 BOOL bNoDelayedDestroy = TRUE);

ParametersParameters

RemarksRemarks

CMultiPaneFrameWnd::ReplacePane
virtual void ReplacePane(
 CBasePane* pBarOrg,
 CBasePane* pBarReplaceWith);

ParametersParameters

RemarksRemarks

CMultiPaneFrameWnd::SaveState
virtual BOOL SaveState(
 LPCTSTR lpszProfileName = NULL,
 UINT uiID = (UINT) -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::Serialize
virtual void Serialize(CArchive& ar);

ParametersParameters

[in] pBar
[in] bDestroy
[in] bNoDelayedDestroy

[in] pBarOrg
[in] pBarReplaceWith

[in] lpszProfileName
[in] uiID

[in] ar

RemarksRemarks

CMultiPaneFrameWnd::SetDockState
virtual void SetDockState(CDockingManager* pDockManager);

ParametersParameters

RemarksRemarks

CMultiPaneFrameWnd::SetLastFocusedPane
void SetLastFocusedPane(HWND hwnd);

ParametersParameters

RemarksRemarks

CMultiPaneFrameWnd::SetPreDockState
virtual BOOL SetPreDockState(
 AFX_PREDOCK_STATE preDockState,
 CBasePane* pBarToDock = NULL,
 AFX_DOCK_METHOD dockMethod = DM_MOUSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CMultiPaneFrameWnd::StoreRecentDockSiteInfo
virtual void StoreRecentDockSiteInfo(CPane* pBar);

ParametersParameters

RemarksRemarks

CMultiPaneFrameWnd::StoreRecentTabRelatedInfo
virtual void StoreRecentTabRelatedInfo(
 CDockablePane* pDockingBar,
 CDockablePane* pTabbedBar);

[in] pDockManager

[in] hwnd

[in] preDockState
[in] pBarToDock
[in] dockMethod

[in] pBar

ParametersParameters

RemarksRemarks

See also

[in] pDockingBar
[in] pTabbedBar

Hierarchy Chart
Classes
CPaneFrameWnd Class

CMutex Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CMutex : public CSyncObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CMutex::CMutex Constructs a CMutex object.

Remarks

Inheritance Hierarchy

Represents a "mutex" — a synchronization object that allows one thread mutually exclusive access to a resource.

Mutexes are useful when only one thread at a time can be allowed to modify data or some other controlled
resource. For example, adding nodes to a linked list is a process that should only be allowed by one thread at a
time. By using a CMutex object to control the linked list, only one thread at a time can gain access to the list.

To use a CMutex object, construct the CMutex object when it is needed. Specify the name of the mutex you wish
to wait on, and that your application should initially own it. You can then access the mutex when the constructor
returns. Call CSyncObject::Unlock when you are done accessing the controlled resource.

An alternative method for using CMutex objects is to add a variable of type CMutex as a data member to the
class you wish to control. During construction of the controlled object, call the constructor of the CMutex data
member specifying if the mutex is initially owned, the name of the mutex (if it will be used across process
boundaries), and desired security attributes.

To access resources controlled by CMutex objects in this manner, first create a variable of either type CSingleLock
or type CMultiLock in your resource's access member function. Then call the lock object's Lock member function
(for example, CSingleLock::Lock). At this point, your thread will either gain access to the resource, wait for the
resource to be released and gain access, or wait for the resource to be released and time out, failing to gain
access to the resource. In any case, your resource has been accessed in a thread-safe manner. To release the
resource, use the lock object's Unlock member function (for example, CSingleLock::Unlock), or allow the lock
object to fall out of scope.

For more information on using CMutex objects, see the article Multithreading: How to Use the Synchronization
Classes.

CObject

CSyncObject

CMutex

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmutex-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-how-to-use-the-synchronization-classes

Requirements

CMutex::CMutex

CMutex(
 BOOL bInitiallyOwn = FALSE,
 LPCTSTR lpszName = NULL,
 LPSECURITY_ATTRIBUTES lpsaAttribute = NULL);

ParametersParameters

RemarksRemarks

IMPORTANTIMPORTANT

See also

Header: afxmt.h

Constructs a named or unnamed CMutex object.

bInitiallyOwn
Specifies if the thread creating the CMutex object initially has access to the resource controlled by the mutex.

lpszName
Name of the CMutex object. If another mutex with the same name exists, lpszName must be supplied if the object
will be used across process boundaries. If NULL, the mutex will be unnamed. If the name matches an existing
mutex, the constructor builds a new CMutex object which references the mutex of that name. If the name matches
an existing synchronization object that is not a mutex, the construction will fail.

lpsaAttribute
Security attributes for the mutex object. For a full description of this structure, see SECURITY_ATTRIBUTES in
the Windows SDK.

To access or release a CMutex object, create a CMultiLock or CSingleLock object and call its Lock and Unlock
member functions. If the CMutex object is being used stand-alone, call its Unlock member function to release it.

After creating the CMutex object, use GetLastError to ensure that the mutex did not already exist. If the mutex did exist
unexpectedly, it may indicate a rogue process is squatting and may be intending to use the mutex maliciously. In this case,
the recommended security-conscious procedure is to close the handle and continue as if there was a failure in creating the
object.

CSyncObject Class
Hierarchy Chart

https://msdn.microsoft.com/library/windows/desktop/aa379560
https://msdn.microsoft.com/library/windows/desktop/ms679360

CNetAddressCtrl Class
3/5/2019 • 6 minutes to read • Edit Online

Syntax
class CNetAddressCtrl : public CEdit

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CNetAddressCtrl::CNetAddressCtrl Constructs a CNetAddressCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CNetAddressCtrl::Create Creates a network address control with specified styles and
attaches it to the current CNetAddressCtrl object.

CNetAddressCtrl::CreateEx Creates a network address control with specified extended
styles and attaches it to the current CNetAddressCtrl object.

CNetAddressCtrl::DisplayErrorTip Displays an error balloon tip when the user enters an
unsupported network address in the current network address
control.

CNetAddressCtrl::GetAddress Retrieves a validated and parsed representation of the
network address associated with the current network address
control.

CNetAddressCtrl::GetAllowType Retrieves the type of network address that the current
network address control can support.

CNetAddressCtrl::SetAllowType Sets the type of network address that the current network
address control can support.

Remarks

The CNetAddressCtrl class represents the network address control, which you can use to input and validate the
format of IPv4, IPv6, and named DNS addresses.

The network address control verifies that the format of the address the user enters is correct. The control does not
actually connect to the network address. The CNetAddressCtrl::SetAllowType method specifies one or more types
of address that the CNetAddressCtrl::GetAddress method can parse and verify. An address can be in the form of
an IPv4, IPv6, or named address for a server, network, host, or broadcast message destination. If the format of the
address is incorrect, you can use the CNetAddressCtrl::DisplayErrorTip method to display an infotip message box

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cnetaddressctrl-class.md

Example

void CCNetAddressCtrl_s1Dlg::OnBnClickedRadio1()
{
 m_netAddr.SetAllowType(NET_STRING_IPV4_ADDRESS);
}

void CCNetAddressCtrl_s1Dlg::OnBnClickedRadio2()
{
 m_netAddr.SetAllowType(NET_STRING_IPV6_ADDRESS);
}

void CCNetAddressCtrl_s1Dlg::OnBnClickedRadio3()
{
 m_netAddr.SetAllowType(NET_STRING_NAMED_ADDRESS);
}

void CCNetAddressCtrl_s1Dlg::OnBnClickedButton1()
{
 m_na.pAddrInfo = &m_nai;
 HRESULT rslt = m_netAddr.GetAddress(&m_na);
 if (rslt != S_OK)
 m_netAddr.DisplayErrorTip();
 else
 {
 MessageBox(
 _T("Success!"), _T("Validation Results"));
 }

that graphically points to the text box of the network address control and displays a predefined error message.

The CNetAddressCtrl class is derived from the CEdit class. Consequently, the network address control provides
access to all Windows edit control messages.

The following figure depicts a dialog that contains a network address control. The text box (1) for the network
address control contains an invalid network address. The infotip message (2) is displayed if the network address is
invalid.

The following code example is a portion of a dialog that validates a network address. The event handlers for three
radio buttons specify that the network address can be one of three address types. The user enters an address in the
text box of the network control, then presses a button to validate the address. If the address is valid, a success
message is displayed; otherwise, the predefined infotip error message is displayed.

Example

NC_ADDRESS m_na;
NET_ADDRESS_INFO m_nai;

Inheritance Hierarchy

Requirements

CNetAddressCtrl::CNetAddressCtrl

CNetAddressCtrl();

RemarksRemarks

CNetAddressCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

PARAMETER DESCRIPTION

dwStyle [in] A bitwise combination of styles to be applied to the
control. For more information, see Edit Styles.

The following code example from the dialog header file defines the NC_ADDRESS and NET_ADDRESS_INFO
variables that are required by the CNetAddressCtrl::GetAddress method.

CObject

CCmdTarget

CWnd

CEdit

CNetAddressCtrl

Header: afxcmn.h

This class is supported in Windows Vista and later.

Additional requirements for this class are described in Build Requirements for Windows Vista Common Controls.

Constructs a CNetAddressCtrl object.

Use the CNetAddressCtrl::Create or CNetAddressCtrl::CreateEx method to create a network control and attach it
to the CNetAddressCtrl object.

Creates a network address control with specified styles and attaches it to the current CNetAddressCtrl object.

https://docs.microsoft.com/windows/desktop/api/shellapi/ns-shellapi-tagnc_address
https://msdn.microsoft.com/library/windows/desktop/bb773346

rect [in] A reference to a RECT structure that contains the position
and size of the control.

pParentWnd [in] A non-null pointer to a CWnd object that is the parent
window of the control.

nID [in] The ID of the control.

PARAMETER DESCRIPTION

Return ValueReturn Value

CNetAddressCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

PARAMETER DESCRIPTION

dwExStyle [in] A bitwise combination (OR) of extended styles to be
applied to the control. For more information, see the
dwExStyle parameter of the CreateWindowEx function.

dwStyle [in] A bitwise combination (OR) of styles to be applied to the
control. For more information, see Edit Styles.

rect [in] A reference to a RECT structure that contains the position
and size of the control.

pParentWnd [in] A non-null pointer to a CWnd object that is the parent
window of the control.

nID [in] The ID of the control.

Return ValueReturn Value

CNetAddressCtrl::DisplayErrorTip

HRESULT DisplayErrorTip();

Return ValueReturn Value

TRUE if this method is successful; otherwise, FALSE.

Creates a network address control with specified extended styles and attaches it to the current CNetAddressCtrl

object.

TRUE if this method is successful; otherwise, FALSE.

Displays an error message in the balloon tip that is associated with the current network address control.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

RemarksRemarks

CNetAddressCtrl::GetAddress

HRESULT GetAddress(PNC_ADDRESS pAddress) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CNetAddressCtrl::GetAllowType

DWORD GetAllowType() const;

Return ValueReturn Value

RemarksRemarks

The value S_OK if this method is successful; otherwise, an error code.

Use the CNetAddressCtrl::SetAllowType method to specify the types of addresses that the current network
address control can support. Use the CNetAddressCtrl::GetAddress method to validate and parse the network
address that the user enters. Use the CNetAddressCtrl::DisplayErrorTip method to display an error message
infotip if the CNetAddressCtrl::GetAddress method is unsuccessful.

This message invokes the NetAddr_DisplayErrorTip macro, which is described in the Windows SDK. That macro
sends the NCM_DISPLAYERRORTIP message.

Retrieves a validated and parsed representation of the network address that is associated with the current network
address control.

pAddress
[in, out] Pointer to an NC_ADDRESS structure. Set the pAddrInfo member of this structure to the address of a
NET_ADDRESS_INFO structure before you call the GetAddress method.

The value S_OK if this method is successful; otherwise, a COM error code. For more information about the
possible error codes, see the Return Value section of the NetAddr_GetAddress macro.

If this method is successful, the NET_ADDRESS_INFO structure contains additional information about the
network address.

Use the CNetAddressCtrl::SetAllowType method to specify the types of addresses the current network address
control can support. Use the CNetAddressCtrl::GetAddress method to validate and parse the network address that
the user enters. Use the CNetAddressCtrl::DisplayErrorTip method to display an error message infotip if the
CNetAddressCtrl::GetAddress method is unsuccessful.

This method invokes the NetAddr_GetAddress macro, which is described in the Windows SDK. That macro sends
the NCM_GETADDRESS message.

Retrieves the type of network address that the current network address control can support.

A bitwise combination (OR) of flags that specifies the types of addresses the network address control can support.
For more information, see NET_STRING.

This message invokes the NetAddr_GetAllowType macro, which is described in the Windows SDK. That macro
sends the NCM_GETALLOWTYPE message.

https://docs.microsoft.com/windows/desktop/api/shellapi/nf-shellapi-netaddr_displayerrortip
https://docs.microsoft.com/windows/desktop/api/shellapi/ns-shellapi-tagnc_address
https://msdn.microsoft.com/library/windows/desktop/bb773346
https://docs.microsoft.com/windows/desktop/api/shellapi/nf-shellapi-netaddr_getaddress
https://msdn.microsoft.com/library/windows/desktop/bb773346
https://docs.microsoft.com/windows/desktop/api/shellapi/nf-shellapi-netaddr_getaddress
https://msdn.microsoft.com/library/windows/desktop/bb762586
https://docs.microsoft.com/windows/desktop/api/shellapi/nf-shellapi-netaddr_getallowtype

 CNetAddressCtrl::SetAllowType

HRESULT SetAllowType(DWORD dwAddrMask);

ParametersParameters

PARAMETER DESCRIPTION

dwAddrMask [in] A bitwise combination (OR) of flags that specifies the types
of addresses the network address control can support. For
more information, see NET_STRING.

Return ValueReturn Value

RemarksRemarks

See also

Sets the type of network address that the current network address control can support.

S_OK if this method is successful; otherwise, a COM error code.

Use the CNetAddressCtrl::SetAllowType method to specify the types of addresses that the current network
address control can support. Use the CNetAddressCtrl::GetAddress method to validate and parse the network
address that the user enters. Use the CNetAddressCtrl::DisplayErrorTip method to display an error message
infotip if the CNetAddressCtrl::GetAddress method is unsuccessful.

This message invokes the NetAddr_SetAllowType macro, which is described in the Windows SDK. That macro
sends the NCM_SETALLOWTYPE message.

CNetAddressCtrl Class
Hierarchy Chart
CEdit Class

https://msdn.microsoft.com/library/windows/desktop/bb762586
https://docs.microsoft.com/windows/desktop/api/shellapi/nf-shellapi-netaddr_setallowtype

CNotSupportedException Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CNotSupportedException : public CSimpleException

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CNotSupportedException::CNotSupportedException Constructs a CNotSupportedException object.

Remarks

Inheritance Hierarchy

Requirements

CNotSupportedException::CNotSupportedException

CNotSupportedException();

RemarksRemarks

See also

Represents an exception that is the result of a request for an unsupported feature.

No further qualification is necessary or possible.

For more information on using CNotSupportedException , see the article Exception Handling (MFC).

CObject

CException

CSimpleException

CNotSupportedException

Header: afx.h

Constructs a CNotSupportedException object.

Do not use this constructor directly, but rather call the global function AfxThrowNotSupportedException. for
more information about exception processing, see the article Exception Handling in MFC.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cnotsupportedexception-class.md

CException Class
Hierarchy Chart

CObArray Class
3/4/2019 • 19 minutes to read • Edit Online

Syntax
class CObArray : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CObArray::CObArray Constructs an empty array for CObject pointers.

Public MethodsPublic Methods

NAME DESCRIPTION

CObArray::Add Adds an element to the end of the array; grows the array if
necessary.

CObArray::Append Appends another array to the array; grows the array if
necessary.

CObArray::Copy Copies another array to the array; grows the array if
necessary.

CObArray::ElementAt Returns a temporary reference to the element pointer within
the array.

CObArray::FreeExtra Frees all unused memory above the current upper bound.

CObArray::GetAt Returns the value at a given index.

CObArray::GetCount Gets the number of elements in this array.

CObArray::GetData Allows access to elements in the array. Can be NULL.

CObArray::GetSize Gets the number of elements in this array.

CObArray::GetUpperBound Returns the largest valid index.

CObArray::InsertAt Inserts an element (or all the elements in another array) at a
specified index.

CObArray::IsEmpty Determines if the array is empty.

Supports arrays of CObject pointers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cobarray-class.md

CObArray::RemoveAll Removes all the elements from this array.

CObArray::RemoveAt Removes an element at a specific index.

CObArray::SetAt Sets the value for a given index; array not allowed to grow.

CObArray::SetAtGrow Sets the value for a given index; grows the array if necessary.

CObArray::SetSize Sets the number of elements to be contained in this array.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CObArray::operator [] Sets or gets the element at the specified index.

Remarks

NOTENOTE

NOTENOTE

These object arrays are similar to C arrays, but they can dynamically shrink and grow as necessary.

Array indexes always start at position 0. You can decide whether to fix the upper bound or allow the array to
expand when you add elements past the current bound. Memory is allocated contiguously to the upper bound,
even if some elements are null.

Under Win32, the size of a CObArray object is limited only to available memory.

As with a C array, the access time for a CObArray indexed element is constant and is independent of the array
size.

CObArray incorporates the IMPLEMENT_SERIAL macro to support serialization and dumping of its elements. If
an array of CObject pointers is stored to an archive, either with the overloaded insertion operator or with the
Serialize member function, each CObject element is, in turn, serialized along with its array index.

If you need a dump of individual CObject elements in an array, you must set the depth of the CDumpContext

object to 1 or greater.

When a CObArray object is deleted, or when its elements are removed, only the CObject pointers are removed,
not the objects they reference.

Before using an array, use SetSize to establish its size and allocate memory for it. If you do not use SetSize , adding
elements to your array causes it to be frequently reallocated and copied. Frequent reallocation and copying are inefficient
and can fragment memory.

Array class derivation is similar to list derivation. For details on the derivation of a special-purpose list class, see
the article Collections.

You must use the IMPLEMENT_SERIAL macro in the implementation of your derived class if you intend to serialize the
array.

Inheritance Hierarchy

Requirements

CObArray::Add

INT_PTR Add(CObject* newElement);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray INT_PTR Add(BYTE newElement);

throw(CMemoryException*);

CDWordArray INT_PTR Add(DWORD newElement);

throw(CMemoryException*);

CPtrArray INT_PTR Add(void * newElement);

throw(CMemoryException*);

CStringArray INT_PTR Add(LPCTSTR newElement); throw(
CMemoryException*);

INT_PTR Add(const CString& newElement);

CUIntArray INT_PTR Add(UINT newElement);

throw(CMemoryException*);

CWordArray INT_PTR Add(WORD newElement);

throw(CMemoryException*);

CObject

CObArray

Header: afxcoll.h

Adds a new element to the end of an array, growing the array by 1.

newElement
The CObject pointer to be added to this array.

The index of the added element.

If SetSize has been used with an nGrowBy value greater than 1, then extra memory may be allocated. However,
the upper bound will increase by only 1.

The following table shows other member functions that are similar to CObArray::Add .

ExampleExample

CObArray arr;

arr.Add(new CAge(21)); // Element 0
arr.Add(new CAge(40)); // Element 1
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("Add example: ") << &arr << _T("\n");
#endif

Add example: A CObArray with 2 elements
[0] = a CAge at $442A 21
[1] = a CAge at $4468 40

CObArray::Append

INT_PTR Append(const CObArray& src);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray INT_PTR Append(const CByteArray& src);

CDWordArray INT_PTR Append(const CDWordArray& src);

CPtrArray INT_PTR Append(const CPtrArray& src);

CStringArray INT_PTR Append(const CStringArray& src);

CUIntArray INT_PTR Append(const CUIntArray& src);

CWordArray INT_PTR Append(const CWordArray& src);

ExampleExample

See CObList::CObList for a listing of the CAge class used in all collection examples.

The results from this program are as follows:

Call this member function to add the contents of another array to the end of the given array.

src
Source of the elements to be appended to the array.

The index of the first appended element.

The arrays must be of the same type.

If necessary, Append may allocate extra memory to accommodate the elements appended to the array.

The following table shows other member functions that are similar to CObArray::Append .

CObArray myArray1, myArray2;

// Add elements to the second array.
myArray2.Add(new CAge(21));
myArray2.Add(new CAge(42));

// Add elements to the first array and also append the second array.
myArray1.Add(new CAge(3));
myArray1.Append(myArray2);

#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("myArray1: ") << &myArray1 << _T("\n");
 afxDump << _T("myArray2: ") << &myArray2 << _T("\n");
#endif

CObArray::Copy

void Copy(const CObArray& src);

ParametersParameters

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray void Copy(const CByteArray& src);

CDWordArray void Copy(const CDWordArray& src);

CPtrArray void Copy(const CPtrArray& src);

CStringArray void Copy(const CStringArray& src);

CUIntArray void Copy(const CUIntArray& src);

CWordArray void Copy(const CWordArray& src);

ExampleExample

See CObList::CObList for a listing of the CAge class used in all collection examples.

Call this member function to overwrite the elements of the given array with the elements of another array of the
same type.

src
Source of the elements to be copied to the array.

Copy does not free memory; however, if necessary, Copy may allocate extra memory to accommodate the
elements copied to the array.

The following table shows other member functions that are similar to CObArray::Copy .

See CObList::CObList for a listing of the CAge class used in all collection examples.

CObArray myArray1, myArray2;

// Add elements to the second array.
myArray2.Add(new CAge(21));
myArray2.Add(new CAge(42));

// Copy the elements from the second array to the first.
myArray1.Copy(myArray2);

#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << "myArray1: " << &myArray1 << "\n";
 afxDump << "myArray2: " << &myArray2 << "\n";
#endif

CObArray::CObArray

CObArray();

RemarksRemarks

CLASS CONSTRUCTOR

CByteArray CByteArray();

CDWordArray CDWordArray();

CPtrArray CPtrArray();

CStringArray CStringArray();

CUIntArray CUIntArray();

CWordArray CWordArray();

ExampleExample

CObArray arr; //Array with default blocksize
CObArray* pArray = new CObArray; //Array on the heap with default blocksize

CObArray::ElementAt

CObject*& ElementAt(INT_PTR nIndex);

ParametersParameters

Constructs an empty CObject pointer array.

The array grows one element at a time.

The following table shows other constructors that are similar to CObArray::CObArray .

Returns a temporary reference to the element pointer within the array.

nIndex

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray BYTE& ElementAt(INT_PTR nIndex);

CDWordArray DWORD& ElementAt(INT_PTR nIndex);

CPtrArray void*& ElementAt(INT_PTR nIndex);

CStringArray CString& ElementAt(INT_PTR nIndex);

CUIntArray UINT& ElementAt(INT_PTR nIndex);

CWordArray WORD& ElementAt(INT_PTR nIndex);

ExampleExample

CObArray::FreeExtra

void FreeExtra();

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray void FreeExtra();

CDWordArray void FreeExtra();

CPtrArray void FreeExtra();

CStringArray void FreeExtra();

CUIntArray void FreeExtra();

An integer index that is greater than or equal to 0 and less than or equal to the value returned by GetUpperBound

.

A reference to a CObject pointer.

It is used to implement the left-side assignment operator for arrays. Note that this is an advanced function that
should be used only to implement special array operators.

The following table shows other member functions that are similar to CObArray::ElementAt .

See the example for CObArray::GetSize.

Frees any extra memory that was allocated while the array was grown.

This function has no effect on the size or upper bound of the array.

The following table shows other member functions that are similar to CObArray::FreeExtra .

CWordArray void FreeExtra();

CLASS MEMBER FUNCTION

ExampleExample

CObArray::GetAt

CObject* GetAt(INT_PTR nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CLASS MEMBER FUNCTION

CByteArray BYTE GetAt(INT_PTR nIndex) const;

CDWordArray DWORD GetAt(INT_PTR nIndex) const;

CPtrArray void* GetAt(INT_PTR nIndex) const;

CStringArray CString GetAt(INT_PTR nIndex) const;

CUIntArray UINT GetAt(INT_PTR nIndex) const;

CWordArray WORD GetAt(INT_PTR nIndex) const;

ExampleExample

CObArray arr;

arr.Add(new CAge(21)); // Element 0
arr.Add(new CAge(40)); // Element 1
ASSERT(*(CAge*) arr.GetAt(0) == CAge(21));

See the example for CObArray::GetData.

Returns the array element at the specified index.

nIndex
An integer index that is greater than or equal to 0 and less than or equal to the value returned by GetUpperBound

.

The CObject pointer element currently at this index.

Passing a negative value or a value greater than the value returned by GetUpperBound will result in a failed assertion.

The following table shows other member functions that are similar to CObArray::GetAt .

See CObList::CObList for a listing of the CAge class used in all collection examples.

CObArray::GetCount

INT_PTR GetCount() const;

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray INT_PTR GetCount() const;

CDWordArray INT_PTR GetCount() const;

CPtrArray INT_PTR GetCount() const;

CStringArray INT_PTR GetCount() const;

CUIntArray INT_PTR GetCount() const;

CWordArray INT_PTR GetCount() const;

ExampleExample

CObArray myArray;

// Add elements to the array.
for (int i = 0; i < 10; i++)
 myArray.Add(new CAge(i));

// Add 100 to all the elements of the array.
for (int i = 0; i < myArray.GetCount(); i++)
{
 CAge*& pAge = (CAge*&) myArray.ElementAt(i);
 delete pAge;
 pAge = new CAge(100 + i);
}

CObArray::GetData

const CObject** GetData() const;

CObject** GetData();

Returns the number of array elements.

The number of items in the array.

Call this method to retrieve the number of elements in the array. Because indexes are zero-based, the size is 1
greater than the largest index.

The following table shows other member functions that are similar to CObArray::GetCount .

See CObList::CObList for a listing of the CAge class used in all collection examples.

Use this member function to gain direct access to the elements in the array.

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray const BYTE* GetData() const;BYTE* GetData();

CDWordArray const DWORD* GetData() const;DWORD* GetData();

CPtrArray const void** GetData() const;void** GetData();

CStringArray const CString* GetData() const;CString* GetData();

CUIntArray const UINT* GetData() const;UINT* GetData();

CWordArray const WORD* GetData() const;WORD* GetData();

ExampleExample

CObArray myArray;

// Allocate memory for at least 32 elements.
myArray.SetSize(32, 128);

// Add elements to the array.
CAge** ppAge = (CAge**) myArray.GetData();
for (int i = 0; i < 32; i++, ppAge++)
 *ppAge = new CAge(i);

// Only keep first 5 elements and free extra (unused) bytes.
for (int i = 5; i < myArray.GetCount(); i++)
{
 delete myArray[i]; // free objects before resetting array size.
}
myArray.SetSize(5, 128);
myArray.FreeExtra(); // only frees pointers.

#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("myArray: ") << &myArray << _T("\n");
#endif

CObArray::GetSize

INT_PTR GetSize() const;

A pointer to the array of CObject pointers.

If no elements are available, GetData returns a null value.

While direct access to the elements of an array can help you work more quickly, use caution when calling
GetData ; any errors you make directly affect the elements of your array.

The following table shows other member functions that are similar to CObArray::GetData .

See CObList::CObList for a listing of the CAge class used in all collection examples.

Returns the size of the array.

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray INT_PTR GetSize() const;

CDWordArray INT_PTR GetSize() const;

CPtrArray INT_PTR GetSize() const;

CStringArray INT_PTR GetSize() const;

CUIntArray INT_PTR GetSize() const;

CWordArray INT_PTR GetSize() const;

ExampleExample

CObArray myArray;

// Add elements to the array.
for (int i = 0; i < 10; i++)
 myArray.Add(new CAge(i));

// Add 100 to all the elements of the array.
for (int i = 0; i < myArray.GetSize(); i++)
{
 CAge*& pAge = (CAge*&) myArray.ElementAt(i);
 delete pAge;
 pAge = new CAge(100+i);
}

#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("myArray: ") << &myArray << _T("\n");
#endif

CObArray::GetUpperBound

INT_PTR GetUpperBound() const;

Return ValueReturn Value

RemarksRemarks

Since indexes are zero-based, the size is 1 greater than the largest index.

The following table shows other member functions that are similar to CObArray::GetSize .

See CObList::CObList for a listing of the CAge class used in all collection examples.

Returns the current upper bound of this array.

The index of the upper bound (zero-based).

Because array indexes are zero-based, this function returns a value 1 less than GetSize .

The condition GetUpperBound() = -1 indicates that the array contains no elements.

The following table shows other member functions that are similar to CObArray::GetUpperBound .

CLASS MEMBER FUNCTION

CByteArray INT_PTR GetUpperBound() const;

CDWordArray INT_PTR GetUpperBound() const;

CPtrArray INT_PTR GetUpperBound() const;

CStringArray INT_PTR GetUpperBound() const;

CUIntArray INT_PTR GetUpperBound() const;

CWordArray INT_PTR GetUpperBound() const;

ExampleExample

CObArray arr;

arr.Add(new CAge(21)); // Element 0
arr.Add(new CAge(40)); // Element 1
ASSERT(arr.GetUpperBound() == 1); // Largest index

CObArray::InsertAt

void InsertAt(
 INT_PTR nIndex,
 CObject* newElement,
 INT_PTR nCount = 1);

void InsertAt(
 INT_PTR nStartIndex,
 CObArray* pNewArray);

ParametersParameters

RemarksRemarks

See CObList::CObList for a listing of the CAge class used in all collection examples.

Inserts an element (or all the elements in another array) at a specified index.

nIndex
An integer index that may be greater than the value returned by GetUpperBound .

newElement
The CObject pointer to be placed in this array. A newElement of value NULL is allowed.

nCount
The number of times this element should be inserted (defaults to 1).

nStartIndex
An integer index that may be greater than the value returned by GetUpperBound .

pNewArray
Another array that contains elements to be added to this array.

The first version of InsertAt inserts one element (or multiple copies of an element) at a specified index in an
array. In the process, it shifts up (by incrementing the index) the existing element at this index, and it shifts up all

CLASS MEMBER FUNCTION

CByteArray void InsertAt(INT_PTR nIndex , BYTE newElement , int
nCount = 1);

throw(CMemoryException*);

void InsertAt(INT_PTR nStartIndex , CByteArray *
pNewArray);

throw(CMemoryException*);

CDWordArray void InsertAt(INT_PTR nIndex , DWORD newElement ,
int nCount = 1);

throw(CMemoryException*);

void InsertAt(INT_PTR nStartIndex , CDWordArray *
pNewArray);

throw(CMemoryException*);

CPtrArray void InsertAt(INT_PTR nIndex , void * newElement ,
int nCount = 1);

throw(CMemoryException*);

void InsertAt(INT_PTR nStartIndex , CPtrArray *
pNewArray);

throw(CMemoryException*);

CStringArray void InsertAt(INT_PTR nIndex , LPCTSTR newElement ,
int nCount = 1);

throw(CMemoryException*);

void InsertAt(INT_PTR nStartIndex , CStringArray *
pNewArray);

throw(CMemoryException*);

the elements above it.

The second version inserts all the elements from another CObArray collection, starting at the nStartIndex
position.

The SetAt function, in contrast, replaces one specified array element and does not shift any elements.

The following table shows other member functions that are similar to CObArray::InsertAt .

CUIntArray void InsertAt(INT_PTR nIndex , UINT newElement , int
nCount = 1);

throw(CMemoryException*);

void InsertAt(INT_PTR nStartIndex , CUIntArray *
pNewArray);

throw(CMemoryException*);

CWordArray void InsertAt(INT_PTR nIndex , WORD newElement ,
int nCount = 1);

throw(CMemoryException*);

void InsertAt(INT_PTR nStartIndex , CWordArray *
pNewArray);

throw(CMemoryException*);

CLASS MEMBER FUNCTION

ExampleExample

CObArray arr;

arr.Add(new CAge(21)); // Element 0
arr.Add(new CAge(40)); // Element 1 (will become 2).
arr.InsertAt(1, new CAge(30)); // New element 1
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("InsertAt example: ") << &arr << _T("\n");
#endif

InsertAt example: A CObArray with 3 elements
[0] = a CAge at $45C8 21
[1] = a CAge at $4646 30
[2] = a CAge at $4606 40

CObArray::IsEmpty

BOOL IsEmpty() const;

Return ValueReturn Value

CObArray::operator []

See CObList::CObList for a listing of the CAge class used in all collection examples.

The results from this program are as follows:

Determines if the array is empty.

Nonzero if the array is empty; otherwise 0.

These subscript operators are a convenient substitute for the SetAt and GetAt functions.

CObject*& operator[](int_ptr nindex);
CObject* operator[](int_ptr nindex) const;

RemarksRemarks

CLASS OPERATOR

CByteArray BYTE& operator [](int_ptr nindex);

BYTE operator [](int_ptr nindex) const;

CDWordArray DWORD& operator [](int_ptr nindex);

DWORD operator [](int_ptr nindex) const;

CPtrArray void*& operator [](int_ptr nindex);

void* operator [](int_ptr nindex) const;

CStringArray CString& operator [](int_ptr nindex);

CString operator [](int_ptr nindex) const;

CUIntArray UINT& operator [](int_ptr nindex);

UINT operator [](int_ptr nindex) const;

CWordArray WORD& operator [](int_ptr nindex);

WORD operator [](int_ptr nindex) const;

ExampleExample

CObArray arr;
CAge* pa;

arr.Add(new CAge(21)); // Element 0
arr.Add(new CAge(40)); // Element 1
pa = (CAge*)arr[0]; // Get element 0
ASSERT(*pa == CAge(21)); // Get element 0
arr[0] = new CAge(30); // Replace element 0
delete pa;
ASSERT(*(CAge*) arr[0] == CAge(30)); // Get new element 0

CObArray::RemoveAll

The first operator, called for arrays that are not const, may be used on either the right (r-value) or the left (l-
value) of an assignment statement. The second, called for const arrays, may be used only on the right.

The Debug version of the library asserts if the subscript (either on the left or right side of an assignment
statement) is out of bounds.

The following table shows other operators that are similar to CObArray::operator [] .

See CObList::CObList for a listing of the CAge class used in all collection examples.

Removes all the pointers from this array but does not actually delete the CObject objects.

void RemoveAll();

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray void RemoveAll();

CDWordArray void RemoveAll();

CPtrArray void RemoveAll();

CStringArray void RemoveAll();

CUIntArray void RemoveAll();

CWordArray void RemoveAll();

ExampleExample

CObArray arr;
CAge* pa1;
CAge* pa2;

arr.Add(pa1 = new CAge(21)); // Element 0
arr.Add(pa2 = new CAge(40)); // Element 1
ASSERT(arr.GetSize() == 2);
arr.RemoveAll(); // Pointers removed but objects not deleted.
ASSERT(arr.GetSize() == 0);
delete pa1;
delete pa2; // Cleans up memory.

CObArray::RemoveAt

void RemoveAt(
 INT_PTR nIndex,
 INT_PTR nCount = 1);

ParametersParameters

If the array is already empty, the function still works.

The RemoveAll function frees all memory used for pointer storage.

The following table shows other member functions that are similar to CObArray::RemoveAll .

See CObList::CObList for a listing of the CAge class used in all collection examples.

Removes one or more elements starting at a specified index in an array.

nIndex
An integer index that is greater than or equal to 0 and less than or equal to the value returned by GetUpperBound

.

nCount
The number of elements to remove.

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray void RemoveAt(INT_PTR nIndex , INT_PTR nCount =
1);

CDWordArray void RemoveAt(INT_PTR nIndex , INT_PTR nCount =
1);

CPtrArray void RemoveAt(INT_PTR nIndex , INT_PTR nCount =
1);

CStringArray void RemoveAt(INT_PTR nIndex , INT_PTR nCount =
1);

CUIntArray void RemoveAt(INT_PTR nIndex , INT_PTR nCount =
1);

CWordArray void RemoveAt(INT_PTR nIndex , INT_PTR nCount = 1
);

ExampleExample

CObArray arr;
CObject* pa;

arr.Add(new CAge(21)); // Element 0
arr.Add(new CAge(40)); // Element 1
if((pa = arr.GetAt(0)) != NULL)
{
 arr.RemoveAt(0); // Element 1 moves to 0.
 delete pa; // Delete the original element at 0.
}
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("RemoveAt example: ") << &arr << _T("\n");
#endif

RemoveAt example: A CObArray with 1 elements
[0] = a CAge at $4606 40

CObArray::SetAt

In the process, it shifts down all the elements above the removed element(s). It decrements the upper bound of
the array but does not free memory.

If you try to remove more elements than are contained in the array above the removal point, then the Debug
version of the library asserts.

The RemoveAt function removes the CObject pointer from the array, but it does not delete the object itself.

The following table shows other member functions that are similar to CObArray::RemoveAt .

See CObList::CObList for a listing of the CAge class used in all collection examples.

The results from this program are as follows:

void SetAt(
 INT_PTR nIndex,
 CObject* newElement);

ParametersParameters

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray void SetAt(INT_PTR nIndex , BYTE newElement);

CDWordArray void SetAt(INT_PTR nIndex , DWORD newElement);

CPtrArray void SetAt(INT_PTR nIndex , void * newElement);

CStringArray void SetAt(INT_PTR nIndex , LPCTSTR newElement);

CUIntArray void SetAt(INT_PTR nIndex , UINT newElement);

CWordArray void SetAt(INT_PTR nIndex , WORD newElement);

ExampleExample

CObArray arr;
CObject* pa;

arr.Add(new CAge(21)); // Element 0
arr.Add(new CAge(40)); // Element 1
if ((pa = arr.GetAt(0)) != NULL)
{
 arr.SetAt(0, new CAge(30)); // Replace element 0.
 delete pa; // Delete the original element at 0.
}
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("SetAt example: ") << &arr << _T("\n");
#endif

Sets the array element at the specified index.

nIndex
An integer index that is greater than or equal to 0 and less than or equal to the value returned by GetUpperBound

.

newElement
The object pointer to be inserted in this array. A NULL value is allowed.

SetAt will not cause the array to grow. Use SetAtGrow if you want the array to grow automatically.

You must ensure that your index value represents a valid position in the array. If it is out of bounds, then the
Debug version of the library asserts.

The following table shows other member functions that are similar to CObArray::SetAt .

See CObList::CObList for a listing of the CAge class used in all collection examples.

The results from this program are as follows:

SetAt example: A CObArray with 2 elements
[0] = a CAge at $47E0 30
[1] = a CAge at $47A0 40

CObArray::SetAtGrow

void SetAtGrow(
 INT_PTR nIndex,
 CObject* newElement);

ParametersParameters

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray void SetAtGrow(INT_PTR nIndex , BYTE newElement);

throw(CMemoryException*);

CDWordArray void SetAtGrow(INT_PTR nIndex , DWORD
newElement);

throw(CMemoryException*);

CPtrArray void SetAtGrow(INT_PTR nIndex , void * newElement

);

throw(CMemoryException*);

CStringArray void SetAtGrow(INT_PTR nIndex , LPCTSTR
newElement);

throw(CMemoryException*);

CUIntArray void SetAtGrow(INT_PTR nIndex , UINT newElement);

throw(CMemoryException*);

CWordArray void SetAtGrow(INT_PTR nIndex , WORD newElement

);

throw(CMemoryException*);

Sets the array element at the specified index.

nIndex
An integer index that is greater than or equal to 0.

newElement
The object pointer to be added to this array. A NULL value is allowed.

The array grows automatically if necessary (that is, the upper bound is adjusted to accommodate the new
element).

The following table shows other member functions that are similar to CObArray::SetAtGrow .

ExampleExample

CObArray arr;

arr.Add(new CAge(21)); // Element 0
arr.Add(new CAge(40)); // Element 1
arr.SetAtGrow(3, new CAge(65)); // Element 2 deliberately
 // skipped.
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("SetAtGrow example: ") << &arr << _T("\n");
#endif

SetAtGrow example: A CObArray with 4 elements
[0] = a CAge at $47C0 21
[1] = a CAge at $4800 40
[2] = NULL
[3] = a CAge at $4840 65

CObArray::SetSize

void SetSize(
 INT_PTR nNewSize,
 INT_PTR nGrowBy = -1);

ParametersParameters

RemarksRemarks

CLASS MEMBER FUNCTION

CByteArray void SetSize(INT_PTR nNewSize , int nGrowBy = -1);

throw(CMemoryException*);

See CObList::CObList for a listing of the CAge class used in all collection examples.

The results from this program are as follows:

Establishes the size of an empty or existing array; allocates memory if necessary.

nNewSize
The new array size (number of elements). Must be greater than or equal to 0.

nGrowBy
The minimum number of element slots to allocate if a size increase is necessary.

If the new size is smaller than the old size, then the array is truncated and all unused memory is released. For
efficiency, call SetSize to set the size of the array before using it. This prevents the need to reallocate and copy
the array each time an item is added.

The nGrowBy parameter affects internal memory allocation while the array is growing. Its use never affects the
array size as reported by GetSize and GetUpperBound .

If the size of the array has grown, all newly allocated CObject * pointers are set to NULL.

The following table shows other member functions that are similar to CObArray::SetSize .

CDWordArray void SetSize(INT_PTR nNewSize , int nGrowBy = -1);

throw(CMemoryException*);

CPtrArray void SetSize(INT_PTR nNewSize , int nGrowBy = -1);

throw(CMemoryException*);

CStringArray void SetSize(INT_PTR nNewSize , int nGrowBy = -1);

throw(CMemoryException*);

CUIntArray void SetSize(INT_PTR nNewSize , int nGrowBy = -1);

throw(CMemoryException*);

CWordArray void SetSize(INT_PTR nNewSize , int nGrowBy = -1);

throw(CMemoryException*);

CLASS MEMBER FUNCTION

ExampleExample

See also

See the example for CObArray::GetData.

CObject Class
Hierarchy Chart
CStringArray Class
CPtrArray Class
CByteArray Class
CWordArray Class
CDWordArray Class

CObject
Class
3/4/2019 • 9 minutes
to read • Edit Online

Syntax
class AFX_NOVTABLE
CObject

Members
Protected ConstructorsProtected Constructors

NAME
DESCRIPTIO
N

CObject::C
Object

Default
constructo
r.

Public MethodsPublic Methods

NAME
DESCRIPTIO
N

CObject::A
ssertValid

Validates
this
object's
integrity.

CObject::D
ump

Produces a
diagnostic
dump of
this object.

CObject::G
etRuntime
Class

Returns
the
CRuntimeClass

structure
correspon
ding to
this
object's
class.

CObject::Is
KindOf

Tests this
object's
relationshi
p to a
given class.

The principal base class
for the Microsoft
Foundation Class
Library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cobject-class.md

CObject::Is
Serializable

Tests to
see
whether
this object
can be
serialized.

CObject::S
erialize

Loads or
stores an
object
from/to an
archive.

NAME
DESCRIPTIO
N

Public OperatorsPublic Operators

NAME
DESCRIPTIO
N

CObject::o
perator
delete

Special
delete
operator.

CObject::o
perator
new

Special
new
operator.

Remarks
It serves as the root not
only for library classes
such as CFile and
CObList , but also for

the classes that you
write. CObject provides
basic services, including

Serialization
support

Run-time class
information

Object
diagnostic
output

Compatibility
with collection
classes

Note that CObject

does not support
multiple inheritance.
Your derived classes
can have only one
CObject base class, and

that CObject must be
leftmost in the
hierarchy. It is
permissible, however, to
have structures and

Inheritance
Hierarchy

Requirements

CObject::Assert
Valid

virtual void
AssertValid() const;

non- CObject -derived
classes in right-hand
multiple-inheritance
branches.

You will realize major
benefits from CObject

derivation if you use
some of the optional
macros in your class
implementation and
declarations.

The first-level macros,
DECLARE_DYNAMIC
and
IMPLEMENT_DYNAMI
C, permit run-time
access to the class
name and its position in
the hierarchy. This, in
turn, allows meaningful
diagnostic dumping.

The second-level
macros,
DECLARE_SERIAL and
IMPLEMENT_SERIAL,
include all the
functionality of the first-
level macros, and they
enable an object to be
"serialized" to and from
an "archive."

For information about
deriving Microsoft
Foundation classes and
C++ classes in general
and using CObject , see
Using CObject and
Serialization.

CObject

Header: afx.h

Validates this object's
integrity.

RemarksRemarks

ExampleExample

AssertValid performs
a validity check on this
object by checking its
internal state. In the
Debug version of the
library, AssertValid

may assert and thus
terminate the program
with a message that
lists the line number
and filename where the
assertion failed.

When you write your
own class, you should
override the
AssertValid function

to provide diagnostic
services for yourself
and other users of your
class. The overridden
AssertValid usually

calls the AssertValid

function of its base
class before checking
data members unique
to the derived class.

Because AssertValid is
a const function, you
are not permitted to
change the object state
during the test. Your
own derived class
AssertValid functions

should not throw
exceptions but rather
should assert whether
they detect invalid
object data.

The definition of
"validity" depends on
the object's class. As a
rule, the function
should perform a
"shallow check." That is,
if an object contains
pointers to other
objects, it should check
to see whether the
pointers are not null,
but it should not
perform validity testing
on the objects referred
to by the pointers.

See CObList::CObList

void
CAge::AssertValid()
const
{

CObject::AssertValid(
);
 ASSERT(m_years >
0);
 ASSERT(m_years <
105);
}

CObject::CObjec
t

CObject();
CObject(const
CObject& objectSrc);

ParametersParameters

RemarksRemarks

for a listing of the CAge

class used in all
CObject examples.

For another example,
see
AfxDoForAllObjects.

These functions are the
standard CObject

constructors.

objectSrc
A reference to another
CObject

The default version is
automatically called by
the constructor of your
derived class.

If your class is
serializable (it
incorporates the
IMPLEMENT_SERIAL
macro), then you must
have a default
constructor (a
constructor with no
arguments) in your
class declaration. If you
do not need a default
constructor, declare a
private or protected
"empty" constructor.
For more information,
see Using CObject.

The standard C++
default class copy

ExampleExample

// Create a CAge
object using the
default constructor.
CAge age1;

// Create a CAge
object using the copy
constructor.
CAge age2(age1);

CObject::Dump

virtual void
Dump(CDumpContext&
dc) const;

ParametersParameters

RemarksRemarks

constructor does a
member-by-member
copy. The presence of
the private CObject

copy constructor
guarantees a compiler
error message if the
copy constructor of
your class is needed but
not available. You must
therefore provide a
copy constructor if your
class requires this
capability.

See CObList::CObList
for a listing of the CAge

class used in the
CObject examples.

Dumps the contents of
your object to a
CDumpContext object.

dc
The diagnostic dump
context for dumping,
usually afxDump .

When you write your
own class, you should
override the Dump

function to provide
diagnostic services for
yourself and other
users of your class. The
overridden Dump

usually calls the Dump

function of its base
class before printing

NOTENOTE

ExampleExample

data members unique
to the derived class.
CObject::Dump prints

the class name if your
class uses the
IMPLEMENT_DYNAMIC or

IMPLEMENT_SERIAL
macro.

Your Dump function
should not print a
newline character at
the end of its output.

Dump calls make sense
only in the Debug
version of the Microsoft
Foundation Class
Library. You should
bracket calls, function
declarations, and
function
implementations with
#ifdef _DEBUG/
#endif statements for

conditional compilation.

Since Dump is a const
function, you are not
permitted to change the
object state during the
dump.

The CDumpContext
insertion (<<) operator
calls Dump when a
CObject pointer is

inserted.

Dump permits only
"acyclic" dumping of
objects. You can dump a
list of objects, for
example, but if one of
the objects is the list
itself, you will
eventually overflow the
stack.

See CObList::CObList
for a listing of the CAge

class used in all
CObject examples.

void
CAge::Dump(CDumpConte
xt &dc) const
{
 CObject::Dump(dc);
 dc << _T("Age = ")
<< m_years;
}

CObject::GetRu
ntimeClass

virtual
CRuntimeClass*
GetRuntimeClass()
const;

Return ValueReturn Value

RemarksRemarks

Returns the
CRuntimeClass

structure corresponding
to this object's class.

A pointer to the
CRuntimeClass
structure corresponding
to this object's class;
never NULL.

There is one
CRuntimeClass

structure for each
CObject -derived class.

The structure members
are as follows:

LPCSTR
m_lpszClassNa
me A null-
terminated string
containing the
ASCII class
name.

int
m_nObjectSize
The size of the
object, in bytes. If
the object has
data members
that point to
allocated
memory, the size
of that memory
is not included.

UINT
m_wSchema
The schema

number (- 1 for
nonserializable
classes). See the
IMPLEMENT_SE
RIAL macro for a
description of
schema number.

CObject* (
PASCAL*
m_pfnCreateO
bject)() A
function pointer
to the default
constructor that
creates an object
of your class
(valid only if the
class supports
dynamic
creation;
otherwise,
returns NULL).

CRuntimeClass
* (PASCAL*
m_pfn_GetBase
Class)() If your
application is
dynamically
linked to the
AFXDLL version
of MFC, a
pointer to a
function that
returns the
CRuntimeClass

structure of the
base class.

CRuntimeClass
* m_pBaseClass
If your
application is
statically linked
to MFC, a
pointer to the
CRuntimeClass

structure of the
base class.

This function requires
use of the
IMPLEMENT_DYNAMI
C,
IMPLEMENT_DYNCRE
ATE, or
IMPLEMENT_SERIAL
macro in the class
implementation. You

ExampleExample

CAge a(21);
CRuntimeClass* prt =
a.GetRuntimeClass();
ASSERT(strcmp(prt-
>m_lpszClassName,
"CAge") == 0);

CObject::IsKind
Of

BOOL IsKindOf(const
CRuntimeClass*
pClass) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

will get incorrect results
otherwise.

See CObList::CObList
for a listing of the CAge

class used in all
CObject examples.

Tests this object's
relationship to a given
class.

pClass
A pointer to a
CRuntimeClass
structure associated
with your CObject -
derived class.

Nonzero if the object
corresponds to the
class; otherwise 0.

This function tests
pClass to see if (1) it is
an object of the
specified class or (2) it
is an object of a class
derived from the
specified class. This
function works only for
classes declared with
the
DECLARE_DYNAMIC,
DECLARE_DYNCREAT
E, or
DECLARE_SERIAL
macro.

Do not use this function
extensively because it
defeats the C++

ExampleExample

CAge a(21); // Must
use
IMPLEMENT_DYNAMIC,
IMPLEMENT _DYNCREATE,
or
 //
IMPLEMENT_SERIAL
ASSERT(a.IsKindOf(RUN
TIME_CLASS(CAge)));
ASSERT(a.IsKindOf(RUN
TIME_CLASS(CObject)))
;

CObject::IsSerial
izable

BOOL IsSerializable()
const;

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

polymorphism feature.
Use virtual functions
instead.

See CObList::CObList
for a listing of the CAge

class used in all
CObject examples.

Tests whether this
object is eligible for
serialization.

Nonzero if this object
can be serialized;
otherwise 0.

For a class to be
serializable, its
declaration must
contain the
DECLARE_SERIAL
macro, and the
implementation must
contain the
IMPLEMENT_SERIAL
macro.

Do not override this
function.

See CObList::CObList
for a listing of the CAge

class used in all
CObject examples.

CAge a(21);
ASSERT(a.IsSerializab
le());

CObject::operat
or delete

void PASCAL operator
delete(void* p);

void PASCAL operator
delete(
 void* p,
 void* pPlace);

void PASCAL operator
delete(
 void* p,
 LPCSTR
lpszFileName,
 int nLine);

RemarksRemarks

#define new DEBUG_NEW

For the Release version
of the library, operator
delete frees the
memory allocated by
operator new.

In the Debug version,
operator delete
participates in an
allocation-monitoring
scheme designed to
detect memory leaks.

If you use the code line

before any of your
implementations in a
.CPP file, then the third
version of delete will
be used, storing the
filename and line
number in the allocated
block for later
reporting. You do not
have to worry about
supplying the extra
parameters; a macro
takes care of that for
you.

Even if you do not use
DEBUG_NEW in
Debug mode, you still
get leak detection, but
without the source-file
line-number reporting

ExampleExample

void CAge::operator
delete(void* p)
{
 free(p);
}

void CAge::operator
delete(void *p,
LPCSTR lpszFileName,
int nLine)
{

UNREFERENCED_PARAMETE
R(lpszFileName);

UNREFERENCED_PARAMETE
R(nLine);
 free(p);
}

CObject::operat
or new

void* PASCAL operator
new(size_t nSize);
void* PASCAL operator
new(size_t, void* p);

void* PASCAL operator
new(
 size_t nSize,
 LPCSTR
lpszFileName,
 int nLine);

RemarksRemarks

described above.

If you override
operators new and
delete, you forfeit this
diagnostic capability.

See CObList::CObList
for a listing of the CAge

class used in the
CObject examples.

For the Release version
of the library, operator
new performs an
optimal memory
allocation in a manner
similar to malloc .

In the Debug version,
operator new
participates in an
allocation-monitoring
scheme designed to
detect memory leaks.

If you use the code line

#define new DEBUG_NEW

NOTENOTE

ExampleExample

void* CAge::operator
new(size_t nSize)
{
 return
malloc(nSize);
}

void* CAge::operator
new(size_t nSize,
LPCSTR lpszFileName,
int nLine)
{

UNREFERENCED_PARAMETE
R(lpszFileName);

UNREFERENCED_PARAMETE
R(nLine);
 return
malloc(nSize);
}

before any of your
implementations in a
.CPP file, then the
second version of new
will be used, storing the
filename and line
number in the allocated
block for later
reporting. You do not
have to worry about
supplying the extra
parameters; a macro
takes care of that for
you.

Even if you do not use
DEBUG_NEW in
Debug mode, you still
get leak detection, but
without the source-file
line-number reporting
described above.

If you override this
operator, you must
also override delete.
Do not use the
standard library
_new_handler

function.

See CObList::CObList
for a listing of the CAge

class used in the
CObject examples.

 CObject::Serializ
e

virtual void
Serialize(CArchive&
ar);

ParametersParameters

RemarksRemarks

ExampleExample

Reads or writes this
object from or to an
archive.

ar
A CArchive object to
serialize to or from.

You must override
Serialize for each

class that you intend to
serialize. The
overridden Serialize

must first call the
Serialize function of

its base class.

You must also use the
DECLARE_SERIAL
macro in your class
declaration, and you
must use the
IMPLEMENT_SERIAL
macro in the
implementation.

Use
CArchive::IsLoading or
CArchive::IsStoring to
determine whether the
archive is loading or
storing.

Serialize is called by
CArchive::ReadObject
and
CArchive::WriteObject.
These functions are
associated with the
CArchive insertion

operator (<<) and
extraction operator (
>>).

For serialization
examples, see the
article Serialization:
Serializing an Object.

See CObList::CObList

void
CAge::Serialize(CArch
ive& ar)
{

CObject::Serialize(ar
);
 if(ar.IsStoring())
 ar << m_years;
 else
 ar >> m_years;
}

See also

for a listing of the CAge

class used in all
CObject examples.

Hierarchy Chart

CObList Class
3/4/2019 • 20 minutes to read • Edit Online

Syntax
class CObList : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CObList::CObList Constructs an empty list for CObject pointers.

Public MethodsPublic Methods

NAME DESCRIPTION

CObList::AddHead Adds an element (or all the elements in another list) to the
head of the list (makes a new head).

CObList::AddTail Adds an element (or all the elements in another list) to the
tail of the list (makes a new tail).

CObList::Find Gets the position of an element specified by pointer value.

CObList::FindIndex Gets the position of an element specified by a zero-based
index.

CObList::GetAt Gets the element at a given position.

CObList::GetCount Returns the number of elements in this list.

CObList::GetHead Returns the head element of the list (cannot be empty).

CObList::GetHeadPosition Returns the position of the head element of the list.

CObList::GetNext Gets the next element for iterating.

CObList::GetPrev Gets the previous element for iterating.

CObList::GetSize Returns the number of elements in this list.

CObList::GetTail Returns the tail element of the list (cannot be empty).

CObList::GetTailPosition Returns the position of the tail element of the list.

fSupports ordered lists of nonunique CObject pointers accessible sequentially or by pointer value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coblist-class.md

CObList::InsertAfter Inserts a new element after a given position.

CObList::InsertBefore Inserts a new element before a given position.

CObList::IsEmpty Tests for the empty list condition (no elements).

CObList::RemoveAll Removes all the elements from this list.

CObList::RemoveAt Removes an element from this list, specified by position.

CObList::RemoveHead Removes the element from the head of the list.

CObList::RemoveTail Removes the element from the tail of the list.

CObList::SetAt Sets the element at a given position.

NAME DESCRIPTION

Remarks

NOTENOTE

Inheritance Hierarchy

CObList lists behave like doubly-linked lists.

A variable of type POSITION is a key for the list. You can use a POSITION variable both as an iterator to
traverse a list sequentially and as a bookmark to hold a place. A position is not the same as an index, however.

Element insertion is very fast at the list head, at the tail, and at a known POSITION. A sequential search is
necessary to look up an element by value or index. This search can be slow if the list is long.

CObList incorporates the IMPLEMENT_SERIAL macro to support serialization and dumping of its elements. If
a list of CObject pointers is stored to an archive, either with an overloaded insertion operator or with the
Serialize member function, each CObject element is serialized in turn.

If you need a dump of individual CObject elements in the list, you must set the depth of the dump context to 1
or greater.

When a CObList object is deleted, or when its elements are removed, only the CObject pointers are removed,
not the objects they reference.

You can derive your own classes from CObList . Your new list class, designed to hold pointers to objects derived
from CObject , adds new data members and new member functions. Note that the resulting list is not strictly
type safe, because it allows insertion of any CObject pointer.

You must use the IMPLEMENT_SERIAL macro in the implementation of your derived class if you intend to serialize the
list.

For more information on using CObList , see the article Collections.

CObject

Requirements

CObList::AddHead

POSITION AddHead(CObject* newElement);
void AddHead(CObList* pNewList);

ParametersParameters

Return ValueReturn Value

CLASS MEMBER FUNCTION

CPtrList POSITION AddHead(void * newElement);

void AddHead(CPtrList * pNewList);

CStringList POSITION AddHead(const CString& newElement);

POSITION AddHead(LPCTSTR newElement);

void AddHead(CStringList * pNewList);

RemarksRemarks

ExampleExample

CObList list;
list.AddHead(new CAge(21)); // 21 is now at head.
list.AddHead(new CAge(40)); // 40 replaces 21 at head.
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("AddHead example: ") << &list << _T("\n");
#endif

CObList

Header: afxcoll.h

Adds a new element or list of elements to the head of this list.

newElement
The CObject pointer to be added to this list.

pNewList
A pointer to another CObList list. The elements in pNewList will be added to this list.

The first version returns the POSITION value of the newly inserted element.

The following table shows other member functions that are similar to CObList::AddHead .

The list can be empty before the operation.

See CObList::CObList for a listing of the CAge class.

The results from this program are as follows:

AddHead example: A CObList with 2 elements
a CAge at $44A8 40
a CAge at $442A 21

CObList::AddTail

POSITION AddTail(CObject* newElement);
void AddTail(CObList* pNewList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList POSITION AddTail(void * newElement);

void AddTail(CPtrList * pNewList);

CStringList POSITION AddTail(const CString& newElement);

POSITION AddTail(LPCTSTR newElement);

void AddTail(CStringList * pNewList);

ExampleExample

CObList list;
list.AddTail(new CAge(21));
list.AddTail(new CAge(40)); // List now contains (21, 40).
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("AddTail example: ") << &list << _T("\n");
#endif

Adds a new element or list of elements to the tail of this list.

newElement
The CObject pointer to be added to this list.

pNewList
A pointer to another CObList list. The elements in pNewList will be added to this list.

The first version returns the POSITION value of the newly inserted element.

The list can be empty before the operation.

The following table shows other member functions that are similar to CObList::AddTail .

See CObList::CObList for a listing of the CAge class.

The results from this program are as follows:

AddTail example: A CObList with 2 elements
a CAge at $444A 21
a CAge at $4526 40

CObList::CObList

CObList(INT_PTR nBlockSize = 10);

ParametersParameters

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList CPtrList(INT_PTR nBlockSize = 10);

CStringList CStringList(INT_PTR nBlockSize = 10);

ExampleExample

Constructs an empty CObject pointer list.

nBlockSize
The memory-allocation granularity for extending the list.

As the list grows, memory is allocated in units of nBlockSize entries. If a memory allocation fails, a
CMemoryException is thrown.

The following table shows other member functions that are similar to CObList::CObList .

Below is a listing of the CObject -derived class CAge used in all the collection examples:

// Simple CObject-derived class for CObList and other examples
class CAge : public CObject
{
 DECLARE_SERIAL(CAge)
private:
 int m_years;
public:
 CAge() { m_years = 0; }
 CAge(int age) { m_years = age; }
 CAge(const CAge& a) { m_years = a.m_years; } // Copy constructor
 void Serialize(CArchive& ar);
 void AssertValid() const;
 const CAge& operator=(const CAge& a)
 {
 m_years = a.m_years; return *this;
 }
 BOOL operator==(CAge a)
 {
 return m_years == a.m_years;
 }
#ifdef _DEBUG
 void Dump(CDumpContext& dc) const
 {
 CObject::Dump(dc);
 dc << m_years;
 }
#endif
};

CObList list(20); // List on the stack with blocksize = 20.

CObList* plist = new CObList; // List on the heap with default
 // blocksize.

CObList::Find

POSITION Find(
 CObject* searchValue,
 POSITION startAfter = NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Below is an example of CObList constructor usage:

Searches the list sequentially to find the first CObject pointer matching the specified CObject pointer.

searchValue
The object pointer to be found in this list.

startAfter
The start position for the search.

A POSITION value that can be used for iteration or object pointer retrieval; NULL if the object is not found.

Note that the pointer values are compared, not the contents of the objects.

The following table shows other member functions that are similar to CObList::Find .

CLASS MEMBER FUNCTION

CPtrList POSITION Find(void * searchValue , POSITION
startAfter = NULL) const;

CStringList POSITION Find(LPCTSTR searchValue , POSITION
startAfter = NULL) const;

ExampleExample

CObList list;
CAge* pa1;
CAge* pa2;
POSITION pos;
list.AddHead(pa1 = new CAge(21));
list.AddHead(pa2 = new CAge(40)); // List now contains (40, 21).
if ((pos = list.Find(pa1)) != NULL) // Hunt for pa1
{ // starting at head by default.
 ASSERT(*(CAge*) list.GetAt(pos) == CAge(21));
}

CObList::FindIndex

POSITION FindIndex(INT_PTR nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList POSITION FindIndex(INT_PTR nIndex) const;

CStringList POSITION FindIndex(INT_PTR nIndex) const;

ExampleExample

See CObList::CObList for a listing of the CAge class.

Uses the value of nIndex as an index into the list.

nIndex
The zero-based index of the list element to be found.

A POSITION value that can be used for iteration or object pointer retrieval; NULL if nIndex is too large. (The
framework generates an assertion if nIndex is negative.)

It starts a sequential scan from the head of the list, stopping on the nth element.

The following table shows other member functions that are similar to CObList::FindIndex .

See CObList::CObList for a listing of the CAge class.

CObList list;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); // List now contains (40, 21).
if ((pos = list.FindIndex(0)) != NULL)
{
 ASSERT(*(CAge*) list.GetAt(pos) == CAge(40));
}

CObList::GetAt

CObject*& GetAt(POSITION position);
const CObject*& GetAt(POSITION position) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList const void*& GetAt(POSITION position) const;

void*& GetAt(POSITION position);

CStringList const CString& GetAt(POSITION position) const;

CString& GetAt(POSITION position);

ExampleExample

CObList::GetCount

INT_PTR GetCount() const;

Return ValueReturn Value

A variable of type POSITION is a key for the list.

position
A POSITION value returned by a previous GetHeadPosition or Find member function call.

See the return value description for GetHead.

It is not the same as an index, and you cannot operate on a POSITION value yourself. GetAt retrieves the
CObject pointer associated with a given position.

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

The following table shows other member functions that are similar to CObList::GetAt .

See the example for FindIndex.

Gets the number of elements in this list.

An integer value containing the element count.

CLASS MEMBER FUNCTION

CPtrList INT_PTR GetCount() const;

CStringList INT_PTR GetCount() const;

ExampleExample

CObList list;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); // List now contains (40, 21).
ASSERT(list.GetCount() == 2);

CObList::GetHead

CObject*& GetHead();
const CObject*& GetHead() const;

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList const void*& GetHead() const; void*& GetHead();

CStringList const CString& GetHead() const; CString& GetHead();

ExampleExample

The following table shows other member functions that are similar to CObList::GetCount .

See CObList::CObList for a listing of the CAge class.

Gets the CObject pointer that represents the head element of this list.

If the list is accessed through a pointer to a const CObList , then GetHead returns a CObject pointer. This
allows the function to be used only on the right side of an assignment statement and thus protects the list from
modification.

If the list is accessed directly or through a pointer to a CObList , then GetHead returns a reference to a CObject

pointer. This allows the function to be used on either side of an assignment statement and thus allows the list
entries to be modified.

You must ensure that the list is not empty before calling GetHead . If the list is empty, then the Debug version of
the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

The following table shows other member functions that are similar to CObList::GetHead .

See CObList::CObList for a listing of the CAge class.

The following example illustrates the use of GetHead on the left side of an assignment statement.

const CObList* cplist;

CObList* plist = new CObList;
CAge* page1 = new CAge(21);
CAge* page2 = new CAge(30);
CAge* page3 = new CAge(40);
plist->AddHead(page1);
plist->AddHead(page2); // List now contains (30, 21).
// The following statement REPLACES the head element.
plist->GetHead() = page3; // List now contains (40, 21).
ASSERT(*(CAge*) plist->GetHead() == CAge(40));
cplist = plist; // cplist is a pointer to a const list.
// cplist->GetHead() = page3; // Error: can't assign a pointer to a const list
ASSERT(*(CAge*) plist->GetHead() == CAge(40)); // OK

delete page1;
delete page2;
delete page3;
delete plist; // Cleans up memory.

CObList::GetHeadPosition

POSITION GetHeadPosition() const;

Return ValueReturn Value

CLASS MEMBER FUNCTION

CPtrList POSITION GetHeadPosition() const;

CStringList POSITION GetHeadPosition() const;

ExampleExample

CObList list;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); // List now contains (40, 21).
if ((pos = list.GetHeadPosition()) != NULL)
{
 ASSERT(*(CAge*) list.GetAt(pos) == CAge(40));
}

CObList::GetNext

Gets the position of the head element of this list.

A POSITION value that can be used for iteration or object pointer retrieval; NULL if the list is empty.

The following table shows other member functions that are similar to CObList::GetHeadPosition .

See CObList::CObList for a listing of the CAge class.

Gets the list element identified by rPosition, then sets rPosition to the POSITION value of the next entry in the
list.

CObject*& GetNext(POSITION& rPosition);
const CObject* GetNext(POSITION& rPosition) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CLASS MEMBER FUNCTION

CPtrList void*& GetNext(POSITION& rPosition);

const void* GetNext(POSITION& rPosition
) const;

CStringList CString& GetNext(POSITION& rPosition);

const CString& GetNext(POSITION& rPosition
) const;

ExampleExample

CObList list;
POSITION pos;
list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); // List now contains (40, 21).
// Iterate through the list in head-to-tail order.
#ifdef _DEBUG
 for (pos = list.GetHeadPosition(); pos != NULL;)
 {
 afxDump << list.GetNext(pos) << _T("\n");
 }
#endif

rPosition
A reference to a POSITION value returned by a previous GetNext , GetHeadPosition , or other member function
call.

See the return value description for GetHead.

You can use GetNext in a forward iteration loop if you establish the initial position with a call to
GetHeadPosition or Find .

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

If the retrieved element is the last in the list, then the new value of rPosition is set to NULL.

It is possible to remove an element during an iteration. See the example for RemoveAt.

As of MFC 8.0 the const version of this method has changed to return const CObject* instead of const CObject*& .
This change was made to bring the compiler into conformance with the C++ standard.

The following table shows other member functions that are similar to CObList::GetNext .

See CObList::CObList for a listing of the CAge class.

a CAge at $479C 40
a CAge at $46C0 21

CObList::GetPrev

CObject*& GetPrev(POSITION& rPosition);
const CObject* GetPrev(POSITION& rPosition) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CLASS MEMBER FUNCTION

CPtrList void*& GetPrev(POSITION& rPosition);

const void* GetPrev(POSITION& rPosition
) const;

CStringList CString& GetPrev(POSITION& rPosition);

const CString& GetPrev(POSITION& rPosition
) const;

ExampleExample

The results from this program are as follows:

Gets the list element identified by rPosition, then sets rPosition to the POSITION value of the previous entry in
the list.

rPosition
A reference to a POSITION value returned by a previous GetPrev or other member function call.

See the return value description for GetHead.

You can use GetPrev in a reverse iteration loop if you establish the initial position with a call to
GetTailPosition or Find .

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

If the retrieved element is the first in the list, then the new value of rPosition is set to NULL.

As of MFC 8.0 the const version of this method has changed to return const CObject* instead of const CObject*& .
This change was made to bring the compiler into conformance with the C++ standard.

The following table shows other member functions that are similar to CObList::GetPrev .

See CObList::CObList for a listing of the CAge class.

CObList list;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); // List now contains (40, 21).
// Iterate through the list in tail-to-head order.
for (pos = list.GetTailPosition(); pos != NULL;)
{
#ifdef _DEBUG
 afxDump << list.GetPrev(pos) << _T("\n");
#endif
}

a CAge at $421C 21
a CAge at $421C 40

CObList::GetSize

INT_PTR GetSize() const;

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList INT_PTR GetSize() const;

CStringList INT_PTR GetSize() const;

ExampleExample

CObList list;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); // List now contains (40, 21).
ASSERT(list.GetSize() == 2);

CObList::GetTail

CObject*& GetTail();
const CObject*& GetTail() const;

The results from this program are as follows:

Returns the number of list elements.

The number of items in the list.

Call this method to retrieve the number of elements in the list.

The following table shows other member functions that are similar to CObList::GetSize .

See CObList::CObList for a listing of the CAge class.

Gets the CObject pointer that represents the tail element of this list.

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList const void*& GetTail() const; void*& GetTail();

CStringList const CString& GetTail() const; CString& GetTail();

ExampleExample

CObList list;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); // List now contains (40, 21).
ASSERT(*(CAge*) list.GetTail() == CAge(21));

CObList::GetTailPosition

POSITION GetTailPosition() const;

Return ValueReturn Value

CLASS MEMBER FUNCTION

CPtrList POSITION GetTailPosition() const;

CStringList POSITION GetTailPosition() const;

ExampleExample

CObList list;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); // List now contains (40, 21).
if ((pos = list.GetTailPosition()) != NULL)
{
 ASSERT(*(CAge*) list.GetAt(pos) == CAge(21));
}

See the return value description for GetHead.

You must ensure that the list is not empty before calling GetTail . If the list is empty, then the Debug version of
the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

The following table shows other member functions that are similar to CObList::GetTail .

See CObList::CObList for a listing of the CAge class.

Gets the position of the tail element of this list; NULL if the list is empty.

A POSITION value that can be used for iteration or object pointer retrieval; NULL if the list is empty.

The following table shows other member functions that are similar to CObList::GetTailPosition .

See CObList::CObList for a listing of the CAge class.

CObList::InsertAfter

POSITION InsertAfter(
 POSITION position,
 CObject* newElement);

ParametersParameters

CLASS MEMBER FUNCTION

CPtrList POSITION InsertAfter(POSITION position , void *
newElement);

CStringList POSITION InsertAfter(POSITION position , const
CString& newElement);

POSITION InsertAfter(POSITION position , LPCTSTR
newElement);

Return ValueReturn Value

ExampleExample

CObList list;
POSITION pos1, pos2;
list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); // List now contains (40, 21).
if ((pos1 = list.GetHeadPosition()) != NULL)
{
 pos2 = list.InsertAfter(pos1, new CAge(65));
}
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("InsertAfter example: ") << &list << _T("\n");
#endif

InsertAfter example: A CObList with 3 elements
a CAge at $4A44 40
a CAge at $4A64 65
a CAge at $4968 21

CObList::InsertBefore

Adds an element to this list after the element at the specified position.

position
A POSITION value returned by a previous GetNext , GetPrev , or Find member function call.

newElement
The object pointer to be added to this list.

The following table shows other member functions that are similar to CObList::InsertAfter .

A POSITION value which is the same as the position parameter.

See CObList::CObList for a listing of the CAge class.

The results from this program are as follows:

POSITION InsertBefore(
 POSITION position,
 CObject* newElement);

ParametersParameters

Return ValueReturn Value

CLASS MEMBER FUNCTION

CPtrList POSITION InsertBefore(POSITION position , void *
newElement);

CStringList POSITION InsertBefore(POSITION position , const
CString& newElement);

POSITION InsertBefore(POSITION position , LPCTSTR
newElement);

ExampleExample

CObList list;
POSITION pos1, pos2;
list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); // List now contains (40, 21).
if ((pos1 = list.GetTailPosition()) != NULL)
{
 pos2 = list.InsertBefore(pos1, new CAge(65));
}
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("InsertBefore example: ") << &list << _T("\n");
#endif

InsertBefore example: A CObList with 3 elements
a CAge at $4AE2 40
a CAge at $4B02 65
a CAge at $49E6 21

CObList::IsEmpty

Adds an element to this list before the element at the specified position.

position
A POSITION value returned by a previous GetNext , GetPrev , or Find member function call.

newElement
The object pointer to be added to this list.

A POSITION value that can be used for iteration or object pointer retrieval; NULL if the list is empty.

The following table shows other member functions that are similar to CObList::InsertBefore .

See CObList::CObList for a listing of the CAge class.

The results from this program are as follows:

Indicates whether this list contains no elements.

BOOL IsEmpty() const;

Return ValueReturn Value

CLASS MEMBER FUNCTION

CPtrList BOOL IsEmpty() const;

CStringList BOOL IsEmpty() const;

ExampleExample

CObList::RemoveAll

void RemoveAll();

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList void RemoveAll();

CStringList void RemoveAll();

ExampleExample

CObList list;
CAge* pa1;
CAge* pa2;
ASSERT(list.IsEmpty()); // Yes it is.
list.AddHead(pa1 = new CAge(21));
list.AddHead(pa2 = new CAge(40)); // List now contains (40, 21).
ASSERT(!list.IsEmpty()); // No it isn't.
list.RemoveAll(); // CAges aren't destroyed.
ASSERT(list.IsEmpty()); // Yes it is.
delete pa1; // Now delete the CAge objects.
delete pa2;

CObList::RemoveAt

Nonzero if this list is empty; otherwise 0.

The following table shows other member functions that are similar to CObList::IsEmpty .

See the example for RemoveAll.

Removes all the elements from this list and frees the associated CObList memory.

No error is generated if the list is already empty.

When you remove elements from a CObList , you remove the object pointers from the list. It is your
responsibility to delete the objects themselves.

The following table shows other member functions that are similar to CObList::RemoveAll .

See CObList::CObList for a listing of the CAge class.

void RemoveAt(POSITION position);

ParametersParameters

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList void RemoveAt(POSITION position);

CStringList void RemoveAt(POSITION position);

ExampleExample

CObList list;
POSITION pos1, pos2;
CObject* pa;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40));
list.AddHead(new CAge(65)); // List now contains (65 40, 21).
for (pos1 = list.GetHeadPosition(); (pos2 = pos1) != NULL;)
{
 if (*(CAge*) list.GetNext(pos1) == CAge(40))
 {
 pa = list.GetAt(pos2); // Save the old pointer for
 //deletion.
 list.RemoveAt(pos2);
 delete pa; // Deletion avoids memory leak.
 }
}
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("RemoveAt example: ") << &list << _T("\n");
#endif

Removes the specified element from this list.

position
The position of the element to be removed from the list.

When you remove an element from a CObList , you remove the object pointer from the list. It is your
responsibility to delete the objects themselves.

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

The following table shows other member functions that are similar to CObList::RemoveAt .

Be careful when removing an element during a list iteration. The following example shows a removal technique
that guarantees a valid POSITION value for GetNext.

See CObList::CObList for a listing of the CAge class.

The results from this program are as follows:

RemoveAt example: A CObList with 2 elements

a CAge at $4C1E 65

a CAge at $4B22 21

CObList::RemoveHead

CObject* RemoveHead();

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList void* RemoveHead();

CStringList CString RemoveHead();

ExampleExample

CObList list;
CAge* pa1;
CAge* pa2;

list.AddHead(pa1 = new CAge(21));
list.AddHead(pa2 = new CAge(40)); // List now contains (40, 21).
ASSERT(*(CAge*) list.RemoveHead() == CAge(40)); // Old head
ASSERT(*(CAge*) list.GetHead() == CAge(21)); // New head
delete pa1;
delete pa2;

CObList::RemoveTail

CObject* RemoveTail();

Return ValueReturn Value

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList void* RemoveTail();

Removes the element from the head of the list and returns a pointer to it.

The CObject pointer previously at the head of the list.

You must ensure that the list is not empty before calling RemoveHead . If the list is empty, then the Debug version
of the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

The following table shows other member functions that are similar to CObList::RemoveHead .

See CObList::CObList for a listing of the CAge class.

Removes the element from the tail of the list and returns a pointer to it.

A pointer to the object that was at the tail of the list.

You must ensure that the list is not empty before calling RemoveTail . If the list is empty, then the Debug version
of the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

The following table shows other member functions that are similar to CObList::RemoveTail .

CStringList CString RemoveTail();

CLASS MEMBER FUNCTION

ExampleExample

CObList list;
CAge* pa1;
CAge* pa2;

list.AddHead(pa1 = new CAge(21));
list.AddHead(pa2 = new CAge(40)); // List now contains (40, 21).
ASSERT(*(CAge*) list.RemoveTail() == CAge(21)); // Old tail
ASSERT(*(CAge*) list.GetTail() == CAge(40)); // New tail
delete pa1;
delete pa2; // Clean up memory.

CObList::SetAt

void SetAt(
 POSITION pos,
 CObject* newElement);

ParametersParameters

RemarksRemarks

CLASS MEMBER FUNCTION

CPtrList void SetAt(POSITION pos , const CString&
newElement);

CStringList void SetAt(POSITION pos , LPCTSTR newElement);

ExampleExample

See CObList::CObList for a listing of the CAge class.

Sets the element at a given position.

pos
The POSITION of the element to be set.

newElement
The CObject pointer to be written to the list.

A variable of type POSITION is a key for the list. It is not the same as an index, and you cannot operate on a
POSITION value yourself. SetAt writes the CObject pointer to the specified position in the list.

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

The following table shows other member functions that are similar to CObList::SetAt .

See CObList::CObList for a listing of the CAge class.

CObList list;
CObject* pa;
POSITION pos;

list.AddHead(new CAge(21));
list.AddHead(new CAge(40)); // List now contains (40, 21).
if ((pos = list.GetTailPosition()) != NULL)
{
 pa = list.GetAt(pos); // Save the old pointer for
 //deletion.
 list.SetAt(pos, new CAge(65)); // Replace the tail
 //element.
 delete pa; // Deletion avoids memory leak.
}
#ifdef _DEBUG
 afxDump.SetDepth(1);
 afxDump << _T("SetAt example: ") << &list << _T("\n");
#endif

SetAt example: A CObList with 2 elements
a CAge at $4D98 40
a CAge at $4DB8 65

See also

The results from this program are as follows:

CObject Class
Hierarchy Chart
CStringList Class
CPtrList Class

COccManager Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class COccManager : public CNoTrackObject

Members
Public MethodsPublic Methods

NAME DESCRIPTION

COccManager::CreateContainer Creates a COleContainer object.

COccManager::CreateDlgControls Creates ActiveX controls, hosted by the associated
COleContainer object.

COccManager::CreateSite Creates a COleClientSite object.

COccManager::GetDefBtnCode Retrieves the code of the default button.

COccManager::IsDialogMessage Determines the target of a dialog message.

COccManager::IsLabelControl Determines if the specified control is a label control.

COccManager::IsMatchingMnemonic Determines if the current mnemonic matches the mnemonic
of the specified control.

COccManager::OnEvent Attempts to handle the specified event.

COccManager::PostCreateDialog Frees resources allocated during dialog creation.

COccManager::PreCreateDialog Processes a dialog template for ActiveX controls.

COccManager::SetDefaultButton Toggles the default state of the specified control.

COccManager::SplitDialogTemplate Separates any existing ActiveX controls from common controls
in the specified dialog template.

Remarks

Manages various custom control sites; implemented by COleControlContainer and COleControlSite objects.

The base class, CNoTrackObject , is an undocumented base class (located in AFXTLS.H). Designed for use by the
MFC framework, classes derived from the CNoTrackObject class are exempt from memory leak detection. It is not
recommended that you derive directly from CNoTrackObject .

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coccmanager-class.md

Inheritance Hierarchy

Requirements

COccManager::CreateContainer

virtual COleControlContainer* CreateContainer(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COccManager::CreateDlgControls

virtual BOOL CreateDlgControls(
 CWnd* pWndParent,
 LPCTSTR lpszResourceName,
 _AFX_OCC_DIALOG_INFO* pOccDialogInfo);

virtual BOOL CreateDlgControls(
 CWnd* pWndParent,
 void* lpResource,
 _AFX_OCC_DIALOG_INFO* pOccDialogInfo);

ParametersParameters

Return ValueReturn Value

CNoTrackObject

COccManager

Header: afxocc.h

Called by the framework to create a control container.

pWnd
A pointer to the window object associated with the custom site container.

A pointer to the newly created container; otherwise NULL.

For more information on creating custom sites, see COleControlContainer::AttachControlSite.

Call this function to create ActiveX controls specified by the pOccDialogInfo parameter.

pWndParent
A pointer to the parent of the dialog object.

lpszResourceName
The name of the resource being created.

pOccDialogInfo
A pointer to the dialog template used to create the dialog object.

lpResource
A pointer to a resource.

Nonzero if the control was created successfully; otherwise zero.

COccManager::CreateSite

virtual COleControlSite* CreateSite(COleControlContainer* pCtrlCont);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COccManager::GetDefBtnCode

static DWORD AFX_CDECL GetDefBtnCode(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

COccManager::IsDialogMessage

virtual BOOL IsDialogMessage(
 CWnd* pWndDlg,
 LPMSG lpMsg);

ParametersParameters

Return ValueReturn Value

Called by the framework to create a control site, hosted by the container pointed to by pCtrlCont.

pCtrlCont
A pointer to the control container hosting the new control site.

A pointer to the newly created control site.

Override this function to create a custom control site, using your COleControlSite-derived class.

Each control container can host multiple sites. Create additional sites with multiple calls to CreateSite .

Call this function to determine if the control is a default push button.

pWnd
The window object containing the button control.

One of the following values:

DLGC_DEFPUSHBUTTON Control is the default button in the dialog.

DLGC_UNDEFPUSHBUTTON Control is not the default button in the dialog.

0 Control is not a button.

Called by the framework to determine whether a message is intended for the specified dialog box and, if it is,
processes the message.

pWndDlg
A pointer to the intended target dialog of the message.

lpMsg
A pointer to an MSG structure that contains the message to be checked.

RemarksRemarks

COccManager::IsLabelControl

static BOOL AFX_CDECL IsLabelControl(CWnd* pWnd);
static BOOL AFX_CDECL IsLabelControl(COleControlSiteOrWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COccManager::IsMatchingMnemonic

static BOOL AFX_CDECL IsMatchingMnemonic(
 CWnd* pWnd,
 LPMSG lpMsg);

static BOOL AFX_CDECL IsMatchingMnemonic(
 COleControlSiteOrWnd* pWnd,
 LPMSG lpMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COccManager::OnEvent

Nonzero if the message is processed; otherwise zero.

The default behavior of IsDialogMessage is to check for keyboard messages and convert them into selections for
the corresponding dialog box. For example, the TAB key, when pressed, selects the next control or group of
controls.

Override this function to provide custom behavior for messages sent to the specified dialog.

Call this function to determine if the specified control is a label control.

pWnd
A pointer to the window containing the control.

Nonzero if the control is a label; otherwise zero

A label control is one that acts like a label for whatever control is next in the ordering.

Call this function to determine if the current mnemonic matches that represented by the control.

pWnd
A pointer to the window containing the control.

lpMsg
A pointer to the message containing the mnemonic to match.

Nonzero if the mnemonic matches the control; otherwise zero

Called by the framework to handle the specified event.

virtual BOOL OnEvent(
 CCmdTarget* pCmdTarget,
 UINT idCtrl,
 AFX_EVENT* pEvent,
 AFX_CMDHANDLERINFO* pHandlerInfo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COccManager::PreCreateDialog

virtual const DLGTEMPLATE* PreCreateDialog(
 _AFX_OCC_DIALOG_INFO* pOccDialogInfo,
 const DLGTEMPLATE* pOrigTemplate);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COccManager::PostCreateDialog

pCmdTarget
A pointer to the CCmdTarget object attempting to handle the event

idCtrl
The resource ID of the control.

pEvent
The event being handled.

pHandlerInfo
If not NULL, OnEvent fills in the pTarget and pmf members of the AFX_CMDHANDLERINFO structure instead of
dispatching the command. Typically, this parameter should be NULL.

Nonzero if the event was handled, otherwise zero.

Override this function to customize the default event-handling process.

Called by the framework to process a dialog template for ActiveX controls before creating the actual dialog box.

pOccDialogInfo
An _AFX_OCC_DIALOG_INFO structure containing information on the dialog template and any ActiveX controls hosted
by the dialog.

pOrigTemplate
A pointer to the dialog template to be used in creating the dialog box.

A pointer to a dialog template structure used to create the dialog box.

The default behavior makes a call to SplitDialogTemplate , determining if there are any ActiveX controls present
and then returns the resultant dialog template.

Override this function to customize the process of creating a dialog box hosting ActiveX controls.

Called by the framework to free memory allocated for the dialog template.

virtual void PostCreateDialog(_AFX_OCC_DIALOG_INFO* pOccDialogInfo);

ParametersParameters

RemarksRemarks

COccManager::SetDefaultButton

static void AFX_CDECL SetDefaultButton(
 CWnd* pWnd,
 BOOL bDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

COccManager::SplitDialogTemplate

virtual DLGTEMPLATE* SplitDialogTemplate(
 const DLGTEMPLATE* pTemplate,
 DLGITEMTEMPLATE** ppOleDlgItems);

ParametersParameters

pOccDialogInfo
An _AFX_OCC_DIALOG_INFO structure containing information on the dialog template and any ActiveX controls hosted
by the dialog.

This memory was allocated by a call to SplitDialogTemplate , and was used for any hosted ActiveX controls in the
dialog box.

Override this function to customize the process of cleaning up any resources used by the dialog box object.

Call this function to set the control as the default button.

pWnd
A pointer to the window containing the control.

bDefault
Nonzero if the control should become the default button; otherwise zero.

Nonzero if successful; otherwise zero.

The control must have the OLEMISC_ACTSLIKEBUTTON status bit set. For more information on OLEMISC flags, see the
OLEMISC topic in the Windows SDK.

Called by the framework to split the ActiveX controls from common dialog controls.

pTemplate
A pointer to the dialog template to be examined.

ppOleDlgItems
A list of pointers to dialog box items that are ActiveX controls.

https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolemisc

Return ValueReturn Value

RemarksRemarks

NOTENOTE

See also

A pointer to a dialog template structure containing only non-ActiveX controls. If no ActiveX controls are present,
NULL is returned.

If any ActiveX controls are found, the template is analyzed and a new template, containing only non-ActiveX
controls, is created. Any ActiveX controls found during this process are added to ppOleDlgItems.

If there are no ActiveX controls in the template, NULL is returned .

Memory allocated for the new template is freed in the PostCreateDialog function.

Override this function to customize this process.

Hierarchy Chart
COleControlSite Class
COleControlContainer Class

COleBusyDialog Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class COleBusyDialog : public COleDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleBusyDialog::COleBusyDialog Constructs a COleBusyDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleBusyDialog::DoModal Displays the OLE Server Busy dialog box.

COleBusyDialog::GetSelectionType Determines the choice made in the dialog box.

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleBusyDialog::m_bz Structure of type OLEUIBUSY that controls the behavior of
the dialog box.

Remarks

NOTENOTE

Inheritance Hierarchy

Used for the OLE Server Not Responding or Server Busy dialog boxes.

Create an object of class COleBusyDialog when you want to call these dialog boxes. After a COleBusyDialog object
has been constructed, you can use the m_bz structure to initialize the values or states of controls in the dialog box.
The m_bz structure is of type OLEUIBUSY. For more information about using this dialog class, see the DoModal
member function.

Application Wizard-generated container code uses this class.

For more information, see the OLEUIBUSY structure in the Windows SDK.

For more information on OLE-specific dialog boxes, see the article Dialog Boxes in OLE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colebusydialog-class.md
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuibusya

Requirements

COleBusyDialog::COleBusyDialog

explicit COleBusyDialog(
 HTASK htaskBusy,
 BOOL bNotResponding = FALSE,
 DWORD dwFlags = 0,
 CWnd* pParentWnd = NULL);

ParametersParameters

RemarksRemarks

COleBusyDialog::DoModal

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

COleDialog

COleBusyDialog

Header: afxodlgs.h

This function only constructs a COleBusyDialog object.

htaskBusy
Handle to the server task that is busy.

bNotResponding
If TRUE, call the Not Responding dialog box instead of the Server Busy dialog box. The wording in the Not
Responding dialog box is slightly different than the wording in the Server Busy dialog box, and the Cancel button
is disabled.

dwFlags
Creation flag. Can contain zero or more of the following values combined with the bitwise-OR operator:

BZ_DISABLECANCELBUTTON Disable the Cancel button when calling the dialog box.

BZ_DISABLESWITCHTOBUTTON Disable the Switch To button when calling the dialog box.

BZ_DISABLERETRYBUTTON Disable the Retry button when calling the dialog box.

pParentWnd
Points to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is NULL, the
parent window of the dialog object is set to the main application window.

To display the dialog box, call DoModal.

For more information, see the OLEUIBUSY structure in the Windows SDK.

Call this function to display the OLE Server Busy or Server Not Responding dialog box.

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuibusya

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

COleBusyDialog::GetSelectionType

UINT GetSelectionType() const;

Return ValueReturn Value

RemarksRemarks

enum Selection {
 switchTo,
 retry,
 callUnblocked
 };

COleBusyDialog::m_bz

OLEUIBUSY m_bz;

RemarksRemarks

Completion status for the dialog box. One of the following values:

IDOK if the dialog box was successfully displayed.

IDCANCEL if the user canceled the dialog box.

IDABORT if an error occurred. If IDABORT is returned, call the COleDialog::GetLastError member function
to get more information about the type of error that occurred. For a listing of possible errors, see the
OleUIBusy function in the Windows SDK.

If you want to initialize the various dialog box controls by setting members of the m_bz structure, you should do
this before calling DoModal , but after the dialog object is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the settings or information that was
input by the user into the dialog box.

Call this function to get the selection type chosen by the user in the Server Busy dialog box.

Type of selection made.

The return type values are specified by the Selection enumeration type declared in the COleBusyDialog class.

Brief descriptions of these values follow:

COleBusyDialog::switchTo Switch To button was pressed.

COleBusyDialog::retry Retry button was pressed.

COleBusyDialog::callUnblocked Call to activate the server is now unblocked.

Structure of type OLEUIBUSY used to control the behavior of the Server Busy dialog box.

Members of this structure can be modified directly or through member functions.

https://docs.microsoft.com/windows/desktop/api/oledlg/nf-oledlg-oleuibusya

See also

For more information, see the OLEUIBUSY structure in the Windows SDK.

COleDialog Class
Hierarchy Chart
COleDialog Class

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuibusya

COleChangeIconDialog Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class COleChangeIconDialog : public COleDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleChangeIconDialog::COleChangeIconDialog Constructs a COleChangeIconDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleChangeIconDialog::DoChangeIcon Performs the change specified in the dialog box.

COleChangeIconDialog::DoModal Displays the OLE 2 Change Icon dialog box.

COleChangeIconDialog::GetIconicMetafile Gets a handle to the metafile associated with the iconic form
of this item.

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleChangeIconDialog::m_ci A structure that controls the behavior of the dialog box.

Remarks

Inheritance Hierarchy

Used for the OLE Change Icon dialog box.

Create an object of class COleChangeIconDialog when you want to call this dialog box. After a
COleChangeIconDialog object has been constructed, you can use the m_ci structure to initialize the values or states

of controls in the dialog box. The m_ci structure is of type OLEUICHANGEICON. For more information about
using this dialog class, see the DoModal member function.

For more information, see the OLEUICHANGEICON structure in the Windows SDK.

For more information about OLE-specific dialog boxes, see the article Dialog Boxes in OLE.

CObject

CCmdTarget

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colechangeicondialog-class.md
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangeicona

Requirements

COleChangeIconDialog::COleChangeIconDialog

explicit COleChangeIconDialog(
 COleClientItem* pItem,
 DWORD dwFlags = CIF_SELECTCURRENT,
 CWnd* pParentWnd = NULL);

ParametersParameters

RemarksRemarks

COleChangeIconDialog::DoChangeIcon

CWnd

CDialog

CCommonDialog

COleDialog

COleChangeIconDialog

Header: afxodlgs.h

This function constructs only a COleChangeIconDialog object.

pItem
Points to the item to be converted.

dwFlags
Creation flag, which contains any number of the following values combined using the bitwise-or operator:

CIF_SELECTCURRENT Specifies that the Current radio button will be selected initially when the dialog box
is called. This is the default.

CIF_SELECTDEFAULT Specifies that the Default radio button will be selected initially when the dialog box
is called.

CIF_SELECTFROMFILE Specifies that the From File radio button will be selected initially when the dialog
box is called.

CIF_SHOWHELP Specifies that the Help button will be displayed when the dialog box is called.

CIF_USEICONEXE Specifies that the icon should be extracted from the executable specified in the
szIconExe field of m_ci instead of retrieved from the type. This is useful for embedding or linking to non-

OLE files.

pParentWnd
Points to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is NULL, the
parent window of the dialog box will be set to the main application window.

To display the dialog box, call the DoModal function.

For more information, see the OLEUICHANGEICON structure in the Windows SDK.

Call this function to change the icon representing the item to the one selected in the dialog box after DoModal
returns IDOK.

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangeicona

BOOL DoChangeIcon(COleClientItem* pItem);

ParametersParameters

Return ValueReturn Value

COleChangeIconDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

COleChangeIconDialog::GetIconicMetafile

HGLOBAL GetIconicMetafile() const;

Return ValueReturn Value

COleChangeIconDialog::m_ci

OLEUICHANGEICON m_ci;

RemarksRemarks

pItem
Points to the item whose icon is changing.

Nonzero if change is successful; otherwise 0.

Call this function to display the OLE Change Icon dialog box.

Completion status for the dialog box. One of the following values:

IDOK if the dialog box was successfully displayed.

IDCANCEL if the user canceled the dialog box.

IDABORT if an error occurred. If IDABORT is returned, call the COleDialog::GetLastError member function
to get more information about the type of error that occurred. For a listing of possible errors, see the
OleUIChangeIcon function in the Windows SDK.

If you want to initialize the various dialog box controls by setting members of the m_ci structure, you should do
this before calling DoModal , but after the dialog object is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the settings or information that was
input by the user into the dialog box.

Call this function to get a handle to the metafile that contains the iconic aspect of the selected item.

The handle to the metafile containing the iconic aspect of the new icon, if the dialog box was dismissed by
choosing OK; otherwise, the icon as it was before the dialog was displayed.

Structure of type OLEUICHANGEICON used to control the behavior of the Change Icon dialog box.

Members of this structure can be modified either directly or through member functions.

https://docs.microsoft.com/windows/desktop/api/oledlg/nf-oledlg-oleuichangeicona

See also

For more information, see the OLEUICHANGEICON structure in the Windows SDK.

COleDialog Class
Hierarchy Chart
COleDialog Class

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangeicona

COleChangeSourceDialog Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class COleChangeSourceDialog : public COleDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleChangeSourceDialog::COleChangeSourceDialog Constructs a COleChangeSourceDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleChangeSourceDialog::DoModal Displays the OLE Change Source dialog box.

COleChangeSourceDialog::GetDisplayName Gets the complete source display name.

COleChangeSourceDialog::GetFileName Gets the filename from the source name.

COleChangeSourceDialog::GetFromPrefix Gets the prefix of the previous source.

COleChangeSourceDialog::GetItemName Gets the item name from the source name.

COleChangeSourceDialog::GetToPrefix Gets the prefix of the new source

COleChangeSourceDialog::IsValidSource Indicates if the source is valid.

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleChangeSourceDialog::m_cs A structure that controls the behavior of the dialog box.

Remarks

Used for the OLE Change Source dialog box.

Create an object of class COleChangeSourceDialog when you want to call this dialog box. After a
COleChangeSourceDialog object has been constructed, you can use the m_cs structure to initialize the values or

states of controls in the dialog box. The m_cs structure is of type OLEUICHANGESOURCE. For more information
about using this dialog class, see the DoModal member function.

For more information, see the OLEUICHANGESOURCE structure in Windows SDK.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colechangesourcedialog-class.md
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangesourcea
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangesourcea

Inheritance Hierarchy

Requirements

COleChangeSourceDialog::COleChangeSourceDialog

explicit COleChangeSourceDialog(
 COleClientItem* pItem,
 CWnd* pParentWnd = NULL);

ParametersParameters

RemarksRemarks

COleChangeSourceDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

For more information about OLE-specific dialog boxes, see the article Dialog Boxes in OLE.

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

COleDialog

COleChangeSourceDialog

Header: afxodlgs.h

This function constructs a COleChangeSourceDialog object.

pItem
Pointer to the linked COleClientItem whose source is to be updated.

pParentWnd
Points to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is NULL, the
parent window of the dialog box will be set to the main application window.

To display the dialog box, call the DoModal function.

For more information, see the OLEUICHANGESOURCE structure and OleUIChangeSource function in Windows
SDK.

Call this function to display the OLE Change Source dialog box.

Completion status for the dialog box. One of the following values:

IDOK if the dialog box was successfully displayed.

IDCANCEL if the user canceled the dialog box.

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangesourcea
https://docs.microsoft.com/windows/desktop/api/oledlg/nf-oledlg-oleuichangesourcea

RemarksRemarks

COleChangeSourceDialog::GetDisplayName

CString GetDisplayName();

Return ValueReturn Value

COleChangeSourceDialog::GetFileName

CString GetFileName();

Return ValueReturn Value

RemarksRemarks

COleChangeSourceDialog::GetFromPrefix

CString GetFromPrefix();

Return ValueReturn Value

RemarksRemarks

IDABORT if an error occurred. If IDABORT is returned, call the COleDialog::GetLastError member function
to get more information about the type of error that occurred. For a listing of possible errors, see the
OleUIChangeSource function in Windows SDK.

If you want to initialize the various dialog box controls by setting members of the m_cs structure, you should do
this before calling DoModal , but after the dialog object is constructed.

If DoModal returns IDOK, you can call member functions to retrieve user-entered settings or information from the
dialog box. The following list names typical query functions:

GetFileName

GetDisplayName

GetItemName

Call this function to retrieve the complete display name for the linked client item.

The complete source display name (moniker) for the COleClientItem specified in the constructor.

Call this function to retrieve the file moniker portion of the display name for the linked client item.

The file moniker portion of the source display name for the COleClientItem specified in the constructor.

The file moniker together with the item moniker gives the complete display name.

Call this function to get the previous prefix string for the source.

The previous prefix string of the source.

Call this function only after DoModal returns IDOK.

This value comes directly from the lpszFrom member of the OLEUICHANGESOURCE structure.

For more information, see the OLEUICHANGESOURCE structure in Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oledlg/nf-oledlg-oleuichangesourcea
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangesourcea
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangesourcea

COleChangeSourceDialog::GetItemName

CString GetItemName();

Return ValueReturn Value

RemarksRemarks

COleChangeSourceDialog::GetToPrefix

CString GetToPrefix();

Return ValueReturn Value

RemarksRemarks

COleChangeSourceDialog::m_cs

OLEUICHANGESOURCE m_cs;

RemarksRemarks

COleChangeSourceDialog::IsValidSource

BOOL IsValidSource();

Return ValueReturn Value

RemarksRemarks

Call this function to retrieve the item moniker portion of the display name for the linked client item.

The item moniker portion of the source display name for the COleClientItem specified in the constructor.

The file moniker together with the item moniker gives the complete display name.

Call this function to get the new prefix string for the source.

The new prefix string of the source.

Call this function only after DoModal returns IDOK.

This value comes directly from the lpszTo member of the OLEUICHANGESOURCE structure.

For more information, see the OLEUICHANGESOURCE structure in Windows SDK.

This data member is a structure of type OLEUICHANGESOURCE.

OLEUICHANGESOURCE is used to control the behavior of the OLE Change Source dialog box. Members of this
structure can be modified directly.

For more information, see the OLEUICHANGESOURCE structure in Windows SDK.

Call this function to determine if the new source is valid.

Nonzero if the new source is valid, otherwise 0.

Call this function only after DoModal returns IDOK.

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangesourcea
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangesourcea
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangesourcea
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangesourcea

See also

For more information, see the OLEUICHANGESOURCE structure in Windows SDK.

COleDialog Class
Hierarchy Chart
COleDialog Class

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuichangesourcea

COleClientItem Class
3/4/2019 • 52 minutes to read • Edit Online

Syntax
class COleClientItem : public CDocItem

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleClientItem::COleClientItem Constructs a COleClientItem object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleClientItem::Activate Opens the OLE item for an operation and then executes
the specified verb.

COleClientItem::ActivateAs Activates the item as another type.

COleClientItem::AttachDataObject Accesses the data in the OLE object.

COleClientItem::CanCreateFromData Indicates whether a container application can create an
embedded object.

COleClientItem::CanCreateLinkFromData Indicates whether a container application can create a
linked object.

COleClientItem::CanPaste Indicates whether the Clipboard contains an embeddable
or static OLE item.

COleClientItem::CanPasteLink Indicates whether the Clipboard contains a linkable OLE
item.

COleClientItem::Close Closes a link to a server but does not destroy the OLE
item.

COleClientItem::ConvertTo Converts the item to another type.

COleClientItem::CopyToClipboard Copies the OLE item to the Clipboard.

COleClientItem::CreateCloneFrom Creates a duplicate of an existing item.

Defines the container interface to OLE items.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coleclientitem-class.md

COleClientItem::CreateFromClipboard Creates an embedded item from the Clipboard.

COleClientItem::CreateFromData Creates an embedded item from a data object.

COleClientItem::CreateFromFile Creates an embedded item from a file.

COleClientItem::CreateLinkFromClipboard Creates a linked item from the Clipboard.

COleClientItem::CreateLinkFromData Creates a linked item from a data object.

COleClientItem::CreateLinkFromFile Creates a linked item from a file.

COleClientItem::CreateNewItem Creates a new embedded item by launching the server
application.

COleClientItem::CreateStaticFromClipboard Creates a static item from the Clipboard.

COleClientItem::CreateStaticFromData Creates a static item from a data object.

COleClientItem::Deactivate Deactivates the item.

COleClientItem::DeactivateUI Restores the container application's user interface to its
original state.

COleClientItem::Delete Deletes or closes the OLE item if it was a linked item.

COleClientItem::DoDragDrop Performs a drag-and-drop operation.

COleClientItem::DoVerb Executes the specified verb.

COleClientItem::Draw Draws the OLE item.

COleClientItem::GetActiveView Gets the view on which the item is activated in place.

COleClientItem::GetCachedExtent Returns the bounds of the OLE item's rectangle.

COleClientItem::GetClassID Gets the present item's class ID.

COleClientItem::GetClipboardData Gets the data that would be placed on the Clipboard by
calling the CopyToClipboard member function.

COleClientItem::GetDocument Returns the COleDocument object that contains the
present item.

COleClientItem::GetDrawAspect Gets the item's current view for rendering.

COleClientItem::GetExtent Returns the bounds of the OLE item's rectangle.

COleClientItem::GetIconFromRegistry Retrieves a handle to an icon associated with the server of
a particular CLSID.

NAME DESCRIPTION

COleClientItem::GetIconicMetafile Gets the metafile used for drawing the item's icon.

COleClientItem::GetInPlaceWindow Returns a pointer to the item's in-place editing window.

COleClientItem::GetItemState Gets the item's current state.

COleClientItem::GetLastStatus Returns the status of the last OLE operation.

COleClientItem::GetLinkUpdateOptions Returns the update mode for a linked item (advanced
feature).

COleClientItem::GetType Returns the type (embedded, linked, or static) of the OLE
item.

COleClientItem::GetUserType Gets a string describing the item's type.

COleClientItem::IsInPlaceActive Returns TRUE if the item is in-place active.

COleClientItem::IsLinkUpToDate Returns TRUE if a linked item is up to date with its source
document.

COleClientItem::IsModified Returns TRUE if the item has been modified since it was last
saved.

COleClientItem::IsOpen Returns TRUE if the item is currently open in the server
application.

COleClientItem::IsRunning Returns TRUE if the item's server application is running.

COleClientItem::OnActivate Called by the framework to notify the item that it is
activated.

COleClientItem::OnActivateUI Called by the framework to notify the item that it is
activated and should show its user interface.

COleClientItem::OnChange Called when the server changes the OLE item.
Implementation required.

COleClientItem::OnDeactivate Called by the framework when an item is deactivated.

COleClientItem::OnDeactivateUI Called by the framework when the server has removed its
in-place user interface.

COleClientItem::OnGetClipboardData Called by the framework to get the data to be copied to
the Clipboard.

COleClientItem::OnInsertMenus Called by the framework to create a composite menu.

COleClientItem::OnRemoveMenus Called by the framework to remove the container's menus
from a composite menu.

NAME DESCRIPTION

COleClientItem::OnSetMenu Called by the framework to install and remove a composite
menu.

COleClientItem::OnShowControlBars Called by the framework to show and hide control bars.

COleClientItem::OnUpdateFrameTitle Called by the framework to update the frame window's title
bar.

COleClientItem::ReactivateAndUndo Reactivates the item and undoes the last in-place editing
operation.

COleClientItem::Release Releases the connection to an OLE linked item and closes it
if it was open. Does not destroy the client item.

COleClientItem::Reload Reloads the item after a call to ActivateAs .

COleClientItem::Run Runs the application associated with the item.

COleClientItem::SetDrawAspect Sets the item's current view for rendering.

COleClientItem::SetExtent Sets the bounding rectangle of the OLE item.

COleClientItem::SetHostNames Sets the names the server displays when editing the OLE
item.

COleClientItem::SetIconicMetafile Caches the metafile used for drawing the item's icon.

COleClientItem::SetItemRects Sets the item's bounding rectangle.

COleClientItem::SetLinkUpdateOptions Sets the update mode for a linked item (advanced feature).

COleClientItem::SetPrintDevice Sets the print-target device for this client item.

COleClientItem::UpdateLink Updates the presentation cache of an item.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

COleClientItem::CanActivate Called by the framework to determine whether in-place
activation is allowed.

COleClientItem::OnChangeItemPosition Called by the framework when an item's position changes.

COleClientItem::OnDeactivateAndUndo Called by the framework to undo after activation.

COleClientItem::OnDiscardUndoState Called by the framework to discard the item's undo state
information.

COleClientItem::OnGetClipRect Called by the framework to get the item's clipping-
rectangle coordinates.

COleClientItem::OnGetItemPosition Called by the framework to get the item's position relative
to the view.

COleClientItem::OnGetWindowContext Called by the framework when an item is activated in place.

COleClientItem::OnScrollBy Called by the framework to scroll the item into view.

COleClientItem::OnShowItem Called by the framework to display the OLE item.

NAME DESCRIPTION

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

An OLE item represents data, created and maintained by a server application, which can be "seamlessly"
incorporated into a document so that it appears to the user to be a single document. The result is a
"compound document" made up of the OLE item and a containing document.

An OLE item can be either embedded or linked. If it is embedded, its data is stored as part of the compound
document. If it is linked, its data is stored as part of a separate file created by the server application, and only
a link to that file is stored in the compound document. All OLE items contain information specifying the
server application that should be called to edit them.

COleClientItem defines several overridable functions that are called in response to requests from the server
application; these overridables usually act as notifications. This allows the server application to inform the
container of changes the user makes when editing the OLE item, or to retrieve information needed during
editing.

COleClientItem can be used with either the COleDocument, COleLinkingDoc, or COleServerDoc class. To use
COleClientItem , derive a class from it and implement the OnChange member function, which defines how

the container responds to changes made to the item. To support in-place activation, override the
OnGetItemPosition member function. This function provides information about the displayed position of the
OLE item.

For more information about using the container interface, see the articles Containers: Implementing a
Container and Activation.

The Windows SDK refers to embedded and linked items as "objects" and refers to types of items as "classes." This
reference uses the term "item" to distinguish the OLE entity from the corresponding C++ object and the term "type"
to distinguish the OLE category from the C++ class.

CObject

CCmdTarget

CDocItem

COleClientItem

Header: afxole.h

COleClientItem::Activate

void Activate(
 LONG nVerb,
 CView* pView,
 LPMSG lpMsg = NULL);

ParametersParameters

VALUE MEANING SYMBOL

- 0 Primary verb OLEIVERB_PRIMARY

- 1 Secondary verb (None)

- 1 Display item for editing OLEIVERB_SHOW

- 2 Edit item in separate window OLEIVERB_OPEN

- 3 Hide item OLEIVERB_HIDE

RemarksRemarks

COleClientItem::ActivateAs

Call this function to execute the specified verb instead of DoVerb so that you can do your own processing
when an exception is thrown.

nVerb
Specifies the verb to execute. It can be one of the following:

The -1 value is typically an alias for another verb. If open editing is not supported, -2 has the same effect as -
1. For additional values, see IOleObject::DoVerb in the Windows SDK.

pView
Pointer to the container view window that contains the OLE item; this is used by the server application for in-
place activation. This parameter should be NULL if the container does not support in-place activation.

lpMsg
Pointer to the message that caused the item to be activated.

If the server application was written using the Microsoft Foundation Class Library, this function causes the
OnDoVerb member function of the corresponding COleServerItem object to be executed.

If the primary verb is Edit and zero is specified in the nVerb parameter, the server application is launched to
allow the OLE item to be edited. If the container application supports in-place activation, editing can be done
in place. If the container does not support in-place activation (or if the Open verb is specified), the server is
launched in a separate window and editing can be done there. Typically, when the user of the container
application double-clicks the OLE item, the value for the primary verb in the nVerb parameter determines
which action the user can take. However, if the server supports only one action, it takes that action, no matter
which value is specified in the nVerb parameter.

For more information, see IOleObject::DoVerb in the Windows SDK.

Uses OLE's object conversion facilities to activate the item as though it were an item of the type specified by
clsidNew.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-doverb
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-doverb

virtual BOOL ActivateAs(
 LPCTSTR lpszUserType,
 REFCLSID clsidOld,
 REFCLSID clsidNew);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::AttachDataObject

void AttachDataObject(COleDataObject& rDataObject) const;

ParametersParameters

COleClientItem::CanActivate

virtual BOOL CanActivate();

Return ValueReturn Value

RemarksRemarks

COleClientItem::CanCreateFromData

lpszUserType
Pointer to a string representing the target user type, such as "Word Document."

clsidOld
A reference to the item's current class ID. The class ID should represent the type of the actual object, as
stored, unless it is a link. In that case, it should be the CLSID of the item to which the link refers. The
COleConvertDialog automatically provides the correct class ID for the item.

clsidNew
A reference to the target class ID.

Nonzero if successful; otherwise 0.

This is called automatically by COleConvertDialog::DoConvert. It is not usually called directly.

Call this function to initialize a COleDataObject for accessing the data in the OLE item.

rDataObject
Reference to a COleDataObject object that will be initialized to allow access to the data in the OLE item.

Called by the framework when the user requests in-place activation of the OLE item; this function's return
value determines whether in-place activation is allowed.

Nonzero if in-place activation is allowed; otherwise 0.

The default implementation allows in-place activation if the container has a valid window. Override this
function to implement special logic for accepting or refusing the activation request. For example, an activation
request can be refused if the OLE item is too small or not currently visible.

For more information, see IOleInPlaceSite::CanInPlaceActivate in the Windows SDK.

Checks whether a container application can create an embedded object from the given COleDataObject

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplacesite-caninplaceactivate

static BOOL PASCAL CanCreateFromData(const COleDataObject* pDataObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::CanCreateLinkFromData

static BOOL PASCAL CanCreateLinkFromData(const COleDataObject* pDataObject);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::CanPaste

static BOOL PASCAL CanPaste();

Return ValueReturn Value

RemarksRemarks

object.

pDataObject
Pointer to the COleDataObject object from which the OLE item is to be created.

Nonzero if the container can create an embedded object from the COleDataObject object; otherwise 0.

The COleDataObject class is used in data transfers for retrieving data in various formats from the Clipboard,
through drag and drop, or from an embedded OLE item.

Containers can use this function to decide to enable or disable their Edit Paste and Edit Paste Special
commands.

For more information, see the article Data Objects and Data Sources (OLE).

Checks whether a container application can create a linked object from the given COleDataObject object.

pDataObject
Pointer to the COleDataObject object from which the OLE item is to be created.

Nonzero if the container can create a linked object from the COleDataObject object.

The COleDataObject class is used in data transfers for retrieving data in various formats from the Clipboard,
through drag and drop, or from an embedded OLE item.

Containers can use this function to decide to enable or disable their Edit Paste Special and Edit Paste Link
commands.

For more information, see the article Data Objects and Data Sources (OLE).

Call this function to see whether an embedded OLE item can be pasted from the Clipboard.

Nonzero if an embedded OLE item can be pasted from the Clipboard; otherwise 0.

For more information, see OleGetClipboard and OleQueryCreateFromData in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olegetclipboard
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olequerycreatefromdata

COleClientItem::CanPasteLink

static BOOL PASCAL CanPasteLink();

Return ValueReturn Value

RemarksRemarks

COleClientItem::Close

void Close(OLECLOSE dwCloseOption = OLECLOSE_SAVEIFDIRTY);

ParametersParameters

RemarksRemarks

COleClientItem::COleClientItem

COleClientItem(COleDocument* pContainerDoc = NULL);

ParametersParameters

RemarksRemarks

Call this function to see whether a linked OLE item can be pasted from the Clipboard.

Nonzero if a linked OLE item can be pasted from the Clipboard; otherwise 0.

For more information, see OleGetClipboard and OleQueryLinkFromData in the Windows SDK.

Call this function to change the state of an OLE item from the running state to the loaded state, that is, loaded
with its handler in memory but with the server not running.

dwCloseOption
Flag specifying under what circumstances the OLE item is saved when it returns to the loaded state. It can
have one of the following values:

OLECLOSE_SAVEIFDIRTY Save the OLE item.

OLECLOSE_NOSAVE Do not save the OLE item.

OLECLOSE_PROMPTSAVE Prompt the user on whether to save the OLE item.

This function has no effect when the OLE item is not running.

For more information, see IOleObject::Close in the Windows SDK.

Constructs a COleClientItem object and adds it to the container document's collection of document items,
which constructs only the C++ object and does not perform any OLE initialization.

pContainerDoc
Pointer to the container document that will contain this item. This can be any COleDocument derivative.

If you pass a NULL pointer, no addition is made to the container document. You must explicitly call
COleDocument::AddItem.

You must call one of the following creation member functions before you use the OLE item:

CreateFromClipboard

https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olegetclipboard
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olequerylinkfromdata
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-close

COleClientItem::ConvertTo

virtual BOOL ConvertTo(REFCLSID clsidNew);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::CopyToClipboard

void CopyToClipboard(BOOL bIncludeLink = FALSE);

ParametersParameters

RemarksRemarks

COleClientItem::CreateCloneFrom

CreateFromData

CreateFromFile

CreateStaticFromClipboard

CreateStaticFromData

CreateLinkFromClipboard

CreateLinkFromData

CreateLinkFromFile

CreateNewItem

CreateCloneFrom

Call this member function to convert the item to the type specified by clsidNew.

clsidNew
The class ID of the target type.

Nonzero if successful; otherwise 0.

This is called automatically by COleConvertDialog. It is not necessary to call it directly.

Call this function to copy the OLE item to the Clipboard.

bIncludeLink
TRUE if link information should be copied to the Clipboard, allowing a linked item to be pasted; otherwise
FALSE.

Typically, you call this function when writing message handlers for the Copy or Cut commands from the Edit
menu. You must implement item selection in your container application if you want to implement the Copy or
Cut commands.

For more information, see OleSetClipboard in the Windows SDK.

Call this function to create a copy of the specified OLE item.

https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olesetclipboard

BOOL CreateCloneFrom(const COleClientItem* pSrcItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::CreateFromClipboard

BOOL CreateFromClipboard(
 OLERENDER render = OLERENDER_DRAW,
 CLIPFORMAT cfFormat = 0,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::CreateFromData

BOOL CreateFromData(
 COleDataObject* pDataObject,
 OLERENDER render = OLERENDER_DRAW,
 CLIPFORMAT cfFormat = 0,
 LPFORMATETC lpFormatEtc = NULL);

pSrcItem
Pointer to the OLE item to be duplicated.

Nonzero if successful; otherwise 0.

The copy is identical to the source item. You can use this function to support undo operations.

Call this function to create an embedded item from the contents of the Clipboard.

render
Flag specifying how the server will render the OLE item. For the possible values, see OLERENDER in the
Windows SDK.

cfFormat
Specifies the Clipboard data format to be cached when creating the OLE item.

lpFormatEtc
Pointer to a FORMATETC structure used if render is OLERENDER_FORMAT or OLERENDER_DRAW.
Provide a value for this parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values are used for the other
fields in the FORMATETC structure.

Nonzero if successful; otherwise 0.

You typically call this function from the message handler for the Paste command on the Edit menu. (The Paste
command is enabled by the framework if the CanPaste member function returns nonzero.)

For more information, see OLERENDER and FORMATETC in the Windows SDK.

Call this function to create an embedded item from a COleDataObject object.

https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::CreateFromFile

BOOL CreateFromFile(
 LPCTSTR lpszFileName,
 REFCLSID clsid = CLSID_NULL,
 OLERENDER render = OLERENDER_DRAW,
 CLIPFORMAT cfFormat = 0,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

pDataObject
Pointer to the COleDataObject object from which the OLE item is to be created.

render
Flag specifying how the server will render the OLE item. For the possible values, see OLERENDER in the
Windows SDK.

cfFormat
Specifies the Clipboard data format to be cached when creating the OLE item.

lpFormatEtc
Pointer to a FORMATETC structure used if render is OLERENDER_FORMAT or OLERENDER_DRAW.
Provide a value for this parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values are used for the other
fields in the FORMATETC structure.

Nonzero if successful; otherwise 0.

Data transfer operations, such as pasting from the Clipboard or drag-and-drop operations, provide
COleDataObject objects containing the information offered by a server application. It is usually used in your

override of CView::OnDrop.

For more information, see OleCreateFromData, OLERENDER, and FORMATETC in the Windows SDK.

Call this function to create an embedded OLE item from a file.

lpszFileName
Pointer to the name of the file from which the OLE item is to be created.

clsid
Reserved for future use.

render
Flag specifying how the server will render the OLE item. For the possible values, see OLERENDER in the
Windows SDK.

cfFormat
Specifies the Clipboard data format to be cached when creating the OLE item.

lpFormatEtc
Pointer to a FORMATETC structure used if render is OLERENDER_FORMAT or OLERENDER_DRAW.
Provide a value for this parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values are used for the other

https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olecreatefromdata
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

Return ValueReturn Value

RemarksRemarks

COleClientItem::CreateLinkFromClipboard

BOOL CreateLinkFromClipboard(
 OLERENDER render = OLERENDER_DRAW,
 CLIPFORMAT cfFormat = 0,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::CreateLinkFromData

BOOL CreateLinkFromData(
 COleDataObject* pDataObject,
 OLERENDER render = OLERENDER_DRAW,
 CLIPFORMAT cfFormat = 0,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

fields in the FORMATETC structure.

Nonzero if successful; otherwise 0.

The framework calls this function from COleInsertDialog::CreateItem if the user chooses OK from the Insert
Object dialog box when the Create from File button is selected.

For more information, see OleCreateFromFile, OLERENDER, and FORMATETC in the Windows SDK.

Call this function to create a linked item from the contents of the Clipboard.

render
Flag specifying how the server will render the OLE item. For the possible values, see OLERENDER in the
Windows SDK.

cfFormat
Specifies the Clipboard data format to be cached when creating the OLE item.

lpFormatEtc
Pointer to a FORMATETC structure used if render is OLERENDER_FORMAT or OLERENDER_DRAW.
Provide a value for this parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values are used for the other
fields in the FORMATETC structure.

Nonzero if successful; otherwise 0.

You typically call this function from the message handler for the Paste Link command on the Edit menu. (The
Paste Link command is enabled in the default implementation of COleDocument if the Clipboard contains an
OLE item that can be linked to.)

For more information, see OLERENDER and FORMATETC in the Windows SDK.

Call this function to create a linked item from a COleDataObject object.

https://docs.microsoft.com/windows/desktop/api/ole/nf-ole-olecreatefromfile
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

Return ValueReturn Value

RemarksRemarks

COleClientItem::CreateLinkFromFile

BOOL CreateLinkFromFile(
 LPCTSTR lpszFileName,
 OLERENDER render = OLERENDER_DRAW,
 CLIPFORMAT cfFormat = 0,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pDataObject
Pointer to the COleDataObject object from which the OLE item is to be created.

render
Flag specifying how the server will render the OLE item. For the possible values, see OLERENDER in the
Windows SDK.

cfFormat
Specifies the Clipboard data format to be cached when creating the OLE item.

lpFormatEtc
Pointer to a FORMATETC structure used if render is OLERENDER_FORMAT or OLERENDER_DRAW.
Provide a value for this parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values are used for the other
fields in the FORMATETC structure.

Nonzero if successful; otherwise 0.

Call this during a drop operation when the user indicates a link should be created. It can also be used to
handle the Edit Paste command. It is called by the framework in COleClientItem::CreateLinkFromClipboard

and in COlePasteSpecialDialog::CreateItem when the Link option has been selected.

For more information, see OleCreateLinkFromData, OLERENDER, and FORMATETC in the Windows SDK.

Call this function to create a linked OLE item from a file.

lpszFileName
Pointer to the name of the file from which the OLE item is to be created.

render
Flag specifying how the server will render the OLE item. For the possible values, see OLERENDER in the
Windows SDK.

cfFormat
Specifies the Clipboard data format to be cached when creating the OLE item.

lpFormatEtc
Pointer to a FORMATETC structure used if render is OLERENDER_FORMAT or OLERENDER_DRAW.
Provide a value for this parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values are used for the other
fields in the FORMATETC structure.

Nonzero if successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olecreatelinkfromdata
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

COleClientItem::CreateNewItem

BOOL CreateNewItem(
 REFCLSID clsid,
 OLERENDER render = OLERENDER_DRAW,
 CLIPFORMAT cfFormat = 0,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::CreateStaticFromClipboard

BOOL CreateStaticFromClipboard(
 OLERENDER render = OLERENDER_DRAW,
 CLIPFORMAT cfFormat = 0,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

The framework calls this function if the user chooses OK from the Insert Object dialog box when the Create
from File button is selected and the Link check box is checked. It is called from COleInsertDialog::CreateItem.

For more information, see OleCreateLinkToFile, OLERENDER, and FORMATETC in the Windows SDK.

Call this function to create an embedded item; this function launches the server application that allows the
user to create the OLE item.

clsid
ID that uniquely identifies the type of OLE item to create.

render
Flag specifying how the server will render the OLE item. For the possible values, see OLERENDER in the
Windows SDK.

cfFormat
Specifies the Clipboard data format to be cached when creating the OLE item.

lpFormatEtc
Pointer to a FORMATETC structure used if render is OLERENDER_FORMAT or OLERENDER_DRAW.
Provide a value for this parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values are used for the other
fields in the FORMATETC structure.

Nonzero if successful; otherwise 0.

The framework calls this function if the user chooses OK from the Insert Object dialog box when the Create
New button is selected.

For more information, see OleCreate, OLERENDER, and FORMATETC in the Windows SDK.

Call this function to create a static item from the contents of the Clipboard.

render
Flag specifying how the server will render the OLE item. For the possible values, see OLERENDER in the
Windows SDK.

https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olecreatelinktofile
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/ole/nf-ole-olecreate
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender

Return ValueReturn Value

RemarksRemarks

COleClientItem::CreateStaticFromData

BOOL CreateStaticFromData(
 COleDataObject* pDataObject,
 OLERENDER render = OLERENDER_DRAW,
 CLIPFORMAT cfFormat = 0,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

cfFormat
Specifies the Clipboard data format to be cached when creating the OLE item.

lpFormatEtc
Pointer to a FORMATETC structure used if render is OLERENDER_FORMAT or OLERENDER_DRAW.
Provide a value for this parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values are used for the other
fields in the FORMATETC structure.

Nonzero if successful; otherwise 0.

A static item contains the presentation data but not the native data; consequently it cannot be edited. You
typically call this function if the CreateFromClipboard member function fails.

For more information, see OLERENDER and FORMATETC in the Windows SDK.

Call this function to create a static item from a COleDataObject object.

pDataObject
Pointer to the COleDataObject object from which the OLE item is to be created.

render
Flag specifying how the server will render the OLE item. For the possible values, see OLERENDER in the
Windows SDK.

cfFormat
Specifies the Clipboard data format to be cached when creating the OLE item.

lpFormatEtc
Pointer to a FORMATETC structure used if render is OLERENDER_FORMAT or OLERENDER_DRAW.
Provide a value for this parameter only if you want to specify additional format information beyond the
Clipboard format specified by cfFormat. If you omit this parameter, default values are used for the other
fields in the FORMATETC structure.

Nonzero if successful; otherwise 0.

A static item contains the presentation data but not the native data; consequently, it cannot be edited. This is
essentially the same as CreateStaticFromClipboard except that a static item can be created from an arbitrary
COleDataObject , not just from the Clipboard.

Used in COlePasteSpecialDialog::CreateItem when Static is selected.

For more information, see OleCreateStaticFromData, OLERENDER, and FORMATETC in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olecreatestaticfromdata
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolerender
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

COleClientItem::Deactivate

void Deactivate();

RemarksRemarks

COleClientItem::DeactivateUI

void DeactivateUI();

RemarksRemarks

COleClientItem::Delete

void Delete(BOOL bAutoDelete = TRUE);

ParametersParameters

RemarksRemarks

COleClientItem::DoDragDrop

Call this function to deactivate the OLE item and free any associated resources.

You typically deactivate an in-place active OLE item when the user clicks the mouse on the client area outside
the bounds of the item. Note that deactivating the OLE item will discard its undo state, making it impossible
to call the ReactivateAndUndo member function.

If your application supports undo, do not call Deactivate ; instead, call DeactivateUI.

For more information, see IOleInPlaceObject::InPlaceDeactivate in the Windows SDK.

Call this function when the user deactivates an item that was activated in place.

This function restores the container application's user interface to its original state, hiding any menus and
other controls that were created for in-place activation.

This function does not flush the undo state information for the item. That information is retained so that
ReactivateAndUndo can later be used to execute an undo command in the server application, in case the
container's undo command is chosen immediately after deactivating the item.

For more information, see IOleInPlaceObject::InPlaceDeactivate in the Windows SDK.

Call this function to delete the OLE item from the container document.

bAutoDelete
Specifies whether the item is to be removed from the document.

This function calls the Release member function, which in turn deletes the C++ object for the item,
permanently removing the OLE item from the document. If the OLE item is embedded, the native data for
the item is deleted. It always closes a running server; therefore, if the item is an open link, this function closes
it.

Call the DoDragDrop member function to perform a drag-and-drop operation.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceobject-inplacedeactivate
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceobject-inplacedeactivate

DROPEFFECT DoDragDrop(
 LPCRECT lpItemRect,
 CPoint ptOffset,
 BOOL bIncludeLink = FALSE,
 DWORD dwEffects = DROPEFFECT_COPY | DROPEFFECT_MOVE,
 LPCRECT lpRectStartDrag = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::DoVerb

virtual BOOL DoVerb(
 LONG nVerb,
 CView* pView,
 LPMSG lpMsg = NULL);

lpItemRect
The item's rectangle on screen in client coordinates (pixels).

ptOffset
The offset from lpItemRect where the mouse position was at the time of the drag.

bIncludeLink
Set this to TRUE if the link data should be copied to the Clipboard. Set it to FALSE if your server application
does not support links.

dwEffects
Determines the effects that the drag source will allow in the drag operation.

lpRectStartDrag
Pointer to the rectangle that defines where the drag actually starts. For more information, see the following
Remarks section.

A DROPEFFECT value. If it is DROPEFFECT_MOVE, the original data should be removed.

The drag-and-drop operation does not start immediately. It waits until the mouse cursor leaves the rectangle
specified by lpRectStartDrag or until a specified number of milliseconds have passed. If lpRectStartDrag is
NULL, the size of the rectangle is one pixel.

The delay time is specified by a registry key setting. You can change the delay time by calling
CWinApp::WriteProfileString or CWinApp::WriteProfileInt. If you do not specify the delay time, a default
value of 200 milliseconds is used. Drag delay time is stored as follows:

Windows NT Drag delay time is stored in
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\NT\CurrentVersion\IniFileMapping\win.
ini\Windows\DragDelay.

Windows 3.x Drag delay time is stored in the WIN.INI file, under the [Windows} section.

Windows 95/98 Drag delay time is stored in a cached version of WIN.INI.

For more information about how drag delay information is stored in either the registry or the .INI file, see
WriteProfileString in the Windows SDK.

Call DoVerb to execute the specified verb.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-writeprofilestringa

ParametersParameters

VALUE MEANING SYMBOL

- 0 Primary verb OLEIVERB_PRIMARY

- 1 Secondary verb (None)

- 1 Display item for editing OLEIVERB_SHOW

- 2 Edit item in separate window OLEIVERB_OPEN

- 3 Hide item OLEIVERB_HIDE

Return ValueReturn Value

RemarksRemarks

COleClientItem::Draw

BOOL Draw(
 CDC* pDC,
 LPCRECT lpBounds,
 DVASPECT nDrawAspect = (DVASPECT)-1);

ParametersParameters

nVerb
Specifies the verb to execute. It can include one of the following:

The -1 value is typically an alias for another verb. If open editing is not supported, -2 has the same effect as -
1. For additional values, see IOleObject::DoVerb in the Windows SDK.

pView
Pointer to the view window; this is used by the server for in-place activation. This parameter should be NULL
if the container application does not allow in-place activation.

lpMsg
Pointer to the message that caused the item to be activated.

Nonzero if the verb was successfully executed; otherwise 0.

This function calls the Activate member function to execute the verb. It also catches exceptions and displays a
message box to the user if one is thrown.

If the primary verb is Edit and zero is specified in the nVerb parameter, the server application is launched to
allow the OLE item to be edited. If the container application supports in-place activation, editing can be done
in place. If the container does not support in-place activation (or if the Open verb is specified), the server is
launched in a separate window and editing can be done there. Typically, when the user of the container
application double-clicks the OLE item, the value for the primary verb in the nVerb parameter determines
which action the user can take. However, if the server supports only one action, it takes that action, no matter
which value is specified in the nVerb parameter.

Call this function to draw the OLE item into the specified bounding rectangle using the specified device
context.

pDC
Pointer to a CDC object used for drawing the OLE item.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-doverb

Return ValueReturn Value

RemarksRemarks

COleClientItem::GetActiveView

CView* GetActiveView() const;

Return ValueReturn Value

COleClientItem::GetCachedExtent

BOOL GetCachedExtent(
 LPSIZE lpSize,
 DVASPECT nDrawAspect = (DVASPECT)-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpBounds
Pointer to a CRect object or RECT structure that defines the bounding rectangle in which to draw the OLE
item (in logical units determined by the device context).

nDrawAspect
Specifies the aspect of the OLE item, that is, how it should be displayed. If nDrawAspect is -1, the last aspect
set by using SetDrawAspect is used. For more information about possible values for this flag, see
SetDrawAspect.

Nonzero if successful; otherwise 0.

The function may use the metafile representation of the OLE item created by the OnDraw member function
of COleServerItem .

Typically you use Draw for screen display, passing the screen device context as pDC. In this case, you need to
specify only the first two parameters.

The lpBounds parameter identifies the rectangle in the target device context (relative to its current mapping
mode). Rendering may involve scaling the picture and can be used by container applications to impose a view
that scales between the displayed view and the final printed image.

For more information, see IViewObject::Draw in the Windows SDK.

Returns the view on which the item is in-place activated.

A pointer to the view; otherwise NULL if the item is not in-place activated.

Call this function to retrieve the OLE item's size.

lpSize
Pointer to a SIZE structure or a CSize object that will receive the size information.

nDrawAspect
Specifies the aspect of the OLE item whose bounds are to be retrieved. For possible values, see
SetDrawAspect.

Nonzero if successful; 0 if the OLE item is blank.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject-draw

COleClientItem::GetClassID

void GetClassID(CLSID* pClassID) const;

ParametersParameters

RemarksRemarks

COleClientItem::GetClipboardData

void GetClipboardData(
 COleDataSource* pDataSource,
 BOOL bIncludeLink = FALSE,
 LPPOINT lpOffset = NULL,
 LPSIZE lpSize = NULL);

ParametersParameters

RemarksRemarks

This function provides the same information as GetExtent. However, you can call GetCachedExtent to get
extent information during the processing of other OLE handlers, such as OnChange. The dimensions are in
MM_HIMETRIC units.

This is possible because GetCachedExtent uses the IViewObject2 interface rather than use the IOleObject
interface to get the extent of this item. The IViewObject2 COM object caches the extent information used in
the previous call to IViewObject::Draw.

For more information, see IViewObject2::GetExtent in the Windows SDK.

Returns the class ID of the item into the memory pointed to by pClassID.

pClassID
Pointer to an identifier of type CLSID to retrieve the class ID. For information on CLSID, see the Windows
SDK.

The class ID is a 128-bit number that uniquely identifies the application that edits the item.

For more information, see IPersist::GetClassID in the Windows SDK.

Call this function to get a COleDataSource object containing all the data that would be placed on the
Clipboard by a call to the CopyToClipboard member function.

pDataSource
Pointer to a COleDataSource object that will receive the data contained in the OLE item.

bIncludeLink
TRUE if link data should be included; otherwise FALSE.

lpOffset
The offset of the mouse cursor from the origin of the object in pixels.

lpSize
The size of the object in pixels.

GetClipboardData is called as the default implementation of OnGetClipboardData. Override
OnGetClipboardData only if you want to offer data formats in addition to those offered by CopyToClipboard .

Place those formats in the COleDataSource object before or after calling CopyToClipboard , and then pass the
COleDataSource object to the COleDataSource::SetClipboard function. For example, if you want the OLE

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-iviewobject2
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleobject
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject-draw
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject2-getextent
https://docs.microsoft.com/windows/desktop/com/clsid-key-hklm
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersist-getclassid

COleClientItem::GetDocument

COleDocument* GetDocument() const;

Return ValueReturn Value

RemarksRemarks

COleClientItem::GetDrawAspect

DVASPECT GetDrawAspect() const;

Return ValueReturn Value

RemarksRemarks

COleClientItem::GetExtent

BOOL GetExtent(
 LPSIZE lpSize,
 DVASPECT nDrawAspect = (DVASPECT)- 1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

item's position in its container document to accompany it on the Clipboard, you would define your own
format for passing that information and place it in the COleDataSource before calling CopyToClipboard .

Call this function to get a pointer to the document that contains the OLE item.

A pointer to the document that contains the OLE item. NULL if the item is not part of a document.

This pointer allows access to the COleDocument object that you passed as an argument to the COleClientItem

constructor.

Call the GetDrawAspect member function to determine the current "aspect," or view, of the item.

A value from the DVASPECT enumeration, whose values are listed in the reference for SetDrawAspect.

The aspect specifies how the item is to be rendered.

Call this function to retrieve the OLE item's size.

lpSize
Pointer to a SIZE structure or a CSize object that will receive the size information.

nDrawAspect
Specifies the aspect of the OLE item whose bounds are to be retrieved. For possible values, see
SetDrawAspect.

Nonzero if successful; 0 if the OLE item is blank.

If the server application was written using the Microsoft Foundation Class Library, this function causes the
OnGetExtent member function of the corresponding COleServerItem object to be called. Note that the
retrieved size may differ from the size last set by the SetExtent member function; the size specified by
SetExtent is treated as a suggestion. The dimensions are in MM_HIMETRIC units.

NOTENOTE

COleClientItem::GetIconFromRegistry

HICON GetIconFromRegistry() const;

static HICON GetIconFromRegistry(CLSID& clsid);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::GetIconicMetafile

HGLOBAL GetIconicMetafile();

Return ValueReturn Value

RemarksRemarks

COleClientItem::GetInPlaceWindow

CWnd* GetInPlaceWindow();

Return ValueReturn Value

Do not call GetExtent during the processing of an OLE handler, such as OnChange. Call GetCachedExtent instead.

For more information, see IOleObject::GetExtent in the Windows SDK.

Call this member function to retrieve a handle to an icon resource associated with the server of a particular
CLSID.

clsid
A reference to the CLSID for the server associated with the icon.

A valid handle to the icon resource, or NULL if the server's icon, or a default icon, can't be found.

This member function will not start the server or obtain an icon dynamically, even if the server is already
running. Instead, this member function opens the server's executable image and retrieves the static icon
associated with the server as it was registered.

Retrieves the metafile used for drawing the item's icon.

A handle to the metafile if successful; otherwise NULL.

If there is no current icon, a default icon is returned. This is called automatically by the MFC/OLE dialogs and
is usually not called directly.

This function also calls SetIconicMetafile to cache the metafile for later use.

Call the GetInPlaceWindow member function to get a pointer to the window in which the item has been
opened for in-place editing.

A pointer to the item's in-place editing window; NULL if the item is not active or if its server is unavailable.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-getextent

RemarksRemarks

COleClientItem::GetItemState

UINT GetItemState() const;

Return ValueReturn Value

RemarksRemarks

COleClientItem::GetLastStatus

SCODE GetLastStatus() const;

Return ValueReturn Value

RemarksRemarks

COleClientItem::GetLinkUpdateOptions

OLEUPDATE GetLinkUpdateOptions();

Return ValueReturn Value

RemarksRemarks

This function should be called only for items that are in-place active.

Call this function to get the OLE item's current state.

A COleClientItem::ItemState enumerated value, which can be one of the following: emptyState , loadedState

, openState , activeState , activeUIState . For information about these states, see the article Containers:
Client-Item States.

To be notified when the OLE item's state changes, use the OnChange member function.

For more information, see the article Containers: Client-Item States.

Returns the status code of the last OLE operation.

An SCODE value.

For member functions that return a BOOL value of FALSE, or other member functions that return NULL,
GetLastStatus returns more detailed failure information. Be aware that most OLE member functions throw

exceptions for more serious errors. The specific information on the interpretation of the SCODE depends on
the underlying OLE call that last returned an SCODE value.

For more information on SCODE, see Structure of COM Error Codes in the Windows SDK documentation.

Call this function to get the current value of the link-update option for the OLE item.

One of the following values:

OLEUPDATE_ALWAYS Update the linked item whenever possible. This option supports the Automatic
link-update radio button in the Links dialog box.

OLEUPDATE_ONCALL Update the linked item only on request from the container application (when
the UpdateLink member function is called). This option supports the Manual link-update radio button
in the Links dialog box.

https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes

COleClientItem::GetType

OLE_OBJTYPE GetType() const;

Return ValueReturn Value

COleClientItem::GetUserType

void GetUserType(
 USERCLASSTYPE nUserClassType,
 CString& rString);

ParametersParameters

RemarksRemarks

COleClientItem::IsInPlaceActive

This is an advanced operation.

This function is called automatically by the COleLinksDialog class.

For more information, see IOleLink::GetUpdateOptions in the Windows SDK.

Call this function to determine whether the OLE item is embedded or linked, or static.

An unsigned integer with one of the following values:

OT_LINK The OLE item is a link.

OT_EMBEDDED The OLE item is embedded.

OT_STATIC The OLE item is static, that is, it contains only presentation data, not native data, and thus
cannot be edited.

Call this function to get the user-visible string describing the OLE item's type, such as "Word document."

nUserClassType
A value indicating the desired variant of the string describing the OLE item's type. This can have one of the
following values:

USERCLASSTYPE_FULL The full type name displayed to the user.

USERCLASSTYPE_SHORT A short name (15 characters maximum) for use in pop-up menus and the
Edit Links dialog box.

USERCLASSTYPE_APPNAME Name of the application servicing the class.

rString
A reference to a CString object to which the string describing the OLE item's type is to be returned.

This is often the entry in the system registration database.

If the full type name is requested but not available, the short name is used instead. If no entry for the type of
OLE item is found in the registration database, or if there are no user types registered for the type of OLE
item, then the user type currently stored in the OLE item is used. If that user type name is an empty string,
"Unknown Object" is used.

For more information, see IOleObject::GetUserType in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iolelink-getupdateoptions
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-getusertype

BOOL IsInPlaceActive() const;

Return ValueReturn Value

RemarksRemarks

COleClientItem::IsLinkUpToDate

BOOL IsLinkUpToDate() const;

Return ValueReturn Value

RemarksRemarks

COleClientItem::IsModified

BOOL IsModified() const;

Return ValueReturn Value

RemarksRemarks

COleClientItem::IsOpen

BOOL IsOpen() const;

Return ValueReturn Value

RemarksRemarks

Call this function to see whether the OLE item is in-place active.

Nonzero if the OLE item is in-place active; otherwise 0.

It is common to execute different logic depending on whether the item is being edited in place. The function
checks whether the current item state is equal to either the activeState or the activeUIState .

Call this function to see whether the OLE item is up to date.

Nonzero if the OLE item is up to date; otherwise 0.

A linked item can be out of date if its source document has been updated. An embedded item that contains
links within it can similarly become out of date. The function does a recursive check of the OLE item. Note
that determining whether an OLE item is out of date can be as expensive as actually performing an update.

This is called automatically by the COleLinksDialog implementation.

For more information, see IOleObject::IsUpToDate in the Windows SDK.

Call this function to see whether the OLE item is dirty (modified since it was last saved).

Nonzero if the OLE item is dirty; otherwise 0.

For more information, see IPersistStorage::IsDirty in the Windows SDK.

Call this function to see whether the OLE item is open; that is, opened in an instance of the server application
running in a separate window.

Nonzero if the OLE item is open; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-isuptodate
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststorage-isdirty

COleClientItem::IsRunning

BOOL IsRunning() const;

Return ValueReturn Value

RemarksRemarks

COleClientItem::OnActivate

virtual void OnActivate();

RemarksRemarks

COleClientItem::OnActivateUI

virtual void OnActivateUI();

RemarksRemarks

COleClientItem::OnChange

virtual void OnChange(
 OLE_NOTIFICATION nCode,
 DWORD dwParam);

ParametersParameters

It is used to determine when to draw the object with a hatching pattern. An open object should have a hatch
pattern drawn on top of the object. You can use a CRectTracker object to accomplish this.

Call this function to see whether the OLE item is running; that is, whether the item is loaded and running in
the server application.

Nonzero if the OLE item is running; otherwise 0.

For more information, see OleIsRunning in the Windows SDK.

Called by the framework to notify the item that it has just been activated in place.

Note that this function is called to indicate that the server is running, not to indicate that its user interface has
been installed in the container application. At this point, the object does not have an active user interface (is
not activeUIState). It has not installed its menus or toolbar. The OnActivateUI member function is called
when that happens.

The default implementation calls the OnChange member function with OLE_CHANGEDSTATE as a
parameter. Override this function to perform custom processing when an item becomes in-place active.

The framework calls OnActivateUI when the object has entered the active UI state.

The object has now installed its tool bar and menus.

The default implementation remembers the server's HWND for later GetServerWindow calls.

Called by the framework when the user modifies, saves, or closes the OLE item.

nCode

https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-oleisrunning

RemarksRemarks

COleClientItem::OnChangeItemPosition

virtual BOOL OnChangeItemPosition(const CRect& rectPos);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::OnDeactivate

The reason the server changed this item. It can have one of the following values:

OLE_CHANGED The OLE item's appearance has changed.

OLE_SAVED The OLE item has been saved.

OLE_CLOSED The OLE item has been closed.

OLE_CHANGED_STATE The OLE item has changed from one state to another.

dwParam
If nCode is OLE_SAVED or OLE_CLOSED, this parameter is not used. If nCode is OLE_CHANGED, this
parameter specifies the aspect of the OLE item that has changed. For possible values, see the dwParam
parameter of COleClientItem::Draw. If nCode is OLE_CHANGED_STATE, this parameter is a
COleClientItem::ItemState enumerated value and describes the state being entered. It can have one of the

following values: emptyState , loadedState , openState , activeState , or activeUIState .

(If the server application is written using the Microsoft Foundation Class Library, this function is called in
response to the Notify member functions of COleServerDoc or COleServerItem .) The default
implementation marks the container document as modified if nCode is OLE_CHANGED or OLE_SAVED.

For OLE_CHANGED_STATE, the current state returned from GetItemState will still be the old state, meaning
the state that was current prior to this state change.

Override this function to respond to changes in the OLE item's state. Typically you update the item's
appearance by invalidating the area in which the item is displayed. Call the base class implementation at the
beginning of your override.

Called by the framework to notify the container that the OLE item's extent has changed during in-place
activation.

rectPos
Indicates the item's position relative to the container application's client area.

Nonzero if the item's position is successfully changed; otherwise 0.

The default implementation determines the new visible rectangle of the OLE item and calls SetItemRects with
the new values. The default implementation calculates the visible rectangle for the item and passes that
information to the server.

Override this function to apply special rules to the resize/move operation. If the application is written in MFC,
this call results because the server called COleServerDoc::RequestPositionChange.

Called by the framework when the OLE item transitions from the in-place active state (activeState) to the
loaded state, meaning that it is deactivated after an in-place activation.

virtual void OnDeactivate();

RemarksRemarks

COleClientItem::OnDeactivateAndUndo

virtual void OnDeactivateAndUndo();

RemarksRemarks

COleClientItem::OnDeactivateUI

virtual void OnDeactivateUI(BOOL bUndoable);

ParametersParameters

RemarksRemarks

COleClientItem::OnDiscardUndoState

virtual void OnDiscardUndoState();

RemarksRemarks

Note that this function is called to indicate that the OLE item is closed, not that its user interface has been
removed from the container application. When that happens, the OnDeactivateUI member function is called.

The default implementation calls the OnChange member function with OLE_CHANGEDSTATE as a
parameter. Override this function to perform custom processing when an in-place active item is deactivated.
For example, if you support the undo command in your container application, you can override this function
to discard the undo state, indicating that the last operation performed on the OLE item cannot be undone
once the item is deactivated.

Called by the framework when the user invokes the undo command after activating the OLE item in place.

The default implementation calls DeactivateUI to deactivate the server's user interface. Override this function
if you are implementing the undo command in your container application. In your override, call the base class
version of the function and then undo the last command executed in your application.

For more information, see IOleInPlaceSite::DeactivateAndUndo in the Windows SDK.

Called when the user deactivates an item that was activated in place.

bUndoable
Specifies whether the editing changes are undoable.

This function restores the container application's user interface to its original state, hiding any menus and
other controls that were created for in-place activation.

If bUndoable is FALSE, the container should disable the undo command, in effect discarding the undo state
of the container, because it indicates that the last operation performed by the server is not undoable.

Called by the framework when the user performs an action that discards the undo state while editing the OLE
item.

The default implementation does nothing. Override this function if you are implementing the undo command

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplacesite-deactivateandundo

COleClientItem::OnGetClipboardData

virtual COleDataSource* OnGetClipboardData(
 BOOL bIncludeLink,
 LPPOINT lpOffset,
 LPSIZE lpSize);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::OnGetClipRect

virtual void OnGetClipRect(CRect& rClipRect);

ParametersParameters

RemarksRemarks

COleClientItem::OnGetItemPosition

in your container application. In your override, discard the container application's undo state.

If the server was written with the Microsoft Foundation Class Library, the server can cause this function to be
called by calling COleServerDoc::DiscardUndoState.

For more information, see IOleInPlaceSite::DiscardUndoState in the Windows SDK.

Called by the framework to get a COleDataSource object containing all the data that would be placed on the
Clipboard by a call to either the CopyToClipboard or the DoDragDrop member function.

bIncludeLink
Set this to TRUE if link data should be copied to the Clipboard. Set this to FALSE if your server application
does not support links.

lpOffset
Pointer to the offset of the mouse cursor from the origin of the object in pixels.

lpSize
Pointer to the size of the object in pixels.

A pointer to a COleDataSource object containing the Clipboard data.

The default implementation of this function calls GetClipboardData.

The framework calls the OnGetClipRect member function to get the clipping-rectangle coordinates of the
item that is being edited in place.

rClipRect
Pointer to an object of class CRect that will hold the clipping-rectangle coordinates of the item.

Coordinates are in pixels relative to the container application window's client area.

The default implementation simply returns the client rectangle of the view on which the item is in-place
active.

The framework calls the OnGetItemPosition member function to get the coordinates of the item that is being
edited in place.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplacesite-discardundostate

virtual void OnGetItemPosition(CRect& rPosition);

ParametersParameters

RemarksRemarks

COleClientItem::OnGetWindowContext

virtual BOOL OnGetWindowContext(
 CFrameWnd** ppMainFrame,
 CFrameWnd** ppDocFrame,
 LPOLEINPLACEFRAMEINFO lpFrameInfo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::OnInsertMenus

rPosition
Reference to the CRect object that will contain the item's position coordinates.

Coordinates are in pixels relative to the container application window's client area.

The default implementation of this function does nothing. Applications that support in-place editing require
its implementation.

Called by the framework when an item is activated in place.

ppMainFrame
Pointer to a pointer to the main frame window.

ppDocFrame
Pointer to a pointer to the document frame window.

lpFrameInfo
Pointer to an OLEINPLACEFRAMEINFO structure that will receive frame window information.

Nonzero if successful; otherwise 0.

This function is used to retrieve information about the OLE item's parent window.

If the container is an MDI application, the default implementation returns a pointer to the CMDIFrameWnd
object in ppMainFrame and a pointer to the active CMDIChildWnd object in ppDocFrame. If the container is
an SDI application, the default implementation returns a pointer to the CFrameWnd object in ppMainFrame
and returns NULL in ppDocFrame. The default implementation also fills in the members of lpFrameInfo.

Override this function only if the default implementation does not suit your application; for example, if your
application has a user-interface paradigm that differs from SDI or MDI. This is an advanced overridable.

For more information, see IOleInPlaceSite::GetWindowContext and the OLEINPLACEFRAMEINFO structure
in the Windows SDK.

Called by the framework during in-place activation to insert the container application's menus into an empty
menu.

https://docs.microsoft.com/windows/desktop/api/oleidl/ns-oleidl-tagoifi
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplacesite-getwindowcontext
https://docs.microsoft.com/windows/desktop/api/oleidl/ns-oleidl-tagoifi

virtual void OnInsertMenus(
 CMenu* pMenuShared,
 LPOLEMENUGROUPWIDTHS lpMenuWidths);

ParametersParameters

RemarksRemarks

COleClientItem::OnRemoveMenus

virtual void OnRemoveMenus(CMenu* pMenuShared);

ParametersParameters

RemarksRemarks

COleClientItem::OnScrollBy

pMenuShared
Points to an empty menu.

lpMenuWidths
Points to an array of six LONG values indicating how many menus are in each of the following menu groups:
File, Edit, Container, Object, Window, Help. The container application is responsible for the File, Container,
and Window menu groups, corresponding to elements 0, 2, and 4 of this array.

This menu is then passed to the server, which inserts its own menus, creating a composite menu. This
function can be called repeatedly to build several composite menus.

The default implementation inserts into pMenuShared the in-place container menus; that is, the File,
Container, and Window menu groups. CDocTemplate::SetContainerInfo is used to set this menu resource.
The default implementation also assigns the appropriate values to elements 0, 2, and 4 in lpMenuWidths,
depending on the menu resource. Override this function if the default implementation is not appropriate for
your application; for example, if your application does not use document templates for associating resources
with document types. If you override this function, you should also override OnSetMenu and
OnRemoveMenus. This is an advanced overridable.

For more information, see IOleInPlaceFrame::InsertMenus in the Windows SDK.

Called by the framework to remove the container's menus from the specified composite menu when in-place
activation ends.

pMenuShared
Points to the composite menu constructed by calls to the OnInsertMenus member function.

The default implementation removes from pMenuShared the in-place container menus, that is, the File,
Container, and Window menu groups. Override this function if the default implementation is not appropriate
for your application; for example, if your application does not use document templates for associating
resources with document types. If you override this function, you should probably override OnInsertMenus
and OnSetMenu as well. This is an advanced overridable.

The submenus on pMenuShared may be shared by more than one composite menu if the server has
repeatedly called OnInsertMenus . Therefore you should not delete any submenus in your override of
OnRemoveMenus ; you should only detach them.

For more information, see IOleInPlaceFrame::RemoveMenus in the Windows SDK.

Called by the framework to scroll the OLE item in response to requests from the server.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceframe-insertmenus
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceframe-removemenus

virtual BOOL OnScrollBy(CSize sizeExtent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::OnSetMenu

virtual void OnSetMenu(
 CMenu* pMenuShared,
 HOLEMENU holemenu,
 HWND hwndActiveObject);

ParametersParameters

RemarksRemarks

COleClientItem::OnShowControlBars

sizeExtent
Specifies the distances, in pixels, to scroll in the x and y directions.

Nonzero if the item was scrolled; 0 if the item could not be scrolled.

For example, if the OLE item is partially visible and the user moves outside the visible region while
performing in-place editing, this function is called to keep the cursor visible. The default implementation does
nothing. Override this function to scroll the item by the specified amount. Note that as a result of scrolling,
the visible portion of the OLE item can change. Call SetItemRects to update the item's visible rectangle.

For more information, see IOleInPlaceSite::Scroll in the Windows SDK.

Called by the framework two times when in-place activation begins and ends; the first time to install the
composite menu and the second time (with holemenu equal to NULL) to remove it.

pMenuShared
Pointer to the composite menu constructed by calls to the OnInsertMenus member function and the
InsertMenu function.

holemenu
Handle to the menu descriptor returned by the OleCreateMenuDescriptor function, or NULL if the dispatching
code is to be removed.

hwndActiveObject
Handle to the editing window for the OLE item. This is the window that will receive editing commands from
OLE.

The default implementation installs or removes the composite menu and then calls the
OleSetMenuDescriptor function to install or remove the dispatching code. Override this function if the
default implementation is not appropriate for your application. If you override this function, you should
probably override OnInsertMenus and OnRemoveMenus as well. This is an advanced overridable.

For more information, see OleCreateMenuDescriptor, OleSetMenuDescriptor, and
IOleInPlaceFrame::SetMenu in the Windows SDK.

Called by the framework to show and hide the container application's control bars.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplacesite-scroll
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olesetmenudescriptor
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olecreatemenudescriptor
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-olesetmenudescriptor
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceframe-setmenu

virtual BOOL OnShowControlBars(
 CFrameWnd* pFrameWnd,
 BOOL bShow);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::OnShowItem

virtual void OnShowItem();

RemarksRemarks

COleClientItem::OnUpdateFrameTitle

virtual BOOL OnUpdateFrameTitle();

Return ValueReturn Value

RemarksRemarks

COleClientItem::ReactivateAndUndo

pFrameWnd
Pointer to the container application's frame window. This can be either a main frame window or an MDI child
window.

bShow
Specifies whether control bars are to be shown or hidden.

Nonzero if the function call causes a change in the control bars' state; 0 if the call causes no change, or if
pFrameWnd does not point to the container's frame window.

This function returns 0 if the control bars are already in the state specified by bShow. This would occur, for
example, if the control bars are hidden and bShow is FALSE.

The default implementation removes the toolbar from the top-level frame window.

Called by the framework to display the OLE item, making it totally visible during editing.

It is used when your container application supports links to embedded items (that is, if you have derived your
document class from COleLinkingDoc). This function is called during in-place activation or when the OLE
item is a link source and the user wants to edit it. The default implementation activates the first view on the
container document. Override this function to scroll the document so that the OLE item is visible.

Called by the framework during in-place activation to update the frame window's title bar.

Nonzero if this function successfully updated the frame title, otherwise zero.

The default implementation does not change the frame window title. Override this function if you want a
different frame title for your application, for example " server app - item in docname" (as in, "Microsoft Excel -
spreadsheet in REPORT.DOC"). This is an advanced overridable.

Call this function to reactivate the OLE item and undo the last operation performed by the user during in-
place editing.

BOOL ReactivateAndUndo();

Return ValueReturn Value

RemarksRemarks

COleClientItem::Release

virtual void Release(OLECLOSE dwCloseOption = OLECLOSE_NOSAVE);

ParametersParameters

RemarksRemarks

COleClientItem::Reload

BOOL Reload();

Return ValueReturn Value

RemarksRemarks

COleClientItem::Run

void Run();

RemarksRemarks

Nonzero if successful; otherwise 0.

If your container application supports the undo command, call this function if the user chooses the undo
command immediately after deactivating the OLE item.

If the server application is written with the Microsoft Foundation Class Libraries, this function causes the
server to call COleServerDoc::OnReactivateAndUndo.

For more information, see IOleInPlaceObject::ReactivateAndUndo in the Windows SDK.

Call this function to clean up resources used by the OLE item.

dwCloseOption
Flag specifying under what circumstances the OLE item is saved when it returns to the loaded state. For a list
of possible values, see COleClientItem::Close.

Release is called by the COleClientItem destructor.

For more information, see IUnknown::Release in the Windows SDK.

Closes and reloads the item.

Nonzero if successful; otherwise 0.

Call the Reload function after activating the item as an item of another type by a call to ActivateAs.

Runs the application associated with this item.

Call the Run member function to launch the server application before activating the item. This is done
automatically by Activate and DoVerb, so it is usually not necessary to call this function. Call this function if it

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceobject-reactivateandundo
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release

COleClientItem::SetDrawAspect

virtual void SetDrawAspect(DVASPECT nDrawAspect);

ParametersParameters

RemarksRemarks

COleClientItem::SetExtent

void SetExtent(
 const CSize& size,
 DVASPECT nDrawAspect = DVASPECT_CONTENT);

ParametersParameters

RemarksRemarks

COleClientItem::SetHostNames

is necessary to run the server in order to set an item attribute, such as SetExtent, before executing DoVerb.

Call the SetDrawAspect member function to set the "aspect," or view, of the item.

nDrawAspect
A value from the DVASPECT enumeration. This parameter can have one of the following values:

DVASPECT_CONTENT Item is represented in such a way that it can be displayed as an embedded
object inside its container.

DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation so that it can be displayed
in a browsing tool.

DVASPECT_ICON Item is represented by an icon.

DVASPECT_DOCPRINT Item is represented as if it were printed using the Print command from the
File menu.

The aspect specifies how the item is to be rendered by Draw when the default value for that function's
nDrawAspect argument is used.

This function is called automatically by the Change Icon (and other dialogs that call the Change Icon dialog
directly) to enable the iconic display aspect when requested by the user.

Call this function to specify how much space is available to the OLE item.

size
A CSize object that contains the size information.

nDrawAspect
Specifies the aspect of the OLE item whose bounds are to be set. For possible values, see SetDrawAspect.

If the server application was written using the Microsoft Foundation Class Library, this causes the
OnSetExtent member function of the corresponding COleServerItem object to be called. The OLE item can
then adjust its display accordingly. The dimensions must be in MM_HIMETRIC units. Call this function when
the user resizes the OLE item or if you support some form of layout negotiation.

For more information, see IOleObject::SetExtent in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-setextent

void SetHostNames(
 LPCTSTR lpszHost,
 LPCTSTR lpszHostObj);

ParametersParameters

RemarksRemarks

COleClientItem::SetIconicMetafile

BOOL SetIconicMetafile(HGLOBAL hMetaPict);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::SetItemRects

BOOL SetItemRects(
 LPCRECT lpPosRect = NULL,
 LPCRECT lpClipRect = NULL);

Call this function to specify the name of the container application and the container's name for an embedded
OLE item.

lpszHost
Pointer to the user-visible name of the container application.

lpszHostObj
Pointer to an identifying string of the container that contains the OLE item.

If the server application was written using the Microsoft Foundation Class Library, this function calls the
OnSetHostNames member function of the COleServerDoc document that contains the OLE item. This
information is used in window titles when the OLE item is being edited. Each time a container document is
loaded, the framework calls this function for all the OLE items in the document. SetHostNames is applicable
only to embedded items. It is not necessary to call this function each time an embedded OLE item is activated
for editing.

This is also called automatically with the application name and document name when an object is loaded or
when a file is saved under a different name. Accordingly, it is not usually necessary to call this function
directly.

For more information, see IOleObject::SetHostNames in the Windows SDK.

Caches the metafile used for drawing the item's icon.

hMetaPict
A handle to the metafile used for drawing the item's icon.

Nonzero if successful; otherwise 0.

Use GetIconicMetafile to retrieve the metafile.

The hMetaPict parameter is copied into the item; therefore, hMetaPict must be freed by the caller.

Call this function to set the bounding rectangle or the visible rectangle of the OLE item.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-sethostnames

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleClientItem::SetLinkUpdateOptions

void SetLinkUpdateOptions(OLEUPDATE dwUpdateOpt);

ParametersParameters

RemarksRemarks

COleClientItem::SetPrintDevice

BOOL SetPrintDevice(const DVTARGETDEVICE* ptd);
BOOL SetPrintDevice(const PRINTDLG* ppd);

ParametersParameters

lprcPosRect
Pointer to the rectangle containing the bounds of the OLE item relative to its parent window, in client
coordinates.

lprcClipRect
Pointer to the rectangle containing the bounds of the visible portion of the OLE item relative to its parent
window, in client coordinates.

Nonzero if successful; otherwise, 0.

This function is called by the default implementation of the OnChangeItemPosition member function. You
should call this function whenever the position or visible portion of the OLE item changes. Usually this
means that you call it from your view's OnSize and OnScrollBy member functions.

For more information, see IOleInPlaceObject::SetObjectRects in the Windows SDK.

Call this function to set the link-update option for the presentation of the specified linked item.

dwUpdateOpt
The value of the link-update option for this item. This value must be one of the following:

OLEUPDATE_ALWAYS Update the linked item whenever possible. This option supports the Automatic
link-update radio button in the Links dialog box.

OLEUPDATE_ONCALL Update the linked item only on request from the container application (when
the UpdateLink member function is called). This option supports the Manual link-update radio button
in the Links dialog box.

Typically, you should not change the update options chosen by the user in the Links dialog box.

For more information, see IOleLink::SetUpdateOptions in the Windows SDK.

Call this function to change the print-target device for this item.

ptd
Pointer to a DVTARGETDEVICE data structure, which contains information about the new print-target device.
Can be NULL.

ppd

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceobject-setobjectrects
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iolelink-setupdateoptions
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagdvtargetdevice

Return ValueReturn Value

RemarksRemarks

COleClientItem::UpdateLink

BOOL UpdateLink();

Return ValueReturn Value

RemarksRemarks

See also

Pointer to a PRINTDLG data structure, which contains information about the new print-target device. Can be
NULL.

Nonzero if the function was successful; otherwise 0.

This function updates the print-target device for the item but does not refresh the presentation cache. To
update the presentation cache for an item, call UpdateLink.

The arguments to this function contain information that the OLE system uses to identify the target device.
The PRINTDLG structure contains information that Windows uses to initialize the common Print dialog box.
After the user closes the dialog box, Windows returns information about the user's selections in this structure.
The m_pd member of a CPrintDialog object is a PRINTDLG structure.

For more information about this structure, see PRINTDLG in the Windows SDK.

For more information, see DVTARGETDEVICE in the Windows SDK.

Call this function to update the presentation data of the OLE item immediately.

Nonzero on success; otherwise 0.

For linked items, the function finds the link source to obtain a new presentation for the OLE item. This
process may involve running one or more server applications, which could be time-consuming. For
embedded items, the function operates recursively, checking whether the embedded item contains links that
might be out of date and updating them. The user can also manually update individual links using the Links
dialog box.

For more information, see IOleLink::Update in the Windows SDK.

MFC Sample MFCBIND
MFC Sample OCLIENT
CDocItem Class
Hierarchy Chart
COleServerItem Class

https://msdn.microsoft.com/library/windows/desktop/ms646940
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpda
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagdvtargetdevice
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iolelink-update
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleCmdUI Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class COleCmdUI : public CCmdUI

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleCmdUI::COleCmdUI Constructs a COleCmdUI object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleCmdUI::Enable Sets or clears the enable command flag.

COleCmdUI::SetCheck Sets the state of an on/off toggle command.

COleCmdUI::SetText Returns a text name or status string for a command.

Remarks

Inheritance Hierarchy

Implements a method for MFC to update the state of user-interface objects related to the IOleCommandTarget -
driven features of your application.

In an application that is not enabled for DocObjects, when the user views a menu in the application, MFC
processes UPDATE_COMMAND_UI notifcations. Each notification is given a CCmdUI object that can be
manipulated to reflect the state of a particular command. However, when your application is enabled for
DocObjects, MFC processes UPDATE_OLE_COMMAND_UI notifications and assigns COleCmdUI objects.

COleCmdUI allows a DocObject to receive commands that originate in its container's user interface (such as
FileNew, Open, Print, and so on), and allows a container to receive commands that originate in the DocObject's
user interface. Although IDispatch could be used to dispatch the same commands, IOleCommandTarget provides a
simpler way to query and execute because it relies on a standard set of commands, usually without arguments,
and no type information is involved. COleCmdUI can be used to enable, update, and set other properties of
DocObject user interface commands. When you want to invoke the command, call
COleServerDoc::OnExecOleCmd.

For further information on DocObjects, see CDocObjectServer and CDocObjectServerItem.

CCmdUI

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colecmdui-class.md

Requirements

COleCmdUI::COleCmdUI

COleCmdUI(
 OLECMD* rgCmds,
 ULONG cCmds,
 const GUID* m_pGroup);

ParametersParameters

RemarksRemarks

COleCmdUI::Enable

virtual void Enable(BOOL bOn);

ParametersParameters

COleCmdUI::SetCheck

virtual void SetCheck(int nCheck);

ParametersParameters

COleCmdUI

Header: afxdocobj.h

Constructs a COleCmdUI object associated with a particular user-interface command.

rgCmds
A list of supported commands associated with the given GUID. The OLECMD structure associates commands with
command flags.

cCmds
The count of commands in rgCmds.

pGroup
A pointer to a GUID that identifies a set of commands.

The COleCmdUI object provides a programmatic interface for updating DocObject user-interface objects such as
menu items or control-bar buttons. The user-interface objects can be enabled, disabled, checked, and/or cleared
through the COleCmdUI object.

Call this function to set the command flag of the COleCmdUI object to OLECOMDF_ENABLED, which tells the
interface the command is available and enabled, or to clear the command flag.

bOn
Indicates whether the command associated with the COleCmdUI object should be enabled or disabled. Nonzero
enables the command; 0 disables the command.

Call this function to set the state of an on/off toggle command.

nCheck
A value determining the state to set an on/off toggle command. Values are:

VALUE DESCRIPTION

1 Sets the command to on.

2 Sets the command to indeterminate; the state cannot be
determined because the attribute of this command is in both
on and off states in the relevant selection.

any other value Sets the command to off.

COleCmdUI::SetText

virtual void SetText(LPCTSTR lpszText);

ParametersParameters

See also

Call this function to return a text name or status string for a command.

lpszText
A pointer to the text to be used with the command.

CCmdUI Class
Hierarchy Chart

COleControl Class
3/4/2019 • 87 minutes to read • Edit Online

Syntax
class COleControl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleControl::COleControl Creates a COleControl object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleControl::AmbientAppearance Retrieves the current appearance of the control.

COleControl::AmbientBackColor Returns the value of the ambient BackColor property.

COleControl::AmbientDisplayName Returns the name of the control as specified by the
container.

COleControl::AmbientFont Returns the value of the ambient Font property.

COleControl::AmbientForeColor Returns the value of the ambient ForeColor property.

COleControl::AmbientLocaleID Returns the container's locale ID.

COleControl::AmbientScaleUnits Returns the type of units used by the container.

COleControl::AmbientShowGrabHandles Determines if grab handles should be displayed.

COleControl::AmbientShowHatching Determines if hatching should be displayed.

COleControl::AmbientTextAlign Returns the type of text alignment specified by the
container.

COleControl::AmbientUIDead Determines if the control should respond to user-interface
actions.

COleControl::AmbientUserMode Determines the mode of the container.

A powerful base class for developing OLE controls.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colecontrol-class.md

COleControl::BoundPropertyChanged Notifies the container that a bound property has been
changed.

COleControl::BoundPropertyRequestEdit Requests permission to edit the property value.

COleControl::ClientToParent Translates a point relative to the control's origin to a point
relative to its container's origin.

COleControl::ClipCaretRect Adjusts a caret rectangle if it is overlapped by a control.

COleControl::ControlInfoChanged Call this function after the set of mnemonics handled by
the control has changed.

COleControl::DisplayError Displays stock Error events to the control's user.

COleControl::DoClick Implementation of the stock DoClick method.

COleControl::DoPropExchange Serializes the properties of a COleControl object.

COleControl::DoSuperclassPaint Redraws an OLE control that has been subclassed from a
Windows control.

COleControl::EnableSimpleFrame Enables simple frame support for a control.

COleControl::ExchangeExtent Serializes the control's width and height.

COleControl::ExchangeStockProps Serializes the control's stock properties.

COleControl::ExchangeVersion Serializes the control's version number.

COleControl::FireClick Fires the stock Click event.

COleControl::FireDblClick Fires the stock DblClick event.

COleControl::FireError Fires the stock Error event.

COleControl::FireEvent Fires a custom event.

COleControl::FireKeyDown Fires the stock KeyDown event.

COleControl::FireKeyPress Fires the stock KeyPress event.

COleControl::FireKeyUp Fires the stock KeyUp event.

COleControl::FireMouseDown Fires the stock MouseDown event.

COleControl::FireMouseMove Fires the stock MouseMove event.

COleControl::FireMouseUp Fires the stock MouseUp event.

NAME DESCRIPTION

COleControl::FireReadyStateChange Fires an event when the control's ready state changes.

COleControl::GetActivationPolicy Alters the default activation behavior of a control that
supports the IPointerInactive interface.

COleControl::GetAmbientProperty Returns the value of the specified ambient property.

COleControl::GetAppearance Returns the value of the stock Appearance property.

COleControl::GetBackColor Returns the value of the stock BackColor property.

COleControl::GetBorderStyle Returns the value of the stock BorderStyle property.

COleControl::GetCapture Determines whether a windowless, activated control object
has the mouse capture.

COleControl::GetClassID Retrieves the OLE class ID of the control.

COleControl::GetClientOffset Retrieves the difference between the upper left corner of
the control's rectangular area and the upper left corner of
its client area.

COleControl::GetClientRect Retrieves the size of the control's client area.

COleControl::GetClientSite Queries an object for the pointer to its current client site
within its container.

COleControl::GetControlFlags Retrieves the control flag settings.

COleControl::GetControlSize Returns the position and size of the OLE control.

COleControl::GetDC Provides a means for a windowless control to get a device
context from its container.

COleControl::GetEnabled Returns the value of the stock Enabled property.

COleControl::GetExtendedControl Retrieves a pointer to an extended control object belonging
to the container.

COleControl::GetFocus Determines whether the control has the focus.

COleControl::GetFont Returns the value of the stock Font property.

COleControl::GetFontTextMetrics Returns the metrics of a CFontHolder object.

COleControl::GetForeColor Returns the value of the stock ForeColor property.

COleControl::GetHwnd Returns the value of the stock hWnd property.

COleControl::GetMessageString Provides status bar text for a menu item.

NAME DESCRIPTION

COleControl::GetNotSupported Prevents access to a control's property value by the user.

COleControl::GetReadyState Returns the control's readiness state.

COleControl::GetRectInContainer Returns the control's rectangle relative to its container.

COleControl::GetStockTextMetrics Returns the metrics of the stock Font property.

COleControl::GetText Returns the value of the stock Text or Caption property.

COleControl::GetWindowlessDropTarget Override to allow a windowless control to be the target of
drag and drop operations.

COleControl::InitializeIIDs Informs the base class of the IIDs the control will use.

COleControl::InternalGetFont Returns a CFontHolder object for the stock Font
property.

COleControl::InternalGetText Retrieves the stock Caption or Text property.

COleControl::InternalSetReadyState Sets the control's readiness state and fires the ready-state-
change event.

COleControl::InvalidateControl Invalidates an area of the displayed control, causing it to be
redrawn.

COleControl::InvalidateRgn Invalidates the container window's client area within the
given region. Can be used to redraw windowless controls in
the region.

COleControl::IsConvertingVBX Allows specialized loading of an OLE control.

COleControl::IsModified Determines if the control state has changed.

COleControl::IsOptimizedDraw Indicates whether the container supports optimized
drawing for the current drawing operation.

COleControl::IsSubclassedControl Called to determine if the control subclasses a Windows
control.

COleControl::Load Resets any previous asynchronous data and initiates a new
load of the control's asynchronous property.

COleControl::LockInPlaceActive Determines if your control can be deactivated by the
container.

COleControl::OnAmbientPropertyChange Called when an ambient property is changed.

COleControl::OnAppearanceChanged Called when the stock Appearance property is changed.

COleControl::OnBackColorChanged Called when the stock BackColor property is changed.

NAME DESCRIPTION

COleControl::OnBorderStyleChanged Called when the stock BorderStyle property is changed.

COleControl::OnClick Called to fire the stock Click event.

COleControl::OnClose Notifies the control that IOleControl::Close has been
called.

COleControl::OnDoVerb Called after a control verb has been executed.

COleControl::OnDraw Called when a control is requested to redraw itself.

COleControl::OnDrawMetafile Called by the container when a control is requested to
redraw itself using a metafile device context.

COleControl::OnEdit Called by the container to UI Activate an OLE control.

COleControl::OnEnabledChanged Called when the stock Enabled property is changed.

COleControl::OnEnumVerbs Called by the container to enumerate a control's verbs.

COleControl::OnEventAdvise Called when event handlers are connected or disconnected
from a control.

COleControl::OnFontChanged Called when the stock Font property is changed.

COleControl::OnForeColorChanged Called when the stock ForeColor property is changed.

COleControl::OnFreezeEvents Called when a control's events are frozen or unfrozen.

COleControl::OnGetColorSet Notifies the control that IOleObject::GetColorSet has
been called.

COleControl::OnGetControlInfo Provides mnemonic information to the container.

COleControl::OnGetDisplayString Called to obtain a string to represent a property value.

COleControl::OnGetInPlaceMenu Requests the handle of the control's menu that will be
merged with the container menu.

COleControl::OnGetNaturalExtent Override to retrieve the control's display size closest to the
proposed size and extent mode.

COleControl::OnGetPredefinedStrings Returns strings representing possible values for a property.

COleControl::OnGetPredefinedValue Returns the value corresponding to a predefined string.

COleControl::OnGetViewExtent Override to retrieve the size of the control's display areas
(can be used to enable two-pass drawing).

COleControl::OnGetViewRect Override to convert control's size into a rectangle starting
at a specific position.

NAME DESCRIPTION

COleControl::OnGetViewStatus Override to retrieve the control's view status.

COleControl::OnHideToolBars Called by the container when the control is UI deactivated.

COleControl::OnInactiveMouseMove Override to have the container for the inactive control
under the mouse pointer dispatch WM_MOUSEMOVE
messages to the control.

COleControl::OnInactiveSetCursor Override to have the container for the inactive control
under the mouse pointer dispatch WM_SETCURSOR
messages to the control.

COleControl::OnKeyDownEvent Called after the stock KeyDown event has been fired.

COleControl::OnKeyPressEvent Called after the stock KeyPress event has been fired.

COleControl::OnKeyUpEvent Called after the stock KeyUp event has been fired.

COleControl::OnMapPropertyToPage Indicates which property page to use for editing a
property.

COleControl::OnMnemonic Called when a mnemonic key of the control has been
pressed.

COleControl::OnProperties Called when the control's "Properties" verb has been
invoked.

COleControl::OnQueryHitPoint Override to query whether a control's display overlaps a
given point.

COleControl::OnQueryHitRect Override to query whether a control's display overlaps any
point in a given rectangle.

COleControl::OnRenderData Called by the framework to retrieve data in the specified
format.

COleControl::OnRenderFileData Called by the framework to retrieve data from a file in the
specified format.

COleControl::OnRenderGlobalData Called by the framework to retrieve data from global
memory in the specified format.

COleControl::OnResetState Resets a control's properties to the default values.

COleControl::OnSetClientSite Notifies the control that IOleControl::SetClientSite

has been called.

COleControl::OnSetData Replaces the control's data with another value.

COleControl::OnSetExtent Called after the control's extent has changed.

COleControl::OnSetObjectRects Called after the control's dimensions have been changed.

NAME DESCRIPTION

COleControl::OnShowToolBars Called when the control has been UI activated.

COleControl::OnTextChanged Called when the stock Text or Caption property is changed.

COleControl::OnWindowlessMessage Processes window messages (other than mouse and
keyboard messages) for windowless controls.

COleControl::ParentToClient Translates a point relative to the container's origin to a
point relative to the control's origin.

COleControl::PostModalDialog Notifies the container that a modal dialog box has been
closed.

COleControl::PreModalDialog Notifies the container that a modal dialog box is about to
be displayed.

COleControl::RecreateControlWindow Destroys and re-creates the control's window.

COleControl::Refresh Forces a repaint of a control's appearance.

COleControl::ReleaseCapture Releases mouse capture.

COleControl::ReleaseDC Releases the display device context of a container of a
windowless control.

COleControl::ReparentControlWindow Resets the parent of the control window.

COleControl::ResetStockProps Initializes COleControl stock properties to their default
values.

COleControl::ResetVersion Initializes the version number to a given value.

COleControl::ScrollWindow Allows a windowless control to scroll an area within its in-
place active image on the display.

COleControl::SelectFontObject Selects a custom Font property into a device context.

COleControl::SelectStockFont Selects the stock Font property into a device context.

COleControl::SerializeExtent Serializes or initializes the display space for the control.

COleControl::SerializeStockProps Serializes or initializes the COleControl stock properties.

COleControl::SerializeVersion Serializes or initializes the control's version information.

COleControl::SetAppearance Sets the value of the stock Appearance property.

COleControl::SetBackColor Sets the value of the stock BackColor property.

COleControl::SetBorderStyle Sets the value of the stock BorderStyle property.

NAME DESCRIPTION

COleControl::SetCapture Causes the control's container window to take possession
of the mouse capture on the control's behalf.

COleControl::SetControlSize Sets the position and size of the OLE control.

COleControl::SetEnabled Sets the value of the stock Enabled property.

COleControl::SetFocus Causes the control's container window to take possession
of the input focus on the control's behalf.

COleControl::SetFont Sets the value of the stock Font property.

COleControl::SetForeColor Sets the value of the stock ForeColor property.

COleControl::SetInitialSize Sets the size of an OLE control when first displayed in a
container.

COleControl::SetModifiedFlag Changes the modified state of a control.

COleControl::SetNotPermitted Indicates that an edit request has failed.

COleControl::SetNotSupported Prevents modification to a control's property value by the
user.

COleControl::SetRectInContainer Sets the control's rectangle relative to its container.

COleControl::SetText Sets the value of the stock Text or Caption property.

COleControl::ThrowError Signals that an error has occurred in an OLE control.

COleControl::TransformCoords Transforms coordinate values between a container and the
control.

COleControl::TranslateColor Converts an OLE_COLOR value to a COLORREF value.

COleControl::WillAmbientsBeValidDuringLoad Determines whether ambient properties will be available
the next time the control is loaded.

COleControl::WindowProc Provides a Windows procedure for a COleControl object.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

COleControl::DrawContent Called by the framework when the control's appearance
needs to be updated.

COleControl::DrawMetafile Called by the framework when the metafile device context
is being used.

COleControl::IsInvokeAllowed Enables automation method invocation.

COleControl::SetInitialDataFormats Called by the framework to initialize the list of data formats
supported by the control.

NAME DESCRIPTION

Remarks

Windowless Controls

Derived from CWnd , this class inherits all the functionality of a Windows window object plus additional
functionality specific to OLE, such as event firing and the ability to support methods and properties.

OLE controls can be inserted into OLE container applications and communicate with the container by using a
two-way system of event firing and exposing methods and properties to the container. Note that standard
OLE containers only support the basic functionality of an OLE control. They are unable to support extended
features of an OLE control. Event firing occurs when events are sent to the container as a result of certain
actions taking place in the control. In turn, the container communicates with the control by using an exposed
set of methods and properties analogous to the member functions and data members of a C++ class. This
approach allows the developer to control the appearance of the control and notify the container when certain
actions occur.

OLE controls can be used in-place active without a window. Windowless controls have significant advantages:

Windowless controls can be transparent and non-rectangular

Windowless controls reduce instance size and creation time of the object

Controls do not need a window. Services that a window offers can easily be provided via a single shared
window (usually the container's) and a bit of dispatching code. Having a window is mostly an unnecessary
complication on the object.

When windowless activation is used, the container (which does have a window) is responsible for providing
services that would otherwise have been provided by the control's own window. For example, if your control
needs to query the keyboard focus, query the mouse capture, or obtain a device context, these operations are
managed by the container. The COleControl windowless-operation member functions invoke these
operations on the container.

When windowless activation is enabled, the container delegates input messages to the control's
IOleInPlaceObjectWindowless interface (an extension of IOleInPlaceObject for windowless support).
COleControl 's implementation of this interface will dispatch these messages through your control's message

map, after adjusting the mouse coordinates appropriately. You can process these messages like ordinary
window messages, by adding the corresponding entries to the message map.

In a windowless control, you should always use the COleControl member functions instead of the
corresponding CWnd member functions or their related Windows API functions.

OLE control objects can also create a window only when they become active, but the amount of work needed
for the inactive-active transition goes up and the speed of the transition goes down. There are cases when this
is a problem: as an example, consider a grid of text boxes. When cursoring up and down through the column,
each control must be in-place activated and then deactivated. The speed of the inactive/active transition will
directly affect the scrolling speed.

For more information on developing an OLE control framework, see the articles MFC ActiveX Controls and
Overview: Creating an MFC ActiveX Control Program. For information on optimizing OLE controls, including
windowless and flicker-free controls, see MFC ActiveX Controls: Optimization.

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplaceobject

Inheritance Hierarchy

Requirements

COleControl::AmbientBackColor

OLE_COLOR AmbientBackColor();

Return ValueReturn Value

RemarksRemarks

COleControl::AmbientDisplayName

CString AmbientDisplayName();

Return ValueReturn Value

RemarksRemarks

COleControl::AmbientFont

LPFONTDISP AmbientFont();

Return ValueReturn Value

RemarksRemarks

CObject

CCmdTarget

CWnd

COleControl

Header: afxctl.h

Returns the value of the ambient BackColor property.

The current value of the container's ambient BackColor property, if any. If the property is not supported, this
function returns the system-defined Windows background color.

The ambient BackColor property is available to all controls and is defined by the container. Note that the
container is not required to support this property.

The name the container has assigned to the control can be used in error messages displayed to the user.

The name of the OLE control. The default is a zero-length string.

Note that the container is not required to support this property.

Returns the value of the ambient Font property.

A pointer to the container's ambient Font dispatch interface. The default value is NULL. If the return is not
equal to NULL, you are responsible for releasing the font by calling its IUnknown::Release member function.

The ambient Font property is defined by the container and available to all controls.Note that the container is
not required to support this property.

https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release

COleControl::AmbientForeColor

OLE_COLOR AmbientForeColor();

Return ValueReturn Value

RemarksRemarks

COleControl::AmbientLocaleID

LCID AmbientLocaleID();

Return ValueReturn Value

RemarksRemarks

COleControl::AmbientAppearance

short AmbientAppearance();

Return ValueReturn Value

RemarksRemarks

COleControl::AmbientScaleUnits

CString AmbientScaleUnits();

Return ValueReturn Value

Returns the value of the ambient ForeColor property.

The current value of the container's ambient ForeColor property, if any. If not supported, this function returns
the system-defined Windows text color.

The ambient ForeColor property is available to all controls and is defined by the container. Note that the
container is not required to support this property.

Returns the container's locale ID.

The value of the container's LocaleID property, if any. If this property is not supported, this function returns 0.

The control can use the LocaleID to adapt its user interface for specific locales. Note that the container is not
required to support this property.

Retrieves the current appearance setting for the control object.

The appearance of the control:

0 Flat appearance

1 3D appearance

Call this function to retrieve the current value of the DISPID_AMBIENT_APPEARANCE property for the
control.

Returns the type of units used by the container.

A string containing the ambient ScaleUnits of the container. If this property is not supported, this function

RemarksRemarks

COleControl::AmbientShowGrabHandles

BOOL AmbientShowGrabHandles();

Return ValueReturn Value

RemarksRemarks

COleControl::AmbientShowHatching

BOOL AmbientShowHatching();

Return ValueReturn Value

RemarksRemarks

COleControl::AmbientTextAlign

short AmbientTextAlign();

Return ValueReturn Value

RETURN VALUE MEANING

0 General alignment (numbers to the right, text to the left).

1 Left justify

2 Center

returns a zero-length string.

The container's ambient ScaleUnits property can be used to display positions or dimensions, labeled with the
chosen unit, such as twips or centimeters. Note that the container is not required to support this property.

Determines whether the container allows the control to display grab handles for itself when active.

Nonzero if grab handles should be displayed; otherwise 0. If this property is not supported, this function
returns nonzero.

Note that the container is not required to support this property.

Determines whether the container allows the control to display itself with a hatched pattern when UI active.

Nonzero if the hatched pattern should be shown; otherwise 0. If this property is not supported, this function
returns nonzero.

Note that the container is not required to support this property.

Determines the ambient text alignment preferred by the control container.

The status of the container's ambient TextAlign property. If this property is not supported, this function
returns 0.

The following is a list of valid return values:

3 Right justify

RETURN VALUE MEANING

RemarksRemarks

COleControl::AmbientUIDead

BOOL AmbientUIDead();

Return ValueReturn Value

RemarksRemarks

COleControl::AmbientUserMode

BOOL AmbientUserMode();

Return ValueReturn Value

RemarksRemarks

COleControl::BoundPropertyChanged

void BoundPropertyChanged(DISPID dispid);

ParametersParameters

RemarksRemarks

COleControl::BoundPropertyRequestEdit

This property is available to all embedded controls and is defined by the container. Note that the container is
not required to support this property.

Determines if the container wants the control to respond to user-interface actions.

Nonzero if the control should respond to user-interface actions; otherwise 0. If this property is not supported,
this function returns 0.

For example, a container might set this to TRUE in design mode.

Determines if the container is in design mode or user mode.

Nonzero if the container is in user mode; otherwise 0 (in design mode). If this property is not supported, this
function returns TRUE.

For example, a container might set this to FALSE in design mode.

Signals that the bound property value has changed.

dispid
The dispatch ID of a bound property of the control.

This must be called every time the value of the property changes, even in cases where the change was not
made through the property Set method. Be particularly aware of bound properties that are mapped to
member variables. Any time such a member variable changes, BoundPropertyChanged must be called.

BOOL BoundPropertyRequestEdit(DISPID dispid);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::ClientToParent

virtual void ClientToParent(
 LPCRECT lprcBounds,
 LPPOINT pPoint) const;

ParametersParameters

RemarksRemarks

COleControl::ClipCaretRect

BOOL ClipCaretRect(LPRECT lpRect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Requests permission from the IPropertyNotifySink interface to change a bound property value provided by
the control.

dispid
The dispatch ID of a bound property of the control.

Nonzero if the change is permitted; otherwise 0. The default value is nonzero.

If permission is denied, the control must not let the value of the property change. This can be done by
ignoring or failing the action that attempted to change the property value.

Translates the coordinates of pPoint into parent coordinates.

lprcBounds
Pointer to the bounds of the OLE control within the container. Not the client area but the area of the entire
control including borders and scroll bars.

pPoint
Pointer to the OLE client area point to be translated into the coordinates of the parent (container).

On input pPoint is relative to the origin of the client area of the OLE control (upper left corner of the client
area of the control). On output pPoint is relative to the origin of the parent (upper left corner of the
container).

Adjusts a caret rectangle if it is entirely or partially covered by overlapping, opaque objects.

lpRect
On input, a pointer to a RECT structure that contains the caret area to be adjusted. On output, the adjusted
caret area, or NULL if the caret rectangle is completely covered.

Nonzero if successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

COleControl::COleControl

COleControl();

RemarksRemarks

COleControl::ControlInfoChanged

void ControlInfoChanged();

RemarksRemarks

COleControl::DisplayError

virtual void DisplayError(
 SCODE scode,
 LPCTSTR lpszDescription,
 LPCTSTR lpszSource,
 LPCTSTR lpszHelpFile,
 UINT nHelpID);

ParametersParameters

A caret is a flashing line, block, or bitmap that typically indicates where text or graphics will be inserted.

A windowless object cannot safely show a caret without first checking whether the caret is partially or totally
hidden by overlapping objects. In order to make that possible, an object can use ClipCaretRect to get the
caret adjusted (reduced) to ensure it fits in the clipping region.

Objects creating a caret should submit the caret rectangle to ClipCaretRect and use the adjusted rectangle
for the caret. If the caret is entirely hidden, this method will return FALSE and the caret should not be shown
at all in this case.

Constructs a COleControl object.

This function is normally not called directly. Instead the OLE control is usually created by its class factory.

Call this function when the set of mnemonics supported by the control has changed.

Upon receiving this notification, the control's container obtains the new set of mnemonics by making a call to
IOleControl::GetControlInfo. Note that the container is not required to respond to this notification.

Called by the framework after the stock Error event has been handled (unless the event handler has
suppressed the display of the error).

scode
The status code value to be reported. For a complete list of possible codes, see the article ActiveX Controls:
Advanced Topics.

lpszDescription
The description of the error being reported.

lpszSource
The name of the module generating the error (typically, the name of the OLE control module).

lpszHelpFile
The name of the help file containing a description of the error.

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-iolecontrol-getcontrolinfo

RemarksRemarks

COleControl::DoClick

void DoClick();

RemarksRemarks

COleControl::DoPropExchange

virtual void DoPropExchange(CPropExchange* pPX);

ParametersParameters

RemarksRemarks

COleControl::DoSuperclassPaint

void DoSuperclassPaint(
 CDC* pDC,
 const CRect& rcBounds);

ParametersParameters

nHelpID
The Help Context ID of the error being reported.

The default behavior displays a message box containing the description of the error, contained in
lpszDescription.

Override this function to customize how errors are displayed.

Simulates a mouse click action on the control.

The overridable COleControl::OnClick member function will be called, and a stock Click event will be fired, if
supported by the control.

This function is supported by the COleControl base class as a stock method, called DoClick. For more
information, see the article ActiveX Controls: Methods.

Called by the framework when loading or storing a control from a persistent storage representation, such as
a stream or property set.

pPX
A pointer to a CPropExchange object. The framework supplies this object to establish the context of the
property exchange, including its direction.

This function normally makes calls to the PX_ family of functions to load or store specific user-defined
properties of an OLE control.

If Control Wizard has been used to create the OLE control project, the overridden version of this function will
serialize the stock properties supported by COleControl with a call to the base class function,
COleControl::DoPropExchange . As you add user-defined properties to your OLE control you will need to

modify this function to serialize your new properties. For more information on serialization, see the article
ActiveX Controls: Serializing.

Redraws an OLE control that has been subclassed from a Windows control.

RemarksRemarks

COleControl::DrawContent

void DrawContent(
 CDC* pDC,
 CRect& rc);

ParametersParameters

RemarksRemarks

COleControl::DrawMetafile

void DrawMetafile(
 CDC* pDC,
 CRect& rc);

ParametersParameters

COleControl::EnableSimpleFrame

void EnableSimpleFrame();

RemarksRemarks

pDC
A pointer to the device context of the control container.

rcBounds
The area in which the control is to be drawn.

Call this function to properly handle the painting of a nonactive OLE control. This function should only be
used if the OLE control subclasses a Windows control and should be called in the OnDraw function of your
control.

For more information on this function and subclassing a Windows control, see the article ActiveX Controls:
Subclassing a Windows Control.

Called by the framework when the control's appearance needs to be updated.

pDC
Pointer to the device context.

rc
Rectangular area to be drawn in.

This function directly calls the overridable OnDraw function.

Called by the framework when the metafile device context is being used.

pDC
Pointer to the metafile device context.

rc
Rectangular area to be drawn in.

Enables the simple frame characteristic for an OLE control.

COleControl::ExchangeExtent

BOOL ExchangeExtent(CPropExchange* pPX);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::ExchangeStockProps

void ExchangeStockProps(CPropExchange* pPX);

ParametersParameters

RemarksRemarks

COleControl::ExchangeVersion

BOOL ExchangeVersion(
 CPropExchange* pPX,
 DWORD dwVersionDefault,
 BOOL bConvert = TRUE);

ParametersParameters

This characteristic allows a control to support visual containment of other controls, but not true OLE
containment. An example would be a group box with several controls inside. These controls are not OLE
contained, but they are in the same group box.

Serializes or initializes the state of the control's extent (its dimensions in HIMETRIC units).

pPX
A pointer to a CPropExchange object. The framework supplies this object to establish the context of the
property exchange, including its direction.

Nonzero if the function succeeded; 0 otherwise.

This function is normally called by the default implementation of COleControl::DoPropExchange .

Serializes or initializes the state of the control's stock properties.

pPX
A pointer to a CPropExchange object. The framework supplies this object to establish the context of the
property exchange, including its direction.

This function is normally called by the default implementation of COleControl::DoPropExchange .

Serializes or initializes the state of a control's version information.

pPX
A pointer to a CPropExchange object. The framework supplies this object to establish the context of the
property exchange, including its direction.

dwVersionDefault
The current version number of the control.

bConvert

Return ValueReturn Value

RemarksRemarks

COleControl::FireClick

void FireClick();

RemarksRemarks

COleControl::FireDblClick

void FireDblClick();

RemarksRemarks

COleControl::FireError

void FireError(
 SCODE scode,
 LPCTSTR lpszDescription,
 UINT nHelpID = 0);

ParametersParameters

Indicates whether persistent data should be converted to the latest format when saved, or maintained in the
same format that was loaded.

Nonzero of the function succeeded; 0 otherwise.

Typically, this will be the first function called by a control's override of COleControl::DoPropExchange . When
loading, this function reads the version number of the persistent data, and sets the version attribute of the
CPropExchange object accordingly. When saving, this function writes the version number of the persistent
data.

For more information on persistence and versioning, see the article ActiveX Controls: Serializing.

Called by the framework when the mouse is clicked over an active control.

If this event is defined as a custom event, you determine when the event is fired.

For automatic firing of a Click event to occur, the control's Event map must have a stock Click event defined.

Called by the framework when the mouse is double-clicked over an active control.

If this event is defined as a custom event, you determine when the event is fired.

For automatic firing of a DblClick event to occur, the control's Event map must have a stock DblClick event
defined.

Fires the stock Error event.

scode
The status code value to be reported. For a complete list of possible codes, see the article ActiveX Controls:
Advanced Topics.

lpszDescription
The description of the error being reported.

RemarksRemarks

COleControl::FireEvent

void AFX_CDECL FireEvent(
 DISPID dispid,
 BYTE* pbParams,
...);

ParametersParameters

RemarksRemarks

SYMBOL PARAMETER TYPE

VTS_COLOR OLE_COLOR

VTS_FONT IFontDisp*

VTS_HANDLE HWND

VTS_PICTURE IPictureDisp*

VTS_OPTEXCLUSIVE OLE_OPTEXCLUSIVE*

VTS_TRISTATE OLE_TRISTATE

VTS_XPOS_HIMETRIC OLE_XPOS_HIMETRIC

nHelpID
The Help ID of the error being reported.

This event provides a way of signalling, at appropriate places in your code, that an error has occurred within
your control. Unlike other stock events, such as Click or MouseMove, Error is never fired by the framework.

To report an error that occurs during a property get function, property set function, or automation method,
call COleControl::ThrowError.

The implementation of an OLE control's Stock Error event uses an SCODE value. If your control uses this
event, and is intended to be used in Visual Basic 4.0, you will receive errors because the SCODE value is not
supported in Visual Basic.

To fix this, manually change the SCODE parameter in the control's .ODL file to a long. In addition, any
custom event, method, or property that uses an SCODE parameter also causes the same problem.

Fires a user-defined event from your control with any number of optional arguments,.

dispid
The dispatch ID of the event to be fired.

pbParams
A descriptor for the event's parameter types.

Usually this function should not be called directly. Instead you will call the event-firing functions in the event
map section of your control's class declaration.

The pbParams argument is a space-separated list of VTS_. One or more of these values, separated by spaces
(not commas), specifies the function's parameter list. Possible values are as follows:

VTS_YPOS_HIMETRIC OLE_YPOS_HIMETRIC

VTS_XPOS_PIXELS OLE_XPOS_PIXELS

VTS_YPOS_PIXELS OLE_YPOS_PIXELS

VTS_XSIZE_PIXELS OLE_XSIZE_PIXELS

VTS_YSIZE_PIXELS OLE_XSIZE_PIXELS

VTS_XSIZE_HIMETRIC OLE_XSIZE_HIMETRIC

VTS_YSIZE_HIMETRIC OLE_XSIZE_HIMETRIC

SYMBOL PARAMETER TYPE

NOTENOTE

COleControl::FireKeyDown

void FireKeyDown(
 USHORT* pnChar,
 short nShiftState);

ParametersParameters

RemarksRemarks

COleControl::FireKeyPress

Additional variant constants have been defined for all variant types, with the exception of VTS_FONT and
VTS_PICTURE, that provide a pointer to the variant data constant. These constants are named using the VTS_P
constantname convention. For example, VTS_PCOLOR is a pointer to a VTS_COLOR constant.

Called by the framework when a key is pressed while the control is UI active.

pnChar
Pointer to the virtual key code value of the pressed key. For a list of standard virtual key codes, see Winuser.h

nShiftState
Contains a combination of the following flags:

SHIFT_MASK The SHIFT key was pressed during the action.

CTRL_MASK The CTRL key was pressed during the action.

ALT_MASK The ALT key was pressed during the action.

If this event is defined as a custom event, you determine when the event is fired.

For automatic firing of a KeyDown event to occur, the control's Event map must have a stock KeyDown event
defined.

Called by the framework when a key is pressed and released while the custom control is UI Active within the
container.

void FireKeyPress(USHORT* pnChar);

ParametersParameters

RemarksRemarks

COleControl::FireKeyUp

void FireKeyUp(
 USHORT* pnChar,
 short nShiftState);

ParametersParameters

RemarksRemarks

COleControl::FireMouseDown

void FireMouseDown(
 short nButton,
 short nShiftState,
 OLE_XPOS_PIXELS x,
 OLE_YPOS_PIXELS y);

ParametersParameters

pnChar
A pointer to the character value of the key pressed.

If this event is defined as a custom event, you determine when the event is fired.

The recipient of the event may modify pnChar, for example, convert all lowercase characters to uppercase. If
you want to examine the modified character, override OnKeyPressEvent .

For automatic firing of a KeyPress event to occur, the control's Event map must have a stock KeyPress event
defined.

Called by the framework when a key is released while the custom control is UI Active within the container.

pnChar
Pointer to the virtual key code value of the released key. For a list of standard virtual key codes, see Winuser.h

nShiftState
Contains a combination of the following flags:

SHIFT_MASK The SHIFT key was pressed during the action.

CTRL_MASK The CTRL key was pressed during the action.

ALT_MASK The ALT key was pressed during the action.

If this event is defined as a custom event, you determine when the event is fired.

For automatic firing of a KeyUp event to occur, the control's Event map must have a stock KeyUp event
defined.

Called by the framework when a mouse button is pressed over an active custom control.

nButton
The numeric value of the mouse button pressed. It can contain one of the following values:

RemarksRemarks

COleControl::FireMouseMove

void FireMouseMove(
 short nButton,
 short nShiftState,
 OLE_XPOS_PIXELS x,
 OLE_YPOS_PIXELS y);

ParametersParameters

LEFT_BUTTON The left mouse button was pressed down.

MIDDLE_BUTTON The middle mouse button was pressed down.

RIGHT_BUTTON The right mouse button was pressed down.

nShiftState
Contains a combination of the following flags:

SHIFT_MASK The SHIFT key was pressed during the action.

CTRL_MASK The CTRL key was pressed during the action.

ALT_MASK The ALT key was pressed during the action.

x
The x-coordinate of the cursor when a mouse button was pressed down. The coordinate is relative to the
upper-left corner of the control window.

y
The y-coordinate of the cursor when a mouse button was pressed down. The coordinate is relative to the
upper-left corner of the control window.

If this event is defined as a custom event, you determine when the event is fired.

For automatic firing of a MouseDown event to occur, the control's Event map must have a stock MouseDown
event defined.

Called by the framework when the cursor is moved over an active custom control.

nButton
The numeric value of the mouse buttons pressed. Contains a combination of the following values:

LEFT_BUTTON The left mouse button was pressed down during the action.

MIDDLE_BUTTON The middle mouse button was pressed down during the action.

RIGHT_BUTTON The right mouse button was pressed down during the action.

nShiftState
Contains a combination of the following flags:

SHIFT_MASK The SHIFT key was pressed during the action.

CTRL_MASK The CTRL key was pressed during the action.

ALT_MASK The ALT key was pressed during the action.

x
The x-coordinate of the cursor. The coordinate is relative to the upper-left corner of the control window.

RemarksRemarks

COleControl::FireMouseUp

void FireMouseUp(
 short nButton,
 short nShiftState,
 OLE_XPOS_PIXELS x,
 OLE_YPOS_PIXELS y);

ParametersParameters

RemarksRemarks

COleControl::FireReadyStateChange

void FireReadyStateChange();

y
The y-coordinate of the cursor. The coordinate is relative to the upper-left corner of the control window.

If this event is defined as a custom event, you determine when the event is fired.

For automatic firing of a MouseMove event to occur, the control's Event map must have a stock MouseMove
event defined.

Called by the framework when a mouse button is released over an active custom control.

nButton
The numeric value of the mouse button released. It can have one of the following values:

LEFT_BUTTON The left mouse button was released.

MIDDLE_BUTTON The middle mouse button was released.

RIGHT_BUTTON The right mouse button was released.

nShiftState
Contains a combination of the following flags:

SHIFT_MASK The SHIFT key was pressed during the action.

CTRL_MASK The CTRL key was pressed during the action.

ALT_MASK The ALT key was pressed during the action.

x
The x-coordinate of the cursor when a mouse button was released. The coordinate is relative to the upper-left
corner of the control window.

y
The y-coordinate of a cursor when a mouse button was released. The coordinate is relative to the upper-left
corner of the control window.

If this event is defined as a custom event, you determine when the event is fired.

For automatic firing of a MouseUp event to occur, the control's Event map must have a stock MouseUp event
defined.

Fires an event with the current value of the ready state of control.

RemarksRemarks

READYSTATE_UNINITIALIZED Default initialization state

READYSTATE_LOADING Control is currently loading its properties

READYSTATE_LOADED Control has been initialized

READYSTATE_INTERACTIVE Control has enough data to be interactive but not all
asynchronous data is yet loaded

READYSTATE_COMPLETE Control has all its data

COleControl::GetActivationPolicy

virtual DWORD GetActivationPolicy();

Return ValueReturn Value

POINTERINACTIVE_ACTIVATEONENTRY The object should be in-place activated when the mouse
enters it during a mouse move operation.

POINTERINACTIVE_DEACTIVATEONLEAVE The object should be deactivated when the mouse leaves
the object during a mouse move operation.

POINTERINACTIVE_ACTIVATEONDRAG The object should be in-place activated when the mouse is
dragged over it during a drag and drop operation.

RemarksRemarks

The ready state can be one of the following values:

Use GetReadyState to determine the control's current readiness.

InternalSetReadyState changes the ready state to the value supplied, then calls FireReadyStateChange .

Alters the default activation behavior of a control that supports the IPointerInactive interface.

A combination of flags from the POINTERINACTIVE enumeration. Possible flags are:

When the IPointerInactive interface is enabled, the container will delegate WM_SETCURSOR and
WM_MOUSEMOVE messages to it. COleControl 's implementation of this interface will dispatch these
messages through your control's message map, after adjusting the mouse coordinates appropriately.

Whenever the container receives a WM_SETCURSOR or WM_MOUSEMOVE message with the mouse
pointer over an inactive object supporting IPointerInactive , it should call GetActivationPolicy on the
interface and return flags from the POINTERINACTIVE enumeration.

You can process these messages just like ordinary window messages, by adding the corresponding entries to
the message map. In your handlers, avoid using the m_hWnd member variable (or any member functions that
uses it) without first checking that its value is non- NULL.

Any object intended to do more than set the mouse cursor and/or fire a mouse move event, such as give
special visual feedback, should return the POINTERINACTIVE_ACTIVATEONENTRY flag and draw the

DWORD CMyAxCtrl::GetActivationPolicy()
{
 return POINTERINACTIVE_ACTIVATEONDRAG;
}

static const DWORD BASED_CODE _dwMyOleMisc =
 OLEMISC_ACTIVATEWHENVISIBLE |
 OLEMISC_IGNOREACTIVATEWHENVISIBLE |
 OLEMISC_SETCLIENTSITEFIRST |
 OLEMISC_INSIDEOUT |
 OLEMISC_CANTLINKINSIDE |
 OLEMISC_RECOMPOSEONRESIZE;

COleControl::GetAmbientProperty

BOOL GetAmbientProperty(
 DISPID dispid,
 VARTYPE vtProp,
 void* pvProp);

ParametersParameters

feedback only when active. If the object returns this flag, the container should activate it in-place immediately
and then forward it the same message that triggered the call to GetActivationPolicy .

If both the POINTERINACTIVE_ACTIVATEONENTRY and POINTERINACTIVE_DEACTIVATEONLEAVE
flags are returned, then the object will only be activated when the mouse is over the object. If only the
POINTERINACTIVE_ACTIVATEONENTRY flag is returned, then the object will only be activated once when
the mouse first enters the object.

You may also want an inactive control to be the target of an OLE drag and drop operation. This requires
activating the control at the moment the user drags an object over it, so that the control's window can be
registered as a drop target. To cause activation to occur during a drag, return the
POINTERINACTIVE_ACTIVATEONDRAG flag:

The information communicated by GetActivationPolicy should not be cached by a container. Instead, this
method should be called every time the mouse enters an inactive object.

If an inactive object does not request to be in-place activated when the mouse enters it, its container should
dispatch subsequent WM_SETCURSOR messages to this object by calling OnInactiveSetCursor as long as
the mouse pointer stays over the object.

Enabling the IPointerInactive interface typically means that you want the control to be capable of
processing mouse messages at all times. To get this behaviour in a container that doesn't support the
IPointerInactive interface, you will need to have your control always activated when visible, which means

the control should have the OLEMISC_ACTIVATEWHENVISIBLE flag among its miscellaneous flags.
However, to prevent this flag from taking effect in a container that does support IPointerInactive , you can
also specify the OLEMISC_IGNOREACTIVATEWHENVISIBLE flag:

Gets the value of an ambient property of the container.

dwDispid
The dispatch ID of the desired ambient property.

vtProp
A variant type tag that specifies the type of the value to be returned in pvProp.

VTPROP TYPE OF PVPROP

VT_BOOL BOOL*

VT_BSTR CString*

VT_I2 short*

VT_I4 long*

VT_R4 float*

VT_R8 double*

VT_CY CY*

VT_COLOR OLE_COLOR*

VT_DISPATCH LPDISPATCH*

VT_FONT LPFONTDISP*

Return ValueReturn Value

RemarksRemarks

COleControl::GetAppearance

short GetAppearance ();

Return ValueReturn Value

COleControl::GetBackColor

pvProp
A pointer to the address of the variable that will receive the property value or return value. The actual type of
this pointer must match the type specified by vtProp.

Nonzero if the ambient property is supported; otherwise 0.

If you use GetAmbientProperty to retrieve the ambient DisplayName and ScaleUnits properties, set vtProp to
VT_BSTR and pvProp to CString* . If you are retrieving the ambient Font property, set vtProp to VT_FONT
and pvProp to LPFONTDISP*.

Note that functions have already been provided for common ambient properties, such as AmbientBackColor
and AmbientFont.

Implements the Get function of your control's stock Appearance property.

The return value specifies the current appearance setting as a short (VT_I2) value, if successful. This value is
zero if the control's appearance is flat and 1 if the control's appearance is 3D.

Implements the Get function of your control's stock BackColor property.

OLE_COLOR GetBackColor();

Return ValueReturn Value

COleControl::GetBorderStyle

short GetBorderStyle();

Return ValueReturn Value

COleControl::GetCapture

CWnd* GetCapture();

Return ValueReturn Value

RemarksRemarks

COleControl::GetClassID

virtual HRESULT GetClassID(LPCLSID pclsid) = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::GetClientOffset

The return value specifies the current background color as a OLE_COLOR value, if successful. This value can
be translated to a COLORREF value with a call to TranslateColor .

Implements the Get function of your control's stock BorderStyle property.

1 if the control has a normal border ; 0 if the control has no border.

Determines whether the COleControl object has the mouse capture.

If the control is activated and windowless, returns this if the control currently has the mouse capture (as
determined by the control's container), or NULL if it does not have the capture.

Otherwise, returns the CWnd object that has the mouse capture (same as CWnd::GetCapture).

An activated windowless control receives the mouse capture when SetCapture is called.

Called by the framework to retrieve the OLE class ID of the control.

pclsid
Pointer to the location of the class ID.

Nonzero if the call was not successful; otherwise 0.

Usually implemented by the IMPLEMENT_OLECREATE_EX.

Retrieves the difference between the upper left corner of the control's rectangular area and the upper left
corner of its client area.

virtual void GetClientOffset(long* pdxOffset, long* pdyOffset) const;

ParametersParameters

RemarksRemarks

COleControl::GetClientRect

virtual void GetClientRect(LPRECT lpRect) const;

ParametersParameters

COleControl::GetClientSite

LPOLECLIENTSITE GetClientSite();

Return ValueReturn Value

RemarksRemarks

COleControl::GetControlFlags

virtual DWORD GetControlFlags();

Return ValueReturn Value

pdxOffset
Pointer to the horizontal offset of the OLE control's client area.

pdyOffset
Pointer to the vertical offset of the OLE control's client area.

The OLE control has a rectangular area within its container. The client area of the control is the control area
excluding borders and scroll bars. The offset retrieved by GetClientOffset is the difference between the
upper left corner of the control's rectangular area and the upper left corner of its client area. If your control
has non-client elements other than the standard borders and scrollbars, override this member function to
specify the offset.

Retrieves the size of the control's client area.

lpRect
Pointer to a RECT structure containing the dimensions of the windowless control's client area; that is, the
control's size minus window borders, frames, scroll bars, and so on. The lpRect parameter indicates the size of
the control's client rectangle, not its position.

Queries an object for the pointer to its current client site within its container.

A pointer to the control's current client site in its container.

The returned pointer points to an instance of IOleClientSite . The IOleClientSite interface, implemented by
containers, is the object's view of its context: where it is anchored in the document, where it gets its storage,
user interface, and other resources.

Retrieves the control flag settings.

An ORed combination of the flags in the ControlFlags enumeration:

enum ControlFlags {
 fastBeginPaint = 0x0001,
 clipPaintDC = 0x0002,
 pointerInactive = 0x0004,
 noFlickerActivate = 0x0008,
 windowlessActivate = 0x0010,
 canOptimizeDraw = 0x0020,
 };

RemarksRemarks

fastBeginPaint If set, uses a begin-paint function tailored for OLE controls
instead of the BeginPaint API (set by default).

clipPaintDC If not set, disables the call to IntersectClipRect made
by COleControl and gains a small speed advantage. If
you are using windowless activation, the flag has no effect.

pointerInactive If set, provides mouse interaction while your control is
inactive by enabling COleControl 's implementation of the
IPointerInactive interface, which is disabled by default.

noFlickerActivate If set, eliminates extra drawing operations and the
accompanying visual flicker. Use when your control draws
itself identically in the inactive and active states. If you are
using windowless activation, the flag has no effect.

windowlessActivate If set, indicates your control uses windowless activation.

canOptimizeDraw If set, indicates that the control will perform optimized
drawing, if the container supports it.

COleControl::GetControlSize

void GetControlSize(
 int* pcx,
 int* pcy);

ParametersParameters

RemarksRemarks

By default, GetControlFlags returns fastBeginPaint | clipPaintDC .

For more information about GetControlFlags and other optimizations of OLE controls, see ActiveX Controls:
Optimization.

Retrieves the size of the OLE control window.

pcx
Specifies the width of the control in pixels.

pcy
Specifies the height of the control in pixels.

Note that all coordinates for control windows are relative to the upper-left corner of the control.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-beginpaint

COleControl::GetDC

CDC* GetDC(
 LPCRECT lprcRect = NULL,
 DWORD dwFlags = OLEDC_PAINTBKGND);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::GetEnabled

BOOL GetEnabled();

Return ValueReturn Value

COleControl::GetExtendedControl

Provides for a windowless object to get a screen (or compatible) device context from its container.

lprcRect
A pointer to the rectangle the windowless control wants to redraw, in client coordinates of the control. NULL
means the full object's extent.

dwFlags
Drawing attributes of the device context. Choices are:

OLEDC_NODRAW Indicates that the object won't use the device context to perform any drawing but
merely to get information about the display device. The container should simply pass the window's DC
without further processing.

OLEDC_PAINTBKGND Requests that the container paint the background before returning the DC. An
object should use this flag if it is requesting a DC for redrawing an area with transparent background.

OLEDC_OFFSCREEN Informs the container that the object wishes to render into an off-screen bitmap
that should then be copied to the screen. An object should use this flag when the drawing operation it
is about to perform generates a lot of flicker. The container is free to honor this request or not.
However, if this flag is not set, the container must hand back an on-screen DC. This allows objects to
perform direct screen operations such as showing a selection (via an XOR operation).

Pointer to the display device context for the container CWnd client area if successful; otherwise, the return
value is NULL. The display device context can be used in subsequent GDI functions to draw in the client area
of the container's window.

The ReleaseDC member function must be called to release the context after painting. When calling GetDC ,
objects pass the rectangle they wish to draw into in their own client coordinates. GetDC translates these to
coordinates of the container client area. The object should not request a desired drawing rectangle larger than
its own client area rectangle, the size of which can be retrieved with GetClientRect. This prevents objects from
inadvertently drawing where they are not supposed to.

Implements the Get function of your control's stock Enabled property.

Nonzero if the control is enabled; otherwise 0.

Obtains a pointer to an object maintained by the container that represents the control with an extended set of
properties.

LPDISPATCH GetExtendedControl();

Return ValueReturn Value

RemarksRemarks

COleControl::GetFocus

CWnd* GetFocus();

Return ValueReturn Value

RemarksRemarks

COleControl::GetFont

LPFONTDISP GetFont();

Return ValueReturn Value

RemarksRemarks

COleControl::GetFontTextMetrics

void GetFontTextMetrics(
 LPTEXTMETRIC lptm,
 CFontHolder& fontHolder);

A pointer to the container's extended control object. If there is no object available, the value is NULL.

This object may be manipulated through its IDispatch interface. You can also use QueryInterface to obtain
other available interfaces provided by the object. However, the object is not required to support a specific set
of interfaces. Note that relying on the specific features of a container's extended control object limits the
portability of your control to other arbitrary containers.

The function that calls this function is responsible for releasing the pointer when finished with the object.
Note that the container is not required to support this object.

Determines whether the COleControl object has the focus.

If the control is activated and windowless, returns this if the control currently has the keyboard focus (as
determined by the control's container), or NULL if it does not have the focus.

Otherwise, returns the CWnd object that has the focus (same as CWnd::GetFocus).

An activated windowless control receives the focus when SetFocus is called.

Implements the Get function of the stock Font property.

A pointer to the font dispatch interface of the control's stock Font property.

Note that the caller must release the object when finished. Within the implementation of the control, use
InternalGetFont to access the control's stock Font object. For more information on using fonts in your

control, see the article ActiveX Controls: Using Fonts in an ActiveX Control.

Measures the text metrics for any CFontHolder object owned by the control.

ParametersParameters

RemarksRemarks

COleControl::GetForeColor

OLE_COLOR GetForeColor();

Return ValueReturn Value

COleControl::GetHwnd

OLE_HANDLE GetHwnd();

Return ValueReturn Value

COleControl::GetMessageString

virtual void GetMessageString(
 UINT nID,
 CString& rMessage) const;

ParametersParameters

lptm
Pointer to a TEXTMETRIC structure.

fontHolder
Reference to a CFontHolder object.

Such a font can be selected with the COleControl::SelectFontObject function. GetFontTextMetrics will
initialize the TEXTMETRIC structure pointed to by lptm with valid metrics information about fontHolder 's font
if successful, or fill the structure with zeros if not successful. You should use this function instead of
GetTextMetrics when painting your control because controls, like any embedded OLE object, may be required
to render themselves into a metafile.

The TEXTMETRIC structure for the default font is refreshed when the SelectFontObject function is called. You
should call GetFontTextMetrics only after selecting the stock Font property to assure the information it
provides is valid.

Implements the Get function of the stock ForeColor property.

The return value specifies the current foreground color as a OLE_COLOR value, if successful. This value can
be translated to a COLORREF value with a call to TranslateColor .

Implements the Get function of the stock hWnd property.

The OLE control's window handle, if any; otherwise NULL.

Called by the framework to obtain a short string that describes the purpose of the menu item identified by
nID.

nID
A menu item ID.

rMessage
A reference to a CString object through which a string will be returned.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagtextmetrica
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-gettextmetrics
https://docs.microsoft.com/windows/desktop/gdi/colorref

RemarksRemarks

COleControl::GetNotSupported

void GetNotSupported();

RemarksRemarks

COleControl::GetReadyState

long GetReadyState();

Return ValueReturn Value

READYSTATE_UNINITIALIZED Default initialization state

READYSTATE_LOADING Control is currently loading its properties

READYSTATE_LOADED Control has been initialized

READYSTATE_INTERACTIVE Control has enough data to be interactive but not all
asynchronous data is yet loaded

READYSTATE_COMPLETE Control has all its data

RemarksRemarks

COleControl::GetRectInContainer

BOOL GetRectInContainer(LPRECT lpRect);

ParametersParameters

Return ValueReturn Value

This can be used to obtain a message for display in a status bar while the menu item is highlighted. The
default implementation attempts to load a string resource identified by nID.

Prevents access to a control's property value by the user.

Call this function in place of the Get function of any property where retrieval of the property by the control's
user is not supported. One example would be a property that is write only.

Returns the readiness state of the control.

The readiness state of the control, one of the following values:

Most simple controls never need to differentiate between LOADED and INTERACTIVE. However, controls
that support data path properties may not be ready to be interactive until at least some data is received
asynchronously. A control should attempt to become interactive as soon as possible.

Obtains the coordinates of the control's rectangle relative to the container, expressed in device units.

lpRect
A pointer to the rectangle structure into which the control's coordinates will be copied.

RemarksRemarks

COleControl::GetStockTextMetrics

void GetStockTextMetrics(LPTEXTMETRIC lptm);

ParametersParameters

RemarksRemarks

COleControl::GetText

BSTR GetText();

Return ValueReturn Value

NOTENOTE

RemarksRemarks

COleControl::GetWindowlessDropTarget

virtual IDropTarget* GetWindowlessDropTarget();

Return ValueReturn Value

Nonzero if the control is in-place active; otherwise 0.

The rectangle is only valid if the control is in-place active.

Measures the text metrics for the control's stock Font property, which can be selected with the
SelectStockFont function.

lptm
A pointer to a TEXTMETRIC structure.

The GetStockTextMetrics function will initialize the TEXTMETRIC structure pointed to by lptm with valid
metrics information if successful, or fill the structure with zeros if not successful. Use this function instead of
GetTextMetrics when painting your control because controls, like any embedded OLE object, may be required
to render themselves into a metafile.

The TEXTMETRIC structure for the default font is refreshed when the SelectStockFont function is called. You
should call this function only after selecting the stock font to assure the information it provides is valid.

Implements the Get function of the stock Text or Caption property.

The current value of the control text string or a zero-length string if no string is present.

For more information on the BSTR data type, see Data Types in the Macros and Globals section.

Note that the caller of this function must call SysFreeString on the string returned in order to free the
resource. Within the implementation of the control, use InternalGetText to access the control's stock Text or
Caption property.

Override GetWindowlessDropTarget when you want a windowless control to be the target of an OLE drag and
drop operation.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagtextmetrica
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-gettextmetrics

RemarksRemarks

IDropTarget* CMyAxCtrl::GetWindowlessDropTarget()
{
 m_xDropTarget.AddRef();
 return &m_xDropTarget;
}

COleControl::InitializeIIDs

void InitializeIIDs(
 const IID* piidPrimary,
 const IID* piidEvents);

ParametersParameters

RemarksRemarks

COleControl::InternalGetFont

CFontHolder& InternalGetFont();

Return ValueReturn Value

COleControl::InternalGetText

const CString& InternalGetText();

Return ValueReturn Value

Pointer to the object's IDropTarget interface. Since it does not have a window, a windowless object cannot
register an IDropTarget interface. However, to participate in drag and drop, a windowless object can still
implement the interface and return it in GetWindowlessDropTarget .

Normally, this would require that the control's window be registered as a drop target. But since the control
has no window of its own, the container will use its own window as a drop target. The control simply needs to
provide an implementation of the IDropTarget interface to which the container can delegate calls at the
appropriate time. For example:

Informs the base class of the IIDs the control will use.

piidPrimary
Pointer to the interface ID of the control's primary dispatch interface.

piidEvents
Pointer to the interface ID of the control's event interface.

Call this function in the control's constructor to inform the base class of the interface IDs your control will be
using.

Accesses the stock Font property of your control

A reference to a CFontHolder object that contains the stock Font object.

Accesses the stock Text or Caption property of your control.

A reference to the control text string.

COleControl::InternalSetReadyState

void InternalSetReadyState(long lNewReadyState);

ParametersParameters

READYSTATE_UNINITIALIZED Default initialization state

READYSTATE_LOADING Control is currently loading its properties

READYSTATE_LOADED Control has been initialized

READYSTATE_INTERACTIVE Control has enough data to be interactive but not all
asynchronous data is yet loaded

READYSTATE_COMPLETE Control has all its data

RemarksRemarks

COleControl::InvalidateControl

void InvalidateControl(
 LPCRECT lpRect = NULL,
 BOOL bErase = TRUE);

ParametersParameters

RemarksRemarks

COleControl::InvalidateRgn

Sets the readiness state of the control.

lNewReadyState
The readiness state to set for the control, one of the following values:

Most simple controls never need to differentiate between LOADED and INTERACTIVE. However, controls
that support data path properties may not be ready to be interactive until at least some data is received
asynchronously. A control should attempt to become interactive as soon as possible.

Forces the control to redraw itself.

lpRect
A pointer to the region of the control to be invalidated.

bErase
Specifies whether the background within the update region is to be erased when the update region is
processed.

If lpRect has a NULL value, the entire control will be redrawn. If lpRect is not NULL, this indicates the portion
of the control's rectangle that is to be invalidated. In cases where the control has no window, or is currently
not active, the rectangle is ignored, and a call is made to the client site's IAdviseSink::OnViewChange member
function. Use this function instead of CWnd::InvalidateRect or InvalidateRect .

Invalidates the container window's client area within the given region.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-iadvisesink-onviewchange

void InvalidateRgn(CRgn* pRgn, BOOL bErase = TRUE);

ParametersParameters

RemarksRemarks

COleControl::IsConvertingVBX

BOOL IsConvertingVBX();

Return ValueReturn Value

RemarksRemarks

PX_Font(pPX, _T("Font"), *m_pMyFont, &DefaultFont);

if (!IsConvertingVBX())
{
 PX_Font(pPX, _T("Font"), *m_pMyFont, &DefaultFont);
}
else
{
 PX_String(pPX, _T("FontName"), tempString, DefaultName);
 m_pMyFont->m_pFont->put_Name(tempString.AllocSysString());
 PX_Bool(pPX, _T("FontUnderline"), tempBool, DefaultValue);
 m_pMyFont->m_pFont->put_Underline(tempBool);
}

pRgn
A pointer to a CRgn object that identifies the display region of the OLE object to invalidate, in client
coordinates of the containing window. If this parameter is NULL, the extent is the entire object.

bErase
Specifies whether the background within the invalidated region is to be erased. If TRUE, the background is
erased. If FALSE, the background remains unchanged.

This can be used to redraw windowless controls within the container. The invalidated region, along with all
other areas in the update region, is marked for painting when the next WM_PAINT message is sent.

If bErase is TRUE for any part of the update region, the background in the entire region, not just in the given
part, is erased.

Allows specialized loading of an OLE control.

Nonzero if the control is being converted; otherwise 0.

When converting a form that uses VBX controls to one that uses OLE controls, special loading code for the
OLE controls may be required. For example, if you are loading an instance of your OLE control, you might
have a call to PX_Font in your DoPropExchange :

However, VBX controls did not have a Font object; each font property was saved individually. In this case, you
would use IsConvertingVBX to distinguish between these two cases:

Another case would be if your VBX control saved proprietary binary data (in its VBM_SAVEPROPERTY
message handler), and your OLE control saves its binary data in a different format. If you want your OLE
control to be backward-compatible with the VBX control, you could read both the old and new formats using
the IsConvertingVBX function by distinguishing whether the VBX control or the OLE control was being

https://docs.microsoft.com/windows/desktop/gdi/wm-paint

COleControl::IsInvokeAllowed

BOOL IsInvokeAllowed(DISPID dispid);

Return ValueReturn Value

RemarksRemarks

COleControl::IsModified

BOOL IsModified();

Return ValueReturn Value

RemarksRemarks

COleControl::IsOptimizedDraw

BOOL IsOptimizedDraw();

Return ValueReturn Value

RemarksRemarks

COleControl::IsSubclassedControl

loaded.

In your control's DoPropExchange function, you can check for this condition and if true, execute load code
specific to this conversion (such as the previous examples). If the control is not being converted, you can
execute normal load code. This ability is only applicable to controls being converted from VBX counterparts.

Enables automation method invocation.

Nonzero if the control has been initialized; otherwise 0.

The framework's implementation of IDispatch::Invoke calls IsInvokeAllowed to determine if a given
function (identified by dispid) may be invoked. The default behavior for an OLE control is to allow
automation methods to be invoked only if the control has been initialized; however, IsInvokeAllowed is a
virtual function and may be overridden if necessary (for example, when the control is being used as an
automation server).

Determines if the control's state has been modified.

Nonzero if the control's state has been modified since it was last saved; otherwise 0.

The state of a control is modified when a property changes value.

Determines whether the container supports optimized drawing for the current drawing operation.

TRUE if the container supports optimized drawing for the current drawing operation; otherwise FALSE.

If optimized drawing is supported, then the control need not select old objects (pens, brushes, fonts, etc.) into
the device context when drawing is finished.

Called by the framework to determine if the control subclasses a Windows control.

virtual BOOL IsSubclassedControl();

Return ValueReturn Value

RemarksRemarks

COleControl::Load

void Load(LPCTSTR strNewPath, CDataPathProperty& prop);

ParametersParameters

COleControl::LockInPlaceActive

BOOL LockInPlaceActive(BOOL bLock);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnAmbientPropertyChange

virtual void OnAmbientPropertyChange(DISPID dispid);

ParametersParameters

Nonzero if the control is subclassed; otherwise 0.

You must override this function and return TRUE if your OLE control subclasses a Windows control.

Resets any previous data loaded asynchronously and initiates a new loading of the control's asynchronous
property.

strNewPath
A pointer to a string containing the path that references the absolute location of the asynchronous control
property.

prop
A CDataPathProperty object implementing an asynchronous control property.

Prevents the container from deactivating your control.

bLock
TRUE if the in-place active state of the control is to be locked; FALSE if it is to be unlocked.

Nonzero if the lock was successful; otherwise 0.

Note that every locking of the control must be paired with an unlocking of the control when finished. You
should only lock your control for short periods, such as while firing an event.

Called by the framework when an ambient property of the container has changed value.

dispID
The dispatch ID of the ambient property that changed, or DISPID_UNKNOWN if multiple properties have
changed.

COleControl::OnAppearanceChanged

virtual void OnAppearanceChanged ();

RemarksRemarks

COleControl::OnBackColorChanged

virtual void OnBackColorChanged();

RemarksRemarks

COleControl::OnBorderStyleChanged

virtual void OnBorderStyleChanged();

RemarksRemarks

COleControl::OnClick

virtual void OnClick(USHORT iButton);

ParametersParameters

RemarksRemarks

Called by the framework when the stock Appearance property value has changed.

Override this function if you want notification after this property changes. The default implementation calls
InvalidateControl .

Called by the framework when the stock BackColor property value has changed.

Override this function if you want notification after this property changes. The default implementation calls
InvalidateControl .

Called by the framework when the stock BorderStyle property value has changed.

The default implementation calls InvalidateControl .

Override this function if you want notification after this property changes.

Called by the framework when a mouse button has been clicked or the DoClick stock method has been
invoked.

iButton
Index of a mouse button. Can have one of the following values:

LEFT_BUTTON The left mouse button was clicked.

MIDDLE_BUTTON The middle mouse button was clicked.

RIGHT_BUTTON The right mouse button was clicked.

The default implementation calls COleControl::FireClick .

Override this member function to modify or extend the default handling.

COleControl::OnClose

virtual void OnClose(DWORD dwSaveOption);

ParametersParameters

RemarksRemarks

COleControl::OnDoVerb

virtual BOOL OnDoVerb(
 LONG iVerb,
 LPMSG lpMsg,
 HWND hWndParent,
 LPCRECT lpRect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnDraw

Called by the framework when the container has called the control's IOleControl::Close function.

dwSaveOption
Flag that indicates whether the object should be saved before loading. Valid values are:

OLECLOSE_SAVEIFDIRTY

OLECLOSE_NOSAVE

OLECLOSE_PROMPTSAVE

By default, OnClose saves the control object if it has been modified and dwSaveOption is either
OLECLOSE_SAVEIFDIRTY or OLECLOSE_PROMPTSAVE.

Called by the framework when the container calls the IOleObject::DoVerb member function.

iVerb
The index of the control verb to be invoked.

lpMsg
A pointer to the Windows message that caused the verb to be invoked.

hWndParent
The handle to the parent window of the control. If the execution of the verb creates a window (or windows),
hWndParent should be used as the parent.

lpRect
A pointer to a RECT structure into which the coordinates of the control, relative to the container, will be
copied.

Nonzero if call was successful; otherwise 0.

The default implementation uses the ON_OLEVERB and ON_STDOLEVERB message map entries to
determine the proper function to invoke.

Override this function to change the default handling of verb.

virtual void OnDraw(
 CDC* pDC,
 const CRect& rcBounds,
 const CRect& rcInvalid);

ParametersParameters

RemarksRemarks

COleControl::OnDrawMetafile

virtual void OnDrawMetafile(
 CDC* pDC,
 const CRect& rcBounds);

ParametersParameters

RemarksRemarks

COleControl::OnEdit

virtual BOOL OnEdit(
 LPMSG lpMsg,
 HWND hWndParent,
 LPCRECT lpRect);

ParametersParameters

Called by the framework to draw the OLE control in the specified bounding rectangle using the specified
device context.

pDC
The device context in which the drawing occurs.

rcBounds
The rectangular area of the control, including the border.

rcInvalid
The rectangular area of the control that is invalid.

OnDraw is typically called for screen display, passing a screen device context as pDC. The rcBounds parameter
identifies the rectangle in the target device context (relative to its current mapping mode). The rcInvalid
parameter is the actual rectangle that is invalid. In some cases this will be a smaller area than rcBounds.

Called by the framework to draw the OLE control in the specified bounding rectangle using the specified
metafile device context.

pDC
The device context in which the drawing occurs.

rcBounds
The rectangular area of the control, including the border.

The default implementation calls the OnDraw function.

Causes the control to be UI activated.

lpMsg
A pointer to the Windows message that invoked the verb.

Return ValueReturn Value

RemarksRemarks

ON_OLEVERB(AFX_IDS_VERB_EDIT, OnEdit)

COleControl::OnEnabledChanged

virtual void OnEnabledChanged();

RemarksRemarks

COleControl::OnEnumVerbs

virtual BOOL OnEnumVerbs(LPENUMOLEVERB* ppenumOleVerb);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnEventAdvise

virtual void OnEventAdvise(BOOL bAdvise);

ParametersParameters

hWndParent
A handle to the parent window of the control.

lpRect
A pointer to the rectangle used by the control in the container.

Nonzero if the call is successful; otherwise 0.

This has the same effect as invoking the control's OLEIVERB_UIACTIVATE verb.

This function is typically used as the handler function for an ON_OLEVERB message map entry. This makes
an "Edit" verb available on the control's "Object" menu. For example:

Called by the framework when the stock Enabled property value has changed.

Override this function if you want notification after this property changes. The default implementation calls
InvalidateControl.

Called by the framework when the container calls the IOleObject::EnumVerbs member function.

ppenumOleVerb
A pointer to the IEnumOLEVERB object that enumerates the control's verbs.

Nonzero if verbs are available; otherwise 0.

The default implementation enumerates the ON_OLEVERB entries in the message map.

Override this function to change the default way of enumerating verbs.

Called by the framework when an event handler is connected to or disconnected from an OLE control.

COleControl::OnFontChanged

virtual void OnFontChanged();

RemarksRemarks

ExampleExample

void CMyAxCtrl::OnFontChanged()
{
 // Always set it to the container's font
 if (m_MyEdit.m_hWnd != NULL)
 {
 IFontDisp* pFontDisp = NULL;
 IFont *pFont = NULL;
 HRESULT hr;

 // Get the container's FontDisp interface
 pFontDisp = AmbientFont();
 if (pFontDisp)
 {
 hr = pFontDisp->QueryInterface(IID_IFont, (LPVOID *) &pFont);
 if (FAILED(hr))
 {
 pFontDisp->Release();
 return;
 }
 }

 HFONT hFont = NULL;
 if (pFont)
 {
 pFont->get_hFont(&hFont);
 m_MyEdit.SendMessage(WM_SETFONT, (WPARAM)hFont, 0L);
 }

 pFontDisp->Release();
 }

 // Invalidate the control
 m_MyEdit.Invalidate();
 m_MyEdit.UpdateWindow();

 COleControl::OnFontChanged();
}

COleControl::OnForeColorChanged

bAdvise
TRUE indicates that an event handler has been connected to the control. FALSE indicates that an event
handler has been disconnected from the control.

Called by the framework when the stock Font property value has changed.

The default implementation calls COleControl::InvalidateControl . If the control is subclassing a Windows
control, the default implementation also sends a WM_SETFONT message to the control's window.

Override this function if you want notification after this property changes.

Called by the framework when the stock ForeColor property value has changed.

virtual void OnForeColorChanged();

RemarksRemarks

COleControl::OnFreezeEvents

virtual void OnFreezeEvents(BOOL bFreeze);

ParametersParameters

RemarksRemarks

COleControl::OnGetColorSet

virtual BOOL OnGetColorSet(
 DVTARGETDEVICE* ptd,
 HDC hicTargetDev,
 LPLOGPALETTE* ppColorSet);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The default implementation calls InvalidateControl .

Override this function if you want notification after this property changes.

Called by the framework after the container calls IOleControl::FreezeEvents .

bFreeze
TRUE if the control's event handling is frozen; otherwise FALSE.

The default implementation does nothing.

Override this function if you want additional behavior when event handling is frozen or unfrozen.

Called by the framework when the container calls the IViewObject::GetColorSet member function.

ptd
Points to the target device for which the picture should be rendered. If this value is NULL, the picture should
be rendered for a default target device, usually a display device.

hicTargetDev
Specifies the information context on the target device indicated by ptd. This parameter can be a device
context, but is not one necessarily. If ptd is NULL, hicTargetDev should also be NULL.

ppColorSet
A pointer to the location into which the set of colors that would be used should be copied. If the function does
not return the color set, NULL is returned.

Nonzero if a valid color set is returned; otherwise 0.

The container calls this function to obtain all the colors needed to draw the OLE control. The container can
use the color sets obtained in conjunction with the colors it needs to set the overall color palette. The default
implementation returns FALSE.

Override this function to do any special processing of this request.

COleControl::OnGetControlInfo

virtual void OnGetControlInfo(LPCONTROLINFO pControlInfo);

ParametersParameters

RemarksRemarks

COleControl::OnGetDisplayString

virtual BOOL OnGetDisplayString(
 DISPID dispid,
 CString& strValue);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnGetInPlaceMenu

virtual HMENU OnGetInPlaceMenu();

Return ValueReturn Value

RemarksRemarks

Called by the framework when the control's container has requested information about the control.

pControlInfo
Pointer to a CONTROLINFO structure to be filled in.

This information consists primarily of a description of the control's mnemonic keys. The default
implementation fills pControlInfo with default information.

Override this function if your control needs to process mnemonic keys.

Called by the framework to obtain a string that represents the current value of the property identified by
dispid.

dispid
The dispatch ID of a property of the control.

strValue
A reference to a CString object through which a string will be returned.

Nonzero if a string has been returned in strValue; otherwise 0.

Override this function if your control has a property whose value cannot be directly converted to a string and
you want the property's value to be displayed in a container-supplied property browser.

Called by the framework when the control is UI activated to obtain the menu to be merged into the
container's existing menu.

The handle of the control's menu, or NULL if the control has none. The default implementation returns
NULL.

For more information on merging OLE resources, see the article Menus and Resources (OLE).

https://docs.microsoft.com/windows/desktop/api/ocidl/ns-ocidl-tagcontrolinfo

 COleControl::OnGetNaturalExtent

virtual BOOL OnGetNaturalExtent(
 DWORD dwAspect,
 LONG lindex,
 DVTARGETDEVICE* ptd,
 HDC hicTargetDev,
 DVEXTENTINFO* pExtentInfo,
 LPSIZEL psizel);

ParametersParameters

typedef struct tagExtentInfo
{
 UINT cb;
 DWORD dwExtentMode;
 SIZEL sizelProposed;
} DVEXTENTINFO;

Return ValueReturn Value

RemarksRemarks

Called by the framework in response to a container's IViewObjectEx::GetNaturalExtent request.

dwAspect
Specifies how the object is to be represented. Representations include content, an icon, a thumbnail, or a
printed document. Valid values are taken from the enumeration DVASPECT or DVASPECT2.

lindex
The portion of the object that is of interest. Currently only -1 is valid.

ptd
Points to the DVTARGETDEVICE structure defining the target device for which the object's size should be
returned.

hicTargetDev
Specifies the information context for the target device indicated by the ptd parameter from which the object
can extract device metrics and test the device's capabilities. If ptd is NULL, the object should ignore the value
in the hicTargetDev parameter.

pExtentInfo
Points to the DVEXTENTINFO structure that specifies sizing data. The DVEXTENTINFO structure is:

The structure member dwExtentMode can take one of two values:

DVEXTENT_CONTENT Inquire how big the control should be to exactly fit content (snap-to-size)

DVEXTENT_INTEGRAL When resizing, pass proposed size to control

psizel
Points to sizing data returned by control. The returned sizing data is set to -1 for any dimension that was not
adjusted.

Nonzero if it successfully returns or adjusts the size; otherwise 0.

Override this function to return the object's display size closest to the proposed size and extent mode in the
DVEXTENTINFO structure. The default implementation returns FALSE and makes no adjustments to the size.

https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-tagdvaspect
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagdvtargetdevice

COleControl::OnGetPredefinedStrings

virtual BOOL OnGetPredefinedStrings(
 DISPID dispid,
 CStringArray* pStringArray,
 CDWordArray* pCookieArray);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnGetPredefinedValue

virtual BOOL OnGetPredefinedValue(
 DISPID dispid,
 DWORD dwCookie,
 VARIANT* lpvarOut);

ParametersParameters

Return ValueReturn Value

COleControl::OnGetViewExtent

Called by the framework to obtain a set of predefined strings representing the possible values for a property.

dispid
The dispatch ID of a property of the control.

pStringArray
A string array to be filled in with return values.

pCookieArray
A DWORD array to be filled in with return values.

Nonzero if elements have been added to pStringArray and pCookieArray.

Override this function if your control has a property with a set of possible values that can be represented by
strings. For each element added to pStringArray, you should add a corresponding "cookie" element to
pCookieArray. These "cookie" values may later be passed by the framework to the
COleControl::OnGetPredefinedValue function.

Called by the framework to obtain the value corresponding to one of the predefined strings previously
returned by an override of COleControl::OnGetPredefinedStrings .

dispid
The dispatch ID of a property of the control.

dwCookie
A cookie value previously returned by an override of COleControl::OnGetPredefinedStrings .

lpvarOut
Pointer to a VARIANT structure through which a property value will be returned.

Nonzero if a value has been returned in lpvarOut; otherwise 0.

Called by the framework in response to a container's IViewObject2::GetExtent request.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-iviewobject2-getextent

virtual BOOL OnGetViewExtent(
 DWORD dwDrawAspect,
 LONG lindex,
 DVTARGETDEVICE* ptd,
 LPSIZEL lpsizel);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnGetViewRect

virtual BOOL OnGetViewRect(DWORD dwAspect, LPRECTL pRect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

dwDrawAspect
DWORD describing which form, or aspect, of an object is to be displayed. Valid values are taken from the
enumeration DVASPECT or DVASPECT2.

lindex
The portion of the object that is of interest. Currently only -1 is valid.

ptd
Points to the DVTARGETDEVICE structure defining the target device for which the object's size should be
returned.

lpsizel
Points to the location where the object's size is returned.

Nonzero if extent information is successfully returned; otherwise 0.

Override this function if your control uses two-pass drawing, and its opaque and transparent parts have
different dimensions.

Called by the framework in response to a container's IViewObjectEx::GetRect request.

dwAspect
DWORD describing which form, or aspect, of an object is to be displayed. Valid values are taken from the
enumeration DVASPECT or DVASPECT2:

DVASPECT_CONTENT Bounding rectangle of the whole object. Top-left corner at the object's origin
and size equal to the extent returned by GetViewExtent .

DVASPECT_OPAQUE Objects with a rectangular opaque region return that rectangle. Others fail.

DVASPECT_TRANSPARENT Rectangle covering all transparent or irregular parts.

pRect
Points to the RECTL structure specifying the rectangle in which the object should be drawn. This parameter
controls the positioning and stretching of the object.

Nonzero if the rectangle sized to the object is successfully returned; otherwise 0.

The object's size is converted by OnGetViewRect into a rectangle starting at a specific position (the default is

https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-tagdvaspect
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagdvtargetdevice
https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-tagdvaspect
https://msdn.microsoft.com/library/windows/desktop/dd162907

COleControl::OnGetViewStatus

virtual DWORD OnGetViewStatus();

Return ValueReturn Value

VIEWSTATUS_OPAQUE Object is completely opaque. If this bit is not set, the object
contains transparent parts. This bit applies only to content-
related aspects and not to DVASPECT_ICON or
DVASPECT_DOCPRINT.

VIEWSTATUS_SOLIDBKGND Object has a solid background (consisting in a solid color,
not a brush pattern). This bit is meaningful only if
VIEWSTATUS_OPAQUE is set and applies only to content-
related aspects and not to DVASPECT_ICON or
DVASPECT_DOCPRINT.

VIEWSTATUS_DVASPECTOPAQUE Object supports DVASPECT_OPAQUE. All IViewObjectEx
methods that take a drawing aspect as a parameter can be
called with this aspect.

VIEWSTATUS_DVASPECTTRANSPARENT Object supports DVASPECT_TRANSPARENT. All
IViewObjectEx methods that take a drawing aspect as a

parameter can be called with this aspect.

RemarksRemarks

COleControl::OnHideToolBars

virtual void OnHideToolBars();

RemarksRemarks

COleControl::OnInactiveMouseMove

the upper left corner of the display). Override this function if your control uses two-pass drawing, and its
opaque and transparent parts have different dimensions.

Called by the framework in response to a container's IViewObjectEx::GetViewStatus request.

One of the values of the VIEWSTATUS enumeration if successful; otherwise 0. Possible values are any
combination of the following:

Override this function if your control uses two-pass drawing. The default implementation returns
VIEWSTATUS_OPAQUE.

Called by the framework when the control is UI deactivated.

The implementation should hide all toolbars displayed by OnShowToolbars .

Called by the container for the inactive object under the mouse pointer on receipt of a WM_MOUSEMOVE
message.

virtual void OnInactiveMouseMove(
 LPCRECT lprcBounds,
 long x,
 long y,
 DWORD dwKeyState);

ParametersParameters

RemarksRemarks

COleControl::OnInactiveSetCursor

virtual BOOL OnInactiveSetCursor(
 LPCRECT lprcBounds,
 long x,
 long y,
 DWORD dwMouseMsg,
 BOOL bSetAlways);

ParametersParameters

lprcBounds
The object bounding rectangle, in client coordinates of the containing window. Tells the object its exact
position and size on the screen when the WM_MOUSEMOVE message was received.

x
The x coordinate of the mouse location in client coordinates of the containing window.

y
The y coordinate of the mouse location in client coordinates of the containing window.

dwKeyState
Identifies the current state of the keyboard modifier keys on the keyboard. Valid values can be a combination
of any of the flags MK_CONTROL, MK_SHIFT, MK_ALT, MK_BUTTON, MK_LBUTTON, MK_MBUTTON, and
MK_RBUTTON.

Note that window client coordinates (pixels) are used to pass the mouse cursor position. This is made
possible by also passing the bounding rectangle of the object in the same coordinate system.

Called by the container for the inactive object under the mouse pointer on receipt of a WM_SETCURSOR
message.

lprcBounds
The object bounding rectangle, in client coordinates of the containing window. Tells the object its exact
position and size on the screen when the WM_SETCURSOR message was received.

x
The x coordinate of the mouse location in client coordinates of the containing window.

y
The y coordinate of the mouse location in client coordinates of the containing window.

dwMouseMsg
The identifier of the mouse message for which a WM_SETCURSOR occurred.

bSetAlways
Specifies whether or not the object must set the cursor. If TRUE, the object must set the cursor; if FALSE, the
cursor is not obligated to set the cursor, and should return S_FALSE in that case.

Return ValueReturn Value

RemarksRemarks

COleControl::OnKeyDownEvent

virtual void OnKeyDownEvent(
 USHORT nChar,
 USHORT nShiftState);

ParametersParameters

RemarksRemarks

COleControl::OnKeyPressEvent

virtual void OnKeyPressEvent(USHORT nChar);

ParametersParameters

RemarksRemarks

COleControl::OnKeyUpEvent

virtual void OnKeyUpEvent(
 USHORT nChar,
 USHORT nShiftState);

Nonzero if successful; otherwise 0.

Note that window client coordinates (pixels) are used to pass the mouse cursor position. This is made
possible by also passing the bounding rectangle of the object in the same coordinate system.

Called by the framework after a stock KeyDown event has been processed.

nChar
The virtual key code value of the pressed key. For a list of standard virtual key codes, see Winuser.h

nShiftState
Contains a combination of the following flags:

SHIFT_MASK The SHIFT key was pressed during the action.

CTRL_MASK The CTRL key was pressed during the action.

ALT_MASK The ALT key was pressed during the action.

Override this function if your control needs access to the key information after the event has been fired.

Called by the framework after the stock KeyPress event has been fired.

nChar
Contains the virtual key code value of the key pressed. For a list of standard virtual key codes, see Winuser.h

Note that the nChar value may have been modified by the container.

Override this function if you want notification after this event occurs.

Called by the framework after a stock KeyDown event has been processed.

ParametersParameters

RemarksRemarks

COleControl::OnMapPropertyToPage

virtual BOOL OnMapPropertyToPage(
 DISPID dispid,
 LPCLSID lpclsid,
 BOOL* pbPageOptional);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnMnemonic

virtual void OnMnemonic(LPMSG pMsg);

ParametersParameters

nChar
The virtual key code value of the pressed key. For a list of standard virtual key codes, see Winuser.h

nShiftState
Contains a combination of the following flags:

SHIFT_MASK The SHIFT key was pressed during the action.

CTRL_MASK The CTRL key was pressed during the action.

ALT_MASK The ALT key was pressed during the action.

Override this function if your control needs access to the key information after the event has been fired.

Called by the framework to obtain the class ID of a property page that implements editing of the specified
property.

dispid
The dispatch ID of a property of the control.

lpclsid
Pointer to a CLSID structure through which a class ID will be returned.

pbPageOptional
Returns an indicator of whether use of the specified property page is optional.

Nonzero if a class ID has been returned in lpclsid; otherwise 0.

Override this function to provide a way to invoke your control's property pages from the container's property
browser.

Called by the framework when the container has detected that a mnemonic key of the OLE control has been
pressed.

pMsg
Pointer to the Windows message generated by a mnemonic key press.

COleControl::OnProperties

virtual BOOL OnProperties(
 LPMSG lpMsg,
 HWND hWndParent,
 LPCRECT lpRect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnQueryHitPoint

virtual BOOL OnQueryHitPoint(
 DWORD dwAspect,
 LPCRECT pRectBounds,
 POINT ptlLoc,
 LONG lCloseHint,
 DWORD* pHitResult);

ParametersParameters

Called by the framework when the control's properties verb has been invoked by the container.

lpMsg
A pointer to the Windows message that invoked the verb.

hWndParent
A handle to the parent window of the control.

lpRect
A pointer to the rectangle used by the control in the container.

Nonzero if the call is successful; otherwise 0.

The default implementation displays a modal property dialog box.

You can also use this function to cause the display of your control's property pages. Make a call to the
OnProperties function, passing the handle of your control's parent in the hWndParent parameter. In this case,

the values of the lpMsg and lpRect parameters are ignored.

Called by the framework in response to a container's IViewObjectEx::QueryHitPoint request.

dwAspect
Specifies how the object is represented. Valid values are taken from the enumeration DVASPECT or
DVASPECT2.

pRectBounds
Pointer to a RECT structure specifying the bounding rectangle of the OLE control client area.

ptlLoc
Pointer to the POINT structure specifying the point to be checked for a hit. The point is specified in OLE client
area coordinates.

lCloseHint
The distance that defines "close" to the point checked for a hit.

pHitResult

https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-tagdvaspect

Return ValueReturn Value

RemarksRemarks

COleControl::OnQueryHitRect

virtual BOOL OnQueryHitRect(
 DWORD dwAspect,
 LPCRECT pRectBounds,
 LPCRECT prcLoc,
 LONG lCloseHint,
 DWORD* pHitResult);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Pointer to the result of the hit query. One of the following values:

HITRESULT_OUTSIDE ptlLoc is outside the OLE object and not close.

HITRESULT_TRANSPARENT ptlLoc is within the bounds of the OLE object, but not close to the image.
For example, a point in the middle of a transparent circle could be HITRESULT_TRANSPARENT.

HITRESULT_CLOSE ptlLoc is inside or outside the OLE object but close enough to the object to be
considered inside. Small, thin, or detailed objects may use this value. Even if a point is outside the
bounding rectangle of an object it may still be close (this is needed for hitting small objects).

HITRESULT_HIT ptlLoc is within the image of the object.

Nonzero if a hit result is successfully returned; otherwise 0. A hit is an overlap with the OLE control display
area.

Queries whether an object's display rectangle overlaps the given point (hits the point). QueryHitPoint can be
overridden to test hits for non-rectangular objects.

Called by the framework in response to a container's IViewObjectEx::QueryHitRect request.

dwAspect
Specifies how the object is to be represented. Valid values are taken from the enumeration DVASPECT or
DVASPECT2.

pRectBounds
Pointer to a RECT structure specifying the bounding rectangle of the OLE control client area.

prcLoc
Pointer to the RECT structure specifying the rectangle to be checked for a hit (overlap with the object
rectangle), relative to the upper left corner of the object.

lCloseHint
Not used.

pHitResult
Pointer to the result of the hit query. One of the following values:

HITRESULT_OUTSIDE no point in the rectangle is hit by the OLE object.

HITRESULT_HIT at least one point in the rectangle would be a hit on the object.

Nonzero if a hit result is successfully returned; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-tagdvaspect

COleControl::OnRenderData

virtual BOOL OnRenderData(
 LPFORMATETC lpFormatEtc,
 LPSTGMEDIUM lpStgMedium);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnRenderFileData

virtual BOOL OnRenderFileData(
 LPFORMATETC lpFormatEtc,
 CFile* pFile);

ParametersParameters

Return ValueReturn Value

Queries whether an object's display rectangle overlaps any point in the given rectangle (hits the rectangle).
QueryHitRect can be overridden to test hits for non-rectangular objects.

Called by the framework to retrieve data in the specified format.

lpFormatEtc
Points to the FORMATETC structure specifying the format in which information is requested.

lpStgMedium
Points to a STGMEDIUM structure in which the data is to be returned.

Nonzero if successful; otherwise 0.

The specified format is one previously placed in the control object using the DelayRenderData or
DelayRenderFileData member functions for delayed rendering. The default implementation of this function
calls OnRenderFileData or OnRenderGlobalData , respectively, if the supplied storage medium is either a file or
memory. If the requested format is CF_METAFILEPICT or the persistent property set format, the default
implementation renders the appropriate data and returns nonzero. Otherwise, it returns 0 and does nothing.

If lpStgMedium->tymed is TYMED_NULL, the STGMEDIUM should be allocated and filled as specified by
lpFormatEtc->tymed. If not TYMED_NULL, the STGMEDIUM should be filled in place with the data.

Override this function to provide your data in the requested format and medium. Depending on your data,
you may want to override one of the other versions of this function instead. If your data is small and fixed in
size, override OnRenderGlobalData . If your data is in a file, or is of variable size, override OnRenderFileData .

For more information, see the FORMATETC and STGMEDIUM structures in the Windows SDK.

Called by the framework to retrieve data in the specified format when the storage medium is a file.

lpFormatEtc
Points to the FORMATETC structure specifying the format in which information is requested.

pFile
Points to a CFile object in which the data is to be rendered.

Nonzero if successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

RemarksRemarks

COleControl::OnRenderGlobalData

virtual BOOL OnRenderGlobalData(
 LPFORMATETC lpFormatEtc,
 HGLOBAL* phGlobal);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnResetState

virtual void OnResetState();

RemarksRemarks

The specified format is one previously placed in the control object using the DelayRenderData member
function for delayed rendering. The default implementation of this function simply returns FALSE.

Override this function to provide your data in the requested format and medium. Depending on your data,
you might want to override one of the other versions of this function instead. If you want to handle multiple
storage mediums, override OnRenderData . If your data is in a file, or is of variable size, override
OnRenderFileData .

For more information, see the FORMATETC structure in the Windows SDK.

Called by the framework to retrieve data in the specified format when the specified storage medium is global
memory.

lpFormatEtc
Points to the FORMATETC structure specifying the format in which information is requested.

phGlobal
Points to a handle to global memory in which the data is to be returned. If no memory has been allocated,
this parameter can be NULL.

Nonzero if successful; otherwise 0.

The specified format is one previously placed in the control object using the DelayRenderData member
function for delayed rendering. The default implementation of this function simply returns FALSE.

If phGlobal is NULL, then a new HGLOBAL should be allocated and returned in phGlobal. Otherwise, the
HGLOBAL specified by phGlobal should be filled with the data. The amount of data placed in the HGLOBAL
must not exceed the current size of the memory block. Also, the block cannot be reallocated to a larger size.

Override this function to provide your data in the requested format and medium. Depending on your data,
you may want to override one of the other versions of this function instead. If you want to handle multiple
storage mediums, override OnRenderData . If your data is in a file, or is of variable size, override
OnRenderFileData .

For more information, see the FORMATETC structure in the Windows SDK.

Called by the framework when the control's properties should be set to their default values.

The default implementation calls DoPropExchange, passing a CPropExchange object that causes properties to

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

COleControl::OnSetClientSite

virtual void OnSetClientSite();

RemarksRemarks

COleControl::OnSetData

virtual BOOL OnSetData(
 LPFORMATETC lpFormatEtc,
 LPSTGMEDIUM lpStgMedium,
 BOOL bRelease);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnSetExtent

be set to their default values.

The control writer can insert initialization code for the OLE control in this overridable. This function is called
when IPersistStream::Load or IPersistStorage::Load fails, or IPersistStreamInit::InitNew or
IPersistStorage::InitNew is called, without first calling either IPersistStream::Load or IPersistStorage::Load .

Called by the framework when the container has called the control's IOleControl::SetClientSite function.

By default, OnSetClientSite checks whether data path properties are loaded and, if they are, calls
DoDataPathPropExchange .

Override this function to do any special processing of this notification. In particular, overrides of this function
should call the base class.

Called by the framework to replace the control's data with the specified data.

lpFormatEtc
Pointer to a FORMATETC structure specifying the format of the data.

lpStgMedium
Pointer to a STGMEDIUM structure in which the data resides.

bRelease
TRUE if the control should free the storage medium; FALSE if the control should not free the storage
medium.

Nonzero if successful; otherwise 0.

If the data is in the persistent property set format, the default implementation modifies the control's state
accordingly. Otherwise, the default implementation does nothing. If bRelease is TRUE, then a call to
ReleaseStgMedium is made; otherwise not.

Override this function to replace the control's data with the specified data.

For more information, see the FORMATETC and STGMEDIUM structures in the Windows SDK.

Called by the framework when the control's extent needs to be changed, as a result of a call to
IOleObject::SetExtent.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststream-load
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststorage-load
https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipersiststreaminit-initnew
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststorage-initnew
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-setextent

virtual BOOL OnSetExtent(LPSIZEL lpSizeL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnSetObjectRects

virtual BOOL OnSetObjectRects(
 LPCRECT lpRectPos,
 LPCRECT lpRectClip);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::OnShowToolBars

virtual void OnShowToolBars();

RemarksRemarks

COleControl::OnTextChanged

lpSizeL
A pointer to the SIZEL structure that uses long integers to represent the width and height of the control,
expressed in HIMETRIC units.

Nonzero if the size change was accepted; otherwise 0.

The default implementation handles the resizing of the control's extent. If the control is in-place active, a call
to the container's OnPosRectChanged is then made.

Override this function to alter the default resizing of your control.

Called by the framework to implement a call to IOleInPlaceObject::SetObjectRects.

lpRectPos
A pointer to a RECT structure indicating the control's new position and size relative to the container.

lpRectClip
A pointer to a RECT structure indicating a rectangular area to which the control is to be clipped.

Nonzero if the repositioning was accepted; otherwise 0.

The default implementation automatically handles the repositioning and resizing of the control window and
returns TRUE.

Override this function to alter the default behavior of this function.

Called by the framework when the control has been UI activated.

The default implementation does nothing.

Called by the framework when the stock Caption or Text property value has changed.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleinplaceobject-setobjectrects

virtual void OnTextChanged();

RemarksRemarks

COleControl::OnWindowlessMessage

virtual BOOL OnWindowlessMessage(
 UINT msg,
 WPARAM wParam,
 LPARAM lParam,
 LRESULT* plResult);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::ParentToClient

virtual UINT ParentToClient(
 LPCRECT lprcBounds,
 LPPOINT pPoint,
 BOOL bHitTest = FALSE) const;

The default implementation calls InvalidateControl .

Override this function if you want notification after this property changes.

Called by the framework in response to a container's IOleInPlaceObjectWindowless::OnWindowMessage request.

msg
Message identifier as passed by Windows.

wParam
As passed by Windows. Specifies additional message-specific information. The contents of this parameter
depend on the value of the msg parameter.

lParam
As passed by Windows. Specifies additional message-specific information. The contents of this parameter
depend on the value of the msg parameter.

plResult
Windows result code. Specifies the result of the message processing and depends on the message sent.

Nonzero if successful; otherwise 0.

Processes window messages for windowless controls. COleControl 's OnWindowlessMessage should be used for
window messages other than mouse messages and keyboard messages. COleControl provides SetCapture
and SetFocus specifically to get mouse capture and keyboard focus for windowless OLE objects.

Because windowless objects do not have a window, they need a mechanism to let the container dispatch
messages to them. A windowless OLE object gets messages from its container, through the OnWindowMessage

method on the IOleInPlaceObjectWindowless interface (an extension of IOleInPlaceObject for windowless
support). OnWindowMessage does not take an HWND parameter.

Translates the coordinates of pPoint into client coordinates.

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplaceobject

ParametersParameters

Return ValueReturn Value

lprcBounds
Pointer to the bounds of the OLE control within the container. Not the client area but the area of the entire
control including borders and scroll bars.

pPoint
Pointer to the parent (container) point to be translated into the coordinates of the client area of the control.

bHitTest
Specifies whether or not hit testing is to be done on the point.

If bHitTest is FALSE, returns HTNOWHERE. If bHitTest is TRUE, returns the location in which the parent
(container) point landed in the client area of the OLE control and is one of the following mouse hit-test
values:

HTBORDER In the border of a window that does not have a sizing border.

HTBOTTOM In the lower horizontal border of the window.

HTBOTTOMLEFT In the lower-left corner of the window border.

HTBOTTOMRIGHT In the lower-right corner of the window border.

HTCAPTION In a title-bar area.

HTCLIENT In a client area.

HTERROR On the screen background or on a dividing line between windows (same as HTNOWHERE
except that the DefWndProc Windows function produces a system beep to indicate an error).

HTGROWBOX In a size box.

HTHSCROLL In the horizontal scroll bar.

HTLEFT In the left border of the window.

HTMAXBUTTON In a Maximize button.

HTMENU In a menu area.

HTMINBUTTON In a Minimize button.

HTNOWHERE On the screen background or on a dividing line between windows.

HTREDUCE In a Minimize button.

HTRIGHT In the right border of the window.

HTSIZE In a size box (same as HTGROWBOX).

HTSYSMENU In a Control menu or in a Close button in a child window.

HTTOP In the upper horizontal border of the window.

HTTOPLEFT In the upper-left corner of the window border.

HTTOPRIGHT In the upper-right corner of the window border.

HTTRANSPARENT In a window currently covered by another window.

HTVSCROLL In the vertical scroll bar.

RemarksRemarks

COleControl::PostModalDialog

void PostModalDialog(HWND hWndParent = NULL);

ParametersParameters

RemarksRemarks

COleControl::PreModalDialog

void PreModalDialog(HWND hWndParent = NULL);

ParametersParameters

RemarksRemarks

COleControl::RecreateControlWindow

void RecreateControlWindow();

RemarksRemarks

COleControl::Refresh

void Refresh();

HTZOOM In a Maximize button.

On input pPoint is relative to the origin of the parent (upper left corner of the container). On output pPoint is
relative to the origin of the client area of the OLE control (upper left corner of the client area of the control).

Notifies the container that a modal dialog box has been closed.

hWndParent
Handle to the parent window of the modal dialog box.

Call this function after displaying any modal dialog box. You must call this function so that the container can
enable any top-level windows disabled by PreModalDialog . This function should be paired with a call to
PreModalDialog .

Notifies the container that a modal dialog box is about to be displayed.

hWndParent
Handle to the parent window of the modal dialog box.

Call this function before displaying any modal dialog box. You must call this function so that the container can
disable all its top-level windows. After the modal dialog box has been displayed, you must then call
PostModalDialog .

Destroys and re-creates the control's window.

This may be necessary if you need to change the window's style bits.

Forces a repaint of the OLE control.

RemarksRemarks

COleControl::ReleaseCapture

BOOL ReleaseCapture();

Return ValueReturn Value

RemarksRemarks

COleControl::ReleaseDC

int ReleaseDC(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::ReparentControlWindow

virtual void ReparentControlWindow(
 HWND hWndOuter,
 HWND hWndParent);

ParametersParameters

RemarksRemarks

This function is supported by the COleControl base class as a stock method, called Refresh. This allows users
of your OLE control to repaint the control at a specific time. For more information on this method, see the
article ActiveX Controls: Methods.

Releases mouse capture.

Nonzero if successful; otherwise 0.

If the control currently has the mouse capture, the capture is released. Otherwise, this function has no effect.

Releases the display device context of a container of a windowless control, freeing the device context for use
by other applications.

pDC
Identifies the container device context to be released.

Nonzero if successful; otherwise 0.

The application must call ReleaseDC for each call to GetDC.

Sets the parent of the control.

hWndOuter
The handle of the control window.

hWndParent
The handle of the new parent window.

Call this function to reset the parent of the control window.

COleControl::ResetStockProps

void ResetStockProps();

RemarksRemarks

ExampleExample

void CMyAxCtrl::OnResetState()
{
 ResetVersion(MAKELONG(_wVerMinor, _wVerMajor));
 ResetStockProps();

 // initialize custom properties here
}

COleControl::ResetVersion

void ResetVersion(DWORD dwVersionDefault);

ParametersParameters

RemarksRemarks

COleControl::ScrollWindow

void ScrollWindow(
 int xAmount,
 int yAmount,
 LPCRECT lpRect = NULL,
 LPCRECT lpClipRect = NULL);

ParametersParameters

Initializes the state of the COleControl stock properties to their default values.

The properties are: Appearance, BackColor, BorderStyle, Caption, Enabled, Font, ForeColor, hWnd, and Text.
For a description of stock properties, see ActiveX Controls: Adding Stock Properties.

You can improve a control's binary initialization performance by using ResetStockProps and ResetVersion to
override COleControl::OnResetState . See the example below. For further information on optimizing
initialization, see ActiveX Controls: Optimization.

Initializes the version number to specified value.

dwVersionDefault
The version number to be assigned to the control.

You can improve a control's binary initialization performance by using ResetVersion and ResetStockProps to
override COleControl::OnResetState . See the example at ResetStockProps. For further information on
optimizing initialization, see ActiveX Controls: Optimization.

Allows a windowless OLE object to scroll an area within its in-place active image on the screen.

xAmount
Specifies the amount, in device units, of horizontal scrolling. This parameter must be a negative value to scroll
to the left.

COleControl::SelectFontObject

CFont* SelectFontObject(
 CDC* pDC,
 CFontHolder& fontHolder);

ParametersParameters

Return ValueReturn Value

COleControl::SelectStockFont

CFont* SelectStockFont(CDC* pDC);

ParametersParameters

Return ValueReturn Value

COleControl::SerializeExtent

void SerializeExtent(CArchive& ar);

ParametersParameters

yAmount
Specifies the amount, in device units, of vertical scrolling. This parameter must be a negative value to scroll
upward.

lpRect
Points to a CRect object or RECT structure that specifies the portion of the OLE object's client area to scroll, in
client coordinates of the containing window. If lpRect is NULL, the entire OLE object's client area is scrolled.

lpClipRect
Points to a CRect object or RECT structure that specifies the rectangle to clip to. Only pixels inside the
rectangle are scrolled. Bits outside the rectangle are not affected even if they are in the lpRect rectangle. If
lpClipRect is NULL, no clipping is performed on the scroll rectangle.

Selects a font into a device context.

pDC
Pointer to a device context object.

fontHolder
Reference to the CFontHolder object representing the font to be selected.

A pointer to the previously selected font. When the caller has finished all drawing operations that use
fontHolder, it should reselect the previously selected font by passing it as a parameter to CDC::SelectObject.

Selects the stock Font property into a device context.

pDC
The device context into which the font will be selected.

A pointer to the previously selected CFont object. You should use CDC::SelectObject to select this font back
into the device context when you are finished.

Serializes or initializes the state of the display space allotted to the control.

RemarksRemarks

ExampleExample

void CMyAxCtrl::Serialize(CArchive& ar)
{
 SerializeVersion(ar, MAKELONG(_wVerMinor, _wVerMajor));
 SerializeExtent(ar);
 SerializeStockProps(ar);

 if (ar.IsStoring())
 { // storing code
 }
 else
 { // loading code
 }
}

COleControl::SerializeStockProps

void SerializeStockProps(CArchive& ar);

ParametersParameters

RemarksRemarks

COleControl::SerializeVersion

DWORD SerializeVersion(
 CArchive& ar,
 DWORD dwVersionDefault,
 BOOL bConvert = TRUE);

ParametersParameters

ar
A CArchive object to serialize to or from.

You can improve a control's binary persistence performance by using SerializeExtent , SerializeStockProps ,
and SerializeVersion to override COleControl::Serialize . See the example below. For further information
on optimizing initialization, see ActiveX Controls: Optimization.

Serializes or initializes the state of the COleControl stock properties: Appearance, BackColor, BorderStyle,
Caption, Enabled, Font, ForeColor, and Text.

ar
A CArchive object to serialize to or from.

For a description of stock properties, see ActiveX Controls: Adding Stock Properties.

You can improve a control's binary persistence performance by using SerializeStockProps , SerializeExtent ,
and SerializeVersion to override COleControl::Serialize . For an example, see the code at SerializeExtent.
For further information on optimizing initialization, see ActiveX Controls: Optimization.

Serializes or initializes the state of a control's version information.

ar
A CArchive object to serialize to or from.

Return ValueReturn Value

RemarksRemarks

COleControl::SetAppearance

void SetAppearance (short sAppearance);

ParametersParameters

RemarksRemarks

COleControl::SetBackColor

void SetBackColor(OLE_COLOR dwBackColor);

ParametersParameters

RemarksRemarks

COleControl::SetBorderStyle

void SetBorderStyle(short sBorderStyle);

ParametersParameters

dwVersionDefault
The current version number of the control.

bConvert
Indicates whether persistent data should be converted to the latest format when it is saved, or maintained in
the same format it had when it was loaded.

The version number of the control. If the specified archive is loading, SerializeVersion returns the version
loaded from that archive. Otherwise, it returns the currently loaded version.

You can improve a control's binary persistence performance by using SerializeVersion , SerializeExtent ,
and SerializeStockProps to override COleControl::Serialize . For an example, see the code at SerializeExtent.
For further information on optimizing initialization, see ActiveX Controls: Optimization.

Sets the stock Appearance property value of your control.

sAppearance
A short (VT_I2) value to be used for the appearance of your control. A value of zero sets the control's
appearance to flat and a value of 1 sets the control's appearance to 3D.

For more about stock properties, see ActiveX Controls: Properties.

Sets the stock BackColor property value of your control.

dwBackColor
An OLE_COLOR value to be used for background drawing of your control.

For more information on using this property and other related properties, see the article ActiveX Controls:
Properties.

Sets the stock BorderStyle property value of your control.

sBorderStyle

RemarksRemarks

COleControl::SetCapture

CWnd* SetCapture();

Return ValueReturn Value

RemarksRemarks

COleControl::SetControlSize

BOOL SetControlSize(int cx, int cy);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::SetEnabled

void SetEnabled(BOOL bEnabled);

ParametersParameters

RemarksRemarks

The new border style for the control; 0 indicates no border and 1 indicates a normal border.

The control window will then be re-created and OnBorderStyleChanged called.

Causes the control's container window to take possession of the mouse capture on the control's behalf.

A pointer to the CWnd window object that previously received mouse input.

If the control is activated and windowless, this function causes the control's container window to take
possession of the mouse capture, on the control's behalf. Otherwise, this function causes the control itself to
take possession of the mouse capture (same as CWnd::SetCapture).

Sets the size of the OLE control window and notifies the container that the control site is changing.

cx
Specifies the new width of the control in pixels.

cy
Specifies the new height of the control in pixels.

Nonzero if the call was successful; otherwise 0.

This function should not be used in your control's constructor.

Note that all coordinates for control windows are relative to the upper-left corner of the control.

Sets the stock Enabled property value of your control.

bEnabled
TRUE if the control is to be enabled; otherwise FALSE.

After setting this property, OnEnabledChange is called.

COleControl::SetFocus

CWnd* SetFocus();

Return ValueReturn Value

RemarksRemarks

COleControl::SetFont

void SetFont(LPFONTDISP pFontDisp);

ParametersParameters

COleControl::SetForeColor

void SetForeColor(OLE_COLOR dwForeColor);

ParametersParameters

RemarksRemarks

COleControl::SetInitialDataFormats

virtual void SetInitialDataFormats();

RemarksRemarks

Causes the control's container window to take possession of the input focus on the control's behalf.

A pointer to the CWnd window object that previously had the input focus, or NULL if there is no such window.

If the control is activated and windowless, this function causes the control's container window to take
possession of the input focus, on the control's behalf. The input focus directs keyboard input to the container's
window, and the container dispatches all subsequent keyboard messages to the OLE object that calls
SetFocus . Any window that previously had the input focus loses it.

If the control is not windowless, this function causes the control itself to take possession of the input focus
(same as CWnd::SetFocus).

Sets the stock Font property of your control.

pFontDisp
A pointer to a Font dispatch interface.

Sets the stock ForeColor property value of your control.

dwForeColor
An OLE_COLOR value to be used for foreground drawing of your control.

For more information on using this property and other related properties, see the article ActiveX Controls:
Properties.

Called by the framework to initialize the list of data formats supported by the control.

The default implementation specifies two formats: CF_METAFILEPICT and the persistent property set.

COleControl::SetInitialSize

void SetInitialSize(
 int cx,
 int cy);

ParametersParameters

RemarksRemarks

COleControl::SetModifiedFlag

void SetModifiedFlag(BOOL bModified = TRUE);

ParametersParameters

RemarksRemarks

COleControl::SetNotPermitted

void SetNotPermitted();

RemarksRemarks

COleControl::SetNotSupported

void SetNotSupported();

RemarksRemarks

Sets the size of an OLE control when first displayed in a container.

cx
The initial width of the OLE control in pixels.

cy
The initial height of the OLE control in pixels.

Call this function in your constructor to set the initial size of your control. The initial size is measured in device
units, or pixels. It is recommended that this call be made in your control's constructor.

Changes the modified state of a control.

bModified
The new value for the control's modified flag. TRUE indicates that the control's state has been modified;
FALSE indicates that the control's state has just been saved.

Call this function whenever a change occurs that would affect your control's persistent state. For example, if
the value of a persistent property changes, call this function with bModified TRUE .

Indicates that an edit request has failed.

Call this function when BoundPropertyRequestEdit fails. This function throws an exception of type
COleDispScodeException to indicate that the set operation was not permitted.

Prevents modification to a control's property value by the user.

COleControl::SetRectInContainer

BOOL SetRectInContainer(LPCRECT lpRect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControl::SetText

void SetText(LPCTSTR pszText);

ParametersParameters

RemarksRemarks

COleControl::ThrowError

void ThrowError(
 SCODE sc,
 UINT nDescriptionID,
 UINT nHelpID = -1);

void ThrowError(
 SCODE sc,
 LPCTSTR pszDescription = NULL,
 UINT nHelpID = 0);

ParametersParameters

Call this function in place of the Set function of any property where modification of the property value by the
control's user is not supported. One example would be a property that is read only.

Sets the coordinates of the control's rectangle relative to the container, expressed in device units.

lpRect
A pointer to a rectangle containing the control's new coordinates relative to the container.

Nonzero if the call was successful; otherwise 0.

If the control is open, it is resized; otherwise the container's OnPosRectChanged function is called.

Sets the value of your control's stock Caption or Text property.

pszText
A pointer to a character string.

Note that the stock Caption and Text properties are both mapped to the same value. This means that any
changes made to either property will automatically change both properties. In general, a control should
support either the stock Caption or Text property, but not both.

Signals the occurrence of an error in your control.

sc
The status code value to be reported. For a complete list of possible codes, see the article ActiveX Controls:
Advanced Topics.

nDescriptionID

RemarksRemarks

COleControl::TransformCoords

void TransformCoords(
 POINTL* lpptlHimetric,
 POINTF* lpptfContainer,
 DWORD flags);

ParametersParameters

RemarksRemarks

COleControl::TranslateColor

COLORREF TranslateColor(
 OLE_COLOR clrColor,
 HPALETTE hpal = NULL);

ParametersParameters

The string resource ID of the exception to be reported.

nHelpID
The help ID of the topic to be reported on.

pszDescription
A string containing an explanation of the exception to be reported.

This function should only be called from within a Get or Set function for an OLE property, or the
implementation of an OLE automation method. If you need to signal errors that occur at other times, you
should fire the stock Error event.

Transforms coordinate values between HIMETRIC units and the container's native units.

lpptlHimetric
Pointer to a POINTL structure containing coordinates in HIMETRIC units.

lpptfContainer
Pointer to a POINTF structure containing coordinates in the container's unit size.

flags
A combination of the following values:

XFORMCOORDS_POSITION A position in the container.

XFORMCOORDS_SIZE A size in the container.

XFORMCOORDS_HIMETRICTOCONTAINER Transform HIMETRIC units to the container's units.

XFORMCOORDS_CONTAINERTOHIMETRIC Transform the container's units to HIMETRIC units.

The first two flags, XFORMCOORDS_POSITION and XFORMCOORDS_SIZE, indicate whether the
coordinates should be treated as a position or a size. The remaining two flags indicate the direction of
transformation.

Converts a color value from the OLE_COLOR data type to the COLORREF data type.

clrColor
A OLE_COLOR data type. For more information, see the Windows OleTranslateColor function.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/api/olectl/nf-olectl-oletranslatecolor

Return ValueReturn Value

RemarksRemarks

COleControl::WillAmbientsBeValidDuringLoad

BOOL WillAmbientsBeValidDuringLoad();

Return ValueReturn Value

RemarksRemarks

COleControl::WindowProc

virtual LRESULT WindowProc(
 UINT message,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

hpal
A handle to an optional palette; can be NULL.

An RGB (red, green, blue) 32-bit color value that defines the solid color closest to the clrColor value that the
device can represent.

This function is useful to translate the stock ForeColor and BackColor properties to COLORREF types used
by CDC member functions.

Determines whether your control should use the values of ambient properties as default values, when it is
subsequently loaded from its persistent state.

Nonzero indicates that ambient properties will be valid; otherwise ambient properties will not be valid.

In some containers, your control may not have access to its ambient properties during the initial call to the
override of COleControl::DoPropExchange . This is the case if the container calls IPersistStreamInit::Load or
IPersistStorage::Load prior to calling IOleObject::SetClientSite (that is, if it does not honor the
OLEMISC_SETCLIENTSITEFIRST status bit).

Provides a Windows procedure for a COleControl object.

message
Specifies the Windows message to be processed.

wParam
Provides additional information used in processing the message. The parameter value depends on the
message.

lParam
Provides additional information used in processing the message. The parameter value depends on the
message.

The return value of the message dispatched.

Call this function to dispatch specific messages through the control's message map.

https://docs.microsoft.com/windows/desktop/api/ocidl/nf-ocidl-ipersiststreaminit-load
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-ipersiststorage-load
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-setclientsite

See also
MFC Sample CIRC3
MFC Sample TESTHELP
COlePropertyPage Class
CWnd Class
Hierarchy Chart
CFontHolder Class
CPictureHolder Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleControlContainer Class
3/4/2019 • 13 minutes to read • Edit Online

Syntax
class COleControlContainer : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleControlContainer::COleControlContainer Constructs a COleControlContainer object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleControlContainer::AttachControlSite Creates a control site, hosted by the container.

COleControlContainer::BroadcastAmbientPropertyChange Informs all hosted controls that an ambient property has
changed.

COleControlContainer::CheckDlgButton Modifies the specified button control.

COleControlContainer::CheckRadioButton Selects the specified radio button of a group.

COleControlContainer::CreateControl Creates a hosted ActiveX control.

COleControlContainer::CreateOleFont Creates an OLE font.

COleControlContainer::FindItem Returns the custom site of the specified control.

COleControlContainer::FreezeAllEvents Determines if the control site is accepting events.

COleControlContainer::GetAmbientProp Retrieves the specified ambient property.

COleControlContainer::GetDlgItem Retrieves the specified dialog control.

COleControlContainer::GetDlgItemInt Retrieves the value of the specified dialog control.

COleControlContainer::GetDlgItemText Retrieves the caption of the specified dialog control.

COleControlContainer::HandleSetFocus Determines if the container handles WM_SETFOCUS
messages.

Acts as a control container for ActiveX controls.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colecontrolcontainer-class.md

COleControlContainer::HandleWindowlessMessage Handles messages sent to a windowless control.

COleControlContainer::IsDlgButtonChecked Determines the state of the specified button.

COleControlContainer::OnPaint Called to repaint a portion of the container.

COleControlContainer::OnUIActivate Called when a control is about to be in-place activated.

COleControlContainer::OnUIDeactivate Called when a control is about to be deactivated.

COleControlContainer::ScrollChildren Called by the framework when scroll messages are received
from a child window.

COleControlContainer::SendDlgItemMessage Sends a message to the specified control.

COleControlContainer::SetDlgItemInt Sets the value of the specified control.

COleControlContainer::SetDlgItemText Sets the text of the specified control.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleControlContainer::m_crBack The background color of the container.

COleControlContainer::m_crFore The foreground color of the container.

COleControlContainer::m_listSitesOrWnds A list of the supported control sites.

COleControlContainer::m_nWindowlessControls The number of hosted windowless controls.

COleControlContainer::m_pOleFont A pointer to the OLE font of the custom control site.

COleControlContainer::m_pSiteCapture Pointer to the capture control site.

COleControlContainer::m_pSiteFocus Pointer to the control that currently has input focus.

COleControlContainer::m_pSiteUIActive Pointer to the control that is currently in-place activated.

COleControlContainer::m_pWnd Pointer to the window implementing the control container.

COleControlContainer::m_siteMap The site map.

Remarks
This is done by providing support for one or more ActiveX control sites (implemented by COleControlSite).
COleControlContainer fully implements the IOleInPlaceFrame and IOleContainer interfaces, allowing the

contained ActiveX controls to fulfill their qualifications as in-place items.

Commonly, this class is used in conjunction with COccManager and COleControlSite to implement a custom
ActiveX control container, with custom sites for one or more ActiveX controls.

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplaceframe
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-iolecontainer

Inheritance Hierarchy

Requirements

COleControlContainer::AttachControlSite

virtual void AttachControlSite(
 CWnd* pWnd,
 UINT nIDC = 0);

void AttachControlSite(
 CWnd* pWnd,
 UINT nIDC = 0);

ParametersParameters

RemarksRemarks

NOTENOTE

COleControlContainer::BroadcastAmbientPropertyChange

virtual void BroadcastAmbientPropertyChange(DISPID dispid);

ParametersParameters

RemarksRemarks

COleControlContainer::CheckDlgButton

CObject

CCmdTarget

COleControlContainer

Header: afxocc.h

Called by the framework to create and attach a control site.

pWnd
A pointer to a CWnd object.

nIDC
The ID of the control to be attached.

Override this function if you want to customize this process.

Use the first form of this function if you are statically linking to the MFC library. Use the second form if you are dynamically
linking to the MFC library.

Informs all hosted controls that an ambient property has changed.

dispid
The dispatch ID of the ambient property being changed.

This function is called by the framework when an ambient property has changed value. Override this function to
customize this behavior.

virtual void CheckDlgButton(
 int nIDButton,
 UINT nCheck);

ParametersParameters

COleControlContainer::CheckRadioButton

virtual void CheckRadioButton(
 int nIDFirstButton,
 int nIDLastButton,
 int nIDCheckButton);

ParametersParameters

COleControlContainer::COleControlContainer

explicit COleControlContainer(CWnd* pWnd);

ParametersParameters

RemarksRemarks

COleControlContainer::CreateControl

Modifies the current state of the button.

nIDButton
The ID of the button to be modified.

nCheck
Specifies the state of the button. Can be one of the following:

BST_CHECKED Sets the button state to checked.

BST_INDETERMINATE Sets the button state to grayed, indicating an indeterminate state. Use this value
only if the button has the BS_3STATE or BS_AUTO3STATE style.

BST_UNCHECKED Sets the button state to cleared.

Selects a specified radio button in a group and clears the remaining buttons in the group.

nIDFirstButton
Specifies the identifier of the first radio button in the group.

nIDLastButton
Specifies the identifier of the last radio button in the group.

nIDCheckButton
Specifies the identifier of the radio button to be checked.

Constructs a COleControlContainer object.

pWnd
A pointer to the parent window of the control container.

Once the object has been successfully created, add a custom control site with a call to AttachControlSite .

BOOL CreateControl(
 CWnd* pWndCtrl,
 REFCLSID clsid,
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 const RECT& rect,
 UINT nID,
 CFile* pPersist =NULL,
 BOOL bStorage =FALSE,
 BSTR bstrLicKey =NULL,
 COleControlSite** ppNewSite =NULL);

BOOL CreateControl(
 CWnd* pWndCtrl,
 REFCLSID clsid,
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 const POINT* ppt,
 const SIZE* psize,
 UINT nID,
 CFile* pPersist =NULL,
 BOOL bStorage =FALSE,
 BSTR bstrLicKey =NULL,
 COleControlSite** ppNewSite =NULL);

ParametersParameters

Creates an ActiveX control, hosted by the specified COleControlSite object.

pWndCtrl
A pointer to the window object representing the control.

clsid
The unique class ID of the control.

lpszWindowName
A pointer to the text to be displayed in the control. Sets the value of the control's Caption or Text property (if any).
If NULL, the control's Caption or Text property is not changed.

dwStyle
Windows styles. The available styles are listed under the Remarks section.

rect
Specifies the control's size and position. It can be either a CRect object or a RECT structure.

nID
Specifies the control's child window ID.

pPersist
A pointer to a CFile containing the persistent state for the control. The default value is NULL, indicating that the
control initializes itself without restoring its state from any persistent storage. If not NULL, it should be a pointer
to a CFile -derived object that contains the control's persistent data, in the form of either a stream or a storage.
This data could have been saved in a previous activation of the client. The CFile can contain other data, but must
have its read-write pointer set to the first byte of persistent data at the time of the call to CreateControl .

bStorage
Indicates whether the data in pPersist should be interpreted as IStorage or IStream data. If the data in pPersist is
a storage, bStorage should be TRUE. If the data in pPersist is a stream, bStorage should be FALSE. The default
value is FALSE.

bstrLicKey

Return ValueReturn Value

RemarksRemarks

COleControlContainer::CreateOleFont

void CreateOleFont(CFont* pFont);

ParametersParameters

COleControlContainer::FindItem

Optional license key data. This data is needed only for creating controls that require a run-time license key. If the
control supports licensing, you must provide a license key for the creation of the control to succeed. The default
value is NULL.

ppNewSite
A pointer to the existing control site that will host the control being created. The default value is NULL, indicating
that a new control site will be automatically created and attached to the new control.

ppt
A pointer to a POINT structure that contains the upper-left corner of the control. The size of the control is
determined by the value of psize. The ppt and psize values are an optional method of specifying the size and
position of the control.

psize
A pointer to a SIZE structure that contains the size of the control. The upper-left corner is determined by the
value of ppt. The ppt and psize values are an optional method of specifying the size and position of the control.

Nonzero if successful; otherwise 0.

Only a subset of the Windows dwStyle flags are supported by CreateControl :

WS_VISIBLE Creates a window that is initially visible. Required if you want the control to be visible
immediately, like ordinary windows.

WS_DISABLED Creates a window that is initially disabled. A disabled window cannot receive input from
the user. Can be set if the control has an Enabled property.

WS_BORDER Creates a window with a thin-line border. Can be set if control has a BorderStyle property.

WS_GROUP Specifies the first control of a group of controls. The user can change the keyboard focus
from one control in the group to the next by using the direction keys. All controls defined with the
WS_GROUP style after the first control belong to the same group. The next control with the WS_GROUP
style ends the group and starts the next group.

WS_TABSTOP Specifies a control that can receive the keyboard focus when the user presses the TAB key.
Pressing the TAB key changes the keyboard focus to the next control of the WS_TABSTOP style.

Use the second overload to create default-sized controls.

Creates an OLE font.

pFont
A pointer to the font to be used by the control container.

Finds the custom site that hosts the specified item.

virtual COleControlSite* FindItem(UINT nID) const;

ParametersParameters

Return ValueReturn Value

COleControlContainer::FreezeAllEvents

void FreezeAllEvents(BOOL bFreeze);

ParametersParameters

RemarksRemarks

NOTENOTE

COleControlContainer::GetAmbientProp

virtual BOOL GetAmbientProp(
 COleControlSite* pSite,
 DISPID dispid,
 VARIANT* pvarResult);

ParametersParameters

Return ValueReturn Value

COleControlContainer::GetDlgItem

nID
The identifier of the item to be found.

A pointer to the custom site of the specified item.

Determines if the container will ignore events from the attached control sites or accept them.

bFreeze
Nonzero if events will be processed; otherwise 0.

The control is not required to stop firing events if requested by the control container. It can continue firing but all
subsequent events will be ignored by the control container.

Retrieves the value of a specified ambient property.

pSite
A pointer to a control site from which the ambient property will be retrieved.

dispid
The dispatch ID of the desired ambient property.

pVarResult
A pointer to the value of the ambient property.

Nonzero if successful; otherwise 0.

Retrieves a pointer to the specified control or child window in a dialog box or other window.

virtual CWnd* GetDlgItem(int nID) const;

virtual void GetDlgItem(
 int nID,
 HWND* phWnd) const;

ParametersParameters

Return ValueReturn Value

COleControlContainer::GetDlgItemInt

virtual UINT GetDlgItemInt(
 int nID,
 BOOL* lpTrans,
 BOOL bSigned) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nID
Identifier of the dialog item to retrieve.

phWnd
A pointer to the handle of the specified dialog item's window object.

A pointer to the dialog item's window.

Retrieves the value of the translated text of the given control.

nID
The identifier of the control.

lpTrans
Pointer to a Boolean variable that receives a function success/failure value (TRUE indicates success, FALSE
indicates failure).

bSigned
Specifies whether the function should examine the text for a minus sign at the beginning and return a signed
integer value if it finds one. If the bSigned parameter is TRUE, specifying that the value to be retrieved is a signed
integer value, cast the return value to an int type. To get extended error information, call GetLastError.

If successful, the variable pointed to by lpTrans is set to TRUE, and the return value is the translated value of the
control text.

If the function fails, the variable pointed to by lpTrans is set to FALSE, and the return value is zero. Note that, since
zero is a possible translated value, a return value of zero does not by itself indicate failure.

If lpTrans is NULL, the function returns no information about success or failure.

The function translates the retrieved text by stripping any extra spaces at the beginning of the text and then
converting the decimal digits. The function stops translating when it reaches the end of the text or encounters a
nonnumeric character.

This function returns zero if the translated value is greater than INT_MAX (for signed numbers) or UINT_MAX
(for unsigned numbers).

https://msdn.microsoft.com/library/windows/desktop/ms679360

COleControlContainer::GetDlgItemText

virtual int GetDlgItemText(
 int nID,
 LPTSTR lpStr,
 int nMaxCount) const;

ParametersParameters

Return ValueReturn Value

COleControlContainer::HandleSetFocus

virtual BOOL HandleSetFocus();

Return ValueReturn Value

COleControlContainer::HandleWindowlessMessage

virtual BOOL HandleWindowlessMessage(
 UINT message,
 WPARAM wParam,
 LPARAM lParam,
 LRESULT* plResult);

ParametersParameters

Retrieves the text of the given control.

nID
The identifier of the control.

lpStr
Pointer to the text of the control.

nMaxCount
Specifies the maximum length, in characters, of the string to be copied to the buffer pointed to by lpStr. If the
length of the string exceeds the limit, the string is truncated.

If the function succeeds, the return value specifies the number of characters copied to the buffer, not including the
terminating null character.

If the function fails, the return value is zero. To get extended error information, call GetLastError.

Determines if the container handles WM_SETFOCUS messages.

Nonzero if the container handles WM_SETFOCUS messages; otherwise zero.

Processes window messages for windowless controls.

message
The identifier for the window message, provided by Windows.

wParam
Parameter of the message; provided by Windows. Specifies additional message-specific information. The contents
of this parameter depend on the value of the message parameter.

lParam
Parameter of the message; provided by Windows. Specifies additional message-specific information. The contents

https://msdn.microsoft.com/library/windows/desktop/ms679360

Return ValueReturn Value

RemarksRemarks

COleControlContainer::IsDlgButtonChecked

virtual UINT IsDlgButtonChecked(int nIDButton) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControlContainer::m_crBack

COLORREF m_crBack;

COleControlContainer::m_crFore

COLORREF m_crFore;

COleControlContainer::m_listSitesOrWnds

CTypedPtrList<CPtrList, COleControlSiteOrWnd*> m_listSitesOrWnds;

of this parameter depend on the value of the message parameter.

plResult
Windows result code. Specifies the result of the message processing and depends on the message sent.

Nonzero if successful; otherwise zero.

Override this function to customize the handling of windowless control messages.

Determines the state of the specified button.

nIDButton
The identifier of the button control.

The return value, from a button created with the BS_AUTOCHECKBOX, BS_AUTORADIOBUTTON,
BS_AUTO3STATE, BS_CHECKBOX, BS_RADIOBUTTON, or BS_3STATE style. Can be one of the following:

BST_CHECKED Button is checked.

BST_INDETERMINATE Button is grayed, indicating an indeterminate state (applies only if the button has
the BS_3STATE or BS_AUTO3STATE style).

BST_UNCHECKED Button is cleared.

If the button is a three-state control, the member function determines whether it is dimmed, checked, or neither.

The background color of the container.

The foreground color of the container.

A list of the control sites hosted by the container.

COleControlContainer::m_nWindowlessControls

int m_nWindowlessControls;

COleControlContainer::m_pOleFont

LPFONTDISP m_pOleFont;

COleControlContainer::m_pSiteCapture

COleControlSite* m_pSiteCapture;

COleControlContainer::m_pSiteFocus

COleControlSite* m_pSiteFocus;

COleControlContainer::m_pSiteUIActive

COleControlSite* m_pSiteUIActive;

COleControlContainer::m_pWnd

CWnd* m_pWnd;

COleControlContainer::m_siteMap

CMapPtrToPtr m_siteMap;

COleControlContainer::OnPaint

The number of windowless controls hosted by the control container.

A pointer to the OLE font of the custom control site.

Pointer to the capture control site.

A pointer to the control site that currently has input focus.

A pointer to the control site that is in-place activated.

A pointer to the window object associated with the container.

The site map.

Called by the framework to handle WM_PAINT requests.

virtual BOOL OnPaint(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControlContainer::OnUIActivate

virtual void OnUIActivate(COleControlSite* pSite);

ParametersParameters

RemarksRemarks

COleControlContainer::OnUIDeactivate

virtual void OnUIDeactivate(COleControlSite* pSite);

ParametersParameters

RemarksRemarks

COleControlContainer::ScrollChildren

virtual void ScrollChildren(
 int dx,
 int dy);

ParametersParameters

pDC
A pointer to the device context used by the container.

Nonzero if the message was handled; otherwise zero.

Override this function to customize the painting process.

Called by the framework when the control site, pointed to by pSite, is about to be activated in-place.

pSite
A pointer to the control site about to be in-place activated.

In-place activation means that the container's main menu is replaced with an in-place composite menu.

Called by the framework when the control site, pointed to by pSite, is about to be deactivated.

pSite
A pointer to the control site about to be deactivated.

When this notification is received, the container should reinstall its user interface and take focus.

Called by the framework when scroll messages are received from a child window.

dx
The amount, in pixels, of scrolling along the x-axis.

dy

COleControlContainer::SendDlgItemMessage

virtual LRESULT SendDlgItemMessage(
 int nID,
 UINT message,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

COleControlContainer::SetDlgItemInt

virtual void SetDlgItemInt(
 int nID,
 UINT nValue,
 BOOL bSigned);

ParametersParameters

COleControlContainer::SetDlgItemText

virtual void SetDlgItemText(
 int nID,
 LPCTSTR lpszString);

ParametersParameters

The amount, in pixels, of scrolling along the y-axis.

Sends a message to the specified control.

nID
Specifies the identifier of the control that receives the message.

message
Specifies the message to be sent.

wParam
Specifies additional message-specific information.

lParam
Specifies additional message-specific information.

Sets the text of a control in a dialog box to the string representation of a specified integer value.

nID
The identifier of the control.

nValue
The integer value to be displayed.

bSigned
Specifies whether the nValue parameter is signed or unsigned. If this parameter is TRUE, nValue is signed. If this
parameter is TRUE and nValue is less than zero, a minus sign is placed before the first digit in the string. If this
parameter is FALSE, nValue is unsigned.

Sets the text of the specified control, using the text contained in lpszString.

See also

nID
The identifier of the control.

lpszString
Pointer to the text of the control.

CCmdTarget Class
Hierarchy Chart
COleControlSite Class
COccManager Class

COleControlModule Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class COleControlModule : public CWinApp

Remarks

Inheritance Hierarchy

Requirements

See also

The base class from which you derive an OLE control module object.

This class provides member functions for initializing your control module. Each OLE control module that uses the
Microsoft Foundation classes can only contain one object derived from COleControlModule . This object is
constructed when other C++ global objects are constructed. Declare your derived COleControlModule object at the
global level.

For more information on using the COleControlModule class, see the CWinApp class and the article ActiveX
Controls.

CObject

CCmdTarget

CWinThread

CWinApp

COleControlModule

Header: afxctl.h

MFC Sample TESTHELP
Hierarchy Chart

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colecontrolmodule-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleControlSite Class
3/4/2019 • 20 minutes to read • Edit Online

Syntax
class COleControlSite : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleControlSite::COleControlSite Constructs a COleControlSite object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleControlSite::BindDefaultProperty Binds the default property of the hosted control to a data
source.

COleControlSite::BindProperty Binds a property of the hosted control to a data source.

COleControlSite::CreateControl Creates a hosted ActiveX control.

COleControlSite::DestroyControl Destroys the hosted control.

COleControlSite::DoVerb Executes a specific verb of the hosted control.

COleControlSite::EnableDSC Enables data sourcing for a control site.

COleControlSite::EnableWindow Enables the control site.

COleControlSite::FreezeEvents Specifies if the control site is accepting events.

COleControlSite::GetDefBtnCode Retrieves the default button code for the hosted control.

COleControlSite::GetDlgCtrlID Retrieves the identifier of the control.

COleControlSite::GetEventIID Retrieves the ID of an event interface for a hosted control.

COleControlSite::GetExStyle Retrieves the extended styles of the control site.

COleControlSite::GetProperty Retrieves a specific property of the hosted control.

Provides support for custom client-side control interfaces.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colecontrolsite-class.md

COleControlSite::GetStyle Retrieves the styles of the control site.

COleControlSite::GetWindowText Retrieves the text of the hosted control.

COleControlSite::InvokeHelper Invoke a specific method of the hosted control.

COleControlSite::InvokeHelperV Invoke a specific method of the hosted control with a variable
list of arguments.

COleControlSite::IsDefaultButton Determines if the control is the default button in the window.

COleControlSite::IsWindowEnabled Checks the visible state of the control site.

COleControlSite::ModifyStyle Modifies the current extended styles of the control site.

COleControlSite::ModifyStyleEx Modifies the current styles of the control site.

COleControlSite::MoveWindow Changes the position of the control site.

COleControlSite::QuickActivate Quick activates the hosted control.

COleControlSite::SafeSetProperty Sets a property or method of the control without chance of
throwing an exception.

COleControlSite::SetDefaultButton Sets the default button in the window.

COleControlSite::SetDlgCtrlID Retrieves the identifier of the control.

COleControlSite::SetFocus Sets the focus to the control site.

COleControlSite::SetProperty Sets a specific property of the hosted control.

COleControlSite::SetPropertyV Sets a specific property of the hosted control with a variable
list of arguments.

COleControlSite::SetWindowPos Sets the position of the control site.

COleControlSite::SetWindowText Sets the text of the hosted control.

COleControlSite::ShowWindow Shows or hides the control site.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

COleControlSite::GetControlInfo Retrieves keyboard information and mnemonics for the
hosted control.

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleControlSite::m_bIsWindowless Determines if the hosted control is a windowless control.

COleControlSite::m_ctlInfo Contains information on keyboard handling for the control.

COleControlSite::m_dwEventSink The cookie of the control's connection point.

COleControlSite::m_dwMiscStatus The miscellaneous states for the hosted control.

COleControlSite::m_dwPropNotifySink The IPropertyNotifySink cookie of the control.

COleControlSite::m_dwStyle The styles of the hosted control.

COleControlSite::m_hWnd The handle of the control site.

COleControlSite::m_iidEvents The ID of the event interface for the hosted control.

COleControlSite::m_nID The ID of the hosted control.

COleControlSite::m_pActiveObject A pointer to the IOleInPlaceActiveObject object of the
hosted control.

COleControlSite::m_pCtrlCont The container of the hosted control.

COleControlSite::m_pInPlaceObject A pointer to the IOleInPlaceObject object of the hosted
control.

COleControlSite::m_pObject A pointer to the IOleObjectInterface interface of the
control.

COleControlSite::m_pWindowlessObject A pointer to the IOleInPlaceObjectWindowless interface of
the control.

COleControlSite::m_pWndCtrl A pointer to the window object for the hosted control.

COleControlSite::m_rect The dimensions of the control site.

Remarks

Inheritance Hierarchy

This support is the primary means by which an embedded ActiveX control obtains information about the location
and extent of its display site, its moniker, its user interface, its ambient properties, and other resources provided
by its container. COleControlSite fully implements the IOleControlSite, IOleInPlaceSite, IOleClientSite,
IPropertyNotifySink, IBoundObjectSite , INotifyDBEvents , IRowSetNotify interfaces. In addition, the IDispatch
interface (providing support for ambient properties and event sinks) is also implemented.

To create an ActiveX control site using COleControlSite , derive a class from COleControlSite . In your CWnd -
derived class for the container (for instance, your dialog box) override the CWnd::CreateControlSite function.

CObject

https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-iolecontrolsite
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplacesite
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleclientsite
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/irowsetnotifyimpl-class

Requirements

COleControlSite::BindDefaultProperty

virtual void BindDefaultProperty(
 DISPID dwDispID,
 VARTYPE vtProp,
 LPCTSTR szFieldName,
 CWnd* pDSCWnd);

ParametersParameters

RemarksRemarks

COleControlSite::BindProperty

virtual void BindProperty(
 DISPID dwDispId,
 CWnd* pWndDSC);

ParametersParameters

RemarksRemarks

CCmdTarget

COleControlSite

Header: afxocc.h

Binds the calling object's default simple bound property, as marked in the type library, to the underlying cursor
that is defined by the DataSource, UserName, Password, and SQL properties of the data-source control.

dwDispID
Specifies the DISPID of a property on a data-bound control that is to be bound to a data-source control.

vtProp
Specifies the type of the property to be bound — for example, VT_BSTR, VT_VARIANT, and so on.

szFieldName
Specifies the name of the column, in the cursor provided by the data-source control, to which the property will be
bound.

pDSCWnd
A pointer to the CWnd -derived object that hosts the data-source control to which the property will be bound.

The CWnd object on which you call this function must be a data-bound control.

Binds the calling object's simple bound property, as marked in the type library, to the underlying cursor that is
defined by the DataSource, UserName, Password, and SQL properties of the data-source control.

dwDispId
Specifies the DISPID of a property on a data-bound control that is to be bound to a data-source control.

pWndDSC
A pointer to the CWnd -derived object that hosts the data-source control to which the property will be bound.

The CWnd object on which you call this function must be a data-bound control.

COleControlSite::COleControlSite

explicit COleControlSite(COleControlContainer* pCtrlCont);

ParametersParameters

RemarksRemarks

COleControlSite::CreateControl

virtual HRESULT CreateControl(
 CWnd* pWndCtrl,
 REFCLSID clsid,
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 const RECT& rect,
 UINT nID,
 CFile* pPersist = NULL,
 BOOL bStorage = FALSE,
 BSTR bstrLicKey = NULL);

virtual HRESULT CreateControl(
 CWnd* pWndCtrl,
 REFCLSID clsid,
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 const POINT* ppt,
 const SIZE* psize,
 UINT nID,
 CFile* pPersist = NULL,
 BOOL bStorage = FALSE,
 BSTR bstrLicKey = NULL);

ParametersParameters

Constructs a new COleControlSite object.

pCtrlCont
A pointer to the control's container (which represents the window that hosts the AtiveX control).

This function is called by the COccManager::CreateContainer function. For more information on customizing the
creation of containers, see COccManager::CreateSite.

Creates an ActiveX control, hosted by the COleControlSite object.

pWndCtrl
A pointer to the window object representing the control.

clsid
The unique class ID of the control.

lpszWindowName
A pointer to the text to be displayed in the control. Sets the value of the winodw's Caption or Text property (if
any).

dwStyle
Windows styles. The available styles are listed under the Remarks section.

rect
Specifies the control's size and position. It can be either a CRect object or a RECT structure.

Return ValueReturn Value

RemarksRemarks

COleControlSite::DestroyControl

nID
Specifies the control's child window ID.

pPersist
A pointer to a CFile containing the persistent state for the control. The default value is NULL, indicating that the
control initializes itself without restoring its state from any persistent storage. If not NULL, it should be a pointer
to a CFile -derived object that contains the control's persistent data, in the form of either a stream or a storage.
This data could have been saved in a previous activation of the client. The CFile can contain other data, but must
have its read-write pointer set to the first byte of persistent data at the time of the call to CreateControl .

bStorage
Indicates whether the data in pPersist should be interpreted as IStorage or IStream data. If the data in pPersist
is a storage, bStorage should be TRUE. If the data in pPersist is a stream, bStorage should be FALSE. The default
value is FALSE.

bstrLicKey
Optional license key data. This data is needed only for creating controls that require a run-time license key. If the
control supports licensing, you must provide a license key for the creation of the control to succeed. The default
value is NULL.

ppt
A pointer to a POINT structure that contains the upper-left corner of the control. The size of the control is
determined by the value of psize. The ppt and psize values are an optional method of specifying the size and
position opf the control.

psize
A pointer to a SIZE structure that contains the size of the control. The upper-left corner is determined by the
value of ppt. The ppt and psize values are an optional method of specifying the size and position opf the control.

A standard HRESULT value.

Only a subset of the Windows dwStyle flags are supported by CreateControl :

WS_VISIBLE Creates a window that is initially visible. Required if you want the control to be visible
immediately, like ordinary windows.

WS_DISABLED Creates a window that is initially disabled. A disabled window cannot receive input from
the user. Can be set if the control has an Enabled property.

WS_BORDER Creates a window with a thin-line border. Can be set if control has a BorderStyle property.

WS_GROUP Specifies the first control of a group of controls. The user can change the keyboard focus
from one control in the group to the next by using the direction keys. All controls defined with the
WS_GROUP style after the first control belong to the same group. The next control with the WS_GROUP
style ends the group and starts the next group.

WS_TABSTOP Specifies a control that can receive the keyboard focus when the user presses the TAB key.
Pressing the TAB key changes the keyboard focus to the next control of the WS_TABSTOP style.

Use the second overload to create default-sized controls.

Destroys the COleControlSite object.

virtual BOOL DestroyControl();

Return ValueReturn Value

RemarksRemarks

COleControlSite::DoVerb

virtual HRESULT DoVerb(
 LONG nVerb,
 LPMSG lpMsg = NULL);

ParametersParameters

VALUE MEANING SYMBOL

0 Primary verb OLEIVERB_PRIMARY

-1 Secondary verb (None)

1 Displays the object for editing. OLEIVERB_SHOW

-2 Edits the item in a separate window. OLEIVERB_OPEN

-3 Hides the object. OLEIVERB_HIDE

-4 Activates a control in-place. OLEIVERB_UIACTIVATE

-5 Activates a control in-place, without
additional user interface elements.

OLEIVERB_INPLACEACTIVATE

-7 Display the control's properties. OLEIVERB_PROPERTIES

Return ValueReturn Value

RemarksRemarks

COleControlSite::EnableDSC

Nonzero if successful, otherwise 0.

Once completed, the object is freed from memory and any pointers to the object are no longer valid.

Executes the specified verb.

nVerb
Specifies the verb to execute. It can include one of the following:

lpMsg
Pointer to the message that caused the item to be activated.

A standard HRESULT value.

This function directly calls through the control's IOleObject interface to execute the specified verb. If an
exception is thrown as a result of this function call, an HRESULT error code is returned.

For more information, see IOleObject::DoVerb in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-doverb

virtual void EnableDSC();

RemarksRemarks

COleControlSite::EnableWindow

virtual BOOL EnableWindow(BOOL bEnable);

ParametersParameters

Return ValueReturn Value

COleControlSite::FreezeEvents

void FreezeEvents(BOOL bFreeze);

ParametersParameters

RemarksRemarks

NOTENOTE

COleControlSite::GetControlInfo

void GetControlInfo();

RemarksRemarks

Enables data sourcing for the control site.

Called by the framework to enable and initialize data sourcing for the control site. Override this function to
provide customized behavior.

Enables or disables mouse and keyboard input to the control site.

bEnable
Specifies whether to enable or disable the window: TRUE if window input is to be enabled, otherwise FALSE.

Nonzero if the window was previously disabled, otherwise 0.

Specifies whether the control site will handle or ignore events fired from a control.

bFreeze
Specifies whether the control site wishes to stop accepting events. Nonzero if the control is not accepting events;
otherwise zero.

If bFreeze is TRUE, the control site requests the control to stop fring events. If bFreeze is FALSE, the control site
requests the control to continue firing events.

The control is not required to stop firing events if requested by the control site. It can continue firing but all subsequent
events will be ignored by the control site.

Retrieves information about a control's keyboard mnemonics and keyboard behavior.

The information is stored in COleControlSite::m_ctlInfo.

COleControlSite::GetDefBtnCode

DWORD GetDefBtnCode();

Return ValueReturn Value

COleControlSite::GetDlgCtrlID

virtual int GetDlgCtrlID() const;

Return ValueReturn Value

COleControlSite::GetEventIID

BOOL GetEventIID(IID* piid);

ParametersParameters

Return ValueReturn Value

COleControlSite::GetExStyle

virtual DWORD GetExStyle() const;

Return ValueReturn Value

RemarksRemarks

COleControlSite::GetProperty

Determines if the control is a default push button.

Can be one of the following values:

DLGC_DEFPUSHBUTTON Control is the default button in the dialog.

DLGC_UNDEFPUSHBUTTON Control is not the default button in the dialog.

0 Control is not a button.

Retrieves the identifier of the control.

The dialog item identifier of the control.

Retrieves a pointer to the control's default event interface.

piid
A pointer to an interface ID.

Nonzero if successful, otherwise 0. If successful, piid contains the interface ID for the control's default event
interface.

Retrieves the window's extended styles.

The control window's extended styles.

To retrieve the regular styles, call COleControlSite::GetStyle.

virtual void GetProperty(
 DISPID dwDispID,
 VARTYPE vtProp,
 void* pvProp) const;

ParametersParameters

RemarksRemarks

COleControlSite::GetStyle

virtual DWORD GetStyle() const;

Return ValueReturn Value

RemarksRemarks

COleControlSite::GetWindowText

virtual void GetWindowText(CString& str) const;

ParametersParameters

RemarksRemarks

COleControlSite::InvokeHelper

Gets the control property specified by dwDispID.

dwDispID
Identifies the dispatch ID of the property, found on the control's default IDispatch interface, to be retrieved.

vtProp
Specifies the type of the property to be retrieved. For possible values, see the Remarks section for
COleDispatchDriver::InvokeHelper.

pvProp
Address of the variable that will receive the property value. It must match the type specified by vtProp.

The value is returned through pvProp.

Retrieves the styles of the control site.

The window's styles.

For a list of possible values, see Windows Styles. To retrieve the extended styles of the control site, call
COleControlSite::GetExStyle.

Retrieves the current text of the control.

str
A reference to a CString object that contains the current text of the control.

If the control supports the Caption stock property, this value is returned. If the Caption stock property is not
supported, the value for the Text property is returned.

Invokes the method or property specified by dwDispID, in the context specified by wFlags.

virtual void AFX_CDECL InvokeHelper(
 DISPID dwDispID,
 WORD wFlags,
 VARTYPE vtRet,
 void* pvRet,
 const BYTE* pbParamInfo, ...);

ParametersParameters

RemarksRemarks

COleControlSite::InvokeHelperV

virtual void InvokeHelperV(
 DISPID dwDispID,
 WORD wFlags,
 VARTYPE vtRet,
 void* pvRet,
 const BYTE* pbParamInfo,
 va_list argList);

ParametersParameters

dwDispID
Identifies the dispatch ID of the property or method, found on the control's IDispatch interface, to be invoked.

wFlags
Flags describing the context of the call to IDispatch::Invoke. For possible wFlags values, see IDispatch::Invoke in
the Windows SDK.

vtRet
Specifies the type of the return value. For possible values, see the Remarks section for
COleDispatchDriver::InvokeHelper.

pvRet
Address of the variable that will receive the property value or return value. It must match the type specified by
vtRet.

pbParamInfo
Pointer to a null-terminated string of bytes specifying the types of the parameters following pbParamInfo. For
possible values, see the Remarks section for COleDispatchDriver::InvokeHelper.

...
Variable list of parameters, of types specified in pbParamInfo.

The pbParamInfo parameter specifies the types of the parameters passed to the method or property. The
variable list of arguments is represented by ... in the syntax declaration.

This function converts the parameters to VARIANTARG values, then invokes the IDispatch::Invoke method on
the control. If the call to IDispatch::Invoke fails, this function will throw an exception. If the status code returned
by IDispatch::Invoke is DISP_E_EXCEPTION , this function throws a COleDispatchException object, otherwise it
throws a COleException .

Invokes the method or property specified by dwDispID, in the context specified by wFlags.

dwDispID
Identifies the dispatch ID of the property or method, found on the control's IDispatch interface, to be invoked.

wFlags

RemarksRemarks

COleControlSite::IsDefaultButton

BOOL IsDefaultButton();

Return ValueReturn Value

COleControlSite::IsWindowEnabled

virtual BOOL IsWindowEnabled() const;

Return ValueReturn Value

RemarksRemarks

COleControlSite::m_bIsWindowless

BOOL m_bIsWindowless;

RemarksRemarks

Flags describing the context of the call to IDispatch::Invoke.

vtRet
Specifies the type of the return value. For possible values, see the Remarks section for
COleDispatchDriver::InvokeHelper.

pvRet
Address of the variable that will receive the property value or return value. It must match the type specified by
vtRet.

pbParamInfo
Pointer to a null-terminated string of bytes specifying the types of the parameters following pbParamInfo. For
possible values, see the Remarks section for COleDispatchDriver::InvokeHelper.

argList
Pointer to a variable argument list.

The pbParamInfo parameter specifies the types of the parameters passed to the method or property. Extra
parameters for the method or property being invoked can be passed using the va_list parameter.

Typically, this function is called by COleControlSite::InvokeHelper .

Determines if the control is the default button.

Nonzero if the control is the default button on the window, otherwise zero.

Determines if the control site is enabled.

Nonzero if the control is enabled, otherwise zero.

The value is retrieved from the control's Enabled stock property.

Determines if the object is a windowless control.

Nonzero if the control has no window, otherwise zero.

COleControlSite::m_ctlInfo

CONTROLINFO m_ctlInfo;

RemarksRemarks

COleControlSite::m_dwEventSink

DWORD m_dwEventSink;

COleControlSite::m_dwMiscStatus

DWORD m_dwMiscStatus;

RemarksRemarks

COleControlSite::m_dwPropNotifySink

DWORD m_dwPropNotifySink;

COleControlSite::m_dwStyle

DWORD m_dwStyle;

COleControlSite::m_hWnd

HWND m_hWnd;

COleControlSite::m_iidEvents

IID m_iidEvents;

Information on how keyboard input is handled by the control.

This information is stored in a CONTROLINFO structure.

Contains the connection point's cookie from the control's event sink.

Contains miscellaneous information about the control.

For more information, see OLEMISCin the Windows SDK.

Contains the IPropertyNotifySink cookie.

Contains the Window styles of the control.

Contains the HWND of the control, or NULL if the control is windowless.

Contains the interface ID of the control's default event sink interface.

https://docs.microsoft.com/windows/desktop/api/ocidl/ns-ocidl-tagcontrolinfo
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolemisc
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ipropertynotifysink

COleControlSite::m_nID

UINT m_nID;

COleControlSite::m_pActiveObject

LPOLEINPLACEACTIVEOBJECT m_pActiveObject;

COleControlSite::m_pCtrlCont

COleControlContainer* m_pCtrlCont;

COleControlSite::m_pInPlaceObject

LPOLEINPLACEOBJECT m_pInPlaceObject;

COleControlSite::m_pObject

LPOLEOBJECT m_pObject;

COleControlSite::m_pWindowlessObject

IOleInPlaceObjectWindowless* m_pWindowlessObject;

COleControlSite::m_pWndCtrl

CWnd* m_pWndCtrl;

COleControlSite::m_rect

Contains the control's dialog item ID.

Contains the IOleInPlaceActiveObject interface of the control.

Contains the control's container (representing the form).

Contains the IOleInPlaceObject IOleInPlaceObject interface of the control.

Contains the IOleObjectInterface interface of the control.

Contains the IOleInPlaceObjectWindowless IOleInPlaceObjectWindowless interface of the control.

Contains a pointer to the CWnd object that represents the control itself.

Contains the bounds of the control, relative to the container's window.

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplaceactiveobject
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplaceobject
https://docs.microsoft.com/windows/desktop/api/ocidl/nn-ocidl-ioleinplaceobjectwindowless

CRect m_rect;

COleControlSite::ModifyStyle

virtual BOOL ModifyStyle(
 DWORD dwRemove,
 DWORD dwAdd,
 UINT nFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControlSite::ModifyStyleEx

virtual BOOL ModifyStyleEx(
 DWORD dwRemove,
 DWORD dwAdd,
 UINT nFlags);

ParametersParameters

Modifies the styles of the control.

dwRemove
The styles to be removed from the current window styles.

dwAdd
The styles to be added from the current window styles.

nFlags
Window positioning flags. For a list of possible values, see the SetWindowPos function in the Windows SDK.

Nonzero if the styles are changed, otherwise zero.

The control's stock Enabled property will be modified to match the setting for WS_DISABLED. The control's
stock Border Style property will be modified to match the requested setting for WS_BORDER. All other styles are
applied directly to the control's window handle, if one is present.

Modifies the window styles of the control. Styles to be added or removed can be combined by using the bitwise
OR (|) operator. See the CreateWindow function in the Windows SDK for information about the available
window styles.

If nFlags is nonzero, ModifyStyle calls the Win32 function SetWindowPos , and redraws the window by combining
nFlags with the following four flags:

SWP_NOSIZE Retains the current size.

SWP_NOMOVE Retains the current position.

SWP_NOZORDER Retains the current Z order.

SWP_NOACTIVATE Does not activate the window.

To modify a window's extended styles, call ModifyStyleEx.

Modifies the extended styles of the control.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowpos
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa

Return ValueReturn Value

RemarksRemarks

COleControlSite::MoveWindow

virtual void MoveWindow(
 int x,
 int y,
 int nWidth,
 int nHeight);

ParametersParameters

COleControlSite::QuickActivate

dwRemove
The extended styles to be removed from the current window styles.

dwAdd
The extended styles to be added from the current window styles.

nFlags
Window positioning flags. For a list of possible values, see the SetWindowPos function in the Windows SDK.

Nonzero if the styles are changed, otherwise zero.

The control's stock Appearance property will be modified to match the setting for WS_EX_CLIENTEDGE. All
other extended window styles are applied directly to the control's window handle, if one is present.

Modifies the window extended styles of the control site object. Styles to be added or removed can be combined
by using the bitwise OR (|) operator. See the CreateWindowEx function in the Windows SDK for information
about the available window styles.

If nFlags is nonzero, ModifyStyleEx calls the Win32 function SetWindowPos , and redraws the window by
combining nFlags with the following four flags:

SWP_NOSIZE Retains the current size.

SWP_NOMOVE Retains the current position.

SWP_NOZORDER Retains the current Z order.

SWP_NOACTIVATE Does not activate the window.

To modify a window's extended styles, call ModifyStyle.

Changes the position of the control.

x
The new position of the left side of the window.

y
The new position of the top of the window.

nWidth
The new width of the window

nHeight
The new height of the window.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowpos
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa

virtual BOOL QuickActivate();

Return ValueReturn Value

RemarksRemarks

COleControlSite::SafeSetProperty

virtual BOOL AFX_CDECL SafeSetProperty(
 DISPID dwDispID,
 VARTYPE vtProp, ...);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

COleControlSite::SetDefaultButton

void SetDefaultButton(BOOL bDefault);

ParametersParameters

Quick activates the contained control.

Nonzero if the control site was activated, otherwise zero.

This function should be called only if the user is overriding the creation process of the control.

The IPersist*::Load and IPersist*::InitNew methods should be called after quick activation occurs. The control
should establish its connections to the container's sinks during quick activation. However, these connections are
not live until IPersist*::Load or IPersist*::InitNew has been called.

Sets the control property specified by dwDispID.

dwDispID
Identifies the dispatch ID of the property or method, found on the control's IDispatch interface, to be set.

vtProp
Specifies the type of property to be set. For possible values, see the Remarks section for
COleDispatchDriver::InvokeHelper.

...
A single parameter of the type specified by vtProp.

Nonzero if successful; otherwise zero.

Unlike SetProperty and SetPropertyV , if an error is encountered (such as trying to set a nonexistent property), no
exception is thrown.

Sets the control as the default button.

bDefault
Nonzero if the control should become the default button; otherwise zero.

RemarksRemarks

NOTENOTE

COleControlSite::SetDlgCtrlID

virtual int SetDlgCtrlID(int nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleControlSite::SetFocus

virtual CWnd* SetFocus();
virtual CWnd* SetFocus(LPMSG lpmsg);

ParametersParameters

Return ValueReturn Value

COleControlSite::SetProperty

virtual void AFX_CDECL SetProperty(
 DISPID dwDispID,
 VARTYPE vtProp, ...);

ParametersParameters

The control must have the OLEMISC_ACTSLIKEBUTTON status bit set.

Changes the value of the control's dialog item identifier.

nID
The new identifier value.

If successful, the previous dialog item identifier of the window; otherwise 0.

Sets focus to the control.

lpmsg
A pointer to a MSG structure. This structure contains the Windows message triggering the SetFocus request for
the control contained in the current control site.

A pointer to the window that previously had focus.

Sets the control property specified by dwDispID.

dwDispID
Identifies the dispatch ID of the property or method, found on the control's IDispatch interface, to be set.

vtProp
Specifies the type of property to be set. For possible values, see the Remarks section for
COleDispatchDriver::InvokeHelper.

...

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

RemarksRemarks

COleControlSite::SetPropertyV

virtual void SetPropertyV(
 DISPID dwDispID,
 VARTYPE vtProp,
 va_list argList);

ParametersParameters

RemarksRemarks

COleControlSite::SetWindowPos

virtual BOOL SetWindowPos(
 const CWnd* pWndInsertAfter,
 int x,
 int y,
 int cx,
 int cy,
 UINT nFlags);

ParametersParameters

A single parameter of the type specified by vtProp.

If SetProperty encounters an error, an exception is thrown.

The type of exception is determined by the return value of the attempt to set the property or method. If the return
value is DISP_E_EXCEPTION , a COleDispatchExcpetion is thrown; otherwise a COleException .

Sets the control property specified by dwDispID.

dwDispID
Identifies the dispatch ID of the property or method, found on the control's IDispatch interface, to be set.

vtProp
Specifies the type of property to be set. For possible values, see the Remarks section for
COleDispatchDriver::InvokeHelper.

argList
Pointer to the list of arguments.

Extra parameters for the method or property being invoked can be passeed using the arg_list parameter. If
SetProperty encounters an error, an exception is thrown.

The type of exception is determined by the return value of the attempt to set the property or method. If the return
value is DISP_E_EXCEPTION , a COleDispatchExcpetion is thrown; otherwise a COleException .

Sets the size, position, and Z order of the control site.

pWndInsertAfter
A pointer to the window.

x
The new position of the left side of the window.

y
The new position of the top of the window.

Return ValueReturn Value

COleControlSite::SetWindowText

virtual void SetWindowText(LPCTSTR lpszString);

ParametersParameters

RemarksRemarks

COleControlSite::ShowWindow

virtual BOOL ShowWindow(int nCmdShow);

ParametersParameters

cx
The new width of the window

cy
The new height of the window.

nFlags
Specifies the window sizing and positioning flags. For possible values, see the Remarks section for
SetWindowPos in the Windows SDK.

Nonzero if successful, otherwise zero.

Sets the text for the control site.

lpszString
Pointer to a null-terminated string to be used as the new title or control text.

This function first attempts to set the Caption stock property. If the Caption stock property is not supported, the
Text property is set instead.

Sets the window's show state.

nCmdShow
Specifies how the control site is to be shown. It must be one of the following values:

SW_HIDE Hides this window and passes activation to another window.

SW_MINIMIZE Minimizes the window and activates the top-level window in the system's list.

SW_RESTORE Activates and displays the window. If the window is minimized or maximized, Windows
restores it to its original size and position.

SW_SHOW Activates the window and displays it in its current size and position.

SW_SHOWMAXIMIZED Activates the window and displays it as a maximized window.

SW_SHOWMINIMIZED Activates the window and displays it as an icon.

SW_SHOWMINNOACTIVE Displays the window as an icon. The window that is currently active remains
active.

SW_SHOWNA Displays the window in its current state. The window that is currently active remains active.

SW_SHOWNOACTIVATE Displays the window in its most recent size and position. The window that is

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowpos

Return ValueReturn Value

See also

currently active remains active.

SW_SHOWNORMAL Activates and displays the window. If the window is minimized or maximized,
Windows restores it to its original size and position.

Nonzero if the window was previously visible; 0 if the window was previously hidden.

CCmdTarget Class
Hierarchy Chart
COleControlContainer Class

COleConvertDialog Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class COleConvertDialog : public COleDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleConvertDialog::COleConvertDialog Constructs a COleConvertDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleConvertDialog::DoConvert Performs the conversion specified in the dialog box.

COleConvertDialog::DoModal Displays the OLE Change Item dialog box.

COleConvertDialog::GetClassID Gets the CLSID associated with the chosen item.

COleConvertDialog::GetDrawAspect Specifies whether to draw item as an icon.

COleConvertDialog::GetIconicMetafile Gets a handle to the metafile associated with the iconic form
of this item.

COleConvertDialog::GetSelectionType Gets the type of selection chosen.

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleConvertDialog::m_cv A structure that controls the behavior of the dialog box.

Remarks

NOTENOTE

For more information, see the OLEUICONVERT structure in the Windows SDK.

Application Wizard-generated container code uses this class.

For more information about OLE-specific dialog boxes, see the article Dialog Boxes in OLE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coleconvertdialog-class.md
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuiconverta

Inheritance Hierarchy

Requirements

COleConvertDialog::COleConvertDialog

explicit COleConvertDialog (
 COleClientItem* pItem,
 DWORD dwFlags = CF_SELECTCONVERTTO,
 CLSID* pClassID = NULL,
 CWnd* pParentWnd = NULL);

ParametersParameters

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

COleDialog

COleConvertDialog

Header: afxodlgs.h

Constructs only a COleConvertDialog object.

pItem
Points to the item to be converted or activated.

dwFlags
Creation flag, which contains any number of the following values combined using the bitwise-or operator:

CF_SELECTCONVERTTO Specifies that the Convert To radio button will be selected initially when the
dialog box is called. This is the default.

CF_SELECTACTIVATEAS Specifies that the Activate As radio button will be selected initially when the
dialog box is called.

CF_SETCONVERTDEFAULT Specifies that the class whose CLSID is specified by the clsidConvertDefault

member of the m_cv structure will be used as the default selection in the class list box when the Convert
To radio button is selected.

CF_SETACTIVATEDEFAULT Specifies that the class whose CLSID is specified by the clsidActivateDefault

member of the m_cv structure will be used as the default selection in the class list box when the Activate
As radio button is selected.

CF_SHOWHELPBUTTON Specifies that the Help button will be displayed when the dialog box is called.

pClassID
Points to the CLSID of the item to be converted or activated. If NULL, the CLSID associated with pItem will be
used.

pParentWnd

RemarksRemarks

COleConvertDialog::DoConvert

BOOL DoConvert(COleClientItem* pItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleConvertDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

COleConvertDialog::GetClassID

Points to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is NULL, the
parent window of the dialog box is set to the main application window.

To display the dialog box, call the DoModal function.

For more information, see CLSID Key and the OLEUICONVERT structure.

Call this function, after returning successfully from DoModal, either to convert or to activate an object of type
COleClientItem.

pItem
Points to the item to be converted or activated. Cannot be NULL.

Nonzero if successful; otherwise 0.

The item is converted or activated according to the information selected by the user in the Convert dialog box.

Call this function to display the OLE Convert dialog box.

Completion status for the dialog box. One of the following values:

IDOK if the dialog box was successfully displayed.

IDCANCEL if the user canceled the dialog box.

IDABORT if an error occurred. If IDABORT is returned, call the COleDialog::GetLastError member function
to get more information about the type of error that occurred. For a listing of possible errors, see the
OleUIConvert function in the Windows SDK.

If you want to initialize the various dialog box controls by setting members of the m_cv structure, you should do
this before calling DoModal , but after the dialog object is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the settings or information that was
input by the user into the dialog box.

Call this function to get the CLSID associated with the item the user selected in the Convert dialog box.

https://docs.microsoft.com/windows/desktop/com/clsid-key-hklm
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuiconverta
https://docs.microsoft.com/windows/desktop/api/oledlg/nf-oledlg-oleuiconverta

REFCLSID GetClassID() const;

Return ValueReturn Value

RemarksRemarks

COleConvertDialog::GetDrawAspect

DVASPECT GetDrawAspect() const;

Return ValueReturn Value

RemarksRemarks

COleConvertDialog::GetIconicMetafile

HGLOBAL GetIconicMetafile() const;

Return ValueReturn Value

COleConvertDialog::GetSelectionType

UINT GetSelectionType() const;

Return ValueReturn Value

RemarksRemarks

The CLSID associated with the item that was selected in the Convert dialog box.

Call this function only after DoModal returns IDOK.

For more information, see CLSID Key in the Windows SDK.

Call this function to determine whether the user chose to display the selected item as an icon.

The method needed to render the object.

DVASPECT_CONTENT Returned if the Display As Icon check box was not checked.

DVASPECT_ICON Returned if the Display As Icon check box was checked.

Call this function only after DoModal returns IDOK.

For more information on drawing aspect, see the FORMATETC data structure in the Windows SDK.

Call this function to get a handle to the metafile that contains the iconic aspect of the selected item.

The handle to the metafile containing the iconic aspect of the selected item, if the Display As Icon check box was
checked when the dialog was dismissed by choosing OK; otherwise NULL.

Call this function to determine the type of conversion selected in the Convert dialog box.

Type of selection made.

The return type values are specified by the Selection enumeration type declared in the COleConvertDialog class.

https://docs.microsoft.com/windows/desktop/com/clsid-key-hklm
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

enum Selection {
 noConversion,
 convertItem,
 activateAs
 };

COleConvertDialog::m_cv

OLEUICONVERT m_cv;

RemarksRemarks

See also

Brief descriptions of these values follow:

COleConvertDialog::noConversion Returned if either the dialog box was canceled or the user selected no
conversion. If COleConvertDialog::DoModal returned IDOK, it is possible that the user selected a different
icon than the one previously selected.

COleConvertDialog::convertItem Returned if the Convert To radio button was checked, the user selected a
different item to convert to, and DoModal returned IDOK.

COleConvertDialog::activateAs Returned if the Activate As radio button was checked, the user selected a
different item to activate, and DoModal returned IDOK.

Structure of type OLEUICONVERT used to control the behavior of the Convert dialog box.

Members of this structure can be modified either directly or through member functions.

For more information, see the OLEUICONVERT structure in the Windows SDK.

COleDialog Class
Hierarchy Chart
COleDialog Class

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuiconverta

COleCurrency Class
3/4/2019 • 14 minutes to read • Edit Online

Syntax
class COleCurrency

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleCurrency::COleCurrency Constructs a COleCurrency object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleCurrency::Format Generates a formatted string representation of a
COleCurrency object.

COleCurrency::GetStatus Gets the status (validity) of this COleCurrency object.

COleCurrency::ParseCurrency Reads a CURRENCY value from a string and sets the value of
COleCurrency .

COleCurrency::SetCurrency Sets the value of this COleCurrency object.

COleCurrency::SetStatus Sets the status (validity) for this COleCurrency object.

Public OperatorsPublic Operators

NAME DESCRIPTION

operator = Copies a COleCurrency value.

operator +, - Adds, subtracts, and changes sign of COleCurrency values.

operator +=, -= Adds and subtracts a COleCurrency value from this
COleCurrency object.

operator */ Scales a COleCurrency value by an integer value.

operator *=, /= Scales this COleCurrency value by an integer value.

Encapsulates the CURRENCY data type of OLE automation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colecurrency-class.md

operator << Outputs a COleCurrency value to CArchive or
CDumpContext .

operator >> Inputs a COleCurrency object from CArchive .

operator CURRENCY Converts a COleCurrency value into a CURRENCY.

operator ==, <, <=, etc. Compares two COleCurrency values.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleCurrency::m_cur Contains the underlying CURRENCY for this COleCurrency

object.

COleCurrency::m_status Contains the status of this COleCurrency object.

Remarks

Inheritance Hierarchy

Requirements

COleCurrency::COleCurrency

COleCurrency();
COleCurrency(CURRENCY cySrc);
 COleCurrency(const COleCurrency& curSrc);
COleCurrency(const VARIANT& varSrc);

COleCurrency(
 long nUnits,
 long nFractionalUnits);

ParametersParameters

COleCurrency does not have a base class.

CURRENCY is implemented as an 8-byte, two's-complement integer value scaled by 10,000. This gives a fixed-
point number with 15 digits to the left of the decimal point and 4 digits to the right. The CURRENCY data type
is extremely useful for calculations involving money, or for any fixed-point calculation where accuracy is
important. It is one of the possible types for the VARIANT data type of OLE automation.

COleCurrency also implements some basic arithmetic operations for this fixed-point type. The supported
operations have been selected to control the rounding errors which occur during fixed-point calculations.

COleCurrency

Header: afxdisp.h

Constructs a COleCurrency object.

RemarksRemarks

ExampleExample

COleCurrency curZero; // value: 0.0000
COleCurrency curA(4, 500); // value: 4.0500
COleCurrency curB(2, 11000); // value: 3.1000
COleCurrency curC(2, -50); // value: 1.9950

COleCurrency::Format

CString Format(DWORD dwFlags = 0, LCID lcid = LANG_USER_DEFAULT) const;

ParametersParameters

cySrc
A CURRENCY value to be copied into the new COleCurrency object.

curSrc
An existing COleCurrency object to be copied into the new COleCurrency object.

varSrc
An existing VARIANT data structure (possibly a COleVariant object) to be converted to a currency value (VT_CY)
and copied into the new COleCurrency object.

nUnits, nFractionalUnits Indicate the units and fractional part (in 1/10,000's) of the value to be copied into the
new COleCurrency object.

All of these constructors create new COleCurrency objects initialized to the specified value. A brief description of
each of these constructors follows. Unless otherwise noted, the status of the new COleCurrency item is set to
valid.

COleCurrency() Constructs a COleCurrency object initialized to 0 (zero).

COleCurrency(cySrc) Constructs a COleCurrency object from a CURRENCY value.

COleCurrency(curSrc) Constructs a COleCurrency object from an existing COleCurrency object. The new
object has the same status as the source object.

COleCurrency(varSrc) Constructs a COleCurrency object. Attempts to convert a VARIANT structure or
COleVariant object to a currency (VT_CY) value. If this conversion is successful, the converted value is

copied into the new COleCurrency object. If it is not, the value of the COleCurrency object is set to zero (0)
and its status to invalid.

COleCurrency(nUnits , nFractionalUnits) Constructs a COleCurrency` object from the specified
numerical components. If the absolute value of the fractional part is greater than 10,000, the appropriate
adjustment is made to the units. Note that the units and fractional part are specified by signed long
values.

For more information, see the CURRENCY and VARIANT entries in the Windows SDK.

The following examples show the effects of the zero-parameter and two-parameter constructors:

Call this member function to create a formatted representation of the currency value.

dwFlags
Indicates flags for locale settings. Only the following flag is relevant to currency:

https://docs.microsoft.com/windows/desktop/api/wtypes/ns-wtypes-tagcy
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/windows/desktop/api/wtypes/ns-wtypes-tagcy
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleCurrency curA; // value: 0.0000
curA.SetCurrency(4, 500); // value: 4.0500

// value returned: 4.05
curA.Format(0, MAKELCID(MAKELANGID(LANG_CHINESE,
 SUBLANG_CHINESE_SINGAPORE), SORT_DEFAULT));
// value returned: 4,05
curA.Format(0, MAKELCID(MAKELANGID(LANG_GERMAN,
 SUBLANG_GERMAN_AUSTRIAN), SORT_DEFAULT));

COleCurrency::GetStatus

CurrencyStatus GetStatus() const;

Return ValueReturn Value

RemarksRemarks

enum CurrencyStatus {
 valid = 0,
 invalid = 1,
 null = 2
 };

LOCALE_NOUSEROVERRIDE Use the system default locale settings, rather than custom user settings.

lcid
Indicates locale ID to use for the conversion.

A CString that contains the formatted currency value.

It formats the value using the local language specifications (locale IDs). A currency symbol is not included in the
value returned. If the status of this COleCurrency object is null, the return value is an empty string. If the status is
invalid, the return string is specified by the string resource IDS_INVALID_CURRENCY.

Call this member function to get the status (validity) of a given COleCurrency object.

Returns the status of this COleCurrency value.

The return value is defined by the CurrencyStatus enumerated type that is defined within the COleCurrency

class.

For a brief description of these status values, see the following list:

COleCurrency::valid Indicates that this COleCurrency object is valid.

COleCurrency::invalid Indicates that this COleCurrency object is invalid; that is, its value may be
incorrect.

COleCurrency::null Indicates that this COleCurrency object is null, that is, that no value has been
supplied for this object. (This is "null" in the database sense of "having no value," as opposed to the C++
NULL.)

The status of a COleCurrency object is invalid in the following cases:

ExampleExample

// even an empty COleCurrency is valid
COleCurrency cy;
ASSERT(cy.GetStatus() == COleCurrency::valid);

// always valid after being set
cy.SetCurrency(4, 500);
ASSERT(cy.GetStatus() == COleCurrency::valid);

// some conversions aren't possible and will
// cause an invalid state, like this:
CByteArray array;
COleVariant varBogus(array);
cy = varBogus;
ASSERT(cy.GetStatus() == COleCurrency::invalid);

COleCurrency::m_cur

RemarksRemarks
C a u t i o nC a u t i o n

COleCurrency::m_status

If its value is set from a VARIANT or COleVariant value that could not be converted to a currency value.

If this object has experienced an overflow or underflow during an arithmetic assignment operation, for
example += or *=.

If an invalid value was assigned to this object.

If the status of this object was explicitly set to invalid using SetStatus.

For more information on operations that may set the status to invalid, see the following member functions:

COleCurrency

operator =

operator + -

operator += and -=

operator * /

operator *= and /=

The underlying CURRENCY structure for this COleCurrency object.

Changing the value in the CURRENCY structure accessed by the pointer returned by this function will change the
value of this COleCurrency object. It does not change the status of this COleCurrency object.

For more information, see the CURRENCY entry in the Windows SDK.

The type of this data member is the enumerated type CurrencyStatus , which is defined within the COleCurrency

class.

https://docs.microsoft.com/windows/desktop/api/wtypes/ns-wtypes-tagcy
https://docs.microsoft.com/windows/desktop/api/wtypes/ns-wtypes-tagcy

enum CurrencyStatus{
 valid = 0,
 invalid = 1,
 null = 2,
};

RemarksRemarks

C a u t i o nC a u t i o n

COleCurrency::operator =

const COleCurrency& operator=(CURRENCY cySrc);
const COleCurrency& operator=(const COleCurrency& curSrc);
 const COleCurrency& operator=(const VARIANT& varSrc);

RemarksRemarks

For a brief description of these status values, see the following list:

COleCurrency::valid Indicates that this COleCurrency object is valid.

COleCurrency::invalid Indicates that this COleCurrency object is invalid; that is, its value may be
incorrect.

COleCurrency::null Indicates that this COleCurrency object is null, that is, that no value has been
supplied for this object. (This is "null" in the database sense of "having no value," as opposed to the C++
NULL.)

The status of a COleCurrency object is invalid in the following cases:

If its value is set from a VARIANT or COleVariant value that could not be converted to a currency value.

If this object has experienced an overflow or underflow during an arithmetic assignment operation, for
example += or *=.

If an invalid value was assigned to this object.

If the status of this object was explicitly set to invalid using SetStatus.

For more information on operations that may set the status to invalid, see the following member functions:

COleCurrency

operator =

operator +, -

operator +=, -=

operator */

operator *=, /=

This data member is for advanced programming situations. You should use the inline member functions
GetStatus and SetStatus. See SetStatus for further cautions regarding explicitly setting this data member.

These overloaded assignment operators copy the source currency value into this COleCurrency object.

A brief description of each operator follows:

operator =(cySrc) The CURRENCY value is copied into the COleCurrency object and its status is set to

ExampleExample

// set to 35.0050
COleCurrency cur1(35, 50);
COleCurrency cur2;

// operator= copies COleCurrency types
cur2 = cur1;
ASSERT(cur1 == cur2);

// can be used to assign a CURRENCY type, as well
CURRENCY cy;
cy.Hi = 0;
cy.Lo = 350050;
cy.int64 = 350050;

// perform assignment
COleCurrency cur3;
cur3 = cy;
ASSERT(cur3 == cur1);

COleCurrency::operator +, -

COleCurrency operator+(const COleCurrency& cur) const;
COleCurrency operator-(const COleCurrency& cur) const;
COleCurrency operator-() const;

RemarksRemarks

ExampleExample

valid.

operator =(curSrc) The value and status of the operand, an existing COleCurrency object are copied
into this COleCurrency object.

operator =(varSrc) If the conversion of the VARIANT value (or COleVariant object) to a currency (
VT_CY) is successful, the converted value is copied into this COleCurrency object and its status is set to

valid. If the conversion is not successful, the value of the COleCurrency object is set to 0 and its status to
invalid.

For more information, see the CURRENCY and VARIANT entries in the Windows SDK.

These operators allow you to add and subtract two COleCurrency values to and from each other and to change
the sign of a COleCurrency value.

If either of the operands is null, the status of the resulting COleCurrency value is null.

If the arithmetic operation overflows, the resulting COleCurrency value is invalid.

If the operand is invalid and the other is not null, the status of the resulting COleCurrency value is invalid.

For more information on the valid, invalid, and null status values, see the m_status member variable.

https://docs.microsoft.com/windows/desktop/api/wtypes/ns-wtypes-tagcy
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant

// 35.0050
COleCurrency cur1(35, 50);
// 2.0075
COleCurrency cur2(2, 75);
COleCurrency cur3;

// sum is 37.0125
cur3 = cur1 + cur2;
ASSERT(cur3 == COleCurrency(37, 125));

// difference is 32.9975
cur3 = cur1 - cur2;
ASSERT(cur3 == COleCurrency(32, 9975));

COleCurrency::operator +=, -=

const COleCurrency& operator+=(const COleCurrency& cur);
const COleCurrency& operator-=(const COleCurrency& cur);

RemarksRemarks

ExampleExample

// both set to 35.0050
COleCurrency cur1(35, 50);
COleCurrency cur2(35, 50);

// adding 2.0075 results in 37.0125
cur1 += COleCurrency(2, 75);
ASSERT(cur1 == COleCurrency(37, 125));

// subtracting 2.0075 results in 32.9975
cur2 -= COleCurrency(2, 75);
ASSERT(cur2 == COleCurrency(32, 9975));

COleCurrency::operator * and /

COleCurrency operator*(long nOperand) const;
COleCurrency operator/(long nOperand) const;

RemarksRemarks

Allow you to add and subtract a COleCurrency value to and from this COleCurrency object.

If either of the operands is null, the status of this COleCurrency object is set to null.

If the arithmetic operation overflows, the status of this COleCurrency object is set to invalid.

If either of the operands is invalid and the other is not null, the status of this COleCurrency object is set to
invalid.

For more information on the valid, invalid, and null status values, see the m_status member variable.

Allow you to scale a COleCurrency value by an integral value.

If the COleCurrency operand is null, the status of the resulting COleCurrency value is null.

If the arithmetic operation overflows or underflows, the status of the resulting COleCurrency value is invalid.

ExampleExample

// 35 units and 50/10000, or 35.0050
COleCurrency cur1(35, 50);
COleCurrency cur2;

// divided by two is 17.5025
cur2 = cur1 / 2;
ASSERT(cur2 == COleCurrency(17, 5025));

// multiplied by two is 70.0100
cur2 = cur1 * 2;
ASSERT(cur2 == COleCurrency(70, 100));

COleCurrency::operator *=, /=

const COleCurrency& operator*=(long nOperand);
const COleCurrency& operator/=(long nOperand);

RemarksRemarks

ExampleExample

// both set to 35.0050
COleCurrency cur1(35, 50);
COleCurrency cur2(35, 50);

// divide in half
cur1 /= 2;
ASSERT(cur1 == COleCurrency(17, 5025));

// multiply by two
cur2 *= 2;
ASSERT(cur2 == COleCurrency(70, 100));

COleCurrency::operator <<, >>

If the COleCurrency operand is invalid, the status of the resulting COleCurrency value is invalid.

For more information on the valid, invalid, and null status values, see the m_status member variable.

Allow you to scale this COleCurrency value by an integral value.

If the COleCurrency operand is null, the status of this COleCurrency object is set to null.

If the arithmetic operation overflows, the status of this COleCurrency object is set to invalid.

If the COleCurrency operand is invalid, the status of this COleCurrency object is set to invalid.

For more information on the valid, invalid, and null status values, see the m_status member variable.

Supports diagnostic dumping and storing to an archive.

friend CDumpContext& operator<<(
 CDumpContext& dc,
 COleCurrency curSrc);

friend CArchive& operator<<(
 CArchive& ar,
 COleCurrency curSrc);

friend CArchive& operator>>(
 CArchive& ar,
 COleCurrency& curSrc);

RemarksRemarks

COleCurrency::operator CURRENCY

operator CURRENCY() const;

RemarksRemarks

COleCurrency::ParseCurrency

BOOL ParseCurrency(
 LPCTSTR lpszCurrency,
 DWORD dwFlags = 0,
 LCID lcid = LANG_USER_DEFAULT);

throw(CMemoryException*);
throw(COleException*);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The extraction (>>) operator supports loading from an archive.

Returns a CURRENCY structure whose value is copied from this COleCurrency object.

Call this member function to parse a string to read a currency value.

lpszCurrency
A pointer to the null-terminated string which is to be parsed.

dwFlags
Indicates flags for locale settings, possibly the following flag:

LOCALE_NOUSEROVERRIDE Use the system default locale settings, rather than custom user settings.

lcid
Indicates locale ID to use for the conversion.

Nonzero if the string was successfully converted to a currency value, otherwise 0.

It uses local language specifications (locale IDs) for the meaning of nonnumeric characters in the source string.

For a discussion of locale ID values, see Supporting Multiple Languages.

If the string was successfully converted to a currency value, the value of this COleCurrency object is set to that
value and its status to valid.

https://docs.microsoft.com/previous-versions/windows/desktop/automat/supporting-multiple-national-languages

ExampleExample

// works if default locale has dot decimal point
COleCurrency cur;
cur.ParseCurrency(_T("$135.95"), 0);
ASSERT(cur == COleCurrency(135, 9500));

COleCurrency Relational Operators

BOOL operator==(const COleCurrency& cur) const;
BOOL operator!=(const COleCurrency& cur) const;
BOOL operator<(const COleCurrency& cur) const;
BOOL operator>(const COleCurrency& cur) const;
BOOL operator<=(const COleCurrency& cur) const;
BOOL operator>=(const COleCurrency& cur) const;

RemarksRemarks

NOTENOTE

ExampleExample

COleCurrency curOne(3, 5000); // 3.5
COleCurrency curTwo(curOne); // 3.5
BOOL b = (curOne == curTwo); // TRUE

b = curOne < curTwo; // FALSE, same value
b = curOne > curTwo; // FALSE, same value
b = curOne <= curTwo; // TRUE, same value
b = curOne >= curTwo; // TRUE, same value
curTwo.SetStatus(COleCurrency::invalid);
b = curOne == curTwo; // FALSE, different status
b = curOne != curTwo; // TRUE, different status

COleCurrency::SetCurrency

void SetCurrency(
 long nUnits,
 long nFractionalUnits);

ParametersParameters

If the string could not be converted to a currency value or if there was a numerical overflow, the status of this
COleCurrency object is invalid.

If the string conversion failed due to memory allocation errors, this function throws a CMemoryException. In
any other error state, this function throws a COleException.

Compare two currency values and return nonzero if the condition is true; otherwise 0.

The return value of the ordering operations (<, <=, >, >=) is undefined if the status of either operand is null or invalid.
The equality operators (== , !=) consider the status of the operands.

Call this member function to set the units and fractional part of this COleCurrency object.

nUnits, nFractionalUnits Indicate the units and fractional part (in 1/10,000's) of the value to be copied into this

RemarksRemarks

ExampleExample

COleCurrency curA; // value: 0.0000
curA.SetCurrency(4, 500); // value: 4.0500
curA.SetCurrency(2, 11000); // value: 3.1000
curA.SetCurrency(2, -50); // value: 1.9950

COleCurrency::SetStatus

void SetStatus(CurrencyStatus status);

ParametersParameters

RemarksRemarks

enum CurrencyStatus {
 valid = 0,
 invalid = 1,
 null = 2
 };

C a u t i o nC a u t i o n

See also

COleCurrency object.

If the absolute value of the fractional part is greater than 10,000, the appropriate adjustment is made to the
units, as shown in the third of the following examples.

Note that the units and fractional part are specified by signed long values. The fourth of the following examples
shows what happens when the parameters have different signs.

Call this member function to set the status (validity) of this COleCurrency object.

status
The new status for this COleCurrency object.

The status parameter value is defined by the CurrencyStatus enumerated type, which is defined within the
COleCurrency class.

For a brief description of these status values, see the following list:

COleCurrency::valid Indicates that this COleCurrency object is valid.

COleCurrency::invalid Indicates that this COleCurrency object is invalid; that is, its value may be
incorrect.

COleCurrency::null Indicates that this COleCurrency object is null, that is, that no value has been
supplied for this object. (This is "null" in the database sense of "having no value," as opposed to the C++
NULL.)

This function is for advanced programming situations. This function does not alter the data in this object. It will
most often be used to set the status to null or invalid. Note that the assignment operator (operator =) and
SetCurrency do set the status to of the object based on the source value(s).

Hierarchy Chart

COleVariant Class

COleDataObject Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class COleDataObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleDataObject::COleDataObject Constructs a COleDataObject object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleDataObject::Attach Attaches the specified OLE data object to the
COleDataObject .

COleDataObject::AttachClipboard Attaches the data object that is on the Clipboard.

COleDataObject::BeginEnumFormats Prepares for one or more subsequent GetNextFormat calls.

COleDataObject::Detach Detaches the associated IDataObject object.

COleDataObject::GetData Copies data from the attached OLE data object in a specified
format.

COleDataObject::GetFileData Copies data from the attached OLE data object into a
CFile pointer in the specified format.

COleDataObject::GetGlobalData Copies data from the attached OLE data object into an
HGLOBAL in the specified format.

COleDataObject::GetNextFormat Returns the next data format available.

COleDataObject::IsDataAvailable Checks whether data is available in a specified format.

COleDataObject::Release Detaches and releases the associated IDataObject object.

Remarks

Used in data transfers for retrieving data in various formats from the Clipboard, through drag and drop, or
from an embedded OLE item.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coledataobject-class.md

Inheritance Hierarchy

Requirements

COleDataObject::Attach

void Attach(
 LPDATAOBJECT lpDataObject,
 BOOL bAutoRelease = TRUE);

ParametersParameters

RemarksRemarks

COleDataObject::AttachClipboard

BOOL AttachClipboard();

Return ValueReturn Value

RemarksRemarks

COleDataObject does not have a base class.

These kinds of data transfers include a source and a destination. The data source is implemented as an object
of the COleDataSource class. Whenever a destination application has data dropped in it or is asked to perform
a paste operation from the Clipboard, an object of the COleDataObject class must be created.

This class enables you to determine whether the data exists in a specified format. You can also enumerate the
available data formats or check whether a given format is available and then retrieve the data in the preferred
format. Object retrieval can be accomplished in several different ways, including the use of a CFile, an
HGLOBAL, or an STGMEDIUM structure.

For more information, see the STGMEDIUM structure in the Windows SDK.

For more information about using data objects in your application, see the article Data Objects and Data
Sources (OLE).

COleDataObject

Header: afxole.h

Call this function to associate the COleDataObject object with an OLE data object.

lpDataObject
Points to an OLE data object.

bAutoRelease
TRUE if the OLE data object should be released when the COleDataObject object is destroyed; otherwise
FALSE.

For more information, see IDataObject in the Windows SDK.

Call this function to attach the data object that is currently on the Clipboard to the COleDataObject object.

Nonzero if successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-idataobject

NOTENOTE

COleDataObject::BeginEnumFormats

void BeginEnumFormats();

RemarksRemarks

COleDataObject::COleDataObject

COleDataObject();

RemarksRemarks

NOTENOTE

COleDataObject::Detach

LPDATAOBJECT Detach();

Return ValueReturn Value

RemarksRemarks

COleDataObject::GetData

Calling this function locks the Clipboard until this data object is released. The data object is released in the destructor for
the COleDataObject . For more information, see OpenClipboard and CloseClipboard in the Win32 documention.

Call this function to prepare for subsequent calls to GetNextFormat for retrieving a list of data formats from the
item.

After a call to BeginEnumFormats , the position of the first format supported by this data object is stored.
Successive calls to GetNextFormat will enumerate the list of available formats in the data object.

To check on the availability of data in a given format, use COleDataObject::IsDataAvailable.

For more information, see IDataObject::EnumFormatEtc in the Windows SDK.

Constructs a COleDataObject object.

A call to COleDataObject::Attach or COleDataObject::AttachClipboard must be made before calling other
COleDataObject functions.

Since one of the parameters to the drag-and-drop handlers is a pointer to a COleDataObject , there is no need to call
this constructor to support drag and drop.

Call this function to detach the COleDataObject object from its associated OLE data object without releasing
the data object.

A pointer to the OLE data object that was detached.

Call this function to retrieve data from the item in the specified format.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-openclipboard
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-closeclipboard
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-enumformatetc

BOOL GetData(
 CLIPFORMAT cfFormat,
 LPSTGMEDIUM lpStgMedium,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleDataObject::GetFileData

CFile* GetFileData(
 CLIPFORMAT cfFormat,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

cfFormat
The format in which data is to be returned. This parameter can be one of the predefined Clipboard formats or
the value returned by the native Windows RegisterClipboardFormat function.

lpStgMedium
Points to a STGMEDIUM structure that will receive data.

lpFormatEtc
Points to a FORMATETC structure describing the format in which data is to be returned. Provide a value for
this parameter if you want to specify additional format information beyond the Clipboard format specified by
cfFormat. If it is NULL, the default values are used for the other fields in the FORMATETC structure.

Nonzero if successful; otherwise 0.

For more information, see IDataObject::GetData, STGMEDIUM, and FORMATETC in the Windows SDK.

For more information, see RegisterClipboardFormat in the Windows SDK.

Call this function to create a CFile or CFile -derived object and to retrieve data in the specified format into a
CFile pointer.

cfFormat
The format in which data is to be returned. This parameter can be one of the predefined Clipboard formats or
the value returned by the native Windows RegisterClipboardFormat function.

lpFormatEtc
Points to a FORMATETC structure describing the format in which data is to be returned. Provide a value for
this parameter if you want to specify additional format information beyond the Clipboard format specified by
cfFormat. If it is NULL, the default values are used for the other fields in the FORMATETC structure.

Pointer to the new CFile or CFile -derived object containing the data if successful; otherwise NULL.

Depending on the medium the data is stored in, the actual type pointed to by the return value may be CFile ,
CSharedFile , or COleStreamFile .

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-getdata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

NOTENOTE

COleDataObject::GetGlobalData

HGLOBAL GetGlobalData(
 CLIPFORMAT cfFormat,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleDataObject::GetNextFormat

BOOL GetNextFormat(LPFORMATETC lpFormatEtc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The CFile object accessed by the return value of this function is owned by the caller. It is the responsibility of the caller
to delete the CFile object, thereby closing the file.

For more information, see FORMATETC in the Windows SDK.

For more information, see RegisterClipboardFormat in the Windows SDK.

Call this function to allocate a global memory block and to retrieve data in the specified format into an
HGLOBAL.

cfFormat
The format in which data is to be returned. This parameter can be one of the predefined Clipboard formats or
the value returned by the native Windows RegisterClipboardFormat function.

lpFormatEtc
Points to a FORMATETC structure describing the format in which data is to be returned. Provide a value for
this parameter if you want to specify additional format information beyond the Clipboard format specified by
cfFormat. If it is NULL, the default values are used for the other fields in the FORMATETC structure.

The handle of the global memory block containing the data if successful; otherwise NULL.

For more information, see FORMATETC in the Windows SDK.

For more information, see RegisterClipboardFormat in the Windows SDK.

Call this function repeatedly to obtain all the formats available for retrieving data from the item.

lpFormatEtc
Points to the FORMATETC structure that receives the format information when the function call returns.

Nonzero if another format is available; otherwise 0.

After a call to COleDataObject::BeginEnumFormats, the position of the first format supported by this data
object is stored. Successive calls to GetNextFormat will enumerate the list of available formats in the data
object. Use these functions to list the available formats.

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

COleDataObject::IsDataAvailable

BOOL IsDataAvailable(
 CLIPFORMAT cfFormat,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleDataObject::Release

void Release();

RemarksRemarks

See also

To check for the availability of a given format, call COleDataObject::IsDataAvailable.

For more information, see IEnumXXXX::Next in the Windows SDK.

Call this function to determine if a particular format is available for retrieving data from the OLE item.

cfFormat
The Clipboard data format to be used in the structure pointed to by lpFormatEtc. This parameter can be one of
the predefined Clipboard formats or the value returned by the native Windows RegisterClipboardFormat
function.

lpFormatEtc
Points to a FORMATETC structure describing the format desired. Provide a value for this parameter only if you
want to specify additional format information beyond the Clipboard format specified by cfFormat. If it is
NULL, the default values are used for the other fields in the FORMATETC structure.

Nonzero if data is available in the specified format; otherwise 0.

This function is useful before calling GetData , GetFileData , or GetGlobalData .

For more information, see IDataObject::QueryGetData and FORMATETC in the Windows SDK.

For more information, see RegisterClipboardFormat in the Windows SDK.

See the example for CRichEditView::QueryAcceptData.

Call this function to release ownership of the IDataObject object that was previously associated with the
COleDataObject object.

The IDataObject was associated with the COleDataObject by calling Attach or AttachClipboard explicitly or
by the framework. If the bAutoRelease parameter of Attach is FALSE, the IDataObject object will not be
released. In this case, the caller is responsible for releasing the IDataObject by calling IUnknown::Release.

MFC Sample HIERSVR
MFC Sample OCLIENT
Hierarchy Chart
COleDataSource Class

https://msdn.microsoft.com/library/ms695273.aspx
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-querygetdata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-idataobject
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleClientItem Class
COleServerItem Class

COleDataSource Class
3/4/2019 • 14 minutes to read • Edit Online

Syntax
class COleDataSource : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleDataSource::COleDataSource Constructs a COleDataSource object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleDataSource::CacheData Offers data in a specified format using a STGMEDIUM

structure.

COleDataSource::CacheGlobalData Offers data in a specified format using an HGLOBAL.

COleDataSource::DelayRenderData Offers data in a specified format using delayed rendering.

COleDataSource::DelayRenderFileData Offers data in a specified format in a CFile pointer.

COleDataSource::DelaySetData Called for every format that is supported in OnSetData .

COleDataSource::DoDragDrop Performs drag-and-drop operations with a data source.

COleDataSource::Empty Empties the COleDataSource object of data.

COleDataSource::FlushClipboard Renders all data to the Clipboard.

COleDataSource::GetClipboardOwner Verifies that the data placed on the Clipboard is still there.

COleDataSource::OnRenderData Retrieves data as part of delayed rendering.

COleDataSource::OnRenderFileData Retrieves data into a CFile as part of delayed rendering.

COleDataSource::OnRenderGlobalData Retrieves data into an HGLOBAL as part of delayed
rendering.

Acts as a cache into which an application places the data that it will offer during data transfer operations, such
as Clipboard or drag-and-drop operations.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coledatasource-class.md

COleDataSource::OnSetData Called to replace the data in the COleDataSource object.

COleDataSource::SetClipboard Places a COleDataSource object on the Clipboard.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

COleDataSource::CacheData

void CacheData(
 CLIPFORMAT cfFormat,
 LPSTGMEDIUM lpStgMedium,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

You can create OLE data sources directly. Alternately, the COleClientItem and COleServerItem classes create
OLE data sources in response to their CopyToClipboard and DoDragDrop member functions. See
COleServerItem::CopyToClipboard for a brief description. Override the OnGetClipboardData member function of
your client item or server item class to add additional Clipboard formats to the data in the OLE data source
created for the CopyToClipboard or DoDragDrop member function.

Whenever you want to prepare data for a transfer, you should create an object of this class and fill it with your
data using the most appropriate method for your data. The way it is inserted into a data source is directly
affected by whether the data is supplied immediately (immediate rendering) or on demand (delayed rendering).
For every Clipboard format in which you are providing data by passing the Clipboard format to be used (and an
optional FORMATETC structure), call DelayRenderData.

For more information about data sources and data transfer, see the article Data Objects and Data Sources
(OLE). In addition, the article Clipboard Topics describes the OLE Clipboard mechanism.

CObject

CCmdTarget

COleDataSource

Header: afxole.h

Call this function to specify a format in which data is offered during data transfer operations.

cfFormat
The Clipboard format in which the data is to be offered. This parameter can be one of the predefined Clipboard
formats or the value returned by the native Windows RegisterClipboardFormat function.

lpStgMedium
Points to a STGMEDIUM structure containing the data in the format specified.

lpFormatEtc
Points to a FORMATETC structure describing the format in which the data is to be offered. Provide a value for

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

RemarksRemarks

COleDataSource::CacheGlobalData

void CacheGlobalData(
 CLIPFORMAT cfFormat,
 HGLOBAL hGlobal,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

RemarksRemarks

this parameter if you want to specify additional format information beyond the Clipboard format specified by
cfFormat. If it is NULL, default values are used for the other fields in the FORMATETC structure.

You must supply the data, because this function provides it by using immediate rendering. The data is cached
until needed.

Supply the data using a STGMEDIUM structure. You can also use the CacheGlobalData member function if the
amount of data you are supplying is small enough to be transferred efficiently using an HGLOBAL.

After the call to CacheData the ptd member of lpFormatEtc and the contents of lpStgMedium are owned by
the data object, not by the caller.

To use delayed rendering, call the DelayRenderData or DelayRenderFileData member function. For more
information on delayed rendering as handled by MFC, see the article Data Objects and Data Sources:
Manipulation.

For more information, see the STGMEDIUM and FORMATETC structures in the Windows SDK.

For more information, see RegisterClipboardFormat in the Windows SDK.

Call this function to specify a format in which data is offered during data transfer operations.

cfFormat
The Clipboard format in which the data is to be offered. This parameter can be one of the predefined Clipboard
formats or the value returned by the native Windows RegisterClipboardFormat function.

hGlobal
Handle to the global memory block containing the data in the format specified.

lpFormatEtc
Points to a FORMATETC structure describing the format in which the data is to be offered. Provide a value for
this parameter if you want to specify additional format information beyond the Clipboard format specified by
cfFormat. If it is NULL, default values are used for the other fields in the FORMATETC structure.

This function provides the data using immediate rendering, so you must supply the data when calling the
function; the data is cached until needed. Use the CacheData member function if you are supplying a large
amount of data or if you require a structured storage medium.

To use delayed rendering, call the DelayRenderData or DelayRenderFileData member function. For more
information on delayed rendering as handled by MFC, see the article Data Objects and Data Sources:
Manipulation.

For more information, see the FORMATETC structure in the Windows SDK.

For more information, see RegisterClipboardFormat in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata

COleDataSource::COleDataSource

COleDataSource();

COleDataSource::DelayRenderData

void DelayRenderData(
 CLIPFORMAT cfFormat,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

RemarksRemarks

COleDataSource::DelayRenderFileData

void DelayRenderFileData(
 CLIPFORMAT cfFormat,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

Constructs a COleDataSource object.

Call this function to specify a format in which data is offered during data transfer operations.

cfFormat
The Clipboard format in which the data is to be offered. This parameter can be one of the predefined Clipboard
formats or the value returned by the native Windows RegisterClipboardFormat function.

lpFormatEtc
Points to a FORMATETC structure describing the format in which the data is to be offered. Provide a value for
this parameter if you want to specify additional format information beyond the Clipboard format specified by
cfFormat. If it is NULL, default values are used for the other fields in the FORMATETC structure.

This function provides the data using delayed rendering, so the data is not supplied immediately. The
OnRenderData or OnRenderGlobalData member function is called to request the data.

Use this function if you are not going to supply your data through a CFile object. If you are going to supply
the data through a CFile object, call the DelayRenderFileData member function. For more information on
delayed rendering as handled by MFC, see the article Data Objects and Data Sources: Manipulation.

To use immediate rendering, call the CacheData or CacheGlobalData member function.

For more information, see the FORMATETC structure in the Windows SDK.

For more information, see RegisterClipboardFormat in the Windows SDK.

Call this function to specify a format in which data is offered during data transfer operations.

cfFormat
The Clipboard format in which the data is to be offered. This parameter can be one of the predefined Clipboard
formats or the value returned by the native Windows RegisterClipboardFormat function.

lpFormatEtc
Points to a FORMATETC structure describing the format in which the data is to be offered. Provide a value for
this parameter if you want to specify additional format information beyond the Clipboard format specified by

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

RemarksRemarks

COleDataSource::DelaySetData

void DelaySetData(
 CLIPFORMAT cfFormat,
 LPFORMATETC lpFormatEtc = NULL);

ParametersParameters

RemarksRemarks

COleDataSource::DoDragDrop

DROPEFFECT DoDragDrop(
 DWORD dwEffects = DROPEFFECT_COPY|DROPEFFECT_MOVE|DROPEFFECT_LINK,
 LPCRECT lpRectStartDrag = NULL,
 COleDropSource* pDropSource = NULL);

ParametersParameters

cfFormat. If it is NULL, default values are used for the other fields in the FORMATETC structure.

This function provides the data using delayed rendering, so the data is not supplied immediately. The
OnRenderFileData member function is called to request the data.

Use this function if you are going to use a CFile object to supply the data. If you are not going to use a CFile

object, call the DelayRenderData member function. For more information on delayed rendering as handled by
MFC, see the article Data Objects and Data Sources: Manipulation.

To use immediate rendering, call the CacheData or CacheGlobalData member function.

For more information, see the FORMATETC structure in the Windows SDK.

For more information, see RegisterClipboardFormat in the Windows SDK.

Call this function to support changing the contents of the data source.

cfFormat
The Clipboard format in which the data is to be placed. This parameter can be one of the predefined Clipboard
formats or the value returned by the native Windows RegisterClipboardFormat function.

lpFormatEtc
Points to a FORMATETC structure describing the format in which the data is to be replaced. Provide a value for
this parameter if you want to specify additional format information beyond the Clipboard format specified by
cfFormat. If it is NULL, default values are used for the other fields in the FORMATETC structure.

OnSetData will be called by the framework when this happens. This is only used when the framework returns
the data source from COleServerItem::GetDataSource. If DelaySetData is not called, your OnSetData function
will never be called. DelaySetData should be called for each Clipboard or FORMATETC format you support.

For more information, see the FORMATETC structure in the Windows SDK.

For more information, see RegisterClipboardFormat in the Windows SDK.

Call the DoDragDrop member function to perform a drag-and-drop operation for this data source, typically in an
CWnd::OnLButtonDown handler.

dwEffects
Drag-and-drop operations that are allowed on this data source. Can be one or more of the following:

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata

Return ValueReturn Value

RemarksRemarks

COleDataSource::Empty

void Empty();

RemarksRemarks

COleDataSource::FlushClipboard

DROPEFFECT_COPY A copy operation could be performed.

DROPEFFECT_MOVE A move operation could be performed.

DROPEFFECT_LINK A link from the dropped data to the original data could be established.

DROPEFFECT_SCROLL Indicates that a drag scroll operation could occur.

lpRectStartDrag
Pointer to the rectangle that defines where the drag actually starts. For more information, see the following
Remarks section.

pDropSource
Points to a drop source. If NULL then a default implementation of COleDropSource will be used.

Drop effect generated by the drag-and-drop operation; otherwise DROPEFFECT_NONE if the operation never
begins because the user released the mouse button before leaving the supplied rectangle.

The drag-and-drop operation does not start immediately. It waits until the mouse cursor leaves the rectangle
specified by lpRectStartDrag or until a specified number of milliseconds have passed. If lpRectStartDrag is
NULL, the size of the rectangle is one pixel.

The delay time is specified by a registry key setting. You can change the delay time by calling
CWinApp::WriteProfileString or CWinApp::WriteProfileInt. If you do not specify the delay time, a default value
of 200 milliseconds is used. Drag delay time is stored as follows:

Windows NT Drag delay time is stored in
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\NT\CurrentVersion\IniFileMapping\win.ini
\Windows\DragDelay.

Windows 3.x Drag delay time is stored in the WIN.INI file, under the [Windows} section.

Windows 95/98 Drag delay time is stored in a cached version of WIN.INI.

For more information about how drag delay information is stored in either the registry or the .INI file, see
WriteProfileString in the Windows SDK.

For more information, see the article Drag and Drop: Implementing a Drop Source.

Call this function to empty the COleDataSource object of data.

Both cached and delay render formats are emptied so they can be reused.

For more information, see ReleaseStgMedium in the Windows SDK.

Renders data that is on the Clipboard, and then lets you paste data from the Clipboard after your application
shuts down.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-writeprofilestringa
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-releasestgmedium

static void PASCAL FlushClipboard();

RemarksRemarks

COleDataSource::GetClipboardOwner

static COleDataSource* PASCAL GetClipboardOwner();

Return ValueReturn Value

COleDataSource::OnRenderData

virtual BOOL OnRenderData(
 LPFORMATETC lpFormatEtc,
 LPSTGMEDIUM lpStgMedium);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Use SetClipboard to put data on the Clipboard.

Determines whether the data on the Clipboard has changed since SetClipboard was last called and, if so,
identifies the current owner.

The data source currently on the Clipboard, or NULL if there is nothing on the Clipboard or if the Clipboard is
not owned by the calling application.

Called by the framework to retrieve data in the specified format.

lpFormatEtc
Points to the FORMATETC structure specifying the format in which information is requested.

lpStgMedium
Points to a STGMEDIUM structure in which the data is to be returned.

Nonzero if successful; otherwise 0.

The specified format is one previously placed in the COleDataSource object using the DelayRenderData or
DelayRenderFileData member function for delayed rendering. The default implementation of this function will
call OnRenderFileData or OnRenderGlobalData if the supplied storage medium is either a file or memory,
respectively. If neither of these formats are supplied, then the default implementation will return 0 and do
nothing. For more information on delayed rendering as handled by MFC, see the article Data Objects and Data
Sources: Manipulation.

If lpStgMedium-> tymed is TYMED_NULL, the STGMEDIUM should be allocated and filled as specified by
lpFormatEtc->tymed. If it is not TYMED_NULL, the STGMEDIUM should be filled in place with the data.

This is an advanced overridable. Override this function to supply your data in the requested format and
medium. Depending on your data, you may want to override one of the other versions of this function instead.
If your data is small and fixed in size, override OnRenderGlobalData . If your data is in a file, or is of variable size,
override OnRenderFileData .

For more information, see the STGMEDIUM and FORMATETC structures, the TYMED enumeration type, and
IDataObject::GetData in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ne-objidl-tagtymed
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-getdata

COleDataSource::OnRenderFileData

virtual BOOL OnRenderFileData(
 LPFORMATETC lpFormatEtc,
 CFile* pFile);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleDataSource::OnRenderGlobalData

virtual BOOL OnRenderGlobalData(
 LPFORMATETC lpFormatEtc,
 HGLOBAL* phGlobal);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Called by the framework to retrieve data in the specified format when the specified storage medium is a file.

lpFormatEtc
Points to the FORMATETC structure specifying the format in which information is requested.

pFile
Points to a CFile object in which the data is to be rendered.

Nonzero if successful; otherwise 0.

The specified format is one previously placed in the COleDataSource object using the DelayRenderData member
function for delayed rendering. The default implementation of this function simply returns FALSE.

This is an advanced overridable. Override this function to supply your data in the requested format and
medium. Depending on your data, you might want to override one of the other versions of this function instead.
If you want to handle multiple storage media, override OnRenderData. If your data is in a file, or is of variable
size, override OnRenderFileData . For more information on delayed rendering as handled by MFC, see the article
Data Objects and Data Sources: Manipulation.

For more information, see the FORMATETC structure and IDataObject::GetData in the Windows SDK.

Called by the framework to retrieve data in the specified format when the specified storage medium is global
memory.

lpFormatEtc
Points to the FORMATETC structure specifying the format in which information is requested.

phGlobal
Points to a handle to global memory in which the data is to be returned. If one has not yet been allocated, this
parameter can be NULL.

Nonzero if successful; otherwise 0.

The specified format is one previously placed in the COleDataSource object using the DelayRenderData member
function for delayed rendering. The default implementation of this function simply returns FALSE.

If phGlobal is NULL, then a new HGLOBAL should be allocated and returned in phGlobal. Otherwise, the

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-getdata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

COleDataSource::OnSetData

virtual BOOL OnSetData(
 LPFORMATETC lpFormatEtc,
 LPSTGMEDIUM lpStgMedium,
 BOOL bRelease);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleDataSource::SetClipboard

HGLOBAL specified by phGlobal should be filled with the data. The amount of data placed in the HGLOBAL
must not exceed the current size of the memory block. Also, the block cannot be reallocated to a larger size.

This is an advanced overridable. Override this function to supply your data in the requested format and
medium. Depending on your data, you may want to override one of the other versions of this function instead.
If you want to handle multiple storage media, override OnRenderData. If your data is in a file, or is of variable
size, override OnRenderFileData. For more information on delayed rendering as handled by MFC, see the
article Data Objects and Data Sources: Manipulation.

For more information, see the FORMATETC structure and IDataObject::GetData in the Windows SDK.

Called by the framework to set or replace the data in the COleDataSource object in the specified format.

lpFormatEtc
Points to the FORMATETC structure specifying the format in which data is being replaced.

lpStgMedium
Points to the STGMEDIUM structure containing the data that will replace the current contents of the
COleDataSource object.

bRelease
Indicates who has ownership of the storage medium after completing the function call. The caller decides who is
responsible for releasing the resources allocated on behalf of the storage medium. The caller does this by
setting bRelease. If bRelease is nonzero, the data source takes ownership, freeing the medium when it has
finished using it. When bRelease is 0, the caller retains ownership and the data source can use the storage
medium only for the duration of the call.

Nonzero if successful; otherwise 0.

The data source does not take ownership of the data until it has successfully obtained it. That is, it does not take
ownership if OnSetData returns 0. If the data source takes ownership, it frees the storage medium by calling the
ReleaseStgMedium function.

The default implementation does nothing. Override this function to replace the data in the specified format. This
is an advanced overridable.

For more information, see the STGMEDIUM and FORMATETC structures and the ReleaseStgMedium and
IDataObject::GetData functions in the Windows SDK.

Puts the data contained in the COleDataSource object on the Clipboard after calling one of the following
functions: CacheData, CacheGlobalData, DelayRenderData, or DelayRenderFileData.

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-getdata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-releasestgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-releasestgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-getdata

void SetClipboard();

See also
MFC Sample HIERSVR
MFC Sample OCLIENT
CCmdTarget Class
Hierarchy Chart
COleDataObject Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleDBRecordView Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class COleDBRecordView : public CFormView

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

COleDBRecordView::COleDBRecordView Constructs a COleDBRecordView object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleDBRecordView::OnGetRowset Returns a standard HRESULT value.

COleDBRecordView::OnMove Updates the current record (if dirty) on the data source and
then moves to the specified record (next, previous, first, or
last).

Remarks

NOTENOTE

A view that displays database records in controls.

The view is a form view directly connected to a CRowset object. The view is created from a dialog template
resource and displays the fields of the CRowset object in the dialog template's controls. The COleDBRecordView
object uses dialog data exchange (DDX), and the navigational functionality built into CRowset , to automate the
movement of data between the controls on the form and the fields of the rowset. COleDBRecordView also supplies
a default implementation for moving to the first, next, previous, or last record and an interface for updating the
record currently on view.

You can use DDX functions with COleDbRecordView to get data directly from the database recordset and display it
in a dialog control. You should use the DDX_* methods (such as DDX_Text), not the DDX_Field* functions (such as
DDX_FieldText) with COleDbRecordView . DDX_FieldText will not work with COleDbRecordView because
DDX_FieldText takes an additional argument of type CRecordset* (for CRecordView) or CDaoRecordset* (for
CDaoRecordView).

If you are working with the Data Access Objects (DAO) classes rather than the OLE DB Consumer Template classes, use class
CDaoRecordView instead. For more information, see the article Overview: Database Programming.

COleDBRecordView keeps track of the user's position in the rowset so that the record view can update the user

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coledbrecordview-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl

Inheritance Hierarchy

Requirements

COleDBRecordView::COleDBRecordView

COleDBRecordView(LPCTSTR lpszTemplateName);
COleDBRecordView(UINT nIDTemplate);

ParametersParameters

RemarksRemarks

NOTENOTE

COleDBRecordView::OnGetRowset

virtual CRowset<>* OnGetRowset() = 0;

interface. When the user moves to either end of the rowset, the record view disables user interface objects — such
as menu items or toolbar buttons — for moving further in the same direction.

For more information about rowset classes, see the Using OLE DB Consumer Templates article.

CObject

CCmdTarget

CWnd

CView

CScrollView

CFormView

COleDBRecordView

Header: afxoledb.h

Constructs a COleDBRecordView object.

lpszTemplateName
Contains a null-terminated string that is the name of a dialog-template resource.

nIDTemplate
Contains the ID number of a dialog-template resource.

When you create an object of a type derived from COleDBRecordView , invoke one of the constructors to create the
view object and identify the dialog resource on which the view is based. You can identify the resource either by
name (pass a string as the argument to the constructor) or by its ID (pass an unsigned integer as the argument).

Your derived class must supply its own constructor. In the constructor, invoke the constructor,
COleDBRecordView::COleDBRecordView , with the resource name or ID as an argument.

Returns a handle for the CRowset<> object associated with the record view.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ole-db-consumer-templates-cpp

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CFrameWnd* pFrame = (CFrameWnd*)AfxGetMainWnd();
COleDBRecordView* pView = (COleDBRecordView*)pFrame->GetActiveView();

// CProductAccessor is a user-defined accessor class
CRowset<CAccessor<CProductAccessor>>* pRowSet =
 (CRowset<CAccessor<CProductAccessor>>*)pView->OnGetRowset();

COleDBRecordView::OnMove

virtual BOOL OnMove(UINT nIDMoveCommand);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

A standard HRESULT value.

You must override this member function to construct or obtain a rowset object and return a handle to it. If you
declare your record view class with ClassWizard, the wizard writes a default override for you. ClassWizard's
default implementation returns the rowset handle stored in the record view if one exists. If not, it constructs a
rowset object of the type you specified with ClassWizard and calls its Open member function to open the table or
run the query, and then returns a handle to the object.

Previous to MFC 7.0, OnGetRowset returned a pointer to CRowset . If you have code that calls OnGetRowset , you need to
change the return type to the templatized class CRowset<>.

For more information and examples, see the article Record Views: Using a Record View.

Moves to a different record in the rowset and display its fields in the controls of the record view.

nIDMoveCommand
One of the following standard command ID values:

ID_RECORD_FIRST — Move to the first record in the recordset.

ID_RECORD_LAST — Move to the last record in the recordset.

ID_RECORD_NEXT — Move to the next record in the recordset.

ID_RECORD_PREV — Move to the previous record in the recordset.

Nonzero if the move was successful; otherwise 0 if the move request was denied.

The default implementation calls the appropriate Move member function of the CRowset object associated with
the record view.

By default, OnMove updates the current record on the data source if the user has changed it in the record view.

The Application Wizard creates a menu resource with First Record, Last Record, Next Record, and Previous
Record menu items. If you select the Dockable Toolbar option, The Application Wizard also creates a toolbar with
buttons corresponding to these commands.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/using-a-record-view-mfc-data-access

See also

If you move past the last record in the recordset, the record view continues to display the last record. If you move
backward past the first record, the record view continues to display the first record.

Hierarchy Chart

COleDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class COleDialog : public CCommonDialog

Members
Public MethodsPublic Methods

NAME DESCRIPTION

COleDialog::GetLastError Gets the error code returned by the dialog box.

Remarks

Inheritance Hierarchy

Provides functionality common to dialog boxes for OLE.

The Microsoft Foundation Class Library provides several classes derived from COleDialog :

COleInsertDialog

COleConvertDialog

COleChangeIconDialog

COleLinksDialog

COleBusyDialog

COleUpdateDialog

COlePasteSpecialDialog

COlePropertiesDialog

COleChangeSourceDialog

For more information about OLE-specific dialog boxes, see the article Dialog Boxes in OLE.

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

COleDialog

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coledialog-class.md

Requirements

COleDialog::GetLastError

UINT GetLastError() const;

Return ValueReturn Value

RemarksRemarks

See also

Header: afxodlgs.h

Call the GetLastError member function to get additional error information when DoModal returns
IDABORT.

The error codes returned by GetLastError depend on the specific dialog box displayed.

See the DoModal member function in the derived classes for information about specific error messages.

CCommonDialog Class
Hierarchy Chart

COleDispatchDriver Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class COleDispatchDriver

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleDispatchDriver::COleDispatchDriver Constructs a COleDispatchDriver object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleDispatchDriver::AttachDispatch Attaches an IDispatch connection to the
COleDispatchDriver object.

COleDispatchDriver::CreateDispatch Creates an IDispatch connection and attaches it to the
COleDispatchDriver object.

COleDispatchDriver::DetachDispatch Detaches an IDispatch connection, without releasing it.

COleDispatchDriver::GetProperty Gets an automation property.

COleDispatchDriver::InvokeHelper Helper for calling automation methods.

COleDispatchDriver::ReleaseDispatch Releases an IDispatch connection.

COleDispatchDriver::SetProperty Sets an automation property.

Public OperatorsPublic Operators

NAME DESCRIPTION

COleDispatchDriver::operator = Copies the source value into the COleDispatchDriver

object.

COleDispatchDriver::operator LPDISPATCH Accesses the underlying IDispatch pointer.

Public Data MembersPublic Data Members

Implements the client side of OLE automation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coledispatchdriver-class.md

NAME DESCRIPTION

COleDispatchDriver::m_bAutoRelease Specifies whether to release the IDispatch during
ReleaseDispatch or object destruction.

COleDispatchDriver::m_lpDispatch Indicates the pointer to the IDispatch interface attached to
this COleDispatchDriver .

Remarks

Inheritance Hierarchy

Requirements

COleDispatchDriver::AttachDispatch

void AttachDispatch(
 LPDISPATCH lpDispatch,
 BOOL bAutoRelease = TRUE);

ParametersParameters

RemarksRemarks

ExampleExample

COleDispatchDriver does not have a base class.

OLE dispatch interfaces provide access to an object's methods and properties. Member functions of
COleDispatchDriver attach, detach, create, and release a dispatch connection of type IDispatch . Other member

functions use variable argument lists to simplify calling IDispatch::Invoke .

This class can be used directly, but it is generally used only by classes created by the Add Class wizard. When you
create new C++ classes by importing a type library, the new classes are derived from COleDispatchDriver .

For more information on using COleDispatchDriver , see the following articles:

Automation Clients

Automation Servers

COleDispatchDriver

Header: afxdisp.h

Call the AttachDispatch member function to attach an IDispatch pointer to the COleDispatchDriver object. For
more information, see Implementing the IDispatch Interface.

lpDispatch
Pointer to an OLE IDispatch object to be attached to the COleDispatchDriver object.

bAutoRelease
Specifies whether the dispatch is to be released when this object goes out of scope.

This function releases any IDispatch pointer that is already attached to the COleDispatchDriver object.

https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface

void COleContainerView::OnAttachDispatch()
{
 CLSID clsidWMP;
 LPDISPATCH pWMPDispatch = NULL;
 COleDispatchDriver oddWMP;

 try
 {
 AfxCheckError(::CLSIDFromProgID(_T("WMPlayer.OCX"), &clsidWMP));

 AfxCheckError(::CoCreateInstance(clsidWMP, NULL, CLSCTX_INPROC_SERVER,
 IID_IDispatch, (LPVOID*)&pWMPDispatch));

 oddWMP.AttachDispatch(pWMPDispatch, TRUE);
 pWMPDispatch = NULL; // our COleDispatchDriver now owns the interface

 CString strUIMode;
 oddWMP.GetProperty(23, VT_BSTR, (void*)&strUIMode);
 TRACE(_T("WMP uiMode is %s.\n"), strUIMode);
 }
 catch (COleException* pe)
 {
 pe->ReportError();
 pe->Delete();
 }
 catch (CMemoryException* pe)
 {
 pe->ReportError();
 pe->Delete();
 }

 // cleanup
 if (NULL != pWMPDispatch)
 {
 pWMPDispatch->Release();
 }

 // COleDispatchDriver automatically releases the dispatch interface when
 // it goes out of scope if m_bAutoRelease is TRUE.
}

COleDispatchDriver::COleDispatchDriver

COleDispatchDriver();
COleDispatchDriver(LPDISPATCH lpDispatch, BOOL bAutoRelease = TRUE);
COleDispatchDriver(const COleDispatchDriver& dispatchSrc);

ParametersParameters

RemarksRemarks

Constructs a COleDispatchDriver object.

lpDispatch
Pointer to an OLE IDispatch object to be attached to the COleDispatchDriver object.

bAutoRelease
Specifies whether the dispatch is to be released when this object goes out of scope.

dispatchSrc
Reference to an existing COleDispatchDriver object.

The form COleDispatchDriver (LPDISPATCH lpDispatch , BOOL bAutoRelease = TRUE) connects the IDispatch

https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface

ExampleExample

COleDispatchDriver::CreateDispatch

BOOL CreateDispatch(
 REFCLSID clsid,
 COleException* pError = NULL);

BOOL CreateDispatch(
 LPCTSTR lpszProgID,
 COleException* pError = NULL);

ParametersParameters

Return ValueReturn Value

ExampleExample

interface.

The form COleDispatchDriver (const COleDispatchDriver & dispatchSrc) copies an existing COleDispatchDriver

object and increments the reference count.

The form COleDispatchDriver () creates a COleDispatchDriver object but does not connect the IDispatch

interface. Before using COleDispatchDriver () without arguments, you should connect an IDispatch to it using
either COleDispatchDriver::CreateDispatch or COleDispatchDriver::AttachDispatch. For more information, see
Implementing the IDispatch Interface.

See the example for COleDispatchDriver::CreateDispatch.

Creates an IDispatch interface object and attaches it to the COleDispatchDriver object.

clsid
Class ID of the IDispatch connection object to be created.

pError
Pointer to an OLE exception object, which will hold the status code resulting from the creation.

lpszProgID
Pointer to the programmatic identifier, such as "Excel.Document.5", of the automation object for which the
dispatch object is to be created.

Nonzero on success; otherwise 0.

https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface
https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface

void COleContainerView::OnCreateDispatch()
{
 COleDispatchDriver disp;
 COleException* pe = new COleException;

 try
 {
 // Create instance of Microsoft System Information Control
 // by using ProgID.
 if (disp.CreateDispatch(_T("WMPlayer.OCX"), pe))
 {
 //Get uiMode.
 CString strUIMode;
 disp.InvokeHelper(23, DISPATCH_PROPERTYGET, VT_BSTR,
 (void*)&strUIMode, NULL);

 CString strMsg;
 strMsg.Format(_T("WMP uiMode is %s."), strUIMode);
 AfxMessageBox(strMsg);
 }
 else
 {
 throw pe;
 }
 }
 //Catch control-specific exceptions.
 catch (COleDispatchException* pe)
 {
 CString cStr;

 if (!pe->m_strSource.IsEmpty())
 cStr = pe->m_strSource + _T(" - ");
 if (!pe->m_strDescription.IsEmpty())
 cStr += pe->m_strDescription;
 else
 cStr += _T("unknown error");

 AfxMessageBox(cStr, MB_OK,
 (pe->m_strHelpFile.IsEmpty()) ? 0 : pe->m_dwHelpContext);

 pe->Delete();
 }
 //Catch all MFC exceptions, including COleExceptions.
 // OS exceptions will not be caught.
 catch (CException* pe)
 {
 TRACE(_T("%s(%d): OLE Execption caught: SCODE = %x"),
 __FILE__, __LINE__, COleException::Process(pe));
 pe->Delete();
 }

 pe->Delete();
}

COleDispatchDriver::DetachDispatch

LPDISPATCH DetachDispatch();

Return ValueReturn Value

Detaches the current IDispatch connection from this object.

A pointer to the previously attached OLE IDispatch object.

RemarksRemarks

ExampleExample

LPDISPATCH CreateLPDispatch(LPCTSTR lpszProgId)
{
 COleDispatchDriver disp;

 disp.CreateDispatch(lpszProgId);

 return disp.DetachDispatch();
}

COleDispatchDriver::GetProperty

void GetProperty(
 DISPID dwDispID,
 VARTYPE vtProp,
 void* pvProp) const;

ParametersParameters

ExampleExample

CString IMyComObject::GetString(DISPID dispid)
{
 CString result;
 GetProperty(dispid, VT_BSTR, (void*)&result);
 return result;
}

COleDispatchDriver::InvokeHelper

void AFX_CDECL InvokeHelper(
 DISPID dwDispID,
 WORD wFlags,
 VARTYPE vtRet,
 void* pvRet,
 const BYTE* pbParamInfo, ...);

The IDispatch is not released.

For more information about the LPDISPATCH type, see Implementing the IDispatch Interface in the Windows
SDK.

Gets the object property specified by dwDispID.

dwDispID
Identifies the property to be retrieved.

vtProp
Specifies the property to be retrieved. For possible values, see the Remarks section for
COleDispatchDriver::InvokeHelper.

pvProp
Address of the variable that will receive the property value. It must match the type specified by vtProp.

Calls the object method or property specified by dwDispID, in the context specified by wFlags.

https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface

ParametersParameters

RemarksRemarks

SYMBOL RETURN TYPE

VT_EMPTY void

VT_I2 short

VT_I4 long

VT_R4 float

VT_R8 double

VT_CY CY

VT_DATE DATE

VT_BSTR BSTR

VT_DISPATCH LPDISPATCH

VT_ERROR SCODE

VT_BOOL BOOL

VT_VARIANT VARIANT

VT_UNKNOWN LPUNKNOWN

dwDispID
Identifies the method or property to be invoked.

wFlags
Flags describing the context of the call to IDispatch::Invoke . . For a list of possible values, see the wFlags
parameter in IDispatch::Invoke in the Windows SDK.

vtRet
Specifies the type of the return value. For possible values, see the Remarks section.

pvRet
Address of the variable that will receive the property value or return value. It must match the type specified by
vtRet.

pbParamInfo
Pointer to a null-terminated string of bytes specifying the types of the parameters following pbParamInfo.

...
Variable list of parameters, of types specified in pbParamInfo.

The pbParamInfo parameter specifies the types of the parameters passed to the method or property. The
variable list of arguments is represented by ... in the syntax declaration.

Possible values for the vtRet argument are taken from the VARENUM enumeration. Possible values are as
follows:

https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-invoke

ExampleExample

COleDispatchDriver::m_bAutoRelease

BOOL m_bAutoRelease;

RemarksRemarks

ExampleExample

// Clean up by forcing Release to be called
// on COleDispatchDriver object and delete
if (bError)
{
 pDisp->m_bAutoRelease = TRUE;
 delete pDisp;
 pDisp = NULL;
}

COleDispatchDriver::m_lpDispatch

LPDISPATCH m_lpDispatch;

RemarksRemarks

ExampleExample

COleDispatchDriver::operator =

The pbParamInfo argument is a space-separated list of VTS_ constants. One or more of these values, separated
by spaces (not commas), specifies the function's parameter list. Possible values are listed with the
EVENT_CUSTOM macro.

This function converts the parameters to VARIANTARG values, then invokes the IDispatch::Invoke method. If the
call to Invoke fails, this function will throw an exception. If the SCODE (status code) returned by
IDispatch::Invoke is DISP_E_EXCEPTION, this function throws a COleException object; otherwise it throws a

COleDispatchException.

For more information, see VARIANTARG, Implementing the IDispatch Interface, IDispatch::Invoke, and Structure
of COM Error Codes in the Windows SDK.

See the example for COleDispatchDriver::CreateDispatch.

If TRUE, the COM object accessed by m_lpDispatch will be automatically released when ReleaseDispatch is called
or when this COleDispatchDriver object is destroyed.

By default, m_bAutoRelease is set to TRUE in the constructor.

For more information on releasing COM objects, see Implementing Reference Counting and IUnknown::Release
in the Windows SDK.

The pointer to the IDispatch interface attached to this COleDispatchDriver .

The m_lpDispatch data member is a public variable of type LPDISPATCH.

For more information, see IDispatch in the Windows SDK.

See the example for COleDispatchDriver::AttachDispatch.

https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-invoke
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface
https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-invoke
https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes
https://docs.microsoft.com/windows/desktop/com/implementing-reference-counting
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface

const COleDispatchDriver& operator=(const COleDispatchDriver& dispatchSrc);

ParametersParameters

COleDispatchDriver::operator LPDISPATCH

operator LPDISPATCH();

ExampleExample

COleDispatchDriver disp;
if (disp.CreateDispatch(_T("WMPlayer.OCX")))
{
 IDispatch* pDispatch = disp; //COleDispatchDriver::operator
 //LPDISPATCH is called here
 IUnknown* pUnkn = NULL;
 HRESULT hr = pDispatch->QueryInterface(IID_IUnknown ,(void**)&pUnkn);
 if (SUCCEEDED(hr))
 {
 //Do something...
 pUnkn->Release();
 }
}

COleDispatchDriver::ReleaseDispatch

void ReleaseDispatch();

RemarksRemarks

ExampleExample

COleDispatchDriver::SetProperty

void AFX_CDECL SetProperty(
 DISPID dwDispID,
 VARTYPE vtProp, ...);

ParametersParameters

Copies the source value into the COleDispatchDriver object.

dispatchSrc
A pointer to an existing COleDispatchDriver object.

Accesses the underlying IDispatch pointer of the COleDispatchDriver object.

Releases the IDispatch connection. For more information, see Implementing the IDispatch Interface

If auto release has been set for this connection, this function calls IDispatch::Release before releasing the
interface.

See the example for COleDispatchDriver::AttachDispatch.

Sets the OLE object property specified by dwDispID.

dwDispID

https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface

ExampleExample

void IMyComObject::SetString(DISPID dispid, LPCTSTR propVal)
{
 SetProperty(dispid, VT_BSTR, propVal);
}

See also

Identifies the property to be set.

vtProp
Specifies the type of the property to be set. For possible values, see the Remarks section for
COleDispatchDriver::InvokeHelper.

...
A single parameter of the type specified by vtProp.

MFC Sample CALCDRIV
MFC Sample ACDUAL
Hierarchy Chart
CCmdTarget Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleDispatchException Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class COleDispatchException : public CException

Members
Public Data MembersPublic Data Members

NAME DESCRIPTION

COleDispatchException::m_dwHelpContext Help context for error.

COleDispatchException::m_strDescription Verbal error description.

COleDispatchException::m_strHelpFile Help file to use with m_dwHelpContext .

COleDispatchException::m_strSource Application that generated the exception.

COleDispatchException::m_wCode IDispatch -specific error code.

Remarks

Inheritance Hierarchy

Requirements

COleDispatchException::m_dwHelpContext

Handles exceptions specific to the OLE IDispatch interface, which is a key part of OLE automation.

Like the other exception classes derived from the CException base class, COleDispatchException can be used
with the THROW, THROW_LAST, TRY, CATCH, AND_CATCH, and END_CATCH macros.

In general, you should call AfxThrowOleDispatchException to create and throw a COleDispatchException object.

For more information on exceptions, see the articles Exception Handling (MFC) and Exceptions: OLE Exceptions.

CObject

CException

COleDispatchException

Header: afxdisp.h

Identifies a help context in your application's help (.HLP) file.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coledispatchexception-class.md

DWORD m_dwHelpContext;

RemarksRemarks

ExampleExample

COleDispatchException::m_strDescription

CString m_strDescription;

RemarksRemarks

ExampleExample

COleDispatchException::m_strHelpFile

CString m_strHelpFile;

COleDispatchException::m_strSource

CString m_strSource;

ExampleExample

COleDispatchException::m_wCode

WORD m_wCode;

RemarksRemarks

See also

This member is set by the function AfxThrowOleDispatchException when an exception is thrown.

See the example for COleDispatchDriver::CreateDispatch.

Contains a verbal error description, such as "Disk full."

This member is set by the function AfxThrowOleDispatchException when an exception is thrown.

See the example for COleDispatchDriver::CreateDispatch.

The framework fills in this string with the name of the application's help file.

The framework fills in this string with the name of the application that generated the exception.

See the example for COleDispatchDriver::CreateDispatch.

Contains an error code specific to your application.

This member is set by the function AfxThrowOleDispatchException when an exception is thrown.

MFC Sample CALCDRIV
CException Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleDispatchDriver Class
COleException Class

COleDocObjectItem Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class COleDocObjectItem : public COleClientItem

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleDocObjectItem::COleDocObjectItem Constructs a COleDocObject item.

Public MethodsPublic Methods

NAME DESCRIPTION

COleDocObjectItem::DoDefaultPrinting Prints the container application's document using the default
printer settings.

COleDocObjectItem::ExecCommand Executes the command specified by the user.

COleDocObjectItem::GetActiveView Retrieves the document's active view.

COleDocObjectItem::GetPageCount Retrieves the number of pages in the container application's
document.

COleDocObjectItem::OnPreparePrinting Prepares the container application's document for printing.

COleDocObjectItem::OnPrint Prints the container application's document.

COleDocObjectItem::QueryCommand Queries for the status of one or more commands generated
by user interface events.

COleDocObjectItem::Release Releases the connection to an OLE linked item and closes it if
it was open. Does not destroy the client item.

Remarks

Implements Active document containment.

In MFC, an Active document is handled similarly to a regular, in-place editable embedding, with the following
differences:

The COleDocument -derived class still maintains a list of the currently embedded items; however, these items
may be COleDocObjectItem -derived items.

When an active document is active, it occupies the entire client area of the view when it is in-place active.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coledocobjectitem-class.md

Inheritance Hierarchy

Requirements

COleDocObjectItem::COleDocObjectItem

COleDocObjectItem(COleDocument* pContainerDoc = NULL);

ParametersParameters

COleDocObjectItem::DoDefaultPrinting

static HRESULT DoDefaultPrinting(
 CView* pCaller,
 CPrintInfo* pInfo);

ParametersParameters

COleDocObjectItem::ExecCommand

An Active document container has full control of the Help menu.

The Help menu contains menu items for both the Active document container and server.

Because the Active document container owns the Help menu, the container is responsible for forwarding server
Help menu messages to the server. This integration is handled by COleDocObjectItem .

For more information on menu merging and Active document activation, see Overview of Active Document
Containment.

CObject

CCmdTarget

CDocItem

COleClientItem

COleDocObjectItem

Header: afxole.h

Call this member function to initialize the COleDocObjectItem object.

pContainerDoc
A pointer to the COleDocument object acting as the active document container. This parameter must be NULL to
enable IMPLEMENT_SERIALIZE. Normally OLE items are constructed with a non- NULL document pointer.

Called by the framework to a document using the default settings.

pCaller
A pointer to a CView object that is sending the print command.

pInfo
A pointer to a CPrintInfo object that describes the job to be printed.

Call this member function to execute the command specified by the user.

HRESULT ExecCommand(
 DWORD nCmdID,
 DWORD nCmdExecOpt = OLECMDEXECOPT_DONTPROMPTUSER,
 const GUID* pguidCmdGroup = NULL);

ParametersParameters

Return ValueReturn Value

VALUE DESCRIPTION

E_UNEXPECTED Unexpected error occurred.

E_FAIL Error occurred.

E_NOTIMPL Indicates MFC itself should attempt to translate and dispatch
the command.

OLECMDERR_E_UNKNOWNGROUP pguidCmdGroup is non- NULL but does not specify a
recognized command group.

OLECMDERR_E_NOTSUPPORTED nCmdID is not recognized as a valid command in the group
pGroup.

OLECMDERR_DISABLED The command identified by nCmdID is disabled and cannot
be executed.

OLECMDERR_NOHELP Caller asked for help on the command identified by nCmdID
but no help is available.

OLECMDERR_CANCELLED User canceled the execution.

RemarksRemarks

COleDocObjectItem::GetActiveView

LPOLEDOCUMENTVIEW GetActiveView() const;

Return ValueReturn Value

nCmdID
The identifier of the command to execute. Must be in the group identified by pguidCmdGroup.

nCmdExecOpt
Specifies command-execution options. By default, set to execute the command without prompting the user. See
OLECMDEXECOPT for a list of values.

pguidCmdGroup
Unique identifier of the command group. By default, NULL, which specifies the standard group. The command
passed in nCmdID must belong to the group.

Returns S_OK if successful; otherwise,returns one of the following error codes.

The pguidCmdGroup and the nCmdID parameters together uniquely identify the command to invoke. The
nCmdExecOpt parameter specifies the exact action to take.

Call this member function to get a pointer to the IOleDocumentView interface of the currently active view.

https://docs.microsoft.com/windows/desktop/api/docobj/ne-docobj-olecmdexecopt

RemarksRemarks

COleDocObjectItem::GetPageCount

BOOL GetPageCount(
 LPLONG pnFirstPage,
 LPLONG pcPages);

ParametersParameters

Return ValueReturn Value

COleDocObjectItem::OnPreparePrinting

static BOOL OnPreparePrinting(
 CView* pCaller,
 CPrintInfo* pInfo,
 BOOL bPrintAll = TRUE);

ParametersParameters

Return ValueReturn Value

COleDocObjectItem::OnPrint

A pointer to the IOleDocumentView interface of the currently active view. If there is no current view, it returns
NULL.

The reference count on the returned IOleDocumentView pointer is not incremented before it is returned by this
function.

Call this member function to retrieve the number of pages in the document.

pnFirstPage
A pointer to the number of the document's first page. Can be NULL, which indicates the caller doesn't need this
number.

pcPages
A pointer to the total number of pages in the document. Can be NULL, which indicates the caller doesn't need
this number.

Nonzero if successful; otherwise 0.

This member function is called by the framework to prepare a document for printing.

pCaller
A pointer to a CView object that is sending the print command.

pInfo
A pointer to a CPrintInfo object that describes the job to be printed.

bPrintAll
Specifies whether the entire document is to be printed.

Nonzero if successful; otherwise 0.

This member function is called by the framework to print a document.

https://docs.microsoft.com/windows/desktop/api/docobj/nn-docobj-ioledocumentview

static void OnPrint(
 CView* pCaller,
 CPrintInfo* pInfo,
 BOOL bPrintAll = TRUE);

ParametersParameters

COleDocObjectItem::QueryCommand

HRESULT QueryCommand(
 ULONG nCmdID,
 DWORD* pdwStatus,
 OLECMDTEXT* pCmdText =NULL,
 const GUID* pguidCmdGroup =NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleDocObjectItem::Release

virtual void Release(OLECLOSE dwCloseOption = OLECLOSE_NOSAVE);

ParametersParameters

pCaller
A pointer to a CView object that is sending the print command.

pInfo
A pointer to a CPrintInfo object that describes the job to be printed.

bPrintAll
Specifies whether the entire document is to be printed.

Queries for the status of one or more commands generated by user interface events.

nCmdID
identifier of the command being queried for.

pdwStatus
A pointer to the flags returned as a result of the query. For a list of possible values, see OLECMDF.

pCmdText
Pointer to an OLECMDTEXT structure in which to return name and status information for a single command. Can
be NULL to indicate that the caller does not need this information.

pguidCmdGroup
Unique identifier of the command group; can be NULL to specify the standard group.

For a complete listing of return values, see IOleCommandTarget::QueryStatus in the Windows SDK.

This member function emulates the functionality of the IOleCommandTarget::QueryStatus method, as described
in the Windows SDK.

Releases the connection to an OLE linked item and closes it if it was open. Does not destroy the client item.

dwCloseOption

https://docs.microsoft.com/windows/desktop/api/docobj/ne-docobj-olecmdf
https://docs.microsoft.com/windows/desktop/api/docobj/ns-docobj-_tagolecmdtext
https://docs.microsoft.com/windows/desktop/api/docobj/nf-docobj-iolecommandtarget-querystatus
https://docs.microsoft.com/windows/desktop/api/docobj/nf-docobj-iolecommandtarget-querystatus

RemarksRemarks

See also

Flag specifying under what circumstances the OLE item is saved when it returns to the loaded state. For a list of
possible values, see COleClientItem::Close.

Does not destroy the client item.

MFC Sample MFCBIND
COleClientItem Class
Hierarchy Chart
COleClientItem Class
CDocObjectServerItem Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleDocument Class
3/4/2019 • 12 minutes to read • Edit Online

Syntax
class COleDocument : public CDocument

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleDocument::COleDocument Constructs a COleDocument object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleDocument::AddItem Adds an item to the list of items maintained by the
document.

COleDocument::ApplyPrintDevice Sets the print-target device for all client items in the
document.

COleDocument::EnableCompoundFile Causes documents to be stored using the OLE Structured
Storage file format.

COleDocument::GetInPlaceActiveItem Returns the OLE item that is currently in-place active.

COleDocument::GetNextClientItem Gets the next client item for iterating.

COleDocument::GetNextItem Gets the next document item for iterating.

COleDocument::GetNextServerItem Gets the next server item for iterating.

COleDocument::GetPrimarySelectedItem Returns the primary selected OLE item in the document.

COleDocument::GetStartPosition Gets the initial position to begin iteration.

COleDocument::HasBlankItems Checks for blank items in the document.

COleDocument::OnShowViews Called when the document becomes visible or invisible.

COleDocument::RemoveItem Removes an item from the list of items maintained by the
document.

The base class for OLE documents that support visual editing.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coledocument-class.md

COleDocument::UpdateModifiedFlag Marks the document as modified if any of the contained
OLE items have been modified.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

COleDocument::OnEditChangeIcon Handles events in the Change Icon menu command.

COleDocument::OnEditConvert Handles the conversion of an embedded or linked object
from one type to another.

COleDocument::OnEditLinks Handles events in the Links command on the Edit menu.

COleDocument::OnFileSendMail Sends a mail message with the document attached.

COleDocument::OnUpdateEditChangeIcon Called by the framework to update the command UI for the
Edit/Change Icon menu option.

COleDocument::OnUpdateEditLinksMenu Called by the framework to update the command UI for the
Edit/Links menu option.

COleDocument::OnUpdateObjectVerbMenu Called by the framework to update the command UI for the
Edit/ ObjectName menu option and the Verb submenu
accessed from Edit/ ObjectName.

COleDocument::OnUpdatePasteLinkMenu Called by the framework to update the command UI for the
Paste Special menu option.

COleDocument::OnUpdatePasteMenu Called by the framework to update the command UI for the
Paste menu option.

Remarks
COleDocument is derived from CDocument , which allows your OLE applications to use the document/view

architecture provided by the Microsoft Foundation Class Library.

COleDocument treats a document as a collection of CDocItem objects to handle OLE items. Both container and
server applications require such an architecture because their documents must be able to contain OLE items.
The COleServerItem and COleClientItem classes, both derived from CDocItem , manage the interactions
between applications and OLE items.

If you are writing a simple container application, derive your document class from COleDocument . If you are
writing a container application that supports linking to the embedded items contained by its documents,
derive your document class from COleLinkingDoc. If you are writing a server application or combination
container/server, derive your document class from COleServerDoc. COleLinkingDoc and COleServerDoc are
derived from COleDocument , so these classes inherit all the services available in COleDocument and CDocument .

To use COleDocument , derive a class from it and add functionality to manage the application's non-OLE data as
well as embedded or linked items. If you define CDocItem -derived classes to store the application's native data,
you can use the default implementation defined by COleDocument to store both your OLE and non-OLE data.
You can also design your own data structures for storing your non-OLE data separately from the OLE items.
For more information, see the article Containers: Compound Files..

Inheritance Hierarchy

Requirements

COleDocument::AddItem

virtual void AddItem(CDocItem* pItem);

ParametersParameters

RemarksRemarks

COleDocument::ApplyPrintDevice

BOOL ApplyPrintDevice(const DVTARGETDEVICE* ptd);
BOOL ApplyPrintDevice(const PRINTDLG* ppd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocument supports sending your document via mail if mail support (MAPI) is present. COleDocument has
updated OnFileSendMail to handle compound documents correctly. For more information, see the articles
MAPI and MAPI Support in MFC..

CObject

CCmdTarget

CDocument

COleDocument

Header: afxole.h

Call this function to add an item to the document.

pItem
Pointer to the document item being added.

You do not need to call this function explicitly when it is called by the COleClientItem or COleServerItem

constructor that accepts a pointer to a document.

Call this function to change the print-target device for all embedded COleClientItem items in your application's
container document.

ptd
Pointer to a DVTARGETDEVICE data structure, which contains information about the new print-target device. Can
be NULL.

ppd
Pointer to a PRINTDLG data structure, which contains information about the new print-target device. Can be
NULL.

Nonzero if the function was successful; otherwise 0.

This function updates the print-target device for all items but does not refresh the presentation cache for those

COleDocument::COleDocument

COleDocument();

COleDocument::EnableCompoundFile

void EnableCompoundFile(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

COleDocument::GetInPlaceActiveItem

virtual COleClientItem* GetInPlaceActiveItem(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

items. To update the presentation cache for an item, call COleClientItem::UpdateLink.

The arguments to this function contain information that OLE uses to identify the target device. The PRINTDLG
structure contains information that Windows uses to initialize the common Print dialog box. After the user
closes the dialog box, Windows returns information about the user's selections in this structure. The m_pd

member of a CPrintDialog object is a PRINTDLG structure.

For more information, see the PRINTDLG structure in the Windows SDK.

For more information, see the DVTARGETDEVICE structure in the Windows SDK.

Constructs a COleDocument object.

Call this function if you want to store the document using the compound-file format.

bEnable
Specifies whether compound file support is enabled or disabled.

This is also called structured storage. You typically call this function from the constructor of your COleDocument

-derived class. For more information about compound documents, see the article Containers: Compound
Files..

If you do not call this member function, documents will be stored in a nonstructured ("flat") file format.

After compound file support is enabled or disabled for a document, the setting should not be changed during
the document's lifetime.

Call this function to get the OLE item that is currently activated in place in the frame window containing the
view identified by pWnd.

pWnd
Pointer to the window that displays the container document.

A pointer to the single, in-place active OLE item; NULL if there is no OLE item currently in the "in-place active"
state.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpda
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpda
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagdvtargetdevice

COleDocument::GetNextClientItem

COleClientItem* GetNextClientItem(POSITION& pos) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// pDoc points to a COleDocument object
POSITION pos = pDoc->GetStartPosition();
COleClientItem *pItem;
CString strType;
while ((pItem = pDoc->GetNextClientItem(pos)) != NULL)
{
 // Use pItem
 pItem->GetUserType(USERCLASSTYPE_FULL, strType);
 TRACE(strType);
}

COleDocument::GetNextItem

virtual CDocItem* GetNextItem(POSITION& pos) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Call this function repeatedly to access each of the client items in your document.

pos
A reference to a POSITION value set by a previous call to GetNextClientItem ; the initial value is returned by
the GetStartPosition member function.

A pointer to the next client item in the document, or NULL if there are no more client items.

After each call, the value of pos is set for the next item in the document, which might or might not be a client
item.

Call this function repeatedly to access each of the items in your document.

pos
A reference to a POSITION value set by a previous call to GetNextItem ; the initial value is returned by the
GetStartPosition member function.

A pointer to the document item at the specified position.

After each call, the value of pos is set to the POSITION value of the next item in the document. If the retrieved
element is the last element in the document, the new value of pos is NULL.

// pDoc points to a COleDocument object
POSITION pos = pDoc->GetStartPosition();
CDocItem *pItem;
CString strType;
while(pos != NULL)
{
 pItem = pDoc->GetNextItem(pos);
 // Use pItem
 if (pItem->IsKindOf(RUNTIME_CLASS(COleClientItem)))
 {
 ((COleClientItem*)pItem)->GetUserType(USERCLASSTYPE_FULL, strType);
 TRACE(strType);
 }
}

COleDocument::GetNextServerItem

COleServerItem* GetNextServerItem(POSITION& pos) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// pDoc points to a COleDocument object
POSITION pos = pDoc->GetStartPosition();
COleServerItem *pItem;
while ((pItem = pDoc->GetNextServerItem(pos)) != NULL)
{
 // Use pItem
}

COleDocument::GetPrimarySelectedItem

virtual COleClientItem* GetPrimarySelectedItem(CView* pView);

ParametersParameters

Return ValueReturn Value

Call this function repeatedly to access each of the server items in your document.

pos
A reference to a POSITION value set by a previous call to GetNextServerItem ; the initial value is returned by
the GetStartPosition member function.

A pointer to the next server item in the document, or NULL if there are no more server items.

After each call, the value of pos is set for the next item in the document, which might or might not be a server
item.

Called by the framework to retrieve the currently selected OLE item in the specified view.

pView
Pointer to the active view object displaying the document.

A pointer to the single, selected OLE item; NULL if no OLE items are selected or if more than one is selected.

RemarksRemarks

COleDocument::GetStartPosition

virtual POSITION GetStartPosition() const;

Return ValueReturn Value

RemarksRemarks

COleDocument::HasBlankItems

BOOL HasBlankItems() const;

Return ValueReturn Value

RemarksRemarks

COleDocument::OnEditChangeIcon

afx_msg void OnEditChangeIcon();

RemarksRemarks

COleDocument::OnEditConvert

afx_msg void OnEditConvert();

RemarksRemarks

The default implementation searches the list of contained OLE items for a single selected item and returns a
pointer to it. If there is no item selected, or if there is more than one item selected, the function returns NULL.
You must override the CView::IsSelected member function in your view class for this function to work.
Override this function if you have your own method of storing contained OLE items.

Call this function to get the position of the first item in the document.

A POSITION value that can be used to begin iterating through the document's items; NULL if the document
has no items.

Pass the value returned to GetNextItem , GetNextClientItem , or GetNextServerItem .

Call this function to determine whether the document contains any blank items.

Nonzero if the document contains any blank items; otherwise 0.

A blank item is one whose rectangle is empty.

Displays the OLE Change Icon dialog box and changes the icon representing the currently selected OLE item
to the icon the user selects in the dialog box.

OnEditChangeIcon creates and launches a COleChangeIconDialog Change Icon dialog box.

Displays the OLE Convert dialog box and converts or activates the currently selected OLE item according to
user selections in the dialog box.

COleDocument::OnEditLinks

afx_msg void OnEditLinks();

RemarksRemarks

COleDocument::OnFileSendMail

afx_msg void OnFileSendMail();

RemarksRemarks

COleDocument::OnShowViews

virtual void OnShowViews(BOOL bVisible);

ParametersParameters

RemarksRemarks

COleDocument::OnUpdateEditChangeIcon

afx_msg void OnUpdateEditChangeIcon(CCmdUI* pCmdUI);

ParametersParameters

OnEditConvert creates and launches a COleConvertDialog Convert dialog box.

An example of conversion is converting a Microsoft Word document into a WordPad document.

Displays the OLE Edit/Links dialog box.

OnEditLinks creates and launches a COleLinksDialog Links dialog box that allows the user to change the
linked objects.

Sends a message via the resident mail host (if any) with the document as an attachment.

OnFileSendMail calls OnSaveDocument to serialize (save) untitled and modified documents to a temporary file,
which is then sent via electronic mail. If the document has not been modified, a temporary file is not needed;
the original is sent. OnFileSendMail loads MAPI32.DLL if it has not already been loaded.

Unlike the implementation of OnFileSendMail for CDocument , this function handles compound files correctly.

For more information, see the MAPI Topics and MAPI Support in MFC articles..

The framework calls this function after the document's visibility state changes.

bVisible
Indicates whether the document has become visible or invisible.

The default version of this function does nothing. Override it if your application must perform any special
processing when the document's visibility changes.

Called by the framework to update the Change Icon command on the Edit menu.

pCmdUI

RemarksRemarks

COleDocument::OnUpdateEditLinksMenu

afx_msg void OnUpdateEditLinksMenu(CCmdUI* pCmdUI);

ParametersParameters

RemarksRemarks

COleDocument::OnUpdateObjectVerbMenu

afx_msg void OnUpdateObjectVerbMenu(CCmdUI* pCmdUI);

ParametersParameters

RemarksRemarks

COleDocument::OnUpdatePasteLinkMenu

afx_msg void OnUpdatePasteLinkMenu(CCmdUI* pCmdUI);

A pointer to a CCmdUI structure that represents the menu that generated the update command. The update
handler calls the Enable member function of the CCmdUI structure through pCmdUI to update the user
interface.

OnUpdateEditChangeIcon updates the command's user interface depending on whether or not a valid icon exists
in the document. Override this function to change the behavior.

Called by the framework to update the Links command on the Edit menu.

pCmdUI
A pointer to a CCmdUI structure that represents the menu that generated the update command. The update
handler calls the Enable member function of the CCmdUI structure through pCmdUI to update the user
interface.

Starting with the first OLE item in the document, OnUpdateEditLinksMenu accesses each item, tests whether the
item is a link, and, if it is a link, enables the Links command. Override this function to change the behavior.

Called by the framework to update the ObjectName command on the Edit menu and the Verb submenu
accessed from the ObjectName command, where ObjectName is the name of the OLE object embedded in
the document.

pCmdUI
A pointer to a CCmdUI structure that represents the menu that generated the update command. The update
handler calls the Enable member function of the CCmdUI structure through pCmdUI to update the user
interface.

OnUpdateObjectVerbMenu updates the ObjectName command's user interface depending on whether or not a
valid object exists in the document. If an object exists, the ObjectName command on the Edit menu is enabled.
When this menu command is selected, the Verb submenu is displayed. The Verb submenu contains all the
verb commands available for the object, such as Edit, Properties, and so on. Override this function to change
the behavior.

Called by the framework to determine whether a linked OLE item can be pasted from the Clipboard.

ParametersParameters

RemarksRemarks

COleDocument::OnUpdatePasteMenu

afx_msg void OnUpdatePasteMenu(CCmdUI* pCmdUI);

ParametersParameters

RemarksRemarks

COleDocument::RemoveItem

virtual void RemoveItem(CDocItem* pItem);

ParametersParameters

RemarksRemarks

COleDocument::UpdateModifiedFlag

virtual void UpdateModifiedFlag();

RemarksRemarks

pCmdUI
A pointer to a CCmdUI structure that represents the menu that generated the update command. The update
handler calls the Enable member function of the CCmdUI structure through pCmdUI to update the user
interface.

The Paste Special menu command is enabled or disabled depending on whether the item can be pasted into
the document or not.

Called by the framework to determine whether an embedded OLE item can be pasted from the Clipboard.

pCmdUI
A pointer to a CCmdUI structure that represents the menu that generated the update command. The update
handler calls the Enable member function of the CCmdUI structure through pCmdUI to update the user
interface.

The Paste menu command and button are enabled or disabled depending on whether the item can be pasted
into the document or not.

Call this function to remove an item from the document.

pItem
Pointer to the document item to be removed.

You typically do not need to call this function explicitly; it is called by the destructors for COleClientItem and
COleServerItem .

Call this function to mark the document as modified if any of the contained OLE items have been modified.

This allows the framework to prompt the user to save the document before closing, even if the native data in
the document has not been modified.

See also
MFC Sample CONTAINER
MFC Sample MFCBIND
CDocument Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleDropSource Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class COleDropSource : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleDropSource::COleDropSource Constructs a COleDropSource object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleDropSource::GiveFeedback Changes the cursor during a drag-and-drop operation.

COleDropSource::OnBeginDrag Handles mouse capture during a drag-and-drop operation.

COleDropSource::QueryContinueDrag Checks to see whether dragging should continue.

Remarks

Inheritance Hierarchy

Allows data to be dragged to a drop target.

The COleDropTarget class handles the receiving portion of the drag-and-drop operation. The COleDropSource

object is responsible for determining when a drag operation begins, providing feedback during the drag
operation, and determining when the drag operation ends.

To use a COleDropSource object, just call the constructor. This simplifies the process of determining what events,
such as a mouse click, begin a drag operation using COleDataSource::DoDragDrop,
COleClientItem::DoDragDrop, or COleServerItem::DoDragDrop function. These functions will create a
COleDropSource object for you. You might want to modify the default behavior of the COleDropSource overridable

functions. These member functions will be called at the appropriate times by the framework.

For more information on drag-and-drop operations using OLE, see the article Drag and Drop (OLE).

For more information, see IDropSource in the Windows SDK.

CObject

CCmdTarget

COleDropSource

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coledropsource-class.md
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idropsource

Requirements

COleDropSource::COleDropSource

COleDropSource();

COleDropSource::GiveFeedback

virtual SCODE GiveFeedback(DROPEFFECT dropEffect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleDropSource::OnBeginDrag

virtual BOOL OnBeginDrag(CWnd* pWnd);

ParametersParameters

Header: afxole.h

Constructs a COleDropSource object.

Called by the framework after calling COleDropTarget::OnDragOver or COleDropTarget::DragEnter.

dropEffect
The effect you would like to display to the user, usually indicating what would happen if a drop occurred at this
point with the selected data. Typically, this is the value returned by the most recent call to CView::OnDragEnter or
CView::OnDragOver. It can be one or more of the following:

DROPEFFECT_NONE A drop would not be allowed.

DROPEFFECT_COPY A copy operation would be performed.

DROPEFFECT_MOVE A move operation would be performed.

DROPEFFECT_LINK A link from the dropped data to the original data would be established.

DROPEFFECT_SCROLL A drag scroll operation is about to occur or is occurring in the target.

Returns DRAGDROP_S_USEDEFAULTCURSORS if dragging is in progress, NOERROR if it is not.

Override this function to provide feedback to the user about what would happen if a drop occurred at this point.
The default implementation uses the OLE default cursors. For more information on drag-and-drop operations
using OLE, see the article Drag and Drop (OLE).

For more information, see IDropSource::GiveFeedback, IDropTarget::DragOver, and IDropTarget::DragEnter in the
Windows SDK.

Called by the framework when an event occurs that could begin a drag operation, such as pressing the left mouse
button.

pWnd
Points to the window that contains the selected data.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-idropsource-givefeedback
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-idroptarget-dragover
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-idroptarget-dragenter

Return ValueReturn Value

RemarksRemarks

COleDropSource::QueryContinueDrag

virtual SCODE QueryContinueDrag(
 BOOL bEscapePressed,
 DWORD dwKeyState);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Nonzero if dragging is allowed, otherwise 0.

Override this function if you want to modify the way the dragging process is started. The default implementation
captures the mouse and stays in drag mode until the user clicks the left or right mouse button or hits ESC, at
which time it releases the mouse.

After dragging has begun, this function is called repeatedly by the framework until the drag operation is either
canceled or completed.

bEscapePressed
States whether the ESC key has been pressed since the last call to COleDropSource::QueryContinueDrag .

dwKeyState
Contains the state of the modifier keys on the keyboard. This is a combination of any number of the following:
MK_CONTROL, MK_SHIFT, MK_ALT, MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

DRAGDROP_S_CANCEL if the ESC key or right button is pressed, or left button is raised before dragging starts.
DRAGDROP_S_DROP if a drop operation should occur. Otherwise S_OK.

Override this function if you want to change the point at which dragging is canceled or a drop occurs.

The default implementation initiates the drop or cancels the drag as follows. It cancels a drag operation when the
ESC key or the right mouse button is pressed. It initiates a drop operation when the left mouse button is raised
after dragging has started. Otherwise, it returns S_OK and performs no further operations.

Because this function is called frequently, it should be optimized as much as possible.

MFC Sample HIERSVR
MFC Sample OCLIENT
CCmdTarget Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleDropTarget Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class COleDropTarget : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleDropTarget::COleDropTarget Constructs a COleDropTarget object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleDropTarget::OnDragEnter Called when the cursor first enters the window.

COleDropTarget::OnDragLeave Called when the cursor is dragged out of the window.

COleDropTarget::OnDragOver Called repeatedly when the cursor is dragged over the
window.

COleDropTarget::OnDragScroll Called to determine whether the cursor is dragged into the
scroll region of the window.

COleDropTarget::OnDrop Called when data is dropped into the window, default handler.

COleDropTarget::OnDropEx Called when data is dropped into the window, initial handler.

COleDropTarget::Register Registers the window as a valid drop target.

COleDropTarget::Revoke Causes the window to cease being a valid drop target.

Remarks

Inheritance Hierarchy

Provides the communication mechanism between a window and the OLE libraries.

Creating an object of this class allows a window to accept data through the OLE drag-and-drop mechanism.

To get a window to accept drop commands, you should first create an object of the COleDropTarget class, and then
call the Register function with a pointer to the desired CWnd object as the only parameter.

For more information on drag-and-drop operations using OLE, see the article Drag and Drop (OLE).

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coledroptarget-class.md

Requirements

COleDropTarget::COleDropTarget

COleDropTarget();

RemarksRemarks

COleDropTarget::OnDragEnter

virtual DROPEFFECT OnDragEnter(
 CWnd* pWnd,
 COleDataObject* pDataObject,
 DWORD dwKeyState,
 CPoint point);

ParametersParameters

Return ValueReturn Value

CObject

CCmdTarget

COleDropTarget

Header: afxole.h

Constructs an object of class COleDropTarget .

Call Register to associate this object with a window.

Called by the framework when the cursor is first dragged into the window.

pWnd
Points to the window the cursor is entering.

pDataObject
Points to the data object containing the data that can be dropped.

dwKeyState
Contains the state of the modifier keys. This is a combination of any number of the following: MK_CONTROL,
MK_SHIFT, MK_ALT, MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point
Contains the current location of the cursor in client coordinates.

The effect that would result if a drop were attempted at the location specified by point. It can be one or more of
the following:

DROPEFFECT_NONE A drop would not be allowed.

DROPEFFECT_COPY A copy operation would be performed.

DROPEFFECT_MOVE A move operation would be performed.

DROPEFFECT_LINK A link from the dropped data to the original data would be established.

DROPEFFECT_SCROLL A drag scroll operation is about to occur or is occurring in the target.

RemarksRemarks

COleDropTarget::OnDragLeave

virtual void OnDragLeave(CWnd* pWnd);

ParametersParameters

RemarksRemarks

COleDropTarget::OnDragOver

virtual DROPEFFECT OnDragOver(
 CWnd* pWnd,
 COleDataObject* pDataObject,
 DWORD dwKeyState,
 CPoint point);

ParametersParameters

Return ValueReturn Value

Override this function to allow drop operations to occur in the window. The default implementation calls
CView::OnDragEnter, which simply returns DROPEFFECT_NONE by default.

For more information, see IDropTarget::DragEnter in the Windows SDK.

Called by the framework when the cursor leaves the window while a dragging operation is in effect.

pWnd
Points to the window the cursor is leaving.

Override this function if you want special behavior when the drag operation leaves the specified window. The
default implementation of this function calls CView::OnDragLeave.

For more information, see IDropTarget::DragLeave in the Windows SDK.

Called by the framework when the cursor is dragged over the window.

pWnd
Points to the window that the cursor is over.

pDataObject
Points to the data object that contains the data to be dropped.

dwKeyState
Contains the state of the modifier keys. This is a combination of any number of the following: MK_CONTROL,
MK_SHIFT, MK_ALT, MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point
Contains the current location of the cursor in client coordinates.

The effect that would result if a drop were attempted at the location specified by point. It can be one or more of
the following:

DROPEFFECT_NONE A drop would not be allowed.

DROPEFFECT_COPY A copy operation would be performed.

DROPEFFECT_MOVE A move operation would be performed.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-idroptarget-dragenter
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-idroptarget-dragleave

RemarksRemarks

ExampleExample

DROPEFFECT COleContainerView::OnDragOver(COleDataObject* pDataObject,
 DWORD dwKeyState, CPoint point)
{
 UNREFERENCED_PARAMETER(pDataObject);
 UNREFERENCED_PARAMETER(point);

 DROPEFFECT de = DROPEFFECT_NONE;
 //Determine the type of operation
 if((dwKeyState & MK_SHIFT) && (dwKeyState & MK_CONTROL))
 de = DROPEFFECT_LINK;
 else if(dwKeyState & MK_CONTROL)
 de = DROPEFFECT_COPY;
 else if(dwKeyState & MK_SHIFT)
 de = DROPEFFECT_MOVE;
 return de;
}

COleDropTarget::OnDragScroll

virtual DROPEFFECT OnDragScroll(
 CWnd* pWnd,
 DWORD dwKeyState,
 CPoint point);

ParametersParameters

Return ValueReturn Value

DROPEFFECT_LINK A link from the dropped data to the original data would be established.

DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to occur or is occurring in the target.

This function should be overridden to allow drop operations to occur in the window. The default implementation
of this function calls CView::OnDragOver, which returns DROPEFFECT_NONE by default. Because this function
is called frequently during a drag-and-drop operation, it should be optimized as much as possible.

For more information, see IDropTarget::DragOver in the Windows SDK.

Called by the framework before calling OnDragEnter or OnDragOver to determine whether point is in the
scrolling region.

pWnd
Points to the window the cursor is currently over.

dwKeyState
Contains the state of the modifier keys. This is a combination of any number of the following: MK_CONTROL,
MK_SHIFT, MK_ALT, MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point
Contains the location of the cursor, in pixels, relative to the screen.

The effect that would result if a drop were attempted at the location specified by point. It can be one or more of
the following:

DROPEFFECT_NONE A drop would not be allowed.

DROPEFFECT_COPY A copy operation would be performed.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-idroptarget-dragover

RemarksRemarks

COleDropTarget::OnDrop

virtual BOOL OnDrop(
 CWnd* pWnd,
 COleDataObject* pDataObject,
 DROPEFFECT dropEffect,
 CPoint point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleDropTarget::OnDropEx

DROPEFFECT_MOVE A move operation would be performed.

DROPEFFECT_LINK A link from the dropped data to the original data would be established.

DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to occur or is occurring in the target.

Override this function when you want to provide special behavior for this event. The default implementation of
this function calls CView::OnDragScroll, which returns DROPEFFECT_NONE and scrolls the window when the
cursor is dragged into the default scroll region inside the border of the window.

Called by the framework when a drop operation is to occur.

pWnd
Points to the window the cursor is currently over.

pDataObject
Points to the data object that contains the data to be dropped.

dropEffect
The effect that the user chose for the drop operation. It can be one or more of the following:

DROPEFFECT_COPY A copy operation would be performed.

DROPEFFECT_MOVE A move operation would be performed.

DROPEFFECT_LINK A link from the dropped data to the original data would be established.

point
Contains the location of the cursor, in pixels, relative to the screen.

Nonzero if the drop is successful; otherwise 0.

The framework first calls OnDropEx. If the OnDropEx function does not handle the drop, the framework then calls
this member function, OnDrop . Typically, the application overrides OnDropEx in the view class to handle right
mouse-button drag and drop. Typically, the view class OnDrop is used to handle simple drag and drop.

The default implementation of COleDropTarget::OnDrop calls CView::OnDrop, which simply returns FALSE by
default.

For more information, see IDropTarget::Drop in the Windows SDK.

Called by the framework when a drop operation is to occur.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-idroptarget-drop

virtual DROPEFFECT OnDropEx(
 CWnd* pWnd,
 COleDataObject* pDataObject,
 DROPEFFECT dropDefault,
 DROPEFFECT dropList,
 CPoint point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleDropTarget::Register

BOOL Register(CWnd* pWnd);

pWnd
Points to the window the cursor is currently over.

pDataObject
Points to the data object that contains the data to be dropped.

dropDefault
The effect that the user chose for the default drop operation based on the current key state. It can be
DROPEFFECT_NONE. Drop effects are discussed in the Remarks section.

dropList
A list of the drop effects that the drop source supports. Drop effect values can be combined using the bitwise OR
(|) operation. Drop effects are discussed in the Remarks section.

point
Contains the location of the cursor, in pixels, relative to the screen.

The drop effect that resulted from the drop attempt at the location specified by point. Drop effects are discussed
in the Remarks section.

The framework first calls this function. If it does not handle the drop, the framework then calls OnDrop. Typically,
you will override OnDropEx in the view class to support right mouse-button drag and drop. Typically, the view
class OnDrop is used to handle the case of support for simple drag and drop.

The default implementation of COleDropTarget::OnDropEx calls CView::OnDropEx. By default, CView::OnDropEx
simply returns a dummy value to indicate the OnDrop member function should be called.

Drop effects describe the action associated with a drop operation. See the following list of drop effects:

DROPEFFECT_NONE A drop would not be allowed.

DROPEFFECT_COPY A copy operation would be performed.

DROPEFFECT_MOVE A move operation would be performed.

DROPEFFECT_LINK A link from the dropped data to the original data would be established.

DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to occur or is occurring in the target.

For more information, see IDropTarget::Drop in the Windows SDK.

Call this function to register your window with the OLE DLLs as a valid drop target.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-idroptarget-drop

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleDropTarget::Revoke

virtual void Revoke();

RemarksRemarks

See also

pWnd
Points to the window that is to be registered as a drop target.

Nonzero if registration is successful; otherwise 0.

This function must be called for drop operations to be accepted.

For more information, see RegisterDragDrop in the Windows SDK.

Call this function before destroying any window that has been registered as a drop target through a call to
Register to remove it from the list of drop targets.

This function is called automatically from the OnDestroy handler for the window that was registered, so it is
usually not necessary to call this function explicitly.

For more information, see RevokeDragDrop in the Windows SDK.

MFC Sample HIERSVR
MFC Sample OCLIENT
CCmdTarget Class
Hierarchy Chart
COleDropSource Class

https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-registerdragdrop
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-revokedragdrop
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleException Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class COleException : public CException

Members
Public MethodsPublic Methods

NAME DESCRIPTION

COleException::Process Translates a caught exception into an OLE return code.

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleException::m_sc Contains the status code that indicates the reason for the
exception.

Remarks

Inheritance Hierarchy

Requirements

COleException::m_sc

Represents an exception condition related to an OLE operation.

The COleException class includes a public data member that holds the status code indicating the reason for
the exception.

In general, you should not create a COleException object directly; instead, you should call
AfxThrowOleException.

For more information on exceptions, see the articles Exception Handling (MFC) and Exceptions: OLE
Exceptions.

CObject

CException

COleException

Header: afxdisp.h

This data member holds the OLE status code that indicates the reason for the exception.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coleexception-class.md

SCODE m_sc;

RemarksRemarks

ExampleExample

try
{
 SomeOleFunc();
}
catch (COleException* pe)
{
 TRACE (_T("COleException caught. SCODE = %x\n"), pe->m_sc);
 pe->Delete();
}

COleException::Process

static SCODE PASCAL Process(const CException* pAnyException);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

See also

This variable's value is set by AfxThrowOleException.

For more information on SCODE, see Structure of COM Error Codes in the Windows SDK.

Call the Process member function to translate a caught exception into an OLE status code.

pAnyException
Pointer to a caught exception.

An OLE status code.

This function is static.

For more information on SCODE, see Structure of COM Error Codes in the Windows SDK.

See the example for COleDispatchDriver::CreateDispatch.

MFC Sample CALCDRIV
CException Class
Hierarchy Chart

https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes
https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleInsertDialog Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class COleInsertDialog : public COleDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleInsertDialog::COleInsertDialog Constructs a COleInsertDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleInsertDialog::CreateItem Creates the item selected in the dialog box.

COleInsertDialog::DoModal Displays the OLE Insert Object dialog box.

COleInsertDialog::GetClassID Gets the CLSID associated with the chosen item.

COleInsertDialog::GetDrawAspect Tells whether to draw the item as an icon.

COleInsertDialog::GetIconicMetafile Gets a handle to the metafile associated with the iconic form
of this item.

COleInsertDialog::GetPathName Gets the full path to the file chosen in the dialog box.

COleInsertDialog::GetSelectionType Gets the type of object selected.

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleInsertDialog::m_io A structure of type OLEUIINSERTOBJECT that controls the
behavior of the dialog box.

Remarks

Used for the OLE Insert Object dialog box.

Create an object of class COleInsertDialog when you want to call this dialog box. After a COleInsertDialog object
has been constructed, you can use the m_io structure to initialize the values or states of controls in the dialog box.
The m_io structure is of type OLEUIINSERTOBJECT. For more information about using this dialog class, see the
DoModal member function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coleinsertdialog-class.md

NOTENOTE

Inheritance Hierarchy

Requirements

COleInsertDialog::COleInsertDialog

COleInsertDialog (
 DWORD dwFlags = IOF_SELECTCREATENEW,
 CWnd* pParentWnd = NULL);

ParametersParameters

Application Wizard-generated container code uses this class.

For more information, see the OLEUIINSERTOBJECT structure in the Windows SDK.

For more information regarding OLE-specific dialog boxes, see the article Dialog Boxes in OLE.

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

COleDialog

COleInsertDialog

Header: afxodlgs.h

This function constructs only a COleInsertDialog object.

dwFlags
Creation flag that contains any number of the following values to be combined using the bitwise-OR operator:

IOF_SHOWHELP Specifies that the Help button will be displayed when the dialog box is called.

IOF_SELECTCREATENEW Specifies that the Create New radio button will be selected initially when the
dialog box is called. This is the default and cannot be used with IOF_SELECTCREATEFROMFILE.

IOF_SELECTCREATEFROMFILE Specifies that the Create From File radio button will be selected initially
when the dialog box is called. Cannot be used with IOF_SELECTCREATENEW.

IOF_CHECKLINK Specifies that the Link check box will be checked initially when the dialog box is called.

IOF_DISABLELINK Specifies that the Link check box will be disabled when the dialog box is called.

IOF_CHECKDISPLAYASICON Specifies that the Display As Icon check box will be checked initially, the
current icon will be displayed, and the Change Icon button will be enabled when the dialog box is called.

IOF_VERIFYSERVERSEXIST Specifies that the dialog box should validate the classes it adds to the list box
by ensuring that the servers specified in the registration database exist before the dialog box is displayed.
Setting this flag can significantly impair performance.

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuiinsertobjecta

RemarksRemarks

COleInsertDialog::CreateItem

BOOL CreateItem(COleClientItem* pItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleInsertDialog::DoModal

virtual INT_PTR
 DoModal();

INT_PTR
 DoModal(DWORD dwFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pParentWnd
Points to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is NULL, the
parent window of the dialog object is set to the main application window.

To display the dialog box, call the DoModal function.

Call this function to create an object of type COleClientItem only if DoModal returns IDOK.

pItem
Points to the item to be created.

Nonzero if item was created; otherwise 0.

You must allocate the COleClientItem object before you can call this function.

Call this function to display the OLE Insert Object dialog box.

dwFlags
One of the following values:

COleInsertDialog::DocObjectsOnly inserts only DocObjects.

COleInsertDialog::ControlsOnly inserts only ActiveX controls.

Zero inserts neither a DocObject nor an ActiveX control. This value results in the same implementation as the first
prototype listed above.

Completion status for the dialog box. One of the following values:

IDOK if the dialog box was successfully displayed.

IDCANCEL if the user canceled the dialog box.

IDABORT if an error occurred. If IDABORT is returned, call the COleDialog::GetLastError member function
to get more information about the type of error that occurred. For a listing of possible errors, see the
OleUIInsertObject function in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oledlg/nf-oledlg-oleuiinsertobjecta

COleInsertDialog::GetClassID

REFCLSID GetClassID() const;

Return ValueReturn Value

RemarksRemarks

COleInsertDialog::GetDrawAspect

DVASPECT GetDrawAspect() const;

Return ValueReturn Value

RemarksRemarks

COleInsertDialog::GetIconicMetafile

HGLOBAL GetIconicMetafile() const;

Return ValueReturn Value

COleInsertDialog::GetPathName

If you want to initialize the various dialog box controls by setting members of the m_io structure, you should do
this before calling DoModal , but after the dialog object is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the settings or information input into
the dialog box by the user.

Call this function to get the CLSID associated with the selected item only if DoModal returns IDOK and the
selection type is COleInsertDialog::createNewItem .

Returns the CLSID associated with the selected item.

For more information, see CLSID Key in the Windows SDK.

Call this function to determine if the user chose to display the selected item as an icon.

The method needed to render the object.

DVASPECT_CONTENT Returned if the Display As Icon check box was not checked.

DVASPECT_ICON Returned if the Display As Icon check box was checked.

Call this function only if DoModal returns IDOK.

For more information on drawing aspect, see FORMATETC data structure in the Windows SDK.

Call this function to get a handle to the metafile that contains the iconic aspect of the selected item.

The handle to the metafile containing the iconic aspect of the selected item, if the Display As Icon check box was
checked when the dialog was dismissed by choosing OK; otherwise NULL.

Call this function to get the full path of the selected file only if DoModal returns IDOK and the selection type is
not COleInsertDialog::createNewItem .

https://docs.microsoft.com/windows/desktop/com/clsid-key-hklm
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

CString GetPathName() const;

Return ValueReturn Value

COleInsertDialog::GetSelectionType

UINT GetSelectionType() const;

Return ValueReturn Value

RemarksRemarks

enum Selection {
 createNewItem,
 insertFromFile,
 linkToFile
 };

COleInsertDialog::m_io

OLEUIINSERTOBJECT m_io;

RemarksRemarks

See also

The full path to the file selected in the dialog box. If the selection type is createNewItem , this function returns a
meaningless CString in release mode or causes an assertion in debug mode.

Call this function to get the selection type chosen when the Insert Object dialog box was dismissed by choosing
OK.

Type of selection made.

The return type values are specified by the Selection enumeration type declared in the COleInsertDialog class.

Brief descriptions of these values follow:

COleInsertDialog::createNewItem The Create New radio button was selected.

COleInsertDialog::insertFromFile The Create From File radio button was selected and the Link check box
was not checked.

COleInsertDialog::linkToFile The Create From File radio button was selected and the Link check box was
checked.

Structure of type OLEUIINSERTOBJECT used to control the behavior of the Insert Object dialog box.

Members of this structure can be modified either directly or through member functions.

For more information, see the OLEUIINSERTOBJECT structure in the Windows SDK.

MFC Sample OCLIENT
COleDialog Class
Hierarchy Chart
COleDialog Class

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuiinsertobjecta
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleIPFrameWnd Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class COleIPFrameWnd : public CFrameWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleIPFrameWnd::COleIPFrameWnd Constructs a COleIPFrameWnd object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleIPFrameWnd::OnCreateControlBars Called by the framework when an item is activated for in-
place editing.

COleIPFrameWnd::RepositionFrame Called by the framework to reposition the in-place editing
window.

Remarks

Inheritance Hierarchy

Requirements

The base for your application's in-place editing window.

This class creates and positions control bars within the container application's document window. It also handles
notifications generated by an embedded COleResizeBar object when the user resizes the in-place editing
window.

For more information on using COleIPFrameWnd , see the article Activation.

CObject

CCmdTarget

CWnd

CFrameWnd

COleIPFrameWnd

Header: afxole.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coleipframewnd-class.md

COleIPFrameWnd::COleIPFrameWnd

COleIPFrameWnd();

RemarksRemarks

COleIPFrameWnd::OnCreateControlBars

virtual BOOL OnCreateControlBars(
 CWnd* pWndFrame,
 CWnd* pWndDoc);

virtual BOOL OnCreateControlBars(
 CFrameWnd* pWndFrame,
 CFrameWnd* pWndDoc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWnd::RepositionFrame

virtual void RepositionFrame(
 LPCRECT lpPosRect,
 LPCRECT lpClipRect);

ParametersParameters

Constructs a COleIPFrameWnd object and initializes its in-place state information, which is stored in a structure of
type OLEINPLACEFRAMEINFO.

For more information, see OLEINPLACEFRAMEINFO in the Windows SDK.

The framework calls the OnCreateControlBars function when an item is activated for in-place editing.

pWndFrame
Pointer to the container application's frame window.

pWndDoc
Pointer to the container's document-level window. Can be NULL if the container is an SDI application.

Nonzero on success; otherwise, 0.

The default implementation does nothing. Override this function to perform any special processing required
when control bars are created.

The framework calls the RepositionFrame member function to lay out control bars and reposition the in-place
editing window so all of it is visible.

lpPosRect
Pointer to a RECT structure or a CRect object containing the in-place frame window's current position
coordinates, in pixels, relative to the client area.

lpClipRect
Pointer to a RECT structure or a CRect object containing the in-place frame window's current clipping-rectangle
coordinates, in pixels, relative to the client area.

https://docs.microsoft.com/windows/desktop/api/oleidl/ns-oleidl-tagoifi

RemarksRemarks

See also

Layout of control bars in the container window differs from that performed by a non-OLE frame window. The
non-OLE frame window calculates the positions of control bars and other objects from a given frame-window
size, as in a call to CFrameWnd::RecalcLayout. The client area is what remains after space for control bars and
other objects is subtracted. A COleIPFrameWnd window, on the other hand, positions toolbars in accordance with a
given client area. In other words, CFrameWnd::RecalcLayout works "from the outside in," whereas
COleIPFrameWnd::RepositionFrame works "from the inside out."

MFC Sample HIERSVR
CFrameWnd Class
Hierarchy Chart
CFrameWnd Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleIPFrameWndEx Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
class COleIPFrameWndEx : public COleIPFrameWnd

Members
Public MethodsPublic Methods

NAME DESCRIPTION

COleIPFrameWndEx::AddDockSite

COleIPFrameWndEx::AddPane

COleIPFrameWndEx::AdjustDockingLayout

COleIPFrameWndEx::DockPane

COleIPFrameWndEx::DockPaneLeftOf Docks one pane to the left of another pane.

COleIPFrameWndEx::EnableAutoHidePanes

COleIPFrameWndEx::EnableDocking

COleIPFrameWndEx::EnablePaneMenu

COleIPFrameWndEx::GetActivePopup Returns a pointer to the currently displayed popup menu.

COleIPFrameWndEx::GetContainerFrameWindow

COleIPFrameWndEx::GetDefaultResId Returns the resource ID of the frame window that you
specified when the window was loaded.

COleIPFrameWndEx::GetDockFrame

COleIPFrameWndEx::GetDockingManager

COleIPFrameWndEx::GetMainFrame

The COleIPFrameWndEx class implements an OLE container that supports MFC. You must derive the in-place frame
window class for your application from the COleIPFrameWndEx class, instead of deriving it from the
COleIPFrameWndclass. For more detail see the source code located in the VC\atlmfc\src\mfc folder of your
Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coleipframewndex-class.md

COleIPFrameWndEx::GetMenuBar Returns a pointer to the menu bar object attached to the
frame window.

COleIPFrameWndEx::GetPane

COleIPFrameWndEx::GetTearOffBars Returns a list of pane objects that are in a tear-off state.

COleIPFrameWndEx::GetToolbarButtonToolTipText Called by the framework before the tooltip for a button is
displayed.

COleIPFrameWndEx::InsertPane

COleIPFrameWndEx::IsMenuBarAvailable Determines whether the pointer to the menu bar object is not
NULL .

COleIPFrameWndEx::IsPointNearDockSite

COleIPFrameWndEx::LoadFrame (Overrides COleIPFrameWnd::LoadFrame .)

COleIPFrameWndEx::OnCloseDockingPane

COleIPFrameWndEx::OnCloseMiniFrame

COleIPFrameWndEx::OnClosePopupMenu Called by the framework when an active pop-up menu
processes a WM_DESTROY message.

COleIPFrameWndEx::OnCmdMsg (Overrides CFrameWnd::OnCmdMsg .)

COleIPFrameWndEx::OnDrawMenuImage Called by the framework when the image associated with a
menu item is drawn.

COleIPFrameWndEx::OnDrawMenuLogo Called by the framework when a CMFCPopupMenuobject
processes a WM_PAINT message.

COleIPFrameWndEx::OnMenuButtonToolHitTest Called by the framework when a CMFCToolBarButtonobject
processes WM_NCHITTEST message.

COleIPFrameWndEx::OnMoveMiniFrame

COleIPFrameWndEx::OnSetPreviewMode Call this member function to set the application's main frame
window into and out of print-preview mode. (Overrides
CFrameWnd::OnSetPreviewMode.)

COleIPFrameWndEx::OnShowCustomizePane

COleIPFrameWndEx::OnShowPanes

COleIPFrameWndEx::OnShowPopupMenu Called by the framework when a pop-up menu is activated.

COleIPFrameWndEx::OnTearOffMenu Called by the framework when a menu that has a tear-off bar
is activated.

NAME DESCRIPTION

COleIPFrameWndEx::PaneFromPoint

COleIPFrameWndEx::PreTranslateMessage (Overrides COleIPFrameWnd::PreTranslateMessage .)

COleIPFrameWndEx::RecalcLayout (Overrides COleIPFrameWnd::RecalcLayout .)

COleIPFrameWndEx::RemovePaneFromDockManager

COleIPFrameWndEx::SetDockState Applies the specified docking state to the panes that belong
to the frame window.

COleIPFrameWndEx::SetupToolbarMenu Modifies a toolbar object by searching for dummy items and
replacing them with the specified user-defined items.

COleIPFrameWndEx::ShowPane

COleIPFrameWndEx::WinHelpA Called by the framework to initiate the WinHelp application or
context help.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

COleIPFrameWndEx::InitUserToobars Tells the framework to initialize a range of control IDs that are
assigned to user-defined toolbars.

Example
The following example demonstrates how to subclass an instance of the COleIPFrameWndEx class and over ride its
methods. The example shows how to over ride the OnDestory method, the RepositionFrame method, the
RecalcLayout method, and the CalcWindowRect method. This code snippet is part of the Word Pad sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

void CInPlaceFrame::OnDestroy()
{
 m_wndToolBar.DestroyWindow();
 m_wndFormatBar.DestroyWindow();
 COleIPFrameWndEx::OnDestroy();
}

void CInPlaceFrame::RepositionFrame(LPCRECT lpPosRect, LPCRECT lpClipRect)
{
 CRect rectNew = lpPosRect;
 rectNew.left -= HORZ_TEXTOFFSET;
 rectNew.top -= VERT_TEXTOFFSET;
 m_wndResizeBar.BringWindowToTop();
 COleIPFrameWndEx::RepositionFrame(&rectNew, lpClipRect);
 CWnd* pWnd = GetActiveView();
 if (pWnd != NULL)
 pWnd->BringWindowToTop();
 m_wndRulerBar.BringWindowToTop();
}

void CInPlaceFrame::RecalcLayout(BOOL bNotify)
{
 if (m_wndResizeBar.m_hWnd != NULL)
 m_wndResizeBar.BringWindowToTop();
 COleIPFrameWndEx::RecalcLayout(bNotify);
 CWnd* pWnd = GetActiveView();
 if (pWnd != NULL)
 pWnd->BringWindowToTop();
 if (m_wndRulerBar.m_hWnd != NULL)
 m_wndRulerBar.BringWindowToTop();

 // at least 12 pt region plus ruler if it exists
 CDisplayIC dc;
 CSize size;
 size.cy = MulDiv(12, dc.GetDeviceCaps(LOGPIXELSY), 72)+1;
 size.cx = dc.GetDeviceCaps(LOGPIXELSX)/4; // 1/4"
 size.cx += HORZ_TEXTOFFSET; //adjust for offset
 size.cy += VERT_TEXTOFFSET;
 if (m_wndRulerBar.m_hWnd != NULL && m_wndRulerBar.IsVisible())
 {
 CRect rect;
 m_wndRulerBar.GetWindowRect(&rect);
 size.cy += rect.Height();
 }
 m_wndResizeBar.SetMinSize(size);
}

void CInPlaceFrame::CalcWindowRect(LPRECT lpClientRect, UINT nAdjustType)
{
 COleIPFrameWndEx::CalcWindowRect(lpClientRect, nAdjustType);
}

Inheritance Hierarchy
CObject

CCmdTarget

CWnd

CFrameWnd

COleIPFrameWnd

COleIPFrameWndEx

Requirements

COleIPFrameWndEx::AddDockSite
void AddDockSite();

RemarksRemarks

COleIPFrameWndEx::AddPane
BOOL AddPane(
 CBasePane* pControlBar,
 BOOL bTail = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::AdjustDockingLayout
virtual void AdjustDockingLayout(HDWP hdwp = NULL);

ParametersParameters

RemarksRemarks

COleIPFrameWndEx::DockPane
void DockPane(
 CBasePane* pBar,
 UINT nDockBarID = 0,
 LPCRECT lpRect = NULL);

ParametersParameters

RemarksRemarks

COleIPFrameWndEx::DockPaneLeftOf

Header: afxoleipframewndex.h

[in] pControlBar
[in] bTail

[in] hdwp

[in] pBar
[in] nDockBarID
[in] lpRect

Docks one pane to the left of another pane.

BOOL DockPaneLeftOf(
 CPane* pBar,
 CPane* pLeftOf);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::EnableAutoHidePanes
BOOL EnableAutoHidePanes(DWORD dwDockStyle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::EnableDocking
BOOL EnableDocking(DWORD dwDockStyle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::EnablePaneMenu
void EnablePaneMenu(
 BOOL bEnable,
 UINT uiCustomizeCmd,
 const CString& strCustomizeLabel,
 UINT uiViewToolbarsMenuEntryID,
 BOOL bContextMenuShowsToolbarsOnly = FALSE,
 BOOL bViewMenuShowsToolbarsOnly = FALSE);

ParametersParameters

pBar
[in] A pointer to the pane to dock.

pLeftOf
[in] A pointer to the pane that serves as origin.

Returns TRUE if the operation is successful. Otherwise returns FALSE.

Call this method to dock several pane objects in a predefined order. This method docks the pane specified by pBar
to the left of the pane specified by pLeftOf.

[in] dwDockStyle

[in] dwDockStyle

[in] bEnable
[in] uiCustomizeCmd

RemarksRemarks

COleIPFrameWndEx::GetActivePopup

CMFCPopupMenu* GetActivePopup() const;

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::GetContainerFrameWindow
COleCntrFrameWndEx* GetContainerFrameWindow();

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::GetDefaultResId

UINT GetDefaultResId() const;

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::GetDockFrame
CFrameWnd* GetDockFrame();

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::GetDockingManager
CDockingManager* GetDockingManager();

[in] strCustomizeLabel
[in] uiViewToolbarsMenuEntryID
[in] bContextMenuShowsToolbarsOnly
[in] bViewMenuShowsToolbarsOnly

Returns a pointer to the currently displayed pop-up menu.

A pointer to the active pop-up menu; otherwise NULL.

Use this method to obtain a pointer to the CMFCPopupMenu Class object that is currently displayed.

Returns the menu resource ID that was specified when the frame window loaded the menu.

Returns the resource ID of the menu, or 0 if the frame window has no menu bar.

Call this function to retrieve the resource ID that was specified when the frame window loaded the menu resource
by calling COleIPFrameWndEx::LoadFrame .

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::GetMainFrame
CFrameWnd* GetMainFrame();

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::GetMenuBar

const CMFCMenuBar* GetMenuBar() const;

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::GetPane
CBasePane* GetPane(UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::GetTearOffBars

const CObList& GetTearOffBars() const;

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::GetToolbarButtonToolTipText

Returns a pointer to the menu bar object attached to the frame window.

A pointer to the menu bar object.

Use this function to retrieve a pointer to the menu bar object that belongs to the COleIPFrameWndEx object.

[in] nID

Returns a list of pane objects that are in a tear-off state.

A reference to a CObList object that contains a collection of pointers to the CBasePane Class-derived objects.

The COleIPFrameWndEx object maintains the collection of tear-off menus as a list of CBasePane Class-derived
objects. Use this method to retrieve a reference to this list.

Called by the framework before the tooltip for a button is displayed.

virtual BOOL GetToolbarButtonToolTipText(
 CMFCToolBarButton* pButton,
 CString& strTTText);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::InitUserToobars

void InitUserToolbars(
 LPCTSTR lpszRegEntry,
 UINT uiUserToolbarFirst,
 UINT uiUserToolbarLast)

ParametersParameters

RemarksRemarks

COleIPFrameWndEx::InsertPane
BOOL InsertPane(
 CBasePane* pControlBar,
 CBasePane* pTarget,
 BOOL bAfter = TRUE);

ParametersParameters

Return ValueReturn Value

pButton
[in] Pointer to the button.

strTTText
[in] Pointer to the tooltip text.

The default implementation returns 0.

Override this function to customize the display of tooltips on toolbar buttons.

Specifies a range of control IDs that the framework assigns to the user-defined toolbars.

lpszRegEntry
[in] The registry entry where the library stores user toolbar settings.

uiUserToolbarFirst
[in] Control ID assigned to the first user-defined toolbar.

uiUserToolbarLast
[in] Control ID assigned to the last user-defined toolbar.

Use this function to initialize a range of control IDs for assignment to toolbars that users define dynamically. The
parameters uiUserToolbarFirst and uiUserToolbarLast define a range of allowed toolbar control IDs. To disable the
creation of user-defined toolbars, set uiUserToolbarFirst or uiUserToolbarLast to -1.

[in] pControlBar
[in] pTarget
[in] bAfter

RemarksRemarks

COleIPFrameWndEx::IsMenuBarAvailable

BOOL IsMenuBarAvailable() const;

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::IsPointNearDockSite
BOOL IsPointNearDockSite(
 CPoint point,
 DWORD& dwBarAlignment,
 BOOL& bOuterEdge) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::LoadFrame
virtual BOOL LoadFrame(
 UINT nIDResource,
 DWORD dwDefaultStyle = WS_OVERLAPPEDWINDOW | FWS_ADDTOTITLE,
 CWnd* pParentWnd = NULL,
 CCreateContext* pContext = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::OnCloseDockingPane
virtual BOOL OnCloseDockingPane(CDockablePane*);

ParametersParameters

Determines whether the pointer to the menu bar object is not NULL

Returns a non-zero value if the frame window has a menu bar; otherwise returns 0.

Call this method to determine whether the frame window maintains a non- NULL pointer to its menu bar object.

[in] point
[in] dwBarAlignment
[in] bOuterEdge

[in] nIDResource
[in] dwDefaultStyle
[in] pParentWnd
[in] pContext

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::OnCloseMiniFrame
virtual BOOL OnCloseMiniFrame(CPaneFrameWnd*);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::OnClosePopupMenu

virtual void OnClosePopupMenu(CMFCPopupMenu* pMenuPopup);

ParametersParameters

RemarksRemarks

COleIPFrameWndEx::OnCmdMsg
virtual BOOL OnCmdMsg(
 UINT nID,
 int nCode,
 void* pExtra,
 AFX_CMDHANDLERINFO* pHandlerInfo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::OnDrawMenuImage

[in] CDockablePane*

[in] CPaneFrameWnd*

Called by the framework when an active pop-up menu processes a WM_DESTROY message.

pMenuPopup
[in] A pointer to the pop-up menu object.

Override this method to receive notifications from CMFCPopupMenu objects when they process WM_DESTROY
messages.

[in] nID
[in] nCode
[in] pExtra
[in] pHandlerInfo

Called by the framework when the image that is associated with a menu item is drawn.

virtual BOOL OnDrawMenuImage(
 CDC* pDC,
 const CMFCToolBarMenuButton* pMenuButton,
 const CRect& rectImage);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::OnDrawMenuLogo

virtual void OnDrawMenuLogo(
 CDC* pDC,
 CMFCPopupMenu* pMenu,
 const CRect& rectLogo);

ParametersParameters

RemarksRemarks

COleIPFrameWndEx::OnMenuButtonToolHitTest

virtual BOOL OnMenuButtonToolHitTest(
 CMFCToolBarButton* pButton,
 TOOLINFO* pTI);

ParametersParameters

pDC
[in] Pointer to the device context.

pMenuButton
[in] Pointer to the menu button.

rectImage
[in] The image associated with the menu item.

The default implementation does nothing and returns 0.

Override this method if you want to customize image drawing for the menu items that belong to the menu bar
owned by the COleIPFrameWndEx -derived object.

Called by the framework when a CMFCPopupMenuobject processes a WM_PAINT message.

pDC
[in] Pointer to the device context.

pMenu
[in] Pointer to the pop-up menu object.

rectLogo
[in] Pointer to the logo to display.

Override this method to display a logo on the pop-up menu associated with the menu bar owned by the
COleIPFrameWndEx -derived object. The default implementation does nothing.

Called by the framework when a CMFCToolBarButtonobject processes a WM_NCHITTEST message.

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::OnMoveMiniFrame
virtual BOOL OnMoveMiniFrame(CWnd* pFrame);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::OnSetPreviewMode
virtual void OnSetPreviewMode(
 BOOL bPreview,
 CPrintPreviewState* pState);

ParametersParameters

RemarksRemarks

COleIPFrameWndEx::OnShowCustomizePane
virtual BOOL OnShowCustomizePane(
 CMFCPopupMenu* pMenuPane,
 UINT uiToolbarID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::OnShowPanes
virtual BOOL OnShowPanes(BOOL bShow);

ParametersParameters

[in] pButton Pointer to a menu button.

[out] pTI Pointer to a TOOLINFO structure.

The default implementation does nothing and returns 0. Your implementation should return a non-zero value if it
fills the pTI parameter.

Override this method to provide ToolTip information about a specific menu item.

[in] pFrame

[in] bPreview
[in] pState

[in] pMenuPane
[in] uiToolbarID

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::OnShowPopupMenu

virtual BOOL OnShowPopupMenu(CMFCPopupMenu* pMenuPopup);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::OnTearOffMenu

virtual BOOL OnTearOffMenu(
 CMFCPopupMenu* pMenuPopup,
 CPane* pBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::PaneFromPoint

[in] bShow

Called by the framework when a pop-up menu is displayed.

pMenuPopup
[in] Pointer to the pop-up menu to be displayed.

The default implementation does nothing and returns a non-zero value. Your implementation should return FALSE
if the pop-up menu cannot be displayed.

Override this method to customize the display of a pop-up menu. For example, you could change the menu
buttons to color menu buttons or initialize tear-off bars.

Called by the framework when the user selects a menu that has a tear-off bar.

pMenuPopup
[in] A pointer to the pop-up menu that the user selected.

pBar
[in] A pointer to the pane that hosts the menu.

TRUE if you want the framework to activate the pop-up menu; otherwise FALSE. The default value is TRUE.

Override this function if you want to customize the setup of the tear-off bar.

CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 bool bExactBar,
 CRuntimeClass* pRTCBarType) const;

CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 DWORD& dwAlignment,
 CRuntimeClass* pRTCBarType) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::PreTranslateMessage
virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleIPFrameWndEx::RecalcLayout
virtual void RecalcLayout(BOOL bNotify = TRUE);

ParametersParameters

RemarksRemarks

COleIPFrameWndEx::RemovePaneFromDockManager
void RemovePaneFromDockManager(
 CBasePane* pControlBar,
 BOOL bDestroy,
 BOOL bAdjustLayout,
 BOOL bAutoHide,
 CBasePane* pBarReplacement);

ParametersParameters

[in] point
[in] nSensitivity
[in] bExactBar
[in] pRTCBarType
[in] dwAlignment

[in] pMsg

[in] bNotify

[in] pControlBar

RemarksRemarks

COleIPFrameWndEx::SetDockState

void SetDockState(const CDockState& state);

ParametersParameters

RemarksRemarks

COleIPFrameWndEx::SetupToolbarMenu

void SetupToolbarMenu(
 CMenu& menu,
 const UINT uiViewUserToolbarCmdFirst,
 const UINT uiViewUserToolbarCmdLast);

ParametersParameters

RemarksRemarks

COleIPFrameWndEx::ShowPane
void ShowPane(
 CBasePane* pBar,
 BOOL bShow,
 BOOL bDelay,
 BOOL bActivate);

ParametersParameters

[in] bDestroy
[in] bAdjustLayout
[in] bAutoHide
[in] pBarReplacement

Applies the specified docking state to panes that belong to the frame window.

state
[in] Specifies the docking state.

Use this function to specify a new docking state for panes that belong to the COleIPFrameWndEx object.

Modifies a toolbar object by searching for dummy items and replacing them with the specified user-defined items.

menu
[in] A reference to a CMenu object to be modified.

uiViewUserToolbarCmdFirst
[in] Specifies the first user-defined command.

uiViewUserToolbarCmdLast
[in] Specifies the last user-defined command.

[in] pBar
[in] bShow
[in] bDelay
[in] bActivate

RemarksRemarks

COleIPFrameWndEx::WinHelpA

virtual void WinHelp(
 DWORD dwData,
 UINT nCmd = HELP_CONTEXT);

ParametersParameters

RemarksRemarks

See also

Called by the framework to initiate the WinHelp application or context help.

[in] dwData Specifies data as required for the type of help specified by nCmd.

nCmd
[in] Specifies the type of help requested. For a list of possible values and how they affect the dwData parameter,
see the WinHelp Function in the Windows SDK.

Hierarchy Chart
Classes
CFrameWndEx Class
CMDIFrameWndEx Class

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-winhelpa

COleLinkingDoc Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class COleLinkingDoc : public COleDocument

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleLinkingDoc::COleLinkingDoc Constructs a COleLinkingDoc object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleLinkingDoc::Register Registers the document with the OLE system DLLs.

COleLinkingDoc::Revoke Revokes the document's registration.

Protected MethodsProtected Methods

NAME DESCRIPTION

COleLinkingDoc::OnFindEmbeddedItem Finds the specified embedded item.

COleLinkingDoc::OnGetLinkedItem Finds the specified linked item.

Remarks

The base class for OLE container documents that support linking to the embedded items they contain.

A container application that supports linking to embedded items is called a "link container." The OCLIENT
sample application is an example of a link container.

When a linked item's source is an embedded item in another document, that containing document must be
loaded in order for the embedded item to be edited. For this reason, a link container must be able to be launched
by another container application when the user wants to edit the source of a linked item. Your application must
also use the COleTemplateServer class so that it can create documents when launched programmatically.

To make your container a link container, derive your document class from COleLinkingDoc instead of
COleDocument. As with any other OLE container, you must design your class for storing the application's native
data as well as embedded or linked items. Also, you must design data structures for storing your native data. If
you define a CDocItem -derived class for your application's native data, you can use the interface defined by
COleDocument to store your native data as well as your OLE data.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colelinkingdoc-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

class COleContainerApp : public CWinApp
{
protected:
 COleTemplateServer m_server;
 // remainder of class declaration ommitted

// CMyLinkDoc is derived from COleLinkingDoc
CMultiDocTemplate* pDocTemplate = new CMultiDocTemplate(IDR_LINKDOCTYPE,
 RUNTIME_CLASS(CMyLinkDoc),
 RUNTIME_CLASS(CChildFrame),
 RUNTIME_CLASS(CMyLinkView));
 if (!pDocTemplate)
 return FALSE;
pDocTemplate->SetContainerInfo(IDR_OLECONTTYPE_CNTR_IP);
AddDocTemplate(pDocTemplate);

m_server.ConnectTemplate(clsid, pDocTemplate, FALSE);
COleTemplateServer::RegisterAll();

Inheritance Hierarchy

Requirements

COleLinkingDoc::COleLinkingDoc

COleLinkingDoc();

To allow your application to be launched programmatically by another container, declare a COleTemplateServer
object as a member of your application's CWinApp -derived class:

In the InitInstance member function of your CWinApp -derived class, create a document template and specify
your COleLinkingDoc -derived class as the document class:

Connect your COleTemplateServer object to your document templates by calling the object's ConnectTemplate

member function, and register all class objects with the OLE system by calling COleTemplateServer::RegisterAll :

For a sample CWinApp -derived class definition and InitInstance function, see OCLIENT.H and OCLIENT.CPP
in the MFC sample OCLIENT.

For more information on using COleLinkingDoc , see the articles Containers: Implementing a Container and
Containers: Advanced Features.

CObject

CCmdTarget

CDocument

COleDocument

COleLinkingDoc

Header: afxole.h

Constructs a COleLinkingDoc object without beginning communications with the OLE system DLLs.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

COleLinkingDoc::OnFindEmbeddedItem

virtual COleClientItem* OnFindEmbeddedItem(LPCTSTR lpszItemName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleLinkingDoc::OnGetLinkedItem

virtual COleServerItem* OnGetLinkedItem(LPCTSTR lpszItemName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleLinkingDoc::Register

BOOL Register(
 COleObjectFactory* pFactory,
 LPCTSTR lpszPathName);

ParametersParameters

You must call the Register member function to inform OLE that the document is open.

Called by the framework to determine whether the document contains an embedded OLE item with the
specified name.

lpszItemName
Pointer to the name of the embedded OLE item requested.

A pointer to the specified item; NULL if the item is not found.

The default implementation searches the list of embedded items for an item with the specified name (the name
comparison is case sensitive). Override this function if you have your own method of storing or naming
embedded OLE items.

Called by the framework to check whether the document contains a linked server item with the specified name.

lpszItemName
Pointer to the name of the linked OLE item requested.

A pointer to the specified item; NULL if the item is not found.

The default COleLinkingDoc implementation always returns NULL. This function is overriden in the derived class
COleServerDoc to search the list of OLE server items for a linked item with the specified name (the name

comparison is case sensitive). Override this function if you have implemented your own method of storing or
retrieving linked server items.

Informs the OLE system DLLs that the document is open.

pFactory
Pointer to an OLE factory object (can be NULL).

Return ValueReturn Value

RemarksRemarks

COleLinkingDoc::Revoke

void Revoke();

RemarksRemarks

See also

lpszPathName
Pointer to the fully qualified path of the container document.

Nonzero if the document is successfully registered; otherwise 0.

Call this function when creating or opening a named file to register the document with the OLE system DLLs.
There is no need to call this function if the document represents an embedded item.

If you are using COleTemplateServer in your application, Register is called for you by COleLinkingDoc 's
implementation of OnNewDocument , OnOpenDocument , and OnSaveDocument .

Informs the OLE system DLLs that the document is no longer open.

Call this function to revoke the document's registration with the OLE system DLLs.

You should call this function when closing a named file, but you usually do not need to call it directly. Revoke is
called for you by COleLinkingDoc 's implementation of OnCloseDocument , OnNewDocument , OnOpenDocument , and
OnSaveDocument .

MFC Sample OCLIENT
COleDocument Class
Hierarchy Chart
CDocTemplate Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleLinksDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class COleLinksDialog : public COleDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleLinksDialog::COleLinksDialog Constructs a COleLinksDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleLinksDialog::DoModal Displays the OLE Edit Links dialog box.

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleLinksDialog::m_el A structure of type OLEUIEDITLINKS that controls the
behavior of the dialog box.

Remarks

NOTENOTE

Inheritance Hierarchy

Used for the OLE Edit Links dialog box.

Create an object of class COleLinksDialog when you want to call this dialog box. After a COleLinksDialog object
has been constructed, you can use the m_el structure to initialize the values or states of controls in the dialog box.
The m_el structure is of type OLEUIEDITLINKS. For more information about using this dialog class, see the
DoModal member function.

Application Wizard-generated container code uses this class.

For more information, see the OLEUIEDITLINKS structure in the Windows SDK.

For more information regarding OLE-specific dialog boxes, see the article Dialog Boxes in OLE.

CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colelinksdialog-class.md
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuieditlinksa

Requirements

COleLinksDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

COleLinksDialog::COleLinksDialog

COleLinksDialog (
 COleDocument* pDoc,
 CView* pView,
 DWORD dwFlags = 0,
 CWnd* pParentWnd = NULL);

ParametersParameters

CCmdTarget

CWnd

CDialog

CCommonDialog

COleDialog

COleLinksDialog

Header: afxodlgs.h

Displays the OLE Edit Links dialog box.

Completion status for the dialog box. One of the following values:

IDOK if the dialog box was successfully displayed.

IDCANCEL if the user canceled the dialog box.

IDABORT if an error occurred. If IDABORT is returned, call the COleDialog::GetLastError member
function to get more information about the type of error that occurred. For a listing of possible errors, see
the OleUIEditLinks function in the Windows SDK.

If you want to initialize the various dialog box controls by setting members of the m_el structure, you should do
it before calling DoModal , but after the dialog object is constructed.

Constructs a COleLinksDialog object.

pDoc
Points to the OLE document that contains the links to be edited.

pView
Points to the current view on pDoc.

dwFlags
Creation flag, which contains either 0 or ELF_SHOWHELP to specify whether the Help button will be displayed
when the dialog box is displayed.

https://docs.microsoft.com/windows/desktop/api/oledlg/nf-oledlg-oleuieditlinksa

RemarksRemarks

COleLinksDialog::m_el

OLEUIEDITLINKS m_el;

RemarksRemarks

See also

pParentWnd
Points to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is NULL, the
parent window of the dialog box is set to the main application window.

This function constructs only a COleLinksDialog object. To display the dialog box, call the DoModal function.

Structure of type OLEUIEDITLINKS used to control the behavior of the Edit Links dialog box.

Members of this structure can be modified either directly or through member functions.

For more information, see the OLEUIEDITLINKS structure in the Windows SDK.

COleDialog Class
Hierarchy Chart
COleDialog Class

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuieditlinksa

COleMessageFilter Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class COleMessageFilter : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleMessageFilter::COleMessageFilter Constructs a COleMessageFilter object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleMessageFilter::BeginBusyState Puts the application in the busy state.

COleMessageFilter::EnableBusyDialog Enables and disables the dialog box that appears when a
called application is busy.

COleMessageFilter::EnableNotRespondingDialog Enables and disables the dialog box that appears when a
called application is not responding.

COleMessageFilter::EndBusyState Terminates the application's busy state.

COleMessageFilter::OnMessagePending Called by the framework to process messages while an OLE
call is in progress.

COleMessageFilter::Register Registers the message filter with the OLE system DLLs.

COleMessageFilter::Revoke Revokes the message filter's registration with the OLE system
DLLs.

COleMessageFilter::SetBusyReply Determines the busy application's reply to an OLE call.

COleMessageFilter::SetMessagePendingDelay Determines how long the application waits for a response to
an OLE call.

COleMessageFilter::SetRetryReply Determines the calling application's reply to a busy
application.

Remarks

Manages the concurrency required by the interaction of OLE applications.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colemessagefilter-class.md

Inheritance Hierarchy

Requirements

COleMessageFilter::BeginBusyState

virtual void BeginBusyState();

RemarksRemarks

COleMessageFilter::COleMessageFilter

COleMessageFilter();

The COleMessageFilter class is useful in visual editing server and container applications, as well as OLE
automation applications. For server applications that are being called, this class can be used to make the
application "busy" so that incoming calls from other container applications are either canceled or retried later. This
class can also be used to determine the action to be taken by a calling application when the called application is
busy.

Common usage is for a server application to call BeginBusyState and EndBusyState when it would be dangerous
for a document or other OLE accessible object to be destroyed. These calls are made in CWinApp::OnIdle during
user-interface updates.

By default, a COleMessageFilter object is allocated when the application is initialized. It can be retrieved with
AfxOleGetMessageFilter.

This is an advanced class; you seldom need to work with it directly.

For more information, see the article Servers: Implementing a Server.

CObject

CCmdTarget

COleMessageFilter

Header: afxole.h

Call this function to begin a busy state.

It works in conjunction with EndBusyState to control the application's busy state. The function SetBusyReply
determines the application's reply to calling applications when it is busy.

The BeginBusyState and EndBusyState calls increment and decrement, respectively, a counter that determines
whether the application is busy. For example, two calls to BeginBusyState and one call to EndBusyState still result
in a busy state. To cancel a busy state it is necessary to call EndBusyState the same number of times
BeginBusyState has been called.

By default, the framework enters the busy state during idle processing, which is performed by CWinApp::OnIdle.
While the application is handling ON_COMMANDUPDATEUI notifications, incoming calls are handled later, after
idle processing is complete.

Creates a COleMessageFilter object.

COleMessageFilter::EnableBusyDialog

void EnableBusyDialog(BOOL bEnableBusy = TRUE);

ParametersParameters

COleMessageFilter::EnableNotRespondingDialog

void EnableNotRespondingDialog(BOOL bEnableNotResponding = TRUE);

ParametersParameters

COleMessageFilter::EndBusyState

virtual void EndBusyState();

RemarksRemarks

COleMessageFilter::OnMessagePending

virtual BOOL OnMessagePending(const MSG* pMsg);

ParametersParameters

Enables and disables the busy dialog box, which is displayed when the message-pending delay expires (see
SetRetryReply) during an OLE call.

bEnableBusy
Specifies whether the "busy" dialog box is enabled or disabled.

Enables and disables the "not responding" dialog box, which is displayed if a keyboard or mouse message is
pending during an OLE call and the call has timed out.

bEnableNotResponding
Specifies whether the "not responding" dialog box is enabled or disabled.

Call this function to end a busy state.

It works in conjunction with BeginBusyState to control the application's busy state. The function SetBusyReply
determines the application's reply to calling applications when it is busy.

The BeginBusyState and EndBusyState calls increment and decrement, respectively, a counter that determines
whether the application is busy. For example, two calls to BeginBusyState and one call to EndBusyState still result
in a busy state. To cancel a busy state it is necessary to call EndBusyState the same number of times
BeginBusyState has been called.

By default, the framework enters the busy state during idle processing, which is performed by CWinApp::OnIdle.
While the application is handling ON_UPDATE_COMMAND_UI notifications, incoming calls are handled after idle
processing is complete.

Called by the framework to process messages while an OLE call is in progress.

pMsg
Pointer to the pending message.

Return ValueReturn Value

RemarksRemarks

COleMessageFilter::Register

BOOL Register();

Return ValueReturn Value

RemarksRemarks

COleMessageFilter::Revoke

void Revoke();

RemarksRemarks

COleMessageFilter::SetBusyReply

void SetBusyReply(SERVERCALL nBusyReply);

ParametersParameters

Nonzero on success; otherwise 0.

When a calling application is waiting for a call to be completed, the framework calls OnMessagePending with a
pointer to the pending message. By default, the framework dispatches WM_PAINT messages, so that window
updates can occur during a call that is taking a long time.

You must register your message filter by means of a call to Register before it can become active.

Registers the message filter with the OLE system DLLs.

Nonzero on success; otherwise 0.

A message filter has no effect unless it is registered with the system DLLs. Usually your application's initialization
code registers the application's message filter. Any other message filter registered by your application should be
revoked before the program terminates by a call to Revoke.

The framework's default message filter is automatically registered during initialization and revoked at termination.

Revokes a previous registration performed by a call to Register.

A message filter should be revoked before the program terminates.

The default message filter, which is created and registered automatically by the framework, is also automatically
revoked.

This function sets the application's "busy reply."

nBusyReply
A value from the SERVERCALL enumeration, which is defined in COMPOBJ.H. It can have any one of the following
values:

SERVERCALL_ISHANDLED The application can accept calls but may fail in processing a particular call.

SERVERCALL_REJECTED The application probably will never be able to process a call.

RemarksRemarks

COleMessageFilter::SetMessagePendingDelay

void SetMessagePendingDelay(DWORD nTimeout = 5000);

ParametersParameters

RemarksRemarks

COleMessageFilter::SetRetryReply

void SetRetryReply(DWORD nRetryReply = 0);

ParametersParameters

RemarksRemarks

SERVERCALL_RETRYLATER The application is temporarily in a state in which it cannot process a call.

The BeginBusyState and EndBusyState functions control the application's busy state.

When an application has been made busy with a call to BeginBusyState , it responds to calls from the OLE system
DLLs with a value determined by the last setting of SetBusyReply . The calling application uses this busy reply to
determine what action to take.

By default, the busy reply is SERVERCALL_RETRYLATER. This reply causes the calling application to retry the call
as soon as possible.

Determines how long the calling application waits for a response from the called application before taking further
action.

nTimeout
Number of milliseconds for the message-pending delay.

This function works in concert with SetRetryReply.

Determines the calling application's action when it receives a busy response from a called application.

nRetryReply
Number of milliseconds between retries.

When a called application indicates that it is busy, the calling application may decide to wait until the server is no
longer busy, to retry right away, or to retry after a specified interval. It may also decide to cancel the call altogether.

The caller's response is controlled by the functions SetRetryReply and SetMessagePendingDelay. SetRetryReply

determines how long the calling application should wait between retries for a given call. SetMessagePendingDelay

determines how long the calling application waits for a response from the server before taking further action.

Usually the defaults are acceptable and do not need to be changed. The framework retries the call every
nRetryReply milliseconds until the call goes through or the message-pending delay has expired. A value of 0 for
nRetryReply specifies an immediate retry, and - 1 specifies cancellation of the call.

When the message-pending delay has expired, the OLE "busy dialog box" (see COleBusyDialog) is displayed so
that the user can choose to cancel or retry the call. Call EnableBusyDialog to enable or disable this dialog box.

When a keyboard or mouse message is pending during a call and the call has timed out (exceeded the message-
pending delay), the "not responding" dialog box is displayed. Call EnableNotRespondingDialog to enable or
disable this dialog box. Usually this state of affairs indicates that something has gone wrong and the user is

See also

getting impatient.

When the dialogs are disabled, the current "retry reply" is always used for calls to busy applications.

CCmdTarget Class
Hierarchy Chart
CCmdTarget Class

COleObjectFactory Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class COleObjectFactory : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleObjectFactory::COleObjectFactory Constructs a COleObjectFactory object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleObjectFactory::GetClassID Returns the OLE class ID of the objects this factory creates.

COleObjectFactory::IsLicenseValid Determines if the license of the control is valid.

COleObjectFactory::IsRegistered Indicates whether the object factory is registered with the
OLE system DLLs.

COleObjectFactory::Register Registers this object factory with the OLE system DLLs.

COleObjectFactory::RegisterAll Registers all of the application's object factories with OLE
system DLLs.

COleObjectFactory::Revoke Revokes this object factory's registration with the OLE system
DLLs.

COleObjectFactory::RevokeAll Revokes an application's object factories' registrations with
the OLE system DLLs.

COleObjectFactory::UnregisterAll Unregisters all of an application's object factories.

COleObjectFactory::UpdateRegistry Registers this object factory with the OLE system registry.

COleObjectFactory::UpdateRegistryAll Registers all of the application's object factories with the OLE
system registry.

Protected MethodsProtected Methods

Implements the OLE class factory, which creates OLE objects such as servers, automation objects, and
documents.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coleobjectfactory-class.md

NAME DESCRIPTION

COleObjectFactory::GetLicenseKey Requests a unique key from the control's DLL.

COleObjectFactory::OnCreateObject Called by the framework to create a new object of this
factory's type.

COleObjectFactory::VerifyLicenseKey Verifies that the key embedded in the control matches the
key embedded in the container.

COleObjectFactory::VerifyUserLicense Verifies that the control is licensed for design-time use.

Remarks

Inheritance Hierarchy

Requirements

COleObjectFactory::COleObjectFactory

The COleObjectFactory class has member functions for performing the following functions:

Managing the registration of objects.

Updating the OLE system register, as well as the run-time registration that informs OLE that objects are
running and ready to receive messages.

Enforcing licensing by limiting use of the control to licensed developers at design time and to licensed
applications at run time.

Registering control object factories with the OLE system registry.

For more information about object creation, see the articles Data Objects and Data Sources (OLE) and Data
Objects and Data Sources: Creation and Destruction. For more about registration, see the article Registration.

CObject

CCmdTarget

COleObjectFactory

Header: afxdisp.h

Constructs a COleObjectFactory object, initializes it as an unregistered object factory, and adds it to the list of
factories.

COleObjectFactory(
 REFCLSID clsid,
 CRuntimeClass* pRuntimeClass,
 BOOL bMultiInstance,
 LPCTSTR lpszProgID);

COleObjectFactory(
 REFCLSID clsid,
 CRuntimeClass* pRuntimeClass,
 BOOL bMultiInstance,
 int nFlags,
 LPCTSTR lpszProgID);

ParametersParameters

RemarksRemarks

COleObjectFactory::GetClassID

REFCLSID GetClassID() const;

Return ValueReturn Value

RemarksRemarks

clsid
Reference to the OLE class ID this object factory represents.

pRuntimeClass
Pointer to the run-time class of the C++ objects this factory can create.

bMultiInstance
Indicates whether a single instance of the application can support multiple instantiations. If TRUE, multiple
instances of the application are launched for each request to create an object.

nFlags
Contains one or more of the following flags:

afxRegDefault Sets the threading model to ThreadingModel=Apartment.

afxRegInsertable Allows the control to appear in the Insert Object dialog box for OLE objects.

afxRegApartmentThreading Sets the threading model in the registry to ThreadingModel=Apartment.

afxRegFreeThreading Sets the threading model in the registry to ThreadingModel=Free.

You can combine the two flags afxRegApartmentThreading and afxRegFreeThreading to set
ThreadingModel=Both. See InprocServer32 in the Windows SDK for more information on threading
model registration.

lpszProgID
Pointer to a string containing a verbal program identifier, such as "Microsoft Excel."

To use the object, however, you must register it.

For more information, see CLSID Key in the Windows SDK.

Returns a reference to the OLE class ID this factory represents.

Reference to the OLE class ID this factory represents.

For more information, see CLSID Key in the Windows SDK.

https://docs.microsoft.com/windows/desktop/com/inprocserver32
https://docs.microsoft.com/windows/desktop/com/clsid-key-hklm
https://docs.microsoft.com/windows/desktop/com/clsid-key-hklm

COleObjectFactory::GetLicenseKey

virtual BOOL GetLicenseKey(
 DWORD dwReserved,
 BSTR* pbstrKey);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleObjectFactory::IsLicenseValid

BOOL IsLicenseValid();

Return ValueReturn Value

COleObjectFactory::IsRegistered

virtual BOOL IsRegistered() const;

Return ValueReturn Value

COleObjectFactory::OnCreateObject

virtual CCmdTarget* OnCreateObject();

Return ValueReturn Value

RemarksRemarks

Requests a unique license key from the control's DLL and stores it in the BSTR pointed to by pbstrKey.

dwReserved
Reserved for future use.

pbstrKey
Pointer to a BSTR that will store the license key.

Nonzero if the license-key string is not NULL; otherwise 0.

The default implementation of this function returns 0 and stores nothing in the BSTR. If you use MFC ActiveX
ControlWizard to create your project, ControlWizard supplies an override that retrieves the control's license key.

Determines if the license of the control is valid.

TRUE if successul; otherwise false.

Returns a nonzero value if the factory is registered with the OLE system DLLs.

Nonzero if the factory is registered; otherwise 0.

Called by the framework to create a new object.

A pointer to the created object. It can throw a memory exception if it fails.

Override this function to create the object from something other than the CRuntimeClass passed to the

COleObjectFactory::Register

virtual BOOL Register();

Return ValueReturn Value

RemarksRemarks

COleObjectFactory::RegisterAll

static BOOL PASCAL RegisterAll();

Return ValueReturn Value

RemarksRemarks

COleObjectFactory::Revoke

void Revoke();

RemarksRemarks

COleObjectFactory::RevokeAll

static void PASCAL RevokeAll();

RemarksRemarks

COleObjectFactory::UnregisterAll

constructor.

Registers this object factory with the OLE system DLLs.

Nonzero if the factory is successfully registered; otherwise 0.

This function is usually called by CWinApp::InitInstance when the application is launched.

Registers all of the application's object factories with the OLE system DLLs.

Nonzero if the factories are successfully registered; otherwise 0.

This function is usually called by CWinApp::InitInstance when the application is launched.

Revokes this object factory's registration with the OLE system DLLs.

The framework calls this function automatically before the application terminates. If necessary, call it from an
override of CWinApp::ExitInstance.

Revokes all of the application's object factories' registrations with the OLE system DLLs.

The framework calls this function automatically before the application terminates. If necessary, call it from an
override of CWinApp::ExitInstance.

Unregisters all of an application's object factories.

static BOOL PASCAL UnregisterAll();

Return ValueReturn Value

COleObjectFactory::UpdateRegistry

void UpdateRegistry(LPCTSTR lpszProgID = NULL);
virtual BOOL UpdateRegistry(BOOL bRegister);

ParametersParameters

RemarksRemarks

COleObjectFactory::UpdateRegistryAll

static BOOL PASCAL UpdateRegistryAll(BOOL bRegister = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleObjectFactory::VerifyLicenseKey

virtual BOOL VerifyLicenseKey(BSTR bstrKey);

TRUE if successful; otherwise FALSE.

Registers all of the application's object factories with the OLE system registry.

lpszProgID
Pointer to a string containing the human-readable program identifier, such as "Excel.Document.5."

bRegister
Determines whether the control class's object factory is to be registered.

Brief discussions of the two forms for this function follow:

UpdateRegistry(lpszProgID) Registers this object factory with the OLE system registry. This function is
usually called by CWinApp::InitInstance when the application is launched.

UpdateRegistry(bRegister) This form of the function is overridable. If bRegister is TRUE, this function
registers the control class with the system registry. Otherwise, it unregisters the class.

If you use MFC ActiveX ControlWizard to create your project, ControlWizard supplies an override to this
pure virtual function.

Registers all of the application's object factories with the OLE system registry.

bRegister
Determines whether the control class's object factory is to be registered.

Nonzero if the factories are successfully updated; otherwise 0.

This function is usually called by CWinApp::InitInstance when the application is launched.

Verifies that the container is licensed to use the OLE control.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleObjectFactory::VerifyUserLicense

virtual BOOL VerifyUserLicense();

Return ValueReturn Value

See also

bstrKey
A BSTR storing the container's version of the license string.

Nonzero if the run-time license is valid; otherwise 0.

The default version calls GetLicenseKey to get a copy of the control's license string and compares it with the
string in bstrKey. If the two strings match, the function returns a nonzero value; otherwise it returns 0.

You can override this function to provide customized verification of the license.

The function VerifyUserLicense verifies the design-time license.

Verifies the design-time license for the OLE control.

Nonzero if the design-time license is valid; otherwise 0.

CCmdTarget Class
Hierarchy Chart
COleTemplateServer Class

COlePasteSpecialDialog Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class COlePasteSpecialDialog : public COleDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COlePasteSpecialDialog::COlePasteSpecialDialog Constructs a COlePasteSpecialDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

COlePasteSpecialDialog::AddFormat Adds custom formats to the list of formats your application
can paste.

COlePasteSpecialDialog::AddLinkEntry Adds a new entry to the list of supported Clipboard formats.

COlePasteSpecialDialog::AddStandardFormats Adds CF_BITMAP, CF_DIB, CF_METAFILEPICT, and optionally
CF_LINKSOURCE to the list of formats your application can
paste.

COlePasteSpecialDialog::CreateItem Creates the item in the container document using the
specified format.

COlePasteSpecialDialog::DoModal Displays the OLE Paste Special dialog box.

COlePasteSpecialDialog::GetDrawAspect Tells whether to draw item as an icon or not.

COlePasteSpecialDialog::GetIconicMetafile Gets a handle to the metafile associated with the iconic form
of this item.

COlePasteSpecialDialog::GetPasteIndex Gets the index of available paste options that was chosen by
the user.

COlePasteSpecialDialog::GetSelectionType Gets the type of selection chosen.

Public Data MembersPublic Data Members

Used for the OLE Paste Special dialog box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colepastespecialdialog-class.md

NAME DESCRIPTION

COlePasteSpecialDialog::m_ps A structure of type OLEUIPASTESPECIAL that controls the
function of the dialog box.

Remarks

Inheritance Hierarchy

Requirements

COlePasteSpecialDialog::AddFormat

void AddFormat(
 const FORMATETC& formatEtc,
 LPTSTR lpszFormat,
 LPTSTR lpszResult,
 DWORD flags);

void AddFormat(
 UINT cf,
 DWORD tymed,
 UINT nFormatID,
 BOOL bEnableIcon,
 BOOL bLink);

ParametersParameters

Create an object of class COlePasteSpecialDialog when you want to call this dialog box. After a
COlePasteSpecialDialog object has been constructed, you can use the AddFormat and AddStandardFormats

member functions to add Clipboard formats to the dialog box. You can also use the m_ps structure to initialize the
values or states of controls in the dialog box. The m_ps structure is of type OLEUIPASTESPECIAL.

For more information, see the OLEUIPASTESPECIAL structure in the Windows SDK.

For more information regarding OLE-specific dialog boxes, see the article Dialog Boxes in OLE.

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

COleDialog

COlePasteSpecialDialog

Header: afxodlgs.h

Call this function to add new formats to the list of formats your application can support in a Paste Special
operation.

fmt
Reference to the data type to add.

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuipastespeciala

RemarksRemarks

COlePasteSpecialDialog::AddLinkEntry

OLEUIPASTEFLAG AddLinkEntry(UINT cf);

ParametersParameters

Return ValueReturn Value

COlePasteSpecialDialog::AddStandardFormats

lpszFormat
String that describes the format to the user.

lpszResult
String that describes the result if this format is chosen in the dialog box.

flags
The different linking and embedding options available for this format. This flag is a bitwise combination of one or
more of the different values in the OLEUIPASTEFLAG enumerated type.

cf
The clipboard format to add.

tymed
The types of media available in this format. This is a bitwise combination of one or more of the values in the
TYMED enumerated type.

nFormatID
The ID of the string that identifies this format. The format of this string is two separate strings separated by a '\n'
character. The first string is the same that would be passed in the lpstrFormat parameter, and the second is the
same as the lpstrResult parameter.

bEnableIcon
Flag that determines whether the Display As Icon check box is enabled when this format is chosen in the list box.

bLink
Flag that determines whether the Paste Link radio button is enabled when this format is chosen in the list box.

This function can be called to add either standard formats such as CF_TEXT or CF_TIFF or custom formats that
your application has registered with the system. For more information about pasting data objects into your
application, see the article Data Objects and Data Sources: Manipulation.

For more information, see the TYMED enumeration type and the FORMATETC structure in the Windows SDK.

For more information, see the OLEUIPASTEFLAG enumerated type in the Windows SDK.

Adds a new entry to the list of supported Clipboard formats.

cf
The clipboard format to add.

An OLEUIPASTEFLAG structure containing the information for the new link entry.

Call this function to add the following Clipboard formats to the list of formats your application can support in a
Paste Special operation:

https://docs.microsoft.com/windows/desktop/api/objidl/ne-objidl-tagtymed
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/oledlg/ne-oledlg-tagoleuipasteflag
https://docs.microsoft.com/windows/desktop/api/oledlg/ne-oledlg-tagoleuipasteflag

void AddStandardFormats(BOOL bEnableLink = TRUE);

ParametersParameters

RemarksRemarks

COlePasteSpecialDialog::COlePasteSpecialDialog

COlePasteSpecialDialog(
 DWORD dwFlags = PSF_SELECTPASTE,
 COleDataObject* pDataObject = NULL,
 CWnd* pParentWnd = NULL);

ParametersParameters

RemarksRemarks

bEnableLink
Flag that determines whether to add CF_LINKSOURCE to the list of formats your application can paste.

CF_BITMAP

CF_DIB

CF_METAFILEPICT

"Embedded Object"

(optionally) "Link Source"

These formats are used to support embedding and linking.

Constructs a COlePasteSpecialDialog object.

dwFlags
Creation flag, contains any number of the following flags combined using the bitwise-OR operator:

PSF_SELECTPASTE Specifies that the Paste radio button will be checked initially when the dialog box is
called. Cannot be used in combination with PSF_SELECTPASTELINK. This is the default.

PSF_SELECTPASTELINK Specifies that the Paste Link radio button will be checked initially when the
dialog box is called. Cannot be used in combination with PSF_SELECTPASTE.

PSF_CHECKDISPLAYASICON Specifies that the Display As Icon check box will be checked initially when
the dialog box is called.

PSF_SHOWHELP Specifies that the Help button will be displayed when the dialog box is called.

pDataObject
Points to the COleDataObject for pasting. If this value is NULL, it gets the COleDataObject from the Clipboard.

pParentWnd
Points to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is NULL, the
parent window of the dialog box is set to the main application window.

This function only constructs a COlePasteSpecialDialog object. To display the dialog box, call the DoModal
function.

For more information, see the OLEUIPASTEFLAG enumerated type in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oledlg/ne-oledlg-tagoleuipasteflag

COlePasteSpecialDialog::CreateItem

BOOL CreateItem(COleClientItem* pNewItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COlePasteSpecialDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

COlePasteSpecialDialog::GetDrawAspect

DVASPECT GetDrawAspect() const;

Return ValueReturn Value

Creates the new item that was chosen in the Paste Special dialog box.

pNewItem
Points to a COleClientItem instance. Cannot be NULL.

Nonzero if the item was created successfully; otherwise 0.

This function should only be called after DoModal returns IDOK.

Displays the OLE Paste Special dialog box.

Completion status for the dialog box. One of the following values:

IDOK if the dialog box was successfully displayed.

IDCANCEL if the user canceled the dialog box.

IDABORT if an error occurred. If IDABORT is returned, call the COleDialog::GetLastError member function
to get more information about the type of error that occurred. For a listing of possible errors, see the
OleUIPasteSpecial function in the Windows SDK.

If you want to initialize the various dialog box controls by setting members of the m_ps structure, you should do
this before calling DoModal , but after the dialog object is constructed.

If DoModal returns IDOK, you can call other member functions to retrieve the settings or information input by the
user into the dialog box.

Determines if the user chose to display the selected item as an icon.

The method needed to render the object.

DVASPECT_CONTENT Returned if the Display As Icon check box was not checked when the dialog box
was dismissed.

DVASPECT_ICON Returned if the Display As Icon check box was checked when the dialog box was
dismissed.

https://docs.microsoft.com/windows/desktop/api/oledlg/nf-oledlg-oleuipastespeciala

RemarksRemarks

COlePasteSpecialDialog::GetIconicMetafile

HGLOBAL GetIconicMetafile() const;

Return ValueReturn Value

COlePasteSpecialDialog::GetPasteIndex

int GetPasteIndex() const;

Return ValueReturn Value

RemarksRemarks

COlePasteSpecialDialog::GetSelectionType

UINT GetSelectionType() const;

Return ValueReturn Value

RemarksRemarks

enum Selection {
 pasteLink,
 pasteNormal,
 pasteOther,
 pasteStatic
 };

Only call this function after DoModal returns IDOK.

For more information on drawing aspect, see the FORMATETC structure in the Windows SDK.

Gets the metafile associated with the item selected by the user.

The handle to the metafile containing the iconic aspect of the selected item, if the Display As Icon check box was
selected when the dialog box was dismissed by choosing OK; otherwise NULL.

Gets the index value associated with the entry the user selected.

The index into the array of OLEUIPASTEENTRY structures that was selected by the user. The format that corresponds
to the selected index should be used when performing the paste operation.

For more information, see the OLEUIPASTEENTRY structure in the Windows SDK.

Determines the type of selection the user made.

Returns type of selection made.

The return type values are specified by the Selection enumeration type declared in the COlePasteSpecialDialog

class.

Brief desccriptions of these values follow:

COlePasteSpecialDialog::pasteLink The Paste Link radio button was checked and the chosen format was a
standard OLE format.

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuipasteentrya

 COlePasteSpecialDialog::m_ps

OLEUIPASTESPECIAL m_ps;

RemarksRemarks

See also

COlePasteSpecialDialog::pasteNormal The Paste radio button was checked and the chosen format was a
standard OLE format.

COlePasteSpecialDialog::pasteOther The selected format is not a standard OLE format.

COlePasteSpecialDialog::pasteStatic The chosen format was a metafile.

Structure of type OLEUIPASTESPECIAL used to control the behavior of the Paste Special dialog box.

Members of this structure can be modified directly or through member functions.

For more information, see the OLEUIPASTESPECIAL structure in the Windows SDK.

MFC Sample OCLIENT
COleDialog Class
Hierarchy Chart
COleDialog Class

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuipastespeciala
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COlePropertiesDialog Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class COlePropertiesDialog : public COleDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COlePropertiesDialog::COlePropertiesDialog Constructs a COlePropertiesDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

COlePropertiesDialog::DoModal Displays the dialog box and allows the user to make a
selection.

COlePropertiesDialog::OnApplyScale Called by the framework when the scaling of the document
item has changed.

Public Data MembersPublic Data Members

NAME DESCRIPTION

COlePropertiesDialog::m_gp A structure used to initialize the "General" page of a
COlePropertiesDialog object.

COlePropertiesDialog::m_lp A structure used to initialize the "Link" page of a
COlePropertiesDialog object.

COlePropertiesDialog::m_op A structure used to initialize the COlePropertiesDialog

object.

COlePropertiesDialog::m_psh A structure used to add additional custom property pages.

COlePropertiesDialog::m_vp A structure used to customize the "View" page of a
COlePropertiesDialog object.

Remarks

Encapsulates the Windows common OLE Object Properties dialog box.

Common OLE Object Properties dialog boxes provide an easy way to display and modify the properties of an
OLE document item in a manner consistent with Windows standards. These properties include, among others,

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colepropertiesdialog-class.md

Inheritance Hierarchy

Requirements

COlePropertiesDialog::COlePropertiesDialog

COlePropertiesDialog(
 COleClientItem* pItem,
 UINT nScaleMin = 10,
 UINT nScaleMax = 500,
 CWnd* pParentWnd = NULL);

ParametersParameters

information on the file represented by the document item, options for displaying the icon and image scaling, and
information on the item's link (if the item is linked).

To use a COlePropertiesDialog object, first create the object using the COlePropertiesDialog constructor. After the
dialog box has been constructed, call the DoModal member function to display the dialog box and allow the user to
modify any properties of the item. DoModal returns whether the user selected the OK (IDOK) or the Cancel
(IDCANCEL) button. In addition to the OK and Cancel buttons, there is an Apply button. When the user selects
Apply, any changes made to the properties of the document item are applied to the item and its image is
automatically updated, but remains active.

The m_psh data member is a pointer to a PROPSHEETHEADER structure, and in most cases you will not need to access
it explicitly. One exception is when you need additional property pages beyond the default General, View, and Link
pages. In this case, you can modify the m_psh data member to include your custom pages before calling the
DoModal member function.

For more information on OLE dialog boxes, see the article Dialog Boxes in OLE.

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

COleDialog

COlePropertiesDialog

Header: afxodlgs.h

Creates a COlePropertiesDialog object.

pItem
Pointer to the document item whose properties are being accessed.

nScaleMin
Minimum scaling percentage for the document item image.

nScaleMax
Maximum scaling percentage for the document item image.

pParentWnd

RemarksRemarks

COlePropertiesDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

COlePropertiesDialog::m_gp

OLEUIGNRLPROPS m_gp;

RemarksRemarks

Pointer to the dialog box's parent or owner.

Derive your common OLE Object Properties dialog class from COlePropertiesDialog in order to implement
scaling for your document items. Any dialog boxes implemented by an instance of this class will not support
scaling of the document item.

By default, the common OLE Object Properties dialog box has three default pages:

General

This page contains system information for the file represented by the selected document item. From this
page, the user can convert the selected item to another type.

View

This page contains options for displaying the item, changing the icon, and changing the scaling of the
image.

Link

This page contains options for changing the location of the linked item and updating the linked item. From
this page, the user can break the link of the selected item.

To add pages beyond those provided by default, modify the m_psh member variable before exiting the constructor
of your COlePropertiesDialog -derived class. This is an advanced implementation of the COlePropertiesDialog

constructor.

Call this member function to display the Windows common OLE Object Properties dialog box and allow the user
to view and/or change the various properties of the document item.

IDOK or IDCANCEL if successful; otherwise 0. IDOK and IDCANCEL are constants that indicate whether the user
selected the OK or Cancel button.

If IDCANCEL is returned, you can call the Windows CommDlgExtendedError function to determine whether an
error occurred.

A structure of type OLEUIGNRLPROPS, used to initialize the General page of the OLE Object Properties dialog
box.

This page shows the type and size of an embedding and allows the user access to the Convert dialog box. This
page also shows the link destination if the object is a link.

For more information on the OLEUIGNRLPROPS structure, see the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/commdlg/nf-commdlg-commdlgextendederror
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuignrlpropsa

COlePropertiesDialog::m_lp

OLEUILINKPROPS m_lp;

RemarksRemarks

COlePropertiesDialog::m_op

OLEUIOBJECTPROPS m_op;

RemarksRemarks

COlePropertiesDialog::m_psh

PROPSHEETHEADER m_psh;

RemarksRemarks

COlePropertiesDialog::m_vp

OLEUIVIEWPROPS m_vp;

RemarksRemarks

COlePropertiesDialog::OnApplyScale

A structure of type OLEUILINKPROPS, used to initialize the Link page of the OLE Object Properties dialog box.

This page shows the location of the linked item and allows the user to update, or break, the link to the item.

For more information on the OLEUILINKPROPS structure, see the Windows SDK.

A structure of type OLEUIOBJECTPROPS, used to initialize the common OLE Object Properties dialog box.

This structure contains members used to initialize the General, Link, and View pages.

For more information, see the OLEUIOBJECTPROPS and OLEUILINKPROPS structures in the Windows SDK.

A structure of type PROPSHEETHEADER, whose members store the characteristics of the dialog object.

After constructing a COlePropertiesDialog object, you can use m_psh to set various aspects of the dialog box
before calling the DoModal member function.

If you modify the m_psh data member directly, you will override any default behavior.

For more information on the PROPSHEETHEADER structure, see the Windows SDK.

A structure of type OLEUIVIEWPROPS, used to initialize the View page of the OLE Object Properties dialog box.

This page allows the user to toggle between "content" and "iconic" views of the object, and change its scaling
within the container. It also allows the user access to the Change Icon dialog box when the object is being
displayed as an icon.

For more information on the OLEUIVIEWPROPS structure, see the Windows SDK.

Called by the framework when the scaling value has changed and either OK or Apply was selected.

https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuilinkpropsa
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuiobjectpropsa
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuilinkpropsa
https://docs.microsoft.com/windows/desktop/api/prsht/ns-prsht-_propsheetheadera_v2
https://docs.microsoft.com/windows/desktop/api/oledlg/ns-oledlg-tagoleuiviewpropsa

virtual BOOL OnApplyScale(
 COleClientItem* pItem,
 int nCurrentScale,
 BOOL bRelativeToOrig);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

See also

pItem
Pointer to the document item whose properties are being accessed.

nCurrentScale
Numerical value of the dialog scale.

bRelativeToOrig
Indicates whether scaling applies to the original size of the document item.

Nonzero if handled; otherwise 0.

The default implementation does nothing. You must override this function to enable the scaling controls.

Before the common OLE Object Properties dialog box is displayed, the framework calls this function with a NULL for pItem
and a - 1 for nCurrentScale. This is done to determine if the scaling controls should be enabled.

MFC Sample CIRC
COleDialog Class
Hierarchy Chart
COleDialog Class
CPropertyPage Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COlePropertyPage Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class AFX_NOVTABLE COlePropertyPage : public CDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COlePropertyPage::COlePropertyPage Constructs a COlePropertyPage object.

Public MethodsPublic Methods

NAME DESCRIPTION

COlePropertyPage::GetControlStatus Indicates whether the user has modified the value in the
control.

COlePropertyPage::GetObjectArray Returns the array of objects being edited by the property
page.

COlePropertyPage::GetPageSite Returns a pointer to the property page's
IPropertyPageSite interface.

COlePropertyPage::IgnoreApply Determines which controls do not enable the Apply button.

COlePropertyPage::IsModified Indicates whether the user has modified the property page.

COlePropertyPage::OnEditProperty Called by the framework when the user edits a property.

COlePropertyPage::OnHelp Called by the framework when the user invokes help.

COlePropertyPage::OnInitDialog Called by the framework when the property page is initialized.

COlePropertyPage::OnObjectsChanged Called by the framework when another OLE control, with new
properties, is chosen.

COlePropertyPage::OnSetPageSite Called by the framework when the property frame provides
the page's site.

COlePropertyPage::SetControlStatus Sets a flag indicating whether the user has modified the value
in the control.

Used to display the properties of a custom control in a graphical interface, similar to a dialog box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colepropertypage-class.md

COlePropertyPage::SetDialogResource Sets the property page's dialog resource.

COlePropertyPage::SetHelpInfo Sets the property page's brief help text, the name of its help
file, and its help context.

COlePropertyPage::SetModifiedFlag Sets a flag indicating whether the user has modified the
property page.

COlePropertyPage::SetPageName Sets the property page's name (caption).

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

COlePropertyPage::COlePropertyPage

COlePropertyPage(
 UINT idDlg,
 UINT idCaption);

ParametersParameters

RemarksRemarks

For instance, a property page may include an edit control that allows the user to view and modify the control's
caption property.

Each custom or stock control property can have a dialog control that allows the control's user to view the current
property value and modify that value if needed.

For more information on using COlePropertyPage , see the article ActiveX Controls: Property Pages.

CObject

CCmdTarget

CWnd

CDialog

COlePropertyPage

Header: afxctl.h

Constructs a COlePropertyPage object.

idDlg
Resource ID of the dialog template.

idCaption
Resource ID of the property page's caption.

When you implement a subclass of COlePropertyPage , your subclass's constructor should use the

COlePropertyPage::GetControlStatus

BOOL GetControlStatus(UINT nID);

ParametersParameters

Return ValueReturn Value

COlePropertyPage::GetObjectArray

LPDISPATCH* GetObjectArray(ULONG* pnObjects);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COlePropertyPage::GetPageSite

LPPROPERTYPAGESITE GetPageSite();

Return ValueReturn Value

RemarksRemarks

COlePropertyPage::IgnoreApply

COlePropertyPage constructor to identify the dialog-template resource on which the property page is based and
the string resource containing its caption.

Determines whether the user has modified the value of the property page control with the specified resource ID.

nID
Resource ID of a property page control.

TRUE if the control value has been modified; otherwise FALSE.

Returns the array of objects being edited by the property page.

pnObjects
Pointer to an unsigned long integer that will receive the number of objects being edited by the page.

Pointer to an array of IDispatch pointers, which are used to access the properties of each control on the property
page. The caller must not release these interface pointers.

Each property page object maintains an array of pointers to the IDispatch interfaces of the objects being edited
by the page. This function sets its pnObjects argument to the number of elements in that array and returns a
pointer to the first element of the array.

Gets a pointer to the property page's IPropertyPageSite interface.

A pointer to the property page's IPropertyPageSite interface.

Controls and containers cooperate so that users can browse and edit control properties. The control provides
property pages, each of which is an OLE object that allows the user to edit a related set of properties. The
container provides a property frame that displays the property pages. For each page, the property frame provides
a page site, which supports the IPropertyPageSite interface.

void IgnoreApply(UINT nID);

ParametersParameters

RemarksRemarks

COlePropertyPage::IsModified

BOOL IsModified();

Return ValueReturn Value

COlePropertyPage::OnEditProperty

virtual BOOL OnEditProperty(DISPID dispid);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COlePropertyPage::OnHelp

virtual BOOL OnHelp(LPCTSTR lpszHelpDir);

ParametersParameters

Return ValueReturn Value

Determines which controls do not enable the Apply button.

nID
ID of the control to be ignored.

The property page's Apply button is enabled only when values of property page controls have been changed. Use
this function to specify controls that do not cause the Apply button to be enabled when their values change.

Determines whether the user has changed any values on the property page.

TRUE if the property page has been modified.

The framework calls this function when a specific property is to be edited.

dispid
Dispatch ID of the property being edited.

The default implementation returns FALSE. Overrides of this function should return TRUE.

You can override it to set the focus to the appropriate control on the page. The default implementation does
nothing and returns FALSE.

The framework calls this function when the user requests online help.

lpszHelpDir
Directory containing the property page's help file.

The default implementation returns FALSE.

RemarksRemarks

COlePropertyPage::OnInitDialog

virtual BOOL OnInitDialog();

Return ValueReturn Value

RemarksRemarks

COlePropertyPage::OnObjectsChanged

virtual void OnObjectsChanged();

RemarksRemarks

COlePropertyPage::OnSetPageSite

virtual void OnSetPageSite();

RemarksRemarks

COlePropertyPage::SetControlStatus

BOOL SetControlStatus(
 UINT nID,
 BOOL bDirty);

ParametersParameters

Override it if your property page must perform any special action when the user accesses help. The default
implementation does nothing and returns FALSE, which instructs the framework to call WinHelp.

The framework calls this function when the property page's dialog is initialized.

The default implementation returns FALSE.

Override it if any special action is required when the dialog is initialized. The default implementation calls
CDialog::OnInitDialog and returns FALSE.

Called by the framework when another OLE control, with new properties, is chosen.

When viewing the properties of an OLE control in the developer environment, a modeless dialog box is used to
display its property pages. If another control is selected, a different set of property pages must be displayed for
the new set of properties. The framework calls this function to notify the property page of the change.

Override this function to receive notification of this action and perform any special actions.

The framework calls this function when the property frame provides the property page's page site.

The default implementation loads the page's caption and attempts to determine the page's size from the dialog
resource. Override this function if your property page requires any further action; your override should call the
base-class implementation.

Changes the status of a property page control.

nID

Return ValueReturn Value

RemarksRemarks

COlePropertyPage::SetDialogResource

void SetDialogResource(HGLOBAL hDialog);

ParametersParameters

COlePropertyPage::SetHelpInfo

void SetHelpInfo(
 LPCTSTR lpszDocString,
 LPCTSTR lpszHelpFile = NULL,
 DWORD dwHelpContext = 0);

ParametersParameters

COlePropertyPage::SetModifiedFlag

void SetModifiedFlag(BOOL bModified = TRUE);

ParametersParameters

COlePropertyPage::SetPageName

Contains the ID of a property page control.

bDirty
Specifies if a field of the property page has been modified. Set to TRUE if the field has been modified, FALSE if it
has not been modified.

TRUE, if the specified control was set; otherwise FALSE.

If the status of a property page control is dirty when the property page is closed or the Apply button is chosen,
the control's property will be updated with the appropriate value.

Sets the property page's dialog resource.

hDialog
Handle to the property page's dialog resource.

Specifies tooltip information, the help filename, and the help context for your property page.

lpszDocString
A string containing brief help information for display in a status bar or other location.

lpszHelpFile
Name of the property page's help file.

dwHelpContext
Help context for the property page.

Indicates whether the user has modified the property page.

bModified
Specifies the new value for the property page's modified flag.

void SetPageName(LPCTSTR lpszPageName);

ParametersParameters

See also

Sets the property page's name, which the property frame will typically display on the page's tab.

lpszPageName
Pointer to a string containing the property page's name.

MFC Sample CIRC3
MFC Sample TESTHELP
CDialog Class
Hierarchy Chart
CDialog Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleResizeBar Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class COleResizeBar : public CControlBar

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleResizeBar::COleResizeBar Constructs a COleResizeBar object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleResizeBar::Create Creates and initializes a Windows child window and associates
it to the COleResizeBar object.

Remarks

Inheritance Hierarchy

Requirements

COleResizeBar::COleResizeBar

A type of control bar that supports resizing of in-place OLE items.

COleResizeBar objects appear as a CRectTracker with a hatched border and outer resize handles.

COleResizeBar objects are usually embedded members of frame-window objects derived from the
COleIPFrameWnd class.

For more information, see the article Activation.

CObject

CCmdTarget

CWnd

CControlBar

COleResizeBar

Header: afxole.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coleresizebar-class.md

COleResizeBar();

RemarksRemarks

COleResizeBar::Create

virtual BOOL Create(
 CWnd* pParentWnd,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE,
 UINT nID = AFX_IDW_RESIZE_BAR);

ParametersParameters

Return ValueReturn Value

See also

Constructs a COleResizeBar object.

Call Create to create the resize bar object.

Creates a child window and associates it with the COleResizeBar object.

pParentWnd
Pointer to the parent window of the resize bar.

dwStyle
Specifies the window style attributes.

nID
The resize bar's child window ID.

Nonzero if the resize bar was created; otherwise 0.

MFC Sample SUPERPAD
CControlBar Class
Hierarchy Chart
COleServerDoc Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleSafeArray Class
3/4/2019 • 14 minutes to read • Edit Online

Syntax
class COleSafeArray : public tagVARIANT

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleSafeArray::COleSafeArray Constructs a COleSafeArray object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleSafeArray::AccessData Retrieves a pointer to the array data.

COleSafeArray::AllocData Allocates memory for the array.

COleSafeArray::AllocDescriptor Allocates memory for the safe array descriptor.

COleSafeArray::Attach Gives control of the existing VARIANT array to the
COleSafeArray object.

COleSafeArray::Clear Frees all data in the underlying VARIANT .

COleSafeArray::Copy Creates a copy of an existing array.

COleSafeArray::Create Creates a safe array.

COleSafeArray::CreateOneDim Creates a one-dimensional COleSafeArray object.

COleSafeArray::Destroy Destroys an existing array.

COleSafeArray::DestroyData Destroys data in a safe array.

COleSafeArray::DestroyDescriptor Destroys a descriptor of a safe array.

COleSafeArray::Detach Detaches the VARIANT array from the COleSafeArray object
(so that the data will not be freed).

COleSafeArray::GetByteArray Copies the contents of the safe array into a CByteArray.

A class for working with arrays of arbitrary type and dimension.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colesafearray-class.md

COleSafeArray::GetDim Returns the number of dimensions in the array.

COleSafeArray::GetElement Retrieves a single element of the safe array.

COleSafeArray::GetElemSize Returns the size, in bytes, of one element in a safe array.

COleSafeArray::GetLBound Returns the lower bound for any dimension of a safe array.

COleSafeArray::GetOneDimSize Returns the number of elements in the one-dimensional
COleSafeArray object.

COleSafeArray::GetUBound Returns the upper bound for any dimension of a safe array.

COleSafeArray::Lock Increments the lock count of an array and places a pointer to
the array data in the array descriptor.

COleSafeArray::PtrOfIndex Returns a pointer to the indexed element.

COleSafeArray::PutElement Assigns a single element into the array.

COleSafeArray::Redim Changes the least significant (rightmost) bound of a safe
array.

COleSafeArray::ResizeOneDim Changes the number of elements in a one-dimensional
COleSafeArray object.

COleSafeArray::UnaccessData Decrements the lock count of an array and invalidates the
pointer retrieved by AccessData .

COleSafeArray::Unlock Decrements the lock count of an array so it can be freed or
resized.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

COleSafeArray::operator LPCVARIANT Accesses the underlying VARIANT structure of the
COleSafeArray object.

COleSafeArray::operator LPVARIANT Accesses the underlying VARIANT structure of the
COleSafeArray object.

COleSafeArray::operator = Copies values into a COleSafeArray object (SAFEARRAY ,
VARIANT , COleVariant , or COleSafeArray array).

COleSafeArray::operator == Compares two variant arrays (SAFEARRAY , VARIANT ,
COleVariant , or COleSafeArray arrays).

COleSafeArray::operator << Outputs the contents of a COleSafeArray object to the
dump context.

Remarks

Inheritance Hierarchy

Requirements

COleSafeArray::AccessData

void AccessData(void** ppvData);

ParametersParameters

RemarksRemarks

ExampleExample

COleSafeArray derives from the OLE VARIANT structure. The OLE SAFEARRAY member functions are available
through COleSafeArray , as well as a set of member functions specifically designed for one-dimensional arrays of
bytes.

tagVARIANT

COleSafeArray

Header: afxdisp.h

Retrieves a pointer to the array data.

ppvData
A pointer to a pointer to the array data.

On error, the function throws a CMemoryException or COleException.

void CMainFrame::Sort(VARIANT* vArray)
{
 COleSafeArray sa;
 BSTR *pbstr;
 TCHAR buf[1024];
 LONG cElements, lLBound, lUBound;

 //needed for OLE2T macro below, include afxpriv.h
 USES_CONVERSION;

 // Type check VARIANT parameter. It should contain a BSTR array
 // passed by reference. The array must be passed by reference it is
 // an in-out-parameter.
 if (V_VT(vArray) != (VT_ARRAY | VT_BSTR))
 {
 AfxThrowOleDispatchException(1001,
 _T("Type Mismatch in Parameter. Pass a string array by reference"));
 }

 // clears data in sa and copies the variant data into sa
 sa.Attach(*vArray);

 // Check that array is 1 dimensional
 if (sa.GetDim() != 1)
 {
 AfxThrowOleDispatchException(1002,
 _T("Type Mismatch in Parameter. Pass a one-dimensional array"));
 }

 try
 {
 // Get array bounds.
 sa.GetLBound(1, &lLBound);
 sa.GetUBound(1, &lUBound);

 // Get a pointer to the elements of the array
 // and increments the lock count on the array
 sa.AccessData((LPVOID*)&pbstr);

 //get no. of elements in array
 cElements = lUBound - lLBound + 1;
 for (int i = 0; i < cElements; i++)
 {
 //output the elements of the array
 _stprintf_s(buf, 1024, _T("[%s]\n"), OLE2T(pbstr[i]));
 OutputDebugString(buf);
 }

 //decrement lock count
 sa.UnaccessData();
 }
 catch (COleException *pEx)
 {
 AfxThrowOleDispatchException(1003,
 _T("Unexpected Failure in FastSort method"));
 pEx->Delete();
 }
}

COleSafeArray::AllocData
Allocates memory for a safe array.

void AllocData();

RemarksRemarks

COleSafeArray::AllocDescriptor

void AllocDescriptor(DWORD dwDims);

ParametersParameters

RemarksRemarks

COleSafeArray::Attach

void Attach(VARIANT& varSrc);

ParametersParameters

RemarksRemarks

ExampleExample

COleSafeArray::Clear

void Clear();

RemarksRemarks

COleSafeArray::COleSafeArray

On error, the function throws a CMemoryException or COleException.

Allocates memory for the descriptor of a safe array.

dwDims
Number of dimensions in the safe array.

On error, the function throws a CMemoryException or COleException.

Gives control of the data in an existing VARIANT array to the COleSafeArray object.

varSrc
A VARIANT object. The varSrc parameter must have the VARTYPE VT_ARRAY.

The source VARIANT 's type is set to VT_EMPTY. This function clears the current array data, if any.

See the example for COleSafeArray::AccessData.

Clears the safe array.

The function clears a safe array by setting the VARTYPE of the object to VT_EMPTY. The current contents are
released and the array is freed.

Constructs a COleSafeArray object.

https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-varenum

COleSafeArray();

COleSafeArray(
 const SAFEARRAY& saSrc,
 VARTYPE vtSrc);

COleSafeArray(
 LPCSAFEARRAY pSrc,
 VARTYPE vtSrc);

COleSafeArray(const COleSafeArray& saSrc);
COleSafeArray(const VARIANT& varSrc);
 COleSafeArray(LPCVARIANT pSrc);
COleSafeArray(const COleVariant& varSrc);

ParametersParameters

RemarksRemarks

COleSafeArray::Copy

void Copy(LPSAFEARRAY* ppsa);

ParametersParameters

RemarksRemarks

COleSafeArray::Create

saSrc
An existing COleSafeArray object or SAFEARRAY to be copied into the new COleSafeArray object.

vtSrc
The VARTYPE of the new COleSafeArray object.

psaSrc
A pointer to a SAFEARRAY to be copied into the new COleSafeArray object.

varSrc
An existing VARIANT or COleVariant object to be copied into the new COleSafeArray object.

pSrc
A pointer to a VARIANT object to be copied into the new COleSafeArray object.

All of these constructors create new COleSafeArray objects. If there is no parameter, an empty COleSafeArray
object is created (VT_EMPTY). If the COleSafeArray is copied from another array whose VARTYPE is known
implicitly (a COleSafeArray , COleVariant , or VARIANT), the VARTYPE of the source array is retained and need not
be specified. If the COleSafeArray is copied from another array whose VARTYPE is not known (SAFEARRAY), the
VARTYPE must be specified in the vtSrc parameter.

On error, the function throws a CMemoryException or COleException.

Creates a copy of an existing safe array.

ppsa
Pointer to a location in which to return the new array descriptor.

On error, the function throws a CMemoryException or COleException.

Allocates and initializes the data for the array.

void Create(
 VARTYPE vtSrc,
 DWORD dwDims,
 DWORD* rgElements);

void Create(
 VARTYPE vtSrc,
 DWORD dwDims,
 SAFEARRAYBOUND* rgsabounds);

ParametersParameters

RemarksRemarks

ExampleExample

COleSafeArray saMatrix;
DWORD numElements[] = {10, 5};

// creates a 2 dimensional safearray of type VT_I2
// with size 10x5 elements, with all indices starting at 0(default)
saMatrix.Create(VT_I2, 2, numElements);

ASSERT(saMatrix.GetDim() == 2);

COleSafeArray saVector;
SAFEARRAYBOUND rgsabounds[] = { {5, 2} };

// creates a 1 dimensional safearray of type VT_I1
// with size 5 elements, with the index starting at 2
saVector.Create(VT_I1, 1, rgsabounds);

ASSERT(saVector.GetDim() == 1);

COleSafeArray::CreateOneDim

void CreateOneDim(
 VARTYPE vtSrc,
 DWORD dwElements,
 const void* pvSrcData = NULL,
 long nLBound = 0);

vtSrc
The base type of the array (that is, the VARTYPE of each element of the array). The VARTYPE is restricted to a
subset of the variant types. Neither the VT_ARRAY nor the VT_BYREF flag can be set. VT_EMPTY and VT_NULL
are not valid base types for the array. All other types are legal.

dwDims
Number of dimensions in the array. This can be changed after the array is created with Redim.

rgElements
Pointer to an array of the number of elements for each dimension in the array.

rgsabounds
Pointer to a vector of bounds (one for each dimension) to allocate for the array.

This function will clear the current array data if necessary. On error, the function throws a CMemoryException.

Creates a new one-dimensional COleSafeArray object.

ParametersParameters

RemarksRemarks

ExampleExample

VARIANT varColInfo[3];

//initialize VARIANTs
for (int i = 0; i < 3; i++)
 VariantInit(&varColInfo[i]);

// Column Name
varColInfo[0].vt = VT_BSTR;
varColInfo[0].bstrVal = ::SysAllocString(L"Name");

// Column Type
varColInfo[1].vt = VT_UI4;
varColInfo[1].lVal = 1;

COleSafeArray sa;
//create a 1 dimensional safearray of VARIANTs
//& initialize it with varColInfo VARIANT array
sa.CreateOneDim(VT_VARIANT, 2, varColInfo);

//check that the dimension is 2
ASSERT(sa.GetOneDimSize() == 2);

//increase safearray size by 1
sa.ResizeOneDim(3);

// populate the last element of the safearray, (Column Size)
varColInfo[2].vt = VT_I4;
varColInfo[2].lVal = 30;
long el = 2;
sa.PutElement(&el, &varColInfo[2]);

COleSafeArray::Destroy

void Destroy();

RemarksRemarks

vtSrc
The base type of the array (that is, the VARTYPE of each element of the array).

dwElements
Number of elements in the array. This can be changed after the array is created with ResizeOneDim.

pvSrcData
Pointer to the data to copy into the array.

nLBound
The lower bound of the array.

The function allocates and initializes the data for the array, copying the specified data if the pointer pvSrcData is
not NULL.

On error, the function throws a CMemoryException.

Destroys an existing array descriptor and all the data in the array.

If objects are stored in the array, each object is released. On error, the function throws a CMemoryException or

COleSafeArray::DestroyData

void DestroyData();

RemarksRemarks

COleSafeArray::DestroyDescriptor

void DestroyDescriptor();

RemarksRemarks

COleSafeArray::Detach

VARIANT Detach();

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleSafeArray::GetByteArray

void GetByteArray(CByteArray& bytes);

ParametersParameters

COleSafeArray::GetDim

COleException.

Destroys all the data in a safe array.

If objects are stored in the array, each object is released. On error, the function throws a CMemoryException or
COleException.

Destroys a descriptor of a safe array.

On error, the function throws a CMemoryException or COleException.

Detaches the VARIANT data from the COleSafeArray object.

The underlying VARIANT value in the COleSafeArray object.

The function detaches the data in a safe array by setting the VARTYPE of the object to VT_EMPTY. It is the caller's
responsibility to free the array by calling the Windows function VariantClear.

On error, the function throws a COleException.

See the example for COleSafeArray::PutElement.

Copies the contents of the safe array into a CByteArray .

bytes
A reference to a CByteArray object.

https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-variantclear

DWORD GetDim();

Return ValueReturn Value

ExampleExample

COleSafeArray saMatrix;
DWORD numElements[] = {10, 5};

// creates a 2 dimensional safearray of type VT_I2
// with size 10x5 elements, with all indices starting at 0(default)
saMatrix.Create(VT_I2, 2, numElements);

ASSERT(saMatrix.GetDim() == 2);

COleSafeArray saVector;
SAFEARRAYBOUND rgsabounds[] = { {5, 2} };

// creates a 1 dimensional safearray of type VT_I1
// with size 5 elements, with the index starting at 2
saVector.Create(VT_I1, 1, rgsabounds);

ASSERT(saVector.GetDim() == 1);

COleSafeArray::GetElement

void GetElement(
 long* rgIndices,
 void* pvData);

ParametersParameters

RemarksRemarks

ExampleExample

Returns the number of dimensions in the COleSafeArray object.

The number of dimensions in the safe array.

Retrieves a single element of the safe array.

rgIndices
Pointer to an array of indexes for each dimension of the array.

pvData
Pointer to the location to place the element of the array.

This function automatically calls the windows functions SafeArrayLock and SafeArrayUnlock before and after
retrieving the element. If the data element is a string, object, or variant, the function copies the element in the
correct way. The parameter pvData should point to a large enough buffer to contain the element.

On error, the function throws a CMemoryException or COleException.

//sa is of type COleSafeArray with 2 dimensions

//Determine upper bounds for both dimensions
long lNumRows;
long lNumCols;
sa.GetUBound(1, &lNumRows);
sa.GetUBound(2, &lNumCols);

//Display the elements in the SAFEARRAY.
long index[2];
VARIANT val;

//Determine lower bounds for both dimensions
long lowRow, lowCol;
sa.GetLBound(1, &lowRow);
sa.GetLBound(2, &lowCol);

for(long r = lowRow; r <= lNumRows; r++)
{
 for(long c = lowCol; c <= lNumCols; c++)
 {
 index[0] = r;
 index[1] = c;

 //retrieve each element of the safearray
 sa.GetElement(index, &val);

 switch(val.vt)
 {
 case VT_R8:
 TRACE(_T("%1.2f\n"), val.dblVal);
 break;

 case VT_BSTR:
 TRACE(_T("%s\n"),(CString)val.bstrVal);
 break;

 // other cases ommitted

 case VT_EMPTY:
 TRACE(_T("<empty>\n"));
 break;
 }
 }
}

COleSafeArray::GetElemSize

DWORD GetElemSize();

Return ValueReturn Value

COleSafeArray::GetLBound

Retrieves the size of an element in a COleSafeArray object.

The size, in bytes, of the elements of a safe array.

Returns the lower bound for any dimension of a COleSafeArray object.

void GetLBound(
 DWORD dwDim,
 long* pLBound);

ParametersParameters

RemarksRemarks

ExampleExample

COleSafeArray saMatrix;
DWORD numElements[] = {10, 5};

// creates a 2 dimensional safearray of type VT_I2
// with size 10x5 elements, with all indices starting at 0(default)
saMatrix.Create(VT_I2, 2, numElements);

long lLBound;

//get lower bound for 1st dimension
saMatrix.GetLBound(1, &lLBound);

ASSERT(lLBound == 0);

//get lower for 2nd dimension
saMatrix.GetLBound(2, &lLBound);

ASSERT(lLBound == 0);

COleSafeArray saVector;
SAFEARRAYBOUND rgsabounds[] = { {5, 1} };

// creates a 1 dimensional safearray of type VT_I1
// with size 5 elements, with the index starting at 1
saVector.Create(VT_I1, 1, rgsabounds);

//get lower bound for 1st dimension
saVector.GetLBound(1, &lLBound);

ASSERT(lLBound == 1);

COleSafeArray::GetOneDimSize

DWORD GetOneDimSize();

Return ValueReturn Value

ExampleExample

dwDim
The array dimension for which to get the lower bound.

pLBound
Pointer to the location to return the lower bound.

On error, the function throws a COleException.

Returns the number of elements in the one-dimensional COleSafeArray object.

The number of elements in the one-dimensional safe array.

See the example for COleSafeArray::CreateOneDim.

COleSafeArray::GetUBound

void GetUBound(
 DWORD dwDim,
 long* pUBound);

ParametersParameters

RemarksRemarks

ExampleExample

COleSafeArray saMatrix;
DWORD numElements[] = {10, 5};

// creates a 2 dimensional safearray of type VT_I2
// with size 10x5 elements, with all indices starting at 0(default)
saMatrix.Create(VT_I2, 2, numElements);

long lUBound;
ASSERT(saMatrix.GetDim() == 2);

//get upper bound for 1st dimension
saMatrix.GetUBound(1, &lUBound);

ASSERT(lUBound == 9);

//get upper bound for 2nd dimension
saMatrix.GetUBound(2, &lUBound);

ASSERT(lUBound == 4);

COleSafeArray saVector;
SAFEARRAYBOUND rgsabounds[] = { {5, 1} };

// creates a 1 dimensional safearray of type VT_I1
// with size 5 elements, with the index starting at 1
saVector.Create(VT_I1, 1, rgsabounds);

//get upper bound for 1st dimension
saVector.GetUBound(1, &lUBound);

ASSERT(lUBound == 5);

COleSafeArray::Lock

void Lock();

RemarksRemarks

Returns the upper bound for any dimension of a safe array.

dwDim
The array dimension for which to get the upper bound.

pUBound
Pointer to the location to return the upper bound.

On error, the function throws a COleException.

Increments the lock count of an array and place a pointer to the array data in the array descriptor.

COleSafeArray::operator LPCVARIANT

operator LPCVARIANT() const;

COleSafeArray::operator LPVARIANT

operator LPVARIANT();

RemarksRemarks

COleSafeArray::operator =

COleSafeArray& operator=(const COleSafeArray& saSrc);
COleSafeArray& operator=(const VARIANT& varSrc);
 COleSafeArray& operator=(LPCVARIANT pSrc);
COleSafeArray& operator=(const COleVariant& varSrc);

RemarksRemarks

COleSafeArray::operator ==

BOOL operator==(const SAFEARRAY& saSrc) const; BOOL operator==(LPCSAFEARRAY pSrc) const;

BOOL operator==(const COleSafeArray& saSrc) const; BOOL operator==(const VARIANT& varSrc) const;

BOOL operator==(LPCVARIANT pSrc) const; BOOL operator==(const COleVariant& varSrc) const;

RemarksRemarks

On error, it throws a COleException.

The pointer in the array descriptor is valid until Unlock is called. Calls to Lock can be nested; an equal number of
calls to Unlock are required.

An array cannot be deleted while it is locked.

Call this casting operator to access the underlying VARIANT structure for this COleSafeArray object.

Call this casting operator to access the underlying VARIANT structure for this COleSafeArray object.

Note that changing the value in the VARIANT structure accessed by the pointer returned by this function will
change the value of this COleSafeArray object.

These overloaded assignment operators copy the source value into this COleSafeArray object.

A brief description of each operator follows:

operator =(saSrc) Copies an existing COleSafeArray object into this object.

operator =(varSrc) Copies an existing VARIANT or COleVariant array into this object.

operator =(pSrc) Copies the VARIANT array object accessed by pSrc into this object.

This operator compares two arrays (SAFEARRAY , VARIANT , COleVariant , or COleSafeArray arrays) and returns
nonzero if they are equal; otherwise 0.

COleSafeArray::operator <<

CDumpContext& AFXAPI operator<<(
 CDumpContext& dc,
 COleSafeArray& saSrc);

COleSafeArray::PtrOfIndex

void PtrOfIndex(
 long* rgIndices,
 void** ppvData);

ParametersParameters

COleSafeArray::PutElement

void PutElement(
 long* rgIndices,
 void* pvData);

ParametersParameters

RemarksRemarks

ExampleExample

Two arrays are equal if they have an equal number of dimensions, equal size in each dimension, and equal element
values.

The COleSafeArray insertion (<<) operator supports diagnostic dumping and storing of a COleSafeArray object to
an archive.

Returns a pointer to the element specified by the index values.

rgIndices
An array of index values that identify an element of the array. All indexes for the element must be specified.

ppvData
On return, pointer to the element identified by the values in rgIndices.

Assigns a single element into the array.

rgIndices
Pointer to an array of indexes for each dimension of the array.

pvData
Pointer to the data to assign to the array. VT_DISPATCH, VT_UNKNOWN, and VT_BSTR variant types are pointers
and do not require another level of indirection.

This function automatically calls the Windows functions SafeArrayLock and SafeArrayUnlock before and after
assigning the element. If the data element is a string, object, or variant, the function copies it correctly, and if the
existing element is a string, object, or variant, it is cleared correctly.

Note that you can have multiple locks on an array, so you can put elements into an array while the array is locked
by other operations.

On error, the function throws a CMemoryException or COleException.

https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-safearraylock
https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-safearrayunlock

VARIANT retVariantArray()
{
 COleSafeArray saRet;
 DWORD numElements[] = {10, 10}; // 10x10

 // Create the 2 dimensional safe-array of type VT_R8 with size 10x10
 saRet.Create(VT_R8, 2, numElements);

 // Initialize safearray with values...
 long index[2];
 for(index[0] = 0; index[0] < 10; index[0]++)
 {
 for(index[1] = 0; index[1] < 10; index[1]++)
 {
 double val = index[0] + index[1]*10;
 //populate the safearray elements with double values
 saRet.PutElement(index, &val);
 }
 }
 // Return the safe-array encapsulated in a VARIANT...
 return saRet.Detach();
}

COleSafeArray::Redim

void Redim(SAFEARRAYBOUND* psaboundNew);

ParametersParameters

RemarksRemarks

COleSafeArray::ResizeOneDim

void ResizeOneDim(DWORD dwElements);

ParametersParameters

RemarksRemarks

ExampleExample

COleSafeArray::UnaccessData

Changes the least significant (rightmost) bound of a safe array.

psaboundNew
Pointer to a new safe array bound structure containing the new array bound. Only the least significant dimension
of an array may be changed.

On error, the function throws a COleException.

Changes the number of elements in a one-dimensional COleSafeArray object.

dwElements
Number of elements in the one-dimensional safe array.

On error, the function throws a COleException.

See the example for COleSafeArray::CreateOneDim.

void UnaccessData();

RemarksRemarks

ExampleExample

COleSafeArray::Unlock

void Unlock();

RemarksRemarks

See also

Decrements the lock count of an array and invalidates the pointer retrieved by AccessData .

On error, the function throws a COleException.

See the example for COleSafeArray::AccessData.

Decrements the lock count of an array so it can be freed or resized.

This function is called after access to the data in an array is finished. On error, it throws a COleException.

Hierarchy Chart
COleVariant Class
CRecordset Class
CDatabase Class

COleServerDoc Class
3/4/2019 • 21 minutes to read • Edit Online

Syntax
class AFX_NOVTABLE COleServerDoc : public COleLinkingDoc

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleServerDoc::COleServerDoc Constructs a COleServerDoc object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleServerDoc::ActivateDocObject Activates the associated DocObject document.

COleServerDoc::ActivateInPlace Activates the document for in-place editing.

COleServerDoc::DeactivateAndUndo Deactivates the server's user interface.

COleServerDoc::DiscardUndoState Discards undo-state information.

COleServerDoc::GetClientSite Retrieves a pointer to the underlying IOleClientSite

interface.

COleServerDoc::GetEmbeddedItem Returns a pointer to an item representing the entire
document.

COleServerDoc::GetItemClipRect Returns the current clipping rectangle for in-place editing.

COleServerDoc::GetItemPosition Returns the current position rectangle, relative to the
container application's client area, for in-place editing.

COleServerDoc::GetZoomFactor Returns the zoom factor in pixels.

COleServerDoc::IsDocObject Determines if the document is a DocObject.

COleServerDoc::IsEmbedded Indicates whether the document is embedded in a container
document or running stand-alone.

COleServerDoc::IsInPlaceActive Returns TRUE if the item is currently activated in place.

The base class for OLE server documents.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coleserverdoc-class.md

COleServerDoc::NotifyChanged Notifies containers that the user has changed the document.

COleServerDoc::NotifyClosed Notifies containers that the user has closed the document.

COleServerDoc::NotifyRename Notifies containers that the user has renamed the document.

COleServerDoc::NotifySaved Notifies containers that the user has saved the document.

COleServerDoc::OnDeactivate Called by the framework when the user deactivates an item
that was activated in place.

COleServerDoc::OnDeactivateUI Called by the framework to destroy controls and other user-
interface elements created for in-place activation.

COleServerDoc::OnDocWindowActivate Called by the framework when the container's document
frame window is activated or deactivated.

COleServerDoc::OnResizeBorder Called by the framework when the container application's
frame window or document window is resized.

COleServerDoc::OnShowControlBars Called by the framework to show or hide control bars for in-
place editing.

COleServerDoc::OnUpdateDocument Called by the framework when a server document that is an
embedded item is saved, updating the container's copy of
the item.

COleServerDoc::RequestPositionChange Changes the position of the in-place editing frame.

COleServerDoc::SaveEmbedding Tells the container application to save the document.

COleServerDoc::ScrollContainerBy Scrolls the container document.

COleServerDoc::UpdateAllItems Notifies containers that the user has changed the document.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

COleServerDoc::CreateInPlaceFrame Called by the framework to create a frame window for in-
place editing.

COleServerDoc::DestroyInPlaceFrame Called by the framework to destroy a frame window for in-
place editing.

COleServerDoc::GetDocObjectServer Override this function to create a new CDocObjectServer

object and indicate that this document is a DocObject
container.

COleServerDoc::OnClose Called by the framework when a container requests to close
the document.

COleServerDoc::OnExecOleCmd Executes a specified command or displays help for the
command.

COleServerDoc::OnFrameWindowActivate Called by the framework when the container's frame window
is activated or deactivated.

COleServerDoc::OnGetEmbeddedItem Called to get a COleServerItem that represents the entire
document; used to get an embedded item. Implementation
required.

COleServerDoc::OnReactivateAndUndo Called by the framework to undo changes made during in-
place editing.

COleServerDoc::OnSetHostNames Called by the framework when a container sets the window
title for an embedded object.

COleServerDoc::OnSetItemRects Called by the framework to position the in-place editing
frame window within the container application's window.

COleServerDoc::OnShowDocument Called by the framework to show or hide the document.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

A server document can contain COleServerItem objects, which represent the server interface to embedded or
linked items. When a server application is launched by a container to edit an embedded item, the item is loaded
as its own server document; the COleServerDoc object contains just one COleServerItem object, consisting of the
entire document. When a server application is launched by a container to edit a linked item, an existing
document is loaded from disk; a portion of the document's contents is highlighted to indicate the linked item.

COleServerDoc objects can also contain items of the COleClientItem class. This allows you to create container-
server applications. The framework provides functions to properly store the COleClientItem items while
servicing the COleServerItem objects.

If your server application does not support links, a server document will always contain only one server item,
which represents the entire embedded object as a document. If your server application does support links, it
must create a server item each time a selection is copied to the Clipboard.

To use COleServerDoc , derive a class from it and implement the OnGetEmbeddedItem member function, which
allows your server to support embedded items. Derive a class from COleServerItem to implement the items in
your documents, and return objects of that class from OnGetEmbeddedItem .

To support linked items, COleServerDoc provides the OnGetLinkedItem member function. You can use the
default implementation or override it if you have your own way of managing document items.

You need one COleServerDoc -derived class for each type of server document your application supports. For
example, if your server application supports worksheets and charts, you need two COleServerDoc -derived
classes.

For more information on servers, see the article Servers: Implementing a Server.

CObject

Requirements

COleServerDoc::ActivateDocObject

void ActivateDocObject();

RemarksRemarks

COleServerDoc::ActivateInPlace

BOOL ActivateInPlace();

Return ValueReturn Value

RemarksRemarks

COleServerDoc::COleServerDoc

COleServerDoc();

RemarksRemarks

CCmdTarget

CDocument

COleDocument

COleLinkingDoc

COleServerDoc

Header: afxole.h

Activates the associated DocObject document.

By default, COleServerDoc does not support Active documents (also referred to as DocObjects). To enable this
support, see GetDocObjectServer and class CDocObjectServer.

Activates the item for in-place editing.

Nonzero if successful; otherwise 0, which indicates that the item is fully open.

This function performs all operations necessary for in-place activation. It creates an in-place frame window,
activates it and sizes it to the item, sets up shared menus and other controls, scrolls the item into view, and sets
the focus to the in-place frame window.

This function is called by the default implementation of COleServerItem::OnShow. Call this function if your
application supports another verb for in-place activation (such as Play).

Constructs a COleServerDoc object without connecting with the OLE system DLLs.

You must call COleLinkingDoc::Register to open communications with OLE. If you are using
COleTemplateServer in your application, COleLinkingDoc::Register is called for you by COleLinkingDoc 's
implementation of OnNewDocument , OnOpenDocument , and OnSaveDocument .

COleServerDoc::CreateInPlaceFrame

virtual COleIPFrameWnd* CreateInPlaceFrame(CWnd* pParentWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerDoc::DeactivateAndUndo

BOOL DeactivateAndUndo();

Return ValueReturn Value

RemarksRemarks

COleServerDoc::DestroyInPlaceFrame

virtual void DestroyInPlaceFrame(COleIPFrameWnd* pFrameWnd);

ParametersParameters

RemarksRemarks

COleServerDoc::DiscardUndoState

The framework calls this function to create a frame window for in-place editing.

pParentWnd
Pointer to the container application's parent window.

A pointer to the in-place frame window, or NULL if unsuccessful.

The default implementation uses information specified in the document template to create the frame. The view
used is the first view created for the document. This view is temporarily detached from the original frame and
attached to the newly created frame.

This is an advanced overridable.

Call this function if your application supports Undo and the user chooses Undo after activating an item but
before editing it.

Nonzero on success; otherwise 0.

If the container application is written using the Microsoft Foundation Class Library, calling this function causes
COleClientItem::OnDeactivateAndUndo to be called, which deactivates the server's user interface.

The framework calls this function to destroy an in-place frame window and return the server application's
document window to its state before in-place activation.

pFrameWnd
Pointer to the in-place frame window to be destroyed.

This is an advanced overridable.

If the user performs an editing operation that cannot be undone, call this function to force the container
application to discard its undo-state information.

BOOL DiscardUndoState();

Return ValueReturn Value

RemarksRemarks

COleServerDoc::GetClientSite

LPOLECLIENTSITE GetClientSite() const;

Return ValueReturn Value

COleServerDoc::GetDocObjectServer

virtual CDocObjectServer* GetDocObjectServer(LPOLEDOCUMENTSITE pDocSite);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CDocObjectServer* CMFCOleServerDoc::GetDocObjectServer(LPOLEDOCUMENTSITE pSite)
{
 return new CDocObjectServer(this, pSite);
}

COleServerDoc::GetEmbeddedItem

COleServerItem* GetEmbeddedItem();

Return ValueReturn Value

Nonzero on success; otherwise 0.

This function is provided so that servers that support Undo can free resources that would otherwise be
consumed by undo-state information that cannot be used.

Retrieves a pointer to the underlying IOleClientSite interface.

Retrieves a pointer to the underlying IOleClientSite interface.

Override this function to create a new CDocObjectServer item and return a pointer to it.

pDocSite
Pointer to the IOleDocumentSite interface that will connect this document to the server.

A pointer to a CDocObjectServer ; NULL if the operation failed.

When a DocObject server is activated, the return of a non- NULL pointer shows that the client can support
DocObjects. The default implementation returns NULL.

A typical implementation for a document that supports DocObjects will simply allocate a new CDocObjectServer

object and return it to the caller. For example:

Call this function to get a pointer to an item representing the entire document.

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleclientsite

RemarksRemarks

COleServerDoc::GetItemClipRect

void GetItemClipRect(LPRECT lpClipRect) const;

ParametersParameters

RemarksRemarks

COleServerDoc::GetItemPosition

void GetItemPosition(LPRECT lpPosRect) const;

ParametersParameters

RemarksRemarks

COleServerDoc::GetZoomFactor

BOOL GetZoomFactor(
 LPSIZE lpSizeNum = NULL,
 LPSIZE lpSizeDenom = NULL,
 LPCRECT lpPosRect = NULL) const;

ParametersParameters

A pointer to an item representing the entire document; NULL if the operation failed.

It calls COleServerDoc::OnGetEmbeddedItem, a virtual function with no default implementation.

Call the GetItemClipRect member function to get the clipping-rectangle coordinates of the item that is being
edited in place.

lpClipRect
Pointer to a RECT structure or a CRect object to receive the clipping-rectangle coordinates of the item.

Coordinates are in pixels relative to the container application window's client area.

Drawing should not occur outside the clipping rectangle. Usually, drawing is automatically restricted. Use this
function to determine whether the user has scrolled outside the visible portion of the document; if so, scroll the
container document as needed by means of a call to ScrollContainerBy.

Call the GetItemPosition member function to get the coordinates of the item being edited in place.

lpPosRect
Pointer to a RECT structure or a CRect object to receive the coordinates of the item.

Coordinates are in pixels relative to the container application window's client area.

The item's position can be compared with the current clipping rectangle to determine the extent to which the
item is visible (or not visible) on the screen.

The GetZoomFactor member function determines the "zoom factor" of an item that has been activated for in-
place editing.

lpSizeNum
Pointer to an object of class CSize that will hold the zoom factor's numerator. Can be NULL.

Return ValueReturn Value

RemarksRemarks

COleServerDoc::IsDocObject

BOOL IsDocObject() const;

Return ValueReturn Value

COleServerDoc::IsEmbedded

BOOL IsEmbedded() const;

Return ValueReturn Value

RemarksRemarks

COleServerDoc::IsInPlaceActive

BOOL IsInPlaceActive() const;

Return ValueReturn Value

lpSizeDenom
Pointer to an object of class CSize that will hold the zoom factor's denominator. Can be NULL.

lpPosRect
Pointer to an object of class CRect that describes the item's new position. If this argument is NULL, the function
uses the item's current position.

Nonzero if the item is activated for in-place editing and its zoom factor is other than 100% (1:1); otherwise 0.

The zoom factor, in pixels, is the proportion of the item's size to its current extent. If the container application has
not set the item's extent, its natural extent (as determined by COleServerItem::OnGetExtent) is used.

The function sets its first two arguments to the numerator and denominator of the item's "zoom factor." If the
item is not being edited in place, the function sets these arguments to a default value of 100% (or 1:1) and
returns zero. For further information, see Technical Note 40, MFC/OLE In-Place Resizing and Zooming.

Determines if the document is a DocObject.

TRUE if the document is a DocObject; otherwise FALSE.

Call the IsEmbedded member function to determine whether the document represents an object embedded in a
container.

Nonzero if the COleServerDoc object is a document that represents an object embedded in a container ;
otherwise 0.

A document loaded from a file is not embedded although it may be manipulated by a container application as a
link. A document that is embedded in a container document is considered to be embedded.

Call the IsInPlaceActive member function to determine whether the item is currently in the in-place active
state.

Nonzero if the COleServerDoc object is active in place; otherwise 0.

COleServerDoc::NotifyChanged

void NotifyChanged();

RemarksRemarks

NOTENOTE

COleServerDoc::NotifyClosed

void NotifyClosed();

RemarksRemarks

COleServerDoc::NotifyRename

void NotifyRename(LPCTSTR lpszNewName);

ParametersParameters

RemarksRemarks

COleServerDoc::NotifySaved

void NotifySaved();

RemarksRemarks

Call this function to notify all linked items connected to the document that the document has changed.

Typically, you call this function after the user changes some global attribute such as the dimensions of the server
document. If an OLE item is linked to the document with an automatic link, the item is updated to reflect the
changes. In container applications written with the Microsoft Foundation Class Library, the OnChange member
function of COleClientItem is called.

This function is included for compatibility with OLE 1. New applications should use UpdateAllItems.

Call this function to notify the container(s) that the document has been closed.

When the user chooses the Close command from the File menu, NotifyClosed is called by COleServerDoc 's
implementation of the OnCloseDocument member function. In container applications written with the Microsoft
Foundation Class Library, the OnChange member function of COleClientItem is called.

Call this function after the user renames the server document.

lpszNewName
Pointer to a string specifying the new name of the server document; this is typically a fully qualified path.

When the user chooses the Save As command from the File menu, NotifyRename is called by COleServerDoc 's
implementation of the OnSaveDocument member function. This function notifies the OLE system DLLs, which
in turn notify the containers. In container applications written with the Microsoft Foundation Class Library, the
OnChange member function of COleClientItem is called.

Call this function after the user saves the server document.

COleServerDoc::OnClose

virtual void OnClose(OLECLOSE dwCloseOption);

ParametersParameters

RemarksRemarks

COleServerDoc::OnDeactivate

virtual void OnDeactivate();

RemarksRemarks

COleServerDoc::OnDeactivateUI

virtual void OnDeactivateUI(BOOL bUndoable);

ParametersParameters

RemarksRemarks

When the user chooses the Save command from the File menu, NotifySaved is called for you by COleServerDoc

's implementation of OnSaveDocument. This function notifies the OLE system DLLs, which in turn notify the
containers. In container applications written with the Microsoft Foundation Class Library, the OnChange
member function of COleClientItem is called.

Called by the framework when a container requests that the server document be closed.

dwCloseOption
A value from the enumeration OLECLOSE. This parameter can have one of the following values:

OLECLOSE_SAVEIFDIRTY The file is saved if it has been modified.

OLECLOSE_NOSAVE The file is closed without being saved.

OLECLOSE_PROMPTSAVE If the file has been modified, the user is prompted about saving it.

The default implementation calls CDocument::OnCloseDocument .

For more information and additional values, see OLECLOSE in the Windows SDK.

Called by the framework when the user deactivates an embedded or linked item that is currently in-place active.

This function restores the container application's user interface to its original state and destroys any menus and
other controls that were created for in-place activation.

The undo state information should be unconditionally released at this point.

For more information, see the article Activation..

Called when the user deactivates an item that was activated in place.

bUndoable
Specifies whether the editing changes can be undone.

This function restores the container application's user interface to its original state, hiding any menus and other
controls that were created for in-place activation.

https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagoleclose

COleServerDoc::OnDocWindowActivate

virtual void OnDocWindowActivate(BOOL bActivate);

ParametersParameters

RemarksRemarks

COleServerDoc::OnExecOleCmd

virtual HRESULT OnExecOleCmd(
 const GUID* pguidCmdGroup,
 DWORD nCmdID,
 DWORD nCmdExecOpt,
 VARIANTARG* pvarargIn,
 VARIANTARG* pvarargOut);

ParametersParameters

Return ValueReturn Value

The framework always sets bUndoable to FALSE. If the server supports undo and there is an operation that can
be undone, call the base-class implementation with bUndoable set to TRUE.

The framework calls this function to activate or deactivate a document window for in-place editing.

bActivate
Specifies whether the document window is to be activated or deactivated.

The default implementation removes or adds the frame-level user interface elements as appropriate. Override
this function if you want to perform additional actions when the document containing your item is activated or
deactivated.

For more information, see the article Activation..

The framework calls this function to execute a specified command or display help for the command.

pguidCmdGroup
A pointer to a GUID that identifies a set of commands. Can be NULL to indicate the default command group.

nCmdID
The command to execute. Must be in the group identified by pguidCmdGroup.

nCmdExecOut
The way the object should execute the command, one or more of the following values from the
OLECMDEXECOPT enumeration:

OLECMDEXECOPT_DODEFAULT

OLECMDEXECOPT_PROMPTUSER

OLECMDEXECOPT_DONTPROMPTUSER

OLECMDEXECOPT_SHOWHELP

pvarargIn
Pointer to a VARIANTARG containing input arguments for the command. Can be NULL.

pvarargOut
Pointer to a VARIANTARG to receive the output return values from the command. Can be NULL.

VALUE DESCRIPTION

E_UNEXPECTED Unexpected error occurred

E_FAIL Error occurred

E_NOTIMPL Indicates MFC itself should attempt to translate and dispatch
the command

OLECMDERR_E_UNKNOWNGROUP pguidCmdGroup is non- NULL but does not specify a
recognized command group

OLECMDERR_E_NOTSUPPORTED nCmdID is not recognized as a valid command in the group
pguidCmdGroup

OLECMDERR_DISABLED The command identified by nCmdID is disabled and cannot
be executed

OLECMDERR_NOHELP Caller asked for help on the command identified by nCmdID
but no help is available

OLECMDERR_CANCELED User canceled the execution

RemarksRemarks

COleServerDoc::OnFrameWindowActivate

Returns S_OK if successful; otherwise, one of the following error codes:

COleCmdUI can be used to enable, update, and set other properties of DocObject user interface commands. After
the commands are initialized, you can execute them with OnExecOleCmd .

The framework calls the function before attempting to translate and dispatch an OLE document command. You
don't need to override this function to handle standard OLE document commands, but you must supply an
override to this function if you want to handle your own custom commands or handle commands that accept
parameters or return results.

Most of the commands do not take arguments or return values. For a majority of commands the caller can pass
NULLs for pvarargIn and pvarargOut. For commands that expect input values, the caller can declare and
initialize a VARIANTARG variable and pass a pointer to the variable in pvarargIn. For commands that require a
single value, the argument can be stored directly in the VARIANTARG and passed to the function. Multiple
arguments must be packaged within the VARIANTARG using one of the supported types (such as IDispatch

and SAFEARRAY).

Similarly, if a command returns arguments the caller is expected to declare a VARIANTARG, initialize it to
VT_EMPTY, and pass its address in pvarargOut. If a command returns a single value, the object can store that
value directly in pvarargOut. Multiple output values must be packaged in some way appropriate for the
VARIANTARG.

The base-class implementation of this function will walk the OLE_COMMAND_MAP structures associated with
the command target and try to dispatch the command to an appropriate handler. The base-class implementation
works only with commands that do not accept arguments or return values. If you need to handle commands
that do accept arguments or return values, you must override this function and work with the pvarargIn and
pvarargOut parameters yourself.

The framework calls this function when the container application's frame window is activated or deactivated.

virtual void OnFrameWindowActivate(BOOL bActivate);

ParametersParameters

RemarksRemarks

COleServerDoc::OnGetEmbeddedItem

virtual COleServerItem* OnGetEmbeddedItem() = 0;

Return ValueReturn Value

RemarksRemarks

COleServerDoc::OnReactivateAndUndo

virtual BOOL OnReactivateAndUndo();

Return ValueReturn Value

RemarksRemarks

COleServerDoc::OnResizeBorder

virtual void OnResizeBorder(
 LPCRECT lpRectBorder,
 LPOLEINPLACEUIWINDOW lpUIWindow,
 BOOL bFrame);

bActivate
Specifies whether the frame window is to be activated or deactivated.

The default implementation cancels any help modes the frame window might be in. Override this function if you
want to perform special processing when the frame window is activated or deactivated.

For more information, see the article Activation..

Called by the framework when a container application calls the server application to create or edit an embedded
item.

A pointer to an item representing the entire document; NULL if the operation failed.

There is no default implementation. You must override this function to return an item that represents the entire
document. This return value should be an object of a COleServerItem -derived class.

The framework calls this function when the user chooses to undo changes made to an item that has been
activated in place, changed, and subsequently deactivated.

Nonzero if successful; otherwise 0.

The default implementation does nothing except return FALSE to indicate failure.

Override this function if your application supports undo. Usually you would perform the undo operation, then
activate the item by calling ActivateInPlace . If the container application is written with the Microsoft
Foundation Class Library, calling COleClientItem::ReactivateAndUndo causes this function to be called.

The framework calls this function when the container application's frame windows change size.

ParametersParameters

RemarksRemarks

COleServerDoc::OnSetHostNames

virtual void OnSetHostNames(
 LPCTSTR lpszHost,
 LPCTSTR lpszHostObj);

ParametersParameters

RemarksRemarks

COleServerDoc::OnSetItemRects

virtual void OnSetItemRects(
 LPCRECT lpPosRect,
 LPCRECT lpClipRect);

ParametersParameters

lpRectBorder
Pointer to a RECT structure or a CRect object that specifies the coordinates of the border.

lpUIWindow
Pointer to an object of class IOleInPlaceUIWindow that owns the current in-place editing session.

bFrame
TRUE if lpUIWindow points to the container application's top-level frame window, or FALSE if lpUIWindow
points to the container application's document-level frame window.

This function resizes and adjusts toolbars and other user-interface elements in accordance with the new window
size.

For more information, see IOleInPlaceUIWindow in the Windows SDK.

This is an advanced overridable.

Called by the framework when the container sets or changes the host names for this document.

lpszHost
Pointer to a string that specifies the name of the container application.

lpszHostObj
Pointer to a string that specifies the container's name for the document.

The default implementation changes the document title for all views referring to this document.

Override this function if your application sets the titles through a different mechanism.

The framework calls this function to position the in-place editing frame window within the container
application's frame window.

lpPosRect
Pointer to a RECT structure or a CRect object that specifies the in-place frame window's position relative to the
container application's client area.

lpClipRect
Pointer to a RECT structure or a CRect object that specifies the in-place frame window's clipping rectangle

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-ioleinplaceuiwindow

RemarksRemarks

COleServerDoc::OnShowControlBars

virtual void OnShowControlBars(
 CFrameWnd* pFrameWnd,
 BOOL bShow);

ParametersParameters

RemarksRemarks

COleServerDoc::OnShowDocument

virtual void OnShowDocument(BOOL bShow);

ParametersParameters

RemarksRemarks

COleServerDoc::OnUpdateDocument

virtual BOOL OnUpdateDocument();

Return ValueReturn Value

relative to the container application's client area.

Override this function to update the view's zoom factor, if necessary.

This function is usually called in response to a RequestPositionChange call, although it can be called at any time
by the container to request a position change for the in-place item.

The framework calls this function to show or hide the server application's control bars associated with the frame
window identified by pFrameWnd.

pFrameWnd
Pointer to the frame window whose control bars should be hidden or shown.

bShow
Determines whether control bars are shown or hidden.

The default implementation enumerates all control bars owned by that frame window and hides or shows them.

The framework calls the OnShowDocument function when the server document must be hidden or shown.

bShow
Specifies whether the user interface to the document is to be shown or hidden.

If bShow is TRUE, the default implementation activates the server application, if necessary, and causes the
container application to scroll its window so that the item is visible. If bShow is FALSE, the default
implementation deactivates the item through a call to OnDeactivate , then destroys or hides all frame windows
that have been created for the document, except the first one. If no visible documents remain, the default
implementation hides the server application.

Called by the framework when saving a document that is an embedded item in a compound document.

Nonzero if the document was successfully updated; otherwise 0.

RemarksRemarks

COleServerDoc::RequestPositionChange

void RequestPositionChange(LPCRECT lpPosRect);

ParametersParameters

RemarksRemarks

COleServerDoc::SaveEmbedding

void SaveEmbedding();

RemarksRemarks

COleServerDoc::ScrollContainerBy

BOOL ScrollContainerBy(CSize sizeScroll);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerDoc::UpdateAllItems

The default implementation calls the COleServerDoc::NotifySaved and COleServerDoc::SaveEmbedding
member functions and then marks the document as clean. Override this function if you want to perform special
processing when updating an embedded item.

Call this member function to have the container application change the item's position.

lpPosRect
Pointer to a RECT structure or a CRect object containing the item's new position.

This function is usually called (in conjunction with UpdateAllItems) when the data in an in-place active item has
changed. Following this call, the container might or might not perform the change by calling OnSetItemRects .
The resulting position might be different from the one requested.

Call this function to tell the container application to save the embedded object.

This function is called automatically from OnUpdateDocument . Note that this function causes the item to be
updated on disk, so it is usually called only as a result of a specific user action.

Call the ScrollContainerBy member function to scroll the container document by the amount, in pixels,
indicated by sizeScroll .

sizeScroll
Indicates how far the container document is to scroll.

Nonzero if successful; otherwise 0.

Positive values indicate scrolling down and to the right; negative values indicate scrolling up and to the left.

Call this function to notify all linked items connected to the document that the document has changed.

void UpdateAllItems(
 COleServerItem* pSender,
 LPARAM lHint = 0L,
 CObject* pHint = NULL,
 DVASPECT nDrawAspect = DVASPECT_CONTENT);

ParametersParameters

RemarksRemarks

See also

pSender
Pointer to the item that modified the document, or NULL if all items are to be updated.

lHint
Contains information about the modification.

pHint
Pointer to an object storing information about the modification.

nDrawAspect
Determines how the item is to be drawn. This is a value from the DVASPECT enumeration. This parameter can
have one of the following values:

DVASPECT_CONTENT Item is represented in such a way that it can be displayed as an embedded object
inside its container.

DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation so that it can be displayed in
a browsing tool.

DVASPECT_ICON Item is represented by an icon.

DVASPECT_DOCPRINT Item is represented as if it were printed using the Print command from the File
menu.

You typically call this function after the user changes the server document. If an OLE item is linked to the
document with an automatic link, the item is updated to reflect the changes. In container applications written
with the Microsoft Foundation Class Library, the OnChange member function of COleClientItem is called.

This function calls the OnUpdate member function for each of the document's items except the sending item,
passing pHint, lHint, and nDrawAspect. Use these parameters to pass information to the items about the
modifications made to the document. You can encode information using lHint or you can define a CObject -
derived class to store information about the modifications and pass an object of that class using pHint. Override
the OnUpdate member function in your COleServerItem -derived class to optimize the updating of each item
depending on whether its presentation has changed.

MFC Sample HIERSVR
COleLinkingDoc Class
Hierarchy Chart
COleDocument Class
COleLinkingDoc Class
COleTemplateServer Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleServerItem Class
3/4/2019 • 24 minutes to read • Edit Online

Syntax
class COleServerItem : public CDocItem

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

COleServerItem::COleServerItem Constructs a COleServerItem object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleServerItem::AddOtherClipboardData Places presentation and conversion formats in a
COleDataSource object.

COleServerItem::CopyToClipboard Copies the item to the Clipboard.

COleServerItem::DoDragDrop Performs a drag-and-drop operation.

COleServerItem::GetClipboardData Gets the data source for use in data transfer (drag and
drop or Clipboard).

COleServerItem::GetDocument Returns the server document that contains the item.

COleServerItem::GetEmbedSourceData Gets the CF_EMBEDSOURCE data for an OLE item.

COleServerItem::GetItemName Returns the name of the item. Used for linked items only.

COleServerItem::GetLinkSourceData Gets the CF_LINKSOURCE data for an OLE item.

COleServerItem::GetObjectDescriptorData Gets the CF_OBJECTDESCRIPTOR data for an OLE item.

COleServerItem::IsConnected Indicates whether the item is currently attached to an
active container.

COleServerItem::IsLinkedItem Indicates whether the item represents a linked OLE item.

COleServerItem::NotifyChanged Updates all containers with automatic link update.

Provides the server interface to OLE items.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coleserveritem-class.md

COleServerItem::OnDoVerb Called to execute a verb.

COleServerItem::OnDraw Called when the container requests to draw the item;
implementation required.

COleServerItem::OnDrawEx Called for specialized item drawing.

COleServerItem::OnGetClipboardData Called by the framework to get the data that would be
copied to the Clipboard.

COleServerItem::OnGetExtent Called by the framework to retrieve the size of the OLE
item.

COleServerItem::OnInitFromData Called by the framework to initialize an OLE item using the
contents of the data transfer object specified.

COleServerItem::OnQueryUpdateItems Called to determine whether any linked items require
updating.

COleServerItem::OnRenderData Retrieves data as part of delayed rendering.

COleServerItem::OnRenderFileData Retrieves data into a CFile object as part of delayed
rendering.

COleServerItem::OnRenderGlobalData Retrieves data into an HGLOBAL as part of delayed
rendering.

COleServerItem::OnSetColorScheme Called to set the item's color scheme.

COleServerItem::OnSetData Called to set the item's data.

COleServerItem::OnSetExtent Called by the framework to set the size of the OLE item.

COleServerItem::OnUpdate Called when some portion of the document the item
belongs in is changed.

COleServerItem::OnUpdateItems Called to update the presentation cache of all items in the
server document.

COleServerItem::SetItemName Sets the name of the item. Used for linked items only.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

COleServerItem::GetDataSource Gets the object used to store conversion formats.

COleServerItem::OnHide Called by the framework to hide the OLE item.

COleServerItem::OnOpen Called by the framework to display the OLE item in its own
top-level window.

COleServerItem::OnShow Called when the container requests to show the item.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleServerItem::m_sizeExtent Informs the server about how much of the OLE item is
visible.

Remarks

Inheritance Hierarchy

Requirements

COleServerItem::AddOtherClipboardData

void AddOtherClipboardData(COleDataSource* pDataSource);

ParametersParameters

A linked item can represent some or all of a server document. An embedded item always represents an entire
server document.

The COleServerItem class defines several overridable member functions that are called by the OLE system
dynamic-link libraries (DLLs), usually in response to requests from the container application. These member
functions allow the container application to manipulate the item indirectly in various ways, such as by
displaying it, executing its verbs, or retrieving its data in various formats.

To use COleServerItem , derive a class from it and implement the OnDraw and Serialize member functions.
The OnDraw function provides the metafile representation of an item, allowing it to be displayed when a
container application opens a compound document. The Serialize function of CObject provides the native
representation of an item, allowing an embedded item to be transferred between the server and container
applications. OnGetExtent provides the natural size of the item to the container, enabling the container to size
the item.

For more information about servers and related topics, see the article Servers: Implementing a Server and
"Creating a Container/Server Application" in the article Containers: Advanced Features.

CObject

CCmdTarget

CDocItem

COleServerItem

Header: afxole.h

Call this function to place the presentation and conversion formats for the OLE item in the specified
COleDataSource object.

pDataSource

RemarksRemarks

COleServerItem::COleServerItem

COleServerItem(
 COleServerDoc* pServerDoc,
 BOOL bAutoDelete);

ParametersParameters

COleServerItem::CopyToClipboard

void CopyToClipboard(BOOL bIncludeLink = FALSE);

ParametersParameters

RemarksRemarks

COleServerItem::DoDragDrop

Pointer to the COleDataSource object in which the data should be placed.

You must have implemented the OnDraw member function to provide the presentation format (a metafile
picture) for the item. To support other conversion formats, register them using the COleDataSource object
returned by GetDataSource and override the OnRenderData member function to provide data in the formats
you want to support.

Constructs a COleServerItem object and adds it to the server document's collection of document items.

pServerDoc
Pointer to the document that will contain the new item.

bAutoDelete
Flag indicating whether the object can be deleted when a link to it is released. Set this to FALSE if the
COleServerItem object is an integral part of your document's data which you must delete. Set this to TRUE if

the object is a secondary structure used to identify a range in your document's data that can be deleted by the
framework.

Call this function to copy the OLE item to the Clipboard.

bIncludeLink
Set this to TRUE if link data should be copied to the Clipboard. Set this to FALSE if your server application
does not support links.

The function uses the OnGetClipboardData member function to create a COleDataSource object containing
the OLE item's data in the formats supported. The function then places the COleDataSource object on the
Clipboard by using the COleDataSource::SetClipboard function. The COleDataSource object includes the
item's native data and its representation in CF_METAFILEPICT format, as well as data in any conversion
formats you choose to support. You must have implemented Serialize and OnDraw for this member function
to work.

Call the DoDragDrop member function to perform a drag-and-drop operation.

DROPEFFECT DoDragDrop(
 LPCRECT lpRectItem,
 CPoint ptOffset,
 BOOL bIncludeLink = FALSE,
 DWORD dwEffects = DROPEFFECT_COPY | DROPEFFECT_MOVE,
 LPCRECT lpRectStartDrag = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerItem::GetClipboardData

lpRectItem
The item's rectangle on screen, in pixels, relative to the client area.

ptOffset
The offset from lpItemRect where the mouse position was at the time of the drag.

bIncludeLink
Set this to TRUE if link data should be copied to the Clipboard. Set it to FALSE if your application does not
support links.

dwEffects
Determines the effects that the drag source will allow in the drag operation (a combination of Copy, Move,
and Link).

lpRectStartDrag
Pointer to the rectangle that defines where the drag actually starts. For more information, see the following
Remarks section.

A value from the DROPEFFECT enumeration. If it is DROPEFFECT_MOVE, the original data should be
removed.

The drag-and-drop operation does not start immediately. It waits until the mouse cursor leaves the rectangle
specified by lpRectStartDrag or until a specified number of milliseconds have passed. If lpRectStartDrag is
NULL, a default rectangle is used so that the drag starts when the mouse cursor moves one pixel.

The delay time is specified by a registry key setting. You can change the delay time by calling
CWinApp::WriteProfileString or CWinApp::WriteProfileInt. If you do not specify the delay time, a default
value of 200 milliseconds is used. Drag delay time is stored as follows:

Windows NT Drag delay time is stored in
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\NT\CurrentVersion\IniFileMapping\win.i
ni\Windows\DragDelay.

Windows 3.x Drag delay time is stored in the WIN.INI file, under the [Windows} section.

Windows 95/98 Drag delay time is stored in a cached version of WIN.INI.

For more information about how drag delay information is stored in either the registry or the .INI file, see
WriteProfileString in the Windows SDK.

Call this function to fill the specified COleDataSource object with all the data that would be copied to the
Clipboard if you called CopyToClipboard (the same data would also be transferred if you called DoDragDrop).

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-writeprofilestringa

void GetClipboardData(
 COleDataSource* pDataSource,
 BOOL bIncludeLink = FALSE,
 LPPOINT lpOffset = NULL,
 LPSIZE lpSize = NULL);

ParametersParameters

RemarksRemarks

COleServerItem::GetDataSource

COleDataSource* GetDataSource();

Return ValueReturn Value

RemarksRemarks

COleServerItem::GetDocument

COleServerDoc* GetDocument() const;

Return ValueReturn Value

pDataSource
Pointer to the COleDataSource object that will receive the OLE item's data in all supported formats.

bIncludeLink
TRUE if link data should be copied to the Clipboard. FALSE if your server application does not support links.

lpOffset
The offset, in pixels, of the mouse cursor from the origin of the object.

lpSize
The size of the object in pixels.

This function calls the GetEmbedSourceData member function to get the native data for the OLE item and
calls the AddOtherClipboardData member function to get the presentation format and any supported
conversion formats. If bIncludeLink is TRUE, the function also calls GetLinkSourceData to get the link data for
the item.

Override this function if you want to put formats in a COleDataSource object before or after those formats
supplied by CopyToClipboard .

Call this function to get the COleDataSource object used to store the conversion formats that the server
application supports.

A pointer to the COleDataSource object used to store the conversion formats.

If you want your server application to offer data in a variety of formats during data transfer operations,
register those formats with the COleDataSource object returned by this function. For example, if you want to
supply a CF_TEXT representation of the OLE item for Clipboard or drag-and-drop operations, you would
register the format with the COleDataSource object this function returns, and then override the
OnRenderXxxData member function to provide the data.

Call this function to get a pointer to the document that contains the item.

A pointer to the document that contains the item; NULL if the item is not part of a document.

RemarksRemarks

COleServerItem::GetEmbedSourceData

void GetEmbedSourceData(LPSTGMEDIUM lpStgMedium);

ParametersParameters

RemarksRemarks

COleServerItem::GetItemName

const CString& GetItemName() const;

Return ValueReturn Value

RemarksRemarks

COleServerItem::GetLinkSourceData

BOOL GetLinkSourceData(LPSTGMEDIUM lpStgMedium);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This allows access to the server document that you passed as an argument to the COleServerItem constructor.

Call this function to get the CF_EMBEDSOURCE data for an OLE item.

lpStgMedium
Pointer to the STGMEDIUM structure that will receive the CF_EMBEDSOURCE data for the OLE item.

This format includes the item's native data. You must have implemented the Serialize member function for
this function to work properly.

The result can then be added to a data source by using COleDataSource::CacheData. This function is called
automatically by COleServerItem::OnGetClipboardData.

For more information, see STGMEDIUM in the Windows SDK.

Call this function to get the name of the item.

The name of the item.

You typically call this function only for linked items.

Call this function to get the CF_LINKSOURCE data for an OLE item.

lpStgMedium
Pointer to the STGMEDIUM structure that will receive the CF_LINKSOURCE data for the OLE item.

Nonzero if successful; otherwise 0.

This format includes the CLSID describing the type of the OLE item and the information needed to locate the
document containing the OLE item.

The result can then be added to a data source with COleDataSource::CacheData. This function is called
automatically by OnGetClipboardData.

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium

COleServerItem::GetObjectDescriptorData

void GetObjectDescriptorData(
 LPPOINT lpOffset,
 LPSIZE lpSize,
 LPSTGMEDIUM lpStgMedium);

ParametersParameters

RemarksRemarks

COleServerItem::IsConnected

BOOL IsConnected() const;

Return ValueReturn Value

RemarksRemarks

COleServerItem::IsLinkedItem

BOOL IsLinkedItem() const;

Return ValueReturn Value

RemarksRemarks

For more information, see STGMEDIUM in the Windows SDK.

Call this function to get the CF_OBJECTDESCRIPTOR data for an OLE item.

lpOffset
Offset of the mouse click from the upper-left corner of the OLE item. Can be NULL.

lpSize
Size of the OLE item. Can be NULL.

lpStgMedium
Pointer to the STGMEDIUM structure that will receive the CF_OBJECTDESCRIPTOR data for the OLE item.

The information is copied into the STGMEDIUM structure pointed to by lpStgMedium. This format includes the
information needed for the Paste Special dialog.

For more information, see STGMEDIUM in the Windows SDK.

Call this function to see if the OLE item is connected.

Nonzero if the item is connected; otherwise 0.

An OLE item is considered connected if one or more containers have references to the item. An item is
connected if its reference count is greater than 0 or if it is an embedded item.

Call this function to see if the OLE item is a linked item.

Nonzero if the item is a linked item; otherwise 0.

An item is linked if the item is valid and is not returned in the document's list of embedded items. A linked
item might or might not be connected to a container.

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium

COleServerItem::m_sizeExtent

CSize m_sizeExtent;

RemarksRemarks

COleServerItem::NotifyChanged

void NotifyChanged(DVASPECT nDrawAspect = DVASPECT_CONTENT);

ParametersParameters

RemarksRemarks

COleServerItem::OnDoVerb

virtual void OnDoVerb(LONG iVerb);

ParametersParameters

VALUE MEANING SYMBOL

0 Primary verb OLEIVERB_PRIMARY

It is common to use the same class for both linked and embedded items. IsLinkedItem allows you to make
linked items behave differently than embedded items, although many times the code is common.

This member tells the server how much of the object is visible in the container document.

The default implementation of OnSetExtent sets this member.

Call this function after the linked item has been changed.

nDrawAspect
A value from the DVASPECT enumeration that indicates which aspect of the OLE item has changed. This
parameter can have any of the following values:

DVASPECT_CONTENT Item is represented in such a way that it can be displayed as an embedded
object inside its container.

DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation so that it can be displayed
in a browsing tool.

DVASPECT_ICON Item is represented by an icon.

DVASPECT_DOCPRINT Item is represented as if it were printed using the Print command from the
File menu.

If a container item is linked to the document with an automatic link, the item is updated to reflect the changes.
In container applications written using the Microsoft Foundation Class Library, COleClientItem::OnChange is
called in response.

Called by the framework to execute the specified verb.

iVerb
Specifies the verb to execute. It can be any one of the following:

1 Secondary verb (None)

- 1 Display item for editing OLEIVERB_SHOW

- 2 Edit item in separate window OLEIVERB_OPEN

- 3 Hide item OLEIVERB_HIDE

VALUE MEANING SYMBOL

RemarksRemarks

COleServerItem::OnDraw

virtual BOOL OnDraw(
 CDC* pDC,
 CSize& rSize) = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnDrawEx

The -1 value is typically an alias for another verb. If open editing is not supported, -2 has the same effect as -1.
For additional values, see IOleObject::DoVerb in the Windows SDK.

If the container application was written with the Microsoft Foundation Class Library, this function is called
when the COleClientItem::Activate member function of the corresponding COleClientItem object is called.
The default implementation calls the OnShow member function if the primary verb or OLEIVERB_SHOW is
specified, OnOpen if the secondary verb or OLEIVERB_OPEN is specified, and OnHide if OLEIVERB_HIDE is
specified. The default implementation calls OnShow if iVerb is not one of the verbs listed above.

Override this function if your primary verb does not show the item. For example, if the item is a sound
recording and its primary verb is Play, you would not have to display the server application to play the item.

For more information, see IOleObject::DoVerb in the Windows SDK.

Called by the framework to render the OLE item into a metafile.

pDC
A pointer to the CDC object on which to draw the item. The display context is automatically connected to the
attribute display context so you can call attribute functions, although doing so would make the metafile
device-specific.

rSize
Size, in HIMETRIC units, in which to draw the metafile.

Nonzero if the item was successfully drawn; otherwise 0.

The metafile representation of the OLE item is used to display the item in the container application. If the
container application was written with the Microsoft Foundation Class Library, the metafile is used by the
Draw member function of the corresponding COleClientItem object. There is no default implementation. You
must override this function to draw the item into the device context specified.

Called by the framework for all drawing.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-doverb
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-doverb

virtual BOOL OnDrawEx(
 CDC* pDC,
 DVASPECT nDrawAspect,
 CSize& rSize);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnGetClipboardData

virtual COleDataSource* OnGetClipboardData(
 BOOL bIncludeLink,
 LPPOINT lpOffset,
 LPSIZE lpSize);

ParametersParameters

pDC
A pointer to the CDC object on which to draw the item. The DC is automatically connected to the attribute DC
so you can call attribute functions, although doing so would make the metafile device-specific.

nDrawAspect
A value from the DVASPECT enumeration. This parameter can have any of the following values:

DVASPECT_CONTENT Item is represented in such a way that it can be displayed as an embedded
object inside its container.

DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation so that it can be displayed
in a browsing tool.

DVASPECT_ICON Item is represented by an icon.

DVASPECT_DOCPRINT Item is represented as if it were printed using the Print command from the
File menu.

rSize
Size of the item in HIMETRIC units.

Nonzero if the item was successfully drawn; otherwise 0.

The default implementation calls OnDraw when DVASPECT is equal to DVASPECT_CONTENT; otherwise it
fails.

Override this function to provide presentation data for aspects other than DVASPECT_CONTENT, such as
DVASPECT_ICON or DVASPECT_THUMBNAIL.

Called by the framework to get a COleDataSource object containing all the data that would be placed on the
Clipboard by a call to the CopyToClipboard member function.

bIncludeLink
Set this to TRUE if link data should be copied to the Clipboard. Set this to FALSE if your server application
does not support links.

lpOffset
The offset of the mouse cursor from the origin of the object in pixels.

lpSize

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnGetExtent

virtual BOOL OnGetExtent(
 DVASPECT nDrawAspect,
 CSize& rSize);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnHide

virtual void OnHide();

RemarksRemarks

The size of the object in pixels.

A pointer to a COleDataSource object containing the Clipboard data.

The default implementation of this function calls GetClipboardData.

Called by the framework to retrieve the size, in HIMETRIC units, of the OLE item.

nDrawAspect
Specifies the aspect of the OLE item whose bounds are to be retrieved. This parameter can have any of the
following values:

DVASPECT_CONTENT Item is represented in such a way that it can be displayed as an embedded
object inside its container.

DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation so that it can be displayed
in a browsing tool.

DVASPECT_ICON Item is represented by an icon.

DVASPECT_DOCPRINT Item is represented as if it were printed using the Print command from the
File menu.

rSize
Reference to a CSize object that will receive the size of the OLE item.

Nonzero if successful; otherwise 0.

If the container application was written with the Microsoft Foundation Class Library, this function is called
when the GetExtent member function of the corresponding COleClientItem object is called. The default
implementation does nothing. You must implement it yourself. Override this function if you want to perform
special processing when handling a request for the size of the OLE item.

Called by the framework to hide the OLE item.

The default calls COleServerDoc::OnShowDocument(FALSE) . The function also notifies the container that the
OLE item has been hidden. Override this function if you want to perform special processing when hiding an
OLE item.

COleServerItem::OnInitFromData

virtual BOOL OnInitFromData(
 COleDataObject* pDataObject,
 BOOL bCreation);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnOpen

virtual void OnOpen();

RemarksRemarks

COleServerItem::OnQueryUpdateItems

virtual BOOL OnQueryUpdateItems();

Called by the framework to initialize an OLE item using the contents of pDataObject.

pDataObject
Pointer to an OLE data object containing data in various formats for initializing the OLE item.

bCreation
TRUE if the function is called to initialize an OLE item being newly created by a container application. FALSE
if the function is called to replace the contents of an already existing OLE item.

Nonzero if successful; otherwise 0.

If bCreation is TRUE, this function is called if a container implements Insert New Object based on the current
selection. The data selected is used when creating the new OLE item. For example, when selecting a range of
cells in a spreadsheet program and then using the Insert New Object to create a chart based on the values in
the selected range. The default implementation does nothing. Override this function to choose an acceptable
format from those offered by pDataObject and initialize the OLE item based on the data provided. This is an
advanced overridable.

For more information, see IOleObject::InitFromData in the Windows SDK.

Called by the framework to display the OLE item in a separate instance of the server application, rather than
in place.

The default implementation activates the first frame window displaying the document that contains the OLE
item; if the application is a mini-server, the default implementation shows the main window. The function also
notifies the container that the OLE item has been opened.

Override this function if you want to perform special processing when opening an OLE item. This is especially
common with linked items where you want to set the selection to the link when it is opened.

For more information, see IOleClientSite::OnShowWindow in the Windows SDK.

Called by the framework to determine whether any linked items in the current server document are out of
date.

https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-initfromdata
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleclientsite-onshowwindow

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnRenderData

virtual BOOL OnRenderData(
 LPFORMATETC lpFormatEtc,
 LPSTGMEDIUM lpStgMedium);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnRenderFileData

virtual BOOL OnRenderFileData(
 LPFORMATETC lpFormatEtc,
 CFile* pFile);

ParametersParameters

Nonzero if the document has items needing updates; 0 if all items are up to date.

An item is out of date if its source document has been changed but the linked item has not been updated to
reflect the changes in the document.

Called by the framework to retrieve data in the specified format.

lpFormatEtc
Points to the FORMATETC structure specifying the format in which information is requested.

lpStgMedium
Points to a STGMEDIUM structure in which the data is to be returned.

Nonzero if successful; otherwise 0.

The specified format is one previously placed in the COleDataSource object using the DelayRenderData or
DelayRenderFileData member function for delayed rendering. The default implementation of this function
calls OnRenderFileData or OnRenderGlobalData, respectively, if the supplied storage medium is either a file
or memory. If neither of these formats is supplied, the default implementation returns 0 and does nothing.

If lpStgMedium-> tymed is TYMED_NULL, the STGMEDIUM should allocated and filled as specified by
lpFormatEtc->tymed. If not TYMED_NULL, the STGMEDIUM should be filled in place with the data.

This is an advanced overridable. Override this function to provide your data in the requested format and
medium. Depending on your data, you may want to override one of the other versions of this function instead.
If your data is small and fixed in size, override OnRenderGlobalData . If your data is in a file, or is of variable size,
override OnRenderFileData .

For more information, see IDataObject::GetData, STGMEDIUM, FORMATETC, and TYMED in the Windows
SDK.

Called by the framework to retrieve data in the specified format when the storage medium is a file.

lpFormatEtc
Points to the FORMATETC structure specifying the format in which information is requested.

pFile

https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-getdata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ne-objidl-tagtymed
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnRenderGlobalData

virtual BOOL OnRenderGlobalData(
 LPFORMATETC lpFormatEtc,
 HGLOBAL* phGlobal);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnSetColorScheme

Points to a CFile object in which the data is to be rendered.

Nonzero if successful; otherwise 0.

The specified format is one previously placed in the COleDataSource object using the DelayRenderData
member function for delayed rendering. The default implementation of this function simply returns FALSE.

This is an advanced overridable. Override this function to provide your data in the requested format and
medium. Depending on your data, you might want to override one of the other versions of this function
instead. If you want to handle multiple storage mediums, override OnRenderData. If your data is in a file, or is
of variable size, override OnRenderFileData.

For more information, see IDataObject::GetData and FORMATETC in the Windows SDK.

Called by the framework to retrieve data in the specified format when the specified storage medium is global
memory.

lpFormatEtc
Points to the FORMATETC structure specifying the format in which information is requested.

phGlobal
Points to a handle to global memory in which the data is to be returned. If no memory has been allocated, this
parameter can be NULL.

Nonzero if successful; otherwise 0.

The specified format is one previously placed in the COleDataSource object using the DelayRenderData
member function for delayed rendering. The default implementation of this function simply returns FALSE.

If phGlobal is NULL, then a new HGLOBAL should be allocated and returned in phGlobal. Otherwise, the
HGLOBAL specified by phGlobal should be filled with the data. The amount of data placed in the HGLOBAL
must not exceed the current size of the memory block. Also, the block cannot be reallocated to a larger size.

This is an advanced overridable. Override this function to provide your data in the requested format and
medium. Depending on your data, you may want to override one of the other versions of this function instead.
If you want to handle multiple storage mediums, override OnRenderData. If your data is in a file, or is of
variable size, override OnRenderFileData.

For more information, see IDataObject::GetData and FORMATETC in the Windows SDK.

Called by the framework to specify a color palette to be used when editing the OLE item.

https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-getdata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-idataobject-getdata
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc

virtual BOOL OnSetColorScheme(const LOGPALETTE* lpLogPalette);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnSetData

virtual BOOL OnSetData(
 LPFORMATETC lpFormatEtc,
 LPSTGMEDIUM lpStgMedium,
 BOOL bRelease);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnSetExtent

lpLogPalette
Pointer to a Windows LOGPALETTE structure.

Nonzero if the color palette is used; otherwise 0.

If the container application was written using the Microsoft Foundation Class Library, this function is called
when the IOleObject::SetColorScheme function of the corresponding COleClientItem object is called. The
default implementation returns FALSE. Override this function if you want to use the recommended palette.
The server application is not required to use the suggested palette.

For more information, see IOleObject::SetColorScheme in the Windows SDK.

Called by the framework to replace the OLE item's data with the specified data.

lpFormatEtc
Pointer to a FORMATETC structure specifying the format of the data.

lpStgMedium
Pointer to a STGMEDIUM structure in which the data resides.

bRelease
Indicates who has ownership of the storage medium after completing the function call. The caller decides who
is responsible for releasing the resources allocated on behalf of the storage medium. The caller does this by
setting bRelease. If bRelease is nonzero, the server item takes ownership, freeing the medium when it has
finished using it. When bRelease is 0, the caller retains ownership and the server item can use the storage
medium only for the duration of the call.

Nonzero if successful; otherwise 0.

The server item does not take ownership of the data until it has successfully obtained it. That is, it does not
take ownership if it returns 0. If the data source takes ownership, it frees the storage medium by calling the
ReleaseStgMedium function.

The default implementation does nothing. Override this function to replace the OLE item's data with the
specified data. This is an advanced overridable.

For more information, see STGMEDIUM, FORMATETC, and ReleaseStgMedium in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogpalette
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-setcolorscheme
https://docs.microsoft.com/windows/desktop/api/oleidl/nf-oleidl-ioleobject-setcolorscheme
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-releasestgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagstgmedium
https://docs.microsoft.com/windows/desktop/api/objidl/ns-objidl-tagformatetc
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-releasestgmedium

virtual BOOL OnSetExtent(
 DVASPECT nDrawAspect,
 const CSize& size);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleServerItem::OnShow

virtual void OnShow();

RemarksRemarks

COleServerItem::OnUpdate

Called by the framework to tell the OLE item how much space is available to it in the container document.

nDrawAspect
Specifies the aspect of the OLE item whose bounds are being specified. This parameter can have any of the
following values:

DVASPECT_CONTENT Item is represented in such a way that it can be displayed as an embedded
object inside its container.

DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation so that it can be displayed
in a browsing tool.

DVASPECT_ICON Item is represented by an icon.

DVASPECT_DOCPRINT Item is represented as if it were printed using the Print command from the
File menu.

size
A CSize structure specifying the new size of the OLE item.

Nonzero if successful; otherwise 0.

If the container application was written with the Microsoft Foundation Class Library, this function is called
when the SetExtent member function of the corresponding COleClientItem object is called. The default
implementation sets the m_sizeExtent member to the specified size if nDrawAspect is DVASPECT_CONTENT;
otherwise it returns 0. Override this function to perform special processing when you change the size of the
item.

Called by the framework to instruct the server application to display the OLE item in place.

This function is typically called when the user of the container application creates an item or executes a verb,
such as Edit, that requires the item to be shown. The default implementation attempts in-place activation. If
this fails, the function calls the OnOpen member function to display the OLE item in a separate window.

Override this function if you want to perform special processing when an OLE item is shown.

Called by the framework when an item has been modified.

virtual void OnUpdate(
 COleServerItem* pSender,
 LPARAM lHint,
 CObject* pHint,
 DVASPECT nDrawAspect);

ParametersParameters

RemarksRemarks

COleServerItem::OnUpdateItems

virtual void OnUpdateItems();

RemarksRemarks

COleServerItem::SetItemName

void SetItemName(LPCTSTR lpszItemName);

ParametersParameters

RemarksRemarks

pSender
Pointer to the item that modified the document. Can be NULL.

lHint
Contains information about the modification.

pHint
Pointer to an object storing information about the modification.

nDrawAspect
A value from the DVASPECT enumeration. This parameter can have any one of the following values:

DVASPECT_CONTENT Item is represented in such a way that it can be displayed as an embedded
object inside its container.

DVASPECT_THUMBNAIL Item is rendered in a "thumbnail" representation so that it can be displayed
in a browsing tool.

DVASPECT_ICON Item is represented by an icon.

DVASPECT_DOCPRINT Item is represented as if it were printed using the Print command from the
File menu.

The default implementation calls NotifyChanged, regardless of the hint or sender.

Called by the framework to update all items in the server document.

The default implementation calls UpdateLink for all COleClientItem objects in the document.

Call this function when you create a linked item to set its name.

lpszItemName
Pointer to the new name of the item.

The name must be unique within the document. When a server application is called to edit a linked item, the

See also

application uses this name to find the item. You do not need to call this function for embedded items.

MFC Sample HIERSVR
CDocItem Class
Hierarchy Chart
COleClientItem Class
COleServerDoc Class
COleTemplateServer Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleStreamFile Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class COleStreamFile : public CFile

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleStreamFile::COleStreamFile Constructs a COleStreamFile object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleStreamFile::Attach Associates a stream with the object.

COleStreamFile::CreateMemoryStream Creates a stream from global memory and associates it with
the object.

COleStreamFile::CreateStream Creates a stream and associates it with the object.

COleStreamFile::Detach Disassociates the stream from the object.

COleStreamFile::GetStream Returns the current stream.

COleStreamFile::OpenStream Safely opens a stream and associates it with the object.

Remarks

Inheritance Hierarchy

Represents a stream of data (IStream) in a compound file as part of OLE Structured Storage.

An IStorage object must exist before the stream can be opened or created unless it is a memory stream.

COleStreamFile objects are manipulated exactly like CFile objects.

For more information about manipulating streams and storages, see the article Containers: Compound Files..

For more information, see IStream and IStorage in the Windows SDK.

CObject

CFile

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colestreamfile-class.md
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istorage

Requirements

COleStreamFile::Attach

void Attach(LPSTREAM lpStream);

ParametersParameters

RemarksRemarks

COleStreamFile::COleStreamFile

COleStreamFile(LPSTREAM lpStream = NULL);

ParametersParameters

RemarksRemarks

COleStreamFile::CreateMemoryStream

BOOL CreateMemoryStream(CFileException* pError = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleStreamFile

Header: afxole.h

Associates the supplied OLE stream with the COleStreamFile object.

lpStream
Points to the OLE stream (IStream) to be associated with the object. Cannot be NULL.

The object must not already be associated with an OLE stream.

For more information, see IStream in the Windows SDK.

Creates a COleStreamFile object.

lpStream
Pointer to the OLE stream to be associated with the object.

If lpStream is NULL, the object is not associated with an OLE stream, otherwise, the object is associated with
the supplied OLE stream.

For more information, see IStream in the Windows SDK.

Safely creates a new stream out of global, shared memory where a failure is a normal, expected condition.

pError
Points to a CFileException object or NULL that indicates the completion status of the create operation. Supply
this parameter if you want to monitor possible exceptions generated by attempting to create the stream.

Nonzero if the stream is created successfully; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream

COleStreamFile::CreateStream

BOOL CreateStream(
 LPSTORAGE lpStorage,
 LPCTSTR lpszStreamName,
 DWORD nOpenFlags = modeReadWrite|shareExclusive|modeCreate,
 CFileException* pError = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleStreamFile::Detach

LPSTREAM Detach();

Return ValueReturn Value

RemarksRemarks

COleStreamFile::GetStream

The memory is allocated by the OLE subsystem.

For more information, see CreateStreamOnHGlobal in the Windows SDK.

Safely creates a new stream in the supplied storage object where a failure is a normal, expected condition.

lpStorage
Points to the OLE storage object that contains the stream to be created. Cannot be NULL.

lpszStreamName
Name of the stream to be created. Cannot be NULL.

nOpenFlags
Access mode to use when opening the stream. Exclusive, read/write, and create modes are used by default. For
a complete list of the available modes, see CFile::CFile.

pError
Points to a CFileException object or NULL. Supply this parameter if you want to monitor possible exceptions
generated by attempting to create the stream.

Nonzero if the stream is created successfully; otherwise 0.

A file exception will be thrown if the open fails and pError is not NULL.

For more information, see IStorage::CreateStream in the Windows SDK.

Disassociates the stream from the object without closing the stream.

A pointer to the stream (IStream) that was associated with the object.

The stream must be closed in some other fashion before the program terminates.

For more information, see IStream in the Windows SDK.

Call this function to return a pointer to current stream.

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-createstreamonhglobal
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-istorage-createstream
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream

IStream* GetStream() const;

Return ValueReturn Value

COleStreamFile::OpenStream

BOOL OpenStream(
 LPSTORAGE lpStorage,
 LPCTSTR lpszStreamName,
 DWORD nOpenFlags = modeReadWrite|shareExclusive,
 CFileException* pError = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

A pointer to the current stream interface (IStream).

Opens an existing stream.

lpStorage
Points to the OLE storage object that contains the stream to be opened. Cannot be NULL.

lpszStreamName
Name of the stream to be opened. Cannot be NULL.

nOpenFlags
Access mode to use when opening the stream. Exclusive and read/write modes are used by default. For the
complete list of the available modes, see CFile::CFile.

pError
Points to a CFileException object or NULL. Supply this parameter if you want to monitor possible exceptions
generated by attempting to open the stream.

Nonzero if the stream is opened successfully; otherwise 0.

A file exception will be thrown if the open fails and pError is not NULL.

For more information, see IStorage::OpenStream in the Windows SDK.

CFile Class
Hierarchy Chart

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istream
https://docs.microsoft.com/windows/desktop/api/objidl/nf-objidl-istorage-openstream

COleTemplateServer Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class COleTemplateServer : public COleObjectFactory

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleTemplateServer::COleTemplateServer Constructs a COleTemplateServer object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleTemplateServer::ConnectTemplate Connects a document template to the underlying
COleObjectFactory object.

COleTemplateServer::Unregister Unregisters the associated document template.

COleTemplateServer::UpdateRegistry Registers the document type with the OLE system registry.

Remarks

Inheritance Hierarchy

Used for OLE visual editing servers, automation servers, and link containers (applications that support links to
embeddings).

This class is derived from the class COleObjectFactory; usually, you can use COleTemplateServer directly rather
than deriving your own class. COleTemplateServer uses a CDocTemplate object to manage the server documents.
Use COleTemplateServer when implementing a full server, that is, a server that can be run as a standalone
application. Full servers are typically multiple document interface (MDI) applications, although single document
interface (SDI) applications are supported. One COleTemplateServer object is needed for each type of server
document an application supports; that is, if your server application supports both worksheets and charts, you
must have two COleTemplateServer objects.

COleTemplateServer overrides the OnCreateInstance member function defined by COleObjectFactory . This
member function is called by the framework to create a C++ object of the proper type.

For more information about servers, see the article Servers: Implementing a Server.

CObject

CCmdTarget

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coletemplateserver-class.md

Requirements

COleTemplateServer::COleTemplateServer

COleTemplateServer();

RemarksRemarks

COleTemplateServer::ConnectTemplate

void ConnectTemplate(
 REFCLSID clsid,
 CDocTemplate* pDocTemplate,
 BOOL bMultiInstance);

ParametersParameters

RemarksRemarks

COleTemplateServer::Unregister

BOOL Unregister();

Return ValueReturn Value

RemarksRemarks

COleTemplateServer::UpdateRegistry

COleObjectFactory

COleTemplateServer

Header: afxdisp.h

Constructs a COleTemplateServer object.

For a brief description of the use of the COleTemplateServer class, see the COleLinkingDoc class overview.

Connects the document template pointed to by pDocTemplate to the underlying COleObjectFactory object.

clsid
Reference to the OLE class ID that the template requests.

pDocTemplate
Pointer to the document template.

bMultiInstance
Indicates whether a single instance of the application can support multiple instantiations. If TRUE, multiple
instances of the application are launched for each request to create an object.

For more information, see CLSID Key in the Windows SDK.

Unregisters the associated document template.

TRUE if successful; otherwise FALSE.

EnterRemarks

https://docs.microsoft.com/windows/desktop/com/clsid-key-hklm

void UpdateRegistry(
 OLE_APPTYPE nAppType = OAT_INPLACE_SERVER,
 LPCTSTR* rglpszRegister = NULL,
 LPCTSTR* rglpszOverwrite = NULL,
 BOOL bRegister = TRUE);

ParametersParameters

RemarksRemarks

See also

Loads file-type information from the document-template string and places that information in the OLE system
registry.

nAppType
A value from the OLE_APPTYPE enumeration, which is defined in AFXDISP.H. It can have any one of the
following values:

OAT_INPLACE_SERVER Server has full server user-interface.

OAT_SERVER Server supports only embedding.

OAT_CONTAINER Container supports links to embedded objects.

OAT_DISPATCH_OBJECT Object is IDispatch -capable.

OAT_DOC_OBJECT_SERVER Server supports both embedding and the Document Object component
model.

rglpszRegister
A list of entries that is written into the registry only if no entries exist.

rglpszOverwrite
A list of entries that is written into the registry regardless of whether any preceding entries exist.

bRegister
Determines whether the class is to be registered. If bRegister is TRUE, the class is registered with the system
registry. Otherwise, it unregisters the class.

The registration information is loaded by means of a call to CDocTemplate::GetDocString. The substrings
retrieved are those identified by the indexes regFileTypeId , regFileTypeName , and fileNewName , as described in
the GetDocString reference pages.

If the regFileTypeId substring is empty or if the call to GetDocString fails for any other reason, this function fails
and the file information is not entered in the registry.

The information in the arguments rglpszRegister and rglpszOverwrite is written to the registry through a call to
AfxOleRegisterServerClass. The default information, which is registered when the two arguments are NULL, is
suitable for most applications. For information on the structure of the information in these arguments, see
AfxOleRegisterServerClass .

For more information, see Implementing the IDispatch Interface.

MFC Sample HIERSVR
COleObjectFactory Class
Hierarchy Chart
COleServerDoc Class
COleServerItem Class

https://docs.microsoft.com/previous-versions/windows/desktop/automat/implementing-the-idispatch-interface
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleUpdateDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class COleUpdateDialog : public COleLinksDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleUpdateDialog::COleUpdateDialog Constructs a COleUpdateDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleUpdateDialog::DoModal Displays the Edit Links dialog box in an update mode.

Remarks

Inheritance Hierarchy

Requirements

COleUpdateDialog::COleUpdateDialog

Used for a special case of the OLE Edit Links dialog box, which should be used when you need to update only
existing linked or embedded objects in a document.

For more information regarding OLE-specific dialog boxes, see the article Dialog Boxes in OLE.

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

COleDialog

COleLinksDialog

COleUpdateDialog

Header: afxodlgs.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/coleupdatedialog-class.md

explicit COleUpdateDialog(
 COleDocument* pDoc,
 BOOL bUpdateLinks = TRUE,
 BOOL bUpdateEmbeddings = FALSE,
 CWnd* pParentWnd = NULL);

ParametersParameters

RemarksRemarks

COleUpdateDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

See also

Constructs a COleUpdateDialog object.

pDoc
Points to the document containing the links that may need updating.

bUpdateLinks
Flag that determines whether linked objects are to be updated.

bUpdateEmbeddings
Flag that determines whether embedded objects are to be updated.

pParentWnd
Points to the parent or owner window object (of type CWnd) to which the dialog object belongs. If it is NULL, the
parent window of the dialog box will be set to the main application window.

This function constructs only a COleUpdateDialog object. To display the dialog box, call DoModal. This class should
be used instead of COleLinksDialog when you want to update only existing linked or embedded items.

Displays the Edit Links dialog box in update mode.

Completion status for the dialog box. One of the following values:

IDOK if the dialog box returned successfully.

IDCANCEL if none of the linked or embedded items in the current document need updating.

IDABORT if an error occurred. If IDABORT is returned, call the COleDialog::GetLastError member function
to get more information about the type of error that occurred. For a listing of possible errors, see the
OleUIEditLinks function in the Windows SDK.

All links and/or embeddings are updated unless the user selects the Cancel button.

MFC Sample OCLIENT
COleLinksDialog Class
Hierarchy Chart
COleLinksDialog Class

https://docs.microsoft.com/windows/desktop/api/oledlg/nf-oledlg-oleuieditlinksa
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

COleVariant Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class COleVariant : public tagVARIANT

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleVariant::COleVariant Constructs a COleVariant object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleVariant::Attach Attaches a VARIANT to a COleVariant .

COleVariant::ChangeType Changes the variant type of this COleVariant object.

COleVariant::Clear Clears this COleVariant object.

COleVariant::Detach Detaches a VARIANT from a COleVariant and returns
the VARIANT.

COleVariant::GetByteArrayFromVariantArray Retrieves a byte array from an existing variant array.

COleVariant::SetString Sets the string to a particular type, typically ANSI.

Public OperatorsPublic Operators

NAME DESCRIPTION

COleVariant::operator LPCVARIANT Converts a COleVariant value into an LPCVARIANT .

COleVariant::operator LPVARIANT Converts a COleVariant object into an LPVARIANT .

COleVariant::operator = Copies a COleVariant value.

COleVariant::operator == Compares two COleVariant values.

Encapsulates the VARIANT data type.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/colevariant-class.md
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant

COleVariant::operator <<, >> Outputs a COleVariant value to CArchive or
CDumpContext and inputs a COleVariant object from
CArchive .

NAME DESCRIPTION

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

COleVariant::Attach

void Attach(VARIANT& varSrc);

ParametersParameters

RemarksRemarks

COleVariant::COleVariant

This data type is used in OLE automation. Specifically, the DISPPARAMS structure contains a pointer to an
array of VARIANT structures. A DISPPARAMS structure is used to pass parameters to IDispatch::Invoke.

This class is derived from the VARIANT structure. This means you can pass a COleVariant in a parameter that calls
for a VARIANT and that the data members of the VARIANT structure are accessible data members of COleVariant .

The two related MFC classes COleCurrency and COleDateTime encapsulate the variant data types
CURRENCY (VT_CY) and DATE (VT_DATE). The COleVariant class is used extensively in the DAO classes;
see these classes for typical usage of this class, for example CDaoQueryDef and CDaoRecordset.

For more information, see the VARIANT, CURRENCY, DISPPARAMS, and IDispatch::Invoke entries in the
Windows SDK.

For more information on the COleVariant class and its use in OLE automation, see "Passing Parameters in
OLE Automation" in the article Automation.

tagVARIANT

COleVariant

Header: afxdisp.h

Call this function to attach the given VARIANT object to the current COleVariant object.

varSrc
An existing VARIANT object to be attached to the current COleVariant object.

This function sets the VARTYPE of varSrc to VT_EMPTY.

For more information, see the VARIANT and VARENUM entries in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagdispparams
https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-invoke
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/windows/desktop/api/wtypes/ns-wtypes-tagcy
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagdispparams
https://docs.microsoft.com/windows/desktop/api/oaidl/nf-oaidl-idispatch-invoke
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-varenum

COleVariant();
COleVariant(const VARIANT& varSrc);
COleVariant(const COleVariant& varSrc);
COleVariant(LPCVARIANT pSrc);
COleVariant(LPCTSTR lpszSrc);
COleVariant(LPCTSTR lpszSrc, VARTYPE vtSrc);
COleVariant(CString& strSrc);
COleVariant(BYTE nSrc);
COleVariant(short nSrc, VARTYPE vtSrc = VT_I2);
COleVariant(long lSrc,VARTYPE vtSrc = VT_I4);
COleVariant(const COleCurrency& curSrc);
COleVariant(float fltSrc);
COleVariant(double dblSrc);
COleVariant(const COleDateTime& timeSrc);
COleVariant(const CByteArray& arrSrc);
COleVariant(const CLongBinary& lbSrc);
COleVariant(LPCITEMIDLIST pidl);

ParametersParameters

RemarksRemarks

Constructs a COleVariant object.

varSrc
An existing COleVariant or VARIANT object to be copied into the new COleVariant object.

pSrc
A pointer to a VARIANT object that will be copied into the new COleVariant object.

lpszSrc
A null-terminated string to be copied into the new COleVariant object.

vtSrc
The VARTYPE for the new COleVariant object.

strSrc
A CString object to be copied into the new COleVariant object.

nSrc, lSrc A numerical value to be copied into the new COleVariant object.

vtSrc
The VARTYPE for the new COleVariant object.

curSrc
A COleCurrency object to be copied into the new COleVariant object.

fltSrc, dblSrc
A numerical value to be copied into the new COleVariant object.

timeSrc
A COleDateTime object to be copied into the new COleVariant object.

arrSrc
A CByteArray object to be copied into the new COleVariant object.

lbSrc
A CLongBinary object to be copied into the new COleVariant object.

pidl
A pointer to a ITEMIDLIST structure to be copied into the new COleVariant object.

https://docs.microsoft.com/windows/desktop/api/shtypes/ns-shtypes-_itemidlist

COleVariant::ChangeType

void ChangeType(VARTYPE vartype, LPVARIANT pSrc = NULL);

ParametersParameters

RemarksRemarks

COleVariant::Clear

All these constructors create new COleVariant objects initialized to the specified value. A brief description of
each of these constructors follows.

COleVariant() Creates an empty COleVariant object, VT_EMPTY.

COleVariant(varSrc) Copies an existing VARIANT or COleVariant object. The variant type is
retained.

COleVariant(pSrc) Copies an existing VARIANT or COleVariant object. The variant type is retained.

COleVariant(lpszSrc) Copies a string into the new object, VT_BSTR (UNICODE).

COleVariant(lpszSrc , vtSrc) Copies a string into the new object. The parameter vtSrc must be
VT_BSTR (UNICODE) or VT_BSTRT (ANSI).

COleVariant(strSrc) Copies a string into the new object, VT_BSTR (UNICODE).

COleVariant(nSrc) Copies an 8-bit integer into the new object, VT_UI1.

COleVariant(nSrc , vtSrc) Copies a 16-bit integer (or Boolean value) into the new object. The
parameter vtSrc must be VT_I2 or VT_BOOL.

COleVariant(lSrc , vtSrc) Copies a 32-bit integer (or SCODE value) into the new object. The
parameter vtSrc must be VT_I4, VT_ERROR, or VT_BOOL.

COleVariant(curSrc) Copies a COleCurrency value into the new object, VT_CY.

COleVariant(fltSrc) Copies a 32-bit floating-point value into the new object, VT_R4.

COleVariant(dblSrc) Copies a 64-bit floating-point value into the new object, VT_R8.

COleVariant(timeSrc) Copies a COleDateTime value into the new object, VT_DATE.

COleVariant(arrSrc) Copies a CByteArray object into the new object, VT_EMPTY.

COleVariant(lbSrc) Copies a CLongBinary object into the new object, VT_EMPTY.

For more information on SCODE, see Structure of COM Error Codes in the Windows SDK.

Converts the type of variant value in this COleVariant object.

vartype
The VARTYPE for this COleVariant object.

pSrc
A pointer to the VARIANT object to be converted. If this value is NULL, this COleVariant object is used as
the source for the conversion.

For more information, see the VARIANT, VARENUM, and VariantChangeType entries in the Windows SDK.

Clears the VARIANT .

https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-varenum
https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-variantchangetype

void Clear();

RemarksRemarks

COleVariant::Detach

VARIANT Detach();

RemarksRemarks

NOTENOTE

COleVariant::GetByteArrayFromVariantArray

void GetByteArrayFromVariantArray(CByteArray& bytes);

ParametersParameters

COleVariant::operator LPCVARIANT

operator LPCVARIANT() const;

RemarksRemarks

COleVariant::operator LPVARIANT

operator LPVARIANT();

RemarksRemarks
C a u t i o nC a u t i o n

This sets the VARTYPE for this object to VT_EMPTY. The COleVariant destructor calls this function.

For more information, see the VARIANT , VARTYPE, and VariantClear entries in the Windows SDK.

Detaches the underlying VARIANT object from this COleVariant object.

This function sets the VARTYPE for this COleVariant object to VT_EMPTY.

After calling Detach , it is the caller's responsibility to call VariantClear on the resulting VARIANT structure.

For more information, see the VARIANT, VARENUM, and VariantClear entries in the Windows SDK.

Retrieves a byte array from an existing variant array

bytes
A reference to an existing CByteArray object.

This casting operator returns a VARIANT structure whose value is copied from this COleVariant object.

Call this casting operator to access the underlying VARIANT structure for this COleVariant object.

Changing the value in the VARIANT structure accessed by the pointer returned by this function will change

https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-varenum
https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-variantclear

COleVariant::operator =

const COleVariant& operator=(const VARIANT& varSrc);
const COleVariant& operator=(LPCVARIANT pSrc);
const COleVariant& operator=(const COleVariant& varSrc);
const COleVariant& operator=(const LPCTSTR lpszSrc);
const COleVariant& operator=(const CString& strSrc);
const COleVariant& operator=(BYTE nSrc);
const COleVariant& operator=(short nSrc);
const COleVariant& operator=(long lSrc);
const COleVariant& operator=(const COleCurrency& curSrc);
const COleVariant& operator=(float fltSrc);
const COleVariant& operator=(double dblSrc);
const COleVariant& operator=(const COleDateTime& dateSrc);
const COleVariant& operator=(const CByteArray& arrSrc);
const COleVariant& operator=(const CLongBinary& lbSrc);

RemarksRemarks

COleVariant::operator ==

the value of this COleVariant object.

These overloaded assignment operators copy the source value into this COleVariant object.

A brief description of each operator follows:

operator =(varSrc) Copies an existing VARIANT or COleVariant object into this object.

operator =(pSrc) Copies the VARIANT object accessed by pSrc into this object.

operator =(lpszSrc) Copies a null-terminated string into this object and sets the VARTYPE to
VT_BSTR.

operator =(strSrc) Copies a CString object into this object and sets the VARTYPE to VT_BSTR.

operator =(nSrc) Copies an 8- or 16-bit integer value into this object. If nSrc is an 8-bit value, the
VARTYPE of this is set to VT_UI1. If nSrc is a 16-bit value and the VARTYPE of this is VT_BOOL, it is
kept; otherwise, it is set to VT_I2.

operator =(lSrc) Copies a 32-bit integer value into this object. If the VARTYPE of this is VT_ERROR,
it is kept; otherwise, it is set to VT_I4.

operator =(curSrc) Copies a COleCurrency object into this object and sets the VARTYPE to VT_CY.

operator =(fltSrc) Copies a 32-bit floating-point value into this object and sets the VARTYPE to
VT_R4.

operator =(dblSrc) Copies a 64-bit floating-point value into this object and sets the VARTYPE to
VT_R8.

operator =(dateSrc) Copies a COleDateTime object into this object and sets the VARTYPE to
VT_DATE.

operator =(arrSrc) Copies a CByteArray object into this COleVariant object.

operator =(lbSrc) Copies a CLongBinary object into this COleVariant object.

For more information, see the VARIANT and VARENUM entries in the Windows SDK.

This operator compares two variant values and returns nonzero if they are equal; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-varenum

BOOL operator==(const VARIANT& varSrc) const;
BOOL operator==(LPCVARIANT pSrc) const;

COleVariant::operator <<, >>

friend CDumpContext& AFXAPI operator<<(
 CDumpContext& dc,
 OleVariant varSrc);

friend CArchive& AFXAPI operator<<(
 CArchive& ar,
 COleVariant varSrc);

friend CArchive& AFXAPI operator>>(
 CArchive& ar,
 COleVariant& varSrc);

RemarksRemarks

COleVariant::SetString

void SetString(LPCTSTR lpszSrc, VARTYPE vtSrc);

ParametersParameters

RemarksRemarks

See also

Outputs a COleVariant value to CArchive or CdumpContext and inputs a COleVariant object from CArchive .

The COleVariant insertion (<<) operator supports diagnostic dumping and storing to an archive. The
extraction (>>) operator supports loading from an archive.

Sets the string to a particular type.

lpszSrc
A null-terminated string to be copied into the new COleVariant object.

VtSrc
The VARTYPE for the new COleVariant object.

The parameter vtSrc must be VT_BSTR (UNICODE) or VT_BSTRT (ANSI). SetString is typically used to set
strings to ANSI, since the default for the COleVariant::COleVariant constructor with a string or string pointer
parameter and no VARTYPE is UNICODE.

A DAO recordset in a non-UNICODE build expects strings to be ANSI. Thus, for DAO functions that use
COleVariant objects, if you are not creating a UNICODE recordset, you must use the

COleVariant::COleVariant(lpszSrc , vtSrc) form of constructor with vtSrc set to VT_BSTRT (ANSI) or use
SetString with vtSrc set to VT_BSTRT to make ANSI strings. For example, the CDaoRecordset functions

CDaoRecordset::Seek and CDaoRecordset::SetFieldValue use COleVariant objects as parameters. These
objects must be ANSI if the DAO recordset is not UNICODE.

Hierarchy Chart

CPagerCtrl Class
3/5/2019 • 16 minutes to read • Edit Online

Syntax
class CPagerCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPagerCtrl::CPagerCtrl Constructs a CPagerCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CPagerCtrl::Create Creates a pager control with specified styles and attaches it to
the current CPagerCtrl object.

CPagerCtrl::CreateEx Creates a pager control with specified extended styles and
attaches it to the current CPagerCtrl object.

CPagerCtrl::ForwardMouse Enables or disables forwarding WM_MOUSEMOVE messages
to the window that is contained in the current pager control.

CPagerCtrl::GetBkColor Retrieves the background color of the current pager control.

CPagerCtrl::GetBorder Retrieves the border size of the current pager control.

CPagerCtrl::GetButtonSize Retrieves the button size of the current pager control.

CPagerCtrl::GetButtonState Retrieves the state of the specified button in the current pager
control.

CPagerCtrl::GetDropTarget Retrieves the IDropTarget interface for the current pager
control.

CPagerCtrl::GetScrollPos Retrieves the scroll position of the current pager control.

CPagerCtrl::IsButtonDepressed Indicates whether the specified button of the current pager
control is in pressed state.

The CPagerCtrl class wraps the Windows pager control, which can scroll into view a contained window that does
not fit the containing window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpagerctrl-class.md
https://docs.microsoft.com/windows/desktop/inputdev/wm-mousemove
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget

CPagerCtrl::IsButtonGrayed Indicates whether the specified button of the current pager
control is in grayed state.

CPagerCtrl::IsButtonHot Indicates whether the specified button of the current pager
control is in hot state.

CPagerCtrl::IsButtonInvisible Indicates whether the specified button of the current pager
control is in invisible state.

CPagerCtrl::IsButtonNormal Indicates whether the specified button of the current pager
control is in normal state.

CPagerCtrl::RecalcSize Causes the current pager control to recalculate the size of the
contained window.

CPagerCtrl::SetBkColor Sets the background color of the current pager control.

CPagerCtrl::SetBorder Sets the border size of the current pager control.

CPagerCtrl::SetButtonSize Sets the button size of the current pager control.

CPagerCtrl::SetChild Sets the contained window for the current pager control.

CPagerCtrl::SetScrollPos Sets the scroll position of the current pager control.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

A pager control is a window that contains another window that is linear and larger than the containing window,
and enables you to scroll the contained window into view. The pager control displays two scroll buttons that
automatically disappear when the contained window is scrolled to its farthest extent, and reappear otherwise. You
can create a pager control that scrolls either horizontally or vertically.

For example, if your application has a toolbar that is not wide enough to show all of its items, you can assign the
toolbar to a pager control and users will be able to scroll the toolbar to the left or right to access all of the items.
Microsoft Internet Explorer Version 4.0 (commctrl.dll version 4.71) introduces the pager control.

The CPagerCtrl class is derived from the CWnd class. For more information and an illustration of a pager control,
see Pager Controls.

CObject

CCmdTarget

CWnd

CPagerCtrl

Header: afxcmn.h

https://docs.microsoft.com/windows/desktop/Controls/pager-controls

CPagerCtrl::CPagerCtrl

CPagerCtrl();

RemarksRemarks

CPagerCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

PARAMETER DESCRIPTION

dwStyle [in] A bitwise combination (OR) of window styles and pager
control styles to be applied to the control.

rect [in] A reference to a RECT structure that contains the position
and size of the control in client coordinates.

pParentWnd [in] A pointer to a CWnd object that is the parent window of
the control. This parameter cannot be NULL.

nID [in] The ID of the control.

Return ValueReturn Value

RemarksRemarks

ExampleExample

Constructs a CPagerCtrl object.

Use the CPagerCtrl::Create or CPagerCtrl::CreateEx method to create a pager control and attach it to the
CPagerCtrl object.

Creates a pager control with specified styles and attaches it to the current CPagerCtrl object.

TRUE if this method is successful; otherwise, FALSE.

To create a pager control, declare a CPagerCtrl variable, then call the CPagerCtrl::Create or CPagerCtrl::CreateEx
method on that variable.

The following example creates a pager control, then uses the CPagerCtrl::SetChild method to associate a very long
button control with the pager control. The example then uses the CPagerCtrl::SetButtonSize method to set the
height of the pager control to 20 pixels, and the CPagerCtrl::SetBorder method to set the border thickness to 1
pixel.

https://docs.microsoft.com/windows/desktop/Controls/pager-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

// Initialize the dropdown menu of the splitbutton control.
m_splitButton.SetDropDownMenu(IDR_MENU1, 0);

// Create the pager control.
BOOL nRet;
CRect rect;
GetClientRect(&rect);
nRet = m_pager.Create(
 (WS_VISIBLE | WS_CHILD | PGS_HORZ),
 CRect(rect.Width()/4, 5, (rect.Width() * 3)/4, 55),
 this,
 IDC_PAGER1);

m_pager.GetClientRect(&rect);
nRet = m_button.Create(
 _T("This is a very, very long button. 012345678901234567890"),
 (WS_VISIBLE | WS_CHILD), // Do not use CCS_NORESIZE.
 CRect(0,0,rect.Width(),30),
 &m_pager, IDC_BUTTON1);

m_pager.SetChild(m_button.m_hWnd);
m_pager.SetButtonSize(20);
m_pager.SetBorder(1);

CPagerCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

PARAMETER DESCRIPTION

dwExStyle [in] A bitwise combination of extended styles to be applied to
the control. For more information, see the dwExStyle
parameter of the CreateWindowEx function.

dwStyle [in] A bitwise combination (OR) of window styles and pager
control styles to be applied to the control.

rect [in] A reference to a RECT structure that contains the position
and size of the control in client coordinates.

pParentWnd [in] A pointer to a CWnd object that is the parent window of
the control. This parameter cannot be NULL.

nID [in] The ID of the control.

Return ValueReturn Value

RemarksRemarks

Creates a pager control with specified extended styles and attaches it to the current CPagerCtrl object.

TRUE if this method is successful; otherwise, FALSE.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/pager-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

CPagerCtrl::ForwardMouse

void ForwardMouse(BOOL bForward);

ParametersParameters

PARAMETER DESCRIPTION

bForward [in] TRUE to forward mouse messages, or FALSE to not
forward mouse messages.

RemarksRemarks

CPagerCtrl::GetBorder

int GetBorder() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CCSplitButton_s2Dlg::OnXBorder()
{
 int borderSize = m_pager.GetBorder();
 CString str;
 str.Format(_T("The border is %d pixel(s) thick."), borderSize);
 MessageBox(str);
}

CPagerCtrl::GetBkColor

COLORREF GetBkColor() const;

Return ValueReturn Value

To create a pager control, declare a CPagerCtrl variable, then call the CPagerCtrl::Create or CPagerCtrl::CreateEx
method on that variable.

Enables or disables forwarding WM_MOUSEMOVE messages to the window that is contained in the current
pager control.

This method sends the PGM_FORWARDMOUSE message, which is described in the Windows SDK.

Retrieves the border size of the current pager control.

The current border size, measured in pixels.

This method sends the PGM_GETBORDER message, which is described in the Windows SDK.

The following example uses the CPagerCtrl::GetBorder method to retrieve the thickness of the pager control's
border.

Retrieves the background color of the current pager control.

A COLORREF value that contains the current background color of the pager control.

https://docs.microsoft.com/windows/desktop/inputdev/wm-mousemove
https://docs.microsoft.com/windows/desktop/Controls/pgm-forwardmouse
https://docs.microsoft.com/windows/desktop/Controls/pgm-getborder
https://docs.microsoft.com/windows/desktop/gdi/colorref

RemarksRemarks

ExampleExample

void CCSplitButton_s2Dlg::OnXColor()
{
 COLORREF originalColor;
 // Set color to red.
 originalColor = m_pager.SetBkColor(RGB(255,0,0));
 if (m_pager.GetBkColor() != RGB(255,0,0))
 {
 MessageBox(_T("Control did not return RED as the previous color."));
 }
 // The following statement is one way to restore the color.
 // m_pager.SetBkColor(originalColor);
}

CPagerCtrl::GetButtonSize

int GetButtonSize() const;

Return ValueReturn Value

RemarksRemarks

CPagerCtrl::GetButtonState

DWORD GetButtonState(int iButton) const;

ParametersParameters

PARAMETER DESCRIPTION

iButton [in] Indicates the button for which the state is retrieved. If the
pager control style is PGS_HORZ, specify PGB_TOPORLEFT for
the left button and PGB_BOTTOMORRIGHT for the right
button. If the pager control style is PGS_VERT, specify
PGB_TOPORLEFT for the top button and
PGB_BOTTOMORRIGHT for the bottom button. For more
information, see Pager Control Styles.

Return ValueReturn Value

This method sends the PGM_GETBKCOLOR message, which is described in the Windows SDK.

The following example uses the CPagerCtrl::SetBkColor method to set the background color of the pager control
to red, and the CPagerCtrl::GetBkColor method to confirm that the change was made.

Retrieves the button size of the current pager control.

The current button size, measured in pixels.

This method sends the PGM_GETBUTTONSIZE message, which is described in the Windows SDK.

If the pager control has the PGS_HORZ style, the button size determines the width of the pager buttons, and if the
pager control has the PGS_VERT style, the button size determines the height of the pager buttons. For more
information, see Pager Control Styles.

Retrieves the state of the specified scroll button in the current pager control.

https://docs.microsoft.com/windows/desktop/Controls/pgm-getbkcolor
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonsize
https://docs.microsoft.com/windows/desktop/Controls/pager-control-styles
https://docs.microsoft.com/windows/desktop/Controls/pager-control-styles

RemarksRemarks

CPagerCtrl::GetDropTarget

IDropTarget* GetDropTarget() const;

Return ValueReturn Value

RemarksRemarks

CPagerCtrl::GetScrollPos

int GetScrollPos() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CCSplitButton_s2Dlg::OnXScrollposition()
{
 int pos;
 CString str;
 pos = m_pager.GetScrollPos();
 if (pos != 0)
 m_pager.SetScrollPos(0);
 str.Format(_T("Old position = %d; new position = 0"), pos);
 MessageBox(str);
}

CPagerCtrl::IsButtonDepressed

The state of the button specified by the iButton parameter. The state is either PGF_INVISIBLE, PGF_NORMAL,
PGF_GRAYED, PGF_DEPRESSED, or PGF_HOT. For more information, see the Return Value section of the
PGM_GETBUTTONSTATE message.

This method sends the PGM_GETBUTTONSTATE message, which is described in the Windows SDK.

Retrieves the IDropTarget interface for the current pager control.

A pointer to the IDropTarget interface for the current pager control.

IDropTarget is one of the interfaces you implement to support drag-and-drop operations in your application.

This method sends the PGM_GETDROPTARGET message, which is described in the Windows SDK. The caller of
this method is responsible for calling the Release member of the IDropTarget interface when the interface is no
longer needed.

Retrieves the scroll position of the current pager control.

The current scroll position, measured in pixels.

This method sends the PGM_GETPOS message, which is described in the Windows SDK.

The following example uses the CPagerCtrl::GetScrollPos method to retrieve the current scroll position of the
pager control. If the pager control is not already scrolled to zero, the leftmost position, the example uses the
CPagerCtrl::SetScrollPos method to set the scroll position to zero.

Indicates whether the specified scroll button of the current pager control is in pressed state.

https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget
https://docs.microsoft.com/windows/desktop/Controls/pgm-getdroptarget
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget
https://docs.microsoft.com/windows/desktop/Controls/pgm-getpos

BOOL IsButtonDepressed(int iButton) const;

ParametersParameters

PARAMETER DESCRIPTION

iButton [in] Indicates the button for which the state is retrieved. If the
pager control style is PGS_HORZ, specify PGB_TOPORLEFT for
the left button and PGB_BOTTOMORRIGHT for the right
button. If the pager control style is PGS_VERT, specify
PGB_TOPORLEFT for the top button and
PGB_BOTTOMORRIGHT for the bottom button. For more
information, see Pager Control Styles.

Return ValueReturn Value

RemarksRemarks

CPagerCtrl::IsButtonGrayed

BOOL IsButtonGrayed(int iButton) const;

ParametersParameters

PARAMETER DESCRIPTION

iButton [in] Indicates the button for which the state is retrieved. If the
pager control style is PGS_HORZ, specify PGB_TOPORLEFT for
the left button and PGB_BOTTOMORRIGHT for the right
button. If the pager control style is PGS_VERT, specify
PGB_TOPORLEFT for the top button and
PGB_BOTTOMORRIGHT for the bottom button. For more
information, see Pager Control Styles.

Return ValueReturn Value

RemarksRemarks

CPagerCtrl::IsButtonHot

BOOL IsButtonHot(int iButton) const;

TRUE if the specified button is in pressed state; otherwise, FALSE.

This method sends the PGM_GETBUTTONSTATE message, which is described in the Windows SDK. It then tests
whether the state that is returned is PGF_DEPRESSED. For more information, see the Return Value section of the
PGM_GETBUTTONSTATE message.

Indicates whether the specified scroll button of the current pager control is in grayed state.

TRUE if the specified button is in grayed state; otherwise, FALSE.

This method sends the PGM_GETBUTTONSTATE message, which is described in the Windows SDK. It then tests
whether the state that is returned is PGF_GRAYED. For more information, see the Return Value section of the
PGM_GETBUTTONSTATE message.

Indicates whether the specified scroll button of the current pager control is in hot state.

https://docs.microsoft.com/windows/desktop/Controls/pager-control-styles
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate
https://docs.microsoft.com/windows/desktop/Controls/pager-control-styles
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate

ParametersParameters

PARAMETER DESCRIPTION

iButton [in] Indicates the button for which the state is retrieved. If the
pager control style is PGS_HORZ, specify PGB_TOPORLEFT for
the left button and PGB_BOTTOMORRIGHT for the right
button. If the pager control style is PGS_VERT, specify
PGB_TOPORLEFT for the top button and
PGB_BOTTOMORRIGHT for the bottom button. For more
information, see Pager Control Styles.

Return ValueReturn Value

RemarksRemarks

CPagerCtrl::IsButtonInvisible

BOOL IsButtonInvisible(int iButton) const;

ParametersParameters

PARAMETER DESCRIPTION

iButton [in] Indicates the button for which the state is retrieved. If the
pager control style is PGS_HORZ, specify PGB_TOPORLEFT for
the left button and PGB_BOTTOMORRIGHT for the right
button. If the pager control style is PGS_VERT, specify
PGB_TOPORLEFT for the top button and
PGB_BOTTOMORRIGHT for the bottom button. For more
information, see Pager Control Styles.

Return ValueReturn Value

RemarksRemarks

ExampleExample

TRUE if the specified button is in hot state; otherwise, FALSE.

This method sends the PGM_GETBUTTONSTATE message, which is described in the Windows SDK. It then tests
whether the state that is returned is PGF_HOT. For more information, see the Return Value section of the
PGM_GETBUTTONSTATE message.

Indicates whether the specified scroll button of the current pager control is in invisible state.

TRUE if the specified button is in invisible state; otherwise, FALSE.

Windows makes the scroll button in a particular direction invisible when the contained window is scrolled to its
farthest extent because clicking the button further cannot bring more of the contained window into view.

This method sends the PGM_GETBUTTONSTATE message, which is described in the Windows SDK. It then tests
whether the state that is returned is PGF_INVISIBLE. For more information, see the Return Value section of the
PGM_GETBUTTONSTATE message.

The following example uses the CPagerCtrl::IsButtonInvisible method to determine whether the pager control's left
and right scroll buttons are visible.

https://docs.microsoft.com/windows/desktop/Controls/pager-control-styles
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate
https://docs.microsoft.com/windows/desktop/Controls/pager-control-styles
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate

void CCSplitButton_s2Dlg::OnXIsbuttoninvisible()
{
 BOOL bLeft = m_pager.IsButtonInvisible(PGB_TOPORLEFT);
 BOOL bRight = m_pager.IsButtonInvisible(PGB_BOTTOMORRIGHT);
 CString str;
 str.Format(_T("The left button is%s visible; the right button is%s visible."),
 (bLeft ? _T(" not"):_T("")),
 (bRight ? _T(" not"):_T("")));
 MessageBox(str);
}

CPagerCtrl::IsButtonNormal

BOOL IsButtonNormal(int iButton) const;

ParametersParameters

PARAMETER DESCRIPTION

iButton [in] Indicates the button for which the state is retrieved. If the
pager control style is PGS_HORZ, specify PGB_TOPORLEFT for
the left button and PGB_BOTTOMORRIGHT for the right
button. If the pager control style is PGS_VERT, specify
PGB_TOPORLEFT for the top button and
PGB_BOTTOMORRIGHT for the bottom button. For more
information, see Pager Control Styles.

Return ValueReturn Value

RemarksRemarks

CPagerCtrl::RecalcSize

void RecalcSize();

RemarksRemarks

ExampleExample

Indicates whether the specified scroll button of the current pager control is in normal state.

TRUE if the specified button is in normal state; otherwise, FALSE.

This method sends the PGM_GETBUTTONSTATE message, which is described in the Windows SDK. It then tests
whether the state that is returned is PGF_NORMAL. For more information, see the Return Value section of the
PGM_GETBUTTONSTATE message.

Causes the current pager control to recalculate the size of the contained window.

This method sends the PGM_RECALCSIZE message, which is described in the Windows SDK. Consequently, the
pager control sends the PGN_CALCSIZE notification to obtain the scrollable dimensions of the contained window.

The following example uses the CPagerCtrl::RecalcSize method to request the current pager control to recalculate
its size.

https://docs.microsoft.com/windows/desktop/Controls/pager-control-styles
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate
https://docs.microsoft.com/windows/desktop/Controls/pgm-getbuttonstate
https://docs.microsoft.com/windows/desktop/Controls/pgm-recalcsize
https://docs.microsoft.com/windows/desktop/Controls/pgn-calcsize

void CCSplitButton_s2Dlg::OnXRecalcsize()
{
 // If the child control changes size, call RecalcSize() to change
 // the size of the pager control accordingly.
 m_pager.RecalcSize();
 MessageBox(_T("The pager control size has been recalculated."));
}

ExampleExample

BEGIN_MESSAGE_MAP(CMyPagerCtrl, CPagerCtrl)
 ON_NOTIFY_REFLECT(PGN_CALCSIZE, &CMyPagerCtrl::OnCalcSize)
END_MESSAGE_MAP()

// CMyPagerCtrl message handlers
void CMyPagerCtrl::OnCalcSize(NMHDR* code, LRESULT* param)
{
// If the control contained in the pager control changes size, use this
// handler to change the size of the pager control accordingly.

 LPNMPGCALCSIZE tmp = (LPNMPGCALCSIZE)code;
 *param = 0;
 tmp->iWidth = 500;
 tmp->iHeight = 50;
}

CPagerCtrl::SetBkColor

COLORREF SetBkColor(COLORREF clrBk);

ParametersParameters

PARAMETER DESCRIPTION

clrBk [in] A COLORREF value that contains the new background
color of the pager control.

Return ValueReturn Value

RemarksRemarks

ExampleExample

The following example uses message reflection to enable the pager control to recalculate its own size instead of
requiring the control's parent dialog to perform the calculation. The example derives the MyPagerCtrl class from
the CPagerCtrl class, then uses a message map to associate the PGN_CALCSIZE notification with the OnCalcsize

notification handler. In this example, the notification handler sets the width and height of the pager control to fixed
values.

Sets the background color of the current pager control.

A COLORREF value that contains the previous background color of the pager control.

This method sends the PGM_SETBKCOLOR message, which is described in the Windows SDK.

The following example uses the CPagerCtrl::SetBkColor method to set the background color of the pager control
to red, and the CPagerCtrl::GetBkColor method to confirm that the change was made.

https://docs.microsoft.com/windows/desktop/Controls/pgn-calcsize
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/pgm-setbkcolor

void CCSplitButton_s2Dlg::OnXColor()
{
 COLORREF originalColor;
 // Set color to red.
 originalColor = m_pager.SetBkColor(RGB(255,0,0));
 if (m_pager.GetBkColor() != RGB(255,0,0))
 {
 MessageBox(_T("Control did not return RED as the previous color."));
 }
 // The following statement is one way to restore the color.
 // m_pager.SetBkColor(originalColor);
}

CPagerCtrl::SetBorder

int SetBorder(int iBorder);

ParametersParameters

PARAMETER DESCRIPTION

iBorder [in] The new border size, measured in pixels. If the iBorder
parameter is negative, the border size is set to zero.

Return ValueReturn Value

RemarksRemarks

ExampleExample

Sets the border size of the current pager control.

The previous border size, measured in pixels.

This method sends the PGM_SETBORDER message, which is described in the Windows SDK.

The following example creates a pager control, then uses the CPagerCtrl::SetChild method to associate a very long
button control with the pager control. The example then uses the CPagerCtrl::SetButtonSize method to set the
height of the pager control to 20 pixels, and the CPagerCtrl::SetBorder method to set the border thickness to 1
pixel.

https://docs.microsoft.com/windows/desktop/Controls/pgm-setborder

// Initialize the dropdown menu of the splitbutton control.
m_splitButton.SetDropDownMenu(IDR_MENU1, 0);

// Create the pager control.
BOOL nRet;
CRect rect;
GetClientRect(&rect);
nRet = m_pager.Create(
 (WS_VISIBLE | WS_CHILD | PGS_HORZ),
 CRect(rect.Width()/4, 5, (rect.Width() * 3)/4, 55),
 this,
 IDC_PAGER1);

m_pager.GetClientRect(&rect);
nRet = m_button.Create(
 _T("This is a very, very long button. 012345678901234567890"),
 (WS_VISIBLE | WS_CHILD), // Do not use CCS_NORESIZE.
 CRect(0,0,rect.Width(),30),
 &m_pager, IDC_BUTTON1);

m_pager.SetChild(m_button.m_hWnd);
m_pager.SetButtonSize(20);
m_pager.SetBorder(1);

CPagerCtrl::SetButtonSize

int SetButtonSize(int iButtonSize);

ParametersParameters

PARAMETER DESCRIPTION

iButtonSize [in] The new button size, measured in pixels.

Return ValueReturn Value

RemarksRemarks

ExampleExample

Sets the button size of the current pager control.

The previous button size, measured in pixels.

This method sends the PGM_SETBUTTONSIZE message, which is described in the Windows SDK.

If the pager control has the PGS_HORZ style, the button size determines the width of the pager buttons, and if the
pager control has the PGS_VERT style, the button size determines the height of the pager buttons. The default
button size is three-fourths of the width of the scroll bar, and the minimum button size is 12 pixels. For more
information, see Pager Control Styles.

The following example creates a pager control, then uses the CPagerCtrl::SetChild method to associate a very long
button control with the pager control. The example then uses the CPagerCtrl::SetButtonSize method to set the
height of the pager control to 20 pixels, and the CPagerCtrl::SetBorder method to set the border thickness to 1
pixel.

https://docs.microsoft.com/windows/desktop/Controls/pgm-setpos
https://docs.microsoft.com/windows/desktop/Controls/pager-control-styles

// Initialize the dropdown menu of the splitbutton control.
m_splitButton.SetDropDownMenu(IDR_MENU1, 0);

// Create the pager control.
BOOL nRet;
CRect rect;
GetClientRect(&rect);
nRet = m_pager.Create(
 (WS_VISIBLE | WS_CHILD | PGS_HORZ),
 CRect(rect.Width()/4, 5, (rect.Width() * 3)/4, 55),
 this,
 IDC_PAGER1);

m_pager.GetClientRect(&rect);
nRet = m_button.Create(
 _T("This is a very, very long button. 012345678901234567890"),
 (WS_VISIBLE | WS_CHILD), // Do not use CCS_NORESIZE.
 CRect(0,0,rect.Width(),30),
 &m_pager, IDC_BUTTON1);

m_pager.SetChild(m_button.m_hWnd);
m_pager.SetButtonSize(20);
m_pager.SetBorder(1);

CPagerCtrl::SetChild

void SetChild(HWND hwndChild);

ParametersParameters

PARAMETER DESCRIPTION

hwndChild [in] Handle to the window to be contained.

RemarksRemarks

ExampleExample

Sets the contained window for the current pager control.

This method sends the PGM_SETCHILD message, which is described in the Windows SDK.

This method does not change the parent of the contained window; it only assigns a window handle to the pager
control for scrolling. In most cases, the contained window will be a child window of the pager control.

The following example creates a pager control, then uses the CPagerCtrl::SetChild method to associate a very long
button control with the pager control. The example then uses the CPagerCtrl::SetButtonSize method to set the
height of the pager control to 20 pixels, and the CPagerCtrl::SetBorder method to set the border thickness to 1
pixel.

https://docs.microsoft.com/windows/desktop/Controls/pgm-setchild

// Initialize the dropdown menu of the splitbutton control.
m_splitButton.SetDropDownMenu(IDR_MENU1, 0);

// Create the pager control.
BOOL nRet;
CRect rect;
GetClientRect(&rect);
nRet = m_pager.Create(
 (WS_VISIBLE | WS_CHILD | PGS_HORZ),
 CRect(rect.Width()/4, 5, (rect.Width() * 3)/4, 55),
 this,
 IDC_PAGER1);

m_pager.GetClientRect(&rect);
nRet = m_button.Create(
 _T("This is a very, very long button. 012345678901234567890"),
 (WS_VISIBLE | WS_CHILD), // Do not use CCS_NORESIZE.
 CRect(0,0,rect.Width(),30),
 &m_pager, IDC_BUTTON1);

m_pager.SetChild(m_button.m_hWnd);
m_pager.SetButtonSize(20);
m_pager.SetBorder(1);

CPagerCtrl::SetScrollPos

void SetScrollPos(int iPos);

ParametersParameters

PARAMETER DESCRIPTION

iPos [in] The new scroll position, measured in pixels.

RemarksRemarks

See also

Sets the scroll position of the current pager control.

This method sends the PGM_SETPOS message, which is described in the Windows SDK.

CPagerCtrl Class
Hierarchy Chart
Pager Controls

https://docs.microsoft.com/windows/desktop/Controls/pgm-setpos
https://docs.microsoft.com/windows/desktop/Controls/pager-controls

CPageSetupDialog Class
3/4/2019 • 9 minutes to read • Edit Online

Syntax
class CPageSetupDialog : public CCommonDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPageSetupDialog::CPageSetupDialog Constructs a CPageSetupDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

CPageSetupDialog::CreatePrinterDC Creates a device context for printing.

CPageSetupDialog::DoModal Displays the dialog box and allows the user make a selection.

CPageSetupDialog::GetDeviceName Returns the device name of the printer.

CPageSetupDialog::GetDevMode Returns the current DEVMODE of the printer.

CPageSetupDialog::GetDriverName Returns the driver used by the printer.

CPageSetupDialog::GetMargins Returns the current margin settings of the printer.

CPageSetupDialog::GetPaperSize Returns the paper size of the printer.

CPageSetupDialog::GetPortName Returns the output port name.

CPageSetupDialog::OnDrawPage Called by the framework to render a screen image of a
printed page.

CPageSetupDialog::PreDrawPage Called by the framework before rendering a screen image of a
printed page.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CPageSetupDialog::m_psd A structure used to customize a CPageSetupDialog object.

Encapsulates the services provided by the Windows common OLE Page Setup dialog box with additional support
for setting and modifying print margins.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpagesetupdialog-class.md

NAME DESCRIPTION

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

CPageSetupDialog::CPageSetupDialog

CPageSetupDialog(
 DWORD dwFlags = PSD_MARGINS | PSD_INWININIINTLMEASURE,
 CWnd* pParentWnd = NULL);

ParametersParameters

This class is designed to take the place of the Print Setup dialog box.

To use a CPageSetupDialog object, first create the object using the CPageSetupDialog constructor. Once the dialog
box has been constructed, you can set or modify any values in the m_psd data member to initialize the values of
the dialog box's controls. The m_psd structure is of type PAGESETUPDLG.

After initializing the dialog box controls, call the DoModal member function to display the dialog box and allow the
user to select print options. DoModal returns whether the user selected the OK (IDOK) or Cancel (IDCANCEL)
button.

If DoModal returns IDOK, you can use several of CPageSetupDialog 's member functions, or access the m_psd data
member, to retrieve information input by the user.

After the common OLE Page Setup dialog box is dismissed, any changes made by the user will not be saved by the
framework. It is up to the application itself to save any values from this dialog box to a permanent location, such as member
of the application's document or application class.

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

CPageSetupDialog

Header: afxdlgs.h

Call this function to construct a CPageSetupDialog object.

dwFlags
One or more flags you can use to customize the settings of the dialog box. The values can be combined using the
bitwise-OR operator. These values have the following meanings:

RemarksRemarks

ExampleExample

PSD_DEFAULTMINMARGINS Sets the minimum allowable widths for the page margins to be the same as
the printer's minimums. This flag is ignored if the PSD_MARGINS and PSD_MINMARGINS flags are also
specified.

PSD_INWININIINTLMEASURE Not implemented.

PSD_MINMARGINS Causes the system to use the values specified in the rtMinMargin member as the
minimum allowable widths for the left, top, right, and bottom margins. The system prevents the user from
entering a width that is less than the specified minimum. If PSD_MINMARGINS is not specified, the
system sets the minimum allowable widths to those allowed by the printer.

PSD_MARGINS Activates the margin control area.

PSD_INTHOUSANDTHSOFINCHES Causes the units of the dialog box to be measured in 1/1000 of an
inch.

PSD_INHUNDREDTHSOFMILLIMETERS Causes the units of the dialog box to be measured in 1/100 of a
millimeter.

PSD_DISABLEMARGINS Disables the margin dialog box controls.

PSD_DISABLEPRINTER Disables the Printer button.

PSD_NOWARNING Prevents the warning message from being displayed when there is no default printer.

PSD_DISABLEORIENTATION Disables the page orientation dialog control.

PSD_RETURNDEFAULT Causes CPageSetupDialog to return DEVMODE and DEVNAMES structures that
are initialized for the system default printer without displaying a dialog box. It is assumed that both
hDevNames and hDevMode are NULL; otherwise, the function returns an error. If the system default printer is

supported by an old printer driver (earlier than Windows version 3.0), only hDevNames is returned;
hDevMode is NULL.

PSD_DISABLEPAPER Disables the paper selection control.

PSD_SHOWHELP Causes the dialog box to show the Help button. The hwndOwner member must not be
NULL if this flag is specified.

PSD_ENABLEPAGESETUPHOOK Enables the hook function specified in lpfnSetupHook .

PSD_ENABLEPAGESETUPTEMPLATE Causes the operating system to create the dialog box by using the
dialog template box identified by hInstance and lpSetupTemplateName .

PSD_ENABLEPAGESETUPTEMPLATEHANDLE Indicates that hInstance identifies a data block that
contains a preloaded dialog box template. The system ignores lpSetupTemplateName if this flag is specified.

PSD_ENABLEPAGEPAINTHOOK Enables the hook function specified in lpfnPagePaintHook .

PSD_DISABLEPAGEPAINTING Disables the draw area of the dialog box.

pParentWnd
Pointer to the dialog box's parent or owner.

Use the DoModal function to display the dialog box.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagdevnames

void CMyRichEditView::OnPageSetupDlg()
{
 CPageSetupDialog psd(PSD_INTHOUSANDTHSOFINCHES | PSD_MARGINS |
 PSD_ENABLEPAGEPAINTHOOK, this);

 // Initialize margins
 psd.m_psd.rtMargin.top = 1000;
 psd.m_psd.rtMargin.left = 1250;
 psd.m_psd.rtMargin.right = 1250;
 psd.m_psd.rtMargin.bottom = 1000;
 psd.m_psd.lpfnPagePaintHook = (LPPAGEPAINTHOOK)PaintHook;

 if(IDOK == psd.DoModal())
 {
 // Propagate changes to the app
 AfxGetApp()->SelectPrinter(psd.m_psd.hDevNames, psd.m_psd.hDevMode);
 }
 else
 {
 TRACE(_T("CommDlgExtendedError returned error %d from ")
 _T("CPageSetupDialog::DoModal().\n"),
 (int)CommDlgExtendedError());
 }
}

CPageSetupDialog::CreatePrinterDC

HDC CreatePrinterDC();

Return ValueReturn Value

CPageSetupDialog::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

Creates a printer device context from the DEVMODE and DEVNAMES structures.

Handle to the newly created printer device context (DC).

Call this function to display the Windows common OLE Page Setup dialog box and allow the user to select
various print setup options such as the printing margins, size and orientation of the paper, and destination printer.

IDOK or IDCANCEL. If IDCANCEL is returned, call the Windows CommDlgExtendedError function to determine
whether an error occurred.

IDOK and IDCANCEL are constants that indicate whether the user selected the OK or Cancel button.

In addition, the user can access the printer setup options such as network location and properties specific to the
selected printer.

If you want to initialize the various Page Setup dialog options by setting members of the m_psd structure, you
should do so before calling DoModal , and after the dialog object is constructed. After calling DoModal , call other
member functions to retrieve the settings or information input by the user into the dialog box.

If you want to propagate the current settings entered by the user, make a call to CWinApp::SelectPrinter. This

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagdevnames
https://docs.microsoft.com/windows/desktop/api/commdlg/nf-commdlg-commdlgextendederror

AfxGetApp()->SelectPrinter(psd.m_psd.hDevNames, psd.m_psd.hDevMode);

ExampleExample

CPageSetupDialog::GetDeviceName

CString GetDeviceName() const;

Return ValueReturn Value

CPageSetupDialog::GetDevMode

LPDEVMODE GetDevMode() const;

Return ValueReturn Value

CPageSetupDialog::GetDriverName

CString GetDriverName() const;

Return ValueReturn Value

RemarksRemarks

CPageSetupDialog::GetMargins

void GetMargins(
 LPRECT lpRectMargins,
 LPRECT lpRectMinMargins) const;

function takes the information from the CPageSetupDialog object and initializes and selects a new printer DC with
the proper attributes.

See the example for CPageSetupDialog::CPageSetupDialog.

Call this function after DoModal to retrieve the name of the currently selected printer.

The device name used by the CPageSetupDialog object.

Call this function after calling DoModal to retrieve information about the printer device context of the
CPageSetupDialog object.

The DEVMODE data structure, which contains information about the device initialization and environment of a
print driver. You must unlock the memory taken by this structure with the Windows GlobalUnlock function, which
is described in the Windows SDK.

Call this function after calling DoModal to retrieve the name of the system-defined printer device driver.

A CString specifying the system-defined driver name.

Use a pointer to the CString object returned by GetDriverName as the value of lpszDriverName in a call to
CDC::CreateDC.

Call this function after a call to DoModal to retrieve the margins of the printer device driver.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalunlock

ParametersParameters

CPageSetupDialog::GetPaperSize

CSize GetPaperSize() const;

Return ValueReturn Value

CPageSetupDialog::GetPortName

CString GetPortName() const;

Return ValueReturn Value

CPageSetupDialog::m_psd

PAGESETUPDLG m_psd;

RemarksRemarks

CPageSetupDialog::OnDrawPage

virtual UINT OnDrawPage(
 CDC* pDC,
 UINT nMessage,
 LPRECT lpRect);

lpRectMargins
Pointer to a RECT structure or CRect object that describes (in 1/1000 inches or 1/100 mm) the print margins for
the currently selected printer. Pass NULL for this parameter, if you are not interested in this rectangle.

lpRectMinMargins
Pointer to a RECT structure or CRect object that describes (in 1/1000 inches or 1/100 mm) the minimum print
margins for the currently selected printer. Pass NULL for this parameter, if you are not interested in this rectangle.

Call this function to retrieve the size of the paper selected for printing.

A CSize object containing the size of the paper (in 1/1000 inches or 1/100 mm) selected for printing.

Call this function after calling DoModal to retrieve the name of the currently selected printer port.

The name of the currently selected printer port.

A structure of type PAGESETUPDLG, whose members store the characteristics of the dialog object.

After constructing a CPageSetupDialog object, you can use m_psd to set various aspects of the dialog box before
calling the DoModal member function.

If you modify the m_psd data member directly, you will override any default behavior.

For more information on the PAGESETUPDLG structure, see the Windows SDK.

See the example for CPageSetupDialog::CPageSetupDialog.

Called by the framework to draw a screen image of a printed page.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpsda

ParametersParameters

Return ValueReturn Value

RemarksRemarks

switch(nMessage)
{
 case WM_PSD_GREEKTEXTRECT:
 DrawMyImage(pDC, lpRect); //draws my special graphic
 return 1;
 default:
 return CPageSetupDialog::OnDrawPage(pDC, nMessage, lpRect);
}

CPageSetupDialog::PreDrawPage

virtual UINT PreDrawPage(
 WORD wPaper,
 WORD wFlags,
 LPPAGESETUPDLG pPSD);

ParametersParameters

pDC
Pointer to the printer device context.

nMessage
Specifies a message, indicating the area of the page currently being drawn. Can be one of the following:

WM_PSD_FULLPAGERECT The entire page area.

WM_PSD_MINMARGINRECT Current minimum margins.

WM_PSD_MARGINRECT Current margins.

WM_PSD_GREEKTEXTRECT Contents of the page.

WM_PSD_ENVSTAMPRECT Area reserved for a postage stamp representation.

WM_PSD_YAFULLPAGERECT Area for a return address representation. This area extends to the edges of
the sample page area.

lpRect
Pointer to a CRect or RECT object containing the coordinates of the drawing area.

Nonzero value if handled; otherwise 0.

This image is then displayed as part of the common OLE Page Setup dialog box. The default implementation
draws an image of a page of text.

Override this function to customize the drawing of a specific area of the image, or the entire image. You can do
this by using a switch statement with case statements checking the value of nMessage. For example, to customize
the rendering of the contents of the page image, you could use the following example code:

Note that you do not need to handle every case of nMessage. You can choose to handle one component of the
image, several components of the image, or the whole area.

Called by the framework before drawing the screen image of a printed page.

wPaper
Specifies a value that indicates the paper size. This value can be one of the DMPAPER_ values listed in the

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

Return ValueReturn Value

RemarksRemarks

See also

description of the DEVMODE structure.

wFlags
Indicates the orientation of the paper or envelope, and whether the printer is a dot-matrix or HPPCL (Hewlett
Packard Printer Control Language) device. This parameter can have one of the following values:

0x001 Paper in landscape mode (dot matrix)

0x003 Paper in landscape mode (HPPCL)

0x005 Paper in portrait mode (dot matrix)

0x007 Paper in portrait mode (HPPCL)

0x00b Envelope in landscape mode (HPPCL)

0x00d Envelope in portrait mode (dot matrix)

0x019 Envelope in landscape mode (dot matrix)

0x01f Envelope in portrait mode (dot matrix)

pPSD
Pointer to a PAGESETUPDLG structure. For more information on PAGESETUPDLG, see the Windows SDK.

Nonzero value if handled; otherwise 0.

Override this function to customize the drawing of the image. If you override this function and return TRUE, you
must draw the entire image. If you override this function and return FALSE, the entire default image is drawn by
the framework.

MFC Sample WORDPAD
CCommonDialog Class
Hierarchy Chart

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpsda
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CPaintDC Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CPaintDC : public CDC

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPaintDC::CPaintDC Constructs a CPaintDC connected to the specified CWnd.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CPaintDC::m_ps Contains the PAINTSTRUCT used to paint the client area.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CPaintDC::m_hWnd The HWND to which this CPaintDC object is attached.

Remarks

Inheritance Hierarchy

Requirements

A device-context class derived from CDC.

It performs a CWnd::BeginPaint at construction time and CWnd::EndPaint at destruction time.

A CPaintDC object can only be used when responding to a WM_PAINT message, usually in your OnPaint

message-handler member function.

For more information on using CPaintDC , see Device Contexts.

CObject

CDC

CPaintDC

Header: afxwin.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpaintdc-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagpaintstruct
https://docs.microsoft.com/windows/desktop/gdi/wm-paint

CPaintDC::CPaintDC

explicit CPaintDC(CWnd* pWnd);

ParametersParameters

RemarksRemarks

ExampleExample

// Get a dc for a CWnd pointer.
CPaintDC dc(pWnd);

// Get a dc for a HWND.
CPaintDC dc2(CWnd::FromHandle(hWnd));

CPaintDC::m_hWnd

HWND m_hWnd;

RemarksRemarks

ExampleExample

// Get a dc for a CWnd object pointer.
CPaintDC dc(pWnd);

// Send my private massage.
::SendMessage(pWnd->m_hWnd, WM_MYMESSAGE, (LPARAM) &dc.m_ps, 0);

CPaintDC::m_ps

PAINTSTRUCT m_ps;

RemarksRemarks

Constructs a CPaintDC object, prepares the application window for painting, and stores the PAINTSTRUCT
structure in the m_ps member variable.

pWnd
Points to the CWnd object to which the CPaintDC object belongs.

An exception (of type CResourceException) is thrown if the Windows GetDC call fails. A device context may not be
available if Windows has already allocated all of its available device contexts. Your application competes for the
five common display contexts available at any given time under Windows.

The HWND to which this CPaintDC object is attached.

m_hWnd is a protected variable of type HWND.

m_ps is a public member variable of type PAINTSTRUCT.

It is the PAINTSTRUCT that is passed to and filled out by CWnd::BeginPaint.

The PAINTSTRUCT contains information that the application uses to paint the client area of the window associated
with a CPaintDC object.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagpaintstruct
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdc
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagpaintstruct

ExampleExample

See also

Note that you can access the device-context handle through the PAINTSTRUCT . However, you can access the
handle more directly through the m_hDC member variable that CPaintDC inherits from CDC.

See the example for CPaintDC::m_hWnd.

MFC Sample MDI
CDC Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CPalette Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CPalette : public CGdiObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPalette::CPalette Constructs a CPalette object with no attached Windows
palette. You must initialize the CPalette object with one of
the initialization member functions before it can be used.

Public MethodsPublic Methods

NAME DESCRIPTION

CPalette::AnimatePalette Replaces entries in the logical palette identified by the
CPalette object. The application does not have to update

its client area, because Windows maps the new entries into
the system palette immediately.

CPalette::CreateHalftonePalette Creates a halftone palette for the device context and attaches
it to the CPalette object.

CPalette::CreatePalette Creates a Windows color palette and attaches it to the
CPalette object.

CPalette::FromHandle Returns a pointer to a CPalette object when given a
handle to a Windows palette object.

CPalette::GetEntryCount Retrieves the number of palette entries in a logical palette.

CPalette::GetNearestPaletteIndex Returns the index of the entry in the logical palette that most
closely matches a color value.

CPalette::GetPaletteEntries Retrieves a range of palette entries in a logical palette.

CPalette::ResizePalette Changes the size of the logical palette specified by the
CPalette object to the specified number of entries.

CPalette::SetPaletteEntries Sets RGB color values and flags in a range of entries in a
logical palette.

Encapsulates a Windows color palette.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpalette-class.md

Public OperatorsPublic Operators

NAME DESCRIPTION

CPalette::operator HPALETTE Returns the HPALETTE attached to the CPalette .

Remarks

Inheritance Hierarchy

Requirements

CPalette::AnimatePalette

void AnimatePalette(
 UINT nStartIndex,
 UINT nNumEntries,
 LPPALETTEENTRY lpPaletteColors);

ParametersParameters

RemarksRemarks

A palette provides an interface between an application and a color output device (such as a display device). The
interface allows the application to take full advantage of the color capabilities of the output device without
severely interfering with the colors displayed by other applications. Windows uses the application's logical
palette (a list of needed colors) and the system palette (which defines available colors) to determine the colors
used.

A CPalette object provides member functions for manipulating the palette referred to by the object. Construct a
CPalette object and use its member functions to create the actual palette, a graphics device interface (GDI)

object, and to manipulate its entries and other properties.

For more information on using CPalette , see Graphic Objects.

CObject

CGdiObject

CPalette

Header: afxwin.h

Replaces entries in the logical palette attached to the CPalette object.

nStartIndex
Specifies the first entry in the palette to be animated.

nNumEntries
Specifies the number of entries in the palette to be animated.

lpPaletteColors
Points to the first member of an array of PALETTEENTRY structures to replace the palette entries identified by
nStartIndex and nNumEntries.

When an application calls AnimatePalette , it does not have to update its client area, because Windows maps the
new entries into the system palette immediately.

https://msdn.microsoft.com/library/windows/desktop/dd162769

CPalette::CPalette

CPalette();

RemarksRemarks

CPalette::CreateHalftonePalette

BOOL CreateHalftonePalette(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPalette::CreatePalette

BOOL CreatePalette(LPLOGPALETTE lpLogPalette);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPalette::FromHandle

The AnimatePalette function will only change entries with the PC_RESERVED flag set in the corresponding
palPaletteEntry member of the LOGPALETTE structure that is attached to the CPalette object. See

LOGPALETTE in the Windows SDK for more information about this structure.

Constructs a CPalette object.

The object has no attached palette until you call CreatePalette to attach one.

Creates a halftone palette for the device context.

pDC
Identifies the device context.

Nonzero if the function is successful; otherwise 0.

An application should create a halftone palette when the stretching mode of a device context is set to
HALFTONE. The logical halftone palette returned by the CreateHalftonePalette member function should then be
selected and realized into the device context before the CDC::StretchBlt or StretchDIBits function is called.

See the Windows SDK for more information about CreateHalftonePalette and StretchDIBits .

Initializes a CPalette object by creating a Windows logical color palette and attaching it to the CPalette object.

lpLogPalette
Points to a LOGPALETTE structure that contains information about the colors in the logical palette.

Nonzero if successful; otherwise 0.

See the Windows SDK for more information about the LOGPALETTE structure.

Returns a pointer to a CPalette object when given a handle to a Windows palette object.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogpalette
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-createhalftonepalette
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-stretchdibits
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogpalette

static CPalette* PASCAL FromHandle(HPALETTE hPalette);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPalette::GetEntryCount

int GetEntryCount();

Return ValueReturn Value

CPalette::GetNearestPaletteIndex

UINT GetNearestPaletteIndex(COLORREF crColor) const;

ParametersParameters

Return ValueReturn Value

CPalette::GetPaletteEntries

UINT GetPaletteEntries(
 UINT nStartIndex,
 UINT nNumEntries,
 LPPALETTEENTRY lpPaletteColors) const;

ParametersParameters

hPalette
A handle to a Windows GDI color palette.

A pointer to a CPalette object if successful; otherwise NULL.

If a CPalette object is not already attached to the Windows palette, a temporary CPalette object is created and
attached. This temporary CPalette object is valid only until the next time the application has idle time in its
event loop, at which time all temporary graphic objects are deleted. In other words, the temporary object is valid
only during the processing of one window message.

Call this member function to retrieve the number of entries in a given logical palette.

Number of entries in a logical palette.

Returns the index of the entry in the logical palette that most closely matches the specified color value.

crColor
Specifies the color to be matched.

The index of an entry in a logical palette. The entry contains the color that most nearly matches the specified
color.

Retrieves a range of palette entries in a logical palette.

nStartIndex
Specifies the first entry in the logical palette to be retrieved.

Return ValueReturn Value

CPalette::operator HPALETTE

operator HPALETTE() const;

Return ValueReturn Value

RemarksRemarks

CPalette::ResizePalette

BOOL ResizePalette(UINT nNumEntries);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPalette::SetPaletteEntries

UINT SetPaletteEntries(
 UINT nStartIndex,
 UINT nNumEntries,
 LPPALETTEENTRY lpPaletteColors);

nNumEntries
Specifies the number of entries in the logical palette to be retrieved.

lpPaletteColors
Points to an array of PALETTEENTRY data structures to receive the palette entries. The array must contain at
least as many data structures as specified by nNumEntries.

The number of entries retrieved from the logical palette; 0 if the function failed.

Use this operator to get the attached Windows GDI handle of the CPalette object.

If successful, a handle to the Windows GDI object represented by the CPalette object; otherwise NULL.

This operator is a casting operator, which supports direct use of an HPALETTE object.

For more information about using graphic objects, see the article Graphic Objects in the Windows SDK.

Changes the size of the logical palette attached to the CPalette object to the number of entries specified by
nNumEntries.

nNumEntries
Specifies the number of entries in the palette after it has been resized.

Nonzero if the palette was successfully resized; otherwise 0.

If an application calls ResizePalette to reduce the size of the palette, the entries remaining in the resized palette
are unchanged. If the application calls ResizePalette to enlarge the palette, the additional palette entries are set
to black (the red, green, and blue values are all 0), and the flags for all additional entries are set to 0.

For more information on the Windows API ResizePalette , see ResizePalette in the Windows SDK.

Sets RGB color values and flags in a range of entries in a logical palette.

https://msdn.microsoft.com/library/windows/desktop/dd162769
https://docs.microsoft.com/windows/desktop/gdi/graphic-objects
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-resizepalette

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

nStartIndex
Specifies the first entry in the logical palette to be set.

nNumEntries
Specifies the number of entries in the logical palette to be set.

lpPaletteColors
Points to an array of PALETTEENTRY data structures to receive the palette entries. The array must contain at
least as many data structures as specified by nNumEntries.

The number of entries set in the logical palette; 0 if the function failed.

If the logical palette is selected into a device context when the application calls SetPaletteEntries , the changes
will not take effect until the application calls CDC::RealizePalette.

For more information on the Windows structure PALETTEENTRY , see PALETTEENTRY in the Windows SDK.

MFC Sample DIBLOOK
CGdiObject Class
Hierarchy Chart
CPalette::GetPaletteEntries
CPalette::SetPaletteEntries

https://msdn.microsoft.com/library/windows/desktop/dd162769
https://msdn.microsoft.com/library/windows/desktop/dd162769
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CPane Class
3/4/2019 • 28 minutes to read • Edit Online

Syntax
class CPane : public CBasePane

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPane::~CPane Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CPane::AdjustSizeImmediate Immediately recalculates the layout of a pane.

CPane::AllocElements Allocates storage for internal use.

CPane::AllowShowOnPaneMenu Specifies whether the pane is listed in the runtime-
generated list of panes for the application.

CPane::CalcAvailableSize Calculates the difference in size between a specified
rectangle and the current window rectangle.

CPane::CalcInsideRect Calculates the inside rectangle of a pane, taking into
account the borders and grippers.

CPane::CalcRecentDockedRect Calculates the recently docked rectangle.

CPane::CalcSize Calculates the size of the pane.

CPane::CanBeDocked Determines whether the pane can be docked at the
specified base pane.

CPane::CanBeTabbedDocument Determines whether the pane can be converted to a
tabbed document.

CPane::ConvertToTabbedDocument Converts a dockable pane to a tabbed document.

CPane::CopyState Copies the state of a pane. (Overrides
CBasePane::CopyState.)

The CPane class is an enhancement of the CControlBar Class. If you are upgrading an existing MFC
project, replace all occurrences of CControlBar with CPane .

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpane-class.md

CPane::Create Creates a control bar and attaches it to the CPane

object.

CPane::CreateDefaultMiniframe Creates a mini-frame window for a floating pane.

CPane::CreateEx Creates a control bar and attaches it to the CPane

object.

CPane::CreateObject Used by the framework to create a dynamic instance of
this class type.

CPane::DockByMouse Docks a pane by using the mouse docking method.

CPane::DockPane Docks the floating pane to a base pane.

CPane::DockPaneStandard Docks a pane by using outline (standard) docking.

CPane::DockToFrameWindow Docks a dockable pane to a frame. (Overrides
CBasePane::DockToFrameWindow .)

CPane::DoesAllowSiblingBars Indicates whether you can dock another pane at the
same row where the current pane is docked.

CPane::FloatPane Floats the pane.

CPane::GetAvailableExpandSize Returns the amount, in pixels, that the pane can
expand.

CPane::GetAvailableStretchSize Returns the amount, in pixels, that the pane can shrink.

CPane::GetBorders Returns the width of the borders of the pane.

CPane::GetClientHotSpot Returns the hot spot for the pane.

CPane::GetDockSiteRow Returns the dock row in which the pane is docked.

CPane::GetExclusiveRowMode Determines whether the pane is in exclusive row mode.

CPane::GetHotSpot Returns the hot spot that is stored in an underlying
CMFCDragFrameImpl object.

CPane::GetMinSize Retrieves the minimum allowed size for the pane.

CPane::GetPaneName Retrieves the title for the pane.

CPane::GetResizeStep Used internally.

CPane::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class
type.

NAME DESCRIPTION

CPane::GetVirtualRect Retrieves the virtual rectangle of the pane.

CPane::IsChangeState As the pane is being moved, this method analyzes the
position of the pane relative to other panes, dock rows,
and mini-frame windows, and returns the appropriate
AFX_CS_STATUS value.

CPane::IsDragMode Specifies whether the pane is being dragged.

CPane::IsInFloatingMultiPaneFrameWnd Specifies whether the pane is in a multi-pane frame
window. (Overrides
CBasePane::IsInFloatingMultiPaneFrameWnd .)

CPane::IsLeftOf Determines whether the pane is left of (or above) the
specified rectangle.

CPane::IsResizable Determines whether the pane can be resized.
(Overrides CBasePane::IsResizable.)

CPane::IsTabbed Determines whether the pane has been inserted in the
tab control of a tabbed window. (Overrides
CBasePane::IsTabbed.)

CPane::LoadState Loads the state of the pane from the registry.
(Overrides CBasePane::LoadState.)

CPane::MoveByAlignment Moves the pane and the virtual rectangle by the
specified amount.

CPane::MovePane Moves the pane to the specified rectangle.

CPane::OnAfterChangeParent Called by the framework when the parent of a pane
has changed.

CPane::OnBeforeChangeParent Called by the framework when the parent of the pane
is about to change.

CPane::OnPressCloseButton Called by the framework when the user chooses the
Close button on the caption for the pane.

CPane::OnProcessDblClk Used internally.

CPane::OnShowControlBarMenu Called by the framework when a special pane menu is
about to be displayed.

CPane::OnShowControlBarMenu Called by the framework when a special pane menu is
about to be displayed.

CPane::PrepareToDock Used internally.

CPane::RecalcLayout Recalculates layout information for the pane. (Overrides
CBasePane::RecalcLayout.)

NAME DESCRIPTION

CPane::SaveState Saves the state of the pane to the registry. (Overrides
CBasePane::SaveState.)

CPane::SetActiveInGroup Flags a pane as active.

CPane::SetBorders Sets the border values of the pane.

CPane::SetClientHotSpot Sets the hot spot for the pane.

CPane::SetDockState Restores docking state information for the pane.

CPane::SetExclusiveRowMode Enables or disables the exclusive row mode.

CPane::SetMiniFrameRTC Sets the runtime class information for the default mini-
frame window.

CPane::SetMinSize Sets the minimum allowed size for the pane.

CPane::SetVirtualRect Sets the virtual rectangle of the pane.

CPane::StretchPaneDeferWndPos Stretches the pane vertically or horizontally based on
docking style.

CPane::ToggleAutoHide Toggles auto-hide mode.

CPane::UndockPane Removes the pane from the dock site, default slider, or
mini-frame window where it is currently docked.
(Overrides CBasePane::UndockPane.)

CPane::UpdateVirtualRect Updates the virtual rectangle.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CPane::OnAfterDock Called by the framework when a pane has been
docked.

CPane::OnAfterFloat Called by the framework when a pane has been floated.

CPane::OnBeforeDock Called by the framework when the pane is about to be
docked.

CPane::OnBeforeFloat Called by the framework when a pane is about to be
floated.

Data MembersData Members

NAME DESCRIPTION

CPane::m_bHandleMinSize Enables consistent handling of the minimal size for
panes.

CPane::m_recentDockInfo Contains recent docking information.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CPane::AdjustSizeImmediate

virtual void AdjustSizeImmediate(BOOL bRecalcLayout = TRUE);

ParametersParameters

RemarksRemarks

CPane::AllocElements

BOOL AllocElements(
 int nElements,
 int cbElement);

ParametersParameters

Typically, CPane objects are not instantiated directly. If you require a pane that has docking
functionality, derive your object from CDockablePane. If you require toolbar functionality, derive your
object from CMFCToolBar.

When you derive a class from CPane , it can be docked in a CDockSite and it can be floated in a
CPaneFrameWnd.

CObject

CCmdTarget

CWnd

CBasePane

CPane

Header: afxPane.h

Immediately recalculates the layout of a pane.

bRecalcLayout
[in] TRUE to automatically recalculate the layout of the pane; otherwise, FALSE.

Call this method when you dynamically change the layout of a pane. For example, you may want to
call this method when you hide or show toolbar buttons.

Allocates storage for internal use.

nElements
[in] The number of elements for which to allocate storage.

Return ValueReturn Value

CPane::AllowShowOnPaneMenu

virtual BOOL AllowShowOnPaneMenu() const;

Return ValueReturn Value

RemarksRemarks

CPane::CalcAvailableSize

virtual CSize CalcAvailableSize(CRect rectRequired);

ParametersParameters

Return ValueReturn Value

CPane::CalcInsideRect

void CalcInsideRect(
 CRect& rect,
 BOOL bHorz) const;

ParametersParameters

RemarksRemarks

cbElement
[in] The size, in bytes, of an element.

FALSE if memory allocation fails; otherwise, TRUE.

Specifies whether the pane is listed in the runtime-generated list of panes for the application.

TRUE if the pane is displayed in the list; otherwise, FALSE. The base implementation always returns
TRUE.

The AppWizard-generated application contains a menu option that lists panes that it contains. This
method determines whether the pane is displayed in the list.

Calculates the difference in size between a specified rectangle and the current window rectangle.

rectRequired
[in] The required rectangle.

The difference in width and height between rectRequired and the current window rectangle.

Calculates the inside rectangle of a pane, including the borders and grippers.

rect
[out] Contains the size and offset of the client area of the pane.

bHorz
[in] TRUE if the pane is oriented horizontally; otherwise, FALSE.

This method is called by the framework when it has to recalculate the layout for a pane. The rect
parameter is filled with the size and offset of the client area of the pane. This includes its borders and
grippers.

CPane::CalcRecentDockedRect

void CalcRecentDockedRect();

RemarksRemarks

CPane::CalcSize

virtual CSize CalcSize(BOOL bVertDock);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::CanBeDocked

virtual BOOL CanBeDocked(CBasePane* pDockBar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::CanBeTabbedDocument

virtual BOOL CanBeTabbedDocument() const;

Return ValueReturn Value

Calculates the recently docked rectangle.

This method updates CPane::m_recentDockInfo.

Calculates the size of the pane.

bVertDock
[in] TRUE if the pane is being docked vertically, FALSE otherwise.

The default implementation of this method returns a size of (0, 0).

Derived classes should override this method.

Determines if the pane can be docked at the specified base pane.

pDockBar
[in] Specifies the pane where this pane is to be docked.

TRUE if this pane can be docked at the specified docking pane; otherwise, FALSE.

This method is usually called by the framework to determine whether a pane can be docked at the
specified docking pane. To determine whether the pane can be docked, the method evaluates the
pane's currently enabled docking alignment.

You enable docking to the various sides of the frame window by calling CBasePane::EnableDocking.

Determines if the pane can be converted to a tabbed document.

RemarksRemarks

CPane::ConvertToTabbedDocument

virtual void ConvertToTabbedDocument(BOOL bActiveTabOnly = TRUE);

ParametersParameters

RemarksRemarks

CPane::CopyState

virtual void CopyState(CPane* pOrgBar);

ParametersParameters

RemarksRemarks

CPane::Create

virtual BOOL Create(
 LPCTSTR lpszClassName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 DWORD dwControlBarStyle = AFX_DEFAULT_PANE_STYLE,
 CCreateContext* pContext = NULL);

ParametersParameters

TRUE if the pane can be converted to a tabbed document; otherwise, FALSE.

Override this method in a derived class and return FALSE if you want to prevent a pane from being
converted to a tabbed document. A tabbed document will not be listed in the Window Position menu.

Converts a dockable pane to a tabbed document.

bActiveTabOnly
[in] Not used in CPane::ConvertToTabbedDocument .

Only dockable panes can be converted to tabbed documents. For information, see
CDockablePane::ConvertToTabbedDocument.

Copies the state of a pane.

pOrgBar
[in] A pointer to a pane.

This method copies the state of pOrgBar to the current pane.

Creates a control bar and attaches it to the CPane object.

lpszClassName
[in] Specifies the name of the Windows class.

dwStyle
[in] Specifies the window style attributes. For more information, see Window Styles.

rect

Return ValueReturn Value

RemarksRemarks

CPane::CreateDefaultMiniframe

virtual CPaneFrameWnd* CreateDefaultMiniframe(CRect rectInitial);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::CreateEx

[in] Specifies the initial size and position of the pParentWnd window, in client coordinates.

pParentWnd
[in, out] Specifies the parent window of this pane.

nID
[in] Specifies the ID of the pane.

dwControlBarStyle
[in] Specifies the style for the pane. For more information, see CBasePane::CreateEx.

pContext
[in, out] Specifies the create context of the pane.

TRUE if the pane was created successfully; otherwise, FALSE.

This method creates a Windows pane and attaches it to the CPane object.

If you have not explicitly initialized CPane::m_recentDockInfo before you call Create , the parameter
rect will be used as the rectangle when floating or docking the pane.

Creates a mini-frame window for a floating pane.

rectInitial
[in] Specifies the initial size and position, in screen coordinates, of the mini-frame window to create.

The newly created mini-frame window.

This method is called by the framework to create a mini-frame window when a pane is floated. The
mini-frame window can be of type CPaneFrameWnd or of type CMultiPaneFrameWnd. A multi mini-
frame window is created if the pane has the AFX_CBRS_FLOAT_MULTI style.

The runtime class information for the mini-frame window is stored in the CPane::m_pMiniFrameRTC

member. You can use a derived class to set this member if you decide to create customized mini-frame
windows.

Creates a control bar and attaches it to the CPane object.

virtual BOOL CreateEx(
 DWORD dwStyleEx,
 LPCTSTR lpszClassName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 DWORD dwControlBarStyle = AFX_DEFAULT_PANE_STYLE,
 CCreateContext* pContext = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::DockByMouse

virtual BOOL DockByMouse(CBasePane* pDockBar);

ParametersParameters

Return ValueReturn Value

dwStyleEx
[in] Specifies extended window style attributes. For more information, see Extended Window Styles.

lpszClassName
[in] Specifies the name of the Windows class.

dwStyle
[in] Specifies window style attributes. For more information, see Window Styles.

rect
[in] Specifies the initial size and position of the pParentWnd window, in client coordinates.

pParentWnd
[in, out] Specifies the parent window of this pane.

nID
[in] Specifies the ID of the pane.

dwControlBarStyle
[in] Specifies the style for the pane. For more information, see CBasePane::CreateEx.

pContext
[in, out] Specifies the create context for the pane.

TRUE if the pane was created successfully; otherwise, FALSE.

This method creates a Windows pane and attaches it to the CPane object.

If you have not explicitly initialized CPane::m_recentDockInfo before you call CreateEx , the parameter
rect will be used as the rectangle when floating or docking the pane.

Docks a pane by using the mouse.

pDockBar
[in] Specifies the base pane to which to dock this pane.

TRUE if the pane was docked successfully; otherwise, FALSE.

CPane::DockPane

virtual BOOL DockPane(
 CBasePane* pDockBar,
 LPCRECT lpRect,
 AFX_DOCK_METHOD dockMethod);

ParametersParameters

OPTION DESCRIPTION

DM_UNKNOWN The framework uses this option when the docking
method is unknown. The pane does not store its most
recent floating position. You can also use this option to
programmatically dock a pane when you do not have
to store the recent floating position.

DM_MOUSE Used internally.

DM_DBL_CLICK This option is used when the gripper is double-clicked.
The pane is repositioned at its most recent docking
position. If the pane is undocked by double-clicking,
the pane is repositioned at its most recent floating
position.

DM_SHOW This option can be used to programmatically dock the
pane. The pane stores its most recent floating position.

DM_RECT The pane is docked in the region that is specified by
lpRect.

DM_STANDARD When you use this option, the framework draws the
pane as an outline frame while it is being moved.

Return ValueReturn Value

RemarksRemarks

CPane::DockPaneStandard

Docks the floating pane to a base pane.

pDockBar
[in, out] Specifies the base pane to dock this pane to.

lpRect
[in] Specifies the rectangle on the base pane where this pane is to be docked.

dockMethod
[in] Specifies the docking method to use. Available options are as follows:

TRUE if the pane was docked successfully; otherwise, FALSE.

This method docks the pane to the base pane that is specified by the pDockBar parameter. You must
first enable docking by calling CBasePane::EnableDocking.

Docks a pane by using outline (standard) docking.

virtual CPane* DockPaneStandard(BOOL& bWasDocked);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::DockToFrameWindow

virtual BOOL DockToFrameWindow(
 DWORD dwAlignment,
 LPCRECT lpRect = NULL,
 DWORD dwDockFlags = DT_DOCK_LAST,
 CBasePane* pRelativeBar = NULL,
 int nRelativeIndex = -1,
 BOOL bOuterEdge = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::DoesAllowSiblingBars

bWasDocked
[in] TRUE if the pane was successfully docked; otherwise, FALSE.

This method always returns the this pointer.

This method is used only for panes that are derived from the CDockablePane Class. For more
information, see CDockablePane::DockPaneStandard.

Docks a dockable pane to a frame.

dwAlignment
[in] The side of the parent frame that you want to dock the pane to.

lpRect
[in] The specified size.

dwDockFlags
[in] Ignored.

pRelativeBar
[in] Ignored.

nRelativeIndex
[in] Ignored.

bOuterEdge
[in] If TRUE and there are other dockable panes at the side that are specified by dwAlignment, the
pane is docked outside the other panes, closer to the edge of the parent frame. If FALSE, the pane is
docked closer to the center of the client area.

FALSE if a pane divider (CPaneDivider Class) cannot be created; otherwise, TRUE.

Indicates whether you can dock another pane at the same row where the current pane is docked.

virtual BOOL DoesAllowSiblingBars() const;

Return ValueReturn Value

RemarksRemarks

CPane::FloatPane

virtual BOOL FloatPane(
 CRect rectFloat,
 AFX_DOCK_METHOD dockMethod = DM_UNKNOWN,
 bool bShow = true);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::GetAvailableExpandSize

virtual int GetAvailableExpandSize() const;

Return ValueReturn Value

RemarksRemarks

CPane::GetAvailableStretchSize

TRUE if this pane can dock to another pane on the same row as itself; otherwise, FALSE.

You can enable or disable this behavior by calling CPane::SetExclusiveRowMode.

By default, toolbars have exclusive row mode disabled and the menu bar has exclusive row mode
enabled.

Floats the pane.

rectFloat
[in] Specifies the location, in screen coordinates, to position the pane when it is floated.

dockMethod
[in] Specifies the docking method to use when the pane is floated. For a list of possible values, see
CPane::DockPane.

bShow
[in] TRUE to show the pane when floated; otherwise, FALSE.

TRUE if the pane was floated successfully or if the pane cannot be floated because
CBasePane::CanFloat returns FALSE; otherwise, FALSE.

Call this method to float the pane at the position that is specified by the rectFloat parameter. This
method automatically creates a parent mini-frame window for the pane.

Returns the amount, in pixels, that the pane can expand.

If the pane is docked horizontally, the return value is the available width; otherwise, the return value is
the available height.

virtual int GetAvailableStretchSize() const;

Return ValueReturn Value

RemarksRemarks

CPane::GetBorders

CRect GetBorders() const;

Return ValueReturn Value

RemarksRemarks

CPane::GetClientHotSpot

CPoint GetClientHotSpot() const;

Return ValueReturn Value

RemarksRemarks

CPane::GetDockSiteRow

CDockingPanesRow* GetDockSiteRow() const;

Return ValueReturn Value

CPane::GetExclusiveRowMode

Returns the amount, in pixels, that the pane can shrink.

The amount, in pixels, that the pane can shrink. If the pane is docked horizontally, this amount is the
available width; otherwise, it is the available height.

The available stretch size is calculated by subtracting the minimum allowed size for the pane (
CPane::GetMinSize) from the current size (CWnd::GetWindowRect).

Returns the width of the borders of the pane.

A CRect object that contains the current width, in pixels, of each side of the pane. For example, the
value of the left member of the CRect object is the width of the left border.

To set the size of the borders, call CPane::SetBorders.

Returns the hot spot for the pane.

The hot spot is the point on the pane that the user selects and holds to move the pane. A hot spot is
used for smooth animation when the pane is moved from a docked position.

Returns the dock row (CDockingPanesRow Class) in which the pane is docked.

A CDockingPanesRow * that points to the dock row in which the pane is docked, or NULL if the pane is
not docked.

Determines if the pane is in exclusive row mode.

virtual BOOL GetExclusiveRowMode() const;

Return ValueReturn Value

RemarksRemarks

CPane::GetHotSpot

CPoint GetHotSpot() const;

Return ValueReturn Value

RemarksRemarks

CPane::GetMinSize

virtual void GetMinSize(CSize& size) const;

ParametersParameters

RemarksRemarks

CPane::GetPaneName

virtual void GetPaneName(CString& strName) const;

ParametersParameters

RemarksRemarks

CPane::GetVirtualRect

TRUE if the pane is in exclusive row mode; otherwise, FALSE.

For more information about exclusive row mode, see CPane::SetExclusiveRowMode.

Returns the hot spot that is stored in an underlying CMFCDragFrameImpl object.

The CPane class contains a CMFCDragFrameImpl object, m_dragFrameImpl , that is responsible for
drawing the rectangle that appears when the user moves a pane in the standard docking mode. The
hot spot is used to draw the rectangle relative to the current mouse position as the user moves the
pane.

Retrieves the minimum allowed size for the pane.

size
[out] A CSize object that is filled with the minimum allowed size.

Retrieves the title for the pane.

strName
[out] A CString object that is filled with the caption name.

The pane title is displayed in the caption area when the pane is docked or floating. If the pane is part of
a tabbed group, the title is displayed in the tab area. If the pane is in auto-hide mode, the title is
displayed on a CMFCAutoHideButton .

void GetVirtualRect(CRect& rectVirtual) const;

ParametersParameters

RemarksRemarks

CPane::IsChangeState

virtual AFX_CS_STATUS IsChangeState(
 int nOffset,
 CBasePane** ppTargetBar) const;

ParametersParameters

Return ValueReturn Value

VALUE DESCRIPTION

CS_NOTHING The pane is not near a dock site. The framework does
not dock the pane.

CS_DOCK_IMMEDIATELY The pane is over a dock site, and the DT_IMMEDIATE
style is enabled. The framework docks the pane
immediately.

CS_DELAY_DOCK The pane is over a dock site that is either another
docking pane or an edge of the main frame. The
framework docks the pane when the user releases the
move.

Retrieves the virtual rectangle of the pane.

rectVirtual
[out] A CRect object that is filled with the virtual rectangle.

When a pane is moved, the framework stores the original position of the pane in a virtual rectangle.
The framework can use the virtual rectangle to restore the original position of the pane.

Do not call methods that are related to virtual rectangles unless you are moving panes
programmatically.

As the pane is being moved, this method analyzes its position relative to other panes, dock rows, and
mini-frame windows, and returns the appropriate AFX_CS_STATUS value.

nOffset
[in] Specifies docking sensitivity. For example, a pane that is moved within nOffset pixels from a dock
row will be docked.

ppTargetBar
[in] When the method returns, ppTargetBar contains either a pointer to the object to which the current
pane should be docked, or NULL if no docking should occur.

One of the following AFX_CS_STATUS values:

CS_DELAY_DOCK_TO_TAB The pane is over a dock site that causes the pane to be
docked in a tabbed window. This occurs when the pane
is either over the caption of another docking pane or
over the tab area of a tabbed pane. The framework
docks the pane when the user releases the move.

VALUE DESCRIPTION

CPane::IsDragMode

virtual BOOL IsDragMode() const;

Return ValueReturn Value

RemarksRemarks

CPane::IsInFloatingMultiPaneFrameWnd

virtual BOOL IsInFloatingMultiPaneFrameWnd() const;

Return ValueReturn Value

RemarksRemarks

CPane::IsLeftOf

bool IsLeftOf(
 CRect rect,
 bool bWindowRect = true) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Specifies whether the pane is being moved.

TRUE if the pane is being moved; otherwise, FALSE.

Specifies whether the pane is in a multi-pane frame window (CMultiPaneFrameWnd Class).

TRUE if the pane is in a multi-pane frame window; otherwise, FALSE.

Only dockable panes can float in a multi-pane frame window. Therefore,
CPane::IsInFloatingMultiPaneFrameWnd always returns FALSE.

Determines whether the pane is left of (or above) the specified rectangle.

rect
[in] A CRect object that is used for comparison.

bWindowRect
[in] If TRUE, rect is assumed to contain screen coordinates; if FALSE, rect is assumed to contain client
coordinates.

If the pane is docked horizontally, this method checks whether its location is left of rect. Otherwise, this
method checks whether the location is above rect.

CPane::IsResizable

virtual BOOL IsResizable() const;

Return ValueReturn Value

RemarksRemarks

CPane::IsTabbed

virtual BOOL IsTabbed() const;

Return ValueReturn Value

RemarksRemarks

CPane::LoadState

virtual BOOL LoadState(
 LPCTSTR lpszProfileName = NULL,
 int nIndex = -1,
 UINT uiID = (UINT) -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Specifies whether the pane is resizable.

TRUE if the pane is resizable; otherwise, FALSE.

Base CPane objects are not resizable.

The docking manager uses the resizable flag to determine pane layout. Non-resizable panes are
always located at the outer edges of the parent frame.

Non-resizable panes cannot reside in docking containers.

Determines whether the pane has been inserted into the tab control of a tabbed window.

TRUE if the pane is tabbed; otherwise, FALSE.

The tabbed state is treated separately from the floating, docked, and auto-hide states.

Loads the state of the pane from the registry.

lpszProfileName
[in] Profile name.

nIndex
[in] Profile index.

uiID
[in] Pane ID.

TRUE if the pane state was loaded successfully; otherwise, FALSE.

The framework calls this method to load the pane state from the registry. Override it in a derived class
to load additional information that is saved by CPane::SaveState.

CPane::m_bHandleMinSize

AFX_IMPORT_DATA static BOOL m_bHandleMinSize;

RemarksRemarks

CPane::m_recentDockInfo

CRecentDockSiteInfo m_recentDockInfo;

RemarksRemarks

CPane::MoveByAlignment

BOOL MoveByAlignment(
 DWORD dwAlignment,
 int nOffset);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

VALUE DESCRIPTION

CBRS_ALIGN_TOP Enables the pane to be docked to the top of the client
area of a frame window.

When you override this method, also call the base method, and return FALSE if the base method
returns FALSE.

Enables consistent handling of minimum pane sizes.

If one or more docking panes in your application override GetMinSize , or if your application calls
SetMinSize , you may want to set this static member to TRUE in order to enable the framework to

consistently handle how panes are sized.

If this value is set to TRUE, all panes whose size should be reduced below their minimum size are
clipped, not stretched. Because the framework uses window regions for pane sizing purposes, do not
change the size of the window region for docking panes if this value is set to TRUE.

Contains recent docking information.

The framework stores the latest docking state information for the pane in this member.

Moves the pane and the virtual rectangle by the specified amount.

dwAlignment
[in] Specifies pane alignment.

nOffset
[in] The amount, in pixels, by which to move the pane and the virtual rectangle.

dwAlignment can be any of the following values:

CBRS_ALIGN_BOTTOM Enables the pane to be docked to the bottom of the
client area of a frame window.

CBRS_ALIGN_LEFT Enables the pane to be docked to the left side of the
client area of a frame window.

CBRS_ALIGN_RIGHT Enables the pane to be docked to the right side of the
client area of a frame window.

CBRS_ALIGN_ANY Enables the pane to be docked to any side of the client
area of a frame window.

VALUE DESCRIPTION

CPane::MovePane

virtual CSize MovePane(
 CRect rectNew,
 BOOL bForceMove,
 HDWP& hdwp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::OnAfterChangeParent

virtual void OnAfterChangeParent(CWnd* pWndOldParent);

ParametersParameters

If dwAlignment contains the CBRS_ALIGN_LEFT or CBRS_ALIGN_RIGHT flag, the pane and virtual
rectangle are moved horizontally; otherwise, if dwAlignment contains the CBRS_ALIGN_TOP or
CBRS_ALIGN_BOTTOM flag, the pane and virtual rectangle are moved vertically.

Moves the pane to the specified rectangle.

rectNew
[in] Specifies the new rectangle for the pane.

bForceMove
[in] If TRUE, this method ignores the minimum allowed pane size (CPane::GetMinSize); otherwise, the
pane is adjusted, if necessary, to ensure that it is at least the minimum allowed size.

hdwp
[in] Not used.

A CSize object that contains the differences in width and height between the new and old rectangles
(old rectangle - rectNew).

This method is used only for dockable panes.

Called by the framework when the parent of a pane has changed.

pWndOldParent
[in, out] The pane's previous parent window.

RemarksRemarks

CPane::OnAfterDock

virtual void OnAfterDock(
 CBasePane* pBar,
 LPCRECT lpRect,
 AFX_DOCK_METHOD dockMethod);

ParametersParameters

CPane::OnAfterFloat

virtual void OnAfterFloat();

RemarksRemarks

CPane::OnBeforeChangeParent

virtual void OnBeforeChangeParent(
 CWnd* pWndNewParent,
 BOOL bDelay = FALSE);

ParametersParameters

RemarksRemarks

This method is called by the framework when the parent of a pane has changed because of a docking
or floating operation.

Called by the framework when a pane has been docked.

pBar
[in] This parameter is not used.

lpRect
[in] This parameter is not used.

dockMethod
[in] This parameter is not used.

Called by the framework after a pane floats.

You can override this method in a derived class if you want to perform any processing after a pane
floats.

Called by the framework when the parent of the pane is about to change.

pWndNewParent
[in, out] Specifies the new parent window.

bDelay
[in] TRUE to delay the global docking layout adjustment; otherwise, FALSE.

This method is called by the framework when the parent of the pane is about to change because the
pane is being docked or floated.

By default, the pane is unregistered with the docking pane by calling CDockSite::RemovePane .

CPane::OnBeforeDock

virtual BOOL OnBeforeDock(
 CBasePane** ppDockBar,
 LPCRECT lpRect,
 AFX_DOCK_METHOD dockMethod);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::OnBeforeFloat

virtual BOOL OnBeforeFloat(
 CRect& rectFloat,
 AFX_DOCK_METHOD dockMethod);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::OnPressCloseButton

virtual void OnPressCloseButton();

Called by the framework when the pane is about to dock.

ppDockBar
[in, out] Specifies the pane that this pane is docking to.

lpRect
[in] Specifies the docking rectangle.

dockMethod
[in] Specifies the docking method.

TRUE if the pane can be docked. If the function returns FALSE, the docking operation will be aborted.

This method is called by the framework when a pane is about to be docked. You can override this
method in a derived class if you want to perform any processing before a pane is finally docked.

Called by the framework when a pane is about to float.

rectFloat
[in] Specifies the position and size of the pane when it is in a floating state.

dockMethod
[in] Specifies the docking method of the pane.

TRUE if the pane can be floated; otherwise, FALSE.

This method is called by the framework when a pane is about to float. You can override this method in
a derived class if you want to perform any processing before the pane finally floats.

Called by the framework when the user presses the close button on the caption for the pane.

RemarksRemarks

CPane::OnShowControlBarMenu

virtual BOOL OnShowControlBarMenu(CPoint point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::RecalcLayout

virtual void RecalcLayout();

RemarksRemarks

CPane::SaveState

virtual BOOL SaveState(
 LPCTSTR lpszProfileName = NULL,
 int nIndex = -1,
 UINT uiID = (UINT) -1);

ParametersParameters

This method is called by the framework when a user presses the Close button on the pane's caption.
To receive notifications about the Close event, you can override this method in a derived class.

Called by the framework when a special pane menu is about to be displayed.

point
[in] Specifies the menu location.

TRUE if the menu can be displayed; otherwise, FALSE.

The menu contains several items that enable you to specify the pane's behavior, namely: Floating,
Docking, AutoHide, and Hide. You can enable this menu for all panes by calling
CDockingManager::EnableDockSiteMenu.

Recalculates layout information for the pane.

If the pane is docked, this method updates the virtual rectangle for the pane by setting its size to the
current size of the pane.

If the pane is floating, this method notifies the parent mini-frame to adjust the size of the pane to the
size of the mini-frame. The framework ensures that the mini-frame is at least the minimum allowed
size for the pane (CPane::GetMinSize) and resizes the mini-frame if necessary.

Saves the state of the pane to the registry.

lpszProfileName
[in] Profile name.

nIndex
[in] Profile index.

uiID

Return ValueReturn Value

RemarksRemarks

CPane::SetActiveInGroup

virtual void SetActiveInGroup(BOOL bActive);

ParametersParameters

RemarksRemarks

CPane::SetBorders

void SetBorders(
 int cxLeft = 0,
 int cyTop = 0,
 int cxRight = 0,
 int cyBottom = 0);

void SetBorders(LPCRECT lpRect);

ParametersParameters

[in] Pane ID.

TRUE if the state was saved successfully; otherwise, FALSE.

The framework calls this method when it saves the state of the pane to the registry. Override
SaveState in a derived class to store additional information.

When you override this method, also call the base method, and return FALSE if the base method
returns FALSE.

Flags a pane as active.

bActive
[in] A BOOL that specifies whether the pane is flagged as active.

When a dockable pane is shown or an auto-hide button is chosen, the corresponding auto-hide pane
is marked as active.

The appearance of an auto-hide button that is associated with the pane is based on two factors. If the
pane is active, and the static BOOL CMFCAutoHideButton::m_bOverlappingTabs is TRUE, the framework
displays the auto-hide button as an icon and a label. For an inactive pane, the framework displays only
the auto-hide icon.

If CMFCAutoHideButton::m_bOverlappingTabs is FALSE, or if the pane is not located in a group, the
framework displays the associated auto-hide button as an icon and a label.

Sets the border values of the pane.

cxLeft
[in] Specifies the width, in pixels, of the left border of the pane.

cyTop
[in] Specifies the width, in pixels, of the top border of the pane.

cxRight
[in] Specifies the width, in pixels, of the right border of the pane.

RemarksRemarks

CPane::SetClientHotSpot

void SetClientHotSpot(const CPoint& ptNew);

ParametersParameters

RemarksRemarks

CPane::SetDockState

virtual void SetDockState(CDockingManager* pDockManager);

ParametersParameters

RemarksRemarks

CPane::SetExclusiveRowMode

virtual void SetExclusiveRowMode(BOOL bExclusive = TRUE);

ParametersParameters

RemarksRemarks

cyBottom
[in] Specifies the width, in pixels, of the bottom border of the pane.

lpRect
[in] A CRect object that contains the width, in pixels, of each border of the pane.

Call this function to set the sizes of the pane's borders.

Sets the hot spot for the pane.

ptNew
[in] A CPoint object that specifies the new hot spot.

The hot spot is the point on the pane that the user selects and holds to move the pane. A hot spot is
used for smooth animation when the pane is dragged from a docked position.

Restores docking state information for the pane.

pDockManager
[in] Pointer to the docking manager for the main frame window.

This method is called by the framework to restore recent docking state information for the pane. A
pane stores recent docking state information in CPane::m_recentDockInfo. For more information, see
the CRecentDockSiteInfo Class.

You can also call this method to set the docking state when you load pane information from an
external source.

Enables or disables the exclusive row mode.

bExclusive
[in] TRUE to enable exclusive row mode; otherwise, FALSE.

CPane::SetMinSize

void SetMinSize(const CSize& size);

ParametersParameters

RemarksRemarks

CPane::SetVirtualRect

void SetVirtualRect(
 const CRect& rect,
 BOOL bMapToParent = TRUE);

ParametersParameters

RemarksRemarks

CPane::SetMiniFrameRTC

void SetMiniFrameRTC(CRuntimeClass* pClass);

ParametersParameters

RemarksRemarks

Call this method to enable or disable exclusive row mode. When a pane is in exclusive row mode, it
cannot share the same row with any other toolbars.

By default, all toolbars have exclusive row mode disabled and the menu bar has exclusive row mode
enabled.

Sets the minimum allowed size for the pane.

size
[in] A CSize object that contains the minimum allowed size for the pane.

Sets the virtual rectangle of the pane.

rect
[in] A CRect object that specifies the virtual rectangle to be set.

bMapToParent
[in] Specify TRUE if rect contains points relative to the parent window.

A virtual rectangle stores the original position of a pane when it is moved. The framework can use the
virtual rectangle to restore the original position.

Do not call methods that are related to virtual rectangles unless you are moving panes
programmatically.

Sets the runtime class information for the default mini-frame window.

pClass
[in, out] Specifies the runtime class information for the mini-frame window.

When a pane is floated, it is put on a CPaneFrameWnd (mini-frame) window. You can provide a
custom CPaneFrameWnd -derived class that will be used when CPane::CreateDefaultMiniframe is called.

CPane::StretchPaneDeferWndPos

virtual int StretchPaneDeferWndPos(
 int nStretchSize,
 HDWP& hdwp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPane::ToggleAutoHide

virtual void ToggleAutoHide();

RemarksRemarks

CPane::UndockPane

virtual void UndockPane(BOOL bDelay = FALSE);

ParametersParameters

RemarksRemarks

CPane::UpdateVirtualRect

Stretches the pane vertically or horizontally based on docking style.

nStretchSize
[in] The amount, in pixels, to stretch the pane. Use a negative value to shrink the pane.

hdwp
[in] Not used.

The actual amount, in pixels, that the pane was stretched.

If necessary, this method modifies nStretchSize to ensure that the pane does not exceed size limits.
These limits are obtained by calling CPane::GetAvailableStretchSize and
CPane::GetAvailableExpandSize.

Toggles auto-hide mode.

Call this method to toggle auto-hide mode. A pane must be docked to a main frame window in order
to be switch to auto-hide mode.

Removes the pane from the dock site, default slider, or mini-frame window where it is currently
docked.

bDelay
[in] If FALSE, the framework calls CBasePane::AdjustDockingLayout to adjust the docking layout.

Use this method to programmatically undock a pane.

Updates the virtual rectangle.

void UpdateVirtualRect();
void UpdateVirtualRect(CPoint ptOffset);
 void UpdateVirtualRect(CSize sizeNew);

ParametersParameters

RemarksRemarks

See also

ptOffset
[in] A CPoint object that specifies an offset by which to shift the pane.

sizeNew
[in] A CSize object that specifies a new size for the pane.

The first overload sets the virtual rectangle by using the current position and size of the pane.

The second overload shifts the virtual rectangle by the amount that is specified by ptOffset.

The third overload sets the virtual rectangle by using the current position of the pane and the size that
is specified by sizeNew.

Hierarchy Chart
Classes
CBasePane Class

CPaneContainer Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CPaneContainer : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPaneContainer::CPaneContainer Default constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CPaneContainer::AddPane

CPaneContainer::AddRef

CPaneContainer::AddSubPaneContainer

CPaneContainer::CalcAvailablePaneSpace

CPaneContainer::CalcAvailableSpace

CPaneContainer::CalculateRecentSize

CPaneContainer::CheckPaneDividerVisibility

CPaneContainer::Copy

CPaneContainer::DeletePane

CPaneContainer::FindSubPaneContainer

CPaneContainer::FindTabbedPane

The CPaneContainer class is a basic component of the docking model implemented by MFC. An object of this
class stores pointers to two docking panes or to two instances of CPaneContainer. It also stores a pointer to the
divider that separates the panes (or the containers). By nesting containers inside containers, the framework can
build a binary tree that represents complex docking layouts. The root of the binary tree is stored in a
CPaneContainerManager object.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpanecontainer-class.md

CPaneContainer::GetAssociatedSiblingPaneIDs

CPaneContainer::GetLeftPane

CPaneContainer::GetLeftPaneContainer

CPaneContainer::GetMinSize

CPaneContainer::GetMinSizeLeft

CPaneContainer::GetMinSizeRight

CPaneContainer::GetNodeCount

CPaneContainer::GetPaneDivider

CPaneContainer::GetParentPaneContainer

CPaneContainer::GetRecentPaneDividerRect

CPaneContainer::GetRecentPaneDividerStyle

CPaneContainer::GetRecentPercent

CPaneContainer::GetRefCount

CPaneContainer::GetResizeStep

CPaneContainer::GetRightPane

CPaneContainer::GetRightPaneContainer

CPaneContainer::GetTotalReferenceCount

CPaneContainer::GetWindowRect

CPaneContainer::IsDisposed

CPaneContainer::IsEmpty

CPaneContainer::IsLeftPane

CPaneContainer::IsLeftPaneContainer

CPaneContainer::IsLeftPartEmpty

CPaneContainer::IsRightPartEmpty

CPaneContainer::IsVisible

NAME DESCRIPTION

CPaneContainer::Move

CPaneContainer::OnDeleteHidePane

CPaneContainer::OnMoveInternalPaneDivider

CPaneContainer::OnShowPane

CPaneContainer::Release

CPaneContainer::ReleaseEmptyPaneContainer

CPaneContainer::RemoveNonValidPanes

CPaneContainer::RemovePane

CPaneContainer::Resize

CPaneContainer::ResizePane

CPaneContainer::ResizePartOfPaneContainer

CPaneContainer::Serialize Reads or writes this object from or to an archive. (Overrides
CObject::Serialize.)

CPaneContainer::SetPane

CPaneContainer::SetPaneContainer

CPaneContainer::SetPaneDivider

CPaneContainer::SetParentPaneContainer

CPaneContainer::SetRecentPercent

CPaneContainer::SetUpByID

CPaneContainer::StoreRecentDockSiteInfo

CPaneContainer::StretchPaneContainer

NAME DESCRIPTION

RemarksRemarks

Example

CPaneDialog m_wndDlgBar;

CPaneContainer objects are created automatically by the framework.

The following example demonstrates how to construct an instance of the CPaneContainer class. This code snippet
is part of the Set Pane Size sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CPaneDivider* pDefaultPaneDivider = m_wndDlgBar.GetDefaultPaneDivider ();
if (pDefaultPaneDivider == NULL)
{
 AfxMessageBox (_T ("The DialogBar is not docked."));
 return;
}

BOOL bLeftBar = FALSE;
CPaneContainer* pContainer = pDefaultPaneDivider->FindPaneContainer (&m_wndDlgBar, bLeftBar);

Inheritance Hierarchy

Requirements

CPaneContainer::AddPane
CDockablePane* AddPane(CDockablePane* pBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainer::AddRef
void AddRef();

RemarksRemarks

CPaneContainer::AddSubPaneContainer
BOOL AddSubPaneContainer(
 CPaneContainer* pContainer,
 BOOL bRightNodeNew);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainer::CalcAvailablePaneSpace

CObject

CPaneContainer

Header: afxpanecontainer.h

[in] pBar

[in] pContainer
[in] bRightNodeNew

virtual int CalcAvailablePaneSpace(
 int nRequiredOffset,
 CPane* pBar,
 CPaneContainer* pContainer,
 BOOL bLeftBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainer::CalcAvailableSpace
virtual CSize CalcAvailableSpace(
 CSize sizeStretch,
 BOOL bLeftBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainer::CalculateRecentSize
void CalculateRecentSize();

RemarksRemarks

CPaneContainer::CheckPaneDividerVisibility
void CheckPaneDividerVisibility();

RemarksRemarks

CPaneContainer::Copy
virtual CPaneContainer* Copy(CPaneContainer* pParentContainer);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] nRequiredOffset
[in] pBar
[in] pContainer
[in] bLeftBar

[in] sizeStretch
[in] bLeftBar

[in] pParentContainer

CPaneContainer::CPaneContainer
CPaneContainer(
 CPaneContainerManager* pManager = NULL,
 CDockablePane* pLeftBar = NULL,
 CDockablePane* pRightBar = NULL,
 CPaneDivider* pSlider = NULL);

ParametersParameters

RemarksRemarks

CPaneContainer::DeletePane
virtual void DeletePane(
 CDockablePane* pBar,
 BC_FIND_CRITERIA barType);

ParametersParameters

RemarksRemarks

CPaneContainer::FindSubPaneContainer
CPaneContainer* FindSubPaneContainer(
 const CObject* pObject,
 BC_FIND_CRITERIA findCriteria);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainer::FindTabbedPane
CDockablePane* FindTabbedPane(UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] pManager
[in] pLeftBar
[in] pRightBar
[in] pSlider

[in] pBar
[in] barType

[in] pObject
[in] findCriteria

[in] nID

CPaneContainer::GetAssociatedSiblingPaneIDs
CList<UINT, UINT>* GetAssociatedSiblingPaneIDs(CDockablePane* pBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetLeftPane
const CDockablePane* GetLeftPane() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetLeftPaneContainer
const CPaneContainer* GetLeftPaneContainer() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetMinSize
virtual void GetMinSize(CSize& size) const;

ParametersParameters

RemarksRemarks

CPaneContainer::GetMinSizeLeft
virtual void GetMinSizeLeft(CSize& size) const;

ParametersParameters

RemarksRemarks

CPaneContainer::GetMinSizeRight
virtual void GetMinSizeRight(CSize& size) const;

ParametersParameters

[in] pBar

[in] size

[in] size

RemarksRemarks

CPaneContainer::GetNodeCount
int GetNodeCount() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetPaneDivider
const CPaneDivider* GetPaneDivider() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetParentPaneContainer
CPaneContainer* GetParentPaneContainer() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetRecentPaneDividerRect
CRect GetRecentPaneDividerRect() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetRecentPaneDividerStyle
DWORD GetRecentPaneDividerStyle() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetRecentPercent
int GetRecentPercent();

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetRefCount

[in] size

CPaneContainer::GetRefCount
LONG GetRefCount();

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetResizeStep
virtual int GetResizeStep() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetRightPane
const CDockablePane* GetRightPane() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetRightPaneContainer
const CPaneContainer* GetRightPaneContainer() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetTotalReferenceCount
int GetTotalReferenceCount() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::GetWindowRect
virtual void GetWindowRect(
 CRect& rect,
 BOOL bIgnoreVisibility = FALSE) const;

ParametersParameters

RemarksRemarks

[in] rect
[in] bIgnoreVisibility

CPaneContainer::IsDisposed
BOOL IsDisposed() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::IsEmpty
BOOL IsEmpty() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::IsLeftPane
BOOL IsLeftPane(CDockablePane* pBar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainer::IsLeftPaneContainer
BOOL IsLeftPaneContainer() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::IsLeftPartEmpty
BOOL IsLeftPartEmpty(BOOL bCheckVisibility = FALSE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainer::IsRightPartEmpty
BOOL IsRightPartEmpty(BOOL bCheckVisibility = FALSE) const;

ParametersParameters

[in] pBar

[in] bCheckVisibility

Return ValueReturn Value

RemarksRemarks

CPaneContainer::IsVisible
BOOL IsVisible() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainer::Move
virtual void Move(CPoint ptNewLeftTop);

ParametersParameters

RemarksRemarks

CPaneContainer::OnDeleteHidePane
void OnDeleteHidePane(
 CDockablePane* pBar,
 BOOL bHide);

ParametersParameters

RemarksRemarks

CPaneContainer::OnMoveInternalPaneDivider
virtual int OnMoveInternalPaneDivider(
 int nOffset,
 HDWP& hdwp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainer::OnShowPane

[in] bCheckVisibility

[in] ptNewLeftTop

[in] pBar
[in] bHide

[in] nOffset
[in] hdwp

virtual void OnShowPane(
 CDockablePane* pBar,
 BOOL bShow);

ParametersParameters

RemarksRemarks

CPaneContainer::Release
DWORD Release();

Return ValueReturn Value

RemarksRemarks

CPaneContainer::ReleaseEmptyPaneContainer
void ReleaseEmptyPaneContainer();

RemarksRemarks

CPaneContainer::RemoveNonValidPanes
void RemoveNonValidPanes();

RemarksRemarks

CPaneContainer::RemovePane
virtual void RemovePane(CDockablePane* pBar);

ParametersParameters

RemarksRemarks

CPaneContainer::Resize
virtual void Resize(
 CRect rect,
 HDWP& hdwp,
 BOOL bRedraw = FALSE);

ParametersParameters

[in] pBar
[in] bShow

[in] pBar

[in] rect
[in] hdwp
[in] bRedraw

RemarksRemarks

CPaneContainer::ResizePane
virtual void ResizePane(
 int nOffset,
 CPane* pBar,
 CPaneContainer* pContainer,
 BOOL bHorz,
 BOOL bLeftBar,
 HDWP& hdwp);

ParametersParameters

RemarksRemarks

CPaneContainer::ResizePartOfPaneContainer
virtual void ResizePartOfPaneContainer(
 int nOffset,
 BOOL bLeftPart,
 HDWP& hdwp);

ParametersParameters

RemarksRemarks

CPaneContainer::Serialize
void Serialize(CArchive& ar);

ParametersParameters

RemarksRemarks

CPaneContainer::SetPane
void SetPane(
 CDockablePane* pBar,
 BOOL bLeft);

ParametersParameters

[in] nOffset
[in] pBar
[in] pContainer
[in] bHorz
[in] bLeftBar
[in] hdwp

[in] nOffset
[in] bLeftPart
[in] hdwp

[in] ar

[in] pBar

RemarksRemarks

CPaneContainer::SetPaneContainer
void SetPaneContainer(
 CPaneContainer* pContainer,
 BOOL bLeft);

ParametersParameters

RemarksRemarks

CPaneContainer::SetPaneDivider
void SetPaneDivider(CPaneDivider* pSlider);

ParametersParameters

RemarksRemarks

CPaneContainer::SetParentPaneContainer
void SetParentPaneContainer(CPaneContainer* p);

ParametersParameters

RemarksRemarks

CPaneContainer::SetRecentPercent
void SetRecentPercent(int nRecentPercent);

ParametersParameters

RemarksRemarks

CPaneContainer::SetUpByID
BOOL SetUpByID(
 UINT nID,
 CDockablePane* pBar);

ParametersParameters

[in] bLeft

[in] pContainer
[in] bLeft

[in] pSlider

[in] p

[in] nRecentPercent

[in] nID

Return ValueReturn Value

RemarksRemarks

CPaneContainer::StoreRecentDockSiteInfo
virtual void StoreRecentDockSiteInfo(CDockablePane* pBar);

ParametersParameters

RemarksRemarks

CPaneContainer::StretchPaneContainer
virtual int StretchPaneContainer(
 int nOffset,
 BOOL bStretchHorz,
 BOOL bLeftBar,
 BOOL bMoveSlider,
 HDWP& hdwp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

[in] pBar

[in] pBar

[in] nOffset
[in] bStretchHorz
[in] bLeftBar
[in] bMoveSlider
[in] hdwp

Hierarchy Chart
Classes
CObject Class
CPaneContainerManager Class

CPaneContainerManager Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CPaneContainerManager : public CObject

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CPaneContainerManager::AddPane

CPaneContainerManager::AddPaneContainerManager

CPaneContainerManager::AddPaneContainerManagerToDock
ablePane

CPaneContainerManager::AddPanesToList

CPaneContainerManager::AddPaneToList

CPaneContainerManager::AddPaneToRecentPaneContainer

CPaneContainerManager::CalcRects

CPaneContainerManager::CanBeAttached

CPaneContainerManager::CheckAndRemoveNonValidPane

CPaneContainerManager::CheckForMiniFrameAndCaption

CPaneContainerManager::Create

CPaneContainerManager::DoesAllowDynInsertBefore

CPaneContainerManager::DoesContainFloatingPane

CPaneContainerManager::EnableGrippers

CPaneContainerManager::FindPaneContainer

CPaneContainerManager::FindTabbedPane

The CPaneContainerManager class manages the storage and display of the current docking layout. For more detail
see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpanecontainermanager-class.md

CPaneContainerManager::GetAvailableSpace

CPaneContainerManager::GetDefaultPaneDivider

CPaneContainerManager::GetDockSiteFrameWnd

CPaneContainerManager::GetFirstPane

CPaneContainerManager::GetFirstVisiblePane

CPaneContainerManager::GetMinMaxOffset

CPaneContainerManager::GetMinSize

CPaneContainerManager::GetNodeCount

CPaneContainerManager::GetPaneContainerRTC

CPaneContainerManager::GetPaneCount

CPaneContainerManager::GetTotalRefCount

CPaneContainerManager::GetVisiblePaneCount

CPaneContainerManager::GetWindowRect

CPaneContainerManager::HideAll

CPaneContainerManager::InsertPane

CPaneContainerManager::IsAutoHideMode

CPaneContainerManager::IsEmpty

CPaneContainerManager::IsRootPaneContainerVisible

CPaneContainerManager::NotifyPaneDivider

CPaneContainerManager::OnPaneDividerMove

CPaneContainerManager::OnShowPane

CPaneContainerManager::PaneFromPoint

CPaneContainerManager::ReleaseEmptyPaneContainers

CPaneContainerManager::RemoveAllPanesAndPaneDividers

CPaneContainerManager::RemoveNonValidPanes

NAME DESCRIPTION

CPaneContainerManager::RemovePaneDivider

CPaneContainerManager::RemovePaneFromPaneContainer

CPaneContainerManager::ReplacePane

CPaneContainerManager::ResizePaneContainers

CPaneContainerManager::Serialize Reads or writes this object from or to an archive. (Overrides
CObject::Serialize.)

CPaneContainerManager::SetDefaultPaneDividerForPanes

CPaneContainerManager::SetPaneContainerRTC

CPaneContainerManager::SetResizeMode

CPaneContainerManager::StoreRecentDockSiteInfo

NAME DESCRIPTION

RemarksRemarks

Example

// CMultiPaneFrameWnd* pParentMiniFrame
CPaneContainerManager& manager = pParentMiniFrame->GetPaneContainerManager ();

Inheritance Hierarchy

Requirements

CPaneContainerManager::AddPane
virtual void AddPane(CDockablePane* pControlBarToAdd);

ParametersParameters

The framework automatically creates instances of CPaneContainerManager objects and embeds them either into
CPaneDivider Class objects or into CMultiPaneFrameWnd Class objects.

The CPaneContainerManager class stores a pointer to the root of a binary tree that is built from CPaneContainer
objects.

The following example demonstrates how to get a reference to a CPaneContainerManager object. This code
snippet is part of the Set Pane Size sample.

CObject

CPaneContainerManager

Header: afxpanecontainermanager.h

[in] pControlBarToAdd

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CPaneContainerManager::AddPaneContainerManager
virtual BOOL AddPaneContainerManager(
 CPaneContainerManager& srcManager,
 BOOL bOuterEdge);

virtual BOOL AddPaneContainerManager(
 CDockablePane* pTargetControlBar,
 DWORD dwAlignment,
 CPaneContainerManager& srcManager,
 BOOL bCopy);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::AddPaneContainerManagerToDockablePan
e

virtual BOOL AddPaneContainerManagerToDockablePane(
 CDockablePane* pTargetControlBar,
 CPaneContainerManager& srcManager);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::AddPanesToList
void AddPanesToList(
 CObList* plstControlBars,
 CObList* plstSliders);

ParametersParameters

RemarksRemarks

CPaneContainerManager::AddPaneToList

[in] srcManager
[in] bOuterEdge
[in] pTargetControlBar
[in] dwAlignment
[in] bCopy

[in] pTargetControlBar
[in] srcManager

[in] plstControlBars
[in] plstSliders

void AddPaneToList(CDockablePane* pControlBarToAdd);

ParametersParameters

RemarksRemarks

CPaneContainerManager::AddPaneToRecentPaneContainer
virtual CDockablePane* AddPaneToRecentPaneContainer(
 CDockablePane* pBarToAdd,
 CPaneContainer* pRecentContainer);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::CalcRects
void CalcRects(
 CRect& rectOriginal,
 CRect& rectInserted,
 CRect& rectSlider,
 DWORD& dwSliderStyle,
 DWORD dwAlignment,
 CSize sizeMinOriginal,
 CSize sizeMinInserted);

ParametersParameters

RemarksRemarks

CPaneContainerManager::CanBeAttached
virtual BOOL CanBeAttached() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::CheckAndRemoveNonValidPane

[in] pControlBarToAdd

[in] pBarToAdd
[in] pRecentContainer

[in] rectOriginal
[in] rectInserted
[in] rectSlider
[in] dwSliderStyle
[in] dwAlignment
[in] sizeMinOriginal
[in] sizeMinInserted

BOOL CheckAndRemoveNonValidPane(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::CheckForMiniFrameAndCaption
virtual BOOL CheckForMiniFrameAndCaption(
 CPoint point,
 CDockablePane** ppTargetControlBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::Create
virtual BOOL Create(
 CWnd* pParentWnd,
 CPaneDivider* pDefaultSlider,
 CRuntimeClass* pContainerRTC = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::DoesAllowDynInsertBefore
virtual BOOL DoesAllowDynInsertBefore() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::DoesContainFloatingPane
virtual BOOL DoesContainFloatingPane();

Return ValueReturn Value

[in] pWnd

[in] point
[in] ppTargetControlBar

[in] pParentWnd
[in] pDefaultSlider
[in] pContainerRTC

RemarksRemarks

CPaneContainerManager::EnableGrippers
virtual void EnableGrippers(BOOL bEnable);

ParametersParameters

RemarksRemarks

CPaneContainerManager::FindPaneContainer
virtual CPaneContainer* FindPaneContainer(
 CDockablePane* pBar,
 BOOL& bLeftBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::FindTabbedPane
CDockablePane* FindTabbedPane(UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::GetAvailableSpace
virtual void GetAvailableSpace(CRect& rect) const;

ParametersParameters

RemarksRemarks

CPaneContainerManager::GetDefaultPaneDivider
CPaneDivider* GetDefaultPaneDivider() const;

Return ValueReturn Value

RemarksRemarks

[in] bEnable

[in] pBar
[in] bLeftBar

[in] nID

[in] rect

CPaneContainerManager::GetDockSiteFrameWnd
virtual CWnd* GetDockSiteFrameWnd();

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::GetFirstPane
virtual CBasePane* GetFirstPane() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::GetFirstVisiblePane
virtual CWnd* GetFirstVisiblePane() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::GetMinMaxOffset
virtual void GetMinMaxOffset(
 CPaneDivider* pSlider,
 int& nMinOffset,
 int& nMaxOffset,
 int& nStep);

ParametersParameters

RemarksRemarks

CPaneContainerManager::GetMinSize
virtual void GetMinSize(CSize& size);

ParametersParameters

RemarksRemarks

CPaneContainerManager::GetNodeCount

[in] pSlider
[in] nMinOffset
[in] nMaxOffset
[in] nStep

[in] size

int GetNodeCount() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::GetPaneContainerRTC
CRuntimeClass* GetPaneContainerRTC() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::GetPaneCount
int GetPaneCount() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::GetTotalRefCount
int GetTotalRefCount() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::GetVisiblePaneCount
virtual int GetVisiblePaneCount() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::GetWindowRect
virtual void GetWindowRect(CRect& rect) const;

ParametersParameters

RemarksRemarks

CPaneContainerManager::HideAll
virtual void HideAll();

[in] rect

RemarksRemarks

CPaneContainerManager::InsertPane
virtual BOOL InsertPane(
 CDockablePane* pControlBarToInsert,
 CDockablePane* pTargetControlBar,
 DWORD dwAlignment,
 LPCRECT lpRect = NULL,
 AFX_DOCK_METHOD dockMethod = DM_UNKNOWN);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::IsAutoHideMode
BOOL IsAutoHideMode() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::IsEmpty
BOOL IsEmpty() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::IsRootPaneContainerVisible
virtual BOOL IsRootPaneContainerVisible() const;

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::NotifyPaneDivider
void NotifyPaneDivider();

RemarksRemarks

[in] pControlBarToInsert
[in] pTargetControlBar
[in] dwAlignment
[in] lpRect
[in] dockMethod

CPaneContainerManager::OnPaneDividerMove
virtual int OnPaneDividerMove(
 CPaneDivider* pSlider,
 UINT uFlags,
 int nOffset,
 HDWP& hdwp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::OnShowPane
virtual BOOL OnShowPane(
 CDockablePane* pBar,
 BOOL bShow);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::PaneFromPoint
virtual CDockablePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 BOOL bExactBar,
 BOOL& bIsTabArea,
 BOOL& bCaption);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::ReleaseEmptyPaneContainers

[in] pSlider
[in] uFlags
[in] nOffset
[in] hdwp

[in] pBar
[in] bShow

[in] point
[in] nSensitivity
[in] bExactBar
[in] bIsTabArea
[in] bCaption

void ReleaseEmptyPaneContainers();

RemarksRemarks

CPaneContainerManager::RemoveAllPanesAndPaneDividers
void RemoveAllPanesAndPaneDividers();

RemarksRemarks

CPaneContainerManager::RemoveNonValidPanes
void RemoveNonValidPanes();

RemarksRemarks

CPaneContainerManager::RemovePaneDivider
virtual void RemovePaneDivider(CPaneDivider* pSlider);

ParametersParameters

RemarksRemarks

CPaneContainerManager::RemovePaneFromPaneContainer
virtual BOOL RemovePaneFromPaneContainer(CDockablePane* pControlBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneContainerManager::ReplacePane
virtual BOOL ReplacePane(
 CDockablePane* pBarOld,
 CDockablePane* pBarNew);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] pSlider

[in] pControlBar

[in] pBarOld
[in] pBarNew

CPaneContainerManager::ResizePaneContainers
virtual void ResizePaneContainers(
 UINT nSide,
 BOOL bExpand,
 int nOffset,
 HDWP& hdwp);

virtual void ResizePaneContainers(
 CRect rect,
 HDWP& hdwp);

ParametersParameters

RemarksRemarks

CPaneContainerManager::Serialize
void Serialize(CArchive& ar);

ParametersParameters

RemarksRemarks

CPaneContainerManager::SetDefaultPaneDividerForPanes
void SetDefaultPaneDividerForPanes(CPaneDivider* pSlider);

ParametersParameters

RemarksRemarks

CPaneContainerManager::SetPaneContainerRTC
void SetPaneContainerRTC(CRuntimeClass* pContainerRTC);

ParametersParameters

RemarksRemarks

CPaneContainerManager::SetResizeMode
virtual void SetResizeMode(BOOL bResize);

[in] nSide
[in] bExpand
[in] nOffset
[in] hdwp
[in] rect

[in] ar

[in] pSlider

[in] pContainerRTC

ParametersParameters

RemarksRemarks

CPaneContainerManager::StoreRecentDockSiteInfo
virtual void StoreRecentDockSiteInfo(CDockablePane* pBar);

ParametersParameters

RemarksRemarks

See also

[in] bResize

[in] pBar

Hierarchy Chart
Classes
CObject Class
CPaneContainer Class
CPaneDivider Class

CPaneDialog Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CPaneDialog : public CDockablePane

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPaneDialog::CPaneDialog Default constructor.

CPaneDialog::~CPaneDialog Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CPaneDialog::Create Creates a dockable dialog box and attaches it to a
CPaneDialog object.

CPaneDialog::CreateObject Used by the framework to create a dynamic instance of this
class type.

CPaneDialog::GetThisClass Used by the framework to obtain a pointer to the
CRuntimeClass object that is associated with this class type.

CPaneDialog::HandleInitDialog Handles the WM_INITDIALOG message. (Redefines
CBasePane::HandleInitDialog .)

CPaneDialog::OnEraseBkgnd Handles the WM_ERASEBKGND message. (Redefines
CWnd::OnEraseBkgnd.)

CPaneDialog::OnLButtonDblClk Handles the WM_LBUTTONDBLCLK message. (Redefines
CWnd::OnLButtonDblClk.)

CPaneDialog::OnLButtonDown Handles the WM_LBUTTONDOWN message. (Redefines
CWnd::OnLButtonDown.)

CPaneDialog::OnUpdateCmdUI Called by the framework to update the dialog box window.
(Overrides CDockablePane::OnUpdateCmdUI.)

CPaneDialog::OnWindowPosChanging Handles the WM_WINDOWPOSCHANGING message.
(Redefines CWnd::OnWindowPosChanging.)

The CPaneDialog class supports a modeless, dockable dialog box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpanedialog-class.md
https://docs.microsoft.com/windows/desktop/dlgbox/wm-initdialog
https://docs.microsoft.com/windows/desktop/winmsg/wm-erasebkgnd
https://docs.microsoft.com/windows/desktop/inputdev/wm-lbuttondblclk
https://docs.microsoft.com/windows/desktop/inputdev/wm-lbuttondown
https://docs.microsoft.com/windows/desktop/winmsg/wm-windowposchanging

CPaneDialog::SetOccDialogInfo Specifies the template for a dialog box that is an OLE control
container.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CPaneDialog::Create

Construct a CPaneDialog object in two steps. First, construct the object in your code. Second, call
CPaneDialog::Create. You must specify a valid resource template name or template ID and pass a pointer to the
parent window. Otherwise, the creation process fails. The dialog box must specify the WS_CHILD and
WS_VISIBLE style. We recommend that you also specify the WS_CLIPCHILDREN and WS_CLIPSIBLINGS styles.
For more information, see Window Styles.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CDockablePane

CPaneDialog

Header: afxpanedialog.h

Creates a docking dialog box and attaches it to a CPaneDialog object.

BOOL Create(
 LPCTSTR lpszWindowName,
 CWnd* pParentWnd,
 BOOL bHasGripper,
 LPCTSTR lpszTemplateName,
 UINT nStyle,
 UINT nID,
 DWORD dwTabbedStyle= AFX_CBRS_REGULAR_TABS,
 DWORD dwControlBarStyle=AFX_DEFAULT_DOCKING_PANE_STYLE);

BOOL Create(
 LPCTSTR lpszWindowName,
 CWnd* pParentWnd,
 BOOL bHasGripper,
 UINT nIDTemplate,
 UINT nStyle,
 UINT nID);

BOOL Create(
 CWnd* pParentWnd,
 LPCTSTR lpszTemplateName,
 UINT nStyle,
 UINT nID);

BOOL Create(
 CWnd* pParentWnd,
 UINT nIDTemplate,
 UINT nStyle,
 UINT nID);

ParametersParameters
lpszWindowName
[in] The name of the docking dialog box.

pParentWnd
[in] Points to the parent window.

bHasGripper
[in] TRUE to create the docking dialog box with a caption (gripper); otherwise, FALSE.

lpszTemplateName
[in] The name of the resource dialog template.

nStyle
[in] The Windows style.

nID
[in] The control ID.

nIDTemplate
[in] The resource ID of the dialog template.

dwTabbedStyle
[in] The style of the tabbed window that results when the user drags another control pane onto the caption of this
control pane. The default value is AFX_CBRS_REGULAR_TABS. For more information, see the Remarks section of
the CBasePane::CreateEx method.

dwControlBarStyle
[in] Additional style attributes. The default value is AFX_DEFAULT_DOCKING_PANE_STYLE. For more
information, see the Remarks section of the CBasePane::CreateEx method.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPaneDialog m_wndDlgBar;

// The this pointer points to a CMainFrame class which extends the CFrameWnd class.
if (!m_wndDlgBar.Create (_T("DialogBar"), this, TRUE,
 MAKEINTRESOURCE (IDD_DLG_BAR),
 WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS | WS_CLIPCHILDREN | CBRS_LEFT |
CBRS_FLOAT_MULTI,
 ID_VIEW_DLGBAR))
{
 TRACE0("Failed to create Dialog Bar\n");
 return FALSE; // fail to create
}

CPaneDialog::HandleInitDialog

afx_msg LRESULT HandleInitDialog(
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneDialog::SetOccDialogInfo

virtual BOOL SetOccDialogInfo(_AFX_OCC_DIALOG_INFO* pOccDialogInfo);

ParametersParameters

TRUE if this method succeeds; otherwise, FALSE.

The following example demonstrates how to use the Create method in the CPaneDialog class. This example is
part of the Set Pane Size sample.

Handles the WM_INITDIALOG message.

wParam
[in] Handle to the control that is to receive the default keyboard focus.

lParam
[in] Specifies additional initialization data.

TRUE if this method is successful; otherwise, FALSE. In addition, TRUE sets the keyboard focus to the control
specified by the wParam parameter; FALSE prevents setting the default keyboard focus.

The framework uses this method to initialize controls and the appearance of a dialog box. The framework calls this
method before it displays the dialog box.

Specifies the template for a dialog box that is an OLE control container.

pOccDialogInfo

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/dlgbox/wm-initdialog

Return ValueReturn Value

RemarksRemarks

See also

[in] Pointer to a dialog box template that is used to create the dialog box object. The value of this parameter is
subsequently passed into the COccManager::CreateDlgControls method.

Always TRUE.

This method supports the COccManager class, which manages OLE control sites and ActiveX controls. The
_AFX_OCC_DIALOG_INFO structure is defined in the afxocc.h header file.

Hierarchy Chart
Classes
CDockablePane Class
Window Styles

CPaneDivider Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CPaneDivider : public CBasePane

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPaneDivider::CPaneDivider

Public MethodsPublic Methods

NAME DESCRIPTION

CPaneDivider::AddPaneContainer

CPaneDivider::AddPane

CPaneDivider::AddRecentPane

CPaneDivider::CalcExpectedDockedRect

CPaneDivider::CalcFixedLayout (Overrides CBasePane::CalcFixedLayout.)

CPaneDivider::CheckVisibility

CPaneDivider::CreateEx (Overrides CBasePane::CreateEx.)

CPaneDivider::DoesAllowDynInsertBefore (Overrides CBasePane::DoesAllowDynInsertBefore.)

CPaneDivider::DoesContainFloatingPane

CPaneDivider::FindPaneContainer

CPaneDivider::FindTabbedPane

CPaneDivider::GetDefaultWidth

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

The CPaneDivider class divides two panes, divides two groups of panes, or separates a group of panes from the
client area of the main frame window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpanedivider-class.md

CPaneDivider::GetFirstPane

CPaneDivider::GetPaneDividerStyle

CPaneDivider::GetRootContainerRect

CPaneDivider::GetWidth

CPaneDivider::Init

CPaneDivider::InsertPane

CPaneDivider::IsAutoHideMode (Overrides CBasePane::IsAutoHideMode.)

CPaneDivider::IsDefault

CPaneDivider::IsHorizontal (Overrides CBasePane::IsHorizontal.)

CPaneDivider::Move

CPaneDivider::NotifyAboutRelease

CPaneDivider::OnShowPane

CPaneDivider::ReleaseEmptyPaneContainers

CPaneDivider::RemovePane

CPaneDivider::ReplacePane

CPaneDivider::RepositionPanes

CPaneDivider::Serialize (Overrides CBasePane::Serialize .)

CPaneDivider::SetAutoHideMode

CPaneDivider::SetPaneContainerManager

CPaneDivider::ShowWindow

CPaneDivider::StoreRecentDockSiteInfo

CPaneDivider::StoreRecentTabRelatedInfo

NAME DESCRIPTION

Public MethodsPublic Methods

NAME DESCRIPTION

CPaneDivider::GetPanes Returns the list of panes that reside in the CPaneContainer
Class. This method should be called only for default pane
dividers.

CPaneDivider::GetPaneDividers Returns the list of pane dividers that reside in the
CPaneContainer Class. This method should be called only for
default pane dividers.

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CPaneDivider::m_nDefaultWidth Specifies the default width in pixels of all pane dividers in the
application.

CPaneDivider::m_pSliderRTC Holds a pointer to the runtime class information about a
CPaneDivider -derived object.

Remarks

Example

// CWorkspaceBar m_wndWorkSpace
CPaneDivider* pSlider = m_wndWorkSpace.GetDefaultPaneDivider ();

Inheritance Hierarchy

Requirements

CPaneDivider::SetAutoHideMode
void SetAutoHideMode(BOOL bMode);

ParametersParameters

The framework creates CPaneDivider objects automatically when a pane is docked.

There are two types of pane dividers:

a default pane divider is created when a group of panes is docked to a side of the main frame window.
The default pane divider holds a pointer to the CPaneContainerManager Class and redirects most
operations on the group of panes (such as resizing a pane, or docking another pane or container) to the
container manager. Each docking pane maintains a pointer to its default pane divider.

A regular pane divider just divides two panes in a container. For more information, see CPaneContainer
Class.

The following example demonstrates how to get a CPaneDivider object from a CWorkspaceBar object. This code
snippet is part of the MDI Tabs Demo sample.

CObject CCmdTarget CWnd

CBasePane CPaneDivider

Header: afxPaneDivider.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CPaneDivider::SetPaneContainerManager
void SetPaneContainerManager(CPaneContainerManager* p);

ParametersParameters

RemarksRemarks

CPaneDivider::AddPane
virtual void AddPane(CDockablePane* pBar);

ParametersParameters

RemarksRemarks

CPaneDivider::AddPaneContainer
virtual BOOL AddPaneContainer(
 CPaneContainerManager& barContainerManager,
 BOOL bOuterEdge);

virtual BOOL AddPaneContainer(
 CDockablePane* pTargetBar,
 CPaneContainerManager& barContainerManager,
 DWORD dwAlignment);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneDivider::AddRecentPane
virtual CDockablePane* AddRecentPane(CDockablePane* pBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] bMode

[in] p

[in] pBar

[in] barContainerManager
[in] bOuterEdge
[in] pTargetBar
[in] dwAlignment

[in] pBar

CPaneDivider::CalcExpectedDockedRect
virtual void CalcExpectedDockedRect(
 CWnd* pWndToDock,
 CPoint ptMouse,
 CRect& rectResult,
 BOOL& bDrawTab,
 CDockablePane** ppTargetBar);

ParametersParameters

RemarksRemarks

CPaneDivider::CalcFixedLayout
virtual CSize CalcFixedLayout(
 BOOL bStretch,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneDivider::CheckVisibility
virtual BOOL CheckVisibility();

Return ValueReturn Value

RemarksRemarks

CPaneDivider::CPaneDivider
CPaneDivider();

CPaneDivider(
 BOOL bDefaultSlider,
 CWnd* pParent = NULL);

ParametersParameters

Return ValueReturn Value

[in] pWndToDock
[in] ptMouse
[in] rectResult
[in] bDrawTab
[in] ppTargetBar

[in] bStretch
[in] bHorz

[in] bDefaultSlider
[in] pParent

RemarksRemarks

CPaneDivider::CreateEx
virtual BOOL CreateEx(
 DWORD dwStyleEx,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 CCreateContext* pContext);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneDivider::DoesAllowDynInsertBefore
virtual BOOL DoesAllowDynInsertBefore() const;

Return ValueReturn Value

RemarksRemarks

CPaneDivider::DoesContainFloatingPane
virtual BOOL DoesContainFloatingPane();

Return ValueReturn Value

RemarksRemarks

CPaneDivider::FindPaneContainer
CPaneContainer* FindPaneContainer(
 CDockablePane* pBar,
 BOOL& bLeftBar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] dwStyleEx
[in] dwStyle
[in] rect
[in] pParentWnd
[in] nID
[in] pContext

[in] pBar
[in] bLeftBar

CPaneDivider::FindTabbedPane
CDockablePane* FindTabbedPane(UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneDivider::GetDefaultWidth
static int __stdcall GetDefaultWidth();

Return ValueReturn Value

RemarksRemarks

CPaneDivider::GetFirstPane
const CBasePane* GetFirstPane() const;

Return ValueReturn Value

RemarksRemarks

CPaneDivider::GetPaneDividers

void GetPaneDividers(CObList& lstSliders);

ParametersParameters

RemarksRemarks

CPaneDivider::GetPaneDividerStyle
DWORD GetPaneDividerStyle() const;

Return ValueReturn Value

RemarksRemarks

CPaneDivider::GetPanes

[in] nID

Returns the list of pane dividers that reside in the CPaneContainer Class. This method should be called only for
default pane dividers.

lstSliders
[out] Contains the list of pane dividers that reside in the pane container.

This method should be called for default pane dividers only. A default pane divider is a divider that resizes the
entire pane container.

void GetPanes(CObList& lstBars);

ParametersParameters

RemarksRemarks

CPaneDivider::GetRootContainerRect
CRect GetRootContainerRect();

Return ValueReturn Value

RemarksRemarks

CPaneDivider::GetWidth
int GetWidth() const;

Return ValueReturn Value

RemarksRemarks

CPaneDivider::Init
void Init(
 BOOL bDefaultSlider = FALSE,
 CWnd* pParent = NULL);

ParametersParameters

RemarksRemarks

CPaneDivider::InsertPane
virtual BOOL InsertPane(
 CDockablePane* pBarToInsert,
 CDockablePane* pTargetBar,
 DWORD dwAlignment,
 LPCRECT lpRect = NULL);

ParametersParameters

Returns the list of panes that reside in the CPaneContainer Class. This method should be called only to retrieve
default pane dividers.

lstBars
[out] Contains the list of panes that reside in the pane container.

This method should be called for default pane dividers only. A default pane divider is a divider that resizes the
entire pane container.

[in] bDefaultSlider
[in] pParent

[in] pBarToInsert
[in] pTargetBar

Return ValueReturn Value

RemarksRemarks

CPaneDivider::IsAutoHideMode
BOOL IsAutoHideMode() const;

Return ValueReturn Value

RemarksRemarks

CPaneDivider::IsDefault
BOOL IsDefault() const;

Return ValueReturn Value

RemarksRemarks

CPaneDivider::IsHorizontal
BOOL IsHorizontal() const;

Return ValueReturn Value

RemarksRemarks

CPaneDivider::m_nDefaultWidth

AFX_IMPORT_DATA static int m_nDefaultWidth;

CPaneDivider::Move
virtual void Move(
 CPoint& ptOffset,
 BOOL bAdjustLayout = TRUE);

ParametersParameters

RemarksRemarks

CPaneDivider::m_pSliderRTC

[in] dwAlignment
[in] lpRect

Specifies the default width, in pixels, of all pane dividers in the application.

[in] ptOffset
[in] bAdjustLayout

Holds a pointer to runtime class information about a CPaneDivider -derived object.

AFX_IMPORT_DATA static CRuntimeClass* m_pSliderRTC;

RemarksRemarks

ExampleExample

class CMySplitter : public CPaneDivider
{
...
};

CPaneDivider::m_pSliderRTC = RUNTIME_CLASS(CMySpliter);

CPaneDivider::NotifyAboutRelease
virtual void NotifyAboutRelease();

RemarksRemarks

CPaneDivider::OnShowPane
virtual void OnShowPane(
 CDockablePane* pBar,
 BOOL bShow);

ParametersParameters

RemarksRemarks

CPaneDivider::ReleaseEmptyPaneContainers
void ReleaseEmptyPaneContainers();

RemarksRemarks

CPaneDivider::RemovePane
virtual void RemovePane(CDockablePane* pBar);

ParametersParameters

RemarksRemarks

Set this member variable if you create a custom pane divider. This enables the framework to create your pane
divider when the pane is drawn.

The following example shows how to set the m_pSliderRTC member variable:

[in] pBar
[in] bShow

[in] pBar

CPaneDivider::ReplacePane
virtual BOOL ReplacePane(
 CDockablePane* pBarToReplace,
 CDockablePane* pBarToReplaceWith);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneDivider::RepositionPanes
virtual void RepositionPanes(
 CRect& rectNew,
 HDWP& hdwp);

ParametersParameters

RemarksRemarks

CPaneDivider::Serialize
void Serialize(CArchive& ar);

ParametersParameters

RemarksRemarks

CPaneDivider::ShowWindow
void ShowWindow(int nCmdShow);

ParametersParameters

RemarksRemarks

CPaneDivider::StoreRecentDockSiteInfo
void StoreRecentDockSiteInfo(CDockablePane* pBar);

ParametersParameters

[in] pBarToReplace
[in] pBarToReplaceWith

[in] rectNew
[in] hdwp

[in] ar

[in] nCmdShow

[in] pBar

RemarksRemarks

CPaneDivider::StoreRecentTabRelatedInfo
void StoreRecentTabRelatedInfo(
 CDockablePane* pDockingBar,
 CDockablePane* pTabbedBar);

ParametersParameters

RemarksRemarks

See also

[in] pDockingBar
[in] pTabbedBar

Hierarchy Chart
Classes
CPaneContainerManager Class
CPaneContainer Class
CDockingManager Class
CBasePane Class

CPaneFrameWnd Class
3/4/2019 • 15 minutes to read • Edit Online

Syntax
class CPaneFrameWnd : public CWnd

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CPaneFrameWnd::AddPane Adds a pane.

CPaneFrameWnd::AddRemovePaneFromGlobalList Adds or removes a pane from the global list.

CPaneFrameWnd::AdjustLayout Adjusts the layout of the mini-frame window.

CPaneFrameWnd::AdjustPaneFrames

CPaneFrameWnd::CalcBorderSize Calculates the size of the borders for a mini-frame window.

CPaneFrameWnd::CalcExpectedDockedRect Calculate the expected rectangle of a docked window.

CPaneFrameWnd::CanBeAttached Determines whether the current pane can be docked to
another pane or frame window.

CPaneFrameWnd::CanBeDockedToPane Determines whether the mini-frame window can be docked
to a pane.

CPaneFrameWnd::CheckGripperVisibility

CPaneFrameWnd::ConvertToTabbedDocument Converts the pane to a tabbed document.

CPaneFrameWnd::Create Creates a mini-frame window and attaches it to the
CPaneFrameWnd object.

CPaneFrameWnd::CreateEx Creates a mini-frame window and attaches it to the
CPaneFrameWnd object.

CPaneFrameWnd::DockPane Docks the pane.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio
installation.

Implements a mini-frame window that contains one pane. The pane fills the client area of the window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpaneframewnd-class.md

CPaneFrameWnd::FindFloatingPaneByID Finds a pane with the specified control ID in the global list
of floating panes.

CPaneFrameWnd::FrameFromPoint Finds the mini-frame window containing a user-supplied
point.

CPaneFrameWnd::GetCaptionHeight Returns the height of the mini-frame window caption.

CPaneFrameWnd::GetCaptionRect Calculates the bounding rectangle of a mini-frame window
caption.

CPaneFrameWnd::GetCaptionText Returns the caption text.

CPaneFrameWnd::GetDockingManager

CPaneFrameWnd::GetDockingMode Returns the docking mode.

CPaneFrameWnd::GetFirstVisiblePane Returns the first visible pane that is contained in a mini-
frame window.

CPaneFrameWnd::GetHotPoint

CPaneFrameWnd::GetPane Returns a pane that is contained in the mini-frame window.

CPaneFrameWnd::GetPaneCount Returns the number of panes that are contained in a mini-
frame window.

CPaneFrameWnd::GetParent

CPaneFrameWnd::GetPinState

CPaneFrameWnd::GetRecentFloatingRect

CPaneFrameWnd::GetVisiblePaneCount Returns the number of visible panes that are contained in a
mini-frame window.

CPaneFrameWnd::HitTest Determines what part of a mini-frame window is at a given
point.

CPaneFrameWnd::IsCaptured

CPaneFrameWnd::IsDelayShow

CPaneFrameWnd::IsRollDown Determines whether a mini-frame window should be rolled
down.

CPaneFrameWnd::IsRollUp Determines whether a mini-frame window should be rolled
up.

CPaneFrameWnd::KillDockingTimer Stops the docking timer.

CPaneFrameWnd::LoadState Loads the pane's state from the registry.

NAME DESCRIPTION

CPaneFrameWnd::OnBeforeDock Determines if docking is possible.

CPaneFrameWnd::OnDockToRecentPos Docks the mini-frame window at its most recent position.

CPaneFrameWnd::OnKillRollUpTimer Stops the rollup timer.

CPaneFrameWnd::OnMovePane Moves the mini-frame window by a specified offset.

CPaneFrameWnd::OnPaneRecalcLayout Adjusts the layout of a contained pane.

CPaneFrameWnd::OnSetRollUpTimer Sets the rollup timer.

CPaneFrameWnd::OnShowPane Called by the framework when a pane in the mini-frame
window is hidden or displayed.

CPaneFrameWnd::PaneFromPoint Returns a pane if it contains a user-supplied point inside a
mini-frame window.

CPaneFrameWnd::Pin

CPaneFrameWnd::PreTranslateMessage Used by class CWinApp to translate window messages
before they are dispatched to the TranslateMessage and
DispatchMessage Windows functions.

CPaneFrameWnd::RedrawAll Redraws all mini-frame windows.

CPaneFrameWnd::RemoveNonValidPanes Called by the framework to remove non-valid panes.

CPaneFrameWnd::RemovePane Removes a pane from the mini-frame window.

CPaneFrameWnd::ReplacePane Replaces one pane with another.

CPaneFrameWnd::SaveState Saves the pane's state to the registry.

CPaneFrameWnd::Serialize Reads or writes this object from or to an archive.

CPaneFrameWnd::SetCaptionButtons Sets caption buttons.

CPaneFrameWnd::SetDelayShow

CPaneFrameWnd::SetDockingManager

CPaneFrameWnd::SetDockingTimer Sets the docking timer.

CPaneFrameWnd::SetDockState Sets the docking state.

CPaneFrameWnd::SetHotPoint

CPaneFrameWnd::SetPreDockState Called by the framework to set the predocking state.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CPaneFrameWnd::SizeToContent Adjusts the size of a mini-frame window so that it is
equivalent in size to a contained pane.

CPaneFrameWnd::StartTearOff Tears off a menu.

CPaneFrameWnd::StoreRecentDockSiteInfo

CPaneFrameWnd::StoreRecentTabRelatedInfo

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CPaneFrameWnd::OnCheckRollState Determines whether a mini-frame window should be rolled
up or down.

CPaneFrameWnd::OnDrawBorder Draws the borders of a mini-frame window.

Data MembersData Members

NAME DESCRIPTION

CPaneFrameWnd::m_bUseSaveBits Specifies whether to register the window class with the
CS_SAVEBITS class style.

Remarks

Inheritance Hierarchy

Requirements

The framework automatically creates a CPaneFrameWnd object when a pane is switched from a docked state to a
floating state.

A mini-frame window can be dragged with its contents visible (immediate docking) or using a drag rectangle
(standard docking). The docking mode of the mini-frame's container pane determines the mini-frame's
dragging behavior. For more information, see CBasePane::GetDockingMode.

A mini-frame window displays buttons on the caption in accordance with the contained pane style. If the pane
can be closed (CBasePane::CanBeClosed), it displays a Close button. If the pane has the
AFX_CBRS_AUTO_ROLLUP style, it displays a pin.

If you derive a class from CPaneFrameWnd , you must tell the framework how to create it. Either create the class
by overriding CPane::CreateDefaultMiniframe, or set the CPane::m_pMiniFrameRTC member so that it points to
the runtime class information for your class.

CObject

CCmdTarget

CWnd

CPaneFrameWnd

CPaneFrameWnd::AddPane

virtual void AddPane(CBasePane* pWnd);

ParametersParameters

CPaneFrameWnd::AddRemovePaneFromGlobalList

static BOOL __stdcall AddRemovePaneFromGlobalList(
 CBasePane* pWnd,
 BOOL bAdd);

ParametersParameters

Return ValueReturn Value

CPaneFrameWnd::AdjustLayout

virtual void AdjustLayout();

CPaneFrameWnd::AdjustPaneFrames
virtual void AdjustPaneFrames();

RemarksRemarks

CPaneFrameWnd::CalcBorderSize

virtual void CalcBorderSize(CRect& rectBorderSize) const;

ParametersParameters

Header: afxPaneFrameWnd.h

Adds a pane.

pWnd
[in] The pane to add.

Adds or removes a pane from the global list.

pWnd
[in] The pane to add or remove.

bAdd
[in] If non-zero, add the pane. If 0, remove the pane.

Nonzero if the method was successful; otherwise 0.

Adjusts the layout of the mini-frame window.

Calculates the size of the borders for a miniframe window.

rectBorderSize

RemarksRemarks

CPaneFrameWnd::CalcExpectedDockedRect

virtual void CalcExpectedDockedRect(
 CWnd* pWndToDock,
 CPoint ptMouse,
 CRect& rectResult,
 BOOL& bDrawTab,
 CDockablePane** ppTargetBar);

ParametersParameters

RemarksRemarks

CPaneFrameWnd::CanBeAttached

virtual BOOL CanBeAttached() const;

Return ValueReturn Value

CPaneFrameWnd::CanBeDockedToPane

virtual BOOL CanBeDockedToPane(const CDockablePane* pDockingBar) const;

ParametersParameters

[out] Contains the size, in pixels, of the border of the miniframe window.

This method is called by the framework to calculate the size of the border of a miniframe window. The
returned size depends on whether a miniframe window contains a toolbar or a CDockablePane.

Calculate the expected rectangle of a docked window.

pWndToDock
[in] A pointer to the window to dock.

ptMouse
[in] The mouse location.

rectResult
[out] The calculated rectangle.

bDrawTab
[out] If TRUE, draw a tab. If FALSE, do not draw a tab.

ppTargetBar
[out] A pointer to the target pane.

This method calculates the rectangle that a window would occupy if a user dragged the window to the point
specified by ptMouse and docked it there.

Determines whether the current pane can be docked to another pane or frame window.

TRUE if the pane can be docked to another pane or frame window; otherwise FALSE.

Determines whether the mini-frame window can be docked to a pane.

pDockingBar

Return ValueReturn Value

CPaneFrameWnd::CheckGripperVisibility
virtual void CheckGripperVisibility();

RemarksRemarks

CPaneFrameWnd::ConvertToTabbedDocument

virtual void ConvertToTabbedDocument();

CPaneFrameWnd::Create

virtual BOOL Create(
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 CCreateContext* pContext = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::CreateEx

[in] A pane.

Nonzero if the mini-frame can be docked to pDockingBar; otherwise 0.

Converts the pane to a tabbed document.

Creates a miniframe window and attaches it to the CPaneFrameWnd object.

lpszWindowName
[in] Specifies the text to display on the miniframe window.

dwStyle
[in] Specifies the window style. For more information, see Window Styles.

rect
[in] Specifies the initial size and position of the miniframe window.

pParentWnd
[in, out] Specifies the parent frame of the miniframe window. This value must not be NULL.

pContext
[in, out] Specifies user-defined context.

TRUE if the window was created successfully; otherwise, FALSE.

A miniframe window is created in two steps. First, the framework creates a CPaneFrameWnd object. Second, it
calls Create to create the Windows miniframe window and attach it to the CPaneFrameWnd object.

Creates a miniframe window and attaches it to the CPaneFrameWnd object.

virtual BOOL CreateEx(
 DWORD dwStyleEx,
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 CCreateContext* pContext=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::DockPane

virtual CDockablePane* DockPane(BOOL& bWasDocked);

ParametersParameters

Return ValueReturn Value

CPaneFrameWnd::FindFloatingPaneByID

static CBasePane* FindFloatingPaneByID(UINT nID);

ParametersParameters

dwStyleEx
[in] Specifies the extended window style. For more information, see Extended Window Styles

lpszWindowName
[in] Specifies the text to display on the miniframe window.

dwStyle
[in] Specifies the window style. For more information, see Window Styles.

rect
[in] Specifies the initial size and position of the miniframe window.

pParentWnd
[in, out] Specifies the parent frame of the miniframe window. This value must not be NULL.

pContext
[in, out] Specifies user-defined context.

TRUE if the window was created successfully; otherwise, FALSE.

A miniframe window is created in two steps. First, the framework creates a CPaneFrameWnd object. Second, it
calls Create to create the Windows miniframe window and attach it to the CPaneFrameWnd object.

Docks the pane.

bWasDocked
[out] TRUE if the pane was already docked; otherwise FALSE.

If the operation was successful, the CDockablePane that the pane was docked to; otherwise NULL.

Finds a pane with the specified control ID in the global list of floating panes.

Return ValueReturn Value

CPaneFrameWnd::FrameFromPoint

static CPaneFrameWnd* __stdcall FrameFromPoint(
 CPoint pt,
 int nSensitivity,
 CPaneFrameWnd* pFrameToExclude = NULL,
 BOOL bFloatMultiOnly = FALSE);

ParametersParameters

Return ValueReturn Value

CPaneFrameWnd::GetCaptionHeight

virtual int GetCaptionHeight() const;

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::GetCaptionRect

virtual void GetCaptionRect(CRect& rectCaption) const;

ParametersParameters

nID
[in] Represents the control ID of the pane to find.

The pane with the specified control ID; otherwise, NULL, if no pane has the specified control ID.

Finds the mini-frame window that contains the specified point.

pt
[in] The point, in screen coordinates.

nSensitivity
[in] Increase the search area of the mini-frame window by this size. A mini-frame window satisfies the search
criteria if the given point falls in the increased area.

pFrameToExclude
[in] Specifies a mini-frame window to exclude from the search.

bFloatMultiOnly
[in] If TRUE, only search mini-frame windows that have the CBRS_FLOAT_MULTI style. If FALSE, search all
mini-frame windows.

A pointer to the mini-frame window that contains pt; otherwise NULL.

Returns the height of the mini-frame window caption.

The height, in pixels, of the mini-frame window.

Call this method to determine the height of a mini-frame window. By default, the height is set to
SM_CYSMCAPTION. For more information, see GetSystemMetrics Function.

Calculates the bounding rectangle of a mini-frame window caption.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsystemmetrics

RemarksRemarks

CPaneFrameWnd::GetCaptionText

virtual CString GetCaptionText();

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::GetDockingManager
CDockingManager* GetDockingManager() const;

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::GetDockingMode

virtual AFX_DOCK_TYPE GetDockingMode() const;

Return ValueReturn Value

CPaneFrameWnd::GetFirstVisiblePane

virtual CWnd* GetFirstVisiblePane() const;

Return ValueReturn Value

CPaneFrameWnd::GetHotPoint

rectCaption
[out] Contains the size and position of the mini-frame window caption, in screen coordinates.

This method is called by the framework to calculate the bounding rectangle of a mini-frame window caption.

Returns the caption text.

The caption text of the mini-frame window.

This method is called by the framework when it displays the caption text.

Returns the docking mode.

The docking mode. One of the following values:

DT_STANDARD

DT_IMMEDIATE

DT_SMART

Returns the first visible pane that is contained in a mini-frame window.

The first pane in the mini-frame window, or NULL if the mini-frame window contains no panes.

CPoint GetHotPoint() const;

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::GetPane

virtual CWnd* GetPane() const;

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::GetPaneCount

virtual int GetPaneCount() const;

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::GetParent
CWnd* GetParent();

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::GetPinState
BOOL GetPinState() const;

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::GetRecentFloatingRect
CRect GetRecentFloatingRect() const;

Return ValueReturn Value

RemarksRemarks

Returns a pane that is contained in the mini-frame window.

The pane that is contained in the mini-frame, or NULL if the mini-frame window contains no panes.

Returns the number of panes that are contained in a mini-frame window.

The number of panes in the mini-frame window. This value can be zero.

CPaneFrameWnd::GetVisiblePaneCount

virtual int GetVisiblePaneCount() const;

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::HitTest

virtual LRESULT HitTest(
 CPoint point,
 BOOL bDetectCaption);

ParametersParameters

Return ValueReturn Value

VALUE MEANING

HTNOWHERE The point is outside the mini-frame window.

HTCLIENT The point is in the client area.

HTCAPTION The point is on the caption.

HTTOP The point is at the top.

HTTOPLEFT The point is at the top left.

HTTOPRIGHT The point is at the top right.

HTLEFT The point is at the left.

HTRIGHT The point is at the right.

HTBOTTOM The point is at the bottom.

HTBOTTOMLEFT The point is at the bottom left.

HTBOTTOMRIGHT The point is at the bottom right.

Returns the number of visible panes that are contained in a mini-frame window.

The number of visible panes.

Determines what part of a mini-frame window is at a given point.

point
[in] The point to test.

bDetectCaption
[in] If TRUE, check the point against the caption. If FALSE, ignore the caption.

One of the following values:

CPaneFrameWnd::IsCaptured
BOOL IsCaptured() const;

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::IsDelayShow
BOOL IsDelayShow() const;

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::IsRollDown

virtual BOOL IsRollDown() const;

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::IsRollUp

virtual BOOL IsRollUp() const;

Return ValueReturn Value

RemarksRemarks

Determines whether a mini-frame window should be rolled down.

TRUE if the mini-frame window must be rolled down; otherwise, FALSE.

This method is called by the framework to determine whether a mini-frame window should be rolled down.
The rollup/rolldown feature is enabled for a mini-frame window if it contains at least one pane that has the
AFX_CBRS_AUTO_ROLLUP flag. This flag is set when a pane is created. For more information, see
CBasePane::CreateEx.

By default, the framework checks whether the mouse pointer is inside the mini-frame window bounding
rectangle to determine whether the window has to be rolled down. You can override this behavior in a derived
class.

Determines whether a mini-frame window should be rolled up.

TRUE if the mini-frame window must be rolled up; otherwise, FALSE.

This method is called by the framework to determine whether a mini-frame window should be rolled up. The
rollup/rolldown feature is enabled for a mini-frame window if it contains at least one pane that has the
AFX_CBRS_AUTO_ROLLUP flag. This flag is set when a pane is created. For more information, see
CBasePane::CreateEx.

By default, the framework checks whether the mouse pointer is inside the mini-frame window bounding
rectangle to determine whether the window has to be rolled up. You can override this behavior in a derived

CPaneFrameWnd::KillDockingTimer

void KillDockingTimer();

CPaneFrameWnd::LoadState

virtual BOOL LoadState(
 LPCTSTR lpszProfileName = NULL,
 UINT uiID = (UINT) -1);

ParametersParameters

Return ValueReturn Value

CPaneFrameWnd::m_bUseSaveBits

AFX_IMPORT_DATA static BOOL m_bUseSaveBits;

RemarksRemarks

CPaneFrameWnd::OnBeforeDock

virtual BOOL OnBeforeDock();

Return ValueReturn Value

CPaneFrameWnd::OnCheckRollState

virtual void OnCheckRollState();

class.

Stops the docking timer.

Loads the pane's state from the registry.

lpszProfileName
[in] The profile name.

uiID
[in] The pane ID.

TRUE if the pane state was loaded successfully; otherwise FALSE.

Specifies whether to register the window class that has the CS_SAVEBITS class style.

Set this static member to TRUE to register the mini-frame window class that has the CS_SAVEBITS style. This
may help reduce flickering when a user drags the mini-frame window.

Determines if docking is possible.

TRUE if docking is possible; otherwise, FALSE.

Determines whether a mini-frame window should be rolled up or down.

RemarksRemarks

CPaneFrameWnd::OnDockToRecentPos

virtual void OnDockToRecentPos();

CPaneFrameWnd::OnDrawBorder

virtual void OnDrawBorder(CDC* pDC);

ParametersParameters

RemarksRemarks

CPaneFrameWnd::OnKillRollUpTimer

virtual void OnKillRollUpTimer();

CPaneFrameWnd::OnMovePane

virtual void OnMovePane(
 CPane* pBar,
 CPoint ptOffset);

ParametersParameters

CPaneFrameWnd::OnPaneRecalcLayout

This method is called by the framework to determine whether a mini-frame window should be rolled up or
down.

By default, the framework calls CPaneFrameWnd::IsRollUp and CPaneFrameWnd::IsRollDown and just
stretches or restores the mini-frame window. You can override this method in a derived class to use a different
visual effect.

Docks the mini-frame window at its most recent position.

Draws the borders of a mini-frame window.

pDC
[in] The device context used to draw the border.

This method is called by the framework to draw the borders of the mini-frame window.

Stops the rollup timer.

Moves the mini-frame window by a specified offset.

pBar
[in] A pointer to a pane (ignored).

ptOffset
[in] The offset by which to move the pane.

Adjusts the layout of a pane inside a mini-frame window.

virtual void OnPaneRecalcLayout();

RemarksRemarks

CPaneFrameWnd::OnSetRollUpTimer

virtual void OnSetRollUpTimer();

CPaneFrameWnd::OnShowPane

virtual void OnShowPane(
 CDockablePane* pBar,
 BOOL bShow);

ParametersParameters

RemarksRemarks

CPaneFrameWnd::Pin
void Pin(BOOL bPin = TRUE);

ParametersParameters

RemarksRemarks

CPaneFrameWnd::PaneFromPoint

virtual CBasePane* PaneFromPoint(
 CPoint point,
 int nSensitivity,
 BOOL bCheckVisibility);

ParametersParameters

The framework calls this method when it must adjust the layout of a pane inside the mini-frame window.

By default, the pane is positioned to cover the complete client area of the mini-frame window.

Sets the rollup timer.

Called by the framework when a pane in the mini-frame window is hidden or displayed.

pBar
[in] The pane that is being shown or hidden.

bShow
[in] TRUE if the pane is being shown; FALSE if the pane is being hidden.

Called by the framework when a pane in the mini-frame window is shown or hidden. The default
implementation does nothing.

[in] bPin

Returns a pane if it contains a user-supplied point inside a mini-frame window.

Return ValueReturn Value

RemarksRemarks

CPaneFrameWnd::RedrawAll

static void RedrawAll();

RemarksRemarks

CPaneFrameWnd::RemoveNonValidPanes

virtual void RemoveNonValidPanes();

CPaneFrameWnd::RemovePane

virtual void RemovePane(
 CBasePane* pWnd,
 BOOL bDestroy = FALSE,
 BOOL bNoDelayedDestroy = FALSE);

ParametersParameters

RemarksRemarks

point
[in] The point that the user clicked, in screen coordinates.

nSensitivity
[in] This parameter is not used.

bCheckVisibility
[in] TRUE to specify that only visible panes should be returned; otherwise, FALSE.

The pane that the user clicked, or NULL if no pane exists at that location.

Call this method to obtain a pane that contains the given point.

Redraws all mini-frame windows.

This method updates all mini-frame windows by calling CWnd::RedrawWindow for each window.

Called by the framework to remove non-valid panes.

Removes a pane from the mini-frame window.

pWnd
[in] A pointer to the pane to remove.

bDestroy
[in] Specifies what happens to the mini-frame window. If bDestroy is TRUE, this method destroys the mini-
frame window immediately. If it is FALSE, this method destroys the mini-frame window after a certain delay.

bNoDelayedDestroy
[in] If TRUE, delayed destruction is disabled. If FALSE, delayed destruction is enabled.

The framework can destroy mini-frame windows immediately or after a certain delay. If you want to delay
destruction of mini-frame windows, pass FALSE in the bNoDelayedDestroy parameter. Delayed destruction

CPaneFrameWnd::ReplacePane

virtual void ReplacePane(
 CBasePane* pBarOrg,
 CBasePane* pBarReplaceWith);

ParametersParameters

CPaneFrameWnd::SaveState

virtual BOOL SaveState(
 LPCTSTR lpszProfileName = NULL,
 UINT uiID = (UINT) -1);

ParametersParameters

Return ValueReturn Value

CPaneFrameWnd::SetCaptionButtons

virtual void SetCaptionButtons(DWORD dwButtons);

ParametersParameters

CPaneFrameWnd::SetDelayShow

occurs when the framework processes the AFX_WM_CHECKEMPTYMINIFRAME message.

Replaces one pane with another.

pBarOrg
[in] A pointer to the original pane.

pBarReplaceWith
[in] A pointer to the pane that replaces the original pane.

Saves the pane's state to the registry.

lpszProfileName
[in] The profile name.

uiID
[in] The pane ID.

TRUE if the pane state was saved successfully; otherwise FALSE.

Sets caption buttons.

dwButtons
[in] Bitwise-OR combination of the following values:

AFX_CAPTION_BTN_CLOSE

AFX_CAPTION_BTN_PIN

AFX_CAPTION_BTN_MENU

AFX_CAPTION_BTN_CUSTOMIZE

void SetDelayShow(BOOL bDelayShow);

ParametersParameters

RemarksRemarks

CPaneFrameWnd::SetDockingManager
void SetDockingManager(CDockingManager* pManager);

ParametersParameters

RemarksRemarks

CPaneFrameWnd::SetDockingTimer

void SetDockingTimer(UINT nTimeOut);

ParametersParameters

CPaneFrameWnd::SetDockState

virtual void SetDockState(CDockingManager* pDockManager);

ParametersParameters

CPaneFrameWnd::SetHotPoint
void SetHotPoint(CPoint& ptNew);

ParametersParameters

RemarksRemarks

CPaneFrameWnd::SetPreDockState

[in] bDelayShow

[in] pManager

Sets the docking timer.

nTimeOut
[in] Timeout value in milliseconds.

Sets the docking state.

pDockManager
[in] A pointer to a docking manager.

[in] ptNew

Called by the framework to set the predocking state.

virtual BOOL SetPreDockState(
 AFX_PREDOCK_STATE preDockState,
 CBasePane* pBarToDock = NULL,
 AFX_DOCK_METHOD dockMethod = DM_MOUSE);

ParametersParameters

Return ValueReturn Value

CPaneFrameWnd::SizeToContent

virtual void SizeToContent();

RemarksRemarks

CPaneFrameWnd::StartTearOff

BOOL StartTearOff(CMFCPopu* pMenu);

ParametersParameters

Return ValueReturn Value

CPaneFrameWnd::StoreRecentDockSiteInfo
virtual void StoreRecentDockSiteInfo(CPane* pBar);

ParametersParameters

preDockState
[in] Possible values:

PDS_NOTHING,

PDS_DOCK_REGULAR,

PDS_DOCK_TO_TAB

pBarToDock
[in] A pointer to the pane to dock.

dockMethod
[in] The docking method. (This parameter is ignored.)

TRUE if the mini-frame window is undocked; FALSE if it is docked.

Adjusts the size of a mini-frame window so that it is equivalent to a contained pane.

Call this method to adjust the size of a mini-frame window to the size of a contained pane.

Tears off a menu.

pMenu
[in] A pointer to a menu.

TRUE if the method was successful; otherwise, FALSE.

[in] pBar

RemarksRemarks

CPaneFrameWnd::StoreRecentTabRelatedInfo
virtual void StoreRecentTabRelatedInfo(
 CDockablePane* pDockingBar,
 CDockablePane* pTabbedBar);

ParametersParameters

RemarksRemarks

See also

[in] pDockingBar
[in] pTabbedBar

Hierarchy Chart
Classes
CWnd Class

CParabolicTransitionFromAcceleration Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CParabolicTransitionFromAcceleration : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CParabolicTransitionFromAcceleration::CParabolicTransitionFro
mAcceleration

Constructs a parabolic-acceleration transition and initializes it
with specified parameters.

Public MethodsPublic Methods

NAME DESCRIPTION

CParabolicTransitionFromAcceleration::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CParabolicTransitionFromAcceleration::m_dblAcceleration The acceleration of the animation variable during the
transition.

CParabolicTransitionFromAcceleration::m_dblFinalValue The value of the animation variable at the end of the
transition.

CParabolicTransitionFromAcceleration::m_dblFinalVelocity The velocity of the animation variable at the end of the
transition.

Remarks

Inheritance Hierarchy

Encapsulates a parabolic-acceleration transition.

During a parabolic-acceleration transition, the value of the animation variable changes from the initial value to the
final value ending at a specified velocity. You can control how quickly the variable reaches the final value by
specifying the rate of acceleration. Because all transitions are cleared automatically, it's recommended to allocated
them using operator new. The encapsulated IUIAnimationTransition COM object is created by
CAnimationController::AnimateGroup, until then it's NULL. Changing member variables after creation of this
COM object has no effect.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cparabolictransitionfromacceleration-class.md

Requirements

CParabolicTransitionFromAcceleration::CParabolicTransitionFromAccele
ration

CParabolicTransitionFromAcceleration(
 DOUBLE dblFinalValue,
 DOUBLE dblFinalVelocity,
 DOUBLE dblAcceleration);

ParametersParameters

CParabolicTransitionFromAcceleration::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* /* not used */);

ParametersParameters

Return ValueReturn Value

CParabolicTransitionFromAcceleration::m_dblAcceleration

DOUBLE m_dblAcceleration;

CParabolicTransitionFromAcceleration::m_dblFinalValue

CObject

CBaseTransition

CParabolicTransitionFromAcceleration

Header: afxanimationcontroller.h

Constructs a parabolic-acceleration transition and initializes it with specified parameters.

dblFinalValue
The value of the animation variable at the end of the transition.

dblFinalVelocity
The velocity of the animation variable at the end of the transition.

dblAcceleration
The acceleration of the animation variable during the transition.

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to transition library, which is responsible for creation of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

The acceleration of the animation variable during the transition.

The value of the animation variable at the end of the transition.

DOUBLE m_dblFinalValue;

CParabolicTransitionFromAcceleration::m_dblFinalVelocity

DOUBLE m_dblFinalVelocity;

See also

The velocity of the animation variable at the end of the transition.

Classes

CPen Class
3/4/2019 • 9 minutes to read • Edit Online

Syntax
class CPen : public CGdiObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPen::CPen Constructs a CPen object.

Public MethodsPublic Methods

NAME DESCRIPTION

CPen::CreatePen Creates a logical cosmetic or geometric pen with the specified
style, width, and brush attributes, and attaches it to the
CPen object.

CPen::CreatePenIndirect Creates a pen with the style, width, and color given in a
LOGPEN structure, and attaches it to the CPen object.

CPen::FromHandle Returns a pointer to a CPen object when given a Windows
HPEN.

CPen::GetExtLogPen Gets an EXTLOGPEN underlying structure.

CPen::GetLogPen Gets a LOGPEN underlying structure.

Public OperatorsPublic Operators

NAME DESCRIPTION

CPen::operator HPEN Returns the Windows handle attached to the CPen object.

Remarks

Inheritance Hierarchy

Encapsulates a Windows graphics device interface (GDI) pen.

For more information on using CPen , see Graphic Objects.

CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpen-class.md
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogpen
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagextlogpen
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogpen

Requirements

CPen::CPen

CPen();

CPen(
 int nPenStyle,
 int nWidth,
 COLORREF crColor);

CPen(
 int nPenStyle,
 int nWidth,
 const LOGBRUSH* pLogBrush,
 int nStyleCount = 0,
 const DWORD* lpStyle = NULL);

ParametersParameters

CGdiObject

CPen

Header: afxwin.h

Constructs a CPen object.

nPenStyle
Specifies the pen style. This parameter in the first version of the constructor can be one of the following values:

PS_SOLID Creates a solid pen.

PS_DASH Creates a dashed pen. Valid only when the pen width is 1 or less, in device units.

PS_DOT Creates a dotted pen. Valid only when the pen width is 1 or less, in device units.

PS_DASHDOT Creates a pen with alternating dashes and dots. Valid only when the pen width is 1 or less,
in device units.

PS_DASHDOTDOT Creates a pen with alternating dashes and double dots. Valid only when the pen width
is 1 or less, in device units.

PS_NULL Creates a null pen.

PS_INSIDEFRAME Creates a pen that draws a line inside the frame of closed shapes produced by the
Windows GDI output functions that specify a bounding rectangle (for example, the Ellipse , Rectangle ,
RoundRect , Pie , and Chord member functions). When this style is used with Windows GDI output

functions that do not specify a bounding rectangle (for example, the LineTo member function), the
drawing area of the pen is not limited by a frame.

The second version of the CPen constructor specifies a combination of type, style, end cap, and join attributes.
The values from each category should be combined by using the bitwise OR operator (|). The pen type can be
one of the following values:

PS_GEOMETRIC Creates a geometric pen.

PS_COSMETIC Creates a cosmetic pen.

The second version of the CPen constructor adds the following pen styles for nPenStyle:

RemarksRemarks

ExampleExample

PS_ALTERNATE Creates a pen that sets every other pixel. (This style is applicable only for cosmetic pens.)

PS_USERSTYLE Creates a pen that uses a styling array supplied by the user.

The end cap can be one of the following values:

PS_ENDCAP_ROUND End caps are round.

PS_ENDCAP_SQUARE End caps are square.

PS_ENDCAP_FLAT End caps are flat.

The join can be one of the following values:

PS_JOIN_BEVEL Joins are beveled.

PS_JOIN_MITER Joins are mitered when they are within the current limit set by the SetMiterLimit
function. If the join exceeds this limit, it is beveled.

PS_JOIN_ROUND Joins are round.

nWidth
Specifies the width of the pen.

For the first version of the constructor, if this value is 0, the width in device units is always 1 pixel,
regardless of the mapping mode.

For the second version of the constructor, if nPenStyle is PS_GEOMETRIC, the width is given in logical
units. If nPenStyle is PS_COSMETIC, the width must be set to 1.

crColor
Contains an RGB color for the pen.

pLogBrush
Points to a LOGBRUSH structure. If nPenStyle is PS_COSMETIC, the lbColor member of the LOGBRUSH structure
specifies the color of the pen and the lbStyle member of the LOGBRUSH structure must be set to BS_SOLID. If
nPenStyle is PS_GEOMETRIC, all members must be used to specify the brush attributes of the pen.

nStyleCount
Specifies the length, in doubleword units, of the lpStyle array. This value must be zero if nPenStyle is not
PS_USERSTYLE.

lpStyle
Points to an array of doubleword values. The first value specifies the length of the first dash in a user-defined
style, the second value specifies the length of the first space, and so on. This pointer must be NULL if nPenStyle
is not PS_USERSTYLE.

If you use the constructor with no arguments, you must initialize the resulting CPen object with the CreatePen ,
CreatePenIndirect , or CreateStockObject member functions.

If you use the constructor that takes arguments, then no further initialization is necessary. The constructor with
arguments can throw an exception if errors are encountered, while the constructor with no arguments will always
succeed.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-setmiterlimit

// Create a solid red pen of width 2.
CPen myPen1(PS_SOLID, 2, RGB(255,0,0));

// Create a geometric pen.
LOGBRUSH logBrush;
logBrush.lbStyle = BS_SOLID;
logBrush.lbColor = RGB(0,255,0);
CPen myPen2(PS_DOT|PS_GEOMETRIC|PS_ENDCAP_ROUND, 2, &logBrush);

CPen::CreatePen

BOOL CreatePen(
 int nPenStyle,
 int nWidth,
 COLORREF crColor);

BOOL CreatePen(
 int nPenStyle,
 int nWidth,
 const LOGBRUSH* pLogBrush,
 int nStyleCount = 0,
 const DWORD* lpStyle = NULL);

ParametersParameters

Creates a logical cosmetic or geometric pen with the specified style, width, and brush attributes, and attaches it to
the CPen object.

nPenStyle
Specifies the style for the pen. For a list of possible values, see the nPenStyle parameter in the CPen constructor.

nWidth
Specifies the width of the pen.

For the first version of CreatePen , if this value is 0, the width in device units is always 1 pixel, regardless of
the mapping mode.

For the second version of CreatePen , if nPenStyle is PS_GEOMETRIC, the width is given in logical units. If
nPenStyle is PS_COSMETIC, the width must be set to 1.

crColor
Contains an RGB color for the pen.

pLogBrush
Points to a LOGBRUSH structure. If nPenStyle is PS_COSMETIC, the lbColor member of the LOGBRUSH

structure specifies the color of the pen and the lbStyle member of the LOGBRUSH structure must be set to
BS_SOLID. If nPenStyle is PS_GEOMETRIC, all members must be used to specify the brush attributes of the
pen.

nStyleCount
Specifies the length, in doubleword units, of the lpStyle array. This value must be zero if nPenStyle is not
PS_USERSTYLE.

lpStyle
Points to an array of doubleword values. The first value specifies the length of the first dash in a user-defined
style, the second value specifies the length of the first space, and so on. This pointer must be NULL if nPenStyle
is not PS_USERSTYLE.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogbrush

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPen myPen1, myPen2;

// Create a solid red pen of width 2.
myPen1.CreatePen(PS_SOLID, 2, RGB(255,0,0));

// Create a geometric pen.
LOGBRUSH logBrush;
logBrush.lbStyle = BS_SOLID;
logBrush.lbColor = RGB(0,255,0);
myPen2.CreatePen(PS_DOT|PS_GEOMETRIC|PS_ENDCAP_ROUND, 2, &logBrush);

CPen::CreatePenIndirect

BOOL CreatePenIndirect(LPLOGPEN lpLogPen);

ParametersParameters

Return ValueReturn Value

Nonzero if successful, or zero if the method fails.

The first version of CreatePen initializes a pen with the specified style, width, and color. The pen can be
subsequently selected as the current pen for any device context.

Pens that have a width greater than 1 pixel should always have either the PS_NULL, PS_SOLID, or
PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color in the logical color table, the
pen is drawn with a dithered color. The PS_SOLID pen style cannot be used to create a pen with a dithered color.
The style PS_INSIDEFRAME is identical to PS_SOLID if the pen width is less than or equal to 1.

The second version of CreatePen initializes a logical cosmetic or geometric pen that has the specified style,
width, and brush attributes. The width of a cosmetic pen is always 1; the width of a geometric pen is always
specified in world units. After an application creates a logical pen, it can select that pen into a device context by
calling the CDC::SelectObject function. After a pen is selected into a device context, it can be used to draw lines
and curves.

If nPenStyle is PS_COSMETIC and PS_USERSTYLE, the entries in the lpStyle array specify lengths of
dashes and spaces in style units. A style unit is defined by the device in which the pen is used to draw a
line.

If nPenStyle is PS_GEOMETRIC and PS_USERSTYLE, the entries in the lpStyle array specify lengths of
dashes and spaces in logical units.

If nPenStyle is PS_ALTERNATE, the style unit is ignored and every other pixel is set.

When an application no longer requires a given pen, it should call the CGdiObject::DeleteObject member
function or destroy the CPen object so the resource is no longer in use. An application should not delete a pen
when the pen is selected in a device context.

Initializes a pen that has the style, width, and color given in the structure pointed to by lpLogPen.

lpLogPen
Points to the Windows LOGPEN structure that contains information about the pen.

https://docs.microsoft.com/windows/desktop/api/Wingdi/ns-wingdi-taglogpen

RemarksRemarks

ExampleExample

LOGPEN logpen;
CPen cMyPen;

// Get the LOGPEN of an existing pen.
penExisting.GetLogPen(&logpen);

// Change the color to red and the width to 2.
logpen.lopnWidth.x = 2;
logpen.lopnColor = RGB(255, 0, 0);

// Create my pen using the new settings.
cMyPen.CreatePenIndirect(&logpen);

CPen::FromHandle

static CPen* PASCAL FromHandle(HPEN hPen);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Convert an HPEN to a CPen*.
// NOTE: hPen is a valid pen handle.
CPen* pPen = CPen::FromHandle(hPen);

CPen::GetExtLogPen

Nonzero if the function is successful; otherwise 0.

Pens that have a width greater than 1 pixel should always have either the PS_NULL, PS_SOLID, or
PS_INSIDEFRAME style.

If a pen has the PS_INSIDEFRAME style and a color that does not match a color in the logical color table, the
pen is drawn with a dithered color. The PS_INSIDEFRAME style is identical to PS_SOLID if the pen width is less
than or equal to 1.

Returns a pointer to a CPen object given a handle to a Windows GDI pen object.

hPen
HPEN handle to Windows GDI pen.

A pointer to a CPen object if successful; otherwise NULL.

If a CPen object is not attached to the handle, a temporary CPen object is created and attached. This temporary
CPen object is valid only until the next time the application has idle time in its event loop, at which time all

temporary graphic objects are deleted. In other words, the temporary object is only valid during the processing
of one window message.

Gets an EXTLOGPEN underlying structure.

int GetExtLogPen(EXTLOGPEN* pLogPen);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

EXTLOGPEN extlogpen;
penExisting.GetExtLogPen(&extlogpen);
CPen penOther;
LOGBRUSH LogBrush = { extlogpen.elpBrushStyle, extlogpen.elpColor,
 extlogpen.elpHatch };
penOther.CreatePen(PS_COSMETIC, 1, &LogBrush);

CPen::GetLogPen

int GetLogPen(LOGPEN* pLogPen);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pLogPen
Points to an EXTLOGPEN structure that contains information about the pen.

Nonzero if successful; otherwise 0.

The EXTLOGPEN structure defines the style, width, and brush attributes of a pen. For example, call GetExtLogPen to
match the particular style of a pen.

See the following topics in the Windows SDK for information about pen attributes:

GetObject

EXTLOGPEN

LOGPEN

ExtCreatePen

The following code example demonstrates calling GetExtLogPen to retrieve a pen's attributes, and then create a
new, cosmetic pen with the same color.

Gets a LOGPEN underlying structure.

pLogPen
Points to a LOGPEN structure to contain information about the pen.

Nonzero if successful; otherwise 0.

The LOGPEN structure defines the style, color, and pattern of a pen.

For example, call GetLogPen to match the particular style of pen.

See the following topics in the Windows SDK for information about pen attributes:

GetObject

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagextlogpen
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getobject
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagextlogpen
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogpen
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-extcreatepen
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogpen
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-getobject

ExampleExample

LOGPEN logpen;
penExisting.GetLogPen(&logpen);
CPen penOther(PS_SOLID, 0, logpen.lopnColor);

CPen::operator HPEN

operator HPEN() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Create a solid red pen of width 2.
CPen myPen(PS_SOLID, 2, RGB(255,0,0));

// Get the handle of the pen object.
HPEN hPen = (HPEN) myPen;

See also

LOGPEN

The following code example demonstrates calling GetLogPen to retrieve a pen character, and then create a new,
solid pen with the same color.

Gets the attached Windows GDI handle of the CPen object.

If successful, a handle to the Windows GDI object represented by the CPen object; otherwise NULL.

This operator is a casting operator, which supports direct use of an HPEN object.

For more information about using graphic objects, see the article Graphic Objects in Windows SDK.

CGdiObject Class
Hierarchy Chart
CBrush Class

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogpen
https://docs.microsoft.com/windows/desktop/gdi/graphic-objects

CPictureHolder Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CPictureHolder

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPictureHolder::CPictureHolder Constructs a CPictureHolder object.

Public MethodsPublic Methods

NAME DESCRIPTION

CPictureHolder::CreateEmpty Creates an empty CPictureHolder object.

CPictureHolder::CreateFromBitmap Creates a CPictureHolder object from a bitmap.

CPictureHolder::CreateFromIcon Creates a CPictureHolder object from an icon.

CPictureHolder::CreateFromMetafile Creates a CPictureHolder object from a metafile.

CPictureHolder::GetDisplayString Retrieves the string displayed in a control container's
property browser.

CPictureHolder::GetPictureDispatch Returns the CPictureHolder object's IDispatch interface.

CPictureHolder::GetType Tells whether the CPictureHolder object is a bitmap, a
metafile, or an icon.

CPictureHolder::Render Renders the picture.

CPictureHolder::SetPictureDispatch Sets the CPictureHolder object's IDispatch interface.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CPictureHolder::m_pPict A pointer to a picture object.

Remarks

Implements a Picture property, which allows the user to display a picture in your control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpictureholder-class.md

Inheritance Hierarchy

Requirements

CPictureHolder::CPictureHolder

CPictureHolder();

CPictureHolder::CreateEmpty

BOOL CreateEmpty();

Return ValueReturn Value

CPictureHolder::CreateFromBitmap

BOOL CreateFromBitmap(
 UINT idResource);

BOOL CreateFromBitmap(
 CBitmap* pBitmap,
 CPalette* pPal = NULL,
 BOOL bTransferOwnership = TRUE);

BOOL CreateFromBitmap(
 HBITMAP hbm,
 HPALETTE hpal = NULL,
 BOOL bTransferOwnership = FALSE);

ParametersParameters

CPictureHolder does not have a base class.

With the stock Picture property, the developer can specify a bitmap, icon, or metafile for display.

For information on creating custom picture properties, see the article MFC ActiveX Controls: Using Pictures in an
ActiveX Control.

CPictureHolder

Header: afxctl.h

Constructs a CPictureHolder object.

Creates an empty CPictureHolder object and connects it to an IPicture interface.

Nonzero if the object is successfully created; otherwise 0.

Uses a bitmap to initialize the picture object in a CPictureHolder .

idResource
Resource ID of a bitmap resource.

pBitmap
Pointer to a CBitmap object.

pPal

Return ValueReturn Value

RemarksRemarks

CPictureHolder::CreateFromIcon

BOOL CreateFromIcon(
 UINT idResource);

BOOL CreateFromIcon(
 HICON hIcon,
 BOOL bTransferOwnership = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPictureHolder::CreateFromMetafile

Pointer to a CPalette object.

bTransferOwnership
Indicates whether the picture object will take ownership of the bitmap and palette objects.

hbm
Handle to the bitmap from which the CPictureHolder object is created.

hpal
Handle to the palette used for rendering the bitmap.

Nonzero if the object is successfully created; otherwise 0.

If bTransferOwnership is TRUE, the caller should not use the bitmap or palette object in any way after this call
returns. If bTransferOwnership is FALSE, the caller is responsible for ensuring that the bitmap and palette objects
remain valid for the lifetime of the picture object.

Uses an icon to initialize the picture object in a CPictureHolder .

idResource
Resource ID of a bitmap resource.

hIcon
Handle to the icon from which the CPictureHolder object is created.

bTransferOwnership
Indicates whether the picture object will take ownership of the icon object.

Nonzero if the object is successfully created; otherwise 0.

If bTransferOwnership is TRUE, the caller should not use the icon object in any way after this call returns. If
bTransferOwnership is FALSE, the caller is responsible for ensuring that the icon object remains valid for the
lifetime of the picture object.

Uses a metafile to initialize the picture object in a CPictureHolder .

BOOL CreateFromMetafile(
 HMETAFILE hmf,
 int xExt,
 int yExt,
 BOOL bTransferOwnership = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPictureHolder::GetDisplayString

BOOL GetDisplayString(CString& strValue);

ParametersParameters

Return ValueReturn Value

CPictureHolder::GetPictureDispatch

LPPICTUREDISP GetPictureDispatch();

Return ValueReturn Value

RemarksRemarks

hmf
Handle to the metafile used to create the CPictureHolder object.

xExt
X extent of the picture.

yExt
Y extent of the picture.

bTransferOwnership
Indicates whether the picture object will take ownership of the metafile object.

Nonzero if the object is successfully created; otherwise 0.

If bTransferOwnership is TRUE, the caller should not use the metafile object in any way after this call returns. If
bTransferOwnership is FALSE, the caller is responsible for ensuring that the metafile object remains valid for the
lifetime of the picture object.

Retrieves the string that is displayed in a container's property browser.

strValue
Reference to the CString that is to hold the display string.

Nonzero if the string is successfully retrieved; otherwise 0.

This function returns a pointer to the CPictureHolder object's IPictureDisp interface.

A pointer to the CPictureHolder object's IPictureDisp interface.

The caller must call Release on this pointer when finished with it.

CPictureHolder::GetType

short GetType();

Return ValueReturn Value

VALUE MEANING

PICTYPE_UNINITIALIZED CPictureHolder object is unititialized.

PICTYPE_NONE CPictureHolder object is empty.

PICTYPE_BITMAP Picture is a bitmap.

PICTYPE_METAFILE Picture is a metafile.

PICTYPE_ICON Picture is an icon.

CPictureHolder::m_pPict

LPPICTURE m_pPict;

CPictureHolder::Render

void Render(
 CDC* pDC,
 const CRect& rcRender,
 const CRect& rcWBounds);

ParametersParameters

CPictureHolder::SetPictureDispatch

Indicates whether the picture is a bitmap, metafile, or icon.

A value indicating the type of the picture. Possible values and their meanings are as follows:

A pointer to the CPictureHolder object's IPicture interface.

Renders the picture in the rectangle referenced by rcRender.

pDC
Pointer to the display context in which the picture is to be rendered.

rcRender
Rectangle in which the picture is to be rendered.

rcWBounds
A rectangle representing the bounding rectangle of the object rendering the picture. For a control, this rectangle is
the rcBounds parameter passed to an override of COleControl::OnDraw.

Connects the CPictureHolder object to a IPictureDisp interface.

void SetPictureDispatch(LPPICTUREDISP pDisp);

ParametersParameters

See also

pDisp
Pointer to the new IPictureDisp interface.

Hierarchy Chart
CFontHolder Class

CPrintDialog Class
3/4/2019 • 13 minutes to read • Edit Online

Syntax
class CPrintDialog : public CCommonDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPrintDialog::CPrintDialog Constructs a CPrintDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

CPrintDialog::CreatePrinterDC Creates a printer device context without displaying the Print
dialog box.

CPrintDialog::DoModal Displays the dialog box and allows the user to make a
selection.

CPrintDialog::GetCopies Retrieves the number of copies requested.

CPrintDialog::GetDefaults Retrieves device defaults without displaying a dialog box.

CPrintDialog::GetDeviceName Retrieves the name of the currently selected printer device.

CPrintDialog::GetDevMode Retrieves the DEVMODE structure.

CPrintDialog::GetDriverName Retrieves the name of the currently selected printer driver.

CPrintDialog::GetFromPage Retrieves the starting page of the print range.

CPrintDialog::GetPortName Retrieves the name of the currently selected printer port.

CPrintDialog::GetPrinterDC Retrieves a handle to the printer device context.

CPrintDialog::GetToPage Retrieves the ending page of the print range.

CPrintDialog::PrintAll Determines whether to print all pages of the document.

CPrintDialog::PrintCollate Determines whether collated copies are requested.

Encapsulates the services provided by the Windows common dialog box for printing.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cprintdialog-class.md

CPrintDialog::PrintRange Determines whether to print only a specified range of pages.

CPrintDialog::PrintSelection Determines whether to print only the currently selected
items.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CPrintDialog::m_pd A structure used to customize a CPrintDialog object.

Remarks

NOTENOTE

Common print dialog boxes provide an easy way to implement Print and Print Setup dialog boxes in a manner
consistent with Windows standards.

The CPrintDialogEx class encapsulates the services provided by the Windows Print property sheet. For more
information see the CPrintDialogEx overview.

CPrintDialog 's functionality is superseded by that of CPageSetupDialog, which is designed to provide you with
a common dialog box for both print setup and page setup.

You can rely on the framework to handle many aspects of the printing process for your application. In this case,
the framework automatically displays the Windows common dialog box for printing. You can also have the
framework handle printing for your application but override the common Print dialog box with your own print
dialog box. For more information about using the framework to handle printing tasks, see the article Printing.

If you want your application to handle printing without the framework's involvement, you can use the
CPrintDialog class "as is" with the constructor provided, or you can derive your own dialog class from
CPrintDialog and write a constructor to suit your needs. In either case, these dialog boxes will behave like

standard MFC dialog boxes because they are derived from class CCommonDialog .

To use a CPrintDialog object, first create the object using the CPrintDialog constructor. Once the dialog box has
been constructed, you can set or modify any values in the m_pd structure to initialize the values of the dialog
box's controls. The m_pd structure is of type PRINTDLG. For more information on this structure, see the
Windows SDK.

If you do not supply your own handles in m_pd for the hDevMode and hDevNames members, be sure to call the
Windows function GlobalFree for these handles when you are done with the dialog box. When using the
framework's Print Setup implementation provided by CWinApp::OnFilePrintSetup , you do not have to free these
handles. The handles are maintained by CWinApp and are freed in CWinApp 's destructor. It is only necessary to
free these handles when using CPrintDialog stand-alone.

After initializing the dialog box controls, call the DoModal member function to display the dialog box and allow
the user to select print options. DoModal returns whether the user selected the OK (IDOK) or Cancel
(IDCANCEL) button.

If DoModal returns IDOK, you can use one of CPrintDialog 's member functions to retrieve the information input
by the user.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpda

Inheritance Hierarchy

Requirements

CPrintDialog::CPrintDialog

CPrintDialog(
 BOOL bPrintSetupOnly,
 DWORD dwFlags = PD_ALLPAGES | PD_USEDEVMODECOPIES | PD_NOPAGENUMS | PD_HIDEPRINTTOFILE | PD_NOSELECTION,
 CWnd* pParentWnd = NULL);

ParametersParameters

The CPrintDialog::GetDefaults member function is useful for retrieving the current printer defaults without
displaying a dialog box. This member function requires no user interaction.

You can use the Windows CommDlgExtendedError function to determine whether an error occurred during
initialization of the dialog box and to learn more about the error. For more information on this function, see the
Windows SDK.

CPrintDialog relies on the COMMDLG.DLL file that ships with Windows versions 3.1 and later.

To customize the dialog box, derive a class from CPrintDialog , provide a custom dialog template, and add a
message map to process the notification messages from the extended controls. Any unprocessed messages
should be passed on to the base class. Customizing the hook function is not required.

To process the same message differently depending on whether the dialog box is Print or Print Setup, you must
derive a class for each dialog box. You must also override the Windows AttachOnSetup function, which handles
the creation of a new dialog box when the Print Setup button is selected within a Print dialog box.

For more information on using CPrintDialog , see Common Dialog Classes.

CObject

CCmdTarget

CWnd

CDialog

CCommonDialog

CPrintDialog

Header: afxdlgs.h

Constructs either a Windows Print or Print Setup dialog object.

bPrintSetupOnly
Specifies whether the standard Windows Print dialog box or Print Setup dialog box is displayed. Set this
parameter to TRUE to display the standard Windows Print Setup dialog box. Set it to FALSE to display the
Windows Print dialog box. If bPrintSetupOnly is FALSE, a Print Setup option button is still displayed in the Print
dialog box.

dwFlags
One or more flags you can use to customize the settings of the dialog box, combined using the bitwise OR
operator. For example, the PD_ALLPAGES flag sets the default print range to all pages of the document. See the
PRINTDLG structure in the Windows SDK for more information on these flags.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpda

RemarksRemarks

ExampleExample

// Display the Windows Print dialog box with "All" radio button
// initially selected. All other radio buttons are disabled.
CPrintDialog dlg1(FALSE);

// Display the Windows Print dialog box with Collate check box checked.
CPrintDialog dlg2(FALSE, PD_ALLPAGES | PD_COLLATE | PD_NOPAGENUMS | PD_HIDEPRINTTOFILE);

// Display the Windows Print dialog box with "Selection" radio
// button initially selected. "All" radio button is enabled
// but "Pages" radio button is disabled.
CPrintDialog dlg3(FALSE, PD_SELECTION | PD_USEDEVMODECOPIES);

CPrintDialog::CreatePrinterDC

HDC CreatePrinterDC();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Display the Windows Print dialog box with "All" radio button
// initially selected. All other radio buttons are disabled.
CPrintDialog dlg(FALSE);
if (dlg.DoModal() == IDOK)
{
 // Create a printer device context (DC) based on the information
 // selected from the Print dialog.
 HDC hdc = dlg.CreatePrinterDC();
 ASSERT(hdc);
}

CPrintDialog::DoModal

pParentWnd
A pointer to the dialog box's parent or owner window.

This member function only constructs the object. Use the DoModal member function to display the dialog box.

Note that when you call the constructor with bPrintSetupOnly set to FALSE, the PD_RETURNDC flag is
automatically used. After calling DoModal , GetDefaults , or GetPrinterDC , a printer DC will be returned in
m_pd.hDC . This DC must be freed with a call to DeleteDC by the caller of CPrintDialog .

Creates a printer device context (DC) from the DEVMODE and DEVNAMES structures.

Handle to the newly created printer device context.

This DC is assumed to be the current printer DC, and any other previously obtained printer DCs must be deleted
by the user. This function can be called, and the resulting DC used, without ever displaying the Print dialog box.

Displays the Windows common print dialog box and allows the user to select various printing options such as
the number of copies, page range, and whether copies should be collated.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-deletedc
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagdevnames

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPrintDialog::GetCopies

int GetCopies() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPrintDialog::GetDefaults

BOOL GetDefaults();

Return ValueReturn Value

RemarksRemarks

IDOK or IDCANCEL. If IDCANCEL is returned, call the Windows CommDlgExtendedError function to
determine whether an error occurred.

IDOK and IDCANCEL are constants that indicate whether the user selected the OK or Cancel button.

If you want to initialize the various print dialog options by setting members of the m_pd structure, you should do
this before calling DoModal , but after the dialog object is constructed.

After calling DoModal , you can call other member functions to retrieve the settings or information input by the
user into the dialog box.

Note that when you call the constructor with bPrintSetupOnly set to FALSE, the PD_RETURNDC flag is
automatically used. After calling DoModal , GetDefaults , or GetPrinterDC , a printer DC will be returned in
m_pd.hDC . This DC must be freed with a call to DeleteDC by the caller of CPrintDialog .

See the example for CPrintDialog::CreatePrinterDC.

Retrieves the number of copies requested.

The number of copies requested.

Call this function after calling DoModal to retrieve the number of copies requested.

See the example for CPrintDialog::PrintCollate.

Retrieves the device defaults of the default printer without displaying a dialog box.

Nonzero if the function was successful; otherwise 0.

The retrieved values are placed in the m_pd structure.

In some cases, a call to this function will call the constructor for CPrintDialog with bPrintSetupOnly set to
FALSE. In these cases, a printer DC and hDevNames and hDevMode (two handles located in the m_pd data
member) are automatically allocated.

https://docs.microsoft.com/windows/desktop/api/commdlg/nf-commdlg-commdlgextendederror
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-deletedc

ExampleExample

CPrintDialog dlg(FALSE);

if (!dlg.GetDefaults())
{
 AfxMessageBox(_T("You have no default printer!"));
}
else
{
 // attach to the DC we were given
 CDC dc;
 dc.Attach(dlg.m_pd.hDC);

 // ask for the measurements
 int nHorz = dc.GetDeviceCaps(LOGPIXELSX);
 int nVert = dc.GetDeviceCaps(LOGPIXELSY);

 // almost always the same in both directions, but sometimes not!
 CString str;
 if (nHorz == nVert)
 {
 str.Format(_T("Your printer supports %d pixels per inch"), nHorz);
 }
 else
 {
 str.Format(_T("Your printer supports %d pixels per inch ")
 _T("horizontal resolution, and %d pixels per inch vertical ")
 _T("resolution"), nHorz, nVert);
 }

 // tell the user
 AfxMessageBox(str);

 // Note: no need to call Detach() because we want the CDC destructor
 // to call FreeDC() on the DC we borrowed from the common dialog
}

CPrintDialog::GetDeviceName

CString GetDeviceName() const;

Return ValueReturn Value

RemarksRemarks

If the constructor for CPrintDialog was called with bPrintSetupOnly set to FALSE, this function will not only
return hDevNames and hDevMode located in m_pd.hDevNames and m_pd.hDevMode) to the caller, but will also return
a printer DC in m_pd.hDC . It is the responsibility of the caller to delete the printer DC and call the Windows
GlobalFree function on the handles when you are finished with the CPrintDialog object.

This code fragment gets the default printer's device context and reports to the user the resolution of the printer
in dots per inch. (This attribute of the printer's capabilities is often referred to as DPI.)

Retrieves the name of the currently selected printer device.

The name of the currently selected printer.

Call this function after calling DoModal to retrieve the name of the currently selected printer, or after calling
GetDefaults to retrieve the current device defaults of the default printer. Use a pointer to the CString object
returned by GetDeviceName as the value of lpszDeviceName in a call to CDC::CreateDC.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalfree

ExampleExample

CPrintDialog dlg(FALSE);

if (!dlg.GetDefaults())
{
 AfxMessageBox(_T("You have no default printer!"));
}
else
{
 CString strDescription;

 strDescription.Format(_T("Your default printer is %s on %s using %s."),
 (LPCTSTR) dlg.GetDeviceName(),
 (LPCTSTR) dlg.GetPortName(),
 (LPCTSTR) dlg.GetDriverName());

 AfxMessageBox(strDescription);
}

CPrintDialog::GetDevMode

LPDEVMODE GetDevMode() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPrintDialog::GetDriverName

CString GetDriverName() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

This code fragment shows the user's default printer name and the port it is connected to, along with the spooler
name the printer uses. The code might show a message box that says, "Your default printer is HP LaserJet IIIP on
\\server\share using winspool.", for example.

Retrieves the DEVMODE structure.

The DEVMODE data structure, which contains information about the device initialization and environment of a
print driver. You must unlock the memory taken by this structure with the Windows GlobalUnlock function,
which is described in the Windows SDK.

Call this function after calling DoModal or GetDefaults to retrieve information about the printing device.

See the example for CPrintDialog::PrintCollate.

Retrieves the name of the currently selected printer driver.

A CString specifying the system-defined driver name.

Call this function after calling DoModal or GetDefaults to retrieve the name of the system-defined printer device
driver. Use a pointer to the CString object returned by GetDriverName as the value of lpszDriverName in a call to
CDC::CreateDC.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalunlock

CPrintDialog::GetFromPage

int GetFromPage() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPrintDialog::GetPortName

CString GetPortName() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPrintDialog::GetPrinterDC

HDC GetPrinterDC() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

See the example for CPrintDialog::GetDeviceName.

Retrieves the starting page of the print range.

The starting page number in the range of pages to be printed.

Call this function after calling DoModal to retrieve the starting page number in the range of pages to be printed.

See the example for CPrintDialog::m_pd.

Retrieves the name of the currently selected printer port.

The name of the currently selected printer port.

Call this function after calling DoModal or GetDefaults to retrieve the name of the currently selected printer port.

See the example for CPrintDialog::GetDeviceName.

Retrieves a handle to the printer device context.

A handle to the printer device context if successful; otherwise NULL.

If the bPrintSetupOnly parameter of the CPrintDialog constructor was FALSE (indicating that the Print dialog
box is displayed), then GetPrinterDC returns a handle to the printer device context. You must call the Windows
DeleteDC function to delete the device context when you are done using it.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-deletedc

CPrintDialog dlg(FALSE);
if (dlg.DoModal() == IDOK)
{
 // Get a handle to the printer device context (DC).
 HDC hdc = dlg.GetPrinterDC();
 ASSERT(hdc);

 // Do something with the HDC...

 // Clean up.
 CDC::FromHandle(hdc)->DeleteDC();
}

CPrintDialog::GetToPage

int GetToPage() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPrintDialog::m_pd

PRINTDLG& m_pd;

RemarksRemarks

ExampleExample

Retrieves the ending page of the print range.

The ending page number in the range of pages to be printed.

Call this function after calling DoModal to retrieve the ending page number in the range of pages to be printed.

See the example for CPrintDialog::m_pd.

A structure whose members store the characteristics of the dialog object.

After constructing a CPrintDialog object, you can use m_pd to set various aspects of the dialog box before
calling the DoModal member function. For more information on the m_pd structure, see PRINTDLG in the
Windows SDK.

If you modify the m_pd data member directly, you will override any default behavior.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpda

// Display the Windows Print dialog box with "Pages" radio button
// initially selected. "All" and "Pages" radio buttons are
// enabled as well.
CPrintDialog dlg(FALSE, PD_PAGENUMS | PD_USEDEVMODECOPIES);
dlg.m_pd.nMinPage = dlg.m_pd.nFromPage = 1;
dlg.m_pd.nMaxPage = dlg.m_pd.nToPage = 10;
if (dlg.DoModal() == IDOK)
{
 // Determine the starting and ending page numbers for the range
 // of pages to be printed.

 int from_page = -1, to_page = -1;
 if (dlg.PrintAll()) // print all pages in the document
 {
 from_page = dlg.m_pd.nMinPage;
 to_page = dlg.m_pd.nMaxPage;
 }
 else if (dlg.PrintRange()) // print only a range of pages
 { // in the document
 from_page = dlg.GetFromPage();
 to_page = dlg.GetToPage();
 }
 else if (dlg.PrintSelection()) // print only the currently selected
 // items
 {
 from_page = to_page = -1; // -1 to denote unknown yet
 }

 TRACE(_T("Print from %d to %d\n"), from_page, to_page);
}

CPrintDialog::PrintAll

BOOL PrintAll() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPrintDialog::PrintCollate

BOOL PrintCollate() const;

Return ValueReturn Value

RemarksRemarks

Determines whether to print all pages of the document.

Nonzero if all pages in the document are to be printed; otherwise 0.

Call this function after calling DoModal to determine whether to print all pages in the document.

See the example for CPrintDialog::m_pd.

Determines whether collated copies are requested.

Nonzero if the user selects the collate check box in the dialog box; otherwise 0.

Call this function after calling DoModal to determine whether the printer should collate all printed copies of the

ExampleExample

// Display the Windows Print dialog box with Collate check box checked.
CPrintDialog dlg(FALSE, PD_ALLPAGES | PD_COLLATE | PD_NOPAGENUMS |
 PD_HIDEPRINTTOFILE);
if (dlg.DoModal() == IDOK)
{
 // If the collate check box is selected, then GetCopies() will return
 // the number of copies printed. Otherwise, GetCopies() always
 // returns 1. Then, the number of copies printed can be found from the
 // DEVMODE structure of the printing device.
 if (dlg.PrintCollate())
 {
 int num = dlg.GetCopies();
 TRACE(_T("Number of copies printed = %d\n"), num);
 }
 else
 {
 LPDEVMODE devmode = dlg.GetDevMode();
 TRACE(_T("Number of copies printed = %d\n"), devmode->dmCopies);
 }
}

CPrintDialog::PrintRange

BOOL PrintRange() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPrintDialog::PrintSelection

BOOL PrintSelection() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

See also

document.

Determines whether to print only a specified range of pages.

Nonzero if only a range of pages in the document are to be printed; otherwise 0.

Call this function after calling DoModal to determine whether to print only a range of pages in the document.

See the example for CPrintDialog::m_pd.

Determines whether to print only the currently selected items.

Nonzero if only the selected items are to be printed; otherwise 0.

Call this function after calling DoModal to determine whether to print only the currently selected items.

See the example for CPrintDialog::m_pd.

MFC Sample DIBLOOK
CCommonDialog Class
Hierarchy Chart
CPrintInfo Structure

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CPrintDialogEx Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CPrintDialogEx : public CCommonDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPrintDialogEx::CPrintDialogEx Constructs a CPrintDialogEx object.

Public MethodsPublic Methods

NAME DESCRIPTION

CPrintDialogEx::CreatePrinterDC Creates a printer device context without displaying the Print
dialog box.

CPrintDialogEx::DoModal Displays the dialog box and allows the user to make
selections.

CPrintDialogEx::GetCopies Retrieves the number of copies requested.

CPrintDialogEx::GetDefaults Retrieves device defaults without displaying a dialog box.

CPrintDialogEx::GetDeviceName Retrieves the name of the currently selected printer device.

CPrintDialogEx::GetDevMode Retrieves the DEVMODE structure.

CPrintDialogEx::GetDriverName Retrieves the name of the system-defined printer device
driver.

CPrintDialogEx::GetPortName Retrieves the name of the currently selected printer port.

CPrintDialogEx::GetPrinterDC Retrieves a handle to the printer device context.

CPrintDialogEx::PrintAll Determines whether to print all pages of the document.

CPrintDialogEx::PrintCollate Determines whether collated copies are requested.

CPrintDialogEx::PrintCurrentPage Determines whether to print the current page of the
document.

Encapsulates the services provided by the Windows Print property sheet.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cprintdialogex-class.md

CPrintDialogEx::PrintRange Determines whether to print only a specified range of pages.

CPrintDialogEx::PrintSelection Determines whether to print only the currently selected items.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CPrintDialogEx::m_pdex A structure used to customize a CPrintDialogEx object.

Remarks

Inheritance Hierarchy

You can rely on the framework to handle many aspects of the printing process for your application. For more
information about using the framework to handle printing tasks, see the article Printing.

If you want your application to handle printing without the framework's involvement, you can use the
CPrintDialogEx class "as is" with the constructor provided, or you can derive your own dialog class from
CPrintDialogEx and write a constructor to suit your needs. In either case, these dialog boxes will behave like

standard MFC dialog boxes because they are derived from class CCommonDialog .

To use a CPrintDialogEx object, first create the object using the CPrintDialogEx constructor. Once the dialog box
has been constructed, you can set or modify any values in the m_pdex structure to initialize the values of the
dialog box's controls. The m_pdex structure is of type PRINTDLGEX. For more information on this structure, see
the Windows SDK.

If you do not supply your own handles in m_pdex for the hDevMode and hDevNames members, be sure to call the
Windows function GlobalFree for these handles when you are done with the dialog box.

After initializing the dialog box controls, call the DoModal member function to display the dialog box and allow the
user to select print options. When DoModal returns, you can determine whether the user selected the OK, Apply,
or Cancel button.

If the user pressed OK, you can use CPrintDialogEx 's member functions to retrieve the information input by the
user.

The CPrintDialogEx::GetDefaults member function is useful for retrieving the current printer defaults without
displaying a dialog box. This method requires no user interaction.

You can use the Windows CommDlgExtendedError function to determine whether an error occurred during
initialization of the dialog box and to learn more about the error. For more information on this function, see the
Windows SDK.

For more information on using CPrintDialogEx , see Common Dialog Classes.

CObject

CCmdTarget

CWnd

CDialog

IObjectWithSite

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpdexa

Requirements

CPrintDialogEx::CPrintDialogEx

CPrintDialogEx(
 DWORD dwFlags = PD_ALLPAGES | PD_USEDEVMODECOPIES | PD_NOPAGENUMS | PD_HIDEPRINTTOFILE |
PD_NOSELECTION | PD_NOCURRENTPAGE,
 CWnd* pParentWnd = NULL);

ParametersParameters

RemarksRemarks

CPrintDialogEx::CreatePrinterDC

HDC CreatePrinterDC();

Return ValueReturn Value

RemarksRemarks

CPrintDialogEx::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

IPrintDialogCallback

CCommonDialog

CPrintDialogEx

Header: afxdlgs.h

Constructs a Windows Print property sheet.

dwFlags
One or more flags you can use to customize the settings of the dialog box, combined using the bitwise OR
operator. For example, the PD_ALLPAGES flag sets the default print range to all pages of the document. See the
PRINTDLGEX structure in the Windows SDK for more information on these flags.

pParentWnd
A pointer to the dialog box's parent or owner window.

This member function only constructs the object. Use the DoModal member function to display the dialog box.

Creates a printer device context (DC) from the DEVMODE and DEVNAMES structures.

Handle to the newly created printer device context.

The returned DC is also stored in the hDC member of m_pdex.

This DC is assumed to be the current printer DC, and any other previously obtained printer DCs must be deleted.
This function can be called, and the resulting DC used, without ever displaying the Print dialog box.

Call this function to display the Windows Print property sheet and allow the user to select various printing
options such as the number of copies, page range, and whether copies should be collated.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpdexa
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagdevnames

RemarksRemarks

CPrintDialogEx::GetCopies

int GetCopies() const;

Return ValueReturn Value

CPrintDialogEx::GetDefaults

BOOL GetDefaults();

Return ValueReturn Value

RemarksRemarks

CPrintDialogEx::GetDeviceName

CString GetDeviceName() const;

Return ValueReturn Value

The INT_PTR return value is actually an HRESULT. See the Return Values section in PrintDlgEx in the Windows
SDK.

If you want to initialize the various print dialog options by setting members of the m_pdex structure, you should
do this before calling DoModal , but after the dialog object is constructed.

After calling DoModal , you can call other member functions to retrieve the settings or information input by the
user into the dialog box.

If the PD_RETURNDC flag is used when calling DoModal , a printer DC will be returned in the hDC member of
m_pdex. This DC must be freed with a call to DeleteDC by the caller of CPrintDialogEx .

Call this function after calling DoModal to retrieve the number of copies requested.

The number of copies requested.

Call this function to retrieve the device defaults of the default printer without displaying a dialog box.

TRUE if successful, otherwise FALSE.

Creates a printer device context (DC) from the DEVMODE and DEVNAMES structures.

GetDefaults does not display the Print property sheet. Instead, it sets the hDevNames and hDevMode members of
m_pdex to handles to the DEVMODE and DEVNAMES structures that are initialized for the system default
printer. Both hDevNames and hDevMode must be NULL, or GetDefaults fails.

If the PD_RETURNDC flag is set, this function will not only return hDevNames and hDevMode (located in
m_pdex.hDevNames and m_pdex.hDevMode) to the caller, but will also return a printer DC in m_pdex.hDC . It is the

responsibility of the caller to delete the printer DC and call the Windows GlobalFree function on the handles
when you are finished with the CPrintDialogEx object.

Call this function after calling DoModal to retrieve the name of the currently selected printer, or after calling
GetDefaults to retrieve the name of the default printer.

The name of the currently selected printer.

https://msdn.microsoft.com/library/windows/desktop/ms646942
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-deletedc
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagdevnames
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea
https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagdevnames
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalfree

RemarksRemarks

CPrintDialogEx::GetDevMode

LPDEVMODE GetDevMode() const;

Return ValueReturn Value

CPrintDialogEx::GetDriverName

CString GetDriverName() const;

Return ValueReturn Value

RemarksRemarks

CPrintDialogEx::GetPortName

CString GetPortName() const;

Return ValueReturn Value

CPrintDialogEx::GetPrinterDC

HDC GetPrinterDC() const;

Return ValueReturn Value

RemarksRemarks

CPrintDialogEx::m_pdex

Use a pointer to the CString object returned by GetDeviceName as the value of lpszDeviceName in a call to
CDC::CreateDC.

Call this function after calling DoModal or GetDefaults to retrieve information about the printing device.

The DEVMODE data structure, which contains information about the device initialization and environment of a
print driver. You must unlock the memory taken by this structure with the Windows GlobalUnlock function, which
is described in the Windows SDK.

Call this function after calling DoModal or GetDefaults to retrieve the name of the system-defined printer device
driver.

A CString specifying the system-defined driver name.

Use a pointer to the CString object returned by GetDriverName as the value of lpszDriverName in a call to
CDC::CreateDC.

Call this function after calling DoModal or GetDefaults to retrieve the name of the currently selected printer port.

The name of the currently selected printer port.

Returns a handle to the printer device context.

A handle to the printer device context.

You must call the Windows DeleteDC function to delete the device context when you are done using it.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalunlock
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-deletedc

CPrintDialogEx::m_pdex

PRINTDLGEX m_pdex;

RemarksRemarks

CPrintDialogEx::PrintAll

BOOL PrintAll() const;

Return ValueReturn Value

CPrintDialogEx::PrintCollate

BOOL PrintCollate() const;

Return ValueReturn Value

CPrintDialogEx::PrintCurrentPage

BOOL PrintCurrentPage() const;

Return ValueReturn Value

CPrintDialogEx::PrintRange

BOOL PrintRange() const;

Return ValueReturn Value

A PRINTDLGEX structure whose members store the characteristics of the dialog object.

After constructing a CPrintDialogEx object, you can use m_pdex to set various aspects of the dialog box before
calling the DoModal member function. For more information on the m_pdex structure, see PRINTDLGEX in the
Windows SDK.

If you modify the m_pdex data member directly, you will override any default behavior.

Call this function after calling DoModal to determine whether to print all pages in the document.

TRUE if all pages in the document are to be printed; otherwise FALSE.

Call this function after calling DoModal to determine whether the printer should collate all printed copies of the
document.

TRUE if the user selects the collate check box in the dialog box; otherwise FALSE.

Call this function after calling DoModal to determine whether to print the current page in the document.

TRUE if Print Current Page is selected in the print dialog; otherwise FALSE.

Call this function after calling DoModal to determine whether to print only a range of pages in the document.

TRUE if only a range of pages in the document are to be printed; otherwise FALSE.

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpdexa

RemarksRemarks

CPrintDialogEx::PrintSelection

BOOL PrintSelection() const;

Return ValueReturn Value

See also

The specified page ranges can be determined from m_pdex (see nPageRanges , nMaxPageRanges , and lpPageRanges

in the PRINTDLGEX structure in the Windows SDK).

Call this function after calling DoModal to determine whether to print only the currently selected items.

TRUE if only the selected items are to be printed; otherwise FALSE.

CCommonDialog Class
Hierarchy Chart
CPrintInfo Structure

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpdexa

CPrintInfo Structure
3/4/2019 • 8 minutes to read • Edit Online

Syntax
struct CPrintInfo

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CPrintInfo::GetFromPage Returns the number of the first page being printed.

CPrintInfo::GetMaxPage Returns the number of the last page of the document.

CPrintInfo::GetMinPage Returns the number of the first page of the document.

CPrintInfo::GetOffsetPage Returns the number of the pages preceding the first page
of a DocObject item being printed in a combined
DocObject print job.

CPrintInfo::GetToPage Returns the number of the last page being printed.

CPrintInfo::SetMaxPage Sets the number of the last page of the document.

CPrintInfo::SetMinPage Sets the number of the first page of the document.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CPrintInfo::m_bContinuePrinting Contains a flag indicating whether the framework should
continue the print loop.

CPrintInfo::m_bDirect Contains a flag indicating whether the document is being
printed directly (without displaying the Print dialog box).

CPrintInfo::m_bDocObject Contains a flag indicating whether the document being
printed is a DocObject.

CPrintInfo::m_bPreview Contains a flag indicating whether the document is being
previewed.

CPrintInfo::m_dwFlags Specifies DocObject printing operations.

Stores information about a print or print-preview job.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cprintinfo-structure.md

CPrintInfo::m_lpUserData Contains a pointer to a user-created structure.

CPrintInfo::m_nCurPage Identifies the number of the page currently being printed.

CPrintInfo::m_nJobNumber Specifies the job number assigned by the operating system
for the current print job

CPrintInfo::m_nNumPreviewPages Identifies the number of pages displayed in the preview
window; either 1 or 2.

CPrintInfo::m_nOffsetPage Specifies offset of a particular DocObject's first page in a
combined DocObject print job.

CPrintInfo::m_pPD Contains a pointer to the CPrintDialog object used for
the Print dialog box.

CPrintInfo::m_rectDraw Specifies a rectangle defining the current usable page area.

CPrintInfo::m_strPageDesc Contains a format string for page-number display.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CPrintInfo is a structure and does not have a base class.

The framework creates an object of CPrintInfo each time the Print or Print Preview command is chosen and
destroys it when the command is completed.

CPrintInfo contains information about both the print job as a whole, such as the range of pages to be
printed, and the current status of the print job, such as the page currently being printed. Some information is
stored in an associated CPrintDialog object; this object contains the values entered by the user in the Print
dialog box.

A CPrintInfo object is passed between the framework and your view class during the printing process and is
used to exchange information between the two. For example, the framework informs the view class which
page of the document to print by assigning a value to the m_nCurPage member of CPrintInfo ; the view class
retrieves the value and performs the actual printing of the specified page.

Another example is the case in which the length of the document is not known until it is printed. In this
situation, the view class tests for the end of the document each time a page is printed. When the end is
reached, the view class sets the m_bContinuePrinting member of CPrintInfo to FALSE; this informs the
framework to stop the print loop.

CPrintInfo is used by the member functions of CView listed under "See Also." For more information about
the printing architecture provided by the Microsoft Foundation Class Library, see Frame Windows and
Document/View Architecture and the articles Printing and Printing: Multipage Documents.

CPrintInfo

Header: afxext.h

CPrintInfo::GetFromPage

UINT GetFromPage() const;

Return ValueReturn Value

RemarksRemarks

CPrintInfo::GetMaxPage

UINT GetMaxPage() const;

Return ValueReturn Value

RemarksRemarks

CPrintInfo::GetMinPage

UINT GetMinPage() const;

Return ValueReturn Value

RemarksRemarks

CPrintInfo::GetOffsetPage

UINT GetOffsetPage() const;

Return ValueReturn Value

RemarksRemarks

Call this function to retrieve the number of the first page to be printed.

The number of the first page to be printed.

This is the value specified by the user in the Print dialog box, and it is stored in the CPrintDialog object
referenced by the m_pPD member. If the user has not specified a value, the default is the first page of the
document.

Call this function to retrieve the number of the last page of the document.

The number of the last page of the document.

This value is stored in the CPrintDialog object referenced by the m_pPD member.

Call this function to retrieve the number of the first page of the document.

The number of the first page of the document.

This value is stored in the CPrintDialog object referenced by the m_pPD member.

Call this function to retrieve the offset when printing multiple DocObject items from a DocObject client.

The number of pages preceding the first page of a DocObject item being printed in a combined DocObject
print job.

This value is referenced by the m_nOffsetPage member. The first page of your document will be numbered the
m_nOffsetPage value + 1 when printed as a DocObject with other active documents. The m_nOffsetPage

CPrintInfo::GetToPage

UINT GetToPage() const;

Return ValueReturn Value

RemarksRemarks

CPrintInfo::m_bContinuePrinting

RemarksRemarks

CPrintInfo::m_bDirect

RemarksRemarks

CPrintInfo::m_bDocObject

RemarksRemarks

CPrintInfo::m_bPreview

RemarksRemarks

member is valid only if the m_bDocObject value is TRUE.

Call this function to retrieve the number of the last page to be printed.

The number of the last page to be printed.

This is the value specified by the user in the Print dialog box, and it is stored in the CPrintDialog object
referenced by the m_pPD member. If the user has not specified a value, the default is the last page of the
document.

Contains a flag indicating whether the framework should continue the print loop.

If you are doing print-time pagination, you can set this member to FALSE in your override of
CView::OnPrepareDC once the end of the document has been reached. You do not have to modify this variable

if you have specified the length of the document at the beginning of the print job using the SetMaxPage

member function. The m_bContinuePrinting member is a public variable of type BOOL.

The framework sets this member to TRUE if the Print dialog box will be bypassed for direct printing; FALSE
otherwise.

The Print dialog is normally bypassed when you print from the shell or when printing is done using the
command ID ID_FILE_PRINT_DIRECT.

You normally don't change this member, but if you do change it, change it before you call
CView::DoPreparePrinting in your override of CView::OnPreparePrinting.

Contains a flag indicating whether the document being printed is a DocObject.

Data members m_dwFlags and m_nOffsetPage are invalid unless this flag is TRUE.

Contains a flag indicating whether the document is being previewed.

This is set by the framework depending on which command the user executed. The Print dialog box is not
displayed for a print-preview job. The m_bPreview member is a public variable of type BOOL.

CPrintInfo::m_dwFlags

RemarksRemarks

CPrintInfo::m_lpUserData

RemarksRemarks

CPrintInfo::m_nCurPage

RemarksRemarks

CPrintInfo::m_nJobNumber

RemarksRemarks

CPrintInfo::m_nNumPreviewPages

Contains a combination of flags specifying DocObject printing operations.

Valid only if data member m_bDocObject is TRUE.

The flags can be one or more of the following values:

PRINTFLAG_MAYBOTHERUSER

PRINTFLAG_PROMPTUSER

PRINTFLAG_USERMAYCHANGEPRINTER

PRINTFLAG_RECOMPOSETODEVICE

PRINTFLAG_DONTACTUALLYPRINT

PRINTFLAG_FORCEPROPERTIES

PRINTFLAG_PRINTTOFILE

Contains a pointer to a user-created structure.

You can use this to store printing-specific data that you do not want to store in your view class. The
m_lpUserData member is a public variable of type LPVOID.

Contains the number of the current page.

The framework calls CView::OnPrepareDC and CView::OnPrint once for each page of the document, specifying
a different value for this member each time; its values range from the value returned by GetFromPage to that
returned by GetToPage . Use this member in your overrides of CView::OnPrepareDC and CView::OnPrint to
print the specified page of the document.

When preview mode is first invoked, the framework reads the value of this member to determine which page
of the document should be previewed initially. You can set the value of this member in your override of
CView::OnPreparePrinting to maintain the user's current position in the document when entering preview

mode. The m_nCurPage member is a public variable of type UINT.

Indicates the job number assigned by the operating system for the current print job.

This value may be SP_ERROR if the job hasn't yet printed (that is, if the CPrintInfo object is newly
constructed and has not yet been used to print), or if there was an error in starting the job.

Contains the number of pages displayed in preview mode; it can be either 1 or 2.

RemarksRemarks

CPrintInfo::m_nOffsetPage

CPrintInfo::m_pPD

RemarksRemarks

CPrintInfo::m_rectDraw

RemarksRemarks

CPrintInfo::m_strPageDesc

RemarksRemarks

CPrintInfo::SetMaxPage

void SetMaxPage(UINT nMaxPage);

ParametersParameters

RemarksRemarks

ExampleExample

The m_nNumPreviewPages member is a public variable of type UINT.

Contains the number of pages preceding the first page of a particular DocObject in a combined DocObject
print job.

Contains a pointer to the CPrintDialog object used to display the Print dialog box for the print job.

The m_pPD member is a public variable declared as a pointer to CPrintDialog .

Specifies the usable drawing area of the page in logical coordinates.

You may want to refer to this in your override of CView::OnPrint . You can use this member to keep track of
what area remains usable after you print headers, footers, and so on. The m_rectDraw member is a public
variable of type CRect .

Contains a format string used to display the page numbers during print preview; this string consists of two
substrings, one for single-page display and one for double-page display, each terminated by a '\n' character.

The framework uses "Page %u\nPages %u-%u\n" as the default value. If you want a different format for the
page numbers, specify a format string in your override of CView::OnPreparePrinting . The m_strPageDesc

member is a public variable of type CString .

Call this function to specify the number of the last page of the document.

nMaxPage
Number of the last page of the document.

This value is stored in the CPrintDialog object referenced by the m_pPD member. If the length of the
document is known before it is printed, call this function from your override of CView::OnPreparePrinting . If
the length of the document depends on a setting specified by the user in the Print dialog box, call this function
from your override of CView::OnBeginPrinting . If the length of the document is not known until it is printed,
use the m_bContinuePrinting member to control the print loop.

See the example for CView::OnPreparePrinting.

 CPrintInfo::SetMinPage

void SetMinPage(UINT nMinPage);

ParametersParameters

RemarksRemarks

See also

Call this function to specify the number of the first page of the document.

nMinPage
Number of the first page of the document.

Page numbers normally start at 1. This value is stored in the CPrintDialog object referenced by the m_pPD

member.

MFC Sample DIBLOOK
Hierarchy Chart
CView::OnBeginPrinting
CView::OnEndPrinting
CView::OnEndPrintPreview
CView::OnPrepareDC
CView::OnPreparePrinting
CView::OnPrint

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CProgressCtrl Class
3/5/2019 • 12 minutes to read • Edit Online

Syntax
class CProgressCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CProgressCtrl::CProgressCtrl Constructs a CProgressCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CProgressCtrl::Create Creates a progress bar control and attaches it to a
CProgressCtrl object.

CProgressCtrl::CreateEx Creates a progress control with the specified Windows
extended styles and attaches it to a CProgressCtrl object.

CProgressCtrl::GetBarColor Gets the color of the progress indicator bar for the current
progress bar control.

CProgressCtrl::GetBkColor Gets the background color of the current progress bar.

CProgressCtrl::GetPos Gets the current position of the progress bar.

CProgressCtrl::GetRange Gets the lower and upper limits of the range of the progress
bar control.

CProgressCtrl::GetState Gets the state of the current progress bar control.

CProgressCtrl::GetStep Retrieves the step increment for the progress bar of the
current progress bar control.

CProgressCtrl::OffsetPos Advances the current position of a progress bar control by a
specified increment and redraws the bar to reflect the new
position.

CProgressCtrl::SetBarColor Sets the color of the progress indicator bar in the current
progress bar control.

Provides the functionality of the Windows common progress bar control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cprogressctrl-class.md

CProgressCtrl::SetBkColor Sets the background color for the progress bar.

CProgressCtrl::SetMarquee Turns marquee mode on or off for the current progress bar
control.

CProgressCtrl::SetPos Sets the current position for a progress bar control and
redraws the bar to reflect the new position.

CProgressCtrl::SetRange Sets the minimum and maximum ranges for a progress bar
control and redraws the bar to reflect the new ranges.

CProgressCtrl::SetState Sets the state of the current progress bar control.

CProgressCtrl::SetStep Specifies the step increment for a progress bar control.

CProgressCtrl::StepIt Advances the current position for a progress bar control by
the step increment (see SetStep) and redraws the bar to
reflect the new position.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CProgressCtrl::CProgressCtrl

CProgressCtrl();

A progress bar control is a window that an application can use to indicate the progress of a lengthy operation. It
consists of a rectangle that is gradually filled, from left to right, with the system highlight color as an operation
progresses.

A progress bar control has a range and a current position. The range represents the total duration of the
operation, and the current position represents the progress the application has made toward completing the
operation. The window procedure uses the range and the current position to determine the percentage of the
progress bar to fill with the highlight color. Because the range and current position values are expressed as signed
integers, the possible range of current position values is from -2,147,483,648 to 2,147,483,647 inclusive.

For more information on using CProgressCtrl , see Controls and Using CProgressCtrl.

CObject

CCmdTarget

CWnd

CProgressCtrl

Header: afxcmn.h

Constructs a CProgressCtrl object.

RemarksRemarks

ExampleExample

// Create a progress control object on the stack.
CProgressCtrl myCtrl;

// Create a progress control object on the heap.
CProgressCtrl* pmyCtrl = new CProgressCtrl;

CProgressCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CProgressCtrl myCtrl;

// Create a smooth child progress control.
myCtrl.Create(WS_CHILD|WS_VISIBLE|PBS_SMOOTH, CRect(10,10,200,30),
 pParentWnd, IDC_PROGRESSCTRL);

After constructing the CProgressCtrl object, call CProgressCtrl::Create to create the progress bar control.

Creates a progress bar control and attaches it to a CProgressCtrl object.

dwStyle
Specifies the progress bar control's style. Apply any combination of window stylesdescribed in CreateWindow in
the Windows SDK, in addition to the following progress bar control styles, to the control:

PBS_VERTICAL Displays progress information vertically, top to bottom. Without this flag, the progress
bar control displays horizontally, left to right.

PBS_SMOOTH Displays gradual, smooth filling in the progress bar control. Without this flag, the control
will fill with blocks.

rect
Specifies the progress bar control's size and position. It can be either a CRect object or a RECT structure. Because
the control must be a child window, the specified coordinates are relative to the client area of the pParentWnd.

pParentWnd
Specifies the progress bar control's parent window, usually a CDialog . It must not be NULL.

nID
Specifies the progress bar control's ID.

TRUE if the CProgressCtrl object is successfully created; otherwise FALSE.

You construct a CProgressCtrl object in two steps. First, call the constructor, which creates the CProgressCtrl
object, and then call Create , which creates the progress bar control.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

CProgressCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CProgressCtrl::GetBarColor

COLORREF GetBarColor() const;

Return ValueReturn Value

RemarksRemarks

CProgressCtrl::GetBkColor

Creates a control (a child window) and associates it with the CProgressCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the dwExStyle
parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the progress bar control's style. Apply any combination of window styles described in CreateWindow in
the Windows SDK.

rect
A reference to a RECT structure describing the size and position of the window to be created, in client coordinates
of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

Gets the color of the progress indicator bar for the current progress bar control.

The color of the current progress bar, represented as a COLORREF value, or CLR_DEFAULT if the progress
indicator bar color is the default color.

This method sends the PBM_GETBARCOLOR message, which is described in the Windows SDK.

Gets the background color of the current progress bar.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/pbm-getbarcolor

COLORREF GetBkColor() const;

Return ValueReturn Value

RemarksRemarks

CProgressCtrl::GetPos

int GetPos();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CProgressCtrl myCtrl;

// Create a child progress control.
myCtrl.Create(WS_CHILD|WS_VISIBLE, CRect(10,10,200,30), pParentWnd,
 IDC_PROGRESSCTRL);

// Set the new position to half of the current position.
myCtrl.SetPos(myCtrl.GetPos()/2);

CProgressCtrl::GetRange

void GetRange(
 int& nLower,
 int& nUpper);

ParametersParameters

RemarksRemarks

ExampleExample

The background color of the current progress bar, represented as a COLORREF value.

This method sends the PBM_GETBKCOLOR message, which is described in the Windows SDK.

Retrieves the current position of the progress bar.

The position of the progress bar control.

The position of the progress bar control is not the physical location on the screen, but rather is between the upper
and lower range indicated in SetRange.

Gets the current lower and upper limits, or range, of the progress bar control.

nLower
A reference to an integer receiving the lower limit of the progress bar control.

nUpper
A reference to an integer receiving the upper limit of the progress bar control.

This function copies the values of the lower and upper limits to the integers referenced by nLower and nUpper,
respectively.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/pbm-getbkcolor

CProgressCtrl myCtrl;

// Create a child progress control.
myCtrl.Create(WS_CHILD|WS_VISIBLE, CRect(10,10,200,30), pParentWnd,
 IDC_PROGRESSCTRL);

// Set the position to be one-fourth of the total range.
int nLower, nUpper;
myCtrl.GetRange(nLower, nUpper);
myCtrl.SetPos((nUpper-nLower)/4);

CProgressCtrl::GetState

int GetState() const;

Return ValueReturn Value

VALUE STATE

PBST_NORMAL In progress

PBST_ERROR Error

PBST_PAUSED Paused

RemarksRemarks

ExampleExample

// Variable to access the progress control
CProgressCtrl m_progressCtrl;

ExampleExample

// Display the current state of the progress control.
 CString str = _T("The progress control state is ");
 int progState = m_progressCtrl.GetState();
 if (progState == PBST_NORMAL)
 str += _T("NORMAL");
 else if (progState == PBST_PAUSED)
 str += _T("PAUSED");
 else if (progState == PBST_ERROR)
 str += _T("ERROR");
 else
 str += _T("unknown");
 AfxMessageBox(str, MB_ICONEXCLAMATION);

Gets the state of the current progress bar control.

The state of the current progress bar control, which is one of the following values:

This method sends the PBM_GETSTATE message, which is described in the Windows SDK.

The following code example defines the variable, m_progressCtrl , that is used to programmatically access the
progress bar control. This variable is used in the next example.

The following code example retrieves the state of the current progress bar control.

https://docs.microsoft.com/windows/desktop/Controls/pbm-getstate

CProgressCtrl::GetStep

int GetStep() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Variable to access the progress control
CProgressCtrl m_progressCtrl;

ExampleExample

// Get the step increment for the progress control.
 CString str;
 int incr = m_progressCtrl.GetStep();
 str.Format(_T("The step increment is %d."), incr);
 AfxMessageBox(str, MB_ICONEXCLAMATION);

CProgressCtrl::OffsetPos

int OffsetPos(int nPos);

ParametersParameters

Return ValueReturn Value

ExampleExample

Retrieves the step increment for the progress bar of the current progress bar control.

The step increment of the progress bar.

The step increment is the amount by which a call to CProgressCtrl::StepIt increases the current position of the
progress bar.

This method sends the PBM_GETSTEP message, which is described in the Windows SDK.

The following code example defines the variable, m_progressCtrl , that is used to programmatically access the
progress bar control. This variable is used in the next example.

The following code example retrieves the step increment of the current progress bar control.

Advances the progress bar control's current position by the increment specified by nPos and redraws the bar to
reflect the new position.

nPos
Amount to advance the position.

The previous position of the progress bar control.

https://docs.microsoft.com/windows/desktop/Controls/pbm-getstep

CProgressCtrl myCtrl;

// Create a child progress control.
myCtrl.Create(WS_CHILD|WS_VISIBLE, CRect(10,10,200,30), pParentWnd,
 IDC_PROGRESSCTRL);

// Offset the position by one-fourth of the total range.
int nLower, nUpper;
myCtrl.GetRange(nLower, nUpper);
myCtrl.OffsetPos((nUpper-nLower)/4);

CProgressCtrl::SetBarColor

COLORREF SetBarColor(COLORREF clrBar);

ParametersParameters

PARAMETER DESCRIPTION

clrBar [in] A COLORREF value that specifies the new color of the
progress indicator bar. Specify CLR_DEFAULT to cause the
progress bar to use its default color.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Variable to access the progress control
CProgressCtrl m_progressCtrl;

ExampleExample

Sets the color of the progress indicator bar in the current progress bar control.

The previous color of the progress indicator bar, represented as a COLORREF value, or CLR_DEFAULT if the
color of the progress indicator bar is the default color.

The SetBarColor method sets the progress bar color only if a Windows Vista theme is not in effect.

This method sends the PBM_SETBARCOLOR message, which is described in the Windows SDK.

The following code example defines the variable, m_progressCtrl , that is used to programmatically access the
progress bar control. This variable is used in the next example.

The following code example changes the color of the progress bar to red, green, blue, or the default.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/visual-styles-overview
https://docs.microsoft.com/windows/desktop/Controls/pbm-setbarcolor

// Set the progress bar color to red, green, blue, or
// the system default. The SetBarColor method has an
// effect only if the Windows system theme is Classic.
void CCProgressCtrl_s1Dlg::OnSetbarcolorRed()
{
 m_progressCtrl.SetBarColor(RGB(255,0,0));
}

void CCProgressCtrl_s1Dlg::OnSetbarcolorGreen()
{
 m_progressCtrl.SetBarColor(RGB(0,255,0));
}

void CCProgressCtrl_s1Dlg::OnSetbarcolorBlue()
{
 m_progressCtrl.SetBarColor(RGB(0,0,255));
}

void CCProgressCtrl_s1Dlg::OnSetbarcolorOri()
{
 m_progressCtrl.SetBarColor(CLR_DEFAULT);
}

CProgressCtrl::SetBkColor

COLORREF SetBkColor(COLORREF clrNew);

ParametersParameters

Return ValueReturn Value

ExampleExample

CProgressCtrl myCtrl;

// Create a smooth child progress control.
myCtrl.Create(WS_CHILD|WS_VISIBLE|PBS_SMOOTH, CRect(10,10,200,30),
 pParentWnd, IDC_PROGRESSCTRL);

// Set the background color to red.
myCtrl.SetBkColor(RGB(255, 0, 0));

CProgressCtrl::SetMarquee

BOOL SetMarquee(
 BOOL fMarqueeMode,
 int nInterval);

Sets the background color for the progress bar.

clrNew
A COLORREF value that specifies the new background color. Specify the CLR_DEFAULT value to use the default
background color for the progress bar.

The COLORREF value indicating the previous background color, or CLR_DEFAULT if the background color is the
default color.

Turns marquee mode on or off for the current progress bar control.

https://docs.microsoft.com/windows/desktop/gdi/colorref

ParametersParameters

PARAMETER DESCRIPTION

fMarqueeMode [in] TRUE to turn marquee mode on, or FALSE to turn
marquee mode off.

nInterval [in] Time in milliseconds between updates of the marquee
animation.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Variable to access the progress control
CProgressCtrl m_progressCtrl;

ExampleExample

// Turn the marquee animation on or off.
void CCProgressCtrl_s1Dlg::OnSetmarqueeOn()
{
 m_progressCtrl.SetMarquee(TRUE, nMarqueeInterval);
}

void CCProgressCtrl_s1Dlg::OnSetmarqueeOff()
{
 m_progressCtrl.SetMarquee(FALSE, nMarqueeInterval);
}

CProgressCtrl::SetPos

int SetPos(int nPos);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This method always returns TRUE.

When marquee mode is turned on, the progress bar is animated and scrolls like a sign on a theater marquee.

This method sends the PBM_SETMARQUEE message, which is described in the Windows SDK.

The following code example defines the variable, m_progressCtrl , that is used to programmatically access the
progress bar control. This variable is used in the next example.

The following code example starts and stops the marquee scrolling animation.

Sets the progress bar control's current position as specified by nPos and redraws the bar to reflect the new
position.

nPos
New position of the progress bar control.

The previous position of the progress bar control.

https://docs.microsoft.com/windows/desktop/Controls/pbm-setmarquee

ExampleExample

CProgressCtrl myCtrl;

// Create a child progress control.
myCtrl.Create(WS_CHILD|WS_VISIBLE, CRect(10,10,200,30), pParentWnd,
 IDC_PROGRESSCTRL);

// Set the range to be 0 to 100.
myCtrl.SetRange(0, 100);

// Set the position to be half, 50.
myCtrl.SetPos(50);

CProgressCtrl::SetRange

void SetRange(
 short nLower,
 short nUpper);

void SetRange32(
 int nLower,
 int nUpper);

ParametersParameters

RemarksRemarks

ExampleExample

CProgressCtrl myCtrl;

// Create a smooth child progress control.
myCtrl.Create(WS_CHILD|WS_VISIBLE|PBS_SMOOTH, CRect(10,10,200,30),
 pParentWnd, IDC_PROGRESSCTRL);

// Set the range to be 0 to 100.
myCtrl.SetRange(0, 100);

CProgressCtrl::SetState

int SetState(int iState);

ParametersParameters

The position of the progress bar control is not the physical location on the screen, but rather is between the upper
and lower range indicated in SetRange.

Sets the upper and lower limits of the progress bar control's range and redraws the bar to reflect the new ranges.

nLower
Specifies the lower limit of the range (default is zero).

nUpper
Specifies the upper limit of the range (default is 100).

The member function SetRange32 sets the 32-bit range for the progress control.

Sets the state of the current progress bar control.

PARAMETER DESCRIPTION

iState [in] The state to set the progress bar. Use one of the following
values:

- PBST_NORMAL - In progress
- PBST_ERROR - Error
- PBST_PAUSED - Paused

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Variable to access the progress control
CProgressCtrl m_progressCtrl;

ExampleExample

// Set the progrees control to normal or paused state.
void CCProgressCtrl_s1Dlg::OnSetstateNormal()
{
 m_progressCtrl.SetState(PBST_NORMAL);
}

void CCProgressCtrl_s1Dlg::OnSetstatePaused()
{
 m_progressCtrl.SetState(PBST_PAUSED);
}

CProgressCtrl::SetStep

int SetStep(int nStep);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The previous state of the current progress bar control.

This method sends the PBM_SETSTATE message, which is described in the Windows SDK.

The following code example defines the variable, m_progressCtrl , that is used to programmatically access the
progress bar control. This variable is used in the next example.

The following code example sets the state of the current progress bar control to Paused or In Progress.

Specifies the step increment for a progress bar control.

nStep
New step increment.

The previous step increment.

The step increment is the amount by which a call to CProgressCtrl::StepIt increases the progress bar's current
position.

The default step increment is 10.

https://docs.microsoft.com/windows/desktop/Controls/pbm-setstate

ExampleExample

CProgressCtrl myCtrl;

// Create a child progress control.
myCtrl.Create(WS_CHILD|WS_VISIBLE, CRect(10,10,200,30), pParentWnd,
 IDC_PROGRESSCTRL);

// Set the size to be 1/10 of the total range.
int nLower, nUpper;
myCtrl.GetRange(nLower, nUpper);
myCtrl.SetStep((nUpper-nLower)/10);

CProgressCtrl::StepIt

int StepIt();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CProgressCtrl myCtrl;

// Create a child progress control.
myCtrl.Create(WS_CHILD|WS_VISIBLE, CRect(10,10,200,30), pParentWnd,
 IDC_PROGRESSCTRL);

// Advance the position to the next step.
myCtrl.StepIt();

See also

Advances the current position for a progress bar control by the step increment and redraws the bar to reflect the
new position.

The previous position of the progress bar control.

The step increment is set by the CProgressCtrl::SetStep member function.

MFC Sample CMNCTRL2
CWnd Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CPropertyPage Class
3/4/2019 • 18 minutes to read • Edit Online

Syntax
class CPropertyPage : public CDialog

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPropertyPage::CPropertyPage Constructs a CPropertyPage object.

Public MethodsPublic Methods

NAME DESCRIPTION

CPropertyPage::CancelToClose Changes the OK button to read Close, and disables the
Cancel button, after an unrecoverable change in the page of
a modal property sheet.

CPropertyPage::Construct Constructs a CPropertyPage object. Use Construct if
you want to specify your parameters at run time, or if you
are using arrays.

CPropertyPage::GetPSP Retrieves the Windows PROPSHEETPAGE structure
associated with the CPropertyPage object.

CPropertyPage::OnApply Called by the framework when the Apply Now button is
clicked.

CPropertyPage::OnCancel Called by the framework when the Cancel button is clicked.

CPropertyPage::OnKillActive Called by the framework when the current page is no longer
the active page. Perform data validation here.

CPropertyPage::OnOK Called by the framework when the OK, Apply Now, or Close
button is clicked.

CPropertyPage::OnQueryCancel Called by the framework when the Cancel button is clicked,
and before the cancel has taken place.

CPropertyPage::OnReset Called by the framework when the Cancel button is clicked.

CPropertyPage::OnSetActive Called by the framework when the page is made the active
page.

Represents individual pages of a property sheet, otherwise known as a tab dialog box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpropertypage-class.md
https://docs.microsoft.com/windows/desktop/api/prsht/ns-prsht-_propsheetpagea_v2

CPropertyPage::OnWizardBack Called by the framework when the Back button is clicked
while using a wizard-type property sheet.

CPropertyPage::OnWizardFinish Called by the framework when the Finish button is clicked
while using a wizard-type property sheet.

CPropertyPage::OnWizardNext Called by the framework when the Next button is clicked
while using a wizard-type property sheet.

CPropertyPage::QuerySiblings Forwards the message to each page of the property sheet.

CPropertyPage::SetModified Call to activate or deactivate the Apply Now button.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CPropertyPage::m_psp The Windows PROPSHEETPAGE structure. Provides access
to basic property page parameters.

Remarks

Inheritance Hierarchy

Requirements

As with standard dialog boxes, you derive a class from CPropertyPage for each page in your property sheet. To
use CPropertyPage -derived objects, first create a CPropertySheet object, and then create an object for each
page that goes in the property sheet. Call CPropertySheet::AddPage for each page in the sheet, and then
display the property sheet by calling CPropertySheet::DoModal for a modal property sheet, or
CPropertySheet::Create for a modeless property sheet.

You can create a type of tab dialog box called a wizard, which consists of a property sheet with a sequence of
property pages that guide the user through the steps of an operation, such as setting up a device or creating a
newsletter. In a wizard-type tab dialog box, the property pages do not have tabs, and only one property page is
visible at a time. Also, instead of having OK and Apply Now buttons, a wizard-type tab dialog box has a Back
button, a Next or Finish button, and a Cancel button.

For more information on establishing a property sheet as a wizard, see CPropertySheet::SetWizardMode. For
more information on using CPropertyPage objects, see the article Property Sheets and Property Pages.

CObject

CCmdTarget

CWnd

CDialog

CPropertyPage

Header: afxdlgs.h

https://docs.microsoft.com/windows/desktop/api/prsht/ns-prsht-_propsheetpagea_v2

CPropertyPage::CancelToClose

void CancelToClose();

RemarksRemarks

ExampleExample

CPropertyPage::Construct

void Construct(
 UINT nIDTemplate,
 UINT nIDCaption = 0);

void Construct(
 LPCTSTR lpszTemplateName,
 UINT nIDCaption = 0);

void Construct(
 UINT nIDTemplate,
 UINT nIDCaption,
 UINT nIDHeaderTitle,
 UINT nIDHeaderSubTitle = 0);

void Construct(
 LPCTSTR lpszTemplateName,
 UINT nIDCaption,
 UINT nIDHeaderTitle,
 UINT nIDHeaderSubTitle = 0);

ParametersParameters

Call this function after an unrecoverable change has been made to the data in a page of a modal property
sheet.

This function will change the OK button to Close and disable the Cancel button. This change alerts the user
that a change is permanent and the modifications cannot be cancelled.

The CancelToClose member function does nothing in a modeless property sheet, because a modeless property
sheet does not have a Cancel button by default.

See the example for CPropertyPage::QuerySiblings.

Call this member function to construct a CPropertyPage object.

nIDTemplate
ID of the template used for this page.

nIDCaption
ID of the name to be placed in the tab for this page. If 0, the name will be taken from the dialog template for
this page.

lpszTemplateName
Contains a null-terminated string that is the name of a template resource.

nIDHeaderTitle
ID of the name to be placed in the title location of the property page header. By default, 0.

nIDHeaderSubTitle
ID of the name to be placed in the subtitle location of the property page header. By default, 0.

RemarksRemarks

ExampleExample

// Declare a CPropertySheet object.
CPropertySheet sheet(_T("Simple PropertySheet"));

// Create three CPropertyPage objects whose template IDs are specified
// in rgID array, and add each page to the CPropertySheet object.
const int c_cPages = 3;
CPropertyPage pages[c_cPages];
UINT rgID[c_cPages] = {IDD_STYLE, IDD_COLOR, IDD_SHAPE};
for (int i = 0; i < c_cPages; i++)
{
 pages[i].Construct(rgID[i]);
 sheet.AddPage(&pages[i]);
}

// Display a modal CPropertySheet dialog.
sheet.DoModal();

CPropertyPage::CPropertyPage

The object is displayed after all of the following conditions are met:

The page has been added to a property sheet using CPropertySheet::AddPage.

The property sheet's DoModal or Create function has been called.

The user has selected (tabbed to) this page.

Call Construct if one of the other class constructors has not been called. The Construct member function is
flexible because you can leave the parameter statement blank and then specify multiple parameters and
construction at any point in your code.

You must use Construct when you work with arrays, and you must call Construct for each member of the
array so that the data members are assigned proper values.

Constructs a CPropertyPage object.

CPropertyPage();

explicit CPropertyPage(
 UINT nIDTemplate,
 UINT nIDCaption = 0,
 DWORD dwSize = sizeof(PROPSHEETPAGE));

explicit CPropertyPage(
 LPCTSTR lpszTemplateName,
 UINT nIDCaption = 0,
 DWORD dwSize = sizeof(PROPSHEETPAGE));

CPropertyPage(
 UINT nIDTemplate,
 UINT nIDCaption,
 UINT nIDHeaderTitle,
 UINT nIDHeaderSubTitle = 0,
 DWORD dwSize = sizeof(PROPSHEETPAGE));

CPropertyPage(
 LPCTSTR lpszTemplateName,
 UINT nIDCaption,
 UINT nIDHeaderTitle,
 UINT nIDHeaderSubTitle = 0,
 DWORD dwSize = sizeof(PROPSHEETPAGE));

ParametersParameters

RemarksRemarks

ExampleExample

nIDTemplate
ID of the template used for this page.

nIDCaption
ID of the name to be placed in the tab for this page. If 0, the name will be taken from the dialog template for
this page.

dwSize
lpszTemplateName Points to a string containing the name of the template for this page. Cannot be NULL.

nIDHeaderTitle
ID of the name to be placed in the title location of the property page header.

nIDHeaderSubTitle
ID of the name to be placed in the subtitle location of the property page header.

The object is displayed after all of the following conditions are met:

The page has been added to a property sheet using CPropertySheet::AddPage.

The property sheet's DoModal or Create function has been called.

The user has selected (tabbed to) this page.

If you have multiple parameters (for example, if you are using an array), use CPropertySheet::Construct instead
of CPropertyPage .

// Declare a CStylePage object, which is a CPropertyPage-derived class.
CStylePage stylePage;

// Declare a CPropertyPage object with IDD_SHAPE, the ID of the
// template used for this page.
CPropertyPage shapePage(IDD_SHAPE);

CPropertyPage::GetPSP

const PROPSHEETPAGE& GetPSP() const;

PROPSHEETPAGE& GetPSP();

Return ValueReturn Value

CPropertyPage::m_psp

PROPSHEETPAGE m_psp;

RemarksRemarks

ExampleExample

CPropertySheet sheet(_T("Simple PropertySheet"));

// Change the settings of the three pages to enable property sheet's
// Help button when the page is active. CStylePage, CShapePage, and
// CColorPage are CPropertyPage-derived classes.
CStylePage pageStyle;
pageStyle.m_psp.dwFlags |= PSP_HASHELP;

CColorPage pageColor;
pageColor.m_psp.dwFlags |= PSP_HASHELP;

CShapePage pageShape;
pageShape.m_psp.dwFlags |= PSP_HASHELP;

sheet.AddPage(&pageStyle);
sheet.AddPage(&pageColor);
sheet.AddPage(&pageShape);

sheet.SetWizardMode();

sheet.DoModal();

CPropertyPage::OnApply

Retrieves the Windows PROPSHEETPAGE structure associated with the CPropertyPage object.

A reference to the PROPSHEETPAGE structure.

m_psp is a structure whose members store the characteristics of PROPSHEETPAGE.

Use this structure to initialize the appearance of a property page after it is constructed.

For more information on this structure, including a listing of its members, see PROPSHEETPAGE in the Windows
SDK.

https://docs.microsoft.com/windows/desktop/api/prsht/ns-prsht-_propsheetpagea_v2
https://docs.microsoft.com/windows/desktop/api/prsht/ns-prsht-_propsheetpagea_v2

virtual BOOL OnApply();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPropertyPage::OnCancel

virtual void OnCancel();

RemarksRemarks

ExampleExample

This member function is called by the framework when the user chooses the OK or the Apply Now button.

Nonzero if the changes are accepted; otherwise 0.

When the framework calls this function, changes made on all property pages in the property sheet are
accepted, the property sheet retains focus, and OnApply returns TRUE (the value 1). Before OnApply can be
called by the framework, you must have called SetModified and set its parameter to TRUE. This will activate
the Apply Now button as soon as the user makes a change on the property page.

Override this member function to specify what action your program takes when the user clicks the Apply Now
button. When overriding, the function should return TRUE to accept changes and FALSE to prevent changes
from taking effect.

The default implementation of OnApply calls OnOK .

For more information about notification messages sent when the user presses the Apply Now or OK button in
a property sheet, see PSN_APPLY in the Windows SDK.

See the example for CPropertyPage::OnOK.

This member function is called by the framework when the Cancel button is selected.

Override this member function to perform Cancel button actions. The default negates any changes that have
been made.

https://docs.microsoft.com/windows/desktop/Controls/psn-apply

// Discard any selection the user made to this page. The object
// in the view will be painted with the initial color when the
// CPropertySheet dialog is first shown. CColorPage is a
// CPropertyPage-derived class.
void CColorPage::OnCancel()
{
 // Reset the color saved in the document class. m_InitialColor
 // is a member variable of CColorPage and it is the color shown
 // in the view before CPropertySheet is shown.
 // doc->m_Color is the color saved in the document class, and
 // this is the color to be used by the view class.
 CMDIFrameWnd* pFrame = (CMDIFrameWnd*) AfxGetMainWnd();
 CMDIChildWnd* pChild = pFrame->MDIGetActive();
 CPSheetDoc* doc = (CPSheetDoc*) pChild->GetActiveDocument();
 doc->m_Color = m_InitialColor;

 // Tell the view to paint with the initial color.
 CView* view = pChild->GetActiveView();
 view->Invalidate();

 CPropertyPage::OnCancel();
}

// The default MFC implementation of OnReset() would call OnCancel().
void CColorPage::OnReset()
{
 CPropertyPage::OnReset();
}

CPropertyPage::OnKillActive

virtual BOOL OnKillActive();

Return ValueReturn Value

RemarksRemarks

ExampleExample

This member function is called by the framework when the page is no longer the active page.

Nonzero if data was updated successfully, otherwise 0.

Override this member function to perform special data validation tasks.

The default implementation of this member function copies settings from the controls in the property page to
the member variables of the property page. If the data was not updated successfully due to a dialog data
validation (DDV) error, the page retains focus.

After this member function returns successfully, the framework will call the page's OnOK function.

// Validate the value entered to the "Number" edit control. Its
// value must be at least one. If not, tell the user and set the
// focus to the "Number" edit control. CStylePage is a
// CPropertyPage-derived class.
BOOL CStylePage::OnKillActive()
{
 int num = GetDlgItemInt(IDC_NUMOBJECTS);
 if (num <= 0)
 {
 AfxMessageBox(_T("Number of objects must be at least 1."));
 CEdit* edit = (CEdit*) GetDlgItem(IDC_NUMOBJECTS);
 edit->SetFocus();
 edit->SetSel(0, -1);
 return 0;
 }

 return CPropertyPage::OnKillActive();
}

CPropertyPage::OnOK

virtual void OnOK();

RemarksRemarks

ExampleExample

This member function is called by the framework when the user chooses either the OK or the Apply Now
button, immediately after the framework calls OnKillActive.

When the user chooses either the OK or the Apply Now button, the framework receives the PSN_APPLY
notification from the property page. The call to OnOK won't be made if you call CPropertySheet::PressButton
because the property page does not send the notification in that case.

Override this member function to implement additional behavior specific to the currently active page when
user dismisses the entire property sheet.

The default implementation of this member function marks the page as "clean" to reflect that the data was
updated in the OnKillActive function.

https://docs.microsoft.com/windows/desktop/Controls/psn-apply

// Accept the new color selection and dismiss the CPropertySheet
// dialog. The view's object will be painted with the new selected
// color. CColorPage is a CPropertyPage-derived class.
void CColorPage::OnOK()
{
 // Store the new selected color to a member variable of
 // document class. m_Color is a member varible of CColorPage
 // and it stores the new selected color. doc->m_Color is
 // the color saved in the document class and it is the color
 // used by the view class.
 CMDIFrameWnd* pframe = (CMDIFrameWnd*) AfxGetMainWnd();
 CMDIChildWnd* pchild = pframe->MDIGetActive();
 CPSheetDoc* doc = (CPSheetDoc*) pchild->GetActiveDocument();
 doc->m_Color = m_Color;

 // Tell the view to paint with the new selected color.
 CView* view = pchild->GetActiveView();
 view->Invalidate();

 CPropertyPage::OnOK();
}

// The default MFC implementation of OnApply() would call OnOK().
BOOL CColorPage::OnApply()
{
 return CPropertyPage::OnApply();
}

CPropertyPage::OnQueryCancel

virtual BOOL OnQueryCancel();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Query the user whether to abort the changes if the new selected
// color (m_Color) is different from the initial color
// (m_InitialColor) when the CPropertySheet dialog is first shown.
// CColorPage is a CPropertyPage-derived class.
BOOL CColorPage::OnQueryCancel()
{
 if (m_InitialColor != m_Color)
 {
 if (AfxMessageBox(_T("Abort the changes?"), MB_YESNO) == IDNO)
 return FALSE;
 }

 return CPropertyPage::OnQueryCancel();
}

This member function is called by the framework when the user clicks the Cancel button and before the cancel
action has taken place.

Returns FALSE to prevent the cancel operation or TRUE to allow it.

Override this member function to specify an action the program takes when the user clicks the Cancel button.

The default implementation of OnQueryCancel returns TRUE.

CPropertyPage::OnReset

virtual void OnReset();

RemarksRemarks

ExampleExample

CPropertyPage::OnSetActive

virtual BOOL OnSetActive();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPropertyPage::OnWizardBack

virtual LRESULT OnWizardBack();

Return ValueReturn Value

RemarksRemarks

This member function is called by the framework when the user chooses the Cancel button.

When the framework calls this function, changes to all property pages that were made by the user previously
choosing the Apply Now button are discarded, and the property sheet retains focus.

Override this member function to specify what action the program takes when the user clicks the Cancel
button.

The default implementation of OnReset does nothing.

See the example for CPropertyPage::OnCancel.

This member function is called by the framework when the page is chosen by the user and becomes the active
page.

Nonzero if the page was successfully set active; otherwise 0.

Override this member function to perform tasks when a page is activated. Your override of this member
function would typically call the default version after updating data members, to allow it to update the page
controls with the new data.

The default implementation creates the window for the page, if not previously created, and makes it the active
page.

See the example for CPropertySheet::SetFinishText.

This member function is called by the framework when the user clicks on the Back button in a wizard.

0 to automatically advance to the next page; -1 to prevent the page from changing. To jump to a page other
than the next one, return the identifier of the dialog to be displayed.

Override this member function to specify some action the user must take when the Back button is pressed.

For more information on how to make a wizard-type property sheet, see CPropertySheet::SetWizardMode.

ExampleExample

// The Back button is selected from the propertysheet. Get the selected
// radio button of the page by looping through all buttons on the
// pages. m_radioColor is a member variable of
// CColorPage (a CPropertyPage-derived class). Its initial value
// is initialized in OnInitDialog().
LRESULT CColorPage::OnWizardBack()
{
 for (int id = IDC_RADIOBLACK; id <= IDC_RADIOGREEN; id++)
 {
 CButton* button = (CButton*) GetDlgItem(id);
 if (button->GetCheck() == 1)
 {
 m_radioColor = id - IDC_RADIOBLACK;
 break;
 }
 }

 return CPropertyPage::OnWizardBack();
}

CPropertyPage::OnWizardFinish

virtual BOOL OnWizardFinish();

Return ValueReturn Value

RemarksRemarks

ExampleExample

This member function is called by the framework when the user clicks on the Finish button in a wizard.

Nonzero if the property sheet is destroyed when the wizard finishes; otherwise zero.

When a user clicks the Finish button in a wizard, the framework calls this function; when OnWizardFinish

returns TRUE (a nonzero value), the property sheet is able to be destroyed (but is not actually destroyed). Call
DestroyWindow to destroy the property sheet. Do not call DestroyWindow from OnWizardFinish ; doing so will

cause heap corruption or other errors.

You can override this member function to specify some action the user must take when the Finish button is
pressed. When overriding this function, return FALSE to prevent the property sheet from being destroyed.

For more information about notification messages sent when the user presses the Finish button in a wizard
property sheet, see PSN_WIZFINISH in the Windows SDK.

For more information on how to make a wizard-type property sheet, see CPropertySheet::SetWizardMode.

https://docs.microsoft.com/windows/desktop/Controls/psn-wizfinish

// Inform users regarding the selections they have made by
// navigating the pages in propertysheet.
BOOL CShapePage::OnWizardFinish()
{
 CString report = _T("You have selected the following options:\n");

 // Get the number of property pages from CPropertySheet.
 CPropertySheet* sheet = (CPropertySheet*) GetParent();
 int count = sheet->GetPageCount();

 // Get the formatted string from each page. This formatted string
 // will be shown in a message box. Each page knows about the
 // string to be displayed. For simplicity, we derive a class
 // from CPropertyPage called CMyPropertyPage. CMyPropertyPage
 // has a pure virtual member function called GetPageSelections().
 // All pages in the property sheet must be derived from
 // CMyPropertyPage so we loop through each page to get the
 // formatted string by calling the GetPageSelections() function.
 for (int i = 0; i < count; i++)
 {
 CMyPropertyPage* page = (CMyPropertyPage*) sheet->GetPage(i);

 CString str;
 page->GetPageSelections(str);
 report += _T("\n") + str;
 }

 AfxMessageBox(report);

 return CPropertyPage::OnWizardFinish();
}

// An example of implementing the GetPageSelections() for CStylePage.
// CStylePage is a CMyPropertyPage-derived class, which in turn is a
// CPropertyPage-derived class.
void CStylePage::GetPageSelections(CString &str)
{
 str.Format(_T("Number of objects to be created = %d"), m_NumObjects);
}

// An example of implementing the GetPageSelections() for CColorPage.
// CColorPage is a CMyPropertyPage-derived class, which in turn is a
// CPropertyPage-derived class.
void CColorPage::GetPageSelections(CString &str)
{
 str = _T("Color selected is ");
 switch (m_Color)
 {
 case RGB(0, 0, 0):
 str += _T("Black");
 break;

 case RGB(255, 0, 0):
 str += _T("Red");
 break;

 case RGB(0, 255, 0):
 str += _T("Green");
 break;

 case RGB(0, 0, 255):
 str += _T("Blue");
 break;

 default:
 str += _T("Custom");
 break;
 }
}

// An example of implementing the GetPageSelections() for CShapePage.
// CShapePage is a CMyPropertyPage-derived class, which in turn is a
// CPropertyPage-derived class.
void CShapePage::GetPageSelections(CString &str)
{
 CString shapename;
 switch (m_Selection)
 {
 case IDC_RECTANGLE:
 shapename = _T("Rectangle");
 break;

 case IDC_ROUND_RECTANGLE:
 shapename = _T("Round Rectangle");
 break;

 case IDC_ELLIPSE:
 shapename = _T("Ellipse");
 break;
 }

 str.Format(_T("Shape to be created is %s"), shapename);
}

CPropertyPage::OnWizardNext

virtual LRESULT OnWizardNext();

Return ValueReturn Value

This member function is called by the framework when the user clicks on the Next button in a wizard.

RemarksRemarks

ExampleExample

// The Next button is selected from the propertysheet. Show the
// second page of the propertysheet ONLY if a non-zero value is
// entered to the Number edit control of the CStylePage. Otherwise
// display a message to the user and stay on the current page.

LRESULT CStylePage::OnWizardNext()
{
 // Get the number from the edit control
 int num = GetDlgItemInt(IDC_NUMOBJECTS);

 if (num == 0)
 {
 // Display a message to the user
 AfxMessageBox(_T("Supply a non-zero number on the edit control"), MB_OK);

 // Stay on the current page
 return -1;
 }

 // CPropertyPage::OnWizardNext returns zero and causes
 // the property sheet to display the next page
 return CPropertyPage::OnWizardNext();
}

CPropertyPage::QuerySiblings

LRESULT QuerySiblings(
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

0 to automatically advance to the next page; -1 to prevent the page from changing. To jump to a page other
than the next one, return the identifier of the dialog to be displayed.

Override this member function to specify some action the user must take when the Next button is pressed.

For more information on how to make a wizard-type property sheet, see CPropertySheet::SetWizardMode.

Call this member function to forward a message to each page in the property sheet.

wParam
Specifies additional message-dependent information.

lParam
Specifies additional message-dependent information

The nonzero value from a page in the property sheet, or 0 if all pages return a value of 0.

If a page returns a nonzero value, the property sheet does not send the message to subsequent pages.

// Validate the value entered in the Number edit control. If its
// value is not a natural number, request CPropertySheet (i.e. parent
// window of the page) to send a PSM_QUERYSIBLINGS message to each
// LOADED page (a page won't be loaded in memory until it is shown).
// If one of the pages returns a nonzero value in response to the
// PSM_QUERYSIBLINGS message, then inform the user and change the OK
// to Close and disable the Cancel button. CStylePage is a
// CPropertyPage-derived class.
BOOL CStylePage::OnApply()
{
 int num = GetDlgItemInt(IDC_NUMOBJECTS);
 if (num <= 0)
 {
 if (QuerySiblings(num, 0L))
 {
 AfxMessageBox(_T("Invalid data is entered. Choose Close ")
 _T("button to close the dialog."));
 CancelToClose();
 }
 }

 return CPropertyPage::OnApply();
}

// This is an example of trapping the PSM_QUERYSIBLINGS in one of
// the pages. CColorPage is a CPropertyPage-derived class. Upon
// receiving this message, wParam contains the value passed to
// QuerySiblings() call. CColorPage will check this value and return
// FALSE only if the value is greater than 1.
ON_MESSAGE(PSM_QUERYSIBLINGS, &CColorPage::OnQuerySiblings)

LRESULT CColorPage::OnQuerySiblings(WPARAM wParam, LPARAM lParam)
{
 UNREFERENCED_PARAMETER(lParam);
 return (wParam <= 0);
}

CPropertyPage::SetModified

void SetModified(BOOL bChanged = TRUE);

ParametersParameters

RemarksRemarks

ExampleExample

Call this member function to enable or disable the Apply Now button, based on whether the settings in the
property page should be applied to the appropriate external object.

bChanged
TRUE to indicate that the property page settings have been modified since the last time they were applied;
FALSE to indicate that the property page settings have been applied, or should be ignored.

The framework keeps track of which pages are "dirty," that is, property pages for which you have called
SetModified(TRUE) . The Apply Now button will always be enabled if you call SetModified(TRUE) for one of

the pages. The Apply Now button will be disabled when you call SetModified(FALSE) for one of the pages,
but only if none of the other pages is "dirty."

// OnColorClicked() is a member function of CColorPage (a
// CPropertyPage-derived class). It is called whenever a radio button
// is selected on the page. Call SetModified() to enable the Apply
// button whenever a new selection is made. m_Color is a member
// variable of CColorPage and it is to store the selected RGB color.
// Its entry in the message map looks like this:
// ON_CONTROL_RANGE(BN_CLICKED, IDC_BLACK, IDC_GREEN, CColorPage::OnColorClicked)
void CColorPage::OnColorClicked(UINT nCmdID)
{
 COLORREF color = m_Color;
 switch (nCmdID)
 {
 case IDC_RADIOBLACK:
 color = RGB(0, 0, 0);
 m_radioColor = crBlack;
 break;

 case IDC_RADIORED:
 color = RGB(255, 0, 0);
 m_radioColor = crRed;
 break;

 case IDC_RADIOGREEN:
 color = RGB(0, 255, 0);
 m_radioColor = crGreen;
 break;

 case IDC_RADIOBLUE:
 color = RGB(0, 0, 255);
 m_radioColor = crBlue;
 break;
 }

 if (color != m_Color)
 {
 m_Color = color;
 SetModified(); // Enable Apply Now button.
 }

 UpdateData(FALSE);
}

See also
MFC Sample CMNCTRL1
MFC Sample CMNCTRL2
MFC Sample PROPDLG
MFC Sample SNAPVW
CDialog Class
Hierarchy Chart
CPropertySheet Class
CDialog Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CPropertySheet Class
3/5/2019 • 22 minutes to read • Edit Online

Syntax
class CPropertySheet : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPropertySheet::CPropertySheet Constructs a CPropertySheet object.

Public MethodsPublic Methods

NAME DESCRIPTION

CPropertySheet::AddPage Adds a page to the property sheet.

CPropertySheet::Construct Constructs a CPropertySheet object.

CPropertySheet::Create Displays a modeless property sheet.

CPropertySheet::DoModal Displays a modal property sheet.

CPropertySheet::EnableStackedTabs Indicates whether the property sheet uses stacked or
scrolling tabs.

CPropertySheet::EndDialog Terminates the property sheet.

CPropertySheet::GetActiveIndex Retrieves the index of the active page of the property sheet.

CPropertySheet::GetActivePage Returns the active page object.

CPropertySheet::GetPage Retrieves a pointer to the specified page.

CPropertySheet::GetPageCount Retrieves the number of pages in the property sheet.

CPropertySheet::GetPageIndex Retrieves the index of the specified page of the property
sheet.

CPropertySheet::GetTabControl Retrieves a pointer to a tab control.

CPropertySheet::MapDialogRect Converts the dialog-box units of a rectangle to screen units.

Represents property sheets, also known as tab dialog boxes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpropertysheet-class.md

CPropertySheet::OnInitDialog Override to augment property sheet initialization.

CPropertySheet::PressButton Simulates the choice of the specified button in a property
sheet.

CPropertySheet::RemovePage Removes a page from the property sheet.

CPropertySheet::SetActivePage Programmatically sets the active page object.

CPropertySheet::SetFinishText Sets the text for the Finish button.

CPropertySheet::SetTitle Sets the caption of the property sheet.

CPropertySheet::SetWizardButtons Enables the wizard buttons.

CPropertySheet::SetWizardMode Enables the wizard mode.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CPropertySheet::m_psh The Windows PROPSHEETHEADER structure. Provides
access to basic property sheet parameters.

Remarks
A property sheet consists of a CPropertySheet object and one or more CPropertyPage objects. The framework
displays a property sheet as a window with a set of tab indices and an area that contains the currently selected
page. The user navigates to a specific page by using the appropriate tab.

CPropertySheet provides support for the expanded PROPSHEETHEADER structure introduced in Windows
98 and Windows NT 2000. The structure contains additional flags and members that support using a
"watermark" background bitmap.

To display these new images automatically in your property sheet object, pass valid values for the bitmap and
palette images in the call to CPropertySheet::Construct or CPropertySheet::CPropertySheet.

Even though CPropertySheet is not derived from CDialog, managing a CPropertySheet object is like managing
a CDialog object. For example, creation of a property sheet requires two-part construction: call the
constructor, and then call DoModal for a modal property sheet or Create for a modeless property sheet.
CPropertySheet has two types of constructors: CPropertySheet::Construct and

CPropertySheet::CPropertySheet.

When you construct a CPropertySheet object, some Window Styles can cause a first-chance exception to occur.
This results from the system trying to change the style of the property sheet before the sheet is created. To
avoid this exception, make sure that you set the following styles when you create your CPropertySheet :

DS_3DLOOK

DS_CONTROL

WS_CHILD

WS_TABSTOP

https://docs.microsoft.com/windows/desktop/api/prsht/ns-prsht-_propsheetheadera_v2
https://docs.microsoft.com/windows/desktop/api/prsht/ns-prsht-_propsheetheadera_v2

Inheritance Hierarchy

Requirements

CPropertySheet::AddPage

void AddPage(CPropertyPage* pPage);

ParametersParameters

RemarksRemarks

The following styles are optional, and will not cause the first-chance exception:

DS_SHELLFONT

DS_LOCALEDIT

WS_CLIPCHILDREN

Any other Window Styles are forbidden and you should not enable them.

Exchanging data between a CPropertySheet object and an external object is similar to exchanging data with a
CDialog object. The important difference is that the settings of a property sheet are typically member

variables of the CPropertyPage objects rather than of the CPropertySheet object itself.

You can create a type of tab dialog box called a wizard, which consists of a property sheet with a sequence of
property pages that guide the user through the steps of an operation, such as setting up a device or creating a
newsletter. In a wizard-type tab dialog box, the property pages do not have tabs, and only one property page is
visible at a time. Also, instead of having OK and Apply Now buttons, a wizard-type tab dialog box has a Back
button, a Next or Finish button, a Cancel button, and a Help button.

To create a wizard-type dialog box, follow the same steps that you would follow to create a standard property
sheet, but call SetWizardMode before you call DoModal. To enable the wizard buttons, call SetWizardButtons,
using flags to customize their function and appearance. To enable the Finish button, call SetFinishText after the
user has taken action on the last page of the wizard.

For more information about how to use CPropertySheet objects, see the article Property Sheets and Property
Pages.

CObject

CCmdTarget

CWnd

CPropertySheet

Header: afxdlgs.h

Adds the supplied page with the rightmost tab in the property sheet.

pPage
Points to the page to be added to the property sheet. Cannot be NULL.

Add pages to the property sheet in the left-to-right order you want them to appear.

AddPage adds the CPropertyPage object to the CPropertySheet object's list of pages but does not actually
create the window for the page. The framework postpones creation of the window for the page until the user

ExampleExample

// Add three pages to a CPropertySheet object, then show the
// CPropertySheet object as a modal dialog. CStylePage, CShapePage,
// and CColorPage are CPropertyPage-derived classes created
// by the Add Class wizard.

CPropertySheet dlgPropertySheet(_T("Simple PropertySheet"));

CStylePage stylePage;
CColorPage colorPage;
CShapePage shapePage;
dlgPropertySheet.AddPage(&stylePage);
dlgPropertySheet.AddPage(&colorPage);
dlgPropertySheet.AddPage(&shapePage);

dlgPropertySheet.DoModal();

CPropertySheet::Construct

void Construct(
 UINT nIDCaption,
 CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);

void Construct(
 LPCTSTR pszCaption,
 CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);

void Construct(
 UINT nIDCaption,
 CWnd* pParentWnd,
 UINT iSelectPage,
 HBITMAP hbmWatermark,
 HPALETTE hpalWatermark = NULL,
 HBITMAP hbmHeader = NULL);

void Construct(
 LPCTSTR pszCaption,
 CWnd* pParentWnd,
 UINT iSelectPage,
 HBITMAP hbmWatermark,
 HPALETTE hpalWatermark = NULL,
 HBITMAP hbmHeader = NULL);

ParametersParameters

selects that page.

When you add a property page using AddPage , the CPropertySheet is the parent of the CPropertyPage . To gain
access to the property sheet from the property page, call CWnd::GetParent.

It is not necessary to wait until creation of the property sheet window to call AddPage . Typically, you will call
AddPage before calling DoModal or Create.

If you call AddPage after displaying the property page, the tab row will reflect the newly added page.

Constructs a CPropertySheet object.

nIDCaption
ID of the caption to be used for the property sheet.

RemarksRemarks

ExampleExample

const int c_cSheets = 3;
CPropertySheet grpropsheet[c_cSheets];
// no need to call Construct for this next one
CPropertySheet someSheet(_T("Some sheet"));

LPTSTR rgszSheets[c_cSheets] = {
 _T("Sheet 1"),
 _T("Sheet 2"),
 _T("Sheet 3")
};

for (int i = 0; i < c_cSheets; i++)
 grpropsheet[i].Construct(rgszSheets[i]);

CPropertySheet::CPropertySheet

pParentWnd
Pointer to the parent window of the property sheet. If NULL, the parent window will be the main window of
the application.

iSelectPage
The index of the page that will initially be on top. Default is the first page added to the sheet.

pszCaption
Pointer to a string containing the caption to be used for the property sheet. Cannot be NULL.

hbmWatermark
Handle to the watermark bitmap of the property page.

hpalWatermark
Handle to the palette of the watermark bitmap and/or header bitmap.

hbmHeader
Handle to the header bitmap of the property page.

Call this member function if one of the class constructors has not already been called. For example, call
Construct when you declare or allocate arrays of CPropertySheet objects. In the case of arrays, you must call
Construct for each member in the array.

To display the property sheet, call DoModal or Create. The string contained in the first parameter will be
placed in the caption bar for the property sheet.

You can display watermark and/or header images automatically if you use the third or fourth prototypes of
Construct , listed above, and you pass valid values for the hbmWatermark, hpalWatermark, and/or

hbmHeader parameters.

The following example demonstrates under what circumstances you would call Construct .

Constructs a CPropertySheet object.

CPropertySheet();

explicit CPropertySheet(
 UINT nIDCaption,
 CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);

explicit CPropertySheet(
 LPCTSTR pszCaption,
 CWnd* pParentWnd = NULL,
 UINT iSelectPage = 0);

CPropertySheet(
 UINT nIDCaption,
 CWnd* pParentWnd,
 UINT iSelectPage,
 HBITMAP hbmWatermark,
 HPALETTE hpalWatermark = NULL,
 HBITMAP hbmHeader = NULL);

CPropertySheet(
 LPCTSTR pszCaption,
 CWnd* pParentWnd,
 UINT iSelectPage,
 HBITMAP hbmWatermark,
 HPALETTE hpalWatermark = NULL,
 HBITMAP hbmHeader = NULL);

ParametersParameters

RemarksRemarks

nIDCaption
ID of the caption to be used for the property sheet.

pParentWnd
Points to the parent window of the property sheet. If NULL, the parent window will be the main window of the
application.

iSelectPage
The index of the page that will initially be on top. Default is the first page added to the sheet.

pszCaption
Points to a string containing the caption to be used for the property sheet. Cannot be NULL.

hbmWatermark
A handle to the background bitmap of the property sheet.

hpalWatermark
A handle to the palette of the watermark bitmap and/or header bitmap.

hbmHeader
A handle to the header bitmap of the property page.

To display the property sheet, call DoModal or Create. The string contained in the first parameter will be
placed in the caption bar for the property sheet.

If you have multiple parameters (for example, if you are using an array), use Construct instead of
CPropertySheet .

You can display watermark and/or header images automatically if you use the third or fourth prototypes of
CPropertySheet , above, and you pass valid values for the hbmWatermark, hpalWatermark, and/or

hbmHeader parameters.

ExampleExample

// Declare a CPropertySheet object titled "Simple PropertySheet".
CPropertySheet dlgPropertySheet1(_T("Simple PropertySheet"));

// Declare a CPropertySheet object whose title is specified in the
// IDS_PROPERTYSHEET_TITLE string resource, and the second page is
// initially on top.
CPropertySheet dlgPropertySheet2(IDS_PROPERTYSHEET_TITLE, this, 1);

CPropertySheet::Create

virtual BOOL Create(CWnd* pParentWnd = NULL,
 DWORD dwStyle = (DWORD)-1,
 DWORD dwExStyle = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Displays a modeless property sheet.

pParentWnd
Points to parent window. If NULL, parent is the desktop.

dwStyle
Window styles for property sheet. For a complete list of available styles, see Window Styles.

dwExStyle
Extended window styles for property sheet. For a complete list of available styles, see Extended Window Styles

Nonzero if the property sheet is created successfully; otherwise 0.

The call to Create can be inside the constructor, or you can call it after the constructor is invoked.

The default style, expressed by passing -1 as dwStyle, is actually
WS_SYSMENU|WS_POPUP|WS_CAPTION|DS_MODALFRAME|DS_CONTEXTHELP|WS_VISIBLE. The
default extended window style, expressed by passing 0 as dwExStyle, is actually WS_EX_DLGMODALFRAME.

The Create member function returns immediately after creating the property sheet. To destroy the property
sheet, call CWnd::DestroyWindow.

Modeless property sheets displayed with a call to Create do not have OK, Cancel, Apply Now, and Help
buttons as modal property sheets do. Desired buttons must be created by the user.

To display a modal property sheet, call DoModal instead.

// This code fragment shows how to create a modeless property sheet
// dialog in a command message handler (OnModelessPropertySheet())
// of a CView-derived class.
void CPSheetView::OnModelessPropertySheet()
{
 // Declare a CPropertySheet object. m_pdlgPropertySheet is a data
 // member of type CPropertySheet in CView-derived class.
 m_pdlgPropertySheet = new CPropertySheet(_T("Simple PropertySheet"));
 ASSERT(m_pdlgPropertySheet);

 // Add three pages to the CPropertySheet object. Both m_pstylePage,
 // m_pcolorPage, and m_pshapePage are data members of type
 // CPropertyPage-derived classes in CView-derived class.
 m_pstylePage = new CStylePage;
 m_pcolorPage = new CColorPage;
 m_pshapePage = new CShapePage;
 m_pdlgPropertySheet->AddPage(m_pstylePage);
 m_pdlgPropertySheet->AddPage(m_pcolorPage);
 m_pdlgPropertySheet->AddPage(m_pshapePage);

 // Create a modeless CPropertySheet dialog.
 m_pdlgPropertySheet->Create();
}

// The code fragment below shows how to destroy the C++ objects for
// propertysheet and propertypage in the destructor of CView-derived
// class.
// NOTE: DestroyWindow() is called in CPropertySheet::OnClose() so
// you do not need to call it here. Property pages are children
// of the CPropertySheet, they will be destroyed by their parents.
CPSheetView::~CPSheetView()
{
 delete m_pshapePage;
 delete m_pstylePage;
 delete m_pcolorPage;
 delete m_pdlgPropertySheet;
}

CPropertySheet::DoModal

virtual INT_PTR DoModal();

Return ValueReturn Value

RemarksRemarks

Displays a modal property sheet.

IDOK or IDCANCEL if the function was successful; otherwise 0 or -1. If the property sheet has been
established as a wizard (see SetWizardMode), DoModal returns either ID_WIZFINISH or IDCANCEL.

The return value corresponds to the ID of the control that closed the property sheet. After this function returns,
the windows corresponding to the property sheet and all the pages will have been destroyed. The objects
themselves will still exist. Typically, you will retrieve data from the CPropertyPage objects after DoModal

returns IDOK.

To display a modeless property sheet, call Create instead.

When a property page is created from its corresponding dialog resource, it can cause a first-chance exception.
This results from the property page changing the style of the dialog resource to the required style before the

NOTENOTE

ExampleExample

CPropertySheet::EnableStackedTabs

void EnableStackedTabs(BOOL bStacked);

ParametersParameters

RemarksRemarks

page is created. Because resources are generally read-only, this causes an exception. The system handles the
exception, and makes a copy of the modified resource. The first-chance exception can therefore be ignored.

This exception must be handled by the operating system if you are compiling with the asynchronous exception handling
model. For more information about exception handling models, see /EH (Exception Handling Model). In this case, do not
wrap calls to CPropertySheet::DoModal with a C++ try-catch block in which the catch handles all exceptions, for
example, catch (...) . This block would handle the exception intended for the operating system, and cause
unpredictable behavior. However, you can safely use C++ exception handling with specific exception types or structured
exception handling where the Access Violation exception is passed through to the operating system.

To avoid generating this first-chance exception, you can manually guarantee that the property sheet has the
correct Window Styles. You need to set the following styles for a property sheet:

DS_3DLOOK

DS_CONTROL

WS_CHILD

WS_TABSTOP

You can use the following optional styles without causing a first-chance exception:

DS_SHELLFONT

DS_LOCALEDIT

WS_CLIPCHILDREN

Disable all other Windows styles because they are not compatible with property sheets. This advice does not
apply to extended styles. Setting these standard styles appropriately will guarantee that the property sheet
does not have to be modified and will avoid generating the first-chance exception.

See the example for CPropertySheet::AddPage.

Indicates whether to stack rows of tabs in a property sheet.

bStacked
Indicates whether stacked tabs are enabled in the property sheet. Disable stacked rows of tags by setting
bStacked to FALSE.

By default, if a property sheet has more tabs than will fit in a single row in the width of the property sheet, the
tabs will stack in multiple rows. To use scrolling tabs instead of stacking tabs, call EnableStackedTabs with
bStacked set to FALSE before calling DoModal or Create.

You must call EnableStackedTabs when you create a modal or a modeless property sheet. To incorporate this
style in a CPropertySheet -derived class, write a message handler for WM_CREATE. In the overridden version

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model

ExampleExample

int CMyPropertySheet::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 // Set for Scrolling Tabs style
 EnableStackedTabs(FALSE);
 // Call the base class
 if (CPropertySheet::OnCreate(lpCreateStruct) == -1)
 return -1;

 return 0;
}

CPropertySheet::EndDialog

void EndDialog(int nEndID);

ParametersParameters

RemarksRemarks

ExampleExample

CPropertySheet::GetActiveIndex

int GetActiveIndex() const;

Return ValueReturn Value

ExampleExample

CPropertySheet::GetActivePage

CPropertyPage* GetActivePage() const;

Return ValueReturn Value

of CWnd::OnCreate, call EnableStackedTabs(FALSE) before calling the base class implementation.

Terminates the property sheet.

nEndID
Identifier to be used as return value of the property sheet.

This member function is called by the framework when the OK, Cancel, or Close button is pressed. Call this
member function if an event occurs that should close the property sheet.

This member function is only used with a modal dialog box.

See the example for CPropertySheet::PressButton.

Gets the index number of the property sheet window's active page and then uses the returned index number
as the parameter for GetPage .

The index number of the active page.

See the example for CPropertySheet::GetActivePage.

Retrieves the property sheet window's active page.

RemarksRemarks

ExampleExample

// The code fragment below sets the last active page (i.e. the
// active page when the propertysheet was closed) to be the first
// visible page when the propertysheet is shown. The last active
// page was saved in m_LastActivePage, (a member variable of
// CDocument-derived class) when OK was selected from the
// propertysheet. CMyPropertySheet is a CPropertySheet-derived class.
BOOL CMyPropertySheet::OnInitDialog()
{
 BOOL bResult = CPropertySheet::OnInitDialog();

 CMDIFrameWnd* pframe = (CMDIFrameWnd*) AfxGetMainWnd();
 CMDIChildWnd* pchild = pframe->MDIGetActive();
 CPSheetDoc* doc = (CPSheetDoc*) pchild->GetActiveDocument();
 SetActivePage(doc->m_LastActivePage);

 return bResult;
}

BOOL CMyPropertySheet::OnCommand(WPARAM wParam, LPARAM lParam)
{
 if (LOWORD(wParam) == IDOK)
 {
 CMDIFrameWnd* pframe = (CMDIFrameWnd*) AfxGetMainWnd();
 CMDIChildWnd* pchild = pframe->MDIGetActive();
 CPSheetDoc* doc = (CPSheetDoc*) pchild->GetActiveDocument();
 doc->m_LastActivePage = GetPageIndex(GetActivePage()); // or GetActiveIndex()
 }

 return CPropertySheet::OnCommand(wParam, lParam);
}

CPropertySheet::GetPage

CPropertyPage* GetPage(int nPage) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CPropertySheet::GetPageCount

The pointer to the active page.

Use this member function to perform some action on the active page.

Returns a pointer to the specified page in this property sheet.

nPage
Index of the desired page, starting at 0. Must be between 0 and one less than the number of pages in the
property sheet, inclusive.

The pointer to the page corresponding to the nPage parameter.

See the example for CPropertyPage::OnWizardFinish.

Determines the number of pages currently in the property sheet.

int GetPageCount() const;

Return ValueReturn Value

ExampleExample

CPropertySheet::GetPageIndex

int GetPageIndex(CPropertyPage* pPage);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPropertySheet::GetTabControl

CTabCtrl* GetTabControl() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

The number of pages in the property sheet.

See the example for CPropertyPage::OnWizardFinish.

Retrieves the index number of the specified page in the property sheet.

pPage
Points to the page with the index to be found. Cannot be NULL.

The index number of a page.

For example, you would use GetPageIndex to get the page index in order to use SetActivePage or GetPage.

See the example for CPropertySheet::GetActivePage.

Retrieves a pointer to a tab control to do something specific to the tab control (that is, to use any of the APIs in
CTabCtrl).

A pointer to a tab control.

For example, call this member function if you want to add bitmaps to each of the tabs during initialization.

// Create and associate a tooltip control to the tab control of
// CMyTTPropertySheet. CMyTTPropertySheet is a CPropertySheet-derived
// class.
BOOL CMyTTPropertySheet::OnInitDialog()
{
 BOOL bResult = CPropertySheet::OnInitDialog();

 // Create a tooltip control. m_pToolTipCtrl is a member variable
 // of type CToolTipCtrl* in CMyTTPropertySheet class. It is
 // initialized to NULL in the constructor, and destroyed in the
 // destructor of CMyTTPropertySheet class.
 m_pToolTipCtrl = new CToolTipCtrl;
 if (!m_pToolTipCtrl->Create(this))
 {
 TRACE(_T("Unable To create ToolTip\n"));
 return bResult;
 }

 // Associate the tooltip control to the tab control
 // of CMyPropertySheet.
 CTabCtrl* ptab = GetTabControl();
 ptab->SetToolTips(m_pToolTipCtrl);

 // Get the bounding rectangle of each tab in the tab control of the
 // property sheet. Use this rectangle when registering a tool with
 // the tool tip control. IDS_FIRST_TOOLTIP is the first ID string
 // resource that contains the text for the tool.
 int count = ptab->GetItemCount();
 int id = IDS_FIRST_TOOLTIP;
 for (int i = 0; i < count; i++)
 {
 CRect r;
 ptab->GetItemRect(i, &r);
 VERIFY(m_pToolTipCtrl->AddTool(ptab, id, &r, id));
 id++;
 }

 // Activate the tooltip control.
 m_pToolTipCtrl->Activate(TRUE);

 return bResult;
}

// Override PreTranslateMessage() so RelayEvent() can be
// called to pass a mouse message to CMyTTPropertySheet's
// tooltip control for processing.
BOOL CMyTTPropertySheet::PreTranslateMessage(MSG* pMsg)
{
 if (NULL != m_pToolTipCtrl)
 m_pToolTipCtrl->RelayEvent(pMsg);

 return CPropertySheet::PreTranslateMessage(pMsg);
}

CPropertySheet::m_psh

RemarksRemarks

A structure whose members store the characteristics of PROPSHEETHEADER.

Use this structure to initialize the appearance of the property sheet after it is constructed but before it is
displayed with the DoModal member function. For example, set the dwSize member of m_psh to the size you
want the property sheet to have.

For more information on this structure, including a listing of its members, see PROPSHEETHEADER in the

https://docs.microsoft.com/windows/desktop/api/prsht/ns-prsht-_propsheetheadera_v2

ExampleExample

// This code fragment shows how to change CPropertySheet's settings
// before it is shown. After the changes, CPropertySheet has the
// caption "Simple Properties", no "Apply" button, and the
// second page (CColorPage) initially on top.

CPropertySheet dlgPropertySheet(_T("Simple PropertySheet"));

CStylePage stylePage;
CColorPage colorPage;
CShapePage shapePage;
dlgPropertySheet.AddPage(&stylePage);
dlgPropertySheet.AddPage(&colorPage);
dlgPropertySheet.AddPage(&shapePage);

dlgPropertySheet.m_psh.dwFlags |= PSH_NOAPPLYNOW | PSH_PROPTITLE;
dlgPropertySheet.m_psh.pszCaption = _T("Simple");
dlgPropertySheet.m_psh.nStartPage = 1;

dlgPropertySheet.DoModal();

CPropertySheet::MapDialogRect

void MapDialogRect(LPRECT lpRect) const;

ParametersParameters

RemarksRemarks

CPropertySheet::OnInitDialog

virtual BOOL OnInitDialog();

Return ValueReturn Value

Windows SDK.

Converts the dialog-box units of a rectangle to screen units.

lpRect
Points to a RECT structure or CRect object that contains the dialog-box coordinates to be converted.

Dialog-box units are stated in terms of the current dialog-box base unit derived from the average width and
height of characters in the font used for dialog-box text. One horizontal unit is one-fourth of the dialog-box
base-width unit, and one vertical unit is one-eighth of the dialog-box base height unit.

The GetDialogBaseUnits Windows function returns size information for the system font, but you can specify a
different font for each property sheet if you use the DS_SETFONT style in the resource-definition file. The
MapDialogRect Windows function, described in the Windows SDK, uses the appropriate font for this dialog
box.

The MapDialogRect member function replaces the dialog-box units in lpRect with screen units (pixels) so that
the rectangle can be used to create a dialog box or position a control within a box.

Overrides to augment property sheet initialization.

Specifies whether the application has set the input focus to one of the controls in the property sheet. If
OnInitDialog returns nonzero, Windows sets the input focus to the first control in the property sheet. The

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdialogbaseunits
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-mapdialogrect

RemarksRemarks

CPropertySheet::PressButton

void PressButton(int nButton);

ParametersParameters

RemarksRemarks

ExampleExample

application can return 0 only if it has explicitly set the input focus to one of the controls in the property sheet.

This member function is called in response to the WM_INITDIALOG message. This message is sent to the
property sheet during the Create or DoModal calls, which occur immediately before the property sheet is
displayed.

Override this member function if you need to perform special processing when the property sheet is
initialized. In the overridden version, first call the base class OnInitDialog but disregard its return value. You
will normally return TRUE from your overridden member function.

You do not need a message-map entry for this member function.

Simulates the choice of the specified button in a property sheet.

nButton
nButton : Identifies the button to be pressed. This parameter can be one of the following values:

PSBTN_BACK Chooses the Back button.

PSBTN_NEXT Chooses the Next button.

PSBTN_FINISH Chooses the Finish button.

PSBTN_OK Chooses the OK button.

PSBTN_APPLYNOW Chooses the Apply Now button.

PSBTN_CANCEL Chooses the Cancel button.

PSBTN_HELP Chooses the Help button.

See PSM_PRESSBUTTON for more information about the Windows SDK Pressbutton message.

A call to PressButton will not send the PSN_APPLY notification from a property page to the framework. To
send this notification, call CPropertyPage::OnOK.

https://docs.microsoft.com/windows/desktop/Controls/psm-pressbutton
https://docs.microsoft.com/windows/desktop/Controls/psn-apply

// Simulate the selection of OK and Cancel buttons when Alt+K and
// Alt+C are pressed. CMyPropertySheet is a CPropertySheet-derived
// class.
BOOL CMyPropertySheet::PreTranslateMessage(MSG* pMsg)
{
 if (pMsg->message >= WM_KEYFIRST && pMsg->message <= WM_KEYLAST)
 {
 BOOL altkey = GetKeyState(VK_MENU) < 0;
 if (altkey)
 {
 BOOL handled = TRUE;
 switch(toupper((int)pMsg->wParam))
 {
 case 'C': // for Alt+C - Cancel button
 PressButton(PSBTN_CANCEL); // or EndDialog(IDCANCEL);
 break;

 case 'K': // for Alt+K - OK button
 PressButton(PSBTN_OK); // or EndDialog(IDOK);
 break;

 default:
 handled = FALSE;
 }

 if (handled)
 return TRUE;
 }
 }

 return CPropertySheet::PreTranslateMessage(pMsg);
}

CPropertySheet::RemovePage

void RemovePage(CPropertyPage* pPage);
void RemovePage(int nPage);

ParametersParameters

RemarksRemarks

CPropertySheet::SetActivePage

BOOL SetActivePage(int nPage);
BOOL SetActivePage(CPropertyPage* pPage);

Removes a page from the property sheet and destroys the associated window.

pPage
Points to the page to be removed from the property sheet. Cannot be NULL.

nPage
Index of the page to be removed. Must be between 0 and one less than the number of pages in the property
sheet, inclusive.

The CPropertyPage object itself is not destroyed until the owner of the CPropertySheet window is closed.

Changes the active page.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPropertySheet::SetFinishText

void SetFinishText(LPCTSTR lpszText);

ParametersParameters

RemarksRemarks

ExampleExample

// CShapePage is the last wizard property page. Enable the Back
// button and change the Next button to Finish. The "Finish" button
// will have "Done" as its caption.
BOOL CShapePage::OnSetActive()
{
 CPropertySheet* psheet = (CPropertySheet*) GetParent();
 psheet->SetWizardButtons(PSWIZB_BACK | PSWIZB_FINISH);
 psheet->SetFinishText(_T("Done"));

 return CPropertyPage::OnSetActive();
}

CPropertySheet::SetTitle

void SetTitle(
 LPCTSTR lpszText,
 UINT nStyle = 0);

ParametersParameters

nPage
Index of the page to set. It must be between 0 and one less than the number of pages in the property sheet,
inclusive.

pPage
Points to the page to set in the property sheet. It cannot be NULL.

Nonzero if the property sheet is activated successfully; otherwise 0.

For example, use SetActivePage if a user's action on one page should cause another page to become the active
page.

See the example for CPropertySheet::GetActivePage.

Sets the text in the Finish command button.

lpszText
Points to the text to be displayed on the Finish command button.

Call SetFinishText to display the text on the Finish command button and hide the Next and Back buttons after
the user completes action on the last page of the wizard.

Specifies the property sheet's caption (the text displayed in the title bar of a frame window).

RemarksRemarks

ExampleExample

// Declare a CPropertySheet object with a caption "Simple PropertySheet".
CPropertySheet dlgPropertySheet(_T("Simple PropertySheet"));

// Add three pages to the CPropertySheet object. CStylePage, CColorPage,
// and CShapePage are CPropertyPage-derived classes created
// by the Add Class wizard.
CStylePage stylePage;
CColorPage colorPage;
CShapePage shapePage;
dlgPropertySheet.AddPage(&stylePage);
dlgPropertySheet.AddPage(&colorPage);
dlgPropertySheet.AddPage(&shapePage);

// Change the caption of the CPropertySheet object
// from "Simple PropertySheet" to "Simple Properties".
dlgPropertySheet.SetTitle(_T("Simple"), PSH_PROPTITLE);

// Show the CPropertySheet object as MODAL.
dlgPropertySheet.DoModal();

CPropertySheet::SetWizardButtons

void SetWizardButtons(DWORD dwFlags);

ParametersParameters

RemarksRemarks

nStyle
Specifies the style of the property sheet title. The style must be specified at 0 or as PSH_PROPTITLE. If the
style is set as PSH_PROPTITLE, the word "Properties" appears after the text specified as the caption. For
example, calling SetTitle ("Simple", PSH_PROPTITLE) will result in a property sheet caption of "Simple
Properties."

lpszText
Points to the text to be used as the caption in the title bar of the property sheet.

By default, a property sheet uses the caption parameter in the property sheet constructor.

Enables or disables the Back, Next, or Finish button in a wizard property sheet.

dwFlags
A set of flags that customize the function and appearance of the wizard buttons. This parameter can be a
combination of the following values:

PSWIZB_BACK Back button

PSWIZB_NEXT Next button

PSWIZB_FINISH Finish button

PSWIZB_DISABLEDFINISH Disabled Finish button

Call SetWizardButtons only after the dialog is open; you can't call SetWizardButtons before you call DoModal.
Typically, you should call SetWizardButtons from CPropertyPage::OnSetActive.

If you want to change the text on the Finish button or hide the Next and Back buttons once the user has

ExampleExample

// CStylePage is the first wizard property page. Disable the Back
// button but enable the Next button.
BOOL CStylePage::OnSetActive()
{
 CPropertySheet* psheet = (CPropertySheet*) GetParent();
 psheet->SetWizardButtons(PSWIZB_NEXT);

 return CPropertyPage::OnSetActive();
}

// CColorPage is the second wizard property page. Enable both the
// Back button and the Next button.
BOOL CColorPage::OnSetActive()
{
 CPropertySheet* psheet = (CPropertySheet*) GetParent();
 psheet->SetWizardButtons(PSWIZB_BACK | PSWIZB_NEXT);

 return CPropertyPage::OnSetActive();
}

// CShapePage is the last wizard property page. Enable the Back
// button and change the Next button to Finish. The "Finish" button
// will have "Done" as its caption.
BOOL CShapePage::OnSetActive()
{
 CPropertySheet* psheet = (CPropertySheet*) GetParent();
 psheet->SetWizardButtons(PSWIZB_BACK | PSWIZB_FINISH);
 psheet->SetFinishText(_T("Done"));

 return CPropertyPage::OnSetActive();
}

CPropertySheet::SetWizardMode

void SetWizardMode();

RemarksRemarks

ExampleExample

completed the wizard, call SetFinishText. Note that the same button is shared for Finish and Next. You can
display a Finish or a Next button at one time, but not both.

A CPropertySheet has three wizard property pages: CStylePage , CColorPage , and CShapePage . The code
fragment below shows how to enable and disable the Back and Next buttons on the wizard property page.

Establishes a property page as a wizard.

A key characteristic of a wizard property page is that the user navigates using Next or Finish, Back, and Cancel
buttons instead of tabs.

Call SetWizardMode before calling DoModal. After you call SetWizardMode , DoModal will return either
ID_WIZFINISH (if the user closes with the Finish button) or IDCANCEL.

SetWizardMode sets the PSH_WIZARD flag.

CPropertySheet sheet(_T("Simple PropertySheet"));

CStylePage pageStyle;
CColorPage pageColor;
CShapePage pageShape;

sheet.AddPage(&pageStyle);
sheet.AddPage(&pageColor);
sheet.AddPage(&pageShape);

sheet.SetWizardMode();

sheet.DoModal();

See also
MFC Sample CMNCTRL1
MFC Sample CMNCTRL2
MFC Sample PROPDLG
MFC Sample SNAPVW
CWnd Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CPropExchange Class
3/4/2019 • 5 minutes to read • Edit Online

Syntax
class AFX_NOVTABLE CPropExchange

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CPropExchange::ExchangeBlobProp Exchanges a binary large object (BLOB) property.

CPropExchange::ExchangeFontProp Exchanges a font property.

CPropExchange::ExchangePersistentProp Exchanges a property between a control and a file.

CPropExchange::ExchangeProp Exchanges properties of any built-in type.

CPropExchange::ExchangeVersion Exchanges the version number of an OLE control.

CPropExchange::GetVersion Retrieves the version number of an OLE control.

CPropExchange::IsAsynchronous Determines if property exchanges are done asynchronously.

CPropExchange::IsLoading Indicates whether properties are being loaded into the
control or saved from it.

Remarks

Supports the implementation of persistence for your OLE controls.

CPropExchange does not have a base class.

Establishes the context and direction of a property exchange.

Persistence is the exchange of the control's state information, usually represented by its properties, between the
control itself and a medium.

The framework constructs an object derived from CPropExchange when it is notified that an OLE control's
properties are to be loaded from or stored to persistent storage.

The framework passes a pointer to this CPropExchange object to your control's DoPropExchange function. If you
used a wizard to create the starter files for your control, your control's DoPropExchange function calls
COleControl::DoPropExchange . The base-class version exchanges the control's stock properties; you modify your

derived class's version to exchange properties you have added to your control.

CPropExchange can be used to serialize a control's properties or initialize a control's properties upon the load or

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cpropexchange-class.md

Inheritance Hierarchy

Requirements

CPropExchange::ExchangeBlobProp

virtual BOOL ExchangeBlobProp(
 LPCTSTR pszPropName,
 HGLOBAL* phBlob,
 HGLOBAL hBlobDefault = NULL) = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CPropExchange::ExchangeFontProp

virtual BOOL ExchangeFontProp(
 LPCTSTR pszPropName,
 CFontHolder& font,
 const FONTDESC* pFontDesc,
 LPFONTDISP pFontDispAmbient) = 0;

ParametersParameters

creation of a control. The ExchangeProp and ExchangeFontProp member functions of CPropExchange are able to
store properties to and load them from different media.

For more information on using CPropExchange , see the article MFC ActiveX Controls: Property Pages.

CPropExchange

Header: afxctl.h

Serializes a property that stores binary large object (BLOB) data.

pszPropName
The name of the property being exchanged.

phBlob
Pointer to a variable pointing to where the property is stored (variable is typically a member of your class).

hBlobDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value is read from or written to, as appropriate, the variable referenced by phBlob. If
hBlobDefault is specified, it will be used as the property's default value. This value is used if, for any reason, the
control's serialization fails.

The functions CArchivePropExchange::ExchangeBlobProp , CResetPropExchange::ExchangeBlobProp , and
CPropsetPropExchange::ExchangeBlobProp override this pure virtual function.

Exchanges a font property between a storage medium and the control.

pszPropName

Return ValueReturn Value

RemarksRemarks

CPropExchange::ExchangePersistentProp

virtual BOOL ExchangePersistentProp(
 LPCTSTR pszPropName,
 LPUNKNOWN* ppUnk,
 REFIID iid,
 LPUNKNOWN pUnkDefault) = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The name of the property being exchanged.

font
A reference to a CFontHolder object that contains the font property.

pFontDesc
A pointer to a FONTDESC structure containing values for initializing the default state of the font property
when pFontDispAmbient is NULL.

pFontDispAmbient
A pointer to the IFontDisp interface of a font to be used for initializing the default state of the font property.

Nonzero if the exchange was successful; 0 if unsuccessful.

If the font property is being loaded from the medium to the control, the font's characteristics are retrieved from
the medium and the CFontHolder object referenced by font is initialized with them. If the font property is being
stored, the characteristics in the font object are written to the medium.

The functions CArchivePropExchange::ExchangeFontProp , CResetPropExchange::ExchangeFontProp , and
CPropsetPropExchange::ExchangeFontProp override this pure virtual function.

Exchanges a property between the control and a file.

pszPropName
The name of the property being exchanged.

ppUnk
A pointer to a variable containing a pointer to the property's IUnknown interface (this variable is typically a
member of your class).

iid
Interface ID of the interface on the property that the control will use.

pUnkDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

If the property is being loaded from the file to the control, the property is created and initialized from the file. If
the property is being stored, its value is written to the file.

The functions CArchivePropExchange::ExchangePersistentProp , CResetPropExchange::ExchangePersistentProp , and
CPropsetPropExchange::ExchangePersistentProp override this pure virtual function.

https://docs.microsoft.com/windows/desktop/api/olectl/ns-olectl-tagfontdesc

CPropExchange::ExchangeProp

virtual BOOL ExchangeProp(
 LPCTSTR pszPropName,
 VARTYPE vtProp,
 void* pvProp,
 const void* pvDefault = NULL) = 0 ;

ParametersParameters

SYMBOL PROPERTY TYPE

VT_I2 short

VT_I4 long

VT_BOOL BOOL

VT_BSTR CString

VT_CY CY

VT_R4 float

VT_R8 double

Return ValueReturn Value

RemarksRemarks

CPropExchange::ExchangeVersion

Exchanges a property between a storage medium and the control.

pszPropName
The name of the property being exchanged.

vtProp
A symbol specifying the type of the property being exchanged. Possible values are:

pvProp
A pointer to the property's value.

pvDefault
Pointer to a default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

If the property is being loaded from the medium to the control, the property's value is retrieved from the
medium and stored in the object pointed to by pvProp. If the property is being stored to the medium, the value
of the object pointed to by pvProp is written to the medium.

The functions CArchivePropExchange::ExchangeProp , CResetPropExchange::ExchangeProp , and
CPropsetPropExchange::ExchangeProp override this pure virtual function.

Called by the framework to handle persistence of a version number.

virtual BOOL ExchangeVersion(
 DWORD& dwVersionLoaded,
 DWORD dwVersionDefault,
 BOOL bConvert);

ParametersParameters

Return ValueReturn Value

CPropExchange::GetVersion

DWORD GetVersion();

Return ValueReturn Value

CPropExchange::IsAsynchronous

BOOL IsAsynchronous();

Return ValueReturn Value

CPropExchange::IsLoading

BOOL IsLoading();

Return ValueReturn Value

See also

dwVersionLoaded
Reference to a variable where the version number of the persistent data being loaded will be stored.

dwVersionDefault
The current version number of the control.

bConvert
Indicates whether to convert persistent data to the current version or keep it at the same version that was
loaded.

Nonzero if the function succeeded; 0 otherwise.

Call this function to retrieve the version number of the control.

The version number of the control.

Determines if property exchanges are done asynchronously.

Returns TRUE if properties are exchanged asynchronously, otherwise FALSE.

Call this function to determine whether properties are being loaded to the control or saved from it.

Nonzero if properties are being loaded; otherwise 0.

Hierarchy Chart
COleControl::DoPropExchange

CPtrArray Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CPtrArray : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CObArray::CObArray Constructs an empty array.

Public MethodsPublic Methods

NAME DESCRIPTION

CObArray::Add Adds an element to the end of the array; grows the array if
necessary.

CObArray::Append Appends another array to the array; grows the array if
necessary.

CObArray::Copy Copies another array to the array; grows the array if
necessary.

CObArray::ElementAt Returns a temporary reference to the element pointer
within the array.

CObArray::FreeExtra Frees all unused memory above the current upper bound.

CObArray::GetAt Returns the value at a given index.

CObArray::GetCount Gets the number of elements in this array.

CObArray::GetData Allows access to elements in the array. Can be NULL .

Supports arrays of void pointers.

The member functions of CPtrArray are similar to the member functions of class CObArray. Because of this
similarity, you can use the CObArray reference documentation for member function specifics. Wherever you
see a CObject pointer as a function parameter or return value, substitute a pointer to void.

CObject* CObArray::GetAt(int <nIndex>) const;

for example, translates to

void* CPtrArray::GetAt(int <nIndex>) const;

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cptrarray-class.md

CObArray::GetSize Gets the number of elements in this array.

CObArray::GetUpperBound Returns the largest valid index.

CObArray::InsertAt Inserts an element (or all the elements in another array) at
a specified index.

CObArray::IsEmpty Determines if the array is empty.

CObArray::RemoveAll Removes all the elements from this array.

CObArray::RemoveAt Removes an element at a specific index.

CObArray::SetAt Sets the value for a given index; array not allowed to grow.

CObArray::SetAtGrow Sets the value for a given index; grows the array if
necessary.

CObArray::SetSize Sets the number of elements to be contained in this array.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CObArray::operator [] Sets or gets the element at the specified index.

Remarks

NOTENOTE

Inheritance Hierarchy

CPtrArray incorporates the IMPLEMENT_DYNAMIC macro to support run-time type access and dumping
to a CDumpContext object. If you need a dump of individual pointer array elements, you must set the depth of
the dump context to 1 or greater.

Before using an array, use SetSize to establish its size and allocate memory for it. If you do not use SetSize ,
adding elements to your array causes it to be frequently reallocated and copied. Frequent reallocation and copying are
inefficient and can fragment memory.

Pointer arrays cannot be serialized.

When a pointer array is deleted, or when its elements are removed, only the pointers are removed, not the
entities they reference.

For more information on using CPtrArray , see the article Collections.

CObject

CPtrArray

Requirements

See also

Header: afxcoll.h

CObject Class
Hierarchy Chart
CObArray Class

CPtrList Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CPtrList : public CObject

Members

Remarks

Inheritance Hierarchy

Requirements

See also

Supports lists of void pointers.

The member functions of CPtrList are similar to the member functions of class CObList. Because of this
similarity, you can use the CObList reference documentation for member function specifics. Wherever you
see a CObject pointer as a function parameter or return value, substitute a pointer to void.

CObject*& CObList::GetHead() const;

for example, translates to

void*& CPtrList::GetHead() const;

CPtrList incorporates the IMPLEMENT_DYNAMIC macro to support run-time type access and dumping
to a CDumpContext object. If you need a dump of individual pointer list elements, you must set the depth of
the dump context to 1 or greater.

Pointer lists cannot be serialized.

When a CPtrList object is deleted, or when its elements are removed, only the pointers are removed, not
the entities they reference.

For more information on using CPtrList , see the article Collections.

CObject

CPtrList

Header: afxcoll.h

CObject Class
Hierarchy Chart
CObList Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cptrlist-class.md

CReBar Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CReBar : public CControlBar

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CReBar::AddBar Adds a band to a rebar.

CReBar::Create Creates the rebar control and attaches it to the CReBar

object.

CReBar::GetReBarCtrl Allows direct access to the underlying common control.

Remarks

Rebar Control

C a u t i o nC a u t i o n

Inheritance Hierarchy

A control bar that provides layout, persistence, and state information for rebar controls.

A rebar object can contain a variety of child windows, usually other controls, including edit boxes, toolbars, and
list boxes. A rebar object can display its child windows over a specified bitmap. Your application can
automatically resize the rebar, or the user can manually resize the rebar by clicking or dragging its gripper bar.

A rebar object behaves similarly to a toolbar object. A rebar uses the click-and-drag mechanism to resize its
bands. A rebar control can contain one or more bands, with each band having any combination of a gripper bar,
a bitmap, a text label, and a child window. However, bands cannot contain more than one child window.

CReBar uses the CReBarCtrl class to provide its implementation. You can access the rebar control through
GetReBarCtrl to take advantage of the control's customization options. For more information about rebar
controls, see CReBarCtrl . For more information about using rebar controls, see Using CReBarCtrl.

Rebar and rebar control objects do not support MFC control bar docking. If CRebar::EnableDocking is called,
your application will assert.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/crebar-class.md

Requirements

CReBar::AddBar

BOOL AddBar(
 CWnd* pBar,
 LPCTSTR pszText = NULL,
 CBitmap* pbmp = NULL,
 DWORD dwStyle = RBBS_GRIPPERALWAYS | RBBS_FIXEDBMP);

BOOL AddBar(
 CWnd* pBar,
 COLORREF clrFore,
 COLORREF clrBack,
 LPCTSTR pszText = NULL,
 DWORD dwStyle = RBBS_GRIPPERALWAYS);

ParametersParameters

Return ValueReturn Value

ExampleExample

CObject

CCmdTarget

CWnd

CControlBar

CReBar

Header: afxext.h

Call this member function to add a band to the rebar.

pBar
A pointer to a CWnd object that is the child window to be inserted into the rebar. The referenced object must
have a WS_CHILD.

lpszText
A pointer to a string containing the text to appear on the rebar. NULL by default. The text contained in lpszText is
not part of the child window; it is on the rebar itself.

pbmp
A pointer to a CBitmap object to be displayed on the rebar background. NULL by default.

dwStyle
A DWORD containing the style to apply to the rebar. See the fStyle function description in the Win32 structure
REBARBANDINFO for a complete list of band styles.

clrFore
A COLORREF value that represents the foreground color of the rebar.

clrBack
A COLORREF value that represents the background color of the rebar.

Nonzero if successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagrebarbandinfoa

// Define a CRebar in your class definition,
// such as: CReBar m_wndReBar;
m_wndReBar.Create(this);
m_wndDlgBar.Create(this, IDD_DIALOGBAR, CBRS_ALIGN_TOP,
 IDD_DIALOGBAR);
m_wndReBar.AddBar(&m_wndDlgBar);

CReBar::Create

virtual BOOL Create(
 CWnd* pParentWnd,
 DWORD dwCtrlStyle = RBS_BANDBORDERS,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS | WS_CLIPCHILDREN | CBRS_TOP,
 UINT nID = AFX_IDW_REBAR);

ParametersParameters

Return ValueReturn Value

ExampleExample

CReBar::GetReBarCtrl

CReBarCtrl& GetReBarCtrl() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

Call this member function to create a rebar.

pParentWnd
Pointer to the CWnd object whose Windows window is the parent of the status bar. Normally your frame
window.

dwCtrlStyle
The rebar control style. By default, RBS_BANDBORDERS, which displays narrow lines to separate adjacent
bands within the rebar control. See Rebar Control Styles in the Windows SDK for a list of styles.

dwStyle
The rebar window styles.

nID
The rebar's child-window ID.

Nonzero if successful; otherwise 0.

See the example for CReBar::AddBar.

This member function allows direct access to the underlying common control.

A reference to a CReBarCtrl object.

Call this member function to take advantage of the functionality of the Windows rebar common control in
customizing your rebar. When you call GetReBarCtrl , it returns a reference object to the CReBarCtrl object so
you can use either set of member functions.

For more information about using CReBarCtrl to customize your rebar, see Using CReBarCtrl.

https://docs.microsoft.com/windows/desktop/Controls/rebar-control-styles

CReBarCtrl& refReBarCtrl = m_wndReBar.GetReBarCtrl();

UINT nBandCount = refReBarCtrl.GetBandCount();
CString msg;
msg.Format(_T("Band Count is: %u"), nBandCount);
AfxMessageBox(msg);

See also
MFC Sample MFCIE
CControlBar Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CReBarCtrl Class
3/5/2019 • 19 minutes to read • Edit Online

Syntax
class CReBarCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CReBarCtrl::CReBarCtrl Constructs a CReBarCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CReBarCtrl::BeginDrag Places the rebar control into drag-and-drop mode.

CReBarCtrl::Create Creates the rebar control and attaches it to the
CReBarCtrl object.

CReBarCtrl::CreateEx Creates a rebar control with the specified Windows extended
styles and attaches it to a CReBarCtrl object.

CReBarCtrl::DeleteBand Deletes a band from a rebar control.

CReBarCtrl::DragMove Updates the drag position in the rebar control after a call to
BeginDrag .

CReBarCtrl::EndDrag Terminates the rebar control's drag-and-drop operation.

CReBarCtrl::GetBandBorders Retrieves the borders of a band.

CReBarCtrl::GetBandCount Retrieves the count of bands currently in the rebar control.

CReBarCtrl::GetBandInfo Retrieves information about a specified band in a rebar
control.

CReBarCtrl::GetBandMargins Retrieves the margins of a band.

CReBarCtrl::GetBarHeight Retrieves the height of the rebar control.

CReBarCtrl::GetBarInfo Retrieves information about the rebar control and the image
list it uses.

Encapsulates the functionality of a rebar control, which is a container for a child window.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/crebarctrl-class.md

CReBarCtrl::GetBkColor Retrieves a rebar control's default background color.

CReBarCtrl::GetColorScheme Retrieves the COLORSCHEME structure associated with the
rebar control.

CReBarCtrl::GetDropTarget Retrieves a rebar control's IDropTarget interface pointer.

CReBarCtrl::GetExtendedStyle Gets the extended style of the current rebar control.

CReBarCtrl::GetImageList Retrieves the image list associated with a rebar control.

CReBarCtrl::GetPalette Retrieves the rebar control's current palette.

CReBarCtrl::GetRect Retrieves the bounding rectangle for a given band in a rebar
control.

CReBarCtrl::GetRowCount Retrieves the number of band rows in a rebar control.

CReBarCtrl::GetRowHeight Retrieves the height of a specified row in a rebar control.

CReBarCtrl::GetTextColor Retrieves a rebar control's default text color.

CReBarCtrl::GetToolTips Retrieves the handle to any tool tip control associated with
the rebar control.

CReBarCtrl::HitTest Determines which portion of a rebar band is at a given point
on the screen, if a rebar band exists at that point.

CReBarCtrl::IDToIndex Converts a band identifier (ID) to a band index in a rebar
control.

CReBarCtrl::InsertBand Inserts a new band in a rebar control.

CReBarCtrl::MaximizeBand Resizes a band in a rebar control to its largest size.

CReBarCtrl::MinimizeBand Resizes a band in a rebar control to its smallest size.

CReBarCtrl::MoveBand Moves a band from one index to another.

CReBarCtrl::PushChevron Programmatically pushes a chevron.

CReBarCtrl::RestoreBand Resizes a band in a rebar control to its ideal size.

CReBarCtrl::SetBandInfo Sets characteristics of an existing band in a rebar control.

CReBarCtrl::SetBandWidth Sets the width of the specified docked band in the current
rebar control.

CReBarCtrl::SetBarInfo Sets the characteristics of a rebar control.

CReBarCtrl::SetBkColor Sets a rebar control's default background color.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagcolorscheme

CReBarCtrl::SetColorScheme Sets the color scheme for the buttons on a rebar control.

CReBarCtrl::SetExtendedStyle Sets the extended styles for the current rebar control.

CReBarCtrl::SetImageList Sets a rebar control's image list.

CReBarCtrl::SetOwner Sets a rebar control's owner window.

CReBarCtrl::SetPalette Sets the rebar control's current palette.

CReBarCtrl::SetTextColor Sets a rebar control's default text color.

CReBarCtrl::SetToolTips Associates a tool tip control with the rebar control.

CReBarCtrl::SetWindowTheme Sets the visual style of the rebar control.

CReBarCtrl::ShowBand Shows or hides a given band in a rebar control.

CReBarCtrl::SizeToRect Fits a rebar control to a specified rectangle.

NAME DESCRIPTION

Remarks

Rebar control

The application in which the rebar control resides assigns the child window contained by the rebar control to the
rebar band. The child window is usually another common control.

Rebar controls contain one or more bands. Each band can contain a combination of a gripper bar, a bitmap, a
text label, and a child window. The band can contain only one of each of these items.

The rebar control can display the child window over a specified background bitmap. All rebar control bands can
be resized, except those that use the RBBS_FIXEDSIZE style. As you reposition or resize a rebar control band,
the rebar control manages the size and position of the child window assigned to that band. To resize or change
the order of bands within the control, click and drag a band's gripper bar.

The following illustration shows a rebar control that has three bands:

Band 0 contains a flat, transparent toolbar control.

Band 1 contains both transparent standard and transparent dropdown buttons.

Band 2 contains a combo box and four standard buttons.

Rebar controls support:

Image lists.

Inheritance Hierarchy

Requirements

CReBarCtrl::BeginDrag

void BeginDrag(
 UINT uBand,
 DWORD dwPos = (DWORD)-1);

ParametersParameters

CReBarCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Message-handling.

Custom draw functionality.

A variety of control styles in addition to standard window styles. For a list of these styles, see Rebar
Control Styles in the Windows SDK.

For more information, see Using CReBarCtrl.

CObject

CCmdTarget

CWnd

CReBarCtrl

Header: afxcmn.h

Implements the behavior of the Win32 message RB_BEGINDRAG, as described in the Windows SDK.

uBand
Zero-based index of the band that the drag-and-drop operation will affect.

dwPos
A DWORD value that contains the starting mouse coordinates. The horizontal coordinate is contained in the
LOWORD and the vertical coordinate is contained in the HIWORD. If you pass (DWORD)-1, the rebar control
will use the position of the mouse the last time the control's thread called GetMessage or PeekMessage .

Creates the rebar control and attaches it to the CReBarCtrl object.

dwStyle
Specifies the combination of rebar control styles applied to the control. See Rebar Control Styles in the
Windows SDK for a list of supported styles.

rect

https://docs.microsoft.com/windows/desktop/Controls/rebar-control-styles
https://docs.microsoft.com/windows/desktop/Controls/rb-begindrag
https://docs.microsoft.com/windows/desktop/Controls/rebar-control-styles

Return ValueReturn Value

RemarksRemarks

ExampleExample

CReBarCtrl* pReBarCtrl = new CReBarCtrl();
CRect rect;
GetWindowRect(rect);
pReBarCtrl->Create(RBS_BANDBORDERS, rect, this, AFX_IDW_REBAR);

// Use ReBar Control.

delete pReBarCtrl;

CReBarCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

A reference to a CRect object or RECT structure, which is the position and size of the rebar control.

pParentWnd
A pointer to a CWnd object that is the parent window of the rebar control. It must not be NULL.

nID
Specifies the rebar control's control ID.

Nonzero if the object was created successfully; otherwise 0.

Create a rebar control in two steps:

1. Call CReBarCtrl to construct a CReBarCtrl object.

2. Call this member function, which creates the Windows rebar control and attaches it to the CReBarCtrl

object.

When you call Create , the common controls are initialized.

Creates a control (a child window) and associates it with the CReBarCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the
dwExStyle parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the combination of rebar control styles applied to the control. For a list of supported styles, see Rebar
Control Styles in the Windows SDK.

rect
A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/rebar-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CReBarCtrl::CReBarCtrl

CReBarCtrl();

ExampleExample

CReBarCtrl::DeleteBand

BOOL DeleteBand(UINT uBand);

ParametersParameters

Return ValueReturn Value

ExampleExample

UINT nCount = m_wndReBar.GetReBarCtrl().GetBandCount();

if (nCount > 0)
 m_wndReBar.GetReBarCtrl().DeleteBand(nCount - 1);

CReBarCtrl::DragMove

void DragMove(DWORD dwPos = (DWORD)-1);

ParametersParameters

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

Creates a CReBarCtrl object.

See the example for CReBarCtrl::Create.

Implements the behavior of the Win32 message RB_DELETEBAND, as described in the Windows SDK.

uBand
Zero-based index of the band to be deleted.

Nonzero if the band deleted successfully; otherwise zero.

Implements the behavior of the Win32 message RB_DRAGMOVE, as described in the Windows SDK.

dwPos
A DWORD value that contains the new mouse coordinates. The horizontal coordinate is contained in the
LOWORD and the vertical coordinate is contained in the HIWORD. If you pass (DWORD)-1, the rebar control
will use the position of the mouse the last time the control's thread called GetMessage or PeekMessage .

https://docs.microsoft.com/windows/desktop/Controls/rb-deleteband
https://docs.microsoft.com/windows/desktop/Controls/rb-dragmove

CReBarCtrl::EndDrag

void EndDrag();

CReBarCtrl::GetBandBorders

void GetBandBorders(
 UINT uBand,
 LPRECT prc) const;

ParametersParameters

CReBarCtrl::GetBandCount

UINT GetBandCount() const;

Return ValueReturn Value

CReBarCtrl::GetBandInfo

BOOL GetBandInfo(
 UINT uBand,
 REBARBANDINFO* prbbi) const;

ParametersParameters

Return ValueReturn Value

Implements the behavior of the Win32 message RB_ENDDRAG, as described in the Windows SDK.

Implements the behavior of the Win32 message RB_GETBANDBORDERS, as described in the Windows SDK.

uBand
Zero-based index of the band for which the borders will be retrieved.

prc
A pointer to a RECT structure that will receive the band borders. If the rebar control has the
RBS_BANDBORDERS style, each member of this structure will receive the number of pixels, on the
corresponding side of the band, that constitute the border. If the rebar control does not have the
RBS_BANDBORDERS style, only the left member of this structure receives valid information. For a description
of rebar control styles, see Rebar Control Styles in the Windows SDK.

Implements the behavior of the Win32 message RB_GETBANDCOUNT, as described in the Windows SDK.

The number of bands assigned to the control.

Implements the behavior of the Win32 message RB_GETBANDINFO as described in the Windows SDK.

uBand
Zero-based index of the band for which the information will be retrieved.

prbbi
A pointer to a REBARBANDINFO structure to receive the band information. You must set the cbSize member
of this structure to sizeof(REBARBANDINFO) and set the fMask member to the items you want to retrieve before
sending this message.

https://docs.microsoft.com/windows/desktop/Controls/rb-enddrag
https://docs.microsoft.com/windows/desktop/Controls/rb-getbandborders
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/rebar-control-styles
https://docs.microsoft.com/windows/desktop/Controls/rb-getbandcount
https://docs.microsoft.com/windows/desktop/Controls/rb-getbandinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagrebarbandinfoa

CReBarCtrl::GetBandMargins

void GetBandMargins(PMARGINS pMargins);

ParametersParameters

RemarksRemarks

CReBarCtrl::GetBarHeight

UINT GetBarHeight() const;

Return ValueReturn Value

CReBarCtrl::GetBarInfo

BOOL GetBarInfo(REBARINFO* prbi) const;

ParametersParameters

Return ValueReturn Value

CReBarCtrl::GetBkColor

COLORREF GetBkColor() const;

Return ValueReturn Value

CReBarCtrl::GetColorScheme

Nonzero if successful; otherwise zero.

Retrieves the margins of the band.

pMargins
A pointer to a MARGINSstructure that will receive the information.

This member function emulates the functionality of the RB_GETBANDMARGINS message, as described in the
Windows SDK.

Retrieves the height of the rebar bar.

Value that represents the height, in pixels, of the control.

Implements the behavior of the Win32 message RB_GETBARINFO, as described in the Windows SDK.

prbi
A pointer to a REBARINFO structure that will receive the rebar control information. You must set the cbSize
member of this structure to sizeof(REBARINFO) before sending this message.

Nonzero if successful; otherwise zero.

Implements the behavior of the Win32 message RB_GETBKCOLOR, as described in the Windows SDK.

A COLORREF value that represent the current default background color.

Retrieves the COLORSCHEME structure for the rebar control.

https://docs.microsoft.com/windows/desktop/api/uxtheme/ns-uxtheme-_margins
https://docs.microsoft.com/windows/desktop/Controls/rb-getbandmargins
https://docs.microsoft.com/windows/desktop/Controls/rb-getbarinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagrebarinfo
https://docs.microsoft.com/windows/desktop/Controls/rb-getbkcolor
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagcolorscheme

BOOL GetColorScheme(COLORSCHEME* lpcs);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CReBarCtrl::GetDropTarget

IDropTarget* GetDropTarget() const;

Return ValueReturn Value

CReBarCtrl::GetExtendedStyle

DWORD GetExtendedStyle() const;

Return ValueReturn Value

RemarksRemarks

CReBarCtrl::GetImageList

CImageList* GetImageList() const;

Return ValueReturn Value

RemarksRemarks

CReBarCtrl::GetPalette

lpcs
A pointer to a COLORSCHEME structure, as described in the Windows SDK.

Nonzero if successful; otherwise zero.

The COLORSCHEME structure includes the button highlight color and the button shadow color.

Implements the behavior of the Win32 message RB_GETDROPTARGET, as described in the Windows SDK.

A pointer to an IDropTarget interface.

Gets the extended styles of the current rebar control.

A bitwise combination (OR) of flags that indicate the extended styles. The possible flags are RBS_EX_SPLITTER
and RBS_EX_TRANSPARENT. For more information, see the dwMask parameter of the
CReBarCtrl::SetExtendedStyle method.

This method sends the RB_GETEXTENDEDSTYLE message, which is described in the Windows SDK.

Gets the CImageList object associated with a rebar control.

A pointer to a CImageList object. Returns NULL if no image list is set for the control.

This member function uses size and mask information stored in the REBARINFO structure, as described in the
Windows SDK.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagcolorscheme
https://docs.microsoft.com/windows/desktop/Controls/rb-getdroptarget
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget
https://docs.microsoft.com/windows/desktop/Controls/rb-dragmove
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagrebarinfo

CPalette* GetPalette() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CPalette* pPalette = m_wndReBar.GetReBarCtrl().GetPalette();
if (pPalette)
{
 int nEntries = pPalette->GetEntryCount();
 CString msg;
 msg.Format(_T("Number of palette entries: %d"), nEntries);
 AfxMessageBox(msg);
}
else
{
 AfxMessageBox(_T("No palette!"));
}

CReBarCtrl::GetRect

BOOL GetRect(
 UINT uBand,
 LPRECT prc) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CRect rc;
m_wndReBar.GetReBarCtrl().GetRect(0, &rc);
CString msg;
msg.Format(_T("rect.left = %d, rect.top = %d, ")
 _T("rect.right = %d, rect.bottom = %d"), rc.left,
 rc.top, rc.right, rc.bottom);
AfxMessageBox(msg);

CReBarCtrl::GetRowCount

Retrieves the rebar control's current palette.

A pointer to a CPalette object specifying the rebar control's current palette.

Note that this member function uses a CPalette object as its return value, rather than an HPALETTE.

Implements the behavior of the Win32 message RB_GETRECT, as described in the Windows SDK.

uBand
Zero-based index of a band in the rebar control.

prc
A pointer to a RECT structure that will receive the bounds of the rebar band.

Nonzero if successful; otherwise zero.

Implements the behavior of the Win32 message RB_GETROWCOUNT, as described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/rb-getrect
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/rb-getrowcount

UINT GetRowCount() const;

Return ValueReturn Value

ExampleExample

UINT nRowCount = m_wndReBar.GetReBarCtrl().GetRowCount();
CString msg;
msg.Format(_T("Row Count is %d"), nRowCount);
AfxMessageBox(msg);

CReBarCtrl::GetRowHeight

UINT GetRowHeight(UINT uRow) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

int nCount = m_wndReBar.GetReBarCtrl().GetRowCount();
for (int i = 0; i < nCount; i++)
{
 UINT nHeight = m_wndReBar.GetReBarCtrl().GetRowHeight(i);
 CString msg;
 msg.Format(_T("Height of row %d is %u"), i, nHeight);
 AfxMessageBox(msg);
}

CReBarCtrl::GetTextColor

COLORREF GetTextColor() const;

Return ValueReturn Value

CReBarCtrl::GetToolTips

CToolTipCtrl* GetToolTips() const;

Return ValueReturn Value

A UINT value that represents the number of band rows in the control.

Implements the behavior of the Win32 message RB_GETROWHEIGHT, as described in the Windows SDK.

uRow
Zero-based index of the band that will have its height retrieved.

A UINT value that represents the row height, in pixels.

Implements the behavior of the Win32 message RB_GETTEXTCOLOR, as described in the Windows SDK.

A COLORREF value that represent the current default text color.

Implements the behavior of the Win32 message RB_GETTOOLTIPS, as described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/rb-getrowheight
https://docs.microsoft.com/windows/desktop/Controls/rb-gettextcolor
https://docs.microsoft.com/windows/desktop/Controls/rb-gettooltips

RemarksRemarks

CReBarCtrl::HitTest

int HitTest(RBHITTESTINFO* prbht);

ParametersParameters

Return ValueReturn Value

CReBarCtrl::IDToIndex

int IDToIndex(UINT uBandID) const;

ParametersParameters

Return ValueReturn Value

CReBarCtrl::InsertBand

BOOL InsertBand(
 UINT uIndex,
 REBARBANDINFO* prbbi);

ParametersParameters

Return ValueReturn Value

A pointer to a CToolTipCtrl object.

Note that the MFC implementation of GetToolTips returns a pointer to a CToolTipCtrl , rather than an HWND.

Implements the behavior of the Win32 message RB_HITTEST, as described in the Windows SDK.

prbht
A pointer to a RBHITTESTINFO structure. Before sending the message, the pt member of this structure must
be initialized to the point that will be tested, in client coordinates.

The zero-based index of the band at the given point, or -1 if no rebar band was at the point.

Implements the behavior of the Win32 message RB_IDTOINDEX, as described in the Windows SDK.

uBandID
The application-defined identifier of the specified band, passed in the wID member of the REBARBANDINFO
structure when the band is inserted.

The zero-based band index if successful, or -1 otherwise. If duplicate band indices exist, the first one is returned.

Implements the behavior of the Win32 message RB_INSERTBAND, as described in the Windows SDK.

uIndex
Zero-based index of the location where the band will be inserted. If you set this parameter to -1, the control will
add the new band at the last location.

prbbi
A pointer to a REBARBANDINFO structure that defines the band to be inserted. You must set the cbSize
member of this structure to sizeof(REBARBANDINFO) before calling this function.

Nonzero if successful; otherwise zero.

https://docs.microsoft.com/windows/desktop/Controls/rb-hittest
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_rb_hittestinfo
https://msdn.microsoft.com/library/windows/desktop/bb774496
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagrebarbandinfoa
https://docs.microsoft.com/windows/desktop/Controls/rb-insertband
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagrebarbandinfoa

ExampleExample

REBARBANDINFO rbbi = {0};
rbbi.cbSize = sizeof(rbbi);

TCHAR szText[80];
rbbi.lpText = szText;
rbbi.cch = sizeof(szText) / sizeof(szText[0]);

rbbi.fMask = RBBIM_BACKGROUND | RBBIM_CHILD |
 RBBIM_CHILDSIZE | RBBIM_COLORS | RBBIM_HEADERSIZE |
 RBBIM_IDEALSIZE | RBBIM_ID | RBBIM_IMAGE |
 RBBIM_LPARAM | RBBIM_SIZE | RBBIM_STYLE | RBBIM_TEXT;

m_wndReBar.GetReBarCtrl().GetBandInfo(0, &rbbi);

m_wndReBar.GetReBarCtrl().InsertBand(1, &rbbi);

CReBarCtrl::MaximizeBand

void MaximizeBand(UINT uBand);

ParametersParameters

RemarksRemarks

ExampleExample

CReBarCtrl& refReBarCtrl = m_wndReBar.GetReBarCtrl();
UINT nCount = refReBarCtrl.GetBandCount();

for (UINT i = 0; i < nCount; i++)
 refReBarCtrl.MaximizeBand(i);

CReBarCtrl::MinimizeBand

void MinimizeBand(UINT uBand);

ParametersParameters

RemarksRemarks

ExampleExample

Resizes a band in a rebar control to its largest size.

uBand
Zero-based index of the band to be maximized.

Implements the behavior of the Win32 message RB_MAXIMIZEBAND with fIdeal set to 0, as described in the
Windows SDK.

Resizes a band in a rebar control to its smallest size.

uBand
Zero-based index of the band to be minimized.

Implements the behavior of the Win32 message RB_MINIMIZEBAND, as described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/rb-maximizeband
https://docs.microsoft.com/windows/desktop/Controls/rb-minimizeband

CReBarCtrl& refReBarCtrl = m_wndReBar.GetReBarCtrl();
UINT nCount = refReBarCtrl.GetBandCount();

for (UINT i = 0; i < nCount; i++)
 refReBarCtrl.MinimizeBand(i);

CReBarCtrl::MoveBand

BOOL MoveBand(
 UINT uFrom,
 UINT uTo);

ParametersParameters

Return ValueReturn Value

CReBarCtrl::PushChevron

void PushChevron(
 UINT uBand,
 LPARAM lAppValue);

ParametersParameters

CReBarCtrl::RestoreBand

void RestoreBand(UINT uBand);

ParametersParameters

RemarksRemarks

Implements the behavior of the Win32 message RB_MOVEBAND, as described in the Windows SDK.

uFrom
Zero-based index of the band to be moved.

uTo
Zero-based index of the new band position. This parameter value must never be greater than the number of
bands minus one. To obtain the number of bands, call GetBandCount.

Nonzero if successful; otherwise zero.

Implements the behavior of the Win32 message RB_PUSHCHEVRON, as described in the Windows SDK.

uBand
Zero-based index of the band whose chevron is to be pushed.

lAppValue
An application defined 32-bit value. See lAppValue in RB_PUSHCHEVRON in the Windows SDK.

Resizes a band in a rebar control to its ideal size.

uBand
Zero-based index of the band to be maximized.

Implements the behavior of the Win32 message RB_MAXIMIZEBAND with fIdeal set to 1, as described in the

https://docs.microsoft.com/windows/desktop/Controls/rb-moveband
https://docs.microsoft.com/windows/desktop/Controls/rb-pushchevron
https://docs.microsoft.com/windows/desktop/Controls/rb-pushchevron
https://docs.microsoft.com/windows/desktop/Controls/rb-maximizeband

ExampleExample

CReBarCtrl& refReBarCtrl = m_wndReBar.GetReBarCtrl();
UINT nCount = refReBarCtrl.GetBandCount();

for (UINT i = 0; i < nCount; i++)
 refReBarCtrl.RestoreBand(i);

CReBarCtrl::SetBandInfo

BOOL SetBandInfo(
 UINT uBand,
 REBARBANDINFO* prbbi);

ParametersParameters

Return ValueReturn Value

ExampleExample

int nCount = m_wndReBar.GetReBarCtrl().GetBandCount();
CString strText;
REBARBANDINFO rbbi = {0};
rbbi.cbSize = sizeof(rbbi);
for (int i = 0; i < nCount; i++)
{
 strText.Format(_T("Band #: %d"), i);
 rbbi.lpText = strText.GetBuffer();
 rbbi.cch = strText.GetLength() + 1;
 rbbi.fMask = RBBIM_TEXT;

 m_wndReBar.GetReBarCtrl().SetBandInfo(i, &rbbi);

 strText.ReleaseBuffer();
}

CReBarCtrl::SetBandWidth

BOOL SetBandWidth(
 UINT uBand,
 int cxWidth);

ParametersParameters

Windows SDK.

Implements the behavior of the Win32 message RB_SETBANDINFO, as described in the Windows SDK.

uBand
Zero-based index of the band to receive the new settings.

prbbi
Pointer to a REBARBANDINFO structure that defines the band to be inserted. You must set the cbSize

member of this structure to sizeof(REBARBANDINFO) before sending this message.

Nonzero if successful; otherwise zero.

Sets the width of the specified docked band in the current rebar control.

https://docs.microsoft.com/windows/desktop/Controls/rb-setbandinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagrebarbandinfoa

PARAMETER DESCRIPTION

uBand [in] Zero-based index of a rebar band.

cxWidth [in] New width of the rebar band, in pixels.

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 CReBarCtrl m_rebar;
 BOOL bRet;
 static const int TOTAL_BANDS = 5;
 static const int BUFFER_SIZE = 10;

ExampleExample

// Set the width of each band.
m_rebar.GetClientRect(&rect);
int iWidth = rect.Width()/TOTAL_BANDS;
for (int iIndex=0; iIndex < TOTAL_BANDS; iIndex++)
 bRet = m_rebar.SetBandWidth(iIndex, iWidth);

CReBarCtrl::SetBarInfo

BOOL SetBarInfo(REBARINFO* prbi);

ParametersParameters

Return ValueReturn Value

ExampleExample

REBARINFO rbi = {0};
rbi.cbSize = sizeof(REBARINFO);
rbi.fMask = 0;
rbi.himl = 0;
m_wndReBar.GetReBarCtrl().SetBarInfo(&rbi);

TRUE if the method is successful; otherwise, FALSE.

This method sends the RB_SETBANDWIDTH message, which is described in the Windows SDK.

The following code example defines the variable, m_rebar , that is used to access the current rebar control. This
variable is used in the next example.

The following code example sets each rebar band to be the same width.

Implements the behavior of the Win32 message RB_SETBARINFO, as described in the Windows SDK.

prbi
A pointer to a REBARINFO structure that contains the information to be set. You must set the cbSize member
of this structure to sizeof(REBARINFO) before sending this message

Nonzero if successful; otherwise zero.

https://docs.microsoft.com/windows/desktop/Controls/rb-setbandwidth
https://docs.microsoft.com/windows/desktop/Controls/rb-setbarinfo
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagrebarinfo

CReBarCtrl::SetBkColor

COLORREF SetBkColor(COLORREF clr);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CReBarCtrl::SetColorScheme

void SetColorScheme(const COLORSCHEME* lpcs);

ParametersParameters

RemarksRemarks

CReBarCtrl::SetExtendedStyle

DWORD SetExtendedStyle(
 DWORD dwMask,
 DWORD dwStyleEx);

ParametersParameters

PARAMETER DESCRIPTION

dwMask [in] A bitwise combination (OR) of flags that specify which
flags in the dwStyleEx parameter apply. Use one or more of
the following values:

RBS_EX_SPLITTER: By default, show the splitter on the
bottom in horizontal mode, and to the right in vertical
mode.

RBS_EX_TRANSPARENT: Forward the WM_ERASEBKGND
message to the parent window.

Implements the behavior of the Win32 message RB_SETBKCOLOR, as described in the Windows SDK.

clr
The COLORREF value that represents the new default background color.

A COLORREF value that represents the previous default background color.

See this topic for more information about when to set the background color, and how to set the default.

Sets the color scheme for the buttons on a rebar control.

lpcs
A pointer to a COLORSCHEME structure, as described in the Windows SDK.

The COLORSCHEME structure includes both the button highlight color and the button shadow color.

Sets the extended styles for the current rebar control.

https://docs.microsoft.com/windows/desktop/Controls/rb-setbkcolor
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagcolorscheme
https://docs.microsoft.com/windows/desktop/winmsg/wm-erasebkgnd

dwStyleEx [in] A bitwise combination (OR) of flags that specify the styles
to apply. To set a style, specify the same flag that is used in
the dwMask parameter. To reset a style, specify binary zero.

PARAMETER DESCRIPTION

Return ValueReturn Value

RemarksRemarks

CReBarCtrl::SetImageList

BOOL SetImageList(CImageList* pImageList);

ParametersParameters

Return ValueReturn Value

CReBarCtrl::SetOwner

CWnd* SetOwner(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CReBarCtrl::SetPalette

The previous extended style.

This method sends the RB_SETEXTENDEDSTYLE message, which is described in the Windows SDK.

Assigns an image list to a rebar control.

pImageList
A pointer to a CImageList object containing the image list to be assigned to the rebar control.

Nonzero if successful; otherwise zero.

Implements the behavior of the Win32 message RB_SETPARENT, as described in the Windows SDK.

pWnd
A pointer to a CWnd object to set as the owner of the rebar control.

A pointer to a CWnd object that is the current owner of the rebar control.

Note that this member function uses pointers to CWnd objects for both the current and selected owner of the
rebar control, rather than handles to windows.

This member function does not change the actual parent that was set when the control was created; rather it sends
notification messages to the window you specify.

Implements the behavior of the Win32 message RB_SETPALETTE, as described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/rb-setextendedstyle
https://docs.microsoft.com/windows/desktop/Controls/rb-setparent
https://docs.microsoft.com/windows/desktop/Controls/rb-setpalette

CPalette* SetPalette(HPALETTE hPal);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CReBarCtrl::SetTextColor

COLORREF SetTextColor(COLORREF clr);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CReBarCtrl::SetToolTips

void SetToolTips(CToolTipCtrl* pToolTip);

ParametersParameters

RemarksRemarks

CReBarCtrl::SetWindowTheme

HRESULT SetWindowTheme(LPCWSTR pszSubAppName);

ParametersParameters

hPal
An HPALETTE that specifies the new palette that the rebar control will use.

A pointer to a CPalette object specifying the rebar control's previous palette.

Note that this member function uses a CPalette object as its return value, rather than an HPALETTE.

Implements the behavior of the Win32 message RB_SETTEXTCOLOR, as described in the Windows SDK.

clr
A COLORREF value that represents the new text color in the CReBarCtrl object.

The COLORREF value representing the previous text color associated with the CReBarCtrl object.

It is provided to support text color flexibility in a rebar control.

Associates a tool tip control with a rebar control.

pToolTip
A pointer to a CToolTipCtrl object

You must destroy the CToolTipCtrl object when you are done with it.

Sets the visual style of the rebar control.

pszSubAppName
A pointer to a Unicode string that contains the rebar visual style to set.

https://docs.microsoft.com/windows/desktop/Controls/rb-settextcolor
https://docs.microsoft.com/windows/desktop/gdi/colorref

Return ValueReturn Value

RemarksRemarks

CReBarCtrl::ShowBand

BOOL ShowBand(
 UINT uBand,
 BOOL fShow = TRUE);

ParametersParameters

Return ValueReturn Value

CReBarCtrl::SizeToRect

BOOL SizeToRect(CRect& rect);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

The return value is not used.

This member function emulates the functionality of the RB_SETWINDOWTHEME message, as described in the
Windows SDK.

Implements the behavior of the Win32 message RB_SHOWBAND, as described in the Windows SDK.

uBand
Zero-based index of a band in the rebar control.

fShow
Indicates if the band should be shown or hidden. If this value is TRUE, the band will be shown. Otherwise, the
band will be hidden.

Nonzero if successful; otherwise zero.

Implements the behavior of the Win32 message RB_SIZETORECT, as described in the Windows SDK.

rect
A reference to a CRect object that specifies the rectangle that the rebar control should be sized to.

Nonzero if successful; otherwise zero.

Note that this member function uses a CRect object as a parameter, rather than a RECT structure.

CWnd Class
Hierarchy Chart

https://docs.microsoft.com/windows/desktop/Controls/rb-setwindowtheme
https://docs.microsoft.com/windows/desktop/Controls/rb-showband
https://docs.microsoft.com/windows/desktop/Controls/rb-sizetorect

CRecentDockSiteInfo Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CRecentDockSiteInfo : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRecentDockSiteInfo::CRecentDockSiteInfo Default constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CRecentDockSiteInfo::CleanUp

CRecentDockSiteInfo::GetRecentDefaultPaneDivider

CRecentDockSiteInfo::GetRecentDockedPercent

CRecentDockSiteInfo::GetRecentDockedRect

CRecentDockSiteInfo::GetRecentListOfPanes

CRecentDockSiteInfo::GetRecentPaneContainer

CRecentDockSiteInfo::GetRecentTabContainer

CRecentDockSiteInfo::Init

CRecentDockSiteInfo::IsRecentLeftPane

CRecentDockSiteInfo::operator =

CRecentDockSiteInfo::SaveListOfRecentPanes

CRecentDockSiteInfo::SetInfo

CRecentDockSiteInfo::StoreDockInfo

Remarks

The CRecentDockSiteInfo class is a helper class that stores recent state information for the CPane Class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/crecentdocksiteinfo-class.md

Inheritance Hierarchy

Requirements

CRecentDockSiteInfo::CleanUp
void CleanUp();

RemarksRemarks

CRecentDockSiteInfo::CRecentDockSiteInfo
CRecentDockSiteInfo(CPane* pBar);

ParametersParameters

RemarksRemarks

CRecentDockSiteInfo::GetRecentDefaultPaneDivider
CPaneDivider* GetRecentDefaultPaneDivider();

Return ValueReturn Value

RemarksRemarks

CRecentDockSiteInfo::GetRecentDockedPercent
int GetRecentDockedPercent(BOOL bForSlider);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The CRecentDockSiteInfo class is a data management class. It tracks the last state of a CPane as it transitions
between being docked and floating. When a user double clicks a floating dockable pane, it becomes docked.
Double clicking the docked pane returns it to its previous location, size, and state. Similarly, when the pane is re-
docked it returns to its previous docking location. This data class is what makes that possible. Since the members
of this class store state information for the docked pane, they should not be directly modified by your application.

A CRecentDockSiteInfo object is created every time that a pane is created. Each CPane object has a member
variable, CPane::m_recentDockInfo, to store this information.

CObject

CRecentDockSiteInfo

Header: afxrecentDockSiteInfo.h

[in] pBar

[in] bForSlider

CRecentDockSiteInfo::GetRecentDockedRect
CRect& GetRecentDockedRect(BOOL bForSlider);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRecentDockSiteInfo::GetRecentListOfPanes
CList<HWND, HWND>& GetRecentListOfPanes(BOOL bForSlider);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRecentDockSiteInfo::GetRecentPaneContainer
CPaneContainer* GetRecentPaneContainer(BOOL bForSlider);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRecentDockSiteInfo::GetRecentTabContainer
CPaneContainer* GetRecentTabContainer(BOOL bForSlider);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRecentDockSiteInfo::Init
void Init();

RemarksRemarks

CRecentDockSiteInfo::IsRecentLeftPane

[in] bForSlider

[in] bForSlider

[in] bForSlider

[in] bForSlider

BOOL IsRecentLeftPane(BOOL bForSlider);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRecentDockSiteInfo::operator =
CRecentDockSiteInfo& operator=(CRecentDockSiteInfo& src);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRecentDockSiteInfo::SaveListOfRecentPanes
void SaveListOfRecentPanes(CList<HWND,
 HWND>& lstOrg,
 BOOL bForSlider);

ParametersParameters

RemarksRemarks

CRecentDockSiteInfo::SetInfo
virtual void SetInfo(
 BOOL bForSlider,
 CRecentDockSiteInfo& srcInfo);

ParametersParameters

RemarksRemarks

CRecentDockSiteInfo::StoreDockInfo
virtual void StoreDockInfo(
 CPaneContainer* pRecentContainer,
 CDockablePane* pTabbedBar = NULL);

ParametersParameters

[in] bForSlider

[in] src

[in] CList<HWND
[in] lstOrg
[in] bForSlider

[in] bForSlider
[in] srcInfo

RemarksRemarks

See also

[in] pRecentContainer
[in] pTabbedBar

Hierarchy Chart
Classes
CDockSite Class

CRecentFileList Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CRecentFileList

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRecentFileList::CRecentFileList Constructs a CRecentFileList object.

Public MethodsPublic Methods

NAME DESCRIPTION

CRecentFileList::Add Adds a file to the MRU file list.

CRecentFileList::GetDisplayName Provides a display name for menu display of an MRU
filename.

CRecentFileList::GetSize Retrieves the number of files in the MRU file list.

CRecentFileList::ReadList Reads the MRU file list from the registry or .INI file.

CRecentFileList::Remove Removes a file from the MRU file list.

CRecentFileList::UpdateMenu Updates the menu display of the MRU file list.

CRecentFileList::WriteList Writes the MRU file list from the registry or .INI file.

Public OperatorsPublic Operators

NAME DESCRIPTION

CRecentFileList::operator [] Returns a CString object at a given position.

Remarks

Inheritance Hierarchy

Supports control of the most recently used (MRU) file list.

Files can be added to or deleted from the MRU file list, the file list can be read from or written to the registry or an
.INI file, and the menu displaying the MRU file list can be updated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/crecentfilelist-class.md

Requirements

CRecentFileList::Add

virtual void Add(LPCTSTR lpszPathName);

virtual void Add(
 LPCTSTR lpszPathName,
 LPCTSTR lpszAppID);

void Add(
 IShellItem* pItem,
 LPCTSTR lpszAppID);

void Add(
 IShellLink* pLink,
 LPCTSTR lpszAppID);

void Add(
 PIDLIST_ABSOLUTE pidl,
 LPCTSTR lpszAppID);

ParametersParameters

RemarksRemarks

CRecentFileList::CRecentFileList

CRecentFileList(
 UINT nStart,
 LPCTSTR lpszSection,
 LPCTSTR lpszEntryFormat,
 int nSize,
 int nMaxDispLen = AFX_ABBREV_FILENAME_LEN);

CRecentFileList

Header: afxadv.h

Adds a file to the most recently used (MRU) file list.

lpszPathName
Specifies pathname to be added to the list.

lpszAppID
Specifies Application User Model ID for the application.

pItem
Specifies a pointer to Shell Item to be added to the list.

pLink
Specifies a pointer to Shell Link to be added to the list.

pidl
Specifies the IDLIST for the shell item that should be added to the recent docs folder.

The file name will be added to the top of the MRU list. If the file name already exists in the MRU list, it will be
moved to the top.

Constructs a CRecentFileList object.

ParametersParameters

RemarksRemarks

CRecentFileList::GetDisplayName

virtual BOOL GetDisplayName(
 CString& strName,
 int nIndex,
 LPCTSTR lpszCurDir,
 int nCurDir,
 BOOL bAtLeastName = TRUE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nStart
Offset for the numbering in the menu display of the MRU (most recently used) file list.

lpszSection
Points to the name of the section of the registry or the application's .INI file where the MRU file list is read and/or
written.

lpszEntryFormat
Points to a format string to be used for the names of the entries stored in the registry or the application's .INI file.

nSize
Maximum number of files in the MRU file list.

nMaxDispLen
Maximum length, in characters, available for the menu display of a filename in the MRU file list.

The format string pointed to by lpszEntryFormat should contain "%d", which will be used for substituting the index
of each MRU item. For example, if the format string is "file%d" then the entries will be named file0 , file1 ,
and so on.

Obtains a display name for a file in the MRU file list, for use in the menu display of the MRU list.

strName
Full path of the file whose name is to be displayed in the menu list of MRU files.

nIndex
Zero-based index of the file in the MRU file list.

lpszCurDir
String holding the current directory.

nCurDir
Length of the current directory string.

bAtLeastName
If nonzero, indicates that the base name of the file should be returned, even if it exceeds the maximum display
length (passed as the nMaxDispLen parameter to the CRecentFileList constructor).

FALSE if there is no filename at the specified index in the most recently used (MRU) file list.

If the file is in the current directory, the function leaves the directory off the display. If the filename is too long, the
directory and extension are stripped. If the filename is still too long, the display name is set to an empty string
unless bAtLeastName is nonzero.

CRecentFileList::GetSize

int GetSize() const;

Return ValueReturn Value

CRecentFileList::operator []

CString& operator[](int nindex);

ParametersParameters

CRecentFileList::ReadList

virtual void ReadList();

CRecentFileList::Remove

virtual void Remove(int nIndex);

ParametersParameters

CRecentFileList::UpdateMenu

virtual void UpdateMenu(CCmdUI* pCmdUI);

ParametersParameters

CRecentFileList::WriteList

Retrieves the number of files in the MRU file list.

The number of files in the current most recently used (MRU) file list.

The overloaded subscript ([]) operator returns a single CString specified by the zero-based index in nIndex.

nIndex
Zero-based index of a CString in a set of CString s.

Reads the most recently used (MRU) file list from the registry or the application's .INI file.

Removes a file from the MRU file list.

nIndex
Zero-based index of the file to be removed from the most recently used (MRU) file list.

Updates the menu display of the MRU file list.

pCmdUI
A pointer to the CCmdUI object for the most recently used (MRU) file list menu.

Writes the most recently used (MRU) file list into the registry or the application's .INI file.

virtual void WriteList();

See also
Hierarchy Chart

CRecordset Class
3/4/2019 • 74 minutes to read • Edit Online

Syntax
class CRecordset : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRecordset::CRecordset Constructs a CRecordset object. Your derived class must
provide a constructor that calls this one.

Public MethodsPublic Methods

NAME DESCRIPTION

CRecordset::AddNew Prepares for adding a new record. Call Update to
complete the addition.

CRecordset::CanAppend Returns nonzero if new records can be added to the
recordset via the AddNew member function.

CRecordset::CanBookmark Returns nonzero if the recordset supports bookmarks.

CRecordset::Cancel Cancels an asynchronous operation or a process from a
second thread.

CRecordset::CancelUpdate Cancels any pending updates due to an AddNew or Edit

operation.

CRecordset::CanRestart Returns nonzero if Requery can be called to run the
recordset's query again.

CRecordset::CanScroll Returns nonzero if you can scroll through the records.

CRecordset::CanTransact Returns nonzero if the data source supports transactions.

CRecordset::CanUpdate Returns nonzero if the recordset can be updated (you can
add, update, or delete records).

CRecordset::CheckRowsetError Called to handle errors generated during record fetching.

Represents a set of records selected from a data source.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/crecordset-class.md

CRecordset::Close Closes the recordset and the ODBC HSTMT associated with
it.

CRecordset::Delete Deletes the current record from the recordset. You must
explicitly scroll to another record after the deletion.

CRecordset::DoBulkFieldExchange Called to exchange bulk rows of data from the data source
to the recordset. Implements bulk record field exchange
(Bulk RFX).

CRecordset::DoFieldExchange Called to exchange data (in both directions) between the
field data members of the recordset and the corresponding
record on the data source. Implements record field
exchange (RFX).

CRecordset::Edit Prepares for changes to the current record. Call Update to
complete the edit.

CRecordset::FlushResultSet Returns nonzero if there is another result set to be
retrieved, when using a predefined query.

CRecordset::GetBookmark Assigns the bookmark value of a record to the parameter
object.

CRecordset::GetDefaultConnect Called to get the default connection string.

CRecordset::GetDefaultSQL Called to get the default SQL string to execute.

CRecordset::GetFieldValue Returns the value of a field in a recordset.

CRecordset::GetODBCFieldCount Returns the number of fields in the recordset.

CRecordset::GetODBCFieldInfo Returns specific kinds of information about the fields in a
recordset.

CRecordset::GetRecordCount Returns the number of records in the recordset.

CRecordset::GetRowsetSize Returns the number of records you wish to retrieve during
a single fetch.

CRecordset::GetRowsFetched Returns the actual number of rows retrieved during a fetch.

CRecordset::GetRowStatus Returns the status of the row after a fetch.

CRecordset::GetSQL Gets the SQL string used to select records for the
recordset.

CRecordset::GetStatus Gets the status of the recordset: the index of the current
record and whether a final count of the records has been
obtained.

CRecordset::GetTableName Gets the name of the table on which the recordset is based.

NAME DESCRIPTION

CRecordset::IsBOF Returns nonzero if the recordset has been positioned
before the first record. There is no current record.

CRecordset::IsDeleted Returns nonzero if the recordset is positioned on a deleted
record.

CRecordset::IsEOF Returns nonzero if the recordset has been positioned after
the last record. There is no current record.

CRecordset::IsFieldDirty Returns nonzero if the specified field in the current record
has been changed.

CRecordset::IsFieldNull Returns nonzero if the specified field in the current record is
null (has no value).

CRecordset::IsFieldNullable Returns nonzero if the specified field in the current record
can be set to null (having no value).

CRecordset::IsOpen Returns nonzero if Open has been called previously.

CRecordset::Move Positions the recordset to a specified number of records
from the current record in either direction.

CRecordset::MoveFirst Positions the current record on the first record in the
recordset. Test for IsBOF first.

CRecordset::MoveLast Positions the current record on the last record or on the
last rowset. Test for IsEOF first.

CRecordset::MoveNext Positions the current record on the next record or on the
next rowset. Test for IsEOF first.

CRecordset::MovePrev Positions the current record on the previous record or on
the previous rowset. Test for IsBOF first.

CRecordset::OnSetOptions Called to set options (used on selection) for the specified
ODBC statement.

CRecordset::OnSetUpdateOptions Called to set options (used on update) for the specified
ODBC statement.

CRecordset::Open Opens the recordset by retrieving the table or performing
the query that the recordset represents.

CRecordset::RefreshRowset Refreshes the data and status of the specified row(s).

CRecordset::Requery Runs the recordset's query again to refresh the selected
records.

CRecordset::SetAbsolutePosition Positions the recordset on the record corresponding to the
specified record number.

NAME DESCRIPTION

CRecordset::SetBookmark Positions the recordset on the record specified by the
bookmark.

CRecordset::SetFieldDirty Marks the specified field in the current record as changed.

CRecordset::SetFieldNull Sets the value of the specified field in the current record to
null (having no value).

CRecordset::SetLockingMode Sets the locking mode to "optimistic" locking (the default)
or "pessimistic" locking. Determines how records are locked
for updates.

CRecordset::SetParamNull Sets the specified parameter to null (having no value).

CRecordset::SetRowsetCursorPosition Positions the cursor on the specified row within the rowset.

CRecordset::SetRowsetSize Specifies the number of records you wish to retrieve during
a fetch.

CRecordset::Update Completes an AddNew or Edit operation by saving the
new or edited data on the data source.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CRecordset::m_hstmt Contains the ODBC statement handle for the recordset.
Type HSTMT .

CRecordset::m_nFields Contains the number of field data members in the
recordset. Type UINT .

CRecordset::m_nParams Contains the number of parameter data members in the
recordset. Type UINT .

CRecordset::m_pDatabase Contains a pointer to the CDatabase object through
which the recordset is connected to a data source.

CRecordset::m_strFilter Contains a CString that specifies a Structured Query
Language (SQL) WHERE clause. Used as a filter to select
only those records that meet certain criteria.

CRecordset::m_strSort Contains a CString that specifies a SQL ORDER BY

clause. Used to control how the records are sorted.

Remarks
Known as "recordsets," CRecordset objects are typically used in two forms: dynasets and snapshots. A
dynaset stays synchronized with data updates made by other users. A snapshot is a static view of the data.
Each form represents a set of records fixed at the time the recordset is opened, but when you scroll to a
record in a dynaset, it reflects changes subsequently made to the record, either by other users or by other
recordsets in your application.

NOTENOTE

Inheritance Hierarchy

Requirements

CRecordset::AddNew

virtual void AddNew();

RemarksRemarks

If you are working with the Data Access Objects (DAO) classes rather than the Open Database Connectivity (ODBC)
classes, use class CDaoRecordset instead. For more information, see the article Overview: Database Programming.

To work with either kind of recordset, you typically derive an application-specific recordset class from
CRecordset . Recordsets select records from a data source, and you can then:

Scroll through the records.

Update the records and specify a locking mode.

Filter the recordset to constrain which records it selects from those available on the data source.

Sort the recordset.

Parameterize the recordset to customize its selection with information not known until run time.

To use your class, open a database and construct a recordset object, passing the constructor a pointer to your
CDatabase object. Then call the recordset's Open member function, where you can specify whether the object

is a dynaset or a snapshot. Calling Open selects data from the data source. After the recordset object is
opened, use its member functions and data members to scroll through the records and operate on them. The
operations available depend on whether the object is a dynaset or a snapshot, whether it is updatable or read-
only (this depends on the capability of the Open Database Connectivity (ODBC) data source), and whether
you have implemented bulk row fetching. To refresh records that may have been changed or added since the
Open call, call the object's Requery member function. Call the object's Close member function and destroy

the object when you finish with it.

In a derived CRecordset class, record field exchange (RFX) or bulk record field exchange (Bulk RFX) is used to
support reading and updating of record fields.

For more information about recordsets and record field exchange, see the articles Overview: Database
Programming, Recordset (ODBC), Recordset: Fetching Records in Bulk (ODBC), and Record Field Exchange
(RFX). For a focus on dynasets and snapshots, see the articles Dynaset and Snapshot.

CObject

CRecordset

Header: afxdb.h

Prepares for adding a new record to the table.

You must call the Requery member function to see the newly added record. The record's fields are initially
Null. (In database terminology, Null means "having no value" and is not the same as NULL in C++.) To
complete the operation, you must call the Update member function. Update saves your changes to the data

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/dynaset
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/snapshot

NOTENOTE

C a u t i o nC a u t i o n

NOTENOTE

ExampleExample

CRecordset::CanAppend

BOOL CanAppend() const;

Return ValueReturn Value

CRecordset::CanBookmark

BOOL CanBookmark() const;

Return ValueReturn Value

source.

If you have implemented bulk row fetching, you cannot call AddNew . This will result in a failed assertion. Although class
CRecordset does not provide a mechanism for updating bulk rows of data, you can write your own functions by

using the ODBC API function SQLSetPos . For more information about bulk row fetching, see the article Recordset:
Fetching Records in Bulk (ODBC).

AddNew prepares a new, empty record using the recordset's field data members. After you call AddNew , set the
values you want in the recordset's field data members. (You do not have to call the Edit member function for
this purpose; use Edit only for existing records.) When you subsequently call Update , changed values in the
field data members are saved on the data source.

If you scroll to a new record before you call Update , the new record is lost, and no warning is given.

If the data source supports transactions, you can make your AddNew call part of a transaction. For more
information about transactions, see class CDatabase. Note that you should call CDatabase::BeginTrans before
calling AddNew .

For dynasets, new records are added to the recordset as the last record. Added records are not added to snapshots;
you must call Requery to refresh the recordset.

It is illegal to call AddNew for a recordset whose Open member function has not been called. A CDBException

is thrown if you call AddNew for a recordset that cannot be appended to. You can determine whether the
recordset is updatable by calling CanAppend.

For more information, see the following articles: Recordset: How Recordsets Update Records (ODBC),
Recordset: Adding, Updating, and Deleting Records (ODBC), and Transaction (ODBC).

See the article Transaction: Performing a Transaction in a Recordset (ODBC).

Determines whether the previously opened recordset allows you to add new records.

Nonzero if the recordset allows adding new records; otherwise 0. CanAppend will return 0 if you opened the
recordset as read-only.

Determines whether the recordset allows you to mark records using bookmarks.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-how-recordsets-update-records-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-adding-updating-and-deleting-records-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-performing-a-transaction-in-a-recordset-odbc

RemarksRemarks

NOTENOTE

CRecordset::Cancel

void Cancel();

RemarksRemarks

CRecordset::CancelUpdate

void CancelUpdate();

RemarksRemarks

NOTENOTE

CRecordset::CanRestart

Nonzero if the recordset supports bookmarks; otherwise 0.

This function is independent of the CRecordset::useBookmarks option in the dwOptions parameter of the Open
member function. CanBookmark indicates whether the given ODBC driver and cursor type support
bookmarks. CRecordset::useBookmarks indicates whether bookmarks will be available, provided they are
supported.

Bookmarks are not supported on forward-only recordsets.

For more information about bookmarks and recordset navigation, see the articles Recordset: Bookmarks and
Absolute Positions (ODBC) and Recordset: Scrolling (ODBC).

Requests that the data source cancel either an asynchronous operation in progress or a process from a
second thread.

Note that the MFC ODBC classes no longer use asynchronous processing; to perform an asychronous
operation, you must directly call the ODBC API function SQLSetConnectOption . For more information, see the
topic "Executing Functions Asynchronously" in the ODBC SDK Programmer's Guide.

Cancels any pending updates, caused by an Edit or AddNew operation, before Update is called.

This member function is not applicable on recordsets that are using bulk row fetching, since such recordsets cannot call
Edit , AddNew , or Update . For more information about bulk row fetching, see the article Recordset: Fetching

Records in Bulk (ODBC).

If automatic dirty field checking is enabled, CancelUpdate will restore the member variables to the values they
had before Edit or AddNew was called; otherwise, any value changes will remain. By default, automatic field
checking is enabled when the recordset is opened. To disable it, you must specify the
CRecordset::noDirtyFieldCheck in the dwOptions parameter of the Open member function.

For more information about updating data, see the article Recordset: Adding, Updating, and Deleting Records
(ODBC).

Determines whether the recordset allows restarting its query (to refresh its records) by calling the Requery

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-bookmarks-and-absolute-positions-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-scrolling-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-adding-updating-and-deleting-records-odbc

BOOL CanRestart() const;

Return ValueReturn Value

CRecordset::CanScroll

BOOL CanScroll() const;

Return ValueReturn Value

RemarksRemarks

CRecordset::CanTransact

BOOL CanTransact() const;

Return ValueReturn Value

RemarksRemarks

CRecordset::CanUpdate

BOOL CanUpdate() const;

Return ValueReturn Value

RemarksRemarks

CRecordset::CheckRowsetError

virtual void CheckRowsetError(RETCODE nRetCode);

member function.

Nonzero if requery is allowed; otherwise 0.

Determines whether the recordset allows scrolling.

Nonzero if the recordset allows scrolling; otherwise 0.

For more information about scrolling, see the article Recordset: Scrolling (ODBC).

Determines whether the recordset allows transactions.

Nonzero if the recordset allows transactions; otherwise 0.

For more information, see the article Transaction (ODBC).

Determines whether the recordset can be updated.

Nonzero if the recordset can be updated; otherwise 0.

A recordset might be read-only if the underlying data source is read-only or if you specified
CRecordset::readOnly in the dwOptions parameter when you opened the recordset.

Called to handle errors generated during record fetching.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-scrolling-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc

ParametersParameters

RemarksRemarks

NRETCODE DESCRIPTION

SQL_SUCCESS Function completed successfully; no additional information
is available.

SQL_SUCCESS_WITH_INFO Function completed successfully, possibly with a nonfatal
error. Additional information can be obtained by calling
SQLError .

SQL_NO_DATA_FOUND All rows from the result set have been fetched.

SQL_ERROR Function failed. Additional information can be obtained by
calling SQLError .

SQL_INVALID_HANDLE Function failed due to an invalid environment handle,
connection handle, or statement handle. This indicates a
programming error. No additional information is available
from SQLError .

SQL_STILL_EXECUTING A function that was started asynchronously is still
executing. Note that by default, MFC will never pass this
value to CheckRowsetError ; MFC will continue calling
SQLExtendedFetch until it no longer returns

SQL_STILL_EXECUTING.

CRecordset::Close

virtual void Close();

RemarksRemarks

ExampleExample

nRetCode
An ODBC API function return code. For details, see Remarks.

This virtual member function handles errors that occur when records are fetched, and is useful during bulk
row fetching. You may want to consider overriding CheckRowsetError to implement your own error handling.

CheckRowsetError is called automatically in a cursor navigation operation, such as Open , Requery , or any
Move operation. It is passed the return value of the ODBC API function SQLExtendedFetch . The following

table lists the possible values for the nRetCode parameter.

For more information about SQLError , see the Windows SDK. For more information about bulk row fetching,
see the article Recordset: Fetching Records in Bulk (ODBC).

Closes the recordset.

The ODBC HSTMT and all memory the framework allocated for the recordset are deallocated. Usually after
calling Close , you delete the C++ recordset object if it was allocated with new.

You can call Open again after calling Close . This lets you reuse the recordset object. The alternative is to call
Requery .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

// Construct a snapshot object
CCustomer rsCustSet(NULL);

if(!rsCustSet.Open())
 return;

// Use the snapshot ...

// Close the snapshot
rsCustSet.Close();

// Destructor is called when the function exits

CRecordset::CRecordset

CRecordset(CDatabase* pDatabase = NULL);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

CRecordset::Delete

virtual void Delete();

RemarksRemarks

Constructs a CRecordset object.

pDatabase
Contains a pointer to a CDatabase object or the value NULL. If not NULL and the CDatabase object's Open

member function has not been called to connect it to the data source, the recordset attempts to open it for
you during its own Open call. If you pass NULL, a CDatabase object is constructed and connected for you
using the data source information you specified when you derived your recordset class with ClassWizard.

You can either use CRecordset directly or derive an application-specific class from CRecordset . You can use
ClassWizard to derive your recordset classes.

A derived class must supply its own constructor. In the constructor of your derived class, call the constructor
CRecordset::CRecordset , passing the appropriate parameters along to it.

Pass NULL to your recordset constructor to have a CDatabase object constructed and connected for you
automatically. This is a useful shorthand that does not require you to construct and connect a CDatabase

object prior to constructing your recordset.

For more information, see the article Recordset: Declaring a Class for a Table (ODBC).

Deletes the current record.

After a successful deletion, the recordset's field data members are set to a Null value, and you must explicitly
call one of the Move functions in order to move off the deleted record. Once you move off the deleted record,
it is not possible to return to it. If the data source supports transactions, you can make the Delete call part of

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-declaring-a-class-for-a-table-odbc

NOTENOTE

C a u t i o nC a u t i o n

ExampleExample

// Create a derived CRecordset object
CCustomer rsCustSet(&m_dbCust);
rsCustSet.Open();

if(rsCustSet.IsEOF() || !rsCustSet.CanUpdate() ||
 !rsCustSet.CanTransact())
{
 return;
}

m_dbCust.BeginTrans();

// Perhaps scroll to a new record...
// Delete the current record
rsCustSet.Delete();

// Finished commands for this transaction
if(IDYES == AfxMessageBox(_T("Commit transaction?"), MB_YESNO))
 m_dbCust.CommitTrans();
else // User changed mind
 m_dbCust.Rollback();

CRecordset::DoBulkFieldExchange

virtual void DoBulkFieldExchange(CFieldExchange* pFX);

ParametersParameters

RemarksRemarks

a transaction. For more information, see the article Transaction (ODBC).

If you have implemented bulk row fetching, you cannot call Delete . This will result in a failed assertion. Although class
CRecordset does not provide a mechanism for updating bulk rows of data, you can write your own functions by

using the ODBC API function SQLSetPos . For more information about bulk row fetching, see the article Recordset:
Fetching Records in Bulk (ODBC).

The recordset must be updatable and there must be a valid record current in the recordset when you call
Delete ; otherwise, an error occurs. For example, if you delete a record but do not scroll to a new record

before you call Delete again, Delete throws a CDBException.

Unlike AddNew and Edit, a call to Delete is not followed by a call to Update. If a Delete call fails, the field
data members are left unchanged.

This example shows a recordset created on the frame of a function. The example assumes the existence of
m_dbCust , a member variable of type CDatabase already connected to the data source.

Called to exchange bulk rows of data from the data source to the recordset. Implements bulk record field
exchange (Bulk RFX).

pFX
A pointer to a CFieldExchange object. The framework will already have set up this object to specify a context
for the field exchange operation.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

NOTENOTE

CRecordset::DoFieldExchange

virtual void DoFieldExchange(CFieldExchange* pFX);

ParametersParameters

RemarksRemarks

NOTENOTE

When bulk row fetching is implemented, the framework calls this member function to automatically transfer
data from the data source to your recordset object. DoBulkFieldExchange also binds your parameter data
members, if any, to parameter placeholders in the SQL statement string for the recordset's selection.

If bulk row fetching is not implemented, the framework calls DoFieldExchange. To implement bulk row
fetching, you must specify the CRecordset::useMultiRowFetch option of the dwOptions parameter in the Open
member function.

DoBulkFieldExchange is available only if you are using a class derived from CRecordset . If you have created a
recordset object directly from CRecordset , you must call the GetFieldValue member function to retrieve data.

Bulk record field exchange (Bulk RFX) is similar to record field exchange (RFX). Data is automatically
transferred from the data source to the recordset object. However, you cannot call AddNew , Edit , Delete , or
Update to transfer changes back to the data source. Class CRecordset currently does not provide a

mechanism for updating bulk rows of data; however, you can write your own functions by using the ODBC
API function SQLSetPos .

Note that ClassWizard does not support bulk record field exchange; therefore, you must override
DoBulkFieldExchange manually by writing calls to the Bulk RFX functions. For more information about these

functions, see the topic Record Field Exchange Functions.

For more information about bulk row fetching, see the article Recordset: Fetching Records in Bulk (ODBC).
For related information, see the article Record Field Exchange (RFX).

Called to exchange data (in both directions) between the field data members of the recordset and the
corresponding record on the data source. Implements record field exchange (RFX).

pFX
A pointer to a CFieldExchange object. The framework will already have set up this object to specify a context
for the field exchange operation.

When bulk row fetching is not implemented, the framework calls this member function to automatically
exchange data between the field data members of your recordset object and the corresponding columns of
the current record on the data source. DoFieldExchange also binds your parameter data members, if any, to
parameter placeholders in the SQL statement string for the recordset's selection.

If bulk row fetching is implemented, the framework calls DoBulkFieldExchange. To implement bulk row
fetching, you must specify the CRecordset::useMultiRowFetch option of the dwOptions parameter in the Open
member function.

DoFieldExchange is available only if you are using a class derived from CRecordset . If you have created a recordset
object directly from CRecordset , you must call the GetFieldValue member function to retrieve data.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx

void CCustomer::DoFieldExchange(CFieldExchange* pFX)
{
 pFX->SetFieldType(CFieldExchange::outputColumn);
 // Macros such as RFX_Text() and RFX_Int() are dependent on the
 // type of the member variable, not the type of the field in the database.
 // ODBC will try to automatically convert the column value to the requested type
 RFX_Long(pFX, _T("[CustomerID]"), m_CustomerID);
 RFX_Text(pFX, _T("[ContactFirstName]"), m_ContactFirstName);
 RFX_Text(pFX, _T("[PostalCode]"), m_PostalCode);
 RFX_Text(pFX, _T("[L_Name]"), m_L_Name);
 RFX_Long(pFX, _T("[BillingID]"), m_BillingID);

 pFX->SetFieldType(CFieldExchange::inputParam);
 RFX_Text(pFX, _T("Param"), m_strParam);
}

CRecordset::Edit

virtual void Edit();

RemarksRemarks

NOTENOTE

The exchange of field data, called record field exchange (RFX), works in both directions: from the recordset
object's field data members to the fields of the record on the data source, and from the record on the data
source to the recordset object.

The only action you must normally take to implement DoFieldExchange for your derived recordset class is to
create the class with ClassWizard and specify the names and data types of the field data members. You might
also add code to what ClassWizard writes to specify parameter data members or to deal with any columns
you bind dynamically. For more information, see the article Recordset: Dynamically Binding Data Columns
(ODBC).

When you declare your derived recordset class with ClassWizard, the wizard writes an override of
DoFieldExchange for you, which resembles the following example:

For more information about the RFX functions, see the topic Record Field Exchange Functions.

For further examples and details about DoFieldExchange , see the article Record Field Exchange: How RFX
Works. For general information about RFX, see the article Record Field Exchange.

Allows changes to the current record.

After you call Edit , you can change the field data members by directly resetting their values. The operation is
completed when you subsequently call the Update member function to save your changes on the data source.

If you have implemented bulk row fetching, you cannot call Edit . This will result in a failed assertion. Although class
CRecordset does not provide a mechanism for updating bulk rows of data, you can write your own functions by

using the ODBC API function SQLSetPos . For more information about bulk row fetching, see the article Recordset:
Fetching Records in Bulk (ODBC).

Edit saves the values of the recordset's data members. If you call Edit , make changes, then call Edit

again, the record's values are restored to what they were before the first Edit call.

In some cases, you may want to update a column by making it Null (containing no data). To do so, call
SetFieldNull with a parameter of TRUE to mark the field Null; this also causes the column to be updated. If

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-dynamically-binding-data-columns-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

ExampleExample

// To edit a record, first set up the edit buffer
rsCustSet.Edit();

// Then edit field data members for the record
rsCustSet.m_BillingID = 2795;
rsCustSet.m_ContactFirstName = _T("Jones Mfg");

// Finally, complete the operation
if(!rsCustSet.Update())
{
 // Handle the failure to update
 AfxMessageBox(_T("Couldn't update record!"));
}

CRecordset::FlushResultSet

BOOL FlushResultSet();

Return ValueReturn Value

RemarksRemarks

you want a field to be written to the data source even though its value has not changed, call SetFieldDirty with
a parameter of TRUE. This works even if the field had the value Null.

If the data source supports transactions, you can make the Edit call part of a transaction. Note that you
should call CDatabase::BeginTrans before calling Edit and after the recordset has been opened. Also note
that calling CDatabase::CommitTrans is not a substitute for calling Update to complete the Edit operation.
For more information about transactions, see class CDatabase.

Depending on the current locking mode, the record being updated may be locked by Edit until you call
Update or scroll to another record, or it may be locked only during the Edit call. You can change the locking

mode with SetLockingMode.

The previous value of the current record is restored if you scroll to a new record before calling Update . A
CDBException is thrown if you call Edit for a recordset that cannot be updated or if there is no current

record.

For more information, see the articles Transaction (ODBC) and Recordset: Locking Records (ODBC).

Retrieves the next result set of a predefined query (stored procedure), if there are multiple result sets.

Nonzero if there are more result sets to be retrieved; otherwise 0.

You should call FlushResultSet only when you are completely finished with the cursor on the current result
set. Note that when you retrieve the next result set by calling FlushResultSet , your cursor is not valid on that
result set; you should call the MoveNext member function after calling FlushResultSet .

If a predefined query uses an output parameter or input/output parameters, you must call FlushResultSet

until it returns FALSE (the value 0), in order to obtain these parameter values.

FlushResultSet calls the ODBC API function SQLMoreResults . If SQLMoreResults returns SQL_ERROR or
SQL_INVALID_HANDLE, then FlushResultSet will throw an exception. For more information about
SQLMoreResults , see the Windows SDK.

Your stored procedure needs to have bound fields if you want to call FlushResultSet .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-locking-records-odbc

ExampleExample

// DoFieldExchange override
//
// Only necessary to handle parameter bindings.
// Don't use CRecordset-derived class with bound
// fields unless all result sets have same schema
// OR there is conditional binding code.
void CCourses::DoFieldExchange(CFieldExchange* pFX)
{
 pFX->SetFieldType(CFieldExchange::outputParam);
 RFX_Long(pFX, _T("Param1"), m_nCountParam);
 // The "Param1" name here is a dummy name
 // that is never used

 pFX->SetFieldType(CFieldExchange::inputParam);
 RFX_Text(pFX, _T("Param2"), m_strNameParam);
 // The "Param2" name here is a dummy name
 // that is never used
}

The following code assumes that COutParamRecordset is a CRecordset -derived object based on a predefined
query with an input parameter and an output parameter, and having multiple result sets. Note the structure of
the DoFieldExchange override.

// Assume db is an already open CDatabase object
CCourses rs(&m_dbCust);
rs.m_strNameParam = _T("History");

// Get the first result set
// NOTE: SQL Server requires forwardOnly cursor
// type for multiple rowset returning stored
// procedures
rs.Open(CRecordset::forwardOnly,
 _T("{? = CALL GetCourses(?)}"),
 CRecordset::readOnly);

// Loop through all the data in the first result set
while (!rs.IsEOF())
{
 CString strFieldValue;
 for(short nIndex = 0; nIndex < rs.GetODBCFieldCount(); nIndex++)
 {
 rs.GetFieldValue(nIndex, strFieldValue);

 // TO DO: Use field value string.
 }
 rs.MoveNext();
}

// Retrieve other result sets...
while(rs.FlushResultSet())
{
 // must call MoveNext because cursor is invalid
 rs.MoveNext();

 while (!rs.IsEOF())
 {
 CString strFieldValue;
 for(short nIndex = 0; nIndex < rs.GetODBCFieldCount(); nIndex++)
 {
 rs.GetFieldValue(nIndex, strFieldValue);

 // TO DO: Use field value string.
 }
 rs.MoveNext();
 }
}

// All result sets have been flushed. Cannot
// use the cursor, but the output parameter,
// m_nCountParam, has now been written.
// Note that m_nCountParam is not valid until
// CRecordset::FlushResultSet has returned FALSE,
// indicating no more result sets will be returned.

// TO DO: Use m_nCountParam

// Cleanup
rs.Close();

CRecordset::GetBookmark

void GetBookmark(CDBVariant& varBookmark);

Obtains the bookmark value for the current record.

ParametersParameters

RemarksRemarks

NOTENOTE

NOTENOTE

CRecordset::GetDefaultConnect

virtual CString GetDefaultConnect();

Return ValueReturn Value

RemarksRemarks

CRecordset::GetDefaultSQL

virtual CString GetDefaultSQL();

Return ValueReturn Value

varBookmark
A reference to a CDBVariant object representing the bookmark on the current record.

To determine if bookmarks are supported on the recordset, call CanBookmark. To make bookmarks available
if they are supported, you must set the CRecordset::useBookmarks option in the dwOptions parameter of the
Open member function.

If bookmarks are unsupported or unavailable, calling GetBookmark will result in an exception being thrown.
Bookmarks are not supported on forward-only recordsets.

GetBookmark assigns the value of the bookmark for the current record to a CDBVariant object. To return to
that record at any time after moving to a different record, call SetBookmark with the corresponding
CDBVariant object.

After certain recordset operations, bookmarks may no longer be valid. For example, if you call GetBookmark followed
by Requery , you may not be able to return to the record with SetBookmark . Call
CDatabase::GetBookmarkPersistence to check whether you can safely call SetBookmark .

For more information about bookmarks and recordset navigation, see the articles Recordset: Bookmarks and
Absolute Positions (ODBC) and Recordset: Scrolling (ODBC).

Called to get the default connection string.

A CString that contains the default connection string.

The framework calls this member function to get the default connection string for the data source on which
the recordset is based. ClassWizard implements this function for you by identifying the same data source you
use in ClassWizard to get information about tables and columns. You will probably find it convenient to rely
on this default connection while developing your application. But the default connection may not be
appropriate for users of your application. If that is the case, you should reimplement this function, discarding
ClassWizard's version. For more information about connection strings, see the article Data Source (ODBC).

Called to get the default SQL string to execute.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-bookmarks-and-absolute-positions-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-scrolling-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/data-source-odbc

RemarksRemarks

C a u t i o nC a u t i o n

CRecordset::GetFieldValue

void GetFieldValue(
 LPCTSTR lpszName,
 CDBVariant& varValue,
 short nFieldType = DEFAULT_FIELD_TYPE);

void GetFieldValue(
 short nIndex,
 CDBVariant& varValue,
 short nFieldType = DEFAULT_FIELD_TYPE);

void GetFieldValue(
 short nIndex,
 CStringA& strValue);

void GetFieldValue(
 short nIndex,
 CStringW& strValue);

ParametersParameters

A CString that contains the default SQL statement.

The framework calls this member function to get the default SQL statement on which the recordset is based.
This might be a table name or a SQL SELECT statement.

You indirectly define the default SQL statement by declaring your recordset class with ClassWizard, and
ClassWizard performs this task for you.

If you need the SQL statement string for your own use, call GetSQL , which returns the SQL statement used to
select the recordset's records when it was opened. You can edit the default SQL string in your class's override
of GetDefaultSQL . For example, you could specify a call to a predefined query using a CALL statement. (Note,
however, that if you edit GetDefaultSQL , you also need to modify m_nFields to match the number of columns
in the data source.)

For more information, see the article Recordset: Declaring a Class for a Table (ODBC).

The table name will be empty if the framework could not identify a table name, if multiple table names were
supplied, or if a CALL statement could not be interpreted. Note that when using a CALL statement, you must
not insert whitespace between the curly brace and the CALL keyword, nor should you insert whitespace
before the curly brace or before the SELECT keyword in a SELECT statement.

Retrieves field data in the current record.

lpszName
The name of a field.

varValue A reference to a CDBVariant object that will store the field's value.

nFieldType
The ODBC C data type of the field. Using the default value, DEFAULT_FIELD_TYPE, forces GetFieldValue to
determine the C data type from the SQL data type, based on the following table. Otherwise, you can specify
the data type directly or choose a compatible data type; for example, you can store any data type into
SQL_C_CHAR.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-declaring-a-class-for-a-table-odbc

C DATA TYPE SQL DATA TYPE

SQL_C_BIT SQL_BIT

SQL_C_UTINYINT SQL_TINYINT

SQL_C_SSHORT SQL_SMALLINT

SQL_C_SLONG SQL_INTEGER

SQL_C_FLOAT SQL_REAL

SQL_C_DOUBLE SQL_FLOATSQL_DOUBLE

SQL_C_TIMESTAMP SQL_DATESQL_TIMESQL_TIMESTAMP

SQL_C_CHAR SQL_NUMERICSQL_DECIMALSQL_BIGINTSQL_CHARSQL_V
ARCHARSQL_LONGVARCHAR

SQL_C_BINARY SQL_BINARYSQL_VARBINARYSQL_LONGVARBINARY

RemarksRemarks

NOTENOTE

For more information about ODBC data types, see the topics "SQL Data Types" and "C Data Types" in
Appendix D of the Windows SDK.

nIndex
The zero-based index of the field.

strValue
A reference to a CString object that will store the field's value converted to text, regardless of the field's data
type.

You can look up a field either by name or by index. You can store the field value in either a CDBVariant object
or a CString object.

If you have implemented bulk row fetching, the current record is always positioned on the first record in a
rowset. To use GetFieldValue on a record within a given rowset, you must first call the
SetRowsetCursorPosition member function to move the cursor to the desired row within that rowset. Then
call GetFieldValue for that row. To implement bulk row fetching, you must specify the
CRecordset::useMultiRowFetch option of the dwOptions parameter in the Open member function.

You can use GetFieldValue to dynamically fetch fields at run time rather than statically binding them at
design time. For example, if you have declared a recordset object directly from CRecordset , you must use
GetFieldValue to retrieve the field data; record field exchange (RFX), or bulk record field exchange (Bulk

RFX), is not implemented.

If you declare a recordset object without deriving from CRecordset , do not have the ODBC Cursor Library loaded. The
cursor library requires that the recordset have at least one bound column; however, when you use CRecordset

directly, none of the columns are bound. The member functions CDatabase::OpenEx and CDatabase::Open control
whether the cursor library will be loaded.

GetFieldValue calls the ODBC API function SQLGetData . If your driver outputs the value SQL_NO_TOTAL for

ExampleExample

// Create and open a database object;
// do not load the cursor library
CDatabase db;
db.OpenEx(NULL, CDatabase::forceOdbcDialog);

// Create and open a recordset object
// directly from CRecordset. Note that a
// table must exist in a connected database.
// Use forwardOnly type recordset for best
// performance, since only MoveNext is required
CRecordset rs(&db);
rs.Open(CRecordset::forwardOnly, _T("SELECT * FROM Customer"));

// Create a CDBVariant object to
// store field data
CDBVariant varValue;

// Loop through the recordset,
// using GetFieldValue and
// GetODBCFieldCount to retrieve
// data in all columns
short nFields = rs.GetODBCFieldCount();
while(!rs.IsEOF())
{
 for(short index = 0; index < nFields; index++)
 {
 rs.GetFieldValue(index, varValue);
 // do something with varValue
 }
 rs.MoveNext();
}

rs.Close();
db.Close();

NOTENOTE

CRecordset::GetODBCFieldCount

short GetODBCFieldCount() const;

Return ValueReturn Value

RemarksRemarks

the actual length of the field value, GetFieldValue throws an exception. For more information about
SQLGetData , see the Windows SDK.

The following sample code illustrates calls to GetFieldValue for a recordset object declared directly from
CRecordset .

Unlike the DAO class CDaoRecordset , CRecordset does not have a SetFieldValue member function. If you create
an object directly from CRecordset , it is effectively read-only.

For more information about bulk row fetching, see the article Recordset: Fetching Records in Bulk (ODBC).

Retrieves the total number of fields in your recordset object.

The number of fields in the recordset.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

CRecordset::GetODBCFieldInfo

void GetODBCFieldInfo(
 LPCTSTR lpszName,
 CODBCFieldInfo& fieldinfo);

void GetODBCFieldInfo(
 short nIndex,
 CODBCFieldInfo& fieldinfo);

ParametersParameters

RemarksRemarks

CRecordset::GetRecordCount

long GetRecordCount() const;

Return ValueReturn Value

RemarksRemarks
C a u t i o nC a u t i o n

CRecordset::GetRowsetSize

For more information about creating recordsets, see the article Recordset: Creating and Closing Recordsets
(ODBC).

Obtains information about the fields in the recordset.

lpszName
The name of a field.

fieldinfo
A reference to a CODBCFieldInfo structure.

nIndex
The zero-based index of the field.

One version of the function lets you look up a field by name. The other version lets you look up a field by
index.

For a description about the information returned, see the CODBCFieldInfo structure.

For more information about creating recordsets, see the article Recordset: Creating and Closing Recordsets
(ODBC).

Determines the size of the recordset.

The number of records in the recordset; 0 if the recordset contains no records; or -1 if the record count cannot
be determined.

The record count is maintained as a "high water mark," the highest-numbered record yet seen as the user
moves through the records. The total number of records is only known after the user has moved beyond the
last record. For performance reasons, the count is not updated when you call MoveLast . To count the records
yourself, call MoveNext repeatedly until IsEOF returns nonzero. Adding a record via CRecordset:AddNew and
Update increases the count; deleting a record via CRecordset::Delete decreases the count.

Obtains the current setting for the number of rows you wish to retrieve during a given fetch.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-creating-and-closing-recordsets-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-creating-and-closing-recordsets-odbc

DWORD GetRowsetSize() const;

Return ValueReturn Value

RemarksRemarks

CRecordset::GetRowsFetched

DWORD GetRowsFetched() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CMultiCustomer rs(&m_dbCust);

// Set the rowset size
rs.SetRowsetSize(5);

// Open the recordset
rs.Open(CRecordset::dynaset, NULL, CRecordset::useMultiRowFetch);

// loop through the recordset by rowsets
while(!rs.IsEOF())
{
 for(int rowCount = 0; rowCount < (int)rs.GetRowsFetched(); rowCount++)
 {
 // do something
 }

 rs.MoveNext();
}

rs.Close();

The number of rows to retrieve during a given fetch.

If you are using bulk row fetching, the default rowset size when the recordset is opened is 25; otherwise, it is
1.

To implement bulk row fetching, you must specify the CRecordset::useMultiRowFetch option in the dwOptions
parameter of the Open member function. To change the setting for the rowset size, call SetRowsetSize.

For more information about bulk row fetching, see the article Recordset: Fetching Records in Bulk (ODBC).

Determines how many records were actually retrieved after a fetch.

The number of rows retrieved from the data source after a given fetch.

This is useful when you have implemented bulk row fetching. The rowset size normally indicates how many
rows will be retrieved from a fetch; however, the total number of rows in the recordset also affects how many
rows will be retrieved in a rowset. For example, if your recordset has 10 records with a rowset size setting of
4, then looping through the recordset by calling MoveNext will result in the final rowset having only 2 records.

To implement bulk row fetching, you must specify the CRecordset::useMultiRowFetch option in the dwOptions
parameter of the Open member function. To specify the rowset size, call SetRowsetSize.

For more information about bulk row fetching, see the article Recordset: Fetching Records in Bulk (ODBC).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

CRecordset::GetRowStatus

WORD GetRowStatus(WORD wRow) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

STATUS VALUE DESCRIPTION

SQL_ROW_SUCCESS The row is unchanged.

SQL_ROW_UPDATED The row has been updated.

SQL_ROW_DELETED The row has been deleted.

SQL_ROW_ADDED The row has been added.

SQL_ROW_ERROR The row is unretrievable due to an error.

SQL_ROW_NOROW There is no row that corresponds to wRow.

CRecordset::GetStatus

void GetStatus(CRecordsetStatus& rStatus) const;

ParametersParameters

RemarksRemarks

Obtains the status for a row in the current rowset.

wRow
The one-based position of a row in the current rowset. This value can range from 1 to the size of the rowset.

A status value for the row. For details, see Remarks.

GetRowStatus returns a value that indicates either any change in status to the row since it was last retrieved
from the data source, or that no row corresponding to wRow was fetched. The following table lists the
possible return values.

For more information, see the ODBC API function SQLExtendedFetch in the Windows SDK.

Determines the index of the current record in the recordset and whether the last record has been seen.

rStatus
A reference to a CRecordsetStatus object. See the Remarks section for more information.

CRecordset attempts to track the index, but under some circumstances this may not be possible. See
GetRecordCount for an explanation.

The CRecordsetStatus structure has the following form:

struct CRecordsetStatus
{
 long m_lCurrentRecord;
 BOOL m_bRecordCountFinal;
};

CRecordset::GetSQL

const CString& GetSQL() const;

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CRecordset::GetTableName

const CString& GetTableName() const;

Return ValueReturn Value

The two members of CRecordsetStatus have the following meanings:

m_lCurrentRecord Contains the zero-based index of the current record in the recordset, if known. If the
index cannot be determined, this member contains AFX_CURRENT_RECORD_UNDEFINED (-2). If
IsBOF is TRUE (empty recordset or attempt to scroll before first record), then m_lCurrentRecord is set

to AFX_CURRENT_RECORD_BOF (-1). If on the first record, then it is set to 0, second record 1, and so
on.

m_bRecordCountFinal Nonzero if the total number of records in the recordset has been determined.
Generally this must be accomplished by starting at the beginning of the recordset and calling
MoveNext until IsEOF returns nonzero. If this member is zero, the record count as returned by
GetRecordCount , if not -1, is only a "high water mark" count of the records.

Call this member function to get the SQL statement that was used to select the recordset's records when it
was opened.

A const reference to a CString that contains the SQL statement.

This will generally be a SQL SELECT statement. The string returned by GetSQL is read-only.

The string returned by GetSQL is typically different from any string you may have passed to the recordset in
the lpszSQL parameter to the Open member function. This is because the recordset constructs a full SQL
statement based on what you passed to Open , what you specified with ClassWizard, what you may have
specified in the m_strFilter and m_strSort data members, and any parameters you may have specified. For
details about how the recordset constructs this SQL statement, see the article Recordset: How Recordsets
Select Records (ODBC).

Call this member function only after calling Open.

Gets the name of the SQL table on which the recordset's query is based.

A const reference to a CString that contains the table name, if the recordset is based on a table; otherwise,
an empty string.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-how-recordsets-select-records-odbc

RemarksRemarks

NOTENOTE

CRecordset::IsBOF

BOOL IsBOF() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Open a recordset; first record is current
CCustomer rsCustSet(&m_dbCust);
rsCustSet.Open();

if(rsCustSet.IsBOF())
 return;
 // The recordset is empty

// Scroll to the end of the recordset, past
// the last record, so no record is current
while (!rsCustSet.IsEOF())
 rsCustSet.MoveNext();

// Move to the last record
rsCustSet.MoveLast();

// Scroll to beginning of the recordset, before
// the first record, so no record is current
while(!rsCustSet.IsBOF())
 rsCustSet.MovePrev();

// First record is current again
rsCustSet.MoveFirst();

GetTableName is only valid if the recordset is based on a table, not a join of multiple tables or a predefined
query (stored procedure). The name is read-only.

Call this member function only after calling Open.

Returns nonzero if the recordset has been positioned before the first record. There is no current record.

Nonzero if the recordset contains no records or if you have scrolled backward before the first record;
otherwise 0.

Call this member function before you scroll from record to record to learn whether you have gone before the
first record of the recordset. You can also use IsBOF along with IsEOF to determine whether the recordset
contains any records or is empty. Immediately after you call Open , if the recordset contains no records, IsBOF

returns nonzero.When you open a recordset that has at least one record, the first record is the current record
and IsBOF returns 0.

If the first record is the current record and you call MovePrev , IsBOF will subsequently return nonzero. If
IsBOF returns nonzero and you call MovePrev , an error occurs. If IsBOF returns nonzero, the current record

is undefined, and any action that requires a current record will result in an error.

This example uses IsBOF and IsEOF to detect the limits of a recordset as the code scrolls through the
recordset in both directions.

CRecordset::IsDeleted

BOOL IsDeleted() const;

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CRecordset::IsEOF

BOOL IsEOF() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRecordset::IsFieldDirty

Determines whether the current record has been deleted.

Nonzero if the recordset is positioned on a deleted record; otherwise 0.

If you scroll to a record and IsDeleted returns TRUE (nonzero), then you must scroll to another record
before you can perform any other recordset operations.

The result of IsDeleted depends on many factors, such as your recordset type, whether your recordset is
updatable, whether you specified the CRecordset::skipDeletedRecords option when you opened the recordset,
whether your driver packs deleted records, and whether there are multiple users.

For more information about CRecordset::skipDeletedRecords and driver packing, see the Open member
function.

If you have implemented bulk row fetching, you should not call IsDeleted . Instead, call the GetRowStatus member
function. For more information about bulk row fetching, see the article Recordset: Fetching Records in Bulk (ODBC).

Returns nonzero if the recordset has been positioned after the last record. There is no current record.

Nonzero if the recordset contains no records or if you have scrolled beyond the last record; otherwise 0.

Call this member function as you scroll from record to record to learn whether you have gone beyond the last
record of the recordset. You can also use IsEOF to determine whether the recordset contains any records or is
empty. Immediately after you call Open , if the recordset contains no records, IsEOF returns nonzero. When
you open a recordset that has at least one record, the first record is the current record and IsEOF returns 0.

If the last record is the current record when you call MoveNext , IsEOF will subsequently return nonzero. If
IsEOF returns nonzero and you call MoveNext , an error occurs. If IsEOF returns nonzero, the current record

is undefined, and any action that requires a current record will result in an error.

See the example for IsBOF.

Determines whether the specified field data member has been changed since Edit or AddNew was called.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

BOOL IsFieldDirty(void* pv);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CRecordset::IsFieldNull

BOOL IsFieldNull(void* pv);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pv
A pointer to the field data member whose status you want to check, or NULL to determine if any of the fields
are dirty.

Nonzero if the specified field data member has changed since calling AddNew or Edit ; otherwise 0.

The data in all dirty field data members will be transferred to the record on the data source when the current
record is updated by a call to the Update member function of CRecordset (following a call to Edit or AddNew

).

This member function is not applicable on recordsets that are using bulk row fetching. If you have implemented bulk
row fetching, then IsFieldDirty will always return FALSE and will result in a failed assertion. For more information
about bulk row fetching, see the article Recordset: Fetching Records in Bulk (ODBC).

Calling IsFieldDirty will reset the effects of preceding calls to SetFieldDirty since the dirty status of the field
is re-evaluated. In the AddNew case, if the current field value differs from the pseudo null value, the field status
is set dirty. In the Edit case, if the field value differs from the cached value, then the field status is set dirty.

IsFieldDirty is implemented through DoFieldExchange.

For more information on the dirty flag, see the article Recordset: How Recordsets Select Records (ODBC).

Returns nonzero if the specified field in the current record is Null (has no value).

pv
A pointer to the field data member whose status you want to check, or NULL to determine if any of the fields
are Null.

Nonzero if the specified field data member is flagged as Null; otherwise 0.

Call this member function to determine whether the specified field data member of a recordset has been
flagged as Null. (In database terminology, Null means "having no value" and is not the same as NULL in
C++.) If a field data member is flagged as Null, it is interpreted as a column of the current record for which
there is no value.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-how-recordsets-select-records-odbc

NOTENOTE

CRecordset::IsFieldNullable

BOOL IsFieldNullable(void* pv);

ParametersParameters

RemarksRemarks

NOTENOTE

SetFieldNull(NULL);

SetFieldNull(&m_strParam);

CRecordset::IsOpen

This member function is not applicable on recordsets that are using bulk row fetching. If you have implemented bulk
row fetching, then IsFieldNull will always return FALSE and will result in a failed assertion. For more information
about bulk row fetching, see the article Recordset: Fetching Records in Bulk (ODBC).

IsFieldNull is implemented through DoFieldExchange.

Returns nonzero if the specified field in the current record can be set to Null (having no value).

pv
A pointer to the field data member whose status you want to check, or NULL to determine if any of the fields
can be set to a Null value.

Call this member function to determine whether the specified field data member is "nullable" (can be set to a
Null value; C++ NULL is not the same as Null, which, in database terminology, means "having no value").

If you have implemented bulk row fetching, you cannot call IsFieldNullable . Instead, call the GetODBCFieldInfo
member function to determine whether a field can be set to a Null value. Note that you can always call
GetODBCFieldInfo , regardless of whether you have implemented bulk row fetching. For more information about bulk

row fetching, see the article Recordset: Fetching Records in Bulk (ODBC).

A field that cannot be Null must have a value. If you attempt to set a such a field to Null when adding or
updating a record, the data source rejects the addition or update, and Update will throw an exception. The
exception occurs when you call Update , not when you call SetFieldNull.

Using NULL for the first argument of the function will apply the function only to outputColumn fields, not
param fields. For instance, the call

will set only outputColumn fields to NULL; param fields will be unaffected.

To work on param fields, you must supply the actual address of the individual param you want to work on,
such as:

This means you cannot set all param fields to NULL, as you can with outputColumn fields.

IsFieldNullable is implemented through DoFieldExchange.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

BOOL IsOpen() const;

Return ValueReturn Value

CRecordset::m_hstmt

RemarksRemarks

C a u t i o nC a u t i o n

CRecordset::m_nFields

RemarksRemarks

C a u t i o nC a u t i o n

ExampleExample

CRecordset::m_nParams

RemarksRemarks

Determines if the recordset is already open.

Nonzero if the recordset object's Open or Requery member function has previously been called and the
recordset has not been closed; otherwise 0.

Contains a handle to the ODBC statement data structure, of type HSTMT, associated with the recordset.

Each query to an ODBC data source is associated with an HSTMT.

Do not use m_hstmt before Open has been called.

Normally you do not need to access the HSTMT directly, but you might need it for direct execution of SQL
statements. The ExecuteSQL member function of class CDatabase provides an example of using m_hstmt .

Contains the number of field data members in the recordset class; that is, the number of columns selected by
the recordset from the data source.

The constructor for the recordset class must initialize m_nFields with the correct number. If you have not
implemented bulk row fetching, ClassWizard writes this initialization for you when you use it to declare your
recordset class. You can also write it manually.

The framework uses this number to manage interaction between the field data members and the
corresponding columns of the current record on the data source.

This number must correspond to the number of "output columns" registered in DoFieldExchange or
DoBulkFieldExchange after a call to SetFieldType with the parameter CFieldExchange::outputColumn .

You can bind columns dynamically, as explained in the article "Recordset: Dynamically Binding Data
Columns." If you do so, you must increase the count in m_nFields to reflect the number of RFX or Bulk RFX
function calls in your DoFieldExchange or DoBulkFieldExchange member function for the dynamically bound
columns.

For more information, see the articles Recordset: Dynamically Binding Data Columns (ODBC) and Recordset:
Fetching Records in Bulk (ODBC).

See the article Record Field Exchange: Using RFX.

Contains the number of parameter data members in the recordset class; that is, the number of parameters
passed with the recordset's query.

If your recordset class has any parameter data members, the constructor for the class must initialize

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-dynamically-binding-data-columns-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-using-rfx

C a u t i o nC a u t i o n

ExampleExample

CRecordset::m_pDatabase

RemarksRemarks

CRecordset::m_strFilter

RemarksRemarks

ExampleExample

m_nParams with the correct number. The value of m_nParams defaults to 0. If you add parameter data
members (which you must do manually) you must also manually add an initialization in the class constructor
to reflect the number of parameters (which must be at least as large as the number of '' placeholders in your
m_strFilter or m_strSort string).

The framework uses this number when it parameterizes the recordset's query.

This number must correspond to the number of "params" registered in DoFieldExchange or
DoBulkFieldExchange after a call to SetFieldType with a parameter value of CFieldExchange::inputParam ,
CFieldExchange::param , CFieldExchange::outputParam , or CFieldExchange::inoutParam .

See the articles Recordset: Parameterizing a Recordset (ODBC) and Record Field Exchange: Using RFX.

Contains a pointer to the CDatabase object through which the recordset is connected to a data source.

This variable is set in two ways. Typically, you pass a pointer to an already connected CDatabase object when
you construct the recordset object. If you pass NULL instead, CRecordset creates a CDatabase object for you
and connects it. In either case, CRecordset stores the pointer in this variable.

Normally you will not directly need to use the pointer stored in m_pDatabase . If you write your own
extensions to CRecordset , however, you might need to use the pointer. For example, you might need the
pointer if you throw your own CDBException s. Or you might need it if you need to do something using the
same CDatabase object, such as running transactions, setting timeouts, or calling the ExecuteSQL member
function of class CDatabase to execute SQL statements directly.

After you construct the recordset object, but before you call its Open member function, use this data member
to store a CString containing a SQL WHERE clause.

The recordset uses this string to constrain (or filter) the records it selects during the Open or Requery call.
This is useful for selecting a subset of records, such as "all salespersons based in California" ("state = CA").
The ODBC SQL syntax for a WHERE clause is

WHERE search-condition

Note that you do not include the WHERE keyword in your string. The framework supplies it.

You can also parameterize your filter string by placing '' placeholders in it, declaring a parameter data
member in your class for each placeholder, and passing parameters to the recordset at run time. This lets you
construct the filter at run time. For more information, see the article Recordset: Parameterizing a Recordset
(ODBC).

For more information about SQL WHERE clauses, see the article SQL. For more information about selecting
and filtering records, see the article Recordset: Filtering Records (ODBC).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-parameterizing-a-recordset-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-using-rfx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-parameterizing-a-recordset-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/sql
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-filtering-records-odbc

CCustomer rsCustSet(&m_dbCust);

// Set the filter
rsCustSet.m_strFilter = _T("L_Name = 'Flanders'");

// Run the filtered query
rsCustSet.Open(CRecordset::snapshot, _T("Customer"));

CRecordset::m_strSort

RemarksRemarks

ExampleExample

CCustomer rsCustSet(&m_dbCust);

// Set the sort string
rsCustSet.m_strSort = _T("L_Name, ContactFirstName");

// Run the sorted query
rsCustSet.Open(CRecordset::snapshot, _T("Customer"));

CRecordset::Move

virtual void Move(
 long nRows,
 WORD wFetchType = SQL_FETCH_RELATIVE);

ParametersParameters

After you construct the recordset object, but before you call its Open member function, use this data member
to store a CString containing a SQL ORDER BY clause.

The recordset uses this string to sort the records it selects during the Open or Requery call. You can use this
feature to sort a recordset on one or more columns. The ODBC SQL syntax for an ORDER BY clause is

ORDER BY sort-specification [, sort-specification]...

where a sort-specification is an integer or a column name. You can also specify ascending or descending order
(the order is ascending by default) by appending "ASC" or "DESC" to the column list in the sort string. The
selected records are sorted first by the first column listed, then by the second, and so on. For example, you
might order a "Customers" recordset by last name, then first name. The number of columns you can list
depends on the data source. For more information, see the Windows SDK.

Note that you do not include the ORDER BY keyword in your string. The framework supplies it.

For more information about SQL clauses, see the article SQL. For more information about sorting records,
see the article Recordset: Sorting Records (ODBC).

Moves the current record pointer within the recordset, either forward or backward.

nRows
The number of rows to move forward or backward. Positive values move forward, toward the end of the
recordset. Negative values move backward, toward the beginning.

wFetchType
Determines the rowset that Move will fetch. For details, see Remarks.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/sql
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-sorting-records-odbc

RemarksRemarks

NOTENOTE

WFETCHTYPE FETCHED ROWSET EQUIVALENT MEMBER FUNCTION

SQL_FETCH_RELATIVE (the default
value)

The rowset starting nRows row(s)
from the first row in the current
rowset.

SQL_FETCH_NEXT The next rowset; nRows is ignored. MoveNext

SQL_FETCH_PRIOR The previous rowset; nRows is
ignored.

MovePrev

SQL_FETCH_FIRST The first rowset in the recordset;
nRows is ignored.

MoveFirst

SQL_FETCH_LAST The last complete rowset in the
recordset; nRows is ignored.

MoveLast

SQL_FETCH_ABSOLUTE If nRows > 0, the rowset starting
nRows row(s) from the beginning of
the recordset. If nRows < 0, the
rowset starting nRows row(s) from
the end of the recordset. If nRows =
0, then a beginning-of-file (BOF)
condition is returned.

SetAbsolutePosition

SQL_FETCH_BOOKMARK The rowset starting at the row whose
bookmark value corresponds to
nRows.

SetBookmark

If you pass a value of 0 for nRows, Move refreshes the current record; Move will end any current AddNew or
Edit mode, and will restore the current record's value before AddNew or Edit was called.

When you move through a recordset, you cannot skip deleted records. See CRecordset::IsDeleted for more information.
When you open a CRecordset with the skipDeletedRecords option set, Move asserts if the nRows parameter is 0.
This behavior prevents the refresh of rows that are deleted by other client applications using the same data. See the
dwOption parameter in Open for a description of skipDeletedRecords .

Move repositions the recordset by rowsets. Based on the values for nRows and wFetchType, Move fetches the
appropriate rowset and then makes the first record in that rowset the current record. If you have not
implemented bulk row fetching, then the rowset size is always 1. When fetching a rowset, Move directly calls
the CheckRowsetError member function to handle any errors resulting from the fetch.

Depending on the values you pass, Move is equivalent to other CRecordset member functions. In particular,
the value of wFetchType may indicate a member function that is more intuitive and often the preferred
method for moving the current record.

The following table lists the possible values for wFetchType, the rowset that Move will fetch based on
wFetchType and nRows, and any equivalent member function corresponding to wFetchType.

NOTENOTE

C a u t i o nC a u t i o n

NOTENOTE

NOTENOTE

ExampleExample

// rs is a CRecordset or a CRecordset-derived object

// Change the rowset size to 5
rs.SetRowsetSize(5);

// Open the recordset
rs.Open(CRecordset::dynaset, NULL, CRecordset::useMultiRowFetch);

// Move to the first record in the recordset
rs.MoveFirst();

// Move to the sixth record
rs.Move(5);
// Other equivalent ways to move to the sixth record:
rs.Move(6, SQL_FETCH_ABSOLUTE);
rs.SetAbsolutePosition(6);
// In this case, the sixth record is the first record in the next rowset,
// so the following are also equivalent:
rs.MoveFirst();
rs.Move(1, SQL_FETCH_NEXT);

rs.MoveFirst();
rs.MoveNext();

CRecordset::MoveFirst

void MoveFirst();

RemarksRemarks

For forward-only recordsets, Move is only valid with a value of SQL_FETCH_NEXT for wFetchType.

Calling Move throws an exception if the recordset has no records. To determine whether the recordset has
any records, call IsBOF and IsEOF.

If you have scrolled past the beginning or end of the recordset (IsBOF or IsEOF returns nonzero), calling a Move

function will possibly throw a CDBException . For example, if IsEOF returns nonzero and IsBOF does not, then
MoveNext will throw an exception, but MovePrev will not.

If you call Move while the current record is being updated or added, the updates are lost without warning.

For more information about recordset navigation, see the articles Recordset: Scrolling (ODBC) and Recordset:
Bookmarks and Absolute Positions (ODBC). For more information about bulk row fetching, see the article
Recordset: Fetching Records in Bulk (ODBC). For related information, see the ODBC API function
SQLExtendedFetch in the Windows SDK.

Makes the first record in the first rowset the current record.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-scrolling-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-bookmarks-and-absolute-positions-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

NOTENOTE

NOTENOTE

C a u t i o nC a u t i o n

NOTENOTE

ExampleExample

CRecordset::MoveLast

void MoveLast();

RemarksRemarks

NOTENOTE

NOTENOTE

C a u t i o nC a u t i o n

Regardless of whether bulk row fetching has been implemented, this will always be the first record in the
recordset.

You do not have to call MoveFirst immediately after you open the recordset. At that time, the first record (if
any) is automatically the current record.

This member function is not valid for forward-only recordsets.

When you move through a recordset, you cannot skip deleted records. See the IsDeleted member function for details.

Calling any of the Move functions throws an exception if the recordset has no records. To determine whether
the recordset has any records, call IsBOF and IsEOF .

If you call any of the Move functions while the current record is being updated or added, the updates are lost without
warning.

For more information about recordset navigation, see the articles Recordset: Scrolling (ODBC) and Recordset:
Bookmarks and Absolute Positions (ODBC). For more information about bulk row fetching, see the article
Recordset: Fetching Records in Bulk (ODBC).

See the example for IsBOF.

Makes the first record in the last complete rowset the current record.

If you have not implemented bulk row fetching, your recordset has a rowset size of 1, so MoveLast simply
moves to the last record in the recordset.

This member function is not valid for forward-only recordsets.

When you move through a recordset, you cannot skip deleted records. See the IsDeleted member function for details.

Calling any of the Move functions throws an exception if the recordset has no records. To determine whether
the recordset has any records, call IsBOF and IsEOF .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-scrolling-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-bookmarks-and-absolute-positions-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

NOTENOTE

ExampleExample

CRecordset::MoveNext

void MoveNext();

RemarksRemarks

NOTENOTE

C a u t i o nC a u t i o n

NOTENOTE

NOTENOTE

ExampleExample

CRecordset::MovePrev

If you call any of the Move functions while the current record is being updated or added, the updates are lost without
warning.

For more information about recordset navigation, see the articles Recordset: Scrolling (ODBC) and Recordset:
Bookmarks and Absolute Positions (ODBC). For more information about bulk row fetching, see the article
Recordset: Fetching Records in Bulk (ODBC).

See the example for IsBOF.

Makes the first record in the next rowset the current record.

If you have not implemented bulk row fetching, your recordset has a rowset size of 1, so MoveNext simply
moves to the next record.

When you move through a recordset, you cannot skip deleted records. See the IsDeleted member function for details.

Calling any of the Move functions throws an exception if the recordset has no records. To determine whether
the recordset has any records, call IsBOF and IsEOF .

It is also recommended that you call IsEOF before calling MoveNext . For example, if you have scrolled past the end
of the recordset, IsEOF will return nonzero; a subsequent call to MoveNext would throw an exception.

If you call any of the Move functions while the current record is being updated or added, the updates are lost without
warning.

For more information about recordset navigation, see the articles Recordset: Scrolling (ODBC) and Recordset:
Bookmarks and Absolute Positions (ODBC). For more information about bulk row fetching, see the article
Recordset: Fetching Records in Bulk (ODBC).

See the example for IsBOF.

Makes the first record in the previous rowset the current record.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-scrolling-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-bookmarks-and-absolute-positions-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-scrolling-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-bookmarks-and-absolute-positions-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

void MovePrev();

RemarksRemarks

NOTENOTE

NOTENOTE

C a u t i o nC a u t i o n

NOTENOTE

NOTENOTE

ExampleExample

CRecordset::OnSetOptions

virtual void OnSetOptions(HSTMT hstmt);

ParametersParameters

RemarksRemarks

If you have not implemented bulk row fetching, your recordset has a rowset size of 1, so MovePrev simply
moves to the previous record.

This member function is not valid for forward-only recordsets.

When you move through a recordset, you cannot skip deleted records. See the IsDeleted member function for details.

Calling any of the Move functions throws an exception if the recordset has no records. To determine whether
the recordset has any records, call IsBOF and IsEOF .

It is also recommended that you call IsBOF before calling MovePrev . For example, if you have scrolled ahead of the
beginning of the recordset, IsBOF will return nonzero; a subsequent call to MovePrev would throw an exception.

If you call any of the Move functions while the current record is being updated or added, the updates are lost without
warning.

For more information about recordset navigation, see the articles Recordset: Scrolling (ODBC) and Recordset:
Bookmarks and Absolute Positions (ODBC). For more information about bulk row fetching, see the article
Recordset: Fetching Records in Bulk (ODBC).

See the example for IsBOF.

Called to set options (used on selection) for the specified ODBC statement.

hstmt
The HSTMT of the ODBC statement whose options are to be set.

Call OnSetOptions to set options (used on selection) for the specified ODBC statement. The framework calls
this member function to set initial options for the recordset. OnSetOptions determines the data source's
support for scrollable cursors and for cursor concurrency and sets the recordset's options accordingly.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-scrolling-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-bookmarks-and-absolute-positions-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

CRecordset::OnSetUpdateOptions

virtual void OnSetUpdateOptions(HSTMT hstmt);

ParametersParameters

RemarksRemarks

CRecordset::Open

virtual BOOL Open(
 UINT nOpenType = AFX_DB_USE_DEFAULT_TYPE,
 LPCTSTR lpszSQL = NULL,
 DWORD dwOptions = none);

ParametersParameters

(Whereas OnSetOptions is used for selection operations, OnSetUpdateOptions is used for update operations.)

Override OnSetOptions to set options specific to the driver or the data source. For example, if your data
source supports opening for exclusive access, you might override OnSetOptions to take advantage of that
ability.

For more information about cursors, see the article ODBC.

Called to set options (used on update) for the specified ODBC statement.

hstmt
The HSTMT of the ODBC statement whose options are to be set.

Call OnSetUpdateOptions to set options (used on update) for the specified ODBC statement. The framework
calls this member function after it creates an HSTMT to update records in a recordset. (Whereas
OnSetOptions is used for selection operations, OnSetUpdateOptions is used for update operations.)
OnSetUpdateOptions determines the data source's support for scrollable cursors and for cursor concurrency

and sets the recordset's options accordingly.

Override OnSetUpdateOptions to set options of an ODBC statement before that statement is used to access a
database.

For more information about cursors, see the article ODBC.

Opens the recordset by retrieving the table or performing the query that the recordset represents.

nOpenType
Accept the default value, AFX_DB_USE_DEFAULT_TYPE, or use one of the following values from the
enum OpenType :

CRecordset::dynaset A recordset with bi-directional scrolling. The membership and ordering of the
records are determined when the recordset is opened, but changes made by other users to the data
values are visible following a fetch operation. Dynasets are also known as keyset-driven recordsets.

CRecordset::snapshot A static recordset with bi-directional scrolling. The membership and ordering of
the records are determined when the recordset is opened; the data values are determined when the
records are fetched. Changes made by other users are not visible until the recordset is closed and then
reopened.

CRecordset::dynamic A recordset with bi-directional scrolling. Changes made by other users to the
membership, ordering, and data values are visible following a fetch operation. Note that many ODBC

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/odbc-basics
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/odbc-basics

C a u t i o nC a u t i o n

NOTENOTE

drivers do not support this type of recordset.

CRecordset::forwardOnly A read-only recordset with only forward scrolling.

For CRecordset , the default value is CRecordset::snapshot . The default-value mechanism allows the
Visual C++ wizards to interact with both ODBC CRecordset and DAO CDaoRecordset , which have
different defaults.

For more information about these recordset types, see the article Recordset (ODBC). For related information,
see the article "Using Block and Scrollable Cursors" in the Windows SDK.

If the requested type is not supported, the framework throws an exception.

lpszSQL
A string pointer containing one of the following:

A NULL pointer.

The name of a table.

A SQL SELECT statement (optionally with a SQL WHERE or ORDER BY clause).

A CALL statement specifying the name of a predefined query (stored procedure). Be careful that you
do not insert whitespace between the curly brace and the CALL keyword.

For more information about this string, see the table and the discussion of ClassWizard's role under Remarks.

The order of the columns in your result set must match the order of the RFX or Bulk RFX function calls in your
DoFieldExchange or DoBulkFieldExchange function override.

dwOptions
A bitmask which can specify a combination of the values listed below. Some of these are mutually exclusive.
The default value is none.

CRecordset::none No options set. This parameter value is mutually exclusive with all other values. By
default, the recordset can be updated with Edit or Delete and allows appending new records with
AddNew. Updatability depends on the data source as well as on the nOpenType option you specify.
Optimization for bulk additions is not available. Bulk row fetching will not be implemented. Deleted
records will not be skipped during recordset navigation. Bookmarks are not available. Automatic dirty
field checking is implemented.

CRecordset::appendOnly Do not allow Edit or Delete on the recordset. Allow AddNew only. This
option is mutually exclusive with CRecordset::readOnly .

CRecordset::readOnly Open the recordset as read-only. This option is mutually exclusive with
CRecordset::appendOnly .

CRecordset::optimizeBulkAdd Use a prepared SQL statement to optimize adding many records at one
time. Applies only if you are not using the ODBC API function SQLSetPos to update the recordset. The
first update determines which fields are marked dirty. This option is mutually exclusive with
CRecordset::useMultiRowFetch .

CRecordset::useMultiRowFetch Implement bulk row fetching to allow multiple rows to be retrieved in a
single fetch operation. This is an advanced feature designed to improve performance; however, bulk
record field exchange is not supported by ClassWizard. This option is mutually exclusive with

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-odbc

Return ValueReturn Value

RemarksRemarks

CRecordset::optimizeBulkAdd . Note that if you specify CRecordset::useMultiRowFetch , then the option
CRecordset::noDirtyFieldCheck will be turned on automatically (double buffering will not be available);

on forward-only recordsets, the option CRecordset::useExtendedFetch will be turned on automatically.
For more information about bulk row fetching, see the article Recordset: Fetching Records in Bulk
(ODBC).

CRecordset::skipDeletedRecords Skip all deleted records when navigating through the recordset. This
will slow performance in certain relative fetches. This option is not valid on forward-only recordsets. If
you call Move with the nRows parameter set to 0, and the CRecordset::skipDeletedRecords option set,
Move will assert. Note that CRecordset::skipDeletedRecords is similar to driver packing, which means

that deleted rows are removed from the recordset. However, if your driver packs records, then it will
skip only those records that you delete; it will not skip records deleted by other users while the
recordset is open. CRecordset::skipDeletedRecords will skip rows deleted by other users.

CRecordset::useBookmarks May use bookmarks on the recordset, if supported. Bookmarks slow data
retrieval but improve performance for data navigation. Not valid on forward-only recordsets. For more
information, see the article Recordset: Bookmarks and Absolute Positions (ODBC).

CRecordset::noDirtyFieldCheck Turn off automatic dirty field checking (double buffering). This will
improve performance; however, you must manually mark fields as dirty by calling the SetFieldDirty

and SetFieldNull member functions.Note that double buffering in class CRecordset is similar to
double buffering in class CDaoRecordset . However, in CRecordset , you cannot enable double buffering
on individual fields; you either enable it for all fields or disable it for all fields. Note that if you specify
the option CRecordset::useMultiRowFetch , then CRecordset::noDirtyFieldCheck will be turned on
automatically; however, SetFieldDirty and SetFieldNull cannot be used on recordsets that
implement bulk row fetching.

CRecordset::executeDirect Do not use a prepared SQL statement. For improved performance, specify
this option if the Requery member function will never be called.

CRecordset::useExtendedFetch Implement SQLExtendedFetch instead of SQLFetch . This is designed for
implementing bulk row fetching on forward-only recordsets. If you specify the option
CRecordset::useMultiRowFetch on a forward-only recordset, then CRecordset::useExtendedFetch will be

turned on automatically.

CRecordset::userAllocMultiRowBuffers The user will allocate storage buffers for the data. Use this
option in conjunction with CRecordset::useMultiRowFetch if you want to allocate your own storage;
otherwise, the framework will automatically allocate the necessary storage. For more information, see
the article Recordset: Fetching Records in Bulk (ODBC). Note that specifying
CRecordset::userAllocMultiRowBuffers without specifying CRecordset::useMultiRowFetch will result in a

failed assertion.

Nonzero if the CRecordset object was successfully opened; otherwise 0 if CDatabase::Open (if called) returns
0.

You must call this member function to run the query defined by the recordset. Before calling Open , you must
construct the recordset object.

This recordset's connection to the data source depends on how you construct the recordset before calling
Open . If you pass a CDatabase object to the recordset constructor that has not been connected to the data

source, this member function uses GetDefaultConnect to attempt to open the database object. If you pass
NULL to the recordset constructor, the constructor constructs a CDatabase object for you, and Open attempts
to connect the database object. For details on closing the recordset and the connection under these varying

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-bookmarks-and-absolute-positions-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

NOTENOTE

VALUE OF THE LPSZSQL PARAMETER RECORDS SELECTED ARE DETERMINED BY EXAMPLE

NULL The string returned by
GetDefaultSQL .

SQL table name All columns of the table-list in
DoFieldExchange or
DoBulkFieldExchange .

"Customer"

Predefined query (stored procedure)
name

The columns the query is defined to
return.

"{call OverDueAccts}"

SELECT column-list FROM table-list The specified columns from the
specified table(s).

"SELECT CustId, CustName FROM

Customer"

C a u t i o nC a u t i o n

ExampleExample

circumstances, see Close.

Access to a data source through a CRecordset object is always shared. Unlike the CDaoRecordset class, you cannot
use a CRecordset object to open a data source with exclusive access.

When you call Open , a query, usually a SQL SELECT statement, selects records based on criteria shown in
the following table.

Be careful that you do not insert extra whitespace in your SQL string. For example, if you insert whitespace
between the curly brace and the CALL keyword, MFC will misinterpret the SQL string as a table name and
incorporate it into a SELECT statement, which will result in an exception being thrown. Similarly, if your
predefined query uses an output parameter, do not insert whitespace between the curly brace and the ''
symbol. Finally, you must not insert whitespace before the curly brace in a CALL statement or before the
SELECT keyword in a SELECT statment.

The usual procedure is to pass NULL to Open ; in this case, Open calls GetDefaultSQL. If you are using a
derived CRecordset class, GetDefaultSQL gives the table name(s) you specified in ClassWizard. You can
instead specify other information in the lpszSQL parameter.

Whatever you pass, Open constructs a final SQL string for the query (the string may have SQL WHERE and
ORDER BY clauses appended to the lpszSQL string you passed) and then executes the query. You can
examine the constructed string by calling GetSQL after calling Open . For additional details about how the
recordset constructs a SQL statement and selects records, see the article Recordset: How Recordsets Select
Records (ODBC).

The field data members of your recordset class are bound to the columns of the data selected. If any records
are returned, the first record becomes the current record.

If you want to set options for the recordset, such as a filter or sort, specify these after you construct the
recordset object but before you call Open . If you want to refresh the records in the recordset after the
recordset is already open, call Requery.

For more information, including additional examples, see the articles Recordset (ODBC), Recordset: How
Recordsets Select Records (ODBC), and Recordset: Creating and Closing Recordsets (ODBC).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-how-recordsets-select-records-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-how-recordsets-select-records-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-creating-and-closing-recordsets-odbc

// rsSnap, rsLName, and rsDefault are CRecordset or CRecordset-derived
// objects

// Open rs using the default SQL statement, implement bookmarks, and turn
// off automatic dirty field checking
rsSnap.Open(CRecordset::snapshot, NULL, CRecordset::useBookmarks |
 CRecordset::noDirtyFieldCheck);

// Pass a complete SELECT statement and open as a dynaset
rsLName.Open(CRecordset::dynaset, _T("Select L_Name from Customer"));

// Accept all defaults
rsDefault.Open();

CRecordset::RefreshRowset

void RefreshRowset(
 WORD wRow,
 WORD wLockType = SQL_LOCK_NO_CHANGE);

ParametersParameters

RemarksRemarks

WLOCKTYPE DESCRIPTION

SQL_LOCK_NO_CHANGE (the default value) The driver or data source ensures that the row is in the
same locked or unlocked state as it was before
RefreshRowset was called.

SQL_LOCK_EXCLUSIVE The driver or data source locks the row exclusively. Not all
data sources support this type of lock.

SQL_LOCK_UNLOCK The driver or data source unlocks the row. Not all data
sources support this type of lock.

CRecordset::Requery

The following code examples show different forms of the Open call.

Updates the data and the status for a row in the current rowset.

wRow
The one-based position of a row in the current rowset. This value can range from zero to the size of the
rowset.

wLockType
A value indicating how to lock the row after it has been refreshed. For details, see Remarks.

If you pass a value of zero for wRow, then every row in the rowset will be refreshed.

To use RefreshRowset , you must have implemented bulk row fetching by specifying the
CRecordset::useMulitRowFetch option in the Open member function.

RefreshRowset calls the ODBC API function SQLSetPos . The wLockType parameter specifies the lock state of
the row after SQLSetPos has executed. The following table describes the possible values for wLockType.

For more information about SQLSetPos , see the Windows SDK. For more information about bulk row
fetching, see the article Recordset: Fetching Records in Bulk (ODBC).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

CRecordset::Requery

virtual BOOL Requery();

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

ExampleExample

CCustomer rsCustSet(&m_dbCust);

// Open the recordset
rsCustSet.Open();

// Use the recordset ...

// Set the sort order and Requery the recordset
rsCustSet.m_strSort = _T("L_Name, ContactFirstName");
if(!rsCustSet.CanRestart())
 return; // Unable to requery

if(!rsCustSet.Requery())
 // Requery failed, so take action
 AfxMessageBox(_T("Requery failed!"));

CRecordset::SetAbsolutePosition

void SetAbsolutePosition(long nRows);

ParametersParameters

Rebuilds (refreshes) a recordset.

Nonzero if the recordset was successfully rebuilt; otherwise 0.

If any records are returned, the first record becomes the current record.

In order for the recordset to reflect the additions and deletions that you or other users are making to the data
source, you must rebuild the recordset by calling Requery . If the recordset is a dynaset, it automatically
reflects updates that you or other users make to its existing records (but not additions). If the recordset is a
snapshot, you must call Requery to reflect edits by other users as well as additions and deletions.

For either a dynaset or a snapshot, call Requery any time you want to rebuild the recordset using a new filter
or sort, or new parameter values. Set the new filter or sort property by assigning new values to m_strFilter

and m_strSort before calling Requery . Set new parameters by assigning new values to parameter data
members before calling Requery . If the filter and sort strings are unchanged, you can reuse the query, which
improves performance.

If the attempt to rebuild the recordset fails, the recordset is closed. Before you call Requery , you can
determine whether the recordset can be requeried by calling the CanRestart member function. CanRestart

does not guarantee that Requery will succeed.

Call Requery only after you have called Open.

This example rebuilds a recordset to apply a different sort order.

Positions the recordset on the record corresponding to the specified record number.

RemarksRemarks

NOTENOTE

NOTENOTE

CRecordset::SetBookmark

void SetBookmark(const CDBVariant& varBookmark);

ParametersParameters

RemarksRemarks

NOTENOTE

nRows
The one-based ordinal position for the current record in the recordset.

SetAbsolutePosition moves the current record pointer based on this ordinal position.

This member function is not valid on forward-only recordsets.

For ODBC recordsets, an absolute position setting of 1 refers to the first record in the recordset; a setting of 0
refers to the beginning-of-file (BOF) position.

You can also pass negative values to SetAbsolutePosition . In this case the recordset's position is evaluated
from the end of the recordset. For example, SetAbsolutePosition(-1) moves the current record pointer to
the last record in the recordset.

Absolute position is not intended to be used as a surrogate record number. Bookmarks are still the recommended way
of retaining and returning to a given position, since a record's position changes when preceding records are deleted. In
addition, you cannot be assured that a given record will have the same absolute position if the recordset is re-created
again because the order of individual records within a recordset is not guaranteed unless it is created with a SQL
statement using an ORDER BY clause.

For more information about recordset navigation and bookmarks, see the articles Recordset: Scrolling
(ODBC) and Recordset: Bookmarks and Absolute Positions (ODBC).

Positions the recordset on the record containing the specified bookmark.

varBookmark
A reference to a CDBVariant object containing the bookmark value for a specific record.

To determine if bookmarks are supported on the recordset, call CanBookmark. To make bookmarks available
if they are supported, you must set the CRecordset::useBookmarks option in the dwOptions parameter of the
Open member function.

If bookmarks are unsupported or unavailable, calling SetBookmark will result in an exception being thrown.
Bookmarks are not supported on forward-only recordsets.

To first retrieve the bookmark for the current record, call GetBookmark, which saves the bookmark value to a
CDBVariant object. Later, you can return to that record by calling SetBookmark using the saved bookmark

value.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-scrolling-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-bookmarks-and-absolute-positions-odbc

NOTENOTE

CRecordset::SetFieldDirty

void SetFieldDirty(void* pv, BOOL bDirty = TRUE);

ParametersParameters

RemarksRemarks

NOTENOTE

C a u t i o nC a u t i o n

SetFieldNull(NULL);

After certain recordset operations, you should check the bookmark persistence before calling SetBookmark . For
example, if you retrieve a bookmark with GetBookmark and then call Requery , the bookmark may no longer be valid.
Call CDatabase::GetBookmarkPersistence to check whether you can safely call SetBookmark .

For more information about bookmarks and recordset navigation, see the articles Recordset: Bookmarks and
Absolute Positions (ODBC) and Recordset: Scrolling (ODBC).

Flags a field data member of the recordset as changed or as unchanged.

pv
Contains the address of a field data member in the recordset or NULL. If NULL, all field data members in the
recordset are flagged. (C++ NULL is not the same as Null in database terminology, which means "having no
value.")

bDirty
TRUE if the field data member is to be flagged as "dirty" (changed). Otherwise FALSE if the field data
member is to be flagged as "clean" (unchanged).

Marking fields as unchanged ensures the field is not updated and results in less SQL traffic.

This member function is not applicable on recordsets that are using bulk row fetching. If you have implemented bulk
row fetching, then SetFieldDirty will result in a failed assertion. For more information about bulk row fetching, see
the article Recordset: Fetching Records in Bulk (ODBC).

The framework marks changed field data members to ensure they will be written to the record on the data
source by the record field exchange (RFX) mechanism. Changing the value of a field generally sets the field
dirty automatically, so you will seldom need to call SetFieldDirty yourself, but you might sometimes want to
ensure that columns will be explicitly updated or inserted regardless of what value is in the field data member.

Call this member function only after you have called Edit or AddNew.

Using NULL for the first argument of the function will apply the function only to outputColumn fields, not
param fields. For instance, the call

will set only outputColumn fields to NULL; param fields will be unaffected.

To work on param fields, you must supply the actual address of the individual param you want to work on,
such as:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-bookmarks-and-absolute-positions-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-scrolling-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

SetFieldNull(&m_strParam);

CRecordset::SetFieldNull

void SetFieldNull(void* pv, BOOL bNull = TRUE);

ParametersParameters

RemarksRemarks

NOTENOTE

C a u t i o nC a u t i o n

SetFieldNull(NULL);

SetFieldNull(&m_strParam);

This means you cannot set all param fields to NULL, as you can with outputColumn fields.

Flags a field data member of the recordset as Null (specifically having no value) or as non-Null.

pv
Contains the address of a field data member in the recordset or NULL. If NULL, all field data members in the
recordset are flagged. (C++ NULL is not the same as Null in database terminology, which means "having no
value.")

bNull
Nonzero if the field data member is to be flagged as having no value (Null). Otherwise 0 if the field data
member is to be flagged as non-Null.

When you add a new record to a recordset, all field data members are initially set to a Null value and flagged
as "dirty" (changed). When you retrieve a record from a data source, its columns either already have values or
are Null.

Do not call this member function on recordsets that are using bulk row fetching. If you have implemented bulk row
fetching, calling SetFieldNull results in a failed assertion. For more information about bulk row fetching, see the
article Recordset: Fetching Records in Bulk (ODBC).

If you specifically wish to designate a field of the current record as not having a value, call SetFieldNull with
bNull set to TRUE to flag it as Null. If a field was previously marked Null and you now want to give it a value,
simply set its new value. You do not have to remove the Null flag with SetFieldNull . To determine whether
the field is allowed to be Null, call IsFieldNullable .

Call this member function only after you have called Edit or AddNew.

Using NULL for the first argument of the function will apply the function only to outputColumn fields, not
param fields. For instance, the call

will set only outputColumn fields to NULL; param fields will be unaffected.

To work on param fields, you must supply the actual address of the individual param you want to work on,
such as:

This means you cannot set all param fields to NULL, as you can with outputColumn fields.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

NOTENOTE

CRecordset::SetLockingMode

void SetLockingMode(UINT nMode);

ParametersParameters

RemarksRemarks

CRecordset::SetParamNull

void SetParamNull(
 int nIndex,
 BOOL bNull = TRUE);

ParametersParameters

RemarksRemarks

CRecordset::SetRowsetCursorPosition

When setting parameters to Null, a call to SetFieldNull before the recordset is opened results in an assertion. In this
case, call SetParamNull.

SetFieldNull is implemented through DoFieldExchange.

Sets the locking mode to "optimistic" locking (the default) or "pessimistic" locking. Determines how records
are locked for updates.

nMode
Contains one of the following values from the enum LockMode :

optimistic Optimistic locking locks the record being updated only during the call to Update .

pessimistic Pessimistic locking locks the record as soon as Edit is called and keeps it locked until the
Update call completes or you move to a new record.

Call this member function if you need to specify which of two record-locking strategies the recordset is using
for updates. By default, the locking mode of a recordset is optimistic . You can change that to a more
cautious pessimistic locking strategy. Call SetLockingMode after you construct and open the recordset object
but before you call Edit .

Flags a parameter as Null (specifically having no value) or as non-Null.

nIndex
The zero-based index of the parameter.

bNull
If TRUE (the default value), the parameter is flagged as Null. Otherwise, the parameter is flagged as non-Null.

Unlike SetFieldNull, you can call SetParamNull before you have opened the recordset.

SetParamNull is typically used with predefined queries (stored procedures).

Moves the cursor to a row within the current rowset.

void SetRowsetCursorPosition(WORD wRow, WORD wLockType = SQL_LOCK_NO_CHANGE);

ParametersParameters

RemarksRemarks

WLOCKTYPE DESCRIPTION

SQL_LOCK_NO_CHANGE (the default value) The driver or data source ensures that the row is in the
same locked or unlocked state as it was before
SetRowsetCursorPosition was called.

SQL_LOCK_EXCLUSIVE The driver or data source locks the row exclusively. Not all
data sources support this type of lock.

SQL_LOCK_UNLOCK The driver or data source unlocks the row. Not all data
sources support this type of lock.

CRecordset::SetRowsetSize

virtual void SetRowsetSize(DWORD dwNewRowsetSize);

ParametersParameters

RemarksRemarks

wRow
The one-based position of a row in the current rowset. This value can range from 1 to the size of the rowset.

wLockType
Value indicating how to lock the row after it has been refreshed. For details, see Remarks.

When implementing bulk row fetching, records are retrieved by rowsets, where the first record in the fetched
rowset is the current record. In order to make another record within the rowset the current record, call
SetRowsetCursorPosition . For example, you can combine SetRowsetCursorPosition with the GetFieldValue

member function to dynamically retrieve the data from any record of your recordset.

To use SetRowsetCursorPosition , you must have implemented bulk row fetching by specifying the
CRecordset::useMultiRowFetch option of the dwOptions parameter in the Open member function.

SetRowsetCursorPosition calls the ODBC API function SQLSetPos . The wLockType parameter specifies the
lock state of the row after SQLSetPos has executed. The following table describes the possible values for
wLockType.

For more information about SQLSetPos , see the Windows SDK. For more information about bulk row
fetching, see the article Recordset: Fetching Records in Bulk (ODBC).

Specifies the number of records you wish to retrieve during a fetch.

dwNewRowsetSize
The number of rows to retrieve during a given fetch.

This virtual member function specifies how many rows you wish to retrieve during a single fetch when using
bulk row fetching. To implement bulk row fetching, you must set the CRecordset::useMultiRowFetch option in
the dwOptions parameter of the Open member function.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc

NOTENOTE

NOTENOTE

CRecordset::Update

virtual BOOL Update();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

C a u t i o nC a u t i o n

Calling SetRowsetSize without implementing bulk row fetching will result in a failed assertion.

Call SetRowsetSize before calling Open to initially set the rowset size for the recordset. The default rowset
size when implementing bulk row fetching is 25.

Use caution when calling SetRowsetSize . If you are manually allocating storage for the data (as specified by the
CRecordset::userAllocMultiRowBuffers option of the dwOptions parameter in Open), you should check whether

you need to reallocate these storage buffers after you call SetRowsetSize , but before you perform any cursor
navigation operation.

To obtain the current setting for the rowset size, call GetRowsetSize.

For more information about bulk row fetching, see the article Recordset: Fetching Records in Bulk (ODBC).

Completes an AddNew or Edit operation by saving the new or edited data on the data source.

Nonzero if one record was successfully updated; otherwise 0 if no columns have changed. If no records were
updated, or if more than one record was updated, an exception is thrown. An exception is also thrown for any
other failure on the data source.

Call this member function after a call to the AddNew or Edit member function. This call is required to
complete the AddNew or Edit operation.

If you have implemented bulk row fetching, you cannot call Update . This will result in a failed assertion. Although class
CRecordset does not provide a mechanism for updating bulk rows of data, you can write your own functions by

using the ODBC API function SQLSetPos . For more information about bulk row fetching, see the article Recordset:
Fetching Records in Bulk (ODBC).

Both AddNew and Edit prepare an edit buffer in which the added or edited data is placed for saving to the
data source. Update saves the data. Only those fields marked or detected as changed are updated.

If the data source supports transactions, you can make the Update call (and its corresponding AddNew or
Edit call) part of a transaction. For more information about transactions, see the article Transaction (ODBC).

If you call Update without first calling either AddNew or Edit , Update throws a CDBException . If you call
AddNew or Edit , you must call Update before you call a Move operation or before you close either the

recordset or the data source connection. Otherwise, your changes are lost without notification.

For details on handling Update failures, see the article Recordset: How Recordsets Update Records (ODBC).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-how-recordsets-update-records-odbc

ExampleExample

See also

See the article Transaction: Performing a Transaction in a Recordset (ODBC).

CObject Class
Hierarchy Chart
CDatabase Class
CRecordView Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/transaction-performing-a-transaction-in-a-recordset-odbc

CRecordView Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class AFX_NOVTABLE CRecordView : public CFormView

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CRecordView::CRecordView Constructs a CRecordView object.

Public MethodsPublic Methods

NAME DESCRIPTION

CRecordView::IsOnFirstRecord Returns nonzero if the current record is the first record in
the associated recordset.

CRecordView::IsOnLastRecord Returns nonzero if the current record is the last record in
the associated recordset.

CRecordView::OnGetRecordset Returns a pointer to an object of a class derived from
CRecordset . ClassWizard overrides this function for you

and creates the recordset if necessary.

CRecordView::OnMove

Protected MethodsProtected Methods

NAME DESCRIPTION

CRecordView::OnMove If the current record has changed, updates it on the data
source, then moves to the specified record (next, previous,
first, or last).

Remarks

A view that displays database records in controls.

The view is a form view directly connected to a CRecordset object. The view is created from a dialog
template resource and displays the fields of the CRecordset object in the dialog template's controls. The
CRecordView object uses dialog data exchange (DDX) and record field exchange (RFX) to automate the

movement of data between the controls on the form and the fields of the recordset. CRecordView also
supplies a default implementation for moving to the first, next, previous, or last record and an interface for
updating the record currently on view.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/crecordview-class.md

NOTENOTE

Inheritance Hierarchy

Requirements

CRecordView::CRecordView

If you are working with the Data Access Objects (DAO) classes rather than the Open Database Connectivity (ODBC)
classes, use class CDaoRecordView instead. For more information, see the article Overview: Database Programming.

The most common way to create your record view is with the Application Wizard. Tge Application Wizard
creates both the record view class and its associated recordset class as part of your skeleton starter
application. If you don't create the record view class with the Application Wizard, you can create it later with
ClassWizard. If you simply need a single form, the Application Wizard approach is easier. ClassWizard lets
you decide to use a record view later in the development process. Using ClassWizard to create a record view
and a recordset separately and then connect them is the most flexible approach because it gives you more
control in naming the recordset class and its .H/.CPP files. This approach also lets you have multiple record
views on the same recordset class.

To make it easy for end-users to move from record to record in the record view, the Application Wizard
creates menu (and optionally toolbar) resources for moving to the first, next, previous, or last record. If you
create a record view class with ClassWizard, you need to create these resources yourself with the menu and
bitmap editors.

For information about the default implementation for moving from record to record, see IsOnFirstRecord

and IsOnLastRecord and the article Using a Record View.

CRecordView keeps track of the user's position in the recordset so that the record view can update the user
interface. When the user moves to either end of the recordset, the record view disables user interface objects
— such as menu items or toolbar buttons — for moving further in the same direction.

For more information about declaring and using your record view and recordset classes, see "Designing and
Creating a Record View" in the article Record Views. For more information about how record views work
and how to use them, see the article Using a Record View.

CObject

CCmdTarget

CWnd

CView

CScrollView

CFormView

CRecordView

Header: afxdb.h

When you create an object of a type derived from CRecordView , call either form of the constructor to initialize
the view object and identify the dialog resource on which the view is based.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/data-access-programming-mfc-atl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/using-a-record-view-mfc-data-access
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/using-a-record-view-mfc-data-access

explicit CRecordView(LPCTSTR lpszTemplateName);
explicit CRecordView(UINT nIDTemplate);

ParametersParameters

RemarksRemarks

NOTENOTE

NOTENOTE

ExampleExample

CMyRecordView::CMyRecordView()
 : CRecordView(CMyRecordView::IDD)
{
 m_pSet = NULL;
 // TODO: add construction code here

}

CRecordView::IsOnFirstRecord

BOOL IsOnFirstRecord();

Return ValueReturn Value

RemarksRemarks

lpszTemplateName
Contains a null-terminated string that is the name of a dialog template resource.

nIDTemplate
Contains the ID number of a dialog template resource.

You can either identify the resource by name (pass a string as the argument to the constructor) or by its ID
(pass an unsigned integer as the argument). Using a resource ID is recommended.

Your derived class must supply its own constructor. In the constructor of your derived class, call the constructor
CRecordView::CRecordView with the resource name or ID as an argument, as shown in the example below.

CRecordView::OnInitialUpdate calls UpdateData , which calls DoDataExchange . This initial call to
DoDataExchange connects CRecordView controls (indirectly) to CRecordset field data members created by

ClassWizard. These data members cannot be used until after you call the base class
CFormView::OnInitialUpdate member function.

If you use ClassWizard, the wizard defines an enum value CRecordView::IDD , specifies it in the class declaration, and
uses it in the member initialization list for the constructor.

Call this member function to determine whether the current record is the first record in the recordset object
associated with this record view.

Nonzero if the current record is the first record in the recordset; otherwise 0.

This function is useful for writing your own implementations of default command update handlers written by
ClassWizard.

CRecordView::IsOnLastRecord

BOOL IsOnLastRecord();

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

CRecordView::OnGetRecordset

virtual CRecordset* OnGetRecordset() = 0;

Return ValueReturn Value

RemarksRemarks

CRecordView::OnMove

virtual BOOL OnMove(UINT nIDMoveCommand);

ParametersParameters

If the user moves to the first record, the framework disables any user interface objects you have for moving
to the first or the previous record.

Call this member function to determine whether the current record is the last record in the recordset object
associated with this record view.

Nonzero if the current record is the last record in the recordset; otherwise 0.

This function is useful for writing your own implementations of the default command update handlers that
ClassWizard writes to support a user interface for moving from record to record.

The result of this function is reliable except that the view cannot detect the end of the recordset until the user
has moved past it. The user must move beyond the last record before the record view can tell that it must
disable any user interface objects for moving to the next or last record. If the user moves past the last record
and then moves back to the last record (or before it), the record view can track the user's position in the
recordset and disable user interface objects correctly. IsOnLastRecord is also unreliable after a call to the
implementation function OnRecordLast , which handles the ID_RECORD_LAST command, or
CRecordset::MoveLast .

Returns a pointer to the CRecordset -derived object associated with the record view.

A pointer to a CRecordset -derived object if the object was successfully created; otherwise a NULL pointer.

You must override this member function to construct or obtain a recordset object and return a pointer to it. If
you declare your record view class with ClassWizard, the wizard writes a default override for you.
ClassWizard's default implementation returns the recordset pointer stored in the record view if one exists. If
not, it constructs a recordset object of the type you specified with ClassWizard and calls its Open member
function to open the table or run the query, and then returns a pointer to the object.

For more information and examples, see the article Record Views: Using a Record View.

Call this member function to move to a different record in the recordset and display its fields in the controls
of the record view.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/using-a-record-view-mfc-data-access

Return ValueReturn Value

RemarksRemarks

C a u t i o nC a u t i o n

See also

nIDMoveCommand
One of the following standard command ID values:

ID_RECORD_FIRST Move to the first record in the recordset.

ID_RECORD_LAST Move to the last record in the recordset.

ID_RECORD_NEXT Move to the next record in the recordset.

ID_RECORD_PREV Move to the previous record in the recordset.

Nonzero if the move was successful; otherwise 0 if the move request was denied.

The default implementation calls the appropriate Move member function of the CRecordset object
associated with the record view.

By default, OnMove updates the current record on the data source if the user has changed it in the record
view.

The Application Wizard creates a menu resource with First Record, Last Record, Next Record, and Previous
Record menu items. If you select the Dockable Toolbar option, the Application Wizard also creates a toolbar
with buttons corresponding to these commands.

If you move past the last record in the recordset, the record view continues to display the last record. If you
move backward past the first record, the record view continues to display the first record.

Calling OnMove throws an exception if the recordset has no records. Call the appropriate user interface
update handler function — OnUpdateRecordFirst , OnUpdateRecordLast , OnUpdateRecordNext , or
OnUpdateRecordPrev — before the corresponding move operation to determine whether the recordset has

any records.

CFormView Class
Hierarchy Chart
CRecordset Class
CFormView Class

CRectTracker Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class CRectTracker

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRectTracker::CRectTracker Constructs a CRectTracker object.

Public MethodsPublic Methods

NAME DESCRIPTION

CRectTracker::AdjustRect Called when the rectangle is resized.

CRectTracker::Draw Renders the rectangle.

CRectTracker::DrawTrackerRect Called when drawing the border of a CRectTracker object.

CRectTracker::GetHandleMask Called to get the mask of a CRectTracker item's resize
handles.

CRectTracker::GetTrueRect Returns width and height of rectangle, including resize
handles.

CRectTracker::HitTest Returns the current position of the cursor related to the
CRectTracker object.

CRectTracker::NormalizeHit Normalizes a hit-test code.

CRectTracker::OnChangedRect Called when the rectangle has been resized or moved.

CRectTracker::SetCursor Sets the cursor, depending on its position over the rectangle.

CRectTracker::Track Allows the user to manipulate the rectangle.

CRectTracker::TrackRubberBand Allows the user to "rubber-band" the selection.

Public Data MembersPublic Data Members

Allows an item to be displayed, moved, and resized in different fashions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/crecttracker-class.md

NAME DESCRIPTION

CRectTracker::m_nHandleSize Determines size of resize handles.

CRectTracker::m_nStyle Current style(s) of the tracker.

CRectTracker::m_rect Current position (in pixels) of the rectangle.

CRectTracker::m_sizeMin Determines minimum rectangle width and height.

Remarks

Inheritance Hierarchy

Requirements

CRectTracker::AdjustRect

virtual void AdjustRect(
 int nHandle,
 LPRECT lpRect);

ParametersParameters

RemarksRemarks

CRectTracker does not have a base class.

Although the CRectTracker class is designed to allow the user to interact with OLE items by using a graphical
interface, its use is not restricted to OLE-enabled applications. It can be used anywhere such a user interface is
required.

CRectTracker borders can be solid or dotted lines. The item can be given a hatched border or overlaid with a
hatched pattern to indicate different states of the item. You can place eight resize handles on either the outside or
the inside border of the item. (For an explanation of the resize handles, see GetHandleMask.) Finally, a
CRectTracker allows you to change the orientation of an item during resizing.

To use CRectTracker , construct a CRectTracker object and specify which display states are initialized. You can
then use this interface to give the user visual feedback on the current status of the OLE item associated with the
CRectTracker object.

For more information on using CRectTracker , see the article Trackers.

CRectTracker

Header: afxext.h

Called by the framework when the tracking rectangle is resized by using a resize handle.

nHandle
Index of handle used.

lpRect
Pointer to the current size of the rectangle. (The size of a rectangle is given by its height and width.)

The default behavior of this function allows the rectangle's orientation to change only when Track and

CRectTracker::CRectTracker

CRectTracker();

CRectTracker(
 LPCRECT lpSrcRect,
 UINT nStyle);

ParametersParameters

RemarksRemarks

CRectTracker::Draw

void Draw(CDC* pDC) const;

ParametersParameters

RemarksRemarks

TrackRubberBand are called with inverting allowed.

Override this function to control the adjustment of the tracking rectangle during a dragging operation. One
method is to adjust the coordinates specified by lpRect before returning.

Special features that are not directly supported by CRectTracker , such as snap-to-grid or keep-aspect-ratio, can
be implemented by overriding this function.

Creates and initializes a CRectTracker object.

lpSrcRect
The coordinates of the rectangle object.

nStyle
Specifies the style of the CRectTracker object. The following styles are supported:

CRectTracker::solidLine Use a solid line for the rectangle border.

CRectTracker::dottedLine Use a dotted line for the rectangle border.

CRectTracker::hatchedBorder Use a hatched pattern for the rectangle border.

CRectTracker::resizeInside Resize handles located inside the rectangle.

CRectTracker::resizeOutside Resize handles located outside the rectangle.

CRectTracker::hatchInside Hatched pattern covers the entire rectangle.

The default constructor initializes the CRectTracker object with the values from lpSrcRect and initializes other
sizes to system defaults. If the object is created with no parameters, the m_rect and m_nStyle data members
are uninitialized.

Call this function to draw the rectangle's outer lines and inner region.

pDC
Pointer to the device context on which to draw.

The style of the tracker determines how the drawing is done. See the constructor for CRectTracker for more
information on the styles available.

CRectTracker::DrawTrackerRect

virtual void DrawTrackerRect(
 LPCRECT lpRect,
 CWnd* pWndClipTo,
 CDC* pDC,
 CWnd* pWnd);

ParametersParameters

RemarksRemarks

CRectTracker::GetHandleMask

virtual UINT GetHandleMask() const;

Return ValueReturn Value

RemarksRemarks

Called by the framework whenever the position of the tracker has changed while inside the Track or
TrackRubberBand member function.

lpRect
Pointer to the RECT that contains the rectangle to draw.

pWndClipTo
Pointer to the window to use in clipping the rectangle.

pDC
Pointer to the device context on which to draw.

pWnd
Pointer to the window on which the drawing will occur.

The default implementation makes a call to CDC::DrawFocusRect , which draws a dotted rectangle.

Override this function to provide different feedback during the tracking operation.

The framework calls this member function to retrieve the mask for a rectangle's resize handles.

The mask of a CRectTracker item's resize handles.

The resize handles appear on the sides and corners of the rectangle and allow the user to control the shape and
size of the rectangle.

A rectangle has 8 resize handles numbered 0-7. Each resize handle is represented by a bit in the mask; the value
of that bit is 2^ n, where n is the resize handle number. Bits 0-3 correspond to the corner resize handles, starting
at the top left moving clockwise. Bits 4-7 correspond to the side resize handles starting at the top moving
clockwise. The following illustration shows a rectangle's resize handles and their corresponding resize handle
numbers and values:

CRectTracker::GetTrueRect

void GetTrueRect(LPRECT lpTrueRect) const;

ParametersParameters

RemarksRemarks

CRectTracker::HitTest

int HitTest(CPoint point) const;

ParametersParameters

Return ValueReturn Value

CRectTracker::m_nHandleSize

The default implementation of GetHandleMask returns the mask of the bits so that the resize handles appear. If
the single bit is on, the corresponding resize handle will be drawn.

Override this member function to hide or show the indicated resize handles.

Call this function to retrieve the coordinates of the rectangle.

lpTrueRect
Pointer to the RECT structure that will contain the device coordinates of the CRectTracker object.

The dimensions of the rectangle include the height and width of any resize handles located on the outer border.
Upon returning, lpTrueRect is always a normalized rectangle in device coordinates.

Call this function to find out whether the user has grabbed a resize handle.

point
The point, in device coordinates, to test.

The value returned is based on the enumerated type CRectTracker::TrackerHit and can have one of the
following values:

CRectTracker::hitNothing -1

CRectTracker::hitTopLeft 0

CRectTracker::hitTopRight 1

CRectTracker::hitBottomRight 2

CRectTracker::hitBottomLeft 3

CRectTracker::hitTop 4

CRectTracker::hitRight 5

CRectTracker::hitBottom 6

CRectTracker::hitLeft 7

CRectTracker::hitMiddle 8

The size, in pixels, of the CRectTracker resize handles.

int m_nHandleSize;

RemarksRemarks

CRectTracker::m_rect

CRect m_rect;

CRectTracker::m_sizeMin

CSize m_sizeMin;

RemarksRemarks

CRectTracker::m_nStyle

UINT m_nStyle;

RemarksRemarks

CRectTracker::NormalizeHit

int NormalizeHit(int nHandle) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Initialized with the default system value.

The current position of the rectangle in client coordinates (pixels).

The minimum size of the rectangle.

Both default values, cx and cy , are calculated from the default system value for the border width. This data
member is used only by the AdjustRect member function.

Current style of the rectangle.

See CRectTracker::CRectTracker for a list of possible styles.

Call this function to convert a potentially inverted handle.

nHandle
Handle selected by the user.

The index of the normalized handle.

When CRectTracker::Track or CRectTracker::TrackRubberBand is called with inverting allowed, it is possible for
the rectangle to be inverted on the x-axis, the y-axis, or both. When this happens, HitTest will return handles
that are also inverted with respect to the rectangle. This is inappropriate for drawing cursor feedback because
the feedback depends on the screen position of the rectangle, not the portion of the rectangle data structure that
will be modified.

CRectTracker::OnChangedRect

virtual void OnChangedRect(const CRect& rectOld);

ParametersParameters

RemarksRemarks

CRectTracker::SetCursor

BOOL SetCursor(
 CWnd* pWnd,
 UINT nHitTest) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRectTracker::Track

BOOL Track(
 CWnd* pWnd,
 CPoint point,
 BOOL bAllowInvert = FALSE,
 CWnd* pWndClipTo = NULL);

ParametersParameters

Called by the framework whenever the tracker rectangle has changed during a call to Track .

rectOld
Contains the old device coordinates of the CRectTracker object.

At the time this function is called, all feedback drawn with DrawTrackerRect has been removed. The default
implementation of this function does nothing.

Override this function when you want to perform any actions after the rectangle has been resized.

Call this function to change the cursor shape while it is over the CRectTracker object's region.

pWnd
Points to the window that currently contains the cursor.

nHitTest
Results of the previous hit test, from the WM_SETCURSOR message.

Nonzero if the previous hit was over the tracker rectangle; otherwise 0.

Call this function from inside the function of your window that handles the WM_SETCURSOR message
(typically OnSetCursor).

Call this function to display the user interface for resizing the rectangle.

pWnd
The window object that contains the rectangle.

point
Device coordinates of the current mouse position relative to the client area.

Return ValueReturn Value

RemarksRemarks

CRectTracker::TrackRubberBand

BOOL TrackRubberBand(
 CWnd* pWnd,
 CPoint point,
 BOOL bAllowInvert = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

bAllowInvert
If TRUE, the rectangle can be inverted along the x-axis or y-axis; otherwise FALSE.

pWndClipTo
The window that drawing operations will be clipped to. If NULL, pWnd is used as the clipping rectangle.

If the ESC key is pressed, the tracking process is halted, the rectangle stored in the tracker is not altered, and 0 is
returned. If the change is committed, by moving the mouse and releasing the left mouse button, the new
position and/or size is recorded in the tracker's rectangle and nonzero is returned.

This is usually called from inside the function of your application that handles the WM_LBUTTONDOWN message
(typically OnLButtonDown).

This function will capture the mouse until the user releases the left mouse button, presses the ESC key, or
presses the right mouse button. As the user moves the mouse cursor, the feedback is updated by calling
DrawTrackerRect and OnChangedRect .

If bAllowInvert is TRUE, the tracking rectangle can be inverted on either the x-axis or y-axis.

Call this function to do rubber-band selection.

pWnd
The window object that contains the rectangle.

point
Device coordinates of the current mouse position relative to the client area.

bAllowInvert
If TRUE, the rectangle can be inverted along the x-axis or y-axis; otherwise FALSE.

Nonzero if the mouse has moved and the rectangle is not empty; otherwise 0.

It is usually called from inside the function of your application that handles the WM_LBUTTONDOWN message
(typically OnLButtonDown).

This function will capture the mouse until the user releases the left mouse button, presses the ESC key, or
presses the right mouse button. As the user moves the mouse cursor, the feedback is updated by calling
DrawTrackerRect and OnChangedRect .

Tracking is performed with a rubber-band-type selection from the lower-right handle. If inverting is allowed, the
rectangle can be sized by dragging either up and to the left or down and to the right.

MFC Sample TRACKER
MFC Sample DRAWCLI
Hierarchy Chart
COleResizeBar Class
CRect Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CRenderTarget Class
3/4/2019 • 17 minutes to read • Edit Online

Syntax
class CRenderTarget : public CObject;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRenderTarget::CRenderTarget Constructs a CRenderTarget object.

CRenderTarget::~CRenderTarget The destructor. Called when a render target object is being
destroyed.

Public MethodsPublic Methods

NAME DESCRIPTION

CRenderTarget::Attach Attaches existing render target interface to the object

CRenderTarget::BeginDraw Initiates drawing on this render target.

CRenderTarget::Clear Clears the drawing area to the specified color.

CRenderTarget::COLORREF_TO_D2DCOLOR Converts GDI color and alpha values to the D2D1_COLOR_F
object.

CRenderTarget::CreateCompatibleRenderTarget Creates a new bitmap render target for use during
intermediate offscreen drawing that is compatible with the
current render target .

CRenderTarget::Destroy Deletes one or more resources

CRenderTarget::Detach Detaches render target interface from the object

CRenderTarget::DrawBitmap Draws the formatted text described by the specified
IDWriteTextLayout object.

CRenderTarget::DrawEllipse Draws the outline of the specified ellipse using the specified
stroke style.

CRenderTarget::DrawGeometry Draws the outline of the specified geometry using the
specified stroke style.

A wrapper for ID2D1RenderTarget.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/crendertarget-class.md

CRenderTarget::DrawGlyphRun Draws the specified glyphs.

CRenderTarget::DrawLine Draws a line between the specified points using the specified
stroke style.

CRenderTarget::DrawRectangle Draws the outline of a rectangle that has the specified
dimensions and stroke style.

CRenderTarget::DrawRoundedRectangle Draws the outline of the specified rounded rectangle using
the specified stroke style.

CRenderTarget::DrawText Draws the specified text using the format information
provided by an IDWriteTextFormat object.

CRenderTarget::DrawTextLayout Draws the formatted text described by the specified
IDWriteTextLayout object.

CRenderTarget::EndDraw Ends drawing operations on the render target and indicates
the current error state and associated tags.

CRenderTarget::FillEllipse Paints the interior of the specified ellipse.

CRenderTarget::FillGeometry Paints the interior of the specified geometry.

CRenderTarget::FillMesh Paints the interior of the specified mesh.

CRenderTarget::FillOpacityMask Applies the opacity mask described by the specified bitmap to
a brush and uses that brush to paint a region of the render
target.

CRenderTarget::FillRectangle Paints the interior of the specified rectangle.

CRenderTarget::FillRoundedRectangle Paints the interior of the specified rounded rectangle.

CRenderTarget::Flush Executes all pending drawing commands.

CRenderTarget::GetAntialiasMode Retrieves the current antialiasing mode for nontext drawing
operations.

CRenderTarget::GetDpi Returns the render target's dots per inch (DPI)

CRenderTarget::GetMaximumBitmapSize Gets the maximum size, in device-dependent units (pixels), of
any one bitmap dimension supported by the render target

CRenderTarget::GetPixelFormat Retrieves the pixel format and alpha mode of the render
target

CRenderTarget::GetPixelSize Returns the size of the render target in device pixels

CRenderTarget::GetRenderTarget Returns ID2D1RenderTarget interface

NAME DESCRIPTION

CRenderTarget::GetSize Returns the size of the render target in device-independent
pixels

CRenderTarget::GetTags Gets the label for subsequent drawing operations.

CRenderTarget::GetTextAntialiasMode Gets the current antialiasing mode for text and glyph drawing
operations.

CRenderTarget::GetTextRenderingParams Retrieves the render target's current text rendering options.

CRenderTarget::GetTransform Applies the specified transform to the render target, replacing
the existing transformation. All subsequent drawing
operations occur in the transformed space.

CRenderTarget::IsSupported Indicates whether the render target supports the specified
properties

CRenderTarget::IsValid Checks resource validity

CRenderTarget::PopAxisAlignedClip Removes the last axis-aligned clip from the render target.
After this method is called, the clip is no longer applied to
subsequent drawing operations.

CRenderTarget::PopLayer Stops redirecting drawing operations to the layer that is
specified by the last PushLayer call.

CRenderTarget::PushAxisAlignedClip Removes the last axis-aligned clip from the render target.
After this method is called, the clip is no longer applied to
subsequent drawing operations.

CRenderTarget::PushLayer Adds the specified layer to the render target so that it
receives all subsequent drawing operations until PopLayer is
called.

CRenderTarget::RestoreDrawingState Sets the render target's drawing state to that of the specified
ID2D1DrawingStateBlock.

CRenderTarget::SaveDrawingState Saves the current drawing state to the specified
ID2D1DrawingStateBlock.

CRenderTarget::SetAntialiasMode Sets the antialiasing mode of the render target. The
antialiasing mode applies to all subsequent drawing
operations, excluding text and glyph drawing operations.

CRenderTarget::SetDpi Sets the dots per inch (DPI) of the render target.

CRenderTarget::SetTags Specifies a label for subsequent drawing operations.

CRenderTarget::SetTextAntialiasMode Specifies the antialiasing mode to use for subsequent text and
glyph drawing operations.

CRenderTarget::SetTextRenderingParams Specifies text rendering options to be applied to all
subsequent text and glyph drawing operations.

NAME DESCRIPTION

CRenderTarget::SetTransform Overloaded. Applies the specified transform to the render
target, replacing the existing transformation. All subsequent
drawing operations occur in the transformed space.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CRenderTarget::VerifyResource Verifies CD2DResource object validity; creates the object if it
didn't already exist.

Public OperatorsPublic Operators

NAME DESCRIPTION

CRenderTarget::operator ID2D1RenderTarget* Returns ID2D1RenderTarget interface

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CRenderTarget::m_lstResources A list of pointers to CD2DResource objects.

CRenderTarget::m_pRenderTarget A pointer to an ID2D1RenderTarget object.

CRenderTarget::m_pTextFormatDefault A pointer to CD2DTextFormat object that contains a default
text format.

Inheritance Hierarchy

Requirements

CRenderTarget::~CRenderTarget

virtual ~CRenderTarget();

CRenderTarget::Attach

void Attach(ID2D1RenderTarget* pRenderTarget);

ParametersParameters

CObject

CRenderTarget

Header: afxrendertarget.h

The destructor. Called when a render target object is being destroyed.

Attaches existing render target interface to the object

CRenderTarget::BeginDraw

void BeginDraw();

CRenderTarget::Clear

void Clear(D2D1_COLOR_F color);

ParametersParameters

CRenderTarget::COLORREF_TO_D2DCOLOR

static D2D1_COLOR_F COLORREF_TO_D2DCOLOR(
 COLORREF color,
 int nAlpha = 255);

ParametersParameters

Return ValueReturn Value

CRenderTarget::CreateCompatibleRenderTarget

BOOL CreateCompatibleRenderTarget(
 CBitmapRenderTarget& bitmapTarget,
 CD2DSizeF sizeDesired = CD2DSizeF(0., 0.),
 CD2DSizeU sizePixelDesired = CD2DSizeU(0, 0),
 D2D1_PIXEL_FORMAT* desiredFormat = NULL,
 D2D1_COMPATIBLE_RENDER_TARGET_OPTIONS options = D2D1_COMPATIBLE_RENDER_TARGET_OPTIONS_NONE);

ParametersParameters

pRenderTarget
Existing render target interface. Cannot be NULL

Initiates drawing on this render target.

Clears the drawing area to the specified color.

color
The color to which the drawing area is cleared.

Converts GDI color and alpha values to the D2D1_COLOR_F object.

color
RGB value.

nAlpha

D2D1_COLOR_F value.

Creates a new bitmap render target for use during intermediate offscreen drawing that is compatible with the
current render target .

bitmapTarget
When this method returns, contains the address of a pointer to a new bitmap render target. This parameter is
passed uninitialized.

Return ValueReturn Value

CRenderTarget::CRenderTarget

CRenderTarget();

CRenderTarget::Destroy

BOOL Destroy(BOOL bDeleteResources = TRUE);

ParametersParameters

Return ValueReturn Value

CRenderTarget::Detach

ID2D1RenderTarget* Detach ();

Return ValueReturn Value

CRenderTarget::DrawBitmap

sizeDesired
The desired size of the new render target in device-independent pixels if it should be different from the original
render target, or NULL. For more information, see the Remarks section.

sizePixelDesired
The desired size of the new render target in pixels if it should be different from the original render target, or
NULL. For more information, see the Remarks section.

desiredFormat
The desired pixel format and alpha mode of the new render target, or NULL. If the pixel format is set to
DXGI_FORMAT_UNKNOWN or if this parameter is null, the new render target uses the same pixel format as the
original render target. If the alpha mode is D2D1_ALPHA_MODE_UNKNOWN or this parameter is NULL, the
alpha mode of the new render target defaults to D2D1_ALPHA_MODE_PREMULTIPLIED. For information about
supported pixel formats, see Supported Pixel Formats and Alpha Modes.

options
A value that specifies whether the new render target must be compatible with GDI.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE.

Constructs a CRenderTarget object.

Deletes one or more resources

bDeleteResources
If bDeleteResources is TRUE, all resources located in m_lstResources will be automatically destroyed.

If the method succeeds, it returns TRUE. Otherwise, it returns FALSE

Detaches render target interface from the object

Pointer to detached render target interface.

Draws the formatted text described by the specified IDWriteTextLayout object.

void DrawBitmap(
 CD2DBitmap* pBitmap,
 const CD2DRectF& rectDest,
 float fOpacity = 1.0,
 D2D1_BITMAP_INTERPOLATION_MODE interpolationMode = D2D1_BITMAP_INTERPOLATION_MODE_LINEAR,
 const CD2DRectF* pRectSrc = NULL);

ParametersParameters

CRenderTarget::DrawEllipse

void DrawEllipse(
 const CD2DEllipse& ellipse,
 CD2DBrush* pBrush,
 FLOAT fStrokeWidth = 1.0,
 ID2D1StrokeStyle* strokeStyle = NULL);

ParametersParameters

CRenderTarget::DrawGeometry

pBitmap
The bitmap to render.

rectDest
The size and position, in device-independent pixels in the render target's coordinate space, of the area to which the
bitmap is drawn. If the rectangle is not well-ordered, nothing is drawn, but the render target does not enter an
error state.

fOpacity
A value between 0.0f and 1.0f, inclusive, that specifies an opacity value to apply to the bitmap; this value is
multiplied against the alpha values of the bitmap's contents.

interpolationMode
The interpolation mode to use if the bitmap is scaled or rotated by the drawing operation.

pRectSrc
The size and position, in device-independent pixels in the bitmap's coordinate space, of the area within the bitmap
to draw.

Draws the outline of the specified ellipse using the specified stroke style.

ellipse
The position and radius of the ellipse to draw, in device-independent pixels.

pBrush
The brush used to paint the ellipse's outline.

fStrokeWidth
The thickness of the ellipse's stroke. The stroke is centered on the ellipse's outline.

strokeStyle
The style of stroke to apply to the ellipse's outline, or NULL to paint a solid stroke.

Draws the outline of the specified geometry using the specified stroke style.

void DrawGeometry(
 CD2DGeometry* pGeometry,
 CD2DBrush* pBrush,
 FLOAT fStrokeWidth = 1.0,
 ID2D1StrokeStyle* strokeStyle = NULL);

ParametersParameters

CRenderTarget::DrawGlyphRun

void DrawGlyphRun(
 const CD2DPointF& ptBaseLineOrigin,
 const DWRITE_GLYPH_RUN& glyphRun,
 CD2DBrush* pForegroundBrush,
 DWRITE_MEASURING_MODE measuringMode = DWRITE_MEASURING_MODE_NATURAL);

ParametersParameters

CRenderTarget::DrawLine

void DrawLine(
 const CD2DPointF& ptFrom,
 const CD2DPointF& ptTo,
 CD2DBrush* pBrush,
 FLOAT fStrokeWidth = 1.0,
 ID2D1StrokeStyle* strokeStyle = NULL);

ParametersParameters

pGeometry
The geometry to draw.

pBrush
The brush used to paint the geometry's stroke.

fStrokeWidth
The thickness of the geometry's stroke. The stroke is centered on the geometry's outline.

strokeStyle
The style of stroke to apply to the geometry's outline, or NULL to paint a solid stroke.

Draws the specified glyphs.

ptBaseLineOrigin
The origin, in device-independent pixels, of the glyphs' baseline.

glyphRun
The glyphs to render.

pForegroundBrush
The brush used to paint the specified glyphs.

measuringMode
A value that indicates how glyph metrics are used to measure text when it is formatted. The default value is
DWRITE_MEASURING_MODE_NATURAL.

Draws a line between the specified points using the specified stroke style.

ptFrom

CRenderTarget::DrawRectangle

void DrawRectangle(
 const CD2DRectF& rect,
 CD2DBrush* pBrush,
 FLOAT fStrokeWidth = 1.0,
 ID2D1StrokeStyle* strokeStyle = NULL);

ParametersParameters

CRenderTarget::DrawRoundedRectangle

void DrawRoundedRectangle(
 const CD2DRoundedRect& rectRounded,
 CD2DBrush* pBrush,
 FLOAT fStrokeWidth = 1.0,
 ID2D1StrokeStyle* strokeStyle = NULL);

ParametersParameters

The start point of the line, in device-independent pixels.

ptTo
The end point of the line, in device-independent pixels.

pBrush
The brush used to paint the line's stroke.

fStrokeWidth
A value greater than or equal to 0.0f that specifies the width of the stroke. If this parameter isn't specified, it
defaults to 1.0f. The stroke is centered on the line.

strokeStyle
The style of stroke to paint, or NULL to paint a solid line.

Draws the outline of a rectangle that has the specified dimensions and stroke style.

rect
The dimensions of the rectangle to draw, in device-independent pixels

pBrush
The brush used to paint the rectangle's stroke

fStrokeWidth
A value greater than or equal to 0.0f that specifies the width of the rectangle's stroke. The stroke is centered on the
rectangle's outline.

strokeStyle
The style of stroke to paint, or NULL to paint a solid stroke.

Draws the outline of the specified rounded rectangle using the specified stroke style.

rectRounded
The dimensions of the rounded rectangle to draw, in device-independent pixels.

pBrush
The brush used to paint the rounded rectangle's outline.

fStrokeWidth

CRenderTarget::DrawText

void DrawText(
 const CString& strText,
 const CD2DRectF& rect,
 CD2DBrush* pForegroundBrush,
 CD2DTextFormat* textFormat = NULL,
 D2D1_DRAW_TEXT_OPTIONS options = D2D1_DRAW_TEXT_OPTIONS_NONE,
 DWRITE_MEASURING_MODE measuringMode = DWRITE_MEASURING_MODE_NATURAL);

ParametersParameters

CRenderTarget::DrawTextLayout

void DrawTextLayout(
 const CD2DPointF& ptOrigin,
 CD2DTextLayout* textLayout,
 CD2DBrush* pBrushForeground,
 D2D1_DRAW_TEXT_OPTIONS options = D2D1_DRAW_TEXT_OPTIONS_NONE);

ParametersParameters

The width of the rounded rectangle's stroke. The stroke is centered on the rounded rectangle's outline. The default
value is 1.0f.

strokeStyle
The style of the rounded rectangle's stroke, or NULL to paint a solid stroke. The default value is NULL.

Draws the specified text using the format information provided by an IDWriteTextFormat object.

strText
A pointer to an array of Unicode characters to draw.

rect
The size and position of the area in which the text is drawn.

pForegroundBrush
The brush used to paint the text.

textFormat
An object that describes formatting details of the text to draw, such as the font, the font size, and flow direction.

options
A value that indicates whether the text should be snapped to pixel boundaries and whether the text should be
clipped to the layout rectangle. The default value is D2D1_DRAW_TEXT_OPTIONS_NONE, which indicates that
text should be snapped to pixel boundaries and it should not be clipped to the layout rectangle.

measuringMode
A value that indicates how glyph metrics are used to measure text when it is formatted. The default value is
DWRITE_MEASURING_MODE_NATURAL.

Draws the formatted text described by the specified IDWriteTextLayout object.

ptOrigin
The point, described in device-independent pixels, at which the upper-left corner of the text described by
textLayout is drawn.

textLayout
The formatted text to draw. Any drawing effects that do not inherit from ID2D1Resource are ignored. If there are

CRenderTarget::EndDraw

HRESULT EndDraw();

Return ValueReturn Value

CRenderTarget::FillEllipse

void FillEllipse(
 const CD2DEllipse& ellipse,
 CD2DBrush* pBrush);

ParametersParameters

CRenderTarget::FillGeometry

void FillGeometry(
 CD2DGeometry* pGeometry,
 CD2DBrush* pBrush,
 CD2DBrush* pOpacityBrush = NULL);

ParametersParameters

drawing effects that inherit from ID2D1Resource that are not brushes, this method fails and the render target is
put in an error state.

pBrushForeground
The brush used to paint any text in textLayout that does not already have a brush associated with it as a drawing
effect (specified by the IDWriteTextLayout::SetDrawingEffect method).

options
A value that indicates whether the text should be snapped to pixel boundaries and whether the text should be
clipped to the layout rectangle. The default value is D2D1_DRAW_TEXT_OPTIONS_NONE, which indicates that
text should be snapped to pixel boundaries and it should not be clipped to the layout rectangle.

Ends drawing operations on the render target and indicates the current error state and associated tags.

If the method succeeds, it returns S_OK. Otherwise, it returns an HRESULT error code.

Paints the interior of the specified ellipse.

ellipse
The position and radius, in device-independent pixels, of the ellipse to paint.

pBrush
The brush used to paint the interior of the ellipse.

Paints the interior of the specified geometry.

pGeometry
The geometry to paint.

pBrush
The brush used to paint the geometry's interior.

pOpacityBrush
The opacity mask to apply to the geometry;NULL for no opacity mask. If an opacity mask (the opacityBrush

CRenderTarget::FillMesh

void FillMesh(
 CD2DMesh* pMesh,
 CD2DBrush* pBrush);

ParametersParameters

CRenderTarget::FillOpacityMask

void FillOpacityMask(
 CD2DBitmap* pOpacityMask,
 CD2DBrush* pBrush,
 D2D1_OPACITY_MASK_CONTENT content,
 const CD2DRectF& rectDest,
 const CD2DRectF& rectSrc);

ParametersParameters

CRenderTarget::FillRectangle

void FillRectangle(
 const CD2DRectF& rect,
 CD2DBrush* pBrush);

parameter) is specified, brush must be an ID2D1BitmapBrush that has its x- and y-extend modes set to
D2D1_EXTEND_MODE_CLAMP. For more information, see the Remarks section.

Paints the interior of the specified mesh.

pMesh
The mesh to paint.

pBrush
The brush used to paint the mesh.

Applies the opacity mask described by the specified bitmap to a brush and uses that brush to paint a region of the
render target.

pOpacityMask
The position and radius, in device-independent pixels, of the ellipse to paint.

pBrush
The brush used to paint the region of the render target specified by destinationRectangle.

content
The type of content the opacity mask contains. The value is used to determine the color space in which the opacity
mask is blended.

rectDest
The region of the render target to paint, in device-independent pixels.

rectSrc
The region of the bitmap to use as the opacity mask, in device-independent pixels.

Paints the interior of the specified rectangle.

ParametersParameters

CRenderTarget::FillRoundedRectangle

void FillRoundedRectangle(
 const CD2DRoundedRect& rectRounded,
 CD2DBrush* pBrush);

ParametersParameters

CRenderTarget::Flush

void Flush(
 D2D1_TAG* tag1 = NULL,
 D2D1_TAG* tag2 = NULL);

ParametersParameters

CRenderTarget::GetAntialiasMode

D2D1_ANTIALIAS_MODE GetAntialiasMode() const;

Return ValueReturn Value

CRenderTarget::GetDpi

rect
The dimension of the rectangle to paint, in device-independent pixels.

pBrush
The brush used to paint the rectangle's interior.

Paints the interior of the specified rounded rectangle.

rectRounded
The dimensions of the rounded rectangle to paint, in device independent pixels.

pBrush
The brush used to paint the interior of the rounded rectangle.

Executes all pending drawing commands.

tag1
Contains the tag for drawing operations that caused errors or 0 if there were no errors. This parameter is passed
uninitialized.

tag2
Contains the tag for drawing operations that caused errors or 0 if there were no errors. This parameter is passed
uninitialized.

Retrieves the current antialiasing mode for nontext drawing operations.

Current antialiasing mode for nontext drawing operations.

Returns the render target's dots per inch (DPI)

CD2DSizeF GetDpi() const;

Return ValueReturn Value

CRenderTarget::GetMaximumBitmapSize

UINT32 GetMaximumBitmapSize() const;

Return ValueReturn Value

CRenderTarget::GetPixelFormat

D2D1_PIXEL_FORMAT GetPixelFormat() const;

Return ValueReturn Value

CRenderTarget::GetPixelSize

CD2DSizeU GetPixelSize() const;

Return ValueReturn Value

CRenderTarget::GetRenderTarget

ID2D1RenderTarget* GetRenderTarget();

Return ValueReturn Value

CRenderTarget::GetSize

CD2DSizeF GetSize() const;

Return ValueReturn Value

The render target's dots per inch (DPI).

Gets the maximum size, in device-dependent units (pixels), of any one bitmap dimension supported by the render
target

The maximum size, in pixels, of any one bitmap dimension supported by the render target

Retrieves the pixel format and alpha mode of the render target

The pixel format and alpha mode of the render target

Returns the size of the render target in device pixels

The size of the render target in device pixels

Returns ID2D1RenderTarget interface

Pointer to an ID2D1RenderTarget interface or NULL if object is not initialized yet.

Returns the size of the render target in device-independent pixels

CRenderTarget::GetTags

void GetTags(
 D2D1_TAG* tag1 = NULL,
 D2D1_TAG* tag2 = NULL) const;

ParametersParameters

CRenderTarget::GetTextAntialiasMode

D2D1_TEXT_ANTIALIAS_MODE GetTextAntialiasMode() const;

Return ValueReturn Value

CRenderTarget::GetTextRenderingParams

void GetTextRenderingParams(IDWriteRenderingParams** textRenderingParams);

ParametersParameters

CRenderTarget::GetTransform

void GetTransform(D2D1_MATRIX_3X2_F* transform);

ParametersParameters

The current size of the render target in device-independent pixels

Gets the label for subsequent drawing operations.

tag1
Contains the first label for subsequent drawing operations. This parameter is passed uninitialized. If NULL is
specified, no value is retrieved for this parameter.

tag2
Contains the second label for subsequent drawing operations. This parameter is passed uninitialized. If NULL is
specified, no value is retrieved for this parameter.

Gets the current antialiasing mode for text and glyph drawing operations.

Current antialiasing mode for text and glyph drawing operations.

Retrieves the render target's current text rendering options.

textRenderingParams
When this method returns, textRenderingParamscontains the address of a pointer to the render target's current
text rendering options.

Applies the specified transform to the render target, replacing the existing transformation. All subsequent drawing
operations occur in the transformed space.

transform
The transform to apply to the render target.

CRenderTarget::IsSupported

BOOL IsSupported(const D2D1_RENDER_TARGET_PROPERTIES& renderTargetProperties) const;

ParametersParameters

Return ValueReturn Value

CRenderTarget::IsValid

BOOL IsValid() const;

Return ValueReturn Value

CRenderTarget::m_lstResources

CObList m_lstResources;

CRenderTarget::m_pRenderTarget

ID2D1RenderTarget* m_pRenderTarget;

CRenderTarget::m_pTextFormatDefault

CD2DTextFormat* m_pTextFormatDefault;

CRenderTarget::operator ID2D1RenderTarget*

operator ID2D1RenderTarget*();

Return ValueReturn Value

Indicates whether the render target supports the specified properties

renderTargetProperties
The render target properties to test

TRUE if the specified render target properties are supported by this render target; otherwise, FALSE

Checks resource validity

TRUE if resource is valid; otherwise FALSE.

A list of pointers to CD2DResource objects.

A pointer to an ID2D1RenderTarget object.

A pointer to CD2DTextFormat object that contains a default text format.

Returns ID2D1RenderTarget interface

Pointer to an ID2D1RenderTarget interface or NULL if object is not initialized yet.

CRenderTarget::PopAxisAlignedClip

void PopAxisAlignedClip();

CRenderTarget::PopLayer

void PopLayer();

CRenderTarget::PushAxisAlignedClip

void PushAxisAlignedClip(
 const CD2DRectF& rectClip,
 D2D1_ANTIALIAS_MODE mode = D2D1_ANTIALIAS_MODE_PER_PRIMITIVE);

ParametersParameters

CRenderTarget::PushLayer

void PushLayer(
 const D2D1_LAYER_PARAMETERS& layerParameters,
 CD2DLayer& layer);

ParametersParameters

CRenderTarget::RestoreDrawingState

Removes the last axis-aligned clip from the render target. After this method is called, the clip is no longer applied
to subsequent drawing operations.

Stops redirecting drawing operations to the layer that is specified by the last PushLayer call.

Removes the last axis-aligned clip from the render target. After this method is called, the clip is no longer applied
to subsequent drawing operations.

rectClip
The size and position of the clipping area, in device-independent pixels.

mode
The antialiasing mode that is used to draw the edges of clip rects that have subpixel boundaries, and to blend the
clip with the scene contents. The blending is performed once when the PopAxisAlignedClip method is called, and
does not apply to each primitive within the layer.

Adds the specified layer to the render target so that it receives all subsequent drawing operations until PopLayer
is called.

layerParameters
The content bounds, geometric mask, opacity, opacity mask, and antialiasing options for the layer.

layer
The layer that receives subsequent drawing operations.

Sets the render target's drawing state to that of the specified ID2D1DrawingStateBlock.

void RestoreDrawingState(ID2D1DrawingStateBlock& drawingStateBlock);

ParametersParameters

CRenderTarget::SaveDrawingState

void SaveDrawingState(ID2D1DrawingStateBlock& drawingStateBlock) const;

ParametersParameters

CRenderTarget::SetAntialiasMode

void SetAntialiasMode(D2D1_ANTIALIAS_MODE antialiasMode);

ParametersParameters

CRenderTarget::SetDpi

void SetDpi(const CD2DSizeF& sizeDPI);

ParametersParameters

CRenderTarget::SetTags

void SetTags(
 D2D1_TAG tag1,
 D2D1_TAG tag2);

ParametersParameters

drawingStateBlock
The new drawing state of the render target.

Saves the current drawing state to the specified ID2D1DrawingStateBlock.

drawingStateBlock
When this method returns, contains the current drawing state of the render target. This parameter must be
initialized before passing it to the method.

Sets the antialiasing mode of the render target. The antialiasing mode applies to all subsequent drawing
operations, excluding text and glyph drawing operations.

antialiasMode
The antialiasing mode for future drawing operations.

Sets the dots per inch (DPI) of the render target.

sizeDPI
A value greater than or equal to zero that specifies the horizontal/verticalDPI of the render target.

Specifies a label for subsequent drawing operations.

tag1
A label to apply to subsequent drawing operations.

CRenderTarget::SetTextAntialiasMode

void SetTextAntialiasMode(D2D1_TEXT_ANTIALIAS_MODE textAntialiasMode);

ParametersParameters

CRenderTarget::SetTextRenderingParams

void SetTextRenderingParams(IDWriteRenderingParams* textRenderingParams = NULL);

ParametersParameters

CRenderTarget::SetTransform

void SetTransform(const D2D1_MATRIX_3X2_F* transform);
void SetTransform(const D2D1_MATRIX_3X2_F& transform);

ParametersParameters

CRenderTarget::VerifyResource

BOOL VerifyResource(CD2DResource* pResource);

ParametersParameters

Return ValueReturn Value

See also

tag2
A label to apply to subsequent drawing operations.

Specifies the antialiasing mode to use for subsequent text and glyph drawing operations.

textAntialiasMode
The antialiasing mode to use for subsequent text and glyph drawing operations.

Specifies text rendering options to be applied to all subsequent text and glyph drawing operations.

textRenderingParams
The text rendering options to be applied to all subsequent text and glyph drawing operations; NULL to clear
current text rendering options.

Applies the specified transform to the render target, replacing the existing transformation. All subsequent drawing
operations occur in the transformed space.

transform
The transform to apply to the render target.

Verifies CD2DResource object validity; creates the object if it didn't already exist.

pResource
Pointer to CD2DResource object.

TRUE is object if valid; otherwise FALSE.

Classes

CResourceException Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CResourceException : public CSimpleException

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CResourceException::CResourceException Constructs a CResourceException object.

Remarks

Inheritance Hierarchy

Requirements

CResourceException::CResourceException

CResourceException();

RemarksRemarks

See also

Generated when Windows cannot find or allocate a requested resource.

No further qualification is necessary or possible.

For more information on using CResourceException , see the article Exception Handling (MFC).

CObject

CException

CSimpleException

CResourceException

Header: afxwin.h

Constructs a CResourceException object.

Do not use this constructor directly, but rather call the global function AfxThrowResourceException. for more
information about exceptions, see the article Exception Handling in MFC.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cresourceexception-class.md

CException Class
Hierarchy Chart

CReversalTransition Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CReversalTransition : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CReversalTransition::CReversalTransition Constructs a reversal transition object and initializes its
duration.

Public MethodsPublic Methods

NAME DESCRIPTION

CReversalTransition::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CReversalTransition::m_duration The duration of the transition.

Remarks

Inheritance Hierarchy

Requirements

Encapsulates a reversal transition.

A reversal transition smoothly changes direction over a given duration. The final value will be the same as the
initial value and the final velocity will be the negative of the initial velocity. Because all transitions are cleared
automatically, it's recommended to allocated them using operator new. The encapsulated IUIAnimationTransition
COM object is created by CAnimationController::AnimateGroup, until then it's NULL. Changing member variables
after creation of this COM object has no effect.

CObject

CBaseTransition

CReversalTransition

Header: afxanimationcontroller.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/creversaltransition-class.md

CReversalTransition::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *not used*\);

ParametersParameters

Return ValueReturn Value

CReversalTransition::CReversalTransition

CReversalTransition(UI_ANIMATION_SECONDS duration);

ParametersParameters

CReversalTransition::m_duration

UI_ANIMATION_SECONDS m_duration;

See also

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to transition library, which is responsible for creation of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

Constructs a reversal transition object and initializes its duration.

duration
The duration of the transition.

The duration of the transition.

Classes

CRgn Class
3/4/2019 • 18 minutes to read • Edit Online

Syntax
class CRgn : public CGdiObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRgn::CRgn Constructs a CRgn object.

Public MethodsPublic Methods

NAME DESCRIPTION

CRgn::CombineRgn Sets a CRgn object so that it is equivalent to the union of
two specified CRgn objects.

CRgn::CopyRgn Sets a CRgn object so that it is a copy of a specified CRgn

object.

CRgn::CreateEllipticRgn Initializes a CRgn object with an elliptical region.

CRgn::CreateEllipticRgnIndirect Initializes a CRgn object with an elliptical region defined by a
RECT structure.

CRgn::CreateFromData Creates a region from the given region and transformation
data.

CRgn::CreateFromPath Creates a region from the path that is selected into the given
device context.

CRgn::CreatePolygonRgn Initializes a CRgn object with a polygonal region. The system
closes the polygon automatically, if necessary, by drawing a
line from the last vertex to the first.

CRgn::CreatePolyPolygonRgn Initializes a CRgn object with a region consisting of a series
of closed polygons. The polygons may be disjoint, or they
may overlap.

CRgn::CreateRectRgn Initializes a CRgn object with a rectangular region.

Encapsulates a Windows graphics device interface (GDI) region.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/crgn-class.md
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CRgn::CreateRectRgnIndirect Initializes a CRgn object with a rectangular region defined by
a RECT structure.

CRgn::CreateRoundRectRgn Initializes a CRgn object with a rectangular region with
rounded corners.

CRgn::EqualRgn Checks two CRgn objects to determine whether they are
equivalent.

CRgn::FromHandle Returns a pointer to a CRgn object when given a handle to a
Windows region.

CRgn::GetRegionData Fills the specified buffer with data describing the given region.

CRgn::GetRgnBox Retrieves the coordinates of the bounding rectangle of a
CRgn object.

CRgn::OffsetRgn Moves a CRgn object by the specified offsets.

CRgn::PtInRegion Determines whether a specified point is in the region.

CRgn::RectInRegion Determines whether any part of a specified rectangle is within
the boundaries of the region.

CRgn::SetRectRgn Sets the CRgn object to the specified rectangular region.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CRgn::operator HRGN Returns the Windows handle contained in the CRgn object.

Remarks

Inheritance Hierarchy

Requirements

A region is an elliptical or polygonal area within a window. To use regions, you use the member functions of class
CRgn with the clipping functions defined as members of class CDC .

The member functions of CRgn create, alter, and retrieve information about the region object for which they are
called.

For more information on using CRgn , see Graphic Objects.

CObject

CGdiObject

CRgn

Header: afxwin.h

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

 CRgn::CombineRgn

int CombineRgn(
 CRgn* pRgn1,
 CRgn* pRgn2,
 int nCombineMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Creates a new GDI region by combining two existing regions.

pRgn1
Identifies an existing region.

pRgn2
Identifies an existing region.

nCombineMode
Specifies the operation to be performed when combining the two source regions. It can be any one of the
following values:

RGN_AND Uses overlapping areas of both regions (intersection).

RGN_COPY Creates a copy of region 1 (identified by pRgn1).

RGN_DIFF Creates a region consisting of the areas of region 1 (identified by pRgn1) that are not part of
region 2 (identified by pRgn2).

RGN_OR Combines both regions in their entirety (union).

RGN_XOR Combines both regions but removes overlapping areas.

Specifies the type of the resulting region. It can be one of the following values:

COMPLEXREGION New region has overlapping borders.

ERROR No new region created.

NULLREGION New region is empty.

S IMPLEREGION New region has no overlapping borders.

The regions are combined as specified by nCombineMode.

The two specified regions are combined, and the resulting region handle is stored in the CRgn object. Thus,
whatever region is stored in the CRgn object is replaced by the combined region.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

Use CopyRgn to simply copy one region into another region.

CRgn rgnA, rgnB, rgnC;

VERIFY(rgnA.CreateRectRgn(50, 50, 150, 150));
VERIFY(rgnB.CreateRectRgn(100, 100, 200, 200));
VERIFY(rgnC.CreateRectRgn(0, 0, 50, 50));

int nCombineResult = rgnC.CombineRgn(&rgnA, &rgnB, RGN_OR);
ASSERT(nCombineResult != ERROR && nCombineResult != NULLREGION);

CBrush br1, br2, br3;
VERIFY(br1.CreateSolidBrush(RGB(255, 0, 0))); // rgnA Red
VERIFY(pDC->FrameRgn(&rgnA, &br1, 2, 2));
VERIFY(br2.CreateSolidBrush(RGB(0, 255, 0))); // rgnB Green
VERIFY(pDC->FrameRgn(&rgnB, &br2, 2, 2));
VERIFY(br3.CreateSolidBrush(RGB(0, 0, 255))); // rgnC Blue
VERIFY(pDC->FrameRgn(&rgnC, &br3, 2, 2));

CRgn::CopyRgn

int CopyRgn(CRgn* pRgnSrc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRgn::CreateEllipticRgn

BOOL CreateEllipticRgn(
 int x1,
 int y1,
 int x2,
 int y2);

ParametersParameters

Copies the region defined by pRgnSrc into the CRgn object.

pRgnSrc
Identifies an existing region.

Specifies the type of the resulting region. It can be one of the following values:

COMPLEXREGION New region has overlapping borders.

ERROR No new region created.

NULLREGION New region is empty.

S IMPLEREGION New region has no overlapping borders.

The new region replaces the region formerly stored in the CRgn object. This function is a special case of the
CombineRgn member function.

See the example for CRgn::CreateEllipticRgn.

Creates an elliptical region.

x1

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRgn rgnA, rgnB, rgnC;

VERIFY(rgnA.CreateEllipticRgn(200, 100, 350, 250));
VERIFY(rgnB.CreateRectRgn(0, 0, 50, 50));
VERIFY(rgnB.CopyRgn(&rgnA));
int nOffsetResult = rgnB.OffsetRgn(-75, 75);
ASSERT(nOffsetResult != ERROR && nOffsetResult != NULLREGION);

VERIFY(rgnC.CreateRectRgn(0, 0, 1, 1));
int nCombineResult = rgnC.CombineRgn(&rgnA, &rgnB, RGN_AND);
ASSERT(nCombineResult != ERROR && nOffsetResult != NULLREGION);

CBrush brA, brB, brC;
VERIFY(brC.CreateHatchBrush(HS_FDIAGONAL, RGB(0, 0, 255))); // Blue
VERIFY(pDC->FillRgn(&rgnC, &brC));
VERIFY(brA.CreateSolidBrush(RGB(255, 0, 0))); // rgnA Red
VERIFY(pDC->FrameRgn(&rgnA, &brA, 2, 2));
VERIFY(brB.CreateSolidBrush(RGB(0, 255, 0))); // rgnB Green
VERIFY(pDC->FrameRgn(&rgnB, &brB, 2, 2));

CRgn::CreateEllipticRgnIndirect

BOOL CreateEllipticRgnIndirect(LPCRECT lpRect);

ParametersParameters

Return ValueReturn Value

Specifies the logical x-coordinate of the upper-left corner of the bounding rectangle of the ellipse.

y1
Specifies the logical y-coordinate of the upper-left corner of the bounding rectangle of the ellipse.

x2
Specifies the logical x-coordinate of the lower-right corner of the bounding rectangle of the ellipse.

y2
Specifies the logical y-coordinate of the lower-right corner of the bounding rectangle of the ellipse.

Nonzero if the operation succeeded; otherwise 0.

The region is defined by the bounding rectangle specified by x1, y1, x2, and y2. The region is stored in the CRgn

object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When it has finished using a region created with the CreateEllipticRgn function, an application should select the
region out of the device context and use the DeleteObject function to remove it.

Creates an elliptical region.

lpRect
Points to a RECT structure or a CRect object that contains the logical coordinates of the upper-left and lower-
right corners of the bounding rectangle of the ellipse.

Nonzero if the operation succeeded; otherwise 0.

RemarksRemarks

ExampleExample

CRgn::CreateFromData

BOOL CreateFromData(
 const XFORM* lpXForm,
 int nCount,
 const RGNDATA* pRgnData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRgn::CreateFromPath

BOOL CreateFromPath(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The region is defined by the structure or object pointed to by lpRect and is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When it has finished using a region created with the CreateEllipticRgnIndirect function, an application should
select the region out of the device context and use the DeleteObject function to remove it.

See the example for CRgn::CreateRectRgnIndirect.

Creates a region from the given region and transformation data.

lpXForm
Points to an XFORM data structure that defines the transformation to be performed on the region. If this pointer
is NULL, the identity transformation is used.

nCount
Specifies the number of bytes pointed to by pRgnData.

pRgnData
Points to a RGNDATA data structure that contains the region data.

Nonzero if the function is successful; otherwise 0.

An application can retrieve data for a region by calling the CRgn::GetRegionData function.

Creates a region from the path that is selected into the given device context.

pDC
Identifies a device context that contains a closed path.

Nonzero if the function is successful; otherwise 0.

The device context identified by the pDC parameter must contain a closed path. After CreateFromPath converts a
path into a region, Windows discards the closed path from the device context.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagxform
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_rgndata

 CRgn::CreatePolygonRgn

BOOL CreatePolygonRgn(
 LPPOINT lpPoints,
 int nCount,
 int nMode);

ParametersParameters

typedef struct tagPOINT {
 int x;
 int y;
} POINT;

Return ValueReturn Value

RemarksRemarks

ExampleExample

Creates a polygonal region.

lpPoints
Points to an array of POINT structures or an array of CPoint objects. Each structure specifies the x-coordinate
and y-coordinate of one vertex of the polygon. The POINT structure has the following form:

nCount
Specifies the number of POINT structures or CPoint objects in the array pointed to by lpPoints.

nMode
Specifies the filling mode for the region. This parameter may be either ALTERNATE or WINDING.

Nonzero if the operation succeeded; otherwise 0.

The system closes the polygon automatically, if necessary, by drawing a line from the last vertex to the first. The
resulting region is stored in the CRgn object.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area between odd-numbered and even-
numbered polygon sides on each scan line. That is, the system fills the area between the first and second side,
between the third and fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which a figure was drawn to
determine whether to fill an area. Each line segment in a polygon is drawn in either a clockwise or a
counterclockwise direction. Whenever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise line segment, a count is incremented. When the line passes through a
counterclockwise line segment, the count is decremented. The area is filled if the count is nonzero when the line
reaches the outside of the figure.

When an application has finished using a region created with the CreatePolygonRgn function, it should select the
region out of the device context and use the DeleteObject function to remove it.

CRgn rgnA, rgnB;

CPoint ptVertex[5];

ptVertex[0].x = 180;
ptVertex[0].y = 80;
ptVertex[1].x = 100;
ptVertex[1].y = 160;
ptVertex[2].x = 120;
ptVertex[2].y = 260;
ptVertex[3].x = 240;
ptVertex[3].y = 260;
ptVertex[4].x = 260;
ptVertex[4].y = 160;

VERIFY(rgnA.CreatePolygonRgn(ptVertex, 5, ALTERNATE));

CRect rectRgnBox;
int nRgnBoxResult = rgnA.GetRgnBox(&rectRgnBox);
ASSERT(nRgnBoxResult != ERROR && nRgnBoxResult != NULLREGION);

CBrush brA, brB;
VERIFY(brA.CreateSolidBrush(RGB(255, 0, 0))); // rgnA Red
VERIFY(pDC->FrameRgn(&rgnA, &brA, 2, 2));
VERIFY(brB.CreateSolidBrush(RGB(0, 0, 255))); // Blue
rectRgnBox.InflateRect(3,3);
pDC->FrameRect(&rectRgnBox, &brB);

CRgn::CreatePolyPolygonRgn

BOOL CreatePolyPolygonRgn(
 LPPOINT lpPoints,
 LPINT lpPolyCounts,
 int nCount,
 int nPolyFillMode);

ParametersParameters

typedef struct tagPOINT {
 int x;
 int y;
} POINT;

Creates a region consisting of a series of closed polygons.

lpPoints
Points to an array of POINT structures or an array of CPoint objects that defines the vertices of the polygons.
Each polygon must be explicitly closed because the system does not close them automatically. The polygons are
specified consecutively. The POINT structure has the following form:

lpPolyCounts
Points to an array of integers. The first integer specifies the number of vertices in the first polygon in the lpPoints
array, the second integer specifies the number of vertices in the second polygon, and so on.

nCount
Specifies the total number of integers in the lpPolyCounts array.

nPolyFillMode
Specifies the polygon-filling mode. This value may be either ALTERNATE or WINDING.

Return ValueReturn Value

RemarksRemarks

CRgn::CreateRectRgn

BOOL CreateRectRgn(
 int x1,
 int y1,
 int x2,
 int y2);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Nonzero if the operation succeeded; otherwise 0.

The resulting region is stored in the CRgn object.

The polygons may be disjoint, or they may overlap.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When the polygon-filling mode is ALTERNATE, the system fills the area between odd-numbered and even-
numbered polygon sides on each scan line. That is, the system fills the area between the first and second side,
between the third and fourth side, and so on.

When the polygon-filling mode is WINDING, the system uses the direction in which a figure was drawn to
determine whether to fill an area. Each line segment in a polygon is drawn in either a clockwise or a
counterclockwise direction. Whenever an imaginary line drawn from an enclosed area to the outside of a figure
passes through a clockwise line segment, a count is incremented. When the line passes through a
counterclockwise line segment, the count is decremented. The area is filled if the count is nonzero when the line
reaches the outside of the figure.

When an application has finished using a region created with the CreatePolyPolygonRgn function, it should select
the region out of the device context and use the CGDIObject::DeleteObject member function to remove it.

Creates a rectangular region that is stored in the CRgn object.

x1
Specifies the logical x-coordinate of the upper-left corner of the region.

y1
Specifies the logical y-coordinate of the upper-left corner of the region.

x2
Specifies the logical x-coordinate of the lower-right corner of the region.

y2
Specifies the logical y-coordinate of the lower-right corner of the region.

Nonzero if the operation succeeded; otherwise 0.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When it has finished using a region created by CreateRectRgn , an application should use the
CGDIObject::DeleteObject member function to remove the region.

CRgn rgn;

BOOL bSucceeded = rgn.CreateRectRgn(50, 20, 150, 120);
ASSERT(bSucceeded == TRUE);

CRgn::CreateRectRgnIndirect

BOOL CreateRectRgnIndirect(LPCRECT lpRect);

ParametersParameters

typedef struct tagRECT {
 int left;
 int top;
 int right;
 int bottom;
} RECT;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRgn rgnA, rgnB, rgnC;

CRect rectA(50, 50, 150, 150);
CRect rectB(100, 50, 200, 150);

VERIFY(rgnA.CreateRectRgnIndirect(&rectA));
VERIFY(rgnB.CreateEllipticRgnIndirect(&rectB));
VERIFY(rgnC.CreateRectRgn(0, 0, 50, 50));

int nCombineResult = rgnC.CombineRgn(&rgnA, &rgnB, RGN_AND);
ASSERT(nCombineResult != ERROR && nCombineResult != NULLREGION);

CBrush brA, brB, brC;
VERIFY(brA.CreateSolidBrush(RGB(255, 0, 0)));
VERIFY(pDC->FrameRgn(&rgnA, &brA, 2, 2)); // rgnA Red

VERIFY(brB.CreateSolidBrush(RGB(0, 255, 0)));
VERIFY(pDC->FrameRgn(&rgnB, &brB, 2, 2)); // rgnB Green
VERIFY(brC.CreateSolidBrush(RGB(0, 0, 255))); // rgnC Blue
VERIFY(pDC->FrameRgn(&rgnC, &brC, 2, 2));

For an additional example, see CRgn::CombineRgn.

Creates a rectangular region that is stored in the CRgn object.

lpRect
Points to a RECT structure or CRect object that contains the logical coordinates of the upper-left and lower-right
corners of the region. The RECT structure has the following form:

Nonzero if the operation succeeded; otherwise 0.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When it has finished using a region created by CreateRectRgnIndirect , an application should use the
CGDIObject::DeleteObject member function to remove the region.

 CRgn::CreateRoundRectRgn

BOOL CreateRoundRectRgn(
 int x1,
 int y1,
 int x2,
 int y2,
 int x3,
 int y3);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRgn rgnA, rgnB, rgnC;

VERIFY(rgnA.CreateRoundRectRgn(50, 50, 150, 150, 30, 30));
VERIFY(rgnB.CreateRoundRectRgn(200, 75, 250, 125, 50, 50));
VERIFY(rgnC.CreateRectRgn(0, 0, 50, 50));

int nCombineResult = rgnC.CombineRgn(&rgnA, &rgnB, RGN_OR);
ASSERT(nCombineResult != ERROR && nCombineResult != NULLREGION);

CBrush brA, brB, brC;
VERIFY(brA.CreateSolidBrush(RGB(255, 0, 0)));
VERIFY(pDC->FillRgn(&rgnA, &brA)); // rgnA Red Filled

VERIFY(brB.CreateSolidBrush(RGB(0, 255, 0)));
VERIFY(pDC->FillRgn(&rgnB, &brB)); // rgnB Green Filled
VERIFY(brC.CreateSolidBrush(RGB(0, 0, 255))); // rgnC Blue
VERIFY(pDC->FrameRgn(&rgnC, &brC, 2, 2));

Creates a rectangular region with rounded corners that is stored in the CRgn object.

x1
Specifies the logical x-coordinate of the upper-left corner of the region.

y1
Specifies the logical y-coordinate of the upper-left corner of the region.

x2
Specifies the logical x-coordinate of the lower-right corner of the region.

y2
Specifies the logical y-coordinate of the lower-right corner of the region.

x3
Specifies the width of the ellipse used to create the rounded corners.

y3
Specifies the height of the ellipse used to create the rounded corners.

Nonzero if the operation succeeded; otherwise 0.

The size of a region is limited to 32,767 by 32,767 logical units or 64K of memory, whichever is smaller.

When an application has finished using a region created with the CreateRoundRectRgn function, it should select
the region out of the device context and use the CGDIObject::DeleteObject member function to remove it.

CRgn::CRgn

CRgn();

RemarksRemarks

ExampleExample

CRgn::EqualRgn

BOOL EqualRgn(CRgn* pRgn) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CRgn rgnA, rgnB;

VERIFY(rgnA.CreateEllipticRgn(200, 100, 350, 250));
VERIFY(rgnB.CreateRectRgn(0, 0, 50, 50));
VERIFY(rgnB.CopyRgn(&rgnA));
int nOffsetResult = rgnB.OffsetRgn(-75, 75);
ASSERT(nOffsetResult != ERROR && nOffsetResult != NULLREGION);
ASSERT(FALSE == rgnB.EqualRgn(&rgnA));

CRgn::FromHandle

static CRgn* PASCAL FromHandle(HRGN hRgn);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Constructs a CRgn object.

The m_hObject data member does not contain a valid Windows GDI region until the object is initialized with one
or more of the other CRgn member functions.

See the example for CRgn::CreateRoundRectRgn.

Determines whether the given region is equivalent to the region stored in the CRgn object.

pRgn
Identifies a region.

Nonzero if the two regions are equivalent; otherwise 0.

Returns a pointer to a CRgn object when given a handle to a Windows region.

hRgn
Specifies a handle to a Windows region.

A pointer to a CRgn object. If the function was not successful, the return value is NULL.

If a CRgn object is not already attached to the handle, a temporary CRgn object is created and attached. This

CRgn::GetRegionData

int GetRegionData(
 LPRGNDATA lpRgnData,
 int nCount) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRgn::GetRgnBox

int GetRgnBox(LPRECT lpRect) const;

ParametersParameters

Return ValueReturn Value

temporary CRgn object is valid only until the next time the application has idle time in its event loop, at which
time all temporary graphic objects are deleted. Another way of saying this is that the temporary object is only
valid during the processing of one window message.

Fills the specified buffer with data describing the region.

lpRgnData
Points to a RGNDATA data structure that receives the information. If this parameter is NULL, the return value
contains the number of bytes needed for the region data.

nCount
Specifies the size, in bytes, of the lpRgnData buffer.

If the function succeeds and nCount specifies an adequate number of bytes, the return value is always nCount. If
the function fails, or if nCount specifies less than adequate number of bytes, the return value is 0 (error).

This data includes the dimensions of the rectangles that make up the region. This function is used in conjunction
with the CRgn::CreateFromData function.

Retrieves the coordinates of the bounding rectangle of the CRgn object.

lpRect
Points to a RECT structure or CRect object to receive the coordinates of the bounding rectangle. The RECT

structure has the following form:

typedef struct tagRECT {

int left;

int top;

int right;

int bottom;

} RECT;

Specifies the region's type. It can be any of the following values:

COMPLEXREGION Region has overlapping borders.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_rgndata

ExampleExample

CRgn::OffsetRgn

int OffsetRgn(
 int x,
 int y);

int OffsetRgn(POINT point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRgn::operator HRGN

operator HRGN() const;

NULLREGION Region is empty.

ERROR CRgn object does not specify a valid region.

SIMPLEREGION Region has no overlapping borders.

See the example for CRgn::CreatePolygonRgn.

Moves the region stored in the CRgn object by the specified offsets.

x
Specifies the number of units to move left or right.

y
Specifies the number of units to move up or down.

point
The x-coordinate of point specifies the number of units to move left or right. The y-coordinate of point specifies
the number of units to move up or down. The point parameter may be either a POINT structure or a CPoint

object.

The new region's type. It can be any one of the following values:

COMPLEXREGION Region has overlapping borders.

ERROR Region handle is not valid.

NULLREGION Region is empty.

S IMPLEREGION Region has no overlapping borders.

The function moves the region x units along the x-axis and y units along the y-axis.

The coordinate values of a region must be less than or equal to 32,767 and greater than or equal to -32,768. The
x and y parameters must be carefully chosen to prevent invalid region coordinates.

See the example for CRgn::CreateEllipticRgn.

Use this operator to get the attached Windows GDI handle of the CRgn object.

Return ValueReturn Value

RemarksRemarks

CRgn::PtInRegion

BOOL PtInRegion(
 int x,
 int y) const;

BOOL PtInRegion(POINT point) const;

ParametersParameters

Return ValueReturn Value

CRgn::RectInRegion

BOOL RectInRegion(LPCRECT lpRect) const;

ParametersParameters

typedef struct tagRECT {
 int left;
 int top;
 int right;
 int bottom;
} RECT;

Return ValueReturn Value

If successful, a handle to the Windows GDI object represented by the CRgn object; otherwise NULL.

This operator is a casting operator, which supports direct use of an HRGN object.

For more information about using graphic objects, see the article Graphic Objects in the Windows SDK.

Checks whether the point given by x and y is in the region stored in the CRgn object.

x
Specifies the logical x-coordinate of the point to test.

y
Specifies the logical y-coordinate of the point to test.

point
The x- and y-coordinates of point specify the x- and y-coordinates of the point to test the value of. The point
parameter can either be a POINT structure or a CPoint object.

Nonzero if the point is in the region; otherwise 0.

Determines whether any part of the rectangle specified by lpRect is within the boundaries of the region stored in
the CRgn object.

lpRect
Points to a RECT structure or CRect object. The RECT structure has the following form:

Nonzero if any part of the specified rectangle lies within the boundaries of the region; otherwise 0.

https://docs.microsoft.com/windows/desktop/gdi/graphic-objects

 CRgn::SetRectRgn

void SetRectRgn(
 int x1,
 int y1,
 int x2,
 int y2);

void SetRectRgn(LPCRECT lpRect);

ParametersParameters

RemarksRemarks

See also

Creates a rectangular region.

x1
Specifies the x-coordinate of the upper-left corner of the rectangular region.

y1
Specifies the y-coordinate of the upper-left corner of the rectangular region.

x2
Specifies the x-coordinate of the lower-right corner of the rectangular region.

y2
Specifies the y-coordinate of the lower-right corner of the rectangular region.

lpRect
Specifies the rectangular region. Can be either a pointer to a RECT structure or a CRect object.

Unlike CreateRectRgn, however, it does not allocate any additional memory from the local Windows application
heap. Instead, it uses the space allocated for the region stored in the CRgn object. This means that the CRgn

object must already have been initialized with a valid Windows region before calling SetRectRgn . The points
given by x1, y1, x2, and y2 specify the minimum size of the allocated space.

Use this function instead of the CreateRectRgn member function to avoid calls to the local memory manager.

CWnd Class
Hierarchy Chart

CRichEditCntrItem Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CRichEditCntrItem : public COleClientItem

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRichEditCntrItem::CRichEditCntrItem Constructs a CRichEditCntrItem object.

Public MethodsPublic Methods

NAME DESCRIPTION

CRichEditCntrItem::SyncToRichEditObject Activates the item as another type.

Remarks

Inheritance Hierarchy

With CRichEditView and CRichEditDoc, provides the functionality of the rich edit control within the context of
MFC's document view architecture.

A "rich edit control" is a window in which the user can enter and edit text. The text can be assigned character and
paragraph formatting, and can include embedded OLE objects. Rich edit controls provide a programming
interface for formatting text. However, an application must implement any user interface components necessary
to make formatting operations available to the user.

CRichEditView maintains the text and formatting characteristic of text. CRichEditDoc maintains the list of OLE
client items which are in the view. CRichEditCntrItem provides container-side access to the OLE client item.

This Windows Common control (and therefore the CRichEditCtrl and related classes) is available only to
programs running under Windows 95/98 and Windows NT versions 3.51 and later.

For an example of using rich edit container items in an MFC application, see the WORDPAD sample
application.

CObject

CCmdTarget

CDocItem

COleClientItem

CRichEditCntrItem

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cricheditcntritem-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CRichEditCntrItem::CRichEditCntrItem

CRichEditCntrItem(
 REOBJECT* preo = NULL,
 CRichEditDoc* pContainer = NULL);

ParametersParameters

RemarksRemarks

CRichEditCntrItem::SyncToRichEditObject

void SyncToRichEditObject(REOBJECT& reo);

ParametersParameters

RemarksRemarks

See also

Header: afxrich.h

Call this function to create a CRichEditCntrItem object and add it to the container document.

preo
Pointer to an REOBJECT structure which describes an OLE item. The new CRichEditCntrItem object is
constructed around this OLE item. If preo is NULL, the client item is empty.

pContainer
Pointer to the container document that will contain this item. If pContainer is NULL, you must explicitly call
COleDocument::AddItem to add this client item to a document.

This function does not perform any OLE initialization.

For more information, see the REOBJECT structure in the Windows SDK.

Call this function to synchronize the device aspect, DVASPECT, of this CRichEditCntrltem to that specified by
reo.

reo
Reference to an REOBJECT structure which describes an OLE item.

For more information, see DVASPECT in the Windows SDK.

MFC Sample WORDPAD
COleClientItem Class
Hierarchy Chart
CRichEditDoc Class
CRichEditView Class

https://docs.microsoft.com/windows/desktop/api/richole/ns-richole-_reobject
https://docs.microsoft.com/windows/desktop/api/richole/ns-richole-_reobject
https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-tagdvaspect
https://docs.microsoft.com/windows/desktop/api/richole/ns-richole-_reobject
https://docs.microsoft.com/windows/desktop/api/wtypes/ne-wtypes-tagdvaspect
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CRichEditCtrl Class
3/5/2019 • 47 minutes to read • Edit Online

Syntax
class CRichEditCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRichEditCtrl::CRichEditCtrl Constructs a CRichEditCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CRichEditCtrl::CanPaste Determines if the contents of the Clipboard can be pasted
into this rich edit control.

CRichEditCtrl::CanRedo Determines whether there are any actions in the control's
redo queue.

CRichEditCtrl::CanUndo Determines if an editing operation can be undone.

CRichEditCtrl::CharFromPos Retrieves information about the character closest to a
specified point in the client area of an edit control.

CRichEditCtrl::Clear Clears the current selection.

CRichEditCtrl::Copy Copies the current selection to the Clipboard.

CRichEditCtrl::Create Creates the Windows rich edit control and associates it
with this CRichEditCtrl object.

CRichEditCtrl::CreateEx Creates the Windows rich edit control with the specified
extended Windows styles and associates it with this
CRichEditCtrl object.

CRichEditCtrl::Cut Cuts the current selection to the Clipboard.

CRichEditCtrl::DisplayBand Displays a portion of the contents of this CRichEditCtrl

object.

Provides the functionality of the rich edit control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cricheditctrl-class.md

CRichEditCtrl::EmptyUndoBuffer Resets (clears) the undo flag of this CRichEditCtrl

object.

CRichEditCtrl::FindText Locates text within this CRichEditCtrl object.

CRichEditCtrl::FindWordBreak Finds the next word break before or after the specified
character position, or retrieves information about the
character at that position.

CRichEditCtrl::FormatRange Formats a range of text for the target output device.

CRichEditCtrl::GetCharPos Determines the location of a given character within this
CRichEditCtrl object.

CRichEditCtrl::GetDefaultCharFormat Retrieves the current default character formatting
attributes in this CRichEditCtrl object.

CRichEditCtrl::GetEventMask Retrieves the event mask for this CRichEditCtrl object.

CRichEditCtrl::GetFirstVisibleLine Determines the topmost visible line in this
CRichEditCtrl object.

CRichEditCtrl::GetIRichEditOle Retrieves a pointer to the IRichEditOle interface for this
rich edit control.

CRichEditCtrl::GetLimitText Gets the limit on the amount of text a user can enter into
this CRichEditCtrl object.

CRichEditCtrl::GetLine Retrieves a line of text from this CRichEditCtrl object.

CRichEditCtrl::GetLineCount Retrieves the number of lines in this CRichEditCtrl

object.

CRichEditCtrl::GetModify Determines if the contents of this CRichEditCtrl object
have changed since the last save.

CRichEditCtrl::GetOptions Retrieves the rich edit control options.

CRichEditCtrl::GetParaFormat Retrieves the paragraph formatting attributes in the
current selection in this CRichEditCtrl object.

CRichEditCtrl::GetPunctuation Retrieves the current punctuation characters for the rich
edit control. This message is available only in Asian-
language versions of the operating system.

CRichEditCtrl::GetRect Retrieves the formatting rectangle for this
CRichEditCtrl object.

CRichEditCtrl::GetRedoName Retrieves the type of the next action, if any, in the control's
redo queue.

NAME DESCRIPTION

CRichEditCtrl::GetSel Gets the starting and ending positions of the current
selection in this CRichEditCtrl object.

CRichEditCtrl::GetSelectionCharFormat Retrieves the character formatting attributes in the current
selection in this CRichEditCtrl object.

CRichEditCtrl::GetSelectionType Retrieves the type of contents in the current selection in
this CRichEditCtrl object.

CRichEditCtrl::GetSelText Gets the text of the current selection in this
CRichEditCtrl object

CRichEditCtrl::GetTextLength Retrieves the length of the text, in characters, in this
CRichEditCtrl object. Does not include the terminating

null character.

CRichEditCtrl::GetTextLengthEx Retrieves the number of characters or bytes in the rich edit
view. Accepts a list of flags to indicate the method of
determining length of the text in a rich edit control

CRichEditCtrl::GetTextMode Retrieves the current text mode and undo level of a rich
edit control.

CRichEditCtrl::GetTextRange Retrieves the specified range of text.

CRichEditCtrl::GetUndoName Retrieves the type of the next undo action, if any.

CRichEditCtrl::GetWordWrapMode Retrieves the current word wrapping and word breaking
options for the rich edit control. This message is available
only in Asian-language versions of the operating system.

CRichEditCtrl::HideSelection Shows or hides the current selection.

CRichEditCtrl::LimitText Limits the amount of text a user can enter into the
CRichEditCtrl object.

CRichEditCtrl::LineFromChar Determines which line contains the given character.

CRichEditCtrl::LineIndex Retrieves the character index of a given line in this
CRichEditCtrl object.

CRichEditCtrl::LineLength Retrieves the length of a given line in this CRichEditCtrl

object.

CRichEditCtrl::LineScroll Scrolls the text in this CRichEditCtrl object.

CRichEditCtrl::Paste Inserts the contents of the Clipboard into this rich edit
control.

CRichEditCtrl::PasteSpecial Inserts the contents of the Clipboard into this rich edit
control in the specified data format.

NAME DESCRIPTION

CRichEditCtrl::PosFromChar Retrieves the client area coordinates of a specified
character in an edit control.

CRichEditCtrl::Redo Redoes the next action in the control's redo queue.

CRichEditCtrl::ReplaceSel Replaces the current selection in this CRichEditCtrl

object with specified text.

CRichEditCtrl::RequestResize Forces this CRichEditCtrl object to send request resize
notifications.

CRichEditCtrl::SetAutoURLDetect Indicates if the auto URL detection is active in a rich edit
control.

CRichEditCtrl::SetBackgroundColor Sets the background color in this CRichEditCtrl object.

CRichEditCtrl::SetDefaultCharFormat Sets the current default character formatting attributes in
this CRichEditCtrl object.

CRichEditCtrl::SetEventMask Sets the event mask for this CRichEditCtrl object.

CRichEditCtrl::SetModify Sets or clears the modification flag for this
CRichEditCtrl object.

CRichEditCtrl::SetOLECallback Sets the IRichEditOleCallback COM object for this rich
edit control.

CRichEditCtrl::SetOptions Sets the options for this CRichEditCtrl object.

CRichEditCtrl::SetParaFormat Sets the paragraph formatting attributes in the current
selection in this CRichEditCtrl object.

CRichEditCtrl::SetPunctuation Sets the punctuation characters for a rich edit control. This
message is available only in Asian-language versions of the
operating system.

CRichEditCtrl::SetReadOnly Sets the read-only option for this CRichEditCtrl object.

CRichEditCtrl::SetRect Sets the formatting rectangle for this CRichEditCtrl

object.

CRichEditCtrl::SetSel Sets the selection in this CRichEditCtrl object.

CRichEditCtrl::SetSelectionCharFormat Sets the character formatting attributes in the current
selection in this CRichEditCtrl object.

CRichEditCtrl::SetTargetDevice Sets the target output device for this CRichEditCtrl

object.

CRichEditCtrl::SetTextMode Sets the text mode or undo level of a rich edit control. The
message fails if the control contains text.

NAME DESCRIPTION

CRichEditCtrl::SetUndoLimit Sets the maximum number of actions that can stored in
the undo queue.

CRichEditCtrl::SetWordCharFormat Sets the character formatting attributes in the current
word in this CRichEditCtrl object.

CRichEditCtrl::SetWordWrapMode Sets the word-wrapping and word-breaking options for
the rich edit control. This message is available only in
Asian-language versions of the operating system.

CRichEditCtrl::StopGroupTyping Stops the control from collecting additional typing actions
into the current undo action. The control stores the next
typing action, if any, into a new action in the undo queue.

CRichEditCtrl::StreamIn Inserts text from an input stream into this
CRichEditCtrl object.

CRichEditCtrl::StreamOut Stores text from this CRichEditCtrl object into an
output stream.

CRichEditCtrl::Undo Reverses the last editing operation.

NAME DESCRIPTION

Remarks

C a u t i o nC a u t i o n

Inheritance Hierarchy

A "rich edit control" is a window in which the user can enter and edit text. The text can be assigned character
and paragraph formatting, and can include embedded OLE objects. Rich edit controls provide a
programming interface for formatting text. However, an application must implement any user interface
components necessary to make formatting operations available to the user.

This Windows Common control (and therefore the CRichEditCtrl class) is available only to programs
running under Windows 95/98 and Windows NT versions 3.51 and later. The CRichEditCtrl class supports
versions 2.0 and 3.0 of the Windows SDK rich edit control.

If you are using a rich edit control in a dialog box (regardless whether your application is SDI, MDI, or
dialog-based), you must call AfxInitRichEdit once before the dialog box is displayed. A typical place to call
this function is in your program's InitInstance member function. You do not need to call it for each time
you display the dialog box, only the first time. You do not have to call AfxInitRichEdit if you are working
with CRichEditView .

For more information on using CRichEditCtrl , see:

Controls

Using CRichEditCtrl

For an example of using a rich edit control in an MFC application, see the WORDPAD sample application.

CObject

CCmdTarget

CWnd

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CRichEditCtrl::CanPaste

BOOL CanPaste(UINT nFormat = 0) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Paste the clipboard data if possible.
if (m_myRichEditCtrl.CanPaste())
{
 m_myRichEditCtrl.Paste();
}

CRichEditCtrl::CanRedo

BOOL CanRedo() const;

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::CanUndo

CRichEditCtrl

Header: afxcmn.h

Determines if the rich edit control can paste the specified Clipboard format.

nFormat
The Clipboard data format to query. This parameter can be one of the predefined Clipboard formats or the
value returned by RegisterClipboardFormat.

Nonzero if the Clipboard format can be pasted; otherwise 0.

If nFormat is 0, CanPaste will try any format currently on the Clipboard.

For more information, see EM_CANPASTE message and RegisterClipboardFormat function in the Windows
SDK.

Determines if the redo queue contains any actions.

Nonzero if the redo queue contains actions, otherwise 0.

To discover the name of the operation in the redo queue, call CRichEditCtrl::GetRedoName. To redo the most
recent Undo operation, call Redo.

For more information, see EM_CANREDO in the Windows SDK.

Determines if the last editing operation can be undone.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/Controls/em-canpaste
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclipboardformata
https://docs.microsoft.com/windows/desktop/Controls/em-canredo

BOOL CanUndo() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Undo the last operation, if possible.
if (m_myRichEditCtrl.CanUndo())
 m_myRichEditCtrl.Undo();

CRichEditCtrl::CharFromPos

int CharFromPos(CPoint pt) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::Clear

void Clear();

RemarksRemarks

ExampleExample

Nonzero if the last edit operation can be undone by a call to the Undo member function; 0 if it cannot be
undone.

For more information, see EM_CANUNDO in the Windows SDK.

Retrieves information about the character at the point specified by the parameter pt.

pt
A CPoint object containing the coordinates of the specified point.

The zero-based character index of the character nearest the specified point. If the specified point is beyond
the last character in the control, the return value indicates the last character in the control.

This member function works with a rich edit control. To get the information for an edit control, call
CEdit::CharFromPos.

For more information, see EM_CHARFROMPOS in the Windows SDK.

Deletes (clears) the current selection (if any) in the rich edit control.

The deletion performed by Clear can be undone by calling the Undo member function.

To delete the current selection and place the deleted contents onto the Clipboard, call the Cut member
function.

For more information, see WM_CLEAR in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/em-canundo
https://docs.microsoft.com/windows/desktop/Controls/em-charfrompos
https://docs.microsoft.com/windows/desktop/dataxchg/wm-clear

// Delete all of the text.
m_myRichEditCtrl.SetSel(0, -1);
m_myRichEditCtrl.Clear();

CRichEditCtrl::Copy

void Copy();

RemarksRemarks

ExampleExample

// Copy all of the text to the clipboard.
m_myRichEditCtrl.SetSel(0, -1);
m_myRichEditCtrl.Copy();

CRichEditCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Copies the current selection (if any) in the rich edit control to the Clipboard.

For more information, see WM_COPY in the Windows SDK.

Creates the Windows rich edit control and associates it with this CRichEditCtrl object.

dwStyle
Specifies the edit control's style. Apply a combination of the window styles listed in the Remarks section
below, and edit control styles, described in the Windows SDK.

rect
Specifies the edit control's size and position. Can be a CRect object or RECT structure.

pParentWnd
Specifies the edit control's parent window (often a CDialog). It must not be NULL.

nID
Specifies the edit control's ID.

Nonzero if initialization is successful; otherwise, 0.

You construct a CRichEditCtrl object in two steps. First, call the CRichEditCtrl constructor, then call Create ,
which creates the Windows edit control and attaches it to the CRichEditCtrl object.

When you create a rich edit control with this function, first you must load the necessary common controls
library. To load the library, call the global function AfxInitRichEdit, which in turn initializes the common
controls library. You need to call AfxInitRichEdit only once in your process.

https://docs.microsoft.com/windows/desktop/dataxchg/wm-copy
https://docs.microsoft.com/windows/desktop/Controls/edit-control-styles
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

ExampleExample

m_myRichEditCtrl.Create(
 WS_CHILD|WS_VISIBLE|WS_BORDER|ES_MULTILINE,
 CRect(10,10,100,200), pParentWnd, IDD_RICHEDITCTRL);

CRichEditCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

When Create executes, Windows sends the WM_NCCREATE, WM_NCCALCSIZE, WM_CREATE, and
WM_GETMINMAXINFO messages to the edit control.

These messages are handled by default by the OnNcCreate, OnNcCalcSize, OnCreate, and
OnGetMinMaxInfo member functions in the CWnd base class. To extend the default message handling,
derive a class from CRichEditCtrl , add a message map to the new class, and override the above message-
handler member functions. Override OnCreate , for example, to perform needed initialization for the new
class.

Apply the following window styles to an edit control.

WS_CHILD Always.

WS_VISIBLE Usually.

WS_DISABLED Rarely.

WS_GROUP To group controls.

WS_TABSTOP To include edit control in the tabbing order.

For more information about window styles, see CreateWindow in the Windows SDK.

Creates a control (a child window) and associates it with the CRichEditCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the
dwExStyle parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the edit control's style. Apply a combination of the window styles listed in the Remarks section of
Create and edit control styles, described in the Windows SDK.

rect
A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/edit-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::CRichEditCtrl

CRichEditCtrl();

RemarksRemarks

ExampleExample

// Declare a local CRichEditCtrl object.
CRichEditCtrl myRichEditCtrl;

// Declare a dynamic CRichEditCtrl object.
CRichEditCtrl* pRichEditCtrl = new CRichEditCtrl;

CRichEditCtrl::Cut

void Cut();

RemarksRemarks

ExampleExample

// Delete all of the text and copy it to the clipboard.
m_myRichEditCtrl.SetSel(0, -1);
m_myRichEditCtrl.Cut();

CRichEditCtrl::DisplayBand

BOOL DisplayBand(LPRECT pDisplayRect);

ParametersParameters

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended
style preface WS_EX_.

Constructs a CRichEditCtrl object.

Use Create to construct the Windows rich edit control.

Delete (cuts) the current selection (if any) in the rich edit control and copies the deleted text to the Clipboard.

The deletion performed by Cut can be undone by calling the Undo member function.

To delete the current selection without placing the deleted text into the Clipboard, call the Clear member
function.

For more information, see WM_CUT in the Windows SDK.

Displays a portion of the contents of the rich edit control (text and OLE items), as previously formatted by
FormatRange.

https://docs.microsoft.com/windows/desktop/dataxchg/wm-cut

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRichEditCtrl::EmptyUndoBuffer

void EmptyUndoBuffer();

RemarksRemarks

ExampleExample

// Clear the undo buffer.
if (m_myRichEditCtrl.CanUndo())
{
 m_myRichEditCtrl.EmptyUndoBuffer();
 ASSERT(!m_myRichEditCtrl.CanUndo());
}

CRichEditCtrl::FindText

long FindText(
 DWORD dwFlags,
 FINDTEXTEX* pFindText) const;

ParametersParameters

Return ValueReturn Value

pDisplayRect
Pointer to a RECT or CRect object specifying the area of the device to display the text.

Nonzero if the display of the formatted text succeeds, otherwise, 0.

The text and OLE items are clipped to the area specified by the pointer pDisplayRect.

For more information, see EM_DISPLAYBAND in the Windows SDK.

See the example for CRichEditCtrl::FormatRange.

Resets (clear) the undo flag of this rich edit control.

The control will now be unable to undo the last editing operation. The undo flag is set whenever an
operation within the rich edit control can be undone.

The undo flag is automatically cleared whenever you call the CWnd member function SetWindowText.

For more information, see EM_EMPTYUNDOBUFFER in the Windows SDK.

Finds text within the rich edit control.

dwFlags
For a list of possible values, see wParam in EM_FINDTEXTEXT in the Windows SDK.

pFindText
Pointer to the FINDTEXTEX structure giving the parameters for the search and returning the range where
the match was found.

Zero-based character position of the next match; - 1 if there are no more matches.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/Controls/em-displayband
https://docs.microsoft.com/windows/desktop/Controls/em-emptyundobuffer
https://docs.microsoft.com/windows/desktop/Controls/em-findtextex
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_findtextexa

RemarksRemarks

ExampleExample

// Set the selection to be the first occurrence of the
// string lpszmyString, if it is found.
FINDTEXTEX ft;
ft.chrg.cpMin = 0;
ft.chrg.cpMax = 50;
ft.lpstrText = _T("wallaby");
long n = m_myRichEditCtrl.FindText(FR_MATCHCASE|FR_WHOLEWORD, &ft);
if (n != -1)
 m_myRichEditCtrl.SetSel(ft.chrgText);

CRichEditCtrl::FindWordBreak

DWORD FindWordBreak(
 UINT nCode,
 DWORD nStart) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::FormatRange

long FormatRange(
 FORMATRANGE* pfr,
 BOOL bDisplay = TRUE);

ParametersParameters

You can search either up or down by setting the proper range parameters in the CHARRANGE structure
within the FINDTEXTEX structure.

For more information, see EM_FINDTEXTEX message and FINDTEXTEX structure in the Windows SDK.

Finds the next word break before or after the position specified by nStart.

nCode
Indicates the action to take. For a list of possible values, see the description for the parameter code in
EM_FINDWORDBREAK in the Windows SDK.

nStart
The zero-based character position from which to start.

Based on the parameter nCode. For more information, see EM_FINDWORDBREAK in the Windows SDK.

You can use this member function to retrieve information about a character at a given position.

Formats a range of text in a rich edit control for a specific device.

pfr
Pointer to the FORMATRANGE structure which contains information about the output device. NULL
indicates that cached information within the rich edit control can be freed.

bDisplay
Indicates if the text should be rendered. If FALSE, the text is just measured.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charrange
https://docs.microsoft.com/windows/desktop/Controls/em-findtextex
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_findtextexa
https://docs.microsoft.com/windows/desktop/Controls/em-findwordbreak
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_formatrange

Return ValueReturn Value

RemarksRemarks

ExampleExample

// First obtain a pointer to a printer DC.
CPageSetupDialog psDlg;
if (IDOK == psDlg.DoModal())
{
 CDC* pMyPrinterDC = CDC::FromHandle(psDlg.CreatePrinterDC());

 FORMATRANGE fr;

 // Get the page width and height from the printer.
 long lPageWidth = ::MulDiv(pMyPrinterDC->GetDeviceCaps(PHYSICALWIDTH),
 1440, pMyPrinterDC->GetDeviceCaps(LOGPIXELSX));
 long lPageHeight = ::MulDiv(pMyPrinterDC->GetDeviceCaps(PHYSICALHEIGHT),
 1440, pMyPrinterDC->GetDeviceCaps(LOGPIXELSY));
 CRect rcPage(0, 0, lPageWidth, lPageHeight);

 // Format the text and render it to the printer.
 fr.hdc = pMyPrinterDC->m_hDC;
 fr.hdcTarget = pMyPrinterDC->m_hDC;
 fr.rc = rcPage;
 fr.rcPage = rcPage;
 fr.chrg.cpMin = 0;
 fr.chrg.cpMax = -1;
 m_myRichEditCtrl.FormatRange(&fr, TRUE);

 // Update the display with the new formatting.
 RECT rcClient;
 m_myRichEditCtrl.GetClientRect(&rcClient);
 m_myRichEditCtrl.DisplayBand(&rcClient);

 pMyPrinterDC->DeleteDC();
}

CRichEditCtrl::GetCharPos

CPoint GetCharPos(long lChar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The index of the last character that fits in the region plus one.

Typically, this call is followed by a call to DisplayBand.

For more information, see EM_FORMATRANGE message and FORMATRANGE structure in the Windows
SDK.

Gets the position (top-left corner) of a given character within this CRichEditCtrl object.

lChar
Zero-based index of the character.

The location of the top-left corner of the character specified by lChar.

The character is specified by giving its zero-based index value. If lChar is greater than the index of the last
character in this CRichEditCtrl object, the return value specifies the coordinates of the character position

https://docs.microsoft.com/windows/desktop/Controls/em-formatrange
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_formatrange

CRichEditCtrl::GetDefaultCharFormat

DWORD GetDefaultCharFormat(CHARFORMAT& cf) const; DWORD GetDefaultCharFormat(CHARFORMAT2& cf) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRichEditCtrl::GetEventMask

long GetEventMask() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRichEditCtrl::GetFirstVisibleLine

int GetFirstVisibleLine() const;

Return ValueReturn Value

just past the last character in this CRichEditCtrl object.

For more information, see EM_POSFROMCHAR in the Windows SDK.

Gets the default character formatting attributes of this CRichEditCtrl object.

cf
In the first version, a pointer to a CHARFORMAT structure holding the default character formatting attributes.

In the second version, a pointer to a CHARFORMAT2 structure, which is a Rich Edit 2.0 extension to the
CHARFORMAT structure, holding the default character formatting attributes.

The dwMask data member of cf. It specified the default character formatting attributes.

For more information, see the EM_GETCHARFORMAT message and the CHARFORMAT and CHARFORMAT2

structures in the Windows SDK.

See the example for SetDefaultCharFormat.

Gets the event mask for this CRichEditCtrl object.

The event mask for this CRichEditCtrl object.

The event mask specifies which notification messages the CRichEditCtrl object sends to its parent window.

For more information, see EM_GETEVENTMASK in the Windows SDK.

See the example for CRichEditCtrl::SetEventMask.

Determines the topmost visible line in this CRichEditCtrl object.

Zero-based index of the uppermost visible line in this CRichEditCtrl object.

https://docs.microsoft.com/windows/desktop/Controls/em-posfromchar
https://docs.microsoft.com/windows/desktop/Controls/em-geteventmask

RemarksRemarks

ExampleExample

int nFirstVisible = m_myRichEditCtrl.GetFirstVisibleLine();

// Scroll the rich edit control so that the first visible line
// is the first line of text.
if (nFirstVisible > 0)
{
 m_myRichEditCtrl.LineScroll(-nFirstVisible, 0);
}

CRichEditCtrl::GetIRichEditOle

IRichEditOle* GetIRichEditOle() const;

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::GetLimitText

long GetLimitText() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The new text of the rich edit control.
LPCTSTR lpszmyString = _T("Here's some text in our rich edit control!");
long nLength = (long)_tcslen(lpszmyString);

// Want the text limit to be at least the size of the new string.
if (m_myRichEditCtrl.GetLimitText() < nLength)
 m_myRichEditCtrl.LimitText(nLength);

m_myRichEditCtrl.SetWindowText(lpszmyString);

For more information, see EM_GETFIRSTVISIBLELINE in the Windows SDK.

Accesses the IRichEditOle interface for this CRichEditCtrl object.

Pointer to the IRichEditOle interface that can be used to access this CRichEditCtrl object's OLE functionality;
NULL if the interface is not accessible.

Use this interface to access this CRichEditCtrl object's OLE functionality.

For more information, see EM_GETOLEINTERFACE message and IRichEditOle interface in the Windows
SDK.

Gets the text limit for this CRichEditCtrl object.

The current text limit, in bytes, for this CRichEditCtrl object.

The text limit is the maximum amount of text, in bytes, the rich edit control can accept.

For more information, see EM_GETLIMITTEXT in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/em-getfirstvisibleline
https://docs.microsoft.com/windows/desktop/api/richole/nn-richole-iricheditole
https://docs.microsoft.com/windows/desktop/Controls/em-getoleinterface
https://docs.microsoft.com/windows/desktop/api/richole/nn-richole-iricheditole
https://docs.microsoft.com/windows/desktop/Controls/em-getlimittext

CRichEditCtrl::GetLine

int GetLine(
 int nIndex,
 LPTSTR lpszBuffer) const;

int GetLine(
 int nIndex,
 LPTSTR lpszBuffer,
 int nMaxLength) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CRichEditCtrl::GetLineCount

int GetLineCount() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

Retrieves a line of text from this CRichEditCtrl object.

nIndex
Zero-based index of the line to retrieve.

lpszBuffer
Points to the buffer to receive the text. The first word of the buffer must specify the maximum number of
bytes that can be copied into the buffer.

nMaxLength
Maximum number of characters that can be copied into lpszBuffer. The second form of GetLine places this
value into the first word of the buffer specified by lpszBuffer.

The number of characters copied into lpszBuffer.

The copied line does not contain a terminating null character.

Because the first word of the buffer stores the number of characters to be copied, make sure that your buffer is at
least 4 bytes long.

For more information, see EM_GETLINE in the Windows SDK.

See the example for GetLineCount.

Retrieves the number of lines in the CRichEditCtrl object.

The number of lines in this CRichEditCtrl object.

For more information, see EM_GETLINECOUNT in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/em-getline
https://docs.microsoft.com/windows/desktop/Controls/em-getlinecount

int nLineLength, nLineIndex, nLineCount = m_myRichEditCtrl.GetLineCount();
CString strText, strLine;

// Dump every line of text of the rich edit control.
for (int i = 0; i < nLineCount; i++)
{
 nLineIndex = m_myRichEditCtrl.LineIndex(i);
 nLineLength = m_myRichEditCtrl.LineLength(nLineIndex);
 m_myRichEditCtrl.GetLine(i, strText.GetBufferSetLength(nLineLength + 1),
 nLineLength);
 strText.SetAt(nLineLength, _T('\0')); // null terminate
 strText.ReleaseBuffer(nLineLength + 1);

 TRACE(_T("line %d: '%s'\r\n"), i, strText);
}

CRichEditCtrl::GetModify

BOOL GetModify() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Reset the modified state only if the text has been modified.
if (m_myRichEditCtrl.GetModify())
 m_myRichEditCtrl.SetModify(FALSE);

CRichEditCtrl::GetOptions

UINT GetOptions() const;

Return ValueReturn Value

CRichEditCtrl::GetParaFormat

DWORD GetParaFormat(PARAFORMAT& pf) const; DWORD GetParaFormat(PARAFORMAT2& pf) const;

Determines if the contents of this CRichEditCtrl object have been modified.

Nonzero if the text in this CRichEditCtrl object has been modified; otherwise 0.

Windows maintains an internal flag indicating whether the contents of the rich edit control have been
changed. This flag is cleared when the edit control is first created and can also be cleared by calling the
SetModify member function.

For more information, see EM_GETMODIFY in the Windows SDK.

Retrieves the options currently set for the rich edit control.

A combination of the current option flag values. For a list of these values, see the fOptions parameter in the
EM_SETOPTIONS message, as described in the Windows SDK.

Gets the paragraph formatting attributes of the current selection.

https://docs.microsoft.com/windows/desktop/Controls/em-getmodify
https://docs.microsoft.com/windows/desktop/Controls/em-setoptions

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRichEditCtrl::GetPunctuation

BOOL GetPunctuation(
 UINT fType,
 PUNCTUATION* lpPunc) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::GetRect

void GetRect(LPRECT lpRect) const;

ParametersParameters

pf
In the first version, a pointer to a PARAFORMAT structure to hold the paragraph formatting attributes of the
current selection.

In the second version, a pointer to a PARAFORMAT2 structure, which is a Rich Edit 2.0 extension to the
PARAFORMAT structure, holding the default character formatting attributes.

The dwMask data member of pf. It specifies the paragraph formatting attributes that are consistent
throughout the current selection.

If more than one paragraph is selected, pf receives the attributes of the first selected paragraph. The return
value specifies which attributes are consistent throughout the selection.

For more information, see the EM_GETPARAFORMAT message and the PARAFORMAT and PARAFORMAT2

structures in the Windows SDK.

See the example for CRichEditCtrl::SetParaFormat.

Gets the current punctuation characters in a rich edit control.

fType
The punctuation type flag, as described in the fType parameter of EM_GETPUNCTUATION in the Windows
SDK.

lpPunc
A pointer to a PUNCTUATION structure, as described in the Windows SDK.

Nonzero if the operation succeeded, otherwise 0.

This member function is available with only the Asian-language versions of the operating system.

Retrieves the formatting rectangle for this CRichEditCtrl object.

lpRect
CRect or pointer to a RECT to receive the formatting rectangle of this CRichEditCtrl object.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_paraformat
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-paraformat2
https://docs.microsoft.com/windows/desktop/Controls/em-getparaformat
https://docs.microsoft.com/windows/desktop/Controls/em-getpunctuation
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_punctuation
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

RemarksRemarks

ExampleExample

CRichEditCtrl::GetRedoName

UNDONAMEID GetRedoName() const;

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::GetSel

void GetSel(CHARRANGE& cr) const;

void GetSel(
 long& nStartChar,
 long& nEndChar) const;

ParametersParameters

RemarksRemarks

The formatting rectangle is the bounding rectangle for the text. This value is independent of the size of the
CRichEditCtrl object.

For more information, see EM_GETRECT in the Windows SDK.

See the example for LimitText.

Retrieves the type of the next available action in the redo queue, if any.

If successful, GetRedoName returns the UNDONAMEID enumeration type indicating the type of the next
action in the control's redo queue. If the redo queue is empty, or if the redo action in the queue is of an
unknown type, GetRedoName returns 0.

The types of actions that can be undone or redone include typing, delete, drag-drop, cut, and paste
operations. This information can be useful for applications that provide an extended user interface for Undo
and Redo operations, such as a drop-down list box of redoable actions.

Retrieves the bounds of the current selection in this CRichEditCtrl object.

cr
Reference to a CHARRANGE structure to receive the bounds of the current selection.

nStartChar
Zero-based index of the first character in the current selection.

nEndChar
Zero-based index of the last character in the current selection.

The two forms of this function provide alternate ways to get the bounds for the selection. Brief descriptions
of these forms follow:

GetSel(cr) This form uses the CHARRANGE structure with its cpMin and cpMax members to return
the bounds.

GetSel(nStartChar , nEndChar) This form returns the bounds in the parameters nStartChar and
nEndChar.

https://docs.microsoft.com/windows/desktop/Controls/em-getrect
https://docs.microsoft.com/windows/desktop/api/richedit/ne-richedit-_undonameid
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charrange

ExampleExample

// Set the selection to be all characters after the current selection.
long nStartChar, nEndChar;

m_myRichEditCtrl.GetSel(nStartChar, nEndChar);
m_myRichEditCtrl.SetSel(nEndChar, -1);

CRichEditCtrl::GetSelectionCharFormat

DWORD GetSelectionCharFormat(CHARFORMAT& cf) const; DWORD GetSelectionCharFormat(CHARFORMAT2& cf)
const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRichEditCtrl::GetSelectionType

WORD GetSelectionType() const;

Return ValueReturn Value

The selection includes everything if the beginning (cpMin or nStartChar) is 0 and the end (cpMax or
nEndChar) is - 1.

For more information, see EM_EXGETSEL message and CHARRANGE structure in the Windows SDK.

Gets the character formatting attributes of the current selection.

cf
In the first version, a pointer to a CHARFORMAT structure to receive the character formatting attributes of
the current selection.

In the second version, a pointer to a CHARFORMAT2 structure, which is a Rich Edit 2.0 extension to the
CHARFORMAT structure to receive the character formatting attributes of the current selection.

The dwMask data member of cf. It specifies the character formatting attributes that are consistent throughout
the current selection.

The cf parameter receives the attributes of the first character in the current selection. The return value
specifies which attributes are consistent throughout the selection.

For more information, see the EM_GETCHARFORMAT message and the CHARFORMAT and CHARFORMAT2

structures in the Windows SDK.

See the example for SetSelectionCharFormat.

Determines the selection type in this CRichEditCtrl object.

Flags indicating the contents of the current selection. A combination of the following flags:

SEL_EMPTY Indicates that there is no current selection.

SEL_TEXT Indicates that the current selection contains text.

https://docs.microsoft.com/windows/desktop/Controls/em-exgetsel
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charrange
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charformat
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-charformat2a
https://docs.microsoft.com/windows/desktop/Controls/em-getcharformat

RemarksRemarks

ExampleExample

// Dump the selection text only if it contains at least one text character.
if (m_myRichEditCtrl.GetSelectionType() & (SEL_TEXT | SEL_MULTICHAR))
{
 CString strText = m_myRichEditCtrl.GetSelText();

 TRACE(_T("selection text is '%s'.\r\n"), strText);
}

CRichEditCtrl::GetSelText

long GetSelText(LPSTR lpBuf) const; CString GetSelText() const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRichEditCtrl::GetTextLength

long GetTextLength() const;

Return ValueReturn Value

RemarksRemarks

SEL_OBJECT Indicates that the current selection contains at least one OLE item.

SEL_MULTICHAR Indicates that the current selection contains more than one character of text.

SEL_MULTIOBJECT Indicates that the current selection contains more than one OLE object.

For more information, see EM_SELECTIONTYPE in the Windows SDK.

Retrieves the text from the current selection in this CRichEditCtrl object.

lpBuf
Pointer to the buffer to receive the text in the current selection.

Depends on the form:

GetSelText(lpBuf) The number of characters copied into lpBuf, not including the null termination.

GetSelText() The string containing the current selection.

If you use the first form, GetSelText(lpBuf), you must ensure that the buffer is large enough for the text it
will receive. Call GetSel to determine the number of characters in the current selection.

For more information, see EM_GETSELTEXT in the Windows SDK.

See the example for CRichEditCtrl::GetSelectionType.

Retrieves the length of the text, in characters, in this CRichEditCtrl object, not including the terminating null
character.

The length of the text in this CRichEditCtrl object.

https://docs.microsoft.com/windows/desktop/Controls/em-selectiontype
https://docs.microsoft.com/windows/desktop/Controls/em-getseltext

ExampleExample

// Limit the rich edit controls text to the number of
// characters currently in it.
m_myRichEditCtrl.LimitText(m_myRichEditCtrl.GetTextLength());

CRichEditCtrl::GetTextLengthEx

long GetTextLengthEx(
 DWORD dwFlags,
 UINT uCodePage = -1) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::GetTextMode

UINT GetTextMode() const;

Return ValueReturn Value

CRichEditCtrl::GetTextRange

int GetTextRange(
 int nFirst,
 int nLast,
 CString& refString) const;

ParametersParameters

For more information, see WM_GETTEXTLENGTH in the Windows SDK.

Calculates the length of the text in the rich edit control.

dwFlags
Value specifying the method to be used in determining the text length. This member can be one or more of
the values listed in the flags member of GETTEXTLENGTHEX described in the Windows SDK.

uCodePage
Code page for translation (CP_ACP for ANSI Code Page, 1200 for Unicode).

The number of characters or bytes in the edit control. If incompatible flags were set in dwFlags, this member
function returns E_INVALIDARG.

GetTextLengthEx provides additional ways of determining the length of the text. It supports the Rich Edit 2.0
functionality. See About Rich Edit Controls in the Windows SDKfor more information.

Retrieves the current text mode and undo level of a rich edit control.

A set of bit flags from the TEXTMODE enumeration type, as described in the Windows SDK. The flags
indicate the current text mode and undo level of the control.

Gets the specified range of characters.

nFirst

https://docs.microsoft.com/windows/desktop/winmsg/wm-gettextlength
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_gettextlengthex
https://docs.microsoft.com/windows/desktop/Controls/about-rich-edit-controls
https://docs.microsoft.com/windows/desktop/api/richedit/ne-richedit-tagtextmode

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::GetUndoName

UNDONAMEID GetUndoName() const;

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::GetWordWrapMode

UINT GetWordWrapMode() const;

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::HideSelection

void HideSelection(
 BOOL bHide,
 BOOL bPerm);

The character position index immediately preceding the first character in the range.

nLast
The character position immediately following the last character in the range.

refString
A reference to a CString object that will receive the text.

The number of characters copied, not including the terminating null character.

For more information, see EM_GETTEXTRANGE in the Windows SDK.

GetTextRange supports the Rich Edit 2.0 functionality. See About Rich Edit Controls in the Windows SDKfor
more information.

Retrieves the type of the next available action in the undo queue, if any.

If an undo action is in the control's undo queue, GetUndoName returns the UNDONAMEID enumeration type
indicating the type of the next action in the queue. If the undo queue is empty, or if the undo action in the
queue is of an unknown type, GetUndoName returns 0.

The types of actions that can be undone or redone include typing, delete, drag-drop, cut, and paste
operations. This information can be useful for applications that provide an extended user interface for Undo
and Redo operations, such as a drop-down list box of actions that can be undone.

Retrieves the current word wrapping and word breaking options for the rich edit control.

The current word wrapping and word breaking options. These options are described in
EM_SETWORDWRAPMODE in the Windows SDK.

This member function is available only for Asian-language versions of the operating system.

Changes the visibility of the selection.

https://docs.microsoft.com/windows/desktop/Controls/em-gettextrange
https://docs.microsoft.com/windows/desktop/Controls/about-rich-edit-controls
https://docs.microsoft.com/windows/desktop/api/richedit/ne-richedit-_undonameid
https://docs.microsoft.com/windows/desktop/Controls/em-setwordwrapmode

ParametersParameters

RemarksRemarks

ExampleExample

// Show the selection and make it permanent.
m_myRichEditCtrl.HideSelection(FALSE, TRUE);

CRichEditCtrl::LimitText

void LimitText(long nChars = 0);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

bHide
Indicates if the selection should be shown or hidden, TRUE to hide the selection.

bPerm
Indicates if this change in visibility for the selection should be permanent.

When bPerm is TRUE, it changes the ECO_NOHIDESEL option for this CRichEditCtrl object. For a brief
description of this option, see SetOptions. You can use this function to set all the options for this
CRichEditCtrl object.

For more information, see EM_HIDESELECTION in the Windows SDK.

Limits the length of the text that the user can enter into an edit control.

nChars
Specifies the length (in bytes) of the text that the user can enter. If this parameter is 0 (the default value), the
text length is set to 64K bytes.

Changing the text limit restricts only the text the user can enter. It has no effect on any text already in the edit
control, nor does it affect the length of the text copied to the edit control by the SetWindowText member
function in CWnd . If an application uses the SetWindowText function to place more text into an edit control
than is specified in the call to LimitText , the user can delete any of the text within the edit control. However,
the text limit will prevent the user from replacing the existing text with new text, unless deleting the current
selection causes the text to fall below the text limit.

For the text limit, each OLE item counts as a single character.

For more information, see EM_EXLIMITTEXT in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/em-hideselection
https://docs.microsoft.com/windows/desktop/Controls/em-exlimittext

// Limit the number of characters to be the maximum number visible.

// Get the text metrics for the edit; needed for the
// average character width.
TEXTMETRIC tm;
CDC* pDC = m_myRichEditCtrl.GetDC();
pDC->GetTextMetrics(&tm);
m_myRichEditCtrl.ReleaseDC(pDC);

CRect r;
m_myRichEditCtrl.GetRect(&r);
m_myRichEditCtrl.LimitText(r.Width()/tm.tmAveCharWidth);

CRichEditCtrl::LineFromChar

long LineFromChar(long nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The index of the char to get information on.
int nIndex = 11;

CString strText;

m_myRichEditCtrl.GetWindowText(strText);
strText = strText.Mid(nIndex, 1);

// Dump the index, character and line number.
TRACE(_T("nIndex = %d, character = %c, line = %d\r\n"),
 nIndex, strText[0], m_myRichEditCtrl.LineFromChar(nIndex));

CRichEditCtrl::LineIndex

int LineIndex(int nLine = -1) const;

Retrieves the line number of the line that contains the specified character index.

nIndex
Contains the zero-based index value for the desired character in the text of the edit control, or contains -1. If
nIndex is -1, it specifies the current line, that is, the line that contains the caret.

The zero-based line number of the line containing the character index specified by nIndex. If nIndex is -1, the
number of the line that contains the first character of the selection is returned. If there is no selection, the
current line number is returned.

A character index is the number of characters from the beginning of the rich edit control. For character
counting, an OLE item is counted as a single character.

For more information, see EM_EXLINEFROMCHAR in the Windows SDK.

Retrieves the character index of a line within this CRichEditCtrl object.

https://docs.microsoft.com/windows/desktop/Controls/em-exlinefromchar

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The string for replacing.
LPCTSTR lpszmyString = _T("Hello, I'm the new second line.");

int nBegin, nEnd, nIndex;

// Replace the second line, if it exists, of the rich edit control
// with the text lpszmyString.
nIndex = m_myRichEditCtrl.LineIndex(1);
if ((nBegin = nIndex) != -1)
{
 nEnd = nBegin + m_myRichEditCtrl.LineLength(nIndex);
 m_myRichEditCtrl.SetSel(nBegin, nEnd);
 m_myRichEditCtrl.ReplaceSel(lpszmyString);
}

CRichEditCtrl::LineLength

int LineLength(int nLine = -1) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nLine
Contains the index value for the desired line in the text of the edit control, or contains -1. If nLine is -1, it
specifies the current line, that is, the line that contains the caret.

The character index of the line specified in nLine or -1 if the specified line number is greater then the number
of lines in the edit control.

The character index is the number of characters from the beginning of the rich edit control to the specified
line.

For more information, see EM_LINEINDEX in the Windows SDK.

Retrieves the length of a line in a rich edit control.

nLine
Specifies the character index of a character in the line whose length is to be retrieved. If this parameter is -1,
the length of the current line (the line that contains the caret) is returned, not including the length of any
selected text within the line. When LineLength is called for a single-line edit control, this parameter is
ignored.

When LineLength is called for a multiple-line edit control, the return value is the length (in TCHAR) of the
line specified by nLine. It does not include the carriage-return character at the end of the line. When
LineLength is called for a single-line edit control, the return value is the length (in TCHAR) of the text in the

edit control. If nLine is greater than the number of characters in the control, the return value is zero.

Use the LineIndex member function to retrieve a character index for a given line number within this
CRichEditCtrl object.

For more information, see EM_LINELENGTH in the Windows SDK.

https://msdn.microsoft.com/library/windows/desktop/bb761611
https://docs.microsoft.com/windows/desktop/Controls/em-linelength

ExampleExample

CRichEditCtrl::LineScroll

void LineScroll(
 int nLines,
 int nChars = 0);

ParametersParameters

RemarksRemarks

ExampleExample

CRichEditCtrl::Paste

void Paste();

RemarksRemarks

ExampleExample

// Replace all of the text with the text in the clipboard.
m_myRichEditCtrl.SetSel(0, -1);
m_myRichEditCtrl.Paste();

CRichEditCtrl::PasteSpecial

See the example for LineIndex.

Scrolls the text of a multiple-line edit control.

nLines
Specifies the number of lines to scroll vertically.

nChars
Specifies the number of character positions to scroll horizontally. This value is ignored if the rich edit control
has either the ES_RIGHT or ES_CENTER style. Edit styles are specified in Create.

The edit control does not scroll vertically past the last line of text in the edit control. If the current line plus
the number of lines specified by nLines exceeds the total number of lines in the edit control, the value is
adjusted so that the last line of the edit control is scrolled to the top of the edit-control window.

LineScroll can be used to scroll horizontally past the last character of any line.

For more information, see EM_LINESCROLL in the Windows SDK.

See the example for GetFirstVisibleLine.

Inserts the data from the Clipboard into the CRichEditCtrl at the insertion point, the location of the caret.

Data is inserted only if the Clipboard contains data in a recognized format.

For more information, see WM_PASTE in the Windows SDK.

Pastes data in a specific Clipboard format into this CRichEditCtrl object.

https://docs.microsoft.com/windows/desktop/Controls/em-linescroll
https://docs.microsoft.com/windows/desktop/dataxchg/wm-paste

void PasteSpecial(
 UINT nClipFormat,
 DWORD dvAspect = 0,
 HMETAFILE hMF = 0);

ParametersParameters

RemarksRemarks

ExampleExample

// Paste the data from the clipboard as text.
m_myRichEditCtrl.PasteSpecial(CF_TEXT);

CRichEditCtrl::PosFromChar

CPoint PosFromChar(UINT nChar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::Redo

BOOL Redo();

Return ValueReturn Value

RemarksRemarks

nClipFormat
Clipboard format to paste into this CRichEditCtrl object.

dvAspect
Device aspect for the data to be retrieved from the Clipboard.

hMF
Handle to the metafile containing the iconic view of the object to be pasted.

The new material is inserted at the insertion point, the location of the caret.

For more information, see EM_PASTESPECIAL in the Windows SDK.

Retrieves the client area coordinates of a specified character in an edit control.

nChar
The zero-based index of the character.

The position of the character, (x, y). For a single-line edit control, the y-coordinate is always zero.

For more information, see EM_POSFROMCHAR in the Windows SDK.

Redoes the next action in the control's redo queue.

Nonzero if successful; otherwise, 0.

For more information, see EM_REDO in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/em-pastespecial
https://docs.microsoft.com/windows/desktop/Controls/em-posfromchar
https://docs.microsoft.com/windows/desktop/Controls/em-redo

CRichEditCtrl::ReplaceSel

void ReplaceSel(
 LPCTSTR lpszNewText,
 BOOL bCanUndo = FALSE);

ParametersParameters

RemarksRemarks

ExampleExample

CRichEditCtrl::RequestResize

void RequestResize();

RemarksRemarks

CRichEditCtrl::SetAutoURLDetect

BOOL SetAutoURLDetect(BOOL bEnable = TRUE);

ParametersParameters

Replaces the current selection in this CRichEditCtrl object with the specified text.

lpszNewText
Pointer to a null-terminated string containing the replacement text.

bCanUndo
To specify that this function can be undone, set the value of this parameter to TRUE. The default value is
FALSE.

To replace all the text in this CRichEditCtrl object, use CWnd::SetWindowText.

If there is no current selection, the replacement text is inserted at the insertion point, that is, the current caret
location.

This function will format the inserted text with the existing character formatting. When replacing the entire
range of text (by calling SetSel (0,-1) before calling ReplaceSel), there is an end of paragraph character that
retains the previous paragraph's formatting, which in inherited by the newly inserted text.

For more information, see EM_REPLACESEL in the Windows SDK.

See the example for LineIndex.

Forces this CRichEditCtrl object to send EN_REQUESTRESIZE notification messages to its parent window.

This function is useful during CWnd::OnSize processing for a bottomless CRichEditCtrl object.

For more information, see the EM_REQUESTRESIZE message and the Bottomless Rich Edit Controls
section of About Rich Edit Controls in the Windows SDK.

Sets the rich edit control to automatically detect a URL.

bEnable
Specifies whether the control is set to automatically detect a URL. If TRUE, it is enabled. If FALSE, it is
disabled.

https://docs.microsoft.com/windows/desktop/Controls/em-replacesel
https://docs.microsoft.com/windows/desktop/Controls/em-requestresize
https://docs.microsoft.com/windows/desktop/Controls/about-rich-edit-controls

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CRichEditCtrl::SetBackgroundColor

COLORREF SetBackgroundColor(
 BOOL bSysColor,
 COLORREF cr);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Use red as the background color.
m_myRichEditCtrl.SetBackgroundColor(FALSE, RGB(255,0, 0));

CRichEditCtrl::SetDefaultCharFormat

BOOL SetDefaultCharFormat(CHARFORMAT& cf);
BOOL SetDefaultCharFormat(CHARFORMAT2& cf);

ParametersParameters

Zero if successful, otherwise nonzero. For example, the message may fail due to insufficient memory.

If enabled, the rich edit control will scan the text to determine if it matches a standard URL format. For a list
of these URL formats, see EM_AUTOURLDETECT in the Windows SDK.

Do not set SetAutoURLDetect to TRUE if your edit control uses the CFE_LINK effect for text other than URLs.
SetAutoURLDetect enables this effect for URLs and disables it for all other text. See EN_LINK for more information

about the CFE_LINK effect.

Sets the background color for this CRichEditCtrl object.

bSysColor
Indicates if the background color should be set to the system value. If this value is TRUE, cr is ignored.

cr
The requested background color. Used only if bSysColor is FALSE.

The previous background color for this CRichEditCtrl object.

The background color can be set to the system value or to a specified COLORREF value.

For more information, see EM_SETBKGNDCOLOR message and COLORREF structure in the Windows
SDK.

Sets the character formatting attributes for new text in this CRichEditCtrl object.

cf
In the first version, a pointer to a CHARFORMAT structure containing the new default character formatting
attributes.

https://docs.microsoft.com/windows/desktop/Controls/em-autourldetect
https://docs.microsoft.com/windows/desktop/Controls/en-link
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/em-setbkgndcolor
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charformat

Return ValueReturn Value

RemarksRemarks

ExampleExample

CHARFORMAT cf = {0};

// Modify the default character format so that all new
// text is striked out and not bold.
cf.cbSize = sizeof(cf);
cf.dwMask = CFM_STRIKEOUT|CFM_BOLD;
cf.dwEffects = CFE_STRIKEOUT;
m_myRichEditCtrl.SetDefaultCharFormat(cf);

// Verify the settings are what is expected.
m_myRichEditCtrl.GetDefaultCharFormat(cf);
ASSERT((cf.dwMask&(CFM_STRIKEOUT|CFM_BOLD)) ==
 (CFM_STRIKEOUT|CFM_BOLD));
ASSERT((cf.dwEffects&(CFE_STRIKEOUT|CFE_BOLD)) == CFE_STRIKEOUT);

CRichEditCtrl::SetEventMask

DWORD SetEventMask(DWORD dwEventMask);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set the event mask so that the parent gets notified when the text
// of the rich edit control changes.
m_myRichEditCtrl.SetEventMask(m_myRichEditCtrl.GetEventMask() |
 ENM_CHANGE);

CRichEditCtrl::SetModify

In the second version, a pointer to a CHARFORMAT2 structure, which is a Rich Edit 2.0 extension to the
CHARFORMAT structure, containing the default character formatting attributes.

Nonzero if successful; otherwise, 0.

Only the attributes specified by the dwMask member of cf are changed by this function.

For more information, see the EM_SETCHARFORMAT message and the CHARFORMAT and CHARFORMAT2

structures in the Windows SDK.

Sets the event mask for this CRichEditCtrl object.

dwEventMask
The new event mask for this CRichEditCtrl object.

The previous event mask.

The event mask specifies which notification messages the CRichEditCtrl object sends to its parent window.

For more information, see EM_SETEVENTMASK in the Windows SDK.

Sets or clears the modified flag for an edit control.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-charformat2a
https://docs.microsoft.com/windows/desktop/Controls/em-setcharformat
https://docs.microsoft.com/windows/desktop/Controls/em-seteventmask

void SetModify(BOOL bModified = TRUE);

ParametersParameters

RemarksRemarks

ExampleExample

CRichEditCtrl::SetOLECallback

BOOL SetOLECallback(IRichEditOleCallback* pCallback);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::SetOptions

void SetOptions(
 WORD wOp,
 DWORD dwFlags);

ParametersParameters

bModified
A value of TRUE indicates that the text has been modified, and a value of FALSE indicates it is unmodified.
By default, the modified flag is set.

The modified flag indicates whether or not the text within the edit control has been modified. It is
automatically set whenever the user changes the text. Its value can be retrieved with the GetModify member
function.

For more information, see EM_SETMODIFY in the Windows SDK.

See the example for GetModify.

Gives this CRichEditCtrl object an IRichEditOleCallback object to use to access OLE-related resources and
information.

pCallback
Pointer to an IRichEditOleCallback object that this CRichEditCtrl object will use to get OLE-related
resources and information.

Nonzero if successful; otherwise, 0.

This CRichEditCtrl object will call IUnknown::AddRef to increment the usage count for the COM object
specified by pCallback.

For more information, see EM_SETOLECALLBACK message and IRichEditOleCallback interface in the
Windows SDK.

Sets the options for this CRichEditCtrl object.

wOp
Indicates the type of operation. One of the following values:

ECOOP_SET Set the options to those specified by dwFlags.

https://docs.microsoft.com/windows/desktop/Controls/em-setmodify
https://docs.microsoft.com/windows/desktop/api/richole/nn-richole-iricheditolecallback
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref
https://docs.microsoft.com/windows/desktop/Controls/em-setolecallback
https://docs.microsoft.com/windows/desktop/api/richole/nn-richole-iricheditolecallback

RemarksRemarks

ExampleExample

// Add auto horizontal and vertical scrolling.
m_myRichEditCtrl.SetOptions(ECOOP_OR, ECO_AUTOVSCROLL |
 ECO_AUTOHSCROLL);

CRichEditCtrl::SetParaFormat

BOOL SetParaFormat(PARAFORMAT& pf);
BOOL SetParaFormat(PARAFORMAT2& pf);

ParametersParameters

ECOOP_OR Combine the current options with those specified by dwFlags.

ECOOP_AND Retain only those current options that are also specified by dwFlags.

ECOOP_XOR Logically exclusive OR the current options with those specified by dwFlags.

dwFlags
Rich edit options. The flag values are listed in the Remarks section.

The options can be a combination of the following values:

ECO_AUTOWORDSELECTION Automatic word selection on double-click.

ECO_AUTOVSCROLL Automatically scrolls text to the right by 10 characters when the user types a
character at the end of the line. When the user presses the ENTER key, the control scrolls all text back
to position zero.

ECO_AUTOHSCROLL Automatically scrolls text up one page when the user presses the ENTER key
on the last line.

ECO_NOHIDESEL Negates the default behavior for an edit control. The default behavior hides the
selection when the control loses the input focus and shows the selection when the control receives the
input focus. If you specify ECO_NOHIDESEL, the selected text is inverted, even if the control does not
have the focus.

ECO_READONLY Prevents the user from typing or editing text in the edit control.

ECO_WANTRETURN Specifies that a carriage return be inserted when the user presses the ENTER
key while entering text into a multiple-line rich edit control in a dialog box. If you do not specify this
style, pressing the ENTER key sends a command to the rich edit control's parent window, which
mimics clicking the parent window's default button (for example, the OK button in a dialog box). This
style has no effect on a single-line edit control.

ECO_SAVESEL Preserves the selection when the control loses the focus. By default, the entire
contents of the control are selected when it regains the focus.

ECO_VERTICAL Draws text and objects in a vertical direction. Available for Asian languages only.

For more information, see EM_SETOPTIONS in the Windows SDK.

Sets the paragraph formatting attributes for the current selection in this CRichEditCtrl object.

pf
In the first version, a pointer to a PARAFORMAT structure containing the new default paragraph formatting

https://docs.microsoft.com/windows/desktop/Controls/em-setoptions
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_paraformat

Return ValueReturn Value

RemarksRemarks

ExampleExample

PARAFORMAT pf;

// Modify the paragraph format so that the text is centered.
pf.cbSize = sizeof(PARAFORMAT);
pf.dwMask = PFM_ALIGNMENT;
pf.wAlignment = PFA_CENTER;
m_myRichEditCtrl.SetParaFormat(pf);

// Verify the settings are what is expected.
m_myRichEditCtrl.GetParaFormat(pf);
ASSERT(pf.dwMask&PFM_ALIGNMENT);
ASSERT(pf.wAlignment == PFA_CENTER);

CRichEditCtrl::SetPunctuation

BOOL SetPunctuation(
 UINT fType,
 PUNCTUATION* lpPunc);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::SetReadOnly

BOOL SetReadOnly(BOOL bReadOnly = TRUE);

attributes.

In the second version, a pointer to a PARAFORMAT2 structure, which is a Rich Edit 2.0 extension to the
PARAFORMAT structure, holding the default character formatting attributes.

Nonzero if successful; otherwise, 0.

Only the attributes specified by the dwMask member of pf are changed by this function.

For more information, see the EM_SETPARAFORMAT message and the PARAFORMAT and PARAFORMAT2

structures in the Windows SDK.

Sets the punctuation in a rich edit control.

fType
The punctuation flag. For a list of possible values, see the fType parameter for EM_SETPUNCTUATION in
the Windows SDK.

lpPunc
A pointer to a PUNCTUATION structure, as described in the Windows SDK.

Nonzero if successful, otherwise 0.

This member function is available for only Asian-language versions of the operating system.

Changes the ECO_READONLY option for this CRichEditCtrl object.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-paraformat2
https://docs.microsoft.com/windows/desktop/Controls/em-setparaformat
https://docs.microsoft.com/windows/desktop/Controls/em-setpunctuation
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_punctuation

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set the rich edit control to be read-only.
m_myRichEditCtrl.SetReadOnly(TRUE);
ASSERT(m_myRichEditCtrl.GetStyle() & ES_READONLY);

CRichEditCtrl::SetRect

void SetRect(LPCRECT lpRect);

ParametersParameters

RemarksRemarks

ExampleExample

CRect r;

m_myRichEditCtrl.GetRect(&r);

// Reduce the formatting rect of the rich edit control by
// 10 pixels on each side.
if ((r.Width() > 20) && (r.Height() > 20))
{
 r.DeflateRect(0, 20);
 m_myRichEditCtrl.SetRect(&r);
}

CRichEditCtrl::SetSel

bReadOnly
Indicates if this CRichEditCtrl object should be read only.

Nonzero if successful; otherwise, 0.

For a brief description of this option, see SetOptions. You can use this function to set all the options for this
CRichEditCtrl object.

For more information, see EM_SETREADONLY in the Windows SDK.

Sets the formatting rectangle for this CRichEditCtrl object.

lpRect
CRect or pointer to a RECT that indicates the new bounds for the formatting rectangle.

The formatting rectangle is the limiting rectangle for the text. The limiting rectangle is independent of the
size of the rich edit control window. When this CRichEditCtrl object is first created, the formatting rectangle
is the same size as the client area of the window. Use SetRect to make the formatting rectangle larger or
smaller than the rich edit window.

For more information, see EM_SETRECT in the Windows SDK.

Sets the selection within this CRichEditCtrl object.

https://docs.microsoft.com/windows/desktop/Controls/em-setreadonly
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/Controls/em-setrect

void SetSel(
 long nStartChar,
 long nEndChar);

void SetSel(CHARRANGE& cr);

ParametersParameters

RemarksRemarks

ExampleExample

CRichEditCtrl::SetSelectionCharFormat

BOOL SetSelectionCharFormat(CHARFORMAT& cf);
BOOL SetSelectionCharFormat(CHARFORMAT2& cf);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nStartChar
Zero-based index of the first character for the selection.

nEndChar
Zero-based index of the last character for the selection.

cr
CHARRANGE structure which holds the bounds of the current selection.

The two forms of this function provide alternate ways to set the bounds for the selection. Brief descriptions
of these forms follow:

SetSel(cr) This form uses the CHARRANGE structure with its cpMin and cpMax members to set the
bounds.

SetSel(nStartChar , nEndChar) This form use the parameters nStartChar and nEndChar to set the
bounds.

The caret is placed at the end of the selection indicated by the greater of the start (cpMin or nStartChar) and
end (cpMax or nEndChar) indices. This function scrolls the contents of the CRichEditCtrl so that the caret is
visible.

To select all the text in this CRichEditCtrl object, call SetSel with a start index of 0 and an end index of - 1.

For more information, see EM_EXSETSEL message and CHARRANGE structure in the Windows SDK.

See the example for GetSel.

Sets the character formatting attributes for the text in the current selection in this CRichEditCtrl object.

cf
In the first version, a pointer to a CHARFORMAT structure containing the new character formatting
attributes for the current selection.

In the second version, a pointer to a CHARFORMAT2 structure, which is a Rich Edit 2.0 extension to the
CHARFORMAT structure, containing the new character formatting attributes for the current selection.

Nonzero if successful; otherwise, 0.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charrange
https://docs.microsoft.com/windows/desktop/Controls/em-exsetsel
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charrange
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charformat
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-charformat2a

ExampleExample

CHARFORMAT cf;

// Modify the selection format so that the selected text is
// displayed in bold and not striked out.
cf.cbSize = sizeof(cf);
cf.dwMask = CFM_STRIKEOUT|CFM_BOLD;
cf.dwEffects = CFE_BOLD;
m_myRichEditCtrl.SetSelectionCharFormat(cf);

// Verify the settings are what is expected.
m_myRichEditCtrl.GetSelectionCharFormat(cf);
ASSERT((cf.dwMask&(CFM_STRIKEOUT|CFM_BOLD)) ==
 (CFM_STRIKEOUT|CFM_BOLD));
ASSERT((cf.dwEffects&(CFE_STRIKEOUT|CFE_BOLD)) == CFE_BOLD);

CRichEditCtrl::SetTargetDevice

BOOL SetTargetDevice(
 HDC hDC,
 long lLineWidth);

BOOL SetTargetDevice(
 CDC& dc,
 long lLineWidth);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Only the attributes specified by the dwMask member of cf are changed by this function.

For more information, see the EM_SETCHARFORMAT and the CHARFORMAT and CHARFORMAT2 structures in
the Windows SDK.

Sets the target device and line width used for WYSIWYG (what you see is what you get) formatting in this
CRichEditCtrl object.

hDC
Handle to the device context for the new target device.

lLineWidth
Line width to use for formatting.

dc
CDC for the new target device.

Nonzero if successful; otherwise, 0.

If this function is successful, the rich edit control owns the device context passed as a parameter. In that case,
the calling function should not destroy the device context.

For more information, see EM_SETTARGETDEVICE in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/em-setcharformat
https://docs.microsoft.com/windows/desktop/Controls/em-settargetdevice

// First obtain a pointer to a printer DC.
CPageSetupDialog psDlg;
if (IDOK == psDlg.DoModal())
{
 CDC* pMyPrinterDC = CDC::FromHandle(psDlg.CreatePrinterDC());

 // Get line width information from the printer.
 long lLineWidth = ::MulDiv(pMyPrinterDC->GetDeviceCaps(PHYSICALWIDTH),
 1440, pMyPrinterDC->GetDeviceCaps(LOGPIXELSX));

 // Set the printer as the target device.
 m_myRichEditCtrl.SetTargetDevice(*pMyPrinterDC, lLineWidth);

 pMyPrinterDC->DeleteDC();
}

CRichEditCtrl::SetTextMode

BOOL SetTextMode(UINT fMode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::SetUndoLimit

UINT SetUndoLimit(UINT nLimit);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Sets the text mode or undo and redo level for a rich edit control.

fMode
Specifies the new settings for the control's text mode and undo level parameters. For a list of the possible
values, see the mode parameter for EM_SETTEXTMODE in the Windows SDK.

Zero if successful, otherwise nonzero.

For a description of the text modes, see EM_SETTEXTMODE in the Windows SDK.

This member function fails if the control contains text. To make sure the control is empty, send a
WM_SETTEXT message with an empty string.

Sets the maximum number of actions that can stored in the undo queue.

nLimit
Specifies the maximum number of actions that can be stored in the undo queue. Set to zero to disable Undo.

The new maximum number of undo actions for the rich edit control.

By default, the maximum number of actions in the undo queue is 100. If you increase this number, there
must be enough available memory to accommodate the new number. For better performance, set the limit to
the smallest possible value.

https://docs.microsoft.com/windows/desktop/Controls/em-settextmode
https://docs.microsoft.com/windows/desktop/winmsg/wm-settext

CRichEditCtrl::SetWordCharFormat

BOOL SetWordCharFormat(CHARFORMAT& cf);
BOOL SetWordCharFormat(CHARFORMAT2& cf);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CHARFORMAT cf;

// Modify the word format so that the selected word is
// displayed in bold and not striked out.
cf.cbSize = sizeof(cf);
cf.dwMask = CFM_STRIKEOUT|CFM_BOLD;
cf.dwEffects = CFE_BOLD;
m_myRichEditCtrl.SetWordCharFormat(cf);

CRichEditCtrl::SetWordWrapMode

UINT SetWordWrapMode(UINT uFlags) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditCtrl::StopGroupTyping

Sets the character formatting attributes for the currently selected word in this CRichEditCtrl object.

cf
In the first version, a pointer to a CHARFORMAT structure containing the new character formatting
attributes for the currently selected word.

In the second version, a pointer to a CHARFORMAT2 structure, which is a Rich Edit 2.0 extension to the
CHARFORMAT structure, containing the new character formatting attributes for the currently selected word.

Nonzero if successful; otherwise, 0.

Only the attributes specified by the dwMask member of cf are changed by this function.

For more information, see the EM_SETCHARFORMAT message and the CHARFORMAT and CHARFORMAT2

structures in the Windows SDK.

Sets the word-wrapping and word-breaking options for the rich edit control.

uFlags
The options to set for word wrapping and word breaking. For a list of possible options, see
EM_SETWORDWRAPMODE in the Windows SDK.

The current word-wrapping and word-breaking options.

This message is available only in Asian-language versions of the operating system.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charformat
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-charformat2a
https://docs.microsoft.com/windows/desktop/Controls/em-setcharformat
https://docs.microsoft.com/windows/desktop/Controls/em-setwordwrapmode

void StopGroupTyping();

RemarksRemarks

CRichEditCtrl::StreamIn

long StreamIn(
 int nFormat,
 EDITSTREAM& es);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// My callback procedure that reads the rich edit control contents
// from a file.
static DWORD CALLBACK
MyStreamInCallback(DWORD dwCookie, LPBYTE pbBuff, LONG cb, LONG *pcb)
{
 CFile* pFile = (CFile*) dwCookie;

 *pcb = pFile->Read(pbBuff, cb);

 return 0;
}

Stops the control from collecting additional typing actions into the current undo action.

The control stores the next typing action, if any, into a new action in the undo queue.

For more information, see EM_STOPGROUPTYPING in the Windows SDK.

Replaces text in this CRichEditCtrl object with text from the specified input stream.

nFormat
Flags specifying the input data formats. See the Remarks section for more information.

es
EDITSTREAM structure specifying the input stream. See the Remarks section for more information.

Number of characters read from the input stream.

The value of nFormat must be one of the following:

SF_TEXT Indicates reading text only.

SF_RTF Indicates reading text and formatting.

Either of these values can be combined with SFF_SELECTION. If SFF_SELECTION is specified, StreamIn

replaces the current selection with the contents of the input stream. If it is not specified, StreamIn replaces
the entire contents of this CRichEditCtrl object.

In the EDITSTREAM parameter es, you specify a callback function that fills a buffer with text. This callback
function is called repeatedly, until the input stream is exhausted.

For more information, see EM_STREAMIN message and EDITSTREAM structure in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/em-stopgrouptyping
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_editstream
https://docs.microsoft.com/windows/desktop/Controls/em-streamin
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_editstream

// The example code.

// The file from which to load the contents of the rich edit control.
CFile cFile(TEXT("My_RichEdit_InFile.rtf"), CFile::modeRead);
EDITSTREAM es;

es.dwCookie = (DWORD) &cFile;
es.pfnCallback = MyStreamInCallback;
m_myRichEditCtrl.StreamIn(SF_RTF, es);

CRichEditCtrl::StreamOut

long StreamOut(
 int nFormat,
 EDITSTREAM& es);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Writes out the contents of this CRichEditCtrl object to the specified output stream.

nFormat
Flags specifying the output data formats. See the Remarks section for more information.

es
EDITSTREAM structure specifying the output stream. See the Remarks section for more information.

Number of characters written to the output stream.

The value of nFormat must be one of the following:

SF_TEXT Indicates writing text only.

SF_RTF Indicates writing text and formatting.

SF_RTFNOOBJS Indicates writing text and formatting, replacing OLE items with spaces.

SF_TEXTIZED Indicates writing text and formatting, with textual representations of OLE items.

Any of these values can be combined with SFF_SELECTION. If SFF_SELECTION is specified, StreamOut

writes out the current selection into the output stream. If it is not specified, StreamOut writes out the entire
contents of this CRichEditCtrl object.

In the EDITSTREAM parameter es, you specify a callback function which fills a buffer with text. This callback
function is called repeatedly, until the output stream is exhausted.

For more information, see EM_STREAMOUT message and EDITSTREAM structure in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_editstream
https://docs.microsoft.com/windows/desktop/Controls/em-streamout
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_editstream

// My callback procedure that writes the rich edit control contents
// to a file.
static DWORD CALLBACK
MyStreamOutCallback(DWORD dwCookie, LPBYTE pbBuff, LONG cb, LONG *pcb)
{
 CFile* pFile = (CFile*) dwCookie;

 pFile->Write(pbBuff, cb);
 *pcb = cb;

 return 0;
}

// The example code.

// The file to store the contents of the rich edit control.
CFile cFile(TEXT("My_RichEdit_OutFile.rtf"),
 CFile::modeCreate|CFile::modeWrite);
EDITSTREAM es;

es.dwCookie = (DWORD) &cFile;
es.pfnCallback = MyStreamOutCallback;
m_myRichEditCtrl.StreamOut(SF_RTF, es);

CRichEditCtrl::Undo

BOOL Undo();

Return ValueReturn Value

RemarksRemarks

ExampleExample

See also

Undoes the last operation in the rich edit control.

Nonzero if the undo operation is successful; otherwise, 0.

An undo operation can also be undone. For example, you can restore deleted text with the first call to Undo .
As long as there is no intervening edit operation, you can remove the text again with a second call to Undo .

For more information, see EM_UNDO in the Windows SDK.

See the example for CanUndo.

MFC Sample WORDPAD
CWnd Class
Hierarchy Chart
CEdit Class
CRichEditView Class

https://docs.microsoft.com/windows/desktop/Controls/em-undo
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CRichEditDoc Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CRichEditDoc : public COleServerDoc

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CRichEditDoc::CreateClientItem Called to perform cleanup of the document.

CRichEditDoc::GetStreamFormat Indicates whether stream input and output should include
formatting information.

CRichEditDoc::GetView Retrieves the asssociated CRichEditView object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CRichEditDoc::m_bRTF Indicates whether stream I/O should include formatting.

Remarks

Inheritance Hierarchy

With CRichEditView and CRichEditCntrItem, provides the functionality of the rich edit control within the
context of MFC's document view architecture.

A "rich edit control" is a window in which the user can enter and edit text. The text can be assigned character
and paragraph formatting, and can include embedded OLE objects. Rich edit controls provide a programming
interface for formatting text. However, an application must implement any user interface components necessary
to make formatting operations available to the user.

CRichEditView maintains the text and formatting characteristic of text. CRichEditDoc maintains the list of client
items which are in the view. CRichEditCntrItem provides container-side access to the OLE client items.

This Windows Common control (and therefore the CRichEditCtrl and related classes) is available only to
programs running under Windows 95/98 and Windows NT versions 3.51 and later.

For an example of using a rich edit document in an MFC application, see the WORDPAD sample application.

CObject

CCmdTarget

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cricheditdoc-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Requirements

CRichEditDoc::CreateClientItem

virtual CRichEditCntrItem* CreateClientItem(REOBJECT* preo = NULL) const = 0;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditDoc::GetStreamFormat

int GetStreamFormat() const;

Return ValueReturn Value

RemarksRemarks

CRichEditDoc::GetView

CDocument

COleDocument

COleLinkingDoc

COleServerDoc

CRichEditDoc

Header: afxrich.h

Call this function to create a CRichEditCntrItem object and add it to this document.

preo
Pointer to an REOBJECT structure which describes an OLE item. The new CRichEditCntrItem object is
constructed around this OLE item. If preo is NULL, the new client item is empty.

Pointer to a new CRichEditCntrItem object which has been added to this document.

This function does not perform any OLE initialization.

For more information, see the REOBJECT structure in the Windows SDK.

Call this function to determine the text format for streaming the contents of the rich edit.

One of the following flags:

SF_TEXT Indicates that the rich edit control does not maintain formatting information.

SF_RTF Indicates that the rich edit control does maintain formatting information.

The return value is based on the m_bRTF data member. This function returns SF_RTF if m_bRTF is TRUE;
otherwise, SF_TEXT.

Call this function to access the CRichEditView object associated with this CRichEditDoc object.

https://docs.microsoft.com/windows/desktop/api/richole/ns-richole-_reobject
https://docs.microsoft.com/windows/desktop/api/richole/ns-richole-_reobject

virtual CRichEditView* GetView() const;

Return ValueReturn Value

RemarksRemarks

CRichEditDoc::m_bRTF

BOOL m_bRTF;

See also

Pointer to the CRichEditView object associated with the document.

The text and formatting information are contained within the CRichEditView object. The CRichEditDoc object
maintains the OLE items for serialization. There should be only one CRichEditView for each CRichEditDoc .

When TRUE, indicates that CRichEditCtrl::StreamIn and CRichEditCtrl::StreamOut should store paragraph and
character-formatting characteristics.

MFC Sample WORDPAD
COleServerDoc Class
Hierarchy Chart
CRichEditView Class
CRichEditCntrItem Class
COleDocument Class
CRichEditCtrl Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CRichEditView Class
3/4/2019 • 22 minutes to read • Edit Online

Syntax
class CRichEditView : public CCtrlView

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRichEditView::CRichEditView Constructs a CRichEditView object.

Public MethodsPublic Methods

NAME DESCRIPTION

CRichEditView::AdjustDialogPosition Moves a dialog box so that it doesn't obscure the current
selection.

CRichEditView::CanPaste Tells whether the Clipboard contains data that can be
pasted into the rich edit view.

CRichEditView::DoPaste Pastes an OLE item into this rich edit view.

CRichEditView::FindText Finds the specified text, invoking the wait cursor.

CRichEditView::FindTextSimple Finds the specified text.

CRichEditView::GetCharFormatSelection Retrieves the character formatting attributes for the
current selection.

CRichEditView::GetDocument Retrieves a pointer to the related CRichEditDoc.

CRichEditView::GetInPlaceActiveItem Retrieves the OLE item that is currently in-place active in
the rich edit view.

CRichEditView::GetMargins Retrieves the margins for this rich edit view.

CRichEditView::GetPageRect Retrieves the page rectangle for this rich edit view.

CRichEditView::GetPaperSize Retrieves the paper size for this rich edit view.

With CRichEditDoc and CRichEditCntrItem, provides the functionality of the rich edit control within the
context of MFC's document view architecture.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cricheditview-class.md

CRichEditView::GetParaFormatSelection Retrieves the paragraph formatting attributes for the
current selection.

CRichEditView::GetPrintRect Retrieves the print rectangle for this rich edit view.

CRichEditView::GetPrintWidth Retrieves the print width for this rich edit view.

CRichEditView::GetRichEditCtrl Retrieves the rich edit control.

CRichEditView::GetSelectedItem Retrieves the selected item from the rich edit view.

CRichEditView::GetTextLength Retrieves the length of the text in the rich edit view.

CRichEditView::GetTextLengthEx Retrieves the number of characters or bytes in the rich edit
view. Expanded flag list for method of determining the
length.

CRichEditView::InsertFileAsObject Inserts a file as an OLE item.

CRichEditView::InsertItem Inserts a new item as an OLE item.

CRichEditView::IsRichEditFormat Tells whether the Clipboard contains data in a rich edit or
text format.

CRichEditView::OnCharEffect Toggles the character formatting for the current selection.

CRichEditView::OnParaAlign Changes the alignment of paragraphs.

CRichEditView::OnUpdateCharEffect Updates the Command UI for character public member
functions.

CRichEditView::OnUpdateParaAlign Updates the Command UI for paragraph public member
functions.

CRichEditView::PrintInsideRect Formats the specified text within the given rectangle.

CRichEditView::PrintPage Formats the specified text within the given page.

CRichEditView::SetCharFormat Sets the character formatting attributes for the current
selection.

CRichEditView::SetMargins Sets the margins for this rich edit view.

CRichEditView::SetPaperSize Sets the paper size for this rich edit view.

CRichEditView::SetParaFormat Sets the paragraph formatting attributes for the current
selection.

CRichEditView::TextNotFound Resets the internal search state of the control.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CRichEditView::GetClipboardData Retrieves a Clipboard object for a range in this rich edit
view.

CRichEditView::GetContextMenu Retrieves a context menu to use on a right mouse-button
down.

CRichEditView::IsSelected Indicates if the given OLE item is selected or not.

CRichEditView::OnFindNext Finds the next occurrence of a substring.

CRichEditView::OnInitialUpdate Refreshes a view when it is first attached to a document.

CRichEditView::OnPasteNativeObject Retrieves native data from an OLE item.

CRichEditView::OnPrinterChanged Sets the print characteristics to the given device.

CRichEditView::OnReplaceAll Replaces all occurrences of a given string with a new string.

CRichEditView::OnReplaceSel Replaces the current selection.

CRichEditView::OnTextNotFound Handles user notification that the requested text was not
found.

CRichEditView::QueryAcceptData Queries to see about the data on the IDataObject .

CRichEditView::WrapChanged Adjusts the target output device for this rich edit view,
based on the value of m_nWordWrap .

Public Data MembersPublic Data Members

NAME DESCRIPTION

CRichEditView::m_nBulletIndent Indicates the amount of indent for bullet lists.

CRichEditView::m_nWordWrap Indicates the word wrap constraints.

Remarks
A "rich edit control" is a window in which the user can enter and edit text. The text can be assigned character
and paragraph formatting, and can include embedded OLE objects. Rich edit controls provide a
programming interface for formatting text. However, an application must implement any user interface
components necessary to make formatting operations available to the user.

CRichEditView maintains the text and formatting characteristic of text. CRichEditDoc maintains the list of
OLE client items which are in the view. CRichEditCntrItem provides container-side access to the OLE client
item.

This Windows Common control (and therefore the CRichEditCtrl and related classes) is available only to
programs running under Windows 95/98 and Windows NT versions 3.51 and later.

For an example of using a rich edit view in an MFC application, see the WORDPAD sample application.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Inheritance Hierarchy

Requirements

CRichEditView::AdjustDialogPosition

void AdjustDialogPosition(CDialog* pDlg);

ParametersParameters

CRichEditView::CanPaste

BOOL CanPaste() const;

Return ValueReturn Value

CRichEditView::CRichEditView

CRichEditView();

CRichEditView::DoPaste

void DoPaste(
 COleDataObject& dataobj,
 CLIPFORMAT cf,
 HMETAFILEPICT hMetaPict);

CObject

CCmdTarget

CWnd

CView

CCtrlView

CRichEditView

Header: afxrich.h

Call this function to move the given dialog box so that it does not obscure the current selection.

pDlg
Pointer to a CDialog object.

Call this function to determine if the Clipboard contains information that can be pasted into this rich edit
view.

Nonzero if the Clipboard contains data in a format which this rich edit view can accept; otherwise, 0.

Call this function to create a CRichEditView object.

Call this function to paste the OLE item in dataobj into this rich edit document/view.

ParametersParameters

RemarksRemarks

CRichEditView::FindText

BOOL FindText(
 LPCTSTR lpszFind,
 BOOL bCase = TRUE,
 BOOL bWord = TRUE,
 BOOL bNext = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

dataobj
The COleDataObject containing the data to paste.

cf
The desired Clipboard format.

hMetaPict
The metafile that represents the item to be pasted.

The framework calls this function as part of the default implementation of QueryAcceptData.

This function determines the type of paste based on the results of the handler for Paste Special. If cf is 0, the
new item uses the current iconic representation. If cf is nonzero and hMetaPict is not NULL, the new item
uses hMetaPict for its representation.

Call this function to find the specified text and set it to be the current selection.

lpszFind
Contains the string to search for.

bCase
Indicates if the search is case sensitive.

bWord
Indicates if the search should match whole words only, not parts of words.

bNext
Indicates the direction of the search. If TRUE, the search direction is toward the end of the buffer. If FALSE,
the search direction is toward the beginning of the buffer.

Nonzero if the lpszFind text is found; otherwise 0.

This function displays the wait cursor during the find operation.

void CMyRichEditView::OnReplaceAll(LPCTSTR lpszFind, LPCTSTR lpszReplace,
 BOOL bCase, BOOL bWord)
{
 CWaitCursor wait;
 // no selection or different than what we are looking for
 if (!FindText(lpszFind, bCase, bWord))
 {
 OnTextNotFound(lpszFind);
 return;
 }

 GetRichEditCtrl().HideSelection(TRUE, FALSE);
 m_nNumReplaced = 0;
 do
 {
 GetRichEditCtrl().ReplaceSel(lpszReplace);
 m_nNumReplaced++; // Record the number of replacements

 } while (FindTextSimple(lpszFind));
 GetRichEditCtrl().HideSelection(FALSE, FALSE);
}

CRichEditView::FindTextSimple

BOOL FindTextSimple(
 LPCTSTR lpszFind,
 BOOL bCase = TRUE,
 BOOL bWord = TRUE,
 BOOL bNext = TRUE);

ParametersParameters

Return ValueReturn Value

ExampleExample

CRichEditView::GetCharFormatSelection

CHARFORMAT2& GetCharFormatSelection();

Call this function to find the specified text and set it to be the current selection.

lpszFind
Contains the string to search for.

bCase
Indicates if the search is case sensitive.

bWord
Indicates if the search should match whole words only, not parts of words.

bNext
Indicates the direction of the search. If TRUE, the search direction is toward the end of the buffer. If FALSE,
the search direction is toward the beginning of the buffer.

Nonzero if the lpszFind text is found; otherwise 0.

See the example for CRichEditView::FindText.

Call this function to get the character formatting attributes of the current selection.

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CMyRichEditView::OnCharUnderline ()
{
 CHARFORMAT2 cf;
 cf = GetCharFormatSelection();

 if (!(cf.dwMask & CFM_UNDERLINE) || !(cf.dwEffects & CFE_UNDERLINE))
 cf.dwEffects = CFE_UNDERLINE;
 else
 cf.dwEffects = 0;

 cf.dwMask = CFM_UNDERLINE;
 SetCharFormat(cf);
}

CRichEditView::GetClipboardData

virtual HRESULT GetClipboardData(
 CHARRANGE* lpchrg,
 DWORD dwReco,
 LPDATAOBJECT lpRichDataObj,
 LPDATAOBJECT* lplpdataobj);

ParametersParameters

A CHARFORMAT2 structure which contains the character formatting attributes of the current selection.

For more information, see the EM_GETCHARFORMAT message and the CHARFORMAT2 structure in the
Windows SDK.

The framework calls this function as part of the processing of IRichEditOleCallback::GetClipboardData.

lpchrg
Pointer to the CHARRANGE structure specifying the range of characters (and OLE items) to copy to the
data object specified by lplpdataobj.

dwReco
Clipboard operation flag. Can be one of these values.

RECO_COPY Copy to the Clipboard.

RECO_CUT Cut to the Clipboard.

RECO_DRAG Drag operation (drag and drop).

RECO_DROP Drop operation (drag and drop).

RECO_PASTE Paste from the Clipboard.

lpRichDataObj
Pointer to an IDataObject object containing the Clipboard data from the rich edit control (
IRichEditOle::GetClipboardData).

lplpdataobj
Pointer to the pointer variable that receives the address of the IDataObject object representing the range
specified in the lpchrg parameter. The value of lplpdataobj is ignored if an error is returned.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-charformat2a
https://docs.microsoft.com/windows/desktop/Controls/em-getcharformat
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-charformat2a
https://docs.microsoft.com/windows/desktop/api/richole/nf-richole-iricheditolecallback-getclipboarddata
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charrange
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-idataobject
https://docs.microsoft.com/windows/desktop/api/richole/nf-richole-iricheditole-getclipboarddata

Return ValueReturn Value

RemarksRemarks

CRichEditView::GetContextMenu

virtual HMENU GetContextMenu(
 WORD seltyp,
 LPOLEOBJECT lpoleobj,
 CHARRANGE* lpchrg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

An HRESULT value reporting the success of the operation. For more information on HRESULT, see
Structure of COM Error Codes in the Windows SDK.

If the return value indicates success, IRichEditOleCallback::GetClipboardData returns the IDataObject

accessed by lplpdataobj; otherwise, it returns the one accessed by lpRichDataObj. Override this function to
supply your own Clipboard data. The default implementation of this function returns E_NOTIMPL.

This is an advanced overridable.

For more information, see IRichEditOle::GetClipboardData, IRichEditOleCallback::GetClipboardData, and
CHARRANGE in the Windows SDK and see IDataObject in the Windows SDK.

The framework calls this function as part of the processing of IRichEditOleCallback::GetContextMenu.

seltyp
The selection type. The selection type values are described in the Remarks section.

lpoleobj
Pointer to a OLEOBJECT structure specifying the first selected OLE object if the selection contains one or
more OLE items. If the selection contains no items, lpoleobj is NULL. The OLEOBJECT structure holds a
pointer to an OLE object v-table.

lpchrg
Pointer to a CHARRANGE structure containing the current selection.

Handle to the context menu.

This function is a typical part of right mouse-button down processing.

The selection type can be any combination of the following flags:

SEL_EMPTY Indicates that there is no current selection.

SEL_TEXT Indicates that the current selection contains text.

SEL_OBJECT Indicates that the current selection contains at least one OLE item.

SEL_MULTICHAR Indicates that the current selection contains more than one character of text.

SEL_MULTIOBJECT Indicates that the current selection contains more than one OLE object.

The default implementation returns NULL. This is an advanced overridable.

For more information, see IRichEditOleCallback::GetContextMenu and CHARRANGE in the Windows SDK.

https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes
https://docs.microsoft.com/windows/desktop/api/richole/nf-richole-iricheditole-getclipboarddata
https://docs.microsoft.com/windows/desktop/api/richole/nf-richole-iricheditolecallback-getclipboarddata
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charrange
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-idataobject
https://docs.microsoft.com/windows/desktop/api/richole/nf-richole-iricheditolecallback-getcontextmenu
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charrange
https://docs.microsoft.com/windows/desktop/api/richole/nf-richole-iricheditolecallback-getcontextmenu
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charrange

CRichEditView::GetDocument

CRichEditDoc* GetDocument() const;

Return ValueReturn Value

CRichEditView::GetInPlaceActiveItem

CRichEditCntrItem* GetInPlaceActiveItem() const;

Return ValueReturn Value

CRichEditView::GetMargins

CRect GetMargins() const;

Return ValueReturn Value

CRichEditView::GetPageRect

CRect GetPageRect() const;

Return ValueReturn Value

RemarksRemarks

CRichEditView::GetPaperSize

CSize GetPaperSize() const;

Return ValueReturn Value

ExampleExample

Call this function to get a pointer to the CRichEditDoc associated with this view.

Pointer to a CRichEditDoc object associated with your CRichEditView object.

Call this function to get the OLE item that is currently activated in place in this CRichEditView object.

A pointer to the single, in-place active CRichEditCntrItem object in this rich edit view; NULL if there is no
OLE item currently in the in-place active state.

Call this function to retrieve the current margins used in printing.

The margins used in printing, measured in MM_TWIPS.

Call this function to get the dimensions of the page used in printing.

The bounds of the page used in printing, measured in MM_TWIPS.

This value is based on the paper size.

Call this function to retrieve the current paper size.

The size of the paper used in printing, measured in MM_TWIPS.

void CMyRichEditView::OnPrint(CDC* pDC, CPrintInfo* pInfo)
{
 UNREFERENCED_PARAMETER(pInfo);

 // Get the current paper size and construct an actual printing
 // rectangle by leaving out one half inch margin from each side.
 CSize sizePaper = GetPaperSize();
 CRect rectMargins(720, 720, sizePaper.cx - 720,
 sizePaper.cy - 720);

 // Need to set the margins when printing from CRichEditView
 SetMargins(rectMargins);

 // Set up three rectangular regions spaced an inch apart
 CRect rectHeader(0, 0, rectMargins.right, 1440);
 CRect rectBody(0, 1440, rectMargins.right, 1440 * 2);
 CRect rectFooter(0, 1440 * 2, rectMargins.right, 1440 * 3);

 // Format the first 10 characters in the buffer.
 int nSavedDC = pDC->SaveDC();
 PrintInsideRect(pDC, rectHeader, 0, 10, TRUE); // characters 0-10
 pDC->RestoreDC(nSavedDC);

 // Format the second 10 characters in the buffer.
 nSavedDC = pDC->SaveDC();
 PrintInsideRect(pDC, rectBody, 10, 20, TRUE); // characters 10-20
 pDC->RestoreDC(nSavedDC);

 // Format the third 10 characters in the buffer.
 nSavedDC = pDC->SaveDC();
 PrintInsideRect(pDC, rectFooter, 20, 30, TRUE); // characters 20-30
 pDC->RestoreDC(nSavedDC);

// CRichEditView::OnPrint(pDC, pInfo);
}

CRichEditView::GetParaFormatSelection

PARAFORMAT2& GetParaFormatSelection();

Return ValueReturn Value

RemarksRemarks

CRichEditView::GetPrintRect

CRect GetPrintRect() const;

Return ValueReturn Value

Call this function to get the paragraph formatting attributes of the current selection.

A PARAFORMAT2 structure which contains the paragraph formatting attributes of the current selection.

For more information, see EM_GETPARAFORMAT message and PARAFORMAT2 structure in the Windows
SDK.

Call this function to retrieve the bounds of the printing area within the page rectangle.

The bounds of the image area used in printing, measured in MM_TWIPS.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-paraformat2
https://docs.microsoft.com/windows/desktop/Controls/em-getparaformat
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-paraformat2

ExampleExample

void CMyRichEditView::OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo)
{
 CRect rectPrintPage = GetPrintRect(); // Measured in MM_TWIPS

 pInfo->SetMaxPage((m_nDocSizeInInches * 1440)/rectPrintPage.Height());

 CRichEditView::OnBeginPrinting(pDC, pInfo);
}

CRichEditView::GetPrintWidth

int GetPrintWidth() const;

Return ValueReturn Value

CRichEditView::GetRichEditCtrl

CRichEditCtrl& GetRichEditCtrl() const;

Return ValueReturn Value

ExampleExample

CRichEditView::GetSelectedItem

CRichEditCntrItem* GetSelectedItem() const;

Return ValueReturn Value

CRichEditView::GetTextLength

long GetTextLength() const;

Return ValueReturn Value

Call this function to determine the width of the printing area.

The width of the printing area, measured in MM_TWIPS.

Call this function to retrieve the CRichEditCtrl object associated with the CRichEditView object.

The CRichEditCtrl object for this view.

See the example for CRichEditView::FindText.

Call this function to retrieve the OLE item (a CRichEditCntrItem object) currently selected in this
CRichEditView object.

Pointer to a CRichEditCntrItem object selected in the CRichEditView object; NULL if no item is selected in
this view.

Call this function to retrieve the length of the text in this CRichEditView object.

The length of the text in this CRichEditView object.

CRichEditView::GetTextLengthEx

long GetTextLengthEx(
 DWORD dwFlags,
 UINT uCodePage = -1) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditView::InsertFileAsObject

void InsertFileAsObject(LPCTSTR lpszFileName);

ParametersParameters

CRichEditView::InsertItem

HRESULT InsertItem(CRichEditCntrItem* pItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditView::IsRichEditFormat

Call this member function to calculate the length of the text in this CRichEditView object.

dwFlags
Value specifying the method to be used in determining the text length. This member can be one or more of
the values listed in the flags member of GETTEXTLENGTHEX described in the Windows SDK.

uCodePage
Code page for translation (CP_ACP for ANSI Code Page, 1200 for Unicode).

The number of characters or bytes in the edit control. If incompatible flags were set in dwFlags, this member
function returns E_INVALIDARG.

GetTextLengthEx provides additional ways of determining the length of the text. It supports the Rich Edit 2.0
functionality. For more information, see About Rich Edit Controls in the Windows SDK.

Call this function to insert the specified file (as a CRichEditCntrItem object) into a rich edit view.

lpszFileName
String containing the name of the file to be inserted.

Call this function to insert a CRichEditCntrItem object into a rich edit view.

pItem
Pointer to the item to be inserted.

An HRESULT value indicating the success of the insertion.

For more information on HRESULT, see Structure of COM Error Codes in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_gettextlengthex
https://docs.microsoft.com/windows/desktop/Controls/about-rich-edit-controls
https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes

static BOOL AFX_CDECL IsRichEditFormat(CLIPFORMAT cf);

ParametersParameters

Return ValueReturn Value

CRichEditView::IsSelected

virtual BOOL IsSelected(const CObject* pDocItem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditView::m_nBulletIndent

int m_nBulletIndent;

CRichEditView::m_nWordWrap

int m_nWordWrap;

RemarksRemarks

ExampleExample

Call this function to determine if cf is a Clipboard format which is text, rich text, or rich text with OLE items.

cf
The Clipboard format of interest.

Nonzero if cf is a rich edit or text Clipboard format.

Call this function to determine if the specified OLE item is currently selected in this view.

pDocItem
Pointer to an object in the view.

Nonzero if the object is selected; otherwise 0.

Override this function if your derived view class has a different method for handling selection of OLE items.

The indentation for bullet items in a list; by default, 720 units, which is 1/2 inch.

Indicates the type of word wrap for this rich edit view.

One of the following values:

WrapNone Indicates no automatic word wrapping.

WrapToWindow Indicates word wrapping based on the width of the window.

WrapToTargetDevice Indicates word wrapping based on the characteristics of the target device.

See the example for CRichEditView::WrapChanged.

CRichEditView::OnCharEffect

void OnCharEffect(
 DWORD dwMask,
 DWORD dwEffect);

ParametersParameters

RemarksRemarks

ExampleExample

void CMyRichEditView::OnItalic()
{
 OnCharEffect(CFM_ITALIC, CFE_ITALIC);
}

CRichEditView::OnFindNext

virtual void OnFindNext(
 LPCTSTR lpszFind,
 BOOL bNext,
 BOOL bCase,
 BOOL bWord);

ParametersParameters

RemarksRemarks

Call this function to toggle the character formatting effects for the current selection.

dwMask
The character formatting effects to modify in the current selection.

dwEffect
The desired list of character formatting effects to toggle.

Each call to this function toggles the specified formatting effects for the current selection.

For more information on the dwMask and dwEffect parameters and their potential values, see the
corresponding data members of CHARFORMAT in the Windows SDK.

Called by the framework when processing commands from the Find/Replace dialog box.

lpszFind
The string to find.

bNext
The direction to search: TRUE indicates down; FALSE, up.

bCase
Indicates whether the search is to be case sensitive.

bWord
Indicates whether the search is to match whole words only or not.

Call this function to find text within the CRichEditView . Override this function to alter search characteristics
for your derived view class.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charformat

CRichEditView::OnInitialUpdate

virtual void OnInitialUpdate();

RemarksRemarks

ExampleExample

CRichEditView::OnPasteNativeObject

virtual BOOL OnPasteNativeObject(LPSTORAGE lpStg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CRichEditView::OnParaAlign

void OnParaAlign(WORD wAlign);

ParametersParameters

Called by the framework after the view is first attached to the document, but before the view is initially
displayed.

The default implementation of this function calls the CView::OnUpdate member function with no hint
information (that is, using the default values of 0 for the lHint parameter and NULL for the pHint
parameter). Override this function to perform any one-time initialization that requires information about the
document. For example, if your application has fixed-sized documents, you can use this function to initialize
a view's scrolling limits based on the document size. If your application supports variable-sized documents,
use OnUpdate to update the scrolling limits every time the document changes.

See the example for CRichEditView::m_nWordWrap.

Use this function to load native data from an embedded item.

lpStg
Pointer to an IStorage object.

Nonzero if successful; otherwise, 0;

Typically, you would do this by creating a COleStreamFile around the IStorage . The COleStreamFile can be
attached to an archive and CObject::Serialize called to load the data.

This is an advanced overridable.

For more information, see IStorage in the Windows SDK.

Call this function to change the paragraph alignment for the selected paragraphs.

wAlign
Desired paragraph alignment. One of the following values:

PFA_LEFT Align the paragraphs with the left margin.

PFA_RIGHT Align the paragraphs with the right margin.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istorage
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-istorage

ExampleExample

void CMyRichEditView::OnParaCenter()
{
 OnParaAlign(PFA_CENTER);
}

CRichEditView::OnPrinterChanged

virtual void OnPrinterChanged(const CDC& dcPrinter);

ParametersParameters

RemarksRemarks

CRichEditView::OnReplaceAll

virtual void OnReplaceAll(
 LPCTSTR lpszFind,
 LPCTSTR lpszReplace,
 BOOL bCase,
 BOOL bWord);

ParametersParameters

RemarksRemarks

ExampleExample

PFA_CENTER Center the paragraphs between the margins.

Override this function to change characteristics for this rich edit view when the printer changes.

dcPrinter
A CDC object for the new printer.

The default implementation sets the paper size to the physical height and width for the output device
(printer). If there is no device context associated with dcPrinter, the default implementation sets the paper
size to 8.5 by 11 inches.

Called by the framework when processing Replace All commands from the Replace dialog box.

lpszFind
The text to be replaced.

lpszReplace
The replacement text.

bCase
Indicates if the search is case sensitive.

bWord
Indicates if the search must select whole words or not.

Call this function to replace all occurrences of some given text with another string. Override this function to
alter search characteristics for this view.

See the example for CRichEditView::FindText.

CRichEditView::OnReplaceSel

virtual void OnReplaceSel(
 LPCTSTR lpszFind,
 BOOL bNext,
 BOOL bCase,
 BOOL bWord,
 LPCTSTR lpszReplace);

ParametersParameters

RemarksRemarks

CRichEditView::OnTextNotFound

virtual void OnTextNotFound(LPCTSTR lpszFind);

ParametersParameters

RemarksRemarks

ExampleExample

void CMyRichEditView::OnTextNotFound(LPCTSTR lpszFind)
{
 // Replace the beep with a message box
 CString str;
 str.Format(_T("'%s' was not found."), lpszFind);
 AfxMessageBox(str);
}

Called by the framework when processing Replace commands from the Replace dialog box.

lpszFind
The text to be replaced.

bNext
Indicates the direction of the search: TRUE is down; FALSE, up.

bCase
Indicates if the search is case sensitive.

bWord
Indicates if the search must select whole words or not.

lpszReplace
The replacement text.

Call this function to replace one occurrence of some given text with another string. Override this function to
alter search characteristics for this view.

Called by the framework whenever a search fails.

lpszFind
The text which was not found.

Override this function to change the output notification from a MessageBeep.

For more information, see MessageBeep in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-messagebeep
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-messagebeep

CRichEditView::OnUpdateCharEffect

void OnUpdateCharEffect(
 CCmdUI* pCmdUI,
 DWORD dwMask,
 DWORD dwEffect);

ParametersParameters

RemarksRemarks

ExampleExample

void CMyRichEditView::OnUpdateCharItalicUI(CCmdUI* pCmdUI)
{
 OnUpdateCharEffect(pCmdUI, CFM_ITALIC, CFE_ITALIC);
}

CRichEditView::OnUpdateParaAlign

void OnUpdateParaAlign(
 CCmdUI* pCmdUI,
 WORD wAlign);

ParametersParameters

ExampleExample

The framework calls this function to update the command UI for character effect commands.

pCmdUI
Pointer to a CCmdUI object.

dwMask
Indicates the character formatting mask.

dwEffect
Indicates the character formatting effect.

The mask dwMask specifies which character formatting attributes to check. The flags dwEffect list the
character formatting attributes to set/clear.

For more information on the dwMask and dwEffect parameters and their potential values, see the
corresponding data members of CHARFORMAT in the Windows SDK.

The framework calls this function to update the command UI for paragraph effect commands.

pCmdUI
Pointer to a CCmdUI object.

wAlign
The paragraph alignment to check. One of the following values:

PFA_LEFT Align the paragraphs with the left margin.

PFA_RIGHT Align the paragraphs with the right margin.

PFA_CENTER Center the paragraphs between the margins.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_charformat

void CMyRichEditView::OnUpdateParaCenterUI(CCmdUI* pCmdUI)
{
 OnUpdateParaAlign(pCmdUI, PFA_CENTER);
}

CRichEditView::PrintInsideRect

long PrintInsideRect(
 CDC* pDC,
 RECT& rectLayout,
 long nIndexStart,
 long nIndexStop,
 BOOL bOutput);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRichEditView::PrintPage

long PrintPage(
 CDC* pDC,
 long nIndexStart,
 long nIndexStop);

ParametersParameters

Call this function to format a range of text in a rich edit control to fit within rectLayout for the device
specified by pDC.

pDC
Pointer to a device context for the output area.

rectLayout
RECT or CRect which defines the output area.

nIndexStart
Zero-based index of the first character to be formatted.

nIndexStop
Zero-based index of the last character to be formatted.

bOutput
Indicates if the text should be rendered. If FALSE, the text is just measured.

The index of the last character that fits in the output area plus one.

Typically, this call is followed by a call to CRichEditCtrl::DisplayBand which generates the output.

See the example for CRichEditView::GetPaperSize.

Call this function to format a range of text in a rich edit control for the output device specified by pDC.

pDC
Pointer to a device context for page output.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

Return ValueReturn Value

RemarksRemarks

CRichEditView::QueryAcceptData

virtual HRESULT QueryAcceptData(
 LPDATAOBJECT lpdataobj,
 CLIPFORMAT* lpcfFormat,
 DWORD dwReco,
 BOOL bReally,
 HGLOBAL hMetaFile);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

nIndexStart
Zero-based index of the first character to be formatted.

nIndexStop
Zero-based index of the last character to be formatted.

The index of the last character that fits on the page plus one.

The layout of each page is controlled by GetPageRect and GetPrintRect. Typically, this call is followed by a
call to CRichEditCtrl::DisplayBand which generates the output.

Note that margins are relative to the physical page, not the logical page. Thus, margins of zero will often clip
the text since many printers have unprintable areas on the page. To avoid clipping your text, you should call
SetMargins and set reasonable margins before printing.

Called by the framework to paste an object into the rich edit.

lpdataobj
Pointer to the IDataObject to query.

lpcfFormat
Pointer to the acceptable data format.

dwReco
Not used.

bReally
Indicates if the paste operation should continue or not.

hMetaFile
A handle to the metafile used for drawing the item's icon.

An HRESULT value reporting the success of the operation.

Override this function to handle different organization of COM items in your derived document class. This is
an advanced overridable.

For more information on HRESULT and IDataObject , see Structure of COM Error Codes and IDataObject,
respectively, in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-idataobject
https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-idataobject

// This code fragment is taken from the Wordpad sample.
HRESULT CMyRichEditView::QueryAcceptData(LPDATAOBJECT lpdataobj,
 CLIPFORMAT* lpcfFormat, DWORD dwReco, BOOL bReally, HGLOBAL hMetaFile)
{
 if (bReally && *lpcfFormat == 0 && (m_nPasteType == 0))
 {
 COleDataObject dataobj;
 dataobj.Attach(lpdataobj, FALSE);
 if (!dataobj.IsDataAvailable(cfRTO)) // native avail, let
 // richedit do as it wants
 {
 if (dataobj.IsDataAvailable(cfEmbeddedObject))
 {
 if (PasteNative(lpdataobj)) // See WordPad sample for info
 // on PasteNative
 return S_FALSE;
 }
 }
 }
 return CRichEditView::QueryAcceptData(lpdataobj, lpcfFormat, dwReco,
 bReally, hMetaFile);
}

CRichEditView::SetCharFormat

void SetCharFormat(CHARFORMAT2 cf);

ParametersParameters

RemarksRemarks

ExampleExample

void CMyRichEditView::OnCharUnderline ()
{
 CHARFORMAT2 cf;
 cf = GetCharFormatSelection();

 if (!(cf.dwMask & CFM_UNDERLINE) || !(cf.dwEffects & CFE_UNDERLINE))
 cf.dwEffects = CFE_UNDERLINE;
 else
 cf.dwEffects = 0;

 cf.dwMask = CFM_UNDERLINE;
 SetCharFormat(cf);
}

CRichEditView::SetMargins

Call this function to set the character formatting attributes for new text in this CRichEditView object.

cf
CHARFORMAT2 structure containing the new default character formatting attributes.

Only the attributes specified by the dwMask member of cf are changed by this function.

For more information, see EM_SETCHARFORMAT message and CHARFORMAT2 structure in the
Windows SDK.

Call this function to set the printing margins for this rich edit view.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-charformat2a
https://docs.microsoft.com/windows/desktop/Controls/em-setcharformat
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-charformat2a

void SetMargins(const CRect& rectMargin);

ParametersParameters

RemarksRemarks

ExampleExample

CRichEditView::SetPaperSize

void SetPaperSize(CSize sizePaper);

ParametersParameters

RemarksRemarks

ExampleExample

BOOL CMyRichEditView::OnPreparePrinting(CPrintInfo* pInfo)
{
 // Set the printing margins (720 twips = 1/2 inch).
 SetMargins(CRect(720, 720, 720, 720));

 // Change the paper orientation to landscape mode
 // See the example for CWinApp::GetPrinterDeviceDefaults
 ((CMyWinApp*)AfxGetApp())->SetLandscapeMode();

 // Change the paper size in the CRichEditView to
 // reflect landscape mode
 CSize csPaper = GetPaperSize();
 int temp;
 temp = csPaper.cx; csPaper.cx = csPaper.cy; csPaper.cy = temp;
 SetPaperSize(csPaper);

 return DoPreparePrinting(pInfo);
}

CRichEditView::SetParaFormat

rectMargin
The new margin values for printing, measured in MM_TWIPS.

If m_nWordWrap is WrapToTargetDevice , you should call WrapChanged after using this function to adjust
printing characteristics.

Note that the margins used by PrintPage are relative to the physical page, not the logical page. Thus,
margins of zero will often clip the text since many printers have unprintable areas on the page. To avoid
clipping your text, you should call use SetMargins to set reasonable printer margins before printing.

See the example for CRichEditView::GetPaperSize.

Call this function to set the paper size for printing this rich edit view.

sizePaper
The new paper size values for printing, measured in MM_TWIPS.

If m_nWordWrap is WrapToTargetDevice , you should call WrapChanged after using this function to adjust
printing characteristics.

Call this function to set the paragraph formatting attributes for the current selection in this CRichEditView

BOOL SetParaFormat(PARAFORMAT2& pf);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CMyRichEditView::AddBullets()
{
 PARAFORMAT2 pf;

 pf.cbSize = sizeof(PARAFORMAT2);
 pf.dwMask = PFM_NUMBERING | PFM_OFFSET;
 pf.wNumbering = PFN_BULLET;
 pf.dxOffset = 10;

 VERIFY(SetParaFormat(pf));
}

CRichEditView::TextNotFound

void TextNotFound(LPCTSTR lpszFind);

ParametersParameters

RemarksRemarks

ExampleExample

CRichEditView::WrapChanged

object.

pf
PARAFORMAT2 structure containing the new default paragraph formatting attributes.

Nonzero if successful; otherwise, 0.

Only the attributes specified by the dwMask member of pf are changed by this function.

For more information, see EM_SETPARAFORMAT message and PARAFORMAT2 structure in the Windows
SDK.

Call this function to reset the internal search state of the CRichEditView control after a failed call to FindText.

lpszFind
Contains the text string that was not found.

It is recommended that this method be called immediately after failed calls to FindText so that the internal
search state of the control is properly reset.

The lpszFind parameter should include the same content as the string provided to FindText. After resetting
the internal search state, this method will call the OnTextNotFound method with the provided search string.

See the example for CRichEditView::FindText.

Call this function when the printing characteristics have changed (SetMargins or SetPaperSize).

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-paraformat2
https://docs.microsoft.com/windows/desktop/Controls/em-setparaformat
https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-paraformat2

virtual void WrapChanged();

RemarksRemarks

ExampleExample

void CMyRichEditView::OnInitialUpdate()
{
 CRichEditView::OnInitialUpdate();

 // Turn on the horizontal scroll bar
 m_nWordWrap = WrapNone;
 WrapChanged();
}

See also

Override this function to modify the way the rich edit view responds to changes in m_nWordWrap or the
printing characteristics (OnPrinterChanged).

MFC Sample WORDPAD
CCtrlView Class
Hierarchy Chart
CRichEditDoc Class
CRichEditCntrItem Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CRuntimeClass Structure
3/4/2019 • 4 minutes to read • Edit Online

Syntax
struct CRuntimeClass

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CRuntimeClass::CreateObject Creates an object during run time.

CRuntimeClass::FromName Creates an object during run time using the familiar
class name.

CRuntimeClass::IsDerivedFrom Determines if the class is derived from the specified
class.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CRuntimeClass::m_lpszClassName The name of the class.

CRuntimeClass::m_nObjectSize The size of the object in bytes.

CRuntimeClass::m_pBaseClass A pointer to the CRuntimeClass structure of the
base class.

CRuntimeClass::m_pfnCreateObject A pointer to the function that dynamically creates the
object.

CRuntimeClass::m_pfnGetBaseClass Returns the CRuntimeClass structure (only available
when dynamically linked).

CRuntimeClass::m_wSchema The schema number of the class.

Remarks

Each class derived from CObject is associated with a CRuntimeClass structure that you can use to
obtain information about an object or its base class at run time.

CRuntimeClass is a structure and therefore does not have a base class.

The ability to determine the class of an object at run time is useful when extra type checking of
function arguments is needed, or when you must write special-purpose code based on the class of

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cruntimeclass-structure.md

Inheritance Hierarchy

Requirements

CRuntimeClass::CreateObject

CObject* CreateObject();

static CObject* PASCAL CreateObject(LPCSTR lpszClassName);

static CObject* PASCAL CreateObject(LPCWSTR lpszClassName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRuntimeClass::FromName

static CRuntimeClass* PASCAL FromName(LPCSTR lpszClassName);

static CRuntimeClass* PASCAL FromName(LPCWSTR lpszClassName);

ParametersParameters

an object. Run-time class information is not supported directly by the C++ language.

CRuntimeClass provides information on the related C++ object, such as a pointer to the
CRuntimeClass of the base class and the ASCII class name of the related class. This structure also

implements various functions that can be used to dynamically create objects, specifying the type of
object by using a familiar name, and determining if the related class is derived from a specific class.

For more information on using CRuntimeClass , see the article Accessing Run-Time Class
Information.

CRuntimeClass

Header: afx.h

Call this function to dynamically create the specified class during run time.

lpszClassName
The familiar name of the class to be created.

A pointer to the newly created object, or NULL if the class name is not found or there is insufficient
memory to create the object.

Classes derived from CObject can support dynamic creation, which is the ability to create an object
of a specified class at run time. Document, view, and frame classes, for example, should support
dynamic creation. For more information on dynamic creation and the CreateObject member, see
CObject Class and CObject Class: Specifying Levels of Functionality.

See the example for IsDerivedFrom.

Call this function to retrieve the CRuntimeClass structure associated with the familiar name.

Return ValueReturn Value

ExampleExample

// This example creates an object if CAge is defined.

CRuntimeClass* pClass = CRuntimeClass::FromName(_T("CAge"));
if (pClass == NULL)
{
 // not found, display a warning for diagnostic purposes
 AfxMessageBox(_T("Warning: CMyClass not defined"));
 return NULL;
}

// attempt to create the object with the found CRuntimeClass
CObject* pObject = pClass->CreateObject();

CRuntimeClass::IsDerivedFrom

BOOL IsDerivedFrom(const CRuntimeClass* pBaseClass) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

lpszClassName
The familiar name of a class derived from CObject .

A pointer to a CRuntimeClass object, corresponding to the name as passed in lpszClassName. The
function returns NULL if no matching class name was found.

Call this function to determine if the calling class is derived from the class specified in the
pBaseClass parameter.

pBaseClass
The familiar name of a class derived from CObject .

TRUE if the class calling IsDerivedFrom is derived from the base class whose CRuntimeClass

structure is given as a parameter; otherwise FALSE.

The relationship is determined by "walking" from the member's class up the chain of derived
classes all the way to the top. This function only returns FALSE if no match is found for the base
class.

To use the CRuntimeClass structure, you must include the IMPLEMENT_DYNAMIC,
IMPLEMENT_DYNCREATE, or IMPLEMENT_SERIAL macro in the implementation of the class for which you
want to retrieve run-time object information.

For more information on using CRuntimeClass , see the article CObject Class: Accessing Run-Time
Class Information.

// This example creates an object from the run-time class. It only
// creates objects derived from CWnd.

// We only want to create an object derived from CWnd.
if (!pClass->IsDerivedFrom(RUNTIME_CLASS(CWnd)))
{
 TRACE(_T("Error; Object %s is not derived from CWnd\n"),
 pClass->m_lpszClassName);
 return FALSE;
}

// Get a pointer to the base class CRuntimeClass.
#ifdef _AFXDLL
 CRuntimeClass* pBaseClass = pClass->m_pfnGetBaseClass();
#else
 CRuntimeClass* pBaseClass = pClass->m_pBaseClass;
#endif
ASSERT(pBaseClass != NULL);

TRACE("Creating object %s derived from %s, with object size %d "
 "and schema %d\n", pClass->m_lpszClassName,
 pBaseClass->m_lpszClassName, pClass->m_nObjectSize,
 pClass->m_wSchema);

// Create the object.
CObject* pObject = pClass->CreateObject();

CRuntimeClass::m_lpszClassName

RemarksRemarks

ExampleExample

CRuntimeClass::m_nObjectSize

RemarksRemarks

ExampleExample

CRuntimeClass::m_pBaseClass

RemarksRemarks

ExampleExample

A null-terminated string containing the ASCII class name.

This name can be used to create an instance of the class using the FromName member function.

See the example for IsDerivedFrom.

The size of the object, in bytes.

If the object has data members that point to allocated memory, the size of that memory is not
included.

See the example for IsDerivedFrom.

If your application statically links to MFC, this data member contains a pointer to the
CRuntimeClass structure of the base class.

If your application dynamically links to the MFC library, see m_pfnGetBaseClass.

See the example for IsDerivedFrom.

CRuntimeClass::m_pfnCreateObject

RemarksRemarks

CRuntimeClass::m_pfnGetBaseClass

RemarksRemarks

ExampleExample

CRuntimeClass::m_wSchema

RemarksRemarks

ExampleExample

See also

A function pointer to the default constructor that creates an object of your class.

This pointer is only valid if the class supports dynamic creation; otherwise, the function returns
NULL.

If your application uses the MFC library as a shared DLL, this data member points to a function
that returns the CRuntimeClass structure of the base class.

If your application statically links to the MFC library, see m_pBaseClass.

See the example for IsDerivedFrom.

The schema number (-1 for nonserializable classes).

For more information on schema numbers, see the IMPLEMENT_SERIAL macro.

See the example for IsDerivedFrom.

Hierarchy Chart
CObject::GetRuntimeClass
CObject::IsKindOf
RUNTIME_CLASS
IMPLEMENT_DYNAMIC
IMPLEMENT_DYNCREATE
IMPLEMENT_SERIAL

CScrollBar Class
3/4/2019 • 8 minutes to read • Edit Online

Syntax
class CScrollBar : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CScrollBar::CScrollBar Constructs a CScrollBar object.

Public MethodsPublic Methods

NAME DESCRIPTION

CScrollBar::Create Creates the Windows scroll bar and attaches it to the
CScrollBar object.

CScrollBar::EnableScrollBar Enables or disables one or both arrows of a scroll bar.

CScrollBar::GetScrollBarInfo Retrieves information about the scroll bar using a
SCROLLBARINFO structure.

CScrollBar::GetScrollInfo Retrieves information about the scroll bar.

CScrollBar::GetScrollLimit Retrieves the limit of the scroll bar

CScrollBar::GetScrollPos Retrieves the current position of a scroll box.

CScrollBar::GetScrollRange Retrieves the current minimum and maximum scroll-bar
positions for the given scroll bar.

CScrollBar::SetScrollInfo Sets information about the scroll bar.

CScrollBar::SetScrollPos Sets the current position of a scroll box.

CScrollBar::SetScrollRange Sets minimum and maximum position values for the given
scroll bar.

CScrollBar::ShowScrollBar Shows or hides a scroll bar.

Remarks

Provides the functionality of a Windows scroll-bar control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cscrollbar-class.md

Inheritance Hierarchy

Requirements

CScrollBar::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

You create a scroll-bar control in two steps. First, call the constructor CScrollBar to construct the CScrollBar

object, then call the Create member function to create the Windows scroll-bar control and attach it to the
CScrollBar object.

If you create a CScrollBar object within a dialog box (through a dialog resource), the CScrollBar is
automatically destroyed when the user closes the dialog box.

If you create a CScrollBar object within a window, you may also need to destroy it.

If you create the CScrollBar object on the stack, it is destroyed automatically. If you create the CScrollBar

object on the heap by using the new function, you must call delete on the object to destroy it when the user
terminates the Windows scroll bar.

If you allocate any memory in the CScrollBar object, override the CScrollBar destructor to dispose of the
allocations.

For related information about using CScrollBar , see Controls.

CObject

CCmdTarget

CWnd

CScrollBar

Header: afxwin.h

Creates the Windows scroll bar and attaches it to the CScrollBar object.

dwStyle
Specifies the scroll bar's style. Apply any combination of scroll-bar styles to the scroll bar.

rect
Specifies the scroll bar's size and position. Can be either a RECT structure or a CRect object.

pParentWnd
Specifies the scroll bar's parent window, usually a CDialog object. It must not be NULL.

nID
The scroll bar's control ID.

Nonzero if successful; otherwise 0.

RemarksRemarks

ExampleExample

// Example 1:
// Create a horizontal CScrollBar control as a child window of CMyDialog
// class (a CDialog-derived class). The scroll bar is NOT visible until the
// call ShowScrollBar() is made. m_ScrollBarHorz is of type CScrollBar class,
// and it is a member variable in CMyDialog class.
VERIFY(m_ScrollBarHorz.Create(SBS_HORZ | SBS_TOPALIGN | WS_CHILD,
 CRect(5, 5, 100, 30), this, IDC_SCROLLBARCTRL));

m_ScrollBarHorz.ShowScrollBar();

// Example 2:
// Create a vertical CScrollBar control as a child window of CMyDialog
// class (a CDialog-derived class). m_ScrollBarVert is of type CScrollBar
// class, and it is a member variable in CMyDialog class.
VERIFY(m_ScrollBarVert.Create(SBS_VERT | SBS_LEFTALIGN | WS_CHILD |
 WS_VISIBLE, CRect(5, 30, 30, 130), this, IDC_SCROLLBARCTRL));

CScrollBar::CScrollBar

CScrollBar();

RemarksRemarks

ExampleExample

CScrollBar m_ScrollBarHorz;

CScrollBar::EnableScrollBar

BOOL EnableScrollBar(UINT nArrowFlags = ESB_ENABLE_BOTH);

ParametersParameters

You construct a CScrollBar object in two steps. First, call the constructor, which constructs the CScrollBar
object; then call Create , which creates and initializes the associated Windows scroll bar and attaches it to the
CScrollBar object.

Apply the following window styles to a scroll bar :

WS_CHILD Always

WS_VISIBLE Usually

WS_DISABLED Rarely

WS_GROUP To group controls

Constructs a CScrollBar object.

After constructing the object, call the Create member function to create and initialize the Windows scroll bar.

Enables or disables one or both arrows of a scroll bar.

nArrowFlags
Specifies whether the scroll arrows are enabled or disabled and which arrows are enabled or disabled. This

Return ValueReturn Value

ExampleExample

CScrollBar::GetScrollBarInfo

BOOL GetScrollBarInfo(PSCROLLBARINFO pScrollInfo) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CScrollBar::GetScrollInfo

BOOL GetScrollInfo(
 LPSCROLLINFO lpScrollInfo,
 UINT nMask = SIF_ALL);

ParametersParameters

Return ValueReturn Value

parameter can be one of the following values:

ESB_ENABLE_BOTH Enables both arrows of a scroll bar.

ESB_DISABLE_LTUP Disables the left arrow of a horizontal scroll bar or the up arrow of a vertical scroll
bar.

ESB_DISABLE_RTDN Disables the right arrow of a horizontal scroll bar or the down arrow of a vertical
scroll bar.

ESB_DISABLE_BOTH Disables both arrows of a scroll bar.

Nonzero if the arrows are enabled or disabled as specified; otherwise 0, which indicates that the arrows are
already in the requested state or that an error occurred.

See the example for CScrollBar::SetScrollRange.

Retrieves the information that the SCROLLBARINFO structure maintains about a scroll bar.

pScrollInfo
A pointer to the SCROLLBARINFO structure.

Returns TRUE on success, FALSE on failure.

This member function emulates the functionality of the SBM_SCROLLBARINFO message, as described in the
Windows SDK.

Retrieves the information that the SCROLLINFO structure maintains about a scroll bar.

lpScrollInfo
A pointer to a SCROLLINFO structure. See the Windows SDK for more information about this structure.

nMask
Specifies the scroll bar parameters to retrieve. Typical usage, S IF_ALL, specifies a combination of S IF_PAGE,
SIF_POS, S IF_TRACKPOS, and SIF_RANGE. See SCROLLINFO for more information on the nMask values.

If the message retrieved any values, the return is TRUE. Otherwise, it is FALSE.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagscrollbarinfo
https://docs.microsoft.com/windows/desktop/Controls/sbm-getscrollbarinfo
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagscrollinfo

RemarksRemarks

ExampleExample

CScrollBar::GetScrollLimit

int GetScrollLimit();

Return ValueReturn Value

ExampleExample

CScrollBar::GetScrollPos

int GetScrollPos() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CScrollBar::GetScrollRange

void GetScrollRange(
 LPINT lpMinPos,
 LPINT lpMaxPos) const;

ParametersParameters

GetScrollInfo enables applications to use 32-bit scroll positions.

The SCROLLINFO structure contains information about a scroll bar, including the minimum and maximum
scrolling positions, the page size, and the position of the scroll box (the thumb). See the SCROLLINFO structure
topic in the Windows SDK for more information about changing the structure defaults.

The MFC Windows message handlers that indicate scroll bar position, CWnd::OnHScroll and CWnd::OnVScroll,
provide only 16 bits of position data. GetScrollInfo and SetScrollInfo provide 32 bits of scroll bar position
data. Thus, an application can call GetScrollInfo while processing either CWnd::OnHScroll or CWnd::OnVScroll to
obtain 32-bit scroll bar position data.

See the example for CWnd::OnHScroll.

Retrieves the maximum scrolling position of the scroll bar.

Specifies the maximum position of a scroll bar if successful; otherwise 0.

See the example for CWnd::OnHScroll.

Retrieves the current position of a scroll box.

Specifies the current position of the scroll box if successful; otherwise 0.

The current position is a relative value that depends on the current scrolling range. For example, if the scrolling
range is 100 to 200 and the scroll box is in the middle of the bar, the current position is 150.

See the example for CWnd::OnHScroll.

Copies the current minimum and maximum scroll-bar positions for the given scroll bar to the locations specified
by lpMinPos and lpMaxPos.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagscrollinfo

RemarksRemarks

ExampleExample

CScrollBar::SetScrollInfo

BOOL SetScrollInfo(
 LPSCROLLINFO lpScrollInfo,
 BOOL bRedraw = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Set SCROLLINFO for the scroll bar. m_ScrollBarHorz is of type
// CScrollBar class, and it is a member variable in CMyDialog class.
SCROLLINFO info;
info.cbSize = sizeof(SCROLLINFO);
info.fMask = SIF_ALL;
info.nMin = 0;
info.nMax = 10;
info.nPage = 2;
info.nPos = 5;
info.nTrackPos = 2;
m_ScrollBarHorz.SetScrollInfo(&info);

CScrollBar::SetScrollPos

lpMinPos
Points to the integer variable that is to receive the minimum position.

lpMaxPos
Points to the integer variable that is to receive the maximum position.

The default range for a scroll-bar control is empty (both values are 0).

See the example for CWnd::OnHScroll.

Sets the information that the SCROLLINFO structure maintains about a scroll bar.

lpScrollInfo
A pointer to a SCROLLINFO structure.

bRedraw
Specifies whether the scroll bar should be redrawn to reflect the new information. If bRedraw is TRUE, the scroll
bar is redrawn. If it is FALSE, it is not redrawn. The scroll bar is redrawn by default.

If successful, the return is TRUE. Otherwise, it is FALSE.

You must provide the values required by the SCROLLINFO structure parameters, including the flag values.

The SCROLLINFO structure contains information about a scroll bar, including the minimum and maximum
scrolling positions, the page size, and the position of the scroll box (the thumb). See the SCROLLINFO structure
topic in the Windows SDK for more information about changing the structure defaults.

Sets the current position of a scroll box to that specified by nPos and, if specified, redraws the scroll bar to reflect
the new position.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagscrollinfo
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagscrollinfo

int SetScrollPos(
 int nPos,
 BOOL bRedraw = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CScrollBar::SetScrollRange

void SetScrollRange(
 int nMinPos,
 int nMaxPos,
 BOOL bRedraw = TRUE);

ParametersParameters

RemarksRemarks

ExampleExample

nPos
Specifies the new position for the scroll box. It must be within the scrolling range.

bRedraw
Specifies whether the scroll bar should be redrawn to reflect the new position. If bRedraw is TRUE, the scroll bar
is redrawn. If it is FALSE, it is not redrawn. The scroll bar is redrawn by default.

Specifies the previous position of the scroll box if successful; otherwise 0.

Set bRedraw to FALSE whenever the scroll bar will be redrawn by a subsequent call to another function to avoid
having the scroll bar redrawn twice within a short interval.

See the example for CScrollBar::SetScrollRange.

Sets minimum and maximum position values for the given scroll bar.

nMinPos
Specifies the minimum scrolling position.

nMaxPos
Specifies the maximum scrolling position.

bRedraw
Specifies whether the scroll bar should be redrawn to reflect the change. If bRedraw is TRUE, the scroll bar is
redrawn; if FALSE, it is not redrawn. It is redrawn by default.

Set nMinPos and nMaxPos to 0 to hide standard scroll bars.

Do not call this function to hide a scroll bar while processing a scroll-bar notification message.

If a call to SetScrollRange immediately follows a call to the SetScrollPos member function, set bRedraw in
SetScrollPos to 0 to prevent the scroll bar from being redrawn twice.

The difference between the values specified by nMinPos and nMaxPos must not be greater than 32,767. The
default range for a scroll-bar control is empty (both nMinPos and nMaxPos are 0).

// Sets minimum (0) and maximum (10) position values for the
// CScrollBar control. m_ScrollBarVert is of type CScrollBar class,
// and it is a member variable in CMyDialog class.
m_ScrollBarVert.SetScrollRange(0, 10);

// Set the position of the scroll box.
m_ScrollBarVert.SetScrollPos(5);

// Disable the down arrow of the scroll bar. By default, both arrows
// are enabled.
m_ScrollBarVert.EnableScrollBar(ESB_DISABLE_DOWN);

CScrollBar::ShowScrollBar

void ShowScrollBar(BOOL bShow = TRUE);

ParametersParameters

RemarksRemarks

ExampleExample

See also

Shows or hides a scroll bar.

bShow
Specifies whether the scroll bar is shown or hidden. If this parameter is TRUE, the scroll bar is shown; otherwise
it is hidden.

An application should not call this function to hide a scroll bar while processing a scroll-bar notification message.

See the example for CScrollBar::Create.

CWnd Class
Hierarchy Chart
CWnd Class
CButton Class
CComboBox Class
CEdit Class
CListBox Class
CStatic Class
CDialog Class

CScrollView Class
3/4/2019 • 11 minutes to read • Edit Online

Syntax
class CScrollView : public CView

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CScrollView::CScrollView Constructs a CScrollView object.

Public MethodsPublic Methods

NAME DESCRIPTION

CScrollView::CheckScrollBars Indicates whether the scroll view has horizontal and vertical
scroll bars.

CScrollView::FillOutsideRect Fills the area of a view outside the scrolling area.

CScrollView::GetDeviceScrollPosition Gets the current scroll position in device units.

CScrollView::GetDeviceScrollSizes Gets the current mapping mode, the total size, and the line
and page sizes of the scrollable view. Sizes are in device
units.

CScrollView::GetScrollPosition Gets the current scroll position in logical units.

CScrollView::GetTotalSize Gets the total size of the scroll view in logical units.

CScrollView::ResizeParentToFit Causes the size of the view to dictate the size of its frame.

CScrollView::ScrollToPosition Scrolls the view to a given point, specified in logical units.

CScrollView::SetScaleToFitSize Puts the scroll view into scale-to-fit mode.

CScrollView::SetScrollSizes Sets the scroll view's mapping mode, total size, and
horizontal and vertical scroll amounts.

Remarks

A CView with scrolling capabilities.

You can handle standard scrolling yourself in any class derived from CView by overriding the message-
mapped OnHScroll and OnVScroll member functions. But CScrollView adds the following features to its

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cscrollview-class.md

CView capabilities:

It manages window and viewport sizes and mapping modes.

It scrolls automatically in response to scroll-bar messages.

It scrolls automatically in response to messages from the keyboard, a non-scrolling mouse, or the
IntelliMouse wheel.

To scroll automatically in response to messages from the keyboard, add a WM_KEYDOWN message, and test
for VK_DOWN, VK_PREV and call SetScrollPos.

You can handle mouse wheel scrolling yourself by overriding the message-mapped OnMouseWheel and
OnRegisteredMouseWheel member functions. As they are for CScrollView , these member functions support
the recommended behaviour for WM_MOUSEWHEEL, the wheel rotation message.

To take advantage of automatic scrolling, derive your view class from CScrollView instead of from CView .
When the view is first created, if you want to calculate the size of the scrollable view based on the size of the
document, call the SetScrollSizes member function from your override of either CView::OnInitialUpdate or
CView::OnUpdate. (You must write your own code to query the size of the document. For an example, see the
Scribble sample.)

The call to the SetScrollSizes member function sets the view's mapping mode, the total dimensions of the
scroll view, and the amounts to scroll horizontally and vertically. All sizes are in logical units. The logical size of
the view is usually calculated from data stored in the document, but in some cases you may want to specify a
fixed size. For examples of both approaches, see CScrollView::SetScrollSizes.

You specify the amounts to scroll horizontally and vertically in logical units. By default, if the user clicks a
scroll bar shaft outside of the scroll box, CScrollView scrolls a "page." If the user clicks a scroll arrow at either
end of a scroll bar, CScrollView scrolls a "line." By default, a page is 1/10 of the total size of the view; a line is
1/10 of the page size. Override these default values by passing custom sizes in the SetScrollSizes member
function. For example, you might set the horizontal size to some fraction of the width of the total size and the
vertical size to the height of a line in the current font.

Instead of scrolling, CScrollView can automatically scale the view to the current window size. In this mode,
the view has no scroll bars and the logical view is stretched or shrunk to exactly fit the window's client area. To
use this scale-to-fit capability, call CScrollView::SetScaleToFitSize. (Call either SetScaleToFitSize or
SetScrollSizes , but not both.)

Before the OnDraw member function of your derived view class is called, CScrollView automatically adjusts
the viewport origin for the CPaintDC device-context object that it passes to OnDraw .

To adjust the viewport origin for the scrolling window, CScrollView overrides CView::OnPrepareDC. This
adjustment is automatic for the CPaintDC device context that CScrollView passes to OnDraw , but you must
call CScrollView::OnPrepareDC yourself for any other device contexts you use, such as a CClientDC . You can
override CScrollView::OnPrepareDC to set the pen, background color, and other drawing attributes, but call the
base class to do scaling.

Scroll bars can appear in three places relative to a view, as shown in the following cases:

Standard window-style scroll bars can be set for the view using the WS_HSCROLL and
WS_VSCROLLWindows Styles.

Scroll-bar controls can also be added to the frame containing the view, in which case the framework
forwards WM_HSCROLL and WM_VSCROLL messages from the frame window to the currently
active view.

The framework also forwards scroll messages from a CSplitterWnd splitter control to the currently

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setscrollpos
https://docs.microsoft.com/windows/desktop/inputdev/wm-mousewheel
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Inheritance Hierarchy

Requirements

CScrollView::CheckScrollBars

void CheckScrollBars(
 BOOL& bHasHorzBar,
 BOOL& bHasVertBar) const;

ParametersParameters

CScrollView::CScrollView

CScrollView();

RemarksRemarks

CScrollView::FillOutsideRect

void FillOutsideRect(
 CDC* pDC,
 CBrush* pBrush);

active splitter pane (a view). When placed in a CSplitterWnd with shared scroll bars, a CScrollView

object will use the shared ones rather than creating its own.

For more information on using CScrollView , see Document/View Architecture and Derived View Classes
Available in MFC.

CObject

CCmdTarget

CWnd

CView

CScrollView

Header: afxwin.h

Call this member function to determine if the scroll view has horizontal and vertical bars.

bHasHorzBar
Indicates the application has a horizontal scroll bar.

bHasVertBar
Indicates the application has a vertical scroll bar.

Constructs a CScrollView object.

You must call either SetScrollSizes or SetScaleToFitSize before the scroll view is usable.

Call FillOutsideRect to fill the area of the view that appears outside of the scrolling area.

ParametersParameters

RemarksRemarks

ExampleExample

BOOL CMyScrollView::OnEraseBkgnd(CDC* pDC)
{
 CBrush br(GetSysColor(COLOR_WINDOW));
 FillOutsideRect(pDC, &br);
 return TRUE; // Erased
}

CScrollView::GetDeviceScrollPosition

CPoint GetDeviceScrollPosition() const;

Return ValueReturn Value

RemarksRemarks

CScrollView::GetDeviceScrollSizes

void GetDeviceScrollSizes(
 int& nMapMode,
 SIZE& sizeTotal,
 SIZE& sizePage,
 SIZE& sizeLine) const;

ParametersParameters

pDC
Device context in which the filling is to be done.

pBrush
Brush with which the area is to be filled.

Use FillOutsideRect in your scroll view's OnEraseBkgnd handler function to prevent excessive background
repainting.

Call GetDeviceScrollPosition when you need the current horizontal and vertical positions of the scroll boxes
in the scroll bars.

The horizontal and vertical positions (in device units) of the scroll boxes as a CPoint object.

This coordinate pair corresponds to the location in the document to which the upper-left corner of the view
has been scrolled. This is useful for offsetting mouse-device positions to scroll-view device positions.

GetDeviceScrollPosition returns values in device units. If you want logical units, use GetScrollPosition

instead.

GetDeviceScrollSizes gets the current mapping mode, the total size, and the line and page sizes of the
scrollable view.

nMapMode
Returns the current mapping mode for this view. For a list of possible values, see SetScrollSizes .

sizeTotal
Returns the current total size of the scroll view in device units.

RemarksRemarks

CScrollView::GetScrollPosition

CPoint GetScrollPosition() const;

Return ValueReturn Value

RemarksRemarks

CScrollView::GetTotalSize

CSize GetTotalSize() const;

Return ValueReturn Value

CScrollView::ResizeParentToFit

void ResizeParentToFit(BOOL bShrinkOnly = TRUE);

ParametersParameters

sizePage
Returns the current horizontal and vertical amounts to scroll in each direction in response to a mouse click in
a scroll-bar shaft. The cx member contains the horizontal amount. The cy member contains the vertical
amount.

sizeLine
Returns the current horizontal and vertical amounts to scroll in each direction in response to a mouse click in
a scroll arrow. The cx member contains the horizontal amount. The cy member contains the vertical
amount.

Sizes are in device units. This member function is rarely called.

Call GetScrollPosition when you need the current horizontal and vertical positions of the scroll boxes in the
scroll bars.

The horizontal and vertical positions (in logical units) of the scroll boxes as a CPoint object.

This coordinate pair corresponds to the location in the document to which the upper-left corner of the view
has been scrolled.

GetScrollPosition returns values in logical units. If you want device units, use GetDeviceScrollPosition

instead.

Call GetTotalSize to retrieve the current horizontal and vertical sizes of the scroll view.

The total size of the scroll view in logical units. The horizontal size is in the cx member of the CSize return
value. The vertical size is in the cy member.

Call ResizeParentToFit to let the size of your view dictate the size of its frame window.

bShrinkOnly
The kind of resizing to perform. The default value, TRUE, shrinks the frame window if appropriate. Scroll bars
will still appear for large views or small frame windows. A value of FALSE causes the view always to resize the
frame window exactly. This can be somewhat dangerous since the frame window could get too big to fit inside

RemarksRemarks

GetParentFrame()->RecalcLayout();

CScrollView::ScrollToPosition

void ScrollToPosition(POINT pt);

ParametersParameters

RemarksRemarks

CScrollView::SetScaleToFitSize

void SetScaleToFitSize(SIZE sizeTotal);

ParametersParameters

RemarksRemarks

the multiple document interface (MDI) frame window or the screen.

This is recommended only for views in MDI child frame windows. Use ResizeParentToFit in the
OnInitialUpdate handler function of your derived CScrollView class. For an example of this member

function, see CScrollView::SetScrollSizes.

ResizeParentToFit assumes that the size of the view window has been set. If the view window size has not
been set when ResizeParentToFit is called, you will get an assertion. To ensure that this does not happen,
make the following call before calling ResizeParentToFit :

Call ScrollToPosition to scroll to a given point in the view.

pt
The point to scroll to, in logical units. The x member must be a positive value (greater than or equal to 0, up
to the total size of the view). The same is true for the y member when the mapping mode is MM_TEXT. The
y member is negative in mapping modes other than MM_TEXT.

The view will be scrolled so that this point is at the upper-left corner of the window. This member function
must not be called if the view is scaled to fit.

Call SetScaleToFitSize when you want to scale the viewport size to the current window size automatically.

sizeTotal
The horizontal and vertical sizes to which the view is to be scaled. The scroll view's size is measured in logical
units. The horizontal size is contained in the cx member. The vertical size is contained in the cy member.
Both cx and cy must be greater than or equal to 0.

With scroll bars, only a portion of the logical view may be visible at any time. But with the scale-to-fit
capability, the view has no scroll bars and the logical view is stretched or shrunk to exactly fit the window's
client area. When the window is resized, the view draws its data at a new scale based on the size of the
window.

You'll typically place the call to SetScaleToFitSize in your override of the view's OnInitialUpdate member
function. If you do not want automatic scaling, call the SetScrollSizes member function instead.

SetScaleToFitSize can be used to implement a "Zoom to Fit" operation. Use SetScrollSizes to reinitialize
scrolling.

GetParentFrame()->RecalcLayout();

CScrollView::SetScrollSizes

void SetScrollSizes(
 int nMapMode,
 SIZE sizeTotal,
 const SIZE& sizePage = sizeDefault,
 const SIZE& sizeLine = sizeDefault);

ParametersParameters

MAPPING MODE LOGICAL UNIT POSITIVE Y-AXIS EX TENDS...

MM_TEXT 1 pixel Downward

MM_HIMETRIC 0.01 mm Upward

MM_TWIPS 1/1440 in Upward

MM_HIENGLISH 0.001 in Upward

MM_LOMETRIC 0.1 mm Upward

MM_LOENGLISH 0.01 in Upward

RemarksRemarks

SetScaleToFitSize assumes that the size of the view window has been set. If the view window size has not
been set when SetScaleToFitSize is called, you will get an assertion. To ensure that this does not happen,
make the following call before calling SetScaleToFitSize :

Call SetScrollSizes when the view is about to be updated.

nMapMode
The mapping mode to set for this view. Possible values include:

All of these modes are defined by Windows. Two standard mapping modes, MM_ISOTROPIC and
MM_ANISOTROPIC, are not used for CScrollView . The class library provides the SetScaleToFitSize

member function for scaling the view to window size. Column three in the table above describes the
coordinate orientation.

sizeTotal
The total size of the scroll view. The cx member contains the horizontal extent. The cy member contains the
vertical extent. Sizes are in logical units. Both cx and cy must be greater than or equal to 0.

sizePage
The horizontal and vertical amounts to scroll in each direction in response to a mouse click in a scroll-bar
shaft. The cx member contains the horizontal amount. The cy member contains the vertical amount.

sizeLine
The horizontal and vertical amounts to scroll in each direction in response to a mouse click in a scroll arrow.
The cx member contains the horizontal amount. The cy member contains the vertical amount.

CMyScrollDoc* pMyDoc = (CMyScrollDoc*)GetDocument();
SetScrollSizes(nMapMode, pMyDoc->GetMyDocSize());

SetScrollSizes(nMapMode, CSize(100, 100));

ExampleExample

void CMyScrollView::OnUpdate(CView* /*pSender*/, LPARAM /*lHint*/,
 CObject* /*pHint*/)
{
 // Implement a GetMyDocSize() member function in
 // your document class; it returns a CSize.
 CMyScrollDoc* pMyDoc = (CMyScrollDoc*)GetDocument();
 SetScrollSizes(MM_LOENGLISH, pMyDoc->GetMyDocSize());
 ResizeParentToFit(); // Default bShrinkOnly argument
}

void CMyScrollView::OnInitialUpdate()
{
 CScrollView::OnInitialUpdate();

 // The GetMyDocSize() member function is implemented in
 // your document class. The return type is CSize.
 CMyScrollDoc* pMyDoc = (CMyScrollDoc*)GetDocument();
 SetScrollSizes(MM_TEXT, pMyDoc->GetMyDocSize());
}

See also

Call it in your override of the OnUpdate member function to adjust scrolling characteristics when, for example,
the document is initially displayed or when it changes size.

You will typically obtain size information from the view's associated document by calling a document member
function, perhaps called GetMyDocSize , that you supply with your derived document class. The following code
shows this approach:

Alternatively, you might sometimes need to set a fixed size, as in the following code:

You must set the mapping mode to any of the Windows mapping modes except MM_ISOTROPIC or
MM_ANISOTROPIC. If you want to use an unconstrained mapping mode, call the SetScaleToFitSize

member function instead of SetScrollSizes .

MFC Sample DIBLOOK
CView Class
Hierarchy Chart
CView Class
CSplitterWnd Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CSemaphore Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CSemaphore : public CSyncObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSemaphore::CSemaphore Constructs a CSemaphore object.

Remarks

An object of class CSemaphore represents a "semaphore" — a synchronization object that allows a limited number
of threads in one or more processes to access a Maintains a count of the number of threads currently accessing a
specified resource.

Semaphores are useful in controlling access to a shared resource that can only support a limited number of users.
The current count of the CSemaphore object is the number of additional users allowed. When the count reaches
zero, all attempts to use the resource controlled by the CSemaphore object will be inserted into a system queue and
wait until they either time out or the count rises above 0. The maximum number of users who can access the
controlled resource at one time is specified during construction of the CSemaphore object.

To use a CSemaphore object, construct the CSemaphore object when it is needed. Specify the name of the
semaphore you wish to wait on, and that your application should initially own it. You can then access the
semaphore when the constructor returns. Call CSyncObject::Unlock when you are done accessing the controlled
resource.

An alternative method for using CSemaphore objects is to add a variable of type CSemaphore as a data member to
the class you wish to control. During construction of the controlled object, call the constructor of the CSemaphore

data member specifying the initial access count, maximum access count, name of the semaphore (if it will be used
across process boundaries), and desired security attributes.

To access resources controlled by CSemaphore objects in this manner, first create a variable of either type
CSingleLock or type CMultiLock in your resource's access member function. Then call the lock object's Lock
member function (for example, CSingleLock::Lock). At this point, your thread will either gain access to the
resource, wait for the resource to be released and gain access, or wait for the resource to be released and time out,
failing to gain access to the resource. In any case, your resource has been accessed in a thread-safe manner. To
release the resource, use the lock object's Unlock member function (for example, CSingleLock::Unlock), or allow
the lock object to fall out of scope.

Alternatively, you can create a CSemaphore object stand-alone, and access it explicitly before attempting to access
the controlled resource. This method, while clearer to someone reading your source code, is more prone to error.

For more information on how to use CSemaphore objects, see the article Multithreading: How to Use the

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csemaphore-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-how-to-use-the-synchronization-classes

Inheritance Hierarchy

Requirements

CSemaphore::CSemaphore

CSemaphore(
 LONG lInitialCount = 1,
 LONG lMaxCount = 1,
 LPCTSTR pstrName = NULL,
 LPSECURITY_ATTRIBUTES lpsaAttributes = NULL);

ParametersParameters

RemarksRemarks

IMPORTANTIMPORTANT

See also

Synchronization Classes.

CObject

CSyncObject

CSemaphore

Header: afxmt.h

Constructs a named or unnamed CSemaphore object.

lInitialCount
The initial usage count for the semaphore. Must be greater than or equal to 0, and less than or equal to
lMaxCount.

lMaxCount
The maximum usage count for the semaphore. Must be greater than 0.

pstrName
The name of the semaphore. Must be supplied if the semaphore will be accessed across process boundaries. If
NULL , the object will be unnamed. If the name matches an existing semaphore, the constructor builds a new
CSemaphore object which references the semaphore of that name. If the name matches an existing synchronization

object that is not a semaphore, the construction will fail.

lpsaAttributes
Security attributes for the semaphore object. For a full description of this structure, see SECURITY_ATTRIBUTES
in the Windows SDK.

To access or release a CSemaphore object, create a CMultiLock or CSingleLock object and call its Lock and Unlock
member functions.

After creating the CSemaphore object, use GetLastError to ensure that the mutex did not already exist. If the mutex did
exist unexpectedly, it may indicate a rogue process is squatting and may be intending to use the mutex maliciously. In this
case, the recommended security-conscious procedure is to close the handle and continue as if there was a failure in creating
the object.

https://msdn.microsoft.com/library/windows/desktop/aa379560
https://msdn.microsoft.com/library/windows/desktop/ms679360

CSyncObject Class
Hierarchy Chart

CSettingsStore Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CSettingsStore : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSettingsStore::CSettingsStore Constructs a CSettingsStore object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSettingsStore::Close Closes the open registry key.

CSettingsStore::CreateKey Opens the specified key or creates it if it does not exist.

CSettingsStore::DeleteKey Deletes the specified key and all its children.

CSettingsStore::DeleteValue Deletes the specified value of the open key.

CSettingsStore::Open Opens the specified key.

CSettingsStore::Read Retrieves the data for a specified key value.

CSettingsStore::Write Writes a value to the registry under the open key.

Remarks

Example

Wraps Windows API functions, providing an object-oriented interface that you use to access the registry.

The member functions CreateKey and Open are very similar. If the registry key already exists, CreateKey and
Open function in the same way. However, if the registry key does not exist, CreateKey will create it whereas
Open will return an error value.

The following example demonstrates how to use the Open and Read methods of the CSettingsStore class. This
code snippet is part of the Tool Tip Demo sample.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csettingsstore-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CSettingsStore reg (FALSE, TRUE);
DWORD dwEnableBalloonTips = 1;

if (reg.Open (_T("Software\\Microsoft\\Windows\\CurrentVersion\\Explorer\\Advanced")) &&
 reg.Read (_T("EnableBalloonTips"), dwEnableBalloonTips))
{
 return dwEnableBalloonTips == 1;
}

Inheritance Hierarchy

Requirements

CSettingsStore::Close

virtual void Close();

RemarksRemarks

CSettingsStore::CreateKey

virtual BOOL CreateKey(LPCTSTR pszPath);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSettingsStore::CSettingsStore

CObject

CSettingsStore

Header: afxsettingsstore.h

Closes the open registry key.

By default, this method is called from the destructor of the CSettingsStore Class.

Opens a registry key or creates it if it does not exist.

pszPath
[in] Specifies the name of a key to be created or opened.

0 if successful; otherwise a nonzero value.

CreateKey uses m_hKey as the root of registry inquiries. It searches for pszPath as a subkey of m_hKey . If the key
does not exist, CreateKey creates it. Otherwise, it opens the key. CreateKey then sets m_hKey to the created or
opened key.

Creates a CSettngsStore object.

CSettingsStore(
 BOOL bAdmin,
 BOOL bReadOnly);

ParametersParameters

RemarksRemarks

CSettingsStore::DeleteKey

virtual BOOL DeleteKey(
 LPCTSTR pszPath,
 BOOL bAdmin = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSettingsStore::DeleteValue

virtual BOOL DeleteValue(LPCTSTR pszValue);

ParametersParameters

bAdmin
[in] Boolean parameter that specifies whether the CSettingsStore object is acting in administrator mode.

bReadOnly
[in] Boolean parameter that specifies whether the CSettingsStore object is created in read-only mode.

If bAdmin is set to TRUE, the m_hKey member variable is set to HKEY_LOCAL_MACHINE . If you set bAdmin to
FALSE, m_hKey is set to HKEY_CURRENT_USER.

The security access depends on the bReadOnly parameter. If bReadonly is FALSE, the security access will be set to
KEY_ALL_ACCESS. If bReadyOnly is TRUE, the security access will be set to a combination of
KEY_QUERY_VALUE, KEY_NOTIFY and KEY_ENUMERATE_SUB_KEYS. For more information about
security access together with the registry, see Registry Key Security and Access Rights.

The destructor for CSettingsStore releases m_hKey automatically.

Deletes a key and all its children from the registry.

pszPath
[in] The name of the key to delete.

bAdmin
[in] Switch that specifies the location of the key to delete.

Nonzero if successful; otherwise 0.

This method will fail if the CSettingsStore object is in read-only mode.

If the parameter bAdmin is zero, DeleteKey searches for the key to delete under HKEY_CURRENT_USER. If
bAdmin is nonzero, DeleteKey searches for the key to delete under HKEY_LOCAL_MACHINE .

Deletes a value from m_hKey .

https://docs.microsoft.com/windows/desktop/SysInfo/registry-key-security-and-access-rights

Return ValueReturn Value

CSettingsStore::Open

virtual BOOL Open(LPCTSTR pszPath);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSettingsStore::Read

pszValue
[in] Specifies the value field to remove.

Nonzero if successful; otherwise 0.

Opens a registry key.

pszPath
[in] The name of a registry key.

Nonzero if successful; otherwise 0.

After this method successfully opens the specified key, it sets m_hKey to the handle of this key.

Reads a value from a key in the registry.

virtual BOOL Read(
 LPCTSTR pszKey,
 int& iVal);

virtual BOOL Read(
 LPCTSTR pszKey,
 DWORD& dwVal);

virtual BOOL Read(
 LPCTSTR pszKey,
 CString& sVal);

virtual BOOL Read(
 LPCTSTR pszKey,
 CStringList& scStringList);

virtual BOOL Read(
 LPCTSTR pszKey,
 CStringArray& scArray);

virtual BOOL Read(
 LPCTSTR pszKey,
 CDWordArray& dwcArray);

virtual BOOL Read(
 LPCTSTR pszKey,
 CWordArray& wcArray);

virtual BOOL Read(
 LPCTSTR pszKey,
 CByteArray& bcArray);

virtual BOOL Read(
 LPCTSTR pszKey,
 LPPOINT& lpPoint);

virtual BOOL Read(
 LPCTSTR pszKey,
 CRect& rect);

virtual BOOL Read(
 LPCTSTR pszKey,
 BYTE** ppData,
 UINT* pBytes);

virtual BOOL Read(
 LPCTSTR pszKey,
 CObList& list);

virtual BOOL Read(
 LPCTSTR pszKey,
 CObject& obj);

virtual BOOL Read(
 LPCTSTR pszKey,
 CObject*& pObj);

ParametersParameters
pszKey
[in] Pointer to a null-terminated string that contains the name of the value to read from the registry.

iVal
[out] Reference to an integer variable that receives the value read from the registry key.

dwVal

Return ValueReturn Value

RemarksRemarks

CSettingsStore::Write

[out] Reference to a 32-bit double word variable that receives the value read from the registry key.

sVal
[out] Reference to a string variable that receives the value read from the registry key.

scStringList
[out] Reference to a string list variable that receives the value read from the registry key.

scArray
[out] Reference to a string array variable that receives the value read from the registry key.

dwcArray
[out] Reference to a 32-bit double word array variable that receives the value read from the registry key.

wcArray
[out] Reference to a 16-bit word array variable that receives the value read from the registry key.

bcArray
[out] Reference to a byte array variable that receives the value read from the registry key.

lpPoint
[out] Reference to a pointer to a POINT structure that receives the value read from the registry key.

rect
[out] Reference to a CRect variable that receives the value read from the registry key.

ppData
[out] Pointer to a pointer to data that receives the value read from the registry key.

pBytes
[out] Pointer to an unsigned integer variable. This variable receives the size of the buffer that ppData points to.

list
[out] Reference to a CObList variable that receives the value read from the registry key.

obj
[out] Reference to a CObject variable that receives the value read from the registry key.

pObj
[out] Reference to a pointer to a CObject variable that receives the value read from the registry key.

Nonzero if successful; otherwise 0.

Read checks for pszKey as a subkey of m_hKey .

Writes a value to the registry under the open key.

virtual BOOL Write(
 LPCTSTR pszKey,
 int iVal);

virtual BOOL Write(
 LPCTSTR pszKey,
 DWORD dwVal);

virtual BOOL Write(
 LPCTSTR pszKey,
 LPCTSTR pszVal);

virtual BOOL Write(
 LPCTSTR pszKey,
 CStringList& scStringList);

virtual BOOL Write(
 LPCTSTR pszKey,
 CByteArray& bcArray);

virtual BOOL Write(
 LPCTSTR pszKey,
 CStringArray& scArray);

virtual BOOL Write(
 LPCTSTR pszKey,
 CDWordArray& dwcArray);

virtual BOOL Write(
 LPCTSTR pszKey,
 CWordArray& wcArray);

virtual BOOL Write(
 LPCTSTR pszKey,
 const CRect& rect);

virtual BOOL Write(
 LPCTSTR pszKey,
 LPPOINT& lpPoint);

virtual BOOL Write(
 LPCTSTR pszKey,
 LPBYTE pData,
 UINT nBytes);

virtual BOOL Write(
 LPCTSTR pszKey,
 CObList& list);

virtual BOOL Write(
 LPCTSTR pszKey,
 CObject& obj);

virtual BOOL Write(
 LPCTSTR pszKey,
 CObject* pObj);

ParametersParameters
pszKey
[in] Pointer to a string that contains the name of the value to set.

iVal
[in] Reference to an integer variable that contains the data to store.

dwVal

Return ValueReturn Value

RemarksRemarks

See also

[in] Reference to a 32-bit double word variable that contains the data to store.

pszVal
[in] Pointer to a null-terminated string variable that contains the data to store.

scStringList
[in] Reference to a CStringList variable that contains the data to store.

bcArray
[in] Reference to a byte array variable that contains the data to store.

scArray
[in] Reference to a string array variable that contains the data to store.

dwcArray
[in] Reference to a 32-bit double word array variable that contains the data to store.

wcArray
[in] Reference to a 16-bit word array variable that contains the data to store.

rect
[in] Reference to a CRect variable that contains the data to store.

lpPoint
[in] Reference to a pointer to a POINT variable that contains the data to store.

pData
[in] Pointer to a buffer that contains the data to store.

nBytes
[in] Specifies the size, in bytes, of the data to which the pData parameter points.

list
[in] Reference to a CObList variable that contains the data to store.

obj
[in] Reference to a CObject variable that contains the data to store.

pObj
[in] Pointer to a pointer to a CObject variable that contains the data to store.

TRUE if successful; otherwise FALSE.

In order to write to the registry, you must set bReadOnly to a nonzero value when you create a CSettingsStore
object. For more information, see CSettingsStore::CSettingsStore.

Hierarchy Chart
Classes
CWinAppEx Class

CSettingsStoreSP Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CSettingsStoreSP

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSettingsStoreSP::CSettingsStoreSP Constructs a CSettingsStoreSP object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSettingsStoreSP::Create Creates an instance of a class that is derived from
CSettingsStore .

CSettingsStoreSP::SetRuntimeClass Sets the runtime class. The Create method uses the runtime
class to determine what class of objects to create.

Data MembersData Members

NAME DESCRIPTION

m_dwUserData Custom user data that is stored in the CSettingsStoreSP

object. You supply this data in the constructor of the
CSettingsStoreSP object.

m_pRegistry The CSettingsStore -derived object that the Create

method creates.

Remarks

The CSettingsStoreSP class is a helper class that you can use to create instances of the CSettingsStore Class.

You can use the CSettingsStoreSP class to redirect all MFC registry operations to other locations, such as an XML
file or a database. To do this, follow these steps:

1. Create a class (such as CMyStore) and derive it from CSettingsStore .

2. Use DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros with your custom CSettingsStore

class to enable dynamic creation.

3. Override the virtual functions and implement the Read and Write functions in your custom class.
Implement any other functionality to read and write data to your desired location.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csettingsstoresp-class.md

Requirements

CSettingsStoreSP::Create

CSettingsStore& CSettingsStoreSP Create(
 BOOL bAdmin,
 BOOL bReadOnly);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CSettingsStoreSP regSP;
CSettingsStore& reg = regSP.Create(FALSE, TRUE);

CSettingsStoreSP::CSettingsStoreSP

CSettingsStoreSP::CSettingsStoreSP(DWORD dwUserData = 0);

ParametersParameters

4. In your application, call CSettingsStoreSP::SetRuntimeClass and pass in a pointer to the CRuntimeClass
Structure obtained from your class.

Whenever the framework would typically access the registry, it will now dynamically instantiate your custom class
and use it to read or write data.

CSettingsStoreSP::SetRuntimeClass uses a global static variable. Therefore, only one custom store is available at a
time.

Header: afxsettingsstore.h

Creates a new instance of an object that is derived from the CSettingsStore Class.

bAdmin
[in] A Boolean parameter that determines whether a CSettingsStore object is created in administrator mode.

bReadOnly
[in] A Boolean parameter that determines whether a CSettingsStore object is created for read-only access.

A reference to the newly created CSettingsStore object.

You can use the method CSettingsStoreSP::SetRuntimeClass to determine what type of object
CSettingsStoreSP::Create will create. By default, this method creates a CSettingsStore object.

If you create a CSettingsStore object in administrator mode, the default location for all registry access is
HKEY_LOCAL_MACHINE. Otherwise, the default location for all registry access is HKEY_CURRENT_USER.

If bAdmin is TRUE, the application must have administration rights. Otherwise, it will fail when it tries to access the
registry.

The following example demonstrates how to use the Create method of the CSettingsStoreSP class.

Constructs a CSettingsStoreSP Class object.

RemarksRemarks

CSettingsStoreSP::SetRuntimeClass

static BOOL __stdcall CSettingsStoreSP::SetRuntimeClass(CRuntimeClass* pRTI);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

dwUserData
[in] User-defined data that the CSettingsStoreSP object stores.

The CSettingsStoreSP object stores the data from dwUserData in the protected member variable m_dwUserData .

Sets the runtime class. The method CSettingsStoreSP::Create uses the runtime class to determine what type of
object to create.

pRTI
[in] A pointer to the runtime class information for a class derived from the CSettingsStore Class.

TRUE if successful; FALSE if the class identified by pRTI is not derived from CSettingsStore .

You can use the CSettingsStoreSP Class to derive classes from CSettingsStore . Use the method SetRuntimeClass

if you want to create objects of a custom class that is derived from CSettingsStore .

Classes
Hierarchy Chart
CSettingsStore Class

CSharedFile Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CSharedFile : public CMemFile

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSharedFile::CSharedFile Constructs a CSharedFile object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSharedFile::Detach Closes the shared memory file and returns the handle of its
memory block.

CSharedFile::SetHandle Attaches the shared memory file to a memory block.

Remarks

The CMemFile-derived class that supports shared memory files.

Memory files behave like disk files except that the file is stored in RAM rather than on disk. A memory file is useful
for fast temporary storage or for transferring raw bytes or serialized objects between independent processes.

Shared memory files differ from other memory files in that memory for them is allocated with the GlobalAlloc
Windows function. The CSharedFile class stores data in a globally allocated memory block (created using
GlobalAlloc), and this memory block can be shared using DDE, the Clipboard, or other OLE/COM uniform data

transfer operations, for example, using IDataObject .

GlobalAlloc returns an HGLOBAL handle rather than a pointer to memory, such as the pointer returned by
malloc. The HGLOBAL handle is needed in certain applications. For example, to put data on the Clipboard you
need an HGLOBAL handle.

Please note that CSharedFile does not use memory-mapped files, and the data cannot be directly shared between
processes.

CSharedFile objects can automatically allocate their own memory or you can attach your own memory block to
the CSharedFile object by calling CSharedFile::SetHandle. In either case, memory for growing the memory file
automatically is allocated in nGrowBytes -sized increments if nGrowBytes is not zero.

For more information, see the article Files in MFC and File Handling in the Run-Time Library Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csharedfile-class.md
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalalloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/file-handling

Inheritance Hierarchy

Requirements

CSharedFile::CSharedFile

CSharedFile(
 UINT nAllocFlags = GMEM_DDESHARE | GMEM_MOVEABLE,
 UINT nGrowBytes = 4096);

ParametersParameters

CSharedFile::Detach

HGLOBAL Detach();

Return ValueReturn Value

RemarksRemarks

CSharedFile::SetHandle

void SetHandle(
 HGLOBAL hGlobalMemory,
 BOOL bAllowGrow = TRUE);

ParametersParameters

CObject

CFile

CMemFile

CSharedFile

Header: afxadv.h

Constructs a CSharedFile object and allocates memory for it.

nAllocFlags
Flags indicating how memory is to be allocated. See GlobalAlloc for a list of valid flag values.

nGrowBytes
The memory allocation increment in bytes.

Call this function to close the memory file and detach it from the memory block.

The handle of the memory block that contains the contents of the memory file.

You can reopen it by calling SetHandle, using the handle returned by Detach.

Call this function to attach a block of global memory to the CSharedFile object.

hGlobalMemory
Handle to the global memory to be attached to the CSharedFile .

bAllowGrow

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalalloc

RemarksRemarks

See also

Specifies whether the memory block is allowed to grow.

If bAllowGrow is nonzero, the size of the memory block is increased as necessary, for example, if an attempt is
made to write more bytes to the file than were allocated for the memory block.

CMemFile Class
Hierarchy Chart
CMemFile Class

CShellManager Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CShellManager : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CShellManager::CShellManager Constructs a CShellManager object.

Public MethodsPublic Methods

NAME DESCRIPTION

CShellManager::BrowseForFolder Displays a dialog box that enables the user to select a shell
folder.

CShellManager::ConcatenateItem Concatenates two PIDLs.

CShellManager::CopyItem Creates a new PIDL and copies the supplied PIDL to it.

CShellManager::CreateItem Creates a new PIDL of the specified size.

CShellManager::FreeItem Deletes the supplied PIDL.

CShellManager::GetItemCount Returns the number of items in the supplied PIDL.

CShellManager::GetItemSize Returns the size of the supplied PIDL.

CShellManager::GetNextItem Returns the next item from the PIDL.

CShellManager::GetParentItem Retrieves the parent item of the supplied item.

CShellManager::ItemFromPath Retrieves the PIDL for the item identified by the supplied
path.

Remarks

Implements several methods that enable you to work with pointers to identifier lists (PIDLs).

The methods of the CShellManager class all deal with PIDLs. A PIDL is a unique identifier for a shell object.

You should not create a CShellManager object manually. It will be created automatically by the framework of your
application. However, you should call CWinAppEx::InitShellManager during the initialization process of your

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cshellmanager-class.md

Inheritance Hierarchy

Requirements

CShellManager::BrowseForFolder

BOOL BrowseForFolder(
 CString& strOutFolder,
 CWnd* pWndParent = NULL,
 LPCTSTR lplszInitialFolder = NULL,
 LPCTSTR lpszTitle = NULL,
 UINT ulFlags = BIF_RETURNONLYFSDIRS,
 LPINT piFolderImage = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

application. To get a pointer to the shell manager for your application, call CWinAppEx::GetShellManager.

CObject

CShellManager

Header: afxshellmanager.h

Displays a dialog box that enables the user to select a shell folder.

strOutFolder
[out] The string used by the method to store the path of the selected folder.

pWndParent
[in] A pointer to the parent window.

lplszInitialFolder
[in] A string that contains the folder that is selected by default when the dialog box is displayed.

lpszTitle
[in] The title for the dialog box.

ulFlags
[in] Flags specifying options for the dialog box. See BROWSEINFO for the detailed description.

piFolderImage
[out] A pointer to the integer value where the method writes the image index of the selected folder.

Nonzero if the user selects a folder from the dialog box; otherwise 0.

When you call this method, the application creates and shows a dialog box that enables the user to select a folder.
The method will write the path of the folder into the strOutFolder parameter.

The following example demonstrates how to retrieve a reference to a CShellManager object by using the
CWinAppEx::GetShellManager method and how to use the BrowseForFolder method. This code snippet is part of the

Explorer sample.

https://docs.microsoft.com/windows/desktop/api/shlobj_core/ns-shlobj_core-_browseinfoa
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CString strPath;
// The this pointer points to the CExplorerView class which extends the CView class.
// CMFCShellListCtrl m_wndList
if (m_wndList.GetCurrentFolder (strPath) &&
 theApp.GetShellManager ()->BrowseForFolder (strPath,
 this, strPath, _T("Copy the selected item(s) to the folder:")))
{
 MessageBox (CString (_T("The selected path is: ")) + strPath);
}

CShellManager::ConcatenateItem

LPITEMIDLIST ConcatenateItem(
 LPCITEMIDLIST pidl1,
 LPCITEMIDLIST pidl2);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CShellManager::CopyItem

LPITEMIDLIST CopyItem(LPCITEMIDLIST pidlSource);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CShellManager::CreateItem

LPITEMIDLIST CreateItem(UINT cbSize);

Creates a new list containing two PIDLs.

pidl1
[in] The first item.

pidl2
[in] The second item.

A pointer to the new item list if the function succeeds, otherwise NULL.

This method creates a new ITEMIDLIST large enough to contain both pidl1 and pidl2. It then copies pidl1 and
pidl2 to the new list.

Copies an item list.

pidlSource
[in] The original item list.

A pointer to the newly created item list if successful; otherwise NULL.

The newly created item list has the same size as the source item list.

Creates a new PIDL.

https://docs.microsoft.com/windows/desktop/api/shtypes/ns-shtypes-_itemidlist

ParametersParameters

Return ValueReturn Value

CShellManager::CShellManager

CShellManager();

RemarksRemarks

CShellManager::FreeItem

void FreeItem(LPITEMIDLIST pidl);

ParametersParameters

CShellManager::GetItemCount

UINT GetItemCount(LPCITEMIDLIST pidl);

ParametersParameters

Return ValueReturn Value

CShellManager::GetItemSize

UINT GetItemSize(LPCITEMIDLIST pidl);

ParametersParameters

cbSize
[in] The size of the item list.

A pointer to the created item list if successful; otherwise NULL.

Constructs a CShellManager object.

In most cases, you do not have to create a CShellManager directly. By default, the framework creates one for you.
To get a pointer to the CShellManager , call CWinAppEx::GetShellManager. If you do create a CShellManager

manually, you must initialize it with the method CWinAppEx::InitShellManager.

Deletes an item list.

pidl
[in] An item list to delete.

Returns the number of items in an item list.

pidl
[in] A pointer to an item list.

The number of items in the item list.

Returns the size of an item list.

pidl
[in] A pointer to an item list.

Return ValueReturn Value

CShellManager::GetNextItem

LPITEMIDLIST GetNextItem(LPCITEMIDLIST pidl);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CShellManager::GetParentItem

int GetParentItem(
 LPCITEMIDLIST lpidl,
 LPITEMIDLIST& lpidlParent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CShellManager::ItemFromPath

HRESULT ItemFromPath(
 LPCTSTR lpszPath,
 LPITEMIDLIST& pidl);

ParametersParameters

The size of the item list.

Retrieves the next item from a pointer to an item identifier list (PIDL).

pidl
[in] The list of items to iterate.

A pointer to the next item in the list.

If there are no more items in the list, this method returns NULL.

Retrieves the parent of a pointer to an item identifier list (PIDL).

lpidl
[in] A PIDL whose parent will be retrieved.

lpidlParent
[out] A reference to a PIDL where the method will store the result.

The level of the parent PIDL.

The level of a PIDL is relative to the desktop. The desktop PIDL is considered to have a level of 0.

Retrieves the pointer to an item identifier list (PIDL) from the item identified by a string path.

lpszPath
[in] A string that specifies the path for the item.

pidl

Return ValueReturn Value

See also

[out] A reference to a PIDL. The method uses this PIDL to store the pointer to its return value.

Returns NOERROR if successful; an OLE-defined error value.

Hierarchy Chart
Classes

CSimpleException Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class AFX_NOVTABLE CSimpleException : public CException

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSimpleException::CSimpleException The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSimpleException::GetErrorMessage Provides text about an error that has occurred.

Remarks

CMemoryException Class Out-of-memory exception

CNotSupportedException Class Requests for an unsupported operation

CResourceException Class Windows resource not found or not creatable

CUserException Class Exception that indicates a resource could not be found

CInvalidArgException Class Exception that indicates an invalid argument

Inheritance Hierarchy

This class is a base class for resource-critical MFC exceptions.

CSimpleException is the base class for resource-critical MFC exceptions and handles the ownership and
initialization of an error message. The following classes use CSimpleException as their base class:

Because CSimpleException is an abstract base class, you cannot declare a CSimpleException object directly.
Instead, you must declare derived objects such as those in the previous table. If you are declaring your own
derived class, use the previous classes as a model.

For more information, see the CException Class topic and Exception Handling (MFC).

CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csimpleexception-class.md

Requirements

CSimpleException::CSimpleException

CSimpleException();
explicit CSimpleException(BOOL bAutoDelete);

ParametersParameters

RemarksRemarks

CSimpleException::GetErrorMessage

virtual BOOL GetErrorMessage(
 LPTSTR lpszError,
 UINT nMaxError,
 PUNIT pnHelpContext = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

CException

CSimpleException

Header: afx.h

The constructor.

bAutoDelete
Specify TRUE if the memory for the CSimpleException object has been allocated on the heap. This will cause the
CSimpleException object to be deleted when the Delete member function is called to delete the exception.

Specify FALSE if the CSimpleException object is on the stack or is a global object. In this case, the
CSimpleException object will not be deleted when the Delete member function is called.

You would normally never need to call this constructor directly. A function that throws an exception should create
an instance of a CException -derived class and call its constructor, or it should use one of the MFC throw
functions, such as AfxThrowFileException, to throw a predefined type.

Call this member function to provide text about an error that has occurred.

lpszError
A pointer to a buffer that will receive an error message.

nMaxError
The maximum number of characters the buffer can hold, including the NULL terminator.

pnHelpContext
The address of a UINT that will receive the help context ID. If NULL, no ID will be returned.

Nonzero if the function is successful; otherwise 0 if no error message text is available.

For more information, see CException::GetErrorMessage.

Hierarchy Chart
CException Class
Exception Handling

CSingleDocTemplate Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CSingleDocTemplate : public CDocTemplate

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSingleDocTemplate::CSingleDocTemplate Constructs a CSingleDocTemplate object.

Remarks

Inheritance Hierarchy

Defines a document template that implements the single document interface (SDI).

An SDI application uses the main frame window to display a document; only one document can be open at a
time.

A document template defines the relationship between three types of classes:

A document class, which you derive from CDocument .

A view class, which displays data from the document class listed above. You can derive this class from
CView , CScrollView , CFormView , or CEditView . (You can also use CEditView directly.)

A frame window class, which contains the view. For an SDI document template, you can derive this class
from CFrameWnd ; if you do not need to customize the behavior of the main frame window, you can use
CFrameWnd directly without deriving your own class.

An SDI application typically supports one type of document, so it has only one CSingleDocTemplate object. Only
one document can be open at a time.

You don't need to call any member functions of CSingleDocTemplate except the constructor. The framework
handles CSingleDocTemplate objects internally.

For more information on using CSingleDocTemplate , see Document Templates and the Document/View Creation
Process.

CObject

CCmdTarget

CDocTemplate

CSingleDocTemplate

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csingledoctemplate-class.md

Requirements

CSingleDocTemplate::CSingleDocTemplate

CSingleDocTemplate(
 UINT nIDResource,
 CRuntimeClass* pDocClass,
 CRuntimeClass* pFrameClass,
 CRuntimeClass* pViewClass);

ParametersParameters

// MYCALC.RC
STRINGTABLE PRELOAD DISCARDABLE
BEGIN
 IDR_MAINFRAME "MyCalc Windows Application\nSheet\nWorksheet\n Worksheets (*.myc)\n.myc\nMyCalcSheet\n
MyCalc Worksheet"
END

RemarksRemarks

ExampleExample

Header: afxwin.h

Constructs a CSingleDocTemplate object.

nIDResource
Specifies the ID of the resources used with the document type. This may include menu, icon, accelerator table,
and string resources.

The string resource consists of up to seven substrings separated by the '\n' character (the '\n' character is needed
as a placeholder if a substring is not included; however, trailing '\n' characters are not necessary); these
substrings describe the document type. For information about the substrings, see CDocTemplate::GetDocString.
This string resource is found in the application's resource file. For example:

You can edit this string using the string editor; the entire string appears as a single entry in the String Editor, not
as seven separate entries.

For more information about these resource types, see the String Editor.

pDocClass
Points to the CRuntimeClass object of the document class. This class is a CDocument -derived class you define to
represent your documents.

pFrameClass
Points to the CRuntimeClass object of the frame window class. This class can be a CFrameWnd -derived class, or it
can be CFrameWnd itself if you want default behavior for your main frame window.

pViewClass
Points to the CRuntimeClass object of the view class. This class is a CView -derived class you define to display
your documents.

Dynamically allocate a CSingleDocTemplate object and pass it to CWinApp::AddDocTemplate from the InitInstance

member function of your application class.

// The following code fragment is from CMyWinApp::InitInstance.
// CMyWinApp is derived from CWinApp.

// Establish the document type
// supported by the application
AddDocTemplate(new CSingleDocTemplate(IDR_MAINFRAME,
 RUNTIME_CLASS(CMyDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CMyView)));

// The following code fragment is from CMyWinApp::InitInstance.
// CMyWinApp is derived from CWinApp.

// Normally, an application creates a document
// template and registers it with MFC as a part
// of its initialization.

// IDR_SAMPLERESOURCE is a resource ID string;
// see the CDocTemplate class overview documentation
// for more information on its format.

// The next three parameters use the RUNTIME_CLASS()
// macro to get runtime type information for the doc,
// frame, and view classes that will be associated by
// the template.

CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(IDR_MAINFRAME,
 RUNTIME_CLASS(CMyDoc),
 RUNTIME_CLASS(CMainFrame), // main SDI frame window
 RUNTIME_CLASS(CMyView));
if (!pDocTemplate)
 return FALSE;

// After the following call, MFC is aware of the doc
// template and will free it when the application is
// shut down. The doc templates known to MFC will
// automatically be used when CWinApp:OnFileOpen() or
// CWinApp::OnFileNew() are called.
AddDocTemplate(pDocTemplate);

See also
MFC Sample DOCKTOOL
CDocTemplate Class
Hierarchy Chart
CDocTemplate Class
CDocument Class
CFrameWnd Class
CMultiDocTemplate Class
CView Class
CWinApp Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CSingleLock Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CSingleLock

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSingleLock::CSingleLock Constructs a CSingleLock object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSingleLock::IsLocked Determines if the object is locked.

CSingleLock::Lock Waits on a synchronization object.

CSingleLock::Unlock Releases a synchronization object.

Remarks

Inheritance Hierarchy

Represents the access-control mechanism used in controlling access to a resource in a multithreaded program.

CSingleLock does not have a base class.

In order to use the synchronization classes CSemaphore, CMutex, CCriticalSection, and CEvent, you must create
either a CSingleLock or CMultiLock object to wait on and release the synchronization object. Use CSingleLock

when you only need to wait on one object at a time. Use CMultiLock when there are multiple objects that you
could use at a particular time.

To use a CSingleLock object, call its constructor inside a member function in the controlled resource's class.
Then call the IsLocked member function to determine if the resource is available. If it is, continue with the
remainder of the member function. If the resource is unavailable, either wait for a specified amount of time for
the resource to be released, or return failure. After use of the resource is complete, either call the Unlock
function if the CSingleLock object is to be used again, or allow the CSingleLock object to be destroyed.

CSingleLock objects require the presence of an object derived from CSyncObject. This is usually a data member
of the controlled resource's class. For more information on how to use CSingleLock objects, see the article
Multithreading: How to Use the Synchronization Classes.

CSingleLock

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csinglelock-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-how-to-use-the-synchronization-classes

Requirements

CSingleLock::CSingleLock

explicit CSingleLock(
 CSyncObject* pObject,
 BOOL bInitialLock = FALSE);

ParametersParameters

RemarksRemarks

ExampleExample

// m_CritSection is a data member (of type CCriticalSection)
// of an existing class that implements the resource being shared.

// Relate the synchronization object (m_CritSection) with
// our CSingleLock object.
CSingleLock singleLock(&m_CritSection);
singleLock.Lock(); // Attempt to lock the shared resource
if (singleLock.IsLocked()) // Resource has been locked
{
 //...use the shared resource...

 // Now that we are finished,
 // unlock the resource for others.
 singleLock.Unlock();
}

CSingleLock::IsLocked

BOOL IsLocked();

Return ValueReturn Value

ExampleExample

Header: afxmt.h

Constructs a CSingleLock object.

pObject
Points to the synchronization object to be accessed. Cannot be NULL.

bInitialLock
Specifies whether to initially attempt to access the supplied object.

This function is generally called from within an access member function of the controlled resource.

Determines if the object associated with the CSingleLock object is nonsignaled (unavailable).

Nonzero if the object is locked; otherwise 0.

// m_Mutex is a data member (of type CMutex)
// of an existing class that implements the resource being shared.

// Relate the synchronization object (m_Mutex) with
// our CSingleLock object.
CSingleLock singleLock(&m_Mutex);

// Attempt to lock the shared resource
singleLock.Lock(100); // Wait 100 ms...

// Has the resource been successfully locked?
if (singleLock.IsLocked())
{
 // We were able to lock the resource;
 // we may now work with the data associated with the mutex...

 // Now that we are finished, unlock the resource for others.
 singleLock.Unlock();
}

CSingleLock::Lock

BOOL Lock(DWORD dwTimeOut = INFINITE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Call this function to gain access to the resource controlled by the synchronization object supplied to the
CSingleLock constructor.

dwTimeOut
Specifies the amount of time to wait for the synchronization object to be available (signaled). If INFINITE, Lock

will wait until the object is signaled before returning.

Nonzero if the function was successful; otherwise 0.

If the synchronization object is signaled, Lock will return successfully and the thread now owns the object. If
the synchronization object is nonsignaled (unavailable), Lock will wait for the synchronization object to become
signaled up to the number of milliseconds specified in the dwTimeOut parameter. If the synchronization object
did not become signaled in the specified amount of time, Lock returns failure.

// m_Mutex is a data member (of type CMutex)
// of an existing class that implements the resource being shared.

// Relate the synchronization object (m_Mutex) with
// our CSingleLock object.
CSingleLock singleLock(&m_Mutex);

// Attempt to lock the shared resource
if (singleLock.Lock(100)) // Wait 100 ms...
{
 // We were able to lock the resource;
 // we may now work with the data associated with the mutex...

 // Now that we are finished, unlock the resource for others.
 singleLock.Unlock();
}

CSingleLock::Unlock

BOOL Unlock();

BOOL Unlock(
 LONG lCount,
 LPLONG lPrevCount = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Releases the synchronization object owned by CSingleLock .

lCount
Number of accesses to release. Must be greater than 0. If the specified amount would cause the object's count
to exceed its maximum, the count is not changed and the function returns FALSE.

lPrevCount
Points to a variable to receive the previous count of the synchronization object. If NULL, the previous count is
not returned.

Nonzero if the function was successful; otherwise 0.

This function is called by CSingleLock 's destructor.

If you need to release more than one access count of a semaphore, use the second form of Unlock and specify
the number of accesses to release.

// m_Mutex is a data member (of type CMutex)
// of an existing class that implements the resource being shared.

// Relate the synchronization object (m_Mutex) with
// our CSingleLock object.
CSingleLock singleLock(&m_Mutex);

// Attempt to lock the shared resource
if (singleLock.Lock(100)) // Wait 100 ms...
{
 // We were able to lock the resource;
 // we may now work with the data associated with the mutex...

 // Now that we are finished, unlock the resource for others.
 singleLock.Unlock();
}

See also
Hierarchy Chart
CMultiLock Class

CSinusoidalTransitionFromRange Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CSinusoidalTransitionFromRange : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSinusoidalTransitionFromRange::CSinusoidalTransitionFromRa
nge

Constructs a transition object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSinusoidalTransitionFromRange::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CSinusoidalTransitionFromRange::m_dblMaximumValue The value of the animation variable at a peak of the sinusoidal
wave.

CSinusoidalTransitionFromRange::m_dblMinimumValue The value of the animation variable at a trough of the
sinusoidal wave.

CSinusoidalTransitionFromRange::m_duration The duration of the transition.

CSinusoidalTransitionFromRange::m_period The period of oscillation of the sinusoidal wave in seconds.

CSinusoidalTransitionFromRange::m_slope The slope at the start of the transition.

Remarks

Encapsulates a sinusoidal-range transition that has a given range of oscillation.

The value of the animation variable fluctuates between the specified minimum and maximum values over the
entire duration of a sinusoidal-range transition. The slope parameter is used to disambiguate between the two
possible sine waves specified by the other parameters. Because all transitions are cleared automatically, it's
recommended to allocated them using operator new. The encapsulated IUIAnimationTransition COM object is
created by CAnimationController::AnimateGroup, until then it's NULL. Changing member variables after creation
of this COM object has no effect.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csinusoidaltransitionfromrange-class.md

Inheritance Hierarchy

Requirements

CSinusoidalTransitionFromRange::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *not used*\);

ParametersParameters

Return ValueReturn Value

CSinusoidalTransitionFromRange::CSinusoidalTransitionFromRange

CSinusoidalTransitionFromRange(
 UI_ANIMATION_SECONDS duration,
 DOUBLE dblMinimumValue,
 DOUBLE dblMaximumValue,
 UI_ANIMATION_SECONDS period,
 UI_ANIMATION_SLOPE slope);

ParametersParameters

CSinusoidalTransitionFromRange::m_dblMaximumValue

CObject

CBaseTransition

CSinusoidalTransitionFromRange

Header: afxanimationcontroller.h

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to transition library, which is responsible for creation of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

Constructs a transition object.

duration
The duration of the transition.

dblMinimumValue
The value of the animation variable at a trough of the sinusoidal wave.

dblMaximumValue
The value of the animation variable at a peak of the sinusoidal wave.

period
The period of oscillation of the sinusoidal wave in seconds.

slope
The slope at the start of the transition.

DOUBLE m_dblMaximumValue;

CSinusoidalTransitionFromRange::m_dblMinimumValue

DOUBLE m_dblMinimumValue;

CSinusoidalTransitionFromRange::m_duration

UI_ANIMATION_SECONDS m_duration;

CSinusoidalTransitionFromRange::m_period

UI_ANIMATION_SECONDS m_period;

CSinusoidalTransitionFromRange::m_slope

UI_ANIMATION_SLOPE m_slope;

See also

The value of the animation variable at a peak of the sinusoidal wave.

The value of the animation variable at a trough of the sinusoidal wave.

The duration of the transition.

The period of oscillation of the sinusoidal wave in seconds.

The slope at the start of the transition.

Classes

CSinusoidalTransitionFromVelocity Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CSinusoidalTransitionFromVelocity : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSinusoidalTransitionFromVelocity::CSinusoidalTransitionFrom
Velocity

Constructs a transition object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSinusoidalTransitionFromVelocity::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CSinusoidalTransitionFromVelocity::m_duration The duration of the transition.

CSinusoidalTransitionFromVelocity::m_period The period of oscillation of the sinusoidal wave in seconds.

Remarks

Inheritance Hierarchy

Encapsulates a sinusoidal-velocity transition that has an amplitude that is determined by the initial velocity of the
animation variable.

The value of the animation variable oscillates around the initial value over the entire duration of a sinusoidal-range
transition. The amplitude of the oscillation is determined by the animation variable's velocity when the transition
begins. Because all transitions are cleared automatically, it's recommended to allocated them using operator new.
The encapsulated IUIAnimationTransition COM object is created by CAnimationController::AnimateGroup, until
then it's NULL. Changing member variables after creation of this COM object has no effect.

CObject

CBaseTransition

CSinusoidalTransitionFromVelocity

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csinusoidaltransitionfromvelocity-class.md

Requirements

CSinusoidalTransitionFromVelocity::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *not used*\);

ParametersParameters

Return ValueReturn Value

CSinusoidalTransitionFromVelocity::CSinusoidalTransitionFromVelocity

CSinusoidalTransitionFromVelocity(
 UI_ANIMATION_SECONDS duration,
 UI_ANIMATION_SECONDS period);

ParametersParameters

CSinusoidalTransitionFromVelocity::m_duration

UI_ANIMATION_SECONDS m_duration;

CSinusoidalTransitionFromVelocity::m_period

UI_ANIMATION_SECONDS m_period;

See also

Header: afxanimationcontroller.h

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to transition library, which is responsible for creation of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

Constructs a transition object.

duration
The duration of the transition.

period
The period of oscillation of the sinusoidal wave in seconds.

The duration of the transition.

The period of oscillation of the sinusoidal wave in seconds.

Classes

CSliderCtrl Class
3/5/2019 • 14 minutes to read • Edit Online

Syntax
class CSliderCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSliderCtrl::CSliderCtrl Constructs a CSliderCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSliderCtrl::ClearSel Clears the current selection in a slider control.

CSliderCtrl::ClearTics Removes the current tick marks from a slider control.

CSliderCtrl::Create Creates a slider control and attaches it to a CSliderCtrl

object.

CSliderCtrl::CreateEx Creates a slider control with the specified Windows extended
styles and attaches it to a CSliderCtrl object.

CSliderCtrl::GetBuddy Retrieves the handle to a slider control buddy window at a
given location.

CSliderCtrl::GetChannelRect Retrieves the size of the slider control's channel.

CSliderCtrl::GetLineSize Retrieves the line size of a slider control.

CSliderCtrl::GetNumTics Retrieves the number of tick marks in a slider control.

CSliderCtrl::GetPageSize Retrieves the page size of a slider control.

CSliderCtrl::GetPos Retrieves the current position of the slider.

CSliderCtrl::GetRange Retrieves the minimum and maximum positions for a slider.

CSliderCtrl::GetRangeMax Retrieves the maximum position for a slider.

Provides the functionality of the Windows common slider control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csliderctrl-class.md

CSliderCtrl::GetRangeMin Retrieves the minimum position for a slider.

CSliderCtrl::GetSelection Retrieves the range of the current selection.

CSliderCtrl::GetThumbLength Retrieves the length of the slider in the current trackbar
control.

CSliderCtrl::GetThumbRect Retrieves the size of the slider control's thumb.

CSliderCtrl::GetTic Retrieves the position of the specified tick mark.

CSliderCtrl::GetTicArray Retrieves the array of tick mark positions for a slider control.

CSliderCtrl::GetTicPos Retrieves the position of the specified tick mark, in client
coordinates.

CSliderCtrl::GetToolTips Retrieves the handle to the tooltip control assigned to the
slider control, if any.

CSliderCtrl::SetBuddy Assigns a window as the buddy window for a slider control.

CSliderCtrl::SetLineSize Sets the line size of a slider control.

CSliderCtrl::SetPageSize Sets the page size of a slider control.

CSliderCtrl::SetPos Sets the current position of the slider.

CSliderCtrl::SetRange Sets the minimum and maximum positions for a slider.

CSliderCtrl::SetRangeMax Sets the maximum position for a slider.

CSliderCtrl::SetRangeMin Sets the minimum position for a slider.

CSliderCtrl::SetSelection Sets the range of the current selection.

CSliderCtrl::SetThumbLength Sets the length of the slider in the current trackbar control.

CSliderCtrl::SetTic Sets the position of the specified tick mark.

CSliderCtrl::SetTicFreq Sets the frequency of tick marks per slider control increment.

CSliderCtrl::SetTipSide Positions a tooltip control used by a trackbar control.

CSliderCtrl::SetToolTips Assigns a tooltip control to a slider control.

NAME DESCRIPTION

Remarks
A "slider control" (also known as a trackbar) is a window containing a slider and optional tick marks. When the
user moves the slider, using either the mouse or the direction keys, the control sends notification messages to
indicate the change.

Inheritance Hierarchy

Requirements

CSliderCtrl::ClearSel

void ClearSel(BOOL bRedraw = FALSE);

ParametersParameters

CSliderCtrl::ClearTics

void ClearTics(BOOL bRedraw = FALSE);

ParametersParameters

CSliderCtrl::Create

Slider controls are useful when you want the user to select a discrete value or a set of consecutive values in a
range. For example, you might use a slider control to allow the user to set the repeat rate of the keyboard by
moving the slider to a given tick mark.

This control (and therefore the CSliderCtrl class) is available only to programs running under Windows 95/98
and Windows NT version 3.51 and later.

The slider moves in increments that you specify when you create it. For example, if you specify that the slider
should have a range of five, the slider can only occupy six positions: a position at the left side of the slider control
and one position for each increment in the range. Typically, each of these positions is identified by a tick mark.

You create a slider by using the constructor and the Create member function of CSliderCtrl . Once you have
created a slider control, you can use member functions in CSliderCtrl to change many of its properties.
Changes that you can make include setting the minimum and maximum positions for the slider, drawing tick
marks, setting a selection range, and repositioning the slider.

For more information on using CSliderCtrl , see Controls and Using CSliderCtrl.

CObject

CCmdTarget

CWnd

CSliderCtrl

Header: afxcmn.h

Clears the current selection in a slider control.

bRedraw
Redraw flag. If this parameter is TRUE, the slider is redrawn after the selection is cleared; otherwise the slider is
not redrawn.

Removes the current tick marks from a slider control.

bRedraw
Redraw flag. If this parameter is TRUE, the slider is redrawn after the tick marks are cleared; otherwise the slider
is not redrawn.

CSliderCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSliderCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Creates a slider control and attaches it to a CSliderCtrl object.

dwStyle
Specifies the slider control's style. Apply any combination of slider control styles, described in the Windows SDK,
to the control.

rect
Specifies the slider control's size and position. It can be either a CRect object or a RECT structure.

pParentWnd
Specifies the slider control's parent window, usually a CDialog . It must not be NULL.

nID
Specifies the slider control's ID.

Nonzero if initialization was successful; otherwise 0.

You construct a CSliderCtrl in two steps. First, call the constructor, and then call Create , which creates the
slider control and attaches it to the CSliderCtrl object.

Depending on the values set for dwStyle, the slider control can have either a vertical or horizontal orientation. It
can have tick marks on either side, both sides, or neither. It can also be used to specify a range of consecutive
values.

To apply extended window styles to the slider control, call CreateEx instead of Create .

Creates a control (a child window) and associates it with the CSliderCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the
dwExStyle parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the slider control's style. Apply any combination of slider control styles, described in the Windows SDK,
to the control.

https://docs.microsoft.com/windows/desktop/Controls/trackbar-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/trackbar-control-styles

Return ValueReturn Value

RemarksRemarks

CSliderCtrl::CSliderCtrl

CSliderCtrl();

CSliderCtrl::GetBuddy

CWnd* GetBuddy(BOOL fLocation = TRUE) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSliderCtrl::GetChannelRect

void GetChannelRect(LPRECT lprc) const;

rect
A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

Constructs a CSliderCtrl object.

Retrieves the handle to a slider control buddy window at a given location.

fLocation
A Boolean value that indicates which of two buddy window handles to retrieve. Can be one of the following
values:

TRUE Retrieves the handle to the buddy to the left of the slider. If the slider control uses the TBS_VERT
style, the message will retrieve the buddy above the slider.

FALSE Retrieves the handle to the buddy to the right of the slider. If the slider control uses the TBS_VERT
style, the message will retrieve the buddy below the slider.

A pointer to a CWnd object that is the buddy window at the location specified by fLocation, or NULL if no buddy
window exists at that location.

This member function implements the behavior of the Win32 message TBM_GETBUDDY, as described in the
Windows SDK. For a description of the slider control styles, see Trackbar Control Styles in the Windows SDK.

Retrieves the size and position of the bounding rectangle for a slider control's channel.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/tbm-getbuddy
https://docs.microsoft.com/windows/desktop/Controls/trackbar-control-styles

ParametersParameters

RemarksRemarks

CSliderCtrl::GetLineSize

int GetLineSize() const;

Return ValueReturn Value

RemarksRemarks

CSliderCtrl::GetNumTics

UINT GetNumTics() const;

Return ValueReturn Value

CSliderCtrl::GetPageSize

int GetPageSize() const;

Return ValueReturn Value

RemarksRemarks

CSliderCtrl::GetPos

int GetPos() const;

Return ValueReturn Value

lprc
A pointer to a CRect object that contains the size and position of the channel's bounding rectangle when the
function returns.

The channel is the area over which the slider moves and which contains the highlight when a range is selected.

Retrieves the size of the line for a slider control.

The size of a line for the slider control.

The line size affects how much the slider moves for the TB_LINEUP and TB_LINEDOWN notifications. The
default setting for the line size is 1.

Retrieves the number of tick marks in a slider control.

The number of tick marks in the slider control.

Retrieves the size of the page for a slider control.

The size of a page for the slider control.

The page size affects how much the slider moves for the TB_PAGEUP and TB_PAGEDOWN notifications.

Retrieves the current position of the slider in a slider control.

The current position.

CSliderCtrl::GetRange

void GetRange(
 int& nMin,
 int& nMax) const;

ParametersParameters

RemarksRemarks

CSliderCtrl::GetRangeMax

int GetRangeMax() const;

Return ValueReturn Value

CSliderCtrl::GetRangeMin

int GetRangeMin() const;

Return ValueReturn Value

CSliderCtrl::GetSelection

void GetSelection(
 int& nMin,
 int& nMax) const;

ParametersParameters

CSliderCtrl::GetThumbLength

Retrieves the maximum and minimum positions for the slider in a slider control.

nMin
Reference to an integer that receives the minimum position.

nMax
Reference to an integer that receives the maximum position.

This function copies the values into the integers referenced by nMin and nMax.

Retrieves the maximum position for the slider in a slider control.

The control's maximum position.

Retrieves the minimum position for the slider in a slider control.

The control's minimum position.

Retrieves the starting and ending positions of the current selection in a slider control.

nMin
Reference to an integer that receives the starting position of the current selection.

nMax
Reference to an integer that receives the ending position of the current selection.

int GetThumbLength() const;

Return ValueReturn Value

RemarksRemarks

CSliderCtrl::GetThumbRect

void GetThumbRect(LPRECT lprc) const;

ParametersParameters

CSliderCtrl::GetTic

int GetTic(int nTic) const;

ParametersParameters

Return ValueReturn Value

CSliderCtrl::GetTicArray

DWORD* GetTicArray() const;

Return ValueReturn Value

CSliderCtrl::GetTicPos

int GetTicPos(int nTic) const;

ParametersParameters

Retrieves the length of the slider in the current trackbar control.

The length of the slider, in pixels.

This method sends the TBM_GETTHUMBLENGTH message, which is described in the Windows SDK.

Retrieves the size and position of the bounding rectangle for the slider (thumb) in a slider control.

lprc
A pointer to a CRect object that contains the bounding rectangle for the slider when the function returns.

Retrieves the position of a tick mark in a slider control.

nTic
Zero-based index identifying a tick mark.

The position of the specified tick mark or - 1 if nTic does not specify a valid index.

Retrieves the address of the array containing the positions of tick marks for a slider control.

The address of the array containing tick mark positions for the slider control.

Retrieves the current physical position of a tick mark in a slider control.

nTic

https://docs.microsoft.com/windows/desktop/Controls/tbm-getthumblength

Return ValueReturn Value

CSliderCtrl::GetToolTips

CToolTipCtrl* GetToolTips() const;

Return ValueReturn Value

RemarksRemarks

CSliderCtrl::SetBuddy

CWnd* SetBuddy(
 CWnd* pWndBuddy,
 BOOL fLocation = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSliderCtrl::SetLineSize

Zero-based index identifying a tick mark.

The physical position, in client coordinates, of the specified tick mark or - 1 if nTic does not specify a valid index.

Retrieves the handle to the tooltip control assigned to the slider control, if any.

A pointer to a CToolTipCtrl object, or NULL if tooltips are not in use. If the slider control does not use the
TBS_TOOLTIPS style, the return value is NULL.

This member function implements the behavior of the Win32 message TBM_GETTOOLTIPS, as described in the
Windows SDK. Note that this member function returns a CToolTipCtrl object instead of a handle to a control.

For a description of the slider control styles, see Trackbar Control Styles in the Windows SDK.

Assigns a window as the buddy window for a slider control.

pWndBuddy
A pointer to a CWnd object that will be set as the slider control's buddy.

fLocation
Value specifying the location at which to display the buddy window. This value can be one of the following:

TRUE The buddy will appear to the left of the trackbar if the trackbar control uses the TBS_HORZ style. If
the trackbar uses the TBS_VERT style, the buddy appears above the trackbar control.

FALSE The buddy will appear to the right of the trackbar if the trackbar control uses the TBS_HORZ style.
If the trackbar uses the TBS_VERT style, the buddy appears below the trackbar control.

A pointer to a CWnd object that was previously assigned to the slider control at that location.

This member function implements the behavior of the Win32 message TBM_SETBUDDY, as described in the
Windows SDK. Note that this member function uses pointers to CWnd objects, rather than window handles for
both its return value and parameter.

For a description of the slider control styles, see Trackbar Control Styles in the Windows SDK.

Sets the size of the line for a slider control.

https://docs.microsoft.com/windows/desktop/Controls/tbm-gettooltips
https://docs.microsoft.com/windows/desktop/Controls/trackbar-control-styles
https://docs.microsoft.com/windows/desktop/Controls/tbm-setbuddy
https://docs.microsoft.com/windows/desktop/Controls/trackbar-control-styles

int SetLineSize(int nSize);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSliderCtrl::SetPageSize

int SetPageSize(int nSize);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSliderCtrl::SetPos

void SetPos(int nPos);

ParametersParameters

CSliderCtrl::SetRange

void SetRange(
 int nMin,
 int nMax,
 BOOL bRedraw = FALSE);

ParametersParameters

nSize
The new line size of the slider control.

The previous line size.

The line size affects how much the slider moves for the TB_LINEUP and TB_LINEDOWN notifications.

Sets the size of the page for a slider control.

nSize
The new page size of the slider control.

The previous page size.

The page size affects how much the slider moves for the TB_PAGEUP and TB_PAGEDOWN notifications.

Sets the current position of the slider in a slider control.

nPos
Specifies the new slider position.

Sets the range (minimum and maximum positions) for the slider in a slider control.

nMin
Minimum position for the slider.

CSliderCtrl::SetRangeMax

void SetRangeMax(
 int nMax,
 BOOL bRedraw = FALSE);

ParametersParameters

CSliderCtrl::SetRangeMin

void SetRangeMin(
 int nMin,
 BOOL bRedraw = FALSE);

ParametersParameters

CSliderCtrl::SetSelection

void SetSelection(
 int nMin,
 int nMax);

ParametersParameters

nMax
Maximum position for the slider.

bRedraw
The redraw flag. If this parameter is TRUE, the slider is redrawn after the range is set; otherwise the slider is not
redrawn.

Sets the maximum range for the slider in a slider control.

nMax
Maximum position for the slider.

bRedraw
The redraw flag. If this parameter is TRUE, the slider is redrawn after the range is set; otherwise the slider is not
redrawn.

Sets the minimum range for the slider in a slider control.

nMin
Minimum position for the slider.

bRedraw
The redraw flag. If this parameter is TRUE, the slider is redrawn after the range is set; otherwise the slider is not
redrawn.

Sets the starting and ending positions for the current selection in a slider control.

nMin
Starting position for the slider.

nMax
Ending position for the slider.

CSliderCtrl::SetThumbLength

void SetThumbLength(int nLength);

ParametersParameters

PARAMETER DESCRIPTION

nLength [in] Length of the slider, in pixels.

RemarksRemarks

ExampleExample

// Variable to access the slider control.
CSliderCtrl m_sliderCtrl;
// Length of the slider control's thumb.
int thumbLength;

ExampleExample

// Add extra initialization.

// Modify the size of the slider control's thumb.
// First, set the TBS_FIXEDLENGTH style.
m_sliderCtrl.ModifyStyle(0, TBS_FIXEDLENGTH);
thumbLength = m_sliderCtrl.GetThumbLength();
m_sliderCtrl.SetThumbLength(thumbLength * 2);

// End extra initialization.

CSliderCtrl::SetTic

BOOL SetTic(int nTic);

ParametersParameters

Return ValueReturn Value

Sets the length of the slider in the current trackbar control.

This method requires that the trackbar control be set to TBS_FIXEDLENGTH style.

This method sends the TBM_SETTHUMBLENGTH message, which is described in the Windows SDK.

The following code example defines the variable, m_sliderCtrl , that is used to access the current trackbar
control. The example also defines a variable, thumbLength , that is used to store the default length of the trackbar
control's thumb component. These variables are used in the next example.

The following code example sets the trackbar control's thumb component to twice its default length.

Sets the position of a tick mark in a slider control.

nTic
Position of the tick mark. This parameter must specify a positive value.

Nonzero if the tick mark is set; otherwise 0.

https://docs.microsoft.com/windows/desktop/Controls/trackbar-control-styles
https://docs.microsoft.com/windows/desktop/Controls/tbm-setthumblength

CSliderCtrl::SetTicFreq

void SetTicFreq(int nFreq);

ParametersParameters

RemarksRemarks

CSliderCtrl::SetTipSide

int SetTipSide(int nLocation);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSliderCtrl::SetToolTips

void SetToolTips(CToolTipCtrl* pWndTip);

ParametersParameters

RemarksRemarks

Sets the frequency with which tick marks are displayed in a slider.

nFreq
Frequency of the tick marks.

For example, if the frequency is set to 2, a tick mark is displayed for every other increment in the slider's range.
The default setting for the frequency is 1 (that is, every increment in the range is associated with a tick mark).

You must create the control with the TBS_AUTOTICKS style to use this function. For more information, see
CSliderCtrl::Create.

Positions a tooltip control used by a trackbar control.

nLocation
Value representing the location at which to display the tooltip control. For a list of possible values, see the Win32
message TBM_SETTIPSIDE, as described in the Windows SDK.

A value that represents the tooltip control's previous location. The return value equals one of the possible values
for nLocation.

This member function implements the behavior of the Win32 message TBM_SETTIPSIDE, as described in the
Windows SDK. Slider controls that use the TBS_TOOLTIPS style display tooltips. For a description of the slider
control styles, see Trackbar Control Styles in the Windows SDK.

Assigns a tooltip control to a slider control.

pWndTip
A pointer to a CToolTipCtrl object containing the tooltips to use with the slider control.

This member function implements the behavior of the Win32 message TBM_SETTOOLTIPS, as described in the
Windows SDK. When a slider control is created with the TBS_TOOLTIPS style, it creates a default tooltip control
that appears next to the slider, displaying the slider's current position. For a description of the slider control
styles, see Trackbar Control Styles in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/tbm-settipside
https://docs.microsoft.com/windows/desktop/Controls/trackbar-control-styles
https://docs.microsoft.com/windows/desktop/Controls/tbm-settooltips
https://docs.microsoft.com/windows/desktop/Controls/trackbar-control-styles

See also
MFC Sample CMNCTRL2
CWnd Class
Hierarchy Chart
CProgressCtrl Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CSmartDockingInfo Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CSmartDockingInfo : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSmartDockingInfo::CSmartDockingInfo Default constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSmartDockingInfo::CopyTo Copies the current smart docking info parameters into the
provided CSmartDockingInfo object.

Data MembersData Members

NAME DESCRIPTION

CSmartDockingInfo::m_bUseThemeColorInShading Specifies whether to use the current theme color when the
framework displays smart docking markers.

CSmartDockingInfo::m_clrBaseBackground Specifies the base background color of smart docking
markers.

CSmartDockingInfo::m_clrToneDest Specifies the color that replaces m_clrToneSrc in smart
docking marker bitmaps.

CSmartDockingInfo::m_clrToneSrc Specifies the color of smart docking marker bitmaps.

CSmartDockingInfo::m_clrTransparent Specifies the color of smart docking marker bitmaps when
they are transparent.

CSmartDockingInfo::m_nCentralGroupOffset Specifies the offset of the central group of smart docking
markers from the boundaries of the central group rectangle.

CSmartDockingInfo::m_sizeTotal Specifies the total size of all smart docking markers in a
group.

CSmartDockingInfo::m_uiMarkerBmpResID Defines the resource IDs of the bitmaps that the framework
uses for smart docking markers that are not highlighted.

Defines the appearance of smart docking markers.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csmartdockinginfo-class.md

CSmartDockingInfo::m_uiMarkerLightBmpResID Defines the resource IDs of the bitmaps that the framework
uses for smart docking markers that are highlighted.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CSmartDockingInfo::CopyTo

void CopyTo(CSmartDockingInfo& params);

ParametersParameters

The framework handles smart docking markers internally. The following illustration shows the standard smart
docking markers:

In this figure, the image on the left shows a central group smart docking marker that does not have docking to a
tab enabled. The image in the middle shows a right edge smart docking marker. The image on the right shows a
central group smart docking marker that does have docking to a tab enabled. The central group smart docking
marker has a main bitmap and five smart docking marker bitmaps.

You can customize the following parameters of smart docking markers:

Color. For example, you can replace the blue color of the markers in the figure with any user-defined color.

Transparency color.

Offset of a smart docking marker in the central group from the border of the bounding rectangle.

The main bitmap that represents the central group.

The bitmaps that represents the regular and highlighted smart docking markers.

The following illustration shows an example of smart docking markers that have been customized:

CObject

CSmartDockingInfo

Header: afxDockingManager.h

Copies the current smart docking parameters into the provided CSmartDockingInfo object.

CSmartDockingInfo::m_bUseThemeColorInShading

BOOL m_bUseThemeColorInShading;

RemarksRemarks

CSmartDockingInfo::m_clrBaseBackground

COLORREF m_clrBaseBackground;

CSmartDockingInfo::m_clrToneDest

COLORREF m_clrToneDest;

RemarksRemarks

CSmartDockingInfo::m_clrToneSrc

COLORREF m_clrToneSrc;

RemarksRemarks

CSmartDockingInfo::m_clrTransparent

params
[out] An object of type CSmartDockingInfo that is populated with the current smart docking parameters.

Specifies whether to use the current theme color when the framework displays smart docking markers.

If TRUE, the markers are drawn using the current theme color; otherwise the markers are drawn with a light blue
color.

The default value is FALSE.

Specifies the base background color of smart docking markers.

Specifies the color that will replace m_clrToneSrc in smart docking marker bitmaps.

Set this value to change the color of marker bitmaps programmatically. For example, if you want to change the
color of the standard markers provided with the framework, set this value to the desired color. By default,
CSmartDockingInfo::m_clrToneSrc is set to RGB (61, 123, 241) (a bluish color).

To change the color of custom markers, you must specify both m_clrToneDest and m_clrToneSrc .

Specifies the color of smart docking marker bitmaps.

Set this value only when you want to replace the color of a custom bitmap with another color. You do not have to
set this value if you are changing the color of a standard (framework provided) marker.

Use (COLORREF)-1 to leave a member of the smart docking group empty.

Specifies the color of smart docking marker bitmaps when they are transparent.

COLORREF m_clrTransparent;

RemarksRemarks

CSmartDockingInfo::m_nCentralGroupOffset

int m_nCentralGroupOffset;

RemarksRemarks

CSmartDockingInfo::m_sizeTotal

CSize m_sizeTotal;

RemarksRemarks

CSmartDockingInfo::m_uiMarkerBmpResID

UINT m_uiMarkerBmpResID[AFX_SD_MARKERS_NUM];

RemarksRemarks

params.m_uiMarkerBmpResID[0] = IDB_MARKER_LEFT;
params.m_uiMarkerBmpResID[1] = IDB_MARKER_RIGHT;
params.m_uiMarkerBmpResID[2] = IDB_MARKER_TOP;
params.m_uiMarkerBmpResID[3] = IDB_MARKER_BOTTOM;
params.m_uiMarkerBmpResID[4] = IDB_MARKER_CENTER;

CSmartDockingInfo::m_uiMarkerLightBmpResID

UINT m_uiMarkerLightBmpResID[AFX_SD_MARKERS_NUM];

RemarksRemarks

You must set this value when you display custom markers and custom bitmaps in the docking group.

Specifies the offset between the central group of smart docking markers and the boundaries of the central group
rectangle.

Specify this value if you want to change the default offset between custom markers and the bounds of the central
group of smart docking markers. The default offset is 5 pixels.

Specifies the total size of a bounding rectangle that encloses all smart docking markers in the central group.

Set m_sizeTotal to the size of the bounding rectangle of the central group marker. You are required to specify this
value if you are using custom bitmaps for markers.

Defines the resource IDs of the bitmaps that are used for non-highlighted custom smart docking markers.

Fill this array with the resource IDs of the bitmaps representing the smart docking markers.
AFX_SD_MARKERS_NUM is currently defined as 5. You fill the array as follows:

Defines the resource IDs of the bitmaps that are used for highlighted custom smart docking markers.

params.m_uiMarkerLightBmpResID[0] = IDB_MARKER_LEFT_LIGHT;
params.m_uiMarkerLightBmpResID[1] = IDB_MARKER_RIGHT_LIGHT;
params.m_uiMarkerLightBmpResID[2] = IDB_MARKER_TOP_LIGHT;
params.m_uiMarkerLightBmpResID[3] = IDB_MARKER_BOTTOM_LIGHT;
params.m_uiMarkerLightBmpResID[4] = IDB_MARKER_CENTER_LIGHT;

See also

Fill this array with the resource IDs of the bitmaps representing the highlighted smart docking markers.
AFX_SD_MARKERS_NUM is currently defined as 5. You fill the array as follows:

Hierarchy Chart
Classes
CObject Class

CSmoothStopTransition Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CSmoothStopTransition : public CBaseTransition;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSmoothStopTransition::CSmoothStopTransition Constructs a smooth-stop transition and initializes its
maximum duration and final value.

Public MethodsPublic Methods

NAME DESCRIPTION

CSmoothStopTransition::Create Calls the transition library to create encapsulated transition
COM object. (Overrides CBaseTransition::Create.)

Public Data MembersPublic Data Members

NAME DESCRIPTION

CSmoothStopTransition::m_dblFinalValue The value of the animation variable at the end of the
transition.

CSmoothStopTransition::m_maximumDuration The maximum duration of the transition.

Remarks

Inheritance Hierarchy

Encapsulates a smooth-stop transition.

A smooth-stop transition slows down as it approaches a given final value, and reaches it with a velocity of zero.
The duration of the transition is determined by the initial velocity, the difference between the initial and final
values, and the specified maximum duration. If there is no solution consisting of a single parabolic arc, this method
creates a cubic transition. Because all transitions are cleared automatically, it's recommended to allocated them
using operator new. The encapsulated IUIAnimationTransition COM object is created by
CAnimationController::AnimateGroup, until then it's NULL. Changing member variables after creation of this
COM object has no effect.

CObject

CBaseTransition

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csmoothstoptransition-class.md

Requirements

CSmoothStopTransition::Create

virtual BOOL Create(
 IUIAnimationTransitionLibrary* pLibrary,
 IUIAnimationTransitionFactory* *not used*\);

ParametersParameters

Return ValueReturn Value

CSmoothStopTransition::CSmoothStopTransition

CSmoothStopTransition(
 UI_ANIMATION_SECONDS maximumDuration,
 DOUBLE dblFinalValue);

ParametersParameters

CSmoothStopTransition::m_dblFinalValue

DOUBLE m_dblFinalValue;

CSmoothStopTransition::m_maximumDuration

UI_ANIMATION_SECONDS m_maximumDuration;

See also

CSmoothStopTransition

Header: afxanimationcontroller.h

Calls the transition library to create encapsulated transition COM object.

pLibrary
A pointer to transition library, which is responsible for creation of standard transitions.

TRUE if transition is created successfully; otherwise FALSE.

Constructs a smooth-stop transition and initializes its maximum duration and final value.

maximumDuration
The maximum duration of the transition.

dblFinalValue
The value of the animation variable at the end of the transition.

The value of the animation variable at the end of the transition.

The maximum duration of the transition.

Classes

CSocket Class
3/4/2019 • 7 minutes to read • Edit Online

Syntax
class CSocket : public CAsyncSocket

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSocket::CSocket Constructs a CSocket object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSocket::Attach Attaches a SOCKET handle to a CSocket object.

CSocket::CancelBlockingCall Cancels a blocking call that is currently in progress.

CSocket::Create Creates a socket.

CSocket::FromHandle Returns a pointer to a CSocket object, given a SOCKET
handle.

CSocket::IsBlocking Determines whether a blocking call is in progress.

Protected MethodsProtected Methods

NAME DESCRIPTION

CSocket::OnMessagePending Called to process pending messages while waiting for a
blocking call to complete.

Remarks

Derives from CAsyncSocket , inherits its encapsulation of the Windows Sockets API, and represents a higher
level of abstraction than that of a CAsyncSocket object.

CSocket works with classes CSocketFile and CArchive to manage the sending and receiving of data.

A CSocket object also provides blocking, which is essential to the synchronous operation of CArchive .
Blocking functions, such as Receive , Send , ReceiveFrom , SendTo , and Accept (all inherited from
CAsyncSocket), do not return a WSAEWOULDBLOCK error in CSocket . Instead, these functions wait until the

operation completes. Additionally, the original call will terminate with the error WSAEINTR if
CancelBlockingCall is called while one of these functions is blocking.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csocket-class.md

void CChatSocket::OnReceive(int nErrorCode)
{
 CSocket::OnReceive(nErrorCode);

 DWORD dwReceived;

 if (IOCtl(FIONREAD, &dwReceived))
 {
 if (dwReceived >= m_dwExpected) // Process only if you have enough data
 m_pDoc->ProcessPendingRead();
 }
 else
 {
 // Error handling here
 }
}

NOTENOTE

Inheritance Hierarchy

To use a CSocket object, call the constructor, then call Create to create the underlying SOCKET handle
(type SOCKET). The default parameters of Create create a stream socket, but if you are not using the socket
with a CArchive object, you can specify a parameter to create a datagram socket instead, or bind to a
specific port to create a server socket. Connect to a client socket using Connect on the client side and
Accept on the server side. Then create a CSocketFile object and associate it to the CSocket object in the
CSocketFile constructor. Next, create a CArchive object for sending and one for receiving data (as needed),

then associate them with the CSocketFile object in the CArchive constructor. When communications are
complete, destroy the CArchive , CSocketFile , and CSocket objects. The SOCKET data type is described in
the article Windows Sockets: Background.

When you use CArchive with CSocketFile and CSocket , you might encounter a situation where
CSocket::Receive enters a loop (by PumpMessages(FD_READ)) waiting for the requested amount of bytes. This

is because Windows sockets allow only one recv call per FD_READ notification, but CSocketFile and
CSocket allow multiple recv calls per FD_READ. If you get an FD_READ when there is no data to read, the

application hangs. If you never get another FD_READ, the application stops communicating over the socket.

You can resolve this problem as follows. In the OnReceive method of your socket class, call
CAsyncSocket::IOCtl(FIONREAD, ...) before you call the Serialize method of your message class when the

expected data to be read from the socket exceeds the size of one TCP packet (maximum transmission unit of
the network medium, usually at least 1096 bytes). If the size of the available data is less than needed, wait
for all the data to be received and only then start the read operation.

In the following example, m_dwExpected is the approximate number of bytes that the user expects to receive.
It is assumed that you declare it elsewhere in your code.

When using MFC sockets in secondary threads in a statically linked MFC application, you must call AfxSocketInit

in each thread that uses sockets to initialize the socket libraries. By default, AfxSocketInit is called only in the
primary thread.

For more information, see Windows Sockets in MFC, Windows Sockets: Using Sockets with Archives,
Windows Sockets: How Sockets with Archives Work, Windows Sockets: Sequence of Operations, Windows
Sockets: Example of Sockets Using Archives.

CObject

Requirements

CSocket::Attach

BOOL Attach(SOCKET hSocket);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

class CSockThread : public CWinThread
{
public:
 SOCKET m_hConnected;

protected:
 CChatSocket m_sConnected;

 // remainder of class declaration omitted.

BOOL CSockThread::InitInstance()
{
 // Attach the socket object to the socket handle
 // in the context of this thread.
 m_sConnected.Attach(m_hConnected);
 m_hConnected = NULL;

 return TRUE;
}

CAsyncSocket

CSocket

Header: afxsock.h

Call this member function to attach the hSocket handle to a CSocket object.

hSocket
Contains a handle to a socket.

Nonzero if the function is successful.

The SOCKET handle is stored in the object's m_hSocket data member.

For more information, see Windows Sockets: Using Sockets with Archives.

// This listening socket has been constructed
// in the primary thread.
void CListeningSocket::OnAccept(int nErrorCode)
{
 UNREFERENCED_PARAMETER(nErrorCode);

 // This CSocket object is used just temporarily
 // to accept the incoming connection.
 CSocket sConnected;
 Accept(sConnected);

 // Start the other thread.
 CSockThread* pSockThread = (CSockThread*)AfxBeginThread(
 RUNTIME_CLASS(CSockThread), THREAD_PRIORITY_NORMAL, 0, CREATE_SUSPENDED);
 if (NULL != pSockThread)
 {
 // Detach the newly accepted socket and save
 // the SOCKET handle in our new thread object.
 // After detaching it, it should no longer be
 // used in the context of this thread.
 pSockThread->m_hConnected = sConnected.Detach();
 pSockThread->ResumeThread();
 }
}

CSocket::CancelBlockingCall

void CancelBlockingCall();

RemarksRemarks

CSocket::Create

Call this member function to cancel a blocking call currently in progress.

This function cancels any outstanding blocking operation for this socket. The original blocking call will
terminate as soon as possible with the error WSAEINTR.

In the case of a blocking Connect operation, the Windows Sockets implementation will terminate the
blocking call as soon as possible, but it may not be possible for the socket resources to be released until the
connection has completed (and then been reset) or timed out. This is likely to be noticeable only if the
application immediately tries to open a new socket (if no sockets are available), or to connect to the same
peer.

Canceling any operation other than Accept can leave the socket in an indeterminate state. If an application
cancels a blocking operation on a socket, the only operation that the application can depend on being able to
perform on the socket is a call to Close , although other operations may work on some Windows Sockets
implementations. If you desire maximum portability for your application, you must be careful not to depend
on performing operations after a cancel.

For more information, see Windows Sockets: Using Sockets with Archives.

Call the Create member function after constructing a socket object to create the Windows socket and attach
it.

BOOL Create(
 UINT nSocketPort = 0,
 int nSocketType = SOCK_STREAM,
 LPCTSTR lpszSocketAddress = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSocket::CSocket

CSocket();

RemarksRemarks

CSocket::FromHandle

nSocketPort
A particular port to be used with the socket, or 0 if you want MFC to select a port.

nSocketType
SOCK_STREAM or SOCK_DGRAM.

lpszSocketAddress
A pointer to a string containing the network address of the connected socket, a dotted number such as
"128.56.22.8". Passing the NULL string for this parameter indicates the CSocket instance should listen for
client activity on all network interfaces.

Nonzero if the function is successful; otherwise 0, and a specific error code can be retrieved by calling
GetLastError .

Create then calls Bind to bind the socket to the specified address. The following socket types are
supported:

NOTENOTE

SOCK_STREAM Provides sequenced, reliable, two-way, connection-based byte streams. Uses
Transmission Control Protocol (TCP) for the Internet address family.

SOCK_DGRAM Supports datagrams, which are connectionless, unreliable buffers of a fixed (typically
small) maximum length. Uses User Datagram Protocol (UDP) for the Internet address family. To use
this option, you must not use the socket with a CArchive object.

The Accept member function takes a reference to a new, empty CSocket object as its parameter. You must
construct this object before you call Accept . Keep in mind that if this socket object goes out of scope, the
connection closes. Do not call Create for this new socket object.

For more information about stream and datagram sockets, see the articles Windows Sockets: Background,
Windows Sockets: Ports and Socket Addresses, and Windows Sockets: Using Sockets with Archives.

Constructs a CSocket object.

After construction, you must call the Create member function.

For more information, see Windows Sockets: Using Sockets with Archives.

static CSocket* PASCAL FromHandle(SOCKET hSocket);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSocket::IsBlocking

BOOL IsBlocking();

Return ValueReturn Value

RemarksRemarks

CSocket::OnMessagePending

virtual BOOL OnMessagePending();

Return ValueReturn Value

RemarksRemarks

See also

Returns a pointer to a CSocket object.

hSocket
Contains a handle to a socket.

A pointer to a CSocket object, or NULL if there is no CSocket object attached to hSocket.

When given a SOCKET handle, if a CSocket object is not attached to the handle, the member function
returns NULL and does not create a temporary object.

For more information, see Windows Sockets: Using Sockets with Archives.

Call this member function to determine if a blocking call is in progress.

Nonzero if the socket is blocking; otherwise 0.

For more information, see Windows Sockets: Using Sockets with Archives.

Override this member function to look for particular messages from Windows and respond to them in your
socket.

Nonzero if the message was handled; otherwise 0.

This is an advanced overridable.

The framework calls OnMessagePending while the socket is pumping Windows messages to give you an
opportunity to deal with messages of interest to your application. For examples of how you might use
OnMessagePending , see the article Windows Sockets: Deriving from Socket Classes.

For more information, see Windows Sockets: Using Sockets with Archives.

CAsyncSocket Class
Hierarchy Chart
CAsyncSocket Class

CSocketFile Class

CSocketFile Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CSocketFile : public CFile

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSocketFile::CSocketFile Constructs a CSocketFile object.

Remarks

TIPTIP

A CFile object used for sending and receiving data across a network via Windows Sockets.

You can attach the CSocketFile object to a CSocket object for this purpose. You also can, and usually do, attach
the CSocketFile object to a CArchive object to simplify sending and receiving data using MFC serialization.

To serialize (send) data, you insert it into the archive, which calls CSocketFile member functions to write data to
the CSocket object. To deserialize (receive) data, you extract from the archive. This causes the archive to call
CSocketFile member functions to read data from the CSocket object.

Besides using CSocketFile as described here, you can use it as a stand-alone file object, just as you can with CFile , its
base class. You can also use CSocketFile with any archive-based MFC serialization functions. Because CSocketFile

does not support all of CFile 's functionality, some default MFC serialize functions are not compatible with
CSocketFile . This is particularly true of the CEditView class. You should not try to serialize CEditView data through

a CArchive object attached to a CSocketFile object using CEditView::SerializeRaw ; use CEditView::Serialize

instead. The SerializeRaw function expects the file object to have functions, such as Seek , that CSocketFile does
not have.

When you use CArchive with CSocketFile and CSocket , you might encounter a situation where
CSocket::Receive enters a loop (by PumpMessages(FD_READ)) waiting for the requested amount of bytes. This is

because Windows sockets allow only one recv call per FD_READ notification, but CSocketFile and CSocket

allow multiple recv calls per FD_READ. If you get an FD_READ when there is no data to read, the application
hangs. If you never get another FD_READ, the application stops communicating over the socket.

You can resolve this problem as follows. In the OnReceive method of your socket class, call
CAsyncSocket::IOCtl(FIONREAD, ...) before you call the Serialize method of your message class when the

expected data to be read from the socket exceeds the size of one TCP packet (maximum transmission unit of the
network medium, usually at least 1096 bytes). If the size of the available data is less than needed, wait for all the
data to be received and only then start the read operation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csocketfile-class.md

void CChatSocket::OnReceive(int nErrorCode)
{
 CSocket::OnReceive(nErrorCode);

 DWORD dwReceived;

 if (IOCtl(FIONREAD, &dwReceived))
 {
 if (dwReceived >= m_dwExpected) // Process only if you have enough data
 m_pDoc->ProcessPendingRead();
 }
 else
 {
 // Error handling here
 }
}

Inheritance Hierarchy

Requirements

CSocketFile::CSocketFile

explicit CSocketFile(
 CSocket* pSocket,
 BOOL bArchiveCompatible = TRUE);

ParametersParameters

RemarksRemarks

In the following example, m_dwExpected is the approximate number of bytes that the user expects to receive. It is
assumed that you declare it elsewhere in your code.

For more information, see Windows Sockets in MFC, Windows Sockets: Using Sockets with Archives, as well as
Windows Sockets 2 API.

CObject

CFile

CSocketFile

Header: afxsock.h

Constructs a CSocketFile object.

pSocket
The socket to attach to the CSocketFile object.

bArchiveCompatible
Specifies whether the file object is for use with a CArchive object. Pass FALSE only if you want to use the
CSocketFile object in a stand-alone manner as you would a stand-alone CFile object, with certain limitations.

This flag changes how the CArchive object attached to the CSocketFile object manages its buffer for reading.

The object's destructor disassociates itself from the socket object when the object goes out of scope or is
deleted.

https://docs.microsoft.com/windows/desktop/WinSock/windows-sockets-start-page-2

NOTENOTE

See also

A CSocketFile can also be used as a (limited) file without a CArchive object. By default, the CSocketFile

constructor's bArchiveCompatible parameter is TRUE. This specifies that the file object is for use with an archive. To use
the file object without an archive, pass FALSE in the bArchiveCompatible parameter.

In its "archive compatible" mode, a CSocketFile object provides better performance and reduces the danger of
a "deadlock." A deadlock occurs when both the sending and receiving sockets are waiting on each other, or for a
common resource. This situation might occur if the CArchive object worked with the CSocketFile the way it
does with a CFile object. With CFile , the archive can assume that if it receives fewer bytes than it requested,
the end of file has been reached.

With CSocketFile , however, data is message based; the buffer can contain multiple messages, so receiving
fewer than the number of bytes requested does not imply end of file. The application does not block in this case
as it might with CFile , and it can continue reading messages from the buffer until the buffer is empty. The
CArchive::IsBufferEmpty function is useful for monitoring the state of the archive's buffer in such a case.

For more information on the use of CSocketFile , see the articles Windows Sockets: Using Sockets with
Archives and Windows Sockets: Example of Sockets Using Archives.

CFile Class
Hierarchy Chart
CAsyncSocket Class
CSocket Class

CSpinButtonCtrl Class
3/5/2019 • 7 minutes to read • Edit Online

Syntax
class CSpinButtonCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSpinButtonCtrl::CSpinButtonCtrl Constructs a CSpinButtonCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSpinButtonCtrl::Create Creates a spin button control and attaches it to a
CSpinButtonCtrl object.

CSpinButtonCtrl::CreateEx Creates a spin button control with the specified Windows
extended styles and attaches it to a CSpinButtonCtrl

object.

CSpinButtonCtrl::GetAccel Retrieves acceleration information for a spin button control.

CSpinButtonCtrl::GetBase Retrieves the current base for a spin button control.

CSpinButtonCtrl::GetBuddy Retrieves a pointer to the current buddy window.

CSpinButtonCtrl::GetPos Retrieves the current position of a spin button control.

CSpinButtonCtrl::GetRange Retrieves the upper and lower limits (range) for a spin button
control.

CSpinButtonCtrl::SetAccel Sets the acceleration for a spin button control.

CSpinButtonCtrl::SetBase Sets the base for a spin button control.

CSpinButtonCtrl::SetBuddy Sets the buddy window for a spin button control.

CSpinButtonCtrl::SetPos Sets the current position for the control.

CSpinButtonCtrl::SetRange Sets the upper and lower limits (range) for a spin button
control.

Provides the functionality of the Windows common spin button control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cspinbuttonctrl-class.md

Remarks

Inheritance Hierarchy

Requirements

CSpinButtonCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

A "spin button control" (also known as an up-down control) is a pair of arrow buttons that the user can click to
increment or decrement a value, such as a scroll position or a number displayed in a companion control. The
value associated with a spin button control is called its current position. A spin button control is most often used
with a companion control, called a "buddy window."

This control (and therefore the CSpinButtonCtrl class) is available only to programs running under Windows
95/98 and Windows NT version 3.51 and later.

To the user, a spin button control and its buddy window often look like a single control. You can specify that a
spin button control automatically position itself next to its buddy window, and that it automatically set the caption
of the buddy window to its current position. You can use a spin button control with an edit control to prompt the
user for numeric input.

Clicking the up arrow moves the current position toward the maximum, and clicking the down arrow moves the
current position toward the minimum. By default, the minimum is 100 and the maximum is 0. Any time the
minimum setting is greater than the maximum setting (for example, when the default settings are used), clicking
the up arrow decreases the position value and clicking the down arrow increases it.

A spin button control without a buddy window functions as a sort of simplified scroll bar. For example, a tab
control sometimes displays a spin button control to enable the user to scroll additional tabs into view.

For more information on using CSpinButtonCtrl , see Controls and Using CSpinButtonCtrl.

CObject

CCmdTarget

CWnd

CSpinButtonCtrl

Header: afxcmn.h

Creates a spin button control and attaches it to a CSpinButtonCtrl object..

dwStyle
Specifies the spin button control's style. Apply any combination of spin button control styles to the control. These
styles are described in Up-Down Control Styles in the Windows SDK.

rect
Specifies the spin button control's size and position. It can be either a CRect object or a RECT structure

https://docs.microsoft.com/windows/desktop/Controls/up-down-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CSpinButtonCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSpinButtonCtrl::CSpinButtonCtrl

pParentWnd
A pointer to the spin button control's parent window, usually a CDialog . It must not be NULL.

nID
Specifies the spin button control's ID.

Nonzero if initialization was successful; otherwise 0.

You construct a CSpinButtonCtrl object in two steps First, call the constructor, and then call Create , which
creates the spin button control and attaches it to the CSpinButtonCtrl object.

To create a spin button control with extended window styles, call CSpinButtonCtrl::CreateEx instead of Create .

Creates a control (a child window) and associates it with the CSpinButtonCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended windows styles, see the dwExStyle
parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the spin button control's style. Apply any combination of spin button control styles to the control. These
styles are described in Up-Down Control Styles in the Windows SDK.

rect
A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

Constructs a CSpinButtonCtrl object.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/up-down-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

CSpinButtonCtrl();

CSpinButtonCtrl::GetAccel

UINT GetAccel(
 int nAccel,
 UDACCEL* pAccel) const;

ParametersParameters

Return ValueReturn Value

CSpinButtonCtrl::GetBase

UINT GetBase() const;

Return ValueReturn Value

CSpinButtonCtrl::GetBuddy

CWnd* GetBuddy() const;

Return ValueReturn Value

CSpinButtonCtrl::GetPos

int GetPos() const; int GetPos32(LPBOOL lpbError = NULL) const;

ParametersParameters

Return ValueReturn Value

Retrieves acceleration information for a spin button control.

nAccel
Number of elements in the array specified by pAccel.

pAccel
Pointer to an array of UDACCEL structures that receives acceleration information.

Number of accelerator structures retrieved.

Retrieves the current base for a spin button control.

The current base value.

Retrieves a pointer to the current buddy window.

A pointer to the current buddy window.

Retrieves the current position of a spin button control.

lpbError
A pointer to a boolean value that is set to zero if the value is successfully retrieved or non-zero if an error occurs.
If this parameter is set to NULL, errors are not reported.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_udaccel

RemarksRemarks

CSpinButtonCtrl::GetRange

DWORD GetRange() const;

void GetRange(
 int& lower,
 int& upper) const;

void GetRange32(
 int& lower,
 int &upper) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSpinButtonCtrl::SetAccel

BOOL SetAccel(
 int nAccel,
 UDACCEL* pAccel);

ParametersParameters

Return ValueReturn Value

The first version returns the 16-bit current position in the low-order word. The high-order word is nonzero if an
error occurred.

The second version returns the 32-bit position.

When it processes the value returned, the control updates its current position based on the caption of the buddy
window. The control returns an error if there is no buddy window or if the caption specifies an invalid or out-of-
range value.

Retrieves the upper and lower limits (range) for a spin button control.

lower
Reference to an integer that receives the lower limit for the control.

upper
Reference to an integer that receives the upper limit for the control.

The first version returns a 32-bit value containing the upper and lower limits. The low-order word is the upper
limit for the control, and the high-order word is the lower limit.

The member function GetRange32 retrieves the spin button control's range as a 32-bit integer.

Sets the acceleration for a spin button control.

nAccel
Number of UDACCEL structures specified by pAccel.

pAccel
Pointer to an array of UDACCEL structures, which contain acceleration information. Elements should be sorted in
ascending order based on the nSec member.

Nonzero if successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_udaccel

CSpinButtonCtrl::SetBase

int SetBase(int nBase);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSpinButtonCtrl::SetBuddy

CWnd* SetBuddy(CWnd* pWndBuddy);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSpinButtonCtrl::SetPos

int SetPos(int nPos);
int SetPos32(int nPos);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Sets the base for a spin button control.

nBase
New base value for the control. It can be 10 for decimal or 16 for hexadecimal.

The previous base value if successful, or zero if an invalid base is given.

The base value determines whether the buddy window displays numbers in decimal or hexadecimal digits.
Hexadecimal numbers are always unsigned; decimal numbers are signed.

Sets the buddy window for a spin button control.

pWndBuddy
Pointer to the new buddy window.

A pointer to the previous buddy window.

A spin control is almost always associated with another window, such as an edit control, that displays some
content. This other window is called the "buddy" of the spin control.

Sets the current position for a spin button control.

nPos
New position for the control. This value must be in the range specified by the upper and lower limits for the
control.

The previous position (16-bit precision for SetPos , 32-bit precision for SetPos32).

SetPos32 sets the 32-bit position.

 CSpinButtonCtrl::SetRange

void SetRange(
 short nLower,
 short nUpper);

void SetRange32(
 int nLower,
 int nUpper);

ParametersParameters

RemarksRemarks

NOTENOTE

See also

Sets the upper and lower limits (range) for a spin button control.

nLower and nUpper
Upper and lower limits for the control. For SetRange , neither limit can be greater than UD_MAXVAL or less than
UD_MINVAL; in addition, the difference between the two limits cannot exceed UD_MAXVAL. SetRange32 places
no restrictions on the limits; use any integers.

The member function SetRange32 sets the 32-bit range for the spin button control.

The default range for the spin button has the maximum set to zero (0) and the minimum set to 100. Because the
maximum value is less than the minimum value, clicking the up arrow will decrease the position and clicking the down
arrow will increase it. Use CSpinButtonCtrl::SetRange to adjust these values.

MFC Sample CMNCTRL2
CWnd Class
Hierarchy Chart
CSliderCtrl Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CSplitButton Class
3/5/2019 • 4 minutes to read • Edit Online

Syntax
class CSplitButton : public CButton

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSplitButton::CSplitButton Constructs a CSplitButton object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSplitButton::Create Creates a split button control with specified styles and
attaches it to the current CSplitButton object.

CSplitButton::SetDropDownMenu Sets the drop-down menu that is displayed when a user clicks
the drop-down arrow of the current split button control.

Protected MethodsProtected Methods

NAME DESCRIPTION

CSplitButton::OnDropDown Handles the BCN_DROPDOWN notification that the system
sends when a user clicks the drop-down arrow of the current
split button control.

Remarks

The CSplitButton class represents a split button control. The split button control performs a default behavior
when a user clicks the main part of the button, and displays a drop-down menu when a user clicks the drop-down
arrow of the button.

The CSplitButton class is derived from the CButton class. The split button control is a button control whose style
is BS_SPLITBUTTON. It displays a custom menu when a user clicks the drop-down arrow. For more information,
see the BS_SPLITBUTTON and BS_DEFSPLITBUTTON styles in Button Styles.

The following figure depicts a dialog box that contains a pager control and a (1) split button control. The (2) drop-
down arrow has already been clicked and the (3) submenu is displayed.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csplitbutton-class.md
https://docs.microsoft.com/windows/desktop/Controls/button-styles

Inheritance Hierarchy

Requirements

CSplitButton::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

PARAMETER DESCRIPTION

dwStyle [in] A bitwise combination (OR) of styles to be applied to the
control. For more information, see Button Styles.

rect [in] A reference to a RECT structure that contains the position
and size of the control.

pParentWnd [in] A non-null pointer to a CWnd object that is the parent
window of the control.

CObject

CCmdTarget

CWnd

CButton

CSplitButton

Header: afxcmn.h

This class is supported in Windows Vista and later.

Additional requirements for this class are described in Build Requirements for Windows Vista Common Controls.

Creates a split button control with specified styles and attaches it to the current CSplitButton object.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

nID [in] The ID of the control.

PARAMETER DESCRIPTION

Return ValueReturn Value

CSplitButton::CSplitButton

CSplitButton();

CSplitButton(
 UINT nMenuId,
 UINT nSubMenuId)
CSplitButton(CMenu* pMenu)

ParametersParameters

PARAMETER DESCRIPTION

nMenuId [in] The resource ID of the menu bar.

nSubMenuId [in] The resource ID of a submenu.

pMenu [in] A pointer to a CMenu object that specifies a submenu. The
CSplitButton object deletes the CMenu object and its

associated HMENU when the CSplitButton object goes out
of scope.

RemarksRemarks

CSplitButton::OnDropDown

afx_msg void OnDropDown(
 NMHDR* pNMHDR,
 LRESULT* pResult);

ParametersParameters

PARAMETER DESCRIPTION

pNMHDR [in] Pointer to an NMHDR structure that contains information
about the BCN_DROPDOWN notification.

pResult [out] (Not used; no value is returned.) Return value of the
BCN_DROPDOWN notification.

TRUE if this method is successful; otherwise, FALSE.

Constructs a CSplitButton object. The constructor's parameters specify a submenu that is displayed when a user
clicks the drop-down arrow of the split button control.

Use the CSplitButton::Create method to create a split button control and attach it to the CSplitButton object.

Handles the BCN_DROPDOWN notification that the system sends when a user clicks the drop-down arrow of the
current split button control.

https://docs.microsoft.com/windows/desktop/api/richedit/ns-richedit-_nmhdr
https://docs.microsoft.com/windows/desktop/Controls/bcn-dropdown
https://docs.microsoft.com/windows/desktop/Controls/bcn-dropdown

RemarksRemarks

BEGIN_MESSAGE_MAP(CMySplitButton,
 CSplitButton)
 ON_NOTIFY_REFLECT(BCN_DROPDOWN, &CMySplitButton::OnDropDown)
END_MESSAGE_MAP()

CSplitButton::SetDropDownMenu

void SetDropDownMenu(
 UINT nMenuId,
 UINT nSubMenuId);

void SetDropDownMenu(CMenu* pMenu);

ParametersParameters

PARAMETER DESCRIPTION

nMenuId [in] The resource ID of the menu bar.

nSubMenuId [in] The resource ID of a submenu.

pMenu [in] Pointer to a CMenu object that specifies a submenu. The
CSplitButton object deletes the CMenu object and its

associated HMENU when the CSplitButton object goes out
of scope.

RemarksRemarks

When the user clicks the drop-down arrow on a split button control, system sends a BCN_DROPDOWN
notification message, which the OnDropDown method handles. However, the CSplitButton object does not forward
the BCN_DROPDOWN notification to the control that contains the split button control. Consequently, the
containing control cannot support a custom action in response to the notification.

To implement a custom action that the containing control supports, use a CButton object with a style of
BS_SPLITBUTTON instead of a CSplitButton object. Then implement a handler for the BCN_DROPDOWN
notification in the CButton object. For more information, see Button Styles.

To implement a custom action that the split button control itself supports, use message reflection. Derive your own
class from the CSplitButton class and name it, for example, CMySplitButton. Then add the following message
map to your application to handle the BCN_DROPDOWN notification:

Sets the drop-down menu that is displayed when a user clicks the drop-down arrow of the current split button
control.

The nMenuId parameter identifies a menu bar, which is a horizontal list of menu bar items. The nSubMenuId
parameter is a zero-based index number that identifies a submenu, which is the drop-down list of menu items
associated with each menu bar item. For example, a typical application has a menu that contains the menu bar
items, "File," "Edit," and "Help." The "File" menu bar item has a submenu that contains the menu items, "Open,"
"Close" and "Exit." When the drop-down arrow of the split-button control is clicked, the control displays the
specified submenu, not the menu bar.

The following figure depicts a dialog box that contains a pager control and a (1) split button control. The (2) drop-
down arrow has already been clicked and the (3) submenu is displayed.

ExampleExample

// Initialize the dropdown menu of the splitbutton control.
m_splitButton.SetDropDownMenu(IDR_MENU1, 0);

// Create the pager control.
BOOL nRet;
CRect rect;
GetClientRect(&rect);
nRet = m_pager.Create(
 (WS_VISIBLE | WS_CHILD | PGS_HORZ),
 CRect(rect.Width()/4, 5, (rect.Width() * 3)/4, 55),
 this,
 IDC_PAGER1);

m_pager.GetClientRect(&rect);
nRet = m_button.Create(
 _T("This is a very, very long button. 012345678901234567890"),
 (WS_VISIBLE | WS_CHILD), // Do not use CCS_NORESIZE.
 CRect(0,0,rect.Width(),30),
 &m_pager, IDC_BUTTON1);

m_pager.SetChild(m_button.m_hWnd);
m_pager.SetButtonSize(20);
m_pager.SetBorder(1);

See also

The first statement in the following code example demonstrates the CSplitButton::SetDropDownMenu method.
We created the menu with the Visual Studio resource editor, which automatically named the menu bar ID,
IDR_MENU1. The nSubMenuId parameter, which is zero, refers to the only submenu of the menu bar.

CSplitButton Class
Hierarchy Chart
CButton Class

CSplitterWnd Class
3/4/2019 • 22 minutes to read • Edit Online

Syntax
class CSplitterWnd : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSplitterWnd::CSplitterWnd Call to construct a CSplitterWnd object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSplitterWnd::ActivateNext Performs the Next Pane or Previous Pane command.

CSplitterWnd::CanActivateNext Checks to see if the Next Pane or Previous Pane command is
currently possible.

CSplitterWnd::Create Call to create a dynamic splitter window and attach it to the
CSplitterWnd object.

CSplitterWnd::CreateScrollBarCtrl Creates a shared scroll bar control.

CSplitterWnd::CreateStatic Call to create a static splitter window and attach it to the
CSplitterWnd object.

CSplitterWnd::CreateView Call to create a pane in a splitter window.

CSplitterWnd::DeleteColumn Deletes a column from the splitter window.

CSplitterWnd::DeleteRow Deletes a row from the splitter window.

CSplitterWnd::DeleteView Deletes a view from the splitter window.

CSplitterWnd::DoKeyboardSplit Performs the keyboard split command, usually "Window
Split."

CSplitterWnd::DoScroll Performs synchronized scrolling of split windows.

CSplitterWnd::DoScrollBy Scrolls split windows by a given number of pixels.

Provides the functionality of a splitter window, which is a window that contains multiple panes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csplitterwnd-class.md

CSplitterWnd::GetActivePane Determines the active pane from the focus or active view in
the frame.

CSplitterWnd::GetColumnCount Returns the current pane column count.

CSplitterWnd::GetColumnInfo Returns information on the specified column.

CSplitterWnd::GetPane Returns the pane at the specified row and column.

CSplitterWnd::GetRowCount Returns the current pane row count.

CSplitterWnd::GetRowInfo Returns information on the specified row.

CSplitterWnd::GetScrollStyle Returns the shared scroll-bar style.

CSplitterWnd::IdFromRowCol Returns the child window ID of the pane at the specified row
and column.

CSplitterWnd::IsChildPane Call to determine whether the window is currently a child
pane of this splitter window.

CSplitterWnd::IsTracking Determines if splitter bar is currently being moved.

CSplitterWnd::RecalcLayout Call to redisplay the splitter window after adjusting row or
column size.

CSplitterWnd::SetActivePane Sets a pane to be the active one in the frame.

CSplitterWnd::SetColumnInfo Call to set the specified column information.

CSplitterWnd::SetRowInfo Call to set the specified row information.

CSplitterWnd::SetScrollStyle Specifies the new scroll-bar style for the splitter window's
shared scroll-bar support.

CSplitterWnd::SplitColumn Indicates where a frame window splits vertically.

CSplitterWnd::SplitRow Indicates where a frame window splits horizontally.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CSplitterWnd::OnDraw Called by the framework to draw the splitter window.

CSplitterWnd::OnDrawSplitter Renders an image of a split window.

CSplitterWnd::OnInvertTracker Renders the image of a split window to be the same size and
shape as the frame window.

Remarks

A pane is usually an application-specific object derived from CView, but it can be any CWnd object that has the
appropriate child window ID.

A CSplitterWnd object is usually embedded in a parent CFrameWnd or CMDIChildWnd object. Create a
CSplitterWnd object using the following steps:

1. Embed a CSplitterWnd member variable in the parent frame.

2. Override the parent frame's CFrameWnd::OnCreateClient member function.

3. From within the overridden OnCreateClient , call the Create or CreateStatic member function of
CSplitterWnd .

Call the Create member function to create a dynamic splitter window. A dynamic splitter window typically is
used to create and scroll a number of individual panes, or views, of the same document. The framework
automatically creates an initial pane for the splitter ; then the framework creates, resizes, and disposes of
additional panes as the user operates the splitter window's controls.

When you call Create , you specify a minimum row height and column width that determine when the panes
are too small to be fully displayed. After you call Create , you can adjust these minimums by calling the
SetColumnInfo and SetRowInfo member functions.

Also use the SetColumnInfo and SetRowInfo member functions to set an "ideal" width for a column and "ideal"
height for a row. When the framework displays a splitter window, it first displays the parent frame, then the
splitter window. The framework then lays out the panes in columns and rows according to their ideal
dimensions, working from the upper-left to the lower-right corner of the splitter window's client area.

All panes in a dynamic splitter window must be of the same class. Familiar applications that support dynamic
splitter windows include Microsoft Word and Microsoft Excel.

Use the CreateStatic member function to create a static splitter window. The user can change only the size of
the panes in a static splitter window, not their number or order.

You must specifically create all the static splitter's panes when you create the static splitter. Make sure you create
all the panes before the parent frame's OnCreateClient member function returns, or the framework will not
display the window correctly.

The CreateStatic member function automatically initializes a static splitter with a minimum row height and
column width of 0. After you call Create , adjust these minimums by calling the SetColumnInfo and
SetRowInfo member functions. Also use SetColumnInfo and SetRowInfo after you call CreateStatic to indicate
desired ideal pane dimensions.

The individual panes of a static splitter often belong to different classes. For examples of static splitter windows,
see the graphics editor and the Windows File Manager.

A splitter window supports special scroll bars (apart from the scroll bars that panes may have). These scroll bars
are children of the CSplitterWnd object and are shared with the panes.

You create these special scroll bars when you create the splitter window. For example, a CSplitterWnd that has
one row, two columns, and the WS_VSCROLL style will display a vertical scroll bar that is shared by the two
panes. When the user moves the scroll bar, WM_VSCROLL messages are sent to both panes. When the panes
set the scroll-bar position, the shared scroll bar is set.

For further information on splitter windows, see Technical Note 29.

For more information on how to create dynamic splitter windows, see:

MFC sample Scribble

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Inheritance Hierarchy

Requirements

CSplitterWnd::ActivateNext

virtual void ActivateNext(BOOL bPrev = FALSE);

ParametersParameters

RemarksRemarks

CSplitterWnd::CanActivateNext

virtual BOOL CanActivateNext(BOOL bPrev = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSplitterWnd::Create

MFC sample VIEWEX.

CObject

CCmdTarget

CWnd

CSplitterWnd

Header: afxext.h

Called by the framework to perform the Next Pane or Previous Pane command.

bPrev
Indicates which window to activate. TRUE for previous; FALSE for next.

This member function is a high level command that is used by the CView class to delegate to the CSplitterWnd

implementation.

Called by the framework to check to see if the Next Pane or Previous Pane command is currently possible.

bPrev
Indicates which window to activate. TRUE for previous; FALSE for next.

Nonzero if successful; otherwise 0.

This member function is a high level command that is used by the CView class to delegate to the CSplitterWnd

implementation.

To create a dynamic splitter window, call the Create member function.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

virtual BOOL Create(
 CWnd* pParentWnd,
 int nMaxRows,
 int nMaxCols,
 SIZE sizeMin,
 CCreateContext* pContext,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | WS_HSCROLL | WS_VSCROLL | SPLS_DYNAMIC_SPLIT,
 UINT nID = AFX_IDW_PANE_FIRST);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

pParentWnd
The parent frame window of the splitter window.

nMaxRows
The maximum number of rows in the splitter window. This value must not exceed 2.

nMaxCols
The maximum number of columns in the splitter window. This value must not exceed 2.

sizeMin
Specifies the minimum size at which a pane may be displayed.

pContext
A pointer to a CCreateContext structure. In most cases, this can be the pContext passed to the parent frame
window.

dwStyle
Specifies the window style.

nID
The child window ID of the window. The ID can be AFX_IDW_PANE_FIRST unless the splitter window is nested
inside another splitter window.

Nonzero if successful; otherwise 0.

You can embed a CSplitterWnd in a parent CFrameWnd or CMDIChildWnd object by taking the following
steps:

1. Embed a CSplitterWnd member variable in the parent frame.

2. Override the parent frame's CFrameWnd::OnCreateClient member function.

3. Call the Create member function from within the overridden OnCreateClient .

When you create a splitter window from within a parent frame, pass the parent frame's pContext parameter to
the splitter window. Otherwise, this parameter can be NULL.

The initial minimum row height and column width of a dynamic splitter window are set by the sizeMin
parameter. These minimums, which determine whether a pane is too small to be shown in its entirety, can be
changed with the SetRowInfo and SetColumnInfo member functions.

For more on dynamic splitter windows, see "Splitter Windows" in the article Multiple Document Types, Views,
and Frame Windows, Technical Note 29, and the CSplitterWnd class overview.

// the following function is created by the MFC Application Wizard
// when you select Split window from the User Interface Features tab:
BOOL CMyChildFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/, CCreateContext* pContext)
{
 return m_wndSplitter.Create(this,
 2, 2, // TODO: adjust the number of rows, columns
 CSize(10, 10), // TODO: adjust the minimum pane size
 pContext);
}

CSplitterWnd::CreateScrollBarCtrl

virtual BOOL CreateScrollBarCtrl(
 DWORD dwStyle,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSplitterWnd::CreateStatic

virtual BOOL CreateStatic(
 CWnd* pParentWnd,
 int nRows,
 int nCols,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE,
 UINT nID = AFX_IDW_PANE_FIRST);

ParametersParameters

Called by the framework to create a shared scroll bar control.

dwStyle
Specifies the window style.

nID
The child window ID of the window. The ID can be AFX_IDW_PANE_FIRST unless the splitter window is nested
inside another splitter window.

Nonzero if successful; otherwise 0.

Override CreateScrollBarCtrl to include extra controls next to a scroll bar. The default behavior is to create
normal Windows scroll bar controls.

To create a static splitter window, call the CreateStatic member function.

pParentWnd
The parent frame window of the splitter window.

nRows
The number of rows. This value must not exceed 16.

nCols
The number of columns. This value must not exceed 16.

dwStyle

Return ValueReturn Value

RemarksRemarks

CSplitterWnd::CreateView

virtual BOOL CreateView(
 int row,
 int col,
 CRuntimeClass* pViewClass,
 SIZE sizeInit,
 CCreateContext* pContext);

ParametersParameters

Specifies the window style.

nID
The child window ID of the window. The ID can be AFX_IDW_PANE_FIRST unless the splitter window is nested
inside another splitter window.

Nonzero if successful; otherwise 0.

A CSplitterWnd is usually embedded in a parent CFrameWnd or CMDIChildWnd object by taking the following
steps:

1. Embed a CSplitterWnd member variable in the parent frame.

2. Override the parent frame's OnCreateClient member function.

3. Call the CreateStatic member function from within the overridden CFrameWnd::OnCreateClient.

A static splitter window contains a fixed number of panes, often from different classes.

When you create a static splitter window, you must at the same time create all its panes. The CreateView
member function is usually used for this purpose, but you can create other nonview classes as well.

The initial minimum row height and column width for a static splitter window is 0. These minimums, which
determine when a pane is too small to be shown in its entirety, can be changed with the SetRowInfo and
SetColumnInfo member functions.

To add scroll bars to a static splitter window, add the WS_HSCROLL and WS_VSCROLL styles to dwStyle.

See "Splitter Windows" in the article Multiple Document Types, Views, and Frame Windows, Technical Note 29,
and the CSplitterWnd class overview for more on static splitter windows.

Creates the panes for a static splitter window.

row
Specifies the splitter window row in which to place the new view.

col
Specifies the splitter window column in which to place the new view.

pViewClass
Specifies the CRuntimeClass of the new view.

sizeInit
Specifies the initial size of the new view.

pContext
A pointer to a creation context used to create the view (usually the pContext passed into the parent frame's

Return ValueReturn Value

RemarksRemarks

ExampleExample

// this function creates the panes for a static splitter window
BOOL CChildFrame::OnCreateClient(LPCREATESTRUCT /*lpcs*/, CCreateContext* pContext)
{
 m_bSplitterCreated = m_wndSplitter.CreateStatic(this, 1, 2);
 // CMyView and CMyOtherView are user-defined views derived from CView
 m_wndSplitter.CreateView(0, 0, RUNTIME_CLASS(CMyView), CSize(0, 0),
 pContext);
 m_wndSplitter.CreateView(0, 1, RUNTIME_CLASS(CMyOtherView), CSize(0, 0),
 pContext);

 return (m_bSplitterCreated);
}

CSplitterWnd::CSplitterWnd

CSplitterWnd();

RemarksRemarks

CSplitterWnd::DeleteColumn

virtual void DeleteColumn(int colDelete);

ParametersParameters

RemarksRemarks

CSplitterWnd::DeleteRow

overridden CFrameWnd::OnCreateClient member function in which the splitter window is being created).

Nonzero if successful; otherwise 0.

All panes of a static splitter window must be created before the framework displays the splitter.

The framework also calls this member function to create new panes when the user of a dynamic splitter window
splits a pane, row, or column.

Call to construct a CSplitterWnd object.

Construct a CSplitterWnd object in two steps. First, call the constructor, which creates the CSplitterWnd object,
and then call the Create member function, which creates the splitter window and attaches it to the CSplitterWnd

object.

Deletes a column from the splitter window.

colDelete
Specifies the column to be deleted.

This member function is called by the framework to implement the logic of the dynamic splitter window (that is,
if the splitter window has the SPLS_DYNAMIC_SPLIT style). It can be customized, along with the virtual
function CreateView, to implement more advanced dynamic splitters.

Deletes a row from the splitter window.

virtual void DeleteRow(int rowDelete);

ParametersParameters

RemarksRemarks

CSplitterWnd::DeleteView

virtual void DeleteView(
 int row,
 int col);

ParametersParameters

RemarksRemarks

CSplitterWnd::DoKeyboardSplit

virtual BOOL DoKeyboardSplit();

Return ValueReturn Value

RemarksRemarks

CSplitterWnd::DoScroll

rowDelete
Specifies the row to be deleted.

This member function is called by the framework to implement the logic of the dynamic splitter window (that is,
if the splitter window has the SPLS_DYNAMIC_SPLIT style). It can be customized, along with the virtual
function CreateView, to implement more advanced dynamic splitters.

Deletes a view from the splitter window.

row
Specifies the splitter window row at which to delete the view.

col
Specifies the splitter window column at which to delete the view.

If the active view is being deleted, the next view will become active. The default implementation assumes the
view will auto delete in PostNcDestroy.

This member function is called by the framework to implement the logic of the dynamic splitter window (that is,
if the splitter window has the SPLS_DYNAMIC_SPLIT style). It can be customized, along with the virtual
function CreateView, to implement more advanced dynamic splitters.

Performs the keyboard split command, usually "Window Split."

Nonzero if successful; otherwise 0.

This member function is a high level command that is used by the CView class to delegate to the CSplitterWnd

implementation.

Performs synchronized scrolling of split windows.

virtual BOOL DoScroll(
 CView* pViewFrom,
 UINT nScrollCode,
 BOOL bDoScroll = TRUE);

ParametersParameters

- SB_BOTTOM Scrolls to bottom.

- SB_LINEDOWN Scrolls one line down.

- SB_LINEUP Scrolls one line up.

- SB_PAGEDOWN Scrolls one page down.

- SB_PAGEUP Scrolls one page up.

- SB_TOP Scrolls to top.

Return ValueReturn Value

RemarksRemarks

CSplitterWnd::DoScrollBy

virtual BOOL DoScrollBy(
 CView* pViewFrom,
 CSize sizeScroll,
 BOOL bDoScroll = TRUE);

ParametersParameters

pViewFrom
A pointer to the view from which the scrolling message originates.

nScrollCode
A scroll-bar code that indicates the user's scrolling request. This parameter is composed of two parts: a low-
order byte, which determines the type of scrolling occurring horizontally, and a high-order byte, which
determines the type of scrolling occurring vertically:

bDoScroll
Determines whether the specified scrolling action occurs. If bDoScroll is TRUE (that is, if a child window exists,
and if the split windows have a scroll range), then the specified scrolling action can take place; if bDoScroll is
FALSE (that is, if no child window exists, or the split views have no scroll range), then scrolling does not occur.

Nonzero if synchronized scrolling occurs; otherwise 0.

This member function is called by the framework to perform synchronized scrolling of split windows when the
view receives a scroll message. Override to require an action by the user before synchronized scrolling is
allowed.

Scrolls split windows by a given number of pixels.

pViewFrom
A pointer to the view from which the scrolling message originates.

sizeScroll
Number of pixels to be scrolled horizontally and vertically.

bDoScroll

Return ValueReturn Value

RemarksRemarks

CSplitterWnd::GetActivePane

virtual CWnd* GetActivePane(
 int* pRow = NULL,
 int* pCol = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSplitterWnd::GetColumnCount

int GetColumnCount() const;

Return ValueReturn Value

CSplitterWnd::GetColumnInfo

Determines whether the specified scrolling action occurs. If bDoScroll is TRUE (that is, if a child window exists,
and if the split windows have a scroll range), then the specified scrolling action can take place; if bDoScroll is
FALSE (that is, if no child window exists, or the split views have no scroll range), then scrolling does not occur.

Nonzero if synchronized scrolling occurs; otherwise 0.

This member function is called by the framework in response to a scroll message, to perform synchronized
scrolling of the split windows by the amount, in pixels, indicated by sizeScroll. Positive values indicate scrolling
down and to the right; negative values indicate scrolling up and to the left.

Override to require an action by the user before allowing scroll.

Determines the active pane from the focus or active view in the frame.

pRow
A pointer to an int to retrieve the row number of the active pane.

pCol
A pointer to an int to retrieve the column number of the active pane.

Pointer to the active pane. NULL if no active pane exists.

This member function is called by the framework to determine the active pane in a splitter window. Override to
require an action by the user before getting the active pane.

Returns the current pane column count.

Returns the current number of columns in the splitter. For a static splitter, this will also be the maximum number
of columns.

Returns information on the specified column.

void GetColumnInfo(
 int col,
 int& cxCur,
 int& cxMin) const;

ParametersParameters

CSplitterWnd::GetPane

CWnd* GetPane(
 int row,
 int col) const;

ParametersParameters

Return ValueReturn Value

CSplitterWnd::GetRowCount

int GetRowCount() const;

Return ValueReturn Value

CSplitterWnd::GetRowInfo

void GetRowInfo(
 int row,
 int& cyCur,
 int& cyMin) const;

ParametersParameters

col
Specifies a column.

cxCur
A reference to an int to be set to the current width of the column.

cxMin
A reference to an int to be set to the current minimum width of the column.

Returns the pane at the specified row and column.

row
Specifies a row.

col
Specifies a column.

Returns the pane at the specified row and column. The returned pane is usually a CView-derived class.

Returns the current pane row count.

Returns the current number of rows in the splitter window. For a static splitter window, this will also be the
maximum number of rows.

Returns information on the specified row.

RemarksRemarks

CSplitterWnd::GetScrollStyle

DWORD GetScrollStyle() const;

Return ValueReturn Value

- WS_HSCROLL If the splitter currently manages shared horizontal scroll bars.

- WS_VSCROLL If the splitter currently manages shared vertical scroll bars.

CSplitterWnd::IdFromRowCol

int IdFromRowCol(
 int row,
 int col) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

row
Specifies a row.

cyCur
Reference to int to be set to the current height of the row in pixels.

cyMin
Reference to int to be set to the current minimum height of the row in pixels.

Call this member function to obtain information about the specified row. The cyCur parameter is filled with the
current height of the specified row, and cyMin is filled with the minimum height of the row.

Returns the shared scroll-bar style for the splitter window.

One or more of the following windows style flags, if successful:

If zero, the splitter window does not currently manage any shared scroll bars.

Obtains the child window ID for the pane at the specified row and column.

row
Specifies the splitter window row.

col
Specifies the splitter window column.

The child window ID for the pane.

This member function is used for creating nonviews as panes and may be called before the pane exists.

HBRUSH CMySplitterWnd::OnCtlColor(CDC* pDC, CWnd* pWnd, UINT nCtlColor)
{
 HBRUSH hbr = CSplitterWnd::OnCtlColor(pDC, pWnd, nCtlColor);

 if(nCtlColor == CTLCOLOR_LISTBOX &&
 pWnd->GetDlgCtrlID() == IdFromRowCol(1,0))
 {
 // Pane 1,0 is a list box. Set the color of the text to be blue.
 pDC->SetBkColor(m_BkColor);
 pDC->SetTextColor(RGB(0,0,255));
 return (HBRUSH)m_hbrListBoxBkgnd.GetSafeHandle();
 }
 // TODO: Return a different brush if the default is not desired
 return hbr;
}

CSplitterWnd::IsChildPane

BOOL IsChildPane(
 CWnd* pWnd,
 int* pRow,
 int* pCol);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSplitterWnd::IsTracking

BOOL IsTracking();

Return ValueReturn Value

Determines whether pWnd is currently a child pane of this splitter window.

pWnd
A pointer to a CWnd object to be tested.

pRow
A pointer to an int in which to store row number.

pCol
A pointer to an int in which to store a column number.

If nonzero, pWnd is currently a child pane of this splitter window, and pRow and pCol are filled in with the
position of the pane in the splitter window. If pWnd is not a child pane of this splitter window, 0 is returned.

In Visual C++ versions prior to 6.0, this function was defined as

BOOL IsChildPane(CWnd* pWnd, int& row, int& col);

This version is now obsolete and should not be used.

Call this member function to determine if the splitter bar in the window is currently being moved.

Nonzero if a splitter operation is in progress; otherwise 0.

CSplitterWnd::OnDrawSplitter

virtual void OnDrawSplitter(
 CDC* pDC,
 ESplitType nType,
 const CRect& rect);

ParametersParameters

- `splitBox` The splitter drag box.

- `splitBar` The bar that appears between the two split windows.

- `splitIntersection` The intersection of the split windows. This element will not be called when running
on Windows 95/98.

- `splitBorder` The split window borders.

RemarksRemarks

CSplitterWnd::OnInvertTracker

virtual void OnInvertTracker(const CRect& rect);

ParametersParameters

RemarksRemarks

Renders an image of a split window.

pDC
A pointer to the device context in which to draw. If pDC is NULL, then CWnd::RedrawWindow is called by the
framework and no split window is drawn.

nType
A value of the enum ESplitType , which can be one of the following:

rect
A reference to a CRect object specifying the size and shape of the split windows.

This member function is called by the framework to draw and specify the exact characteristics of a splitter
window. Override OnDrawSplitter for advanced customization of the imagery for the various graphical
components of a splitter window. The default imagery is similar to the splitter in Microsoft Works for Windows
or Microsoft Windows 95/98, in that the intersections of the splitter bars are blended together.

For more on dynamic splitter windows, see "Splitter Windows" in the article Multiple Document Types, Views,
and Frame Windows, Technical Note 29, and the CSplitterWnd class overview.

Renders the image of a split window to be the same size and shape as the frame window.

rect
Reference to a CRect object specifying the tracking rectangle.

This member function is called by the framework during resizing of splitters. Override OnInvertTracker for
advanced customization of the imagery of the splitter window. The default imagery is similar to the splitter in
Microsoft Works for Windows or Microsoft Windows 95/98, in that the intersections of the splitter bars are
blended together.

CSplitterWnd::RecalcLayout

virtual void RecalcLayout();

RemarksRemarks

ExampleExample

CSplitterWnd::SetActivePane

virtual void SetActivePane(
 int row,
 int col,
 CWnd* pWnd = NULL);

ParametersParameters

RemarksRemarks

CSplitterWnd::SetColumnInfo

void SetColumnInfo(
 int col,
 int cxIdeal,
 int cxMin);

For more on dynamic splitter windows, see "Splitter Windows" in the article Multiple Document Types, Views,
and Frame Windows, Technical Note 29, and the CSplitterWnd class overview.

Call to redisplay the splitter window after adjusting row or column size.

Call this member function to correctly redisplay the splitter window after you have adjusted row and column
sizes with the SetRowInfo and SetColumnInfo member functions. If you change row and column sizes as part
of the creation process before the splitter window is visible, it is not necessary to call this member function.

The framework calls this member function whenever the user resizes the splitter window or moves a split.

See the example for CSplitterWnd::SetColumnInfo.

Sets a pane to be the active one in the frame.

row
If pWnd is NULL, specifies the row in the pane that will be active.

col
If pWnd is NULL, specifies the column in the pane that will be active.

pWnd
A pointer to a CWnd object. If NULL, the pane specified by row and col is set active. If not NULL, specifies the
pane that is set active.

This member function is called by the framework to set a pane as active when the user changes the focus to a
pane within the frame window. You can explicitly call SetActivePane to change the focus to the specified view.

Specify pane by providing either row and column, or by providing pWnd.

Call to set the specified column information.

ParametersParameters

RemarksRemarks

ExampleExample

void CChildFrame::OnSize(UINT nType, int cx, int cy)
{
 CMDIChildWnd::OnSize(nType, cx, cy);

 CRect rect;
 GetWindowRect(&rect);
 if(m_bSplitterCreated) // m_bSplitterCreated set in OnCreateClient
 {
 m_wndSplitter.SetColumnInfo(0, rect.Width()/2, 10);
 m_wndSplitter.SetColumnInfo(1, rect.Width()/2, 10);
 m_wndSplitter.RecalcLayout();
 }
}

CSplitterWnd::SetRowInfo

void SetRowInfo(
 int row,
 int cyIdeal,
 int cyMin);

ParametersParameters

RemarksRemarks

col
Specifies a splitter window column.

cxIdeal
Specifies an ideal width for the splitter window column in pixels.

cxMin
Specifies a minimum width for the splitter window column in pixels.

Call this member function to set a new minimum width and ideal width for a column. The column minimum
value determines when the column will be too small to be fully displayed.

When the framework displays the splitter window, it lays out the panes in columns and rows according to their
ideal dimensions, working from the upper-left to the lower-right corner of the splitter window's client area.

Call to set the specified row information.

row
Specifies a splitter window row.

cyIdeal
Specifies an ideal height for the splitter window row in pixels.

cyMin
Specifies a minimum height for the splitter window row in pixels.

Call this member function to set a new minimum height and ideal height for a row. The row minimum value
determines when the row will be too small to be fully displayed.

When the framework displays the splitter window, it lays out the panes in columns and rows according to their
ideal dimensions, working from the upper-left to the lower-right corner of the splitter window's client area.

CSplitterWnd::SetScrollStyle

void SetScrollStyle(DWORD dwStyle);

ParametersParameters

RemarksRemarks

CSplitterWnd::SplitColumn

virtual BOOL SplitColumn(int cxBefore);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSplitterWnd::SplitRow

virtual BOOL SplitRow(int cyBefore);

ParametersParameters

Return ValueReturn Value

Specifies the new scroll style for the splitter window's shared scroll-bar support.

dwStyle
The new scroll style for the splitter window's shared scroll-bar support, which can be one of the following
values:

WS_HSCROLL Create/show horizontal shared scroll bars.

WS_VSCROLL Create/show vertical shared scroll bars.

Once a scroll bar is created it will not be destroyed even if SetScrollStyle is called without that style; instead
those scroll bars are hidden. This allows the scroll bars to retain their state even though they are hidden. After
calling SetScrollStyle it is necessary to call RecalcLayout for all the changes to take effect.

Indicates where a frame window splits vertically.

cxBefore
The position, in pixels, before which the split occurs.

Nonzero if successful; otherwise 0.

This member function is called when a vertical splitter window is created. SplitColumn indicates the default
location where the split occurs.

SplitColumn is called by the framework to implement the logic of the dynamic splitter window (that is, if the
splitter window has the SPLS_DYNAMIC_SPLIT style). It can be customized, along with the virtual function
CreateView, to implement more advanced dynamic splitters.

Indicates where a frame window splits horizontally.

cyBefore
The position, in pixels, before which the split occurs.

Nonzero if successful; otherwise 0.

RemarksRemarks

CSplitterWnd::OnDraw

virtual void OnDraw(CDC* pDC);

ParametersParameters

RemarksRemarks

See also

This member function is called when a horizontal splitter window is created. SplitRow indicates the default
location where the split occurs.

SplitRow is called by the framework to implement the logic of the dynamic splitter window (that is, if the
splitter window has the SPLS_DYNAMIC_SPLIT style). It can be customized, along with the virtual function
CreateView, to implement more advanced dynamic splitters.

Called by the framework to draw the splitter window.

pDC
A pointer to a device context.

MFC Sample VIEWEX
CWnd Class
Hierarchy Chart
CView Class
CWnd Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CSplitterWndEx Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CSplitterWndEx : public CSplitterWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSplitterWndEx::CSplitterWndEx Default constructor.

CSplitterWndEx::~CSplitterWndEx Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSplitterWndEx::OnDrawSplitter Called by the framework to draw a splitter window. (Overrides
CSplitterWnd::OnDrawSplitter.)

Remarks

Inheritance Hierarchy

Requirements

Represents a customized splitter window.

Override the OnDrawSplitter method to customize the appearance of the graphical components of a splitter
window.

The CSplitterWndEx class is used together with the OnDrawSplitterBorder, OnDrawSplitterBox, and
OnFillSplitterBackground methods, which are implemented by a visual manager. To cause a visual manager to
draw a splitter window in your application, replace declarations of the CSplitterWnd class with the
CSplitterWndEx class. For frame window applications, the splitter window class is declared in the CMainFrame

class that is located in mainfrm.h. For an example, see the OutlookDemo sample in the Samples directory.

CObject

CCmdTarget

CWnd

CSplitterWnd

Header: afxsplitterwndex.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csplitterwndex-class.md

 CSplitterWndEx::OnDrawSplitter

virtual void OnDrawSplitter(
 CDC* pDC,
 ESplitType nType,
 const CRect& rect
);

ParametersParameters

RemarksRemarks

See also

Called by the framework to draw a splitter window.

pDC
[in] Pointer to the device context. If this parameter is NULL, the framework redraws the active window.

nType
[in] One of the CSplitterWnd::ESplitType enumeration values that specifies the splitter window element to draw.
Valid values are splitBox , splitBar , splitIntersection , and splitBorder .

rect
[in] A bounding rectangle that specifies the dimensions and location to draw the specified splitter window
element.

Hierarchy Chart
Classes
CSplitterWnd Class
CMFCVisualManager Class

CStatic Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
class CStatic : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CStatic::CStatic Constructs a CStatic object.

Public MethodsPublic Methods

NAME DESCRIPTION

CStatic::Create Creates the Windows static control and attaches it to the
CStatic object.

CStatic::DrawItem Override to draw an owner-drawn static control.

CStatic::GetBitmap Retrieves the handle of the bitmap previously set with
SetBitmap.

CStatic::GetCursor Retrieves the handle of the cursor image previously set with
SetCursor.

CStatic::GetEnhMetaFile Retrieves the handle of the enhanced metafile previously set
with SetEnhMetaFile.

CStatic::GetIcon Retrieves the handle of the icon previously set with SetIcon.

CStatic::SetBitmap Specifies a bitmap to be displayed in the static control.

CStatic::SetCursor Specifies a cursor image to be displayed in the static control.

CStatic::SetEnhMetaFile Specifies an enhanced metafile to be displayed in the static
control.

CStatic::SetIcon Specifies an icon to be displayed in the static control.

Remarks

Provides the functionality of a Windows static control.

A static control displays a text string, box, rectangle, icon, cursor, bitmap, or enhanced metafile. It can be used to

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cstatic-class.md

Inheritance Hierarchy

Requirements

CStatic::Create

virtual BOOL Create(
 LPCTSTR lpszText,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID = 0xffff);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

label, box, or separate other controls. A static control normally takes no input and provides no output; however, it
can notify its parent of mouse clicks if it's created with SS_NOTIFY style.

Create a static control in two steps. First, call the constructor to construct the CStatic object, then call the Create
member function to create the static control and attach it to the CStatic object.

If you create a CStatic object within a dialog box (through a dialog resource), the CStatic object is
automatically destroyed when the user closes the dialog box.

If you create a CStatic object within a window, you may also need to destroy it. A CStatic object created on
the stack within a window is automatically destroyed. If you create the CStatic object on the heap by using the
new function, you must call delete on the object to destroy it when you are done with it.

CObject

CCmdTarget

CWnd

CStatic

Header: afxwin.h

Creates the Windows static control and attaches it to the CStatic object.

lpszText
Specifies the text to place in the control. If NULL, no text will be visible.

dwStyle
Specifies the static control's window style. Apply any combination of static control styles to the control.

rect
Specifies the position and size of the static control. It can be either a RECT structure or a CRect object.

pParentWnd
Specifies the CStatic parent window, usually a CDialog object. It must not be NULL.

nID
Specifies the static control's control ID.

Nonzero if successful; otherwise 0.

ExampleExample

// This code can be placed in OnInitDialog
CStatic myStatic;

// Create a child static control that centers its text horizontally.
myStatic.Create(_T("my static"), WS_CHILD|WS_VISIBLE|SS_CENTER,
 CRect(10,10,150,50), pParentWnd);

CStatic::CStatic

CStatic();

ExampleExample

// Create a static object on the stack.
CStatic myStatic;

// Create a static object on the heap.
CStatic* pmyStatic = new CStatic;

CStatic::DrawItem

virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

Construct a CStatic object in two steps. First, call the constructor CStatic , and then call Create , which creates
the Windows static control and attaches it to the CStatic object.

Apply the following window styles to a static control:

WS_CHILD Always

WS_VISIBLE Usually

WS_DISABLED Rarely

If you're going to display a bitmap, cursor, icon, or metafile in the static control, you'll need to apply one of the
following static styles:

SS_BITMAP Use this style for bitmaps.

SS_ICON Use this style for cursors and icons.

SS_ENHMETAFILE Use this style for enhanced metafiles.

For cursors, bitmaps, or icons, you may also want to use the following style:

SS_CENTERIMAGE Use to center the image in the static control.

Constructs a CStatic object.

Called by the framework to draw an owner-drawn static control.

lpDrawItemStruct
A pointer to a DRAWITEMSTRUCT structure. The structure contains information about the item to be drawn

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct

RemarksRemarks

CStatic::GetBitmap

HBITMAP GetBitmap() const;

Return ValueReturn Value

ExampleExample

// Code such as this could be placed in the OnInitDialog callback.
// It creates two bitmap static controls on the heap, using members
// _m_pCStatic_A and _m_pCStatic_B to identify them so that they can
// be destroyed when no longer needed.

 CBitmap CBmp;
 CImage CImg;

 // Create a child bitmap static control and load it from a CBitmap object.
 _m_pCStatic_A = new CStatic;
 _m_pCStatic_A->Create(_T("A bitmap static control (A)"),
 WS_CHILD|WS_BORDER|WS_VISIBLE|SS_BITMAP|SS_CENTERIMAGE, CRect(16,16,64,64),
 pParentWnd);
 CBmp.LoadOEMBitmap(OBM_CLOSE); // Loads one of the default Windows bitmaps
 _m_pCStatic_A->SetBitmap(HBITMAP(CBmp));
 _m_pCStatic_A->ShowWindow(SW_SHOW);

 // Create a child bitmap static control and load it from a CImage object.
 _m_pCStatic_B = new CStatic;
 _m_pCStatic_B->Create(_T("A bitmap static control (B)"),
 WS_CHILD|WS_BORDER|WS_VISIBLE|SS_BITMAP|SS_CENTERIMAGE, CRect(90,16,138,64),
 pParentWnd);
 CImg.Load(_T("test.png"));
 if(_m_pCStatic_B->GetBitmap() == NULL)
 _m_pCStatic_B->SetBitmap(HBITMAP(CImg));

 /* Then, later:
 delete(_m_pCStatic_A);
 delete(_m_pCStatic_B);
 */

CStatic::GetCursor

HCURSOR GetCursor();

Return ValueReturn Value

ExampleExample

and the type of drawing required.

Override this function to implement drawing for an owner-drawn CStatic object (the control has the style
SS_OWNERDRAW).

Gets the handle of the bitmap, previously set with SetBitmap, that is associated with CStatic .

A handle to the current bitmap, or NULL if no bitmap has been set.

Gets the handle of the cursor, previously set with SetCursor, that is associated with CStatic .

A handle to the current cursor, or NULL if no cursor has been set.

CStatic myStatic;

// Create a child icon static control.
myStatic.Create(_T("my static"),
 WS_CHILD|WS_VISIBLE|SS_ICON|SS_CENTERIMAGE, CRect(10,10,150,50),
 pParentWnd);

// If no image is defined for the static control, define the image
// to the system arrow and question mark cursor.
if (myStatic.GetCursor() == NULL)
 myStatic.SetCursor(::LoadCursor(NULL, IDC_HELP));

CStatic::GetEnhMetaFile

HENHMETAFILE GetEnhMetaFile() const;

Return ValueReturn Value

ExampleExample

CStatic myStatic;

// Create a child enhanced metafile static control.
myStatic.Create(_T("my static"),
 WS_CHILD|WS_VISIBLE|SS_ENHMETAFILE|SS_CENTERIMAGE,
 CRect(10,10,150,50), pParentWnd);

// If no image is defined for the static control, define the image
// to be "myemf.emf."
if (myStatic.GetEnhMetaFile() == NULL)
 myStatic.SetEnhMetaFile(::GetEnhMetaFile(_T("myemf.emf")));

CStatic::GetIcon

HICON GetIcon() const;

Return ValueReturn Value

ExampleExample

Gets the handle of the enhanced metafile, previously set with SetEnhMetafile, that is associated with CStatic .

A handle to the current enhanced metafile, or NULL if no enhanced metafile has been set.

Gets the handle of the icon, previously set with SetIcon, that is associated with CStatic .

A handle to the current icon, or NULL if no icon has been set.

CStatic myStatic;

// Create a child icon static control.
myStatic.Create(_T("my static"),
 WS_CHILD|WS_VISIBLE|SS_ICON|SS_CENTERIMAGE, CRect(10,10,150,50),
 pParentWnd);

// If no icon is defined for the static control, define the icon
// to the system error icon.
if (myStatic.GetIcon() == NULL)
 myStatic.SetIcon(::LoadIcon(NULL, IDI_ERROR));

CStatic::SetBitmap

HBITMAP SetBitmap(HBITMAP hBitmap);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

MyStaticControl.SetBitmap(HBITMAP(MyBitmap));

ExampleExample

Associates a new bitmap with the static control.

hBitmap
Handle of the bitmap to be drawn in the static control.

The handle of the bitmap that was previously associated with the static control, or NULL if no bitmap was
associated with the static control.

The bitmap will be automatically drawn in the static control. By default, it will be drawn in the upper-left corner
and the static control will be resized to the size of the bitmap.

You can use various window and static control styles, including these:

SS_BITMAP Use this style always for bitmaps.

SS_CENTERIMAGE Use to center the image in the static control. If the image is larger than the static
control, it will be clipped. If it is smaller than the static control, the empty space around the image will be
filled by the color of the pixel in the upper left corner of the bitmap.

MFC provides the class CBitmap , which you can use when you have to do more with a bitmap image than
just call the Win32 function LoadBitmap . CBitmap , which contains one kind of GDI object, is often used in
cooperation with CStatic , which is a CWnd class that is used for displaying a graphic object as a static
control.

CImage is an ATL/MFC class that lets you more easily work with device independent bitmaps (DIB). For more
information, see CImage Class.

Typical usage is to give CStatic::SetBitmap a GDI object that is returned by the HBITMAP operator of a
CBitmap or CImage object. The code to do this resembles the following line.

The following example creates two CStatic objects on the heap. It then loads one with a system bitmap using
CBitmap::LoadOEMBitmap and the other from a file using CImage::Load .

// Code such as this could be placed in the OnInitDialog callback.
// It creates two bitmap static controls on the heap, using members
// _m_pCStatic_A and _m_pCStatic_B to identify them so that they can
// be destroyed when no longer needed.

 CBitmap CBmp;
 CImage CImg;

 // Create a child bitmap static control and load it from a CBitmap object.
 _m_pCStatic_A = new CStatic;
 _m_pCStatic_A->Create(_T("A bitmap static control (A)"),
 WS_CHILD|WS_BORDER|WS_VISIBLE|SS_BITMAP|SS_CENTERIMAGE, CRect(16,16,64,64),
 pParentWnd);
 CBmp.LoadOEMBitmap(OBM_CLOSE); // Loads one of the default Windows bitmaps
 _m_pCStatic_A->SetBitmap(HBITMAP(CBmp));
 _m_pCStatic_A->ShowWindow(SW_SHOW);

 // Create a child bitmap static control and load it from a CImage object.
 _m_pCStatic_B = new CStatic;
 _m_pCStatic_B->Create(_T("A bitmap static control (B)"),
 WS_CHILD|WS_BORDER|WS_VISIBLE|SS_BITMAP|SS_CENTERIMAGE, CRect(90,16,138,64),
 pParentWnd);
 CImg.Load(_T("test.png"));
 if(_m_pCStatic_B->GetBitmap() == NULL)
 _m_pCStatic_B->SetBitmap(HBITMAP(CImg));

 /* Then, later:
 delete(_m_pCStatic_A);
 delete(_m_pCStatic_B);
 */

CStatic::SetCursor

HCURSOR SetCursor(HCURSOR hCursor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Associates a new cursor image with the static control.

hCursor
Handle of the cursor to be drawn in the static control.

The handle of the cursor previously associated with the static control, or NULL if no cursor was associated with
the static control.

The cursor will be automatically drawn in the static control. By default, it will be drawn in the upper-left corner
and the static control will be resized to the size of the cursor.

You can use various window and static control styles, including the following:

SS_ICON Use this style always for cursors and icons.

SS_CENTERIMAGE Use to center in the static control. If the image is larger than the static control, it will
be clipped. If it is smaller than the static control, the empty space around the image will be filled with the
background color of the static control.

CStatic myStatic;

// Create a child icon static control.
myStatic.Create(_T("my static"),
 WS_CHILD|WS_VISIBLE|SS_ICON|SS_CENTERIMAGE, CRect(10,10,150,50),
 pParentWnd);

// If no image is defined for the static control, define the image
// to the system arrow and question mark cursor.
if (myStatic.GetCursor() == NULL)
 myStatic.SetCursor(::LoadCursor(NULL, IDC_HELP));

CStatic::SetEnhMetaFile

HENHMETAFILE SetEnhMetaFile(HENHMETAFILE hMetaFile);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CStatic myStatic;

// Create a child enhanced metafile static control.
myStatic.Create(_T("my static"),
 WS_CHILD|WS_VISIBLE|SS_ENHMETAFILE|SS_CENTERIMAGE,
 CRect(10,10,150,50), pParentWnd);

// If no image is defined for the static control, define the image
// to be "myemf.emf."
if (myStatic.GetEnhMetaFile() == NULL)
 myStatic.SetEnhMetaFile(::GetEnhMetaFile(_T("myemf.emf")));

CStatic::SetIcon

HICON SetIcon(HICON hIcon);

ParametersParameters

Associates a new enhanced metafile image with the static control.

hMetaFile
Handle of the enhanced metafile to be drawn in the static control.

The handle of the enhanced metafile previously associated with the static control, or NULL if no enhanced
metafile was associated with the static control.

The enhanced metafile will be automatically drawn in the static control. The enhanced metafile is scaled to fit the
size of the static control.

You can use various window and static control styles, including the following:

SS_ENHMETAFILE Use this style always for enhanced metafiles.

Associates a new icon image with the static control.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CStatic myStatic;

// Create a child icon static control.
myStatic.Create(_T("my static"),
 WS_CHILD|WS_VISIBLE|SS_ICON|SS_CENTERIMAGE, CRect(10,10,150,50),
 pParentWnd);

// If no icon is defined for the static control, define the icon
// to the system error icon.
if (myStatic.GetIcon() == NULL)
 myStatic.SetIcon(::LoadIcon(NULL, IDI_ERROR));

See also

hIcon
Handle of the icon to be drawn in the static control.

The handle of the icon previously associated with the static control, or NULL if no icon was associated with the
static control.

The icon will be automatically drawn in the static control. By default, it will be drawn in the upper-left corner and
the static control will be resized to the size of the icon.

You can use various window and static control styles, including the following:

SS_ICON Use this style always for cursors and icons.

SS_CENTERIMAGE Use to center in the static control. If the image is larger than the static control, it will
be clipped. If it is smaller than the static control, the empty space around the image will be filled with the
background color of the static control.

CWnd Class
Hierarchy Chart
CWnd Class
CButton Class
CComboBox Class
CEdit Class
CListBox Class
CScrollBar Class
CDialog Class

CStatusBar Class
3/5/2019 • 9 minutes to read • Edit Online

Syntax
class CStatusBar : public CControlBar

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CStatusBar::CStatusBar Constructs a CStatusBar object.

Public MethodsPublic Methods

NAME DESCRIPTION

CStatusBar::CommandToIndex Gets index for a given indicator ID.

CStatusBar::Create Creates the status bar, attaches it to the CStatusBar
object, and sets the initial font and bar height.

CStatusBar::CreateEx Creates a CStatusBar object with additional styles for the
embedded CStatusBarCtrl object.

CStatusBar::DrawItem Called when a visual aspect of an owner-draw status bar
control changes.

CStatusBar::GetItemID Gets indicator ID for a given index.

CStatusBar::GetItemRect Gets display rectangle for a given index.

CStatusBar::GetPaneInfo Gets indicator ID, style, and width for a given index.

CStatusBar::GetPaneStyle Gets indicator style for a given index.

CStatusBar::GetPaneText Gets indicator text for a given index.

CStatusBar::GetStatusBarCtrl Allows direct access to the underlying common control.

CStatusBar::SetIndicators Sets indicator IDs.

CStatusBar::SetPaneInfo Sets indicator ID, style, and width for a given index.

A control bar with a row of text output panes, or "indicators."

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cstatusbar-class.md

CStatusBar::SetPaneStyle Sets indicator style for a given index.

CStatusBar::SetPaneText Sets indicator text for a given index.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

The output panes commonly are used as message lines and as status indicators. Examples include the menu
help-message lines that briefly explain the selected menu command and the indicators that show the status of
the SCROLL LOCK, NUM LOCK, and other keys.

CStatusBar::GetStatusBarCtrl, a member function new to MFC 4.0, allows you to take advantage of the
Windows common control's support for status bar customization and additional functionality. CStatusBar

member functions give you most of the functionality of the Windows common controls; however, when you
call GetStatusBarCtrl , you can give your status bars even more of the characteristics of a Windows 95/98
status bar. When you call GetStatusBarCtrl , it will return a reference to a CStatusBarCtrl object. See
CStatusBarCtrl for more information about designing toolbars using Windows common controls. For more
general information about common controls, see Common Controls in the Windows SDK.

The framework stores indicator information in an array with the leftmost indicator at position 0. When you
create a status bar, you use an array of string IDs that the framework associates with the corresponding
indicators. You can then use either a string ID or an index to access an indicator.

By default, the first indicator is "elastic": it takes up the status-bar length not used by the other indicator panes,
so that the other panes are right-aligned.

To create a status bar, follow these steps:

1. Construct the CStatusBar object.

2. Call the Create (or CreateEx) function to create the status-bar window and attach it to the CStatusBar

object.

3. Call SetIndicators to associate a string ID with each indicator.

There are three ways to update the text in a status-bar pane:

1. Call CWnd::SetWindowText to update the text in pane 0 only.

2. Call CCmdUI::SetText in the status bar's ON_UPDATE_COMMAND_UI handler.

3. Call SetPaneText to update the text for any pane.

Call SetPaneStyle to update the style of a status-bar pane.

For more information on using CStatusBar , see the article Status Bar Implementation in MFC and Technical
Note 31 : Control Bars.

CObject

CCmdTarget

CWnd

CControlBar

https://docs.microsoft.com/windows/desktop/Controls/common-controls-intro

Requirements

CStatusBar::CommandToIndex

int CommandToIndex(UINT nIDFind) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStatusBar::Create

virtual BOOL Create(
 CWnd* pParentWnd,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | CBRS_BOTTOM,
 UINT nID = AFX_IDW_STATUS_BAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStatusBar::CreateEx

CStatusBar

Header: afxext.h

Gets the indicator index for a given ID.

nIDFind
String ID of the indicator whose index is to be retrieved.

The index of the indicator if successful; -1 if not successful.

The index of the first indicator is 0.

Creates a status bar (a child window) and associates it with the CStatusBar object.

pParentWnd
Pointer to the CWnd object whose Windows window is the parent of the status bar.

dwStyle
The status-bar style. In addition to the standard Windows styles, these styles are supported.

CBRS_TOP Control bar is at top of frame window.

CBRS_BOTTOM Control bar is at bottom of frame window.

CBRS_NOALIGN Control bar is not repositioned when the parent is resized.

nID
The toolbar's child-window ID.

Nonzero if successful; otherwise 0.

Also sets the initial font and sets the status bar's height to a default value.

virtual BOOL CreateEx(
 CWnd* pParentWnd,
 DWORD dwCtrlStyle = 0,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | CBRS_BOTTOM,
 UINT nID = AFX_IDW_STATUS_BAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStatusBar::CStatusBar

CStatusBar();

CStatusBar::DrawItem

virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

Call this function to create a status bar (a child window) and associate it with the CStatusBar object.

pParentWnd
Pointer to the CWnd object whose Windows window is the parent of the status bar.

dwCtrlStyle
Additional styles for the creation of the embedded CStatusBarCtrl object. The default specifies a status bar
without a sizing grip or tooltip support. Status bar styles supported are:

SBARS_SIZEGRIP The status bar control includes a sizing grip at the right end of the status bar. A
sizing grip is similar to a sizing border ; it is a rectangular area that the user can click and drag to resize
the parent window.

SBT_TOOLTIPS The status bar supports tooltips.

For details on these styles, see Settings for the CStatusBarCtrl.

dwStyle
The status bar style. The default specifies that a visible status bar be created at the bottom of the frame
window. Apply any combination of status bar control styles listed in Window Styles and CDialogBar::Create.
However, this parameter should always include the WS_CHILD and WS_VISIBLE styles.

nID
The status bar's child-window ID.

Nonzero if successful; otherwise 0.

This function also sets the initial font and sets the status bar's height to a default value.

Use CreateEx , instead of Create, when certain styles need to be present during the creation of the embedded
status bar control. For example, set dwCtrlStyle to SBT_TOOLTIPS to display tooltips in a status bar object.

Constructs a CStatusBar object, creates a default status-bar font if necessary, and sets the font characteristics
to default values.

This member function is called by the framework when a visual aspect of an owner-drawn status bar changes.

RemarksRemarks

CStatusBar::GetItemID

UINT GetItemID(int nIndex) const;

ParametersParameters

Return ValueReturn Value

CStatusBar::GetItemRect

void GetItemRect(
 int nIndex,
 LPRECT lpRect) const;

ParametersParameters

RemarksRemarks

CStatusBar::GetPaneInfo

void GetPaneInfo(
 int nIndex,
 UINT& nID,
 UINT& nStyle,
 int& cxWidth) const;

ParametersParameters

lpDrawItemStruct
A pointer to a DRAWITEMSTRUCT structure that contains information about the type of drawing required.

The itemAction member of the DRAWITEMSTRUCT structure defines the drawing action that is to be performed.
Override this member function to implement drawing for an owner-draw CStatusBar object. The application
should restore all graphics device interface (GDI) objects selected for the display context supplied in
lpDrawItemStruct before the termination of this member function.

Returns the ID of the indicator specified by nIndex.

nIndex
Index of the indicator whose ID is to be retrieved.

The ID of the indicator specified by nIndex.

Copies the coordinates of the indicator specified by nIndex into the structure pointed to by lpRect.

nIndex
Index of the indicator whose rectangle coordinates are to be retrieved.

lpRect
Points to a RECT structure or a CRect object that will receive the coordinates of the indicator specified by
nIndex.

Coordinates are in pixels relative to the upper-left corner of the status bar.

Sets nID, nStyle, and cxWidth to the ID, style, and width of the indicator pane at the location specified by
nIndex.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

CStatusBar::GetPaneStyle

UINT GetPaneStyle(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStatusBar::GetPaneText

CString GetPaneText(int nIndex) const; void GetPaneText(int nIndex, CString& rString) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStatusBar::GetStatusBarCtrl

nIndex
Index of the pane whose information is to be retrieved.

nID
Reference to a UINT that is set to the ID of the pane.

nStyle
Reference to a UINT that is set to the style of the pane.

cxWidth
Reference to an integer that is set to the width of the pane.

Call this member function to retrieve the style of a status bar's pane.

nIndex
Index of the pane whose style is to be retrieved.

The style of the status-bar pane specified by nIndex.

A pane's style determines how the pane appears.

For a list of styles available for status bars, see Create.

Call this member function to retrieve the text that appears in a status-bar pane.

nIndex
Index of the pane whose text is to be retrieved.

rString
A reference to a CString object that contains the text to be retrieved.

A CString object containing the pane's text.

The second form of this member function fills a CString object with the string text.

This member function allows direct access to the underlying common control.

CStatusBarCtrl& GetStatusBarCtrl() const;

Return ValueReturn Value

RemarksRemarks

CStatusBar::SetIndicators

BOOL SetIndicators(
 const UINT* lpIDArray,
 int nIDCount);

ParametersParameters

Return ValueReturn Value

CStatusBar::SetPaneInfo

void SetPaneInfo(
 int nIndex,
 UINT nID,
 UINT nStyle,
 int cxWidth);

ParametersParameters

Contains a reference to a CStatusBarCtrl object.

Use GetStatusBarCtrl to take advantage of the functionality of the Windows status-bar common control, and
to take advantage of the support CStatusBarCtrl provides for status-bar customization. For example, by using
the common control, you can specify a style that includes a sizing grip on the status bar, or you can specify a
style to have the status bar appear at the top of the parent window's client area.

For more general information about common controls, See Common Controls in the Windows SDK.

Sets each indicator's ID to the value specified by the corresponding element of the array lpIDArray, loads the
string resource specified by each ID, and sets the indicator's text to the string.

lpIDArray
Pointer to an array of IDs.

nIDCount
Number of elements in the array pointed to by lpIDArray.

Nonzero if successful; otherwise 0.

Sets the specified indicator pane to a new ID, style, and width.

nIndex
Index of the indicator pane whose style is to be set.

nID
New ID for the indicator pane.

nStyle
New style for the indicator pane.

cxWidth
New width for the indicator pane.

https://docs.microsoft.com/windows/desktop/Controls/common-controls-intro

RemarksRemarks

CStatusBar::SetPaneStyle

void SetPaneStyle(
 int nIndex,
 UINT nStyle);

ParametersParameters

RemarksRemarks

CStatusBar::SetPaneText

BOOL SetPaneText(
 int nIndex,
 LPCTSTR lpszNewText,
 BOOL bUpdate = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The following indicator styles are supported:

SBPS_NOBORDERS No 3-D border around the pane.

SBPS_POPOUT Reverse border so that text "pops out."

SBPS_DISABLED Do not draw text.

SBPS_STRETCH Stretch pane to fill unused space. Only one pane per status bar can have this style.

SBPS_NORMAL No stretch, borders, or pop-out.

Call this member function to set the style of a status bar's pane.

nIndex
Index of the pane whose style is to be set.

nStyle
Style of the pane whose style is to be set.

A pane's style determines how the pane appears.

For a list of styles available for status bars, see SetPaneInfo.

Call this member function to set the pane text to the string pointed to by lpszNewText.

nIndex
Index of the pane whose text is to be set.

lpszNewText
Pointer to the new pane text.

bUpdate
If TRUE, the pane is invalidated after the text is set.

Nonzero if successful; otherwise 0.

After you call SetPaneText , you must add a UI update handler to display the new text in the status bar.

ExampleExample

//Sets and displays text for pane index 3 and id ID_INDICATOR_SCRL
m_wndStatusBar.SetPaneText(3, _T("My New Status Bar Text"), TRUE);

//UI handler in the message map updates the status bar text:
ON_UPDATE_COMMAND_UI(ID_INDICATOR_SCRL, &CMainFrame::OnUpdatePane)

void CMainFrame::OnUpdatePane(CCmdUI* pCmdUI)
{
 pCmdUI->Enable();
}

See also
MFC Sample CTRLBARS
MFC Sample DLGCBR32
CControlBar Class
Hierarchy Chart
CStatusBarCtrl Class
CControlBar Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CStatusBarCtrl Class
3/5/2019 • 13 minutes to read • Edit Online

Syntax
class CStatusBarCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CStatusBarCtrl::CStatusBarCtrl Constructs a CStatusBarCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CStatusBarCtrl::Create Creates a status bar control and attaches it to a
CStatusBarCtrl object.

CStatusBarCtrl::CreateEx Creates a status bar control with the specified Windows
extended styles and attaches it to a CStatusBarCtrl

object.

CStatusBarCtrl::DrawItem Called when a visual aspect of an owner-draw status bar
control changes.

CStatusBarCtrl::GetBorders Retrieves the current widths of the horizontal and vertical
borders of a status bar control.

CStatusBarCtrl::GetIcon Retrieves the icon for a part (also known as a pane) in the
current status bar control.

CStatusBarCtrl::GetParts Retrieves a count of the parts in a status bar control.

CStatusBarCtrl::GetRect Retrieves the bounding rectangle of a part in a status bar
control.

CStatusBarCtrl::GetText Retrieves the text from the given part of a status bar
control.

CStatusBarCtrl::GetTextLength Retrieve the length, in characters, of the text from the given
part of a status bar control.

CStatusBarCtrl::GetTipText Retrieves the tooltip text for a pane in a status bar.

Provides the functionality of the Windows common status bar control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cstatusbarctrl-class.md

CStatusBarCtrl::IsSimple Checks a status window control to determine if it is in
simple mode.

CStatusBarCtrl::SetBkColor Sets the background color in a status bar.

CStatusBarCtrl::SetIcon Sets the icon for a pane in a status bar.

CStatusBarCtrl::SetMinHeight Sets the minimum height of a status bar control's drawing
area.

CStatusBarCtrl::SetParts Sets the number of parts in a status bar control and the
coordinate of the right edge of each part.

CStatusBarCtrl::SetSimple Specifies whether a status bar control displays simple text or
displays all control parts set by a previous call to SetParts

.

CStatusBarCtrl::SetText Sets the text in the given part of a status bar control.

CStatusBarCtrl::SetTipText Sets the tooltip text for a pane in a status bar.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CStatusBarCtrl::Create

A "status bar control" is a horizontal window, usually displayed at the bottom of a parent window, in which an
application can display various kinds of status information. The status bar control can be divided into parts to
display more than one type of information.

This control (and therefore the CStatusBarCtrl class) is available only to programs running under Windows
95/98 and Windows NT version 3.51 and later.

For more information on using CStatusBarCtrl , see Controls and Using CStatusBarCtrl.

CObject

CCmdTarget

CWnd

CStatusBarCtrl

Header: afxcmn.h

Creates a status bar control and attaches it to a CStatusBarCtrl object.

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

VERIFY(m_wndSBC.Create(WS_CHILD|WS_VISIBLE|CCS_BOTTOM|SBARS_SIZEGRIP,
 CRect(0,0,0,0), this, IDC_STATUSBARCTRL));

CStatusBarCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

dwStyle
Specifies the status bar control's style. Apply any combination of status bar control styles listed in Common
Control Styles in the Windows SDK. This parameter must include the WS_CHILD style. It should also include
the WS_VISIBLE style.

rect
Specifies the status bar control's size and position. It can be either a CRect object or a RECT structure.

pParentWnd
Specifies the status bar control's parent window, usually a CDialog . It must not be NULL.

nID
Specifies the status bar control's ID.

Nonzero if successful; otherwise zero.

You construct a CStatusBarCtrl in two steps. First, call the constructor, and then call Create , which creates the
status bar control and attaches it to the CStatusBarCtrl object.

The default position of a status window is along the bottom of the parent window, but you can specify the
CCS_TOP style to have it appear at the top of the parent window's client area. You can specify the
SBARS_SIZEGRIP style to include a sizing grip at the right end of the status window. Combining the
CCS_TOP and SBARS_SIZEGRIP styles is not recommended, because the resulting sizing grip is not
functional even though the system draws it in the status window.

To create a status bar with extended window styles, call CStatusBarCtrl::CreateEx instead of Create .

Creates a control (a child window) and associates it with the CStatusBarCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the

https://docs.microsoft.com/windows/desktop/Controls/common-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CStatusBarCtrl::CStatusBarCtrl

CStatusBarCtrl();

CStatusBarCtrl::DrawItem

virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

RemarksRemarks

CStatusBarCtrl::GetBorders

dwExStyle parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the status bar control's style. Apply any combination of status bar control styles listed in Common
Control Styles in the Windows SDK. This parameter must include the WS_CHILD style. It should also include
the WS_VISIBLE style.

rect
A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

Constructs a CStatusBarCtrl object.

Called by the framework when a visual aspect of an owner-draw status bar control changes.

lpDrawItemStruct
A long pointer to a DRAWITEMSTRUCT structure that contains information about the type of drawing
required.

The itemAction member of the DRAWITEMSTRUCT structure defines the drawing action that is to be performed.

By default, this member function does nothing. Override this member function to implement drawing for an
owner-draw CStatusBarCtrl object.

The application should restore all graphics device interface (GDI) objects selected for the display context
supplied in lpDrawItemStruct before this member function terminates.

Retrieves the status bar control's current widths of the horizontal and vertical borders and of the space
between rectangles.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/common-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct

BOOL GetBorders(int* pBorders) const;

BOOL GetBorders(
 int& nHorz,
 int& nVert,
 int& nSpacing) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

RECT rectPane1;
VERIFY(m_wndSBC.GetRect(1, &rectPane1));

int borderArray[3];
VERIFY(m_wndSBC.GetBorders(borderArray));

int nHorz, nVert, nSpacing;
VERIFY(m_wndSBC.GetBorders(nHorz, nVert, nSpacing));

CStatusBarCtrl::GetIcon

HICON GetIcon(int iPart) const;

ParametersParameters

PARAMETER DESCRIPTION

iPart [in] The zero-based index of the part that contains the icon
to be retrieved. If this parameter is -1, the status bar is
assumed to be a simple mode status bar.

Return ValueReturn Value

pBorders
Address of an integer array having three elements. The first element receives the width of the horizontal
border, the second receives the width of the vertical border, and the third receives the width of the border
between rectangles.

nHorz
Reference to an integer that receives the width of the horizontal border.

nVert
Reference to an integer that receives the width of the vertical border.

nSpacing
Reference to an integer that receives the width of the border between rectangles.

Nonzero if successful; otherwise zero.

These borders determine the spacing between the outside edge of the control and the rectangles within the
control that contain text.

Retrieves the icon for a part (also known as a pane) in the current status bar control.

RemarksRemarks

ExampleExample

public:
 CStatusBarCtrl m_statusBar;

ExampleExample

// Get the icon from pane 1 and set it in panes 2 and 3.
HICON hIcon = m_statusBar.GetIcon(0);
m_statusBar.SetIcon(1, hIcon);
m_statusBar.SetIcon(2, hIcon);

CStatusBarCtrl::GetParts

int GetParts(
 int nParts,
 int* pParts) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

The handle to the icon if the method successful; otherwise, NULL.

This method sends the SB_GETICON message, which is described in the Windows SDK.

A status bar control consists of a row of text output panes, which are also known as parts. For more
information about the status bar, see Status Bar Implementation in MFC and Setting the Mode of a
CStatusBarCtrl Object.

The following code example defines a variable, m_statusBar , that is used to access the current status bar
control. This variable is used in the next example.

The following code example copies an icon to two panes of the current status bar control. In an earlier section
of the code example we created a status bar control with three panes and then added an icon to the first pane.
This example retrieves the icon from the first pane and then adds it to the second and third pane.

Retrieves a count of the parts in a status bar control.

nParts
Number of parts for which to retrieve coordinates. If this parameter is greater than the number of parts in the
control, the message retrieves coordinates for existing parts only.

pParts
Address of an integer array having the same number of elements as the number of parts specified by nParts.
Each element in the array receives the client coordinate of the right edge of the corresponding part. If an
element is set to - 1, the position of the right edge for that part extends to the right edge of the status bar.

The number of parts in the control if successful, or zero otherwise.

This member function also retrieves the coordinate of the right edge of the given number of parts.

https://docs.microsoft.com/windows/desktop/Controls/sb-geticon

int pParts[2];

int nParts = m_wndSBC.GetParts(2, pParts);

CStatusBarCtrl::GetRect

BOOL GetRect(
 int nPane,
 LPRECT lpRect) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CRect rectPane1;

VERIFY(m_wndSBC.GetRect(1, &rectPane1));

CStatusBarCtrl::GetText

CString GetText(
 int nPane,
 int* pType = NULL) const;

int GetText(
 LPCTSTR lpszText,
 int nPane,
 int* pType = NULL) const;

ParametersParameters

Retrieves the bounding rectangle of a part in a status bar control.

nPane
Zero-based index of the part whose bounding rectangle is to be retrieved.

lpRect
Address of a RECT structure that receives the bounding rectangle.

Nonzero if successful; otherwise zero.

Retrieves the text from the given part of a status bar control.

lpszText
Address of the buffer that receives the text. This parameter is a null-terminated string.

nPane
Zero-based index of the part from which to retrieve text.

pType
Pointer to an integer that receives the type information. The type can be one of these values:

0 The text is drawn with a border to appear lower than the plane of the status bar.

SBT_NOBORDERS The text is drawn without borders.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

Return ValueReturn Value

ExampleExample

int nType;
TCHAR* pszPaneOneText;

pszPaneOneText = new TCHAR[m_wndSBC.GetTextLength(1, &nType) + 1];
int nTextLength = m_wndSBC.GetText(pszPaneOneText, 1, &nType);

switch(nType)
{
 case 0:
 // Text is drawn with a border to appear lower than the
 // plane of the status bar
 break;
 case SBT_NOBORDERS:
 // text is drawn without borders
 break;
 case SBT_OWNERDRAW:
 // Text is drawn by the parent window
 break;
 case SBT_POPOUT:
 // Text is drawn with a border to appear higher than the
 // plane of the status bar
 break;
}

delete pszPaneOneText;

CStatusBarCtrl::GetTextLength

int GetTextLength(
 int nPane,
 int* pType = NULL) const;

ParametersParameters

Return ValueReturn Value

SBT_POPOUT The text is drawn with a border to appear higher than the plane of the status bar.

SBT_OWNERDRAW If the text has the SBT_OWNERDRAW drawing type, pType receives this message
and returns the 32-bit value associated with the text instead of the length and operation type.

The length, in characters, of the text or a CString containing the current text.

Retrieves the length, in characters, of the text from the given part of a status bar control.

nPane
Zero-based index of the part from which to retrieve text.

pType
Pointer to an integer that receives the type information. The type can be one of these values:

0 The text is drawn with a border to appear lower than the plane of the status bar.

SBT_NOBORDERS The text is drawn without borders.

SBT_OWNERDRAW The text is drawn by the parent window.

SBT_POPOUT The text is drawn with a border to appear higher than the plane of the status bar.

The length, in characters, of the text.

ExampleExample

int nType;
int nLength = m_wndSBC.GetTextLength(0, &nType);

switch(nType)
{
 case 0:
 // Text is drawn with a border to appear lower than the
 // plane of the status bar
 break;
 case SBT_NOBORDERS:
 // text is drawn without borders
 break;
 case SBT_OWNERDRAW:
 // Text is drawn by the parent window
 break;
 case SBT_POPOUT:
 // Text is drawn with a border to appear higher than the
 // plane of the status bar
 break;
}

CStatusBarCtrl::GetTipText

CString GetTipText(int nPane) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CString csPane0TipText = m_wndSBC.GetTipText(0);

CStatusBarCtrl::IsSimple

BOOL IsSimple() const;

Return ValueReturn Value

RemarksRemarks

Retrieves the tooltip text for a pane in a status bar.

nPane
The zero-based index of status bar pane to receive the tooltip text.

A CString object containing the text to be used in the tooltip.

This member function implements the behavior of the Win32 message SB_GETTIPTEXT, as described in the
Windows SDK.

Checks a status window control to determine if it is in simple mode.

Nonzero if the status window control is in simple mode; otherwise zero.

This member function implements the behavior of the Win32 message SB_ISSIMPLE, as described in the

https://docs.microsoft.com/windows/desktop/Controls/sb-gettiptext
https://docs.microsoft.com/windows/desktop/Controls/sb-issimple

CStatusBarCtrl::SetBkColor

COLORREF SetBkColor(COLORREF cr);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

m_wndSBC.SetBkColor(RGB(0,0,250));

HICON hIcon = AfxGetApp()->LoadIcon(IDI_PANE_0_ICON);
VERIFY(hIcon);
VERIFY(m_wndSBC.SetIcon(0, hIcon));

CStatusBarCtrl::SetIcon

BOOL SetIcon(
 int nPane,
 HICON hIcon);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Windows SDK.

Sets the background color in a status bar.

cr
COLORREF value that specifies the new background color. Specify the CLR_DEFAULT value to cause the
status bar to use its default background color.

A COLORREF value that represents the previous default background color.

This member function implements the behavior of the Win32 message SB_SETBKCOLOR, as described in the
Windows SDK.

Sets the icon for a pane in a status bar.

nPane
The zero-based index of the pane that will receive the icon. If this parameter is -1, the status bar is assumed to
be a simple status bar.

hIcon
Handle to the icon to be set. If this value is NULL, the icon is removed from the part.

Nonzero if successful; otherwise zero.

This member function implements the behavior of the Win32 message SB_SETICON, as described in the
Windows SDK.

See the example for CStatusBarCtrl::SetBkColor.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/sb-setbkcolor
https://docs.microsoft.com/windows/desktop/Controls/sb-seticon

CStatusBarCtrl::SetMinHeight

void SetMinHeight(int nMin);

ParametersParameters

RemarksRemarks

ExampleExample

m_wndSBC.SetMinHeight(40);

CStatusBarCtrl::SetParts

BOOL SetParts(
 int nParts,
 int* pWidths);

ParametersParameters

Return ValueReturn Value

ExampleExample

const int c_nParts = 4;
CRect rect;

m_wndSBC.GetClientRect(&rect);
int aWidths[c_nParts] = { rect.right-300, rect.right-200, rect.right-100,
 -1 };

VERIFY(m_wndSBC.SetParts(c_nParts, aWidths));

CStatusBarCtrl::SetSimple

Sets the minimum height of a status bar control's drawing area.

nMin
Minimum height, in pixels, of the control.

The minimum height is the sum of nMin and twice the width, in pixels, of the vertical border of the status bar
control.

Sets the number of parts in a status bar control and the coordinate of the right edge of each part.

nParts
Number of parts to set. The number of parts cannot be greater than 255.

pWidths
Address of an integer array having the same number of elements as parts specified by nParts. Each element in
the array specifies the position, in client coordinates, of the right edge of the corresponding part. If an element
is - 1, the position of the right edge for that part extends to the right edge of the control.

Nonzero if successful; otherwise zero.

Specifies whether a status bar control displays simple text or displays all control parts set by a previous call to
SetParts.

BOOL SetSimple(BOOL bSimple = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStatusBarCtrl::SetText

BOOL SetText(
 LPCTSTR lpszText,
 int nPane,
 int nType);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

VERIFY(m_wndSBC.SetText(_T("Text For Pane 1"), 1, 0));

CStatusBarCtrl::SetTipText

bSimple
[in] Display-type flag. If this parameter is TRUE, the control displays simple text; if it is FALSE, it displays
multiple parts.

Always returns 0.

If your application changes the status bar control from non-simple to simple, or vice versa, the system
immediately redraws the control.

Sets the text in the given part of a status bar control.

lpszText
Address of a null-terminated string specifying the text to set. If nType is SBT_OWNERDRAW, lpszText
represents 32 bits of data.

nPane
Zero-based index of the part to set. If this value is 255, the status bar control is assumed to be a simple control
having only one part.

nType
Type of drawing operation. See SB_SETTEXT message for a list of possible values.

Nonzero if successful; otherwise zero.

The message invalidates the portion of the control that has changed, causing it to display the new text when
the control next receives the WM_PAINT message.

Sets the tooltip text for a pane in a status bar.

https://docs.microsoft.com/windows/desktop/Controls/sb-settext

void SetTipText(
 int nPane,
 LPCTSTR pszTipText);

ParametersParameters

RemarksRemarks

ExampleExample

m_wndSBC.SetTipText(0, _T("This is Pane 0"));

See also

nPane
The zero-based index of status bar pane to receive the tooltip text.

pszTipText
A pointer to a string containing the tooltip text.

This member function implements the behavior of the Win32 message SB_SETTIPTEXT, as described in the
Windows SDK.

CWnd Class
Hierarchy Chart
CToolBarCtrl Class

https://docs.microsoft.com/windows/desktop/Controls/sb-settiptext

CStdioFile Class
3/4/2019 • 6 minutes to read • Edit Online

Syntax
class CStdioFile : public CFile

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CStdioFile::CStdioFile Constructs a CStdioFile object from a path or file pointer.

Public MethodsPublic Methods

NAME DESCRIPTION

CStdioFile::Open Overloaded. Open is designed for use with the default
CStdioFile constructor (Overrides CFile::Open).

CStdioFile::ReadString Reads a single line of text.

CStdioFile::Seek Positions the current file pointer.

CStdioFile::WriteString Writes a single line of text.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CStdioFile::m_pStream Contains a pointer to an open file.

Remarks

Represents a C run-time stream file as opened by the run-time function fopen.

Stream files are buffered and can be opened in either text mode (the default) or binary mode.

Text mode provides special processing for carriage return-linefeed pairs. When you write a newline character
(0x0A) to a text-mode CStdioFile object, the byte pair (0x0D, 0x0A) is sent to the file. When you read, the byte
pair (0x0D, 0x0A) is translated to a single 0x0A byte.

The CFile functions Duplicate, LockRange, and UnlockRange are not supported for CStdioFile .

If you call these functions on a CStdioFile , you will get a CNotSupportedException.

For more information on using CStdioFile , see the articles Files in MFC and File Handling in the Run-Time
Library Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cstdiofile-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/fopen-wfopen
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/file-handling

Inheritance Hierarchy

Requirements

CStdioFile::CStdioFile

CStdioFile();
CStdioFile(CAtlTransactionManager* pTM);
 CStdioFile(FILE* pOpenStream);

CStdioFile(
 LPCTSTR lpszFileName,
 UINT nOpenFlags);

CStdioFile(
 LPCTSTR lpszFileName,
 UINT nOpenFlags,
 CAtlTransactionManager* pTM);

ParametersParameters

RemarksRemarks

CObject

CFile

CStdioFile

Header: afx.h

Constructs and initializes a CStdioFile object.

pOpenStream
Specifies the file pointer returned by a call to the C run-time function fopen.

lpszFileName
Specifies a string that is the path to the desired file. The path can be relative or absolute.

nOpenFlags
Specifies options for file creation, file sharing, and file access modes. You can specify multiple options by using
the bitwise OR (|) operator.

One file access mode option is required; other modes are optional. See CFile::CFile for a list of mode options and
other flags. In MFC version 3.0 and later, share flags are allowed.

pTM
Pointer to CAtlTransactionManager object.

The default constructor does not attach a file to the CStdioFile object. When using this constructor, you must
use the CStdioFile::Open method to open a file and attach it to the CStdioFile object.

The single-parameter constructor attaches an open file stream to the CStdioFile object. Allowed pointer values
include the predefined input/output file pointers stdin, stdout, or stderr.

The two-parameter constructor creates a CStdioFile object and opens the corresponding file with the given
path.

If you pass NULL for either pOpenStream or lpszFileName, the constructor throws a CInvalidArgException* .

If the file cannot be opened or created, the constructor throws a CFileException* .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/fopen-wfopen

ExampleExample

TCHAR* pFileName = _T("CStdio_File.dat");
CStdioFile f1;
if(!f1.Open(pFileName, CFile::modeCreate | CFile::modeWrite
 | CFile::typeText))
{
 TRACE(_T("Unable to open file\n"));
}

CStdioFile f2(stdout);
try
{
 CStdioFile f3(pFileName,
 CFile::modeCreate | CFile::modeWrite | CFile::typeText);
}
catch(CFileException* pe)
{
 TRACE(_T("File could not be opened, cause = %d\n"),
 pe->m_cause);
 pe->Delete();
}

CStdioFile::m_pStream

FILE* m_pStream;

RemarksRemarks

CStdioFile::Open

virtual BOOL Open(
 LPCTSTR lpszFileName,
 UINT nOpenFlags,
 CFileException* pError = NULL);

virtual BOOL Open(
 LPCTSTR lpszFileName,
 UINT nOpenFlags,
 CAtlTransactionManager* pTM,
 CFileException* pError = NULL);

ParametersParameters

The m_pStream data member is the pointer to an open file as returned by the C run-time function fopen .

It is NULL if the file has never been opened or has been closed.

Overloaded. Open is designed for use with the default CStdioFile constructor.

lpszFileName
A string that is the path to the desired file. The path can be relative or absolute.

nOpenFlags
Sharing and access mode. Specifies the action to take when opening the file. You can combine options by using
the bitwise-OR (|) operator. One access permission and one share option are required; the modeCreate and
modeNoInherit modes are optional.

pError
A pointer to an existing file-exception object that will receive the status of a failed operation.

Return ValueReturn Value

RemarksRemarks

CStdioFile::ReadString

virtual LPTSTR ReadString(
 LPTSTR lpsz,
 UINT nMax);

virtual BOOL ReadString(CString& rString);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CStdioFile f(stdin);
TCHAR buf[100];

f.ReadString(buf, 99);

CStdioFile::Seek

pTM
Pointer to a CAtlTransactionManager object.

TRUE if successful; otherwise FALSE.

Reads text data into a buffer, up to a limit of nMax-1 characters, from the file associated with the CStdioFile

object.

lpsz
Specifies a pointer to a user-supplied buffer that will receive a null-terminated text string.

nMax
Specifies the maximum number of characters to read, not counting the terminating null character.

rString
A reference to a CString object that will contain the string when the function returns.

A pointer to the buffer containing the text data. NULL if end-of-file was reached without reading any data; or if
boolean, FALSE if end-of-file was reached without reading any data.

Reading is stopped by the first newline character. If, in that case, fewer than nMax-1 characters have been read, a
newline character is stored in the buffer. A null character ('\0') is appended in either case.

CFile::Read is also available for text-mode input, but it does not terminate on a carriage return-linefeed pair.

The CString version of this function removes the '\n' if present; the LPTSTR version does not.

Repositions the pointer in a previously opened file.

virtual ULONGLONG Seek(
 LONGLONG lOff,
 UINT nFrom);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CStdioFile cfile(_T("Stdio_Seek_File.dat"), CFile::modeWrite |
 CFile::modeCreate);
LONGLONG lOff = 1000;
ULONGLONG lActual = cfile.Seek(lOff, CFile::begin);

CStdioFile::WriteString

virtual void WriteString(LPCTSTR lpsz);

ParametersParameters

RemarksRemarks

lOff
Number of bytes to move the pointer.

nFrom
Pointer movement mode. Must be one of the following values:

CFile::begin : Move the file pointer lOff bytes forward from the beginning of the file.

CFile::current : Move the file pointer lOff bytes from the current position in the file.

CFile::end : Move the file pointer lOff bytes from the end of the file. Note that lOff must be negative to
seek into the existing file; positive values will seek past the end of the file.

If the requested position is legal, Seek returns the new byte offset from the beginning of the file. Otherwise, the
return value is undefined and a CFileException object is thrown.

The Seek function permits random access to a file's contents by moving the pointer a specified amount,
absolutely or relatively. No data is actually read during the seek. If the requested position is larger than the size
of the file, the file length will be extended to that position, and no exception will be thrown.

When a file is opened, the file pointer is positioned at offset 0, the beginning of the file.

This implementation of Seek is based on the Run-Time Library (CRT) function fseek . There are several limits
on the usage of Seek on streams opened in text mode. For more information, see fseek, _fseeki64.

The following example shows how to use Seek to move the pointer 1000 bytes from the beginning of the
cfile file. Note that Seek does not read data, so you must subsequently call CStdioFile::ReadString to read

data.

Writes data from a buffer to the file associated with the CStdioFile object.

lpsz
Specifies a pointer to a buffer that contains a null-terminated string.

The terminating null character (\0) is not written to the file. This method writes newline characters in lpsz to

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/fseek-fseeki64

ExampleExample

CStdioFile f(stdout);
TCHAR buf[] = _T("test string");

f.WriteString(buf);

See also

the file as a carriage return/linefeed pair.

If you want to write data that is not null-terminated to a file, use CStdioFile::Write or CFile::Write.

This method throws a CInvalidArgException* if you specify NULL for the lpsz parameter.

This method throws a CFileException* in response to file system errors.

CFile Class
Hierarchy Chart
CFile Class
CFile::Duplicate
CFile::LockRange
CFile::UnlockRange
CNotSupportedException Class

CStringArray Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CStringArray : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CObArray::CObArray Constructs an empty array.

Public MethodsPublic Methods

NAME DESCRIPTION

CObArray::Add Adds an element to the end of the array; grows the array if
necessary.

CObArray::Append Appends another array to the array; grows the array if
necessary.

CObArray::Copy Copies another array to the array; grows the array if
necessary.

CObArray::ElementAt Returns a temporary reference to the element pointer
within the array.

Supports arrays of CString objects.

The member functions of CStringArray are similar to the member functions of class CObArray. Because of
this similarity, you can use the CObArray reference documentation for member function specifics. Wherever
you see a CObject pointer as a return value, substitute a CString object (not a CString pointer). Wherever
you see a CObject pointer as a function parameter, substitute a LPCTSTR .

CObject* CObArray::GetAt(int <nIndex>) const;

for example, translates to

CString CStringArray::GetAt(int <nIndex>) const;

and

void SetAt(int <nIndex>, CObject* <newElement>)

translates to

void SetAt(int <nIndex>, LPCTSTR <newElement>)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cstringarray-class.md

CObArray::FreeExtra Frees all unused memory above the current upper bound.

CObArray::GetAt Returns the value at a given index.

CObArray::GetCount Gets the number of elements in this array.

CObArray::GetData Allows access to elements in the array. Can be NULL.

CObArray::GetSize Gets the number of elements in this array.

CObArray::GetUpperBound Returns the largest valid index.

CObArray::InsertAt Inserts an element (or all the elements in another array) at
a specified index.

CObArray::IsEmpty Determines if the array is empty.

CObArray::RemoveAll Removes all the elements from this array.

CObArray::RemoveAt Removes an element at a specific index.

CObArray::SetAt Sets the value for a given index; array not allowed to grow.

CObArray::SetAtGrow Sets the value for a given index; grows the array if
necessary.

CObArray::SetSize Sets the number of elements to be contained in this array.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CObArray::operator [] Sets or gets the element at the specified index.

Remarks

NOTENOTE

CStringArray incorporates the IMPLEMENT_SERIAL macro to support serialization and dumping of its
elements. If an array of CString objects is stored to an archive, either with an overloaded insertion operator
or with the Serialize member function, each element is serialized in turn.

Before using an array, use SetSize to establish its size and allocate memory for it. If you do not use SetSize ,
adding elements to your array causes it to be frequently reallocated and copied. Frequent reallocation and copying are
inefficient and can fragment memory.

If you need a dump of individual string elements in the array, you must set the depth of the dump context to 1
or greater.

When a CString array is deleted, or when its elements are removed, string memory is freed as appropriate.

Inheritance Hierarchy

Requirements

See also

For more information on using CStringArray , see the article Collections.

CObject

CStringArray

Header: afxcoll.h

CObject Class
Hierarchy Chart

CStringList Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CStringList : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CObList::CObList Constructs an empty list.

Public MethodsPublic Methods

NAME DESCRIPTION

CObList::AddHead Adds an element (or all the elements in another list) to the
head of the list (makes a new head).

CObList::AddTail Adds an element (or all the elements in another list) to the
tail of the list (makes a new tail).

CObList::Find Gets the position of an element specified by pointer value.

CObList::FindIndex Gets the position of an element specified by a zero-based
index.

CObList::GetAt Gets the element at a given position.

Supports lists of CString objects.

The member functions of CStringList are similar to the member functions of class CObList. Because of this
similarity, you can use the CObList reference documentation for member function specifics. Wherever you
see a CObject pointer as a return value, substitute a CString (not a CString pointer). Wherever you see a
CObject pointer as a function parameter, substitute an LPCTSTR .

CObject*& CObList::GetHead() const;

for example, translates to

CString& CStringList::GetHead() const;

and

POSITION AddHead(CObject* <newElement>);

translates to

POSITION AddHead(LPCTSTR <newElement>);

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cstringlist-class.md

CObList::GetCount Returns the number of elements in this list.

CObList::GetHead Returns the head element of the list (cannot be empty).

CObList::GetHeadPosition Returns the position of the head element of the list.

CObList::GetNext Gets the next element for iterating.

CObList::GetPrev Gets the previous element for iterating.

CObList::GetSize Returns the number of elements in this list.

CObList::GetTail Returns the tail element of the list (cannot be empty).

CObList::GetTailPosition Returns the position of the tail element of the list.

CObList::InsertAfter Inserts a new element after a given position.

CObList::InsertBefore Inserts a new element before a given position.

CObList::IsEmpty Tests for the empty list condition (no elements).

CObList::RemoveAll Removes all the elements from this list.

CObList::RemoveAt Removes an element from this list, specified by position.

CObList::RemoveHead Removes the element from the head of the list.

CObList::RemoveTail Removes the element from the tail of the list.

CObList::SetAt Sets the element at a given position.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

All comparisons are done by value, meaning that the characters in the string are compared instead of the
addresses of the strings.

CStringList incorporates the IMPLEMENT_SERIAL macro to support serialization and dumping of its
elements. If a list of CString objects is stored to an archive, either with an overloaded insertion operator or
with the Serialize member function, each CString element is serialized in turn.

If you need a dump of individual CString elements, you must set the depth of the dump context to 1 or
greater.

For more information on using CStringList , see the article Collections.

CObject

CStringList

Requirements

See also

Header: afxcoll.h

MFC Sample COLLECT
CObject Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CSyncObject Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CSyncObject : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSyncObject::CSyncObject Constructs a CSyncObject object.

Public MethodsPublic Methods

NAME DESCRIPTION

CSyncObject::Lock Gains access to the synchronization object.

CSyncObject::Unlock Gains access to the synchronization object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CSyncObject::operator HANDLE Provides access to the synchronization object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CSyncObject::m_hObject The handle to the underlying synchronization object.

Remarks

Inheritance Hierarchy

A pure virtual class that provides functionality common to the synchronization objects in Win32.

The Microsoft Foundation Class Library provides several classes derived from CSyncObject . These are CEvent,
CMutex, CCriticalSection, and CSemaphore.

For information on how to use the synchronization objects, see the article Multithreading: How to Use the
Synchronization Classes.

CObject

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/csyncobject-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-how-to-use-the-synchronization-classes

Requirements

CSyncObject::CSyncObject

explicit CSyncObject(LPCTSTR pstrName);
virtual ~CSyncObject();

ParametersParameters

CSyncObject::Lock

virtual BOOL Lock(DWORD dwTimeout = INFINITE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CSyncObject::m_hObject

HANDLE m_hObject;

CSyncObject::operator HANDLE

operator HANDLE() const;

Return ValueReturn Value

CSyncObject

Header: afxmt.h

Constructs a synchronization object with the supplied name.

pstrName
The name of the object. If NULL, pstrName will be null.

Call this function to gain access to the resource controlled by the synchronization object.

dwTimeout
Specifies the amount of time in milliseconds to wait for the synchronization object to be available (signaled). If
INFINITE, Lock will wait until the object is signaled before returning.

Nonzero if the function was successful; otherwise 0.

If the synchronization object is signaled, Lock will return successfully and the thread now owns the object. If the
synchronization object is nonsignaled (unavailable), Lock will wait for the synchronization object to become
signaled up to the number of milliseconds specified in the dwTimeOut parameter. If the synchronization object
did not become signaled in the specified amount of time, Lock returns failure.

The handle to the underlying synchronization object.

Use this operator to get the handle of the CSyncObject object.

RemarksRemarks

CSyncObject::Unlock

virtual BOOL Unlock() = 0; virtual BOOL Unlock(
 LONG lCount,
 LPLONG lpPrevCount = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

If successful, the handle of the synchronization object; otherwise, NULL.

You can use the handle to call Windows APIs directly.

The declaration of Unlock with no parameters is a pure virtual function, and must be overridden by all classes
deriving from CSyncObject .

lCount
Not used by default implementation.

lpPrevCount
Not used by default implementation.

Default implementation always returns TRUE.

The default implementation of the declaration with two parameters always returns TRUE. This function is called
to release access to the synchronization object owned by the calling thread. The second declaration is provided
for synchronization objects such as semaphores that allow more than one access of a controlled resource.

CObject Class
Hierarchy Chart

CTabCtrl Class
3/5/2019 • 18 minutes to read • Edit Online

Syntax
class CTabCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CTabCtrl::CTabCtrl Constructs a CTabCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CTabCtrl::AdjustRect Calculates a tab control's display area given a window
rectangle, or calculates the window rectangle that would
correspond to a given display area.

CTabCtrl::Create Creates a tab control and attaches it to an instance of a
CTabCtrl object.

CTabCtrl::CreateEx Creates a tab control with the specified Windows extended
styles and attaches it to an instance of a CTabCtrl object.

CTabCtrl::DeleteAllItems Removes all items from a tab control.

CTabCtrl::DeleteItem Removes an item from a tab control.

CTabCtrl::DeselectAll Resets items in a tab control, clearing any that were pressed.

CTabCtrl::DrawItem Draws a specified item of a tab control.

CTabCtrl::GetCurFocus Retrieves the tab with the current focus of a tab control.

CTabCtrl::GetCurSel Determines the currently selected tab in a tab control.

CTabCtrl::GetExtendedStyle Retrieves the extended styles that are currently in use for
the tab control.

CTabCtrl::GetImageList Retrieves the image list associated with a tab control.

CTabCtrl::GetItem Retrieves information about a tab in a tab control.

Provides the functionality of the Windows common tab control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctabctrl-class.md

CTabCtrl::GetItemCount Retrieves the number of tabs in the tab control.

CTabCtrl::GetItemRect Retrieves the bounding rectangle for a tab in a tab control.

CTabCtrl::GetItemState Retrieves the state of the indicated tab control item.

CTabCtrl::GetRowCount Retrieves the current number of rows of tabs in a tab
control.

CTabCtrl::GetToolTips Retrieves the handle of the tool tip control associated with a
tab control.

CTabCtrl::HighlightItem Sets the highlight state of a tab item.

CTabCtrl::HitTest Determines which tab, if any, is at a specified screen position.

CTabCtrl::InsertItem Inserts a new tab in a tab control.

CTabCtrl::RemoveImage Removes an image from a tab control's image list.

CTabCtrl::SetCurFocus Sets the focus to a specified tab in a tab control.

CTabCtrl::SetCurSel Selects a tab in a tab control.

CTabCtrl::SetExtendedStyle Sets the extended styles for a tab control.

CTabCtrl::SetImageList Assigns an image list to a tab control.

CTabCtrl::SetItem Sets some or all of a tab's attributes.

CTabCtrl::SetItemExtra Sets the number of bytes per tab reserved for application-
defined data in a tab control.

CTabCtrl::SetItemSize Sets the width and height of an item.

CTabCtrl::SetItemState Sets the state of the indicated tab control item.

CTabCtrl::SetMinTabWidth Sets the minimum width of items in a tab control.

CTabCtrl::SetPadding Sets the amount of space (padding) around each tab's icon
and label in a tab control.

CTabCtrl::SetToolTips Assigns a tool tip control to a tab control.

NAME DESCRIPTION

Remarks
A "tab control" is analogous to the dividers in a notebook or the labels in a file cabinet. By using a tab control,
an application can define multiple pages for the same area of a window or dialog box. Each page consists of a
set of information or a group of controls that the application displays when the user selects the corresponding
tab. A special type of tab control displays tabs that look like buttons. Clicking a button should immediately
perform a command instead of displaying a page.

Inheritance Hierarchy

Requirements

CTabCtrl::AdjustRect

void AdjustRect(BOOL bLarger, LPRECT lpRect);

ParametersParameters

ExampleExample

void CTabDlg::OnSize(UINT nType, int cx, int cy)
{
 CDialog::OnSize(nType, cx, cy);

 if(m_TabCtrl.m_hWnd == NULL)
 return; // Return if window is not created yet.

 RECT rect;

 // Get size of dialog window.
 GetClientRect(&rect);

 // Adjust the rectangle to fit the tab control into the
 // dialog's client rectangle.
 m_TabCtrl.AdjustRect(FALSE, &rect);

 // Move the tab control to the new position and size.
 m_TabCtrl.MoveWindow(&rect, TRUE);
}

This control (and therefore the CTabCtrl class) is available only to programs running under Windows 95/98
and Windows NT version 3.51 and later.

For more information on using CTabCtrl , see Controls and Using CTabCtrl.

CObject

CCmdTarget

CWnd

CTabCtrl

Header: afxcmn.h

Calculates a tab control's display area given a window rectangle, or calculates the window rectangle that would
correspond to a given display area.

bLarger
Indicates which operation to perform. If this parameter is TRUE, lpRect specifies a display rectangle and
receives the corresponding window rectangle. If this parameter is FALSE, lpRect specifies a window rectangle
and receives the corresponding display rectangle.

lpRect
Pointer to a RECT structure that specifies the given rectangle and receives the calculated rectangle.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

 CTabCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Creates a tab control and attaches it to an instance of a CTabCtrl object.

dwStyle
Specifies the tab control's style. Apply any combination of tab control styles, described in the Windows SDK.
See Remarks for a list of window styles that you can also apply to the control.

rect
Specifies the tab control's size and position. It can be either a CRect object or a RECT structure.

pParentWnd
Specifies the tab control's parent window, usually a CDialog . It must not be NULL.

nID
Specifies the tab control's ID.

TRUE if initialization of the object was successful; otherwise FALSE.

You construct a CTabCtrl object in two steps. First, call the constructor, and then call Create , which creates the
tab control and attaches it to the CTabCtrl object.

In addition to tab control styles, you can apply the following window styles to a tab control:

WS_CHILD Creates a child window that represents the tab control. Cannot be used with the
WS_POPUP style.

WS_VISIBLE Creates a tab control that is initially visible.

WS_DISABLED Creates a window that is initially disabled.

WS_GROUP Specifies the first control of a group of controls in which the user can move from one
control to the next with the arrow keys. All controls defined with the WS_GROUP style after the first
control belong to the same group. The next control with the WS_GROUP style ends the style group and
starts the next group (that is, one group ends where the next begins).

WS_TABSTOP Specifies one of any number of controls through which the user can move by using the
TAB key. The TAB key moves the user to the next control specified by the WS_TABSTOP style.

To create a tab control with extended window styles, call CTabCtrl::CreateEx instead of Create .

https://docs.microsoft.com/windows/desktop/Controls/tab-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

// Assuming you have a member variable m_TabCtrl, that is a CTabCtrl
// object, you can use the following to create a tab control.

m_TabCtrl.Create(TCS_TABS | TCS_FIXEDWIDTH | WS_CHILD | WS_VISIBLE,
 rect, this, IDC_MYTAB);

// This creates a tab control with the given styles, and with
// an ID of IDC_MYTAB.

CTabCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTabCtrl::CTabCtrl

Creates a control (a child window) and associates it with the CTabCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the
dwExStyle parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the tab control's style. Apply any combination of tab control styles, described in the Windows SDK.
See Remarks in Create for a list of window styles that you can also apply to the control.

rect
A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

CreateEx creates the control with the extended Windows styles specified by dwExStyle. Set extended styles
specific to a control using SetExtendedStyle. For example, use CreateEx to set such styles as
WS_EX_CONTEXTHELP, but use SetExtendedStyle to set such styles as TCS_EX_FLATSEPARATORS. For more
information, see the styles described in Tab Control Extended Styles in the Windows SDK.

Constructs a CTabCtrl object.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/tab-control-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/tab-control-extended-styles

CTabCtrl();

CTabCtrl::DeleteAllItems

BOOL DeleteAllItems();

Return ValueReturn Value

CTabCtrl::DeleteItem

BOOL DeleteItem(int nItem);

ParametersParameters

Return ValueReturn Value

ExampleExample

// This example assumes that there is a CTabCtrl member of the
// CTabDlg class named m_TabCtrl. On a button handler
// called OnDeleteItem of the dialog box the tab control will
// delete the 0 indexed item.

void CTabDlg::OnDeleteItem()
{
 // Delete the first item in the tab control.
 m_TabCtrl.DeleteItem(0);
}

CTabCtrl::DeselectAll

void DeselectAll(BOOL fExcludeFocus);

ParametersParameters

RemarksRemarks

Removes all items from a tab control.

Nonzero if successful; otherwise 0.

Removes the specified item from a tab control.

nItem
Zero-based value of the item to delete.

Nonzero if successful; otherwise 0.

Resets items in a tab control, clearing any that were pressed.

fExcludeFocus
Flag that specifies the scope of the item deselection. If this parameter is set to FALSE, all tab buttons will be
reset. If it is set to TRUE, then all tab items except for the one currently selected will be reset.

This member function implements the behavior of the Win32 message, TCM_DESELECTALL, as described in
the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/tcm-deselectall

CTabCtrl::DrawItem

virtual void DrawItem(LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

RemarksRemarks

CTabCtrl::GetCurFocus

int GetCurFocus() const;

Return ValueReturn Value

CTabCtrl::GetCurSel

int GetCurSel() const;

Return ValueReturn Value

CTabCtrl::GetExtendedStyle

DWORD GetExtendedStyle();

Return ValueReturn Value

RemarksRemarks

CTabCtrl::GetImageList

Called by the framework when a visual aspect of an owner-draw tab control changes.

lpDrawItemStruct
A pointer to a DRAWITEMSTRUCT structure describing the item to be painted.

The itemAction member of the DRAWITEMSTRUCT structure defines the drawing action that is to be performed.

By default, this member function does nothing. Override this member function to implement drawing for an
owner-draw CTabCtrl object.

The application should restore all graphics device interface (GDI) objects selected for the display context
supplied in lpDrawItemStruct before this member function terminates.

Retrieves the index of the tab with the current focus.

The zero-based index of the tab with the current focus.

Retrieves the currently selected tab in a tab control.

Zero-based index of the selected tab if successful or - 1 if no tab is selected.

Retrieves the extended styles that are currently in use for the tab control.

Represents the extended styles currently in use for the tab control. This value is a combination of tab control
extended styles, as described in the Windows SDK.

This member function implements the behavior of the Win32 message TCM_GETEXTENDEDSTYLE, as
described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct
https://docs.microsoft.com/windows/desktop/Controls/tab-control-extended-styles
https://docs.microsoft.com/windows/desktop/Controls/tcm-getextendedstyle

CTabCtrl::GetImageList

CImageList* GetImageList() const;

Return ValueReturn Value

CTabCtrl::GetItem

BOOL GetItem(int nItem, TCITEM* pTabCtrlItem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Retrieves the image list that's associated with a tab control.

If successful, a pointer to the image list of the tab control; otherwise, NULL.

Retrieves information about a tab in a tab control.

nItem
Zero-based index of the tab.

pTabCtrlItem
Pointer to a TCITEM structure, used to specify the information to retrieve. Also used to receive information
about the tab. This structure is used with the InsertItem , GetItem , and SetItem member functions.

Returns TRUE if successful; FALSE otherwise.

When the message is sent, the mask member specifies which attributes to return. If the mask member
specifies the TCIF_TEXT value, the pszText member must contain the address of the buffer that receives the
item text and the cchTextMax member must specify the size of the buffer.

mask

Value specifying which TCITEM structure members to retrieve or set. This member can be zero or a
combination of the following values:

TCIF_TEXT The pszText member is valid.

TCIF_IMAGE The iImage member is valid.

TCIF_PARAM The lParam member is valid.

TCIF_RTLREADING The text of pszText is displayed using right-to-left reading order on Hebrew
or Arabic systems.

TCIF_STATE The dwState member is valid.

pszText

Pointer to a null-terminated string containing the tab text if the structure contains information about a
tab. If the structure is receiving information, this member specifies the address of the buffer that receives
the tab text.

cchTextMax

Size of the buffer pointed to by pszText . This member is ignored if the structure is not receiving

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtcitema

ExampleExample

// In this example a CTabCtrl data member, m_TabCtrl, changes the
// text of the tabs in the tab control. A call to GetItem is used
// to get the current text, and then the text is changed. A call
// to SetItem is used to update the tab with the new text.

void CTabDlg::OnChangeItem()
{
 TCITEM tcItem;
 CString pszString;

 // Get text for the tab item.
 GetDlgItemText(IDC_ITEM_TEXT, pszString);

 // Get the current tab item text.
 TCHAR buffer[256] = {0};
 tcItem.pszText = buffer;
 tcItem.cchTextMax = 256;
 tcItem.mask = TCIF_TEXT;
 m_TabCtrl.GetItem(0, &tcItem);
 TRACE(_T("Changing item text from %s to %s..."), tcItem.pszText, pszString);

 // Set the new text for the item.
 tcItem.pszText = pszString.LockBuffer();

 // Set the item in the tab control.
 m_TabCtrl.SetItem(0, &tcItem);

 pszString.UnlockBuffer();
}

CTabCtrl::GetItemCount

int GetItemCount() const;

Return ValueReturn Value

ExampleExample

CTabCtrl::GetItemRect

information.

iImage Index into the tab control's image list, or - 1 if there is no image for the tab.

lParam

Application-defined data associated with the tab. If there are more than four bytes of application-defined
data per tab, an application must define a structure and use it instead of the TCITEM structure. The first
member of the application-defined structure must be a TCITEMHEADERstructure. The TCITEMHEADER

structure is identical to the TCITEM structure, but without the lParam member. The difference between
the size of your structure and the size of the TCITEMHEADER structure should equal the number of extra
bytes per tab.

Retrieves the number of tabs in the tab control.

Number of items in the tab control.

See the example for CPropertySheet::GetTabControl.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtcitemheadera

BOOL GetItemRect(int nItem, LPRECT lpRect) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CTabCtrl::GetItemState

DWORD GetItemState(
 int nItem,
 DWORD dwMask) const;

ParametersParameters

Return ValueReturn Value

VALUE DESCRIPTION

TCIS_BUTTONPRESSED The tab control item is selected.

TCIS_HIGHLIGHTED The tab control item is highlighted, and the tab and text are
drawn using the current highlight color. When using
highlight color, this will be a true interpolation, not a
dithered color.

RemarksRemarks

CTabCtrl::GetRowCount

Retrieves the bounding rectangle for the specified tab in a tab control.

nItem
Zero-based index of the tab item.

lpRect
Pointer to a RECT structure that receives the bounding rectangle of the tab. These coordinates use the
viewport's current mapping mode.

Nonzero if successful; otherwise 0.

See the example for CPropertySheet::GetTabControl.

Retrieves the state of the tab control item identified by nItem.

nItem
The zero-based index number of the item for which to retrieve state information.

dwMask
Mask specifying which of the item's state flags to return. For a list of values, see the mask member of the
TCITEM structure, as described in the Windows SDK.

A reference to a DWORD value receiving the state information. Can be one of the following values:

An item's state is specified by the dwState member of the TCITEM structure.

Retrieves the current number of rows in a tab control.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtcitema

int GetRowCount() const;

Return ValueReturn Value

RemarksRemarks

CTabCtrl::GetToolTips

CToolTipCtrl* GetToolTips() const;

Return ValueReturn Value

RemarksRemarks

CTabCtrl::HighlightItem

BOOL HighlightItem(int idItem, BOOL fHighlight = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTabCtrl::HitTest

int HitTest(TCHITTESTINFO* pHitTestInfo) const;

ParametersParameters

The number of rows of tabs in the tab control.

Only tab controls that have the TCS_MULTILINE style can have multiple rows of tabs.

Retrieves the handle of the tool tip control associated with a tab control.

Handle of the tool tip control if successful; otherwise NULL.

A tab control creates a tool tip control if it has the TCS_TOOLTIPS style. You can also assign a tool tip control to
a tab control by using the SetToolTips member function.

Sets the highlight state of a tab item.

idItem
Zero-based index of a tab control item.

fHighlight
Value specifying the highlight state to be set. If this value is TRUE, the tab is highlighted; if FALSE, the tab is set
to its default state.

Nonzero if successful; otherwise zero.

This member function implements the Win32 message TCM_HIGHLIGHTITEM, as described in the Windows
SDK.

Determines which tab, if any, is at the specified screen position.

pHitTestInfo
Pointer to a TCHITTESTINFO structure, as described in the Windows SDK, which specifies the screen position

https://docs.microsoft.com/windows/desktop/Controls/tcm-highlightitem
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtchittestinfo

Return ValueReturn Value

CTabCtrl::InsertItem

LONG InsertItem(
 int nItem,
 TCITEM* pTabCtrlItem);

LONG InsertItem(
 int nItem,
 LPCTSTR lpszItem);

LONG InsertItem(
 int nItem,
 LPCTSTR lpszItem,
 int nImage);

LONG InsertItem(
 UINT nMask,
 int nItem,
 LPCTSTR lpszItem,
 int nImage,
 LPARAM lParam);

LONG InsertItem(
 UINT nMask,
 int nItem,
 LPCTSTR lpszItem,
 int nImage,
 LPARAM lParam,
 DWORD dwState,
 DWORD dwStateMask);

ParametersParameters

to test.

Returns the zero-based index of the tab or - 1 if no tab is at the specified position.

Inserts a new tab in an existing tab control.

nItem
Zero-based index of the new tab.

pTabCtrlItem
Pointer to a TCITEM structure that specifies the attributes of the tab.

lpszItem
Address of a null-terminated string that contains the text of the tab.

nImage
The zero-based index of an image to insert from an image list.

nMask
Specifies which TCITEM structure attributes to set. Can be zero or a combination of the following values:

TCIF_TEXT The pszText member is valid.

TCIF_IMAGE The iImage member is valid.

TCIF_PARAM The lParam member is valid.

TCIF_RTLREADING The text of pszText is displayed using right-to-left reading order on Hebrew or
Arabic systems.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtcitema

Return ValueReturn Value

ExampleExample

TCITEM tcItem;
tcItem.mask = TCIF_TEXT;
tcItem.pszText = _T("Tab #1");

m_TabCtrl.InsertItem(0, &tcItem);

CTabCtrl::RemoveImage

void RemoveImage(int nImage);

ParametersParameters

RemarksRemarks

CTabCtrl::SetCurFocus

void SetCurFocus(int nItem);

ParametersParameters

RemarksRemarks

CTabCtrl::SetCurSel

TCIF_STATE The dwState member is valid.

lParam
Application-defined data associated with the tab.

dwState
Specifies values for the item's states. For more information, see TCITEM in the Windows SDK.

dwStateMask
Specifies which states are to be set. For more information, see TCITEM in the Windows SDK.

Zero-based index of the new tab if successful; otherwise - 1.

Removes the specified image from a tab control's image list.

nImage
Zero-based index of the image to remove.

The tab control updates each tab's image index so that each tab remains associated with the same image.

Sets the focus to a specified tab in a tab control.

nItem
Specifies the index of the tab that gets the focus.

This member function implements the behavior of the Win32 message TCM_SETCURFOCUS, as described in
the Windows SDK.

Selects a tab in a tab control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtcitema
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtcitema
https://docs.microsoft.com/windows/desktop/Controls/tcm-setcurfocus

int SetCurSel(int nItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTabCtrl::SetExtendedStyle

DWORD SetExtendedStyle(DWORD dwNewStyle, DWORD dwExMask = 0);

ParametersParameters

Return ValueReturn Value

Return ValueReturn Value

CTabCtrl::SetImageList

CImageList* SetImageList(CImageList* pImageList);

ParametersParameters

Return ValueReturn Value

CTabCtrl::SetItem

nItem
The zero-based index of the item to be selected.

Zero-based index of the previously selected tab if successful, otherwise - 1.

A tab control does not send a TCN_SELCHANGING or TCN_SELCHANGE notification message when a tab is
selected using this function. These notifications are sent, using WM_NOTIFY, when the user clicks or uses the
keyboard to change tabs.

Sets the extended styles for a tab control.

dwNewStyle
Value specifying a combination of tab control extended styles.

dwExMask
A DWORD value that indicates which styles in dwNewStyle are to be affected. Only the extended styles in
dwExMask will be changed. All other styles will be maintained as is. If this parameter is zero, then all of the
styles in dwNewStyle will be affected.

A DWORD value that contains the previous tab control extended styles, as described in the Windows SDK.

This member function implements the behavior of the Win32 message TCM_SETEXTENDEDSTYLE, as
described in the Windows SDK.

Assigns an image list to a tab control.

pImageList
Pointer to the image list to be assigned to the tab control.

Returns a pointer to the previous image list or NULL if there is no previous image list.

Sets some or all of a tab's attributes.

https://docs.microsoft.com/windows/desktop/Controls/tab-control-extended-styles
https://docs.microsoft.com/windows/desktop/Controls/tcm-setextendedstyle

BOOL SetItem(int nItem, TCITEM* pTabCtrlItem);

ParametersParameters

Return ValueReturn Value

ExampleExample

CTabCtrl::SetItemExtra

BOOL SetItemExtra(int nBytes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTabCtrl::SetItemSize

CSize SetItemSize(CSize size);

ParametersParameters

Return ValueReturn Value

CTabCtrl::SetItemState

nItem
Zero-based index of the item.

pTabCtrlItem
Pointer to a TCITEM structure that contains the new item attributes. The mask member specifies which
attributes to set. If the mask member specifies the TCIF_TEXT value, the pszText member is the address of a
null-terminated string and the cchTextMax member is ignored.

Nonzero if successful; otherwise 0.

See the example for GetItem.

Sets the number of bytes per tab reserved for application-defined data in a tab control.

nBytes
The number of extra bytes to set.

Nonzero if successful; otherwise zero.

This member function implements the behavior of the Win32 message TCM_SETITEMEXTRA, as described in
the Windows SDK.

Sets the width and height of the tab control items.

size
The new width and height, in pixels, of the tab control items.

Returns the old width and height of the tab control items.

Sets the state of the tab control item identified by nItem.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtcitema
https://docs.microsoft.com/windows/desktop/Controls/tcm-setitemextra

BOOL SetItemState(
 int nItem,
 DWORD dwMask,
 DWORD dwState);

ParametersParameters

VALUE DESCRIPTION

TCIS_BUTTONPRESSED The tab control item is selected.

TCIS_HIGHLIGHTED The tab control item is highlighted, and the tab and text are
drawn using the current highlight color. When using
highlight color, this will be a true interpolation, not a
dithered color.

Return ValueReturn Value

CTabCtrl::SetMinTabWidth

int SetMinTabWidth(int cx);

ParametersParameters

Return ValueReturn Value

Return ValueReturn Value

CTabCtrl::SetPadding

void SetPadding(CSize size);

ParametersParameters

nItem
The zero-based index number of the item for which to set state information.

dwMask
Mask specifying which of the item's state flags to set. For a list of values, see the mask member of the TCITEM
structure, as described in the Windows SDK.

dwState
A reference to a DWORD value containing the state information. Can be one of the following values:

Nonzero if successful; otherwise 0.

Sets the minimum width of items in a tab control.

cx
Minimum width to be set for a tab control item. If this parameter is set to -1, the control will use the default tab
width.

The previous minimum tab width.

This member function implements the behavior of the Win32 message TCM_SETMINTABWIDTH, as described
in the Windows SDK.

Sets the amount of space (padding) around each tab's icon and label in a tab control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtcitema
https://docs.microsoft.com/windows/desktop/Controls/tcm-setmintabwidth

 CTabCtrl::SetToolTips

void SetToolTips(CToolTipCtrl* pWndTip);

ParametersParameters

RemarksRemarks

ExampleExample

See also

size
Sets the amount of space (padding) around each tab's icon and label in a tab control.

Assigns a tool tip control to a tab control.

pWndTip
Handle of the tool tip control.

You can get the tool tip control associated with a tab control by making a call to GetToolTips .

See the example for CPropertySheet::GetTabControl.

CWnd Class
Hierarchy Chart
CHeaderCtrl Class
CListCtrl Class

CTabbedPane Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CTabbedPane : public CBaseTabbedPane

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CTabbedPane::CTabbedPane Default constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CTabbedPane::DetachPane (Overrides CBaseTabbedPane::DetachPane.)

CTabbedPane::EnableTabAutoColor Enables or disables automatic coloring of tabs.

CTabbedPane::FloatTab Floats a pane, but only if the pane currently resides in a
detachable tab. (Overrides CBaseTabbedPane::FloatTab.)

CTabbedPane::GetTabArea Returns the size and position of the tab area within the
tabbed window.

CTabbedPane::GetTabWnd

CTabbedPane::HasAutoHideMode Determines whether the tabbed pane can be switched to
autohide mode. (Overrides
CBaseTabbedPane::HasAutoHideMode.)

CTabbedPane::IsTabLocationBottom Determines whether the tabs are located at the bottom of
the window.

CTabbedPane::ResetTabs Resets all tabbed panes to the default state.

CTabbedPane::SetTabAutoColors Sets a list of custom colors that can be used when the auto
color feature is enabled.

Data MembersData Members

Implements the functionality of a pane with detachable tabs.

or more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctabbedpane-class.md

NAME DESCRIPTION

CTabbedPane::m_bTabsAlwaysTop The default location for tabs in the application.

CTabbedPane::m_pTabWndRTC Runtime class information for a custom CMFCTabCtrl -
derived object.

Remarks

Example

CTabbedPane* pTabbededBar = new CTabbedPane (TRUE);

if (!pTabbededBar->Create (_T(""),
 this,
 CRect (0,
 0,
 200,
 200),
 TRUE,
 (UINT) -1,
 WS_CHILD | WS_VISIBLE | WS_CLIPSIBLINGS |
 WS_CLIPCHILDREN | CBRS_LEFT |
 CBRS_FLOAT_MULTI))
{
 TRACE0("Failed to create Solution Explorer bar\n");

 return FALSE; // fail to create
}

pTabbededBar->AddTab (&m_wndClassView);
pTabbededBar->AddTab (&m_wndResourceView);

pTabbededBar->AddTab (&m_wndFileView);
pTabbededBar->EnableDocking(CBRS_ALIGN_ANY);

DockPane(pTabbededBar);

Example

The framework automatically creates an instance of this class when a user attaches one pane to another by
pointing to the caption of the second pane. All of the tabbed panes that are created by the framework have an
ID of -1.

To specify regular tabs instead of Outlook-style tabs, pass the AFX_CBRS_REGULAR_TABS style to the
CDockablePane::CreateEx method.

If you create a tabbed pane with detachable tabs, the pane may be destroyed automatically by the framework,
so you should not store the pointer. To get a pointer to the tabbed pane, call the CBasePane::GetParentTabbedPane

method.

In this example we create a CTabbedPane object. Next, we use CBaseTabbedPane::AddTab to attach additional
tabs.

Another way to create a tabbed control bar object is to use CDockablePane::AttachToTabWnd. The
AttachToTabWnd method dynamically creates a tabbed pane object using runtime class information set by

CDockablePane::SetTabbedPaneRTC.

DockPane(&m_wndClassView);

CTabbedPane* pTabbedBar = NULL;
m_wndResourceView.AttachToTabWnd (&m_wndClassView,
 DM_SHOW,
 TRUE,
 (CDockablePane**) &pTabbedBar);

m_wndFileView.AttachToTabWnd (pTabbedBar,
 DM_SHOW,
 TRUE,
 (CDockablePane**) &pTabbedBar);

pTabbedBar->GetUnderlyingWindow ()->EnableTabDetach (1,
 FALSE);

Inheritance Hierarchy

Requirements

CTabbedPane::DetachPane
virtual BOOL DetachPane(
 CWnd* pBar,
 BOOL bHide = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTabbedPane::EnableTabAutoColor

In this example we create a tabbed pane dynamically, attach two tabs, and make the second tab non-detachable.

CObject

CCmdTarget

CWnd

CBasePane

CPane

CDockablePane

CBaseTabbedPane

CTabbedPane

Header: afxTabbedPane.h

[in] pBar

[in] bHide

Enables or disables automatic coloring of tabs.

static void EnableTabAutoColor(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

CTabbedPane::FloatTab
virtual BOOL FloatTab(
 CWnd* pBar,
 int nTabID,
 AFX_DOCK_METHOD dockMethod,
 BOOL bHide = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTabbedPane::GetTabArea

virtual void GetTabArea(
 CRect& rectTabAreaTop,
 CRect& rectTabAreaBottom) const;

ParametersParameters

RemarksRemarks

bEnable
[in] TRUE to enable auto coloring of tabs; otherwise, FALSE.

Use this static method to enable or disable automatic coloring of tabs in all tabbed panes in the application.
When this feature is enabled, each tab is filled by its own color. You can find the list of colors that are used to
color the tabs by calling the CMFCBaseTabCtrl::GetAutoColors method.

You can specify the list of colors that will be used for tabs by calling CTabbedPane::SetTabAutoColors.

By default, this option is disabled.

[in] pBar
[in] nTabID
[in] dockMethod
[in] bHide

Returns the size and position of the tab area in the tabbed window.

rectTabAreaTop
[out] Contains the size and position, in screen coordinates, of the top tab area.

rectTabAreaBottom
[out] Contains the size and position, in screen coordinates, of the bottom tab area.

The framework calls this method to determine how to dock a pane that a user is dragging. When the user drags
a pane over the tab area of the target pane, the framework tries to add it as a new tab of the target pane.
Otherwise, it tries to dock the pane to the side of the target pane, which involves creating a new pane container
with a pane divider that separates the two panes.

CTabbedPane::GetTabWnd
CMFCTabCtrl* GetTabWnd() const;

Return ValueReturn Value

RemarksRemarks

CTabbedPane::HasAutoHideMode
virtual BOOL HasAutoHideMode() const;

Return ValueReturn Value

RemarksRemarks

CTabbedPane::IsTabLocationBottom

virtual BOOL IsTabLocationBottom() const;

Return ValueReturn Value

RemarksRemarks

CTabbedPane::m_bTabsAlwaysTop

AFX_IMPORT_DATA static BOOL m_bTabsAlwaysTop;

RemarksRemarks

CTabbedPane::m_pTabWndRTC

AFX_IMPORT_DATA static CRuntimeClass* m_pTabWndRTC;

RemarksRemarks

Override this method in a CTabbedPane -derived class to change this behavior.

Determines whether the tabs are located at the bottom of the window.

TRUE if the tab area is located at the bottom of the tabbed window; otherwise, FALSE.

The default location for tabs in the application.

Set this static member to TRUE to force all tabs in the application to be displayed at the top of the tabbed pane.

You must set this value before a tabbed pane has been created.

The default value is FALSE.

Runtime class information for a custom CMFCTabCtrl -derived object.

Set this static member variable to a pointer to the runtime class information of a CMFCTabCtrl -derived object if
you are using a custom tabbed window inside a tabbed pane.

CTabbedPane::ResetTabs

static void ResetTabs();

RemarksRemarks

CTabbedPane::SetTabAutoColors

static void SetTabAutoColors(const CArray<COLORREF, COLORREF>& arColors);

ParametersParameters

RemarksRemarks

See also

Resets all tabbed panes to the default state.

Call this method to revert all tabbed panes to their default state. When called, this method resets the border
sizes and auto color state of all tabbed panes.

Sets a list of custom colors that are used when the auto color feature is enabled.

arColors
[in] Contains the array of colors to set.

Use this method to customize the list of colors that are used when the auto color feature is enabled. This is a
static function and affects all tabbed panes in your application.

Use CTabbedPane::EnableTabAutoColor to enable or disable the auto color feature.

Hierarchy Chart
Classes
CDockablePane Class
CBaseTabbedPane Class
CMFCOutlookBar Class

CTabView Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CTabbedView : public CView

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CTabView::AddView Adds a new view to the tab control.

CTabView::FindTab Returns the index of the specified view in the tab control.

CTabView::GetActiveView Returns a pointer to the currently active view

CTabView::GetTabControl Returns a reference to the tab control associated with the
view.

CTabView::RemoveView Removes the view from the tab control.

CTabView::SetActiveView Makes a view active.

Protected MethodsProtected Methods

NAME DESCRIPTION

CTabView::IsScrollBar Called by the framework when creating a tab view to
determine whether the tab view has a shared horizontal scroll
bar.

CTabView::OnActivateView Called by the framework when the tab view is made active or
inactive.

Remarks

The CTabView class simplifies the use of the tab control class (CMFCTabCtrl) in applications that use MFC's
document/view architecture.

This class makes it easy to put a tabbed view into a document/view application. CTabView is a CView -derived class
that contains an embedded CMFCTabCtrl object. CTabView handles all messages required to support the
CMFCTabCtrl object. Simply derive a class from CTabView and plug it into your application, then add CView -

derived classes by using the AddView method. The tab control will display those views as tabs.

For example, you might have a document that can be represented in different ways: as a spreadsheet, a chart, an
editable form, and so on. You can create individual views drawing the data as needed, insert them into your

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctabview-class.md

Example

class CTabbedViewView : public CTabView
{
protected: // create from serialization only
 CTabbedViewView();
 DECLARE_DYNCREATE(CTabbedViewView)

// Attributes
public:
 CTabbedViewDoc* GetDocument();

// Operations
public:

// Overrides
 public:
 virtual void OnDraw(CDC* pDC); // overridden to draw this view
 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);
 protected:
 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);
 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);
 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);

 BOOL IsScrollBar () const
 {
 return TRUE;
 }

// Implementation
public:
 virtual ~CTabbedViewView();
#ifdef _DEBUG
 virtual void AssertValid() const;
 virtual void Dump(CDumpContext& dc) const;
#endif

protected:
 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);
 afx_msg BOOL OnEraseBkgnd(CDC* pDC);
 afx_msg void OnContextMenu(CWnd*, CPoint point);
 afx_msg void OnFilePrintPreview();

 DECLARE_MESSAGE_MAP()
};

Requirements

CTabView::AddView

CTabView -derived object and have them tabbed without any additional coding.

TabbedView Sample: MFC Tabbed View Application illustrates usage of CTabView .

The following example shows how CTabView is used in the TabbedView sample.

Header: afxTabView.h

Adds a view to the tab control.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

int AddView(
 CRuntimeClass* pViewClass,
 const CString& strViewLabel,
 int iIndex=-1,
 CCreateContext* pContext=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTabView::FindTab

int FindTab(HWND hWndView) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTabView::GetActiveView

CView* GetActiveView() const;

Return ValueReturn Value

RemarksRemarks

pViewClass
[in] A pointer to a runtime class of the inserted view.

strViewLabel
[in] Specifies the tab's text.

iIndex
[in] Specifies the zero-based position at which to insert the view. If the position is -1 the new tab is inserted at the
end.

pContext
[in] A pointer to the CCreateContext of the view.

A view index if this method succeeds. Otherwise, -1.

Call this function to add a view to the tab control that is embedded in a frame.

Returns the index of the specified view in the tab control.

hWndView
[in] The handle of the view.

The index of the view if it is found; otherwise, -1.

Call this function to retrieve the index of a view that has a specified handle.

Returns a pointer to the currently active view.

A valid pointer to the active view, or NULL if there is no active view.

CTabView::GetTabControl

DECLARE_DYNCREATE CMFCTabCtrl& GetTabControl();

Return ValueReturn Value

CTabView::IsScrollBar

virtual BOOL IsScrollBar() const;

Return ValueReturn Value

RemarksRemarks

CTabView::OnActivateView

virtual void OnActivateView(CView* view);

ParametersParameters

RemarksRemarks

CTabView::RemoveView

BOOL RemoveView(int iTabNum);

ParametersParameters

Return ValueReturn Value

Returns a reference to the tab control associated with the view.

A reference to the tab control associated with the view.

Called by the framework when creating a tab view to determine whether the tab view has a shared horizontal
scroll bar.

TRUE if the tab view should be created together with a shared scroll bar. Otherwise, FALSE.

The framework calls this method when a CTabView object is being created.

Override the IsScrollBar method in a CTabView-derived class and return TRUE if you want to create a view that
has a shared horizontal scroll bar.

Called by the framework when the tab view is made active or inactive.

view
[in] A pointer to the view.

The default implementation does nothing. Override this method in a CTabView -derived class to process this
notification.

Removes the view from the tab control.

iTabNum
[in] The index of the view to remove.

The index of the removed view if this method succeeds. Otherwise -1.

RemarksRemarks

CTabView::SetActiveView

BOOL SetActiveView(int iTabNum);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

Makes a view active.

iTabNum
[in] The zero-based index of the tab view.

TRUE if the specified view was made active, FALSE if the view's index is invalid.

For more information see CMFCTabCtrl::SetActiveTab.

Hierarchy Chart
Classes
CMFCTabCtrl
CView Class

CTaskDialog Class
3/4/2019 • 58 minutes to read • Edit Online

Syntax
class CTaskDialog : public CObject

Members
ConstructorsConstructors

CTaskDialog::CTaskDialog Constructs a CTaskDialog object.

MethodsMethods

CTaskDialog::AddCommandControl Adds a command button control to the CTaskDialog .

CTaskDialog::AddRadioButton Adds a radio button to the CTaskDialog .

CTaskDialog::ClickCommandControl Clicks a command button control or common button
programmatically.

CTaskDialog::ClickRadioButton Clicks a radio button programmatically.

CTaskDialog::DoModal Displays the CTaskDialog .

CTaskDialog::GetCommonButtonCount Retrieves the number of common buttons available.

CTaskDialog::GetCommonButtonFlag Converts a standard Windows button to the common
button type associated with the CTaskDialog class.

CTaskDialog::GetCommonButtonId Converts one of the common button types associated with
the CTaskDialog class to a standard Windows button.

CTaskDialog::GetOptions Returns the option flags for this CTaskDialog .

CTaskDialog::GetSelectedCommandControlID Returns the selected command button control.

CTaskDialog::GetSelectedRadioButtonID Returns the selected radio button.

CTaskDialog::GetVerificationCheckboxState Retrieves the state of the verification check box.

A pop-up dialog box that functions like a message box but can display additional information to the user. The
CTaskDialog also includes functionality for gathering information from the user.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctaskdialog-class.md

CTaskDialog::IsCommandControlEnabled Determines whether a command button control or common
button is enabled.

CTaskDialog::IsRadioButtonEnabled Determines whether a radio button is enabled.

CTaskDialog::IsSupported Determines whether the computer that is running the
application supports the CTaskDialog .

CTaskDialog::LoadCommandControls Adds command button controls by using data from the
string table.

CTaskDialog::LoadRadioButtons Adds radio buttons by using data from the string table.

CTaskDialog::NavigateTo Transfers the focus to another CTaskDialog .

CTaskDialog::OnCommandControlClick The framework calls this method when the user clicks a
command button control.

CTaskDialog::OnCreate The framework calls this method after it creates the
CTaskDialog .

CTaskDialog::OnDestroy The framework calls this method immediately before it
destroys the CTaskDialog .

CTaskDialog::OnExpandButtonClick The framework calls this method when the user clicks on the
expansion button.

CTaskDialog::OnHelp The framework calls this method when the user requests
help.

CTaskDialog::OnHyperlinkClick The framework calls this method when the user clicks on a
hyperlink.

CTaskDialog::OnInit The framework calls this method when the CTaskDialog is
initialized.

CTaskDialog::OnNavigatePage The framework calls this method when the user moves the
focus with regard to controls on the CTaskDialog .

CTaskDialog::OnRadioButtonClick The framework calls this method when the user selects a
radio button control.

CTaskDialog::OnTimer The framework calls this method when the timer expires.

CTaskDialog::OnVerificationCheckboxClick The framework calls this method when the user clicks the
verification check box.

CTaskDialog::RemoveAllCommandControls Removes all the command controls from the CTaskDialog .

CTaskDialog::RemoveAllRadioButtons Removes all the radio buttons from the CTaskDialog .

CTaskDialog::SetCommandControlOptions Updates a command button control on the CTaskDialog .

CTaskDialog::SetCommonButtonOptions Updates a subset of common buttons to be enabled and
require UAC elevation.

CTaskDialog::SetCommonButtons Adds common buttons to the CTaskDialog .

CTaskDialog::SetContent Updates the content of the CTaskDialog .

CTaskDialog::SetDefaultCommandControl Specifies the default command button control.

CTaskDialog::SetDefaultRadioButton Specifies the default radio button.

CTaskDialog::SetDialogWidth Adjusts the width of the CTaskDialog .

CTaskDialog::SetExpansionArea Updates the expansion area of the CTaskDialog .

CTaskDialog::SetFooterIcon Updates the footer icon for the CTaskDialog .

CTaskDialog::SetFooterText Updates the text on the footer of the CTaskDialog .

CTaskDialog::SetMainIcon Updates the main icon of the CTaskDialog .

CTaskDialog::SetMainInstruction Updates the main instruction of the CTaskDialog .

CTaskDialog::SetOptions Configures the options for the CTaskDialog .

CTaskDialog::SetProgressBarMarquee Configures a marquee bar for the CTaskDialog and adds it
to the dialog box.

CTaskDialog::SetProgressBarPosition Adjusts the position of the progress bar.

CTaskDialog::SetProgressBarRange Adjusts the range of the progress bar.

CTaskDialog::SetProgressBarState Sets the state of the progress bar and displays it on the
CTaskDialog .

CTaskDialog::SetRadioButtonOptions Enables or disables a radio button.

CTaskDialog::SetVerificationCheckbox Sets the checked state of the verification check box.

CTaskDialog::SetVerificationCheckboxText Sets the text on the right side of the verification check box.

CTaskDialog::SetWindowTitle Sets the title of the CTaskDialog .

CTaskDialog::ShowDialog Creates and displays a CTaskDialog .

CTaskDialog::TaskDialogCallback The framework calls this in response to various Windows
messages.

Data MembersData Members

m_aButtons The array of command button controls for the
CTaskDialog .

m_aRadioButtons The array of radio button controls for the CTaskDialog .

m_bVerified TRUE indicates the verification check box is checked;
FALSE indicates it is not.

m_footerIcon The icon in the footer of the CTaskDialog .

m_hWnd A handle to the window for the CTaskDialog .

m_mainIcon The main icon of the CTaskDialog .

m_nButtonDisabled A mask that indicates which of the common buttons are
disabled.

m_nButtonElevation A mask that indicates which of the common buttons require
UAC elevation.

m_nButtonId The ID of the selected command button control.

m_nCommonButton A mask that indicates which common buttons are displayed
on the CTaskDialog .

m_nDefaultCommandControl The ID of the command button control that is selected when
the CTaskDialog is displayed.

m_nDefaultRadioButton The ID of the radio button control that is selected when the
CTaskDialog is displayed.

m_nFlags A mask that indicates the options for the CTaskDialog .

m_nProgressPos The current position for the progress bar. This value must be
between m_nProgressRangeMin and
m_nProgressRangeMax .

m_nProgressRangeMax The maximum value for the progress bar.

m_nProgressRangeMin The minimum value for the progress bar.

m_nProgressState The state of the progress bar. For more information, see
CTaskDialog::SetProgressBarState.

m_nRadioId The ID of the selected radio button control.

m_nWidth The width of the CTaskDialog in pixels.

m_strCollapse The string the CTaskDialog displays to the right of the
expansion box when the expanded information is hidden.

m_strContent The content string of the CTaskDialog .

m_strExpand The string the CTaskDialog displays to the right of the
expansion box when the expanded information is displayed.

m_strFooter The footer of the CTaskDialog .

m_strInformation The expanded information for the CTaskDialog .

m_strMainInstruction The main instruction of the CTaskDialog .

m_strTitle The title of the CTaskDialog .

m_strVerification The string that the CTaskDialog displays to the right of the
verification check box.

Remarks
The CTaskDialog class replaces the standard Windows message box and has additional functionality such as
new controls to gather information from the user. This class is in the MFC library in Visual Studio 2010 and later.
The CTaskDialog is available starting with Windows Vista. Earlier versions of Windows cannot display the
CTaskDialog object. Use CTaskDialog::IsSupported to determine at runtime whether the current user can display

the task dialog box. The standard Windows message box is still supported.

The CTaskDialog is available only when you build your application by using the Unicode library.

The CTaskDialog has two different constructors. One constructor enables you to specify two command buttons
and a maximum of six regular button controls. You can add more command buttons after you create the
CTaskDialog . The second constructor does not support any command buttons, but you can add an unlimited

number of regular button controls. For more information about the constructors, see CTaskDialog::CTaskDialog.

The following image shows a sample CTaskDialog to illustrate the location of some of the controls.

Requirements

CTaskDialog::AddCommandControl

void AddCommandControl(
 int nCommandControlID,
 const CString& strCaption,
 BOOL bEnabled = TRUE,
 BOOL bRequiresElevation = FALSE);

ParametersParameters

RemarksRemarks

CTaskDialog Sample

Minimum required operating system: Windows Vista

Header: afxtaskdialog.h

Adds a new command button control to the CTaskDialog .

nCommandControlID
[in] The command control identification number.

strCaption
[in] The string that the CTaskDialog displays to the user. Use this string to explain the purpose of the command.

bEnabled
[in] A Boolean parameter that indicates if the new button is enabled or disabled.

bRequiresElevation
[in] A Boolean parameter that indicates whether a command requires elevation.

The CTaskDialog Class can display an unlimited number of command button controls. However, if a
CTaskDialog displays any command button controls, it can display a maximum of six buttons. If a CTaskDialog

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title.
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddCommandControl(201, L"First command button control");
taskDialog.AddCommandControl(202, L"Second command button control");
taskDialog.AddCommandControl(203, L"Third command button control");

// Show the CTaskDialog and remember how the user closed it.
int selection = taskDialog.DoModal();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // command button control.
 break;

case 202:
 // TODO: Place processing here for the second
 // command button control.
 break;

case 203:
 // TODO: Place processing here for the third
 // command button control.
 break;

default:
 break;
}

// Remove all the command controls so that we can use the same task
// dialog with new command button controls.
taskDialog.RemoveAllCommandControls();

taskDialog.AddCommandControl(301,
 L"New first command button control");
taskDialog.AddCommandControl(302,
 L"New second command button control should require elevation",
 TRUE, TRUE);
taskDialog.AddCommandControl(303,
 L"New third command button control should be disabled");

// Change the default command button control
taskDialog.SetDefaultCommandControl(302);

// Make sure the third option is disabled.
if (taskDialog.IsCommandControlEnabled(303))
{
 taskDialog.SetCommandControlOptions(303, FALSE);
}

taskDialog.DoModal();

has no command button controls, it can display an unlimited number of buttons.

When the user selects a command button control, the CTaskDialog closes. If your application displays the dialog
box by using CTaskDialog::DoModal, DoModal returns the nCommandControlID of the selected command
button control.

switch(taskDialog.GetSelectedCommandControlID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the command button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllCommandControls();
taskDialog.LoadCommandControls(1001, 1005);

CTaskDialog::AddRadioButton

void CTaskDialog::AddRadioButton(
 int nRadioButtonID,
 const CString& strCaption,
 BOOL bEnabled = TRUE);

ParametersParameters

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,

Adds a radio button to the CTaskDialog .

nRadioButtonID
[in] The identification number of the radio button.

strCaption
[in] The string that the CTaskDialog displays next to the radio button.

bEnabled
[in] A Boolean parameter that indicates whether the radio button is enabled.

The radio buttons for the CTaskDialog Class enable you to gather information from the user. Use the function
CTaskDialog::GetSelectedRadioButtonID to determine which radio button is selected.

The CTaskDialog does not require that the nRadioButtonID parameters are unique for each radio button.
However, you may experience unexpected behavior if you do not use a distinct identifier for each radio button.

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddRadioButton(201, L"First option");
taskDialog.AddRadioButton(202, L"Second option");
taskDialog.AddRadioButton(203, L"Third option");

taskDialog.DoModal();
int selection = taskDialog.GetSelectedRadioButtonID();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // radio button.
 break;

case 202:
 // TODO: Place processing here for the second
 // radio button.
 break;

case 203:
 // TODO: Place processing here for the third
 // radio button.
 break;

default:
 break;
}

// Remove all the radio buttons so that we can use the same task
// dialog with new radio buttons.
taskDialog.RemoveAllRadioButtons();

taskDialog.AddRadioButton(301, L"New first option");
taskDialog.AddRadioButton(302, L"New second option");
taskDialog.AddRadioButton(303,
 L"New third option should be disabled");

// Change the default radio button to the second option
taskDialog.SetDefaultRadioButton(302);

// Make sure the third option is disabled.
if (taskDialog.IsRadioButtonEnabled(303))
{
 taskDialog.SetRadioButtonOptions(303, FALSE);
}

taskDialog.DoModal();
selection = taskDialog.GetSelectedRadioButtonID();

switch(taskDialog.GetSelectedRadioButtonID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:

default:
 break;
}

// Remove all the radio button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllRadioButtons();
taskDialog.LoadRadioButtons(1001, 1005);

CTaskDialog::ClickCommandControl

protected:
void ClickCommandControl(int nCommandControlID) const;

ParametersParameters

RemarksRemarks

CTaskDialog::ClickRadioButton

protected:
void ClickRadioButton(int nRadioButtonID) const;

ParametersParameters

RemarksRemarks

CTaskDialog::CTaskDialog

Clicks a command button control or common button programmatically.

nCommandControlID
[in] The command ID of the control to click.

This method generates the windows message TDM_CLICK_BUTTON.

Clicks a radio button programmatically.

nRadioButtonID
[in] The ID of the radio button to click.

This method generates the windows message TDM_CLICK_RADIO_BUTTON.

Creates an instance of the CTaskDialog Class.

CTaskDialog(
 const CString& strContent,
 const CString& strMainInstruction,
 const CString& strTitle,
 int nCommonButtons = TDCBF_OK_BUTTON | TDCBF_CANCEL_BUTTON,
 int nTaskDialogOptions = TDF_ENABLE_HYPERLINKS | TDF_USE_COMMAND_LINKS,
 const CString& strFooter = _T(""));

CTaskDialog(
 const CString& strContent,
 const CString& strMainInstruction,
 const CString& strTitle,
 int nIDCommandControlsFirst,
 int nIDCommandControlsLast,
 int nCommonButtons,
 int nTaskDialogOptions = TDF_ENABLE_HYPERLINKS | TDF_USE_COMMAND_LINKS,
 const CString& strFooter = _T(""));

ParametersParameters

RemarksRemarks

ExampleExample

strContent
[in] The string to use for the content of the CTaskDialog .

strMainInstruction
[in] The main instruction of the CTaskDialog .

strTitle
[in] The title of the CTaskDialog .

nCommonButtons
[in] A mask of the common buttons to add to the CTaskDialog .

nTaskDialogOptions
[in] The set of options to use for the CTaskDialog .

strFooter
[in] The string to use as the footer.

nIDCommandControlsFirst
[in] The string ID of the first command.

nIDCommandControlsLast
[in] The string ID of the last command.

There are two ways that you can add a CTaskDialog to your application. The first way is to use one of the
constructors to create a CTaskDialog and display it using CTaskDialog::DoModal. The second way is to use the
static function CTaskDialog::ShowDialog, which enables you to display a CTaskDialog without explicitly creating
a CTaskDialog object.

The second constructor creates command button controls by using data from the resource file of your
application. The string table in the resource file has several strings with associated string IDs. This method adds
a command button control for each valid entry in the string table between nIDCommandControlsFirst and
nCommandControlsLast, inclusive. For these command button controls, the string in the string table is the
control's caption and the string ID is the control's ID.

See CTaskDialog::SetOptions for a list of valid options.

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::DoModal

INT_PTR DoModal (HWND hParent = ::GetActiveWindow());

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Shows the CTaskDialog and makes it modal.

hParent
[in] The parent window for the CTaskDialog .

An integer that corresponds to the selection made by the user.

Displays this instance of the CTaskDialog. The application then waits for the user to close the dialog box.

The CTaskDialog closes when the user selects a common button, a command link control, or closes the
CTaskDialog . The return value is the identifier that indicates how the user closed the dialog box.

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::GetCommonButtonCount

int GetCommonButtonCount() const;

Return ValueReturn Value

RemarksRemarks

CTaskDialog::GetCommonButtonFlag

int GetCommonButtonFlag(int nButtonId) const;

ParametersParameters

Retrieves the number of common buttons.

The number of common buttons available.

The common buttons are the default buttons that you provide to CTaskDialog::CTaskDialog. The CTaskDialog
Class displays the buttons along the bottom of the dialog box.

The enumerated list of buttons is provided in CommCtrl.h.

Converts a standard Windows button to the common button type associated with the CTaskDialog Class.

nButtonId
[in] The standard Windows button value.

Return ValueReturn Value

CTaskDialog::GetCommonButtonId

int GetCommonButtonId(int nFlag);

ParametersParameters

Return ValueReturn Value

CTaskDialog::GetOptions

int GetOptions() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

The value of the corresponding CTaskDialog common button. If there is no corresponding common button, this
method returns 0.

Converts one of the common button types associated with the CTaskDialog Class to a standard Windows
button.

nFlag
[in] The common button type associated with the CTaskDialog class.

The value of the corresponding standard Windows button. If there is no corresponding Windows button, the
method returns 0.

Returns the option flags for this CTaskDialog .

The flags for the CTaskDialog .

For more information about the options available to the CTaskDialog Class, see CTaskDialog::SetOptions.

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::GetSelectedCommandControlID

int GetSelectedCommandControlID() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title.
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddCommandControl(201, L"First command button control");
taskDialog.AddCommandControl(202, L"Second command button control");
taskDialog.AddCommandControl(203, L"Third command button control");

// Show the CTaskDialog and remember how the user closed it.

Returns the selected command button control.

The ID of the currently selected command button control.

You do not have to use this method to retrieve the ID of the command button that the user selected. That ID is
returned by either CTaskDialog::DoModal or CTaskDialog::ShowDialog.

// Show the CTaskDialog and remember how the user closed it.
int selection = taskDialog.DoModal();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // command button control.
 break;

case 202:
 // TODO: Place processing here for the second
 // command button control.
 break;

case 203:
 // TODO: Place processing here for the third
 // command button control.
 break;

default:
 break;
}

// Remove all the command controls so that we can use the same task
// dialog with new command button controls.
taskDialog.RemoveAllCommandControls();

taskDialog.AddCommandControl(301,
 L"New first command button control");
taskDialog.AddCommandControl(302,
 L"New second command button control should require elevation",
 TRUE, TRUE);
taskDialog.AddCommandControl(303,
 L"New third command button control should be disabled");

// Change the default command button control
taskDialog.SetDefaultCommandControl(302);

// Make sure the third option is disabled.
if (taskDialog.IsCommandControlEnabled(303))
{
 taskDialog.SetCommandControlOptions(303, FALSE);
}

taskDialog.DoModal();

switch(taskDialog.GetSelectedCommandControlID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the command button controls and add new ones from
// the string table resource.

// the string table resource.
taskDialog.RemoveAllCommandControls();
taskDialog.LoadCommandControls(1001, 1005);

CTaskDialog::GetSelectedRadioButtonID

int GetSelectedRadioButtonID() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddRadioButton(201, L"First option");
taskDialog.AddRadioButton(202, L"Second option");
taskDialog.AddRadioButton(203, L"Third option");

taskDialog.DoModal();
int selection = taskDialog.GetSelectedRadioButtonID();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // radio button.
 break;

case 202:
 // TODO: Place processing here for the second
 // radio button.
 break;

case 203:
 // TODO: Place processing here for the third
 // radio button.
 break;

default:
 break;
}

// Remove all the radio buttons so that we can use the same task
// dialog with new radio buttons.
taskDialog.RemoveAllRadioButtons();

taskDialog.AddRadioButton(301, L"New first option");
taskDialog.AddRadioButton(302, L"New second option");
taskDialog.AddRadioButton(303,
 L"New third option should be disabled");

Returns the selected radio button.

The ID of the selected radio button.

You can use this method after the user closes the dialog box to retrieve the selected radio button.

// Change the default radio button to the second option
taskDialog.SetDefaultRadioButton(302);

// Make sure the third option is disabled.
if (taskDialog.IsRadioButtonEnabled(303))
{
 taskDialog.SetRadioButtonOptions(303, FALSE);
}

taskDialog.DoModal();
selection = taskDialog.GetSelectedRadioButtonID();

switch(taskDialog.GetSelectedRadioButtonID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the radio button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllRadioButtons();
taskDialog.LoadRadioButtons(1001, 1005);

CTaskDialog::GetVerificationCheckboxState

BOOL GetVerificationCheckboxState() const;

Return ValueReturn Value

ExampleExample

Retrieves the state of the verification check box.

TRUE if the check box is checked, FALSE if it is not.

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Add the verification checkbox and set the default state.
taskDialog.SetVerificationCheckboxText(L"Remember your selection.");
taskDialog.SetVerificationCheckbox(false);

taskDialog.DoModal();

if (taskDialog.GetVerificationCheckboxState())
{
 // TODO: Write settings of the task dialog to the registry
}

CTaskDialog::IsCommandControlEnabled

BOOL IsCommandControlEnabled(int nCommandControlID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title.
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddCommandControl(201, L"First command button control");
taskDialog.AddCommandControl(202, L"Second command button control");
taskDialog.AddCommandControl(203, L"Third command button control");

// Show the CTaskDialog and remember how the user closed it.
int selection = taskDialog.DoModal();

switch(selection)
{
case 201:

Determines whether a command button control or button is enabled.

nCommandControlID
[in] The ID of the command button control or button to test.

TRUE if the control is enabled, FALSE if it is not.

You can use this method to determine the availability of both command button controls and the common
buttons of the CTaskDialog Class*.

If nCommandControlID is not a valid identifier for either a common CTaskDialog button or a command button
control, this method throws an exception.

case 201:
 // TODO: Place processing here for the first
 // command button control.
 break;

case 202:
 // TODO: Place processing here for the second
 // command button control.
 break;

case 203:
 // TODO: Place processing here for the third
 // command button control.
 break;

default:
 break;
}

// Remove all the command controls so that we can use the same task
// dialog with new command button controls.
taskDialog.RemoveAllCommandControls();

taskDialog.AddCommandControl(301,
 L"New first command button control");
taskDialog.AddCommandControl(302,
 L"New second command button control should require elevation",
 TRUE, TRUE);
taskDialog.AddCommandControl(303,
 L"New third command button control should be disabled");

// Change the default command button control
taskDialog.SetDefaultCommandControl(302);

// Make sure the third option is disabled.
if (taskDialog.IsCommandControlEnabled(303))
{
 taskDialog.SetCommandControlOptions(303, FALSE);
}

taskDialog.DoModal();

switch(taskDialog.GetSelectedCommandControlID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the command button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllCommandControls();
taskDialog.LoadCommandControls(1001, 1005);

 CTaskDialog::IsRadioButtonEnabled

BOOL IsRadioButtonEnabled(int nRadioButtonID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddRadioButton(201, L"First option");
taskDialog.AddRadioButton(202, L"Second option");
taskDialog.AddRadioButton(203, L"Third option");

taskDialog.DoModal();
int selection = taskDialog.GetSelectedRadioButtonID();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // radio button.
 break;

case 202:
 // TODO: Place processing here for the second
 // radio button.
 break;

case 203:
 // TODO: Place processing here for the third
 // radio button.
 break;

default:
 break;
}

// Remove all the radio buttons so that we can use the same task
// dialog with new radio buttons.
taskDialog.RemoveAllRadioButtons();

taskDialog.AddRadioButton(301, L"New first option");
taskDialog.AddRadioButton(302, L"New second option");
taskDialog.AddRadioButton(303,
 L"New third option should be disabled");

Determines whether a radio button is enabled.

nRadioButtonID
[in] The ID of the radio button to test.

TRUE if the radio button is enabled, FALSE if it is not.

If nRadioButtonID is not a valid identifier for a radio button, this method throws an exception.

// Change the default radio button to the second option
taskDialog.SetDefaultRadioButton(302);

// Make sure the third option is disabled.
if (taskDialog.IsRadioButtonEnabled(303))
{
 taskDialog.SetRadioButtonOptions(303, FALSE);
}

taskDialog.DoModal();
selection = taskDialog.GetSelectedRadioButtonID();

switch(taskDialog.GetSelectedRadioButtonID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the radio button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllRadioButtons();
taskDialog.LoadRadioButtons(1001, 1005);

CTaskDialog::IsSupported

static BOOL IsSupported();

Return ValueReturn Value

RemarksRemarks

ExampleExample

Determines whether the computer that is running the application supports the CTaskDialog .

TRUE if the computer supports the CTaskDialog ; FALSE otherwise.

Use this function to determine at runtime if the computer that is running your application supports the
CTaskDialog class. If the computer does not support the CTaskDialog , you should provide another method of

communicating information to the user. Your application will crash if it tries to use a CTaskDialog on a computer
that does not support the CTaskDialog class.

// TODO: Replace the string below with the actual message to the user
CString message("Important information to the user");
// TODO: Replace the string below with the title of this project
CString title("Project Title");

CString emptyString;

if (CTaskDialog::IsSupported())
{
 CTaskDialog::ShowDialog(message, emptyString, title, 0, 0,
 TDCBF_OK_BUTTON);
}
else
{
 AfxMessageBox(message);
}

CTaskDialog::LoadCommandControls

void LoadCommandControls(
 int nIDCommandControlsFirst,
 int nIDCommandControlsLast);

ParametersParameters

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title.
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddCommandControl(201, L"First command button control");
taskDialog.AddCommandControl(202, L"Second command button control");
taskDialog.AddCommandControl(203, L"Third command button control");

// Show the CTaskDialog and remember how the user closed it.
int selection = taskDialog.DoModal();

switch(selection)

Adds command button controls by using data from the string table.

nIDCommandControlsFirst
[in] The string ID of the first command.

nIDCommandControlsLast
[in] The string ID of the last command.

This method creates command button controls by using data from the resource file of your application. The
string table in the resource file has several strings with associated string IDs. New command button controls
added by using this method use the string for the control's caption and the string ID for the control's ID. The
range of strings selected is provided by nIDCommandControlsFirst and nCommandControlsLast, inclusive. If
there is an empty entry in the range, the method does not add a command button control for that entry.

By default, new command button controls are enabled and do not require elevation.

{
case 201:
 // TODO: Place processing here for the first
 // command button control.
 break;

case 202:
 // TODO: Place processing here for the second
 // command button control.
 break;

case 203:
 // TODO: Place processing here for the third
 // command button control.
 break;

default:
 break;
}

// Remove all the command controls so that we can use the same task
// dialog with new command button controls.
taskDialog.RemoveAllCommandControls();

taskDialog.AddCommandControl(301,
 L"New first command button control");
taskDialog.AddCommandControl(302,
 L"New second command button control should require elevation",
 TRUE, TRUE);
taskDialog.AddCommandControl(303,
 L"New third command button control should be disabled");

// Change the default command button control
taskDialog.SetDefaultCommandControl(302);

// Make sure the third option is disabled.
if (taskDialog.IsCommandControlEnabled(303))
{
 taskDialog.SetCommandControlOptions(303, FALSE);
}

taskDialog.DoModal();

switch(taskDialog.GetSelectedCommandControlID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the command button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllCommandControls();
taskDialog.LoadCommandControls(1001, 1005);

 CTaskDialog::LoadRadioButtons

void LoadRadioButtons(
 int nIDRadioButtonsFirst,
 int nIDRadioButtonsLast);

ParametersParameters

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddRadioButton(201, L"First option");
taskDialog.AddRadioButton(202, L"Second option");
taskDialog.AddRadioButton(203, L"Third option");

taskDialog.DoModal();
int selection = taskDialog.GetSelectedRadioButtonID();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // radio button.
 break;

case 202:
 // TODO: Place processing here for the second
 // radio button.
 break;

case 203:
 // TODO: Place processing here for the third
 // radio button.
 break;

default:
 break;

Adds radio button controls by using data from the string table.

nIDRadioButtonsFirst
[in] The string ID of the first radio button.

nIDRadioButtonsLast
[in] The string ID of the last radio button.

This method creates radio buttons by using data from the resource file of your application. The string table in
the resource file has several strings with associated string IDs. New radio buttons added by using this method
use the string for the radio button's caption and the string ID for the radio button's ID. The range of strings
selected is provided by nIDRadioButtonsFirst and nRadioButtonsLast, inclusive. If there is an empty entry in the
range, the method does not add a radio button for that entry.

By default, new radio buttons are enabled.

}

// Remove all the radio buttons so that we can use the same task
// dialog with new radio buttons.
taskDialog.RemoveAllRadioButtons();

taskDialog.AddRadioButton(301, L"New first option");
taskDialog.AddRadioButton(302, L"New second option");
taskDialog.AddRadioButton(303,
 L"New third option should be disabled");

// Change the default radio button to the second option
taskDialog.SetDefaultRadioButton(302);

// Make sure the third option is disabled.
if (taskDialog.IsRadioButtonEnabled(303))
{
 taskDialog.SetRadioButtonOptions(303, FALSE);
}

taskDialog.DoModal();
selection = taskDialog.GetSelectedRadioButtonID();

switch(taskDialog.GetSelectedRadioButtonID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the radio button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllRadioButtons();
taskDialog.LoadRadioButtons(1001, 1005);

CTaskDialog::NavigateTo

protected:
void NavigateTo(CTaskDialog& oTaskDialog) const;

ParametersParameters

RemarksRemarks

Transfers the focus to another CTaskDialog .

oTaskDialog
[in] The CTaskDialog that receives the focus.

This method hides the current CTaskDialog when it displays the oTaskDialog. The oTaskDialog is displayed in

CTaskDialog::OnCommandControlClick

virtual HRESULT OnCommandControlClick(int nCommandControlID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTaskDialog::OnCreate

virtual HRESULT OnCreate();

Return ValueReturn Value

RemarksRemarks

CTaskDialog::OnDestroy

virtual HRESULT OnDestroy();

Return ValueReturn Value

RemarksRemarks

CTaskDialog::OnExpandButtonClick

virtual HRESULT OnExpandButtonClicked(BOOL bExpanded);

ParametersParameters

the same location as the current CTaskDialog .

The framework calls this method when the user clicks a command button control.

nCommandControlID
[in] The ID of the command button control that the user selected.

The default implementation returns S_OK.

Override this method in a derived class to implement custom behavior.

The framework calls this method after it creates the CTaskDialog .

The default implementation returns S_OK.

Override this method in a derived class to implement custom behavior.

The framework calls this method immediately before it destroys the CTaskDialog .

The default implementation returns S_OK.

Override this method in a derived class to implement custom behavior.

The framework calls this method when the user clicks on the expansion button.

bExpanded
[in] A nonzero value indicates the extra information is displayed; 0 indicates the extra information is hidden.

Return ValueReturn Value

RemarksRemarks

CTaskDialog::OnHelp

virtual HRESULT OnHelp();

Return ValueReturn Value

RemarksRemarks

CTaskDialog::OnHyperlinkClick

virtual HRESULT OnHyperlinkClick(const CString& strHref);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTaskDialog::OnInit

virtual HRESULT OnInit();

Return ValueReturn Value

RemarksRemarks

CTaskDialog::OnNavigatePage

The default implementation returns S_OK.

Override this method in a derived class to implement custom behavior.

The framework calls this method when the user requests help.

The default implementation returns S_OK.

Override this method in a derived class to implement custom behavior.

The framework calls this method when the user clicks on a hyperlink.

strHref
[in] The string that represents the hyperlink.

The default implementation returns S_OK.

This method calls ShellExecute before it returns S_OK.

Override this method in a derived class to implement custom behavior.

The framework calls this method when the CTaskDialog is initialized.

The default implementation returns S_OK.

Override this method in a derived class to implement custom behavior.

The framework calls this method in response to the CTaskDialog::NavigateTo method.

https://docs.microsoft.com/windows/desktop/api/shellapi/nf-shellapi-shellexecutea

virtual HRESULT OnNavigatePage();

Return ValueReturn Value

RemarksRemarks

CTaskDialog::OnRadioButtonClick

virtual HRESULT OnRadioButtonClick(int nRadioButtonID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTaskDialog::OnTimer

virtual HRESULT OnTimer(long lTime);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTaskDialog::OnVerificationCheckboxClick

virtual HRESULT OnVerificationCheckboxClick(BOOL bChecked);

ParametersParameters

Return ValueReturn Value

The default implementation returns S_OK.

Override this method in a derived class to implement custom behavior.

The framework calls this method when the user selects a radio button control.

nRadioButtonID
[in] The ID of the radio button control that the user clicked.

The default implementation returns S_OK.

Override this method in a derived class to implement custom behavior.

The framework calls this method when the timer expires.

lTime
[in] Time in milliseconds since the CTaskDialog was created or the timer was reset.

The default implementation returns S_OK.

Override this method in a derived class to implement custom behavior.

The framework calls this method when the user clicks the verification check box.

bChecked
[in] TRUE indicates the verification check box is selected; FALSE indicates it is not.

RemarksRemarks

CTaskDialog::RemoveAllCommandControls

void RemoveAllCommandControls();

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title.
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddCommandControl(201, L"First command button control");
taskDialog.AddCommandControl(202, L"Second command button control");
taskDialog.AddCommandControl(203, L"Third command button control");

// Show the CTaskDialog and remember how the user closed it.
int selection = taskDialog.DoModal();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // command button control.
 break;

case 202:
 // TODO: Place processing here for the second
 // command button control.
 break;

case 203:
 // TODO: Place processing here for the third
 // command button control.
 break;

default:
 break;
}

// Remove all the command controls so that we can use the same task
// dialog with new command button controls.
taskDialog.RemoveAllCommandControls();

taskDialog.AddCommandControl(301,
 L"New first command button control");
taskDialog.AddCommandControl(302,
 L"New second command button control should require elevation",
 TRUE, TRUE);
taskDialog.AddCommandControl(303,
 L"New third command button control should be disabled");

// Change the default command button control
taskDialog.SetDefaultCommandControl(302);

The default implementation returns S_OK.

Override this method in a derived class to implement custom behavior.

Removes all the command button controls from the CTaskDialog .

// Make sure the third option is disabled.
if (taskDialog.IsCommandControlEnabled(303))
{
 taskDialog.SetCommandControlOptions(303, FALSE);
}

taskDialog.DoModal();

switch(taskDialog.GetSelectedCommandControlID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the command button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllCommandControls();
taskDialog.LoadCommandControls(1001, 1005);

CTaskDialog::RemoveAllRadioButtons

void RemoveAllRadioButtons();

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddRadioButton(201, L"First option");
taskDialog.AddRadioButton(202, L"Second option");
taskDialog.AddRadioButton(203, L"Third option");

taskDialog.DoModal();
int selection = taskDialog.GetSelectedRadioButtonID();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // radio button.
 break;

Removes all the radio buttons from the CTaskDialog .

 break;

case 202:
 // TODO: Place processing here for the second
 // radio button.
 break;

case 203:
 // TODO: Place processing here for the third
 // radio button.
 break;

default:
 break;
}

// Remove all the radio buttons so that we can use the same task
// dialog with new radio buttons.
taskDialog.RemoveAllRadioButtons();

taskDialog.AddRadioButton(301, L"New first option");
taskDialog.AddRadioButton(302, L"New second option");
taskDialog.AddRadioButton(303,
 L"New third option should be disabled");

// Change the default radio button to the second option
taskDialog.SetDefaultRadioButton(302);

// Make sure the third option is disabled.
if (taskDialog.IsRadioButtonEnabled(303))
{
 taskDialog.SetRadioButtonOptions(303, FALSE);
}

taskDialog.DoModal();
selection = taskDialog.GetSelectedRadioButtonID();

switch(taskDialog.GetSelectedRadioButtonID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the radio button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllRadioButtons();
taskDialog.LoadRadioButtons(1001, 1005);

CTaskDialog::SetCommandControlOptions
Updates a command button control on the CTaskDialog .

void SetCommandControlOptions(
 int nCommandControlID,
 BOOL bEnabled,
 BOOL bRequiresElevation = FALSE);

ParametersParameters

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title.
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddCommandControl(201, L"First command button control");
taskDialog.AddCommandControl(202, L"Second command button control");
taskDialog.AddCommandControl(203, L"Third command button control");

// Show the CTaskDialog and remember how the user closed it.
int selection = taskDialog.DoModal();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // command button control.
 break;

case 202:
 // TODO: Place processing here for the second
 // command button control.
 break;

case 203:
 // TODO: Place processing here for the third
 // command button control.
 break;

default:
 break;
}

// Remove all the command controls so that we can use the same task
// dialog with new command button controls.
taskDialog.RemoveAllCommandControls();

taskDialog.AddCommandControl(301,
 L"New first command button control");

nCommandControlID
[in] The ID of the command control to update.

bEnabled
[in] A Boolean parameter that indicates if the specified command button control is enabled or disabled.

bRequiresElevation
[in] A Boolean parameter that indicates if the specified command button control requires elevation.

Use this method to change whether a command button control is enabled or requires elevation after it has been
added to the CTaskDialog class.

 L"New first command button control");
taskDialog.AddCommandControl(302,
 L"New second command button control should require elevation",
 TRUE, TRUE);
taskDialog.AddCommandControl(303,
 L"New third command button control should be disabled");

// Change the default command button control
taskDialog.SetDefaultCommandControl(302);

// Make sure the third option is disabled.
if (taskDialog.IsCommandControlEnabled(303))
{
 taskDialog.SetCommandControlOptions(303, FALSE);
}

taskDialog.DoModal();

switch(taskDialog.GetSelectedCommandControlID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the command button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllCommandControls();
taskDialog.LoadCommandControls(1001, 1005);

CTaskDialog::SetCommonButtonOptions

void SetCommonButtonOptions(
 int nDisabledButtonMask,
 int nElevationButtonMask = 0);

ParametersParameters

RemarksRemarks

Updates a subset of common buttons to be enabled and to require UAC elevation.

nDisabledButtonMask
[in] A mask for the common buttons to disable.

nElevationButtonMask
[in] A mask for the common buttons that require elevation.

You can set the common buttons available to an instance of the CTaskDialog Class by using the constructor
CTaskDialog::CTaskDialog and the method CTaskDialog::SetCommonButtons.

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title);

// Create a button mask.
int buttons = TDCBF_OK_BUTTON | TDCBF_CANCEL_BUTTON;
buttons |= TDCBF_RETRY_BUTTON | TDCBF_CLOSE_BUTTON;

taskDialog.SetCommonButtons(buttons);

// Disable the close button and make the retry button require
// elevation.
taskDialog.SetCommonButtonOptions(TDCBF_CLOSE_BUTTON,
 TDCBF_RETRY_BUTTON);

taskDialog.DoModal();

CTaskDialog::SetCommonButtons

void SetCommonButtons(
 int nButtonMask,
 int nDisabledButtonMask = 0,
 int nElevationButtonMask = 0);

ParametersParameters

RemarksRemarks

CTaskDialog::SetCommonButtonOptions does not support adding new common buttons.

If you use this method to disable or elevate a common button that is not available for this CTaskDialog , this
method throws an exception by using the ENSURE macro.

This method enables any button that is available to the CTaskDialog but is not in the nDisabledButtonMask,
even if it was previously disabled. This method treats elevation in a similar manner: it records common buttons
as not requiring elevation if the common button is available but not included in nElevationButtonMask.

Adds common buttons to the CTaskDialog .

nButtonMask
[in] A mask of the buttons to add to the CTaskDialog .

nDisabledButtonMask
[in] A mask of the buttons to disable.

nElevationButtonMask
[in] A mask of the buttons that require elevation.

You cannot call this method after the display window for this instance of the CTaskDialog class is created. If you
do, this method throws an exception.

The buttons indicated by nButtonMask override any common buttons previously added to the CTaskDialog .
Only the buttons indicated in nButtonMask are available.

If either nDisabledButtonMask or nElevationButtonMask contain a button that is not in nButtonMask, this

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title);

// Create a button mask.
int buttons = TDCBF_OK_BUTTON | TDCBF_CANCEL_BUTTON;
buttons |= TDCBF_RETRY_BUTTON | TDCBF_CLOSE_BUTTON;

taskDialog.SetCommonButtons(buttons);

// Disable the close button and make the retry button require
// elevation.
taskDialog.SetCommonButtonOptions(TDCBF_CLOSE_BUTTON,
 TDCBF_RETRY_BUTTON);

taskDialog.DoModal();

CTaskDialog::SetContent

void SetContent(const CString& strContent);

ParametersParameters

RemarksRemarks

ExampleExample

method throws an exception by using the ENSURE macro.

By default, all common buttons are enabled and do not require elevation.

Updates the content of the CTaskDialog .

strContent
[in] The string to display to the user.

The content of the CTaskDialog class is the text that is displayed to the user in the main section of the dialog box.

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::SetDefaultCommandControl

void SetDefaultCommandControl(int nCommandControlID);

ParametersParameters

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title.
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

Specifies the default command button control.

nCommandControlID
[in] The ID of the command button control to be the default.

The default command button control is the control that is selected when the CTaskDialog is first displayed to the
user.

This method throws an exception if it cannot find the command button control specified by
nCommandControlID.

taskDialog.AddCommandControl(201, L"First command button control");
taskDialog.AddCommandControl(202, L"Second command button control");
taskDialog.AddCommandControl(203, L"Third command button control");

// Show the CTaskDialog and remember how the user closed it.
int selection = taskDialog.DoModal();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // command button control.
 break;

case 202:
 // TODO: Place processing here for the second
 // command button control.
 break;

case 203:
 // TODO: Place processing here for the third
 // command button control.
 break;

default:
 break;
}

// Remove all the command controls so that we can use the same task
// dialog with new command button controls.
taskDialog.RemoveAllCommandControls();

taskDialog.AddCommandControl(301,
 L"New first command button control");
taskDialog.AddCommandControl(302,
 L"New second command button control should require elevation",
 TRUE, TRUE);
taskDialog.AddCommandControl(303,
 L"New third command button control should be disabled");

// Change the default command button control
taskDialog.SetDefaultCommandControl(302);

// Make sure the third option is disabled.
if (taskDialog.IsCommandControlEnabled(303))
{
 taskDialog.SetCommandControlOptions(303, FALSE);
}

taskDialog.DoModal();

switch(taskDialog.GetSelectedCommandControlID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:

default:
 break;
}

// Remove all the command button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllCommandControls();
taskDialog.LoadCommandControls(1001, 1005);

CTaskDialog::SetDefaultRadioButton

void SetDefaultRadioButton(int nRadioButtonID);

ParametersParameters

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddRadioButton(201, L"First option");
taskDialog.AddRadioButton(202, L"Second option");
taskDialog.AddRadioButton(203, L"Third option");

taskDialog.DoModal();
int selection = taskDialog.GetSelectedRadioButtonID();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // radio button.
 break;

case 202:
 // TODO: Place processing here for the second
 // radio button.
 break;

case 203:
 // TODO: Place processing here for the third
 // radio button.
 break;

default:
 break;
}

// Remove all the radio buttons so that we can use the same task

Specifies the default radio button.

nRadioButtonID
[in] The ID of the radio button to be the default.

The default radio button is the button that is selected when the CTaskDialog is first displayed to the user.

This method throws an exception if it cannot find the radio button specified by nRadioButtonID.

// Remove all the radio buttons so that we can use the same task
// dialog with new radio buttons.
taskDialog.RemoveAllRadioButtons();

taskDialog.AddRadioButton(301, L"New first option");
taskDialog.AddRadioButton(302, L"New second option");
taskDialog.AddRadioButton(303,
 L"New third option should be disabled");

// Change the default radio button to the second option
taskDialog.SetDefaultRadioButton(302);

// Make sure the third option is disabled.
if (taskDialog.IsRadioButtonEnabled(303))
{
 taskDialog.SetRadioButtonOptions(303, FALSE);
}

taskDialog.DoModal();
selection = taskDialog.GetSelectedRadioButtonID();

switch(taskDialog.GetSelectedRadioButtonID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the radio button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllRadioButtons();
taskDialog.LoadRadioButtons(1001, 1005);

CTaskDialog::SetDialogWidth

void SetDialogWidth(int nWidth = 0);

ParametersParameters

RemarksRemarks

ExampleExample

Adjusts the width of the CTaskDialog .

nWidth
[in] The width of the dialog box, in pixels.

The parameter nWidth must be greater than or equal to 0. Otherwise, this method throws an exception.

If nWidth is set to 0, this method sets the dialog box to the default size.

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::SetExpansionArea

void SetExpansionArea(
 const CString& strExpandedInformation,
 const CString& strCollapsedLabel = _T(""),
 const CString& strExpandedLabel = _T(""));

ParametersParameters

RemarksRemarks

Updates the expansion area of the CTaskDialog .

strExpandedInformation
[in] The string that the CTaskDialog displays in the main body of the dialog box when the user clicks the
expansion button.

strCollapsedLabel
[in] The string that the CTaskDialog displays next to the expansion button when the expanded area is collapsed.

strExpandedLabel
[in] The string that the CTaskDialog displays next to the expansion button when the expanded area is displayed.

The expansion area of the CTaskDialog class enables you to provide additional information to the user. The
expansion area is in the main part of the CTaskDialog , located immediately underneath the title and content
string.

When the CTaskDialog is first displayed, it does not show the expanded information and puts

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::SetFooterIcon

void SetFooterIcon(HICON hFooterIcon);
void SetFooterIcon(LPCWSTR lpszFooterIcon);

ParametersParameters

RemarksRemarks

strCollapsedLabel next to the expansion button. When the user clicks the expansion button, the CTaskDialog

displays strExpandedInformation and changes the label to strExpandedLabel.

Updates the footer icon of the CTaskDialog .

hFooterIcon
[in] The new icon for the CTaskDialog .

lpszFooterIcon
[in] The new icon for the CTaskDialog .

The footer icon is displayed on the bottom of the CTaskDialog Class. It can have associated footer text. You can
change the footer text with CTaskDialog::SetFooterText.

This method throws an exception with the ENSURE macro if the CTaskDialog is displayed or the input
parameter is NULL.

A CTaskDialog can only accept an HICON or LPCWSTR as a footer icon. This is configured by setting the option

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::SetFooterText

void SetFooterText(const CString& strFooterText);

ParametersParameters

RemarksRemarks

ExampleExample

TDF_USE_HICON_FOOTER in the constructor or CTaskDialog::SetOptions. By default, the CTaskDialog is
configured to use LPCWSTR as the input type for the footer icon. This method generates an exception if you try to
set the icon using the inappropriate type.

Updates the text on the footer of the CTaskDialog .

strFooterText
[in] The new text for the footer.

The footer icon appears next to the footer text on the bottom of the CTaskDialog . You can change the footer icon
with CTaskDialog::SetFooterIcon.

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::SetMainIcon

void SetMainIcon(HICON hMainIcon);
void SetMainIcon(LPCWSTR lpszMainIcon);

ParametersParameters

RemarksRemarks

ExampleExample

Updates the main icon of the CTaskDialog .

hMainIcon
[in] The new icon.

lpszMainIcon
[in] The new icon.

This method throws an exception with the ENSURE macro if the CTaskDialog is displayed or the input
parameter is NULL.

A CTaskDialog can only accept an HICON or LPCWSTR as a main icon. You can configure this by setting the
TDF_USE_HICON_MAIN option in the constructor or in the CTaskDialog::SetOptions method. By default, the
CTaskDialog is configured to use LPCWSTR as the input type for the main icon. This method generates an

exception if you try to set the icon using the inappropriate type.

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::SetMainInstruction

void SetMainInstruction(const CString& strInstructions);

ParametersParameters

RemarksRemarks

ExampleExample

Updates the main instruction of the CTaskDialog .

strInstructions
[in] The new main instruction.

The main instruction of the CTaskDialog class is text displayed to the user in a large bold font. It is located in the
dialog box underneath the title bar.

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::SetOptions

void SetOptions(int nOptionFlag);

ParametersParameters

RemarksRemarks

TDF_ENABLE_HYPERLINKS Enables hyperlinks in the CTaskDialog .

TDF_USE_HICON_MAIN Configures the CTaskDialog to use a HICON for the main
icon. The alternative is to use a LPCWSTR .

TDF_USE_HICON_FOOTER Configures the CTaskDialog to use a HICON for the footer
icon. The alternative is to use a LPCWSTR .

Configures the options for the CTaskDialog .

nOptionFlag
[in] The set of flags to use for the CTaskDialog .

This method clears all the current options for the CTaskDialog . To preserve the current options, you must
retrieve them first with CTaskDialog::GetOptions and combine them with the options that you want to set.

The following table lists all the valid options.

TDF_ALLOW_DIALOG_CANCELLATION Enables the user to close the CTaskDialog by using the
keyboard or by using the icon in the upper-right corner of
the dialog box, even if the Cancel button is not enabled. If
this flag is not set and the Cancel button is not enabled, the
user cannot close the dialog box by using Alt+F4, the Escape
key, or the title bar's close button.

TDF_USE_COMMAND_LINKS Configures the CTaskDialog to use command button
controls.

TDF_USE_COMMAND_LINKS_NO_ICON Configures the CTaskDialog to use command button
controls without displaying an icon next to the control.
TDF_USE_COMMAND_LINKS overrides
TDF_USE_COMMAND_LINKS_NO_ICON.

TDF_EXPAND_FOOTER_AREA Indicates the expansion area is currently expanded.

TDF_EXPANDED_BY_DEFAULT Determines whether the expansion area is expanded by
default.

TDF_VERIFICATION_FLAG_CHECKED Indicates the verification check box is currently selected.

TDF_SHOW_PROGRESS_BAR Configures the CTaskDialog to display a progress bar.

TDF_SHOW_MARQUEE_PROGRESS_BAR Configures the progress bar to be a marquee progress bar. If
you enable this option, you must set
TDF_SHOW_PROGRESS_BAR to have the expected behavior.

TDF_CALLBACK_TIMER Indicates that the CTaskDialog callback interval is set to
approximately 200 milliseconds.

TDF_POSITION_RELATIVE_TO_WINDOW Configures the CTaskDialog to be centered relative to the
parent window. If this flag is not enabled, the CTaskDialog

is centered relative to the monitor.

TDF_RTL_LAYOUT Configures the CTaskDialog for a right-to-left reading
layout.

TDF_NO_DEFAULT_RADIO_BUTTON Indicates that no radio button is selected when the
CTaskDialog appears.

TDF_CAN_BE_MINIMIZED Enables the user to minimize the CTaskDialog . To support
this option, the CTaskDialog cannot be modal. MFC does
not support this option because MFC does not support a
modeless CTaskDialog .

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::SetProgressBarMarquee

void SetProgressBarMarquee(
 BOOL bEnabled = TRUE,
 int nMarqueeSpeed = 0);

ParametersParameters

RemarksRemarks

ExampleExample

Configures a marquee bar for the CTaskDialog and adds it to the dialog box.

bEnabled
[in] TRUE to enable the marquee bar; FALSE to disable the marquee bar and remove it from the CTaskDialog .

nMarqueeSpeed
[in] An integer that indicates the speed of the marquee bar.

The marquee bar appears underneath the main text of the CTaskDialog class.

Use nMarqueeSpeed to set the speed of the marquee bar; larger values indicate a slower speed. A value of 0 for
nMarqueeSpeed makes the marquee bar move at the default speed for Windows.

This method throws an exception with the ENSURE macro if nMarqueeSpeed is less than 0.

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Add a marquee progress bar.
taskDialog.SetProgressBarMarquee();

taskDialog.DoModal();

// Remove the marquee bar and replace it with a standard progress bar
taskDialog.SetProgressBarMarquee(0);
taskDialog.SetProgressBarRange(0, 100);
taskDialog.SetProgressBarPosition(75);
taskDialog.SetProgressBarState();

taskDialog.DoModal();

CTaskDialog::SetProgressBarPosition

void SetProgressBarPosition(int nProgressPos);

ParametersParameters

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Add a marquee progress bar.
taskDialog.SetProgressBarMarquee();

taskDialog.DoModal();

// Remove the marquee bar and replace it with a standard progress bar
taskDialog.SetProgressBarMarquee(0);
taskDialog.SetProgressBarRange(0, 100);
taskDialog.SetProgressBarPosition(75);
taskDialog.SetProgressBarState();

taskDialog.DoModal();

Adjusts the position of the progress bar.

nProgressPos
[in] The position for the progress bar.

This method throws an exception with the ENSURE macro if nProgressPos is not in the progress bar range. You
can change the progress bar range with CTaskDialog::SetProgressBarRange.

CTaskDialog::SetProgressBarRange

void SetProgressBarRange(
 int nRangeMin,
 int nRangeMax);

ParametersParameters

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Add a marquee progress bar.
taskDialog.SetProgressBarMarquee();

taskDialog.DoModal();

// Remove the marquee bar and replace it with a standard progress bar
taskDialog.SetProgressBarMarquee(0);
taskDialog.SetProgressBarRange(0, 100);
taskDialog.SetProgressBarPosition(75);
taskDialog.SetProgressBarState();

taskDialog.DoModal();

CTaskDialog::SetProgressBarState

void SetProgressBarState(int nState = PBST_NORMAL);

Adjusts the range of the progress bar.

nRangeMin
[in] The lower bound of the progress bar.

nRangeMax
[in] The upper bound of the progress bar.

The position of the progress bar is relative to nRangeMin and nRangeMax. For example, if nRangeMin is 50 and
nRangeMax is 100, a position of 75 is halfway across the progress bar. Use CTaskDialog::SetProgressBarPosition
to set the position of the progress bar.

To display the progress bar, the option TDF_SHOW_PROGRESS_BAR must be enabled and
TDF_SHOW_MARQUEE_PROGRESS_BAR must not be enabled. This method automatically sets
TDF_SHOW_PROGRESS_BAR and clears TDF_SHOW_MARQUEE_PROGRESS_BAR. Use
CTaskDialog::SetOptions to manually change the options for this instance of the CTaskDialog Class.

This method throws an exception with the ENSURE macro if nRangeMin is not less than nRangeMax. This
method also throws an exception if the CTaskDialog is already displayed and has a marquee progress bar.

Sets the state of the progress bar and displays it on the CTaskDialog .

ParametersParameters

RemarksRemarks

PBST_NORMAL After the progress bar fills, the CTaskDialog does not
change the color of the bar. By default, the regular color is
green.

PBST_ERROR After the progress bar fills, the CTaskDialog changes the
color of the bar to the error color. By default, this is red.

PBST_PAUSED After the progress bar fills, the CTaskDialog changes the
color of the bar to the paused color. By default, this is yellow.

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Add a marquee progress bar.
taskDialog.SetProgressBarMarquee();

taskDialog.DoModal();

// Remove the marquee bar and replace it with a standard progress bar
taskDialog.SetProgressBarMarquee(0);
taskDialog.SetProgressBarRange(0, 100);
taskDialog.SetProgressBarPosition(75);
taskDialog.SetProgressBarState();

taskDialog.DoModal();

CTaskDialog::SetRadioButtonOptions

void SetRadioButtonOptions(
 int nRadioButtonID,
 BOOL bEnabled);

ParametersParameters

nState
[in] The state of the progress bar. See the Remarks section for the possible values.

This method throws an exception with the ENSURE macro if the CTaskDialog is already displayed and has a
marquee progress bar.

The following table lists the possible values for nState. In all these cases, the progress bar will fill with the
regular color until it reaches the designated stop position. At that point it will change color based on the state.

You can set where the progress bar stops with CTaskDialog::SetProgressBarPosition.

Enables or disables a radio button.

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

taskDialog.AddRadioButton(201, L"First option");
taskDialog.AddRadioButton(202, L"Second option");
taskDialog.AddRadioButton(203, L"Third option");

taskDialog.DoModal();
int selection = taskDialog.GetSelectedRadioButtonID();

switch(selection)
{
case 201:
 // TODO: Place processing here for the first
 // radio button.
 break;

case 202:
 // TODO: Place processing here for the second
 // radio button.
 break;

case 203:
 // TODO: Place processing here for the third
 // radio button.
 break;

default:
 break;
}

// Remove all the radio buttons so that we can use the same task
// dialog with new radio buttons.
taskDialog.RemoveAllRadioButtons();

taskDialog.AddRadioButton(301, L"New first option");
taskDialog.AddRadioButton(302, L"New second option");
taskDialog.AddRadioButton(303,
 L"New third option should be disabled");

// Change the default radio button to the second option
taskDialog.SetDefaultRadioButton(302);

// Make sure the third option is disabled.
if (taskDialog.IsRadioButtonEnabled(303))
{
 taskDialog.SetRadioButtonOptions(303, FALSE);
}

taskDialog.DoModal();

nRadioButtonID
[in] The ID of the radio button control.

bEnabled
[in] TRUE to enable the radio button; FALSE to disable the radio button.

This method throws an exception with the ENSURE macro if nRadioButtonID is not a valid ID for a radio button.

taskDialog.DoModal();
selection = taskDialog.GetSelectedRadioButtonID();

switch(taskDialog.GetSelectedRadioButtonID())
{
case 301:
 // TODO: Place processing here for new first
 // command button control.
 break;

case 302:
 // TODO: Place processing here for new second
 // command button control.
 break;

case 303:
 // TODO: Place processing here for the new third
 // command button control.
 break;

default:
 break;
}

// Remove all the radio button controls and add new ones from
// the string table resource.
taskDialog.RemoveAllRadioButtons();
taskDialog.LoadRadioButtons(1001, 1005);

CTaskDialog::SetVerificationCheckbox

void SetVerificationCheckbox(BOOL bChecked);

ParametersParameters

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Add the verification checkbox and set the default state.
taskDialog.SetVerificationCheckboxText(L"Remember your selection.");
taskDialog.SetVerificationCheckbox(false);

taskDialog.DoModal();

if (taskDialog.GetVerificationCheckboxState())
{
 // TODO: Write settings of the task dialog to the registry
}

Sets the checked state of the verification check box.

bChecked
[in] TRUE to have the verification check box selected when the CTaskDialog is displayed; FALSE to have the
verification check box unselected when the CTaskDialog is displayed.

CTaskDialog::SetVerificationCheckboxText

void SetVerificationCheckboxText(CString& strVerificationText);

ParametersParameters

RemarksRemarks

ExampleExample

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Add the verification checkbox and set the default state.
taskDialog.SetVerificationCheckboxText(L"Remember your selection.");
taskDialog.SetVerificationCheckbox(false);

taskDialog.DoModal();

if (taskDialog.GetVerificationCheckboxState())
{
 // TODO: Write settings of the task dialog to the registry
}

CTaskDialog::SetWindowTitle

void SetWindowTitle(CString& strWindowTitle);

ParametersParameters

RemarksRemarks

ExampleExample

Sets the text that is displayed to the right of the verification check box.

strVerificationText
[in] The text that this method displays next to the verification check box.

This method throws an exception with the ENSURE macro if this instance of the CTaskDialog class is already
displayed.

Sets the title of the CTaskDialog .

strWindowTitle
[in] The new title for the CTaskDialog .

// TODO: Replace the strings below with the appropriate message,
// main instruction, and dialog title
CString message("This is an important message to the user.");
CString mainInstruction("Important!\nPlease read!");
CString title("Alert Dialog");

CTaskDialog taskDialog(message, mainInstruction, title,
 TDCBF_YES_BUTTON | TDCBF_NO_BUTTON | TDCBF_CANCEL_BUTTON);

// Setting new information to be able to reuse the dialog resource
taskDialog.SetWindowTitle(L"New title for the task dialog");
taskDialog.SetContent(L"New message to show the user.");
taskDialog.SetMainInstruction(L"Even more important!");
taskDialog.SetMainIcon(TD_ERROR_ICON);
taskDialog.SetDialogWidth(300);

// Add a footer
taskDialog.SetFooterText(L"Footer information for the dialog.");
taskDialog.SetFooterIcon(TD_INFORMATION_ICON);

// Add expansion information
taskDialog.SetExpansionArea(L"Additional information\non two lines.",
 L"Click here for more information.",
 L"Click here to hide the extra information.");

// Change the options to show the expanded information by default.
// It is necessary to retrieve the current options first.
int options = taskDialog.GetOptions();
options |= TDF_EXPANDED_BY_DEFAULT;
taskDialog.SetOptions(options);

taskDialog.DoModal();

CTaskDialog::ShowDialog

static INT_PTR ShowDialog(
 const CString& strContent,
 const CString& strMainInstruction,
 const CString& strTitle,
 int nIDCommandControlsFirst,
 int nIDCommandControlsLast,
 int nCommonButtons = TDCBF_YES_BUTTON | TDCBF_NO_BUTTON,
 int nTaskDialogOptions = TDF_ENABLE_HYPERLINKS | TDF_USE_COMMAND_LINKS,
 const CString& strFooter = _T(""));

ParametersParameters

Creates and displays a CTaskDialog .

strContent
[in] The string to use for the content of the CTaskDialog .

strMainInstruction
[in] The main instruction of the CTaskDialog .

strTitle
[in] The title of the CTaskDialog .

nIDCommandControlsFirst
[in] The string ID of the first command.

nIDCommandControlsLast

Return ValueReturn Value

RemarksRemarks

ExampleExample

// TODO: Replace the string below with the actual message to the user
CString message("Important information to the user");
// TODO: Replace the string below with the title of this project
CString title("Project Title");

CString emptyString;

if (CTaskDialog::IsSupported())
{
 CTaskDialog::ShowDialog(message, emptyString, title, 0, 0,
 TDCBF_OK_BUTTON);
}
else
{
 AfxMessageBox(message);
}

CTaskDialog::TaskDialogCallback

[in] The string ID of the last command.

nCommonButtons
[in] A mask of the buttons to add to the CTaskDialog .

nTaskDialogOptions
[in] The set of options to use for the CTaskDialog .

strFooter
[in] The string to use as the footer.

An integer that corresponds to the selection made by the user.

This static method enables you to create an instance of the CTaskDialog class without explicitly creating a
CTaskDialog object in your code. Because there is no CTaskDialog object, you cannot call any other methods of

the CTaskDialog if you use this method to show a CTaskDialog to the user.

This method creates command button controls by using data from the resource file of your application. The
string table in the resource file has several strings with associated string IDs. This method adds a command
button control for each valid entry in the string table between nIDCommandControlsFirst and
nCommandControlsLast, inclusive. For these command button controls, the string in the string table is the
control's caption and the string ID is the control's ID.

See CTaskDialog::SetOptions for a list of valid options.

The CTaskDialog closes when the user selects a common button, a command link control, or closes the
CTaskDialog . The return value is the identifier that indicates how the user closed the dialog box.

The framework calls this method in response to various Windows messages.

friend:
HRESULT TaskDialogCallback(
 HWND hWnd,
 UINT uNotification,
 WPARAM wParam,
 LPARAM lParam,
 LONG_PTR dwRefData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTIFICATION MESSAGE WPARAM VALUE LPARAM VALUE

TDN_CREATED Not used. Not used.

TDN_NAVIGATED Not used. Not used.

TDN_BUTTON_CLICKED The command button control ID. Not used.

TDN_HYPERLINK_CLICKED Not used. A LPCWSTR structure that contains the
link.

TDN_TIMER Time in milliseconds since the
CTaskDialog was created or the

timer was reset.

Not used.

TDN_DESTROYED Not used. Not used.

TDN_RADIO_BUTTON_CLICKED The radio button ID. Not used.

hwnd
[in] A handle to the m_hWnd structure for the CTaskDialog .

uNotification
[in] The notification code that specifies the generated message.

wParam
[in] More information about the message.

lParam
[in] More information about the message.

dwRefData
[in] A pointer to the CTaskDialog object that the callback message applies to.

Depends on the specific notification code. See the Remarks section for more information.

The default implementation of TaskDialogCallback handles the specific message and then calls the appropriate
On method of the CTaskDialog Class. For example, in response to the TDN_BUTTON_CLICKED message,
TaskDialogCallback calls CTaskDialog::OnCommandControlClick.

The values for wParam and lParam depend on the specific generated message. It is possible for either or both
of these values to be empty. The following table lists the default notifications that are supported and what the
values of wParam and lParam represent. If you override this method in a derived class, you should implement
the callback code for each message in the following table.

https://docs.microsoft.com/windows/desktop/WinProg/windows-data-types

TDN_DIALOG_CONSTRUCTED Not used. Not used.

TDN_VERIFICATION_CLICKED 1 if the check box is checked, 0 if it is
not.

Not used.

TDN_HELP Not used. Not used.

TDN_EXPANDO_BUTTON_CLICKED 0 if the expansion area is collapsed;
nonzero if the expansion text is
displayed.

Not used.

NOTIFICATION MESSAGE WPARAM VALUE LPARAM VALUE

See also
Classes
CObject Class
Hierarchy Chart
Walkthrough: Adding a CTaskDialog to an Application

CToolBar Class
3/4/2019 • 16 minutes to read • Edit Online

Syntax
class CToolBar : public CControlBar

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CToolBar::CToolBar Constructs a CToolBar object.

Public MethodsPublic Methods

NAME DESCRIPTION

CToolBar::CommandToIndex Returns the index of a button with the given command
ID.

CToolBar::Create Creates the Windows toolbar and attaches it to the
CToolBar object.

CToolBar::CreateEx Creates a CToolBar object with additional styles for the
embedded CToolBarCtrl object.

CToolBar::GetButtonInfo Retrieves the ID, style, and image number of a button.

CToolBar::GetButtonStyle Retrieves the style for a button.

CToolBar::GetButtonText Retrieves the text that will appear on a button.

CToolBar::GetItemID Returns the command ID of a button or separator at the
given index.

CToolBar::GetItemRect Retrieves the display rectangle for the item at the given
index.

CToolBar::GetToolBarCtrl Allows direct access to the underlying common control.

CToolBar::LoadBitmap Loads the bitmap containing bitmap-button images.

CToolBar::LoadToolBar Loads a toolbar resource created with the resource editor.

CToolBar::SetBitmap Sets a bitmapped image.

Control bars that have a row of bitmapped buttons and optional separators.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctoolbar-class.md

CToolBar::SetButtonInfo Sets the ID, style, and image number of a button.

CToolBar::SetButtons Sets button styles and an index of button images within
the bitmap.

CToolBar::SetButtonStyle Sets the style for a button.

CToolBar::SetButtonText Sets the text that will appear on a button.

CToolBar::SetHeight Sets the height of the toolbar.

CToolBar::SetSizes Sets the sizes of buttons and their bitmaps.

NAME DESCRIPTION

Remarks
The buttons can act like pushbuttons, check-box buttons, or radio buttons. CToolBar objects are usually
embedded members of frame-window objects derived from the class CFrameWnd or CMDIFrameWnd.

CToolBar::GetToolBarCtrl, a member function new to MFC 4.0, allows you to take advantage of the
Windows common control's support for toolbar customization and additional functionality. CToolBar

member functions give you most of the functionality of the Windows common controls; however, when
you call GetToolBarCtrl , you can give your toolbars even more of the characteristics of Windows 95/98
toolbars. When you call GetToolBarCtrl , it will return a reference to a CToolBarCtrl object. See
CToolBarCtrl for more information about designing toolbars using Windows common controls. For more
general information about common controls, see Common Controls in the Windows SDK.

Visual C++ provides you with two methods to create a toolbar. To create a toolbar resource using the
Resource Editor, follow these steps:

1. Create a toolbar resource.

2. Construct the CToolBar object.

3. Call the Create (or CreateEx) function to create the Windows toolbar and attach it to the CToolBar

object.

4. Call LoadToolBar to load the toolbar resource.

Otherwise, follow these steps:

1. Construct the CToolBar object.

2. Call the Create (or CreateEx) function to create the Windows toolbar and attach it to the CToolBar

object.

3. Call LoadBitmap to load the bitmap that contains the toolbar button images.

4. Call SetButtons to set the button style and associate each button with an image in the bitmap.

All the button images in the toolbar are taken from one bitmap, which must contain one image for each
button. All images must be the same size; the default is 16 pixels wide and 15 pixels high. Images must be
side by side in the bitmap.

The SetButtons function takes a pointer to an array of control IDs and an integer that specifies the
number of elements in the array. The function sets each button's ID to the value of the corresponding

https://docs.microsoft.com/windows/desktop/Controls/common-controls-intro

WARNINGWARNING

Inheritance Hierarchy

Requirements

element of the array and assigns each button an image index, which specifies the position of the button's
image in the bitmap. If an array element has the value ID_SEPARATOR, no image index is assigned.

The order of the images in the bitmap is typically the order in which they are drawn on the screen, but you
can use the SetButtonInfo function to change the relationship between image order and drawing order.

All buttons in a toolbar are the same size. The default is 24 x 22 pixels, in accordance with Windows
Interface Guidelines for Software Design. Any additional space between the image and button dimensions
is used to form a border around the image.

Each button has one image. The various button states and styles (pressed, up, down, disabled, disabled
down, and indeterminate) are generated from that one image. Although bitmaps can be any color, you can
achieve the best results with images in black and shades of gray.

CToolBar supports bitmaps with a maximum of 16 colors. When you load an image into a toolbar editor, Visual
Studio automatically converts the image to a 16-color bitmap, if necessary, and displays a warning message if the
image was converted. If you use an image with more than 16 colors (using an external editor to edit the image),
the application might behave unexpectedly.

Toolbar buttons imitate pushbuttons by default. However, toolbar buttons can also imitate check-box
buttons or radio buttons. Check-box buttons have three states: checked, cleared, and indeterminate. Radio
buttons have only two states: checked and cleared.

To set an individual button or separator style without pointing to an array, call GetButtonStyle to retrieve
the style, and then call SetButtonStyle instead of SetButtons . SetButtonStyle is most useful when you
want to change a button's style at run time.

To assign text to appear on a button, call GetButtonText to retrieve the text to appear on the button, and
then call SetButtonText to set the text.

To create a check-box button, assign it the style TBBS_CHECKBOX or use a CCmdUI object's SetCheck

member function in an ON_UPDATE_COMMAND_UI handler. Calling SetCheck turns a pushbutton into
a check-box button. Pass SetCheck an argument of 0 for unchecked, 1 for checked, or 2 for indeterminate.

To create a radio button, call a CCmdUI object's SetRadio member function from an
ON_UPDATE_COMMAND_UI handler. Pass SetRadio an argument of 0 for unchecked or nonzero for
checked. In order to provide a radio group's mutually exclusive behavior, you must have
ON_UPDATE_COMMAND_UI handlers for all of the buttons in the group.

For more information on using CToolBar , see the article MFC Toolbar Implementation and Technical
Note 31: Control Bars.

CObject

CCmdTarget

CWnd

CControlBar

CToolBar

CToolBar::CommandToIndex

int CommandToIndex(UINT nIDFind) const;

ParametersParameters

Return ValueReturn Value

CToolBar::Create

virtual BOOL Create(
 CWnd* pParentWnd,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | CBRS_TOP,
 UINT nID = AFX_IDW_TOOLBAR);

ParametersParameters

Return ValueReturn Value

Header: afxext.h

This member function returns the index of the first toolbar button, starting at position 0, whose command
ID matches nIDFind .

nIDFind
Command ID of a toolbar button.

The index of the button, or -1 if no button has the given command ID.

This member function creates a Windows toolbar (a child window) and associates it with the CToolBar

object.

pParentWnd
Pointer to the window that is the toolbar's parent.

dwStyle
The toolbar style. Additional toolbar styles supported are:

CBRS_TOP Control bar is at top of the frame window.

CBRS_BOTTOM Control bar is at bottom of the frame window.

CBRS_NOALIGN Control bar is not repositioned when the parent is resized.

CBRS_TOOLTIPS Control bar displays tool tips.

CBRS_SIZE_DYNAMIC Control bar is dynamic.

CBRS_SIZE_FIXED Control bar is fixed.

CBRS_FLOATING Control bar is floating.

CBRS_FLYBY Status bar displays information about the button.

CBRS_HIDE_INPLACE Control bar is not displayed to the user.

nID
The toolbar's child-window ID.

Nonzero if successful; otherwise 0.

RemarksRemarks

ExampleExample

// This code fragment is taken from CMainFrame::OnCreate
// CMainFrame is derived from CMDIFrameWnd.

//This example creates a dockable toolbar.
if (!m_wndToolBar.Create(this) ||
 !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
{
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
}

//Make the toolbar dockable
m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndToolBar);

CToolBar::CreateEx

virtual BOOL CreateEx(
 CWnd* pParentWnd,
 DWORD dwCtrlStyle = TBSTYLE_FLAT,
 DWORD dwStyle = WS_CHILD | WS_VISIBLE | CBRS_ALIGN_TOP,
 CRect rcBorders = CRect(
 0,
 0,
 0,
 0),
 UINT nID = AFX_IDW_TOOLBAR);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

It also sets the toolbar height to a default value.

Call this function to create a Windows toolbar (a child window) and associate it with the CToolBar object.

pParentWnd
Pointer to the window that is the toolbar's parent.

dwCtrlStyle
Additional styles for the creation of the embedded CToolBarCtrl object. By default, this value is set to
TBSTYLE_FLAT. For a complete list of toolbar styles, see dwStyle.

dwStyle
The toolbar style. See Toolbar Control and Button Styles in the Windows SDK for a list of appropriate
styles.

rcBorders
A CRect object that defines the widths of the toolbar window borders. These borders are set to 0,0,0,0 by
default, thereby resulting in a toolbar window with no borders.

nID
The toolbar's child-window ID.

Nonzero if successful; otherwise 0.

https://docs.microsoft.com/windows/desktop/Controls/toolbar-control-and-button-styles

ExampleExample

// This example demonstrates CToolBar::CreateEx by creating a
// toolbar as part of a child frame window. It also calls the
// LoadToolbar and EnableDocking functions
int CChildFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{
 if (CMDIChildWnd::OnCreate(lpCreateStruct) == -1)
 return -1;

 if (!m_wndMyToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | WS_VISIBLE | CBRS_TOP
 | CBRS_GRIPPER | CBRS_TOOLTIPS | CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
 !m_wndMyToolBar.LoadToolBar(IDR_MYTOOLBAR))
 {
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
 }

 m_wndMyToolBar.EnableDocking(CBRS_ALIGN_ANY);
 EnableDocking(CBRS_ALIGN_ANY);
 DockControlBar(&m_wndMyToolBar);

 return 0;
}

CToolBar::CToolBar

CToolBar();

RemarksRemarks

CToolBar::GetButtonInfo

void GetButtonInfo(
 int nIndex,
 UINT& nID,
 UINT& nStyle,
 int& iImage) const;

ParametersParameters

It also sets the toolbar height to a default value.

Use CreateEx , instead of Create, when certain styles need to be present during the creation of the
embedded tool bar control. For example, set dwCtrlStyle to TBSTYLE_FLAT | TBSTYLE_TRANSPARENT
to create a toolbar that resembles the Internet Explorer 4 toolbars.

This member function constructs a CToolBar object and sets the default sizes.

Call the Create member function to create the toolbar window.

This member function retrieves the control ID, style, and image index of the toolbar button or separator at
the location specified by nIndex.

nIndex
Index of the toolbar button or separator whose information is to be retrieved.

nID
Reference to a UINT that is set to the command ID of the button.

RemarksRemarks

CToolBar::GetButtonStyle

UINT GetButtonStyle(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBar::GetButtonText

CString GetButtonText(int nIndex) const;

void GetButtonText(
 int nIndex,
 CString& rString) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBar::GetItemID

nStyle
Reference to a UINT that is set to the style of the button.

iImage
Reference to an integer that is set to the index of the button's image within the bitmap.

Those values are assigned to the variables referenced by nID, nStyle, and iImage. The image index is the
position of the image within the bitmap that contains images for all the toolbar buttons. The first image is
at position 0.

If nIndex specifies a separator, iImage is set to the separator width in pixels.

Call this member function to retrieve the style of a button or separator on the toolbar.

nIndex
The index of the toolbar button or separator style to be retrieved.

The style of the button or separator specified by nIndex.

A button's style determines how the button appears and how it responds to user input. See SetButtonStyle
for examples of button styles.

Call this member function to retrieve the text that appears on a button.

nIndex
Index of the text to be retrieved.

rString
A reference to a CString object that will contain the text to be retrieved.

A CString object containing the button text.

The second form of this member function fills a CString object with the string text.

UINT GetItemID(int nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBar::GetItemRect

virtual void GetItemRect(
 int nIndex,
 LPRECT lpRect) const;

ParametersParameters

RemarksRemarks

ExampleExample

CToolBar::GetToolBarCtrl

CToolBarCtrl& GetToolBarCtrl() const;

Return ValueReturn Value

RemarksRemarks

This member function returns the command ID of the button or separator specified by nIndex.

nIndex
Index of the item whose ID is to be retrieved.

The command ID of the button or separator specified by nIndex.

Separators return ID_SEPARATOR.

This member function fills the RECT structure whose address is contained in lpRect with the coordinates
of the button or separator specified by nIndex.

nIndex
Index of the item (button or separator) whose rectangle coordinates are to be retrieved.

lpRect
Address of the RECT structure that will contain the item's coordinates.

Coordinates are in pixels relative to the upper-left corner of the toolbar.

Use GetItemRect to get the coordinates of a separator you want to replace with a combo box or other
control.

See the example for CToolBar::SetSizes.

This member function allows direct access to the underlying common control.

A reference to a CToolBarCtrl object.

Use GetToolBarCtrl to take advantage of the functionality of the Windows toolbar common control, and
to take advantage of the support CToolBarCtrl provides for toolbar customization.

For more information about using common controls, see the article Controls and Common Controls in

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/Controls/common-controls-intro

ExampleExample

// This code fragment is taken from CMainFrame::OnCreate
// CMainFrame is derived from CMDIFrameWnd.

//This example shows how to add text to toolbar buttons.
if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | WS_VISIBLE
 | CBRS_TOP) || !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
{
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
}

//Show text on toolbar buttons.
VERIFY(m_wndToolBar.SetButtonText(0, _T("New")));
VERIFY(m_wndToolBar.SetButtonText(1, _T("Open")));
VERIFY(m_wndToolBar.SetButtonText(2, _T("Save")));
VERIFY(m_wndToolBar.SetButtonText(4, _T("Cut")));
VERIFY(m_wndToolBar.SetButtonText(5, _T("Copy")));
VERIFY(m_wndToolBar.SetButtonText(6, _T("Paste")));
VERIFY(m_wndToolBar.SetButtonText(8, _T("Print")));
VERIFY(m_wndToolBar.SetButtonText(9, _T("About")));

CRect temp;
m_wndToolBar.GetItemRect(0, &temp);
m_wndToolBar.GetToolBarCtrl().SetButtonSize(CSize(temp.Width(),
 temp.Height()));

CToolBar::LoadBitmap

BOOL LoadBitmap(LPCTSTR lpszResourceName);
BOOL LoadBitmap(UINT nIDResource);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

WARNINGWARNING

the Windows SDK.

Call this member function to load the bitmap specified by lpszResourceName or nIDResource .

lpszResourceName
Pointer to the resource name of the bitmap to be loaded.

nIDResource
Resource ID of the bitmap to be loaded.

Nonzero if successful; otherwise 0.

The bitmap should contain one image for each toolbar button. If the images are not of the standard size
(16 pixels wide and 15 pixels high), call SetSizes to set the button sizes and their images.

CToolBar supports bitmaps with a maximum of 16 colors. When you load an image into a toolbar editor, Visual
Studio automatically converts the image to a 16-color bitmap, if necessary, and displays a warning message if the
image was converted. If you use an image with more than 16 colors (using an external editor to edit the image),
the application might behave unexpectedly.

CToolBar::LoadToolBar

BOOL LoadToolBar(LPCTSTR lpszResourceName);
BOOL LoadToolBar(UINT nIDResource);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CToolBar::SetBitmap

BOOL SetBitmap(HBITMAP hbmImageWell);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBar::SetButtonInfo

void SetButtonInfo(
 int nIndex,
 UINT nID,
 UINT nStyle,
 int iImage);

ParametersParameters

Call this member function to load the toolbar specified by lpszResourceName or nIDResource.

lpszResourceName
Pointer to the resource name of the toolbar to be loaded.

nIDResource
Resource ID of the toolbar to be loaded.

Nonzero if successful; otherwise 0.

See toolbar editor in for more information about creating a toolbar resource.

See the example for CToolBar::CreateEx.

Call this member function to set the bitmap image for the toolbar.

hbmImageWell
Handle of a bitmap image that is associated with a toolbar.

Nonzero if successful; otherwise 0.

For example, call SetBitmap to change the bitmapped image after the user takes an action on a document
that changes the action of a button.

Call this member function to set the button's command ID, style, and image number.

nIndex
Zero-based index of the button or separator for which information is to be set.

RemarksRemarks

NOTENOTE

CToolBar::SetButtons

BOOL SetButtons(
 const UINT* lpIDArray,
 int nIDCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nID
The value to which the button's command ID is set.

nStyle
The new button style. The following button styles are supported:

TBBS_BUTTON Standard pushbutton (default)

TBBS_SEPARATOR Separator

TBBS_CHECKBOX Auto check-box button

TBBS_GROUP Marks the start of a group of buttons

TBBS_CHECKGROUP Marks the start of a group of check-box buttons

TBBS_DROPDOWN Creates a drop-down list button.

TBBS_AUTOSIZE The button's width will be calculated based on the text of the button, not on the
size of the image.

TBBS_NOPREFIX The button text will not have an accelerator prefix associated with it.

iImage
New index for the button's image within the bitmap.

For separators, which have the style TBBS_SEPARATOR, this function sets the separator's width in pixels
to the value stored in iImage.

You can also set button states using the nStyle parameter; however, because button states are controlled by the
ON_UPDATE_COMMAND_UI handler, any state you set using SetButtonInfo will be lost during the next idle
processing. See How to Update User-Interface Objects and TN031: Control Bars for more information.

For information on bitmap images and buttons, see the CToolBar Overview and CToolBar::LoadBitmap.

This member function sets each toolbar button's command ID to the value specified by the corresponding
element of the array lpIDArray.

lpIDArray
Pointer to an array of command Ids. It can be NULL to allocate empty buttons.

nIDCount
Number of elements in the array pointed to by lpIDArray.

Nonzero if successful; otherwise 0.

 CToolBar::SetButtonStyle

void SetButtonStyle(
 int nIndex,
 UINT nStyle);

ParametersParameters

RemarksRemarks

NOTENOTE

If an element of the array has the value ID_SEPARATOR, a separator is created in the corresponding
position of the toolbar. This function also sets each button's style to TBBS_BUTTON and each separator's
style to TBBS_SEPARATOR, and assigns an image index to each button. The image index specifies the
position of the button's image within the bitmap.

You do not need to account for separators in the bitmap because this function does not assign image
indexes for separators. If your toolbar has buttons at positions 0, 1, and 3 and a separator at position 2, the
images at positions 0, 1, and 2 in your bitmap are assigned to the buttons at positions 0, 1, and 3,
respectively.

If lpIDArray is NULL, this function allocates space for the number of items specified by nIDCount. Use
SetButtonInfo to set each item's attributes.

Call this member function to set the style of a button or separator, or to group buttons.

nIndex
Index of the button or separator whose information is to be set.

nStyle
The button style. The following button styles are supported:

TBBS_BUTTON Standard pushbutton (default)

TBBS_SEPARATOR Separator

TBBS_CHECKBOX Auto check-box button

TBBS_GROUP Marks the start of a group of buttons

TBBS_CHECKGROUP Marks the start of a group of check-box buttons

TBBS_DROPDOWN Creates a drop-down list button

TBBS_AUTOSIZE The button's width will be calculated based on the text of the button, not on the
size of the image

TBBS_NOPREFIX The button text will not have an accelerator prefix associated with it

A button's style determines how the button appears and how it responds to user input.

Before calling SetButtonStyle , call the GetButtonStyle member function to retrieve the button or
separator style.

You can also set button states using the nStyle parameter; however, because button states are controlled by the
ON_UPDATE_COMMAND_UI handler, any state you set using SetButtonStyle will be lost during the next idle
processing. See How to Update User-Interface Objects and TN031: Control Bars for more information.

CToolBar::SetButtonText

BOOL SetButtonText(
 int nIndex,
 LPCTSTR lpszText);

ParametersParameters

Return ValueReturn Value

ExampleExample

CToolBar::SetHeight

void SetHeight(int cyHeight);

ParametersParameters

RemarksRemarks

CToolBar::SetSizes

void SetSizes(
 SIZE sizeButton,
 SIZE sizeImage);

ParametersParameters

RemarksRemarks

Call this function to set the text on a button.

nIndex
Index of the button whose text is to be set.

lpszText
Points to the text to be set on a button.

Nonzero if successful; otherwise 0.

See the example for CToolBar::GetToolBarCtrl.

This member function sets the toolbar's height to the value, in pixels, specified in cyHeight.

cyHeight
The height in pixels of the toolbar.

After calling SetSizes, use this member function to override the standard toolbar height. If the height is
too small, the buttons will be clipped at the bottom.

If this function is not called, the framework uses the size of the button to determine the toolbar height.

Call this member function to set the toolbar's buttons to the size, in pixels, specified in sizeButton.

sizeButton
The size in pixels of each button.

sizeImage
The size in pixels of each image.

The sizeImage parameter must contain the size, in pixels, of the images in the toolbar's bitmap. The

ExampleExample

// This code fragment is taken from CMainFrame::OnCreate
// CMainFrame is derived from CMDIFrameWnd

// This example shows how to add text to toolbar buttons.
if (!m_wndToolBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD | WS_VISIBLE
 | CBRS_TOP) || !m_wndToolBar.LoadToolBar(IDR_MAINFRAME))
{
 TRACE0("Failed to create toolbar\n");
 return -1; // fail to create
}

//Show text on toolbar buttons.
VERIFY(m_wndToolBar.SetButtonText(0, _T("New")));
VERIFY(m_wndToolBar.SetButtonText(1, _T("Open")));
VERIFY(m_wndToolBar.SetButtonText(2, _T("Save")));
VERIFY(m_wndToolBar.SetButtonText(4, _T("Cut")));
VERIFY(m_wndToolBar.SetButtonText(5, _T("Copy")));
VERIFY(m_wndToolBar.SetButtonText(6, _T("Paste")));
VERIFY(m_wndToolBar.SetButtonText(8, _T("Print")));
VERIFY(m_wndToolBar.SetButtonText(9, _T("About")));

CRect temp;
m_wndToolBar.GetItemRect(0,&temp);
m_wndToolBar.SetSizes(CSize(temp.Width(),
 temp.Height()),CSize(16,15));

See also

dimensions in sizeButton must be sufficient to hold the image plus 7 pixels extra in width and 6 pixels
extra in height. This function also sets the toolbar height to fit the buttons.

Call this member function only for toolbars that do not follow Windows Interface Guidelines for Software
Design recommendations for button and image sizes.

MFC Sample CTRLBARS
MFC Sample DLGCBR32
MFC Sample DOCKTOOL
CControlBar Class
Hierarchy Chart
CToolBarCtrl Class
CControlBar Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CToolBarCtrl Class
3/5/2019 • 46 minutes to read • Edit Online

Syntax
class CToolBarCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CToolBarCtrl::CToolBarCtrl Constructs a CToolBarCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CToolBarCtrl::AddBitmap Adds one or more bitmap button images to the list of
button images available for a toolbar control.

CToolBarCtrl::AddButtons Adds one or more buttons to a toolbar control.

CToolBarCtrl::AddString Adds a new string, passed as a resource ID, to the
toolbar's internal list of strings.

CToolBarCtrl::AddStrings Adds a new string or strings, passed as a pointer to a
buffer of null-separated strings, to the toolbar's internal
list of strings.

CToolBarCtrl::AutoSize Resizes a toolbar control.

CToolBarCtrl::ChangeBitmap Changes the bitmap for a button in the current toolbar
control.

CToolBarCtrl::CheckButton Checks or clears a given button in a toolbar control.

CToolBarCtrl::CommandToIndex Retrieves the zero-based index for the button associated
with the specified command identifier.

CToolBarCtrl::Create Creates a toolbar control and attaches it to a
CToolBarCtrl object.

CToolBarCtrl::CreateEx Creates a toolbar control with the specified Windows
extended styles and attaches it to a CToolBarCtrl

object.

Provides the functionality of the Windows toolbar common control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctoolbarctrl-class.md

CToolBarCtrl::Customize Displays the Customize Toolbar dialog box.

CToolBarCtrl::DeleteButton Deletes a button from the toolbar control.

CToolBarCtrl::EnableButton Enables or disables the specified button in a toolbar
control.

CToolBarCtrl::GetAnchorHighlight Retrieves the anchor highlight setting for a toolbar.

CToolBarCtrl::GetBitmap Retrieves the index of the bitmap associated with a button
in a toolbar.

CToolBarCtrl::GetBitmapFlags Gets flags associated with the toolbar's bitmap.

CToolBarCtrl::GetButton Retrieves information about the specified button in a
toolbar control.

CToolBarCtrl::GetButtonCount Retrieves a count of the buttons currently in the toolbar
control.

CToolBarCtrl::GetButtonInfo Retrieves the information for a button in a toolbar.

CToolBarCtrl::GetButtonSize Retrieves the current width and height of toolbar buttons,
in pixels.

CToolBarCtrl::GetColorScheme Retrieves the color scheme of the current toolbar control.

CToolBarCtrl::GetDisabledImageList Retrieves the image list that a toolbar control uses to
display disabled buttons.

CToolBarCtrl::GetDropTarget Retrieves the IDropTarget interface for a toolbar control.

CToolBarCtrl::GetExtendedStyle Retrieves the extended styles for a toolbar control.

CToolBarCtrl::GetHotImageList Retrieves the image list that a toolbar control uses to
display "hot" buttons. A hot button appears highlighted
when the mouse pointer is above it.

CToolBarCtrl::GetHotItem Retrieves the index of the hot item in a toolbar.

CToolBarCtrl::GetImageList Retrieves the image list that a toolbar control uses to
display buttons in their default state.

CToolBarCtrl::GetInsertMark Retrieves the current insertion mark for the toolbar.

CToolBarCtrl::GetInsertMarkColor Retrieves the color used to draw the insertion mark for the
toolbar.

CToolBarCtrl::GetItemRect Retrieves the bounding rectangle of a button in a toolbar
control.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget

CToolBarCtrl::GetMaxSize Retrieves the total size of all of the visible buttons and
separators in the toolbar.

CToolBarCtrl::GetMaxTextRows Retrieves the maximum number of text rows displayed on
a toolbar button.

CToolBarCtrl::GetMetrics Retrieves the metrics of a toolbar control.

CToolBarCtrl::GetPadding Retrieves the horizontal and vertical padding of the
current toolbar control.

CToolBarCtrl::GetPressedImageList Retrieves the image list that the current toolbar control
uses to represent buttons in the pressed state.

CToolBarCtrl::GetRect Retrieves the bounding rectangle for a specified toolbar
button.

CToolBarCtrl::GetRows Retrieves the number of rows of buttons currently
displayed in the toolbar.

CToolBarCtrl::GetState Retrieves information about the state of the specified
button in a toolbar control, such as whether it is enabled,
pressed, or checked.

CToolBarCtrl::GetString Retrieves a toolbar string.

CToolBarCtrl::GetStyle Retrieves the styles currently in use for a toolbar control.

CToolBarCtrl::GetToolTips Retrieves the handle of the tool tip control, if any,
associated with the toolbar control.

CToolBarCtrl::HideButton Hides or shows the specified button in a toolbar control.

CToolBarCtrl::HitTest Determines where a point lies in a toolbar control.

CToolBarCtrl::Indeterminate Sets or clears the indeterminate (gray) state of the
specified button in a toolbar control.

CToolBarCtrl::InsertButton Inserts a button in a toolbar control.

CToolBarCtrl::InsertMarkHitTest Retrieves the insertion mark information for a point in a
toolbar.

CToolBarCtrl::IsButtonChecked Tells whether the specified button in a toolbar control is
checked.

CToolBarCtrl::IsButtonEnabled Tells whether the specified button in a toolbar control is
enabled.

CToolBarCtrl::IsButtonHidden Tells whether the specified button in a toolbar control is
hidden.

CToolBarCtrl::IsButtonHighlighted Checks the highlight state of the toolbar button.

NAME DESCRIPTION

CToolBarCtrl::IsButtonIndeterminate Tells whether the state of the specified button in a toolbar
control is indeterminate (gray).

CToolBarCtrl::IsButtonPressed Tells whether the specified button in a toolbar control is
pressed.

CToolBarCtrl::LoadImages Loads bitmaps into a toolbar control's image list.

CToolBarCtrl::MapAccelerator Maps an accelerator character to a toolbar button.

CToolBarCtrl::MarkButton Sets the highlight state of a given button in a toolbar
control.

CToolBarCtrl::MoveButton Moves a button from one index to another.

CToolBarCtrl::PressButton Presses or releases the specified button in a toolbar
control.

CToolBarCtrl::ReplaceBitmap Replaces the existing bitmap in the current toolbar control
with a new bitmap.

CToolBarCtrl::RestoreState Restores the state of the toolbar control.

CToolBarCtrl::SaveState Saves the state of the toolbar control.

CToolBarCtrl::SetAnchorHighlight Sets the anchor highlight setting for a toolbar.

CToolBarCtrl::SetBitmapSize Sets the size of the bitmapped images to be added to a
toolbar control.

CToolBarCtrl::SetButtonInfo Sets the information for an existing button in a toolbar.

CToolBarCtrl::SetButtonSize Sets the size of the buttons to be added to a toolbar
control.

CToolBarCtrl::SetButtonStructSize Specifies the size of the TBBUTTON structure.

CToolBarCtrl::SetButtonWidth Sets the minimum and maximum button widths in the
toolbar control.

CToolBarCtrl::SetCmdID Sets the command identifier to be sent to the owner
window when the specified button is pressed.

CToolBarCtrl::SetColorScheme Sets the color scheme of the current toolbar control.

CToolBarCtrl::SetDisabledImageList Sets the image list that the toolbar control will use to
display disabled buttons.

CToolBarCtrl::SetDrawTextFlags Sets the flags in the Win32 function DrawText, which is
used to draw the text in the specified rectangle, formatted
according to how the flags are set.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawtext

CToolBarCtrl::SetExtendedStyle Sets the extended styles for a toolbar control.

CToolBarCtrl::SetHotImageList Sets the image list that the toolbar control will use to
display "hot" buttons.

CToolBarCtrl::SetHotItem Sets the hot item in a toolbar.

CToolBarCtrl::SetImageList Sets the image list that the toolbar will use to display
buttons that are in their default state.

CToolBarCtrl::SetIndent Sets the indentation for the first button in a toolbar
control.

CToolBarCtrl::SetInsertMark Sets the current insertion mark for the toolbar.

CToolBarCtrl::SetInsertMarkColor Sets the color used to draw the insertion mark for the
toolbar.

CToolBarCtrl::SetMaxTextRows Sets the maximum number of text rows displayed on a
toolbar button.

CToolBarCtrl::SetMetrics Sets the metrics of a toolbar control.

CToolBarCtrl::SetOwner Sets the window to receive notification messages from the
toolbar control.

CToolBarCtrl::SetPadding Sets the horizontal and vertical padding of the current
toolbar control.

CToolBarCtrl::SetPressedImageList Sets the image list that the current toolbar control uses to
represent buttons in the pressed state.

CToolBarCtrl::SetRows Sets the number of rows of buttons displayed in the
toolbar.

CToolBarCtrl::SetState Sets the state for the specified button in a toolbar control.

CToolBarCtrl::SetStyle Sets the styles for a toolbar control.

CToolBarCtrl::SetToolTips Associates a tool tip control with the toolbar control.

CToolBarCtrl::SetWindowTheme Sets the visual style of a toolbar control.

NAME DESCRIPTION

Remarks
This control (and therefore the CToolBarCtrl class) is available only to programs running under Windows
95/98 and Windows NT version 3.51 and later.

A Windows toolbar common control is a rectangular child window that contains one or more buttons. These
buttons can display a bitmap image, a string, or both. When the user chooses a button, it sends a command
message to the toolbar's owner window. Typically, the buttons in a toolbar correspond to items in the
application's menu; they provide a more direct way for the user to access an application's commands.

Support for Internet Explorer Version 4.0 and Later

Inheritance Hierarchy

CToolBarCtrl objects contain several important internal data structures: a list of button image bitmaps or an
image list, a list of button label strings, and a list of TBBUTTON structures which associate an image and/or
string with the position, style, state, and command ID of the button. Each of the elements of these data
structures is referred to by a zero-based index. Before you can use a CToolBarCtrl object, you must set up
these data structures. The list of strings can only be used for button labels; you cannot retrieve strings from
the toolbar.

To use a CToolBarCtrl object, you will typically follow these steps:

1. Construct the CToolBarCtrl object.

2. Call Create to create the Windows toolbar common control and attach it to the CToolBarCtrl object.
Indicate the style of toolbar by using styles, such as TBSTYLE_TRANSPARENT for a transparent
toolbar or TBSTYLE_DROPDOWN for a toolbar that supports drop-down style buttons.

3. Identify how you want the buttons on the toolbar displayed:

To use bitmap images for buttons, add the button bitmaps to the toolbar by calling AddBitmap.

To use images displayed from an image list for buttons, specify the image list by calling
SetImageList, SetHotImageList, or SetDisabledImageList.

To use string labels for buttons, add the strings to the toolbar by calling AddString and/or
AddStrings.

4. Add button structures to the toolbar by calling AddButtons.

5. If you want tool tips for a toolbar button in an owner window that is not a CFrameWnd , you need to
handle the TTN_NEEDTEXT messages in the toolbar's owner window as described in Handling Tool
Tip Notifications. If the parent window of the toolbar is derived from CFrameWnd , tool tips are
displayed without any extra effort from you because CFrameWnd provides a default handler.

6. If you want your user to be able to customize the toolbar, handle customization notification messages
in the owner window as described in Handling Customization Notifications.

You can use SaveState to save the current state of a toolbar control in the registry and RestoreState to
restore the state based on information previously stored in the registry. In addition to saving the toolbar
state between uses of the application, applications typically store the state before the user begins
customizing the toolbar in case the user later wants to restore the toolbar to its original state.

To support functionality introduced in Internet Explorer, version 4.0 and later, MFC provides image list
support and transparent and flat styles for toolbar controls.

A transparent toolbar allows the client under the toolbar to show through. To create a transparent toolbar,
use both TBSTYLE_FLAT and TBSTYLE_TRANSPARENT styles. Transparent toolbars feature hot tracking;
that is, when the mouse pointer moves over a hot button on the toolbar, the button's appearance changes.
Toolbars created with just the TBSTYLE_FLAT style will contain buttons that are not transparent.

Image list support allows a control greater flexibility for default behavior, hot images, and disabled images.
Use GetImageList, GetHotImageList, and GetDisabledImageList with the transparent toolbar to manipulate
the image according to its state:

For more information on using CToolBarCtrl , see Controls and Using CToolBarCtrl.

Requirements

CToolBarCtrl::AddBitmap

int AddBitmap(
 int nNumButtons,
 UINT nBitmapID);

int AddBitmap(
 int nNumButtons,
 CBitmap* pBitmap);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::AddButtons

BOOL AddButtons(
 int nNumButtons,
 LPTBBUTTON lpButtons);

ParametersParameters

CObject

CCmdTarget

CWnd

CToolBarCtrl

Header: afxcmn.h

Adds one or more button images to the list of button images stored in the toolbar control.

nNumButtons
Number of button images in the bitmap.

nBitmapID
Resource identifier of the bitmap that contains the button image or images to add.

pBitmap
Pointer to the CBitmap object that contains the button image or images to add.

Zero-based index of the first new image if successful; otherwise - 1.

You can use the Windows API CreateMappedBitmap to map colors before adding the bitmap to the toolbar.
If you pass a pointer to a CBitMap object, you must ensure that the bitmap is not destroyed until after the
toolbar is destroyed.

Adds one or more buttons to a toolbar control.

nNumButtons
Number of buttons to add.

lpButtons
Address of an array of TBBUTTON structures that contains information about the buttons to add. There must

https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-createmappedbitmap

Return ValueReturn Value

RemarksRemarks

typedef struct _TBBUTTON {
 int iBitmap; // zero-based index of button image
 int idCommand; // command to be sent when button pressed
 BYTE fsState; // button state--see below
 BYTE fsStyle; // button style--see below
 DWORD dwData; // application-defined value
 int iString; // zero-based index of button label string
} TBBUTTON;

be the same number of elements in the array as buttons specified by nNumButtons.

Nonzero if successful; otherwise zero.

The lpButtons pointer points to an array of TBBUTTON structures. Each TBBUTTON structure associates the
button being added with the button's style, image and/or string, command ID, state, and user-defined data:

The members are as follows:

iBitmap

Zero-based index of button image, -1 if no image for this button.

idCommand

Command identifier associated with the button. This identifier is sent in a WM_COMMAND message
when the button is chosen. If the fsStyle member has the TBSTYLE_SEP value, this member must
be zero.

fsState

Button state flags. It can be a combination of the values listed below:

TBSTATE_CHECKED The button has the TBSTYLE_CHECKED style and is being pressed.

TBSTATE_ENABLED The button accepts user input. A button that does not have this state does
not accept user input and is grayed.

TBSTATE_HIDDEN The button is not visible and cannot receive user input.

TBSTATE_INDETERMINATE The button is grayed.

TBSTATE_PRESSED The button is being pressed.

TBSTATE_WRAP A line break follows the button. The button must also have the
TBSTATE_ENABLED state.

fsStyle

Button style. It can be a combination of the values listed below:

TBSTYLE_BUTTON Creates a standard push button.

TBSTYLE_CHECK Creates a button that toggles between the pressed and unpressed states
each time the user clicks it. The button has a different background color when it is in the
pressed state.

TBSTYLE_CHECKGROUP Creates a check button that stays pressed until another button in
the group is pressed.

CToolBarCtrl::AddString

int AddString(UINT nStringID);

ParametersParameters

Return ValueReturn Value

CToolBarCtrl::AddStrings

int AddStrings(LPCTSTR lpszStrings);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

// one null added automatically
lpszStrings = _T("Only one string to add\0");

TBSTYLE_GROUP Creates a button that stays pressed until another button in the group is
pressed.

TBSTYLE_SEP Creates a separator, providing a small gap between button groups. A button
that has this style does not receive user input.

dwData

User-defined data.

iString

Zero-based index of the string to use as the button's label, -1 if there is no string for this button.

The image and/or string whose index you provide must have previously been added to the toolbar control's
list using AddBitmap, AddString, and/or AddStrings.

Adds a new string, passed as a resource ID, to the toolbar's internal list of strings.

nStringID
Resource identifier of the string resource to add to the toolbar control's string list.

The zero-based index of the first new string added if successful; otherwise -1.

Adds a new string or strings to the list of strings available for a toolbar control.

lpszStrings
Address of a buffer that contains one or more null-terminated strings to add to the toolbar's string list. The
last string must be terminated with two null characters.

The zero-based index of the first new string added if successful; otherwise -1.

Strings in the buffer must be separated by a null character. You must ensure that the last string has two null
terminators. To properly format a constant string, you might write it as:

or :

// adds three strings with one call
lpszStrings = _T("String 1\0String 2\0String 3\0");

CToolBarCtrl::AutoSize

void AutoSize();

RemarksRemarks

CToolBarCtrl::ChangeBitmap

BOOL ChangeBitmap(
 int idButton,
 int iBitmap);

ParametersParameters

PARAMETER DESCRIPTION

idButton [in] Command identifier of the button that is to receive a
new bitmap.

iBitmap [in] Zero-based index of an image in the current toolbar
control's image list.

Return ValueReturn Value

RemarksRemarks

ExampleExample

{
 // Change the bitmap for the File Save button, whose
 // command ID is ID_FILE_SAVE, to the bitmap for the
 // About button, whose index is 7.
 CToolBarCtrl& m_toolBarCtrl = m_wndToolBar.GetToolBarCtrl();
 BOOL bRet = m_toolBarCtrl.ChangeBitmap(ID_FILE_SAVE, 7);
}

You should not pass a CString object to this function since it is not possible to have more than one null
character in a CString .

Resizes the entire toolbar control.

You should call this function when the size of the parent window changes or when the size of the toolbar
changes (such as when you set the button or bitmap size, or add strings).

Changes the bitmap for a button in the current toolbar control.

TRUE if this method is successful; otherwise, FALSE.

If this method is successful, the system displays the specified image in the specified button.

This method sends the TB_CHANGEBITMAP message, which is described in the Windows SDK.

The following code example changes the bitmap for the File Save button to the bitmap for the About
button.

https://docs.microsoft.com/windows/desktop/Controls/tb-changebitmap

CToolBarCtrl::CheckButton

BOOL CheckButton(
 int nID,
 BOOL bCheck = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::CommandToIndex

UINT CommandToIndex(UINT nID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

Checks or clears a given button in a toolbar control.

nID
Command identifier of the button to check or clear.

bCheck
TRUE to check the button, FALSE to clear it.

Nonzero if successful; otherwise zero.

When a button has been checked, it appears to have been pressed. If you want to change more than one
button state, consider calling SetState instead.

Retrieves the zero-based index for the button associated with the specified command identifier.

nID
Command ID whose button index you want to find.

The zero-based index for the button associated with the command ID.

Creates a toolbar control and attaches it to a CToolBarCtrl object.

dwStyle
Specifies the toolbar control's style. Toolbars must always have the WS_CHILD style. In addition, you can
specify any combination of toolbar styles and window styles as described under Remarks.

rect
Optionally specifies the toolbar control's size and position. It can be either a CRect object or a RECT

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

structure.

pParentWnd
Specifies the toolbar control's parent window. It must not be NULL.

nID
Specifies the toolbar control's ID.

Nonzero if successful; otherwise zero.

You construct a CToolBarCtrl in two steps. First, call the constructor, and then call Create , which creates the
toolbar control and attaches it to the CToolBarCtrl object. Apply the following window styles to a toolbar
control.

WS_CHILD Always

WS_VISIBLE Usually

WS_DISABLED Rarely

See CreateWindow in the Windows SDK for a description of window styles.

Optionally, apply a combination of common control styles, as described in the Windows SDK.

Apply a combination of toolbar styles to either the control or the buttons themselves. The styles are
described in the topic Toolbar Control and Button Styles in the Windows SDK.

To use extended toolbar styles, call SetExtendedStyle after you call Create . To create a toolbar with
extended window styles, call CToolBarCtrl::CreateEx instead of Create .

The toolbar control automatically sets the size and position of the toolbar window. The height is based on
the height of the buttons in the toolbar. The width is the same as the width of the parent window's client
area. The CCS_TOP and CCS_BOTTOM styles determine whether the toolbar is positioned along the top or
bottom of the client area. By default, a toolbar has the CCS_TOP style.

Creates a control (a child window) and associates it with the CToolBarCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the
dwExStyle parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the toolbar control's style. Toolbars must always have the WS_CHILD style. In addition, you can
specify any combination of toolbar styles and window styles as described in the Remarks section of Create.

rect

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/Controls/common-control-styles
https://docs.microsoft.com/windows/desktop/Controls/toolbar-control-and-button-styles
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::CToolBarCtrl

CToolBarCtrl();

RemarksRemarks

CToolBarCtrl::Customize

void Customize();

RemarksRemarks

CToolBarCtrl::DeleteButton

BOOL DeleteButton(int nIndex);

ParametersParameters

Return ValueReturn Value

A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful; otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_. CreateEx creates the control with the extended Windows styles specified by dwExStyle.
Set extended styles specific to a control using SetExtendedStyle. For example, use CreateEx to set such
styles as WS_EX_CONTEXTHELP, but use SetExtendedStyle to set such styles as
TBSTYLE_EX_DRAWDDARROWS. For more information, see the styles described in Toolbar Extended
Styles in the Windows SDK.

Constructs a CToolBarCtrl object.

You must call Create to make the toolbar usable.

Displays the Customize Toolbar dialog box.

This dialog box allows the user to customize the toolbar by adding and deleting buttons. To support
customization, your toolbar's parent window must handle the customization notification messages as
described in Handling Customization Notifications. Your toolbar must also have been created with the
CCS_ADJUSTABLE style, as described in CToolBarCtrl::Create.

Deletes a button from the toolbar control.

nIndex
Zero-based index of the button to delete.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/toolbar-extended-styles

RemarksRemarks

CToolBarCtrl::EnableButton

BOOL EnableButton(
 int nID,
 BOOL bEnable = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetAnchorHighlight

BOOL GetAnchorHighlight() const;

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetBitmap

int GetBitmap(int nID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Nonzero if successful; otherwise zero.

Enables or disables the specified button in a toolbar control.

nID
Command identifier of the button to enable or disable.

bEnable
TRUE to enable the button; FALSE to disable the button.

Nonzero if successful; otherwise zero.

When a button has been enabled, it can be pressed and checked. If you want to change more than one
button state, consider calling SetState instead.

Retrieves the anchor highlight setting for a toolbar.

If nonzero, anchor highlighting is enabled. If zero, anchor highlighting is disabled.

This member function implements the behavior of the Win32 message TB_GETANCHORHIGHLIGHT, as
described in the Windows SDK.

Retrieves the index of the bitmap associated with a button in a toolbar.

nID
Command identifier of the button whose bitmap index is to be retrieved.

Returns the index of the bitmap if successful, or zero otherwise.

https://docs.microsoft.com/windows/desktop/Controls/tb-getanchorhighlight

CToolBarCtrl::GetBitmapFlags

UINT GetBitmapFlags() const;

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetButton

BOOL GetButton(
 int nIndex,
 LPTBBUTTON lpButton) const;

ParametersParameters

Return ValueReturn Value

CToolBarCtrl::GetButtonCount

int GetButtonCount() const;

Return ValueReturn Value

CToolBarCtrl::GetButtonInfo

Implements the functionality of TB_GETBITMAP in the Windows SDK.

Retrieves the bitmap flags from the toolbar.

A UINT that has the TBBF_LARGE flag set if the display can support large toolbar bitmaps, clear otherwise.

You should call it after creating the toolbar but before adding bitmaps to the toolbar. The return value
indicates whether the display supports large bitmaps or not. If the display supports large bitmaps and if you
choose to use them, call SetBitmapSize and SetButtonSize before adding your large bitmap using
AddBitmap.

Retrieves information about the specified button in a toolbar control.

nIndex
Zero-based index of the button for which to retrieve information.

lpButton
Address of the TBBUTTON structure that is to receive a copy of the button information. See
CToolBarCtrl::AddButtons for information about the TBBUTTON structure.

Nonzero if successful; otherwise zero.

Retrieves a count of the buttons currently in the toolbar control.

The count of the buttons.

Retrieves the information for a button in a toolbar.

https://docs.microsoft.com/windows/desktop/Controls/tb-getbitmap

int GetButtonInfo(
 int nID,
 TBBUTTONINFO* ptbbi) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetButtonSize

DWORD GetButtonSize() const;

Return ValueReturn Value

CToolBarCtrl::GetButtonText

CString GetButtonText(int idButton) const;

ParametersParameters

PARAMETER DESCRIPTION

idButton [in] The identifier for the button whose display text is
retrieved.

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetColorScheme

BOOL GetColorScheme(COLORSCHEME* lpColorScheme) const;

nID
The button identifier.

ptbbi
A pointer to a TBBUTTONINFO structure that receives the button information.

The zero-based index of the button, if successful; otherwise -1.

This member function implements the behavior of the Win32 message TB_GETBUTTONINFO, as described
in the Windows SDK.

Gets the size of a toolbar button.

A DWORD value that contains the width and height values in the LOWORD and HIWORD, respectively.

Retrieves the display text of a specified button on the current toolbar control.

A CString that contains the display text of the specified button.

This method sends the TB_GETBUTTONTEXT message, which is described in the Windows SDK.

Retrieves the color scheme of the current toolbar control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tbbuttoninfoa
https://docs.microsoft.com/windows/desktop/Controls/tb-getbuttoninfo
https://docs.microsoft.com/windows/desktop/Controls/tb-getbuttontext

ParametersParameters

PARAMETER DESCRIPTION

lpColorScheme [out] Pointer to a COLORSCHEME structure that receives
the color scheme information. When this method returns,
the structure describes the highlight color and shadow
color of the toolbar control.

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetDisabledImageList

CImageList* GetDisabledImageList() const;

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetDropTarget

HRESULT GetDropTarget(IDropTarget** ppDropTarget) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetExtendedStyle

DWORD GetExtendedStyle() const;

TRUE if this method is successful; otherwise, FALSE.

This method sends the TB_GETCOLORSCHEME message, which is described in the Windows SDK.

Retrieves the image list that a toolbar control uses to display disabled buttons.

A pointer to a CImageList object, or NULL if no disabled image list is set.

This member function implements the behavior of the Win32 message TB_GETDISABLEDIMAGELIST, as
described in the Windows SDK. The MFC implementation of GetDisabledImageList uses a CImageList

object containing the toolbar control's button images, rather than a handle to an image list.

Retrieves the IDropTarget interface for a toolbar control.

ppDropTarget
A pointer to an IDropTarget interface pointer. If an error occurs, a NULL pointer is placed in this address.

Returns an HRESULT value indicating success or failure of the operation.

This member function implements the behavior of the Win32 message TB_GETOBJECT, as described in the
Windows SDK.

Retrieves the extended styles for a toolbar control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagcolorscheme
https://docs.microsoft.com/windows/desktop/Controls/tb-getcolorscheme
https://docs.microsoft.com/windows/desktop/Controls/tb-getdisabledimagelist
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget
https://docs.microsoft.com/windows/desktop/Controls/tb-getobject

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetHotImageList

CImageList* GetHotImageList() const;

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetHotItem

int GetHotItem() const;

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetImageList

CImageList* GetImageList() const;

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetInsertMark

A DWORD that represents the extended styles currently in use for the toolbar control. For a list of styles, see
Toolbar Extended Styles, in the Windows SDK.

This member function implements the behavior of the Win32 message TB_GETEXTENDEDSTYLE, as
described in the Windows SDK.

Retrieves the image list that a toolbar control uses to display "hot" buttons. A hot button appears
highlighted when the mouse pointer is above it.

A pointer to a CImageList object, or NULL if no disabled image list is set.

This member function implements the behavior of the Win32 message TB_GETHOTIMAGELIST, as
described in the Windows SDK. A hot button appears highlighted when the mouse pointer is above it.

Retrieves the index of the hot item in a toolbar.

The zero-based index of the hot item in a toolbar.

This member function implements the behavior of the Win32 message TB_GETHOTITEM, as described in
the Windows SDK.

Retrieves the image list that a toolbar control uses to display buttons in their default state.

A pointer to a CImageList object, or NULL if no image list is set.

This member function implements the behavior of the Win32 message TB_GETIMAGELIST, as described in
the Windows SDK.

Retrieves the current insertion mark for the toolbar.

https://docs.microsoft.com/windows/desktop/Controls/toolbar-extended-styles
https://docs.microsoft.com/windows/desktop/Controls/tb-getextendedstyle
https://docs.microsoft.com/windows/desktop/Controls/tb-gethotimagelist
https://docs.microsoft.com/windows/desktop/Controls/tb-gethotitem
https://docs.microsoft.com/windows/desktop/Controls/tb-getimagelist

void GetInsertMark(TBINSERTMARK* ptbim) const;

ParametersParameters

RemarksRemarks

CToolBarCtrl::GetInsertMarkColor

COLORREF GetInsertMarkColor() const;

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetItemRect

BOOL GetItemRect(
 int nIndex,
 LPRECT lpRect) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetMaxSize

BOOL GetMaxSize(LPSIZE pSize) const;

ParametersParameters

ptbim
A pointer to a TBINSERTMARK structure that receives the insertion mark.

This member function implements the behavior of the Win32 message TB_GETINSERTMARK, as described
in the Windows SDK.

Retrieves the color used to draw the insertion mark for the toolbar.

A COLORREF value that contains the current insertion mark color.

This member function implements the behavior of the Win32 message TB_GETINSERTMARKCOLOR, as
described in the Windows SDK.

Retrieves the bounding rectangle of a button in a toolbar control.

nIndex
Zero-based index of the button for which to retrieve information.

lpRect
Address of a RECT structure or a CRect object that receives the coordinates of the bounding rectangle.

Nonzero if successful; otherwise zero.

This function does not retrieve the bounding rectangle for buttons whose state is set to TBSTATE_HIDDEN.

Retrieves the total size of all of the visible buttons and separators in the toolbar.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tbinsertmark
https://docs.microsoft.com/windows/desktop/Controls/tb-getinsertmark
https://docs.microsoft.com/windows/desktop/Controls/tb-getinsertmarkcolor
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetMaxTextRows

int GetMaxTextRows() const;

Return ValueReturn Value

CToolBarCtrl::GetMetrics

void GetMetrics(LPTBMETRICS ptbm) const;

ParametersParameters

RemarksRemarks

CToolBarCtrl::GetPadding

BOOL GetPadding(
 int* pnHorzPadding,
 int* pnVertPadding) const;

ParametersParameters

PARAMETER DESCRIPTION

pnHorzPadding [out] An integer that receives the horizontal padding of
the toolbar control, in pixels.

pnVertPadding [out] An integer that receives the vertical padding of the
toolbar control, in pixels.

Return ValueReturn Value

pSize
A pointer to a S IZE structure that receives the size of the items.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message TB_GETMAXSIZE, as described in
the Windows SDK.

Retrieves the maximum number of text rows displayed on a toolbar button.

The maximum number of text rows displayed on a toolbar button.

Retrieves the metrics of the CToolBarCtrl object.

ptbm
A pointer to the TBMETRICS structure of the CToolBarCtrl object.

This member function emulates the functionality of the TB_GETMETRICS message, as described in the
Windows SDK.

Retrieves the horizontal and vertical padding of the current toolbar control.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/Controls/tb-getmaxsize
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tbmetrics
https://docs.microsoft.com/windows/desktop/Controls/tb-getmetrics

RemarksRemarks

CToolBarCtrl::GetPressedImageList

CImageList* GetPressedImageList();

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetRect

BOOL GetRect(
 int nID,
 LPRECT lpRect) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetRows

int GetRows() const;

Return ValueReturn Value

RemarksRemarks

TRUE if this method is successful; otherwise, FALSE.

This method sends the TB_GETPADDING message, which is described in the Windows SDK.

Retrieves the image list that the current toolbar control uses to represent buttons in the pressed state.

Pointer to a CImageList that contains the image list for the current control, or NULL if no such image list is
set.

This method sends the TB_GETPRESSEDIMAGELIST message, which is described in the Windows SDK.

Retrieves the bounding rectangle for a specified toolbar button.

nID
The button identifier.

lpRect
A pointer to a RECT structure to receive the bounding rectangle information.

TRUE if successful; otherwise FALSE.

This member function implements the behavior of the Win32 message TB_GETRECT, as described in the
Windows SDK.

Retrieves the number of rows of buttons currently displayed by the toolbar control.

Number of rows of buttons currently displayed on the toolbar.

Note that the number of rows will always be one unless the toolbar was created with the
TBSTYLE_WRAPABLE style.

https://docs.microsoft.com/windows/desktop/Controls/tb-getpadding
https://docs.microsoft.com/windows/desktop/Controls/tb-getpressedimagelist
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/tb-getrect

CToolBarCtrl::GetState

int GetState(int nID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::GetString

int GetString(
 int nString,
 LPTSTR lpstrString,
 int cchMaxLen) const;

int GetString(
 int nString,
 CString& str) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Retrieves information about the state of the specified button in a toolbar control, such as whether it is
enabled, pressed, or checked.

nID
Command identifier of the button for which to retrieve information.

The button state information if successful or - 1 otherwise. The button state information can be a
combination of the values listed in CToolBarCtrl::AddButtons.

This function is especially handy if you want to retrieve more than one of the button states. To just retrieve
one state, use one of the following member functions: IsButtonEnabled, IsButtonChecked, IsButtonPressed,
IsButtonHidden, or IsButtonIndeterminate. However, the GetState member function is the only way to
detect the TBSTATE_WRAP button state.

Retrieves a toolbar string.

nString
Index of the string.

lpstrString
Pointer to a buffer used to return the string.

cchMaxLen
Length of the buffer in bytes.

str
The string.

The length of the string if successful, -1 if not.

This member function implements the behavior of the Win32 message TB_GETSTRING, as described in the
Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/tb-getstring

CToolBarCtrl::GetStyle

DWORD GetStyle() const;

Return ValueReturn Value

CToolBarCtrl::GetToolTips

CToolTipCtrl* GetToolTips() const;

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::HitTest

int HitTest(LPPOINT ppt) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::HideButton

Gets the styles currently applied to a toolbar control.

A DWORD containing a combination of toolbar control styles, as described in the Windows SDK.

Retrieves the handle of the tool tip control, if any, associated with the toolbar control.

A pointer to the CToolTipCtrl object associated with this toolbar or NULL if the toolbar has no associated
tool tip control.

Since the toolbar control normally creates and maintains its own tool tip control, most programs don't need
to call this function.

Determines where a point lies in a toolbar control.

ppt
A pointer to a POINT structure that contains the x-coordinate of the hit test in the x member and the y-
coordinate of the hit test in the y member. The coordinates are relative to the toolbar's client area.

An integer value indicating the location of a point on a toolbar. If the value is zero or a positive value, this
return value is the zero-based index of the nonseparator item in which the point lies.

If the return value is negative, the point does not lie within a button. The absolute value of the return value is
the index of a separator item or the nearest nonseparator item.

This member function implements the behavior of the Win32 message TB_HITTEST, as described in the
Windows SDK.

Hides or shows the specified button in a toolbar control.

https://docs.microsoft.com/windows/desktop/Controls/toolbar-control-and-button-styles
https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/tb-hittest

BOOL HideButton(
 int nID,
 BOOL bHide = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::Indeterminate

BOOL Indeterminate(
 int nID,
 BOOL bIndeterminate = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::InsertButton

BOOL InsertButton(
 int nIndex,
 LPTBBUTTON lpButton);

ParametersParameters

nID
Command identifier of the button to hide or show.

bHide
TRUE to hide the button, FALSE to show it.

Nonzero if successful; otherwise zero.

If you want to change more than one button state, consider calling SetState instead.

Sets or clears the indeterminate state of the specified button in a toolbar control.

nID
Command identifier of the button whose indeterminate state is to be set or cleared.

bIndeterminate
TRUE to set the indeterminate state for the specified button, FALSE to clear it.

Nonzero if successful; otherwise zero.

Indeterminate buttons are displayed grayed, such as the way the bold button on the toolbar of a word
processor would look when the text selected contains both bold and regular characters. If you want to
change more than one button state, consider calling SetState instead.

Inserts a button in a toolbar control.

nIndex
Zero-based index of a button. This function inserts the new button to the left of this button.

lpButton

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::InsertMarkHitTest

BOOL InsertMarkHitTest(
 LPPOINT ppt,
 LPTBINSERTMARK ptbim) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::IsButtonChecked

BOOL IsButtonChecked(int nID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::IsButtonEnabled

BOOL IsButtonEnabled(int nID) const;

Address of a TBBUTTON structure containing information about the button to insert. See
CToolBarCtrl::AddButtons for a description of the TBBUTTON structure.

Nonzero if successful; otherwise zero.

The image and/or string whose index you provide must have previously been added to the toolbar control's
list using AddBitmap, AddString, and/or AddStrings.

Retrieves the insertion mark information for a point in a toolbar.

ppt
A pointer to a POINT structure that contains the hit test coordinates, relative to the client area of the toolbar.

ptbim
A pointer to a TBINSERTMARK structure that receives the insertion mark information.

Nonzero if successful; otherwise zero.

This member function implements the behavior of the Win32 message TB_INSERTMARKHITTEST, as
described in the Windows SDK.

Determines whether the specified button in a toolbar control is checked.

nID
Command identifier of the button in the toolbar.

Nonzero if the button is checked; otherwise zero.

Consider calling GetState if you want to retrieve more than one button state.

Determines whether the specified button in a toolbar control is enabled.

https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tbinsertmark
https://docs.microsoft.com/windows/desktop/Controls/tb-insertmarkhittest

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::IsButtonHidden

BOOL IsButtonHidden(int nID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::IsButtonHighlighted

BOOL IsButtonHighlighted(int nID) const;

ParametersParameters

Return ValueReturn Value

CToolBarCtrl::IsButtonIndeterminate

BOOL IsButtonIndeterminate(int nID) const;

ParametersParameters

Return ValueReturn Value

nID
Command identifier of the button in the toolbar.

Nonzero if the button is enabled; otherwise zero.

Consider calling GetState if you want to retrieve more than one button state.

Determines whether the specified button in a toolbar control is hidden.

nID
Command identifier of the button in the toolbar.

Nonzero if the button is hidden; otherwise zero.

Consider calling GetState if you want to retrieve more than one button state.

Checks the highlight state of a toolbar button.

nID
[in] The command ID for the toolbar button.

Positive integer if the button is highlighted, 0 if the button is not highlighted, or -1 if an error occurs.

Determines whether the specified button in a toolbar control is indeterminate.

nID
[in] Command identifier of the button in the toolbar.

Positive integer if the button is indeterminate, zero if the button is not indeterminate, or -1 if an error occurs.

RemarksRemarks

CToolBarCtrl::IsButtonPressed

BOOL IsButtonPressed(int nID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::LoadImages

void LoadImages(
 int iBitmapID,
 HINSTANCE hinst);

ParametersParameters

BITMAP ID DESCRIPTION

IDB_HIST_LARGE_COLOR Explorer bitmaps in large size

IDB_HIST_SMALL_COLOR Explorer bitmaps in small size

IDB_STD_LARGE_COLOR Standard bitmaps in large size

IDB_STD_SMALL_COLOR Standard bitmaps in small size

IDB_VIEW_LARGE_COLOR View bitmaps in large size

IDB_VIEW_SMALL_COLOR View bitmaps in small size

Indeterminate buttons are displayed dimmed, such as the way the bold button on the toolbar of a word
processor looks when the selected text contains both bold and regular characters. Consider calling GetState
if you want to retrieve more than one button state.

Determines whether the specified button in a toolbar control is pressed.

nID
Command identifier of the button in the toolbar.

Nonzero if the button is pressed, otherwise zero.

Consider calling GetState if you want to retrieve more than one button state.

Loads bitmaps into a toolbar control's image list.

iBitmapID
ID of a bitmap that contains the images to be loaded. To specify your own bitmap resource, set this
parameter to the ID of a bitmap resource and set hInst to NULL. Your bitmap resource will be added to the
image list as a single image. You can add standard, system-defined bitmaps by setting hinst to
HINST_COMMCTRL and setting this parameter to one of the following IDs:

hinst
Program instance handle to the calling application. This parameter can be HINST_COMMCTRL to load a

RemarksRemarks

CToolBarCtrl::MapAccelerator

BOOL MapAccelerator(
 TCHAR chAccel,
 UINT* pIDBtn);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::MarkButton

BOOL MarkButton(
 int nID,
 BOOL fHighlight = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::MoveButton

standard image list.

This member function implements the behavior of the Win32 message TB_LOADIMAGES, as described in
the Windows SDK.

Maps an accelerator character to a toolbar button.

chAccel
Accelerator character to be mapped. This character is the same character that is underlined in the button's
text.

pIDBtn
A pointer to a UINT that receives the command identifier of the button that corresponds to the accelerator
specified in chAccel.

Nonzero if successful; otherwise zero.

This member function implements the behavior of the Win32 message TB_MAPACCELERATOR, as
described in the Windows SDK.

Sets the highlight state of a given button in a toolbar control.

nID
The button identifier.

fHighlight
Specifies the highlight state to be set. By default, TRUE. If set to FALSE, the button is set to its default state.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message TB_MARKBUTTON, as described in
the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/tb-loadimages
https://docs.microsoft.com/windows/desktop/Controls/tb-mapaccelerator
https://docs.microsoft.com/windows/desktop/Controls/tb-markbutton

BOOL MoveButton(
 UINT nOldPos,
 UINT nNewPos);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::PressButton

BOOL PressButton(int nID, BOOL bPress = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::ReplaceBitmap

BOOL ReplaceBitmap(LPTBREPLACEBITMAP pReplaceBitmap);

ParametersParameters

PARAMETER DESCRIPTION

pReplaceBitmap [in] Pointer to a TBREPLACEBITMAP structure that
describes the bitmap to be replaced and the new bitmap.

Moves a button from one index to another.

nOldPos
The zero-based index of the button to be moved.

nNewPos
The zero-based index of the button's destination.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message TB_MOVEBUTTON, as described in
the Windows SDK.

Presses or releases the specified button in a toolbar control.

nID
[in] Command identifier of the button to press or release.

bPress
[in] TRUE to press the specified button; FALSE to release the specified button. The default value is TRUE.

TRUE if the method is successful; otherwise, FALSE.

If you want to change more than one button state, consider calling SetState instead.

This method sends the TB_PRESSBUTTON message, which is described in the Windows SDK.

Replaces the existing bitmap in the current toolbar control with a new bitmap.

https://docs.microsoft.com/windows/desktop/Controls/tb-movebutton
https://docs.microsoft.com/windows/desktop/Controls/tb-pressbutton
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tbreplacebitmap

Return ValueReturn Value

RemarksRemarks

ExampleExample

{
 // Replace one toolbar bitmap with another.
 TBREPLACEBITMAP tbrb;
 tbrb.hInstOld = ::AfxGetInstanceHandle();
 tbrb.nIDOld = IDR_MAINFRAME;
 tbrb.hInstNew = ::AfxGetInstanceHandle();
 tbrb.nIDNew = IDR_MAINFRAME1;
 tbrb.nButtons = 8;
 CToolBarCtrl& m_toolBarCtrl = m_wndToolBar.GetToolBarCtrl();
 BOOL bRet = m_toolBarCtrl.ReplaceBitmap(&tbrb);
}

CToolBarCtrl::RestoreState

void RestoreState(
 HKEY hKeyRoot,
 LPCTSTR lpszSubKey,
 LPCTSTR lpszValueName);

ParametersParameters

CToolBarCtrl::SaveState

TRUE if this method is successful; otherwise, FALSE.

This method sends the TB_REPLACEBITMAP message, which is described in the Windows SDK.

The following code example replaces the bitmap for the standard toolbar with a different bitmap.

Restores the state of the toolbar control from the location in the registry specified by the parameters.

hKeyRoot
Identifies a currently open key in the registry or any of the following predefined reserved handle values:

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

lpszSubKey
Points to a null-terminated string containing the name of the subkey with which a value is associated. This
parameter can be null or a pointer to an empty string. If the parameter is NULL, the value will be added to
the key identified by the hKeyRoot parameter.

lpszValueName
Points to a string containing the name of the value to retrieve. If a value with this name is not already
present in the key, the function adds it to the key.

Saves the state of the toolbar control in the location in the registry specified by the parameters.

https://docs.microsoft.com/windows/desktop/Controls/tb-replacebitmap

void SaveState(
 HKEY hKeyRoot,
 LPCTSTR lpszSubKey,
 LPCTSTR lpszValueName);

ParametersParameters

CToolBarCtrl::SetAnchorHighlight

BOOL SetAnchorHighlight(BOOL fAnchor = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::SetBitmapSize

BOOL SetBitmapSize(CSize size);

ParametersParameters

hKeyRoot
Identifies a currently open key in the registry or any of the following predefined reserved handle values:

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_LOCAL_MACHINE

HKEY_USERS

lpszSubKey
Points to a null-terminated string containing the name of the subkey with which a value is associated. This
parameter can be null or a pointer to an empty string. If the parameter is NULL, the value will be added to
the key identified by the hKeyRoot parameter.

lpszValueName
Points to a string containing the name of the value to set. If a value with this name is not already present in
the key, the function adds it to the key.

Sets the anchor highlight setting for a toolbar.

fAnchor
[in] Specifies if anchor highlighting is enabled or disabled. If this value is nonzero, anchor highlighting will
be enabled. If this value is zero, anchor highlighting will be disabled

The previous anchor setting. If highlighting was enabled, this value is nonzero. If highlighting was not
enabled, this value is zero.

This method implements the behavior of the Win32 message TB_SETANCHORHIGHLIGHT, as described in
the Windows SDK.

Sets the size of the actual bitmapped images to be added to a toolbar control.

size
Width and height, in pixels, of the bitmapped images.

https://docs.microsoft.com/windows/desktop/Controls/tb-setanchorhighlight

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::SetButtonInfo

BOOL SetButtonInfo(
 int nID,
 TBBUTTONINFO* ptbbi);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::SetButtonSize

BOOL SetButtonSize(CSize size);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CToolBarCtrl::SetButtonStructSize

Nonzero if successful; otherwise zero.

This function must be called only before adding any bitmaps to the toolbar. If the application does not
explicitly set the bitmap size, it defaults to 16 by 15 pixels.

Sets the information for an existing button in a toolbar.

nID
The button identifier.

ptbbi
A pointer to a TBBUTTONINFO structure that receives the button information.

Nonzero if successful; otherwise 0.

The member function implements the behavior of the Win32 message TB_SETBUTTONINFO, as described
in the Windows SDK.

Sets the size of the buttons in the toolbar control.

size
Width and height, in pixels, of the buttons.

Nonzero if successful; otherwise zero.

The button size must always be at least as large as the bitmap size it encloses. This function must be called
only before adding any bitmaps to the toolbar. If the application does not explicitly set the button size, it
defaults to 24 by 22 pixels.

See the example for CToolBar::GetToolBarCtrl.

Specifies the size of the TBBUTTON structure.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tbbuttoninfoa
https://docs.microsoft.com/windows/desktop/Controls/tb-setbuttoninfo

void SetButtonStructSize(int nSize);

ParametersParameters

RemarksRemarks

CToolBarCtrl::SetButtonWidth

BOOL SetButtonWidth(
 int cxMin,
 int cxMax);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::SetCmdID

BOOL SetCmdID(
 int nIndex,
 UINT nID);

ParametersParameters

Return ValueReturn Value

nSize
Size, in bytes, of the TBBUTTON structure.

If you wanted to store extra data in the TBBUTTON structure, you could either derive a new structure from
TBBUTTON , adding the members you needed, or create a new structure that contains a TBBUTTON structure as

its first member. You would then call this function to tell the toolbar control the size of the new structure.

See CToolBarCtrl::AddButtons for more information on the TBBUTTON structure.

Sets the minimum and maximum button widths in the toolbar control.

cxMin
Minimum button width, in pixels. Toolbar buttons will never be narrower than this value.

cxMax
Maximum button width, in pixels. If button text is too wide, the control displays it with ellipsis points.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message TB_SETBUTTONWIDTH, as
described in the Windows SDK.

Sets the command identifier that will be sent to the owner window when the specified button is pressed.

nIndex
The zero-based index of the button whose command ID is to be set.

nID
The command ID to set the selected button to.

Returns nonzero if successful; otherwise zero.

https://docs.microsoft.com/windows/desktop/Controls/tb-setbuttonwidth

CToolBarCtrl::SetColorScheme

void SetColorScheme(const COLORSCHEME* lpColorScheme);

ParametersParameters

PARAMETER DESCRIPTION

lpColorScheme [in] Pointer to a COLORSCHEME structure that describes
the highlight color and shadow color of the toolbar
control.

RemarksRemarks

ExampleExample

//Set color scheme for the current toolbar control.
//Make the left and top edges of the tool button red,
//and the right and bottom edges blue. The colors
//reverse when a button is pressed.
//This method has no effect if the Vista visual theme
//is set.
{
COLORSCHEME cs;
cs.dwSize = sizeof(COLORSCHEME);
cs.clrBtnHighlight = RGB(255, 0, 0);
cs.clrBtnShadow = RGB(0, 0, 255);
CToolBarCtrl& m_toolBarCtrl = m_wndToolBar.GetToolBarCtrl();
m_toolBarCtrl.SetColorScheme(&cs);
}

CToolBarCtrl::SetDisabledImageList

CImageList* SetDisabledImageList(CImageList* pImageList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Sets the color scheme of the current toolbar control.

This method has no effect if a Windows Vista visual theme is set.

This method sends the TB_SETCOLORSCHEME message, which is described in the Windows SDK.

The following code example sets the color scheme for the current toolbar control. The code example makes
the left and top edges of each tool button red and the right and bottom edges blue. When the user presses
the button, the button's red edges turn blue and its blue edges turn red.

Sets the image list that the toolbar control will use to display disabled buttons.

pImageList
A pointer to a CImageList object containing the images to be used by the toolbar control to display disabled
button images.

A pointer to a CImageList object that was previously used by the toolbar control to display disabled button
images.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagcolorscheme
https://docs.microsoft.com/windows/desktop/Controls/tb-setcolorscheme

CToolBarCtrl::SetDrawTextFlags

DWORD SetDrawTextFlags(
 DWORD dwMask,
 DWORD dwDTFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::SetExtendedStyle

DWORD SetExtendedStyle(DWORD dwExStyle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::SetHotImageList

This member function implements the behavior of the Win32 message TB_SETDISABLEDIMAGELIST, as
described in the Windows SDK. The MFC implementation of SetDisabledImageList uses a CImageList

object containing the toolbar control's disabled button images, rather than a handle to an image list.

Sets the flags in the Win32 function DrawText, which is used to draw the text in the specified rectangle,
formatted according to how the flags are set.

dwMask
A combination of one or more of the DT_ flags, specified in the Win32 function DrawText, that indicates
which bits in dwDTFlags will be used when drawing the text.

dwDTFlags
A combination of one or more of the DT_ flags, specified in the Win32 function DrawText , that indicate how
the button text will be drawn. This value is passed to DrawText when the button text is drawn.

A DWORD containing the previous text drawing flags.

This member function implements the behavior of the Win32 message TB_SETDRAWTEXTFLAGS, as
described in the Windows SDK. This member function sets the flags in the Win32 function DrawText , which
draws text in the specified rectangle, formatted according to how the flags are set.

Sets the extended styles for a toolbar control.

dwExStyle
A value specifying the new extended styles. This parameter can be a combination of the toolbar extended
styles.

A DWORD that represents the previous extended styles. For a list of styles, see Toolbar Extended Styles, in
the Windows SDK.

This member function implements the behavior of the Win32 message TB_SETEXTENDEDSTYLE, as
described in the Windows SDK.

Sets the image list that the toolbar control will use to display "hot" buttons.

https://docs.microsoft.com/windows/desktop/Controls/tb-setdisabledimagelist
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawtext
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawtext
https://docs.microsoft.com/windows/desktop/Controls/tb-setdrawtextflags
https://docs.microsoft.com/windows/desktop/Controls/toolbar-extended-styles
https://docs.microsoft.com/windows/desktop/Controls/tb-setextendedstyle

CImageList* SetHotImageList(CImageList* pImageList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::SetHotItem

int SetHotItem(int nHot);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::SetImageList

CImageList* SetImageList(CImageList* pImageList);

ParametersParameters

Return ValueReturn Value

pImageList
A pointer to a CImageList object containing the images to be used by the toolbar control to display hot
button images.

A pointer to a CImageList object that was previously used by the toolbar control to display hot button
images.

This member function implements the behavior of the Win32 message TB_SETHOTIMAGELIST, as
described in the Windows SDK.

The MFC implementation of SetHotImageList uses a CImageList object containing the toolbar control's hot
button images, rather than a handle to an image list. A hot button appears highlighted when the pointer is
above it.

Sets the hot item in a toolbar.

nHot
The zero-based index number of the item that will be made hot. If this value is -1, none of the items will be
hot.

The index of the previous hot item, or -1 if there was no hot item.

This member function implements the behavior of the Win32 message TB_SETHOTITEM, as described in
the Windows SDK.

Sets the image list that the toolbar will use to display buttons that are in their default state.

pImageList
A pointer to a CImageList object containing the images to be used by the toolbar control to display button
images in their default state.

A pointer to a CImageList object that was previously used by the toolbar control to display button images in
their default state.

https://docs.microsoft.com/windows/desktop/Controls/tb-sethotimagelist
https://docs.microsoft.com/windows/desktop/Controls/tb-sethotitem

RemarksRemarks

CToolBarCtrl::SetIndent

BOOL SetIndent(int iIndent);

ParametersParameters

Return ValueReturn Value

CToolBarCtrl::SetInsertMark

void SetInsertMark(TBINSERTMARK* ptbim);

ParametersParameters

RemarksRemarks

CToolBarCtrl::SetInsertMarkColor

COLORREF SetInsertMarkColor(COLORREF clrNew);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This member function implements the behavior of the Win32 message TB_SETIMAGELIST, as described in
the Windows SDK.

The MFC implementation of SetImageList uses a CImageList object containing the toolbar control's button
images, rather than a handle to an image list.

Sets the indentation for the first button in a toolbar control.

iIndent
The value specifying the indentation, in pixels.

Nonzero if successful; otherwise zero.

Sets the current insertion mark for the toolbar.

ptbim
A pointer to the TBINSERTMARK structure that contains the insertion mark.

This member function implements the behavior of the Win32 message TB_SETINSERTMARK, as described
in the Windows SDK.

Sets the color used to draw the insertion mark for the toolbar.

clrNew
A COLORREF value that contains the new insertion mark color.

A COLORREF value that contains the previous insertion mark color.

This member function implements the behavior of the Win32 message TB_SETINSERTMARKCOLOR, as
described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/tb-setimagelist
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tbinsertmark
https://docs.microsoft.com/windows/desktop/Controls/tb-setinsertmark
https://docs.microsoft.com/windows/desktop/Controls/tb-setinsertmarkcolor

CToolBarCtrl::SetMaxTextRows

BOOL SetMaxTextRows(int iMaxRows);

ParametersParameters

Return ValueReturn Value

CToolBarCtrl::SetMetrics

void SetMetrics(LPTBMETRICS ptbm);

ParametersParameters

RemarksRemarks

CToolBarCtrl::SetOwner

void SetOwner(CWnd* pWnd);

ParametersParameters

RemarksRemarks

CToolBarCtrl::SetPadding

DWORD SetPadding(
 int nHorzPadding,
 int nVertPadding);

ParametersParameters

Sets the maximum number of text rows displayed on a toolbar button.

iMaxRows
Maximum number of rows to be set.

Nonzero if successful; otherwise zero.

Sets the metrics of the CToolBarCtrl object.

ptbm
A pointer to the TBMETRICS structure of the CToolBarCtrl object.

This member function emulates the functionality of the TB_SETMETRICS message, as described in the
Windows SDK.

Sets the owner window for the toolbar control.

pWnd
Pointer to the CWnd or CWnd -derived object that will be the new owner window for the toolbar control.

The owner window is the window that receives notifications from the toolbar.

Sets the horizontal and vertical padding of the current toolbar control.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tbmetrics
https://docs.microsoft.com/windows/desktop/Controls/tb-setmetrics

PARAMETER DESCRIPTION

nHorzPadding [in] Specifies the horizontal padding of the toolbar control,
in pixels.

nVertPadding [in] Specifies the vertical padding of the toolbar control, in
pixels.

Return ValueReturn Value

RemarksRemarks

ExampleExample

{
 // Set the horizontal and vertical padding of the current
 // toolbar control.
 CToolBarCtrl& m_toolBarCtrl = m_wndToolBar.GetToolBarCtrl();
 m_toolBarCtrl.SetPadding(50, 50);
}

CToolBarCtrl::SetPressedImageList

CImagelist* SetPressedImageList(
 int iImageID,
 CImageList* pImageList);

ParametersParameters

PARAMETER DESCRIPTION

iImageID [in] The zero-based index of the image list. Set this
parameter to zero if you use only one image list.

pImageList [in] Pointer to a CImageList that contains the new image
list.

Return ValueReturn Value

RemarksRemarks

ExampleExample

A DWORD whose low word contains the previous horizontal padding value, and whose high word contains
the previous vertical padding value. The padding values are measured in pixels.

This method sends the TB_SETPADDING message, which is described in the Windows SDK.

The following code example sets the horizontal and vertical padding of the current toolbar control to 20
pixels.

Sets the image list that the current toolbar control uses to represent buttons in the pressed state.

Pointer to a CImageList that contains the previous image list for the current control, or NULL if no such
image list was set.

This method sends the TB_SETPRESSEDIMAGELIST message, which is described in the Windows SDK.

The following code example sets the pressed image list to be the same as the default image list.

https://docs.microsoft.com/windows/desktop/Controls/tb-setpadding
https://docs.microsoft.com/windows/desktop/Controls/tb-setpressedimagelist

{
 // SetPressedImageList
 // Set the pressed image list to be the same as the
 // normal image list.
 CToolBarCtrl& m_toolBarCtrl = m_wndToolBar.GetToolBarCtrl();
 CImageList* pNormalCil = m_toolBarCtrl.GetImageList();
 CImageList* pPressedCil = m_toolBarCtrl.GetPressedImageList();
 m_toolBarCtrl.SetPressedImageList(0, pNormalCil);
}

CToolBarCtrl::SetRows

void SetRows(
 int nRows,
 BOOL bLarger,
 LPRECT lpRect);

ParametersParameters

RemarksRemarks

CToolBarCtrl::SetState

Asks the toolbar control to resize itself to the requested number of rows.

nRows
Requested number of rows.

bLarger
Tells whether to use more rows or fewer rows if the toolbar cannot be resized to the requested number of
rows.

lpRect
Points to the CRect object or RECT structure that will receive the new bounding rectangle of the toolbar.

If the toolbar cannot resize itself to the requested number or rows, it will resize itself to either the next larger
or next smaller valid size, depending on the value of bLarger. If bLarger is TRUE, the new number of rows
will be larger than the number requested. If bLarger is FALSE, the new number of rows will be smaller than
the number requested.

A given number of rows is valid for the toolbar if the buttons can be arranged such that all of the rows have
the same number of buttons (except perhaps the last row). For example, a toolbar that contains four buttons
could not be sized to three rows because the last two rows would have to be shorter. If you attempted to size
it to three rows, you would get four rows if bLarger was TRUE and two rows if bLarger was FALSE.

If there are separators in the toolbar, the rules for when a given number of rows is valid are more
complicated. The layout is computed such that button groups (buttons with a separator before the first and
the last button in the group) are never broken up on several rows unless the group cannot fit on one row.

If a group does not fit on one row, the next group will start on the next row even if it would fit on the row
where the large group ended. The purpose of this rule is to make the separation between large groups more
noticeable. The resulting vertical separators are counted as rows.

Note also that the SetRows member function will always chose the layout that results in the smallest toolbar
size. Creating a toolbar with the TBSTYLE_WRAPABLE style and then resizing the control will simply apply
the method outlined above given the width of the control.

This function can only be called for toolbars that were created with the TBSTYLE_WRAPABLE style.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

BOOL SetState(
 int nID,
 UINT nState);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolBarCtrl::SetStyle

void SetStyle(DWORD dwStyle);

ParametersParameters

CToolBarCtrl::SetToolTips

void SetToolTips(CToolTipCtrl* pTip);

ParametersParameters

CToolBarCtrl::SetWindowTheme

HRESULT SetWindowTheme(LPCWSTR pszSubAppName);

ParametersParameters

Return ValueReturn Value

Sets the state for the specified button in a toolbar control.

nID
Command identifier of the button.

nState
State flags. It can be a combination of the values listed for button states in CToolBarCtrl::AddButtons.

Nonzero if successful; otherwise zero.

This function is especially handy if you want to set more than one of the button states. To just set one state,
use one of the following member functions: EnableButton, CheckButton, HideButton, Indeterminate, or
PressButton.

Sets the styles for a toolbar control.

dwStyle
A DWORD containing a combination of toolbar control styles, as described in the Windows SDK.

Associates a tool tip control with a toolbar control.

pTip
Pointer to the CToolTipCtrl object.

Sets the visual style of the CToolBarCtrl object.

pszSubAppName
A pointer to a Unicode string that contains the toolbar visual style to set.

https://docs.microsoft.com/windows/desktop/Controls/toolbar-control-and-button-styles

RemarksRemarks

See also

The return value is not used.

This member function emulates the functionality of the TB_SETWINDOWTHEME message, as described in
the Windows SDK.

MFC Sample CMNCTRL1
MFC Sample MFCIE
CWnd Class
Hierarchy Chart
CToolBar Class

https://docs.microsoft.com/windows/desktop/Controls/tb-setwindowtheme
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CToolTipCtrl Class
3/5/2019 • 16 minutes to read • Edit Online

Syntax
class CToolTipCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CToolTipCtrl::CToolTipCtrl Constructs a CToolTipCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CToolTipCtrl::Activate Activates and deactivates the tool tip control.

CToolTipCtrl::AddTool Registers a tool with the tool tip control.

CToolTipCtrl::AdjustRect Converts between a tool tip control's text display rectangle
and its window rectangle.

CToolTipCtrl::Create Creates a tool tip control and attaches it to a
CToolTipCtrl object.

CToolTipCtrl::CreateEx Creates a tool tip control with the specified Windows
extended styles and attaches it to a CToolTipCtrl object.

CToolTipCtrl::DelTool Removes a tool from the tool tip control.

CToolTipCtrl::GetBubbleSize Retrieves the size of the tool tip.

CToolTipCtrl::GetCurrentTool Retrieves information, such as the size, position, and text,
of the tooltip window that the current tooltip control
displays.

CToolTipCtrl::GetDelayTime Retrieves the initial, pop-up, and reshow durations that are
currently set for a tool tip control.

CToolTipCtrl::GetMargin Retrieves the top, left, bottom, and right margins that are
set for a tool tip window.

Encapsulates the functionality of a "tool tip control," a small pop-up window that displays a single line of text
describing the purpose of a tool in an application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctooltipctrl-class.md

CToolTipCtrl::GetMaxTipWidth Retrieves the maximum width for a tool tip window.

CToolTipCtrl::GetText Retrieves the text that a tool tip control maintains for a
tool.

CToolTipCtrl::GetTipBkColor Retrieves the background color in a tool tip window.

CToolTipCtrl::GetTipTextColor Retrieves the text color in a tool tip window.

CToolTipCtrl::GetTitle Retrieves the title of the current tooltip control.

CToolTipCtrl::GetToolCount Retrieves a count of the tools maintained by a tool tip
control.

CToolTipCtrl::GetToolInfo Retrieves the information that a tool tip control maintains
about a tool.

CToolTipCtrl::HitTest Tests a point to determine whether it is within the
bounding rectangle of the given tool. If so, retrieves
information about the tool.

CToolTipCtrl::Pop Removes a displayed tool tip window from view.

CToolTipCtrl::Popup Causes the current ToolTip control to display at the
coordinates of the last mouse message.

CToolTipCtrl::RelayEvent Passes a mouse message to a tool tip control for
processing.

CToolTipCtrl::SetDelayTime Sets the initial, pop-up, and reshow durations for a tool tip
control.

CToolTipCtrl::SetMargin Sets the top, left, bottom, and right margins for a tool tip
window.

CToolTipCtrl::SetMaxTipWidth Sets the maximum width for a tool tip window.

CToolTipCtrl::SetTipBkColor Sets the background color in a tool tip window.

CToolTipCtrl::SetTipTextColor Sets the text color in a tool tip window.

CToolTipCtrl::SetTitle Adds a standard icon and title string to a tool tip.

CToolTipCtrl::SetToolInfo Sets the information that a tool tip maintains for a tool.

CToolTipCtrl::SetToolRect Sets a new bounding rectangle for a tool.

CToolTipCtrl::SetWindowTheme Sets the visual style of the tool tip window.

CToolTipCtrl::Update Forces the current tool to be redrawn.

CToolTipCtrl::UpdateTipText Sets the tool tip text for a tool.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CToolTipCtrl::Activate

void Activate(BOOL bActivate);

ParametersParameters

RemarksRemarks

ExampleExample

CToolTipCtrl::AddTool

A "tool" is either a window, such as a child window or control, or an application-defined rectangular area
within a window's client area. A tool tip is hidden most of the time, appearing only when the user puts the
cursor on a tool and leaves it there for approximately one-half second. The tool tip appears near the cursor
and disappears when the user clicks a mouse button or moves the cursor off the tool.

CToolTipCtrl provides the functionality to control the initial time and duration of the tool tip, the margin
widths surrounding the tool tip text, the width of the tool tip window itself, and the background and text color
of the tool tip. A single tool tip control can provide information for more than one tool.

The CToolTipCtrl class provides the functionality of the Windows common tool tip control. This control (and
therefore the CToolTipCtrl class) is available only to programs running under Windows 95/98 and Windows
NT versions 3.51 and later.

For more information about enabling tool tips, see Tool Tips in Windows not Derived from CFrameWnd.

For more information on using CToolTipCtrl , see Controls and Using CToolTipCtrl.

CObject

CCmdTarget

CWnd

CToolTipCtrl

Header: afxcmn.h

Call this function to activate or deactivate a tool tip control.

bActivate
Specifies whether the tool tip control is to be activated or deactivated.

If bActivate is TRUE, the control is activated; if FALSE, it is deactivated.

When a tool tip control is active, the tool tip information appears when the cursor is on a tool that is
registered with the control; when it is inactive, the tool tip information does not appear, even when the cursor
is on a tool.

See the example for CPropertySheet::GetTabControl.

Registers a tool with the tool tip control.

BOOL AddTool(
 CWnd* pWnd,
 UINT nIDText,
 LPCRECT lpRectTool = NULL,
 UINT_PTR nIDTool = 0);

BOOL AddTool(
 CWnd* pWnd,
 LPCTSTR lpszText = LPSTR_TEXTCALLBACK,
 LPCRECT lpRectTool = NULL,
 UINT_PTR nIDTool = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CToolTipCtrl::AdjustRect

BOOL AdjustRect(
 LPRECT lprc,
 BOOL bLarger = TRUE);

ParametersParameters

pWnd
Pointer to the window that contains the tool.

nIDText
ID of the string resource that contains the text for the tool.

lpRectTool
Pointer to a RECT structure containing coordinates of the tool's bounding rectangle. The coordinates are
relative to the upper-left corner of the client area of the window identified by pWnd.

nIDTool
ID of the tool.

lpszText
Pointer to the text for the tool. If this parameter contains the value LPSTR_TEXTCALLBACK, TTN_NEEDTEXT
notification messages go to the parent of the window that pWnd points to.

Nonzero if successful; otherwise 0.

The lpRectTool and nIDTool parameters must both be valid, or if lpRectTool is NULL, nIDTool must be 0.

A tool tip control can be associated with more than one tool. Call this function to register a tool with the tool
tip control, so that the information stored in the tool tip is displayed when the cursor is on the tool.

You cannot set a tool tip to a static control using AddTool .

See the example for CPropertySheet::GetTabControl.

Converts between a tooltip control's text display rectangle and its window rectangle.

lprc

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

Return ValueReturn Value

RemarksRemarks

CToolTipCtrl::Create

virtual BOOL Create(CWnd* pParentWnd, DWORD dwStyle = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

STYLE MEANING

TTS_ALWAYSTIP Specifies that the tool tip will appear when the cursor is on
a tool, regardless of whether the tool tip control's owner
window is active or inactive. Without this style, the tool tip
control appears when the tool's owner window is active,
but not when it is inactive.

TTS_NOPREFIX This style prevents the system from stripping the
ampersand (&) character from a string. If a tool tip control
does not have the TTS_NOPREFIX style, the system
automatically strips ampersand characters, allowing an
application to use the same string as both a menu item
and as text in a tool tip control.

Pointer to a RECT structure that holds either a tool tip window rectangle or a text display rectangle.

bLarger
If TRUE, lprc is used to specify a text-display rectangle, and it receives the corresponding window rectangle. If
FALSE, lprc is used to specify a window rectangle, and it receives the corresponding text display rectangle.

Nonzero if the rectangle is successfully adjusted; otherwise 0.

This member function calculates a tool tip control's text display rectangle from its window rectangle, or the
tool tip window rectangle needed to display a specified text display rectangle.

This member function implements the behavior of the Win32 message TTM_ADJUSTRECT, as described in
the Windows SDK.

Creates a tool tip control and attaches it to a CToolTipCtrl object.

pParentWnd
Specifies the tool tip control's parent window, usually a CDialog . It must not be NULL.

dwStyle
Specifies the tool tip control's style. See the Remarks section for more information.

Nonzero if the CToolTipCtrl object is successfully created; otherwise 0.

You construct a CToolTipCtrl in two steps. First, call the constructor to construct the CToolTipCtrl object,
and then call Create to create the tool tip control and attach it to the CToolTipCtrl object.

The dwStyle parameter can be any combination of Window Styles. In addition, a tool tip control has two
class-specific styles: TTS_ALWAYSTIP and TTS_NOPREFIX.

A tool tip control has the WS_POPUP and WS_EX_TOOLWINDOW window styles, regardless of whether
you specify them when creating the control.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/Controls/ttm-adjustrect

ExampleExample

CToolTipCtrl::CreateEx

virtual BOOL CreateEx(
 CWnd* pParentWnd,
 DWORD dwStyle = 0,
 DWORD dwStyleEx = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolTipCtrl::CToolTipCtrl

CToolTipCtrl();

RemarksRemarks

ExampleExample

// Declare a CToolTipCtrl object.
CToolTipCtrl m_ToolTipCtrl;

CToolTipCtrl::DelTool

void DelTool(
 CWnd* pWnd,
 UINT_PTR nIDTool = 0);

To create a tool tip control with extended windows styles, call CToolTipCtrl::CreateEx instead of Create .

See the example for CPropertySheet::GetTabControl.

Creates a control (a child window) and associate it with the CToolTipCtrl object.

pParentWnd
A pointer to the window that is the control's parent.

dwStyle
Specifies the tool tip control's style. See the Remarks section of Create for more information.

dwStyleEx
Specifies the extended style of the control being created. For a list of extended Windows styles, see the
dwExStyle parameter for CreateWindowEx in the Windows SDK.

Nonzero if successful otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended style
preface WS_EX_.

Constructs a CToolTipCtrl object.

You must call Create after constructing the object.

Removes the tool specified by pWnd and nIDTool from the collection of tools supported by a tool tip control.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa

ParametersParameters

CToolTipCtrl::GetBubbleSize

CSize GetBubbleSize(LPTOOLINFO lpToolInfo) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolTipCtrl::GetCurrentTool

BOOL GetCurrentTool(LPTOOLINFO lpToolInfo) const;

ParametersParameters

PARAMETER DESCRIPTION

lpToolInfo [out] Pointer to a TOOLINFO structure that receives
information about the current tooltip window.

Return ValueReturn Value

RemarksRemarks

ExampleExample

pWnd
Pointer to the window that contains the tool.

nIDTool
ID of the tool.

Retrieves the size of the tool tip.

lpToolInfo
A pointer to the tool tip's TOOLINFO structure.

The size of the tool tip.

This member function implements the behavior of the Win32 message TTM_GETBUBBLESIZE, as described
in the Windows SDK.

Retrieves information, such as the size, position, and text, of the tooltip window displayed by the current
tooltip control.

TRUE if the information is retrieved successfully; otherwise, FALSE.

This method sends the TTM_GETCURRENTTOOL message, which is described in the Windows SDK.

The following code example retrieves information about the current tooltip window.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtoolinfoa
https://docs.microsoft.com/windows/desktop/Controls/ttm-getbubblesize
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtoolinfoa
https://docs.microsoft.com/windows/desktop/Controls/ttm-getcurrenttool

{
 //Get information about the current tooltip.
 TOOLINFO tInfo = {0};
 tInfo.cbSize = sizeof(TOOLINFO);
 CToolBarCtrl& m_toolBarCtrl = m_wndToolBar.GetToolBarCtrl();
 CToolTipCtrl* m_toolTip = m_toolBarCtrl.GetToolTips();
 BOOL bRet = m_toolTip->GetCurrentTool(&tInfo);
}

CToolTipCtrl::GetDelayTime

int GetDelayTime(DWORD dwDuration) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolTipCtrl::GetMargin

void GetMargin(LPRECT lprc) const;

ParametersParameters

MEMBER REPRESENTATION

top Distance between top border and top of tool tip text, in
pixels.

Retrieves the initial, pop-up, and reshow durations currently set for a tool tip control.

dwDuration
Flag that specifies which duration value will be retrieved. This parameter can be one of the following values:

TTDT_AUTOPOP Retrieve the length of time the tool tip window remains visible if the pointer is
stationary within a tool's bounding rectangle.

TTDT_INITIAL Retrieve the length of time the pointer must remain stationary within a tool's bounding
rectangle before the tool tip window appears.

TTDT_RESHOW Retrieve the length of time it takes for subsequent tool tip windows to appear as the
pointer moves from one tool to another.

The specified delay time, in milliseconds

This member function implements the behavior of the Win32 message TTM_GETDELAYTIME, as described
in the Windows SDK.

Retrieves the top, left, bottom, and right margins set for a tool tip window.

lprc
Address of a RECT structure that will receive the margin information. The members of the RECT structure do
not define a bounding rectangle. For the purpose of this message, the structure members are interpreted as
follows:

https://docs.microsoft.com/windows/desktop/Controls/ttm-getdelaytime
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

left Distance between left border and left end of tip text, in
pixels.

bottom Distance between bottom border and bottom of tip text, in
pixels.

right Distance between right border and right end of tip text, in
pixels.

MEMBER REPRESENTATION

RemarksRemarks

CToolTipCtrl::GetMaxTipWidth

int GetMaxTipWidth() const;

Return ValueReturn Value

RemarksRemarks

CToolTipCtrl::GetText

void GetText(
 CString& str,
 CWnd* pWnd,
 UINT_PTR nIDTool = 0) const;

ParametersParameters

RemarksRemarks

CToolTipCtrl::GetTipBkColor

This member function implements the behavior of the Win32 message TTM_GETMARGIN, as described in
the Windows SDK.

Retrieves the maximum width for a tool tip window.

The maximum width for a tool tip window.

This member function implements the behavior of the Win32 message TTM_GETMAXTIPWIDTH, as
described in the Windows SDK.

Retrieves the text that a tool tip control maintains for a tool.

str
Reference to a CString object that receives the tool's text.

pWnd
Pointer to the window that contains the tool.

nIDTool
ID of the tool.

The pWnd and nIDTool parameters identify the tool. If that tool has been previously registered with the tool
tip control through a previous call to CToolTipCtrl::AddTool , the object referenced by the str parameter is
assigned the tool's text.

https://docs.microsoft.com/windows/desktop/Controls/ttm-getmargin
https://docs.microsoft.com/windows/desktop/Controls/ttm-getmaxtipwidth

COLORREF GetTipBkColor() const;

Return ValueReturn Value

RemarksRemarks

CToolTipCtrl::GetTipTextColor

COLORREF GetTipTextColor() const;

Return ValueReturn Value

RemarksRemarks

CToolTipCtrl::GetTitle

void GetTitle(PTTGETTITLE pttgt) const;

ParametersParameters

PARAMETER DESCRIPTION

pttgt [out] Pointer to a TTGETTITLE structure that contains
information about the ToolTip control. When this method
returns, the pszTitle member of the TTGETTITLE structure
points to the text of the title.

RemarksRemarks

CToolTipCtrl::GetToolCount

int GetToolCount() const;

Return ValueReturn Value

CToolTipCtrl::GetToolInfo

Retrieves the background color in a tool tip window.

A COLORREF value that represents the background color.

This member function implements the behavior of the Win32 message TTM_GETTIPBKCOLOR, as described
in the Windows SDK.

Retrieves the text color in a tool tip window.

A COLORREF value that represents the text color.

This member function implements the behavior of the Win32 message TTM_GETTIPTEXTCOLOR, as
described in the Windows SDK.

Retrieves the title of the current tooltip control.

This method sends the TTM_GETTITLE message, which is described in the Windows SDK.

Retrieves a count of the tools registered with the tool tip control.

A count of tools registered with the tool tip control.

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/ttm-gettipbkcolor
https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/Controls/ttm-gettiptextcolor
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_ttgettitle
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-_ttgettitle
https://docs.microsoft.com/windows/desktop/Controls/ttm-gettitle

CToolTipCtrl::GetToolInfo

BOOL GetToolInfo(
 CToolInfo& ToolInfo,
 CWnd* pWnd,
 UINT_PTR nIDTool = 0) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolTipCtrl::HitTest

BOOL HitTest(
 CWnd* pWnd,
 CPoint pt,
 LPTOOLINFO lpToolInfo) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Retrieves the information that a tool tip control maintains about a tool.

ToolInfo
Reference to a TOOLINFO object that receives the tool's text.

pWnd
Pointer to the window that contains the tool.

nIDTool
ID of the tool.

Nonzero if successful; otherwise 0.

The hwnd and uId members of the TOOLINFO structure referenced by CToolInfo identify the tool. If that
tool has been registered with the tool tip control through a previous call to AddTool , the TOOLINFO structure
is filled with information about the tool.

Tests a point to determine whether it is within the bounding rectangle of the given tool and, if so, retrieve
information about the tool.

pWnd
Pointer to the window that contains the tool.

pt
Pointer to a CPoint object containing the coordinates of the point to be tested.

lpToolInfo
Pointer to TOOLINFO structure that contains information about the tool.

Nonzero if the point specified by the hit-test information is within the tool's bounding rectangle; otherwise 0.

If this function returns a nonzero value, the structure pointed to by lpToolInfo is filled with information on the
tool within whose rectangle the point lies.

The TTHITTESTINFO structure is defined as follows:

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtoolinfoa
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtoolinfoa

typedef struct _TT_HITTESTINFO { // tthti
 HWND hwnd; // handle of tool or window with tool
 POINT pt; // client coordinates of point to test
 TOOLINFO ti; // receives information about the tool
} TTHITTESTINFO, FAR * LPHITTESTINFO;

CToolTipCtrl::Pop

void Pop();

RemarksRemarks

CToolTipCtrl::Popup

void Popup();

RemarksRemarks

ExampleExample

{
 // Display the most recent tooltip.
 CToolBarCtrl& m_toolBarCtrl = m_wndToolBar.GetToolBarCtrl();
 CToolTipCtrl* m_toolTip = m_toolBarCtrl.GetToolTips();
 m_toolTip->Popup();
}

CToolTipCtrl::RelayEvent

void RelayEvent(LPMSG lpMsg);

hwnd

Specifies the tool's handle.

pt

Specifies the coordinates of a point if the point is in the tool's bounding rectangle.

ti

Information about the tool. For more information about the TOOLINFO structure, see
CToolTipCtrl::GetToolInfo.

Removes a displayed tool tip window from the view.

This member function implements the behavior of the Win32 message TTM_POP, as described in the
Windows SDK.

Causes the current tooltip control to display at the coordinates of the last mouse message.

This method sends the TTM_POPUP message, which is described in the Windows SDK.

The following code example displays a tooltip window.

Passes a mouse message to a tool tip control for processing.

https://docs.microsoft.com/windows/desktop/Controls/ttm-pop
https://docs.microsoft.com/windows/desktop/Controls/ttm-popup

ParametersParameters

RemarksRemarks

WM_LBUTTONDOWN WM_MOUSEMOVE

WM_LBUTTONUP WM_RBUTTONDOWN

WM_MBUTTONDOWN WM_RBUTTONUP

WM_MBUTTONUP

ExampleExample

CToolTipCtrl::SetDelayTime

void SetDelayTime(UINT nDelay);

void SetDelayTime(
 DWORD dwDuration,
 int iTime);

ParametersParameters

RemarksRemarks

CToolTipCtrl::SetMargin

void SetMargin(LPRECT lprc);

ParametersParameters

lpMsg
Pointer to a MSG structure that contains the message to relay.

A tool tip control processes only the following messages, which are sent to it by RelayEvent :

See the example for CPropertySheet::GetTabControl.

Sets the delay time for a tool tip control.

nDelay
Specifies the new delay time, in milliseconds.

dwDuration
Flag that specifies which duration value will be retrieved. See CToolTipCtrl::GetDelayTime for a description of
the valid values.

iTime
The specified delay time, in milliseconds.

The delay time is the length of time the cursor must remain on a tool before the tool tip window appears. The
default delay time is 500 milliseconds.

Sets the top, left, bottom, and right margins for a tool tip window.

lprc
Address of a RECT structure that contains the margin information to be set. The members of the RECT

structure do not define a bounding rectangle. See CToolTipCtrl::GetMargin for a description of the margin

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-msg

RemarksRemarks

CToolTipCtrl::SetMaxTipWidth

int SetMaxTipWidth(int iWidth);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolTipCtrl::SetTipBkColor

void SetTipBkColor(COLORREF clr);

ParametersParameters

RemarksRemarks

CToolTipCtrl::SetTipTextColor

void SetTipTextColor(COLORREF clr);

ParametersParameters

RemarksRemarks

information.

This member function implements the behavior of the Win32 message TTM_SETMARGIN, as described in
the Windows SDK.

Sets the maximum width for a tool tip window.

iWidth
The maximum tool tip window width to be set.

The previous maximum tip width.

This member function implements the behavior of the Win32 message TTM_SETMAXTIPWIDTH, as
described in the Windows SDK.

Sets the background color in a tool tip window.

clr
The new background color.

This member function implements the behavior of the Win32 message TTM_SETTIPBKCOLOR, as described
in the Windows SDK.

Sets the text color in a tool tip window.

clr
The new text color.

This member function implements the behavior of the Win32 message TTM_SETTIPTEXTCOLOR, as
described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/ttm-setmargin
https://docs.microsoft.com/windows/desktop/Controls/ttm-setmaxtipwidth
https://docs.microsoft.com/windows/desktop/Controls/ttm-settipbkcolor
https://docs.microsoft.com/windows/desktop/Controls/ttm-settiptextcolor

CToolTipCtrl::SetTitle

BOOL SetTitle(
 UINT uIcon,
 LPCTSTR lpstrTitle);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolTipCtrl::SetToolInfo

void SetToolInfo(LPTOOLINFO lpToolInfo);

ParametersParameters

CToolTipCtrl::SetToolRect

void SetToolRect(
 CWnd* pWnd,
 UINT_PTR nIDTool,
 LPCRECT lpRect);

ParametersParameters

CToolTipCtrl::SetWindowTheme

Adds a standard icon and title string to a tool tip.

uIcon
See icon in TTM_SETTITLE in the Windows SDK.

lpstrTitle
Pointer to the title string.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message TTM_SETTITLE, as described in the
Windows SDK.

Sets the information that a tool tip maintains for a tool.

lpToolInfo
A pointer to a TOOLINFO structure that specifies the information to set.

Sets a new bounding rectangle for a tool.

pWnd
Pointer to the window that contains the tool.

nIDTool
ID of the tool.

lpRect
Pointer to a RECT structure specifying the new bounding rectangle.

Sets the visual style of the tool tip window.

https://docs.microsoft.com/windows/desktop/Controls/ttm-settitle
https://docs.microsoft.com/windows/desktop/Controls/ttm-settitle
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtoolinfoa
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

HRESULT SetWindowTheme(LPCWSTR pszSubAppName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CToolTipCtrl::Update

void Update();

CToolTipCtrl::UpdateTipText

void UpdateTipText(
 LPCTSTR lpszText,
 CWnd* pWnd,
 UINT_PTR nIDTool = 0);

void UpdateTipText(
 UINT nIDText,
 CWnd* pWnd,
 UINT_PTR nIDTool = 0);

ParametersParameters

See also

pszSubAppName
A pointer to a Unicode string that contains the visual style to set.

The return value is not used.

This member function emulates the functionality of the TTM_SETWINDOWTHEME message, as described in
the Windows SDK.

Forces the current tool to be redrawn.

Updates the tool tip text for this control's tools.

lpszText
Pointer to the text for the tool.

pWnd
Pointer to the window that contains the tool.

nIDTool
ID of the tool.

nIDText
ID of the string resource that contains the text for the tool.

CWnd Class
Hierarchy Chart
CToolBar Class

https://docs.microsoft.com/windows/desktop/Controls/ttm-setwindowtheme

CTooltipManager Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CTooltipManager : public CObject

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CTooltipManager::CreateToolTip Creates a tooltip control for the specified Windows control
type(s).

CTooltipManager::DeleteToolTip Deletes a tooltip control.

CTooltipManager::SetTooltipParams Customizes the visual appearance of the tooltip control for
the specified Windows control type(s).

CTooltipManager::SetTooltipText Sets the text and description for a tooltip control.

CTooltipManager::UpdateTooltips

Remarks

Inheritance Hierarchy

Requirements

CTooltipManager::CreateToolTip

Maintains runtime information about tooltips. The CTooltipManager class is instantiated one time per application.

Use CMFCToolTipCtrl Class, CMFCToolTipInfo , and CTooltipManager together to implement customized tooltips
in your application. For an example of how to use these tooltip classes, see the CMFCToolTipCtrl Class topic.

CObject

CTooltipManager

Header: afxtooltipmanager.h

Creates a tooltip control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctooltipmanager-class.md

static BOOL CreateToolTip(
 CToolTipCtrl*& pToolTip,
 CWnd* pWndParent,
 UINT nType);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

TOOLTIP TYPE CONTROL CATEGORY EXAMPLE TYPES

AFX_TOOLTIP_TYPE_BUTTON A button. CMFCButton

AFX_TOOLTIP_TYPE_CAPTIONBAR A caption bar. CMFCCaptionBar

AFX_TOOLTIP_TYPE_DEFAULT Any control that does not fit another
category.

None.

AFX_TOOLTIP_TYPE_DOCKBAR A dockable pane. CDockablePane

AFX_TOOLTIP_TYPE_EDIT A text box. None.

AFX_TOOLTIP_TYPE_MINIFRAME A miniframe. CPaneFrameWnd

AFX_TOOLTIP_TYPE_PLANNER A planner. None.

AFX_TOOLTIP_TYPE_RIBBON A ribbon bar. CMFCRibbonBar,
CMFCRibbonPanelMenuBar

AFX_TOOLTIP_TYPE_TAB A tab control. CMFCTabCtrl

AFX_TOOLTIP_TYPE_TOOLBAR A toolbar. CMFCToolBar, CMFCPopupMenuBar

AFX_TOOLTIP_TYPE_TOOLBOX A toolbox. None.

CTooltipManager::DeleteToolTip

pToolTip
[out] A reference to a tooltip pointer. It is set to point to the newly created tooltip when the function returns.

pWndParent
[in] Parent of the tooltip.

nType
[in] Type of the tooltip.

Nonzero if a tooltip has been created successfully.

You must call CTooltipManager::DeleteToolTip to delete the tooltip control that is passed back in pToolTip.

The CTooltipManager sets the visual display parameters of each tooltip it creates based on the tooltip type that
nType specifies. To change the parameters for one or more tooltip types, call CTooltipManager::SetTooltipParams.

Valid tooltip types are listed in the following table:

static void DeleteToolTip(CToolTipCtrl*& pToolTip);

ParametersParameters

RemarksRemarks

CTooltipManager::SetTooltipParams

void SetTooltipParams(
 UINT nTypes,
 CRuntimeClass* pRTC=RUNTIME_CLASS(CMFCToolTipCtrl),
 CMFCToolTipInfo* pParams=NULL);

ParametersParameters

RemarksRemarks

ExampleExample

CMFCToolTipInfo params;
params.m_bVislManagerTheme = TRUE;

theApp.GetTooltipManager()->SetTooltipParams(AFX_TOOLTIP_TYPE_ALL, RUNTIME_CLASS(CMFCToolTipCtrl), ¶ms);

Deletes a tooltip control.

pToolTip
[in, out] A reference to a pointer to a tooltip to be destroyed.

Call this method for each CToolTipCtrl Class that was created by CTooltipManager::CreateToolTip. The parent
control should call this method from its OnDestroy handler. This is required to correctly remove the tooltip from
the framework. This method sets pToolTip to NULL before it returns.

Customizes the appearance of the tooltip control for the specified Windows control types.

nTypes
[in] Specifies control types.

pRTC
[in] Runtime class of custom tooltip.

pParams
[in] Tooltip parameters.

This method sets the runtime class and initial parameters that the CToolTipManager uses when it creates
tooltips. When a control calls CTooltipManager::CreateToolTip and passes in a tooltip type that is one of the types
indicated by nTypes, the tooltip manager creates a tooltip control that is an instance of the runtime class specified
by pRTC and passes the parameters specified by pParams to the new tooltip.

When you call this method, all existing tooltip owners receive the AFX_WM_UPDATETOOLTIPS message and
they must re-create their tooltips by using CTooltipManager::CreateToolTip.

nTypes can be any combination of the valid tooltip types that CTooltipManager::CreateToolTip uses, or it can be
AFX_TOOLTIP_TYPE_ALL. If you pass AFX_TOOLTIP_TYPE_ALL, all tooltip types are affected.

The following example demonstrates how to use the SetTooltipParams method of the CTooltipManager class.
This code snippet is part of the Draw Client sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CTooltipManager::SetTooltipText

static void SetTooltipText(
 TOOLINFO* pTI,
 CToolTipCtrl* pToolTip,
 UINT nType,
 const CString strText,
 LPCTSTR lpszDescr=NULL);

ParametersParameters

RemarksRemarks

CTooltipManager::UpdateTooltips

void UpdateTooltips();

RemarksRemarks

See also

Sets the text and description for a tooltip.

pTI
[in] A pointer to a TOOLINFO object.

pToolTip
[in, out] A pointer to the tooltip control for which to set the text and description.

nType
[in] Specifies the type of control with which this tooltip is associated.

strText
[in] The text to set as the tooltip text.

lpszDescr
[in] A pointer to the tooltip description. Can be NULL.

The value of nType must be the same value as the nType parameter of CTooltipManager::CreateToolTip when
you created the tooltip.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

Hierarchy Chart
Classes
CMFCToolTipCtrl Class
CMFCToolTipInfo Class

CTreeCtrl Class
3/5/2019 • 52 minutes to read • Edit Online

Syntax
class CTreeCtrl : public CWnd

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CTreeCtrl::CTreeCtrl Constructs a CTreeCtrl object.

Public MethodsPublic Methods

NAME DESCRIPTION

CTreeCtrl::Create Creates a tree view control and attaches it to a
CTreeCtrl object.

CTreeCtrl::CreateDragImage Creates a dragging bitmap for the specified tree view item.

CTreeCtrl::CreateEx Creates a tree control with the specified Windows
extended styles and attaches it to a CTreeCtrl object.

CTreeCtrl::DeleteAllItems Deletes all items in a tree view control.

CTreeCtrl::DeleteItem Deletes a new item in a tree view control.

CTreeCtrl::EditLabel Edits a specified tree view item in-place.

CTreeCtrl::EndEditLabelNow Cancels the edit operation on the label of a tree-view item
in the current tree-view control.

CTreeCtrl::EnsureVisible Ensures that a tree view item is visible in its tree view
control.

CTreeCtrl::Expand Expands, or collapses, the child items of the specified tree
view item.

CTreeCtrl::GetBkColor Retrieves the current background color of the control.

CTreeCtrl::GetCheck Retrieves the check state of a tree control item.

CTreeCtrl::GetChildItem Retrieves the child of a specified tree view item.

Provides the functionality of the Windows common tree view control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctreectrl-class.md

CTreeCtrl::GetCount Retrieves the number of tree items associated with a tree
view control.

CTreeCtrl::GetDropHilightItem Retrieves the target of a drag-and-drop operation.

CTreeCtrl::GetEditControl Retrieves the handle of the edit control used to edit the
specified tree view item.

CTreeCtrl::GetExtendedStyle Retrieves the extended styles that the current tree-view
control is using.

CTreeCtrl::GetFirstVisibleItem Retrieves the first visible item of the specified tree view
item.

CTreeCtrl::GetImageList Retrieves the handle of the image list associated with a
tree view control.

CTreeCtrl::GetIndent Retrieves the offset (in pixels) of a tree view item from its
parent.

CTreeCtrl::GetInsertMarkColor Retrieves the color used to draw the insertion mark for
the tree view.

CTreeCtrl::GetItem Retrieves the attributes of a specified tree view item.

CTreeCtrl::GetItemData Returns the 32-bit application-specific value associated
with an item.

CTreeCtrl::GetItemExpandedImageIndex Retrieves the index of the image to display when the
specified item of the current tree-view control is in the
expanded state.

CTreeCtrl::GetItemHeight Retrieves the current height of the tree view items.

CTreeCtrl::GetItemImage Retrieves the images associated with an item.

CTreeCtrl::GetItemPartRect Retrieves the bounding rectangle for a specified part of a
specified item in the current tree-view control.

CTreeCtrl::GetItemRect Retrieves the bounding rectangle of a tree view item.

CTreeCtrl::GetItemState Returns the state of an item.

CTreeCtrl::GetItemStateEx Retrieves the extended state of the specified item in the
current tree-view control.

CTreeCtrl::GetItemText Returns the text of an item.

CTreeCtrl::GetLastVisibleItem Retrieves the last expanded item in the current tree-view
control.

CTreeCtrl::GetLineColor Retrieves the current line color for the tree view control.

NAME DESCRIPTION

CTreeCtrl::GetNextItem Retrieves the next tree view item that matches a specified
relationship.

CTreeCtrl::GetNextSiblingItem Retrieves the next sibling of the specified tree view item.

CTreeCtrl::GetNextVisibleItem Retrieves the next visible item of the specified tree view
item.

CTreeCtrl::GetParentItem Retrieves the parent of the specified tree view item.

CTreeCtrl::GetPrevSiblingItem Retrieves the previous sibling of the specified tree view
item.

CTreeCtrl::GetPrevVisibleItem Retrieves the previous visible item of the specified tree
view item.

CTreeCtrl::GetRootItem Retrieves the root of the specified tree view item.

CTreeCtrl::GetScrollTime Retrieves the maximum scroll time for the tree view
control.

CTreeCtrl::GetSelectedCount Retrieves the number of selected items in the current
tree-view control.

CTreeCtrl::GetSelectedItem Retrieves the currently selected tree view item.

CTreeCtrl::GetTextColor Retrieves the current text color of the control.

CTreeCtrl::GetToolTips Retrieves the handle to the child ToolTip control used by a
tree view control.

CTreeCtrl::GetVisibleCount Retrieves the number of visible tree items associated with
a tree view control.

CTreeCtrl::HitTest Returns the current position of the cursor related to the
CTreeCtrl object.

CTreeCtrl::InsertItem Inserts a new item in a tree view control.

CTreeCtrl::ItemHasChildren Returns nonzero if the specified item has child items.

CTreeCtrl::MapAccIdToItem Maps the specified accessibility identifier to the handle to
a tree-view item in the current tree-view control.

CTreeCtrl::MapItemToAccID Maps the specified handle to a tree-view item in the
current tree-view control to an accessibility identifier.

CTreeCtrl::Select Selects, scrolls into view, or redraws a specified tree view
item.

CTreeCtrl::SelectDropTarget Redraws the tree item as the target of a drag-and-drop
operation.

NAME DESCRIPTION

CTreeCtrl::SelectItem Selects a specified tree view item.

CTreeCtrl::SelectSetFirstVisible Selects a specified tree view item as the first visible item.

CTreeCtrl::SetAutoscrollInfo Sets the autoscroll rate of the current tree-view control.

CTreeCtrl::SetBkColor Sets the background color of the control.

CTreeCtrl::SetCheck Sets the check state of a tree control item.

CTreeCtrl::SetExtendedStyle Sets the extended styles for the current tree-view control.

CTreeCtrl::SetImageList Sets the handle of the image list associated with a tree
view control.

CTreeCtrl::SetIndent Sets the offset (in pixels) of a tree view item from its
parent.

CTreeCtrl::SetInsertMark Sets the insertion mark in a tree view control.

CTreeCtrl::SetInsertMarkColor Sets the color used to draw the insertion mark for the tree
view.

CTreeCtrl::SetItem Sets the attributes of a specified tree view item.

CTreeCtrl::SetItemData Sets the 32-bit application-specific value associated with
an item.

CTreeCtrl::SetItemExpandedImageIndex Sets the index of the image to display when the specified
item of the current tree-view control is in the expanded
state.

CTreeCtrl::SetItemHeight Sets the height of the tree view items.

CTreeCtrl::SetItemImage Associates images with an item.

CTreeCtrl::SetItemState Sets the state of an item.

CTreeCtrl::SetItemStateEx Sets the extended state of the specified item in the current
tree-view control.

CTreeCtrl::SetItemText Sets the text of an item.

CTreeCtrl::SetLineColor Sets the current line color for the tree view control.

CTreeCtrl::SetScrollTime Sets the maximum scroll time for the tree view control.

CTreeCtrl::SetTextColor Sets the text color of the control.

CTreeCtrl::SetToolTips Sets a tree view control's child ToolTip control.

NAME DESCRIPTION

CTreeCtrl::ShowInfoTip Displays the infotip for the specified item in the current
tree-view control.

CTreeCtrl::SortChildren Sorts the children of a given parent item.

CTreeCtrl::SortChildrenCB Sorts the children of a given parent item using an
application-defined sort function.

NAME DESCRIPTION

Remarks

Inheritance Hierarchy

Requirements

CTreeCtrl::Create

virtual BOOL Create(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

A "tree view control" is a window that displays a hierarchical list of items, such as the headings in a
document, the entries in an index, or the files and directories on a disk. Each item consists of a label and an
optional bitmapped image, and each item can have a list of subitems associated with it. By clicking an item,
the user can expand and collapse the associated list of subitems.

This control (and therefore the CTreeCtrl class) is available only to programs running under Windows 98
and Windows NT version 4 and later.

For more information on using CTreeCtrl , see:

Controls

Using CTreeCtrl

Tree View Control Reference in the Windows SDK.

CObject

CCmdTarget

CWnd

CTreeCtrl

Header: afxcmn.h

If you specify the tree control in a dialog box template, or if you are using CTreeView, your tree control is
created automatically when the dialog box or view is created.

dwStyle
Specifies the tree view control's style. Apply window styles, described in CreateWindow, and any

https://docs.microsoft.com/windows/desktop/Controls/tree-view-control-reference
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Assuming your window has a CTreeCtrl member named m_TreeCtrl,
// you can create the tree control window with a child ID of ID_MYTREE
// using a call like this:

m_TreeCtrl.Create(WS_VISIBLE | WS_TABSTOP | WS_CHILD | WS_BORDER
 | TVS_HASBUTTONS | TVS_LINESATROOT | TVS_HASLINES
 | TVS_DISABLEDRAGDROP | TVS_NOTOOLTIPS | TVS_EDITLABELS,
 CRect(10, 10, 300, 100), this, ID_MYTREE);

// The control will have the appropiate window styles, and the tree
// control styles specified are those most commonly used.

CTreeCtrl::CreateEx

virtual BOOL CreateEx(
 DWORD dwExStyle,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID);

ParametersParameters

combination of tree view control styles as described in the Windows SDK.

rect
Specifies the tree view control's size and position. It can be either a CRect object or a RECT structure.

pParentWnd
Specifies the tree view control's parent window, usually a CDialog . It must not be NULL.

nID
Specifies the tree view control's ID.

Nonzero if initialization was successful; otherwise 0.

If you want to create the tree control as a child window of some other window, use the Create member
function. If you create the tree control using Create , you must pass it WS_VISIBLE, in addition to other
tree view styles.

You construct a CTreeCtrl in two steps. First call the constructor, then call Create , which creates the tree
view control and attaches it to the CTreeCtrl object.

To create a tree control with extended window styles, call CreateEx instead of Create .

Call this function to create a control (a child window) and associate it with the CTreeCtrl object.

dwExStyle
Specifies the extended style of the control being created. For a list of extended Windows styles, see the
dwExStyle parameter for CreateWindowEx in the Windows SDK.

dwStyle
Specifies the tree view control's style. Apply window styles, described in CreateWindow, and any
combination of tree view control styles as described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/tree-view-control-window-styles
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/Controls/tree-view-control-window-styles

Return ValueReturn Value

RemarksRemarks

CTreeCtrl::CreateDragImage

CImageList* CreateDragImage(HTREEITEM hItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

HTREEITEM hItem =m_TreeCtrl.GetSelectedItem();

CImageList* pImageList = m_TreeCtrl.CreateDragImage(hItem);

// Do something with the image list.

delete pImageList;

CTreeCtrl::CTreeCtrl

CTreeCtrl();

CTreeCtrl::DeleteAllItems

rect
A reference to a RECT structure describing the size and position of the window to be created, in client
coordinates of pParentWnd.

pParentWnd
A pointer to the window that is the control's parent.

nID
The control's child-window ID.

Nonzero if successful otherwise 0.

Use CreateEx instead of Create to apply extended Windows styles, specified by the Windows extended
style preface WS_EX_.

Call this function to create a dragging bitmap for the given item in a tree view control, create an image list
for the bitmap, and add the bitmap to the image list.

hItem
Handle of the tree item to be dragged.

Pointer to the image list to which the dragging bitmap was added, if successful; otherwise NULL.

An application uses the image-list functions to display the image when the item is being dragged.

The CImageList object is permanent, and you must delete it when finished. For example:

Constructs a CTreeCtrl object.

Call this function to delete all items from the tree view control.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

BOOL DeleteAllItems();

Return ValueReturn Value

ExampleExample

// The underlying Windows API always returns TRUE
VERIFY(m_TreeCtrl.DeleteAllItems());

CTreeCtrl::DeleteItem

BOOL DeleteItem(HTREEITEM hItem);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Look at all of the root-level items
HTREEITEM hCurrent = m_TreeCtrl.GetChildItem(TVI_ROOT);
while (hCurrent != NULL)
{
 // Get the text for the item. Notice we use TVIF_TEXT because
 // we want to retrieve only the text, but also specify TVIF_HANDLE
 // because we're getting the item by its handle.
 TVITEM item;
 TCHAR szText[1024];
 item.hItem = hCurrent;
 item.mask = TVIF_TEXT | TVIF_HANDLE;
 item.pszText = szText;
 item.cchTextMax = 1024;

 BOOL bWorked = m_TreeCtrl.GetItem(&item);

 // Try to get the next item
 hCurrent = m_TreeCtrl.GetNextItem(hCurrent, TVGN_NEXT);

 // If we successfuly retrieved an item, and the item's text
 // contains a lowercase letter 'e', delete the item.
 if (bWorked && _tcschr(item.pszText, 'e'))
 m_TreeCtrl.DeleteItem(item.hItem);
}

CTreeCtrl::EditLabel

Nonzero if successful; otherwise 0.

Call this function to delete an item from the tree view control.

hItem
Handle of the tree item to be deleted. If hitem has the TVI_ROOT value, all items are deleted from the tree
view control.

Nonzero if successful; otherwise 0.

Call this function to begin in-place editing of the specified item's text.

CEdit* EditLabel(HTREEITEM hItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Make sure the focus is set to the tree control.
m_TreeCtrl.SetFocus();

// Show the edit control on the label of the selected item.
// The tree control must have the TVS_EDITLABELS style set.
HTREEITEM hSel = m_TreeCtrl.GetSelectedItem();
CEdit* pmyEdit = m_TreeCtrl.EditLabel(hSel);
ASSERT(pmyEdit != NULL);

CTreeCtrl::EndEditLabelNow

BOOL EndEditLabelNow(BOOL fCancelWithoutSave);

ParametersParameters

PARAMETER DESCRIPTION

fCancelWithoutSave [in] TRUE to discard changes to the tree-view item before
concluding the edit operation, or FALSE to save changes
to the tree-view item before concluding the operation.

Return ValueReturn Value

RemarksRemarks

CTreeCtrl::EnsureVisible

BOOL EnsureVisible(HTREEITEM hItem);

ParametersParameters

hItem
Handle of the tree item to be edited.

If successful, a pointer to the CEdit object that is used to edit the item text; otherwise NULL.

The editing is accomplished by replacing the text of the item with a single-line edit control containing the
text.

Concludes the edit operation on the label of a tree-view item in the current tree-view control.

TRUE if this method is successful; otherwise, FALSE.

This method sends the TVM_ENDEDITLABELNOW message, which is described in the Windows SDK.

Call this function to ensure that a tree view item is visible.

hItem
Handle of the tree item being made visible.

https://docs.microsoft.com/windows/desktop/Controls/tvm-endeditlabelnow

Return ValueReturn Value

RemarksRemarks

ExampleExample

HTREEITEM hItem = m_TreeCtrl.GetSelectedItem();
// hmyItem is the item that I want to ensure is visible.
HTREEITEM hmyItem = m_TreeCtrl.GetChildItem(hItem);

// Expand the parent, if possible.
HTREEITEM hParent = m_TreeCtrl.GetParentItem(hmyItem);
if (hParent != NULL)
 m_TreeCtrl.Expand(hParent, TVE_EXPAND);

// Ensure the item is visible.
m_TreeCtrl.EnsureVisible(hmyItem);

CTreeCtrl::Expand

BOOL Expand(
 HTREEITEM hItem,
 UINT nCode);

ParametersParameters

Return ValueReturn Value

ExampleExample

CTreeCtrl::GetBkColor

Returns TRUE if the system scrolled the items in the tree-view control to ensure that the specified item is
visible. Otherwise, the return value is FALSE.

If necessary, the function expands the parent item or scrolls the tree view control so that the item is visible.

Call this function to expand or collapse the list of child items, if any, associated with the given parent item.

hItem
Handle of the tree item being expanded.

nCode
A flag indicating the type of action to be taken. This flag can have one of the following values:

TVE_COLLAPSE Collapses the list.

TVE_COLLAPSERESET Collapses the list and removes the child items. The TVIS_EXPANDEDONCE
state flag is reset. This flag must be used with the TVE_COLLAPSE flag.

TVE_EXPAND Expands the list.

TVE_TOGGLE Collapses the list if it is currently expanded or expands it if it is currently collapsed.

Nonzero if successful; otherwise 0.

See the example for CTreeCtrl::EnsureVisible.

This member function implements the behavior of the Win32 message TVM_GETBKCOLOR, as described
in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/tvm-getbkcolor

COLORREF GetBkColor() const;

Return ValueReturn Value

ExampleExample

CTreeCtrl::GetCheck

BOOL GetCheck(HTREEITEM hItem) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CTreeCtrl::GetChildItem

HTREEITEM GetChildItem(HTREEITEM hItem) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

A COLORREF value that represents the current window background color for the control. If this value is -1,
the control is using the system window color. In this case, you can use ::GetSysColor(COLOR_WINDOW) to get
the current system color that the control is using.

See the example for CTreeCtrl::SetTextColor.

Call this member function to retrieve an item's check state.

hItem
The HTREEITEM about which to receive the state information.

Nonzero if the tree control item is checked; otherwise 0.

See the example for CTreeCtrl::SetCheck.

Call this function to retrieve the tree view item that is the child of the item specified by hItem.

hItem
Handle of a tree item.

The handle of the child item if successful; otherwise NULL.

HTREEITEM hmyItem = m_TreeCtrl.GetSelectedItem();

// Delete all of the children of hmyItem.
if (m_TreeCtrl.ItemHasChildren(hmyItem))
{
 HTREEITEM hNextItem;
 HTREEITEM hChildItem = m_TreeCtrl.GetChildItem(hmyItem);

 while (hChildItem != NULL)
 {
 hNextItem = m_TreeCtrl.GetNextItem(hChildItem, TVGN_NEXT);
 m_TreeCtrl.DeleteItem(hChildItem);
 hChildItem = hNextItem;
 }
}

CTreeCtrl::GetCount

UINT GetCount() const;

Return ValueReturn Value

ExampleExample

// Delete all of the items from the tree control.
m_TreeCtrl.DeleteAllItems();
ASSERT(m_TreeCtrl.GetCount() == 0);

CTreeCtrl::GetDropHilightItem

HTREEITEM GetDropHilightItem() const;

Return ValueReturn Value

ExampleExample

// Set the item at the point myPoint as the drop target.
UINT uFlags;
HTREEITEM hItem = m_TreeCtrl.HitTest(myPoint, &uFlags);

if ((hItem != NULL) && (TVHT_ONITEM & uFlags))
{
 m_TreeCtrl.SelectDropTarget(hItem);
 ASSERT(m_TreeCtrl.GetDropHilightItem() == hItem);
}

CTreeCtrl::GetEditControl

Call this function to retrieve a count of the items in a tree view control.

The number of items in the tree view control.

Call this function to retrieve the item that is the target of a drag-and-drop operation.

The handle of the item dropped if successful; otherwise NULL.

Call this function to retrieve the handle of the edit control being used to edit a tree view item's text.

CEdit* GetEditControl() const;

Return ValueReturn Value

ExampleExample

// The string replacing the text in the edit control.
LPCTSTR lpszmyString = _T("New text!");

// Replace the text in the label edit control, if possible.
CEdit* pEdit = m_TreeCtrl.GetEditControl();

if (pEdit != NULL)
{
 pEdit->SetWindowText(lpszmyString);
}

CTreeCtrl::GetExtendedStyle

DWORD GetExtendedStyle() const;

Return ValueReturn Value

RemarksRemarks

CTreeCtrl::GetFirstVisibleItem

HTREEITEM GetFirstVisibleItem() const;

Return ValueReturn Value

ExampleExample

CTreeCtrl::GetImageList

CImageList* GetImageList(UINT nImageList) const;

ParametersParameters

A pointer to the edit control used to edit the item text, if successful; otherwise NULL.

Retrieves the extended styles that the current tree-view control is using.

A value that contains a bitwise combination (OR) of the current tree-view control's extended styles. For
more information, see Tree-View Control Extended Styles.

This method sends the TVM_GETEXTENDEDSTYLE message, which is described in the Windows SDK.

Call this function to retrieve the first visible item of the tree view control.

The handle of the first visible item; otherwise NULL.

See the example for CTreeCtrl::SetCheck.

Call this function to retrieve the handle of the normal or state image list associated with the tree view
control.

nImageList

https://docs.microsoft.com/windows/desktop/Controls/tree-view-control-window-extended-styles
https://docs.microsoft.com/windows/desktop/Controls/tvm-getextendedstyle

Return ValueReturn Value

RemarksRemarks

ExampleExample

ASSERT(m_TreeCtrl.GetImageList(TVSIL_NORMAL) == NULL);

m_TreeCtrl.SetImageList(&m_TreeImages, TVSIL_NORMAL);
ASSERT(m_TreeCtrl.GetImageList(TVSIL_NORMAL) == &m_TreeImages);

CTreeCtrl::GetIndent

UINT GetIndent() const;

Return ValueReturn Value

ExampleExample

// Double the indent.
UINT uIndent = m_TreeCtrl.GetIndent();
m_TreeCtrl.SetIndent(2 * uIndent);

CTreeCtrl::GetInsertMarkColor

COLORREF GetInsertMarkColor() const;

Return ValueReturn Value

ExampleExample

Type of image list to retrieve. The image list can be one of the following values:

TVSIL_NORMAL Retrieves the normal image list, which contains the selected and nonselected
images for the tree view item.

TVSIL_STATE Retrieves the state image list, which contains the images for tree view items that are in
a user-defined state.

Pointer to the control's image list if successful; otherwise NULL.

Each item in a tree view control can have a pair of bitmapped images associated with it. One image is
displayed when the item is selected, and the other is displayed when the item is not selected. For example,
an item might display an open folder when it is selected and a closed folder when it is not selected.

For more information on image lists, see the CImageList class.

Call this function to retrieve the amount, in pixels, that child items are indented relative to their parent
items.

The amount of indentation measured in pixels.

This member function implements the behavior of the Win32 message TVM_GETINSERTMARKCOLOR, as
described in the Windows SDK.

A COLORREF value that contains the current insertion mark color.

https://docs.microsoft.com/windows/desktop/Controls/tvm-getinsertmarkcolor

// Use the highliight color for the insert mark color.
COLORREF crColor = ::GetSysColor(COLOR_HIGHLIGHT);
m_TreeCtrl.SetInsertMarkColor(crColor);
ASSERT(m_TreeCtrl.GetInsertMarkColor() == crColor);

CTreeCtrl::GetItem

BOOL GetItem(TVITEM* pItem) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CTreeCtrl::GetItemData

DWORD_PTR GetItemData(HTREEITEM hItem) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

Call this function to retrieve the attributes of the specified tree view item.

pItem
A pointer to a TVITEM structure, as described in the Windows SDK.

Nonzero if successful; otherwise 0.

See the example for CTreeCtrl::DeleteItem.

Call this function to retrieve the 32-bit application-specific value associated with the specified item.

hItem
Handle of the item whose data is to be retrieved.

A 32-bit application-specific value associated with the item specified by hItem.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitema

HTREEITEM hmyItem = m_TreeCtrl.GetSelectedItem();

// Delete all of the children of hmyItem whose item data is
// not equal to zero.
if (m_TreeCtrl.ItemHasChildren(hmyItem))
{
 HTREEITEM hNextItem;
 HTREEITEM hChildItem = m_TreeCtrl.GetChildItem(hmyItem);

 while (hChildItem != NULL)
 {
 hNextItem = m_TreeCtrl.GetNextItem(hChildItem, TVGN_NEXT);

 if (m_TreeCtrl.GetItemData(hChildItem) != 0)
 {
 m_TreeCtrl.DeleteItem(hChildItem);
 }

 hChildItem = hNextItem;
 }
}

CTreeCtrl::GetItemExpandedImageIndex

int GetItemExpandedImageIndex(HTREEITEM hItem)const;

ParametersParameters

PARAMETER DESCRIPTION

hItem [in] Handle to a tree-view control item.

Return ValueReturn Value

RemarksRemarks

CTreeCtrl::GetItemHeight

SHORT GetItemHeight() const;

Return ValueReturn Value

ExampleExample

Retrieves the index of the image to display when the specified item of the current tree-view control is in the
expanded state.

The index of the image to display when the specified item is in the expanded state.

This method sends the TVM_GETITEM message, which is described in the Windows SDK. That message
returns the TVITEMEX structure that describes the tree-view control item, and then this method retrieves
the iExpandedImage member from that structure.

This member function implements the behavior of the Win32 message TVM_GETITEMHEIGHT, as
described in the Windows SDK.

The height of the item, in pixels.

https://docs.microsoft.com/windows/desktop/Controls/tvm-getitem
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitemexa
https://docs.microsoft.com/windows/desktop/Controls/tvm-getitemheight

// Double the height of the items.
SHORT sHeight = m_TreeCtrl.GetItemHeight();
m_TreeCtrl.SetItemHeight(2 * sHeight);

CTreeCtrl::GetItemImage

BOOL GetItemImage(
 HTREEITEM hItem,
 int& nImage,
 int& nSelectedImage) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

HTREEITEM hmyItem = m_TreeCtrl.GetSelectedItem();

// If the selected image is the same as the nonselected image
// then make the selected image one more than the nonselected image.
if (m_TreeCtrl.ItemHasChildren(hmyItem))
{
 HTREEITEM hItem = m_TreeCtrl.GetChildItem(hmyItem);
 int nImage, nSelectedImage;

 while (hItem != NULL)
 {
 m_TreeCtrl.GetItemImage(hItem, nImage, nSelectedImage);

 if (nImage == nSelectedImage)
 {
 m_TreeCtrl.SetItemImage(hItem, nImage, nImage + 1);
 }

 hItem = m_TreeCtrl.GetNextSiblingItem(hItem);
 }
}

Each item in a tree view control can have a pair of bitmapped images associated with it.

hItem
The handle of the item whose image is to be retrieved.

nImage
An integer that receives the index of the item's image within the tree view control's image list.

nSelectedImage
An integer that receives the index of the item's selected image within the tree view control's image list.

Nonzero if successful; otherwise 0.

The images appear on the left side of an item's label. One image is displayed when the item is selected, and
the other is displayed when the item is not selected. For example, an item might display an open folder
when it is selected and a closed folder when it is not selected.

Call this function to retrieve the index of the item's image and its selected image within the tree view
control's image list.

 CTreeCtrl::GetItemPartRect

BOOL GetItemPartRect(
 HTREEITEM hItem,
 int nPart,
 LPRECT lpRect)const;

ParametersParameters

PARAMETER DESCRIPTION

hItem [in] Handle to a tree-view control item.

nPart [in] Identifier for the part. Must be set to
TVGIPR_BUTTON.

lpRect [out] Pointer to a RECT structure. If this method is
successful, the structure receives the rectangle coordinates
of the part specified by hItem and nPart.

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable to access tree control.
 CTreeCtrl m_treeCtrl;
 // Variable to access splitbutton control.
 CSplitButton m_splitbutton;
 // Accessibility identifier
 UINT accIdUS;
 // HTREEITEMs
 HTREEITEM hCountry;
 HTREEITEM hPA;
 HTREEITEM hWA;

ExampleExample

Retrieves the bounding rectangle for a specified part of a specified item in the current tree-view control.

TRUE if this method is successful; otherwise, FALSE.

Each tree control item is bounded by a graphics rectangle. Whenever a point in that rectangle is clicked, the
item is said to be hit. This method returns the largest rectangle such that when a point in the rectangle is
clicked, the item identified by the hItem parameter is hit.

This method sends the TVM_GETITEMPARTRECT message, which is described in the Windows SDK. For
more information, see the TreeView_GetItemPartRect macro.

The following code example defines a variable, m_treeCtrl , that is used to access the current tree-view
control. The code example also defines an unsigned integer and several HTREEITEM variables. These
variables are used in the next example.

The following code example uses an accessibility identifier and the CTreeCtrl::MapAccIdToItem method to
retrieve a handle to the root tree-view item. Then the example uses the handle and the
CTreeCtrl::GetItemPartRect method to draw a 3D rectangle around that item. In an earlier section of the
code example, which is not shown, we created a tree-view that consists of a root country/region node for
the United States, subnodes for the states of Pennsylvania and Washington, and tree items for cities in

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/commctrl/nf-commctrl-treeview_getitempartrect

CRect rect;
HTREEITEM hUS = m_treeCtrl.MapAccIdToItem(accIdUS);
m_treeCtrl.GetItemPartRect(hUS, TVGIPR_BUTTON, &rect);
m_treeCtrl.GetDC()->Draw3dRect(&rect, RGB(255, 0, 0), RGB(0, 0, 255));

CTreeCtrl::GetItemRect

BOOL GetItemRect(
 HTREEITEM hItem,
 LPRECT lpRect,
 BOOL bTextOnly) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

HTREEITEM hmyItem = m_TreeCtrl.GetSelectedItem();

// Dump the bounds of hmyItem.
if (hmyItem != NULL)
{
 RECT r;

 m_TreeCtrl.GetItemRect(hmyItem, &r, FALSE);

 TRACE(TEXT("left = %d, top = %d, right = %d, bottom = %d\r\n"),
 r.left,
 r.top,
 r.right,
 r.bottom);
}

CTreeCtrl::GetItemState

those states. We used the CTreeCtrl::MapItemToAccID method to associate the root tree-view item with an
accessibility identifier.

Call this function to retrieve the bounding rectangle for hItem and determine whether it is visible or not.

hItem
The handle of a tree view control item.

lpRect
Pointer to a RECT structure that receives the bounding rectangle. The coordinates are relative to the upper-
left corner of the tree view control.

bTextOnly
If this parameter is nonzero, the bounding rectangle includes only the text of the item. Otherwise it includes
the entire line that the item occupies in the tree view control.

Nonzero if the item is visible, with the bounding rectangle contained in lpRect. Otherwise, 0 with lpRect
uninitialized.

Returns the state of the item specified by hItem.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)

UINT GetItemState(
 HTREEITEM hItem,
 UINT nStateMask) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

// Show all of the visible items in bold.
HTREEITEM hItem = m_TreeCtrl.GetFirstVisibleItem();

while (hItem != NULL)
{
 m_TreeCtrl.SetItemState(hItem, TVIS_BOLD, TVIS_BOLD);
 ASSERT(TVIS_BOLD & m_TreeCtrl.GetItemState(hItem, TVIS_BOLD));
 hItem = m_TreeCtrl.GetNextVisibleItem(hItem);
}

CTreeCtrl::GetItemStateEx

UINT GetItemStateEx(HTREEITEM hItem) const;

ParametersParameters

PARAMETER DESCRIPTION

hItem [in] Handle to a tree-view control item.

Return ValueReturn Value

RemarksRemarks

CTreeCtrl::GetItemText

hItem
Handle of the item whose state is to be retrieved.

nStateMask
Mask indicating one or more states to be retrieved. For more information on possible values for
nStateMask, see the discussion of the state and stateMask members of the TVITEM structure in the
Windows SDK.

A UINT that holds the bitwise OR of the values specified by nStateMask. For information on possible
values, see CTreeCtrl::GetItem. To find the value for a specific state, perform a bitwise AND operation of the
state value and the return value, as shown in the following example.

Retrieves the extended state of the specified item in the current tree-view control.

The extended state of the item. For more information, see the uStateEx member of the TVITEMEX
structure.

This method sends the TVM_GETITEM message, which is described in the Windows SDK. That message
returns the TVITEMEX structure that describes the tree-view control item, and this method retrieves the
uStateEx member from that structure.

Returns the text of the item specified by hItem.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitema
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitemexa
https://docs.microsoft.com/windows/desktop/Controls/tvm-getitem
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitemexa

CString GetItemText(HTREEITEM hItem) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CTreeCtrl::GetLastVisibleItem

HTREEITEM GetLastVisibleItem() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable to access tree control.
 CTreeCtrl m_treeCtrl;
 // Variable to access splitbutton control.
 CSplitButton m_splitbutton;
 // Accessibility identifier
 UINT accIdUS;
 // HTREEITEMs
 HTREEITEM hCountry;
 HTREEITEM hPA;
 HTREEITEM hWA;

ExampleExample

CRect rect;
HTREEITEM hLast = m_treeCtrl.GetLastVisibleItem();
m_treeCtrl.GetItemPartRect(hLast, TVGIPR_BUTTON, &rect);
m_treeCtrl.GetDC()->Draw3dRect(&rect, RGB(255, 0, 0), RGB(0, 0, 255));

hItem
Handle of the item whose text is to be retrieved.

A CString object containing the item's text.

See the example for CTreeCtrl::GetNextItem.

Retrieves the last unexpanded node item in the current tree-view control.

The handle to the last unexpanded node item if the method is successful; otherwise, NULL.

This method sends the TVM_GETNEXTITEM message, which is described in the Windows SDK. For more
information, see the TVGN_LASTVISIBLE flag in the flag parameter of that message.

The following code example defines a variable, m_treeCtrl , that is used to access the current tree-view
control. The code example also defines an unsigned integer and several HTREEITEM variables. One or
more of these variables are used in the next example.

The following code example retrieves a handle to the last unexpanded tree-view node item, and then draws
a 3D rectangle around that item. In an earlier section of the code example, which is not shown, we created a
tree-view that consists of a root country/region node for the United States, subnodes for the states of
Pennsylvania and Washington, and tree items for cities in those states.

https://docs.microsoft.com/windows/desktop/Controls/tvm-getnextitem

CTreeCtrl::GetLineColor

COLORREF GetLineColor() const;

Return ValueReturn Value

ExampleExample

COLORREF cr = m_TreeCtrl.GetLineColor();

CTreeCtrl::GetNextItem

HTREEITEM GetNextItem(
 HTREEITEM hItem,
 UINT nCode) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This member function implements the behavior of the win32 message TVM_GETLINECOLOR, as
described in the Windows SDK.

The current line color.

Call this function to retrieve the tree view item that has the specified relationship, indicated by the nCode
parameter, to hItem.

hItem
Handle of a tree item.

nCode
A flag indicating the type of relation to hItem. This flag can be one of the following values:

TVGN_CARET Retrieves the currently selected item.

TVGN_CHILD Retrieves the first child item of the item specified by the hItem parameter.

TVGN_DROPHILITE Retrieves the item that is the target of a drag-and-drop operation.

TVGN_FIRSTVISIBLE Retrieves the first visible item.

TVGN_LASTVISIBLE Retrieves the last expanded item in the tree. This does not retrieve the last item
visible in the tree-view window.

TVGN_NEXT Retrieves the next sibling item.

TVGN_NEXTVISIBLE Retrieves the next visible item that follows the specified item.

TVGN_PARENT Retrieves the parent of the specified item.

TVGN_PREVIOUS Retrieves the previous sibling item.

TVGN_PREVIOUSVISIBLE Retrieves the first visible item that precedes the specified item.

TVGN_ROOT Retrieves the first child item of the root item of which the specified item is a part.

The handle of the next item if successful; otherwise NULL.

https://docs.microsoft.com/windows/desktop/Controls/tvm-getlinecolor

ExampleExample

// find the currently selected item
HTREEITEM hCurSel = m_TreeCtrl.GetNextItem(TVI_ROOT, TVGN_CARET);

// report it to the user
if (hCurSel == NULL)
{
 AfxMessageBox(_T("There is no selected item"));
}
else
{
 CString str;
 str.Format(_T("The currently selected item is \"%s\""),
 (LPCTSTR)m_TreeCtrl.GetItemText(hCurSel));
 AfxMessageBox((LPCTSTR)str);
}

CTreeCtrl::GetNextSiblingItem

HTREEITEM GetNextSiblingItem(HTREEITEM hItem) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

HTREEITEM hmyItem = m_TreeCtrl.GetSelectedItem();

// Show all of the children of hmyItem in bold.
if (m_TreeCtrl.ItemHasChildren(hmyItem))
{
 HTREEITEM hItem = m_TreeCtrl.GetChildItem(hmyItem);

 while (hItem != NULL)
 {
 m_TreeCtrl.SetItemState(hItem, TVIS_BOLD, TVIS_BOLD);
 hItem = m_TreeCtrl.GetNextSiblingItem(hItem);
 }
}

CTreeCtrl::GetNextVisibleItem

This function will return NULL if the item being retrieved is the root node of the tree. For example, if you
use this message with the TVGN_PARENT flag on a first-level child of the tree view's root node, the
message will return NULL.

For an example of using GetNextItem in a loop, see CTreeCtrl::DeleteItem.

Call this function to retrieve the next sibling of hItem.

hItem
Handle of a tree item.

The handle of the next sibling item; otherwise NULL.

Call this function to retrieve the next visible item of hItem.

HTREEITEM GetNextVisibleItem(HTREEITEM hItem) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

CTreeCtrl::GetParentItem

HTREEITEM GetParentItem(HTREEITEM hItem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTreeCtrl::GetPrevSiblingItem

HTREEITEM GetPrevSiblingItem(HTREEITEM hItem) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

hItem
Handle of a tree item.

The handle of the next visible item; otherwise NULL.

See the example for CTreeCtrl::SetCheck.

Call this function to retrieve the parent of hItem.

hItem
Handle of a tree item.

The handle of the parent item; otherwise NULL.

This function will return NULL if the parent of the specified item is the root node of the tree.

See the example for CTreeCtrl::EnsureVisible.

Call this function to retrieve the previous sibling of hItem.

hItem
Handle of a tree item.

The handle of the previous sibling; otherwise NULL.

HTREEITEM hmyItem = m_TreeCtrl.GetSelectedItem();

// Show all of the previous siblings of hmyItem in bold.
HTREEITEM hItem = hmyItem;

while (hItem != NULL)
{
 m_TreeCtrl.SetItemState(hItem, TVIS_BOLD, TVIS_BOLD);
 hItem = m_TreeCtrl.GetPrevSiblingItem(hItem);
}

CTreeCtrl::GetPrevVisibleItem

HTREEITEM GetPrevVisibleItem(HTREEITEM hItem) const;

ParametersParameters

Return ValueReturn Value

ExampleExample

HTREEITEM hmyItem = m_TreeCtrl.GetSelectedItem();

// Show all of the previous visible items of hmyItem in bold.
HTREEITEM hItem = hmyItem;

while (hItem != NULL)
{
 m_TreeCtrl.SetItemState(hItem, TVIS_BOLD, TVIS_BOLD);
 hItem = m_TreeCtrl.GetPrevVisibleItem(hItem);
}

CTreeCtrl::GetRootItem

HTREEITEM GetRootItem() const;

Return ValueReturn Value

ExampleExample

CTreeCtrl::GetScrollTime

Call this function to retrieve the previous visible item of hItem.

hItem
Handle of a tree item.

The handle of the previous visible item; otherwise NULL.

Call this function to retrieve the root item of the tree view control.

The handle of the root item; otherwise NULL.

See the example for CTreeCtrl::EditLabel.

Call this member function to retrieve the maximum scroll time for the tree view control.

UINT GetScrollTime() const;

Return ValueReturn Value

RemarksRemarks

CTreeCtrl::GetSelectedCount

UINT GetSelectedCount();

Return ValueReturn Value

RemarksRemarks

CTreeCtrl::GetSelectedItem

HTREEITEM GetSelectedItem() const;

Return ValueReturn Value

ExampleExample

// Expand the selected item and make it visible, if possible.
HTREEITEM hItem = m_TreeCtrl.GetSelectedItem();

if ((hItem != NULL) && m_TreeCtrl.ItemHasChildren(hItem))
{
 m_TreeCtrl.Expand(hItem, TVE_EXPAND);
 m_TreeCtrl.EnsureVisible(hItem);
}

CTreeCtrl::GetTextColor

COLORREF GetTextColor() const;

Return ValueReturn Value

The maximum scroll time, in milliseconds.

This member function implements the behavior of the win32 message TVM_GETSCROLLTIME, as
described in the Windows SDK.

Retrieves the number of selected items in the current tree-view control.

The number of selected items.

This method sends the TVM_GETSELECTEDCOUNT message, which is described in the Windows SDK.

Call this function to retrieve the currently selected item of the tree view control.

The handle of the selected item; otherwise NULL.

This member function implements the behavior of the Win32 message TVM_GETTEXTCOLOR, as
described in the Windows SDK.

A COLORREF value that represents the current text color. If this value is -1, the control is using the system
color for the text color.

https://docs.microsoft.com/windows/desktop/Controls/tvm-getscrolltime
https://docs.microsoft.com/windows/desktop/Controls/tvm-getselectedcount
https://docs.microsoft.com/windows/desktop/Controls/tvm-gettextcolor

ExampleExample

CTreeCtrl::GetToolTips

CToolTipCtrl* GetToolTips() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

// If the tree control does not have a tooltips control,
// then use m_ToolTips as the tooltips for the tree control.
if (m_TreeCtrl.GetToolTips() == NULL)
{
 m_TreeCtrl.SetToolTips(&m_ToolTips);
}

CTreeCtrl::GetVisibleCount

UINT GetVisibleCount() const;

Return ValueReturn Value

ExampleExample

CTreeCtrl::HitTest

HTREEITEM HitTest(
 CPoint pt,
 UINT* pFlags = NULL) const;

HTREEITEM HitTest(TVHITTESTINFO* pHitTestInfo) const;

ParametersParameters

See the example for CTreeCtrl::SetTextColor.

This member function implements the behavior of the Win32 message TVM_GETTOOLTIPS, as described
in the Windows SDK.

A pointer to a CToolTipCtrl object to be used by the tree control. If the Create member function uses the
style TVS_NOTOOLTIPS, no tooltips are used, and NULL is returned.

The MFC implementation of GetToolTips returns a CToolTipCtrl object, which is used by the tree control,
rather than a handle to a tooltip control.

Call this function to retrieve a count of the visible items in a tree view control.

The number of visible items in the tree view control; otherwise - 1.

See the example for CTreeCtrl::SetCheck.

Call this function to determine the location of the specified point relative to the client area of a tree view
control.

pt
Client coordinates of the point to test.

https://docs.microsoft.com/windows/desktop/Controls/tvm-gettooltips

Return ValueReturn Value

RemarksRemarks

Value Meaning

TVHT_ABOVE Above the client area.

TVHT_BELOW Below the client area.

TVHT_NOWHERE In the client area, but below the last item.

TVHT_ONITEM On the bitmap or label associated with an item.

TVHT_ONITEMBUTTON On the button associated with an item.

TVHT_ONITEMICON On the bitmap associated with an item.

TVHT_ONITEMINDENT In the indentation associated with an item.

TVHT_ONITEMLABEL On the label (string) associated with an item.

TVHT_ONITEMRIGHT In the area to the right of an item.

TVHT_ONITEMSTATEICON On the state icon for a tree-view item that is in a user-
defined state.

TVHT_TOLEFT To the left of the client area.

TVHT_TORIGHT To the right of the client area.

ExampleExample

pFlags
Pointer to an integer that receives information about the results of the hit test. It can be one or more of the
values listed under the flags member in the Remarks section.

pHitTestInfo
Address of a TVHITTESTINFO structure that contains the position to hit test and that receives information
about the results of the hit test.

The handle of the tree view item that occupies the specified point or NULL if no item occupies the point.

When this function is called, the pt parameter specifies the coordinates of the point to test. The function
returns the handle of the item at the specified point or NULL if no item occupies the point. In addition, the
pFlags parameter contains a value that indicates the location of the specified point. Possible values are:

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvhittestinfo

// Select the item that is at the point myPoint.
UINT uFlags;
HTREEITEM hItem = m_TreeCtrl.HitTest(myPoint, &uFlags);

if ((hItem != NULL) && (TVHT_ONITEM & uFlags))
{
 m_TreeCtrl.SelectItem(hItem);
}

CTreeCtrl::InsertItem

HTREEITEM InsertItem(LPTVINSERTSTRUCT lpInsertStruct);

HTREEITEM InsertItem(
 UINT nMask,
 LPCTSTR lpszItem,
 int nImage,
 int nSelectedImage,
 UINT nState,
 UINT nStateMask,
 LPARAM lParam,
 HTREEITEM hParent,
 HTREEITEM hInsertAfter);

HTREEITEM InsertItem(
 LPCTSTR lpszItem,
 HTREEITEM hParent = TVI_ROOT,
 HTREEITEM hInsertAfter = TVI_LAST);

HTREEITEM InsertItem(
 LPCTSTR lpszItem,
 int nImage,
 int nSelectedImage,
 HTREEITEM hParent = TVI_ROOT,
 HTREEITEM hInsertAfter = TVI_LAST);

ParametersParameters

Call this function to insert a new item in a tree view control.

lpInsertStruct
A pointer to a TVINSERTSTRUCT that specifies the attributes of the tree view item to be inserted.

nMask
Integer specifying which attributes to set. See the TVITEM structure in the Windows SDK.

lpszItem
Address of a string containing the item's text.

nImage
Index of the item's image in the tree view control's image list.

nSelectedImage
Index of the item's selected image in the tree view control's image list.

nState
Specifies values for the item's states. See Tree View Control Item States in the Windows SDK for a list of
appropriate states.

nStateMask
Specifies which states are to be set. See the TVITEM structure in the Windows SDK.

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Insert a root item using the structure. We must
// initialize a TVINSERTSTRUCT structure and pass its
// address to the call.

TVINSERTSTRUCT tvInsert;
tvInsert.hParent = NULL;
tvInsert.hInsertAfter = NULL;
tvInsert.item.mask = TVIF_TEXT;
tvInsert.item.pszText = _T("United States");

HTREEITEM hCountry = m_TreeCtrl.InsertItem(&tvInsert);

// Insert subitems of that root. Pennsylvania is
// a state in the United States, so its item will be a child
// of the United States item. We won't set any image or states,
// so we supply only the TVIF_TEXT mask flag. This
// override provides nearly complete control over the
// insertion operation without the tedium of initializing
// a structure. If you're going to add lots of items
// to a tree, you might prefer the structure override
// as it affords you a performance win by allowing you
// to initialize some fields of the structure only once,
// outside of your insertion loop.

HTREEITEM hPA = m_TreeCtrl.InsertItem(TVIF_TEXT,
 _T("Pennsylvania"), 0, 0, 0, 0, 0, hCountry, NULL);

// Insert the "Washington" item and assure that it is
// inserted after the "Pennsylvania" item. This override is
// more appropriate for conveniently inserting items with
// images.

HTREEITEM hWA = m_TreeCtrl.InsertItem(_T("Washington"),
 0, 0, hCountry, hPA);

// We'll add some cities under each of the states.
// The override used here is most appropriate
// for inserting text-only items.

m_TreeCtrl.InsertItem(_T("Pittsburgh"), hPA, TVI_SORT);
m_TreeCtrl.InsertItem(_T("Harrisburg"), hPA, TVI_SORT);
m_TreeCtrl.InsertItem(_T("Altoona"), hPA, TVI_SORT);

m_TreeCtrl.InsertItem(_T("Seattle"), hWA, TVI_SORT);
m_TreeCtrl.InsertItem(_T("Kalaloch"), hWA, TVI_SORT);
m_TreeCtrl.InsertItem(_T("Yakima"), hWA, TVI_SORT);

lParam
A 32-bit application-specific value associated with the item.

hParent
Handle of the inserted item's parent.

hInsertAfter
Handle of the item after which the new item is to be inserted.

Handle of the new item if successful; otherwise NULL.

The example shows situations in which you might want to use each version of the function when inserting a
tree control item.

CTreeCtrl::ItemHasChildren

BOOL ItemHasChildren(HTREEITEM hItem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTreeCtrl::MapAccIdToItem

HTREEITEM MapAccIdToItem(UINT uAccId) const;

ParametersParameters

PARAMETER DESCRIPTION

uAccId [in] An accessibility identifier for an element in the tree-
view item.

Return ValueReturn Value

RemarksRemarks

ExampleExample

Use this function to determine whether the tree item specified by hItem has child items.

hItem
Handle of a tree item.

Nonzero if the tree item specified by hItem has child items; 0 if it does not.

If so, you can then use CTreeCtrl::GetChildItem to retrieve those child items.

See the example for CTreeCtrl::GetSelectedItem.

Maps the specified accessibility identifier to the handle of a tree-view item in the current tree-view control.

The handle to a tree-view item (HTREEITEM) that corresponds to the uAccId parameter. For more
information, see the hItem member of the TVITEMEX structure.

Accessibility aids are applications that help people with disabilities use computers. An accessibility identifier
is used by the IAccessible interface to uniquely specify an element in a window. For more information
about accessibility identifiers, search for the "About Active Accessibility Support" topic at Microsoft
Developer Network.

This method sends the TVM_MAPACCIDTOHTREEITEM message, which is described in the Windows SDK.

The following code example defines a variable, m_treeCtrl , that is used to access the current tree-view
control. The code example also defines an unsigned integer and several HTREEITEM variables. These
variables are used in the next example.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitemexa
http://go.microsoft.com/fwlink/p/?linkid=56322
https://docs.microsoft.com/windows/desktop/Controls/tvm-mapaccidtohtreeitem

public:
 // Variable to access tree control.
 CTreeCtrl m_treeCtrl;
 // Variable to access splitbutton control.
 CSplitButton m_splitbutton;
 // Accessibility identifier
 UINT accIdUS;
 // HTREEITEMs
 HTREEITEM hCountry;
 HTREEITEM hPA;
 HTREEITEM hWA;

ExampleExample

CRect rect;
HTREEITEM hUS = m_treeCtrl.MapAccIdToItem(accIdUS);
m_treeCtrl.GetItemPartRect(hUS, TVGIPR_BUTTON, &rect);
m_treeCtrl.GetDC()->Draw3dRect(&rect, RGB(255, 0, 0), RGB(0, 0, 255));

CTreeCtrl::MapItemToAccID

UINT MapItemToAccID(HTREEITEM hItem) const;

ParametersParameters

PARAMETER DESCRIPTION

hItem [in] A handle of a tree-view item in the control. For more
information, see the hItem member of the TVITEMEX
structure.

Return ValueReturn Value

RemarksRemarks

ExampleExample

The following code example uses an accessibility identifier and the CTreeCtrl::MapAccIdToItem method to
retrieve a handle to the root tree-view item. The example uses the handle and the
CTreeCtrl::GetItemPartRect method to draw a 3D rectangle around that item. In an earlier section of the
code example, which is not shown, we created a tree-view that consists of a root country/region node for
the United States, subnodes for the states of Pennsylvania and Washington, and tree items for cities in
those states. We used the CTreeCtrl::MapItemToAccID method to associate the root tree-view item with an
accessibility identifier.

Maps the specified handle of a tree-view item in the current tree-view control to an accessibility identifier.

The accessibility identifier that corresponds to the hItem parameter.

Accessibility aids are applications that help people with disabilities use computers. An accessibility identifier
is used by the IAccessible interface to uniquely specify an element in a window. For more information
about accessibility identifiers, search for the "About Active Accessibility Support" topic at Microsoft
Developer Network.

This method sends the TVM_MAPHTREEITEMTOACCID message, which is described in the Windows
SDK.

The following code example defines a variable, m_treeCtrl , that is used to access the current tree-view

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitemexa
http://go.microsoft.com/fwlink/p/?linkid=56322
https://docs.microsoft.com/windows/desktop/Controls/tvm-maphtreeitemtoaccid

public:
 // Variable to access tree control.
 CTreeCtrl m_treeCtrl;
 // Variable to access splitbutton control.
 CSplitButton m_splitbutton;
 // Accessibility identifier
 UINT accIdUS;
 // HTREEITEMs
 HTREEITEM hCountry;
 HTREEITEM hPA;
 HTREEITEM hWA;

ExampleExample

// Map an accessibility identifier to the Pennsylvania node.
accIdUS = m_treeCtrl.MapItemToAccId(hCountry);

CTreeCtrl::Select

BOOL Select(
 HTREEITEM hItem,
 UINT nCode);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

control. The code example also defines an unsigned integer and several HTREEITEM variables. These
variables are used in the next example.

The following code example obtains an identification number for a tree-view control item. In an earlier
section of the code example, which is not shown, we created a tree-view that consists of a root
country/region node for the United States, subnodes for the states of Pennsylvania and Washington, and
tree items for cities in those states. This code example obtains a unique identification number for the root
country/region node.

Call this function to select the given tree view item, scroll the item into view, or redraw the item in the style
used to indicate the target of a drag-and-drop operation.

hItem
Handle of a tree item.

nCode
The type of action to take. This parameter can be one of the following values:

TVGN_CARET Sets the selection to the given item.

TVGN_DROPHILITE Redraws the given item in the style used to indicate the target of a drag-and-
drop operation.

TVGN_FIRSTVISIBLE Scrolls the tree view vertically so that the given item is the first visible item.

Nonzero if successful; otherwise 0.

If nCode contains the value TVGN_CARET, the parent window receives the TVN_SELCHANGING and
TVN_SELCHANGED notification messages. In addition, if the specified item is the child of a collapsed
parent item, the parent's list of child items is expanded to reveal the specified item. In this case, the parent

ExampleExample

CTreeCtrl::SelectDropTarget

BOOL SelectDropTarget(HTREEITEM hItem);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Set the item at the point myPoint as the drop target.
UINT uFlags;
HTREEITEM hItem = m_TreeCtrl.HitTest(myPoint, &uFlags);

if ((hItem != NULL) && (TVHT_ONITEM & uFlags))
{
 m_TreeCtrl.SelectDropTarget(hItem);
 ASSERT(m_TreeCtrl.GetDropHilightItem() == hItem);
}

CTreeCtrl::SelectItem

BOOL SelectItem(HTREEITEM hItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

window receives the TVN_ITEMEXPANDING and TVN_ITEMEXPANDED notification messages.

See the example for CTreeCtrl::HitTest.

Call this function to redraw the item in the style used to indicate the target of a drag-and-drop operation.

hItem
Handle of a tree item.

Nonzero if successful; otherwise 0.

Call this function to select the given tree view item.

hItem
Handle of a tree item.

Nonzero if successful; otherwise 0.

If hItem is NULL, then this function selects no item.

// Select the item that is at the point myPoint.
UINT uFlags;
HTREEITEM hItem = m_TreeCtrl.HitTest(myPoint, &uFlags);

if ((hItem != NULL) && (TVHT_ONITEM & uFlags))
{
 m_TreeCtrl.SelectItem(hItem);
}

CTreeCtrl::SelectSetFirstVisible

BOOL SelectSetFirstVisible(HTREEITEM hItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Select the item at the point myPoint as the first visible item.
UINT uFlags;
HTREEITEM hItem = m_TreeCtrl.HitTest(myPoint, &uFlags);

if ((hItem != NULL) && (TVHT_ONITEM & uFlags))
{
 m_TreeCtrl.SelectSetFirstVisible(hItem);
}

CTreeCtrl::SetAutoscrollInfo

BOOL SetAutoscrollInfo(
 UINT uPixelsPerSec,
 UINT uUpdateTime);

ParametersParameters

PARAMETER DESCRIPTION

uPixelsPerSec [in] The number of pixels per second to scroll.

uUpdateTime [in] The time interval between updates of the control.

Return ValueReturn Value

Call this function to scroll the tree view vertically so that the given item is the first visible item.

hItem
Handle of the tree item to be set as the first visible item.

Nonzero if successful; otherwise 0.

The function sends a message to the window with the TVM_SELECTITEM and TVGN_FIRSTVISIBLE
message parameters.

Sets the autoscroll rate of the current tree-view control.

RemarksRemarks

ExampleExample

public:
 // Variable to access tree control.
 CTreeCtrl m_treeCtrl;
 // Variable to access splitbutton control.
 CSplitButton m_splitbutton;
 // Accessibility identifier
 UINT accIdUS;
 // HTREEITEMs
 HTREEITEM hCountry;
 HTREEITEM hPA;
 HTREEITEM hWA;

ExampleExample

// Scroll 30 pixels/sec and redraw every 5 seconds.
m_treeCtrl.SetAutoscrollInfo(30, 5);

CTreeCtrl::SetBkColor

COLORREF SetBkColor(COLORREF clr);

ParametersParameters

Return ValueReturn Value

ExampleExample

Always returns TRUE.

The autoscroll parameters are used to scroll into view an item that is currently not visible. The tree-view
control must have the TVS_EX_AUTOHSCROLL extended style, which is described in Tree-View Control
Extended Styles.

This method sends the TVM_SETAUTOSCROLLINFO message, which is described in the Windows SDK.

The following code example defines a variable, m_treeCtrl , that is used to access the current tree-view
control. The code example also defines an unsigned integer and several HTREEITEM variables. These
variables are used in the next example.

The following code example sets the autoscroll behavior of the current tree-view control. In an earlier
section of the code example, which is not shown, we created a tree-view that consists of a root
country/region node for the United States, subnodes for the states of Pennsylvania and Washington, and
tree items for cities in those states. We intentionally made the tree-view control narrow so that it must
automatically scroll to display the tree item that has the focus. The code example sets the tree-view control
to automatically scroll 30 pixels per second every 5 seconds until the tree item is in view.

This member function implements the behavior of the Win32 message TVM_SETBKCOLOR, as described
in the Windows SDK.

clr
A COLORREF value that contains the new background color. If this value is -1, the control will revert to
using the system color for the background color.

A COLORREF value that represents the current text color. If this value is -1, the control is using the system
color for the text color.

https://docs.microsoft.com/windows/desktop/Controls/tree-view-control-window-extended-styles
https://docs.microsoft.com/windows/desktop/Controls/tvm-setautoscrollinfo
https://docs.microsoft.com/windows/desktop/Controls/tvm-setbkcolor

CTreeCtrl::SetCheck

BOOL SetCheck(
 HTREEITEM hItem,
 BOOL fCheck = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

UINT uCount = m_TreeCtrl.GetVisibleCount();
HTREEITEM hItem = m_TreeCtrl.GetFirstVisibleItem();

// Toggle the check state of all the visible items.
for (UINT i = 0; i < uCount; i++)
{
 ASSERT(hItem != NULL);
 m_TreeCtrl.SetCheck(hItem, !m_TreeCtrl.GetCheck(hItem));
 hItem = m_TreeCtrl.GetNextVisibleItem(hItem);
}

ExampleExample

m_TreeCtrl.ModifyStyle(0, TVS_CHECKBOXES);

HTREEITEM aItem = m_TreeCtrl.InsertItem(_T("AAA"));
m_TreeCtrl.SetCheck(aItem);

CTreeCtrl::SetExtendedStyle

DWORD SetExtendedStyle(
 DWORD dwExMask,
 DWORD dwExStyles);

ParametersParameters

See the example for CTreeCtrl::SetTextColor.

Call this member function to set the check state for a tree control item.

hItem
The HTREEITEM to receive the check state change.

fCheck
Indicates whether the tree control item is to be checked or unchecked. By default, SetCheck sets the item to
be checked.

Nonzero if successful; otherwise 0.

When the tree control item is checked (fCheck set to TRUE), the item appears with an adjacent checkmark.

To use checkboxes, set TVS_CHECKBOXES before populating the tree control.

Sets the extended styles for the current tree-view control.

PARAMETER DESCRIPTION

dwExMask [in] A bitmask that specifies which styles in the current
tree-view control are affected by this method. If this
parameter is zero, it is ignored and the value of the
dwExStyles parameter is assigned to the tree-view control.

Specify zero or a bitwise combination (OR) of styles
described in Tree-View Control Extended Styles.

dwExStyles [in] A bitmask that specifies which styles in the current
tree-view control to set or clear.

To set a combination of styles, specify a bitwise
combination (OR) of styles described in Tree-View Control
Extended Styles. To clear a set of styles, specify zero.

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable to access tree control.
 CTreeCtrl m_treeCtrl;
 // Variable to access splitbutton control.
 CSplitButton m_splitbutton;
 // Accessibility identifier
 UINT accIdUS;
 // HTREEITEMs
 HTREEITEM hCountry;
 HTREEITEM hPA;
 HTREEITEM hWA;

ExampleExample

m_treeCtrl.SetExtendedStyle(TVS_EX_AUTOHSCROLL, TVS_EX_AUTOHSCROLL);

CTreeCtrl::SetImageList

A value that contains the previous extended control styles.

This method clears the styles specified in the dwExMask parameter, then sets the styles specified in the
dwExStyles parameter. Only the extended styles that correspond to the bits in dwExMask change.

This method sends the TVM_SETEXTENDEDSTYLE message, which is described in the Windows SDK.

The following code example defines a variable, m_treeCtrl , that is used to access the current tree-view
control. The code example also defines an unsigned integer and several HTREEITEM variables. These
variables are used in the next example.

The following code example adds the TVS_EX_AUTOHSCROLL extended style to the current tree-view
control. In an earlier section of the code example, which is not shown, we created a tree-view that consists
of a root country/region node for the United States, subnodes for the states of Pennsylvania and
Washington, and tree items for cities in those states. We intentionally made the tree-view control narrow so
that it must automatically scroll to display the tree item that has the focus.

Call this function to set the normal or state image list for a tree view control and redraw the control using
the new images.

https://docs.microsoft.com/windows/desktop/Controls/tree-view-control-window-extended-styles
https://docs.microsoft.com/windows/desktop/Controls/tree-view-control-window-extended-styles
https://docs.microsoft.com/windows/desktop/Controls/tvm-setextendedstyle

CImageList* SetImageList(
 CImageList* pImageList,
 int nImageListType);

ParametersParameters

Return ValueReturn Value

ExampleExample

CTreeCtrl::SetIndent

void SetIndent(UINT nIndent);

ParametersParameters

ExampleExample

CTreeCtrl::SetInsertMark

BOOL SetInsertMark(
 HTREEITEM hItem,
 BOOL fAfter = TRUE);

ParametersParameters

pImageList
Pointer to the image list to assign. If pImageList is NULL, all images are removed from the tree view
control.

nImageListType
Type of image list to set. The image list can be one of the following values:

TVSIL_NORMAL Sets the normal image list, which contains the selected and nonselected images
for the tree view item. You must use this state for overlay images.

TVSIL_STATE Sets the state image list, which contains the images for tree view items that are in a
user-defined state.

Pointer to the previous image list, if any; otherwise NULL.

See the example for CTreeCtrl::GetImageList.

Call this function to set the width of indentation for a tree view control and redraw the control to reflect the
new width.

nIndent
Width, in pixels, of the indentation. If nIndent is less than the system-defined minimum width, the new
width is set to the system-defined minimum.

See the example for CTreeCtrl::GetIndent.

This member function implements the behavior of the Win32 message TVM_SETINSERTMARK, as
described in the Windows SDK.

hItem
HTREEITEM that specifies at which item the insertion mark will be placed. If this argument is NULL, the
insertion mark is removed.

https://docs.microsoft.com/windows/desktop/Controls/tvm-setinsertmark

Return ValueReturn Value

ExampleExample

// Set the insert mark to be before the item at the point myPoint.
UINT uFlags;
HTREEITEM hItem = m_TreeCtrl.HitTest(myPoint, &uFlags);

if ((hItem != NULL) && (TVHT_ONITEM & uFlags))
{
 m_TreeCtrl.SetInsertMark(hItem, FALSE);
}

CTreeCtrl::SetInsertMarkColor

COLORREF SetInsertMarkColor(COLORREF clrNew);

ParametersParameters

Return ValueReturn Value

ExampleExample

CTreeCtrl::SetItem

BOOL SetItem(TVITEM* pItem);

BOOL SetItem(
 HTREEITEM hItem,
 UINT nMask,
 LPCTSTR lpszItem,
 int nImage,
 int nSelectedImage,
 UINT nState,
 UINT nStateMask,
 LPARAM lParam);

ParametersParameters

fAfter
BOOL value that specifies if the insertion mark is placed before or after the specified item. If this argument
is nonzero, the insertion mark will be placed after the item. If this argument is zero, the insertion mark will
be placed before the item.

Nonzero if successful; otherwise 0.

This member function implements the behavior of the Win32 message TVM_SETINSERTMARKCOLOR, as
described in the Windows SDK.

clrNew
A COLORREF value that contains the new insertion mark color.

A COLORREF value that contains the previous insertion mark color.

See the example for CTreeCtrl::GetInsertMarkColor.

Call this function to set the attributes of the specified tree view item.

pItem
A pointer to a TVITEM structure that contains the new item attributes, as described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/tvm-setinsertmarkcolor
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitema

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Show the item at the point myPoint in bold.
UINT uFlags;
HTREEITEM hItem = m_TreeCtrl.HitTest(myPoint, &uFlags);

if ((hItem != NULL) && (TVHT_ONITEM & uFlags))
{
 m_TreeCtrl.SetItem(hItem, TVIF_STATE, NULL, 0, 0, TVIS_BOLD,
 TVIS_BOLD, 0);
}

CTreeCtrl::SetItemData

hItem
Handle of the item whose attributes are to be set. See the hItem member of the TVITEM structure in the
Windows SDK.

nMask
Integer specifying which attributes to set. See the mask member of the TVITEM structure.

lpszItem
Address of a string containing the item's text.

nImage
Index of the item's image in the tree view control's image list. See the iImage member of the TVITEM

structure.

nSelectedImage
Index of the item's selected image in the tree view control's image list. See the iSelectedImage member of
the TVITEM structure.

nState
Specifies values for the item's states. See the State member of the TVITEM structure.

nStateMask
Specifies which states are to be set. See the stateMask member of the TVITEM structure.

lParam
A 32-bit application-specific value associated with the item.

Nonzero if successful; otherwise 0.

In the TVITEM structure, the hItem member identifies the item, and the mask member specifies which
attributes to set.

If the mask member or the nMask parameter specifies the TVIF_TEXT value, the pszText member or the
lpszItem is the address of a null-terminated string and the cchTextMax member is ignored. If mask (or
nMask) specifies the TVIF_STATE value, the stateMask member or the nStateMask parameter specifies
which item states to change and the state member or nState parameter contains the values for those
states.

Call this function to set the 32-bit application-specific value associated with the specified item.

BOOL SetItemData(
 HTREEITEM hItem,
 DWORD_PTR dwData);

ParametersParameters

Return ValueReturn Value

ExampleExample

CString str;
HTREEITEM hItem;

// Insert 20 items into the tree control making every item's
// data be the handle of the item.
for (int i = 0; i < 20; i++)
{
 str.Format(TEXT("item %d"), i);
 hItem = m_TreeCtrl.InsertItem(str);

 if (hItem != NULL)
 {
 m_TreeCtrl.SetItemData(hItem, (DWORD_PTR)hItem);
 }
}

CTreeCtrl::SetItemExpandedImageIndex

BOOL SetItemExpandedImageIndex(
 HTREEITEM hItem,
 int iExpandedImage);

ParametersParameters

PARAMETER DESCRIPTION

hItem [in] Handle to a tree-view control item.

iExpandedImage [in] The index of the image to display when the specified
item is in the expanded state.

Return ValueReturn Value

RemarksRemarks

hItem
Handle of the item whose data is to be retrieved.

dwData
A 32-bit application-specific value associated with the item specified by hItem.

Nonzero if successful; otherwise 0.

Sets the index of the image to display when the specified item of the current tree-view control is in the
expanded state.

TRUE if this method is successful; otherwise, FALSE.

This method sends the TVM_SETITEM message, which is described in the Windows SDK. This method
assigns the iExpandedImage parameter to the iExpandedImage member of a TVITEMEX structure, and then

https://docs.microsoft.com/windows/desktop/Controls/tvm-setitem
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitemexa

ExampleExample

public:
 // Variable to access tree control.
 CTreeCtrl m_treeCtrl;
 // Variable to access splitbutton control.
 CSplitButton m_splitbutton;
 // Accessibility identifier
 UINT accIdUS;
 // HTREEITEMs
 HTREEITEM hCountry;
 HTREEITEM hPA;
 HTREEITEM hWA;

ExampleExample

CString str;
CString msg = _T("The set and retrieved item expanded image ")
 _T("indexes are%s equal.");
int nSetItem = 0;
m_treeCtrl.SetItemExpandedImageIndex(hCountry, nSetItem);
int nItem = m_treeCtrl.GetItemExpandedImageIndex(hCountry);
if (nItem == nSetItem)
 str.Format(msg, _T(""));
else
 str.Format(msg, _T(" not"));
AfxMessageBox(str, MB_ICONINFORMATION);

CTreeCtrl::SetItemHeight

SHORT SetItemHeight(SHORT cyHeight);

ParametersParameters

Return ValueReturn Value

ExampleExample

uses that structure in the message.

The following code example defines a variable, m_treeCtrl , that is used to access the current tree-view
control. The code example also defines an unsigned integer and several HTREEITEM variables. These
variables are used in the next example.

The following code example is a trivial test to determine whether the
CTreeCtrl::GetItemExpandedImageIndex method returns the value set by the
CTreeCtrl::SetItemExpandedImageIndex method. In an earlier section of the code example, which is not
shown, we created a tree-view that consists of a root country/region node for the United States, subnodes
for the states of Pennsylvania and Washington, and tree items for cities in those states.

This member function implements the behavior of the Win32 message TVM_SETITEMHEIGHT, as
described in the Windows SDK.

cyHeight
Specifies the new height of every item in the tree view, in pixels. If this argument is less than the height of
the images, then it will be set to the height of the images. If this argument is not even, it will be rounded
down to the nearest even value. If this argument is -1, the control will revert to using its default item height.

The previous height of the items, in pixels.

https://docs.microsoft.com/windows/desktop/Controls/tvm-setitemheight

CTreeCtrl::SetItemImage

BOOL SetItemImage(
 HTREEITEM hItem,
 int nImage,
 int nSelectedImage);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTreeCtrl::SetItemState

BOOL SetItemState(
 HTREEITEM hItem,
 UINT nState,
 UINT nStateMask);

ParametersParameters

See the example for CTreeCtrl::GetItemHeight.

Associates images with an item.

hItem
Handle of the item whose image is to be set.

nImage
Index of the item's image in the tree view control's image list.

nSelectedImage
Index of the item's selected image in the tree view control's image list.

Nonzero if successful; otherwise 0.

Each item in a tree view control can have a pair of bitmapped images associated with it. The images appear
on the left side of an item's label. One image is displayed when the item is selected, and the other is
displayed when the item is not selected. For example, an item might display an open folder when it is
selected and a closed folder when it is not selected.

Call this function to set the index of the item's image and its selected image within the tree view control's
image list.

For more information on images, see CImageList.

See the example for CTreeCtrl::GetItemImage.

Sets the state of the item specified by hItem.

hItem
Handle of the item whose state is to be set.

nState
Specifies new states for the item.

nStateMask
Specifies which states are to be changed.

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTreeCtrl::SetItemStateEx

BOOL SetItemStateEx(
 HTREEITEM hItem,
 UINT uStateEx);

ParametersParameters

PARAMETER DESCRIPTION

hItem [in] Handle to a tree-view control item.

uStateEx [in] The extended state of the item. For more information,
see the uStateEx member of the TVITEMEX structure.

Return ValueReturn Value

RemarksRemarks

ExampleExample

public:
 // Variable to access tree control.
 CTreeCtrl m_treeCtrl;
 // Variable to access splitbutton control.
 CSplitButton m_splitbutton;
 // Accessibility identifier
 UINT accIdUS;
 // HTREEITEMs
 HTREEITEM hCountry;
 HTREEITEM hPA;
 HTREEITEM hWA;

ExampleExample

Nonzero if successful; otherwise 0.

For information on states, see CTreeCtrl::GetItem.

See the example for CTreeCtrl::GetItemState.

Sets the extended state of the specified item in the current tree-view control.

TRUE if this method is successful; otherwise, FALSE.

This method sends the TVM_SETITEM message, which is described in the Windows SDK. This method
assigns the uStateEx parameter to the uStateEx member of a TVITEMEX structure, and then uses that
structure in the message.

The following code example defines a variable, m_treeCtrl , that is used to access the current tree-view
control. The code example also defines an unsigned integer and several HTREEITEM variables. These
variables are used in the next example.

The following code example sets a tree-view item to disabled state. In an earlier section of the code
example, which is not shown, we created a tree-view that consists of a root country/region node for the
United States, subnodes for the states of Pennsylvania and Washington, and tree items for cities in those

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitemexa
https://docs.microsoft.com/windows/desktop/Controls/tvm-setitem
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitemexa

// Disable the Pennsylvania node.
m_treeCtrl.SetItemStateEx(hPA, TVIS_EX_DISABLED);

CTreeCtrl::SetItemText

BOOL SetItemText(
 HTREEITEM hItem,
 LPCTSTR lpszItem);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Clear the text of the item at point myPoint.
UINT uFlags;
HTREEITEM hItem = m_TreeCtrl.HitTest(myPoint, &uFlags);

if ((hItem != NULL) && (TVHT_ONITEM & uFlags))
{
 m_TreeCtrl.SetItemText(hItem, NULL);
}

CTreeCtrl::SetLineColor

COLORREF SetLineColor(COLORREF clrNew = CLR_DEFAULT);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

states. This code example sets the Pennsylvania node to disabled state.

Sets the text of the item specified by hItem.

hItem
Handle of the item whose text is to be set.

lpszItem
Address of a string containing the new text for the item

Nonzero if successful; otherwise 0.

Call this member function to set the current line color for the tree view control.

clrNew
The new line color.

The previous line color.

This member function implements the behavior of the win32 message TVM_SETLINECOLOR, as described
in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/tvm-setlinecolor

COLORREF clrPrev = m_TreeCtrl.SetLineColor(RGB(255, 0, 0));

CTreeCtrl::SetScrollTime

UINT SetScrollTime(UINT uScrollTime);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTreeCtrl::SetTextColor

COLORREF SetTextColor(COLORREF clr);

ParametersParameters

Return ValueReturn Value

ExampleExample

// change text color to white and background to dark blue
m_TreeCtrl.SetTextColor(RGB(255, 255, 255));
ASSERT(m_TreeCtrl.GetTextColor() == RGB(255, 255, 255));
m_TreeCtrl.SetBkColor(RGB(0, 0, 128));
ASSERT(m_TreeCtrl.GetBkColor() == RGB(0, 0, 128));

// force repaint immediately
m_TreeCtrl.Invalidate();

CTreeCtrl::SetToolTips

Call this member function to set the maximum scroll time for the tree view control.

uScrollTime
The new maximum scroll time, in milliseconds. If this value is less than 100, it will be rounded up to 100.

The previous maximum scroll time, in milliseconds.

This member function implements the behavior of the win32 message TVM_SETSCROLLTIME, as
described in the Windows SDK.

This member function implements the behavior of the Win32 message TVM_SETTEXTCOLOR, as
described in the Windows SDK.

clr
A COLORREF value that contains the new text color. If this argument is -1, the control will revert to using
the system color for the text color.

A COLORREF value that represents the previous text color. If this value is -1, the control was using the
system color for the text color.

This member function implements the behavior of the Win32 message TVM_SETTOOLTIPS, as described
in the Windows SDK.

https://docs.microsoft.com/windows/desktop/Controls/tvm-setscrolltime
https://docs.microsoft.com/windows/desktop/Controls/tvm-settextcolor
https://docs.microsoft.com/windows/desktop/Controls/tvm-settooltips

CToolTipCtrl* SetToolTips(CToolTipCtrl* pWndTip);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTreeCtrl::ShowInfoTip

void ShowInfoTip(HTREEITEM hItem);

ParametersParameters

PARAMETER DESCRIPTION

hItem [in] A handle to a tree-view item in the control. For more
information, see the hItem member of the TVITEMEX
structure.

RemarksRemarks

CTreeCtrl::SortChildren

BOOL SortChildren(HTREEITEM hItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pWndTip
A pointer to a CToolTipCtrl object that the tree control will use.

A pointer to a CToolTipCtrl object containing the tooltip previously used by the control, or NULL if no
tooltips were used previously.

To use tooltips, indicate the TVS_NOTOOLTIPS style when you create the CTreeCtrl object.

See the example for CTreeCtrl::GetToolTips.

Displays the infotip for the specified item in the current tree-view control.

For more information about the difference between tooltips and infotips, search for the "Tooltips and
Infotips" topic at Microsoft Developer Network.

This method sends the TVM_SHOWINFOTIP message, which is described in the Windows SDK.

Call this function to alphabetically sort the child items of the given parent item in a tree view control.

hItem
Handle of the parent item whose child items are to be sorted. If hItem is NULL, sorting will proceed from
the root of the tree.

Nonzero if successful; otherwise 0.

SortChildren will not recurse through the tree; only the immediate children of hItem will be sorted.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitemexa
http://go.microsoft.com/fwlink/p/?linkid=56322
https://docs.microsoft.com/windows/desktop/Controls/tvm-showinfotip

ExampleExample

// Sort all of the items in the tree control.
m_TreeCtrl.SortChildren(TVI_ROOT);

CTreeCtrl::SortChildrenCB

BOOL SortChildrenCB(LPTVSORTCB pSort);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Sort the item in reverse alphabetical order.
int CALLBACK MyCompareProc(LPARAM lParam1, LPARAM lParam2, LPARAM lParamSort)
{
 // lParamSort contains a pointer to the tree control.
 // The lParam of an item is just its handle,
 // as specified with SetItemData
 CTreeCtrl* pmyTreeCtrl = (CTreeCtrl*)lParamSort;
 CString strItem1 = pmyTreeCtrl->GetItemText((HTREEITEM)lParam1);
 CString strItem2 = pmyTreeCtrl->GetItemText((HTREEITEM)lParam2);

 return strItem2.Compare(strItem1);
}

TVSORTCB tvs;

// Sort the tree control's items using my
// callback procedure.
tvs.hParent = TVI_ROOT;
tvs.lpfnCompare = MyCompareProc;
tvs.lParam = (LPARAM)&m_TreeCtrl;

m_TreeCtrl.SortChildrenCB(&tvs);

See also

Call this function to sort tree view items using an application-defined callback function that compares the
items.

pSort
Pointer to a TVSORTCB structure.

Nonzero if successful; otherwise 0.

The structure's comparison function, lpfnCompare , must return a negative value if the first item should
precede the second, a positive value if the first item should follow the second, or zero if the two items are
equivalent.

The lParam1 and lParam2 parameters correspond to the lParam member of the TVITEM structure for the
two items being compared. The lParamSort parameter corresponds to the lParam member of the
TV_SORTCB structure.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvsortcb
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtvitema

MFC Sample CMNCTRL1
CWnd Class
Hierarchy Chart
CImageList Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CTreeView Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CTreeView : public CCtrlView

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CTreeView::CTreeView Constructs a CTreeView object.

Public MethodsPublic Methods

NAME DESCRIPTION

CTreeView::GetTreeCtrl Returns the tree control associated with the view.

Remarks

Inheritance Hierarchy

Requirements

CTreeView::CTreeView

Simplifies use of the tree control and of CTreeCtrl, the class that encapsulates tree-control functionality, with
MFC's document-view architecture.

For more information on this architecture, see the overview for the CView class and the cross-references cited
there.

CObject

CCmdTarget

CWnd

CView

CCtrlView

CTreeView

Header: afxcview.h

Constructs a CTreeView object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctreeview-class.md

CTreeView();

CTreeView::GetTreeCtrl

CTreeCtrl& GetTreeCtrl() const;

See also

Returns a reference to the tree control associated with the view.

CCtrlView Class
Hierarchy Chart
CView Class
CCtrlView Class
CTreeCtrl Class

CTypedPtrArray Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
template<class BASE_CLASS, class TYPE>
class CTypedPtrArray : public BASE_CLASS

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CTypedPtrArray::Add Adds a new element to the end of an array. Grows the array if
necessary

CTypedPtrArray::Append Adds the contents of one array to the end of another. Grows
the array if necessary

CTypedPtrArray::Copy Copies another array to the array; grows the array if
necessary.

CTypedPtrArray::ElementAt Returns a temporary reference to the element pointer within
the array.

CTypedPtrArray::GetAt Returns the value at a given index.

CTypedPtrArray::InsertAt Inserts an element (or all the elements in another array) at a
specified index.

CTypedPtrArray::SetAt Sets the value for a given index; array not allowed to grow.

CTypedPtrArray::SetAtGrow Sets the value for a given index; grows the array if necessary.

Public OperatorsPublic Operators

NAME DESCRIPTION

CTypedPtrArray::operator [] Sets or gets the element at the specified index.

Provides a type-safe "wrapper" for objects of class CPtrArray or CObArray .

BASE_CLASS
Base class of the typed pointer array class; must be an array class (CObArray or CPtrArray).

TYPE
Type of the elements stored in the base-class array.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctypedptrarray-class.md

Remarks

Inheritance Hierarchy

Requirements

CTypedPtrArray::Add

INT_PTR Add(TYPE newElement);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTypedPtrArray::Append

INT_PTR Append(const CTypedPtrArray<BASE_CLASS, TYPE>& src);

ParametersParameters

When you use CTypedPtrArray rather than CPtrArray or CObArray , the C++ type-checking facility helps eliminate
errors caused by mismatched pointer types.

In addition, the CTypedPtrArray wrapper performs much of the casting that would be required if you used
CObArray or CPtrArray .

Because all CTypedPtrArray functions are inline, use of this template does not significantly affect the size or speed
of your code.

For more information on using CTypedPtrArray , see the articles Collections and Template-Based Classes.

BASE_CLASS

CTypedPtrArray

Header: afxtempl.h

This member function calls BASE_CLASS ::Add.

TYPE
Template parameter specifying the type of element to be added to the array.

newElement
The element to be added to this array.

The index of the added element.

For more detailed remarks, see CObArray::Add.

This member function calls BASE_CLASS ::Append**.

BASE_CLASS
Base class of the typed pointer array class; must be an array class (CObArray or CPtrArray).

TYPE
Type of the elements stored in the base-class array.

Return ValueReturn Value

RemarksRemarks

CTypedPtrArray::Copy

void Copy(const CTypedPtrArray<BASE_CLASS, TYPE>& src);

ParametersParameters

RemarksRemarks

CTypedPtrArray::ElementAt

TYPE& ElementAt(INT_PTR nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTypedPtrArray::GetAt

src
Source of the elements to be appended to an array.

The index of the first appended element.

For more detailed remarks, see CObArray::Append.

This member function calls BASE_CLASS ::Copy.

BASE_CLASS
Base class of the typed pointer array class; must be an array class (CObArray or CPtrArray).

TYPE
Type of the elements stored in the base-class array.

src
Source of the elements to be copied to an array.

For more detailed remarks, see CObArray::Copy.

This inline function calls BASE_CLASS ::ElementAt.

TYPE
Template parameter specifying the type of elements stored in this array.

nIndex
An integer index that is greater than or equal to 0 and less than or equal to the value returned by BASE_CLASS

::GetUpperBound.

A temporary reference to the element at the location specified by nIndex. This element is of the type specified by
the template parameter TYPE.

For more detailed remarks, see CObArray::ElementAt.

This inline function calls BASE_CLASS ::GetAt.

TYPE GetAt(INT_PTR nIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTypedPtrArray::InsertAt

void InsertAt(
 INT_PTR nIndex,
 TYPE newElement,
 INT_PTR nCount = 1);

void InsertAt(
 INT_PTR nStartIndex,
 CTypedPtrArray<BASE_CLASS, TYPE>* pNewArray);

ParametersParameters

RemarksRemarks

TYPE
Template parameter specifying the type of elements stored in the array.

nIndex
An integer index that is greater than or equal to 0 and less than or equal to the value returned by BASE_CLASS

::GetUpperBound.

A copy of the element at the location specified by nIndex. This element is of the type specified by the template
parameter TYPE.

For more detailed remarks, see CObArray::GetAt

This member function calls BASE_CLASS ::InsertAt.

nIndex
An integer index that may be greater than the value returned by CObArray::GetUpperBound.

TYPE
Type of the elements stored in the base-class array.

newElement
The object pointer to be placed in this array. A newElement of value NULL is allowed.

nCount
The number of times this element should be inserted (defaults to 1).

nStartIndex
An integer index that may be greater than the value returned by CObArray::GetUpperBound .

BASE_CLASS
Base class of the typed pointer array class; must be an array class (CObArray or CPtrArray).

pNewArray
Another array that contains elements to be added to this array.

For more detailed remarks, see CObArray::InsertAt.

CTypedPtrArray::operator []

TYPE& operator[](int_ptr nindex);
TYPE operator[](int_ptr nindex) const;

ParametersParameters

RemarksRemarks

CTypedPtrArray::SetAt

void SetAt(
 INT_PTR nIndex,
 TYPE ptr);

ParametersParameters

RemarksRemarks

CTypedPtrArray::SetAtGrow

void SetAtGrow(
 INT_PTR nIndex,
 TYPE newElement);

ParametersParameters

These inline operators call BASE_CLASS ::operator [].

TYPE
Template parameter specifying the type of elements stored in the array.

nIndex
An integer index that is greater than or equal to 0 and less than or equal to the value returned by BASE_CLASS

::GetUpperBound.

The first operator, called for arrays that are not const, can be used on either the right (r-value) or the left (l-value)
of an assignment statement. The second, invoked for const arrays, can be used only on the right.

The Debug version of the library asserts if the subscript (either on the left or right side of an assignment
statement) is out of bounds.

This member function calls BASE_CLASS ::SetAt.

nIndex
An integer index that is greater than or equal to 0 and less than or equal to the value returned by
CObArray::GetUpperBound.

TYPE
Type of the elements stored in the base-class array.

ptr
A pointer to the element to be inserted in the array at the nIndex. A NULL value is allowed.

For more detailed remarks, see CObArray::SetAt.

This member function calls BASE_CLASS ::SetAtGrow.

nIndex

RemarksRemarks

See also

An integer index that is greater than or equal to 0.

TYPE
Type of the elements stored in the base-class array.

newElement
The object pointer to be added to this array. A NULL value is allowed.

For more detailed remarks, see CObArray::SetAtGrow.

MFC Sample COLLECT
Hierarchy Chart
CPtrArray Class
CObArray Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CTypedPtrList Class
3/4/2019 • 9 minutes to read • Edit Online

Syntax
template<class BASE_CLASS, class TYPE>
class CTypedPtrList : public BASE_CLASS

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CTypedPtrList::AddHead Adds an element (or all the elements in another list) to the
head of the list (makes a new head).

CTypedPtrList::AddTail Adds an element (or all the elements in another list) to the tail
of the list (makes a new tail).

CTypedPtrList::GetAt Gets the element at a given position.

CTypedPtrList::GetHead Returns the head element of the list (cannot be empty).

CTypedPtrList::GetNext Gets the next element for iterating.

CTypedPtrList::GetPrev Gets the previous element for iterating.

CTypedPtrList::GetTail Returns the tail element of the list (cannot be empty).

CTypedPtrList::RemoveHead Removes the element from the head of the list.

CTypedPtrList::RemoveTail Removes the element from the tail of the list.

CTypedPtrList::SetAt Sets the element at a given position.

Remarks

Provides a type-safe "wrapper" for objects of class CPtrList .

BASE_CLASS
Base class of the typed pointer list class; must be a pointer list class (CObList or CPtrList).

TYPE
Type of the elements stored in the base-class list.

When you use CTypedPtrList rather than CObList or CPtrList , the C++ type-checking facility helps eliminate
errors caused by mismatched pointer types.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctypedptrlist-class.md

Example

typedef CTypedPtrList<CObList, CMyObject*> CMyList;
CMyList ml;
CMyObject* pMyObject = new CMyObject();
ml.AddTail(pMyObject);

CFileException e;
CFile myFile;
myFile.Open(_T("CTypedPtrList_File.txt"),
 CFile::modeCreate|CFile::modeWrite, &e);
CArchive ar(&myFile, CArchive::store);
ml.Serialize(ar);

ar.Close();
myFile.Close();

while (!ml.IsEmpty())
{
 delete ml.GetHead();
 ml.RemoveHead();
}

class CMyObject : public CObject
{
public:
 int i;
 void Serialize(CArchive& ar);
 CMyObject() { i = 9876;}
protected:
 DECLARE_SERIAL(CMyObject)
};

IMPLEMENT_SERIAL(CMyObject, CObject, 0)

void CMyObject::Serialize(CArchive& ar)
{
 CObject::Serialize(ar);
 if(ar.IsStoring())
 ar << i;
 else
 ar >> i;
}

In addition, the CTypedPtrList wrapper performs much of the casting that would be required if you used CObList

or CPtrList .

Because all CTypedPtrList functions are inline, use of this template does not significantly affect the size or speed
of your code.

Lists derived from CObList can be serialized, but those derived from CPtrList cannot.

When a CTypedPtrList object is deleted, or when its elements are removed, only the pointers are removed, not
the entities they reference.

For more information on using CTypedPtrList , see the articles Collections and Template-Based Classes.

This example creates an instance of CTypedPtrList , adds one object, serializes the list to disk, and then deletes the
object:

Inheritance Hierarchy

Requirements

CTypedPtrList::AddHead

POSITION AddHead(TYPE newElement);
void AddHead(CTypedPtrList<BASE_CLASS, TYPE>* pNewList);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTypedPtrList::AddTail

POSITION AddTail(TYPE newElement);
void AddTail(CTypedPtrList<BASE_CLASS, TYPE>* pNewList);

ParametersParameters

BASE_CLASS

_CTypedPtrList

CTypedPtrList

Header: afxtempl.h

This member function calls BASE_CLASS ::AddHead.

TYPE
Type of the elements stored in the base-class list.

newElement
The object pointer to be added to this list. A NULL value is allowed.

BASE_CLASS
Base class of the typed pointer list class; must be a pointer list class (CObList or CPtrList).

pNewList
A pointer to another CTypedPtrList object. The elements in pNewList will be added to this list.

The first version returns the POSITION value of the newly inserted element.

The first version adds a new element before the head of the list. The second version adds another list of elements
before the head.

This member function calls BASE_CLASS ::AddTail.

TYPE
Type of the elements stored in the base-class list.

newElement
The object pointer to be added to this list. A NULL value is allowed.

BASE_CLASS
Base class of the typed pointer list class; must be a pointer list class (CObList or CPtrList).

Return ValueReturn Value

RemarksRemarks

CTypedPtrList::GetAt

TYPE& GetAt(POSITION position);
TYPE GetAt(POSITION position) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTypedPtrList::GetHead

TYPE& GetHead();
TYPE GetHead() const;

ParametersParameters

Return ValueReturn Value

pNewList
A pointer to another CTypedPtrList object. The elements in pNewList will be added to this list.

The first version returns the POSITION value of the newly inserted element.

The first version adds a new element after the tail of the list. The second version adds another list of elements after
the tail of the list.

A variable of type POSITION is a key for the list.

TYPE
Template parameter specifying the type of elements stored in the list.

position
A POSITION value returned by a previous GetHeadPosition or Find member function call.

If the list is accessed through a pointer to a const CTypedPtrList , then GetAt returns a pointer of the type
specified by the template parameter TYPE. This allows the function to be used only on the right side of an
assignment statement and thus protects the list from modification.

If the list is accessed directly or through a pointer to a CTypedPtrList , then GetAt returns a reference to a pointer
of the type specified by the template parameter TYPE. This allows the function to be used on either side of an
assignment statement and thus allows the list entries to be modified.

It is not the same as an index, and you cannot operate on a POSITION value yourself. GetAt retrieves the
CObject pointer associated with a given position.

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

This inline function calls BASE_CLASS ::GetAt.

Gets the pointer that represents the head element of this list.

TYPE
Template parameter specifying the type of elements stored in the list.

RemarksRemarks

CTypedPtrList::GetNext

TYPE& GetNext(POSITION& rPosition);
TYPE GetNext(POSITION& rPosition) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTypedPtrList::GetPrev

TYPE& GetPrev(POSITION& rPosition);
TYPE GetPrev(POSITION& rPosition) const;

If the list is accessed through a pointer to a const CTypedPtrList , then GetHead returns a pointer of the type
specified by the template parameter TYPE. This allows the function to be used only on the right side of an
assignment statement and thus protects the list from modification.

If the list is accessed directly or through a pointer to a CTypedPtrList , then GetHead returns a reference to a
pointer of the type specified by the template parameter TYPE. This allows the function to be used on either side of
an assignment statement and thus allows the list entries to be modified.

You must ensure that the list is not empty before calling GetHead . If the list is empty, then the Debug version of
the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

Gets the list element identified by rPosition, then sets rPosition to the POSITION value of the next entry in the list.

TYPE
Template parameter specifying the type of elements contained in this list.

rPosition
A reference to a POSITION value returned by a previous GetNext , GetHeadPosition , or other member function
call.

If the list is accessed through a pointer to a const CTypedPtrList , then GetNext returns a pointer of the type
specified by the template parameter TYPE. This allows the function to be used only on the right side of an
assignment statement and thus protects the list from modification.

If the list is accessed directly or through a pointer to a CTypedPtrList , then GetNext returns a reference to a
pointer of the type specified by the template parameter TYPE. This allows the function to be used on either side of
an assignment statement and thus allows the list entries to be modified.

You can use GetNext in a forward iteration loop if you establish the initial position with a call to GetHeadPosition

or CPtrList::Find.

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

If the retrieved element is the last in the list, then the new value of rPosition is set to NULL.

It is possible to remove an element during an iteration. See the example for CObList::RemoveAt.

Gets the list element identified by rPosition, then sets rPosition to the POSITION value of the previous entry in
the list.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTypedPtrList::GetTail

TYPE& GetTail();
TYPE GetTail() const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTypedPtrList::RemoveHead

TYPE RemoveHead();

TYPE
Template parameter specifying the type of elements contained in this list.

rPosition
A reference to a POSITION value returned by a previous GetPrev or other member function call.

If the list is accessed through a pointer to a const CTypedPtrList , then GetPrev returns a pointer of the type
specified by the template parameter TYPE. This allows the function to be used only on the right side of an
assignment statement and thus protects the list from modification.

If the list is accessed directly or through a pointer to a CTypedPtrList , then GetPrev returns a reference to a
pointer of the type specified by the template parameter TYPE. This allows the function to be used on either side of
an assignment statement and thus allows the list entries to be modified.

You can use GetPrev in a reverse iteration loop if you establish the initial position with a call to GetTailPosition

or Find .

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

If the retrieved element is the first in the list, then the new value of rPosition is set to NULL.

Gets the pointer that represents the head element of this list.

TYPE
Template parameter specifying the type of elements stored in the list.

If the list is accessed through a pointer to a const CTypedPtrList , then GetTail returns a pointer of the type
specified by the template parameter TYPE. This allows the function to be used only on the right side of an
assignment statement and thus protects the list from modification.

If the list is accessed directly or through a pointer to a CTypedPtrList , then GetTail returns a reference to a
pointer of the type specified by the template parameter TYPE. This allows the function to be used on either side of
an assignment statement and thus allows the list entries to be modified.

You must ensure that the list is not empty before calling GetTail . If the list is empty, then the Debug version of
the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

Removes the element from the head of the list and returns it.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTypedPtrList::RemoveTail

TYPE RemoveTail();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTypedPtrList::SetAt

void SetAt(POSITION pos, TYPE newElement);

ParametersParameters

RemarksRemarks

TYPE
Template parameter specifying the type of elements stored in the list.

The pointer previously at the head of the list. This pointer is of the type specified by the template parameter TYPE.

You must ensure that the list is not empty before calling RemoveHead . If the list is empty, then the Debug version of
the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

Removes the element from the tail of the list and returns it.

TYPE
Template parameter specifying the type of elements stored in the list.

The pointer previously at the tail of the list. This pointer is of the type specified by the template parameter TYPE.

You must ensure that the list is not empty before calling RemoveTail . If the list is empty, then the Debug version of
the Microsoft Foundation Class Library asserts. Use IsEmpty to verify that the list contains elements.

This member function calls BASE_CLASS ::SetAt.

pos
The POSITION of the element to be set.

TYPE
Type of the elements stored in the base-class list.

newElement
The object pointer to be written to the list.

A variable of type POSITION is a key for the list. It is not the same as an index, and you cannot operate on a
POSITION value yourself. SetAt writes the object pointer to the specified position in the list.

You must ensure that your POSITION value represents a valid position in the list. If it is invalid, then the Debug
version of the Microsoft Foundation Class Library asserts.

For more detailed remarks, see CObList::SetAt.

See also
MFC Sample COLLECT
Hierarchy Chart
CPtrList Class
CObList Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CTypedPtrMap Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template<class BASE_CLASS, class KEY, class VALUE>
class CTypedPtrMap : public BASE_CLASS

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CTypedPtrMap::GetNextAssoc Gets the next element for iterating.

CTypedPtrMap::Lookup Returns a KEY based on a VALUE .

CTypedPtrMap::RemoveKey Removes an element specified by a key.

CTypedPtrMap::SetAt Inserts an element into the map; replaces an existing element
if a matching key is found.

Public OperatorsPublic Operators

NAME DESCRIPTION

CTypedPtrMap::operator [] Inserts an element into the map.

Remarks

Provides a type-safe "wrapper" for objects of the pointer-map classes CMapPtrToPtr , CMapPtrToWord ,
CMapWordToPtr , and CMapStringToPtr .

BASE_CLASS
Base class of the typed pointer map class; must be a pointer map class (CMapPtrToPtr , CMapPtrToWord ,
CMapWordToPtr , or CMapStringToPtr).

KEY
Class of the object used as the key to the map.

VALUE
Class of the object stored in the map.

When you use CTypedPtrMap , the C++ type-checking facility helps eliminate errors caused by mismatched pointer
types.

Because all CTypedPtrMap functions are inline, use of this template does not significantly affect the size or speed of
your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ctypedptrmap-class.md

Inheritance Hierarchy

Requirements

CTypedPtrMap::GetNextAssoc

void GetNextAssoc(
 POSITION& rPosition,
 KEY& rKey,
 VALUE& rValue) const;

ParametersParameters

RemarksRemarks

CTypedPtrMap::Lookup

BOOL Lookup(BASE_CLASS ::BASE_ARG_KEY key, VALUE& rValue) const;

ParametersParameters

For more information on using CTypedPtrMap , see the articles Collections and Template-Based Classes.

BASE_CLASS

CTypedPtrMap

Header: afxtempl.h

Retrieves the map element at rNextPosition , then updates rNextPosition to refer to the next element in the map.

rPosition
Specifies a reference to a POSITION value returned by a previous GetNextAssoc or BASE_CLASS

::GetStartPosition call.

KEY
Template parameter specifying the type of the map's keys.

rKey
Specifies the returned key of the retrieved element.

VALUE
Template parameter specifying the type of the map's values.

rValue
Specifies the returned value of the retrieved element.

This function is most useful for iterating through all the elements in the map. Note that the position sequence is
not necessarily the same as the key value sequence.

If the retrieved element is the last in the map, then the new value of rNextPosition is set to NULL.

This inline function calls BASE_CLASS ::GetNextAssoc.

Lookup uses a hashing algorithm to quickly find the map element with a key that matches exactly.

BASE_CLASS
Template parameter specifying the base class of this map's class.

Return ValueReturn Value

RemarksRemarks

CTypedPtrMap::operator []

VALUE& operator[](base_class ::base_arg_key key);

ParametersParameters

RemarksRemarks

CTypedPtrMap::RemoveKey

BOOL RemoveKey(KEY key);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

key
The key of the element to be looked up.

VALUE
Template parameter specifying the type of values stored in this map.

rValue
Specifies the returned value of the retrieved element.

Nonzero if the element was found; otherwise 0.

This inline function calls BASE_CLASS ::Lookup.

This operator can be used only on the left side of an assignment statement (an l-value).

VALUE
Template parameter specifying the type of values stored in this map.

BASE_CLASS
Template parameter specifying the base class of this map's class.

key
The key of the element to be looked up or created in the map.

If there is no map element with the specified key, then a new element is created. There is no "right side" (r-value)
equivalent to this operator because there is a possibility that a key may not be found in the map. Use the Lookup

member function for element retrieval.

This member function calls BASE_CLASS ::RemoveKey.

KEY
Template parameter specifying the type of the map's keys.

key
Key for the element to be removed.

Nonzero if the entry was found and successfully removed; otherwise 0.

For more detailed remarks, see CMapStringToOb::RemoveKey.

 CTypedPtrMap::SetAt

void SetAt(KEY key, VALUE newValue);

ParametersParameters

RemarksRemarks

See also

This member function calls BASE_CLASS ::SetAt.

KEY
Template parameter specifying the type of the map's keys.

key
Specifies the key value of the newValue.

newValue
Specifies the object pointer that is the value of the new element.

For more detailed remarks, see CMapStringToOb::SetAt.

MFC Sample COLLECT
Hierarchy Chart
CMapPtrToPtr Class
CMapPtrToWord Class
CMapWordToPtr Class
CMapStringToPtr Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CUIntArray Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CUIntArray : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CObArray::CObArray Constructs an empty array.

Public MethodsPublic Methods

NAME DESCRIPTION

CObArray::Add Adds an element to the end of the array; grows the array if
necessary.

CObArray::Append Appends another array to the array; grows the array if
necessary.

CObArray::Copy Copies another array to the array; grows the array if
necessary.

CObArray::ElementAt Returns a temporary reference to the element pointer
within the array.

CObArray::FreeExtra Frees all unused memory above the current upper bound.

CObArray::GetAt Returns the value at a given index.

CObArray::GetCount Gets the number of elements in this array.

CObArray::GetData Allows access to elements in the array. Can be NULL.

Supports arrays of unsigned integers.

The member functions of CUIntArray are similar to the member functions of class CObArray. Because of this
similarity, you can use the CObArray reference documentation for member function specifics. Wherever you
see a CObject pointer as a function parameter or return value, substitute a UINT.

CObject* CObArray::GetAt(int <nIndex>) const;

for example, translates to

UINT CUIntArray::GetAt(int <nIndex>) const;

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cuintarray-class.md

CObArray::GetSize Gets the number of elements in this array.

CObArray::GetUpperBound Returns the largest valid index.

CObArray::InsertAt Inserts an element (or all the elements in another array) at
a specified index.

CObArray::IsEmpty Determines if the array is empty.

CObArray::RemoveAll Removes all the elements from this array.

CObArray::RemoveAt Removes an element at a specific index.

CObArray::SetAt Sets the value for a given index; array not allowed to grow.

CObArray::SetAtGrow Sets the value for a given index; grows the array if
necessary.

CObArray::SetSize Sets the number of elements to be contained in this array.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CObArray::operator [] Sets or gets the element at the specified index.

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

An unsigned integer, or UINT, differs from words and doublewords in that the physical size of a UINT can
change depending on the target operating environment. A UINT is the same size as a doubleword.

CUIntArray incorporates the IMPLEMENT_DYNAMIC macro to support run-time type access and dumping
to a CDumpContext object. If you need a dump of individual unsigned integer elements, you must set the
depth of the dump context to 1 or greater. Unsigned integer arrays cannot be serialized.

Before using an array, use SetSize to establish its size and allocate memory for it. If you do not use SetSize ,
adding elements to your array causes it to be frequently reallocated and copied. Frequent reallocation and copying are
inefficient and can fragment memory.

For more information on using CUIntArray , see the article Collections.

CObject

CUIntArray

Header: afxcoll.h

See also
CObject Class
Hierarchy Chart

CUserException Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CUserException : public CSimpleException

Remarks

void DoSomeOperation()
{
 // Processing
 // If something goes wrong...
 AfxMessageBox(_T("The x operation failed"));
 AfxThrowUserException();
}

BOOL TrySomething()
{
 try
 {
 // Could throw a CUserException or other exception.
 DoSomeOperation();
 }
 catch(CUserException* pe)
 {
 pe->Delete();
 return FALSE; // User already notified.
 }
 catch(CException* pe)
 {
 // For other exception types, notify user here.
 pe->ReportError();
 return FALSE;
 }
 return TRUE; // No exception thrown.
}

Thrown to stop an end-user operation.

Use CUserException when you want to use the throw/catch exception mechanism for application-specific
exceptions. "User" in the class name can be interpreted as "my user did something exceptional that I need to
handle."

A CUserException is usually thrown after calling the global function AfxMessageBox to notify the user that an
operation has failed. When you write an exception handler, handle the exception specially since the user usually
has already been notified of the failure. The framework throws this exception in some cases. To throw a
CUserException yourself, alert the user and then call the global function AfxThrowUserException .

In the example below, a function containing operations that may fail alerts the user and throws a CUserException .
The calling function catches the exception and handles it specially:

For more information on using CUserException , see the article Exception Handling (MFC).

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cuserexception-class.md

Inheritance Hierarchy

Requirements

See also

CObject

CException

CSimpleException

CUserException

Header: afxwin.h

Hierarchy Chart
CException Class

CUserTool Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
class CUserTool : public CObject

Members
Public MethodsPublic Methods

NAME DESCRIPTION

CUserTool::CopyIconToClipboard

CUserTool::DrawToolIcon Draws the user tool icon in a specified rectangle.

CUserTool::GetCommand Returns a string that contains the text of the command
associated with the user tool.

CUserTool::GetCommandId Returns the command ID of the menu item of the user tool.

CUserTool::Invoke Executes the command associated with the user tool.

CUserTool::Serialize Reads or writes this object from or to an archive. (Overrides
CObject::Serialize.)

CUserTool::SetCommand Sets the command associated with the user tool.

CUserTool::SetToolIcon Loads the icon for the user tool from the application
associated with the tool.

Protected MethodsProtected Methods

NAME DESCRIPTION

CUserTool::LoadDefaultIcon Loads the default icon for a user tool.

Data MembersData Members

NAME DESCRIPTION

CUserTool::m_strArguments The command-line arguments for the user tool.

CUserTool::m_strInitialDirectory The initial directory for the user tool.

A user tool is a menu item that runs an external application. The Tools tab of the Customize dialog box (
CMFCToolBarsCustomizeDialog Class) enables the user to add user tools, and to specify the name, command,
arguments, and initial directory for each user tool.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cusertool-class.md

CUserTool::m_strLabel The tool name that is displayed in the menu item for the
tool.

NAME DESCRIPTION

Remarks

Example

// CUserToolsManager* pUserToolsManager
CUserTool* pTool1 = pUserToolsManager->CreateNewTool();
pTool1->m_strLabel = _T("&Notepad");
pTool1->SetCommand(_T("notepad.exe"));

Inheritance Hierarchy

Requirements

CUserTool::CopyIconToClipboard

BOOL CopyIconToClipboard();

Return ValueReturn Value

RemarksRemarks

CUserTool::DrawToolIcon

void DrawToolIcon(
 CDC* pDC,
 const CRect& rectImage);

ParametersParameters

For more information about how to enable user tools in your application, see CUserToolsManager Class.

The following example demonstrates how to create a tool from a CUserToolsManager object, set the m_strLabel

member variable, and set the application that the user tool runs. This code snippet is part of the Visual Studio
Demo sample.

CObject

CUserTool

Header: afxusertool.h

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

Draws the user tool icon at the center of a specified rectangle.

pDC
[in] A pointer to a device context.

rectImage

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CUserTool::GetCommand

const CString& GetCommand() const;

Return ValueReturn Value

CUserTool::GetCommandId

UINT GetCommandId() const;

Return ValueReturn Value

CUserTool::Invoke

virtual BOOL Invoke();

Return ValueReturn Value

RemarksRemarks

CUserTool::LoadDefaultIcon

virtual HICON LoadDefaultIcon();

Return ValueReturn Value

RemarksRemarks

CUserTool::m_strArguments

[in] Specifies the coordinates of the area to display the icon.

Returns a string that contains the text of the command associated with the user tool.

A reference to CString object that contains the text of the command associated with the user tool.

Returns the command ID of the user tool.

The command ID of this user tool.

Executes the command associated with the user tool.

Nonzero if the command was executed successfully; otherwise 0.

Calls ShellExecute to execute a command associated with the user tool. The function fails if the command is
empty or if ShellExecute fails.

Loads the default icon for a user tool.

A handle to the loaded icon (HICON), or NULL if the default icon cannot be loaded.

The framework calls this method when it is unable to load an icon for a user-defined tool from the executable
file of the tool.

Override this method to supply your own default tool icon.

The command-line arguments for the user tool.

https://docs.microsoft.com/windows/desktop/api/shellapi/nf-shellapi-shellexecutea
https://docs.microsoft.com/windows/desktop/api/shellapi/nf-shellapi-shellexecutea

CString m_strArguments;

RemarksRemarks

CUserTool::m_strInitialDirectory

CString m_strInitialDirectory;

RemarksRemarks

CUserTool::m_strLabel

CString m_strLabel;

CUserTool::Serialize

virtual void Serialize(CArchive& ar);

ParametersParameters

RemarksRemarks

CUserTool::SetCommand

void SetCommand(LPCTSTR lpszCmd);

ParametersParameters

RemarksRemarks

CUserTool::SetToolIcon

This string is passed to the tool when you call CUserTool::Invoke or when a user clicks the command associated
with this tool.

Specifies the initial directory for the user tool.

This variable specifies the initial directory that the tool executes in when you call CUserTool::Invoke or when a
user clicks the command associated with this tool.

The label that is displayed in the menu item for the tool.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio installation.

[in] ar

Sets the application that the user tool runs.

lpszCmd
[in] Specifies the new application to be associated with the user tool.

Call this method to set a new application that the user tool runs. The method destroys the old icon and loads a
new icon from the given application. If it cannot load an icon from the application, it loads the default icon for a
user tool by calling CUserTool::LoadDefaultIcon.

virtual HICON SetToolIcon();

Return ValueReturn Value

RemarksRemarks

See also

Loads the icon for the user tool from the application that the tool uses.

A handle to the loaded icon.

Call this method to load the icon to be displayed on the menu item. This method searches for the icon in the
executable file that the tool uses. If it does not have a default icon, the icon provided by
CUserTool::LoadDefaultIcon is used instead.

Hierarchy Chart
Classes
CWinAppEx Class
CUserToolsManager Class

CUserToolsManager Class
3/4/2019 • 9 minutes to read • Edit Online

Syntax
class CUserToolsManager : public CObject

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CUserToolsManager::CUserToolsManager Constructs a CUserToolsManager .

Public MethodsPublic Methods

NAME DESCRIPTION

CUserToolsManager::CreateNewTool Creates a new user tool.

CUserToolsManager::FindTool Returns the pointer to the CMFCUserTool object that is
associated with a specified command ID.

CUserToolsManager::GetArgumentsMenuID Returns the resource ID that is associated with the
Arguments menu on the Tools tab of the Customize dialog
box.

CUserToolsManager::GetDefExt Returns the default extension that the File Open dialog box
(CFileDialog) uses in the Command field on the Tools tab
of the Customize dialog box.

CUserToolsManager::GetFilter Returns the file filter that the File Open dialog box (
CFileDialog Class) uses in the Command field on the Tools
tab of the Customize dialog box.

CUserToolsManager::GetInitialDirMenuID Returns the resource ID that is associated with the Initial
directory menu on the Tools tab of the Customize dialog
box.

CUserToolsManager::GetMaxTools Returns the maximum number of user tools that can be
allocated in the application.

CUserToolsManager::GetToolsEntryCmd Returns the command ID of the menu item placeholder for
user tools.

Maintains the collection of CUserTool Class objects in an application. A user tool is a menu item that runs an
external application. The CUserToolsManager object enables the user or developer to add new user tools to the
application. It supports the execution of the commands associated with user tools, and it also saves information
about user tools in the Windows registry.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cusertoolsmanager-class.md

CUserToolsManager::GetUserTools Returns a reference to the list of user tools.

CUserToolsManager::InvokeTool Executes an application associated with the user tool that
has a specified command ID.

CUserToolsManager::IsUserToolCmd Determines whether a command ID is associated with a user
tool.

CUserToolsManager::LoadState Loads information about user tools from the Windows
registry.

CUserToolsManager::MoveToolDown Moves the specified user tool down in the list of user tools.

CUserToolsManager::MoveToolUp Moves the specified user tool up in the list of user tools.

CUserToolsManager::RemoveTool Removes the specified user tool from the application.

CUserToolsManager::SaveState Stores information about user tools in the Windows registry.

CUserToolsManager::SetDefExt Specifies the default extension that the File Open dialog box
(CFileDialog Class) uses in the Command field on the Tools
tab of the Customize dialog box.

CUserToolsManager::SetFilter Specifies the file filter that the File Open dialog box (
CFileDialog Class) uses in the Command field on the Tools
tab of the Customize dialog box.

NAME DESCRIPTION

Remarks

Example

To incorporate user tools into your application, you must:

1. Reserve a menu item and an associated command ID for a user tool menu entry.

2. Reserve a sequential command ID for each user tool that a user can define in your application.

3. Call the CWinAppEx::EnableUserTools method and supply the following parameters: menu command ID,
first user tool command ID, and last user tool command ID.

There should be only one global CUserToolsManager object per application.

For an example of user tools, see the VisualStudioDemo sample project.

The following example demonstrates how to retrieve a reference to a CUserToolsManager object and how to
create new user tools. This code snippet is part of the Visual Studio Demo sample.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CUserToolsManager* pUserToolsManager = theApp.GetUserToolsManager();
if (pUserToolsManager != NULL && pUserToolsManager->GetUserTools().IsEmpty())
{
 // CUserToolsManager* pUserToolsManager
 CUserTool* pTool1 = pUserToolsManager->CreateNewTool();
 pTool1->m_strLabel = _T("&Notepad");
 pTool1->SetCommand(_T("notepad.exe"));

 CUserTool* pTool2 = pUserToolsManager->CreateNewTool();
 pTool2->m_strLabel = _T("Paint &Brush");
 pTool2->SetCommand(_T("mspaint.exe"));

 CUserTool* pTool3 = pUserToolsManager->CreateNewTool();
 pTool3->m_strLabel = _T("&Windows Explorer");
 pTool3->SetCommand(_T("explorer.exe"));

 CUserTool* pTool4 = pUserToolsManager->CreateNewTool();
 pTool4->m_strLabel = _T("Microsoft On-&Line");
 pTool4->SetCommand(_T("http://www.microsoft.com"));
}

Inheritance Hierarchy

Requirements

CUserToolsManager::CreateNewTool

CUserTool* CreateNewTool();

Return ValueReturn Value

RemarksRemarks

CUserToolsManager::CUserToolsManager

CObject

CUserToolsManager

Header: afxusertoolsmanager.h

Creates a new user tool.

A pointer to the newly created user tool, or NULL if the number of user tools has exceeded the maximum. The
returned type is the same as the type that is passed to CWinAppEx::EnableUserTools as the pToolRTC parameter.

This method finds the first available menu command ID in the range that is supplied in the call to
CWinAppEx::EnableUserTools and assigns the user tool this ID.

The method fails if the number of tools has reached the maximum. This occurs when all command IDs within
the range are assigned to user tools. You can retrieve the maximum number of tools by calling
CUserToolsManager::GetMaxTools. You can get access to the tools list by calling the
CUserToolsManager::GetUserTools method.

Constructs a CUserToolsManager . Each application must have at most one user tools manager.

CUserToolsManager();

CUserToolsManager(
 const UINT uiCmdToolsDummy,
 const UINT uiCmdFirst,
 const UINT uiCmdLast,
 CRuntimeClass* pToolRTC=RUNTIME_CLASS(CUserTool),
 UINT uArgMenuID=0,
 UINT uInitDirMenuID=0);

ParametersParameters

RemarksRemarks

CUserToolsManager::FindTool

CUserTool* FindTool(UINT uiCmdId) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CUserToolsManager::GetArgumentsMenuID

uiCmdToolsDummy
[in] An unsigned integer that the framework uses as a placeholder for the command ID of the user tools menu.

uiCmdFirst
[in] The command ID for the first user tool command.

uiCmdLast
[in] The command ID for the last user tool command.

pToolRTC
[in] The class that CUserToolsManager::CreateNewTool creates. By using this class, you can use a derived type of
CUserTool Class instead of the default implementation.

uArgMenuID
[in] The menu resource ID of the arguments popup menu.

uInitDirMenuID
[in] The menu resource ID of the initial directory popup menu.

Do not call this constructor. Instead, call CWinAppEx::EnableUserTools to enable user tools, and call
CWinAppEx::GetUserToolsManager to obtain a pointer to the CUserToolsManager . For more information, see
User-defined Tools.

Returns the pointer to the CUserTool Class object that is associated with a specified command ID.

uiCmdId
[in] A menu command identifier.

A pointer to a CUserTool Class or CUserTool -derived object if success; otherwise NULL.

When FindTool is successful, the returned type is the same as the type of the pToolRTC parameter to
CWinAppEx::EnableUserTools.

Returns the resource ID that is associated with the Arguments menu on the Tools tab of the Customize dialog

UINT GetArgumentsMenuID() const;

Return ValueReturn Value

RemarksRemarks

CUserToolsManager::GetDefExt

const CString& GetDefExt() const;

Return ValueReturn Value

CUserToolsManager::GetFilter

const CString& GetFilter() const;

Return ValueReturn Value

CUserToolsManager::GetInitialDirMenuID

UINT GetInitialDirMenuID() const;

Return ValueReturn Value

RemarksRemarks

CUserToolsManager::GetMaxTools

int GetMaxTools() const;

Return ValueReturn Value

box.

The identifier of a menu resource.

The uArgMenuID parameter of CWinAppEx::EnableUserTools specifies the ID of the resource.

Returns the default extension that the File Open dialog box (CFileDialog) uses in the Command field on the
Tools tab of the Customize dialog box.

A reference to the CString object that contains the extension.

Returns the file filter that the File Open dialog box (CFileDialog Class) uses in the Command field on the
Tools tab of the Customize dialog box.

A reference to the CString object that contains the filter.

Returns the resource ID that is associated with the Initial directory menu on the Tools tab of the Customize
dialog box.

A menu resource identifier.

The returned ID is specified in the uInitDirMenuID parameter of CWinAppEx::EnableUserTools.

Returns the maximum number of user tools that can be allocated in the application.

RemarksRemarks

CUserToolsManager::GetToolsEntryCmd

UINT GetToolsEntryCmd() const;

Return ValueReturn Value

RemarksRemarks

CUserToolsManager::GetUserTools

const CObList& GetUserTools() const;

Return ValueReturn Value

RemarksRemarks

CUserToolsManager::InvokeTool

BOOL InvokeTool(UINT uiCmdId);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The maximum number of user tools that can be allocated.

Call this method to retrieve the maximum number of tools that can be allocated in the application. This number
is the number of IDs in the range from the uiCmdFirst through the uiCmdLast parameters that you pass to
CWinAppEx::EnableUserTools.

Returns the command ID of the menu item placeholder for user tools.

The command ID of the placeholder.

To enable user tools, you call CWinAppEx::EnableUserTools. The uiCmdToolsDummy parameter specifies the
command ID of the tools entry command. This method returns the tools entry command ID. Wherever that ID
is used in a menu, it is replaced by the list of user tools when the menu appears.

Returns a reference to the list of user tools.

A const reference to a CObList Class object that contains a list of user tools.

Call this method to retrieve a list of user tools that the CUserToolsManager object maintains. Each user tool is
represented by an object of type CUserTool Class or a type derived from CUserTool . The type is specified by the
pToolRTC parameter when you call CWinAppEx::EnableUserTools to enable user tools.

Executes an application associated with the user tool that has a specified command ID.

uiCmdId
[in] The menu command ID associated with the user tool.

Nonzero if the command associated with user tool was executed successfully; otherwise 0.

Call this method to execute an application associated with the user tool that has the command ID specified by
uiCmdId.

CUserToolsManager::IsUserToolCmd

BOOL IsUserToolCmd(UINT uiCmdId) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CUserToolsManager::LoadState

BOOL LoadState(LPCTSTR lpszProfileName=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CUserToolsManager::MoveToolDown

BOOL MoveToolDown(CUserTool* pTool);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CUserToolsManager::MoveToolUp

Determines whether a command ID is associated with a user tool.

uiCmdId
[in] A command ID of the menu item.

Nonzero if a given command ID is associated with a user tool; otherwise 0.

This method checks whether the given command ID is in the command ID range. You specify the range when
you call CWinAppEx::EnableUserTools to enable user tools.

Loads information about user tools from the Windows registry.

lpszProfileName
[in] The path of the Windows registry key.

Nonzero if the state was loaded successfully; otherwise 0.

This method loads the state of the CUserToolsManager object from the Windows registry.

Usually, you do not call this method directly. CWinAppEx::LoadState calls it as part of workspace initialization
process.

Moves the specified user tool down in the list of user tools.

pTool
[in] Specifies the user tool to move.

Nonzero if the user tool was moved down successfully; otherwise 0.

The method fails if the tool that the pTool specifies is not in the internal list or if the tool is last in the list.

CUserToolsManager::MoveToolUp

BOOL MoveToolUp(CUserTool* pTool);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CUserToolsManager::RemoveTool

BOOL RemoveTool(CUserTool* pTool);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CUserToolsManager::SaveState

BOOL SaveState(LPCTSTR lpszProfileName=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Moves the specified user tool up in the list of user tools.

pTool
[in] Specifies the user tool to move.

Nonzero if the user tool was moved up successfully; otherwise 0.

The method fails if the tool that the pTool parameter specifies is not in the internal list or if the tool is the first
tool item in the list.

Removes the specified user tool from the application.

pTool
[in, out] A pointer to a user tool to be removed.

TRUE if the tool is successfully removed. Otherwise, FALSE.

If the tool is successfully removed, this method deletes pTool.

Stores information about user tools in the Windows registry.

lpszProfileName
[in] A path to the Windows registry key.

Nonzero if the state was saved successfully; otherwise 0.

The method stores the current state of the CUserToolsManager object in the Windows registry.

Usually, you do not need to call this method directly, CWinAppEx::SaveState calls it automatically as a part of the
workspace serialization process of the application.

CUserToolsManager::SetDefExt

void SetDefExt(const CString& strDefExt);

ParametersParameters

RemarksRemarks

CUserToolsManager::SetFilter

void SetFilter(const CString& strFilter);

ParametersParameters

See also

Specifies the default extension that the File Open dialog box (CFileDialog Class) uses in the Command field
on the Tools tab of the Customize dialog box.

strDefExt
[in] A text string that contains the default file name extension.

Call this method to specify a default file name extension in the File Open dialog box, which is displayed when
the user selects an application to associate with the user tool. The default is "exe".

Specifies the file filter that the File Open dialog box (CFileDialog Class) uses in the Command field on the
Tools tab of the Customize dialog box.

strFilter
[in] Specifies the filter.

Hierarchy Chart
Classes
CWinAppEx Class
CUserTool Class

CView Class
3/4/2019 • 29 minutes to read • Edit Online

Syntax
class AFX_NOVTABLE CView : public CWnd

Members
Protected ConstructorsProtected Constructors

NAME DESCRIPTION

CView::CView Constructs a CView object.

Public MethodsPublic Methods

NAME DESCRIPTION

CView::DoPreparePrinting Displays Print dialog box and creates printer device
context; call when overriding the
OnPreparePrinting member function.

CView::GetDocument Returns the document associated with the view.

CView::IsSelected Tests whether a document item is selected.
Required for OLE support.

CView::OnDragEnter Called when an item is first dragged into the drag-
and-drop region of a view.

CView::OnDragLeave Called when a dragged item leaves the drag-and-
drop region of a view.

CView::OnDragOver Called when an item is dragged over the drag-
and-drop region of a view.

CView::OnDragScroll Called to determine whether the cursor is dragged
into the scroll region of the window.

CView::OnDrop Called when an item has been dropped into the
drag-and-drop region of a view, default handler.

CView::OnDropEx Called when an item has been dropped into the
drag-and-drop region of a view, primary handler.

CView::OnInitialUpdate Called after a view is first attached to a document.

Provides the basic functionality for user-defined view classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cview-class.md

CView::OnPrepareDC Called before the OnDraw member function is
called for screen display or the OnPrint member
function is called for printing or print preview.

CView::OnScroll Called when OLE items are dragged beyond the
borders of the view.

CView::OnScrollBy Called when a view containing active in-place OLE
items is scrolled.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CView::OnActivateFrame Called when the frame window containing the view
is activated or deactivated.

CView::OnActivateView Called when a view is activated.

CView::OnBeginPrinting Called when a print job begins; override to allocate
graphics device interface (GDI) resources.

CView::OnDraw Called to render an image of the document for
screen display, printing, or print preview.
Implementation required.

CView::OnEndPrinting Called when a print job ends; override to deallocate
GDI resources.

CView::OnEndPrintPreview Called when preview mode is exited.

CView::OnPreparePrinting Called before a document is printed or previewed;
override to initialize Print dialog box.

CView::OnPrint Called to print or preview a page of the document.

CView::OnUpdate Called to notify a view that its document has been
modified.

Remarks
A view is attached to a document and acts as an intermediary between the document and the
user : the view renders an image of the document on the screen or printer and interprets user
input as operations upon the document.

A view is a child of a frame window. More than one view can share a frame window, as in the
case of a splitter window. The relationship between a view class, a frame window class, and a
document class is established by a CDocTemplate object. When the user opens a new window
or splits an existing one, the framework constructs a new view and attaches it to the document.

A view can be attached to only one document, but a document can have multiple views
attached to it at once — for example, if the document is displayed in a splitter window or in
multiple child windows in a multiple document interface (MDI) application. Your application

can support different types of views for a given document type; for example, a word-
processing program might provide both a complete text view of a document and an outline
view that shows only the section headings. These different types of views can be placed in
separate frame windows or in separate panes of a single frame window if you use a splitter
window.

A view may be responsible for handling several different types of input, such as keyboard
input, mouse input or input via drag-and-drop, as well as commands from menus, toolbars, or
scroll bars. A view receives commands forwarded by its frame window. If the view does not
handle a given command, it forwards the command to its associated document. Like all
command targets, a view handles messages via a message map.

The view is responsible for displaying and modifying the document's data but not for storing it.
The document provides the view with the necessary details about its data. You can let the view
access the document's data members directly, or you can provide member functions in the
document class for the view class to call.

When a document's data changes, the view responsible for the changes typically calls the
CDocument::UpdateAllViews function for the document, which notifies all the other views by
calling the OnUpdate member function for each. The default implementation of OnUpdate

invalidates the view's entire client area. You can override it to invalidate only those regions of
the client area that map to the modified portions of the document.

To use CView , derive a class from it and implement the OnDraw member function to perform
screen display. You can also use OnDraw to perform printing and print preview. The framework
handles the print loop for printing and previewing your document.

A view handles scroll-bar messages with the CWnd::OnHScroll and CWnd::OnVScroll member
functions. You can implement scroll-bar message handling in these functions, or you can use
the CView derived class CScrollView to handle scrolling for you.

Besides CScrollView , the Microsoft Foundation Class Library provides nine other classes
derived from CView :

CCtrlView, a view that allows usage of document - view architecture with tree, list, and
rich edit controls.

CDaoRecordView, a view that displays database records in dialog-box controls.

CEditView, a view that provides a simple multiline text editor. You can use a CEditView
object as a control in a dialog box as well as a view on a document.

CFormView, a scrollable view that contains dialog-box controls and is based on a dialog
template resource.

CListView, a view that allows usage of document - view architecture with list controls.

CRecordView, a view that displays database records in dialog-box controls.

CRichEditView, a view that allows usage of document - view architecture with rich edit
controls.

CScrollView, a view that automatically provides scrolling support.

CTreeView, a view that allows usage of document - view architecture with tree controls.

The CView class also has a derived implementation class named CPreviewView , which is used
by the framework to perform print previewing. This class provides support for the features
unique to the print-preview window, such as a toolbar, single- or double-page preview, and

Inheritance Hierarchy

Requirements

CView::CView

CView();

RemarksRemarks

CView::DoPreparePrinting

BOOL DoPreparePrinting(CPrintInfo* pInfo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

zooming, that is, enlarging the previewed image. You don't need to call or override any of
CPreviewView 's member functions unless you want to implement your own interface for print

preview (for example, if you want to support editing in print preview mode). For more
information on using CView , see Document/View Architecture and Printing. In addition, see
Technical Note 30 for more details on customizing print preview.

CObject

CCmdTarget

CWnd

CView

Header: afxwin.h

Constructs a CView object.

The framework calls the constructor when a new frame window is created or a window is split.
Override the OnInitialUpdate member function to initialize the view after the document is
attached.

Call this function from your override of OnPreparePrinting to invoke the Print dialog box and
create a printer device context.

pInfo
Points to a CPrintInfo structure that describes the current print job.

Nonzero if printing or print preview can begin; 0 if the operation has been canceled.

This function's behavior depends on whether it is being called for printing or print preview
(specified by the m_bPreview member of the pInfo parameter). If a file is being printed, this
function invokes the Print dialog box, using the values in the CPrintInfo structure that pInfo
points to; after the user has closed the dialog box, the function creates a printer device context
based on settings the user specified in the dialog box and returns this device context through
the pInfo parameter. This device context is used to print the document.

CView::GetDocument

CDocument* GetDocument() const;

Return ValueReturn Value

RemarksRemarks

CView::IsSelected

virtual BOOL IsSelected(const CObject* pDocItem) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CView::OnActivateFrame

virtual void OnActivateFrame(
 UINT nState,
 CFrameWnd* pFrameWnd);

ParametersParameters

If a file is being previewed, this function creates a printer device context using the current
printer settings; this device context is used for simulating the printer during preview.

Call this function to get a pointer to the view's document.

A pointer to the CDocument object associated with the view. NULL if the view is not attached
to a document.

This allows you to call the document's member functions.

Called by the framework to check whether the specified document item is selected.

pDocItem
Points to the document item being tested.

Nonzero if the specified document item is selected; otherwise 0.

The default implementation of this function returns FALSE. Override this function if you are
implementing selection using CDocItem objects. You must override this function if your view
contains OLE items.

Called by the framework when the frame window containing the view is activated or
deactivated.

nState
Specifies whether the frame window is being activated or deactivated. It can be one of the
following values:

WA_INACTIVE The frame window is being deactivated.

WA_ACTIVE The frame window is being activated through some method other than a
mouse click (for example, by use of the keyboard interface to select the window).

RemarksRemarks

CView::OnActivateView

virtual void OnActivateView(
 BOOL bActivate,
 CView* pActivateView,
 CView* pDeactiveView);

ParametersParameters

RemarksRemarks

CView::OnBeginPrinting

virtual void OnBeginPrinting(
 CDC* pDC,
 CPrintInfo* pInfo);

WA_CLICKACTIVE The frame window is being activated by a mouse click

pFrameWnd
Pointer to the frame window that is to be activated.

Override this member function if you want to perform special processing when the frame
window associated with the view is activated or deactivated. For example, CFormView
performs this override when it saves and restores the control that has focus.

Called by the framework when a view is activated or deactivated.

bActivate
Indicates whether the view is being activated or deactivated.

pActivateView
Points to the view object that is being activated.

pDeactiveView
Points to the view object that is being deactivated.

The default implementation of this function sets the focus to the view being activated. Override
this function if you want to perform special processing when a view is activated or deactivated.
For example, if you want to provide special visual cues that distinguish the active view from the
inactive views, you would examine the bActivate parameter and update the view's appearance
accordingly.

The pActivateView and pDeactiveView parameters point to the same view if the application's
main frame window is activated with no change in the active view — for example, if the focus is
being transferred from another application to this one, rather than from one view to another
within the application or when switching amongst MDI child windows. This allows a view to
re-realize its palette, if needed.

These parameters differ when CFrameWnd::SetActiveView is called with a view that is
different from what CFrameWnd::GetActiveView would return. This happens most often with
splitter windows.

Called by the framework at the beginning of a print or print preview job, after
OnPreparePrinting has been called.

ParametersParameters

RemarksRemarks

CView::OnDragEnter

virtual DROPEFFECT OnDragEnter(
 COleDataObject* pDataObject,
 DWORD dwKeyState,
 CPoint point);

ParametersParameters

Return ValueReturn Value

pDC
Points to the printer device context.

pInfo
Points to a CPrintInfo structure that describes the current print job.

The default implementation of this function does nothing. Override this function to allocate
any GDI resources, such as pens or fonts, needed specifically for printing. Select the GDI
objects into the device context from within the OnPrint member function for each page that
uses them. If you are using the same view object to perform both screen display and printing,
use separate variables for the GDI resources needed for each display; this allows you to update
the screen during printing.

You can also use this function to perform initializations that depend on properties of the
printer device context. For example, the number of pages needed to print the document may
depend on settings that the user specified from the Print dialog box (such as page length). In
such a situation, you cannot specify the document length in the OnPreparePrinting member
function, where you would normally do so; you must wait until the printer device context has
been created based on the dialog box settings. OnBeginPrinting is the first overridable function
that gives you access to the CDC object representing the printer device context, so you can set
the document length from this function. Note that if the document length is not specified by
this time, a scroll bar is not displayed during print preview.

Called by the framework when the mouse first enters the non-scrolling region of the drop
target window.

pDataObject
Points to the COleDataObject being dragged into the drop area of the view.

dwKeyState
Contains the state of the modifier keys. This is a combination of any number of the following:
MK_CONTROL, MK_SHIFT, MK_ALT, MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point
The current mouse position relative to the client area of the view.

A value from the DROPEFFECT enumerated type, which indicates the type of drop that would
occur if the user dropped the object at this position. The type of drop usually depends on the
current key state indicated by dwKeyState. A standard mapping of keystates to DROPEFFECT
values is:

DROPEFFECT_NONE The data object cannot be dropped in this window.

DROPEFFECT_LINK for MK_CONTROL | MK_SHIFT Creates a linkage between the

RemarksRemarks

CView::OnDragLeave

virtual void OnDragLeave();

RemarksRemarks

CView::OnDragOver

virtual DROPEFFECT OnDragOver(
 COleDataObject* pDataObject,
 DWORD dwKeyState,
 CPoint point);

ParametersParameters

Return ValueReturn Value

object and its server.

DROPEFFECT_COPY for MK_CONTROL Creates a copy of the dropped object.

DROPEFFECT_MOVE for MK_ALT Creates a copy of the dropped object and delete the
original object. This is typically the default drop effect, when the view can accept this
data object.

For more information, see the MFC Advanced Concepts sample OCLIENT.

Default implementation is to do nothing and return DROPEFFECT_NONE.

Override this function to prepare for future calls to the OnDragOver member function. Any
data required from the data object should be retrieved at this time for later use in the
OnDragOver member function. The view should also be updated at this time to give the user

visual feedback. For more information, see the article Drag and Drop: Implementing a Drop
Target.

Called by the framework during a drag operation when the mouse is moved out of the valid
drop area for that window.

Override this function if the current view needs to clean up any actions taken during
OnDragEnter or OnDragOver calls, such as removing any visual user feedback while the
object was dragged and dropped.

Called by the framework during a drag operation when the mouse is moved over the drop
target window.

pDataObject
Points to the COleDataObject being dragged over the drop target.

dwKeyState
Contains the state of the modifier keys. This is a combination of any number of the following:
MK_CONTROL, MK_SHIFT, MK_ALT, MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point
The current mouse position relative to the view client area.

A value from the DROPEFFECT enumerated type, which indicates the type of drop that would
occur if the user dropped the object at this position. The type of drop often depends on the

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CView::OnDragScroll

virtual DROPEFFECT OnDragScroll(
 DWORD dwKeyState,
 CPoint point);

ParametersParameters

Return ValueReturn Value

current key state as indicated by dwKeyState. A standard mapping of keystates to
DROPEFFECT values is:

DROPEFFECT_NONE The data object cannot be dropped in this window.

DROPEFFECT_LINK for MK_CONTROL | MK_SHIFT Creates a linkage between the
object and its server.

DROPEFFECT_COPY for MK_CONTROL Creates a copy of the dropped object.

DROPEFFECT_MOVE for MK_ALT Creates a copy of the dropped object and delete the
original object. This is typically the default drop effect, when the view can accept the
data object.

For more information, see the MFC Advanced Concepts sample OCLIENT.

The default implementation is to do nothing and return DROPEFFECT_NONE.

Override this function to give the user visual feedback during the drag operation. Since this
function is called continuously, any code contained within it should be optimized as much as
possible. For more information, see the article Drag and Drop: Implementing a Drop Target.

Called by the framework before calling OnDragEnter or OnDragOver to determine whether
the point is in the scrolling region.

dwKeyState
Contains the state of the modifier keys. This is a combination of any number of the following:
MK_CONTROL, MK_SHIFT, MK_ALT, MK_LBUTTON, MK_MBUTTON, and MK_RBUTTON.

point
Contains the location of the cursor, in pixels, relative to the screen.

A value from the DROPEFFECT enumerated type, which indicates the type of drop that would
occur if the user dropped the object at this position. The type of drop usually depends on the
current key state indicated by dwKeyState. A standard mapping of keystates to DROPEFFECT
values is:

DROPEFFECT_NONE The data object cannot be dropped in this window.

DROPEFFECT_LINK for MK_CONTROL | MK_SHIFT Creates a linkage between the
object and its server.

DROPEFFECT_COPY for MK_CONTROL Creates a copy of the dropped object.

DROPEFFECT_MOVE for MK_ALT Creates a copy of the dropped object and delete the
original object.

DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to occur or is
occurring in the target view.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

RemarksRemarks

CView::OnDraw

virtual void OnDraw(CDC* pDC) = 0;

ParametersParameters

RemarksRemarks

CView::OnDrop

virtual BOOL OnDrop(
 COleDataObject* pDataObject,
 DROPEFFECT dropEffect,
 CPoint point);

ParametersParameters

For more information, see the MFC Advanced Concepts sample OCLIENT.

Override this function when you want to provide special behavior for this event. The default
implementation automatically scrolls windows when the cursor is dragged into the default
scroll region inside the border of each window.For more information, see the article Drag and
Drop: Implementing a Drop Target.

Called by the framework to render an image of the document.

pDC
Points to the device context to be used for rendering an image of the document.

The framework calls this function to perform screen display, printing, and print preview, and it
passes a different device context in each case. There is no default implementation.

You must override this function to display your view of the document. You can make graphic
device interface (GDI) calls using the CDC object pointed to by the pDC parameter. You can
select GDI resources, such as pens or fonts, into the device context before drawing and then
deselect them afterwards. Often your drawing code can be device-independent; that is, it
doesn't require information about what type of device is displaying the image.

To optimize drawing, call the RectVisible member function of the device context to find out
whether a given rectangle will be drawn. If you need to distinguish between normal screen
display and printing, call the IsPrinting member function of the device context.

Called by the framework when the user releases a data object over a valid drop target.

`pDataObject* Points to the COleDataObject that is dropped into the drop target.

dropEffect
The drop effect that the user has requested.

DROPEFFECT_COPY Creates a copy of the data object being dropped.

DROPEFFECT_MOVE Moves the data object to the current mouse location.

DROPEFFECT_LINK Creates a link between a data object and its server.

point
The current mouse position relative to the view client area.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CView::OnDropEx

virtual DROPEFFECT OnDropEx(
 COleDataObject* pDataObject,
 DROPEFFECT dropDefault,
 DROPEFFECT dropList,
 CPoint point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Nonzero if the drop was successful; otherwise 0.

The default implementation does nothing and returns FALSE.

Override this function to implement the effect of an OLE drop into the client area of the view.
The data object can be examined via pDataObject for Clipboard data formats and data
dropped at the specified point.

The framework does not call this function if there is an override to OnDropEx in this view class.

Called by the framework when the user releases a data object over a valid drop target.

pDataObject
Points to the COleDataObject that is dropped into the drop target.

dropDefault
The effect that the user chose for the default drop operation based on the current key state. It
may be DROPEFFECT_NONE. Drop effects are discussed in the Remarks section.

dropList
A list of the drop effects that the drop source supports. Drop effect values can be combined
using the bitwise OR (|) operation. Drop effects are discussed in the Remarks section.

point
The current mouse position relative to the view client area.

The drop effect that resulted from the drop attempt at the location specified by point. This
must be one of the values indicated by dropEffectList. Drop effects are discussed in the
Remarks section.

The default implementation is to do nothing and return a dummy value (-1) to indicate that
the framework should call the OnDrop handler.

Override this function to implement the effect of an right mouse-button drag and drop. Right
mouse-button drag and drop typically displays a menu of choices when the right mouse-
button is released.

Your override of OnDropEx should query for the right mouse-button. You can call GetKeyState
or store the right mouse-button state from your OnDragEnter handler.

If the right mouse-button is down, your override should display a popup menu which

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getkeystate

CView::OnEndPrinting

virtual void OnEndPrinting(
 CDC* pDC,
 CPrintInfo* pInfo);

ParametersParameters

RemarksRemarks

CView::OnEndPrintPreview

offers the drop effects support by the drop source.

Examine dropList to determine the drop effects supported by the drop source.
Enable only these actions on the popup menu.

Use SetMenuDefaultItem to set the default action based on dropDefault.

Finally, take the action indicated by the user selection from the popup menu.

If the right mouse-button is not down, your override should process this as a standard
drop request. Use the drop effect specified in dropDefault. Alternately, your override
can return the dummy value (-1) to indicate that OnDrop will handle this drop
operation.

Use pDataObject to examine the COleDataObject for Clipboard data format and data dropped
at the specified point.

Drop effects describe the action associated with a drop operation. See the following list of drop
effects:

DROPEFFECT_NONE A drop would not be allowed.

DROPEFFECT_COPY A copy operation would be performed.

DROPEFFECT_MOVE A move operation would be performed.

DROPEFFECT_LINK A link from the dropped data to the original data would be
established.

DROPEFFECT_SCROLL Indicates that a drag scroll operation is about to occur or is
occurring in the target.

For more information on setting the default menu command, see SetMenuDefaultItem in the
Windows SDK and CMenu::GetSafeHmenu in this volume.

Called by the framework after a document has been printed or previewed.

pDC
Points to the printer device context.

pInfo
Points to a CPrintInfo structure that describes the current print job.

The default implementation of this function does nothing. Override this function to free any
GDI resources you allocated in the OnBeginPrinting member function.

Called by the framework when the user exits print preview mode.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setmenudefaultitem
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setmenudefaultitem

virtual void OnEndPrintPreview(
 CDC* pDC,
 CPrintInfo* pInfo,
 POINT point,
 CPreviewView* pView);

ParametersParameters

RemarksRemarks

CView::OnInitialUpdate

virtual void OnInitialUpdate();

RemarksRemarks

CView::OnPrepareDC

pDC
Points to the printer device context.

pInfo
Points to a CPrintInfo structure that describes the current print job.

point
Specifies the point on the page that was last displayed in preview mode.

pView
Points to the view object used for previewing.

The default implementation of this function calls the OnEndPrinting member function and
restores the main frame window to the state it was in before print preview began. Override this
function to perform special processing when preview mode is terminated. For example, if you
want to maintain the user's position in the document when switching from preview mode to
normal display mode, you can scroll to the position described by the point parameter and the
m_nCurPage member of the CPrintInfo structure that the pInfo parameter points to.

Always call the base class version of OnEndPrintPreview from your override, typically at the end
of the function.

Called by the framework after the view is first attached to the document, but before the view is
initially displayed.

The default implementation of this function calls the OnUpdate member function with no hint
information (that is, using the default values of 0 for the lHint parameter and NULL for the
pHint parameter). Override this function to perform any one-time initialization that requires
information about the document. For example, if your application has fixed-sized documents,
you can use this function to initialize a view's scrolling limits based on the document size. If
your application supports variable-sized documents, use OnUpdate to update the scrolling
limits every time the document changes.

Called by the framework before the OnDraw member function is called for screen display and
before the OnPrint member function is called for each page during printing or print preview.

virtual void OnPrepareDC(
 CDC* pDC,
 CPrintInfo* pInfo = NULL);

ParametersParameters

RemarksRemarks

ExampleExample

pDC
Points to the device context to be used for rendering an image of the document.

pInfo
Points to a CPrintInfo structure that describes the current print job if OnPrepareDC is being
called for printing or print preview; the m_nCurPage member specifies the page about to be
printed. This parameter is NULL if OnPrepareDC is being called for screen display.

The default implementation of this function does nothing if the function is called for screen
display. However, this function is overridden in derived classes, such as CScrollView, to adjust
attributes of the device context; consequently, you should always call the base class
implementation at the beginning of your override.

If the function is called for printing, the default implementation examines the page information
stored in the pInfo parameter. If the length of the document has not been specified,
OnPrepareDC assumes the document to be one page long and stops the print loop after one

page has been printed. The function stops the print loop by setting the m_bContinuePrinting

member of the structure to FALSE.

Override OnPrepareDC for any of the following reasons:

To adjust attributes of the device context as needed for the specified page. For example,
if you need to set the mapping mode or other characteristics of the device context, do so
in this function.

To perform print-time pagination. Normally you specify the length of the document
when printing begins, using the OnPreparePrinting member function. However, if you
don't know in advance how long the document is (for example, when printing an
undetermined number of records from a database), override OnPrepareDC to test for the
end of the document while it is being printed. When there is no more of the document
to be printed, set the m_bContinuePrinting member of the CPrintInfo structure to
FALSE.

To send escape codes to the printer on a page-by-page basis. To send escape codes from
OnPrepareDC , call the Escape member function of the pDC parameter.

Call the base class version of OnPrepareDC at the beginning of your override.

void CMyView::OnPrepareDC (CDC* pDC, CPrintInfo* pInfo)
{
 CView::OnPrepareDC(pDC, pInfo);

 // If we are printing, set the mapmode and the window
 // extent properly, then set viewport extent. Use the
 // SetViewportOrg member function in the CDC class to
 // move the viewport origin to the center of the view.

 if(pDC->IsPrinting()) // Is the DC a printer DC.
 {
 CRect rect;
 GetClientRect (&rect);

 pDC->SetMapMode(MM_ISOTROPIC);
 CSize ptOldWinExt = pDC->SetWindowExt(1000, 1000);
 ASSERT(ptOldWinExt.cx != 0 && ptOldWinExt.cy != 0);
 CSize ptOldViewportExt = pDC->SetViewportExt(rect.Width(), -rect.Height());
 ASSERT(ptOldViewportExt.cx != 0 && ptOldViewportExt.cy != 0);
 CPoint ptOldOrigin = pDC->SetViewportOrg(rect.Width()/2, rect.Height()/2);
 }
}

CView::OnPreparePrinting

virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Called by the framework before a document is printed or previewed.

pInfo
Points to a CPrintInfo structure that describes the current print job.

Nonzero to begin printing; 0 if the print job has been canceled.

The default implementation does nothing.

You must override this function to enable printing and print preview. Call the
DoPreparePrinting member function, passing it the pInfo parameter, and then return its return
value; DoPreparePrinting displays the Print dialog box and creates a printer device context. If
you want to initialize the Print dialog box with values other than the defaults, assign values to
the members of pInfo. For example, if you know the length of the document, pass the value to
the SetMaxPage member function of pInfo before calling DoPreparePrinting . This value is
displayed in the To: box in the Range portion of the Print dialog box.

DoPreparePrinting does not display the Print dialog box for a preview job. If you want to
bypass the Print dialog box for a print job, check that the m_bPreview member of pInfo is
FALSE and then set it to TRUE before passing it to DoPreparePrinting ; reset it to FALSE
afterwards.

If you need to perform initializations that require access to the CDC object representing the
printer device context (for example, if you need to know the page size before specifying the
length of the document), override the OnBeginPrinting member function.

If you want to set the value of the m_nNumPreviewPages or m_strPageDesc members of the pInfo

ExampleExample

BOOL CMyEditView::OnPreparePrinting(CPrintInfo* pInfo)
{
 return CEditView::DoPreparePrinting(pInfo);
}

BOOL CExampleView::OnPreparePrinting(CPrintInfo* pInfo)
{
 //The document has 2 pages.
 pInfo->SetMaxPage(2);
 return CView::DoPreparePrinting(pInfo);
}

CView::OnPrint

virtual void OnPrint(
 CDC* pDC,
 CPrintInfo* pInfo);

ParametersParameters

RemarksRemarks

parameter, do so after calling DoPreparePrinting . The DoPreparePrinting member function
sets m_nNumPreviewPages to the value found in the application's .INI file and sets m_strPageDesc
to its default value.

Override OnPreparePrinting and call DoPreparePrinting from the override so that the
framework will display a Print dialog box and create a printer DC for you.

If you know how many pages the document contains, set the maximum page in
OnPreparePrinting before calling DoPreparePrinting . The framework will display the

maximum page number in the "to" box of the Print dialog box.

Called by the framework to print or preview a page of the document.

pDC
Points to the printer device context.

pInfo
Points to a CPrintInfo structure that describes the current print job.

For each page being printed, the framework calls this function immediately after calling the
OnPrepareDC member function. The page being printed is specified by the m_nCurPage

member of the CPrintInfo structure that pInfo points to. The default implementation calls the
OnDraw member function and passes it the printer device context.

Override this function for any of the following reasons:

To allow printing of multipage documents. Render only the portion of the document
that corresponds to the page currently being printed. If you're using OnDraw to perform
the rendering, you can adjust the viewport origin so that only the appropriate portion of
the document is printed.

To make the printed image look different from the screen image (that is, if your
application is not WYSIWYG). Instead of passing the printer device context to OnDraw ,
use the device context to render an image using attributes not shown on the screen.

ExampleExample

void CMyView::OnPrint(CDC *pDC, CPrintInfo *pInfo)
{
 UNREFERENCED_PARAMETER(pInfo);

 // Print headers and/or footers, if desired.
 // Find portion of document corresponding to pInfo->m_nCurPage.
 OnDraw(pDC);
}

CView::OnScroll

virtual BOOL OnScroll(
 UINT nScrollCode,
 UINT nPos,
 BOOL bDoScroll = TRUE);

ParametersParameters

If you need GDI resources for printing that you don't use for screen display, select them
into the device context before drawing and deselect them afterwards. These GDI
resources should be allocated in OnBeginPrinting and released in OnEndPrinting.

To implement headers or footers. You can still use OnDraw to do the rendering by
restricting the area that it can print on.

Note that the m_rectDraw member of the pInfo parameter describes the printable area of the
page in logical units.

Do not call OnPrepareDC in your override of OnPrint ; the framework calls OnPrepareDC

automatically before calling OnPrint .

The following is a skeleton for an overridden OnPrint function:

For another example, see CRichEditView::PrintInsideRect.

Called by the framework to determine whether scrolling is possible.

nScrollCode
A scroll-bar code that indicates the user's scrolling request. This parameter is composed of two
parts: a low-order byte, which determines the type of scrolling occurring horizontally, and a
high-order byte, which determines the type of scrolling occurring vertically:

SB_BOTTOM Scrolls to bottom.

SB_LINEDOWN Scrolls one line down.

SB_LINEUP Scrolls one line up.

SB_PAGEDOWN Scrolls one page down.

SB_PAGEUP Scrolls one page up.

SB_THUMBTRACK Drags scroll box to specified position. The current position is
specified in nPos.

SB_TOP Scrolls to top.

nPos

Return ValueReturn Value

RemarksRemarks

CView::OnScrollBy

virtual BOOL OnScrollBy(
 CSize sizeScroll,
 BOOL bDoScroll = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CView::OnUpdate

Contains the current scroll-box position if the scroll-bar code is SB_THUMBTRACK; otherwise
it is not used. Depending on the initial scroll range, nPos may be negative and should be cast to
an int if necessary.

bDoScroll
Determines whether you should actually do the specified scrolling action. If TRUE, then
scrolling should take place; if FALSE, then scrolling should not occur.

If bDoScroll is TRUE and the view was actually scrolled, then return nonzero; otherwise 0. If
bDoScroll is FALSE, then return the value that you would have returned if bDoScroll were
TRUE, even though you don't actually do the scrolling.

In one case this function is called by the framework with bDoScroll set to TRUE when the view
receives a scrollbar message. In this case, you should actually scroll the view. In the other case
this function is called with bDoScroll set to FALSE when an OLE item is initially dragged into
the auto-scrolling region of a drop target before scrolling actually takes place. In this case, you
should not actually scroll the view.

Called by the framework when the user views an area beyond the present view of the
document, either by dragging an OLE item against the view's current borders or by
manipulating the vertical or horizontal scrollbars.

sizeScroll
Number of pixels scrolled horizontally and vertically.

bDoScroll
Determines whether scrolling of the view occurs. If TRUE, then scrolling takes place; if FALSE,
then scrolling does not occur.

Nonzero if the view was able to be scrolled; otherwise 0.

In derived classes this method checks to see whether the view is scrollable in the direction the
user requested and then updates the new region if necessary. This function is automatically
called by CWnd::OnHScroll and CWnd::OnVScroll to perform the actual scrolling request.

The default implementation of this method does not change the view, but if it is not called, the
view will not scroll in a CScrollView -derived class.

If the document width or height exceeds 32767 pixels, scrolling past 32767 will fail because
OnScrollBy is called with an invalid sizeScroll argument.

Called by the framework after the view's document has been modified; this function is called

virtual void OnUpdate(
 CView* pSender,
 LPARAM lHint,
 CObject* pHint);

ParametersParameters

RemarksRemarks

See also

by CDocument::UpdateAllViews and allows the view to update its display to reflect those
modifications.

pSender
Points to the view that modified the document, or NULL if all views are to be updated.

lHint
Contains information about the modifications.

pHint
Points to an object storing information about the modifications.

It is also called by the default implementation of OnInitialUpdate. The default implementation
invalidates the entire client area, marking it for painting when the next WM_PAINT message is
received. Override this function if you want to update only those regions that map to the
modified portions of the document. To do this you must pass information about the
modifications using the hint parameters.

To use lHint, define special hint values, typically a bitmask or an enumerated type, and have the
document pass one of these values. To use pHint, derive a hint class from CObject and have the
document pass a pointer to a hint object; when overriding OnUpdate , use the CObject::IsKindOf
member function to determine the run-time type of the hint object.

Typically you should not perform any drawing directly from OnUpdate . Instead, determine the
rectangle describing, in device coordinates, the area that requires updating; pass this rectangle
to CWnd::InvalidateRect. This causes painting to occur the next time a WM_PAINT message is
received.

If lHint is 0 and pHint is NULL, the document has sent a generic update notification. If a view
receives a generic update notification, or if it cannot decode the hints, it should invalidate its
entire client area.

MFC Sample MDIDOCVW
CWnd Class
Hierarchy Chart
CWnd Class
CFrameWnd Class
CSplitterWnd Class
CDC Class
CDocTemplate Class
CDocument Class

https://docs.microsoft.com/windows/desktop/gdi/wm-paint
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CVSListBox Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CVSListBox : public CVSListBoxBase

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CVSListBox::CVSListBox Constructs a CVSListBox object.

CVSListBox::~CVSListBox Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CVSListBox::AddItem Adds a string to a list control. (Overrides
CVSListBoxBase::AddItem .)

CVSListBox::EditItem Starts an edit operation on the text of a list control item.
(Overrides CVSListBoxBase::EditItem .)

CVSListBox::GetCount Retrieves the number of strings in an editable list control.
(Overrides CVSListBoxBase::GetCount .)

CVSListBox::GetItemData Retrieves an application-specific 32-bit value that is associated
with an editable list control item. (Overrides
CVSListBoxBase::GetItemData .)

CVSListBox::GetItemText Retrieves the text of an editable list control item. (Overrides
CVSListBoxBase::GetItemText .)

CVSListBox::GetSelItem Retrieves the zero-based index of the currently selected item
in an editable list control. (Overrides
CVSListBoxBase::GetSelItem .)

CVSListBox::PreTranslateMessage Translates window messages before they are dispatched to the
TranslateMessage and DispatchMessage Windows functions.
For more information and method syntax, see
CWnd::PreTranslateMessage. (Overrides
CVSListBoxBase::PreTranslateMessage .)

The CVSListBox class supports an editable list control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cvslistbox-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CVSListBox::RemoveItem Removes an item from an editable list control. (Overrides
CVSListBoxBase::RemoveItem .)

CVSListBox::SelectItem Selects an editable list control string. (Overrides
CVSListBoxBase::SelectItem .)

CVSListBox::SetItemData Associates an application-specific 32-bit value with an editable
list control item. (Overrides CVSListBoxBase::SetItemData .)

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CVSListBox::GetListHwnd Returns the handle to the current embedded list view control.

Remarks

Inheritance Hierarchy

Requirements

The CVSListBox class provides a set of edit buttons that enable the user to create, modify, delete, or rearrange the
items in a list control.

The following is a picture of the editable list control. The second list entry, which is titled "Item2", is selected for
editing.

If you use the resource editor to add an editable list control, notice that the Toolbox pane of the editor does not
provide a predefined editable list control. Instead, add a static control such as the Group Box control. The
framework uses the static control as a placeholder to specify the size and position of the editable list control.

To use an editable list control in a dialog box template, declare a CVSListBox variable in your dialog box class. To
support data exchange between the variable and the control, define a DDX_Control macro entry in the
DoDataExchange method of the dialog box. By default, the editable list control is created without edit buttons. Use

the inherited CVSListBoxBase::SetStandardButtons method to enable the edit buttons.

For more information, see the Samples directory, the New Controls sample, the Page3.cpp and Page3.h files.

CObject

CCmdTarget

CWnd

CStatic

CVSListBoxBase

CVSListBox

CVSListBox::AddItem

virtual int AddItem(
 const CString& strIext,
 DWORD_PTR dwData=0,
 int iIndex=-1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CVSListBox::CVSListBox

CVSListBox();

Return ValueReturn Value

RemarksRemarks

CVSListBox::EditItem

virtual BOOL EditItem(int iIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Header: afxvslistbox.h

Adds a string to a list control.

strIext
[in] A reference to a string.

dwData
[in] An application-specific 32-bit value that is associated with the string. The default value is 0.

iIndex
[in] The zero-based index of the position that will hold the string. If the iIndex parameter is -1, the string is added
to the end of the list. The default value is -1.

The zero-based index of the position of the string in the list control.

Use the CVSListBox::GetItemData method to retrieve the value that is specified by the dwData parameter. This
value can be an application-specific integer or a pointer to other data.

Constructs a CVSListBox object.

Starts an edit operation on the text of a list control item.

iIndex
[in] Zero-based index of a list control item.

TRUE if the edit operation starts successfully; otherwise, FALSE.

The user starts an edit operation either by double-clicking the label of an item, or by pressing the F2 or

CVSListBox::GetCount

virtual int GetCount() const;

Return ValueReturn Value

RemarksRemarks

CVSListBox::GetItemData

virtual DWORD_PTR GetItemData(int iIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CVSListBox::GetItemText

virtual CString GetItemText(int iIndex) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CVSListBox::GetListHwnd

virtual HWND GetListHwnd() const;

SPACEBAR key when an item has the focus.

Retrieves the number of strings in an editable list control.

The number of items in the list control.

Note that the count is one greater than the index value of the last item because the index is zero-based.

Retrieves an application-specific 32-bit value that is associated with an editable list control item.

iIndex
[in] The zero-based index of an editable list control item.

The 32-bit value that is associated with the specified item.

Use the CVSListBox::SetItemData or CVSListBox::AddItem method to associate the 32-bit value with the list
control item. This value can be an application-specific integer or a pointer to other data.

Retrieves the text of an editable list control item.

iIndex
[in] The zero-based index of an editable list control item.

A CString object that contains the text of the specified item.

Returns the handle to the current embedded list view control.

Return ValueReturn Value

RemarksRemarks

CVSListBox::GetSelItem

virtual int GetSelItem() const;

Return ValueReturn Value

RemarksRemarks

CVSListBox::RemoveItem

virtual BOOL RemoveItem(int iIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CVSListBox::SelectItem

virtual BOOL SelectItem(int iItem);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CVSListBox::SetItemData

A handle to the embedded list view control.

Use this method to retrieve a handle to the embedded list view control that supports the CVSListBox class.

Retrieves the zero-based index of the currently selected item in an editable list control.

If this method is successful, the zero-based index of the currently selected item; otherwise, -1.

Removes an item from an editable list control.

iIndex
[in] The zero-based index of an editable list control item.

TRUE if the specified item is removed; otherwise, FALSE.

Selects an editable list control string.

iItem
[in] The zero-based index of an editable list control item.

TRUE if this method is successful; otherwise, FALSE.

This method selects the specified item, and if it is required, scrolls the item into view.

Associates an application-specific 32-bit value with an editable list control item.

virtual void SetItemData(
 int iIndex,
 DWORD_PTR dwData);

ParametersParameters

RemarksRemarks

See also

iIndex
[in] The zero-based index of an editable list control item.

dwData
[in] A 32-bit value. This value can be an application-specific integer or a pointer to other data.

Hierarchy Chart
Classes

CWaitCursor Class
3/4/2019 • 4 minutes to read • Edit Online

Syntax
class CWaitCursor

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWaitCursor::CWaitCursor Constructs a CWaitCursor object and displays the wait
cursor.

Public MethodsPublic Methods

NAME DESCRIPTION

CWaitCursor::Restore Restores the wait cursor after it's been changed.

Remarks

NOTENOTE

Provides a one-line way to show a wait cursor, which is usually displayed as an hourglass, while you're doing a
lengthy operation.

CWaitCursor does not have a base class.

Good Windows programming practices require that you display a wait cursor whenever you're performing an
operation that takes a noticeable amount of time.

To display a wait cursor, just define a CWaitCursor variable before the code that performs the lengthy operation.
The object's constructor automatically causes the wait cursor to be displayed.

When the object goes out of scope (at the end of the block in which the CWaitCursor object is declared), its
destructor sets the cursor to the previous cursor. In other words, the object performs the necessary clean-up
automatically.

Because of how their constructors and destructors work, CWaitCursor objects are always declared as local variables —
they're never declared as global variables nor are they allocated with new.

If you perform an operation which might cause the cursor to be changed, such as displaying a message box or
dialog box, call the Restore member function to restore the wait cursor. It is okay to call Restore even when a wait
cursor is currently displayed.

Another way to display a wait cursor is to use the combination of CCmdTarget::BeginWaitCursor,

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cwaitcursor-class.md

NOTENOTE

Inheritance Hierarchy

Requirements

Example
BOOL SomeLengthyProcess()
{
 CWaitCursor wait;
 //Do the lengthy processing.
 Sleep(1000);

 AfxMessageBox(_T("Some result")); //This changes the cursor.
 wait.Restore(); //Restore the Wait cursor.
 //Continue Processing.
 Sleep(1000);

 //The destructor changes the cursor back to Regular cursor.
 return TRUE;

}

CWaitCursor::CWaitCursor

CWaitCursor();

RemarksRemarks

CCmdTarget::EndWaitCursor, and perhaps CCmdTarget::RestoreWaitCursor. However, CWaitCursor is easier to
use because you don't need to set the cursor to the previous cursor when you're done with the lengthy operation.

MFC sets and restores the cursor using the CWinApp::DoWaitCursor virtual function. You can override this function to
provide custom behavior.

CWaitCursor

Header: afxwin.h

To display a wait cursor, just declare a CWaitCursor object before the code that performs the lengthy operation.

The constructor automatically causes the wait cursor to be displayed.

When the object goes out of scope (at the end of the block in which the CWaitCursor object is declared), its
destructor sets the cursor to the previous cursor. In other words, the object performs the necessary clean-up
automatically.

You can take advantage of the fact that the destructor is called at the end of the block (which might be before the
end of the function) to make the wait cursor active in only part of your function. This technique is shown in the
second example below.

NOTENOTE

ExampleExample

// The following example illustrates the most common case
// of displaying the wait cursor during some lengthy
// processing.
void LengthyFunction()
{
 // perhaps you display a dialog box before displaying a
 // wait cursor

 CWaitCursor wait; // display wait cursor

 // do some lengthy processing
 Sleep(1000);

} // destructor automatically removes the wait cursor

// This example shows using a CWaitCursor object inside a block
// so the wait cursor is displayed only while the program is
// performing a lengthy operation.
void ConditionalFunction()
{
 if (SomeCondition)
 {
 CWaitCursor wait; // display wait cursor in this block only

 // do some lengthy processing
 Sleep(1000);

 } // at this point, the destructor removes the wait cursor
 else
 {
 // no wait cursor--only quick processing
 }
}

CWaitCursor::Restore

void Restore();

RemarksRemarks

ExampleExample

Because of how their constructors and destructors work, CWaitCursor objects are always declared as local variables —
they're never declared as global variables, nor are they allocated with new.

To restore the wait cursor, call this function after performing an operation, such as displaying a message box or
dialog box, which might change the wait cursor to another cursor.

It is OK to call Restore even when the wait cursor is currently displayed.

If you need to restore the wait cursor while in a function other than the one in which the CWaitCursor object is
declared, you can call CCmdTarget::RestoreWaitCursor.

// This example illustrates performing an operation
// which changes the wait cursor. You should call
// CWaitCursor::Restore to restore the wait
// cursor after an operation which changes the cursor.
void AnotherLengthyFunction()
{
 CWaitCursor wait; // display wait cursor

 // do some lengthy processing
 Sleep(1000);

 // The dialog box will normally change the cursor to
 // the standard arrow cursor.
 CFileDialog dlg(TRUE);
 dlg.DoModal();

 // It is necessary to call Restore here in order
 // to change the cursor back to the wait cursor.
 wait.Restore();

 // do some more lengthy processing
 Sleep(1000);

 // destructor automatically removes the wait cursor
}

// If the wait cursor is changed by a function called by
// the function which created the wait cursor, you
// can call CCmdTarget::RestoreWaitCursor to restore
// the wait cursor.
void CalledFunction()
{
 CFileDialog dlg(TRUE);
 dlg.DoModal();

 // Since CWinApp is derived from CCmdTarget, we can use a
 // pointer to our application object to make the call to
 // CCmdTarget::RestoreWaitCursor.
 AfxGetApp()->RestoreWaitCursor();

 // Yet more lengthy processing...
 Sleep(1000);
}

See also
Hierarchy Chart
CCmdTarget::BeginWaitCursor
CCmdTarget::EndWaitCursor
CCmdTarget::RestoreWaitCursor
CWinApp::DoWaitCursor
How Do I: Change the Mouse Cursor in an Microsoft Foundation Class Application

http://go.microsoft.com/fwlink/p/?linkid=128044

CWinApp Class
3/4/2019 • 60 minutes to read • Edit Online

Syntax
class CWinApp : public CWinThread

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWinApp::CWinApp Constructs a CWinApp object.

Public MethodsPublic Methods

NAME DESCRIPTION

CWinApp::AddDocTemplate Adds a document template to the application's list of
available document templates.

CWinApp::AddToRecentFileList Adds a filename to the most recently used (MRU) file
list.

CWinApp::ApplicationRecoveryCallback Called by the framework when the application
unexpectedly exits.

CWinApp::CloseAllDocuments Closes all open documents.

CWinApp::CreatePrinterDC Creates a printer device context.

CWinApp::DelRegTree Deletes a specified key and all its subkeys.

CWinApp::DoMessageBox Implements AfxMessageBox for the application.

CWinApp::DoWaitCursor Turns the wait cursor on and off.

CWinApp::EnableD2DSupport Enables application D2D support. Call this method
before the main window is initialized.

CWinApp::EnableHtmlHelp Implements HTMLHelp for the application, rather than
WinHelp.

CWinApp::EnableTaskbarInteraction Enables Taskbar interaction.

CWinApp::ExitInstance Override to clean up when your application terminates.

The base class from which you derive a Windows application object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cwinapp-class.md

CWinApp::GetApplicationRecoveryParameter Retrieves the input parameter for the application
recovery method.

CWinApp::GetApplicationRecoveryPingInterval Returns the length of time that the restart manager
waits for the recovery callback function to return.

CWinApp::GetApplicationRestartFlags Returns the flags for the restart manager.

CWinApp::GetAppRegistryKey Returns key for
HKEY_CURRENT_USER\"Software"\RegistryKey\ProfileNa
me.

CWinApp::GetDataRecoveryHandler Gets the data recovery handler for this instance of the
application.

CWinApp::GetFirstDocTemplatePosition Retrieves the position of the first document template.

CWinApp::GetHelpMode Retrieves the type of help used by the application.

CWinApp::GetNextDocTemplate Retrieves the position of a document template. Can be
used recursively.

CWinApp::GetPrinterDeviceDefaults Retrieves the printer device defaults.

CWinApp::GetProfileBinary Retrieves binary data from an entry in the application's
.INI file.

CWinApp::GetProfileInt Retrieves an integer from an entry in the application's
.INI file.

CWinApp::GetProfileString Retrieves a string from an entry in the application's .INI
file.

CWinApp::GetSectionKey Returns key for
HKEY_CURRENT_USER\"Software"\RegistryKey\AppNam
e\lpszSection.

CWinApp::HideApplication Hides the application before closing all documents.

CWinApp::HtmlHelp Calls the HTMLHelp Windows function.

CWinApp::InitInstance Override to perform Windows instance initialization,
such as creating your window objects.

CWinApp::IsTaskbarInteractionEnabled Tells whether Windows 7 Taskbar interaction is enabled.

CWinApp::LoadCursor Loads a cursor resource.

CWinApp::LoadIcon Loads an icon resource.

CWinApp::LoadOEMCursor Loads a Windows OEM predefined cursor that the
OCR_ constants specify in WINDOWS.H.

NAME DESCRIPTION

CWinApp::LoadOEMIcon Loads a Windows OEM predefined icon that the OIC_
constants specify in WINDOWS.H.

CWinApp::LoadStandardCursor Loads a Windows predefined cursor that the IDC_
constants specify in WINDOWS.H.

CWinApp::LoadStandardIcon Loads a Windows predefined icon that the IDI_
constants specify in WINDOWS.H.

CWinApp::OnDDECommand Called by the framework in response to a dynamic data
exchange (DDE) execute command.

CWinApp::OnIdle Override to perform application-specific idle-time
processing.

CWinApp::OpenDocumentFile Called by the framework to open a document from a
file.

CWinApp::ParseCommandLine Parses individual parameters and flags in the command
line.

CWinApp::PreTranslateMessage Filters messages before they are dispatched to the
Windows functions TranslateMessage and
DispatchMessage.

CWinApp::ProcessMessageFilter Intercepts certain messages before they reach the
application.

CWinApp::ProcessShellCommand Handles command-line arguments and flags.

CWinApp::ProcessWndProcException Intercepts all unhandled exceptions thrown by the
application's message and command handlers.

CWinApp::Register Performs customized registration.

CWinApp::RegisterWithRestartManager Registers the application with the restart manager.

CWinApp::ReopenPreviousFilesAtRestart Determines whether the restart manager reopens the
files that were open when the application exited
unexpectedly.

CWinApp::RestartInstance Handles an application restart initiated by the restart
manager.

CWinApp::RestoreAutosavedFilesAtRestart Determines whether the restart manager restores the
autosaved files when it restarts the application.

CWinApp::Run Runs the default message loop. Override to customize
the message loop.

CWinApp::RunAutomated Tests the application's command line for the
/Automation option. Obsolete. Instead, use the value
in CCommandLineInfo::m_bRunAutomated after calling
ParseCommandLine.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CWinApp::RunEmbedded Tests the application's command line for the
/Embedding option. Obsolete. Instead, use the value
in CCommandLineInfo::m_bRunEmbedded after calling
ParseCommandLine.

CWinApp::SaveAllModified Prompts the user to save all modified documents.

CWinApp::SelectPrinter Selects a printer previously indicated by a user through
a print dialog box.

CWinApp::SetHelpMode Sets and initializes the type of help used by the
application.

CWinApp::SupportsApplicationRecovery Determines whether the restart manager recovers an
application that exited unexpectedly.

CWinApp::SupportsAutosaveAtInterval Determines whether the restart manager autosaves
open documents at a regular interval.

CWinApp::SupportsAutosaveAtRestart Determines whether the restart manager autosaves
any open documents when the application restarts.

CWinApp::SupportsRestartManager Determines whether the application supports the
restart manager.

CWinApp::Unregister Unregisters everything known to be registered by the
CWinApp object.

CWinApp::WinHelp Calls the WinHelp Windows function.

CWinApp::WriteProfileBinary Writes binary data to an entry in the application's .INI
file.

CWinApp::WriteProfileInt Writes an integer to an entry in the application's .INI
file.

CWinApp::WriteProfileString Writes a string to an entry in the application's .INI file.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CWinApp::EnableShellOpen Allows the user to open data files from the Windows
File Manager.

CWinApp::LoadStdProfileSettings Loads standard .INI file settings and enables the MRU
file list feature.

CWinApp::OnContextHelp Handles SHIFT+F1 Help within the application.

CWinApp::OnFileNew Implements the ID_FILE_NEW command.

CWinApp::OnFileOpen Implements the ID_FILE_OPEN command.

CWinApp::OnFilePrintSetup Implements the ID_FILE_PRINT_SETUP command.

CWinApp::OnHelp Handles F1 Help within the application (using the
current context).

CWinApp::OnHelpFinder Handles the ID_HELP_FINDER and ID_DEFAULT_HELP
commands.

CWinApp::OnHelpIndex Handles the ID_HELP_INDEX command and provides a
default Help topic.

CWinApp::OnHelpUsing Handles the ID_HELP_USING command.

CWinApp::RegisterShellFileTypes Registers all the application's document types with the
Windows File Manager.

CWinApp::SetAppID Explicitly sets Application User Model ID for the
application. This method should be called before any
user interface is presented to user (the best place is the
application constructor).

CWinApp::SetRegistryKey Causes application settings to be stored in the registry
instead of .INI files.

CWinApp::UnregisterShellFileTypes Unregisters all the application's document types with
the Windows File Manager.

NAME DESCRIPTION

Public Data MembersPublic Data Members

NAME DESCRIPTION

CWinApp::m_bHelpMode Indicates if the user is in Help context mode (typically
invoked with SHIFT+F1).

CWinApp::m_eHelpType Specifies the type of help used by the application.

CWinApp::m_hInstance Identifies the current instance of the application.

CWinApp::m_lpCmdLine Points to a null-terminated string that specifies the
command line for the application.

CWinApp::m_nCmdShow Specifies how the window is to be shown initially.

CWinApp::m_pActiveWnd Pointer to the main window of the container
application when an OLE server is in-place active.

CWinApp::m_pszAppID Application User Model ID.

CWinApp::m_pszAppName Specifies the name of the application.

CWinApp::m_pszExeName The module name of the application.

CWinApp::m_pszHelpFilePath The path to the application's Help file.

CWinApp::m_pszProfileName The application's .INI filename.

CWinApp::m_pszRegistryKey Used to determine the full registry key for storing
application profile settings.

NAME DESCRIPTION

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CWinApp::m_dwRestartManagerSupportFlags Flags that determine how the restart manager behaves.

CWinApp::m_nAutosaveInterval The length of time in milliseconds between autosaves.

CWinApp::m_pDataRecoveryHandler Pointer to the data recovery handler for the
application.

Remarks
An application object provides member functions for initializing your application (and each instance of
it) and for running the application.

Each application that uses the Microsoft Foundation classes can only contain one object derived from
CWinApp . This object is constructed when other C++ global objects are constructed and is already

available when Windows calls the WinMain function, which is supplied by the Microsoft Foundation
Class Library. Declare your derived CWinApp object at the global level.

When you derive an application class from CWinApp , override the InitInstance member function to
create your application's main window object.

In addition to the CWinApp member functions, the Microsoft Foundation Class Library provides the
following global functions to access your CWinApp object and other global information:

AfxGetApp Obtains a pointer to the CWinApp object.

AfxGetInstanceHandle Obtains a handle to the current application instance.

AfxGetResourceHandle Obtains a handle to the application's resources.

AfxGetAppName Obtains a pointer to a string containing the application's name. Alternately, if
you have a pointer to the CWinApp object, use m_pszExeName to get the application's name.

See CWinApp: The Application Class for more on the CWinApp class, including an overview of the
following:

CWinApp -derived code written by the Application Wizard.

CWinApp 's role in the execution sequence of your application.

CWinApp 's default member function implementations.

CWinApp 's key overridables.

The m_hPrevInstance data member no longer exists. To determine whether another instance of the
application is running, use a named mutex. If opening the mutex fails, then there are no other instances
of the application running.

Inheritance Hierarchy

Requirements

CWinApp::AddDocTemplate

void AddDocTemplate(CDocTemplate* pTemplate);

ParametersParameters

RemarksRemarks

ExampleExample

// The following code is produced by the Application Wizard when you
// choose the MDI (multiple document interface) option.
 CMultiDocTemplate* pDocTemplate;
 pDocTemplate = new CMultiDocTemplate(IDR_MYTYPE,
 RUNTIME_CLASS(CMyDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CMyView));
 if (!pDocTemplate)
 return FALSE;
 AddDocTemplate(pDocTemplate);

CWinApp::AddToRecentFileList

virtual void AddToRecentFileList(LPCTSTR lpszPathName);

ParametersParameters

RemarksRemarks

CObject

CCmdTarget

CWinThread

CWinApp

Header: afxwin.h

Call this member function to add a document template to the list of available document templates that
the application maintains.

pTemplate
A pointer to the CDocTemplate to be added.

You should add all document templates to an application before you call RegisterShellFileTypes.

Call this member function to add lpszPathName to the MRU file list.

lpszPathName
The path of the file.

You should call the LoadStdProfileSettings member function to load the current MRU file list before
you use this member function.

ExampleExample

// This adds the pathname c:\temp\test.doc to the top of
// the most recently used (MRU) list in the File menu.
AfxGetApp()->AddToRecentFileList(_T("c:\\temp\\test.doc"));

CWinApp::ApplicationRecoveryCallback

virtual DWORD ApplicationRecoveryCallback(LPVOID lpvParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinApp::CloseAllDocuments

void CloseAllDocuments(BOOL bEndSession);

ParametersParameters

RemarksRemarks

CWinApp::CreatePrinterDC

BOOL CreatePrinterDC(CDC& dc);

The framework calls this member function when it opens a file or executes the Save As command to
save a file with a new name.

Called by the framework when the application unexpectedly exits.

lpvParam
[in] Reserved for future use.

0 if this method is successful; nonzero if an error occurs.

If your application supports the restart manager, the framework calls this function when your
application unexpectedly exits.

The default implementation of ApplicationRecoveryCallback uses the CDataRecoveryHandler to save the
list of currently open documents to the registry. This method does not autosave any files.

To customize the behavior, override this function in a derived CWinApp Class or pass your own
application recovery method as a parameter to CWinApp::RegisterWithRestartManager.

Call this member function to close all open documents before exiting.

bEndSession
Specifies whether or not the Windows session is being ended. It is TRUE if the session is being ended;
otherwise FALSE.

Call HideApplication before calling CloseAllDocuments .

Call this member function to create a printer device context (DC) from the selected printer.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinApp::CWinApp

CWinApp(LPCTSTR lpszAppName = NULL);

ParametersParameters

RemarksRemarks

CWinApp::DelRegTree

LONG DelRegTree(
 HKEY hParentKey,
 const CString& strKeyName);

LONG DelRegTree(
 HKEY hParentKey,
 const CString& strKeyName,
 CAtlTransactionManager* pTM = NULL);

ParametersParameters

Return ValueReturn Value

dc
A reference to a printer device context.

Nonzero if the printer device context is created successfully; otherwise 0.

CreatePrinterDC initializes the device context that you pass in by reference, so you can use it to print.

If the function is successful, when you have finished printing, you must destroy the device context. You
can let the destructor of the CDC object do it, or you can do it explicitly by calling CDC::DeleteDC.

Constructs a CWinApp object and passes lpszAppName to be stored as the application name.

lpszAppName
A null-terminated string that contains the application name that Windows uses. If this argument is not
supplied or is NULL, CWinApp uses the resource string AFX_IDS_APP_TITLE or the filename of the
executable file.

You should construct one global object of your CWinApp -derived class. You can have only one CWinApp

object in your application. The constructor stores a pointer to the CWinApp object so that WinMain can
call the object's member functions to initialize and run the application.

Deletes a specific registry key and all its subkeys.

hParentKey
Handle to a registry key.

strKeyName
The name of the registry key to be deleted.

pTM
Pointer to CAtlTransactionManager object.

If the function succeeds, the return value is ERROR_SUCCESS. If the function fails, the return value is

RemarksRemarks

CWinApp::DoMessageBox

virtual int DoMessageBox(
 LPCTSTR lpszPrompt,
 UINT nType,
 UINT nIDPrompt);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinApp::DoWaitCursor

virtual void DoWaitCursor(int nCode);

ParametersParameters

RemarksRemarks

ExampleExample

a nonzero error code defined in Winerror.h.

Call this function to delete the specified key and its subkeys.

The framework calls this member function to implement a message box for the global function
AfxMessageBox.

lpszPrompt
Address of text in the message box.

nType
The message box style.

nIDPrompt
An index to a Help context string.

Returns the same values as AfxMessageBox .

Do not call this member function to open a message box; use AfxMessageBox instead.

Override this member function to customize your application-wide processing of AfxMessageBox calls.

This member function is called by the framework to implement CWaitCursor,
CCmdTarget::BeginWaitCursor, CCmdTarget::EndWaitCursor, and CCmdTarget::RestoreWaitCursor.

nCode
If this parameter is 1, a wait cursor appears. If 0, the wait cursor is restored without incrementing the
reference count. If -1, the wait cursor ends.

The default implements an hourglass cursor. DoWaitCursor maintains a reference count. When
positive, the hourglass cursor is displayed.

While you would not normally call DoWaitCursor directly, you could override this member function to
change the wait cursor or to do additional processing while the wait cursor is displayed.

For an easier, more streamlined way to implement a wait cursor, use CWaitCursor .

// The following example shows how to display the
// hourglass cursor during some lengthy processing
void CMdiView::OnLButtonDown(UINT nFlags, CPoint point)
{
 UNREFERENCED_PARAMETER(nFlags);
 UNREFERENCED_PARAMETER(point);

 AfxGetApp()->DoWaitCursor(1); // 1->>display the hourglass cursor

 // do some lengthy processing
 Sleep(1000);

 AfxGetApp()->DoWaitCursor(-1); // -1->>remove the hourglass cursor
}

// The next example shows DoWaitCursor with parameter 0. It restores
// the hourglass cursor.
void CMdiView::OnMButtonDown(UINT nFlags, CPoint point)
{
 UNREFERENCED_PARAMETER(nFlags);
 UNREFERENCED_PARAMETER(point);

 AfxGetApp()->DoWaitCursor(1); // display the hourglass cursor

 // do some lengthy processing

 // The message box will normally change the cursor to
 // the standard arrow cursor, and leave the cursor in
 // as the standard arrow cursor when the message box is
 // closed.
 AfxMessageBox (_T("DoWaitCursor Sample"));

 // Call DoWaitCursor with parameter 0 to restore
 // the cursor back to the hourglass cursor.
 AfxGetApp()->DoWaitCursor(0);

 // do some more lengthy processing
 Sleep(1000);

 AfxGetApp()->DoWaitCursor(-1); // remove the hourglass cursor
}

CWinApp::EnableD2DSupport

BOOL EnableD2DSupport(
 D2D1_FACTORY_TYPE d2dFactoryType = D2D1_FACTORY_TYPE_SINGLE_THREADED,
 DWRITE_FACTORY_TYPE writeFactoryType = DWRITE_FACTORY_TYPE_SHARED);

ParametersParameters

Return ValueReturn Value

Visual Studio 2010 SP1 is required.

Enables application D2D support. Call this method before the main window is initialized.

d2dFactoryType
The threading model of the D2D factory and the resources it creates.

writeFactoryType
A value that specifies whether the write factory object will be shared or isolated

Returns TRUE if D2D support was enabled, FALSE - otherwise

CWinApp::EnableHtmlHelp

void EnableHtmlHelp();

RemarksRemarks

CWinApp::EnableShellOpen

void EnableShellOpen();

RemarksRemarks

ExampleExample

// The following code fragment is from CMyApp::InitInstance.
// CMyApp is a CWinApp-derived class.

// enable file manager drag/drop and DDE Execute open
EnableShellOpen();
RegisterShellFileTypes();

CWinApp::EnableTaskbarInteraction

BOOL EnableTaskbarInteraction(BOOL bEnable = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinApp::ExitInstance

virtual int ExitInstance();

Return ValueReturn Value

Call this member function from within the constructor of your CWinApp -derived class to use
HTMLHelp for your application's help.

Call this function, typically from your InitInstance override, to enable your application's users to open
data files when they double-click the files from within the Windows File Manager.

Call the RegisterShellFileTypes member function in conjunction with this function, or provide a .REG
file with your application for manual registration of document types.

Enables Taskbar interaction.

bEnable
Specifies whether interaction with Windows 7 taskbar should be enabled (TRUE), or disabled (FALSE).

Returns TRUE if taskbar interaction can be enabled or disabled.

This method must be called before creation of main window, otherwise it asserts and returns FALSE.

Called by the framework from within the Run member function to exit this instance of the application.

RemarksRemarks

ExampleExample

int CMyApp::ExitInstance()
{
 if (m_pMySampleMem)
 delete m_pMySampleMem;

 DoCleanup();

 return CWinApp::ExitInstance();
}

CWinApp::GetApplicationRecoveryParameter

virtual LPVOID GetApplicationRecoveryParameter();

Return ValueReturn Value

RemarksRemarks

CWinApp::GetApplicationRecoveryPingInterval

virtual DWORD GetApplicationRecoveryPingInterval();

Return ValueReturn Value

RemarksRemarks

The application's exit code; 0 indicates no errors, and values greater than 0 indicate an error. This value
is used as the return value from WinMain .

Do not call this member function from anywhere but within the Run member function.

The default implementation of this function writes framework options to the application's .INI file.
Override this function to clean up when your application terminates.

Retrieves the input parameter for the application recovery method.

The default input parameter for the application recovery method.

The default behavior of this function returns NULL.

For more information, see CWinApp::ApplicationRecoveryCallback.

Returns the length of time that the restart manager waits for the recovery callback function to return.

The length of time in milliseconds.

When an application that is registered with the restart manager exits unexpectedly, the application tries
to save open documents and calls the recovery callback function. The default recovery callback
function is CWinApp::ApplicationRecoveryCallback.

The length of time that the framework waits for the recovery callback function to return is the ping
interval. You can customize the ping interval by overriding
CWinApp::GetApplicationRecoveryPingInterval or by providing a custom value to
RegisterWithRestartManager .

CWinApp::GetApplicationRestartFlags

virtual DWORD GetApplicationRestartFlags();

Return ValueReturn Value

RemarksRemarks

CWinApp::GetAppRegistryKey

HKEY GetAppRegistryKey(CAtlTransactionManager* pTM = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinApp::GetDataRecoveryHandler

virtual CDataRecoveryHandler *GetDataRecoveryHandler();

Return ValueReturn Value

RemarksRemarks

Returns the flags for the restart manager.

The flags for the restart manager. The default implementation returns 0.

The flags for the restart manager have no effect with the default implementation. They are provided
for future use.

You set the flags when you register the application with the restart manager by using
CWinApp::RegisterWithRestartManager.

The possible values for the restart manager flags are as follows:

RESTART_NO_CRASH

RESTART_NO_HANG

RESTART_NO_PATCH

RESTART_NO_REBOOT

Returns the key for HKEY_CURRENT_USER\"Software"\RegistryKey\ProfileName.

pTM
Pointer to a CAtlTransactionManager object.

Application key if the function succeeds; otherwise NULL.

Gets the data recovery handler for this instance of the application.

The data recovery handler for this instance of the application.

Each application that uses the restart manager must have one instance of the CDataRecoveryHandler
Class. This class is responsible for monitoring open documents and autosaving files. The behavior of
the CDataRecoveryHandler depends on the configuration of the restart manager. For more information,

CWinApp::GetFirstDocTemplatePosition

POSITION GetFirstDocTemplatePosition() const;

Return ValueReturn Value

RemarksRemarks

CWinApp::GetHelpMode

AFX_HELP_TYPE GetHelpMode();

Return ValueReturn Value

CWinApp::GetNextDocTemplate

CDocTemplate* GetNextDocTemplate(POSITION& pos) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

see CDataRecoveryHandler Class.

This method returns NULL on operating systems earlier than Windows Vista. The restart manager is
not supported on operating systems earlier than Windows Vista.

If the application does not currently have a data recovery handler, this method creates one and returns
a pointer to it.

Gets the position of the first document template in the application.

A POSITION value that can be used for iteration or object pointer retrieval; NULL if the list is empty.

Use the POSITION value returned in a call to GetNextDocTemplate to get the first CDocTemplate
object.

Retrieves the type of help used by the application.

The help type used by the application. See CWinApp::m_eHelpType for more information.

Gets the document template identified by pos, then sets pos to the POSITION value.

pos
A reference to a POSITION value returned by a previous call to GetNextDocTemplate or
GetFirstDocTemplatePosition. The value is updated to the next position by this call.

A pointer to a CDocTemplate object.

You can use GetNextDocTemplate in a forward iteration loop if you establish the initial position with a
call to GetFirstDocTemplatePosition .

You must ensure that your POSITION value is valid. If it is invalid, then the Debug version of the
Microsoft Foundation Class Library asserts.

If the retrieved document template is the last available, then the new value of pos is set to NULL.

CWinApp::GetPrinterDeviceDefaults

BOOL GetPrinterDeviceDefaults(struct tagPDA* pPrintDlg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CMyApp::SetLandscapeMode()
{
 PRINTDLG pd;
 pd.lStructSize = (DWORD)sizeof(PRINTDLG);
 BOOL bRet = GetPrinterDeviceDefaults(&pd);
 if(bRet)
 {
 // protect memory handle with ::GlobalLock and ::GlobalUnlock
 DEVMODE FAR *pDevMode = (DEVMODE FAR *)::GlobalLock(pd.hDevMode);
 // set orientation to landscape
 pDevMode->dmOrientation = DMORIENT_LANDSCAPE;
 ::GlobalUnlock(pd.hDevMode);
 }
}

CWinApp::GetProfileBinary

BOOL GetProfileBinary(
 LPCTSTR lpszSection,
 LPCTSTR lpszEntry,
 LPBYTE* ppData,
 UINT* pBytes);

ParametersParameters

Call this member function to prepare a printer device context for printing.

pPrintDlg
A pointer to a PRINTDLG structure.

Nonzero if successful; otherwise 0.

Retrieves the current printer defaults from the Windows .INI file as necessary, or uses the last printer
configuration set by the user in Print Setup.

Call this member function to retrieve binary data from an entry within a specified section of the
application's registry or .INI file.

lpszSection
Points to a null-terminated string that specifies the section containing the entry.

lpszEntry
Points to a null-terminated string that contains the entry whose value is to be retrieved.

ppData
Points to a pointer that will receive the address of the data.

pBytes
Points to a UINT that will receive the size of the data (in bytes).

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagpda

Return ValueReturn Value

RemarksRemarks

NOTENOTE

IMPORTANTIMPORTANT

ExampleExample

CWinApp* pApp = AfxGetApp();

const TCHAR* pszKey = _T("My Section");
struct complex {
 double re, im;
} myData = { 1.4142, -0.5 };

// Write the information to the registry.

pApp->WriteProfileBinary(pszKey, _T("ComplexData"), (LPBYTE)&myData,
 sizeof(myData));

// Read the information from the registry.

complex* pData;
UINT n;
BOOL ret = pApp->GetProfileBinary(pszKey, _T("ComplexData"), (LPBYTE*)&pData,
 &n);

ASSERT(ret);
ASSERT(n == sizeof(complex));
ASSERT(myData.re == pData->re);
ASSERT(myData.im == pData->im);
delete [] pData; // free the buffer

CWinApp::GetProfileInt

UINT GetProfileInt(
 LPCTSTR lpszSection,
 LPCTSTR lpszEntry,
 int nDefault);

ParametersParameters

Nonzero if successful; otherwise 0.

This member function is not case sensitive, so the strings in the lpszSection and lpszEntry parameters
may differ in case.

GetProfileBinary allocates a buffer and returns its address in * ppData. The caller is responsible for freeing
the buffer using delete [].

The data returned by this function is not necessarily NULL terminated, and the caller must perform validation.
For more information, see Avoiding Buffer Overruns.

For an additional example, see CWinApp::WriteProfileBinary.

Call this member function to retrieve the value of an integer from an entry within a specified section of
the application's registry or .INI file.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Return ValueReturn Value

RemarksRemarks

IMPORTANTIMPORTANT

ExampleExample

CWinApp* pApp = AfxGetApp();

const TCHAR* pszKey = _T("My Section");
const TCHAR* pszName = _T("Julian");
int iAge = 26;

// Write the information to the registry.

pApp->WriteProfileString(pszKey, _T("Name"), pszName);
pApp->WriteProfileInt(pszKey, _T("Age"), iAge);

// Read the information from the registry.

CString strName = pApp->GetProfileString(pszKey, _T("Name"));
int iAge2 = pApp->GetProfileInt(pszKey, _T("Age"), 0);

ASSERT(strName == pszName);
ASSERT(iAge2 == iAge);

CWinApp::GetProfileString

CString GetProfileString(
 LPCTSTR lpszSection,
 LPCTSTR lpszEntry,
 LPCTSTR lpszDefault = NULL);

lpszSection
Points to a null-terminated string that specifies the section containing the entry.

lpszEntry
Points to a null-terminated string that contains the entry whose value is to be retrieved.

nDefault
Specifies the default value to return if the framework cannot find the entry.

The integer value of the string that follows the specified entry if the function is successful. The return
value is the value of the nDefault parameter if the function does not find the entry. The return value is
0 if the value that corresponds to the specified entry is not an integer.

This member function supports hexadecimal notation for the value in the .INI file. When you retrieve a
signed integer, you should cast the value into an int.

This member function is not case sensitive, so the strings in the lpszSection and lpszEntry parameters
may differ in case.

The data returned by this function is not necessarily NULL terminated, and the caller must perform validation.
For more information, see Avoiding Buffer Overruns.

For an additional example, see CWinApp::WriteProfileInt.

Call this member function to retrieve the string associated with an entry within the specified section in
the application's registry or .INI file.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

ParametersParameters

Return ValueReturn Value

RemarksRemarks

IMPORTANTIMPORTANT

ExampleExample

CWinApp* pApp = AfxGetApp();

CString strSection = _T("My Section");
CString strStringItem = _T("My String Item");
CString strIntItem = _T("My Int Item");

pApp->WriteProfileString(strSection, strStringItem, _T("test"));

CString strValue;
strValue = pApp->GetProfileString(strSection, strStringItem);
ASSERT(strValue == _T("test"));

pApp->WriteProfileInt(strSection, strIntItem, 1234);

int nValue;
nValue = pApp->GetProfileInt(strSection, strIntItem, 0);
ASSERT(nValue == 1234);

CWinApp::GetSectionKey

HKEY GetSectionKey(
 LPCTSTR lpszSection,
 CAtlTransactionManager* pTM = NULL);

ParametersParameters

lpszSection
Points to a null-terminated string that specifies the section containing the entry.

lpszEntry
Points to a null-terminated string that contains the entry whose string is to be retrieved. This value
must not be NULL.

lpszDefault
Points to the default string value for the given entry if the entry cannot be found in the initialization
file.

The return value is the string from the application's .INI file or lpszDefault if the string cannot be found.
The maximum string length supported by the framework is _MAX_PATH. If lpszDefault is NULL, the
return value is an empty string.

The data returned by this function is not necessarily NULL terminated, and the caller must perform validation.
For more information, see Avoiding Buffer Overruns.

For another example, see the example for CWinApp::GetProfileInt.

Returns the key for HKEY_CURRENT_USER\"Software"\RegistryKey\AppName\lpszSection.

lpszSection
The name of the key to be obtained.

https://docs.microsoft.com/windows/desktop/SecBP/avoiding-buffer-overruns

Return ValueReturn Value

RemarksRemarks

CWinApp::HideApplication

void HideApplication();

CWinApp::HtmlHelp

virtual void HtmlHelp(
 DWORD_PTR dwData,
 UINT nCmd = 0x000F);

ParametersParameters

RemarksRemarks

CWinApp::InitInstance

virtual BOOL InitInstance();

Return ValueReturn Value

RemarksRemarks

pTM
Pointer to a CAtlTransactionManager object.

Section key if the function succeeds; otherwise NULL.

Call this member function to hide an application before closing the open documents.

Call this member function to invoke the HTMLHelp application.

dwData
Specifies additional data. The value used depends on the value of the nCmd parameter.

nCmd
Specifies the type of help requested. For a list of possible values and how they affect the dwData
parameter, see the uCommand parameter described in About the HTMLHelp API Function in the
Windows SDK.

The framework also calls this function to invoke the HTMLHelp application.

The framework will automatically close the HTMLHelp application when your application terminates.

Windows allows several copies of the same program to run at the same time.

Nonzero if initialization is successful; otherwise 0.

Application initialization is conceptually divided into two sections: one-time application initialization
that is done the first time the program runs, and instance initialization that runs each time a copy of the
program runs, including the first time. The framework's implementation of WinMain calls this function.

Override InitInstance to initialize each new instance of your application running under Windows.
Typically, you override InitInstance to construct your main window object and set the
CWinThread::m_pMainWnd data member to point to that window. For more information on overriding

NOTENOTE

ExampleExample

// AppWizard implements the InitInstance overridable function
// according to options you select. For example, the multiple document
// interface (MDI) option was chosen for the AppWizard code created
// below. You can add other per-instance initializations to the code
// created by AppWizard.

BOOL CMFCListViewApp::InitInstance()
{
 AfxSetAmbientActCtx(FALSE);
 // Remainder of function definition omitted.

 CWinApp::InitInstance();

 // Initialize OLE libraries
 if (!AfxOleInit())
 {
 AfxMessageBox(_T("OleInit failed."));
 return FALSE;
 }

 // Standard initialization
 // If you are not using these features and wish to reduce the size
 // of your final executable, you should remove from the following
 // the specific initialization routines you do not need
 // Change the registry key under which our settings are stored
 // TODO: You should modify this string to be something appropriate
 // such as the name of your company or organization
 SetRegistryKey(_T("Local AppWizard-Generated Applications"));
 LoadStdProfileSettings(4); // Load standard INI file options (including MRU)
 // Register the application's document templates. Document templates
 // serve as the connection between documents, frame windows and views
 CMultiDocTemplate* pDocTemplate;
 pDocTemplate = new CMultiDocTemplate(IDR_MFCListViewTYPE,
 RUNTIME_CLASS(CMFCListViewDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 RUNTIME_CLASS(CMyListView));
 if (!pDocTemplate)
 return FALSE;
 AddDocTemplate(pDocTemplate);

 // create main MDI Frame window
 CMainFrame* pMainFrame = new CMainFrame;
 if (!pMainFrame || !pMainFrame->LoadFrame(IDR_MAINFRAME))
 {
 delete pMainFrame;
 return FALSE;
 }
 m_pMainWnd = pMainFrame;
 // call DragAcceptFiles only if there's a suffix
 // In an MDI app, this should occur immediately after setting m_pMainWnd

 // Parse command line for standard shell commands, DDE, file open
 CCommandLineInfo cmdInfo;
 ParseCommandLine(cmdInfo);

this member function, see CWinApp: The Application Class.

MFC applications must be initialized as single threaded apartment (STA). If you call CoInitializeEx in your
InitInstance override, specify COINIT_APARTMENTTHREADED (rather than COINIT_MULTITHREADED).

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-coinitializeex

 // Dispatch commands specified on the command line. Will return FALSE if
 // app was launched with /RegServer, /Register, /Unregserver or /Unregister.
 if (!ProcessShellCommand(cmdInfo))
 return FALSE;
 // The main window has been initialized, so show and update it
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

 return TRUE;
}

CWinApp::IsTaskbarInteractionEnabled

virtual BOOL IsTaskbarInteractionEnabled();

Return ValueReturn Value

RemarksRemarks

CWinApp::LoadCursor

HCURSOR LoadCursor(LPCTSTR lpszResourceName) const; HCURSOR LoadCursor(UINT nIDResource) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Tells whether Windows 7 Taskbar interaction is enabled.

Returns TRUE if EnableTaskbarInteraction has been called and the Operating System is Windows 7 or
higher.

Taskbar interaction means that MDI application displays the content of MDI children in separate
tabbed thumbnails that appear when the mouse pointer is over the application taskbar button.

Loads the cursor resource named by lpszResourceName or specified by nIDResource from the current
executable file.

lpszResourceName
Points to a null-terminated string that contains the name of the cursor resource. You can use a
CString for this argument.

nIDResource
ID of the cursor resource. For a list of resources, see LoadCursor in the Windows SDK.

A handle to a cursor if successful; otherwise NULL.

LoadCursor loads the cursor into memory only if it has not been previously loaded; otherwise, it
retrieves a handle of the existing resource.

Use the LoadStandardCursor or LoadOEMCursor member function to access the predefined Windows
cursors.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-loadcursora

 HCURSOR hCursor;

 // Load a cursor resource that was originally created using
 // the Graphics Editor and assigned the i.d. IDC_MYCURSOR.
 hCursor = AfxGetApp()->LoadCursor(IDC_MYCURSOR);

CWinApp::LoadIcon

HICON LoadIcon(LPCTSTR lpszResourceName) const; HICON LoadIcon(UINT nIDResource) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CWinApp::LoadOEMCursor

HCURSOR LoadOEMCursor(UINT nIDCursor) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Loads the icon resource named by lpszResourceName or specified by nIDResource from the
executable file.

lpszResourceName
Points to a null-terminated string that contains the name of the icon resource. You can also use a
CString for this argument.

nIDResource
ID number of the icon resource.

A handle to an icon if successful; otherwise NULL.

LoadIcon loads the icon only if it has not been previously loaded; otherwise, it retrieves a handle of the
existing resource.

You can use the LoadStandardIcon or LoadOEMIcon member function to access the predefined
Windows icons.

This member function calls the Win32 API function LoadIcon, which can only load an icon whose size conforms
to the SM_CXICON and SM_CYICON system metric values.

Loads the Windows predefined cursor resource specified by nIDCursor.

nIDCursor
An OCR_ manifest constant identifier that specifies a predefined Windows cursor. You must have
#define OEMRESOURCE before #include \<afxwin.h> to gain access to the OCR_ constants in

WINDOWS.H.

A handle to a cursor if successful; otherwise NULL.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-loadicona

ExampleExample

// In the stdafx.h file, add #define OEMRESOURCE to
// include the windows.h definitions of OCR_ values.
#define OEMRESOURCE
#include <afxwin.h> // MFC core and standard components
#include <afxext.h> // MFC extensions

HCURSOR hCursor;
// Load the predefined WIndows "size all" cursor.
hCursor = AfxGetApp()->LoadOEMCursor(OCR_SIZEALL);

CWinApp::LoadOEMIcon

HICON LoadOEMIcon(UINT nIDIcon) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinApp::LoadStandardCursor

HCURSOR LoadStandardCursor(LPCTSTR lpszCursorName) const;

ParametersParameters

Use the LoadOEMCursor or LoadStandardCursor member function to access the predefined Windows
cursors.

Loads the Windows predefined icon resource specified by nIDIcon.

nIDIcon
An OIC_ manifest constant identifier that specifies a predefined Windows icon. You must have
#define OEMRESOURCE before #include \<afxwin.h> to access the OIC_ constants in WINDOWS.H.

A handle to an icon if successful; otherwise NULL.

Use the LoadOEMIcon or LoadStandardIcon member function to access the predefined Windows icons.

Loads the Windows predefined cursor resource that lpszCursorName specifies.

lpszCursorName
An IDC_ manifest constant identifier that specifies a predefined Windows cursor. These identifiers are
defined in WINDOWS.H. The following list shows the possible predefined values and meanings for
lpszCursorName:

IDC_ARROW Standard arrow cursor

IDC_IBEAM Standard text-insertion cursor

IDC_WAIT Hourglass cursor used when Windows performs a time-consuming task

IDC_CROSS Cross-hair cursor for selection

IDC_UPARROW Arrow that points straight up

Return ValueReturn Value

RemarksRemarks

ExampleExample

 HCURSOR hCursor;

 // Load the predefined Windows "up arrow" cursor.
 hCursor = AfxGetApp()->LoadStandardCursor(IDC_UPARROW);

CWinApp::LoadStandardIcon

HICON LoadStandardIcon(LPCTSTR lpszIconName) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinApp::LoadStdProfileSettings

void LoadStdProfileSettings(UINT nMaxMRU = _AFX_MRU_COUNT);

ParametersParameters

IDC_SIZE Obsolete and unsupported; use IDC_SIZEALL

IDC_SIZEALL A four-pointed arrow. The cursor to use to resize a window.

IDC_ICON Obsolete and unsupported. Use IDC_ARROW.

IDC_SIZENWSE Two-headed arrow with ends at upper left and lower right

IDC_SIZENESW Two-headed arrow with ends at upper right and lower left

IDC_SIZEWE Horizontal two-headed arrow

IDC_SIZENS Vertical two-headed arrow

A handle to a cursor if successful; otherwise NULL.

Use the LoadStandardCursor or LoadOEMCursor member function to access the predefined Windows
cursors.

Loads the Windows predefined icon resource that lpszIconName specifies.

lpszIconName
A manifest constant identifier that specifies a predefined Windows icon. These identifiers are defined
in WINDOWS.H. For a list of the possible predefined values and their descriptions, see the
lpIconName parameter in LoadIcon in the Windows SDK.

A handle to an icon if successful; otherwise NULL.

Use the LoadStandardIcon or LoadOEMIcon member function to access the predefined Windows
icons.

Call this member function from within the InitInstance member function to enable and load the list of
most recently used (MRU) files and last preview state.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-loadicona

RemarksRemarks

CWinApp::m_bHelpMode

BOOL m_bHelpMode;

RemarksRemarks

CWinApp::m_dwRestartManagerSupportFlags

DWORD m_dwRestartManagerSupportFlags;

RemarksRemarks

Flag Description

AFX_RESTART_MANAGER_SUPPORT_RESTART The application is registered by using
CWinApp::RegisterWithRestartManager. The restart
manager is responsible for restarting the application if
it unexpectedly exits.

- AFX_RESTART_MANAGER_SUPPORT_RECOVERY The application is registered with the restart manager
and the restart manager calls the recovery callback
function when it restarts the application. The default
recovery callback function is
CWinApp::ApplicationRecoveryCallback.

- AFX_RESTART_MANAGER_AUTOSAVE_AT_RESTART Autosave is enabled and the restart manager
autosaves any open documents when the application
restarts.

- AFX_RESTART_MANAGER_AUTOSAVE_AT_INTERVAL Autosave is enabled and the restart manager
autosaves any open documents at a regular interval.
The interval is defined by
CWinApp::m_nAutosaveInterval.

nMaxMRU
The number of recently used files to track.

If nMaxMRU is 0, no MRU list will be maintained.

TRUE if the application is in Help context mode (conventionally invoked with SHIFT + F1); otherwise
FALSE.

In Help context mode, the cursor becomes a question mark and the user can move it about the screen.
Examine this flag if you want to implement special handling when in the Help mode. m_bHelpMode is a
public variable of type BOOL.

Flags that determine how the restart manager behaves.

To enable the restart manager, set m_dwRestartManagerSupportFlags to the behavior that you want. The
following table shows the flags that are available.

- AFX_RESTART_MANAGER_REOPEN_PREVIOUS_FILES The restart manager opens previously open documents
after restarting the application from an unexpected exit.
The CDataRecoveryHandler Class handles storing the
list of open documents and restoring them.

-
AFX_RESTART_MANAGER_RESTORE_AUTOSAVED_FILES

The restart manager prompts the user to restore
autosaved files after restarting the application. The
CDataRecoveryHandler class queries the user.

- AFX_RESTART_MANAGER_SUPPORT_NO_AUTOSAVE The union of
AFX_RESTART_MANAGER_SUPPORT_RESTART,
AFX_RESTART_MANAGER_SUPPORT_RECOVER, and
AFX_RESTART_MANAGER_REOPEN_PREVIOUS_FILES.

- AFX_RESTART_MANAGER_SUPPORT_ALL_ASPECTS The union of
AFX_RESTART_MANAGER_SUPPORT_NO_AUTOSAVE,
AFX_RESTART_MANAGER_AUTOSAVE_AT_RESTART,
AFX_RESTART_MANAGER_AUTOSAVE_AT_INTERVAL,
and
AFX_RESTART_MANAGER_RESTORE_AUTOSAVED_FILES
.

-
AFX_RESTART_MANAGER_SUPPORT_RESTART_ASPECTS

The union of
AFX_RESTART_MANAGER_SUPPORT_RESTART,
AFX_RESTART_MANAGER_AUTOSAVE_AT_RESTART,
AFX_RESTART_MANAGER_REOPEN_PREVIOUS_FILES,
and
AFX_RESTART_MANAGER_RESTORE_AUTOSAVED_FILES
.

-
AFX_RESTART_MANAGER_SUPPORT_RECOVERY_ASPEC
TS

The union
ofAFX_RESTART_MANAGER_SUPPORT_RECOVERY,
AFX_RESTART_MANAGER_AUTOSAVE_AT_INTERVAL,
AFX_RESTART_MANAGER_REOPEN_PREVIOUS_FILES,
and
AFX_RESTART_MANAGER_RESTORE_AUTOSAVED_FILES
.

CWinApp::m_eHelpType

AFX_HELP_TYPE m_eHelpType;

RemarksRemarks

enum AFX_HELP_TYPE {
 afxWinHelp = 0,
 afxHTMLHelp = 1
 };

The type of this data member is the enumerated type AFX_HELP_TYPE, which is defined within the
CWinApp class.

The AFX_HELP_TYPE enumeration is defined as follows:

To set the application's help to HTML Help, call SetHelpMode and specify afxHTMLHelp .

CWinApp::m_hInstance

HINSTANCE m_hInstance;

RemarksRemarks

ExampleExample

// Typically you do not need to pass the application's hInstance
// to Windows APIs directly because there are equivalent MFC
// member functions that pass the hInstance for you. The following
// example is not typical:

HCURSOR hCursor;
hCursor = ::LoadCursor(AfxGetApp()->m_hInstance,
 MAKEINTRESOURCE(IDC_MYCURSOR));

// A more direct way to get the application's hInstance is to
// call AfxGetInstanceHandle:
hCursor = ::LoadCursor(AfxGetInstanceHandle(),
 MAKEINTRESOURCE(IDC_MYCURSOR));

// If you need the hInstance to load a resource, it is better
// to call AfxGetResourceHandle instead of AfxGetInstanceHandle:
hCursor = ::LoadCursor(AfxGetResourceHandle(),
 MAKEINTRESOURCE(IDC_MYCURSOR));

// A better way to load the cursor resource is to call
// CWinApp::LoadCursor
hCursor = AfxGetApp()->LoadCursor(IDC_MYCURSOR);

CWinApp::m_lpCmdLine

LPTSTR m_lpCmdLine;

RemarksRemarks

ExampleExample

To set the application's help to WinHelp, call SetHelpMode and specify afxWinHelp .

Corresponds to the hInstance parameter passed by Windows to WinMain .

The m_hInstance data member is a handle to the current instance of the application running under
Windows. This is returned by the global function AfxGetInstanceHandle. m_hInstance is a public
variable of type HINSTANCE.

Corresponds to the lpCmdLine parameter passed by Windows to WinMain .

Points to a null-terminated string that specifies the command line for the application. Use m_lpCmdLine

to access any command-line arguments the user entered when the application was started.
m_lpCmdLine is a public variable of type LPTSTR.

if (m_lpCmdLine[0] == _T('\0'))
{
 // Create a new (empty) document.
 OnFileNew();
}
else
{
 // Open a file passed as the first command line parameter.
 OpenDocumentFile(m_lpCmdLine);
}

CWinApp::m_nAutosaveInterval

int m_nAutosaveInterval;

RemarksRemarks

CWinApp::m_nCmdShow

int m_nCmdShow;

RemarksRemarks

ExampleExample

// The following code fragment is taken from CMyApp::InitInstance.
// CMyApp is derived from CWinApp.

 // The main window has been initialized, so show and update it
// using the nCmdShow parameter passed to the application when it
// was first launched.
// pMainFrame is the main MDI frame window of our app and is derived
// from CMDIFrameWnd.
 pMainFrame->ShowWindow(m_nCmdShow);
 pMainFrame->UpdateWindow();

CWinApp::m_pActiveWnd

RemarksRemarks

The length of time in milliseconds between autosaves.

You can configure the restart manager to autosave open documents at set intervals. If your application
does not autosave files, this parameter has no effect.

Corresponds to the nCmdShow parameter passed by Windows to WinMain .

You should pass m_nCmdShow as an argument when you call CWnd::ShowWindow for your
application's main window. m_nCmdShow is a public variable of type int.

Use this data member to store a pointer to the main window of the OLE container application that has
your OLE server application in-place activated.

If this data member is NULL, the application is not in-place active.

The framework sets this member variable when the frame window is in-place activated by an OLE
container application.

CWinApp::m_pDataRecoveryHandler

CDataRecoveryHandler* m_pDataRecoveryHandler;

RemarksRemarks

CWinApp::m_pszAppName

LPCTSTR m_pszAppName;

RemarksRemarks

NOTENOTE

//First free the string allocated by MFC at CWinApp startup.
//The string is allocated before InitInstance is called.
free((void*)m_pszAppName);
//Change the name of the application file.
//The CWinApp destructor will free the memory.
m_pszAppName = _tcsdup(_T("c:\\somedir\\myapp.exe"));

ExampleExample

Pointer to the data recovery handler for the application.

The data recovery handler of an application monitors open documents and autosaves them. The
framework uses the data recovery handler to restore autosaved files when an application restarts after
it exits unexpectedly. For more information, see CDataRecoveryHandler Class.

Specifies the name of the application.

The application name can come from the parameter passed to the CWinApp constructor, or, if not
specified, to the resource string with the ID of AFX_IDS_APP_TITLE. If the application name is not
found in the resource, it comes from the program's .EXE filename.

Returned by the global function AfxGetAppName. m_pszAppName is a public variable of type const
char*.

If you assign a value to m_pszAppName , it must be dynamically allocated on the heap. The CWinApp

destructor calls free() with this pointer. You many want to use the _tcsdup () run-time library function to do
the allocating. Also, free the memory associated with the current pointer before assigning a new value. For
example:

CWnd* pWnd = AfxGetMainWnd();
// Set pWnd to some CWnd object whose window has already
// been created.

// The following call to CWnd::MessageBox uses the application
// title as the message box caption.
pWnd->MessageBox(_T("Some message"), AfxGetApp()->m_pszAppName);

// A more direct way to get the application title is to
// call AfxGetAppName:
pWnd->MessageBox(_T("Some message"), AfxGetAppName());

// An easier way to display a message box using the application
// title as the message box caption is to call AfxMessageBox:
AfxMessageBox(_T("Some message"));

CWinApp::m_pszExeName

LPCTSTR m_pszExeName;

RemarksRemarks

NOTENOTE

//First free the string allocated by MFC at CWinApp startup.
//The string is allocated before InitInstance is called.
free((void*)m_pszExeName);
//Change the name of the .EXE file.
//The CWinApp destructor will free the memory.
m_pszExeName = _tcsdup(_T("c:\\somedir\\myapp"));

CWinApp::m_pszHelpFilePath

LPCTSTR m_pszHelpFilePath;

RemarksRemarks

Contains the name of the application's executable file without an extension.

Unlike m_pszAppName, this name cannot contain blanks. m_pszExeName is a public variable of type
const char*.

If you assign a value to m_pszExeName , it must be dynamically allocated on the heap. The CWinApp

destructor calls free() with this pointer. You many want to use the _tcsdup () run-time library function to do
the allocating. Also, free the memory associated with the current pointer before assigning a new value. For
example:

Contains the path to the application's Help file.

By default, the framework initializes m_pszHelpFilePath to the name of the application with ".HLP"
appended. To change the name of the help file, set m_pszHelpFilePath to point to a string that contains
the complete name of the desired help file. A convenient place to do this is in the application's
InitInstance function. m_pszHelpFilePath is a public variable of type const char*.

NOTENOTE

//First free the string allocated by MFC at CWinApp startup.
//The string is allocated before InitInstance is called.
free((void*)m_pszHelpFilePath);
//Change the name of the .HLP file.
//The CWinApp destructor will free the memory.
m_pszHelpFilePath = _tcsdup(_T("c:\\somedir\\myhelp.hlp"));

CWinApp::m_pszProfileName

LPCTSTR m_pszProfileName;

RemarksRemarks

NOTENOTE

//First free the string allocated by MFC at CWinApp startup.
//The string is allocated before InitInstance is called.
free((void*)m_pszProfileName);
//Change the name of the .INI file.
//The CWinApp destructor will free the memory.
m_pszProfileName = _tcsdup(_T("c:\\somedir\\myini.ini"));

CWinApp::m_pszRegistryKey

LPCTSTR m_pszRegistryKey;

RemarksRemarks

If you assign a value to m_pszHelpFilePath , it must be dynamically allocated on the heap. The CWinApp

destructor calls free() with this pointer. You many want to use the _tcsdup () run-time library function to do
the allocating. Also, free the memory associated with the current pointer before assigning a new value. For
example:

Contains the name of the application's .INI file.

m_pszProfileName is a public variable of type const char*.

If you assign a value to m_pszProfileName , it must be dynamically allocated on the heap. The CWinApp

destructor calls free() with this pointer. You many want to use the _tcsdup () run-time library function to do
the allocating. Also, free the memory associated with the current pointer before assigning a new value. For
example:

Used to determine where, in the registry or INI file, application profile settings are stored.

Normally, this data member is treated as read-only.

The value is stored to a registry key. The name for the application profile setting is appended to the
following registry key: HKEY_CURRENT_USER/Software/LocalAppWizard-Generated/.

If you assign a value to m_pszRegistryKey , it must be dynamically allocated on the heap. The CWinApp

destructor calls free() with this pointer. You many want to use the _tcsdup () run-time library function

//First free the string allocated by MFC at CWinApp startup.
//The string is allocated before InitInstance is called.
free((void*)m_pszRegistryKey);
//Change the name of the registry key.
//The CWinApp destructor will free the memory.
m_pszRegistryKey = _tcsdup(
 _T("HKEY_CURRENT_USER\\Software\\mycompany\\myapp\\thissection\\thisvalue"));

CWinApp::m_pszAppID

LPCTSTR m_pszAppID;

RemarksRemarks

CWinApp::OnContextHelp

afx_msg void OnContextHelp();

RemarksRemarks

CWinApp::OnDDECommand

virtual BOOL OnDDECommand(LPTSTR lpszCommand);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

to do the allocating. Also, free the memory associated with the current pointer before assigning a new
value. For example:

Application User Model ID.

Handles SHIFT+F1 Help within the application.

You must add an ON_COMMAND(ID_CONTEXT_HELP, OnContextHelp) statement to your CWinApp class
message map and also add an accelerator table entry, typically SHIFT+F1, to enable this member
function.

OnContextHelp puts the application into Help mode. The cursor changes to an arrow and a question
mark, and the user can then move the mouse pointer and press the left mouse button to select a dialog
box, window, menu, or command button. This member function retrieves the Help context of the object
under the cursor and calls the Windows function WinHelp with that Help context.

Called by the framework when the main frame window receives a DDE execute message.

lpszCommand
Points to a DDE command string received by the application.

Nonzero if the command is handled; otherwise 0.

The default implementation checks whether the command is a request to open a document and, if so,
opens the specified document. The Windows File Manager usually sends such DDE command strings
when the user double-clicks a data file. Override this function to handle other DDE execute commands,

ExampleExample

BOOL CMyApp::OnDDECommand(LPTSTR lpszCommand)
{
 if (CWinApp::OnDDECommand(lpszCommand))
 return TRUE;

 // Handle any DDE commands recognized by your application
 // and return TRUE. See implementation of CWinApp::OnDDEComand
 // for example of parsing the DDE command string.

 // Return FALSE for any DDE commands you do not handle.
 return FALSE;
 }

CWinApp::OnFileNew

afx_msg void OnFileNew();

RemarksRemarks

ExampleExample

// The following message map, produced by the Application Wizard, binds
// the File New, Open, and Print Setup menu commands to default
// framework implementations of these commands.
BEGIN_MESSAGE_MAP(CStdApp, CWinApp)
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, &CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, &CWinApp::OnFileOpen)
 // Standard print setup command
 ON_COMMAND(ID_FILE_PRINT_SETUP, &CWinApp::OnFilePrintSetup)
END_MESSAGE_MAP()

// The following message map illustrates how to rebind the
// File New, Open and Print Setup menu commands to handlers that
// you implement in your CWinApp-derived class.
// Note, you can name the handler CCustomApp::OnFileNew instead of
// CCustomApp::OnMyFileNew, and likewise for the other handlers, if desired.
BEGIN_MESSAGE_MAP(CCustomApp, CWinApp)
 ON_COMMAND(ID_FILE_NEW, &CCustomApp::OnMyFileNew)
 ON_COMMAND(ID_FILE_OPEN, &CCustomApp::OnMyFileOpen)
 ON_COMMAND(ID_FILE_PRINT_SETUP, &CCustomApp::OnMyFilePrintSetup)
END_MESSAGE_MAP()

CWinApp::OnFileOpen

such as the command to print.

Implements the ID_FILE_NEW command.

You must add an ON_COMMAND(ID_FILE_NEW, OnFileNew) statement to your CWinApp class message
map to enable this member function. If enabled, this function handles execution of the File New
command.

See Technical Note 22 for information on default behavior and guidance on how to override this
member function.

Implements the ID_FILE_OPEN command.

afx_msg void OnFileOpen();

RemarksRemarks

ExampleExample

// The following message map, produced by the Application Wizard, binds
// the File New, Open, and Print Setup menu commands to default
// framework implementations of these commands.
BEGIN_MESSAGE_MAP(CStdApp, CWinApp)
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, &CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, &CWinApp::OnFileOpen)
 // Standard print setup command
 ON_COMMAND(ID_FILE_PRINT_SETUP, &CWinApp::OnFilePrintSetup)
END_MESSAGE_MAP()

// The following message map illustrates how to rebind the
// File New, Open and Print Setup menu commands to handlers that
// you implement in your CWinApp-derived class.
// Note, you can name the handler CCustomApp::OnFileNew instead of
// CCustomApp::OnMyFileNew, and likewise for the other handlers, if desired.
BEGIN_MESSAGE_MAP(CCustomApp, CWinApp)
 ON_COMMAND(ID_FILE_NEW, &CCustomApp::OnMyFileNew)
 ON_COMMAND(ID_FILE_OPEN, &CCustomApp::OnMyFileOpen)
 ON_COMMAND(ID_FILE_PRINT_SETUP, &CCustomApp::OnMyFilePrintSetup)
END_MESSAGE_MAP()

CWinApp::OnFilePrintSetup

afx_msg void OnFilePrintSetup();

RemarksRemarks

ExampleExample

You must add an ON_COMMAND(ID_FILE_OPEN, OnFileOpen) statement to your CWinApp class message
map to enable this member function. If enabled, this function handles execution of the File Open
command.

For information on default behavior and guidance on how to override this member function, see
Technical Note 22.

Implements the ID_FILE_PRINT_SETUP command.

You must add an ON_COMMAND(ID_FILE_PRINT_SETUP, OnFilePrintSetup) statement to your CWinApp

class message map to enable this member function. If enabled, this function handles execution of the
File Print command.

For information on default behavior and guidance on how to override this member function, see
Technical Note 22.

// The following message map, produced by the Application Wizard, binds
// the File New, Open, and Print Setup menu commands to default
// framework implementations of these commands.
BEGIN_MESSAGE_MAP(CStdApp, CWinApp)
 // Standard file based document commands
 ON_COMMAND(ID_FILE_NEW, &CWinApp::OnFileNew)
 ON_COMMAND(ID_FILE_OPEN, &CWinApp::OnFileOpen)
 // Standard print setup command
 ON_COMMAND(ID_FILE_PRINT_SETUP, &CWinApp::OnFilePrintSetup)
END_MESSAGE_MAP()

// The following message map illustrates how to rebind the
// File New, Open and Print Setup menu commands to handlers that
// you implement in your CWinApp-derived class.
// Note, you can name the handler CCustomApp::OnFileNew instead of
// CCustomApp::OnMyFileNew, and likewise for the other handlers, if desired.
BEGIN_MESSAGE_MAP(CCustomApp, CWinApp)
 ON_COMMAND(ID_FILE_NEW, &CCustomApp::OnMyFileNew)
 ON_COMMAND(ID_FILE_OPEN, &CCustomApp::OnMyFileOpen)
 ON_COMMAND(ID_FILE_PRINT_SETUP, &CCustomApp::OnMyFilePrintSetup)
END_MESSAGE_MAP()

CWinApp::OnHelp

afx_msg void OnHelp();

RemarksRemarks

CWinApp::OnHelpFinder

afx_msg void OnHelpFinder();

RemarksRemarks

Handles F1 Help within the application (using the current context).

Usually you will also add an accelerator-key entry for the F1 key. Enabling the F1 key is only a
convention, not a requirement.

You must add an ON_COMMAND(ID_HELP, OnHelp) statement to your CWinApp class message map to
enable this member function. If enabled, called by the framework when the user presses the F1 key.

The default implementation of this message-handler function determines the Help context that
corresponds to the current window, dialog box, or menu item and then calls WINHELP.EXE. If no
context is currently available, the function uses the default context.

Override this member function to set the Help context to something other than the window, dialog
box, menu item, or toolbar button that currently has the focus. Call WinHelp with the desired Help
context ID.

Handles the ID_HELP_FINDER and ID_DEFAULT_HELP commands.

You must add an ON_COMMAND(ID_HELP_FINDER, OnHelpFinder) statement to your CWinApp class
message map to enable this member function. If enabled, the framework calls this message-handler
function when the user of your application selects the Help Finder command to invoke WinHelp with
the standard HELP_FINDER topic.

CWinApp::OnHelpIndex

afx_msg void OnHelpIndex();

RemarksRemarks

CWinApp::OnHelpUsing

afx_msg void OnHelpUsing();

RemarksRemarks

CWinApp::OnIdle

virtual BOOL OnIdle(LONG lCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Handles the ID_HELP_INDEX command and provides a default Help topic.

You must add an ON_COMMAND(ID_HELP_INDEX, OnHelpIndex) statement to your CWinApp class message
map to enable this member function. If enabled, the framework calls this message-handler function
when the user of your application selects the Help Index command to invoke WinHelp with the
standard HELP_INDEX topic.

Handles the ID_HELP_USING command.

You must add an ON_COMMAND(ID_HELP_USING, OnHelpUsing) statement to your CWinApp class message
map to enable this member function. The framework calls this message-handler function when the
user of your application selects the Help Using command to invoke the WinHelp application with the
standard HELP_HELPONHELP topic.

Override this member function to perform idle-time processing.

lCount
A counter incremented each time OnIdle is called when the application's message queue is empty.
This count is reset to 0 each time a new message is processed. You can use the lCount parameter to
determine the relative length of time the application has been idle without processing a message.

Nonzero to receive more idle processing time; 0 if no more idle time is needed.

OnIdle is called in the default message loop when the application's message queue is empty. Use your
override to call your own background idle-handler tasks.

OnIdle should return 0 to indicate that no idle processing time is required. The lCount parameter is
incremented each time OnIdle is called when the message queue is empty and resets to 0 each time a
new message is processed. You can call your different idle routines based on this count.

The following summarizes idle loop processing:

1. If the message loop in the Microsoft Foundation Class Library checks the message queue and
finds no pending messages, it calls OnIdle for the application object and supplies 0 as the
lCount argument.

NOTENOTE

ExampleExample

2. OnIdle performs some processing and returns a nonzero value to indicate it should be called
again to do further processing.

3. The message loop checks the message queue again. If no messages are pending, it calls OnIdle

again, incrementing the lCount argument.

4. Eventually, OnIdle finishes processing all its idle tasks and returns 0. This tells the message
loop to stop calling OnIdle until the next message is received from the message queue, at
which point the idle cycle restarts with the argument set to 0.

Do not perform lengthy tasks during OnIdle because your application cannot process user input until
OnIdle returns.

The default implementation of OnIdle updates command user-interface objects such as menu items and
toolbar buttons, and it performs internal data structure cleanup. Therefore, if you override OnIdle , you must
call CWinApp::OnIdle with the lCount in your overridden version. First call all base-class idle processing
(that is, until the base class OnIdle returns 0). If you need to perform work before the base-class processing
completes, review the base-class implementation to select the proper lCount during which to do your work.

If you do not want OnIdle to be called whenever a message is retrieved from the message queue, you
can override the CWinThreadIsIdleMessage. If an application has set a very short timer, or if the
system is sending the WM_SYSTIMER message, then OnIdle will be called repeatedly, and degrade
performance.

The following two examples show how to use OnIdle . The first example processes two idle tasks using
the lCount argument to prioritize the tasks. The first task is high priority, and you should do it
whenever possible. The second task is less important and should be done only when there is a long
pause in user input. Note the call to the base-class version of OnIdle . The second example manages a
group of idle tasks with different priorities.

BOOL CMyApp::OnIdle(LONG lCount)
{
 BOOL bMore = CWinApp::OnIdle(lCount);

 if (lCount == 0)
 {
 TRACE(_T("App idle for short period of time\n"));
 bMore = TRUE;
 }
 else if (lCount == 10)
 {
 TRACE(_T("App idle for longer amount of time\n"));
 bMore = TRUE;
 }
 else if (lCount == 100)
 {
 TRACE(_T("App idle for even longer amount of time\n"));
 bMore = TRUE;
 }
 else if (lCount == 1000)
 {
 TRACE(_T("App idle for quite a long period of time\n"));
 // bMore is not set to TRUE, no longer need idle
 // IMPORTANT: bMore is not set to FALSE since CWinApp::OnIdle may
 // have more idle tasks to complete.
 }

 return bMore;
 // return TRUE as long as there are any more idle tasks
}

CWinApp::OpenDocumentFile

virtual CDocument* OpenDocumentFile(
 LPCTSTR lpszFileName
 BOOL bAddToMRU = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

The framework calls this method to open the named CDocument file for the application.

lpszFileName
[in] The name of the file to be opened.

bAddToMRU
[in] TRUE indicates the document is one of the most recent files; FALSE indicates the document is not
one of the most recent files.

A pointer to a CDocument if successful; otherwise NULL.

If a document that has that name is already open, the first frame window that contains that document
will get the focus. If an application supports multiple document templates, the framework uses the file
name extension to find the appropriate document template to try to load the document. If successful,
the document template then creates a frame window and view for the document.

if (m_lpCmdLine[0] == _T('\0'))
{
 // Create a new (empty) document.
 OnFileNew();
}
else
{
 // Open a file passed as the first command line parameter.
 OpenDocumentFile(m_lpCmdLine);
}

CWinApp::ParseCommandLine

void ParseCommandLine(CCommandLineInfo& rCmdInfo);

ParametersParameters

RemarksRemarks

CWinApp::PreTranslateMessage

virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

Return ValueReturn Value

Call this member function to parse the command line and send the parameters, one at a time, to
CCommandLineInfo::ParseParam.

rCmdInfo
A reference to a CCommandLineInfo object.

When you start a new MFC project using the Application Wizard, the Application Wizard will create a
local instance of CCommandLineInfo , and then call ProcessShellCommand and ParseCommandLine in the
InitInstance member function. A command line follows the route described below:

1. After being created in InitInstance , the CCommandLineInfo object is passed to
ParseCommandLine .

2. ParseCommandLine then calls CCommandLineInfo::ParseParam repeatedly, once for each parameter.

3. ParseParam fills the CCommandLineInfo object, which is then passed to ProcessShellCommand.

4. ProcessShellCommand handles the command-line arguments and flags.

Note that you can call ParseCommandLine directly as needed.

For a description of the command-line flags, see CCommandLineInfo::m_nShellCommand.

Override this function to filter window messages before they are dispatched to the Windows functions
TranslateMessage and DispatchMessage The default implementation performs accelerator-key
translation, so you must call the CWinApp::PreTranslateMessage member function in your overridden
version.

pMsg
A pointer to a MSG structure that contains the message to process.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

CWinApp::ProcessMessageFilter

virtual BOOL ProcessMessageFilter(
 int code,
 LPMSG lpMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinApp::ProcessShellCommand

BOOL ProcessShellCommand(CCommandLineInfo& rCmdInfo);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Nonzero if the message was fully processed in PreTranslateMessage and should not be processed
further. Zero if the message should be processed in the normal way.

The framework's hook function calls this member function to filter and respond to certain Windows
messages.

code
Specifies a hook code. This member function uses the code to determine how to process lpMsg.

lpMsg
A pointer to a Windows MSG structure.

Nonzero if the message is processed; otherwise 0.

A hook function processes events before they are sent to the application's normal message processing.

If you override this advanced feature, be sure to call the base-class version to maintain the
framework's hook processing.

This member function is called by InitInstance to accept the parameters passed from the
CCommandLineInfo object identified by rCmdInfo, and perform the indicated action.

rCmdInfo
A reference to a CCommandLineInfo object.

Nonzero if the shell command is processed successfully. If 0, return FALSE from InitInstance.

When you start a new MFC project using the Application Wizard, the Application Wizard will create a
local instance of CCommandLineInfo , and then call ProcessShellCommand and ParseCommandLine in the
InitInstance member function. A command line follows the route described below:

1. After being created in InitInstance , the CCommandLineInfo object is passed to
ParseCommandLine .

2. ParseCommandLine then calls CCommandLineInfo::ParseParam repeatedly, once for each
parameter.

3. ParseParam fills the CCommandLineInfo object, which is then passed to ProcessShellCommand .

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

enum {
 FileNew,
 FileOpen,
 FilePrint,
 FilePrintTo,
 FileDDE
 };

CWinApp::ProcessWndProcException

virtual LRESULT ProcessWndProcException(
 CException* e,
 const MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinApp::Register

virtual BOOL Register();

Return ValueReturn Value

4. ProcessShellCommand handles the command-line arguments and flags.

The data members of the CCommandLineInfo object, identified by
CCommandLineInfo::m_nShellCommand, are of the following enumerated type, which is defined
within the CCommandLineInfo class.

For a brief description of each of these values, see CCommandLineInfo::m_nShellCommand .

The framework calls this member function whenever the handler does not catch an exception thrown
in one of your application's message or command handlers.

e
A pointer to an uncaught exception.

pMsg
A MSG structure that contains information about the windows message that caused the framework to
throw an exception.

The value that should be returned to Windows. Normally this is 0L for windows messages, 1L (TRUE)
for command messages.

Do not call this member function directly.

The default implementation of this member function creates a message box. If the uncaught exception
originates with a menu, toolbar, or accelerator command failure, the message box displays a
"Command failed" message; otherwise, it displays an "Internal application error" message.

Override this member function to provide global handling of your exceptions. Only call the base
functionality if you wish the message box to be displayed.

Performs any registration tasks not handled by RegisterShellFileTypes .

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

RemarksRemarks

CWinApp::RegisterShellFileTypes

void RegisterShellFileTypes(BOOL bCompat = FALSE);

ParametersParameters

RemarksRemarks

NOTENOTE

CWinApp::RegisterWithRestartManager

virtual HRESULT RegisterWithRestartManager(
 BOOL bRegisterRecoveryCallback,
 const CString& strRestartIdentifier);

virtual HRESULT RegisterWithRestartManager(
 LPCWSTR pwzCommandLineArgs,
 DWORD dwRestartFlags,
 APPLICATION_RECOVERY_CALLBACK pRecoveryCallback,
 LPVOID lpvParam,
 DWORD dwPingInterval,
 DWORD dwCallbackFlags);

Nonzero on success; otherwise 0.

The default implementation simply returns TRUE. Override this function to provide any customized
registration steps.

Call this member function to register all of your application's document types with the Windows File
Manager.

bCompat
[in] TRUE adds registration entries for shell commands Print and Print To, allowing a user to print files
directly from the shell, or by dragging the file to a printer object. It also adds a DefaultIcon key. By
default, this parameter is FALSE for backward compatibility.

This allows the user to open a data file created by your application by double-clicking it from within
File Manager. Call RegisterShellFileTypes after you call AddDocTemplate for each of the document
templates in your application. Also call the EnableShellOpen member function when you call
RegisterShellFileTypes .

RegisterShellFileTypes iterates through the list of CDocTemplate objects that the application
maintains and, for each document template, adds entries to the registration database that Windows
maintains for file associations. File Manager uses these entries to open a data file when the user
double-clicks it. This eliminates the need to ship a .REG file with your application.

RegisterShellFileTypes only works if the user runs the program with administrator rights. If the program
does not have administrator rights, it cannot alter registry keys.

If the registration database already associates a given filename extension with another file type, no
new association is created. See the CDocTemplate class for the format of strings necessary to register
this information.

Registers the application with the restart manager.

ParametersParameters

Parameter Description

bRegisterRecoveryCallback [in] TRUE indicates that this instance of the application
uses a recovery callback function; FALSE indicates that
it does not. The framework calls the recovery callback
function when the application exits unexpectedly. For
more information, see
CWinApp::ApplicationRecoveryCallback.

strRestartIdentifier [in] The unique string that identifies this instance of the
restart manager. The restart manager identifier is
unique for each instance of an application.

pwzCommandLineArgs [in] A string that contains any extra arguments from
the command line.

dwRestartFlags [in] Optional flags for the restart manager. For more
information, see the Remarks section.

pRecoveryCallback [in] The recovery callback function. This function must
take a LPVOID parameter as input and return a
DWORD. The default recovery callback function is
CWinApp::ApplicationRecoveryCallback .

lpvParam [in] The input parameter for the recovery callback
function. For more information, see
CWinApp::ApplicationRecoveryCallback.

dwPingInterval [in] The length of time that the restart manager waits
for the recovery callback function to return. This
parameter is in milliseconds.

dwCallbackFlags [in] Flags passed to the recovery callback function.
Reserved for future use.

Return ValueReturn Value

RemarksRemarks

S_OK if the method is successful; otherwise an error code.

If your application uses the default MFC implementation for autosaving files, you should use the
simple version of RegisterWithRestartManager . Use the complex version of RegisterWithRestartManager

if you want to customize the autosave behavior of your application.

If you call this method with an empty string for strRestartIdentifier, RegisterWithRestartManager creates
a unique identifier string for this instance of the restart manager.

When an application exits unexpectedly, the restart manager restarts the application from the
command line and provides the unique restart identifier as an optional argument. In this scenario, the
framework calls RegisterWithRestartManager two times. The first call comes from
CWinApp::InitInstance with an empty string for the string identifier. Then, the method
CWinApp::ProcessShellCommand calls RegisterWithRestartManager with the unique restart identifier.

After you register an application with the restart manager, the restart manager monitors the
application. If the application exits unexpectedly, the restart manager calls the recovery callback

CWinApp::ReopenPreviousFilesAtRestart

virtual BOOL ReopenPreviousFilesAtRestart() const;

Return ValueReturn Value

CWinApp::RestartInstance

virtual BOOL CWinApp::RestartInstance();

Return ValueReturn Value

RemarksRemarks

CWinApp::RestoreAutosavedFilesAtRestart

virtual BOOL RestoreAutosavedFilesAtRestart() const;

Return ValueReturn Value

function during the shut down process. The restart manager waits the dwPingInterval for a response
from the recovery callback function. If the recovery callback function does not respond within this
time, the application exits without executing the recovery callback function.

By default, the dwRestartFlags are not supported but are provided for future use. The possible values
for dwRestartFlags are as follows:

RESTART_NO_CRASH

RESTART_NO_HANG

RESTART_NO_PATCH

RESTART_NO_REBOOT

Determines whether the restart manager reopens the files that were open when the application exited
unexpectedly.

TRUE indicates the restart manager reopens the previously open files; FALSE indicates the restart
manager does not.

Handles an application restart initiated by the restart manager.

TRUE if the data recovery handler opens previously open documents; FALSE if the data recovery
handler has an error or if there are no previously open documents.

When the restart manager restarts an application, the framework calls this method. This method
retrieves the data recovery handler and restores the autosaved files. This method calls
CDataRecoveryHandler::RestoreAutosavedDocuments to determine whether the user wants to restore
the autosaved files.

This method returns FALSE if the CDataRecoveryHandler determines that there were no open
documents. If there were no open documents, the application starts ordinarily.

Determines whether the restart manager restores the autosaved files when it restarts the application.

TRUE indicates the restart manager restores autosaved files; FALSE indicates the restart manager

CWinApp::Run

virtual int Run();

Return ValueReturn Value

RemarksRemarks

CWinApp::RunAutomated

BOOL RunAutomated();

Return ValueReturn Value

RemarksRemarks

CWinApp::RunEmbedded

BOOL RunEmbedded();

Return ValueReturn Value

RemarksRemarks

CWinApp::SaveAllModified

does not.

Provides a default message loop.

An int value that is returned by WinMain .

Run acquires and dispatches Windows messages until the application receives a WM_QUIT message.
If the application's message queue currently contains no messages, Run calls OnIdle to perform idle-
time processing. Incoming messages go to the PreTranslateMessage member function for special
processing and then to the Windows function TranslateMessage for standard keyboard translation;
finally, the DispatchMessage Windows function is called.

Run is rarely overridden, but you can override it to provide special behavior.

Call this function to determine whether the " /Automation" or " -Automation" option is present,
which indicates whether the server application was launched by a client application.

Nonzero if the option was found; otherwise 0.

If present, the option is removed from the command line. For more information on OLE Automation,
see the article Automation Servers.

Call this function to determine whether the " /Embedding" or " -Embedding" option is present,
which indicates whether the server application was launched by a client application.

Nonzero if the option was found; otherwise 0.

If present, the option is removed from the command line. For more information on embedding, see the
article Servers: Implementing a Server.

Called by the framework to save all documents when the application's main frame window is to be
closed, or through a WM_QUERYENDSESSION message.

virtual BOOL SaveAllModified();

Return ValueReturn Value

RemarksRemarks

CWinApp::SelectPrinter

void SelectPrinter(
 HANDLE hDevNames,
 HANDLE hDevMode,
 BOOL bFreeOld = TRUE);

ParametersParameters

RemarksRemarks

CWinApp::SetHelpMode

void SetHelpMode(AFX_HELP_TYPE eHelpType);

ParametersParameters

RemarksRemarks

CWinApp::SetRegistryKey

Nonzero if safe to terminate the application; 0 if not safe to terminate the application.

The default implementation of this member function calls the CDocument::SaveModified member
function in turn for all modified documents within the application.

Call this member function to select a specific printer, and release the printer that was previously
selected in the Print Dialog box.

hDevNames
A handle to a DEVNAMES structure that identifies the driver, device, and output port names of a
specific printer.

hDevMode
A handle to a DEVMODE structure that specifies information about the device initialization and
environment of a printer.

bFreeOld
Frees the previously-selected printer.

If both hDevMode and hDevNames are NULL, SelectPrinter uses the current default printer.

Sets the application's help type.

eHelpType
Specifies the type of help to use. See CWinApp::m_eHelpType for more information.

Sets the application's Help type.

To set your application's Help type to HTMLHelp, you can call EnableHTMLHelp. Once you call
EnableHTMLHelp , your application must use HTMLHelp as its help application. If you want to change to

use WinHelp, you can call SetHelpMode and set eHelpType to afxWinHelp .

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagdevnames
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_devicemodea

void SetRegistryKey(LPCTSTR lpszRegistryKey);
void SetRegistryKey(UINT nIDRegistryKey);

ParametersParameters

RemarksRemarks

CWinApp::SupportsApplicationRecovery

virtual BOOL SupportsApplicationRecovery() const;

Return ValueReturn Value

CWinApp::SupportsAutosaveAtInterval

virtual BOOL SupportsAutosaveAtInterval() const;

Return ValueReturn Value

CWinApp::SupportsAutosaveAtRestart

virtual BOOL SupportsAutosaveAtRestart() const;

Return ValueReturn Value

Causes application settings to be stored in the registry instead of INI files.

lpszRegistryKey
Pointer to a string containing the name of the key.

nIDRegistryKey
ID of a string resource containing the name of the registry key.

This function sets m_pszRegistryKey, which is then used by the GetProfileInt , GetProfileString ,
WriteProfileInt , and WriteProfileString member functions of CWinApp . If this function has been

called, the list of most recently-used (MRU) files is also stored in the registry. The registry key is
usually the name of a company. It is stored in a key of the following form:
HKEY_CURRENT_USER\Software\<company name>\<application name>\<section name>\<value
name>.

Determines whether the restart manager recovers an application that exited unexpectedly.

TRUE indicates the restart manager recovers the application; FALSE indicates the restart manager
does not.

Determines whether the restart manager autosaves open documents at a regular interval.

TRUE indicates the restart manager autosaves open documents; FALSE indicates the restart manager
does not.

Determines whether the restart manager autosaves any open documents when the application
restarts.

TRUE indicates the restart manager autosaves open documents when the application restarts; FALSE
indicates the restart manager does not.

CWinApp::SupportsRestartManager

virtual BOOL SupportsRestartManager() const;

Return ValueReturn Value

CWinApp::Unregister

virtual BOOL Unregister();

Return ValueReturn Value

RemarksRemarks

CWinApp::UnregisterShellFileTypes

void UnregisterShellFileTypes();

CWinApp::WinHelp

virtual void WinHelp(
 DWORD_PTR dwData,
 UINT nCmd = HELP_CONTEXT);

ParametersParameters

RemarksRemarks

Determines whether the application supports the restart manager.

TRUE indicates the application supports the restart manager; FALSE indicates the application does
not.

Unregisters all files registered by the application object.

Nonzero on success; otherwise 0.

The Unregister function undoes the registration performed by the application object and the Register
function. Normally, both functions are called implicitly by MFC and therefore will not appear in your
code.

Override this function to perform custom unregistration steps.

Call this member function to unregister all of your application's document types with the Windows File
Manager.

Call this member function to invoke the WinHelp application.

dwData
Specifies additional data. The value used depends on the value of the nCmd parameter.

nCmd
Specifies the type of help requested. For a list of possible values and how they affect the dwData
parameter, see the WinHelp Windows function.

The framework also calls this function to invoke the WinHelp application.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-winhelpa

ExampleExample

 // Header File: HELPIDS.H
 //
 // This example header file is #include'd twice:
 // (1) It is #include'd by the .CPP file that passes the DWORD
 // context i.d. to CWinApp::WinHelp.
 // (2) It is #include'd in the [MAP] section of the .HPJ file,
 // to associate the help context string "HID_MYTOPIC" with
 // the help context numeric i.d., 101.
 // The help context string "HID_MYTOPIC" is what identifies the
 // help topic in the help .RTF source file, in the "#" footnote:
 // # HID_MYTOPIC
 //
 // Note, it is not necessary to manage help context id's this way
 // for help topics associated with command id's and user interface
 // id's defined in your RESOURCE.H file; you should use the MAKEHM
 // tool via the custom build rule on your resource.h file to produce
 // a help map (.HM) file for these id's. It is necessary to manage
 // help context id's as illustrated here only for help topics not
 // associated with command id's or user interface id's.

 #define HID_MYTOPIC 101

 // Show the custom help topic that has the context string
 // "HID_MYTOPIC" in the help .RTF file, and which is mapped
 // to the DWORD i.d. HID_MYTOPIC in the above HELPIDS.H file.
 AfxGetApp()->WinHelp(HID_MYTOPIC);

 // The following is one line of code in the help map (.HM)
 // file produced by the MAKEHM tool, which is called by the custom
 // build rule on the resource.h file. The MAKEHM tool reads the
 // following #define in the application's RESOURCE.H file:
 #define ID_MYCOMMAND 0x08004
 // and adds a help id offset value of 0x10000 to create the
 // help context DWORD value 0x18004:
 // HID_MYCOMMAND 0x18004
 // See MFC Tech Note 28 for more information on help id offset values.

 // Rarely will you need to directly call WinHelp yourself
 // with the help context i.d. for a command or user interface
 // object. The framework will call WinHelp automatically when
 // the user, for example, hits F1 when the focus is on a
 // My Command menu item. However, if you do want to directly
 // call WinHelp for the help topic associated with the command,
 // here is how you would do it:

 AfxGetApp()->WinHelp(0x10000 + ID_MYCOMMAND);

CWinApp::WriteProfileBinary

BOOL WriteProfileBinary(
 LPCTSTR lpszSection,
 LPCTSTR lpszEntry,
 LPBYTE pData,
 UINT nBytes);

The framework will automatically close the WinHelp application when your application terminates.

Call this member function to write binary data into the specified section of the application's registry or
.INI file.

ParametersParameters

Return ValueReturn Value

ExampleExample

CWinApp* pApp = AfxGetApp();

CString strSection = _T("My Section");
CString strItem = _T("My Binary Item");
double myData = 123.456e12;

pApp->WriteProfileBinary(strSection, strItem, (LPBYTE)&myData, sizeof(myData));
double *pData;
UINT n;
pApp->GetProfileBinary(strSection, strItem, (LPBYTE*)&pData, &n);
ASSERT(n == sizeof(myData));
ASSERT(myData = *pData);
delete [] pData; // free the buffer

CWinApp::WriteProfileInt

BOOL WriteProfileInt(
 LPCTSTR lpszSection,
 LPCTSTR lpszEntry,
 int nValue);

ParametersParameters

lpszSection
Points to a null-terminated string that specifies the section containing the entry. If the section does not
exist, it is created. The name of the section is case independent; the string may be any combination of
uppercase and lowercase letters.

lpszEntry
Points to a null-terminated string that contains the entry into which the value is to be written. If the
entry does not exist in the specified section, it is created.

pData
Points to the data to be written.

nBytes
Contains the number of bytes to be written.

Nonzero if successful; otherwise 0.

This example uses CWinApp* pApp = AfxGetApp(); to get at the CWinApp class illustrating a way that
WriteProfileBinary and GetProfileBinary can be used from any function in an MFC application.

For another example, see the example for CWinApp::GetProfileBinary.

Call this member function to write the specified value into the specified section of the application's
registry or .INI file.

lpszSection
Points to a null-terminated string that specifies the section containing the entry. If the section does not
exist, it is created. The name of the section is case independent; the string may be any combination of
uppercase and lowercase letters.

lpszEntry
Points to a null-terminated string that contains the entry into which the value is to be written. If the

Return ValueReturn Value

ExampleExample

CWinApp* pApp = AfxGetApp();

CString strSection = _T("My Section");
CString strStringItem = _T("My String Item");
CString strIntItem = _T("My Int Item");

pApp->WriteProfileString(strSection, strStringItem, _T("test"));

CString strValue;
strValue = pApp->GetProfileString(strSection, strStringItem);
ASSERT(strValue == _T("test"));

pApp->WriteProfileInt(strSection, strIntItem, 1234);

int nValue;
nValue = pApp->GetProfileInt(strSection, strIntItem, 0);
ASSERT(nValue == 1234);

CWinApp::WriteProfileString

BOOL WriteProfileString(
 LPCTSTR lpszSection,
 LPCTSTR lpszEntry,
 LPCTSTR lpszValue);

ParametersParameters

entry does not exist in the specified section, it is created.

nValue
Contains the value to be written.

Nonzero if successful; otherwise 0.

This example uses CWinApp* pApp = AfxGetApp(); to get at the CWinApp class illustrating a way that
WriteProfileString , WriteProfileInt , GetProfileString , and GetProfileInt can be used from any

function in an MFC application.

For another example, see the example for CWinApp::GetProfileInt.

Call this member function to write the specified string into the specified section of the application's
registry or .INI file.

lpszSection
Points to a null-terminated string that specifies the section containing the entry. If the section does not
exist, it is created. The name of the section is case independent; the string may be any combination of
uppercase and lowercase letters.

lpszEntry
Points to a null-terminated string that contains the entry into which the value is to be written. If the
entry does not exist in the specified section, it is created. If this parameter is NULL, the section
specified by lpszSection is deleted.

lpszValue
Points to the string to be written. If this parameter is NULL, the entry specified by the lpszEntry
parameter is deleted.

Return ValueReturn Value

ExampleExample

CWinApp* pApp = AfxGetApp();

CString strSection = _T("My Section");
CString strStringItem = _T("My String Item");
CString strIntItem = _T("My Int Item");

pApp->WriteProfileString(strSection, strStringItem, _T("test"));

CString strValue;
strValue = pApp->GetProfileString(strSection, strStringItem);
ASSERT(strValue == _T("test"));

pApp->WriteProfileInt(strSection, strIntItem, 1234);

int nValue;
nValue = pApp->GetProfileInt(strSection, strIntItem, 0);
ASSERT(nValue == 1234);

CWinApp::SetAppID

void SetAppID(LPCTSTR lpcszAppID);

ParametersParameters

RemarksRemarks

See also

Nonzero if successful; otherwise 0.

For another example, see the example for CWinApp::GetProfileInt.

Explicitly sets Application User Model ID for the application. This method should be called before any
user interface is presented to the user (the best place is the application constructor).

lpcszAppID
Specifies the Application User Model ID.

CWinThread Class
Hierarchy Chart
How to: Add Restart Manager Support

CWinAppEx Class
3/4/2019 • 28 minutes to read • Edit Online

Syntax
class CWinAppEx : public CWinApp

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWinAppEx::CWinAppEx Constructs a CWinAppEx object.

Public MethodsPublic Methods

NAME DESCRIPTION

CWinAppEx::CleanState Removes information about the application from the
Windows registry.

CWinAppEx::EnableLoadWindowPlacement Specifies whether the application will load the initial size and
location of the main frame window from the registry.

CWinAppEx::EnableTearOffMenus Enables tear-off menus for the application.

CWinAppEx::EnableUserTools Enables the user to create custom menu commands in the
application.

CWinAppEx::ExitInstance Called by the framework from within the Run member
function to exit this instance of the application. (Overrides
CWinApp::ExitInstance.)

CWinAppEx::GetBinary Reads binary data that is associated with the specified
registry value.

CWinAppEx::GetContextMenuManager Returns a pointer to the global CContextMenuManager
object.

CWinAppEx::GetDataVersion

CWinAppEx::GetDataVersionMajor Returns the major version of the application saved in the
Windows registry.

CWinAppEx handles the application state, saves the state to the registry, loads the state from the registry,
initializes application managers, and provides links to those same application managers.

For more detail see the source code located in the VC\atlmfc\src\mfc folder of your Visual Studio
installation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cwinappex-class.md

CWinAppEx::GetDataVersionMinor Returns the minor version of the application saved in the
Windows registry.

CWinAppEx::GetInt Reads numeric data that is associated with the specified
value from the registry.

CWinAppEx::GetKeyboardManager Returns a pointer to the global CKeyboardManager object.

CWinAppEx::GetMouseManager Returns a pointer to the global CMouseManager object.

CWinAppEx::GetObject Reads CObject -derived data that is associated with the
specified value from the registry.

CWinAppEx::GetRegSectionPath Returns a string that is the path of a registry key. This path
concatenates the supplied relative path with the application
path.

CWinAppEx::GetRegistryBase Returns the registry path for the application.

CWinAppEx::GetSectionBinary Reads binary data that is associated with the specified key
and value from the registry.

CWinAppEx::GetSectionInt Reads numeric data from the registry associated with the
specified key and value.

CWinAppEx::GetSectionObject Reads CObject data that is associated with the specified
key and value from the registry.

CWinAppEx::GetSectionString Reads string data that is associated with the specified key
and value from the registry.

CWinAppEx::GetShellManager Returns a pointer to the global CShellManager object.

CWinAppEx::GetString Reads string data that is associated with the specified value
from the registry.

CWinAppEx::GetTooltipManager Returns a pointer to the global CTooltipManager object.

CWinAppEx::GetUserToolsManager Returns a pointer to the global CUserToolsManager object.

CWinAppEx::InitContextMenuManager Initializes the CContextMenuManager object.

CWinAppEx::InitKeyboardManager Initializes the CKeyboardManager object.

CWinAppEx::InitMouseManager Initializes the CMouseManager object.

CWinAppEx::InitShellManager Initializes the CShellManager class

CWinAppEx::InitTooltipManager Initializes the CTooltipManager class.

CWinAppEx::IsResourceSmartUpdate

NAME DESCRIPTION

CWinAppEx::IsStateExists Indicates whether the specified key is in the registry.

CWinAppEx::LoadState Loads the application state from the registry.

CWinAppEx::OnAppContextHelp Called by the framework when the user requests context
help for the Customization dialog box.

CWinAppEx::OnViewDoubleClick Calls the user-defined command when the user double-
clicks anywhere in the application.

CWinAppEx::OnWorkspaceIdle

CWinAppEx::SaveState Writes the state of the application framework to the
Windows registry.

CWinAppEx::SetRegistryBase Sets the path of the default registry key. This key will serve
as a root for all subsequent registry calls.

CWinAppEx::ShowPopupMenu Displays a popup menu.

CWinAppEx::WriteBinary Writes the binary data to the specified registry value.

CWinAppEx::WriteInt Writes the numeric data to the specified registry value.

CWinAppEx::WriteObject Writes data that is derived from the CObject Class to the
specified registry value.

CWinAppEx::WriteSectionBinary Writes the binary data to a value of the specified registry
key.

CWinAppEx::WriteSectionInt Writes the numeric data to a value of the specified registry
key.

CWinAppEx::WriteSectionObject Writes data derived from the CObject class to a value of
the specified registry key.

CWinAppEx::WriteSectionString Writes the string data to a value of the specified registry
key.

CWinAppEx::WriteString Writes the string data to the specified registry value.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CWinAppEx::LoadCustomState Called by the framework when the application state has
been loaded.

CWinAppEx::LoadWindowPlacement Called by the framework when it loads the size and location
of your application from the registry. The loaded data
includes the size and location of the main frame at the time
your application last closed.

CWinAppEx::OnClosingMainFrame Called by the framework when a main frame window is
processing WM_CLOSE.

CWinAppEx::PreLoadState Called by the framework immediately before the application
state is loaded.

CWinAppEx::PreSaveState Called by the framework immediately before the application
state is saved.

CWinAppEx::ReloadWindowPlacement Reloads the size and location of the supplied window from
the registry

CWinAppEx::SaveCustomState Called by the framework after it writes the application state
to the registry.

CWinAppEx::StoreWindowPlacement Called by the framework to write the size and location of
the main frame to the registry.

NAME DESCRIPTION

Data MembersData Members

NAME DESCRIPTION

CWinAppEx::m_bForceImageReset Specifies whether the framework will reset all toolbar
images when the frame window that contains the toolbar is
loaded.

Remarks

Inheritance Hierarchy

Requirements

Much of the functionality provided by the MFC framework depends on the CWinAppEx class. You can
incorporate the CWinAppEx class into your application in one of two ways:

Construct a CWinAppEx class in the main thread.

Derive the main application class from CWinAppEx .

After you incorporate CWinAppEx into your application, you can initialize any one of the application managers.
Before you use an application manager, you must initialize it by calling the appropriate initialize method. To
obtain a pointer to a specific manager, call the associated get method. The CWinAppEx class manages the
following application managers: CMouseManager Class, CContextMenuManager Class, CKeyboardManager
Class, CUserToolsManager Class, and CMenuTearOffManager Class.

CObject

CCmdTarget

CWinThread

CWinApp

CWinAppEx

CWinAppEx::CleanState

virtual BOOL CleanState(LPCTSTR lpszSectionName=NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::CWinAppEx

CWinAppEx(BOOL bResourceSmartUpdate = FALSE);

ParametersParameters

RemarksRemarks

CWinAppEx::EnableLoadWindowPlacement

void EnableLoadWindowPlacement(BOOL bEnable = TRUE);

ParametersParameters

RemarksRemarks

Header: afxwinappex.h

Removes all the information about the application from the Windows registry.

lpszSectionName
[in] A string that contains a path of a registry key.

Nonzero if the method was successful; otherwise 0.

This method clears application data from a specific section of the registry. You can specify the section to clear
by using the parameter lpszSectionName. If lpszSectionName is NULL, this method will use the default
registry path stored in the CWinAppEx object. To get the default registry path, use
CWinAppEx::GetRegistryBase.

Constructs a CWinAppEx object.

bResourceSmartUpdate
[in] A Boolean parameter that specifies whether the workspace object should detect and handle resource
updates.

The CWinAppEx class has initialization methods, provides functionality for saving and loading application
information to the registry, and controls global application settings. It also enables you to use global
managers such as the CKeyboardManager Class and the CUserToolsManager Class. Each application can
have only one instance of the CWinAppEx class.

Specifies whether the application will load the initial size and location of the main frame window from the
registry.

bEnable
[in] Specifies whether the application loads the initial size and location of the main frame window from the
registry.

CWinAppEx::EnableTearOffMenus

BOOL EnableTearOffMenus(
 LPCTSTR lpszRegEntry,
 const UINT uiCmdFirst,
 const UINT uiCmdLast);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::EnableUserTools

BOOL EnableUserTools(
 const UINT uiCmdToolsDummy,
 const UINT uiCmdFirst,
 const UINT uiCmdLast,
 CRuntimeClass* pToolRTC = RUNTIME_CLASS(CUserTool),
 UINT uArgMenuID = 0,
 UINT uInitDirMenuID = 0);

ParametersParameters

By default, the size and location of the main frame is loaded from the registry together with other application
settings. This occurs during CWinAppEx::LoadState. If you do not want to load the initial window placement
from the registry, call this method with bEnable set to FALSE.

Creates and initializes a CMenuTearOffManager object.

lpszRegEntry
[in] A string that contains the path of a registry key. The application uses this registry key to store information
for the tear-off menus.

uiCmdFirst
[in] The first tear off menu ID.

uiCmdLast
[in] The last tear off menu ID.

TRUE if the CMenuTearOffManager is created and initialized successfully; FALSE if an error occurs or if the
CMenuTearOffManager already exists.

Use this function to enable tear-off menus in your application. You should call this function from
InitInstance .

Enables the user to create custom menu commands that reduce keystrokes in your application. This method
creates a CUserToolsManager object.

uiCmdToolsDummy
[in] An unsigned integer that the framework uses as a placeholder for the command ID of the user tools
menu.

uiCmdFirst
[in] The command ID for the first user tool command.

uiCmdLast
[in] The command ID for the last user tool command.

Return ValueReturn Value

RemarksRemarks

CWinAppEx::ExitInstance
virtual int ExitInstance();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetBinary

BOOL GetBinary(
 LPCTSTR lpszEntry,
 LPBYTE* ppData,
 UINT* pBytes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pToolRTC
[in] A class that the CUserToolsManager object uses to create new user tools.

uArgMenuID
[in] The argument menu ID.

uInitDirMenuID
[in] The menu ID for the initial tool directory.

TRUE if the method creates and initializes a CUserToolsManager object; FALSE if the method fails or if a
CUserToolsManager object already exists.

When you enable user-defined tools, the framework automatically supports a dynamic menu that can be
extended during customization. The framework associates each new item with an external command. The
framework invokes these commands when the user selects the appropriate item from the Tools menu.

Every time the user adds a new item, the framework creates a new object. The class type for the new object is
defined by pToolRTC. The pToolRTC class type must be derived from the CUserTool Class.

For more information about user tools and how to incorporate them into your application, see User-defined
Tools.

Reads binary data from a specified registry key.

lpszEntry
[in] A string that contains the name of a registry key.

ppData
[out] A pointer to the buffer that the method fills with the binary data.

pBytes
[out] A pointer to an unsigned integer that the method uses to write the number of bytes read.

TRUE if successful; FALSE otherwise.

This method reads binary data written to the registry. To write data to the registry, use the methods

CWinAppEx::GetContextMenuManager

CContextMenuManager* GetContextMenuManager();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetDataVersion
int GetDataVersion() const;

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetDataVersionMajor

int GetDataVersionMajor() const;

Return ValueReturn Value

CWinAppEx::GetDataVersionMinor

int GetDataVersionMinor() const;

Return ValueReturn Value

CWinAppEx::GetInt

CWinAppEx::WriteBinary and CWinAppEx::WriteSectionBinary.

The lpszEntry parameter is the name of a registry entry located under the default registry key for your
application. To get or set the default registry key, use the methods CWinAppEx::GetRegistryBase and
CWinAppEx::SetRegistryBase respectively.

Returns a pointer to the global CContextMenuManager object.

A pointer to the global CContextMenuManager object.

If the CContextMenuManager object is not initialized, this function calls
CWinAppEx::InitContextMenuManager before it returns a pointer.

Returns the major version of the application that is saved in the Windows registry when you call
CWinAppEx::SaveState.

An integer value that contains the major version number.

Returns the minor version of the application that is saved in the Windows registry when you call
CWinAppEx::SaveState.

An integer value that contains the minor version number.

Reads integer data from a specified registry key.

int GetInt(
 LPCTSTR lpszEntry,
 int nDefault = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetKeyboardManager

CKeyboardManager* GetKeyboardManager();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetMouseManager

CMouseManager* GetMouseManager();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetObject

lpszEntry
[in] A string that contains the name of a registry entry.

nDefault
[in] The default value that the method returns if the specified registry entry does not exist.

The registry data if the method was successful; otherwise nDefault.

This method reads integer data from the registry. If there is no integer data associated with the registry key
indicated by lpszEntry, this method returns nDefault. To write data to the registry, use the methods
CWinAppEx::WriteSectionInt and CWinAppEx::WriteInt.

The lpszEntry parameter is the name of a registry entry located under the default registry key for your
application. To get or set the default registry key, use the methods CWinAppEx::GetRegistryBase and
CWinAppEx::SetRegistryBase respectively.

Returns a pointer to the global CKeyboardManager object.

A pointer to the global CKeyboardManager object.

If the keyboard manager is not initialized, this function calls CWinAppEx::InitKeyboardManager before it
returns a pointer.

Returns a pointer to the global CMouseManager object.

A pointer to the global CMouseManager object.

If the mouse manager is not initialized,, this function calls CWinAppEx::InitMouseManager before it returns a
pointer.

Reads CObject-dervied data from the registry.

BOOL GetObject(
 LPCTSTR lpszEntry,
 CObject& obj);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetRegistryBase

LPCTSTR GetRegistryBase();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetRegSectionPath

CString GetRegSectionPath(LPCTSTR szSectionAdd = _T(""));

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpszEntry
[in] A string that contains the relative path of a registry entry.

obj
[out] A reference to a CObject . The method uses this reference to store the registry data.

Nonzero if the method was successful; otherwise 0.

This method reads data from the registry that is derived from CObject . To write CObject data to the registry,
use either CWinAppEx::WriteObject or CWinAppEx::WriteSectionObject.

The lpszEntry parameter is the name of a registry entry that is located under the default registry key for your
application. To get or set the default registry key, use the methods CWinAppEx::GetRegistryBase and
CWinAppEx::SetRegistryBase respectively.

Retrieves the default registry path for the application.

A string that contains the path of the default registry location.

All methods of the CWinAppEx Class that access the registry start in a default location. Use this method to
retrieve a path of the default registry location. Use CWinAppEx::SetRegistryBase to change the default
registry location.

Creates and returns the absolute path of a registry key.

szSectionAdd
[in] A string that contains the relative path of a registry key.

A CString that contains the absolute path of a registry key.

This method defines the registry key's absolute path by appending the relative path in szSectionAdd to the
default registry location for your application. To get the default registry key, use the method

CWinAppEx::GetSectionBinary

BOOL GetSectionBinary(
 LPCTSTR lpszSubSection,
 LPCTSTR lpszEntry,
 LPBYTE* ppData,
 UINT* pBytes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetSectionInt

int GetSectionInt(
 LPCTSTR lpszSubSection,
 LPCTSTR lpszEntry,
 int nDefault = 0);

ParametersParameters

Return ValueReturn Value

CWinAppEx::GetRegistryBase.

Reads binary data from the registry.

lpszSubSection
[in] A string that contains the relative path of a registry key.

lpszEntry
[in] A string that contains the value to read.

ppData
[out] A pointer to the buffer where the method stores the data.

pBytes
[out] A pointer to an unsigned integer. The method writes the size of ppData to this parameter.

TRUE if successful; otherwise FALSE.

This method reads binary data that is written to the registry using the methods CWinAppEx::WriteBinary and
CWinAppEx::WriteSectionBinary.

The lpszSubSection parameter is not an absolute path for a registry entry. It is a relative path that is appended
to the end of the default registry key for your application. To get or set the default registry key, use the
methods CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase respectively.

Reads integer data from the registry.

lpszSubSection
[in] A string that contains the relative path of a registry key.

lpszEntry
[in] A string that contains the value to read.

nDefault
[in] The default value to return if the specified value does not exist.

RemarksRemarks

CWinAppEx::GetSectionObject

BOOL GetSectionObject(
 LPCTSTR lpszSubSection,
 LPCTSTR lpszEntry,
 CObject& obj);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetSectionString

CString GetSectionString(
 LPCTSTR lpszSubSection,
 LPCTSTR lpszEntry,
 LPCTSTR lpszDefault = _T(""));

ParametersParameters

The integer data that is stored in the specified registry value; nDefault if the data does not exist.

Use the methods CWinAppEx::WriteInt and CWinAppEx::WriteSectionInt to write integer data to the registry.

The lpszSubSection parameter is not an absolute path of a registry entry. It is a relative path that is added to
the end of the default registry key for your application. To get or set the default registry key, use the methods
CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase respectively.

Reads CObject registry data from the registry.

lpszSubSection
[in] A string that contains the relative path of a registry key.

lpszEntry
[in] A string that contains the value to read.

obj
[out] A reference to a CObject . The method uses this CObject to store the registry data.

Nonzero if successful; otherwise 0.

This method reads data from the registry. The data read is CObject data, or data for a class derived from
CObject . To write CObject data to the registry, use either CWinAppEx::WriteObject or

CWinAppEx::WriteSectionObject.

The lpszSubSection parameter is not an absolute path for a registry entry. It is a relative path that is appended
to the end of the default registry key for your application. To get or set the default registry key, use the
methods CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase respectively.

Reads string data from the registry.

lpszSubSection
[in] A string that contains the relative path of a registry key.

lpszEntry
[in] A string that contains the value to read.

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetShellManager

CShellManager* GetShellManager();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetString

CString GetString(
 LPCTSTR lpszEntry,
 LPCTSTR lpzDefault= _T(""));

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpszDefault
[in] The default value to return if the specified value does not exist.

The string data stored in the specified registry value if the data exists; otherwise lpszDefault.

This method reads string data written to the registry. Use CWinAppEx::WriteString and
CWinAppEx::WriteSectionString to write string data to the registry.

The lpszSubSection parameter is not an absolute path for a registry entry. It is a relative path that is appended
to the end of the default registry key for your application. To get or set the default registry key, use the
methods CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase respectively.

Returns a pointer to the global CShellManager object.

A pointer to the global CShellManager object.

If the CShellManager object is not initialized, this function calls CWinAppEx::InitShellManager before it returns
a pointer.

Reads string data from a specified registry key.

lpszEntry
[in] A string that contains the name of a registry key

lpzDefault
[in] The default value that the method returns if the specified registry entry does not exist.

The string data stored in the registry if successful; lpszDefault otherwise.

This method reads string data written to the registry. To write data to the registry, use the methods
CWinAppEx::WriteString or CWinAppEx::WriteSectionString.

The lpszEntry parameter is the name of a registry entry located under the default registry key for your
application. To get or set the default registry key, use the methods CWinAppEx::GetRegistryBase and
CWinAppEx::SetRegistryBase respectively.

CWinAppEx::GetTooltipManager

CTooltipManager* GetTooltipManager();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::GetUserToolsManager

CUserToolsManager* GetUserToolsManager();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::InitContextMenuManager

BOOL InitContextMenuManager();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::InitKeyboardManager

Returns a pointer to the global CTooltipManager object.

A pointer to the global CTooltipManager object.

If the CTooltipManager object is not initialized, this function calls CWinAppEx::InitTooltipManager before it
returns a pointer.

Returns a pointer to the global CUserToolsManager object.

A pointer to the global CUserToolsManager object; NULL if user tools management is not enabled for the
application.

Before you retrieve a pointer to the CUserToolsManager object, you must initialize the manager by calling
CWinAppEx::EnableUserTools.

Initializes the CContextMenuManager object.

Nonzero if the method creates the CContextMenuManager object; 0 if the CContextMenuManager object already
exists.

If you call CWinAppEx::GetContextMenuManager, the default implementation of that method calls
InitContextMenuManager .

If your application already has a context menu manager and you call InitContextMenuManager , your application
will have an ASSERT failure. Therefore, you should not call InitContextMenuManager if you create a
CContextMenuManager object directly. If you are not using a custom CContextMenuManager , you should use
GetContextMenuManager to create a CContextMenuManager object.

Initializes the CKeyboardManager object.

BOOL InitKeyboardManager();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::InitMouseManager

BOOL InitMouseManager();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::InitShellManager

BOOL InitShellManager();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::InitTooltipManager

Nonzero if the method creates the CKeyboardManager object; 0 if the CKeyboardManager object already exists.

If you call CWinAppEx::GetKeyboardManager, the default implementation of that method calls
InitKeyboardManager .

If your application already has a keyboard manager and you call InitKeyboardManager , your application will
have an ASSERT failure. Therefore, you should not call InitKeyboardManager if you create a CKeyboardManager

object directly. If you are not using a custom CKeyboardManager , you should use GetKeyboardManager to create
a CKeyboardManager object.

Initializes the CMouseManager object.

Nonzero if the method creates the CMouseManager object; 0 if the CMouseManager object already exists.

If you call CWinAppEx::GetMouseManager, the default implementation of that method calls InitMouseManager

.

If your application already has a mouse manager and you call InitMouseManager , your application will have an
ASSERT failure. Therefore you should not call InitMouseManager if you create a CMouseManager object directly.
If you are not using a custom CMouseManager , you should use GetMouseManager to create a CMouseManager

object.

Initializes the CShellManager object.

Nonzero if the method creates the CShellManager object; 0 if the CShellManager object already exists.

If you call CWinAppEx::GetShellManager, the default implementation of that method calls InitShellManager .

If your application already has a shell manager and you call InitShellManager , your application raises an
ASSERT failure. Therefore, do not call InitShellManager if you create a CShellManager object directly. If you
are not using a custom CShellManager , use GetShellManager to create a CShellManager object.

Initializes the CTooltipManager object.

BOOL InitTooltipManager();

Return ValueReturn Value

RemarksRemarks

CWinAppEx::IsResourceSmartUpdate
BOOL IsResourceSmartUpdate() const;

Return ValueReturn Value

RemarksRemarks

CWinAppEx::IsStateExists

BOOL IsStateExists(LPCTSTR lpszSectionName);

ParametersParameters

Return ValueReturn Value

CWinAppEx::LoadCustomState

virtual void LoadCustomState();

RemarksRemarks

CWinAppEx::LoadState

Nonzero if the method creates the CTooltipManager object; 0 if the CTooltipManager object already exists.

If you call CWinAppEx::GetTooltipManager, the default implementation of that method calls
InitTooltipManager .

If your application already has a tooltip manager and you call InitTooltipManager , your application will have
an ASSERT failure. Therefore, you should not call InitTooltipManager if you create a CTooltipManager object
directly. If you are not using a custom CTooltipManager , you should use GetTooltipManager to create a
CTooltipManager object.

Indicates whether the specified key is in the registry.

lpszSectionName
[in] A string that contains a path of a registry key.

Nonzero if the key is in the registry; otherwise 0.

The framework calls this method after it loads the state of the application from the registry.

Override this method if you want to do any processing after the application loads the state from the registry.
By default, this method does nothing.

In order to load custom state information from the registry, the information must first be saved by using
CWinAppEx::SaveCustomState.

Reads the application state from the Windows registry.

BOOL LoadState(
 CMDIFrameWndEx* pFrame,
 LPCTSTR lpszSectionName = NULL);

BOOL LoadState(
 CFrameWndEx* pFrame,
 LPCTSTR lpszSectionName = NULL);

BOOL LoadState(
 COleIPFrameWndEx* pFrame,
 LPCTSTR lpszSectionName = NULL);

virtual BOOL LoadState(
 LPCTSTR lpszSectionName = NULL,
 CFrameImpl* pFrameImpl = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::LoadWindowPlacement

virtual BOOL LoadWindowPlacement(
 CRect& rectNormalPosition,
 int& nFlags,
 int& nShowCmd);

ParametersParameters

pFrame
[in] A pointer to a frame window object. The method applies the state information in the registry to this frame
window.

lpszSectionName
[in] A string that contains the relative path of a registry key.

pFrameImpl
[in] A pointer to a CFrameImpl object. The method applies the state information in the registry to this frame
window.

Nonzero if successful; 0 otherwise.

This method loads the state of the application and any state information for a frame window. The loaded
information for the frame window is applied to the supplied frame window. If you do not supply a frame
window, only the application state information is loaded. The application information includes the state of the
CMouseManager Class, CContextMenuManager Class, CKeyboardManager Class, and the
CUserToolsManager Class.

The default implementation of CFrameImpl::OnLoadFrame calls LoadState .

The lpszSectionName parameter is not the absolute path for a registry entry. It is a relative path that is added
to the end of the default registry key for your application. To get or set the default registry key, use the
methods CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase respectively.

Called by the framework when it loads the size and location of the main frame window from the registry.

rectNormalPosition
[out] A rectangle that contains the coordinates of the main frame window when it is in the restored position.

Return ValueReturn Value

RemarksRemarks

CWinAppEx::m_bForceImageReset

BOOL m_bForceImageReset;

RemarksRemarks

CWinAppEx::OnAppContextHelp

virtual void OnAppContextHelp(
 CWnd* pWndControl,
 const DWORD dwHelpIDArray[]);

ParametersParameters

RemarksRemarks

CWinAppEx::OnClosingMainFrame

virtual void OnClosingMainFrame(CFrameImpl* pFrameImpl);

nFlags
[out] Flags that control the position of the minimized window and how the operating system switches
between a minimized window and a restored window.

nShowCmd
[out] An integer that specifies the show state of the window. For more information about possible values, see
CWnd::ShowWindow.

Nonzero if successful; 0 otherwise.

By default, MFC automatically loads the previous position and state of the main frame window when the
application starts. For more information about how this information is stored in the registry, see
CWinAppEx::StoreWindowPlacement.

Override this method if you want to load additional information about the main frame window.

Specifies whether the framework resets all toolbar images when it reloads the frame window that contains the
toolbar.

The m_bForceImageReset data member is a protected variable.

The framework calls this method when the user requests context help for the Customization dialog box.

pWndControl
[in] A pointer to a window object for which the user invoked context help.

dwHelpIDArray[]
[in] A reserved value.

This method is currently reserved for future use. The default implementation does nothing and it is currently
not called by the framework.

The framework calls this method when a frame window is processing WM_CLOSE.

ParametersParameters

RemarksRemarks

CWinAppEx::OnViewDoubleClick

virtual BOOL OnViewDoubleClick(
 CWnd* pWnd,
 int iViewId);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::OnWorkspaceIdle
virtual BOOL OnWorkspaceIdle(CWnd*);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::PreLoadState

virtual void PreLoadState();

RemarksRemarks

pFrameImpl
[in] A pointer to a CFrameImpl object.

The default implementation of this method saves the state of pFrameImpl.

Calls the user-defined command that is associated with a view when the user double-clicks anywhere within
that view.

pWnd
[in] A pointer to an object derived from the CView Class.

iViewId
[in] The view ID.

TRUE if the framework finds a command; otherwise FALSE.

In order to support custom mouse behavior, you must call this function when you process the
WM_LBUTTONDBLCLK message. This method will execute the command associated with the view ID
supplied by iViewId. For more information about custom mouse behavior, see Keyboard and Mouse
Customization.

[in] CWnd&

The framework calls this method immediately before it loads the state of the application from the registry.

Override this method if you want to do any processing immediately before the framework loads the
application state.

CWinAppEx::PreSaveState

virtual void PreSaveState();

RemarksRemarks

CWinAppEx::ReloadWindowPlacement

virtual BOOL ReloadWindowPlacement(CFrameWnd* pFrame);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::SaveCustomState

virtual void SaveCustomState();

RemarksRemarks

CWinAppEx::SaveState

The framework calls this method immediately before it saves the application state.

Override this method if you want to do any processing immediately before the framework saves the
application state.

Reloads the size and location of a window from the registry.

pFrame
[in] A pointer to a frame window.

Nonzero if the method was successful; 0 if the load failed or there is no data to load.

Use the function CWinAppEx::StoreWindowPlacement to write the size and location of a window to the
registry.

The framework calls this method after it saves the state of the application to the registry.

Override this method if you want to do any processing after the application saves the state to the registry. By
default, this method does nothing.

Writes the application state to the Windows registry.

virtual BOOL SaveState(
 LPCTSTR lpszSectionName = NULL,
 CFrameImpl* pFrameImpl = NULL);

BOOL SaveState(
 CMDIFrameWndEx* pFrame,
 LPCTSTR lpszSectionName = NULL);

BOOL SaveState(
 CFrameWndEx* pFrame,
 LPCTSTR lpszSectionName = NULL);

BOOL SaveState(
 COleIPFrameWndEx* pFrame,
 LPCTSTR lpszSectionName = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::SetRegistryBase

LPCTSTR SetRegistryBase(LPCTSTR lpszSectionName = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpszSectionName
[in] A string that contains the relative path of a registry key.

pFrameImpl
[in] A pointer to a CFrameImpl object. This frame is saved to the Windows registry.

pFrame
[in] A pointer to a frame window object. This frame is saved to the Windows registry.

TRUE if successful; FALSE otherwise.

This method saves the state of the application and any state information for the provided frame window. If
you do not provide a frame window, the method only saves the application state. The application information
includes the state of the CMouseManager Class, CContextMenuManager Class, CKeyboardManager Class,
and the CUserToolsManager Class.

The lpszSectionName parameter is not the absolute path for a registry entry. It is a relative path that is
appended to the end of the default registry key for your application. To get or set the default registry key, use
the methods CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase respectively.

Sets the default registry path for the application.

lpszSectionName
[in] A string that contains the path of a registry key.

A string that contains the path of the default registry location.

All methods of the CWinAppEx Class that access the registry start in a default location. Use this method to
change that default registry location. Use CWinAppEx::GetRegistryBase to retrieve the default registry
location.

CWinAppEx::ShowPopupMenu

virtual BOOL ShowPopupMenu(
 UINT uiMenuResId,
 const CPoint& point,
 CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::StoreWindowPlacement

virtual BOOL StoreWindowPlacement(
 const CRect& rectNormalPosition,
 int nFlags,
 int nShowCmd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Displays a popup menu.

uiMenuResId
[in] A menu resource ID.

point
[in] A CPoint that specifies the position of the menu in screen coordinates.

pWnd
[in] A pointer to the window that owns the popup menu.

Nonzero if the popup menu is displayed successfully; 0 otherwise.

This method displays the menu associated with uiMenuResId.

To support popup menus, you must have a CContextMenuManager object. If you have not initialized the
CContextMenuManager object, ShowPopupMenu will fail.

Called by the framework to write the size and location of the main frame window to the registry.

nFlags
[in] Flags that control the position of the minimized window and how the operating system switches between
a minimized window and a restored window.

nShowCmd
[in] An integer that specifies the show state of the window. For more information about possible values, see
CWnd::ShowWindow.

rectNormalPosition
[in] A rectangle that contains the coordinates of the main frame window when it is in the restored state.

Nonzero if successful; 0 otherwise.

By default, MFC automatically saves the position and state of the main frame window before the application
exits. This information is stored in the Windows registry under the WindowPlacement key in the default

CWinAppEx::WriteBinary

BOOL WriteBinary(
 LPCTSTR lpszEntry,
 LPBYTE pData,
 UINT nBytes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::WriteInt

BOOL WriteInt(
 LPCTSTR lpszEntry,
 int nValue);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

registry location for your application. For more information about the default registry location of your
application, see CWinAppEx::GetRegistryBase.

Override this method if you want to store additional information about the main frame window.

Writes binary data to the registry.

lpszEntry
[in] A string that contains the name of a registry key.

pData
[in] The data to store.

nBytes
[in] The size of pData in bytes.

TRUE if this method is successful; otherwise FALSE.

The lpszEntry parameter is the name of a registry entry that is located under the default registry key for your
application. To get or set the default registry key, use the methods CWinAppEx::GetRegistryBase and
CWinAppEx::SetRegistryBase respectively.

If the key specified by lpszEntry does not exist, this method will create it.

Writes numeric data to the registry.

lpszEntry
[in] A string that contains the name of a registry key.

nValue
[in] The data to store.

TRUE if this method is successful; otherwise FALSE.

The lpszEntry parameter is the name of a registry entry located under the default registry key for your
application. To get or set the default registry key, use the methods CWinAppEx::GetRegistryBase and

CWinAppEx::WriteObject

BOOL WriteObject(
 LPCTSTR lpszEntry,
 CObject& obj);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::WriteSectionBinary

BOOL WriteSectionBinary(
 LPCTSTR lpszSubSection,
 LPCTSTR lpszEntry,
 LPBYTE pData,
 UINT nBytes);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::SetRegistryBase respectively.

If the key specified by lpszEntry does not exist, this method will create it.

Writes data derived from the CObject Class to the registry.

lpszEntry
[in] A string that contains the value to set.

obj
[in] A reference to CObject data that the method will store.

TRUE if this method is successful; otherwise FALSE.

This method writes the obj data to the specified value under the default registry key. Use
CWinAppEx::GetRegistryBase to determine the current registry key.

Writes binary data to a value in the registry.

lpszSubSection
[in] A string that contains the name of a registry key

lpszEntry
[in] A string that contains the value to set.

pData
[in] The data to write to the registry.

nBytes
[in] The size of pData in bytes.

TRUE if this method is successful; otherwise FALSE.

The lpszSubSection parameter is not the absolute path for a registry entry. It is a relative path that is
appended to the end of the default registry key for your application. To get or set the default registry key, use
the methods CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase respectively.

CWinAppEx::WriteSectionInt

BOOL WriteSectionInt(
 LPCTSTR lpszSubSection,
 LPCTSTR lpszEntry,
 int nValue);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::WriteSectionObject

BOOL WriteSectionObject(
 LPCTSTR lpszSubSection,
 LPCTSTR lpszEntry,
 CObject& obj);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

If the key specified by lpszEntry does not exist, this method will create it.

Writes numeric data to the registry.

lpszSubSection
[in] A string that contains the relative path of a registry key.

lpszEntry
[in] A string that contains the value to set.

nValue
[in] The data to write to the registry.

TRUE if this method is successful; otherwise FALSE.

The lpszSubSection parameter is not an absolute path for a registry entry. It is a relative path that is appended
to the default registry key for your application. To get or set the default registry key, use the methods
CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase respectively.

If the key specified by lpszEntry does not exist, this method will create it.

Writes data derived from the CObject Class to a specific registry value.

lpszSubSection
[in] A string that contains the name of a registry key.

lpszEntry
[in] A string that contains the name of the value to set.

obj
[in] The data to store.

TRUE if this method is successful; otherwise FALSE.

The lpszSubSection parameter is not an absolute path for a registry entry. It is a relative path that is appended

CWinAppEx::WriteSectionString

BOOL WriteSectionString(
 LPCTSTR lpszSubSection,
 LPCTSTR lpszEntry,
 LPCTSTR lpszValue);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinAppEx::WriteString

BOOL WriteString(
 LPCTSTR lpszEntry,
 LPCTSTR lpszValue);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

to the end of the default registry key for your application. To get or set the default registry key, use the
methods CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase, respectively.

If the value specified by lpszEntry does not exist under the registry key specified by lpszSubSection, this
method will create that value.

Writes string data to a value in the registry.

lpszSubSection
[in] A string that contains the name of a registry key.

lpszEntry
[in] A string that contains the value to set.

lpszValue
[in] The string data to write to the registry.

TRUE if this method is successful; otherwise FALSE.

The lpszSubSection parameter is not an absolute path for a registry entry. It is a relative path that is appended
to the end of the default registry key for your application. To get or set the default registry key, use the
methods CWinAppEx::GetRegistryBase and CWinAppEx::SetRegistryBase, respectively.

If the value specified by lpszEntry does not exist under lpszSubSection, this method will create it.

Writes string data to the registry.

lpszEntry
[in] A string that contains the name of a registry key.

lpszValue
[in] The data to store.

TRUE if this method is successful; otherwise FALSE.

The lpszEntry parameter is the name of a registry entry located under the default registry key for your

See also

application. To get or set the default registry key, use the methods CWinAppEx::GetRegistryBase and
CWinAppEx::SetRegistryBase respectively.

If the key specified by lspzEntry does not exist, this method will create it.

Hierarchy Chart
Classes
CWinApp Class
CMouseManager Class
CContextMenuManager Class
CKeyboardManager Class
CUserToolsManager Class

CWindowDC Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CWindowDC : public CDC

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWindowDC::CWindowDC Constructs a CWindowDC object.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CWindowDC::m_hWnd The HWND to which this CWindowDC is attached.

Remarks

Inheritance Hierarchy

Requirements

CWindowDC::CWindowDC

explicit CWindowDC(CWnd* pWnd);

Derived from CDC .

Calls the Windows function GetWindowDCat construction time and ReleaseDC at destruction time. This means
that a CWindowDC object accesses the entire screen area of a CWnd (both client and nonclient areas).

For more information on using CWindowDC , see Device Contexts.

CObject

CDC

CWindowDC

Header: afxwin.h

Constructs a CWindowDC object that accesses the entire screen area (both client and nonclient) of the CWnd object
pointed to by pWnd.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cwindowdc-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowdc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-releasedc

ParametersParameters

RemarksRemarks

ExampleExample

// Get a dc for a CWnd object pointer.
CWindowDC dc(pWnd);

// Send my private massage.
::SendMessage(pWnd->m_hWnd, WM_MYMESSAGE, 0, 0);

CWindowDC::m_hWnd

HWND m_hWnd;

RemarksRemarks

ExampleExample

See also

pWnd
The window whose client area the device-context object will access.

The constructor calls the Windows function GetWindowDC.

An exception (of type CResourceException) is thrown if the Windows GetWindowDC call fails. A device context may
not be available if Windows has already allocated all of its available device contexts. Your application competes for
the five common display contexts available at any given time under Windows.

The HWND of the CWnd pointer is used to construct the CWindowDC object.

m_hWnd is a protected variable of type HWND.

See the example for CWindowDC::CWindowDC.

CDC Class
Hierarchy Chart
CDC Class

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowdc

CWinFormsControl Class
3/4/2019 • 3 minutes to read • Edit Online

Syntax
template<class TManagedControl>
class CWinFormsControl : public CWnd

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWinFormsControl::CWinFormsControl Constructs an MFC Windows Forms control wrapper object.

Public MethodsPublic Methods

NAME DESCRIPTION

CWinFormsControl::CreateManagedControl Creates a Windows Forms control in an MFC container.

CWinFormsControl::GetControl Retrieves a pointer to the Windows Forms control.

CWinFormsControl::GetControlHandle Retrieves a handle to the Windows Forms control.

Public OperatorsPublic Operators

NAME DESCRIPTION

CWinFormsControl::operator -> Replaces CWinFormsControl::GetControl in expressions.

CWinFormsControl::operator TManagedControl^ Casts a type as a pointer to a Windows Forms control.

Remarks

Provides the basic functionality for hosting of a Windows Forms control.

TManagedControl
A .NET Framework Windows Forms control to be displayed in the MFC application.

The CWinFormsControl class provides the basic functionality for hosting of a Windows Forms control.

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

Your MFC code should not cache Window handles (usually stored in m_hWnd). Some Windows Forms control
properties require that the underlying Win32 Window be destroyed and recreated using DestroyWindow and
CreateWindow . The MFC Windows Forms implementation handles the Destroy and Create events of the controls

to update the m_hWnd member.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cwinformscontrol-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

NOTENOTE

Requirements

CWinFormsControl::CreateManagedControl

inline BOOL CreateManagedControl(
 System::Type^ pType,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 int nID)
inline BOOL CreateManagedControl(
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 int nID);

inline BOOL CreateManagedControl(
 DWORD dwStyle,
 int nPlaceHolderID,
 CWnd* pParentWnd);

inline BOOL CreateManagedControl(
 typename TManagedControl^ pControl,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 int nID);

ParametersParameters

MFC Windows Forms integration works only in projects which link dynamically with MFC (in which AFXDLL is defined).

Header: afxwinforms.h

Creates a Windows Forms control in an MFC container.

pType
The data type of the control to be created. Must be a Type data type.

dwStyle
The window style to apply to the control. Specify a combination of Window Styles. Currently, only the following
styles are supported: WS_TABSTOP, WS_VISIBLE, WS_DISABLED and WS_GROUP.

rect
A RECT Structure that defines the coordinates of the upper-left and lower-right corners of the control (first
overload only).

nPlaceHolderID
The handle of the static place holder control placed in the Resource Editor. The newly created Windows Forms
control replaces the static control, assuming its position, z-order, and styles (second overload only).

pParentWnd
A pointer to the parent window.

nID
The resource ID number to be assigned to the newly created control.

pControl

https://msdn.microsoft.com/library/system.type
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

Return ValueReturn Value

RemarksRemarks

CWinFormsControl::CWinFormsControl

CWinFormsControl();

RemarksRemarks

CWinFormsControl::GetControl

inline TManagedControl^ GetControl() const;

Return ValueReturn Value

ExampleExample

CWinFormsControl::GetControlHandle

inline HWND GetControlHandle() const;

An instance of a Windows Forms control to be associated with the CWinFormsControl object (fourth overload
only).

If successful, returns a nonzero value. If unsuccessful, returns zero.

This method instantiates a .NET Framework Windows Forms control in an MFC container.

The first overload of the method accepts a .NET Framework data type pType so that MFC can instantiate a new
object of this type. pType must be a Type data type.

The second overload of the method creates a Windows Forms control based on the TManagedControl template
parameter of the CWinFormsControl class. The size and position of the control is based on the RECT structure
passed to the method. Only dwStyle matters for the styles.

The third overload of the method creates a Windows Forms control that replaces a static control, destroying it and
assuming its position, z-order, and styles. The static control serves only as a placeholder for the Windows Forms
control. When creating the control, this overload combines the styles from dwStyle with the static control's
resource styles.

The fourth overload of the method allows you to pass in an already instantiated Windows Forms control pControl
that MFC will wrap. It must be of the same type as the TManagedControl template parameter of the
CWinFormsControl class.

See Using a Windows Form User Control in MFC for samples on using Windows Form controls.

Constructs an MFC Windows Forms control wrapper object.

The Windows Forms control is instantiated when you call CWinFormsControl::CreateManagedControl.

Retrieves a pointer to the Windows Forms control.

Returns a pointer to the Windows Forms control.

See CWinFormsControl::CreateManagedControl.

Retrieves a handle to the Windows Forms control.

https://msdn.microsoft.com/library/system.type
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

Return ValueReturn Value

RemarksRemarks

CWinFormsControl::operator ->

inline TManagedControl^ operator->() const;

RemarksRemarks

CWinFormsControl::operator TManagedControl^

inline operator TManagedControl^() const;

RemarksRemarks

See also

Returns a handle to the Windows Forms control.

GetControlHandle is a helper method that returns the window handle stored in the .NET Framework control
properties. The window handle value is copied to CWnd::m_hWnd during the call to CWnd::Attach.

Replaces CWinFormsControl::GetControl in expressions.

This operator provides a convenient syntax that replaces GetControl in expressions.

For more information on Windows Forms, see Using a Windows Form User Control in MFC.

Casts a type as a pointer to a Windows Forms control.

This operator passes CWinFormsControl<TManagedControl> to functions that accept a pointer to a Windows Forms
control.

CWinFormsDialog Class
CWinFormsView Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

CWinFormsDialog Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
template <typename TManagedControl>
class CWinFormsDialog :
 public CDialog

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWinFormsDialog::CWinFormsDialog Constructs a CWinFormsDialog object.

Public MethodsPublic Methods

NAME DESCRIPTION

CWinFormsDialog::GetControl Retrieves a reference to the Windows Forms user control.

CWinFormsDialog::GetControlHandle Retrieves a window handle to the Windows Forms user
control.

CWinFormsDialog::OnInitDialog Initializes the MFC dialog box by creating and hosting a
Windows Forms user control on it.

Public OperatorsPublic Operators

NAME

CWinFormsDialog::operator -> Replaces CWinFormsDialog::GetControl in expressions.

CWinFormsDialog::operator TManagedControl^ Casts a type as a reference to a Windows Forms user control.

Remarks

A wrapper for an MFC dialog class that hosts a Windows Forms user control.

TManagedControl
The .NET Framework user control to be displayed in the MFC application.

CWinFormsDialog is a wrapper for an MFC dialog class (CDialog) that hosts a Windows Forms user control. This
allows the display of .NET Framework controls on a modal or modeless MFC dialog box.

For more information on using Windows Forms, see Using a Windows Form User Control in MFC and Hosting a
Windows Form User Control as an MFC Dialog Box.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cwinformsdialog-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/hosting-a-windows-form-user-control-as-an-mfc-dialog-box

Requirements

CWinFormsDialog::CWinFormsDialog

CWinFormsDialog(UINT nIDTemplate = IDD);

ParametersParameters

CWinFormsDialog::GetControl

inline TManagedControl^ GetControl() const;

Return ValueReturn Value

CWinFormsDialog::GetControlHandle

inline HWND GetControlHandle() const throw();

Return ValueReturn Value

CWinFormsDialog::OnInitDialog

virtual BOOL OnInitDialog();

Return ValueReturn Value

RemarksRemarks

Header: afxwinforms.h

Constructs a CWinFormsDialog object.

nIDTemplate
Contains the ID of a dialog box template resource. Use the dialog editor to create the dialog template and store it
in the application's resource script file. For more information on dialog templates, see CDialog Class.

Retrieves a reference to the Windows Forms user control.

Returns a reference to the Windows Forms control in the MFC dialog box.

Retrieves a window handle to the Windows Forms user control.

Returns a window handle to the Windows Forms user control.

Initializes the MFC dialog box by creating and hosting a Windows Forms user control on it.

A Boolean value that specifies whether the application has set the input focus to one of the controls in the dialog
box. If OnInitDialog returns nonzero, Windows sets the input focus to the first control in the dialog box. This
method can return 0 only if the application has explicitly set the input focus to one of the controls in the dialog box.

When the MFC dialog box is created (using the Create, CreateIndirect, or DoModal method inherited from
CDialog), a WM_INITDIALOG message is sent and this method is called. It creates an instance of a Windows
Forms control on the dialog box and adjusts the size of the dialog box to accommodate for the size of the user
control. Then it hosts the new control in the MFC dialog box.

Override this member function if you need to perform special processing when the dialog box is initialized. For

 CWinFormsDialog::operator ->

inline TManagedControl^ operator->() const throw();

RemarksRemarks

CWinFormsDialog::operator TManagedControl^

inline operator TManagedControl^() const throw();

RemarksRemarks

See also

more information on using this method, see CDialog::OnInitDialog.

Replaces CWinFormsDialog::GetControl in expressions.

This operator provides a convenient syntax that replaces GetControl in expressions.

For information on using Windows Forms, see Using a Windows Form User Control in MFC.

Casts a type as a reference to a Windows Forms user control.

This operator casts a type as a reference to a Windows Forms control. It is used to pass a
CWinFormsDialog<TManagedControl> dialog box to functions that accept a pointer to a Windows Forms user control

object.

CWnd Class
CWinFormsView Class
CDialog Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

CWinFormsView Class
3/4/2019 • 2 minutes to read • Edit Online

Syntax
class CWinFormsView : public CView;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWinFormsView::CWinFormsView Constructs a CWinFormsView object.

Public MethodsPublic Methods

NAME DESCRIPTION

CWinFormsView::GetControl Retrieves a pointer to the Windows Forms control.

Public OperatorsPublic Operators

NAME

CWinFormsView::operator Control^ Casts a type as a pointer to a Windows Forms control.

Remarks

NOTENOTE

NOTENOTE

Provides generic functionality for hosting of a Windows Forms control as an MFC view.

MFC uses the CWinFormsView class to host a .NET Framework Windows Forms control within an MFC view. The
control is a child of the native view and occupies the entire client area of the MFC view. The result is similar to a
CFormView view, allowing you to take advantage of the Windows Forms designer and run time to create rich

form-based views.

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

MFC Windows Forms integration works only in projects which link dynamically with MFC (projects in which AFXDLL is
defined).

CWinFormsView does not support the MFC splitter window (CSplitterWnd Class). Currently only the Windows Forms
Splitter control is supported.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cwinformsview-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

Requirements

CWinFormsView::CWinFormsView

CWinFormsView(System::Type^ pManagedViewType);

ParametersParameters

ExampleExample

class CMyView : public CWinFormsView

IMPLEMENT_DYNCREATE(CMyView, CWinFormsView)

BEGIN_MESSAGE_MAP(CMyView, CWinFormsView)
END_MESSAGE_MAP()

CMyView::CMyView()
 : CWinFormsView(ControlLibrary1::UserControl1::typeid)
{
}

CWinFormsView::GetControl

System::Windows::Forms::Control^ GetControl() const;

Return ValueReturn Value

RemarksRemarks

CWinFormsView::operator Control^

operator System::Windows::Forms::Control^() const;

RemarksRemarks

Header: afxwinforms.h

Constructs a CWinFormsView object.

pManagedViewType
A pointer to the data type of the Windows Forms user control.

In the following example, the CUserView class inherits from CWinFormsView and passes the type of UserControl1

to the CWinFormsView constructor. UserControl1 is a custom-built control in ControlLibrary1.dll.

Retrieves a pointer to the Windows Forms control.

A pointer to a System.Windows.Forms.Control object.

For an example of how to use Windows Forms, see Using a Windows Form User Control in MFC.

Casts a type as a pointer to a Windows Forms control.

This operator allows you to pass a CWinFormsView view to functions that accept a pointer to a Windows Forms
control of type Control.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc
https://msdn.microsoft.com/en-us/library/system.windows.forms.control(v=vs.110).aspx

ExampleExample

See also

See CWinFormsView::GetControl.

Hierarchy Chart
CWinFormsControl Class
CWinFormsDialog Class
CFormView Class

CWinThread Class
3/4/2019 • 13 minutes to read • Edit Online

Syntax
class CWinThread : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWinThread::CWinThread Constructs a CWinThread object.

Public MethodsPublic Methods

NAME DESCRIPTION

CWinThread::CreateThread Starts execution of a CWinThread object.

CWinThread::ExitInstance Override to clean up when your thread terminates.

CWinThread::GetMainWnd Retrieves a pointer to the main window for the thread.

CWinThread::GetThreadPriority Gets the priority of the current thread.

CWinThread::InitInstance Override to perform thread instance initialization.

CWinThread::IsIdleMessage Checks for special messages.

CWinThread::OnIdle Override to perform thread-specific idle-time processing.

CWinThread::PostThreadMessage Posts a message to another CWinThread object.

CWinThread::PreTranslateMessage Filters messages before they are dispatched to the Windows
functions TranslateMessage and DispatchMessage.

CWinThread::ProcessMessageFilter Intercepts certain messages before they reach the
application.

CWinThread::ProcessWndProcException Intercepts all unhandled exceptions thrown by the thread's
message and command handlers.

CWinThread::PumpMessage Contains the thread's message loop.

Represents a thread of execution within an application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cwinthread-class.md
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

CWinThread::ResumeThread Decrements a thread's suspend count.

CWinThread::Run Controlling function for threads with a message pump.
Override to customize the default message loop.

CWinThread::SetThreadPriority Sets the priority of the current thread.

CWinThread::SuspendThread Increments a thread's suspend count.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CWinThread::operator HANDLE Retrieves the handle of the CWinThread object.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CWinThread::m_bAutoDelete Specifies whether to destroy the object at thread termination.

CWinThread::m_hThread Handle to the current thread.

CWinThread::m_nThreadID ID of the current thread.

CWinThread::m_pActiveWnd Pointer to the main window of the container application
when an OLE server is in-place active.

CWinThread::m_pMainWnd Holds a pointer to the application's main window.

Remarks
The main thread of execution is usually provided by an object derived from CWinApp ; CWinApp is derived from
CWinThread . Additional CWinThread objects allow multiple threads within a given application.

There are two general types of threads that CWinThread supports: worker threads and user-interface threads.
Worker threads have no message pump: for example, a thread that performs background calculations in a
spreadsheet application. User-interface threads have a message pump and process messages received from the
system. CWinApp and classes derived from it are examples of user-interface threads. Other user-interface
threads can also be derived directly from CWinThread .

Objects of class CWinThread typically exist for the duration of the thread. If you wish to modify this behavior, set
m_bAutoDelete to FALSE.

The CWinThread class is necessary to make your code and MFC fully thread-safe. Thread-local data used by the
framework to maintain thread-specific information is managed by CWinThread objects. Because of this
dependence on CWinThread to handle thread-local data, any thread that uses MFC must be created by MFC. For
example, a thread created by the run-time function _beginthread, _beginthreadex cannot use any MFC APIs.

To create a thread, call AfxBeginThread. There are two forms, depending on whether you want a worker or user-
interface thread. If you want a user-interface thread, pass to AfxBeginThread a pointer to the CRuntimeClass of
your CWinThread -derived class. If you want to create a worker thread, pass to AfxBeginThread a pointer to the

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/beginthread-beginthreadex

Inheritance Hierarchy

Requirements

CWinThread::CreateThread

BOOL CreateThread(
 DWORD dwCreateFlags = 0,
 UINT nStackSize = 0,
 LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

controlling function and the parameter to the controlling function. For both worker threads and user-interface
threads, you can specify optional parameters that modify priority, stack size, creation flags, and security
attributes. AfxBeginThread will return a pointer to your new CWinThread object.

Instead of calling AfxBeginThread , you can construct a CWinThread -derived object and then call CreateThread .
This two-stage construction method is useful if you want to reuse the CWinThread object between successive
creation and terminations of thread executions.

For more information on CWinThread , see the articles Multithreading with C++ and MFC, Multithreading:
Creating User-Interface Threads, Multithreading: Creating Worker Threads, and Multithreading: How to Use the
Synchronization Classes.

CObject

CCmdTarget

CWinThread

Header: afxwin.h

Creates a thread to execute within the address space of the calling process.

dwCreateFlags
Specifies an additional flag that controls the creation of the thread. This flag can contain one of two values:

CREATE_SUSPENDED Start the thread with a suspend count of one. Use CREATE_SUSPENDED if you
want to initialize any member data of the CWinThread object, such as m_bAutoDelete or any members of
your derived class, before the thread starts running. Once your initialization is complete, use the
CWinThread::ResumeThread to start the thread running. The thread will not execute until
CWinThread::ResumeThread is called.

0 Start the thread immediately after creation.

nStackSize
Specifies the size in bytes of the stack for the new thread. If 0, the stack size defaults to the same size as that of
the process's primary thread.

lpSecurityAttrs
Points to a SECURITY_ATTRIBUTES structure that specifies the security attributes for the thread.

Nonzero if the thread is created successfully; otherwise 0.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-with-cpp-and-mfc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-creating-user-interface-threads
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-creating-worker-threads
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-how-to-use-the-synchronization-classes
https://msdn.microsoft.com/library/windows/desktop/aa379560

CWinThread::CWinThread

CWinThread();

RemarksRemarks

CWinThread::ExitInstance

virtual int ExitInstance();

Return ValueReturn Value

RemarksRemarks

CWinThread::GetMainWnd

virtual CWnd* GetMainWnd();

Return ValueReturn Value

RemarksRemarks

Use AfxBeginThread to create a thread object and execute it in one step. Use CreateThread if you want to reuse
the thread object between successive creation and termination of thread executions.

Constructs a CWinThread object.

To begin the thread's execution, call the CreateThread member function. You will usually create threads by calling
AfxBeginThread, which will call this constructor and CreateThread .

Called by the framework from within a rarely overridden Run member function to exit this instance of the
thread, or if a call to InitInstance fails.

The thread's exit code; 0 indicates no errors, and values greater than 0 indicate an error. This value can be
retrieved by calling GetExitCodeThread.

Do not call this member function from anywhere but within the Run member function. This member function is
used only in user-interface threads.

The default implementation of this function deletes the CWinThread object if m_bAutoDelete is TRUE. Override
this function if you wish to perform additional clean-up when your thread terminates. Your implementation of
ExitInstance should call the base class's version after your code is executed.

If your application is an OLE server, call this function to retrieve a pointer to the active main window of the
application instead of directly referring to the m_pMainWnd member of the application object.

This function returns a pointer to one of two types of windows. If your thread is part of an OLE server and has
an object that is in-place active inside an active container, this function returns the CWinApp::m_pActiveWnd
data member of the CWinThread object.

If there is no object that is in-place active within a container or your application is not an OLE server, this
function returns the m_pMainWnd data member of your thread object.

For user-interface threads, this is equivalent to directly referring to the m_pActiveWnd member of your
application object.

If your application is not an OLE server, then calling this function is equivalent to directly referring to the

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getexitcodethread

CWinThread::GetThreadPriority

int GetThreadPriority();

Return ValueReturn Value

CWinThread::InitInstance

virtual BOOL InitInstance();

Return ValueReturn Value

RemarksRemarks

CWinThread::IsIdleMessage

virtual BOOL IsIdleMessage(MSG* pMsg);

ParametersParameters

m_pMainWnd member of your application object.

Override this function to modify the default behavior.

Gets the current thread priority level of this thread.

The current thread priority level within its priority class. The value returned will be one of the following, listed
from highest priority to lowest:

THREAD_PRIORITY_TIME_CRITICAL

THREAD_PRIORITY_HIGHEST

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_LOWEST

THREAD_PRIORITY_IDLE

For more information on these priorities, see SetThreadPriority in the Windows SDK.

InitInstance must be overridden to initialize each new instance of a user-interface thread.

Nonzero if initialization is successful; otherwise 0.

Typically, you override InitInstance to perform tasks that must be completed when a thread is first created.

This member function is used only in user-interface threads. Perform initialization of worker threads in the
controlling function passed to AfxBeginThread.

Override this function to keep OnIdle from being called after specific messages are generated.

pMsg
Points to the current message being processed.

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setthreadpriority

Return ValueReturn Value

RemarksRemarks

BOOL CMyWinApp::IsIdleMessage(MSG* pMsg)
{
 if (!CWinApp::IsIdleMessage(pMsg) || pMsg->message == WM_TIMER)
 return FALSE;
 else
 return TRUE;
}

CWinThread::m_bAutoDelete

BOOL m_bAutoDelete;

RemarksRemarks

CWinThread::m_hThread

HANDLE m_hThread;

RemarksRemarks

CWinThread::m_nThreadID

DWORD m_nThreadID;

RemarksRemarks

Nonzero if OnIdle should be called after processing message; otherwise 0.

The default implementation does not call OnIdle after redundant mouse messages and messages generated by
blinking carets.

If an application has created a short timer, OnIdle will be called frequently, causing performance problems. To
improve such an application's performance, override IsIdleMessage in the application's CWinApp -derived class to
check for WM_TIMER messages as follows:

Handling WM_TIMER in this fashion will improve performance of applications that use short timers.

Specifies whether the CWinThread object should be automatically deleted at thread termination.

The m_bAutoDelete data member is a public variable of type BOOL.

The value of m_bAutoDelete does not affect how the underlying thread handle is closed. The thread handle is
always closed when the CWinThread object is destroyed.

Handle to the thread attached to this CWinThread .

The m_hThread data member is a public variable of type HANDLE. It is only valid if underlying thread currently
exists.

ID of the thread attached to this CWinThread .

The m_nThreadID data member is a public variable of type DWORD. It is only valid if underlying thread currently
exists.

ExampleExample

CWinThread::m_pActiveWnd

CWnd* m_pActiveWnd;

RemarksRemarks

CWinThread::m_pMainWnd

CWnd* m_pMainWnd;

RemarksRemarks

CWinThread::OnIdle

virtual BOOL OnIdle(LONG lCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See the example for AfxGetThread.

Use this data member to store a pointer to your thread's active window object.

The Microsoft Foundation Class Library will automatically terminate your thread when the window referred to
by m_pActiveWnd is closed. If this thread is the primary thread for an application, the application will also be
terminated. If this data member is NULL, the active window for the application's CWinApp object will be
inherited. m_pActiveWnd is a public variable of type CWnd* .

Typically, you set this member variable when you override InitInstance . In a worker thread, the value of this
data member is inherited from its parent thread.

Use this data member to store a pointer to your thread's main window object.

The Microsoft Foundation Class Library will automatically terminate your thread when the window referred to
by m_pMainWnd is closed. If this thread is the primary thread for an application, the application will also be
terminated. If this data member is NULL, the main window for the application's CWinApp object will be used to
determine when to terminate the thread. m_pMainWnd is a public variable of type CWnd* .

Typically, you set this member variable when you override InitInstance . In a worker thread, the value of this
data member is inherited from its parent thread.

Override this member function to perform idle-time processing.

lCount
A counter incremented each time OnIdle is called when the thread's message queue is empty. This count is reset
to 0 each time a new message is processed. You can use the lCount parameter to determine the relative length of
time the thread has been idle without processing a message.

Nonzero to receive more idle processing time; 0 if no more idle processing time is needed.

OnIdle is called in the default message loop when the thread's message queue is empty. Use your override to
call your own background idle-handler tasks.

CWinThread::operator HANDLE

operator HANDLE() const;

Return ValueReturn Value

RemarksRemarks

CWinThread::PostThreadMessage

BOOL PostThreadMessage(
 UINT message,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

OnIdle should return 0 to indicate that no additional idle processing time is required. The lCount parameter is
incremented each time OnIdle is called when the message queue is empty and is reset to 0 each time a new
message is processed. You can call your different idle routines based on this count.

The default implementation of this member function frees temporary objects and unused dynamic link libraries
from memory.

This member function is used only in user-interface threads.

Because the application cannot process messages until OnIdle returns, do not perform lengthy tasks in this
function.

Retrieves the handle of the CWinThread object.

If successful, the handle of the thread object; otherwise, NULL.

Use the handle to directly call Windows APIs.

Called to post a user-defined message to another CWinThread object.

message
ID of the user-defined message.

wParam
First message parameter.

lParam
Second message parameter.

Nonzero if successful; otherwise 0.

The posted message is mapped to the proper message handler by the message map macro
ON_THREAD_MESSAGE.

NOTENOTE

CWinThread::PreTranslateMessage

virtual BOOL PreTranslateMessage(MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinThread::ProcessMessageFilter

virtual BOOL ProcessMessageFilter(
 int code,
 LPMSG lpMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWinThread::ProcessWndProcException

When you call PostThreadMessage, the message is placed in the thread's message queue. However, because messages
posted this way are not associated with a window, MFC will not dispatch them to message or command handlers. In order
to handle these messages, override the PreTranslateMessage() function of your CWinApp-derived class, and handle the
messages manually.

Override this function to filter window messages before they are dispatched to the Windows functions
TranslateMessage and DispatchMessage.

pMsg
Points to a MSG structure containing the message to process.

Nonzero if the message was fully processed in PreTranslateMessage and should not be processed further. Zero if
the message should be processed in the normal way.

This member function is used only in user-interface threads.

The framework's hook function calls this member function to filter and respond to certain Windows messages.

code
Specifies a hook code. This member function uses the code to determine how to process lpMsg.

lpMsg
A pointer to a Windows MSG structure.

Nonzero if the message is processed; otherwise 0.

A hook function processes events before they are sent to the application's normal message processing.

If you override this advanced feature, be sure to call the base-class version to maintain the framework's hook
processing.

The framework calls this member function whenever the handler does not catch an exception thrown in one of
your thread's message or command handlers.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-postthreadmessagea
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

virtual LRESULT ProcessWndProcException(
 CException* e,
 const MSG* pMsg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COMMAND ACTION

WM_CREATE Fail.

WM_PAINT Validate the affected window, thus preventing another
WM_PAINT message from being generated.

CWinThread::PumpMessage

virtual BOOL PumpMessage();

RemarksRemarks

CWinThread::ResumeThread

DWORD ResumeThread();

e
Points to an unhandled exception.

pMsg
Points to a MSG structure containing information about the windows message that caused the framework to
throw an exception.

-1 if a WM_CREATE exception is generated; otherwise 0.

Do not call this member function directly.

The default implementation of this member function handles only exceptions generated from the following
messages:

Override this member function to provide global handling of your exceptions. Call the base functionality only if
you wish to display the default behavior.

This member function is used only in threads that have a message pump.

Contains the thread's message loop.

PumpMessage contains the thread's message loop. PumpMessage is called by CWinThread to pump the thread's
messages. You can call PumpMessage directly to force messages to be processed, or you can override
PumpMessage to change its default behavior.

Calling PumpMessage directly and overriding its default behavior is recommended for advanced users only.

Called to resume execution of a thread that was suspended by the SuspendThread member function, or a thread
created with the CREATE_SUSPENDED flag.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

Return ValueReturn Value

RemarksRemarks

CWinThread::Run

virtual int Run();

Return ValueReturn Value

RemarksRemarks

CWinThread::SetThreadPriority

BOOL SetThreadPriority(int nPriority);

ParametersParameters

The thread's previous suspend count if successful; 0xFFFFFFFF otherwise. If the return value is zero, the current
thread was not suspended. If the return value is one, the thread was suspended, but is now restarted. Any return
value greater than one means the thread remains suspended.

The suspend count of the current thread is reduced by one. If the suspend count is reduced to zero, the thread
resumes execution; otherwise the thread remains suspended.

Provides a default message loop for user-interface threads.

An int value that is returned by the thread. This value can be retrieved by calling GetExitCodeThread.

Run acquires and dispatches Windows messages until the application receives a WM_QUIT message. If the
thread's message queue currently contains no messages, Run calls OnIdle to perform idle-time processing.
Incoming messages go to the PreTranslateMessage member function for special processing and then to the
Windows function TranslateMessage for standard keyboard translation. Finally, the DispatchMessage Windows
function is called.

Run is rarely overridden, but you can override it to implement special behavior.

This member function is used only in user-interface threads.

This function sets the priority level of the current thread within its priority class.

nPriority
Specifies the new thread priority level within its priority class. This parameter must be one of the following
values, listed from highest priority to lowest:

THREAD_PRIORITY_TIME_CRITICAL

THREAD_PRIORITY_HIGHEST

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_LOWEST

THREAD_PRIORITY_IDLE

For more information on these priorities, see SetThreadPriority in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-getexitcodethread
https://docs.microsoft.com/windows/desktop/winmsg/wm-quit
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage
https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setthreadpriority

Return ValueReturn Value

RemarksRemarks

CWinThread::SuspendThread

DWORD SuspendThread();

Return ValueReturn Value

RemarksRemarks

See also

Nonzero if function was successful; otherwise 0.

It can only be called after CreateThread successfully returns.

Increments the current thread's suspend count.

The thread's previous suspend count if successful; 0xFFFFFFFF otherwise.

If any thread has a suspend count above zero, that thread does not execute. The thread can be resumed by
calling the ResumeThread member function.

CCmdTarget Class
Hierarchy Chart
CWinApp Class
CCmdTarget Class

CWnd Class
3/5/2019 • 355 minutes to read • Edit
Online

Syntax
class CWnd : public CCmdTarget

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CWnd::CWnd Constructs a CWnd

object.

Public MethodsPublic Methods

NAME DESCRIPTION

CWnd::accDoDefault
Action

Called by the
framework to
perform the object's
default action.

CWnd::accHitTest Called by the
framework to retrieve
the child element or
child object at a given
point on the screen.

CWnd::accLocation Called by the
framework to retrieve
the specified object's
current screen
location.

CWnd::accNavigate Called by the
framework to
traverse to another
user interface
element within a
container and if
possible, retrieve the
object.

Provides the base functionality of all
window classes in the Microsoft
Foundation Class Library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cwnd-class.md

CWnd::accSelect Called by the
framework to modify
the selection or move
the keyboard focus of
the specified object.

CWnd::AnimateWind
ow

Animates the
associated window
object.

CWnd::ArrangeIconic
Windows

Arranges all the
minimized (iconic)
child windows.

CWnd::Attach Attaches a Windows
handle to a CWnd

object.

CWnd::BeginModalSt
ate

Call this member
function to make a
frame window modal.

CWnd::BeginPaint Prepares CWnd for
painting.

CWnd::BindDefaultPr
operty

Binds the calling
object's default simple
bound property, as
marked in the type
library, to a cursor
associated with a
data-source control.

CWnd::BindProperty Binds a cursor-bound
property on a data-
bound control to a
data-source control
and registers that
relationship with the
MFC binding
manager.

CWnd::BringWindowT
oTop

Brings CWnd to the
top of a stack of
overlapping windows.

CWnd::CalcWindowR
ect

Called to calculate the
window rectangle
from the client
rectangle.

CWnd::CancelToolTips Disables the tooltip
control.

CWnd::CenterWindo
w

Centers a window
relative to its parent.

NAME DESCRIPTION

CWnd::ChangeClipbo
ardChain

Removes CWnd from
the chain of
Clipboard viewers.

CWnd::CheckDlgButt
on

Places a check mark
next to or removes a
check mark from a
button control.

CWnd::CheckRadioBu
tton

Checks the specified
radio button and
removes the check
mark from all other
radio buttons in the
specified group of
buttons.

CWnd::ChildWindowF
romPoint

Determines which, if
any, of the child
windows contains the
specified point.

CWnd::ClientToScreen Converts the client
coordinates of a
given point or
rectangle on the
display to screen
coordinates.

CWnd::CloseWindow Minimizes the
window.

CWnd::ContinueMod
al

Continues a window's
modal status.

CWnd::Create Creates and initializes
the child window
associated with the
CWnd object.

CWnd::CreateAccessi
bleProxy

Creates an Active
Accessibility proxy for
the specified object.

CWnd::CreateCaret Creates a new shape
for the system caret
and gets ownership
of the caret.

CWnd::CreateControl Create an ActiveX
control that will be
represented in an
MFC program by a
CWnd object.

NAME DESCRIPTION

CWnd::CreateEx Creates a Windows
overlapped, pop-up,
or child window and
attaches it to a
CWnd object.

CWnd::CreateGrayCa
ret

Creates a gray block
for the system caret
and gets ownership
of the caret.

CWnd::CreateSolidCa
ret

Creates a solid block
for the system caret
and gets ownership
of the caret.

CWnd::DeleteTempM
ap

Called automatically
by the CWinApp

idle-time handler and
deletes any
temporary CWnd

objects created by
FromHandle .

CWnd::DestroyWindo
w

Destroys the
attached Windows
window.

CWnd::Detach Detaches a Windows
handle from a CWnd

object and returns
the handle.

CWnd::DlgDirList Fills a list box with a
file or directory
listing.

CWnd::DlgDirListCom
boBox

Fills the list box of a
combo box with a file
or directory listing.

CWnd::DlgDirSelect Retrieves the current
selection from a list
box.

CWnd::DlgDirSelectC
omboBox

Retrieves the current
selection from the list
box of a combo box.

CWnd::DragAcceptFil
es

Indicates the window
will accept dragged
files.

NAME DESCRIPTION

CWnd::DragDetect Captures the mouse
and tracks its
movement until the
user releases the left
button, presses the
ESC key, or moves
the mouse outside
the drag rectangle
around the specified
point.

CWnd::DrawAnimate
dRects

Draws a wire-frame
rectangle and
animates it to
indicate the opening
of an icon or the
minimizing or
maximizing of a
window.

CWnd::DrawCaption Draws a caption.

CWnd::DrawMenuBar Redraws the menu
bar.

CWnd::EnableActiveA
ccessibility

Enables user-defined
Active
Accessibility

functions.

CWnd::EnableDynami
cLayout

Enables the position
and size of child
windows to adjust
dynamically when the
user resizes the
window.

CWnd::EnableD2DSu
pport

Enables or disables
window D2D

support. Call this
method before the
main window is
initialized.

CWnd::EnableScrollBa
r

Enables or disables
one or both arrows of
a scroll bar.

CWnd::EnableScrollBa
rCtrl

Enables or disables a
sibling scroll-bar
control.

CWnd::EnableToolTips Enables the tooltip
control.

NAME DESCRIPTION

CWnd::EnableTrackin
gToolTips

Enables the tooltip
control in tracking
mode.

CWnd::EnableWindo
w

Enables or disables
mouse and keyboard
input.

CWnd::EndModalLoo
p

Ends a window's
modal status.

CWnd::EndModalStat
e

Call this member
function to change a
frame window from
modal to modeless.

CWnd::EndPaint Marks the end of
painting.

CWnd::ExecuteDlgInit Initiates a dialog
resource.

CWnd::FilterToolTipM
essage

Retrieves the title or
text associated with a
control in a dialog
box.

CWnd::FindWindow Returns the handle of
the window, which is
identified by its
window name and
window class.

CWnd::FindWindowEx Returns the handle of
the window, which is
identified by its
window name and
window class.

CWnd::FlashWindow Flashes the window
once.

CWnd::FlashWindowE
x

Flashes the window
with additional
functionality.

CWnd::FromHandle Returns a pointer to a
CWnd object when

given a handle to a
window. If a CWnd

object is not attached
to the handle, a
temporary CWnd

object is created and
attached.

NAME DESCRIPTION

CWnd::FromHandleP
ermanent

Returns a pointer to a
CWnd object when

given a handle to a
window. If a CWnd

object is not attached
to the handle, a
temporary CWnd

object is created and
attached.

CWnd::get_accChild Called by the
framework to retrieve
the address of an
IDispatch interface

for the specified child.

CWnd::get_accChildC
ount

Called by the
framework to retrieve
the number of
children belonging to
this object.

CWnd::get_accDefault
Action

Called by the
framework to retrieve
a string that
describes the object's
default action.

CWnd::get_accDescri
ption

Called by framework
to retrieve a string
that describes the
visual appearance of
the specified object.

CWnd::get_accFocus Called by the
framework to retrieve
the object that has
the keyboard focus.

CWnd::get_accHelp Called by the
framework to retrieve
an object's Help
property string.

CWnd::get_accHelpTo
pic

Called by the
framework to retrieve
the full path of the
WinHelp file

associated with the
specified object and
the identifier of the
appropriate topic
within that file.

NAME DESCRIPTION

CWnd::get_accKeybo
ardShortcut

Called by the
framework to retrieve
the specified object's
shortcut key or
access key.

CWnd::get_accName Called by the
framework to retrieve
the name of the
specified object.

CWnd::get_accParent Called by the
framework to retrieve
the IDispatch

interface of the
object's parent.

CWnd::get_accRole Called by the
framework to retrieve
information that
describes the role of
the specified object.

CWnd::get_accSelecti
on

Called by the
framework to retrieve
the selected children
of this object.

CWnd::get_accState Called by the
framework to retrieve
the current state of
the specified object.

CWnd::get_accValue Called by the
framework to retrieve
the value of the
specified object.

CWnd::GetActiveWin
dow

Retrieves the active
window.

CWnd::GetAncestor Retrieves the
ancestor window
object of the specified
window.

CWnd::GetCapture Retrieves the CWnd

that has the mouse
capture.

CWnd::GetCaretPos Retrieves the client
coordinates of the
caret's current
position.

NAME DESCRIPTION

CWnd::GetCheckedRa
dioButton

Returns the ID of the
currently checked
radio button in a
group of buttons.

CWnd::GetClientRect Gets the dimensions
of the CWnd client
area.

CWnd::GetClipboard
Owner

Retrieves a pointer to
the current owner of
the Clipboard.

CWnd::GetClipboard
Viewer

Retrieves a pointer to
the first window in
the chain of
Clipboard viewers.

CWnd::GetControlUn
known

Retrieves a pointer to
an unknown ActiveX
control.

CWnd::GetDC Retrieves a display
context for the client
area.

CWnd::GetDCEx Retrieves a display
context for the client
area, and enables
clipping while
drawing.

CWnd::GetDCRender
Target

Retrieves the device
context (DC) render
target for the CWnd

window.

CWnd::GetDescendan
tWindow

Searches all
descendant windows
and returns the
window with the
specified ID.

CWnd::GetDesktopWi
ndow

Retrieves the
Windows desktop
window.

CWnd::GetDlgCtrlID If the CWnd is a child
window, calling this
function returns its ID
value.

CWnd::GetDlgItem Retrieves the control
with the specified ID
from the specified
dialog box.

NAME DESCRIPTION

CWnd::GetDlgItemInt Translates the text of
a control in the given
dialog box to an
integer value.

CWnd::GetDlgItemTe
xt

Retrieves the caption
or text associated
with a control.

CWnd::GetDSCCursor Retrieves a pointer to
the underlying cursor
that is defined by the
DataSource,
UserName, Password,
and SQL properties
of a data-source
control.

CWnd::GetDynamicLa
yout

Retrieves a pointer to
the dynamic layout
manager object.

CWnd::GetExStyle Returns the window's
extended style.

CWnd::GetFocus Retrieves the CWnd

that currently has the
input focus.

CWnd::GetFont Retrieves the current
font.

CWnd::GetForegroun
dWindow

Returns a pointer to
the foreground
window (the top-level
window with which
the user is currently
working).

CWnd::GetIcon Retrieves the handle
to an icon.

CWnd::GetLastActive
Popup

Determines which
pop-up window
owned by CWnd was
most recently active.

CWnd::GetLayeredWi
ndowAttributes

Retrieves the opacity
and transparency
color key of a layered
window.

CWnd::GetMenu Retrieves a pointer to
the specified menu.

NAME DESCRIPTION

CWnd::GetNextDlgGr
oupItem

Searches for the next
(or previous) control
within a group of
controls.

CWnd::GetNextDlgTa
bItem

Retrieves the first
control with the
WS_TABSTOP style
that follows (or
precedes) the
specified control.

CWnd::GetNextWind
ow

Returns the next (or
previous) window in
the window
manager's list.

CWnd::GetOleControl
Site

Retrieves the custom
site for the specified
ActiveX control.

CWnd::GetOpenClipb
oardWindow

Retrieves a pointer to
the window that
currently has the
Clipboard open.

CWnd::GetOwner Retrieves a pointer to
the owner of a CWnd

.

CWnd::GetParent Retrieves the parent
window of CWnd (if
any).

CWnd::GetParentFra
me

Retrieves the CWnd

object's parent frame
window.

CWnd::GetParentOw
ner

Returns a pointer to a
child window's parent
window.

CWnd::GetProperty Retrieves an ActiveX
control property.

CWnd::GetRenderTar
get

Gets a render target
that is associated
with this window.

CWnd::GetSafeHwnd Returns m_hWnd , or
NULL if the this
pointer is NULL.

CWnd::GetSafeOwner Retrieves the safe
owner for the given
window.

NAME DESCRIPTION

CWnd::GetScrollBarCt
rl

Returns a sibling
scroll-bar control.

CWnd::GetScrollBarIn
fo

Retrieves information
about the specified
scroll bar.

CWnd::GetScrollInfo Retrieves the
information that the
SCROLLINFO

structure maintains
about a scroll bar.

CWnd::GetScrollLimit Retrieves the limit of
the scroll bar.

CWnd::GetScrollPos Retrieves the current
position of a scroll
box.

CWnd::GetScrollRang
e

Copies the current
minimum and
maximum scroll-bar
positions for the
given scroll bar.

CWnd::GetStyle Returns the current
window style.

CWnd::GetSystemMe
nu

Allows the application
to access the Control
menu for copying
and modification.

CWnd::GetTitleBarInf
o

Retrieves information
about the specified
title bar.

CWnd::GetTopLevelFr
ame

Retrieves the
window's top-level
frame window.

CWnd::GetTopLevelO
wner

Retrieves the top-
level window.

CWnd::GetTopLevelP
arent

Retrieves the
window's top-level
parent.

CWnd::GetTopWindo
w

Returns the first child
window that belongs
to the CWnd .

NAME DESCRIPTION

CWnd::GetUpdateRec
t

Retrieves the
coordinates of the
smallest rectangle
that completely
encloses the CWnd

update region.

CWnd::GetUpdateRg
n

Retrieves the CWnd

update region.

CWnd::GetWindow Returns the window
with the specified
relationship to this
window.

CWnd::GetWindowCo
ntextHelpId

Retrieves the help
context identifier.

CWnd::GetWindowD
C

Retrieves the display
context for the whole
window, including the
caption bar, menus,
and scroll bars.

CWnd::GetWindowed
ChildCount

Returns the number
of associated child
windows.

CWnd::GetWindowInf
o

Returns information
about the window.

CWnd::GetWindowles
sChildCount

Returns the number
of associated
windowless child
windows.

CWnd::GetWindowPl
acement

Retrieves the show
state and the normal
(restored), minimized,
and maximized
positions of a
window.

CWnd::GetWindowRe
ct

Gets the screen
coordinates of CWnd .

CWnd::GetWindowRg
n

Retrieves a copy of
the window region of
a window.

CWnd::GetWindowTe
xt

Returns the window
text or caption title (if
it has one).

NAME DESCRIPTION

CWnd::GetWindowTe
xtLength

Returns the length of
the window's text or
caption title.

CWnd::HideCaret Hides the caret by
removing it from the
display screen.

CWnd::HiliteMenuIte
m

Highlights or
removes the
highlighting from a
top-level (menu-bar)
menu item.

CWnd::HtmlHelp Called to initiate the
HTMLHelp
application.

CWnd::Invalidate Invalidates the entire
client area.

CWnd::InvalidateRect Invalidates the client
area within the given
rectangle by adding
that rectangle to the
current update
region.

CWnd::InvalidateRgn Invalidates the client
area within the given
region by adding that
region to the current
update region.

CWnd::InvokeHelper Invokes an ActiveX
control method or
property.

CWnd::IsChild Indicates whether
CWnd is a child

window or other
direct descendant of
the specified window.

CWnd::IsD2DSupport
Enabled

Determines whether
D2D support is
enabled.

CWnd::IsDialogMessa
ge

Determines whether
the given message is
intended for the
modeless dialog box
and, if so, processes
it.

NAME DESCRIPTION

CWnd::IsDlgButtonC
hecked

Determines whether
a button control is
checked.

CWnd::IsDynamicLay
outEnabled

Determines whether
dynamic layout is
enabled on this
window. If dynamic
layout is enabled, the
position and size of
child windows can
change when the
user resizes the
parent window.

CWnd::IsIconic Determines whether
CWnd is minimized

(iconic).

CWnd::IsTouchWindo
w

Specifies whether
CWnd has touch

support.

CWnd::IsWindowEna
bled

Determines whether
the window is
enabled for mouse
and keyboard input.

CWnd::IsWindowVisib
le

Determines whether
the window is visible.

CWnd::IsZoomed Determines whether
CWnd is maximized.

CWnd::KillTimer Kills a system timer.

CWnd::LockWindowU
pdate

Disables or reenables
drawing in the given
window.

CWnd::MapWindowP
oints

Converts (maps) a set
of points from the
coordinate space of
the CWnd to the
coordinate space of
another window.

CWnd::MessageBox Creates and displays
a window that
contains an
application-supplied
message and caption.

CWnd::ModifyStyle Modifies the current
window style.

NAME DESCRIPTION

CWnd::ModifyStyleEx Modifies the
window's extended
style.

CWnd::MoveWindow Changes the position
and dimensions of
CWnd .

CWnd::NotifyWinEve
nt

Signals the system
that a predefined
event occurred.

CWnd::OnAmbientPr
operty

Implement ambient
property values.

CWnd::OnDrawIconic
ThumbnailOrLivePrev
iew

Called by the
framework when it
needs to obtain a
bitmap to be
displayed on
Windows 7 tab
thumbnail, or on the
client for application
peek.

CWnd::OnHelp Handles F1 Help
within the application
(using the current
context).

CWnd::OnHelpFinder Handles the
ID_HELP_FINDER and
ID_DEFAULT_HELP
commands.

CWnd::OnHelpIndex Handles the
ID_HELP_INDEX
command and
provides a default
Help topic.

CWnd::OnHelpUsing Handles the
ID_HELP_USING
command.

CWnd::OnToolHitTest Determines whether
a point is in the
bounding rectangle
of the specified tool
and retrieves
information about
the tool.

NAME DESCRIPTION

CWnd::OpenClipboar
d

Opens the Clipboard.
Other applications
will not be able to
modify the Clipboard
until the Windows
CloseClipboard
function is called.

CWnd::PaintWindowl
essControls

Draws windowless
controls on the
control container.

CWnd::PostMessage Places a message in
the application
queue, then returns
without waiting for
the window to
process the message.

CWnd::PreCreateWin
dow

Called before the
creation of the
Windows window
attached to this
CWnd object.

CWnd::PreSubclassWi
ndow

Allows other
necessary subclassing
to occur before
SubclassWindow is
called.

CWnd::PreTranslateM
essage

Used by CWinApp to
filter window
messages before they
are dispatched to the
TranslateMessage

and
DispatchMessage

Windows functions.

CWnd::Print Draws the current
window in the
specified device
context.

CWnd::PrintClient Draws any window in
the specified device
context (usually a
printer device
context).

CWnd::PrintWindow Copies a visual
window into the
specified device
context, typically a
printer DC.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-closeclipboard

CWnd::RedrawWindo
w

Updates the specified
rectangle or region in
the client area.

CWnd::RegisterTouch
Window

Register/Unregister
window Windows
touch support.

CWnd::ReleaseDC Releases client and
window device
contexts, freeing
them for use by other
applications.

CWnd::RepositionBar
s

Repositions control
bars in the client area.

CWnd::RunModalLoo
p

Retrieves, translates,
or dispatches
messages for a
window that is in
modal status.

CWnd::ScreenToClient Converts the screen
coordinates of a
given point or
rectangle on the
display to client
coordinates.

CWnd::ScrollWindow Scrolls the contents
of the client area.

CWnd::ScrollWindowE
x

Scrolls the contents
of the client area.
Similar to
ScrollWindow , with

additional features.

CWnd::SendChildNoti
fyLastMsg

Provides a
notification message
to a child window,
from the parent
window, so the child
window can handle a
task.

CWnd::SendDlgItem
Message

Sends a message to
the specified control.

CWnd::SendMessage Sends a message to
the CWnd object and
does not return until
it has processed the
message.

NAME DESCRIPTION

CWnd::SendMessage
ToDescendants

Sends a message to
all descendant
windows of the
window.

CWnd::SendNotifyMe
ssage

Sends the specified
message to the
window and returns
as soon as possible,
depending on
whether the calling
thread created the
window.

CWnd::SetActiveWind
ow

Activates the window.

CWnd::SetCapture Causes all
subsequent mouse
input to be sent to
the CWnd .

CWnd::SetCaretPos Moves the caret to a
specified position.

CWnd::SetClipboardV
iewer

Adds CWnd to the
chain of windows that
are notified whenever
the contents of the
Clipboard are
changed.

CWnd::SetDlgCtrlID Sets the window or
control ID for the
window (which can be
any child window, not
only a control in a
dialog box).

CWnd::SetDlgItemInt Sets the text of a
control to the string
that represents an
integer value.

CWnd::SetDlgItemTex
t

Sets the caption or
text of a control in
the specified dialog
box.

CWnd::SetFocus Claims the input
focus.

CWnd::SetFont Sets the current font.

NAME DESCRIPTION

CWnd::SetForegroun
dWindow

Puts the thread that
created the window
into the foreground
and activates the
window.

CWnd::SetIcon Sets the handle to a
specific icon.

CWnd::SetLayeredWi
ndowAttributes

Sets the opacity and
transparency color
key of a layered
window.

CWnd::SetMenu Sets the menu to the
specified menu.

CWnd::SetOwner Changes the owner
of a CWnd .

CWnd::SetParent Changes the parent
window.

CWnd::SetProperty Sets an ActiveX
control property.

CWnd::SetRedraw Allows changes in
CWnd to be redrawn

or prevents changes
from being redrawn.

CWnd::SetScrollInfo Sets information
about the scroll bar.

CWnd::SetScrollPos Sets the current
position of a scroll
box and, if specified,
redraws the scroll bar
to reflect the new
position.

CWnd::SetScrollRange Sets minimum and
maximum position
values for the given
scroll bar.

CWnd::SetTimer Installs a system
timer that sends a
WM_TIMER message
when triggered.

CWnd::SetWindowCo
ntextHelpId

Sets the help context
identifier.

NAME DESCRIPTION

CWnd::SetWindowPla
cement

Sets the show state
and the normal
(restored), minimized,
and maximized
positions for a
window.

CWnd::SetWindowPo
s

Changes the size,
position, and
ordering of child,
pop-up, and top-level
windows.

CWnd::SetWindowRg
n

Sets the region of a
window.

CWnd::SetWindowTex
t

Sets the window text
or caption title (if it
has one) to the
specified text.

CWnd::ShowCaret Shows the caret on
the display at the
caret's current
position. Once
shown, the caret
begins flashing
automatically.

CWnd::ShowOwnedP
opups

Shows or hides all
pop-up windows
owned by the
window.

CWnd::ShowScrollBar Displays or hides a
scroll bar.

CWnd::ShowWindow Shows or hides the
window.

CWnd::SubclassDlgIte
m

Attaches a Windows
control to a CWnd

object and makes it
route messages
through the CWnd 's
message map.

CWnd::SubclassWind
ow

Attaches a window to
a CWnd object and
makes it route
messages through
the CWnd 's message
map.

NAME DESCRIPTION

CWnd::UnlockWindo
wUpdate

Unlocks a window
that was locked with
CWnd::LockWindowUpdate

.

CWnd::UnsubclassWi
ndow

Detaches a window
from a CWnd object

CWnd::UpdateData Initializes or retrieves
data from a dialog
box.

CWnd::UpdateDialog
Controls

Call to update the
state of dialog
buttons and other
controls.

CWnd::UpdateLayere
dWindow

Updates the position,
size, shape, content,
and translucency of a
layered window.

CWnd::UpdateWindo
w

Updates the client
area.

CWnd::ValidateRect Validates the client
area within the given
rectangle by
removing the
rectangle from the
current update
region.

CWnd::ValidateRgn Validates the client
area within the given
region by removing
the region from the
current update
region.

CWnd::WindowFrom
Point

Identifies the window
that contains the
given point.

CWnd::WinHelp Called to initiate the
WinHelp application.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

CWnd::Default Calls the default
window procedure,
which provides
default processing for
any window
messages that an
application does not
process.

CWnd::DefWindowPr
oc

Calls the default
window procedure,
which provides
default processing for
any window
messages that an
application does not
process.

CWnd::DoDataExchan
ge

For dialog data
exchange and
validation. Called by
UpdateData .

CWnd::GetCurrentMe
ssage

Returns a pointer to
the message this
window is currently
processing. Should
only be called when
in an On Message
message-handler
member function.

CWnd::InitDynamicLa
yout

Called by the
framework to initialize
the dynamic layout
for the window.

CWnd::LoadDynamic
LayoutResource

Loads dynamic layout
information from the
resource file.

CWnd::OnActivate Called when CWnd is
being activated or
deactivated.

CWnd::OnActivateAp
p

Called when the
application is about
to be activated or
deactivated.

CWnd::OnAppComm
and

Called when the user
generates an
application command
event.

NAME DESCRIPTION

CWnd::OnAskCbFor
matName

Called by a Clipboard
viewer application
when a Clipboard
owner will display the
Clipboard contents.

CWnd::OnCancelMod
e

Called to allow CWnd

to cancel any internal
modes, such as
mouse capture.

CWnd::OnCaptureCh
anged

Sends a message to
the window that is
losing the mouse
capture.

CWnd::OnChangeCb
Chain

Notifies that a
specified window is
being removed from
the chain.

CWnd::OnChangeUIS
tate

Called when the user
interface (UI) state
should be changed.

CWnd::OnChar Called when a
keystroke translates
to a non-system
character.

CWnd::OnCharToIte
m

Called by a child list
box with the
LBS_WANTKEYBOAR
DINPUT style in
response to a
WM_CHAR message.

CWnd::OnChildActiva
te

Called for multiple
document interface
(MDI) child windows
whenever the size or
position of CWnd

changes or CWnd is
activated.

CWnd::OnChildNotify Called by a parent
window to give a
notifying control a
chance to respond to
a control notification.

CWnd::OnClipboardU
pdate

Called when the
contents of the
clipboard have
changed.

NAME DESCRIPTION

CWnd::OnClose Called as a signal that
CWnd should be

closed.

CWnd::OnColorizatio
nColorChanged

Called when the
rendering policy for
the non-client area
has changed.

CWnd::OnCommand Called when the user
selects a command.

CWnd::OnCompactin
g

Called when Windows
detects that system
memory is low.

CWnd::OnCompareIt
em

Called to determine
the relative position
of a new item in a
child sorted owner-
draw combo box or
list box.

CWnd::OnCompositio
nChanged

Called for all top-level
windows when the
Desktop Window
Manager (DWM)
composition is
enabled or disabled.

CWnd::OnContextMe
nu

Called when the user
clicks the right mouse
button in the window.

CWnd::OnCopyData Copies data from one
application to
another.

CWnd::OnCreate Called as a part of
window creation.

CWnd::OnCtlColor Called if CWnd is the
parent of a control
when the control is
about to be drawn.

CWnd::OnDeadChar Called when a
keystroke translates
to a nonsystem dead
character (such as
accent characters).

NAME DESCRIPTION

CWnd::OnDeleteItem Called when an
owner-draw child list
box or combo box is
destroyed or when
items are removed
from the control.

CWnd::OnDestroy Called when CWnd is
being destroyed.

CWnd::OnDestroyCli
pboard

Called when the
Clipboard is emptied
through a call to the
Windows
EmptyClipboard
function.

CWnd::OnDeviceCha
nge

Notifies an
application or device
driver of a change to
the hardware
configuration of a
device or the
computer.

CWnd::OnDevModeC
hange

Called for all top-level
windows when the
user changes device-
mode settings.

CWnd::OnDrawClipb
oard

Called when the
contents of the
Clipboard change.

CWnd::OnDrawItem Called when a visual
aspect of an owner-
draw child button
control, combo-box
control, list-box
control, or menu
needs to be drawn.

CWnd::OnDropFiles Called when the user
releases the left
mouse button over a
window that has
registered itself as the
recipient of dropped
files.

CWnd::OnEnable Called when CWnd is
enabled or disabled.

CWnd::OnEndSession Called when the
session is ending.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-emptyclipboard

CWnd::OnEnterIdle Called to inform an
application's main
window procedure
that a modal dialog
box or a menu is
entering an idle state.

CWnd::OnEnterMenu
Loop

Called when a menu
modal loop has been
entered.

CWnd::OnEnterSizeM
ove

Called after the
affected window
enters a moving or
sizing modal loop.

CWnd::OnEraseBkgn
d

Called when the
window background
needs erasing.

CWnd::OnExitMenuL
oop

Called when a menu
modal loop has been
exited.

CWnd::OnExitSizeMo
ve

Called after the
affected window exits
a moving or sizing
modal loop.

CWnd::OnFontChang
e

Called when the pool
of font resources
changes.

CWnd::OnGetDlgCod
e

Called for a control so
the control can
process arrow-key
and TAB-key input
itself.

CWnd::OnGetMinMa
xInfo

Called whenever
Windows needs to
know the maximized
position or
dimensions, or the
minimum or
maximum tracking
size.

CWnd::OnHelpInfo Called by the
framework when the
user presses the F1
key.

CWnd::OnHotKey Called when the user
presses a system-
wide hot key.

NAME DESCRIPTION

CWnd::OnHScroll Called when the user
clicks the horizontal
scroll bar of CWnd .

CWnd::OnHScrollClip
board

Called when a
Clipboard owner
should scroll the
Clipboard image,
invalidate the
appropriate section,
and update the
scroll-bar values.

CWnd::OnIconEraseB
kgnd

Called when CWnd is
minimized (iconic)
and the background
of the icon must be
filled before painting
the icon.

CWnd::OnInitMenu Called when a menu
is about to become
active.

CWnd::OnInitMenuP
opup

Called when a pop-
up menu is about to
become active.

CWnd::OnInputDevic
eChange

Called when an I/O
device is added or
removed from the
system.

CWnd::OnInputLang
Change

Called after an
application's input
language has been
changed.

CWnd::OnInputLang
ChangeRequest

Called when the user
chooses a new input
language.

CWnd::OnKeyDown Called when a
nonsystem key is
pressed.

CWnd::OnKeyUp Called when a
nonsystem key is
released.

CWnd::OnKillFocus Called immediately
before CWnd loses
the input focus.

NAME DESCRIPTION

CWnd::OnLButtonDbl
Clk

Called when the user
double-clicks the left
mouse button.

CWnd::OnLButtonDo
wn

Called when the user
presses the left
mouse button.

CWnd::OnLButtonUp Called when the user
releases the left
mouse button.

CWnd::OnMButtonD
blClk

Called when the user
double-clicks the
middle mouse
button.

CWnd::OnMButtonD
own

Called when the user
presses the middle
mouse button.

CWnd::OnMButtonU
p

Called when the user
releases the middle
mouse button.

CWnd::OnMDIActivat
e

Called when an MDI
child window is
activated or
deactivated.

CWnd::OnMeasureIte
m

Called for an owner-
draw child combo
box, list box, or menu
item when the
control is created.
CWnd informs

Windows of the
dimensions of the
control.

CWnd::OnMenuChar Called when the user
presses a menu
mnemonic character
that doesn't match
any of the predefined
mnemonics in the
current menu.

CWnd::OnMenuDrag Called when the user
begins to drag a
menu item.

NAME DESCRIPTION

CWnd::OnMenuGetO
bject

Called when the
mouse cursor enters
a menu item or
moves from the
center of the item to
the top or bottom of
the item.

CWnd::OnMenuRButt
onUp

Called when the user
releases the right
mouse button while
the cursor is on a
menu item.

CWnd::OnMenuSelec
t

Called when the user
selects a menu item.

CWnd::OnMouseActi
vate

Called when the
cursor is in an
inactive window and
the user presses a
mouse button.

CWnd::OnMouseHov
er

Called when the
cursor hovers over
the client area of the
window for the
period of time
specified in a prior call
to TrackMouseEvent.

CWnd::OnMouseHW
heel

Called when the
current window is
composed by the
Desktop Window
Manager (DWM), and
that window is
maximized.

CWnd::OnMouseLeav
e

Called when the
cursor leaves the
client area of the
window specified in a
prior call to
TrackMouseEvent.

CWnd::OnMouseMov
e

Called when the
mouse cursor moves.

CWnd::OnMouseWhe
el

Called when a user
rotates the mouse
wheel. Uses Windows
NT 4.0 message
handling.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackmouseevent
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackmouseevent

CWnd::OnMove Called after the
position of the CWnd

has been changed.

CWnd::OnMoving Indicates that a user
is moving a CWnd

object.

CWnd::OnNcActivate Called when the non-
client area needs to
be changed to
indicate an active or
inactive state.

CWnd::OnNcCalcSize Called when the size
and position of the
client area need to be
calculated.

CWnd::OnNcCreate Called prior to
OnCreate when the
non-client area is
being created.

CWnd::OnNcDestroy Called when the non-
client area is being
destroyed.

CWnd::OnNcHitTest Called by Windows
every time the mouse
is moved if CWnd

contains the cursor or
has captured mouse
input with
SetCapture .

CWnd::OnNcLButton
DblClk

Called when the user
double-clicks the left
mouse button while
the cursor is within a
non-client area of
CWnd .

CWnd::OnNcLButton
Down

Called when the user
presses the left
mouse button while
the cursor is within a
non-client area of
CWnd .

CWnd::OnNcLButton
Up

Called when the user
releases the left
mouse button while
the cursor is within a
non-client area of
CWnd .

NAME DESCRIPTION

CWnd::OnNcMButto
nDblClk

Called when the user
double-clicks the
middle mouse button
while the cursor is
within a non-client
area of CWnd .

CWnd::OnNcMButto
nDown

Called when the user
presses the middle
mouse button while
the cursor is within a
non-client area of
CWnd .

CWnd::OnNcMButto
nUp

Called when the user
releases the middle
mouse button while
the cursor is within a
non-client area of
CWnd .

CWnd::OnNcMouseH
over

Called when the
cursor hovers over
the non-client area of
the window for the
period of time
specified in a prior call
to TrackMouseEvent.

CWnd::OnNcMouseL
eave

The framework calls
this member function
when the cursor
leaves the non-client
area of the window
specified in a prior call
to TrackMouseEvent.

CWnd::OnNcMouse
Move

Called when the
cursor is moved
within a non-client
area of CWnd .

CWnd::OnNcPaint Called when the non-
client area needs
painting.

CWnd::OnNcRButton
DblClk

Called when the user
double-clicks the
right mouse button
while the cursor is
within a non-client
area of CWnd .

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackmouseevent
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackmouseevent

CWnd::OnNcRButton
Down

Called when the user
presses the right
mouse button while
the cursor is within a
non-client area of
CWnd .

CWnd::OnNcRButton
Up

Called when the user
releases the right
mouse button while
the cursor is within a
non-client area of
CWnd .

CWnd::OnNcRenderin
gChanged

Called when the
rendering policy for
the non-client area
has changed.

CWnd::OnNcXButton
DblClk

Called when the user
double-clicks
XBUTTON1 or
XBUTTON2 while the
cursor is in the non-
client area of a
window.

CWnd::OnNcXButton
Down

Called when the user
presses XBUTTON1
or XBUTTON2 of the
mouse while the
cursor is in the non-
client area of a
window.

CWnd::OnNcXButton
Up

Called when the user
releases XBUTTON1
or XBUTTON2 of the
mouse while the
cursor is in the non-
client area of a
window.

CWnd::OnNextMenu Called when the right
or left arrow key is
used to switch
between the menu
bar and the system
menu.

CWnd::OnNotify Called by the
framework to inform
a parent window an
event has occurred in
one of its controls or
that the control
needs information.

NAME DESCRIPTION

CWnd::OnNotifyForm
at

Called to determine if
the current window
accepts ANSI or
Unicode structures in
the WM_NOTIFY
notification message.

CWnd::OnPaint Called to repaint a
portion of the
window.

CWnd::OnPaintClipbo
ard

Called when the client
area of the Clipboard
viewer needs
repainting.

CWnd::OnPaletteCha
nged

Called to allow
windows that use a
color palette to
realize their logical
palettes and update
their client areas.

CWnd::OnPaletteIsCh
anging

Informs other
applications when an
application is going
to realize its logical
palette.

CWnd::OnParentNotif
y

Called when a child
window is created or
destroyed, or when
the user clicks a
mouse button while
the cursor is over the
child window.

CWnd::OnPowerBroa
dcast

Called when a power-
management event
occurs.

CWnd::OnQueryDrag
Icon

Called when a
minimized (iconic)
CWnd is about to be

dragged by the user.

CWnd::OnQueryEndS
ession

Called when the user
chooses to end the
Windows session.

CWnd::OnQueryNew
Palette

Informs CWnd that it
is about to receive
the input focus.

NAME DESCRIPTION

CWnd::OnQueryOpe
n

Called when CWnd is
an icon and the user
requests that the icon
be opened.

CWnd::OnQueryUISt
ate

Called to retrieve the
user interface (UI)
state for a window.

CWnd::OnRawInput Called when the
current window gets
raw input.

CWnd::OnRButtonDb
lClk

Called when the user
double-clicks the
right mouse button.

CWnd::OnRButtonDo
wn

Called when the user
presses the right
mouse button.

CWnd::OnRButtonUp Called when the user
releases the right
mouse button.

CWnd::OnRenderAllF
ormats

Called when the
owner application is
being destroyed and
needs to render all its
formats.

CWnd::OnRenderFor
mat

Called for the
Clipboard owner
when a particular
format with delayed
rendering needs to
be rendered.

CWnd::OnSessionCha
nge

Called to notify an
application of a
change in session
state.

CWnd::OnSetCursor Called if mouse input
is not captured and
the mouse causes
cursor movement
within a window.

CWnd::OnSetFocus Called after CWnd

gains the input focus.

NAME DESCRIPTION

CWnd::OnSettingCha
nge

Called when the
Win32
SystemParametersInfo

function changes a
system-wide setting.

CWnd::OnShowWind
ow

Called when CWnd is
to be hidden or
shown.

CWnd::OnSize Called after the size
of CWnd has
changed.

CWnd::OnSizeClipboa
rd

Called when the size
of the client area of
the Clipboard-viewer
window has changed.

CWnd::OnSizing Indicates that the
user is resizing the
rectangle.

CWnd::OnSpoolerStat
us

Called from Print
Manager whenever a
job is added to or
removed from the
Print Manager queue.

CWnd::OnStyleChang
ed

Indicates that the
SetWindowLong
Windows function
has changed one or
more of the window's
styles.

CWnd::OnStyleChang
ing

Indicates that the
SetWindowLong
Windows function is
about to change one
or more of the
window's styles.

CWnd::OnSysChar Called when a
keystroke translates
to a system character.

CWnd::OnSysColorCh
ange

Called for all top-level
windows when a
change is made in the
system color setting.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowlonga
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowlonga

CWnd::OnSysComma
nd

Called when the user
selects a command
from the Control
menu, or when the
user selects the
Maximize or Minimize
button.

CWnd::OnSysDeadCh
ar

Called when a
keystroke translates
to a system dead
character (such as
accent characters).

CWnd::OnSysKeyDow
n

Called when the user
holds down the ALT
key and then presses
another key.

CWnd::OnSysKeyUp Called when the user
releases a key that
was pressed while the
ALT key was held
down.

CWnd::OnTCard Called when the user
clicks an authorable
button.

CWnd::OnTimeChang
e

Called for all top-level
windows after the
system time changes.

CWnd::OnTimer Called after each
interval specified in
SetTimer.

CWnd::OnTouchInput Process single input
from Windows touch.

CWnd::OnTouchInput
s

Process inputs from
Windows touch.

CWnd::OnUniChar Called when a key is
pressed. That is, the
current window has
the keyboard focus
and a
WM_KEYDOWN
message is translated
by the
TranslateMessage
function.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/inputdev/wm-keydown
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage

CWnd::OnUnInitMen
uPopup

Called when a drop-
down menu or
submenu has been
destroyed.

CWnd::OnUpdateUIS
tate

Called to change the
user interface (UI)
state for the specified
window and all its
child windows.

CWnd::OnUserChang
ed

Called after the user
has logged on or off.

CWnd::OnVKeyToIte
m

Called by a list box
owned by CWnd in
response to a
WM_KEYDOWN
message.

CWnd::OnVScroll Called when the user
clicks the window's
vertical scroll bar.

CWnd::OnVScrollClip
board

Called when the
owner should scroll
the Clipboard image,
invalidate the
appropriate section,
and update the
scroll-bar values.

CWnd::OnWindowPo
sChanged

Called when the size,
position, or Z-order
has changed as a
result of a call to
SetWindowPos or
another window-
management
function.

CWnd::OnWindowPo
sChanging

Called when the size,
position, or Z-order is
about to change as a
result of a call to
SetWindowPos or
another window-
management
function.

CWnd::OnWinIniCha
nge

Called for all top-level
windows after the
Windows initialization
file, WIN.INI, is
changed.

NAME DESCRIPTION

CWnd::OnWndMsg Indicates if a windows
message was
handled.

CWnd::OnXButtonDb
lClk

Called when the user
double-clicks
XBUTTON1 or
XBUTTON2 while the
cursor is in the client
area of a window.

CWnd::OnXButtonDo
wn

Called when the user
presses XBUTTON1
or XBUTTON2 while
the cursor is in the
client area of a
window.

CWnd::OnXButtonUp Called when the user
releases XBUTTON1
or XBUTTON2 while
the cursor is in the
client area of a
window.

CWnd::PostNcDestro
y

This virtual function is
called by the default
OnNcDestroy
function after the
window has been
destroyed.

CWnd::ReflectChildNo
tify

Helper function which
reflects a message to
its source.

CWnd::ReflectLastMs
g

Reflects the last
message to the child
window.

CWnd::ResizeDynami
cLayout

Called by the
framework when the
window size changes
to adjust the layout
of child windows, if
dynamic layout is
enabled for the
window.

CWnd::WindowProc Provides a window
procedure for a
CWnd . The default

dispatches messages
through the message
map.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CWnd::operator
HWND

Call to get a handle
to a window.

CWnd::operator != Determines if a
window is not the
same as the window
whose handle is
m_hWnd.

CWnd::operator == Determines if a
window is the same
as the window whose
handle is m_hWnd.

Public Data MembersPublic Data Members

NAME DESCRIPTION

CWnd::m_hWnd Indicates the HWND
attached to this
CWnd .

Remarks
A CWnd object is distinct from a Windows
window, but the two are tightly linked. A
CWnd object is created or destroyed by the
CWnd constructor and destructor. The

Windows window, on the other hand, is a
data structure internal to Windows that is
created by a Create member function and
destroyed by the CWnd virtual destructor.
The DestroyWindow function destroys the
Windows window without destroying the
object.

The CWnd class and the message-map
mechanism hide the WndProc function.
Incoming Windows notification messages
are automatically routed through the
message map to the proper OnMessage
CWnd member functions. You override an

OnMessage member function to handle a
member's particular message in your
derived classes.

The CWnd class also lets you create a
Windows child window for your
application. Derive a class from CWnd , then
add member variables to the derived class
to store data specific to your application.
Implement message-handler member
functions and a message map in the

Inheritance Hierarchy

Requirements

CWnd::accDoDefaultAction

virtual HRESULT
accDoDefaultAction(VARIANT varChild);

ParametersParameters

derived class to specify what happens
when messages are directed to the
window.

You create a child window in two steps.
First, call the constructor CWnd to
construct the CWnd object, then call the
Create member function to create the child
window and attach it to the CWnd object.

When the user terminates your child
window, destroy the CWnd object, or call
the DestroyWindow member function to
remove the window and destroy its data
structures.

Within the Microsoft Foundation Class
Library, further classes are derived from
CWnd to provide specific window types.

Many of these classes, including
CFrameWnd, CMDIFrameWnd,
CMDIChildWnd, CView, and CDialog, are
designed for further derivation. The
control classes derived from CWnd , such as
CButton, can be used directly or can be
used for further derivation of classes.

For more information on using CWnd , see
Frame Windows and Window Objects.

CObject

CCmdTarget

CWnd

Header: afxwin.h

Called by the framework to perform the
object's default action.

varChild
Specifies whether the default action to be
invoked is that of the object or one of the
object's child elements. This parameter can

Return ValueReturn Value

RemarksRemarks

CWnd::accHitTest

virtual HRESULT accHitTest(
 long xLeft,
 long yTop,
 VARIANT* pvarChild);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

be either CHILDID_SELF (to perform the
object's default action) or a child ID (to
perform the default action of one of the
object's child elements).

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::accDoDefaultAction in the
Windows SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class to perform your object's
default action. For more information, see
IAccessible::accDoDefaultAction in the
Windows SDK.

Called by the framework to retrieve the
child element or child object at a given
point on the screen.

xLeft
X-coordinate of the point to be hit tested
(in screen units).

yTop
Y-coordinate of the point to be hit tested
(in screen units).

pvarChild
Receives information identifying the object
at the point specified by xLeft and yTop.
See pvarID in IAccessible::accHitTest in the
Windows SDK.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::accHitTest in the Windows

SDK.

This function is part of MFC's Active

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-accdodefaultaction
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-accdodefaultaction
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-acchittest

 CWnd::accLocation

virtual HRESULT accLocation(
 long* pxLeft,
 long* pyTop,
 long* pcxWidth,
 long* pcyHeight,
 VARIANT varChild);

ParametersParameters

Return ValueReturn Value

Accessibility support.

Override this function in your CWnd -
derived class if you have nonwindowed
user interface elements (other than
windowless ActiveX controls, which MFC
handles).

For more information, see
IAccessible::accHitTest in the Windows
SDK.

Called by the framework to retrieve the
specified object's current screen location.

pxLeft
Receives x-coordinate of the object's
upper-left corner (in screen units).

pyTop
Receives y-coordinate of the object's
upper-left corner (in screen units).

pcxWidth
Receives width of the object (in screen
units).

pcyHeight
Receives height of the object (in screen
units).

varChild
Specifies whether the location to be
retrieved is that of the object or one of the
object's child elements. This parameter can
be either CHILDID_SELF (to obtain
information about the object) or a child ID
(to obtain information about the object's
child element).

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::accLocation in the Windows

SDK.

https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-acchittest

RemarksRemarks

CWnd::accNavigate

virtual HRESULT accNavigate(
 long navDir,
 VARIANT varStart,
 VARIANT* pvarEndUpAt);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Override this function in your CWnd -
derived class if you have nonwindowed
user interface elements (other than
windowless ActiveX controls, which MFC
handles).

For more information, see
IAccessible::accLocation in the Windows

SDK.

Called by the framework to traverse to
another user interface element within a
container and if possible, retrieve the
object.

navDir
Specifies the direction to navigate. See
navDir in IAccessible::accNavigate in the
Windows SDK.

varStart
Specifies the starting object. See varStart
in IAccessible::accNavigate in the
Windows SDK.

pvarEndUpAt
Receives information about the destination
user interface object. See pvarEnd in
IAccessible::accNavigate in the Windows

SDK.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::accNavigate in the Windows

SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class if you have nonwindowed
user interface elements (other than
windowless ActiveX controls, which MFC

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-accnavigate
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility

CWnd::accSelect

virtual HRESULT accSelect(
 long flagsSelect,
 VARIANT varChild);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::AnimateWindow

handles).

For more information, see
IAccessible::accNavigate in the Windows
SDK.

Called by the framework to modify the
selection or move the keyboard focus of
the specified object.

flagsSelect
Specifies how to change the current
selection or focus. See flagsSelect in
IAccessible::accSelect in the Windows
SDK.

varChild
Specifies the object to be selected. This
parameter can be either CHILDID_SELF
(to select the object itself) or a child ID (to
select one of the object's children).

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::accSelect in the Windows

SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class if you have nonwindowed
user interface elements (other than
windowless ActiveX controls, which MFC
handles).

For more information, see
IAccessible::accSelect in the Windows
SDK.

Produces special effects when showing or
hiding windows.

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-accnavigate
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-accselect
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-accselect

BOOL AnimateWindow(
 DWORD dwTime,
 DWORD dwFlags);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::ArrangeIconicWindo
ws

UINT ArrangeIconicWindows();

Return ValueReturn Value

RemarksRemarks

ExampleExample

dwTime
Specifies how long it takes to play the
animation, in milliseconds. Typically, an
animation takes 200 milliseconds to play.

dwFlags
Specifies the type of animation. For a full
list of possible values, see
AnimateWindow.

Nonzero if the function succeeds;
otherwise 0.

This member function emulates the
functionality of the function
AnimateWindow, as described in the
Windows SDK.

Arranges all the minimized (iconic) child
windows.

The height of one row of icons if the
function is successful; otherwise 0.

This member function also arranges icons
on the desktop window, which covers the
entire screen. The GetDesktopWindow
member function retrieves a pointer to the
desktop window object.

To arrange iconic MDI child windows in an
MDI client window, call
CMDIFrameWnd::MDIIconArrange.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-animatewindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-animatewindow

// arrange minimized MDI child windows
// called from menu item;
CMdiChildFrame is derived from
CMDIChildWnd
void
CMdiChildFrame::OnActionArrangeIconicWi
ndows()
{
 UINT height = GetParent()-
>ArrangeIconicWindows();
 TRACE(_T("height = %d\n"), height);
}

CWnd::Attach

BOOL Attach(HWND hWndNew);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Declare a CWnd member of CMainFrame
public:
 CWnd m_wndMDIClient;

// detach MDI client window in
CMainFrame destructor
m_wndMDIClient.Detach();

// In CMainFrame::OnCreate, attach MDI
client window

 if
(CMDIFrameWnd::OnCreate(lpCreateStruct)
== -1)
 return -1;

// attach MDI client window
if
(m_wndMDIClient.Attach(m_hWndMDIClient)
== 0)
{
 TRACE(_T("Failed to attach
MDIClient.\n"));
 return -1; // fail to create
}

Attaches a Windows window to a CWnd

object.

hWndNew
Specifies a handle to a Windows window.

Nonzero if successful; otherwise 0.

This example shows how to use Attach and
Detach to map to the MDI client window.

CWnd::BeginModalState

virtual void BeginModalState();

CWnd::BeginPaint

CDC* BeginPaint(LPPAINTSTRUCT lpPaint);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Call this member function to make a frame
window modal.

Prepares CWnd for painting and fills a
PAINTSTRUCT data structure with

information about the painting.

lpPaint
Points to the PAINTSTRUCT structure that
is to receive painting information.

Identifies the device context for CWnd . The
pointer may be temporary and should not
be stored beyond the scope of EndPaint.

The paint structure contains a RECT data
structure that has the smallest rectangle
that completely encloses the update region
and a flag that specifies whether the
background has been erased.

The update region is set by the Invalidate,
InvalidateRect, or InvalidateRgn member
functions and by the system after it sizes,
moves, creates, scrolls, or performs any
other operation that affects the client area.
If the update region is marked for erasing,
BeginPaint sends an

WM_ONERASEBKGND message.

Do not call the BeginPaint member
function except in response to a
WM_PAINT message. Each call to the
BeginPaint member function must have a

matching call to the EndPaint member
function. If the caret is in the area to be
painted, the BeginPaint member function
automatically hides the caret to prevent it
from being erased.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagpaintstruct

// Use BeginPaint and EndPaint when
responding to WM_PAINT message
// An alternative method is to use
CPaintDC in place of
// BeginPaint and EndPaint
void CMdiView::OnPaint()
{
 PAINTSTRUCT ps;
 CDC* pDC = BeginPaint(&ps);

 pDC->Rectangle(CRect(0, 0, 100,
100));

 EndPaint(&ps);

 // Do not call CView::OnPaint() for
painting messages
}

CWnd::BindDefaultProperty

void BindDefaultProperty(
 DISPID dwDispID,
 VARTYPE vtProp,
 LPCTSTR szFieldName,
 CWnd* pDSCWnd);

ParametersParameters

Binds the calling object's default simple
bound property (such as an edit control),
as marked in the type library, to the
underlying cursor that is defined by the
DataSource, UserName, Password, and
SQL properties of the data-source control.

dwDispID
Specifies the DISPID of a property on a
data-bound control that is to be bound to a
data-source control.

vtProp
Specifies the type of the property to be
bound — for example, VT_BSTR,
VT_VARIANT, and so on.

szFieldName
Specifies the name of the column, in the
cursor provided by the data-source
control, to which the property will be
bound.

pDSCWnd
Points to the window that hosts the data-
source control to which the property will
be bound. Call GetDlgItem with the
resource ID of the DCS's host window to
retrieve this pointer.

RemarksRemarks

ExampleExample

BOOL CMyDlg::OnInitDialog()
{

CWnd* pDSC =
GetDlgItem(IDC_DATASOURCE);
CWnd* pMyBound =
GetDlgItem(IDC_MYBOUNDCTRL1);
pMyBound->BindDefaultProperty(0x1,
VT_BSTR, _T("ContactFirstName"), pDSC);

 return TRUE;
}

CWnd::BindProperty

void BindProperty(
 DISPID dwDispId,
 CWnd* pWndDSC);

ParametersParameters

RemarksRemarks

ExampleExample

The CWnd object on which you call this
function must be a data-bound control.

BindDefaultProperty might be used in the
following context:

Binds a cursor-bound property on a data-
bound control (such as a grid control) to a
data-source control and registers that
relationship with the MFC binding
manager.

dwDispId
Specifies the DISPID of a property on a
data-bound control that is to be bound to a
data-source control.

pWndDSC
Points to the window that hosts the data-
source control to which the property will
be bound. Call GetDlgItem with the
resource ID of the DCS's host window to
retrieve this pointer.

The CWnd object on which you call this
function must be a data-bound control.

BindProperty might be used in the

BOOL CMyDlg::OnInitDialog()
{

CWnd* pDSC =
GetDlgItem(IDC_DATASOURCE);
CWnd* pMyBound =
GetDlgItem(IDC_MYBOUNDCTRL2);
pMyBound->BindProperty(0x1, pDSC);

 return TRUE;
}

CWnd::BringWindowToTop

void BringWindowToTop();

RemarksRemarks

ExampleExample

following context:

Brings CWnd to the top of a stack of
overlapping windows.

In addition, BringWindowToTop activates
pop-up, top-level, and MDI child windows.
The BringWindowToTop member function
should be used to uncover any window
that is partially or completely obscured by
any overlapping windows.

This function just calls the Win32
BringWindowToTop function. Call the
SetWindowPos function to change a
window's position in the Z-order. The
BringWindowToTop function does not

change the window style to make it a top-
level window. For more information, see
What's the difference between
HWND_TOP and HWND_TOPMOST

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-bringwindowtotop
http://blogs.msdn.com/b/oldnewthing/archive/2005/11/21/495246.aspx

// Moves MDI child windows to the top
when a mouse passes
// over it. CMdiView is derived from
CView.
void CMdiView::OnMouseMove(UINT nFlags,
CPoint point)
{
 UNREFERENCED_PARAMETER(nFlags);
 UNREFERENCED_PARAMETER(point);

 GetParentFrame()-
>BringWindowToTop();
}

CWnd::CalcWindowRect

virtual void CalcWindowRect(
 LPRECT lpClientRect,
 UINT nAdjustType = adjustBorder);

ParametersParameters

RemarksRemarks

ExampleExample

Calculates the window rectangle that can
contain the specified client rectangle.

lpClientRect
[in, out] Pointer to a rectangle structure.
On input, this structure contains the client
rectangle. After the method is finished, this
structure contains the window rectangle
that can contain the specified client
rectangle.

nAdjustType
[in] Use CWnd::adjustBorder to calculate
window coordinates without the
WS_EX_CLIENTEDGE style; otherwise,
use CWnd::adjustOutside .

The size of the calculated window
rectangle does not include space for a
menu bar.

For more usage restrictions, see
AdjustWindowRectEx.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-adjustwindowrectex

// Uses CalcWindowRect to determine
size for new CFrameWnd
// based on the size of the current
view. The end result is a
// top level frame window of the same
size as CMdiView's frame.
void CMdiView::OnMyCreateFrame()
{
 CFrameWnd* pFrameWnd = new
CFrameWnd;
 CRect myRect;
 GetClientRect(myRect);
 pFrameWnd->Create(NULL, _T("My
Frame"));
 pFrameWnd->CalcWindowRect(&myRect,
CWnd::adjustBorder);
 pFrameWnd->MoveWindow(0, 0,
myRect.Width(), myRect.Height());
 pFrameWnd->ShowWindow(SW_SHOW);
}

CWnd::CancelToolTips

static void PASCAL CancelToolTips(BOOL
bKeys = FALSE);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

Call this member function to remove a tool
tip from the screen if a tool tip is currently
displayed.

bKeys
TRUE to cancel tool tips when a key is
pressed and set the status bar text to the
default; otherwise FALSE.

Using this member function has no effect
on tool tips managed by your code. It only
affects the tool tip control managed by
CWnd::EnableToolTips.

// In this example, tool tips were set
up to
// pop up when the user moves the mouse
// over this edit control.
// If the mouse is moved to the upper
left-hand
// corner, the tool tip would disappear
because of
// calling CancelToolTips.
void CMyEdit::OnMouseMove(UINT nFlags,
CPoint point)
{
 CRect corner(0, 0, 10, 10);
 if (corner.PtInRect(point))
 CancelToolTips();
 CEdit::OnMouseMove(nFlags, point);
}

CWnd::CenterWindow

void CenterWindow(CWnd* pAlternateOwner
= NULL);

ParametersParameters

RemarksRemarks

ExampleExample

Centers a window relative to its parent.

pAlternateOwner
Pointer to an alternate window relative to
which it will be centered (other than the
parent window).

Usually called from CDialog::OnInitDialog
to center dialog boxes relative to the main
window of the application. By default, the
function centers child windows relative to
their parent window, and pop-up windows
relative to their owner. If the pop-up
window is not owned, it is centered relative
to the screen. To center a window relative
to a specific window which is not the
owner or parent, the pAlternateOwner
parameter may be set to a valid window.
To force centering relative to the screen,
pass the value returned by
CWnd::GetDesktopWindow as
pAlternateOwner.

BOOL CAboutDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 CenterWindow();

 return TRUE;
}

CWnd::ChangeClipboardCh
ain

BOOL ChangeClipboardChain(HWND
hWndNext);

ParametersParameters

Return ValueReturn Value

CWnd::CheckDlgButton

void CheckDlgButton(
 int nIDButton,
 UINT nCheck);

ParametersParameters

RemarksRemarks

Removes CWnd from the chain of
Clipboard viewers and makes the window
specified by hWndNext the descendant of
the CWnd ancestor in the chain.

hWndNext
Identifies the window that follows CWnd in
the Clipboard-viewer chain.

Nonzero if successful; otherwise 0.

Selects (places a check mark next to) or
clears (removes a check mark from) a
button, or it changes the state of a three-
state button.

nIDButton
Specifies the button to be modified.

nCheck
Specifies the action to take. If nCheck is
nonzero, the CheckDlgButton member
function places a check mark next to the
button; if 0, the check mark is removed.
For three-state buttons, if nCheck is 2, the
button state is indeterminate.

The CheckDlgButton function sends a

ExampleExample

// Sets 3 check buttons in various
ways. Note BST_INDETERMINATE
// requires BS_3STATE or BS_AUTO3STATE
in the button's style.
void CMyDlg::OnMarkButtons()
{
 CheckDlgButton(IDC_CHECK1,
BST_UNCHECKED); // 0
 CheckDlgButton(IDC_CHECK2,
BST_CHECKED); // 1
 CheckDlgButton(IDC_CHECK3,
BST_INDETERMINATE); // 2
}

CWnd::CheckRadioButton

void CheckRadioButton(
 int nIDFirstButton,
 int nIDLastButton,
 int nIDCheckButton);

ParametersParameters

RemarksRemarks

ExampleExample

BM_SETCHECK message to the specified
button.

Selects (adds a check mark to) a given
radio button in a group and clears
(removes a check mark from) all other
radio buttons in the group.

nIDFirstButton
Specifies the integer identifier of the first
radio button in the group.

nIDLastButton
Specifies the integer identifier of the last
radio button in the group.

nIDCheckButton
Specifies the integer identifier of the radio
button to be checked.

The CheckRadioButton function sends a
BM_SETCHECK message to the specified
radio button.

https://docs.microsoft.com/windows/desktop/Controls/bm-setcheck
https://docs.microsoft.com/windows/desktop/Controls/bm-setcheck

// Of the 4 radio buttons, selects
radio button 3.
void CMyDlg::OnMarkRadio()
{
 CheckRadioButton(IDC_RADIO1,
IDC_RADIO4, IDC_RADIO3);
}

CWnd::ChildWindowFromP
oint

CWnd* ChildWindowFromPoint(POINT point)
const;

CWnd* ChildWindowFromPoint(
 POINT point,
 UINT nFlags) const;

ParametersParameters

VALUE MEANING

CWP_ALL Do not skip any child
windows

CWP_SKIPINVISIBLE Skip invisible child
windows

CWP_SKIPDISABLED Skip disabled child
windows

CWP_SKIPTRANSPAR
ENT

Skip transparent child
windows

Return ValueReturn Value

Determines which, if any, of the child
windows belonging to CWnd contains the
specified point.

point
Specifies the client coordinates of the point
to be tested.

nflags
Specifies which child windows to skip. This
parameter can be a combination of the
following values:

Identifies the child window that contains
the point. It is NULL if the given point lies
outside of the client area. If the point is
within the client area but is not contained
within any child window, CWnd is returned.

This member function will return a hidden

ExampleExample

void CMyDlg::OnFindCenterChild()
{
 CRect rect;
 GetClientRect(&rect);
 CWnd* pWnd = ChildWindowFromPoint(
 CPoint(rect.Width()/2,
rect.Height()/2),
 // Top left is always 0, 0.
 CWP_SKIPINVISIBLE);
 TRACE(_T("Center window is
0x%08x\n"), pWnd->m_hWnd);
}

CWnd::ClientToScreen

void ClientToScreen(LPPOINT lpPoint)
const; void ClientToScreen(LPRECT
lpRect) const;

ParametersParameters

RemarksRemarks

or disabled child window that contains the
specified point.

More than one window may contain the
given point. However, this function returns
only the CWnd * of the first window
encountered that contains the point.

The CWnd * that is returned may be
temporary and should not be stored for
later use.

Converts the client coordinates of a given
point or rectangle on the display to screen
coordinates.

lpPoint
Points to a POINT structure or CPoint

object that contains the client coordinates
to be converted.

lpRect
Points to a RECT structure or CRect

object that contains the client coordinates
to be converted.

The ClientToScreen member function
uses the client coordinates in the POINT or
RECT structure or the CPoint or CRect

object pointed to by lpPoint or lpRect to
compute new screen coordinates; it then
replaces the coordinates in the structure
with the new coordinates. The new screen

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

ExampleExample

// resize dialog to client's size
void CMyDlg::OnSizeToClient()
{
 CRect myRect;
 GetClientRect(&myRect);

 ClientToScreen(myRect);
 MoveWindow(myRect.left, myRect.top,
 myRect.Width(), myRect.Height());
}

CWnd::CloseWindow

void CloseWindow();

RemarksRemarks

CWnd::ContinueModal

virtual BOOL ContinueModal();

Return ValueReturn Value

RemarksRemarks

CWnd::Create

coordinates are relative to the upper-left
corner of the system display.

The ClientToScreen member function
assumes that the given point or rectangle
is in client coordinates.

Minimizes the window.

This member function emulates the
functionality of the function CloseWindow,
as described in the Windows SDK.

This member function is called by
RunModalLoop to determine when the
modal state should be exited.

Nonzero if modal loop is to be continued;
0 when EndModalLoop is called.

By default, it returns non-zero until
EndModalLoop is called.

Creates the specified child window and
attaches it to the CWnd object.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-closewindow

virtual BOOL Create(
 LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 Const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 CCreateContext* pContext = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpszClassName
[in] Pointer to a null-terminated string that
contains the name of a registered system
window class; or the name of a predefined
system window class.

lpszWindowName
[in] Pointer to a null-terminated string that
contains the window display name;
otherwise NULL for no window display
name.

dwStyle
[in] Bitwise combination (OR) of window
styles. The WS_POPUP option is not a
valid style.

rect
[in] The size and location of the window
relative to the top-left corner of the parent
window.

pParentWnd
[in] Pointer to the parent window.

nID
[in] ID of the window.

pContext
[in] Pointer to a CCreateContext structure
that is used to customize the document-
view architecture for the application.

TRUE if the method was successful;
otherwise FALSE.

WARNINGWARNING

ExampleExample

// Dynamically create static control
using CWnd::Create,
// instead of with CStatic::Create,
which doesn't
// need the "STATIC" class name.
void CMyDlg::OnCreateStatic()
{
 // m_pWndStatic is a CWnd* member of
CMyDlg
 m_pWndStatic = new CWnd;
 m_pWndStatic->Create(_T("STATIC"),
_T("Hi"), WS_CHILD | WS_VISIBLE,
 CRect(0, 0, 20, 20), this,
1234);
}

CWnd::CreateAccessiblePro
xy

virtual HRESULT CreateAccessibleProxy(
 WPARAM wParam,
 LPARAM lParam,
 LRESULT* pResult);

ParametersParameters

CWnd::PreCreateWindow now assigns the
hMenu member of its CREATESTRUCT

parameter to the this pointer if the menu is
NULL and the style contains WS_CHILD.
For proper functionality, ensure that your
dialog control has an ID that is not NULL.

This change fixes a crash in managed/native
interop scenarios. A TRACE statement in
CWnd::Create alerts the developer of the

problem.

Use the AfxRegisterWndClass function to
register window classes. User defined
window classes are available in the module
where they are registered.

The CWnd::OnCreate method is called
before the Create method returns, and
before the window becomes visible.

Creates an Active Accessibility proxy for
the specified object.

wParam
Identifies the object accessed by the Active
Accessibility proxy. Can be one of the

VALUE MEANING

OBJID_CLIENT Refers to the
window's client area.

RemarksRemarks

CWnd::CreateCaret

void CreateCaret(CBitmap* pBitmap);

ParametersParameters

RemarksRemarks

ExampleExample

following values

lParam
Provides additional message-dependent
information.

pResult
A pointer to an LRESULT that stores the
result code.

Creates an Active Accessibility proxy for
the specified object.

Creates a new shape for the system caret
and claims ownership of the caret.

pBitmap
Identifies the bitmap that defines the caret
shape.

The bitmap must have previously been
created by the CBitmap::CreateBitmap
member function, the CreateDIBitmap
Windows function, or the
CBitmap::LoadBitmap member function.

CreateCaret automatically destroys the
previous caret shape, if any, regardless of
which window owns the caret. Once
created, the caret is initially hidden. To
show the caret, the ShowCaret member
function must be called.

The system caret is a shared resource.
CWnd should create a caret only when it

has the input focus or is active. It should
destroy the caret before it loses the input
focus or becomes inactive.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-createdibitmap

// Changes the caret of the edit
control in this dialog box
void CMyDlg::OnChangeCaret()
{
 m_pBitmapCaret = new CBitmap;
 m_pBitmapCaret-
>LoadBitmap(IDB_HAPPY_BITMAP);

m_MyEdit.CreateCaret(m_pBitmapCaret);
 m_MyEdit.ShowCaret();
}

CWnd::CreateControl

BOOL CreateControl(
 LPCTSTR pszClass,
 LPCTSTR pszWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 CFile* pPersist = NULL,
 BOOL bStorage = FALSE,
 BSTR bstrLicKey = NULL);

BOOL CreateControl(
 REFCLSID clsid,
 LPCTSTR pszWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 CFile* pPersist = NULL,
 BOOL bStorage = FALSE,
 BSTR bstrLicKey = NULL);

BOOL CreateControl(
 REFCLSID clsid,
 LPCTSTR pszWindowName,
 DWORD dwStyle,
 const POINT* ppt,
 const SIZE* psize,
 CWnd* pParentWnd,
 UINT nID,
 CFile* pPersist = NULL,
 BOOL bStorage = FALSE,
 BSTR bstrLicKey = NULL);

ParametersParameters

Use this member function to create an
ActiveX control that will be represented in
the MFC program by a CWnd object.

pszClass
This string may contain the OLE "short
name" (ProgID) for the class, e.g.,
"CIRC3.Circ3Ctrl.1". The name needs to
match the same name registered by the
control. Alternatively, the string may
contain the string form of a CLSID,

contained in braces, e.g., "{9DBAFCCF-
592F-101B-85CE-00608CEC297B}". In
either case, CreateControl converts the
string to the corresponding class ID.

pszWindowName
A pointer to the text to be displayed in the
control. Sets the value of the control's
Caption or Text property (if any). If NULL,
the control's Caption or Text property is
not changed.

dwStyle
Windows styles. The available styles are
listed under Remarks.

rect
Specifies the control's size and position. It
can be either a CRect object or a RECT
structure.

ppt
Points to a POINT structure or CPoint

object that contains the upper left corner
of the control.

pSize
Points to a S IZE structure or CSize object
that contains the control's size

pParentWnd
Specifies the control's parent window. It
must not be NULL.

nID
Specifies the control's ID.

pPersist
A pointer to a CFile containing the
persistent state for the control. The default
value is NULL, indicating that the control
initializes itself without restoring its state
from any persistent storage. If not NULL, it
should be a pointer to a CFile -derived
object which contains the control's
persistent data, in the form of either a
stream or a storage. This data could have
been saved in a previous activation of the
client. The CFile can contain other data,
but must have its read-write pointer set to
the first byte of persistent data at the time
of the call to CreateControl .

bStorage
Indicates whether the data in pPersist
should be interpreted as IStorage or

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize

Return ValueReturn Value

RemarksRemarks

IStream data. If the data in pPersist is a
storage, bStorage should be TRUE. If the
data in pPersist is a stream, bStorage
should be FALSE. The default value is
FALSE.

bstrLicKey
Optional license key data. This data is
needed only for creating controls that
require a run-time license key. If the
control supports licensing, you must
provide a license key for the creation of the
control to succeed. The default value is
NULL.

clsid
The unique class ID of the control.

Nonzero if successful; otherwise 0.

CreateControl is a direct analog of the
CWnd::Create function, which creates the
window for a CWnd . CreateControl creates
an ActiveX control instead of an ordinary
window.

Only a subset of the Windows dwStyle
flags are supported for CreateControl :

WS_VISIBLE Creates a window that
is initially visible. Required if you
want the control to be visible
immediately, like ordinary windows.

WS_DISABLED Creates a window
that is initially disabled. A disabled
window cannot receive input from
the user. Can be set if the control
has an Enabled property.

WS_BORDER Creates a window
with a thin-line border. Can be set if
control has a BorderStyle property.

WS_GROUP Specifies the first
control of a group of controls. The
user can change the keyboard focus
from one control in the group to the
next by using the direction keys. All
controls defined with the
WS_GROUP style after the first
control belong to the same group.
The next control with the
WS_GROUP style ends the group

ExampleExample

class CGenocx : public CWnd
{
protected:
 DECLARE_DYNCREATE(CGenocx)
public:
 CLSID const& GetClsid()
 {
 static CLSID const clsid
 = { 0x20DD1B9E, 0x87C4,
0x11D1, { 0x8B, 0xE3, 0x0, 0x0, 0xF8,
0x75, 0x4D, 0xA1 } };
 return clsid;
 }

 // This code is generated by the
Control Wizard.
 // It wraps the call to
CreateControl in the call to Create.
 virtual BOOL Create(LPCTSTR
lpszClassName, LPCTSTR lpszWindowName,
DWORD dwStyle,
 const RECT& rect,
CWnd* pParentWnd, UINT nID,
 CCreateContext*
pContext = NULL)
 {
 UNREFERENCED_PARAMETER(pContext);

UNREFERENCED_PARAMETER(lpszClassName);

 return CreateControl(GetClsid(),
lpszWindowName, dwStyle, rect,
pParentWnd, nID);
 }

 // remainder of class declaration
omitted...

CWnd::CreateEx

and starts the next group.

WS_TABSTOP Specifies a control
that can receive the keyboard focus
when the user presses the TAB key.
Pressing the TAB key changes the
keyboard focus to the next control
of the WS_TABSTOP style.

Creates the specified window and attaches
it to the CWnd object.

virtual BOOL CreateEx(
 DWORD dwExStyle,
 LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 int x,
 int y,
 int nWidth,
 int nHeight,
 HWND hWndParent,
 HMENU nIDorHMenu,
 LPVOID lpParam = NULL);

virtual BOOL CreateEx(
 DWORD dwExStyle,
 LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName,
 DWORD dwStyle,
 const RECT& rect,
 CWnd* pParentWnd,
 UINT nID,
 LPVOID lpParam = NULL);

ParametersParameters
dwExStyle
Bitwise combination (OR) of extended
window styles; otherwise NULL for the
default extended window style.

lpszClassName
Pointer to a null-terminated string that
contains the name of a registered system
window class; or the name of a predefined
system window class.

lpszWindowName
Pointer to a null-terminated string that
contains the window display name;
otherwise NULL for no window display
name.

dwStyle
Bitwise combination (OR) of window
styles; otherwise NULL for the default
window style.

x
The initial horizontal distance of the
window from the left side of the screen or
the parent window.

y
The initial vertical distance of the window
from the top of the screen or the parent
window.

nWidth
The width, in pixels, of the window.

Return ValueReturn Value

RemarksRemarks

WARNINGWARNING

nHeight
The height, in pixels, of the window.

hwndParent
For a child window, the handle to the
parent window; otherwise, the handle of
the owner window if the window has an
owner.

nIDorHMenu
For a child window, the window ID;
otherwise, the ID of a menu for the
window.

lpParam
Pointer to user data that is passed to the
CWnd::OnCreate method in the
lpCreateParams field.

rect
The size and location of the window
relative to the screen or the parent
window.

pParentWnd
For a child window, pointer to the parent
window; otherwise, pointer to the owner
window if the window has an owner.

nID
For a child window, the window ID;
otherwise, the ID of a menu for the
window.

TRUE if the method was successful;
otherwise FALSE.

CWnd::PreCreateWindow now assigns the
hMenu member of its CREATESTRUCT

parameter to the this pointer if the menu is
NULL and the style contains WS_CHILD.
For proper functionality, ensure that your
dialog control has an ID that is not NULL.

This change fixes a crash in managed/native
interop scenarios. A TRACE statement in
CWnd::Create alerts the developer of the

problem.

The default extended window style is
WS_EX_LEFT. The default window style is
WS_OVERLAPPED.

ExampleExample

void CMyDlg::OnCreateExtendedControl()
{
 // m_pWndStaticEx is a CWnd* member
of CMyDlg
 m_pWndStaticEx = new CStatic;
 m_pWndStaticEx-
>CreateEx(WS_EX_CLIENTEDGE, // Make a
client edge label.
 _T("STATIC"), _T("Hi"),
 WS_CHILD | WS_TABSTOP |
WS_VISIBLE,
 5, 5, 30, 30, m_hWnd,
(HMENU)2345);
}

CWnd::CreateGrayCaret

void CreateGrayCaret(
 int nWidth,
 int nHeight);

ParametersParameters

RemarksRemarks

Use the AfxRegisterWndClass function to
register window classes. User defined
window classes are available in the module
where they are registered.

Dimensions for child windows are relative
to the top-left corner of the client area of
the parent window. Dimensions for top-
level windows are relative to the top-left
corner of the screen.

The CWnd::OnCreate method is called
before the CreateEx method returns, and
before the window becomes visible.

Creates a gray rectangle for the system
caret and claims ownership of the caret.

nWidth
Specifies the width of the caret (in logical
units). If this parameter is 0, the width is
set to the system-defined window-border
width.

nHeight
Specifies the height of the caret (in logical
units). If this parameter is 0, the height is
set to the system-defined window-border
height.

The caret shape can be a line or a block.

ExampleExample

// Create a 5x10 gray caret in the edit
control.
void CMyDlg::OnCreateGrayCaret()
{
 m_MyEdit.CreateGrayCaret(5, 10);
 m_MyEdit.ShowCaret();
}

CWnd::CreateSolidCaret

void CreateSolidCaret(
 int nWidth,
 int nHeight);

ParametersParameters

The parameters nWidth and nHeight
specify the caret's width and height (in
logical units); the exact width and height
(in pixels) depend on the mapping mode.

The system's window-border width or
height can be retrieved by the
GetSystemMetrics Windows function with
the SM_CXBORDER and SM_CYBORDER
indexes. Using the window-border width
or height ensures that the caret will be
visible on a high-resolution display.

The CreateGrayCaret member function
automatically destroys the previous caret
shape, if any, regardless of which window
owns the caret. Once created, the caret is
initially hidden. To show the caret, the
ShowCaret member function must be
called.

The system caret is a shared resource.
CWnd should create a caret only when it

has the input focus or is active. It should
destroy the caret before it loses the input
focus or becomes inactive.

Creates a solid rectangle for the system
caret and claims ownership of the caret.

nWidth
Specifies the width of the caret (in logical
units). If this parameter is 0, the width is
set to the system-defined window-border
width.

nHeight
Specifies the height of the caret (in logical

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsystemmetrics

RemarksRemarks

ExampleExample

// Create a 5x10 solid caret in the
edit control.
void CMyDlg::OnCreateSolidCaret()
{
 m_MyEdit.CreateSolidCaret(5, 10);
 m_MyEdit.ShowCaret();
}

CWnd::CWnd

CWnd();

RemarksRemarks

units). If this parameter is 0, the height is
set to the system-defined window-border
height.

The caret shape can be a line or block.

The parameters nWidth and nHeight
specify the caret's width and height (in
logical units); the exact width and height
(in pixels) depend on the mapping mode.

The system's window-border width or
height can be retrieved by the
GetSystemMetrics Windows function with
the SM_CXBORDER and SM_CYBORDER
indexes. Using the window-border width
or height ensures that the caret will be
visible on a high-resolution display.

The CreateSolidCaret member function
automatically destroys the previous caret
shape, if any, regardless of which window
owns the caret. Once created, the caret is
initially hidden. To show the caret, the
ShowCaret member function must be
called.

The system caret is a shared resource.
CWnd should create a caret only when it

has the input focus or is active. It should
destroy the caret before it loses the input
focus or becomes inactive.

Constructs a CWnd object.

The Windows window is not created and
attached until the CreateEx or Create
member function is called.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsystemmetrics

CWnd::Default

LRESULT Default();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// This sample shows how to avoid any
button handling in base class,
// if any, and call the default window
procedure directly.
void CMyDlg::OnLButtonDown(UINT nFlags,
CPoint point)
{
 UNREFERENCED_PARAMETER(nFlags);
 UNREFERENCED_PARAMETER(point);

 CWnd::Default();
}

CWnd::DefWindowProc

virtual LRESULT DefWindowProc(
 UINT message,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Calls the default window procedure.

Depends on the message sent.

The default window procedure provides
default processing for any window
message that an application does not
process. This member function ensures
that every message is processed.

Calls the default window procedure, which
provides default processing for any
window message that an application does
not process.

message
Specifies the Windows message to be
processed.

wParam
Specifies additional message-dependent
information.

lParam
Specifies additional message-dependent
information.

Return ValueReturn Value

RemarksRemarks

CWnd::DeleteTempMap

static void PASCAL DeleteTempMap();

RemarksRemarks

ExampleExample

// DeleteTempMap() is a static member
and does not need
// to be called within the scope of an
instantiated CWnd object.
CWnd::DeleteTempMap();

CWnd::DestroyWindow

virtual BOOL DestroyWindow();

Return ValueReturn Value

RemarksRemarks

Depends on the message sent.

This member function ensures that every
message is processed. It should be called
with the same parameters as those
received by the window procedure.

Called automatically by the idle time
handler of the CWinApp object.

Deletes any temporary CWnd objects
created by the FromHandle member
function.

Destroys the Windows window attached to
the CWnd object.

Nonzero if the window is destroyed;
otherwise 0.

The DestroyWindow member function
sends appropriate messages to the
window to deactivate it and remove the
input focus. It also destroys the window's
menu, flushes the application queue,
destroys outstanding timers, removes
Clipboard ownership, and breaks the
Clipboard-viewer chain if CWnd is at the
top of the viewer chain. It sends
WM_DESTROY and WM_NCDESTROY
messages to the window. It does not

ExampleExample

destroy the CWnd object.

DestroyWindow is a place holder for
performing cleanup. Because
DestroyWindow is a virtual function, it is

shown in any CWnd -derived class in Class
View. But even if you override this function
in your CWnd -derived class, DestroyWindow

is not necessarily called. If DestroyWindow

is not called in the MFC code, then you
have to explicitly call it in your own code if
you want it to be called.

Assume, for example, you have overridden
DestroyWindow in a CView -derived class.

Since MFC source code does not call
DestroyWindow in any of its CFrameWnd -

derived classes, your overridden
DestroyWindow will not be called unless

you call it explicitly.

If the window is the parent of any
windows, these child windows are
automatically destroyed when the parent
window is destroyed. The DestroyWindow

member function destroys child windows
first and then the window itself.

The DestroyWindow member function also
destroys modeless dialog boxes created by
CDialog::Create.

If the CWnd being destroyed is a child
window and does not have the
WS_EX_NOPARENTNOTIFY style set,
then the WM_PARENTNOTIFY message is
sent to the parent.

https://docs.microsoft.com/previous-versions/windows/desktop/inputmsg/wm-parentnotify

// CModeless is a CDialog class
representing a modeless dialog
// Destruction of the modeless dialog
involves calling DestroyWindow in
// OnOK() & OnCancel() handlers
void CModeless::OnOK()
{
 if (!UpdateData(TRUE))
 {
 TRACE(_T("UpdateData failed
during dialog termination\n"));
 // The UpdateData routine will
set focus to correct item
 return;
 }
 DestroyWindow();
}

void CModeless::OnCancel()
{
 DestroyWindow();
}

CWnd::Detach

HWND Detach();

Return ValueReturn Value

ExampleExample

CWnd::DlgDirList

int DlgDirList(
 LPTSTR lpPathSpec,
 int nIDListBox,
 int nIDStaticPath,
 UINT nFileType);

ParametersParameters

Detaches a Windows handle from a CWnd

object and returns the handle.

A HWND to the Windows object.

See the example for CWnd::Attach.

Fills a list box with a file or directory
listing.

lpPathSpec
Points to a null-terminated string that
contains the path or filename. DlgDirList

modifies this string, which should be long
enough to contain the modifications. For
more information, see the following
"Remarks" section.

Return ValueReturn Value

nIDListBox
Specifies the identifier of a list box. If
nIDListBox is 0, DlgDirList assumes that
no list box exists and does not attempt to
fill one.

nIDStaticPath
Specifies the identifier of the static-text
control used to display the current drive
and directory. If nIDStaticPath is 0,
DlgDirList assumes that no such text

control is present.

nFileType
Specifies the attributes of the files to be
displayed. It can be any combination of the
following values:

DDL_READWRITE Read-write data
files with no additional attributes.

DDL_READONLY Read-only files.

DDL_HIDDEN Hidden files.

DDL_SYSTEM System files.

DDL_DIRECTORY Directories.

DDL_ARCHIVE Archives.

DDL_POSTMSGS LB_DIR flag. If
the LB_DIR flag is set, Windows
places the messages generated by
DlgDirList in the application's

queue; otherwise, they are sent
directly to the dialog-box procedure.

DDL_DRIVES Drives. If the
DDL_DRIVES flag is set, the
DDL_EXCLUSIVE flag is set
automatically. Therefore, to create a
directory listing that includes drives
and files, you must call DlgDirList

twice: once with the DDL_DRIVES
flag set and once with the flags for
the rest of the list.

DDL_EXCLUSIVE Exclusive bit. If
the exclusive bit is set, only files of
the specified type are listed;
otherwise normal files and files of
the specified type are listed.

Nonzero if the function is successful;
otherwise 0.

RemarksRemarks

ExampleExample

// If pDialog points to a CDialog
object with a list box
// with the identifier IDC_DIRLIST,
this call will populate
// the box with only the non-hidden
subdirectories in the root
// directory of the C:\ drive.
TCHAR path[MAX_PATH];
_tcscpy_s(path, MAX_PATH, _T("C:\\"));

pDialog->DlgDirList(path, IDC_DIRLIST,
0, DDL_EXCLUSIVE | DDL_DIRECTORY);

CWnd::DlgDirListComboBo

DlgDirList sends LB_RESETCONTENT
and LB_DIR messages to the list box. It fills
the list box specified by nIDListBox with
the names of all files that match the path
given by lpPathSpec.

The lpPathSpec parameter has the
following form:

[drive:] [
[\u]directory[\idirectory]...\u]
[filename]

In this example, drive is a drive letter,
directory is a valid directory name, and
filename is a valid filename that must
contain at least one wildcard. The
wildcards are a question mark (?), which
means match any character, and an
asterisk (*), meaning match any number of
characters.

If you specify a 0-length string for
lpPathSpec, or if you specify only a
directory name but do not include any file
specification, the string will be changed to
"*.*".

If lpPathSpec includes a drive and/or
directory name, the current drive and
directory are changed to the designated
drive and directory before the list box is
filled. The text control identified by
nIDStaticPath is also updated with the
new drive and/or directory name.

After the list box is filled, lpPathSpec is
updated by removing the drive and/or
directory portion of the path.

https://docs.microsoft.com/windows/desktop/Controls/lb-resetcontent
https://docs.microsoft.com/windows/desktop/Controls/lb-dir

x

int DlgDirListComboBox(
 LPTSTR lpPathSpec,
 int nIDComboBox,
 int nIDStaticPath,
 UINT nFileType);

ParametersParameters

Fills the list box of a combo box with a file
or directory listing.

lpPathSpec
Points to a null-terminated string that
contains the path or filename.
DlgDirListComboBox modifies this string, so

this data should not be in the form of a
string literal. See the following "Remarks"
section.

nIDComboBox
Specifies the identifier of a combo box in a
dialog box. If nIDComboBox is 0,
DlgDirListComboBox assumes that no

combo box exists and does not attempt to
fill one.

nIDStaticPath
Specifies the identifier of the static-text
control used to display the current drive
and directory. If nIDStaticPath is 0,
DlgDirListComboBox assumes that no such

text control is present.

nFileType
Specifies DOS file attributes of the files to
be displayed. It can be any combination of
the following values:

DDL_READWRITE Read-write data
files with no additional attributes.

DDL_READONLY Read-only files.

DDL_HIDDEN Hidden files.

DDL_SYSTEM System files.

DDL_DIRECTORY Directories.

DDL_ARCHIVE Archives.

DDL_POSTMSGS CB_DIR flag. If
the CB_DIR flag is set, Windows
places the messages generated by
DlgDirListComboBox in the

application's queue; otherwise, they

Return ValueReturn Value

RemarksRemarks

are sent directly to the dialog-box
procedure.

DDL_DRIVES Drives. If the
DDL_DRIVES flag is set, the
DDL_EXCLUSIVE flag is set
automatically. Therefore, to create a
directory listing that includes drives
and files, you must call
DlgDirListComboBox twice: once

with the DDL_DRIVES flag set and
once with the flags for the rest of
the list.

DDL_EXCLUSIVE Exclusive bit. If
the exclusive bit is set, only files of
the specified type are listed;
otherwise normal files and files of
the specified type are listed.

Specifies the outcome of the function. It is
nonzero if a listing was made, even an
empty listing. A 0 return value implies that
the input string did not contain a valid
search path.

DlgDirListComboBox sends
CB_RESETCONTENT and CB_DIR
messages to the combo box. It fills the list
box of the combo box specified by
nIDComboBox with the names of all files
that match the path given by lpPathSpec.

The lpPathSpec parameter has the
following form:

[drive:] [
[\u]directory[\idirectory]...\u]
[filename]

In this example, drive is a drive letter,
directory is a valid directory name, and
filename is a valid filename that must
contain at least one wildcard. The
wildcards are a question mark (?), which
means match any character, and an
asterisk (*), which means match any
number of characters.

If you specify a zero-length string for
lpPathSpec, the current directory will be
used and lpPathSpec will not be modified.
If you specify only a directory name but do
not include any file specification, the string

https://docs.microsoft.com/windows/desktop/Controls/cb-resetcontent
https://docs.microsoft.com/windows/desktop/Controls/cb-dir

ExampleExample

// If pDialog points to a CDialog
object with a combo box
// with the identifier IDC_DIRCOMBO,
this call will populate
// the box with only the non-hidden
subdirectories in the root
// directory of the C:\ drive.

TCHAR szPath[MAX_PATH];
_tcsncpy_s(szPath, MAX_PATH,
_T("C:\\"), MAX_PATH);
pDialog->DlgDirListComboBox(szPath,
IDC_DIRCOMBO, 0, DDL_EXCLUSIVE |
 DDL_DIRECTORY);

// Note that the first argument is a
string and not a string
// literal. This is necessary because
DlgDirListComboBox
// modifies the supplied string.
Passing a string literal
// will result in an access violation.

CWnd::DlgDirSelect

BOOL DlgDirSelect(
 LPTSTR lpString,
 int nIDListBox);

ParametersParameters

Return ValueReturn Value

will be changed to "*".

If lpPathSpec includes a drive and/or
directory name, the current drive and
directory are changed to the designated
drive and directory before the list box is
filled. The text control identified by
nIDStaticPath is also updated with the
new drive and/or directory name.

After the combo-box list box is filled,
lpPathSpec is updated by removing the
drive and/or directory portion of the path.

Retrieves the current selection from a list
box.

lpString
Points to a buffer that is to receive the
current selection in the list box.

nIDListBox
Specifies the integer ID of a list box in the
dialog box.

RemarksRemarks

CWnd::DlgDirSelectCombo
Box

BOOL DlgDirSelectComboBox(
 LPTSTR lpString,
 int nIDComboBox);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Nonzero if successful; otherwise 0.

It assumes that the list box has been filled
by the DlgDirList member function and
that the selection is a drive letter, a file, or a
directory name.

The DlgDirSelect member function copies
the selection to the buffer given by
lpString. If there is no selection, lpString
does not change.

DlgDirSelect sends LB_GETCURSEL and
LB_GETTEXT messages to the list box.

It does not allow more than one filename
to be returned from a list box. The list box
must not be a multiple-selection list box.

Retrieves the current selection from the list
box of a combo box.

lpString
Points to a buffer that is to receive the
selected path.

nIDComboBox
Specifies the integer ID of the combo box
in the dialog box.

Nonzero if successful; otherwise 0.

It assumes that the list box has been filled
by the DlgDirListComboBox member
function and that the selection is a drive
letter, a file, or a directory name.

The DlgDirSelectComboBox member
function copies the selection to the
specified buffer. If there is no selection, the
contents of the buffer are not changed.

DlgDirSelectComboBox sends
CB_GETCURSEL and CB_GETLBTEXT

https://docs.microsoft.com/windows/desktop/Controls/lb-getcursel
https://docs.microsoft.com/windows/desktop/Controls/lb-gettext
https://docs.microsoft.com/windows/desktop/Controls/cb-getcursel
https://docs.microsoft.com/windows/desktop/Controls/cb-getlbtext

 CWnd::DoDataExchange

virtual void
DoDataExchange(CDataExchange* pDX);

ParametersParameters

RemarksRemarks

messages to the combo box.

It does not allow more than one filename
to be returned from a combo box.

Called by the framework to exchange and
validate dialog data.

pDX
A pointer to a CDataExchange object.

Never call this function directly. It is called
by the UpdateData member function. Call
UpdateData to initialize a dialog box's

controls or retrieve data from a dialog box.

When you derive an application-specific
dialog class from CDialog, you need to
override this member function if you wish
to utilize the framework's automatic data
exchange and validation. The Add Variable
wizard will write an overridden version of
this member function for you containing
the desired "data map" of dialog data
exchange (DDX) and validation (DDV)
global function calls.

To automatically generate an overridden
version of this member function, first
create a dialog resource with the dialog
editor, then derive an application-specific
dialog class. Then use the Add Variable
wizard to associate variables, data, and
validation ranges with various controls in
the new dialog box. The wizard then writes
the overridden DoDataExchange , which
contains a data map. The following is an
example DDX/DDV code block generated
by the Add Variable wizard:

void
CPenWidthsDlg::DoDataExchange(CDataExch
ange* pDX)
{
 CDialog::DoDataExchange(pDX);
 DDX_Text(pDX, IDC_THINPENWIDTH,
m_nThinWidth);
 DDV_MinMaxInt(pDX, m_nThinWidth, 1,
20);
 DDX_Text(pDX, IDC_THICKPENWIDTH,
m_nThickWidth);
 DDV_MinMaxInt(pDX, m_nThickWidth, 1,
20);
}

CWnd::DragAcceptFiles

void DragAcceptFiles(BOOL bAccept =
TRUE);

ParametersParameters

RemarksRemarks

The DoDataExchange overridden member
function must precede the macro
statements in your source file.

For more information on dialog data
exchange and validation, see Displaying
and Manipulating Data in a Form and
Dialog Data Exchange and Validation. For
a description of the DDX_ and DDV_
macros generated by the Add Variable
wizard, see Technical Note 26.

Call this member function from within a
window, using a CWnd pointer, in your
application's CWinApp::InitInstance
function to indicate that the window
accepts dropped files from the Windows
File Manager or File Explorer.

BAccept
Flag that indicates whether dragged files
are accepted.

Only the window that calls
DragAcceptFiles with the bAccept

parameter set to TRUE has identified itself
as able to process the Windows message
WM_DROPFILES. For example, in an MDI
application, if the CMDIFrameWnd window
pointer is used in the DragAcceptFiles

function call, only the CMDIFrameWnd

window gets the WM_DROPFILES
message. This message is not sent to all

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/displaying-and-manipulating-data-in-a-form

CWnd::DragDetect

BOOL DragDetect(POINT pt) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::DrawAnimatedRects

BOOL DrawAnimatedRects(
 int idAni,
 CONST RECT* lprcFrom,
 CONST RECT* lprcTo);

ParametersParameters

open CMDIChildWnd windows. For a
CMDIChildWnd window to receive this

message, you must call DragAcceptFiles

with the CMDIChildWnd window pointer.

To discontinue receiving dragged files, call
the member function with bAccept set to
FALSE.

Captures the mouse and tracks its
movement until the user releases the left
button, presses the ESC key, or moves the
mouse outside the drag rectangle around
the specified point.

pt
Initial position of the mouse, in screen
coordinates. The function determines the
coordinates of the drag rectangle by using
this point.

If the user moved the mouse outside of the
drag rectangle while holding down the left
button , the return value is nonzero.

If the user did not move the mouse outside
of the drag rectangle while holding down
the left button , the return value is zero.

This member function emulates the
functionality of the function DragDetect, as
described in the Windows SDK.

Draws a wire-frame rectangle and
animates it to indicate the opening of an
icon or the minimizing or maximizing of a
window.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dragdetect

Return ValueReturn Value

RemarksRemarks

CWnd::DrawCaption

BOOL DrawCaption(
 CDC* pDC,
 LPCRECT lprc,
 UINT uFlags);

ParametersParameters

Return ValueReturn Value

idAni
Specifies the type of animation. If you
specify IDANI_CAPTION, the window
caption will animate from the position
specified by lprcFrom to the position
specified by lprcTo. The effect is similar to
minimizing or maximizing a window.

lprcFrom
Pointer to a RECT structure specifying the
location and size of the icon or minimized
window.

lprcTo
Pointer to a RECT structure specifying the
location and size of the restored window

Nonzero if the function succeeds;
otherwise 0.

This member function emulates the
functionality of the function
DrawAnimatedRects, as described in the
Windows SDK.

Draws a window caption.

pDC
A pointer to a device context. The function
draws the window caption into this device
context.

lprc
A pointer to a RECT structure that
specifies the bounding rectangle for the
window caption.

uFlags
Specifies drawing options. For a complete
list of values, see DrawCaption.

Nonzero if the function succeeds;
otherwise 0.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawanimatedrects
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawcaption

RemarksRemarks

CWnd::DrawMenuBar

void DrawMenuBar();

RemarksRemarks

ExampleExample

CWnd::EnableActiveAccessi
bility

void EnableActiveAccessibility();

RemarksRemarks

CWnd::EnableDynamicLayo
ut

This member function emulates the
functionality of the function DrawCaption,
as described in the Windows SDK.

Redraws the menu bar.

If a menu bar is changed after Windows
has created the window, call this function
to draw the changed menu bar.

See the example for CWnd::GetMenu.

Enables user-defined Active Accessibility
functions.

MFC's default Active Accessibility support
is sufficient for standard windows and
controls, including ActiveX controls;
however, if your CWnd -derived class
contains nonwindowed user interface
elements, MFC has no way of knowing
about them. In that case, you must
override the appropriate Active
Accessibility member functions in your
class, and you must call
EnableActiveAccessibility in the class's

constructor.

Enables or disables the dynamic layout
manager. When dynamic layout is enabled,
the position and size of child windows can
adjust dynamically when the user resizes
the window.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-drawcaption
https://docs.microsoft.com/windows/desktop/winauto/sdk-components

void EnableDynamicLayout(BOOL bEnable =
TRUE);

ParametersParameters

RemarksRemarks

CWnd::EnableD2DSupport

void EnableD2DSupport(
 BOOL bEnable = TRUE,
 BOOL bUseDCRenderTarget = FALSE);

ParametersParameters

CWnd::EnableScrollBar

BOOL EnableScrollBar(
 int nSBFlags,
 UINT nArrowFlags =
ESB_ENABLE_BOTH);

ParametersParameters

bEnable
TRUE to enable dynamic layout; FALSE to
disable dynamic layout.

If you want to enable dynamic layout, you
have to do more than just call this method.
You also have to provide dynamic layout
information which species how the
controls in the window respond to size
changes. You can specify this information
in the resource editor, or programmatically,
for each control. See Dynamic Layout.

Enables or disables window D2D support.
Call this method before the main window
is initialized.

bEnable
Specifies whether to turn on, or off D2D
support.

bUseDCRenderTarget
Species whether to use the Device Context
(DC) render target, CDCRenderTarget. If
FALSE, CHwndRenderTarget is used.

Enables or disables one or both arrows of
a scroll bar.

nSBFlags
Specifies the scroll-bar type. Can have one
of the following values:

Return ValueReturn Value

CWnd::EnableScrollBarCtrl

void EnableScrollBarCtrl(
 int nBar,
 BOOL bEnable = TRUE);

ParametersParameters

SB_BOTH Enables or disables the
arrows of the horizontal and vertical
scroll bars associated with the
window.

SB_HORZ Enables or disables the
arrows of the horizontal scroll bar
associated with the window.

SB_VERT Enables or disables the
arrows of the vertical scroll bar
associated with the window.

nArrowFlags
Specifies whether the scroll-bar arrows are
enabled or disabled and which arrows are
enabled or disabled. Can have one of the
following values:

ESB_ENABLE_BOTH Enables both
arrows of a scroll bar (default).

ESB_DISABLE_LTUP Disables the
left arrow of a horizontal scroll bar
or the up arrow of a vertical scroll
bar.

ESB_DISABLE_RTDN Disables the
right arrow of a horizontal scroll bar
or the down arrow of a vertical
scroll bar.

ESB_DISABLE_BOTH Disables both
arrows of a scroll bar.

Nonzero if the arrows are enabled or
disabled as specified. Otherwise it is 0,
which indicates that the arrows are already
in the requested state or that an error
occurred.

Enables or disables the scroll bar for this
window.

nBar
The scroll-bar identifier.

bEnable

RemarksRemarks

CWnd::EnableToolTips

BOOL EnableToolTips(BOOL bEnable =
TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

Specifies whether the scroll bar is to be
enabled or disabled.

If the window has a sibling scroll-bar
control, that scroll bar is used; otherwise
the window's own scroll bar is used.

Enables tool tips for the given window.

bEnable
Specifies whether the tool tip control is
enabled or disabled. TRUE enables the
control; FALSE disables the control.

TRUE if tool tips are enabled; otherwise
FALSE.

Override OnToolHitTest to provide the
TOOLINFO struct or structs for the
window.

Some windows, such as CToolBar, provide a
built-in implementation of OnToolHitTest.

See TOOLINFO in the Windows SDK for
more information on this structure.

Simply calling EnableToolTips is not
enough to display tool tips for your child
controls unless the parent window is
derived from CFrameWnd . This is because
CFrameWnd provides a default handler for

the TTN_NEEDTEXT notification. If your
parent window is not derived from
CFrameWnd , that is, if it is a dialog box or a

form view, tool tips for your child controls
will not display correctly unless you
provide a handler for the TTN_NEEDTEXT
tool tip notification. See Tool Tips.

The default tool tips provided for your
windows by EnableToolTips do not have

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtoolinfoa
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtoolinfoa

ExampleExample

// From message map for CMdiView, a
CView-derived class
ON_NOTIFY_EX_RANGE(TTN_NEEDTEXTW, 0,
0xFFFF, &CMdiView::OnToolTipNotify)
ON_NOTIFY_EX_RANGE(TTN_NEEDTEXTA, 0,
0xFFFF, &CMdiView::OnToolTipNotify)

text associated with them. To retrieve text
for the tool tip to display, the
TTN_NEEDTEXT notification is sent to the
tool tip control's parent window just before
the tool tip window is displayed. If there is
no handler for this message to assign
some value to the pszText member of the
TOOLTIPTEXT structure, there will be no text

displayed for the tool tip.

void CMdiView::OnInitialUpdate()
{
 CView::OnInitialUpdate();

 m_Edit.Create(ES_MULTILINE |
WS_CHILD | WS_VISIBLE | WS_TABSTOP |
WS_BORDER,
 CRect(10, 10, 100, 100), this,
IDC_TTEDIT);
 EnableToolTips(TRUE); // enable
tool tips for view
}

//Notification handler
BOOL CMdiView::OnToolTipNotify(UINT id,
NMHDR* pNMHDR, LRESULT* pResult)
{
 UNREFERENCED_PARAMETER(id);
 UNREFERENCED_PARAMETER(pResult);

 // need to handle both ANSI and
UNICODE versions of the message
 TOOLTIPTEXTA* pTTTA =
(TOOLTIPTEXTA*)pNMHDR;
 TOOLTIPTEXTW* pTTTW =
(TOOLTIPTEXTW*)pNMHDR;
 CStringA strTipText;
 UINT_PTR nID = pNMHDR->idFrom;
 if (pNMHDR->code == TTN_NEEDTEXTA &&
(pTTTA->uFlags & TTF_IDISHWND) ||
 pNMHDR->code == TTN_NEEDTEXTW &&
(pTTTW->uFlags & TTF_IDISHWND))
 {
 // idFrom is actually the HWND of
the tool
 nID = ::GetDlgCtrlID((HWND)nID);
 }

 if (nID != 0) // will be zero on a
separator
 strTipText.Format("Control ID =
%d", nID);

 if (pNMHDR->code == TTN_NEEDTEXTA)
 {
 strncpy_s(pTTTA->szText,
sizeof(pTTTA->szText), strTipText,
 strTipText.GetLength() + 1);
 }
 else
 {
 ::MultiByteToWideChar(CP_ACP , 0,
strTipText, strTipText.GetLength() + 1,
 pTTTW->szText, sizeof(pTTTW-
>szText)/(sizeof pTTTW->szText[0]));
 }

 return TRUE; // message was
handled
}

CWnd::EnableTrackingToolT
ips
Enables or disables tracking tooltips.

BOOL EnableTrackingToolTips(BOOL
bEnable = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::EnableWindow

BOOL EnableWindow(BOOL bEnable = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

bEnable
Specifies whether tracking tool tips are
enabled or disabled. If this parameter is
TRUE, the tracking tool tips will be
enabled. If this parameter is FALSE, the
tracking tool tips will be disabled.

Indicates the state before the
EnableWindow member function was called.

The return value is nonzero if the window
was previously disabled. The return value
is 0 if the window was previously enabled
or an error occurred.

Tracking tool tips are tool tip windows that
you can dynamically position on the
screen. By rapidly updating the position,
the tool tip window appears to move
smoothly, or "track." This functionality can
be useful if you need tool tip text to follow
the position of the pointer as it moves.

Enables or disables mouse and keyboard
input.

bEnable
Specifies whether the given window is to
be enabled or disabled. If this parameter is
TRUE, the window will be enabled. If this
parameter is FALSE, the window will be
disabled.

Indicates the state before the
EnableWindow member function was called.

The return value is nonzero if the window
was previously disabled. The return value
is 0 if the window was previously enabled
or an error occurred.

ExampleExample

When input is disabled, input such as
mouse clicks and keystrokes is ignored.
When input is enabled, the window
processes all input.

If the enabled state is changing, the
WM_ENABLE message is sent before this
function returns.

If disabled, all child windows are implicitly
disabled, although they are not sent
WM_ENABLE messages.

A window must be enabled before it can
be activated. For example, if an application
is displaying a modeless dialog box and
has disabled its main window, the main
window must be enabled before the dialog
box is destroyed. Otherwise, another
window will get the input focus and be
activated. If a child window is disabled, it is
ignored when Windows tries to determine
which window should get mouse
messages.

By default, a window is enabled when it is
created. An application can specify the
WS_DISABLED style in the Create or
CreateEx member function to create a
window that is initially disabled. After a
window has been created, an application
can also use the EnableWindow member
function to enable or disable the window.

An application can use this function to
enable or disable a control in a dialog box.
A disabled control cannot receive the input
focus, nor can a user access it.

//CMyFileDialog is a CFileDialog-
derived class
//OnInitDialog is the handler for
WM_INITDIALOG
BOOL CMyFileDialog::OnInitDialog()
{
 CFileDialog::OnInitDialog();

 CWnd* pWndParent = GetParent();

 //make sure you add #include
<dlgs.h> for IDs 'edt1' & 'stc3'

 //disables the 'file name' edit and
static control
 //of the standard file open dialog

 //get handle of 'file name' combobox
control & disable it
 CWnd* pWnd = pWndParent-
>GetDlgItem(cmb13);
 pWnd->EnableWindow(FALSE);

 //get handle of 'file name' static
control & disable it
 pWnd = pWndParent->GetDlgItem(stc3);
 pWnd->EnableWindow(FALSE);

 return TRUE;
}

CWnd::EndModalLoop

virtual void EndModalLoop(int nResult);

ParametersParameters

RemarksRemarks

CWnd::EndModalState

virtual void EndModalState();

CWnd::EndPaint

Terminates a call to RunModalLoop .

nResult
Contains the value to be returned to the
caller of RunModalLoop.

The nResult parameter is propagated to
the return value from RunModalLoop .

Call this member function to change a
frame window from modal to modeless.

Marks the end of painting in the given
window.

void EndPaint(LPPAINTSTRUCT lpPaint);

ParametersParameters

RemarksRemarks

ExampleExample

CWnd::ExecuteDlgInit

BOOL ExecuteDlgInit(LPCTSTR
lpszResourceName);
BOOL ExecuteDlgInit(LPVOID lpResource);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpPaint
Points to a PAINTSTRUCT structure that
contains the painting information retrieved
by the BeginPaint member function.

The EndPaint member function is
required for each call to the BeginPaint

member function, but only after painting is
complete.

If the caret was hidden by the BeginPaint

member function, EndPaint restores the
caret to the screen.

See the example for CWnd::BeginPaint.

Initiates a dialog resource.

lpszResourceName
A pointer to a null-terminated string
specifying the name of the resource.

lpResource
A pointer to a resource.

TRUE if a dialog resource is executed;
otherwise FALSE.

ExecuteDlgInit will use resources bound
to the executing module, or resources from
other sources. To accomplish this,
ExecuteDlgInit finds a resource handle by

calling AfxFindResourceHandle . If your
MFC application does not use the shared
DLL (MFCx0[U][D].DLL),
AfxFindResourceHandle calls

AfxGetResourceHandle, which returns the
current resource handle for the executable.
If your MFC application that uses

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagpaintstruct

CWnd::FilterToolTipMessag
e

void FilterToolTipMessage(MSG* pMsg);

ParametersParameters

RemarksRemarks

CWnd::FindWindow

static CWnd* PASCAL FindWindow(
 LPCTSTR lpszClassName,
 LPCTSTR lpszWindowName);

ParametersParameters

MFCx0[U][D].DLL, AfxFindResourceHandle

traverses the CDynLinkLibrary object list of
shared and MFC extension DLLs looking
for the correct resource handle.

Called by the framework to display tool tip
messages.

pMsg
A pointer to the tool tip message.

In most MFC applications this method is
called by the framework from
PreTranslateMessage and EnableToolTips,
and you do not need to call it yourself.

However, in certain applications, for
example some ActiveX controls, these
methods might not be invoked by the
framework, and you will need to call
FilterToolTipMessage yourself. For more
information, see Methods of Creating Tool
Tips.

Returns the top-level CWnd whose window
class is given by lpszClassName and
whose window name, or title, is given by
lpszWindowName.

lpszClassName
Points to a null-terminated string that
specifies the window's class name (a
WNDCLASS structure). If lpClassName is

NULL, all class names match.

lpszWindowName
Points to a null-terminated string that
specifies the window name (the window's

Return ValueReturn Value

RemarksRemarks

ExampleExample

// activate an application with a
window with a specific class name
BOOL CMyApp::FirstInstance()
{
 CWnd *pWndPrev, *pWndChild;

 // Determine if a window with the
class name exists...
 pWndPrev =
CWnd::FindWindow(_T("MyNewClass"),
NULL);
 if (NULL != pWndPrev)
 {
 // If so, does it have any
popups?
 pWndChild = pWndPrev-
>GetLastActivePopup();

 // If iconic, restore the main
window
 if (pWndPrev->IsIconic())
 pWndPrev-
>ShowWindow(SW_RESTORE);

 // Bring the main window or its
popup to the foreground
 pWndChild->SetForegroundWindow();

 // and you are done activating
the other application
 return FALSE;
 }

 return TRUE;
}

CWnd::FindWindowEx

title). If lpWindowName is NULL, all
window names match.

Identifies the window that has the
specified class name and window name. It
is NULL if no such window is found.

The CWnd * may be temporary and should
not be stored for later use.

This function does not search child
windows.

Retrieves the window object whose class
name and window name match the
specified strings.

static CWnd* FindWindowEx(
 HWND hwndParent,
 HWND hwndChildAfter,
 LPCTSTR lpszClass,
 LPCTSTR lpszWindow);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::FlashWindow

BOOL FlashWindow(BOOL bInvert);

ParametersParameters

hwndParent
Handle to the parent window whose child
windows are to be searched.

hwndChildAfter
Handle to a child window. The search
begins with the next child window in the Z
order. The child window must be a direct
child window of hwndParent, not just a
descendant window.

lpszClass
Pointer to a null-terminated string that
specifies the class name or a class atom
created by a previous call to the
RegisterClass or RegisterClassEx.

lpszWindow
Pointer to a null-terminated string that
specifies the window name (the window's
title). If this parameter is NULL, all window
names match.

If the function succeeds, the return value is
a pointer to the window object having the
specified class and window names. If the
function fails, the return value is NULL.

This member function emulates the
functionality of the function
FindWindowEx, as described in the
Windows SDK.

Flashes the given window once.

bInvert
Specifies whether the CWnd is to be
flashed or returned to its original state. The
CWnd is flashed from one state to the

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclassa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerclassexa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-findwindowexa

Return ValueReturn Value

RemarksRemarks

ExampleExample

BOOL CPenWidthsDlg::OnInitDialog()
{
 CDialog::OnInitDialog();

 // set timer to cause dialog to
flash
 SetTimer(1, 500, NULL);
 return TRUE; // return TRUE unless
you set the focus to a control
}

void CPenWidthsDlg::OnTimer(UINT_PTR
nIDEvent)
{
 // cause the dialog to flash
 FlashWindow(TRUE);
 CDialog::OnTimer(nIDEvent);
}

CWnd::FlashWindowEx

other if bInvert is TRUE. If bInvert is
FALSE, the window is returned to its
original state (either active or inactive).

Nonzero if the window was active before
the call to the FlashWindow member
function; otherwise 0.

For successive flashing, create a system
timer and repeatedly call FlashWindow .
Flashing the CWnd means changing the
appearance of its title bar as if the CWnd

were changing from inactive to active
status, or vice versa. (An inactive title bar
changes to an active title bar ; an active title
bar changes to an inactive title bar.)

Typically, a window is flashed to inform the
user that it requires attention but that it
does not currently have the input focus.

The bInvert parameter should be FALSE
only when the window is getting the input
focus and will no longer be flashing; it
should be TRUE on successive calls while
waiting to get the input focus.

This function always returns nonzero for
minimized windows. If the window is
minimized, FlashWindow will simply flash
the window's icon; bInvert is ignored for
minimized windows.

BOOL FlashWindowEx(
 DWORD dwFlags,
 UINT uCount,
 DWORD dwTimeout);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::FromHandle

static CWnd* PASCAL FromHandle(HWND
hWnd);

ParametersParameters

Return ValueReturn Value

Flashes the given window.

dwFlags
Specifies the flash status. For a complete
list of values, see the FLASHWINFO
structure.

uCount
Specifies the number of times to flash the
window.

dwTimeout
Specifies the rate, in milliseconds, at which
the window will be flashed. If dwTimeout
is zero, the function uses the default cursor
blink rate.

The return value specifies the window's
state before the call to the FlashWindowEx

function. If the window caption was drawn
as active before the call, the return value is
nonzero. Otherwise, the return value is
zero.

This method emulates the functionality of
the function FlashWindowEx, as described
in the Windows SDK.

Returns a pointer to a CWnd object when
given a handle to a window. If a CWnd

object is not attached to the handle, a
temporary CWnd object is created and
attached.

hWnd
An HWND of a Windows window.

Returns a pointer to a CWnd object when

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-flashwinfo
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-flashwindowex

CWnd::FromHandlePerman
ent

static CWnd* PASCAL
FromHandlePermanent(HWND hWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::get_accChild

virtual HRESULT get_accChild(
 VARIANT varChild,
 IDispatch** ppdispChild);

ParametersParameters

Return ValueReturn Value

given a handle to a window. If a CWnd

object is not attached to the handle, a
temporary CWnd object is created and
attached.

The pointer may be temporary and should
not be stored for later use.

Returns a pointer to a CWnd object when
given a handle to a window.

hWnd
An HWND of a Windows window.

A pointer to a CWnd object.

If a CWnd object is not attached to the
handle, NULL is returned.

This function, unlike FromHandle, does not
create temporary objects.

Called by the framework to retrieve the
address of an IDispatch interface for the
specified child.

varChild
Identifies the child whose IDispatch

interface is to be retrieved.

ppdispChild
Receives the address of the child object's
IDispatch interface.

Returns S_OK on success, a COM error
code on failure. See Return Values in

RemarksRemarks

CWnd::get_accChildCount

virtual HRESULT get_accChildCount(long*
pcountChildren);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::get_accDefaultActio
n

IAccessible::get_accChild in the Windows
SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class if you have nonwindowed
user interface elements (other than
windowless ActiveX controls, which MFC
handles).

For more information, see
IAccessible::get_accChild in the Windows
SDK.

Called by the framework to retrieve the
number of children belonging to this
object.

pcountChildren
Receives the number of children.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accChildCount in the
Windows SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class if you have nonwindowed
user interface elements (other than
windowless ActiveX controls, which MFC
handles). Call the base class version and
then add the nonwindowed child elements.

For more information, see
IAccessible::get_accChildCount in the
Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accchild
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accchild
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accchildcount
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accchildcount

virtual HRESULT get_accDefaultAction(
 VARIANT varChild,
 BSTR* pszDefaultAction);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::get_accDescription

virtual HRESULT get_accDescription(
 VARIANT varChild,
 BSTR* pszDescription);

ParametersParameters

Called by the framework to retrieve a
string that describes the object's default
action.

varChild
Specifies whether the default action to be
retrieved is that of the object or one of the
object's child elements. This parameter can
be either CHILDID_SELF (to obtain
information about the object) or a child ID
(to obtain information about the object's
child element).

pszDefaultAction
Address of a BSTR that receives a localized
string describing the default action for the
specified object, or NULL if this object has
no default action.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accDefaultAction in the
Windows SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class to describe your object's
default action.

For more information, see
IAccessible::get_accDefaultAction in the
Windows SDK.

Called by framework to retrieve a string
that describes the visual appearance of the
specified object.

varChild

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accdefaultaction
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accdefaultaction

Return ValueReturn Value

RemarksRemarks

CWnd::get_accFocus

virtual HRESULT get_accFocus(VARIANT*
pvarChild);

ParametersParameters

Return ValueReturn Value

Specifies whether the description to be
retrieved is that of the object or one of the
object's child elements. This parameter can
be either CHILDID_SELF (to obtain
information about the object) or a child ID
(to obtain information about the object's
child element).

pszDescription
Address of a BSTR that receives a localized
string describing the specified object, or
NULL if no description is available for this
object.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accDescription in the
Windows SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class to describe your object. Call
the base class version and add your
description.

For more information, see
IAccessible::get_accDescription in the
Windows SDK.

Called by the framework to retrieve the
object that has the keyboard focus.

pvarChild
Receives information about the object that
has the focus. See pvarID in
IAccessible::get_accFocus in the Windows
SDK.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accFocus in the

Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accdescription
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accdescription
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accfocus

RemarksRemarks

CWnd::get_accHelp

virtual HRESULT get_accHelp(
 VARIANT varChild,
 BSTR* pszHelp);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class if you have nonwindowed
user interface elements (other than
windowless ActiveX controls, which MFC
handles).

For more information, see
IAccessible::get_accFocus in the Windows
SDK.

Called by the framework to retrieve an
object's Help property string.

varChild
Specifies whether the help information to
be retrieved is that of the object or one of
the object's child elements. This parameter
can be either CHILDID_SELF (to obtain
information about the object) or a child ID
(to obtain information about the object's
child element).

pszHelp
Address of a BSTR that receives the
localized string containing the help
information for the specified object, or
NULL if no help information is available.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accHelp in the Windows
SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class to provide help text for your
object.

For more information, see
IAccessible::get_accHelp in the Windows

https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accfocus
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_acchelp
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_acchelp

CWnd::get_accHelpTopic

virtual HRESULT get_accHelpTopic(
 BSTR* pszHelpFile,
 VARIANT varChild,
 long* pidTopic);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::get_accKeyboardSh

SDK.

Called by the framework to retrieve the full
path of the WinHelp file associated with
the specified object and the identifier of
the appropriate topic within that file.

pszHelpFile
Address of a BSTR that receives the full
path of the WinHelp file associated with
the specified object, if any.

varChild
Specifies whether the Help topic to be
retrieved is that of the object or one of the
object's child elements. This parameter can
be either CHILDID_SELF (to obtain a Help
topic for the object) or a child ID (to obtain
a Help topic for one of the object's child
elements).

pidTopic
Identifies the Help file topic associated
with the specified object. See pidTopic in
IAccessible::get_accHelpTopic in the
Windows SDK.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accHelpTopic in the

Windows SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class to provide help information
about your object.

For more information, see
IAccessible::get_accHelpTopic in the
Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_acchelptopic
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_acchelptopic

ortcut

virtual HRESULT
get_accKeyboardShortcut(
 VARIANT varChild,
 BSTR* pszKeyboardShortcut);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::get_accName

virtual HRESULT get_accName(
 VARIANT varChild,
 BSTR* pszName);

Called by the framework to retrieve the
specified object's shortcut key or access
key.

varChild
Specifies whether the keyboard shortcut to
be retrieved is that of the object or one of
the object's child elements. This parameter
can be either CHILDID_SELF (to obtain
information about the object) or a child ID
(to obtain information about the object's
child element).

pszKeyboardShortcut
Address of a BSTR that receives a localized
string identifying the keyboard shortcut, or
NULL if no keyboard shortcut is
associated with the specified object.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accKeyboardShortcut in
the Windows SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class to identify the keyboard
shortcut for your object.

For more information, see
IAccessible::get_accKeyboardShortcut in
the Windows SDK.

Called by the framework to retrieve the
name of the specified object.

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_acckeyboardshortcut
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_acckeyboardshortcut

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::get_accParent

virtual HRESULT
get_accParent(IDispatch**
ppdispParent);

ParametersParameters

Return ValueReturn Value

varChild
Specifies whether the name to be retrieved
is that of the object or one of the object's
child elements. This parameter can be
either CHILDID_SELF (to obtain
information about the object) or a child ID
(to obtain information about the object's
child element).

pszName
Address of a BSTR that receives a string
containing the specified object's name.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accName in the Windows
SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class to return the name of your
object.

For more information, see
IAccessible::get_accName in the Windows
SDK.

Called by the framework to retrieve the
IDispatch interface of the object's parent.

ppdispParent
Receives the address of the parent object's
IDispatch interface. The variable is set to

NULL if no parent exists, or if the child
cannot access its parent.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accParent in the Windows
SDK.

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accname
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accname
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accparent

RemarksRemarks

CWnd::get_accRole

virtual HRESULT get_accRole(
 VARIANT varChild,
 VARIANT* pvarRole);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This function is part of MFC's Active
Accessibility support.

In most cases you don't have to override
this function.

For more information, see
IAccessible::get_accParent in the Windows
SDK.

Called by the framework to retrieve
information that describes the role of the
specified object.

varChild
Specifies whether the role information to
be retrieved is that of the object or one of
the object's child elements. This parameter
can be either CHILDID_SELF (to obtain
information about the object) or a child ID
(to obtain information about the object's
child element).

pvarRole
Receives the role information. See
pvarRole in IAccessible::get_accRole in the
Windows SDK.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accRole in the Windows

SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class if you have nonwindowed
user interface elements (other than
windowless ActiveX controls, which MFC
handles).

For more information, see
IAccessible::get_accRole in the Windows
SDK.

https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accparent
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accrole
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accrole

CWnd::get_accSelection

virtual HRESULT
get_accSelection(VARIANT*
pvarChildren);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::get_accState

virtual HRESULT get_accState(
 VARIANT varChild,
 VARIANT* pvarState);

ParametersParameters

Called by the framework to retrieve the
selected children of this object.

pvarChildren
Receives information about which children
are selected. See pvarChildren in
IAccessible::get_accSelection in the
Windows SDK.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accSelection in the

Windows SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class if you have nonwindowed
user interface elements (other than
windowless ActiveX controls, which MFC
handles).

For more information, see
IAccessible::get_accSelection in the
Windows SDK.

Called by the framework to retrieve the
current state of the specified object.

varChild
Specifies whether the state information to
be retrieved is that of the object or one of
the object's child elements. This parameter
can be either CHILDID_SELF (to obtain
information about the object) or a child ID
(to obtain information about the object's

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accselection
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accselection

Return ValueReturn Value

RemarksRemarks

CWnd::get_accValue

virtual HRESULT get_accValue(
 VARIANT varChild,
 BSTR* pszValue);

ParametersParameters

Return ValueReturn Value

child element).

pvarState
Receives information about the object's
state. See pvarState in
IAccessible::get_accState in the Windows
SDK.

Returns S_OK on success, a COM error
code on failure. See Return Values in
IAccessible::get_accState in the

Windows SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class if you have nonwindowed
user interface elements (other than
windowless ActiveX controls, which MFC
handles).

For more information, see
IAccessible::get_accState in the Windows
SDK.

Called by the framework to retrieve the
value of the specified object.

varChild
Specifies whether the value information to
be retrieved is that of the object or one of
the object's child elements. This parameter
can be either CHILDID_SELF (to obtain
information about the object) or a child ID
(to obtain information about the object's
child element).

pszValue
Address of the BSTR that receives a
localized string containing the object's
current value.

Returns S_OK on success, a COM error
code on failure. See Return Values in

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accstate
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accstate

RemarksRemarks

CWnd::GetActiveWindow

static CWnd* PASCAL GetActiveWindow();

Return ValueReturn Value

RemarksRemarks

CWnd::GetAncestor

CWnd* GetAncestor(UINT gaFlags) const;

ParametersParameters

Return ValueReturn Value

IAccessible::get_accValue in the Windows
SDK.

This function is part of MFC's Active
Accessibility support.

Override this function in your CWnd -
derived class if you have nonwindowed
user interface elements (other than
windowless ActiveX controls, which MFC
handles).

For more information, see
IAccessible::get_accValue in the Windows
SDK.

Retrieves a pointer to the active window.

The active window or NULL if no window
was active at the time of the call. The
pointer may be temporary and should not
be stored for later use.

The active window is either the window
that has the current input focus or the
window explicitly made active by the
SetActiveWindow member function.

Retrieves the ancestor window object of
the specified window.

gaFlags
Specifies the ancestor to be retrieved. For
a complete list of possible values, see
GetAncestor.

If the function succeeds, the return value is
a pointer to the ancestor window object. If
the function fails, the return value is NULL.

https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accvalue
https://docs.microsoft.com/windows/desktop/WinAuto/microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/oleacc/nf-oleacc-iaccessible-get_accvalue
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getancestor

RemarksRemarks

CWnd::GetCapture

static CWnd* PASCAL GetCapture();

Return ValueReturn Value

RemarksRemarks

CWnd::GetCaretPos

static CPoint PASCAL GetCaretPos();

Return ValueReturn Value

RemarksRemarks

CWnd::GetCheckedRadioBu
tton

This member function emulates the
functionality of the function GetAncestor,
as described in the Windows SDK.

Retrieves the window that has the mouse
capture.

Identifies the window that has the mouse
capture. It is NULL if no window has the
mouse capture.

The return value may be temporary and
should not be stored for later use.

Only one window has the mouse capture
at any given time. A window receives the
mouse capture when the SetCapture
member function is called. This window
receives mouse input whether or not the
cursor is within its borders.

Retrieves the client coordinates of the
caret's current position and returns them
as a CPoint .

CPoint object containing the coordinates
of the caret's position.

The caret position is given in the client
coordinates of the CWnd window.

Retrieves the ID of the currently checked
radio button in the specified group.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getancestor

int GetCheckedRadioButton(
 int nIDFirstButton,
 int nIDLastButton);

ParametersParameters

Return ValueReturn Value

CWnd::GetClientRect

void GetClientRect(LPRECT lpRect)
const;

ParametersParameters

RemarksRemarks

ExampleExample

CWnd::GetClipboardOwner

static CWnd* PASCAL
GetClipboardOwner();

nIDFirstButton
Specifies the integer identifier of the first
radio button in the group.

nIDLastButton
Specifies the integer identifier of the last
radio button in the group.

ID of the checked radio button, or 0 if none
is selected.

Copies the client coordinates of the CWnd

client area into the structure pointed to by
lpRect.

lpRect
Points to a RECT structure or a CRect

object to receive the client coordinates. The
left and top members will be 0. The
right and bottom members will contain

the width and height of the window.

The client coordinates specify the upper-
left and lower-right corners of the client
area. Since client coordinates are relative
to the upper-left corners of the CWnd client
area, the coordinates of the upper-left
corner are (0,0).

See the example for CWnd::IsIconic.

Retrieves the current owner of the
Clipboard.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

Return ValueReturn Value

RemarksRemarks

CWnd::GetClipboardViewer

static CWnd* PASCAL
GetClipboardViewer();

Return ValueReturn Value

CWnd::GetControlUnknown

LPUNKNOWN GetControlUnknown();

Return ValueReturn Value

RemarksRemarks

Identifies the window that owns the
Clipboard if the function is successful.
Otherwise, it is NULL.

The returned pointer may be temporary
and should not be stored for later use.

The Clipboard can still contain data even if
it is not currently owned.

Retrieves the first window in the
Clipboard-viewer chain.

Identifies the window currently
responsible for displaying the Clipboard if
successful; otherwise NULL (for example,
if there is no viewer).

The returned pointer may be temporary
and should not be stored for later use.

Call this member function to retrieve a
pointer to an unknown OLE control.

A pointer to the IUnknown interface of the
OLE control represented by this CWnd

object. If this object does not represent an
OLE control, the return value is NULL.

You should not release this IUnknown

pointer. Typically, you would use to obtain
a specific interface of the control.

The interface pointer returned by
GetControlUnknown is not reference-

counted. Do not call IUnknown::Release on
the pointer unless you have previously
called IUnknown::AddRef on it.

https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-release
https://docs.microsoft.com/windows/desktop/api/unknwn/nf-unknwn-iunknown-addref

ExampleExample

// The following code fragment is taken
from CMyDlg::OnInitDialog
// CMyDlg is a CDialog-derived class.

// IDC_MSACALCTRL1 is the ID of the
Calendar control OCX embedded
// on this dialog
CWnd *pWndCal =
GetDlgItem(IDC_MSACALCTRL1);

// Use the IUnknown of the control
LPUNKNOWN pUnk = pWndCal-
>GetControlUnknown();

// From there get the IDispatch
interface of control
LPDISPATCH pDisp = NULL;
pUnk->QueryInterface(IID_IDispatch,
(LPVOID*)&pDisp);

// use IDispatch method to invoke the
control's functionality

CWnd::GetCurrentMessage

static const MSG* PASCAL
GetCurrentMessage();

Return ValueReturn Value

ExampleExample

CWnd::GetDC

CDC* GetDC();

Return ValueReturn Value

Returns a pointer to the message this
window is currently processing. Should
only be called when in an OnMessage
message-handler member function.

Returns a pointer to the MSG structure
that contains the message the window is
currently processing. Should only be called
when in an OnMessage handler.

See the example for
CMDIFrameWnd::MDICascade.

Retrieves a pointer to a common, class, or
private device context for the client area
depending on the class style specified for
the CWnd .

Identifies the device context for the CWnd

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

RemarksRemarks

CWnd::GetDCEx

CDC* GetDCEx(
 CRgn* prgnClip,
 DWORD flags);

ParametersParameters

client area if successful; otherwise, the
return value is NULL. The pointer may be
temporary and should not be stored for
later use.

For common device contexts, GetDC

assigns default attributes to the context
each time it is retrieved. For class and
private contexts, GetDC leaves the
previously assigned attributes unchanged.
The device context can be used in
subsequent graphics device interface (GDI)
functions to draw in the client area.

Unless the device context belongs to a
window class, the ReleaseDC member
function must be called to release the
context after painting.

A device context belonging to the CWnd

class is returned by the GetDC member
function if CS_CLASSDC, CS_OWNDC, or
CS_PARENTDC was specified as a style in
the WNDCLASS structure when the class was
registered.

Retrieves the handle of a device context for
the CWnd window.

prgnClip
Identifies a clipping region that may be
combined with the visible region of the
client window.

flags
Can have one of the following preset
values:

DCX_CACHE Returns a device
context from the cache rather than
the OWNDC or CLASSDC window.
Overrides CS_OWNDC and
CS_CLASSDC.

DCX_CLIPCHILDREN Excludes the
visible regions of all child windows

Return ValueReturn Value

RemarksRemarks

below the CWnd window.

DCX_CLIPSIBLINGS Excludes the
visible regions of all sibling
windows above the CWnd window.

DCX_EXCLUDERGN Excludes the
clipping region identified by
prgnClip from the visible region of
the returned device context.

DCX_INTERSECTRGN Intersects
the clipping region identified by
prgnClip within the visible region of
the returned device context.

DCX_LOCKWINDOWUPDATE
Allows drawing even if there is a
LockWindowUpdate call in effect that

would otherwise exclude this
window. This value is used for
drawing during tracking.

DCX_PARENTCLIP Uses the visible
region of the parent window and
ignores the parent window's
WS_CLIPCHILDREN and
WS_PARENTDC style bits. This
value sets the device context's origin
to the upper-left corner of the CWnd

window.

DCX_WINDOW Returns a device
context that corresponds to the
window rectangle rather than the
client rectangle.

The device context for the specified
window if the function is successful;
otherwise NULL.

The device context can be used in
subsequent GDI functions to draw in the
client area.

This function, which is an extension to the
GetDC function, gives an application more
control over how and whether a device
context for a window is clipped.

Unless the device context belongs to a
window class, the ReleaseDC function
must be called to release the context after
drawing. Since only five common device

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdc
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-releasedc

CWnd::GetDCRenderTarget

CDCRenderTarget* GetDCRenderTarget();

Return ValueReturn Value

RemarksRemarks

CWnd::GetDescendantWin
dow

CWnd* GetDescendantWindow(
 int nID,
 BOOL bOnlyPerm = FALSE) const;

ParametersParameters

contexts are available at any given time,
failure to release a device context can
prevent other applications from gaining
access to a device context.

To obtain a cached device context, an
application must specify DCX_CACHE. If
DCX_CACHE is not specified and the
window is neither CS_OWNDC nor
CS_CLASSDC, this function returns
NULL.

A device context with special
characteristics is returned by the GetDCEx
function if the CS_CLASSDC,
CS_OWNDC, or CS_PARENTDC style was
specified in the WNDCLASS structure
when the class was registered.

For more information about these
characteristics, see the description of the
WNDCLASS structure in the Windows SDK.

Retrieves the device context (DC) render
target for the CWnd window.

The device context render target for the
specified window if the function is
successful; otherwise NULL.

Call this member function to find the
descendant window specified by the given
ID.

nID
Specifies the identifier of the control or
child window to be retrieved.

bOnlyPerm

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdcex
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getdcex
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa

Return ValueReturn Value

RemarksRemarks

CWnd::GetDesktopWindow

static CWnd* PASCAL GetDesktopWindow();

Return ValueReturn Value

RemarksRemarks

CWnd::GetDlgCtrlID

int GetDlgCtrlID() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

Specifies whether the window to be
returned can be temporary. If TRUE, only a
permanent window can be returned; if
FALSE, the function can return a
temporary window. For more information
on temporary windows see Technical Note
3.

A pointer to a CWnd object, or NULL if no
child window is found.

This member function searches the entire
tree of child windows, not only the
windows that are immediate children.

Returns the Windows desktop window.

Identifies the Windows desktop window.
This pointer may be temporary and should
not be stored for later use.

The desktop window covers the entire
screen and is the area on top of which all
icons and other windows are painted.

Returns the window or control ID value for
any child window, not only that of a control
in a dialog box.

The numeric identifier of the CWnd child
window if the function is successful;
otherwise 0.

Since top-level windows do not have an ID
value, the return value of this function is
invalid if the CWnd is a top-level window.

CWnd::GetDlgItem

CWnd* GetDlgItem(int nID) const;

void GetDlgItem(
 int nID,
 HWND* phWnd) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// uses GetDlgItem to return a pointer
to a user interface control
CEdit* pBoxOne;
pBoxOne =
(CEdit*)GetDlgItem(IDC_MYEDIT);
GotoDlgCtrl(pBoxOne);

CWnd::GetDlgItemInt

UINT GetDlgItemInt(
 int nID,
 BOOL* lpTrans = NULL,
 BOOL bSigned = TRUE) const;

ParametersParameters

See the example for CWnd::OnCtlColor.

Retrieves a pointer to the specified control
or child window in a dialog box or other
window.

nID
Specifies the identifier of the control or
child window to be retrieved.

phWnd
A pointer to a child window.

A pointer to the given control or child
window. If no control with the integer ID
given by the nID parameter exists, the
value is NULL.

The returned pointer may be temporary
and should not be stored for later use.

The pointer returned is usually cast to the
type of control identified by nID.

Retrieves the text of the control identified
by nID.

Return ValueReturn Value

RemarksRemarks

CWnd::GetDlgItemText

nID
Specifies the integer identifier of the
dialog-box control to be translated.

lpTrans
Points to the Boolean variable that is to
receive the translated flag.

bSigned
Specifies whether the value to be retrieved
is signed.

Specifies the translated value of the
dialog-box item text. Since 0 is a valid
return value, lpTrans must be used to
detect errors. If a signed return value is
desired, cast it as an int type.

The function returns 0 if the translated
number is greater than INT_MAX (for
signed numbers) or UINT_MAX (for
unsigned).

When errors occur, such as encountering
nonnumeric characters and exceeding the
above maximum, GetDlgItemInt copies 0
to the location pointed to by lpTrans. If
there are no errors, lpTrans receives a
nonzero value. If lpTrans is NULL,
GetDlgItemInt does not warn about

errors.

It translates the text of the specified control
in the given dialog box into an integer
value by stripping any extra spaces at the
beginning of the text and converting
decimal digits. It stops the translation
when it reaches the end of the text or
encounters any nonnumeric character.

If bSigned is TRUE, GetDlgItemInt checks
for a minus sign (-) at the beginning of the
text and translates the text into a signed
number. Otherwise, it creates an unsigned
value.

It sends a WM_GETTEXT message to the
control.

Call this member function to retrieve the
title or text associated with a control in a

https://docs.microsoft.com/windows/desktop/winmsg/wm-gettext

int GetDlgItemText(
 int nID,
 LPTSTR lpStr,
 int nMaxCount) const;

int GetDlgItemText(
 int nID,
 CString& rString) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::GetDSCCursor

IUnknown* GetDSCCursor();

Return ValueReturn Value

dialog box.

nID
Specifies the integer identifier of the
control whose title is to be retrieved.

lpStr
Points to the buffer to receive the control's
title or text.

nMaxCount
Specifies the maximum length (in
characters) of the string to be copied to
lpStr. If the string is longer than
nMaxCount, it is truncated.

rString
A reference to a CString.

Specifies the actual number of characters
copied to the buffer, not including the
terminating null character. The value is 0 if
no text is copied.

The GetDlgItemText member function
copies the text to the location pointed to by
lpStr and returns a count of the number of
bytes it copies.

Call this member function to retrieve a
pointer to the underlying cursor that is
defined by the DataSource, UserName,
Password, and SQL properties of the data-
source control.

A pointer to a cursor that is defined by a
data-source control. MFC takes care of

RemarksRemarks

ExampleExample

BOOL CMyDlg::OnInitDialog()
{

calling AddRef for the pointer.

Use the returned pointer to set the ICursor
property of a complex data-bound control,
such as the data-bound grid control. A
data-source control will not become active
until the first bound control requests its
cursor. This can happen either explicitly by
a call to GetDSCCursor or implicitly by the
MFC binding manager. In either case, you
can force a data-source control to become
active by calling GetDSCCursor and then
calling Release on the returned pointer to
IUnknown . Activation will cause the data-

source control to attempt to connect to the
underlying data source. The returned
pointer might be used in the following
context:

// Find the child controls on the
dialog
HRESULT hr = E_FAIL;
CWnd* pDSC =
GetDlgItem(IDC_DATASOURCE);
CWnd* pListWnd =
GetDlgItem(IDC_DBLIST1);
IUnknown* punkList = pListWnd-
>GetControlUnknown();
IDBList* pList = NULL;

if (NULL != punkList)
{
 hr = punkList-
>QueryInterface(__uuidof(IDBList),
(void**)&pList);
}

if (SUCCEEDED(hr))
{
 // Tell the MFC binding manager that
we are
 // binding DISPID 3 to the data-
source control.
 pListWnd->BindProperty(0x3, pDSC);

 // Tell the listbox which field to
expose as its bound column
 pList-
>put_BoundColumn(_T("ContactFirstName")
);

 // Tell the listbox which cursor and
column to populate its list from
 pList-
>put_ListField(_T("ContactFirstName"));

 IUnknown* punkCursor = pDSC-
>GetDSCCursor();
 if (NULL != punkCursor)
 {
 punkCursor->Release();
 }

 pList->Release();

 return TRUE;
}

CWnd::GetDynamicLayout

CMFCDynamicLayout* GetDynamicLayout();

Return ValueReturn Value

Retrieves a pointer to the dynamic layout
manager object.

A pointer to the dynamic layout manager
object, or NULL if dynamic layout is not
enabled.

RemarksRemarks

CWnd::GetExStyle

DWORD GetExStyle() const;

Return ValueReturn Value

CWnd::GetFocus

static CWnd* PASCAL GetFocus();

Return ValueReturn Value

CWnd::GetFont

CFont* GetFont() const;

Return ValueReturn Value

RemarksRemarks

The window object owns and manages the
lifetime of the returned pointer, so it
should only be used to access the object;
do not delete the pointer or store the
pointer permanently.

Returns the window's extended style.

The window's extended style. For more
information about the extended window
styles used in MFC, see Extended Window
Styles.

Retrieves a pointer to the CWnd that
currently has the input focus.

A pointer to the window that has the
current focus, or NULL if there is no focus
window.

The pointer may be temporary and should
not be stored for later use.

Sends the WM_GETFONT message to the
window to retrieve the current font.

Pointer to a CFont object that is attached
to the current font for the window.

This method has no effect unless the
window processes the WM_GETFONT
message. Many MFC classes that derive
from CWnd process this message because
they are attached to a predefined window

CWnd::GetForegroundWind
ow

static CWnd* PASCAL
GetForegroundWindow();

Return ValueReturn Value

RemarksRemarks

CWnd::GetIcon

HICON GetIcon(BOOL bBigIcon) const;

ParametersParameters

Return ValueReturn Value

CWnd::GetLastActivePopup

CWnd* GetLastActivePopup() const;

class that includes a message handler for
the WM_GETFONT message. To use this
method, classes that you derive from
CWnd must define a method handler for

the WM_GETFONT message.

Returns a pointer to the foreground
window (the window with which the user
is currently working).

A pointer to the foreground window. This
may be a temporary CWnd object.

The foreground window applies only to
top-level windows (frame windows or
dialog boxes).

Call this member function to get the
handle to either a big (32x32) or the
handle to a small (16x16) icon, as indicated
by bBigIcon.

bBigIcon
Specifies a 32 pixel by 32 pixel icon if
TRUE; specifies a 16 pixel by 16 pixel icon
if FALSE.

A handle to an icon. If unsuccessful,
returns NULL.

Determines which pop-up window owned
by CWnd was most recently active.

Return ValueReturn Value

ExampleExample

CWnd::GetLayeredWindow
Attributes

BOOL GetLayeredWindowAttributes(
 COLORREF* pcrKey,
 BYTE* pbAlpha,
 DWORD* pdwFlags) const;

ParametersParameters

Identifies the most recently active pop-up
window. The return value will be the
window itself if any of the following
conditions are met:

The window itself was most recently
active.

The window does not own any pop-
up windows.

The window is not a top-level
window or is owned by another
window.

The pointer may be temporary and should
not be stored for later use.

See the example for CWnd::FindWindow.

Retrieves the opacity and transparency
color key of a layered window.

pcrKey
Pointer to a COLORREF value that
receives the transparency color key to be
used when composing the layered window.
All pixels painted by the window in this
color will be transparent. This can be
NULL if the argument is not needed.

pbAlpha
Pointer to a BYTE that receives the Alpha
value used to describe the opacity of the
layered window. When the variable
referred to by pbAlpha is 0, the window is
completely transparent. When the variable
referred to by pbAlpha is 255, the window
is opaque. This can be NULL if the
argument is not needed.

pdwFlags
Pointer to a DWORD that receives a
layering flag. This can be NULL if the

Return ValueReturn Value

RemarksRemarks

CWnd::GetMenu

CMenu* GetMenu() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

argument is not needed. For a complete
list of possible values, see
GetLayeredWindowAttributes.

Nonzero if the function succeeds;
otherwise 0.

This member function emulates the
functionality of the function
GetLayeredWindowAttributes, as
described in the Windows SDK.

Retrieves a pointer to the menu for this
window.

Identifies the menu. The value is NULL if
CWnd has no menu. The return value is

undefined if CWnd is a child window.

The returned pointer may be temporary
and should not be stored for later use.

This function should not be used for child
windows because they do not have a
menu.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getlayeredwindowattributes
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getlayeredwindowattributes

void CMainFrame::OnCwndDeletefilemenu()
{
 // This example deletes the leftmost
popup menu or leftmost
 // popup menu item from the
application's main window.
 CWnd* pMain = AfxGetMainWnd();

 // The main window _can_ be NULL, so
this code
 // doesn't ASSERT and actually
tests.
 if (pMain != NULL)
 {
 // Get the main window's menu
 CMenu* pMenu = pMain->GetMenu();

 // If there is a menu and it has
items, we'll
 // delete the first one.
 if (pMenu != NULL && pMenu-
>GetMenuItemCount() > 0)
 {
 pMenu->DeleteMenu(0,
MF_BYPOSITION);
 // force a redraw of the menu
bar
 pMain->DrawMenuBar();
 }

 // No need to delete pMenu
because it is an MFC
 // temporary object.
 }
}

CWnd::GetMenuBarInfo

BOOL GetMenuBarInfo(
 LONG idObject,
 LONG idItem,
 PMENUBARINFO pmbi) const;

ParametersParameters

Retrieves information about the specified
menu bar.

idObject
Specifies the menu object. For a list of
possible values, see GetMenuBarInfo.

idItem
Specifies the item for which to retrieve
information. If this parameter is zero, the
function retrieves information about the
menu itself. If this parameter is 1, the
function retrieves information about the
first item on the menu, and so on.

pmbi

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getmenubarinfo

Return ValueReturn Value

RemarksRemarks

CWnd::GetNextDlgGroupIt
em

CWnd* GetNextDlgGroupItem(
 CWnd* pWndCtl,
 BOOL bPrevious = FALSE) const;

COleControlSiteOrWnd*
GetNextDlgGroupItem(
 COleControlSiteOrWnd* pCurSiteOrWnd
= NULL) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Pointer to a MENUBARINFO structure
that receives the information.

Nonzero if the function succeeds;
otherwise 0.

This member function emulates the
functionality of the function
GetMenuBarInfo, as described in the
Windows SDK.

Searches for the previous or next control
within a group of controls in a dialog box.

pWndCtl
Identifies the control to be used as the
starting point for the search.

bPrevious
Specifies how the function is to search the
group of controls in the dialog box. If
TRUE, the function searches for the
previous control in the group; if FALSE, it
searches for the next control in the group.

pCurSiteOrWnd
Identifies the COleControlSiteOrWnd

control. For more information about
COleControlSiteOrWnd , see Remarks.

Pointer to the previous or next control in
the group if the member function is
successful.

The returned pointer may be temporary
and should not be stored for later use.

A group of controls begins with a control

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmenubarinfo
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getmenubarinfo

NOTENOTE

CONTROL OR WINDOW
TYPE

IDENTIFYING
INFORMATION

Windowed ActiveX
control

Contains an HWND
and associates a
COleControlSite
object with it. The
m_hWnd member of
COleControlSiteOrWnd

is set to the HWND
of the control, and
the m_pSite

member points to the
control's
COleControlSite .

Windowless ActiveX
control

Contains no HWND.
The m_pSite

member of
COleControlSiteOrWnd

points to the control's
COleControlSite ,

and the m_hWnd

member is NULL.

Standard window Contains just an
HWND. The m_hWnd

member of
COleControlSiteOrWnd

is set to the HWND
of the window, and
the m_pSite

member is NULL.

that was created with the WS_GROUP
style and ends with the last control that
was not created with the WS_GROUP
style.

By default, the GetNextDlgGroupItem

member function returns a pointer to the
next control in the group. If pWndCtl
identifies the first control in the group and
bPrevious is TRUE, GetNextDlgGroupItem

returns a pointer to the last control in the
group.

Because MFC supports windowless ActiveX
controls, standard ActiveX controls, and
windows, referring to a control by only an
HWND no longer suffices. The
COleControlSiteOrWnd object includes

information that identifies the object as a
windowed ActiveX control, a windowless
ActiveX control, or a window, as follows:

CWnd::GetNextDlgTabItem

CWnd* GetNextDlgTabItem(
 CWnd* pWndCtl,
 BOOL bPrevious = FALSE) const;

COleControlSiteOrWnd*
GetNextDlgTabItem(
 COleControlSiteOrWnd*
pCurSiteOrWnd,
 BOOL bPrevious) const;

ParametersParameters

Return ValueReturn Value

CWnd::GetNextWindow

CWnd* GetNextWindow(UINT nFlag =
GW_HWNDNEXT) const;

ParametersParameters

Retrieves a pointer to the first control that
was created with the WS_TABSTOP style
and that precedes or follows the specified
control.

pWndCtl
Identifies the control to be used as the
starting point for the search.

pCurSiteOrWnd
Identifies the COleControlSiteOrWnd

control. For more information about
COleControlSiteOrWnd , see

CWnd::GetNextDlgGroupItem.

bPrevious
Specifies how the function is to search the
dialog box. If TRUE, the function searches
for the previous control in the dialog box; if
FALSE, it searches for the next control.

Pointer to the previous or next control that
has the WS_TABSTOP style, if the member
function is successful.

The returned pointer may be temporary
and should not be stored for later use.

For more information about
COleControlSiteOrWnd , see

CWnd::GetNextDlgGroupItem.

Searches for the next (or previous) window
in the window manager's list.

Return ValueReturn Value

RemarksRemarks

CWnd::GetOleControlSite

COleControlSite* GetOleControlSite(UINT
idControl) const;

ParametersParameters

CWnd::GetOpenClipboard
Window

static CWnd* PASCAL
GetOpenClipboardWindow();

Return ValueReturn Value

nFlag
Specifies whether the function returns a
pointer to the next window or the previous
window. It can be either
GW_HWNDNEXT, which returns the
window that follows the CWnd object on
the window manager's list, or
GW_HWNDPREV, which returns the
previous window on the window
manager's list.

Identifies the next (or the previous)
window in the window manager's list if the
member function is successful.

The returned pointer may be temporary
and should not be stored for later use.

The window manager's list contains entries
for all top-level windows, their associated
child windows, and the child windows of
any child windows.

If CWnd is a top-level window, the function
searches for the next (or previous) top-
level window; if CWnd is a child window,
the function searches for the next (or
previous) child window.

Retrieves the custom site for the specified
ActiveX control.

idControl
The ID of the ActiveX control.

Retrieves the handle of the window that
currently has the Clipboard open.

CWnd::GetOwner

CWnd* GetOwner() const;

Return ValueReturn Value

RemarksRemarks

CWnd::GetParent

CWnd* GetParent() const;

Return ValueReturn Value

RemarksRemarks

CWnd::GetParentFrame

The handle of the window that currently
has the Clipboard open if the function is
successful; otherwise NULL.

Retrieves a pointer to the owner of the
window.

A pointer to a CWnd object.

If the window has no owner, then a pointer
to the parent window object is returned by
default. Note that the relationship between
the owner and the owned differs from the
parent-child aspect in several important
aspects. For example, a window with a
parent is confined to its parent window's
client area. Owned windows can be drawn
at any location on the desktop.

The ownership concept of this function is
different from the ownership concept of
GetWindow.

Call this function to get a pointer to a child
window's parent window (if any).

See the Return Values section in GetParent
in the Windows SDK.

The GetParent function returns a pointer
to the immediate parent (if it exists). In
contrast, the GetParentOwner function
returns a pointer to the most immediate
parent or owner window that is not a child
window (does not have the WS_CHILD
style). If you have a child window within a
child window GetParent and
GetParentOwner return different results.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getparent

CFrameWnd* GetParentFrame() const;

Return ValueReturn Value

RemarksRemarks

CWnd::GetParentOwner

CWnd* GetParentOwner() const;

Return ValueReturn Value

RemarksRemarks

CWnd::GetProperty

Call this member function to retrieve the
parent frame window.

A pointer to a frame window if successful;
otherwise NULL.

The member function searches up the
parent chain until a CFrameWnd (or
derived class) object is found.

Call this member function to get a pointer
to a child window's parent window or
owner window.

A pointer to a CWnd object. If a CWnd

object is not attached to the handle, a
temporary CWnd object is created and
attached. The pointer may be temporary
and should not be stored for later use.

GetParentOwner returns a pointer to the
most immediate parent or owner window
that is not a child window (does not have
the WS_CHILD style). The current owner
window can be set with SetOwner. By
default, the parent of a window is its
owner.

In contrast, the GetParent function returns
a pointer to the immediate parent, whether
it is a child window or not. If you have a
child window within a child window
GetParent and GetParentOwner return

different results.

Call this member function to get the
ActiveX control property specified by
dwDispID.

void GetProperty(
 DISPID dwDispID,
 VARTYPE vtProp,
 void* pvProp)const;

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::GetRenderTarget

CHwndRenderTarget* GetRenderTarget();

Return ValueReturn Value

CWnd::GetSafeHwnd

HWND GetSafeHwnd() const;

dwDispID
Identifies the property to be retrieved.

vtProp
Specifies the type of the property to be
retrieved. For possible values, see the
Remarks section for
COleDispatchDriver::InvokeHelper.

pvProp
Address of the variable that will that will
receive the property value. It must match
the type specified by vtProp.

GetProperty returns the value through
pvProp.

This function should be called only on a
CWnd object that represents an ActiveX

control.

For more information about using this
member function with ActiveX Control
Containers, see the article ActiveX Control
Containers: Programming ActiveX
Controls in an ActiveX Control Container.

Gets a render target that is associated with
this window.

Pointer to the render target or NULL.

Returns m_hWnd , or NULL if the this
pointer is NULL.

Return ValueReturn Value

ExampleExample

CWnd::GetSafeOwner

static CWnd* GetSafeOwner(
 CWnd* pParent = NULL,
 HWND* pWndTop = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CWnd::GetScrollBarCtrl

Returns the window handle for a window.
Returns NULL if the CWnd is not attached
to a window or if it is used with a NULL
CWnd pointer.

See the example for
CWnd::SubclassWindow.

Call this member function to retrieve the
owner window that should be used for
dialog boxes or other modal windows.

pParent
A pointer to a parent CWnd window. May
be NULL.

pWndTop
A pointer to the window that is currently
on top. May be NULL.

A pointer to the safe owner for the given
window.

The safe owner is the first non-child parent
window of pParent. If pParent is NULL,
the thread's main window (retrieved via
AfxGetMainWnd) is used to find an owner.

The framework itself uses this function to
determine the correct owner window for
dialog boxes and property sheets where
the owner is not specified.

Call this member function to obtain a
pointer to the specified sibling scroll bar or
splitter window.

virtual CScrollBar*
GetScrollBarCtrl(int nBar) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::GetScrollBarInfo

BOOL GetScrollBarInfo(
 LONG idObject,
 PSCROLLBARINFO psbi) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nBar
Specifies the type of scroll bar. The
parameter can take one of the following
values:

SB_HORZ Retrieves the position of
the horizontal scroll bar.

SB_VERT Retrieves the position of
the vertical scroll bar.

A sibling scroll-bar control, or NULL if
none.

This member function does not operate on
scroll bars created when the
WS_HSCROLL or WS_VSCROLL bits are
set during the creation of a window. The
CWnd implementation of this function

simply returns NULL. Derived classes,
such as CView , implement the described
functionality.

Retrieves information about the specified
scroll bar.

idObject
Specifies the menu object. For a list of
possible values, see GetScrollBarInfo.

psbi
Pointer to a SCROLLBARINFO structure
that receives the information.

Nonzero if the function succeeds;
otherwise 0.

This member function emulates the
functionality of the function

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getscrollbarinfo
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagscrollbarinfo

 CWnd::GetScrollInfo

BOOL GetScrollInfo(
 int nBar,
 LPSCROLLINFO lpScrollInfo,
 UINT nMask = SIF_ALL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

GetScrollBarInfo, as described in the
Windows SDK.

Call this member function to retrieve the
information that the SCROLLINFO structure
maintains about a scroll bar.

nBar
Specifies whether the scroll bar is a control
or part of a window's nonclient area. If it is
part of the nonclient area, nBar also
indicates whether the scroll bar is
positioned horizontally, vertically, or both.
It must be one of the following:

SB_CTL Retrieves the parameters
for a scroll bar control. The m_hWnd

data member must be the handle of
the scroll bar control.

SB_HORZ Retrieves the parameters
for the window's standard
horizontal scroll bar.

SB_VERT Retrieves the parameters
for the window's standard vertical
scroll bar.

lpScrollInfo
A pointer to a SCROLLINFO structure.
See the Windows SDK for more
information about this structure.

nMask
Specifies the scroll bar parameters to
retrieve. The default specifies a
combination of S IF_PAGE, S IF_POS,
SIF_TRACKPOS, and SIF_RANGE. See
SCROLLINFO for more information on the

nMask values.

If the message retrieved any values, the
return is TRUE. Otherwise, it is FALSE.

GetScrollInfo enables applications to use

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getscrollbarinfo
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagscrollinfo

CWnd::GetScrollLimit

int GetScrollLimit(int nBar);

ParametersParameters

Return ValueReturn Value

CWnd::GetScrollPos

int GetScrollPos(int nBar) const;

32-bit scroll positions.

The SCROLLINFO structure contains
information about a scroll bar, including
the minimum and maximum scrolling
positions, the page size, and the position of
the scroll box (the thumb). See the
SCROLLINFO structure topic in the

Windows SDK for more information about
changing the structure defaults.

The MFC Windows message handlers that
indicate scroll-bar position,
CWnd::OnHScroll and CWnd::OnVScroll,
provide only 16 bits of position data.
GetScrollInfo and SetScrollInfo provide

32 bits of scroll-bar position data. Thus, an
application can call GetScrollInfo while
processing either CWnd::OnHScroll or
CWnd::OnVScroll to obtain 32-bit scroll-

bar position data.

Call this member function to retrieve the
maximum scrolling position of the scroll
bar.

nBar
Specifies the type of scroll bar. The
parameter can take one of the following
values:

SB_HORZ Retrieves the scroll limit
of the horizontal scroll bar.

SB_VERT Retrieves the scroll limit
of the vertical scroll bar.

Specifies the maximum position of a scroll
bar if successful; otherwise 0.

Retrieves the current position of the scroll
box of a scroll bar.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagscrollinfo

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::GetScrollRange

void GetScrollRange(
 int nBar,
 LPINT lpMinPos,
 LPINT lpMaxPos) const;

ParametersParameters

nBar
Specifies the scroll bar to examine. The
parameter can take one of the following
values:

SB_HORZ Retrieves the position of
the horizontal scroll bar.

SB_VERT Retrieves the position of
the vertical scroll bar.

Specifies the current position of the scroll
box in the scroll bar if successful;
otherwise 0.

The current position is a relative value that
depends on the current scrolling range.
For example, if the scrolling range is 50 to
100 and the scroll box is in the middle of
the bar, the current position is 75.

Copies the current minimum and
maximum scroll-bar positions for the
given scroll bar to the locations specified
by lpMinPos and lpMaxPos.

nBar
Specifies the scroll bar to examine. The
parameter can take one of the following
values:

SB_HORZ Retrieves the position of
the horizontal scroll bar.

SB_VERT Retrieves the position of
the vertical scroll bar.

lpMinPos
Points to the integer variable that is to
receive the minimum position.

lpMaxPos
Points to the integer variable that is to
receive the maximum position.

RemarksRemarks

CWnd::GetStyle

DWORD GetStyle() const;

Return ValueReturn Value

CWnd::GetSystemMenu

CMenu* GetSystemMenu(BOOL bRevert)
const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

If CWnd does not have a scroll bar, then the
GetScrollRange member function copies 0

to lpMinPos and lpMaxPos.

The default range for a standard scroll bar
is 0 to 100. The default range for a scroll-
bar control is empty (both values are 0).

Returns the current window style.

The window's style. For more information
about the window styles used in MFC, see
Window Styles.

Allows the application to access the
Control menu for copying and
modification.

bRevert
Specifies the action to be taken. If bRevert
is FALSE, GetSystemMenu returns a handle
to a copy of the Control menu currently in
use. This copy is initially identical to the
Control menu but can be modified. If
bRevert is TRUE, GetSystemMenu resets the
Control menu back to the default state.
The previous, possibly modified, Control
menu, if any, is destroyed. The return value
is undefined in this case.

Identifies a copy of the Control menu if
bRevert is FALSE. If bRevert is TRUE, the
return value is undefined.

The returned pointer may be temporary
and should not be stored for later use.

Any window that does not use

ExampleExample

GetSystemMenu to make its own copy of the
Control menu receives the standard
Control menu.

The pointer returned by the GetSystemMenu

member function can be used with the
CMenu::AppendMenu,
CMenu::InsertMenu, or
CMenu::ModifyMenu functions to change
the Control menu.

The Control menu initially contains items
identified with various ID values such as
SC_CLOSE, SC_MOVE, and SC_SIZE.
Items on the Control menu generate
WM_SYSCOMMAND messages. All
predefined Control-menu items have ID
numbers greater than 0xF000. If an
application adds items to the Control
menu, it should use ID numbers less than
F000.

Windows may automatically make items
unavailable on the standard Control menu.
CWnd can carry out its own selection or

unavailability by responding to the
WM_INITMENU messages, which are sent
before any menu is displayed.

// The following code fragment is taken
from CMyDlg::OnInitDialog
// CMyDlg is derived from CDialog

// Add "About..." menu item to system
menu.

// IDM_ABOUTBOX must be in the system
command range.
ASSERT((IDM_ABOUTBOX & 0xFFF0) ==
IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu != NULL)
{
 CString strAboutMenu;
 strAboutMenu.LoadString(IDS_ABOUT);
 if (!strAboutMenu.IsEmpty())
 {
 pSysMenu-
>AppendMenu(MF_SEPARATOR);
 pSysMenu->AppendMenu(MF_STRING,
IDM_ABOUTBOX, strAboutMenu);
 }
}

// Set the icon for this dialog. The
framework does this automatically
// when the application's main window
is not a dialog
SetIcon(m_hIcon, TRUE); // Set big
icon
SetIcon(m_hIcon, FALSE); // Set small
icon

CWnd::GetTitleBarInfo

BOOL GetTitleBarInfo(PTITLEBARINFO pti)
const;

ParametersParameters

RemarksRemarks

CWnd::GetTopLevelFrame

Retrieves information about the specified
title bar.

pti
Pointer to a TITLEBARINFO structure that
receives the information.

This member function emulates the
functionality of the function
GetTitleBarInfo, as described in the
Windows SDK.

Call this member function to retrieve the
window's top level frame window, if any.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagtitlebarinfo
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-gettitlebarinfo

CFrameWnd* GetTopLevelFrame() const;

Return ValueReturn Value

RemarksRemarks

CWnd::GetTopLevelOwner

CWnd* GetTopLevelOwner() const;

Return ValueReturn Value

RemarksRemarks

CWnd::GetTopLevelParent

CWnd* GetTopLevelParent() const;

Return ValueReturn Value

RemarksRemarks

Identifies the top-level frame window of
the window.

The returned pointer may be temporary
and should not be stored for later use.

If CWnd has no attached window, or its
top-level parent is not a CFrameWnd-
derived object, this function returns NULL.

Call this member function to retrieve the
top-level window.

Identifies the top-level window. The
returned pointer may be temporary and
should not be stored for later use.

The top-level window is the window that is
a child of the desktop. If CWnd has no
attached window, this function returns
NULL.

Call this member function to retrieve the
window's top-level parent.

Identifies the top-level parent window of
the window.

The returned pointer may be temporary
and should not be stored for later use.

GetTopLevelParent is similar to
GetTopLevelFrame and
GetTopLevelOwner; however, it ignores the
value set as the current owner window.

CWnd::GetTopWindow

CWnd* GetTopWindow() const;

Return ValueReturn Value

RemarksRemarks

CWnd::GetUpdateRect

BOOL GetUpdateRect(
 LPRECT lpRect,
 BOOL bErase = FALSE);

ParametersParameters

Return ValueReturn Value

Searches for the top-level child window
that belongs to CWnd .

Identifies the top-level child window in a
CWnd linked list of child windows. If no

child windows exist, the value is NULL.

The returned pointer may be temporary
and should not be stored for later use.

If CWnd has no children, this function
returns NULL.

Retrieves the coordinates of the smallest
rectangle that completely encloses the
update region.

lpRect
Points to a CRect object or RECT
structure that is to receive the client
coordinates of the update that encloses the
update region.

Set this parameter to NULL to determine
whether an update region exists within the
CWnd . If lpRect is NULL, the
GetUpdateRect member function returns

nonzero if an update region exists and 0 if
one does not. This provides a way to
determine whether a WM_PAINT message
resulted from an invalid area. Do not set
this parameter to NULL in Windows
version 3.0 and earlier.

bErase
Specifies whether the background in the
update region is to be erased.

Specifies the status of the update region.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

RemarksRemarks

CWnd::GetUpdateRgn

int GetUpdateRgn(
 CRgn* pRgn,
 BOOL bErase = FALSE);

ParametersParameters

The value is nonzero if the update region is
not empty; otherwise 0.

If the lpRect parameter is set to NULL, the
return value is nonzero if an update region
exists; otherwise 0.

If CWnd was created with the CS_OWNDC
style and the mapping mode is not
MM_TEXT, the GetUpdateRect member
function gives the rectangle in logical
coordinates. Otherwise, GetUpdateRect

gives the rectangle in client coordinates. If
there is no update region, GetUpdateRect

sets the rectangle to be empty (sets all
coordinates to 0).

The bErase parameter specifies whether
GetUpdateRect should erase the

background of the update region. If bErase
is TRUE and the update region is not
empty, the background is erased. To erase
the background, GetUpdateRect sends the
WM_ERASEBKGND message.

The update rectangle retrieved by the
BeginPaint member function is identical to
that retrieved by the GetUpdateRect

member function.

The BeginPaint member function
automatically validates the update region,
so any call to GetUpdateRect made
immediately after a call to BeginPaint

retrieves an empty update region.

Retrieves the update region into a region
identified by pRgn.

pRgn
Identifies the update region.

bErase
Specifies whether the background will be
erased and nonclient areas of child
windows will be drawn. If the value is

Return ValueReturn Value

RemarksRemarks

CWnd::GetWindow

CWnd* GetWindow(UINT nCmd) const;

ParametersParameters

FALSE, no drawing is done.

Specifies a short-integer flag that indicates
the type of resulting region. The value can
take any one of the following:

SIMPLEREGION The region has no
overlapping borders.

COMPLEXREGION The region has
overlapping borders.

NULLREGION The region is empty.

ERROR No region was created.

The coordinates of this region are relative
to the upper-left corner (client
coordinates).

The BeginPaint member function
automatically validates the update region,
so any call to GetUpdateRgn made
immediately after a call to BeginPaint

retrieves an empty update region.

Returns a pointer to the window
requested, or NULL if none.

nCmd
Specifies the relationship between CWnd

and the returned window. It can take one
of the following values:

GW_CHILD Identifies the CWnd

first child window.

GW_HWNDFIRST If CWnd is a
child window, returns the first
sibling window. Otherwise, it
returns the first top-level window in
the list.

GW_HWNDLAST If CWnd is a child
window, returns the last sibling
window. Otherwise, it returns the
last top-level window in the list.

GW_HWNDNEXT Returns the next

Return ValueReturn Value

CWnd::GetWindowContext
HelpId

DWORD GetWindowContextHelpId() const;

Return ValueReturn Value

CWnd::GetWindowedChild
Count

long GetWindowedChildCount();

Return ValueReturn Value

CWnd::GetWindowDC

CDC* GetWindowDC();

Return ValueReturn Value

window on the window manager's
list.

GW_HWNDPREV Returns the
previous window on the window
manager's list.

GW_OWNER Identifies the CWnd

owner.

The returned pointer may be temporary
and should not be stored for later use.

Call this member function to retrieve the
help context identifier, if any, associated
with the window.

The help context identifier. Returns 0 if the
window has none.

Call this member function to retrieve the
number of associated child windows.

The number of child windows associated
with the CWnd object.

Retrieves the display context for the entire
window, including caption bar, menus, and
scroll bars.

Identifies the display context for the given
window if the function is successful;
otherwise NULL.

RemarksRemarks

CWnd::GetWindowInfo

BOOL GetWindowInfo(PWINDOWINFO pwi)
const;

ParametersParameters

RemarksRemarks

CWnd::GetWindowlessChild
Count

The returned pointer may be temporary
and should not be stored for later use.
ReleaseDC should be called once for each
successful call to GetWindowDC .

A window display context permits painting
anywhere in CWnd , since the origin of the
context is the upper-left corner of CWnd

instead of the client area.

Default attributes are assigned to the
display context each time it retrieves the
context. Previous attributes are lost.

GetWindowDC is intended to be used for
special painting effects within the CWnd

nonclient area. Painting in nonclient areas
of any window is not recommended.

The GetSystemMetrics Windows function
can be used to retrieve the dimensions of
various parts of the nonclient area, such as
the caption bar, menu, and scroll bars.

After painting is complete, the ReleaseDC
member function must be called to release
the display context. Failure to release the
display context will seriously affect
painting requested by applications due to
limitations on the number of device
contexts that can be open at the same time.

Retrieves information about the window.

pwi
A pointer to a WINDOWINFO structure.

This member function emulates the
functionality of the function
GetWindowInfo, as described in the
Windows SDK.

Retrieves the number of associated

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsystemmetrics
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwindowinfo
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindowinfo

long GetWindowlessChildCount();

Return ValueReturn Value

CWnd::GetWindowPlaceme
nt

BOOL
GetWindowPlacement(WINDOWPLACEMENT*
lpwndpl) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::GetWindowRect

void GetWindowRect(LPRECT lpRect)
const;

ParametersParameters

windowless child windows.

The number of windowless child windows
associated with the CWnd object.

Retrieves the show state and the normal
(restored), minimized, and maximized
positions of a window.

lpwndpl
Points to the WINDOWPLACEMENT structure
that receives the show state and position
information.

Nonzero if the function is successful;
otherwise 0.

The flags member of the
WINDOWPLACEMENT structure
retrieved by this function is always 0. If
CWnd is maximized, the showCmd member

of WINDOWPLACEMENT is
SW_SHOWMAXIMIZED. If the window is
minimized, it is SW_SHOWMINIMIZED. It
is SW_SHOWNORMAL otherwise.

Copies the dimensions of the bounding
rectangle of the CWnd object to the
structure pointed to by lpRect.

lpRect
Points to a CRect object or a RECT

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwindowplacement
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

RemarksRemarks

CWnd::GetWindowRgn

int GetWindowRgn(HRGN hRgn)const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::GetWindowText

structure that will receive the screen
coordinates of the upper-left and lower-
right corners.

The dimensions are given in screen
coordinates relative to the upper-left
corner of the display screen. The
dimensions of the caption, border, and
scroll bars, if present, are included.

Call this member function to get the
window region of a window.

hRgn
A handle to a window region.

The return value specifies the type of the
region that the function obtains. It can be
one of the following values:

NULLREGION The region is empty.

S IMPLEREGION The region is a
single rectangle.

COMPLEXREGION The region is
more than one rectangle.

ERROR An error occurred; the
region is unaffected.

The window region determines the area
within the window where the operating
system permits drawing. The operating
system does not display any portion of a
window that lies outside of the window
region.

The coordinates of a window's window
region are relative to the upper-left corner
of the window, not the client area of the
window.

To set the window region of a window, call
CWnd::SetWindowRgn.

int GetWindowText(
 LPTSTR lpszStringBuf,
 int nMaxCount) const;

void GetWindowText(
 CString& rString) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CWnd::GetWindowTextLen
gth

Copies the CWnd caption title (if it has one)
into the buffer pointed to by lpszStringBuf
or into the destination string rString.

lpszStringBuf
Points to the buffer that is to receive the
copied string of the window's title.

nMaxCount
Specifies the maximum number of
characters to be copied to the buffer,
including the terminating null character. If
the string is longer than the number of
characters specified in nMaxCount, it is
truncated.

rString
A CString object that is to receive the
copied string of the window's title.

Specifies the length, in characters, of the
copied string, not including the
terminating null character. It is 0 if CWnd

has no caption or if the caption is empty.

If the CWnd object is a control, the
GetWindowText member function copies

the text within the control instead of
copying the caption.

This member function causes the
WM_GETTEXT message to be sent to the
CWnd object.

See the example for
CWnd::SetWindowText.

Returns the length of the CWnd object
caption title.

https://docs.microsoft.com/windows/desktop/winmsg/wm-gettext

int GetWindowTextLength() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

CWnd::HideCaret

void HideCaret();

RemarksRemarks

CWnd::HiliteMenuItem

BOOL HiliteMenuItem(
 CMenu* pMenu,
 UINT nIDHiliteItem,
 UINT nHilite);

ParametersParameters

Specifies the text length in characters, not
including any null-termination character.
The value is 0 if no such text exists.

If CWnd is a control, the
GetWindowTextLength member function

returns the length of the text within the
control instead of the caption.

This member function causes the
WM_GETTEXTLENGTH message to be
sent to the CWnd object.

See the example for
CWnd::SetWindowText.

Hides the caret by removing it from the
display screen.

Although the caret is no longer visible, it
can be displayed again by using the
ShowCaret member function. Hiding the
caret does not destroy its current shape.

Hiding is cumulative. If HideCaret has
been called five times in a row, the
ShowCaret member function must be

called five times before the caret will be
shown.

Highlights or removes the highlight from a
top-level (menu-bar) menu item.

pMenu

https://docs.microsoft.com/windows/desktop/winmsg/wm-gettextlength

Return ValueReturn Value

RemarksRemarks

CWnd::HtmlHelp

virtual void HtmlHelp(
 DWORD_PTR dwData,
 UINT nCmd = 0x000F);

ParametersParameters

Identifies the top-level menu that contains
the item to be highlighted.

nIDHiliteItem
Specifies the menu item to be highlighted,
depending on the value of the nHilite
parameter.

nHilite
Specifies whether the menu item is
highlighted or the highlight is removed. It
can be a combination of MF_HILITE or
MF_UNHILITE with MF_BYCOMMAND
or MF_BYPOSITION. The values can be
combined using the bitwise OR operator.
These values have the following meanings:

MF_BYCOMMAND Interprets
nIDHiliteItem as the menu-item ID
(the default interpretation).

MF_BYPOSITION Interprets
nIDHiliteItem as the zero-based
offset of the menu item.

MF_HILITE Highlights the item. If
this value is not given, the highlight
is removed from the item.

MF_UNHILITE Removes the
highlight from the item.

Specifies whether the menu item was
highlighted. Nonzero if the item was
highlighted; otherwise 0.

The MF_HILITE and MF_UNHILITE flags
can be used only with this member
function; they cannot be used with the
CMenu::ModifyMenu member function.

Call this member function to invoke the
HTMLHelp application.

dwData
Specifies additional data. The value used

RemarksRemarks

CWnd::InitDynamicLayout

void InitDynamicLayout();

RemarksRemarks

CWnd::Invalidate

void Invalidate(BOOL bErase = TRUE);

ParametersParameters

RemarksRemarks

depends on the value of the nCmd
parameter.

nCmd
Specifies the type of help requested. For a
list of possible values and how they affect
the dwData parameter, see the
uCommand parameter described in the
HTML Help API Reference in the Windows
SDK.

See CWinApp::HtmlHelp for more
information.

Called by the framework to initialize
dynamic layout for a window.

Do not call this method directly.

Invalidates the entire client area of CWnd .

bErase
Specifies whether the background within
the update region is to be erased.

The client area is marked for painting
when the next WM_PAINT message
occurs. The region can also be validated
before a WM_PAINT message occurs by
the ValidateRect or ValidateRgn member
function.

The bErase parameter specifies whether
the background within the update area is
to be erased when the update region is
processed. If bErase is TRUE, the
background is erased when the BeginPaint
member function is called; if bErase is
FALSE, the background remains
unchanged. If bErase is TRUE for any part
of the update region, the background in

ExampleExample

CWnd::InvalidateRect

void InvalidateRect(
 LPCRECT lpRect,
 BOOL bErase = TRUE);

ParametersParameters

RemarksRemarks

the entire region, not just in the given part,
is erased.

Windows sends a WM_PAINT message
whenever the CWnd update region is not
empty and there are no other messages in
the application queue for that window.

See the example for
CWnd::UpdateWindow.

Invalidates the client area within the given
rectangle by adding that rectangle to the
CWnd update region.

lpRect
Points to a CRect object or a RECT
structure that contains the rectangle (in
client coordinates) to be added to the
update region. If lpRect is NULL, the entire
client area is added to the region.

bErase
Specifies whether the background within
the update region is to be erased.

The invalidated rectangle, along with all
other areas in the update region, is marked
for painting when the next WM_PAINT
message is sent. The invalidated areas
accumulate in the update region until the
region is processed when the next
WM_PAINT call occurs, or until the region
is validated by the ValidateRect or
ValidateRgn member function.

The bErase parameter specifies whether
the background within the update area is
to be erased when the update region is
processed. If bErase is TRUE, the
background is erased when the BeginPaint
member function is called; if bErase is
FALSE, the background remains
unchanged. If bErase is TRUE for any part
of the update region, the background in

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

 CWnd::InvalidateRgn

void InvalidateRgn(
 CRgn* pRgn,
 BOOL bErase = TRUE);

ParametersParameters

RemarksRemarks

the entire region is erased, not just in the
given part.

Windows sends a WM_PAINT message
whenever the CWnd update region is not
empty and there are no other messages in
the application queue for that window.

Invalidates the client area within the given
region by adding it to the current update
region of CWnd .

pRgn
A pointer to a CRgn object that identifies
the region to be added to the update
region. The region is assumed to have
client coordinates. If this parameter is
NULL, the entire client area is added to the
update region.

bErase
Specifies whether the background within
the update region is to be erased.

The invalidated region, along with all other
areas in the update region, is marked for
painting when the WM_PAINT message is
next sent. The invalidated areas
accumulate in the update region until the
region is processed when a WM_PAINT
message is next sent, or until the region is
validated by the ValidateRect or
ValidateRgn member function.

The bErase parameter specifies whether
the background within the update area is
to be erased when the update region is
processed. If bErase is TRUE, the
background is erased when the BeginPaint
member function is called; if bErase is
FALSE, the background remains
unchanged. If bErase is TRUE for any part
of the update region, the background in
the entire region, not just in the given part,
is erased.

 CWnd::InvokeHelper

void AFX_CDECL InvokeHelper(
 DISPID dwDispID,
 WORD wFlags,
 VARTYPE vtRet,
 void* pvRet,
 const BYTE* pbParamInfo,
 ...);

ParametersParameters

RemarksRemarks

Windows sends a WM_PAINT message
whenever the CWnd update region is not
empty and there are no other messages in
the application queue for that window.

The given region must have been
previously created by one of the region
functions.

Call this member function to invoke the
ActiveX Control method or property
specified by dwDispID, in the context
specified by wFlags.

dwDispID
Identifies the method or property to be
invoked.

wFlags
Flags describing the context of the call to
IDispatch::Invoke .

vtRet
Specifies the type of the return value. For
possible values, see the Remarks section
for COleDispatchDriver::InvokeHelper.

pvRet
Address of the variable that will that will
receive the property value or return value.
It must match the type specified by vtRet.

pbParamInfo
Pointer to a null-terminated string of bytes
specifying the types of the parameters
following pbParamInfo. For possible
values, see the Remarks section for
COleDispatchDriver::InvokeHelper .

...
Variable List of parameters, of types
specified in pbParamInfo.

The pbParamInfo parameter specifies the

NOTENOTE

CWnd::IsChild

BOOL IsChild(const CWnd* pWnd) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

types of the parameters passed to the
method or property. The variable list of
arguments is represented by ... in the
syntax declaration.

This function converts the parameters to
VARIANTARG values, then invokes the
IDispatch::Invoke method on the ActiveX

control. If the call to IDispatch::Invoke

fails, this function will throw an exception.
If the SCODE (status code) returned by
IDispatch::Invoke is

DISP_E_EXCEPTION, this function throws
a COleException object, otherwise it
throws a COleDispatchException.

This function should be called only on a
CWnd object that represents an ActiveX

control.

For more information about using this
member function with ActiveX Control
Containers, see the article ActiveX Control
Containers: Programming ActiveX
Controls in an ActiveX Control Container.

Indicates whether the window specified by
pWnd is a child window or other direct
descendant of CWnd .

pWnd
Identifies the window to be tested.

Specifies the outcome of the function. The
value is nonzero if the window identified
by pWnd is a child window of CWnd ;
otherwise 0.

A child window is the direct descendant of
CWnd if the CWnd object is in the chain of

parent windows that leads from the
original pop-up window to the child
window.

CWnd::IsD2DSupportEnabl
ed

BOOL IsD2DSupportEnabled();

Return ValueReturn Value

CWnd::IsDialogMessage

BOOL IsDialogMessage(LPMSG lpMsg);

ParametersParameters

Return ValueReturn Value

BOOL
CAboutDlg::PreTranslateMessage(MSG*
pMsg)
{
 if(IsDialogMessage(pMsg))
 return TRUE;
 else
 return
CDialog::PreTranslateMessage(pMsg);
}

RemarksRemarks

Determines whether D2D support is
enabled.

TRUE if the feature is enabled; otherwise
FALSE.

Call this member function to determine
whether the given message is intended for
a modeless dialog box; if it is, this function
processes the message.

lpMsg
Points to an MSG structure that contains
the message to be checked.

Specifies whether the member function
has processed the given message. It is
nonzero if the message has been
processed; otherwise 0. If the return is 0,
call the CWnd::PreTranslateMessage
member function of the base class to
process the message. In an override of the
CWnd::PreTranslateMessage member

function the code looks like this :

When the IsDialogMessage function
processes a message, it checks for
keyboard messages and converts them to
selection commands for the corresponding

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

CWnd::IsDlgButtonChecked

UINT IsDlgButtonChecked(int nIDButton)
const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::IsDynamicLayoutEna
bled

BOOL IsDynamicLayoutEnabled() const;

Return ValueReturn Value

dialog box. For example, the TAB key
selects the next control or group of
controls, and the DOWN ARROW key
selects the next control in a group.

You must not pass a message processed
by IsDialogMessage to the
TranslateMessage or DispatchMessage
Windows functions, because it has already
been processed.

Determines whether a button control has a
check mark next to it.

nIDButton
Specifies the integer identifier of the
button control.

Nonzero if the given control is checked,
and 0 if it is not checked. Only radio
buttons and check boxes can be checked.
For three-state buttons, the return value
can be 2 if the button is indeterminate.
This member function returns 0 for a
pushbutton.

If the button is a three-state control, the
member function determines whether it is
dimmed, checked, or neither.

Determines whether dynamic layout is
enabled on this window. If dynamic layout
is enabled, the position and size of child
windows can change when the user resizes
the parent window.

TRUE if dynamic layout is enabled;
otherwise FALSE.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage

RemarksRemarks

CWnd::IsIconic

BOOL IsIconic() const;

Return ValueReturn Value

ExampleExample

void CAboutDlg::OnPaint()
{
 // This code, normally emitted by
the Application Wizard for a dialog-
 // based project for the dialog's
WM_PAINT handler, runs only if the
 // window is iconic. The window
erases the icon's area, then
 // paints the icon referenced by
m_hIcon.
 if (IsIconic())
 {
 CPaintDC dc(this); // device
context for painting

 SendMessage(WM_ICONERASEBKGND,
(WPARAM)dc.GetSafeHdc(), 0);

 // Center icon in client
rectangle
 int cxIcon =
GetSystemMetrics(SM_CXICON);
 int cyIcon =
GetSystemMetrics(SM_CYICON);
 CRect rect;
 GetClientRect(&rect);
 int x = (rect.Width() - cxIcon +
1) / 2;
 int y = (rect.Height() - cyIcon +
1) / 2;

 // Draw the icon
 dc.DrawIcon(x, y, m_hIcon);
 }
 else
 {
 CDialog::OnPaint();
 }
}

CWnd::IsTouchWindow

Specifies whether CWnd is minimized
(iconic).

Nonzero if CWnd is minimized; otherwise
0.

Specifies whether CWnd has touch
support.

BOOL IsTouchWindow() const;

Return ValueReturn Value

RemarksRemarks

CWnd::IsWindowEnabled

BOOL IsWindowEnabled() const;

Return ValueReturn Value

ExampleExample

TRUE if CWnd has touch support;
otherwise FALSE.

Specifies whether CWnd is enabled for
mouse and keyboard input.

Nonzero if CWnd is enabled; otherwise 0.

//change the background color of an
edit control on the dialog
HBRUSH CMyDlg::OnCtlColor(CDC* pDC,
CWnd* pWnd, UINT nCtlColor)
{
 HBRUSH hbr =
CDialog::OnCtlColor(pDC, pWnd,
nCtlColor);

 if (pWnd->GetDlgCtrlID() ==
IDC_MYEDIT)
 {
 if (pWnd->IsWindowEnabled())
 {
 // Red brush for the
background...
 pDC->SetBkColor(RGB(255, 0,
0));
 // m_pRedBrush is the CBrush
object initialized with a red brush
 // using CreateSolidBrush

return(HBRUSH)m_RedBrush.GetSafeHandle(
);
 }
 else
 {
 // Blue brush for the
background...
 pDC->SetBkColor(RGB(0, 0,
255));
 // m_pBlueBrush is the CBrush
object initialized with a blue
 // brush using
CreateSolidBrush
 return
(HBRUSH)m_BlueBrush.GetSafeHandle();
 }
 }

 return hbr;
}

CWnd::IsWindowVisible

BOOL IsWindowVisible() const;

Return ValueReturn Value

RemarksRemarks

Determines the visibility state of the given
window.

Nonzero if CWnd is visible (has the
WS_VISIBLE style bit set, and parent
window is visible). Because the return
value reflects the state of the WS_VISIBLE
style bit, the return value may be nonzero
even though CWnd is totally obscured by
other windows.

ExampleExample

// This example uses the
CWnd::IsWindowVisible() function to
// determine if a dialog box is
visible. If it is not, it calls
// CWnd::ShowWindow with the
SW_SHOWNORMAL command.
void CMainFrame::DisplayModeless()
{
 if(!m_Modeless.IsWindowVisible())
 {

m_Modeless.ShowWindow(SW_SHOWNORMAL);
 }
}

// This example uses the
CWnd::IsWindowVisible() function to
// determine if a dialog box is
visible. If it is, it calls
// CWnd::ShowWindow with the SW_HIDE
command.
void CMainFrame::HideModeless()
{
 if(m_Modeless.IsWindowVisible())
 {
 m_Modeless.ShowWindow(SW_HIDE);
 }
}

CWnd::IsZoomed

BOOL IsZoomed() const;

Return ValueReturn Value

CWnd::KillTimer

A window possesses a visibility state
indicated by the WS_VISIBLE style bit.
When this style bit is set with a call to the
ShowWindow member function, the
window is displayed and subsequent
drawing to the window is displayed as
long as the window has the style bit set.

Any drawing to a window that has the
WS_VISIBLE style will not be displayed if
the window is covered by other windows
or is clipped by its parent window.

Determines whether CWnd has been
maximized.

Nonzero if CWnd is maximized; otherwise
0.

Kills the timer event identified by nIDEvent

BOOL KillTimer(UINT_PTR nIDEvent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CWnd::LoadDynamicLayout
Resource

BOOL LoadDynamicLayoutResource(LPCTSTR
lpszResourceName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::LockWindowUpdate

BOOL LockWindowUpdate();

Return ValueReturn Value

from the earlier call to SetTimer .

nIDEvent
The value of the timer event passed to
SetTimer.

Specifies the outcome of the function. The
value is nonzero if the event was killed. It is
0 if the KillTimer member function could
not find the specified timer event.

Pending WM_TIMER messages associated
with the timer are not removed from the
message queue.

See the example for CWnd::SetTimer.

Called by the framework to load dynamic
layout information from the resource file.

lpszResourceName
The name of the resource that contains the
desired dynamic layout information for
this window.

Nonzero if the function is successful. It is 0
if a failure occurs.

Do not call this method directly.

Disables drawing in the given window.

RemarksRemarks

CWnd::m_hWnd

HWND m_hWnd;

RemarksRemarks

CWnd::MapWindowPoints

Nonzero if the function is successful. It is 0
if a failure occurs or if the
LockWindowUpdate function has been used

to lock another window.

A locked window cannot be moved. Only
one window can be locked at a time. To
unlock a window locked with
LockWindowUpdate , call

UnlockWindowUpdate.

If an application with a locked window (or
any locked child windows) calls the GetDC,
GetDCEx, or BeginPaint Windows
function, the called function returns a
device context whose visible region is
empty. This will occur until the application
unlocks the window by calling the
UnlockWindowUpdate member function.

While window updates are locked, the
system keeps track of the bounding
rectangle of any drawing operations to
device contexts associated with a locked
window. When drawing is reenabled, this
bounding rectangle is invalidated in the
locked window and its child windows to
force an eventual WM_PAINT message to
update the screen. If no drawing has
occurred while the window updates were
locked, no area is invalidated.

The LockWindowUpdate member function
does not make the given window invisible
and does not clear the WS_VISIBLE style
bit.

The handle of the Windows window
attached to this CWnd .

The m_hWnd data member is a public
variable of type HWND.

Converts (maps) a set of points from the
coordinate space of the CWnd to the

https://msdn.microsoft.com/library/windows/desktop/dd144871
https://msdn.microsoft.com/library/windows/desktop/dd144873
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-beginpaint
https://docs.microsoft.com/windows/desktop/gdi/wm-paint

void MapWindowPoints(
 CWnd* pwndTo,
 LPRECT lpRect) const;

void MapWindowPoints(
 CWnd* pwndTo,
 LPPOINT lpPoint,
 UINT nCount) const;

ParametersParameters

CWnd::MessageBox

int MessageBox(
 LPCTSTR lpszText,
 LPCTSTR lpszCaption = NULL,
 UINT nType = MB_OK);

ParametersParameters

coordinate space of another window.

pwndTo
Identifies the window to which points are
converted. If this parameter is NULL, the
points are converted to screen coordinates.

lpRect
Specifies the rectangle whose points are to
be converted. The first version of this
function is available only for Windows 3.1
and later.

lpPoint
A pointer to an array of POINT structure
that contain the set of points to be
converted.

nCount
Specifies the number of POINT structures
in the array pointed to by lpPoint.

Creates and displays a window that
contains an application-supplied message
and caption, plus a combination of the
predefined icons and pushbuttons
described in the Message-Box Styles list.

lpszText
Points to a CString object or null-
terminated string containing the message
to be displayed.

lpszCaption
Points to a CString object or null-
terminated string to be used for the
message-box caption. If lpszCaption is

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

Return ValueReturn Value

RemarksRemarks

MB_ICONHAND,
MB_ICONSTOP, and
MB_ICONERROR

MB_ICONQUESTION

MB_ICONEXCLAMATI
ON and
MB_ICONWARNING

MB_ICONASTERISK
and
MB_ICONINFORMATI
ON

ExampleExample

void
CMainFrame::OnDisplayErrorMessage()
{
 // This displays a message box with
the title "Error"
 // and the message "Help, Something
went wrong."
 // The error icon is displayed in
the message box, along with
 // an OK button.
 MessageBox(_T("Help, Something went
wrong."), _T("Error"),
 MB_ICONERROR | MB_OK);
}

CWnd::ModifyStyle

NULL, the default caption "Error" is used.

nType
Specifies the contents and behavior of the
message box.

This method utilizes the MessageBox
function as defined in the Windows SDK.
This method returns the result of calling
this function.

Use the global function AfxMessageBox
instead of this member function to
implement a message box in your
application.

The following shows the various system
icons that can be used in a message box:

Call this member function to modify a

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-messagebox

BOOL ModifyStyle(
 DWORD dwRemove,
 DWORD dwAdd,
 UINT nFlags = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

window's style.

dwRemove
Specifies window styles to be removed
during style modification.

dwAdd
Specifies window styles to be added
during style modification.

nFlags
Flags to be passed to SetWindowPos, or
zero if SetWindowPos should not be called.
The default is zero. See the Remarks
section for a list of preset flags.

Nonzero if style was successfully modified;
otherwise, 0.

Styles to be added or removed can be
combined by using the bitwise OR (|)
operator. See the topics Window Styles
and CreateWindow in the Windows SDK
for information about the available
window styles.

If nFlags is nonzero, ModifyStyle calls the
Windows API function SetWindowPos and
redraws the window by combining nFlags
with the following four preset flags:

SWP_NOSIZE Retains the current
size.

SWP_NOMOVE Retains the current
position.

SWP_NOZORDER Retains the
current Z order.

SWP_NOACTIVATE Does not
activate the window.

To modify a window's extended styles, see
ModifyStyleEx.

https://docs.microsoft.com/windows/desktop/winmsg/window-styles
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowpos

NOTENOTE

ExampleExample

// This example adds the
WS_CLIPCHILDREN style to the window.
// No Styles are removed from the
window.
void CMyView::OnInitialUpdate()
{
 CView::OnInitialUpdate();
 ModifyStyle(0, WS_CLIPCHILDREN);
}

CWnd::ModifyStyleEx

BOOL ModifyStyleEx(
 DWORD dwRemove,
 DWORD dwAdd,
 UINT nFlags = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

For some styles in certain controls (the
ES_READONLY style in the edit control, for
example), ModifyStyle may not properly
change the style because the control may
need to perform special internal processing.
In these cases, a corresponding message to
change the style will be available (
EM_SETREADONLY in the example
mentioned).

Call this member function to modify a
window's extended style.

dwRemove
Specifies extended styles to be removed
during style modification.

dwAdd
Specifies extended styles to be added
during style modification.

nFlags
Flags to be passed to SetWindowPos, or
zero if SetWindowPos should not be called.
The default is zero. See the Remarks
section for a list of preset flags.

Nonzero if style was successfully modified;
otherwise, 0.

Styles to be added or removed can be

ExampleExample

// This example would make the dialog
box transparent by
// changing the dialog window's
extended styles.
int CAboutDlg::OnCreate(LPCREATESTRUCT
lpCreateStruct)
{
 if
(CDialog::OnCreate(lpCreateStruct) == -
1)
 return -1;

 ModifyStyleEx(0, WS_EX_TRANSPARENT);

 return 0;
}

CWnd::MoveWindow

void MoveWindow(
 int x,
 int y,
 int nWidth,
 int nHeight,
 BOOL bRepaint = TRUE);

void MoveWindow(
 LPCRECT lpRect,
 BOOL bRepaint = TRUE);

combined by using the bitwise OR (|)
operator. See the topics Extended Window
Styles in this book and CreateWindowEx in
the Windows SDK for information about
the available extended styles

If nFlags is nonzero, ModifyStyleEx calls
the Windows API function SetWindowPos
and redraws the window by combining
nFlags with the following four preset flags:

SWP_NOSIZE Retains the current
size.

SWP_NOMOVE Retains the current
position.

SWP_NOZORDER Retains the
current Z order.

SWP_NOACTIVATE Does not
activate the window.

To modify windows using regular window
styles, see ModifyStyle.

Changes the position and dimensions.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowpos

ParametersParameters

RemarksRemarks

ExampleExample

x
Specifies the new position of the left side
of the CWnd .

y
Specifies the new position of the top of the
CWnd .

nWidth
Specifies the new width of the CWnd .

nHeight
Specifies the new height of the CWnd .

bRepaint
Specifies whether CWnd is to be repainted.
If TRUE, CWnd receives a WM_PAINT
message in its OnPaint message handler
as usual. If this parameter is FALSE, no
repainting of any kind occurs. This applies
to the client area, to the nonclient area
(including the title and scroll bars), and to
any part of the parent window uncovered
as a result of CWnd 's move. When this
parameter is FALSE, the application must
explicitly invalidate or redraw any parts of
CWnd and parent window that must be

redrawn.

lpRect
The CRect object or RECT structure that
specifies the new size and position.

For a top-level CWnd object, the x and y
parameters are relative to the upper-left
corner of the screen. For a child CWnd

object, they are relative to the upper-left
corner of the parent window's client area.

The MoveWindow function sends the
WM_GETMINMAXINFO message.
Handling this message gives CWnd the
opportunity to modify the default values
for the largest and smallest possible
windows. If the parameters to the
MoveWindow member function exceed these

values, the values can be replaced by the
minimum or maximum values in the
WM_GETMINMAXINFO handler.

See the example for
CWnd::ClientToScreen.

https://docs.microsoft.com/windows/desktop/gdi/wm-paint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CWnd::NotifyWinEvent

void NotifyWinEvent(
 DWORD event,
 LONG idObjectType,
 LONG idObject);

ParametersParameters

RemarksRemarks

CWnd::OnActivate

afx_msg void OnActivate(
 UINT nState,
 CWnd* pWndOther,
 BOOL bMinimized);

ParametersParameters

Signals the system that a predefined event
occurred. If any client applications have
registered a hook function for the event,
the system calls the client's hook function.

event
Specifies the event that occurred. This
value must be one of the event constants.

idObjectType
Identifies the kind of object that generated
the event. This value is one of the
predefined object identifiers or a custom
object ID value.

idObject
Identifies whether the event was generated
by an object or a child element of the
object. If this value is CHILDID_SELF, the
event was generated by the object itself. If
not, this value is the child ID of the
element that generated the event.

This member function emulates the
functionality of the function
NotifyWinEvent, as described in the
Windows SDK.

The framework calls this member function
when a CWnd object is being activated or
deactivated.

nState
Specifies whether the CWnd is being
activated or deactivated. It can be one of
the following values:

https://docs.microsoft.com/windows/desktop/WinAuto/event-constants
https://docs.microsoft.com/windows/desktop/WinAuto/object-identifiers
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-notifywinevent

RemarksRemarks

NOTENOTE

CWnd::OnActivateApp

afx_msg void OnActivateApp(
 BOOL bActive,
 DWORD dwThreadID);

WA_INACTIVE The window is
being deactivated.

WA_ACTIVE The window is being
activated through some method
other than a mouse click (for
example, by use of the keyboard
interface to select the window).

WA_CLICKACTIVE The window is
being activated by a mouse click.

pWndOther
Pointer to the CWnd being activated or
deactivated. The pointer can be NULL, and
it may be temporary.

bMinimized
Specifies the minimized state of the CWnd

being activated or deactivated. A value of
TRUE indicates the window is minimized.

If TRUE, the CWnd is being activated;
otherwise deactivated.

If the CWnd object is activated with a
mouse click, it will also receive an
OnMouseActivate member function call.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
to all top-level windows of the task being
activated and for all top-level windows of
the task being deactivated.

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnAmbientProperty

virtual BOOL OnAmbientProperty(
 COleControlSite* pSite,
 DISPID dispid,
 VARIANT* pvar);

ParametersParameters

bActive
Specifies whether the CWnd is being
activated or deactivated. TRUE means the
CWnd is being activated. FALSE means the
CWnd is being deactivated.

dwThreadID
Specifies the value of the thread ID. If
bActive is TRUE, dwThreadID identifies
the thread that owns the CWnd being
deactivated. If bActive is FALSE,
dwThreadID identifies the thread that
owns the CWnd being activated.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
to obtain ambient property values from a
window that contains OLE controls.

pSite
Pointer to the site of the control that
requested the ambient property.

dispid
The dispatch ID of the requested ambient
property.

pvar
Pointer to a caller-allocated VARIANT

structure, through which the ambient
property's value will be returned.

Return ValueReturn Value

RemarksRemarks

CWnd::OnAppCommand

afx_msg void OnAppCommand(
 CWnd* pWnd,
 UINT nCmd,
 UINT nDevice,
 UINT nKey);

ParametersParameters

PARAMETER DESCRIPTION

pWnd [in] Pointer to a
CWnd object that

represents the
window where the
user clicked the
comman button or
pressed the
command key. This
window can be a child
window of the
window receiving the
message.

nCmd [in] Indicates the
application command.
For a list of possible
values, see the
commands under the
cmd section of the
lParam parameter of
WM_APPCOMMAND
.

TRUE if the ambient property is
supported; FALSE if not.

Override this function to alter the default
ambient property values returned by an
OLE control container to its controls. Any
ambient property requests not handled by
an overriding function should be
forwarded to the base class
implementation.

The framework calls this member function
when the user generates an application
command event. Such an event occurs
when the user clicks an application
command button or types an application
command key.

https://docs.microsoft.com/windows/desktop/inputdev/wm-appcommand

nDevice [in] The input device
that generated the
input event. For a list
of possible values, see
the devices under the
uDevice section of
the lParam
parameter of
WM_APPCOMMAND
.

nKey [in] Indicates any
virtual keys that are
down, such as the
CTRL key or the left
mouse button. For a
list of possible values,
see the keys under
the dwKeys section of
the lParam
parameter of
WM_APPCOMMAND
. For more
information, see the
"Message
Parameters"
subheading in About
Mouse Input.

PARAMETER DESCRIPTION

RemarksRemarks

NOTENOTE

CWnd::OnAskCbFormatNa
me

This method receives the
WM_APPCOMMAND notification, which
is described in the Windows SDK.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the Clipboard contains a data handle
for the CF_OWNERDISPLAY format (that
is, when the Clipboard owner will display

https://docs.microsoft.com/windows/desktop/inputdev/wm-appcommand
https://docs.microsoft.com/windows/desktop/inputdev/wm-appcommand
https://docs.microsoft.com/windows/desktop/inputdev/about-mouse-input
https://docs.microsoft.com/windows/desktop/inputdev/wm-appcommand

afx_msg void OnAskCbFormatName(
 UINT nMaxCount,
 LPTSTR lpszString);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnCancelMode

afx_msg void OnCancelMode();

RemarksRemarks

the Clipboard contents).

nMaxCount
Specifies the maximum number of bytes to
copy.

lpszString
Points to the buffer where the copy of the
format name is to be stored.

The Clipboard owner should provide a
name for its format.

Override this member function and copy
the name of the CF_OWNERDISPLAY
format into the specified buffer, not
exceeding the maximum number of bytes
specified.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
to inform CWnd to cancel any internal
mode.

If the CWnd object has the focus, its
OnCancelMode member function is called

when a dialog box or message box is
displayed. This gives the CWnd the
opportunity to cancel modes such as

CWnd::OnCaptureChanged

afx_msg void OnCaptureChanged(CWnd*
pWnd);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnChangeCbChain

mouse capture.

The default implementation responds by
calling the ReleaseCapture Windows
function. Override this member function in
your derived class to handle other modes.

The framework calls this member function
to notify the window that is losing the
mouse capture.

pWnd
A pointer to the window to gain mouse
capture

A window receives this message even if it
calls ReleaseCapture itself. An application
should not attempt to set the mouse
capture in response to this message. When
it receives this message, a window should
redraw itself, if necessary, to reflect the
new mouse-capture state.

See the Windows SDK for information on
the ReleaseCapture Windows function.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
for each window in the Clipboard-viewer
chain to notify it that a window is being
removed from the chain.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-releasecapture
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-releasecapture

afx_msg void OnChangeCbChain(
 HWND hWndRemove,
 HWND hWndAfter);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnChangeUIState

afx_msg void OnChangeUIState(
 UINT nAction,
 UINT nUIElement);

ParametersParameters

hWndRemove
Specifies the window handle that is being
removed from the Clipboard-viewer chain.

hWndAfter
Specifies the window handle that follows
the window being removed from the
Clipboard-viewer chain.

Each CWnd object that receives an
OnChangeCbChain call should use the

SendMessage Windows function to send
the WM_CHANGECBCHAIN message to
the next window in the Clipboard-viewer
chain (the handle returned by
SetClipboardViewer). If hWndRemove is

the next window in the chain, the window
specified by hWndAfter becomes the next
window, and Clipboard messages are
passed on to it.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

Called when the user interface (UI) state
should be changed.

nAction

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-sendmessage
https://docs.microsoft.com/windows/desktop/dataxchg/wm-changecbchain

RemarksRemarks

CWnd::OnChar

afx_msg void OnChar(
 UINT nChar,
 UINT nRepCnt,
 UINT nFlags);

ParametersParameters

Specifies the action to be taken. Can be
one of the following values:

UIS_CLEAR The UI state element
(specified by nUIElement) should be
hidden.

UIS_INITIALIZE The UI state
element (specified by nUIElement)
should be changed based on the
last input event. For more
information, see the Remarks
section of WM_CHANGEUISTATE.

UIS_SET The UI state element
(specified by nUIElement) should be
visible.

nUIElement
Specifies which UI state elements are
affected or the style of the control. Can be
one of the following values:

UISF_HIDEACCEL Keyboard
accelerators.

UISF_HIDEFOCUS Focus
indicators.

UISF_ACTIVE Windows XP: A
control should be drawn in the style
used for active controls.

This member function emulates the
functionality of the
WM_CHANGEUISTATE message, as
described in the Windows SDK.

The framework calls this member function
when a keystroke translates to a
nonsystem character.

nChar
Contains the character code value of the
key.

nRepCnt

https://docs.microsoft.com/windows/desktop/menurc/wm-changeuistate
https://docs.microsoft.com/windows/desktop/menurc/wm-changeuistate

VALUE MEANING

0-15 Specifies the repeat
count. The value is
the number of times
the keystroke is
repeated as a result
of the user holding
down the key.

16-23 Specifies the scan
code. The value
depends on the
original equipment
manufacturer (OEM)

24 Specifies whether the
key is an extended
key, such as the
right-hand ALT and
CTRL keys that
appear on an
enhanced 101- or
102-key keyboard.
The value is 1 if it is
an extended key;
otherwise, it is 0.

25-28 Used internally by
Windows.

29 Specifies the context
code. The value is 1 if
the ALT key is held
down while the key is
pressed; otherwise,
the value is 0.

30 Specifies the previous
key state. The value is
1 if the key is down
before the message is
sent, or it is 0 if the
key is up.

31 Specifies the
transition state. The
value is 1 if the key is
being released, or it is
0 if the key is being
pressed.

Contains the repeat count, the number of
times the keystroke is repeated when user
holds down the key.

nFlags
Contains the scan code, key-transition
code, previous key state, and context code,
as shown in the following list:

RemarksRemarks

NOTENOTE

CWnd::OnCharToItem

afx_msg int OnCharToItem(
 UINT nChar,
 CListBox* pListBox,
 UINT nIndex);

This function is called before the OnKeyUp
member function and after the
OnKeyDown member function are called.
OnChar contains the value of the keyboard

key being pressed or released.

Because there is not necessarily a one-to-
one correspondence between keys pressed
and OnChar calls generated, the
information in nFlags is generally not
useful to applications. The information in
nFlags applies only to the most recent call
to the OnKeyUp member function or the
OnKeyDown member function that precedes

the call to OnChar .

For IBM Enhanced 101- and 102-key
keyboards, enhanced keys are the right
ALT and the right CTRL keys on the main
section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and
arrow keys in the clusters to the left of the
numeric keypad; and the slash (/) and
ENTER keys in the numeric keypad. Some
other keyboards may support the
extended-key bit in nFlags.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

Called when a list box with the
LBS_WANTKEYBOARDINPUT style sends
its owner a WM_CHARTOITEM message
in response to a WM_CHAR message.

https://docs.microsoft.com/windows/desktop/Controls/wm-chartoitem

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CWnd::OnChildActivate

nChar
Specifies the value of the key pressed by
the user.

pListBox
Specifies a pointer to the list box. It may be
temporary.

nIndex
Specifies the current caret position.

The framework calls this member function
to specify the action that the application
performed in response to the call. A return
value of -2 indicates that the application
handled all aspects of selecting the item
and wants no further action by the list box.
A return value of -1 indicates that the list
box should perform the default action in
response to the keystroke. A return value
of 0 or greater specifies the zero-based
index of an item in the list box and
indicates that the list box should perform
the default action for the keystroke on the
given item.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

If the CWnd object is a multiple document
interface (MDI) child window,
OnChildActivate is called by the

framework when the user clicks the
window's title bar or when the window is
activated, moved, or sized.

afx_msg void OnChildActivate();

CWnd::OnChildNotify

virtual BOOL OnChildNotify(
 UINT message,
 WPARAM wParam,
 LPARAM lParam,
 LRESULT* pResult);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::OnClipboardUpdate

This member function is called by this
window's parent window when it receives
a notification message that applies to this
window.

message
A Windows message number sent to a
parent window.

wParam
The wparam associated with the message.

lParam
The lparam associated with the message.

pLResult
A pointer to a value to be returned from
the parent's window procedure. This
pointer will be NULL if no return value is
expected.

Nonzero if this window is responsible for
handling the message sent to its parent;
otherwise 0.

Never call this member function directly.

The default implementation of this
member function returns 0, which means
that the parent should handle the message.

Override this member function to extend
the manner in which a control responds to
notification messages.

The framework calls this member function
when the contents of the clipboard have
changed.

afx_msg void OnClipboardUpdate();

CWnd::OnClose

afx_msg void OnClose();

RemarksRemarks

CWnd::OnColorizationColor
Changed

afx_msg void
OnColorizationColorChanged(
 DWORD dwColorizationColor,
 BOOL bOpacity);

ParametersParameters

PARAMETER DESCRIPTION

dwColorizationColor [in] Specifies the new
colorization color.

The color format is a
hexadecimal number
of the form
0xAARRGGBB, where
each of the four
components ranges
from 0x00 through
0xFF. The AA
component is the
alpha value, RR is the
color red, GG is
green, and BB is blue.

bOpacity [in] TRUE if the new
color is blended with
opacity; FALSE if it is
not.

RemarksRemarks

The framework calls this member function
as a signal that the CWnd or an application
is to terminate.

The default implementation calls
DestroyWindow .

The framework calls this member when
the rendering policy for the nonclient area
has changed.

This method receives the
WM_DWMNCRENDERINGCHANGED

https://docs.microsoft.com/windows/desktop/dwm/wm-dwmcolorizationcolorchanged

NOTENOTE

CWnd::OnCommand

virtual BOOL OnCommand(
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

notification message, which is described in
the Windows SDK.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user selects an item from a
menu, when a child control sends a
notification message, or when an
accelerator keystroke is translated.

wParam
The low-order word of wParam identifies
the command ID of the menu item,
control, or accelerator. The high-order
word of wParam specifies the notification
message if the message is from a control.
If the message is from an accelerator, the
high-order word is 1. If the message is
from a menu, the high-order word is 0.

lParam
Identifies the control that sends the
message if the message is from a control.
Otherwise, lParam is 0.

An application returns nonzero if it
processes this message; otherwise 0.

OnCommand processes the message map for
control notification and ON_COMMAND
entries, and calls the appropriate member

NOTENOTE

CWnd::OnCompacting

afx_msg void OnCompacting(UINT
nCpuTime);

ParametersParameters

RemarksRemarks

function.

Override this member function in your
derived class to handle the
WM_COMMAND message. An override
will not process the message map unless
the base class OnCommand is called.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
for all top-level windows when Windows
detects that more than 12.5 percent of
system time over a 30- to 60-second
interval is being spent compacting
memory.

nCpuTime
Specifies the ratio of CPU time currently
spent by Windows compacting memory to
CPU time spent performing other
operations. For example, 8000h represents
50 percent of CPU time spent compacting
memory.

This indicates that system memory is low.

When a CWnd object receives this call, it
should free as much memory as possible,
taking into account the current level of
activity of the application and the total
number of applications running in
Windows. The application can call the
Windows function to determine how many

https://docs.microsoft.com/windows/desktop/menurc/wm-command

NOTENOTE

CWnd::OnCompareItem

afx_msg int OnCompareItem(
 int nIDCtl,
 LPCOMPAREITEMSTRUCT
lpCompareItemStruct);

ParametersParameters

Return ValueReturn Value

VALUE MEANING

-1 Item 1 sorts before
item 2.

0 Item 1 and item 2
sort the same.

applications are running.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
to specify the relative position of a new
item in a child sorted owner-draw combo
or list box.

nIDCtl
The identifier of the control that sent the
WM_COMPAREITEM message.

lpCompareItemStruct
Contains a long pointer to a
COMPAREITEMSTRUCT data structure
that contains the identifiers and
application-supplied data for two items in
the combo or list box.

Indicates the relative position of the two
items. It may be any of the following
values:

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcompareitemstruct

1 Item 1 sorts after
item 2.

VALUE MEANING

RemarksRemarks

NOTENOTE

CWnd::OnCompositionCha
nged

If a combo or list box is created with the
CBS_SORT or LBS_SORT style, Windows
sends the combo-box or list-box owner a
WM_COMPAREITEM message whenever
the application adds a new item.

Two items in the combo or list box are
reformed in a COMPAREITEMSTRUCT structure
pointed to by lpCompareItemStruct.
OnCompareItem should return a value that

indicates which of the items should appear
before the other. Typically, Windows
makes this call several times until it
determines the exact position for the new
item.

If the hwndItem member of the
COMPAREITEMSTRUCT structure belongs to a

CListBox or CComboBox object, then the
CompareItem virtual function of the

appropriate class is called. Override
CComboBox::CompareItem or
CListBox::CompareItem in your derived
CListBox or CComboBox class to do the

item comparison.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
for all top-level windows when the
Desktop Window Manager (DWM)
composition is enabled or disabled.

afx_msg void OnCompositionChanged();

RemarksRemarks

NOTENOTE

CWnd::OnContextMenu

afx_msg void OnContextMenu(
 CWnd* pWnd,
 CPoint pos);

ParametersParameters

RemarksRemarks

This method receives the
WM_DWMCOMPOSITIONCHANGED
notification, which is described in the
Windows SDK.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

Called by the framework when the user
has clicked the right mouse button (right
clicked) in the window.

pWnd
Handle to the window in which the user
right clicked the mouse. This can be a child
window of the window receiving the
message. For more information about
processing this message, see the Remarks
section.

pos
Position of the cursor, in screen
coordinates, at the time of the mouse click.

You can process this message by
displaying a context menu using the
TrackPopupMenu.

If you do not display a context menu you
should pass this message onto the

https://docs.microsoft.com/windows/desktop/dwm/wm-dwmcompositionchanged

 CWnd::OnCopyData

afx_msg BOOL OnCopyData(
 CWnd* pWnd,
 COPYDATASTRUCT* pCopyDataStruct);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

DefWindowProc function. If your window
is a child window, DefWindowProc sends the
message to the parent. Otherwise,
DefWindowProc displays a default context

menu if the specified position is in the
window's caption.

This member function is called by the
framework to copy data from one
application to another.

pWnd
A pointer to a CWnd object that is sending
the data.

pCopyDataStruct
A pointer to a COPYDATASTRUCT
structure that contains the data being sent.

Returns TRUE if the receiving application
successfully accepts the data. Otherwise,
returns FALSE.

The data being passed must not contain
pointers or other references to objects not
accessible to the application receiving the
data.

While the data is being copied, it must not
be changed by another thread of the
sending process.

The receiving application should consider
the data read-only. The structure pointed
to by the parameter pCopyDataStruct is
valid only during the transfer of data;
however, the receiving application should
not free the memory associated with the
structure.

If the receiving application needs access to
the data after this function returns, it must
copy the data received to a local buffer.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcopydatastruct

NOTENOTE

CWnd::OnCreate

afx_msg int OnCreate(LPCREATESTRUCT
lpCreateStruct);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when an application requests that the
Windows window be created by calling the
Create or CreateEx member function.

lpCreateStruct
Points to a CREATESTRUCT structure that
contains information about the CWnd

object being created.

OnCreate must return 0 to continue the
creation of the CWnd object. If the
application returns -1, the window will be
destroyed.

The CWnd object receives this call after the
window is created but before it becomes
visible. OnCreate is called before the
Create or CreateEx member function

returns.

Override this member function to perform
any needed initialization of a derived class.

The CREATESTRUCT structure contains
copies of the parameters used to create the
window.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcreatestructa

NOTENOTE

CWnd::OnCtlColor

afx_msg HBRUSH OnCtlColor(
 CDC* pDC,
 CWnd* pWnd,
 UINT nCtlColor);

ParametersParameters

Return ValueReturn Value

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when a child control is about to be drawn.

pDC
Contains a pointer to the display context
for the child window. May be temporary.

pWnd
Contains a pointer to the control asking for
the color. May be temporary.

nCtlColor
Contains one of the following values,
specifying the type of control:

CTLCOLOR_BTN Button control

CTLCOLOR_DLG Dialog box

CTLCOLOR_EDIT Edit control

CTLCOLOR_LISTBOX List-box
control

CTLCOLOR_MSGBOX Message
box

CTLCOLOR_SCROLLBAR Scroll-
bar control

CTLCOLOR_STATIC Static control

OnCtlColor must return a handle to the

RemarksRemarks

NOTENOTE

ExampleExample

brush that is to be used for painting the
control background.

Most controls send this message to their
parent (usually a dialog box) to prepare the
pDC for drawing the control using the
correct colors.

To change the text color, call the
SetTextColor member function with the

desired red, green, and blue (RGB) values.

To change the background color of a
single-line edit control, set the brush
handle in both the CTLCOLOR_EDIT and
CTLCOLOR_MSGBOX message codes,
and call the CDC::SetBkColor function in
response to the CTLCOLOR_EDIT code.

OnCtlColor will not be called for the list
box of a drop-down combo box because
the drop-down list box is actually a child of
the combo box and not a child of the
window. To change the color of the drop-
down list box, create a CComboBox with an
override of OnCtlColor that checks for
CTLCOLOR_LISTBOX in the nCtlColor

parameter. In this handler, the SetBkColor

member function must be used to set the
background color for the text.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function. To add the following
method to your dialog class, use the Visual
Studio properties pane to add a message
handler for WM_CTLCOLOR. Alternatively,
you can manually add an
ON_WM_CTLCOLOR() entry to the
message map.

// This OnCtlColor handler will change
the color of a static control
// with the ID of IDC_MYSTATIC. The
code assumes that the CPenWidthsDlg
// class has an initialized and created
CBrush member named m_brush.
// The control will be painted with red
text and a background
// color of m_brush.
HBRUSH CPenWidthsDlg::OnCtlColor(CDC*
pDC, CWnd* pWnd, UINT nCtlColor)
{
 // Call the base class
implementation first! Otherwise, it may
 // undo what we're trying to
accomplish here.
 HBRUSH hbr =
CDialog::OnCtlColor(pDC, pWnd,
nCtlColor);

 // Are we painting the IDC_MYSTATIC
control? We can use
 // CWnd::GetDlgCtrlID() to perform
the most efficient test.
 if (pWnd->GetDlgCtrlID() ==
IDC_MYSTATIC)
 {
 // Set the text color to red
 pDC->SetTextColor(RGB(255, 0,
0));

 // Set the background mode for
text to transparent
 // so background will show thru.
 pDC->SetBkMode(TRANSPARENT);

 // Return handle to our CBrush
object
 hbr = m_brush;
 }

 return hbr;
}

CWnd::OnDeadChar

afx_msg void OnDeadChar(
 UINT nChar,
 UINT nRepCnt,
 UINT nFlags);

ParametersParameters

The framework calls this member function
when the OnKeyUp member function and
the OnKeyDown member functions are
called.

nChar
Specifies the dead-key character value.

nRepCnt
Specifies the repeat count.

VALUE DESCRIPTION

0-7 Scan code (OEM-
dependent value).
Low byte of high-
order word.

8 Extended key, such as
a function key or a
key on the numeric
keypad (1 if it is an
extended key;
otherwise 0).

9-10 Not used.

11-12 Used internally by
Windows.

13 Context code (1 if the
ALT key is held down
while the key is
pressed; otherwise 0).

14 Previous key state (1
if the key is down
before the call, 0 if
the key is up).

15 Transition state (1 if
the key is being
released, 0 if the key
is being pressed).

RemarksRemarks

nFlags
Specifies the scan code, key-transition
code, previous key state, and context code,
as shown in the following list:

This member function can be used to
specify the character value of a dead key. A
dead key is a key, such as the umlaut
(double-dot) character, that is combined
with other characters to form a composite
character. For example, the umlaut-O
character consists of the dead key, umlaut,
and the O key.

An application typically uses OnDeadChar

to give the user feedback about each key
pressed. For example, an application can
display the accent in the current character
position without moving the caret.

Since there is not necessarily a one-to-one
correspondence between keys pressed and

NOTENOTE

CWnd::OnDeleteItem

afx_msg void OnDeleteItem(
 int nIDCtl,
 LPDELETEITEMSTRUCT
lpDeleteItemStruct);

ParametersParameters

OnDeadChar calls, the information in nFlags
is generally not useful to applications. The
information in nFlags applies only to the
most recent call to the OnKeyUp member
function or the OnKeyDown member
function that precedes the OnDeadChar call.

For IBM Enhanced 101- and 102-key
keyboards, enhanced keys are the right
ALT and the right CTRL keys on the main
section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and
arrow keys in the clusters to the left of the
numeric keypad; and the slash (/) and
ENTER keys in the numeric keypad. Some
other keyboards may support the
extended-key bit in nFlags.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
to inform the owner of an owner-draw list
box or combo box that the list box or
combo box is destroyed or that items have
been removed by
CComboBox::DeleteString,
CListBox::DeleteString,
CComboBox::ResetContent, or
CListBox::ResetContent.

nIDCtl
The identifier of the control that sent the
WM_DELETEITEM message.

RemarksRemarks

NOTENOTE

CWnd::OnDestroy

afx_msg void OnDestroy();

RemarksRemarks

lpDeleteItemStruct
Specifies a long pointer to a
DELETEITEMSTRUCT data structure that
contains information about the deleted list
box item.

If the hwndItem member of the
DELETEITEMSTRUCT structure belongs to a

combo box or list box, then the
DeleteItem virtual function of the

appropriate class is called. Override the
DeleteItem member function of the

appropriate control's class to delete item-
specific data.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
to inform the CWnd object that it is being
destroyed.

OnDestroy is called after the CWnd object
is removed from the screen.

OnDestroy is called first for the CWnd

being destroyed, then for the child
windows of CWnd as they are destroyed. It
can be assumed that all child windows still
exist while OnDestroy runs.

If the CWnd object being destroyed is part
of the Clipboard-viewer chain (set by
calling the SetClipboardViewer member
function), the CWnd must remove itself
from the Clipboard-viewer chain by calling

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdeleteitemstruct

CWnd::OnDestroyClipboard

afx_msg void OnDestroyClipboard();

CWnd::OnDeviceChange

afx_msg BOOL OnDeviceChange(
 UINT nEventType,
 DWORD_PTR dwData);

ParametersParameters

RemarksRemarks

the ChangeClipboardChain member
function before returning from the
OnDestroy function.

The framework calls this member function
for the Clipboard owner when the
Clipboard is emptied through a call to the
EmptyClipboard Windows function.

The framework calls this member function
to notify an application or device driver of
a change to the hardware configuration of
a device or the computer.

nEventType
An event type. See the Remarks section for
a description of the available values

dwData
The address of a structure that contains
event-specific data. Its meaning depends
on the given event.

For devices that offer software-
controllable features, such as ejection and
locking, the operating system typically
sends a DBT_DEVICEREMOVEPENDING
message to let applications and device
drivers end their use of the device
gracefully.

If the operating system forcefully removes
of a device, it may not send a
DBT_DEVICEQUERYREMOVE message
before doing so.

The nEvent parameter can be one of these
values:

DBT_DEVICEARRIVAL A device
has been inserted and is now

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-emptyclipboard
https://docs.microsoft.com/windows/desktop/DevIO/dbt-devicearrival

NOTENOTE

CWnd::OnDevModeChange

afx_msg void OnDevModeChange(LPTSTR
lpDeviceName);

ParametersParameters

RemarksRemarks

available.

DBT_DEVICEQUERYREMOVE
Permission to remove a device is
requested. Any application can deny
this request and cancel the removal.

DBT_DEVICEQUERYREMOVEFAIL
ED Request to remove a device has
been canceled.

DBT_DEVICEREMOVEPENDING
Device is about to be removed.
Cannot be denied.

DBT_DEVICEREMOVECOMPLETE
Device has been removed.

DBT_DEVICETYPESPECIFIC
Device-specific event.

DBT_CONFIGCHANGED Current
configuration has changed.

DBT_DEVNODES_CHANGED
Device node has changed.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
for all top-level CWnd objects when the
user changes device-mode settings.

lpDeviceName
Points to the device name specified in the
Windows initialization file, WIN.INI.

https://docs.microsoft.com/windows/desktop/DevIO/dbt-devicequeryremove
https://docs.microsoft.com/windows/desktop/DevIO/dbt-devicequeryremovefailed
https://docs.microsoft.com/windows/desktop/DevIO/dbt-deviceremovepending
https://docs.microsoft.com/windows/desktop/DevIO/dbt-deviceremovecomplete
https://docs.microsoft.com/windows/desktop/DevIO/dbt-devicetypespecific
https://docs.microsoft.com/windows/desktop/DevIO/dbt-configchanged

NOTENOTE

CWnd::OnDrawClipboard

afx_msg void OnDrawClipboard();

RemarksRemarks

Applications that handle the
WM_DEVMODECHANGE message may
reinitialize their device-mode settings.
Applications that use the Windows
ExtDeviceMode function to save and

restore device settings typically do not
process this function.

This function is not called when the user
changes the default printer from Control
Panel. In this case, the OnWinIniChange

function is called.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
for each window in the Clipboard-viewer
chain when the contents of the Clipboard
change.

Only applications that have joined the
Clipboard-viewer chain by calling the
SetClipboardViewer member function
need to respond to this call.

Each window that receives an
OnDrawClipboard call should call the

SendMessage Windows function to pass a
WM_DRAWCLIPBOARD message on to
the next window in the Clipboard-viewer
chain. The handle of the next window is
returned by the SetClipboardViewer
member function; it may be modified in
response to an OnChangeCbChain
member function call.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-sendmessage
https://docs.microsoft.com/windows/desktop/dataxchg/wm-drawclipboard

CWnd::OnDrawIconicThum
bnailOrLivePreview

virtual void
OnDrawIconicThumbnailOrLivePreview(
 CDC& dc,
 CRect rect,
 CSize szRequiredThumbnailSize,
 BOOL bIsThumbnail,
 BOOL& bAlphaChannelSet);

ParametersParameters

RemarksRemarks

CWnd::OnDrawItem

Called by the framework when it needs to
obtain a bitmap to be displayed on
Windows 7 tab thumbnail, or on the client
for application peek.

dc
Specifies the device context.

rect
Specifies the bounding rectangle of the
area to render.

szRequiredThumbnailSize
Specifies the size of the target thumbnail.
Should be ignored if bIsThumbnail is
FALSE.

bIsThumbnail
Specifies whether this method is called for
iconic thumbnail or live preview (peek).

bAlphaChannelSet
[out] Set it to TRUE if your
implementation initializes the alpha
channel of a bitmap selected in dc.

Override this method in a derived class
and draw on the specified device context in
order to customize thumbnail and peek. If
bThumbnail is TRUE,
szRequiredThumbnailSize can be ignored.
In this case you should be aware that you
draw full sized bitmap (that is, a bitmap
that covers the whole client area). The
device context (dc) comes with selected 32
bits bitmap. The default implementation
sends WM_PRINT to this window with
PRF_CLIENT, PRF_CHILDREN, and
PRF_NONCLIENT flags.

afx_msg void OnDrawItem(
 int nIDCtl,
 LPDRAWITEMSTRUCT lpDrawItemStruct);

ParametersParameters

RemarksRemarks

The framework calls this member function
for the owner of an owner-draw button
control, combo-box control, list-box
control, or menu when a visual aspect of
the control or menu has changed.

nIDCtl
Contains the identifier of the control that
sent the WM_DRAWITEM message. If a
menu sent the message, nIDCtl contains 0.

lpDrawItemStruct
Specifies a long pointer to a
DRAWITEMSTRUCT data structure that

contains information about the item to be
drawn and the type of drawing required.

The itemAction member of the
DRAWITEMSTRUCT structure defines the
drawing operation that is to be performed.
The data in this member allows the owner
of the control to determine what drawing
action is required.

Before returning from processing this
message, an application should ensure that
the device context identified by the hDC
member of the DRAWITEMSTRUCT structure is
restored to the default state.

If the hwndItem member belongs to a
CButton, CMenu, CListBox, or
CComboBox object, then the DrawItem

virtual function of the appropriate class is
called. Override the DrawItem member
function of the appropriate control's class
to draw the item.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct

NOTENOTE

CWnd::OnDropFiles

afx_msg void OnDropFiles(HDROP
hDropInfo);

ParametersParameters

RemarksRemarks

NOTENOTE

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user releases the left mouse
button over a window that has registered
itself as the recipient of dropped files.

hDropInfo
A pointer to an internal data structure that
describes the dropped files. This handle is
used by the DragFinish , DragQueryFile ,
and DragQueryPoint Windows functions to
retrieve information about the dropped
files.

Typically, a derived class will be designed
to support dropped files and it will register
itself during window construction.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

CWnd::OnEnable

afx_msg void OnEnable(BOOL bEnable);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnEndSession

afx_msg void OnEndSession(BOOL
bEnding);

ParametersParameters

The framework calls this member function
when an application changes the enabled
state of the CWnd object.

bEnable
Specifies whether the CWnd object has
been enabled or disabled. This parameter
is TRUE if the CWnd has been enabled; it is
FALSE if the CWnd has been disabled.

OnEnable is called before the
EnableWindow member function returns,
but after the window enabled state (
WS_DISABLED style bit) has changed.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
after the CWnd object has returned a
nonzero value from a
OnQueryEndSession member function
call.

bEnding
Specifies whether or not the session is
being ended. It is TRUE if the session is
being ended; otherwise FALSE.

RemarksRemarks

NOTENOTE

CWnd::OnEnterIdle

afx_msg void OnEnterIdle(
 UINT nWhy,
 CWnd* pWho);

ParametersParameters

The OnEndSession call informs the CWnd

object whether the session is actually
ending.

If bEnding is TRUE, Windows can
terminate any time after all applications
have returned from processing this call.
Consequently, have an application perform
all tasks required for termination within
OnEndSession .

You do not need to call the
DestroyWindow member function or
PostQuitMessage Windows function when
the session is ending.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
to inform an application's main window
procedure that a modal dialog box or a
menu is entering an idle state.

nWhy
Specifies whether the message is the result
of a dialog box or a menu being displayed.
This parameter can be one of the following
values:

MSGF_DIALOGBOX The system is
idle because a dialog box is being
displayed.

MSGF_MENU The system is idle

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-postquitmessage

RemarksRemarks

NOTENOTE

CWnd::OnEnterMenuLoop

afx_msg void OnEnterMenuLoop(BOOL
bIsTrackPopupMenu);

ParametersParameters

RemarksRemarks

because a menu is being displayed.

pWho
Specifies a pointer to the dialog box (if
nWhy is MSGF_DIALOGBOX), or the
window that contains the displayed menu
(if nWhy is MSGF_MENU). This pointer
may be temporary and should not be
stored for later use.

A modal dialog box or menu enters an idle
state when no messages are waiting in its
queue after it has processed one or more
previous messages.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when a menu modal loop has been
entered.

bIsTrackPopupMenu
Specifies whether the menu involved is a
popup menu. Has a nonzero value if the
function is successful; otherwise 0.

NOTENOTE

CWnd::OnEnterSizeMove

afx_msg void OnEnterSizeMove();

RemarksRemarks

NOTENOTE

CWnd::OnEraseBkgnd

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
one time after the affected window enters
a moving or sizing modal loop.

This method receives the
WM_ENTERSIZEMOVE notification,
which is described in the Windows SDK.

A window enters a moving or sizing modal
loop when the user clicks the window's
title bar or sizing border, or when the
window passes the WM_SYSCOMMAND
message to the CWnd::DefWindowProc
function and the wParam parameter of
that message specifies SC_MOVE or
SC_SIZE.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function

https://docs.microsoft.com/windows/desktop/winmsg/wm-entersizemove
https://docs.microsoft.com/windows/desktop/menurc/wm-syscommand

afx_msg BOOL OnEraseBkgnd(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

when the CWnd object background needs
erasing (for example, when resized).

pDC
Specifies the device-context object.

Nonzero if it erases the background;
otherwise 0.

It is called to prepare an invalidated region
for painting.

The default implementation erases the
background using the window class
background brush specified by the
hbrBackground member of the window

class structure.

If the hbrBackground member is NULL,
your overridden version of OnEraseBkgnd

should erase the background color. Your
version should also align the origin of the
intended brush with the CWnd coordinates
by first calling UnrealizeObject for the
brush, and then selecting the brush.

An overridden OnEraseBkgnd should return
nonzero in response to
WM_ERASEBKGND if it processes the
message and erases the background; this
indicates that no further erasing is
required. If it returns 0, the window will
remain marked as needing to be erased.
(Typically, this means that the fErase

member of the PAINTSTRUCT structure will
be TRUE.)

Windows assumes the background is
computed with the MM_TEXT mapping
mode. If the device context is using any
other mapping mode, the area erased may
not be within the visible part of the client
area.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-unrealizeobject

NOTENOTE

CWnd::OnExitMenuLoop

afx_msg void OnExitMenuLoop(BOOL
bIsTrackPopupMenu);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnExitSizeMove

afx_msg void OnExitSizeMove();

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when a menu modal loop has been exited.

bIsTrackPopupMenu
Specifies whether the menu involved is a
pop-up menu. Has a nonzero value if the
function is successful; otherwise 0.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
one time after the affected window exits a
moving or sizing modal loop.

NOTENOTE

CWnd::OnFontChange

afx_msg void OnFontChange();

RemarksRemarks

CWnd::OnGetDlgCode

This method receives the
WM_EXITSIZEMOVE notification, which is
described in the Windows SDK.

A window enters a moving or sizing modal
loop when the user clicks the window's
title bar or sizing border, or when the
window passes the WM_SYSCOMMAND
message to the CWnd::DefWindowProc
function and the wParam parameter of
that message specifies SC_MOVE or
SC_SIZE.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

All top-level windows in the system
receive an OnFontChange call from the
framework after the application changes
the pool of font resources.

An application that adds or removes fonts
from the system (for example, through the
AddFontResource or
RemoveFontResource Windows function)
should send the WM_FONTCHANGE
message to all top-level windows.

To send this message, use the
SendMessage Windows function with the
hWnd parameter set to
HWND_BROADCAST.

Called for a control so the control can
process arrow-key and TAB-key input

https://docs.microsoft.com/windows/desktop/winmsg/wm-exitsizemove
https://docs.microsoft.com/windows/desktop/menurc/wm-syscommand
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-addfontresourcea
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-removefontresourcea
https://docs.microsoft.com/windows/desktop/gdi/wm-fontchange
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-sendmessage

afx_msg UINT OnGetDlgCode();

Return ValueReturn Value

RemarksRemarks

itself.

One or more of the following values,
indicating which type of input the
application processes:

DLGC_BUTTON Button (generic).

DLGC_DEFPUSHBUTTON Default
pushbutton.

DLGC_HASSETSEL EM_SETSEL
messages.

DLGC_UNDEFPUSHBUTTON No
default pushbutton processing. (An
application can use this flag with
DLGC_BUTTON to indicate that it
processes button input but relies on
the system for default pushbutton
processing.)

DLGC_RADIOBUTTON Radio
button.

DLGC_STATIC Static control.

DLGC_WANTALLKEYS All
keyboard input.

DLGC_WANTARROWS Arrow
keys.

DLGC_WANTCHARS WM_CHAR
messages.

DLGC_WANTMESSAGE All
keyboard input. The application
passes this message on to the
control.

DLGC_WANTTAB TAB key.

Normally, Windows handles all arrow-key
and TAB-key input to a CWnd control. By
overriding OnGetDlgCode , a CWnd control
can choose a particular type of input to
process itself.

The default OnGetDlgCode functions for the
predefined control classes return a code
appropriate for each class.

CWnd::OnGetMinMaxInfo

afx_msg void
OnGetMinMaxInfo(MINMAXINFO* lpMMI);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnHelp

The framework calls this member function
whenever Windows needs to know the
maximized position or dimensions, or the
minimum or maximum tracking size.

lpMMI
Points to a MINMAXINFO structure that
contains information about a window's
maximized size and position and its
minimum and maximum tracking size. For
more about this structure, see the
MINMAXINFO structure.

The maximized size is the size of the
window when its borders are fully
extended. The maximum tracking size of
the window is the largest window size that
can be achieved by using the borders to
size the window. The minimum tracking
size of the window is the smallest window
size that can be achieved by using the
borders to size the window.

Windows fills in an array of points
specifying default values for the various
positions and dimensions. The application
may change these values in
OnGetMinMaxInfo .

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

Handles F1 Help within the application

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagminmaxinfo

afx_msg void OnHelp();

RemarksRemarks

CWnd::OnHelpFinder

afx_msg void OnHelpFinder();

RemarksRemarks

CWnd::OnHelpIndex

afx_msg void OnHelpIndex();

RemarksRemarks

CWnd::OnHelpInfo

afx_msg BOOL OnHelpInfo(HELPINFO*
lpHelpInfo);

ParametersParameters

Return ValueReturn Value

(using the current context).

See CWinApp::OnHelp for more
information.

Handles the ID_HELP_FINDER and
ID_DEFAULT_HELP commands.

See CWinApp::OnHelpFinder for more
information.

Handles the ID_HELP_INDEX command
and provides a default Help topic.

See CWinApp::OnHelpIndex for more
information.

Called by the framework when the user
presses the F1 key.

lpHelpInfo
Pointer to a HELPINFO structure that
contains information about the menu item,
control, dialog box, or window for which
help is requested.

Returns TRUE if a window has the
keyboard focus or if a menu is active
within a window. If no window has the
keyboard focus, returns FALSE.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-taghelpinfo

RemarksRemarks

CWnd::OnHelpUsing

afx_msg void OnHelpUsing();

RemarksRemarks

CWnd::OnHotKey

afx_msg void OnHotKey(
 UINT nHotKeyId,
 UINT nKey1,
 UINT nKey2);

ParametersParameters

PARAMETER DESCRIPTION

nHotKeyId [in] Identifier for the
hot key that
generated the
message. If the
message was
generated by a
system-defined hot
key, this parameter
will be one of the
following values:

-
IDHOT_SNAPDESKTO
P - The snap desktop
hot key was pressed.
-
IDHOT_SNAPWINDO
W - The snap window
hot key was pressed.

If a menu is active when F1 is pressed,
WM_HELP is sent to the window
associated with the menu; otherwise,
WM_HELP is sent to the window that has
the keyboard focus. If no window has the
keyboard focus, WM_HELP is sent to the
currently active window.

Handles the ID_HELP_USING command.

See CWinApp::OnHelpUsing for more
information.

The framework calls this member function
when the user presses a system-wide hot
key.

nKey1 [in] A bitwise
combination (OR) of
flags that indicate the
keys that were
pressed in
combination with the
key specified by the
nKey2 parameter. The
possible values are:

- MOD_ALT - Either
ALT key was held
down.
- MOD_CONTROL -
Either CTRL key was
held down.
- MOD_SHIFT - Either
SHIFT key was held
down.
- MOD_WIN - Either
WINDOWS key was
held down. These
keys are labeled with
the Microsoft
Windows logo.

nKey2 [in] The virtual key
code of the hot key.

PARAMETER DESCRIPTION

RemarksRemarks

NOTENOTE

CWnd::OnHScroll

This method receives the WM_HOTKEY
notification, which is described in the
Windows SDK. This message is placed at
the top of the message queue associated
with the thread that registered the hot key.
Use the RegisterHotKey function to
register a system-wide hot key.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function

https://docs.microsoft.com/windows/desktop/inputdev/wm-hotkey
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerhotkey

afx_msg void OnHScroll(
 UINT nSBCode,
 UINT nPos,
 CScrollBar* pScrollBar);

ParametersParameters

RemarksRemarks

when the user clicks a window's horizontal
scroll bar.

nSBCode
Specifies a scroll-bar code that indicates
the user's scrolling request. This parameter
can be one of the following:

SB_LEFT Scroll to far left.

SB_ENDSCROLL End scroll.

SB_LINELEFT Scroll left.

SB_LINERIGHT Scroll right.

SB_PAGELEFT Scroll one page left.

SB_PAGERIGHT Scroll one page
right.

SB_RIGHT Scroll to far right.

SB_THUMBPOSITION Scroll to
absolute position. The current
position is specified by the nPos
parameter.

SB_THUMBTRACK Drag scroll box
to specified position. The current
position is specified by the nPos
parameter.

nPos
Specifies the scroll-box position if the
scroll-bar code is SB_THUMBPOSITION
or SB_THUMBTRACK; otherwise, not
used. Depending on the initial scroll range,
nPos may be negative and should be cast
to an int if necessary.

pScrollBar
If the scroll message came from a scroll-
bar control, contains a pointer to the
control. If the user clicked a window's
scroll bar, this parameter is NULL. The
pointer may be temporary and should not
be stored for later use.

The SB_THUMBTRACK scroll-bar code

NOTENOTE

ExampleExample

void CMdiView::OnHScroll(UINT nSBCode,
UINT nPos, CScrollBar* pScrollBar)
{
 // Get the minimum and maximum
scroll-bar positions.
 int minpos;
 int maxpos;
 GetScrollRange(SB_HORZ, &minpos,
&maxpos);
 maxpos = GetScrollLimit(SB_HORZ);

 // Get the current position of
scroll box.
 int curpos = GetScrollPos(SB_HORZ);

 // Determine the new position of
scroll box.
 switch (nSBCode)
 {
 case SB_LEFT: // Scroll to far
left.
 curpos = minpos;
 break;

 case SB_RIGHT: // Scroll to far
right.
 curpos = maxpos;
 break;

 case SB_ENDSCROLL: // End scroll.
 break;

 case SB_LINELEFT: // Scroll
left.
 if (curpos > minpos)
 curpos--;
 break;

typically is used by applications that give
some feedback while the scroll box is
being dragged.

If an application scrolls the contents
controlled by the scroll bar, it must also
reset the position of the scroll box with the
SetScrollPos member function.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

 case SB_LINERIGHT: // Scroll
right.
 if (curpos < maxpos)
 curpos++;
 break;

 case SB_PAGELEFT: // Scroll one
page left.
 {
 // Get the page size.
 SCROLLINFO info;
 GetScrollInfo(SB_HORZ, &info,
SIF_ALL);

 if (curpos > minpos)
 curpos = max(minpos, curpos -
(int) info.nPage);
 }
 break;

 case SB_PAGERIGHT: // Scroll
one page right.
 {
 // Get the page size.
 SCROLLINFO info;
 GetScrollInfo(SB_HORZ, &info,
SIF_ALL);

 if (curpos < maxpos)
 curpos = min(maxpos, curpos +
(int) info.nPage);
 }
 break;

 case SB_THUMBPOSITION: // Scroll to
absolute position. nPos is the position
 curpos = nPos; // of the
scroll box at the end of the drag
operation.
 break;

 case SB_THUMBTRACK: // Drag scroll
box to specified position. nPos is the
 curpos = nPos; // position
that the scroll box has been dragged
to.
 break;
 }

 // Set the new position of the thumb
(scroll box).
 SetScrollPos(SB_HORZ, curpos);

 CView::OnHScroll(nSBCode, nPos,
pScrollBar);
}

CWnd::OnHScrollClipboard
The Clipboard owner's
OnHScrollClipboard member function is

called by the Clipboard viewer when the
Clipboard data has the CF_OWNERDISPLAY

format and there is an event in the
Clipboard viewer's horizontal scroll bar.

afx_msg void OnHScrollClipboard(
 CWnd* pClipAppWnd,
 UINT nSBCode,
 UINT nPos);

ParametersParameters

RemarksRemarks

pClipAppWnd
Specifies a pointer to a Clipboard-viewer
window. The pointer may be temporary
and should not be stored for later use.

nSBCode
Specifies one of the following scroll-bar
codes in the low-order word:

SB_BOTTOM Scroll to lower right.

SB_ENDSCROLL End scroll.

SB_LINEDOWN Scroll one line
down.

SB_LINEUP Scroll one line up.

SB_PAGEDOWN Scroll one page
down.

SB_PAGEUP Scroll one page up.

SB_THUMBPOSITION Scroll to the
absolute position. The current
position is provided in nPos.

SB_TOP Scroll to upper left.

nPos
Contains the scroll-box position if the
scroll-bar code is SB_THUMBPOSITION;
otherwise not used.

The owner should scroll the Clipboard
image, invalidate the appropriate section,
and update the scroll-bar values.

NOTENOTE

CWnd::OnIconEraseBkgnd

afx_msg void OnIconEraseBkgnd(CDC*
pDC);

ParametersParameters

RemarksRemarks

NOTENOTE

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
for a minimized (iconic) CWnd object when
the background of the icon must be filled
before painting the icon.

pDC
Specifies the device-context object of the
icon. May be temporary and should not be
stored for later use.

CWnd receives this call only if a class icon
is defined for the window default
implementation; otherwise OnEraseBkgnd
is called.

The DefWindowProc member function fills
the icon background with the background
brush of the parent window.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

CWnd::OnInitMenu

afx_msg void OnInitMenu(CMenu* pMenu);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnInitMenuPopup

The framework calls this member function
when a menu is about to become active.

pMenu
Specifies the menu to be initialized. May
be temporary and should not be stored for
later use.

OnInitMenu is called when the user clicks
an item on the menu bar or presses a
menu key. Override this member function
to modify the menu before it is displayed.

OnInitMenu is only called once, when a
menu is first accessed (for example, when
a user clicks an item on the menu bar).
This method does not provide information
about menu items. As the user moves to
items within the menu (for example, by
moving the mouse across several menu
items) the function is not called again.
Once the user exits from the menu (for
example, by clicking on the application
client area) and later clicks an item on the
menu bar, the function will be called again.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when a pop-up menu is about to become
active.

afx_msg void OnInitMenuPopup(
 CMenu* pPopupMenu,
 UINT nIndex,
 BOOL bSysMenu);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnInputDeviceChan
ge

afx_msg void
OnInputDeviceChange(unsigned short
uFlag);

ParametersParameters

pPopupMenu
Specifies the menu object of the pop-up
menu. May be temporary and should not
be stored for later use.

nIndex
Specifies the index of the pop-up menu in
the main menu.

bSysMenu
TRUE if the pop-up menu is the Control
menu; otherwise FALSE.

This allows an application to modify the
pop-up menu before it is displayed
without changing the entire menu.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when an I/O device is added or removed
from the system.

PARAMETER DESCRIPTION

uFlag [in] This flag can
contain the following
values:

- GIDC_ARRIVAL - A
new device has been
added to the system.
- GIDC_REMOVAL -
A device has been
removed from the
system.

RemarksRemarks

NOTENOTE

CWnd::OnInputLangChang
e

afx_msg void OnInputLangChange(
 UINT nCharSet,
 UINT nLocaleId);

ParametersParameters

PARAMETER DESCRIPTION

This method receives the
WM_INPUT_DEVICE_CHANGE
notification, which is described in the
Windows SDK. The is a generic input
device message.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member for the
topmost affected window after an
application's input language has been
changed.

https://docs.microsoft.com/windows/desktop/inputdev/wm-input-device-change

nCharSet [in] The character set
of the new locale. For
more information, see
the lfCharSet
parameter of the
LOGFONT structure.

nLocaleId [in] The input locale
identifier. For more
information, see
Language Identifier
Constants and
Strings.

PARAMETER DESCRIPTION

RemarksRemarks

NOTENOTE

CWnd::OnInputLangChang
eRequest

afx_msg void OnInputLangChangeRequest(
 UINT nFlags,
 UINT nLocaleId);

ParametersParameters

PARAMETER DESCRIPTION

This method receives the
WM_INPUTLANGCHANGE notification
message, which is described in the
Windows SDK.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member for
window with the focus when the user
chooses a new input language.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogfonta
https://docs.microsoft.com/windows/desktop/Intl/language-identifier-constants-and-strings
https://docs.microsoft.com/windows/desktop/winmsg/wm-inputlangchange

nFlags [in] A bitwise (OR)
combination of flags
that indicate the new
locale was selected
from the previous or
next locale in the
installed list of locales,
or that the new input
locale's keyboard
layout can be used
with the system
character set.

The possible values
are
INPUTLANGCHANGE
_BACKWARD,
INPUTLANGCHANGE
_FORWARD, and
INPUTLANGCHANGE
_SYSCHARSET.

nLocaleId [in] The input locale
identifier. For more
information, see
Language Identifier
Constants and
Strings.

PARAMETER DESCRIPTION

RemarksRemarks

NOTENOTE

CWnd::OnKeyDown

This method receives the
WM_INPUTLANGCHANGEREQUEST
notification message, which is described in
the Windows SDK. This message is posted
when the user chooses a new input
language with either a hotkey that is
specified in the keyboard control panel
application, or from the indicator on the
system taskbar.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

https://docs.microsoft.com/windows/desktop/Intl/language-identifier-constants-and-strings
https://docs.microsoft.com/windows/desktop/winmsg/wm-inputlangchangerequest

afx_msg void OnKeyDown(
 UINT nChar,
 UINT nRepCnt,
 UINT nFlags);

ParametersParameters

VALUE DESCRIPTION

0-7 Scan code (OEM-
dependent value).

8 Extended key, such as
a function key or a
key on the numeric
keypad (1 if it is an
extended key).

9-10 Not used.

11-12 Used internally by
Windows.

13 Context code (1 if the
ALT key is held down
while the key is
pressed; otherwise 0).

14 Previous key state (1
if the key is down
before the call, 0 if
the key is up).

15 Transition state (1 if
the key is being
released, 0 if the key
is being pressed).

The framework calls this member function
when a nonsystem key is pressed.

nChar
Specifies the virtual key code of the given
key. For a list of standard virtual key codes,
see Winuser.h

nRepCnt
Repeat count (the number of times the
keystroke is repeated as a result of the
user holding down the key).

nFlags
Specifies the scan code, key-transition
code, previous key state, and context code,
as shown in the following list:

For a WM_KEYDOWN message, the key-
transition bit (bit 15) is 0 and the context-

RemarksRemarks

NOTENOTE

CWnd::OnKeyUp

afx_msg void OnKeyUp(
 UINT nChar,
 UINT nRepCnt,
 UINT nFlags);

ParametersParameters

code bit (bit 13) is 0.

A nonsystem key is a keyboard key that is
pressed when the ALT key is not pressed
or a keyboard key that is pressed when
CWnd has the input focus.

Because of auto-repeat, more than one
OnKeyDown call may occur before an

OnKeyUp member function call is made.
The bit that indicates the previous key
state can be used to determine whether
the OnKeyDown call is the first down
transition or a repeated down transition.

For IBM Enhanced 101- and 102-key
keyboards, enhanced keys are the right
ALT and the right CTRL keys on the main
section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and
arrow keys in the clusters to the left of the
numeric keypad; and the slash (/) and
ENTER keys in the numeric keypad. Some
other keyboards may support the
extended-key bit in nFlags.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when a nonsystem key is released.

nChar
Specifies the virtual key code of the given

VALUE DESCRIPTION

0-7 Scan code (OEM-
dependent value).
Low byte of high-
order word.

8 Extended key, such as
a function key or a
key on the numeric
keypad (1 if it is an
extended key;
otherwise 0).

9-10 Not used.

11-12 Used internally by
Windows.

13 Context code (1 if the
ALT key is held down
while the key is
pressed; otherwise 0).

14 Previous key state (1
if the key is down
before the call, 0 if
the key is up).

15 Transition state (1 if
the key is being
released, 0 if the key
is being pressed).

RemarksRemarks

key. For a list of standard virtual key codes,
see Winuser.h

nRepCnt
Repeat count (the number of times the
keystroke is repeated as a result of the
user holding down the key).

nFlags
Specifies the scan code, key-transition
code, previous key state, and context code,
as shown in the following list:

For a WM_KEYUP message, the key-
transition bit (bit 15) is 1 and the context-
code bit (bit 13) is 0.

A nonsystem key is a keyboard key that is
pressed when the ALT key is not pressed
or a keyboard key that is pressed when the
CWnd has the input focus.

For IBM Enhanced 101- and 102-key

NOTENOTE

CWnd::OnKillFocus

afx_msg void OnKillFocus(CWnd*
pNewWnd);

ParametersParameters

RemarksRemarks

keyboards, enhanced keys are the right
ALT and the right CTRL keys on the main
section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and
arrow keys in the clusters to the left of the
numeric keypad; and the slash (/) and
ENTER keys in the numeric keypad. Some
other keyboards may support the
extended-key bit in nFlags.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
immediately before losing the input focus.

pNewWnd
Specifies a pointer to the window that
receives the input focus (may be NULL or
may be temporary).

If the CWnd object is displaying a caret, the
caret should be destroyed at this point.

NOTENOTE

CWnd::OnLButtonDblClk

afx_msg void OnLButtonDblClk(
 UINT nFlags,
 CPoint point);

ParametersParameters

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user double-clicks the left mouse
button.

nFlags
Indicates whether various virtual keys are
down. This parameter can be any
combination of the following values:

MK_CONTROL Set if the CTRL key
is down.

MK_LBUTTON Set if the left mouse
button is down.

MK_MBUTTON Set if the middle
mouse button is down.

MK_RBUTTON Set if the right
mouse button is down.

MK_SHIFT Set if the SHIFT key is
down.

point
Specifies the x- and y-coordinate of the
cursor. These coordinates are always
relative to the upper-left corner of the
window.

Only windows that have the CS_DBLCLKS
WNDCLASS style will receive
OnLButtonDblClk calls. This is the default

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa

NOTENOTE

CWnd::OnLButtonDown

afx_msg void OnLButtonDown(
 UINT nFlags,
 CPoint point);

ParametersParameters

for Microsoft Foundation Class windows.
Windows calls OnLButtonDblClk when the
user presses, releases, and then presses
the left mouse button again within the
system's double-click time limit. Double-
clicking the left mouse button actually
generates four events:
WM_LBUTTONDOWN,
WM_LBUTTONUP messages, the
WM_LBUTTONDBLCLK call, and another
WM_LBUTTONUP message when the
button is released.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user presses the left mouse
button.

nFlags
Indicates whether various virtual keys are
down. This parameter can be any
combination of the following values:

MK_CONTROL Set if the CTRL key
is down.

MK_LBUTTON Set if the left mouse
button is down.

MK_MBUTTON Set if the middle
mouse button is down.

MK_RBUTTON Set if the right
mouse button is down.

RemarksRemarks

NOTENOTE

CWnd::OnLButtonUp

afx_msg void OnLButtonUp(
 UINT nFlags,
 CPoint point);

ParametersParameters

MK_SHIFT Set if the SHIFT key is
down.

point
Specifies the x- and y-coordinate of the
cursor. These coordinates are always
relative to the upper-left corner of the
window.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user releases the left mouse
button.

nFlags
Indicates whether various virtual keys are
down. This parameter can be any
combination of the following values:

MK_CONTROL Set if the CTRL key
is down.

MK_MBUTTON Set if the middle
mouse button is down.

MK_RBUTTON Set if the right
mouse button is down.

MK_SHIFT Set if the SHIFT key is
down.

point
Specifies the x- and y-coordinate of the
cursor. These coordinates are always

RemarksRemarks

NOTENOTE

CWnd::OnMButtonDblClk

afx_msg void OnMButtonDblClk(
 UINT nFlags,
 CPoint point);

ParametersParameters

relative to the upper-left corner of the
window.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user double-clicks the middle
mouse button.

nFlags
Indicates whether various virtual keys are
down. This parameter can be any
combination of the following values:

MK_CONTROL Set if the CTRL key
is down.

MK_LBUTTON Set if the left mouse
button is down.

MK_MBUTTON Set if the middle
mouse button is down.

MK_RBUTTON Set if the right
mouse button is down.

MK_SHIFT Set if the SHIFT key is
down.

point
Specifies the x- and y-coordinate of the
cursor. These coordinates are always
relative to the upper-left corner of the
window.

RemarksRemarks

NOTENOTE

CWnd::OnMButtonDown

afx_msg void OnMButtonDown(
 UINT nFlags,
 CPoint point);

ParametersParameters

Only windows that have the CS_DBLCLKS
WNDCLASS style will receive
OnMButtonDblClk calls. This is the default

for all Microsoft Foundation Class
windows. Windows generates an
OnMButtonDblClk call when the user

presses, releases, and then presses the
middle mouse button again within the
system's double-click time limit. Double-
clicking the middle mouse button actually
generates four events:
WM_MBUTTONDOWN and
WM_MBUTTONUP messages, the
WM_MBUTTONDBLCLK call, and another
WM_MBUTTONUP message.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user presses the middle mouse
button.

nFlags
Indicates whether various virtual keys are
down. This parameter can be any
combination of the following values:

MK_CONTROL Set if the CTRL key
is down.

MK_LBUTTON Set if the left mouse
button is down.

MK_MBUTTON Set if the middle

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa

RemarksRemarks

NOTENOTE

CWnd::OnMButtonUp

afx_msg void OnMButtonUp(
 UINT nFlags,
 CPoint point);

ParametersParameters

mouse button is down.

MK_RBUTTON Set if the right
mouse button is down.

MK_SHIFT Set if the SHIFT key is
down.

point
Specifies the x- and y-coordinate of the
cursor. These coordinates are always
relative to the upper-left corner of the
window.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user releases the middle mouse
button.

nFlags
Indicates whether various virtual keys are
down. This parameter can be any
combination of the following values:

MK_CONTROL Set if the CTRL key
is down.

MK_LBUTTON Set if the left mouse
button is down.

MK_RBUTTON Set if the right
mouse button is down.

MK_SHIFT Set if the SHIFT key is

RemarksRemarks

NOTENOTE

CWnd::OnMDIActivate

afx_msg void OnMDIActivate(
 BOOL bActivate,
 CWnd* pActivateWnd,
 CWnd* pDeactivateWnd);

ParametersParameters

down.

point
Specifies the x- and y-coordinate of the
cursor. These coordinates are always
relative to the upper-left corner of the
window.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
for the child window being deactivated and
the child window being activated.

bActivate
TRUE if the child is being activated and
FALSE if it is being deactivated.

pActivateWnd
Contains a pointer to the MDI child
window to be activated. When received by
an MDI child window, pActivateWnd
contains a pointer to the child window
being activated. This pointer may be
temporary and should not be stored for
later use.

pDeactivateWnd
Contains a pointer to the MDI child
window being deactivated. This pointer
may be temporary and should not be
stored for later use.

RemarksRemarks

NOTENOTE

CWnd::OnMeasureItem

afx_msg void OnMeasureItem(
 int nIDCtl, LPMEASUREITEMSTRUCT
lpMeasureItemStruct);

ParametersParameters

RemarksRemarks

An MDI child window is activated
independently of the MDI frame window.
When the frame becomes active, the child
window that was last activated with a
OnMDIActivate call receives an

WM_NCACTIVATE message to draw an
active window frame and caption bar, but it
does not receive another OnMDIActivate

call.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
by the framework for the owner of an
owner-draw button, combo box, list box, or
menu item when the control is created.

nIDCtl
The ID of the control.

lpMeasureItemStruct
Points to a MEASUREITEMSTRUCT data
structure that contains the dimensions of
the owner-draw control.

Override this member function and fill in
the MEASUREITEMSTRUCT data structure
pointed to by lpMeasureItemStruct and
return; this informs Windows of the
dimensions of the control and allows
Windows to process user interaction with
the control correctly.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmeasureitemstruct

If a list box or combo box is created with
the LBS_OWNERDRAWVARIABLE or
CBS_OWNERDRAWVARIABLE style, the
framework calls this function for the owner
for each item in the control; otherwise this
function is called once.

Windows initiates the call to
OnMeasureItem for the owner of combo

boxes and list boxes created with the
OWNERDRAWFIXED style before sending
the WM_INITDIALOG message. As a
result, when the owner receives this call,
Windows has not yet determined the
height and width of the font used in the
control; function calls and calculations that
require these values should occur in the
main function of the application or library.

If the item being measured is a CMenu ,
CListBox or CComboBox object, then the
MeasureItem virtual function of the

appropriate class is called. Override the
MeasureItem member function of the

appropriate control's class to calculate and
set the size of each item.

OnMeasureItem will be called only if the
control's class is created at run time, or it is
created with the
LBS_OWNERDRAWVARIABLE or
CBS_OWNERDRAWVARIABLE style. If
the control is created by the dialog editor,
OnMeasureItem will not be called. This is

because the WM_MEASUREITEM
message is sent early in the creation
process of the control. If you subclass by
using DDX_Control , SubclassDlgItem , or
SubclassWindow , the subclassing usually

occurs after the creation process.
Therefore, there is no way to handle the
WM_MEASUREITEM message in the
control's OnChildNotify function, which is
the mechanism MFC uses to implement
ON_WM_MEASUREITEM_REFLECT.

https://docs.microsoft.com/windows/desktop/dlgbox/wm-initdialog
https://docs.microsoft.com/windows/desktop/Controls/wm-measureitem
https://docs.microsoft.com/windows/desktop/Controls/wm-measureitem

NOTENOTE

CWnd::OnMenuChar

afx_msg LRESULT OnMenuChar(
 UINT nChar,
 UINT nFlags,
 CMenu* pMenu);

ParametersParameters

Return ValueReturn Value

VALUE DESCRIPTION

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user presses a menu mnemonic
character that doesn't match any of the
predefined mnemonics in the current
menu.

nChar
Depending on the build settings, specifies
the ANSI or Unicode character that the
user pressed.

nFlags
Contains the MF_POPUP flag if the menu
is a pop-up menu. It contains the
MF_SYSMENU flag if the menu is a
Control menu.

pMenu
Contains a pointer to the selected CMenu .
The pointer may be temporary and should
not be stored.

The high-order word of the return value
should contain one of the following
command codes:

0 Tells Windows to
discard the character
that the user pressed
and creates a short
beep on the system
speaker.

1 Tells Windows to
close the current
menu.

2 Informs Windows
that the low-order
word of the return
value contains the
item number for a
specific item. This
item is selected by
Windows.

VALUE DESCRIPTION

RemarksRemarks

NOTENOTE

CWnd::OnMenuDrag

The low-order word is ignored if the high-
order word contains 0 or 1. Applications
should process this message when
accelerator (shortcut) keys are used to
select bitmaps placed in a menu.

It is sent to the CWnd that owns the menu.
OnMenuChar is also called when the user

presses ALT and any other key, even if the
key does not correspond to a mnemonic
character. In this case, pMenu points to the
menu owned by the CWnd , and nFlags is 0.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
of the current drag-and-drop menu when
the user begins to drag a menu item.

afx_msg UINT OnMenuDrag(
 UINT nPos,
 CMenu* pMenu);

ParametersParameters

PARAMETER DESCRIPTION

nPos [in] The index position
of the menu item
when the drag
operation begins.

pMenu [in] Pointer to the
CMenu object that
contains the menu
item.

Return ValueReturn Value

RETURN VALUE MEANING

MND_CONTINUE The menu should
remain active. If the
mouse is released, it
should be ignored.

MND_ENDMENU The menu should be
ended.

RemarksRemarks

NOTENOTE

CWnd::OnMenuGetObject

This method receives the
WM_MENUDRAG notification, which is
described in the Windows SDK.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
of the current drag-and-drop menu when
the mouse cursor enters a menu item or
moves from the center of the item to the

https://docs.microsoft.com/windows/desktop/menurc/wm-menudrag

afx_msg UINT
OnMenuGetObject(MENUGETOBJECTINFO*
pMenuGetObjectInfo);

ParametersParameters

PARAMETER DESCRIPTION

pMenu [in] Pointer to a
MENUGETOBJECTINF
O structure that
contains information
about the drag-and-
drop menu the
mouse cursor is on.

Return ValueReturn Value

RETURN VALUE MEANING

MNGO_NOERROR An interface pointer
that supports drop-
and-drag operations
is returned in the
pvObj member of

the
MENUGETOBJECTINF
O structure.
Currently, only the
IDropTarget interface
is supported.

MNGO_NOINTERFAC
E

No drop-and-drag
interface is
supported.

RemarksRemarks

NOTENOTE

top or bottom of the item.

This method receives the
WM_MENUGETOBJECT notification,
which is described in the Windows SDK.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmenugetobjectinfo
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmenugetobjectinfo
https://docs.microsoft.com/windows/desktop/api/oleidl/nn-oleidl-idroptarget
https://docs.microsoft.com/windows/desktop/menurc/wm-menugetobject

CWnd::OnMenuRButtonUp

afx_msg void OnMenuRButtonUp(
 UINT nPos,
 CMenu* pMenu);

ParametersParameters

PARAMETER DESCRIPTION

nPos [in] The index position
of the menu item
when the right
mouse button was
released.

pMenu [in] Pointer to the
CMenu object that
contains the menu
item.

RemarksRemarks

NOTENOTE

CWnd::OnMenuSelect

The framework calls this member function
when the user releases the right mouse
button while the cursor is on a menu item.

This method receives the
WM_MENURBUTTONUP notification,
which is described in the Windows SDK.
The WM_MENURBUTTONUP message
enables an application to provide a
context-sensitive menu for the menu item
specified in the message.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

If the CWnd object is associated with a
menu, OnMenuSelect is called by the
framework when the user selects a menu
item.

https://docs.microsoft.com/windows/desktop/menurc/wm-menurbuttonup
https://docs.microsoft.com/windows/desktop/menurc/wm-menurbuttonup

afx_msg void OnMenuSelect(
 UINT nItemID,
 UINT nFlags,
 HMENU hSysMenu);

ParametersParameters

RemarksRemarks

nItemID
Identifies the item selected. If the selected
item is a menu item, nItemID contains the
menu-item ID. If the selected item contains
a pop-up menu, nItemID contains the pop-
up menu index, and hSysMenu contains
the handle of the main (clicked-on) menu.

nFlags
Contains a combination of the following
menu flags:

MF_BITMAP Item is a bitmap.

MF_CHECKED Item is checked.

MF_DISABLED Item is disabled.

MF_GRAYED Item is dimmed.

MF_MOUSESELECT Item was
selected with a mouse.

MF_OWNERDRAW Item is an
owner-draw item.

MF_POPUP Item contains a pop-up
menu.

MF_SEPARATOR Item is a menu-
item separator.

MF_SYSMENU Item is contained in
the Control menu.

hSysMenu
If nFlags contains MF_SYSMENU,
identifies the menu associated with the
message. If nFlags contains MF_POPUP,
identifies the handle of the main menu. If
nFlags contains neither MF_SYSMENU
nor MF_POPUP, it is unused.

If nFlags contains 0xFFFF and hSysMenu
contains 0, Windows has closed the menu
because the user pressed the ESC key or
clicked outside the menu.

NOTENOTE

CWnd::OnMouseActivate

afx_msg int OnMouseActivate(
 CWnd* pDesktopWnd,
 UINT nHitTest,
 UINT message);

ParametersParameters

Return ValueReturn Value

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the cursor is in an inactive window
and the user presses a mouse button.

pDesktopWnd
Specifies a pointer to the top-level parent
window of the window being activated.
The pointer may be temporary and should
not be stored.

nHitTest
Specifies the hit-test area code. A hit test is
a test that determines the location of the
cursor.

message
Specifies the mouse message number.

Specifies whether to activate the CWnd and
whether to discard the mouse event. It
must be one of the following values:

MA_ACTIVATE Activate CWnd

object.

MA_NOACTIVATE Do not activate
CWnd object.

MA_ACTIVATEANDEAT Activate
CWnd object and discard the mouse

event.

RemarksRemarks

NOTENOTE

ExampleExample

// The code fragment below shows how to
UI activate an ActiveX control.
// CMyAxCtrl is a COleControl-derived
class.
int CMyAxCtrl::OnMouseActivate(CWnd*
pDesktopWnd, UINT nHitTest, UINT
message)
{
 OnActivateInPlace(TRUE, NULL); //
OnActivateInPlace() is an undocumented
function
 return
COleControl::OnMouseActivate(pDesktopWn
d, nHitTest, message);
}

CWnd::OnMouseHover

MA_NOACTIVATEANDEAT Do not
activate CWnd object and discard
the mouse event.

The default implementation passes this
message to the parent window before any
processing occurs. If the parent window
returns TRUE, processing is halted.

For a description of the individual hit-test
area codes, see the OnNcHitTest member
function

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the cursor hovers over the client
area of the window for the period of time
specified in a prior call to
TrackMouseEvent.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackmouseevent

afx_msg void OnMouseHover(
 UINT nFlags,
 CPoint point);

ParametersParameters

PARAMETER DESCRIPTION

nFlags [in] A bitwise
combination (OR) of
flags that indicate
which modifier keys
are pressed. For
example, the
MK_CONTROL flag
indicates that the
CTRL key is pressed.

point [in] A CPoint object
that specifies the x
and y coordinates of
the cursor relative to
the upper-left corner
of the client area.

RemarksRemarks

MODIFIER KEY DESCRIPTION

MK_CONTROL The CTRL key is
pressed.

MK_LBUTTON The left mouse
button is pressed.

MK_MBUTTON The middle mouse
button is pressed.

MK_RBUTTON The right mouse
button is pressed.

MK_SHIFT The SHIFT key is
pressed.

MK_XBUTTON1 The XBUTTON1
mouse button of the
Microsoft
IntelliMouse is
pressed.

This method receives the
WM_MOUSEHOVER notification, which is
described in the Windows SDK.

The nFlags parameter can be a
combination of modifier keys listed in the
following table. For more information, see
About Mouse Input.

https://docs.microsoft.com/windows/desktop/inputdev/wm-mousehover
https://docs.microsoft.com/windows/desktop/inputdev/about-mouse-input

MK_XBUTTON2 The XBUTTON2
mouse button of the
Microsoft
IntelliMouse is
pressed.

MODIFIER KEY DESCRIPTION

NOTENOTE

CWnd::OnMouseHWheel

afx_msg void OnMouseHWheel(
 UINT nFlags,
 short zDelta,
 CPoint pt);

ParametersParameters

PARAMETER DESCRIPTION

nFlags [in] A bitwise
combination (OR) of
flags that indicate
which modifier keys
are pressed. For
example, the
MK_CONTROL flag
indicates that the
CTRL key is pressed.

For a list of flags, see
the "Message
Parameters"
subheading in About
Mouse Input.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member when
the current window is composed by the
Desktop Window Manager (DWM), and
that window is maximized.

https://docs.microsoft.com/windows/desktop/inputdev/about-mouse-input

zDelta [in] Indicates the
distance the wheel is
rotated, expressed in
multiples or divisions
of WHEEL_DELTA,
which is 120. A
positive value
indicates that the
wheel was rotated to
the right; a negative
value indicates that
the wheel was
rotated to the left.

pt [in] A CPoint object
that specifies the x
and y coordinates of
the cursor relative to
the upper-left corner
of the client area.

PARAMETER DESCRIPTION

RemarksRemarks

NOTENOTE

CWnd::OnMouseLeave

afx_msg void OnMouseLeave();

This method receives the
WM_MOUSEHWHEEL notification
message, which is described in the
Windows SDK. This message is sent to the
window that has the focus when the
mouse's horizontal scroll wheel is tilted or
rotated.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the cursor leaves the client area of
the window specified in a prior call to
TrackMouseEvent.

https://docs.microsoft.com/windows/desktop/inputdev/wm-mousehwheel
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackmouseevent

RemarksRemarks

NOTENOTE

CWnd::OnMouseMove

afx_msg void OnMouseMove(
 UINT nFlags,
 CPoint point);

ParametersParameters

This method receives the
WM_MOUSELEAVE notification, which is
described in the Windows SDK.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the mouse cursor moves.

nFlags
Indicates whether various virtual keys are
down. This parameter can be any
combination of the following values:

MK_CONTROL Set if the CTRL key
is down.

MK_LBUTTON Set if the left mouse
button is down.

MK_MBUTTON Set if the middle
mouse button is down.

MK_RBUTTON Set if the right
mouse button is down.

MK_SHIFT Set if the SHIFT key is
down.

point
Specifies the x- and y-coordinate of the
cursor. These coordinates are always
relative to the upper-left corner of the
window.

https://docs.microsoft.com/windows/desktop/inputdev/wm-mouseleave

RemarksRemarks

NOTENOTE

CWnd::OnMouseWheel

afx_msg BOOL OnMouseWheel(
 UINT nFlags,
 short zDelta,
 CPoint pt);

ParametersParameters

If the mouse is not captured, the
WM_MOUSEMOVE message is received
by the CWnd object beneath the mouse
cursor ; otherwise, the message goes to the
window that has captured the mouse.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
as a user rotates the mouse wheel and
encounters the wheel's next notch.

nFlags
Indicates whether various virtual keys are
down. This parameter can be any
combination of the following values:

MK_CONTROL Set if the CTRL key
is down.

MK_LBUTTON Set if the left mouse
button is down.

MK_MBUTTON Set if the middle
mouse button is down.

MK_RBUTTON Set if the right
mouse button is down.

MK_SHIFT Set if the SHIFT key is
down.

zDelta
Indicates distance rotated. The zDelta

Return ValueReturn Value

RemarksRemarks

value is expressed in multiples or divisions
of WHEEL_DELTA, which is 120. A value
less than zero indicates rotating back
(toward the user) while a value greater
than zero indicates rotating forward (away
from the user). The user can reverse this
response by changing the Wheel setting in
the mouse software. See the Remarks for
more information about this parameter.

pt
Specifies the x- and y-coordinate of the
cursor. These coordinates are always
relative to the upper-left corner of the
screen.

Nonzero if mouse wheel scrolling is
enabled; otherwise 0.

Unless overridden, OnMouseWheel calls the
default of WM_MOUSEWHEEL. Windows
automatically routes the message to the
control or child window that has the focus.
The Win32 function DefWindowProc
propagates the message up the parent
chain to the window that processes it.

The zDelta parameter is a multiple of
WHEEL_DELTA, which is set at 120. This
value is the threshold for an action to be
taken, and one such action (for example,
scrolling forward one notch) should occur
for each delta.

WHEEL_DELTA was set to 120 to allow for
finer-resolution wheels, such as a freely-
rotating wheel with no notches. A finer-
resolution wheel sends more messages
per rotation, but each message has a
smaller delta value. To use such a wheel,
either add the incoming zDelta values until
WHEEL_DELTA is reached (so that you get
the same response for a given delta-
rotation), or scroll partial lines in response
to the more frequent messages. You can
also choose a scroll granularity and
accumulate deltas until WHEEL_DELTA is
reached.

Override this member function to provide
your own mouse-wheel scrolling behavior.

https://docs.microsoft.com/windows/desktop/inputdev/wm-mousewheel
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-defwindowproca

NOTENOTE

CWnd::OnMove

afx_msg void OnMove(
 int x,
 int y);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnMoving

OnMouseWheel handles messages for
Windows NT 4.0 and later versions. For
Windows 95/98 or Windows NT 3.51
message handling, use
OnRegisteredMouseWheel.

The framework calls this member function
after the CWnd object has been moved.

x
Specifies the new x-coordinate location of
the upper-left corner of the client area.
This new location is given in screen
coordinates for overlapped and pop-up
windows, and parent-client coordinates for
child windows.

y
Specifies the new y-coordinate location of
the upper-left corner of the client area.
This new location is given in screen
coordinates for overlapped and pop-up
windows, and parent-client coordinates for
child windows.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function

afx_msg void OnMoving(
 UINT nSide,
 LPRECT lpRect);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnNcActivate

afx_msg BOOL OnNcActivate(BOOL
bActive);

ParametersParameters

Return ValueReturn Value

while a user is moving a CWnd object.

nSide
The edge of window to be moved.

lpRect
Address of the CRect or RECT structure
that will contain the item's coordinates.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the nonclient area needs to be
changed to indicate an active or inactive
state.

bActive
Specifies when a caption bar or icon needs
to be changed to indicate an active or
inactive state. The bActive parameter is
TRUE if an active caption or icon is to be
drawn. It is FALSE for an inactive caption
or icon.

Nonzero if Windows should proceed with
default processing; 0 to prevent the
caption bar or icon from being deactivated.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

RemarksRemarks

NOTENOTE

CWnd::OnNcCalcSize

afx_msg void OnNcCalcSize(
 BOOL bCalcValidRects,
 NCCALCSIZE_PARAMS* lpncsp);

ParametersParameters

RemarksRemarks

The default implementation draws the title
bar and title-bar text in their active colors if
bActive is TRUE and in their inactive colors
if bActive is FALSE.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the size and position of the client
area needs to be calculated.

bCalcValidRects
Specifies whether the application should
specify which part of the client area
contains valid information. Windows will
copy the valid information to the specified
area within the new client area. If this
parameter is TRUE, the application should
specify which part of the client area is
valid.

lpncsp
Points to a NCCALCSIZE_PARAMS data
structure that contains information an
application can use to calculate the new
size and position of the CWnd rectangle
(including client area, borders, caption,
scroll bars, and so on).

By processing this message, an application
can control the contents of the window's
client area when the size or position of the

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagnccalcsize_params

NOTENOTE

CWnd::OnNcCreate

afx_msg BOOL OnNcCreate(LPCREATESTRUCT
lpCreateStruct);

ParametersParameters

window changes.

Regardless of the value of bCalcValidRects,
the first rectangle in the array specified by
the rgrc structure member of the
NCCALCSIZE_PARAMS structure contains the

coordinates of the window. For a child
window, the coordinates are relative to the
parent window's client area. For top-level
windows, the coordinates are screen
coordinates. An application should modify
the rgrc[0] rectangle to reflect the size
and position of the client area.

The rgrc[1] and rgrc[2] rectangles are
valid only if bCalcValidRects is TRUE. In
this case, the rgrc[1] rectangle contains
the coordinates of the window before it
was moved or resized. The rgrc[2]

rectangle contains the coordinates of the
window's client area before the window
was moved. All coordinates are relative to
the parent window or screen.

The default implementation calculates the
size of the client area based on the window
characteristics (presence of scroll bars,
menu, and so on), and places the result in
lpncsp.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
prior to the WM_CREATE message when
the CWnd object is first created.

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CWnd::OnNcDestroy

afx_msg void OnNcDestroy();

RemarksRemarks

CWnd::OnNcHitTest

lpCreateStruct
Points to the CREATESTRUCT data
structure for CWnd .

Nonzero if the nonclient area is created. It
is 0 if an error occurs; the Create function
will return failure in this case.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

Called by the framework when the
nonclient area is being destroyed, and is
the last member function called when the
Windows window is destroyed.

The default implementation performs
some cleanup, then calls the virtual
member function PostNcDestroy.

Override PostNcDestroy if you want to
perform your own cleanup, such as a
delete this operation. If you override
OnNcDestroy , you must call OnNcDestroy in

your base class to ensure that any memory
internally allocated for the window is freed.

The framework calls this member function
for the CWnd object that contains the
cursor (or the CWnd object that used the
SetCapture member function to capture
the mouse input) every time the mouse is

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcreatestructa

afx_msg LRESULT OnNcHitTest(CPoint
point);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CWnd::OnNcLButtonDblClk

afx_msg void OnNcLButtonDblClk(
 UINT nHitTest,
 CPoint point);

ParametersParameters

moved.

point
Contains the x- and y-coordinates of the
cursor. These coordinates are always
screen coordinates.

One of the mouse hit-test enumerated
values listed below.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user double-clicks the left mouse
button while the cursor is within a
nonclient area of CWnd .

nHitTest
Specifies the hit-test code. A hit test is a
test that determines the location of the
cursor.

point
Specifies a CPoint object that contains the
x and y screen coordinates of the cursor
position. These coordinates are always
relative to the upper-left corner of the
screen.

RemarksRemarks

NOTENOTE

CWnd::OnNcLButtonDown

afx_msg void OnNcLButtonDown(
 UINT nHitTest,
 CPoint point);

ParametersParameters

RemarksRemarks

If appropriate, the WM_SYSCOMMAND
message is sent.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user presses the left mouse
button while the cursor is within a
nonclient area of the CWnd object.

nHitTest
Specifies the hit-test code. A hit test is a
test that determines the location of the
cursor.

point
Specifies a CPoint object that contains the
x and y screen coordinates of the cursor
position. These coordinates are always
relative to the upper-left corner of the
screen.

If appropriate, the WM_SYSCOMMAND
is sent.

NOTENOTE

CWnd::OnNcLButtonUp

afx_msg void OnNcLButtonUp(
 UINT nHitTest,
 CPoint point);

ParametersParameters

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received.If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user releases the left mouse
button while the cursor is within a
nonclient area.

nHitTest
Specifies the hit-test code. A hit test is a
test that determines the location of the
cursor.

point
Specifies a CPoint object that contains the
x and y screen coordinates of the cursor
position. These coordinates are always
relative to the upper-left corner of the
screen.

If appropriate, WM_SYSCOMMAND is
sent.

NOTENOTE

CWnd::OnNcMButtonDblCl
k

afx_msg void OnNcMButtonDblClk(
 UINT nHitTest,
 CPoint point);

ParametersParameters

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user double-clicks the middle
mouse button while the cursor is within a
nonclient area.

nHitTest
Specifies the hit-test code. A hit test is a
test that determines the location of the
cursor.

point
Specifies a CPoint object that contains the
x and y screen coordinates of the cursor
position. These coordinates are always
relative to the upper-left corner of the
screen.

NOTENOTE

CWnd::OnNcMButtonDown

afx_msg void OnNcMButtonDown(
 UINT nHitTest,
 CPoint point);

ParametersParameters

RemarksRemarks

NOTENOTE

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user presses the middle mouse
button while the cursor is within a
nonclient area.

nHitTest
Specifies the hit-test code. A hit test is a
test that determines the location of the
cursor.

point
Specifies a CPoint object that contains the
x and y screen coordinates of the cursor
position. These coordinates are always
relative to the upper-left corner of the
screen.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

CWnd::OnNcMButtonUp

afx_msg void OnNcMButtonUp(
 UINT nHitTest,
 CPoint point);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnNcMouseHover

afx_msg void OnNcMouseHover(
 UINT nHitTest,
 CPoint point);

ParametersParameters

The framework calls this member function
when the user releases the middle mouse
button while the cursor is within a
nonclient area.

nHitTest
Specifies the hit-test code. A hit test is a
test that determines the location of the
cursor.

point
Specifies a CPoint object that contains the
x and y screen coordinates of the cursor
position. These coordinates are always
relative to the upper-left corner of the
screen.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the cursor hovers over the nonclient
area of the window for the period of time
specified in a prior call to
TrackMouseEvent.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackmouseevent

PARAMETER DESCRIPTION

nHitTest [in] The hit-test value
returned by the
CWnd::DefWindowPr
oc function as a result
of processing the
WM_NCHITTEST
message.

point [in] A CPoint object
that specifies the x
and y coordinates of
the cursor relative to
the upper-left corner
of the screen.

RemarksRemarks

NOTENOTE

CWnd::OnNcMouseLeave

afx_msg void OnNcMouseLeave();

RemarksRemarks

This method receives the
WM_NCMOUSEHOVER notification,
which is described in the Windows SDK.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the cursor leaves the nonclient area
of the window specified in a prior call to
TrackMouseEvent.

This method receives the
WM_NCMOUSELEAVE notification, which
is described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/inputdev/wm-nchittest
https://docs.microsoft.com/windows/desktop/inputdev/wm-ncmousehover
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-trackmouseevent
https://docs.microsoft.com/windows/desktop/inputdev/wm-ncmouseleave

NOTENOTE

CWnd::OnNcMouseMove

afx_msg void OnNcMouseMove(
 UINT nHitTest,
 CPoint point);

ParametersParameters

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the cursor is moved within a
nonclient area.

nHitTest
Specifies the hit-test code. A hit test is a
test that determines the location of the
cursor.

point
Specifies a CPoint object that contains the
x and y screen coordinates of the cursor
position. These coordinates are always
relative to the upper-left corner of the
screen.

If appropriate, the WM_SYSCOMMAND
message is sent.

NOTENOTE

CWnd::OnNcPaint

afx_msg void OnNcPaint();

RemarksRemarks

CWnd::OnNcRButtonDblCl
k

afx_msg void OnNcRButtonDblClk(
 UINT nHitTest,
 CPoint point);

ParametersParameters

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the nonclient area needs to be
painted.

The default implementation paints the
window frame.

An application can override this call and
paint its own custom window frame. The
clipping region is always rectangular, even
if the shape of the frame is altered.

The framework calls this member function
when the user double-clicks the right
mouse button while the cursor is within a
nonclient area of CWnd .

nHitTest
Specifies the hit-test code. A hit test is a
test that determines the location of the
cursor.

point
Specifies a CPoint object that contains the
x and y screen coordinates of the cursor

RemarksRemarks

NOTENOTE

CWnd::OnNcRButtonDown

afx_msg void OnNcRButtonDown(
 UINT nHitTest,
 CPoint point);

ParametersParameters

RemarksRemarks

position. These coordinates are always
relative to the upper-left corner of the
screen.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user presses the right mouse
button while the cursor is within a
nonclient area.

nHitTest
Specifies the hit-test code. A hit test is a
test that determines the location of the
cursor.

point
Specifies a CPoint object that contains the
x and y screen coordinates of the cursor
position. These coordinates are always
relative to the upper-left corner of the
screen.

NOTENOTE

CWnd::OnNcRButtonUp

afx_msg void OnNcRButtonUp(
 UINT nHitTest,
 CPoint point);

ParametersParameters

RemarksRemarks

NOTENOTE

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user releases the right mouse
button while the cursor is within a
nonclient area.

nHitTest
Specifies the hit-test code. A hit test is a
test that determines the location of the
cursor.

point
Specifies a CPoint object that contains the
x and y screen coordinates of the cursor
position. These coordinates are always
relative to the upper-left corner of the
screen.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

CWnd::OnNcRenderingCha
nged

afx_msg void OnNcRenderingChanged(BOOL
bIsRendering);

ParametersParameters

PARAMETER DESCRIPTION

bIsRendering [in] TRUE if Desktop
Window Manager
(DWM) rendering is
enabled for the
nonclient area of the
window; FALSE if
rendering is disabled.

RemarksRemarks

NOTENOTE

CWnd::OnNcXButtonDblClk

void OnNcXButtonDblClk(
 short nHitTest,
 UINT nButton,
 CPoint point);

The framework calls this member when
the rendering policy for the nonclient area
has changed.

This method receives the
WM_DWMNCRENDERINGCHANGED
notification, which is described in the
Windows SDK.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user double-clicks XBUTTON1
or XBUTTON2 while the cursor is in the
nonclient area of a window.

https://docs.microsoft.com/windows/desktop/dwm/wm-dwmncrenderingchanged

ParametersParameters

PARAMETER DESCRIPTION

nHitTest [in] The hit-test value
returned by the
CWnd::DefWindowPr
oc function as a result
of processing the
WM_NCHITTEST
message.

nButton [in] A value of
XBUTTON1 if the first
Microsoft
Intellimouse X button
is double-clicked, or
XBUTTON2 if the
second X button is
double-clicked.

point [in] A CPoint object
that specifies the x
and y coordinates of
the cursor relative to
the upper-left corner
of the client area.

RemarksRemarks

NOTENOTE

CWnd::OnNcXButtonDown

This method receives the
WM_XBUTTONDBLCLK notification,
which is described in the Windows SDK.
This message is posted to the window that
contains the cursor. If a window has
captured the mouse, this message is not
posted.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user presses XBUTTON1 or
XBUTTON2 of the mouse while the cursor
is in the nonclient area of a window.

https://docs.microsoft.com/windows/desktop/inputdev/wm-nchittest
https://docs.microsoft.com/windows/desktop/inputdev/wm-xbuttondblclk

afx_msg void OnNcXButtonDown(
 short nHitTest,
 UINT nButton,
 CPoint point);

ParametersParameters

PARAMETER DESCRIPTION

nHitTest [in] The hit-test value
returned by the
CWnd::DefWindowPr
oc function as a result
of processing the
WM_NCHITTEST
message.

nButton [in] A value of
XBUTTON1 if the first
mouse X button is
pressed, or
XBUTTON2 if the
second X button is
pressed.

point [in] A CPoint object
that specifies the x
and y coordinates of
the cursor relative to
the upper-left corner
of the screen.

RemarksRemarks

NOTENOTE

This method receives the
WM_NCXBUTTONDOWN notification,
which is described in the Windows SDK.
This message is posted to the window that
contains the cursor. If a window has
captured the mouse, this message is not
posted.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

https://docs.microsoft.com/windows/desktop/inputdev/wm-nchittest
https://docs.microsoft.com/windows/desktop/inputdev/wm-ncxbuttondown

 CWnd::OnNcXButtonUp

afx_msg void OnNcXButtonUp(
 short nHitTest,
 UINT nButton,
 CPoint point);

ParametersParameters

PARAMETER DESCRIPTION

nHitTest [in] The hit-test value
returned by the
CWnd::DefWindowPr
oc function as a result
of processing the
WM_NCHITTEST
message.

nButton [in] A value of
XBUTTON1 if the first
mouse X button is
released, or
XBUTTON2 if the
second X button is
released.

point [in] A CPoint object
that specifies the x
and y coordinates of
the cursor relative to
the upper-left corner
of the screen.

RemarksRemarks

The framework calls this member function
when the user releases XBUTTON1 or
XBUTTON2 of the mouse while the cursor
is in the nonclient area of a window.

This method receives the
WM_NCXBUTTONUP notification, which
is described in the Windows SDK. This
message is posted to the window that
contains the cursor. If a window has
captured the mouse, this message is not
posted.

https://docs.microsoft.com/windows/desktop/inputdev/wm-nchittest
https://docs.microsoft.com/windows/desktop/inputdev/wm-ncxbuttonup

NOTENOTE

CWnd::OnNextMenu

afx_msg void OnNextMenu(
 UINT nKey,
 LPMDINEXTMENU lpMdiNextMenu);

ParametersParameters

PARAMETER DESCRIPTION

nKey [in] A bitwise
combination (OR) of
flags that indicate
which modifier keys
are pressed. For
example, the
MK_CONTROL flag
indicates that the
CTRL key is pressed.

For a list of flags, see
the "Message
Parameters"
subheading in About
Mouse Input.

lpMdiNextMenu [in] Pointer to a
MDINEXTMENU
structure that
contains information
about the menu to
be activated.

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the right or left arrow key is used to
switch between the menu bar and the
system menu.

This method receives the
WM_UNINITMENUPOPUP notification,
which is described in the Windows SDK. In

https://docs.microsoft.com/windows/desktop/inputdev/about-mouse-input
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmdinextmenu
https://docs.microsoft.com/windows/desktop/menurc/wm-uninitmenupopup

NOTENOTE

CWnd::OnNotify

virtual BOOL OnNotify(
 WPARAM wParam,
 LPARAM lParam,
 LRESULT* pResult);

ParametersParameters

Return ValueReturn Value

response to this message, your application
can set the hmenuNext member of the
MDINEXTMENU structure to specify the
menu to switch to, and the hwndNext

member to specify the window to receive
menu notification messages.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
to inform the parent window of a control
that an event has occurred in the control or
that the control requires some kind of
information.

wParam
Identifies the control that sends the
message if the message is from a control.
Otherwise, wParam is 0.

lParam
Pointer to a notification message (NMHDR)
structure that contains the notification
code and additional information. For some
notification messages, this parameter
points to a larger structure that has the
NMHDR structure as its first member.

pResult
Pointer to an LRESULT variable in which
to store the result code if the message is
handled.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmdinextmenu

RemarksRemarks

CWnd::OnNotifyFormat

afx_msg UINT OnNotifyFormat(
 CWnd* pWnd,
 UINT nCommand);

ParametersParameters

PARAMETER DESCRIPTION

pWnd [in] A pointer to a
CWnd object that

represents the
window sending the
WM_NOTIFY
message.

This parameter is the
pointer to a control if
the nCommand
parameter is
NF_QUERY, or the
pointer to the parent
window of a control if
nCommand is
NF_REQUERY.

An application returns nonzero if it
processes this message; otherwise 0.

OnNotify processes the message map for
control notification.

Override this member function in your
derived class to handle the WM_NOTIFY
message. An override will not process the
message map unless the base class
OnNotify is called.

For more information on the
WM_NOTIFY message, see Technical Note
61 (TN061), ON_NOTIFY and
WM_NOTIFY messages. You may also be
interested the related topics described in
Control Topics, and TN062, Message
Reflection for Windows Controls.

The framework calls this member function
to determine if the current window accepts
ANSI or Unicode structures in the
WM_NOTIFY notification message.

https://docs.microsoft.com/windows/desktop/controls/wm-notify

nCommand [in] A command value
that specializes the
WM_NOTIFY
message. The
possible values are:

- NF_QUERY -
The message is a
query to determine
whether ANSI or
Unicode structures
should be used in
WM_NOTIFY
messages. This
message is sent from
a control to its parent
window during the
creation of a control,
and in response to
the NF_REQUERY
form of this message.
- NF_REQUERY -
The message is a
request for a control
to send the
NF_QUERY form of
this message to its
parent window. This
request is sent from
the parent window,
and asks the control
to requery the parent
about the type of
structure to use in
WM_NOTIFY
messages. If the
nCommand
parameter is
NF_REQUERY, the
return value is the
result of the requery
operation.

PARAMETER DESCRIPTION

Return ValueReturn Value

RETURN VALUE MEANING

NFR_ANSI ANSI structures
should be used in
WM_NOTIFY
messages sent by the
control.

NFR_UNICODE Unicode structures
should be used in
WM_NOTIFY
messages sent by the
control.

0 An error occurred.

RemarksRemarks

NOTENOTE

CWnd::OnPaint

afx_msg void OnPaint();

RemarksRemarks

This method receives the
WM_NOTIFYFORMAT notification, which
is described in the Windows SDK.
WM_NOTIFY messages are sent from a
common control to its parent window, and
from the parent window to the common
control.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when Windows or an application makes a
request to repaint a portion of an
application's window.

The WM_PAINT message is sent when the
UpdateWindow or RedrawWindow
member function is called.

A window may receive internal paint
messages as a result of calling the
RedrawWindow member function with the

RDW_INTERNALPAINT flag set. In this
case, the window may not have an update
region. An application should call the
GetUpdateRect member function to
determine whether the window has an
update region. If GetUpdateRect returns 0,
the application should not call the
BeginPaint and EndPaint member
functions.

It is an application's responsibility to check
for any necessary internal repainting or
updating by looking at its internal data

https://docs.microsoft.com/windows/desktop/Controls/wm-notifyformat
https://docs.microsoft.com/windows/desktop/gdi/the-wm-paint-message

 CWnd::OnPaintClipboard

afx_msg void OnPaintClipboard(
 CWnd* pClipAppWnd,
 HGLOBAL hPaintStruct);

ParametersParameters

RemarksRemarks

structures for each WM_PAINT message
because a WM_PAINT message may have
been caused by both an invalid area and a
call to the RedrawWindow member function
with the RDW_INTERNALPAINT flag set.

An internal WM_PAINT message is sent
only once by Windows. After an internal
WM_PAINT message is sent to a window
by the UpdateWindow member function, no
further WM_PAINT messages will be sent
or posted until the window is invalidated
or until the RedrawWindow member
function is called again with the
RDW_INTERNALPAINT flag set.

For information on rendering an image in
document/view applications, see
CView::OnDraw.

For more information about using
WM_Paint , see the following topics in the

Windows SDK:

The WM_PAINT Message

Using the WM_PAINT Message

A Clipboard owner's OnPaintClipboard
member function is called by a Clipboard
viewer when the Clipboard owner has
placed data on the Clipboard in the
CF_OWNERDISPLAY format and the
Clipboard viewer's client area needs
repainting.

pClipAppWnd
Specifies a pointer to the Clipboard-
application window. The pointer may be
temporary and should not be stored for
later use.

hPaintStruct
Identifies a PAINTSTRUCT data structure
that defines what part of the client area to
paint.

https://docs.microsoft.com/windows/desktop/gdi/the-wm-paint-message
https://docs.microsoft.com/windows/desktop/gdi/using-the-wm-paint-message
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagpaintstruct

NOTENOTE

CWnd::OnPaletteChanged

afx_msg void OnPaletteChanged(CWnd*
pFocusWnd);

ParametersParameters

RemarksRemarks

To determine whether the entire client area
or just a portion of it needs repainting, the
Clipboard owner must compare the
dimensions of the drawing area given in
the rcpaint member of the PAINTSTRUCT

structure to the dimensions given in the
most recent OnSizeClipboard member
function call.

OnPaintClipboard should use the
GlobalLock Windows function to lock the
memory that contains the PAINTSTRUCT

data structure and unlock that memory
with the GlobalUnlock Windows function
before it exits.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
for all top-level windows after the window
with input focus has realized its logical
palette, thereby changing the system
palette.

pFocusWnd
Specifies a pointer to the window that
caused the system palette to change. The
pointer may be temporary and should not
be stored.

This call allows a window without the input
focus that uses a color palette to realize its
logical palettes and update its client area.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globallock
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalunlock

NOTENOTE

CWnd::OnPaletteIsChangin
g

afx_msg void OnPaletteIsChanging(CWnd*
pRealizeWnd);

ParametersParameters

RemarksRemarks

The OnPaletteChanged member function is
called for all top-level and overlapped
windows, including the one that changed
the system palette and caused the
WM_PALETTECHANGED message to be
sent. If any child window uses a color
palette, this message must be passed on to
it.

To avoid an infinite loop, the window
shouldn't realize its palette unless it
determines that pFocusWnd does not
contain a pointer to itself.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
to inform applications that an application
is going to realize its logical palette.

pRealizeWnd
Specifies the window that is about to
realize its logical palette.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the

 CWnd::OnParentNotify

afx_msg void OnParentNotify(
 UINT message,
 LPARAM lParam);

ParametersParameters

message and not the parameters you
supply to the function.

A parent's OnParentNotify member
function is called by the framework when
its child window is created or destroyed, or
when the user clicks a mouse button while
the cursor is over the child window.

message
Specifies the event for which the parent is
being notified and the identifier of the
child window. The event is the low-order
word of message. If the event is
WM_CREATE or WM_DESTROY, the
high-order word of message is the
identifier of the child window; otherwise,
the high-order word is undefined. The
event (low-order word of message) can be
any of these values:

WM_CREATE The child window is
being created.

WM_DESTROY The child window is
being destroyed.

WM_LBUTTONDOWN The user
has placed the mouse cursor over
the child window and clicked the left
mouse button.

WM_MBUTTONDOWN The user
has placed the mouse cursor over
the child window and clicked the
middle mouse button.

WM_RBUTTONDOWN The user
has placed the mouse cursor over
the child window and clicked the
right mouse button.

lParam
If the event (low-order word) of message is
WM_CREATE or WM_DESTROY, lParam
specifies the window handle of the child
window; otherwise lParam contains the x
and y coordinates of the cursor. The x

RemarksRemarks

NOTENOTE

CWnd::OnPowerBroadcast

afx_msg UINT OnPowerBroadcast(
 UINT nPowerEvent,
 UINT nEventData);

ParametersParameters

coordinate is in the low-order word and
the y coordinate is in the high-order word.

When the child window is being created,
the system calls OnParentNotify just
before the Create member function that
creates the window returns. When the
child window is being destroyed, the
system calls OnParentNotify before any
processing takes place to destroy the
window.

OnParentNotify is called for all ancestor
windows of the child window, including the
top-level window.

All child windows except those that have
the WS_EX_NOPARENTNOTIFY style
send this message to their parent
windows. By default, child windows in a
dialog box have the
WS_EX_NOPARENTNOTIFY style unless
the child window was created without this
style by calling the CreateEx member
function.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when a power-management event occurs.

PARAMETER DESCRIPTION

nPowerEvent [in] The power-
management event.

nEventData [in] Event-specific
data.

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CWnd::OnQueryDragIcon

If the event is a request, return TRUE to
grant the request, or
BROADCAST_QUERY_DENY to deny the
request.

This method receives the
WM_POWERBROADCAST message,
which is described in the Windows SDK.

The nPowerEvent parameter specifies
events such as battery power is low, the
power status has changed, permission to
suspend operation is requested or denied,
an operation is resuming automatically
after an event, the system is suspending
operation, or an operation is resuming
after suspension. The nEventData
parameter is typically not used. For more
information, see the wParam and lParam
parameters of the
WM_POWERBROADCAST message.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
by a minimized (iconic) window that does
not have an icon defined for its class.

https://docs.microsoft.com/windows/desktop/Power/wm-powerbroadcast
https://docs.microsoft.com/windows/desktop/Power/wm-powerbroadcast

afx_msg HCURSOR OnQueryDragIcon();

Return ValueReturn Value

RemarksRemarks

CWnd::OnQueryEndSession

afx_msg BOOL OnQueryEndSession();

Return ValueReturn Value

RemarksRemarks

CWnd::OnQueryNewPalett

A doubleword value that contains a cursor
or icon handle in the low-order word. The
cursor or icon must be compatible with the
display driver's resolution. If the
application returns NULL, the system
displays the default cursor. The default
return value is NULL.

The system makes this call to obtain the
cursor to display while the user drags the
minimized window. If an application
returns the handle of an icon or cursor, the
system converts it to black-and-white. If an
application returns a handle, the handle
must identify a monochrome cursor or
icon compatible with the display driver's
resolution. The application can call the
CWinApp::LoadCursor or
CWinApp::LoadIcon member functions to
load a cursor or icon from the resources in
its executable file and to obtain this handle.

The framework calls this member function
when the user chooses to end the
Windows session or when an application
calls the ExitWindows Windows function.

Nonzero if an application can be
conveniently shut down; otherwise 0.

If any application returns 0, the Windows
session is not ended. Windows stops
calling OnQueryEndSession as soon as one
application returns 0 and sends the
WM_ENDSESSION message with a
parameter value of FALSE for any
application that has already returned
nonzero.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-exitwindows

e

afx_msg BOOL OnQueryNewPalette();

Return ValueReturn Value

CWnd::OnQueryOpen

afx_msg BOOL OnQueryOpen();

Return ValueReturn Value

RemarksRemarks

CWnd::OnQueryUIState

afx_msg UINT OnQueryUIState();

Return ValueReturn Value

The framework calls this member function
when the CWnd object is about to receive
the input focus, giving the CWnd an
opportunity to realize its logical palette
when it receives the focus.

Nonzero if the CWnd realizes its logical
palette; otherwise 0.

The framework calls this member function
when the CWnd object is minimized and
the user requests that the CWnd be
restored to its preminimized size and
position.

Nonzero if the icon can be opened, or 0 to
prevent the icon from being opened.

While in OnQueryOpen , CWnd should not
perform any action that would cause an
activation or focus change (for example,
creating a dialog box).

Called to retrieve the user interface (UI)
state for a window.

The return value is NULL if the focus
indicators and the keyboard accelerators
are visible. Otherwise, the return value can
be one or more of the following values:

UISF_HIDEFOCUS Focus
indicators are hidden.

UISF_HIDEACCEL Keyboard
accelerators are hidden.

RemarksRemarks

CWnd::OnRawInput

afx_msg void OnRawInput(
 UINT nInputCode,
 HRAWINPUT hRawInput);

ParametersParameters

PARAMETER DESCRIPTION

nInputCode [in] Input code that
indicates whether the
input occurred while
the application was in
the foreground or
not. In either case,
the application must
call
CWnd::DefWindowPr
oc so the system can
perform cleanup.

This parameter can
be one of the
following values:

- RIM_INPUT - Input
occurred while the
application was in the
foreground.
- RIM_INPUTSINK -
Input occurred while
the application was
not in the
foreground.

hRawInput [in] Handle to a
RAWINPUT structure
that contains the raw
input from the device.

RemarksRemarks

UISF_ACTIVE Windows XP: A
control should be drawn in the style
used for active controls.

This member function emulates the
functionality of the WM_QUERYUISTATE
message, as described in the Windows
SDK.

The framework calls this member function
when the current window gets raw input.

This method receives the WM_INPUT
notification, which is described in the
Windows SDK.

https://docs.microsoft.com/windows/desktop/menurc/wm-queryuistate
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagrawinput
https://docs.microsoft.com/windows/desktop/inputdev/wm-appcommand

NOTENOTE

CWnd::OnRButtonDblClk

afx_msg void OnRButtonDblClk(
 UINT nFlags,
 CPoint point);

ParametersParameters

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user double-clicks the right
mouse button.

nFlags
Indicates whether various virtual keys are
down. This parameter can be any
combination of the following values:

MK_CONTROL Set if CTRL key is
down.

MK_LBUTTON Set if left mouse
button is down.

MK_MBUTTON Set if middle
mouse button is down.

MK_RBUTTON Set if right mouse
button is down.

MK_SHIFT Set if SHIFT key is
down.

point
Specifies the x and y coordinates of the
cursor. These coordinates are always
relative to the upper-left corner of the
window.

Only windows that have the CS_DBLCLKS
WNDCLASS style can receive
OnRButtonDblClk calls. This is the default

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa

NOTENOTE

CWnd::OnRButtonDown

afx_msg void OnRButtonDown(
 UINT nFlags,
 CPoint point);

ParametersParameters

for windows within the Microsoft
Foundation Class Library. Windows calls
OnRButtonDblClk when the user presses,

releases, and then again presses the right
mouse button within the system's double-
click time limit. Double-clicking the right
mouse button actually generates four
events: WM_RBUTTONDOWN and
WM_RBUTTONUP messages, the
OnRButtonDblClk call, and another

WM_RBUTTONUP message when the
button is released.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user presses the right mouse
button.

nFlags
Indicates whether various virtual keys are
down. This parameter can be any
combination of the following values:

MK_CONTROL Set if CTRL key is
down.

MK_LBUTTON Set if left mouse
button is down.

MK_MBUTTON Set if middle
mouse button is down.

MK_RBUTTON Set if right mouse
button is down.

RemarksRemarks

CWnd::OnRButtonUp

afx_msg void OnRButtonUp(
 UINT nFlags,
 CPoint point);

ParametersParameters

MK_SHIFT Set if SHIFT key is
down.

point
Specifies the x and y coordinates of the
cursor. These coordinates are always
relative to the upper-left corner of the
window.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user releases the right mouse
button.

nFlags
Indicates whether various virtual keys are
down. This parameter can be any
combination of the following values:

MK_CONTROL Set if CTRL key is
down.

MK_LBUTTON Set if left mouse
button is down.

MK_MBUTTON Set if middle
mouse button is down.

MK_SHIFT Set if SHIFT key is
down.

point
Specifies the x and y coordinates of the
cursor. These coordinates are always
relative to the upper-left corner of the
window.

RemarksRemarks

CWnd::OnRegisteredMouse
Wheel

afx_msg LRESULT OnRegisteredMouseWheel(
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
as a user rotates the mouse wheel and
encounters the wheel's next notch.

wParam
Horizontal position of the pointer.

lParam
Vertical position of the pointer.

Insignificant at this time. Always zero.

Unless overridden,
OnRegisteredMouseWheel routes the

message to the appropriate window (the
parent window with focus), and calls the
WM_MOUSEWHEEL handler for that
window.

Override this member function to provide
your own message routing or to alter the
mouse-wheel scrolling behavior.

OnRegisteredMouseWheel handles
messages for Windows 95/98 and Windows
NT 3.51. For Windows NT 4.0 message
handling, use OnMouseWheel.

https://docs.microsoft.com/windows/desktop/inputdev/wm-mousewheel

CWnd::OnRenderAllFormat
s

afx_msg void OnRenderAllFormats();

RemarksRemarks

CWnd::OnRenderFormat

afx_msg void OnRenderFormat(UINT
nFormat);

ParametersParameters

RemarksRemarks

The Clipboard owner's
OnRenderAllFormats member function is

called by the framework when the owner
application is being destroyed.

The Clipboard owner should render the
data in all the formats it is capable of
generating and pass a data handle for each
format to the Clipboard by calling the
SetClipboardData Windows function. This
ensures that the Clipboard contains valid
data even though the application that
rendered the data is destroyed. The
application should call the OpenClipboard
member function before calling the
SetClipboardData Windows function and
call the CloseClipboard Windows function
afterward.

The Clipboard owner's OnRenderFormat
member function is called by the
framework when a particular format with
delayed rendering needs to be rendered.

nFormat
Specifies the Clipboard format.

The receiver should render the data in that
format and pass it to the Clipboard by
calling the SetClipboardData Windows
function.

Do not call the OpenClipboard member
function or the CloseClipboard Windows
function from within OnRenderFormat .

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setclipboarddata
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setclipboarddata
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-closeclipboard
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setclipboarddata

NOTENOTE

CWnd::OnSessionChange

afx_msg void OnSessionChange(
 UINT nSessionState,
 UINT nId);

ParametersParameters

PARAMETER DESCRIPTION

nSessionState [in] A status code
describes the session
state change.

nId [in] A session
identifier.

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
to notify an application of a change in
session state.

This method receives the
WM_WTSSESSION_CHANGE
notification, which is described in the
Windows SDK.

The nSessionState parameter specifies that
a session is connected or disconnected
from the console or a remote terminal, a
user logged on or off, a session is locked or
unlocked, or a session has changed to
remote-controlled status. For more
information, see the wParam parameter of
the WM_WTSSESSION_CHANGE
message.

https://docs.microsoft.com/windows/desktop/TermServ/wm-wtssession-change
https://docs.microsoft.com/windows/desktop/TermServ/wm-wtssession-change

NOTENOTE

CWnd::OnSetCursor

afx_msg BOOL OnSetCursor(
 CWnd* pWnd,
 UINT nHitTest,
 UINT message);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
if mouse input is not captured and the
mouse causes cursor movement within the
CWnd object.

pWnd
Specifies a pointer to the window that
contains the cursor. The pointer may be
temporary and should not be stored for
later use.

nHitTest
Specifies the hit-test area code. The hit test
determines the cursor's location.

message
Specifies the mouse message number.

Nonzero to halt further processing, or 0 to
continue.

The default implementation calls the
parent window's OnSetCursor before
processing. If the parent window returns
TRUE, further processing is halted. Calling
the parent window gives the parent
window control over the cursor's setting in
a child window.

The default implementation sets the cursor

NOTENOTE

CWnd::OnSetFocus

afx_msg void OnSetFocus(CWnd* pOldWnd);

ParametersParameters

RemarksRemarks

to an arrow if it is not in the client area or
to the registered-class cursor if it is.

If nHitTest is HTERROR and message is a
mouse button-down message, the
MessageBeep member function is called.

The message parameter is 0 when CWnd

enters menu mode.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
after gaining the input focus.

pOldWnd
Contains the CWnd object that loses the
input focus (may be NULL). The pointer
may be temporary and should not be
stored for later use.

To display a caret, CWnd should call the
appropriate caret functions at this point.

NOTENOTE

CWnd::OnSettingChange

afx_msg void OnSettingChange(
 UINT uFlags,
 LPCTSTR lpszSection);

ParametersParameters

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls OnSettingChange for
all top-level windows when the Win32
SystemParametersInfo function changes a
system-wide setting.

uFlags
When the system sends the message as a
result of a SystemParametersInfo call, this
parameter is a flag that indicates the
system parameter that was changed. For a
list of values, see SystemParametersInfo in
the Windows SDK. When an application
sends the message, this parameter must
be 0.

lpszSection
Points to a string that specifies the name of
the section that has changed. (The string
does not include the square brackets that
enclose the section name.)

An application should send the message to
all top-level windows when it makes
changes to system parameters, and
Windows will send the message if the user
changes settings via the Control Panel.

The ON_WM_SETTINGCHANGE
message is similar to the
ON_WM_WININICHANGE message, with
the following difference:

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-systemparametersinfoa

 CWnd::OnShowWindow

afx_msg void OnShowWindow(
 BOOL bShow,
 UINT nStatus);

ParametersParameters

RemarksRemarks

Use ON_WM_SETTINGCHANGE
when running Windows NT 4.0 or
newer, or under Windows 95/98.

Use ON_WININICHANGE when
running Windows NT 3.51 or older.
This message is now obsolete.

You should have only one of these macros
in your message map. To write a program
that works for both Windows 95/98 and
Windows NT 4.0, write a handler for
ON_WM_SETTINGCHANGE. Under
Windows NT 3.51, your handler will be
called by OnSettingChange and uFlags and
will always be zero.

The framework calls this member function
when the CWnd object is about to be
hidden or shown.

bShow
Specifies whether a window is being
shown. It is TRUE if the window is being
shown; it is FALSE if the window is being
hidden.

nStatus
Specifies the status of the window being
shown. It is 0 if the message is sent
because of a ShowWindow member function
call; otherwise nStatus is one of the
following:

SW_PARENTCLOSING Parent
window is closing (being made
iconic) or a pop-up window is being
hidden.

SW_PARENTOPENING Parent
window is opening (being
displayed) or a pop-up window is
being shown.

A window is hidden or shown when the
ShowWindow member function is called,

NOTENOTE

CWnd::OnSize

afx_msg void OnSize(
 UINT nType,
 int cx,
 int cy);

ParametersParameters

when an overlapped window is maximized
or restored, or when an overlapped or
pop-up window is closed (made iconic) or
opened (displayed on the screen). When
an overlapped window is closed, all pop-
up windows associated with that window
are hidden.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
after the window's size has changed.

nType
Specifies the type of resizing requested.
This parameter can be one of the following
values:

S IZE_MAXIMIZED Window has
been maximized.

SIZE_MINIMIZED Window has
been minimized.

SIZE_RESTORED Window has
been resized, but neither
SIZE_MINIMIZED nor
SIZE_MAXIMIZED applies.

S IZE_MAXHIDE Message is sent to
all pop-up windows when some
other window is maximized.

SIZE_MAXSHOW Message is sent
to all pop-up windows when some

RemarksRemarks

NOTENOTE

ExampleExample

// Resize the edit control contained in
the view to
// fill the entire view when the view's
window is
// resized. CMdiView is a CView derived
class.
void CMdiView::OnSize(UINT nType, int
cx, int cy)
{
 CView::OnSize(nType, cx, cy);
 // Resize edit to fill the whole
view.
 // OnSize can be called before
OnInitialUpdate
 // so make sure the edit control has
been created.
 if
(::IsWindow(m_Edit.GetSafeHwnd()))
 {
 m_Edit.MoveWindow (0, 0, cx, cy);
 }
}

CWnd::OnSizeClipboard

other window has been restored to
its former size.

cx
Specifies the new width of the client area.

cy
Specifies the new height of the client area.

If the SetScrollPos or MoveWindow
member function is called for a child
window from OnSize , the bRedraw

parameter of SetScrollPos or MoveWindow

should be nonzero to cause the CWnd to
be repainted.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

afx_msg void OnSizeClipboard(
 CWnd* pClipAppWnd,
 HGLOBAL hRect);

ParametersParameters

RemarksRemarks

NOTENOTE

The Clipboard owner's OnSizeClipboard
member function is called by the
Clipboard viewer when the Clipboard
contains data with the CF_OWNERDISPLAY

attribute and the size of the client area of
the Clipboard-viewer window has
changed.

pClipAppWnd
Identifies the Clipboard-application
window. The pointer may be temporary
and should not be stored.

hRect
Identifies a global memory object. The
memory object contains a RECT data
structure that specifies the area for the
Clipboard owner to paint.

The OnSizeClipboard member function is
called with a null rectangle (0,0,0,0) as the
new size when the Clipboard application is
about to be destroyed or minimized. This
permits the Clipboard owner to free its
display resources.

Within OnSizeClipboard , an application
must use the GlobalLock Windows
function to lock the memory that contains
the RECT data structure. Have the
application unlock that memory with the
GlobalUnlock Windows function before it
yields or returns control.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globallock
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalunlock

 CWnd::OnSizing

afx_msg void OnSizing(
 UINT nSide,
 LPRECT lpRect);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

void CSplitChildFrm::OnSizing(UINT
fwSide, LPRECT pRect)
{
 CMDIChildWnd::OnSizing(fwSide,
pRect);

 // Resize the splitter window in the
frame. m_wndSplitter is of
 // type CSplitterWnd
 int nWidth = (pRect->right) -
(pRect->left);
 m_wndSplitter.SetColumnInfo(0,
nWidth / 2, 10);
 m_wndSplitter.SetColumnInfo(1,
nWidth / 2, 10);
 m_wndSplitter.RecalcLayout();
}

The framework calls this member function
to indicate that the user is resizing the
rectangle.

nSide
The edge of window to be moved.

lpRect
Address of the CRect or RECT structure
that will contain the item's coordinates.

By processing this message, an application
can monitor the size and position of the
drag rectangle and, if needed, change its
size or position.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CWnd::OnSpoolerStatus

afx_msg void OnSpoolerStatus(
 UINT nStatus,
 UINT nJobs);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::OnStyleChanged

afx_msg void OnStyleChanged(
 int nStyleType,
 LPSTYLESTRUCT lpStyleStruct);

ParametersParameters

The framework calls this member function
from Print Manager whenever a job is
added to or removed from the Print
Manager queue.

nStatus
Specifies the SP_JOBSTATUS flag.

nJobs
Specifies the number of jobs remaining in
the Print Manager queue.

This call is for informational purposes only.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
after the SetWindowLong function has
changed one or more of the window's
styles.

nStyleType
Specifies whether the window's extended
or nonextended styles have changed. This
parameter can be a combination of the
following values:

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowlonga

RemarksRemarks

NOTENOTE

CWnd::OnStyleChanging

afx_msg void OnStyleChanging(
 int nStyleType,
 LPSTYLESTRUCT lpStyleStruct);

ParametersParameters

GWL_EXSTYLE The window's
extended styles have changed.

GWL_STYLE The window's
nonextended styles have changed.

lpStyleStruct
Points to a STYLESTRUCT structure that
contains the new styles for the window. An
application can examine the styles, but it
can not change them.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the SetWindowLong function is
about to change one or more of the
window's styles.

nStyleType
Specifies whether the window's extended
or nonextended styles have changed. This
parameter can be a combination of the
following values:

GWL_EXSTYLE The window's
extended styles have changed.

GWL_STYLE The window's
nonextended styles have changed.

lpStyleStruct
Points to a STYLESTRUCT structure that
contains the new styles for the window. An

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-stylestruct
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowlonga
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-stylestruct

RemarksRemarks

NOTENOTE

CWnd::OnSysChar

afx_msg void OnSysChar(
 UINT nChar,
 UINT nRepCnt,
 UINT nFlags);

ParametersParameters

VALUE MEANING

0-15 Specifies the repeat
count. The value is
the number of times
the keystroke is
repeated as a result
of the user holding
down the key..

application can examine the styles and
change them.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
if CWnd has the input focus and the
WM_SYSKEYUP and
WM_SYSKEYDOWN messages are
translated.

nChar
Specifies the ASCII-character key code of
a Control-menu key.

nRepCnt
Specifies the repeat count (the number of
times the keystroke is repeated as a result
of the user holding down the key).

nFlags
The nFlags parameter can have these
values:

16-23 Specifies the scan
code. The value
depends on the
original equipment
manufacturer (OEM)

24 Specifies whether the
key is an extended
key, such as the
right-hand ALT and
CTRL keys that
appear on an
enhanced 101- or
102-key keyboard.
The value is 1 if it is
an extended key;
otherwise, it is 0.

25-28 Used internally by
Windows.

29 Specifies the context
code. The value is 1 if
the ALT key is held
down while the key is
pressed; otherwise,
the value is 0.

30 Specifies the previous
key state. The value is
1 if the key is down
before the message is
sent, or it is 0 if the
key is up.

31 Specifies the
transition state. The
value is 1 if the key is
being released, or it is
0 if the key is being
pressed.

VALUE MEANING

RemarksRemarks
It specifies the virtual key code of the
Control-menu key. (For a list of standard
virtual key codes, see Winuser.h)

When the context code is 0,
WM_SYSCHAR can pass the
WM_SYSCHAR message to the
TranslateAccelerator Windows function,
which will handle it as though it were a
normal key message instead of a system
character-key. This allows accelerator keys
to be used with the active window even if
the active window does not have the input

https://docs.microsoft.com/windows/desktop/menurc/wm-syschar
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translateacceleratora

NOTENOTE

CWnd::OnSysColorChange

afx_msg void OnSysColorChange();

RemarksRemarks

CWnd::OnSysCommand

focus.

For IBM Enhanced 101- and 102-key
keyboards, enhanced keys are the right
ALT and the right CTRL keys on the main
section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and
arrow keys in the clusters to the left of the
numeric keypad; and the slash (/) and
ENTER keys in the numeric keypad. Some
other keyboards may support the
extended-key bit in nFlags.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
for all top-level windows when a change is
made in the system color setting.

Windows calls OnSysColorChange for any
window that is affected by a system color
change.

Applications that have brushes that use the
existing system colors should delete those
brushes and re-create them with the new
system colors.

The framework calls this member function
when the user selects a command from the
Control menu, or when the user selects the
Maximize or the Minimize button.

afx_msg void OnSysCommand(
 UINT nID,
 LPARAM lParam);

ParametersParameters
nID
Specifies the type of system command
requested. This parameter can be any one
of the following values:

SC_CLOSE Close the CWnd object.

SC_HOTKEY Activate the CWnd

object associated with the
application-specified hot key. The
low-order word of lParam identifies
the HWND of the window to
activate.

SC_HSCROLL Scroll horizontally.

SC_KEYMENU Retrieve a menu
through a keystroke.

SC_MAXIMIZE (or SC_ZOOM)
Maximize the CWnd object.

SC_MINIMIZE (or SC_ICON)
Minimize the CWnd object.

SC_MOUSEMENU Retrieve a
menu through a mouse click.

SC_MOVE Move the CWnd object.

SC_NEXTWINDOW Move to the
next window.

SC_PREVWINDOW Move to the
previous window.

SC_RESTORE Restore window to
normal position and size.

SC_SCREENSAVE Executes the
screen-saver application specified in
the [boot] section of the
SYSTEM.INI file.

SC_SIZE Size the CWnd object.

SC_TASKLIST Execute or activate
the Windows Task Manager
application.

SC_VSCROLL Scroll vertically.

lParam

RemarksRemarks

If a Control-menu command is chosen
with the mouse, lParam contains the
cursor coordinates. The low-order word
contains the x coordinate, and the high-
order word contains the y coordinate.
Otherwise this parameter is not used.

SC_HOTKEY Activate the window
associated with the application-
specified hot key. The low-order
word of lParam identifies the
window to activate.

SC_SCREENSAVE Execute the
screen-save application specified in
the Desktop section of Control
Panel.

By default, OnSysCommand carries out the
Control-menu request for the predefined
actions specified in the preceding table.

In WM_SYSCOMMAND messages, the
four low-order bits of the nID parameter
are used internally by Windows. When an
application tests the value of nID, it must
combine the value 0xFFF0 with the nID
value by using the bitwise-AND operator
to obtain the correct result.

The menu items in a Control menu can be
modified with the GetSystemMenu ,
AppendMenu , InsertMenu , and ModifyMenu

member functions. Applications that
modify the Control menu must process
WM_SYSCOMMAND messages, and any
WM_SYSCOMMAND messages not
handled by the application must be passed
on to OnSysCommand . Any command values
added by an application must be
processed by the application and cannot
be passed to OnSysCommand .

An application can carry out any system
command at any time by passing a
WM_SYSCOMMAND message to
OnSysCommand .

Accelerator (shortcut) keystrokes that are
defined to select items from the Control
menu are translated into OnSysCommand

calls; all other accelerator keystrokes are
translated into WM_COMMAND
messages.

NOTENOTE

CWnd::OnSysDeadChar

afx_msg void OnSysDeadChar(
 UINT nChar,
 UINT nRepCnt,
 UINT nFlags);

ParametersParameters

VALUE MEANING

0-7 Scan code (OEM-
dependent value).
Low byte of high-
order word.

8 Extended key, such as
a function key or a
key on the numeric
keypad (1 if it is an
extended key;
otherwise 0).

9-10 Not used.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
if the CWnd object has the input focus
when the OnSysKeyUp or OnSysKeyDown
member function is called.

nChar
Specifies the dead-key character value.

nRepCnt
Specifies the repeat count.

nFlags
Specifies the scan code, key-transition
code, previous key state, and context code,
as shown in the following list:

11-12 Used internally by
Windows.

13 Context code (1 if the
ALT key is held down
while the key is
pressed; otherwise 0).

14 Previous key state (1
if the key is down
before the call, 0 if
the key is up).

15 Transition state (1 if
the key is being
released, 0 if the key
is being pressed).

VALUE MEANING

RemarksRemarks

NOTENOTE

CWnd::OnSysKeyDown

afx_msg void OnSysKeyDown(
 UINT nChar,
 UINT nRepCnt,
 UINT nFlags);

ParametersParameters

It specifies the character value of a dead
key.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

If the CWnd object has the input focus, the
OnSysKeyDown member function is called

by the framework when the user holds
down the ALT key and then presses
another key.

nChar
Specifies the virtual key code of the key

VALUE MEANING

0-7 Scan code (OEM-
dependent value).
Low byte of high-
order word.

8 Extended key, such as
a function key or a
key on the numeric
keypad (1 if it is an
extended key;
otherwise 0).

9-10 Not used.

11-12 Used internally by
Windows.

13 Context code (1 if the
ALT key is held down
while the key is
pressed, 0 otherwise).

14 Previous key state (1
if the key is down
before the message is
sent, 0 if the key is
up).

15 Transition state (1 if
the key is being
released, 0 if the key
is being pressed).

RemarksRemarks

being pressed. For a list of standard virtual
key codes, see Winuser.h

nRepCnt
Specifies the repeat count.

nFlags
Specifies the scan code, key-transition
code, previous key state, and context code,
as shown in the following list:

For OnSysKeyDown calls, the key-transition
bit (bit 15) is 0. The context-code bit (bit
13) is 1 if the ALT key is down while the
key is pressed; it is 0 if the message is sent
to the active window because no window
has the input focus.

If no window currently has the input focus,
the active window's OnSysKeyDown member
function is called. The CWnd object that
receives the message can distinguish

NOTENOTE

CWnd::OnSysKeyUp

between these two contexts by checking
the context code in nFlags .

When the context code is 0, the
WM_SYSKEYDOWN message received by
OnSysKeyDown can be passed to the

TranslateAccelerator Windows function,
which will handle it as though it were a
normal key message instead of a system-
key message. This allows accelerator keys
to be used with the active window even if
the active window does not have the input
focus.

Because of auto-repeat, more than one
OnSysKeyDown call may occur before the

WM_SYSKEYUP message is received. The
previous key state (bit 14) can be used to
determine whether the OnSysKeyDown call
indicates the first down transition or a
repeated down transition.

For IBM Enhanced 101- and 102-key
keyboards, enhanced keys are the right
ALT and the right CTRL keys on the main
section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and
arrow keys in the clusters to the left of the
numeric keypad; and the slash (/) and
ENTER keys in the numeric keypad. Some
other keyboards may support the
extended-key bit in nFlags.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

If the CWnd object has the focus, the
OnSysKeyUp member function is called by

the framework when the user releases a
key that was pressed while the ALT key
was held down.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translateacceleratora

afx_msg void OnSysKeyUp(
 UINT nChar,
 UINT nRepCnt,
 UINT nFlags);

ParametersParameters

VALUE MEANING

0-7 Scan code (OEM-
dependent value).
Low byte of high-
order word.

8 Extended key, such as
a function key or a
key on the numeric
keypad (1 if it is an
extended key;
otherwise 0).

9-10 Not used.

11-12 Used internally by
Windows.

13 Context code (1 if the
ALT key is held down
while the key is
pressed, 0 otherwise).

14 Previous key state (1
if the key is down
before the message is
sent, 0 if the key is
up).

15 Transition state (1 if
the key is being
released, 0 if the key
is being pressed).

nChar
Specifies the virtual key code of the key
being pressed. For a list of standard virtual
key codes, see Winuser.h

nRepCnt
Specifies the repeat count.

nFlags
Specifies the scan code, key-transition
code, previous key state, and context code,
as shown in the following list:

For OnSysKeyUp calls, the key-transition bit
(bit 15) is 1. The context-code bit (bit 13) is
1 if the ALT key is down while the key is

RemarksRemarks

SEQUENCE
FUNCTION
ACCESSED

MESSAGE
PASSED

1. WM_KEYDO
WN

VK_CONTRO
L

2. WM_KEYDO
WN

VK_MENU

3. WM_KEYUP VK_CONTRO
L

4. WM_SYSKEY
UP

VK_MENU

pressed; it is 0 if the message is sent to the
active window because no window has the
input focus.

If no window currently has the input focus,
the active window's OnSysKeyUp member
function is called. The CWnd object that
receives the call can distinguish between
these two contexts by checking the context
code in nFlags.

When the context code is 0, the
WM_SYSKEYUP message received by
OnSysKeyUp can be passed to the

TranslateAccelerator Windows function,
which will handle it as though it were a
normal key message instead of a system-
key message. This allows accelerator
(shortcut) keys to be used with the active
window even if the active window does not
have the input focus.

For IBM Enhanced 101- and 102-key
keyboards, enhanced keys are the right
ALT and the right CTRL keys on the main
section of the keyboard; the INS, DEL,
HOME, END, PAGE UP, PAGE DOWN, and
arrow keys in the clusters to the left of the
numeric keypad; and the slash (/) and
ENTER keys in the numeric keypad. Some
other keyboards may support the
extended-key bit in nFlags.

For non-U.S. Enhanced 102-key
keyboards, the right ALT key is handled as
the CTRL+ALT key combination. The
following shows the sequence of messages
and calls that result when the user presses
and releases this key:

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translateacceleratora
https://docs.microsoft.com/windows/desktop/inputdev/wm-syskeyup

NOTENOTE

CWnd::OnTCard

afx_msg void OnTCard(
 UINT idAction,
 DWORD dwActionData);

ParametersParameters

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user clicks an authorable button.

idAction
Indicates the action the user has taken.
This parameter can be one of these values:

IDABORT The user clicked an
authorable Abort button.

IDCANCEL The user clicked an
authorable Cancel button.

IDCLOSE The user closed the
training card.

IDHELP The user clicked an
authorable Windows Help button.

IDIGNORE The user clicked an
authorable Ignore button.

IDOK The user clicked an
authorable OK button.

IDNO The user clicked an
authorable No button.

IDRETRY The user clicked an
authorable Retry button.

HELP_TCARD_DATA The user
clicked an authorable button. The
dwActionData parameter contains a
long integer specified by the help

RemarksRemarks

CWnd::OnTimeChange

afx_msg void OnTimeChange();

RemarksRemarks

CWnd::OnTimer

afx_msg void OnTimer(UINT_PTR
nIDEvent);

ParametersParameters

author.

HELP_TCARD_NEXT The user
clicked an authorable Next button.

HELP_TCARD_OTHER_CALLER
Another application has requested
training cards.

IDYES The user clicked an
authorable Yes button.

dwActionData
If idAction specifies HELP_TCARD_DATA,
this parameter is a long integer specified
by the help author. Otherwise, this
parameter is zero.

This function is called only when an
application has initiated a training card
with Windows Help. An application
initiates a training card by specifying the
HELP_TCARD command in a call to the
WinHelp function.

The framework calls this member function
after the system time is changed.

Have any application that changes the
system time send this message to all top-
level windows. To send the
WM_TIMECHANGE message to all top-
level windows, an application can use the
SendMessage Windows function with its
hwnd parameter set to
HWND_BROADCAST.

The framework calls this member function
after each interval specified in the
SetTimer member function used to install
a timer.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-sendmessage

RemarksRemarks

NOTENOTE

ExampleExample

CWnd::OnToolHitTest

virtual INT_PTR OnToolHitTest(
 CPoint point,
 TOOLINFO* pTI) const;

ParametersParameters

nIDEvent
Specifies the identifier of the timer.

The DispatchMessage Windows function
sends a WM_TIMER message when no
other messages are in the application's
message queue.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

See the example in CWnd::SetTimer.

The framework calls this member function
to detemine whether a point is in the
bounding rectangle of the specified tool.

point
Specifies the x- and y-coordinate of the
cursor. These coordinates are always
relative to the upper-left corner of the
window

pTI
A pointer to a TOOLINFO structure. The
following structure values are set by
default:

hwnd = m_hWnd Handle to a
window

uId = (UINT)hWndChild Handle to a
child window

uFlags |= TTF_IDISHWND Handle

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage
https://docs.microsoft.com/windows/desktop/winmsg/wm-timer
https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtoolinfoa

Return ValueReturn Value

RemarksRemarks

CWnd::OnTouchInput

virtual BOOL OnTouchInput(
 CPoint pt,
 int nInputNumber,
 int nInputsCount,
 PTOUCHINPUT pInput);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

of the tool

lpszText = LPSTR_TEXTCALLBACK
Pointer to the string that is to be
displayed in the specified window

If the tooltip control was found, the
window control ID. If the tooltip control
was not found, -1.

If the point is in the rectangle, it retrieves
information about the tool.

If the area with which the tooltip is
associated is not a button, OnToolHitTest

sets the structure flags to
TTF_NOTBUTTON and TTF_CENTERTIP.

Override OnToolHitTest to provide
different information than the default
provides.

See TOOLINFO, in the Windows SDK, for
more information about the structure.

Process single input from Windows touch.

pt
Point where screen has been touched (in
the client coordinates).

nInputNumber
Number of touch input.

nInputsCount
Total number of touch inputs.

pInput
Pointer to TOUCHINPUT structure.

TRUE if the application processes
Windows touch input; otherwise FALSE.

https://docs.microsoft.com/windows/desktop/api/commctrl/ns-commctrl-tagtoolinfoa

CWnd::OnTouchInputs

virtual BOOL OnTouchInputs(
 UINT nInputsCount,
 PTOUCHINPUT pInputs);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::OnUniChar

afx_msg void OnUniChar(
 UINT nChar,
 UINT nRepCnt,
 UINT nFlags);

ParametersParameters

PARAMETER DESCRIPTION

nChar [in] Specifies the
character code of the
pressed key.

nRepCnt [in] Specifies the
repeat count for the
current message. The
value is the number
of times the
keystroke is
autorepeated as a
result of the user
holding down the
key. If the keystroke
is held long enough,
multiple messages
are sent. However,
the repeat count is
not cumulative.

Processes inputs from Windows touch.

nInputsCount
Total number of Windows touch inputs.

pInputs
Array of TOUCHINPUT.

TRUE if application processes Windows
touch inputs; otherwise FALSE.

The framework calls this member function
when a key is pressed. That is, the current
window has the keyboard focus and a
WM_KEYDOWN message is translated by
the TranslateMessage function.

https://docs.microsoft.com/windows/desktop/inputdev/wm-keydown
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage

nFlags [in] Flags that specify
the scan code,
extended key, context
code, previous key
state, and transition
state, as shown in the
following table:

0-7: Specifies the
scan code. The value
depends on the
original equipment
manufacturer (OEM).

8: Specifies an
extended key, such as
the right-hand ALT
and CTRL keys that
appear on an
enhanced 101 or
102-key keyboard.
The flag is 1 if the key
is an extended key;
otherwise, it is 0.

9-12: Used internally
by Windows.

13: Specifies the
context code. The flag
is 1 if the ALT key is
held down while the
key is pressed;
otherwise, the value
is 0.

14: Specifies the
previous key state.
The flag is 1 if the key
is down before the
message is sent, or 0
if the key is up.

15: Specifies the
transition state. The
flag is 1 if the key is
being released, or 0 if
the key is being
pressed.

PARAMETER DESCRIPTION

RemarksRemarks
This method receives the WM_UNICHAR
notification, which is described in the
Windows SDK. The WM_UNICHAR
message is designed to send or post
Unicode characters to ANSI windows. It is
equivalent to the WM_CHAR message, but
uses Unicode Transformation Format-32
encoding (UTF-32), whereas the

https://docs.microsoft.com/windows/desktop/inputdev/wm-unichar
https://docs.microsoft.com/windows/desktop/inputdev/wm-unichar
https://docs.microsoft.com/windows/desktop/inputdev/wm-char

NOTENOTE

CWnd::OnUnInitMenuPopu
p

afx_msg void OnUnInitMenuPopup(
 CMenu* pPopupMenu,
 UINT nFlags);

ParametersParameters

PARAMETER DESCRIPTION

pMenu [in] Pointer to the
CMenu object that
represents the menu
or submenu.

nFlags [in] The menu that
was destroyed.
Currently, it can only
be the window menu,
MF_SYSMENU.

RemarksRemarks

WM_CHAR message uses UTF-16.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when a drop-down menu or submenu has
been destroyed.

This method receives the
WM_UNINITMENUPOPUP notification,
which is described in the Windows SDK.

https://docs.microsoft.com/windows/desktop/inputdev/wm-char
https://docs.microsoft.com/windows/desktop/menurc/wm-uninitmenupopup

NOTENOTE

CWnd::OnUpdateUIState

afx_msg void OnUpdateUIState(
 UINT nAction,
 UINT nUIElement);

ParametersParameters

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

Called to change the user interface (UI)
state for the specified window and all its
child windows.

nAction
Specifies the action to be performed. Can
be one of the following values:

UIS_CLEAR The UI state element
(specified by nUIElement) should be
hidden.

UIS_INITIALIZE The UI state
element (specified by nUIElement)
should be changed based on the
last input event. For more
information, see the Remarks
section of WM_UPDATEISTATE.

UIS_SET The UI state element
(specified by nUIElement) should be
visible.

nUIElement
Specifies which UI state elements are
affected or the style of the control. Can be
one of the following values:

UISF_HIDEACCEL Keyboard
accelerators.

UISF_HIDEFOCUS Focus
indicators.

https://docs.microsoft.com/windows/desktop/menurc/wm-updateuistate

RemarksRemarks

CWnd::OnUserChanged

afx_msg void OnUserChanged();

RemarksRemarks

NOTENOTE

CWnd::OnVKeyToItem

UISF_ACTIVE Windows XP: A
control should be drawn in the style
used for active controls.

This member function emulates the
functionality of the WM_UPDATEUISTATE
message, as described in the Windows
SDK.

The framework calls this member for all
windows after the user has logged on or
off.

This method receives the
WM_USERCHANGED notification
message, which is described in the
Windows SDK. When the user logs on or
off, the operating system updates user-
specific settings. The system sends this
message immediately after updating the
settings.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

If the CWnd object owns a list box with the
LBS_WANTKEYBOARDINPUT style, the
list box will send the WM_VKEYTOITEM
message in response to a
WM_KEYDOWN message.

https://docs.microsoft.com/windows/desktop/menurc/wm-updateuistate
https://msdn.microsoft.com/library/windows/desktop/ms632651

afx_msg int OnVKeyToItem(
 UINT nKey,
 CListBox* pListBox,
 UINT nIndex);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

nKey
Specifies the virtual key code of the key
that the user pressed. For a list of standard
virtual key codes, see Winuser.h

pListBox
Specifies a pointer to the list box. The
pointer may be temporary and should not
be stored for later use.

nIndex
Specifies the current caret position.

Specifies the action that the application
performed in response to the message. A
return value of -2 indicates that the
application handled all aspects of selecting
the item and requires no further action by
the list box. A return value of -1 indicates
that the list box should perform the default
action in response to the keystroke. A
return value of 0 or greater specifies the
zero-based index of an item in the list box
and indicates that the list box should
perform the default action for the
keystroke on the given item.

This member function is called by the
framework only for list boxes that have the
LBS_HASSTRINGS style.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

 CWnd::OnVScroll

afx_msg void OnVScroll(
 UINT nSBCode,
 UINT nPos,
 CScrollBar* pScrollBar);

ParametersParameters

The framework calls this member function
when the user clicks the window's vertical
scroll bar.

nSBCode
Specifies a scroll-bar code that indicates
the user's scrolling request. This parameter
can be one of the following:

SB_BOTTOM Scroll to bottom.

SB_ENDSCROLL End scroll.

SB_LINEDOWN Scroll one line
down.

SB_LINEUP Scroll one line up.

SB_PAGEDOWN Scroll one page
down.

SB_PAGEUP Scroll one page up.

SB_THUMBPOSITION Scroll to the
absolute position. The current
position is provided in nPos.

SB_THUMBTRACK Drag scroll box
to specified position. The current
position is provided in nPos.

SB_TOP Scroll to top.

nPos
Contains the current scroll-box position if
the scroll-bar code is
SB_THUMBPOSITION or
SB_THUMBTRACK; otherwise not used.
Depending on the initial scroll range, nPos
may be negative and should be cast to an
int if necessary.

pScrollBar
If the scroll message came from a scroll-
bar control, contains a pointer to the
control. If the user clicked a window's
scroll bar, this parameter is NULL. The
pointer may be temporary and should not
be stored for later use.

RemarksRemarks

NOTENOTE

CWnd::OnVScrollClipboard

afx_msg void OnVScrollClipboard(
 CWnd* pClipAppWnd,
 UINT nSBCode,
 UINT nPos);

ParametersParameters

OnVScroll typically is used by applications
that give some feedback while the scroll
box is being dragged.

If OnVScroll scrolls the contents of the
CWnd object, it must also reset the position

of the scroll box with the SetScrollPos
member function.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The Clipboard owner's
OnVScrollClipboard member function is

called by the Clipboard viewer when the
Clipboard data has the
CF_OWNERDISPLAY format and there is
an event in the Clipboard viewer's vertical
scroll bar.

pClipAppWnd
Specifies a pointer to a Clipboard-viewer
window. The pointer may be temporary
and should not be stored for later use.

nSBCode
Specifies one of the following scroll-bar
values:

SB_BOTTOM Scroll to bottom.

SB_ENDSCROLL End scroll.

SB_LINEDOWN Scroll one line
down.

RemarksRemarks

NOTENOTE

CWnd::OnWindowMaximiz
edChanged

afx_msg void
OnWindowMaximizedChanged(BOOL
bIsMaximized);

ParametersParameters

PARAMETER DESCRIPTION

SB_LINEUP Scroll one line up.

SB_PAGEDOWN Scroll one page
down.

SB_PAGEUP Scroll one page up.

SB_THUMBPOSITION Scroll to the
absolute position. The current
position is provided in nPos.

SB_TOP Scroll to top.

nPos
Contains the scroll-box position if the
scroll-bar code is SB_THUMBPOSITION;
otherwise nPos is not used.

The owner should scroll the Clipboard
image, invalidate the appropriate section,
and update the scroll-bar values.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member when
the current window is maximized, and the
window is composed by the Desktop
Window Manager (DWM).

bIsMaximized [in] TRUE if the
current window is
maximized, and
FALSE if it is not.

PARAMETER DESCRIPTION

RemarksRemarks

NOTENOTE

CWnd::OnWindowPosChan
ged

afx_msg void
OnWindowPosChanged(WINDOWPOS*
lpwndpos);

ParametersParameters

RemarksRemarks

This method receives the
WM_DWMWINDOWMAXIMIZEDCHAN
GE notification message, which is
described in the Windows SDK.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the size, position, or Z-order has
changed as a result of a call to the
SetWindowPos member function or
another window-management function.

lpwndpos
Points to a WINDOWPOS data structure
that contains information about the
window's new size and position.

The default implementation sends the
WM_SIZE and WM_MOVE messages to
the window. These messages are not sent
if an application handles the
OnWindowPosChanged call without calling its

base class. It is more efficient to perform

https://docs.microsoft.com/windows/desktop/dwm/wm-dwmwindowmaximizedchange
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowpos
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwindowpos
https://docs.microsoft.com/windows/desktop/winmsg/wm-size
https://docs.microsoft.com/windows/desktop/winmsg/wm-move

NOTENOTE

CWnd::OnWindowPosChan
ging

afx_msg void
OnWindowPosChanging(WINDOWPOS*
lpwndpos);

ParametersParameters

RemarksRemarks

any move or size change processing
during the call to OnWindowPosChanged

without calling its base class.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the size, position, or Z-order is about
to change as a result of a call to the
SetWindowPos member function or
another window-management function.

lpwndpos
Points to a WINDOWPOS data structure that
contains information about the window's
new size and position.

An application can prevent changes to the
window by setting or clearing the
appropriate bits in the flags member of
the WINDOWPOS structure.

For a window with the WS_OVERLAPPED
or WS_THICKFRAME style, the default
implementation sends a
WM_GETMINMAXINFO message to the
window. This is done to validate the new
size and position of the window and to
enforce the CS_BYTEALIGNCLIENT and
CS_BYTEALIGN client styles. An
application can override this functionality
by not calling its base class.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setwindowpos
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwindowpos
https://docs.microsoft.com/windows/desktop/winmsg/wm-getminmaxinfo

NOTENOTE

CWnd::OnWinIniChange

afx_msg void OnWinIniChange(LPCTSTR
lpszSection);

ParametersParameters

RemarksRemarks

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
after a change has been made to the
Windows initialization file, WIN.INI.

lpszSection
Points to a string that specifies the name of
the section that has changed. (The string
does not include the square brackets that
enclose the section name.)

The SystemParametersInfo Windows
function calls OnWinIniChange after an
application uses the function to change a
setting in the WIN.INI file.

To send the WM_WININICHANGE
message to all top-level windows, an
application can use the SendMessage
Windows function with its hwnd
parameter set to HWND_BROADCAST.

If an application changes many different
sections in WIN.INI at the same time, the
application should send one
WM_WININICHANGE message with
lpszSection set to NULL. Otherwise, an
application should send
WM_WININICHANGE each time it makes
a change to WIN.INI.

If an application receives an
OnWinIniChange call with lpszSection set to

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-systemparametersinfoa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-sendmessage

NOTENOTE

CWnd::OnWndMsg

virtual BOOL OnWndMsg(
 UINT message,
 WPARAM wParam,
 LPARAM lParam,
 LRESULT* pResult);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NULL, the application should check all
sections in WIN.INI that affect the
application.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

This member function is called by
WindowProc , or is called during message

reflection.

message
Specifies the message to be sent.

wParam
Specifies additional message-dependent
information.

lParam
Specifies additional message-dependent
information.

pResult
The return value of WindowProc. Depends
on the message; may be NULL.

TRUE if message was handled; otherwise
FALSE.

OnWndMsg determines the message type
and either calls the appropriate framework
function (for example, OnCommand for
WM_COMMAND) or finds the

 CWnd::OnXButtonDblClk

afx_msg void OnXButtonDblClk(
 UINT nFlags,
 UINT nButton,
 CPoint point);

ParametersParameters

PARAMETER DESCRIPTION

nFlags [in] A bitwise
combination (OR) of
flags that indicate
which modifier keys
are pressed. For
example, the
MK_CONTROL flag
indicates that the
CTRL key is pressed.

nButton [in] A value of
XBUTTON1 if the first
Microsoft
Intellimouse X button
is double-clicked, or
XBUTTON2 if the
second X button is
double-clicked.

point [in] A CPoint object
that specifies the x
and y coordinates of
the cursor relative to
the upper-left corner
of the client area.

RemarksRemarks

appropriate message in the message map.

For more information about message
reflection, see Handling Reflected
Messages.

The framework calls this member function
when the user double-clicks XBUTTON1
or XBUTTON2 while the cursor is in the
client area of a window.

This method receives the
WM_XBUTTONDBLCLK notification,
which is described in the Windows SDK. If
the mouse is not captured, the message is
posted to the window beneath the cursor.
Otherwise, the message is posted to the
window that has captured the mouse.

The nFlags parameter can be a

https://docs.microsoft.com/windows/desktop/inputdev/wm-xbuttondblclk

MODIFIER KEY DESCRIPTION

MK_CONTROL The CTRL key is
pressed.

MK_LBUTTON The left mouse
button is pressed.

MK_MBUTTON The middle mouse
button is pressed.

MK_RBUTTON The right mouse
button is pressed.

MK_SHIFT The SHIFT key is
pressed.

MK_XBUTTON1 The XBUTTON1
mouse button of the
Microsoft
IntelliMouse is
pressed.

MK_XBUTTON2 The XBUTTON2
mouse button of the
Microsoft
IntelliMouse is
pressed.

NOTENOTE

CWnd::OnXButtonDown

combination of modifier keys listed in the
following table. For more information, see
About Mouse Input.

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user presses XBUTTON1 or
XBUTTON2 while the cursor is in the client
area of a window.

https://docs.microsoft.com/windows/desktop/inputdev/about-mouse-input

afx_msg void OnXButtonDown(
 UINT nFlags,
 UINT nButton,
 CPoint point);

ParametersParameters

PARAMETER DESCRIPTION

nFlags [in] A bitwise
combination (OR) of
flags that indicate
which modifier keys
are pressed. For
example, the
MK_CONTROL flag
indicates that the
CTRL key is pressed.

nButton [in] A value of
XBUTTON1 if the first
Microsoft
Intellimouse X button
was clicked, or
XBUTTON2 if the
second X button was
clicked.

point [in] A CPoint object
that specifies the x
and y coordinates of
the cursor relative to
the upper-left corner
of the client area.

RemarksRemarks

MODIFIER KEY DESCRIPTION

MK_CONTROL The CTRL key is
pressed.

MK_LBUTTON The left mouse
button is pressed.

This method receives the
WM_XBUTTONDOWN notification, which
is described in the Windows SDK. If the
mouse is not captured, the message is
posted to the window beneath the cursor.
Otherwise, the message is posted to the
window that has captured the mouse.

The nFlags parameter can be a
combination of modifier keys listed in the
following table. For more information, see
About Mouse Input.

https://docs.microsoft.com/windows/desktop/inputdev/wm-xbuttondown
https://docs.microsoft.com/windows/desktop/inputdev/about-mouse-input

MK_MBUTTON The middle mouse
button is pressed.

MK_RBUTTON The right mouse
button is pressed.

MK_SHIFT The SHIFT key is
pressed.

MK_XBUTTON1 The XBUTTON1
mouse button of the
Microsoft
IntelliMouse is
pressed.

MK_XBUTTON2 The XBUTTON2
mouse button of the
Microsoft
IntelliMouse is
pressed.

MODIFIER KEY DESCRIPTION

NOTENOTE

CWnd::OnXButtonUp

afx_msg void OnXButtonUp(
 UINT nFlags,
 UINT nButton,
 CPoint point);

ParametersParameters

PARAMETER DESCRIPTION

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

The framework calls this member function
when the user releases XBUTTON1 or
XBUTTON2 while the cursor is in the client
area of a window.

nFlags [in] A bitwise
combination (OR) of
flags that indicate
which modifier keys
are pressed. For
example, the
MK_CONTROL flag
indicates that the
CTRL key is pressed.

nButton [in] A value of
XBUTTON1 if the first
Microsoft
Intellimouse X button
was double-clicked,
or XBUTTON2 if the
second X button was
double-clicked.

point [in] A CPoint object
that specifies the x
and y coordinates of
the cursor relative to
the upper-left corner
of the client area.

PARAMETER DESCRIPTION

RemarksRemarks

MODIFIER KEY DESCRIPTION

MK_CONTROL The CTRL key is
pressed.

MK_LBUTTON The left mouse
button is pressed.

MK_MBUTTON The middle mouse
button is pressed.

MK_RBUTTON The right mouse
button is pressed.

This method receives the
WM_XBUTTONUP notification, which is
described in the Windows SDK. If the
mouse is not captured, the message is
posted to the window beneath the cursor.
Otherwise, the message is posted to the
window that has captured the mouse.

The nFlags parameter can be a
combination of modifier keys listed in the
following table. For more information, see
About Mouse Input.

https://docs.microsoft.com/windows/desktop/inputdev/wm-xbuttonup
https://docs.microsoft.com/windows/desktop/inputdev/about-mouse-input

MK_SHIFT The SHIFT key is
pressed.

MK_XBUTTON1 The XBUTTON1
mouse button of the
Microsoft
IntelliMouse is
pressed.

MK_XBUTTON2 The XBUTTON2
mouse button of the
Microsoft
IntelliMouse is
pressed.

MODIFIER KEY DESCRIPTION

NOTENOTE

CWnd::OpenClipboard

BOOL OpenClipboard();

Return ValueReturn Value

RemarksRemarks

ExampleExample

This member function is called by the
framework to allow your application to
handle a Windows message. The
parameters passed to your function reflect
the parameters received by the framework
when the message was received. If you call
the base-class implementation of this
function, that implementation will use the
parameters originally passed with the
message and not the parameters you
supply to the function.

Opens the Clipboard.

Nonzero if the Clipboard is opened via
CWnd , or 0 if another application or

window has the Clipboard open.

Other applications will not be able to
modify the Clipboard until the
CloseClipboard Windows function is
called.

The current CWnd object will not become
the owner of the Clipboard until the
EmptyClipboard Windows function is
called.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-closeclipboard
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-emptyclipboard

//handler for Edit | Copy menu
void CMdiView::OnEditCopy()
{
 if (!OpenClipboard())
 {
 AfxMessageBox(_T("Cannot open the
Clipboard"));
 return;
 }
 // Remove the current Clipboard
contents
 if(!EmptyClipboard())
 {
 AfxMessageBox(_T("Cannot empty
the Clipboard"));
 return;
 }

 // Get the currently selected data,
hData handle to
 // global memory of data
 CString str;
 m_Edit.GetWindowText(str);
 size_t cbStr = (str.GetLength() + 1)
* sizeof(TCHAR);
 HGLOBAL hData =
GlobalAlloc(GMEM_MOVEABLE, cbStr);
 memcpy_s(GlobalLock(hData), cbStr,
str.LockBuffer(), cbStr);
 GlobalUnlock(hData);
 str.UnlockBuffer();

 // For the appropriate data
formats...
 UINT uiFormat = (sizeof(TCHAR) ==
sizeof(WCHAR)) ? CF_UNICODETEXT :
CF_TEXT;
 if (::SetClipboardData(uiFormat,
hData) == NULL)
 {
 AfxMessageBox(_T("Unable to set
Clipboard data"));
 CloseClipboard();
 return;
 }

 CloseClipboard();
}

CWnd::operator HWND

operator HWND() const;

CWnd::operator !=

Use this operator to get the handle to the
CWnd object.

Compares two CWnd objects to determine
if they do not have the same m_hWnd.

BOOL operator!=(const CWnd& wnd) const;

ParametersParameters

Return ValueReturn Value

CWnd::operator ==

BOOL operator==(const CWnd& wnd) const;

ParametersParameters

Return ValueReturn Value

CWnd::PaintWindowlessCo
ntrols

BOOL PaintWindowlessControls(CDC* pDC);

ParametersParameters

Return ValueReturn Value

CWnd::PostMessage

wnd
A reference to a CWnd object.

Nonzero if equal; otherwise 0.

Compares two CWnd objects to determine
if they have the same m_hWnd.

wnd
A reference to a CWnd object.

Nonzero if equal; otherwise 0.

Draws windowless controls on the control
container.

pDC
The device context on which to draw the
windowless controls.

Returns TRUE if there is a control
container and the windowless controls are
drawn successfully, otherwise FALSE.

Places a message in the window's message
queue and then returns without waiting for
the corresponding window to process the
message.

BOOL PostMessage(
 UINT message,
 WPARAM wParam = 0,
 LPARAM lParam = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CWnd::PostNcDestroy

virtual void PostNcDestroy();

RemarksRemarks

CWnd::PreCreateWindow

message
Specifies the message to be posted.

wParam
Specifies additional message information.
The content of this parameter depends on
the message being posted.

lParam
Specifies additional message information.
The content of this parameter depends on
the message being posted.

Nonzero if the message is posted;
otherwise 0.

Messages in a message queue are
retrieved by calls to the GetMessage or
PeekMessage Windows function.

The Windows PostMessage function can
be used to access another application.

See the example for AfxGetMainWnd.

Called by the default OnNcDestroy
member function after the window has
been destroyed.

Derived classes can use this function for
custom cleanup such as the deletion of the
this pointer.

Called by the framework before the
creation of the Windows window attached
to this CWnd object.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getmessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-peekmessagea
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-postmessagea

virtual BOOL
PreCreateWindow(CREATESTRUCT& cs);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

WARNINGWARNING

cs
A CREATESTRUCT structure.

Nonzero if the window creation should
continue; 0 to indicate creation failure.

CWnd::PreCreateWindow now assigns the
hMenu member of cs to the this pointer if
the menu is NULL and the style contains
WS_CHILD. For proper functionality, ensure
that your dialog control has an ID that is
not NULL.

This change fixes a crash in managed/native
interop scenarios. A TRACE statement in
CWnd::Create alerts the developer of the

problem.

Never call this function directly.

The default implementation of this
function checks for a NULL window class
name and substitutes an appropriate
default. Override this member function to
modify the CREATESTRUCT structure before
the window is created.

Each class derived from CWnd adds its
own functionality to its override of
PreCreateWindow . By design, these

derivations of PreCreateWindow are not
documented. To determine the styles
appropriate to each class and the
interdependencies between the styles, you
can examine the MFC source code for your
application's base class. If you choose to
override PreCreateWindow, you can
determine whether the styles used in your
application's base class provide the
functionality you need by using
information gathered from the MFC
source code.

For more information on changing
window styles, see the Changing the Styles

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcreatestructa

ExampleExample

// alter the styles of the mdi frame
window
BOOL
CMdiChildFrame::PreCreateWindow(CREATES
TRUCT& cs)
{
 // Create a window without min/max
buttons or sizable border
 cs.style |= WS_OVERLAPPED |
WS_SYSMENU | WS_BORDER;

 // Size the window to 1/3 screen
size and center it
 cs.cy =
::GetSystemMetrics(SM_CYSCREEN) / 3;
 cs.cx =
::GetSystemMetrics(SM_CXSCREEN) / 3;
 cs.y = ((cs.cy * 3) - cs.cy) / 2;
 cs.x = ((cs.cx * 3) - cs.cx) / 2;

 return
CMDIChildWnd::PreCreateWindow(cs);
}

CWnd::PreSubclassWindow

virtual void PreSubclassWindow();

RemarksRemarks

CWnd::PreTranslateMessag
e

virtual BOOL PreTranslateMessage(MSG*
pMsg);

ParametersParameters

of a Window Created by MFC.

This member function is called by the
framework to allow other necessary
subclassing to occur before the window is
subclassed.

Overriding this member function allows
for dynamic subclassing of controls. It is an
advanced overridable.

Used by class CWinApp to translate
window messages before they are
dispatched to the TranslateMessage and
DispatchMessage Windows functions.

pMsg
Points to a MSG structure that contains

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-translatemessage
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-dispatchmessage
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg

Return ValueReturn Value

CWnd::Print

void Print(
 CDC* pDC,
 DWORD dwFlags) const;

ParametersParameters

RemarksRemarks

the message to process.

Nonzero if the message was translated
and should not be dispatched; 0 if the
message was not translated and should be
dispatched.

Call this member function to draw the
current window in the specified device
context, which is most commonly in a
printer device context.

pDC
A pointer to a device context.

dwFlags
Specifies the drawing options. This
parameter can be one or more of these
flags:

PRF_CHECKVISIBLE Draw the
window only if it is visible.

PRF_CHILDREN Draw all visible
children windows.

PRF_CLIENT Draw the client area
of the window.

PRF_ERASEBKGND Erase the
background before drawing the
window.

PRF_NONCLIENT Draw the
nonclient area of the window.

PRF_OWNED Draw all owned
windows.

CWnd::DefWindowProc function
processes this message based on which
drawing option is specified:

If PRF_CHECKVISIBLE is specified
and the window is not visible, do
nothing.

If PRF_NONCLIENT is specified,

CWnd::PrintClient

void PrintClient(
 CDC* pDC,
 DWORD dwFlags) const;

ParametersParameters

CWnd::PrintWindow

draw the nonclient area in the given
device context.

If PRF_ERASEBKGND is specified,
send the window a
WM_ERASEBKGND message.

If PRF_CLIENT is specified, send
the window a WM_PRINTCLIENT
message.

If PRF_CHILDREN is set, send each
visible child window a WM_PRINT
message.

If PRF_OWNED is set, send each
visible owned window a
WM_PRINT message.

Call this member function to draw any
window in the specified device context
(usually a printer device context).

pDC
A pointer to a device context.

dwFlags
Specifies drawing options. This parameter
can be one or more of these flags:

PRF_CHECKVISIBLE Draw the
window only if it is visible.

PRF_CHILDREN Draw all visible
children windows.

PRF_CLIENT Draw the client area
of the window.

PRF_ERASEBKGND Erase the
background before drawing the
window.

PRF_NONCLIENT Draw the
nonclient area of the window.

PRF_OWNED Draw all owned
windows.

https://docs.microsoft.com/windows/desktop/winmsg/wm-erasebkgnd
https://docs.microsoft.com/windows/desktop/gdi/wm-printclient
https://docs.microsoft.com/windows/desktop/gdi/wm-print

BOOL PrintWindow(
 CDC* pDC,
 UINT nFlags) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::RedrawWindow

BOOL RedrawWindow(
 LPCRECT lpRectUpdate = NULL,
 CRgn* prgnUpdate = NULL,
 UINT flags = RDW_INVALIDATE |
RDW_UPDATENOW | RDW_ERASE);

ParametersParameters

Copies a visual window into the specified
device context, typically a printer DC.

pDC
A pointer to the device context to be
printed to.

nFlags
Specifies the drawing options. For a list of
possible values, see PrintWindow.

Nonzero if the function succeeds;
otherwise 0.

This member function emulates the
functionality of the function PrintWindow,
as described in the Windows SDK.

Updates the specified rectangle or region
in the given window's client area.

lpRectUpdate
Points to a RECT structure containing the
coordinates of the update rectangle. This
parameter is ignored if prgnUpdate
contains a valid region handle.

prgnUpdate
Identifies the update region. If both
prgnUpdate and lpRectUpdate are NULL,
the entire client area is added to the
update region.

flags
The following flags are used to invalidate
the window:

RDW_ERASE Causes the window
to receive a WM_ERASEBKGND

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-printwindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-printwindow
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/winmsg/wm-erasebkgnd

message when the window is
repainted. The RDW_INVALIDATE
flag must also be specified;
otherwise RDW_ERASE has no
effect.

RDW_FRAME Causes any part of
the nonclient area of the window
that intersects the update region to
receive a WM_NCPAINT message.
The RDW_INVALIDATE flag must
also be specified; otherwise
RDW_FRAME has no effect.

RDW_INTERNALPAINT Causes a
WM_PAINT message to be posted
to the window regardless of
whether the window contains an
invalid region.

RDW_INVALIDATE Invalidate
lpRectUpdate or prgnUpdate (only
one may be not NULL). If both are
NULL, the entire window is
invalidated.

The following flags are used to validate the
window:

RDW_NOERASE Suppresses any
pending WM_ERASEBKGND
messages.

RDW_NOFRAME Suppresses any
pending WM_NCPAINT messages.
This flag must be used with
RDW_VALIDATE and is typically
used with RDW_NOCHILDREN.
This option should be used with
care, as it could prevent parts of a
window from painting properly.

RDW_NOINTERNALPAINT
Suppresses any pending internal
WM_PAINT messages. This flag
does not affect WM_PAINT
messages resulting from invalid
areas.

RDW_VALIDATE Validates
lpRectUpdate or prgnUpdate (only
one may be not NULL). If both are
NULL, the entire window is
validated. This flag does not affect
internal WM_PAINT messages.

https://docs.microsoft.com/windows/desktop/gdi/wm-ncpaint
https://docs.microsoft.com/windows/desktop/gdi/wm-paint

Return ValueReturn Value

RemarksRemarks

The following flags control when
repainting occurs. Painting is not
performed by the RedrawWindow function
unless one of these bits is specified.

RDW_ERASENOW Causes the
affected windows (as specified by
the RDW_ALLCHILDREN and
RDW_NOCHILDREN flags) to
receive WM_NCPAINT and
WM_ERASEBKGND messages, if
necessary, before the function
returns. WM_PAINT messages are
deferred.

RDW_UPDATENOW Causes the
affected windows (as specified by
the RDW_ALLCHILDREN and
RDW_NOCHILDREN flags) to
receive WM_NCPAINT,
WM_ERASEBKGND, and
WM_PAINT messages, if necessary,
before the function returns.

By default, the windows affected by the
RedrawWindow function depend on whether

the specified window has the
WS_CLIPCHILDREN style. The child
windows of WS_CLIPCHILDREN
windows are not affected. However, those
windows that are not
WS_CLIPCHILDREN windows are
recursively validated or invalidated until a
WS_CLIPCHILDREN window is
encountered. The following flags control
which windows are affected by the
RedrawWindow function:

RDW_ALLCHILDREN Includes
child windows, if any, in the
repainting operation.

RDW_NOCHILDREN Excludes
child windows, if any, from the
repainting operation.

Nonzero if the window was redrawn
successfully; otherwise 0.

When the RedrawWindow member function
is used to invalidate part of the desktop
window, that window does not receive a
WM_PAINT message. To repaint the

https://docs.microsoft.com/windows/desktop/gdi/wm-paint

CWnd::ReflectChildNotify

BOOL ReflectChildNotify(
 UINT message,
 WPARAM wParam,
 LPARAM lParam,
 LRESULT* pResult);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::ReflectLastMsg

desktop, an application should use
CWnd::ValidateRgn, CWnd::InvalidateRgn,
CWnd::UpdateWindow, or
RedrawWindow

This message function is called by the
framework from OnChildNotify.

message
Specifies the message to be reflected.

wParam
Specifies additional message-dependent
information.

lParam
Specifies additional message-dependent
information.

pResult
The result generated by the child window
to be returned by the parent window. Can
be NULL.

TRUE if message was reflected; otherwise
FALSE.

It is a helper function which reflects
message to its source.

Reflected messages are sent directly to
CWnd::OnWndMsg or
CCmdTarget::OnCmdMsg.

For more information about message
reflection, see Handling Reflected
Messages.

This member function is called by the
framework to reflect the last message to
the child window.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-redrawwindow

static BOOL PASCAL ReflectLastMsg(
 HWND hWndChild,
 LRESULT* pResult = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::ReleaseDC

int ReleaseDC(CDC* pDC);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::RepositionBars

hWndChild
A handle to a child window.

pResult
The result generated by the child window
to be returned by the parent window. Can
be NULL.

Nonzero if the message was handled;
otherwise 0.

This member function calls
SendChildNotifyLastMsg if the window
identified by hWndChild is an OLE control
or a window in the permanent map.

For more information about message
reflection, see Handling Reflected
Messages.

Releases a device context, freeing it for use
by other applications.

pDC
Identifies the device context to be released.

Nonzero if successful; otherwise 0.

The effect of the ReleaseDC member
function depends on the device-context
type.

The application must call the ReleaseDC

member function for each call to the
GetWindowDC member function and for
each call to the GetDC member function.

void RepositionBars(UINT nIDFirst,
 UINT nIDLast,
 UINT nIDLeftOver,
 UINT nFlag = reposDefault,
 LPRECT lpRectParam = NULL,
 LPCRECT lpRectClient = NULL,
 BOOL bStretch = TRUE) ;

ParametersParameters

RemarksRemarks

Called to reposition and resize control bars
in the client area of a window.

nIDFirst
The ID of the first in a range of control
bars to reposition and resize.

nIDLast
The ID of the last in a range of control bars
to reposition and resize.

nIDLeftOver
Specifies ID of pane that fills the rest of the
client area.

nFlag
Can have one of the following values:

CWnd::reposDefault Performs the
layout of the control bars.
lpRectParam is not used and can be
NULL.

CWnd::reposQuery The layout of the
control bars is not done; instead
lpRectParam is initialized with the
size of the client area, as if the
layout had actually been done.

CWnd::reposExtra Adds the values
of lpRectParam to the client area of
nIDLast and also performs the
layout.

lpRectParam
Points to a RECT structure; the usage of
which depends on the value of nFlag.

lpRectClient
Points to a RECT structure containing the
available client area. If NULL, the window's
client area will be used.

bStretch
Indicates whether the bar should be
stretched to the size of the frame.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CWnd::RunModalLoop

int RunModalLoop(DWORD dwFlags = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::ScreenToClient

The nIDFirst and nIDLast parameters
define a range of control-bar IDs to be
repositioned in the client area. The
nIDLeftOver parameter specifies the ID of
the child window (normally the view)
which is repositioned and resized to fill the
rest of the client area not filled by control
bars.

Call this member function to retrieve,
translate, or dispatch messages until
ContinueModal returns FALSE.

dwFlags
Specifies the Windows message to be sent.
Can be one of the following values:

MLF_NOIDLEMSG Don't send
WM_ENTERIDLE messages to the
parent.

MLF_NOKICKIDLE Don't send
WM_KICKIDLE messages to the
window.

MLF_SHOWONIDLE Show the
window when message queue goes
idle.

Specifies the value of the nResult
parameter passed to the EndModalLoop
member function, which is then used to
end the modal loop.

By default, ContinueModal returns FALSE
after EndModalLoop is called. Returns the
value provided as nResult to EndModalLoop .

Converts the screen coordinates of a given
point or rectangle on the display to client
coordinates.

https://docs.microsoft.com/windows/desktop/dlgbox/wm-enteridle

void ScreenToClient(LPPOINT lpPoint)
const; void ScreenToClient(LPRECT
lpRect) const;

ParametersParameters

RemarksRemarks

ExampleExample

CWnd::ScrollWindow

void ScrollWindow(
 int xAmount,
 int yAmount,
 LPCRECT lpRect = NULL,
 LPCRECT lpClipRect = NULL);

ParametersParameters

lpPoint
Points to a CPoint object or POINT
structure that contains the screen
coordinates to be converted.

lpRect
Points to a CRect object or RECT structure
that contains the screen coordinates to be
converted.

The ScreenToClient member function
replaces the screen coordinates given in
lpPoint or lpRect with client coordinates.
The new coordinates are relative to the
upper-left corner of the CWnd client area.

See the example for
CListCtrl::GetItemRect.

Scrolls the contents of the client area of
the current CWnd object.

xAmount
Specifies the amount, in device units, of
horizontal scrolling. This parameter must
be a negative value to scroll to the left.

yAmount
Specifies the amount, in device units, of
vertical scrolling. This parameter must be a
negative value to scroll up.

lpRect
Points to a CRect object or RECT structure
that specifies the portion of the client area
to be scrolled. If lpRect is NULL, the entire
client area is scrolled. The caret is
repositioned if the cursor rectangle

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

RemarksRemarks

CWnd::ScrollWindowEx

intersects the scroll rectangle.

lpClipRect
Points to a CRect object or RECT

structure that specifies the clipping
rectangle to scroll. Only bits inside this
rectangle are scrolled. Bits outside this
rectangle are not affected even if they are
in the lpRect rectangle. If lpClipRect is
NULL, no clipping is performed on the
scroll rectangle.

If the caret is in the CWnd being scrolled,
ScrollWindow automatically hides the caret

to prevent it from being erased and then
restores the caret after the scroll is
finished. The caret position is adjusted
accordingly.

The area uncovered by the ScrollWindow

member function is not repainted but is
combined into the current CWnd object's
update region. The application will
eventually receive a WM_PAINT message
notifying it that the region needs
repainting. To repaint the uncovered area
at the same time the scrolling is done, call
the UpdateWindow member function
immediately after calling ScrollWindow .

If lpRect is NULL, the positions of any child
windows in the window are offset by the
amount specified by xAmount and
yAmount, and any invalid (unpainted)
areas in the CWnd are also offset.
ScrollWindow is faster when lpRect is

NULL.

If lpRect is not NULL, the positions of child
windows are not changed, and invalid
areas in CWnd are not offset. To prevent
updating problems when lpRect is not
NULL, call the UpdateWindow member
function to repaint CWnd before calling
ScrollWindow .

Scrolls the contents of a window's client
area.

https://docs.microsoft.com/windows/desktop/gdi/wm-paint

int ScrollWindowEx(
 int dx,
 int dy,
 LPCRECT lpRectScroll,
 LPCRECT lpRectClip,
 CRgn* prgnUpdate,
 LPRECT lpRectUpdate,
 UINT flags);

ParametersParameters
dx
Specifies the amount, in device units, of
horizontal scrolling. This parameter must
have a negative value to scroll to the left.

dy
Specifies the amount, in device units, of
vertical scrolling. This parameter must
have a negative value to scroll up.

lpRectScroll
Points to a RECT structure that specifies
the portion of the client area to be scrolled.
If this parameter is NULL, the entire client
area is scrolled.

lpRectClip
Points to a RECT structure that specifies
the clipping rectangle to scroll. This
structure takes precedence over the
rectangle pointed to by lpRectScroll. Only
bits inside this rectangle are scrolled. Bits
outside this rectangle are not affected even
if they are in the lpRectScroll rectangle. If
this parameter is NULL, no clipping is
performed on the scroll rectangle.

prgnUpdate
Identifies the region that is modified to
hold the region invalidated by scrolling.
This parameter may be NULL.

lpRectUpdate
Points to a RECT structure that will receive
the boundaries of the rectangle invalidated
by scrolling. This parameter may be NULL.

flags
Can have one of the following values:

SW_ERASE When specified with
SW_INVALIDATE, erases the newly
invalidated region by sending a
WM_ERASEBKGND message to
the window.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/winmsg/wm-erasebkgnd

Return ValueReturn Value

RemarksRemarks

SW_INVALIDATE Invalidates the
region identified by prgnUpdate
after scrolling.

SW_SCROLLCHILDREN Scrolls all
child windows that intersect the
rectangle pointed to by lpRectScroll
by the number of pixels specified in
dx and dy. Windows sends a
WM_MOVE message to all child
windows that intersect lpRectScroll,
even if they do not move. The caret
is repositioned when a child
window is scrolled and the cursor
rectangle intersects the scroll
rectangle.

The return value is S IMPLEREGION
(rectangular invalidated region),
COMPLEXREGION (nonrectangular
invalidated region; overlapping rectangles),
or NULLREGION (no invalidated region),
if the function is successful; otherwise the
return value is ERROR.

This function is similar to the
ScrollWindow function, with some
additional features.

If SW_INVALIDATE and SW_ERASE are
not specified, the ScrollWindowEx member
function does not invalidate the area that is
scrolled away from. If either of these flags
is set, ScrollWindowEx invalidates this area.
The area is not updated until the
application calls the UpdateWindow
member function, calls the
RedrawWindow member function
(specifying RDW_UPDATENOW or
RDW_ERASENOW), or retrieves the
WM_PAINT message from the application
queue.

If the window has the
WS_CLIPCHILDREN style, the returned
areas specified by prgnUpdate and
lpRectUpdate represent the total area of
the scrolled window that must be updated,
including any areas in child windows that
need updating.

If the SW_SCROLLCHILDREN flag is

https://docs.microsoft.com/windows/desktop/winmsg/wm-move
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-scrollwindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-scrollwindowex
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-scrollwindowex
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-updatewindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-redrawwindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-redrawwindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-redrawwindow
https://docs.microsoft.com/windows/desktop/gdi/wm-paint
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-scrollwindowex

 CWnd::SendChildNotifyLast
Msg

BOOL SendChildNotifyLastMsg(LRESULT*
pResult = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

specified, Windows will not properly
update the screen if part of a child window
is scrolled. The part of the scrolled child
window that lies outside the source
rectangle will not be erased and will not be
redrawn properly in its new destination.
Use the DeferWindowPos Windows
function to move child windows that do
not lie completely within the lpRectScroll
rectangle. The cursor is repositioned if the
SW_SCROLLCHILDREN flag is set and
the caret rectangle intersects the scroll
rectangle.

All input and output coordinates (for
lpRectScroll, lpRectClip, lpRectUpdate, and
prgnUpdate) are assumed to be in client
coordinates, regardless of whether the
window has the CS_OWNDC or
CS_CLASSDC class style. Use the LPtoDP
and DPtoLP Windows functions to convert
to and from logical coordinates, if
necessary.

This member function is called by the
framework to provide a notification
message to a child window, from the
parent window, so the child window can
handle a task.

pResult
The result generated by the child window
to be returned by the parent window.

Nonzero if the child window has handled
the message sent to its parent; otherwise
0.

SendChildNotifyLastMsg send the current
message to the source if it is a message
that is reflected.

For more information about message
reflection, see Handling Reflected

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-deferwindowpos
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-lptodp
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-dptolp

 CWnd::SendDlgItemMessa
ge

LRESULT SendDlgItemMessage(
 int nID,
 UINT message,
 WPARAM wParam = 0,
 LPARAM lParam = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

void CMyDlg::SetSpinRange()
{
 //set the min and max range of the
up/down or spin control
 SendDlgItemMessage(IDC_SPIN1,
UDM_SETRANGE, 0, (LPARAM) MAKELONG (8,
1));
}

Messages.

Sends a message to a control.

nID
Specifies the identifier of the dialog control
that will receive the message.

message
Specifies the message to be sent.

wParam
Specifies additional message-dependent
information.

lParam
Specifies additional message-dependent
information.

Specifies the value returned by the
control's window procedure, or 0 if the
control was not found.

The SendDlgItemMessage member function
does not return until the message has
been processed.

Using SendDlgItemMessage is identical to
obtaining a CWnd * to the given control and
calling the SendMessage member
function.

 CWnd::SendMessage

LRESULT SendMessage(
 UINT message,
 WPARAM wParam = 0,
 LPARAM lParam = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Sends the specified message to this
window.

message
Specifies the message to be sent.

wParam
Specifies additional message-dependent
information.

lParam
Specifies additional message-dependent
information.

The result of the message processing; its
value depends on the message sent.

The SendMessage member function calls
the window procedure directly and does
not return until that window procedure has
processed the message. This is in contrast
to the PostMessage member function,
which places the message into the
window's message queue and returns
immediately.

void CAboutDlg::OnPaint()
{
 // This code, normally emitted by
the Application Wizard for a dialog-
 // based project for the dialog's
WM_PAINT handler, runs only if the
 // window is iconic. The window
erases the icon's area, then
 // paints the icon referenced by
m_hIcon.
 if (IsIconic())
 {
 CPaintDC dc(this); // device
context for painting

 SendMessage(WM_ICONERASEBKGND,
(WPARAM)dc.GetSafeHdc(), 0);

 // Center icon in client
rectangle
 int cxIcon =
GetSystemMetrics(SM_CXICON);
 int cyIcon =
GetSystemMetrics(SM_CYICON);
 CRect rect;
 GetClientRect(&rect);
 int x = (rect.Width() - cxIcon +
1) / 2;
 int y = (rect.Height() - cyIcon +
1) / 2;

 // Draw the icon
 dc.DrawIcon(x, y, m_hIcon);
 }
 else
 {
 CDialog::OnPaint();
 }
}

CWnd::SendMessageToDes
cendants

void SendMessageToDescendants(
 UINT message,
 WPARAM wParam = 0,
 LPARAM lParam = 0,
 BOOL bDeep = TRUE,
 BOOL bOnlyPerm = FALSE);

ParametersParameters

Call this member function to send the
specified Windows message to all
descendant windows.

message
Specifies the message to be sent.

wParam
Specifies additional message-dependent
information.

RemarksRemarks

ExampleExample

lParam
Specifies additional message-dependent
information.

bDeep
Specifies the level to which to search. If
TRUE, recursively search all children; if
FALSE, search only immediate children.

bOnlyPerm
Specifies whether the message will be
received by temporary windows. If TRUE,
temporary windows can receive the
message; if FALSE, only permanent
windows receive the message. For more
information on temporary windows see
Technical Note 3.

If bDeep is FALSE, the message is sent just
to the immediate children of the window;
otherwise the message is sent to all
descendant windows.

If bDeep and bOnlyPerm are TRUE, the
search continues below temporary
windows. In this case, only permanent
windows encountered during the search
receive the message. If bDeep is FALSE,
the message is sent only to the immediate
children of the window.

// The following code fragment is from
CMyDlg::OnInitDialog
// CMyDlg is derived from CDialog.

// change font of child controls of a
dialog
LOGFONT lf = {0};
// redraw of child controls not needed
in OnInitDialog
// since controls aren't drawn yet.
short int fRedraw = FALSE;

lf.lfHeight = 15; //
Request a 15-pixel-high font

// with face name "Arial".
wcscpy_s(lf.lfFaceName, LF_FACESIZE,
_T("Arial"));

m_font.CreateFontIndirect(&lf); //
Create the font.

SendMessageToDescendants(WM_SETFONT,
 (WPARAM)m_font.m_hObject, //handle
to font
 MAKELONG ((WORD) fRedraw, 0),
 FALSE); // send to all
descendants(TRUE) or
 // just children of *this
(FALSE)

CWnd::SendNotifyMessage

BOOL SendNotifyMessage(
 UINT message,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Sends the specified message to the
window.

message
Specifies the message to be sent.

wParam
Specifies additional message-dependent
information.

lParam
Specifies additional message-dependent
information.

Nonzero if the function is successful;
otherwise 0.

If the window was created by the calling

CWnd::SetActiveWindow

CWnd* SetActiveWindow();

Return ValueReturn Value

RemarksRemarks

CWnd::SetCapture

CWnd* SetCapture();

Return ValueReturn Value

RemarksRemarks

thread, SendNotifyMessage calls the
window procedure for the window and
does not return until the window
procedure has processed the message. If
the window was created by a different
thread, SendNotifyMessage passes the
message to the window procedure and
returns immediately; it does not wait for
the window procedure to finish processing
the message.

Makes CWnd the active window.

The window that was previously active.

The returned pointer may be temporary
and should not be stored for later use.

The SetActiveWindow member function
should be used with care since it allows an
application to arbitrarily take over the
active window and input focus. Normally,
Windows takes care of all activation.

Causes all subsequent mouse input to be
sent to the current CWnd object regardless
of the position of the cursor.

A pointer to the window object that
previously received all mouse input. It is
NULL if there is no such window. The
returned pointer may be temporary and
should not be stored for later use.

When CWnd no longer requires all mouse
input, the application should call the
ReleaseCapture function so that other
windows can receive mouse input.

While mouse input is captured, no

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-releasecapture

CWnd::SetCaretPos

static void PASCAL SetCaretPos(POINT
point);

ParametersParameters

RemarksRemarks

ExampleExample

// The following code snippet shows a
caret when the left
// mouse button is pressed, and sets
the caret's positon to
// the cursor's position.
void CMyView::OnLButtonDown(UINT
nFlags, CPoint point)
{
 //create a solid caret, the width is
2, the length is 20.
 CreateSolidCaret(2, 20);

 SetCaretPos(point);
 ShowCaret();

 CView::OnLButtonDown(nFlags, point);
}

CWnd::SetClipboardViewer

HWND SetClipboardViewer();

Return ValueReturn Value

WM_NCHITTEST or WM_SETCURSOR
messages are sent to the active window.

Sets the position of the caret.

point
Specifies the new x and y coordinates (in
client coordinates) of the caret.

The SetCaretPos member function moves
the caret only if it is owned by a window in
the current task. SetCaretPos moves the
caret whether or not the caret is hidden.

The caret is a shared resource. A window
should not move the caret if it does not
own the caret.

Adds this window to the chain of windows
that are notified (by means of the
WM_DRAWCLIPBOARD message)
whenever the content of the Clipboard is
changed.

RemarksRemarks

CWnd::SetDlgCtrlID

int SetDlgCtrlID(int nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::SetDlgItemInt

A handle to the next window in the
Clipboard-viewer chain if successful.
Applications should save this handle (it can
be stored as a member variable) and use it
when responding to Clipboard-viewer
chain messages.

A window that is part of the Clipboard-
viewer chain must respond to
WM_DRAWCLIPBOARD,
WM_CHANGECBCHAIN, and
WM_DESTROY messages and pass the
message to the next window in the chain.

This member function sends a
WM_DRAWCLIPBOARD message to the
window. Since the handle to the next
window in the Clipboard-viewer chain has
not yet been returned, the application
should not pass on the
WM_DRAWCLIPBOARD message that it
receives during the call to
SetClipboardViewer .

To remove itself from the Clipboard-
viewer chain, an application must call the
ChangeClipboardChain member function.

Sets the window ID or control ID for the
window to a new value.

nID
The new value to set for the control's
identifier.

The previous identifier of the window, if
successful; otherwise 0.

The window can be any child window, not
only a control in a dialog box. The window
cannot be a top-level window.

Sets the text of a given control in a dialog

void SetDlgItemInt(
 int nID,
 UINT nValue,
 BOOL bSigned = TRUE);

ParametersParameters

RemarksRemarks

ExampleExample

CWnd::SetDlgItemText

void SetDlgItemText(
 int nID,
 LPCTSTR lpszString);

ParametersParameters

RemarksRemarks

box to the string representation of a
specified integer value.

nID
Specifies the integer ID of the control to be
changed.

nValue
Specifies the integer value used to
generate the item text.

bSigned
Specifies whether the integer value is
signed or unsigned. If this parameter is
TRUE, nValue is signed. If this parameter
is TRUE and nValue is less than 0, a minus
sign is placed before the first digit in the
string. If this parameter is FALSE, nValue
is unsigned.

SetDlgItemInt sends a WM_SETTEXT
message to the given control.

See the example for
CWnd::SetDlgItemText.

Sets the caption or text of a control owned
by a window or dialog box.

nID
Identifies the control whose text is to be
set.

lpszString
Points to a CString object or null-
terminated string that contains the text to
be copied to the control.

https://docs.microsoft.com/windows/desktop/winmsg/wm-settext

ExampleExample

// The following code fragment is from
CMyDlg::OnInitDialog
// CMyDlg is derived from CDialog.

// Initialize dialog controls
SetDlgItemText(IDC_EDITNAME, _T("Type
in text"));
SetDlgItemInt(IDC_EDITNUM, 100);

CWnd::SetForegroundWind
ow

BOOL SetForegroundWindow();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CWnd::SetFocus

CWnd* SetFocus();

Return ValueReturn Value

RemarksRemarks

SetDlgItemText sends a WM_SETTEXT
message to the given control.

Puts the thread that created the window
into the foreground and activates the
window.

Nonzero if the function is successful;
otherwise 0.

Keyboard input is directed to the window,
and various visual cues are changed for
the user. The foreground window is the
window with which the user is currently
working. The foreground window applies
only to top-level windows (frame windows
or dialogs boxes).

See the example for CWnd::FindWindow.

Claims the input focus.

A pointer to the window object that
previously had the input focus. It is NULL
if there is no such window. The returned
pointer may be temporary and should not
be stored.

https://docs.microsoft.com/windows/desktop/winmsg/wm-settext

CWnd::SetFont

void SetFont(
 CFont* pFont,
 BOOL bRedraw = TRUE);

ParametersParameters

RemarksRemarks

CWnd::SetIcon

The input focus directs all subsequent
keyboard input to this window. Any
window that previously had the input
focus loses it.

The SetFocus member function sends a
WM_KILLFOCUS message to the window
that loses the input focus and a
WM_SETFOCUS message to the window
that receives the input focus. It also
activates either the window or its parent.

If the current window is active but does
not have the focus (that is, no window has
the focus), any key pressed will produce
the messages WM_SYSCHAR,
WM_SYSKEYDOWN, or WM_SYSKEYUP.

Sends the WM_SETFONT message to the
window to use the specified font.

pFont
Pointer to a CFont object.

bRedraw
TRUE for the window to redraw
immediately after it processes the
WM_SETFONT message; otherwise
FALSE.

This method has no effect unless the
window processes the WM_SETFONT
message. Many MFC classes that derive
from CWnd process this message because
they are attached to a predefined window
class that includes a message handler for
the WM_SETFONT message. To use this
method, classes that you derive from
CWnd must define a method handler for

the WM_SETFONT message.

Call this member function to set the
handle to a specific icon, as identified by
hIcon.

https://docs.microsoft.com/windows/desktop/inputdev/wm-killfocus
https://docs.microsoft.com/windows/desktop/inputdev/wm-setfocus

HICON SetIcon(
 HICON hIcon,
 BOOL bBigIcon);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CWnd::SetLayeredWindow
Attributes

BOOL SetLayeredWindowAttributes(
 COLORREF crKey,
 BYTE bAlpha,
 DWORD dwFlags);

ParametersParameters

hIcon
A handle to a previous icon.

bBigIcon
Specifies a 32 pixel by 32 pixel icon if
TRUE; specifies a 16 pixel by 16 pixel icon
if FALSE.

A handle to an icon.

When the window class is registered, it
selects an icon.

See the example for
CWnd::GetSystemMenu.

Sets the opacity and transparency color
key of a layered window.

crKey
Pointer to a COLORREF value that
specifies the transparency color key to be
used when composing the layered window.
All pixels painted by the window in this
color will be transparent. To generate a
COLORREF, use the RGB macro.

bAlpha
Alpha value used to describe the opacity of
the layered window. For more information,
see the SourceConstantAlpha member of
the BLENDFUNCTION structure. When
bAlpha is 0, the window is completely
transparent. When bAlpha is 255, the
window is opaque.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_blendfunction

Return ValueReturn Value

RemarksRemarks

CWnd::SetMenu

BOOL SetMenu(CMenu* pMenu);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CWnd::SetOwner

void SetOwner(CWnd* pOwnerWnd);

ParametersParameters

dwFlags
Specifies an action to take. This parameter
can be one or more of the following
values. For a list of possible values, see
SetLayeredWindowAttributes.

Nonzero if the function succeeds;
otherwise 0.

This member function emulates the
functionality of the function
SetLayeredWindowAttributes, as
described in the Windows SDK.

Sets the current menu to the specified
menu.

pMenu
Identifies the new menu. If this parameter
is NULL, the current menu is removed.

Nonzero if the menu is changed; otherwise
0.

Causes the window to be redrawn to
reflect the menu change.

SetMenu will not destroy a previous menu.
An application should call the
CMenu::DestroyMenu member function to
accomplish this task.

See the example for CMenu::LoadMenu.

Sets the current window's owner to the
specified window object.

pOwnerWnd

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setlayeredwindowattributes
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setlayeredwindowattributes

RemarksRemarks

CWnd::SetParent

CWnd* SetParent(CWnd* pWndNewParent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::SetProperty

Identifies the new owner of the window
object. If this parameter is NULL, the
window object has no owner.

This owner can then receive command
messages from the current window object.
By default, the parent of the current
window is its owner.

It is often useful to establish connections
between window objects that are unrelated
to the window hierarchy. For example,
CToolBar sends notifications to its owner
instead of to its parent. This allows the
toolbar to become the child of one window
(such as an OLE container application
window) while sending notifications to
another window (such as the in-place
frame window). Furthermore, when a
server window is deactivated or activated
during in-place editing, any window
owned by the frame window is hidden or
shown. This ownership is explicitly set with
a call to SetOwner .

The ownership concept of this function is
different from the ownership concept of
GetWindow.

Changes the parent window of a child
window.

pWndNewParent
Identifies the new parent window.

A pointer to the previous parent window
object if successful. The returned pointer
may be temporary and should not be
stored for later use.

If the child window is visible, Windows
performs the appropriate redrawing and
repainting.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getwindow

void AFX_CDECL SetProperty(
 DISPID dwDispID,
 VARTYPE vtProp, ...);

ParametersParameters

RemarksRemarks

NOTENOTE

CWnd::SetRedraw

void SetRedraw(BOOL bRedraw = TRUE);

ParametersParameters

RemarksRemarks

Call this member function to set the OLE
control property specified by dwDispID.

dwDispID
Identifies the property to be set.

vtProp
Specifies the type of the property to be set.
For possible values, see the Remarks
section for
COleDispatchDriver::InvokeHelper.

...
A single parameter of the type specified by
vtProp.

This function should be called only on a
CWnd object that represents an OLE

control.

For more information about using this
member function with OLE Control
Containers, see the article ActiveX Control
Containers: Programming ActiveX
Controls in an ActiveX Control Container.

An application calls SetRedraw to allow
changes to be redrawn or to prevent
changes from being redrawn.

bRedraw
Specifies the state of the redraw flag. If this
parameter is TRUE, the redraw flag is set;
if FALSE, the flag is cleared.

This member function sets or clears the
redraw flag. While the redraw flag is
cleared, the contents will not be updated

ExampleExample

// Updating a control or window with
large amounts of data may cause
// flicker. In such cases it may be
better to turn off drawing

//m_list is a member of type CListCtrl
m_List.SetRedraw(FALSE); // turn
drawing off regardless of list mode

//
// Update control
//

m_List.SetRedraw(TRUE); // turn
drawing back on and update the window

// invalidate the entire control, force
painting
m_List.Invalidate();
m_List.UpdateWindow();

CWnd::SetScrollInfo

BOOL SetScrollInfo(
 int nBar,
 LPSCROLLINFO lpScrollInfo,
 BOOL bRedraw = TRUE);

ParametersParameters

after each change and will not be repainted
until the redraw flag is set. For example, an
application that needs to add several items
to a list box can clear the redraw flag, add
the items, and then set the redraw flag.
Finally, the application can call the
Invalidate or InvalidateRect member
function to cause the list box to be
repainted.

Call this member function to set the
information that the SCROLLINFO structure
maintains about a scroll bar.

nBar
Specifies whether the scroll bar is a control
or part of a window's nonclient area. If it is
part of the nonclient area, nBar also
indicates whether the scroll bar is
positioned horizontally, vertically, or both.
It must be one of the following:

SB_CTL Contains the parameters
for a scroll bar control. The m_hWnd

data member must be the handle of
the scroll bar control.

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CWnd::SetScrollPos

SB_HORZ Specifies that the
window is a horizontal scroll bar.

SB_VERT Specifies that the window
is a vertical scroll bar.

lpScrollInfo
A pointer to a SCROLLINFO structure.
See the Windows SDK for more
information about this structure.

bRedraw
Specifies whether the scroll bar should be
redrawn to reflect the new position. If
bRedraw is TRUE, the scroll bar is
redrawn. If it is FALSE, it is not redrawn.
The scroll bar is redrawn by default.

If successful, the return is TRUE.
Otherwise, it is FALSE.

The SCROLLINFO structure contains
information about a scroll bar, including
the minimum and maximum scrolling
positions, the page size, and the position of
the scroll box (the thumb). See the
SCROLLINFO structure topic in the

Windows SDK for more information about
changing the structure defaults.

The MFC Windows message handlers that
indicate scroll-bar position,
CWnd::OnHScroll and CWnd::OnVScroll,
provide only 16 bits of position data.
GetScrollInfo and SetScrollInfo provide
32 bits of scroll-bar position data. Thus, an
application can call GetScrollInfo while
processing either CWnd::OnHScroll or
CWnd::OnVScroll to obtain 32-bit scroll-

bar position data.

CWnd::GetScrollInfo enables applications to
use 32-bit scroll-bar positions.

Sets the current position of a scroll box
and, if requested, redraws the scroll bar to
reflect the new position of the scroll box.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagscrollinfo
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagscrollinfo

int SetScrollPos(
 int nBar,
 int nPos,
 BOOL bRedraw = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::SetScrollRange

void SetScrollRange(
 int nBar,
 int nMinPos,
 int nMaxPos,
 BOOL bRedraw = TRUE);

ParametersParameters

nBar
Specifies the scroll bar to be set. This
parameter can be either of the following:

SB_HORZ Sets the position of the
scroll box in the horizontal scroll bar
of the window.

SB_VERT Sets the position of the
scroll box in the vertical scroll bar of
the window.

nPos
Specifies the new position of the scroll box.
It must be within the scrolling range.

bRedraw
Specifies whether the scroll bar should be
repainted to reflect the new scroll-box
position. If this parameter is TRUE, the
scroll bar is repainted; if FALSE, the scroll
bar is not repainted.

The previous position of the scroll box.

Setting bRedraw to FALSE is useful
whenever the scroll bar will be redrawn by
a subsequent call to another function.

Sets minimum and maximum position
values for the given scroll bar.

nBar
Specifies the scroll bar to be set. This
parameter can be either of the following
values:

SB_HORZ Sets the range of the

RemarksRemarks

CWnd::SetTimer

UINT_PTR SetTimer(
 UINT_PTR nIDEvent,
 UINT nElapse,
 void (CALLBACK* lpfnTimer)(HWND,
 UINT,
 UINT_PTR,
 DWORD));

ParametersParameters

horizontal scroll bar of the window.

SB_VERT Sets the range of the
vertical scroll bar of the window.

nMinPos
Specifies the minimum scrolling position.

nMaxPos
Specifies the maximum scrolling position.

bRedraw
Specifies whether the scroll bar should be
redrawn to reflect the change. If bRedraw
is TRUE, the scroll bar is redrawn; if
FALSE, the scroll bar is not redrawn.

It can also be used to hide or show
standard scroll bars.

An application should not call this function
to hide a scroll bar while processing a
scroll-bar notification message.

If the call to SetScrollRange immediately
follows a call to the SetScrollPos member
function, the bRedraw parameter in the
SetScrollPos member function should be

0 to prevent the scroll bar from being
drawn twice.

The default range for a standard scroll bar
is 0 through 100. The default range for a
scroll bar control is empty (both the
nMinPos and nMaxPos values are 0). The
difference between the values specified by
nMinPos and nMaxPos must not be
greater than INT_MAX.

Installs a system timer.

nIDEvent
Specifies a nonzero timer identifier. If the
timer identifier is unique, this same value

Return ValueReturn Value

RemarksRemarks

is returned by SetTimer . Otherwise,
SetTimer determines a new unique value

and returns that. For a window timer
(which has a NULL callback function), the
value must be unique only for other
windows timers that are associated with
the current window. For a callback timer,
the value must be unique for all timers in
all processes. Therefore, when you create a
callback timer, it is more likely that the
returned value might differ from the value
you specify.

nElapse
Specifies the time-out value, or interval, in
milliseconds.

lpfnTimer
Specifies the address of the application-
supplied TimerProc callback function that
processes the WM_TIMER messages. If
this parameter is NULL, the WM_TIMER
messages are placed in the message queue
of the application and handled by the
CWnd object.

The timer identifier of the new timer if the
function is successful. This value may or
may not be equal to the value passed in
through the nIDEvent parameter. An
application should always pass the return
value to the KillTimer member function to
kill the timer. Nonzero if successful;
otherwise, 0.

An interval value is specified, and every
time the interval elapses, the system posts
a WM_TIMER message to the installing
message queue of the installing
application or passes the message to an
application-defined TimerProc callback
function.

The lpfnTimer callback function need not
be named TimerProc , but it must be
declared as static and defined as follows.

https://docs.microsoft.com/windows/desktop/winmsg/wm-timer

void CALLBACK TimerProc(
 HWND hWnd, // handle of CWnd that
called SetTimer
 UINT nMsg, // WM_TIMER
 UINT_PTR nIDEvent, // timer
identification
 DWORD dwTime // system time);

ExampleExample
This example uses CWnd::SetTimer ,
CWnd::OnTimer , and CWnd::KillTimer to

handle WM_TIMER messages. The first
timer is set up to send a WM_TIMER
message to the main frame window every
2 seconds in OnStartTimer . The OnTimer

event handler handles WM_TIMER
messages for the main frame window. This
method causes the PC speaker to beep
every 2 seconds. The second timer sends a
message to the callback function every
3.75 seconds. OnStopTimer will stop both
timers by calling CWnd::KillTimer for each
timer ID.

void CMainFrame::OnStartTimer()
{
 // This timer uses a WM_TIMER
message, not a callback.
 // Therefore, the timer is specific
to this window.
 // m_nWindowTimer is a UINT_PTR
field.
 m_nWindowTimer = SetTimer(1, 2000,
NULL);

 // For this demo, we specify an
interval that won't overlap
 // with the window timer.
 m_nCallbackTimer = SetTimer(2,
3750, &CMainFrame::MyTimerProc);

 // See whether we got the ID we
requested in the first parameter.
#ifdef _DEBUG
 CString str;
 str.Format(_T("m_ncallbackTImer ID
= %d"), m_nCallbackTimer);
 TRACE(str);
#endif

}

 void CALLBACK CMainFrame::MyTimerProc(
 HWND hWnd, // handle of CWnd
that called SetTimer
 UINT nMsg, // WM_TIMER
 UINT_PTR nIDEvent, // timer
identification
 DWORD dwTime // system time
)
{
 MessageBeep(0x00000030L); //
Windows question sound.
}

void CMainFrame::OnStopTimer()
{
 KillTimer(m_nWindowTimer);
 KillTimer(m_nCallbackTimer);
}

void CMainFrame::OnTimer(UINT nIDEvent)
{
 MessageBeep(0xFFFFFFFF); // Beep

 // Call base class handler.
 CMDIFrameWnd::OnTimer(nIDEvent);
}

CWnd::SetWindowContext
HelpId
Call this member function to associate a
help context identifier with the specified
window.

BOOL SetWindowContextHelpId(DWORD
dwContextHelpId);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// The following code fragment is from
CMyDlg::OnInitDialog
// CMyDlg is derived from CDialog.

// Associate a help context id with the
control.
// IDC_TESTHELP_CONTROL is the id of
the control
// and HIDC_TESTHELP_CONTROL is its
help context
// id associated with the control.
CWnd* pWnd =
GetDlgItem(IDC_TESTHELP_CONTROL);
pWnd-
>SetWindowContextHelpId(HIDC_TESTHELP_C
ONTROL);

CWnd::SetWindowPlaceme
nt

BOOL SetWindowPlacement(const
WINDOWPLACEMENT* lpwndpl);

ParametersParameters

dwContextHelpId
The help context identifier.

Nonzero if the function is successful;
otherwise 0.

If a child window does not have a help
context identifier, it inherits the identifier of
its parent window. Likewise, if an owned
window does not have a help context
identifier, it inherits the identifier of its
owner window. This inheritance of help
context identifiers allows an application to
set just one identifier for a dialog box and
all of its controls.

Sets the show state and the normal
(restored), minimized, and maximized
positions for a window.

lpwndpl
Points to a WINDOWPLACEMENT
structure that specifies the new show state

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwindowplacement

Return ValueReturn Value

CWnd::SetWindowPos

BOOL SetWindowPos(
 const CWnd* pWndInsertAfter,
 int x,
 int y,
 int cx,
 int cy,
 UINT nFlags);

ParametersParameters

and positions.

Nonzero if the function is successful;
otherwise 0.

Changes the size, position, and Z-order of
child, pop-up, and top-level windows.

pWndInsertAfter
Identifies the CWnd object that will precede
(be higher than) this CWnd object in the Z-
order. This parameter can be a pointer to a
CWnd or a pointer to one of the following

values:

wndBottom Places the window at the
bottom of the Z-order. If this CWnd

is a topmost window, the window
loses its topmost status; the system
places the window at the bottom of
all other windows.

wndTop Places the window at the
top of the Z-order.

wndTopMost Places the window
above all non-topmost windows.
The window maintains its topmost
position even when it is deactivated.

wndNoTopMost Repositions the
window to the top of all non-
topmost windows (that is, behind all
topmost windows). This flag has no
effect if the window is already a
non-topmost window.

For rules about how to use this parameter,
see the "Remarks" section of this topic.

x
Specifies the new position of the left side
of the window.

y
Specifies the new position of the top of the
window.

cx
Specifies the new width of the window.

cy
Specifies the new height of the window.

nFlags
Specifies sizing and positioning options.
This parameter can be a combination of
the following flags:

SWP_DRAWFRAME Draws a
frame (defined when the window
was created) around the window.

SWP_FRAMECHANGED Sends a
WM_NCCALCSIZE message to the
window, even if the window's size is
not being changed. If this flag is not
specified, WM_NCCALCSIZE is
sent only when the window's size is
being changed.

SWP_HIDEWINDOW Hides the
window.

SWP_NOACTIVATE Does not
activate the window. If this flag is
not set, the window is activated and
moved to the top of either the
topmost or the non-topmost group
(depending on the setting of the
pWndInsertAfter parameter).

SWP_NOCOPYBITS Discards the
entire contents of the client area. If
this flag is not specified, the valid
contents of the client area are saved
and copied back into the client area
after the window is sized or
repositioned.

SWP_NOMOVE Retains current
position (ignores the x and y
parameters).

SWP_NOOWNERZORDER Does
not change the owner window's
position in the Z-order.

SWP_NOREDRAW Does not
redraw changes. If this flag is set, no
repainting of any kind occurs. This

Return ValueReturn Value

RemarksRemarks

applies to the client area, the
nonclient area (including the title
and scroll bars), and any part of the
parent window uncovered as a
result of the moved window. When
this flag is set, the application must
explicitly invalidate or redraw any
parts of the window and parent
window that must be redrawn.

SWP_NOREPOSITION Same as
SWP_NOOWNERZORDER.

SWP_NOSENDCHANGING
Prevents the window from receiving
the
WM_WINDOWPOSCHANGING
message.

SWP_NOSIZE Retains current size
(ignores the cx and cy parameters).

SWP_NOZORDER Retains current
ordering (ignores pWndInsertAfter).

SWP_SHOWWINDOW Displays
the window.

Nonzero if the function is successful;
otherwise, 0.

Windows are ordered on the screen
according to their Z-order; the window at
the top of the Z-order appears on top of all
other windows in the order.

All coordinates for child windows are client
coordinates (relative to the upper-left
corner of the parent window's client area).

A window can be moved to the top of the
Z-order either by setting the
pWndInsertAfter parameter to
&wndTopMost and ensuring that the
SWP_NOZORDER flag is not set or by
setting a window's Z-order so that it is
above any existing topmost windows.
When a non-topmost window is made
topmost, its owned windows are also
made topmost. Its owners are not
changed.

A topmost window is no longer topmost if
it is repositioned to the bottom (

&wndBottom) of the Z-order or after any
non-topmost window. When a topmost
window is made non-topmost, all of its
owners and its owned windows are also
made non-topmost windows.

If neither SWP_NOACTIVATE nor
SWP_NOZORDER is specified (that is,
when the application requests that a
window be simultaneously activated and
placed in the specified Z-order), the value
specified in pWndInsertAfter is used only
in the following circumstances:

Neither &wndTopMost nor
&wndNoTopMost is specified in
the pWndInsertAfter parameter.

This window is not the active
window.

An application cannot activate an inactive
window without also bringing it to the top
of the Z-order. Applications can change the
Z-order of an activated window without
restrictions.

A non-topmost window may own a
topmost window, but not vice versa. Any
window (for example, a dialog box) owned
by a topmost window is itself made a
topmost window to ensure that all owned
windows stay above their owner.

With Windows versions 3.1 and later,
windows can be moved to the top of the Z-
order and locked there by setting their
WS_EX_TOPMOST styles. Such a topmost
window maintains its topmost position
even when deactivated. For example,
selecting the WinHelp Always On Top
command makes the Help window
topmost, and it then remains visible when
you return to your application.

To create a topmost window, call
SetWindowPos with the pWndInsertAfter

parameter equal to &wndTopMost, or set
the WS_EX_TOPMOST style when you
create the window.

If the Z-order contains any windows with
the WS_EX_TOPMOST style, a window
moved with the &wndTopMost value is
placed at the top of all non-topmost
windows, but below any topmost windows.

ExampleExample

void CMyApp::OnHideApplication()
{
 //m_pMainWnd is the main application
window, a member of CMyApp
 ASSERT_VALID(m_pMainWnd);

 // hide the application's windows
before closing all the documents
 m_pMainWnd->ShowWindow(SW_HIDE);
 m_pMainWnd->ShowOwnedPopups(FALSE);

 // put the window at the bottom of
z-order, so it isn't activated
 m_pMainWnd-
>SetWindowPos(&CWnd::wndBottom, 0, 0,
0, 0,

SWP_NOMOVE|SWP_NOSIZE|SWP_NOACTIVATE);
}

CWnd::SetWindowRgn

int SetWindowRgn(
 HRGN hRgn,
 BOOL bRedraw);

ParametersParameters

When an application activates an inactive
window without the WS_EX_TOPMOST
bit, the window is moved above all non-
topmost windows but below any topmost
windows.

If SetWindowPos is called when the
pWndInsertAfter parameter is
&wndBottom and CWnd is a topmost
window, the window loses its topmost
status (WS_EX_TOPMOST is cleared), and
the system places the window at the
bottom of the Z-order.

Call this member function to set a
window's region.

hRgn
A handle to a region.

bRedraw
If TRUE, the operating system redraws the
window after setting the region; otherwise,
it does not. Typically, set bRedraw to TRUE
if the window is visible. If set to TRUE, the
system sends the
WM_WINDOWPOSCHANGING and
WM_WINDOWPOSCHANGED messages

Return ValueReturn Value

RemarksRemarks

CWnd::SetWindowText

void SetWindowText(LPCTSTR lpszString);

ParametersParameters

RemarksRemarks

ExampleExample

to the window.

If the function succeeds, the return value is
nonzero. If the function fails, the return
value is zero.

The coordinates of a window's window
region are relative to the upper-left corner
of the window, not the client area of the
window.

After a successful call to SetWindowRgn , the
operating system owns the region
specified by the region handle hRgn. The
operating system does not make a copy of
the region, so do not make any further
function calls with this region handle, and
do not close this region handle.

Sets the window's title to the specified text.

lpszString
Points to a CString object or null-
terminated string to be used as the new
title or control text.

If the window is a control, the text within
the control is set.

This function causes a WM_SETTEXT
message to be sent to this window.

https://docs.microsoft.com/windows/desktop/winmsg/wm-settext

// set the text in IDC_EDITNAME
CWnd* pWnd = GetDlgItem(IDC_EDITNAME);
pWnd->SetWindowText(_T("Gerald
Samper"));

// Get the text back. CString is
convenient, because MFC
// will automatically allocate enough
memory to hold the
// text--no matter how large it is.

CString str;
pWnd->GetWindowText(str);
ASSERT(str == _T("Gerald Samper"));

// The LPTSTR override works, too, but
it might be too short.
// If we supply a buffer that's too
small, we'll only get those
// characters that fit.

TCHAR sz[10];
int nRet = pWnd->GetWindowText(sz, 10);

// Nine characters, plus terminating
null
ASSERT(_tcscmp(sz, _T("Gerald Sa")) ==
0);
ASSERT(nRet == 9);

// You can query the length of the text
without the length of
// the string using
CWnd::GetWindowTextLength()
nRet = pWnd->GetWindowTextLength();
ASSERT(nRet == 13);

CWnd::ShowCaret

void ShowCaret();

RemarksRemarks

Shows the caret on the screen at the
caret's current position.

Once shown, the caret begins flashing
automatically.

The ShowCaret member function shows
the caret only if it has a current shape and
has not been hidden two or more times
consecutively. If the caret is not owned by
this window, the caret is not shown.

Hiding the caret is cumulative. If the
HideCaret member function has been
called five times consecutively, ShowCaret

must be called five times to show the caret.

The caret is a shared resource. The window

ExampleExample

CWnd::ShowOwnedPopups

void ShowOwnedPopups(BOOL bShow =
TRUE);

ParametersParameters

ExampleExample

CWnd::ShowScrollBar

void ShowScrollBar(
 UINT nBar,
 BOOL bShow = TRUE);

ParametersParameters

should show the caret only when it has the
input focus or is active.

See the example for CWnd::CreateCaret.

Shows or hides all pop-up windows
owned by this window.

bShow
Specifies whether pop-up windows are to
be shown or hidden. If this parameter is
TRUE, all hidden pop-up windows are
shown. If this parameter is FALSE, all
visible pop-up windows are hidden.

See the example for
CWnd::SetWindowPos.

Shows or hides a scroll bar.

nBar
Specifies whether the scroll bar is a control
or part of a window's nonclient area. If it is
part of the nonclient area, nBar also
indicates whether the scroll bar is
positioned horizontally, vertically, or both.
It must be one of the following:

SB_BOTH Specifies the horizontal
and vertical scroll bars of the
window.

SB_HORZ Specifies that the
window is a horizontal scroll bar.

SB_VERT Specifies that the window
is a vertical scroll bar.

bShow

RemarksRemarks

CWnd::ShowWindow

BOOL ShowWindow(int nCmdShow);

ParametersParameters

Specifies whether Windows shows or
hides the scroll bar. If this parameter is
TRUE, the scroll bar is shown; otherwise
the scroll bar is hidden.

An application should not call
ShowScrollBar to hide a scroll bar while

processing a scroll-bar notification
message.

Sets the visibility state of the window.

nCmdShow
Specifies how the CWnd is to be shown. It
must be one of the following values:

SW_HIDE Hides this window and
passes activation to another
window.

SW_MINIMIZE Minimizes the
window and activates the top-level
window in the system's list.

SW_RESTORE Activates and
displays the window. If the window
is minimized or maximized,
Windows restores it to its original
size and position.

SW_SHOW Activates the window
and displays it in its current size and
position.

SW_SHOWMAXIMIZED Activates
the window and displays it as a
maximized window.

SW_SHOWMINIMIZED Activates
the window and displays it as an
icon.

SW_SHOWMINNOACTIVE
Displays the window as an icon. The
window that is currently active
remains active.

SW_SHOWNA Displays the
window in its current state. The

Return ValueReturn Value

RemarksRemarks

ExampleExample

CWnd::SubclassDlgItem

BOOL SubclassDlgItem(
 UINT nID,
 CWnd* pParent);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

window that is currently active
remains active.

SW_SHOWNOACTIVATE Displays
the window in its most recent size
and position. The window that is
currently active remains active.

SW_SHOWNORMAL Activates
and displays the window. If the
window is minimized or maximized,
Windows restores it to its original
size and position.

Nonzero if the window was previously
visible; 0 if the CWnd was previously
hidden.

ShowWindow must be called only once per
application for the main window with
CWinApp::m_nCmdShow. Subsequent
calls to ShowWindow must use one of the
values listed above instead of the one
specified by CWinApp::m_nCmdShow .

See the example for
CWnd::CalcWindowRect.

Call this member function to "dynamically
subclass" a control created from a dialog
template and attach it to this CWnd object.

nID
The control's ID.

pParent
The control's parent (usually a dialog box).

Nonzero if the function is successful;
otherwise 0.

When a control is dynamically subclassed,
windows messages will route through the

ExampleExample

// The following code fragment is from
CMyDlg::OnInitDialog
// CMyDlg is derived from CDialog.

// IDC_BUTTON1 is the ID for a button
on the
// dialog template used for CMyDlg.
m_MyButton.SubclassDlgItem(IDC_BUTTON1,
this);

CWnd::SubclassWindow

BOOL SubclassWindow(HWND hWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd 's message map and call message
handlers in the CWnd 's class first.
Messages that are passed to the base class
will be passed to the default message
handler in the control.

This member function attaches the
Windows control to a CWnd object and
replaces the control's WndProc and
AfxWndProc functions. The function stores

the old WndProc in the location returned
by the GetSuperWndProcAddr member
function.

Call this member function to "dynamically
subclass" a window and attach it to this
CWnd object.

hWnd
A handle to the window.

Nonzero if the function is successful;
otherwise 0.

When a window is dynamically subclassed,
windows messages will route through the
CWnd 's message map and call message

handlers in the CWnd 's class first.
Messages that are passed to the base class
will be passed to the default message
handler in the window.

This member function attaches the
Windows control to a CWnd object and
replaces the window's WndProc and

NOTENOTE

ExampleExample

// The following code shows how to
subclass the edit control and list box
// controls inside a combo box. It uses
WM_CTLCOLOR for subclassing.
// CSuperComboBox represents the combo
box
HBRUSH CSuperComboBox::OnCtlColor(CDC*
pDC, CWnd* pWnd, UINT nCtlColor)
{
 if (nCtlColor == CTLCOLOR_EDIT)
 {
 //Edit control
 if (m_edit.GetSafeHwnd() == NULL)
 m_edit.SubclassWindow(pWnd-
>GetSafeHwnd());
 }
 else if (nCtlColor ==
CTLCOLOR_LISTBOX)
 {
 //ListBox control
 if (m_listbox.GetSafeHwnd() ==
NULL)
 m_listbox.SubclassWindow(pWnd-
>GetSafeHwnd());
 }

 HBRUSH hbr =
CComboBox::OnCtlColor(pDC, pWnd,
nCtlColor);
 return hbr;
}

void CSuperComboBox::OnDestroy()
{
 //unsubclass edit and list box
before destruction
 if (m_edit.GetSafeHwnd() != NULL)
 m_edit.UnsubclassWindow();
 if (m_listbox.GetSafeHwnd() != NULL)
 m_listbox.UnsubclassWindow();
 CComboBox::OnDestroy();
}

CWnd::UnlockWindowUpda
te

AfxWndProc functions. The function stores
a pointer to the old WndProc in the CWnd

object.

The window must not already be attached
to an MFC object when this function is
called.

Call this member function to unlock a
window that was locked with
CWnd::LockWindowUpdate .

void UnlockWindowUpdate();

RemarksRemarks

CWnd::UnsubclassWindow

HWND UnsubclassWindow();

Return ValueReturn Value

ExampleExample

CWnd::UpdateData

BOOL UpdateData(BOOL bSaveAndValidate =
TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Only one window at a time can be locked
using LockWindowUpdate . See
CWnd::LockWindowUpdate or the Win32
function LockWindowUpdate for more
information on locking windows.

Call this member function to set WndProc

back to its original value and detach the
window identified by HWND from the
CWnd object.

A handle to the unsubclassed window.

See the example for
CWnd::SubclassWindow.

Call this member function to initialize data
in a dialog box, or to retrieve and validate
dialog data.

bSaveAndValidate
Flag that indicates whether dialog box is
being initialized (FALSE) or data is being
retrieved (TRUE).

Nonzero if the operation is successful;
otherwise 0. If bSaveAndValidate is TRUE,
then a return value of nonzero means that
the data is successfully validated.

The framework automatically calls
UpdateData with bSaveAndValidate set to

FALSE when a modal dialog box is created
in the default implementation of

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-lockwindowupdate

CWnd::UpdateDialogContro
ls

void UpdateDialogControls(
 CCmdTarget* pTarget,
 BOOL bDisableIfNoHndler);

ParametersParameters

RemarksRemarks

CWnd::UpdateLayeredWind
ow

CDialog::OnInitDialog. The call occurs
before the dialog box is visible. The default
implementation of CDialog::OnOK calls
this member function with
bSaveAndValidate set to TRUE to retrieve
the data, and if successful, will close the
dialog box. (If the Cancel button is clicked
in the dialog box, the dialog box is closed
without the data being retrieved.)

Call this member function to update the
state of dialog buttons and other controls
in a dialog box or window that uses the
ON_UPDATE_COMMAND_UI callback
mechanism.

pTarget
Points to the main frame window of the
application, and is used for routing update
messages.

bDisableIfNoHndler
Flag that indicates whether a control that
has no update handler should be
automatically displayed as disabled.

If a child control does not have a handler
and bDisableIfNoHndler is TRUE, then the
child control will be disabled.

The framework calls this member function
for controls in dialog bars or toolbars as
part of the application's idle processing.

Updates the position, size, shape, content,
and translucency of a layered window.

BOOL UpdateLayeredWindow(
 CDC* pDCDst,
 POINT* pptDst,
 SIZE* psize,
 CDC* pDCSrc,
 POINT* pptSrc,
 COLORREF crKey,
 BLENDFUNCTION* pblend,
 DWORD dwFlags);

ParametersParameters
pDCDst
A pointer to a device context for the
screen. It is used for palette color matching
when the window contents are updated. If
pDCDst is NULL, the default palette will be
used.

If pDCSrc is NULL, pDCDst must be
NULL.

pptDst
A pointer to a POINT structure specifying
the new screen position of the layered
window. If the current position is not
changing, pptDst can be NULL.

psize
Pointer to a SIZE structure that specifies
the new size of the layered window. If the
size of the window is not changing, psize
can be NULL.

If pDCSrc is NULL, psize must be NULL.

pDCSrc
A pointer to a DC for the surface that
defines the layered window. If the shape
and visual context of the window are not
changing, pDCSrc can be NULL.

pptSrc
Pointer to a POINT structure that specifies
the location of the layer in the device
context.

If pDCSrc is NULL, pptSrc should be
NULL.

crKey
Pointer to a COLORREF value that
specifies the transparency color key to be
used when composing the layered window.
All pixels painted by the window in this
color will be transparent. To generate a
COLORREF, use the RGB macro.

Return ValueReturn Value

RemarksRemarks

CWnd::UpdateWindow

void UpdateWindow();

RemarksRemarks

ExampleExample

pblend
Pointer to a BLENDFUNCTION structure
that specifies the transparency value to be
used when composing the layered window.

dwFlags
Specifies an action to take. This parameter
can be one or more of the following
values. For a list of possible values, see
UpdateLayeredWindow.

Nonzero if the function succeeds;
otherwise 0.

This member function emulates the
functionality of the function
UpdateLayeredWindow, as described in
the Windows SDK.

Updates the client area by sending a
WM_PAINT message if the update region
is not empty.

The UpdateWindow member function sends
a WM_PAINT message directly, bypassing
the application queue. If the update region
is empty, WM_PAINT is not sent.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_blendfunction
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-updatelayeredwindow
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-updatelayeredwindow
https://docs.microsoft.com/windows/desktop/gdi/wm-paint

// In this example a rectangle is drawn
in a view.
// The OnChangeRect() function changes
the dimensions
// of the rectangle and then calls
CWnd::Invalidate() so the
// client area of the view will be
redrawn next time the
// window is updated. It then calls
CWnd::UpdateWindow
// to force the new rectangle to be
painted.

void CMdiView::OnChangeRect()
{
 // Change Rectangle size.
 m_rcBox = CRect(20, 20, 210, 210);

 // Invalidate window so entire
client area
 // is redrawn when UpdateWindow is
called.
 Invalidate();

 // Update Window to cause View to
redraw.
 UpdateWindow();
}

// On Draw function draws the
rectangle.
void CMdiView::OnDraw(CDC* pDC)
{
 // Other draw code here.

 pDC->Draw3dRect(m_rcBox, 0x00FF0000,
0x0000FF00);
}

CWnd::ValidateRect

void ValidateRect(LPCRECT lpRect);

ParametersParameters

RemarksRemarks

Validates the client area within the given
rectangle by removing the rectangle from
the update region of the window.

lpRect
Points to a CRect object or RECT structure
that contains client coordinates of the
rectangle to be removed from the update
region. If lpRect is NULL, the entire
window is validated.

The BeginPaint member function
automatically validates the entire client
area. Neither the ValidateRect nor the

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CWnd::ValidateRgn

void ValidateRgn(CRgn* pRgn);

ParametersParameters

RemarksRemarks

CWnd::WindowFromPoint

static CWnd* PASCAL
WindowFromPoint(POINT point);

ParametersParameters

ValidateRgn member function should be
called if a portion of the update region
needs to be validated before WM_PAINT
is next generated.

Windows continues to generate
WM_PAINT messages until the current
update region is validated.

Validates the client area within the given
region by removing the region from the
current update region of the window.

pRgn
A pointer to a CRgn object that identifies a
region that defines the area to be removed
from the update region. If this parameter is
NULL, the entire client area is removed.

The given region must have been created
previously by a region function. The region
coordinates are assumed to be client
coordinates.

The BeginPaint member function
automatically validates the entire client
area. Neither the ValidateRect nor the
ValidateRgn member function should be

called if a portion of the update region
must be validated before the next
WM_PAINT message is generated.

Retrieves the window that contains the
specified point; point must specify the
screen coordinates of a point on the
screen.

point
Specifies a CPoint object or POINT data
structure that defines the point to be
checked.

https://docs.microsoft.com/windows/desktop/gdi/wm-paint
https://docs.microsoft.com/windows/desktop/gdi/wm-paint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

Return ValueReturn Value

RemarksRemarks

CWnd::WindowProc

virtual LRESULT WindowProc(
 UINT message,
 WPARAM wParam,
 LPARAM lParam);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::WinHelp

virtual void WinHelp(
 DWORD_PTR dwData,
 UINT nCmd = HELP_CONTEXT);

A pointer to the window object in which
the point lies. It is NULL if no window
exists at the given point. The returned
pointer may be temporary and should not
be stored for later use.

WindowFromPoint does not retrieve a
hidden or disabled window, even if the
point is within the window. An application
should use the ChildWindowFromPoint
member function for a nonrestrictive
search.

Provides a Windows procedure (
WindowProc) for a CWnd object.

message
Specifies the Windows message to be
processed.

wParam
Provides additional information used in
processing the message. The parameter
value depends on the message.

lParam
Provides additional information used in
processing the message. The parameter
value depends on the message.

The return value depends on the message.

It dispatches messages through the
window's message map.

Called to initiate the WinHelp application.

ParametersParameters

RemarksRemarks

CWnd::RegisterTouchWindo
w

BOOL RegisterTouchWindow(
 BOOL bRegister = TRUE,
 ULONG ulFlags = 0);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CWnd::ResizeDynamicLayo
ut

virtual void ResizeDynamicLayout();

RemarksRemarks

dwData
Specifies additional data. The value used
depends on the value of the nCmd
parameter.

nCmd
Specifies the type of help requested. For a
list of possible values and how they affect
the dwData parameter, see the WinHelp
Windows function in the Windows SDK.

See CWinApp::WinHelp for more
information.

Registers or unregisters Windows touch
support.

bRegister
TRUE indicates register Windows touch
support; FALSE otherwise.

ulFlags
A set of bit flags that specify optional
modifications. This field may contain 0 or
one of the following values:
TWF_FINETOUCH, TWF_WANTPALM.

TRUE if successful; otherwise FALSE.

Called by the framework when the window
size changes to adjust the layout of child
windows, if dynamic layout is enabled for
the window.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-winhelpa

See also
CCmdTarget Class
Hierarchy Chart
CFrameWnd Class
CView Class

CWordArray Class
3/4/2019 • 10 minutes to read • Edit Online

Syntax
class CWordArray : public CObject

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CObArray::CObArray Constructs an empty array.

Public MethodsPublic Methods

NAME DESCRIPTION

CObArray::Add Adds an element to the end of the array; grows the array if
necessary.

CObArray::Append Appends another array to the array; grows the array if
necessary.

CObArray::Copy Copies another array to the array; grows the array if
necessary.

CObArray::ElementAt Returns a temporary reference to the element pointer
within the array.

CObArray::FreeExtra Frees all unused memory above the current upper bound.

CObArray::GetAt Returns the value at a given index.

CObArray::GetCount Gets the number of elements in this array.

CObArray::GetData Allows access to elements in the array. Can be NULL.

Supports arrays of 16-bit words.

The member functions of CWordArray are similar to the member functions of class CObArray. Because of this
similarity, you can use the CObArray reference documentation for member function specifics. Wherever you
see a CObject pointer as a function parameter or return value, substitute a WORD.

CObject* CObArray::GetAt(int <nIndex>) const;

for example, translates to

WORD CWordArray::GetAt(int <nIndex>) const;

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cwordarray-class.md

CObArray::GetSize Gets the number of elements in this array.

CObArray::GetUpperBound Returns the largest valid index.

CObArray::InsertAt Inserts an element (or all the elements in another array) at
a specified index.

CObArray::IsEmpty Determines if the array is empty.

CObArray::RemoveAll Removes all the elements from this array.

CObArray::RemoveAt Removes an element at a specific index.

CObArray::SetAt Sets the value for a given index; array not allowed to grow.

CObArray::SetAtGrow Sets the value for a given index; grows the array if
necessary.

CObArray::SetSize Sets the number of elements to be contained in this array.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CObArray::operator [] Sets or gets the element at the specified index.

Remarks

NOTENOTE

Inheritance Hierarchy

Requirements

CWordArray incorporates the IMPLEMENT_SERIAL macro to support serialization and dumping of its
elements. If an array of words is stored to an archive, either with an overloaded insertion operator or with the
CObject::Serialize member function, each element is, in turn, serialized.

Before using an array, use SetSize to establish its size and allocate memory for it. If you do not use SetSize ,
adding elements to your array causes it to be frequently reallocated and copied. Frequent reallocation and copying are
inefficient and can fragment memory.

If you need a dump of individual elements in the array, you must set the depth of the dump context to 1 or
greater.

For more information on using CWordArray , see the article Collections.

CObject

CWordArray

Header: afxcoll.h

ICommandSource Interface

interface class ICommandSource

RemarksRemarks

ICommandSource::AddCommandHandler

void AddCommandHandler(
 unsigned int cmdID,
 CommandHandler^ cmdHandler);

ParametersParameters

RemarksRemarks

ICommandSource::AddCommandRangeHandler

void AddCommandRangeHandler(
 unsigned int cmdIDMin,
 unsigned int cmdIDMax,
 CommandHandler^ cmdHandler);

ParametersParameters

Manages commands sent from a command source object to a user control.

When you host a user control in an MFC View, CWinFormsView Class routes commands and update
command UI messages to the user control to allow it to handle MFC commands (for example, frame menu
items and toolbar buttons). By implementing , you give the user control a reference to the ICommandSource

object.

See How to: Add Command Routing to the Windows Forms Control for an example of how to use
ICommandTarget .

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

Adds a command handler to a command source object.

cmdID
The command ID.

cmdHandler
A handle to the command handler method.

This method adds the command handler cmdHandler to the command source object and maps the handler
to cmdID.

See How to: Add Command Routing to the Windows Forms Control for an example of how to use
AddCommandHandler .

Adds a group of command handlers to a command source object.

cmdIDMin
The beginning index of the command ID range.

cmdIDMax
The ending index of the command ID range.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control

RemarksRemarks

ICommandSource::AddCommandRangeUIHandler

void AddCommandRangeUIHandler(
 unsigned int cmdIDMin,
 unsigned int cmdIDMax,
 CommandUIHandler^ cmdUIHandler);

ParametersParameters

RemarksRemarks

ICommandSource::AddCommandUIHandler

void AddCommandUIHandler(
 unsigned int cmdID,
 CommandUIHandler^ cmdUIHandler);

ParametersParameters

RemarksRemarks

ICommandSource::PostCommand

cmdHandler
A handle to the message handler method to which the commands are mapped.

This method maps a contiguous range of command IDs to a single message handler and adds it to the
command source object. This is used for handling a group of related buttons with one method.

Adds a group of user interface command message handlers to a command source object.

cmdIDMin
The beginning index of the command ID range.

cmdIDMax
The ending index of the command ID range.

cmdHandler
A handle to the message handler method to which the commands are mapped.

This method maps a contiguous range of command IDs to a single user interface command message handler
and adds it to the command source object. This is used for handling a group of related buttons with one
method.

Adds a user interface command message handler to a command source object.

cmdID
The command ID.

cmdUIHandler
A handle to the user interface command message handler method.

This method adds the user interface command message handler cmdHandler to the command source object
and maps the handler to cmdID.

Posts a message without waiting for it to be processed.

void PostCommand(unsigned int command);

ParametersParameters

RemarksRemarks

ICommandSource::RemoveCommandHandler

void RemoveCommandHandler(unsigned int cmdID);

ParametersParameters

RemarksRemarks

ICommandSource::RemoveCommandRangeHandler

void RemoveCommandRangeUIHandler(
 unsigned int cmdIDMin,
 unsigned int cmdIDMax);

ParametersParameters

RemarksRemarks

ICommandSource::RemoveCommandRangeUIHandler

void RemoveCommandRangeUIHandler(
 unsigned int cmdIDMin,
 unsigned int cmdIDMax);

ParametersParameters

command
The command ID of the message to be posted.

This method asynchronously posts the message mapped to the ID specified by command. It calls
CWnd::PostMessage to place the message in the window's message queue and then returns without waiting
for the corresponding window to process the message.

Removes a command handler from a command source object.

cmdID
The command ID.

This method removes the command handler mapped to cmdID from the command source object.

Removes a group of command handlers from a command source object.

cmdIDMin
The beginning index of the command ID range.

cmdIDMax
The ending index of the command ID range.

This method removes a group of message handlers, mapped to the command IDs specifed by cmdIDMin and
cmdIDMax, from the command source object.

Removes a group of user interface command message handlers from a command source object.

RemarksRemarks

ICommandSource::RemoveCommandUIHandler

void RemoveCommandUIHandler(unsigned int cmdID);

ParametersParameters

RemarksRemarks

ICommandSource::SendCommand

void SendCommand(unsigned int command);

ParametersParameters

RemarksRemarks

ICommandTarget Interface

interface class ICommandTarget

RemarksRemarks

cmdIDMin
The beginning index of the command ID range.

cmdIDMax
The ending index of the command ID range.

This method removes a group of user interface command message handlers, mapped to the command IDs
specifed by cmdIDMin and cmdIDMax, from the command source object.

Removes a user interface command message handler from a command source object.

cmdID
The command ID.

This method removes the user interface command message handler mapped to cmdID from the command
source object.

Sends a message and waits for it to be processed before returning.

command
The command ID of the message to be sent.

This method synchronously sends the message mapped to the ID specified by command. It calls
CWnd::SendMessage to place the message in the window's message queue and waits until that window
procedure has processed the message before returning.

Provides a user control with an interface to receive commands from a command source object.

When you host a user control in an MFC View, CWinFormsView routes commands and update command UI
messages to the user control to allow it to handle MFC commands (for example, frame menu items and
toolbar buttons). By implementing ICommandTarget , you give the user control a reference to the object.

See How to: Add Command Routing to the Windows Forms Control for an example of how to use
ICommandTarget .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control

ICommandTarget::Initialize

void Initialize(ICommandSource^ cmdSource);

ParametersParameters

RemarksRemarks

ICommandUI Interface

interface class ICommandUI

RemarksRemarks

ICommandUI::Check

property UICheckState Check;

RemarksRemarks

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

Initializes the command target object.

cmdSource
A handle to the command source object.

When you host a user control in an MFC View, CWinFormsView routes commands and update command UI
messages to the user control to allow it to handle MFC commands.

This method initializes the command target object and associates it with the specified command source object
cmdSource. It should be called in the user control class implementation. At initialization, you should register
command handlers with the command source object by calling ICommandSource::AddCommandHandler in
the Initialize implementation. See How to: Add Command Routing to the Windows Forms Control for an
example of how to use Initialize to do this.

Manages user interface commands.

This interface provides methods and properties that manage user interface commands. ICommandUI is similar
to CCmdUI Class, except that ICommandUI is used for MFC applications that interoperate with .NET
components.

ICommandUI is used within an ON_UPDATE_COMMAND_UI handler in an -derived class. When a user of an
application activates (selects or clicks) a menu, each menu item is displayed as enabled or disabled. The target
of each menu command provides this information by implementing an ON_UPDATE_COMMAND_UI handler. For
each of the command user interface objects in your application, use the Properties window to create a
message-map entry and function prototype for each handler.

For more information on how the ICommandUI interface is used in command routing, see How to: Add
Command Routing to the Windows Forms Control.

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

For more information on how user interface commands are managed in MFC, see CCmdUI Class.

Sets the user interface item for this command to the appropriate check state.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

TERM DEFINITION

0 Uncheck

1 Check

2 Set indeterminate

ICommandUI::ContinueRouting

void ContinueRouting();

RemarksRemarks

ICommandUI::Enabled

property bool Enabled;

RemarksRemarks

ICommandUI::ID

property unsigned int ID;

RemarksRemarks

ICommandUI::Index

property unsigned int Index;

RemarksRemarks

This property sets the user interface item for this command to the appropriate check state. Set Check to the
following values:

Tells the command routing mechanism to continue routing the current message down the chain of handlers.

This is an advanced member function that should be used in conjunction with an ON_COMMAND_EX
handler that returns FALSE. For more information, see Technical Note TN006: Message Maps.

Enables or disables the user interface item for this command.

This property enables or disables the user interface item for this command. Set Enabled to TRUE to enable
the item, FALSE to disable it.

Gets the ID of the user interface object represented by the ICommandUI object.

This property gets the ID (a handle) of the menu item, toolbar button, or other user interface object
represented by the ICommandUI object.

Gets the index of the user interface object represented by the ICommandUI object.

This property gets the index (a handle) of the menu item, toolbar button, or other user interface object
represented by the ICommandUI object.

ICommandUI::Radio

property bool Radio;

RemarksRemarks

ICommandUI::Text

property String^ Text;

RemarksRemarks

IView Interface

interface class IView

RemarksRemarks

IView::OnActivateView

void OnActivateView(bool activate);

ParametersParameters

IView::OnInitialUpdate

void OnInitialUpdate();

Sets the user interface item for this command to the appropriate check state.

This property sets the user interface item for this command to the appropriate check state. Set Radio to
TRUE to enable the item; otherwise FALSE.

Sets the text of the user interface item for this command.

This property sets the text of the user interface item for this command. Set Text to a text string handle.

Implements several methods that CWinFormsView uses to send view notifications to a managed control.

IView implements several methods that CWinFormsView uses to forward common view notifications to a
hosted managed control. These are OnInitialUpdate, OnUpdate and OnActivateView.

IView is similar to CView, but is used only with managed views and controls.

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

Called by MFC when a view is activated or deactivated.

activate
Indicates whether the view is being activated or deactivated.

Called by the framework after the view is first attached to the document, but before the view is initially
displayed.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

IView::OnUpdate

void OnUpdate();

RemarksRemarks

See also

Called by MFC after the view's document has been modified.

This function allows the view to update its display to reflect modifications.

MFC Sample COLLECT
CObject Class
Hierarchy Chart

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ICommandSource Interface
3/4/2019 • 4 minutes to read • Edit Online

Syntax
interface class ICommandSource

Members
Public MethodsPublic Methods

NAME DESCRIPTION

ICommandSource::AddCommandHandler Adds a command handler to a command source object.

ICommandSource::AddCommandRangeHandler Adds a group of command handlers to a command source
object.

ICommandSource::AddCommandRangeUIHandler Adds a group of user interface command message handlers to
a command source object.

ICommandSource::AddCommandUIHandler Adds a user interface command message handler to a
command source object.

ICommandSource::PostCommand Posts a message without waiting for it to be processed.

ICommandSource::RemoveCommandHandler Removes a command handler from a command source object.

ICommandSource::RemoveCommandRangeHandler Removes a group of command handlers from a command
source object.

ICommandSource::RemoveCommandRangeUIHandler Removes a group of user interface command message
handlers from a command source object.

ICommandSource::RemoveCommandUIHandler Removes a user interface command message handler from a
command source object.

ICommandSource::SendCommand Sends a message and waits for it to be processed before
returning.

RemarksRemarks

Manages commands sent from a command source object to a user control.

When you host a user control in an MFC View, CWinFormsView Class routes commands and update command
UI messages to the user control to allow it to handle MFC commands (for example, frame menu items and toolbar
buttons). By implementing ICommandTarget Interface, you give the user control a reference to the ICommandSource

object.

See How to: Add Command Routing to the Windows Forms Control for an example of how to use ICommandTarget

.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/icommandsource-interface.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control

RequirementsRequirements

ICommandSource::AddCommandHandler

void AddCommandHandler(
 unsigned int cmdID,
 CommandHandler^ cmdHandler);

ParametersParameters

RemarksRemarks

ICommandSource::AddCommandRangeHandler

void AddCommandRangeHandler(
 unsigned int cmdIDMin,
 unsigned int cmdIDMax,
 CommandHandler^ cmdHandler);

ParametersParameters

RemarksRemarks

ICommandSource::AddCommandRangeUIHandler

void AddCommandRangeUIHandler(
 unsigned int cmdIDMin,
 unsigned int cmdIDMax,
 CommandUIHandler^ cmdUIHandler);

ParametersParameters

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

Header: afxwinforms.h (defined in assembly atlmfc\lib\mfcmifc80.dll)

Adds a command handler to a command source object.

cmdID
The command ID. cmdHandler
A handle to the command handler method.

This method adds the command handler cmdHandler to the command source object and maps the handler to
cmdID. See How to: Add Command Routing to the Windows Forms Control for an example of how to use
AddCommandHandler.

Adds a group of command handlers to a command source object.

cmdIDMin
The beginning index of the command ID range. cmdIDMax
The ending index of the command ID range. cmdHandler
A handle to the message handler method to which the commands are mapped.

This method maps a contiguous range of command IDs to a single message handler and adds it to the command
source object. This is used for handling a group of related buttons with one method.

Adds a group of user interface command message handlers to a command source object.

cmdIDMin

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control

RemarksRemarks

ICommandSource::AddCommandUIHandler

void AddCommandUIHandler(
 unsigned int cmdID,
 CommandUIHandler^ cmdUIHandler);

ParametersParameters

RemarksRemarks

ICommandSource::PostCommand

void PostCommand(unsigned int command);

ParametersParameters

RemarksRemarks

ICommandSource::RemoveCommandHandler

void RemoveCommandHandler(unsigned int cmdID);

ParametersParameters

RemarksRemarks

The beginning index of the command ID range. cmdIDMax
The ending index of the command ID range. cmdHandler
A handle to the message handler method to which the commands are mapped.

This method maps a contiguous range of command IDs to a single user interface command message handler and
adds it to the command source object. This is used for handling a group of related buttons with one method.

Adds a user interface command message handler to a command source object.

cmdID
The command ID. cmdUIHandler
A handle to the user interface command message handler method.

This method adds the user interface command message handler cmdHandler to the command source object and
maps the handler to cmdID.

Posts a message without waiting for it to be processed.

command
The command ID of the message to be posted.

This method asynchronously posts the message mapped to the ID specified by command. It calls
CWnd::PostMessage to place the message in the window's message queue and then returns without waiting for
the corresponding window to process the message.

Removes a command handler from a command source object.

cmdID
The command ID.

This method removes the command handler mapped to cmdID from the command source object.

ICommandSource::RemoveCommandRangeHandler

void RemoveCommandRangeUIHandler(
 unsigned int cmdIDMin,
 unsigned int cmdIDMax);

ParametersParameters

RemarksRemarks

ICommandSource::RemoveCommandRangeUIHandler

void RemoveCommandRangeUIHandler(
 unsigned int cmdIDMin,
 unsigned int cmdIDMax);

ParametersParameters

RemarksRemarks

ICommandSource::RemoveCommandUIHandler

void RemoveCommandUIHandler(unsigned int cmdID);

ParametersParameters

RemarksRemarks

ICommandSource::SendCommand

Removes a group of command handlers from a command source object.

cmdIDMin
The beginning index of the command ID range. cmdIDMax
The ending index of the command ID range.

This method removes a group of message handlers, mapped to the command IDs specifed by cmdIDMin and
cmdIDMax, from the command source object.

Removes a group of user interface command message handlers from a command source object.

cmdIDMin
The beginning index of the command ID range. cmdIDMax
The ending index of the command ID range.

This method removes a group of user interface command message handlers, mapped to the command IDs
specifed by cmdIDMin and cmdIDMax, from the command source object.

Removes a user interface command message handler from a command source object.

cmdID
The command ID.

This method removes the user interface command message handler mapped to cmdID from the command source
object.

Sends a message and waits for it to be processed before returning.

void SendCommand(unsigned int command);

ParametersParameters

RemarksRemarks

See also

command
The command ID of the message to be sent.

This method synchronously sends the message mapped to the ID specified by command. It calls
CWnd::SendMessage to place the message in the window's message queue and waits until that window procedure
has processed the message before returning.

How to: Add Command Routing to the Windows Forms Control
ICommandTarget Interface

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control

ICommandTarget Interface
3/4/2019 • 2 minutes to read • Edit Online

Syntax
interface class ICommandTarget

Members
Public MethodsPublic Methods

NAME DESCRIPTION

ICommandTarget::Initialize Initializes the command target object.

Remarks

Requirements

ICommandTarget::Initialize

void Initialize(ICommandSource^ cmdSource);

ParametersParameters

RemarksRemarks

Provides a user control with an interface to receive commands from a command source object.

When you host a user control in an MFC View, CWinFormsView routes commands and update command UI
messages to the user control to allow it to handle MFC commands (for example, frame menu items and toolbar
buttons). By implementing ICommandTarget , you give the user control a reference to the ICommandSource object.

See How to: Add Command Routing to the Windows Forms Control for an example of how to use
ICommandTarget .

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

Header: afxwinforms.h (defined in assembly atlmfc\lib\mfcmifc80.dll)

Initializes the command target object.

cmdSource
A handle to the command source object.

When you host a user control in an MFC View, CWinFormsView routes commands and update command UI
messages to the user control to allow it to handle MFC commands.

This method initializes the command target object and associates it with the specified command source object
cmdSource. It should be called in the user control class implementation. At initialization, you should register
command handlers with the command source object by calling ICommandSource::AddCommandHandler in the

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/icommandtarget-interface.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

See also

Initialize implementation. See How to: Add Command Routing to the Windows Forms Control for an example of
how to use Initialize to do this.

How to: Add Command Routing to the Windows Forms Control
ICommandSource Interface

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control

ICommandUI Interface
3/4/2019 • 2 minutes to read • Edit Online

Syntax
interface class ICommandUI

Members
Public MethodsPublic Methods

NAME DESCRIPTION

icommandui__Check Sets the user interface item for this command to the
appropriate check state.

ICommandUI::ContinueRouting Tells the command-routing mechanism to continue routing
the current message down the chain of handlers.

ICommandUI::Enabled Enables or disables the user interface item for this command.

ICommandUI::ID Gets the ID of the user interface object represented by the
ICommandUI object.

ICommandUI::Index Gets the index of the user interface object represented by the
ICommandUI object.

ICommandUI::Radio Sets the user interface item for this command to the
appropriate check state.

ICommandUI::Text Sets the text of the user interface item for this command.

Remarks

Manages user interface commands.

This interface provides methods and properties that manage user interface commands. ICommandUI is similar to
CCmdUI Class, except that ICommandUI is used for MFC applications that interoperate with .NET components.

ICommandUI is used within an ON_UPDATE_COMMAND_UI handler in an ICommandTarget-derived class. When a
user of an application activates (selects or clicks) a menu, each menu item is displayed as enabled or disabled. The
target of each menu command provides this information by implementing an ON_UPDATE_COMMAND_UI
handler. For each of the command user interface objects in your application, use the Properties window to create a
message-map entry and function prototype for each handler.

For more information on how the ICommandUI interface is used in command routing, see How to: Add Command
Routing to the Windows Forms Control.

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/icommandui-interface.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

ICommandUI::Check

property UICheckState Check;

Remarks

ICommandUI::ContinueRouting

void ContinueRouting();

Remarks

ICommandUI::Enabled

property bool Enabled;

Remarks

ICommandUI::ID

property unsigned int ID;

Remarks

For more information on how user interface commands are managed in MFC, see CCmdUI Class.

Sets the user interface item for this command to the appropriate check state.

This property sets the user interface item for this command to the appropriate check state. Set Check to the
following values:

0 Uncheck
1 Check
2 Set indeterminate

Tells the command routing mechanism to continue routing the current message down the chain of handlers.

This is an advanced member function that should be used in conjunction with an ON_COMMAND_EX handler that
returns FALSE. For more information, see Technical Note TN006: Message Maps.

Enables or disables the user interface item for this command.

This property enables or disables the user interface item for this command. Set Enabled to TRUE to enable the
item, FALSE to disable it.

Gets the ID of the user interface object represented by the ICommandUI object.

This property gets the ID (a handle) of the menu item, toolbar button, or other user interface object represented by
the ICommandUI object.

ICommandUI::Index

property unsigned int Index;

Remarks

ICommandUI::Radio

property bool Radio;

Remarks

ICommandUI::Text

property String^ Text;

Remarks

Requirements

See also

Gets the index of the user interface object represented by the ICommandUI object.

This property gets the index (a handle) of the menu item, toolbar button, or other user interface object represented
by the ICommandUI object.

Sets the user interface item for this command to the appropriate check state.

This property sets the user interface item for this command to the appropriate check state. Set Radio to TRUE to
enable the item; otherwise FALSE.

Sets the text of the user interface item for this command.

This property sets the text of the user interface item for this command. Set Text to a text string handle.

Header: afxwinforms.h (defined in assembly atlmfc\lib\mfcmifc80.dll)

CCmdUI Class

IView Interface
3/4/2019 • 2 minutes to read • Edit Online

Syntax
interface class IView

Members
Public MethodsPublic Methods

NAME DESCRIPTION

IView::OnActivateView Called by MFC when a view is activated or deactivated.

IView::OnInitialUpdate Called by the framework after the view is first attached to the
document, but before the view is initially displayed.

IView::OnUpdate Called by MFC after the view's document has been modified;
this function allows the view to update its display to reflect
modifications.

Remarks

Requirements

IView::OnActivateView

void OnActivateView(bool activate);

Parameters

Implements several methods that CWinFormsView uses to send view notifications to a managed control.

IView implements several methods that CWinFormsView uses to forward common view notifications to a hosted
managed control. These are OnInitialUpdate, OnUpdate and OnActivateView.

IView is similar to CView, but is used only with managed views and controls.

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

Header: afxwinforms.h (defined in assembly atlmfc\lib\mfcmifc80.dll)

Called by MFC when a view is activated or deactivated.

activate
Indicates whether the view is being activated or deactivated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/iview-interface.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

IView::OnInitialUpdate

void OnInitialUpdate();

IView::OnUpdate

void OnUpdate();

Remarks

See also

Called by the framework after the view is first attached to the document, but before the view is initially displayed.

Called by MFC after the view's document has been modified.

This function allows the view to update its display to reflect modifications.

CWinFormsView Class
CView Class

Internal Classes
3/4/2019 • 5 minutes to read • Edit Online

In This Section
CLASS DESCRIPTION

CCommandManager Class The CCommandManager class manages commands and their
association with images.

CDialogImpl Class (MFC) Provides implementation details to dialog box-based classes,
such as CDialogEx .

CDocumentAdapter Class Implements IDocument interface required for Search and
Organize handlers.

CFrameImpl Class The CFrameImpl class handles toolbar customization for the
following frame window classes: CFrameWndEx Class,
CMDIFrameWndEx Class, and COleIPFrameWndEx Class.

CFullScreenImpl Class Implements full-screen functionality common to SDI and MDI
applications.

CMDIClientAreaWnd Class The CMDIClientAreaWnd class is a helper class that simplifies
implementation of MDI tabs and MDI tabbed groups.

CMemDC Class A helper class for a memory device context. The memory
device context supports offscreen drawing.

CMenuHash Class Reads the state of CMFCToolBar objects from an archive or
writes the state to an archive.

CMenuImages Class Provides the functionality to display predefined images such
as close buttons, maximize buttons, radio buttons, and
arrows.

CMFCCaptionButtonEx Class Holds the non-client area of system caption buttons.

CMFCCaptionMenuButton Class Represents a menu button that is located in the caption area
of a task pane or toolbar.

CMFCColorPropertySheet Class Used by CMFCColorDialog Class to provide a tabbed dialog
box.

CMFCControlBarImpl Class Provides implementation details to control bar-based classes,
such as CMFCReBar and CMFCToolBar .

The following classes are used internally in MFC. For completeness, this section describes these internal classes,
but they are not intended to be used directly in your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/internal-classes.md

CMFCControlRenderer Class A helper class that handles image rendering.

CMFCControlRendererInfo Class A helper class for passing parameters to
CMFCControlRenderer class.

CMFCCustomizeButton Class Supports a menu command or a toolbar button that starts a
customization dialog box.

CMFCCustomizeMenuButton Class Represents a single button on a customization menu.

CMFCDropDownListBox Class Provides drop-down list box functionality to ribbon combo
boxes.

CMFCMousePropertyPage Class A property page that enables the user to customize mouse
behavior.

CMFCOutlookBarPaneAdapter Class

CMFCOutlookBarPaneButton Class Implements a button that the framework adds to a
CMFCOutlookBarPane object.

CMFCOutlookBarPaneList Class Extends the CMFCOutlookBarPane class to provide the
Outlook visual style.

CMFCOutlookBarScrollButton Class Provides scrolling functionality to the
CMFCOutlookBarTabCtrl class.

CMFCOutlookBarToolBar Class Implements a toolbar that has the Outlook 2003 visual style.

CMFCPropertySheetCategoryInfo Class Represents a node in a tree control.

CMFCPropertySheetTabCtrl Class Extends the CMFCTabCtrl class to provide property sheet
functionality.

CMFCProperySheetListBox Class Extends the CListBox class to provide property sheet
functionality.

CMFCReBarState Class

CMFCRibbonCaptionButton Class Implements a system caption button.

CMFCRibbonCmdUI Class Updates ribbon bar objects as needed when the application is
idle.

CMFCRibbonCommandsListBox Class

CMFCRibbonDefaultPanelButton Class

CMFCRibbonGalleryIcon Class Represents an item in a CMFCRibbonGallery object.

CLASS DESCRIPTION

CMFCRibbonKeyboardCustomizeDialog Class Implements a keyboard customization dialog box for
applications that contain ribbon bars.

CMFCRibbonKeyTip Class Implements a pop-up window that displays a key tip for a
ribbon bar.

CMFCRibbonPanelMenu Class

CMFCRibbonPanelMenuBar Class Represents a pop-up menu bar in a ribbon bar.

CMFCRibbonQuickAccessToolBar Class Implements the Quick Access Toolbar for a ribbon element.

CMFCRibbonRichEditCtrl Class Implements an edit control that is located on a ribbon bar.

CMFCRibbonTab Class Represent a tab on a ribbon bar.

CMFCShadowRenderer Class

CMFCShowAllButton Class Represents a button that is located at the bottom of a pop-
up menu that expands to show hidden commands.

CMFCStatusBarPaneInfo Class Describes the content and appearance of a CMFCStatusBar

pane.

CMFCTabButton Class Provides tab button functionality to tab controls.

CMFCTabInfo Class Provides information about a tab to tab controls.

CMFCTasksPaneFrameWnd Class Manages custom caption buttons of a tasks pane.

CMFCTasksPanePropertyPage Class Manages the relationship between a CMFCTasksPane object
and its name.

CMFCTasksPaneToolBar Class Implements a navigation toolbar that is located at the top of
a CMFCTasksPane object.

CMFCToolBarButtonsListButton Class Displays a list of images that the user can select during
customization in the Button Appearance dialog box.

CMFCToolBarDateTimeCtrlImpl Class Implements a drop source for CMFCToolBar objects.

CMFCToolBarDropSource Class Implements a drop source for CMFCToolBar objects.

CMFCToolBarDropTarget Class Implements a drop target for CMFCToolBar objects.

CMFCToolBarEditCtrl Class Provides edit control functionality to
CMFCToolBarEditBoxButton objects.

CMFCToolBarMenuButtonsButton Class Represents system caption buttons that are located to the
right of a menu bar.

CLASS DESCRIPTION

CMFCToolBarNameDialog Class Represents a dialog box that allows the user to specify a new
toolbar caption.

CMFCToolBarsCommandsListBox Class Represents a list box that contains a list of toolbar commands.

CMFCToolBarsCommandsPropertyPage Class Implements commands customization on a property page.

CMFCToolBarsKeyboardPropertyPage Class

CMFCToolBarsListCheckBox Class Displays a list of toolbars on the Toolbars page of a
Customize dialog box.

CMFCToolBarsListPropertyPage Class Represents a property page that shows the list of toolbars in
a Customize dialog box.

CMFCToolBarsMenuPropertyPage Class Represents a property page that contains menu
customization options in a Customize dialog box.

CMFCToolBarsOptionsPropertyPage Class Represents the Options page in a Customize dialog box.

CMFCToolBarSpinEditBoxButton Class Represents a spin button that is located on an edit box.

CMFCToolBarsToolsPropertyPage Class Represents a property page that allows the user to customize
user tools.

CMFCToolBarSystemMenuButton Class Implements a system caption button that the framework adds
to the main menu bar when a user maximizes an MDI child
window.

CMFCVisualManagerBitmapCache Class Manages CMFCControlRenderer objects to improve the
performance of operations on bitmaps.

CMultiDocTemplateEx Class Extends the CMultiDocTemplate class to provide access to
the menu resource ID.

COleCntrFrameWndEx Class

COleDocIPFrameWndEx Class Provides OLE support.

COleServerDocEx Class Provides operations on OLE server documents.

CPaneContainerGC Class

CPngImage Class Provides access to image resources that use the .png file
format.

CPreviewViewEx Class

CRecentPaneContainerInfo Class Holds the previous state of a docking pane.

CLASS DESCRIPTION

CRibbonCategoryScroll Class Implements a scroll button that appears when not all
elements fit in the area of a ribbon bar.

CSmartDockingGroupGuide Class Represents the central element of a smart-docking group.

CSmartDockingGroupGuidesManager Class Manages the smart-docking group guides.

CSmartDockingGroupGuidesWnd Class Implements a layered, non-rectangular window that the
framework uses to display the central group of smart-docking
guides.

CSmartDockingHighlighterWnd Class Implements a semi-transparent window that covers the area
to be taken by the dockable pane object that is being docked.

CSmartDockingManager Class Provides smart-docking functionality to CDockingManager

objects.

CSmartDockingStandaloneGuide Class Implements the smart-docking guide.

CSmartDockingStandaloneGuideWnd Class Implements a layered, non-rectangular window that the
framework uses to display smart-docking guides.

CTagManager Class The CTagManager class is intended to read values that are
stored in XML-like tagged format.

CVSListBoxBase Class Provides basic functionality to the CVSListBox class.

CVSListBoxEditCtrl Class Extends standard list box edit control by displaying a small
button that opens a dialog box.

CVSToolsListBox Class Extends standard list box control by providing additional
buttons to add, delete and move items in the list box.

CLASS DESCRIPTION

See also
MFC Desktop Applications

MFC Macros and Globals
3/4/2019 • 2 minutes to read • Edit Online

General MFC

Database

The Microsoft Foundation Class Library can be divided into two major sections: (1) the MFC classes and (2)
macros and globals. If a function or variable is not a member of a class, it is a global function or variable.

The MFC library and the Active Template Library (ATL) share string conversion macros. For more
information, see String Conversion Macros in the ATL documentation.

The MFC macros and globals offer functionality in the following categories.

Data types

Type casting of MFC class objects

Run-time object model services

Diagnostic services

Exception processing

CString formatting and message-box display

Message maps

Delegate and Interface Maps

Modules and DLLs

Application information and management

Standard command and window IDs

Collection class helpers

Gray and dithered bitmap functions

Standard dialog data exchange (DDX) routines

Standard dialog data validation (DDV) routines

AFX Messages

ToolBar Control Styles

CMFCImagePaintArea::IMAGE_EDIT_MODE Enumeration

Record Field Exchange (RFX) functions and Bulk Record Field Exchange (bulk RFX) functions for the
MFC ODBC classes

Record field exchange (DFX) functions for the MFC DAO classes

Dialog data exchange (DDX) functions for CRecordView and CDaoRecordView (MFC ODBC and DAO
classes)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/mfc-macros-and-globals.md

Internet

DHTML / DHTML Event Maps

OLE

OLE Controls

NOTENOTE

See also

Dialog data exchange (DDX) functions for OLE controls

Macros and globals to aid in calling Open Database Connectivity (ODBC) API functions directly

DAO database engine initialization and termination

Internet URL parsing globals

DHTML dialog data exchange (DDX) helper macros

DHTML event maps

OLE initialization

Application control

Dispatch maps

In addition, MFC provides a function called AfxEnableControlContainer that enables any OLE container
developed with MFC 4.0 to fully support embedded OLE controls.

Variant parameter type constants

Type library access

Property pages

Event maps

Event sink maps

Connection maps

Registering OLE controls

Class factories and licensing

Persistence of OLE controls

The first part of this section briefly discusses each of the previous categories and lists the globals and macros
in the category, together with brief descriptions of functionality. Following this are descriptions of the global
functions, global variables, and macros in the MFC library.

Many global functions start with the prefix "Afx", but some, for example, the dialog data exchange (DDX) functions and
many of the database functions, do not follow this convention. All global variables start with "afx" as a prefix. Macros
do not start with any particular prefix, but they are written in uppercase letters.

Class Overview

Data Types (MFC)
3/4/2019 • 2 minutes to read • Edit Online

See also

This topic lists the data types most commonly used in the Microsoft Foundation Class Library. Most of the data
types are the same as those in the Platform Software Development Kit (SDK), while others are unique to MFC.

For information about the data types used in both the Windows SDK and MFC, see Windows Data Types.

Data types unique to the Microsoft Foundation Class Library include the following:

POSITION A value used to denote the position of an element in a collection; used by MFC collection
classes.

LPCRECT A 32-bit pointer to a constant (nonmodifiable) RECT structure.

Class Overview
Macros and Globals

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/data-types-mfc.md
https://docs.microsoft.com/windows/desktop/WinProg/windows-data-types

Type Casting of MFC Class Objects
3/4/2019 • 2 minutes to read • Edit Online

Macros That Cast Pointers to MFC Class ObjectsMacros That Cast Pointers to MFC Class Objects

DYNAMIC_DOWNCAST Casts a pointer to a pointer to a class object while checking to
see if the cast is legal.

STATIC_DOWNCAST Casts a pointer to an object from one class to a pointer of a
related type. In a debug build, causes an ASSERT if the object
is not a "kind of" the target type.

DYNAMIC_DOWNCAST

DYNAMIC_DOWNCAST(class, pointer)

ParametersParameters

RemarksRemarks

STATIC_DOWNCAST

STATIC_DOWNCAST(class_name, pobject)

ParametersParameters

RemarksRemarks

Type casting macros provide a way to cast a given pointer to a pointer that points to an object of specific class, with
or without checking that the cast is legal.

The following table lists the MFC type casting macros.

Provides a handy way to cast a pointer to a pointer to a class object while checking to see if the cast is legal.

class
The name of a class.

pointer
A pointer to be cast to a pointer to an object of type class.

The macro will cast the pointer parameter to a pointer to an object of the class parameter's type.

If the object referenced by the pointer is a "kind of" the identified class, the macro returns the appropriate pointer.
If it is not a legal cast, the macro returns NULL.

Casts pobject to a pointer to a class_name object.

class_name
The name of the class being cast to.

pobject
The pointer to be cast to a pointer to a class_name object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/type-casting-of-mfc-class-objects.md

CDocument* pDoc = STATIC_DOWNCAST(CDocument, pMyDoc);

See also

pobject must either be NULL, or point to an object of a class which is derived directly, or indirectly, from
class_name. In builds of your application with the _DEBUG preprocessor symbol defined, the macro will ASSERT if
pobject is not NULL, or if it points to an object that is not a "kind of" the class specified in the class_name
parameter (see CObject::IsKindOf). In non- _DEBUG builds, the macro performs the cast without any type
checking.

The class specified in the class_name parameter must be derived from CObject and must use the
DECLARE_DYNAMIC and IMPLEMENT_DYNAMIC, the DECLARE_DYNCREATE and
IMPLEMENT_DYNCREATE, or the DECLARE_SERIAL and IMPLEMENT_SERIAL macros as explained in the
article CObject Class: Deriving a Class from CObject.

For example, you might cast a pointer to CMyDoc , called pMyDoc , to a pointer to CDocument using this expression:

If pMyDoc does not point to an object derived directly or indirectly from CDocument , the macro will ASSERT.

Macros and Globals

Run-Time Object Model Services
3/4/2019 • 12 minutes to read • Edit Online

Run-Time Object Model Services MacrosRun-Time Object Model Services Macros

DECLARE_DYNAMIC Enables access to run-time class information (must be used in
the class declaration).

DECLARE_DYNCREATE Enables dynamic creation and access to run-time class
information (must be used in the class declaration).

DECLARE_SERIAL Enables serialization and access to run-time class information
(must be used in the class declaration).

IMPLEMENT_DYNAMIC Enables access to run-time class information (must be used in
the class implementation).

IMPLEMENT_DYNCREATE Enables dynamic creation and access to run-time information
(must be used in the class implementation).

IMPLEMENT_SERIAL Permits serialization and access to run-time class information
(must be used in the class implementation).

RUNTIME_CLASS Returns the CRuntimeClass structure that corresponds to
the named class.

The classes CObject and CRuntimeClass encapsulate several object services, including access to run-time class
information, serialization, and dynamic object creation. All classes derived from CObject inherit this functionality.

Access to run-time class information enables you to determine information about an object's class at run time. The
ability to determine the class of an object at run time is useful when you need extra type-checking of function
arguments and when you must write special-purpose code based on the class of an object. Run-time class
information is not supported directly by the C++ language.

Serialization is the process of writing or reading an object's contents to or from a file. You can use serialization to
store an object's contents even after the application exits. The object can then be read from the file when the
application is restarted. Such data objects are said to be "persistent."

Dynamic object creation enables you to create an object of a specified class at run time. For example, document,
view, and frame objects must support dynamic creation because the framework needs to create them dynamically.

The following table lists the MFC macros that support run-time class information, serialization, and dynamic
creation.

For more information on these run-time object services and serialization, see the article CObject Class: Accessing
Run-Time Class Information.

OLE frequently requires the dynamic creation of objects at run time. For example, an OLE server application must
be able to create OLE items dynamically in response to a request from a client. Similarly, an automation server
must be able to create items in response to requests from automation clients.

The Microsoft Foundation Class Library provides two macros specific to OLE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/run-time-object-model-services.md

Dynamic Creation of OLE ObjectsDynamic Creation of OLE Objects

AFX_COMCTL32_IF_EXISTS Determines whether the Common Controls library
implements the specified API.

AFX_COMCTL32_IF_EXISTS2 Determines whether the Common Controls library
implements the specified API.

DECLARE_OLECREATE Enables objects to be created through OLE automation.

DECLARE_OLECTLTYPE Declares the GetUserTypeNameID and GetMiscStatus

member functions of your control class.

DECLARE_PROPPAGEIDS Declares that the OLE control provides a list of property pages
to display its properties.

IMPLEMENT_OLECREATE Enables objects to be created by the OLE system.

IMPLEMENT_OLECTLTYPE Implements the GetUserTypeNameID and GetMiscStatus

member functions of your control class.

IMPLEMENT_OLECREATE_FLAGS Either this macro or IMPLEMENT_OLECREATE must appear in
the implementation file for any class that uses
DECLARE_OLECREATE .

AFX_COMCTL32_IF_EXISTS

SyntaxSyntax

AFX_COMCTL32_IF_EXISTS(proc);

ParametersParameters

RemarksRemarks

RequirementsRequirements

AFX_COMCTL32_IF_EXISTS2

SyntaxSyntax

Determines whether the Common Controls library implements the specified API.

proc
Pointer to a null-terminated string containing the function name, or specifies the function's ordinal value. If this
parameter is an ordinal value, it must be in the low-order word; the high-order word must be zero. This parameter
must be in Unicode.

Use this macro to determine whether the Common Controls library the function specified by proc (instead of
calling GetProcAddress.

afxcomctl32.h, afxcomctl32.inl

Determines whether the Common Controls library implements the specified API (this is the Unicode version of
AFX_COMCTL32_IF_EXISTS).

https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-getprocaddress

AFX_COMCTL32_IF_EXISTS2(proc);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DECLARE_DYNAMIC

DECLARE_DYNAMIC(class_name)

ParametersParameters

RemarksRemarks

ExampleExample

RequirementsRequirements

DECLARE_DYNCREATE

DECLARE_DYNCREATE(class_name)

ParametersParameters

proc
Pointer to a null-terminated string containing the function name, or specifies the function's ordinal value. If this
parameter is an ordinal value, it must be in the low-order word; the high-order word must be zero. This parameter
must be in Unicode.

Use this macro to determine whether the Common Controls library the function specified by proc (instead of
calling GetProcAddress. This macro is the Unicode version of AFX_COMCTL32_IF_EXISTS.

afxcomctl32.h, afxcomctl32.inl

Adds the ability to access run-time information about an object's class when deriving a class from CObject .

class_name
The actual name of the class.

Add the DECLARE_DYNAMIC macro to the header (.h) module for the class, then include that module in all .cpp
modules that need access to objects of this class.

If you use the DECLARE_ DYNAMIC and IMPLEMENT_DYNAMIC macros as described, you can then use the
RUNTIME_CLASS macro and the CObject::IsKindOf function to determine the class of your objects at run time.

If DECLARE_DYNAMIC is included in the class declaration, then IMPLEMENT_DYNAMIC must be included in the
class implementation.

For more information on the DECLARE_DYNAMIC macro, see CObject Class Topics.

See the example for IMPLEMENT_DYNAMIC.

Header: afx.h

Enables objects of CObject -derived classes to be created dynamically at run time.

class_name
The actual name of the class.

https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-getprocaddress

RemarksRemarks

NOTENOTE

ExampleExample

RequirementsRequirements

DECLARE_OLECTLTYPE

SyntaxSyntax

DECLARE_OLECTLTYPE(class_name)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DECLARE_PROPPAGEIDS

SyntaxSyntax

DECLARE_PROPPAGEIDS(class_name)

ParametersParameters

The framework uses this ability to create new objects dynamically. For example, the new view created when you
open a new document. Document, view, and frame classes should support dynamic creation because the
framework needs to create them dynamically.

Add the DECLARE_DYNCREATE macro in the .h module for the class, then include that module in all .cpp modules
that need access to objects of this class.

If DECLARE_DYNCREATE is included in the class declaration, then IMPLEMENT_DYNCREATE must be included
in the class implementation.

For more information on the DECLARE_DYNCREATE macro, see CObject Class Topics.

The DECLARE_DYNCREATE macro includes all the functionality of DECLARE_DYNAMIC.

See the example for IMPLEMENT_DYNCREATE.

Header: afx.h

Declares the GetUserTypeNameID and GetMiscStatus member functions of your control class.

class_name
The name of the control class.

GetUserTypeNameID and GetMiscStatus are pure virtual functions, declared in COleControl . Because these
functions are pure virtual, they must be overridden in your control class. In addition to DECLARE_OLECTLTYPE,
you must add the IMPLEMENT_OLECTLTYPE macro to your control class declaration.

Header: afxctl.h

Declares that the OLE control provides a list of property pages to display its properties.

class_name
The name of the control class that owns the property pages.

RemarksRemarks

RequirementsRequirements

DECLARE_SERIAL

DECLARE_SERIAL(class_name)

ParametersParameters

RemarksRemarks

#undef AFX_API
#define AFX_API AFX_EXT_CLASS

// <your class declarations here>

#undef AFX_API
#define AFX_API

ExampleExample

class CAge : public CObject
{
public:
 void Serialize(CArchive& ar);
 DECLARE_SERIAL(CAge)

 // remainder of class declaration omitted

Use the DECLARE_PROPPAGEIDS macro at the end of your class declaration. Then, in the .cpp file that defines the
member functions for the class, use the BEGIN_PROPPAGEIDS macro, macro entries for each of your control's
property pages, and the END_PROPPAGEIDS macro to declare the end of the property page list.

For more information on property pages, see the article ActiveX Controls: Property Pages.

Header: afxctl.h

Generates the C++ header code necessary for a CObject -derived class that can be serialized.

class_name
The actual name of the class.

Serialization is the process of writing or reading the contents of an object to and from a file.

Use the DECLARE_SERIAL macro in an .h module, and then include that module in all .cpp modules that need
access to objects of this class.

If DECLARE_SERIAL is included in the class declaration, then IMPLEMENT_SERIAL must be included in the class
implementation.

The DECLARE_SERIAL macro includes all the functionality of DECLARE_DYNAMIC and
DECLARE_DYNCREATE.

You can use the AFX_API macro to automatically export the CArchive extraction operator for classes that use the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros. Bracket the class declarations (located in the .h file) with
the following code:

For more information on the DECLARE_SERIAL macro, see CObject Class Topics.

RequirementsRequirements

IMPLEMENT_DYNAMIC

IMPLEMENT_DYNAMIC(class_name, base_class_name)

ParametersParameters

RemarksRemarks

ExampleExample

class CPerson : public CObject
{
 DECLARE_DYNAMIC(CPerson)

 // other declarations
};

IMPLEMENT_DYNAMIC(CPerson, CObject)

RequirementsRequirements

IMPLEMENT_DYNCREATE

IMPLEMENT_DYNCREATE(class_name, base_class_name)

ParametersParameters

RemarksRemarks

Header: afx.h

Generates the C++ code necessary for a dynamic CObject -derived class with run-time access to the class name
and position within the hierarchy.

class_name
The actual name of the class.

base_class_name
The name of the base class.

Use the IMPLEMENT_DYNAMIC macro in a .cpp module, and then link the resulting object code only once.

For more information, see CObject Class Topics.

Header: afx.h

Enables objects of CObject -derived classes to be created dynamically at run time when used with the
DECLARE_DYNCREATE macro.

class_name
The actual name of the class.

base_class_name
The actual name of the base class.

The framework uses this ability to create new objects dynamically, for example, when it reads an object from disk
during serialization. Add the IMPLEMENT_DYNCREATE macro in the class implementation file. For more

ExampleExample

class CMyDynCreateObj : public CObject
{
 int m_Num;
public:
 DECLARE_DYNCREATE(CMyDynCreateObj)
 CMyDynCreateObj(int Num) { m_Num = Num; }
private:
 CMyDynCreateObj() { m_Num = 0; } // provide default constructor only for
 // dynamic creation
};

IMPLEMENT_DYNCREATE(CMyDynCreateObj, CObject)

RequirementsRequirements

IMPLEMENT_OLECREATE_FLAGS

SyntaxSyntax

IMPLEMENT_OLECREATE_FLAGS(class_name, external_name, nFlags,
 l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8)

ParametersParameters

information, see CObject Class Topics.

If you use the DECLARE_DYNCREATE and IMPLEMENT_DYNCREATE macros, you can then use the
RUNTIME_CLASS macro and the CObject::IsKindOf member function to determine the class of your objects at
run time.

If DECLARE_DYNCREATE is included in the class declaration, then IMPLEMENT_DYNCREATE must be included
in the class implementation.

Note that this macro definition will invoke the default constructor for your class. If a non-trivial constructor is
explicitly implemented by the class, it must also explicitly implement the default constructor as well. The default
constructor can be added to the class's private or protected member sections to prevent it from being called from
outside the class implementation.

Header: afx.h

Either this macro or IMPLEMENT_OLECREATE must appear in the implementation file for any class that uses
DECLARE_OLECREATE.

class_name
The actual name of the class.

external_name
The object name exposed to other applications (enclosed in quotation marks).

nFlags
Contains one or more of the following flags:

afxRegInsertable Allows the control to appear in the Insert Object dialog box for OLE objects.

afxRegApartmentThreading Sets the threading model in the registry to ThreadingModel=Apartment.

afxRegFreeThreading Sets the threading model in the registry to ThreadingModel=Free.

RemarksRemarks

NOTENOTE

RequirementsRequirements

IMPLEMENT_OLECTLTYPE

SyntaxSyntax

DECLARE_OLECTLTYPE(class_name, idsUserTypeName, dwOleMisc)

ParametersParameters

RemarksRemarks

You can combine the two flags `afxRegApartmentThreading` and `afxRegFreeThreading` to set
ThreadingModel=Both. See [InprocServer32](/windows/desktop/com/inprocserver32) in the Windows SDK for
more information on threading model registration.

l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8 Components of the class's CLSID.

If you use IMPLEMENT_OLECREATE_FLAGS, you can specify which threading model your object supports by using the nFlags
parameter. If you want to support only the single-treading model, use IMPLEMENT_OLECREATE.

The external name is the identifier exposed to other applications. Client applications use the external name to
request an object of this class from an automation server.

The OLE class ID is a unique 128-bit identifier for the object. It consists of one long, two WORDs, and eight
BYTEs, as represented by l, w1, w2, and b1 through b8 in the syntax description. The Application Wizard and code
wizards create unique OLE class IDs for you as required.

Header: afxdisp.h

Implements the GetUserTypeNameID and GetMiscStatus member functions of your control class.

class_name
The name of the control class.

idsUserTypeName
The resource ID of a string containing the external name of the control.

dwOleMisc
An enumeration containing one or more flags. For more information on this enumeration, see OLEMISC in the
Windows SDK.

In addition to IMPLEMENT_OLECTLTYPE, you must add the DECLARE_OLECTLTYPE macro to your control class
declaration.

The GetUserTypeNameID member function returns the resource string that identifies your control class.
GetMiscStatus returns the OLEMISC bits for your control. This enumeration specifies a collection of settings

describing miscellaneous characteristics of your control. For a full description of the OLEMISC settings, see
OLEMISC in the Windows SDK.

https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolemisc
https://docs.microsoft.com/windows/desktop/api/oleidl/ne-oleidl-tagolemisc

NOTENOTE

RequirementsRequirements

IMPLEMENT_SERIAL

IMPLEMENT_SERIAL(class_name, base_class_name, wSchema)

ParametersParameters

RemarksRemarks

#undef AFX_API
#define AFX_API AFX_EXT_CLASS

// <your class declarations here>

#undef AFX_API
#define AFX_API

ExampleExample

IMPLEMENT_SERIAL(CAge, CObject, VERSIONABLE_SCHEMA | 2)

RequirementsRequirements

RUNTIME_CLASS

The default settings used by the ActiveX ControlWizard are: OLEMISC_ACTIVATEWHENVISIBLE,
OLEMISC_SETCLIENTSITEFIRST, OLEMISC_INSIDEOUT, OLEMISC_CANTLINKINSIDE, and OLEMISC_RECOMPOSEONRESIZE.

Header: afxctl.h

Generates the C++ code necessary for a dynamic CObject -derived class with run-time access to the class name
and position within the hierarchy.

class_name
The actual name of the class.

base_class_name
The name of the base class.

wSchema
A UINT "version number" that will be encoded in the archive to enable a deserializing program to identify and
handle data created by earlier program versions. The class schema number must not be -1.

Use the IMPLEMENT_SERIAL macro in a .cpp module; then link the resulting object code only once.

You can use the AFX_API macro to automatically export the CArchive extraction operator for classes that use the
DECLARE_SERIAL and IMPLEMENT_SERIAL macros. Bracket the class declarations (located in the .h file) with
the following code:

For more information, see the CObject Class Topics.

Header: afx.h

Gets the run-time class structure from the name of a C++ class.

RUNTIME_CLASS(class_name)

ParametersParameters

RemarksRemarks

ExampleExample

CRuntimeClass* prt = RUNTIME_CLASS(CAge);
ASSERT(strcmp(prt->m_lpszClassName, "CAge") == 0);

RequirementsRequirements

DECLARE_OLECREATE

DECLARE_OLECREATE(class_name)

ParametersParameters

RemarksRemarks

RequirementsRequirements

IMPLEMENT_OLECREATE

IMPLEMENT_OLECREATE(class_name, external_name, l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8)

ParametersParameters

class_name
The actual name of the class (not enclosed in quotation marks).

RUNTIME_CLASS returns a pointer to a CRuntimeClass structure for the class specified by class_name. Only
CObject -derived classes declared with DECLARE_DYNAMIC, DECLARE_DYNCREATE, or DECLARE_SERIAL will

return pointers to a CRuntimeClass structure.

For more information, see CObject Class Topics.

Header: afx.h

Enables objects of CCmdTarget -derived classes to be created through OLE automation.

class_name
The actual name of the class.

This macro enables other OLE-enabled applications to create objects of this type.

Add the DECLARE_OLECREATE macro in the .h module for the class, and then include that module in all .cpp
modules that need access to objects of this class.

If DECLARE_OLECREATE is included in the class declaration, then IMPLEMENT_OLECREATE must be included in
the class implementation. A class declaration using DECLARE_OLECREATE must also use
DECLARE_DYNCREATE or DECLARE_SERIAL.

Header: afxdisp.h

Either this macro or IMPLEMENT_OLECREATE_FLAGS must appear in the implementation file for any class that
uses DECLARE_OLECREATE .

RemarksRemarks

NOTENOTE

RequirementsRequirements

See also

class_name
The actual name of the class.

external_name
The object name exposed to other applications (enclosed in quotation marks).

l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8 Components of the class's CLSID.

If you use IMPLEMENT_OLECREATE, by default, you support only the single threading model. If you use
IMPLEMENT_OLECREATE_FLAGS, you can specify which threading model your object supports by using the nFlags
parameter.

The external name is the identifier exposed to other applications. Client applications use the external name to
request an object of this class from an automation server.

The OLE class ID is a unique 128-bit identifier for the object. It consists of one long, two WORDs, and eight
BYTEs, as represented by l, w1, w2, and b1 through b8 in the syntax description. The Application Wizard and code
wizards create unique OLE class IDs for you as required.

Header: afxdisp.h

Macros and Globals
Isolation of the MFC Common Controls Library
CLSID Key

https://docs.microsoft.com/windows/desktop/com/clsid-key-hklm

Diagnostic Services
2/7/2019 • 22 minutes to read • Edit Online

#define new DEBUG_NEW

MFC General Diagnostic MacrosMFC General Diagnostic Macros

ASSERT Prints a message and then aborts the program if the specified
expression evaluates to FALSE in the Debug version of the
library.

ASSERT_KINDOF Tests that an object is an object of the specified class or of a
class derived from the specified class.

ASSERT_VALID Tests the internal validity of an object by calling its
AssertValid member function; typically overridden from
CObject .

DEBUG_NEW Supplies a filename and line number for all object allocations
in Debug mode to help find memory leaks.

DEBUG_ONLY Similar to ASSERT but does not test the value of the
expression; useful for code that should execute only in Debug
mode.

ENSURE and ENSURE_VALID Use to validate data correctness.

The Microsoft Foundation Class Library supplies many diagnostic services that make debugging your programs
easier. These diagnostic services include macros and global functions that allow you to track your program's
memory allocations, dump the contents of objects during run time, and print debugging messages during run
time. The macros and global functions for diagnostic services are grouped into the following categories:

General diagnostic macros

General diagnostic functions and variables

Object diagnostic functions

These macros and functions are available for all classes derived from CObject in the Debug and Release versions
of MFC. However, all except DEBUG_NEW and VERIFY do nothing in the Release version.

In the Debug library, all allocated memory blocks are bracketed with a series of "guard bytes." If these bytes are
disturbed by an errant memory write, then the diagnostic routines can report a problem. If you include the line:

in your implementation file, all calls to new will store the filename and line number where the memory allocation
took place. The function CMemoryState::DumpAllObjectsSince will display this extra information, allowing you to
identify memory leaks. Refer also to the class CDumpContext for additional information on diagnostic output.

In addition, the C run-time library also supports a set of diagnostic functions you can use to debug your
applications. For more information, see Debug Routines in the Run-Time Library Reference.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/diagnostic-services.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/debug-routines

THIS_FILE Expands to the name of the file that is being compiled.

TRACE Provides printf -like capability in the Debug version of the
library.

VERIFY Similar to ASSERT but evaluates the expression in the Release
version of the library as well as in the Debug version.

MFC General Diagnostic Variables and FunctionsMFC General Diagnostic Variables and Functions

afxDump Global variable that sends CDumpContext information to the
debugger output window or to the debug terminal.

afxMemDF Global variable that controls the behavior of the debugging
memory allocator.

AfxCheckError Global variable used to test the passed SCODE to see if it is an
error and, if so, throws the appropriate error.

AfxCheckMemory Checks the integrity of all currently allocated memory.

AfxDebugBreak Causes a break in execution.

AfxDump If called while in the debugger, dumps the state of an object
while debugging.

AfxDump Internal function that dumps the state of an object while
debugging.

AfxDumpStack Generate an image of the current stack. This function is
always linked statically.

AfxEnableMemoryLeakDump Enables the memory leak dump.

AfxEnableMemoryTracking Turns memory tracking on and off.

AfxIsMemoryBlock Verifies that a memory block has been properly allocated.

AfxIsValidAddress Verifies that a memory address range is within the program's
bounds.

AfxIsValidString Determines whether a pointer to a string is valid.

AfxSetAllocHook Enables the calling of a function on each memory allocation.

MFC Object Diagnostic FunctionsMFC Object Diagnostic Functions

AfxDoForAllClasses Performs a specified function on all CObject -derived classes
that support run-time type checking.

AfxDoForAllObjects Performs a specified function on all CObject -derived objects
that were allocated with new.

MFC Compilation MacrosMFC Compilation Macros

_AFX_SECURE_NO_WARNINGS Suppresses compiler warnings for the use of deprecated MFC
functions.

_AFX_SECURE_NO_WARNINGS

SyntaxSyntax

_AFX_SECURE_NO_WARNINGS

ExampleExample

// define this before including any afx files in stdafx.h
#define _AFX_SECURE_NO_WARNINGS

CRichEditCtrl* pRichEdit = new CRichEditCtrl;
pRichEdit->Create(WS_CHILD|WS_VISIBLE|WS_BORDER|ES_MULTILINE,
 CRect(10,10,100,200), pParentWnd, 1);
char sz[256];
pRichEdit->GetSelText(sz);

AfxDebugBreak

SyntaxSyntax

void AfxDebugBreak();

RemarksRemarks

RequirementsRequirements

ASSERT

Suppresses compiler warnings for the use of deprecated MFC functions.

This code sample would cause a compiler warning if _AFX_SECURE_NO_WARNINGS were not defined.

Call this function to cause a break (at the location of the call to AfxDebugBreak) in the execution of the debug
version of your MFC application.

AfxDebugBreak has no effect in release versions of an MFC application and should be removed. This function
should only be used in MFC applications. Use the Win32 API version, DebugBreak , to cause a break in non-MFC
applications.

Header: afxver_.h

Evaluates its argument.

ASSERT(booleanExpression)

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

CAge* pcage = new CAge(21); // CAge is derived from CObject.
ASSERT(pcage != NULL);
ASSERT(pcage->IsKindOf(RUNTIME_CLASS(CAge)));
// Terminates program only if pcage is NOT a CAge*.

RequirementsRequirements

ASSERT_KINDOF

ASSERT_KINDOF(classname, pobject)

ParametersParameters

RemarksRemarks

booleanExpression
Specifies an expression (including pointer values) that evaluates to nonzero or 0.

If the result is 0, the macro prints a diagnostic message and aborts the program. If the condition is nonzero, it does
nothing.

The diagnostic message has the form

assertion failed in file <name> in line <num>

where name is the name of the source file, and num is the line number of the assertion that failed in the source
file.

In the Release version of MFC, ASSERT does not evaluate the expression and thus will not interrupt the program.
If the expression must be evaluated regardless of environment, use the VERIFY macro in place of ASSERT.

This function is available only in the Debug version of MFC.

Header: afx.h

This macro asserts that the object pointed to is an object of the specified class, or is an object of a class derived
from the specified class.

classname
The name of a CObject -derived class.

pobject
A pointer to a class object.

The pobject parameter should be a pointer to an object and can be const. The object pointed to and the class must
support CObject run-time class information. As an example, to ensure that pDocument is a pointer to an object of
the CMyDoc class, or any of its derivatives, you could code:

ASSERT_KINDOF(CMyDoc, pDocument);

ASSERT(pDocument->IsKindOf(RUNTIME_CLASS(CMyDoc)));

NOTENOTE

RequirementsRequirements

ASSERT_VALID

ASSERT_VALID(pObject)

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

// Assure that pMyObject is a valid pointer to an
// object derived from CObject.
ASSERT_VALID(pMyObject);

RequirementsRequirements

DEBUG_NEW

Using the ASSERT_KINDOF macro is exactly the same as coding:

This function works only for classes declared with the [DECLARE_DYNAMIC](run-time-object-model-
services.md#declare_dynamic or DECLARE_SERIAL macro.

This function is available only in the Debug version of MFC.

Header: afx.h

Use to test your assumptions about the validity of an object's internal state.

pObject
Specifies an object of a class derived from CObject that has an overriding version of the AssertValid member
function.

ASSERT_VALID calls the AssertValid member function of the object passed as its argument.

In the Release version of MFC, ASSERT_VALID does nothing. In the Debug version, it validates the pointer, checks
against NULL, and calls the object's own AssertValid member functions. If any of these tests fails, an alert
message is displayed in the same manner as ASSERT.

This function is available only in the Debug version of MFC.

For more information and examples, see Debugging MFC Applications.

Header: afx.h

https://docs.microsoft.com/visualstudio/debugger/mfc-debugging-techniques

#define new DEBUG_NEW

RemarksRemarks

#define new DEBUG_NEW

NOTENOTE

RequirementsRequirements

DEBUG_ONLY

DEBUG_ONLY(expression)

RemarksRemarks

ExampleExample

void ExampleFunc(char* p, int size, char fill)
{
 char* q; // working copy of pointer
 VERIFY(q = p); // copy buffer pointer and validate
 ASSERT(size >= 100); // make sure buffer is at least 100 bytes
 ASSERT(isalpha(fill)); // make sure fill character is alphabetic
 // if fill character is invalid, substitute 'X' so we can continue
 // debugging after the preceding ASSERT fails.
 DEBUG_ONLY(fill = (isalpha(fill)) ? fill : 'X');
}

Assists in finding memory leaks.

You can use DEBUG_NEW everywhere in your program that you would ordinarily use the new operator to
allocate heap storage.

In debug mode (when the _DEBUG symbol is defined), DEBUG_NEW keeps track of the filename and line
number for each object that it allocates. Then, when you use the CMemoryState::DumpAllObjectsSince member
function, each object allocated with DEBUG_NEW is shown with the filename and line number where it was
allocated.

To use DEBUG_NEW, insert the following directive into your source files:

Once you insert this directive, the preprocessor will insert DEBUG_NEW wherever you use new, and MFC does
the rest. When you compile a release version of your program, DEBUG_NEW resolves to a simple new operation,
and the filename and line number information are not generated.

In previous versions of MFC (4.1 and earlier) you needed to put the #define statement after all statements that called the
IMPLEMENT_DYNCREATE or IMPLEMENT_SERIAL macros. This is no longer necessary.

Header: afx.h

In debug mode (when the _DEBUG symbol is defined), DEBUG_ONLY evaluates its argument.

In a release build, DEBUG_ONLY does not evaluate its argument. This is useful when you have code that should
be executed only in debug builds.

The DEBUG_ONLY macro is equivalent to surrounding expression with #ifdef _DEBUG and #endif .

RequirementsRequirements

ENSURE and ENSURE_VALIDENSURE and ENSURE_VALID

SyntaxSyntax

ENSURE(booleanExpression)
ENSURE_VALID(booleanExpression)

ParametersParameters

RemarksRemarks

RequirementsRequirements

THIS_FILE

SyntaxSyntax

THIS_FILE

RemarksRemarks

ExampleExample

Header: afx.h

Use to validate data correctness.

booleanExpression
Specifies a boolean expression to be tested.

The purpose of these macros is to improve the validation of parameters. The macros prevent further processing of
incorrect parameters in your code. Unlike the ASSERT macros, the ENSURE macros throw an exception in
addition to generating an assertion.

The macros behave in two ways, according to the project configuration. The macros call ASSERT and then throw
an exception if the assertion fails. Thus, in Debug configurations (that is, where _DEBUG is defined) the macros
produce an assertion and exception while in Release configurations, the macros produce only the exception
(ASSERT does not evaluate the expression in Release configurations).

The macro ENSURE_ARG acts like the ENSURE macro.

ENSURE_VALID calls the ASSERT_VALID macro (which has an effect only in Debug builds). In addition,
ENSURE_VALID throws an exception if the pointer is NULL. The NULL test is performed in both Debug and
Release configurations.

If any of these tests fails, an alert message is displayed in the same manner as ASSERT. The macro throws an
invalid argument exception if needed.

Header: afx.h

Expands to the name of the file that is being compiled.

The information is used by the ASSERT and VERIFY macros. The Application Wizard and code wizards place the
macro in source code files they create.

#ifdef _DEBUG
#undef THIS_FILE
static char THIS_FILE[] = __FILE__;
#endif

// __FILE__ is one of the six predefined ANSI C macros that the
// compiler recognizes.

RequirementsRequirements

TRACE

TRACE(exp)
TRACE(DWORD category, UINT level, LPCSTR lpszFormat, ...)

RemarksRemarks

RequirementsRequirements

VERIFY

VERIFY(booleanExpression)

ParametersParameters

RemarksRemarks

ExampleExample

Header: afx.h

Sends the specified string to the debugger of the current application.

See ATLTRACE2 for a description of TRACE. TRACE and ATLTRACE2 have the same behavior.

In the debug version of MFC, this macro sends the specified string to the debugger of the current application. In a
release build, this macro compiles to nothing (no code is generated at all).

For more information, see Debugging MFC Applications.

Header: afx.h

In the Debug version of MFC, evaluates its argument.

booleanExpression
Specifies an expression (including pointer values) that evaluates to nonzero or 0.

If the result is 0, the macro prints a diagnostic message and halts the program. If the condition is nonzero, it does
nothing.

The diagnostic message has the form

assertion failed in file <name> in line <num>

where name is the name of the source file and num is the line number of the assertion that failed in the source file.

In the Release version of MFC, VERIFY evaluates the expression but does not print or interrupt the program. For
example, if the expression is a function call, the call will be made.

https://docs.microsoft.com/visualstudio/debugger/mfc-debugging-techniques

// VERIFY can be used for things that should never fail, though
// you may want to make sure you can provide better error recovery
// if the error can actually cause a crash in a production system.

// It _is_ possible that GetDC() may fail, but the out-of-memory
// condition that causes it isn't likely. For a test application,
// this use of VERIFY() is fine. For any production code, this
// usage is dubious.

// get the display device context
HDC hdc;
VERIFY((hdc = ::GetDC(hwnd)) != NULL);

// give the display context back
::ReleaseDC(hwnd, hdc);

RequirementsRequirements

afxDump (CDumpContext in MFC)

CDumpContext afxDump;

RemarksRemarks

ExampleExample

// example for afxDump
CPerson* pMyPerson = new CPerson;
// set some fields of the CPerson object...
//..
// now dump the contents
#ifdef _DEBUG
afxDump << _T("Dumping myPerson:\n");
pMyPerson->Dump(afxDump);
afxDump << _T("\n");
#endif

RequirementsRequirements

AfxDump (Internal)

SyntaxSyntax

Header: afx.h

Provides basic object-dumping capability in your application.

afxDump is a predefined CDumpContext object that allows you to send CDumpContext information to the debugger
output window or to a debug terminal. Typically, you supply afxDump as a parameter to CObject::Dump .

Under Windows NT and all versions of Windows, afxDump output is sent to the Output-Debug window of Visual
C++ when you debug your application.

This variable is defined only in the Debug version of MFC. For more information on afxDump , see Debugging
MFC Applications.

Header: afx.h

Internal function that MFC uses to dump the state of an object while debugging.

https://docs.microsoft.com/visualstudio/debugger/mfc-debugging-techniques

void AfxDump(const CObject* pOb);

ParametersParameters

RemarksRemarks

RequirementsRequirements

afxMemDF

int afxMemDF;

RemarksRemarks

ExampleExample

afxMemDF = allocMemDF | checkAlwaysMemDF;

RequirementsRequirements

AfxCheckError

void AFXAPI AfxCheckError(SCODE sc);
throw CMemoryException*
throw COleException*

RemarksRemarks

pOb
A pointer to an object of a class derived from CObject .

AfxDump calls an object's Dump member function and sends the information to the location specified by the
afxDump variable. AfxDump is available only in the Debug version of MFC.

Your program code should not call AfxDump , but should instead call the Dump member function of the appropriate
object.

Header: afx.h

This variable is accessible from a debugger or your program and allows you to tune allocation diagnostics.

afxMemDF can have the following values as specified by the enumeration afxMemDF :

allocMemDF Turns on debugging allocator (default setting in Debug library).

delayFreeMemDF Delays freeing memory. While your program frees a memory block, the allocator does not
return that memory to the underlying operating system. This will place maximum memory stress on your
program.

checkAlwaysMemDF Calls AfxCheckMemory every time memory is allocated or freed. This will significantly slow
memory allocations and deallocations.

Header: afx.h

This function tests the passed SCODE to see if it is an error.

If it is an error, the function throws an exception. If the passed SCODE is E_OUTOFMEMORY, the function throws
a CMemoryException by calling AfxThrowMemoryException. Otherwise, the function throws a COleException by

NOTENOTE

ExampleExample

AfxCheckError(::CoCreateInstance(clsidWMP, NULL, CLSCTX_INPROC_SERVER,
 IID_IDispatch, (LPVOID*)&pWMPDispatch));

oddWMP.AttachDispatch(pWMPDispatch, TRUE);

RequirementsRequirements

AfxCheckMemory

BOOL AfxCheckMemory();

Return ValueReturn Value

RemarksRemarks

#define new DEBUG_NEW

NOTENOTE

ExampleExample

calling AfxThrowOleException.

This function can be used to check the return values of calls to OLE functions in your application. By testing the
return value with this function in your application, you can properly react to error conditions with a minimal
amount of code.

This function has the same effect in debug and non-debug builds.

Header: afx.h

This function validates the free memory pool and prints error messages as required.

Nonzero if no memory errors; otherwise 0.

If the function detects no memory corruption, it prints nothing.

All memory blocks currently allocated on the heap are checked, including those allocated by new but not those
allocated by direct calls to underlying memory allocators, such as the malloc function or the GlobalAlloc

Windows function. If any block is found to be corrupted, a message is printed to the debugger output.

If you include the line

in a program module, then subsequent calls to AfxCheckMemory show the filename and line number where the
memory was allocated.

If your module contains one or more implementations of serializable classes, then you must put the #define line after the
last IMPLEMENT_SERIAL macro call.

This function works only in the Debug version of MFC.

CAge* pcage = new CAge(21); // CAge is derived from CObject.
Age* page = new Age(22); // Age is NOT derived from CObject.
(((char)pcage) - 1) = 99; // Corrupt preceding guard byte
(((char)page) - 1) = 99; // Corrupt preceding guard byte
AfxCheckMemory();

RequirementsRequirements

AfxDump (MFC)

void AfxDump(const CObject* pOb);

ParametersParameters

RemarksRemarks

RequirementsRequirements

AfxDumpStack

void AFXAPI AfxDumpStack(DWORD dwTarget = AFX_STACK_DUMP_TARGET_DEFAULT);

ParametersParameters

Header: afx.h

Call this function while in the debugger to dump the state of an object while debugging.

pOb
A pointer to an object of a class derived from CObject .

AfxDump calls an object's Dump member function and sends the information to the location specified by the
afxDump variable. AfxDump is available only in the Debug version of MFC.

Your program code should not call AfxDump , but should instead call the Dump member function of the appropriate
object.

Header: afx.h

This global function can be used to generate an image of the current stack.

dwTarget
Indicates the target of the dump output. Possible values, which can be combined using the bitwise-OR (|) operator,
are as follows:

AFX_STACK_DUMP_TARGET_TRACE Sends output by means of the TRACE macro. The TRACE macro
generates output in debug builds only; it generates no output in release builds. Also, TRACE can be
redirected to other targets besides the debugger.

AFX_STACK_DUMP_TARGET_DEFAULT Sends dump output to the default target. For a debug build, output
goes to the TRACE macro. In a release build, output goes to the Clipboard.

AFX_STACK_DUMP_TARGET_CLIPBOARD Sends output to the Clipboard only. The data is placed on the
Clipboard as plain text using the CF_TEXT Clipboard format.

AFX_STACK_DUMP_TARGET_BOTH Sends output to the Clipboard and to the TRACE macro,
simultaneously.

AFX_STACK_DUMP_TARGET_ODS Sends output directly to the debugger by means of the Win32 function

RemarksRemarks

=== begin AfxDumpStack output ===
00427D55: DUMP2\DEBUG\DUMP2.EXE! void AfxDumpStack(unsigned long) + 181 bytes
0040160B: DUMP2\DEBUG\DUMP2.EXE! void CDump2Dlg::OnClipboard(void) + 14 bytes
0044F884: DUMP2\DEBUG\DUMP2.EXE! int _AfxDispatchCmdMsg(class CCmdTarget *,
unsigned int,int,void (CCmdTarget::*)(void),void *,unsigned int,struct
AFX_CMDHANDLE
0044FF7B: DUMP2\DEBUG\DUMP2.EXE! virtual int CCmdTarget::OnCmdMsg(unsigned
int,int,void *,struct AFX_CMDHANDLERINFO *) + 626 bytes
00450C71: DUMP2\DEBUG\DUMP2.EXE! virtual int CDialog::OnCmdMsg(unsigned
int,int,void *,struct AFX_CMDHANDLERINFO *) + 36 bytes
00455B27: DUMP2\DEBUG\DUMP2.EXE! virtual int CWnd::OnCommand(unsigned
int,long) + 312 bytes
00454D3D: DUMP2\DEBUG\DUMP2.EXE! virtual int CWnd::OnWndMsg(unsigned
int,unsigned int,long,long *) + 83 bytes
00454CC0: DUMP2\DEBUG\DUMP2.EXE! virtual long CWnd::WindowProc(unsigned
int,unsigned int,long) + 46 bytes
004528D9: DUMP2\DEBUG\DUMP2.EXE! long AfxCallWndProc(class CWnd *,struct
HWND__ *,unsigned int,unsigned int,long) + 237 bytes
00452D34: DUMP2\DEBUG\DUMP2.EXE! long AfxWndProc(struct HWND__ *,unsigned
int,unsigned int,long) + 129 bytes
BFF73663: WINDOWS\SYSTEM\KERNEL32.DLL! ThunkConnect32 + 2148 bytes
BFF928E0: WINDOWS\SYSTEM\KERNEL32.DLL! UTUnRegister + 2492 bytes
=== end AfxDumpStack() output ===

OUTPUT DESCRIPTION

00427D55: The return address of the last function call.

DUMP2\DEBUG\DUMP2.EXE! The full path name of the module that contains the function
call.

void AfxDumpStack(unsigned long) The function prototype called.

+ 181 bytes The offset in bytes from the address of the function prototype
(in this case, void AfxDumpStack(unsigned long)) to the
return address (in this case, 00427D55).

OutputDebugString() . This option will generate debugger output in both debug and release builds when a
debugger is attached to the process. AFX_STACK_DUMP_TARGET_ODS always reaches the debugger (if it
is attached) and cannot be redirected.

The example below reflects a single line of the output generated from calling AfxDumpStack from a button handler
in an MFC dialog application:

Each line in the output above indicates the address of the last function call, the full path name of the module that
contains the function call, and the function prototype called. If the function call on the stack does not happen at the
exact address of the function, an offset of bytes is shown.

For example, the following table describes the first line of the above output:

AfxDumpStack is available in debug and nondebug versions of the MFC libraries; however, the function is always
linked statically, even when your executable file uses MFC in a shared DLL. In shared-library implementations, the
function is found in the MFCS42.L IB library (and its variants).

To use this function successfully:

The file IMAGEHLP.DLL must be on your path. If you do not have this DLL, the function will display an
error message. See Image Help Library for information on the function set provided by IMAGEHLP.

https://docs.microsoft.com/windows/desktop/Debug/image-help-library

AfxEnableMemoryLeakDump

BOOL AFXAPI AfxEnableMemoryLeakDump(BOOL bDump);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

RequirementsRequirements

AfxEnableMemoryTracking

BOOL AfxEnableMemoryTracking(BOOL bTrack);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

The modules that have frames on the stack must include debugging information. If they do not contain
debugging information, the function will still generate a stack trace, but the trace will be less detailed.

Header: afx.h

Enables and disables the memory leak dump in the AFX_DEBUG_STATE destructor.

bDump
[in] TRUE indicates the memory leak dump is enabled; FALSE indicates the memory leak dump is disabled.

The previous value for this flag.

When an application unloads the MFC library, the MFC library checks for memory leaks. At this point, any
memory leaks are reported to the user through the Debug window of Visual Studio.

If your application loads another library before the MFC library, some memory allocations in that library will be
incorrectly reported as memory leaks. False memory leaks can cause your application to close slowly as the MFC
library reports them. In this case, use AfxEnableMemoryLeakDump to disable the memory leak dump.

If you use this method to turn off the memory leak dump, you will not receive reports of valid memory leaks in your
application. You should only use this method if you are confident that the memory leak report contains false memory leaks.

Header: afx.h

Diagnostic memory tracking is normally enabled in the Debug version of MFC.

bTrack
Setting this value to TRUE turns on memory tracking; FALSE turns it off.

The previous setting of the tracking-enable flag.

Use this function to disable tracking on sections of your code that you know are allocating blocks correctly.

For more information on AfxEnableMemoryTracking , see Debugging MFC Applications.

https://docs.microsoft.com/visualstudio/debugger/mfc-debugging-techniques

NOTENOTE

ExampleExample

BOOL CMyWinApp::InitInstance()
{
#ifdef _DEBUG
 // Disable tracking of memory for the scope of the InitInstance()
 AfxEnableMemoryTracking(FALSE);
#endif // _DEBUG

 // ...

#ifdef _DEBUG
 // Re-enable tracking of memory
 AfxEnableMemoryTracking(TRUE);
#endif // _DEBUG

 return TRUE;
}

RequirementsRequirements

AfxIsMemoryBlock

BOOL AfxIsMemoryBlock(
 const void* p,
 UINT nBytes,
 LONG* plRequestNumber = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

This function works only in the Debug version of MFC.

Header: afx.h

Tests a memory address to make sure it represents a currently active memory block that was allocated by the
diagnostic version of new.

p
Points to the block of memory to be tested.

nBytes
Contains the length of the memory block in bytes.

plRequestNumber
Points to a long integer that will be filled in with the memory block's allocation sequence number, or zero if it does
not represent a currently active memory block.

Nonzero if the memory block is currently allocated and the length is correct; otherwise 0.

It also checks the specified size against the original allocated size. If the function returns nonzero, the allocation
sequence number is returned in plRequestNumber. This number represents the order in which the block was
allocated relative to all other new allocations.

CAge* pcage = new CAge(21); // CAge is derived from CObject.
ASSERT(AfxIsMemoryBlock(pcage, sizeof(CAge)));

RequirementsRequirements

AfxIsValidAddress

BOOL AfxIsValidAddress(
 const void* lp,
 UINT nBytes,
 BOOL bReadWrite = TRUE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Allocate a 5 character array, which should have a valid memory address.
char* arr = new char[5];

// Create a null pointer, which should be an invalid memory address.
char* null = (char*)0x0;

ASSERT(AfxIsValidAddress(arr, 5));
ASSERT(!AfxIsValidAddress(null, 5));

RequirementsRequirements

AfxIsValidString

Header: afx.h

Tests any memory address to ensure that it is contained entirely within the program's memory space.

lp
Points to the memory address to be tested.

nBytes
Contains the number of bytes of memory to be tested.

bReadWrite
Specifies whether the memory is both for reading and writing (TRUE) or just reading (FALSE).

In debug builds, nonzero if the specified memory block is contained entirely within the program's memory space;
otherwise 0.

In non-debug builds, nonzero if lp is not NULL; otherwise 0.

The address is not restricted to blocks allocated by new.

Header: afx.h

Use this function to determine whether a pointer to a string is valid.

BOOL AfxIsValidString(
 LPCSTR lpsz,
 int nLength = -1);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Create a character string which should be valid.
char str[12] = "hello world";

// Create a null pointer, which should be an invalid string.
char* null = (char*)0x0;

ASSERT(AfxIsValidString(str, 12));
ASSERT(!AfxIsValidString(null, 5));

RequirementsRequirements

AfxSetAllocHook

AFX_ALLOC_HOOK AfxSetAllocHook(AFX_ALLOC_HOOK pfnAllocHook);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

lpsz
The pointer to test.

nLength
Specifies the length of the string to be tested, in bytes. A value of -1 indicates that the string will be null-
terminated.

In debug builds, nonzero if the specified pointer points to a string of the specified size; otherwise 0.

In non-debug builds, nonzero if lpsz is not NULL; otherwise 0.

Header: afx.h

Sets a hook that enables calling of the specified function before each memory block is allocated.

pfnAllocHook
Specifies the name of the function to call. See the Remarks for the prototype of an allocation function.

Nonzero if you want to permit the allocation; otherwise 0.

The Microsoft Foundation Class Library debug-memory allocator can call a user-defined hook function to allow
the user to monitor a memory allocation and to control whether the allocation is permitted. Allocation hook
functions are prototyped as follows:

BOOL AFXAPI AllocHook(size_t nSize , BOOL bObject , LONG lRequestNumber);

nSize
The size of the proposed memory allocation.

bObject

RequirementsRequirements

AfxDoForAllClasses

void
AFXAPI AfxDoForAllClasses(
 void (* pfn)(const CRuntimeClass* pClass, void* pContext),
 void* pContext);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

#ifdef _DEBUG
void DoForAllClasses(const CRuntimeClass* pClass, void* pContext)
{
 ASSERT(pContext != NULL);
 CString *pStr = (CString *)pContext;

 *pStr += pClass->m_lpszClassName;
 *pStr += _T("\n");
}
#endif

#ifdef _DEBUG
 CString cStr;
 AfxDoForAllClasses(DoForAllClasses, &cStr);
 AfxMessageBox(cStr);
#endif

RequirementsRequirements

TRUE if the allocation is for a CObject -derived object; otherwise FALSE.

lRequestNumber
The memory allocation's sequence number.

Note that the AFXAPI calling convention implies that the callee must remove the parameters from the stack.

Header: afx.h

Calls the specified iteration function for all serializable CObject -derived classes in the application's memory space.

pfn
Points to an iteration function to be called for each class. The function arguments are a pointer to a CRuntimeClass

object and a void pointer to extra data that the caller supplies to the function.

pContext
Points to optional data that the caller can supply to the iteration function. This pointer can be NULL.

Serializable CObject -derived classes are classes derived using the DECLARE_SERIAL macro. The pointer that is
passed to AfxDoForAllClasses in pContext is passed to the specified iteration function each time it is called.

This function works only in the Debug version of MFC.

Header: afx.h

 AfxDoForAllObjects

void AfxDoForAllObjects(
 void (* pfn)(CObject* pObject, void* pContext),
 void* pContext);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

#ifdef _DEBUG
void DoForAllObjects(CObject* pObject, void* pContext)
{
 int *pnCount = (int*)pContext;

 pObject->AssertValid();
 if (pnCount != NULL)
 (*pnCount)++;
}
#endif // _DEBUG

#ifdef _DEBUG
 //AfxDoForAllObjects will call the function DoForAllObjects
 //For each CObject-derived object that is allocated on the heap
 int nCount = 0;
 AfxDoForAllObjects(DoForAllObjects, &nCount);
 TRACE("%d Objects Checked\n", nCount);
#endif

See also

Executes the specified iteration function for all objects derived from CObject that have been allocated with new.

pfn
Points to an iteration function to execute for each object. The function arguments are a pointer to a CObject and a
void pointer to extra data that the caller supplies to the function.

pContext
Points to optional data that the caller can supply to the iteration function. This pointer can be NULL.

Stack, global, or embedded objects are not enumerated. The pointer passed to AfxDoForAllObjects in pContext is
passed to the specified iteration function each time it is called.

This function works only in the Debug version of MFC.

Macros and Globals
CObject::Dump

 Af xI nitExtensionModule

 Af xTermExtensionModule

Macros and Functions for Managing DLLs
2/7/2019 • 8 minutes to read • Edit Online

AFX_EXT_CLASS] Exports classes.

AFX_MANAGE_STATE Protect an exported function in a DLL.

AfxOleInitModule Provides OLE support from a regular MFC DLL that is
dynamically linked to MFC.

AfxNetInitModule Provides MFC Sockets support from a regular MFC DLL that is
dynamically linked to MFC.

AfxGetAmbientActCtx Gets the current state of the per-module state flag.

AfxGetStaticModuleState Sets the module state before initialization and/or to restore
the previous module state after cleanup.

#afxinitextensionmodule Initializes the DLL.

AfxSetAmbientActCtx set the per-module state flag, which affects the WinSxS
behavior of MFC.

#afxtermextensionmodule) Allows MFC to cleanup the MFC extension DLL when each
process detaches from the DLL.

AFX_EXT_CLASS

RemarksRemarks

class AFX_EXT_CLASS CMyClass : public CDocument
{
// <body of class>
};

RequirementsRequirements

AFX_MANAGE_STATE

MFC extension DLLs use the macro AFX_EXT_CLASS to export classes; the executables that link to the MFC
extension DLL use the macro to import classes.

With the AFX_EXT_CLASS macro, the same header file(s) used to build the MFC extension DLL can be used with
the executables that link to the DLL.

In the header file for your DLL, add the AFX_EXT_CLASS keyword to the declaration of your class as follows:

For more information, see Export and Import Using AFX_EXT_CLASS.

Header: afxv_dll.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/extension-dll-macros.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/extension-dlls
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/exporting-and-importing-using-afx-ext-class

SyntaxSyntax

AFX_MANAGE_STATE(AFX_MODULE_STATE* pModuleState)

ParametersParameters

RemarksRemarks

AFX_MANAGE_STATE(AfxGetStaticModuleState());

NOTENOTE

RequirementsRequirements

AfxOleInitModule

SyntaxSyntax

void AFXAPI AfxOleInitModule();

RemarksRemarks

Call this macro to protect an exported function in a DLL.

pModuleState
A pointer to an AFX_MODULE_STATE structure.

When this macro is invoked, pModuleState is the effective module state for the remainder of the immediate
containing scope. Upon leaving the scope, the previous effective module state will be automatically restored. The
AFX_MODULE_STATE structure contains global data for the module, that is, the portion of the module state that is

pushed or popped.

By default, MFC uses the resource handle of the main application to load the resource template. If you have an
exported function in a DLL, such as one that launches a dialog box in the DLL, this template is actually stored in the
DLL module. You need to switch the module state for the correct handle to be used. You can do this by adding the
following code to the beginning of the function:

This swaps the current module state with the state returned from AfxGetStaticModuleState until the end of the
current scope.

For more information on module states and MFC, see "Managing the State Data of MFC Modules" in Creating
New Documents, Windows, and Views and Technical Note 58.

When MFC creates an activation context for an assembly, it uses AfxWinInit to create the context and AFX_MANAGE_STATE to
activate and deactivate it. Note also that AFX_MANAGE_STATE is enabled for static MFC libraries, as well as MFC DLLs, in
order to allow MFC code to execute in the proper activation context selected by the User DLL. For more information, see
Support for Activation Contexts in the MFC Module State.

Header: afxstat_.h

For OLE support from a regular MFC DLL that is dynamically linked to MFC, call this function in your regular
MFC DLL's CWinApp::InitInstance function to initialize the MFC OLE DLL.

The MFC OLE DLL is an MFC extension DLL; in order for an MFC extension DLL to get wired into a
CDynLinkLibrary chain, it must create a CDynLinkLibrary object in the context of every module that will be using it.
AfxOleInitModule creates the CDynLinkLibrary object in your regular MFC DLL's context so that it gets wired into

RequirementsRequirements

AfxNetInitModule

SyntaxSyntax

void AFXAPI AfxNetInitModule();

RemarksRemarks

RequirementsRequirements

AfxGetAmbientActCtx

SyntaxSyntax

BOOL AFXAPI AfxGetAmbientActCtx();

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

AfxGetStaticModuleState

SyntaxSyntax

the CDynLinkLibrary object chain of the regular MFC DLL.

If you are building an OLE control and are using COleControlModule , you should not call AfxOleInitModule because
the InitInstance member function for COleControlModule calls AfxOleInitModule .

Header: <afxdll_.h>

For MFC Sockets support from a regular MFC DLL that is dynamically linked to MFC, add a call to this function in
your regular MFC DLL's CWinApp::InitInstance function to initialize the MFC Sockets DLL.

The MFC Sockets DLL is an MFC extension DLL; in order for an MFC extension DLL to get wired into a
CDynLinkLibrary chain, it must create a CDynLinkLibrary object in the context of every module that will be using it.
AfxNetInitModule creates the CDynLinkLibrary object in your regular MFC DLL's context so that it gets wired into

the CDynLinkLibrary object chain of the regular MFC DLL.

Header: <afxdll_.h>

Use this function to get the current state of the per-module state flag, which affects the WinSxS behavior of MFC.

Module state flag current value.

When the flag is set (which is the default) and a thread enters an MFC module (see AFX_MANAGE_STATE), the
context of the module is activated.

If the flag is not set, the context of the module is not activated on entry.

The context of a module is determined from its manifest, usually embedded in module resources.

Header: afxcomctl32.h

Call this function to set the module state before initialization and/or to restore the previous module state after
cleanup.

AFX_MODULE_STATE* AFXAPI AfxGetStaticModuleState();

Return ValueReturn Value

RemarksRemarks

AFX_MANAGE_STATE(AfxGetStaticModuleState());

RequirementsRequirements

AfxInitExtensionModule

SyntaxSyntax

BOOL AFXAPI AfxInitExtensionModule(AFX_EXTENSION_MODULE& state, HMODULE hModule);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

A pointer to an AFX_MODULE_STATE structure.

The AFX_MODULE_STATE structure contains global data for the module, that is, the portion of the module state that is
pushed or popped.

By default, MFC uses the resource handle of the main application to load the resource template. If you have an
exported function in a DLL, such as one that launches a dialog box in the DLL, this template is actually stored in the
DLL module. You need to switch the module state for the correct handle to be used. You can do this by adding the
following code to the beginning of the function:

This swaps the current module state with the state returned from AfxGetStaticModuleState until the end of the
current scope.

For more information on module states and MFC, see "Managing the State Data of MFC Modules" in Creating
New Documents, Windows, and Views and Technical Note 58.

Header: afxstat_.h

Call this function in an MFC extension DLL's DllMain to initialize the DLL.

state
A reference to the AFX_EXTENSION_MODULE Structure structure that will contain the state of the MFC
extension DLL module after the initialization. The state includes a copy of the runtime class objects that have been
initialized by the MFC extension DLL as part of normal static object construction executed before DllMain is
entered.

hModule
A handle of the MFC extension DLL module.

TRUE if the MFC extension DLL is successfully initialized; otherwise, FALSE.

For example:

static AFX_EXTENSION_MODULE NVC_MFC_DLLDLL = { NULL, NULL };
extern "C" int APIENTRY
DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
{
 // Remove this if you use lpReserved
 UNREFERENCED_PARAMETER(lpReserved);

 if (dwReason == DLL_PROCESS_ATTACH)
 {
 TRACE0("NVC_MFC_DLL.DLL Initializing!\n");

 // MFC extension DLL one-time initialization
 if (!AfxInitExtensionModule(NVC_MFC_DLLDLL, hInstance))
 return 0;
...

RequirementsRequirements

AfxSetAmbientActCtx

SyntaxSyntax

void AFXAPI AfxSetAmbientActCtx(BOOL bSet);

ParametersParameters

RemarksRemarks

ExampleExample

BOOL CMFCListViewApp::InitInstance()
{
 AfxSetAmbientActCtx(FALSE);
 // Remainder of function definition omitted.
}

AfxInitExtensionModule makes a copy of the DLL's HMODULE and captures the DLL's runtime-classes (
CRuntimeClass structures) as well as its object factories (COleObjectFactory objects) for use later when the
CDynLinkLibrary object is created. MFC extension DLLs need to do two things in their DllMain function:

Call AfxInitExtensionModule and check the return value.

Create a CDynLinkLibrary object if the DLL will be exporting CRuntimeClass Structure objects or has its
own custom resources.

You can call AfxTermExtensionModule to clean up the MFC extension DLL when each process detaches from the
MFC extension DLL (which happens when the process exits, or when the DLL is unloaded as a result of an
AfxFreeLibrary call).

Header: afxdll_.h

Use this function to set the per-module state flag, which affects the WinSxS behavior of MFC.

bSet
New value of the module state flag.

When the flag is set (which is the default) and a thread enters an MFC module (see AFX_MANAGE_STATE), the
context of the module is activated. If the flag is not set, the context of the module is not activated on entry. The
context of a module is determined from its manifest, usually embedded in module resources.

RequirementsRequirements

AfxTermExtensionModule

SyntaxSyntax

void AFXAPI AfxTermExtensionModule(AFX_EXTENSION_MODULE& state, BOOL bAll = FALSE);

ParametersParameters

RemarksRemarks

static AFX_EXTENSION_MODULE NVC_MFC_DLLDLL = { NULL, NULL };
extern "C" int APIENTRY
DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
{
 // Remove this if you use lpReserved
 UNREFERENCED_PARAMETER(lpReserved);

 if (dwReason == DLL_PROCESS_ATTACH)
 {
 TRACE0("NVC_MFC_DLL.DLL Initializing!\n");

 // MFC extension DLL one-time initialization
 if (!AfxInitExtensionModule(NVC_MFC_DLLDLL, hInstance))
 return 0;

 new CMyDynLinkLibrary(NVC_MFC_DLLDLL);

 }
 else if (dwReason == DLL_PROCESS_DETACH)
 {
 TRACE0("NVC_MFC_DLL.DLL Terminating!\n");

 // Terminate the library before destructors are called
 AfxTermExtensionModule(NVC_MFC_DLLDLL);
 }
 return 1; // ok
}

Header: afxcomctl32.h

Call this function to allow MFC to cleanup the MFC extension DLL when each process detaches from the DLL
(which happens when the process exits, or when the DLL is unloaded as a result of a AfxFreeLibrary call).

state
A reference to the AFX_EXTENSION_MODULE structure that contains the state of MFC extension DLL module.

bAll
If TRUE, cleanup all MFC extension DLL modules. Otherwise, cleanup only the current DLL module.

AfxTermExtensionModule will delete any local storage attached to the module and remove any entries from the
message map cache. For example:

If your application loads and frees MFC extension DLLs dynamically, be sure to call AfxTermExtensionModule . Since
most MFC extension DLLs are not dynamically loaded (usually, they are linked via their import libraries), the call to
AfxTermExtensionModule is usually not necessary.

MFC extension DLLs need to call AfxInitExtensionModule in their DllMain . If the DLL will be exporting
CRuntimeClass objects or has its own custom resources, you also need to create a CDynLinkLibrary object in
DllMain .

RequirementsRequirements

See also

Header: afxdll_.h

Macros and Globals
AfxMessageBox
Managing the State Data of MFC Modules

Exception Processing
3/4/2019 • 12 minutes to read • Edit Online

Exception MacrosException Macros

TRY Designates a block of code for exception processing.

CATCH Designates a block of code for catching an exception from the
preceding TRY block.

CATCH_ALL Designates a block of code for catching all exceptions from
the preceding TRY block.

AND_CATCH Designates a block of code for catching additional exception
types from the preceding TRY block.

AND_CATCH_ALL Designates a block of code for catching all other additional
exception types thrown in a preceding TRY block.

END_CATCH Ends the last CATCH or AND_CATCH code block.

END_CATCH_ALL Ends the last CATCH_ALL code block.

THROW Throws a specified exception.

THROW_LAST Throws the currently handled exception to the next outer
handler.

Exception-Throwing FunctionsException-Throwing Functions

When a program executes, a number of abnormal conditions and errors called "exceptions" can occur. These may
include running out of memory, resource allocation errors, and failure to find files.

The Microsoft Foundation Class Library uses an exception-handling scheme that is modeled closely after the one
proposed by the ANSI standards committee for C++. An exception handler must be set up before calling a
function that may encounter an abnormal situation. If the function encounters an abnormal condition, it throws an
exception and control is passed to the exception handler.

Several macros included with the Microsoft Foundation Class Library will set up exception handlers. A number of
other global functions help to throw specialized exceptions and terminate programs, if necessary. These macros
and global functions fall into the following categories:

Exception macros, which structure your exception handler.

Exception-throwing functions), which generate exceptions of specific types.

Termination functions, which cause program termination.

For examples and more details, see the article Exceptions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/exception-processing.md

AfxThrowArchiveException Throws an archive exception.

AfxThrowFileException Throws a file exception.

AfxThrowInvalidArgException Throws an invalid argument exception.

AfxThrowMemoryException Throws a memory exception.

AfxThrowNotSupportedException Throws a not-supported exception.

AfxThrowResourceException Throws a Windows resource-not-found exception.

AfxThrowUserException Throws an exception in a user-initiated program action.

OLE Exception FunctionsOLE Exception Functions

AfxThrowOleDispatchException Throws an exception within an OLE automation function.

AfxThrowOleException Throws an OLE exception.

DAO Exception FunctionsDAO Exception Functions

AfxThrowDAOException Throws a CDaoException from your own code.

AfxThrowDBException Throws a CDBException from your own code.

Termination FunctionsTermination Functions

AfxAbort Called to terminate an application when a fatal error occurs.

TRY

TRY

RemarksRemarks

MFC provides two exception-throwing functions specifically for OLE exceptions:

To support database exceptions, the database classes provide two exception classes, CDBException and
CDaoException , and global functions to support the exception types:

MFC provides the following termination function:

Sets up a TRY block.

A TRY block identifies a block of code that might throw exceptions. Those exceptions are handled in the following
CATCH and AND_CATCH blocks. Recursion is allowed: exceptions may be passed to an outer TRY block, either
by ignoring them or by using the THROW_LAST macro. End the TRY block with an END_CATCH or
END_CATCH_ALL macro.

ExampleExample

RequirementsRequirements

CATCH

CATCH(exception_class, exception_object_pointer_name)

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

For more information, see the article Exceptions.

See the example for CATCH.

Header: afx.h

Defines a block of code that catches the first exception type thrown in the preceding TRY block.

exception_class
Specifies the exception type to test for. For a list of standard exception classes, see class CException.

exception_object_pointer_name
Specifies a name for an exception-object pointer that will be created by the macro. You can use the pointer name
to access the exception object within the CATCH block. This variable is declared for you.

The exception-processing code can interrogate the exception object, if appropriate, to get more information about
the specific cause of the exception. Invoke the THROW_LAST macro to shift processing to the next outer
exception frame. End the TRY block with an END_CATCH macro.

If exception_class is the class CException , then all exception types will be caught. You can use the
CObject::IsKindOf member function to determine which specific exception was thrown. A better way to catch
several kinds of exceptions is to use sequential AND_CATCH statements, each with a different exception type.

The exception object pointer is created by the macro. You do not need to declare it yourself.

The CATCH block is defined as a C++ scope delineated by braces. If you declare variables in this scope, they are accessible
only within that scope. This also applies to exception_object_pointer_name.

For more information on exceptions and the CATCH macro, see the article Exceptions.

CFile* pFile = NULL;
// Constructing a CFile object with this override may throw
// a CFile exception and won't throw any other exceptions.
// Calling CString::Format() may throw a CMemoryException,
// so we have a catch block for such exceptions, too. Any
// other exception types this function throws will be
// routed to the calling function.
TRY
{
 pFile = new CFile(_T("C:\\WINDOWS\\SYSTEM.INI"),
 CFile::modeRead | CFile::shareDenyNone);
 ULONGLONG dwLength = pFile->GetLength();
 CString str;
 str.Format(_T("Your SYSTEM.INI file is %I64u bytes long.") , dwLength);
 AfxMessageBox(str);
}
CATCH(CFileException, pEx)
{
 // Simply show an error message to the user.
 pEx->ReportError();
}
AND_CATCH(CMemoryException, pEx)
{
 // We can't recover from this memory exception, so we'll
 // just terminate the app without any cleanup. Normally,
 // an application should do everything it possibly can to
 // clean up properly and not call AfxAbort().
 AfxAbort();
}
END_CATCH
// If an exception occurs in the CFile constructor,
// the language will free the memory allocated by new
// and will not complete the assignment to pFile.
// Thus, our cleanup code needs to test for NULL.
if (pFile != NULL)
{
 pFile->Close();
 delete pFile;
}

CATCH_ALL

CATCH_ALL(exception_object_pointer_name)

ParametersParameters

RemarksRemarks

Defines a block of code that catches all exception types thrown in the preceding TRY block.

exception_object_pointer_name
Specifies a name for an exception-object pointer that will be created by the macro. You can use the pointer name
to access the exception object within the CATCH_ALL block. This variable is declared for you.

The exception-processing code can interrogate the exception object, if appropriate, to get more information about
the specific cause of the exception. Invoke the THROW_LAST macro to shift processing to the next outer exception
frame. If you use CATCH_ALL, end the TRY block with an END_CATCH_ALL macro.

NOTENOTE

ExampleExample

RequirementsRequirements

AND_CATCH

AND_CATCH(exception_class, exception_object_pointer_name)

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

RequirementsRequirements

AND_CATCH_ALL

AND_CATCH_ALL(exception_object_pointer_name)

The CATCH_ALL block is defined as a C++ scope delineated by braces. If you declare variables in this scope, they are
accessible only within that scope.

For more information on exceptions, see the article Exceptions.

See the example for CFile::Abort.

Header afx.h

Defines a block of code for catching additional exception types thrown in a preceding TRY block.

exception_class
Specifies the exception type to test for. For a list of standard exception classes, see class CException.

exception_object_pointer_name
A name for an exception-object pointer that will be created by the macro. You can use the pointer name to access
the exception object within the AND_CATCH block. This variable is declared for you.

Use the CATCH macro to catch one exception type, then the AND_CATCH macro to catch each subsequent type.
End the TRY block with an END_CATCH macro.

The exception-processing code can interrogate the exception object, if appropriate, to get more information about
the specific cause of the exception. Call the THROW_LAST macro within the AND_CATCH block to shift
processing to the next outer exception frame. AND_CATCH marks the end of the preceding CATCH or
AND_CATCH block.

The AND_CATCH block is defined as a C++ scope (delineated by curly braces). If you declare variables in this scope,
remember that they are accessible only within that scope. This also applies to the exception_object_pointer_name variable.

See the example for CATCH.

Header afx.h

Defines a block of code for catching additional exception types thrown in a preceding TRY block.

ParametersParameters

RemarksRemarks

NOTENOTE

RequirementsRequirements

END_CATCH

END_CATCH

RemarksRemarks

RequirementsRequirements

END_CATCH_ALL

END_CATCH_ALL

RequirementsRequirements

THROW (MFC)

THROW(exception_object_pointer)

ParametersParameters

exception_object_pointer_name
A name for an exception-object pointer that will be created by the macro. You can use the pointer name to access
the exception object within the AND_CATCH_ALL block. This variable is declared for you.

Use the CATCH macro to catch one exception type, then the AND_CATCH_ALL macro to catch all other
subsequent types. If you use AND_CATCH_ALL, end the TRY block with an END_CATCH_ALL macro.

The exception-processing code can interrogate the exception object, if appropriate, to get more information about
the specific cause of the exception. Call the THROW_LAST macro within the AND_CATCH_ALL block to shift
processing to the next outer exception frame. AND_CATCH_ALL marks the end of the preceding CATCH or
AND_CATCH_ALL block.

The AND_CATCH_ALL block is defined as a C++ scope (delineated by braces). If you declare variables in this scope,
remember that they are accessible only within that scope.

Header afx.h

Marks the end of the last CATCH or AND_CATCH block.

For more information on the END_CATCH macro, see the article Exceptions.

Header afx.h

Marks the end of the last CATCH_ALL88 or **AND_CATCH_ALL block.

Header afx.h

Throws the specified exception.

exception_object_pointer

RemarksRemarks

RequirementsRequirements

THROW_LAST

THROW_LAST()

RemarksRemarks

ExampleExample

RequirementsRequirements

AfxThrowArchiveException

void AfxThrowArchiveException(int cause, LPCTSTR lpszArchiveName);

ParametersParameters

RequirementsRequirements

AfxThrowFileException

Points to an exception object derived from CException .

THROW interrupts program execution, passing control to the associated CATCH block in your program. If you
have not provided the CATCH block, then control is passed to a Microsoft Foundation Class Library module that
prints an error message and exits.

For more information, see the article Exceptions.

Header afx.h

Throws the exception back to the next outer CATCH block.

This macro allows you to throw a locally created exception. If you try to throw an exception that you have just
caught, it will normally go out of scope and be deleted. With THROW_LAST, the exception is passed correctly to
the next CATCH handler.

For more information, see the article Exceptions.

See the example for CFile::Abort.

Header afx.h

Throws an archive exception.

cause
Specifies an integer that indicates the reason for the exception. For a list of the possible values, see
CArchiveException::m_cause.

lpszArchiveName
Points to a string containing the name of the CArchive object that caused the exception (if available).

Header afx.h

Throws a file exception.

void AfxThrowFileException(
 int cause,
 LONG lOsError = -1,
 LPCTSTR lpszFileName = NULL);

ParametersParameters

RemarksRemarks

RequirementsRequirements

AfxThrowInvalidArgException

SyntaxSyntax

void AfxThrowInvalidArgException();

RemarksRemarks

RequirementsRequirements

AfxThrowMemoryException

void AfxThrowMemoryException();

RemarksRemarks

RequirementsRequirements

AfxThrowNotSupportedException

cause
Specifies an integer that indicates the reason for the exception. For a list of the possible values, see
CFileException::m_cause.

lOsError
Contains the operating-system error number (if available) that states the reason for the exception. See your
operating-system manual for a listing of error codes.

lpszFileName
Points to a string containing the name of the file that caused the exception (if available).

You are responsible for determining the cause based on the operating-system error code.

Header afx.h

Throws an invalid argument exception.

This function is called when invalid arguments are used.

Header: afx.h

Throws a memory exception.

Call this function if calls to underlying system memory allocators (such as malloc and the GlobalAlloc Windows
function) fail. You do not need to call it for new because new will throw a memory exception automatically if the
memory allocation fails.

Header afx.h

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalalloc

void AfxThrowNotSupportedException();

RequirementsRequirements

AfxThrowResourceException

void AfxThrowResourceException();

RemarksRemarks

RequirementsRequirements

AfxThrowUserException

void AfxThrowUserException();

RemarksRemarks

RequirementsRequirements

AfxThrowOleDispatchException

void AFXAPI AfxThrowOleDispatchException(
 WORD wCode ,
 LPCSTR lpszDescription,
 UINT nHelpID = 0);

void AFXAPI AfxThrowOleDispatchException(
 WORD wCode,
 UINT nDescriptionID,
 UINT nHelpID = -1);

ParametersParameters

Throws an exception that is the result of a request for an unsupported feature.

Header afx.h

Throws a resource exception.

This function is normally called when a Windows resource cannot be loaded.

Header afx.h

Throws an exception to stop an end-user operation.

This function is normally called immediately after AfxMessageBox has reported an error to the user.

Header afx.h

Use this function to throw an exception within an OLE automation function.

wCode
An error code specific to your application.

lpszDescription
Verbal description of the error.

nDescriptionID

RemarksRemarks

ExampleExample

// Sort is method of automation class CStrArrayDoc
long CStrArrayDoc::Sort(VARIANT* vArray)
{
 USES_CONVERSION;

 // Type check VARIANT parameter. It should contain a BSTR array
 // passed by reference. The array must be passed by reference; it is
 // an in-out-parameter.

 // throwing COleDispatchException allows the EXCEPINFO structure of
 // IDispatch::Invoke() to set
 if (V_VT(vArray) != (VT_ARRAY | VT_BSTR))
 AfxThrowOleDispatchException(1001,
 _T("Type Mismatch in Parameter. Pass a string array by reference"));

 // ...
 // ...

 return 0;
}

RequirementsRequirements

AfxThrowOleException

void AFXAPI AfxThrowOleException(SCODE sc);
void AFXAPI AfxThrowOleException(HRESULT hr);

ParametersParameters

RemarksRemarks

RequirementsRequirements

AfxThrowDaoException

Resource ID for the verbal error description.

nHelpID
A help context for your application's help (.HLP) file.

The information provided to this function can be displayed by the driving application (Microsoft Visual Basic or
another OLE automation client application).

Header afx.h

Creates an object of type COleException and throws an exception.

sc
An OLE status code that indicates the reason for the exception.

hr
Handle to a result code that indicates the reason for the exception.

The version that takes an HRESULT as an argument converts that result code into the corresponding SCODE. For
more information on HRESULT and SCODE, see Structure of COM Error Codes in the Windows SDK.

Header afxdao.h

https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes

void AFXAPI AfxThrowDaoException(
 int nAfxDaoError = NO_AFX_DAO_ERROR,
 SCODE scode = S_OK);

ParametersParameters

RemarksRemarks

RequirementsRequirements

AfxThrowDBException

void AfxThrowDBException(
 RETCODE nRetCode,
 CDatabase* pdb,
 HSTMT hstmt);

ParametersParameters

RemarksRemarks

Call this function to throw an exception of type CDaoException from your own code.

nAfxDaoError
An integer value representing a DAO extended error code, which can be one of the values listed under
CDaoException::m_nAfxDaoError.

scode
An OLE error code from DAO, of type SCODE. For information, see CDaoException::m_scode.

The framework also calls AfxThrowDaoException . In your call, you can pass one of the parameters or both. For
example, if you want to raise one of the errors defined in CDaoException::nAfxDaoError but you do not care
about the scode parameter, pass a valid code in the nAfxDaoError parameter and accept the default value for
scode.

For information about exceptions related to the MFC DAO classes, see class CDaoException in this book and the
article Exceptions: Database Exceptions.

Header afxdb.h

Call this function to throw an exception of type CDBException from your own code.

nRetCode
A value of type RETCODE, defining the type of error that caused the exception to be thrown.

pdb
A pointer to the CDatabase object that represents the data source connection with which the exception is
associated.

hstmt
An ODBC HSTMT handle that specifies the statement handle with which the exception is associated.

The framework calls AfxThrowDBException when it receives an ODBC RETCODE from a call to an ODBC API
function and interprets the RETCODE as an exceptional condition rather than an expectable error. For example, a
data access operation might fail because of a disk read error.

For information about the RETCODE values defined by ODBC, see Chapter 8, "Retrieving Status and Error
Information," in the Windows SDK. For information about MFC extensions to these codes, see class
CDBException.

RequirementsRequirements

AfxAbort

void AfxAbort();

RemarksRemarks

ExampleExample

RequirementsRequirements

See also

Header afx.h

The default termination function supplied by MFC.

AfxAbort is called internally by MFC member functions when there is a fatal error, such as an uncaught exception
that cannot be handled. You can call AfxAbort in the rare case when you encounter a catastrophic error from
which you cannot recover.

See the example for CATCH.

Header afx.h

Macros and Globals
CException Class
CInvalidArgException Class

CString Formatting and Message-Box Display
3/4/2019 • 6 minutes to read • Edit Online

CString FunctionsCString Functions

AfxExtractSubString Extracts substrings separated by a single character from a
given source string.

AfxFormatString1 Substitutes a given string for the format characters "%1" in a
string contained in the string table.

AfxFormatString2 Substitutes two strings for the format characters "%1" and
"%2" in a string contained in the string table.

AfxMessageBox Displays a message box.

RequirementsRequirements

AfxExtractSubString

BOOL AFXAPI AfxExtractSubString (
 CString& rString,
 LPCTSTR lpszFullString,
 int iSubString,
 TCHAR chSep = '\n');

ParametersParameters

Return ValueReturn Value

A number of functions are provided to format and parse CString objects. You can use these functions whenever
you have to manipulate CString objects, but they are particularly useful for formatting strings that will appear in
message-box text.

This group of functions also includes a global routine for displaying a message box.

Header afxwin.h

This global function can be used to extract a substring from a given source string.

rString
Reference to a CString object that will receive an individual substring.

lpszFullString
String containing the full text of the string to extract from.

iSubString
Zero-based index of the substring to extract from lpszFullString.

chSep
Separator character used to delimit substrings.

TRUE if the function successfully extracted the substring at the provided index; otherwise, FALSE.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cstring-formatting-and-message-box-display.md

RemarksRemarks

ExampleExample

// The following example extracts a series of name, value pairs from a
// given source string:

// Input string consisting of a number of name, value pairs
LPCTSTR lpszSource = _T("\"Name\"=\"John Smith\"\n")
 _T("\"Company\"=\"Contoso, Ltd\"\n\"Salary\"=\"25,000\"");

CString strNameValue; // an individual name, value pair

int i = 0; // substring index to extract
while (AfxExtractSubString(strNameValue, lpszSource, i))
{
 // Prepare to move to the next substring
 i++;

 CString strName, strValue; // individual name and value elements

 // Attempt to extract the name element from the pair
 if (!AfxExtractSubString(strName, strNameValue, 0, _T('=')))
 {
 // Pass an error message to the debugger for display
 OutputDebugString(_T("Error extracting name\r\n"));
 continue;
 }

 // Attempt to extract the value element from the pair
 if (!AfxExtractSubString(strValue, strNameValue, 1, _T('=')))
 {
 // Pass an error message to the debugger for display
 OutputDebugString(_T("Error extracting value element\r\n"));
 continue;
 }

 // Pass the name, value pair to the debugger for display
 CString strOutput = strName + _T(" equals ") + strValue + _T("\r\n");
 OutputDebugString(strOutput);
}

RequirementsRequirements

AfxFormatString1

This function is useful for extracting multiple substrings from a source string when a known single character
separates each substring. This function searches from the beginning of the lpszFullString parameter each time it is
called.

This function will return FALSE if either lpszFullString is set to NULL or the function reaches the end of
lpszFullString without finding iSubString+1 occurrences of the specified separator character. The rString parameter
will not be modified from its original value if lpszFullString was set to NULL; otherwise, the rString parameter is
set to the empty string if the substring could not be extracted for the specified index.

Header afxwin.h

Substitutes the string pointed to by lpsz1 for any instances of the characters "%1" in the template string resource
identified by nIDS.

void AfxFormatString1(
 CString& rString,
 UINT nIDS,
 LPCTSTR lpsz1);

ParametersParameters

RemarksRemarks

ExampleExample

void DisplayFileNotFoundMessage(LPCTSTR pszFileName)
{
 CString strMessage;

 // The IDS_FILENOTFOUND string resource contains "Error: File %1 not found"
 AfxFormatString1(strMessage, IDS_FILENOTFOUND, pszFileName);
 // In the previous call, substitute the actual file name for the
 // %1 placeholder
 AfxMessageBox(strMessage); // Display the error message
}

RequirementsRequirements

AfxFormatString2

void AfxFormatString2(
 CString& rString,
 UINT nIDS,
 LPCTSTR lpsz1,
 LPCTSTR lpsz2);

ParametersParameters

rString
A reference to a CString object that will contain the resultant string after the substitution is performed.

nIDS
The resource ID of the template string on which the substitution will be performed.

lpsz1
A string that will replace the format characters "%1" in the template string.

The newly formed string is stored in rString. For example, if the string in the string table is "File %1 not found", and
lpsz1 is equal to "C:\MYFILE.TXT", then rString will contain the string "File C:\MYFILE.TXT not found". This
function is useful for formatting strings sent to message boxes and other windows.

If the format characters "%1" appear in the string more than once, multiple substitutions will be made.

Header afxwin.h

Substitutes the string pointed to by lpsz1 for any instances of the characters "%1", and the string pointed to by
lpsz2 for any instances of the characters "%2", in the template string resource identified by nIDS.

rString
A reference to the CString that will contain the resultant string after the substitution is performed.

nIDS
The string table ID of the template string on which the substitution will be performed.

RemarksRemarks

ExampleExample

void DisplayFileNotFoundMessage(LPCTSTR pszFileName, LPCTSTR pszDirectory)
{
 CString strMessage;

 // The IDS_FILENOTFOUND string resource contains "Error: File %1 not
 // found in directory %2"
 AfxFormatString2(strMessage, IDS_FILENOTFOUND2, pszFileName, pszDirectory);
 // In the previous call, substitute the actual file and directory
 // names into the message string
 AfxMessageBox(strMessage); // Display the error message
}

RequirementsRequirements

AfxMessageBox

int AfxMessageBox(
 LPCTSTR lpszText,
 UINT nType = MB_OK,
 UINT nIDHelp = 0);

int AFXAPI AfxMessageBox(
 UINT nIDPrompt,
 UINT nType = MB_OK,
 UINT nIDHelp = (UINT) -1);

ParametersParameters

Return ValueReturn Value

lpsz1
A string that will replace the format characters "%1" in the template string.

lpsz2
A string that will replace the format characters "%2" in the template string.

The newly formed string is stored in rString. For example, if the string in the string table is "File %1 not found in
directory %2", lpsz1 points to "MYFILE.TXT", and lpsz2 points to "C:\MYDIR", then rString will contain the string
"File MYFILE.TXT not found in directory C:\MYDIR"

If the format characters "%1" or "%2" appear in the string more than once, multiple substitutions will be made.
They do not have to be in numerical order.

Header afxwin.h

Displays a message box on the screen.

lpszText
Points to a CString object or null-terminated string containing the message to be displayed in the message box.

nType
The style of the message box. Apply any of the message-box styles to the box.

nIDHelp
The Help context ID for the message; 0 indicates the application's default Help context will be used.

nIDPrompt
A unique ID used to reference a string in the string table.

RemarksRemarks

ExampleExample

// A simple message box, with only the OK button.
AfxMessageBox(_T("Simple message box."));

// A message box that uses a string from a string table
// with yes and no buttons and the stop icon.
// NOTE: nStringID is an integer that contains a valid id of
// a string in the current resource.
AfxMessageBox(nStringID, MB_YESNO|MB_ICONSTOP);

See also

Zero if there is not enough memory to display the message box; otherwise, one of the following values is returned:

IDABORT The Abort button was selected.

IDCANCEL The Cancel button was selected.

IDIGNORE The Ignore button was selected.

IDNO The No button was selected.

IDOK The OK button was selected.

IDRETRY The Retry button was selected.

IDYES The Yes button was selected.

If a message box has a Cancel button, the IDCANCEL value will be returned if either the ESC key is pressed or the
Cancel button is selected. If the message box has no Cancel button, pressing the ESC key has no effect.

The functions AfxFormatString1 and AfxFormatString2 can be useful in formatting text that appears in a message
box.

The first form of this overloaded function displays a text string pointed to by lpszText in the message box and uses
nIDHelp to describe a Help context. The Help context is used to jump to an associated Help topic when the user
presses the Help key (typically F1).

The second form of the function uses the string resource with the ID nIDPrompt to display a message in the
message box. The associated Help page is found through the value of nIDHelp. If the default value of nIDHelp is
used (-1), the string resource ID, nIDPrompt, is used for the Help context. For more information about defining
Help contexts, see Technical Note 28.

Macros and Globals
CStringT Class

Application Information and Management
2/7/2019 • 22 minutes to read • Edit Online

Application Information and Management FunctionsApplication Information and Management Functions

AfxBeginThread Creates a new thread.

AfxContextMenuManager Pointer to the global context menu manager.

AfxEndThread Terminates the current thread.

AfxFindResourceHandle Walks the resource chain and locate a specific resource by
resource ID and resource type.

AfxFreeLibrary Decrements the reference count of the loaded dynamic-link
library (DLL) module; when the reference count reaches zero,
the module is unmapped.

AfxGetApp Returns a pointer to the application's single CWinApp object.

AfxGetAppName Returns a string that contains the application's name.

AfxGetInstanceHandle Returns an HINSTANCE representing this instance of the
application.

AfxGetMainWnd Returns a pointer to the current "main" window of a non-OLE
application, or the in-place frame window of a server
application.

AfxGetPerUserRegistration Use this function to determine whether the application
redirects registry access to the HKEY_CURRENT_USER (
HKCU) node.

AfxGetResourceHandle Returns an HINSTANCE to the source of the application's
default resources. Use this to access the application's resources
directly.

AfxGetThread Retrieves a pointer to the current CWinThread object.

AfxInitRichEdit Initializes the version 1.0 rich edit control for the application.

AfxInitRichEdit2 Initializes the version 2.0 and later rich edit control for the
application.

When you write an application, you create a single CWinApp-derived object. At times, you may want to get
information about this object from outside the CWinApp -derived object. Or you may need access to other global
"mananger" objects.

The Microsoft Foundation Class Library provides the following global functions to help you accomplish these
tasks:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/application-information-and-management.md

AfxIsExtendedFrameClass Determines whether the given window is an extended frame
object.

AfxIsMFCToolBar Determines whether the given window is a toolbar object.

AfxKeyboardManager Pointer to the global keyboard manager.

AfxLoadLibrary Maps a DLL module and returns a handle that can be used to
obtain the address of a DLL function.

AfxMenuTearOffManager Pointer to the global tearoff menu manager.

AfxMouseManager Pointer to the global mouse manager.

AfxRegisterClass Registers a window class in a DLL that uses MFC.

AfxRegisterWndClass Registers a Windows window class to supplement those
registered automatically by MFC.

AfxSetPerUserRegistration Sets whether the application redirects registry access to the
HKEY_CURRENT_USER (HKCU) node.

AfxSetResourceHandle Sets the HINSTANCE handle where the default resources of
the application are loaded.

AfxShellManager Pointer to the global shell manager.

AfxSocketInit Called in a CWinApp::InitInstance override to initialize
Windows Sockets.

AfxUserToolsManager Pointer to the global user tools manager.

AfxWinInit Called by the MFC-supplied WinMain function, as part of the
CWinApp initialization of a GUI-based application, to initialize
MFC. Must be called directly for console applications that use
MFC.

AfxBeginThread
Call this function to create a new thread.

CWinThread* AfxBeginThread(
 AFX_THREADPROC pfnThreadProc,
 LPVOID pParam,
 int nPriority = THREAD_PRIORITY_NORMAL,
 UINT nStackSize = 0,
 DWORD dwCreateFlags = 0,
 LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL);

CWinThread* AfxBeginThread(
 CRuntimeClass* pThreadClass,
 int nPriority = THREAD_PRIORITY_NORMAL,
 UINT nStackSize = 0,
 DWORD dwCreateFlags = 0,
 LPSECURITY_ATTRIBUTES lpSecurityAttrs = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pfnThreadProc
Points to the controlling function for the worker thread. Cannot be NULL. This function must be declared as
follows:

UINT __cdecl MyControllingFunction(LPVOID pParam);

pThreadClass
The RUNTIME_CLASS of an object derived from CWinThread.

pParam
Parameter to be passed to the controlling function as shown in the parameter to the function declaration in
pfnThreadProc.

nPriority
The desired priority of the thread. For a full list and description of the available priorities, see SetThreadPriority in
the Windows SDK.

nStackSize
Specifies the size in bytes of the stack for the new thread. If 0, the stack size defaults to the same size stack as the
creating thread.

dwCreateFlags
Specifies an additional flag that controls the creation of the thread. This flag can contain one of two values:

CREATE_SUSPENDED Start the thread with a suspend count of one. Use CREATE_SUSPENDED if you
want to initialize any member data of the CWinThread object, such as m_bAutoDelete or any members of
your derived class, before the thread starts running. Once your initialization is complete, use
CWinThread::ResumeThread to start the thread running. The thread will not execute until
CWinThread::ResumeThread is called.

0 Start the thread immediately after creation.

lpSecurityAttrs
Points to a SECURITY_ATTRIBUTES structure that specifies the security attributes for the thread. If NULL, the
same security attributes as the creating thread will be used. For more information on this structure, see the
Windows SDK.

Pointer to the newly created thread object, or NULL if a failure occurs.

The first form of AfxBeginThread creates a worker thread. The second form creates a thread that may serve as a

https://docs.microsoft.com/windows/desktop/api/processthreadsapi/nf-processthreadsapi-setthreadpriority
https://msdn.microsoft.com/library/windows/desktop/aa379560

ExampleExample

RequirementsRequirements

AfxContextMenuManager

SyntaxSyntax

CContextMenuManager* afxContextMenuManager;

RequirementsRequirements

AfxEndThread

void AFXAPI AfxEndThread(
 UINT nExitCode,
 BOOL bDelete = TRUE);

ParametersParameters

RemarksRemarks

RequirementsRequirements

AfxFindResourceHandle

user-interface thread or as a worker thread.

AfxBeginThread creates a new CWinThread object, calls its CreateThread function to start executing the thread, and
returns a pointer to the thread. Checks are made throughout the procedure to make sure all objects are deallocated
properly should any part of the creation fail. To end the thread, call AfxEndThread from within the thread, or return
from the controlling function of the worker thread.

Multithreading must be enabled by the application; otherwise, this function will fail. For more information on
enabling multithreading, refer to /MD, /MT, /LD (Use Run-Time Library) under Visual C++ Compiler Options.

For more information on AfxBeginThread , see the articles Multithreading: Creating Worker Threads and
Multithreading: Creating User-Interface Threads.

See the example for CSocket::Attach.

Header afxwin.h

Pointer to the global context menu manager.

Header: afxcontextmenumanager.h

Call this function to terminate the currently executing thread.

nExitCode
Specifies the exit code of the thread.

bDelete
Deletes the thread object from memory.

Must be called from within the thread to be terminated.

For more information on AfxEndThread , see the article Multithreading: Terminating Threads.

Header afxwin.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/md-mt-ld-use-run-time-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-creating-worker-threads
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-creating-user-interface-threads
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-terminating-threads

SyntaxSyntax

HINSTANCE AFXAPI AfxFindResourceHandle(LPCTSTR lpszName, LPCTSTR lpszType);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

AfxFreeLibrary

BOOL AFXAPI AfxFreeLibrary(HINSTANCE hInstLib);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Use AfxFindResourceHandle to walk the resource chain and locate a specific resource by resource ID and resource
type.

lpszName
A pointer to a string containing the resource ID. lpszType
A pointer to the type of resource. For a list of resource types, see FindResource in the Windows SDK.

A handle to the module that contains the resource.

AfxFindResourceHandle finds the specific resource and returns a handle to the module that contains the resource.
The resource might be in any MFC extension DLL you have loaded. AfxFindResourceHandle tells you which one has
the resource.

The modules are searched in this order:

1. The main module (if it is an MFC extension DLL).

2. Non-system modules.

3. Language-specific modules.

4. The main module (if it is a system DLL).

5. System modules.

Header: afxwin.h

Both AfxFreeLibrary and AfxLoadLibrary maintain a reference count for each loaded library module.

hInstLib
A handle of the loaded library module. AfxLoadLibrary returns this handle.

TRUE if the function succeeds; otherwise, FALSE.

AfxFreeLibrary decrements the reference count of the loaded dynamic-link library (DLL) module. When the
reference count reaches zero, the module is unmapped from the address space of the calling process and the
handle is no longer valid. This reference count is incremented each time AfxLoadLibrary is called.

Before unmapping a library module, the system enables the DLL to detach from the processes using it. Doing so
gives the DLL an opportunity to clean up resources allocated on behalf of the current process. After the entry-point

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-findresourcea

ExampleExample

RequirementsRequirements

AfxGetApp

CWinApp* AFXAPI AfxGetApp();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Print the application's executable filename.
TRACE(_T("Executable filename = %s\n"), AfxGetApp()->m_pszExeName);

RequirementsRequirements

AfxGetAppName

LPCTSTR AFXAPI AfxGetAppName();

Return ValueReturn Value

ExampleExample

// Print the application name to the debugger output window.
TRACE(_T("Application name is %s\n"), AfxGetAppName());

RequirementsRequirements

function returns, the library module is removed from the address space of the current process.

Use AfxLoadLibrary to map a DLL module.

Be sure to use AfxFreeLibrary and AfxLoadLibrary (instead of the Win32 functions FreeLibrary and LoadLibrary

) if your application uses multiple threads. Using AfxLoadLibrary and AfxFreeLibrary ensures that the startup and
shutdown code that executes when the MFC extension DLL is loaded and unloaded does not corrupt the global
MFC state.

See the example for AfxLoadLibrary.

Header afxdll_.h

The pointer returned by this function can be used to access application information such as the main message-
dispatch code or the topmost window.

A pointer to the single CWinApp object for the application.

If this method returns NULL, it might indicate that the application main window has not been fully initialized yet. It
might also indicate a problem.

Header afxwin.h

The string returned by this function can be used for diagnostic messages or as a root for temporary string names.

A null-terminated string containing the application's name.

Header afxwin.h

AfxGetInstanceHandle

HINSTANCE AFXAPI AfxGetInstanceHandle();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Print the application instance handle to the debugger output window.
TRACE(_T("Application instance handle is 0x%0X\n"), AfxGetInstanceHandle());

RequirementsRequirements

AfxGetMainWnd

CWnd* AFXAPI AfxGetMainWnd();

Return ValueReturn Value

RemarksRemarks

ExampleExample

//The following line send a WM_CLOSE message
// to the Application's main window. This will cause the
// Application to exit.
AfxGetMainWnd()->PostMessage(WM_CLOSE, 0, 0);

RequirementsRequirements

This function allows you to retrieve the instance handle of the current application.

An HINSTANCE to the current instance of the application. If called from within a DLL linked with the USRDLL
version of MFC, an HINSTANCE to the DLL is returned.

AfxGetInstanceHandle always returns the HINSTANCE of your executable file (.EXE) unless it is called from within
a DLL linked with the USRDLL version of MFC. In this case, it returns an HINSTANCE to the DLL.

Header afxwin.h

If your application is an OLE server, call this function to retrieve a pointer to the active main window of the
application instead of directly referring to the m_pMainWnd member of the application object.

If the server has an object that is in-place active inside a container, and this container is active, this function returns
a pointer to the frame window object that contains the in-place active document.

If there is no object that is in-place active within a container, or your application is not an OLE server, this function
simply returns the m_pMainWnd of your application object.

If AfxGetMainWnd is called from the application's primary thread, it returns the application's main window according
to the above rules. If the function is called from a secondary thread in the application, the function returns the main
window associated with the thread that made the call.

If your application is not an OLE server, then calling this function is equivalent to directly referring to the
m_pMainWnd member of your application object.

Header afxwin.h

AfxGetPerUserRegistration

BOOL AFXAPI AfxGetPerUserRegistration();

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

AfxGetResourceHandle

extern HINSTANCE AfxGetResourceHandle();

Return ValueReturn Value

ExampleExample

//Load the menu specifying the module handle where resource is to be
//found & resource ID
HMENU hMenu = ::LoadMenu(AfxGetResourceHandle(), MAKEINTRESOURCE(IDR_MAINFRAME));

RequirementsRequirements

AfxGetThread

CWinThread* AfxGetThread();

Return ValueReturn Value

RemarksRemarks

Use this function to determine whether the application redirects registry access to the HKEY_CURRENT_USER (
HKCU) node.

TRUE indicates that the registry information is directed to the HKCU node; FALSE indicates that the application
writes registry information to the default node. The default node is HKEY_CLASSES_ROOT (HKCR).

If you enable registry redirection, the framework redirects access from HKCR to
HKEY_CURRENT_USER\Software\Classes. Only the MFC and ATL frameworks are affected by the redirection.

To change whether the application redirects registry access, use AfxSetPerUserRegistration.

Header afxstat_.h

Use the HINSTANCE handle returned by this function to access the application's resources directly, for example, in
calls to the Windows function FindResource .

An HINSTANCE handle where the default resources of the application are loaded.

Header afxwin.h

Call this function to get a pointer to the CWinThread object representing the currently executing thread.

Pointer to the currently executing thread; otherwise NULL.

Must be called from within the desired thread.

NOTENOTE

ExampleExample

//Print the current thread ID in the Debug Window
TRACE(_T("Current Thread ID = 0x%X\n"), AfxGetThread()->m_nThreadID);

RequirementsRequirements

AfxInitRichEdit

BOOL AFXAPI AfxInitRichEdit();

RemarksRemarks

RequirementsRequirements

AfxInitRichEdit2

BOOL AFXAPI AfxInitRichEdit2();

RemarksRemarks

RequirementsRequirements

If you are porting an MFC project calling AfxGetThread from Visual C++ versions 4.2, 5.0, or 6.0, AfxGetThread calls
AfxGetApp if no thread is found. In more recent versions of the compiler, AfxGetThread returns NULL if no thread was
found. If you want the application thread, you must call AfxGetApp .

Header afxwin.h

Call this function to initialize the rich edit control (version 1.0) for the application.

This function is provided for backward compatibility. New applications should use AfxInitRichEdit2.

AfxInitRichEdit loads RICHED32.DLL to initialize version 1.0 of the rich edit control. To use version 2.0 and 3.0 of
the rich edit control, RICHED20.DLL needs to be loaded. This is accomplished with a call to AfxInitRichEdit2.

To update rich edit controls in existing Visual C++ applications to version 2.0, open the .RC file as text, change the
class name of each rich edit control from "RICHEDIT" to "RichEdit20a". Then replace the call to AfxInitRichEdit

with AfxInitRichEdit2 .

This function also initializes the common controls library, if the library hasn't already been initialized for the
process. If you use the rich edit control directly from your MFC application, you should call this function to assure
that MFC has properly initialized the rich edit control runtime. If you call the Create method of CRichEditCtrl,
CRichEditView, or CRichEditDoc, you typically don't need to call this function, but in some cases it might be
necessary.

Header afxwin.h

Call this function to initialize the rich edit control (version 2.0 and later) for the application.

Call this function to load the RICHED20.DLL and initialize version 2.0 of the rich edit control. If you call the Create
method of CRichEditCtrl, CRichEditView, or CRichEditDoc, you typically don't need to call this function, but in
some cases it might be necessary.

Header afxwin.h

AfxIsExtendedFrameClass

SyntaxSyntax

BOOL AFXAPI AfxIsExtendedFrameClass(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

AfxIsMFCToolBar

SyntaxSyntax

BOOL AFXAPI AfxIsMFCToolBar(CWnd* pWnd);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

Determines whether the given window is an extended frame object.

pWnd
[in] A pointer to an object that is derived from CWnd .

TRUE if the provided window is an extended frame object; otherwise FALSE.

This method returns TRUE if pWnd derives from one of the following classes:

CFrameWndEx

CMDIFrameWndEx

COleIPFrameWndEx

COleDocIPFrameWndEx

CMDIChildWndEx

This method is useful when you have to validate that a function or method parameter is an extended frame
window.

Header: afxpriv.h

Determines whether the given window is a toolbar object.

pWnd
[in] A pointer to an object that is derived from CWnd .

TRUE if the provided window is a toolbar object; otherwise FALSE.

This method returns TRUE if pWnd derives from CMFCToolBar . This method is useful when you have to validate
that a function or method parameter is a CMFCToolBar object.

Header: afxpriv.h

AfxKeyboardManager

SyntaxSyntax

CKeyboardManager* afxKeyboardManager;

RequirementsRequirements

AfxLoadLibrary

HINSTANCE AFXAPI AfxLoadLibrary(LPCTSTR lpszModuleName);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Pointer to the global keyboard manager.

Header: afxkeyboardmanager.h

Use AfxLoadLibrary to map a DLL module.

lpszModuleName
Points to a null-terminated string that contains the name of the module (either a .DLL or .EXE file). The name
specified is the filename of the module.

If the string specifies a path but the file does not exist in the specified directory, the function fails.

If a path is not specified and the filename extension is omitted, the default extension .DLL is appended. However,
the filename string can include a trailing point character (.) to indicate that the module name has no extension.
When no path is specified, the function searches for the file in the following sequence:

The directory from which the application loaded.

The current directory.

Windows 95/98: The Windows system directory. Windows NT: The 32-bit Windows system directory.
The name of this directory is SYSTEM32.

Windows NT only: The 16-bit Windows system directory. There is no Win32 function that obtains the
path of this directory, but it is searched. The name of this directory is SYSTEM.

The Windows directory.

The directories that are listed in the PATH environment variable.

If the function succeeds, the return value is a handle to the module. If the function fails, the return value is NULL.

It returns a handle that can be used in GetProcAddress to get the address of a DLL function. AfxLoadLibrary can
also be used to map other executable modules.

Each process maintains a reference count for each loaded library module. This reference count is incremented each
time AfxLoadLibrary is called and is decremented each time AfxFreeLibrary is called. When the reference count
reaches zero, the module is unmapped from the address space of the calling process and the handle is no longer
valid.

Be sure to use AfxLoadLibrary and AfxFreeLibrary (instead of the Win32 functions LoadLibrary and FreeLibrary

) if your application uses multiple threads and if it dynamically loads an MFC extension DLL. Using

https://docs.microsoft.com/windows/desktop/api/libloaderapi/nf-libloaderapi-getprocaddress

ExampleExample

// The following shows how to create a MDI based application
// using a generic CView derived class that is implemented in
// a dynamically loaded MFC Extension DLL.

typedef CRuntimeClass * (*GETDLLVIEW)();

BOOL CUserApp::InitInstance()
{
 // Standard Application Wizard generated initialization excluded.

// Register the application's document templates. Document templates
// serve as the connection between documents, frame windows and views

//Load MFC Extension DLL based view class.
m_hViewDll = AfxLoadLibrary(szMyViewDllPath);
if (!m_hViewDll)
{
 CString str;
 str.Format(_T("Error: Cannot find component %s"), szMyViewDllPath);
 AfxMessageBox(str);
 return FALSE;
}

GETDLLVIEW GetMyView = (GETDLLVIEW)GetProcAddress(m_hViewDll, "GetMyView");
ASSERT(GetMyView != NULL);

CMultiDocTemplate* pDocTemplate;
pDocTemplate = new CMultiDocTemplate(IDR_NVC_MFC_DLLUserTYPE,
 RUNTIME_CLASS(CUserDoc),
 RUNTIME_CLASS(CChildFrame), // custom MDI child frame
 GetMyView());
if (!pDocTemplate)
 return FALSE;
AddDocTemplate(pDocTemplate);

// Standard Application Wizard generated initalization excluded.

 return TRUE;
}

int CUserApp::ExitInstance()
{
 if (NULL != m_hViewDll)
 {
 AfxFreeLibrary(m_hViewDll);
 m_hViewDll = NULL;
 }

 return CWinApp::ExitInstance();
}

RequirementsRequirements

AfxLoadLibrary and AfxFreeLibrary insures that the startup and shutdown code that executes when the MFC
extension DLL is loaded and unloaded does not corrupt the global MFC state.

Using AfxLoadLibrary in an application requires you to dynamically link to the DLL version of MFC; the header file
for AfxLoadLibrary , Afxdll_.h, is only included if MFC is linked to the application as a DLL. This is by design
because you have to link to the DLL version of MFC to use or create MFC extension DLLs.

AfxMenuTearOffManager

SyntaxSyntax

CMenuTearOffManager* g_pTearOffMenuManager;

RequirementsRequirements

AfxMouseManager

SyntaxSyntax

CMouseManager* afxMouseManager;

RequirementsRequirements

AfxRegisterClass

BOOL AFXAPI AfxRegisterClass(WNDCLASS* lpWndClass);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Header afxdll_.h

Pointer to the global tearoff menu manager.

Header: afxmenutearoffmanager.h

Pointer to the global mouse manager.

Header: afxmousemanager.h

Use this function to register window classes in a DLL that uses MFC.

lpWndClass
Pointer to a WNDCLASS structure containing information about the window class to be registered. For more
information on this structure, see the Windows SDK.

TRUE if the class is successfully registered; otherwise FALSE.

If you use this function, the class is automatically unregistered when the DLL is unloaded.

In non-DLL builds, the AfxRegisterClass identifier is defined as a macro that maps to the Windows function
RegisterClass , since classes registered in an application are automatically unregistered. If you use
AfxRegisterClass instead of RegisterClass , your code can be used without change both in an application and in a

DLL.

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa

// Register your unique class name that you wish to use
WNDCLASS wndcls;

memset(&wndcls, 0, sizeof(WNDCLASS)); // start with NULL defaults

wndcls.style = CS_DBLCLKS | CS_HREDRAW | CS_VREDRAW;

//you can specify your own window procedure
wndcls.lpfnWndProc = ::DefWindowProc;
wndcls.hInstance = AfxGetInstanceHandle();
wndcls.hIcon = LoadIcon(wndcls.hInstance, MAKEINTRESOURCE(IDI_MYICON));
wndcls.hCursor = LoadCursor(wndcls.hInstance, MAKEINTRESOURCE(IDC_ARROW));
wndcls.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1);
wndcls.lpszMenuName = NULL;

// Specify your own class name for using FindWindow later
wndcls.lpszClassName = _T("MyNewClass");

// Register the new class and trace if it fails
if(!AfxRegisterClass(&wndcls))
{
 TRACE("Class Registration Failed\n");
}

RequirementsRequirements

AfxRegisterWndClass

LPCTSTR AFXAPI AfxRegisterWndClass(
 UINT nClassStyle,
 HCURSOR hCursor = 0,
 HBRUSH hbrBackground = 0,
 HICON hIcon = 0);

ParametersParameters

Header afxwin.h

Allows you to register your own window classes.

nClassStyle
Specifies the Windows class style or combination of styles, created by using the bitwise-OR (|) operator, for the
window class. For a list of class styles, see the WNDCLASS structure in the Windows SDK. If NULL, the defaults
will be set as follows:

Sets the mouse style to CS_DBLCLKS, which sends double-click messages to the window procedure when
the user double-clicks the mouse.

Sets the arrow cursor style to the Windows standard IDC_ARROW.

Sets the background brush to NULL, so the window will not erase its background.

Sets the icon to the standard, waving-flag Windows logo icon.

hCursor
Specifies a handle to the cursor resource to be installed in each window created from the window class. If you use
the default of 0, you will get the standard IDC_ARROW cursor.

hbrBackground
Specifies a handle to the brush resource to be installed in each window created from the window class. If you use
the default of 0, you will have a NULL background brush, and your window will, by default, not erase its

https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwndclassa

Return ValueReturn Value

NOTENOTE

RemarksRemarks

ExampleExample

CString strMyClass;

// load stock cursor, brush, and icon for
// my own window class

try
{
 strMyClass = AfxRegisterWndClass(
 CS_VREDRAW | CS_HREDRAW,
 ::LoadCursor(NULL, IDC_ARROW),
 (HBRUSH) ::GetStockObject(WHITE_BRUSH),
 ::LoadIcon(NULL, IDI_APPLICATION));
}
catch (CResourceException* pEx)
{
 AfxMessageBox(_T("Couldn't register class! (Already registered?)"));
 pEx->Delete();
}

RequirementsRequirements

AfxSetPerUserRegistration

background while processing WM_ERASEBKGND.

hIcon
Specifies a handle to the icon resource to be installed in each window created from the window class. If you use the
default of 0, you will get the standard, waving-flag Windows logo icon.

A null-terminated string containing the class name. You can pass this class name to the Create member function
in CWnd or other CWnd-derived classes to create a window. The name is generated by the Microsoft Foundation
Class Library.

The return value is a pointer to a static buffer. To save this string, assign it to a CString variable.

The Microsoft Foundation Class Library automatically registers several standard window classes for you. Call this
function if you want to register your own window classes.

The name registered for a class by AfxRegisterWndClass depends solely on the parameters. If you call
AfxRegisterWndClass multiple times with identical parameters, it only registers a class on the first call. Subsequent

calls to AfxRegisterWndClass with identical parameters simply return the already-registered classname.

If you call AfxRegisterWndClass for multiple CWnd-derived classes with identical parameters, instead of getting a
separate window class for each class, each class shares the same window class. This can cause problems if the
CS_CLASSDC class style is used. Instead of multiple CS_CLASSDC window classes, you end up with one
CS_CLASSDC window class, and all C++ windows that use that class share the same DC. To avoid this problem,
call AfxRegisterClass to register the class.

Refer to Technical Note TN001: Window Class Registration for more information on window class registration and
the AfxRegisterWndClass function.

Header afxwin.h

https://docs.microsoft.com/windows/desktop/winmsg/wm-erasebkgnd

void AFXAPI AfxSetPerUserRegistration(BOOL bEnable);

ParametersParameters

RemarksRemarks

RequirementsRequirements

AfxSetResourceHandle

void AFXAPI AfxSetResourceHandle(HINSTANCE hInstResource);

ParametersParameters

ExampleExample

// This code is taken from CMyApp::InitInstance
HINSTANCE hRes = NULL;
hRes = LoadLibrary(_T("Resource.dll"));
if(hRes)
 AfxSetResourceHandle(hRes);

RequirementsRequirements

AfxShellManager

SyntaxSyntax

Sets whether the application redirects registry access to the HKEY_CURRENT_USER (HKCU) node.

bEnable
[in] TRUE indicates that the registry information is directed to the HKCU node; FALSE indicates that the
application writes registry information to the default node. The default node is HKEY_CLASSES_ROOT (HKCR).

Before Windows Vista, applications that accessed the registry usually used the HKEY_CLASSES_ROOT node.
However, with Windows Vista or later operating systems, you must run an application in elevated mode to write to
HKCR.

This method enables your application to read and write to the registry without running in elevated mode by
redirecting registry access from HKCR to HKCU. For more information, see Linker Property Pages.

If you enable registry redirection, the framework redirects access from HKCR to
HKEY_CURRENT_USER\Software\Classes. Only the MFC and ATL frameworks are affected by the redirection.

The default implementation accesses the registry under HKCR.

Header afxstat_.h

Use this function to set the HINSTANCE handle that determines where the default resources of the application are
loaded.

hInstResource
The instance or module handle to an .EXE or DLL file from which the application's resources are loaded.

Header afxwin.h

Pointer to the global shell manager.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/linker-property-pages

CShellManager* afxShellManager;

RequirementsRequirements

AfxSocketInit

BOOL AfxSocketInit(WSADATA* lpwsaData = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

AfxUserToolsManager

SyntaxSyntax

CUserToolsManager* afxUserToolsManager;

RequirementsRequirements

AfxWinInit

BOOL AFXAPI AfxWinInit(
 HINSTANCE hInstance,
 HINSTANCE hPrevInstance,
 LPTSTR lpCmdLine,
 int nCmdShow);

ParametersParameters

Header: afxshellmanager.h

Call this function in your CWinApp::InitInstance override to initialize Windows Sockets.

lpwsaData
A pointer to a WSADATA structure. If lpwsaData is not equal to NULL, then the address of the WSADATA structure
is filled by the call to WSAStartup . This function also ensures that WSACleanup is called for you before the
application terminates.

Nonzero if the function is successful; otherwise 0.

When using MFC sockets in secondary threads in a statically linked MFC application, you must call AfxSocketInit

in each thread that uses sockets to initialize the socket libraries. By default, AfxSocketInit is called only in the
primary thread.

Header afxsock.h

Pointer to the global user tools manager.

Header: afxusertoolsmanager.h

This function is called by the MFC-supplied WinMain function, as part of the CWinApp initialization of a GUI-
based application, to initialize MFC.

https://docs.microsoft.com/windows/desktop/api/winsock2/ns-winsock2-wsadata

RemarksRemarks

NOTENOTE

ExampleExample

hInstance
The handle of the currently running module.

hPrevInstance
A handle to a previous instance of the application. For a Win32-based application, this parameter is always NULL.

lpCmdLine
Points to a null-terminated string specifying the command line for the application.

nCmdShow
Specifies how the main window of a GUI application would be shown.

For a console application, which does not use the MFC-supplied WinMain function, you must call AfxWinInit

directly to initialize MFC.

If you call AfxWinInit yourself, you should declare an instance of a CWinApp class. For a console application, you
might choose not to derive your own class from CWinApp and instead use an instance of CWinApp directly. This
technique is appropriate if you decide to leave all functionality for your application in your implementation of
main.

When it creates an activation context for an assembly, MFC uses a manifest resource provided by the user module. The
activation context is created in AfxWinInit . For more information, see Support for Activation Contexts in the MFC Module
State.

#include <afx.h>
#include <afxdb.h>

int _tmain(int /*argc*/, TCHAR* /*argv[]*/, TCHAR* /*envp[]*/)
{
 int nRetCode = 0;

 // initialize MFC and print and error on failure
 if (!AfxWinInit(::GetModuleHandle(NULL), NULL, ::GetCommandLine(), 0))
 {
 // TODO: change error code to suit your needs
 _tprintf(_T("Fatal Error: MFC initialization failed\n"));
 nRetCode = 1;
 }
 else
 {
 // try to connect to an ODBC database that doesn't exist
 // (this wouldn't work at all without initializing MFC)

 CDatabase db;
 try
 {
 db.Open(_T("This Databsae Doesn't Exist"));

 // we shouldn't realistically get here

 _tprintf_s(_T("Successful!\n")
 _T("Closing ...\n"));
 db.Close();
 _tprintf_s(_T("Closed!"));
 }
 catch (CDBException* pEx)
 {
 // we got an exception! print an error message
 // (this wouldn't work without initializing MFC)

 TCHAR sz[1024];

 _tprintf_s(_T("Error: "));
 if (pEx->GetErrorMessage(sz, 1024))
 _tprintf_s(sz);
 else
 _tprintf_s(_T("No error message was available"));
 _tprintf_s(_T("\n"));

 pEx->Delete();

 nRetCode = 1;
 }
 }

 return nRetCode;
}

RequirementsRequirements

See also

Header afxwin.h

Macros and Globals
CWinApp Class
CContextMenuManager Class
CWnd Class

CFrameWndEx Class
CMFCToolBar Class
CKeyboardManager Class
CMenuTearOffManager Class
CMouseManager Class
CShellManager Class
CUserToolsManager Class

Standard Command and Window IDs
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

#include "afxres.h"

See also

The Microsoft Foundation Class Library defines a number of standard command and window IDs in Afxres.h.
These IDs are most commonly used within the resource editors and the Properties window to map messages to
your handler functions. All standard commands have an ID_ prefix. For example, when you use the menu editor,
you normally bind the File Open menu item to the standard ID_FILE_OPEN command ID.

For most standard commands, application code does not need to refer to the command ID, because the framework
itself handles the commands through message maps in its primary framework classes (CWinThread , CWinApp ,
CView , CDocument , and so on).

In addition to standard command IDs, a number of other standard IDs are defined which have a prefix of AFX_ID .
These IDs include standard window IDs (prefix AFX_IDW_), string IDs (prefix AFX_IDS_), and several other types.

IDs that begin with the AFX_ID prefix are rarely used by programmers, but you might need to refer to these IDs
when overriding framework functions that also refer to the AFX_IDs.

IDs are not individually documented in this reference. You can find more information on them in Technical Notes
20, 21, and 22.

The header file Afxres.h is indirectly included in Afxwin.h. You must explicitly include the following statement in your
application's resource script (.rc) file:

Macros and Globals

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/standard-command-and-window-ids.md

Collection Class Helpers
3/4/2019 • 3 minutes to read • Edit Online

Collection Class HelpersCollection Class Helpers

CompareElements Indicates whether elements are the same.

CopyElements Copies elements from one array to another.

DumpElements Provides stream-oriented diagnostic output.

HashKey Calculates a hash key.

SerializeElements Stores or retrieves elements to or from an archive.

CompareElements

template<class TYPE, class ARG_TYPE>
BOOL AFXAPI
CompareElements(
 const TYPE* pElement1,
 const ARG_TYPE* pElement2);

ParametersParameters

Return ValueReturn Value

The collection classes CMap , CList , and CArray use templated global helper functions for such purposes as
comparing, copying, and serializing elements. As part of your implementation of classes based on CMap , CList ,
and CArray , you must override these functions as necessary with versions tailored to the type of data stored in
your map, list, or array. For information on overriding helper functions such as SerializeElements , see the article
Collections: How to Make a Type-Safe Collection. Note that ConstructElements and DestructElements have been
deprecated.

The Microsoft Foundation Class Library provides the following global functions in afxtempl.h to help you
customize your collection classes:

Called directly by [CList::Find](clist-class.md#not_found.md#clist__find and indirectly by cmap__lookup and
cmap__operator [].

TYPE
The type of the first element to be compared.

pElement1
Pointer to the first element to be compared.

ARG_TYPE
The type of the second element to be compared.

pElement2
Pointer to the second element to be compared.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/collection-class-helpers.md

RemarksRemarks

RequirementsRequirements

CopyElements

template<class TYPE>
void AFXAPI CopyElements(
 TYPE* pDest,
 const TYPE* pSrc,
 INT_PTR nCount);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DumpElements

Nonzero if the object pointed to by pElement1 is equal to the object pointed to by pElement2; otherwise 0.

The CMap calls use the CMap template parameters KEY and ARG_KEY .

The default implementation returns the result of the comparison of *pElement1 and *pElement2. Override this
function so that it compares the elements in a way that is appropriate for your application.

The C++ language defines the comparison operator (==) for simple types (char, int, float, and so on) but does
not define a comparison operator for classes and structures. If you want to use CompareElements or to instantiate
one of the collection classes that uses it, you must either define the comparison operator or overload
CompareElements with a version that returns appropriate values.

Header: afxtempl.h

This function is called directly by CArray::Append and CArray::Copy.

TYPE
Template parameter specifying the type of elements to be copied.

pDest
Pointer to the destination where the elements will be copied.

pSrc
Pointer to the source of the elements to be copied.

nCount
Number of elements to be copied.

The default implementation uses the simple assignment operator (=) to perform the copy operation. If the type
being copied does not have an overloaded operator=, then the default implementation performs a bitwise copy.

For information on implementing this and other helper functions, see the article Collections: How to Make a
Type-Safe Collection.

Header afxtempl.h

Provides stream-oriented diagnostic output in text form for the elements of your collection when overridden.

template<class TYPE>
void AFXAPI DumpElements(
 CDumpContext& dc,
 const TYPE* pElements,
 INT_PTR nCount);

ParametersParameters

RemarksRemarks

RequirementsRequirements

HashKey

template<class ARG_KEY>
AFX_INLINE UINT AFXAPI HashKey(ARG_KEY key);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

dc
Dump context for dumping elements.

TYPE
Template parameter specifying the type of the elements.

pElements
Pointer to the elements to be dumped.

nCount
Number of elements to be dumped.

The CArray::Dump , CList::Dump , and CMap::Dump functions call this if the depth of the dump is greater than 0.

The default implementation does nothing. If the elements of your collection are derived from CObject , your
override will typically iterate through the collection's elements, calling Dump for each element in turn.

Header afxtempl.h

Calculates a hash value for the given key.

ARG_KEY
Template parameter specifying the data type used to access map keys.

key
The key whose hash value is to be calculated.

The key's hash value.

This function is called directly by CMap::RemoveKey and indirectly by CMap::Lookup and CMap::Operator [].

The default implementation creates a hash value by shifting key right by four positions. Override this function so
that it returns hash values appropriate for your application.

template <> UINT AFXAPI HashKey(unsigned __int64 key)
{
 // Generate the hash value by XORing the lower 32 bits of the number
 // with the upper 32 bits
 return(UINT(key) ^ UINT(key >> 32));
}

RequirementsRequirements

SerializeElements

template<class TYPE>
void AFXAPI SerializeElements(CArchive& ar, TYPE* pElements, INT_PTR nCount);

ParametersParameters

RemarksRemarks

ExampleExample

RequirementsRequirements

See also

Header afxtempl.h

CArray, CList, and CMap call this function to serialize elements.

TYPE
Template parameter specifying the type of the elements.

ar
An archive object to archive to or from.

pElements
Pointer to the elements being archived.

nCount
Number of elements being archived

The default implementation does a bitwise read or write.

For information on implementing this and other helper functions, see the article Collections: How to Make a
Type-Safe Collection.

See the example in the article Collections: How to Make a Type-Safe Collection.

Header afxtempl.h

Macros and Globals
CMap Class
CList Class
CArray Class

Gray and Dithered Bitmap Functions
3/4/2019 • 2 minutes to read • Edit Online

AfxDrawGrayBitmap Draws a gray version of a bitmap.

AfxGetGrayBitmap Copies a gray version of a bitmap.

AfxDrawDitheredBitmap Draws a bitmap with a dithered background.

AfxGetDitheredBitmap Copies a bitmap with a dithered background.

AfxDrawGrayBitmap

void AFXAPI AfxDrawGrayBitmap(
 CDC* pDC,
 int x,
 int y,
 const CBitmap& rSrc,
 COLORREF crBackground);

ParametersParameters

Gray Bitmap Functions

MFC provides two functions for giving a bitmap the appearance of a disabled control.

Dithered Bitmap Functions

MFC also provides two functions for replacing a bitmap's background with a dithered pattern.

Draws a gray version of a bitmap.

pDC
Points to the destination DC.

x
The destination x-coordinate.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/gray-and-dithered-bitmap-functions.md

RemarksRemarks

ExampleExample

void CDCView::DrawGrayBitmap(CDC* pDC)
{
 CBitmap bm;
 bm.LoadBitmap(IDB_BITMAP1);
 AfxDrawGrayBitmap(pDC, 10, 50, bm, GetSysColor(COLOR_MENU));
}

RequirementsRequirements

AfxGetGrayBitmap

void AFXAPI AfxGetGrayBitmap(
 const CBitmap& rSrc,
 CBitmap* pDest,
 COLORREF crBackground);

ParametersParameters

RemarksRemarks

y
The destination y-coordinate.

rSrc
The source bitmap.

crBackground
The new background color (typically gray, such as COLOR_MENU).

A bitmap drawn with AfxDrawGrayBitmap will have the appearance of a disabled control.

Header: afxwin.h

Copies a gray version of a bitmap.

rSrc
The source bitmap.

pDest
The destination bitmap.

crBackground
The new background color (typically gray, such as COLOR_MENU).

A bitmap copied with AfxGetGrayBitmap will have the appearance of a disabled control.

ExampleExample

CBitmap bm;
bm.LoadBitmap(IDB_BITMAP1);
CBitmap bmGray;
AfxGetGrayBitmap(bm, &bmGray, GetSysColor(COLOR_MENU));

RequirementsRequirements

AfxDrawDitheredBitmap

void AFXAPI AfxDrawDitheredBitmap(
 CDC* pDC,
 int x,
 int y,
 const CBitmap& rSrc,
 COLORREF cr1 ,
 COLORREF cr2);

ParametersParameters

RemarksRemarks

Header: afxwin.h

Draws a bitmap, replacing its background with a dithered (checker) pattern.

pDC
Points to the destination DC.

x
The destination x-coordinate.

y
The destination y-coordinate.

rSrc
The source bitmap.

cr1
One of the two dither colors, typically white.

cr2
The other dither color, typically light gray (COLOR_MENU).

The source bitmap is drawn on the destination DC with a two-color (cr1 and cr2) checkered pattern replacing the
bitmap's background. The background of the source bitmap is defined as its white pixels and all pixels matching
the color of the pixel in the upper-left corner of the bitmap.

ExampleExample

void CDCView::DrawDitheredBitmap(CDC* pDC)
{
 CBitmap bm;
 bm.LoadBitmap(IDB_BITMAP1);
 AfxDrawDitheredBitmap(pDC, 10, 50, bm, RGB(255,255,255),
 GetSysColor(COLOR_BTNFACE));
}

RequirementsRequirements

AfxGetDitheredBitmap

void AFXAPI AfxGetDitheredBitmap(
 const CBitmap& rSrc,
 CBitmap* pDest,
 COLORREF cr1 ,
 COLORREF cr2);

ParametersParameters

RemarksRemarks

ExampleExample

Header: afxwin.h

Copies a bitmap, replacing its background with a dithered (checker) pattern.

rSrc
The source bitmap.

pDest
The destination bitmap.

cr1
One of the two dither colors, typically white.

cr2
The other dither color, typically light gray (COLOR_MENU).

The source bitmap is copied to the destination bitmap with a two-color (cr1 and cr2) checkered pattern replacing
the source bitmap's background. The background of the source bitmap is defined as its white pixels and all pixels
matching the color of the pixel in the upper-left corner of the bitmap.

CBitmap bm;
bm.LoadBitmap(IDB_BITMAP1);
CBitmap bmDith;
AfxGetDitheredBitmap(bm, &bmDith, RGB(255,255,255),
 GetSysColor(COLOR_BTNFACE));

RequirementsRequirements

See also

Header: afxwin.h

Macros and Globals

Record Field Exchange Functions
3/4/2019 • 37 minutes to read • Edit Online

RFX Functions (ODBC)RFX Functions (ODBC)

RFX_Binary Transfers arrays of bytes of type CByteArray.

RFX_Bool Transfers Boolean data.

RFX_Byte Transfers a single byte of data.

RFX_Date Transfers time and date data using CTime or
TIMESTAMP_STRUCT.

RFX_Double Transfers double-precision float data.

RFX_Int Transfers integer data.

RFX_Long Transfers long integer data.

RFX_LongBinary Transfers binary large object (BLOB) data with an object of
the CLongBinary class.

RFX_Single Transfers float data.

This topic lists the Record Field Exchange (RFX, Bulk RFX, and DFX) functions used to automate the transfer of
data between a recordset object and its data source and to perform other operations on the data.

If you are using the ODBC-based classes and you have implemented bulk row fetching, you must manually
override the DoBulkFieldExchange member function of CRecordset by calling the Bulk RFX functions for each
data member corresponding to a data source column.

If you have not implemented bulk row fetching in the ODBC-based classes, or if you are using the DAO-based
classes, then ClassWizard will override the DoFieldExchange member function of CRecordset or CDaoRecordset

by calling the RFX functions (for ODBC classes) or the DFX functions (for DAO classes) for each field data
member in your recordset.

The record field exchange functions transfer data each time the framework calls DoFieldExchange or
DoBulkFieldExchange . Each function transfers a specific data type.

For more information about how these functions are used, see the articles Record Field Exchange: How RFX
Works (ODBC). For more information about bulk row fetching, see the article Recordset: Fetching Records in
Bulk (ODBC).

For columns of data that you bind dynamically, you can also call the RFX or DFX functions yourself, as explained
in the articles Recordset: Dynamically Binding Data Columns (ODBC). Additionally, you can write your own
custom RFX or DFX routines, as explained in Technical Note 43 (for ODBC) and Technical Note 53 (for DAO).

For an example of RFX and Bulk RFX functions as they appear in the DoFieldExchange and DoBulkFieldExchange

functions, see RFX_Text and [RFX_Text_Bulk]#rfx_text_bulk). DFX functions are very similar to the RFX functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/record-field-exchange-functions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-dynamically-binding-data-columns-odbc

RFX_Text Transfers string data.

Bulk RFX Functions (ODBC)Bulk RFX Functions (ODBC)

RFX_Binary_Bulk Transfers arrays of byte data.

RFX_Bool_Bulk Transfers arrays of Boolean data.

RFX_Byte_Bulk Transfers arrays of single bytes.

RFX_Date_Bulk Transfers arrays of data of type TIMESTAMP_STRUCT.

RFX_Double_Bulk Transfers arrays of double-precision, floating-point data.

RFX_Int_Bulk Transfers arrays of integer data.

RFX_Long_Bulk Transfers arrays of long integer data.

RFX_Single_Bulk Transfers arrays of floating-point data.

RFX_Text_Bulk Transfers arrays of data of type LPSTR.

DFX Functions (DAO)DFX Functions (DAO)

DFX_Binary Transfers arrays of bytes of type CByteArray.

DFX_Bool Transfers Boolean data.

DFX_Byte Transfers a single byte of data.

DFX_Currency Transfers currency data, of type COleCurrency.

DFX_DateTime Transfers time and date data, of type COleDateTime.

DFX_Double Transfers double-precision float data.

DFX_Long Transfers long integer data.

DFX_LongBinary Transfers binary large object (BLOB) data with an object of
the CLongBinary class. For DAO, it is recommended that
you use DFX_Binary instead.

DFX_Short Transfers short integer data.

DFX_Single Transfers float data.

DFX_Text Transfers string data.

===

RFX_Binary

SyntaxSyntax

void RFX_Binary(
 CFieldExchange* pFX,
 const char* szName,
 CByteArray& value,
 int nMaxLength = 255);

ParametersParameters

RemarksRemarks

ExampleExample

RequirementsRequirements

RFX_Bool

SyntaxSyntax

void RFX_Bool(
 CFieldExchange* pFX,
 const char* szName,
 BOOL& value);

ParametersParameters

Transfers arrays of bytes between the field data members of a CRecordset object and the columns of a record on
the data source of ODBC type SQL_BINARY, SQL_VARBINARY, or SQL_LONGVARBINARY.

pFX
A pointer to an object of class CFieldExchange. This object contains information to define the context for each call
of the function. For more information about the operations a CFieldExchange object can specify, see the article
Record Field Exchange: How RFX Works.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type CByteArray, is taken from the specified data member. For a transfer from data
source to recordset, the value is stored in the specified data member.

nMaxLength
The maximum allowed length of the string or array being transferred. The default value of nMaxLength is 255.
Legal values are 1 to INT_MAX. The framework allocates this amount of space for the data. For best
performance, pass a value large enough to accommodate the largest data item you expect.

Data in the data source of these types is mapped to and from type CByteArray in the recordset.

See RFX_Text.

Header: afxdb.h

Transfers Boolean data between the field data members of a CRecordset object and the columns of a record on
the data source of ODBC type SQL_BIT.

pFX
A pointer to an object of class CFieldExchange. This object contains information to define the context for each call

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

ExampleExample

RequirementsRequirements

RFX_Byte

SyntaxSyntax

void RFX_Byte(
 CFieldExchange* pFX,
 const char* szName,
 BYTE& value);

ParametersParameters

ExampleExample

RequirementsRequirements

RFX_Date

SyntaxSyntax

of the function. For more information about the operations a CFieldExchange object can specify, see the article
Record Field Exchange: How RFX Works.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type BOOL, is taken from the specified data member. For a transfer from data source to
recordset, the value is stored in the specified data member.

See RFX_Text.

Header: afxdb.h

Transfers single bytes between the field data members of a CRecordset object and the columns of a record on
the data source of ODBC type SQL_TINYINT.

pFX
A pointer to an object of class CFieldExchange. This object contains information to define the context for each call
of the function. For more information about the operations a CFieldExchange object can specify, see the article
Record Field Exchange: How RFX Works.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type BYTE, is taken from the specified data member. For a transfer from data source to
recordset, the value is stored in the specified data member.

See RFX_Text.

Header: afxdb.h

Transfers CTime or TIMESTAMP_STRUCT data between the field data members of a CRecordset object and the
columns of a record on the data source of ODBC type SQL_DATE, SQL_TIME, or SQL_TIMESTAMP.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

void RFX_Date(
 CFieldExchange* pFX,
 const char* szName,
 CTime& value);

void RFX_Date(
 CFieldExchange* pFX,
 const char* szName,
 TIMESTAMP_STRUCT& value);

void RFX_Date(
 CFieldExchange* pFX,
 const char* szName,
 COleDateTime& value);

ParametersParameters

RemarksRemarks

ExampleExample

RequirementsRequirements

RFX_Double

SyntaxSyntax

pFX
A pointer to an object of class CFieldExchange. This object contains information to define the context for each call
of the function. For more information about the operations a CFieldExchange object can specify, see the article
Record Field Exchange: How RFX Works.

szName
The name of a data column.

value
The value stored in the indicated data member; the value to be transferred. The various versions of the function
take different data types for value:

The first version of the function takes a reference to a CTime object. For a transfer from recordset to data source,
this value is taken from the specified data member. For a transfer from data source to recordset, the value is
stored in the specified data member.

The second version of the function takes a reference to a TIMESTAMP_STRUCT structure. You must set up this
structure yourself before the call. Neither dialog data exchange (DDX) support nor code wizard support is
available for this version. The third version of the function works similarly to the first version except that it takes a
reference to a COleDateTime object.

The CTime version of the function imposes the overhead of some intermediate processing and has a somewhat
limited range. If you find either of these factors too limiting, use the second version of the function. But note its
lack of code wizard and DDX support and the requirement that you set up the structure yourself.

See RFX_Text.

Header: afxdb.h

Transfers double float data between the field data members of a CRecordset object and the columns of a record
on the data source of ODBC type SQL_DOUBLE.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

void RFX_Double(
 CFieldExchange* pFX,
 const char* szName,
 double& value);

ParametersParameters

ExampleExample

RequirementsRequirements

RFX_Int

SyntaxSyntax

void RFX_Int(
 CFieldExchange* pFX,
 const char* szName,
 int& value);

ParametersParameters

ExampleExample

RequirementsRequirements

pFX
A pointer to an object of class CFieldExchange. This object contains information to define the context for each call
of the function. For more information about the operations a CFieldExchange object can specify, see the article
Record Field Exchange: How RFX Works.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type double, is taken from the specified data member. For a transfer from data source
to recordset, the value is stored in the specified data member.

See RFX_Text.

Header: afxdb.h

Transfers integer data between the field data members of a CRecordset object and the columns of a record on
the data source of ODBC type SQL_SMALLINT.

pFX
A pointer to an object of class CFieldExchange. This object contains information to define the context for each call
of the function. For more information about the operations a CFieldExchange object can specify, see the article
Record Field Exchange: How RFX Works.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type int, is taken from the specified data member. For a transfer from data source to
recordset, the value is stored in the specified data member.

See RFX_Text.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

RFX_Long

SyntaxSyntax

void RFX_Long(
 CFieldExchange* pFX,
 const char* szName,
 LONG&
value);

ParametersParameters

ExampleExample

RequirementsRequirements

RFX_LongBinary

SyntaxSyntax

void RFX_LongBinary(
 CFieldExchange* pFX,
 const char* szName,
 CLongBinary& value);

ParametersParameters

Header: afxdb.h

Transfers long integer data between the field data members of a CRecordset object and the columns of a record
on the data source of ODBC type SQL_INTEGER.

pFX
A pointer to an object of class CFieldExchange. This object contains information to define the context for each call
of the function. For more information about the operations a CFieldExchange object can specify, see the article
Record Field Exchange: How RFX Works.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type long, is taken from the specified data member. For a transfer from data source to
recordset, the value is stored in the specified data member.

See RFX_Text.

Header: afxdb.h

Transfers binary large object (BLOB) data using class CLongBinary between the field data members of a
CRecordset object and the columns of a record on the data source of ODBC type SQL_LONGVARBINARY or

SQL_LONGVARCHAR.

pFX
A pointer to an object of class CFieldExchange. This object contains information to define the context for each call
of the function. For more information about the operations a CFieldExchange object can specify, see the article
Record Field Exchange: How RFX Works.

szName
The name of a data column.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

ExampleExample

RequirementsRequirements

RFX_Single

SyntaxSyntax

void RFX_Single(
 CFieldExchange* pFX,
 const char* szName,
 float& value);

ParametersParameters

ExampleExample

RequirementsRequirements

RFX_Text

SyntaxSyntax

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type CLongBinary , is taken from the specified data member. For a transfer from data
source to recordset, the value is stored in the specified data member.

See RFX_Text.

Header: afxdb.h

Transfers floating-point data between the field data members of a CRecordset object and the columns of a
record on the data source of ODBC type SQL_REAL.

pFX
A pointer to an object of class CFieldExchange. This object contains information to define the context for each call
of the function. For more information about the operations a CFieldExchange object can specify, see the article
Record Field Exchange: How RFX Works.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type float, is taken from the specified data member. For a transfer from data source to
recordset, the value is stored in the specified data member.

See RFX_Text.

Header: afxdb.h

Transfers CString data between the field data members of a CRecordset object and columns of a record on the
data source of ODBC type SQL_LONGVARCHAR, SQL_CHAR, SQL_VARCHAR, SQL_DECIMAL, or
SQL_NUMERIC.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

void RFX_Text(
 CFieldExchange* pFX,
 const char* szName,
 CString& value,
 int nMaxLength = 255,
 int nColumnType = SQL_VARCHAR,
 short nScale = 0);

ParametersParameters

RemarksRemarks

ExampleExample

pFX
A pointer to an object of class CFieldExchange . This object contains information to define the context for each call
of the function. For more information about the operations a CFieldExchange object can specify, see the article
Record Field Exchange: How RFX Works.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type CString , is taken from the specified data member. For a transfer from data source
to recordset, the value is stored in the specified data member.

nMaxLength
The maximum allowed length of the string or array being transferred. The default value of nMaxLength is 255.
Legal values are 1 to INT_MAX). The framework allocates this amount of space for the data. For best
performance, pass a value large enough to accommodate the largest data item you expect.

nColumnType
Used mainly for parameters. An integer indicating the data type of the parameter. The type is an ODBC data type
of the form SQL_XXX.

nScale
Specifies the scale for values of ODBC type SQL_DECIMAL or SQL_NUMERIC. nScale is only useful when
setting parameter values. For more information, see the topic "Precision, Scale, Length, and Display Size" in
Appendix D of the ODBC SDK Programmer's Reference.

Data in the data source of all of these types is mapped to and from CString in the recordset.

This example shows several calls to RFX_Text . Notice also the two calls to CFieldExchange::SetFieldType . For
parameters you must write the call to SetFieldType and its RFX call. The output column call and its associated
RFX calls are normally written by a code wizard.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

void CCustomer::DoFieldExchange(CFieldExchange* pFX)
{
 pFX->SetFieldType(CFieldExchange::outputColumn);
 // Macros such as RFX_Text() and RFX_Int() are dependent on the
 // type of the member variable, not the type of the field in the database.
 // ODBC will try to automatically convert the column value to the requested type
 RFX_Long(pFX, _T("[CustomerID]"), m_CustomerID);
 RFX_Text(pFX, _T("[ContactFirstName]"), m_ContactFirstName);
 RFX_Text(pFX, _T("[PostalCode]"), m_PostalCode);
 RFX_Text(pFX, _T("[L_Name]"), m_L_Name);
 RFX_Long(pFX, _T("[BillingID]"), m_BillingID);

 pFX->SetFieldType(CFieldExchange::inputParam);
 RFX_Text(pFX, _T("Param"), m_strParam);
}

RequirementsRequirements

RFX_Binary_Bulk

SyntaxSyntax

void RFX_Binary_Bulk(
 CFieldExchange* pFX,
 LPCTSTR szName,
 BYTE** prgByteVals,
 long** prgLengths,
 int nMaxLength);

ParametersParameters

RemarksRemarks

Header: afxdb.h

Transfers multiple rows of byte data from a column of an ODBC data source to a corresponding array in a
CRecordset -derived object.

pFX
A pointer to a CFieldExchange object. This object contains information to define the context for each call of the
function. For more information, see the article Record Field Exchange: How RFX Works.

szName
The name of a data column.

prgByteVals
A pointer to an array of BYTE values. This array will store the data to be transferred from the data source to the
recordset.

prgLengths
A pointer to an array of long integers. This array will store the length in bytes of each value in the array pointed
to by prgByteVals. Note that the value SQL_NULL_DATA will be stored if the corresponding data item contains a
Null value. For more details, see the ODBC API function SQLBindCol in the ODBC SDK Programmer's
Reference.

nMaxLength
The maximum allowed length of the values stored in the array pointed to by prgByteVals. To ensure that data will
not be truncated, pass a value large enough to accommodate the largest data item you expect.

The data source column can have an ODBC type of SQL_BINARY, SQL_VARBINARY, or

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

NOTENOTE

ExampleExample

RequirementsRequirements

RFX_Bool_Bulk

SyntaxSyntax

void RFX_Bool_Bulk(
 CFieldExchange* pFX,
 LPCTSTR szName,
 BOOL** prgBoolVals,
 long** prgLengths);

ParametersParameters

RemarksRemarks

SQL_LONGVARBINARY. The recordset must define a field data member of type pointer to BYTE.

If you initialize prgByteVals and prgLengths to NULL, then the arrays they point to will be allocated
automatically, with sizes equal to the rowset size.

Bulk record field exchange only transfers data from the data source to the recordset object. In order to make your
recordset updateable, you must use the ODBC API function SQLSetPos .

For more information, see the articles Recordset: Fetching Records in Bulk (ODBC) and Record Field Exchange
(RFX).

See RFX_Text_Bulk.

Header: afxdb.h

Transfers multiple rows of Boolean data from a column of an ODBC data source to a corresponding array in a
CRecordset -derived object.

pFX
A pointer to a CFieldExchange object. This object contains information to define the context for each call of the
function. For more information, see the article Record Field Exchange: How RFX Works.

szName
The name of a data column.

prgBoolVals
A pointer to an array of BOOL values. This array will store the data to be transferred from the data source to the
recordset.

prgLengths
A pointer to an array of long integers. This array will store the length in bytes of each value in the array pointed
to by prgBoolVals. Note that the value SQL_NULL_DATA will be stored if the corresponding data item contains a
Null value. For more details, see the ODBC API function SQLBindCol in the ODBC SDK Programmer's
Reference.

The data source column must have an ODBC type of SQL_BIT. The recordset must define a field data member of
type pointer to BOOL.

If you initialize prgBoolVals and prgLengths to NULL, then the arrays they point to will be allocated
automatically, with sizes equal to the rowset size.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

NOTENOTE

ExampleExample

RequirementsRequirements

RFX_Byte_Bulk

SyntaxSyntax

void RFX_Byte_Bulk(
 CFieldExchange* pFX,
 LPCTSTR szName,
 BYTE** prgByteVals,
 long** prgLengths);

ParametersParameters

RemarksRemarks

Bulk record field exchange only transfers data from the data source to the recordset object. To make your recordset
updateable, you must use the ODBC API function SQLSetPos .

For more information, see the articles Recordset: Fetching Records in Bulk (ODBC) and Record Field Exchange
(RFX).

See RFX_Text_Bulk.

Header: afxdb.h

Transfers multiple rows of single bytes from a column of an ODBC data source to a corresponding array in a
CRecordset -derived object.

pFX
A pointer to a CFieldExchange object. This object contains information to define the context for each call of the
function. For more information, see the article Record Field Exchange: How RFX Works.

szName
The name of a data column.

prgByteVals
A pointer to an array of BYTE values. This array will store the data to be transferred from the data source to the
recordset.

prgLengths
A pointer to an array of long integers. This array will store the length in bytes of each value in the array pointed
to by prgByteVals. Note that the value SQL_NULL_DATA will be stored if the corresponding data item contains a
Null value. For more details, see the ODBC API function SQLBindCol in the ODBC SDK Programmer's
Reference.

The data source column must have an ODBC type of SQL_TINYINT. The recordset must define a field data
member of type pointer to BYTE.

If you initialize prgByteVals and prgLengths to NULL, then the arrays they point to will be allocated
automatically, with sizes equal to the rowset size.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

NOTENOTE

ExampleExample

RequirementsRequirements

RFX_Date_Bulk

SyntaxSyntax

void RFX_Date_Bulk(
 CFieldExchange* pFX,
 LPCTSTR szName,
 TIMESTAMP_STRUCT** prgTSVals,
 long** prgLengths);

ParametersParameters

RemarksRemarks

Bulk record field exchange only transfers data from the data source to the recordset object. To make your recordset
updateable, you must use the ODBC API function SQLSetPos .

For more information, see the articles Recordset: Fetching Records in Bulk (ODBC) and Record Field Exchange
(RFX).

See RFX_Text_Bulk.

Header: afxdb.h

Transfers multiple rows of TIMESTAMP_STRUCT data from a column of an ODBC data source to a
corresponding array in a CRecordset -derived object.

pFX
A pointer to a CFieldExchange object. This object contains information to define the context for each call of the
function. For more information, see the article Record Field Exchange: How RFX Works.

szName
The name of a data column.

prgTSVals
A pointer to an array of TIMESTAMP_STRUCT values. This array will store the data to be transferred from the
data source to the recordset. For more information about the TIMESTAMP_STRUCT data type, see the topic "C
Data Types" in Appendix D of the ODBC SDK Programmer's Reference.

prgLengths
A pointer to an array of long integers. This array will store the length in bytes of each value in the array pointed
to by prgTSVals. Note that the value SQL_NULL_DATA will be stored if the corresponding data item contains a
Null value. For more details, see the ODBC API function SQLBindCol in the ODBC SDK Programmer's
Reference.

The data source column can have an ODBC type of SQL_DATE, SQL_TIME, or SQL_TIMESTAMP. The recordset
must define a field data member of type pointer to TIMESTAMP_STRUCT.

If you initialize prgTSVals and prgLengths to NULL, then the arrays they point to will be allocated automatically,
with sizes equal to the rowset size.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

NOTENOTE

ExampleExample

RequirementsRequirements

RFX_Double_Bulk

SyntaxSyntax

void RFX_Double_Bulk(
 CFieldExchange* pFX,
 LPCTSTR szName,
 double** prgDblVals,
 long** prgLengths);

ParametersParameters

RemarksRemarks

Bulk record field exchange only transfers data from the data source to the recordset object. To make your recordset
updateable, you must use the ODBC API function SQLSetPos .

For more information, see the articles Recordset: Fetching Records in Bulk (ODBC) and Record Field Exchange
(RFX).

See RFX_Text_Bulk.

Header: afxdb.h

Transfers multiple rows of double-precision, floating-point data from a column of an ODBC data source to a
corresponding array in a CRecordset -derived object.

pFX
A pointer to a CFieldExchange object. This object contains information to define the context for each call of the
function. For more information, see the article Record Field Exchange: How RFX Works.

szName
The name of a data column.

prgDblVals
A pointer to an array of double values. This array will store the data to be transferred from the data source to
the recordset.

prgLengths
A pointer to an array of long integers. This array will store the length in bytes of each value in the array pointed
to by prgDblVals. Note that the value SQL_NULL_DATA will be stored if the corresponding data item contains a
Null value. For more details, see the ODBC API function SQLBindCol in the ODBC SDK Programmer's
Reference.

The data source column must have an ODBC type of SQL_DOUBLE. The recordset must define a field data
member of type pointer to double.

If you initialize prgDblVals and prgLengths to NULL, then the arrays they point to will be allocated automatically,
with sizes equal to the rowset size.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

NOTENOTE

ExampleExample

RequirementsRequirements

RFX_Int_Bulk

SyntaxSyntax

void RFX_Int(
 CFieldExchange* pFX,
 const char* szName,
 int& value);

ParametersParameters

ExampleExample

RequirementsRequirements

RFX_Long_Bulk

SyntaxSyntax

Bulk record field exchange only transfers data from the data source to the recordset object. To make your recordset
updateable, you must use the ODBC API function SQLSetPos .

For more information, see the articles Recordset: Fetching Records in Bulk (ODBC) and Record Field Exchange
(RFX).

See RFX_Text_Bulk.

Header: afxdb.h

Transfers integer data between the field data members of a CRecordset object and the columns of a record on
the data source of ODBC type SQL_SMALLINT.

pFX
A pointer to an object of class CFieldExchange. This object contains information to define the context for each call
of the function. For more information about the operations a CFieldExchange object can specify, see the article
Record Field Exchange: How RFX Works.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type int, is taken from the specified data member. For a transfer from data source to
recordset, the value is stored in the specified data member.

See RFX_Text.

Header: afxdb.h

Transfers multiple rows of long integer data from a column of an ODBC data source to a corresponding array in
a CRecordset -derived object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works

void RFX_Long_Bulk(
 CFieldExchange* pFX,
 LPCTSTR szName,
 long** prgLongVals,
 long** prgLengths);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

RequirementsRequirements

RFX_Single_Bulk

SyntaxSyntax

pFX
A pointer to a CFieldExchange object. This object contains information to define the context for each call of the
function. For more information, see the article Record Field Exchange: How RFX Works.

szName
The name of a data column.

prgLongVals
A pointer to an array of long integers. This array will store the data to be transferred from the data source to the
recordset.

prgLengths
A pointer to an array of long integers. This array will store the length in bytes of each value in the array pointed
to by prgLongVals. Note that the value SQL_NULL_DATA will be stored if the corresponding data item contains a
Null value. For more details, see the ODBC API function SQLBindCol in the ODBC SDK Programmer's
Reference.

The data source column must have an ODBC type of SQL_INTEGER. The recordset must define a field data
member of type pointer to long.

If you initialize prgLongVals and prgLengths to NULL, then the arrays they point to will be allocated
automatically, with sizes equal to the rowset size.

Bulk record field exchange only transfers data from the data source to the recordset object. To make your recordset
updateable, you must use the ODBC API function SQLSetPos .

For more information, see the articles Recordset: Fetching Records in Bulk (ODBC) and Record Field Exchange
(RFX).

See RFX_Text_Bulk.

Header: afxdb.h

Transfers multiple rows of floating-point data from a column of an ODBC data source to a corresponding array
in a CRecordset -derived object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx

void RFX_Single_Bulk(
 CFieldExchange* pFX,
 LPCTSTR szName,
 float** prgFltVals,
 long** prgLengths);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

RequirementsRequirements

RFX_Text_Bulk

SyntaxSyntax

pFX
A pointer to a CFieldExchange object. This object contains information to define the context for each call of the
function. For more information, see the article Record Field Exchange: How RFX Works.

szName
The name of a data column.

prgFltVals
A pointer to an array of float values. This array will store the data to be transferred from the data source to the
recordset.

prgLengths
A pointer to an array of long integers. This array will store the length in bytes of each value in the array pointed
to by prgFltVals. Note that the value SQL_NULL_DATA will be stored if the corresponding data item contains a
Null value. For more details, see the ODBC API function SQLBindCol in the ODBC SDK Programmer's
Reference.

The data source column must have an ODBC type of SQL_REAL. The recordset must define a field data member
of type pointer to float.

If you initialize prgFltVals and prgLengths to NULL, then the arrays they point to will be allocated automatically,
with sizes equal to the rowset size.

Bulk record field exchange only transfers data from the data source to the recordset object. To make your recordset
updateable, you must use the ODBC API function SQLSetPos .

For more information, see the articles Recordset: Fetching Records in Bulk (ODBC) and Record Field Exchange
(RFX).

See RFX_Text_Bulk.

Header: afxdb.h

Transfers multiple rows of character data from a column of an ODBC data source to a corresponding array in a
CRecordset -derived object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx

void RFX_Text_Bulk(
 CFieldExchange* pFX,
 LPCTSTR szName,
 LPSTR* prgStrVals,
 long** prgLengths,
 int nMaxLength);

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

pFX
A pointer to a CFieldExchange object. This object contains information to define the context for each call of the
function. For more information, see the article Record Field Exchange: How RFX Works.

szName
The name of a data column.

prgStrVals
A pointer to an array of LPSTR values. This array will store the data to be transferred from the data source to the
recordset. Note that with the current version of ODBC, these values cannot be Unicode.

prgLengths
A pointer to an array of long integers. This array will store the length in bytes of each value in the array pointed
to by prgStrVals. This length excludes the null termination character. Note that the value SQL_NULL_DATA will
be stored if the corresponding data item contains a Null value. For more details, see the ODBC API function
SQLBindCol in the ODBC SDK Programmer's Reference.

nMaxLength
The maximum allowed length of the values stored in the array pointed to by prgStrVals, including the null
termination character. To ensure that data will not be truncated, pass a value large enough to accommodate the
largest data item you expect.

The data source column can have an ODBC type of SQL_LONGVARCHAR, SQL_CHAR, SQL_VARCHAR,
SQL_DECIMAL, or SQL_NUMERIC. The recordset must define a field data member of type LPSTR.

If you initialize prgStrVals and prgLengths to NULL, then the arrays they point to will be allocated automatically,
with sizes equal to the rowset size.

Bulk record field exchange only transfers data from the data source to the recordset object. To make your recordset
updateable, you must use the ODBC API function SQLSetPos .

For more information, see the articles Recordset: Fetching Records in Bulk (ODBC) and Record Field Exchange
(RFX).

You must manually write calls in your DoBulkFieldExchange override. This example shows a call to RFX_Text_Bulk

, as well as a call to RFX_Long_Bulk , for data transfer. These calls are preceded by a call to
CFieldExchange::SetFieldType. Note that for parameters, you must call the RFX functions instead of the Bulk RFX
functions.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-how-rfx-works
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/recordset-fetching-records-in-bulk-odbc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/odbc/record-field-exchange-rfx
CFieldExchange::SetFieldType.md

void CMultiCustomer::DoBulkFieldExchange(CFieldExchange* pFX)
{
 pFX->SetFieldType(CFieldExchange::outputColumn);
 RFX_Long_Bulk(pFX, _T("[CustomerID]"), &m_pCustomerID, &m_pcCustomerID);
 RFX_Text_Bulk(pFX, _T("[ContactFirstName]"), &m_pContactFirstName, &m_pcContactFirstName, 50);
 RFX_Text_Bulk(pFX, _T("[PostalCode]"), &m_pPostalCode, &m_pcPostalCode, 50);
 RFX_Text_Bulk(pFX, _T("[L_Name]"), &m_pL_Name, &m_pcL_Name, 50);
 RFX_Long_Bulk(pFX, _T("[BillingID]"), &m_pBillingID, &m_pcBillingID);

 pFX->SetFieldType(CFieldExchange::inputParam);
 RFX_Text(pFX, _T("Param"), m_strParam);
}

RequirementsRequirements

DFX_Binary

SyntaxSyntax

void AFXAPI DFX_Binary(
 CDaoFieldExchange* pFX,
 LPCTSTR szName,
 CByteArray& value,
 int nPreAllocSize = AFX_DAO_BINARY_DEFAULT_SIZE,
 DWORD dwBindOptions = 0);

ParametersParameters

Header: afxdb.h

Transfers arrays of bytes between the field data members of a CDaoRecordset object and the columns of a
record on the data source.

pFX
A pointer to an object of class CDaoFieldExchange. This object contains information to define the context for
each call of the function.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type CByteArray, is taken from the specified data member. For a transfer from data
source to recordset, the value is stored in the specified data member.

nPreAllocSize
The framework preallocates this amount of memory. If your data is larger, the framework will allocated more
space as needed. For better performance, set this size to a value large enough to prevent reallocations. The
default size is defined in the AFXDAO.H file as AFX_DAO_BINARY_DEFAULT_SIZE.

dwBindOptions
An option that lets you take advantage of MFC's double buffering mechanism for detecting recordset fields that
have changed. The default, AFX_DAO_DISABLE_FIELD_CACHE, does not use double buffering, and you must
call SetFieldDirty and SetFieldNull yourself. The other possible value, AFX_DAO_ENABLE_FIELD_CACHE, uses
double buffering, and you do not have to do extra work to mark fields dirty or Null. For performance and
memory reasons, avoid this value unless your binary data is relatively small.

NOTENOTE

RemarksRemarks

ExampleExample

RequirementsRequirements

DFX_Bool

SyntaxSyntax

void AFXAPI DFX_Bool(
 CDaoFieldExchange* pFX,
 LPCTSTR szName,
 BOOL& value,
 DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

ParametersParameters

NOTENOTE

RemarksRemarks

ExampleExample

You can control whether data is double buffered for all fields by default by setting
CDaoRecordset::m_bCheckCacheForDirtyFields.

Data is mapped between type DAO_BYTES in DAO and type CByteArray in the recordset.

See DFX_Text.

Header: afxdao.h

Transfers Boolean data between the field data members of a CDaoRecordset object and the columns of a record
on the data source.

pFX
A pointer to an object of class CDaoFieldExchange. This object contains information to define the context for
each call of the function.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type BOOL, is taken from the specified data member. For a transfer from data source to
recordset, the value is stored in the specified data member.

dwBindOptions
An option that lets you take advantage of MFC's double buffering mechanism for detecting recordset fields that
have changed. The default, AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other possible value
is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this value, MFC does no checking on this field. You must
call SetFieldDirty and SetFieldNull yourself.

You can control whether data is double buffered by default by setting CDaoRecordset::m_bCheckCacheForDirtyFields.

Data is mapped between type DAO_BOOL in DAO and type BOOL in the recordset.

RequirementsRequirements

DFX_Byte

SyntaxSyntax

void AFXAPI DFX_Byte(
 CDaoFieldExchange* pFX,
 LPCTSTR szName,
 BYTE& value,
 DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

ParametersParameters

NOTENOTE

RemarksRemarks

ExampleExample

RequirementsRequirements

DFX_Currency

See DFX_Text.

Header: afxdao.h

Transfers single bytes between the field data members of a CDaoRecordset object and the columns of a record
on the data source.

pFX
A pointer to an object of class CDaoFieldExchange. This object contains information to define the context for
each call of the function.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type BYTE, is taken from the specified data member. For a transfer from data source to
recordset, the value is stored in the specified data member.

dwBindOptions
An option that lets you take advantage of MFC's double buffering mechanism for detecting recordset fields that
have changed. The default, AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other possible value
is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this value, MFC does no checking on this field. You must
call SetFieldDirty and SetFieldNull yourself.

You can control whether data is double buffered by default by setting CDaoRecordset::m_bCheckCacheForDirtyFields.

Data is mapped between type DAO_BYTES in DAO and type BYTE in the recordset.

See DFX_Text.

Header: afxdao.h

Transfers currency data between the field data members of a CDaoRecordset object and the columns of a record
on the data source.

SyntaxSyntax

void AFXAPI DFX_Currency(
 CDaoFieldExchange* pFX,
 LPCTSTR szName,
 COleCurrency& value,
 DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

ParametersParameters

NOTENOTE

RemarksRemarks

ExampleExample

RequirementsRequirements

DFX_DateTime

SyntaxSyntax

void AFXAPI DFX_DateTime(
 CDaoFieldExchange* pFX,
 LPCTSTR szName,
 COleDateTime& value,
 DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

ParametersParameters

pFX
A pointer to an object of class CDaoFieldExchange. This object contains information to define the context for
each call of the function.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, this value is taken from the specified data member, of type COleCurrency. For a transfer from data
source to recordset, the value is stored in the specified data member.

dwBindOptions
An option that lets you take advantage of MFC's double buffering mechanism for detecting recordset fields that
have changed. The default, AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other possible value
is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this value, MFC does no checking on this field. You must
call SetFieldDirty and SetFieldNull yourself.

You can control whether data is double buffered by default by setting CDaoRecordset::m_bCheckCacheForDirtyFields.

Data is mapped between type DAO_CURRENCY in DAO and type COleCurrency in the recordset.

See DFX_Text.

Header: afxdao.h

Transfers time and date data between the field data members of a CDaoRecordset object and the columns of a
record on the data source.

pFX

NOTENOTE

RemarksRemarks

NOTENOTE

ExampleExample

RequirementsRequirements

DFX_Double

SyntaxSyntax

void AFXAPI DFX_Double(
 CDaoFieldExchange* pFX,
 LPCTSTR szName,
 double& value,
 DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

ParametersParameters

A pointer to an object of class CDaoFieldExchange. This object contains information to define the context for
each call of the function.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. The function takes a reference to a
COleDateTime object. For a transfer from recordset to data source, this value is taken from the specified data
member. For a transfer from data source to recordset, the value is stored in the specified data member.

dwBindOptions
An option that lets you take advantage of MFC's double buffering mechanism for detecting recordset fields that
have changed. The default, AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other possible value
is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this value, MFC does no checking on this field. You must
call SetFieldDirty and SetFieldNull yourself.

You can control whether data is double buffered by default by setting CDaoRecordset::m_bCheckCacheForDirtyFields.

Data is mapped between type DAO_DATE in DAO and type COleDateTime in the recordset.

COleDateTime replaces CTime and TIMESTAMP_STRUCT for this purpose in the DAO classes. CTime and
TIMESTAMP_STRUCT are still used for the ODBC-based data access classes.

See DFX_Text.

Header: afxdao.h

Transfers double float data between the field data members of a CDaoRecordset object and the columns of a
record on the data source.

pFX
A pointer to an object of class CDaoFieldExchange. This object contains information to define the context for
each call of the function.

szName
The name of a data column.

NOTENOTE

RemarksRemarks

ExampleExample

RequirementsRequirements

DFX_Long

SyntaxSyntax

void AFXAPI DFX_Long(
 CDaoFieldExchange* pFX,
 LPCTSTR szName,
 long& value,
 DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

ParametersParameters

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type double, is taken from the specified data member. For a transfer from data source
to recordset, the value is stored in the specified data member.

dwBindOptions
An option that lets you take advantage of MFC's double buffering mechanism for detecting recordset fields that
have changed. The default, AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other possible value
is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this value, MFC does no checking on this field. You must
call SetFieldDirty and SetFieldNull yourself.

You can control whether data is double buffered by default by setting CDaoRecordset::m_bCheckCacheForDirtyFields.

Data is mapped between type DAO_R8 in DAO and type double float in the recordset.

See DFX_Text.

Header: afxdao.h

Transfers long integer data between the field data members of a CDaoRecordset object and the columns of a
record on the data source.

pFX
A pointer to an object of class CDaoFieldExchange. This object contains information to define the context for
each call of the function.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type long, is taken from the specified data member. For a transfer from data source to
recordset, the value is stored in the specified data member.

dwBindOptions
An option that lets you take advantage of MFC's double buffering mechanism for detecting recordset fields that
have changed. The default, AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other possible value
is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this value, MFC does no checking on this field. You must

NOTENOTE

RemarksRemarks

ExampleExample

RequirementsRequirements

DFX_LongBinary

SyntaxSyntax

void AFXAPI DFX_LongBinary(
 CDaoFieldExchange* pFX,
 LPCTSTR szName,
 CLongBinary& value,
 DWORD dwPreAllocSize = AFX_DAO_LONGBINARY_DEFAULT_SIZE,
 DWORD dwBindOptions = 0);

ParametersParameters

NOTENOTE

call SetFieldDirty and SetFieldNull yourself.

You can control whether data is double buffered by default by setting CDaoRecordset::m_bCheckCacheForDirtyFields.

Data is mapped between type DAO_I4 in DAO and type long in the recordset.

See DFX_Text.

Header: afxdao.h

Important It is recommended that you use DFX_Binary instead of this function.

pFX
A pointer to an object of class CDaoFieldExchange. This object contains information to define the context for
each call of the function.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type CLongBinary, is taken from the specified data member. For a transfer from data
source to recordset, the value is stored in the specified data member.

dwPreAllocSize
The framework preallocates this amount of memory. If your data is larger, the framework will allocated more
space as needed. For better performance, set this size to a value large enough to prevent reallocations.

dwBindOptions
An option that lets you take advantage of MFC's double buffering mechanism for detecting recordset fields that
have changed. The default, AFX_DISABLE_FIELD_CACHE, does not use double buffering. The other possible
value is AFX_DAO_ENABLE_FIELD_CACHE. Uses double buffering, and you do not have to do extra work to
mark fields dirty or Null. For performance and memory reasons, avoid this value unless your binary data is
relatively small.

You can control whether data is double buffered by default by setting CDaoRecordset::m_bCheckCacheForDirtyFields.

RemarksRemarks

ExampleExample

RequirementsRequirements

DFX_Short

SyntaxSyntax

void AFXAPI DFX_Short(
 CDaoFieldExchange* pFX,
 LPCTSTR szName,
 short& value,
 DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

ParametersParameters

NOTENOTE

RemarksRemarks

NOTENOTE

DFX_LongBinary is provided for compatibility with the MFC ODBC classes. The DFX_LongBinary function
transfers binary large-object (BLOB) data using class CLongBinary between the field data members of a
CDaoRecordset object and the columns of a record on the data source. Data is mapped between type
DAO_BYTES in DAO and type CLongBinary in the recordset.

See DFX_Text.

Header: afxdao.h

Transfers short integer data between the field data members of a CDaoRecordset object and the columns of a
record on the data source.

pFX
A pointer to an object of class CDaoFieldExchange. This object contains information to define the context for
each call of the function.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type short, is taken from the specified data member. For a transfer from data source to
recordset, the value is stored in the specified data member.

dwBindOptions
An option that lets you take advantage of MFC's double buffering mechanism for detecting recordset fields that
have changed. The default, AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other possible value
is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this value, MFC does no checking on this field. You must
call SetFieldDirty and SetFieldNull yourself.

You can control whether data is double buffered by default by setting CDaoRecordset::m_bCheckCacheForDirtyFields.

Data is mapped between type DAO_I2 in DAO and type short in the recordset.

DFX_Short is equivalent to RFX_Int for the ODBC-based classes.

ExampleExample

RequirementsRequirements

DFX_Single

SyntaxSyntax

void AFXAPI DFX_Single(
 CDaoFieldExchange* pFX,
 LPCTSTR szName,
 float& value,
 DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

ParametersParameters

NOTENOTE

RemarksRemarks

ExampleExample

RequirementsRequirements

DFX_Text

See DFX_Text.

Header: afxdao.h

Transfers floating-point data between the field data members of a CDaoRecordset object and the columns of a
record on the data source.

pFX
A pointer to an object of class CDaoFieldExchange. This object contains information to define the context for
each call of the function.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type float, is taken from the specified data member. For a transfer from data source to
recordset, the value is stored in the specified data member.

dwBindOptions
An option that lets you take advantage of MFC's double buffering mechanism for detecting recordset fields that
have changed. The default, AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other possible value
is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this value, MFC does no checking on this field. You must
call SetFieldDirty and SetFieldNull yourself.

You can control whether data is double buffered by default by setting CDaoRecordset::m_bCheckCacheForDirtyFields.

Data is mapped between type DAO_R4 in DAO and type float in the recordset.

See DFX_Text.

Header: afxdao.h

Transfers CString data between the field data members of a CDaoRecordset object and columns of a record on
the data source.

SyntaxSyntax

void AFXAPI DFX_Text(
 CDaoFieldExchange* pFX,
 LPCTSTR szName,
 CString& value,
 int nPreAllocSize = AFX_DAO_TEXT_DEFAULT_SIZE,
 DWORD dwBindOptions = AFX_DAO_ENABLE_FIELD_CACHE);

ParametersParameters

NOTENOTE

RemarksRemarks

ExampleExample

pFX
A pointer to an object of class CDaoFieldExchange. This object contains information to define the context for
each call of the function.

szName
The name of a data column.

value
The value stored in the indicated data member — the value to be transferred. For a transfer from recordset to
data source, the value, of type CString, is taken from the specified data member. For a transfer from data source
to recordset, the value is stored in the specified data member.

nPreAllocSize
The framework preallocates this amount of memory. If your data is larger, the framework will allocated more
space as needed. For better performance, set this size to a value large enough to prevent reallocations.

dwBindOptions
An option that lets you take advantage of MFC's double buffering mechanism for detecting recordset fields that
have changed. The default, AFX_DAO_ENABLE_FIELD_CACHE, uses double buffering. The other possible value
is AFX_DAO_DISABLE_FIELD_CACHE. If you specify this value, MFC does no checking on this field. You must
call SetFieldDirty and SetFieldNull yourself.

You can control whether data is double buffered by default by setting CDaoRecordset::m_bCheckCacheForDirtyFields.

Data is mapped between type DAO_CHAR in DAO (or, if the symbol _UNICODE is defined, DAO_WCHAR) and
type CString in the recordset. n

This example shows several calls to DFX_Text . Notice also the two calls to CDaoFieldExchange::SetFieldType. You
must write the first call to SetFieldType and its DFX call. The second call and its associated DFX calls are
normally written by the code wizard that generated the class.

void CCustSet::DoFieldExchange(CDaoFieldExchange* pFX)
{
 pFX->SetFieldType(CDaoFieldExchange::param);
 DFX_Text(pFX, _T("Param"), m_strParam);
 pFX->SetFieldType(CDaoFieldExchange::outputColumn);
 DFX_Short(pFX, _T("EmployeeID"), m_EmployeeID);
 DFX_Text(pFX, _T("LastName"), m_LastName);
 DFX_Short(pFX, _T("Age"), m_Age);
 DFX_DateTime(pFX, _T("hire_date"), m_hire_date);
 DFX_DateTime(pFX, _T("termination_date"), m_termination_date);

 CDaoRecordset::DoFieldExchange(pFX);
}

RequirementsRequirements

See also

Header: afxdao.h

Macros and Globals
CRecordset::DoFieldExchange
CRecordset::DoBulkFieldExchange
CDaoRecordset::DoFieldExchange

Dialog Data Exchange Functions for CRecordView
and CDaoRecordView
3/4/2019 • 17 minutes to read • Edit Online

NOTENOTE

DDX_Field FunctionsDDX_Field Functions

DDX_FieldCBIndex Transfers integer data between a recordset field data member
and the index of the current selection in a combo box in a
CRecordView or CDaoRecordView.

DDX_FieldCBString Transfers CString data between a recordset field data
member and the edit control of a combo box in a
CRecordView or CDaoRecordView . When moving data from

the recordset to the control, this function selects the item in
the combo box that begins with the characters in the specified
string.

DDX_FieldCBStringExact Transfers CString data between a recordset field data
member and the edit control of a combo box in a
CRecordView or CDaoRecordView . When moving data from

the recordset to the control, this function selects the item in
the combo box that exactly matches the specified string.

DDX_FieldCheck Transfers Boolean data between a recordset field data member
and a check box in a CRecordView or CDaoRecordView .

DDX_FieldLBIndex Transfers integer data between a recordset field data member
and the index of the current selection in a list box in a
CRecordView or CDaoRecordView .

DDX_FieldLBString Manages the transfer of CString data between a list-box
control and the field data members of a recordset. When
moving data from the recordset to the control, this function
selects the item in the list box that begins with the characters
in the specified string.

DDX_FieldLBStringExact Manages the transfer of CString data between a list-box
control and the field data members of a recordset. When
moving data from the recordset to the control, this function
selects the first item that exactly matches the specified string.

This topic lists the DDX_Field functions used to exchange data between a CRecordset and a CRecordView form or
a CDaoRecordset and a CDaoRecordView form.

DDX_Field functions are like DDX functions in that they exchange data with controls in a form. But unlike DDX, they exchange
data with the fields of the view's associated recordset object rather than with fields of the record view itself. For more
information, see classes CRecordView and CDaoRecordView .

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/dialog-data-exchange-functions-for-crecordview-and-cdaorecordview.md

DDX_FieldRadio Transfers integer data between a recordset field data member
and a group of radio buttons in a CRecordView or
CDaoRecordView .

DDX_FieldScroll Sets or gets the scroll position of a scroll bar control in a
CRecordView or CDaoRecordView . Call from your

DoFieldExchange function.

DDX_FieldSlider Synchronizes the thumb position of a slider control in a record
view and an int field data member of a recordset.

DDX_FieldText Overloaded versions are available for transferring int , UINT,
long, DWORD , CString, float, double, short, COleDateTime,
and COleCurrency data between a recordset field data
member and an edit box in a CRecordView or
CDaoRecordView .

DDX_FieldCBIndex

void AFXAPI DDX_FieldCBIndex(
 CDataExchange* pDX,
 int nIDC,
 int& index,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldCBIndex(
 CDataExchange* pDX,
 int nIDC,
 int& index,
 CDaoRecordset* pRecordset);

ParametersParameters

RemarksRemarks

The DDX_FieldCBIndex function synchronizes the index of the selected item in the list box control of a combo box
control in a record view and an int field data member of a recordset associated with the record view.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of a control in the CRecordView or CDaoRecordView object.

index
A reference to a field data member in the associated CRecordset or CDaoRecordset object.

pRecordset
A pointer to the CRecordset or CDaoRecordset object with which data is exchanged.

When moving data from the recordset to the control, this function sets the selection in the control based on the
value specified in index. On a transfer from the recordset to the control, if the recordset field is Null, MFC sets the
value of the index to 0. On a transfer from control to recordset, if the control is empty or if no item is selected, the
recordset field is set to 0.

Use the first version if you are working with the ODBC-based classes. Use the second version if you are working

ExampleExample

RequirementsRequirements

DDX_FieldCBString

void AFXAPI DDX_FieldCBString(
 CDataExchange* pDX,
 int nIDC,
 CString& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldCBString(
 CDataExchange* pDX,
 int nIDC,
 CString& value,
 CDaoRecordset* pRecordset);

ParametersParameters

RemarksRemarks

ExampleExample

with the DAO-based classes.

For more information about DDX, see Dialog Data Exchange and Validation. For examples and more information
about DDX for CRecordView and CDaoRecordView fields, see the article Record Views.

See DDX_FieldText for a general DDX_Field example. The example would be similar for DDX_FieldCBIndex .

Header: afxdao.h

The DDX_FieldCBString function manages the transfer of CString data between the edit control of a combo box
control in a record view and a CString field data member of a recordset associated with the record view.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of a control in the CRecordView or CDaoRecordView object.

value
A reference to a field data member in the associated CRecordset or CDaoRecordset object.

pRecordset
A pointer to the CRecordset or CDaoRecordset object with which data is exchanged.

When moving data from the recordset to the control, this function sets the current selection in the combo box to
the first row that begins with the characters in the string specified in value. On a transfer from the recordset to the
control, if the recordset field is Null, any selection is removed from the combo box and the edit control of the
combo box is set to empty. On a transfer from control to recordset, if the control is empty, the recordset field is set
to Null if the field permits.

Use the first version if you are working with the ODBC-based classes. Use the second version if you are working
with the DAO-based classes.

For more information about DDX, see Dialog Data Exchange and Validation. For examples and more information
about DDX for CRecordView and CDaoRecordView fields, see the article Record Views.

See DDX_FieldText for a general DDX_Field example. The example includes a call to DDX_FieldCBString .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access

RequirementsRequirements

DDX_FieldCBStringExact

void AFXAPI DDX_FieldCBStringExact(
 CDataExchange* pDX,
 int nIDC,
 CString& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldCBStringExact(
 CDataExchange* pDX,
 int nIDC,
 CString& value,
 CDaoRecordset* pRecordset);

ParametersParameters

RemarksRemarks

ExampleExample

RequirementsRequirements

DDX_FieldCheck

Header afxdao.h

The DDX_FieldCBStringExact function manages the transfer of CString data between the edit control of a combo
box control in a record view and a CString field data member of a recordset associated with the record view.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of a control in the CRecordView or CDaoRecordView object.

value
A reference to a field data member in the associated CRecordset or CDaoRecordset object.

pRecordset
A pointer to the CRecordset or CDaoRecordset object with which data is exchanged.

When moving data from the recordset to the control, this function sets the current selection in the combo box to
the first row that exactly matches the string specified in value. On a transfer from the recordset to the control, if the
recordset field is NULL, any selection is removed from the combo box and the edit box of the combo box is set to
empty. On a transfer from control to recordset, if the control is empty, the recordset field is set to NULL.

Use the first version if you are working with the ODBC-based classes. Use the second version if you are working
with the DAO-based classes.

For more information about DDX, see Dialog Data Exchange and Validation. For examples and more information
about DDX for CRecordView and CDaoRecordView fields, see the article Record Views.

See DDX_FieldText for a general DDX_Field example. Calls to DDX_FieldCBStringExact would be similar.

Header afxdao.h

The DDX_FieldCheck function manages the transfer of int data between a check box control in a dialog box, form
view, or control view object and an int data member of the dialog box, form view, or control view object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access

void AFXAPI DDX_FieldCheck(
 CDataExchange* pDX,
 int nIDC,
 int& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldCheck(
 CDataExchange* pDX,
 int nIDC,
 int& value,
 CDaoRecordset* pRecordset);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_FieldLBIndex

void AFXAPI DDX_FieldLBIndex(
 CDataExchange* pDX,
 int nIDC,
 int& index,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldLBIndex(
 CDataExchange* pDX,
 int nIDC,
 int& index,
 CDaoRecordset* pRecordset);

ParametersParameters

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the check box control associated with the control property.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is exchanged.

pRecordset
A pointer to the CRecordset or CDaoRecordset object with which data is exchanged.

When DDX_FieldCheck is called, value is set to the current state of the check box control, or the control's state is set
to value, depending on the direction of transfer.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdao.h

The DDX_FieldLBIndex function synchronizes the index of the selected item in a list box control in a record view and
an int field data member of a recordset associated with the record view.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC

RemarksRemarks

ExampleExample

RequirementsRequirements

DDX_FieldLBString

void AFXAPI DDX_FieldLBString(
 CDataExchange* pDX,
 int nIDC,
 CString& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldLBString(
 CDataExchange* pDX,
 int nIDC,
 CString& value,
 CDaoRecordset* pRecordset);

ParametersParameters

RemarksRemarks

The ID of a control in the CRecordView or CDaoRecordView object.

index
A reference to a field data member in the associated CRecordset or CDaoRecordset object.

pRecordset
A pointer to the CRecordset or CDaoRecordset object with which data is exchanged.

When moving data from the recordset to the control, this function sets the selection in the control based on the
value specified in index. On a transfer from the recordset to the control, if the recordset field is Null, MFC sets the
value of the index to 0. On a transfer from control to recordset, if the control is empty, the recordset field is set to 0.

Use the first version if you are working with the ODBC-based classes. Use the second version if you are working
with the DAO-based classes.

For more information about DDX, see Dialog Data Exchange and Validation. For examples and more information
about DDX for CRecordView and CDaoRecordView fields, see the article Record Views.

See DDX_FieldText for a general DDX_Field example.

Header afxdao.h

The DDX_FieldLBString copies the current selection of a list box control in a record view to a CString field data
member of a recordset associated with the record view.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of a control in the CRecordView or CDaoRecordView object.

value
A reference to a field data member in the associated CRecordset or CDaoRecordset object.

pRecordset
A pointer to the CRecordset or CDaoRecordset object with which data is exchanged.

In the reverse direction, this function sets the current selection in the list box to the first row that begins with the

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access

ExampleExample

RequirementsRequirements

DDX_FieldLBStringExact

void AFXAPI DDX_FieldLBStringExact(
 CDataExchange* pDX,
 int nIDC,
 CString& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldLBStringExact(
 CDataExchange* pDX,
 int nIDC,
 CString& value,
 CDaoRecordset* pRecordset);

ParametersParameters

RemarksRemarks

characters in the string specified by value. On a transfer from the recordset to the control, if the recordset field is
Null, any selection is removed from the list box. On a transfer from control to recordset, if the control is empty, the
recordset field is set to Null.

Use the first version if you are working with the ODBC-based classes. Use the second version if you are working
with the DAO-based classes.

For more information about DDX, see Dialog Data Exchange and Validation. For examples and more information
about DDX for CRecordView and CDaoRecordView fields, see the article Record Views.

See DDX_FieldText for a general DDX_Field example. Calls to DDX_FieldLBString would be similar.

Header afxdao.h

The DDX_FieldLBStringExact function copies the current selection of a list box control in a record view to a CString
field data member of a recordset associated with the record view.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of a control in the CRecordView or CDaoRecordView object.

value
A reference to a field data member in the associated CRecordset or CDaoRecordset object.

pRecordset
A pointer to the CRecordset or CDaoRecordset object with which data is exchanged.

In the reverse direction, this function sets the current selection in the list box to the first row that exactly matches
the string specified in value. On a transfer from the recordset to the control, if the recordset field is Null, any
selection is removed from the list box. On a transfer from control to recordset, if the control is empty, the recordset
field is set to Null.

Use the first version if you are working with the ODBC-based classes. Use the second version if you are working
with the DAO-based classes.

For more information about DDX, see Dialog Data Exchange and Validation. For examples and more information
about DDX for CRecordView and CDaoRecordView fields, see the article Record Views.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access

ExampleExample

RequirementsRequirements

DDX_FieldRadio

void AFXAPI DDX_FieldRadio(
 CDataExchange* pDX,
 int nIDC,
 int& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldRadio(
 CDataExchange* pDX,
 int nIDC,
 int& value,
 CDaoRecordset* pRecordset);

ParametersParameters

RemarksRemarks

ExampleExample

RequirementsRequirements

See DDX_FieldText for a general DDX_Field example. Calls to DDX_FieldLBStringExact would be similar.

Header afxdao.h

The DDX_FieldRadio function associates a zero-based int member variable of a record view's recordset with the
currently selected radio button in a group of radio buttons in the record view.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of the first in a group (with style WS_GROUP) of adjacent radio button controls in the CRecordView or
CDaoRecordView object.

value
A reference to a field data member in the associated CRecordset or CDaoRecordset object.

pRecordset
A pointer to the CRecordset or CDaoRecordset object with which data is exchanged.

When transferring from the recordset field to the view, this function turns on the nth radio button (zero-based) and
turns off the other buttons. In the reverse direction, this function sets the recordset field to the ordinal number of
the radio button that is currently on (checked). On a transfer from the recordset to the control, if the recordset field
is Null, no button is selected. On a transfer from control to recordset, if no control is selected, the recordset field is
set to Null if the field permits that.

Use the first version if you are working with the ODBC-based classes. Use the second version if you are working
with the DAO-based classes.

For more information about DDX, see Dialog Data Exchange and Validation. For examples and more information
about DDX for CRecordView and CDaoRecordView fields, see the article Record Views.

See DDX_FieldText for a general DDX_Field example. Calls to DDX_FieldRadio would be similar.

Header afxdao.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access

DDX_FieldScroll

void AFXAPI DDX_FieldScroll(
 CDataExchange* pDX,
 int nIDC,
 int& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldScroll(
 CDataExchange* pDX,
 int nIDC,
 int& value,
 CDaoRecordset* pRecordset);

ParametersParameters

RemarksRemarks

ExampleExample

RequirementsRequirements

DDX_FieldSlider

The DDX_FieldScroll function synchronizes the scroll position of a scroll bar control in a record view and an int
field data member of a recordset associated with the record view (or with whatever integer variable you choose to
map it to).

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of the first in a group (with style WS_GROUP) of adjacent radio button controls in the CRecordView or
CDaoRecordView object.

value
A reference to a field data member in the associated CRecordset or CDaoRecordset object.

pRecordset
A pointer to the CRecordset or CDaoRecordset object with which data is exchanged.

When moving data from the recordset to the control, this function sets the scroll position of the scroll bar control
to the value specified in value. On a transfer from the recordset to the control, if the recordset field is Null, the
scroll bar control is set to 0. On a transfer from control to recordset, if the control is empty, the value of the
recordset field is 0.

Use the first version if you are working with the ODBC-based classes. Use the second version if you are working
with the DAO-based classes.

For more information about DDX, see Dialog Data Exchange and Validation. For examples and more information
about DDX for CRecordView and CDaoRecordView fields, see the article Record Views.

See DDX_FieldText for a general DDX_Field example. Calls to DDX_FieldScroll would be similar.

Header afxdao.h

The DDX_FieldSlider function synchronizes the thumb position of a slider control in a record view and an int field
data member of a recordset associated with the record view (or with whatever integer variable you choose to map
it to).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access

SyntaxSyntax

 void AFXAPI DDX_FieldSlider(
 CDataExchange* pDX,
 int nIDC,
 int& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldSlider(
 CDataExchange* pDX,
 int nIDC,
 int& value,
 CDaoRecordset* pRecordset);

ParametersParameters

RemarksRemarks

ExampleExample

RequirementsRequirements

DDX_FieldText

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the slider control.

value
A reference to the value to be exchanged. This parameter holds or will be used to set the slider control's current
thumb position.

pRecordset
A pointer to the associated CRecordset or CDaoRecordset object with which data is exchanged.

When moving data from the recordset to the slider, this function sets the position of the slider to the value
specified in value. On a transfer from the recordset to the control, if the recordset field is Null, the slider control's
position is set to 0. On a transfer from the control to the recordset, if the control is empty, the value of the recordset
field is 0.

DDX_FieldSlider does not exchange range information with slider controls capable of setting a range rather than
simply a position.

Use the first override of the function if you are working with the ODBC-based classes. Use the second override
with the DAO-based classes.

For more information about DDX, see Dialog Data Exchange and Validation. For examples and more information
about DDX for CRecordView and CDaoRecordView fields, see Record Views. For information about slider controls,
see Using CSliderCtrl.

See DDX_FieldText for a general DDX_Field example. Calls to DDX_FieldSlider would be similar.

Header: afxdao.h

The DDX_FieldText function manages the transfer of int, short, long, DWORD, CString, float, double, BOOL, or
BYTE data between an edit box control and the field data members of a recordset.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access

 CDataExchange* pDX,
 int nIDC,
 BYTE& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 int& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 UINT& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 long& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 DWORD& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 CString& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 float& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 double& value,
 CRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 short& value,
 CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 BOOL& value,
 CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 BYTE& value,
 CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 long& value,
 CDaoRecordset* pRecordset);

 CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 DWORD& value,
 CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 CString& value,
 CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 float& value,
 CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 double& value,
 CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 COleDateTime& value,
 CDaoRecordset* pRecordset);

void AFXAPI DDX_FieldText(
 CDataExchange* pDX,
 int nIDC,
 COleCurrency& value,
 CDaoRecordset* pRecordset);

ParametersParameters

RemarksRemarks

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of a control in the CRecordView or CDaoRecordView object.

value
A reference to a field data member in the associated CRecordset or CDaoRecordset object. The data type of value
depends on which of the overloaded versions of DDX_FieldText you use.

pRecordset
A pointer to the CRecordset or CDaoRecordset object with which data is exchanged. This pointer enables
DDX_FieldText to detect and set Null values.

For CDaoRecordset objects, DDX_FieldText also manages transferring COleDateTime, and COleCurrency values.
An empty edit box control indicates a Null value. On a transfer from the recordset to the control, if the recordset
field is Null, the edit box is set to empty. On a transfer from control to recordset, if the control is empty, the
recordset field is set to Null.

Use the versions with CRecordset parameters if you are working with the ODBC-based classes. Use the versions
with CDaoRecordset parameters if you are working with the DAO-based classes.

ExampleExample

void CMyDaoRecordView::DoDataExchange(CDataExchange* pDX)
{
 CDaoRecordView::DoDataExchange(pDX);
 DDX_FieldCBString(pDX, IDC_LASTNAME, m_pSet->m_LastName, m_pSet);
 DDX_FieldText(pDX, IDC_ID, m_pSet->m_EmployeeID, m_pSet);
 DDX_FieldText(pDX, IDC_AGE, m_pSet->m_Age, m_pSet);
}

RequirementsRequirements

See also

For more information about DDX, see Dialog Data Exchange and Validation. For examples and more information
about DDX for CRecordView and CDaoRecordView fields, see the article Record Views.

The following DoDataExchange function for a CRecordView contains DDX_FieldText function calls for three data
types: IDC_COURSELIST is a combo box; the other two controls are edit boxes. For DAO programming, the m_pSet
parameter is a pointer to a CRecordset or CDaoRecordset.

Header afxdao.h

Macros and Globals

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/record-views-mfc-data-access

Dialog Data Exchange Functions for OLE Controls
3/4/2019 • 10 minutes to read • Edit Online

DDX_OC FunctionsDDX_OC Functions

DDX_OCBool Manages the transfer of BOOL data between a property of an
OLE control and a BOOL data member.

DDX_OCBoolRO Manages the transfer of BOOL data between a read-only
property of an OLE control and a BOOL data member.

DDX_OCColor Manages the transfer of OLE_COLOR data between a
property of an OLE control and an OLE_COLOR data member.

DDX_OCColorRO Manages the transfer of OLE_COLOR data between a read-
only property of an OLE control and an OLE_COLOR data
member.

DDX_OCFloat Manages the transfer of float (or double) data between a
property of an OLE control and a float (or double) data
member.

DDX_OCFloatRO Manages the transfer of float (or double) data between a
read-only property of an OLE control and a float (or double)
data member.

DDX_OCInt Manages the transfer of int (or long) data between a
property of an OLE control and an int (or long) data member.

DDX_OCIntRO Manages the transfer of int (or long) data between a read-
only property of an OLE control and an int (or long) data
member.

DDX_OCShort Manages the transfer of short data between a property of an
OLE control and a short data member.

DDX_OCShortRO Manages the transfer of short data between a read-only
property of an OLE control and a short data member.

DDX_OCText Manages the transfer of CString data between a property of
an OLE control and a CString data member.

DDX_OCTextRO Manages the transfer of CString data between a read-only
property of an OLE control and a CString data member.

DDX_OCBool

This topic lists the DDX_OC functions used to exchange data between a property of an OLE control in a dialog box,
form view, or control view object and a data member of the dialog box, form view, or control view object.

The DDX_OCBool function manages the transfer of BOOL data between a property of an OLE control in a dialog

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/dialog-data-exchange-functions-for-ole-controls.md

void AFXAPI DDX_OCBool(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 BOOL& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_OCBoolRO

void AFXAPI DDX_OCBoolRO(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 BOOL& value);

ParametersParameters

RemarksRemarks

box, form view, or control view object and a BOOL data member of the dialog box, form view, or control view
object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an OLE control in the dialog box, form view, or control view object.

dispid
The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

For more information about DDX, see Dialog Data Exchange and Validation.

Header: afxdisp.h

The DDX_OCBoolRO function manages the transfer of BOOL data between a read-only property of an OLE control in
a dialog box, form view, or control view object and a BOOL data member of the dialog box, form view, or control
view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an OLE control in the dialog box, form view, or control view object.

dispid
The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

RequirementsRequirements

DDX_OCColor

void AFXAPI DDX_OCColor(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 OLE_COLOR& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_OCColorRO

void AFXAPI DDX_OCColorRO(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 OLE_COLOR& value);

ParametersParameters

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdisp.h

The DDX_OCColor function manages the transfer of OLE_COLOR data between a property of an OLE control in a
dialog box, form view, or control view object and a OLE_COLOR data member of the dialog box, form view, or
control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an OLE control in the dialog box, form view, or control view object.

dispid
The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdisp.h

The DDX_OCColorRO function manages the transfer of OLE_COLOR data between a read-only property of an OLE
control in a dialog box, form view, or control view object and a OLE_COLOR data member of the dialog box, form
view, or control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC

RemarksRemarks

RequirementsRequirements

DDX_OCFloat

void AFXAPI DDX_OCFloat(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 float& value);

void AFXAPI DDX_OCFloat(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 double& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_OCFloatRO

The ID of an OLE control in the dialog box, form view, or control view object.

dispid
The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdisp.h

The DDX_OCFloat function manages the transfer of float (or double) data between a property of an OLE control in
a dialog box, form view, or control view object and a float (or double) data member of the dialog box, form view,
or control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an OLE control in the dialog box, form view, or control view object.

dispid
The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdisp.h

The DDX_OCFloatRO function manages the transfer of float (or double) data between a read-only property of an
OLE control in a dialog box, form view, or control view object and a float (or double) data member of the dialog
box, form view, or control view object.

void AFXAPI DDX_OCFloatRO(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 float& value);

void AFXAPI DDX_OCFloatRO(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 double& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_OCInt

void AFXAPI DDX_OCInt(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 int& value);

void AFXAPI DDX_OCInt(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 long& value);

ParametersParameters

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an OLE control in the dialog box, form view, or control view object.

dispid
The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdisp.h

The DDX_OCInt function manages the transfer of int (or long) data between a property of an OLE control in a
dialog box, form view, or control view object and a int (or long) data member of the dialog box, form view, or
control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an OLE control in the dialog box, form view, or control view object.

RemarksRemarks

RequirementsRequirements

DDX_OCIntRO

void AFXAPI DDX_OCIntRO(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 int& value);

void AFXAPI DDX_OCIntRO(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 long& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_OCShort

dispid
The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdisp.h

The DDX_OCIntRO function manages the transfer of int (or long) data between a read-only property of an OLE
control in a dialog box, form view, or control view object and a int (or long) data member of the dialog box, form
view, or control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an OLE control in the dialog box, form view, or control view object.

dispid
The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdisp.h

The DDX_OCShort function manages the transfer of short data between a property of an OLE control in a dialog
box, form view, or control view object and a short data member of the dialog box, form view, or control view object.

void AFXAPI DDX_OCShort(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 short& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_OCShortRO

void AFXAPI DDX_OCShortRO(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 short& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an OLE control in the dialog box, form view, or control view object.

dispid
The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdisp.h

The DDX_OCShortRO function manages the transfer of short data between a read-only property of an OLE control in
a dialog box, form view, or control view object and a short data member of the dialog box, form view, or control
view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an OLE control in the dialog box, form view, or control view object.

dispid
The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

For more information about DDX, see Dialog Data Exchange and Validation.

DDX_OCText

void AFXAPI DDX_OCText(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 CString& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_OCTextRO

void AFXAPI DDX_OCTextRO(
 CDataExchange* pDX,
 int nIDC,
 DISPID dispid,
 CString& value);

ParametersParameters

Header afxdisp.h

The DDX_OCText function manages the transfer of CString data between a property of an OLE control in a
dialog box, form view, or control view object and a CString data member of the dialog box, form view, or control
view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an OLE control in the dialog box, form view, or control view object.

dispid
The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdisp.h

The DDX_OCTextRO function manages the transfer of CString data between a read-only property of an OLE control
in a dialog box, form view, or control view object and a CString data member of the dialog box, form view, or
control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an OLE control in the dialog box, form view, or control view object.

dispid

RemarksRemarks

RequirementsRequirements

See also

The dispatch ID of a property of the control.

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdisp.h

Macros and Globals

Database Macros and Globals
3/4/2019 • 3 minutes to read • Edit Online

Database MacrosDatabase Macros

AFX_ODBC_CALL Calls an ODBC API function that returns
SQL_STILL_EXECUTING . AFX_ODBC_CALL will repeatedly call

the function until it no longer returns SQL_STILL_EXECUTING .

AFX_SQL_ASYNC Calls AFX_ODBC_CALL .

AFX_SQL_SYNC Calls an ODBC API function that does not return
SQL_STILL_EXECUTING .

Database GlobalsDatabase Globals

AfxDbInitModule Adds database support for a regular MFC DLL that is
dynamically linked to MFC.

AfxGetHENV Retrieves a handle to the ODBC environment currently in use
by MFC. You can use this handle in direct ODBC calls.

AfxDbInitModule

SyntaxSyntax

void AFXAPI AfxDbInitModule();

RemarksRemarks

RequirementsRequirements

The macros and globals listed below apply to ODBC-based database applications. They are not used with DAO-
based applications.

Before MFC 4.2, the macros AFX_SQL_ASYNC and AFX_SQL_SYNC gave asynchronous operations an opportunity to
yield time to other processes. Beginning with MFC 4.2, the implementation of these macros changed because the
MFC ODBC classes used only synchronous operations. The macro AFX_ODBC_CALL was new to MFC 4.2.

For MFC database (or DAO) support from a regular MFC DLL that is dynamically linked to MFC, add a call to this
function in your regular MFC DLL's CWinApp::InitInstance function to initialize the MFC database DLL.

Make sure this call occurs before any base-class call or any added code which accesses the MFC database DLL.
The MFC database DLL is an MFC extension DLL; in order for an MFC extension DLL to get wired into a
CDynLinkLibrary chain, it must create a CDynLinkLibrary object in the context of every module that will be using it.
AfxDbInitModule creates the CDynLinkLibrary object in your regular MFC DLL's context so that it gets wired into

the CDynLinkLibrary object chain of the regular MFC DLL.

Header: <afxdll_.h>

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/database-macros-and-globals.md

AFX_ODBC_CALL

AFX_ODBC_CALL(SQLFunc)

ParametersParameters

RemarksRemarks

ExampleExample

RETCODE nRetCode;

AFX_ODBC_CALL(::SQLColumns(prs->m_hstmt, (SQLTCHAR*)NULL, SQL_NTS, (SQLTCHAR*)NULL,
 SQL_NTS, (SQLTCHAR*)strTableName.GetBuffer(), SQL_NTS, (SQLTCHAR*)NULL, SQL_NTS));

if (!prs->Check(nRetCode))
{
 AfxThrowDBException(nRetCode, prs->m_pDatabase, prs->m_hstmt);
 TRACE(_T("SQLColumns failed\n"));
}

RequirementsRequirements

AFX_SQL_ASYNC

AFX_SQL_ASYNC(prs, SQLFunc)

ParametersParameters

RemarksRemarks

Use this macro to call any ODBC API function that may return SQL_STILL_EXECUTING .

SQLFunc
An ODBC API function. For more information about ODBC API functions, see the Windows SDK.

AFX_ODBC_CALL repeatedly calls the function until it no longer returns SQL_STILL_EXECUTING .

Before invoking AFX_ODBC_CALL , you must declare a variable, nRetCode , of type RETCODE.

Note that the MFC ODBC classes now use only synchronous processing. In order to perform an asynchronous
operation, you must call the ODBC API function SQLSetConnectOption . For more information, see the topic
"Executing Functions Asynchronously" in the Windows SDK.

This example uses AFX_ODBC_CALL to call the SQLColumns ODBC API function, which returns a list of the columns in
the table named by strTableName . Note the declaration of nRetCode and the use of recordset data members to
pass parameters to the function. The example also illustrates checking the results of the call with Check , a member
function of class CRecordset . The variable prs is a pointer to a CRecordset object, declared elsewhere.

Header: afxdb.h

The implementation of this macro changed in MFC 4.2.

prs
A pointer to a CRecordset object or a CDatabase object. Beginning with MFC 4.2, this parameter value is ignored.

SQLFunc
An ODBC API function. For more information about ODBC API functions, see the Windows SDK.

AFX_SQL_ASYNC simply calls the macro AFX_ODBC_CALL and ignores the prs parameter. In versions of MFC prior

NOTENOTE

RequirementsRequirements

AFX_SQL_SYNC

AFX_SQL_SYNC(SQLFunc)

ParametersParameters

RemarksRemarks

AFX_SQL_SYNC(::SQLGetInfo(m_dbCust.m_hdbc, SQL_ODBC_SQL_CONFORMANCE,
 &nValue, sizeof(nValue), &cbValue));

nRetCode = ::SQLGetInfo(m_dbCust.m_hdbc, SQL_ODBC_SQL_CONFORMANCE,
 &nValue, sizeof(nValue), &cbValue);

RequirementsRequirements

AfxGetHENV

HENV AFXAPI AfxGetHENV();

Return ValueReturn Value

to 4.2, AFX_SQL_ASYNC was used to call ODBC API functions that might return SQL_STILL_EXECUTING . If an ODBC
API function did return SQL_STILL_EXECUTING , then AFX_SQL_ASYNC would call prs->OnWaitForDataSource .

The MFC ODBC classes now use only synchronous processing. In order to perform an asynchronous operation, you must call
the ODBC API function SQLSetConnectOption . For more information, see the topic "Executing Functions Asynchronously" in
the Windows SDK.

Header afxdb.h

The AFX_SQL_SYNC macro simply calls the function SQLFunc .

SQLFunc
An ODBC API function. For more information about these functions, see the Windows SDK.

Use this macro to call ODBC API functions that will not return SQL_STILL_EXECUTING .

Before calling AFX_SQL_SYNC , you must declare a variable, nRetCode , of type RETCODE. You can check the value of
nRetCode after the macro call.

Note that the implementation of AFX_SQL_SYNC changed in MFC 4.2. Because checking the server status was no
longer required, AFX_SQL_SYNC simply assigns a value to nRetCode . For example, instead of making the call

you can simply make the assignment

Header afxdb.h

You can use the returned handle in direct ODBC calls, but you must not close the handle or assume that the handle
is still valid and available after any existing CDatabase - or CRecordset -derived objects have been destroyed.

The handle to the ODBC environment currently in use by MFC. Can be SQL_HENV_NULL if there are no CDatabase

RequirementsRequirements

See also

objects and no CRecordset objects in use.

Header afxdb.h

Macros and Globals

DAO Database Engine Initialization and Termination
3/4/2019 • 2 minutes to read • Edit Online

DAO Database Engine Initialization and TerminationDAO Database Engine Initialization and Termination

AfxDaoInit Initializes the DAO database engine.

AfxDaoTerm Terminates the DAO database engine.

AfxDaoInit

void AfxDaoInit();

throw(CDaoException*);

RemarksRemarks

RequirementsRequirements

AfxDaoTerm

void AfxDaoTerm();

RemarksRemarks

RequirementsRequirements

See also

When using MFC DAO objects, the DAO database engine must first be initialized and then terminated before your
application or DLL quits. Two functions, AfxDaoInit and AfxDaoTerm , perform these tasks.

This function initializes the DAO database engine.

In most cases, you don't need to call AfxDaoInit because the application automatically calls it when it is needed.

For related information, and for an example of calling AfxDaoInit , see Technical Note 54.

Header afxdao.h

This function terminates the DAO database engine.

Typically, you only need to call this function in a regular MFC DLL; an application will automatically call
AfxDaoTerm when it is needed.

In regular MFC DLLs, call AfxDaoTerm before the ExitInstance function, but after all MFC DAO objects have been
destroyed.

For related information, see Technical Note 54.

Header afxdao.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/dao-database-engine-initialization-and-termination.md

Macros and Globals

OLE Initialization
3/4/2019 • 2 minutes to read • Edit Online

OLE InitializationOLE Initialization

AfxOleInit Initializes the OLE libraries.

AfxEnableControlContainer Call this function in your application object's InitInstance
function to enable support for containment of OLE controls.

AfxEnableControlContainer

SyntaxSyntax

void AfxEnableControlContainer();

RemarksRemarks

RequirementsRequirements

AfxOleInit

BOOL AFXAPI AfxOleInit();

Return ValueReturn Value

RemarksRemarks

Before an application can use OLE system services, it must initialize the OLE system DLLs and verify that the DLLs
are the correct version. The AfxOleInit function initializes the OLE system DLLs.

Call this function in your application object's InitInstance function to enable support for containment of OLE
controls.

For more information about OLE controls (now called ActiveX controls), see ActiveX Control Topics.

Header: afxdisp.h

Initializes OLE support for the application.

Nonzero if successful; 0 if initialization fails, possibly because incorrect versions of the OLE system DLLs are
installed.

Call this function to initialize the OLE support for an MFC application. When this function is called, the following
actions occur :

Initializes the COM library on the current apartment of the calling application. For more information, see
OleInitialize.

Creates a message filter object, implementing the IMessageFilter interface. This message filter can be
accessed with a call to AfxOleGetMessageFilter.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/ole-initialization.md
https://docs.microsoft.com/windows/desktop/api/ole2/nf-ole2-oleinitialize
https://docs.microsoft.com/windows/desktop/api/objidl/nn-objidl-imessagefilter

NOTENOTE

NOTENOTE

RequirementsRequirements

See also

If AfxOleInit is called from an MFC DLL, the call will fail. The failure occurs because the function assumes that, if it is called
from a DLL, the OLE system was previously initialized by the calling application.

MFC applications must be initialized as single threaded apartment (STA). If you call CoInitializeEx in your InitInstance

override, specify COINIT_APARTMENTTHREADED (rather than COINIT_MULTITHREADED).

Header: afxdisp.h

Macros and Globals

https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-coinitializeex

Application Control
2/7/2019 • 8 minutes to read • Edit Online

Application ControlApplication Control

AfxOleCanExitApp Indicates whether the application can terminate.

AfxOleGetMessageFilter Retrieves the application's current message filter.

AfxOleGetUserCtrl Retrieves the current user-control flag.

AfxOleSetUserCtrl Sets or clears the user-control flag.

AfxOleLockApp Increments the framework's global count of the number of
active objects in an application.

AfxOleLockControl Locks the class factory of the specified control.

AfxOleUnlockApp Decrements the framework's count of the number of active
objects in an application.

AfxOleUnlockControl Unlocks the class factory of the specified control.

AfxOleRegisterServerClass Registers a server in the OLE system registry.

AfxOleSetEditMenu Implements the user interface for the typename Object
command.

AfxOleCanExitApp

BOOL AFXAPI AfxOleCanExitApp();

Return ValueReturn Value

RemarksRemarks

OLE requires substantial control over applications and their objects. The OLE system DLLs must be able to launch
and release applications automatically, coordinate their production and modification of objects, and so on. The
functions in this topic meet those requirements. In addition to being called by the OLE system DLLs, these
functions must sometimes be called by applications as well.

Indicates whether the application can terminate.

Nonzero if the application can exit; otherwise 0.

An application should not terminate if there are outstanding references to its objects. The global functions
AfxOleLockApp and AfxOleUnlockApp increment and decrement, respectively, a counter of references to the

application's objects. The application should not terminate when this counter is nonzero. If the counter is nonzero,
the application's main window is hidden (not destroyed) when the user chooses Close from the system menu or
Exit from the File menu. The framework calls this function in CFrameWnd::OnClose .

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/application-control.md

ExampleExample

// Helper exit function for automation server
BOOL CMainFrame::CanExit()
{
 if (AfxOleCanExitApp())
 {
 // No outstanding object counts - go ahead and exit
 return TRUE;
 }
 else
 {
 // There are outstanding OLE object counts...
 // hide app to give user impression that application has exited.
 ShowWindow(SW_HIDE);
 // take user out of control of the app
 AfxOleSetUserCtrl(FALSE);
 return FALSE;
 }
}

Requirements

AfxOleGetMessageFilter

COleMessageFilter* AFXAPI AfxOleGetMessageFilter();

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleMessageFilter* pFilter = AfxOleGetMessageFilter();
ASSERT_VALID(pFilter);
pFilter->BeginBusyState();
// do things requiring a busy state
pFilter->EndBusyState();

Header: afxdisp.h

Retrieves the application's current message filter.

A pointer to the current message filter.

Call this function to access the current COleMessageFilter -derived object, just as you would call AfxGetApp to
access the current application object.

// Another example
//CWinApp-derived class
BOOL CCMFCAutomationApp::InitInstance()
{
 CWinApp::InitInstance();

 // Initialize OLE libraries
 if (!AfxOleInit())
 {
 AfxMessageBox(IDP_OLE_INIT_FAILED);
 return FALSE;
 }

 CWinThread* pThread = AfxGetThread();
 if (pThread != NULL)
 {
 // Destroy message filter, thereby unregistering it.
 delete pThread->m_pMessageFilter;
 pThread->m_pMessageFilter = NULL;

 // Create the new message filter object.
 //CMyMessageFilter is derived from COleMessageFilter
 pThread->m_pMessageFilter = new CMyMessageFilter;
 ASSERT(AfxOleGetMessageFilter() != NULL);

 // Register the new message filter object.
 AfxOleGetMessageFilter()->Register();
 }
 //...
 //...
 //...

RequirementsRequirements

AfxOleGetUserCtrl

BOOL AFXAPI AfxOleGetUserCtrl();

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

AfxOleSetUserCtrl

void AFXAPI AfxOleSetUserCtrl(BOOL bUserCtrl);

Header: afxwin.h

Retrieves the current user-control flag.

Nonzero if the user is in control of the application; otherwise 0.

The user is in control of the application when the user has explicitly opened or created a new document. The user is
also in control if the application was not launched by the OLE system DLLs — in other words, if the user launched
the application with the system shell.

Header: afxdisp.h

Sets or clears the user-control flag, which is explained in the reference for AfxOleGetUserCtrl .

ParametersParameters

RemarksRemarks

RequirementsRequirements

AfxOleLockApp

void AFXAPI AfxOleLockApp();

RemarksRemarks

ExampleExample

// Below is a code sample from an Application Wizard-generated SDI
// Application with Automation support. The Application Wizard adds a
// dispatch interface to the document class. AfxOleLockApp() and
// AfxOleUnlockApp() respectively increment and decrement the
// application's object count. When the object count is equal to
// zero and if the user has not taken control of the application,
// the server is terminated.

CCMFCAutomationDoc::CCMFCAutomationDoc()
{
 EnableAutomation();
 AfxOleLockApp();
}

CCMFCAutomationDoc::~CCMFCAutomationDoc()
{
 AfxOleUnlockApp();
}

RequirementsRequirements

bUserCtrl
Specifies whether the user-control flag is to be set or cleared.

The framework calls this function when the user creates or loads a document, but not when a document is loaded
or created through an indirect action such as loading an embedded object from a container application.

Call this function if other actions in your application should put the user in control of the application.

Header: afxdisp.h

Increments the framework's global count of the number of active objects in the application.

The framework keeps a count of the number of objects active in an application. The AfxOleLockApp and
AfxOleUnlockApp functions, respectively, increment and decrement this count.

When the user attempts to close an application that has active objects — an application for which the count of
active objects is nonzero — the framework hides the application from the user's view instead of completely
shutting it down. The AfxOleCanExitApp function indicates whether the application can terminate.

Call AfxOleLockApp from any object that exposes OLE interfaces, if it would be undesirable for that object to be
destroyed while still being used by a client application. Also call AfxOleUnlockApp in the destructor of any object
that calls AfxOleLockApp in the constructor. By default, COleDocument (and derived classes) automatically lock and
unlock the application.

Header: afxdisp.h

AfxOleUnlockApp

void AFXAPI AfxOleUnlockApp();

RemarksRemarks

ExampleExample

RequirementsRequirements

AfxOleLockControl

SyntaxSyntax

BOOL AFXAPI AfxOleLockControl(REFCLSID clsid);
BOOL AFXAPI AfxOleLockControl(LPCTSTR lpszProgID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Starts and locks control's (Microsoft Calendar) class factory.
// Control will remain in memory for lifetime of
// application or until AfxOleUnlockControl() is called.

AfxOleLockControl(_T("MSCAL.Calendar"));

RequirementsRequirements

Decrements the framework's count of active objects in the application.

See AfxOleLockApp for further information.

When the number of active objects reaches zero, AfxOleOnReleaseAllObjects is called.

See the example for AfxOleLockApp.

Header: afxdisp.h

Locks the class factory of the specified control so that dynamically created data associated with the control remains
in memory.

clsid
The unique class ID of the control.

lpszProgID
The unique program ID of the control.

Nonzero if the class factory of the control was successfully locked; otherwise 0.

This can significantly speed up display of the controls. For example, once you create a control in a dialog box and
lock the control with AfxOleLockControl , you do not need to create and kill it again every time the dialog is shown
or destroyed. If the user opens and closes a dialog box repeatedly, locking your controls can significantly enhance
performance. When you are ready to destroy the control, call AfxOleUnlockControl .

Header: afxwin.h

 AfxOleRegisterServerClass

BOOL AFXAPI AfxOleRegisterServerClass(
 REFCLSID clsid,
 LPCTSTR lpszClassName,
 LPCTSTR lpszShortTypeName,
 LPCTSTR lpszLongTypeName,
 OLE_APPTYPE nAppType = OAT_SERVER,
 LPCTSTR* rglpszRegister = NULL,
 LPCTSTR* rglpszOverwrite = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This function allows you to register your server in the OLE system registry.

clsid
Reference to the server's OLE class ID.

lpszClassName
Pointer to a string containing the class name of the server's objects.

lpszShortTypeName
Pointer to a string containing the short name of the server's object type, such as "Chart."

lpszLongTypeName
Pointer to a string containing the long name of the server's object type, such as "Microsoft Excel 5.0 Chart."

nAppType
A value, taken from the OLE_APPTYPE enumeration, specifying the type of OLE application. Possible values are
the following:

OAT_INPLACE_SERVER Server has full server user-interface.

OAT_SERVER Server supports only embedding.

OAT_CONTAINER Container supports links to embeddings.

OAT_DISPATCH_OBJECT IDispatch -capable object.

rglpszRegister
Array of pointers to strings representing the keys and values to be added to the OLE system registry if no existing
values for the keys are found.

rglpszOverwrite
Array of pointers to strings representing the keys and values to be added to the OLE system registry if the registry
contains existing values for the given keys.

Nonzero if the server class is successfully registered; otherwise 0.

Most applications can use COleTemplateServer::Register to register the application's document types. If your
application's system-registry format does not fit the typical pattern, you can use AfxOleRegisterServerClass for
more control.

The registry consists of a set of keys and values. The rglpszRegister and rglpszOverwrite arguments are arrays of
pointers to strings, each consisting of a key and a value separated by a NULL character ('\0'). Each of these
strings can have replaceable parameters whose places are marked by the character sequences %1 through %5.

The symbols are filled in as follows:

SYMBOL VALUE

%1 Class ID, formatted as a string

%2 Class name

%3 Path to executable file

%4 Short type name

%5 Long type name

RequirementsRequirements

AfxOleSetEditMenu

void AFXAPI AfxOleSetEditMenu(
 COleClientItem* pClient,
 CMenu* pMenu,
 UINT iMenuItem,
 UINT nIDVerbMin,
 UINT nIDVerbMax = 0,
 UINT nIDConvert = 0);

ParametersParameters

RemarksRemarks

Header: afxdisp.h

Implements the user interface for the typename Object command.

pClient
A pointer to the client OLE item.

pMenu
A pointer to the menu object to be updated.

iMenuItem
The index of the menu item to be updated.

nIDVerbMin
The command ID that corresponds to the primary verb.

nIDVerbMax
The command ID that corresponds to the last verb.

nIDConvert
ID for the Convert menu item.

If the server recognizes only a primary verb, the menu item becomes "verb typename Object" and the nIDVerbMin
command is sent when the user chooses the command. If the server recognizes several verbs, then the menu item
becomes " typename Object" and a submenu listing all the verbs appears when the user chooses the command.
When the user chooses a verb from the submenu, nIDVerbMin is sent if the first verb is chosen, nIDVerbMin + 1 is
sent if the second verb is chosen, and so forth. The default COleDocument implementation automatically handles
this feature.

You must have the following statement in your client's application resource script (.RC) file:

RequirementsRequirements

AfxOleUnlockControl

SyntaxSyntax

BOOL AFXAPI AfxOleUnlockControl(REFCLSID clsid);
BOOL AFXAPI AfxOleUnlockControl(LPCTSTR lpszProgID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Unlock control's (Microsoft Calendar Control) class factory.

AfxOleUnlockControl(_T("MSCAL.Calendar"));

RequirementsRequirements

See also

#include <afxolecl.rc>

Header: afxole.h

Unlocks the class factory of the specified control.

clsid
The unique class ID of the control.

lpszProgID
The unique program ID of the control.

Nonzero if the class factory of the control was successfully unlocked; otherwise 0.

A control is locked with AfxOleLockControl , so that dynamically created data associated with the control remains in
memory. This can significantly speed up display of the control because the control need not be created and
destroyed every time it is displayed. When you are ready to destroy the control, call AfxOleUnlockControl .

Header: afxwin.h

Macros and Globals

Dispatch Maps
10/31/2018 • 6 minutes to read • Edit Online

DISPATCH MAP MACRO DESCRIPTION

DECLARE_DISPATCH_MAP Declares that a dispatch map will be used to expose a class's
methods and properties (must be used in the class
declaration).

BEGIN_DISPATCH_MAP Starts the definition of a dispatch map.

END_DISPATCH_MAP Ends the definition of a dispatch map.

DISP_FUNCTION Used in a dispatch map to define an OLE automation function.

DISP_PROPERTY Defines an OLE automation property.

DISP_PROPERTY_EX Defines an OLE automation property and names the Get and
Set functions.

DISP_PROPERTY_NOTIFY Defines an OLE automation property with notification.

DISP_PROPERTY_PARAM Defines an OLE automation property that takes parameters
and names the Get and Set functions.

DISP_DEFVALUE Makes an existing property the default value of an object.

DECLARE_DISPATCH_MAP

DECLARE_DISPATCH_MAP()

RemarksRemarks

OLE Automation provides ways to call methods and to access properties across applications. The mechanism
supplied by the Microsoft Foundation Class Library for dispatching these requests is the "dispatch map," which
designates the internal and external names of object functions and properties, as well as the data types of the
properties themselves and of function arguments.

If a CCmdTarget -derived class in your program supports OLE Automation, that class must provide a dispatch map
to expose its methods and properties.

Use the DECLARE_DISPATCH_MAP macro at the end of your class declaration. Then, in the .CPP file that defines
the member functions for the class, use the BEGIN_DISPATCH_MAP macro. Then include macro entries for each
of your class's exposed methods and properties (DISP_FUNCTION, DISP_PROPERTY, and so on). Finally, use the
END_DISPATCH_MAP macro.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/dispatch-maps.md

NOTENOTE

ExampleExample

class CMyServerDoc : public COleServerDoc
{
 DECLARE_DISPATCH_MAP()

 // Remainder of class declaration omitted.

RequirementsRequirements

BEGIN_DISPATCH_MAP

BEGIN_DISPATCH_MAP(theClass, baseClass)

ParametersParameters

RemarksRemarks

RequirementsRequirements

END_DISPATCH_MAP

END_DISPATCH_MAP()

RemarksRemarks

RequirementsRequirements

If you declare any members after DECLARE_DISPATCH_MAP, you must specify a new access type (public, private, or
protected) for them.

The Application Wizard and code wizards assist in creating Automation classes and in maintaining dispatch maps.
For more information on dispatch maps, see Automation Servers.

Header: afxwin.h

Declares the definition of your dispatch map.

theClass
Specifies the name of the class that owns this dispatch map.

baseClass
Specifies the base class name of theClass.

In the implementation (.cpp) file that defines the member functions for your class, start the dispatch map with the
BEGIN_DISPATCH_MAP macro, add macro entries for each of your dispatch functions and properties, and
complete the dispatch map with the END_DISPATCH_MAP macro.

Header: afxdisp.h

Ends the definition of your dispatch map.

It must be used in conjunction with BEGIN_DISPATCH_MAP.

Header: afxdisp.h

 DISP_FUNCTION

DISP_FUNCTION(
 theClass,
 pszName,
 pfnMember,
 vtRetVal,
 vtsParams)

ParametersParameters

RemarksRemarks

SYMBOL RETURN TYPE

VT_EMPTY void

VT_I2 short

VT_I4 long

VT_R4 float

VT_R8 double

VT_CY CY

VT_DATE DATE

VT_BSTR BSTR

VT_DISPATCH LPDISPATCH

VT_ERROR SCODE

VT_BOOL BOOL

Defines an OLE automation function in a dispatch map.

theClass
Name of the class.

pszName
External name of the function.

pfnMember
Name of the member function.

vtRetVal
A value specifying the function's return type.

vtsParams
A space-separated list of one or more constants specifying the function's parameter list.

The vtRetVal argument is of type VARTYPE. The following possible values for this argument are taken from the
VARENUM enumeration:

VT_VARIANT VARIANT

VT_UNKNOWN LPUNKNOWN

SYMBOL RETURN TYPE

VTS_I2 VTS_PI2

SYMBOL PARAMETER TYPE

VTS_I2 short

VTS_I4 long

VTS_R4 float

VTS_R8 double

VTS_CY const CY or CY*

VTS_DATE DATE

VTS_BSTR LPCSTR

VTS_DISPATCH LPDISPATCH

VTS_SCODE SCODE

VTS_BOOL BOOL

VTS_VARIANT const VARIANT* or VARIANT&

VTS_UNKNOWN LPUNKNOWN

VTS_PI2 short*

VTS_PI4 long*

VTS_PR4 float*

VTS_PR8 double*

VTS_PCY CY*

VTS_PDATE DATE*

The vtsParams argument is a space-separated list of values from the VTS_* constants. One or more of these
values separated by spaces (not commas) specifies the function's parameter list. For example,

specifies a list containing a short integer followed by a pointer to a short integer.

The VTS_ constants and their meanings are as follows:

VTS_PBSTR BSTR*

VTS_PDISPATCH LPDISPATCH*

VTS_PSCODE SCODE*

VTS_PBOOL BOOL*

VTS_PVARIANT VARIANT*

VTS_PUNKNOWN LPUNKNOWN*

VTS_NONE No parameters

SYMBOL PARAMETER TYPE

RequirementsRequirements

DISP_PROPERTY

DISP_PROPERTY(
 theClass,
 pszName,
 memberName,
 vtPropType)

ParametersParameters

RemarksRemarks

SYMBOL PROPERTY TYPE

VT_I2 short

VT_I4 long

VT_R4 float

Header: afxdisp.h

Defines an OLE automation property in a dispatch map.

theClass
Name of the class.

pszName
External name of the property.

memberName
Name of the member variable in which the property is stored.

vtPropType
A value specifying the property's type.

The vtPropType argument is of type VARTYPE . Possible values for this argument are taken from the VARENUM
enumeration:

VT_R8 double

VT_CY CY

VT_DATE DATE

VT_BSTR CString

VT_DISPATCH LPDISPATCH

VT_ERROR SCODE

VT_BOOL BOOL

VT_VARIANT VARIANT

VT_UNKNOWN LPUNKNOWN

SYMBOL PROPERTY TYPE

RequirementsRequirements

DISP_PROPERTY_EX

DISP_PROPERTY_EX(
 theClass,
 pszName,
 memberGet,
 memberSet,
 vtPropType)

ParametersParameters

RemarksRemarks

When an external client changes the property, the value of the member variable specified by memberName
changes; there is no notification of the change.

Header: afxdisp.h

Defines an OLE automation property and name the functions used to get and set the property's value in a dispatch
map.

theClass
Name of the class.

pszName
External name of the property.

memberGet
Name of the member function used to get the property.

memberSet
Name of the member function used to set the property.

vtPropType
A value specifying the property's type.

RequirementsRequirements

DISP_PROPERTY_NOTIFY

DISP_PROPERTY_NOTIFY(
 theClass,
 szExternalName,
 memberName,
 pfnAfterSet,
 vtPropType)

ParametersParameters

RemarksRemarks

SYMBOL PROPERTY TYPE

VT_I2 short

VT_I4 long

VT_R4 float

VT_R8 double

VT_CY CY

The memberGet and memberSet functions have signatures determined by the vtPropType argument. The
memberGet function takes no arguments and returns a value of the type specified by vtPropType. The memberSet
function takes an argument of the type specified by vtPropType and returns nothing.

The vtPropType argument is of type VARTYPE. Possible values for this argument are taken from the VARENUM
enumeration. For a list of these values, see the Remarks for the vtRetVal parameter in DISP_FUNCTION. Note
that VT_EMPTY, listed in the DISP_FUNCTION remarks, is not permitted as a property data type.

Header: afxdisp.h

Defines an OLE automation property with notification in a dispatch map.

theClass
Name of the class.

szExternalName
External name of the property.

memberName
Name of the member variable in which the property is stored.

pfnAfterSet
Name of the notification function for szExternalName.

vtPropType
A value specifying the property's type.

Unlike properties defined with DISP_PROPERTY, a property defined with DISP_PROPERTY_NOTIFY will
automatically call the function specified by pfnAfterSet when the property is changed.

The vtPropType argument is of type VARTYPE. Possible values for this argument are taken from the VARENUM
enumeration:

VT_DATE DATE

VT_BSTR CString

VT_DISPATCH LPDISPATCH

VT_ERROR SCODE

VT_BOOL BOOL

VT_VARIANT VARIANT

VT_UNKNOWN LPUNKNOWN

SYMBOL PROPERTY TYPE

RequirementsRequirements

DISP_PROPERTY_PARAM

DISP_PROPERTY_PARAM(
 theClass,
 pszExternalName,
 pfnGet,
 pfnSet,
 vtPropType,
 vtsParams)

ParametersParameters

RemarksRemarks

ExampleExample

Header: afxdisp.h

Defines a property accessed with separate Get and Set member functions.

theClass
Name of the class.

pszExternalName
External name of the property.

pfnGet
Name of the member function used to get the property.

pfnSet
Name of the member function used to set the property.

vtPropType
A value specifying the property's type.

vtsParams
A string of space-separated VTS_* variant parameter types, one for each parameter.

Unlike the DISP_PROPERTY_EX macro, this macro allows you to specify a parameter list for the property. This is
useful for implementing properties that are indexed or parameterized.

SHORT GetArray(SHORT row, SHORT column);
void SetArray(SHORT row, SHORT column, SHORT newVal);

DISP_PROPERTY_PARAM(CMFCActiveXControlCtrl, "Array", GetArray, SetArray, VT_I2, VTS_I2 VTS_I2)

IDispatch* GetItem(SHORT index1, SHORT index2, SHORT index3);
void SetItem(SHORT index1, SHORT index2, SHORT index3, IDispatch* pVal);

DISP_PROPERTY_PARAM(CMFCActiveXControlCtrl, "Item", GetItem, SetItem, VT_DISPATCH, VTS_I2 VTS_I2 VTS_I2)

RequirementsRequirements

DISP_DEFVALUE

DISP_DEFVALUE(theClass, pszName)

ParametersParameters

RemarksRemarks

RequirementsRequirements

See also

Consider the following declaration of get and set member functions that allow the user to request a specific row
and column when accessing the property:

These correspond to the following DISP_PROPERTY_PARAM macro in the control dispatch map:

As another example, consider the following get and set member functions:

These correspond to the following DISP_PROPERTY_PARAM macro in the control dispatch map:

Header: afxdisp.h

Makes an existing property the default value of an object.

theClass
Name of the class.

pszName
External name of the property that represents the "value" of the object.

Using a default value can make programming your automation object simpler for Visual Basic applications.

The "default value" of your object is the property that is retrieved or set when a reference to an object does not
specify a property or member function.

Header: afxdisp.h

Macros and Globals

Variant Parameter Type Constants
3/4/2019 • 2 minutes to read • Edit Online

Variant Data Constants

Requirements

This topic lists new constants that indicate variant parameter types designed for use with the OLE control classes
of the Microsoft Foundation Class Library.

The following is a list of class constants:

NOTENOTE

VTS_COLOR A 32-bit integer used to represent a RGB color value.

VTS_FONT A pointer to the IFontDisp interface of an OLE font object.

VTS_HANDLE A Windows handle value.

VTS_PICTURE A pointer to the IPictureDisp interface of an OLE picture object.

VTS_OPTEXCLUSIVE A 16-bit value used for a control that is intended to be used in a group of controls,
such as radio buttons. This type tells the container that if one control in a group has a TRUE value, all others
must be FALSE.

VTS_TRISTATE A 16-bit signed integer used for properties that can have one of three possible values
(selected, cleared, unavailable), for example, a check box.

VTS_XPOS_HIMETRIC A 32-bit unsigned integer used to represent a position along the x-axis in
HIMETRIC units.

VTS_YPOS_HIMETRIC A 32-bit unsigned integer used to represent a position along the y-axis in
HIMETRIC units.

VTS_XPOS_PIXELS A 32-bit unsigned integer used to represent a position along the x-axis in pixels.

VTS_YPOS_PIXELS A 32-bit unsigned integer used to represent a position along the y-axis in pixels.

VTS_XSIZE_PIXELS A 32-bit unsigned integer used to represent the width of a screen object in pixels.

VTS_YSIZE_PIXELS A 32-bit unsigned integer used to represent the height of a screen object in pixels.

VTS_XSIZE_HIMETRIC A 32-bit unsigned integer used to represent the width of a screen object in
HIMETRIC units.

VTS_YSIZE_HIMETRIC A 32-bit unsigned integer used to represent the height of a screen object in
HIMETRIC units.

Additional variant constants have been defined for all variant types, with the exception of VTS_FONT and
VTS_PICTURE, that provide a pointer to the variant data constant. These constants are named using the VTS_P
constantname convention. For example, VTS_PCOLOR is a pointer to a VTS_COLOR constant.

Header: afxdisp.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/variant-parameter-type-constants.md

See also
Macros and Globals

Type Library Access
3/4/2019 • 2 minutes to read • Edit Online

Type Library AccessType Library Access

DECLARE_OLETYPELIB Declares a GetTypeLib member function of an OLE control
(must be used in the class declaration).

IMPLEMENT_OLETYPELIB Implements a GetTypeLib member function of an OLE
control (must be used in the class implementation).

DECLARE_OLETYPELIB

DECLARE_OLETYPELIB(class_name)

ParametersParameters

RemarksRemarks

RequirementsRequirements

IMPLEMENT_OLETYPELIB

IMPLEMENT_OLETYPELIB(class_name, tlid, wVerMajor, wVerMinor)

ParametersParameters

Type libraries expose the interfaces of an OLE control to other OLE-aware applications. Each OLE control must
have a type library if one or more interfaces are to be exposed.

The following macros allow an OLE control to provide access to its own type library:

Declares the GetTypeLib member function of your control class.

class_name
The name of the control class related to the type library.

Use this macro in the control class header file.

Header: afxdisp.h

Implements the control's GetTypeLib member function.

class_name
The name of the control class related to the type library.

tlid
The ID number of the type library.

wVerMajor
The type library major version number.

wVerMinor

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/type-library-access.md

RemarksRemarks

RequirementsRequirements

See also

The type library minor version number.

This macro must appear in the implementation file for any control class that uses the DECLARE_OLETYPELIB
macro.

Header: afxdisp.h

Macros and Globals

Property Pages (MFC)
3/4/2019 • 9 minutes to read • Edit Online

Property Page Data TransferProperty Page Data Transfer

DDP_CBIndex Links the selected string's index in a combo box with a
control's property.

DDP_CBString Links the selected string in a combo box with a control's
property. The selected string can begin with the same letters
as the property's value but does not need to match it fully.

DDP_CBStringExact Links the selected string in a combo box with a control's
property. The selected string and the property's string value
must match exactly.

DDP_Check Links a check box in the control's property page with a
control's property.

DDP_LBIndex Links the selected string's index in a list box with a control's
property.

DDP_LBString Links the selected string in a list box with a control's property.
The selected string can begin with the same letters as the
property's value but need not match it fully.

DDP_LBStringExact Links the selected string in a list box with a control's property.
The selected string and the property's string value must
match exactly.

DDP_PostProcessing Finishes the transfer of property values from your control.

DDP_Radio Links a radio button group in the control's property page with
a control's property.

DDP_Text Links a control in the control's property page with a control's
property. This function handles several different types of
properties, such as double, short, BSTR, and long.

Property pages display the current values of specific OLE control properties in a customizable, graphical interface
for viewing and editing by supporting a data-mapping mechanism based on dialog data exchange (DDX).

This data-mapping mechanism maps property page controls to the individual properties of the OLE control. The
value of the control property reflects the status or content of the property page control. The mapping between
property page controls and properties is specified by DDP_ function calls in the property page's DoDataExchange

member function. The following is a list of DDP_ functions that exchange data entered using the property page of
your control:

For more information about the DoDataExchange function and property pages, see the article ActiveX Controls:
Property Pages.

The following is a list of macros used to create and manage property pages for an OLE control:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/property-pages-mfc.md

Property PagesProperty Pages

BEGIN_PROPPAGEIDS Begins the list of property page IDs.

END_PROPPAGEIDS Ends the list of property page IDs.

PROPPAGEID Declares a property page of the control class.

DDP_CBIndex

void AFXAPI DDP_CBIndex(
 CDataExchange* pDX,
 int id,
 int& member,
 LPCTSTR pszPropName);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDP_CBString

void AFXAPI DDP_CBString(
 CDataExchange* pDX,
 int id,
 CString& member,
 LPCTSTR pszPropName);

ParametersParameters

Call this function in your property page's DoDataExchange function to synchronize the value of an integer property
with the index of the current selection in a combo box on the property page.

pDX
Pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

id
The resource ID of the combo box control associated with the control property specified by pszPropName.

member
The member variable associated with the property page control specified by id and the property specified by
pszPropName.

pszPropName
The property name of the control property to be exchanged with the combo box control specified by id.

This function should be called before the corresponding DDX_CBIndex function call.

Header afxctl.h

Call this function in your property page's DoDataExchange function to synchronize the value of a string property
with the current selection in a combo box on the property page.

pDX

RemarksRemarks

RequirementsRequirements

DDP_CBStringExact

void AFXAPI DDP_CBStringExact(
 CDataExchange* pDX,
 int id,
 CString& member,
 LPCTSTR pszPropName);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDP_Check

Pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

id
The resource ID of the combo box control associated with the control property specified by pszPropName.

member
The member variable associated with the property page control specified by id and the property specified by
pszPropName.

pszPropName
The property name of the control property to be exchanged with the combo box string specified by id.

This function should be called before the corresponding DDX_CBString function call.

Header afxctl.h

Call this function in your property page's DoDataExchange function to synchronize the value of a string property
that exactly matches the current selection in a combo box on the property page.

pDX
Pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

id
The resource ID of the combo box control associated with the control property specified by pszPropName.

member
The member variable associated with the property page control specified by id and the property specified by
pszPropName.

pszPropName
The property name of the control property to be exchanged with the combo box string specified by id.

This function should be called before the corresponding DDX_CBStringExact function call.

Header afxctl.h

Call this function in your property page's DoDataExchange function to synchronize the value of the property with
the associated property page check box control.

void AFXAPI DDP_Check(
 CDataExchange* pDX,
 int id,
 int & member,
 LPCSTR pszPropName);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDP_LBIndex

void AFXAPI DDP_LBIndex(
 CDataExchange* pDX,
 int id,
 int& member,
 LPCTSTR pszPropName);

ParametersParameters

RemarksRemarks

pDX
Pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

id
The resource ID of the check box control associated with the control property specified by pszPropName.

member
The member variable associated with the property page control specified by id and the property specified by
pszPropName.

pszPropName
The property name of the control property to be exchanged with the check box control specified by id.

This function should be called before the corresponding DDX_Check function call.

Header afxctl.h

Call this function in your property page's DoDataExchange function to synchronize the value of an integer property
with the index of the current selection in a list box on the property page.

pDX
Pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

id
The resource ID of the list box control associated with the control property specified by pszPropName.

member
The member variable associated with the property page control specified by id and the property specified by
pszPropName.

pszPropName
The property name of the control property to be exchanged with the list box string specified by id.

This function should be called before the corresponding DDX_LBIndex function call.

RequirementsRequirements

DDP_LBString

void AFXAPI DDP_LBString(
 CDataExchange* pDX,
 int id,
 CString& member,
 LPCTSTR pszPropName);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDP_LBStringExact

void AFXAPI DDP_LBStringExact(
 CDataExchange* pDX,
 int id,
 CString& member,
 LPCTSTR pszPropName);

ParametersParameters

Header afxctl.h

Call this function in your property page's DoDataExchange function to synchronize the value of a string property
with the current selection in a list box on the property page.

pDX
Pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

id
The resource ID of the list box control associated with the control property specified by pszPropName.

member
The member variable associated with the property page control specified by id and the property specified by
pszPropName.

pszPropName
The property name of the control property to be exchanged with the list box string specified by id.

This function should be called before the corresponding DDX_LBString function call.

Header afxctl.h

Call this function in your property page's DoDataExchange function to synchronize the value of a string property
that exactly matches the current selection in a list box on the property page.

pDX
Pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

id
The resource ID of the list box control associated with the control property specified by pszPropName.

member

RemarksRemarks

RequirementsRequirements

DDP_PostProcessing

void AFXAPI DDP_PostProcessing(CDataExchange * pDX);

ParametersParameters

RemarksRemarks

void CMyAxPropPage::DoDataExchange(CDataExchange* pDX)
{
 DDP_Text(pDX, IDC_POSITIONEDIT, m_NeedlePosition, _T("NeedlePosition"));
 DDX_Text(pDX, IDC_POSITIONEDIT, m_NeedlePosition);
 DDV_MinMaxInt(pDX, m_NeedlePosition, 0, 3);
 DDP_PostProcessing(pDX);
}

RequirementsRequirements

DDP_Radio

void AFXAPI DDP_Radio(
 CDataExchange* pDX,
 int id,
 int & member,
 LPCTSTR pszPropName);

ParametersParameters

The member variable associated with the property page control specified by id and the property specified by
pszPropName.

pszPropName
The property name of the control property to be exchanged with the list box string specified by id.

This function should be called before the corresponding DDX_LBStringExact function call.

Header afxctl.h

Call this function in your property page's DoDataExchange function, to finish the transfer of property values from
the property page to your control when property values are being saved.

pDX
Pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

This function should be called after all data exchange functions are completed. For example:

Header afxctl.h

Call this function in your control's DoPropExchange function to synchronize the value of the property with the
associated property page radio button control.

pDX
Pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

RemarksRemarks

RequirementsRequirements

DDP_Text

id
The resource ID of the radio button control associated with the control property specified by pszPropName.

member
The member variable associated with the property page control specified by id and the property specified by
pszPropName.

pszPropName
The property name of the control property to be exchanged with the radio button control specified by id.

This function should be called before the corresponding DDX_Radio function call.

Header afxctl.h

Call this function in your control's DoDataExchange function to synchronize the value of the property with the
associated property page control.

void AFXAPI DDP_Text(
 CDataExchange* pDX,
 int id,
 BYTE & member,
 LPCTSTR pszPropName);

void AFXAPI DDP_Text(
 CDataExchange* pDX,
 int id,
 int & member,
 LPCTSTR pszPropName);

void AFXAPI DDP_Text(
 CDataExchange* pDX,
 int id,
 UINT & member,
 LPCTSTR pszPropName);

void AFXAPI DDP_Text(
 CDataExchange* pDX,
 int id,
 long & member,
 LPCTSTR pszPropName);

void AFXAPI DDP_Text(
 CDataExchange* pDX,
 int id,
 DWORD & member,
 LPCTSTR pszPropName);

void AFXAPI DDP_Text(
 CDataExchange* pDX,
 int id,
 float & member,
 LPCTSTR pszPropName);

void AFXAPI DDP_Text(
 CDataExchange* pDX,
 int id,
 double & member,
 LPCTSTR pszPropName);

void AFXAPI DDP_Text(
 CDataExchange* pDX,
 int id,
 CString & member,
 LPCTSTR pszPropName);

ParametersParameters

RemarksRemarks

pDX
Pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

id
The resource ID of the control associated with the control property specified by pszPropName.

member
The member variable associated with the property page control specified by id and the property specified by
pszPropName.

pszPropName
The property name of the control property to be exchanged with the control specified by id.

RequirementsRequirements

BEGIN_PROPPAGEIDS

BEGIN_PROPPAGEIDS(class_name, count)

ParametersParameters

RemarksRemarks

RequirementsRequirements

END_PROPPAGEIDS

END_PROPPAGEIDS(class_name)

ParametersParameters

RequirementsRequirements

PROPPAGEID

PROPPAGEID(clsid)

ParametersParameters

RemarksRemarks

This function should be called before the corresponding DDX_Text function call.

Header afxctl.h

Begins the definition of your control's list of property page IDs.

class_name
The name of the control class for which property pages are being specified.

count
The number of property pages used by the control class.

In the implementation (.cpp) file that defines the member functions for your class, start the property page list with
the BEGIN_PROPPAGEIDS macro, then add macro entries for each of your property pages, and complete the
property page list with the END_PROPPAGEIDS macro.

For more information on property pages, see the article ActiveX Controls: Property Pages.

Header afxctl.h

Ends the definition of your property page ID list.

class_name
The name of the control class that owns the property page.

Header afxctl.h

Adds a property page for use by your OLE control.

clsid
The unique class ID of a property page.

All PROPPAGEID macros must be placed between the BEGIN_PROPPAGEIDS and END_PROPPAGEIDS macros

RequirementsRequirements

See also

in your control's implementation file.

Header afxctl.h

Macros and Globals

Event Maps
10/31/2018 • 5 minutes to read • Edit Online

BEGIN_EVENT_MAP(CMyAxCtrl, COleControl)
 EVENT_STOCK_CLICK()
END_EVENT_MAP()

Event Map macros
Event Map Declaration and DemarcationEvent Map Declaration and Demarcation

DECLARE_EVENT_MAP Declares that an event map will be used in a class to map
events to event-firing functions (must be used in the class
declaration).

BEGIN_EVENT_MAP Begins the definition of an event map (must be used in the
class implementation).

END_EVENT_MAP Ends the definition of an event map (must be used in the class
implementation).

Event Mapping MacrosEvent Mapping Macros

EVENT_CUSTOM Indicates which event-firing function will fire the specified
event.

EVENT_CUSTOM_ID Indicates which event-firing function will fire the specified
event, with a designated dispatch ID.

Message Mapping MacrosMessage Mapping Macros

Whenever a control wishes to notify its container that some action (determined by the control developer) has
happened (such as a keystroke, mouse click, or a change to the control's state) it calls an event-firing function. This
function notifies the control container that some important action has occurred by firing the related event.

The Microsoft Foundation Class Library offers a programming model optimized for firing events. In this model,
"event maps" are used to designate which functions fire which events for a particular control. Event maps contain
one macro for each event. For example, an event map that fires a stock Click event might look like this:

The EVENT_STOCK_CLICK macro indicates that the control will fire a stock Click event every time it detects a mouse
click. For a more detailed listing of other stock events, see the article ActiveX Controls: Events. Macros are also
available to indicate custom events.

Although event-map macros are important, you generally do not insert them directly. This is because the
Properties window automatically creates event-map entries in your source files when you use it to associate event-
firing functions with events. Any time you want to edit or add an event-map entry, you can use the Properties
window.

To support event maps, MFC provides the following macros:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/event-maps.md

ON_OLEVERB Indicates a custom verb handled by the OLE control.

ON_STDOLEVERB Overrides a standard verb mapping of the OLE control.

DECLARE_EVENT_MAP

DECLARE_EVENT_MAP()

RemarksRemarks

RequirementsRequirements

BEGIN_EVENT_MAP

BEGIN_EVENT_MAP(theClass, baseClass)

ParametersParameters

RemarksRemarks

RequirementsRequirements

END_EVENT_MAP

END_EVENT_MAP()

RequirementsRequirements

Each COleControl -derived class in your program can provide an event map to specify the events your control will
fire.

Use the DECLARE_EVENT_MAP macro at the end of your class declaration. Then, in the .cpp file that defines the
member functions for the class, use the BEGIN_EVENT_MAP macro, macro entries for each of the control's events,
and the END_EVENT_MAP macro to declare the end of the event list.

For more information on event maps, see the article ActiveX Controls: Events.

Header afxctl.h

Begins the definition of your event map.

theClass
Specifies the name of the control class whose event map this is.

baseClass
Specifies the name of the base class of theClass.

In the implementation (.cpp) file that defines the member functions for your class, start the event map with the
BEGIN_EVENT_MAP macro, then add macro entries for each of your events, and complete the event map with the
END_EVENT_MAP macro.

For more information on event maps and the BEGIN_EVENT_MAP macro, see the article ActiveX Controls: Events.

Header afxctl.h

Use the END_EVENT_MAP macro to end the definition of your event map.

 EVENT_CUSTOM

EVENT_CUSTOM(pszName, pfnFire, vtsParams)

ParametersParameters

RemarksRemarks

VTS_COLOR VTS_FONT

SYMBOL PARAMETER TYPE

VTS_I2 short

VTS_I4 long

VTS_R4 float

VTS_R8 double

VTS_COLOR OLE_COLOR

VTS_CY CURRENCY

VTS_DATE DATE

VTS_BSTR const char*

VTS_DISPATCH LPDISPATCH

VTS_FONT IFontDispatch*

VTS_HANDLE HANDLE

Header afxctl.h

Defines an event-map entry for a custom event.

pszName
The name of the event.

pfnFire
The name of the event firing function.

vtsParams
A space-separated list of one or more constants specifying the function's parameter list.

The vtsParams parameter is a space-separated list of values from the VTS_ constants. One or more of these values
separated by spaces (not commas) specifies the function's parameter list. For example:

specifies a list containing a 32-bit integer representing an RGB color value, followed by a pointer to the IFontDisp

interface of an OLE font object.

The VTS_ constants and their meanings are as follows:

VTS_SCODE SCODE

VTS_BOOL BOOL

VTS_VARIANT const VARIANT*

VTS_PVARIANT VARIANT*

VTS_UNKNOWN LPUNKNOWN

VTS_OPTEXCLUSIVE OLE_OPTEXCLUSIVE

VTS_PICTURE IPictureDisp*

VTS_TRISTATE OLE_TRISTATE

VTS_XPOS_PIXELS OLE_XPOS_PIXELS

VTS_YPOS_PIXELS OLE_YPOS_PIXELS

VTS_XSIZE_PIXELS OLE_XSIZE_PIXELS

VTS_YSIZE_PIXELS OLE_YSIZE_PIXELS

TS_XPOS_HIMETRIC OLE_XPOS_HIMETRIC

VTS_YPOS_HIMETRIC OLE_YPOS_HIMETRIC

VTS_XSIZE_HIMETRIC OLE_XSIZE_HIMETRIC

VTS_YSIZE_HIMETRIC OLE_YSIZE_HIMETRIC

SYMBOL PARAMETER TYPE

NOTENOTE

RequirementsRequirements

EVENT_CUSTOM_ID

EVENT_CUSTOM_ID(
 pszName,
 dispid,
 pfnFire,
 vtsParams)

Additional variant constants have been defined for all variant types, with the exception of VTS_FONT and VTS_PICTURE, that
provide a pointer to the variant data constant. These constants are named using the VTS_Pconstantname convention. For
example, VTS_PCOLOR is a pointer to a VTS_COLOR constant.

Header afxctl.h

Defines an event firing function for a custom event belonging to the dispatch ID specified by dispid.

ParametersParameters

RemarksRemarks

VTS_COLOR VTS_FONT

RequirementsRequirements

ON_OLEVERB

ON_OLEVERB(idsVerbName, memberFxn)

ParametersParameters

RemarksRemarks

BOOL memberFxn(
 LPMSG lpMsg,
 HWND hWndParent,
 LPCRECT lpRect);

RequirementsRequirements

pszName
The name of the event.

dispid
The dispatch ID used by the control when firing the event.

pfnFire
The name of the event firing function.

vtsParams
A variable list of parameters passed to the control container when the event is fired.

The vtsParams argument is a space-separated list of values from the VTS_ constants. One or more of these values
separated by spaces, not commas, specifies the function's parameter list. For example:

specifies a list containing a 32-bit integer representing an RGB color value, followed by a pointer to the IFontDisp

interface of an OLE font object.

For a list of the VTS_ constants, see EVENT_CUSTOM.

Header afxctl.h

This macro defines a message map entry that maps a custom verb to a specific member function of your control.

idsVerbName
The string resource ID of the verb's name.

memberFxn
The function called by the framework when the verb is invoked.

The resource editor can be used to create custom verb names that are added to your string table.

The function prototype for memberFxn is:

The values of the lpMsg, hWndParent, and lpRect parameters are taken from the corresponding parameters of the
IOleObject::DoVerb member function.

Header afxole.h

 ON_STDOLEVERB

ON_STDOLEVERB(iVerb, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

See also

Use this macro to override the default behavior of a standard verb.

iVerb
The standard verb index for the verb being overridden.

memberFxn
The function called by the framework when the verb is invoked.

The standard verb index is of the form OLEIVERB_ , followed by an action. OLEIVERB_SHOW, OLEIVERB_HIDE,
and OLEIVERB_UIACTIVATE are some examples of standard verbs.

See ON_OLEVERB for a description of the function prototype to be used as the memberFxn parameter.

Header afxole.h

Macros and Globals

Event Sink Maps
3/4/2019 • 7 minutes to read • Edit Online

Event Sink MapsEvent Sink Maps

BEGIN_EVENTSINK_MAP Starts the definition of an event sink map.

DECLARE_EVENTSINK_MAP Declares an event sink map.

END_EVENTSINK_MAP Ends the definition of an event sink map.

ON_EVENT Defines an event handler for a specific event.

ON_EVENT_RANGE Defines an event handler for a specific event fired from a set
of OLE controls.

ON_EVENT_REFLECT Receives events fired by the control before they are handled
by the control's container.

ON_PROPNOTIFY Defines a handler for handling property notifications from an
OLE control.

ON_PROPNOTIFY_RANGE Defines a handler for handling property notifications from a
set of OLE controls.

ON_PROPNOTIFY_REFLECT Receives property notifications sent by the control before
they are handled by the control's container.

BEGIN_EVENTSINK_MAP

BEGIN_EVENTSINK_MAP(theClass, baseClass)

ParametersParameters

RemarksRemarks

When an embedded OLE control fires an event, the control's container receives the event using a mechanism,
called an "event sink map," supplied by MFC. This event sink map designates handler functions for each specific
event, as well as parameters of those events. For more information on event sink maps, see the article ActiveX
Control Containers.

Begins the definition of your event sink map.

theClass
Specifies the name of the control class whose event sink map this is.

baseClass
Specifies the name of the base class of theClass.

In the implementation (.cpp) file that defines the member functions for your class, start the event sink map with
the BEGIN_EVENTSINK_MAP macro, then add macro entries for each event to be notified of, and complete the

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/event-sink-maps.md

RequirementsRequirements

DECLARE_EVENTSINK_MAP

DECLARE_EVENTSINK_MAP()

RemarksRemarks

RequirementsRequirements

END_EVENTSINK_MAP

END_EVENTSINK_MAP()

RequirementsRequirements

ON_EVENT

ON_EVENT(theClass, id, dispid, pfnHandler, vtsParams)

ParametersParameters

event sink map with the END_EVENTSINK_MAP macro.

For more information on event sink maps and OLE control containers, see the article ActiveX Control Containers.

Header afxdisp.h

An OLE container can provide an event sink map to specify the events your container will be notified of.

Use the DECLARE_EVENTSINK_MAP macro at the end of your class declaration. Then, in the .CPP file that
defines the member functions for the class, use the BEGIN_EVENTSINK_MAP macro, macro entries for each of
the events to be notified of, and the END_EVENTSINK_MAP macro to declare the end of the event sink list.

For more information on event sink maps, see the article ActiveX Control Containers.

Header afxwin.h

Ends the definition of your event sink map.

Header afxdisp.h

Use the ON_EVENT macro to define an event handler function for an event fired by an OLE control.

theClass
The class to which this event sink map belongs.

id
The control ID of the OLE control.

dispid
The dispatch ID of the event fired by the control.

pfnHandler
Pointer to a member function that handles the event. This function should have a BOOL return type, and
parameter types that match the event's parameters (see vtsParams). The function should return TRUE to indicate
the event was handled; otherwise FALSE.

vtsParams

RemarksRemarks

VTS_I2 VTS_BOOL

RequirementsRequirements

ON_EVENT_RANGE

ON_EVENT_RANGE(theClass, idFirst, idLast, dispid, pfnHandler, vtsParams)

ParametersParameters

RemarksRemarks

VTS_I2 VTS_BOOL

A sequence of VTS_ constants that specifies the types of the parameters for the event. These are the same
constants that are used in dispatch map entries such as DISP_FUNCTION.

The vtsParams argument is a space-separated list of values from the VTS_ constants. One or more of these values
separated by spaces (not commas) specifies the function's parameter list. For example:

specifies a list containing a short integer followed by a BOOL.

For a list of the VTS_ constants, see EVENT_CUSTOM.

Header afxdisp.h

Use the ON_EVENT_RANGE macro to define an event handler function for an event fired by any OLE control
having a control ID within a contiguous range of IDs.

theClass
The class to which this event sink map belongs.

idFirst
The control ID of the first OLE control in the range.

idLast
The control ID of the last OLE control in the range.

dispid
The dispatch ID of the event fired by the control.

pfnHandler
Pointer to a member function that handles the event. This function should have a BOOL return type, a first
parameter of type UINT (for the control ID), and additional parameter types that match the event's parameters
(see vtsParams). The function should return TRUE to indicate the event was handled; otherwise FALSE.

vtsParams
A sequence of VTS_ constants that specifies the types of the parameters for the event. The first constant should be
of type VTS_I4, for the control ID. These are the same constants that are used in dispatch map entries such as
DISP_FUNCTION.

The vtsParams argument is a space-separated list of values from the VTS_ constants. One or more of these values
separated by spaces (not commas) specifies the function's parameter list. For example:

specifies a list containing a short integer followed by a BOOL.

ExampleExample

BOOL OnRangeMouseDown(UINT CtlID, short MouseButton, short Shift,
 long x, long y);

BEGIN_EVENTSINK_MAP(CMyDlg, CDialog)
 ON_EVENT_RANGE(CMyDlg, IDC_MYCTRL1, IDC_MYCTRL3, -605, OnRangeMouseDown,
 VTS_I4 VTS_I2 VTS_I2 VTS_I4 VTS_I4)
END_EVENTSINK_MAP()

RequirementsRequirements

ON_EVENT_REFLECT

ON_EVENT_REFLECT(theClass, dispid, pfnHandler, vtsParams)

ParametersParameters

RemarksRemarks

VTS_I2 VTS_BOOL

For a list of the VTS_ constants, see EVENT_CUSTOM.

The following example demonstrates an event handler, for the MouseDown event, implemented for three controls
(IDC_MYCTRL1 through IDC_MYCTRL3). The event handler function, OnRangeMouseDown , is declared in the
header file of the dialog class (CMyDlg) as:

The code below is defined in the implementation file of the dialog class.

Header afxdisp.h

The ON_EVENT_REFLECT macro, when used in the event sink map of an OLE control's wrapper class, receives
events fired by the control before they are handled by the control's container.

theClass
The class to which this event sink map belongs.

dispid
The dispatch ID of the event fired by the control.

pfnHandler
Pointer to a member function that handles the event. This function should have a BOOL return type and
parameter types that match the event's parameters (see vtsParams). The function should return TRUE to indicate
the event was handled; otherwise FALSE.

vtsParams
A sequence of VTS_ constants that specifies the types of the parameters for the event. These are the same
constants that are used in dispatch map entries such as DISP_FUNCTION.

The vtsParams argument is a space-separated list of values from the VTS_ constants.

One or more of these values separated by spaces (not commas) specifies the function's parameter list. For
example:

specifies a list containing a short integer followed by a BOOL.

RequirementsRequirements

ON_PROPNOTIFY

ON_PROPNOTIFY(theClass, id, dispid, pfnRequest, pfnChanged)

ParametersParameters

RemarksRemarks

VTS_I2 VTS_BOOL

ON_PROPNOTIFY_RANGE

ON_PROPNOTIFY_RANGE(theClass, idFirst, idLast, dispid, pfnRequest, pfnChanged)

ParametersParameters

For a list of the VTS_ constants, see EVENT_CUSTOM.

Header afxdisp.h

Use the ON_PROPNOTIFY macro to define an event sink map entry for handling property notifications from an
OLE control.

theClass
The class to which this event sink map belongs.

id
The control ID of the OLE control.

dispid
The dispatch ID of the property involved in the notification.

pfnRequest
Pointer to a member function that handles the OnRequestEdit notification for this property. This function should
have a BOOL return type and a BOOL* parameter. This function should set the parameter to TRUE to allow the
property to change and FALSE to disallow. The function should return TRUE to indicate the notification was
handled; otherwise FALSE.

pfnChanged
Pointer to a member function that handles the OnChanged notification for this property. The function should have a
BOOL return type and a UINT parameter. The function should return TRUE to indicate that notification was
handled; otherwise FALSE.

The vtsParams argument is a space-separated list of values from the VTS_ constants. One or more of these values
separated by spaces (not commas) specifies the function's parameter list. For example:

specifies a list containing a short integer followed by a BOOL.

For a list of the VTS_ constants, see EVENT_CUSTOM.

Use the ON_PROPNOTIFY_RANGE macro to define an event sink map entry for handling property notifications
from any OLE control having a control ID within a contiguous range of IDs.

theClass

RequirementsRequirements

ON_PROPNOTIFY_REFLECT

ON_PROPNOTIFY_REFLECT(theClass, dispid, pfnRequest, pfnChanged)

ParametersParameters

RequirementsRequirements

See also

The class to which this event sink map belongs.

idFirst
The control ID of the first OLE control in the range.

idLast
The control ID of the last OLE control in the range.

dispid
The dispatch ID of the property involved in the notification.

pfnRequest
Pointer to a member function that handles the OnRequestEdit notification for this property. This function should
have a BOOL return type and UINT and BOOL* parameters. The function should set the parameter to TRUE to
allow the property to change and FALSE to disallow. The function should return TRUE to indicate that notification
was handled; otherwise FALSE.

pfnChanged
Pointer to a member function that handles the OnChanged notification for this property. The function should have a
BOOL return type and a UINT parameter. The function should return TRUE to indicate that notification was

handled; otherwise FALSE.

Header afxdisp.h

The ON_PROPNOTIFY_REFLECT macro, when used in the event sink map of an OLE control's wrapper class,
receives property notifications sent by the control before they are handled by the control's container.

theClass
The class to which this event sink map belongs.

dispid
The dispatch ID of the property involved in the notification.

pfnRequest
Pointer to a member function that handles the OnRequestEdit notification for this property. This function should
have a BOOL return type and a BOOL* parameter. This function should set the parameter to TRUE to allow the
property to change and FALSE to disallow. The function should return TRUE to indicate the notification was
handled; otherwise FALSE.

pfnChanged
Pointer to a member function that handles the OnChanged notification for this property. The function should have a
BOOL return type and no parameters. The function should return TRUE to indicate the notification was handled;
otherwise FALSE.

Header afxdisp.h

Macros and Globals

Connection Maps
3/4/2019 • 5 minutes to read • Edit Online

Connection Map Declaration and DemarcationConnection Map Declaration and Demarcation

BEGIN_CONNECTION_PART Declares an embedded class that implements an additional
connection point (must be used in the class declaration).

END_CONNECTION_PART Ends the declaration of a connection point (must be used in
the class declaration).

CONNECTION_IID Specifies the interface ID of the control's connection point.

DECLARE_CONNECTION_MAP Declares that a connection map will be used in a class (must
be used in the class declaration).

BEGIN_CONNECTION_MAP Begins the definition of a connection map (must be used in
the class implementation).

END_CONNECTION_MAP Ends the definition of a connection map (must be used in the
class implementation).

CONNECTION_PART Specifies a connection point in the control's connection map.

Initialization/Termination of Connection PointsInitialization/Termination of Connection Points

AfxConnectionAdvise Establishes a connection between a source and a sink.

AfxConnectionUnadvise Breaks a connection between a source and a sink.

BEGIN_CONNECTION_PART

OLE controls are able to expose interfaces to other applications. These interfaces only allow access from a
container into that control. If an OLE control wants to access external interfaces of other OLE objects, a connection
point must be established. This connection point allows a control outgoing access to external dispatch maps, such
as event maps or notification functions.

The Microsoft Foundation Class Library offers a programming model that supports connection points. In this
model, "connection maps" are used to designate interfaces or connection points for the OLE control. Connection
maps contain one macro for each connection point. For more information on connection maps, see the
CConnectionPoint class.

Typically, a control will support just two connection points: one for events and one for property notifications. These
are implemented by the COleControl base class and require no additional work by the control writer. Any
additional connection points you want to implement in your class must be added manually. To support connection
maps and points, MFC provides the following macros:

The following functions assist a sink in establishing and disconnecting a connection using connection points:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/connection-maps.md

BEGIN_CONNECTION_PART(theClass, localClass)

ParametersParameters

RemarksRemarks

RequirementsRequirements

END_CONNECTION_PART

END_CONNECTION_PART(localClass)

ParametersParameters

RequirementsRequirements

CONNECTION_IID

CONNECTION_IID(iid)

ParametersParameters

RemarksRemarks

CONNECTION_IID(IID_ISampleSink)

Use the BEGIN_CONNECTION_PART macro to begin the definition of additional connection points beyond the
event and property notification connection points.

theClass
Specifies the name of the control class whose connection point this is.

localClass
Specifies the name of the local class that implements the connection point.

In the declaration (.h) file that defines the member functions for your class, start the connection point with the
BEGIN_CONNECTION_PART macro, then add the CONNECTION_IID macro and any other member functions
you wish to implement, and complete the connection point map with the END_CONNECTION_PART macro.

Header afxdisp.h

Ends the declaration of your connection point.

localClass
Specifies the name of the local class that implements the connection point.

Header afxdisp.h

Use between the BEGIN_CONNECTION_PART and END_CONNECTION_PART macros to define an interface ID
for a connection point supported by your OLE control.

iid
The interface ID of the interface called by the connection point.

The iid argument is an interface ID used to identify the interface that the connection point will call on its connected
sinks. For example:

specifies a connection point that calls the ISinkInterface interface.

RequirementsRequirements

DECLARE_CONNECTION_MAP

DECLARE_CONNECTION_MAP()

RemarksRemarks

RequirementsRequirements

BEGIN_CONNECTION_MAP

BEGIN_CONNECTION_MAP(theClass, theBase)

ParametersParameters

RemarksRemarks

RequirementsRequirements

END_CONNECTION_MAP

END_CONNECTION_MAP()

RequirementsRequirements

CONNECTION_PART

Header afxdisp.h

Each COleControl -derived class in your program can provide a connection map to specify additional connection
points that your control supports.

If your control supports additional points, use the DECLARE_CONNECTION_MAP macro at the end of your class
declaration. Then, in the .cpp file that defines the member functions for the class, use the
BEGIN_CONNECTION_MAP macro, CONNECTION_PART macros for each of the control's connection points,
and the END_CONNECTION_MAP macro to declare the end of the connection map.

Header afxdisp.h

Each COleControl -derived class in your program can provide a connection map to specify connection points that
your control will support.

theClass
Specifies the name of the control class whose connection map this is.

theBase
Specifies the name of the base class of theClass.

In the implementation (.CPP) file that defines the member functions for your class, start the connection map with
the BEGIN_CONNECTION_MAP macro, then add macro entries for each of your connection points using the
CONNECTION_PART macro. Finally, complete the connection map with the END_CONNECTION_MAP macro.

Header afxdisp.h

Ends the definition of your connection map.

Header afxdisp.h

CONNECTION_PART(theClass, iid, localClass)

ParametersParameters

RemarksRemarks

BEGIN_CONNECTION_MAP(CMyClass, CCmdTarget)
 CONNECTION_PART(CMyClass, IID_ISampleSink, SampleConnPt)
END_CONNECTION_MAP()

RequirementsRequirements

AfxConnectionAdvise

BOOL AFXAPI AfxConnectionAdvise(
 LPUNKNOWN pUnkSrc,
 REFIID iid,
 LPUNKNOWN pUnkSink,
 BOOL bRefCount,
 DWORD FAR* pdwCookie);

ParametersParameters

Maps a connection point for your OLE control to a specific interface ID.

theClass
Specifies the name of the control class whose connection point this is.

iid
The interface ID of the interface called by the connection point.

localClass
Specifies the name of the local class that implements the connection point.

For example:

implements a connection map, with a connection point, that calls the IID_ISinkInterface interface .

Header afxdisp.h

Call this function to establish a connection between a source, specified by pUnkSrc, and a sink, specified by
pUnkSink.

pUnkSrc
A pointer to the object that calls the interface.

pUnkSink
A pointer to the object that implements the interface.

iid
The interface ID of the connection.

bRefCount
TRUE indicates that creating the connection should cause the reference count of pUnkSink to be incremented.
FALSE indicates that the reference count should not be incremented.

pdwCookie
A pointer to a DWORD where a connection identifier is returned. This value should be passed as the dwCookie
parameter to AfxConnectionUnadvise when disconnecting the connection.

Return ValueReturn Value

ExampleExample

//CMySink is a CCmdTarget-derived class supporting automation.
//Instantiate the sink class.
CMySink mysink;

//Get a pointer to sink's IUnknown, no AddRef done.
IID iid = IID_IUnknown;
IUnknown* pUnkSink = mysink.GetInterface(&iid);

//Establish a connection between source and sink.
//pUnkSrc is IUnknown of server obtained by CoCreateInstance().
//dwCookie is a cookie identifying the connection, and is needed
//to terminate this connection.
AfxConnectionAdvise(pUnkSrc, IID_ISampleSink, pUnkSink, FALSE, &dwCookie);

RequirementsRequirements

AfxConnectionUnadvise

BOOL AFXAPI AfxConnectionUnadvise(
 LPUNKNOWN pUnkSrc,
 REFIID iid,
 LPUNKNOWN pUnkSink,
 BOOL bRefCount,
 DWORD dwCookie);

ParametersParameters

Return ValueReturn Value

ExampleExample

Nonzero if a connection was established; otherwise 0.

Header: afxctl.h

Call this function to disconnect a connection between a source, specified by pUnkSrc, and a sink, specified by
pUnkSink.

pUnkSrc
A pointer to the object that calls the interface.

pUnkSink
A pointer to the object that implements the interface.

iid
The interface ID of the connection point interface.

bRefCount
TRUE indicates that disconnecting the connection should cause the reference count of pUnkSink to be
decremented. FALSE indicates that the reference count should not be decremented.

dwCookie
The connection identifier returned by AfxConnectionAdvise .

Nonzero if a connection was disconnected; otherwise 0.

//mysink is a CCmdTarget-derived class supporting automation.
//Get a pointer to sink's IUnknown, no AddRef done.
IID iid = IID_IUnknown;
IUnknown* pUnkSink = mysink.GetInterface(&iid);

//Terminate a connection between source and sink.
//pUnkSrc is IUnknown of server obtained by CoCreateInstance().
//dwCookie is a value obtained through AfxConnectionAdvise().
AfxConnectionUnadvise(pUnkSrc, IID_ISampleSink, pUnkSink, FALSE, dwCookie);

RequirementsRequirements

See also

Header: afxctl.h

Macros and Globals

Registering OLE Controls
3/4/2019 • 6 minutes to read • Edit Online

Registering OLE ControlsRegistering OLE Controls

AfxOleRegisterControlClass Adds the control's class to the registration database.

AfxOleRegisterPropertyPageClass Adds a control property page to the registration database.

AfxOleRegisterTypeLib Adds the control's type library to the registration database.

AfxOleUnregisterClass Removes a control class or a property page class from the
registration database.

AfxOleUnregisterTypeLib Removes the control's type library from the registration
database.

AfxOleRegisterControlClass

BOOL AFXAPI AfxOleRegisterControlClass(
 HINSTANCE hInstance,
 REFCLSID clsid,
 LPCTSTR pszProgID,
 UINT idTypeName,
 UINT idBitmap,
 int nRegFlags,
 DWORD dwMiscStatus,
 REFGUID tlid,
 WORD wVerMajor,
 WORD wVerMinor);

ParametersParameters

OLE controls, like other OLE server objects, can be accessed by other OLE-aware applications. This is achieved by
registering the control's type library and class.

The following functions allow you to add and remove the control's class, property pages, and type library in the
Windows registration database:

AfxOleRegisterTypeLib is typically called in a control DLL's implementation of DllRegisterServer . Similarly,
AfxOleUnregisterTypeLib is called by DllUnregisterServer . AfxOleRegisterControlClass ,
AfxOleRegisterPropertyPageClass , and AfxOleUnregisterClass are typically called by the UpdateRegistry member

function of a control's class factory or property page.

Registers the control class with the Windows registration database.

hInstance
The instance handle of the module associated with the control class.

clsid
The unique class ID of the control.

pszProgID

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/registering-ole-controls.md

NOTENOTE

The unique program ID of the control.

idTypeName
The resource ID of the string that contains a user-readable type name for the control.

idBitmap
The resource ID of the bitmap used to represent the OLE control in a toolbar or palette.

nRegFlags
Contains one or more of the following flags:

afxRegInsertable Allows the control to appear in the Insert Object dialog box for OLE objects.

afxRegApartmentThreading Sets the threading model in the registry to ThreadingModel=Apartment.

afxRegFreeThreading Sets the threading model in the registry to ThreadingModel=Free.

You can combine the two flags afxRegApartmentThreading and afxRegFreeThreading to set
ThreadingModel=Both. See InprocServer32 in the Windows SDK for more information on threading model
registration.

In MFC versions before MFC 4.2, the int nRegFlags parameter was a BOOL parameter, bInsertable, that allowed or
disallowed the control to be inserted from the Insert Object dialog box.

dwMiscStatus
Contains one or more of the following status flags (for a description of the flags, see OLEMISC enumeration in the
Windows SDK):

OLEMISC_RECOMPOSEONRESIZE

OLEMISC_ONLYICONIC

OLEMISC_INSERTNOTREPLACE

OLEMISC_STATIC

OLEMISC_CANTLINKINSIDE

OLEMISC_CANLINKBYOLE1

OLEMISC_ISLINKOBJECT

OLEMISC_INSIDEOUT

OLEMISC_ACTIVATEWHENVISIBLE

OLEMISC_RENDERINGISDEVICEINDEPENDENT

OLEMISC_INVISIBLEATRUNTIME

OLEMISC_ALWAYSRUN

OLEMISC_ACTSLIKEBUTTON

OLEMISC_ACTSLIKELABEL

OLEMISC_NOUIACTIVATE

OLEMISC_ALIGNABLE

https://docs.microsoft.com/windows/desktop/com/inprocserver32

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Member function implementation of class COleObjectFactory::UpdateRegistry
//
BOOL CMyAxCtrl::CMyAxCtrlFactory::UpdateRegistry(BOOL bRegister)
{
 // TODO: Verify that your control follows apartment-model threading rules.
 // Refer to MFC TechNote 64 for more information.
 // If your control does not conform to the apartment-model rules, then
 // you must modify the code below, changing the 6th parameter from
 // afxRegInsertable | afxRegApartmentThreading to afxRegInsertable.

 if (bRegister)
 return AfxOleRegisterControlClass(
 AfxGetInstanceHandle(),
 m_clsid,
 m_lpszProgID,
 IDS_NVC_MFCAXCTL,
 IDB_NVC_MFCAXCTL,
 afxRegInsertable | afxRegApartmentThreading,
 _dwMyOleMisc,
 _tlid,
 _wVerMajor,
 _wVerMinor);
 else
 return AfxOleUnregisterClass(m_clsid, m_lpszProgID);
}

afxRegInsertable | afxRegApartmentThreading,

OLEMISC_IMEMODE

OLEMISC_SIMPLEFRAME

OLEMISC_SETCLIENTSITEFIRST

tlid
The unique ID of the control class.

wVerMajor
The major version number of the control class.

wVerMinor
The minor version number of the control class.

Nonzero if the control class was registered; otherwise 0.

This allows the control to be used by containers that are OLE-control aware. AfxOleRegisterControlClass updates
the registry with the control's name and location on the system and also sets the threading model that the control
supports in the registry. For more information, see Technical Note 64, "Apartment-Model Threading in OLE
Controls," and About Processes and Threads in the Windows SDK.

The above example demonstrates how AfxOleRegisterControlClass is called with the flag for insertable and the
flag for apartment model ORed together to create the sixth parameter:

The control will show up in the Insert Object dialog box for enabled containers, and it will be apartment model-
aware. Apartment model-aware controls must ensure that static class data is protected by locks, so that while a
control in one apartment is accessing the static data, it isn't disabled by the scheduler before it is finished, and

https://docs.microsoft.com/windows/desktop/ProcThread/about-processes-and-threads

RequirementsRequirements

AfxOleRegisterPropertyPageClass

BOOL AFXAPI AfxOleRegisterPropertyPageClass(
 HINSTANCE hInstance,
 REFCLSID clsid,
 UINT idTypeName,
 int nRegFlags);

ParametersParameters

NOTENOTE

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

AfxOleRegisterTypeLib

another instance of the same class starts using the same static data. Any accesses to the static data will be
surrounded by critical section code.

Header afxctl.h

Registers the property page class with the Windows registration database.

hInstance
The instance handle of the module associated with the property page class.

clsid
The unique class ID of the property page.

idTypeName
The resource ID of the string that contains a user-readable name for the property page.

nRegFlags
May contain the flag:

afxRegApartmentThreading Sets the threading model in the registry to ThreadingModel = Apartment.

In MFC versions prior to MFC 4.2, the int nRegFlags parameter was not available. Note also that the afxRegInsertable

flag is not a valid option for property pages and will cause an ASSERT in MFC if it is set

Nonzero if the control class was registered; otherwise 0.

This allows the property page to be used by containers that are OLE-control aware.
AfxOleRegisterPropertyPageClass updates the registry with the property page name and its location on the system

and also sets the threading model that the control supports in the registry. For more information, see Technical
Note 64, "Apartment-Model Threading in OLE Controls," and About Processes and Threads in the Windows SDK.

Header afxctl.h

Registers the type library with the Windows registration database and allows the type library to be used by other
containers that are OLE-control aware.

https://docs.microsoft.com/windows/desktop/ProcThread/about-processes-and-threads

BOOL AfxOleRegisterTypeLib(
 HINSTANCE hInstance,
 REFGUID tlid,
 LPCTSTR pszFileName = NULL,
 LPCTSTR pszHelpDir = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Type library guid definition.
const GUID CDECL BASED_CODE _tlid =
 { 0x77E58ED8, 0xA2C0, 0x4C13, { 0xB6, 0xC1, 0xBA, 0xD1, 0x19, 0xAF, 0xE3, 0xF1 } };

// Registers type library and the interfaces
// in it, afxctl.h needs to be included
if (!AfxOleRegisterTypeLib(AfxGetInstanceHandle(), _tlid))
 return ResultFromScode(SELFREG_E_TYPELIB);

// CMFCAutomation.tlb should be in the same directory as exe module.
// last param can be null if help file associated w/ tlb is in same dir as .tlb
if (!AfxOleRegisterTypeLib(AfxGetInstanceHandle(), _tlid,
 _T("CMFCAutomation.tlb"), NULL))
{
 return ResultFromScode(SELFREG_E_TYPELIB);
}

RequirementsRequirements

AfxOleUnregisterClass

BOOL AFXAPI AfxOleUnregisterClass(REFCLSID clsID, LPCSTR pszProgID);

ParametersParameters

hInstance
The instance handle of the application associated with the type library.

tlid
The unique ID of the type library.

pszFileName
Points to the optional filename of a localized type library (.TLB) file for the control.

pszHelpDir
The name of the directory where the help file for the type library can be found. If NULL, the help file is assumed to
be in the same directory as the type library itself.

Nonzero if the type library was registered; otherwise 0.

This function updates the registry with the type library name and its location on the system.

Header afxdisp.h

Removes the control or property page class entry from the Windows registration database.

Return ValueReturn Value

RequirementsRequirements

AfxOleUnregisterTypeLib

BOOL AFXAPI AfxOleUnregisterTypeLib(REFGUID tlID);

ParametersParameters

Return ValueReturn Value

ExampleExample

// Type library GUID, corresponds to the uuid attribute of the library
// section in the .odl file.
const GUID CDECL BASED_CODE _tlid =
 { 0xA44774E8, 0xAE00, 0x451F, { 0x96, 0x1D, 0xC7, 0xD2, 0xD2, 0x58, 0xA0, 0x75 } };

// Type library major version number, number on the left of decimal
// point, in version attribute of the library section in .odl file.
const WORD _wVerMajor = 1;

// Type library minor version number, number on the right of decimal
// point, in version attribute of the library section in .odl file.
const WORD _wVerMinor = 0;

STDAPI DllUnregisterServer(void)
{
 AFX_MANAGE_STATE(_afxModuleAddrThis);

 if (!AfxOleUnregisterTypeLib(_tlid, _wVerMajor, _wVerMinor))
 return ResultFromScode(SELFREG_E_TYPELIB);

 if (!COleObjectFactoryEx::UpdateRegistryAll(FALSE))
 return ResultFromScode(SELFREG_E_CLASS);

 return NOERROR;
}

RequirementsRequirements

See also

clsID
The unique class ID of the control or property page.

pszProgID
The unique program ID of the control or property page.

Nonzero if the control or property page class was successfully unregistered; otherwise 0.

Header afxctl.h

Call this function to remove the type library entry from the Windows registration database.

tlID
The unique ID of the type library.

Nonzero if the type library was successfully unregistered; otherwise 0.

Header afxdisp.h

Macros and Globals

Class Factories and Licensing
3/4/2019 • 2 minutes to read • Edit Online

Class Factories and LicensingClass Factories and Licensing

DECLARE_OLECREATE_EX Declares the class factory for an OLE control or property page.

IMPLEMENT_OLECREATE_EX Implements the control's GetClassID function and declares
an instance of the class factory.

BEGIN_OLEFACTORY Begins the declaration of any licensing functions.

END_OLEFACTORY Ends the declaration of any licensing functions.

AfxVerifyLicFile Verifies whether a control is licensed for use on a particular
computer.

DECLARE_OLECREATE_EX

DECLARE_OLECREATE_EX(class_name)

ParametersParameters

RemarksRemarks

BEGIN_OLEFACTORY(CMyAxCtrl)
END_OLEFACTORY(CMyAxCtrl)

RequirementsRequirements

To create an instance of your OLE control, a container application calls a member function of the control's class
factory. Because your control is an actual OLE object, the class factory is responsible for creating instances of your
control. Every OLE control class must have a class factory.

Another important feature of OLE controls is their ability to enforce a license. ControlWizard allows you to
incorporate licensing during the creation of your control project. For more information on control licensing, see the
article ActiveX Controls: Licensing An ActiveX Control.

The following table lists several macros and functions used to declare and implement your control's class factory
and to license of your control.

Declares a class factory and the GetClassID member function of your control class.

class_name
The name of the control class.

Use this macro in the control class header file for a control that does not support licensing.

Note that this macro serves the same purpose as the following code sample:

Header afxctl.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/class-factories-and-licensing.md

IMPLEMENT_OLECREATE_EX

IMPLEMENT_OLECREATE_EX(
 class_name,
 external_name,
 l,
 w1,
 w2,
 b1,
 b2,
 b3,
 b4,
 b5,
 b6,
 b7,
 b8)

ParametersParameters

RemarksRemarks

RequirementsRequirements

BEGIN_OLEFACTORY

BEGIN_OLEFACTORY(class_name)

ParametersParameters

RemarksRemarks

RequirementsRequirements

Implements your control's class factory and the GetClassID member function of your control class.

class_name
The name of the control property page class.

external_name
The object name exposed to applications.

l, w1, w2, b1, b2, b3, b4, b5, b6, b7, b8
Components of the class's CLSID. For more information on these parameters, see the Remarks for
IMPLEMENT_OLECREATE.

This macro must appear in the implementation file for any control class that uses the DECLARE_OLECREATE_EX
macro or the BEGIN_OLEFACTORY and END_OLEFACTORY macros. The external name is the identifier of the
OLE control that is exposed to other applications. Containers use this name to request an object of this control
class.

Header afxctl.h

Begins the declaration of your class factory in the header file of your control class.

class_name
Specifies the name of the control class whose class factory this is.

Declarations of class factory licensing functions should begin immediately after BEGIN_OLEFACTORY.

Header afxctl.h

END_OLEFACTORY

END_OLEFACTORY(class_name)

ParametersParameters

RequirementsRequirements

AfxVerifyLicFile

BOOL AFXAPI AfxVerifyLicFile(
 HINSTANCE hInstance,
 LPCTSTR pszLicFileName,
 LPOLESTR pszLicFileContents,
 UINT cch = -1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

_tcslen(pszLicFileContents);

RequirementsRequirements

See also

Ends the declaration of your control's class factory.

class_name
The name of the control class whose class factory this is.

Header afxctl.h

Call this function to verify that the license file named by pszLicFileName is valid for the OLE control.

hInstance
The instance handle of the DLL associated with the licensed control.

pszLicFileName
Points to a null-terminated character string containing the license filename.

pszLicFileContents
Points to a byte sequence that must match the sequence found at the beginning of the license file.

cch
Number of characters in pszLicFileContents.

Nonzero if the license file exists and begins with the character sequence in pszLicFileContents; otherwise 0.

If cch is -1, this function uses:

Header afxctl.h

Macros and Globals

Persistence of OLE Controls
3/4/2019 • 13 minutes to read • Edit Online

Persistence of OLE ControlsPersistence of OLE Controls

PX_Blob Exchanges a control property that stores binary large object
(BLOB) data.

PX_Bool Exchanges a control property of type BOOL.

PX_Color Exchanges a color property of a control.

PX_Currency Exchanges a control property of type CY.

PX_DataPath Exchanges a control property of type CDataPathProperty .

PX_Double Exchanges a control property of type double.

PX_Font Exchanges a font property of a control.

PX_Float Exchanges a control property of type float.

PX_IUnknown Exchanges a control property of undefined type.

PX_Long Exchanges a control property of type long.

PX_Picture Exchanges a picture property of a control.

PX_Short Exchanges a control property of type short.

PX_ULong Exchanges a control property of type ULONG.

PX_UShort Exchanges a control property of type USHORT.

PXstring Exchanges a character string control property.

PX_VBXFontConvert Exchanges a VBX control's font-related properties into an OLE
control font property.

PX_Blob

One capability of OLE controls is property persistence (or serialization), which allows the OLE control to read or
write property values to and from a file or stream. A container application can use serialization to store a control's
property values even after the application has destroyed the control. The property values of the OLE control can
then be read from the file or stream when a new instance of the control is created at a later time.

In addition, the AfxOleTypeMatchGuid global function is provided to test for a match between a TYPEDESC and a
given GUID.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/persistence-of-ole-controls.md

BOOL PX_Blob(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 HGLOBAL& hBlob,
 HGLOBAL hBlobDefault = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PX_Bool

BOOL PX_Bool(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 BOOL& bValue);

BOOL PX_Bool(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 BOOL& bValue,
 BOOL bDefault);

Call this function within your control's DoPropExchange member function to serialize or initialize a property that
stores binary large object (BLOB) data.

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

hBlob
Reference to the variable where the property is stored (typically a member variable of your class).

hBlobDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value will be read from or written to the variable referenced by hBlob, as appropriate. This variable
should be initialized to NULL before initially calling PX_Blob for the first time (typically, this can be done in the
control's constructor). If hBlobDefault is specified, it will be used as the property's default value. This value is used
if, for any reason, the control's initialization or serialization process fails.

The handles hBlob and hBlobDefault refer to a block of memory which contains the following:

A DWORD which contains the length, in bytes, of the binary data that follows, followed immediately by

A block of memory containing the actual binary data.

Note that PX_Blob will allocate memory, using the Windows GlobalAlloc API, when loading BLOB-type
properties. You are responsible for freeing this memory. Therefore, the destructor of your control should call
GlobalFree on any BLOB-type property handles to free up any memory allocated to your control.

Call this function within your control's DoPropExchange member function to serialize or initialize a property of type
BOOL.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalalloc
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalfree

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PX_Color

BOOL PX_Color(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 OLE_COLOR& clrValue);

BOOL PX_Color(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 OLE_COLOR& clrValue,
 OLE_COLOR clrDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

bValue
Reference to the variable where the property is stored (typically a member variable of your class).

bDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value will be read from or written to the variable referenced by bValue, as appropriate. If bDefault
is specified, it will be used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

Call this function within your control's DoPropExchange member function to serialize or initialize a property of type
OLE_COLOR.

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

clrValue
Reference to the variable where the property is stored (typically a member variable of your class).

clrDefault
Default value for the property, as defined by the control developer.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value will be read from or written to the variable referenced by clrValue, as appropriate. If
clrDefault is specified, it will be used as the property's default value. This value is used if, for any reason, the
control's serialization process fails.

PX_Currency

BOOL PX_Currency(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 CY& cyValue);

BOOL PX_Currency(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 CY& cyValue,
 CY cyDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PX_DataPath

BOOL PX_DataPath(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 CDataPathProperty& dataPathProperty);

BOOL PX_DataPath(
 CPropExchange* pPX,
 CDataPathProperty& dataPathProperty);

ParametersParameters

Call this function within your control's DoPropExchange member function to serialize or initialize a property of type
currency.

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

cyValue
Reference to the variable where the property is stored (typically a member variable of your class).

cyDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value will be read from or written to the variable referenced by cyValue, as appropriate. If cyDefault
is specified, it will be used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

Call this function within your control's DoPropExchange member function to serialize or initialize a data path
property of type CDataPathProperty.

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

Return ValueReturn Value

RemarksRemarks

PX_Double

BOOL PX_Double(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 double& doubleValue);

BOOL PX_Double(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 double& doubleValue,
 double doubleDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PX_Font

dataPathProperty
Reference to the variable where the property is stored (typically a member variable of your class).

Nonzero if the exchange was successful; 0 if unsuccessful.

Data path properties implement asynchronous control properties. The property's value will be read from or
written to the variable referenced by dataPathProperty, as appropriate.

Call this function within your control's DoPropExchange member function to serialize or initialize a property of type
double.

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

doubleValue
Reference to the variable where the property is stored (typically a member variable of your class).

doubleDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value is read from or written to the variable referenced by doubleValue, as appropriate. If
doubleDefault is specified, it will be used as the property's default value. This value is used if, for any reason, the
control's serialization process fails.

Call this function within your control's DoPropExchange member function to serialize or initialize a property of type
font.

BOOL PX_Font(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 CFontHolder& font,
 const FONTDESC FAR* pFontDesc = NULL,
 LPFONTDISP pFontDispAmbient = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PX_Float

BOOL PX_Float(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 float& floatValue);

BOOL PX_Float(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 float& floatValue,
 float floatDefault);

ParametersParameters

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

font
A reference to a CFontHolder object that contains the font property.

pFontDesc
A pointer to a FONTDESC structure containing the values to use in initializing the default state of the font property,
in the case where pFontDispAmbient is NULL.

pFontDispAmbient
A pointer to the IFontDisp interface of a font to use in initializing the default state of the font property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value is read from or written to font , a CFontHolder reference, when appropriate. If pFontDesc
and pFontDispAmbient are specified, they are used for initializing the property's default value, when needed.
These values are used if, for any reason, the control's serialization process fails. Typically, you pass NULL for
pFontDesc and the ambient value returned by COleControl::AmbientFont for pFontDispAmbient. Note that the font
object returned by COleControl::AmbientFont must be released by a call to the IFontDisp::Release member
function.

Call this function within your control's DoPropExchange member function to serialize or initialize a property of type
float.

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName

Return ValueReturn Value

RemarksRemarks

PX_IUnknown

BOOL PX_IUnknown(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 LPUNKNOWN& pUnk,
 REFIID iid,
 LPUNKNOWN pUnkDefault = NULL);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PX_Long

The name of the property being exchanged.

floatValue
Reference to the variable where the property is stored (typically a member variable of your class).

floatDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value is read from or written to the variable referenced by floatValue, as appropriate. If floatDefault
is specified, it will be used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

Call this function within your control's DoPropExchange member function to serialize or initialize a property
represented by an object having an IUnknown -derived interface.

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

pUnk
Reference to a variable containing the interface of the object that represents the value of the property.

iid
An interface ID indicating which interface of the property object is used by the control.

pUnkDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value is read from or written to the variable referenced by pUnk, as appropriate. If pUnkDefault is
specified, it will be used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

Call this function within your control's DoPropExchange member function to serialize or initialize a property of type
long.

BOOL PX_Long(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 long& lValue);

BOOL PX_Long(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 long& lValue,
 long lDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PX_Picture

BOOL PX_Picture(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 CPictureHolder& pict);

BOOL PX_Picture(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 CPictureHolder& pict,
 CPictureHolder& pictDefault);

ParametersParameters

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

lValue
Reference to the variable where the property is stored (typically a member variable of your class).

lDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value is read from or written to the variable referenced by lValue, as appropriate. If lDefault is
specified, it will be used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

Call this function within your control's DoPropExchange member function to serialize or initialize a picture property
of your control.

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

pict
Reference to a CPictureHolder object where the property is stored (typically a member variable of your class).

Return ValueReturn Value

RemarksRemarks

PX_Short

BOOL PX_Short(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 short& sValue);

BOOL PX_Short(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 short& sValue,
 short sDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PX_ULong

pictDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value is read from or written to the variable referenced by pict, as appropriate. If pictDefault is
specified, it will be used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

Call this function within your control's DoPropExchange member function to serialize or initialize a property of type
short.

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

sValue
Reference to the variable where the property is stored (typically a member variable of your class).

sDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value is read from or written to the variable referenced by sValue, as appropriate. If sDefault is
specified, it will be used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

Call this function within your control's DoPropExchange member function to serialize or initialize a property of type
ULONG.

BOOL PX_ULong(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 ULONG& ulValue);

BOOL PX_ULong(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 ULONG& ulValue,
 long ulDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PX_UShort

BOOL PX_UShort(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 USHORT& usValue);

BOOL PX_UShort(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 USHORT& usValue,
 USHORT usDefault);

ParametersParameters

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
Name of the property being exchanged.

ulValue
Reference to the variable where the property is stored (typically a member variable of your class).

ulDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value is read from or written to the variable referenced by ulValue, as appropriate. If ulDefault is
specified, it will be used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

Call this function within your control's DoPropExchange member function to serialize or initialize a property of type
unsigned short.

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
Name of the property being exchanged.

usValue
Reference to the variable where the property is stored (typically a member variable of your class).

Return ValueReturn Value

RemarksRemarks

PXstring

BOOL PXstring(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 CString& strValue);

BOOL PXstring(
 CPropExchange* pPX,
 LPCTSTR pszPropName,
 CString& strValue,
 CString strDefault);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PX_VBXFontConvert

usDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value is read from or written to the variable referenced by usValue, as appropriate. If usDefault is
specified, it will be used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

Call this function within your control's DoPropExchange member function to serialize or initialize a character string
property.

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

pszPropName
The name of the property being exchanged.

strValue
Reference to the variable where the property is stored (typically a member variable of your class).

strDefault
Default value for the property.

Nonzero if the exchange was successful; 0 if unsuccessful.

The property's value is read from or written to the variable referenced by strValue, as appropriate. If strDefault is
specified, it will be used as the property's default value. This value is used if, for any reason, the control's
serialization process fails.

Call this function within your control's DoPropExchange member function to initialize a font property by converting
a VBX control's font-related properties.

BOOL PX_VBXFontConvert(
 CPropExchange* pPX,
 CFontHolder& font);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

void CMFCActiveXControlCtrl::DoPropExchange(CPropExchange* pPX)
{
 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));
 COleControl::DoPropExchange(pPX);

 if (IsConvertingVBX())
 PX_VBXFontConvert(pPX, InternalGetFont());

}

See also

pPX
Pointer to the CPropExchange object (typically passed as a parameter to DoPropExchange).

font
The font property of the OLE control that will contain the converted VBX font-related properties.

Nonzero if the exchange was successful; 0 if unsuccessful.

This function should be used only by an OLE control that is designed as a direct replacement for a VBX control.
When the Visual Basic development environment converts a form containing a VBX control to use the
corresponding replacement OLE control, it will call the control's IDataObject::SetData function, passing in a
property set that contains the VBX control's property data. This operation, in turn, causes the control's
DoPropExchange function to be invoked. DoPropExchange can call PX_VBXFontConvert to convert the VBX control's

font-related properties (for example, "FontName," "FontSize," and so on) into the corresponding components of
the OLE control's font property.

PX_VBXFontConvert should only be called when the control is actually being converted from a VBX form
application. For example:

Macros and Globals

Internet URL Parsing Globals and Helpers
3/4/2019 • 4 minutes to read • Edit Online

Internet URL Parsing Globals

AfxParseURL Parses a URL string and returns the type of service and its
components.

AfxParseURLEx Parses a URL string and returns the type of service and its
components, as well as providing the user name and
password.

Other Internet Helpers

AfxThrowInternetException Throws an exception related to the internet connection.

AfxGetInternetHandleType Determines the type of an Internet handle.

AfxParseURL

BOOL AFXAPI AfxParseURL(
 LPCTSTR pstrURL,
 DWORD& dwServiceType,
 CString& strServer,
 CString& strObject,
 INTERNET_PORT& nPort);

ParametersParameters

When a client sends a query to the Internet server, you can use one of the URL parsing globals to extract
information about the client. The helper functions provide other internet functionality.

This global is used in CInternetSession::OpenURL.

pstrURL
A pointer to a string containing the URL to be parsed.

dwServiceType
Indicates the type of Internet service. Possible values are as follows:

AFX_INET_SERVICE_FTP

AFX_INET_SERVICE_HTTP

AFX_INET_SERVICE_HTTPS

AFX_INET_SERVICE_GOPHER

AFX_INET_SERVICE_FILE

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/internet-url-parsing-globals.md

Return ValueReturn Value

RemarksRemarks

NOTENOTE

RequirementsRequirements

AfxParseURLEx

AFX_INET_SERVICE_MAILTO

AFX_INET_SERVICE_NEWS

AFX_INET_SERVICE_NNTP

AFX_INET_SERVICE_TELNET

AFX_INET_SERVICE_WAIS

AFX_INET_SERVICE_MID

AFX_INET_SERVICE_CID

AFX_INET_SERVICE_PROSPERO

AFX_INET_SERVICE_AFS

AFX_INET_SERVICE_UNK

strServer
The first segment of the URL following the service type.

strObject
An object that the URL refers to (may be empty).

nPort
Determined from either the Server or Object portions of the URL, if either exists.

Nonzero if the URL was successfully parsed; otherwise, 0 if it is empty or does not contain a known Internet
service type.

It parses a URL string and returns the type of service and its components.

For example, AfxParseURL parses URLs of the form service://server/dir/dir/object.ext:port and returns its
components stored as follows:

strServer == "server"

strObject == "/dir/dir/object/object.ext"

nPort == #port

dwServiceType == #service

To call this function, your project must include AFXINET.H.

Header afxinet.h

This global function is the extended version of AfxParseURL and is used in CInternetSession::OpenURL.

BOOL AFXAPI AfxParseURLEx(
 LPCTSTR pstrURL,
 DWORD& dwServiceType,
 CString& strServer,
 CString& strObject,
 INTERNET_PORT& nPort,
 CString& strUsername,
 CString& strPassword,
 DWORD dwFlags = 0);

ParametersParameters
pstrURL
A pointer to a string containing the URL to be parsed.

dwServiceType
Indicates the type of Internet service. Possible values are as follows:

AFX_INET_SERVICE_FTP

AFX_INET_SERVICE_HTTP

AFX_INET_SERVICE_HTTPS

AFX_INET_SERVICE_GOPHER

AFX_INET_SERVICE_FILE

AFX_INET_SERVICE_MAILTO

AFX_INET_SERVICE_NEWS

AFX_INET_SERVICE_NNTP

AFX_INET_SERVICE_TELNET

AFX_INET_SERVICE_WAIS

AFX_INET_SERVICE_MID

AFX_INET_SERVICE_CID

AFX_INET_SERVICE_PROSPERO

AFX_INET_SERVICE_AFS

AFX_INET_SERVICE_UNK

strServer
The first segment of the URL following the service type.

strObject
An object that the URL refers to (may be empty).

nPort
Determined from either the Server or Object portions of the URL, if either exists.

strUsername
A reference to a CString object containing the name of the user.

strPassword
A reference to a CString object containing the password of the user.

VALUE MEANING

ICU_DECODE Convert %XX escape sequences to characters.

ICU_NO_ENCODE Do not convert unsafe characters to escape sequence.

ICU_NO_META Do not remove meta sequences (such as "\ ." and "\ ..") from
the URL.

ICU_ENCODE_SPACES_ONLY Encode spaces only.

ICU_BROWSER_MODE Do not encode or decode characters after '#' or '', and do not
remove trailing white space after ''. If this value is not
specified, the entire URL is encoded and trailing white space is
removed.

Return ValueReturn Value

RemarksRemarks

NOTENOTE

RequirementsRequirements

AfxGetInternetHandleType

SyntaxSyntax

DWORD AFXAPI AfxGetInternetHandleType(HINTERNET hQuery);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

dwFlags
The flags controlling how to parse the URL. Can be a combination of the following values:

If you use the MFC default, which is no flags, the function converts all unsafe characters and meta sequences (such
as \.,\ .., and \...) to escape sequences.

Nonzero if the URL was successfully parsed; otherwise, 0 if it is empty or does not contain a known Internet
service type.

It parses a URL string and returns the type of service and its components, as well as providing the user's name and
password. The flags indicate how unsafe characters are handled.

To call this function, your project must include AFXINET.H.

Header afxinet.h

Use this global function to determine the type of an Internet handle.

hQuery
A handle to an Internet query.

Any of the Internet service types defined by WININET.H. See the Remarks section for a list of these Internet
services. If the handle is NULL or not recognized, the function returns AFX_INET_SERVICE_UNK.

NOTENOTE

RequirementsRequirements

AfxThrowInternetException

SyntaxSyntax

 void AFXAPI AfxThrowInternetException(DWORD dwContext, DWORD dwError = 0);

ParametersParameters

RemarksRemarks

The following list includes possible Internet types returned by AfxGetInternetHandleType .

INTERNET_HANDLE_TYPE_INTERNET

INTERNET_HANDLE_TYPE_CONNECT_FTP

INTERNET_HANDLE_TYPE_CONNECT_GOPHER

INTERNET_HANDLE_TYPE_CONNECT_HTTP

INTERNET_HANDLE_TYPE_FTP_FIND

INTERNET_HANDLE_TYPE_FTP_FIND_HTML

INTERNET_HANDLE_TYPE_FTP_FILE

INTERNET_HANDLE_TYPE_FTP_FILE_HTML

INTERNET_HANDLE_TYPE_GOPHER_FIND

INTERNET_HANDLE_TYPE_GOPHER_FIND_HTML

INTERNET_HANDLE_TYPE_GOPHER_FILE

INTERNET_HANDLE_TYPE_GOPHER_FILE_HTML

INTERNET_HANDLE_TYPE_HTTP_REQUEST

In order to call this function, your project must include AFXINET.H.

Header: afxinet.h

Throws an Internet exception.

dwContext
The context identifier for the operation that caused the error. The default value of dwContext is specified originally
in CInternetSession and is passed to CInternetConnection- and CInternetFile-derived classes. For specific
operations performed on a connection or a file, you usually override the default with a dwContext of your own.
This value then is returned to CInternetSession::OnStatusCallback to identify the specific operation's status.

dwError
The error that caused the exception.

You are responsible for determining the cause based on the operating-system error code.

NOTENOTE

RequirementsRequirements

See also

To call this function, your project must include AFXINET.H.

Header: afxinet.h

Macros and Globals
CInternetException Class
AfxParseURL

DHTML Event Maps
3/4/2019 • 17 minutes to read • Edit Online

DHTML Event Map Macros

BEGIN_DHTML_EVENT_MAP Marks the start of the DHTML event map.

BEGIN_DHTML_EVENT_MAP_INLINE Marks the start of the DHTML event map.

DECLARE_DHTML_EVENT_MAP Declares the DHTML event map.

DHTML_EVENT Used to handle an event at the document level for a single
HTML element.

DHTML_EVENT_AXCONTROL Used to handle an event fired by an ActiveX control.

DHTML_EVENT_CLASS Used to handle an event at the document level for all HTML
elements with a particular CSS class.

DHTML_EVENT_ELEMENT Used to handle an event at the element level.

DHTML_EVENT_ONAFTERUPDATE Used to handle the onafterupdate event from an HTML
element.

DHTML_EVENT_ONBEFOREUPDATE Used to handle the onbeforeupdate event from an HTML
element.

DHTML_EVENT_ONBLUR Used to handle the onblur event from an HTML element.

DHTML_EVENT_ONCHANGE Used to handle the onchange event from an HTML element.

DHTML_EVENT_ONCLICK Used to handle the onclick event from an HTML element.

DHTML_EVENT_ONDATAAVAILABLE Used to handle the ondataavailable event from an HTML
element.

DHTML_EVENT_ONDATASETCHANGED Used to handle the ondatasetchanged event from an HTML
element.

DHTML_EVENT_ONDATASETCOMPLETE Used to handle the ondatasetcomplete event from an
HTML element.

DHTML_EVENT_ONDBLCLICK Used to handle the ondblclick event from an HTML
element.

The following macros can be used to handle DHTML events.

The following macros can be used to handle DHTML events in CDHtmlDialog-derived classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/dhtml-event-maps.md

DHTML_EVENT_ONDRAGSTART Used to handle the ondragstart event from an HTML
element.

DHTML_EVENT_ONERRORUPDATE Used to handle the onerrorupdate event from an HTML
element.

DHTML_EVENT_ONFILTERCHANGE Used to handle the onfilterchange event from an HTML
element.

DHTML_EVENT_ONFOCUS Used to handle the onfocus event from an HTML element.

DHTML_EVENT_ONHELP Used to handle the onhelp event from an HTML element.

DHTML_EVENT_ONKEYDOWN Used to handle the onkeydown event from an HTML
element.

DHTML_EVENT_ONKEYPRESS Used to handle the onkeypress event from an HTML
element.

DHTML_EVENT_ONKEYUP Used to handle the onkeyup event from an HTML element.

DHTML_EVENT_ONMOUSEDOWN Used to handle the onmousedown event from an HTML
element.

DHTML_EVENT_ONMOUSEMOVE Used to handle the onmousemove event from an HTML
element.

DHTML_EVENT_ONMOUSEOUT Used to handle the onmouseout event from an HTML
element.

DHTML_EVENT_ONMOUSEOVER Used to handle the onmouseover event from an HTML
element.

DHTML_EVENT_ONMOUSEUP Used to handle the onmouseup event from an HTML
element.

DHTML_EVENT_ONRESIZE Used to handle the onresize event from an HTML element.

DHTML_EVENT_ONROWENTER Used to handle the onrowenter event from an HTML
element.

DHTML_EVENT_ONROWEXIT Used to handle the onrowexit event from an HTML
element.

DHTML_EVENT_ONSELECTSTART Used to handle the onselectstart event from an HTML
element.

DHTML_EVENT_TAG Used to handle an event at the document level for all
elements with a particular HTML tag.

END_DHTML_EVENT_MAP Marks the end of the DHTML event map.

END_DHTML_EVENT_MAP_INLINE Marks the end of the DHTML event map.

URL Event Map Macros

BEGIN_DHTML_URL_EVENT_MAP Marks the start of the multipage DHTML and URL event map.

BEGIN_EMBED_DHTML_EVENT_MAP Marks the start of an embedded DHTML event map.

BEGIN_URL_ENTRIES Marks the start of a URL event entry map.

DECLARE_DHTML_URL_EVENT_MAP Declares the multipage DHTML and URL event map.

END_DHTML_URL_EVENT_MAP Marks the end of the multipage DHTML and URL event map.

END_EMBED_DHTML_EVENT_MAP Marks the end of an embedded DHTML event map.

END_URL_ENTRIES Marks the end of a URL event entry map.

URL_EVENT_ENTRY Maps a URL or HTML resource to a page in a multipage
dialog.

RequirementsRequirements

BEGIN_DHTML_EVENT_MAP

BEGIN_DHTML_EVENT_MAP(className)

ParametersParameters

RemarksRemarks

RequirementsRequirements

The following macros can be used to handle DHTML events in CMultiPageDHtmlDialog-derived classes.

Header afxdhtml.h

Marks the beginning of the DHTML event map when placed in the source file for the class identified by className

.

className
The name of the class containing the DHTML event map. This class should derive directly or indirectly from
CDHtmlDialog and include the DECLARE_DHTML_EVENT_MAP macro within its class definition.

Add a DHTML event map to your class to provide information to CDHtmlDialog that can be used to route events
fired by HTML elements or ActiveX controls in a web page to handler functions in your class.

Place the BEGIN_DHTML_EVENT_MAP macro in the class's implementation (.cpp) file followed by
DHTML_EVENT macros for the events the class is to handle (for example, DHTML_EVENT_ONMOUSEOVER for
mouseover events). Use the END_DHTML_EVENT_MAP macro to mark the end of the event map. These macros
implement the following function:

virtual const DHtmlEventMapEntry* GetDHtmlEventMap();

BEGIN_DHTML_EVENT_MAP_INLINE

BEGIN_DHTML_EVENT_MAP_INLINE(className)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DECLARE_DHTML_EVENT_MAP

DECLARE_DHTML_EVENT_MAP()

RemarksRemarks

RequirementsRequirements

DHTML_EVENT

DHTML_EVENT(dispid, elemName, memberFxn)

ParametersParameters

Header afxdhtml.h

Marks the beginning of the DHTML event map within the class definition for className.

className
The name of the class containing the DHTML event map. This class should derive directly or indirectly from
CDHtmlDialog and include the DECLARE_DHTML_EVENT_MAP macro within its class definition.

Add a DHTML event map to your class to provide information to CDHtmlDialog that can be used to route events
fired by HTML elements or ActiveX controls in a web page to handler functions in your class.

Place the BEGIN_DHTML_EVENT_MAP macro in the class's definition (.h) file followed by DHTML_EVENT
macros for the events the class is to handle (for example, DHTML_EVENT_ONMOUSEOVER for mouseover
events). Use the END_DHTML_EVENT_MAP_INLINE macro to mark the end of the event map. These macros
implement the following function:

virtual const DHtmlEventMapEntry* GetDHtmlEventMap();

Header afxdhtml.h

Declares a DHTML event map in a class definition.

This macro is to be used in the definition of CDHtmlDialog-derived classes.

Use BEGIN_DHTML_EVENT_MAP or BEGIN_DHTML_EVENT_MAP_INLINE to implement the map.

DECLARE_DHTML_EVENT_MAP declares the following function:

virtual const DHtmlEventMapEntry* GetDHtmlEventMap();

Header afxdhtml.h

Handles (at the document level) an event identified by dispid originated by the HTML element identified by
elemName.

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_AXCONTROL

DHTML_EVENT_AXCONTROL(dispid, controlName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_CLASS

DHTML_EVENT_CLASS(dispid, elemName, memberFxn)

ParametersParameters

RemarksRemarks

dispid
The DISPID of the event to be handled.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event, or NULL to handle document events.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles the event identified by dispid fired by the ActiveX control identified by controlName.

dispid
The dispatch ID of the event to be handled.

controlName
An LPCWSTR holding the HTML ID of the control firing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) an event identified by dispid originated by any HTML element with the CSS class
identified by elemName.

dispid
The dispatch ID of the event to be handled.

elemName
An LPCWSTR holding the CSS class of the HTML elements sourcing the event.

memberFxn
The handler function for the event.

RequirementsRequirements

DHTML_EVENT_ELEMENT

DHTML_EVENT_ELEMENT(dispid, elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONAFTERUPDATE

DHTML_EVENT_ONAFTERUPDATE(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONBEFOREUPDATE

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the element identified by elemName) an event identified by dispid.

dispid
The dispatch ID of the event to be handled.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

If this macro is used to handle nonbubbling events, the source of the event will be the element identified by
elemName.

If this macro is used to handle bubbling events, the element identified by elemName may not be the source of the
event (the source could be any element contained by elemName).

Header afxdhtml.h

Handles (at the document level) the onafterupdate event originated by the HTML element identified by
elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

DHTML_EVENT_ONBEFOREUPDATE(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONBLUR

DHTML_EVENT_ONBLUR(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONCHANGE

DHTML_EVENT_ONCHANGE(elemName, memberFxn)

ParametersParameters

RemarksRemarks

Handles (at the document level) the onbeforeupdate event originated by the HTML element identified by
elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the element level) the onblur event. This is a nonbubbling event.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the element level) the onchange event. This is a nonbubbling event.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

RequirementsRequirements

DHTML_EVENT_ONCLICK

DHTML_EVENT_ONCLICK(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONDATAAVAILABLE

DHTML_EVENT_ONDATAAVAILABLE(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONDATASETCHANGED

DHTML_EVENT_ONDATASETCHANGED(elemName, memberFxn)

ParametersParameters

Header afxdhtml.h

Handles (at the document level) the onclick event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the ondataavailable event originated by the HTML element identified by
elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the ondatasetchanged event originated by the HTML element identified by
elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONDATASETCOMPLETE

DHTML_EVENT_ONDATASETCOMPLETE(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONDBLCLICK

DHTML_EVENT_ONDBLCLICK(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONDRAGSTART

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the ondatasetcomplete event originated by the HTML element identified by
elemName .

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the ondblclick event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the ondragstart event originated by the HTML element identified by elemName.

DHTML_EVENT_ONDRAGSTART(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONERRORUPDATE

DHTML_EVENT_ONERRORUPDATE(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONFILTERCHANGE

DHTML_EVENT_ONFILTERCHANGE(elemName, memberFxn)

ParametersParameters

RemarksRemarks

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onerrorupdate event originated by the HTML element identified by
elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onfilterchange event originated by the HTML element identified by
elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

RequirementsRequirements

DHTML_EVENT_ONFOCUS

DHTML_EVENT_ONFOCUS(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONHELP

DHTML_EVENT_ONHELP(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONKEYDOWN

DHTML_EVENT_ONKEYDOWN(elemName, memberFxn)

ParametersParameters

Header afxdhtml.h

Handles (at the element level) the onfocus event. This is a nonbubbling event.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onhelp event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onkeydown event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONKEYPRESS

DHTML_EVENT_ONKEYPRESS(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONKEYUP

DHTML_EVENT_ONKEYUP(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONMOUSEDOWN

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onkeypress event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onkeyup event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onmousedown event originated by the HTML element identified by elemName.

DHTML_EVENT_ONMOUSEDOWN(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONMOUSEMOVE

DHTML_EVENT_ONMOUSEMOVE(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONMOUSEOUT

DHTML_EVENT_ONMOUSEOUT(elemName, memberFxn)

ParametersParameters

RemarksRemarks

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onmousemove event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onmouseout event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

RequirementsRequirements

DHTML_EVENT_ONMOUSEOVER

DHTML_EVENT_ONMOUSEOVER(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONMOUSEUP

DHTML_EVENT_ONMOUSEUP(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONRESIZE

DHTML_EVENT_ONRESIZE(elemName, memberFxn)

ParametersParameters

Header afxdhtml.h

Handles (at the document level) the onmouseover event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onmouseup event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the element level) the onresize event. This is a nonbubbling event.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONROWENTER

DHTML_EVENT_ONROWENTER(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONROWEXIT

DHTML_EVENT_ONROWEXIT(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_ONSELECTSTART

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onrowenter event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onrowexit event originated by the HTML element identified by elemName.

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) the onselectstart event originated by the HTML element identified by
elemName.

DHTML_EVENT_ONSELECTSTART(elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DHTML_EVENT_TAG

DHTML_EVENT_TAG(dispid, elemName, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

END_DHTML_EVENT_MAP

END_DHTML_EVENT_MAP()

RemarksRemarks

RequirementsRequirements

BEGIN_DHTML_URL_EVENT_MAP

elemName
An LPCWSTR holding the ID of the HTML element sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Handles (at the document level) an event identified by dispid originated by any HTML element with the HTML
tag identified by elemName.

dispid
The dispatch ID of the event to be handled.

elemName
The HTML tag of the HTML elements sourcing the event.

memberFxn
The handler function for the event.

Use this macro to add an entry to the DHTML event map in your class.

Header afxdhtml.h

Marks the end of the DHTML event map.

Must be used in conjunction with BEGIN_DHTML_EVENT_MAP.

Header afxdhtml.h

BEGIN_DHTML_URL_EVENT_MAP()

RemarksRemarks

ExampleExample

BEGIN_DHTML_URL_EVENT_MAP(CMyMultiPageDlg)

 BEGIN_EMBED_DHTML_EVENT_MAP(CMyMultiPageDlg, Page1)
 DHTML_EVENT_ONCLICK(_T("Next"), OnPage1Next)
 END_EMBED_DHTML_EVENT_MAP()

 BEGIN_EMBED_DHTML_EVENT_MAP(CMyMultiPageDlg, Page2)
 DHTML_EVENT_ONCLICK(_T("Back"), OnPage2Back)
 DHTML_EVENT_ONCLICK(_T("Next"), OnPage2Next)
 END_EMBED_DHTML_EVENT_MAP()

 BEGIN_EMBED_DHTML_EVENT_MAP(CMyMultiPageDlg, Page3)
 DHTML_EVENT_ONCLICK(_T("Back"), OnPage3Back)
 END_EMBED_DHTML_EVENT_MAP()

 BEGIN_URL_ENTRIES(CMyMultiPageDlg)
 URL_EVENT_ENTRY(CMyMultiPageDlg, _T("153"), Page1)
 URL_EVENT_ENTRY(CMyMultiPageDlg, _T("154"), Page2)
 URL_EVENT_ENTRY(CMyMultiPageDlg, _T("155"), Page3)
 // Note: IDR_PAGE1 = 153, IDR_PAGE2 = 154, IDR_PAGE3 = 155
 END_URL_ENTRIES()

END_DHTML_URL_EVENT_MAP(CMyMultiPageDlg)

RequirementsRequirements

BEGIN_EMBED_DHTML_EVENT_MAP

BEGIN_EMBED_DHTML_EVENT_MAP(className, mapName)

ParametersParameters

RemarksRemarks

Starts the definition of a DHTML and URL event map in a multipage dialog.

Put BEGIN_DHTML_URL_EVENT_MAP in the implementation file of your CMultiPageDHtmlDialog-derived
class. Follow it with embedded DHTML event maps and URL entries, and then close it with
END_DHTML_URL_EVENT_MAP. Include the DECLARE_DHTML_URL_EVENT_MAP macro within the class
definition.

Header afxdhtml.h

Starts the definition of an embedded DHTML event map in a multipage dialog.

className
The name of the class containing the event map. This class should derive directly or indirectly from
CMultiPageDHtmlDialog. The embedded DHTML event map must be inside a DHTML and URL event map).

mapName
Specifies the page whose event map this is. This matches mapName in the URL_EVENT_ENTRY macro actually
defining the URL or HTML resource.

Because a multipage DHTML dialog consists of multiple HTML pages, each of which can raise DHTML events,
embedded event maps are used to map events to handlers on a per-page basis.

ExampleExample

RequirementsRequirements

BEGIN_URL_ENTRIES

BEGIN_URL_ENTRIES(className)

ParametersParameters

RemarksRemarks

ExampleExample

RequirementsRequirements

DECLARE_DHTML_URL_EVENT_MAP

DECLARE_DHTML_URL_EVENT_MAP()

RemarksRemarks

RequirementsRequirements

END_DHTML_URL_EVENT_MAP

Embedded event maps within a DHTML and URL event map consist of a BEGIN_EMBED_DHTML_EVENT_MAP
macro followed by DHTML_EVENT macros and an END_EMBED_DHTML_EVENT_MAP macro.

Each embedded event map requires a corresponding URL event entry to map mapName (specified in
BEGIN_EMBED_DHTML_EVENT_MAP) to a URL or HTML resource.

See the example in BEGIN_DHTML_URL_EVENT_MAP.

Header afxdhtml.h

Starts the definition of a URL event entry map in a multipage dialog.

className
The name of the class containing the URL event entry map. This class should derive directly or indirectly from
CMultiPageDHtmlDialog. The URL event entry map must be inside a DHTML and URL event map).

Because a multipage DHTML dialog consists of multiple HTML pages, URL event entries are used to map URLs or
HTML resources to corresponding embedded DHTML event maps. Put URL_EVENT_ENTRY macros between
BEGIN_URL_ENTRIES and END_URL_ENTRIES macros.

See the example in BEGIN_DHTML_URL_EVENT_MAP.

Header afxdhtml.h

Declares a DHTML and URL event map in a class definition.

This macro is to be used in the definition of CMultiPageDHtmlDialog-derived classes.

A DHTML and URL event map contains embedded DHTML event maps and URL event entries to map DHTML
events to handlers on a per-page basis. Use BEGIN_DHTML_URL_EVENT_MAP to implement the map.

Header afxdhtml.h

Marks the end of a DHTML and URL event map.

END_DHTML_URL_EVENT_MAP(className)

ParametersParameters

ExampleExample

RequirementsRequirements

END_EMBED_DHTML_EVENT_MAP

END_EMBED_DHTML_EVENT_MAP()

ExampleExample

RequirementsRequirements

END_URL_ENTRIES

END_URL_ENTRIES()

ExampleExample

RequirementsRequirements

URL_EVENT_ENTRY

URL_EVENT_ENTRY(className, url, mapName)

ParametersParameters

className
The name of the class containing the event map. This class should derive directly or indirectly from
CMultiPageDHtmlDialog. This should match className in the corresponding
BEGIN_DHTML_URL_EVENT_MAP macro.

See the example in BEGIN_DHTML_URL_EVENT_MAP.

Header afxdhtml.h

Marks the end of an embedded DHTML event map.

See the example in BEGIN_DHTML_URL_EVENT_MAP.

Header afxdhtml.h

Marks the end of a URL event entry map.

See the example in BEGIN_DHTML_URL_EVENT_MAP.

Header afxdhtml.h

Maps a URL or HTML resource to a page in a multipage dialog.

className
The name of the class containing the URL event entry map. This class should derive directly or indirectly from
CMultiPageDHtmlDialog. The URL event entry map must be inside a DHTML and URL event map).

url
The URL or HTML resource for the page.

RemarksRemarks

ExampleExample

RequirementsRequirements

END_DHTML_EVENT_MAP_INLINE

SyntaxSyntax

END_DHTML_EVENT_MAP_INLINE()

RemarksRemarks

RequirementsRequirements

See also

mapName
Specifies the page whose URL is url. This matches mapName in the BEGIN_EMBED_DHTML_EVENT_MAP
macro that maps events from this page.

If the page is an HTML resource, url must be the string representation of the resource's ID number (that is, "123",
not 123 or ID_HTMLRES1).

The page identifier, mapName, is an arbitrary symbol used to link embedded DHTML event maps to URL event
entry maps. It is limited in scope to the DHTML and URL event map.

See the example in BEGIN_DHTML_URL_EVENT_MAP.

Header afxdhtml.h

Marks the end of the DHTML event map.

Must be used in conjunction with BEGIN_DHTML_EVENT_MAP_INLINE.

Header: afxdhtml.h

Macros and Globals

DHTML Editing Command Maps
3/4/2019 • 2 minutes to read • Edit Online

DHTML Editing Command Map MacrosDHTML Editing Command Map Macros

DECLARE_DHTMLEDITING_CMDMAP Declares a DHTML editing command map in a class.

BEGIN_DHTMLEDITING_CMDMAP Starts the definition of a DHTML editing command map within
a class.

END_DHTMLEDITING_CMDMAP Marks the end of a DHTML editing command map.

DHTMLEDITING_CMD_ENTRY Maps a command ID to an HTML editing command.

DHTMLEDITING_CMD_ENTRY_FUNC Maps a command ID to an HTML editing command and
message handler.

DHTMLEDITING_CMD_ENTRY_TYPE Maps a command ID to an HTML editing command and user
interface element.

DHTMLEDITING_CMD_ENTRY_FUNC_TYPE Maps a command ID to an HTML editing command, message
handler, and user interface element.

DECLARE_DHTMLEDITING_CMDMAP

DECLARE_DHTMLEDITING_CMDMAP(className)

ParametersParameters

RemarksRemarks

ExampleExample

RequirementsRequirements

BEGIN_DHTMLEDITING_CMDMAP

The following macros can be used to map DHTML editing commands in CHtmlEditView-derived classes. For an
example of their use, see HTMLEdit Sample.

Declares a DHTML editing command map in a class.

className
The name of the class.

This macro is to be used in the definition of CHtmlEditView-derived classes.

Use BEGIN_DHTMLEDITING_CMDMAP to implement the map.

See HTMLEdit Sample.

Header afxhtml.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/dhtml-editing-command-maps.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

BEGIN_DHTMLEDITING_CMDMAP(className)

ParametersParameters

RemarksRemarks

RequirementsRequirements

END_DHTMLEDITING_CMDMAP

END_DHTMLEDITING_CMDMAP()

RemarksRemarks

ExampleExample

RequirementsRequirements

DHTMLEDITING_CMD_ENTRY

DHTMLEDITING_CMD_ENTRY(cmdID, dhtmlcmdID)

ParametersParameters

ExampleExample

RequirementsRequirements

Starts the definition of a DHTML editing command map within a class.

className
The name of the class containing the DHTML editing command map. This class should derive directly or indirectly
from CHtmlEditView and include the DECLARE_DHTMLEDITING_CMDMAP macro within its class definition.

Add a DHTML editing command map to your class to map user interface commands to HTML editing commands.

Place the BEGIN_DHTMLEDITING_CMDMAP macro in the class's implementation (.cpp) file followed by
DHTMLEDITING_CMD_ENTRY macros for the commands the class is to map (for example, from ID_EDIT_CUT to
IDM_CUT). Use the END_DHTMLEDITING_CMDMAP macro to mark the end of the event map.

Header afxhtml.h

Marks the end of a DHTML editing command map.

Use in conjunction with BEGIN_DHTMLEDITING_CMDMAP.

See HTMLEdit Sample.

Header afxhtml.h

Maps a command ID to an HTML editing command.

cmdID
The command ID (such as ID_EDIT_COPY).

dhtmlcmdID
The HTML editing command to which cmdID maps (such as IDM_COPY).

See HTMLEdit Sample.

Header afxhtml.h

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

DHTMLEDITING_CMD_ENTRY_FUNC

DHTMLEDITING_CMD_ENTRY_FUNC(cmdID, dhtmlcmdID, member_func_name)

ParametersParameters

ExampleExample

RequirementsRequirements

DHTMLEDITING_CMD_ENTRY_TYPE

DHTMLEDITING_CMD_ENTRY_TYPE(cmdID , dhtmlcmdID , elemType)

ParametersParameters

ExampleExample

RequirementsRequirements

DHTMLEDITING_CMD_ENTRY_FUNC_TYPE

DHTMLEDITING_CMD_ENTRY_FUNC_TYPE(cmdID, dhtmlcmdID, member_func_name, elemType)

ParametersParameters

Maps a command ID to an HTML editing command and message handler.

cmdID
The command ID (such as ID_EDIT_COPY).

dhtmlcmdID
The HTML editing command to which cmdID maps (such as IDM_COPY).

member_func_name
The name of the message-handler function to which the command is mapped.

See HTMLEdit Sample.

Header afxhtml.h

Maps a command ID to an HTML editing command and user interface element.

cmdID
The command ID (such as ID_EDIT_COPY).

dhtmlcmdID
The HTML editing command to which cmdID maps (such as IDM_COPY).

elemType
The user interface element type; one of AFX_UI_ELEMTYPE_NORMAL, AFX_UI_ELEMTYPE_CHECKBOX, or
AFX_UI_ELEMTYPE_RADIO.

See HTMLEdit Sample.

Header afxhtml.h

Maps a command ID to an HTML editing command, message handler, and user interface element.

cmdID

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

ExampleExample

RequirementsRequirements

See also

The command ID (such as ID_EDIT_COPY).

dhtmlcmdID
The HTML editing command to which cmdID maps (such as IDM_COPY).

member_func_name
The name of the message-handler function to which the command is mapped.

elemType
The user interface element type; one of AFX_UI_ELEMTYPE_NORMAL, AFX_UI_ELEMTYPE_CHECKBOX, or
AFX_UI_ELEMTYPE_RADIO.

See HTMLEdit Sample.

Header afxhtml.h

Macros and Globals

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Standard Dialog Data Exchange Routines
3/4/2019 • 15 minutes to read • Edit Online

NOTENOTE

DDX FunctionsDDX Functions

DDX_CBIndex Initializes or retrieves the index of the current selection of a
combo box control.

DDX_CBString Initializes or retrieves the current contents of the edit field of a
combo box control.

DDX_CBStringExact Initializes or retrieves the current contents of the edit field of a
combo box control.

DDX_Check Initializes or retrieves the current state of a check box control.

DDX_Control Subclasses a given control within a dialog box.

DDX_DateTimeCtrl Initializes or retrieves date and/or time data of a date and time
picker control.

DDX_IPAddress Initializes or retrieves the current value of an IP address
control.

DDX_LBIndex Initializes or retrieves the index of the current selection of a list
box control.

DDX_LBString Initializes or retrieves the current selection within a list box
control.

DDX_LBStringExact Initializes or retrieves the current selection within a list box
control.

DDX_ManagedControl Creates a .NET control matching the control's resource ID.

DDX_MonthCalCtrl Initializes or retrieves the current value of a month calendar
control.

DDX_Radio Initializes or retrieves the 0-based index of the radio control
that is currently checked within a radio control group.

DDX_Scroll Initializes or retrieves the current position of a scroll control's
thumb.

This topic lists the standard dialog data exchange (DDX) routines used for common MFC dialog controls.

The standard dialog data exchange routines are defined in the header file afxdd_.h. However, applications should include
afxwin.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/standard-dialog-data-exchange-routines.md

DDX_Slider Initializes or retrieves the current position of a slider control's
thumb.

DDX_Text Initializes or retrieves the current value of an edit control.

DDX_CBIndex

void AFXAPI DDX_CBIndex(
 CDataExchange* pDX,
 int nIDC,
 int& index);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_CBString

void AFXAPI DDX_CBString(
 CDataExchange* pDX,
 int nIDC,
 CString& value);

ParametersParameters

The DDX_CBIndex function manages the transfer of int data between a combo box control in a dialog box, form
view, or control view object and a int data member of the dialog box, form view, or control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the combo box control associated with the control property.

index
A reference to a member variable of the dialog box, form view, or control view object with which data is exchanged.

When DDX_CBIndex is called, index is set to the index of the current combo box selection. If no item is selected,
index is set to 0.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

The DDX_CBString function manages the transfer of CString data between the edit control of a combo box control
in a dialog box, form view, or control view object and a CString data member of the dialog box, form view, or
control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the combo box control associated with the control property.

RemarksRemarks

NOTENOTE

RequirementsRequirements

DDX_CBStringExact

void AFXAPI DDX_CBStringExact(
 CDataExchange* pDX,
 int nIDC,
 CString& value);

ParametersParameters

RemarksRemarks

NOTENOTE

RequirementsRequirements

DDX_Check

value
A reference to a member variable of the dialog box, form view, or control view object with which data is exchanged.

When DDX_CBString is called, value is set to the current combo box selection. If no item is selected, value is set to a
string of zero length.

If the combo box is a drop-down list box, the value exchanged is limited to 255 characters.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

The DDX_CBStringExact function manages the transfer of CString data between the edit control of a combo box
control in a dialog box, form view, or control view object and a CString data member of the dialog box, form view,
or control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the combo box control associated with the control property.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is exchanged.

When DDX_CBStringExact is called, value is set to the current combo box selection. If no item is selected, value is
set to a string of zero length.

If the combo box is a drop-down list box, the value exchanged is limited to 255 characters.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

void AFXAPI DDX_Check(
 CDataExchange* pDX,
 int nIDC,
 int& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_Control

void AFXAPI DDX_Control(
 CDataExchange* pDX,
 int nIDC,
 CWnd& rControl);

ParametersParameters

RemarksRemarks

RequirementsRequirements

The DDX_Check function manages the transfer of int data between a check box control in a dialog box, form view,
or control view object and a int data member of the dialog box, form view, or control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the check box control associated with the control property.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is exchanged.

When DDX_Check is called, value is set to the current state of the check box control. For a list of the possible state
values, see BM_GETCHECK in the Windows SDK.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

The DDX_Control function subclasses the control, specified by nIDC, of the dialog box, form view, or control view
object.

pDX
A pointer to a CDataExchange object.

nIDC
The resource ID of the control to be subclassed.

rControl
A reference to a member variable of the dialog box, form view, or control view object related to the specified
control.

The pDX object is supplied by the framework when the DoDataExchange function is called. Therefore, DDX_Control

should only be called within your override of DoDataExchange .

For more information about DDX, see Dialog Data Exchange and Validation.

https://docs.microsoft.com/windows/desktop/Controls/bm-getcheck

DDX_DateTimeCtrl

void AFXAPI DDX_DateTimeCtrl(
 CDataExchange* pDX,
 int nIDC,
 CTime& value);

void AFXAPI DDX_DateTimeCtrl(
 CDataExchange* pDX,
 int nIDC,
 COleDateTime& value);

void AFXAPI DDX_DateTimeCtrl(
 CDataExchange* pDX,
 int nIDC,
 CString& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_ManagedControl

SyntaxSyntax

Header afxdd_.h

The DDX_DateTimeCtrl function manages the transfer of date and/or time data between a date and time picker
control (CDateTimeCtrl) in a dialog box or form view object and either a CTime or a COleDateTime data member
of the dialog box or form view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction. You don't need to delete this object.

nIDC
The resource ID of the date and time picker control associated with the member variable.

value
In the first two versions, a reference to a CTime or COleDateTime member variable, dialog box, form view, or
control view object with which data is exchanged. In the third version, a reference to a CString data member
control view object.

When DDX_DateTimeCtrl is called, value is set to the current state of the date and time picker control, or the control
is set to value, depending on the direction of the exchange.

In the third version above, DDX_DateTimeCtrl manages the transfer of CString data between a date time control
and a CString data member of the control view object. The string is formatted using the current locale's rules for
formatting dates and times.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

Creates a .NET control matching the control's resource ID.

template <typename T>
void DDX_ManagedControl(
 CDataExchange* pDX,
 int nIDC,
 CWinFormsControl<T>& control);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_IPAddress

void AFXAPI DDX_IPAddress(
 CDataExchange* pDX,
 int nIDC,
 DWORD& value);

ParametersParameters

FIELD BITS CONTAINING THE FIELD VALUE

3 0 through 7

2 8 through 15

pDX
A pointer to a CDataExchange Class object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the control associated with the control property.

control
A reference to a CWinFormsControl Class object.

DDX_ManagedControl calls CWinFormsControl::CreateManagedControl to create a control matching the resource
control ID. Use DDX_ManagedControl to create controls from resource IDs in CDialog::OnInitDialog. For data
exchange, you do not need to use the DDX/DDV functions with Windows Forms controls.

For more information, see How to: Do DDX/DDV Data Binding with Windows Forms.

Header: afxwinforms.h

The DDX_IPAddress function manages the transfer of data between an IP Address control and a data member of
the control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the IP Address control associated with the control property.

value
A reference to the DWORD containing the four-field value of the IP Address control. The fields are filled or read as
follows.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-do-ddx-ddv-data-binding-with-windows-forms

1 16 through 23

0 24 through 31

FIELD BITS CONTAINING THE FIELD VALUE

RemarksRemarks

RequirementsRequirements

DDX_LBIndex

void AFXAPI DDX_LBIndex(
 CDataExchange* pDX,
 int nIDC,
 int& index);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_LBString

Use the Win32 IPM_GETADDRESS to read the value, or use IPM_SETADDRESS to fill the value. These messages
are described in the Windows SDK.

When DDX_IPAddress is called, value is either read from the IP Address control, or value is written to the control,
depending on the direction of the exchange.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

The DDX_LBIndex function manages the transfer of int data between a list box control in a dialog box, form view, or
control view object and an int data member of the dialog box, form view, or control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the list box control associated with the control property.

index
A reference to a member variable of the dialog box, form view, or control view object with which data is exchanged.

When DDX_LBIndex is called, index is set to the index of the current list box selection. If no item is selected, index is
set to -1.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

The DDX_LBString function manages the transfer of CString data between a list box control in a dialog box, form
view, or control view object and a CString data member of the dialog box, form view, or control view object.

https://docs.microsoft.com/windows/desktop/Controls/ipm-getaddress
https://docs.microsoft.com/windows/desktop/Controls/ipm-setaddress

void AFXAPI DDX_LBString(
 CDataExchange* pDX,
 int nIDC,
 CString& value);

ParametersParameters

RemarksRemarks

NOTENOTE

RequirementsRequirements

DDX_LBStringExact

void AFXAPI DDX_LBStringExact(
 CDataExchange* pDX,
 int nIDC,
 CString& value);

ParametersParameters

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the list box control associated with the control property.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is exchanged.

When DDX_LBString is called to transfer data to a list box control, the first item in the control whose beginning
matches value is selected. (To match the entire item rather than just a prefix, use DDX_LBStringExact.) If there are
no matches, no items are selected. The matching is case-insensitive.

When DDX_LBString is called to transfer data from a list box control, value is set to the current list box selection. If
no item is selected, value is set to a string of zero length.

If the list box is a drop-down list box, the value exchanged is limited to 255 characters.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

The DDX_CBStringExact function manages the transfer of CString data between the edit control of a list box
control in a dialog box, form view, or control view object and a CString data member of the dialog box, form view,
or control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the list box control associated with the control property.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is exchanged.

RemarksRemarks

NOTENOTE

RequirementsRequirements

DDX_MonthCalCtrl

void AFXAPI DDX_MonthCalCtrl(
 CDataExchange* pDX,
 int nIDC,
 CTime& value);

void AFXAPI DDX_MonthCalCtrl(
 CDataExchange* pDX,
 int nIDC,
 COleDateTime& value);

ParametersParameters

RemarksRemarks

NOTENOTE

When DDX_LBStringExact is called to transfer data to a list box control, the first item in the control that matches
value is selected. (To match just a prefix rather than the entire item, use DDX_LBString.) If there are no matches, no
items are selected. The matching is case-insensitive.

When DDX_CBStringExact is called to transfer data from a list box control, value is set to the current list box
selection. If no item is selected, value is set to a string of zero length.

If the list box is a drop-down list box, the value exchanged is limited to 255 characters.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

The DDX_MonthCalCtrl function manages the transfer of date data between a month calendar control (
CMonthCalCtrl) in a dialog box, form view, or control view object and either a CTime or a COleDateTime data
member of the dialog box, form view, or control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction. You don't need to delete this object.

nIDC
The resource ID of the month calendar control associated with the member variable.

value
A reference to a CTime or COleDateTime member variable of the dialog box, form view, or control view object with
which data is exchanged.

The control manages a date value only. The time fields in the time object are set to reflect the creation time of the control
window, or whatever time was set in the control with a call to CMonthCalCtrl::SetCurSel .

When DDX_MonthCalCtrl is called, value is set to the current state of the month calendar control.

For more information about DDX, see Dialog Data Exchange and Validation.

RequirementsRequirements

DDX_Radio

void AFXAPI DDX_Radio(
 CDataExchange* pDX,
 int nIDC,
 int& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_Scroll

void AFXAPI DDX_Scroll(
 CDataExchange* pDX,
 int nIDC,
 int& value);

ParametersParameters

Header afxdd_.h

The DDX_Radio function manages the transfer of int data between a radio control group in a dialog box, form view,
or control view object and a int data member of the dialog box, form view, or control view object. The value of the
int data member is determined according to which radio button within the group is selected.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the first radio control in the group.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is exchanged.

When DDX_Radio is called, value is set to the current state of the radio control group. The value is set as a 0-based
index of the radio control that is currently checked, or -1 if no radio controls are checked.

For example, in case that the first radio button in the group is checked (the button with WS_GROUP style) the
value of the int member is 0 and so on.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

The DDX_Scroll function manages the transfer of int data between a scroll-bar control in a dialog box, form view,
or control view object and an int data member of the dialog box, form view, or control view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the scroll-bar control associated with the control property.

RemarksRemarks

RequirementsRequirements

DDX_Slider

void AFXAPI DDX_Slider(
 CDataExchange* pDX,
 int nIDC,
 int& value);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDX_Text

value
A reference to a member variable of the dialog box, form view or control view object with which data is exchanged.

When DDX_Scroll is called, value is set to the current position of the control's thumb. For more information on the
values associated with the current position of the control's thumb, see GetScrollPos in the Windows SDK.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

The DDX_Slider function manages the transfer of int data between a slider control in a dialog box or form view
and an int data member of the dialog box or form view object.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The resource ID of the slider control.

value
A reference to the value to be exchanged. This parameter holds or sets the slider control's current position.

When DDX_Slider is called, value is set to the current position of the control's thumb, or the value receives the
position, depending on the direction of the exchange.

For more information about DDX, see Dialog Data Exchange and Validation. For information about slider controls,
see Using CSliderCtrl.

Header afxdd_.h

The DDX_Text function manages the transfer of int, UINT, long, DWORD, CString , float, or double data
between an edit control in a dialog box, form view, or control view and a CString data member of the dialog box,
form view, or control view object.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getscrollpos

void AFXAPI DDX_Text(
 CDataExchange* pDX,
 int nIDC,
 BYTE& value);

void AFXAPI DDX_Text(
 CDataExchange* pDX,
 int nIDC,
 short& value);

void AFXAPI DDX_Text(
 CDataExchange* pDX,
 int nIDC,
 int& value);

void AFXAPI DDX_Text(
 CDataExchange* pDX,
 int nIDC,
 UINT& value);

void AFXAPI DDX_Text(
 CDataExchange* pDX,
 int nIDC,
 long& value);

void AFXAPI DDX_Text(
 CDataExchange* pDX,
 int nIDC,
 DWORD& value);

void AFXAPI DDX_Text(
 CDataExchange* pDX,
 int nIDC,
 CString& value);

void AFXAPI DDX_Text(
 CDataExchange* pDX,
 int nIDC,
 float& value);

void AFXAPI DDX_Text(
 CDataExchange* pDX,
 int nIDC,
 double& value);

void AFXAPI DDX_Text(
 CDataExchange* pDX,
 int nIDC,
 COleCurrency& value);

void AFXAPI DDX_Text(
 CDataExchange* pDX,
 int nIDC,
 COleDateTime& value);

ParametersParameters
pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

nIDC
The ID of an edit control in the dialog box, form view, or control view object.

value

RemarksRemarks

RequirementsRequirements

See also

A reference to a data member in the dialog box, form view, or control view object. The data type of value depends
on which of the overloaded versions of DDX_Text you use.

For more information about DDX, see Dialog Data Exchange and Validation.

Header afxdd_.h

Standard Dialog Data Validation Routines
Macros and Globals
CWinFormsControl::CreateManagedControl
CDialog::OnInitDialog

Standard Dialog Data Validation Routines
3/4/2019 • 9 minutes to read • Edit Online

NOTENOTE

DDV FunctionsDDV Functions

DDV_MaxChars Verifies the number of characters in a given control value does
not exceed a given maximum.

DDV_MinMaxByte Verifies a given control value does not exceed a given BYTE
range.

DDV_MinMaxDateTime Verifies a given control value does not exceed a given time
range.

DDV_MinMaxDouble Verifies a given control value does not exceed a given double
range.

DDV_MinMaxDWord Verifies a given control value does not exceed a given
DWORD range.

DDV_MinMaxFloat Verifies a given control value does not exceed a given float
range.

DDV_MinMaxInt Verifies a given control value does not exceed a given int
range.

DDV_MinMaxLong Verifies a given control value does not exceed a given long
range.

DDV_MinMaxLongLong Verifies a given control value does not exceed a given
LONGLONG range.

DDV_MinMaxMonth Verifies a given control value does not exceed a given date
range.

DDV_MinMaxShort Verifies a given control value does not exceed a given short
range.

DDV_MinMaxSlider Verifies a given slider control value falls within the given
range.

DDV_MinMaxUInt Verifies a given control value does not exceed a given UINT
range.

This topic lists the standard dialog data validation (DDV) routines used for common MFC dialog controls.

The standard dialog data exchange routines are defined in the header file afxdd_.h. However, applications should include
afxwin.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/standard-dialog-data-validation-routines.md

DDV_MinMaxUnsigned Verifies a given control value falls between two specified
values.

DDV_MinMaxULongLong Verifies a given control value does not exceed a given
ULONGLONG range.

DDV_MaxChars

void AFXAPI DDV_MaxChars(
 CDataExchange* pDX,
 CString const& value,
 int nChars);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDV_MinMaxByte

void AFXAPI DDV_MinMaxByte(
 CDataExchange* pDX,
 BYTE value,
 BYTE minVal,
 BYTE maxVal);

ParametersParameters

Call DDV_MaxChars to verify that the amount of characters in the control associated with value does not exceed
nChars.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

nChars
Maximum number of characters allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxByte to verify that the value in the control associated with value falls between minVal and maxVal.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

minVal
Minimum value (of type BYTE) allowed.

RemarksRemarks

RequirementsRequirements

DDV_MinMaxDateTime

void AFXAPI DDV_MinMaxDateTime(
 CDataExchange* pDX,
 CTime& refValue,
 const CTime* refMinRange,
 const CTime* refMaxRange);

void AFXAPI DDV_MinMaxDateTime(
 CDataExchange* pDX,
 COleDateTime& refValue,
 const COleDateTime* refMinRange,
 const COleDateTime* refMaxRange);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDV_MinMaxDouble

maxVal
Maximum value (of type BYTE) allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxDateTime to verify that the time/date value in the date and time picker control (CDateTimeCtrl)
associated with refValue falls between refMinRange and refMaxRange.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction. You don't need to delete this object.

refValue
A reference to a CTime or COleDateTime object associated with a member variable of the dialog box, form view,
or control view object. This object contains the data to be validated.

refMinRange
Minimum date/time value allowed.

refMaxRange
Maximum date/time value allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxDouble to verify that the value in the control associated with value falls between minVal and
maxVal.

void AFXAPI DDV_MinMaxDouble(
 CDataExchange* pDX,
 double const& value,
 double minVal,
 double maxVal);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDV_MinMaxDWord

void AFXAPI DDV_MinMaxDWord(
 CDataExchange* pDX,
 DWORD const& value,
 DWORD minVal,
 DWORD maxVal);

ParametersParameters

RemarksRemarks

RequirementsRequirements

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

minVal
Minimum value (of type double) allowed.

maxVal
Maximum value (of type double) allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxDWord to verify that the value in the control associated with value falls between minVal and
maxVal.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

minVal
Minimum value (of type DWORD) allowed.

maxVal
Maximum value (of type DWORD) allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

DDV_MinMaxFloat

void AFXAPI DDV_MinMaxFloat(
 CDataExchange* pDX,
 float value,
 float minVal,
 float maxVal);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDV_MinMaxInt

void AFXAPI DDV_MinMaxInt(
 CDataExchange* pDX,
 int value,
 int minVal,
 int maxVal);

ParametersParameters

RemarksRemarks

Call DDV_MinMaxFloat to verify that the value in the control associated with value falls between minVal and
maxVal.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

minVal
Minimum value (of type float) allowed.

maxVal
Maximum value (of type float) allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxInt to verify that the value in the control associated with value falls between minVal and maxVal.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

minVal
Minimum value (of type int) allowed.

maxVal
Maximum value (of type int) allowed.

RequirementsRequirements

DDV_MinMaxLong

void AFXAPI DDV_MinMaxLong(
 CDataExchange* pDX,
 long value,
 long minVal,
 long maxVal);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDV_MinMaxLongLong

void AFXAPI DDV_MinMaxLongLong(
 CDataExchange* pDX,
 LONGLONG value,
 LONGLONG minVal,
 LONGLONG maxVal);

ParametersParameters

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxLong to verify that the value in the control associated with value falls between minVal and maxVal.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

minVal
Minimum value (of type long) allowed.

maxVal
Maximum value (of type long) allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxLongLong to verify that the value in the control associated with value falls between minVal and
maxVal.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

minVal
Minimum value (of type LONGLONG) allowed.

RemarksRemarks

RequirementsRequirements

DDV_MinMaxMonth

void AFXAPI DDV_MinMaxMonth(
 CDataExchange* pDX,
 CTime& refValue,
 const CTime* refMinRange,
 const CTime* refMaxRange);

void AFXAPI DDV_MinMaxMonth(
 CDataExchange* pDX,
 COleDateTime& refValue,
 const COleDateTime* refMinRange,
 const COleDateTime* refMaxRange);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDV_MinMaxShort

maxVal
Maximum value (of type LONGLONG) allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxMonth to verify that the time/date value in the month calendar control (CMonthCalCtrl) associated
with refValue falls between refMinRange and refMaxRange.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

refValue
A reference to an object of type CTime or COleDateTime associated with a member variable of the dialog box, form
view, or control view object. This object contains the data to be validated. MFC passes this reference when
DDV_MinMaxMonth is called.

refMinRange
Minimum date/time value allowed.

refMaxRange
Maximum date/time value allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxShort to verify that the value in the control associated with value falls between minVal and
maxVal.

void AFXAPI DDV_MinMaxShort(
 CDataExchange* pDX,
 short value,
 short minVal,
 short maxVal);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDV_MinMaxSlider

void AFXAPI DDV_MinMaxSlider(
 CDataExchange* pDX,
 DWORD value,
 DWORD minVal,
 DWORD maxVal);

ParametersParameters

RemarksRemarks

RequirementsRequirements

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

minVal
Minimum value (of type short) allowed.

maxVal
Maximum value (of type short) allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxSlider to verify that the value in the control associated with value falls between minVal and
maxVal.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to the value to be validated. This parameter holds or sets the slider control's current thumb position.

minVal
Minimum value allowed.

maxVal
Maximum value allowed.

For more information about DDV, see Dialog Data Exchange and Validation. For information about slider controls,
see Using CSliderCtrl.

DDV_MinMaxUInt

void AFXAPI DDV_MinMaxUInt(
 CDataExchange* pDX,
 UINT value,
 UINT minVal,
 UINT maxVal);

ParametersParameters

RemarksRemarks

RequirementsRequirements

DDV_MinMaxULongLong

void AFXAPI DDV_MinMaxULongLong(
 CDataExchange* pDX,
 ULONGLONG value,
 ULONGLONG minVal ,
 ULONGLONG maxVal);

ParametersParameters

Header afxdd_.h

Call DDV_MinMaxUInt to verify that the value in the control associated with value falls between minVal and maxVal.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

minVal
Minimum value (of type UINT) allowed.

maxVal
Maximum value (of type UINT) allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxULongLong to verify that the value in the control associated with value falls between minVal and
maxVal.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

minVal
Minimum value (of type ULONGLONG) allowed.

maxVal
Maximum value (of type ULONGLONG) allowed.

RemarksRemarks

RequirementsRequirements

DDV_MinMaxUnsigned

SyntaxSyntax

 void AFXAPI DDV_MinMaxUnsigned(
 CDataExchange* pDX,
 unsigned value,
 unsigned minVal,
 unsigned maxVal);

ParametersParameters

RemarksRemarks

RequirementsRequirements

See also

For more information about DDV, see Dialog Data Exchange and Validation.

Header afxdd_.h

Call DDV_MinMaxUnsigned to verify that the value in the control associated with value falls between minVal and
maxVal.

pDX
A pointer to a CDataExchange object. The framework supplies this object to establish the context of the data
exchange, including its direction.

value
A reference to a member variable of the dialog box, form view, or control view object with which data is validated.

minVal
Minimum value (of type unsigned) allowed.

maxVal
Maximum value (of type unsigned) allowed.

For more information about DDV, see Dialog Data Exchange and Validation.

Header: afxdd_.h

Standard Dialog Data Exchange Routines
Macros and Globals
DDX_Slider
DDX_FieldSlider

AFX Messages
3/4/2019 • 9 minutes to read • Edit Online

Messages

Message Description [in] wParam lParam (All
parameters are [in]
unless otherwise
stated.)

Return Value

AFX_WM_ACCGETOBJ
ECT

Not used. Not used. Not applicable. Not applicable.

AFX_WM_ACCGETSTA
TE

Used for accessibility
support. Send this
message to
CMFCPopupMenu or
CMFCRibbonPanelMenu

to retrieve the state of
the current element.

Index of element,
which could be a
menu button or
separator.

Not used. The element state. It is
-1 if the index is
invalid, 0 if the menu
button has no special
attributes. Otherwise it
is a combination of the
following flags:

TBBS_DISABLED —
item is disabled

TBBS_CHECKED —
item is checked

TBBS_BUTTON — the
item is a standard
pushbutton

TBBS_PRESSED —
button is pressed

TBBS_INDETERMINATE
— undefined state

TBBS_SEPARATOR -
rather than a menu
button, this element
forms a separation
between other menu
items

These messages are used in MFC.

The following table lists messages that are used in the MFC library:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/afx-messages.md

AFX_WM_CHANGE_A
CTIVE_TAB

The framework sends
this message to the
resizable control bar
control. Process this
message to receive
notifications from
CMFCTabCtrl objects

when a user changes
an active tab.

The index of a tab. Not used. Nonzero.

AFX_WM_CHANGE_C
URRENT_FOLDER

The framework sends
this message to the
parent of
CMFCShellListCtrl

when the user has
changed the current
folder.

Not used. Not used. Not used.

AFX_WM_CHANGEVIS
UALMANAGER

The framework sends
this message to all
frame windows when
the user changes the
current Visual
Manager. In response
to this message, a
frame window
recalculates its region
and adjusts other
parameters as needed.
You can process the
AFX_WM_CHANGEVIS
UALMANAGER
message in your
application if you need
to be notified about
this event. You must
call the base class
handler (
OnChangeVisualManager

) to ensure that the
framework's internal
processing of this
event takes place.

Not used. Not used. Not used.

AFX_WM_CHANGING
_ACTIVE_TAB

Sent to the parent of
CMFCTabCtrl object.

Process this message
if you want to receive
notifications from
CMFCTabCtrl objects

when a user resets a
tab.

The index of the tab
that is being activated.

Not used. Nonzero.

AFX_WM_CHECKEMP
TYMINIFRAME

For internal use only. Not applicable. Not applicable. Not applicable.

AFX_WM_CREATETOO
LBAR

Sent from
CMFCToolBarsListPropertyPage

when a user creates a
new toolbar during
customization process.
You can process this
message to instantiate
a custom
CMFCToolBar-derived
object. If you handle
this message and
create your own
toolbar, omit the call
to the default handler.

Not used. A pointer to a string
that contains the
name of the toolbar.

A pointer to the newly
created toolbar. NULL
indicates that the
toolbar creation was
canceled.

AFX_WM_CUSTOMIZE
HELP

Sent to the main
frame window from
the customization
property sheet
CMFCToolbarCustomize
Dialog

when the user presses
the Help button or
the F1 key.

Specifies the active
page of the
customization
property sheet.

A pointer to a
CMFCToolbarCustomize
Dialog

object.

Zero.

AFX_WM_CUSTOMIZE
TOOLBAR

The
CMFCToolbarCustomize
Dialog

sends this message to
notify the parent
frame that the user is
creating a new toolbar.

TRUE when
customization is
started, FALSE when
customization is
finished.

Not used. Zero.

AFX_WM_DELETETOO
LBAR

Sent to the main
frame window when
the user is about to
delete a toolbar in the
customization mode.

Process this message
to take additional
actions when a user
deletes a toolbar in
customization mode.
You should also call
the default handler (
OnToolbarDelete),

which deletes the
toolbar. The default
handler returns a
value that indicates
whether it is possible
to delete the toolbar.

Not used. Pointer to a
CMFCToolBar object

to be deleted.

Nonzero if a toolbar
cannot be deleted;
otherwise 0.

AFX_WM_GETDOCUM
ENTCOLORS

CMFCColorMenuButton

sends this message to
the main frame
window to retrieve the
document colors.

Not used. [in, out] Pointer to a
CList<COLORREF,
COLORREF>

object.

Zero.

AFX_WM_GETDRAGB
OUNDS

For internal use only. Not applicable. Not applicable. Not applicable.

AFX_WM_HIGHLIGHT
_RIBBON_LIST_ITEM

Sent to the main
frame window when a
user highlights a
ribbon list item.

Index of the
highlighted item

A pointer to
CMFCBaseRibbonElement

Not used.

AFX_WM_ON_AFTER_
SHELL_COMMAND

Sent to a parent of
CMFCShellListCtrl

or
CMFCShellTreeCtrl

controls when a user
finishes executing a
shell command.

The ID of the
command that the
user executed

Not used. If the application
processes this
message, it should
return zero.

AFX_WM_ON_BEFORE
_SHOW_RIBBON_ITEM
_MENU

The framework sends
this message to the
ribbon's parent before
it displays the pop-up
menu. You can
process this message
and modify pop-up
menus at any time.

Not used. A pointer to
CMFCBaseRibbonElement

Not used.

AFX_WM_ON_CANCE
LTABMOVE

For internal use only. Not applicable. Not applicable.

AFX_WM_ON_CHANG
E_RIBBON_CATEGORY

The framework sends
this message to the
main frame when the
user changes the
active Ribbon Control
category.

Not used. A pointer to the
CMFCRibbonBar

whose category has
changed.

Not used.

AFX_WM_ON_CLOSEP
OPUPWINDOW

The framework sends
this message to notify
the owner of
CMFCDesktopAlertWnd

that the window is
about to be closed.

Not used. A pointer to
CMFCDesktopAlertWnd

object.

Not used.

AFX_WM_ON_DRAGC
OMPLETE

For internal use only. Not applicable. Not applicable. Not applicable.

AFX_WM_ON_GET_TA
B_TOOLTIP

Sent to the main
frame window when a
tab window is about
to display a tooltip for
a tab, if custom
tooltips are enabled.

Not used. A pointer to a
CMFCTabToolTipInfo

structure.

Not used.

AFX_WM_ON_HSCRO
LL

Sent to the resizable
control bar control.
Process this message
to receive notifications
from CMFCTabCtrl

objects when a scroll
event occurs in the
tabbed widget
horizontal scroll bar.

The low-order word
specifies a scroll bar
value that indicates
the user's scrolling
request. For more
information, see the
table later in this topic.

Not used. Nonzero.

AFX_WM_ON_MOVE_
TAB

Sent to the parent of a
tabbed window when
a user drags a tab to a
new position.

The zero-based index
of the tab in its
original position.

[out] The zero-based
index of the tab in its
new position.

Zero.

AFX_WM_ON_MOVET
ABCOMPLETE

For internal use only. Not applicable. Not applicable. Not applicable.

AFX_WM_ON_MOVET
OTABGROUP

Sent to the main
frame window when a
user moves an MDI
child window from one
tabbed group to
another.

A handle to tabbed
window (
CMFCTabCtrl) from

which the MDI child
window has been
removed.

[out] A handle to
tabbed window (
CMFCTabCtrl) to

which the MDI child
window has been
inserted.

Ignored.

AFX_WM_ON_PRESS_
CLOSE_BUTTON

Sent to a parent of
CDockablePane

when user clicks the
Close button on the
caption of the control
bar.

Not used. A pointer to a
dockable pane on
which the user clicked
the Close button.

TRUE if a pane cannot
be closed; otherwise
FALSE.

AFX_WM_ON_RENAM
E_TAB

Sent to the parent of
tabbed window after
the user renamed an
editable tab.

The zero-based index
of the renamed tab.

[out] A pointer to a
string that contains
the new tab name.

Nonzero if the
application processes
this message; the
framework will
suppress the call to
CMFCBaseTabCtrl::SetTabLabel

. If zero is returned,
then
CMFCBaseTabCtrl::SetTabLabel

is called by the
framework.

AFX_WM_ON_RIBBON
_CUSTOMIZE

Sent to the parent
frame when user
starts customization.
Process this message
if you want to display
your own
customization dialog
box.

Not used. A pointer to the
ribbon control to be
customized.

Nonzero if the
application processes
this message and
displays its own
customization dialog
box. If the application
returns zero, the
framework will display
the built-in
customization dialog
box.

AFX_WM_ON_TABGR
OUPMOUSEMOVE

For internal use only. Not applicable. Not applicable. Not applicable.

AFX_WM_POSTSETPRE
VIEWFRAME

Sent to notify the
main frame that the
user changed the print
preview mode

TRUE indicates that
the print preview
mode is set. FALSE
indicates that print
preview mode is
turned off.

Not used. Not used.

AFX_WM_PROPERTY_
CHANGED

Sent to the owner of
the property grid
control (
CMFCPropertyGridCtrl

) when the user
changes the value of
the selected property.

The control ID of the
property list.

A pointer to the
property (
CMFCPropertyGridProperty

) that changed.

Not used.

AFX_WM_RESETCONT
EXTMENU

Sent to the main
frame window when
the user resets the
context menu during
customization.

The resource ID of the
context menu.

A pointer to the
current context menu,
CMFCPopupMenu .

Not used.

AFX_WM_RESETKEYB
OARD

The framework sends
this message to the
main frame window
when the user resets
all keyboard
accelerators during
customization.

Not used. Not used. Not used.

AFX_WM_RESETMENU The framework sends
this message to the
menu owner (a frame
window) when the
user resets an
application frame
menu during
customization

The menu resource ID. Not used. Not used.

AFX_WM_RESETPROM
PT

The framework sends
this message when
the user resets a
toolbar from the
toolbar customize
dialog box. The default
handler displays a
message box that asks
whether the user
wants to reset the
toolbar.

Not used. Not used. Not used.

AFX_WM_RESETTOOL
BAR

A CMFCToolBar

object sends this
message when a
toolbar is restored to
its original state, that
is, loaded from the
resources. Process this
message to reinsert
toolbar buttons whose
classes are derived
from
CMFCToolbarButton .

For more information,
see
CMFCToolbarComboBoxButton

.

The resource ID of a
toolbar whose state
was restored.

Not used. Zero.

AFX_WM_SHOWREGU
LARMENU

CMFCToolbarMenuButton

object sends this
message to its owner
when the user clicks a
regular menu button.
Process this message
every time that you
use
CMFCToolbarMenuButton

to display a pop-up
menu when the user
clicks a button.

The command ID of a
button that sends the
message.

Screen coordinates of
the cursor. The low-
order word specifies
the x-coordinate. The
high-order word
specifies the y-
coordinate.

Not used.

AFX_WM_TOOLBARM
ENU

Sent to the main
frame window when
the user releases the
right button of a
mouse while the
mouse pointer is in
the client or non-client
area of a pane.

Not used. Screen coordinates of
the mouse pointer. The
low-order word
specifies the x-
coordinate. The high-
order word specifies
the y-coordinate.

Zero if the application
processes this
message; otherwise,
nonzero.

AFX_WM_UPDATETO
OLTIPS

Sent to all tooltip
owners to indicate
that their tooltip
controls should be
recreated.

The type of control
that should process
this message. See the
table later in this topic
for a list of possible
values.

Not used. Not used.

AFX_WM_WINDOW_H
ELP

CMFCWindowsManagerDialog

sends this message to
the parent frame
when the user clicks
the Help button, or
enters the help mode
by clicking the Help
caption button or the
F1 key.

Not used. A pointer to the
instance of
CMFCWindowsManagerDialog

.

Not used.

Value Meaning

The following table shows the values for the low word of the lParam parameter of the AFX_WM_HSCROLL method:

SB_ENDSCROLL The user ends the scroll.

SB_LEFT The user scrolls to the upper-left.

SB_RIGHT The user scrolls to the lower-right.

SB_LINELEFT The user scrolls left by one unit.

SB_LINERIGHT The user scrolls right by one unit.

SB_PAGELEFT The user scrolls left by the width of the window.

SB_PAGERIGHT The user scrolls right by the width of the window.

SB_THUMBPOSITION The user has dragged the scroll box (thumb) and released the
mouse button. The high-order word indicates the position of
the scroll box at the end of the drag operation.

SB_THUMBTRACK The user is dragging the scroll box. The AFX_WM_ON_HSCROLL
message is sent repeatedly with this value until the user
releases the mouse button. The high-order word indicates the
position to which the scroll box has been dragged.

NOTENOTE

Flag Value

AFX_TOOLTIP_TYPE_DEFAULT 0x0001

AFX_TOOLTIP_TYPE_TOOLBAR 0x0002

AFX_TOOLTIP_TYPE_TAB 0x0004

AFX_TOOLTIP_TYPE_MINIFRAME 0x0008

AFX_TOOLTIP_TYPE_DOCKBAR 0x0010

AFX_TOOLTIP_TYPE_EDIT 0x0020

AFX_TOOLTIP_TYPE_BUTTON 0x0040

AFX_TOOLTIP_TYPE_TOOLBOX 0x0080

AFX_TOOLTIP_TYPE_ALL 0xFFFF

See also

The high-order word of the lParam parameter specifies the current position of the scroll box if the low-order word is
SB_THUMBPOSITION or SB_THUMBTRACK; otherwise, this word is not used.

The following table lists the flag values for the lParam parameter of the AFX_WM_UPDATETOOLTIPS message:

Macros and Globals

ToolBar Control Styles
3/4/2019 • 2 minutes to read • Edit Online

Property Values

TBBS_BUTTON Standard pushbutton (default).

TBBS_CHECKBOX Check box.

TBBS_CHECKGROUP The start of a group of checkboxes.

TBBS_GROUP The start of a group of buttons.

TBBS_SEPARATOR Separator.

TBBS_CHECKED Check box is checked.

TBBS_DISABLED Control is disabled.

TBBS_INDETERMINATE Check box is in an indeterminate state.

TBBS_PRESSED Button is pressed.

TBBS_BREAK Places the item on a new line or in a new column without
separating columns.

Remarks

Requirements

CMFCToolBarButton Class has a set of style flags that determine the appearance and behavior of the button.
You can set a combination of these flags by calling CMFCToolBarButton::SetStyle. This topic lists the style flag
values and their meanings.

The following values determine the type of button that the control represents:

The following values represent the current status of the control:

The following value changes the layout of the button in the toolbar:

The current style is stored in CMFCToolBarButton::m_nStyle. Do not set a new value in m_nStyle directly,
because some derived classes perform additional processing when you call SetStyles .

The visual manager determines the appearance of buttons in each state. See Visualization Manager for more
information.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/toolbar-control-styles.md

See also

Header: afxtoolbarbutton.h

Macros and Globals
CMFCToolBarButton Class
Visualization Manager

CMFCImagePaintArea::IMAGE_EDIT_MODE
Enumeration
3/4/2019 • 2 minutes to read • Edit Online

Syntax
enum IMAGE_EDIT_MODE
{
 IMAGE_EDIT_MODE_PEN = 0,
 IMAGE_EDIT_MODE_FILL,
 IMAGE_EDIT_MODE_LINE,
 IMAGE_EDIT_MODE_RECT,
 IMAGE_EDIT_MODE_ELLIPSE,
 IMAGE_EDIT_MODE_COLOR
};

Members

Name Description

IMAGE_EDIT_MODE_PEN Used to draw individual pixels.

IMAGE_EDIT_MODE_FILL Used to fill all adjacent areas that contain the color at the
current cursor location.

IMAGE_EDIT_MODE_LINE Used to draw a line.

IMAGE_EDIT_MODE_RECT Used to draw a rectangle.

IMAGE_EDIT_MODE_ELLIPSE Used to draw an ellipse.

IMAGE_EDIT_MODE_COLOR Used to set the current color to the color at the current
cursor location.

RemarksRemarks

Requirements

Specifies a drawing mode that you use to modify an image in an image editor dialog box.

The CMFCImagePaintArea and CMFCImageEditorDialog classes use this enumeration to set the current drawing
mode. The drawing mode and current color are used to modify the picture area in an image editor dialog box. For
more information about CMFCImagePaintArea and CMFCImageEditorDialog , see CMFCImagePaintArea Class and
CMFCImageEditorDialog Class.

When you select a color from an image by using the IMAGE_EDIT_MODE_COLOR drawing mode, the framework
sets the current drawing mode to IMAGE_EDIT_MODE_PEN.

Header: afximagepaintarea.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cmfcimagepaintarea-image-edit-mode-enumeration.md

See also
Macros and Globals
Hierarchy Chart
Classes
CMFCImagePaintArea Class
CMFCImageEditorDialog Class

UICheckState Enumeration
11/15/2018 • 2 minutes to read • Edit Online

SyntaxSyntax

public enum class
{
 [DefaultValue(typeid<Microsoft::VisualC::MFC::UICheckState>, "Checked")]
 Unchecked,
 Checked,
 Indeterminate
};

RemarksRemarks

RequirementsRequirements

Describes the check state of a user interface item for the command.

ICommandUI::Check uses these values to describe the state of a user interface item. For more information on using
Windows Forms, see Using a Windows Form User Control in MFC.

Header: afxwinforms.h (defined in assembly atlmfc\lib\mfcmifc80.dll)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/uicheckstate-enumeration.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

Structures, Styles, Callbacks, and Message Maps
3/4/2019 • 2 minutes to read • Edit Online

In This Section

Related Sections

This section documents the structures, styles, and callback functions used by the Microsoft Foundation Class
Library and the MFC message maps.

Structures Used by MFC
Provides links to the structures called from various member functions.

Styles Used by MFC
Provides links to the styles used when creating MFC objects.

Callback Functions Used by MFC
Provides links to the callback functions appearing in the MFC Library.

Message Maps
Describes the message mapping macros and CWnd message-map entries.

Class Library Overview
Lists the classes in the MFC Library according to category.

MFC Samples
Provides links to samples that demonstrate using the MFC Library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/structures-styles-callbacks-and-message-maps.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Structures Used by MFC
3/4/2019 • 2 minutes to read • Edit Online

ABC Structure HSE_VERSION_INFO Structure

ABCFLOAT Structure LINGER Structure

AFX_EXTENSION_MODULE Structure LOGBRUSH Structure

BITMAP Structure LOGPEN Structure

BITMAPINFO Structure MEASUREITEMSTRUCT Structure

CDaoDatabaseInfo Structure MINMAXINFO Structure

CDaoErrorInfo Structure MSG Structure

CDaoFieldInfo Structure NCCALCSIZE_PARAMS Structure

CDaoIndexFieldInfo Structure PAINTSTRUCT Structure

CDaoIndexInfo Structure POINT Structure

CDaoParameterInfo Structure RECT Structure

CDaoQueryDefInfo Structure RGNDATA Structure

CDaoRelationFieldInfo Structure SOCKADDR Structure

CDaoRelationInfo Structure SOCKADDR_IN Structure

CDaoTableDefInfo Structure SYSTEMTIME Structure

CDaoWorkspaceInfo Structure WINDOWPLACEMENT Structure

CODBCFieldInfo Structure WINDOWPOS Structure

COLORADJUSTMENT Structure WSADATA Structure

COMPAREITEMSTRUCT Structure XFORM Structure

CREATESTRUCT Structure

DELETEITEMSTRUCT Structure

The following table lists structures that are called from various member functions. For further information on
individual structure usage, refer to the classes and member functions noted in the See Also list for each structure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/structures-used-by-mfc.md
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_abc
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_abcfloat
https://docs.microsoft.com/windows/desktop/api/winsock/ns-winsock-linger
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogbrush
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagbitmap
https://docs.microsoft.com/windows/desktop/api/Wingdi/ns-wingdi-taglogpen
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagbitmapinfo
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmeasureitemstruct
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagminmaxinfo
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagmsg
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagnccalcsize_params
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagpaintstruct
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-_rgndata
https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2
https://docs.microsoft.com/windows/desktop/winsock/sockaddr-2
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwindowplacement
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagwindowpos
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagcoloradjustment
https://docs.microsoft.com/windows/desktop/api/winsock2/ns-winsock2-wsadata
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcompareitemstruct
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagxform
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagcreatestructa
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdeleteitemstruct

DEVNAMES Structure

DHtmlUrlEventMapEntry Structure

DRAWITEMSTRUCT Structure

FILETIME Structure

See also
Structures, Styles, Callbacks, and Message Maps

https://docs.microsoft.com/windows/desktop/api/commdlg/ns-commdlg-tagdevnames
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagdrawitemstruct
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime

AFX_EXTENSION_MODULE Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct AFX_EXTENSION_MODULE
{
 BOOL bInitialized;
 HMODULE hModule;
 HMODULE hResource;
 CRuntimeClass* pFirstSharedClass;
 COleObjectFactory* pFirstSharedFactory;
};

ParametersParameters

Remarks

The AFX_EXTENSION_MODULE is used during initialization of MFC extension DLLs to hold the state of MFC extension
DLL module.

bInitialized
TRUE if the DLL module has been initialized with AfxInitExtensionModule .

hModule
Specifies the handle of the DLL module.

hResource
Specifies the handle of the DLL custom resource module.

pFirstSharedClass
A pointer to information (the CRuntimeClass structure) about the DLL module's first runtime class. Used to
provide the start of the runtime class list.

pFirstSharedFactory
A pointer to the DLL module's first object factory (a COleObjectFactory object). Used to provide the start of the
class factory list.

MFC extension DLLs need to do two things in their DllMain function:

Call AfxInitExtensionModule and check the return value.

Create a CDynLinkLibrary object if the DLL will be exporting CRuntimeClass objects or has its own custom
resources.

The AFX_EXTENSION_MODULE structure is used to hold a copy of the MFC extension DLL module state, including a
copy of the runtime class objects that have been initialized by the MFC extension DLL as part of normal static
object construction executed before DllMain is entered. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/afx-extension-module-structure.md

static AFX_EXTENSION_MODULE NVC_MFC_DLLDLL = { NULL, NULL };
extern "C" int APIENTRY
DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)
{
 // Remove this if you use lpReserved
 UNREFERENCED_PARAMETER(lpReserved);

 if (dwReason == DLL_PROCESS_ATTACH)
 {
 TRACE0("NVC_MFC_DLL.DLL Initializing!\n");

 // MFC extension DLL one-time initialization
 if (!AfxInitExtensionModule(NVC_MFC_DLLDLL, hInstance))
 return 0;

IMPLEMENT_DYNAMIC(CMyDynLinkLibrary, CDynLinkLibrary)

CMyDynLinkLibrary::CMyDynLinkLibrary(AFX_EXTENSION_MODULE& state, BOOL bSystem)
 : CDynLinkLibrary(state, bSystem)
{
#ifndef _AFX_NO_OLE_SUPPORT
 m_factoryList.Construct(offsetof(COleObjectFactory, m_pNextFactory));
#endif
 m_classList.Construct(offsetof(CRuntimeClass, m_pNextClass));

 // copy info from AFX_EXTENSION_MODULE struct
 ASSERT(state.hModule != NULL);
 m_hModule = state.hModule;
 m_hResource = state.hResource;
 m_classList.m_pHead = state.pFirstSharedClass;
#ifndef _AFX_NO_OLE_SUPPORT
 m_factoryList.m_pHead = state.pFirstSharedFactory;
#endif
 m_bSystem = bSystem;
}

Requirements

See also

The module information stored in the AFX_EXTENSION_MODULE structure can be copied into the CDynLinkLibrary

object. For example:

Header: afx.h

Structures, Styles, Callbacks, and Message Maps
AfxInitExtensionModule
AfxTermExtensionModule

AFX_GLOBAL_DATA Structure
2/7/2019 • 16 minutes to read • Edit Online

Syntax
struct AFX_GLOBAL_DATA

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

AFX_GLOBAL_DATA::AFX_GLOBAL_DATA Constructs a AFX_GLOBAL_DATA structure.

AFX_GLOBAL_DATA::~AFX_GLOBAL_DATA Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

AFX_GLOBAL_DATA::CleanUp Releases resources that are allocated by the framework, such
as brushes, fonts, and DLLs.

AFX_GLOBAL_DATA::D2D1MakeRotateMatrix Creates a rotation transformation that rotates by a specified
angle around a specified point.

AFX_GLOBAL_DATA::DrawParentBackground Draws the background of a control's parent in the specified
area.

AFX_GLOBAL_DATA::DrawTextOnGlass Draws the specified text in the visual style of the specified
theme.

AFX_GLOBAL_DATA::ExcludeTag Removes the specified XML tag pair from a specified buffer.

AFX_GLOBAL_DATA::GetColor Retrieves the current color of the specified user interface
element.

AFX_GLOBAL_DATA::GetDirect2dFactory Returns a pointer to the ID2D1Factory interface that is
stored in the global data. If the interface is not initialized, it is
created and has the default parameters.

AFX_GLOBAL_DATA::GetHandCursor Retrieves the predefined cursor that resembles a hand and
whose identifier is IDC_HAND .

The AFX_GLOBAL_DATA structure contains fields and methods that are used to manage the framework or customize
the appearance and behavior of your application.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/afx-global-data-structure.md

AFX_GLOBAL_DATA::GetITaskbarList Creates and stores in the global data a pointer to ITaskBarList
interface.

AFX_GLOBAL_DATA::GetITaskbarList3 Creates and stores in the global data a pointer to
ITaskBarList3 interface.

AFX_GLOBAL_DATA::GetNonClientMetrics Retrieves the metrics associated with the nonclient area of
nonminimized windows.

AFX_GLOBAL_DATA::GetShellAutohideBars Determines positions of Shell auto hide bars.

AFX_GLOBAL_DATA::GetTextHeight Retrieves the height of text characters in the current font.

AFX_GLOBAL_DATA::GetWICFactory Returns a pointer to the IWICImagingFactory interface that
is stored in the global data. If the interface is not initialized, it
is created and has the default parameters.

AFX_GLOBAL_DATA::GetWriteFactory Returns a pointer to the IDWriteFactory interface that is
stored in the global data. If the interface is not initialized, it is
created and has the default parameters.

AFX_GLOBAL_DATA::IsD2DInitialized Initializes D2D , DirectWrite , and WIC factories. Call this
method before the main window is initialized.

AFX_GLOBAL_DATA::Is32BitIcons Indicates whether predefined 32-bit icons are supported.

AFX_GLOBAL_DATA::IsD2DInitialized Determines whether the D2D was initialized.

AFX_GLOBAL_DATA::IsDwmCompositionEnabled Provides a simple way to call the Windows
DwmIsCompositionEnabled method.

AFX_GLOBAL_DATA::IsHighContrastMode Indicates whether images are currently displayed in high
contrast.

AFX_GLOBAL_DATA::OnSettingChange Detects the current state of the desktop's menu animation
and taskbar autohide features.

AFX_GLOBAL_DATA::RegisterWindowClass Registers the specified MFC window class.

AFX_GLOBAL_DATA::ReleaseTaskBarRefs Releases interfaces obtained through GetITaskbarList and
GetITaskbarList3 methods.

AFX_GLOBAL_DATA::Resume Reinitializes internal function pointers that access methods
that support Windows themes and visual styles.

AFX_GLOBAL_DATA::SetLayeredAttrib Provides a simple way to call the Windows
SetLayeredWindowAttributes method.

AFX_GLOBAL_DATA::SetMenuFont Creates the specified logical font.

AFX_GLOBAL_DATA::ShellCreateItemFromParsingName Creates and initializes a Shell item object from a parsing
name.

NAME DESCRIPTION

https://docs.microsoft.com/windows/desktop/api/dwmapi/nf-dwmapi-dwmiscompositionenabled
https://docs.microsoft.com/windows/desktop/Controls/visual-styles-overview
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setlayeredwindowattributes

AFX_GLOBAL_DATA::UpdateFonts Reintializes the logical fonts that are used by the framework.

AFX_GLOBAL_DATA::UpdateSysColors Initializes the colors, color depth, brushes, pens, and images
that are used by the framework.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

AFX_GLOBAL_DATA::EnableAccessibilitySupport Enables or disables Microsoft Active Accessibility support.
Active Accessibility provides reliable methods for exposing
information about user interface elements.

AFX_GLOBAL_DATA::IsAccessibilitySupport Indicates whether Microsoft Active Accessibility support is
enabled.

AFX_GLOBAL_DATA::IsWindowsLayerSupportAvailable Indicates whether the operating system supports layered
windows.

Data MembersData Members

NAME DESCRIPTION

AFX_GLOBAL_DATA::bIsOSAlphaBlendingSupport Indicates whether the current operating system supports
alpha blending.

AFX_GLOBAL_DATA::bIsWindows7 Indicates whether the application is being executed under
Windows 7 OS or higher

AFX_GLOBAL_DATA::clrActiveCaptionGradient Specifies gradient color of active caption. Generally used for
docking panes.

AFX_GLOBAL_DATA::clrInactiveCaptionGradient Specifies gradient color of inactive active caption. Generally
used for docking panes.

AFX_GLOBAL_DATA::m_bUseBuiltIn32BitIcons Indicates whether the framework uses predefined 32-bit color
icons or icons of a lower resolution.

AFX_GLOBAL_DATA::m_bUseSystemFont Indicates whether a system font is used for menus, toolbars,
and ribbons.

AFX_GLOBAL_DATA::m_hcurHand Stores the handle for the hand cursor.

AFX_GLOBAL_DATA::m_hcurStretch Stores the handle for the horizontal stretch cursor.

AFX_GLOBAL_DATA::m_hcurStretchVert Stores the handle for the vertical stretch cursor.

AFX_GLOBAL_DATA::m_hiconTool Stores the handle for the tool icon.

AFX_GLOBAL_DATA::m_nAutoHideToolBarMargin Specifies the offset from the leftmost autohide toolbar to the
left side of the docking bar.

AFX_GLOBAL_DATA::m_nAutoHideToolBarSpacing Specifies the gap between autohide toolbars.

AFX_GLOBAL_DATA::m_nDragFrameThicknessDock Specifies the thickness of the drag frame that is used to
communicate the docked state.

AFX_GLOBAL_DATA::m_nDragFrameThicknessFloat Specifies the thickness of the drag frame that is used to
communicate the floating state.

NAME DESCRIPTION

RemarksRemarks

Inheritance HierarchyInheritance Hierarchy

RequirementsRequirements

AFX_GLOBAL_DATA::bIsOSAlphaBlendingSupport

BOOL bIsOSAlphaBlendingSupport;

RemarksRemarks

AFX_GLOBAL_DATA::CleanUp

void CleanUp();

AFX_GLOBAL_DATA::D2D1MakeRotateMatrix

HRESULT D2D1MakeRotateMatrix(
 FLOAT angle,
 D2D1_POINT_2F center,
 D2D1_MATRIX_3X2_F *matrix);

ParametersParameters

Return ValueReturn Value

Most of the data in the AFX_GLOBAL_DATA structure is initialized when your application starts.

AFX_GLOBAL_DATA

Header: afxglobals.h

Indicates whether the operating system supports alpha blending.

TRUE indicates alpha blending is supported; otherwise, FALSE.

Releases resources that are allocated by the framework, such as brushes, fonts, and DLLs.

Creates a rotation transformation that rotates by a specified angle around a specified point.

angle
The clockwise rotation angle, in degrees.

center
The point about which to rotate.

matrix
When this method returns, contains the new rotation transformation. You must allocate storage for this
parameter.

AFX_GLOBAL_DATA::DrawParentBackground

BOOL DrawParentBackground(
 CWnd* pWnd,
 CDC* pDC,
 LPRECT lpRect = NULL);

ParametersParameters

Return ValueReturn Value

AFX_GLOBAL_DATA::DrawTextOnGlass

BOOL DrawTextOnGlass(
 HTHEME hTheme,
 CDC* pDC,
 int iPartId,
 int iStateId,
 CString strText,
 CRect rect,
 DWORD dwFlags,
 int nGlowSize = 0,
 COLORREF clrText = (COLORREF)-1);

ParametersParameters

Returns S_OK if successful, or an error value otherwise.

Draws the background of a control's parent in the specified area.

pWnd
[in] Pointer to a control's window.

pDC
[in] Pointer to a device context.

lpRect
[in] Pointer to a rectangle that bounds the area to draw. The default value is NULL.

TRUE if this method is successful; otherwise, FALSE.

Draws the specified text in the visual style of the specified theme.

hTheme
[in] Handle to the theme data of a window, or NULL. The framework uses the specified theme to draw the text if
this parameter is not NULL and themes are supported. Otherwise, the framework does not use a theme to draw
the text.

Use the OpenThemeData method to create an HTHEME.

pDC
[in] Pointer to a device context.

iPartId
[in] The control part that has the desired text appearance. For more information, see the Parts column of the table
in Parts and States. If this value is 0, the text is drawn in the default font, or a font selected into the device context.

iStateId
[in] The control state that has the desired text appearance. For more information, see the States column of the
table in Parts and States.

https://docs.microsoft.com/windows/desktop/api/uxtheme/nf-uxtheme-openthemedata
https://docs.microsoft.com/windows/desktop/controls/parts-and-states
https://docs.microsoft.com/windows/desktop/controls/parts-and-states

Return ValueReturn Value

RemarksRemarks

AFX_GLOBAL_DATA::EnableAccessibilitySupport

void EnableAccessibilitySupport(BOOL bEnable=TRUE);

ParametersParameters

RemarksRemarks

AFX_GLOBAL_DATA::ExcludeTag

strText
[in] The text to draw.

rect
[in] The boundary of the area in which the specified text is drawn.

dwFlags
[in] A bitwise combination (OR) of flags that specify how the specified text is drawn.

If the hTheme parameter is NULL or if themes are not supported and enabled, the nFormat parameter of the
CDC::DrawText method describes the valid flags. If themes are supported, the dwFlags parameter of the
DrawThemeTextEx method describes the valid flags.

nGlowSize
[in] The size of a glow effect that is drawn on the background before drawing the specified text. The default value
is 0.

clrText
[in] The color in which the specified text is drawn. The default value is the default color.

TRUE if a theme is used to draw the specified text; otherwise, FALSE.

A theme defines the visual style of an application. A theme is not used to draw the text if the hTheme parameter is
NULL, or if the DrawThemeTextEx method is not supported, or if Desktop Window Manager (DWM) composition
is disabled.

Enables or disables Microsoft Active Accessibility support.

bEnable
[in] TRUE to enable accessibility support; FALSE to disable accessibility support. The default value is TRUE.

Active Accessibility is a COM-based technology that improves the way programs and the Windows operating
system work together with assistive technology products. It provides reliable methods for exposing information
about user interface elements. However, a newer accessibility model called Microsoft UI Automation is now
available. For a comparison of the two technologies, see UI Automation and Microsoft Active Accessibility.

Use the AFX_GLOBAL_DATA::IsAccessibilitySupport method to determine whether Microsoft Active Accessibility
support is enabled.

Removes the specified XML tag pair from a specified buffer.

https://docs.microsoft.com/windows/desktop/api/uxtheme/nf-uxtheme-drawthemetextex
https://docs.microsoft.com/windows/desktop/api/uxtheme/nf-uxtheme-drawthemetextex
https://docs.microsoft.com/windows/desktop/dwm/dwm-overview
https://docs.microsoft.com/dotnet/framework/ui-automation/ui-automation-and-microsoft-active-accessibility

BOOL ExcludeTag(
 CString& strBuffer,
 LPCTSTR lpszTag,
 CString& strTag,
 BOOL bIsCharsList = FALSE);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

SYMBOL ESCAPE CHARACTER

_T("\\t") _T("\t")

_T("\\n") _T("\n")

_T("\\r") _T("\r")

_T("\\b") _T("\b")

_T("LT") _T("<")

_T("GT") _T(">")

_T("AMP") _T("&")

AFX_GLOBAL_DATA::GetColor

strBuffer
[in] A buffer of text.

lpszTag
[in] The name of a pair of opening and closing XML tags.

strTag
[out] When this method returns, the strTag parameter contains the text that is between the opening and closing
XML tags that are named by the lpszTag parameter. Any leading or trailing whitespace is trimmed from the result.

bIsCharsList
[in] TRUE to convert symbols for escape characters in the strTag parameter into actual escape characters; FALSE
not to perform the conversion.The default value is FALSE. For more information, see Remarks.

TRUE if this method is successful; otherwise, FALSE.

An XML tag pair consists of named opening and closing tags that indicate the start and end of a run of text in the
specified buffer. The strBuffer parameter specifies the buffer, and the lpszTag parameter specifies the name of the
XML tags.

Use the symbols in the following table to encode a set of escape characters in the specified buffer. Specify TRUE
for the bIsCharsList parameter to convert the symbols in the strTag parameter into actual escape characters. The
following table uses the _T() macro to specify the symbol and escape character strings.

Retrieves the current color of the specified user interface element.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/data-type-mappings

COLORREF GetColor(int nColor);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AFX_GLOBAL_DATA::GetDirect2dFactory

ID2D1Factory* GetDirect2dFactory();

Return ValueReturn Value

AFX_GLOBAL_DATA::GetHandCursor

HCURSOR GetHandCursor();

Return ValueReturn Value

AFX_GLOBAL_DATA::GetNonClientMetrics

BOOL GetNonClientMetrics(NONCLIENTMETRICS& info);

ParametersParameters

Return ValueReturn Value

AFX_GLOBAL_DATA::GetTextHeight

nColor
[in] A value that specifies a user interface element whose color is retrieved. For a list of valid values, see the
nIndex parameter of the GetSysColor method.

The RGB color value of the specified user interface element. For more information, see Remarks.

If the nColor parameter is out of range, the return value is zero. Because zero is also a valid RGB value, you
cannot use this method to determine whether a system color is supported by the current operating system.
Instead, use the GetSysColorBrush method, which returns NULL if the color is not supported.

Returns a pointer to the ID2D1Factory interface that is stored in the global data. If the interface is not initialized, it
is created and has the default parameters.

A pointer to ID2D1Factory interface if creation of a factory succeeds, or NULL if creation fails or current
Operation System don't have D2D support.

Retrieves the predefined cursor that resembles a hand and whose identifier is IDC_HAND.

The handle of the hand cursor.

Retrieves the metrics associated with the nonclient area of nonminimized windows.

info
[in, out] A NONCLIENTMETRICS structure that contains the scalable metrics associated with the nonclient area
of a nonminimized window.

TRUE if this method succeeds; otherwise, FALSE.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsyscolor
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsyscolorbrush
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagnonclientmetricsa

int GetTextHeight(BOOL bHorz = TRUE);

ParametersParameters

Return ValueReturn Value

AFX_GLOBAL_DATA::GetWICFactory

IWICImagingFactory* GetWICFactory();

Return ValueReturn Value

AFX_GLOBAL_DATA::GetWriteFactory

IDWriteFactory* GetWriteFactory();

Return ValueReturn Value

AFX_GLOBAL_DATA::InitD2D

BOOL InitD2D(
 D2D1_FACTORY_TYPE d2dFactoryType = D2D1_FACTORY_TYPE_SINGLE_THREADED,
 DWRITE_FACTORY_TYPE writeFactoryType = DWRITE_FACTORY_TYPE_SHARED);

ParametersParameters

Return ValueReturn Value

Retrieves the height of text characters in the current font.

bHorz
[in] TRUE to retrieve the height of characters when text runs horizontally; FALSE to retrieve the height of
characters when text runs vertically. The default value is TRUE.

The height of the current font, which is measured from its ascender to its descender.

Returns a pointer to the IWICImagingFactory interface that is stored in the global data. If the interface is not
initialized, it is created and has the default parameters.

A pointer to IWICImagingFactory interface if creation of a factory succeeds, or NULL if creation fails or current
Operation System don't have WIC support.

Returns a pointer to the IDWriteFactory interface that is stored in the global data. If the interface is not initialized,
it is created and has the default parameters.

A pointer to IDWriteFactory interface if creation of a factory succeeds, or NULL if creation fails or current
Operation System don't have DirectWrite support.

Initializes D2D, DirectWrite, and WIC factories. Call this method before the main window is initialized.

d2dFactoryType
The threading model of the D2D factory and the resources it creates.

writeFactoryType
A value that specifies whether the write factory object will be shared or isolated

Returns TRUE if the factories were intilalizrd, FALSE - otherwise

AFX_GLOBAL_DATA::Is32BitIcons

BOOL Is32BitIcons() const;

Return ValueReturn Value

RemarksRemarks

AFX_GLOBAL_DATA::IsAccessibilitySupport

BOOL IsAccessibilitySupport() const;

Return ValueReturn Value

RemarksRemarks

AFX_GLOBAL_DATA::IsD2DInitialized

BOOL IsD2DInitialized() const;

Return ValueReturn Value

AFX_GLOBAL_DATA::IsDwmCompositionEnabled

BOOL IsDwmCompositionEnabled();

Return ValueReturn Value

AFX_GLOBAL_DATA::IsHighContrastMode

Indicates whether predefined 32-bit icons are supported.

TRUE if predefined 32-bit icons are supported; otherwise, FALSE.

This method returns TRUE if the framework supports 32-bit built-in icons, and if the operating system supports
16 bits per pixel or more, and if images are not displayed in high contrast.

Indicates whether Microsoft Active Accessibility support is enabled.

TRUE if accessibility support is enabled; otherwise, FALSE.

Microsoft Active Accessibility was the earlier solution for making applications accessible. Microsoft UI
Automation is the new accessibility model for Microsoft Windows and is intended to address the needs of
assistive technology products and automated testing tools.

Use the AFX_GLOBAL_DATA::EnableAccessibilitySupport method to enable or disable Active Accessibility
support.

Determines whether the D2D was initialized

TRUE if D2D was initialized; otherwise FALSE.

Provides a simple way to call the Windows DwmIsCompositionEnabled method.

TRUE if Desktop Window Manager (DWM) composition is enabled; otherwise, FALSE.

Indicates whether images are currently displayed in high contrast.

https://docs.microsoft.com/windows/desktop/api/dwmapi/nf-dwmapi-dwmiscompositionenabled
https://docs.microsoft.com/windows/desktop/dwm/dwm-overview

BOOL IsHighContrastMode() const;

Return ValueReturn Value

RemarksRemarks

AFX_GLOBAL_DATA::IsWindowsLayerSupportAvailable

BOOL IsWindowsLayerSupportAvailable() const;

Return ValueReturn Value

RemarksRemarks

AFX_GLOBAL_DATA::m_bUseBuiltIn32BitIcons

BOOL m_bUseBuiltIn32BitIcons;

RemarksRemarks

AFX_GLOBAL_DATA::m_bUseSystemFont

BOOL m_bUseSystemFont;

RemarksRemarks

AFX_GLOBAL_DATA::m_hcurHand

TRUE if images are currently displayed in black or white high contrast mode; otherwise, FALSE.

In black high contrast mode, edges facing the light are white and the background is black. In white high contrast
mode, edges facing the light are black and the background is white.

Indicates whether the operating system supports layered windows.

TRUE if layered windows are supported; otherwise, FALSE.

If layered windows are supported, smart docking markers use layered windows.

Indicates whether the framework uses predefined 32-bit color icons or icons of a lower resolution.

TRUE specifies that the framework use 32-bit color icons; FALSE specifies lower resolution icons. The
AFX_GLOBAL_DATA::AFX_GLOBAL_DATA constructor initializes this member to TRUE.

This member must be set at application startup.

Indicates whether a system font is used for menus, toolbars, and ribbons.

TRUE specifies to use a system font; otherwise, FALSE. The AFX_GLOBAL_DATA::AFX_GLOBAL_DATA constructor
initializes this member to FALSE.

Testing this member is not the only way for the framework to determine the font to use. The
AFX_GLOBAL_DATA::UpdateFonts method also tests default and alternative fonts to determine what visual styles are

available to be applied to menus, toolbars, and ribbons.

Stores the handle for the hand cursor.

HCURSOR m_hcurHand;

AFX_GLOBAL_DATA::m_hcurStretch

HCURSOR m_hcurStretch;

AFX_GLOBAL_DATA::m_hcurStretchVert

HCURSOR m_hcurStretchVert;

AFX_GLOBAL_DATA::m_hiconTool

HICON m_hiconTool;

AFX_GLOBAL_DATA::m_nAutoHideToolBarMargin

int m_nAutoHideToolBarMargin;

RemarksRemarks

AFX_GLOBAL_DATA::m_nAutoHideToolBarSpacing

int m_nAutoHideToolBarSpacing;

RemarksRemarks

AFX_GLOBAL_DATA::m_nDragFrameThicknessDock

int m_nDragFrameThicknessDock;

RemarksRemarks

Stores the handle for the horizontal stretch cursor.

Stores the handle for the vertical stretch cursor.

Stores the handle for the tool icon.

Specifies the offset from the leftmost autohide toolbar to the left side of the dock bar.

The AFX_GLOBAL_DATA::AFX_GLOBAL_DATA constructor initializes this member to 4 pixels.

Specifies the gap between autohide toolbars.

The AFX_GLOBAL_DATA::AFX_GLOBAL_DATA constructor initializes this member to 14 pixels.

Specifies the thickness of the drag frame that is used to indicate the docked state.

The AFX_GLOBAL_DATA::AFX_GLOBAL_DATA constructor initializes this member to 3 pixels.

AFX_GLOBAL_DATA::m_nDragFrameThicknessFloat

int m_nDragFrameThicknessFloat;

RemarksRemarks

AFX_GLOBAL_DATA::OnSettingChange

void OnSettingChange();

RemarksRemarks

AFX_GLOBAL_DATA::RegisterWindowClass

CString RegisterWindowClass(LPCTSTR lpszClassNamePrefix);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AFX_GLOBAL_DATA::Resume

BOOL Resume();

Return ValueReturn Value

RemarksRemarks

Specifies the thickness of the drag frame that is used to indicate the floating state.

The AFX_GLOBAL_DATA::AFX_GLOBAL_DATA constructor initializes this member to 4 pixels.

Detects the current state of the desktop's menu animation and taskbar autohide features.

This method sets framework variables to the state of certain attributes of the user's desktop. This method detects
the current state of the menu animation, menu fade, and task bar autohide features.

Registers the specified MFC window class.

lpszClassNamePrefix
[in] The name of the window class to register.

The qualified name of the registered class if this method succeeds; otherwise, a resource exception.

The return value is a colon-delimited list of the lpszClassNamePrefix parameter string, and the hexadecimal text
representations of the handles of the current application instance; the application cursor, which is the arrow cursor
whose identifier is IDC_ARROW; and the background brush. For more information about registering MFC
window classes, see AfxRegisterClass.

Reinitializes internal function pointers that access methods that support Windows themes and visual styles.

TRUE if this method succeeds; otherwise, FALSE. In debug mode, this method asserts if this method is
unsuccessful.

This method is called when the framework receives the WM_POWERBROADCAST message.

https://docs.microsoft.com/windows/desktop/Power/wm-powerbroadcast

AFX_GLOBAL_DATA::SetLayeredAttrib

BOOL SetLayeredAttrib(
 HWND hwnd,
 COLORREF crKey,
 BYTE bAlpha,
 DWORD dwFlags);

ParametersParameters

Return ValueReturn Value

AFX_GLOBAL_DATA::SetMenuFont

BOOL SetMenuFont(
 LPLOGFONT lpLogFont,
 BOOL bHorz);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AFX_GLOBAL_DATA::UpdateFonts

Provides a simple way to call the Windows SetLayeredWindowAttributes method.

hwnd
[in] Handle to the layered window.

crKey
[in] The transparency color key that the Desktop Window Manager uses to compose the layered window.

bAlpha
[in] The alpha value that is used to describe the opacity of the layered window.

dwFlags
[in] A bitwise combination (OR) of flags that specify which method parameters to use. Specify LWA_COLORKEY
to use the crKey parameter as the transparency color. Specify LWA_ALPHA to use the bAlpha parameter to
determine the opacity of the layered window.

TRUE if this method succeeds; otherwise, FALSE.

Creates the specified logical font.

lpLogFont
[in] Pointer to a structure that contains the attributes of a font.

bHorz
[in] TRUE to specify that the text runs horizontally; FALSE to specify that the text runs vertically.

TRUE if this method succeeds; otherwise, FALSE. In debug mode, this method asserts if this method is
unsuccessful.

This method creates a horizontal regular font, an underlined font, and a bold font that is used in default menu
items. This method optionally creates a regular vertical font. For more information about logical fonts, see
CFont::CreateFontIndirect.

Reintializes the logical fonts that are used by the framework.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setlayeredwindowattributes
https://docs.microsoft.com/windows/desktop/dwm/dwm-overview

void UpdateFonts();

RemarksRemarks

AFX_GLOBAL_DATA::UpdateSysColors

void UpdateSysColors();

AFX_GLOBAL_DATA::bIsWindows7

BOOL bIsWindows7;

AFX_GLOBAL_DATA::clrActiveCaptionGradient

COLORREF clrActiveCaptionGradient;

AFX_GLOBAL_DATA::clrInactiveCaptionGradient

COLORREF clrInactiveCaptionGradient;

AFX_GLOBAL_DATA::GetITaskbarList

ITaskbarList *GetITaskbarList();

Return ValueReturn Value

AFX_GLOBAL_DATA::GetITaskbarList3

ITaskbarList3 *GetITaskbarList3();

Return ValueReturn Value

For more information about logical fonts, see CFont::CreateFontIndirect .

Initializes the colors, color depth, brushes, pens, and images that are used by the framework.

Indicates whether the application is being executed under Windows 7 or higher.

Specifies the gradient color of the active caption. Generally used for docking panes.

Specifies the gradient color of the inactive caption. Generally used for docking panes.

Creates and stores in the global data a pointer to the ITaskBarList interface.

A pointer to the ITaskbarList interface if creation of a task bar list object succeeds; NULL if creation fails or if the
current Operation System is less than Windows 7.

Creates and stores in the global data a pointer to the ITaskBarList3 interface.

A pointer to the ITaskbarList3 interface if creation of a task bar list object succeeds; NULL if creation fails or if

AFX_GLOBAL_DATA::GetShellAutohideBars

int GetShellAutohideBars();

Return ValueReturn Value

AFX_GLOBAL_DATA::ReleaseTaskBarRefs

void ReleaseTaskBarRefs();

AFX_GLOBAL_DATA::ShellCreateItemFromParsingName

HRESULT ShellCreateItemFromParsingName(
 PCWSTR pszPath,
 IBindCtx *pbc,
 REFIID riid,
 void **ppv);

ParametersParameters

Return ValueReturn Value

See also

the current Operation System is less than Windows 7.

Determines positions of Shell auto hide bars.

An integer value with encoded flags that specify positions of auto hide bars. It may combine the following values:
AFX_AUTOHIDE_BOTTOM, AFX_AUTOHIDE_TOP, AFX_AUTOHIDE_LEFT, AFX_AUTOHIDE_RIGHT.

Releases interfaces obtained through the GetITaskbarList and GetITaskbarList3 methods.

Creates and initializes a Shell item object from a parsing name.

pszPath
[in] A pointer to a display name.

pbc
A pointer to a bind context that controls the parsing operation.

riid
A reference to an interface ID.

ppv
[out] When this function returns, contains the interface pointer requested in riid. This will typically be IShellItem

or IShellItem2 .

Returns S_OK if successful; an error value otherwise.

Hierarchy Chart
Structures, Styles, Callbacks, and Message Maps
COLORREF
Parts and States
CDC::DrawText
DrawThemeTextEx

https://docs.microsoft.com/windows/desktop/gdi/colorref
https://docs.microsoft.com/windows/desktop/controls/parts-and-states
https://docs.microsoft.com/windows/desktop/api/uxtheme/nf-uxtheme-drawthemetextex

Desktop Window Manager
Enable and Control DWM Composition
UI Automation and Microsoft Active Accessibility
GetSysColor Function
GetSysColorBrush
NONCLIENTMETRICS Structure
AfxRegisterClass
AfxThrowResourceException
SetLayeredWindowAttributes

https://docs.microsoft.com/windows/desktop/dwm/dwm-overview
https://docs.microsoft.com/windows/desktop/dwm/composition-ovw
https://docs.microsoft.com/dotnet/framework/ui-automation/ui-automation-and-microsoft-active-accessibility
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsyscolor
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-getsyscolorbrush
https://docs.microsoft.com/windows/desktop/api/winuser/ns-winuser-tagnonclientmetricsa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-setlayeredwindowattributes

CDaoDatabaseInfo Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct CDaoDatabaseInfo
{
 CString m_strName; // Primary
 BOOL m_bUpdatable; // Primary
 BOOL m_bTransactions; // Primary
 CString m_strVersion; // Secondary
 long m_lCollatingOrder; // Secondary
 short m_nQueryTimeout; // Secondary
 CString m_strConnect; // All
};

ParametersParameters

The CDaoDatabaseInfo structure contains information about a database object defined for data access objects
(DAO).

m_strName
Uniquely names the database object. To directly retrieve this property, call CDaoDatabase::GetName. For details,
see the topic "Name Property" in DAO Help.

m_bUpdatable
Indicates whether changes can be made to the database. To directly retrieve this property, call
CDaoDatabase::CanUpdate. For details, see the topic "Updatable Property" in DAO Help.

m_bTransactions
Indicates whether a data source supports transactions — the recording of a series of changes that can later be
rolled back (canceled) or committed (saved). If a database is based on the Microsoft Jet database engine, the
Transactions property is nonzero and you can use transactions. Other database engines may not support
transactions. To directly retrieve this property, call CDaoDatabase::CanTransact. For details, see the topic
"Transactions Property" in DAO Help.

m_strVersion
Indicates the version of the Microsoft Jet database engine. To retrieve the value of this property directly, call the
database object's GetVersion member function. For details, see the topic "Version Property" in DAO Help.

m_lCollatingOrder
Specifies the sequence of the sort order in text for string comparison or sorting. Possible values include:

dbSortGeneral Use the General (English, French, German, Portuguese, Italian, and Modern Spanish) sort
order.

dbSortArabic Use the Arabic sort order.

dbSortCyrillic Use the Russian sort order.

dbSortCzech Use the Czech sort order.

dbSortDutch Use the Dutch sort order.

dbSortGreek Use the Greek sort order.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaodatabaseinfo-structure.md

Remarks

Requirements

See also

dbSortHebrew Use the Hebrew sort order.

dbSortHungarian Use the Hungarian sort order.

dbSortIcelandic Use the Icelandic sort order.

dbSortNorwdan Use the Norwegian or Danish sort order.

dbSortPDXIntl Use the Paradox International sort order.

dbSortPDXNor Use the Paradox Norwegian or Danish sort order.

dbSortPDXSwe Use the Paradox Swedish or Finnish sort order.

dbSortPolish Use the Polish sort order.

dbSortSpanish Use the Spanish sort order.

dbSortSwedFin Use the Swedish or Finnish sort order.

dbSortTurkish Use the Turkish sort order.

dbSortUndefined The sort order is undefined or unknown.

For more information, see the topic "Customizing Windows Registry Settings for Data Access" in DAO Help.

m_nQueryTimeout
The number of seconds the Microsoft Jet database engine waits before a timeout error occurs when a query is run
on an ODBC database. The default timeout value is 60 seconds. When QueryTimeout is set to 0, no timeout
occurs; this can cause the program to stop responding. To retrieve the value of this property directly, call the
database object's GetQueryTimeout member function. For details, see the topic "QueryTimeout Property" in DAO
Help.

m_strConnect
Provides information about the source of an open database. For information about connect strings, and for
information about retrieving the value of this property directly, see the CDaoDatabase::GetConnect member
function. For more information, see the topic "Connect Property" in DAO Help.

The database is a DAO object underlying an MFC object of class CDaoDatabase. The references to Primary,
Secondary, and All above indicate how the information is returned by the CDaoWorkspace::GetDatabaseInfo
member function.

Information retrieved by the CDaoWorkspace::GetDatabaseInfo member function is stored in a CDaoDatabaseInfo

structure. Call GetDatabaseInfo for the CDaoWorkspace object in whose Databases collection the database object is
stored. CDaoDatabaseInfo also defines a Dump member function in debug builds. You can use Dump to dump the
contents of a CDaoDatabaseInfo object.

Header: afxdao.h

Structures, Styles, Callbacks, and Message Maps
CDaoWorkspace Class
CDaoDatabase Class

CDaoErrorInfo Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct CDaoErrorInfo
{
 long m_lErrorCode;
 CString m_strSource;
 CString m_strDescription;
 CString m_strHelpFile;
 long m_lHelpContext;
};

ParametersParameters

Remarks

The CDaoErrorInfo structure contains information about an error object defined for data access objects (DAO).

m_lErrorCode
A numeric DAO error code. See the topic "Trappable Data Access Errors" in DAO Help.

m_strSource
The name of the object or application that originally generated the error. The Source property specifies a string
expression representing the object that originally generated the error ; the expression is usually the object's class
name. For details, see the topic "Source Property" in DAO Help.

m_strDescription
A descriptive string associated with an error. For details, see the topic "Description Property" in DAO Help.

m_strHelpFile
A fully qualified path to a Microsoft Windows Help file. For details, see the topic "HelpContext, HelpFile
Properties" in DAO Help.

m_lHelpContext
A context ID for a topic in a Microsoft Windows Help file. For details, see the topic "HelpContext, HelpFile
Properties" in DAO Help.

MFC does not encapsulate DAO error objects in a class. Instead, the CDaoException class supplies an interface
for accessing the Errors collection contained in the DAO DBEngine object, the object that also contains all
workspaces. When an MFC DAO operation throws a CDaoException object that you catch, MFC fills a
CDaoErrorInfo structure and stores it in the exception object's m_pErrorInfo member. (If you choose to call DAO

directly, you must call the exception object's GetErrorInfo member function yourself to fill m_pErrorInfo .)

For more information about handling DAO errors, see the article Exceptions: Database Exceptions. For related
information, see the topic "Error Object" in DAO Help.

Information retrieved by the CDaoException::GetErrorInfo member function is stored in a CDaoErrorInfo

structure. Examine the m_pErrorInfo data member from a CDaoException object that you catch in an exception
handler, or call GetErrorInfo from a CDaoException object that you create explicitly in order to check errors that
might have occurred during a direct call to the DAO interfaces. CDaoErrorInfo also defines a Dump member
function in debug builds. You can use Dump to dump the contents of a CDaoErrorInfo object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaoerrorinfo-structure.md

Requirements

See also

Header: afxdao.h

Structures, Styles, Callbacks, and Message Maps
CDaoException Class

CDaoFieldInfo Structure
3/4/2019 • 6 minutes to read • Edit Online

Syntax
struct CDaoFieldInfo
{
 CString m_strName; // Primary
 short m_nType; // Primary
 long m_lSize; // Primary
 long m_lAttributes; // Primary
 short m_nOrdinalPosition; // Secondary
 BOOL m_bRequired; // Secondary
 BOOL m_bAllowZeroLength; // Secondary
 long m_lCollatingOrder; // Secondary
 CString m_strForeignName; // Secondary
 CString m_strSourceField; // Secondary
 CString m_strSourceTable; // Secondary
 CString m_strValidationRule; // All
 CString m_strValidationText; // All
 CString m_strDefaultValue; // All
};

ParametersParameters

The CDaoFieldInfo structure contains information about a field object defined for data access objects (DAO).

m_strName
Uniquely names the field object. For details, see the topic "Name Property" in DAO Help.

m_nType
A value that indicates the data type of the field. For details, see the topic "Type Property" in DAO Help. The value
of this property can be one of the following:

dbBoolean Yes/No, same as TRUE/FALSE

dbByte Byte

dbInteger Short

dbLong Long

dbCurrency Currency; see MFC class COleCurrency

dbSingle Single

dbDouble Double

dbDate Date/Time; see MFC class COleDateTime

dbText Text; see MFC class CString

dbLongBinary Long Binary (OLE Object); you might want to use MFC class CByteArray instead of class
CLongBinary as CByteArray is richer and easier to use.

dbMemo Memo; see MFC class CString

dbGUID A Globally Unique Identifier/Universally Unique Identifier used with remote procedure calls. For

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaofieldinfo-structure.md

NOTENOTE

TYPE SIZE (BYTES) DESCRIPTION

dbBoolean 1 byte Yes/No (same as True/False)

dbByte 1 Byte

dbInteger 2 Integer

dbLong 4 Long

dbCurrency 8 Currency (COleCurrency)

dbSingle 4 Single

dbDouble 8 Double

dbDate 8 Date/Time (COleDateTime)

dbText 1 - 255 Text (CString)

dbLongBinary 0 Long Binary (OLE Object; CByteArray;
use instead of CLongBinary)

dbMemo 0 Memo (CString)

dbGUID 16 A Globally Unique Identifier/Universally
Unique Identifier used with remote
procedure calls.

more information, see the topic "Type Property" in DAO Help.

Do not use string data types for binary data. This causes your data to pass through the Unicode/ANSI translation layer,
resulting in increased overhead and possibly unexpected translation.

m_lSize
A value that indicates the maximum size, in bytes, of a DAO field object that contains text or the fixed size of a
field object that contains text or numeric values. For details, see the topic "Size Property" in DAO Help. Sizes can
be one of the following values:

m_lAttributes
Specifies characteristics of a field object contained by a tabledef, recordset, querydef, or index object. The value
returned can be a sum of these constants, created with the C++ bitwise-OR (|) operator:

dbFixedField The field size is fixed (default for Numeric fields).

dbVariableField The field size is variable (Text fields only).

dbAutoIncrField The field value for new records is automatically incremented to a unique long integer
that cannot be changed. Only supported for Microsoft Jet database tables.

dbUpdatableField The field value can be changed.

dbDescending The field is sorted in descending (Z - A or 100 - 0) order (applies only to a field object in a
Fields collection of an index object; in MFC, index objects are themselves contained in tabledef objects). If
you omit this constant, the field is sorted in ascending (A - Z or 0 - 100) order (default).

When checking the setting of this property, you can use the C++ bitwise-AND operator (&) to test for a specific
attribute. When setting multiple attributes, you can combine them by combining the appropriate constants with
the bitwise-OR (|) operator. For details, see the topic "Attributes Property" in DAO Help.

m_nOrdinalPosition
A value that specifies the numeric order in which you want a field represented by a DAO field object to be
displayed relative to other fields. You can set this property with CDaoTableDef::CreateField. For details, see the
topic "OrdinalPosition Property" in DAO Help.

m_bRequired
Indicates whether a DAO field object requires a non-Null value. If this property is TRUE, the field does not allow
a Null value. If Required is set to FALSE, the field can contain Null values as well as values that meet the
conditions specified by the AllowZeroLength and ValidationRule property settings. For details, see the topic
"Required Property" in DAO Help. You can set this property for a tabledef with CDaoTableDef::CreateField.

m_bAllowZeroLength
Indicates whether an empty string ("") is a valid value of a DAO field object with a Text or Memo data type. If this
property is TRUE, an empty string is a valid value. You can set this property to FALSE to ensure that you cannot
use an empty string to set the value of a field. For details, see the topic "AllowZeroLength Property" in DAO Help.
You can set this property for a tabledef with CDaoTableDef::CreateField.

m_lCollatingOrder
Specifies the sequence of the sort order in text for string comparison or sorting. For details, see the topic
"Customizing Windows Registry Settings for Data Access" in DAO Help. For a list of the possible values returned,
see the m_lCollatingOrder member of the CDaoDatabaseInfo structure. You can set this property for a tabledef
with CDaoTableDef::CreateField.

m_strForeignName
A value that, in a relation, specifies the name of the DAO field object in a foreign table that corresponds to a field
in a primary table. For details, see the topic "ForeignName Property" in DAO Help.

m_strSourceField
Indicates the name of the field that is the original source of the data for a DAO field object contained by a
tabledef, recordset, or querydef object. This property indicates the original field name associated with a field
object. For example, you could use this property to determine the original source of the data in a query field
whose name is unrelated to the name of the field in the underlying table. For details, see the topic "SourceField,
SourceTable Properties" in DAO Help. You can set this property for a tabledef with CDaoTableDef::CreateField.

m_strSourceTable
Indicates the name of the table that is the original source of the data for a DAO field object contained by a
tabledef, recordset, or querydef object. This property indicates the original table name associated with a field
object. For example, you could use this property to determine the original source of the data in a query field
whose name is unrelated to the name of the field in the underlying table. For details, see the topic "SourceField,
SourceTable Properties" in DAO Help. You can set this property for a tabledef with CDaoTableDef::CreateField.

m_strValidationRule
A value that validates the data in a field as it is changed or added to a table. For details, see the topic
"ValidationRule Property" in DAO Help. You can set this property for a tabledef with CDaoTableDef::CreateField.

For related information about tabledefs, see the m_strValidationRule member of the CDaoTableDefInfo
structure.

m_strValidationText

Remarks

Requirements

See also

A value that specifies the text of the message that your application displays if the value of a DAO field object does
not satisfy the validation rule specified by the ValidationRule property setting. For details, see the topic
"ValidationText Property" in DAO Help. You can set this property for a tabledef with CDaoTableDef::CreateField.

m_strDefaultValue
The default value of a DAO field object. When a new record is created, the DefaultValue property setting is
automatically entered as the value for the field. For details, see the topic "DefaultValue Property" in DAO Help.
You can set this property for a tabledef with CDaoTableDef::CreateField.

The references to Primary, Secondary, and All above indicate how the information is returned by the
GetFieldInfo member function in classes CDaoTableDef, CDaoQueryDef, and CDaoRecordset.

Field objects are not represented by an MFC class. Instead, the DAO objects underlying MFC objects of the
following classes contain collections of field objects: CDaoTableDef, CDaoRecordset, and CDaoQueryDef. These
classes supply member functions to access some individual items of field information, or you can access them all
at once with a CDaoFieldInfo object by calling the GetFieldInfo member function of the containing object.

Besides its use for examining object properties, you can also use CDaoFieldInfo to construct an input parameter
for creating new fields in a tabledef. Simpler options are available for this task, but if you want finer control, you
can use the version of CDaoTableDef::CreateField that takes a CDaoFieldInfo parameter.

Information retrieved by the GetFieldInfo member function (of the class that contains the field) is stored in a
CDaoFieldInfo structure. Call the GetFieldInfo member function of the containing object in whose Fields

collection the field object is stored. CDaoFieldInfo also defines a Dump member function in debug builds. You can
use Dump to dump the contents of a CDaoFieldInfo object.

Header: afxdao.h

Structures, Styles, Callbacks, and Message Maps
CDaoTableDef::GetFieldInfo
CDaoRecordset::GetFieldInfo
CDaoQueryDef::GetFieldInfo

CDaoIndexInfo Structure
10/31/2018 • 6 minutes to read • Edit Online

Syntax
struct CDaoIndexInfo {
 CDaoIndexInfo(); // Constructor
 CString m_strName; // Primary
 CDaoIndexFieldInfo* m_pFieldInfos; // Primary
 short m_nFields; // Primary
 BOOL m_bPrimary; // Secondary
 BOOL m_bUnique; // Secondary
 BOOL m_bClustered; // Secondary
 BOOL m_bIgnoreNulls; // Secondary
 BOOL m_bRequired; // Secondary
 BOOL m_bForeign; // Secondary
 long m_lDistinctCount; // All

 // Below the // Implementation comment:
 // Destructor, not otherwise documented
};

ParametersParameters

NOTENOTE

The CDaoIndexInfo structure contains information about an index object defined for data access objects (DAO).

m_strName
Uniquely names the field object. For details, see the topic "Name Property" in DAO Help.

m_pFieldInfos
A pointer to an array of CDaoIndexFieldInfo objects indicating which tabledef or recordset fields are key fields in
an index. Each object identifies one field in the index. The default index ordering is ascending. An index object can
have one or more fields representing index keys for each record. These can be ascending, descending, or a
combination.

m_nFields
The number of fields stored in m_pFieldInfos .

m_bPrimary
If the Primary property is TRUE, the index object represents a primary index. A primary index consists of one or
more fields that uniquely identify all records in a table in a predefined order. Because the index field must be
unique, the Unique property of the Index object is also set to TRUE in DAO. If the primary index consists of more
than one field, each field can contain duplicate values, but each combination of values from all the indexed fields
must be unique. A primary index consists of a key for the table and usually contains the same fields as the
primary key.

When you set a primary key for a table, the primary key is automatically defined as the primary index for the
table. For more information, see the topics "Primary Property" and "Unique Property" in DAO Help.

There can be, at most, one primary index on a table.

m_bUnique

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaoindexinfo-structure.md

NOTENOTE

IGNORENULLS REQUIRED NULL IN INDEX FIELD

True False Null value allowed; no index entry
added.

False False Null value allowed; index entry added.

True or False True Null value not allowed; no index entry
added.

TIPTIP

Indicates whether an index object represents a unique index for a table. If this property is TRUE, the index object
represents an index that is unique. A unique index consists of one or more fields that logically arrange all records
in a table in a unique, predefined order. If the index consists of one field, values in that field must be unique for
the entire table. If the index consists of more than one field, each field can contain duplicate values, but each
combination of values from all the indexed fields must be unique.

If both the Unique and Primary properties of an index object are set to TRUE, the index is unique and primary: It
uniquely identifies all records in the table in a predefined, logical order. If the Primary property is set to FALSE,
the index is a secondary index. Secondary indexes (both key and nonkey) logically arrange records in a
predefined order without serving as an identifier for records in the table.

For more information, see the topics "Primary Property" and "Unique Property" in DAO Help.

m_bClustered
Indicates whether an index object represents a clustered index for a table. If this property is TRUE, the index
object represents a clustered index; otherwise, it does not. A clustered index consists of one or more nonkey fields
that, taken together, arrange all records in a table in a predefined order. With a clustered index, the data in the
table is literally stored in the order specified by the clustered index. A clustered index provides efficient access to
records in a table. For more information, see the topic "Clustered Property" in DAO Help.

The Clustered property is ignored for databases that use the Microsoft Jet database engine because the Jet database
engine does not support clustered indexes.

m_bIgnoreNulls
Indicates whether there are index entries for records that have Null values in their index fields. If this property is
TRUE, fields with Null values do not have an index entry. To make searching for records using a field faster, you
can define an index for the field. If you allow Null entries in an indexed field and expect many of the entries to be
Null, you can set the IgnoreNulls property for the index object to TRUE to reduce the amount of storage space
that the index uses. The IgnoreNulls property setting and the Required property setting together determine
whether a record with a Null index value has an index entry, as the following table shows.

For more information, see the topic "IgnoreNulls Property" in DAO Help.

m_bRequired
Indicates whether a DAO index object requires a non-Null value. If this property is TRUE, the index object does
not allow a Null value. For more information, see the topic "Required Property" in DAO Help.

When you can set this property for either a DAO index object or a field object (contained by a tabledef, recordset, or
querydef object), set it for the field object. The validity of the property setting for a field object is checked before that of an
index object.

Remarks

Requirements

See also

m_bForeign
Indicates whether an index object represents a foreign key in a table. If this property is TRUE, the index
represents a foreign key in a table. A foreign key consists of one or more fields in a foreign table that uniquely
identify a row in a primary table. The Microsoft Jet database engine creates an index object for the foreign table
and sets the Foreign property when you create a relationship that enforces referential integrity. For more
information, see the topic "Foreign Property" in DAO Help.

m_lDistinctCount
Indicates the number of unique values for the index object that are included in the associated table. Check the
DistinctCount property to determine the number of unique values, or keys, in an index. Any key is counted only
once, even though there may be multiple occurrences of that value if the index permits duplicate values. This
information is useful in applications that attempt to optimize data access by evaluating index information. The
number of unique values is also known as the cardinality of an index object. The DistinctCount property will not
always reflect the actual number of keys at a particular time. For example, a change caused by a transaction
rollback will not be reflected immediately in the DistinctCount property. For more information, see the topic
"DistinctCount Property" in DAO Help.

The references to Primary, Secondary, and All above indicate how the information is returned by the
GetIndexInfo member function in classes CDaoTableDef and CDaoRecordset.

Index objects are not represented by an MFC class. Instead, DAO objects underlying MFC objects of class
CDaoTableDef or CDaoRecordset contain a collection of index objects, called the Indexes collection. These classes
supply member functions to access individual items of index information, or you can access them all at once with
a CDaoIndexInfo object by calling the GetIndexInfo member function of the containing object.

CDaoIndexInfo has a constructor and a destructor in order to properly allocate and deallocate the index field
information in m_pFieldInfos .

Information retrieved by the GetIndexInfo member function of a tabledef object is stored in a CDaoIndexInfo

structure. Call the GetIndexInfo member function of the containing tabledef object in whose Indexes collection
the index object is stored. CDaoIndexInfo also defines a Dump member function in debug builds. You can use
Dump to dump the contents of a CDaoIndexInfo object.

Header: afxdao.h

Structures, Styles, Callbacks, and Message Maps
CDaoTableDef::GetIndexInfo

CDaoIndexFieldInfo Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct CDaoIndexFieldInfo
{
 CString m_strName; // Primary
 BOOL m_bDescending; // Primary
};

ParametersParameters

Remarks

Requirements

See also

The CDaoIndexFieldInfo structure contains information about an index field object defined for data access objects
(DAO).

m_strName
Uniquely names the index field object. For details, see the topic "Name Property" in DAO Help.

m_bDescending
Indicates the index ordering defined by the index object. TRUE if the order is descending.

An index object can have a number of fields, indicating which fields a tabledef (or a recordset based on a table) is
indexed on. The references to Primary above indicate how the information is returned in the m_pFieldInfos

member of a CDaoIndexInfo object obtained by calling the GetIndexInfo member function of class CDaoTableDef
or CDaoRecordset.

Index objects and index field objects are not represented by an MFC class. Instead, the DAO objects underlying
MFC objects of class CDaoTableDef or CDaoRecordset contain a collection of index objects, called the Indexes
collection. Each index object, in turn, contains a collection of field objects. These classes supply member functions
to access individual items of index information, or you can access them all at once with a CDaoIndexInfo object by
calling the GetIndexInfo member function of the containing object. The CDaoIndexInfo object, then, has a data
member, m_pFieldInfos , that points to an array of CDaoIndexFieldInfo objects.

Call the GetIndexInfo member function of the containing tabledef or recordset object in whose Indexes collection
is stored the index object you are interested in. Then access the m_pFieldInfos member of the CDaoIndexInfo
object. The length of the m_pFieldInfos array is stored in m_nFields . CDaoIndexFieldInfo also defines a Dump

member function in debug builds. You can use Dump to dump the contents of a CDaoIndexFieldInfo object.

Header: afxdao.h

Structures, Styles, Callbacks, and Message Maps
CDaoTableDef::GetIndexInfo
CDaoRecordset::GetIndexInfo

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaoindexfieldinfo-structure.md

CDaoParameterInfo Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct CDaoParameterInfo
{
 CString m_strName; // Primary
 short m_nType; // Primary
 ColeVariant m_varValue; // Secondary
};

ParametersParameters

Remarks

NOTENOTE

Requirements

The CDaoParameterInfo structure contains information about a parameter object defined for data access objects
(DAO).

m_strName
Uniquely names the parameter object. For more information, see the topic "Name Property" in DAO Help.

m_nType
A value that indicates the data type of a parameter object. For a list of the possible values, see the m_nType
member of the CDaoFieldInfo structure. For more information, see the topic "Type Property" in DAO Help.

m_varValue
The value of the parameter, stored in a COleVariant object.

The references to Primary and Secondary above indicate how the information is returned by the
GetParameterInfo member function in class CDaoQueryDef .

MFC does not encapsulate DAO parameter objects in a class. DAO querydef objects underlying MFC
CDaoQueryDef objects store parameters in their Parameters collections. To access the parameter objects in a

CDaoQueryDef object, call the querydef object's GetParameterInfo member function for a particular parameter
name or an index into the Parameters collection. You can use the CDaoQueryDef::GetParameterCount member
function in conjunction with GetParameterInfo to loop through the Parameters collection.

Information retrieved by the CDaoQueryDef::GetParameterInfo member function is stored in a CDaoParameterInfo

structure. Call GetParameterInfo for the querydef object in whose Parameters collection the parameter object is
stored.

If you want to get or set only the value of a parameter, use the GetParamValue and SetParamValue member functions of
class CDaoRecordset .

CDaoParameterInfo also defines a Dump member function in debug builds. You can use Dump to dump the
contents of a CDaoParameterInfo object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaoparameterinfo-structure.md

See also

Header: afxdao.h

Structures, Styles, Callbacks, and Message Maps
CDaoQueryDef Class

CDaoQueryDefInfo Structure
3/4/2019 • 4 minutes to read • Edit Online

Syntax
struct CDaoQueryDefInfo
{
 CString m_strName; // Primary
 short m_nType; // Primary
 COleDateTime m_dateCreated; // Secondary
 COleDateTime m_dateLastUpdated; // Secondary
 BOOL m_bUpdatable; // Secondary
 BOOL m_bReturnsRecords; // Secondary
 CString m_strSQL; // All
 CString m_strConnect; // All
 short m_nODBCTimeout; // All
};

ParametersParameters

The CDaoQueryDefInfo structure contains information about a querydef object defined for data access objects
(DAO).

m_strName
Uniquely names the querydef object. For more information, see the topic "Name Property" in DAO Help. Call
CDaoQueryDef::GetName to retrieve this property directly.

m_nType
A value that indicates the operational type of a querydef object. The value can be one of the following:

dbQSelect Select — the query selects records.

dbQAction Action — the query moves or changes data but does not return records.

dbQCrosstab Crosstab — the query returns data in a spreadsheet-like format.

dbQDelete Delete — the query deletes a set of specified rows.

dbQUpdate Update — the query changes a set of records.

dbQAppend Append — the query adds new records to the end of a table or query.

dbQMakeTable Make-table — the query creates a new table from a recordset.

dbQDDL Data-definition — the query affects the structure of tables or their parts.

dbQSQLPassThrough Pass-through — the SQL statement is passed directly to the database backend, without
intermediate processing.

dbQSetOperation Union — the query creates a snapshot-type recordset object containing data from all
specified records in two or more tables with any duplicate records removed. To include the duplicates, add
the keyword ALL in the querydef's SQL statement.

dbQSPTBulk Used with dbQSQLPassThrough to specify a query that does not return records.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaoquerydefinfo-structure.md

NOTENOTE

Remarks

To create a SQL pass-through query, you do not set the dbQSQLPassThrough constant. This is set automatically by the
Microsoft Jet database engine when you create a querydef object and set the Connect property.

For more information, see the topic "Type Property" in DAO Help.

m_dateCreated
The date and time the querydef was created. To directly retrieve the date the querydef was created, call the
GetDateCreated member function of the CDaoTableDef object associated with the table. See Comments below for
more information. Also see the topic "DateCreated, LastUpdated Properties" in DAO Help.

m_dateLastUpdated
The date and time of the most recent change made to the querydef. To directly retrieve the date the table was last
updated, call the GetDateLastUpdated member function of the querydef. See Comments below for more
information. And see the topic "DateCreated, LastUpdated Properties" in DAO Help.

m_bUpdatable
Indicates whether changes can be made to a querydef object. If this property is TRUE, the querydef is updatable;
otherwise, it is not. Updatable means the querydef object's query definition can be changed. The Updatable
property of a querydef object is set to TRUE if the query definition can be updated, even if the resulting recordset
is not updatable. To retrieve this property directly, call the querydef's CanUpdate member function. For more
information, see the topic "Updatable Property" in DAO Help.

m_bReturnsRecords
Indicates whether a SQL pass-through query to an external database returns records. If this property is TRUE, the
query returns records. To directly retrieve this property, call CDaoQueryDef::GetReturnsRecords. Not all SQL
pass-through queries to external databases return records. For example, a SQL UPDATE statement updates
records without returning records, while a SQL SELECT statement does return records. For more information, see
the topic "ReturnsRecords Property" in DAO Help.

m_strSQL
The SQL statement that defines the query executed by a querydef object. The SQL property contains the SQL
statement that determines how records are selected, grouped, and ordered when you execute the query. You can
use the query to select records to include in a dynaset- or snapshot-type recordset object. You can also define bulk
queries to modify data without returning records. You can retrieve the value of this property directly by calling the
querydef's GetSQL member function.

m_strConnect
Provides information about the source of a database used in a pass-through query. This information takes the
form of a connect string. For more information about connect strings, and for information about retrieving the
value of this property directly, see the CDaoDatabase::GetConnect member function.

m_nODBCTimeout
The number of seconds the Microsoft Jet database engine waits before a timeout error occurs when a query is run
on an ODBC database. When you're using an ODBC database, such as Microsoft SQL Server, there may be delays
because of network traffic or heavy use of the ODBC server. Rather than waiting indefinitely, you can specify how
long the Microsoft Jet engine waits before it produces an error. The default timeout value is 60 seconds. You can
retrieve the value of this property directly by calling the querydef's GetODBCTimeout member function. For more
information, see the topic "ODBCTimeout Property" in DAO Help.

The querydef is an object of class CDaoQueryDef. The references to Primary, Secondary, and All above indicate

Requirements

See also

how the information is returned by the GetQueryDefInfo member function in class CDaoDatabase .

Information retrieved by the CDaoDatabase::GetQueryDefInfo member function is stored in a CDaoQueryDefInfo

structure. Call GetQueryDefInfo for the database object in whose QueryDefs collection the querydef object is
stored. CDaoQueryDefInfo also defines a Dump member function in debug builds. You can use Dump to dump the
contents of a CDaoQueryDefInfo object. Class CDaoDatabase also supplies member functions for directly accessing
all of the properties returned in a CDaoQueryDefInfo object, so you will probably seldom need to call
GetQueryDefInfo .

When you append a new field or parameter object to the Fields or Parameters collection of a querydef object, an
exception is thrown if the underlying database does not support the data type specified for the new object.

The date and time settings are derived from the computer on which the querydef was created or last updated. In a
multiuser environment, users should get these settings directly from the file server using the net time command
to avoid discrepancies in the DateCreated and LastUpdated property settings.

Header: afxdao.h

Structures, Styles, Callbacks, and Message Maps
CDaoQueryDef Class
CDaoDatabase Class

CDaoRelationInfo Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct CDaoRelationInfo
{
 CDaoRelationInfo(); // Constructor
 CString m_strName; // Primary
 CString m_strTable; // Primary
 CString m_strForeignTable; // Primary
 long m_lAttributes; // Secondary
 CDaoRelationFieldInfo* m_pFieldInfos; // Secondary
 short m_nFields; // Secondary
 // Below the // Implementation comment:
 // Destructor, not otherwise documented
};

ParametersParameters

The CDaoRelationInfo structure contains information about a relation defined between fields of two tables in a
CDaoDatabase object.

m_strName
Uniquely names the relation object. For more information, see the topic "Name Property" in DAO Help.

m_strTable
Names the primary table in the relation.

m_strForeignTable
Names the foreign table in the relation. A foreign table is a table used to contain foreign keys. Generally, you use
a foreign table to establish or enforce referential integrity. The foreign table is usually on the many side of a one-
to-many relationship. Examples of foreign tables include tables containing codes for the American states or
Canadian provinces or customer orders.

m_lAttributes
Contains information about the relation type. The value of this member can be any of the following:

dbRelationUnique Relationship is one-to-one.

dbRelationDontEnforce Relationship is not enforced (no referential integrity).

dbRelationInherited Relationship exists in a noncurrent database that contains the two attached tables.

dbRelationLeft The relationship is a left join. A left outer join includes all of the records from the first (left-
hand) of two tables, even if there are no matching values for records in the second (right-hand) table.

dbRelationRight The relationship is a right join. A right outer join includes all of the records from the
second (right-hand) of two tables, even if there are no matching values for records in the first (left-hand)
table.

dbRelationUpdateCascade Updates will cascade.

dbRelationDeleteCascade Deletions will cascade.

m_pFieldInfos

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaorelationinfo-structure.md

Remarks

Requirements

See also

A pointer to an array of CDaoRelationFieldInfo structures. The array contains one object for each field in the
relation. The m_nFields data member gives a count of the array elements.

m_nFields
The number of CDaoRelationFieldInfo objects in the m_pFieldInfos data member.

The references to Primary and Secondary above indicate how the information is returned by the GetRelationInfo
member function in class CDaoDatabase .

Relation objects are not represented by an MFC class. Instead, the DAO object underlying an MFC object of the
CDaoDatabase class maintains a collection of relation objects: CDaoDatabase supplies member functions to access

some individual items of relation information, or you can access them all at once with a CDaoRelationInfo object
by calling the GetRelationInfo member function of the containing database object.

Information retrieved by the CDaoDatabase::GetRelationInfo member function is stored in a CDaoRelationInfo

structure. CDaoRelationInfo also defines a Dump member function in debug builds. You can use Dump to dump
the contents of a CDaoRelationInfo object.

Header: afxdao.h

CDaoRelationFieldInfo Structure

CDaoRelationFieldInfo Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct CDaoRelationFieldInfo
{
 CString m_strName; // Primary
 CString m_strForeignName; // Primary
};

ParametersParameters

Remarks

Requirements

See also

The CDaoRelationFieldInfo structure contains information about a field in a relation defined for data access
objects (DAO).

m_strName
The name of the field in the primary table of the relation.

m_strForeignName
The name of the field in the foreign table of the relation.

A DAO relation object specifies the fields in a primary table and the fields in a foreign table that define the
relation. The references to Primary in the structure definition above indicate how the information is returned in
the m_pFieldInfos member of a CDaoRelationInfo object obtained by calling the GetRelationInfo member
function of class CDaoDatabase .

Relation objects and relation field objects are not represented by an MFC class. Instead, the DAO objects
underlying MFC objects of class CDaoDatabase contain a collection of relation objects, called the Relations
collection. Each relation object, in turn, contains a collection of relation field objects. Each relation field object
correlates a field in the primary table with a field in the foreign table. Taken together, the relation field objects
define a group of fields in each table, which together define the relation. CDaoDatabase lets you access relation
objects with a CDaoRelationInfo object by calling the GetRelationInfo member function. The CDaoRelationInfo

object, then, has a data member, m_pFieldInfos , that points to an array of CDaoRelationFieldInfo objects.

Call the GetRelationInfo member function of the containing CDaoDatabase object in whose Relations collection is
stored the relation object you are interested in. Then access the m_pFieldInfos member of the CDaoRelationInfo
object. CDaoRelationFieldInfo also defines a Dump member function in debug builds. You can use Dump to dump
the contents of a CDaoRelationFieldInfo object.

Header: afxdao.h

Structures, Styles, Callbacks, and Message Maps
CDaoRelationInfo Structure

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaorelationfieldinfo-structure.md

CDaoTableDefInfo Structure
3/4/2019 • 4 minutes to read • Edit Online

Syntax
struct CDaoTableDefInfo
{
 CString m_strName; // Primary
 BOOL m_bUpdatable; // Primary
 long m_lAttributes; // Primary
 COleDateTime m_dateCreated; // Secondary
 COleDateTime m_dateLastUpdated; // Secondary
 CString m_strSrcTableName; // Secondary
 CString m_strConnect; // Secondary
 CString m_strValidationRule; // All
 CString m_strValidationText; // All
 long m_lRecordCount; // All
};

ParametersParameters

The CDaoTableDefInfo structure contains information about a tabledef object defined for data access objects
(DAO).

m_strName
Uniquely names the tabledef object. To retrieve the value of this property directly, call the tabledef object's
GetName member function. For more information, see the topic "Name Property" in DAO Help.

m_bUpdatable
Indicates whether changes can be made to the table. The quick way to determine whether a table is updatable is to
open a CDaoTableDef object for the table and call the object's CanUpdate member function. CanUpdate always
returns nonzero (TRUE) for a newly created tabledef object and 0 (FALSE) for an attached tabledef object. A new
tabledef object can be appended only to a database for which the current user has write permission. If the table
contains only nonupdatable fields, CanUpdate returns 0. When one or more fields are updatable, CanUpdate

returns nonzero. You can edit only the updatable fields. For more information, see the topic "Updatable Property"
in DAO Help.

m_lAttributes
Specifies characteristics of the table represented by the tabledef object. To retrieve the current attributes of a
tabledef, call its GetAttributes member function. The value returned can be a combination of these long constants
(using the bitwise-OR (|) operator):

dbAttachExclusive For databases that use the Microsoft Jet database engine, indicates the table is an
attached table opened for exclusive use.

dbAttachSavePWD For databases that use the Microsoft Jet database engine, indicates that the user ID and
password for the attached table are saved with the connection information.

dbSystemObject Indicates the table is a system table provided by the Microsoft Jet database engine. (Read-
only.)

dbHiddenObject Indicates the table is a hidden table provided by the Microsoft Jet database engine (for
temporary use). (Read-only.)

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaotabledefinfo-structure.md

Remarks

dbAttachedTable Indicates the table is an attached table from a non-ODBC database, such as a Paradox
database.

dbAttachedODBC Indicates the table is an attached table from an ODBC database, such as Microsoft SQL
Server.

m_dateCreated
The date and time the table was created. To directly retrieve the date the table was created, call the
GetDateCreated member function of the CDaoTableDef object associated with the table. See Comments below for
more information. For related information, see the topic "DateCreated, LastUpdated Properties" in DAO Help.

m_dateLastUpdated
The date and time of the most recent change made to the design of the table. To directly retrieve the date the table
was last updated, call the GetDateLastUpdated member function of the CDaoTableDef object associated with the
table. See Comments below for more information. For related information, see the topic "DateCreated,
LastUpdated Properties" in DAO Help.

m_strSrcTableName
Specifies the name of an attached table if any. To directly retrieve the source table name, call the
GetSourceTableName member function of the CDaoTableDef object associated with the table.

m_strConnect
Provides information about the source of an open database. You can check this property by calling the
GetConnect member function of your CDaoTableDef object. For more information about connect strings, see
GetConnect .

m_strValidationRule
A value that validates the data in tabledef fields as they are changed or added to a table. Validation is supported
only for databases that use the Microsoft Jet database engine. To directly retrieve the validation rule, call the
GetValidationRule member function of the CDaoTableDef object associated with the table. For related information,
see the topic "ValidationRule Property" in DAO Help.

m_strValidationText
A value that specifies the text of the message that your application should display if the validation rule specified by
the ValidationRule property is not satisfied. For related information, see the topic "ValidationText Property" in DAO
Help.

m_lRecordCount
The number of records accessed in a tabledef object. This property setting is read-only. To directly retrieve the
record count, call the GetRecordCount member function of the CDaoTableDef object. The documentation for
GetRecordCount describes the record count further. Note that retrieving this count can be a time-consuming

operation if the table contains many records.

The tabledef is an object of class CDaoTableDef. The references to Primary, Secondary, and All above indicate how
the information is returned by the GetTableDefInfo member function in class CDaoDatabase .

Information retrieved by the CDaoDatabase::GetTableDefInfo member function is stored in a CDaoTableDefInfo

structure. Call the GetTableDefInfo member function of the CDaoDatabase object in whose TableDefs collection
the tabledef object is stored. CDaoTableDefInfo also defines a Dump member function in debug builds. You can use
Dump to dump the contents of a CDaoTableDefInfo object.

The date and time settings are derived from the computer on which the base table was created or last updated. In
a multiuser environment, users should get these settings directly from the file server to avoid discrepancies in the
DateCreated and LastUpdated property settings.

Requirements

See also

Header: afxdao.h

Structures, Styles, Callbacks, and Message Maps
CDaoTableDef Class
CDaoDatabase Class

CDaoWorkspaceInfo Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct CDaoWorkspaceInfo
{
 CString m_strName; // Primary
 CString m_strUserName; // Secondary
 BOOL m_bIsolateODBCTrans; // All
};

ParametersParameters

Remarks

Requirements

See also

The CDaoWorkspaceInfo structure contains information about a workspace defined for data access objects (DAO)
database access.

m_strName
Uniquely names the workspace object. To retrieve the value of this property directly, call the querydef object's
GetName member function. For more information, see the topic "Name Property" in DAO Help.

m_strUserName
A value that represents the owner of a workspace object. For related information, see the topic "UserName
Property" in DAO Help.

m_bIsolateODBCTrans
A value that indicates whether multiple transactions that involve the same ODBC database are isolated. For more
information, see CDaoWorkspace::SetIsolateODBCTrans. For related information, see the topic
"IsolateODBCTrans Property" in DAO Help.

The workspace is an object of class CDaoWorkspace. The references to Primary, Secondary, and All above indicate
how the information is returned by the GetWorkspaceInfo member function in class CDaoWorkspace .

Information retrieved by the CDaoWorkspace::GetWorkspaceInfo member function is stored in a
CDaoWorkspaceInfo structure. CDaoWorkspaceInfo also defines a Dump member function in debug builds. You can

use Dump to dump the contents of a CDaoWorkspaceInfo object.

Header: afxdao.h

Structures, Styles, Callbacks, and Message Maps
CDaoWorkspace Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/cdaoworkspaceinfo-structure.md

CODBCFieldInfo Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct CODBCFieldInfo
{
 CString m_strName;
 SWORD m_nSQLType;
 UDWORD m_nPrecision;
 SWORD m_nScale;
 SWORD m_nNullability;
};

ParametersParameters

Remarks

Requirements

See also

The CODBCFieldInfo structure contains information about the fields in an ODBC data source.

m_strName
The name of the field.

m_nSQLType
The SQL data type of the field. This can be an ODBC SQL data type or a driver-specific SQL data type. For a list of
valid ODBC SQL data types, see "SQL Data Types" in the Windows SDK. For information about driver-specific
SQL data types, see the driver's documentation.

m_nPrecision
The maximum precision of the field. For details, see "Precision, Scale, Length, and Display Size" in the Windows
SDK.

m_nScale
The scale of the field. For details, see "Precision, Scale, Length, and Display Size" in the Windows SDK.

m_nNullability
Whether the field accepts a Null value. This can be one of two values: SQL_NULLABLE if the field accepts Null
values, or SQL_NO_NULLS if the field does not accept Null values.

To retrieve this information, call CRecordset::GetODBCFieldInfo.

Header: afxdb.h

Structures, Styles, Callbacks, and Message Maps
CRecordset::GetODBCFieldInfo
CRecordset::GetFieldValue

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/codbcfieldinfo-structure.md

DHtmlUrlEventMapEntry Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
struct DHtmlUrlEventMapEntry
{
LPCTSTR szUrl;
const DHtmlEventMapEntry *pEventMap;
};

ParametersParameters

Requirements

See also

The DHtmlUrlEventMapEntry structure provides multi-URL event map support.

szUrl
The URL.

pEventMap
The event map associated with the URL.

Header: afxdhtml.h

Structures, Styles, Callbacks, and Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/dhtmlurleventmapentry-structure.md

HSE_VERSION_INFO Structure
3/4/2019 • 2 minutes to read • Edit Online

Syntax
typedef struct _HSE_VERSION_INFO {
 DWORD dwExtensionVersion;
 CHAR lpszExtensionDesc[HSE_MAX_EXT_DLL_NAME_LEN];
} HSE_VERSION_INFO, *LPHSE_VERSION_INFO;

ParametersParameters

Requirements

See also

This structure is pointed to by the pVer parameter in the CHttpServer::GetExtensionVersion member function. It
provides the ISA version number and a text description of the ISA.

dwExtensionVersion
The version number of the ISA.

lpszExtensionDesc
The text description of the ISA. The default implementation provides placeholder text; override
CHttpServer::GetExtensionVersion to provide your own description.

Header: httpext.h

Structures, Styles, Callbacks, and Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/hse-version-info-structure.md

Styles Used by MFC
3/4/2019 • 28 minutes to read • Edit Online

Button styles

Button typesButton types

TYPE DESCRIPTION

BS_3STATE Creates a check box button with three states: BST_CHECKED,
BST_INDETERMINATE, and BST_UNCHECKED. Clicking on the
button sends a BN_CLICKED notification to the owner window
but does not change the state of the button. By default,
associated text is displayed to the right of the check box. To
display text to the left of the check box, use the BS_LEFTTEXT
or BS_RIGHTBUTTON style.

BS_AUTO3STATE Creates a check box button with three states: BST_CHECKED,
BST_INDETERMINATE, and BST_UNCHECKED. Clicking on the
button sends a BN_CLICKED notification to the owner window
and changes the state of the button. The button states cycle
in the order of BST_CHECKED, BST_INDETERMINATE, and
BST_UNCHECKED. By default, associated text is displayed to
the right of the check box. To display text to the left of the
check box, use the BS_LEFTTEXT or BS_RIGHTBUTTON style.

BS_AUTOCHECKBOX Creates a check box button with two states: BST_CHECKED
and BST_UNCHECKED. Clicking on the button sends a
BN_CLICKED notification to the owner window and changes
the state of the button. By default, associated text is displayed
to the right of the check box. To display text to the left of the
check box, use the BS_LEFTTEXT or BS_RIGHTBUTTON style.

BS_AUTORADIOBUTTON Creates a radio button with two states: BST_CHECKED and
BST_UNCHECKED. Radio buttons are usually used in groups,
with each group having a maximum of one checked option at
a time. Clicking on the button sends a BN_CLICKED
notification to the owner window, sets the state of the clicked
radio button to BST_CHECKED, and sets the states of all other
radio buttons in the button group to BST_UNCHECKED. By
default, associated text is displayed to the right of the radio
button. To display text to the left of the radio button, use the
BS_LEFTTEXT or BS_RIGHTBUTTON style.

Use the following style flags to specify window or control appearance and behavior when you create the
corresponding MFC object. In most cases, these styles are set in the dwStyle parameter of the class Create

function.

Button styles apply to CButton Class objects, such as radio buttons, check boxes and pushbuttons. Specify a
combination of styles in the dwStyle parameter of CButton::Create. For more information on button styles in
Windows, see Button Styles (Windows).

The following table lists button types. You can optionally choose one of the following. If you do not specify a button
type, the default is BS_PUSHBUTTON.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/styles-used-by-mfc.md
https://docs.microsoft.com/windows/desktop/Controls/button-styles

BS_CHECKBOX Creates a check box button with two states: BST_CHECKED
and BST_UNCHECKED. Clicking on the button sends a
BN_CLICKED notification to the owner window but does not
change the state of the button. By default, associated text is
displayed to the right of the check box. To display text to the
left of the check box, use the BS_LEFTTEXT or
BS_RIGHTBUTTON style.

BS_COMMANDLINK Creates a command link button. A command link button is a
command button specific to Windows Vista that displays a
green arrow to the left of the main text and a note below the
main text. You can set the note text using CButton::SetNote.

BS_DEFCOMMANDLINK Creates a command link button. A command link button is a
command button specific to Windows Vista that displays a
green arrow to the left of the main text and a note below the
main text. You can set the note text using CButton::SetNote. If
the button is in a dialog box, pressing the ENTER key sends a
BN_CLICKED notification to the dialog box even when the
button does not have the input focus.

BS_DEFPUSHBUTTON Creates a command button that has a heavy black border. If
the button is in a dialog box, pressing the ENTER key sends a
BN_CLICKED notification to the dialog box even when the
button does not have the input focus.

BS_DEFSPLITBUTTON Creates a split button. A split button is a command button
specific to Windows Vista that contains a button adjacent to a
drop-down arrow. When you click the button, the default
command is executed. When you click the drop-down arrow, a
menu of additional commands appears. If the split button is in
a dialog box, pressing the ENTER key sends a BN_CLICKED
notification to the dialog box even when the button does not
have the input focus

BS_GROUPBOX Creates a rectangle in which other buttons can be grouped.
Text associated with this style is displayed in the rectangle's
upper-left corner.

BS_OWNERDRAW Creates an owner-drawn button. The framework calls the
DrawItem method when a visual aspect of the button has

changed. This style must be set when you use the
CBitmapButton class.

BS_PUSHBUTTON Creates a command button that sends a BN_CLICKED
notification to the owner window when the user clicks the
button.

BS_RADIOBUTTON Creates a radio button with two states: BST_CHECKED and
BST_UNCHECKED. Radio buttons are usually used in groups,
with each group having a maximum of one checked option at
a time. Clicking on the button sends a BN_CLICKED
notification to the owner window but does not automatically
change the state of any button in the group. By default,
associated text is displayed to the right of the radio button. To
display text to the left of the radio button, use the
BS_LEFTTEXT or BS_RIGHTBUTTON style.

TYPE DESCRIPTION

BS_SPLITBUTTON Creates a split button. A split button is a command button
specific to Windows Vista that contains a button adjacent to a
drop-down arrow. When you click the button, the default
command is executed. When you click the drop-down arrow, a
menu of additional commands appears.

BS_USERBUTTON Obsolete, but provided for compatibility with 16-bit versions
of Windows. Win32-based applications should use
BS_OWNERDRAW instead.

TYPE DESCRIPTION

Radio button and check box stylesRadio button and check box styles

STYLE DESCRIPTION

BS_LEFTTEXT When combined with a radio button or check-box style, the
text appears on the left side of the radio button or check box.

BS_RIGHTBUTTON When combined with a radio button or check-box style, the
text appears on the left side of the radio button or check box.
This style is identical to the BS_LEFTTEXT style.

BS_PUSHLIKE Makes a check box or radio button look and behave like a
command button. The button appears pressed when its state
is BST_CHECKED, pressed and dimmed when its state is
BST_INDETERMINATE, and released when its state is
BST_UNCHECKED.

Button text alignment stylesButton text alignment styles

STYLE DESCRIPTION

BS_LEFT Left aligns the text in the button rectangle. However, if the
button is a check box or radio button that does not have the
BS_RIGHTBUTTON style, the text is left aligned on the right
side of the check box or radio button.

BS_RIGHT Right aligns the text in the button rectangle. However, if the
button is a check box or radio button that does not have the
BS_RIGHTBUTTON style, the text is right aligned on the right
side of the check box or radio button.

BS_CENTER Centers text horizontally in the button rectangle.

BS_TOP Places text at the top of the button rectangle.

BS_BOTTOM Places text at the bottom of the button rectangle.

BS_VCENTER Centers text vertically in the button rectangle.

Button content optionsButton content options

The following table lists styles that are specific to radio buttons and check boxes. These styles are ignored in all
other button types. You can optionally choose one or more of the following.

The following table lists horizontal and vertical text alignment options. You can optionally choose one of the
following.

STYLE DESCRIPTION

BS_BITMAP Specifies that the button displays a bitmap.

BS_ICON Specifies that the button displays an icon.

BS_TEXT Specifies that the button displays text.

Other button optionsOther button options

STYLE DESCRIPTION

BS_FLAT Specifies that the button is two-dimensional and is not drawn
with default shading to create a three-dimensional image.

BS_MULTILINE Wraps the button text to multiple lines if the text string is too
long to fit on a single line in the button rectangle.

BS_NOTIFY Enables a button to send BN_DBLCLK, BN_KILLFOCUS, and
BN_SETFOCUS notification messages to its parent window.
Note that buttons send the BN_CLICKED notification
regardless of whether this style is specified.

Combo-box styles

STYLE DESCRIPTION

CBS_AUTOHSCROLL Automatically scrolls the text in the edit control to the right
when the user types a character at the end of the line. If this
style is not set, only text that fits within the rectangular
boundary is allowed.

CBS_DISABLENOSCROLL The list box shows a disabled vertical scroll bar when the list
box does not contain enough items to scroll. Without this
style, the scroll bar is hidden when the list box does not
contain enough items.

CBS_DROPDOWN Similar to CBS_SIMPLE, except that the list box is not displayed
unless the user selects an icon next to the edit control.

CBS_DROPDOWNLIST Similar to CBS_DROPDOWN, except that the edit control is
replaced by a static-text item that displays the current
selection in the list box.

The following table lists options that indicate what is displayed in the button. Button types that only display text
ignore these styles. You can optionally choose one of the following.

The following table lists additional options that you can use with any button type. You can optionally choose one or
more of the following.

The following combo-box styles are available in MFC. For more information about combo-box styles in Windows,
see Combo Box Styles (Windows).

https://docs.microsoft.com/windows/desktop/Controls/combo-box-styles

CBS_HASSTRINGS An owner-draw combo box contains items consisting of
strings. The combo box maintains the memory and pointers
for the strings so the application can use the GetText

member function to retrieve the text for a particular item.

CBS_LOWERCASE Converts to lowercase all text in both the selection field and
the list.

CBS_NOINTEGRALHEIGHT Specifies that the size of the combo box is exactly the size
specified by the application when it created the combo box.
Normally, Windows sizes a combo box so that the combo box
does not display partial items.

CBS_OEMCONVERT Text entered in the combo-box edit control is converted from
the ANSI character set to the OEM character set and then
back to ANSI. This ensures proper character conversion when
the application calls the AnsiToOem Windows function to
convert an ANSI string in the combo box to OEM characters.
This style is most useful for combo boxes that contain
filenames and applies only to combo boxes created with the
CBS_SIMPLE or CBS_DROPDOWN styles.

CBS_OWNERDRAWFIXED The owner of the list box is responsible for drawing its
contents; the items in the list box are all the same height.

CBS_OWNERDRAWVARIABLE The owner of the list box is responsible for drawing its
contents; the items in the list box are variable in height.

CBS_SIMPLE The list box is displayed at all times. The current selection in
the list box is displayed in the edit control.

CBS_SORT Automatically sorts strings entered into the list box.

CBS_UPPERCASE Converts to uppercase all text in both the selection field and
the list.

STYLE DESCRIPTION

Edit styles

STYLE DESCRIPTION

ES_AUTOHSCROLL Automatically scrolls text to the right by 10 characters when
the user types a character at the end of the line. When the
user presses the ENTER key, the control scrolls all text back to
position 0.

ES_AUTOVSCROLL Automatically scrolls text up one page when the user presses
ENTER on the last line.

ES_CENTER Centers text in a single-line or multiline edit control.

ES_LEFT Left-aligns text in a single-line or multiline edit control.

Edit styles apply to CEdit Class objects. Specify a combination of styles in the dwStyle parameter of CEdit::Create.
For more information about edit control styles in Windows, see Edit Control Styles (Windows).

https://docs.microsoft.com/windows/desktop/Controls/edit-control-styles

ES_LOWERCASE Converts all characters to lowercase as they are typed into the
edit control.

ES_MULTILINE Designates a multiple-line edit control. (The default is single
line.) If the ES_AUTOVSCROLL style is specified, the edit
control shows as many lines as possible and scrolls vertically
when the user presses the ENTER key. If ES_AUTOVSCROLL is
not given, the edit control shows as many lines as possible
and beeps if ENTER is pressed when no more lines can be
displayed. If the ES_AUTOHSCROLL style is specified, the
multiple-line edit control automatically scrolls horizontally
when the caret goes past the right edge of the control. To
start a new line, the user must press ENTER. If
ES_AUTOHSCROLL is not given, the control automatically
wraps words to the beginning of the next line when necessary;
a new line is also started if ENTER is pressed. The position of
the wordwrap is determined by the window size. If the window
size changes, the wordwrap position changes and the text is
redisplayed. Multiple-line edit controls can have scroll bars. An
edit control with scroll bars processes its own scroll-bar
messages. Edit controls without scroll bars scroll as described
above and process any scroll messages sent by the parent
window.

ES_NOHIDESEL Normally, an edit control hides the selection when the control
loses the input focus and inverts the selection when the
control receives the input focus. Specifying ES_NOHIDESEL
deletes this default action.

ES_NUMBER Allows only digits to be entered into the edit control.

ES_OEMCONVERT Text entered in the edit control is converted from the ANSI
character set to the OEM character set and then back to ANSI.
This ensures proper character conversion when the application
calls the AnsiToOem Windows function to convert an ANSI
string in the edit control to OEM characters. This style is most
useful for edit controls that contain filenames.

ES_PASSWORD Displays all characters as an asterisk (*) as they are typed into
the edit control. An application can use the
SetPasswordChar member function to change the character

that is displayed.

ES_READONLY Prevents the user from entering or editing text in the edit
control.

ES_RIGHT Right-aligns text in a single-line or multiline edit control.

ES_UPPERCASE Converts all characters to uppercase as they are typed into
the edit control.

ES_WANTRETURN Specifies that a carriage return be inserted when the user
presses the ENTER key while entering text into a multiple-line
edit control in a dialog box. Without this style, pressing the
ENTER key has the same effect as pressing the dialog boxs
default pushbutton. This style has no effect on a single-line
edit control.

STYLE DESCRIPTION

Frame-window styles

STYLE DESCRIPTION

FWS_ADDTOTITLE Specifies information to append to the end of a frame window
title. For example, "Microsoft Draw - Drawing in Document1".
You can specify the strings displayed in the Document
Template Strings tab in the Application Wizard. If you need to
turn this option off, override the CWnd::PreCreateWindow

member function.

FWS_PREFIXTITLE Shows the document name before the application name in a
frame window title. For example, "Document - WordPad". You
can specify the strings displayed in the Document Template
Strings tab in the Application Wizard. If you need to turn this
option off, override the CWnd::PreCreateWindow member
function.

FWS_SNAPTOBARS Controls sizing of the frame window that encloses a control
bar when it is in a floating window rather than docked to a
frame window. This style sizes the window to fit the control
bar.

List-box styles

STYLE DESCRIPTION

LBS_DISABLENOSCROLL The list box shows a disabled vertical scroll bar when the list
box does not contain enough items to scroll. Without this
style, the scroll bar is hidden when the list box does not
contain enough items.

LBS_EXTENDEDSEL The user can select multiple items using the SHIFT key and the
mouse or special key combinations.

LBS_HASSTRINGS Specifies an owner-draw list box that contains items consisting
of strings. The list box maintains the memory and pointers for
the strings so the application can use the GetText member
function to retrieve the text for a particular item.

LBS_MULTICOLUMN Specifies a multicolumn list box that is scrolled horizontally.
The SetColumnWidth member function sets the width of the
columns.

LBS_MULTIPLESEL String selection is toggled each time the user clicks or double-
clicks the string. Any number of strings can be selected.

Frame-window styles apply to CFrameWnd Class objects. Specify a combination of styles in the dwStyle
parameter of CFrameWnd::Create.

List-box styles apply to CListBox Class objects. Specify a combination of styles in the dwStyle parameter of
CListBox::Create. For more information about list box styles in Windows, see List Box Styles (Windows).

https://docs.microsoft.com/windows/desktop/Controls/list-box-styles

LBS_NODATA Specifies a no-data list box. Specify this style when the count
of items in the list box will exceed one thousand. A no-data list
box must also have the LBS_OWNERDRAWFIXED style, but
must not have the LBS_SORT or LBS_HASSTRINGS style.

A no-data list box resembles an owner-drawn list box except
that it contains no string or bitmap data for an item.
Commands to add, insert, or delete an item always ignore any
given item data; requests to find a string within the list box
always fail. The system sends the WM_DRAWITEM message to
the owner window when an item must be drawn. The itemID
member of the DRAWITEMSTRUCT structure passed with the
WM_DRAWITEM message specifies the line number of the
item to be drawn. A no-data list box does not send a
WM_DELETEITEM message.

LBS_NOINTEGRALHEIGHT The size of the list box is exactly the size specified by the
application when it created the list box. Usually, Windows sizes
a list box so that the list box does not display partial items.

LBS_NOREDRAW List-box display is not updated when changes are made. This
style can be changed at any time by sending a
WM_SETREDRAW message.

LBS_NOSEL Specifies that the list box contains items that can be viewed
but not selected.

LBS_NOTIFY Parent window receives an input message whenever the user
clicks or double-clicks a string.

LBS_OWNERDRAWFIXED The owner of the list box is responsible for drawing its
contents; the items in the list box are the same height.

LBS_OWNERDRAWVARIABLE The owner of the list box is responsible for drawing its
contents; the items in the list box are variable in height.

LBS_SORT Strings in the list box are sorted alphabetically.

LBS_STANDARD Strings in the list box are sorted alphabetically, and the parent
window receives an input message whenever the user clicks or
double-clicks a string. The list box contains borders on all
sides.

LBS_USETABSTOPS Allows a list box to recognize and expand tab characters when
drawing its strings. The default tab positions are 32 dialog
units. (A dialog unit is a horizontal or vertical distance. One
horizontal dialog unit is equal to one-fourth of the current
dialog base width unit. The dialog base units are computed
based on the height and width of the current system font. The
GetDialogBaseUnits Windows function returns the current

dialog base units in pixels.) This style should not be used with
LBS_OWNERDRAWFIXED.

LBS_WANTKEYBOARDINPUT The owner of the list box receives WM_VKEYTOITEM or
WM_CHARTOITEM messages whenever the user presses a key
while the list box has input focus. This allows an application to
perform special processing on the keyboard input.

STYLE DESCRIPTION

 Message-box styles

Message-box typesMessage-box types

STYLE DESCRIPTION

MB_ABORTRETRYIGNORE The message box contains three pushbuttons: Abort, Retry,
and Ignore.

MB_OK The message box contains one pushbutton: OK.

MB_OKCANCEL The message box contains two pushbuttons: OK and Cancel.

MB_RETRYCANCEL The message box contains two pushbuttons: Retry and Cancel.

MB_YESNO The message box contains two pushbuttons: Yes and No.

MB_YESNOCANCEL The message box contains three pushbuttons: Yes, No, and
Cancel.

Message-box modalityMessage-box modality

STYLE DESCRIPTION

MB_APPLMODAL The user must respond to the message box before continuing
work in the current window. However, the user can move to
the windows of other applications and work in those windows.
The default is MB_APPLMODAL if neither MB_SYSTEMMODAL
nor MB_TASKMODAL is specified.

MB_SYSTEMMODAL All applications are suspended until the user responds to the
message box. System-modal message boxes are used to notify
the user of serious, potentially damaging errors that require
immediate attention and should be used sparingly.

MB_TASKMODAL Similar to MB_APPLMODAL, but not useful within a Microsoft
Foundation class application. This flag is reserved for a calling
application or library that does not have a window handle
available.

Message-box iconsMessage-box icons

STYLE DESCRIPTION

MB_ICONEXCLAMATION An exclamation-point icon appears in the message box.

MB_ICONINFORMATION An icon consisting of an "I" in a circle appears in the message
box.

MB_ICONQUESTION A question-mark icon appears in the message box.

Message-box styles apply to AfxMessageBox items. Specify a combination of styles in the nType parameter of
AfxMessageBox . For more information about message box styles in Windows, see MessageBox Function

(Windows).

The following message-box styles are available.

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-messagebox

MB_ICONSTOP A stop-sign icon appears in the message box.

STYLE DESCRIPTION

Message-box default buttonsMessage-box default buttons

STYLE DESCRIPTION

MB_DEFBUTTON1 The first button is the default. Note that the first button is
always the default unless MB_DEFBUTTON2 or
MB_DEFBUTTON3 is specified.

MB_DEFBUTTON2 The second button is the default.

MB_DEFBUTTON3 The third button is the default.

Scroll-bar styles

STYLE DESCRIPTION

SBS_BOTTOMALIGN Used with the SBS_HORZ style. The bottom edge of the scroll
bar is aligned with the bottom edge of the rectangle specified
in the Create member function. The scroll bar has the
default height for system scroll bars.

SBS_HORZ Designates a horizontal scroll bar. If neither the
SBS_BOTTOMALIGN nor SBS_TOPALIGN style is specified, the
scroll bar has the height, width, and position given in the
Create member function.

SBS_LEFTALIGN Used with the SBS_VERT style. The left edge of the scroll bar is
aligned with the left edge of the rectangle specified in the
Create member function. The scroll bar has the default

width for system scroll bars.

SBS_RIGHTALIGN Used with the SBS_VERT style. The right edge of the scroll bar
is aligned with the right edge of the rectangle specified in the
Create member function. The scroll bar has the default

width for system scroll bars.

SBS_SIZEBOX Designates a size box. If neither the
SBS_SIZEBOXBOTTOMRIGHTALIGN nor
SBS_SIZEBOXTOPLEFTALIGN style is specified, the size box has
the height, width, and position given in the Create member
function.

SBS_SIZEBOXBOTTOMRIGHTALIGN Used with the SBS_SIZEBOX style. The lower-right corner of
the size box is aligned with the lower-right corner of the
rectangle specified in the Create member function. The size
box has the default size for system size boxes.

Scroll-bar styles apply to CScrollBar Class objects. Specify a combination of styles in the dwStyle parameter of
CScrollBar::Create. For more information about scroll bar control styles in Windows, see Scroll Bar Control Styles
(Windows).

https://docs.microsoft.com/windows/desktop/Controls/scroll-bar-control-styles

SBS_SIZEBOXTOPLEFTALIGN Used with the SBS_SIZEBOX style. The upper-left corner of the
size box is aligned with the upper-left corner of the rectangle
specified in the Create member function. The size box has
the default size for system size boxes.

SBS_SIZEGRIP Same as SBS_SIZEBOX, but with a raised edge.

SBS_TOPALIGN Used with the SBS_HORZ style. The top edge of the scroll bar
is aligned with the top edge of the rectangle specified in the
Create member function. The scroll bar has the default

height for system scroll bars.

SBS_VERT Designates a vertical scroll bar. If neither the SBS_RIGHTALIGN
nor SBS_LEFTALIGN style is specified, the scroll bar has the
height, width, and position given in the Create member
function.

STYLE DESCRIPTION

Static styles

STYLE DESCRIPTION

SS_BITMAP Specifies a bitmap is to be displayed in the static control. The
given text is the name of a bitmap (not a filename) defined
elsewhere in the resource file. The style ignores the nWidth
and nHeight parameters; the control automatically sizes itself
to accommodate the bitmap.

SS_BLACKFRAME Specifies a box with a frame drawn with the same color as
window frames. The default is black.

SS_BLACKRECT Specifies a rectangle filled with the color used to draw window
frames. The default is black.

SS_CENTER Designates a simple rectangle and displays the given text
centered in the rectangle. The text is formatted before it is
displayed. Words that would extend past the end of a line are
automatically wrapped to the beginning of the next centered
line.

SS_CENTERIMAGE Specifies that, if the bitmap or icon is smaller than the client
area of the static control, the rest of the client area is filled
with the color of the pixel in the top left corner of the bitmap
or icon. If the static control contains a single line of text, the
text is centered vertically in the client area of the control.

Static styles apply to CStatic Class objects. Specify a combination of styles in the dwStyle parameter of
CStatic::Create. For more information about static control styles in Windows, see Static Control Styles (Windows).

https://docs.microsoft.com/windows/desktop/Controls/static-control-styles

SS_ENDELLIPSIS or SS_PATHELLIPSIS Replaces part of the given string with
ellipses, if necessary, so that the result fits in the specified
rectangle.

You can specify SS_END_ELLIPSIS to replace characters at the
end of the string, or SS_PATHELLIPSIS to replace characters in
the middle of the string. If the string contains backslash (\)
characters, SS_PATHELLIPSIS preserves as much of the text
after the last backslash as possible.

SS_ENHMETAFILE Specifies an enhanced metafile is to be displayed in the static
control. The given text is the name of a metafile. An enhanced
metafile static control has a fixed size; the metafile is scaled to
fit the static control's client area.

SS_ETCHEDFRAME Draws the frame of the static control using the EDGE_ETCHED
edge style.

SS_ETCHEDHORZ Draws the top and bottom edges of the static control using
the EDGE_ETCHED edge style.

SS_ETCHEDVERT Draws the left and right edges of the static control using the
EDGE_ETCHED edge style.

SS_GRAYFRAME Specifies a box with a frame drawn with the same color as the
screen background (desktop). The default is gray.

SS_GRAYRECT Specifies a rectangle filled with the color used to fill the screen
background. The default is gray.

SS_ICON Designates an icon displayed in the dialog box. The given text
is the name of an icon (not a filename) defined elsewhere in
the resource file. The nWidth and nHeight parameters are
ignored; the icon automatically sizes itself.

SS_LEFT Designates a simple rectangle and displays the given text
flush-left in the rectangle. The text is formatted before it is
displayed. Words that would extend past the end of a line are
automatically wrapped to the beginning of the next flush-left
line.

SS_LEFTNOWORDWRAP Designates a simple rectangle and displays the given text
flush-left in the rectangle. Tabs are expanded, but words are
not wrapped. Text that extends past the end of a line is
clipped.

SS_NOPREFIX Unless this style is specified, Windows will interpret any
ampersand (&) characters in the control's text to be
accelerator prefix characters. In this case, the ampersand is
removed and the next character in the string is underlined. If a
static control is to contain text where this feature is not
wanted, SS_NOPREFIX may be added. This static-control style
may be included with any of the defined static controls. You
can combine SS_NOPREFIX with other styles by using the
bitwise OR operator. This is most often used when filenames
or other strings that may contain an ampersand need to be
displayed in a static control in a dialog box.

STYLE DESCRIPTION

SS_NOTIFY Sends the parent window STN_CLICKED, STN_DBLCLK,
STN_DISABLE, and STN_ENABLE notification messages when
the user clicks or double-clicks the control.

SS_OWNERDRAW Specifies that the owner of the static control is responsible for
drawing the control. The owner window receives a
WM_DRAWITEM message whenever the control needs to be
drawn.

SS_REALSIZEIMAGE Prevents a static icon or bitmap control (that is, static controls
that have the SS_ICON or SS_BITMAP style) from being
resized as it is loaded or drawn. If the icon or bitmap is larger
than the destination area, the image is clipped.

SS_RIGHT Designates a simple rectangle and displays the given text
flush-right in the rectangle. The text is formatted before it is
displayed. Words that would extend past the end of a line are
automatically wrapped to the beginning of the next flush-right
line.

SS_RIGHTJUST Specifies that the lower right corner of a static control with the
SS_BITMAP or SS_ICON style is to remain fixed when the
control is resized. Only the top and left sides are adjusted to
accommodate a new bitmap or icon.

SS_SIMPLE Designates a simple rectangle and displays a single line of text
flush-left in the rectangle. The line of text cannot be shortened
or altered in any way. (The control's parent window or dialog
box must not process the WM_CTLCOLOR message.)

SS_SUNKEN Draws a half-sunken border around a static control.

SS_USERITEM Specifies a user-defined item.

SS_WHITEFRAME Specifies a box with a frame drawn with the same color as the
window background. The default is white.

SS_WHITERECT Specifies a rectangle filled with the color used to fill the
window background. The default is white.

SS_WORDELLIPSIS Truncates text that does not fit and adds ellipses.

STYLE DESCRIPTION

Window styles

STYLE DESCRIPTION

WS_BORDER Creates a window that has a border.

WS_CAPTION Creates a window that has a title bar (implies the WS_BORDER
style). Cannot be used with the WS_DLGFRAME style.

Window styles apply to CWnd Class objects. Specify a combination of styles in the dwStyle parameter of
CWnd::Create or CWnd::CreateEx. For more information about window styles in Windows, see Window Styles
(Windows).

https://docs.microsoft.com/windows/desktop/winmsg/window-styles

WS_CHILD Creates a child window. Cannot be used with the WS_POPUP
style.

WS_CHILDWINDOW Same as the WS_CHILD style.

WS_CLIPCHILDREN Excludes the area occupied by child windows when you draw
within the parent window. Used when you create the parent
window.

WS_CLIPSIBLINGS Clips child windows relative to each other; that is, when a
particular child window receives a paint message, the
WS_CLIPSIBLINGS style clips all other overlapped child
windows out of the region of the child window to be updated.
(If WS_CLIPSIBLINGS is not given and child windows overlap,
when you draw within the client area of a child window, it is
possible to draw within the client area of a neighboring child
window.) For use with the WS_CHILD style only.

WS_DISABLED Creates a window that is initially disabled.

WS_DLGFRAME Creates a window with a double border but no title.

WS_GROUP Specifies the first control of a group of controls in which the
user can move from one control to the next with the arrow
keys. All controls defined with the WS_GROUP style FALSE
after the first control belong to the same group. The next
control with the WS_GROUP style starts the next group (that
is, one group ends where the next begins).

WS_HSCROLL Creates a window that has a horizontal scroll bar.

WS_ICONIC Creates a window that is initially minimized. Same as the
WS_MINIMIZE style.

WS_MAXIMIZE Creates a window of maximum size.

WS_MAXIMIZEBOX Creates a window that has a Maximize button.

WS_MINIMIZE Creates a window that is initially minimized. For use with the
WS_OVERLAPPED style only.

WS_MINIMIZEBOX Creates a window that has a Minimize button.

WS_OVERLAPPED Creates an overlapped window. An overlapped window usually
has a caption and a border.

WS_OVERLAPPEDWINDOW Creates an overlapped window with the WS_OVERLAPPED,
WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles.

WS_POPUP Creates a pop-up window. Cannot be used with the
WS_CHILD style.

STYLE DESCRIPTION

WS_POPUPWINDOW Creates a pop-up window with the WS_BORDER, WS_POPUP,
and WS_SYSMENU styles. The WS_CAPTION style must be
combined with the WS_POPUPWINDOW style to make the
Control menu visible.

WS_SIZEBOX Creates a window that has a sizing border. Same as the
WS_THICKFRAME style.

WS_SYSMENU Creates a window that has a Control-menu box in its title bar.
Used only for windows with title bars.

WS_TABSTOP Specifies one of any number of controls through which the
user can move by using the TAB key. The TAB key moves the
user to the next control specified by the WS_TABSTOP style.

WS_THICKFRAME Creates a window with a thick frame that can be used to size
the window.

WS_TILED Creates an overlapped window. An overlapped window has a
title bar and a border. Same as the WS_OVERLAPPED style.

WS_TILEDWINDOW Creates an overlapped window with the WS_OVERLAPPED,
WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX, and WS_MAXIMIZEBOX styles. Same as
the WS_OVERLAPPEDWINDOW style.

WS_VISIBLE Creates a window that is initially visible.

WS_VSCROLL Creates a window that has a vertical scroll bar.

STYLE DESCRIPTION

Extended window styles

STYLE DESCRIPTION

WS_EX_ACCEPTFILES Specifies that a window created with this style accepts drag-
and-drop files.

WS_EX_APPWINDOW Forces a top-level window onto the taskbar when the window
is visible.

WS_EX_CLIENTEDGE Specifies that a window has a 3D look — that is, a border with
a sunken edge.

WS_EX_CONTEXTHELP Includes a question mark in the title bar of the window. When
the user clicks the question mark, the cursor changes to a
question mark with a pointer. If the user then clicks a child
window, the child receives a WM_HELP message.

Extended window styles apply to CWnd Class objects. Specify a combination of styles in the dwExStyle parameter
of CWnd::CreateEx. For more information about extended window styles in Windows, see Extended Window Styles
(Windows).

https://docs.microsoft.com/windows/desktop/winmsg/extended-window-styles

WS_EX_CONTROLPARENT Allows the user to navigate among the child windows of the
window by using the TAB key.

WS_EX_DLGMODALFRAME Designates a window with a double border that may
(optionally) be created with a title bar when you specify the
WS_CAPTION style flag in the dwStyle parameter.

WS_EX_LAYERED The window is a layered window. This style cannot be used if
the window has a class style of either CS_OWNDC or
CS_CLASSDC. However, Microsoft Windows 8 does support
the WS_EX_LAYERED style for child windows, where previous
Windows versions support it only for top-level windows.

WS_EX_LEFT Gives window generic left-aligned properties. This is the
default.

WS_EX_LEFTSCROLLBAR Places a vertical scroll bar to the left of the client area.

WS_EX_LTRREADING Displays the window text using left-to-right reading order
properties. This is the default.

WS_EX_MDICHILD Creates an MDI child window.

WS_EX_NOPARENTNOTIFY Specifies that a child window created with this style will not
send the WM_PARENTNOTIFY message to its parent window
when the child window is created or destroyed.

WS_EX_OVERLAPPEDWINDOW Combines the WS_EX_CLIENTEDGE and
WS_EX_WINDOWEDGE styles

WS_EX_PALETTEWINDOW Combines the WS_EX_WINDOWEDGE and WS_EX_TOPMOST
styles.

WS_EX_RIGHT Gives a window generic right-aligned properties. This depends
on the window class.

WS_EX_RIGHTSCROLLBAR Places a vertical scroll bar (if present) to the right of the client
area. This is the default.

WS_EX_RTLREADING Displays the window text using right-to-left reading order
properties.

WS_EX_STATICEDGE Creates a window with a three-dimensional border style
intended to be used for items that do not accept user input.

WS_EX_TOOLWINDOW Creates a tool window, which is a window intended to be used
as a floating toolbar. A tool window has a title bar that is
shorter than a normal title bar, and the window title is drawn
using a smaller font. A tool window does not appear in the
task bar or in the window that appears when the user presses
ALT+TAB.

STYLE DESCRIPTION

https://docs.microsoft.com/windows/desktop/winmsg/window-features
https://docs.microsoft.com/windows/desktop/winmsg/about-window-classes

WS_EX_TOPMOST Specifies that a window created with this style should be
placed above all nontopmost windows and stay above them
even when the window is deactivated. An application can use
the SetWindowPos member function to add or remove this
attribute.

WS_EX_TRANSPARENT Specifies that a window created with this style is to be
transparent. That is, any windows that are beneath the
window are not obscured by the window. A window created
with this style receives WM_PAINT messages only after all
sibling windows beneath it have been updated.

WS_EX_WINDOWEDGE Specifies that a window has a border with a raised edge.

STYLE DESCRIPTION

See also
MFC Class Overview
CWnd::Create
CWnd::CreateEx
CEdit::Create
CScrollBar::Create
CStatic::Create
AfxMessageBox
CreateWindow
CreateWindowEx
Button Styles (Windows)
Combo Box Styles (Windows)
Edit Control Styles (Windows)
List Box Styles (Windows)
MessageBox Function (Windows)
Scroll Bar Control Styles (Windows)
Static Control Styles (Windows)
Window Styles (Windows)
Extended Window Styles (Windows)

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowa
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-createwindowexa
https://docs.microsoft.com/windows/desktop/Controls/button-styles
https://docs.microsoft.com/windows/desktop/Controls/combo-box-styles
https://docs.microsoft.com/windows/desktop/Controls/edit-control-styles
https://docs.microsoft.com/windows/desktop/Controls/list-box-styles
https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-messagebox
https://docs.microsoft.com/windows/desktop/Controls/scroll-bar-control-styles
https://docs.microsoft.com/windows/desktop/Controls/static-control-styles
https://docs.microsoft.com/windows/desktop/winmsg/window-styles
https://docs.microsoft.com/windows/desktop/winmsg/extended-window-styles

Callback Functions Used by MFC
3/4/2019 • 2 minutes to read • Edit Online

NAME

Callback Function for CDC::EnumObjects

Callback Function for CDC::GrayString

Callback Function for CDC::SetAbortProc

Requirements

Callback Function for CDC::EnumObjects

SyntaxSyntax

int CALLBACK EXPORT ObjectFunc(
 LPSTR lpszLogObject,
 LPSTR* lpData);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Callback Function for CDC::GrayString

SyntaxSyntax

Three callback functions appear in the Microsoft Foundation Class Library. These callback functions are passed to
CDC::EnumObjects, CDC::GrayString, and CDC::SetAbortProc. Note that all callback functions must trap MFC
exceptions before returning to Windows, since exceptions cannot be thrown across callback boundaries. For more
information about exceptions, see the article Exceptions.

Header: afxwin.h

The ObjectFunc name is a placeholder for the application-supplied function name.

lpszLogObject
Points to a LOGPEN or LOGBRUSH data structure that contains information about the logical attributes of the
object.

lpData
Points to the application-supplied data passed to the EnumObjects function.

The callback function returns an int. The value of this return is user-defined. If the callback function returns 0,
EnumObjects stops enumeration early.

The actual name must be exported.

OutputFunc is a placeholder for the application-supplied callback function name.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/callback-functions-used-by-mfc.md
https://docs.microsoft.com/windows/desktop/api/Wingdi/ns-wingdi-taglogpen
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-taglogbrush

BOOL CALLBACK EXPORT OutputFunc(
 HDC hDC,
 LPARAM lpData,
 int nCount);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Callback Function for CDC::SetAbortProc

SyntaxSyntax

BOOL CALLBACK EXPORT AbortFunc(
 HDC hPr,
 int code);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See also

hDC
Identifies a memory device context with a bitmap of at least the width and height specified by nWidth and
nHeight to GrayString .

lpData
Points to the character string to be drawn.

nCount
Specifies the number of characters to output.

The callback function's return value must be TRUE to indicate success; otherwise it is FALSE.

The callback function (OutputFunc) must draw an image relative to the coordinates (0,0) rather than (x, y).

The name AbortFunc is a placeholder for the application-supplied function name.

hPr
Identifies the device context.

code
Specifies whether an error has occurred. It is 0 if no error has occurred. It is SP_OUTOFDISK if the Print Manager
is currently out of disk space and more disk space will become available if the application waits. If code is
SP_OUTOFDISK, the application does not have to abort the print job. If it does not, it must yield to the Print
Manager by calling the PeekMessage or GetMessage Windows function.

The return value of the abort-handler function is nonzero if the print job is to continue, and 0 if it is canceled.

The actual name must be exported as described in the Remarks section of CDC::SetAbortProc.

Structures, Styles, Callbacks, and Message Maps
CDC::EnumObjects
CDC::SetAbortProc
CDC::GrayString

Message Maps (MFC)
3/4/2019 • 2 minutes to read • Edit Online

CATEGORY DESCRIPTION

ON_COMMAND Message Handler Handles WM_COMMAND messages generated by user menu
selections or menu access keys.

Child Window Notification Message Handlers Handle notification messages from child windows.

WM_ Message Handlers Handle WM_ messages, such as WM_PAINT .

User-Defined Message Handlers Handle user-defined messages.

BEGIN_MESSAGE_MAP(CMyDoc, CDocument)
 ON_COMMAND(ID_MYCMD, &CMyDoc::OnMyCommand)
END_MESSAGE_MAP()

Windows Messages

Command Messages

Ranges of Messages

This section of the reference lists all message mapping macros and all CWnd message-map entries along with
the corresponding member function prototypes:

(For an explanation of the terminology and conventions used in this reference, see How to Use the Message
Map Cross-Reference.)

Since Windows is a message-oriented operating system, a large portion of programming for the Windows
environment involves message handling. Each time an event such as a keystroke or mouse click occurs, a
message is sent to the application, which must then handle the event.

The Microsoft Foundation Class Library offers a programming model optimized for message-based
programming. In this model, "message maps" are used to designate which functions will handle various
messages for a particular class. Message maps contain one or more macros that specify which messages will be
handled by which functions. For example, a message map containing an ON_COMMAND macro might look
something like this:

The ON_COMMAND macro is used to handle command messages generated by menus, buttons, and accelerator
keys. Macros are available to map the following:

Control notifications

User-defined messages

Registered user-defined messages

User-interface update messages

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/message-maps-mfc.md

NOTENOTE

See also

Commands

Update handler messages

Control notifications

Although message-map macros are important, you generally won't have to use them directly. This is because
the Properties window automatically creates message-map entries in your source files when you use it to
associate message-handling functions with messages. Any time you want to edit or add a message-map entry,
you can use the Properties window.

The Properties window does not support message-map ranges. You must write these message-map entries yourself.

However, message maps are an important part of the Microsoft Foundation Class Library. You should
understand what they do, and documentation is provided for them.

Structures, Styles, Callbacks, and Message Maps

Message Map Macros (MFC)
2/7/2019 • 12 minutes to read • Edit Online

Message-Map Declaration and Demarcation MacrosMessage-Map Declaration and Demarcation Macros

DECLARE_MESSAGE_MAP Declares that a message map will be used in a class to map
messages to functions (must be used in the class declaration).

BEGIN_MESSAGE_MAP Begins the definition of a message map (must be used in the
class implementation).

BEGIN_TEMPLATE_MESSAGE_MAP Begins the definition of a message map on a class type
containing a single template argument.

END_MESSAGE_MAP Ends the definition of a message map (must be used in the
class implementation).

Message-Mapping MacrosMessage-Mapping Macros

ON_COMMAND Indicates which function will handle a specified command
message.

ON_COMMAND_EX Indicates which function will handle a specified command
message.

ON_CONTROL Indicates which function will handle a specified control-
notification message.

ON_MESSAGE Indicates which function will handle a user-defined message.

ON_OLECMD Indicates which function will handle a menu command from a
DocObject or its container.

ON_REGISTERED_MESSAGE Indicates which function will handle a registered user-defined
message.

ON_REGISTERED_THREAD_MESSAGE Indicates which function will handle a registered user-defined
message when you have a CWinThread class.

ON_THREAD_MESSAGE Indicates which function will handle a user-defined message
when you have a CWinThread class.

ON_UPDATE_COMMAND_UI Indicates which function will handle a specified user-interface
update command message.

Message-Map Range MacrosMessage-Map Range Macros

To support message maps, MFC supplies the following macros:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/message-map-macros-mfc.md

ON_COMMAND_RANGE Indicates which function will handle the range of command
IDs specified in the first two parameters to the macro.

ON_UPDATE_COMMAND_UI_RANGE Indicates which update handler will handle the range of
command IDs specified in the first two pa]rameters to the
macro.

ON_CONTROL_RANGE Indicates which function will handle notifications from the
range of control IDs specified in the second and third
parameters to the macro. The first parameter is a control-
notification message, such as BN_CLICKED.

BEGIN_MESSAGE_MAP

SyntaxSyntax

BEGIN_MESSAGE_MAP(theClass, baseClass)

ParametersParameters

RemarksRemarks

ExampleExample

BEGIN_MESSAGE_MAP(CMainFrame, CMDIFrameWnd)
 ON_WM_CREATE()
END_MESSAGE_MAP()

RequirementsRequirements

BEGIN_TEMPLATE_MESSAGE_MAP

SyntaxSyntax

For more information on message maps, the message-map declaration and demarcation macros, and the
message-mapping macros, see Message Maps and Message Handling and Mapping Topics. For more information
about message-map ranges, see Handlers for Message-Map Ranges.

Begins the definition of your message map.

theClass
Specifies the name of the class whose message map this is.

baseClass
Specifies the name of the base class of theClass.

In the implementation (.cpp) file that defines the member functions for your class, start the message map with the
BEGIN_MESSAGE_MAP macro, then add macro entries for each of your message-handler functions, and
complete the message map with the END_MESSAGE_MAP macro.

For more information about message maps, see Message Maps

Header: afxwin.h

Begins the definition of a message map on a class type containing a single template argument.

BEGIN_TEMPLATE_MESSAGE_MAP(theClass, type_name, baseClass)

ParametersParameters

RemarksRemarks

RequirementsRequirements

DECLARE_MESSAGE_MAP

SyntaxSyntax

DECLARE_MESSAGE_MAP()

RemarksRemarks

NOTENOTE

ExampleExample

theClass
Specifies the name of the class whose message map this is.

type_name
The name of the template parameter specified for the class.

baseClass
Specifies the name of the base class of theClass.

This macro is similar to the BEGIN_MESSAGE_MAP macro; however, this macro is intended for classes containing
a single template argument.

In the method implementation section of your class, start the message map with the
BEGIN_TEMPLATE_MESSAGE_MAP macro; then add macro entries for each of your message-handler methods
as you would for a standard message map. As with the BEGIN_MESSAGE_MAP macro, complete the template
message map with the END_MESSAGE_MAP macro.

For more information on implementing message maps for template classes, refer to How to: Create a Message
Map for a Template Class.

Header: afxwin.h

Declares that the class defines a message map. Each CCmdTarget -derived class in your program must provide a
message map to handle messages.

Use the DECLARE_MESSAGE_MAP macro at the end of your class declaration. Then, in the .cpp file that defines
the member functions for the class, use the BEGIN_MESSAGE_MAP macro, macro entries for each of your
message-handler functions, and the END_MESSAGE_MAP macro.

If you declare any member after DECLARE_MESSAGE_MAP, you must specify a new access type (public, private, or
protected) for them.

For more information on message maps and the DECLARE_MESSAGE_MAP macro, see Message Handling and
Mapping Topics.

class CMainFrame : public CMDIFrameWnd
{
 DECLARE_MESSAGE_MAP()

 // Remainder of class declaration omitted.

RequirementsRequirements

END_MESSAGE_MAP

SyntaxSyntax

END_MESSAGE_MAP()

RemarksRemarks

RequirementsRequirements

ON_COMMAND

SyntaxSyntax

ON_COMMAND(id, memberFxn)

ParametersParameters

RemarksRemarks

ExampleExample

Header: afxwin.h

Ends the definition of your message map.

For more information on message maps and the END_MESSAGE_MAP macro, see Message Handling and
Mapping Topics.

Header: afxwin.h

This macro maps a command message to a member function.

id
The command ID.

memberFxn
The name of the message-handler function to which the command is mapped.

It indicates which function will handle a command message from a command user-interface object such as a
menu item or toolbar button.

When a command-target object receives a Windows WM_COMMAND message with the specified ID,
ON_COMMAND will call the member function memberFxn to handle the message.

Use ON_COMMAND to map a single command to a member function. Use ON_COMMAND_RANGE to map a
range of command ids to one member function. Only one message-map entry can match a given command id.
That is, you can't map a command to more than one handler. For more information and examples, see Message
Handling and Mapping Topics.

BEGIN_MESSAGE_MAP(CMFCListViewDoc, CDocument)
 ON_COMMAND(ID_MYCOMMAND, &CMFCListViewDoc::OnMycommand)
END_MESSAGE_MAP()

RequirementsRequirements

ON_COMMAND_EX

SyntaxSyntax

ON_COMMAND_EX(id, memberFxn);

ParametersParameters

RemarksRemarks

RequirementsRequirements

ON_CONTROL

SyntaxSyntax

ON_CONTROL(wNotifyCode, id, memberFxn)

ParametersParameters

RemarksRemarks

Header: afxmsg_.h

Extended command-handler member function.

id
The command ID.

memberFxn
The name of the message-handler function to which the command is mapped.

An extended form of command message handlers is available for advanced uses. The ON_COMMAND_EX macro
is used for such message handlers, and it provides a superset of the ON_COMMAND functionality. Extended
command-handler member functions take a single parameter, a UINT containing the command ID, and return a
BOOL. The return value should be TRUE to indicate that the command has been handled; otherwise routing will
continue to other command target objects.

For more information, see Technical Note [TN006: Message Maps]tm006-message-maps.md).

Header file: afxmsg_.h

Indicates which function will handle a custom-control notification message.

wNotifyCode
The notification code of the control.

id
The command ID.

memberFxn
The name of the message-handler function to which the command is mapped.

Control notification messages are those sent from a control to its parent window.

RequirementsRequirements

ON_MESSAGE

SyntaxSyntax

ON_MESSAGE(message, memberFxn)

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

There should be exactly one ON_CONTROL macro statement in your message map for every control notification
message that must be mapped to a message-handler function.

For more information and examples, see Message Handling and Mapping Topics.

Header: afxmsg_.h

Indicates which function will handle a user-defined message.

message
The message ID.

memberFxn
The name of the message-handler function to which the message is mapped.

The type of the function must be afx_msg LRESULT (CWnd::*)(WPARAM, LPARAM) .

User-defined messages are any messages that are not standard Windows WM_MESSAGE messages. When
selecting a message ID, you must use values within the range of WM_USER (0x0400) to 0x7FFF or WM_APP
(0x8000) to 0xBFFF. For more information regarding message IDs, see WM_APP.

There should be exactly one ON_MESSAGE macro statement in your message map for every user-defined
message that must be mapped to a message-handler function.

In addition to user-defined messages, ON_MESSAGE handles less common Windows messages. For more information, see
Message Maps.

For more information and examples, see Message Handling and Mapping Topics and User-Defined Handlers

https://docs.microsoft.com/windows/desktop/winmsg/wm-app

#define WM_MYMESSAGE (WM_USER + 100)

BEGIN_MESSAGE_MAP(CMyWnd2, CWnd)
 ON_MESSAGE(WM_MYMESSAGE, OnMyMessage)
END_MESSAGE_MAP()

// inside the class declaration
afx_msg LRESULT OnMyMessage(WPARAM wParam, LPARAM lParam);

LRESULT CMyWnd2::OnMyMessage(WPARAM wParam, LPARAM lParam)
{
 UNREFERENCED_PARAMETER(wParam);
 UNREFERENCED_PARAMETER(lParam);

 // Handle message here.

 return 0;
}

RequirementsRequirements

ON_OLECMD

SyntaxSyntax

ON_OLECMD(pguid, olecmdid, id)

ParametersParameters

RemarksRemarks

Header: afxmsg_.h

Routes commands through the command dispatch interface IOleCommandTarget .

pguid
Identifier of the command group to which the command belongs. Use NULL for the standard group.

olecmdid
The identifier of the OLE command.

id
The menu ID, toolbar ID, button ID, or other ID of the resource or object issuing the command.

IOleCommandTarget allows a container to receive commands that originate in a DocObject's user interface, and
allows the container to send the same commands (such as New, Open, SaveAs, and Print on the File menu; and
Copy, Paste, Undo, and so forth on the Edit menu) to a DocObject.

IOleCommandTarget is simpler than OLE Automation's IDispatch . IOleCommandTarget relies entirely on a standard
set of commands that rarely have arguments, and no type information is involved (type safety is diminished for
command arguments as well). If you do need to dispatch commands with arguments, use
COleServerDoc::OnExecOleCmd.

The IOleCommandTarget standard menu commands have been implemented by MFC in the following macros:

ON_OLECMD_CLEARSELECTION()

Dispatches the Edit Clear command. Implemented as:

ON_OLECMD(NULL, OLECMDID_CLEARSELECTION, ID_EDIT_CLEAR)

ON_OLECMD_COPY()

Dispatches the Edit Copy command. Implemented as:

ON_OLECMD(NULL, OLECMDID_COPY, ID_EDIT_COPY)

ON_OLECMD_CUT()

Dispatches the Edit Cut command. Implemented as:

ON_OLECMD(NULL, OLECMDID_CUT, ID_EDIT_CUT)

ON_OLECMD_NEW()

Dispatches the File New command. Implemented as:

ON_OLECMD(NULL, OLECMDID_NEW, ID_FILE_NEW)

ON_OLECMD_OPEN()

Dispatches the File Open command. Implemented as:

ON_OLECMD(NULL, OLECMDID_OPEN, ID_FILE_OPEN)

ON_OLECMD_PAGESETUP()

Dispatches the File Page Setup command. Implemented as:

ON_OLECMD(NULL, OLECMDID_PAGESETUP, ID_FILE_PAGE_SETUP)

ON_OLECMD_PASTE()

Dispatches the Edit Paste command. Implemented as:

ON_OLECMD(NULL, OLECMDID_PASTE, ID_EDIT_PASTE)

ON_OLECMD_PASTESPECIAL()

Dispatches the Edit Paste Special command. Implemented as:

ON_OLECMD(NULL, OLECMDID_PASTESPECIAL, ID_EDIT_PASTE_SPECIAL)

ON_OLECMD_PRINT()

Dispatches the File Print command. Implemented as:

ON_OLECMD(NULL, OLECMDID_PRINT, ID_FILE_PRINT)

ON_OLECMD_PRINTPREVIEW()

Dispatches the File Print Preview command. Implemented as:

ON_OLECMD(NULL, OLECMDID_PRINTPREVIEW, ID_FILE_PRINT_PREVIEW)

ON_OLECMD_REDO()

Dispatches the Edit Redo command. Implemented as:

ON_OLECMD(NULL, OLECMDID_REDO, ID_EDIT_REDO)

ON_OLECMD_SAVE()

Dispatches the File Save command. Implemented as:

ON_OLECMD(NULL, OLECMDID_SAVE, ID_FILE_SAVE)

ON_OLECMD_SAVE_AS()

RequirementsRequirements

ON_REGISTERED_MESSAGE

SyntaxSyntax

ON_REGISTERED_MESSAGE(nMessageVariable, memberFxn)

ParametersParameters

RemarksRemarks

ExampleExample

static UINT NEAR WM_FIND = RegisterWindowMessage(_T("COMMDLG_FIND"));

BEGIN_MESSAGE_MAP(CMyWnd3, CWnd)
 ON_REGISTERED_MESSAGE(WM_FIND, OnFind)
END_MESSAGE_MAP()

RequirementsRequirements

ON_REGISTERED_THREAD_MESSAGE

Dispatches the File Save As command. Implemented as:

ON_OLECMD(NULL, OLECMDID_SAVEAS, ID_FILE_SAVE_AS)

ON_OLECMD_SAVE_COPY_AS()

Dispatches the File Save Copy As command. Implemented as:

ON_OLECMD(NULL, OLECMDID_SAVECOPYAS, ID_FILE_SAVE_COPY_AS)

ON_OLECMD_SELECTALL()

Dispatches the Edit Select All command. Implemented as:

ON_OLECMD(NULL, OLECMDID_SELECTALL, ID_EDIT_SELECT_ALL)

ON_OLECMD_UNDO()

Dispatches the Edit Undo command. Implemented as:

ON_OLECMD(NULL, OLECMDID_UNDO, ID_EDIT_UNDO)

Header: afxdocob.h

The Windows RegisterWindowMessage function is used to define a new window message that is guaranteed to be
unique throughout the system.

nMessageVariable
The registered window-message ID variable.

memberFxn
The name of the message-handler function to which the message is mapped.

This macro indicates which function will handle the registered message.

For more information and examples, see Message Handling and Mapping Topics.

Header: afxmsg_.h

SyntaxSyntax

ON_REGISTERED_THREAD_MESSAGE(nMessageVariable, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

ON_THREAD_MESSAGE

SyntaxSyntax

ON_THREAD_MESSAGE(message, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

ON_UPDATE_COMMAND_UI

SyntaxSyntax

ON_UPDATE_COMMAND_UI(id, memberFxn)

ParametersParameters

Indicates which function will handle the message registered by the Windows RegisterWindowMessage function.

nMessageVariable
The registered window-message ID variable.

memberFxn
The name of the CWinThread-message-handler function to which the message is mapped.

RegisterWindowMessage is used to define a new window message that is guaranteed to be unique throughout
the system. ON_REGISTERED_THREAD_MESSAGE must be used instead of ON_REGISTERED_MESSAGE
when you have a CWinThread class.

Header: afxmsg_.h

Indicates which function will handle a user-defined message.

message
The message ID.

memberFxn
The name of the CWinThread -message-handler function to which the message is mapped.

ON_THREAD_MESSAGE must be used instead of ON_MESSAGE when you have a CWinThread class. User-
defined messages are any messages that are not standard Windows WM_MESSAGE messages. There should be
exactly one ON_THREAD_MESSAGE macro statement in your message map for every user-defined message that
must be mapped to a message-handler function.

Header: afxole.h

This macro indicates which function will handle a user-interface update command message.

RemarksRemarks

RequirementsRequirements

ON_COMMAND_RANGE

SyntaxSyntax

ON_COMMAND_RANGE(id1, id2, memberFxn)

ParametersParameters

RemarksRemarks

ExampleExample

id
The message ID.

memberFxn
The name of the message-handler function to which the message is mapped.

There should be exactly one ON_UPDATE_COMMAND_UI macro statement in your message map for every user-
interface update command that must be mapped to a message-handler function.

For more information and examples, see Message Handling and Mapping Topics.

Header: afxole.h

Use this macro to map a contiguous range of command IDs to a single message handler function.

id1
Command ID at the beginning of a contiguous range of command IDs.

id2
Command ID at the end of a contiguous range of command IDs.

memberFxn
The name of the message-handler function to which the commands are mapped.

The range of IDs starts with id1 and ends with id2.

Use ON_COMMAND_RANGE to map a range of command IDs to one member function. Use ON_COMMAND
to map a single command to a member function. Only one message-map entry can match a given command ID.
That is, you can't map a command to more than one handler. For more information on mapping message ranges,
see Handlers for Message-Map Ranges.

There is no automatic support for message map ranges, so you must place the macro yourself.

// The code fragment below shows how to use ON_COMMAND_RANGE macro
// to map a contiguous range of command IDs to a single message
// handler function (i.e. OnRangeCmds() in the sample below). In
// addition, it also shows how to use CheckMenuRadioItem() to check a
// selected menu item and makes it a radio item.

BEGIN_MESSAGE_MAP(CChildFrame, CMDIChildWnd)
 ON_COMMAND_RANGE(ID_COMMAND_RANGECMD1, ID_COMMAND_RANGECMD3, &CChildFrame::OnRangeCmds)
END_MESSAGE_MAP()

void CChildFrame::OnRangeCmds(UINT nID)
{
 CMenu* mmenu = AfxGetMainWnd()->GetMenu();
 CMenu* submenu = mmenu->GetSubMenu(5);
 submenu->CheckMenuRadioItem(ID_COMMAND_RANGECMD1, ID_COMMAND_RANGECMD3,
 nID, MF_BYCOMMAND);
}

RequirementsRequirements

ON_UPDATE_COMMAND_UI_RANGE

SyntaxSyntax

ON_UPDATE_COMMAND_UI_RANGE(id1, id2, memberFxn)

ParametersParameters

RemarksRemarks

RequirementsRequirements

ON_CONTROL_RANGE

SyntaxSyntax

ON_CONTROL_RANGE(wNotifyCode, id1, id2, memberFxn)

Header: afxmsg_.h

Maps a contiguous range of command IDs to a single update message handler function.

id1
Command ID at the beginning of a contiguous range of command IDs.

id2
Command ID at the end of a contiguous range of command IDs.

memberFxn
The name of the update message-handler function to which the commands are mapped.

Update message handlers update the state of menu items and toolbar buttons associated with the command. The
range of IDs starts with id1 and ends with id2.

There is no automatic support for message map ranges, so you must place the macro yourself.

Header: afxmsg_.h

Use this macro to map a contiguous range of control IDs to a single message handler function for a specified
Windows notification message, such as BN_CLICKED.

ParametersParameters

RemarksRemarks

RequirementsRequirements

See also

wNotifyCode
The notification code to which your handler is responding.

id1
Command ID at the beginning of a contiguous range of control IDs.

id2
Command ID at the end of a contiguous range of control IDs.

memberFxn
The name of the message-handler function to which the controls are mapped.

The range of IDs starts with id1 and ends with id2. The handler is called for the specified notification coming from
any of the mapped controls.

There is no automatic support for message map ranges, so you must place the macro yourself.

For more information on implementing handler functions for a range of control IDs, refer to Handlers for
Message-Map Ranges.

Header: afxmsg_.h

ON_COMMAND
TN006: Message Maps
COleCmdUI Class
COleServerDoc::OnExecOleCmd
RegisterWindowMessage
User-Defined Handlers
CCmdUI Class

https://docs.microsoft.com/windows/desktop/api/winuser/nf-winuser-registerwindowmessagea

Delegate and interface map macros
2/7/2019 • 4 minutes to read • Edit Online

BEGIN_DELEGATE_MAP Begins a delegate map.

BEGIN_INTERFACE_MAP Begins the definition of the interfaced map.

CommandHandler Delegate Registers callback methods with a command source.

END_DELEGATE_MAP Ends a delegate map.

END_INTERFACE_MAP Ends the interface map in the implementation file.

EVENT_DELEGATE_ENTRY Creates an entry in the delegate map.

INTERFACE_PART Used between the BEGIN_INTERFACE_MAP macro and the
END_INTERFACE_MAP macro for each interface your object
will support.

MAKE_DELEGATE Attaches an event handler to a managed control.

BEGIN_DELEGATE_MAP

SyntaxSyntax

BEGIN_DELEGATE_MAP(CLASS);

ParametersParameters

RemarksRemarks

RequirementsRequirements

BEGIN_INTERFACE_MAP

SyntaxSyntax

MFC supports these macros for delegate and interface maps:

Begins a delegate map.

CLASS
The class in which the managed control is hosted.

This macro marks the beginning of a list of delegate entries, which compose a delegate map. For an example of
how this macro is used, see EVENT_DELEGATE_ENTRY.

Header: msclr\event.h

Begins the definition of the interfaced map when used in the implementation file.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/delegate-and-interface-maps.md

BEGIN_INTERFACE_MAP(theClass, baseClass)

ParametersParameters

RemarksRemarks

RequirementsRequirements

CommandHandler Delegate

SyntaxSyntax

delegate void CommandHandler(UINT^ cmdID);

ParametersParameters

RemarksRemarks

RequirementsRequirements

CommandUIHandler

SyntaxSyntax

delegate void CommandUIHandler(unsigned int cmdID, ICommandUI^ cmdUI);

ParametersParameters

theClass
The class in which the interface map is to be defined

baseClass
The class from which theClass derives from.

For each interface that is implemented, there is one or more INTERFACE_PART macro invocations. For each
aggregate that the class uses, there is one INTERFACE_AGGREGATE macro invocation.

For more information on interface maps, see Technical Note 38.

Header: afxwin.h

Registers callback methods with a command source.

cmdID
The command ID.

This delegate registers callback methods with a command source. When you add a delegate to the command
source object, the callback method becomes a handler for commands coming from the specified source.

For more information, see How to: Add Command Routing to the Windows Forms Control.

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

Header: afxwinforms.h (defined in assembly atlmfc\lib\mfcmifc80.dll)

Registers callback methods with a user interface update command message.

cmdID
The command ID.

cmdUI

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

RemarksRemarks

RequirementsRequirements

END_DELEGATE_MAP

SyntaxSyntax

END_DELEGATE_MAP();

RemarksRemarks

RequirementsRequirements

END_INTERFACE_MAP

SyntaxSyntax

END_INTERFACE_MAP()

RemarksRemarks

RequirementsRequirements

EVENT_DELEGATE_ENTRY

SyntaxSyntax

EVENT_DELEGATE_ENTRY(MEMBER, ARG0, ARG1);

ParametersParameters

The command message ID.

This delegate registers callback methods with a user interface update command message. CommandUIHandler is
similar to CommandHandler except that this delegate is used with user interface object update commands. User
interface update commands should be mapped one-to-one with message handler methods.

For more information on using Windows Forms, see Using a Windows Form User Control in MFC.

Header: afxwinforms.h (defined in assembly atlmfc\lib\mfcmifc80.dll)

Ends a delegate map.

This macro marks the end of a list of delegate entries, which compose a delegate map. For an example of how this
macro is used, see EVENT_DELEGATE_ENTRY.

Header: msclr\event.h

Ends the interface map in the implementation file.

For more information about interface maps, see Technical Note 38.

Header: afxwin.h

Creates an entry in the delegate map.

MEMBER
The event handler method to be attached to the control.

ARG0

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/using-a-windows-form-user-control-in-mfc

RemarksRemarks

ExampleExample

BEGIN_DELEGATE_MAP(CMyView)
 EVENT_DELEGATE_ENTRY(OnClick, System::Object^, System::EventArgs^)
END_DELEGATE_MAP()

RequirementsRequirements

INTERFACE_PART

SyntaxSyntax

INTERFACE_PART(theClass, iid, localClass)

ParametersParameters

RemarksRemarks

RequirementsRequirements

MAKE_DELEGATE

SyntaxSyntax

MAKE_DELEGATE(DELEGATE, MEMBER) ;

ParametersParameters

The first argument of the managed event handler method, such as Object^ .

ARG1
The second argument of the managed event handler method, such as EventArgs^ .

Each entry in the delegate map corresponds to a managed event handler delegate created by MAKE_DELEGATE.

The following code example shows how to use EVENT_DELEGATE_ENTRY to create an entry in the delegate map
for the OnClick event handler; also see the code example in MAKE_DELEGATE. For more information, see How to:
Sink Windows Forms Events from Native C++ Classes.

Header: msclr\event.h

Used between the BEGIN_INTERFACE_MAP macro and the END_INTERFACE_MAP macro for each interface
your object will support.

theClass
The name of the class that contains the interface map. iid
The IID that is to be mapped to the embedded class. localClass
The name of the local class.

It allows you to map an IID to a member of the class indicated by theClass and localClass.

For more information on interface maps, see Technical Note 38.

Header: afxwin.h

Attaches an event handler to a managed control.

DELEGATE
The type of the managed event handler delegate, such as EventHandler.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-sink-windows-forms-events-from-native-cpp-classes
assetId:///T:System.EventHandler?qualifyHint=False&autoUpgrade=True

RemarksRemarks

ExampleExample

// CMyView derives from CWinFormsView.
void CMyView::OnInitialUpdate()
{
 CWinFormsView::OnInitialUpdate();

 GetControl()->Click += MAKE_DELEGATE(System::EventHandler, OnClick);
}

RequirementsRequirements

See also

MEMBER
The name of the event handler method to be attached to the control.

This macro creates a managed event handler delegate of type DELEGATE and of the name MEMBER. The
managed event handler delegate allows a native class to handle managed events.

The following code example shows how to call MAKE_DELEGATE to attach an OnClick event handler to an MFC
control MyControl . For a broader explanation of how this macro works in an MFC application, see How to: Sink
Windows Forms Events from Native C++ Classes.

Header: msclr\event.h

How to: Sink Windows Forms Events from Native C++ Classes
How to: Add Command Routing to the Windows Forms Control
Macros and Globals

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-sink-windows-forms-events-from-native-cpp-classes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-sink-windows-forms-events-from-native-cpp-classes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-add-command-routing-to-the-windows-forms-control

How to: Use the Message-Map Cross-Reference
3/4/2019 • 2 minutes to read • Edit Online

TERM DEFINITION

id Any user-defined menu item ID (WM_COMMAND messages)
or control ID (child window notification messages).

"message" and "wNotifyCode" Windows message IDs as defined in WINDOWS.H.

nMessageVariable Name of a variable that contains the return value from the
RegisterWindowMessage Windows function.

See also

In entries labeled <memberFxn>, write your own member function for a derived CWnd class. Give your function
any name you like. Other functions, such as OnActivate , are member functions of class CWnd . If called, they pass
the message to the DefWindowProc Windows function. To process Windows notification messages, override the
corresponding CWnd function in your derived class. Your function should call the overridden function in your base
class to let the base class and Windows respond to the message.

In all cases, put the function prototype in the CWnd -derived class header, and code the message map entry as
shown.

The following terms are used:

Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/how-to-use-the-message-map-cross-reference.md

Child Window Notification Message Handlers
3/4/2019 • 2 minutes to read • Edit Online

CATEGORY DESCRIPTION

Generic Control Handler Handler for generic control notification codes.

User Button Handlers Handlers for user button notification codes.

Combo Box Handlers Handlers for combo box notification codes.

Edit Control Handlers Handlers for edit control notification codes.

List Box Handlers Handlers for list box notification codes.

See also

There are five categories of child window notification messages:

Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/child-window-notification-message-handlers.md

Generic Control Handler
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_CONTROL(<wNotifyCode>, <id>, <memberFxn>) afx_msg void memberFxn();

See also

The following map entry corresponds to the function prototype.

Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/generic-control-handler.md

User Button Handlers
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_BN_CLICKED(<id>, <memberFxn>) afx_msg void memberFxn();

ON_BN_DISABLE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_BN_DOUBLECLICKED(<id>, <memberFxn>) afx_msg void memberFxn();

ON_BN_HILITE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_BN_PAINT(<id>, <memberFxn>) afx_msg void memberFxn();

ON_BN_UNHILITE(<id>, <memberFxn>) afx_msg void memberFxn();

See also

The following map entries correspond to the function prototypes.

Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/user-button-handlers.md

Combo Box Handlers
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_CBN_CLOSEUP(<id>, <memberFxn>) afx_msg void memberFxn()

ON_CBN_DBLCLK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_DROPDOWN(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_EDITCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_EDITUPDATE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SELCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SELENDCANCEL(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SELENDOK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_CBN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

See also

The following map entries correspond to the function prototypes.

Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/combo-box-handlers.md

Edit Control Handlers
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_EN_CHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_HSCROLL(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_MAXTEXT(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_UPDATE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_EN_VSCROLL(<id>, <memberFxn>) afx_msg void memberFxn();

See also

The following map entries correspond to the function prototype.

Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/edit-control-handlers.md

List Box Handlers
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_LBN_DBLCLK(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_ERRSPACE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_KILLFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_SELCHANGE(<id>, <memberFxn>) afx_msg void memberFxn();

ON_LBN_SETFOCUS(<id>, <memberFxn>) afx_msg void memberFxn();

See also

The following map entries have the corresponding function prototype.

Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/list-box-handlers.md

Handlers for WM_ Messages
3/4/2019 • 2 minutes to read • Edit Online

TOPIC MAP ENTRIES

A - C ON_WM_ACTIVATE through ON_WM_CTLCOLOR

D - E ON_WM_DEADCHAR through ON_WM_ERASEBKGND

F - K ON_WM_FONTCHANGE through ON_WM_KILLFOCUS

L - M ON_WM_LBUTTONDBLCLK through ON_WM_MOVING

N - O ON_WM_NCACTIVATE through ON_WM_NCRBUTTONUP

P - R ON_WM_PAINT through ON_WM_RENDERFORMAT

S ON_WM_SETCURSOR through ON_WM_SYSKEYUP

T - Z ON_WM_TIMECHANGE through ON_WM_WININICHANGE

See also

The following topics correspond to the map entries.

Message Maps

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/handlers-for-wm-messages.md

WM_ Message Handlers: A - C
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_WM_ACTIVATE() afx_msg void OnActivate(UINT, CWnd*, BOOL);

ON_WM_ACTIVATEAPP() afx_msg void OnActivateApp(BOOL, DWORD);

ON_WM_APPCOMMAND() afx_msg void OnAppCommand(CWnd*, UINT, UINT, UINT);

ON_WM_ASKCBFORMATNAME() afx_msg void OnAskCbFormatName(UINT, LPSTR);

ON_WM_CANCELMODE() afx_msg void OnCancelMode();

ON_WM_CAPTURECHANGED() afx_msg void OnCaptureChanged(CWnd*);

ON_WM_CHANGECBCHAIN() afx_msg void OnChangeCbChain(HWND, HWND);

ON_WM_CHAR() afx_msg void OnChar(UINT, UINT, UINT);

ON_WM_CHARTOITEM() afx_msg int OnCharToItem(UINT, CWnd*, UINT);

ON_WM_CHILDACTIVATE() afx_msg void OnChildActivate();

ON_WM_CLIPBOARDUPDATE() afx_msg void OnClipboardUpdate();

ON_WM_CLOSE() afx_msg void OnClose();

ON_WM_COMPACTING() afx_msg void OnCompacting(UINT);

ON_WM_COMPAREITEM() afx_msg int OnCompareItem(LPCOMPAREITEMSTRUCT);

ON_WM_CONTEXTMENU() afx_msg void OnContextMenu(CWnd*, CPoint);

ON_WM_COPYDATA() afx_msg BOOL OnCopyData(CWnd* pWnd,
COPYDATASTRUCT* pCopyDataStruct);

ON_WM_CREATE() afx_msg int OnCreate(LPCREATESTRUCT);

ON_WM_CTLCOLOR() afx_msg HBRUSH OnCtlColor(CDC*, CWnd*, UINT);

See also

The following map entries on the left correspond to the function prototypes on the right:

Message Maps
Handlers for WM_ Messages

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/wm-message-handlers-a-c.md

WM_ Message Handlers: D - E
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_WM_DEADCHAR() afx_msg void OnDeadChar(UINT, UINT, UINT);

ON_WM_DELETEITEM() afx_msg void OnDeleteItem(LPDELETEITEMSTRUCT);

ON_WM_DESTROY() afx_msg void OnDestroy();

ON_WM_DESTROYCLIPBOARD() afx_msg void OnDestroyClipboard();

ON_WM_DEVICECHANGE() afx_msg void OnDeviceChange(UINT, DWORD);

ON_WM_DEVMODECHANGE() afx_msg void OnDevModeChange(LPSTR);

ON_WM_DRAWCLIPBOARD() afx_msg void OnDrawClipboard();

ON_WM_DRAWITEM() afx_msg void OnDrawItem(LPDRAWITEMSTRUCT);

ON_WM_DROPFILES() afx_msg void OnDropFiles(HDROP);

ON_WM_DWMCOLORIZATIONCOLORCHANGED() afx_msg void OnColorizationColorChanged(DWORD, BOOL);

ON_WM_DWMCOMPOSITIONCHANGED() afx_msg void OnCompositionChanged();

ON_WM_DWMNCRENDERINGCHANGED() afx_msg void OnNcRenderingChanged(BOOL);

ON_WM_DWMWINDOWMAXIMIZEDCHANGE() afx_msg void OnWindowMaximizedChanged(BOOL);

ON_WM_ENABLE() afx_msg void OnEnable(BOOL);

ON_WM_ENDSESSION() afx_msg void OnEndSession(BOOL);

ON_WM_ENTERIDLE() afx_msg void OnEnterIdle(UINT, CWnd*);

ON_WM_ENTERSIZEMOVE() afx_msg void OnEnterSizeMove();

ON_WM_ERASEBKGND() afx_msg BOOL OnEraseBkgnd(CDC*);

ON_WM_EXITSIZEMOVE() afx_msg void OnExitSizeMove();

See also

The following map entries on the left correspond to the function prototypes on the right:

Message Maps
Handlers for WM_ Messages

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/wm-message-handlers-d-e.md

WM_ Message Handlers: F - K
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_WM_FONTCHANGE() afx_msg void OnFontChange();

ON_WM_GETDLGCODE() afx_msg UINT OnGetDlgCode();

ON_WM_GETMINMAXINFO() afx_msg void OnGetMinMaxInfo(MINMAXINFO*);

ON_WM_HELPINFO() afx_msg BOOL OnHelpInfo(HELPINFO*);

ON_WM_HOTKEY() afx_msg void OnHotKey(UINT, UINT, UINT);

ON_WM_HSCROLL() afx_msg void OnHScroll(UINT, UINT, CWnd*);

ON_WM_HSCROLLCLIPBOARD() afx_msg void OnHScrollClipboard(CWnd*, UINT, UINT);

ON_WM_ICONERASEBKGND() afx_msg void OnIconEraseBkgnd(CDC*);

ON_WM_INITMENU() afx_msg void OnInitMenu(CMenu*);

ON_WM_INITMENUPOPUP() afx_msg void OnInitMenuPopup(CMenu*, UINT, BOOL);

ON_WM_INPUT() afx_msg void OnRawInput(UINT, HRAWINPUT);

ON_WM_INPUT_DEVICE_CHANGE() afx_msg void OnInputDeviceChange(unsigned short);

ON_WM_INPUTLANGCHANGE() afx_msg void OnInputLangChange(BYTE, UINT);

ON_WM_INPUTLANGCHANGEREQUEST() afx_msg void OnInputLangChangeRequest(UINT, HKL);

ON_WM_KEYDOWN() afx_msg void OnKeyDown(UINT, UINT, UINT);

ON_WM_KEYUP() afx_msg void OnKeyUp(UINT, UINT, UINT);

ON_WM_KILLFOCUS() afx_msg void OnKillFocus(CWnd*);

See also

The following map entries on the left correspond to the function prototypes on the right:

Message Maps
Handlers for WM_ Messages

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/wm-message-handlers-f-k.md

WM_ Message Handlers: L - M
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_WM_LBUTTONDBLCLK() afx_msg void OnLButtonDblClk(UINT, CPoint);

ON_WM_LBUTTONDOWN() afx_msg void OnLButtonDown(UINT, CPoint);

ON_WM_LBUTTONUP() afx_msg void OnLButtonUp(UINT, CPoint);

ON_WM_MBUTTONDBLCLK() afx_msg void OnMButtonDblClk(UINT, CPoint);

ON_WM_MBUTTONDOWN() afx_msg void OnMButtonDown(UINT, CPoint);

ON_WM_MBUTTONUP() afx_msg void OnMButtonUp(UINT, CPoint);

ON_WM_MDIACTIVATE() afx_msg void OnMDIActivate(BOOL, CWnd*, CWnd*);

ON_WM_MEASUREITEM() afx_msg void OnMeasureItem(LPMEASUREITEMSTRUCT);

ON_WM_MENUCHAR() afx_msg LONG OnMenuChar(UINT, UINT, CMenu*);

ON_WM_MENUDRAG() afx_msg UINT OnMenuDrag(UINT, CMenu*);

ON_WM_MENUGETOBJECT() afx_msg UINT OnMenuGetObject(MENUGETOBJECTINFO*);

ON_WM_MENURBUTTONUP() afx_msg void OnMenuRButtonUp(UINT, CMenu*);

ON_WM_MENUSELECT() afx_msg void OnMenuSelect(UINT, UINT, HMENU);

ON_WM_MOUSEACTIVATE() afx_msg int OnMouseActivate(CWnd*, UINT, UINT);

ON_WM_MOUSEHOVER() afx_msg void OnMouseHover(UINT, CPoint);

ON_WM_MOUSEHWHEEL() afx_msg void OnMouseHWheel(UINT, short, CPoint);

ON_WM_MOUSELEAVE() afx_msg void OnMouseLeave();

ON_WM_MOUSEMOVE() afx_msg void OnMouseMove(UINT, CPoint);

ON_WM_MOUSEWHEEL() afx_msg BOOL OnMouseWheel(UINT, short, CPoint);

ON_WM_MOVE() afx_msg void OnMove(int, int);

ON_WM_MOVING() afx_msg void OnMoving(UINT, LPRECT);

The following map entries on the left correspond to the function prototypes on the right:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/wm-message-handlers-l-m.md

See also
Message Maps
Handlers for WM_ Messages

WM_ Message Handlers: N - O
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_WM_NCACTIVATE() afx_msg BOOL OnNcActivate(BOOL);

ON_WM_NCCALCSIZE() afx_msg void OnNcCalcSize(BOOL, NCCALCSIZE_PARAMS
FAR*);

ON_WM_NCCREATE() afx_msg BOOL OnNcCreate(LPCREATESTRUCT);

ON_WM_NCDESTROY() afx_msg void OnNcDestroy();

ON_WM_NCHITTEST() afx_msg LRESULT OnNcHitTest(CPoint);

ON_WM_NCLBUTTONDBLCLK() afx_msg void OnNcLButtonDblClk(UINT, CPoint);

ON_WM_NCLBUTTONDOWN() afx_msg void OnNcLButtonDown(UINT, CPoint);

ON_WM_NCLBUTTONUP() afx_msg void OnNcLButtonUp(UINT, CPoint);

ON_WM_NCMBUTTONDBLCLK() afx_msg void OnNcMButtonDblClk(UINT, CPoint);

ON_WM_NCMBUTTONDOWN() afx_msg void OnNcMButtonDown(UINT, CPoint);

ON_WM_NCMBUTTONUP() afx_msg void OnNcMButtonUp(UINT, CPoint);

ON_WM_NCMOUSEHOVER() afx_msg void OnNcMouseHover(UINT, CPoint);

ON_WM_NCMOUSELEAVE() afx_msg void OnNcMouseLeave();

ON_WM_NCMOUSEMOVE() afx_msg void OnNcMouseMove(UINT, CPoint);

ON_WM_NCPAINT() afx_msg void OnNcPaint();

ON_WM_NCRBUTTONDBLCLK() afx_msg void OnNcRButtonDblClk(UINT, CPoint);

ON_WM_NCRBUTTONDOWN() afx_msg void OnNcRButtonDown(UINT, CPoint);

ON_WM_NCRBUTTONUP() afx_msg void OnNcRButtonUp(UINT, CPoint);

ON_WM_NCXBUTTONDBLCLK() void OnNcXButtonDblClk(short, UINT, CPoint);

ON_WM_NCXBUTTONDOWN() afx_msg void OnNcXButtonDown(short, UINT, CPoint);

ON_WM_NCXBUTTONUP() afx_msg void OnNcXButtonUp(short, UINT, CPoint);

The following map entries on the left correspond to the function prototypes on the right:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/wm-message-handlers-n-o.md

ON_WM_NEXTMENU() afx_msg void OnNextMenu(UINT, LPMDINEXTMENU);

ON_WM_NOTIFYFORMAT() afx_msg UINT OnNotifyFormat(CWnd*, UINT);

MAP ENTRY FUNCTION PROTOTYPE

See also
Message Maps
Handlers for WM_ Messages

WM_ Messages: P - R
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_WM_PAINT() afx_msg void OnPaint();

ON_WM_PAINTCLIPBOARD() afx_msg void OnPaintClipboard(CWnd*, HANDLE);

ON_WM_PALETTECHANGED() afx_msg void OnPaletteChanged(CWnd*);

ON_WM_PALETTEISCHANGING() afx_msg void OnPaletteIsChanging(CWnd*);

ON_WM_PARENTNOTIFY() afx_msg void OnParentNotify(UINT, LONG);

ON_WM_POWERBROADCAST() afx_msg UINT OnPowerBroadcast(UINT, UINT);

ON_WM_QUERYDRAGICON() afx_msg HCURSOR OnQueryDragIcon()();

ON_WM_QUERYENDSESSION() afx_msg BOOL OnQueryEndSession()();

ON_WM_QUERYNEWPALETTE() afx_msg BOOL OnQueryNewPalette()();

ON_WM_QUERYOPEN() afx_msg BOOL OnQueryOpen()();

ON_WM_RBUTTONDBLCLK() afx_msg void OnRButtonDblClk(UINT, CPoint);

ON_WM_RBUTTONDOWN() afx_msg void OnRButtonDown(UINT, CPoint);

ON_WM_RBUTTONUP() afx_msg void OnRButtonUp(UINT, CPoint);

ON_WM_RENDERALLFORMATS() afx_msg void OnRenderAllFormats();

ON_WM_RENDERFORMAT() afx_msg void OnRenderFormat(UINT);

See also

The following map entries correspond to the function prototypes:

Message Maps
Handlers for WM_ Messages

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/wm-messages-p-r.md

WM_ Messages: S
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_WM_SETCURSOR() afx_msg BOOL OnSetCursor(CWnd*, UINT, UINT);

ON_WM_SETFOCUS() afx_msg void OnSetFocus(CWnd*);

ON_WM_SETTINGCHANGE() afx_msg void OnSettingChange(UINT uFlags, LPCTSTR
lpszSection);

ON_WM_SHOWWINDOW() afx_msg void OnShowWindow(BOOL, UINT);

ON_WM_SIZE() afx_msg void OnSize(UINT, int, int);

ON_WM_SIZECLIPBOARD() afx_msg void OnSizeClipboard(CWnd*, HANDLE);

ON_WM_SIZING() afx_msg void OnSizing(UINT, LPRECT);

ON_WM_SPOOLERSTATUS() afx_msg void OnSpoolerStatus(UINT, UINT);

ON_WM_STYLECHANGED() afx_msg void OnStyleChanged(int, LPSTYLESTRUCT);

ON_WM_STYLECHANGING() afx_msg void OnStyleChanging(int, LPSTYLESTRUCT);

ON_WM_SYSCHAR() afx_msg void OnSysChar(UINT, UINT, UINT);

ON_WM_SYSCOLORCHANGE() afx_msg void OnSysColorChange();

ON_WM_SYSCOMMAND() afx_msg void OnSysCommand(UINT, LONG);

ON_WM_SYSDEADCHAR() afx_msg void OnSysDeadChar(UINT, UINT, UINT);

ON_WM_SYSKEYDOWN() afx_msg void OnSysKeyDown(UINT, UINT, UINT);

ON_WM_SYSKEYUP() afx_msg void OnSysKeyUp(UINT, UINT, UINT);

See also

The following map entries correspond to the function prototypes.

Message Maps
Handlers for WM_ Messages

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/wm-messages-s.md

WM_ Messages: T - Z
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_WM_TCARD() afx_msg void OnTCard(UINT, DWORD);

ON_WM_TIMECHANGE() afx_msg void OnTimeChange();

ON_WM_TIMER() afx_msg void OnTimer(UINT_PTR);

ON_WM_UNICHAR() afx_msg void OnUniChar(UINT, UINT, UINT);

ON_WM_UNINITMENUPOPUP() afx_msg void OnUnInitMenuPopup(CMenu*, UINT);

ON_WM_USERCHANGED() afx_msg void OnUserChanged();

ON_WM_VKEYTOITEM() afx_msg int OnVKeyToItem(UINT, CWnd*, UINT);

ON_WM_VSCROLL() afx_msg void OnVScroll(UINT, UINT, CWnd*);

ON_WM_VSCROLLCLIPBOARD() afx_msg void OnVScrollClipboard(CWnd*, UINT, UINT);

ON_WM_WINDOWPOSCHANGED() afx_msg void OnWindowPosChanged(WINDOWPOS*);

ON_WM_WINDOWPOSCHANGING() afx_msg void OnWindowPosChanging(WINDOWPOS*);

ON_WM_WININICHANGE() afx_msg void OnWinIniChange(LPSTR);

ON_WM_WTSSESSION_CHANGE() afx_msg void OnSessionChange(UINT, UINT);

ON_WM_XBUTTONDBLCLK() afx_msg void OnXButtonDblClk(UINT, UINT, CPoint);

ON_WM_XBUTTONDOWN() afx_msg void OnXButtonDown(UINT, UINT, CPoint);

ON_WM_XBUTTONUP() afx_msg void OnXButtonUp(UINT, UINT, CPoint);

See also

The following map entries correspond to the function prototypes:

Message Maps
Handlers for WM_ Messages

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/wm-messages-t-z.md

User-Defined Handlers
3/4/2019 • 2 minutes to read • Edit Online

MAP ENTRY FUNCTION PROTOTYPE

ON_MESSAGE(<message>, <memberFxn>) afx_msg LRESULT memberFxn(WPARAM, LPARAM);

ON_REGISTERED_MESSAGE(<nMessageVariable>,
<memberFxn>)

afx_msg LRESULT memberFxn(WPARAM, LPARAM);

ON_THREAD_MESSAGE(<message>, <memberFxn>) afx_msg void memberFxn(WPARAM, LPARAM);

ON_REGISTERED_THREAD_MESSAGE(<nMessageVariable>,
<memberFxn>)

afx_msg void memberFxn(WPARAM, LPARAM);

See also

The following map entries correspond to the function prototypes.

Message Maps
Handlers for WM_ Messages

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/user-defined-handlers.md

MFC Wizards and Dialog Boxes
3/4/2019 • 2 minutes to read • Edit Online

Related Articles
TITLE DESCRIPTION

Creating an MFC DLL Project Creates a DLL based on MFC.

Creating an MFC Application Generates an MFC application.

Creating an MFC ActiveX Control Container Generates a container for an ActiveX control.

Creating an MFC ActiveX Control Generates an ActiveX control based on MFC.

MFC Class Creates a basic class.

MFC Class from a Type Library Generates a class and populates it based on the type library
that you specify.

MFC Message Handler Creates a handler for a Windows message.

MFC ODBC Consume Creates a component that can communicate with an ODBC
database.

ATL Support in an MFC Project Creates headers and macros that are required by the Active
Template Library (ATL).

MFC Class Wizard Creates an .h file and a .cpp file.

MFC Desktop Applications Links to the MFC documentation.

The Microsoft Foundation Class (MFC) wizards generate boilerplate code for various kinds of components and
objects. You can run the wizards by opening the shortcut menu for a project in Solution Explorer and choosing
Add, Class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/mfc-wizards-and-dialog-boxes.md

Creating an MFC DLL Project
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To create an MFC DLL Project using the MFC DLL WizardTo create an MFC DLL Project using the MFC DLL Wizard

See also

An MFC DLL is a binary file that acts as a shared library of functions that can be used simultaneously by multiple
applications. The easiest way to create an MFC DLL project is to use the MFC DLL Wizard.

The appearance of features in the IDE can depend on your active settings or edition, and might differ from those described in
Help. To change your settings, choose Import and Export Settings on the Tools menu. For more information, see
Personalize the Visual Studio IDE.

1. Follow the instructions in the help topic Creating a Project with a Visual C++ Application Wizard.

Note In the New Project dialog box, select the MFC DLL icon in the Templates pane to open the MFC DLL
Wizard.

NOTENOTE

1. Define your application settings using the application settings page of the MFC DLL Wizard.

Skip this step to keep the wizard default settings.

2. Click Finish to close the wizard and open your new project in Solution Explorer.

Once your project is created, you can view the files created in Solution Explorer. For more information about the
files the wizard creates for your project, see the project-generated file ReadMe.txt. For more information about the
file types, see File Types Created for Visual C++ Projects.

Visual C++ Project Types
Adding Functionality with Code Wizards
Property Pages

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/creating-an-mfc-dll-project.md
https://docs.microsoft.com/visualstudio/ide/personalizing-the-visual-studio-ide
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-desktop-projects-by-using-application-wizards
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/file-types-created-for-visual-cpp-projects
https://docs.microsoft.com/visualstudio/debugger/debugging-preparation-visual-cpp-project-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/property-pages-visual-cpp

MFC DLL Wizard
3/4/2019 • 2 minutes to read • Edit Online

Overview

See also

When you use the MFC DLL wizard to create an MFC DLL project, you get a working starter application with
built-in functionality that, when compiled, will implement the basic features of a DLL. The MFC starter program
includes C++ source (.cpp) files, resource (.rc) files, and a project (.vcxproj) file. The code generated in these starter
files is based on MFC. For more detailed information, see the file details in Readme.txt that is generated for your
project in Visual Studio, and Classes and Functions Generated by the MFC DLL Wizard

This wizard page describes the current application settings for the MFC DLL project you are creating. By default,
the project is created as a regular MFC DLL (MFC Shared) project with no additional settings.

To change these defaults, click Application Settings in the left column of the wizard and make changes in that
page of the MFC DLL Wizard.

After you create an MFC DLL project, you can add objects or controls to your project using Visual C++ code
wizards.

You can perform the following tasks and types of enhancements to a basic MFC DLL project:

Export from a DLL

Link an Executable to a DLL

Initialize a DLL

Creating and Managing Visual C++ Projects
Property Pages
Working with Project Properties
MFC Class
Adding a Member Function
Implementing an Interface

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/mfc-dll-wizard.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/dlls-in-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/exporting-from-a-dll
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/linking-an-executable-to-a-dll
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/run-time-library-behavior
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-and-managing-visual-cpp-projects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/property-pages-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/working-with-project-properties
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/implementing-an-interface-visual-cpp

Application Settings, MFC DLL Wizard
3/4/2019 • 2 minutes to read • Edit Online

DLL type

Additional features

See also

Use this page of the MFC DLL wizard to design and add basic features to a new MFC DLL project.

Select the type of DLL you want to create.

Regular MFC DLL using shared MFC DLL

Select this option to link the MFC library to your program as a shared DLL. Using this option, you cannot
share MFC objects between your DLL and the calling application. Your program makes calls to the MFC
library at run time. This option reduces the disk and memory requirements of your program if it is
composed of multiple execution files that use the MFC library. Both Win32 and MFC programs can call
functions in your DLL. You must redistribute the MFC DLL with this type of project.

Regular MFC DLL with MFC statically linked

Select this option to link your program statically to the MFC library at build time. Both Win32 and MFC
programs can call functions in your DLL. While this option increases the size of your program, you do not
need to redistribute the MFC DLL with this type of project. You cannot share MFC objects between your
DLL and the calling application.

MFC extension DLL

Select this option if you want your program to make calls to the MFC library at run time, and if you want to
share MFC objects between your DLL and the calling application. This option reduces the disk and memory
requirements of your program, if it is composed of multiple executable files that all use the MFC library.
Only MFC programs can call functions in your DLL. You must redistribute the MFC DLL with this type of
project.

Select whether your MFC DLL should support automation and whether it should support Windows sockets.

Automation

Select Automation to allow your program to manipulate objects implemented in another program.
Selecting Automation also exposes your program to other Automation clients. See Automation for more
information.

Windows sockets

Select this option to indicate that your program supports Windows sockets. Windows sockets allow you to
write programs that communicate over TCP/IP networks.

When your MFC DLL with Windows sockets support is created, CWinApp::InitInstance initializes support
for sockets and the MFC header file StdAfx.h includes AfxSock.h.

MFC DLL Wizard
Creating an MFC DLL Project

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/application-settings-mfc-dll-wizard.md

Classes and Functions Generated by the MFC DLL Wizard
3/4/2019 • 2 minutes to read • Edit Online

KIND OF DLL OPTION CLASSES FUNCTIONS

Extension None None DllMain

Regular None Application class derived from
CWinApp

None

Regular Automation Application class derived from
CWinApp

DllGetClassObjectDllCanUnloadNowDllRegisterServer

Extension Window Sockets None DllMain

Regular Window Sockets Application class derived from
CWinApp

InitInstance contains call to
AfxSocketInit

See also

The code that the MFC DLL Wizard generates depends on the kind of DLL you are creating and the options you have selected. The
MFC DLL Wizard generates the same code for both forms of regular MFC DLLs.

MFC DLL Wizard

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/classes-and-functions-generated-by-the-mfc-dll-wizard.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/extension-dlls-overview
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/regular-dlls-dynamically-linked-to-mfc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/regular-dlls-dynamically-linked-to-mfc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/extension-dlls-overview
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/regular-dlls-dynamically-linked-to-mfc

Creating an MFC Application
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

To create an MFC application using the MFC Application WizardTo create an MFC application using the MFC Application Wizard

See also

An MFC application is an executable application for Windows that is based on the Microsoft Foundation Class
(MFC) Library. The easiest way to create an MFC application is to use the MFC Application Wizard.

MFC projects are not supported in Visual Studio Express editions.

MFC executables generally fall into five types: standard Windows applications, dialog boxes, forms-based
applications, Explorer-style applications, and Web browser-style applications. For more information, see:

Using the Classes to Write Windows Applications

Creating and Displaying Dialog Boxes

Creating a Forms-Based MFC Application

Creating a File Explorer-Style MFC Application

Creating a Web Browser-Style MFC Application

The MFC Application Wizard generates the appropriate classes and files for any of these types of applications,
depending on the options you select in the wizard.

NOTENOTE

1. Follow the instructions in the help topic Creating a Project with a Visual C++ Application Wizard.

2. In the New Project dialog box, select MFC Application in the Templates pane to open the wizard.

3. Define your application settings using the MFC Application Wizard.

Skip this step to keep the wizard default settings.

4. Click Finish to close the wizard and open your new project in the development environment.

Once your project is created, you can view the files created in Solution Explorer. For more information about the
files the wizard creates for your project, see the project-generated file ReadMe.txt. For more information about the
file types, see File Types Created for Visual C++ Projects.

Adding Functionality with Code Wizards
Property Pages

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/creating-an-mfc-application.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-desktop-projects-by-using-application-wizards
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/file-types-created-for-visual-cpp-projects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/property-pages-visual-cpp

MFC Application Wizard
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

Overview

The MFC Application Wizard generates an application that, when compiled, implements the basic features of
a Windows executable (.exe) application. The MFC starter application includes C++ source (.cpp) files,
resource (.rc) files, header (.h) files, and a project (.vcxproj) file. The code that is generated in these starter files
is based on MFC.

Depending on the options that you select, the wizard creates additional files in your project. For example, if you select
Context-sensitive help on the Advanced Features page, the wizard creates the files that are necessary to compile the
project's Help files. For more information about the files that the wizard creates, see File Types Created for Visual C++
Projects, and see the Readme.txt file in the project.

This wizard page describes the current application settings for the MFC application that you are creating. By
default, the wizard creates a project as follows:

Application Type, MFC Application Wizard

The project is created with tabbed multiple-document interface (MDI) support. For more
information, see SDI and MDI.

The project uses the Document/View Architecture.

The project uses Unicode libraries.

The project is created using the Visual Studio project style and enables visual style switching.

The project uses MFC in a shared DLL. For more information, see DLLs in Visual C++.

Compound Document Support, MFC Application Wizard

The project provides no support for compound documents.
Document Template Strings, MFC Application Wizard

The project uses the project name for the default document template strings.
Database Support, MFC Application Wizard

The project provides no support for databases.
User Interface Features, MFC Application Wizard

The project implements standard Windows user interface features such as a system menu, a status
bar, maximize and minimize boxes, an About box, a standard menu bar and docking toolbar, and
child frames.

Advanced Features, MFC Application Wizard

The project supports printing and print preview.

The project supports ActiveX controls. For more information, see Sequence of Operations for
Creating ActiveX Controls.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/mfc-application-wizard.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/file-types-created-for-visual-cpp-projects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/dlls-in-visual-cpp

See also

The project provides no support for Automation, MAPI, Windows Sockets, or Active
Accessibility.

The project supports an Explorer docking pane, an Output docking pane, and a Properties
docking pane.

Generated Classes, MFC Application Wizard

The project's view class is derived from the CView Class.

The project's application class is derived from the CWinAppEx Class.

The project's document class is derived from the CDocument Class.

The project's main frame class is derived from the CMDIFrameWndEx Class.

The project's child frame class is derived from the CMDIChildWndEx Class.

To change these default settings, click the appropriate tab title in the left column of the wizard and make the
changes on the page that appears.

After you create an MFC application project, you can add objects or controls to your project using Visual C++
code wizards.

Creating an MFC Application
MFC Desktop Applications
Using the Classes to Write Applications for Windows

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp

Application Type, MFC Application Wizard
3/4/2019 • 4 minutes to read • Edit Online

Use this page of the MFC Application Wizard to design and add basic features to a new MFC application.

OPTION DESCRIPTION

Single document Creates a single document interface (SDI) architecture for
your application, where a view class is based on CView
Class. You can change the base class for the view in the
Generated Classes, MFC Application Wizard page of the
wizard. To create a form-based application, for example,
use CFormView Class for the view class.

In this type of application, the document's frame window
can hold only one document.

Multiple documents Creates a multiple document interface (MDI) architecture
for your application, where a view class is based on
CView . You can change the base class for the view in the

Generated Classes page of the wizard. To create a form-
based application, for example, use CFormView for the
view class.

In this type of application, the document's frame window
can hold multiple child windows.

Tabbed documents Places each document on a separate tab.

Dialog based Creates a dialog-based architecture for your application
where a dialog class is based on CDialog . (To create an
HTML dialog, select the box Use HTML dialog.)

Application type

Specifies the type of document support that you want to create in your application. The type of application
you select determines the user interface options that are available for your application. See User Interface
Features, MFC Application Wizard for more information.

For more information about the types of documents, see:

SDI and MDI

Frame Windows

Frame-Window Classes

Documents, Views, and the Framework

Dialog Boxes

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/application-type-mfc-application-wizard.md

Use HTML dialog For dialog box applications only. Derives the dialog class
from CDHtmlDialog Class instead of CDialog Class. If you
check this box, CDHtmlDialog is listed in the Base class
box in the Generated Classes, MFC Application Wizard
page of the wizard.

A CDHtmlDialog -derived dialog box displays HTML-
based dialog boxes, exchanges data with HTML controls
and handles HTML events.

Multiple top-level documents Creates a multiple top-level architecture for your
application, where a view class is based on CView .

In this type of application, when a user clicks New (or
New Frame) on the File menu, the application creates a
window whose parent is implicitly the desktop. The new
document frame appears in the taskbar and is not
restricted to the client area of the application window.

OPTION DESCRIPTION

OPTION DESCRIPTION

MFC standard Provides a standard MFC application architecture.

File Explorer Implements a File Explorer-like application by using a
splitter window where the left pane is a CTreeView Class
and the right pane is a CListView Class.

Document/view architecture support

Specifies whether to include document/view architecture in your application by using the CDocument
Class and the CView Class (default). Clear this check box if you are porting a non-MFC application or if
you want to reduce the size of your compiled executable. By default, an application without
document/view architecture is derived from CWinApp Class, and it does not include MFC support for
opening a document from a disk file.

Resource language

Sets the language of your resources. The list displays the languages available on your system, as installed
by Visual Studio. If you want to select a language other than your system language, the appropriate
template folder for that language must already be installed.

The language that you select is reflected in the Localized strings option of the Document Template
Strings, MFC Application Wizard page of the wizard.

Use Unicode libraries

Specifies whether the Unicode or non-Unicode version of the MFC libraries is used.

Project style

Indicates whether your application has a standard MFC, File Explorer, Visual Studio, or Office architecture
and display. For more information, see Creating a File Explorer-Style MFC Application.

See also

Visual Studio Implements a Visual Studio-like application that contains
four dockable panes (File View, Class View, Properties,
and Output) that are derived from CDockablePane Class
and a main frame window that is derived from
CMDIFrameWndEx Class (default).

Office Implements an Office-like application that contains a
ribbon that is derived from CMFCRibbonBar Class, an
Outlook bar that is derived from CMFCOutlookBar Class,
a caption bar that is derived from CMFCCaptionBar Class,
and a main frame that is derived from CMDIFrameWndEx
Class.

OPTION DESCRIPTION

OPTION DESCRIPTION

Use MFC in a shared DLL Links the MFC library to an application as a shared DLL.
The application makes calls to the MFC library at run
time. This option reduces the disk and memory
requirements of applications that consist of multiple
executable files that use the MFC library. Both Win32 and
MFC applications can call functions in your DLL (default)

Use MFC in a static library Links an application to the static MFC library at build
time.

Visual style and colors

Determines the visual style of the application. The following options are available:

Windows Native/Default

Office 2003

Visual Studio 2005

Office 2007 (Blue theme)

Office 2007 (Black theme)

Office 2007 (Silver theme)

Office 2007 (Aqua theme)

Enable visual style switching

Specifies whether the user can change the visual style of the application at runtime, usually by selecting
the appropriate visual style from a menu or ribbon.

Use of MFC

Specifies how to link to the MFC library. By default, MFC is linked as a shared DLL.

MFC Application Wizard
File Types Created for Visual C++ Projects

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/file-types-created-for-visual-cpp-projects

Compound Document Support, MFC Application
Wizard
3/4/2019 • 2 minutes to read • Edit Online

In this page of the MFC Application Wizard, indicate to what level your application provides compound and active
document support. Your application must support the document/view architecture to support compound
documents and document templates.

By default, the application contains no compound document support. If you accept this default, your application
cannot support active documents or compound files.

OPTION DESCRIPTION

None Indicates no support for Object Linking and Embedding
(OLE). By default, the application wizard creates an
application without ActiveX support.

Container Contains linked and embedded objects.

Mini server Indicates the application can create and manage
compound document objects. Note that mini-servers
cannot run stand alone and only support embedded
items.

Full server Indicates the application can create and manage
compound document objects. Full servers are able to run
stand alone and support both linked and embedded
items.

Container/full server Indicates the application can be both a container and a
server. A container is an application that can incorporate
embedded or linked items into its own documents. A
server is an application that can create Automation items
for use by container applications.

OPTION DESCRIPTION

Compound document support

Determines whether your application provides container support, server support, or both. For more
information about this area, see:

Containers: Implementing a Container

Servers: Implementing a Server

Additional options

Indicates whether your application supports active documents. See Active Documents for more information
about this feature.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/compound-document-support-mfc-application-wizard.md

See also

Active document server Indicates the application can create and manage active
documents. If you select this option, you must specify a
file extension for your active document server in the File
extension box in the Document Template Strings page of
the wizard. See Active Document Servers for more
information.

Active document container Indicates the application can contain active documents
within its frame. Active documents may include, for
example, Internet Explorer documents, or Office
documents such as Microsoft Word files or Excel
spreadsheets. See Active Document Containment for more
information.

Support for compound files Does not serialize the container application's documents
using the compound-file format. This option forces the
loading of an entire file containing objects into memory.
Incremental saves to individual objects are not available. If
one object is changed and subsequently saved, then all
objects in the file are saved.

OPTION DESCRIPTION

MFC Application Wizard

Document Template Strings, MFC Application Wizard
3/4/2019 • 2 minutes to read • Edit Online

In this page of the MFC Application Wizard, provide or refine the following options to help with document
management and localization. Document template strings are available for applications that include
Document/view architecture support in the Application Type. They are not available for dialog boxes. Because
most document template strings are visible and used by the application's users, they are localized into the
Resource language indicated in the Application Type page of the wizard.

OPTION DESCRIPTION

File extension Sets the file extension associated with the documents that
the user saves when using the application. For example, if
your project is named Widget, you could name the file
extension .wgt. (When you enter the file extension, do not
include the period.)

If you provide a file extension, the Explorer can print your
application's documents without launching your
application when the user drops the document icon on a
printer icon.

If you do not specify an extension, a user must specify a
file extension when saving files. The wizard does not
provide a default file extension.

File type ID Sets the label for your document type in the system
registry.

OPTION DESCRIPTION

Language Indicates the language in which strings are displayed for
all the boxes under Localized strings. To change the
value in this box, select the appropriate language under
Resource language in the Application Type page of the
MFC Application Wizard.

Main frame caption Sets the text appearing at the top of the main application
frame. By default, the project name.

Nonlocalized strings

Applies to applications that create user documents. Users can open, print, and save documents more easily
if you provide a file extension and a file type ID. These items are not localized because they are used by the
system rather than by the user.

Localized strings

Produces strings associated with the application and document that are read and used by the application's
users, so the strings are localized.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/document-template-strings-mfc-application-wizard.md

See also

Doc type name Identifies the type of document under which a document
of the application can be grouped. By default, the project
name. Changing the default does not change any other
options in this dialog box.

Filter name Sets the name your users can indicate to find files of your
file type. This option is available from the Files of type
and Save as type options in the standard Windows
Open and Save as dialog boxes. By default, the project
name plus Files, followed by the extension provided in File
extension. For example, if your project is named Widget,
and the file extension is .wgt, the Filter name is Widget
Files (*.wgt) by default.

File new short name Sets the name appearing in the standard Windows New
dialog box, if there is more than one new document
template. If your application is an Automation server, this
name is used as the short name of your Automation
object. By default, the project name.

File type long name Sets the file type name in the system registry. If your
application is an Automation server, this name is used as
the long name of your Automation object. By default, the
project name plus .Document.

OPTION DESCRIPTION

MFC Application Wizard

Database Support, MFC Application Wizard
3/4/2019 • 4 minutes to read • Edit Online

This page provides options that allow you to specify the level of database support (plus a data source, if necessary)
for your project.

OPTION DESCRIPTION

None Provides no database support. This is the default option.

Header files only Provides the basic level of database support for your
application. If you select ODBC support under Client
type, the MFC Application Wizard includes in your project
the header file AFXDB.H. It adds link libraries, but it does
not create any database-specific classes. You can create
recordsets later and use them to examine and update
records. If you select OLE DB support under Client type,
the following header files are included: ATLBASE.H
AFXOLEDB.H ATLPLUS.H

Database view without file support Includes database header files, link libraries, a record view
and a recordset. (Available only for applications with the
Document/view architecture support option selected in
the Application Type page.) This option includes document
support but no serialization support. If you choose to
include a database view, you must specify the source of
the data.

Database view with file support Includes database header files, link libraries, a record view
and a recordset. (Available only for applications with the
Document/view architecture support option selected in
the Application Type page.) This option supports
document serialization, which you can use, for example, to
update a user profile file. Database applications typically
operate on a per-record basis rather than on a per-file
basis and so do not need serialization. However, you may
have a special use for serialization. If you choose to include
a database view, you must specify the source of the data.

NOTENOTE

Database support

Sets the level of database support for your project.

Under Database Support, if you select either Database view without file support or Database view with file
support, the view class derivation differs, depending on your Client type selection, as follows:

If you select ODBC under Client type, then the application's view class derives from CRecordView.
This class is associated with a CRecordset-derived class, which the MFC Application Wizard also
creates for you. This option gives you a form-based application in which the record view is used to
view and update records through its recordset.

If you select OLE DB under Client type, then the view class derives from COleDBRecordView, and it

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/database-support-mfc-application-wizard.md

OPTION DESCRIPTION

OLE DB When this option is selected, clicking the Data Source
button invokes the Data Link Properties wizard to help
you create a connection to an OLE DB data source.

ODBC When this option is selected, clicking the Data Source
button invokes the Select Data Source wizard to help
you create a connection to an ODBC data source.

OPTION DESCRIPTION

Data Link Properties (OLE DB) Establishes the specified data source using the specified
OLE DB provider. You must specify the OLE DB provider,
the location of the data, the data source, logon ID, and
(optionally) a password. For details on this dialog box, see
Data source in ATL OLE DB Consumer Wizard.

Select Data Source (ODBC) Establishes the specified data source using the specified
ODBC driver. You must select a data source name to
choose a table for the data source. The wizard binds all
columns of the table to the member variables of a
CRecordset -derived class. For details on this dialog box,

see Data source in MFC ODBC Consumer Wizard.

NOTENOTE

is associated with a CTable or CCommand-derived class.

Client type

Indicates whether your project uses OLE DB or ODBC classes.

Data Source

Click the Data Source button to set up a data source using the specified driver or provider and database. If
you selected OLE DB in the Client type option, this button displays the Data Link Properties dialog box.
If you selected ODBC in the Client type option, this button provides the Select Data Source dialog box.
This option is available only if you choose to include a database view in your application.

In previous releases, Shift-clicking the Data Source button opened a File Open dialog to allow you to select a Data
Link (.udl) file. This functionality is no longer supported.

Generate attributed database class

Available for OLE DB client only. Specifies whether the database classes in the generated project use
attributes.

Bind all columns

Available for ODBC client only. Specifies whether all columns in the selected table are bound. If you select
this box, all columns are bound; if you do not select this box, no columns are bound, and you must bind
them manually in the recordset class.

Type

Available for ODBC client only. Specifies whether the recordset is a dynaset or a snapshot, as described in
the following table.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ctable-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ccommand-class

See also

OPTION DESCRIPTION

Dynaset Specifies that the recordset is a dynaset. A dynaset is the
result of a query that provides an indexed view into the
queried database's data. A dynaset caches only an integral
index to the original data and thus offers a performance
gain over a snapshot. The index points directly to each
record found as a result of a query and indicates if a
record is removed. You also have access to updated
information in the queried records.

Snapshot Specifies that the recordset is a snapshot. A snapshot is
the result of a query and is a view into a database at one
point in time. All records found as a result of the query are
cached, so you do not see any changes to the original
records.

MFC Application Wizard

User Interface Features, MFC Application Wizard
3/4/2019 • 3 minutes to read • Edit Online

This topic explains the options that you can use to specify the look of your application. The user interface features
available for your project depend on the type of application you specified in the Application Type, MFC Application
Wizard page of the MFC Application Wizard. For example, if you create a single document interface application,
you cannot add child frame styles.

OPTION DESCRIPTION

Thick frame Creates a window that has a sizing border. The default.

Minimize box Includes a minimize box in the main frame window. The
default.

Maximize box Includes a maximize box in the main frame window. The
default.

Minimized Opens the main frame window as an icon.

Maximized Opens the main frame window to the full size of the
display.

System menu Includes a system menu in the main frame window. The
default.

About box Includes an About box for the application. The user can
access this box from the application's Help menu. The
default, and unchangeable unless you select Dialog
based, in the Application Type, MFC Application Wizard
page.

Note Usually, an unavailable option indicates that the
wizard does not apply the option to the project, whether
the unavailable item's check box is selected or cleared. In
this case, the wizard always adds an About box to the
project unless you first specify the project as dialog based
and then uncheck the box.

Initial status bar Adds a status bar to your application. The status bar
contains automatic indicators for the keyboard's CAPS
LOCK, NUM LOCK, and SCROLL LOCK keys and a
message line that displays help strings for menu
commands and toolbar buttons. Clicking this option also
adds menu commands to display or hide the status bar. By
default, an application has a status bar. Not available for
dialog-based application types.

Main frame styles

Sets the features of your application's main window frame.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/user-interface-features-mfc-application-wizard.md

Split window Provides a splitter bar. The splitter bar splits the
application's main views. In a multiple document interface
(MDI) application, the MDI child frame's client window is a
splitter window, and in a single document interface (SDI)
application and multiple top level document application,
the main frame's client window is a splitter window. Not
available for dialog-based application types.

OPTION DESCRIPTION

OPTION DESCRIPTION

Child minimize box Specifies whether a child window has a minimize button
(enabled by default).

Child maximize box Specifies whether a child window has a maximize button
(enabled by default).

Child maximized Specifies whether a child window is initially maximized by
setting the cs.style flag WS_MAXIMIZE in the
PreCreateWindow member function of CChildFrame .

OPTION DESCRIPTION

Use a classic menu Specifies that your application contains a classic, non-
draggable menu.

Use a classic docking toolbar Adds a standard Windows toolbar to your application. The
toolbar contains buttons for creating a new document;
opening and saving document files; cutting copying,
pasting, or printing text; and entering Help mode.
Enabling this option also adds menu commands to display
or hide the toolbar.

Use a browser style toolbar Adds an Internet Explorer-style toolbar to your
application.

Use a menu bar and toolbar Indicates that your application contains a draggable menu
bar and a toolbar.

User-defined toolbars and images Allows the user to customize the toolbar and the toolbar
images at runtime.

Personalized menu behavior Specifies whether the menu contains the full list of items
when opened, or if it contains only the commands that
the user most frequently uses.

Child frame styles

Specifies the appearance and initial state of the child frames in your application. Child frame styles are
available for MDI applications only.

Command bars (menu/toolbar/ribbon)

Indicates whether your application includes menus, toolbars, and/or a ribbon. Not available for dialog-
based applications.

See also

Use a ribbon Uses an Office 2007-like ribbon in your application instead
of a menu bar or toolbar.

OPTION DESCRIPTION

Dialog title

For CDialog Class-based applications only, this title appears in the title bar of the dialog box. To edit this
field, you must first select the Dialog based option under Application type. For more information, see
Application Type, MFC Application Wizard.

MFC Application Wizard

Advanced Features, MFC Application Wizard
3/4/2019 • 2 minutes to read • Edit Online

This topic lists options for additional features for your application, such as Help, printing support, and so on. In
each section, specify additional support for these advanced features.

Context-sensitive help (HTML)

Generates a set of help files for context-sensitive help, available by using F1 and a Help menu, or by clicking
a Help button on a dialog box. Help support requires the help compiler. If you do not have the help
compiler, you can install it by rerunning Setup.

See HTML Help: Context-Sensitive Help for Your Programs and Help Files (HTML Help) for more
information.

Printing and print preview

Generates the code to handle the print, print setup and print preview commands by calling member
functions in the CView Class from the MFC library. The wizard also adds commands for these functions to
the application's menu. Printing support is available only for applications that specify Document/view
architecture support in the Application Type, MFC Application Wizard page of the wizard. By default,
document/view applications have printing support.

Automation

Specifies that the application can handle objects that are implemented in another application, or exposes
the application to Automation clients.

ActiveX controls

Supports ActiveX controls (default). If you do not select this option and later want to insert ActiveX controls
into your project, you must add a call to AfxEnableControlContainer in your application's
CWinApp::InitInstance member function.

MAPI (Messaging API)

Specifies that the application can create, manipulate, transfer, and store mail messages.

Windows sockets

Supports Windows sockets, which you can use to write applications that communicate over TCP/IP
networks.

Active Accessibility

Adds support for IAccessible to CWnd-derived classes, which you can use to customize the user interface
for better interaction with accessibility clients.

Common Control Manifest

Enabled by default. Generates an application manifest to enable the Common Control DLL that is included
with Microsoft Windows XP and newer operating systems.

Version 6 of the Common Control DLL does not automatically update the earlier version of the Common
Controls that your existing applications use. To use version 6 of the Common Control DLL, you must create
an application manifest that directs your application to load the DLL. This Common Control DLL also

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/advanced-features-mfc-application-wizard.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/help-files-html-help
https://docs.microsoft.com/windows/desktop/api/oleacc/nn-oleacc-iaccessible

See also

OPTION DESCRIPTION

Explorer docking pane Creates a docking pane that resembles the Visual Studio
Solution Explorer to the left of the main frame window.

Output docking frame Creates a docking pane that resembles the Visual Studio
Output pane that is located under the main frame
window.

Properties docking pane Creates a docking pane that resembles the Visual Studio
Properties pane to the right of the main frame window.

Navigation pane Creates a docking pane that resembles the Outlook
navigation bar and is located to the left of the main frame
window.

Caption bar Creates an Office-style caption bar above the main frame
window.

supports the Windows XP themes.

An application manifest can also specify other DLLs and versions that your application needs. For more
information about application manifests, see Isolated Applications and Side-by-Side Assemblies in the
Windows SDK.

Support Restart Manager

Adds support for the Windows Restart Manager. This video shows how to use the Restart Manager from
MFC: How Do I: Use the New Restart Manager.

Advanced frame panes

Number of files on recent file list

Specifies the number of files to be listed on the most recently used list. The default number is 4.

MFC Application Wizard

https://docs.microsoft.com/windows/desktop/SbsCs/isolated-applications-and-side-by-side-assemblies-portal
https://docs.microsoft.com/windows/desktop/RstMgr/using-restart-manager
https://docs.microsoft.com/previous-versions/visualstudio/visual-studio-2010/dd831853(v%3dvs.100)

Generated Classes, MFC Application Wizard
3/4/2019 • 2 minutes to read • Edit Online

See also

This topic lists the names of base classes and files that your project generates. By default, the names are based on
the project name that you specified in the New Project Dialog Box. You can change most of these names, as
described here:

Generated classes

The names of the classes created for the project. By default, the names are based on the project name. The
default MFC project creates a CProjNameView class, a CProjNameApp class, a CProjNameDoc class, a
CMainFrame class, and a CChildFrame class. All other values on this page contain information about the
class currently selected in the Generated classes list.

To change a class name, use the Class Name text box.

Class name

The name of the class that is currently selected in the Generated classes list. If the box is active, you can
change the class name. When you change the focus from the Class Name box, any change to the selected
class name appears in the Generated classes list.

.h file

The name of the header file of the class that is currently selected in the Generated classes list. If the text
box is active, you can change the name of the header file.

Base class

The name of the base class of the currently selected class in the Generated classes list. If the box is active,
you can select from the list another class for the base class.

.cpp file

The name of the source code file that is associated with the selected class. If the text box is active, you can
change the name of the implementation file.

Advanced Features, MFC Application Wizard
File Types Created for Visual C++ Projects

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/generated-classes-mfc-application-wizard.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/file-types-created-for-visual-cpp-projects

Creating a Forms-Based MFC Application
3/4/2019 • 2 minutes to read • Edit Online

To begin creating a forms-based MFC executableTo begin creating a forms-based MFC executable

A form is a dialog box with controls that let a user access and possibly change data. You may want to develop an
application in which the user selects from a selection of forms. Commonly, a forms-based application lets the user
access forms by click New from the File menu. A dialog-based application, which does not give users access to a
New option in the File menu, is also considered a forms-based application.

A single document interface (SDI), forms-based application allows only one instance of a particular form to run at
a time. It is possible to run different forms at the same time from an SDI forms-based application by selecting a
new form from the New option in the File menu.

If you create a multiple document interface (MDI), forms-based application, the application will be able to support
multiple instances of the same form.

If you create an application with multiple top-level document support, the desktop is the implicit parent for the
document and the document's frame is not restricted to the client area of the application. You can open multiple
instances of the document, each with its own frame, menu, and task bar icon. You can close subsequent instances
of documents individually, but if you select the Exit option from the File menu of the initial instance, the
application closes all instances.

SDI, MDI, and multiple top-level document applications are all forms based and use the document/view
architecture.

Any dialog-based application, by definition, is forms based. A dialog-based application does not use the
document/view architecture, so you must manage the creation and access methods for your own additional
forms.

The base class for form-based applications is CFormView. If your application has database support, then you can
also select any class that derives from CFormView . A form is any window derived from CFormView or from any
class that inherits from CFormView .

Even if you use a base class such as CView, you can later make your applications forms-based by adding an MFC
class derived from CFormView and checking the Generate DocTemplate resources checkbox in the MFC Class
Wizard.

Once you finish with the wizard, your project opens, and if you selected CFormView (or a class that inherits from
CFormView) as your base class or if you created a dialog-based application, Visual C++ opens the dialog editor. At

this point, you are ready to design your first form.

1. Follow the directions in Creating an MFC Application.

2. In the MFC Application Wizard Application Type page, select the Document/view architecture support
check box.

3. Select Single document, Multiple documents, or Multiple top-level documents.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/creating-a-forms-based-mfc-application.md

See also

NOTENOTE
If you chose a SDI, MDI, or multiple top-level document interface application, by default, CView is set as the base
class for your application's view in the Generated Classes page of the wizard. To create a forms-based application,
you must select CFormView as the base class for the application's view. Note that the wizard provides no printing
support for a forms-based application.

4. Set any other project options you want on the other pages of the wizard.

5. Click Finish to generate the skeleton application.

For more information, see:

Derived View Classes

Alternatives to the Document/View Architecture

Application Design Choices

MFC Application Wizard
Form Views
Creating a File Explorer-Style MFC Application
Creating a Web Browser-Style MFC Application

Creating a File Explorer-Style MFC Application
3/4/2019 • 2 minutes to read • Edit Online

To begin creating a File Explorer-style MFC executableTo begin creating a File Explorer-style MFC executable

See also

Many Windows system applications use the user interface (UI) for File Explorer. When you start File Explorer, for
example, you see an application with a vertical splitter bar dividing the client area. The left side of the client area
provides navigation and browsing features, and the right side of the client area shows details pertinent to the
selection in the left pane. When a user clicks an item in the left pane, the application repopulates the right pane. In
an MDI application, you can use commands on the View menu to change the amount of detail shown in the right
pane. (In an SDI or multiple top-level document application, you can change the detail using the toolbar buttons
only.)

The contents of the panes depend on the application. In a file-system browser, the left pane shows a hierarchical
view of directories or machines, or machine groups, while the right pane displays folders, individual files, or
machines, and details about them. The contents do not necessarily have to be files. They could be e-mail
messages, error reports, or other items in a database.

The wizard creates the following classes for you:

The CLeftView class defines the left pane of the client area. It is always derived from CTreeView.

The CProjNameView class defines the right pane of the client area. By default, it is derived from CListView
but can be another type of view depending on the class you specify from the Base class list in the
Generated Classes page of the wizard.

The generated application can have a single document interface (SDI), a multiple document interface (MDI), or a
multiple top-level documents architecture. Each frame window the application creates is vertically split using
CSplitterWnd. Coding this application type is similar to coding a normal MFC application that uses a splitter,
except that this type of application has separate control views within each splitter pane.

If you use the default list view in the right pane, the wizard creates additional menu choices (in MDI applications
only) and toolbar buttons to switch the view's style among large icons, small icons, list, and detail modes.

1. Follow the directions in Creating an MFC Application.

2. In the MFC Application Wizard Application Type page, select the File Explorer project style.

3. Set any other options you desire on the other pages of the wizard.

4. Click Finish to generate the skeleton application.

For more information, see:

Multiple Document Types, Views, and Frame Windows

Derived View Classes

Application Design Choices

MFC Application Wizard
Creating a Web Browser-Style MFC Application
Creating a Forms-Based MFC Application

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/creating-a-file-explorer-style-mfc-application.md

Creating a Web Browser-Style MFC Application
3/4/2019 • 2 minutes to read • Edit Online

To create a Web browser application based on the MFC document/view architectureTo create a Web browser application based on the MFC document/view architecture

NOTENOTE

A Web browser-style application can access information from the Internet (such as HTML or active documents) or
an intranet, as well as folders in the local file system and on a network. By deriving the application's view class
from CHtmlView, effectively you make the application a Web browser by providing the view with the
WebBrowser control.

1. Follow the directions in Creating an MFC Application.

2. In the MFC Application Wizard Application Type page, make certain that the Document/view
architecture box is selected. (You can choose either Single document or Multiple documents, but not
Dialog based.)

3. On the Review Generated Classes page, use the Base class drop-down menu to select CHtmlView .

4. Select any other options you want built into the skeleton application.

5. Click Finish.

The WebBrowser control supports Web browsing through hyperlinks and Uniform Resource Locator (URL)
navigation. The control maintains a history list that allows the user to browse forward and backward through
previously browsed sites, folders, and documents. The control directly handles the navigation, hyperlinks, history
lists, favorites, and security. Applications can use the WebBrowser control as an active document container to host
active documents as well. Thus, richly formatted documents such as Microsoft Excel spreadsheets or Word
documents can be opened and edited in place from within the WebBrowser control. The WebBrowser control is
also an ActiveX control container that can host any ActiveX control.

The WebBrowser ActiveX control (and therefore CHtmlView) is available only to applications running under Windows
versions in which Internet Explorer 4.0 or later has been installed.

Because CHtmlView simply implements the Microsoft Web browser control, its support for printing is not like
other CView-derived classes. Rather, the WebBrowser control implements the printer user interface and printing.
As a result, CHtmlView does not support print preview, and the framework does not provide for other printing
support functions: for example, CView::OnPreparePrinting, CView::OnBeginPrinting, and CView::OnEndPrinting,
which are available in other MFC applications.

CHtmlView acts as a wrapper for the Web browser control, which gives your application a view onto a Web or an
HTML page. The wizard creates an override to the OnInitialUpdate function in the view class, providing a
navigational link to the Microsoft Visual C++ Web site:

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/creating-a-web-browser-style-mfc-application.md

void CWebView::OnInitialUpdate()
{
 CHtmlView::OnInitialUpdate();

 // TODO: This code navigates to a popular spot on the web.
 // Change the code to go where you'd like.
 Navigate2(_T("http://www.msdn.microsoft.com/vstudio/"),
 NULL,
 NULL);
}

void CWebView::OnInitialUpdate()
{
 CHtmlView::OnInitialUpdate();

 // TODO: This code navigates to a popular spot on the web.
 // Change the code to go where you'd like.
 LoadFromResource(IDR_HTML1);
}

See also

You can replace this site with one of your own, or you can use the LoadFromResource member function to open
an HTML page that resides in the project's resource script as the default content for the view. For example:

MFC Sample MFCIE
MFC Application Wizard
Working with Project Properties
Property Pages
Working with Project Properties

https://github.com/Microsoft/VCSamples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/working-with-project-properties
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/property-pages-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/working-with-project-properties

Creating an MFC ActiveX Control Container
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

To create an ActiveX container for any of the following types of applicationsTo create an ActiveX container for any of the following types of applications

See also

An ActiveX control container is a parent program that supplies the environment for an ActiveX (formerly OLE)
control to run. You can create an application capable of containing ActiveX controls with or without MFC, but it is
much easier to do with MFC.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

Creating an MFC container program using the MFC Application Wizard allows you to access the many features of
ActiveX controls and Automation that are implemented by the MFC and ActiveX classes. These features include
visual editing, Automation, creating compound files, and support for controls. The MFC Application Wizard visual
editing options that your parent program will support include creating a container, a mini-server, a full-server, and
a program that is both a container and a server.

New MFC Application. To create a new MFC program that includes Automation, visual editing,
compound files, or control support, use the MFC Application Wizard and choose the appropriate
Automation options.

Existing MFC Application. If you are adding control containment to an existing MFC application, see
OLE Control Containers: Manually Enabling OLE Control Containment.

1. Containers

2. Visual editing

3. MFC ActiveX controls

Visual C++ Project Types

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/creating-an-mfc-activex-control-container.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/visual-cpp-project-types

Creating an MFC ActiveX Control
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

To create an MFC ActiveX Control using the MFC ActiveX Control WizardTo create an MFC ActiveX Control using the MFC ActiveX Control Wizard

See also

ActiveX control programs are modular programs designed to give a specific type of functionality to a parent
application. For example, you can create a control such as a button for use in a dialog, or toolbar for use in a Web
page.

ActiveX is a legacy technology that should not be used for new development. For more information, see ActiveX Controls.

The easiest way to create an MFC ActiveX control is to use the MFC ActiveX Control Wizard.

NOTENOTE

1. Follow the instructions in the help topic Creating a Project with a Visual C++ Application Wizard.

2. In the New Project dialog box, select the MFC ActiveX Control icon in the Templates pane to open the
MFC ActiveX Control Wizard.

3. Define your application settings, control names, and control settings using the MFC ActiveX Control
Wizard.

Skip this step to keep the wizard default settings.

4. Click Finish to close the wizard and open your new project in the development environment.

After you have created your project, you can view the files created in Solution Explorer. For more information
about the files the wizard creates for your project, see the project-generated file ReadMe.txt. For more information
about the file types, see File Types Created for Visual C++ Projects.

After you have created your project, you can use the code wizards to add functions, variables, events, properties,
and methods. For more information about customizing your ActiveX control, see MFC ActiveX Controls.

Adding Functionality with Code Wizards
Property Pages

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/creating-an-mfc-activex-control.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-desktop-projects-by-using-application-wizards
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/file-types-created-for-visual-cpp-projects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-member-function-wizard
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-member-variable-wizard
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-event-wizard
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/names-add-property-wizard
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-method-wizard
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/property-pages-visual-cpp

MFC ActiveX Control Wizard
3/4/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Overview

An ActiveX control is a specific type of automation server; it is a reusable component. The application hosting
the ActiveX control is the automation client of that control. If your goal is to create such a reusable component,
then use this wizard to create your control. See MFC ActiveX Controls for more information.

ActiveX is a legacy technology that should not be used for new development. For more information about modern
technologies that supersede ActiveX, see ActiveX Controls.

Alternately, you can create an automation server MFC application using the MFC Application Wizard.

An ActiveX control created with this wizard can have a user interface, or it can be invisible. You can indicate this
option in the Control Settings page in the wizard. A timer control is an example of an ActiveX control that you
would want to be invisible.

ActiveX controls can have a complex user interface. Some controls might be like encapsulated forms: a single
control containing many fields, each a Windows control in its own right. For example, an auto parts object
implemented as an MFC ActiveX control might present a form-like user interface through which users could
read and edit the part number, part name, and other information. See MFC ActiveX Controls for more
information.

If you need to create a container for your ActiveX objects, see Create an ActiveX Control Container.

The MFC starter program includes C++ source (.cpp) files, resource (.rc) files, and a project (.vcxproj) file. The
code generated in these starter files is based on MFC.

The following sample list shows tasks and types of enhancements for your ActiveX control:

Optimizing an ActiveX Control

Adding Stock Events to an ActiveX Control

Adding Custom Events

Adding Stock Methods

Adding Custom Methods

Adding Stock Properties

Adding Custom Properties

Programming ActiveX Controls in an ActiveX Control Container

This wizard page describes the current application settings for the MFC ActiveX control project you are
creating. By default, the wizard creates a project as follows:

The default project generates no run-time license or help files. You can change these default settings on
the Application Settings page. Only the selections you make on this page of the ActiveX Control Wizard
are reflected on the Overview page.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/mfc-activex-control-wizard.md

See also

The project includes a control class and a property page class, based on the name of the project. You can
edit the names of your project and file names on the Control Names page.

The control is based on no existing Windows control, activates when it becomes visible, has a user
interface, and includes an About dialog box. You can change these default settings on the Control
Settings page.

Creating and Managing Visual C++ Projects
Visual C++ Project Types
Concepts

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-and-managing-visual-cpp-projects
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/visual-cpp-project-types

Application Settings, MFC ActiveX Control Wizard
3/4/2019 • 2 minutes to read • Edit Online

See also

Use this page of the MFC ActiveX Control Wizard to design and add basic features to a new MFC ActiveX project.
These settings apply to the application itself and not to any specific feature or element of the control.

NOTENOTE

Run-time license

Select this option to generate a user license file to distribute with the control. The license is a text file,
projname.lic. This file must be in the same directory as the control's DLL to allow an instance of the control
to be created in a design-time environment. You usually distribute this file with your control, but your
customers do not distribute it.

Generate help files

Select this option to generate stubbed help files and configure the project to include help for your control. A
default project, created without this option, generates only an About box that is displayed when the user
right clicks the control, uses F1, or clicks Help on the control's container.

How help is displayed depends on how your control interacts with its container. If you include help with your
container, you must handle messages between the control and the container to display the help appropriately.

When you generate help files using the wizard, your project includes the following:

The file .vcxproj contains code to build and configure the help file when the project is built.

The file projnamePropPage.cpp file includes a SetHelpInfo function in the constructor.

The file projname.hpj, is the help project file used by the help compiler to create the ActiveX control's
help file. The .hpj file is a text file containing the information about building your help file and the
paths to the additional files (for example, bitmaps) the help file includes.

The project includes the HLP directory to contain the project help bitmap files and the help topic file
(projname.rtf). This help topic file contains the standard help topics for the common properties,
events, and methods supported by many ActiveX controls. You can edit the .rtf file to add or remove
specific help topics.

MFC ActiveX Control Wizard
Control Names, MFC ActiveX Control Wizard
Control Settings, MFC ActiveX Control Wizard

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/application-settings-mfc-activex-control-wizard.md

Control Names, MFC ActiveX Control Wizard
3/4/2019 • 3 minutes to read • Edit Online

Specify the names for the control class and property page class, the type names, and type identifiers for your
control. With the exception of Short name, all other fields can be edited independently. If you change the text for
Short name, the change is reflected in the names of all other fields in this page. This naming behavior is designed
to make all the names easily identifiable for you as you develop your control.

Short name

Provide an abbreviated name for the control. By default, this name is based on the project name you
provided in the New Project dialog box. The name you provide determines the class names, the type
names, and the type identifiers, unless you change those fields individually.

Control class name

By default, the name of the control class is based on the short name, with C as a prefix and Ctrl as a
suffix. For example, if your control's short name is Price , the control class name is CPriceCtrl .

Control .h file

By default, the name of the header file is based on the short name, with Ctrl as a suffix and .h as the file
extension. For example, if your control's short name is Price , the header file name is PriceCtrl.h . The
name in this field should match the control class name.

Control .cpp file

By default, the name of the header file is based on the short name, with Ctrl as a suffix and .cpp as the
file extension. For example, if your control's short name is Price , the header file name is PriceCtrl.cpp .
The name in this field should match the header name.

Control type name

By default, the name of the control type is based on the short name, followed by Control . For example, if
your control's short name is Price , the control class type name is Price Control . If you change the value
in this field, make sure the name indicates an inheritance.

Control type ID

Sets the control type ID of the control class. The control writes this string to the registry when it is added to
a project. Container applications use this string to create an instance of the control.

By default, the control type ID is based on the project name, which you indicated in the New Project dialog
box, and the short name. This name should match the type name.

By default, the control type ID appears as follows:

ProjectName.ShortNameCtrl.1

If you change the short name in this dialog box, the control type ID appears as follows:

ProjectName.NewShortNameCtrl.1

PropPage class name

By default, the name of the property page class is based on the short name, with C as a prefix and

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/control-names-mfc-activex-control-wizard.md

See also

PropPage as a suffix. For example, if your control's short name is Price , the property page class name is
CPricePropPage . This name should match the control class name, appended with PropPage .

PropPage .h file

By default, the name of the property page header file is based on the short name, with as a PropPage as a
suffix and .h as the file extension. For example, if your control's short name is Price , the property page
header file name is PricePropPage.h . This name should match the class name.

PropPage .cpp file

By default, the name of the property page implementation file is based on the short name, with as a
PropPage as a suffix and .cpp as the file extension. For example, if your control's short name is Price , the

property page header file name is PricePropPage.cpp . This name should match the header file name.

PropPage type name

By default, the property page type name is based on the short name, followed by Property Page . For
example, if your control's short name is Price , the property page type name is Price Property Page . If you
change the value in this field, make sure the name indicates the control class.

PropPage type ID

Sets the ID of the property page class. The control writes this string in the registry when it is applied to a
project. A container application uses this string to create an instance of the control's property page.

By default, the property page type ID is based on the project name, which you indicated in the New
Project dialog box, and the short name. This name should match the type name.

By default, the property page type ID appears as follows:

ProjectName.ShortNamePropPage.1

If you change the short name in this dialog box, the property page type ID appears as follows:

ProjectName.NewShortNamePropPage.1

MFC ActiveX Control Wizard
Application Settings, MFC ActiveX Control Wizard
Control Settings, MFC ActiveX Control Wizard
File Types Created for Visual C++ Projects

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/file-types-created-for-visual-cpp-projects

Control Settings, MFC ActiveX Control Wizard
3/4/2019 • 4 minutes to read • Edit Online

UIElement List

Use this page of the wizard to specify how you want the control to behave. For example, you can base the
control on standard Windows control types, optimize its behavior and appearance, or indicate that the control
can act as a container for other controls.

For more information about how to select options on this page to maximize the efficiency of the control, see
MFC ActiveX Controls: Optimization.

CONTROL DESCRIPTION

BUTTON A Windows button control

COMBOBOX A Windows combo box control

EDIT A Windows edit box control

LISTBOX A Windows list box control

SCROLLBAR A Windows scroll bar control

STATIC A Windows static control

msctls_hotkey32 A hot key common control

msctls_progress32 A progress bar common control

msctls_statusbar32 A status bar common control

msctls_trackbar32 A track bar common control

msctls_updown32 A spin button (or up-down) common control

SysAnimate32 An animation common control

SysHeader32 A header common control

SysListView32 A list view common control

Create control based on

On this list, you can select the kind of control from which your control should inherit. The list is a subset
of the control classes that are available for CreateWindowEx and additional common controls that are
specified in commctrl.h. Your selection determines the style of the control in the PreCreateWindow function
in the ProjNameCtrl.cpp file. For more information, see MFC ActiveX Controls: Subclassing a Windows
Control.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/control-settings-mfc-activex-control-wizard.md

SysTabControl32 A tab common control

SysTreeView32 A tree view common control

CONTROL DESCRIPTION

NOTENOTE

Activates when visible

Specifies that a window is created for the control when it is accessed. By default, the Activates when
visible option is selected. If you want to defer control activation until the container requires it (for
example, when a user clicks the mouse), clear this option. When this feature is off, the control does not
incur the expense of window creation until it is required. For more information, see Turning off the
Activate When Visible Option.

Invisible at run time

Specifies that the control has no user interface at run time. A timer is a kind of control that you might
want to be invisible.

Has an About box dialog

Specifies that the control has the standard Windows About dialog box, which displays version number
and copyright information.

How the user accesses help for the control depends on how you have implemented the help and whether you
have integrated the control help with the container help. For more information about how to integrate help, on
the MSDN Library website, search for "Adding Context-Sensitive Help to an MFC ActiveX Control".

When you select this option, it inserts the AboutBox control method in the project control class
(CProjNameCtrl.cpp) and adds AboutBox to the project dispatch map. By default, this option is selected.

Optimized drawing code

Specifies that the container restores the original GDI objects automatically after all the container controls,
which are drawn to the same device context, have been drawn. For more information about this feature,
see Optimizing Control Drawing.

Windowless activation

Specifies that the control does not produce a window when it is activated. Windowless activation allows
for nonrectangular or transparent controls, and a windowless control requires less system overhead than
a control that has a window requires. A windowless control does not allow for an unclipped device
context or flicker-free activation. Containers that were created before 1996 do not support windowless
activation. For more information about how to use this option, see Providing Windowless Activation.

Unclipped device context

Overrides COleControl::GetControlFlags in the control header (projnamectrl.h) to disable the call to
IntersectClipRect made by COleControl . When you select this option, it provides a small speed

advantage. If you select Windowless activation, this feature is not available. For more information, see
Using an Unclipped Device Context.

Flicker-free activation

Eliminates the drawing operations and the accompanying visual flicker that occur between the active and

http://go.microsoft.com/fwlink/p/?linkid=150542

See also

inactive states of the control. If you select Windowless activation, this feature is not available. When
you set this option, the noFlickerActivate flag is one of the flags that are returned by
COleControl::GetControlFlags. For more information, see Providing Flicker-Free Activation.

Available in Insert Object dialog

Specifies that the control will be available in the Insert Object dialog box for enabled containers. When
you select this option, the afxRegInsertable flag is one of the flags that are returned by
AfxOleRegisterControlClass . By using the Insert Object dialog box, a user can insert newly created or

existing objects into a compound document.

Mouse pointer notifications when inactive

Enables the control to process mouse pointer notifications, whether control is active or not. When you
select this option, the pointerInactive flag is one of the flags that are returned by
COleControl::GetControlFlags. For more information about how to use this option, see Providing Mouse
Interaction While Inactive.

Acts as a simple frame control

Specifies that the control is a container for other controls by setting the OLEMISC_SIMPLEFRAME bit
for the control. For more information, on the MSDN Library website, search for "Simple Frame Site
Containment".

Loads properties asynchronously

Enables a reset of any previous asynchronous data and initiates a new load of the asynchronous property
of the control.

MFC ActiveX Control Wizard
Application Settings, MFC ActiveX Control Wizard
Control Names, MFC ActiveX Control Wizard

http://go.microsoft.com/fwlink/p/?linkid=150542

Adding an MFC Class
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To add an MFC class to your projectTo add an MFC class to your project

See also

To add classes derived from Microsoft Foundation Class (MFC) library classes to your project, use the Add Class
command available from Class View. Specify the name of the new class, select the base class, and select the ID of
the dialog box with which it is associated (if any). The code wizard creates a header file and an implementation
file and adds them to your project.

You can add MFC classes to an ATL COM application if you initially created the application with MFC support. You can also
add MFC classes to Win32 projects that have MFC support.

1. From Class View, right-click the project name. Click Add and then click Add Class to open the Add Class
dialog box.

2. In the Templates pane, select MFC Class and press the Add button.

3. Define the settings for the new class in the MFC Class Wizard dialog box.

4. Click Finish to close the wizard and view the new class in Class View. You can also view the files created
by the wizard in Solution Explorer.

Adding Functionality with Code Wizards
Adding a Class
Class Overview

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/adding-an-mfc-class.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp

MFC Add Class Wizard
3/4/2019 • 5 minutes to read • Edit Online

Names

Use this code wizard to add a class to an existing MFC project, or to add a class to an ATL project that supports
MFC. You can also add MFC classes to Win32 projects that have MFC support. The features you specified when
you created your project determine the options available in this dialog box.

In this page, specify the class name, the base class, and file names for the new class.

NOTENOTE

Class name

Specifies the name of the new class and provides the default basis for the names of IDs and files on this
page. C++ classes typically start with "C", so for example, "CMyClass" becomes "MyClass.h", and so on.

Base class

Specifies the name of the base class for the new class. By default, the base class is CWnd. The base class
you select determines whether other boxes on this page are active.

The type of class you set as the base class determines whether the class has a dialog ID or a resource ID.
The general types of classes are as follows:

Classes such as CButton, CWnd, or CDocument, which do not require a dialog ID or resource ID.
These classes do not use a dialog or resource ID. If you select one of these classes for your base
class, the Dialog ID box and the DHTML resource ID box are dimmed.

Classes such as CDialog, CFormView, or CPropertyPage, which require a dialog ID.

The class CDHtmlDialog, which requires a dialog ID, a DHTML resource ID, and an HTML file name.

For classes requiring a dialog ID, you might find it more efficient to use the Resource editor to create the
dialog resource, assign its ID in the Properties window, and then create a class associated with that
resource ID. See Creating a New Dialog Box for more information on creating a standard Windows dialog
box.

If you create a dialog resource first and derive its new class from CDHtmlDialog , delete the standard Windows OK
and Cancel buttons that appear on the default dialog box. The standard Windows dialog box hosts the DHTML
form, which contains its own OK and Cancel buttons.

While your dialog box can contain both Windows controls and DHTML controls, it is not recommended.

Dialog ID

Specifies the ID of the dialog, if you selected CDialog , CFormView , CPropertyPage , or CDHtmlDialog as the
Base class.

.h file

Sets the name of the header file for the new object's class. By default, this name is based on the name you
provide in Class name. Click the ellipsis button to save the file name to the location of your choice, or to

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/mfc-add-class-wizard.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window

OPTION DESCRIPTION

None Indicates that the class has no Automation support.

Automation Indicates that the class supports Automation. If you select
this option, the newly created class is available as a
programmable object by Automation client applications,
such as Microsoft Visual Basic and Microsoft Excel. This
option is not available for the base classes listed after this
table.

append the class declaration to an existing file. If you choose an existing file, the wizard will not save it to
the selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class declaration should be appended to the contents of the file.
Click Yes to append the file; click No to return to the wizard and specify another file name.

.cpp file

Sets the name of the implementation file for the new object's class. By default, this name is based on the
name you provide in Class name. Click the ellipsis button to save the file name to the location of your
choice. The file is not saved to the selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class implementation should be appended to the contents of
the file. Click Yes to append the file; click No to return to the wizard and specify another file name.

Active accessibility

Enables MFC's support for Active Accessibility by calling EnableActiveAccessibility in the constructor. This
option is available for classes derived from CWnd.

DHTML resource ID

Applies to classes derived from CDHtmlDialog only. Specifies the resource ID of the DHTML dialog box. The
resource ID appears in the HTML section of the project's .rc file, along with the HTML dialog box file name.
The DHTML resource, identified by this ID, is hosted by the dialog box, identified by Dialog ID .

.HTM file

Applies to classes derived from CDHtmlDialog only. Sets the name of the HTML file for the DHTML dialog
box. By default, this file name is based on the class name. The file name appears in the HTML section of the
project's .rc file, along with the DHTML dialog box resource ID.

Automation

Sets the class level of support for Automation. Automation at the class level is available for all classes that
support Automation. It is also available for projects created with support for Automation. That is, either an
MFC project that supports ATL , or an MFC project for which you selected the Automation check box in
the Advanced Features page of the MFC Application Wizard.

See also

Creatable by type ID Indicates that both the class and project support other
applications creating objects of this class using
Automation. With this option, automation clients can
directly create an Automation object. The type ID in the
text box is used by the client application to specify the
object to be created; it is systemwide and must be unique.
This option is not available for the base classes listed after
this table.

OPTION DESCRIPTION

Automation support is not available for the following base classes:

CAsyncMonitorFile

CAsyncSocket

CCachedDataPathProperty

CConnectionPoint

CDatabase

CDataPathProperty

CHttpFilter

CHttpServer

CInternetSession

CObject

CSocket

Type ID

Sets the type ID of the class. The Type ID box concatenates the project name and the new class name as
follows: MFCProj.MFCClass. This ID is changeable only if you selected the Automation option Creatable
by type ID .

Generate DocTemplate resources

Indicates that the documents created by the application have document template resources. To activate this
check box, the project must support the MFC document/view architecture, and the base class of this class
must be CFormView.

See Document Templates and the Document/View Creation Process for more information.

MFC Class
Adding a Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp

Document Template Strings, MFC Add Class Wizard
3/4/2019 • 3 minutes to read • Edit Online

NOTENOTE

Nonlocalized strings

Localized strings

This page of the wizard is available only for classes meeting the following criteria:

The MFC project supports the document/view architecture.

The base class of the new class is CFormView.

The check box Generate DocTemplate resources is checked on the Names section of the MFC Class
Wizard.

The wizard provides defaults for the following values to help with forms view design, management, and
localization. Because most document template strings are visible and used by the form's users, they are localized
into the Resource language indicated in the Application Types page of the MFC Application Wizard when the
project was created.

The wizard does not provide automatic printing support for classes derived from CFormView .

See Document Templates and the Document/View Creation Process for more information.

Applies to applications that create user documents. Users can open and save documents more easily if the
document type has a file extension and a file type ID. These items are not localized because they are used by the
system rather than by the user.

NOTENOTE

File extension

Sets the file extension associated with the document type for this forms application. The file extension
default based on the class name. For example, if the new MFC class is named CWidget , by default, the file
extension is .wid. The file extension is used in file filters and the Open and Save as dialog boxes.

If you change the file extension, the change is reflected in the Filter name box.

If you change the default file extension, do not include the period.

File type ID

Sets the label for your document type in the system registry.

Produces strings associated with the forms and documents that are read and used by the application's users, so the
strings are localized.

Doc type name

Identifies the type of document under which a document of the application can be grouped. By default, it is

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/document-template-strings-mfc-add-class-wizard.md

See also

based on the name of the class. For example, if the new MFC class is named CWidget, by default, the
document type name is Widget. Changing the default does not change any other options in this dialog box.

Filter name

Sets the name that users can indicate to find files of the specified file type. This option is available from the
Files of type and Save as type options in the standard Windows Open and Save as dialog boxes. By
default, the name is based on the project name plus Files, followed by the extension indicated in File
Extension. For example, if your project is named Widget, and the file extension is .wid, the Filter name is
Widget Files (*.wid) by default.

File new short name

Sets the name appearing in the standard Windows New dialog box, if the project has more than one
document template. If your application is an Automation server , this name is used as the short name of
your Automation object. By default, this name is based on the class name.

File type long name

Sets the file type name in the system registry. If your application is an Automation server, this name is used
as the long name of your Automation object. By default, this name is based on the class name plus
.Document. For example, if the class name is CWidget , the File type long name is Widget Document.

Document class

Indicates the project's document class. By default, this class is the main application's document class, as
listed in the Review Generated Classes page of the MFC Application Wizard. You can select another
document class from the list, if you have added other document classes in the project.

MFC Add Class Wizard
MFC Class
Adding a Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp

Adding an MFC Class from a Type Library
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To add an MFC class from a type libraryTo add an MFC class from a type library

See also

Use this wizard to create an MFC class from an interface in an available type library. You can add an MFC class to
an MFC application, an MFC DLL, or an MFC ActiveX control.

You do not need to create your MFC project with Automation enabled to add a class from a type library.

A type library contains a binary description of the interfaces exposed by a component, defining the methods along
with their parameters and return types. Your type library must be registered for it to appear in the Available type
libraries list in the Add Class from Typelib Wizard. See "Inside Distributed COM: Type Libraries and Language
Integration" in the MSDN library for more information.

1. In either Solution Explorer or Class View, right-click the name of the project to which you want to add the
class.

2. From the shortcut menu, click Add, and then click Add Class.

3. In the Add Class dialog box, in the Templates pane, click MFC Class from Typelib, and then click Open to
display the Add Class from Typelib Wizard.

In the wizard, you can add more than one class in a type library. Likewise, you can add classes from more than one
type library in a single wizard session.

The wizard creates an MFC class, derived from COleDispatchDriver, for each interface you add from the selected
type library. COleDispatchDriver implements the client side of OLE automation.

Automation Clients
Automation Clients: Using Type Libraries

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/adding-an-mfc-class-from-a-type-library.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-class-dialog-box

Add Class from Typelib Wizard
3/4/2019 • 3 minutes to read • Edit Online

WARNINGWARNING

Use this wizard to add an MFC class from an available type library. The wizard creates a class for each interface
you add from the selected type library.

In Visual Studio 2017 version 15.9 this code wizard is deprecated and will be removed in a future version of Visual Studio.
This wizard is rarely used. General support for ATL and MFC is not impacted by the removal of this wizard. If you would like
to share your feedback about this deprecation, please complete this survey. Your feedback matters to us.

OPTION DESCRIPTION

Registry The type library is registered in the system. Registered
type libraries are listed in Available type libraries.

File The type library is not necessarily registered in the system
but is contained in a file. You must provide the file location
in Location.

TRANSFER BUTTON DESCRIPTION

> Adds the interface currently selected in the Interfaces list.
Dimmed if no interface is selected.

>> Adds all the interfaces in the type library currently selected
in the Available type libraries list.

< Removes the class currently selected in the Generated
classes list. Dimmed if no class is currently selected in the
Generated classes list.

Add class from

Specifies the location of the type library, from which the class is created.

Available type libraries

Lists the type libraries currently registered in the system. Select a type library from this list to display its
interfaces in the Interfaces list.

See "Inside Distributed COM: Type Libraries and Language Integration" in the MSDN library for more
information about registering type libraries.

Location

Specifies the location of the type library. If you click File under Add Class From, you can provide the
location of the file containing the type library. To browse to the location of the file, click the ellipsis button.

Interfaces

Lists the interfaces in the type library currently selected in the Available type libraries list.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/add-class-from-typelib-wizard.md
https://www.surveymonkey.com/r/QDWKKCN

See also

<< Removes all the classes in the Generated classes list.
Dimmed if the Generated classes list is empty.

TRANSFER BUTTON DESCRIPTION

Generated classes

Specifies the class names to be generated from the interfaces added using the > or >> button. You can click
this box to select a class, and then use the up or down keys to scroll through the list, viewing each class
name in the Class box and file name in the File box that the wizard generates when you click Finish. You
can select only one class at a time in this box.

You can remove a class by selecting it in this list and clicking <. You do not need to select a class in the
Generated classes box to remove all classes; by clicking <<, you remove all classes in the Generated
classes box.

Class

Specifies the name of the class selected in the Generated classes box that the wizard adds when you click
Finish. You can edit the name in the Class box.

File

Sets the name of the header file for the new class. By default, this name is based on the name you provide in
Generated classes. Click the ellipsis button to save the file name to the location of your choice, or to
append the class declaration to an existing file. If you choose an existing file, the wizard will not save it to the
selected location until you click Finish in the wizard.

The wizard does not overwrite a file. If you select the name of an existing file, when you click Finish, the
wizard prompts you to indicate whether the class declaration should be appended to the contents of the file.
Click Yes to append the file; click No to return to the wizard and specify another file name.

MFC Class from a Type Library
Automation Clients: Using Type Libraries

Adding an MFC Message Handler
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

See also

You can use the Properties window to add a message handler (a member function that handles Windows
messages) to a class and map Windows messages to the message handler. You can also add an event handler for
any dialog box control.

By using the Properties window to define message- and event-handling functions, you can automatically update
the message-dispatch table (or message map) and your class header file.

You can add a message handler to an ATL class using the Properties window; however, some results may vary. For more
information, see the ATL topic Adding an ATL Message Handler.

Adding Functionality with Code Wizards
Adding a Class
Adding a Member Function
Adding a Member Variable
Overriding a Virtual Function
Navigating the Class Structure
Dialog Editor

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/adding-an-mfc-message-handler.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/adding-event-handlers-for-dialog-box-controls
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/overriding-a-virtual-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/navigating-the-class-structure-visual-cpp

Mapping Messages to Functions
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To define or remove a message handler using the Properties windowTo define or remove a message handler using the Properties window

See also

The Properties window enables you to bind message handlers (member functions of MFC user-interface
classes) to the messages generated by your application's resources. They use MFC message maps to create
the binding.

When you use Class View to create a new class derived from one of the framework classes, it automatically
places a complete and functional class in the header (.h) and implementation (.cpp) files that you specify.

To add a new class that does not handle messages, create the class directly in the text editor.

NOTENOTE

1. In Class View, click the class.

2. In the Properties window, click the Messages button.

The Messages button is available when you select either the class name in Class View or when you click within
the source window.

If your project has a handler for a message, then the name of the handler appears in the right column
next to the message.

3. If the message has no handler, then click the cell in the right column in the Properties window to
display the suggested name of the handler as <add>HandlerName. (For example, the WM_TIMER
message handler suggests <add> OnTimer).

4. Click the suggested name to add stub code for the function.

5. To edit a message handler, double-click the message in Class View and edit the code in the source
window.

To remove a message handler, double-click the handler in the right column and select
<delete>HandlerName. The function's code is commented out.

MFC Message Handler
Adding Functionality with Code Wizards
Adding a Class
Adding a Member Function
Adding a Member Variable
Overriding a Virtual Function
Adding Event Handlers for Dialog Box Controls
Navigating the Class Structure

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/mapping-messages-to-functions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/overriding-a-virtual-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/adding-event-handlers-for-dialog-box-controls
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/navigating-the-class-structure-visual-cpp

Message Types Associated with User-Interface
Objects
3/4/2019 • 2 minutes to read • Edit Online

User Interface Objects and Associated MessagesUser Interface Objects and Associated Messages

OBJECT ID MESSAGES

Class name, representing the containing window Windows messages appropriate to a CWnd-derived class: a
dialog box, window, child window, MDI child window, or
topmost frame window.

Menu or accelerator identifier - COMMAND message (executes the program function).
- UPDATE_COMMAND_UI message (dynamically updates the
menu item).

Control identifier Control notification messages for the selected control type.

See also

The following table shows the types of objects with which you work, and the types of messages associated with
them.

Mapping Messages to Functions
Adding Functionality with Code Wizards
Adding a Class
Adding a Member Function
Adding a Member Variable
Overriding a Virtual Function
MFC Message Handler
Navigating the Class Structure

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/message-types-associated-with-user-interface-objects.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/overriding-a-virtual-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/navigating-the-class-structure-visual-cpp

Editing a Message Handler
3/4/2019 • 2 minutes to read • Edit Online

See also

Once you have defined a message handler, you can go to the member function's definition to add or modify code.

To jump to a member function definition from the dialog editor, double-click a control for which a handler is
already defined. This navigates you to the file in which the selected control's message handler is defined.

To jump to a member function definition from Class View, double-click the function name in Class View.

Mapping Messages to Functions
Adding Functionality with Code Wizards
Adding a Class
Adding a Member Function
Adding a Member Variable
Overriding a Virtual Function
MFC Message Handler
Navigating the Class Structure

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/editing-a-message-handler.md
https://docs.microsoft.com/visualstudio/ide/viewing-the-structure-of-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/overriding-a-virtual-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/navigating-the-class-structure-visual-cpp

Defining a Message Handler for a Reflected Message
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

To define a message handler for a reflected message from the Properties windowTo define a message handler for a reflected message from the Properties window

See also

Once you have created a new MFC control class, you can define message handlers for it. Reflected message
handlers allow your control class to handle its own messages before the message is received by the parent. You
can use the MFC CWnd::SendMessage function to send messages from your control to a parent window.

With this functionality you could, for example, create a list box that will redraw itself rather than relying on the
parent window to do so (owner drawn). For more information on reflected messages, see Handling Reflected
Messages.

To create an ActiveX control with the same functionality, you must create a project for the ActiveX control.

You cannot add a reflected message (OCM_Message) for an ActiveX control using the Properties window, as described below.
You must add these messages manually.

1. Add a control, such as a list, a rebar control, a toolbar, or a tree control, to your MFC project.

2. In Class View, click the name of your control class.

3. In the Properties window, the control class name appears in the Class Name list.

4. Click the Messages button to display the Windows messages available to add to the control.

5. Scroll down the list of messages in the Properties window until you see the heading Reflected. Alternately,
click the Categories button and collapse the view to see the Reflected heading.

6. Select the reflected message for which you want to define a handler. Reflected messages are marked with
an equal sign (=).

7. Click the cell in the right column in the Properties window to display the suggested name of the handler as
<add>HandlerName. (For example, the =WM_CTLCOLOR message handler suggests <add>CtlColor).

8. Click the suggested name to accept. The handler is added to your project.

Message handler names that you have added appear in the right column of the reflected messages window.

9. To edit or delete a message handler, repeat steps 4 through 7. Click the cell containing the handler name to
edit or delete and click the appropriate task.

Mapping Messages to Functions
Adding Functionality with Code Wizards
Adding a Class
Adding a Member Function
Adding a Member Variable
Overriding a Virtual Function
MFC Message Handler
Navigating the Class Structure

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/defining-a-message-handler-for-a-reflected-message.md
https://docs.microsoft.com/visualstudio/ide/reference/properties-window
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/overriding-a-virtual-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/navigating-the-class-structure-visual-cpp

Declaring a Variable Based on Your New Control
Class
3/4/2019 • 2 minutes to read • Edit Online

To declare a variable based on your reusable classTo declare a variable based on your reusable class

See also

Once you have created an MFC control class, you can declare a variable based on it. To provide a context for the
new variable, you must open the dialog editor and edit the dialog box in which you want to use your reusable
control. Also, the dialog box must already have a class associated with it. For information on using the dialog editor,
see Dialog Editor.

1. While editing the dialog box, drag a control of the same type as the base class of your new control from the
Controls toolbar onto the dialog box.

2. Place the mouse pointer over the dropped control.

3. While pressing the CTRL key, double-click the control.

The Add Member Variable dialog box appears.

4. In the Access box, select the correct access for your control.

5. Click the Control variable check box.

6. In the Variable name box, type a name.

7. Under Category, click Control.

8. In the Control ID list, pick the control that you added. The Variable type list should display the correct
variable type, and the Control type box should display the correct control type.

9. In the Comment box, add any comment you want to appear in your code.

10. Click OK.

Mapping Messages to Functions
Adding Functionality with Code Wizards
Adding a Class
Adding a Member Function
Adding a Member Variable
Overriding a Virtual Function
MFC Message Handler
Navigating the Class Structure

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/declaring-a-variable-based-on-your-new-control-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/add-member-variable-wizard
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/overriding-a-virtual-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/navigating-the-class-structure-visual-cpp

Adding an MFC ODBC Consumer
3/4/2019 • 2 minutes to read • Edit Online

To add an MFC ODBC consumerTo add an MFC ODBC consumer

See also

An MFC ODBC consumer consists of an ODBC recordset class and data bindings necessary to access a data
source.

1. In Class View, right-click the project. On the shortcut menu, click Add and then click Add Class.

2. In the Visual C++ folder, double-click the MFC ODBC Consumer icon or select it and click Open.

The MFC ODBC Consumer Wizard opens.

3. Define settings as described in MFC ODBC Consumer Wizard.

4. Click Finish to close the wizard, which will insert the newly created ODBC consumer code in your project.

Adding Functionality with Code Wizards

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/adding-an-mfc-odbc-consumer.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp

MFC ODBC Consumer Wizard
3/4/2019 • 3 minutes to read • Edit Online

WARNINGWARNING

UIElement List

In Visual Studio 2017 version 15.9 this code wizard is deprecated and will be removed in a future version of Visual Studio.
This wizard is rarely used. General support for ATL and MFC is not impacted by the removal of this wizard. If you would like
to share your feedback about this deprecation, please complete this survey. Your feedback matters to us.

This wizard sets up an ODBC recordset class and the data bindings necessary to access the specified data source.

Data Source

The Data Source button lets you set up the specified data source using the specified ODBC driver. For
more information about data source files (DSN), see File Data Sources in the ODBC SDK.

The Select Data Source dialog box has two tabs:

NOTENOTE

File Data Source tab:

The Look in box specifies the directory in which to select files to be used as data sources. The default
is \Program Files\Common Files\ODBC\Data Sources. The existing file data sources (.dsn files)
appear in the main list box. You can either set up the data sources ahead of time using the File DSN
tab on the ODBC Data Source Administrator, or create new ones using this dialog box.

To create a new file data source from this dialog box, click New to specify a DSN name; the Create
New Data Source dialog box appears. In the Create New Data Source dialog box, select an
appropriate driver and click Next ; click Browse, and select the name of the file to be used as a data
source (you have to select "All Files" to view non-DSN files, such as .xls files); click Next , and then
click Finish. (If you selected a non-DSN file, you will get a driver-specific dialog box, such as "ODBC
Microsoft Excel Setup," which will convert the file to a DSN.)

You can also create a new file data source beforehand using the ODBC Data Source Administrator. From the
Start menu, select Settings, Control Panel, Administrative Tools, Data Sources (ODBC), and then ODBC
Data Source Administrator.

The DSN Name box allows you to specify a name for the file data source. You must ensure that the
DSN name ends with the appropriate file extension, such as .xls for Excel files or .mdb for Access
files.

For more information on DSNs, see File Data Sources in the ODBC SDK.

Machine Data Source tab:

This tab lists system and User DATA sources. User data sources are specific to a user on this machine.
System data sources can be used by all users on this machine or on a systemwide service. See
Machine Data Sources in the ODBC SDK

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/mfc-odbc-consumer-wizard.md
https://www.surveymonkey.com/r/QDWKKCN
https://docs.microsoft.com/previous-versions/windows/desktop/ms715401
https://docs.microsoft.com/previous-versions/windows/desktop/ms714024
https://docs.microsoft.com/previous-versions/windows/desktop/ms715401
https://docs.microsoft.com/previous-versions/windows/desktop/ms710952

See also

The name of the consumer class, based by default on the name of the file or machine data source that
you selected.

For more information on ODBC data sources, see Data Sources in the ODBC SDK.

Click OK to finish. The Select Database Object dialog box appears. From this dialog box, select the table
or view that the consumer will use. Note that you can select multiple views and tables by holding the
control key while clicking on the items. Click OK to finish.

Class

.h file

The name of the consumer class header file, based by default on the name of the file or machine data
source that you selected.

.cpp file

The name of the consumer class implementation file, based by default on the name of the file or machine
data source that you selected.

Type

Specifies whether the recordset is a dynaset (default) or a snapshot.

Dynaset: Specifies that the recordset is a dynaset. A dynaset is the result of a query that provides an
indexed view into the queried database's data. A dynaset caches only an integral index to the original
data and thus offers a performance gain over a snapshot. The index points directly to each record
found as a result of a query and indicates if a record is removed. You also have access to updated
information in the queried records. This is the default.

Snapshot: Specifies that the recordset is a snapshot. A snapshot is the result of a query and is a view
into a database at one point in time. All records found as a result of the query are cached, so you do
not see any changes to the original records.

Bind all columns

Specifies whether all columns in the selected table are bound. If you select this box (default), all columns are
bound; if you do not select this box, no columns are bound, and you must bind them manually in the
recordset class.

MFC ODBC Consume
Adding Functionality with Code Wizards

https://docs.microsoft.com/previous-versions/windows/desktop/ms711688
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp

Adding ATL Support to Your MFC Project
3/4/2019 • 2 minutes to read • Edit Online

NOTENOTE

NOTENOTE

To add ATL support to your MFC projectTo add ATL support to your MFC project

See also

If you have already created an MFC-based application, then you can add support for the Active Template Library
(ATL) easily by running the Add ATL Support to MFC Project Wizard.

ATL and MFC are not generally supported in the Express editions of Visual Studio.

This support applies only to simple COM objects added to an MFC executable or DLL project. You can add other COM
objects (including ActiveX controls) to MFC projects, but the objects might not operate as expected.

NOTENOTE

1. In Solution Explorer, right-click the project to which you want to add ATL support.

2. On the shortcut menu, click Add, and then click Add Class.

3. Select the Add ATL Support to MFC Project icon.

This icon is located in the ATL folder in the Categories pane.

4. When prompted, click Yes to add ATL support.

For more information about how adding ATL support changes your MFC project's code, see Details of ATL
Support Added by the ATL Wizard

Adding a Class
Adding Functionality with Code Wizards
Adding a Member Function
Adding a Member Variable
Overriding a Virtual Function
MFC Message Handler
Navigating the Class Structure

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/adding-atl-support-to-your-mfc-project.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/overriding-a-virtual-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/navigating-the-class-structure-visual-cpp

Details of ATL Support Added by the ATL Wizard
3/4/2019 • 2 minutes to read • Edit Online

Notes for DLL Projects

See also

When you add ATL support to an existing MFC executable or DLL , Visual C++ makes the following modifications
to the existing MFC project (in this example, the project is called MFCEXE):

Two new files (an .idl file and an .rgs file, used to register the server) are added.

In the main application header and implementation files (Mfcexe.h and Mfcexe.cpp), a new class (derived
from CAtlMFCModule) is added. In addition to the new class, code is added to InitInstance for registration.
Code is also added to the ExitInstance function for revoking the class object. In the header file, Finally, two
new header files (Initguid.h and Mfcexe_i.c) are included in the implementation file, declaring and initializing
the new GUIDs for the CAtlMFCModule -derived class.

To register the server properly, an entry for the new .rgs file is added to the project's resource file.

When you add ATL support to an MFC DLL project, you will see some differences. Code is added to the
DLLRegisterServer and DLLUnregisterServer functions for registering and unregistering the DLL. Code is also

added to DllCanUnloadNow and DllGetClassObject.

ATL Support in an MFC Project
Adding Functionality with Code Wizards
Adding a Class
Adding a Member Function
Adding a Member Variable
Overriding a Virtual Function
MFC Message Handler
Navigating the Class Structure

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/details-of-atl-support-added-by-the-atl-wizard.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-functionality-with-code-wizards-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-member-variable-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/overriding-a-virtual-function-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/navigating-the-class-structure-visual-cpp

MFC Class Wizard
3/4/2019 • 3 minutes to read • Edit Online

UIElement List

Lets you add messages and message handlers to classes in your project. You can also start other wizards or add a
class to your project.

To open the MFC Class Wizard, on the Project menu, click Class Wizard. To open the wizard with a keyboard
shortcut, type CTRL+SHIFT+X.

OPTION DESCRIPTION

Open File Exits the class wizard and opens the current class
implementation file.

Project

The name of a project in your solution.

You can select other projects in your solution from the drop-down list box.

Class name

The name of a class in your project.

When you select a class in the Class name list, data from the class populates the controls in the MFC Class
Wizard. When you change the value of a control, data in the selected class is affected.

Add Class

Lets you add a class from one of several sources.

Depending on your selection, the MFC Add Class Wizard, Add Class From Typelib Wizard, Add Class
From ActiveX Control Wizard, or MFC ODBC Consumer Wizard is started.

Base class

The base class of the class that is displayed in Class name.

Class declaration

The class in which the Class name class is declared.

The Class declaration box is displayed only if the name in it differs from the name in Class
implementation.

Resource

The ID of the resource in Class name, if any. Otherwise, the Resource box is empty.

Class implementation

The name of the file that contains the implementation of the class in Class name.

You can select a different implementation file by clicking the arrow. The following table lists the available
options.

https://github.com/Microsoft/cpp-docs/blob/master/docs/mfc/reference/mfc-class-wizard.md

See also

Open Containing Folder Opens the folder that contains the current class
implementation file.

Copy Full Path to Clipboard Copies the path of the current implementation file to the
Clipboard.

OPTION DESCRIPTION

Commands

Lets you add, delete, edit, or search for a command and its message handler.

To add a handler, click Add Handler, or double-click an item in the Object IDs list or Messages list. The
resulting function name, ID, and message are displayed in the Member functions list.

To delete a handler, select an item in the Member functions list and then click Delete Handler.

To modify a handler, double-click the corresponding item in the Member functions list. Or, select an item
in the list box and then click Edit Code.

Messages

Lets you add, delete, edit, or search for a message and its message handler.

To add a handler, click Add Handler, or double-click an item in the Messages list.

To add a custom message, click Add Custom Message or press the Enter key, and then specify values in
the Add Custom Message dialog box. In that dialog box, you can also select Registered Message to
handle a window message that is guaranteed to be unique throughout the operating system.

Virtual Functions

Lets you add, delete, edit, or search for a virtual function, or an overridden virtual function.

Member Variables

Lets you add, delete, edit, or search for a member variable.

Methods

Lets you add, delete, or search for a method, and also go to the definition or declaration of a method.

To add a method, click Add Method, and then specify values in the Add Method dialog box.

To delete a method, select an item in the Methods list and then click Delete Method.

To display a declaration, select an item in the Methods list and then click Go to Declaration.

To display a definition, double-click an item in the Methods list. Or, select an item in the Methods list and
then click the Go to Definition button.

Adding a Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/adding-a-class-visual-cpp

ATL/MFC Shared Classes
10/31/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

These utility classes can be used in any native C++ project without requiring any MFC DLL.

Classes Shared Between MFC and ATL
Provides links to the classes shared between MFC and ATL.

Active Template Library (ATL) Reference
Provides reference material for the ATL Library, a set of template-based C++ classes that simplify the
programming of COM objects.

Microsoft Foundation Class Library (MFC) Reference
Provides reference material for the MFC Library, a set of classes in that constitute an application framework,
which is the framework of an application written for the Windows API.

Debugging
Provides links to using the Visual Studio debugger to correct logic errors in your application or stored
procedures.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/atl-mfc-shared-classes.md
https://docs.microsoft.com/visualstudio/debugger/debugging-in-visual-studio

ATL/MFC Concepts
10/31/2018 • 2 minutes to read • Edit Online

In This Section

See Also

This section provides conceptual and task-based topics to help you program using the classes shared between
Active Template Library (ATL) and Microsoft Foundation Class (MFC) Library.

Strings (ATL/MFC)
Describes how to manage string data in applications.

ATL/MFC Shared Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/atl-mfc-concepts.md

Date and Time
10/31/2018 • 2 minutes to read • Edit Online

What do you want to know more about

See Also

MFC supports several different ways of working with dates and times. These include:

General-purpose time classes. The CTime and CTimeSpan classes encapsulate most of the functionality
associated with the ANSI-standard time library, which is declared in TIME.H.

Support for system clock. With MFC version 3.0, support was added to CTime for the Win32 SYSTEMTIME

and FILETIME data types.

Support for the Automation DATE data type. DATE supports date, time, and date/time values. The
COleDateTime and COleDateTimeSpan classes encapsulate this functionality. They work with the
COleVariant class using Automation support.

Date and Time: SYSTEMTIME Support

Date and Time: Automation Support

Date and Time: Database Support

Concepts
General MFC Topics

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/date-and-time.md

Current Time: General Purpose Classes
10/31/2018 • 2 minutes to read • Edit Online

To get the current timeTo get the current time

CTime theTime = CTime::GetCurrentTime();

The following procedure shows how to create a CTime object and initialize it with the current time.

CTime theTime;

NOTENOTE

theTime = CTime::GetCurrentTime();

1. Allocate a CTime object, as follows:

Uninitialized CTime objects are not initialized to a valid time.

2. Call the CTime::GetCurrentTime function to get the current time from the operating system. This function
returns a CTime object that can be used to set the value of CTime , as follows:

Since GetCurrentTime is a static member function from the CTime class, you must qualify its name with the
name of the class and the scope resolution operator (::), CTime::GetCurrentTime() .

Of course, the two steps outlined previously could be combined into a single program statement as follows:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/current-time-general-purpose-classes.md

Elapsed Time: General-Purpose Classes
10/31/2018 • 2 minutes to read • Edit Online

CTime startTime = CTime::GetCurrentTime();

// ... perform time-consuming task ...

CTime endTime = CTime::GetCurrentTime();

CTimeSpan elapsedTime = endTime - startTime;

The following procedure shows how to calculate the difference between two CTime objects and get a CTimeSpan

result. Use the CTime and CTimeSpan objects to calculate the elapsed time, as follows:

Once you have calculated elapsedTime , you can use the member functions of CTimeSpan to extract the components
of the elapsed-time value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/elapsed-time-general-purpose-classes.md

Formatting Time Values: General-Purpose Classes
10/31/2018 • 2 minutes to read • Edit Online

To format a string representation of a time or elapsed timeTo format a string representation of a time or elapsed time

CTime t(1991, 3, 19, 22, 15, 0);
// 10:15PM March 19, 1991

CString s = t.Format("%A, %B %d, %Y");
// s == "Tuesday, March 19, 1991"

What do you want to know more about

The following procedure shows how to format time values.

Use the Format member function from either the CTime or CTimeSpan classes to create a character string
representation of the time or elapsed time, as shown by the following example.

General date and time programming in MFC

Working with SYSTEMTIME

Automation support of date and time programming

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/formatting-time-values-general-purpose-classes.md

Date and Time: SYSTEMTIME Support
1/24/2019 • 2 minutes to read • Edit Online

What do you want to know more about

See Also

The CTime class has constructors that accept system and file times from Win32. If you use CTime objects for
these purposes, you must modify their initialization accordingly, as described in this article.

For information about the SYSTEMTIME structure, see SYSTEMTIME. For information about the FILETIME
structure, see FILETIME.

MFC still provides CTime constructors that take time arguments in the MS-DOS style, but, starting in MFC
version 3.0, the CTime class also supports a constructor that takes a Win32 SYSTEMTIME structure and another that
takes a Win32 FILETIME structure.

The new CTime constructors are:

CTime(const SYSTEMTIME& sysTime);

CTime(const FILETIME& fileTime);

The fileTime parameter is a reference to a Win32 FILETIME structure, which represents time as a 64-bit value, a
more convenient format for internal storage than a SYSTEMTIME structure and the format used by Win32 to
represent the time of file creation.

If your code contains a CTime object initialized with the system time, you should use the SYSTEMTIME constructor
in Win32.

You most likely will not use CTime FILETIME initialization directly. If you use a CFile object to manipulate a file,
CFile::GetStatus retrieves the file timestamp for you via a CTime object initialized with a FILETIME structure.

General date and time programming in MFC

Automation support of date and time programming

Date and Time

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/date-and-time-systemtime-support.md
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime

Date and Time: Automation Support
10/31/2018 • 2 minutes to read • Edit Online

This article describes how to take advantage of the class library services related to date and time management.
Procedures described include:

Getting the current time

Calculating elapsed time

Formatting a string representation of a date/time

The COleDateTime class provides a way to represent date and time information. It provides finer granularity
and a greater range than the CTime class. The COleDateTimeSpan class represents elapsed time, such as the
difference between two COleDateTime objects.

The COleDateTime and COleDateTimeSpan classes are designed to be used with the COleVariant class used in
Automation. COleDateTime and COleDateTimeSpan are also useful in MFC database programming, but they can
be used whenever you want to manipulate date and time values. Although the COleDateTime class has a
greater range of values and finer granularity than the CTime class, it requires more storage per object than
CTime . There are also some special considerations when working with the underlying DATE type. See The

DATE Type for more details on the implementation of DATE.

COleDateTime objects can be used to represent dates between January 1, 100, and December 31, 9999.
COleDateTime objects are floating point values, with an approximate resolution of 1 millisecond. COleDateTime

is based on the DATE data type, defined in the MFC documentation under COleDateTime::operator DATE. The
actual implementation of DATE extends beyond these bounds. The COleDateTime implementation imposes
these bounds to facilitate working with the class.

COleDateTime does not support Julian dates. The Gregorian calendar is assumed to extend back in time to
January 1, 100.

COleDateTime ignores Daylight Saving Time (DST). The following code example compares two methods of
calculating a time span that crosses the DST switchover date: one using the CRT, and the other using
COleDateTime . DST switches over, in most locales, in the second week in April and the third in October.

The first method sets two CTime objects, time1 and time2, to April 5 and April 6 respectively, using the
standard C type structures tm and time_t . The code displays time1 and time2 and the time span between
them.

The second method creates two COleDateTime objects, oletime1 and oletime2 , and sets them to the same
dates as time1 and time2. It displays oletime1 and oletime2 and the time span between them.

The CRT correctly calculates a difference of 23 hours. COleDateTimeSpan calculates a difference of 24 hours.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/date-and-time-automation-support.md

void CDTDlg::OnPaint()
{
 CPaintDC dc(this); // device context for painting

 time_t date1_t, date2_t;
 tm date_tm;

 date_tm.tm_hour = 12;
 date_tm.tm_min = 0;
 date_tm.tm_mon = 3;
 date_tm.tm_sec = 0;
 date_tm.tm_wday = 0; //Day of week (0-6; Sunday = 0)
 date_tm.tm_yday = 0;
 date_tm.tm_year = 97;
 date_tm.tm_isdst = -1; //Positive if Daylight Saving Time is in effect;
 //0 if Daylight Saving Time is not in effect;
 //Negative if status of DST is unknown.

 date_tm.tm_mday = 6;
 date2_t = mktime(&date_tm);

 date_tm.tm_mday = 5;
 date_tm.tm_isdst = 0;
 date1_t = mktime(&date_tm);

 CTime time1(date1_t), time2(date2_t);
 CTimeSpan ts = time2 - time1;

 dc.TextOut(0, 0, CString(_T("CTime")));
 dc.TextOut(0, 20, time1.Format(_T("%H:%M:%S %A, %B %d, %Y")));
 dc.TextOut(0, 40, time2.Format(_T("%H:%M:%S %A, %B %d, %Y")));
 dc.TextOut(0, 60, ts.Format(_T("%H:%M:%S and %D days")));

 COleDateTime oletime1(date1_t), oletime2(date2_t);
 COleDateTimeSpan olets = oletime2 - oletime1;

 dc.TextOut(0, 120, CString(_T("COleDateTime")));
 dc.TextOut(0, 140, oletime1.Format(_T("%H:%M:%S %A, %B %d, %Y")));
 dc.TextOut(0, 160, oletime2.Format(_T("%H:%M:%S %A, %B %d, %Y")));

 //Work-around bug in COleDateTime::Format("%D")
 CString str;
 str.Format(_T("%s and %d days"), (LPCTSTR)olets.Format(_T("%H:%M:%S")),
 olets.GetDays());
 dc.TextOut(0, 180, str);
}

See Also
Date and Time

Current Time: Automation Classes
10/31/2018 • 2 minutes to read • Edit Online

To get the current time

See Also

The following procedure shows how to create a COleDateTime object and initialize it with the current time.

COleDateTime timeNow;
timeNow = COleDateTime::GetCurrentTime();

1. Create a COleDateTime object.

2. Call GetCurrentTime .

Date and Time: Automation Support

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/current-time-automation-classes.md

Elapsed Time: Automation Classes
10/31/2018 • 2 minutes to read • Edit Online

To calculate elapsed time

See Also

This procedure shows how to calculate the difference between two CTime objects and get a CTimeSpan result.

COleDateTime timeStart, timeEnd;
timeStart = COleDateTime::GetCurrentTime();
// ... perform time-consuming task
timeEnd = COleDateTime::GetCurrentTime();
COleDateTimeSpan spanElapsed = timeEnd - timeStart;

1. Create two COleDateTime objects.

2. Set one of the COleDateTime objects to the current time.

3. Perform some time-consuming task.

4. Set the other COleDateTime object to the current time.

5. Take the difference between the two times.

Date and Time: Automation Support

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/elapsed-time-automation-classes.md

Formatting Time: Automation Classes
10/31/2018 • 2 minutes to read • Edit Online

To format a time

COleDateTime time(1970, 12, 18, 17, 30, 0);
// 18 December 1970, 5:30 PM
CString s = time.Format(VAR_DATEVALUEONLY);
// s contains the date formatted based on
// the current national language specifications
// (locale ID). The time portion is ignored for
// formatting purposes in this case.

What do you want to know more about?

See Also

Use the Format member function of either COleDateTime or COleDateTimeSpan to create a character string
representing the time or elapsed time.

For more information, see class COleVariant.

General date and time programming in MFC

Working with SYSTEMTIME

Date and Time: Automation Support

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/formatting-time-automation-classes.md

Date and Time: Database Support
10/31/2018 • 2 minutes to read • Edit Online

What do you want to know more about

See Also

As of version 4.0, MFC database programming uses the COleDateTime and COleDateTimeSpan classes to
represent date and time data. These classes, also used in Automation, are derived from class COleVariant. They
supply better support for managing date and time data than do CTime and CTimeSpan.

Automation support of date and time programming

Date and Time

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/date-and-time-database-support.md

DATE Type
10/31/2018 • 2 minutes to read • Edit Online

DATE AND TIME REPRESENTATION

30 December 1899, midnight 0.00

1 January 1900, midnight 2.00

4 January 1900, midnight 5.00

4 January 1900, 6 A.M. 5.25

4 January 1900, noon 5.50

4 January 1900, 9 P.M. 5.875

DATE AND TIME REPRESENTATION

27 December 1899, midnight -3.00

28 December 1899, noon -2.50

28 December 1899, midnight -2.00

29 December 1899, midnight -1.00

30 December 1899, 6 P.M. -0.75

The DATE type is implemented using an 8-byte floating-point number. Days are represented by whole number
increments starting with 30 December 1899, midnight as time zero. Hour values are expressed as the absolute
value of the fractional part of the number. The following table illustrates several dates along with their DATE type
numeric equivalent:

The DATE date type, as well as the COleDateTime class, represents dates and times as a classic number line. The
COleDateTime class contains several methods for manipulating DATE values, including conversion to and from

other common date formats.

The following points should be noted when working with these date and time formats in Automation:

Dates are specified in local time; synchronization must be performed manually when working with dates in
different time zones.

The date types do not account for Daylight Savings Time.

The date timeline becomes discontinuous for date values less than 0 (before 30 December 1899). This is
because the whole-number portion of the date value is treated as signed, while the fractional part is treated
as unsigned. In other words, the whole-number part of the date value may be positive or negative, while the
fractional part of the date value is always added to the overall logical date. The following table illustrates a
few examples:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/date-type.md

30 December 1899, noon -0.50

30 December 1899, 6 A.M. -0.25

30 December 1899, midnight 0.00

30 December 1899, 6 A.M. 0.25

30 December 1899, noon 0.50

30 December 1899, 6 P.M. 0.75

31 December 1899, midnight 1.00

1 January 1900, midnight 2.00

1 January 1900, noon 2.50

2 January 1900, midnight 3.00

DATE AND TIME REPRESENTATION

C a u t i o nC a u t i o n

See Also

Note that because 6:00 AM is always represented by a fractional value 0.25 regardless of whether the integer
representing the day is positive (after December 30, 1899) or negative (before December 30, 1899), a simple
floating point comparison would erroneously sort any DATE representing 6:00 AM on a day earlier than
12/30/1899 as later than a DATE representing 7:00 AM on that same day.

More information on issues related to the DATE and COleDateTime types can be found under COleDateTime Class
and Date and Time: Automation Support.

Date and Time
COleDateTime Class

Strings (ATL/MFC)
10/31/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

See Also

Nearly all programs work with string data. Visual C++ provides several ways to manage this string data.

Using CStringT
Describes programming using the template class CStringT.

Using CString
Describes programming using CString, the default implementation of CStringT.

CStringT Overview
Provides reference information about the shared CStringT class.

MFC Concepts
Provides conceptual and task-based topics to help you program using the MFC Library.

ATL/MFC Shared Classes

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/strings-atl-mfc.md

Using CStringT
10/31/2018 • 2 minutes to read • Edit Online

In This Section

Reference

See Also

The topics in this section describe programming using the template class CStringT.

Memory Management with CStringT
Discusses memory management with CStringT , a template class used to manipulate variable-length character
strings.

Exporting String Classes Using CStringT
Explains how to export your own string class from a DLL using the CStringT<> template class.

CStringT Class.
Provides reference information about the shared CStringT class.

Strings (ATL/MFC)

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/using-cstringt.md

Memory Management with CStringT
10/31/2018 • 2 minutes to read • Edit Online

See Also

Class CStringT is a template class used to manipulate variable-length character strings. The memory to hold
these strings is allocated and released through a string manager object, associated with each instance of
CStringT . MFC and ATL provide default instantiations of CStringT , called CString , CStringA , and CStringW ,

which manipulate strings of different character types. These character types are of type TCHAR, char, and
wchar_t , respectively. These default string types use a string manager that allocates memory from the process

heap (in ATL) or the CRT heap (in MFC). For typical applications, this memory allocation scheme is sufficient.
However, for code making intensive use of strings (or multithreaded code) the default memory managers may
not perform optimally. This topic describes how to override the default memory management behavior of
CStringT , creating allocators specifically optimized for the task at hand.

Implementation of a Custom String Manager (Basic Method)

Avoidance of Heap Contention

Implementation of a Custom String Manager (Advanced Method)

CFixedStringT: An Example of a Custom String Manager

CustomString sample

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/memory-management-with-cstringt.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

Implementation of a Custom String Manager (Basic
Method)
10/31/2018 • 2 minutes to read • Edit Online

// Declare a thread-safe, growable, private heap with initial size 0:
CWin32Heap g_stringHeap(0, 0, 0);

// Declare a string manager that uses the private heap:
CAtlStringMgr g_stringMgr(&g_stringHeap);

void PrintPowers(int nBase)
{
 int n = 1;
 for(int nPower = 0; nPower < 10; nPower++)
 {
 // Use the private string manager, instead of the default:
 CString strPower(&g_stringMgr);

 strPower.Format(_T("%d"), n);
 _tprintf_s(_T("%s\n"), strPower);
 n *= nBase;
 }
}

See Also

The easiest way to customize the memory allocation scheme for string data is to use the ATL-provided
CAtlStringMgr class but provide your own memory allocation routines. The constructor for CAtlStringMgr takes a

single parameter : a pointer to an IAtlMemMgr object. IAtlMemMgr is an abstract base class that provides a generic
interface to a heap. Using the IAtlMemMgr interface, the CAtlStringMgr allocates, reallocates, and frees the memory
used to store string data. You can either implement the IAtlMemMgr interface yourself, or use one of the five ATL-
provided memory manager classes. The ATL-provided memory managers simply wrap existing memory allocation
facilities:

CCRTHeap Wraps the standard CRT heap functions (malloc, free, and realloc)

CWin32Heap Wraps a Win32 heap handle, using HeapAlloc, HeapFree, and HeapRealloc

CLocalHeap Wraps the Win32 APIs: LocalAlloc, LocalFree, and LocalRealloc

CGlobalHeap Wraps the Win32 APIs: GlobalAlloc, GlobalFree, and GlobalRealloc.

CComHeap Wraps the COM Task Allocator APIs: CoTaskMemAlloc, CoTaskMemFree, and
CoTaskMemRealloc

For the purpose of string memory management, the most useful class is CWin32Heap because it allows you to
create multiple independent heaps. For example, if you wanted to use a separate heap just for strings, you could do
the following:

To use this private string manager to manage memory for a CString variable, pass a pointer to the manager as a
parameter to the CString variable's constructor :

Memory Management with CStringT

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/implementation-of-a-custom-string-manager-basic-method.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/malloc
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/free
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/realloc
https://docs.microsoft.com/windows/desktop/api/heapapi/nf-heapapi-heapalloc
https://docs.microsoft.com/windows/desktop/api/heapapi/nf-heapapi-heapfree
https://docs.microsoft.com/windows/desktop/api/heapapi/nf-heapapi-heaprealloc
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-localalloc
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-localfree
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-localrealloc
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalalloc
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalfree
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-globalrealloc
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemalloc
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemfree
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cotaskmemrealloc

Avoidance of Heap Contention
10/31/2018 • 2 minutes to read • Edit Online

Example

DWORD WINAPI WorkerThreadProc(void* pBase)
{
 // Declare a non-thread-safe heap just for this thread:
 CWin32Heap stringHeap(HEAP_NO_SERIALIZE, 0, 0);

 // Declare a string manager that uses the thread's heap:
 CAtlStringMgr stringMgr(&stringHeap);

 int nBase = *((int*)pBase);
 int n = 1;
 for(int nPower = 0; nPower < 10; nPower++)
 {
 // Use the thread's string manager, instead of the default:
 CString strPower(&stringMgr);

 strPower.Format(_T("%d"), n);
 _tprintf_s(_T("%s\n"), strPower);
 n *= nBase;
 }

 return(0);
}

Comments

The default string managers provided by MFC and ATL are simple wrappers on top of a global heap. This global
heap is fully thread-safe, meaning that multiple threads can allocate and free memory from it simultaneously
without corrupting the heap. To help provide thread safety, the heap has to serialize access to itself. This is usually
accomplished with a critical section or similar locking mechanism. Whenever two threads try to access the heap
simultaneously, one thread is blocked until the other thread's request is finished. For many applications, this
situation rarely occurs and the performance impact of the heap's locking mechanism is negligible. However, for
applications that frequently access the heap from multiple threads contention for the heap's lock can cause the
application to run slower than if it were single-threaded (even on machines with multiple CPUs).

Applications that use CStringT are especially susceptible to heap contention because operations on CStringT

objects frequently require reallocation of the string buffer.

One way to alleviate heap contention between threads is to have each thread allocate strings from a private,
thread-local heap. As long as the strings allocated with a particular thread's allocator are used only in that thread,
the allocator need not be thread-safe.

The example below illustrates a thread procedure that allocates its own private non-thread-safe heap to use for
strings on that thread:

Multiple threads could be running using this same thread procedure but since each thread has its own heap there
is no contention between threads. In addition, the fact that each heap is not thread-safe gives a measurable
increase in performance even if just one copy of the thread is running. This is the result of the heap not using
expensive interlocked operations to protect against concurrent access.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/avoidance-of-heap-contention.md

See Also

For a more complicated thread procedure, it may be convenient to store a pointer to the thread's string manager in
a thread local storage (TLS) slot. This allows other functions called by the thread procedure to access the thread's
string manager.

Memory Management with CStringT

Implementation of a Custom String Manager
(Advanced Method)
10/31/2018 • 3 minutes to read • Edit Online

In specialized situations, you might want to implement a custom string manager that does more than just change
which heap is used to allocate memory. In this situation, you must manually implement the IAtlStringMgr interface
as your custom string manager.

In order to do this, it is important to first understand how CStringT uses that interface to manage its string data.
Every instance of CStringT has a pointer to a CStringData structure. This variable-length structure contains
important information about the string (such as length), as well as the actual character data for the string. Every
custom string manager is responsible for allocating and freeing these structures at the request of CStringT .

The CStringData structure comprises four fields:

pStringMgr This field points to the IAtlStringMgr interface used to manage this string data. When
CStringT needs to reallocate or free the string buffer it calls the Reallocate or Free methods of this

interface, passing the CStringData structure as a parameter. When allocating a CStringData structure in
your string manager, you must set this field to point to your custom string manager.

nDataLength This field contains the current logical length of the string stored in the buffer excluding the
terminating null. CStringT updates this field when the length of the string changes. When allocating a
CStringData structure, your string manager must set this field to zero. When reallocating a CStringData

structure, your custom string manager must leave this field unchanged.

nAllocLength This field contains the maximum number of characters (excluding the terminating null) that
can be stored in this string buffer without reallocating it. Whenever CStringT needs to increase the logical
length of the string, it first checks this field to make sure there is enough space in the buffer. If the check
fails, CStringT calls into your custom string manager to reallocate the buffer. When allocating or
reallocating a CStringData structure, you must set this field to at least the number of characters requested
in the nChars parameter to IAtlStringMgr::Allocate or IAtlStringMgr::Reallocate. If there is more space in the
buffer than requested, you can set this value to reflect the actual amount of space available. This allows
CStringT to grow the string to fill the entire allocated space before it has to call back into the string

manager to reallocate the buffer.

nRefs This field contains the current reference count of the string buffer. If the value is one, then a single
instance of CStringT is using the buffer. In addition, the instance is allowed to both read and modify the
contents of the buffer. If the value is greater than one, multiple instances of CStringT can use the buffer.
Because the character buffer is shared, CStringT instances can only read the contents of the buffer. To
modify the contents, CStringT first makes a copy of the buffer. If the value is negative, only one instance of
CStringT is using the buffer. In this case, the buffer is considered locked. When a CStringT instance is

using a locked buffer no other instances of CStringT may share the buffer. Instead, these instances create a
copy of the buffer before manipulating the contents. In addition, the CStringT instance using the locked
buffer does not attempt to share the buffer of any other CStringT instance assigned to it. In this case, the
CStringT instance copies the other string into the locked buffer.

When allocating a CStringData structure, you must set this field to reflect the type of sharing that is allowed
for the buffer. For most implementations, set this value to one. This allows the usual copy-on-write sharing
behavior. However, if your string manager does not support sharing the string buffer, set this field to a
locked state. This forces CStringT to only use this buffer for the instance of CStringT that allocated it.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/implementation-of-a-custom-string-manager-advanced-method.md

See Also
Memory Management with CStringT

CFixedStringT: Example of a Custom String Manager
10/31/2018 • 4 minutes to read • Edit Online

Implementation of CFixedStringMgr::Allocate

Implementation of CFixedStringMgr::ReAllocate

The ATL library implements one example of a custom string manager used by class CFixedStringT, called
CFixedStringMgr. CFixedStringT is derived from CStringT and implements a string that allocates its character
data as part of the CFixedStringT object itself as long as the string is less than the length specified by the
t_nChars template parameter of CFixedStringT . With this approach, the string does not need the heap at all,

unless the length of the string grows beyond the size of the fixed buffer. Because CFixedStringT does not always
use a heap to allocate its string data, it cannot use CAtlStringMgr as its string manager. It uses a custom string
manager (CFixedStringMgr), implementing the IAtlStringMgr interface. This interface is discussed in
Implementation of a Custom String Manager (Advanced Method).

The constructor for CFixedStringMgr takes three parameters:

pData: A pointer to the fixed CStringData structure to be used.

nChars: The maximum number of characters the CStringData structure can hold.

pMgr: A pointer to the IAtlStringMgr interface of a "backup string manager."

The constructor stores the values of pData and pMgr in their respective member variables (m_pData and m_pMgr).
It then sets the length of the buffer to zero, the available length equal to the maximum size of the fixed buffer, and
the reference count to -1. The reference count value indicates the buffer is locked and to use this instance of
CFixedStringMgr as the string manager.

Marking the buffer as locked prevents other CStringT instances from holding a shared reference to the buffer. If
other CStringT instances were allowed to share the buffer it would be possible for the buffer contained by
CFixedStringT to be deleted while other strings were still using the buffer.

CFixedStringMgr is a full implementation of the IAtlStringMgr interface. The implementation of each method is
discussed separately.

The implementation of CFixedStringMgr::Allocate first checks to see if the requested size of the string is less than
or equal to the size of the fixed buffer (stored in the m_pData member). If the fixed buffer is large enough,
CFixedStringMgr locks the fixed buffer with a length of zero. As long as the string length does not grow beyond the

size of the fixed buffer, CStringT will not have to reallocate the buffer.

If the requested size of the string is greater than the fixed buffer CFixedStringMgr forwards the request to the
backup string manager. The backup string manager is presumed to allocate the buffer from the heap. However,
before returning this buffer CFixedStringMgr locks the buffer and replaces the buffer's string manager pointer with
a pointer to the CFixedStringMgr object. This ensures that attempts to reallocate or free the buffer by CStringT will
call into CFixedStringMgr .

The implementation of CFixedStringMgr::ReAllocate is very similar to its implementation of Allocate .

If the buffer being reallocated is the fixed buffer and the requested buffer size is smaller than the fixed buffer, no
allocation is done. However, if the buffer being reallocated is not the fixed buffer, it must be a buffer allocated with
the backup manager. In this case the backup manager is used to reallocate the buffer.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/cfixedstringt-example-of-a-custom-string-manager.md

Implementation of CFixedStringMgr::Free

Implementation of CFixedStringMgr::Clone

Implementation of CFixedStringMgr::GetNilString

Requirements

See Also

If the buffer being reallocated is the fixed buffer and the new buffer size is too large to fit within the fixed buffer,
CFixedStringMgr allocates a new buffer using the backup manager. The contents of the fixed buffer are then copied

into the new buffer.

The implementation of CFixedStringMgr::Free follows the same pattern as Allocate and ReAllocate . If the buffer
being freed is the fixed buffer, the method sets it to a zero-length locked buffer. If the buffer being freed was
allocated with the backup manager, CFixedStringMgr uses the backup manager to free it.

The implementation of CFixedStringMgr::Clone always returns a pointer to the backup manager rather than the
CFixedStringMgr itself. This happens because every instance of CFixedStringMgr can only be associated with a

single instance of CStringT . Any other instances of CStringT trying to clone the manager should get the backup
manager instead. This is because the backup manager supports being shared.

The implementation of CFixedStringMgr::GetNilString returns the fixed buffer. Because of the one-on-one
correspondence of CFixedStringMgr and CStringT , a given instance of CStringT never uses more than one buffer
at a time. Therefore, a nil string and a real string buffer are never needed at the same time.

Whenever the fixed buffer is not in use, CFixedStringMgr ensures that it is initialized with a zero length. This allows
it to be used as the nil string. As an added bonus, the nAllocLength member of the fixed buffer is always set to the
full size of the fixed buffer. This means that CStringT can grow the string without calling IAtlStringMgr::Reallocate,
even for the nil string.

Header: cstringt.h

Memory Management with CStringT

Exporting String Classes Using CStringT
10/31/2018 • 2 minutes to read • Edit Online

// MyString.h
class AFX_EXT_CLASS CMyString : public CString
{
 // Your implementation code
};

In the past, MFC developers have derived from CString to specialize their own string classes. In Microsoft Visual
C++.NET (MFC 8.0), the CString class was superseded by a template class called CStringT. This provided several
benefits:

It allowed the MFC CString class to be used in ATL projects without linking in the larger MFC static library
or DLL.

With the new CStringT template class, you can customize CString behavior using template parameters
that specify character traits, similar to the templates in the C++ Standard Library.

When you export your own string class from a DLL using CStringT , the compiler also automatically
exports the CString base class. Since CString is itself a template class, it may be instantiated by the
compiler when used, unless the compiler is aware that CString is imported from a DLL. If you have
migrated projects from Visual C++ 6.0 to Visual C++.NET, you might have seen linker symbol errors for a
multiply-defined CString because of the collision of the CString imported from a DLL and the locally
instantiated version. The proper way to do this is described below.

The following scenario will cause the linker to produce symbol errors for multiply defined classes. Assume that you
are exporting a CString -derived class (CMyString) from an MFC extension DLL:

The consumer code uses a mixture of CString and CMyString . "MyString.h" is not included in the precompiled
header, and some usage of CString does not have CMyString visible.

Assume that you use the CString and CMyString classes in separate source files, Source1.cpp and Source2.cpp. In
Source1.cpp, you use CMyString and #include MyString.h. In Source2.cpp, you use CString , but do not #include
MyString.h. In this case, the linker will complain about CStringT being multiply defined. This is caused by CString

being both imported from the DLL that exports CMyString , and instantiated locally by the compiler through the
CStringT template.

To resolve this problem, do the following:

Export CStringA and CStringW (and the necessary base classes) from MFC90.DLL. Projects that include MFC will
always use the MFC DLL exported CStringA and CStringW , as in previous MFC implementations.

Then create a exportable derived class using the CStringT template, as CStringT_Exported is below, for example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/exporting-string-classes-using-cstringt.md

#ifdef _AFXDLL
 #define AFX_EXT_CSTRING AFX_EXT_CLASS
#else
 #define AFX_EXT_CSTRING
#endif

template< typename BaseType, class StringTraits >
class AFX_EXT_CSTRING CStringT_Exported
 : public CStringT< BaseType, StringTraits >
{
 // Reimplement all CStringT<> constructors and
 // forward to the base class implementation
};

typedef CStringT_Exported< wchar_t,
 StrTraitMFC< wchar_t > > CStringW;

typedef CStringT_Exported< char,
 StrTraitMFC< char > > CStringA;

typedef CStringT_Exported< TCHAR,
 StrTraitMFC< TCHAR > > CString;

Related Topics

See Also

In AfxStr.h, replace the previous CString , CStringA , and CStringW typedefs as follows:

There are several caveats:

You should not export CStringT itself because this will cause ATL-only projects to export a specialized
CStringT class.

Using an exportable derived class from CStringT minimizes having to re-implement CStringT

functionality. Additional code is limited to forwarding constructors to the CStringT base class.

CString , CStringA , and CStringW should only be marked __declspec(dllexport/dllimport) when you are
building with an MFC shared DLL. If linking with an MFC static library, you should not mark these classes
as exported; otherwise, internal use of CString , CStringA , and CStringW inside user DLLs will mark
CString as exported as well.

CStringT Class

Using CStringT
Using CString

Using CString
10/31/2018 • 2 minutes to read • Edit Online

#include <atlstr.h>

int main() {
 CString aCString = CString(_T("A string"));
 _tprintf(_T("%s"), (LPCTSTR) aCString);
}

In This Section

The topics in this section describe how to program with CString . For reference documentation about the
CString class, see the documentation for CStringT.

To use CString , include the atlstr.h header.

The CString , CStringA , and CStringW classes are specializations of a class template called CStringT based on
the type of character data they support.

A CStringW object contains the wchar_t type and supports Unicode strings. A CStringA object contains the
char type, and supports single-byte and multi-byte (MBCS) strings. A CString object supports either the char
type or the wchar_t type, depending on whether the MBCS symbol or the UNICODE symbol is defined at
compile time.

A CString object keeps character data in a CStringData object. CString accepts NULL-terminated C-style
strings. CString tracks the string length for faster performance, but it also retains the NULL character in the
stored character data to support conversion to LPCWSTR. CString includes the null terminator when it
exports a C-style string. You can insert a NULL at other locations in a CString , but it may produce unexpected
results.

The following set of string classes can be used without linking an MFC library, with or without CRT support:
CAtlString , CAtlStringA , and CAtlStringW .

CString is used in native projects. For managed-code (C++/CLI) projects, use System::String .

To add more capabilities than CString , CStringA , or CStringW currently offer, you should create a subclass of
CStringT that contains the additional features.

The following code shows how to create a CString and print it to standard output:

Basic CString Operations
Describes basic CString operations, including creating objects from C literal strings, accessing individual
characters in a CString , concatenating two objects, and comparing CString objects.

String Data Management
Discusses using Unicode and MBCS with CString .

CString Semantics
Explains how CString objects are used.

CString Operations Relating to C-Style Strings
Describes manipulating the contents of a CString object like a C-style null-terminated string.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/using-cstring.md

Reference

Related Sections

Allocating and Releasing Memory for a BSTR
Discusses using memory for a BSTR and COM objects.

CString Exception Cleanup
Explains that explicit cleanup in MFC 3.0 and later is no longer necessary.

CString Argument Passing
Explains how to pass CString objects to functions and how to return CString objects from functions.

Unicode and Multibyte Character Set (MBCS) Support
Discusses how MFC is enabled for Unicode and MBCS support.

CStringT
Provides reference information about the CStringT class.

CSimpleStringT Class
Provides reference information about the CSimpleStringT class.

Strings (ATL/MFC)
Contains links to topics that describe several ways to manage string data.

Strings (ATL/MFC)

Basic CString Operations
11/9/2018 • 3 minutes to read • Edit Online

Creating CString Objects from Standard C Literal Strings

Accessing Individual Characters in a CString

This topic explains the following basic CString operations:

Creating CString objects from standard C literal strings

Accessing individual characters in a CString

Concatenating two CString objects

Comparing CString objects

Converting CString objects

Class CString is based on class template CStringT Class. CString is a typedef of CStringT . More exactly,
CString is a typedef of an explicit specialization of CStringT , which is a common way to use a class template to

define a class. Similarly defined classes are CStringA and CStringW .

CString , CStringA , and CStringW are defined in atlstr.h. CStringT is defined in cstringt.h.

CString , CStringA , and CStringW each get a set of the methods and operators defined by CStringT for use with
the string data they support. Some of the methods duplicate and, in some cases, surpass the string services of the
C run-time libraries.

Note: CString is a native class. For a string class that is for use in a C++/CLI managed project, use System.String .

You can assign C-style literal strings to a CString just as you can assign one CString object to another.

CString myString = _T("This is a test");

CString oldString = _T("This is a test");
CString newString = oldString;

NOTENOTE

Assign the value of a C literal string to a CString object.

Assign the value of one CString to another CString object.

The contents of a CString object are copied when one CString object is assigned to another. Therefore, the
two strings do not share a reference to the actual characters that make up the string. For more information
about how to use CString objects as values, see CString Semantics.

To write your application so that it can be compiled for Unicode or for ANSI, code literal strings by using the _T
macro. For more information, see Unicode and Multibyte Character Set (MBCS) Support.

You can access individual characters in a CString object by using the GetAt and SetAt methods. You can also

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/basic-cstring-operations.md

Concatenating Two CString Objects

CString s1 = _T("This "); // Cascading concatenation
s1 += _T("is a ");
CString s2 = _T("test");
CString message = s1 + _T("big ") + s2;
// Message contains "This is a big test".

Comparing CString Objects

CSTRING FUNCTION MBCS FUNCTION UNICODE FUNCTION

Compare _mbscmp wcscmp

CompareNoCase _mbsicmp _wcsicmp

Collate _mbscoll wcscoll

CString s1(_T("Tom"));
CString s2(_T("Jerry"));
ASSERT(s2 < s1);

Converting CString Objects

Using CString with wcout

use the array element, or subscript, operator ([]) instead of GetAt to get individual characters. (This resembles
accessing array elements by index, as in standard C-style strings.) Index values for CString characters are zero-
based.

To concatenate two CString objects, use the concatenation operators (+ or +=), as follows.

At least one argument to the concatenation operators (+ or +=) must be a CString object, but you can use a
constant character string (for example, "big") or a char (for example, 'x') for the other argument.

The Compare method and the == operator for CString are equivalent. Compare , operator==, and CompareNoCase

are MBCS and Unicode aware; CompareNoCase is also case-insensitive. The Collate method of CString is locale-
sensitive and is often slower than Compare . Use Collate only where you must abide by the sorting rules as
specified by the current locale.

The following table shows the available CString comparison functions and their equivalent Unicode/MBCS-
portable functions in the C run-time library.

The CStringT class template defines the relational operators (<, <=, >=, >, ==, and !=), which are available for use
by CString . You can compare two CStrings by using these operators, as shown in the following example.

For information about converting CString objects to other string types, see How to: Convert Between Various
String Types.

To use a CString with wcout you must explicitly cast the object to a const wchar_t* as shown in the following
example:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/text/how-to-convert-between-various-string-types

CString cs("meow");

wcout << (const wchar_t*) cs << endl;

See Also

Without the cast, cs is treated as a void* and wcout prints the address of the object. This behavior is caused by
subtle interactions between template argument deduction and overload resolution which are in themselves correct
and conformant with the C++ standard.

Strings (ATL/MFC)
CStringT Class
Template Specialization
How to: Convert Between Various String Types

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/template-specialization-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/text/how-to-convert-between-various-string-types

String Data Management
10/31/2018 • 4 minutes to read • Edit Online

Unicode and MBCS Provide Portability

Visual C++ provides several ways to manage string data:

String Manipulation for working with C-style null-terminated strings

Win32 API functions for managing strings

MFC's class CStringT Class, which provides flexible, resizable string objects

Class CStringT Class, which provides an MFC-independent string object with the same functionality as
CString

Nearly all programs work with string data. MFC's CString class is often the best solution for flexible string
handling. Starting with version 7.0, CString can be used in MFC or MFC-independent programs. Both the run-
time library and CString support strings containing multibyte (wide) characters, as in Unicode or MBCS
programming.

This article describes the general-purpose services that the class library provides related to string manipulation.
Topics covered in this article include:

Unicode and MBCS Provide portability

CStrings and const char Pointers

CString Reference Counting

The CStringT Class class provides support for manipulating strings. It is intended to replace and extend the
functionality normally provided by the C run-time library string package. The CString class supplies member
functions and operators for simplified string handling, similar to those found in Basic. The class also provides
constructors and operators for constructing, assigning, and comparing CString s and standard C++ string data
types. Because CString is not derived from CObject , you can use CString objects independently of most of the
Microsoft Foundation Class Library (MFC).

CString objects follow "value semantics." A CString object represents a unique value. Think of a CString as an
actual string, not as a pointer to a string.

A CString object represents a sequence of a variable number of characters. CString objects can be thought of as
arrays of characters.

With MFC version 3.0 and later, MFC, including CString , is enabled for both Unicode and multibyte character sets
(MBCS). This support makes it easier for you to write portable applications that you can build for either Unicode
or ANSI characters. To enable this portability, each character in a CString object is of type TCHAR, which is
defined as wchar_t if you define the symbol _UNICODE when you build your application, or as char if not. A
wchar_t character is 16 bits wide. MBCS is enabled if you build with the symbol _MBCS defined. MFC itself is

built with either the _MBCS symbol (for the NAFX libraries) or the _UNICODE symbol (for the UAFX libraries)
defined.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/string-data-management.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/string-manipulation-crt

NOTENOTE

NOTENOTE

CString strName = _T("Name");

NOTENOTE

CStrings and const char Pointers

NOTENOTE

NOTENOTE

NOTENOTE

The CString examples in this and the accompanying articles on strings show literal strings properly formatted for Unicode
portability, using the _T macro, which translates the literal string to the form:

L"literal string"

which the compiler treats as a Unicode string. For example, the following code:

is translated as a Unicode string if _UNICODE is defined or as an ANSI string if not. For more information, see the article
Unicode and Multibyte Character Set (MBCS) Support.

A CString object can store up to INT_MAX (2,147,483,647) characters. The TCHAR data type is used to get or set
individual characters inside a CString object. Unlike character arrays, the CString class has a built-in memory
allocation capability. This allows CString objects to automatically grow as needed (that is, you do not have to
worry about growing a CString object to fit longer strings).

A CString object also can act like a literal C-style string (an PCXSTR , which is the same as const char* if not under
Unicode). The CSimpleStringT::operator PCXSTR conversion operator allows CString objects to be freely
substituted for character pointers in function calls. The CString(LPCWSTR pszSrc) constructor allows character
pointers to be substituted for CString objects.

No attempt is made to fold CString objects. If you make two CString objects containing Chicago , for example,
the characters in Chicago are stored in two places. (This may not be true of future versions of MFC, so you should
not depend on it.)

Use the CSimpleStringT::GetBuffer and CSimpleStringT::ReleaseBuffer member functions when you need to directly access a
CString as a nonconstant pointer to a character.

Use the CStringT::AllocSysString and CStringT::SetSysString member functions to allocate and set BSTR objects used in
Automation (formerly known as OLE Automation).

Where possible, allocate CString objects on the frame rather than on the heap. This saves memory and simplifies
parameter passing.

 CString Reference Counting

See Also

The CString class is not implemented as a Microsoft Foundation Class Library collection class, though CString

objects can certainly be stored as elements in collections.

As of MFC version 4.0, when CStringT Class objects are copied, MFC increments a reference count rather than
copying the data. This makes passing parameters by value and returning CString objects by value more efficient.
These operations cause the copy constructor to be called, sometimes more than once. Incrementing a reference
count reduces that overhead for these common operations and makes using CString a more attractive option.

As each copy is destroyed, the reference count in the original object is decremented. The original CString object is
not destroyed until its reference count is reduced to zero.

You can use the CString member functions CSimpleStringT::LockBuffer and CSimpleStringT::UnlockBuffer to
disable or enable reference counting.

General MFC Topics

CString Semantics
10/31/2018 • 2 minutes to read • Edit Online

CString s1, s2;
s1 = s2 = _T("hi there");

ASSERT(s1 == s2); // they are equal

s1.MakeUpper(); // Does not modify s2
ASSERT(s2[0] == _T('h')); // s2 is still "hi there"

See Also

Even though CString objects are dynamic objects that can grow, they act like built-in primitive types and simple
classes. Each CString object represents a unique value. CString objects should be thought of as the actual strings
rather than as pointers to strings.

You can assign one CString object to another. However, when you modify one of the two CString objects, the
other CString object is not modified, as shown by the following example:

Note in the example that the two CString objects are considered "equal" because they represent the same
character string. The CString class overloads the equality operator (==) to compare two CString objects based
on their value (contents) rather than their identity (address).

Strings (ATL/MFC)

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/cstring-semantics.md

CString Operations Relating to C-Style Strings
10/31/2018 • 4 minutes to read • Edit Online

Using CString as a C-Style Null-Terminated String

CString aCString = "A string";
char myString[256];
strcpy(myString, (LPCTSTR)aCString);

CString theString(_T("This is a test"));
int sizeOfString = (theString.GetLength() + 1);
LPTSTR lpsz = new TCHAR[sizeOfString];
_tcscpy_s(lpsz, sizeOfString, theString);
//... modify lpsz as much as you want

A CString object contains character string data. CString inherits the set of the methods and operators that are
defined in the class template CStringT to work with string data. (CString is a typedef that specializes CStringT to
work with the kind of character data that CString supports.)

CString does not store character data internally as a C-style null-terminated string. Instead, CString tracks the
length of character data so that it can more securely watch the data and the space it requires.

CString does accept C-style strings, and provides ways to access character data as a C-style string. This topic
contains the following sections that explain how to use a CString object as if it were a C-style null-terminated
string.

Converting to C-style null-terminated strings

Working with standard run-time library string functions

Modifying CString contents directly

Using CString objects with variable argument functions

Specifying CString formal parameters

To use a CString object as a C-style string, cast the object to LPCTSTR. In the following example, the CString

returns a pointer to a read-only C-style null-terminated string. The strcpy function puts a copy of the C-style
string in the variable myString .

You can use CString methods, for example, SetAt , to modify individual characters in the string object. However,
the LPCTSTR pointer is temporary and becomes invalid when any change is made to CString . The CString can
also go out of scope and be automatically deleted. We recommend that you get a fresh LPCTSTR pointer of a
CString object every time that you use one.

Sometimes you may require a copy of CString data to modify directly. Use the more secured function strcpy_s
(or the Unicode/MBCS-portable _tcscpy_s) to copy the CString object into a separate buffer. This is where
characters can be safely modified, as shown by the following example.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/cstring-operations-relating-to-c-style-strings.md

NOTENOTE

Working with Standard Run-Time Library String Functions

Modifying CString Contents Directly

To use GetBuffer and ReleaseBuffer to access the internal character buffer of a CString objectTo use GetBuffer and ReleaseBuffer to access the internal character buffer of a CString object

Using CString Objects with Variable Argument Functions

CString kindOfFruit = _T("bananas");
int howmany = 25;
_tprintf_s(_T("You have %d %s\n"), howmany, (LPCTSTR)kindOfFruit);

Specifying CString Formal Parameters

The third argument to strcpy_s (or the Unicode/MBCS-portable _tcscpy_s) is either a const wchar_t* (Unicode) or a
const char* (ANSI). The example above passes a CString for this argument. The C++ compiler automatically applies the

conversion function defined for the CString class that converts a CString to an LPCTSTR . The ability to define casting
operations from one type to another is one of the most useful features of C++.

You should be able to find a CString method to perform any string operation for which you might consider using
the standard C run-time library string functions such as strcmp (or the Unicode/MBCS-portable _tcscmp).

If you must use the C run-time string functions, you can use the techniques described in
_core_using_cstring_as_a_c.2d.style_null.2d.terminated_string. You can copy the CString object to an equivalent C-
style string buffer, perform your operations on the buffer, and then assign the resulting C-style string back to a
CString object.

In most situations, you should use CString member functions to modify the contents of a CString object or to
convert the CString to a C-style character string.

There are some situations where it makes sense to directly modify the CString contents, for example, when you
work with operating-system functions that require a character buffer.

The GetBuffer and ReleaseBuffer methods offer access to the internal character buffer of a CString object and
let you modify it directly. The following steps show how to use these functions for this purpose.

1. Call GetBuffer for a CString object and specify the length of the buffer you require.

2. Use the pointer returned by GetBuffer to write characters directly into the CString object.

3. Call ReleaseBuffer for the CString object to update all the internal CString state information, for example,
the length of the string. After you modify the contents of a CString object directly, you must call
ReleaseBuffer before you call any other CString member functions.

Some C functions take a variable number of arguments. A notable example is printf_s . Because of the way this
kind of function is declared, the compiler cannot be sure of the type of the arguments and cannot determine which
conversion operation to perform on each argument. Therefore, it is essential that you use an explicit type cast when
passing a CString object to a function that takes a variable number of arguments.

To use a CString object in a variable argument function, explicitly cast the CString to an LPCTSTR string, as
shown in the following example.

For most functions that need a string argument, it is best to specify the formal parameter in the function prototype

void AddCustomer(const CString& name, const CString& address,
 const CString& comment = _T(""));

See Also

as a const pointer to a character (LPCTSTR) instead of a CString . When a formal parameter is specified as a
const pointer to a character, you can pass either a pointer to a TCHAR array, a literal string ["hi there"], or a
CString object. The CString object will be automatically converted to an LPCTSTR. Any place you can use an

LPCTSTR, you can also use a CString object.

You can also specify a formal parameter as a constant string reference (that is, const CString&) if the argument will
not be modified. Drop the const modifier if the string will be modified by the function. If a default null value is
desired, initialize it to the null string [""], as shown below:

For most function results, you can simply return a CString object by value.

Strings (ATL/MFC)
CString Argument Passing

Allocating and Releasing Memory for a BSTR
11/9/2018 • 2 minutes to read • Edit Online

When you create BSTR s and pass them between COM objects, you must take care in treating the memory they
use in order to avoid memory leaks. When a BSTR stays within an interface, you must free its memory when you
are done with it. However, when a BSTR passes out of an interface, the receiving object takes responsibility for its
memory management.

In general, the rules for allocating and releasing memory allocated for BSTR s are as follows:

HRESULT CMyWebBrowser::put_StatusText(BSTR bstr)

// shows using the Win32 function
// to allocate memory for the string:
BSTR bstrStatus = ::SysAllocString(L"Some text");
if (bstrStatus != NULL)
{
 pBrowser->put_StatusText(bstrStatus);
 // Free the string:
 ::SysFreeString(bstrStatus);
}

HRESULT CMyWebBrowser::get_StatusText(BSTR* pbstr)

BSTR bstrStatus;
pBrowser->get_StatusText(&bstrStatus);

// shows using the Win32 function
// to free the memory for the string:
::SysFreeString(bstrStatus);

When you call into a function that expects a BSTR argument, you must allocate the memory for the BSTR

before the call and release it afterwards. For example:

When you call into a function that returns a BSTR , you must free the string yourself. For example:

When you implement a function that returns a BSTR , allocate the string but do not free it. The receiving the
function releases the memory. For example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/allocating-and-releasing-memory-for-a-bstr.md

See Also

HRESULT CMyClass::get_StatusText(BSTR* pbstr)
{
 try
 {
 //m_str is a CString in your class
 *pbstr = m_str.AllocSysString();
 }
 catch (...)
 {
 return E_OUTOFMEMORY;
 }

 // The client is now responsible for freeing pbstr.
 return(S_OK);
}

Strings (ATL/MFC)
CStringT::AllocSysString
SysAllocString
SysFreeString

https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-sysallocstring
https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-sysfreestring

CString Exception Cleanup
10/31/2018 • 2 minutes to read • Edit Online

See Also

In previous versions of MFC, it was important that you clean up CString objects after use. With MFC version 3.0
and later, explicit cleanup is no longer necessary.

Under the C++ exception handling mechanism that MFC now uses, you do not have to worry about cleanup after
an exception. For a description of how C++ "unwinds" the stack after an exception is caught, see the try, catch, and
throw statements. Even if you use the MFC TRY/CATCH macros instead of the C++ keywords try and catch,
MFC uses the C++ exception mechanism underneath, so you still do not need to clean up explicitly.

Strings (ATL/MFC)
Exception Handling

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/cstring-exception-cleanup.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/try-throw-and-catch-statements-cpp

CString Argument Passing
10/31/2018 • 2 minutes to read • Edit Online

CString Argument-Passing Conventions

Strings as Function Inputs

Strings as Function Outputs

This article explains how to pass CString objects to functions and how to return CString objects from functions.

When you define a class interface, you must determine the argument-passing convention for your member
functions. There are some standard rules for passing and returning CString objects. If you follow the rules
described in Strings as Function Inputs and Strings as Function Outputs, you will have efficient, correct code.

The most efficient and secure way to use a CString object in called functions is to pass a CString object to the
function. Despite the name, a CString object does not store a string internally as a C-style string that has a null
terminator. Instead, a CString object keeps careful track of the number of characters it has. Having CString

provide a LPCTSTR pointer to a null-terminated string is a small amount of work that can become significant if
your code has to do it constantly. The result is temporary because any change to the CString contents invalidates
old copies of the LPCTSTR pointer.

It does make sense in some cases to provide a C-style string. For example, there can be a situation where a called
function is written in C and does not support objects. In this case, coerce the CString parameter to LPCTSTR, and
the function will get a C-style null-terminated string. You can also go the other direction and create a CString

object by using the CString constructor that accepts a C-style string parameter.

If the string contents are to be changed by a function, declare the parameter as a nonconstant CString reference (
CString&).

Typically you can return CString objects from functions because CString objects follow value semantics like
primitive types. To return a read-only string, use a constant CString reference (const CString&). The following
example illustrates the use of CString parameters and return types:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/cstring-argument-passing.md

class CName : public CObject
{
private:
 CString m_firstName;
 TCHAR m_middleInit;
 CString m_lastName;
public:
 CName() {}
 void SetData(LPCTSTR fn, const TCHAR mi, LPCTSTR ln)
 {
 m_firstName = fn;
 m_middleInit = mi;
 m_lastName = ln;
 }
 void GetData(CString& cfn, TCHAR& mi, CString& cln)
 {
 cfn = m_firstName;
 mi = m_middleInit;
 cln = m_lastName;
 }
 CString GetLastName()
 {
 return m_lastName;
 }
};

CName name;
CString last, first;
TCHAR middle;
name.SetData(_T("John"), 'Q', _T("Public"));
ASSERT(name.GetLastName() == _T("Public"));
name.GetData(first, middle, last);
ASSERT((first == _T("John")) && (last == _T("Public")));

See Also
Strings (ATL/MFC)

Unicode and Multibyte Character Set (MBCS)
Support
10/31/2018 • 3 minutes to read • Edit Online

MFC Support for Unicode Strings

UAFXCW.LIB UAFXCW.PDB UAFXCWD.LIB UAFXCWD.PDB

MFCversionU.LIB MFCversionU.PDB MFCversionU.DLL MFCversionUD.LIB

MFCversionUD.PDB MFCversionUD.DLL MFCSversionU.LIB MFCSversionU.PDB

MFCSversionUD.LIB MFCSversionUD.PDB MFCMversionU.LIB MFCMversionU.PDB

MFCMversionU.DLL MFCMversionUD.LIB MFCMversionUD.PDB MFCMversionUD.DLL

Some languages, for example, Japanese and Chinese, have large character sets. To support programming for
these markets, the Microsoft Foundation Class Library (MFC) enables two different approaches to handling large
character sets:

Unicode, wchar_t based wide-characters and strings encoded as UTF-16.

Multibyte Character Sets (MBCS), char based single or double-byte characters and strings encoded in a
locale-specific character set.

Microsoft has recommended the MFC Unicode libraries for all new development, and the MBCS libraries were
deprecated in Visual Studio 2013 and Visual Studio 2015. This is no longer the case. The MBCS deprecation
warnings have been removed in Visual Studio 2017.

The entire MFC class library is conditionally enabled for Unicode characters and strings stored in wide characters
as UTF-16. In particular, class CString is Unicode-enabled.

These library, debugger, and DLL files are used to support Unicode in MFC:

(version represents the version number of the file; for example, '140' means version 14.0.)

CString is based on the TCHAR data type. If the symbol _UNICODE is defined for a build of your program,
TCHAR is defined as type wchar_t , a 16-bit character encoding type. Otherwise, TCHAR is defined as char, the
normal 8-bit character encoding. Therefore, under Unicode, a CString is composed of 16-bit characters. Without
Unicode, it is composed of characters of type char.

To complete Unicode programming of your application, you must also:

Use the _T macro to conditionally code literal strings to be portable to Unicode.

When you pass strings, pay attention to whether function arguments require a length in characters or a
length in bytes. The difference is important if you are using Unicode strings.

Use portable versions of the C run-time string-handling functions.

Use the following data types for characters and character pointers:

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/unicode-and-multibyte-character-set-mbcs-support.md

 MFC Support for MBCS Strings

NOTENOTE

_MBCS defined _mbscmp

_UNICODE defined wcscmp

Neither symbol defined strcmp

NOTENOTE

Use TCHAR where you would use char.

Use LPTSTR where you would use char*.

Use LPCTSTR where you would use const char*. CString provides the operator LPCTSTR to
convert between CString and LPCTSTR.

CString also supplies Unicode-aware constructors, assignment operators, and comparison operators.

The Run-Time Library Reference defines portable versions of all its string-handling functions. For more
information, see the category Internationalization.

The class library is also enabled for multibyte character sets, but only for double-byte character sets (DBCS).

In a multibyte character set, a character can be one or two bytes wide. If it is two bytes wide, its first byte is a
special "lead byte" that is chosen from a particular range, depending on which code page is in use. Taken together,
the lead and "trail bytes" specify a unique character encoding.

If the symbol _MBCS is defined for a build of your program, type TCHAR, on which CString is based, maps to
char. It is up to you to determine which bytes in a CString are lead bytes and which are trail bytes. The C run-
time library supplies functions to help you determine this.

Under DBCS, a given string can contain all single-byte ANSI characters, all double-byte characters, or a
combination of the two. These possibilities require special care in parsing strings. This includes CString objects.

Unicode string serialization in MFC can read both Unicode and MBCS strings regardless of which version of the application
that you are running. Your data files are portable between Unicode and MBCS versions of your program.

CString member functions use special "generic text" versions of the C run-time functions they call, or they use
Unicode-aware functions. Therefore, for example, if a CString function would typically call strcmp , it calls the
corresponding generic-text function _tcscmp instead. Depending on how the symbols _MBCS and _UNICODE
are defined, _tcscmp maps as follows:

The symbols _MBCS and _UNICODE are mutually exclusive.

Generic-text function mappings for all of the run-time string-handling routines are discussed in C Run-Time
Library Reference. For a list, see Internationalization.

Similarly, CString methods are implemented by using generic data type mappings. To enable both MBCS and
Unicode, MFC uses TCHAR for char or wchar_t , LPTSTR for char* or wchar_t* , and LPCTSTR for const char*
or const wchar_t* . These ensure the correct mappings for either MBCS or Unicode.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/c-run-time-library-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/internationalization
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/c-run-time-library-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/internationalization

See Also
Strings (ATL/MFC)
String Manipulation

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/string-manipulation-crt

CSize Class
3/5/2019 • 4 minutes to read • Edit Online

Syntax
class CSize : public tagSIZE

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSize::CSize Constructs a CSize object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CSize::operator - Subtracts two sizes.

CSize::operator != Checks for inequality between CSize and a size.

CSize::operator + Adds two sizes.

CSize::operator += Adds a size to CSize .

CSize::operator -= Subtracts a size from CSize .

CSize::operator == Checks for equality between CSize and a size.

Remarks

NOTENOTE

Inheritance Hierarchy

Similar to the Windows SIZE structure, which implements a relative coordinate or position.

This class is derived from the SIZE structure. This means you can pass a CSize in a parameter that
calls for a SIZE and that the data members of the SIZE structure are accessible data members of
CSize .

The cx and cy members of SIZE (and CSize) are public. In addition, CSize implements member
functions to manipulate the SIZE structure.

For more information on shared utility classes (like CSize), see Shared Classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/csize-class.md
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize

Requirements

CSize::CSize

CSize() throw();
CSize(int initCX, int initCY) throw();
CSize(SIZE initSize) throw();
CSize(POINT initPt) throw();
CSize(DWORD dwSize) throw();

ParametersParameters

RemarksRemarks

ExampleExample

tagSIZE

CSize

Header: atltypes.h

Constructs a CSize object.

initCX
Sets the cx member for the CSize .

initCY
Sets the cy member for the CSize .

initSize
SIZE structure or CSize object used to initialize CSize .

initPt
POINT structure or CPoint object used to initialize CSize .

dwSize
DWORD used to initialize CSize . The low-order word is the cx member and the high-order word is
the cy member.

If no arguments are given, cx and cy are initialized to zero.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint

CSize szEmpty;
CSize szPointA(10, 25);

SIZE sz;
sz.cx = 10;
sz.cy = 25;
CSize szPointB(sz);

POINT pt;
pt.x = 10;
pt.y = 25;
CSize szPointC(pt);

CPoint ptObject(10, 25);
CSize szPointD(ptObject);

DWORD dw = MAKELONG(10, 25);
CSize szPointE(dw);

ASSERT(szPointA == szPointB);
ASSERT(szPointB == szPointC);
ASSERT(szPointC == szPointD);
ASSERT(szPointD == szPointE);

CSize::operator ==

BOOL operator==(SIZE size) const throw();

RemarksRemarks

ExampleExample

CSize sz1(135, 135);
CSize sz2(135, 135);

ASSERT(sz1 == sz2);

CSize::operator !=

BOOL operator!=(SIZE size) const throw();

RemarksRemarks

ExampleExample

CSize sz1(222, 222);
CSize sz2(111, 111);

ASSERT(sz1 != sz2);

Checks for equality between two sizes.

Returns nonzero if the sizes are equal, otherwize 0.

Checks for inequality between two sizes.

Returns nonzero if the sizes are not equal, otherwise 0.

CSize::operator +=

void operator+=(SIZE size) throw();

ExampleExample

CSize sz1(100, 100);
CSize sz2(50, 25);

sz1 += sz2;

CSize szResult(150, 125);
ASSERT(sz1 == szResult);

// works with SIZE, too

sz1 = CSize(100, 100);
SIZE sz3;
sz3.cx = 50;
sz3.cy = 25;

sz1 += sz3;
ASSERT(sz1 == szResult);

CSize::operator -=

void operator-=(SIZE size) throw();

ExampleExample

CSize sz1(100, 100);
CSize sz2(50, 25);

sz1 -= sz2;

CSize szResult(50, 75);
ASSERT(sz1 == szResult);

// works with SIZE, too

sz1 = CSize(100, 100);
SIZE sz3;
sz3.cx = 50;
sz3.cy = 25;

sz1 -= sz3;
ASSERT(sz1 == szResult);

CSize::operator +

Adds a size to this CSize .

Subtracts a size from this CSize .

These operators add this CSize value to the value of parameter.

CSize operator+(SIZE size) const throw();
CPoint operator+(POINT point) const throw();
CRect operator+(const RECT* lpRect) const throw();

RemarksRemarks

ExampleExample

CSize sz1(100, 100);
CSize sz2(50, 25);
CSize szOut;

szOut = sz1 + sz2;

CSize szResult(150, 125);
ASSERT(szOut == szResult);

// works with SIZE, too

sz1 = CSize(100, 100);
SIZE sz3;
sz3.cx = 50;
sz3.cy = 25;

szOut = sz1 + sz3;
ASSERT(szOut == szResult);

CSize::operator -

CSize operator-(SIZE size) const throw();
CPoint operator-(POINT point) const throw();
CRect operator-(const RECT* lpRect) const throw();
CSize operator-() const throw();

RemarksRemarks

See the following descriptions of the individual operators:

operator +(size)

This operation adds two CSize values.

operator +(point)

This operation offsets (moves) a POINT (or CPoint) value by this CSize value. The cx and cy

members of this CSize value are added to the x and y data members of the POINT value. It is
analogous to the version of CPoint::operator + that takes a S IZE parameter.

operator +(lpRect)

This operation offsets (moves) a RECT (or CRect) value by this CSize value. The cx and cy

members of this CSize value are added to the left , top , right , and bottom data members of
the RECT value. It is analogous to the version of CRect::operator + that takes a S IZE parameter.

The first three of these operators subtract this CSize value to the value of parameter.

The fourth operator, the unary minus, changes the sign of the CSize value. See the following
descriptions of the individual operators:

operator -(size)

https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize

ExampleExample

CSize sz1(100, 100);
CSize sz2(50, 25);
CSize szOut;

szOut = sz1 - sz2;

CSize szResult(50, 75);
ASSERT(szOut == szResult);

// works with SIZE, too

sz1 = CSize(100, 100);
SIZE sz3;
sz3.cx = 50;
sz3.cy = 25;

szOut = sz1 - sz3;
ASSERT(szOut == szResult);

See Also

This operation subtracts two CSize values.

operator -(point)

This operation offsets (moves) a POINT or CPoint value by the additive inverse of this CSize

value. The cx and cy of this CSize value are subtracted from the x and y data members of
the POINT value. It is analogous to the version of CPoint::operator - that takes a S IZE parameter.

operator -(lpRect)

This operation offsets (moves) a RECT or CRect value by the additive inverse of this CSize value.
The cx and cy members of this CSize value are subtracted from the left , top , right , and
bottom data members of the RECT value. It is analogous to the version of CRect::operator - that

takes a S IZE parameter.

operator -()

This operation returns the additive inverse of this CSize value.

MFC Sample MDI
Hierarchy Chart
CRect Class
CPoint Class

https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples

CTimeSpan Class
10/31/2018 • 7 minutes to read • Edit Online

Syntax
class CTimeSpan

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CTimeSpan::CTimeSpan Constructs CTimeSpan objects in various ways.

Public MethodsPublic Methods

NAME DESCRIPTION

CTimeSpan::Format Converts a CTimeSpan into a formatted string.

CTimeSpan::GetDays Returns a value that represents the number of complete days
in this CTimeSpan .

CTimeSpan::GetHours Returns a value that represents the number of hours in the
current day (-23 through 23).

CTimeSpan::GetMinutes Returns a value that represents the number of minutes in the
current hour (-59 through 59).

CTimeSpan::GetSeconds Returns a value that represents the number of seconds in the
current minute (-59 through 59).

CTimeSpan::GetTimeSpan Returns the value of the CTimeSpan object.

CTimeSpan::GetTotalHours Returns a value that represents the total number of complete
hours in this CTimeSpan .

CTimeSpan::GetTotalMinutes Returns a value that represents the total number of complete
minutes in this CTimeSpan .

CTimeSpan::GetTotalSeconds Returns a value that represents the total number of complete
seconds in this CTimeSpan .

CTimeSpan::Serialize64 Serializes data to or from an archive.

OperatorsOperators

An amount of time, which is internally stored as the number of seconds in the time span.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/ctimespan-class.md

operator + - Adds and subtracts CTimeSpan objects.

operator += -= Adds and subtracts a CTimeSpan object to and from this
CTimeSpan .

operator == < etc. Compares two relative time values.

Remarks

Requirements

CTimeSpan Comparison Operators

bool operator==(CTimeSpan span) const throw();
bool operator!=(CTimeSpan span) const throw();
bool operator<(CTimeSpan span) const throw();
bool operator>(CTimeSpan span) const throw();
bool operator<=(CTimeSpan span) const throw();
bool operator>=(CTimeSpan span) const throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

CTimeSpan ts1(100);
CTimeSpan ts2(110);
ATLASSERT((ts1 != ts2) && (ts1 < ts2) && (ts1 <= ts2));

CTimeSpan::CTimeSpan

CTimeSpan does not have a base class.

CTimeSpan functions convert seconds to various combinations of days, hours, minutes, and seconds.

The CTimeSpan object is stored in a __time64_t structure, which is 8 bytes.

A companion class, CTime, represents an absolute time.

The CTime and CTimeSpan classes are not designed for derivation. Because there are no virtual functions, the
size of both CTime and CTimeSpan objects is exactly 8 bytes. Most member functions are inline.

For more information on using CTimeSpan , see the articles Date and Time, and Time Management in the Run-
Time Library Reference.

Header: atltime.h

Comparison operators.

span
The object to compare.

These operators compare two relative time values. They return TRUE if the condition is true; otherwise FALSE.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/time-management

CTimeSpan() throw();
CTimeSpan(__time64_t time) throw();

CTimeSpan(
 LONG lDays,
 int nHours,
 int nMins,
 int nSecs) throw();

ParametersParameters

RemarksRemarks

ExampleExample

CTimeSpan ts1; // Uninitialized time value
CTimeSpan ts2a(ts1); // Copy constructor
CTimeSpan ts2b = ts1; // Copy constructor again
CTimeSpan ts3(100); // 100 seconds
CTimeSpan ts4(0, 1, 5, 12); // 1 hour, 5 minutes, and 12 seconds

CTimeSpan::Format

Constructs CTimeSpan objects in various ways.

timeSpanSrc
A CTimeSpan object that already exists.

time
A __time64_t time value, which is the number of seconds in the time span.

lDays, nHours, nMins, nSecs
Days, hours, minutes, and seconds, respectively.

All these constructors create a new CTimeSpan object initialized with the specified relative time. Each constructor
is described below:

COMPONENT RANGE

lDays 0-25,000 (approximately)

nHours 0-23

nMins 0-59

nSecs 0-59

CTimeSpan(); Constructs an uninitialized CTimeSpan object.

CTimeSpan(const CTimeSpan&); Constructs a CTimeSpan object from another CTimeSpan value.

CTimeSpan(__time64_t); Constructs a CTimeSpan object from a __time64_t type.

CTimeSpan(LONG, int, int, int); Constructs a CTimeSpan object from components with each
component constrained to the following ranges:

Note that the Debug version of the Microsoft Foundation Class Library asserts if one or more of the time-day
components is out of range. It is your responsibility to validate the arguments prior to calling.

CString Format(LPCSTR pFormat) const;
CString Format(LPCTSTR pszFormat) const;
CString Format(UINT nID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTimeSpan ts(3, 1, 5, 12); // 3 days, 1 hour, 5 min, and 12 sec
CString s = ts.Format(_T("Total days: %D, hours: %H, mins: %M, secs: %S"));
ATLASSERT(s == _T("Total days: 3, hours: 01, mins: 05, secs: 12"));

CTimeSpan::GetDays

LONGLONG GetDays() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

Generates a formatted string that corresponds to this CTimeSpan .

pFormat, pszFormat
A formatting string similar to the printf formatting string. Formatting codes, preceded by a percent (%) sign,
are replaced by the corresponding CTimeSpan component. Other characters in the formatting string are copied
unchanged to the returned string. The value and meaning of the formatting codes for Format are listed below:

%D Total days in this CTimeSpan

%H Hours in the current day

%M Minutes in the current hour

%S Seconds in the current minute

%% Percent sign

nID
The ID of the string that identifies this format.

A CString object that contains the formatted time.

The Debug version of the library checks the formatting codes and asserts if the code is not in the list above.

Returns a value that represents the number of complete days in this CTimeSpan .

Returns the number of complete 24-hour days in the time span. This value may be negative if the time span is
negative.

Note that Daylight Savings Time can cause GetDays to return a potentially surprising result. For example, when
DST is in effect, GetDays reports the number of days between April 1 and May 1 as 29, not 30, because one day
in April is shortened by an hour and therefore does not count as a complete day.

CTimeSpan ts(3, 1, 5, 12); // 3 days, 1 hour, 5 min, and 12 sec
ATLASSERT(ts.GetDays() == 3);

CTimeSpan::GetHours

LONG GetHours() const throw();

Return ValueReturn Value

ExampleExample

CTimeSpan ts(3, 1, 5, 12); // 3 days, 1 hour, 5 min, and 12 sec
ATLASSERT(ts.GetHours() == 1);
ATLASSERT(ts.GetMinutes() == 5);
ATLASSERT(ts.GetSeconds() == 12);

CTimeSpan::GetMinutes

LONG GetMinutes() const throw();

Return ValueReturn Value

ExampleExample

CTimeSpan::GetSeconds

LONG GetSeconds() const throw();

Return ValueReturn Value

ExampleExample

CTimeSpan::GetTimeSpan

__ time64_t GetTimeSpan() const throw();

Return ValueReturn Value

Returns a value that represents the number of hours in the current day (-23 through 23).

Returns the number of hours in the current day. The range is -23 through 23.

Returns a value that represents the number of minutes in the current hour (-59 through 59).

Returns the number of minutes in the current hour. The range is -59 through 59.

See the example for GetHours.

Returns a value that represents the number of seconds in the current minute (-59 through 59).

Returns the number of seconds in the current minute. The range is -59 through 59.

See the example for GetHours.

Returns the value of the CTimeSpan object.

CTimeSpan::GetTotalHours

LONGLONG GetTotalHours() const throw();

Return ValueReturn Value

ExampleExample

CTimeSpan ts(3, 1, 5, 12); // 3 days, 1 hour, 5 min, and 12 sec
ATLASSERT(ts.GetTotalHours() == 73);
ATLASSERT(ts.GetTotalMinutes() == 4385);
ATLASSERT(ts.GetTotalSeconds() == 263112);

CTimeSpan::GetTotalMinutes

LONGLONG GetTotalMinutes() const throw();

Return ValueReturn Value

ExampleExample

CTimeSpan::GetTotalSeconds

LONGLONG GetTotalSeconds() const throw();

Return ValueReturn Value

ExampleExample

CTimeSpan::operator +, -

CTimeSpan operator+(CTimeSpan span) const throw();
CTimeSpan operator-(CTimeSpan span) const throw();

ParametersParameters

Returns the current value of the CTimeSpan object.

Returns a value that represents the total number of complete hours in this CTimeSpan .

Returns the total number of complete hours in this CTimeSpan .

Returns a value that represents the total number of complete minutes in this CTimeSpan .

Returns the total number of complete minutes in this CTimeSpan .

See the example for GetTotalHours.

Returns a value that represents the total number of complete seconds in this CTimeSpan .

Returns the total number of complete seconds in this CTimeSpan .

See the example for GetTotalHours.

Adds and subtracts CTimeSpan objects.

span

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTimeSpan ts1(3, 1, 5, 12); // 3 days, 1 hour, 5 min, and 12 sec
CTimeSpan ts2(100); // 100 seconds
CTimeSpan ts3 = ts1 + ts2;
ATLASSERT(ts3.GetSeconds() == 52); // 6 mins, 52 secs

CTimeSpan::operator +=, -=

CTimeSpan& operator+=(CTimeSpan span) throw();
CTimeSpan& operator-=(CTimeSpan span) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTimeSpan ts1(10); // 10 seconds
CTimeSpan ts2(100); // 100 seconds
ts2 -= ts1;
ATLASSERT(ts2.GetTotalSeconds() == 90);

CTimeSpan::Serialize64

NOTENOTE

CArchive& Serialize64(CArchive& ar);

ParametersParameters

The value to add to the CTimeSpan object.

A CTimeSpan object representing the result of the operation.

These two operators allow you to add and subtract CTimeSpan objects to and from each other.

Adds and subtracts a CTimeSpan object to and from this CTimeSpan .

span
The value to add to the CTimeSpan object.

The updated CTimeSpan object.

These operators allow you to add and subtract a CTimeSpan object to and from this CTimeSpan .

This method is only available in MFC projects.

Serializes the data associated with the member variable to or from an archive.

ar
The CArchive object that you want to update.

Return ValueReturn Value

See Also

The updated CArchive object.

asctime, _wasctime
_ftime, _ftime32, _ftime64
gmtime, _gmtime32, _gmtime64
localtime, _localtime32, _localtime64
strftime, wcsftime, _strftime_l, _wcsftime_l
time, _time32, _time64
Hierarchy Chart
ATL/MFC Shared Classes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/asctime-wasctime
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/ftime-ftime32-ftime64
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/gmtime-gmtime32-gmtime64
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/localtime-localtime32-localtime64
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strftime-wcsftime-strftime-l-wcsftime-l
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/time-time32-time64

COleDateTime Class
1/24/2019 • 29 minutes to read • Edit Online

Syntax
class COleDateTime

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleDateTime::COleDateTime Constructs a COleDateTime object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleDateTime::Format Generates a formatted string representation of a
COleDateTime object.

COleDateTime::GetAsDBTIMESTAMP Call this method to obtain the time in the
COleDateTime object as a DBTIMESTAMP data

structure.

COleDateTime::GetAsSystemTime Call this method to obtain the time in the
COleDateTime object as a SYSTEMTIME data

structure.

COleDateTime::GetAsUDATE Call this method to obtain the time in the
COleDateTime as a UDATE data structure.

COleDateTime::GetCurrentTime Creates a COleDateTime object that represents the
current time (static member function).

COleDateTime::GetDay Returns the day this COleDateTime object represents
(1 - 31).

COleDateTime::GetDayOfWeek Returns the day of the week this COleDateTime object
represents (Sunday = 1).

COleDateTime::GetDayOfYear Returns the day of the year this COleDateTime object
represents (Jan 1 = 1).

COleDateTime::GetHour Returns the hour this COleDateTime object represents
(0 - 23).

Encapsulates the DATE data type that is used in OLE automation.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/coledatetime-class.md
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime

COleDateTime::GetMinute Returns the minute this COleDateTime object
represents (0 - 59).

COleDateTime::GetMonth Returns the month this COleDateTime object
represents (1 - 12).

COleDateTime::GetSecond Returns the second this COleDateTime object
represents (0 - 59).

COleDateTime::GetStatus Gets the status (validity) of this COleDateTime object.

COleDateTime::GetYear Returns the year this COleDateTime object represents.

COleDateTime::ParseDateTime Reads a date/time value from a string and sets the
value of COleDateTime .

COleDateTime::SetDate Sets the value of this COleDateTime object to the
specified date-only value.

COleDateTime::SetDateTime Sets the value of this COleDateTime object to the
specified date/time value.

COleDateTime::SetStatus Sets the status (validity) of this COleDateTime object.

COleDateTime::SetTime Sets the value of this COleDateTime object to the
specified time-only value.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

COleDateTime::operator ==, COleDateTime::operator
<, etc.

Compare two COleDateTime values.

COleDateTime::operator +, COleDateTime::operator - Add and subtract COleDateTime values.

COleDateTime::operator +=, COleDateTime::operator -
=

Add and subtract a COleDateTime value from this
COleDateTime object.

COleDateTime::operator = Copies a COleDateTime value.

COleDateTime::operator DATE, COleDateTime::operator
Date*

Converts a COleDateTime value into a DATE or a
DATE* .

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleDateTime::m_dt Contains the underlying DATE for this COleDateTime

object.

COleDateTime::m_status Contains the status of this COleDateTime object.

NAME DESCRIPTION

Remarks

DATE VALUE

December 29, 1899, midnight -1.0

December 29, 1899, 6 A.M -1.25

December 30, 1899, midnight 0.0

December 31, 1899, midnight 1.0

January 1, 1900, 6 A.M. 2.25

C a u t i o nC a u t i o n

NOTENOTE

COleDateTime mytime(1996, 1, 1, 0, 0, 0);

COleDateTime does not have a base class.

It is one of the possible types for the VARIANT data type of OLE automation. A COleDateTime value
represents an absolute date and time value.

The DATE type is implemented as a floating-point value. Days are measured from December 30, 1899,
at midnight. The following table shows some dates and their associated values:

Note in the table above that although day values become negative before midnight on December 30,
1899, time-of-day values do not. For example, 6:00 AM is always represented by a fractional value 0.25
regardless of whether the integer representing the day is positive (after December 30, 1899) or
negative (before December 30, 1899). This means that a simple floating point comparison would
erroneously sort a COleDateTime representing 6:00 AM on 12/29/1899 as later than one representing
7:00 AM on the same day.

The COleDateTime class handles dates from January 1, 100, through December 31, 9999. The
COleDateTime class uses the Gregorian calendar; it does not support Julian dates. COleDateTime

ignores Daylight Saving Time. (See Date and Time: Automation Support.)

You can use the %y format to retrieve a two-digit year only for dates starting at 1900. If you use the %y

format on a date before 1900, the code generates an ASSERT failure.

This type is also used to represent date-only or time-only values. By convention, the date 0 (December
30, 1899) is used for time-only values and the time 00:00 (midnight) is used for date-only values.

If you create a COleDateTime object by using a date less than 100, the date is accepted, but subsequent
calls to GetYear , GetMonth , GetDay , GetHour , GetMinute , and GetSecond fail and return -1.
Previously, you could use two-digit dates, but dates must be 100 or larger in MFC 4.2 and later.

To avoid problems, specify a four-digit date. For example:

https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant

Requirements

COleDateTime Relational Operators

bool operator==(const COleDateTime& date) const throw();
bool operator!=(const COleDateTime& date) const throw();
bool operator<(const COleDateTime& date) const throw();
bool operator>(const COleDateTime& date) const throw();
bool operator<=(const COleDateTime& date) const throw();
bool operator>=(const COleDateTime& date) const throw();

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

COleDateTime dateOne(1995, 3, 15, 12, 0, 0); // 15 March 1995 12 noon
COleDateTime dateTwo(dateOne); // 15 March 1995 12 noon
BOOL b;
b = dateOne == dateTwo; // TRUE
b = dateOne < dateTwo; // FALSE, same value
b = dateOne > dateTwo; // FALSE, same value
b = dateOne <= dateTwo; // TRUE, same value
b = dateOne >= dateTwo; // TRUE, same value

dateTwo.SetStatus(COleDateTime::invalid);
b = dateOne == dateTwo; // FALSE, different status
b = dateOne != dateTwo; // TRUE, different status

ExampleExample

VARIANT v = {};
v.vt = VT_NULL;
COleDateTime t1(v);
COleDateTime t2(v);
t1 = t1 + t2;

Basic arithmetic operations for the COleDateTime values use the companion class COleDateTimeSpan.
COleDateTimeSpan values define a time interval. The relationship between these classes is similar to the

one between CTime and CTimeSpan.

For more information about the COleDateTime and COleDateTimeSpan classes, see the article Date and
Time: Automation Support.

Header: ATLComTime.h

Comparison operators.

date
The COleDateTime object to be compared.

An ATLASSERT will occur if either of the two operands is invalid.

The operators >=, <=, >, and <, will assert if the COleDateTime object is set to null.

 COleDateTime::COleDateTime

COleDateTime() throw();
COleDateTime(const VARIANT& varSrc) throw();
COleDateTime(DATE dtSrc) throw();
COleDateTime(time_t timeSrc) throw();
COleDateTime(__time64_t timeSrc) throw();
COleDateTime(const SYSTEMTIME& systimeSrc) throw();
COleDateTime(const FILETIME& filetimeSrc) throw();

COleDateTime(int nYear,
 int nMonth,
 int nDay,
 int nHour,
 int nMin,
 int nSec) throw();

COleDateTime(WORD wDosDate,
 WORD wDosTime) throw();
COleDateTime(const DBTIMESTAMP& dbts) throw();

ParametersParameters

RemarksRemarks

Constructs a COleDateTime object.

dateSrc
An existing COleDateTime object to be copied into the new COleDateTime object.

varSrc
An existing VARIANT data structure (possibly a COleVariant object) to be converted to a date/time
value (VT_DATE) and copied into the new COleDateTime object.

dtSrc
A date/time (DATE) value to be copied into the new COleDateTime object.

timeSrc
A time_t or __time64_t value to be converted to a date/time value and copied into the new
COleDateTime object.

systimeSrc
A SYSTEMTIME structure to be converted to a date/time value and copied into the new COleDateTime

object.

filetimeSrc
A FILETIME structure to be converted to a date/time value and copied into the new COleDateTime

object. Note that FILETIME uses Universal Coordinated Time (UTC), so if you pass a local time in the
structure, your results will be incorrect. See File Times in the Windows SDK for more information.

nYear, nMonth, nDay, nHour, nMin, nSec
Indicate the date and time values to be copied into the new COleDateTime object.

wDosDate, wDosTime
MS-DOS date and time values to be converted to a date/time value and copied into the new
COleDateTime object.

dbts
A reference to a DBTimeStamp structure containing the current local time.

All these constructors create new COleDateTime objects initialized to the specified value. The following

https://docs.microsoft.com/windows/desktop/SysInfo/file-times
https://msdn.microsoft.com/library/system.data.oledb.oledbtype

DATE/TIME COMPONENT VALID RANGE

year 100 - 9999

month 0 - 12

day 0 - 31

hour 0 - 23

minute 0 - 59

second 0 - 59

table shows valid ranges for each date and time component:

Note that the actual upper bound for the day component varies based on the month and year
components. For details, see the SetDate or SetDateTime member functions.

Following is a brief description of each constructor:

COleDateTime() Constructs a COleDateTime object initialized to 0 (midnight, 30 December
1899).

COleDateTime(dateSrc) Constructs a COleDateTime object from an existing COleDateTime

object.

COleDateTime(varSrc) Constructs a COleDateTime object. Attempts to convert a VARIANT

structure or COleVariant object to a date/time (VT_DATE) value. If this conversion is successful,
the converted value is copied into the new COleDateTime object. If it is not, the value of the
COleDateTime object is set to 0 (midnight, 30 December 1899) and its status to invalid.

COleDateTime(dtSrc) Constructs a COleDateTime object from a DATE value.

COleDateTime(timeSrc) Constructs a COleDateTime object from a time_t value.

COleDateTime(systimeSrc) Constructs a COleDateTime object from a SYSTEMTIME value.

COleDateTime(filetimeSrc) Constructs a COleDateTime object from a FILETIME value. . Note
that FILETIME uses Universal Coordinated Time (UTC), so if you pass a local time in the
structure, your results will be incorrect. See File Times in the Windows SDK for more
information.

COleDateTime(nYear , nMonth , nDay , nHour , nMin , nSec) Constructs a COleDateTime object
from the specified numerical values.

COleDateTime(wDosDate , wDosTime) Constructs a COleDateTime object from the specified MS-
DOS date and time values.

For more information on the time_t data type, see the time function in the Run-Time Library
Reference.

For more information, see the SYSTEMTIME and FILETIME structures in the Windows SDK.

For more information about the bounds for COleDateTime values, see the article Date and Time:
Automation Support.

https://docs.microsoft.com/windows/desktop/SysInfo/file-times
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/time-time32-time64
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime

NOTENOTE

ExampleExample

time_t osBinaryTime; // C run-time time (defined in <time.h>)
time(&osBinaryTime); // Get the current time from the
 // operating system.

COleDateTime time1; // initialized to 00:00am, 30 December 1899
 // (and m_nStatus is valid!)

COleDateTime time2 = time1; // Copy constructor
COleDateTime time3(osBinaryTime); // from time_t
COleDateTime time4(1999, 3, 19, 22, 15, 0); // 10:15PM March 19, 1999

SYSTEMTIME sysTime; // Win32 time information
GetSystemTime(&sysTime);

COleDateTime time5(sysTime);

COleDateTime::Format

CString Format(DWORD dwFlags = 0, LCID lcid = LANG_USER_DEFAULT) const;
CString Format(LPCTSTR lpszFormat) const;
CString Format(UINT nFormatID) const;

ParametersParameters

The constructor using DBTIMESTAMP parameter is only available when OLEDB.h is included.

Creates a formatted representation of the date/time value.

dwFlags
Indicates one of the following locale flags:

LOCALE_NOUSEROVERRIDE Use the system default locale settings, instead of custom user
settings.

VAR_TIMEVALUEONLY Ignore the date portion during parsing.

VAR_DATEVALUEONLY Ignore the time portion during parsing.

lcid
Indicates locale ID to use for the conversion. For more information about language identifiers, see
Language Identifiers.

lpszFormat
A formatting string similar to the printf formatting string. Each formatting code, preceded by a
percent (%) sign, is replaced by the corresponding COleDateTime component. Other characters in the
formatting string are copied unchanged to the returned string. See the run-time function strftime for
more information. The value and meaning of the formatting codes for Format are:

%H Hours in the current day

%M Minutes in the current hour

%S Seconds in the current minute

%% Percent sign

https://docs.microsoft.com/windows/desktop/Intl/language-identifiers
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strftime-wcsftime-strftime-l-wcsftime-l

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleDateTime t(1999, 3, 19, 22, 15, 0);

CString str = t.Format(_T("%A, %B %d, %Y"));
ASSERT(str == _T("Friday, March 19, 1999"));

COleDateTime::GetAsDBTIMESTAMP

bool GetAsDBTIMESTAMP(DBTIMESTAMP& dbts) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

nFormatID
The resource ID for the format-control string.

A CString that contains the formatted date/time value.

If the status of this COleDateTime object is null, the return value is an empty string. If the status is
invalid, the return string is specified by the string resource ATL_IDS_DATETIME_INVALID.

A brief description of the three forms for this function follows:

Format (dwFlags, lcid)
This form formats the value by using the language specifications (locale IDs) for date and time. Using
the default parameters, this form will print the date and the time, unless the time portion is 0
(midnight), in which case it will print just the date, or the date portion is 0 (30 December 1899), in
which case it will print just the time. If the date/time value is 0 (30 December 1899, midnight), this
form with the default parameters will print midnight.

Format (lpszFormat)
This form formats the value by using the format string which contains special formatting codes that are
preceded by a percent sign (%), as in printf . The formatting string is passed as a parameter to the
function. For more information about the formatting codes, see strftime, wcsftime in the Run-Time
Library Reference.

Format (nFormatID)
This form formats the value by using the format string which contains special formatting codes that are
preceded by a percent sign (%), as in printf . The formatting string is a resource. The ID of this string
resource is passed as the parameter. For more information about the formatting codes, see strftime,
wcsftime in the Run-Time Library Reference.

Call this method to obtain the time in the COleDateTime object as a DBTIMESTAMP data structure.

dbts
A reference to a DBTimeStamp structure.

Nonzero if successful; otherwise 0.

Stores the resulting time in the referenced dbts structure. The DBTIMESTAMP data structure initialized by
this function will have its fraction member set to zero.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strftime-wcsftime-strftime-l-wcsftime-l
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strftime-wcsftime-strftime-l-wcsftime-l
https://msdn.microsoft.com/library/system.data.oledb.oledbtype

ExampleExample

COleDateTime t = COleDateTime::GetCurrentTime();
DBTIMESTAMP ts;
t.GetAsDBTIMESTAMP(ts); // retrieves the time in t into the ts structure

COleDateTime::GetAsSystemTime

bool GetAsSystemTime(SYSTEMTIME& sysTime) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleDateTime::GetAsUDATE

bool GetAsUDATE(UDATE& udate) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

COleDateTime::GetCurrentTime

static COleDateTime WINAPI GetCurrentTime() throw();

ExampleExample

Call this method to obtain the time in the COleDateTime object as a SYSTEMTIME data structure.

sysTime
A reference to a SYSTEMTIME structure to receive the converted date/time value from the
COleDateTime object.

Returns TRUE if successful; FALSE if the conversion fails, or if the COleDateTime object is NULL or
invalid.

GetAsSystemTime stores the resulting time in the referenced sysTime object. The SYSTEMTIME data
structure initialized by this function will have its wMilliseconds member set to zero.

See GetStatus for more information on the status information held in a COleDateTime object.

Call this method to obtain the time in the COleDateTime object as a UDATE data structure.

udate
A reference to a UDATE structure to receive the converted date/time value from the COleDateTime

object.

Returns TRUE if successful; FALSE if the conversion fails, or if the COleDateTime object is NULL or
invalid.

A UDATE structure represents an "unpacked" date.

Call this static member function to return the current date/time value.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime

// example for COleDateTime::GetCurrentTime
COleDateTime dateTest;
 // dateTest value = midnight 30 December 1899

dateTest = COleDateTime::GetCurrentTime();
 // dateTest value = current date and time

// a second example for COleDateTime::GetCurrentTime
// Since GetCurrentTime() is a static member, you can use it in
// a constructor:

COleDateTime t1 = COleDateTime::GetCurrentTime();
COleDateTime t2(COleDateTime::GetCurrentTime());

// Or in a normal assignment operator

COleDateTime t3;
t3 = COleDateTime::GetCurrentTime();

// or even in an expression

 if (COleDateTime::GetCurrentTime().GetDayOfWeek() == 6)
 _tprintf(_T("Thank Goodness it is Friday!\n\n"));

COleDateTime::GetDay

int GetDay() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

Gets the day of the month represented by this date/time value.

The day of the month represented by the value of this COleDateTime object or COleDateTime::error if
the day could not be obtained.

Valid return values range between 1 and 31.

For information on other member functions that query the value of this COleDateTime object, see the
following member functions:

GetMonth

GetYear

GetHour

GetMinute

GetSecond

GetDayOfWeek

GetDayOfYear

COleDateTime t(1999, 3, 19, 22, 15, 0); // 10:15PM March 19, 1999
ASSERT(t.GetDay() == 19);
ASSERT(t.GetMonth() == 3);
ASSERT(t.GetYear() == 1999);

COleDateTime::GetDayOfWeek

int GetDayOfWeek() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleDateTime t(1999, 3, 19, 22, 15, 0); // 10:15PM March 19, 1999
ASSERT(t.GetDayOfWeek() == 6); // it's a Friday

COleDateTime::GetDayOfYear

int GetDayOfYear() const throw();

Return ValueReturn Value

RemarksRemarks

Gets the day of the month represented by this date/time value.

The day of the week represented by the value of this COleDateTime object or COleDateTime::error if
the day of the week could not be obtained.

Valid return values range between 1 and 7, where 1=Sunday, 2=Monday, and so on.

For information on other member functions that query the value of this COleDateTime object, see the
following member functions:

GetDay

GetMonth

GetYear

GetHour

GetMinute

GetSecond

GetDayOfYear

Gets the day of the year represented by this date/time value.

The day of the year represented by the value of this COleDateTime object or COleDateTime::error if the
day of the year could not be obtained.

Valid return values range between 1 and 366, where January 1 = 1.

For information on other member functions that query the value of this COleDateTime object, see the
following member functions:

ExampleExample

COleDateTime t(1999, 3, 19, 22, 15, 0); // 10:15PM March 19, 1999
ASSERT(t.GetDayOfYear() == 78); // 78th day of that year

COleDateTime::GetHour

int GetHour() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleDateTime t(1999, 3, 19, 22, 15, 0); // 10:15PM March 19, 1999
ASSERT(t.GetSecond() == 0);
ASSERT(t.GetMinute() == 15);
ASSERT(t.GetHour() == 22);

COleDateTime::GetMinute

GetDay

GetMonth

GetYear

GetHour

GetMinute

GetSecond

GetDayOfWeek

Gets the hour represented by this date/time value.

The hour represented by the value of this COleDateTime object or COleDateTime::error if the hour
could not be obtained.

Valid return values range between 0 and 23.

For information on other member functions that query the value of this COleDateTime object, see the
following member functions:

GetDay

GetMonth

GetYear

GetMinute

GetSecond

GetDayOfWeek

GetDayOfYear

int GetMinute() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleDateTime::GetMonth

int GetMonth() const throw();

Return ValueReturn Value

RemarksRemarks

Gets the minute represented by this date/time value.

The minute represented by the value of this COleDateTime object or COleDateTime::error if the minute
could not be obtained.

Valid return values range between 0 and 59.

For information on other member functions that query the value of this COleDateTime object, see the
following member functions:

GetDay

GetMonth

GetYear

GetHour

GetSecond

GetDayOfWeek

GetDayOfYear

See the example for GetHour.

Gets the month represented by this date/time value.

The month represented by the value of this COleDateTime object or COleDateTime::error if the month
could not be obtained.

Valid return values range between 1 and 12.

For information on other member functions that query the value of this COleDateTime object, see the
following member functions:

GetDay

GetYear

GetHour

GetMinute

GetSecond

GetDayOfWeek

ExampleExample

COleDateTime::GetSecond

int GetSecond() const throw();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

COleDateTime::GetStatus

DateTimeStatus GetStatus() const throw();

Return ValueReturn Value

GetDayOfYear

See the example for GetDay.

Gets the second represented by this date/time value.

The second represented by the value of this COleDateTime object or COleDateTime::error if the second
could not be obtained.

Valid return values range between 0 and 59.

The COleDateTime class does not support leap seconds.

For more information about the implementation for COleDateTime , see the article Date and Time:
Automation Support.

For information on other member functions that query the value of this COleDateTime object, see the
following member functions:

GetDay

GetMonth

GetYear

GetHour

GetMinute

GetDayOfWeek

GetDayOfYear

See the example for GetHour.

Gets the status (validity) of a given COleDateTime object.

Returns the status of this COleDateTime value. If you call GetStatus on a COleDateTime object
constructed with the default, it will return valid. If you call GetStatus on a COleDateTime object
initialized with the constructor set to null, GetStatus will return null. See Remarks for more

RemarksRemarks

enum DateTimeStatus
{
 error = -1,
 valid = 0,
 invalid = 1, // Invalid date (out of range, etc.)
 null = 2, // Literally has no value
};

ExampleExample

information.

The return value is defined by the DateTimeStatus enumerated type, which is defined within the
COleDateTime class.

For a brief description of these status values, see the following list:

COleDateTime::error Indicates that an error occurred while attempting to obtain part of the
date/time value.

COleDateTime::valid Indicates that this COleDateTime object is valid.

COleDateTime::invalid Indicates that this COleDateTime object is invalid; that is, its value may be
incorrect.

COleDateTime::null Indicates that this COleDateTime object is null, that is, that no value has
been supplied for this object. (This is "null" in the database sense of "having no value," as
opposed to the C++ NULL.)

The status of a COleDateTime object is invalid in the following cases:

If its value is set from a VARIANT or COleVariant value that could not be converted to a
date/time value.

If its value is set from a time_t , SYSTEMTIME , or FILETIME value that could not be converted to
a valid date/time value.

If its value is set by SetDateTime with invalid parameter values.

If this object has experienced an overflow or underflow during an arithmetic assignment
operation, namely, += or -= .

If an invalid value was assigned to this object.

If the status of this object was explicitly set to invalid using SetStatus .

For more information about the operations that may set the status to invalid, see the following
member functions:

COleDateTime

SetDateTime

operator +, -

operator +=, -=

For more information about the bounds for COleDateTime values, see the article Date and Time:
Automation Support.

COleDateTime t;

// this one is a leap year
t.SetDateTime(2000, 2, 29, 5, 0, 0);
ASSERT(t.GetStatus() == COleDateTime::valid);

// this date isn't valid
t.SetDateTime(1925, 2, 30, 5, 0, 0);
ASSERT(t.GetStatus() == COleDateTime::invalid);

// the only way to set null is to set null!
t.SetStatus(COleDateTime::null);
ASSERT(t.GetStatus() == COleDateTime::null);

COleDateTime::GetYear

int GetYear() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleDateTime::m_dt

DATE m_dt;

RemarksRemarks

Gets the year represented by this date/time value.

The year represented by the value of this COleDateTime object or COleDateTime::error if the year could
not be obtained.

Valid return values range between 100 and 9999, which includes the century.

For information on other member functions that query the value of this COleDateTime object, see the
following member functions:

GetDay

GetMonth

GetHour

GetMinute

GetSecond

GetDayOfWeek

GetDayOfYear

For more information about the bounds for COleDateTime values, see the article Date and Time:
Automation Support.

See the example for GetDay.

The underlying DATE structure for this COleDateTime object.

C a u t i o nC a u t i o n

COleDateTime::m_status

DateTimeStatus m_status;

RemarksRemarks

C a u t i o nC a u t i o n

COleDateTime::operator =

COleDateTime& operator=(const VARIANT& varSrc) throw();
COleDateTime& operator=(DATE dtSrc) throw();
COleDateTime& operator=(const time_t& timeSrc) throw();
COleDateTime& operator=(const __time64_t& timeSrc) throw();
COleDateTime& operator=(const SYSTEMTIME& systimeSrc) throw();
COleDateTime& operator=(const FILETIME& filetimeSrc) throw();
COleDateTime& operator=(const UDATE& udate) throw();

RemarksRemarks

Changing the value in the DATE object accessed by the pointer returned by this function will change
the value of this COleDateTime object. It does not change the status of this COleDateTime object.

For more information about the implementation of the DATE object, see the article Date and Time:
Automation Support.

Contains the status of this COleDateTime object.

The type of this data member is the enumerated type DateTimeStatus , which is defined within the
COleDateTime class. See COleDateTime::GetStatus for details.

This data member is for advanced programming situations. You should use the inline member
functions GetStatus and SetStatus. See SetStatus for further cautions regarding explicitly setting this
data member.

Copies a COleDateTime value.

These overloaded assignment operators copy the source date/time value into this COleDateTime object.
A brief description of each these overloaded assignment operators follows:

operator =(dateSrc) The value and status of the operand are copied into this COleDateTime

object.

operator =(varSrc) If the conversion of the VARIANT value (or COleVariant object) to a
date/time (VT_DATE) is successful, the converted value is copied into this COleDateTime object
and its status is set to valid. If the conversion is not successful, the value of this object is set to
zero (30 December 1899, midnight) and its status to invalid.

operator =(dtSrc) The DATE value is copied into this COleDateTime object and its status is
set to valid.

operator =(timeSrc) The time_t or __time64_t value is converted and copied into this
COleDateTime object. If the conversion is successful, the status of this object is set to valid; if

unsuccessful, it is set to invalid.

operator =(systimeSrc) The SYSTEMTIME value is converted and copied into this
COleDateTime object. If the conversion is successful, the status of this object is set to valid; if

unsuccessful, it is set to invalid.

https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime

 COleDateTime::operator +, -

COleDateTime operator+(COleDateTimeSpan dateSpan) const throw();
COleDateTime operator-(COleDateTimeSpan dateSpan) const throw();
COleDateTimeSpan operator-(const COleDateTime& date) const throw();

RemarksRemarks

ExampleExample

operator =(udate) The UDATE value is converted and copied into this COleDateTime object. If
the conversion is successful, the status of this object is set to valid; if unsuccessful, it is set to
invalid. A UDATE structure represents an "unpacked" date. See the function VarDateFromUdate
for more details.

operator =(filetimeSrc) The FILETIME value is converted and copied into this COleDateTime

object. If the conversion is successful, the status of this object is set to valid; otherwise it is set to
invalid. FILETIME uses Universal Coordinated Time (UTC), so if you pass a UTC time in the
structure, your results will be converted from UTC time to local time, and will be stored as
variant time. This behavior is the same as in Visual C++ 6.0 and Visual C++.NET 2003 SP2. See
File Times in the Windows SDK for more information.

For more information, see the VARIANT entry in the Windows SDK.

For more information on the time_t data type, see the time function in the Run-Time Library
Reference.

For more information, see the SYSTEMTIME and FILETIME structures in the Windows SDK.

For more information about the bounds for COleDateTime values, see the article Date and Time:
Automation Support.

Add and subtract ColeDateTime values.

COleDateTime objects represent absolute times. COleDateTimeSpan objects represent relative times.
The first two operators allow you to add and subtract a COleDateTimeSpan value from a COleDateTime

value. The third operator allows you to subtract one COleDateTime value from another to yield a
COleDateTimeSpan value.

If either of the operands is null, the status of the resulting COleDateTime value is null.

If the resulting COleDateTime value falls outside the bounds of acceptable values, the status of that
COleDateTime value is invalid.

If either of the operands is invalid and the other is not null, the status of the resulting COleDateTime

value is invalid.

The + and - operators will assert if the COleDateTime object is set to null. See COleDateTime Relational
Operators for an example.

For more information on the valid, invalid, and null status values, see the m_status member variable.

For more information about the bounds for COleDateTime values, see the article Date and Time:
Automation Support.

https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-vardatefromudate
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime
https://docs.microsoft.com/windows/desktop/SysInfo/file-times
https://docs.microsoft.com/windows/desktop/api/oaidl/ns-oaidl-tagvariant
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/time-time32-time64
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime

COleDateTime t1(1999, 3, 19, 22, 15, 0); // 10:15PM March 19, 1999
COleDateTime t2(1999, 3, 20, 22, 15, 0); // 10:15PM March 20, 1999

// Subtract 2 COleDateTimes
COleDateTimeSpan ts = t2 - t1;

// one day is 24 * 60 * 60 == 86400 seconds
ASSERT(ts.GetTotalSeconds() == 86400L);

// Add a COleDateTimeSpan to a COleDateTime.
ASSERT((t1 + ts) == t2);

// Subtract a COleDateTimeSpan from a COleDateTime.
ASSERT((t2 - ts) == t1);

COleDateTime::operator +=, -=

COleDateTime& operator+=(COleDateTimeSpan dateSpan) throw();
COleDateTime& operator-=(COleDateTimeSpan dateSpan) throw();

RemarksRemarks

COleDateTime::operator DATE

operator DATE() const throw();

RemarksRemarks

COleDateTime::ParseDateTime

Add and subtract a ColeDateTime value from this COleDateTime object.

These operators allow you to add and subtract a COleDateTimeSpan value to and from this
COleDateTime . If either of the operands is null, the status of the resulting COleDateTime value is null.

If the resulting COleDateTime value falls outside the bounds of acceptable values, the status of this
COleDateTime value is set to invalid.

If either of the operands is invalid and other is not null, the status of the resulting COleDateTime value
is invalid.

For more information on the valid, invalid, and null status values, see the m_status member variable.

The += and -= operators will assert if the COleDateTime object is set to null. See COleDateTime
Relational Operators for an example.

For more information about the bounds for COleDateTime values, see the article Date and Time:
Automation Support.

Converts a ColeDateTime value into a DATE .

This operator returns a DATE object whose value is copied from this COleDateTime object. For more
information about the implementation of the DATE object, see the article Date and Time: Automation
Support.

The DATE operator will assert if the COleDateTime object is set to null. See COleDateTime Relational
Operators for an example.

bool ParseDateTime(
 LPCTSTR lpszDate,
 DWORD dwFlags = 0,
 LCID lcid = LANG_USER_DEFAULT) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

Parses a string to read a date/time value.

lpszDate
A pointer to the null-terminated string which is to be parsed. For details, see Remarks.

dwFlags
Indicates flags for locale settings and parsing. One or more of the following flags:

LOCALE_NOUSEROVERRIDE Use the system default locale settings, rather than custom user
settings.

VAR_TIMEVALUEONLY Ignore the date portion during parsing.

VAR_DATEVALUEONLY Ignore the time portion during parsing.

lcid
Indicates locale ID to use for the conversion.

Returns TRUE if the string was successfully converted to a date/time value, otherwise FALSE.

If the string was successfully converted to a date/time value, the value of this COleDateTime object is
set to that value and its status to valid.

Year values must lie between 100 and 9999, inclusively.

The lpszDate parameter can take a variety of formats. For example, the following strings contain
acceptable date/time formats:

"25 January 1996"

"8:30:00"

"20:30:00"

"January 25, 1996 8:30:00"

"8:30:00 Jan. 25, 1996"

"1/25/1996 8:30:00" // always specify the full year, even in a 'short date' format

Note that the locale ID will also affect whether the string format is acceptable for conversion to a
date/time value.

In the case of VAR_DATEVALUEONLY, the time value is set to time 0, or midnight. In the case of
VAR_TIMEVALUEONLY, the date value is set to date 0, meaning 30 December 1899.

If the string could not be converted to a date/time value or if there was a numerical overflow, the status
of this COleDateTime object is invalid.

 COleDateTime::SetDate

int SetDate(
 int nYear,
 int nMonth,
 int nDay) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PARAMETER BOUNDS

nYear 100 - 9999

nMonth 1 - 12

nDay 0 - 31

NYEAR NMONTH NDAY VALUE

2000 2 29 29 February 2000

1776 7 4 4 July 1776

1925 4 35 35 April 1925 (invalid
date)

For more information about the bounds and implementation for COleDateTime values, see the article
Date and Time: Automation Support.

Sets the date of this COleDateTime object.

nYear, nMonth, nDay
Indicate the date components to be copied into this COleDateTime object.

Zero if the value of this COleDateTime object was set successfully; otherwise, 1. This return value is
based on the DateTimeStatus enumerated type. For more information, see the SetStatus member
function.

The date is set to the specified values. The time is set to time 0, midnight.

See the following table for bounds for the parameter values:

If the day of the month overflows, it is converted to the correct day of the next month and the month
and/or year is incremented accordingly. A day value of zero indicates the last day of the previous
month. The behavior is the same as SystemTimeToVariantTime .

If the date value specified by the parameters is not valid, the status of this object is set to
COleDateTime::invalid . You should use GetStatus to check the validity of the DATE value and should

not assume that the value of m_dt will remain unmodified.

Here are some examples of date values:

10000 1 1 1 January 10000 (invalid
date)

NYEAR NMONTH NDAY VALUE

ExampleExample

// set only the date, time set to midnight
dt.SetDate(1999, 3, 19);
ASSERT(dt.GetYear() == 1999);
ASSERT(dt.GetDay() == 19);
ASSERT(dt.GetMonth() == 3);
ASSERT(dt.GetHour() == 0);
ASSERT(dt.GetMinute() == 0);
ASSERT(dt.GetSecond() == 0);

// setting the time only resets the date to 1899!
dt.SetTime(22, 15, 0);
ASSERT(dt.GetYear() == 1899);
ASSERT(dt.GetDay() == 30);
ASSERT(dt.GetMonth() == 12);
ASSERT(dt.GetHour() == 22);
ASSERT(dt.GetMinute() == 15);
ASSERT(dt.GetSecond() == 0);

COleDateTime::SetDateTime

int SetDateTime(
 int nYear,
 int nMonth,
 int nDay,
 int nHour,
 int nMin,
 int nSec) throw();

To set both date and time, see COleDateTime::SetDateTime.

For information on member functions that query the value of this COleDateTime object, see the
following member functions:

GetDay

GetMonth

GetYear

GetHour

GetMinute

GetSecond

GetDayOfWeek

GetDayOfYear

For more information about the bounds for COleDateTime values, see the article Date and Time:
Automation Support.

Sets the date and time of this COleDateTime object.

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PARAMETER BOUNDS

nYear 100 - 9999

nMonth 1 - 12

nDay 0 - 31

nHour 0 - 23

nMin 0 - 59

nSec 0 - 59

NHOUR NMIN NSEC VALUE

1 3 3 01:03:03

23 45 0 23:45:00

25 30 0 Invalid

9 60 0 Invalid

NYEAR NMONTH NDAY VALUE

1995 4 15 15 April 1995

1789 7 14 17 July 1789

1925 2 30 Invalid

nYear, nMonth, nDay, nHour, nMin, nSec
Indicate the date and time components to be copied into this COleDateTime object.

Zero if the value of this COleDateTime object was set successfully; otherwise, 1. This return value is
based on the DateTimeStatus enumerated type. For more information, see the SetStatus member
function.

See the following table for bounds for the parameter values:

If the day of the month overflows, it is converted to the correct day of the next month and the month
and/or year is incremented accordingly. A day value of zero indicates the last day of the previous
month. The behavior is the same as SystemTimeToVariantTime.

If the date or time value specified by the parameters is not valid, the status of this object is set to invalid
and the value of this object is not changed.

Here are some examples of time values:

Here are some examples of date values:

https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-systemtimetovarianttime

10000 1 1 Invalid

NYEAR NMONTH NDAY VALUE

ExampleExample

COleDateTime::SetStatus

void SetStatus(DateTimeStatus status) throw();

ParametersParameters

RemarksRemarks

C a u t i o nC a u t i o n

ExampleExample

COleDateTime::SetTime

To set the date only, see COleDateTime::SetDate. To set the time only, see COleDateTime::SetTime.

For information on member functions that query the value of this COleDateTime object, see the
following member functions:

GetDay

GetMonth

GetYear

GetHour

GetMinute

GetSecond

GetDayOfWeek

GetDayOfYear

For more information about the bounds for COleDateTime values, see the article Date and Time:
Automation Support.

See the example for GetStatus.

Sets the status of this COleDateTime object.

status
The new status value for this COleDateTime object.

The status parameter value is defined by the DateTimeStatus enumerated type, which is defined within
the COleDateTime class. See COleDateTime::GetStatus for details.

This function is for advanced programming situations. This function does not alter the data in this
object. It will most often be used to set the status to null or invalid. Note that the assignment operator
(operator =) and SetDateTime do set the status of the object based on the source value(s).

See the example for GetStatus.

Sets the time of this COleDateTime object.

int SetTime(
 int nHour,
 int nMin,
 int nSec) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

PARAMETER BOUNDS

nHour 0 - 23

nMin 0 - 59

nSec 0 - 59

NHOUR NMIN NSEC VALUE

1 3 3 01:03:03

23 45 0 23:45:00

25 30 0 Invalid

9 60 0 Invalid

nHour, nMin, nSec
Indicate the time components to be copied into this COleDateTime object.

Zero if the value of this COleDateTime object was set successfully; otherwise, 1. This return value is
based on the DateTimeStatus enumerated type. For more information, see the SetStatus member
function.

The time is set to the specified values. The date is set to date 0, meaning 30 December 1899.

See the following table for bounds for the parameter values:

If the time value specified by the parameters is not valid, the status of this object is set to invalid and
the value of this object is not changed.

Here are some examples of time values:

To set both date and time, see COleDateTime::SetDateTime.

For information on member functions that query the value of this COleDateTime object, see the
following member functions:

GetDay

GetMonth

GetYear

GetHour

GetMinute

ExampleExample

See Also

GetSecond

GetDayOfWeek

GetDayOfYear

For more information about the bounds for COleDateTime values, see the article Date and Time:
Automation Support.

See the example for SetDate.

COleVariant Class
CTime Class
CTimeSpan Class
Hierarchy Chart
ATL/MFC Shared Classes

CRect Class
12/10/2018 • 26 minutes to read • Edit Online

Syntax
class CRect : public tagRECT

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CRect::CRect Constructs a CRect object.

Public MethodsPublic Methods

NAME DESCRIPTION

CRect::BottomRight Returns the bottom-right point of CRect .

CRect::CenterPoint Returns the centerpoint of CRect .

CRect::CopyRect Copies the dimensions of a source rectangle to
CRect .

CRect::DeflateRect Decreases the width and height of CRect .

CRect::EqualRect Determines whether CRect is equal to the given
rectangle.

CRect::Height Calculates the height of CRect .

CRect::InflateRect Increases the width and height of CRect .

CRect::IntersectRect Sets CRect equal to the intersection of two
rectangles.

CRect::IsRectEmpty Determines whether CRect is empty. CRect is
empty if the width and/or height are 0.

CRect::IsRectNull Determines whether the top , bottom , left ,
and right member variables are all equal to 0.

CRect::MoveToX Moves CRect to the specified x-coordinate.

Similar to a Windows RECT structure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/crect-class.md
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CRect::MoveToXY Moves CRect to the specified x- and y-
coordinates.

CRect::MoveToY Moves CRect to the specified y-coordinate.

CRect::NormalizeRect Standardizes the height and width of CRect .

CRect::OffsetRect Moves CRect by the specified offsets.

CRect::PtInRect Determines whether the specified point lies within
CRect .

CRect::SetRect Sets the dimensions of CRect .

CRect::SetRectEmpty Sets CRect to an empty rectangle (all
coordinates equal to 0).

CRect::Size Calculates the size of CRect .

CRect::SubtractRect Subtracts one rectangle from another.

CRect::TopLeft Returns the top-left point of CRect .

CRect::UnionRect Sets CRect equal to the union of two
rectangles.

CRect::Width Calculates the width of CRect .

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CRect::operator - Subtracts the given offsets from CRect or
deflates CRect and returns the resulting
CRect .

CRect::operator LPCRECT Converts a CRect to an LPCRECT .

CRect::operator LPRECT Converts a CRect to an LPRECT .

CRect::operator != Determines whether CRect is not equal to a
rectangle.

CRect::operator & Creates the intersection of CRect and a
rectangle and returns the resulting CRect .

CRect::operator &= Sets CRect equal to the intersection of CRect

and a rectangle.

CRect::operator | Creates the union of CRect and a rectangle and
returns the resulting CRect .

CRect::operator |= Sets CRect equal to the union of CRect and a
rectangle.

CRect::operator + Adds the given offsets to CRect or inflates
CRect and returns the resulting CRect .

CRect::operator += Adds the specified offsets to CRect or inflates
CRect .

CRect::operator = Copies the dimensions of a rectangle to CRect .

CRect::operator -= Subtracts the specified offsets from CRect or
deflates CRect .

CRect::operator == Determines whether CRect is equal to a
rectangle.

NAME DESCRIPTION

Remarks

NOTENOTE

CRect also includes member functions to manipulate CRect objects and Windows RECT

structures.

A CRect object can be passed as a function parameter wherever a RECT structure, LPCRECT ,
or LPRECT can be passed.

This class is derived from the tagRECT structure. (The name tagRECT is a less-commonly-used
name for the RECT structure.) This means that the data members (left , top , right , and
bottom) of the RECT structure are accessible data members of CRect .

A CRect contains member variables that define the top-left and bottom-right points of a
rectangle.

When specifying a CRect , you must be careful to construct it so that it is normalized — in
other words, such that the value of the left coordinate is less than the right and the top is
less than the bottom. For example, a top left of (10,10) and bottom right of (20,20) defines a
normalized rectangle but a top left of (20,20) and bottom right of (10,10) defines a non-
normalized rectangle. If the rectangle is not normalized, many CRect member functions
may return incorrect results. (See CRect::NormalizeRect for a list of these functions.) Before
you call a function that requires normalized rectangles, you can normalize non-normalized
rectangles by calling the NormalizeRect function.

Use caution when manipulating a CRect with the CDC::DPtoLP and CDC::LPtoDP member
functions. If the mapping mode of a display context is such that the y-extent is negative, as in
MM_LOENGLISH , then CDC::DPtoLP will transform the CRect so that its top is greater than the

bottom. Functions such as Height and Size will then return negative values for the height
of the transformed CRect , and the rectangle will be non-normalized.

Inheritance Hierarchy

Requirements

CRect::BottomRight

CPoint& BottomRight() throw();
const CPoint& BottomRight() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// use BottomRight() to retrieve the bottom
// right POINT
CRect rect(210, 150, 350, 900);
CPoint ptDown;

ptDown = rect.BottomRight();

// ptDown is now set to (350, 900)
ASSERT(ptDown == CPoint(350, 900));

// or, use BottomRight() to set the bottom
// right POINT
CRect rect2(10, 10, 350, 350);
CPoint ptLow(180, 180);

CRect rect2(10, 10, 350, 350);
CPoint ptLow(180, 180);
rect2.BottomRight() = ptLow;

// rect2 is now (10, 10, 180, 180)
ASSERT(rect2 == CRect(10, 10, 180, 180));

CRect::CenterPoint

When using overloaded CRect operators, the first operand must be a CRect ; the second
can be either a RECT structure or a CRect object.

tagRECT

CRect

Header: atltypes.h

The coordinates are returned as a reference to a CPoint object that is contained in CRect .

The coordinates of the bottom-right corner of the rectangle.

You can use this function to either get or set the bottom-right corner of the rectangle. Set
the corner by using this function on the left side of the assignment operator.

Calculates the centerpoint of CRect by adding the left and right values and dividing by two,
and adding the top and bottom values and dividing by two.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

CPoint CenterPoint() const throw();

Return ValueReturn Value

ExampleExample

// Code from this OnPaint() implementation can be pasted into your own application
// to draw lines that would look like a letter "Y" within your dialog.
void CMyDlg::OnPaint()
{
 CPaintDC dc(this);

 // device context for painting

 // get the size and position of the client area of
 // your window

 CRect rect;
 GetClientRect(&rect);

 // Move the current pen to the top left of the window. We call the
 // TopLeft() member of CRect here and it returns a CPoint object we
 // pass to the override of CDC::MoveTo() that accepts a CPoint.

 dc.MoveTo(rect.TopLeft());

 // Draw a line from the top left to the center of the window.
 // CenterPoint() gives us the middle point of the window as a
 // CPoint, and since CDC::LineTo() has an override that accepts a
 // CPoint, we can just pass it along.

 dc.LineTo(rect.CenterPoint());

 // Now, draw a line to the top right of the window. There's no
 // CRect member which returns a CPoint for the top right of the
 // window, so we'll reference the CPoint members directly and call
 // the CDC::LineTo() override which takes two integers.

 dc.LineTo(rect.right, rect.top);

 // The top part of the "Y" is drawn. Now, we'll draw the stem. We
 // start from the center point.

 dc.MoveTo(rect.CenterPoint());

 // and then draw to the middle of the bottom edge of the window.
 // We'll get the x-coordinate from the x member of the CPOINT
 // returned by CenterPoint(), and the y value comes directly from
 // the rect.

 dc.LineTo(rect.CenterPoint().x, rect.bottom);
}

CRect::CopyRect

void CopyRect(LPCRECT lpSrcRect) throw();

ParametersParameters

A CPoint object that is the centerpoint of CRect .

Copies the lpSrcRect rectangle into CRect .

ExampleExample

CRect rectSource(35, 10, 125, 10);
CRect rectDest;

rectDest.CopyRect(&rectSource);

// rectDest is now set to (35, 10, 125, 10)

RECT rectSource2;
rectSource2.left = 0;
rectSource2.top = 0;
rectSource2.bottom = 480;
rectSource2.right = 640;

rectDest.CopyRect(&rectSource2);

// works against RECT structures, too!
// rectDest is now set to (0, 0, 640, 480)

CRect::CRect

CRect() throw();
CRect(int l, int t, int r, int b) throw();
CRect(const RECT& srcRect) throw();
CRect(LPCRECT lpSrcRect) throw();
CRect(POINT point, SIZE size) throw();
CRect(POINT topLeft, POINT bottomRight) throw();

ParametersParameters

lpSrcRect
Points to the RECT structure or CRect object that is to be copied.

Constructs a CRect object.

l
Specifies the left position of CRect .

t
Specifies the top of CRect .

r
Specifies the right position of CRect .

b
Specifies the bottom of CRect .

srcRect
Refers to the RECT structure with the coordinates for CRect .

lpSrcRect
Points to the RECT structure with the coordinates for CRect .

point
Specifies the origin point for the rectangle to be constructed. Corresponds to the top-left
corner.

size
Specifies the displacement from the top-left corner to the bottom-right corner of the

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

RemarksRemarks

ExampleExample

// default constructor doesn't initialize!
CRect rectUnknown;

// four-integers are left, top, right, and bottom
CRect rect(0, 0, 100, 50);
ASSERT(rect.Width() == 100);
ASSERT(rect.Height() == 50);

// Initialize from RECT stucture
RECT sdkRect;
sdkRect.left = 0;
sdkRect.top = 0;
sdkRect.right = 100;
sdkRect.bottom = 50;

CRect rect2(sdkRect);
// by reference
CRect rect3(&sdkRect);

// by address
ASSERT(rect2 == rect);
ASSERT(rect3 == rect);

// from a point and a size
CPoint pt(0, 0);
CSize sz(100, 50);
CRect rect4(pt, sz);
ASSERT(rect4 == rect2);

// from two points
CPoint ptBottomRight(100, 50);
CRect rect5(pt, ptBottomRight);
ASSERT(rect5 == rect4);

CRect::DeflateRect

void DeflateRect(int x, int y) throw();
void DeflateRect(SIZE size) throw();
void DeflateRect(LPCRECT lpRect) throw();
void DeflateRect(int l, int t, int r, int b) throw();

ParametersParameters

rectangle to be constructed.

topLeft
Specifies the top-left position of CRect .

bottomRight
Specifies the bottom-right position of CRect .

If no arguments are given, left , top , right , and bottom members are not initialized.

The CRect (const RECT&) and CRect (LPCRECT) constructors perform a CopyRect. The other
constructors initialize the member variables of the object directly.

DeflateRect deflates CRect by moving its sides toward its center.

x

RemarksRemarks

ExampleExample

 CRect rect(10, 10, 50, 50);
 rect.DeflateRect(1, 2);
 ASSERT(rect.left == 11 && rect.right == 49);
 ASSERT(rect.top == 12 && rect.bottom == 48);

 CRect rect2(10, 10, 50, 50);
 CRect rectDeflate(1, 2, 3, 4);
 rect2.DeflateRect(&rectDeflate);
 ASSERT(rect2.left == 11 && rect2.right == 47);
 ASSERT(rect2.top == 12 && rect2.bottom == 46);

CRect::EqualRect

BOOL EqualRect(LPCRECT lpRect) const throw();

ParametersParameters

Specifies the number of units to deflate the left and right sides of CRect .

y
Specifies the number of units to deflate the top and bottom of CRect .

size
A SIZE or CSize that specifies the number of units to deflate CRect . The cx value specifies
the number of units to deflate the left and right sides and the cy value specifies the number
of units to deflate the top and bottom.

lpRect
Points to a RECT structure or CRect that specifies the number of units to deflate each side.

l
Specifies the number of units to deflate the left side of CRect .

t
Specifies the number of units to deflate the top of CRect .

r
Specifies the number of units to deflate the right side of CRect .

b
Specifies the number of units to deflate the bottom of CRect .

To do this, DeflateRect adds units to the left and top and subtracts units from the right and
bottom. The parameters of DeflateRect are signed values; positive values deflate CRect

and negative values inflate it.

The first two overloads deflate both pairs of opposite sides of CRect so that its total width is
decreased by two times x (or cx) and its total height is decreased by two times y (or cy).
The other two overloads deflate each side of CRect independently of the others.

Determines whether CRect is equal to the given rectangle.

lpRect
Points to a RECT structure or CRect object that contains the upper-left and lower-right
corner coordinates of a rectangle.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

Return ValueReturn Value

NOTENOTE

ExampleExample

CRect rect1(35, 150, 10, 25);
CRect rect2(35, 150, 10, 25);
CRect rect3(98, 999, 6, 3);
ASSERT(rect1.EqualRect(rect2));
ASSERT(!rect1.EqualRect(rect3));
// works just fine against RECTs, as well

RECT test;
test.left = 35;
test.top = 150;
test.right = 10;
test.bottom = 25;

ASSERT(rect1.EqualRect(&test));

CRect::Height

int Height() const throw();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CRect rect(20, 30, 80, 70);
int nHt = rect.Height();

// nHt is now 40
ASSERT(nHt == 40);

CRect::InflateRect

Nonzero if the two rectangles have the same top, left, bottom, and right values; otherwise 0.

Both of the rectangles must be normalized or this function may fail. You can call NormalizeRect to
normalize the rectangles before calling this function.

Calculates the height of CRect by subtracting the top value from the bottom value.

The height of CRect .

The resulting value can be negative.

The rectangle must be normalized or this function may fail. You can call NormalizeRect to normalize
the rectangle before calling this function.

InflateRect inflates CRect by moving its sides away from its center.

void InflateRect(int x, int y) throw();
void InflateRect(SIZE size) throw();
void InflateRect(LPCRECT lpRect) throw();
void InflateRect(int l, int t, int r, int b) throw();

ParametersParameters

RemarksRemarks

ExampleExample

CRect rect(0, 0, 300, 300);
rect.InflateRect(50, 200);

// rect is now (-50, -200, 350, 500)
ASSERT(rect == CRect(-50, -200, 350, 500));

CRect::IntersectRect

BOOL IntersectRect(LPCRECT lpRect1, LPCRECT lpRect2) throw();

x
Specifies the number of units to inflate the left and right sides of CRect .

y
Specifies the number of units to inflate the top and bottom of CRect .

size
A SIZE or CSize that specifies the number of units to inflate CRect . The cx value specifies
the number of units to inflate the left and right sides and the cy value specifies the number
of units to inflate the top and bottom.

lpRect
Points to a RECT structure or CRect that specifies the number of units to inflate each side.

l
Specifies the number of units to inflate the left side of CRect .

t
Specifies the number of units to inflate the top of CRect .

r
Specifies the number of units to inflate the right side of CRect .

b
Specifies the number of units to inflate the bottom of CRect .

To do this, InflateRect subtracts units from the left and top and adds units to the right and
bottom. The parameters of InflateRect are signed values; positive values inflate CRect and
negative values deflate it.

The first two overloads inflate both pairs of opposite sides of CRect so that its total width is
increased by two times x (or cx) and its total height is increased by two times y (or cy).
The other two overloads inflate each side of CRect independently of the others.

Makes a CRect equal to the intersection of two existing rectangles.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CRect rectOne(125, 0, 150, 200);
CRect rectTwo(0, 75, 350, 95);
CRect rectInter;
```cpp
   CRect rectOne(125,  0, 150, 200);
   CRect rectTwo(0, 75, 350, 95);
   CRect rectInter;

   rectInter.IntersectRect(rectOne, rectTwo);
ASSERT(rectInter == CRect(125, 75, 150, 95));
// operator &= can do the same task:

CRect rectInter2 = rectOne;
rectInter2 &= rectTwo;
ASSERT(rectInter2 == CRect(125, 75, 150, 95));

CRect::IsRectEmpty

BOOL IsRectEmpty() const throw();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

lpRect1
Points to a RECT structure or CRect  object that contains a source rectangle.

lpRect2
Points to a RECT  structure or CRect  object that contains a source rectangle.

Nonzero if the intersection is not empty; 0 if the intersection is empty.

The intersection is the largest rectangle contained in both existing rectangles.

Both of the rectangles must be normalized or this function may fail. You can call NormalizeRect to
normalize the rectangles before calling this function.

Determines whether CRect  is empty.

Nonzero if CRect  is empty; 0 if CRect  is not empty.

A rectangle is empty if the width and/or height are 0 or negative. Differs from IsRectNull ,
which determines whether all coordinates of the rectangle are zero.

The rectangle must be normalized or this function may fail. You can call NormalizeRect to normalize
the rectangle before calling this function.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


 

 

CRect rectNone(0, 0, 0, 0);
CRect rectSome(35, 50, 135, 150);
```cpp
 CRect rectNone(0, 0, 0, 0);
 CRect rectSome(35, 50, 135, 150);
ASSERT(rectNone.IsRectEmpty());
 ASSERT(!rectSome.IsRectEmpty());
CRect rectEmpty(35, 35, 35, 35);
 ASSERT(rectEmpty.IsRectEmpty());

CRect::IsRectNull

BOOL IsRectNull() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRect rectNone(0, 0, 0, 0);
CRect rectSome(35, 50, 135, 150);
```cpp
   CRect rectNone(0, 0, 0, 0);
   CRect rectSome(35, 50, 135, 150);
ASSERT(rectNone.IsRectNull());
   ASSERT(!rectSome.IsRectNull());
// note that null means _all_ zeros

CRect rectNotNull(0, 0, 35, 50);
ASSERT(!rectNotNull.IsRectNull());

CRect::MoveToX

void MoveToX(int x) throw();

ParametersParameters

ExampleExample

Determines whether the top, left, bottom, and right values of CRect  are all equal to 0.

Nonzero if CRect 's top, left, bottom, and right values are all equal to 0; otherwise 0.

Differs from IsRectEmpty , which determines whether the rectangle is empty.

Call this function to move the rectangle to the absolute x-coordinate specified by x.

x
The absolute x-coordinate for the upper-left corner of the rectangle.



 

 

CRect rect(0, 0, 100, 100);
rect.MoveToX(10);
```cpp
 CRect rect(0, 0, 100, 100);
rect.MoveToX(10);

 // rect is now (10, 0, 110, 100);
 ASSERT(rect == CRect(10, 0, 110, 100));

CRect::MoveToXY

void MoveToXY(int x, int y) throw();
void MoveToXY(POINT point) throw();

ParametersParameters

ExampleExample

CRect rect(0, 0, 100, 100);
rect.MoveToXY(10, 10);
```cpp
   CRect rect(0, 0, 100, 100);
   rect.MoveToXY(10, 10);
// rect is now (10, 10, 110, 110);
   ASSERT(rect == CRect(10, 10, 110, 110));

CRect::MoveToY

void MoveToY(int y) throw();

ParametersParameters

ExampleExample

   CRect rect(0, 0, 100, 100);
   rect.MoveToY(10);
   // rect is now (0, 10, 100, 110);
   ASSERT(rect == CRect(0, 10, 100, 110));

Call this function to move the rectangle to the absolute x- and y-coordinates specified.

x
The absolute x-coordinate for the upper-left corner of the rectangle.

y
The absolute y-coordinate for the upper-left corner of the rectangle.

point
A POINT  structure specifying the absolute upper-left corner of the rectangle.

Call this function to move the rectangle to the absolute y-coordinate specified by y.

y
The absolute y-coordinate for the upper-left corner of the rectangle.



                   

 

CRect::NormalizeRect

void NormalizeRect() throw();

RemarksRemarks

NOTENOTE

ExampleExample

   CRect rect1(110, 100, 250, 310);
   CRect rect2(250, 310, 110, 100);
   rect1.NormalizeRect();
   rect2.NormalizeRect();
   ASSERT(rect1 == rect2);

CRect::OffsetRect

void OffsetRect(int x, int y) throw();
void OffsetRect(POINT point) throw();
void OffsetRect(SIZE size) throw();

ParametersParameters

RemarksRemarks

ExampleExample

Normalizes CRect  so that both the height and width are positive.

The rectangle is normalized for fourth-quadrant positioning, which Windows typically uses
for coordinates. NormalizeRect  compares the top and bottom values, and swaps them if the
top is greater than the bottom. Similarly, it swaps the left and right values if the left is
greater than the right. This function is useful when dealing with different mapping modes
and inverted rectangles.

The following CRect  member functions require normalized rectangles in order to work properly:
Height, Width, Size, IsRectEmpty, PtInRect, EqualRect, UnionRect, IntersectRect, SubtractRect,
operator ==, operator !=, operator |, operator |=, operator &, and operator &=.

Moves CRect  by the specified offsets.

x
Specifies the amount to move left or right. It must be negative to move left.

y
Specifies the amount to move up or down. It must be negative to move up.

point
Contains a POINT structure or CPoint object specifying both dimensions by which to move.

size
Contains a S IZE structure or CSize object specifying both dimensions by which to move.

Moves CRect x units along the x-axis and y units along the y-axis. The x and y parameters
are signed values, so CRect  can be moved left or right and up or down.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize


  

 

 

  

   CRect rect(0, 0, 35, 35);
   rect.OffsetRect(230, 230);

   // rect is now (230, 230, 265, 265)
   ASSERT(rect == CRect(230, 230, 265, 265));

CRect::operator LPCRECT Converts a CRect  to an
LPCRECT.

operator LPCRECT() const throw();

RemarksRemarks

CRect::operator LPRECT

operator LPRECT() throw();

RemarksRemarks

ExampleExample

CRect::operator =

void operator=(const RECT& srcRect) throw();

ParametersParameters

ExampleExample

   CRect rect(0, 0, 127, 168);
   CRect rect2;

   rect2 = rect;
   ASSERT(rect2 == CRect(0, 0, 127, 168));

CRect::operator ==

When you use this function, you don't need the address-of (&) operator. This operator will
be automatically used when you pass a CRect  object to a function that expects an LPCRECT .

Converts a CRect  to an LPRECT.

When you use this function, you don't need the address-of (&) operator. This operator will
be automatically used when you pass a CRect  object to a function that expects an LPRECT .

See the example for CRect::operator LPCRECT.

Assigns srcRect to CRect .

srcRect
Refers to a source rectangle. Can be a RECT or CRect .

Determines whether rect  is equal to CRect  by comparing the coordinates of their upper-
left and lower-right corners.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


  

BOOL operator==(const RECT& rect) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CRect rect1(35, 150, 10, 25);
CRect rect2(35, 150, 10, 25);
CRect rect3(98, 999, 6, 3);
ASSERT(rect1 == rect2);
// works just fine against RECTs, as well

RECT test;
test.left = 35;
test.top = 150;
test.right = 10;
test.bottom = 25;

ASSERT(rect1 == test);

CRect::operator !=

BOOL operator!=(const RECT& rect) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

rect
Refers to a source rectangle. Can be a RECT or CRect .

Nonzero if equal; otherwise 0.

Both of the rectangles must be normalized or this function may fail. You can call NormalizeRect to
normalize the rectangles before calling this function.

Determines whether rect is not equal to CRect  by comparing the coordinates of their
upper-left and lower-right corners.

rect
Refers to a source rectangle. Can be a RECT or CRect .

Nonzero if not equal; otherwise 0.

Both of the rectangles must be normalized or this function may fail. You can call NormalizeRect to
normalize the rectangles before calling this function.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


 

  

CRect rect1(35, 150, 10, 25);
CRect rect2(35, 150, 10, 25);
CRect rect3(98, 999,  6,  3);
ASSERT(rect1 != rect3);
// works just fine against RECTs, as well

RECT test;
test.left = 35;
test.top = 150;
test.right = 10;
test.bottom = 25;

ASSERT(rect3 != test);

CRect::operator +=

void operator+=(POINT point) throw();
void operator+=(SIZE size) throw();
void operator+=(LPCRECT lpRect) throw();

ParametersParameters

RemarksRemarks

ExampleExample

   CRect   rect1(100, 235, 200, 335);
   CPoint  pt(35, 65);
   CRect   rect2(135, 300, 235, 400);

   rect1 += pt;
   ASSERT(rect1 == rect2);

CRect::operator -=

The first two overloads move CRect  by the specified offsets.

point
A POINT structure or CPoint object that specifies the number of units to move the
rectangle.

size
A SIZE structure or CSize object that specifies the number of units to move the rectangle.

lpRect
Points to a RECT structure or CRect  object that contains the number of units to inflate each
side of CRect .

The parameter's x and y (or cx  and cy ) values are added to CRect .

The third overload inflates CRect  by the number of units specifed in each member of the
parameter.

The first two overloads move CRect  by the specified offsets.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


  

  

void operator-=(POINT point) throw();
void operator-=(SIZE size) throw();
void operator-=(LPCRECT lpRect) throw();

ParametersParameters

RemarksRemarks

ExampleExample

   CRect   rect1(100, 235, 200, 335);
   CPoint pt(35, 65);

   rect1 -= pt;
   CRect   rectResult(65, 170, 165, 270);
   ASSERT(rect1 == rectResult);

CRect::operator &=

void operator&=(const RECT& rect) throw();

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

CRect::operator |=

point
A POINT structure or CPoint object that specifies the number of units to move the
rectangle.

size
A SIZE structure or CSize object that specifies the number of units to move the rectangle.

lpRect
Points to a RECT structure or CRect  object that contains the number of units to deflate each
side of CRect .

The parameter's x and y (or cx  and cy ) values are subtracted from CRect .

The third overload deflates CRect  by the number of units specifed in each member of the
parameter. Note that this overload functions like DeflateRect.

Sets CRect  equal to the intersection of CRect  and rect .

rect
Contains a RECT or CRect .

The intersection is the largest rectangle that is contained in both rectangles.

Both of the rectangles must be normalized or this function may fail. You can call NormalizeRect to
normalize the rectangles before calling this function.

See the example for CRect::IntersectRect.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


   

void operator|=(const RECT& rect) throw();

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

   CRect   rect1(100,  0, 200, 300);
   CRect   rect2(0, 100, 300, 200);

   rect1 |= rect2;
   CRect   rectResult(0, 0, 300, 300);
   ASSERT(rectResult == rect1);

CRect::operator +

CRect operator+(POINT point) const throw();
CRect operator+(LPCRECT lpRect) const throw();
CRect operator+(SIZE size) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Sets CRect  equal to the union of CRect  and rect .

rect
Contains a CRect  or RECT.

The union is the smallest rectangle that contains both source rectangles.

Both of the rectangles must be normalized or this function may fail. You can call NormalizeRect to
normalize the rectangles before calling this function.

The first two overloads return a CRect  object that is equal to CRect  displaced by the
specified offsets.

point
A POINT structure or CPoint object that specifies the number of units to move the return
value.

size
A SIZE structure or CSize object that specifies the number of units to move the return value.

lpRect
Points to a RECT structure or CRect  object that contains the number of units to inflate each
side of the return value.

The CRect  resulting from moving or inflating CRect  by the number of units specified in the
parameter.

The parameter's x and y (or cx  and cy ) parameters are added to CRect 's position.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


    

ExampleExample

   CRect   rect1(100, 235, 200, 335);
   CPoint pt(35, 65);
   CRect   rect2;

   rect2 = rect1 + pt;
   CRect   rectResult(135, 300, 235, 400);
   ASSERT(rectResult == rect2);

CRect::operator -

CRect operator-(POINT point) const throw();
CRect operator-(SIZE size) const throw();
CRect operator-(LPCRECT lpRect) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

   CRect   rect1(100, 235, 200, 335);
   CPoint pt(35, 65);
   CRect   rect2;

   rect2 = rect1 - pt;
   CRect   rectResult(65, 170, 165, 270);
   ASSERT(rect2 == rectResult);

The third overload returns a new CRect  that is equal to CRect  inflated by the number of
units specifed in each member of the parameter.

The first two overloads return a CRect  object that is equal to CRect  displaced by the
specified offsets.

point
A POINT structure or CPoint  object that specifies the number of units to move the return
value.

size
A SIZE structure or CSize  object that specifies the number of units to move the return
value.

lpRect
Points to a RECT structure or CRect  object that contains the number of units to deflate each
side of the return value.

The CRect  resulting from moving or deflating CRect  by the number of units specified in
the parameter.

The parameter's x and y (or cx  and cy ) parameters are subtracted from CRect 's position.

The third overload returns a new CRect  that is equal to CRect  deflated by the number of
units specifed in each member of the parameter. Note that this overload functions like
DeflateRect, not SubtractRect.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


  

  

CRect::operator &

CRect operator&(const RECT& rect2) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

   CRect   rect1(100,  0, 200, 300);
   CRect   rect2(0, 100, 300, 200);
   CRect   rect3;

   rect3 = rect1 & rect2;
   CRect   rectResult(100, 100, 200, 200);
   ASSERT(rectResult == rect3);

CRect::operator |

CRect operator|(const RECT&
rect2) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

Returns a CRect  that is the intersection of CRect  and rect2.

rect2
Contains a RECT or CRect .

A CRect  that is the intersection of CRect  and rect2.

The intersection is the largest rectangle that is contained in both rectangles.

Both of the rectangles must be normalized or this function may fail. You can call NormalizeRect to
normalize the rectangles before calling this function.

Returns a CRect  that is the union of CRect  and rect2.

rect2
Contains a RECT or CRect .

A CRect  that is the union of CRect  and rect2.

The union is the smallest rectangle that contains both rectangles.

Both of the rectangles must be normalized or this function may fail. You can call NormalizeRect to
normalize the rectangles before calling this function.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


  

ExampleExample

   CRect   rect1(100,  0, 200, 300);
   CRect   rect2(0, 100, 300, 200);
   CRect   rect3;

   rect3 = rect1 | rect2;
   CRect   rectResult(0, 0, 300, 300);
   ASSERT(rectResult == rect3);

CRect::PtInRect

BOOL PtInRect(POINT point) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

CRect rect(5, 5, 100, 100);
CPoint pt1(35, 50);
CPoint pt2(125, 298);

// this is true, because pt1 is inside the rectangle
ASSERT(rect.PtInRect(pt1));

// this is NOT true, because pt2 is outside the rectangle
ASSERT(!rect.PtInRect(pt2));

// note that the right and the bottom aren't inside
ASSERT(!rect.PtInRect(CPoint(35, 100)));
ASSERT(!rect.PtInRect(CPoint(100, 98)));

// but the top and the left are inside
ASSERT(rect.PtInRect(CPoint(5, 65)));
ASSERT(rect.PtInRect(CPoint(88, 5)));

// and that PtInRect() works against a POINT, too
POINT pt;
pt.x = 35;
pt.y = 50;
ASSERT(rect.PtInRect(pt));

Determines whether the specified point lies within CRect .

point
Contains a POINT structure or CPoint object.

Nonzero if the point lies within CRect ; otherwise 0.

A point is within CRect  if it lies on the left or top side or is within all four sides. A point on
the right or bottom side is outside CRect .

The rectangle must be normalized or this function may fail. You can call NormalizeRect to normalize
the rectangle before calling this function.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint


 

 

  

CRect::SetRect

void SetRect(int x1, int y1, int x2, int y2) throw();

ParametersParameters

ExampleExample

   CRect rect;
   rect.SetRect(256, 256, 512, 512);
   ASSERT(rect == CRect(256, 256, 512, 512));

CRect::SetRectEmpty

void SetRectEmpty() throw();

ExampleExample

CRect rect;
rect.SetRectEmpty();

// rect is now (0, 0, 0, 0)
ASSERT(rect.IsRectEmpty());

CRect::SIZE

CSize Size() const throw();

Return ValueReturn Value

RemarksRemarks

Sets the dimensions of CRect  to the specified coordinates.

x1
Specifies the x-coordinate of the upper-left corner.

y1
Specifies the y-coordinate of the upper-left corner.

x2
Specifies the x-coordinate of the lower-right corner.

y2
Specifies the y-coordinate of the lower-right corner.

Makes CRect  a null rectangle by setting all coordinates to zero.

The cx  and cy  members of the return value contain the height and width of CRect .

A CSize object that contains the size of CRect .

Either the height or width can be negative.



   

NOTENOTE

ExampleExample

CRect rect(10, 10, 50, 50);
CSize sz = rect.Size();
ASSERT(sz.cx == 40 && sz.cy == 40);

CRect::SubtractRect

BOOL SubtractRect(LPCRECT lpRectSrc1, LPCRECT lpRectSrc2) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

The rectangle must be normalized or this function may fail. You can call NormalizeRect to normalize
the rectangle before calling this function.

Makes the dimensions of the CRect  equal to the subtraction of lpRectSrc2  from 
lpRectSrc1 .

lpRectSrc1
Points to the RECT structure or CRect  object from which a rectangle is to be subtracted.

lpRectSrc2
Points to the RECT  structure or CRect  object that is to be subtracted from the rectangle
pointed to by the lpRectSrc1 parameter.

Nonzero if the function is successful; otherwise 0.

The subtraction is the smallest rectangle that contains all of the points in lpRectScr1 that are
not in the intersection of lpRectScr1 and lpRectScr2.

The rectangle specified by lpRectSrc1 will be unchanged if the rectangle specified by
lpRectSrc2 doesn't completely overlap the rectangle specified by lpRectSrc1 in at least one of
the x- or y-directions.

For example, if lpRectSrc1 were (10,10, 100,100) and lpRectSrc2 were (50,50, 150,150), the
rectangle pointed to by lpRectSrc1 would be unchanged when the function returned. If
lpRectSrc1 were (10,10, 100,100) and lpRectSrc2 were (50,10, 150,150), however, the
rectangle pointed to by lpRectSrc1 would contain the coordinates (10,10, 50,100) when the
function returned.

SubtractRect  is not the same as operator - nor operator -=. Neither of these operators ever
calls SubtractRect .

Both of the rectangles must be normalized or this function may fail. You can call NormalizeRect to
normalize the rectangles before calling this function.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


 

  

   RECT   rectOne;
   RECT   rectTwo;

   rectOne.left = 10;
   rectOne.top = 10;
   rectOne.bottom = 100;
   rectOne.right = 100;

   rectTwo.left = 50;
   rectTwo.top = 10;
   rectTwo.bottom = 150;
   rectTwo.right = 150;

   CRect   rectDiff;

   rectDiff.SubtractRect(&rectOne, &rectTwo);
CRect   rectResult(10, 10, 50, 100);

   ASSERT(rectDiff == rectResult);

   // works for CRect, too, since there is
   // implicit CRect -> LPCRECT conversion

   CRect rect1(10, 10, 100, 100);
   CRect rect2(50, 10, 150, 150);
   CRect rectOut;

   rectOut.SubtractRect(rect1, rect2);
   ASSERT(rectResult == rectOut);

CRect::TopLeft

CPoint& TopLeft() throw();
const CPoint& TopLeft() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CRect::UnionRect

BOOL UnionRect(LPCRECT lpRect1, LPCRECT lpRect2) throw();

ParametersParameters

The coordinates are returned as a reference to a CPoint object that is contained in CRect .

The coordinates of the top-left corner of the rectangle.

You can use this function to either get or set the top-left corner of the rectangle. Set the
corner by using this function on the left side of the assignment operator.

See the example for CRect::CenterPoint.

Makes the dimensions of CRect  equal to the union of the two source rectangles.

lpRect1
Points to a RECT or CRect  that contains a source rectangle.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


  

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

   CRect   rect1(100,  0, 200, 300);
   CRect   rect2(0, 100, 300, 200);
   CRect   rect3;

   rect3.UnionRect(&rect1, &rect2);
   CRect   rectResult(0, 0, 300, 300);
   ASSERT(rectResult == rect3);

CRect::Width

int Width() const throw();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

   CRect rect(20, 30, 80, 70);
   int nWid = rect.Width();
   // nWid is now 60
   ASSERT(nWid == 60);

See Also

lpRect2
Points to a RECT  or CRect  that contains a source rectangle.

Nonzero if the union is not empty; 0 if the union is empty.

The union is the smallest rectangle that contains both source rectangles.

Windows ignores the dimensions of an empty rectangle; that is, a rectangle that has no
height or has no width.

Both of the rectangles must be normalized or this function may fail. You can call NormalizeRect to
normalize the rectangles before calling this function.

Calculates the width of CRect  by subtracting the left value from the right value.

The width of CRect .

The width can be negative.

The rectangle must be normalized or this function may fail. You can call NormalizeRect to normalize
the rectangle before calling this function.



CPoint Class
CSize Class
RECT

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


Classes Shared by MFC and ATL
12/10/2018 • 2 minutes to read • Edit Online

CLASS DESCRIPTION HEADER FILE

CFileTime Provides methods for managing the
date and time values associated with a
file.

atltime.h

CFileTimeSpan Provides methods for managing relative
date and time values associated with a
file.

atltime.h

CFixedStringT Represents a string object with a fixed
character buffer.

cstringt.h

CImage Provides enhanced bitmap support,
including the ability to load and save
images in JPEG, GIF, BMP, and Portable
Network Graphics (PNG) formats.

atlimage.h

COleDateTime Encapsulates the DATE data type used
in OLE automation.

atlcomtime.h

COleDateTimeSpan Represents a relative time, a time span. atlcomtime.h

CPoint A class similar to the Windows POINT
structure that also includes member
functions to manipulate CPoint  and 
POINT  structures.

atltypes.h

CRect A class similar to a Windows RECT
structure that also includes member
functions to manipulate CRect  objects
and Windows RECT  structures.

atltypes.h

CSimpleStringT Represents a CSimpleStringT  object. atlsimpstr.h

CSize A class similar to the Windows SIZE
structure, which implements a relative
coordinate or position.

atltypes.h

CStrBufT Provides automatic resource cleanup for
GetBuffer  and ReleaseBuffer  calls

on a existing CStringT  object.

atlsimpstr.h

CStringData Represents the data of a string object. atlsimpstr.h

CStringT Represents a CStringT  object. cstringt.h (MFC dependent) atlstr.h
(MFC independent)

The following table lists the classes shared between MFC and ATL.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/classes-shared-by-mfc-and-atl.md
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize


CTime Represents an absolute time and date. atltime.h

CTimeSpan An amount of time, which is internally
stored as the number of seconds in the
time span.

atltime.h

IAtlStringMgr Represents the interface to a 
CStringT  memory manager.

atlsimpstr.h

CLASS DESCRIPTION HEADER FILE

See Also
ATL/MFC Shared Classes



CPoint Class
12/10/2018 • 7 minutes to read • Edit Online

Syntax
class CPoint : public tagPOINT

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CPoint::CPoint Constructs a CPoint .

Public MethodsPublic Methods

NAME DESCRIPTION

CPoint::Offset Adds values to the x  and y  members of the 
CPoint .

Public OperatorsPublic Operators

NAME DESCRIPTION

CPoint::operator - Returns the difference of a CPoint  and a size, or the
negation of a point, or the size difference between two
points, or the offset by a negative size.

CPoint::operator != Checks for inequality between two points.

CPoint::operator + Returns the sum of a CPoint  and a size or point, or a 
CRect  offset by a size.

CPoint::operator += Offsets CPoint  by adding a size or point.

CPoint::operator -= Offsets CPoint  by subtracting a size or point.

CPoint::operator == Checks for equality between two points.

Remarks

Similar to the Windows POINT  structure.

It also includes member functions to manipulate CPoint  and POINT structures.

A CPoint  object can be used wherever a POINT  structure is used. The operators of this class that
interact with a "size" accept either CSize objects or S IZE structures, since the two are interchangeable.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/cpoint-class.md
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize


 

NOTENOTE

NOTENOTE

Inheritance Hierarchy

Requirements

CPoint::CPoint

CPoint() throw();
CPoint(int initX, int initY) throw();
CPoint(POINT initPt) throw();
CPoint(SIZE initSize) throw();
CPoint(LPARAM dwPoint) throw();

ParametersParameters

RemarksRemarks

ExampleExample

This class is derived from the tagPOINT  structure. (The name tagPOINT  is a less commonly used name for
the POINT  structure.) This means that the data members of the POINT  structure, x  and y , are accessible
data members of CPoint .

For more information on shared utility classes (like CPoint ), see Shared Classes.

tagPOINT

CPoint

Header: atltypes.h

Constructs a CPoint  object.

initX
Specifies the value of the x  member of CPoint .

initY
Specifies the value of the y  member of CPoint .

initPt
POINT structure or CPoint  that specifies the values used to initialize CPoint .

initSize
SIZE structure or CSize that specifies the values used to initialize CPoint .

dwPoint
Sets the x  member to the low-order word of dwPoint and the y  member to the high-order word of
dwPoint.

If no arguments are given, x  and y  members are set to 0.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize


 

CPoint   ptTopLeft(0, 0);
// works from a POINT, too

POINT   ptHere;
ptHere.x = 35;
ptHere.y = 95;

CPoint   ptMFCHere(ptHere);

// works from a SIZE
SIZE   sHowBig;
sHowBig.cx = 300;
sHowBig.cy = 10;

CPoint ptMFCBig(sHowBig);
// or from a DWORD

DWORD   dwSize;
dwSize = MAKELONG(35, 95);

CPoint ptFromDouble(dwSize);
ASSERT(ptFromDouble == ptMFCHere);

CPoint::Offset

void Offset(int xOffset, int yOffset) throw();
void Offset(POINT point) throw();
void Offset(SIZE size) throw();

ParametersParameters

ExampleExample

Adds values to the x  and y  members of the CPoint .

xOffset
Specifies the amount to offset the x  member of the CPoint .

yOffset
Specifies the amount to offset the y  member of the CPoint .

point
Specifies the amount ( POINT or CPoint ) to offset the CPoint .

size
Specifies the amount ( S IZE or CSize) to offset the CPoint .

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize


 

CPoint   ptStart(100, 100);
ptStart.Offset(35, 35);

CPoint   ptResult(135, 135);
ASSERT(ptStart == ptResult);

// works with POINT, too

ptStart = CPoint(100, 100);
POINT pt;

pt.x = 35;
pt.y = 35;

ptStart.Offset(pt);

ASSERT(ptStart == ptResult);

// works with SIZE, too

ptStart = CPoint(100, 100);
SIZE size;

size.cx = 35;
size.cy = 35;

ptStart.Offset(size);

ASSERT(ptStart == ptResult);   

CPoint::operator ==

BOOL operator==(POINT point) const throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

CPoint ptFirst(256, 128);
CPoint ptTest(256, 128);

ASSERT(ptFirst == ptTest);

// works with POINTs, too

POINT pt;
pt.x = 256;
pt.y = 128;

ASSERT(ptTest == pt);

// note that pt == ptTest isn't correct!   

Checks for equality between two points.

point
Contains a POINT structure or CPoint  object.

Nonzero if the points are equal; otherwise 0.

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint


 

 

CPoint::operator !=

BOOL operator!=(POINT point) const throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

CPoint ptFirst(256, 128);
CPoint ptTest(111, 333);

ASSERT(ptFirst != ptTest);

// works with POINTs, too

POINT pt;
pt.x = 333;
pt.y = 111;

ASSERT(ptTest != pt);

// note that pt != ptTest isn't correct!   

CPoint::operator +=

void operator+=(SIZE size) throw();
void operator+=(POINT point) throw();

ParametersParameters

RemarksRemarks

ExampleExample

Checks for inequality between two points.

point
Contains a POINT structure or CPoint  object.

Nonzero if the points are not equal; otherwise 0.

The first overload adds a size to the CPoint .

size
Contains a S IZE structure or CSize object.

point
Contains a POINT structure or CPoint object.

The second overload adds a point to the CPoint .

In both cases, addition is done by adding the x  (or cx ) member of the right-hand operand to the x

member of the CPoint  and adding the y  (or cy ) member of the right-hand operand to the y

member of the CPoint .

For example, adding CPoint(5, -7)  to a variable which contains CPoint(30, 40)  changes the variable
to CPoint(35, 33) .

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint


 

CPoint   ptStart(100, 100);
CSize   szOffset(35, 35);

ptStart += szOffset;

CPoint   ptResult(135, 135);

ASSERT(ptResult == ptStart);

// also works on SIZE

ptStart = CPoint(100, 100);

SIZE   sz;
sz.cx = 35;
sz.cy = 35;

ptStart += sz;

ASSERT(ptResult == ptStart);   

CPoint::operator -=

void operator-=(SIZE size) throw();
void operator-=(POINT point) throw();

ParametersParameters

RemarksRemarks

ExampleExample

The first overload subtracts a size from the CPoint .

size
Contains a S IZE structure or CSize object.

point
Contains a POINT structure or CPoint object.

The second overload subtracts a point from the CPoint .

In both cases, subtraction is done by subtracting the x  (or cx ) member of the right-hand operand
from the x  member of the CPoint  and subtracting the y  (or cy ) member of the right-hand
operand from the y  member of the CPoint .

For example, subtracting CPoint(5, -7)  from a variable which contains CPoint(30, 40)  changes the
variable to CPoint(25, 47) .

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint


   

CPoint   ptStart(100, 100);
CSize   szOffset(35, 35);

ptStart -= szOffset;

CPoint   ptResult(65, 65);

ASSERT(ptResult == ptStart);

// also works on SIZE

ptStart = CPoint(100, 100);

SIZE   sz;
sz.cx = 35;
sz.cy = 35;

ptStart -= sz;

ASSERT(ptResult == ptStart);   

CPoint::operator +

CPoint operator+(SIZE size) const throw();
CPoint operator+(POINT point) const throw();
CRect operator+(const RECT* lpRect) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

Use this operator to offset CPoint  by a CPoint  or CSize  object, or to offset a CRect  by a CPoint .

size
Contains a S IZE structure or CSize object.

point
Contains a POINT structure or CPoint object.

lpRect
Contains a pointer to a RECT structure or CRect object.

A CPoint  that is offset by a size, a CPoint  that is offset by a point, or a CRect  offset by a point.

For example, using one of the first two overloads to offset the point CPoint(25, -19)  by a point 
CPoint(15, 5)  or size CSize(15, 5)  returns the value CPoint(40, -14) .

Adding a rectangle to a point returns the rectangle after being offset by the x  and y  values specified
in the point. For example, using the last overload to offset a rectangle CRect(125, 219, 325, 419)  by a
point CPoint(25, -19)  returns CRect(150, 200, 350, 400) .

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


   

CPoint   ptStart(100, 100);
CSize   szOffset(35, 35);
CPoint   ptEnd;

ptEnd = ptStart + szOffset;

CPoint   ptResult(135, 135);

ASSERT(ptResult == ptEnd);

// also works on SIZE

ptStart = CPoint(100, 100);

SIZE   sz;
sz.cx = 35;
sz.cy = 35;

ptEnd = ptStart + sz;

ASSERT(ptResult == ptEnd);   

CPoint::operator -

CSize operator-(POINT point) const throw();
CPoint operator-(SIZE size) const throw();
CRect operator-(const RECT* lpRect) const throw();
CPoint operator-() const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Use one of the first two overloads to subtract a CPoint  or CSize  object from CPoint .

point
A POINT structure or CPoint object.

size
A SIZE structure or CSize object.

lpRect
A pointer to a RECT structure or a CRect object.

A CSize  that is the difference between two points, a CPoint  that is offset by the negation of a size, a 
CRect  that is offset by the negation of a point, or a CPoint  that is the negation of a point.

The third overload offsets a CRect  by the negation of CPoint . Finally, use the unary operator to
negate CPoint .

For example, using the first overload to find the difference between two points CPoint(25, -19)  and 
CPoint(15, 5)  returns CSize(10, -24) .

Subtracting a CSize  from CPoint  does the same calculation as above but returns a CPoint  object,
not a CSize  object. For example, using the second overload to find the difference between the point 
CPoint(25, -19)  and the size CSize(15, 5)  returns CPoint(10, -24) .

Subtracting a rectangle from a point returns the rectangle offset by the negatives of the x  and y

values specified in the point. For example, using the last overload to offset the rectangle 

https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagsize
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagrect


ExampleExample

// example for CPoint subtraction
CPoint   ptStart(100, 100);
CSize   szOffset(35, 35);
CPoint   ptEnd;

ptEnd = ptStart - szOffset;

CPoint   ptResult(65, 65);

ASSERT(ptResult == ptEnd);

// also works on SIZE

ptStart = CPoint(100, 100);

SIZE   sz;
sz.cx = 35;
sz.cy = 35;

ptEnd = ptStart - sz;

ASSERT(ptResult == ptEnd);

// example for CPoint unary operator
CPoint   pt(35, 35);
pt = -pt;

CPoint ptNeg(-35, -35);
ASSERT(pt == ptNeg);   

See Also

CRect(125, 200, 325, 400)  by the point CPoint(25, -19)  returns CRect(100, 219, 300, 419) .

Use the unary operator to negate a point. For example, using the unary operator with the point 
CPoint(25, -19)  returns CPoint(-25, 19) .

MFC Sample MDI
Hierarchy Chart
POINT Structure
CRect Class
CSize Class

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/api/windef/ns-windef-tagpoint


CStringT Class
11/9/2018 • 40 minutes to read • Edit Online

Syntax
template<typename BaseType, class StringTraits>
class CStringT :
    public CSimpleStringT<BaseType,
        _CSTRING_IMPL_::_MFCDLLTraitsCheck<BaseType, 
StringTraits>::c_bIsMFCDLLTraits>

ParametersParameters

This class represents a CStringT  object.

BaseType
The character type of the string class. Can be one of the following:

char (for ANSI character strings).

wchar_t (for Unicode character strings).

TCHAR (for both ANSI and Unicode character strings).

StringTraits
Determines if the string class needs C Run-Time (CRT) Library support and
where string resources are located. Can be one of the following:

StrTraitATL< wchar_t | char | TCHAR, ChTraitsCRT< wchar_t | char |
TCHAR > >

The class requires CRT support and searches for resource strings in the
module specified by m_hInstResource  (a member of the application's
module class).

StrTraitATL< wchar_t | char | TCHAR, ChTraitsOS< wchar_t | char |
TCHAR > >

The class does not require CRT support and searches for resource strings
in the module specified by m_hInstResource  (a member of the
application's module class).

StrTraitMFC< wchar_t | char | TCHAR, ChTraitsCRT< wchar_t | char |
TCHAR > >

The class requires CRT support and searches for resource strings using
the standard MFC search algorithm.

StrTraitMFC< wchar_t | char | TCHAR, ChTraitsOS< wchar_t | char |
TCHAR > >

The class does not require CRT support and searches for resource strings
using the standard MFC search algorithm.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/cstringt-class.md


Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CStringT::CStringT Constructs a CStringT  object in various
ways.

CStringT::~CStringT Destroys a CStringT  object.

Public MethodsPublic Methods

NAME DESCRIPTION

CStringT::AllocSysString Allocates a BSTR from CStringT  data.

CStringT::AnsiToOem Makes an in-place conversion from the
ANSI character set to the OEM character
set.

CStringT::AppendFormat Appends formatted data to an existing 
CStringT  object.

CStringT::Collate Compares two strings (case sensitive, uses
locale-specific information).

CStringT::CollateNoCase Compares two strings (case insensitive,
uses locale-specific information).

CStringT::Compare Compares two strings (case sensitive).

CStringT::CompareNoCase Compares two strings (case insensitive).

CStringT::Delete Deletes a character or characters from a
string.

CStringT::Find Finds a character or substring inside a
larger string.

CStringT::FindOneOf Finds the first matching character from a
set.

CStringT::Format Formats the string as sprintf  does.

CStringT::FormatMessage Formats a message string.

CStringT::FormatMessageV Formats a message string using a variable
argument list.

CStringT::FormatV Formats the string using a variable list of
arguments.

CStringT::GetEnvironmentVariable Sets the string to the value of the specified
environment variable.



CStringT::Insert Inserts a single character or a substring at
the given index within the string.

CStringT::Left Extracts the left part of a string.

CStringT::LoadString Loads an existing CStringT  object from a
Windows resource.

CStringT::MakeLower Converts all the characters in this string to
lowercase characters.

CStringT::MakeReverse Reverses the string.

CStringT::MakeUpper Converts all the characters in this string to
uppercase characters.

CStringT::Mid Extracts the middle part of a string.

CStringT::OemToAnsi Makes an in-place conversion from the
OEM character set to the ANSI character
set.

CStringT::Remove Removes indicated characters from a
string.

CStringT::Replace Replaces indicated characters with other
characters.

CStringT::ReverseFind Finds a character inside a larger string;
starts from the end.

CStringT::Right Extracts the right part of a string.

CStringT::SetSysString Sets an existing BSTR object with data from
a CStringT  object.

CStringT::SpanExcluding Extracts characters from the string, starting
with the first character, that are not in the
set of characters identified by pszCharSet

.

CStringT::SpanIncluding Extracts a substring that contains only the
characters in a set.

CStringT::Tokenize Extracts specified tokens in a target string.

CStringT::Trim Trims all leading and trailing whitespace
characters from the string.

CStringT::TrimLeft Trims leading whitespace characters from
the string.

NAME DESCRIPTION



CStringT::TrimRight Trims trailing whitespace characters from
the string.

NAME DESCRIPTION

OperatorsOperators

operator = Assigns a new value to a CStringT

object.

CStringT::operator + Concatenates two strings or a character
and a string.

CStringT::operator += Concatenates a new string to the end of an
existing string.

CStringT::operator == Determines if two strings are logically
equal.

CStringT::operator != Determines if two strings are logically not
equal.

CStringT::operator < Determines if the string on the left side of
the operator is less than to the string on
the right side.

CStringT::operator > Determines if the string on the left side of
the operator is greater than to the string
on the right side.

CStringT::operator <= Determines if the string on the left side of
the operator is less than or equal to the
string on the right side.

CStringT::operator >= Determines if the string on the left side of
the operator is greater than or equal to the
string on the right side.

Remarks

NOTENOTE

CStringT  inherits from CSimpleStringT Class. Advanced features, such as
character manipulation, ordering, and searching, are implemented by CStringT .

CStringT  objects are capable of throwing exceptions. This occurs when a CStringT

object runs out of memory for any reason.

A CStringT  object consists of a variable-length sequence of characters. 
CStringT  provides functions and operators using syntax similar to that of Basic.

Concatenation and comparison operators, together with simplified memory
management, make CStringT  objects easier to use than ordinary character
arrays.



NOTENOTE

NOTENOTE

CSTRINGT TYPE DECLARATION

CStringA An ANSI character type string with CRT
support.

CStringW A Unicode character type string with CRT
support.

CString Both ANSI and Unicode character types
with CRT support.

CSTRINGT TYPE DECLARATION

CAtlStringA An ANSI character type string without CRT
support.

CAtlStringW A Unicode character type string without
CRT support.

CAtlString Both ANSI and Unicode character types
without CRT support.

Although it is possible to create CStringT  instances that contain embedded null
characters, we recommend against it. Calling methods and operators on CStringT

objects that contain embedded null characters can produce unintended results.

By using different combinations of the BaseType  and StringTraits  parameters, 
CStringT  objects can come in the following types, which are have been

predefined by the ATL libraries.

If using in an ATL application:

CString , CStringA , and CStringW  are exported from the MFC DLL
(MFC90.DLL), never from user DLLs. This is done to prevent CStringT  from
being multiply defined.

If your code contains the workaround for linker errors that is described in Exporting
String Classes Using CStringT, you should remove that code. It is no longer needed.

The following string types are available within MFC-based applications:

The following string types are available in projects where
ATL_CSTRING_NO_CRT is defined:

The following string types are available in projects where
ATL_CSTRING_NO_CRT is not defined:



CSTRINGT TYPE DECLARATION

CAtlStringA An ANSI character type string with CRT
support.

CAtlStringW A Unicode character type string with CRT
support.

CAtlString Both ANSI and Unicode character types
with CRT support.

CStringT Predefined Types

NAME DESCRIPTION

XCHAR A single character (either wchar_t or char)
with the same character type as the 
CStringT  object.

YCHAR A single character (either wchar_t or char)
with the opposite character type as the 
CStringT  object.

PXSTR A pointer to a character string (either
wchar_t or char) with the same character
type as the CStringT  object.

PYSTR A pointer to a character string (either
wchar_t or char) with the opposite
character type as the CStringT  object.

PCXSTR A pointer to a const character string
(either wchar_t or char) with the same
character type as the CStringT  object.

PCYSTR A pointer to a const character string
(either wchar_t or char) with the opposite
character type as the CStringT  object.

CString  objects also have the following characteristics:

CStringT  objects can grow as a result of concatenation operations.

CStringT  objects follow "value semantics." Think of a CStringT  object as
an actual string, not as a pointer to a string.

You can freely substitute CStringT  objects for PCXSTR  function
arguments.

Custom memory management for string buffers. For more information,
see Memory Management and CStringT.

Because CStringT  uses a template argument to define the character type (either
wchar_t or char) supported, method parameter types can be complicated at
times. To simplify this issue, a set of predefined types is defined and used
throughout the CStringT  class. The following table lists the various types:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/standard-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/standard-types


     

NOTENOTE

Inheritance Hierarchy

Requirements
HEADER USE FOR

cstringt.h MFC-only string objects

atlstr.h Non-MFC string objects

CStringT::AllocSysString

BSTR AllocSysString() const;

Return ValueReturn Value

RemarksRemarks

ExampleExample

Code that previously used undocumented methods of CString  (such as 
AssignCopy ) must be replaced with code that uses the following documented

methods of CStringT  (such as GetBuffer  or ReleaseBuffer ). These methods are
inherited from CSimpleStringT .

CSimpleStringT

CStringT

Allocates an Automation-compatible string of the type BSTR and copies the
contents of the CStringT  object into it, including the terminating null character.

The newly allocated string.

In MFC programs, a CMemoryException Class is thrown if insufficient memory
exists. In ATL programs, a CAtlException is thrown. This function is normally
used to return strings for Automation.

Commonly, if this string is passed to a COM function as an [in] parameter, then
this requires the caller to free the string. This can be done by using
SysFreeString, as described in the Windows SDK. For more information, see
Allocating and Releasing Memory for a BSTR.

For more information about OLE allocation functions in Windows, see
SysAllocString in the Windows SDK.

The following example demonstrates the use of CStringT::AllocSysString .

https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-sysfreestring
https://docs.microsoft.com/windows/desktop/api/oleauto/nf-oleauto-sysallocstring


  

 

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;
CAtlString str(_T("This is a test string!"));
BSTR bstr = str.AllocSysString();

// bstr now contains "This is a test string!", and can be
// passed to any OLE function requiring a BSTR.
// Normally, if you pass the BSTR, you will
// need to free the string after returning from the function call.   

CStringT::AnsiToOem

void AnsiToOem();

RemarksRemarks

ExampleExample

// OEM character 252 on most IBM-compatible computers in
// Western countries/regions is superscript n, as in 2^n.
// Converting it to the ANSI English charset results in a
// normal character 'n', which is the closest possible
// representation.

CStringT<char, StrTraitATL<char, ChTraitsCRT<char>>> str((WCHAR)252);
str.OemToAnsi();
ASSERT(str[0] == 'n');

// Be aware that in OEM to ANSI conversion the 'n'
// from the previous result cannot be converted back to
// a supsercript n because the system does not know what
// the character's value truly was.
str.AnsiToOem();
ASSERT(str[0] != 252);
ASSERT(str[0] == 'n');   

CStringT::AppendFormat

void __cdecl AppendFormat(PCXSTR pszFormat, [, argument] ...);
void __cdecl AppendFormat(UINT nFormatID, [, argument] ...);

ParametersParameters

Converts all the characters in this CStringT  object from the ANSI character set
to the OEM character set.

The function is not available if _UNICODE is defined.

Appends formatted data to an existing CStringT  object.

pszFormat
A format-control string.

nFormatID
The string resource identifier that contains the format-control string.

argument
Optional arguments.



 

 

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString str = _T("Some data:\t");

str.AppendFormat(_T("X value = %.2f\n"), 12345.12345);
_tprintf_s(_T("%s"), (LPCTSTR) str);

CStringT::Collate

int Collate(PCXSTR psz) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CStringT::CollateNoCase

int CollateNoCase(PCXSTR psz) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This function formats and appends a series of characters and values in the 
CStringT . Each optional argument (if any) is converted and appended according

to the corresponding format specification in pszFormat or from the string
resource identified by nFormatID.

Compares two strings using the generic-text function _tcscoll .

psz
The other string used for comparison.

Zero if the strings are identical, < 0 if this CStringT  object is less than psz, or > 0
if this CStringT  object is greater than psz.

The generic-text function _tcscoll , which is defined in TCHAR.H, maps to either
strcoll , wcscoll , or _mbscoll , depending on the character set that is defined

at compile time. Each function performs a case-sensitive comparison of the
strings according to the code page currently in use. For more information, see
strcoll, wcscoll, _mbscoll, _strcoll_l, _wcscoll_l, _mbscoll_l.

Compares two strings using the generic-text function _tcscoll .

psz
The other string used for comparison.

Zero if the strings are identical (ignoring case), < 0 if this CStringT  object is less
than psz (ignoring case), or > 0 if this CStringT  object is greater than psz
(ignoring case).

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strcoll-wcscoll-mbscoll-strcoll-l-wcscoll-l-mbscoll-l


         

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString str1 = _T("Co-Op");
CAtlString str2 = _T("con");

int n;

// Collation uses language rules, such as ignoring dashes.
// NoCase version ignores case.
n = str1.CollateNoCase(str2);
ASSERT(n < 0);

// Comparison is a strict ASCII comparison with no language rules
// but still ignores case in NoCase version.
n = str1.CompareNoCase(str2);
ASSERT(n < 0);   

CStringT::Compare

int Compare(PCXSTR psz) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

The generic-text function _tcscoll , which is defined in TCHAR.H, maps to either
stricoll , wcsicoll , or _mbsicoll , depending on the character set that is

defined at compile time. Each function performs a case-insensitive comparison
of the strings, according to the code page currently in use. For more information,
see strcoll, wcscoll, _mbscoll, _strcoll_l, _wcscoll_l, _mbscoll_l.

Compares two strings (case sensitive).

psz
The other string used for comparison.

Zero if the strings are identical, < 0 if this CStringT  object is less than psz, or > 0
if this CStringT  object is greater than psz.

The generic-text function _tcscmp , which is defined in TCHAR.H, maps to either 
strcmp , wcscmp , or _mbscmp , depending on the character set that is defined at

compile time. Each function performs a case-sensitive comparison of the strings
and is not affected by locale. For more information, see strcmp, wcscmp,
_mbscmp.

If the string contains embedded nulls, for purposes of comparison the string is
considered to be truncated at the first embedded null character.

The following example demonstrates the use of CStringT::Compare .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strcoll-wcscoll-mbscoll-strcoll-l-wcscoll-l-mbscoll-l
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strcmp-wcscmp-mbscmp


 

  

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s1(_T("abc"));
CAtlString s2(_T("abd"));
ASSERT(s1.Compare(s2) < 0);    // Compare with another CAtlString.
ASSERT(s1.Compare(_T("abe")) < 0); // Compare with LPTSTR string.   

CStringT::CompareNoCase

int CompareNoCase(PCXSTR psz) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s1(_T("abc"));
CAtlString s2(_T("ABD"));
ASSERT(s1.CompareNoCase(s2) < 0); // Compare with a CAtlString.
ASSERT(s1.CompareNoCase(_T("ABE")) < 0); // Compare with LPTSTR string.   

CStringT::CStringT

CStringT() throw() :
    CThisSimpleString(StringTraits::GetDefaultManager());

explicit CStringT(IAtlStringMgr* pStringMgr) throw() :
    CThisSimpleString( pStringMgr);

CStringT(const VARIANT& varSrc);

CStringT(const VARIANT& varSrc, IAtlStringMgr* pStringMgr);

CStringT(const CStringT& strSrc) :

Compares two strings (case insensitive).

psz
The other string used for comparison.

Zero if the strings are identical (ignoring case), <0 if this CStringT  object is less
than psz (ignoring case), or >0 if this CStringT  object is greater than psz
(ignoring case).

The generic-text function _tcsicmp , which is defined in TCHAR.H, maps to either
_stricmp , _wcsicmp  or _mbsicmp , depending on the character set that is defined

at compile time. Each function performs a case-insensitive comparison of the
strings. The comparison depends on the LC_CTYPE aspect of the locale but not
LC_COLLATE. For more information, see _stricmp, _wcsicmp, _mbsicmp,
_stricmp_l, _wcsicmp_l, _mbsicmp_l.

Constructs a CStringT  object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/stricmp-wcsicmp-mbsicmp-stricmp-l-wcsicmp-l-mbsicmp-l


CStringT(const CStringT& strSrc) :
    CThisSimpleString( strSrc);

operator CSimpleStringT<
                    BaseType,
                    !_CSTRING_IMPL_::_MFCDLLTraitsCheck<BaseType, 
StringTraits>
                    :: c_bIsMFCDLLTraits> &()

template <bool bMFCDLL>
CStringT(const CSimpleStringT<BaseType, bMFCDLL>& strSrc) :
    CThisSimpleString( strSrc);

template <class SystemString>
CStringT(SystemString^ pString) :
    CThisSimpleString( StringTraits::GetDefaultManager());

CStringT(const XCHAR* pszSrc) :
    CThisSimpleString( StringTraits::GetDefaultManager());

CSTRING_EXPLICIT CStringT(const YCHAR* pszSrc) :
    CThisSimpleString( StringTraits::GetDefaultManager());

CStringT(LPCSTR pszSrc, IAtlStringMgr* pStringMgr) :
    CThisSimpleString( pStringMgr);

CStringT(LPCWSTR pszSrc, IAtlStringMgr* pStringMgr) :
    CThisSimpleString( pStringMgr);

CSTRING_EXPLICIT CStringT(const unsigned char* pszSrc) :
    CThisSimpleString( StringTraits::GetDefaultManager());

/*CSTRING_EXPLICIT*/ CStringT(char* pszSrc) :
    CThisSimpleString( StringTraits::GetDefaultManager());

CSTRING_EXPLICIT CStringT(unsigned char* pszSrc) :
    CThisSimpleString( StringTraits::GetDefaultManager());

CSTRING_EXPLICIT CStringT(wchar_t* pszSrc) :
    CThisSimpleString( StringTraits::GetDefaultManager());

CStringT(const unsigned char* pszSrc, IAtlStringMgr* pStringMgr) :
    CThisSimpleString( pStringMgr);

CSTRING_EXPLICIT CStringT(char ch, int nLength = 1) :
    CThisSimpleString( StringTraits::GetDefaultManager());

CSTRING_EXPLICIT CStringT(wchar_t ch, int nLength = 1) :
    CThisSimpleString( StringTraits::GetDefaultManager());

CStringT(const XCHAR* pch, int nLength) :
    CThisSimpleString( pch, nLength, StringTraits::GetDefaultManager());

CStringT(const YCHAR* pch, int nLength) :
    CThisSimpleString( StringTraits::GetDefaultManager());

CStringT(const XCHAR* pch, int nLength, AtlStringMgr* pStringMgr) :
    CThisSimpleString( pch, nLength, pStringMgr);

CStringT(const YCHAR* pch, int nLength, IAtlStringMgr* pStringMgr) :
    CThisSimpleString( pStringMgr);

ParametersParameters
pch
A pointer to an array of characters of length nLength, not null-terminated.

nLength



RemarksRemarks

A count of the number of characters in pch.

ch
A single character.

pszSrc
A null-terminated string to be copied into this CStringT  object.

pStringMgr
A pointer to the memory manager for the CStringT  object. For more
information on IAtlStringMgr  and memory management for CStringT , see
Memory Management with CStringT.

strSrc
An existing CStringT  object to be copied into this CStringT  object. For more
information on CThisString  and CThisSimpleString , see the Remarks section.

varSrc
A variant object to be copied into this CStringT  object.

BaseType
The character type of the string class. Can be one of the following:

char (for ANSI character strings).

wchar_t (for Unicode character strings).

TCHAR (for both ANSI and Unicode character strings).

bMFCDLL
Boolean that specifies whether the project is an MFC DLL (TRUE) or not
(FALSE).

SystemString
Must be System::String , and the project must be compiled with /clr.

pString
A handle for a CStringT  object.

Because the constructors copy the input data into new allocated storage, you
should be aware that memory exceptions may result. Note that some of these
constructors act as conversion functions. This allows you to substitute, for
example, an LPTSTR where a CStringT  object is expected.

CStringT ( LPCSTR  lpsz  ): Constructs a Unicode CStringT  from an
ANSI string. You can also use this constructor to load a string resource as
shown in the example below.

CStringT(  LPCWSTR  lpsz  ): Constructs a CStringT  from a Unicode
string.

CStringT ( const unsigned char*  psz  ): Allows you to construct a 
CStringT  from a pointer to unsigned char.



 

NOTENOTE

NOTENOTE

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s1;                    // Empty string
CAtlString s2(_T("cat"));           // From a C string literal
CAtlString s3 = s2;               // Copy constructor
CAtlString s4(s2 + _T(" ") + s3);   // From a string expression

CAtlString s5(_T('x'));             // s5 = "x"
CAtlString s6(_T('x'), 6);          // s6 = "xxxxxx"

CAtlString s7((LPCSTR)ID_FILE_NEW); // s7 = "Create a new document"

VARIANT var;
V_VT(&var) = VT_BSTR;
V_BSTR(&var) = ::SysAllocString(L"Football is a fun sport.");
CAtlString s8(var); // s8 = "Football is a fun sport."

// The following statement does not call the assignment operator.
// The compiler considers the following statement equivalent to
// CAtlString city("Paris")
CAtlString city = _T("Paris");   

CStringT::~CStringT

~CStringT() throw();

RemarksRemarks

Define the _CSTRING_DISABLE_NARROW_WIDE_CONVERSION macro to turn off
implicit string conversion between ANSI and Unicode strings. The macro excludes from
compilation constructors that support conversion.

Note that the strSrc parameter can be either a CStringT  or CThisSimpleString

object. For CStringT , use one of its default instantiations ( CString , CStringA , or
CStringW ); for CThisSimpleString , use a this pointer. CThisSimpleString

declares an instance of the CSimpleStringT Class, which is a smaller string class
with less built-in functionality than the CStringT  class.

The overload operator CSimpleStringT<>&()  constructs a CStringT  object from a
CSimpleStringT  declaration.

Although it is possible to create CStringT  instances that contain embedded null
characters, we recommend against it. Calling methods and operators on CStringT

objects that contain embedded null characters can produce unintended results.

Destroys the CStringT  object.

Destroys the CStringT  object.



 

 

CStringT::Delete

int Delete(int iIndex, int nCount = 1);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString str(_T("Soccer is best, but hockey is quicker!"));
_tprintf_s(_T("Before: %s\n"), (LPCTSTR)str);

int n = str.Delete(6, 3);
_tprintf_s(_T("After: %s\n"), (LPCTSTR)str);
ASSERT(n == str.GetLength());

Before: Soccer is best,
    but hockey is quicker!
After: Soccer best,
    but hockey is quicker!

CStringT::Find

int Find(PCXSTR pszSub, int iStart=0) const throw();
int Find(XCHAR ch, int iStart=0) const throw();

ParametersParameters

Deletes a character or characters from a string starting with the character at the
given index.

iIndex
The zero-based index of the first character in the CStringT  object to delete.

nCount
The number of characters to be removed.

The length of the changed string.

If nCount is longer than the string, the rest of the string will be removed.

Searches this string for the first match of a character or substring.

pszSub
A substring to search for.

iStart
The index of the character in the string to begin the search with, or 0 to start
from the beginning.

ch
A single character to search for.



 

 

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s(_T("abcdef"));
ASSERT(s.Find(_T('c')) == 2);
ASSERT(s.Find(_T("de")) == 3);

CAtlString str(_T("The waves are still"));
int n = str.Find(_T('e'), 5);
ASSERT(n == 7);   

CStringT::FindOneOf

int FindOneOf(PCXSTR pszCharSet) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s(_T("abcdef"));
ASSERT(s.FindOneOf(_T("xd")) == 3); // 'd' is first match   

CStringT::Format

The zero-based index of the first character in this CStringT  object that matches
the requested substring or characters; -1 if the substring or character is not
found.

The function is overloaded to accept both single characters (similar to the run-
time function strchr ) and strings (similar to strstr ).

Searches this string for the first character that matches any character contained
in pszCharSet.

pszCharSet
String containing characters for matching.

The zero-based index of the first character in this string that is also in
pszCharSet; -1 if there is no match.

Finds the first occurrence of any of the characters in pszCharSet.

Writes formatted data to a CStringT  in the same way that sprintf_s formats data
into a C-style character array.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/sprintf-s-sprintf-s-l-swprintf-s-swprintf-s-l


  

void __cdecl Format(UINT nFormatID, [, argument]...);
void __cdecl Format(PCXSTR pszFormat,  [, argument] ...);

ParametersParameters

RemarksRemarks

CAtlString str = _T("Some Data");
str.Format(_T("%s%d"), str, 123);   
// Attention: str is also used in the parameter list.   

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;
CAtlString str;

str.Format(_T("Floating point: %.2f\n"), 12345.12345);
_tprintf_s(_T("%s"), (LPCTSTR) str);

str.Format(_T("Left-justified integer: %.6d\n"), 35);
_tprintf_s(_T("%s"), (LPCTSTR) str);

CStringT::FormatMessage

void __cdecl FormatMessage(UINT nFormatID, [, argument]...);
void __cdecl FormatMessage(PCXSTR pszFormat, [, argument]...);

ParametersParameters

nFormatID
The string resource identifier that contains the format-control string.

pszFormat
A format-control string.

argument
Optional arguments.

This function formats and stores a series of characters and values in the 
CStringT . Each optional argument (if any) is converted and output according to

the corresponding format specification in pszFormat or from the string resource
identified by nFormatID.

The call will fail if the string object itself is offered as a parameter to Format . For
example, the following code will cause unpredictable results:

For more information, see Format Specification Syntax: printf and wprintf
Functions.

Formats a message string.

nFormatID
The string resource identifier that contains the unformatted message text.

pszFormat
Points to the format-control string. It will be scanned for inserts and formatted

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/format-specification-syntax-printf-and-wprintf-functions


 

RemarksRemarks

NOTENOTE

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString str;
int nAsked = 5;
int nAgree = 4;

str.FormatMessage(_T("%1!d! of %2!d! writers agree: Soccer is %3%!"), 
   nAgree, nAsked, _T("Best"));
ASSERT(str == _T("4 of 5 writers agree: Soccer is Best!"));   

CStringT::FormatMessageV

void FormatMessageV(PCXSTR pszFormat, va_list* pArgList);

ParametersParameters

RemarksRemarks

accordingly. The format string is similar to run-time function printf-style format
strings, except it allows for the parameters to be inserted in an arbitrary order.

argument
Optional arguments.

The function requires a message definition as input. The message definition is
determined by pszFormat or from the string resource identified by nFormatID.
The function copies the formatted message text to the CStringT  object,
processing any embedded insert sequences if requested.

FormatMessage  attempts to allocate system memory for the newly formatted string.
If this attempt fails, a memory exception is automatically thrown.

Each insert must have a corresponding parameter following the pszFormat or
nFormatID parameter. Within the message text, several escape sequences are
supported for dynamically formatting the message. For more information, see
the Windows FormatMessage function in the Windows SDK.

Formats a message string using a variable argument list.

pszFormat
Points to the format-control string. It will be scanned for inserts and formatted
accordingly. The format string is similar to run-time function printf -style
format strings, except it allows for the parameters to be inserted in an arbitrary
order.

pArgList
Pointer to a list of arguments.

The function requires a message definition as input, determined by pszFormat.
The function copies the formatted message text and a variable list of arguments

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-formatmessage


 

 

NOTENOTE

CStringT::FormatV

void FormatV(PCXSTR pszFormat, va_list args);

ParametersParameters

RemarksRemarks

ExampleExample

void WriteString(LPCTSTR pstrFormat, ...)
{
    CString str;

    // format and write the data you were given
    va_list args;
    va_start(args, pstrFormat);

    str.FormatV(pstrFormat, args);
    va_end(args);

    _tprintf_s(str);
    return;
}

// Call the above WriteString function.
WriteString(_T("%d error(s) found in %d line(s)"), 10, 1351);

CStringT::GetEnvironmentVariable

to the CStringT  object, processing any embedded insert sequences if requested.

FormatMessageV  calls CStringT::FormatMessage, which attempts to allocate system
memory for the newly formatted string. If this attempt fails, a memory exception is
automatically thrown.

For more information, see the Windows FormatMessage function in the
Windows SDK.

Formats a message string using a variable argument list.

pszFormat
Points to the format-control string. It will be scanned for inserts and formatted
accordingly. The format string is similar to run-time function printf -style
format strings, except it allows for the parameters to be inserted in an arbitrary
order.

args
Pointer to a list of arguments.

Writes a formatted string and a variable list of arguments to a CStringT  string in
the same way that vsprintf_s  formats data into a C-style character array.

Sets the string to the value of the specified environment variable.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-formatmessage


 

BOOL GetEnvironmentVariable(PCXSTR pszVar);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;
CAtlString EnvStr;

EnvStr.GetEnvironmentVariable(_T("TEMP"));
_tprintf_s(_T("Current value of TEMP variable: %s\n"), EnvStr);

CStringT::Insert

int Insert(int iIndex, PCXSTR psz);
int Insert(int iIndex, XCHAR ch);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

pszVar
Pointer to a null-terminated string that specifies the environment variable.

Nonzero if successful; otherwise 0.

Retrieves the value of the specified variable from the environment block of the
calling process. The value is in the form of a null-terminated string of characters.

Inserts a single character or a substring at the given index within the string.

iIndex
The index of the character before which the insertion will take place.

psz
A pointer to the substring to be inserted.

ch
The character to be inserted.

The length of the changed string.

The iIndex parameter identifies the first character that will be moved to make
room for the character or substring. If nIndex is zero, the insertion will occur
before the entire string. If nIndex is higher than the length of the string, the
function will concatenate the present string and the new material provided by
either ch or psz.



 

     

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString str(_T("SoccerBest"));
int n = str.Insert(6, _T("is "));
ASSERT(n == str.GetLength());
_tprintf_s(_T("1: %s\n"), (LPCTSTR) str);

n = str.Insert(6, _T(' '));
ASSERT(n == str.GetLength());
_tprintf_s(_T("2: %s\n"), (LPCTSTR) str);

n = str.Insert(55, _T('!'));
ASSERT(n == str.GetLength());
_tprintf_s(_T("3: %s\n"), (LPCTSTR) str);

CStringT::Left

CStringT Left(int nCount) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s(_T("abcdef"));
ASSERT(s.Left(2) == _T("ab"));   

CStringT::LoadString

Extracts the leftmost nCount characters from this CStringT  object and returns a
copy of the extracted substring.

nCount
The number of characters to extract from this CStringT  object.

A CStringT  object that contains a copy of the specified range of characters. The
returned CStringT  object may be empty.

If nCount exceeds the string length, then the entire string is extracted. Left  is
similar to the Basic Left  function.

For multi-byte character sets (MBCS), nCount treats each 8-bit sequence as a
character, so that nCount returns the number of multi-byte characters multiplied
by two.

Reads a Windows string resource, identified by nID, into an existing CStringT

object.



 

 

BOOL LoadString(HINSTANCE hInstance, UINT nID, WORD wLanguageID);
BOOL LoadString(HINSTANCE hInstance, UINT nID);
BOOL LoadString(UINT nID);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s;
s.LoadString(IDS_APP_TITLE);   

CStringT::MakeLower

CStringT& MakeLower();

Return ValueReturn Value

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s(_T("ABC"));

ASSERT(s.MakeLower() == _T("abc"));   

CStringT::MakeReverse

CStringT& MakeReverse();

hInstance
A handle to the instance of the module.

nID
A Windows string resource ID.

wLanguageID
The language of the string resource.

Nonzero if resource load was successful; otherwise 0.

Loads the string resource (nID) from the specified module (hInstance) using the
specified language (wLanguage).

Converts the CStringT  object to a lowercase string.

The resulting lowercase string.

Reverses the order of the characters in the CStringT  object.



 

 

Return ValueReturn Value

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s(_T("abc"));

ASSERT(s.MakeReverse() == _T("cba"));   

CStringT::MakeUpper

CStringT& MakeUpper();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s(_T("abc"));

ASSERT(s.MakeUpper() == _T("ABC"));   

CStringT::Mid

CStringT Mid(int iFirst, int nCount) const;
CStringT Mid(int iFirst) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

The resulting reversed string.

Converts the CStringT  object to an uppercase string.

The resulting uppercase string.

Extracts a substring of length nCount characters from this CStringT  object,
starting at position iFirst (zero-based).

iFirst
The zero-based index of the first character in this CStringT  object that is to be
included in the extracted substring.

nCount
The number of characters to extract from this CStringT  object. If this parameter
is not supplied, then the remainder of the string is extracted.

A CStringT  object that contains a copy of the specified range of characters. Note
that the returned CStringT  object may be empty.



 

 

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s(_T("abcdef"));
ASSERT(s.Mid(2, 3) == _T("cde"));   

CStringT::OemToAnsi

void OemToAnsi();

RemarksRemarks

ExampleExample

CStringT::operator +

friend CStringT operator+(const CStringT& str1, const CStringT& str2);
friend CStringT operator+(const CStringT& str1, PCXSTR psz2);
friend CStringT operator+(PCXSTR psz1, const CStringT& str2,);
friend CStringT operator+(char ch1, const CStringT& str2,);
friend CStringT operator+(const CStringT& str1, char ch2);
friend CStringT operator+(const CStringT& str1, wchar_t ch2);
friend CStringT operator+(wchar_t ch1, const CStringT& str2,);

ParametersParameters

The function returns a copy of the extracted substring. Mid  is similar to the Basic
Mid function (except that indexes in Basic are one-based).

For multibyte character sets (MBCS), nCount refers to each 8-bit character; that
is, a lead and trail byte in one multibyte character are counted as two characters.

Converts all the characters in this CStringT  object from the OEM character set
to the ANSI character set.

This function is not available if _UNICODE is defined.

See the example for CStringT::AnsiToOem.

Concatenates two strings or a character and a string.

ch1
An ANSI or Unicode character to concatenate with a string.

ch2
An ANSI or Unicode character to concatenate with a string.

str1
A CStringT  to concatenate with a string or character.

str2
A CStringT  to concatenate with a string or character.

psz1
A pointer to a null-terminated string to concatenate with a string or character.

psz2



 

RemarksRemarks

NOTENOTE

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;
CAtlString s1(_T("dog ")), s2(_T(" awake")), s3;  // Empty CAtlString objects

s1= _T("The ") + s1;
s3= s1 + _T('i');
s3= s3 + _T('s');
s3= s3 + s2;
ASSERT(s3 == _T("The dog is awake"));   

CStringT::operator +=

CStringT& operator+=(const CThisSimpleString& str);

template<bool bMFCDLL>
CStringT& operator+=(const const CSimpleStringT<BaseType, bMFCDLL>& str);

template<int t_nSize>
CStringT& operator+=(const CStaticString<XCHAR, t_nSize>& strSrc);
CStringT& operator+=(PCXSTR pszSrc);
CStringT& operator+=(PCYSTR pszSrc);
CStringT& operator+=(char ch);
CStringT& operator+=(unsigned char ch);
CStringT& operator+=(wchar_t ch);
CStringT& operator+=(const VARIANT& var);

ParametersParameters

A pointer to a string to concatenate with a string or character.

There are seven overload forms of the CStringT::operator+  function. The first
version concatenates two existing CStringT  objects. The next two concatenate a 
CStringT  object and a null-terminated string. The next two concatenate a 
CStringT  object and an ANSI character. The last two concatenate a CStringT

object and a Unicode character.

Although it is possible to create CStringT  instances that contain embedded null
characters, we recommend against it. Calling methods and operators on CStringT

objects that contain embedded null characters can produce unintended results.

Concatenates characters to the end of the string.

str
A reference to a CThisSimpleString  object.

bMFCDLL
A boolean specifying whether the project is an MFC DLL or not.

BaseType
The string base type.

var
A variant object to concatenate to this string.



 

RemarksRemarks

NOTENOTE

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s(_T("abc"));
ASSERT((s += _T("def")) == _T("abcdef"));   

CStringT::operator ==

friend bool operator==(const CStringT& str1, const CStringT& str2) throw();
friend bool operator==(const CStringT& str1, PCXSTR psz2) throw();
friend bool operator==(const CStringT& str1, PCYSTR psz2) throw();
friend bool operator==(const CStringT& str1, XCHAR ch2) throw();
friend bool operator==(PCXSTR psz1, const CStringT& str2) throw();
friend bool operator==(PCYSTR psz1, const CStringT& str2,) throw();
friend bool operator==(XCHAR ch1, const CStringT& str2,) throw();

ParametersParameters

ch
An ANSI or Unicode character to concatenate with a string.

pszSrc
A pointer to the original string being concatenated.

strSrc
A CStringT  to concatenate to this string.

The operator accepts another CStringT  object, a character pointer, or a single
character. You should be aware that memory exceptions can occur whenever you
use this concatenation operator because new storage can be allocated for
characters added to this CStringT  object.

For information on CThisSimpleString , see the Remarks section of
CStringT::CStringT.

Although it is possible to create CStringT  instances that contain embedded null
characters, we recommend against it. Calling methods and operators on CStringT

objects that contain embedded null characters can produce unintended results.

Determines whether two strings are logically equal.

ch1
An ANSI or Unicode character for comparison.

ch2
An ANSI or Unicode character for comparison.

str1
A CStringT  for comparison.

str2
A CStringT  for comparison.



 

RemarksRemarks

ExampleExample

// typedef CStringT< TCHAR, StrTraitATL< TCHAR > > CAtlString;
CAtlString s1(_T("dog")), s2(_T("f")), s3(_T("dog"));

ASSERT(s1 == _T("dog"));
ASSERT(s2 == _T('f'));
ASSERT(s1 == s3);   

CStringT::operator !=

friend bool operator!=(const CStringT& str1, const CStringT& str2) throw();
friend bool operator!=(const CStringT& str1, PCXSTR psz2) throw();
friend bool operator!=(const CStringT& str1, PCYSTR psz2) throw();
friend bool operator!=(const CStringT& str1, XCHAR ch2) throw();
friend bool operator!=(PCXSTR psz1, const CStringT& str2) throw();
friend bool operator!=(PCYSTR psz1, const CStringT& str2,) throw();
friend bool operator!=(XCHAR ch1, const CStringT& str2,) throw();

ParametersParameters

RemarksRemarks

ExampleExample

psz1
A pointer to a null-terminated string for comparison.

psz2
A pointer to a null-terminated string for comparison.

Tests whether a string or character on the left side is equal to a string or
character on the right side, and returns TRUE or FALSE accordingly.

Determines whether two strings are logically not equal.

ch1
An ANSI or Unicode character to concatenate with a string.

ch2
An ANSI or Unicode character to concatenate with a string.

str1
A CStringT  for comparison.

str2
A CStringT  for comparison.

psz1
A pointer to a null-terminated string for comparison.

psz2
A pointer to a null-terminated string for comparison.

Tests if a string or character on the left side is not equal to a string or character
on the right side.



 

 

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;
CAtlString s1(_T("cat")), s2(_T("f")), s3(_T("horse"));

ASSERT(s1 != _T("dog"));
ASSERT(s2 != _T('t'));
ASSERT(s1 != s2);   

CStringT::operator <

friend bool operator<(const CStringT& str1, const CStringT& str2) throw();
friend bool operator<(const CStringT& str1, PCXSTR psz2) throw();
friend bool operator<(PCXSTR psz1, const CStringT& str2) throw();

ParametersParameters

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;
CAtlString s1(_T("cat")), s2(_T("cats")), s3(_T("dogs"));

ASSERT(s1 < _T("dog"));
ASSERT(s1 < _T("cats"));
ASSERT(s2 < _T("cats and dogs"));
ASSERT(s2 < s3);   

CStringT::operator >

Determines whether the string on the left side of the operator is less than the
string on the right side.

str1
A CStringT  for comparison.

str2
A CStringT  for comparison.

psz1
A pointer to a null-terminated string for comparison.

psz2
A pointer to a null-terminated string for comparison.

A lexicographical comparison between strings, character by character until:

It finds two corresponding characters unequal, and the result of their
comparison is taken as the result of the comparison between the strings.

It finds no inequalities, but one string has more characters than the other,
and the shorter string is considered less than the longer string.

It finds no inequalities and finds that the strings have the same number of
characters, and so the strings are equal.

Determines whether the string on the left side of the operator is greater than the



 

friend bool operator>(const CStringT& str1, const CStringT& str2) throw();
friend bool operator>(const CStringT& str1, PCXSTR psz2) throw();
friend bool operator>(PCXSTR psz1, const CStringT& str2) throw();

ParametersParameters

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;
CAtlString s1(_T("cat")), s2(_T("cats")), s3(_T("dogs"));
ASSERT(_T("dog") > s1);
ASSERT(_T("cats") > s1);
ASSERT(_T("cats and dogs") > s2);
ASSERT(s3 > s2);   

CStringT::operator <=

friend bool operator<=(const CStringT& str1, const CStringT& str2) throw();
friend bool operator<=(const CStringT& str1, PCXSTR psz2) throw();
friend bool operator<=(PCXSTR psz1, const CStringT& str2) throw();

ParametersParameters

string on the right side.

str1
A CStringT  for comparison.

str2
A CStringT  for comparison.

psz1
A pointer to a null-terminated string for comparison.

psz2
A pointer to a null-terminated string for comparison.

A lexicographical comparison between strings, character by character until:

It finds two corresponding characters unequal, and the result of their
comparison is taken as the result of the comparison between the strings.

It finds no inequalities, but one string has more characters than the other,
and the shorter string is considered less than the longer string.

It finds no inequalities and finds that the strings have the same number of
characters, so the strings are equal.

Determines whether the string on the left side of the operator is less than or
equal to the string on the right side.

str1
A CStringT  for comparison.

str2
A CStringT  for comparison.



 

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;
CAtlString s1(_T("cat")), s2(_T("cats")), s3(_T("dogs"));

ASSERT(s1 <= _T("dog"));
ASSERT(s1 <= _T("cat"));
ASSERT(s3 <= _T("dogs and cats"));
ASSERT(s2 <= s3);   

CStringT::operator >=

friend bool operator>=(const CStringT& str1, const CStringT& str2) throw();
friend bool operator>=(const CStringT& str1, PCXSTR psz2) throw();
friend bool operator>=(PCXSTR psz1, const CStringT& str2) throw();

ParametersParameters

RemarksRemarks

psz1
A pointer to a null-terminated string for comparison.

psz2
A pointer to a null-terminated string for comparison.

A lexicographical comparison between strings, character by character until:

It finds two corresponding characters unequal, and the result of their
comparison is taken as the result of the comparison between the strings.

It finds no inequalities, but one string has more characters than the other,
and the shorter string is considered less than the longer string.

It finds no inequalities and finds that the strings have the same number of
characters, so the strings are equal.

Determines whether the string on the left side of the operator is greater than or
equal to the string on the right side.

str1
A CStringT  for comparison.

str2
A CStringT  for comparison.

psz1
A pointer to a string for comparison.

psz2
A pointer to a string for comparison.

A lexicographical comparison between strings, character by character until:

It finds two corresponding characters unequal, and the result of their
comparison is taken as the result of the comparison between the strings.

It finds no inequalities, but one string has more characters than the other,



 

 

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;
CAtlString s1(_T("cat")), s2(_T("cats")), s3(_T("dogs"));

ASSERT(_T("dog") >= s1);
ASSERT(_T("cats and dogs") >= s2);
ASSERT(s3 >= s2);   

CStringT::Remove

int Remove(XCHAR chRemove);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString str(_T("This is a test."));
int n = str.Remove(_T('t'));
ASSERT(n == 2);
ASSERT(str == _T("This is a es."));   

CStringT::Replace

int Replace(PCXSTR pszOld, PCXSTR pszNew);
int Replace(XCHAR chOld, XCHAR chNew);

ParametersParameters

and the shorter string is considered less than the longer string.

It finds no inequalities and finds that the strings have the same number of
characters, so the strings are equal.

Removes all instances of the specified character from the string.

chRemove
The character to be removed from a string.

The count of characters removed from the string. Zero if the string is not
changed.

Comparisons for the character are case sensitive.

There are two versions of Replace .The first version replaces one or more copies
of a substring by using another substring. Both substrings are null-terminated.
The second version replaces one or more copies of a character by using another
character. Both versions operate on the character data stored in CStringT .

pszOld



 

Return ValueReturn Value

RemarksRemarks

DEFINED CONSTANT CHARACTER DATA TYPE

_UNICODE Wide characters

_MBCS Multi-byte characters

Neither Single-byte characters

Both Undefined

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString strBang(_T("Everybody likes epee fencing"));
int n = strBang.Replace(_T("epee"), _T("foil"));
ASSERT(n == 1);   

CStringT::ReverseFind

int ReverseFind(XCHAR ch) const throw();

ParametersParameters

A pointer to a null-terminated string to be replaced by pszNew.

pszNew
A pointer to a null-terminated string that replaces pszOld.

chOld
The character to be replaced by chNew.

chNew
The character replacing chOld.

Returns the number of replaced instances of the character or substring, or zero if
the string is not changed.

Replace  can change the string length because pszNew and pszOld do not have
to be the same length, and several copies of the old substring can be changed to
the new one. The function performs a case-sensitive match.

Examples of CStringT  instances are CString , CStringA , and CStringW .

For CStringA , Replace  works with ANSI or multibyte (MBCS) characters. For 
CStringW , Replace  works with wide characters.

For CString , the character data type is selected at compile time, based on
whether the constants in the following table are defined.

Searches this CStringT  object for the last match of a character.

ch



 

   

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s(_T("abcabc"));
ASSERT(s.ReverseFind(_T('b')) == 4);   

CStringT::Right

CStringT Right(int nCount) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString s(_T("abcdef"));
ASSERT(s.Right(2) == _T("ef"));   

CStringT::SetSysString

BSTR SetSysString(BSTR* pbstr) const;

The character to search for.

The zero-based index of the last character in this CStringT  object that matches
the requested character, or -1 if the character is not found.

The function is similar to the run-time function strrchr .

Extracts the last (that is, rightmost) nCount characters from this CStringT  object
and returns a copy of the extracted substring.

nCount
The number of characters to extract from this CStringT  object.

A CStringT  object that contains a copy of the specified range of characters. Note
that the returned CStringT  object can be empty.

If nCount exceeds the string length, then the entire string is extracted. Right  is
similar to the Basic Right  function (except that indexes in Basic are zero-based).

For multibyte character sets (MBCS), nCount refers to each 8-bit character; that
is, a lead and trail byte in one multibyte character are counted as two characters.

Reallocates the BSTR pointed to by pbstr and copies the contents of the 
CStringT  object into it, including the NULL character.



 

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

BSTR bstr = ::SysAllocString(L"Golf is fun!");

// create a CAtlString and change the OLE
// string to the contents of the BSTR
// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString str(_T("Soccer is best!"));
BSTR bstr2 = str.SetSysString(&bstr);

// Now, both bstr and bstr2 reference a single instance of
// the "Soccer" string. The "Golf" string has been freed.
ASSERT(bstr2 == bstr);   

CStringT::SpanExcluding

CStringT SpanExcluding(PCXSTR pszCharSet) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

pbstr
A pointer to a character string.

The new string.

Depending on the contents of the CStringT  object, the value of the BSTR
referenced by pbstr can change. The function throws a CMemoryException  if
insufficient memory exists.

This function is normally used to change the value of strings passed by reference
for Automation.

Extracts characters from the string, starting with the first character, that are not in
the set of characters identified by pszCharSet.

pszCharSet
A string interpreted as a set of characters.

A substring that contains characters in the string that are not in pszCharSet,
beginning with the first character in the string and ending with the first character
found in the string that is also in pszCharSet (that is, starting with the first
character in the string and up to but excluding the first character in the string
that is found pszCharSet). It returns the entire string if no character in
pszCharSet is found in the string.

SpanExcluding  extracts and returns all characters preceding the first occurrence
of a character from pszCharSet (in other words, the character from pszCharSet
and all characters following it in the string, are not returned). If no character from
pszCharSet is found in the string, then SpanExcluding  returns the entire string.



 

 

ExampleExample

// The string can be delimited by a semicolon(;),
//  a comma(,), a period(.), a dash(-),
// or an apostrophe(').
// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString src(_T("World Cup '98"));

_tprintf_s(_T("%s"),src.SpanExcluding(_T(";,.-'")));

CStringT::SpanIncluding

CStringT SpanIncluding(PCXSTR pszCharSet) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString str(_T("cabbage"));
CAtlString res = str.SpanIncluding(_T("abc"));
ASSERT(res == _T("cabba"));
res = str.SpanIncluding(_T("xyz"));
ASSERT(res.IsEmpty());   

CStringT::Tokenize

CStringT Tokenize(PCXSTR pszTokens, int& iStart) const;

ParametersParameters

Extracts characters from the string, starting with the first character, that are in the
set of characters identified by pszCharSet.

pszCharSet
A string interpreted as a set of characters.

A substring that contains characters in the string that are in pszCharSet,
beginning with the first character in the string and ending when a character is
found in the string that is not in pszCharSet. SpanIncluding  returns an empty
substring if the first character in the string is not in the specified set.

If the first character of the string is not in the character set, then SpanIncluding

returns an empty string. Otherwise, it returns a sequence of consecutive
characters that are in the set.

Finds the next token in a target string

pszTokens
A string containing token delimiters. The order of these delimiters is not



 

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;
CAtlString str(_T("%First Second#Third"));
CAtlString resToken;
int curPos = 0;

resToken= str.Tokenize(_T("% #"),curPos);
while (resToken != _T(""))
{
   _tprintf_s(_T("Resulting token: %s\n"), resToken);
   resToken = str.Tokenize(_T("% #"), curPos);
};   

RemarksRemarks

Resulting Token: First
Resulting Token: Second
Resulting Token: Third

CStringT::Trim

CStringT& Trim(XCHAR chTarget);
CStringT& Trim(PCXSTR pszTargets);
CStringT& Trim();

ParametersParameters

important.

iStart
The zero-based index to begin the search.

A CStringT  object containing the current token value.

The Tokenize  function finds the next token in the target string. The set of
characters in pszTokens specifies possible delimiters of the token to be found. On
each call to Tokenize  the function starts at iStart, skips leading delimiters, and
returns a CStringT  object containing the current token, which is the string of
characters up to the next delimiter character. The value of iStart is updated to be
the position following the ending delimiter character, or -1 if the end of the string
was reached. More tokens can be broken out of the remainder of the target
string by a series of calls to Tokenize , using iStart to keep track of where in the
string the next token is to be read. When there are no more tokens the function
will return an empty string and iStart will be set to -1.

Unlike the CRT tokenize functions like strtok_s, _strtok_s_l, wcstok_s,
_wcstok_s_l, _mbstok_s, _mbstok_s_l, Tokenize  does not modify the target
string.

The output from this example is as follows:

Trims leading and trailing characters from the string.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strtok-s-strtok-s-l-wcstok-s-wcstok-s-l-mbstok-s-mbstok-s-l


 

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString str;
str = _T("******Soccer is best!?!?!?!?!");

_tprintf_s(_T("Before: \"%s\"\n"), (LPCTSTR)str);
_tprintf_s(_T("After : \"%s\"\n"), (LPCTSTR)str.Trim(_T("?!*")));

// Output:
// --------------------------
// Before: ******Soccer is best!?!?!?!?!
// After: Soccer is best

RemarksRemarks

Before: "******Soccer is best, but liquor is quicker!!!!!"
After : "Soccer is best, but liquor is quicker"

CStringT::TrimLeft

CStringT& TrimLeft(XCHAR chTarget);
CStringT& TrimLeft(PCXSTR pszTargets);
CStringT& TrimLeft();

ParametersParameters

chTarget
The target character to be trimmed.

pszTargets
A pointer to a string containing the target characters to be trimmed. All leading
and trailing occurrences of characters in pszTarget will be trimmed from the 
CStringT  object.

Returns the trimmed string.

Removes all leading and trailing occurrences of one of the following:

The character specified by chTarget.

All characters found in the string specified by pszTargets.

Whitespace.

The output from this example is as follows:

Trims leading characters from the string.

chTarget
The target character to be trimmed.

pszTargets
A pointer to a string containing the target characters to be trimmed. All leading
occurrences of characters in pszTarget will be trimmed from the CStringT



 

Return ValueReturn Value

RemarksRemarks

ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString str;
str = _T("\t\t   ****Soccer is best!");

_tprintf_s(_T("Before: \"%s\"\n"), (LPCTSTR)str);
_tprintf_s(_T("After: \"%s\"\n"), (LPCTSTR)str.TrimLeft(_T("\t *")));

// Output:
// --------------------------
// Before:  ****Soccer is best!
// After: Soccer is best!

CStringT::TrimRight

CStringT& TrimRight(XCHAR chTarget);
CStringT& TrimRight(PCXSTR pszTargets);
CStringT& TrimRight();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

object.

The resulting trimmed string.

Removes all leading and trailing occurrences of one of the following:

The character specified by chTarget.

All characters found in the string specified by pszTargets.

Whitespace.

Trims trailing characters from the string.

chTarget
The target character to be trimmed.

pszTargets
A pointer to a string containing the target characters to be trimmed. All trailing
occurrences of characters in pszTarget will be trimmed from the CStringT

object.

Returns the CStringT  object that contains the trimmed string.

Removes trailing occurrences of one of the following:

The character specified by chTarget.

All characters found in the string specified by pszTargets.

Whitespace.



ExampleExample

// typedef CStringT<TCHAR, StrTraitATL<TCHAR, ChTraitsCRT<TCHAR>>> 
CAtlString;

CAtlString str;
str = _T("Soccer is best!?!?!?!?!");

_tprintf_s(_T("Before: \"%s\"\n"), (LPCTSTR)str);
_tprintf_s(_T("After : \"%s\"\n"), (LPCTSTR)str.TrimRight(_T("?!")));

// Output:
// --------------------------
// Before: Soccer is best!?!?!?!?!
// After: Soccer is best

See Also

The CStringT& TrimRight(XCHAR chTarget)  version accepts one character
parameter and removes all copies of that character from the end of CStringT

string data. It starts from the end of the string and works toward the front. It
stops when it finds a different character or when CSTringT  runs out of character
data.

The CStringT& TrimRight(PCXSTR pszTargets)  version accepts a null-terminated
string that contains all the different characters to search for. It removes all copies
of those characters in the CStringT  object. It starts at the end of the string and
works toward the front. It stops when it finds a character that is not in the target
string, or when CStringT  runs out of character data. It does not try to match the
whole target string to a substring at the end of CStringT .

The CStringT& TrimRight()  version requires no parameters. It trims any trailing
whitespace characters from the end of the CStringT  string. Whitespace
characters can be line breaks, spaces, or tabs.

-

Hierarchy Chart
ATL/MFC Shared Classes
CSimpleStringT Class



COleDateTimeSpan Class
10/31/2018 • 13 minutes to read • Edit Online

Syntax
class COleDateTimeSpan

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

COleDateTimeSpan::COleDateTimeSpan Constructs a COleDateTimeSpan  object.

Public MethodsPublic Methods

NAME DESCRIPTION

COleDateTimeSpan::Format Generates a formatted string representation of a 
COleDateTimeSpan  object.

COleDateTimeSpan::GetDays Returns the day portion of the span this COleDateTimeSpan

object represents.

COleDateTimeSpan::GetHours Returns the hour portion of the span this 
COleDateTimeSpan  object represents.

COleDateTimeSpan::GetMinutes Returns the minute portion of the span this 
COleDateTimeSpan  object represents.

COleDateTimeSpan::GetSeconds Returns the second portion of the span this 
COleDateTimeSpan  object represents.

COleDateTimeSpan::GetStatus Gets the status (validity) of this COleDateTimeSpan  object.

COleDateTimeSpan::GetTotalDays Returns the number of days this COleDateTimeSpan  object
represents.

COleDateTimeSpan::GetTotalHours Returns the number of hours this COleDateTimeSpan  object
represents.

COleDateTimeSpan::GetTotalMinutes Returns the number of minutes this COleDateTimeSpan

object represents.

COleDateTimeSpan::GetTotalSeconds Returns the number of seconds this COleDateTimeSpan

object represents.

Represents a relative time, a time span.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/coledatetimespan-class.md


 

COleDateTimeSpan::SetDateTimeSpan Sets the value of this COleDateTimeSpan  object.

COleDateTimeSpan::SetStatus Sets the status (validity) of this COleDateTimeSpan  object.

NAME DESCRIPTION

Public OperatorsPublic Operators

operator +, - Add, subtract, and change sign for COleDateTimeSpan

values.

operator +=, -= Add and subtract a COleDateTimeSpan  value from this 
COleDateTimeSpan  value.

operator = Copies a COleDateTimeSpan  value.

operator ==, <, <= Compare two COleDateTimeSpan  values.

operator double Converts this COleDateTimeSpan  value to a double.

Public Data MembersPublic Data Members

NAME DESCRIPTION

COleDateTimeSpan::m_span Contains the underlying double for this COleDateTimeSpan

object.

COleDateTimeSpan::m_status Contains the status of this COleDateTimeSpan  object.

Remarks

Requirements

COleDateTimeSpan Relational Operators

COleDateTimeSpan  does not have a base class.

A COleDateTimeSpan  keeps time in days.

COleDateTimeSpan  is used with its companion class COleDateTime. COleDateTime  encapsulates the DATE  data
type of OLE automation. COleDateTime  represents absolute time values. All COleDateTime  calculations involve 
COleDateTimeSpan  values. The relation between these classes is analogous to the one between CTime and

CTimeSpan.

For more information on the COleDateTime  and COleDateTimeSpan  classes, see the article Date and Time:
Automation Support.

Header: ATLComTime.h

Comparison operators.



 

bool operator==(const COleDateTimeSpan& dateSpan) const throw();
bool operator!=(const COleDateTimeSpan& dateSpan) const throw();
bool operator<(const COleDateTimeSpan& dateSpan) const throw();
bool operator>(const COleDateTimeSpan& dateSpan) const throw();
bool operator<=(const COleDateTimeSpan& dateSpan) const throw();
bool operator>=(const COleDateTimeSpan& dateSpan) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

ExampleExample

COleDateTimeSpan spanOne(3, 12, 0, 0); // 3 days and 12 hours
COleDateTimeSpan spanTwo(spanOne);     // 3 days and 12 hours
BOOL b;
b = spanOne == spanTwo;                // TRUE
b = spanOne < spanTwo;                 // FALSE, same value
b = spanOne > spanTwo;                 // FALSE, same value
b = spanOne <= spanTwo;                // TRUE, same value
b = spanOne >= spanTwo;                // TRUE, same value   

spanTwo.SetStatus(COleDateTimeSpan::invalid);
b = spanOne == spanTwo;                // FALSE, different status
b = spanOne != spanTwo;                // TRUE, different status

COleDateTimeSpan ts1(100.0);   // one hundred days
COleDateTimeSpan ts2(110.0);   // ten more days

ASSERT((ts1 != ts2) && (ts1 < ts2) && (ts1 <= ts2));   

COleDateTimeSpan::COleDateTimeSpan

COleDateTimeSpan() throw();
COleDateTimeSpan(double dblSpanSrc) throw();
COleDateTimeSpan(LONG lDays, int nHours, int nMins, int nSecs) throw();

ParametersParameters

dateSpan
The COleDateTimeSpan  to compare.

These operators compare two date/time-span values and return TRUE if the condition is true; otherwise FALSE.

An ATLASSERT will occur if either operand is invalid.

Constructs a COleDateTimeSpan  object.

dblSpanSrc
The number of days to be copied into the new COleDateTimeSpan  object.

lDays, nHours, nMins, nSecs
Indicate the day and time values to be copied into the new COleDateTimeSpan  object.



 

RemarksRemarks

ExampleExample

COleDateTimeSpan spanOne(2.75);          // 2 days and 18 hours
COleDateTimeSpan spanTwo(2, 18, 0, 0);   // 2 days and 18 hours
COleDateTimeSpan spanThree(3, -6, 0, 0); // 2 days and 18 hours

COleDateTimeSpan ts1;               // Uninitialized time value
COleDateTimeSpan ts2a(ts1);         // Copy constructor
COleDateTimeSpan ts2b = ts1;         // Copy constructor again
COleDateTimeSpan ts3(100.0);          // 100 days
COleDateTimeSpan ts4(0, 1, 5, 12);   // 1 hour, 5 minutes, and 12 seconds

COleDateTimeSpan::Format

CString Format(LPCTSTR pFormat) const;
CString Format(UINT nID) const;

ParametersParameters

Return ValueReturn Value

All of these constructors create new COleDateTimeSpan  objects initialized to the specified value. A brief
description of each of these constructors follows:

COleDateTimeSpan( ) Constructs a COleDateTimeSpan  object initialized to 0.

COleDateTimeSpan( dblSpanSrc  ) Constructs a COleDateTimeSpan  object from a floating-point value.

COleDateTimeSpan( lDays , nHours , nMins , nSecs  ) Constructs a COleDateTimeSpan  object initialized
to the specified numerical values.

The status of the new COleDateTimeSpan  object is set to valid.

For more information about the bounds for COleDateTimeSpan  values, see the article Date and Time: Automation
Support.

Generates a formatted string representation of a COleDateTimeSpan  object.

pFormat
A formatting string similar to the printf  formatting string. Formatting codes, preceded by a percent ( % ) sign,
are replaced by the corresponding COleDateTimeSpan  component. Other characters in the formatting string are
copied unchanged to the returned string. The value and meaning of the formatting codes for Format  are listed
below:

%H Hours in the current day

%M Minutes in the current hour

%S Seconds in the current minute

%% Percent sign

The four format codes listed above are the only codes that Format will accept.

-

nID
The resource ID for the format-control string.



         

RemarksRemarks

ExampleExample

// get the current time
COleDateTime tmStart = COleDateTime::GetCurrentTime();

// waste some time
CString str;
::Sleep(3000);

// get the current time again
COleDateTime tmFinish = COleDateTime::GetCurrentTime();

// find the difference
COleDateTimeSpan tmSpan = tmFinish - tmStart;

// tell the user
str = tmSpan.Format(_T("%S seconds elapsed"));
_tprintf_s(_T("%s\n"), (LPCTSTR) str);

COleDateTimeSpan::GetDays

LONG GetDays() const throw();

Return ValueReturn Value

RemarksRemarks

A CString  that contains the formatted date/time-span value.

Call these functions to create a formatted representation of the time-span value. If the status of this 
COleDateTimeSpan  object is null, the return value is an empty string. If the status is invalid, the return string is

specified by the string resource IDS_INVALID_DATETIMESPAN.

A brief description of the forms for this function follows:

Format( pFormat )
This form formats the value using the format string that contains special formatting codes that are preceded by a
percent sign (%), as in printf . The formatting string is passed as a parameter to the function.

Format( nID )
This form formats the value using the format string that contains special formatting codes that are preceded by a
percent sign (%), as in printf . The formatting string is a resource. The ID of this string resource is passed as the
parameter.

Retrieves the day portion of this date/time-span value.

The day portion of this date/time-span value.

The return values from this function range between approximately - 3,615,000 and 3,615,000.

For other functions that query the value of a COleDateTimeSpan  object, see the following member functions:

GetHours

GetMinutes

GetSeconds

GetTotalDays



         

         

ExampleExample

COleDateTimeSpan ts(3, 1, 5, 12); // 3 days, 1 hour, 5 min, and 12 sec
ASSERT(ts.GetDays() == 3);   

COleDateTimeSpan::GetHours

LONG GetHours() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleDateTimeSpan ts(3, 1, 5, 12); // 3 days, 1 hour, 5 min, and 12 sec
ASSERT(ts.GetHours() == 1);

COleDateTimeSpan::GetMinutes

LONG GetMinutes() const throw();

Return ValueReturn Value

RemarksRemarks

GetTotalHours

GetTotalMinutes

GetTotalSeconds

Retrieves the hour portion of this date/time-span value.

The hours portion of this date/time-span value.

The return values from this function range between - 23 and 23.

For other functions that query the value of a COleDateTimeSpan  object, see the following member functions:

GetDays

GetMinutes

GetSeconds

GetTotalDays

GetTotalHours

GetTotalMinutes

GetTotalSeconds

Retrieves the minute portion of this date/time-span value.

The minutes portion of this date/time-span value.

The return values from this function range between - 59 and 59.



         

  

ExampleExample

COleDateTimeSpan ts(3, 1, 5, 12); // 3 days, 1 hour, 5 min, and 12 sec
ASSERT(ts.GetMinutes() == 5);   

COleDateTimeSpan::GetSeconds

LONG GetSeconds() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleDateTimeSpan ts(3, 1, 5, 12); // 3 days, 1 hour, 5 min, and 12 sec
ASSERT(ts.GetSeconds() == 12);   

COleDateTimeSpan::GetStatus

For other functions that query the value of a COleDateTimeSpan  object, see the following member functions:

GetDays

GetHours

GetSeconds

GetTotalDays

GetTotalHours

GetTotalMinutes

GetTotalSeconds

Retrieves the second portion of this date/time-span value.

The seconds portion of this date/time-span value.

The return values from this function range between - 59 and 59.

For other functions that query the value of a COleDateTimeSpan  object, see the following member functions:

GetDays

GetHours

GetMinutes

GetTotalDays

GetTotalHours

GetTotalMinutes

GetTotalSeconds

Gets the status (validity) of this COleDateTimeSpan  object.



            

DateTimeSpanStatus GetStatus() const throw();

Return ValueReturn Value

RemarksRemarks

enum DateTimeSpanStatus{
   valid = 0,
   invalid = 1,
   null = 2,
};

COleDateTimeSpan::GetTotalDays

double GetTotalDays() const throw();

Return ValueReturn Value

RemarksRemarks

The status of this COleDateTimeSpan  value.

The return value is defined by the DateTimeSpanStatus  enumerated type, which is defined within the 
COleDateTimeSpan  class.

For a brief description of these status values, see the following list:

COleDateTimeSpan::valid  Indicates that this COleDateTimeSpan  object is valid.

COleDateTimeSpan::invalid  Indicates that this COleDateTimeSpan  object is invalid; that is, its value may be
incorrect.

COleDateTimeSpan::null  Indicates that this COleDateTimeSpan  object is null, that is, that no value has been
supplied for this object. (This is "null" in the database sense of "having no value," as opposed to the C++
NULL.)

The status of a COleDateTimeSpan  object is invalid in the following cases:

If this object has experienced an overflow or underflow during an arithmetic assignment operation,
namely, +=  or -= .

If an invalid value was assigned to this object.

If the status of this object was explicitly set to invalid using SetStatus .

For more information about the operations that may set the status to invalid, see COleDateTimeSpan::operator
+, - and COleDateTimeSpan::operator +=, -=.

For more information about the bounds for COleDateTimeSpan  values, see the article Date and Time: Automation
Support.

Retrieves this date/time-span value expressed in days.

This date/time-span value expressed in days. Although this function is prototyped to return a double, it will
always return an integer value.

The return values from this function range between approximately - 3.65e6 and 3.65e6.

For other functions that query the value of a COleDateTimeSpan  object, see the following member functions:



         

         

ExampleExample

COleDateTimeSpan ts(3, 1, 5, 12); // 3 days, 1 hour, 5 min, and 12 sec
ASSERT(ts.GetTotalDays() == 3);
ASSERT(ts.GetTotalHours() == 73);
ASSERT(ts.GetTotalMinutes() == 4385);
ASSERT(ts.GetTotalSeconds() == 263112);   

COleDateTimeSpan::GetTotalHours

double GetTotalHours() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleDateTimeSpan::GetTotalMinutes

GetDays

GetHours

GetMinutes

GetSeconds

GetTotalHours

GetTotalMinutes

GetTotalSeconds

Retrieves this date/time-span value expressed in hours.

This date/time-span value expressed in hours. Although this function is prototyped to return a double, it will
always return an integer value.

The return values from this function range between approximately - 8.77e7 and 8.77e7.

For other functions that query the value of a COleDateTimeSpan  object, see the following member functions:

GetDays

GetHours

GetMinutes

GetSeconds

GetTotalDays

GetTotalMinutes

GetTotalSeconds

See the example for GetTotalDays.

Retrieves this date/time-span value expressed in minutes.



         

double GetTotalMinutes() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

COleDateTimeSpan::GetTotalSeconds

double GetTotalSeconds() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

This date/time-span value expressed in minutes. Although this function is prototyped to return a double, it will
always return an integer value.

The return values from this function range between approximately - 5.26e9 and 5.26e9.

For other functions that query the value of a COleDateTimeSpan  object, see the following member functions:

GetDays

GetHours

GetMinutes

GetSeconds

GetTotalDays

GetTotalHours

GetTotalSeconds

See the example for GetTotalDays.

Retrieves this date/time-span value expressed in seconds.

This date/time-span value expressed in seconds. Although this function is prototyped to return a double, it will
always return an integer value.

The return values from this function range between approximately - 3.16e11 to 3.16e11.

For other functions that query the value of a COleDateTimeSpan  object, see the following member functions:

GetDays

GetHours

GetMinutes

GetSeconds

GetTotalDays

GetTotalHours

GetTotalMinutes



 

   

COleDateTimeSpan::m_span

double m_span;

RemarksRemarks

C a u t i o nC a u t i o n

COleDateTimeSpan::m_status

DateTimeSpanStatus m_status;

RemarksRemarks

enum DateTimeSpanStatus{
   valid = 0,
   invalid = 1,
   null = 2,
   };

C a u t i o nC a u t i o n

See the example for GetTotalDays.

The underlying double value for this COleDateTime  object.

This value expresses the date/time-span in days.

Changing the value in the double data member will change the value of this COleDateTimeSpan  object. It does
not change the status of this COleDateTimeSpan  object.

The type for this data member is the enumerated type DateTimeSpanStatus , which is defined within the 
COleDateTimeSpan  class.

For a brief description of these status values, see the following list:

COleDateTimeSpan::valid  Indicates that this COleDateTimeSpan  object is valid.

COleDateTimeSpan::invalid  Indicates that this COleDateTimeSpan  object is invalid; that is, its value may be
incorrect.

COleDateTimeSpan::null  Indicates that this COleDateTimeSpan  object is null, that is, that no value has been
supplied for this object. (This is "null" in the database sense of "having no value," as opposed to the C++
NULL.)

The status of a COleDateTimeSpan  object is invalid in the following cases:

If this object has experienced an overflow or underflow during an arithmetic assignment operation,
namely, +=  or -= .

If an invalid value was assigned to this object.

If the status of this object was explicitly set to invalid using SetStatus.

For more information about the operations that may set the status to invalid, see COleDateTimeSpan::operator
+, - and COleDateTimeSpan::operator +=, -=.

This data member is for advanced programming situations. You should use the inline member functions
GetStatus and SetStatus. See SetStatus  for further cautions regarding explicitly setting this data member.



 

 

 

COleDateTimeSpan::operator =

COleDateTimeSpan& operator=(double dblSpanSrc) throw();

RemarksRemarks

COleDateTimeSpan::operator +, -

COleDateTimeSpan operator+(const COleDateTimeSpan& dateSpan) const throw();
COleDateTimeSpan operator-(const COleDateTimeSpan& dateSpan) const throw();
COleDateTimeSpan operator-() const throw();

RemarksRemarks

ExampleExample

COleDateTimeSpan ts1(3, 1, 5, 12); // 3 days, 1 hour, 5 min, and 12 sec
COleDateTimeSpan ts2(100.0 / (24 * 3600.0)); // 100 seconds
COleDateTimeSpan ts3 = ts1 + ts2;
ASSERT(ts3.GetSeconds() == 52); // 6 mins, 52 secs   

COleDateTimeSpan::operator +=, -=

COleDateTimeSpan& operator+=(const COleDateTimeSpan dateSpan) throw();
COleDateTimeSpan& operator-=(const COleDateTimeSpan dateSpan) throw();

RemarksRemarks

For more information about the bounds for COleDateTimeSpan  values, see the article Date and Time: Automation
Support.

Copies a COleDateTimeSpan  value.

This overloaded assignment operator copies the source date/time-span value into this COleDateTimeSpan  object.

Add, subtract, and change sign for COleDateTimeSpan  values.

The first two operators let you add and subtract date/time-span values. The third lets you change the sign of a
date/time-span value.

If either of the operands is null, the status of the resulting COleDateTimeSpan  value is null.

If either of the operands is invalid and the other is not null, the status of the resulting COleDateTimeSpan  value is
invalid.

For more information on the valid, invalid, and null status values, see the m_status member variable.

Add and subtract a COleDateTimeSpan  value from this COleDateTimeSpan  value.

These operators let you add and subtract date/time-span values from this COleDateTimeSpan  object. If either of
the operands is null, the status of the resulting COleDateTimeSpan  value is null.

If either of the operands is invalid and the other is not null, the status of the resulting COleDateTimeSpan  value is
invalid.

For more information on the valid, invalid, and null status values, see the m_status member variable.



 

  

   

ExampleExample

COleDateTimeSpan ts1(10.0); // 10 days
COleDateTimeSpan ts2(100.0); // 100 days
ts2 -= ts1;
ASSERT(ts2.GetTotalDays() == 90);   

COleDateTimeSpan::operator double

operator double() const throw();

RemarksRemarks

COleDateTimeSpan::SetDateTimeSpan

void SetDateTimeSpan(LONG lDays, int nHours, int nMins, int nSecs) throw();

ParametersParameters

RemarksRemarks

ExampleExample

COleDateTimeSpan spanOne;
COleDateTimeSpan spanTwo;
spanOne.SetDateTimeSpan(0, 2, 45, 0);  // 2 hours and 45 seconds
spanTwo.SetDateTimeSpan(0, 3, -15, 0); // 2 hours and 45 seconds   

COleDateTimeSpan::SetStatus

Converts this COleDateTimeSpan  value to a double.

This operator returns the value of this COleDateTimeSpan  value as a floating-point number of days.

Sets the value of this date/time-span value.

lDays, nHours, nMins, nSecs
Indicate the date-span and time-span values to be copied into this COleDateTimeSpan  object.

For functions that query the value of a COleDateTimeSpan  object, see the following member functions:

GetDays

GetHours

GetMinutes

GetSeconds

GetTotalDays

GetTotalHours

GetTotalMinutes

GetTotalSeconds

Sets the status (validity) of this COleDateTimeSpan  object.



void SetStatus(DateTimeSpanStatus status) throw();

ParametersParameters

RemarksRemarks

enum DateTimeSpanStatus{
   valid = 0,
   invalid = 1,
   null = 2,
   };

ExampleExample

// if the person is not still in school, set days to graduation to null
if (!m_bStillInSchool || m_dtDateOfGraduation.GetStatus() == COleDateTime::null)
   m_dtsDaysToGraduation.SetStatus(COleDateTimeSpan::null);   

See Also

status
The new status value for this COleDateTimeSpan  object.

The Status parameter value is defined by the DateTimeSpanStatus  enumerated type, which is defined within the 
COleDateTimeSpan  class.

For a brief description of these status values, see the following list:

C a u t i o nC a u t i o n

COleDateTimeSpan::valid  Indicates that this COleDateTimeSpan  object is valid.

COleDateTimeSpan::invalid  Indicates that this COleDateTimeSpan  object is invalid; that is, its value may be
incorrect.

COleDateTimeSpan::null  Indicates that this COleDateTimeSpan  object is null, that is, that no value has been
supplied for this object. (This is "null" in the database sense of "having no value," as opposed to the C++
NULL.)

This function is for advanced programming situations. This function does not alter the data in this object.
It will most often be used to set the status to null or invalid. Note that the assignment operator (
operator =) and SetDateTimeSpan do set the status of the object based on the source value(s).

COleDateTime Class
CTime Class
CTimeSpan Class
Hierarchy Chart
ATL/MFC Shared Classes



    

IAtlStringMgr Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
__interface IAtlStringMgr

Members
MethodsMethods

Allocate Call this method to allocate a new string data structure.

Clone Call this method to return a pointer to a new string manager
for use with another instance of CSimpleStringT .

Free Call this method to free a string data structure.

GetNilString Returns a pointer to the CStringData  object used by empty
string objects.

Reallocate Call this method to reallocate a string data structure.

Remarks

Requirements

IAtlStringMgr::Allocate

CStringData* Allocate(int nAllocLength,int nCharSize) throw();

ParametersParameters

This class represents the interface to a CStringT  memory manager.

This interface manages the memory used by the MFC-independent string classes; such as CSimpleStringT,
CStringT, and CFixedStringT.

You can also use this class to implement a custom memory manager for your custom string class. For more
information, see Memory Management and CStringT.

Header: atlsimpstr.h

Allocates a new string data structure.

nAllocLength
The number of characters in the new memory block.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/iatlstringmgr-class.md


 

   

Return ValueReturn Value

NOTENOTE

RemarksRemarks

NOTENOTE

IAtlStringMgr::Clone

IAtlStringMgr* Clone() throw();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

IAtlStringMgr::Free

void Free(CStringData* pData) throw();

ParametersParameters

RemarksRemarks

nCharSize
The size (in bytes) of the character type used by the string manager.

Returns a pointer to the newly allocated memory block.

Do not signal a failed allocation by throwing an exception. Instead, a failed allocation should be signaled by returning NULL.

Call IAtlStringMgr::Free or IAtlStringMgr::ReAllocate to free the memory allocated by this method.

For usage examples, see Memory Management and CStringT.

Returns a pointer to a new string manager for use with another instance of CSimpleStringT .

Returns a copy of the IAtlStringMgr  object.

Commonly called by the framework when a string manager is needed for a new string. In most cases, the this
pointer is returned.

However, if the memory manager does not support being used by multiple instances of CSimpleStringT , a pointer
to a sharable string manager should be returned.

For usage examples, see Memory Management and CStringT.

Frees a string data structure.

pData
A pointer to the memory block to be freed.

Frees the specified memory block previously allocated by Allocate or Reallocate.



 

      

NOTENOTE

IAtlStringMgr::GetNilString

CStringData* GetNilString() throw();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

NOTENOTE

IAtlStringMgr::Reallocate

CStringData* Reallocate(
    CStringData* pData,
    int nAllocLength,
    int nCharSize) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

For usage examples, see Memory Management and CStringT.

Returns a pointer to a string data structure for an empty string.

A pointer to the CStringData  object used to represent an empty string.

Call this function to return a representation of an empty string.

When implementing a custom string manager, this function must never fail. You can ensure this by embedding an instance
of CNilStringData  in the string manager class, and return a pointer to that instance.

For usage examples, see Memory Management and CStringT.

Reallocates a string data structure.

pData
Pointer to the memory previously allocated by this memory manager.

nAllocLength
The number of characters in the new memory block.

nCharSize
The size (in bytes) of the character type used by the string manager.

Returns a pointer to the start of the newly allocated memory block.

Call this function to resize the existing memory block specified by pData.

Call IAtlStringMgr::Free to free the memory allocated by this method.



NOTENOTE

See Also

For usage examples, see Memory Management and CStringT.

Hierarchy Chart
ATL/MFC Shared Classes



CFixedStringT Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
template<class StringType, int t_nChars>
class CFixedStringT : private CFixedStringMgr, public StringType

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFixedStringT::CFixedStringT The constructor for the string object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CFixedStringT::operator = Assigns a new value to a CFixedStringT  object.

Remarks

This class represents a string object with a fixed character buffer.

StringType
Used as the base class for the fixed string object and can be any CStringT -based type. Some examples include 
CString , CStringA , and CStringW .

t_nChars
The number of characters stored in the buffer.

This class is an example of a custom string class based on CStringT . Although quite similar, the two classes differ
in implementation. The major differences between CFixedStringT  and CStringT  are:

The initial character buffer is allocated as part of the object and has size t_nChars. This allows the 
CFixedString  object to occupy a contiguous memory chunk for performance purposes. However, if the

contents of a CFixedStringT  object grows beyond t_nChars, the buffer is allocated dynamically.

The character buffer for a CFixedStringT  object is always the same length ( t_nChars). There is no limitation
on buffer size for CStringT  objects.

The memory manager for CFixedStringT  is customized such that sharing of a CStringData object between
two or more CFixedStringT  objectsis not allowed. CStringT  objects do not have this limitation.

For more information on the customization of CFixedStringT  and memory management for string objects in
general, see Memory Management and CStringT.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/cfixedstringt-class.md


 

Inheritance Hierarchy

Requirements

CFixedStringT::CFixedStringT

CFixedStringT() throw();
explicit CFixedStringT(IAtlStringMgr* pStringMgr) throw();
CFixedStringT(const CFixedStringT<StringType, t_nChars>& str);
CFixedStringT(const StringType& str);
CFixedStringT(const StringType::XCHAR* psz);
explicit CFixedStringT(const StringType::YCHAR* psz);
explicit CFixedStringT(const unsigned char* psz);

ParametersParameters

RemarksRemarks

CFixedStringT::operator =

CFixedStringT<StringType, t_nChars>& operator=(
    const CFixedStringT<StringType, t_nChars>& str);
CFixedStringT<StringType, t_nChars>& operator=(const char* psz);
CFixedStringT<StringType, t_nChars>& operator=(const wchar_t* psz);
CFixedStringT<StringType, t_nChars>& operator=(const unsigned char* psz);
CFixedStringT<StringType, t_nChars>& operator=(const StringType& str);

ParametersParameters

IAtlStringMgr

StringType

CFixedStringMgr

CFixedStringT

Header: cstringt.h

Constructs a CFixedStringT  object.

psz
A null-terminated string to be copied into this CFixedStringT  object.

str
An existing CFixedStringT  object to be copied into this CFixedStringT  object.

pStringMgr
A pointer to the memory manager of the CFixedStringT  object. For more information on IAtlStringMgr  and
memory management for CFixedStringT , see Memory Management and CStringT.

Because the constructors copy the input data into new allocated storage, you should be aware that memory
exceptions may result. Note that some of these constructors act as conversion functions.

Reinitializes an existing CFixedStringT  object with new data.

str
A null-terminated string to be copied into this CFixedStringT  object.



RemarksRemarks

See Also

psz
An existing CFixedStringT  to be copied into this CFixedStringT  object.

You should be aware that memory exceptions may occur whenever you use the assignment operator because new
storage is often allocated to hold the resulting CFixedStringT  object.

CStringT Class
Hierarchy Chart
ATL/MFC Shared Classes



CStrBufT Class
10/31/2018 • 3 minutes to read • Edit Online

Syntax
template<typename TCharType>
class CStrBufT

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

PCXSTR A pointer to a constant string.

PXSTR A pointer to a string.

StringType The string type whose buffer is to be manipulated by
specializations of this class template.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CStrBufT::CStrBufT The constructor for the string buffer object.

Public MethodsPublic Methods

NAME DESCRIPTION

CStrBufT::SetLength Sets the character buffer length of the associated string object.

Public OperatorsPublic Operators

NAME DESCRIPTION

This class provides automatic resource cleanup for GetBuffer  and ReleaseBuffer  calls on an existing CStringT

object.

TCharType
The character type of the CStrBufT  class. Can be one of the following:

char (for ANSI character strings)

wchar_t (for Unicode character strings)

TCHAR (for both ANSI and Unicode character strings)

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/cstrbuft-class.md


 

 

CStrBufT::operator PCXSTR Retrieves a const pointer to the character buffer of the
associated string object.

CStrBufT::operator PXSTR Retrieves a pointer to the character buffer of the associated
string object.

NAME DESCRIPTION

Public ConstantsPublic Constants

NAME DESCRIPTION

CStrBufT::AUTO_LENGTH Automatically determine the new length of the string at
release.

CStrBufT::SET_LENGTH Set the length of the string object at GetBuffer time

Remarks

Requirements

CStrBufT::AUTO_LENGTH

static const DWORD AUTO_LENGTH = 0x01;

RemarksRemarks

CStrBufT::CStrBufT

CStrBufT(StringType& str, int nMinLength, DWORD dwFlags = AUTO_LENGTH) throw(...);
explicit CStrBufT(StringType& str) throw(...);

ParametersParameters

This class is used as a wrapper class for replacing calls to GetBuffer and ReleaseBuffer, or GetBufferSetLength and 
ReleaseBuffer .

Primarily designed as a helper class, CStrBufT  provides a convenient way for a developer to work with the
character buffer of a string object without worrying about how or when to call ReleaseBuffer . This is possible
because the wrapper object goes out of scope naturally in the case of an exception or multiple exiting code paths;
causing its destructor to free the string resource.

Header: atlsimpstr.h

Automatically determine the new length of the string at release.

Automatically determine the new length of the string at release. The string must be null-terminated.

Constructs a buffer object.

str
The string object associated with the buffer. Typically, the developer will use the predefined typedefs of CStrBuf

(TCHAR variant), CStrBufA  (char variant) and CStrBufW  (wchar_t variant).

nMinLength



 

 

RemarksRemarks

CStrBufT::operator PCXSTR

operator PCXSTR() const throw();

Return ValueReturn Value

RemarksRemarks

CStrBufT::operator PXSTR

operator PXSTR() throw();

Return ValueReturn Value

RemarksRemarks

CStrBufT::PCXSTR

typedef CSimpleStringT<TCharType>::PCXSTR PCXSTR;

CStrBufT::PXSTR

The minimum length of the character buffer.

dwFlags
Determines if the string length is automatically determined. Can be one of the following:

AUTO_LENGTH String length is automatically determined when CSimpleStringT::Release is called. The
string must be null-terminated. Default value.

SET_LENGTH String length is set when CSimpleStringT::GetBuffer is called.

Creates a string buffer for the associated string object. During construction, CSimpleStringT::GetBuffer or
CSimpleStringT::GetBufferSetLength is called.

Note that the copy constructor is private.

Directly accesses characters stored in the associated string object as a C-style string.

A character pointer to the string's data.

Call this function to return a pointer to the character buffer of a string object. The contents of the string object
cannot be changed with this pointer.

Directly accesses characters stored in the associated string object as a C-style string.

A character pointer to the string's data.

Call this function to return a pointer to the character buffer of a string object. The developer may change the
contents of the string object with this pointer.

A pointer to a constant string.

A pointer to a string.



 

 

typedef CSimpleStringT<TCharType>::PXSTR PXSTR;

CStrBufT::SET_LENGTH

static const DWORD SET_LENGTH = 0x02;

RemarksRemarks

CStrBufT::SetLength

void SetLength(int nLength);

ParametersParameters

NOTENOTE

RemarksRemarks

CStrBufT::StringType

typedef CSimpleStringT<TCharType> StringType;

RemarksRemarks

See Also

Set the length of the string object at GetBuffer  time.

Set the length of the string object at GetBuffer time.

Determines if CSimpleStringT::GetBuffer and CSimpleStringT::GetBufferSetLength are called when the string
buffer object is constructed.

Sets the length of the character buffer.

nLength
The new length of the character buffer of the string object.

Must be less than or equal to the minimum buffer length specified in the constructor of CStrBufT .

Call this function to set the length of the string represented by the buffer object.

The string type whose buffer is to be manipulated by specializations of this class template.

TCharType  is the character type used to specialize the class template.

Hierarchy Chart
ATL/MFC Shared Classes



CFileTimeSpan Class
1/24/2019 • 3 minutes to read • Edit Online

Syntax
class CFileTimeSpan

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFileTimeSpan::CFileTimeSpan The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CFileTimeSpan::GetTimeSpan Call this method to retrieve the time span from the 
CFileTimeSpan  object.

CFileTimeSpan::SetTimeSpan Call this method to set the time span of the CFileTimeSpan

object.

Public OperatorsPublic Operators

NAME DESCRIPTION

CFileTimeSpan::operator - Performs subtraction on a CFileTimeSpan  object.

CFileTimeSpan::operator != Compares two CFileTimeSpan  objects for inequality.

CFileTimeSpan::operator + Performs addition on a CFileTimeSpan  object.

CFileTimeSpan::operator += Performs addition on a CFileTimeSpan  object and assign the
result to the current object.

CFileTimeSpan::operator < Compares two CFileTimeSpan  objects to determine the
lesser.

CFileTimeSpan::operator <= Compares two CFileTimeSpan  objects to determine equality
or the lesser.

CFileTimeSpan::operator = The assignment operator.

This class provides methods for managing relative date and time values associated with a file.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/cfiletimespan-class.md


 

 

CFileTimeSpan::operator -= Performs subtraction on a CFileTimeSpan  object and assign
the result to the current object.

CFileTimeSpan::operator == Compares two CFileTimeSpan  objects for equality.

CFileTimeSpan::operator > Compares two CFileTimeSpan  objects to determine the
larger.

CFileTimeSpan::operator >= Compares two CFileTimeSpan  objects to determine equality
or the larger.

NAME DESCRIPTION

Remarks

Example

Requirements

CFileTimeSpan::CFileTimeSpan

CFileTimeSpan() throw();
CFileTimeSpan(const CFileTimeSpan& span) throw();
CFileTimeSpan(LONGLONG nSpan) throw();

ParametersParameters

RemarksRemarks

CFileTimeSpan::GetTimeSpan

LONGLONG GetTimeSpan() const throw();

This class provides methods for managing relative periods of time often encountered when performing operations
concerning when a file was created, last accessed or last modified. The methods of this class are frequently used in
conjunction with CFileTime class objects.

See the example for CFileTime::Millisecond.

Header: atltime.h

The constructor.

span
An existing CFileTimeSpan  object.

nSpan
A period of time in milliseconds.

The CFileTimeSpan  object can be created using an existing CFileTimeSpan  object, or expressed as a 64-bit value.
The default constructor sets the time span to 0.

Call this method to retrieve the time span from the CFileTimeSpan  object.



 

 

 

 

Return ValueReturn Value

CFileTimeSpan::operator -

CFileTimeSpan operator-(CFileTimeSpan span) const throw();

ParametersParameters

Return ValueReturn Value

CFileTimeSpan::operator !=

bool operator!=(CFileTimeSpan span) const throw();

ParametersParameters

Return ValueReturn Value

CFileTimeSpan::operator +

CFileTimeSpan operator+(CFileTimeSpan span) const throw();

ParametersParameters

Return ValueReturn Value

CFileTimeSpan::operator +=

CFileTimeSpan& operator+=(CFileTimeSpan span) throw();

ParametersParameters

Returns the time span in milliseconds.

Performs subtraction on a CFileTimeSpan  object.

span
A CFileTimeSpan  object.

Returns a CFileTimeSpan  object representing the result of the difference between two time spans.

Compares two CFileTimeSpan  objects for inequality.

span
The CFileTimeSpan  object to be compared.

Returns TRUE if the item being compared is not equal to the CFileTimeSpan  object; otherwise FALSE.

Performs addition on a CFileTimeSpan  object.

span
A CFileTimeSpan  object.

Returns a CFileTimeSpan  object containing the sum of the two time spans.

Performs addition on a CFileTimeSpan  object and assigns the result to the current object.

span



 

 

 

 

Return ValueReturn Value

CFileTimeSpan::operator <

bool operator<(CFileTimeSpan span) const throw();

ParametersParameters

Return ValueReturn Value

CFileTimeSpan::operator <=

bool operator<=(CFileTimeSpan span) const throw();

ParametersParameters

Return ValueReturn Value

CFileTimeSpan::operator =

CFileTimeSpan& operator=(const CFileTimeSpan& span) throw();

ParametersParameters

Return ValueReturn Value

CFileTimeSpan::operator -=

CFileTimeSpan& operator-=(CFileTimeSpan span) throw();

A CFileTimeSpan  object.

Returns the updated CFileTimeSpan  object containing the sum of the two time spans.

Compares two CFileTimeSpan  objects to determine the lesser.

span
The CFileTimeSpan  object to be compared.

Returns TRUE if the first object is less (that is, represents a shorter time period) than the second, otherwise FALSE.

Compares two CFileTimeSpan  objects to determine equality or the lesser.

span
The CFileTimeSpan  object to be compared.

Returns TRUE if the first object is less than (that is, represents a shorter time period) or equal to the second,
otherwise FALSE.

The assignment operator.

span
A CFileTimeSpan  object.

Returns the updated CFileTimeSpan  object.

Performs subtraction on a CFileTimeSpan  object and assigns the result to the current object.



 

 

 

 

ParametersParameters

Return ValueReturn Value

CFileTimeSpan::operator ==

bool operator==(CFileTimeSpan span) const throw();

ParametersParameters

Return ValueReturn Value

CFileTimeSpan::operator >

bool operator>(CFileTimeSpan span) const throw();

ParametersParameters

Return ValueReturn Value

CFileTimeSpan::operator >=

bool operator>=(CFileTimeSpan span) const throw();

ParametersParameters

Return ValueReturn Value

CFileTimeSpan::SetTimeSpan

span
A CFileTimeSpan  object.

Returns the updated CFileTimeSpan  object.

Compares two CFileTimeSpan  objects for equality.

span
The CFileTimeSpan  object to be compared.

Returns TRUE if the objects are equal, otherwise FALSE.

Compares two CFileTimeSpan  objects to determine the larger.

span
The CFileTimeSpan  object to be compared.

Returns TRUE if the first object is greater than (that is, represents a longer time period) than the second, otherwise
FALSE.

Compares two CFileTimeSpan  objects to determine equality or the larger.

span
The CFileTimeSpan  object to be compared.

Returns TRUE if the first object is greater than (that is, represents a longer time period) or equal to the second,
otherwise FALSE.

Call this method to set the time span of the CFileTimeSpan  object.



void SetTimeSpan(LONGLONG nSpan) throw();

ParametersParameters

See Also

nSpan
The new value for the time span in milliseconds.

FILETIME
CFileTime Class
Hierarchy Chart
ATL/MFC Shared Classes

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime


CImage Class
3/5/2019 • 33 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
class CImage

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CImage::CImage The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CImage::AlphaBlend Displays bitmaps that have transparent or semitransparent
pixels.

CImage::Attach Attaches an HBITMAP to a CImage  object. Can be used with
either non-DIB section bitmaps or DIB section bitmaps.

CImage::BitBlt Copies a bitmap from the source device context to this
current device context.

CImage::Create Creates a DIB section bitmap and attaches it to the previously
constructed CImage  object.

CImage::CreateEx Creates a DIB section bitmap (with additional parameters) and
attaches it to the previously constructed CImage  object.

CImage::Destroy Detaches the bitmap from the CImage  object and destroys
the bitmap.

CImage::Detach Detaches the bitmap from a CImage  object.

CImage  provides enhanced bitmap support, including the ability to load and save images in JPEG, GIF, BMP, and
Portable Network Graphics (PNG) formats.

This class and its members cannot be used in applications that execute in the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/cimage-class.md


CImage::Draw Copies a bitmap from a source rectangle into a destination
rectangle. Draw  stretches or compresses the bitmap to fit
the dimensions of the destination rectangle, if necessary, and
handles alpha blending and transparent colors.

CImage::GetBits Retrieves a pointer to the actual pixel values of the bitmap.

CImage::GetBPP Retrieves the bits per pixel.

CImage::GetColorTable Retrieves red, green, blue (RGB) color values from a range of
entries in the color table.

CImage::GetDC Retrieves the device context into which the current bitmap is
selected.

CImage::GetExporterFilterString Finds the available image formats and their descriptions.

CImage::GetHeight Retrieves the height of the current image in pixels.

CImage::GetImporterFilterString Finds the available image formats and their descriptions.

CImage::GetMaxColorTableEntries Retrieves the maximum number of entries in the color table.

CImage::GetPitch Retrieves the pitch of the current image, in bytes.

CImage::GetPixel Retrieves the color of the pixel specified by x and y.

CImage::GetPixelAddress Retrieves the address of a given pixel.

CImage::GetTransparentColor Retrieves the position of the transparent color in the color
table.

CImage::GetWidth Retrieves the width of the current image in pixels.

CImage::IsDIBSection Determines if the attached bitmap is a DIB section.

CImage::IsIndexed Indicates that a bitmap's colors are mapped to an indexed
palette.

CImage::IsNull Indicates if a source bitmap is currently loaded.

CImage::IsTransparencySupported Indicates whether the application supports transparent
bitmaps.

CImage::Load Loads an image from the specified file.

CImage::LoadFromResource Loads an image from the specified resource.

CImage::MaskBlt Combines the color data for the source and destination
bitmaps using the specified mask and raster operation.

NAME DESCRIPTION



CImage::PlgBlt Performs a bit-block transfer from a rectangle in a source
device context into a parallelogram in a destination device
context.

CImage::ReleaseDC Releases the device context that was retrieved with
CImage::GetDC.

CImage::ReleaseGDIPlus Releases resources used by GDI+. Must be called to free
resources created by a global CImage  object.

CImage::Save Saves an image as the specified type. Save  cannot specify
image options.

CImage::SetColorTable Sets red, green, blue RGB) color values in a range of entries in
the color table of the DIB section.

CImage::SetPixel Sets the pixel at the specified coordinates to the specified
color.

CImage::SetPixelIndexed Sets the pixel at the specified coordinates to the color at the
specified index of the palette.

CImage::SetPixelRGB Sets the pixel at the specified coordinates to the specified red,
green, blue (RGB) value.

CImage::SetTransparentColor Sets the index of the color to be treated as transparent. Only
one color in a palette can be transparent.

CImage::StretchBlt Copies a bitmap from a source rectangle into a destination
rectangle, stretching or compressing the bitmap to fit the
dimensions of the destination rectangle, if necessary.

CImage::TransparentBlt Copies a bitmap with transparent color from the source
device context to this current device context.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

CImage::operator HBITMAP Returns the Windows handle attached to the CImage  object.

Remarks
CImage  takes bitmaps that are either device-independent bitmap (DIB) sections or not; however, you can use

Create or CImage::Load with only DIB sections. You can attach a non-DIB section bitmap to a CImage  object
using Attach, but then you cannot use the following CImage  methods, which support only DIB section bitmaps:

GetBits

GetColorTable

GetMaxColorTableEntries

GetPitch



NOTENOTE

NOTENOTE

Example
// Get a CDC for the image
CDC* pDC = CDC::FromHandle(m_myImage.GetDC());

// Use pDC here
pDC->Rectangle(0, 40, 100, 50);
m_myImage.ReleaseDC();

Example
void CMyDlg::OnRButtonDown(UINT nFlags, CPoint point)
{
    UNREFERENCED_PARAMETER(nFlags);

    CBitmap* pBitmap = CBitmap::FromHandle(m_myImage);
    m_pmenuPop->AppendMenu(0, ID_BMPCOMMAND, pBitmap);
    ClientToScreen(&point);
    m_pmenuPop->TrackPopupMenu(TPM_RIGHTBUTTON | TPM_LEFTALIGN, point.x,
    point.y, this);
}

GetPixelAddress

IsIndexed

SetColorTable

To determine if an attached bitmap is a DIB section, call IsDibSection.

In Visual Studio .NET 2003, this class keeps a count of the number of CImage  objects created. Whenever the count goes to
0, the function GdiplusShutdown  is automatically called to release resources used by GDI+. This ensures that any CImage

objects created directly or indirectly by DLLs are always destroyed properly and that GdiplusShutdown  is not called from 
DllMain .

Using global CImage  objects in a DLL is not recommended. If you need to use a global CImage  object in a DLL, call
CImage::ReleaseGDIPlus to explicitly release resources used by GDI+.

CImage  cannot be selected into a new CDC. CImage  creates its own HDC for the image. Because an HBITMAP
can only be selected into one HDC at a time, the HBITMAP associated with the CImage  cannot be selected into
another HDC. If you need a CDC, retrieve the HDC from the CImage  and give it to [CDC::FromHandle]
(../../mfc/reference/cdc-class.md#cdc__fromhandle.

When you use CImage  in an MFC project, note which member functions in your project expect a pointer to a
CBitmap object. If you want to use CImage  with such a function, like CMenu::AppendMenu, use
CBitmap::FromHandle, pass it your CImage  HBITMAP, and use the returned CBitmap* .

Through CImage , you have access to the actual bits of a DIB section. You can use a CImage  object anywhere you
previously used a Win32 HBITMAP or DIB section.

You can use CImage  from either MFC or ATL.



      

NOTENOTE

Requirements

CImage::AlphaBlend

BOOL AlphaBlend(
    HDC hDestDC,
    int xDest,
    int yDest,
    BYTE bSrcAlpha = 0xff,
    BYTE bBlendOp = AC_SRC_OVER) const throw();

BOOL AlphaBlend(
    HDC hDestDC,
    const POINT& pointDest,
    BYTE bSrcAlpha = 0xff,
    BYTE bBlendOp = AC_SRC_OVER) const throw();

BOOL AlphaBlend(
    HDC hDestDC,
    int xDest,
    int yDest,
    int nDestWidth,
    int nDestHeight,
    int xSrc,
    int ySrc,
    int nSrcWidth,
    int nSrcHeight,
    BYTE bSrcAlpha = 0xff,
    BYTE bBlendOp = AC_SRC_OVER);

BOOL AlphaBlend(
    HDC hDestDC,
    const RECT& rectDest,
    const RECT& rectSrc,
    BYTE bSrcAlpha = 0xff,
    BYTE bBlendOp = AC_SRC_OVER);

ParametersParameters

When you create a project using CImage , you must define CString  before you include atlimage.h . If your project uses
ATL without MFC, include atlstr.h  before you include atlimage.h . If your project uses MFC (or if it is an ATL project
with MFC support), include afxstr.h  before you include atlimage.h .

Likewise, you must include atlimage.h  before you include atlimpl.cpp . To accomplish this easily, include atlimage.h
in your stdafx.h .

Header: atlimage.h

Displays bitmaps that have transparent or semitransparent pixels.

hDestDC
Handle to the destination device context.

xDest
The x-coordinate, in logical units, of the upper left corner of the destination rectangle.

yDest
The y-coordinate, in logical units, of the upper left corner of the destination rectangle.



   

Return ValueReturn Value

RemarksRemarks

CImage::Attach

void Attach(HBITMAP hBitmap, DIBOrientation eOrientation = DIBOR_DEFAULT) throw();

ParametersParameters

bSrcAlpha
An alpha transparency value to be used on the entire source bitmap. The default 0xff (255) assumes that your
image is opaque, and that you want to use per-pixel alpha values only.

bBlendOp
The alpha-blending function for source and destination bitmaps, a global alpha value to be applied to the entire
source bitmap, and format information for the source bitmap. The source and destination blend functions are
currently limited to AC_SRC_OVER.

pointDest
A reference to a POINT structure that identifies the upper left corner of the destination rectangle, in logical units.

nDestWidth
The width, in logical units, of the destination rectangle.

nDestHeight
The height, in logical units, of the destination rectangle.

xSrc
The logical x-coordinate of the upper left corner of the source rectangle.

ySrc
The logical y-coordinate of the upper left corner of the source rectangle.

nSrcWidth
The width, in logical units, of the source rectangle.

nSrcHeight
The height, in logical units, of the source rectangle.

rectDest
A reference to a RECT structure, identifying the destination.

rectSrc
A reference to a RECT  structure, identifying the source.

Nonzero if successful; otherwise 0.

Alpha-blend bitmaps support color blending on a per-pixel basis.

When bBlendOp is set to the default of AC_SRC_OVER, the source bitmap is placed over the destination bitmap
based on the alpha values of the source pixels.

Attaches hBitmap to a CImage  object.

hBitmap
A handle to an HBITMAP.

eOrientation
Specifies the orientation of the bitmap. Can be one of the following:

https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)


 

RemarksRemarks

CImage::BitBlt

BOOL BitBlt(
    HDC hDestDC,
    int xDest,
    int yDest,
    DWORD dwROP = SRCCOPY) const throw();

BOOL BitBlt(
    HDC hDestDC,
    const POINT& pointDest,
    DWORD dwROP = SRCCOPY) const throw();

BOOL BitBlt(
    HDC hDestDC,
    int xDest,
    int yDest,
    int nDestWidth,
    int nDestHeight,
    int xSrc,
    int ySrc,
    DWORD dwROP = SRCCOPY) const throw();

BOOL BitBlt(
    HDC hDestDC,
    const RECT& rectDest,
    const POINT& pointSrc,
    DWORD dwROP = SRCCOPY) const throw();

ParametersParameters

DIBOR_DEFAULT The orientation of the bitmap is determined by the operating system.

DIBOR_BOTTOMUP The lines of the bitmap are in reverse order. This causes CImage::GetBits to return a
pointer near the end of the bitmap buffer and CImage::GetPitch to return a negative number.

DIBOR_TOPDOWN The lines of the bitmap are in top to bottom order. This causes CImage::GetBits to
return a pointer to the first byte of the bitmap buffer and CImage::GetPitch to return a positive number.

The bitmap can be either a non-DIB section bitmap or a DIB section bitmap. See IsDIBSection for a list of
methods that you can use only with DIB section bitmaps.

Copies a bitmap from the source device context to this current device context.

hDestDC
The destination HDC.

xDest
The logical x-coordinate of the upper left corner of the destination rectangle.

yDest
The logical y-coordinate of the upper left corner of the destination rectangle.

dwROP
The raster operation to be performed. Raster-operation codes define exactly how to combine the bits of the
source, the destination, and the pattern (as defined by the currently selected brush) to form the destination. See
BitBlt in the Windows SDK for a list of other raster-operation codes and their descriptions.

pointDest
A POINT structure indicating the upper left corner of the destination rectangle.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-bitblt
https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)


  

   

Return ValueReturn Value

RemarksRemarks

CImage::CImage

CImage() throw();

RemarksRemarks

CImage::Create

BOOL Create(
    int nWidth,
    int nHeight,
    int nBPP,
    DWORD dwFlags = 0) throw();

ParametersParameters

nDestWidth
The width, in logical units, of the destination rectangle.

nDestHeight
The height, in logical units, of the destination rectangle.

xSrc
The logical x-coordinate of the upper left corner of the source rectangle.

ySrc
The logical y-coordinate of the upper left corner of the source rectangle.

rectDest
A RECT structure indicating the destination rectangle.

pointSrc
A POINT  structure indicating the upper left corner of the source rectangle.

Nonzero if successful; otherwise zero.

For more information, see BitBlt in the Windows SDK.

Constructs a CImage  object.

Once you have constructed the object, call Create, Load, LoadFromResource, or Attach to attach a bitmap to the
object.

Note In Visual Studio, this class keeps a count of the number of CImage  objects created. Whenever the count
goes to 0, the function GdiplusShutdown  is automatically called to release resources used by GDI+. This ensures
that any CImage  objects created directly or indirectly by DLLs are always destroyed properly and that 
GdiplusShutdown  is not called from DllMain.

Using global CImage  objects in a DLL is not recommended. If you need to use a global CImage  object in a DLL,
call CImage::ReleaseGDIPlus to explicitly release resources used by GDI+.

Creates a CImage  bitmap and attach it to the previously constructed CImage  object.

nWidth
The width of the CImage  bitmap, in pixels.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-bitblt


 

NOTENOTE

Return ValueReturn Value

CImage::CreateEx

BOOL CreateEx(
    int nWidth,
    int nHeight,
    int nBPP,
    DWORD eCompression,
    const DWORD* pdwBitmasks = NULL,
    DWORD dwFlags = 0) throw();

ParametersParameters

nHeight
The height of the CImage  bitmap, in pixels. If nHeight is positive, the bitmap is a bottom-up DIB and its origin is
the lower left corner. If nHeight is negative, the bitmap is a top-down DIB and its origin is the upper left corner.

nBPP
The numbers of bits per pixel in the bitmap. Usually 4, 8, 16, 24, or 32. Can be 1 for monochrome bitmaps or
masks.

dwFlags
Specifies if the bitmap object has an alpha channel. Can be a combination of zero or more of the following values:

createAlphaChannel Can only be used if nBPP is 32, and eCompression is BI_RGB. If specified, the created
image has an alpha (transparency) value for each pixel, stored in the 4th byte of each pixel (unused in a non-
alpha 32-bit image). This alpha channel is automatically used when calling CImage::AlphaBlend.

In calls to CImage::Draw, images with an alpha channel are automatically alpha blended to the destination.

Nonzero if successful; otherwise 0.

Creates a CImage  bitmap and attach it to the previously constructed CImage  object.

nWidth
The width of the CImage  bitmap, in pixels.

nHeight
The height of the CImage  bitmap, in pixels. If nHeight is positive, the bitmap is a bottom-up DIB and its origin is
the lower left corner. If nHeight is negative, the bitmap is a top-down DIB and its origin is the upper left corner.

nBPP
The numbers of bits per pixel in the bitmap. Usually 4, 8, 16, 24, or 32. Can be 1 for monochrome bitmaps or
masks.

eCompression
Specifies the type of compression for a compressed bottom-up bitmap (top-down DIBs cannot be compressed).
Can be one of the following values:

BI_RGB The format is uncompressed. Specifying this value when calling CImage::CreateEx  is equivalent to
calling CImage::Create .

BI_BITFIELDS The format is uncompressed and the color table consists of three DWORD color masks that
specify the red, green, and blue components, respectively, of each pixel. This is valid when used with 16-
and 32-bpp bitmaps.



 

 

    

Return ValueReturn Value

ExampleExample

DWORD adwBitmasks[3] = { 0x0000000f, 0x000000f0, 0x00000f00 };
m_myImage.CreateEx(100, 100, 16, BI_BITFIELDS, adwBitmasks, 0);

CImage::Destroy

void Destroy() throw();

CImage::Detach

HBITMAP Detach() throw();

Return ValueReturn Value

CImage::Draw

pdwBitfields
Only used if eCompression is set to BI_BITFIELDS, otherwise it must be NULL. A pointer to an array of three
DWORD bitmasks, specifying which bits of each pixel are used for the red, green, and blue components of the
color, respectively. For information on restrictions for the bitfields, see BITMAPINFOHEADER in the Windows
SDK.

dwFlags
Specifies if the bitmap object has an alpha channel. Can be a combination of zero or more of the following values:

NOTENOTE

createAlphaChannel Can only be used if nBPP is 32, and eCompression is BI_RGB. If specified, the created
image has an alpha (transparency) value for each pixel, stored in the 4th byte of each pixel (unused in a
non-alpha 32-bit image). This alpha channel is automatically used when calling CImage::AlphaBlend.

In calls to CImage::Draw, images with an alpha channel are automatically alpha blended to the destination.

TRUE if successful. Otherwise FALSE.

The following example creates a 100x100 pixel bitmap, using 16 bits to encode each pixel. In a given 16-bit pixel,
bits 0-3 encode the red component, bits 4-7 encode green, and bits 8-11 encode blue. The remaining 4 bits are
unused.

Detaches the bitmap from the CImage  object and destroys the bitmap.

Detaches a bitmap from a CImage  object.

A handle to the bitmap detached, or NULL if no bitmap is attached.

Copies a bitmap from the source device context to the current device context.

https://msdn.microsoft.com/library/windows/desktop/dd183376


BOOL Draw(
    HDC hDestDC,
    int xDest,
    int yDest,
    int nDestWidth,
    int nDestHeight,
    int xSrc,
    int ySrc,
    int nSrcWidth,
    int nSrcHeight) const throw();

BOOL Draw(
    HDC hDestDC,
    const RECT& rectDest,
    const RECT& rectSrc) const throw();

BOOL Draw(
    HDC hDestDC,
    int xDest,
    int yDest) const throw();

BOOL Draw(
    HDC hDestDC,
    const POINT& pointDest) const throw();

BOOL Draw(
    HDC hDestDC,
    int xDest,
    int yDest,
    int nDestWidth,
    int nDestHeight) const throw();

BOOL Draw(
    HDC hDestDC,
    const RECT& rectDest) const throw();

ParametersParameters
hDestDC
A handle to the destination device context.

xDest
The x-coordinate, in logical units, of the upper left corner of the destination rectangle.

yDest
The y-coordinate, in logical units, of the upper left corner of the destination rectangle.

nDestWidth
The width, in logical units, of the destination rectangle.

nDestHeight
The height, in logical units, of the destination rectangle.

xSrc
The x-coordinate, in logical units, of the upper left corner of the source rectangle.

ySrc
The y-coordinate, in logical units, of the upper left corner of the source rectangle.

nSrcWidth
The width, in logical units, of the source rectangle.

nSrcHeight



      

 

Return ValueReturn Value

RemarksRemarks

CImage::GetBits

void* GetBits() throw();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CImage::GetBPP

int GetBPP() const throw();

Return ValueReturn Value

RemarksRemarks

The height, in logical units, of the source rectangle.

rectDest
A reference to a RECT structure, identifying the destination.

rectSrc
A reference to a RECT  structure, identifying the source.

pointDest
A reference to a POINT structure that identifies the upper left corner of the destination rectangle, in logical units.

Nonzero if successful; otherwise 0.

Draw  performs the same operation as StretchBlt, unless the image contains a transparent color or alpha channel.
In that case, Draw  performs the same operation as either TransparentBlt or AlphaBlend as required.

For versions of Draw  that do not specify a source rectangle, the entire source image is the default. For the version
of Draw  that does not specify a size for the destination rectangle, the size of the source image is the default and
no stretching or shrinking occurs.

Retrieves a pointer to the actual bit values of a given pixel in a bitmap.

A pointer to the bitmap buffer. If the bitmap is a bottom-up DIB, the pointer points near the end of the buffer. If
the bitmap is a top-down DIB, the pointer points to the first byte of the buffer.

Using this pointer, along with the value returned by GetPitch, you can locate and change individual pixels in an
image.

This method supports only DIB section bitmaps; consequently, you access the pixels of a CImage  object the same way you
would the pixels of a DIB section. The returned pointer points to the pixel at the location (0, 0).

Retrieves the bits-per-pixel value.

The number of bits per pixel.

This value determines the number of bits that define each pixel and the maximum number of colors in the bitmap.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)


   

   

 

CImage::GetColorTable

void GetColorTable(
    UINT iFirstColor,
    UINT nColors,
    RGBQUAD* prgbColors) const throw();

ParametersParameters

CImage::GetDC

HDC GetDC() const throw();

Return ValueReturn Value

RemarksRemarks

CImage::GetExporterFilterString

static HRESULT GetExporterFilterString(
    CSimpleString& strExporters,
    CSimpleArray<GUID>& aguidFileTypes,
    LPCTSTR pszAllFilesDescription = NULL,
    DWORD dwExclude = excludeDefaultSave,
    TCHAR chSeparator = _T('|'));

ParametersParameters

The bits per pixel is usually 1, 4, 8, 16, 24, or 32. See the biBitCount  member of BITMAPINFOHEADER in the
Windows SDK for more information about this value.

Retrieves red, green, blue (RGB) color values from a range of entries in the palette of the DIB section.

iFirstColor
The color table index of the first entry to retrieve.

nColors
The number of color table entries to retrieve.

prgbColors
A pointer to the array of RGBQUAD structures to retrieve the color table entries.

Retrieves the device context that currently has the image selected into it.

A handle to a device context.

For each call to GetDC , you must have a subsequent call to ReleaseDC.

Finds image formats available for saving images.

strExporters
A reference to a CSimpleString  object. See Remarks for more information.

aguidFileTypes
An array of GUIDs, with each element corresponding to one of the file types in the string. In the example in
pszAllFilesDescription below, aguidFileTypes[0] is GUID_NULL and the remaining array values are the image file
formats supported by the current operating system.

https://msdn.microsoft.com/library/windows/desktop/dd183376
https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagrgbquad


NOTENOTE

//First filter in the list will be titled "All Image Files", and
//will accept files with any extension supported by any exporter.
CImage::GetExporterFilterString(
    strExporters, aguidFileTypes,
_T("All Image Files"));

Return ValueReturn Value

RemarksRemarks

For a complete list of constants, see Image File Format Constants in the Windows SDK.

pszAllFilesDescription
If this parameter is not NULL, the filter string will have one additional filter at the beginning of the list. This filter
will have the current value of pszAllFilesDescription for its description, and accepts files of any extension
supported by any other exporter in the list.

For example:

dwExclude
Set of bit flags specifying which file types to exclude from the list. Allowable flags are:

excludeGIF  = 0x01 Excludes GIF files.

excludeBMP  = 0x02 Excludes BMP (Windows Bitmap) files.

excludeEMF  = 0x04 Excludes EMF (Enhanced Metafile) files.

excludeWMF  = 0x08 Excludes WMF (Windows Metafile) files.

excludeJPEG  = 0x10 Excludes JPEG files.

excludePNG  = 0x20 Excludes PNG files.

excludeTIFF  = 0x40 Excludes TIFF files.

excludeIcon  = 0x80 Excludes ICO (Windows Icon) files.

excludeOther  = 0x80000000 Excludes any other file type not listed above.

excludeDefaultLoad  = 0 For load, all file types are included by default

excludeDefaultSave  = excludeIcon &#124; excludeEMF &#124; excludeWMF  For saving, these files are
excluded by default because they usually have special requirements.

chSeparator
The separator used between the image formats. See Remarks for more information.

A standard HRESULT.

You can pass the resulting format string to your MFC CFileDialog object to expose the file extensions of the
available image formats in the File Save As dialog box.

The parameter strExporter has the format:

file description0|*.ext0|filedescription1|*.ext1|...file description n|*.ext n||

where '|' is the separator character specified by chSeparator . For example:



 

 

CImage::GetHeight

int GetHeight() const throw();

Return ValueReturn Value

CImage::GetImporterFilterString

static HRESULT GetImporterFilterString(
    CSimpleString& strImporters,
    CSimpleArray<GUID>& aguidFileTypes,
    LPCTSTR pszAllFilesDescription = NULL,
    DWORD dwExclude = excludeDefaultLoad,
    TCHAR chSeparator = _T('|'));

ParametersParameters

NOTENOTE

//First filter in the list will be titled "All Image Files", and
//will accept files with any extension supported by any importer.
CImage::GetImporterFilterString(
    strImporters, aguidFileTypes,
_T("All Image Files"));

"Bitmap format|*.bmp|JPEG format|*.jpg|GIF format|*.gif|PNG format|*.png||"

Use the default separator '|' if you pass this string to an MFC CFileDialog  object. Use the null separator '\0' if
you pass this string to a common File Save dialog box.

Retrieves the height, in pixels, of an image.

The height, in pixels, of an image.

Finds image formats available for loading images.

strImporters
A reference to a CSimpleString  object. See Remarks for more information.

aguidFileTypes
An array of GUIDs, with each element corresponding to one of the file types in the string. In the example in
pszAllFilesDescription below, aguidFileTypes[0] is GUID_NULL with the remaining array values are the image file
formats supported by the current operating system.

For a complete list of constants, see Image File Format Constants in the Windows SDK.

pszAllFilesDescription
If this parameter is not NULL, the filter string will have one additional filter at the beginning of the list. This filter
will have the current value of pszAllFilesDescription for its description, and accepts files of any extension
supported by any other exporter in the list.

For example:

dwExclude
Set of bit flags specifying which file types to exclude from the list. Allowable flags are:



   

      

RemarksRemarks

CImage::GetMaxColorTableEntries

int GetMaxColorTableEntries() const throw();

Return ValueReturn Value

RemarksRemarks

CImage::GetPitch

int GetPitch() const throw();

excludeGIF  = 0x01 Excludes GIF files.

excludeBMP  = 0x02 Excludes BMP (Windows Bitmap) files.

excludeEMF  = 0x04 Excludes EMF (Enhanced Metafile) files.

excludeWMF  = 0x08 Excludes WMF (Windows Metafile) files.

excludeJPEG  = 0x10 Excludes JPEG files.

excludePNG  = 0x20 Excludes PNG files.

excludeTIFF  = 0x40 Excludes TIFF files.

excludeIcon  = 0x80 Excludes ICO (Windows Icon) files.

excludeOther  = 0x80000000 Excludes any other file type not listed above.

excludeDefaultLoad  = 0 For load, all file types are included by default

excludeDefaultSave  = excludeIcon &#124; excludeEMF &#124; excludeWMF  For saving, these files are
excluded by default because they usually have special requirements.

chSeparator
The separator used between the image formats. See Remarks for more information.

You can pass the resulting format string to your MFC CFileDialog object to expose the file extensions of the
available image formats in the File Open dialog box.

The parameter strImporter has the format:

file description0|*.ext0|filedescription1|*.ext1|...file description n|*.ext n||

where '|' is the separator character specified by chSeparator. For example:

"Bitmap format|*.bmp|JPEG format|*.jpg|GIF format|*.gif|PNG format|*.png||"

Use the default separator '|' if you pass this string to an MFC CFileDialog  object. Use the null separator '\0' if
you pass this string to a common File Open dialog box.

Retrieves the maximum number of entries in the color table.

The number of entries in the color table.

This method supports only DIB section bitmaps.

Retrieves the pitch of an image.



 

   

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CImage::GetPixel

COLORREF GetPixel(int x, int y) const throw();

ParametersParameters

Return ValueReturn Value

CImage::GetPixelAddress

void* GetPixelAddress(int x, int y) throw();

ParametersParameters

RemarksRemarks

The pitch of the image. If the return value is negative, the bitmap is a bottom-up DIB and its origin is the lower left
corner. If the return value is positive, the bitmap is a top-down DIB and its origin is the upper left corner.

The pitch is the distance, in bytes, between two memory addresses that represent the beginning of one bitmap
line and the beginning of the next bitmap line. Because pitch is measured in bytes, the pitch of an image helps you
to determine the pixel format. The pitch can also include additional memory, reserved for the bitmap.

Use GetPitch  with GetBits to find individual pixels of an image.

This method supports only DIB section bitmaps.

Retrieves the color of the pixel at the location specified by x and y.

x
The x-coordinate of the pixel.

y
The y-coordinate of the pixel.

The red, green, blue (RGB) value of the pixel. If the pixel is outside of the current clipping region, the return value
is CLR_INVALID.

Retrieves the exact address of a pixel.

x
The x-coordinate of the pixel.

y
The y-coordinate of the pixel.

The address is determined according to the coordinates of a pixel, the pitch of the bitmap, and the bits per pixel.

For formats that have less than 8 bits per pixel, this method returns the address of the byte containing the pixel.
For example, if your image format has 4 bits per pixel, GetPixelAddress  returns the address of the first pixel in the
byte, and you must calculate for 2 pixels per byte.



 

 

   

   

NOTENOTE

CImage::GetTransparentColor

LONG GetTransparentColor() const throw();

Return ValueReturn Value

CImage::GetWidth

int GetWidth() const throw();

Return ValueReturn Value

CImage::IsDIBSection

bool IsDIBSection() const throw();

Return ValueReturn Value

RemarksRemarks

CImage::IsIndexed

This method supports only DIB section bitmaps.

Retrieves the indexed location of the transparent color in the color palette.

The index of the transparent color.

Retrieves the width, in pixels, of an image.

The width of the bitmap, in pixels.

Determines if the attached bitmap is a DIB section.

TRUE if the attached bitmap is a DIB section. Otherwise FALSE.

If the bitmap is not a DIB section, you cannot use the following CImage  methods, which support only DIB section
bitmaps:

GetBits

GetColorTable

GetMaxColorTableEntries

GetPitch

GetPixelAddress

IsIndexed

SetColorTable

Determines whether a bitmap's pixels are mapped to a color palette.



 

 

   

bool IsIndexed() const throw();

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CImage::IsNull

bool IsNull() const throw();

RemarksRemarks

CImage::IsTransparencySupported

static BOOL IsTransparencySupported() throw();

Return ValueReturn Value

RemarksRemarks

CImage::Load

HRESULT Load(LPCTSTR pszFileName) throw();
HRESULT Load(IStream* pStream) throw();

ParametersParameters

Return ValueReturn Value

TRUE if indexed; otherwise FALSE.

This method returns TRUE only if the bitmap is 8-bit (256 colors) or less.

This method supports only DIB section bitmaps.

Determines if a bitmap is currently loaded.

This method returns TRUE if a bitmap is not currently loaded; otherwise FALSE.

Indicates whether the application supports transparent bitmaps.

Nonzero if the current platform supports transparency. Otherwise 0.

If the return value is nonzero, and transparency is supported, a call to AlphaBlend, TransparentBlt, or Draw will
handle transparent colors.

Loads an image.

pszFileName
A pointer to a string containing the name of the image file to load.

pStream
A pointer to a stream containing the name of the image file to load.

A standard HRESULT.



  

 

RemarksRemarks

CImage::LoadFromResource

void LoadFromResource(
    HINSTANCE hInstance,
    LPCTSTR pszResourceName) throw();

void LoadFromResource(
    HINSTANCE hInstance,
    UINT nIDResource) throw();

ParametersParameters

RemarksRemarks

CImage::MaskBlt

Loads the image specified by pszFileName or pStream.

Valid image types are BMP, GIF, JPEG, PNG, and TIFF.

Loads an image from a BITMAP resource.

hInstance
Handle to an instance of the module that contains the image to be loaded.

pszResourceName
A pointer to the string containing the name of the resource containing the image to load.

nIDResource
The ID of the resource to load.

The resource must be of type BITMAP.

Combines the color data for the source and destination bitmaps using the specified mask and raster operation.



BOOL MaskBlt(
    HDC hDestDC,
    int xDest,
    int yDest,
    int nDestWidth,
    int nDestHeight,
    int xSrc,
    int ySrc,
    HBITMAP hbmMask,
    int xMask,
    int yMask,
    DWORD dwROP = SRCCOPY) const throw();

BOOL MaskBlt(
    HDC hDestDC,
    const RECT& rectDest,
    const POINT& pointSrc,
    HBITMAP hbmMask,
    const POINT& pointMask,
    DWORD dwROP = SRCCOPY) const throw();

BOOL MaskBlt(
    HDC hDestDC,
    int xDest,
    int yDest,
    HBITMAP hbmMask,
    DWORD dwROP = SRCCOPY) const throw();

BOOL MaskBlt(
    HDC hDestDC,
    const POINT& pointDest,
    HBITMAP hbmMask,
    DWORD dwROP = SRCCOPY) const throw();

ParametersParameters
hDestDC
The handle to the module whose executable contains the resource.

xDest
The x-coordinate, in logical units, of the upper left corner of the destination rectangle.

yDest
The y-coordinate, in logical units, of the upper left corner of the destination rectangle.

nDestWidth
The width, in logical units, of the destination rectangle and source bitmap.

nDestHeight
The height, in logical units, of the destination rectangle and source bitmap.

xSrc
The logical x-coordinate of the upper left corner of the source bitmap.

ySrc
The logical y-coordinate of the upper left corner of the source bitmap.

hbmMask
Handle to the monochrome mask bitmap combined with the color bitmap in the source device context.

xMask
The horizontal pixel offset for the mask bitmap specified by the hbmMask parameter.



 

 

Return ValueReturn Value

RemarksRemarks

CImage::operator HBITMAP

CImage::PlgBlt

yMask
The vertical pixel offset for the mask bitmap specified by the hbmMask parameter.

dwROP
Specifies both foreground and background ternary raster operation codes that the method uses to control the
combination of source and destination data. The background raster operation code is stored in the high-order
byte of the high-order word of this value; the foreground raster operation code is stored in the low-order byte of
the high-order word of this value; the low-order word of this value is ignored, and should be zero. For a
discussion of foreground and background in the context of this method, see MaskBlt  in the Windows SDK. For a
list of common raster operation codes, see BitBlt  in the Windows SDK.

rectDest
A reference to a RECT  structure, identifying the destination.

pointSrc
A POINT  structure indicating the upper left corner of the source rectangle.

pointMask
A POINT  structure indicating the upper left corner of the mask bitmap.

pointDest
A reference to a POINT  structure that identifies the upper left corner of the destination rectangle, in logical units.

Nonzero if successful, otherwise 0.

This method applies to Windows NT, versions 4.0 and later only.

Use this operator to get the attached Windows GDI handle of the CImage  object. This operator is a casting
operator, which supports direct use of an HBITMAP object.

Performs a bit-block transfer from a rectangle in a source device context into a parallelogram in a destination
device context.



BOOL PlgBlt(
    HDC hDestDC,
    const POINT* pPoints,
    HBITMAP hbmMask = NULL) const throw();

BOOL PlgBlt(
    HDC hDestDC,
    const POINT* pPoints,
    int xSrc,
    int ySrc,
    int nSrcWidth,
    int nSrcHeight,
    HBITMAP hbmMask = NULL,
    int xMask = 0,
    int yMask = 0) const throw();

BOOL PlgBlt(
    HDC hDestDC,
    const POINT* pPoints,
    const RECT& rectSrc,
    HBITMAP hbmMask = NULL,
    const POINT& pointMask = CPoint(0, 0)) const throw();

ParametersParameters

Return ValueReturn Value

hDestDC
A handle to the destination device context.

pPoints
A pointer to an array of three points in logical space that identify three corners of the destination parallelogram.
The upper left corner of the source rectangle is mapped to the first point in this array, the upper-right corner to
the second point in this array, and the lower left corner to the third point. The lower-right corner of the source
rectangle is mapped to the implicit fourth point in the parallelogram.

hbmMask
A handle to an optional monochrome bitmap that is used to mask the colors of the source rectangle.

xSrc
The x-coordinate, in logical units, of the upper left corner of the source rectangle.

ySrc
The y-coordinate, in logical units, of the upper left corner of the source rectangle.

nSrcWidth
The width, in logical units, of the source rectangle.

nSrcHeight
The height, in logical units, of the source rectangle.

xMask
The x-coordinate of the upper left corner of the monochrome bitmap.

yMask
The y-coordinate of the upper left corner of the monochrome bitmap.

rectSrc
A reference to a RECT structure specifying the coordinates of the source rectangle.

pointMask
A POINT structure indicating the upper left corner of the mask bitmap.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/previous-versions/dd162805(v=vs.85)


  

   

 

RemarksRemarks

CImage::ReleaseDC

void ReleaseDC() const throw();

RemarksRemarks

CImage::ReleaseGDIPlus

void ReleaseGDIPlus() throw();

RemarksRemarks

CImage::Save

HRESULT Save(
    IStream* pStream,
    REFGUID guidFileType) const throw();

HRESULT Save(
    LPCTSTR pszFileName,
    REFGUID guidFileType = GUID_NULL) const throw();

ParametersParameters

Nonzero if successful, otherwise 0.

If hbmMask identifies a valid monochrome bitmap, PlgBit  uses this bitmap to mask the bits of color data from
the source rectangle.

This method applies to Windows NT, versions 4.0 and later only. See PlgBlt in the Windows SDK for more
detailed information.

Releases the device context.

Because only one bitmap can be selected into a device context at a time, you must call ReleaseDC  for each call to
GetDC.

Releases resources used by GDI+.

This method must be called to free resources allocated by a global CImage  object. See CImage::CImage.

Saves an image to the specified stream or file on disk.

pStream
A pointer to a COM IStream object containing the file image data.

pszFileName
A pointer to the file name for the image.

guidFileType
The file type to save the image as. Can be one of the following:

ImageFormatBMP  An uncompressed bitmap image.

ImageFormatPNG  A Portable Network Graphic (PNG) compressed image.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-plgblt


   

 

NOTENOTE

Return ValueReturn Value

RemarksRemarks

CImage::SetColorTable

void SetColorTable(
    UINT iFirstColor,
    UINT nColors,
    const RGBQUAD* prgbColors) throw();

ParametersParameters

RemarksRemarks

CImage::SetPixel

void SetPixel(int x, int y, COLORREF color) throw();

ParametersParameters

ImageFormatJPEG  A JPEG compressed image.

ImageFormatGIF  A GIF compressed image.

For a complete list of constants, see Image File Format Constants in the Windows SDK.

A standard HRESULT.

Call this function to save the image using a specified name and type. If the guidFileType parameter is not
included, the file name's file extension will be used to determine the image format. If no extension is provided, the
image will be saved in BMP format.

Sets the red, green, blue (RGB) color values for a range of entries in the palette of the DIB section.

iFirstColor
The color table index of the first entry to set.

nColors
The number of color table entries to set.

prgbColors
A pointer to the array of RGBQUAD structures to set the color table entries.

This method supports only DIB section bitmaps.

Sets the color of a pixel at a given location in the bitmap.

x
The horizontal location of the pixel to set.

y
The vertical location of the pixel to set.

color
The color to which you set the pixel.

https://docs.microsoft.com/windows/desktop/api/wingdi/ns-wingdi-tagrgbquad


 

 

 

RemarksRemarks

CImage::SetPixelIndexed

void SetPixelIndexed(int x, int y, int iIndex) throw();

ParametersParameters

CImage::SetPixelRGB

void SetPixelRGB(
    int x,
    int y,
    BYTE r,
    BYTE g,
    BYTE b) throw();

ParametersParameters

RemarksRemarks

CImage::SetTransparentColor

This method fails if the pixel coordinates lie outside of the selected clipping region.

Sets the pixel color to the color located at iIndex in the color palette.

x
The horizontal location of the pixel to set.

y
The vertical location of the pixel to set.

iIndex
The index of a color in the color palette.

Sets the pixel at the locations specified by x and y to the colors indicated by r, g, and b, in a red, green, blue (RGB)
image.

x
The horizontal location of the pixel to set.

y
The vertical location of the pixel to set.

r
The intensity of the red color.

g
The intensity of the green color.

b
The intensity of the blue color.

The red, green, and blue parameters are each represented by a number between 0 and 255. If you set all three
parameters to zero, the combined resulting color is black. If you set all three parameters to 255, the combined
resulting color is white.

Sets a color at a given indexed location as transparent.



  

LONG SetTransparentColor(LONG iTransparentColor) throw();

ParametersParameters

Return ValueReturn Value

CImage::StretchBlt

BOOL StretchBlt(
    HDC hDestDC,
    int xDest,
    int yDest,
    int nDestWidth,
    int nDestHeight,
    DWORD dwROP = SRCCOPY) const throw();

BOOL StretchBlt(
    HDC hDestDC,
    const RECT& rectDest,
    DWORD dwROP = SRCCOPY) const throw();

BOOL StretchBlt(
    HDC hDestDC,
    int xDest,
    int yDest,
    int nDestWidth,
    int nDestHeight,
    int xSrc,
    int ySrc,
    int nSrcWidth,
    int nSrcHeight,
    DWORD dwROP = SRCCOPY) const throw();

BOOL StretchBlt(
    HDC hDestDC,
    const RECT& rectDest,
    const RECT& rectSrc,
    DWORD dwROP = SRCCOPY) const throw();

ParametersParameters

iTransparentColor
The index, in a color palette, of the color to set to transparent. If -1, no color is set to transparent.

The index of the color previously set as transparent.

Copies a bitmap from the source device context to this current device context.

hDestDC
A handle to the destination device context.

xDest
The x-coordinate, in logical units, of the upper left corner of the destination rectangle.

yDest
The y-coordinate, in logical units, of the upper left corner of the destination rectangle.

nDestWidth
The width, in logical units, of the destination rectangle.

nDestHeight
The height, in logical units, of the destination rectangle.



   

Return ValueReturn Value

RemarksRemarks

CImage::TransparentBlt

dwROP
The raster operation to be performed. Raster-operation codes define exactly how to combine the bits of the
source, the destination, and the pattern (as defined by the currently selected brush) to form the destination. See
BitBlt in the Windows SDK for a list of other raster-operation codes and their descriptions.

rectDest
A reference to a RECT structure, identifying the destination.

xSrc
The x-coordinate, in logical units, of the upper left corner of the source rectangle.

ySrc
The y-coordinate, in logical units, of the upper left corner of the source rectangle.

nSrcWidth
The width, in logical units, of the source rectangle.

nSrcHeight
The height, in logical units, of the source rectangle.

rectSrc
A reference to a RECT  structure, identifying the source.

Nonzero if successful, otherwise 0.

For more information, see StretchBlt in the Windows SDK.

Copies a bitmap from the source device context to this current device context.

https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-bitblt
https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-stretchblt


BOOL TransparentBlt(
    HDC hDestDC,
    int xDest,
    int yDest,
    int nDestWidth,
    int nDestHeight,
    UINT crTransparent = CLR_INVALID) const throw();

BOOL TransparentBlt(
    HDC hDestDC,
    const RECT& rectDest,
    UINT crTransparent = CLR_INVALID) const throw();

BOOL TransparentBlt(
    HDC hDestDC,
    int xDest,
    int yDest,
    int nDestWidth,
    int nDestHeight,
    int xSrc,
    int ySrc,
    int nSrcWidth,
    int nSrcHeight,
    UINT crTransparent = CLR_INVALID) const throw();

BOOL TransparentBlt(
    HDC hDestDC,
    const RECT& rectDest,
    const RECT& rectSrc,
    UINT crTransparent = CLR_INVALID) const throw();

ParametersParameters
hDestDC
A handle to the destination device context.

xDest
The x-coordinate, in logical units, of the upper left corner of the destination rectangle.

yDest
The y-coordinate, in logical units, of the upper left corner of the destination rectangle.

nDestWidth
The width, in logical units, of the destination rectangle.

nDestHeight
The height, in logical units, of the destination rectangle.

crTransparent
The color in the source bitmap to treat as transparent. By default, CLR_INVALID, indicating that the color
currently set as the transparent color of the image should be used.

rectDest
A reference to a RECT structure, identifying the destination.

xSrc
The x-coordinate, in logical units, of the upper left corner of the source rectangle.

ySrc
The y-coordinate, in logical units, of the upper left corner of the source rectangle.

nSrcWidth
The width, in logical units, of the source rectangle.

https://docs.microsoft.com/previous-versions/dd162897(v=vs.85)


Return ValueReturn Value

RemarksRemarks

ExampleExample

// Performs a transparent blit from the source image to the destination
// image using the images' current transparency settings
BOOL TransparentBlt(CImage* pSrcImage, CImage* pDstImage,
       int xDest, int yDest, int nDestWidth, int nDestHeight)
{
    HDC hDstDC = NULL;
    BOOL bResult;

    if(pSrcImage == NULL || pDstImage == NULL)
    {
        // Invalid parameter
        return FALSE;
    }

    // Obtain a DC to the destination image
    hDstDC = pDstImage->GetDC();
    // Perform the blit
    bResult = pSrcImage->TransparentBlt(hDstDC, xDest, yDest, nDestWidth, nDestHeight);

    // Release the destination DC
    pDstImage->ReleaseDC();

    return bResult;
}

See Also

nSrcHeight
The height, in logical units, of the source rectangle.

rectSrc
A reference to a RECT  structure, identifying the source.

TRUE if successful, otherwise FALSE.

TransparentBlt  is supported for source bitmaps of 4 bits per pixel and 8 bits per pixel. Use CImage::AlphaBlend
to specify 32 bits-per-pixel bitmaps with transparency.

MMXSwarm Sample
SimpleImage Sample
Device-Independent Bitmaps
CreateDIBSection
ATL COM Desktop Components
Device-Independent Bitmaps
CreateDIBSection

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-samples
https://docs.microsoft.com/windows/desktop/gdi/device-independent-bitmaps
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-createdibsection
https://docs.microsoft.com/windows/desktop/gdi/device-independent-bitmaps
https://docs.microsoft.com/windows/desktop/api/wingdi/nf-wingdi-createdibsection


CStringData Class
10/31/2018 • 4 minutes to read • Edit Online

Syntax
struct CStringData

Members
MethodsMethods

AddRef Increments the reference count of the string data object.

data Retrieves the character data of a string object.

IsLocked Determines if the buffer of the associated string object is
locked.

IsShared Determines if the buffer of the associated string object is
currently shared.

Lock Locks the buffer of the associated string object.

Release Releases the specified string object.

Unlock Unlocks the buffer of the associated string object.

Data MembersData Members

nAllocLength Length of allocated data in XCHAR s (not including
terminating null)

nDataLength Length of currently used data in XCHAR s (not including
terminating null)

nRefs The current reference count of the object.

pStringMgr A pointer to the string manager of this string object.

Remarks

This class represents the data of a string object.

This class should only be used by developers implementing custom string managers. For more information on
custom string managers, see Memory Management and CStringT

This class encapsulates various types of information and data associated with a higher string object, such as

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/cstringdata-class.md


 

  

NOTENOTE

Requirements

CStringData::AddRef

void AddRef() throw();

RemarksRemarks

NOTENOTE

CStringData::data

void* data() throw();

CStringT, CSimpleStringT, or CFixedStringT objects. Every higher string object contains a pointer to its associated 
CStringData  object, allowing multiple string objects to point to the same string data object. This relationship is

represented by the reference count ( nRefs ) of the CStringData  object.

In certain cases, a string type (such as CFixedString ) will not share a string data object with more than one higher string
object. For more information on this, see Memory Management and CStringT.

This data is composed of:

NOTENOTE

The memory manager (of type IAtlStringMgr) of the string.

The current length ( nDataLength) of the string.

The allocated length ( nAllocLength) of the string. For performance reasons, this can differ from the current
string length

The current reference count ( nRefs) of the CStringData  object. This value is used in determining how many
string objects are sharing the same CStringData  object.

The actual character buffer ( data) of the string.

The actual character buffer of the string object is allocated by the string manager and is appended to the 
CStringData  object.

Header: atlsimpstr.h

Increments the reference count of the string object.

Increments the reference count of the string object.

Do not call this method on a string with a negative reference count, since a negative count indicates that the string buffer is
locked.

Returns a pointer to the character buffer of a string object.



 

 

 

Return ValueReturn Value

RemarksRemarks

NOTENOTE

CStringData::IsLocked

bool IsLocked() const throw();

Return ValueReturn Value

RemarksRemarks

CStringData::IsShared

bool IsShared() const throw();

Return ValueReturn Value

RemarksRemarks

CStringData::Lock

void Lock() throw();

RemarksRemarks

NOTENOTE

A pointer to the character buffer of the string object.

Call this function to return the current character buffer of the associated string object.

This buffer is not allocated by the CStringData  object but by the string manager when needed. When allocated, the buffer
is appended to the string data object.

Determines if the character buffer is locked.

Returns TRUE if the buffer is locked; otherwise FALSE.

Call this function to determine if the character buffer of a string object is currently locked.

Determines if the character buffer is shared.

Returns TRUE if the buffer is shared; otherwise FALSE.

Call this function to determine if the character buffer of a string data object is currently shared among multiple
string objects.

Locks the character buffer of the associated string object.

Call this function to lock the character buffer of the string data object. Locking and unlocking is used when direct
access to the character buffer is required by the developer. A good example of locking is demonstrated by the
LockBuffer and UnlockBuffer methods of CSimpleStringT .

A character buffer can only be locked if the buffer is not shared among higher string objects.



    

    

    

   

 

CStringData::nAllocLength

int nAllocLength;

RemarksRemarks

CStringData::nDataLength

int nDataLength;

RemarksRemarks

CStringData::nRefs

long nRefs;

RemarksRemarks

CStringData::pStringMgr

IAtlStringMgr* pStringMgr;

RemarksRemarks

CStringData::Release

void Release() throw();

RemarksRemarks

Length of the allocated character buffer.

Stores the length of the allocated data buffer in XCHAR s (not including terminating null).

Current length of the string object.

Stores the length of currently used data in XCHAR s (not including terminating null).

Reference count of the string data object.

Stores the reference count of the string data object. This count indicates the number of higher string objects that
are associated with the string data object. A negative value indicates that the string data object is currently locked.

The memory manager of the associated string object.

Stores the memory manager for the associated string object. For more information on memory managers and
strings, see Memory Management and CStringT.

Decrements the reference count of the string data object.

Call this function to decrement the reference count, freeing the CStringData  structure if the reference count hits
zero. This is commonly done when a string object is deleted, and therefore no longer needs to reference the string
data object.

For example, the following code would call CStringData::Release  for the string data object associated with str1 :



 

{
   CString str1 = _T("Hello world");  // Allocates new CStringData
}
// str1 is deleted when it goes out of scope, so it releases its string data   

CStringData::Unlock

void Unlock() throw();

RemarksRemarks

NOTENOTE

See Also

Unlocks the character buffer of the associated string object.

Call this function to unlock the character buffer of the string data object. Once a buffer is unlocked, it is shareable
and can be reference counted.

Each call to Lock  must be matched by a corresponding call to Unlock .

Locking and unlocking is used when the developer must ensure that the string data not be shared. A good
example of locking is demonstrated by the LockBuffer and UnlockBuffer methods of CSimpleStringT .

Hierarchy Chart
ATL/MFC Shared Classes



CFileTime Class
1/24/2019 • 8 minutes to read • Edit Online

Syntax
class CFileTime :  public FILETIME

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CFileTime::CFileTime The constructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CFileTime::GetCurrentTime Call this static function to retrieve a CFileTime  object that
represents the current system date and time.

CFileTime::GetTime Call this method to retrieve the time from the CFileTime

object.

CFileTime::LocalToUTC Call this method to convert a local file time to a file time
based on the Coordinated Universal Time (UTC).

CFileTime::SetTime Call this method to set the date and time stored by the 
CFileTime  object.

CFileTime::UTCToLocal Call this method to convert time based on the Coordinated
Universal Time (UTC) to local file time.

Public OperatorsPublic Operators

NAME DESCRIPTION

CFileTime::operator - This operator is used to perform subtraction on a CFileTime

or CFileTimeSpan  object.

CFileTime::operator != This operator compares two CFileTime  objects for
inequality.

CFileTime::operator + This operator is used to perform addition on a 
CFileTimeSpan  object.

This class provides methods for managing the date and time values associated with a file.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/cfiletime-class.md


CFileTime::operator += This operator is used to perform addition on a 
CFileTimeSpan  object and assign the result to the current

object.

CFileTime::operator < This operator compares two CFileTime  objects to determine
the lesser.

CFileTime::operator <= This operator compares two CFileTime  objects to determine
equality or the lesser.

CFileTime::operator = The assignment operator.

CFileTime::operator -= This operator is used to perform subtraction on a 
CFileTimeSpan  object and assign the result to the current

object.

CFileTime::operator == This operator compares two CFileTime  objects for equality.

CFileTime::operator > This operator compares two CFileTime  objects to determine
the larger.

CFileTime::operator >= This operator compares two CFileTime  objects to determine
equality or the larger.

NAME DESCRIPTION

Public ConstantsPublic Constants

NAME DESCRIPTION

CFileTime::Day A static data member storing the number of 100-nanosecond
intervals that make up one day.

CFileTime::Hour A static data member storing the number of 100-nanosecond
intervals that make up one hour.

CFileTime::Millisecond A static data member storing the number of 100-nanosecond
intervals that make up one millisecond.

CFileTime::Minute A static data member storing the number of 100-nanosecond
intervals that make up one minute.

CFileTime::Second A static data member storing the number of 100-nanosecond
intervals that make up one second.

CFileTime::Week A static data member storing the number of 100-nanosecond
intervals that make up one week.

Remarks
This class provides methods for managing the date and time values associated with the creation, access and
modification of files. The methods and data of this class are frequently used in conjunction with CFileTimeSpan

objects, which deal with relative time values.

The date and time value is stored as a 64-bit value representing the number of 100-nanosecond intervals since



 

MEMBER VARIABLE NUMBER OF 100-NANOSECOND INTERVALS

Millisecond 10,000

Second Millisecond * 1,000

Minute Second * 60

Hour Minute * 60

Day Hour * 24

Week Day * 7

Inheritance Hierarchy

Requirements

CFileTime::CFileTime

CFileTime() throw();
CFileTime(const FILETIME& ft) throw();
CFileTime(ULONGLONG nTime) throw();

ParametersParameters

RemarksRemarks

CFileTime::Day

January 1, 1601. This is the Coordinated Universal Time (UTC) format.

The following static const member variables are provided to simplify calculations:

Note Not all file systems can record creation and last access time and not all file systems record them in the same
manner. For example, on the Windows NT FAT file system, create time has a resolution of 10 milliseconds, write
time has a resolution of 2 seconds, and access time has a resolution of 1 day (the access date). On NTFS, access
time has a resolution of 1 hour. Furthermore, FAT records times on disk in local time, but NTFS records times on
disk in UTC. For more information, see File Times.

FILETIME

CFileTime

Header: atltime.h

The constructor.

ft
A FILETIME structure.

nTime
The date and time expressed as a 64-bit value.

The CFileTime  object can be created using an existing date and time from a FILETIME  structure, or expressed as a
64-bit value (in local or Coordinated Universal Time (UTC) time formats). The default constructor sets the time to
0.

https://docs.microsoft.com/windows/desktop/SysInfo/file-times
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime


 

 

 

 

 

CFileTime::Day

static const ULONGLONG Day = Hour* 24;

ExampleExample

CFileTime::GetCurrentTime

static CFileTime GetCurrentTime() throw();

Return ValueReturn Value

ExampleExample

// Retrieve the current time
CFileTime myFT;
myFT = CFileTime::GetCurrentTime();

CFileTime::GetTime

ULONGLONG GetTime() const throw();

Return ValueReturn Value

CFileTime::Hour

static const ULONGLONG Hour = Minute* 60;

ExampleExample

CFileTime::LocalToUTC

CFileTime LocalToUTC() const throw();

Return ValueReturn Value

A static data member storing the number of 100-nanosecond intervals that make up one day.

See the example for CFileTime::Millisecond.

Call this static function to retrieve a CFileTime  object that represents the current system date and time.

Returns the current system date and time in Coordinated Universal Time (UTC) format.

Call this method to retrieve the time from the CFileTime  object.

Returns the date and time as a 64-bit number, which may be in either local or Coordinated Universal Time (UTC)
format.

A static data member storing the number of 100-nanosecond intervals that make up one hour.

See the example for CFileTime::Millisecond.

Call this method to convert a local file time to a file time based on the Coordinated Universal Time (UTC).



        

 

 

ExampleExample

CFileTime::Millisecond

static const ULONGLONG Millisecond = 10000;

ExampleExample

// Calculate the difference between two times
CFileTime myFT1, myFT2;
CFileTimeSpan myFTS;

// Get the first time
myFT1 = CFileTime::GetCurrentTime();

// Pause for a moment
UINT randVal;
rand_s(&randVal);
Sleep(randVal % 10000);

// Get the second time
myFT2 = CFileTime::GetCurrentTime();

// Calculate the time difference
myFTS = myFT2 - myFT1;

// Measure the difference
if (myFTS.GetTimeSpan() < CFileTime::Minute)
   printf_s("Less than a minute passed\n");
else
   printf_s("A minute or more passed\n");

if (myFTS.GetTimeSpan() < CFileTime::Second)
   printf_s("Less than a second passed\n");
else
   printf_s("A second or more passed\n");

if (myFTS.GetTimeSpan() < CFileTime::Millisecond)
   printf_s("Less than a millisecond passed\n");
else
   printf_s("A millisecond or more passed\n");

CFileTime::Minute

static const ULONGLONG Minute = Second* 60;

ExampleExample

CFileTime::operator -

Returns a CFileTime  object containing the time in UTC format.

See the example for CFileTime::UTCToLocal.

A static data member storing the number of 100-nanosecond intervals that make up one millisecond.

A static data member storing the number of 100-nanosecond intervals that make up one minute.

See the example for CFileTime::Millisecond.



 

 

 

CFileTime operator-(CFileTimeSpan span) const throw();
CFileTimeSpan operator-(CFileTime ft) const throw();

ParametersParameters

Return ValueReturn Value

CFileTime::operator !=

bool operator!=(CFileTime ft) const throw();

ParametersParameters

Return ValueReturn Value

CFileTime::operator +

CFileTime operator+(CFileTimeSpan span) const throw();

ParametersParameters

Return ValueReturn Value

CFileTime::operator +=

CFileTime& operator+=(CFileTimeSpan span) throw();

ParametersParameters

This operator is used to perform subtraction on a CFileTime  or CFileTimeSpan  object.

span
A CFileTimeSpan  object.

ft
A CFileTime  object.

Returns a CFileTime  object or a CFileTimeSpan  object representing the result of the time difference between the
two objects.

This operator compares two CFileTime  objects for inequality.

ft
The CFileTime  object to be compared.

Returns TRUE if the item being compared is not equal to the CFileTime  object, otherwise FALSE.

This operator is used to perform addition on a CFileTimeSpan  object.

span
A CFileTimeSpan  object.

Returns a CFileTime  object representing the result of the original time plus a relative time.

This operator is used to perform addition on a CFileTimeSpan  object and assign the result to the current object.

span
A CFileTimeSpan  object.



 

 

 

Return ValueReturn Value

CFileTime::operator <

bool operator<(CFileTime ft) const throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

// Test for one time less than another
// Declare the CFileType objects
CFileTime myFT1, myFT2;

// Obtain the first time value
myFT1 = CFileTime::GetCurrentTime();

// Pause for a moment...
Sleep(1000);

// Obtain the second time value
myFT2 = CFileTime::GetCurrentTime();

// Perform the comparison
if (myFT1 < myFT2)
   _tprintf_s(_T("Time is going in the correct direction.\n"));
else
   _tprintf_s(_T("Oh dear. Time is going backwards.\n"));

CFileTime::operator <=

bool operator<=(CFileTime ft) const throw();

ParametersParameters

Return ValueReturn Value

CFileTime::operator =

Returns the updated CFileTime  object, representing the result of the original time plus a relative time.

This operator compares two CFileTime  objects to determine the lesser.

ft
The CFileTime  object to be compared.

Returns TRUE if the first object is less (earlier in time) than the second, FALSE otherwise.

This operator compares two CFileTime  objects to determine equality or the lesser.

ft
The CFileTime  object to be compared.

Returns TRUE if the first object is less than (earlier in time) or equal to the second, otherwise FALSE.

The assignment operator.



 

 

 

 

CFileTime& operator=(const FILETIME& ft) throw();

ParametersParameters

Return ValueReturn Value

CFileTime::operator -=

CFileTime& operator-=(CFileTimeSpan span) throw();

ParametersParameters

Return ValueReturn Value

CFileTime::operator ==

bool operator==(CFileTime ft) const throw();

ParametersParameters

Return ValueReturn Value

CFileTime::operator >

bool operator>(CFileTime ft) const throw();

ParametersParameters

Return ValueReturn Value

CFileTime::operator >=

ft
A CFileTime  object containing the new time and date.

Returns the updated CFileTime  object.

This operator is used to perform subtraction on a CFileTimeSpan  object and assign the result to the current object.

span
A CFileTimeSpan  object containing the relative time to subtract.

Returns the updated CFileTime  object.

This operator compares two CFileTime  objects for equality.

ft
The CFileTime  object to compare.

Returns TRUE if the objects are equal, otherwise FALSE.

This operator compares two CFileTime  objects to determine the larger.

ft
The CFileTime  object to be compared.

Returns TRUE if the first object is greater than (later in time) than the second, otherwise FALSE.



 

 

  

 

bool operator>=(CFileTime ft) const throw();

ParametersParameters

Return ValueReturn Value

CFileTime::Second

static const ULONGLONG Second = Millisecond* 1000;

ExampleExample

CFileTime::SetTime

void SetTime(ULONGLONG nTime) throw();

ParametersParameters

CFileTime::UTCToLocal

CFileTime UTCToLocal() const throw();

Return ValueReturn Value

ExampleExample

// Convert a UTC time to local file time format
CFileTime myUTC_FT, myL_FT;
// Get system time (in UTC format)
myUTC_FT = CFileTime::GetCurrentTime();
// Convert to local file time
myL_FT = myUTC_FT.UTCToLocal();         

CFileTime::Week

This operator compares two CFileTime  objects to determine equality or the larger.

ft
The CFileTime  object to be compared.

Returns TRUE if the first object is greater than (later in time) or equal to the second, otherwise FALSE.

A static data member storing the number of 100-nanosecond intervals that make up one day.

See the example for CFileTime::Millisecond.

Call this method to set the date and time stored by the CFileTime  object.

nTime
The 64-bit value representing the date and time, in either local or Coordinated Universal Time (UTC) format.

Call this method to convert time based on the Coordinated Universal Time (UTC) to local file time.

Returns a CFileTime  object containing the time in local file time format.

A static data member storing the number of 100-nanosecond intervals that make up one week.



static const ULONGLONG Week = Day* 7;

ExampleExample

See Also

See the example for CFileTime::Millisecond.

FILETIME
CFileTimeSpan Class
Hierarchy Chart
ATL/MFC Shared Classes

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime


CSimpleStringT Class
10/31/2018 • 20 minutes to read • Edit Online

Syntax
template <typename BaseType>
class CSimpleStringT

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

CSimpleStringT::PCXSTR A pointer to a constant string.

CSimpleStringT::PXSTR A pointer to a string.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

CSimpleStringT::CSimpleStringT Constructs CSimpleStringT  objects in various ways.

CSimpleStringT::~CSimpleStringT Destructor.

Public MethodsPublic Methods

NAME DESCRIPTION

CSimpleStringT::Append Appends a CSimpleStringT  object to an existing 
CSimpleStringT  object.

CSimpleStringT::AppendChar Appends a character to an existing CSimpleStringT  object.

CSimpleStringT::CopyChars Copies a character or characters to another string.

This class represents a CSimpleStringT  object.

BaseType
The character type of the string class. Can be one of the following:

char (for ANSI character strings).

wchar_t (for Unicode character strings).

TCHAR (for both ANSI and Unicode character strings).

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/csimplestringt-class.md


CSimpleStringT::CopyCharsOverlapped Copies a character or characters to another string in which
the buffers overlap.

CSimpleStringT::Empty Forces a string to have a length of zero.

CSimpleStringT::FreeExtra Frees any extra memory previously allocated by the string
object.

CSimpleStringT::GetAllocLength Retrieves the allocated length of a CSimpleStringT  object.

CSimpleStringT::GetAt Returns the character at a given position.

CSimpleStringT::GetBuffer Returns a pointer to the characters in a CSimpleStringT .

CSimpleStringT::GetBufferSetLength Returns a pointer to the characters in a CSimpleStringT ,
truncating to the specified length.

CSimpleStringT::GetLength Returns the number of characters in a CSimpleStringT

object.

CSimpleStringT::GetManager Retrieves the memory manager of the CSimpleStringT

object.

CSimpleStringT::GetString Retrieves the character string

CSimpleStringT::IsEmpty Tests whether a CSimpleStringT  object contains no
characters.

CSimpleStringT::LockBuffer Disables reference counting and protects the string in the
buffer.

CSimpleStringT::Preallocate Allocates a specific amount of memory for the character
buffer.

CSimpleStringT::ReleaseBuffer Releases control of the buffer returned by GetBuffer .

CSimpleStringT::ReleaseBufferSetLength Releases control of the buffer returned by GetBuffer .

CSimpleStringT::SetAt Sets a character at a given position.

CSimpleStringT::SetManager Sets the memory manager of a CSimpleStringT  object.

CSimpleStringT::SetString Sets the string of a CSimpleStringT  object.

CSimpleStringT::StringLength Returns the number of characters in the specified string.

CSimpleStringT::Truncate Truncates the string to a specified length.

CSimpleStringT::UnlockBuffer Enables reference counting and releases the string in the
buffer.

NAME DESCRIPTION



 

Public OperatorsPublic Operators

NAME DESCRIPTION

CSimpleStringT::operator PCXSTR Directly accesses characters stored in a CSimpleStringT

object as a C-style string.

CSimpleStringT::operator[] Returns the character at a given position — operator
substitution for GetAt .

CSimpleStringT::operator += Concatenates a new string to the end of an existing string.

CSimpleStringT::operator = Assigns a new value to a CSimpleStringT  object.

RemarksRemarks

RequirementsRequirements

CSimpleStringT::Append

SyntaxSyntax

void Append(const CSimpleStringT& strSrc);
void Append(PCXSTR pszSrc, int nLength);
void Append(PCXSTR pszSrc);

ParametersParameters

RemarksRemarks

ExampleExample

CSimpleString str1(pMgr), str2(pMgr);
str1.SetString(_T("Soccer is"));
str2.SetString(_T(" an elegant game"));
str1.Append(str2);
ASSERT(_tcscmp(str1, _T("Soccer is an elegant game")) == 0);

CSimpleStringT  is the base class for the various string classes supported by Visual C++. It provides minimal
support for memory management of the string object and basic buffer manipulation. For more advanced string
objects, see CStringT Class.

Header: atlsimpstr.h

Appends a CSimpleStringT  object to an existing CSimpleStringT  object.

strSrc
The CSimpleStringT  object to be appended.

pszSrc
A pointer to a string containing the characters to be appended.

nLength
The number of characters to append.

Call this method to append an existing CSimpleStringT  object to another CSimpleStringT  object.

The following example demonstrates the use of CSimpleStringT::Append .



 

  

 

CSimpleStringT::AppendChar

SyntaxSyntax

void AppendChar(XCHAR ch);

ParametersParameters

RemarksRemarks

CSimpleStringT::CopyChars

SyntaxSyntax

static void CopyChars(
    XCHAR* pchDest,
    const XCHAR* pchSrc,
    int nChars) throw();

ParametersParameters

RemarksRemarks

ExampleExample

CSimpleString str(_T("xxxxxxxxxxxxxxxxxxx"), 20, pMgr);
TCHAR* pszSrc = _T("Hello world!");
_tprintf_s(_T("%s\n"), str);
str.CopyChars(str.GetBuffer(), pszSrc, 12);
_tprintf_s(_T("%s\n"), str);

CSimpleStringT::CopyCharsOverlapped

SyntaxSyntax

Appends a character to an existing CSimpleStringT  object.

ch
The character to be appended

Call this function to append the specified character to the end of an existing CSimpleStringT  object.

Copies a character or characters to a CSimpleStringT  object.

pchDest
A pointer to a character string.

pchSrc
A pointer to a string containing the characters to be copied.

nChars
The number of pchSrc characters to be copied.

Call this method to copy characters from pchSrc to the pchDest string.

The following example demonstrates the use of CSimpleStringT::CopyChars .

Copies a character or characters to a CSimpleStringT  object.



 

static void CopyCharsOverlapped(
    XCHAR* pchDest,
    const XCHAR* pchSrc,
    int nChars) throw();

ParametersParameters

RemarksRemarks

ExampleExample

CSimpleStringT::CSimpleStringT

SyntaxSyntax

CSimpleStringT(const XCHAR* pchSrc, int nLength, IAtlStringMgr* pStringMgr);
CSimpleStringT(PCXSTR pszSrc, IAtlStringMgr* pStringMgr);
CSimpleStringT(const CSimpleStringT& strSrc);
explicit CSimpleStringT(IAtlStringMgr* pStringMgr) throw();

ParametersParameters

RemarksRemarks

ExampleExample

pchDest
A pointer to a character string.

pchSrc
A pointer to a string containing the characters to be copied.

nChars
The number of pchSrc characters to be copied.

Call this method to copy characters from pchSrc to the pchDest string. Unlike CopyChars , CopyCharsOverlapped

provides a safe method for copying from character buffers that might be overlapped.

See the example for CSimpleStringT::CopyChars, or the source code for CSimpleStringT::SetString  (located in
atlsimpstr.h).

Constructs a CSimpleStringT  object.

strSrc
An existing CSimpleStringT  object to be copied into this CSimpleStringT  object.

pchSrc
A pointer to an array of characters of length nLength, not null terminated.

pszSrc
A null-terminated string to be copied into this CSimpleStringT  object.

nLength
A count of the number of characters in pch .

pStringMgr
A pointer to the memory manager of the CSimpleStringT  object. For more information about IAtlStringMgr  and
memory management for CSimpleStringT , see Memory Management and CStringT.

Construct a new CSimpleStringT  object. Because the constructors copy the input data into new allocated storage,
memory exceptions may result.



 

    

CSimpleString s1(pMgr);
// Empty string
CSimpleString s2(_T("cat"), pMgr);
// From a C string literal

CSimpleString s3(s2);
// Copy constructor
CSimpleString s4(s2 + _T(" ") + s3);

// From a string expression
CSimpleString s5(_T("xxxxxx"), 6, pMgr);
// s5 = "xxxxxx"

CSimpleStringT::Empty

SyntaxSyntax

void Empty() throw();

RemarksRemarks

ExampleExample

CSimpleString s(pMgr);
ASSERT(s.IsEmpty());

CSimpleStringT::FreeExtra

SyntaxSyntax

void FreeExtra();

RemarksRemarks

ExampleExample

The following example demonstrates the use of CSimpleStringT::CSimpleStringT  by using the ATL typedef 
CSimpleString . CSimpleString  is a commonly used specialization of the class template CSimpleStringT .

Makes this CSimpleStringT  object an empty string and frees memory as appropriate.

For more information, see Strings: CString Exception Cleanup.

The following example demonstrates the use of CSimpleStringT::Empty .

Frees any extra memory previously allocated by the string but no longer needed.

This should reduce the memory overhead consumed by the string object. The method reallocates the buffer to
the exact length returned by GetLength.



 

   

CAtlString basestr;
IAtlStringMgr* pMgr;

pMgr= basestr.GetManager();
ASSERT(pMgr != NULL);

// Create a CSimpleString with 28 characters
CSimpleString str(_T("Many sports are fun to play."), 28, pMgr);
_tprintf_s(_T("Alloc length is %d, String length is %d\n"),
   str.GetAllocLength(), str.GetLength());

// Assigning a smaller string won't cause CSimpleString to free its
// memory, because it assumes the string will grow again anyway.
str = _T("Soccer is best!");
_tprintf_s(_T("Alloc length is %d, String length is %d\n"),
   str.GetAllocLength(), str.GetLength());

// This call forces CSimpleString to release the extra
// memory it doesn't need.
str.FreeExtra();
_tprintf_s(_T("Alloc length is %d, String length is %d\n"),
   str.GetAllocLength(), str.GetLength());

RemarksRemarks

Alloc length is 1031, String length is 1024
Alloc length is 1031, String length is 15
Alloc length is 15, String length is 15

CSimpleStringT::GetAllocLength

SyntaxSyntax

int GetAllocLength() const throw();

Return ValueReturn Value

RemarksRemarks

CSimpleStringT::GetAt

SyntaxSyntax

XCHAR GetAt(int iChar) const;

ParametersParameters

The output from this example is as follows:

Retrieves the allocated length of a CSimpleStringT  object.

The number of characters allocated for this object.

Call this method to determine the number of characters allocated for this CSimpleStringT  object. See FreeExtra
for an example of calling this function.

Returns one character from a CSimpleStringT  object.

iChar
Zero-based index of the character in the CSimpleStringT  object. The iChar parameter must be greater than or



               

Return ValueReturn Value

RemarksRemarks

ExampleExample

CSimpleString s(_T("abcdef"), pMgr);
ASSERT(s.GetAt(2) == _T('c'));

CSimpleStringT::GetBuffer

SyntaxSyntax

PXSTR GetBuffer(int nMinBufferLength);
PXSTR GetBuffer();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

equal to 0 and less than the value returned by GetLength. Otherwise, GetAt  will generate an exception.

An XCHAR  that contains the character at the specified position in the string.

Call this method to return the one character specified by iChar. The overloaded subscript ([]) operator is a
convenient alias for GetAt . The null terminator is addressable without generating an exception by using GetAt .
However, it is not counted by GetLength , and the value returned is 0.

The following example demonstrates how to use CSimpleStringT::GetAt .

Returns a pointer to the internal character buffer for the CSimpleStringT  object.

nMinBufferLength
The minimum number of characters that the character buffer can hold. This value does not include space for a
null terminator.

If nMinBufferLength is larger than the length of the current buffer, GetBuffer  destroys the current buffer,
replaces it with a buffer of the requested size, and resets the object reference count to zero. If you have
previously called LockBuffer on this buffer, you lose the buffer lock.

An PXSTR  pointer to the object's (null-terminated) character buffer.

Call this method to return the buffer contents of the CSimpleStringT  object. The returned PXSTR  is not a
constant and therefore allows direct modification of CSimpleStringT  contents.

If you use the pointer returned by GetBuffer  to change the string contents, you must call ReleaseBuffer before
you use any other CSimpleStringT  member methods.

The address returned by GetBuffer  may not be valid after the call to ReleaseBuffer  because additional 
CSimpleStringT  operations can cause the CSimpleStringT  buffer to be reallocated. The buffer is not reallocated if

you do not change the length of the CSimpleStringT .

The buffer memory is automatically freed when the CSimpleStringT  object is destroyed.

If you keep track of the string length yourself, you should not append the terminating null character. However,
you must specify the final string length when you release the buffer with ReleaseBuffer . If you do append a
terminating null character, you should pass -1 (the default) for the length. ReleaseBuffer  then determines the
buffer length.



        

ExampleExample

CSimpleString s(_T("abcd"), pMgr);
LPTSTR pBuffer = s.GetBuffer(10);
int sizeOfBuffer = s.GetAllocLength();

// Directly access CSimpleString buffer
_tcscpy_s(pBuffer, sizeOfBuffer, _T("Hello"));
ASSERT(_tcscmp(s, _T("Hello")) == 0);
s.ReleaseBuffer();

CSimpleStringT::GetBufferSetLength

SyntaxSyntax

PXSTR GetBufferSetLength(int nLength);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

If there is insufficient memory to satisfy the GetBuffer  request, this method throws a CMemoryException*.

Returns a pointer to the internal character buffer for the CSimpleStringT  object, truncating or growing its length
if necessary to exactly match the length specified in nLength.

nLength
The exact size of the CSimpleStringT  character buffer in characters.

A PXSTR  pointer to the object's (null-terminated) character buffer.

Call this method to retrieve a specified length of the internal buffer of the CSimpleStringT  object. The returned 
PXSTR  pointer is not const and thus allows direct modification of CSimpleStringT  contents.

If you use the pointer returned by GetBufferSetLength to change the string contents, call ReleaseBuffer  to
update the internal state of CsimpleStringT  before you use any other CSimpleStringT  methods.

The address returned by GetBufferSetLength  may not be valid after the call to ReleaseBuffer  because additional 
CSimpleStringT  operations can cause the CSimpleStringT  buffer to be reallocated. The buffer is not reassigned if

you do not change the length of the CSimpleStringT .

The buffer memory is automatically freed when the CSimpleStringT  object is destroyed.

If you keep track of the string length yourself, do not append the terminating null character. You must specify the
final string length when you release the buffer by using ReleaseBuffer . If you do append a terminating null
character when you call ReleaseBuffer , pass -1 (the default) for the length to ReleaseBuffer , and ReleaseBuffer

will perform a strlen  on the buffer to determine its length.

For more information about reference counting, see the following articles:

Managing Object Lifetimes through Reference Counting in the Windows SDK.

Implementing Reference Counting in the Windows SDK.

Rules for Managing Reference Counts in the Windows SDK.

The following example demonstrates the use of CSimpleStringT::GetBufferSetLength .

https://docs.microsoft.com/windows/desktop/com/managing-object-lifetimes-through-reference-counting
https://docs.microsoft.com/windows/desktop/com/implementing-reference-counting
https://docs.microsoft.com/windows/desktop/com/rules-for-managing-reference-counts


    

 

 

CSimpleString str(pMgr);
LPTSTR pstr = str.GetBufferSetLength(3);
pstr[0] = _T('C');
pstr[1] = _T('u');
pstr[2] = _T('p');

// No need for trailing zero or call to ReleaseBuffer()
// because GetBufferSetLength() set it for us.

str += _T(" soccer is best!");
ASSERT(_tcscmp(str, _T("Cup soccer is best!")) == 0);

CSimpleStringT::GetLength

SyntaxSyntax

int GetLength() const throw();

Return ValueReturn Value

RemarksRemarks

CSimpleStringT::GetManager

SyntaxSyntax

IAtlStringMgr* GetManager() const throw();

Return ValueReturn Value

RemarksRemarks

CSimpleStringT::GetString

SyntaxSyntax

PCXSTR GetString() const throw();

Return ValueReturn Value

Returns the number of characters in the CSimpleStringT  object.

A count of the characters in the string.

Call this method to return the number of characters in the object. The count does not include a null terminator.

For multibyte character sets (MBCS), GetLength  counts each 8-bit character; that is, a lead and trail byte in one
multibyte character are counted as two bytes. See FreeExtra for an example of calling this function.

Retrieves the memory manager of the CSimpleStringT  object.

A pointer to the memory manager for the CSimpleStringT  object.

Call this method to retrieve the memory manager used by the CSimpleStringT  object. For more information on
memory managers and string objects, see Memory Management and CStringT.

Retrieves the character string.

A pointer to a null-terminated character string.



 

         

RemarksRemarks

NOTENOTE

ExampleExample

CSimpleString str(pMgr);
str += _T("Cup soccer is best!");
_tprintf_s(_T("%s"), str.GetString());

CSimpleStringT::IsEmpty

SyntaxSyntax

bool IsEmpty() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CSimpleString s(pMgr);
ASSERT(s.IsEmpty());

CSimpleStringT::LockBuffer

SyntaxSyntax

PXSTR LockBuffer();

Return ValueReturn Value

RemarksRemarks

Call this method to retrieve the character string associated with the CSimpleStringT  object.

The returned PCXSTR  pointer is const and does not allow direct modification of CSimpleStringT  contents.

The following example demonstrates the use of CSimpleStringT::GetString .

Tests a CSimpleStringT  object for the empty condition.

Returns TRUE if the CSimpleStringT  object has 0 length; otherwise FALSE.

Call this method to determine if the object contains an empty string.

The following example demonstrates the use of CSimpleStringT::IsEmpty .

Disables reference counting and protects the string in the buffer.

A pointer to a CSimpleStringT  object or a null-terminated string.

Call this method to lock the buffer of the CSimpleStringT  object. By calling LockBuffer , you create a copy of the
string, with a -1 for the reference count. When the reference count value is -1, the string in the buffer is
considered to be in a "locked" state. While in a locked state, the string is protected in two ways:

No other string can get a reference to the data in the locked string, even if that string is assigned to the
locked string.



 

NOTENOTE

ExampleExample

CSimpleString str(_T("Hello"), pMgr);
TCHAR ch;

str.LockBuffer();
ch = str.GetAt(2);
_tprintf_s(_T("%c"), ch);
str.UnlockBuffer();

CSimpleStringT::operator[]

SyntaxSyntax

XCHAR operator[](int iChar) const;

ParametersParameters

RemarksRemarks

NOTENOTE

ExampleExample

The locked string will never reference another string, even if that other string is copied to the locked string.

By locking the string in the buffer, you ensure that the string's exclusive hold on the buffer will remain intact.

After you have finished with LockBuffer , call UnlockBuffer to reset the reference count to 1.

If you call GetBuffer on a locked buffer and you set the GetBuffer  parameter nMinBufferLength  to greater than the
length of the current buffer, you will lose the buffer lock. Such a call to GetBuffer  destroys the current buffer, replaces it
with a buffer of the requested size, and resets the reference count to zero.

For more information about reference counting, see the following articles:

Managing Object Lifetimes through Reference Counting in the Windows SDK

Implementing Reference Counting in the Windows SDK

Rules for Managing Reference Counts in the Windows SDK

The following example demonstrates the use of CSimpleStringT::LockBuffer .

Call this function to access a single character of the character array.

iChar
Zero-based index of a character in the string.

The overloaded subscript ([]) operator returns a single character specified by the zero-based index in iChar. This
operator is a convenient substitute for the GetAt member function.

You can use the subscript ([]) operator to get the value of a character in a CSimpleStringT , but you cannot use it to
change the value of a character in a CSimpleStringT .

The following example demonstrates the use of CSimpleStringT::operator [] .

https://docs.microsoft.com/windows/desktop/com/managing-object-lifetimes-through-reference-counting
https://docs.microsoft.com/windows/desktop/com/implementing-reference-counting
https://docs.microsoft.com/windows/desktop/com/rules-for-managing-reference-counts


 

CSimpleString s(_T("abc"), pMgr);
ASSERT(s[1] == _T('b'));

CSimpleStringT::operator []

SyntaxSyntax

XCHAR operator[](int iChar) const;

ParametersParameters

RemarksRemarks

NOTENOTE

CSimpleStringT::operator +=

SyntaxSyntax

CSimpleStringT& operator +=(PCXSTR pszSrc);
CSimpleStringT& operator +=(const CSimpleStringT& strSrc);
template<int t_nSize>
CSimpleStringT& operator+=(const CStaticString< XCHAR, t_nSize >& strSrc);
CSimpleStringT& operator +=(char ch);
CSimpleStringT& operator +=(unsigned char ch);
CSimpleStringT& operator +=(wchar_t ch);

ParametersParameters

RemarksRemarks

ExampleExample

Call this function to access a single character of the character array.

iChar
Zero-based index of a character in the string.

The overloaded subscript ([]) operator returns a single character specified by the zero-based index in iChar. This
operator is a convenient substitute for the GetAt member function.

You can use the subscript ([]) operator to get the value of a character in a CSimpleStringT , but you cannot use it to
change the value of a character in a CSimpleStringT .

Joins a new string or character to the end of an existing string.

pszSrc
A pointer to a null-terminated string.

strSrc
A pointer to an existing CSimpleStringT  object.

ch
The character to be appended.

The operator accepts another CSimpleStringT  object or a character. Note that memory exceptions may occur
whenever you use this concatenation operator because new storage may be allocated for characters added to
this CSimpleStringT  object.



 

   

CSimpleString str(_T("abc"), pMgr);
ASSERT(_tcscmp((str += _T("def")), _T("abcdef")) == 0);

CSimpleStringT::operator =

SyntaxSyntax

CSimpleStringT& operator =(PCXSTR pszSrc);
CSimpleStringT& operator =(const CSimpleStringT& strSrc);

ParametersParameters

RemarksRemarks

ExampleExample

CSimpleString s1(pMgr), s2(pMgr);
// Empty CSimpleStringT objects

s1 = _T("cat");
// s1 = "cat"
ASSERT(_tcscmp(s1, _T("cat")) == 0);

s2 = s1;               // s1 and s2 each = "cat"
ASSERT(_tcscmp(s2, _T("cat")) == 0);

s1 = _T("the ") + s1;
// Or expressions
ASSERT(_tcscmp(s1, _T("the cat")) == 0);

s1 = _T("x");
// Or just individual characters
ASSERT(_tcscmp(s1, _T("x")) == 0);

CSimpleStringT::operator PCXSTR

SyntaxSyntax

operator PCXSTR() const throw();

Return ValueReturn Value

The following example demonstrates the use of CSimpleStringT::operator += .

Assigns a new value to a CSimpleStringT  object.

pszSrc
A pointer to a null-terminated string.

strSrc
A pointer to an existing CSimpleStringT  object.

If the destination string (the left side) is already large enough to store the new data, no new memory allocation is
performed. Note that memory exceptions may occur whenever you use the assignment operator because new
storage is often allocated to hold the resulting CSimpleStringT  object.

The following example demonstrates the use of CSimpleStringT::operator = .

Directly accesses characters stored in a CSimpleStringT  object as a C-style string.



 

  

RemarksRemarks

ExampleExample

// If the prototype of a function is known to the compiler,
// the PCXSTR cast operator may be invoked implicitly.

CSimpleString strSports(L"Soccer is Best!", pMgr);
WCHAR sz[1024];

wcscpy_s(sz, strSports);

// If the prototype isn't known or is a va_arg prototype,
// you must invoke the cast operator explicitly. For example,
// the va_arg part of a call to swprintf_s() needs the cast:

swprintf_s(sz, 1024, L"I think that %s!\n", (PCWSTR)strSports);

// While the format parameter is known to be an PCXSTR and
// therefore doesn't need the cast:

swprintf_s(sz, 1024, strSports);

// Note that some situations are ambiguous. This line will
// put the address of the strSports object to stdout:

wcout << strSports;

// while this line will put the content of the string out:

wcout << (PCWSTR)strSports;

CSimpleStringT::PCXSTR

SyntaxSyntax

typedef ChTraitsBase< BaseType >::PCXSTR PCXSTR;

CSimpleStringT::Preallocate

SyntaxSyntax

void Preallocate( int nLength);

ParametersParameters

A character pointer to the string's data.

No characters are copied; only a pointer is returned. Be careful with this operator. If you change a CString  object
after you have obtained the character pointer, you may cause a reallocation of memory that invalidates the
pointer.

The following example demonstrates the use of CSimpleStringT::operator PCXSTR .

A pointer to a constant string.

Allocates a specific amount of bytes for the CSimpleStringT  object.

nLength
The exact size of the CSimpleStringT  character buffer in characters.



 

         

RemarksRemarks

ExampleExample

CSimpleString str(pMgr);
_tprintf_s(_T("Allocated length: %d\n"), str.GetAllocLength());
str.Preallocate(100);
_tprintf_s(_T("Allocated length: %d\n"), str.GetAllocLength());

CSimpleStringT::PXSTR

SyntaxSyntax

typedef ChTraitsBase< BaseType >::PXSTR PXSTR;

CSimpleStringT::ReleaseBuffer

SyntaxSyntax

void ReleaseBuffer(int nNewLength = -1);

ParametersParameters

RemarksRemarks

ExampleExample

Call this method to allocate a specific buffer size for the CSimpleStringT  object.

CSimpleStringT  generates a STATUS_NO_MEMORY exception if it is unable to allocate space for the character
buffer. By default, memory allocation is performed by WIN32 API functions HeapAlloc  or HeapReAlloc .

The following example demonstrates the use of CSimpleStringT::Preallocate .

A pointer to a string.

Releases control of the buffer allocated by GetBuffer.

nNewLength
The new length of the string in characters, not counting a null terminator. If the string is null terminated, the -1
default value sets the CSimpleStringT  size to the current length of the string.

Call this method to reallocate or free up the buffer of the string object. If you know that the string in the buffer is
null terminated, you can omit the nNewLength argument. If your string is not null terminated, use nNewLength
to specify its length. The address returned by GetBuffer is invalid after the call to ReleaseBuffer  or any other 
CSimpleStringT  operation.

The following example demonstrates the use of CSimpleStringT::ReleaseBuffer .



 

 

const int bufferSize = 1024;
CSimpleString s(_T("abc"), pMgr);
LPTSTR p = s.GetBuffer(bufferSize);
_tcscpy_s(p, bufferSize, _T("abc"));

// use the buffer directly
ASSERT(s.GetLength() == 3);

// String length = 3
s.ReleaseBuffer();

// Surplus memory released, p is now invalid.
ASSERT(s.GetLength() == 3);

// Length still 3

CSimpleStringT::ReleaseBufferSetLength

SyntaxSyntax

void ReleaseBufferSetLength(int nNewLength);

ParametersParameters

RemarksRemarks

CSimpleStringT::SetAt

SyntaxSyntax

void SetAt(int iChar, XCHAR ch);

ParametersParameters

RemarksRemarks

ExampleExample

Releases control of the buffer allocated by GetBuffer.

nNewLength
The length of the string being released

This function is functionally similar to ReleaseBuffer except that a valid length for the string object must be
passed.

Sets a single character from a CSimpleStringT  object.

iChar
Zero-based index of the character in the CSimpleStringT  object. The iChar parameter must be greater than or
equal to 0 and less than the value returned by GetLength.

ch
The new character.

Call this method to overwrite the character located at iChar. This method will not enlarge the string if iChar
exceeds the bounds of the existing string.

The following example demonstrates the use of CSimpleStringT::SetAt .



 

 

CSimpleString s(_T("abcdef"), pMgr);
s.SetAt(1, _T('a'));
ASSERT(_tcscmp(s, _T("aacdef")) == 0);

CSimpleStringT::SetManager

SyntaxSyntax

void SetManager(IAtlStringMgr* pStringMgr);

ParametersParameters

RemarksRemarks

ExampleExample

CSimpleString s(pMgr);
s.SetManager(pCustomMgr);

CSimpleStringT::SetString

SyntaxSyntax

void SetString(PCXSTR pszSrc, int nLength);
void SetString(PCXSTR pszSrc);

ParametersParameters

RemarksRemarks

Specifies the memory manager of the CSimpleStringT  object.

pStringMgr
A pointer to the new memory manager.

Call this method to specify a new memory manager used by the CSimpleStringT  object. For more information
on memory managers and string objects, see Memory Management and CStringT.

The following example demonstrates the use of CSimpleStringT::SetManager .

Sets the string of a CSimpleStringT  object.

pszSrc
A pointer to a null-terminated string.

nLength
A count of the number of characters in pszSrc.

Copy a string into the CSimpleStringT  object. SetString  overwrites the older string data in the buffer.

Both versions of SetString  check whether pszSrc is a null pointer, and if it is, throw an E_INVALIDARG error.

The one-parameter version of SetString  expects pszSrc to point to a null-terminated string.

The two-parameter version of SetString  also expects pszSrc to be a null-terminated string. It uses nLength as
the string length unless it encounters a null terminator first.

The two-parameter version of SetString  also checks whether pszSrc points to a location in the current buffer in 
CSimpleStringT . In this special case, SetString  uses a memory copy function that does not overwrite the string



 

 

ExampleExample

CSimpleString s(_T("abcdef"), pMgr);
ASSERT(_tcscmp(s, _T("abcdef")) == 0);
s.SetString(_T("Soccer"), 6);
ASSERT(_tcscmp(s, _T("Soccer")) == 0);

CSimpleStringT::StringLength

SyntaxSyntax

ATL_NOINLINE static int StringLength(PCXSTR psz) throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

ASSERT(CSimpleString::StringLength(_T("soccer")) == 6);

CSimpleStringT::Truncate

SyntaxSyntax

void Truncate(int nNewLength);

ParametersParameters

RemarksRemarks

NOTENOTE

data as it copies the string data back to its buffer.

The following example demonstrates the use of CSimpleStringT::SetString .

Returns the number of characters in the specified string.

psz
A pointer to a null-terminated string.

The number of characters in psz; not counting a null terminator.

Call this method to retrieve the number of characters in the string pointed to by psz.

The following example demonstrates the use of CSimpleStringT::StringLength .

Truncates the string to the new length.

nNewLength
The new length of the string.

Call this method to truncate the contents of the string to the new length.

This does not affect the allocated length of the buffer. To decrease or increase the current buffer, see FreeExtra and
Preallocate.



        

 

ExampleExample

CSimpleString str(_T("abcdefghi"), pMgr);
_tprintf_s(_T("Allocated length: %d\n"), str.GetLength());
_tprintf_s(_T("Contents: %s\n"), str);
str.Truncate(4);
_tprintf_s(_T("Allocated length: %d\n"), str.GetLength());
_tprintf_s(_T("Contents: %s\n"), str);

CSimpleStringT::UnlockBuffer

SyntaxSyntax

void UnlockBuffer() throw();

RemarksRemarks

CSimpleStringT::~CSimpleStringT

SyntaxSyntax

~CSimpleStringT() throw();

RemarksRemarks

See Also

The following example demonstrates the use of CSimpleStringT::Truncate .

Unlocks the buffer of the CSimpleStringT  object.

Call this method to reset the reference count of the string to 1.

The CSimpleStringT  destructor automatically calls UnlockBuffer  to ensure that the buffer is not locked when the
destructor is called. For an example of this method, see LockBuffer.

Destroys a CSimpleStringT  object.

Call this method to destroy the CSimpleStringT  object.

Hierarchy Chart
ATL/MFC Shared Classes



CTime Class
1/24/2019 • 14 minutes to read • Edit Online

Syntax
class CTime

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

CTime::CTime Constructs CTime  objects in various ways.

Public MethodsPublic Methods

NAME DESCRIPTION

CTime::Format Converts a CTime  object into a formatted string —
based on the local time zone.

CTime::FormatGmt Converts a CTime  object into a formatted string —
based on UTC.

CTime::GetAsDBTIMESTAMP Converts the time information stored in the CTime

object to a Win32-compatible DBTIMESTAMP structure.

CTime::GetAsSystemTime Converts the time information stored in the CTime

object to a Win32-compatible SYSTEMTIME structure.

CTime::GetCurrentTime Creates a CTime  object that represents the current
time (static member function).

CTime::GetDay Returns the day represent by the CTime  object.

CTime::GetDayOfWeek Returns the day of the week represented by the CTime

object.

CTime::GetGmtTm Breaks down a CTime  object into components — based
on UTC.

CTime::GetHour Returns the hour represented by the CTime  object.

CTime::GetLocalTm Breaks down a CTime  object into components — based
on the local time zone.

Represents an absolute time and date.

https://github.com/Microsoft/cpp-docs/blob/master/docs/atl-mfc-shared/reference/ctime-class.md
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime


CTime::GetMinute Returns the minute represented by the CTime  object.

CTime::GetMonth Returns the month represented by the CTime  object.

CTime::GetSecond Returns the second represented by the CTime  object.

CTime::GetTime Returns a __time64_t value for the given CTime  object.

CTime::GetYear Returns the year represented by the CTime  object.

CTime::Serialize64 Serializes data to or from an archive.

NAME DESCRIPTION

OperatorsOperators

operator + - These operators add and subtract CTimeSpan  and 
CTime  objects.

operator +=, -= These operators add and subtract a CTimeSpan  object
to and from this CTime  object.

operator = The assignment operator.

operator ==, < , etc. Comparison operators.

Remarks

NOTENOTE

CTime  does not have a base class.

CTime  values are based on coordinated universal time (UTC), which is equivalent to Coordinated
Universal time (Greenwich Mean Time, GMT). See Time Management for information about how the
time zone is determined.

When you create a CTime  object, set the nDST  parameter to 0 to indicate that standard time is in effect,
or to a value larger than 0 to indicate that daylight saving time is in effect, or to a value less than zero to
have the C run-time library code compute whether standard time or daylight saving time is in effect. 
tm_isdst  is a required field. If not set, its value is undefined and the return value from mktime is

unpredictable. If timeptr  points to a tm structure returned by a previous call to asctime_s, _gmtime_s, or
localtime_s, the tm_isdst  field contains the correct value.

A companion class, CTimeSpan, represents a time interval.

The CTime  and CTimeSpan  classes are not designed for derivation. Because there are no virtual
functions, the size of CTime  and CTimeSpan  objects is exactly 8 bytes. Most member functions are inline.

The upper date limit is 12/31/3000. The lower limit is 1/1/1970 12:00:00 AM GMT.

For more information about using CTime , see the articles Date and Time, and Time Management in the
Run-Time Library Reference.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/time-management
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/mktime-mktime32-mktime64
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/asctime-s-wasctime-s
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/gmtime-s-gmtime32-s-gmtime64-s
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/localtime-s-localtime32-s-localtime64-s
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/time-management


 

 

NOTENOTE

Requirements

CTime Comparison Operators

bool operator==(CTime time) const throw();
bool operator!=(CTime time) const throw();
bool operator<(CTime time) const throw();
bool operator>(CTime time) const throw();
bool operator<=(CTime time) const throw();
bool operator>=(CTime time) const throw();

ParametersParameters

Return ValueReturn Value

ExampleExample

CTime t1 = CTime::GetCurrentTime();
CTime t2 = t1 + CTimeSpan(0, 1, 0, 0);    // 1 hour later
ATLASSERT(t1 != t2);
ATLASSERT(t1 < t2);
ATLASSERT(t1 <= t2);   

CTime::CTime

CTime() throw();
CTime(__time64_t time) throw();
CTime(int nYear, int nMonth, int nDay,
      int nHour, int nMin, int nSec, int nDST = -1);
CTime(WORD wDosDate, WORD wDosTime, int nDST = -1);
CTime(const SYSTEMTIME& st, int nDST = - 1) throw();
CTime(const FILETIME& ft, int nDST = - 1);
CTime(const DBTIMESTAMP& dbts, int nDST = -1) throw();

ParametersParameters

The CTime  structure changed from MFC 7.1 to MFC 8.0. If you serialize a CTime  structure by using the
operator << under MFC 8.0 or a later version, the resulting file will not be readable on older versions of MFC.

Header: atltime.h

Comparison operators.

time
The CTime  object to be compared.

These operators compare two absolute times and return TRUE if the condition is true; otherwise FALSE.

Creates a new CTime  object initialized with the specified time.

timeSrc
Indicates a CTime  object that already exists.

time
A __time64_t  time value, which is the number of seconds after January 1, 1970 UTC. Note that this will



RemarksRemarks

be adjusted to your local time. For example, if you are in New York and create a CTime  object by passing
a parameter of 0, CTime::GetMonth will return 12.

nYear, nMonth, nDay, nHour, nMin, nSec
Indicates the date and time values to be copied into the new CTime  object.

nDST
Indicates whether daylight savings time is in effect. Can have one of three values:

nDST set to 0Standard time is in effect.

nDST set to a value greater than 0Daylight savings time is in effect.

nDST set to a value less than 0The default. Automatically computes whether standard time or
daylight savings time is in effect.

wDosDate, wDosTime
MS-DOS date and time values to be converted to a date/time value and copied into the new CTime

object.

st
A SYSTEMTIME structure to be converted to a date/time value and copied into the new CTime  object.

ft
A FILETIME structure to be converted to a date/time value and copied into the new CTime  object.

dbts
A reference to a DBTIMESTAMP structure containing the current local time.

Each constructor is described below:

COMPONENT RANGE

nYear 1970-3000

nMonth 1-12

nDay 1-31

nHour 0-23

nMin 0-59

nSec 0-59

CTime();  Constructs an uninitialized CTime  object. This constructor allows you to define CTime

object arrays. You should initialize such arrays with valid times before using.

CTime( const CTime& );  Constructs a CTime  object from another CTime  value.

CTime( __time64_t );  Constructs a CTime  object from a __time64_t type. This constructor
expects a UTC time and converts the result to a local time before storing the result.

CTime( int, int, ...);  Constructs a CTime  object from local time components with each
component constrained to the following ranges:

This constructor makes the appropriate conversion to UTC. The Debug version of the Microsoft

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime


  

ExampleExample

time_t osBinaryTime;  // C run-time time (defined in <time.h>)
time(&osBinaryTime) ;  // Get the current time from the 
                         // operating system.
CTime time1; // Empty CTime. (0 is illegal time value.)
CTime time2 = time1; // Copy constructor.
CTime time3(osBinaryTime);  // CTime from C run-time time
CTime time4(1999, 3, 19, 22, 15, 0); // 10:15PM March 19, 1999   

CTime::Format

CString Format(LPCTSTR pszFormat) const;
CString Format(UINT nFormatID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

NOTENOTE

Foundation Class Library asserts if one or more of the time components are out of range. You
must validate the arguments before calling. This constructor expects a local time.

CTime( WORD, WORD );  Constructs a CTime  object from the specified MS-DOS date and time
values. This constructor expects a local time.

CTime( const SYSTEMTIME& );  Constructs a CTime  object from a SYSTEMTIME  structure. This
constructor expects a local time.

CTime( const FILETIME& );  Constructs a CTime  object from a FILETIME  structure. You most likely
will not use CTime FILETIME  initialization directly. If you use a CFile  object to manipulate a file, 
CFile::GetStatus  retrieves the file time stamp for you through a CTime  object initialized with a 
FILETIME  structure. This constructor assumes a time based on UTC and automatically converts

the value to local time before storing the result.

The constructor using DBTIMESTAMP  parameter is only available when OLEDB.h is included.

For more information, see the SYSTEMTIME and FILETIME structure in the Windows SDK. Also see the
MS-DOS Date and Time entry in the Windows SDK.

Call this member function to create a formatted representation of the date-time value.

pszFormat
A formatting string similar to the printf  formatting string. Formatting codes, preceded by a percent ( %

) sign, are replaced by the corresponding CTime  component. Other characters in the formatting string
are copied unchanged to the returned string. See the run-time function strftime for a list of formatting
codes.

nFormatID
The ID of the string that identifies this format.

A CString that contains the formatted time.

If the status of this CTime  object is null, the return value is an empty string.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-filetime
https://docs.microsoft.com/windows/desktop/SysInfo/ms-dos-date-and-time
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strftime-wcsftime-strftime-l-wcsftime-l


 

 

ExampleExample

CTime t(1999, 3, 19, 22, 15, 0); 
// 10:15 PM March 19, 1999
CString s = t.Format(_T("%A, %B %d, %Y"));
ATLASSERT(s == _T("Friday, March 19, 1999"));   

CTime::FormatGmt

CString FormatGmt(LPCTSTR pszFormat) const;
CString FormatGmt(UINT nFormatID) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTime::GetAsDBTIMESTAMP

bool GetAsDBTIMESTAMP(DBTIMESTAMP& dbts) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

This method throws an exception if the date-time value to format does not range from midnight, January
1, 1970 through December 31, 3000 Universal Coordinated Time (UTC).

Generates a formatted string that corresponds to this CTime  object.

pszFormat
Specifies a formatting string similar to the printf  formatting string. See the run-time function strftime
for details.

nFormatID
The ID of the string that identifies this format.

A CString that contains the formatted time.

The time value is not converted and thus reflects UTC.

This method throws an exception if the date-time value to format does not range from midnight, January
1, 1970 through December 31, 3000 Universal Coordinated Time (UTC).

See the example for CTime::Format.

Call this member function to convert the time information stored in the CTime  object to a Win32-
compatible DBTIMESTAMP structure.

dbts
A reference to a DBTIMESTAMP structure containing the current local time.

Nonzero if successful; otherwise 0.

Stores the resulting time in the referenced dbts structure. The DBTIMESTAMP  data structure initialized by

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strftime-wcsftime-strftime-l-wcsftime-l


 

 

   

ExampleExample

CTime t = CTime::GetCurrentTime();
DBTIMESTAMP ts;
t.GetAsDBTIMESTAMP(ts); // Retrieves the time in t into the ts structure

CTime::GetAsSystemTime

bool GetAsSystemTime(SYSTEMTIME& st) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Convert CTime to FILETIME
CTime time(CTime::GetCurrentTime());
SYSTEMTIME timeDest;
time.GetAsSystemTime(timeDest);
FILETIME fileTime;
::SystemTimeToFileTime(&timeDest, &fileTime);   

CTime::GetCurrentTime

static CTime WINAPI GetCurrentTime() throw();

RemarksRemarks

ExampleExample

CTime t = CTime::GetCurrentTime();   

CTime::GetDay

this function will have its fraction  member set to zero.

Call this member function to convert the time information stored in the CTime  object to a Win32-
compatible SYSTEMTIME structure.

timeDest
A reference to a SYSTEMTIME structure that will hold the converted date/time value of the CTime

object.

TRUE if successful; otherwise FALSE.

GetAsSystemTime  stores the resulting time in the referenced timeDest structure. The SYSTEMTIME  data
structure initialized by this function will have its wMilliseconds  member set to zero.

Returns a CTime  object that represents the current time.

Returns the current system date and time in Coordinated Universal Time (UTC).

Returns the day represent by the CTime  object.

https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime
https://docs.microsoft.com/windows/desktop/api/minwinbase/ns-minwinbase-systemtime


 

 

int GetDay() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Example for CTime::GetDay, CTime::GetMonth, and CTime::GetYear
CTime t(1999, 3, 19, 22, 15, 0); // 10:15 PM March 19, 1999
ATLASSERT(t.GetDay() == 19);
ATLASSERT(t.GetMonth() == 3);
ATLASSERT(t.GetYear() == 1999);

CTime::GetDayOfWeek

int GetDayOfWeek() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Print out the day of the week using localized day name
UINT DayOfWeek[] = {
   LOCALE_SDAYNAME7,   // Sunday
   LOCALE_SDAYNAME1,   
   LOCALE_SDAYNAME2,
   LOCALE_SDAYNAME3,
   LOCALE_SDAYNAME4, 
   LOCALE_SDAYNAME5, 
   LOCALE_SDAYNAME6   // Saturday
};
TCHAR strWeekday[256];
CTime time(CTime::GetCurrentTime());   // Initialize CTime with current time
::GetLocaleInfo(LOCALE_USER_DEFAULT,   // Get string for day of the week from system
   DayOfWeek[time.GetDayOfWeek()-1],   // Get day of week from CTime
   strWeekday, sizeof(strWeekday) / sizeof(strWeekday[0]));
ATLTRACE(_T("%s\n"), strWeekday);               // Print out day of the week   

CTime::GetGmtTm

struct tm* GetGmtTm(struct tm* ptm) const;

Returns the day of the month, based on local time, in the range 1 through 31.

This function calls GetLocalTm , which uses an internal, statically allocated buffer. The data in this buffer is
overwritten because of calls to other CTime  member functions.

Returns the day of the week represented by the CTime  object.

Returns the day of the week based on local time; 1 = Sunday, 2 = Monday, to 7 = Saturday.

This function calls GetLocalTm , which uses an internal statically allocated buffer. The data in this buffer is
overwritten because of calls to other CTime  member functions.

Gets a struct tm that contains a decomposition of the time contained in this CTime  object.



   

 

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Compute difference between local time and GMT
CTime time(CTime::GetCurrentTime());
tm t1, t2;
time.GetLocalTm(&t1);
time.GetGmtTm(&t2);

ATLTRACE(_T("Difference between local time and GMT is %d hours.\n"), 
   t1.tm_hour - t2.tm_hour);   

CTime::GetHour

int GetHour() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

// Example for CTime::GetHour, CTime::GetMinute, and CTime::GetSecond
CTime t(1999, 3, 19, 22, 15, 0); // 10:15 PM March 19, 1999
ATLASSERT(t.GetSecond() == 0);
ATLASSERT(t.GetMinute() == 15);
ATLASSERT(t.GetHour() == 22);   

CTime::GetLocalTm

struct tm* GetLocalTm(struct tm* ptm) const;

ParametersParameters

ptm
Points to a buffer that will receive the time data. If this pointer is NULL, an exception is thrown.

A pointer to a filled-in struct tm as defined in the include file TIME.H. See gmtime, _gmtime32,
_gmtime64 for the structure layout.

GetGmtTm  returns UTC.

ptm cannot be NULL. If you want to revert to the old behavior, in which ptm could be NULL to indicate
that an internal, statically allocated buffer should be used, then undefine _SECURE_ATL.

Returns the hour represented by the CTime  object.

Returns the hour, based on local time, in the range 0 through 23.

This function calls GetLocalTm , which uses an internal statically allocated buffer. The data in this buffer is
overwritten because of calls to other CTime  member functions.

Gets a struct tm containing a decomposition of the time contained in this CTime  object.

ptm

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/gmtime-gmtime32-gmtime64


 

  

 

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTime t(1999, 3, 19, 22, 15, 0); // 10:15PM March 19, 1999
tm osTime;  // A structure containing time elements.
t.GetLocalTm(&osTime);
ATLASSERT(osTime.tm_mon == 2); // Note zero-based month!   

CTime::GetMinute

int GetMinute() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTime::GetMonth

int GetMonth() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTime::GetSecond

Points to a buffer that will receive the time data. If this pointer is NULL, an exception is thrown.

A pointer to a filled-in struct tm as defined in the include file TIME.H. See gmtime, _gmtime32,
_gmtime64 for the structure layout.

GetLocalTm  returns local time.

ptm cannot be NULL. If you want to revert to the old behavior, in which ptm could be NULL to indicate
that an internal, statically allocated buffer should be used, then undefine _SECURE_ATL.

Returns the minute represented by the CTime  object.

Returns the minute, based on local time, in the range 0 through 59.

This function calls GetLocalTm , which uses an internal statically allocated buffer. The data in this buffer is
overwritten because of calls to other CTime  member functions.

See the example for GetHour.

Returns the month represented by the CTime  object.

Returns the month, based on local time, in the range 1 through 12 (1 = January).

This function calls GetLocalTm , which uses an internal statically allocated buffer. The data in this buffer is
overwritten because of calls to other CTime  member functions.

See the example for GetDay.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/gmtime-gmtime32-gmtime64


 

 

 

int GetSecond() const throw();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTime::GetTime

__time64_t GetTime() const throw();

Return ValueReturn Value

ExampleExample

CTime t(2005, 10, 20, 23, 50, 0); // 11:50 PM October 20, 2005
time_t osBinaryTime = t.GetTime();  // time_t defined in <time.h>

_tprintf_s(_T("time_t = %ld\n"), osBinaryTime);

CTime::GetYear

int GetYear();

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTime::operator =

CTime& operator=(__time64_t time) throw();

Returns the second represented by the CTime  object.

Returns the second, based on local time, in the range 0 through 59.

This function calls GetLocalTm , which uses an internal statically allocated buffer. The data in this buffer is
overwritten because of calls to other CTime  member functions.

See the example for GetHour.

Returns a __time64_t value for the given CTime  object.

GetTime  will return the number of seconds between the current CTime  object and January 1, 1970.

Returns the year represented by the CTime  object.

Returns the year, based on local time, in the range January 1,1970, to January 18, 2038 (inclusive).

This function calls GetLocalTm , which uses an internal statically allocated buffer. The data in this buffer is
overwritten because of calls to other CTime  member functions.

See the example for GetDay.

The assignment operator.



 

 

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CTime::operator +, -

CTime operator+(CTimeSpan timeSpan) const throw();
CTime operator-(CTimeSpan timeSpan) const throw();
CTimeSpan operator-(CTime time) const throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTime t1(1999, 3, 19, 22, 15, 0); // 10:15 PM March 19, 1999
CTime t2(1999, 3, 20, 22, 15, 0); // 10:15 PM March 20, 1999
CTimeSpan ts = t2 - t1;             // Subtract 2 CTimes
ATLASSERT(ts.GetTotalSeconds() == 86400L);
ATLASSERT((t1 + ts) == t2);       // Add a CTimeSpan to a CTime.
ATLASSERT((t2 - ts) == t1);       // Subtract a CTimeSpan from a CTime.   

CTime::operator +=, -=

CTime& operator+=(CTimeSpan span) throw();
CTime& operator-=(CTimeSpan span) throw();

ParametersParameters

time
The new date/time value.

The updated CTime  object.

This overloaded assignment operator copies the source time into this CTime  object. The internal time
storage in a CTime  object is independent of time zone. Time zone conversion is not necessary during
assignment.

These operators add and subtract CTimeSpan  and CTime  objects.

timeSpan
The CTimeSpan  object to be added or subtracted.

time
The CTime  object to be subtracted.

A CTime  or CTimeSpan  object representing the result of the operation.

CTime  objects represent absolute time, CTimeSpan  objects represent relative time. The first two
operators allow you to add and subtract CTimeSpan  objects to and from CTime  objects. The third
operator allows you to subtract one CTime  object from another to yield a CTimeSpan  object.

These operators add and subtract a CTimeSpan  object to and from this CTime  object.

span



 

Return ValueReturn Value

RemarksRemarks

ExampleExample

CTime t(1999, 3, 19, 22, 15, 0); // 10:15 PM March 19, 1999
t += CTimeSpan(0, 1, 0, 0);      // 1 hour exactly
ATLASSERT(t.GetHour() == 23);   

CTime::Serialize64

NOTENOTE

CArchive& Serialize64(CArchive& ar);

ParametersParameters

Return ValueReturn Value

See Also

The CTimeSpan  object to be added or subtracted.

The updated CTime  object.

These operators allow you to add and subtract a CTimeSpan  object to and from this CTime  object.

This method is only available in MFC projects.

Serializes the data associated with the member variable to or from an archive.

ar
The CArchive  object that you want to update.

The updated CArchive  object.

asctime_s, _wasctime_s
_ftime_s, _ftime32_s, _ftime64_s
gmtime_s, _gmtime32_s, _gmtime64_s
localtime_s, _localtime32_s, _localtime64_s
strftime, wcsftime, _strftime_l, _wcsftime_l
time, _time32, _time64
CTimeSpan Class
Hierarchy Chart
ATL/MFC Shared Classes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/asctime-s-wasctime-s
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/ftime-s-ftime32-s-ftime64-s
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/gmtime-s-gmtime32-s-gmtime64-s
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/localtime-s-localtime32-s-localtime64-s
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strftime-wcsftime-strftime-l-wcsftime-l
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/time-time32-time64


.NET Programming with C++/CLI (Visual C++)
10/31/2018 • 2 minutes to read • Edit Online

In This Section

See Also

Visual Studio 2015: By default, CLR projects created with Visual Studio 2015 target .NET Framework 4.5.2. To
target .NET Framework 4.6 when you create a new project, in the New Project dialog, change the target
framework in the dropdown at the top middle of the dialog. To change the target framework for an existing project,
close the project, edit the project file (.vcxproj), and change the value of the Target Framework Version to 4.6. Next
time you open the project, the settings will take effect.

Visual Studio 2017: In Visual Studio 2017, the default framework is 4.6.1 and the Framework version selector is
at the bottom of the New Project Dialog. C++/CLI itself is not installed by default. To install the component,
open the Visual Studio Installer and choose the C++/CLI component under Visual C++.

C++/CLI Tasks

Native and .NET Interoperability

C++/CLI Migration Primer

Pure and Verifiable Code (C++/CLI)

Regular Expressions (C++/CLI)

File Handling and I/O (C++/CLI)

Graphics Operations (C++/CLI)

Windows Operations (C++/CLI)

Data Access Using ADO.NET (C++/CLI)

Interoperability with Other .NET Languages (C++/CLI)

Serialization (C++/CLI)

Managed Types (C++/CLI)

Reflection (C++/CLI)

Strong Name Assemblies (Assembly Signing) (C++/CLI)

Debug Class (C++/CLI)

STL/CLR Library Reference

C++ Support Library

Exceptions in C++/CLI

Boxing (C++/CLI)

Native and .NET Interoperability

https://github.com/Microsoft/cpp-docs/blob/master/docs/dotnet/dotnet-programming-with-cpp-cli-visual-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/cpp-cli-tasks
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/native-and-dotnet-interoperability
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/cpp-cli-migration-primer
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/pure-and-verifiable-code-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/regular-expressions-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/file-handling-and-i-o-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/graphics-operations-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/windows-operations-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/data-access-using-adonet-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/interoperability-with-other-dotnet-languages-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/serialization-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/managed-types-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/reflection-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/strong-name-assemblies-assembly-signing-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/debug-class-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/stl-clr-library-reference
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/cpp-support-library
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/exceptions-in-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/boxing-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/native-and-dotnet-interoperability


Component Extensions for .NET and UWP
10/31/2018 • 5 minutes to read • Edit Online

NOTENOTE

Two runtimes, one set of extensionsTwo runtimes, one set of extensions

Data Type Keywords

KEYWORD CONTEX T SENSITIVE PURPOSE REFERENCE

ref class

ref struct

No Declares a class. Classes and Structs

value class

value struct

No Declares a value class. Classes and Structs

interface class

interface struct

No Declares an interface. interface class

The C++ standard allows compiler vendors to provide non-standard extensions to the language. Microsoft
provides extensions to help you connect native C++ code to code that runs on the .NET Framework or the
Universal Windows Platform (UWP). The .NET extensions are called C++/CLI and produce code that executes
in the .NET managed execution environment that is called the Common Language Runtime (CLR). The UWP
extensions are called C++/CX and they produce native machine code.

For new applications, we recommend using C++/WinRT rather than C++/CX. C++/WinRT is a new, standard C++17
language projection for Windows Runtime APIs. We will continue to support C++/CX and WRL, but highly recommend
that new applications use C++/WinRT. For more information, see C++/WinRT.

C++/CLI extends the ISO/ANSI C++ standard, and is defined under the Ecma C++/CLI Standard. For more
information, see .NET Programming with C++/CLI (Visual C++).

The C++/CX extensions are a subset of C++/CLI. Although the extension syntax is identical in most cases, the
code that is generated depends on whether you specify the /ZW  compiler option to target UWP, or the /clr

option to target .NET. These switches are set automatically when you use Visual Studio to create a project.

The language extensions include aggregate keywords, which consist of two tokens separated by white space.
The tokens might have one meaning when they are used separately, and another meaning when they are used
together. For example, the word "ref" is an ordinary identifier, and the word "class" is a keyword that declares a
native class. But when these words are combined to form ref class, the resulting aggregate keyword declares
an entity that is known as a runtime class.

The extensions also include context-sensitive keywords. A keyword is treated as context-sensitive depending on
the kind of statement that contains it, and its placement in that statement. For example, the token "property"
can be an identifier, or it can declare a special kind of public class member.

The following table lists keywords in the C++ language extension.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/component-extensions-for-runtime-platforms.md
https://docs.microsoft.com/windows/uwp/cpp-and-winrt-apis/index


enum class

enum struct

No Declares an enumeration. enum class

property Yes Declares a property. property

delegate Yes Declares a delegate. delegate (C++/CLI and
C++/CX)

event Yes Declares an event. event

KEYWORD CONTEX T SENSITIVE PURPOSE REFERENCE

Override Specifiers

KEYWORD CONTEX T SENSITIVE PURPOSE REFERENCE

abstract Yes Indicates that functions or
classes are abstract.

abstract

new No Indicates that a function is
not an override of a base
class version.

new (new slot in vtable)

override Yes Indicates that a method
must be an override of a
base-class version.

override

sealed Yes Prevents classes from being
used as base classes.

sealed

Keywords for Generics

KEYWORD CONTEX T SENSITIVE PURPOSE

generic No Declares a generic type.

where Yes Specifies the constraints that are
applied to a generic type parameter.

Miscellaneous Keywords

You can use the following keywords to qualify override behavior for derivation. Although the new keyword is
not an extension of C++, it is listed here because it can be used in an additional context. Some specifiers are
also valid for native programming. For more information, see How to: Declare Override Specifiers in Native
Compilations (C++/CLI).

The following keywords have been added to support generic types. For more information, see Generics.

The following keywords have been added to the C++ extensions.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-declare-override-specifiers-in-native-compilations-cpp-cli


KEYWORD CONTEX T SENSITIVE PURPOSE REFERENCE

finally Yes Indicates default exception
handlings behavior.

Exception Handling

for each, in No Enumerates elements of a
collection.

for each, in

gcnew No Allocates types on the
garbage-collected heap.
Use instead of new and
delete.

ref new, gcnew

ref new Yes Allocates a Windows
Runtime type. Use instead
of new and delete.

ref new, gcnew

initonly Yes Indicates that a member
can only be initialized at
declaration or in a static
constructor.

initonly (C++/CLI)

literal Yes Creates a literal variable. literal

nullptr No Indicates that a handle or
pointer does not point at
an object.

nullptr

Template Constructs

KEYWORD PURPOSE REFERENCE

array Declares an array. Arrays

interior_ptr (CLR only) Points to data in a
reference type.

interior_ptr (C++/CLI)

pin_ptr (CLR only) Points to CLR reference
types to temporarily suppress the
garbage-collection system.

pin_ptr (C++/CLI)

safe_cast Determines and executes the optimal
casting method for a runtime type.

safe_cast

typeid (CLR only) Retrieves a System.Type
object that describes the given type or
object.

typeid

Declarators

The following language constructs are implemented as templates, instead of as keywords. If you specify the 
/ZW  compiler option, they are defined in the lang  namespace. If you specify the /clr  compiler option, they

are defined in the cli  namespace.

The following type declarators instruct the runtime to automatically manage the lifetime and deletion of

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/for-each-in
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/initonly-cpp-cli
https://msdn.microsoft.com/en-us/library/system.type(v=vs.110).aspx


OPERATOR PURPOSE REFERENCE

^ Declares a handle to an object; that is,
a pointer to a Windows Runtime or
CLR object that is automatically
deleted when it is no longer usable.

Handle to Object Operator (^)

% Declares a tracking reference; that is, a
reference to a Windows Runtime or
CLR object that is automatically
deleted when it is no longer usable.

Tracking Reference Operator

Additional Constructs and Related Topics

TOPIC DESCRIPTION

__identifier (C++/CLI) (Windows Runtime and CLR) Enables the use of keywords as
identifiers.

Variable Argument Lists (...) (C++/CLI) (Windows Runtime and CLR) Enables a function to take a
variable number of arguments.

.NET Framework Equivalents to C++ Native Types
(C++/CLI)

Lists the CLR types that are used in place of C++ integral
types.

appdomain __declspec modifier __declspec modifier that mandates that static and global
variables exist per appdomain.

C-Style Casts with /clr (C++/CLI) Describes how C-style casts are interpreted.

__clrcall calling convention Indicates the CLR-compliant calling convention.

__cplusplus_cli Predefined Macros

Custom Attributes Describes how to define your own CLR attributes.

Exception Handling Provides an overview of exception handling.

Explicit Overrides Demonstrates how member functions can override arbitrary
members.

Friend Assemblies (C++) Discusses how a client assembly can access all types in an
assembly component.

Boxing Demonstrates the conditions in which values types are
boxed.

Compiler Support for Type Traits Discusses how to detect characteristics of types at compile
time.

allocated objects.

This section lists additional programming constructs, and topics that pertain to the CLR.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/dotnet-framework-equivalents-to-cpp-native-types-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/appdomain
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/clrcall
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/predefined-macros
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/custom-attributes-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/friend-assemblies-cpp


managed, unmanaged pragmas Demonstrates how managed and unmanaged functions can
co-exist in the same module.

process __declspec modifier __declspec modifier that mandates that static and global
variables exist per process.

Reflection (C++/CLI) Demonstrates the CLR version of run-time type
information.

String Discusses compiler conversion of string literals to String.

Type Forwarding (C++/CLI) Enables the movement of a type in a shipping assembly to
another assembly so that client code does not have to be
recompiled.

User-Defined Attributes Demonstrates user-defined attributes.

#using Directive Imports external assemblies.

XML Documentation Explains XML-based code documentation by using /doc
(Process Documentation Comments) (C/C++)

TOPIC DESCRIPTION

See Also
.NET Programming with C++/CLI (Visual C++)
Native and .NET Interoperability

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/managed-unmanaged
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/process
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/reflection-cpp-cli
https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-using-directive-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/xml-documentation-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/doc-process-documentation-comments-c-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/native-and-dotnet-interoperability


Tracking Reference Operator (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

All Platforms

Windows Runtime

Foo^ spFoo = ref new Foo();
Foo% srFoo = *spFoo;
Foo^ spFoo2 = %srFoo;

ref class Foo sealed {};

    // internal or private
    void UseFooHelper(Foo% f)
    {
        auto x = %f;
    }

    // public method on ABI boundary
    void UseFoo(Foo^ f)
    {
        if (f != nullptr) { UseFooHelper(*f); }
    }

Common Language Runtime

A tracking reference ( % ) behaves like an ordinary C++ reference ( & ) except that when an object is assigned to a
tracking reference, the object’s reference count is incremented.

A tracking reference has the following characteristics.

Assignment of an object to a tracking reference causes the object’s reference count to be incremented.

A native reference ( & ) is the result when you dereference a * . A tracking reference ( % ) is the result when
you dereference a ^ . As long as you have a %  to an object, the object will stay alive in memory.

The dot ( . ) member-access operator is used to access a member of the object.

Tracking references are valid for value types and handles (for example String^ ).

A tracking reference cannot be assigned a null or nullptr value. A tracking reference may be reassigned to
another valid object as many times as required.

A tracking reference cannot be used as a unary take-address operator.

A tracking reference behaves like a standard C++ reference, except that a % is reference-counted. The following
snippet shows how to convert between % and ^ types:

The following example shows how to pass a ^ to a function that takes a %.

In C++/CLI, you can use a tracking reference to a handle when you bind to an object of a CLR type on the
garbage-collected heap.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/tracking-reference-operator-cpp-component-extensions.md


ExamplesExamples

// tracking_reference_1.cpp
// compile with: /clr
ref class MyClass {
public:
   int i;
};

value struct MyStruct {
   int k;
};

int main() {
   MyClass ^ x = ref new MyClass;
   MyClass ^% y = x;   // tracking reference handle to reference object

   int %ti = x->i;   // tracking reference to member of reference type

   int j = 0;
   int %tj = j;   // tracking reference to object on the stack

   int * pi = new int[2];
   int % ti2 = pi[0];   // tracking reference to object on native heap

   int *% tpi = pi;   // tracking reference to native pointer

   MyStruct ^ x2 = ref new MyStruct;
   MyStruct ^% y2 = x2;   // tracking reference to value object

   MyStruct z;
   int %tk = z.k;   // tracking reference to member of value type

   delete[] pi;
}

// tracking_reference_2.cpp
// compile with: /clr
using namespace System;

int main() {
   array<int> ^ a = ref new array<Int32>(5);
   a[0] = 21;
   Console::WriteLine(a[0]);
   array<int> ^% arr = a;
   arr[0] = 222;
   Console::WriteLine(a[0]);
}

In the CLR, the value of a tracking reference variable is updated automatically whenever the garbage collector
moves the referenced object.

A tracking reference can be declared only on the stack. A tracking reference cannot be a member of a class.

It is not possible to have a native C++ reference to an object on the garbage-collected heap.

For more information about tracking references in C++/CLI, see:

How to: Use Tracking References in C++/CLI

The following sample for C++/CLI shows how to use a tracking reference with native and managed types.

The following sample for C++/CLI shows how to bind a tracking reference to an array.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-use-tracking-references-in-cpp-cli


21
222



Handle to Object Operator (^) (C++/CLI and
C++/CX)
10/31/2018 • 5 minutes to read • Edit Online

Accessing the Declared Object

Windows Runtime

Requirements

Common Language Runtime

ExamplesExamples

The handle declarator ( ^ , pronounced "hat"), modifies the type specifier to mean that the declared object should
be automatically deleted when the system determines that the object is no longer accessible.

A variable that is declared with the handle declarator behaves like a pointer to the object. However, the variable
points to the entire object, cannot point to a member of the object, and it does not support pointer arithmetic. Use
the indirection operator ( * ) to access the object, and the arrow member-access operator ( -> ) to access a
member of the object.

The compiler uses the COM reference counting mechanism to determine if the object is no longer being used and
can be deleted. This is possible because an object that is derived from a Windows Runtime interface is actually a
COM object. The reference count is incremented when the object is created or copied, and decremented when the
object is set to null or goes out of scope. If the reference count goes to zero, the object is automatically and
immediately deleted.

The advantage of the handle declarator is that in COM you must explicitly manage the reference count for an
object, which is a tedious and error prone process. That is, to increment and decrement the reference count you
must call the object's AddRef() and Release() methods. However, if you declare an object with the handle
declarator, the compiler generates code that automatically adjusts the reference count.

For information on how to instantiate an object, see ref new.

Compiler option: /ZW

The system uses the CLR garbage collector mechanism to determine if the object is no longer being used and can
be deleted. The common language runtime maintains a heap on which it allocates objects, and uses managed
references (variables) in your program indicate the location of objects on the heap. When an object is no longer
used, the memory that it occupied on the heap is freed. Periodically, the garbage collector compacts the heap to
better use the freed memory. Compacting the heap can move objects on the heap, which invalidates the locations
referred to by managed references. However, the garbage collector is aware of the location of all managed
references, and automatically updates them to indicate the current location of the objects on the heap.

Because native C++ pointers ( * ) and references ( & ) are not managed references, the garbage collector cannot
automatically update the addresses they point to. To solve this problem, use the handle declarator to specify a
variable that the garbage collector is aware of and can update automatically.

For more information, see How to: Declare Handles in Native Types.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/handle-to-object-operator-hat-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/overview-of-declarators
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-declare-handles-in-native-types


// mcppv2_handle.cpp
// compile with: /clr
ref class MyClass {
public:
   MyClass() : i(){}
   int i;
   void Test() {
      i++;
      System::Console::WriteLine(i);
   }
};

int main() {
   MyClass ^ p_MyClass = gcnew MyClass;
   p_MyClass->Test();

   MyClass ^ p_MyClass2;
   p_MyClass2 = p_MyClass;

   p_MyClass = nullptr;
   p_MyClass2->Test();
}

1
2

// mcppv2_handle_2.cpp
// compile with: /clr
using namespace System;

void Test(Object^ o) {
   Int32^ i = dynamic_cast<Int32^>(o);

   if(i)
      Console::WriteLine(i);
   else
      Console::WriteLine("Not a boxed int");
}

int main() {
   String^ str = "test";
   Test(str);

   int n = 100;
   Test(n);
}

Not a boxed int
100

This sample shows how to create an instance of a reference type on the managed heap. This sample also shows
that you can initialize one handle with another, resulting in two references to same object on managed, garbage-
collected heap. Notice that assigning nullptr to one handle does not mark the object for garbage collection.

The following sample shows how to declare a handle to an object on the managed heap, where the type of object
is a boxed value type. The sample also shows how to get the value type from the boxed object.

This sample shows that the common C++ idiom of using a void*  pointer to point to an arbitrary object is
replaced by Object^ , which can hold a handle to any reference class. It also shows that all types, such as arrays



// mcppv2_handle_3.cpp
// compile with: /clr
using namespace System;
using namespace System::Collections;
public delegate void MyDel();
ref class MyClass {
public:
   void Test() {}
};

void Test(Object ^ x) {
   Console::WriteLine("Type is {0}", x->GetType());
}

int main() {
   // handle to Object can hold any ref type
   Object ^ h_MyClass = gcnew MyClass;

   ArrayList ^ arr = gcnew ArrayList();
   arr->Add(gcnew MyClass);

   h_MyClass = dynamic_cast<MyClass ^>(arr[0]);
   Test(arr);

   Int32 ^ bi = 1;
   Test(bi);

   MyClass ^ h_MyClass2 = gcnew MyClass;

   MyDel^ DelInst = gcnew MyDel(h_MyClass2, &MyClass::Test);
   Test(DelInst);
}

Type is System.Collections.ArrayList

Type is System.Int32

Type is MyDel

and delegates, can be converted to an object handle.

This sample shows that a handle can be dereferenced and that a member can be accessed via a dereferenced
handle.



// mcppv2_handle_4.cpp
// compile with: /clr
using namespace System;
value struct DataCollection {
private:
   int Size;
   array<String^>^ x;

public:
   DataCollection(int i) : Size(i) {
      x = gcnew array<String^>(Size);
      for (int i = 0 ; i < Size ; i++)
         x[i] = i.ToString();
   }

   void f(int Item) {
      if (Item >= Size)
      {
         System::Console::WriteLine("Cannot access array element {0}, size is {1}", Item, Size);
         return;
      }
      else
         System::Console::WriteLine("Array value: {0}", x[Item]);
   }
};

void f(DataCollection y, int Item) {
   y.f(Item);
}

int main() {
   DataCollection ^ a = gcnew DataCollection(10);
   f(*a, 7);   // dereference a handle, return handle's object
   (*a).f(11);   // access member via dereferenced handle
}

Array value: 7

Cannot access array element 11, size is 10

// mcppv2_handle_5.cpp
// compile with: /clr
ref struct A {
   void Test(unsigned int &){}
   void Test2(unsigned int %){}
   unsigned int i;
};

int main() {
   A a;
   a.i = 9;
   a.Test(a.i);   // C2664
   a.Test2(a.i);   // OK

   unsigned int j = 0;
   a.Test(j);   // OK
}

This sample shows that a native reference ( & ) can’t bind to an int member of a managed type, as the int might be
stored in the garbage collected heap, and native references don’t track object movement in the managed heap. The
fix is to use a local variable, or to change &  to % , making it a tracking reference.



RequirementsRequirements

See Also

Compiler option: /clr

Component Extensions for .NET and UWP
Tracking Reference Operator



abstract (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

All Platforms
SyntaxSyntax

RemarksRemarks

Windows Runtime

RequirementsRequirements

Common Language Runtime
RequirementsRequirements

ExamplesExamples

The abstract keyword declares either :

A type can be used as a base type, but the type itself cannot be instantiated.

A type member function can be defined only in a derived type.

class-declaration class-identifier abstract {}

virtual return-type member-function-identifier () abstract ;

The first example syntax declares a class to be abstract. The class-declaration component can be either a native
C++ declaration (class or struct), or a C++ extension declaration (ref class or ref struct) if the /ZW  or /clr

compiler option is specified.

The second example syntax declares a virtual member function to be abstract. Declaring a function abstract is the
same as declaring it a pure virtual function. Declaring a member function abstract also causes the enclosing class
to be declared abstract.

The abstract keyword is supported in native and platform-specific code; that is, it can be compiled with or without
the /ZW  or /clr  compiler option.

You can detect at compile time if a type is abstract with the __is_abstract(type)  type trait. For more information,
see Compiler Support for Type Traits.

The abstract keyword is a context-sensitive override specifier. For more information about context-sensitive
keywords, see Context-Sensitive Keywords. For more information about override specifiers, see How to: Declare
Override Specifiers in Native Compilations.

For more information, see Ref classes and structs.

Compiler option: /ZW

Compiler option: /clr

The following code example generates an error because class X  is marked abstract.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/abstract-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-declare-override-specifiers-in-native-compilations-cpp-cli


// abstract_keyword.cpp
// compile with: /clr
ref class X abstract {
public:
   virtual void f() {}
};

int main() {
   X ^ MyX = gcnew X;   // C3622
}

// abstract_keyword_2.cpp
class X abstract {
public:
   virtual void f() {}
};

int main() {
   X * MyX = new X; // C3622: 'X': a class declared as 'abstract'
                    // cannot be instantiated. See declaration of 'X'}

// abstract_keyword_3.cpp
// compile with: /clr
ref class X {
public:
   virtual void f() abstract {}   // C3634
   virtual void g() = 0 {}   // C3634
};

See Also

The following code example generates an error because it instantiates a native class that is marked abstract. This
error will occur with or without the /clr  compiler option.

The following code example generates an error because function f  includes a definition but is marked abstract.
The final statement in the example shows that declaring an abstract virtual function is equivalent to declaring a
pure virtual function.

Component Extensions for .NET and UWP



Arrays (C++/CLI and C++/CX)
10/31/2018 • 4 minutes to read • Edit Online

All Platforms

Windows Runtime

SyntaxSyntax

[qualifiers] [Platform::]Array<[qualifiers] array-type [,rank]>^ identifier =
    ref new[Platform::]Array<initialization-type> [{initialization-list [,...]}]

[qualifiers] [Platform::]Array<[qualifiers] array-type [,rank]>^ identifier =
    {initialization-list [,...]}

The Platform::Array<T>  type in C++/CX, or the array keyword in C++/CLI, declares an array of a specified type
and initial value.

The array must be declared by using the handle-to-object (^) modifier after the closing angle bracket (>) in the
declaration. The number of elements of the array is not part of the type. One array variable can refer to arrays of
different sizes.

Unlike standard C++, subscripting is not a synonym for pointer arithmetic and is not commutative.

For more information about arrays, see:

How to: Use Arrays in C++/CLI

Variable Argument Lists (...) (C++/CLI)

Arrays are members of the Platform  namespace. Arrays can be only one-dimensional.

The first example of the syntax uses the ref new aggregate keyword to allocate an array. The second example
declares a local array.

qualifiers
(Optional) One or more of these storage class specifiers: mutable, volatile, const, extern, static.

array-type
The type of the array variable. Valid types are Windows Runtime classes and fundamental types, ref classes and
structs, value classes and structs, and native pointers ( type* ).

rank
(Optional) The number of dimensions of the array. Must be 1.

identifier
The name of the array variable.

initialization-type
The type of the values that initialize the array. Typically, array-type and initialization-type are the same type.
However, the types can be different if there is a conversion from initialization-type to array-type—for example, if
initialization-type is derived from array-type.

initialization-list

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/arrays-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-use-arrays-in-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/mutable-data-members-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/volatile-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/const-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/using-extern-to-specify-linkage
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/static-members-cpp


RemarksRemarks

RequirementsRequirements

ExamplesExamples

// cwr_array.cpp
// compile with: /ZW
using namespace Platform;
ref class MyClass {};
int main() {
   // one-dimensional array
   Array<MyClass^>^ My1DArray = ref new Array<MyClass^>(100);
   My1DArray[99] = ref new MyClass();
}

Common Language Runtime
SyntaxSyntax

[qualifiers] [cli::]array<[qualifiers] array-type [,rank]>^ identifier =
    gcnew [cli::]array<initialization-type[,rank]>(rank-size-list[,...]) [{initialization-list [,...]}]

[qualifiers] [cli::]array<[qualifiers] array-type [,rank]>^ identifier =
    {initialization-list [,...]}

(Optional) A comma-delimited list of values in curly brackets that initialize the elements of the array. For example,
if rank-size-list were (3) , which declares a one-dimensional array of 3 elements, initialization list could be 
{1,2,3} .

You can detect at compile time whether a type is a reference-counted array with __is_ref_array(type) . For more
information, see Compiler Support for Type Traits.

Compiler option: /ZW

The following example creates a one-dimensional array that has 100 elements.

The first example of the syntax uses the gcnew keyword to allocate an array. The second example declares a local
array.

qualifiers
(Optional) One or more of these storage class specifiers: mutable, volatile, const, extern, static.

array-type
The type of the array variable. Valid types are Windows Runtime classes and fundamental types, ref classes and
structs, value classes and structs, native pointers ( type* ), and native POD (plain old data) types.

rank
(Optional) The number of dimensions of the array. The default is 1; the maximum is 32. Each dimension of the
array is itself an array.

identifier
The name of the array variable.

initialization-type
The type of the values that initialize the array. Typically, array-type and initialization-type are the same type.
However, the types can be different if there is a conversion from initialization-type to array-type—for example, if
initialization-type is derived from array-type.

rank-size-list

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/mutable-data-members-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/volatile-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/const-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/using-extern-to-specify-linkage
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/static-members-cpp


RemarksRemarks

RequirementsRequirements

ExamplesExamples

// clr_array.cpp
// compile with: /clr
ref class MyClass {};
int main() {
   // one-dimensional array
   array<MyClass ^> ^ My1DArray = gcnew array<MyClass ^>(100);
   My1DArray[99] = gcnew MyClass();

   // three-dimensional array
   array<MyClass ^, 3> ^ My3DArray = gcnew array<MyClass ^, 3>(3, 5, 6);
   My3DArray[0,0,0] = gcnew MyClass();
}

See Also

A comma-delimited list of the size of each dimension in the array. Alternatively, if the initialization-list parameter is
specified, the compiler can deduce the size of each dimension and rank-size-list can be omitted.

initialization-list
(Optional) A comma-delimited list of values in curly brackets that initialize the elements of the array. Or a comma-
delimited list of nested initialization-list items that initialize the elements in a multi-dimensional array.

For example, if rank-size-list were (3) , which declares a one-dimensional array of 3 elements, initialization list
could be {1,2,3} . If rank-size-list were (3,2,4) , which declares a three-dimensional array of 3 elements in the
first dimension, 2 elements in the second, and 4 elements in the third, initialization-list could be 
{{1,2,3},{0,0},{-5,10,-21,99}} .)

array is in the Platform, default, and cli Namespaces namespace.

Like standard C++, the indices of an array are zero-based, and an array is subscripted by using square brackets
([]). Unlike standard C++, the indices of a multi-dimensional array are specified in a list of indices for each
dimension instead of a set of square-bracket ([]) operators for each dimension. For example, identifier[index1,
index2] instead of identifier[index1][ index2].

All managed arrays inherit from System::Array . Any method or property of System::Array  can be applied directly
to the array variable.

When you allocate an array whose element type is pointer-to a managed class, the elements are 0-initialized.

When you allocate an array whose element type is a value type V , the default constructor for V  is applied to
each array element. For more information, see .NET Framework Equivalents to C++ Native Types (C++/CLI).

At compile time, you can detect whether a type is a common language runtime (CLR) array with 
__is_ref_array(type) . For more information, see Compiler Support for Type Traits.

Compiler option: /clr

The following example creates a one-dimensional array that has 100 elements, and a three-dimensional array that
has 3 elements in the first dimension, 5 elements in the second, and 6 elements in the third.

Component Extensions for .NET and UWP

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/dotnet-framework-equivalents-to-cpp-native-types-cpp-cli


Boxing (C++/CLI and C++/CX)
10/31/2018 • 3 minutes to read • Edit Online

All Runtimes

Windows Runtime

  Platform::Object^
  object_variable  = value_variable;
value_variable = (value_type) object_variable;

RequirementsRequirements

ExamplesExamples

The conversion of value types to objects is called boxing, and the conversion of objects to value types is called
unboxing.

(There are no remarks for this language feature that apply to all runtimes.)

C++/CX supports a shorthand syntax for boxing value types and unboxing reference types. A value type is boxed
when it is assigned to a variable of type Object . An Object  variable is unboxed when it is assigned to a value type
variable and the unboxed type is specified in parentheses; that is, when the object variable is cast to a value type.

Compiler option: /ZW

The following code example boxes and unboxes a DateTime  value. First, the example obtains a DateTime  value that
represents the current date and time and assigns it to a DateTime  variable. Then the DateTime  is boxed by
assigning it to an Object  variable. Finally, the boxed value is unboxed by assigning it to another DateTime

variable.

To test the example, create a BlankApplication  project, replace the BlankPage::OnNavigatedTo()  method, and then
specify breakpoints at the closing bracket and the assignment to variable str1 . When the example reaches the
closing bracket, examine str1 .

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/boxing-cpp-component-extensions.md


void BlankPage::OnNavigatedTo(NavigationEventArgs^ e)
{
    using namespace Windows::Globalization::DateTimeFormatting;

    Windows::Foundation::DateTime dt, dtAnother;
    Platform::Object^ obj1;

    Windows::Globalization::Calendar^ c =
        ref new Windows::Globalization::Calendar;
    c->SetToNow();
    dt = c->GetDateTime();
    auto dtf = ref new DateTimeFormatter(
                           YearFormat::Full,
                           MonthFormat::Numeric,
                           DayFormat::Default,
                           DayOfWeekFormat::None);
    String^ str1 = dtf->Format(dt);
    OutputDebugString(str1->Data());
    OutputDebugString(L"\r\n");

    // Box the value type and assign to a reference type.
    obj1 = dt;
    // Unbox the reference type and assign to a value type.
    dtAnother = (Windows::Foundation::DateTime) obj1;

    // Format the DateTime for display.
    String^ str2 = dtf->Format(dtAnother);
    OutputDebugString(str2->Data());
}

Common Language Runtime

RequirementsRequirements

ExamplesExamples

// vcmcppv2_explicit_boxing2.cpp
// compile with: /clr
using namespace System;

ref class A {
public:
   void func(System::Object^ o){Console::WriteLine("in A");}

For more information, see Boxing (C++/CX).

The compiler boxes value types to Object. This is possible because of a compiler-defined conversion to convert
value types to Object.

Boxing and unboxing enable value types to be treated as objects. Value types, including both struct types and built-
in types such as int, can be converted to and from the type Object.

For more information, see:

How to: Explicitly Request Boxing

How to: Use gcnew to Create Value Types and Use Implicit Boxing

How to: Unbox

Standard Conversions and Implicit Boxing

Compiler option: /clr

The following sample shows how implicit boxing works.

https://msdn.microsoft.com/library/windows/apps/hh969554.aspx
https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-explicitly-request-boxing
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-use-gcnew-to-create-value-types-and-use-implicit-boxing
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-unbox
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/standard-conversions-and-implicit-boxing


   void func(System::Object^ o){Console::WriteLine("in A");}
};

value class V {};

interface struct IFace {
   void func();
};

value class V1 : public IFace {
public:
   virtual void func() {
      Console::WriteLine("Interface function");
   }
};

value struct V2 {
   // conversion operator to System::Object
   static operator System::Object^(V2 v2) {
      Console::WriteLine("operator System::Object^");
      return (V2^)v2;
   }
};

void func1(System::Object^){Console::WriteLine("in void func1(System::Object^)");}
void func1(V2^){Console::WriteLine("in func1(V2^)");}

void func2(System::ValueType^){Console::WriteLine("in func2(System::ValueType^)");}
void func2(System::Object^){Console::WriteLine("in func2(System::Object^)");}

int main() {
   // example 1 simple implicit boxing
   Int32^ bi = 1;
   Console::WriteLine(bi);

   // example 2 calling a member with implicit boxing
   Int32 n = 10;
   Console::WriteLine("xx = {0}", n.ToString());

   // example 3 implicit boxing for function calls
   A^ a = gcnew A;
   a->func(n);

   // example 4 implicit boxing for WriteLine function call
   V v;
   Console::WriteLine("Class {0} passed using implicit boxing", v);
   Console::WriteLine("Class {0} passed with forced boxing", (V^)(v));   // force boxing

   // example 5 casting to a base with implicit boxing
   V1 v1;
   IFace ^ iface = v1;
   iface->func();

   // example 6 user-defined conversion preferred over implicit boxing for function-call parameter matching
   V2 v2;
   func1(v2);   // user defined conversion from V2 to System::Object preferred over implicit boxing
                // Will call void func1(System::Object^);

   func2(v2);   // OK: Calls "static V2::operator System::Object^(V2 v2)"
   func2((V2^)v2);   // Using explicit boxing: calls func2(System::ValueType^)
}



1

xx = 10

in A

Class V passed using implicit boxing

Class V passed with forced boxing

Interface function

in func1(V2^)

in func2(System::ValueType^)

in func2(System::ValueType^)

See Also
Component Extensions for .NET and UWP



ref class and ref struct (C++/CLI and C++/CX)
11/9/2018 • 3 minutes to read • Edit Online

All Runtimes
SyntaxSyntax

      class_access
      ref class
      name
      modifier :  inherit_accessbase_type {};
class_accessref structnamemodifier :  inherit_accessbase_type {};
class_accessvalue classnamemodifier :  inherit_accessbase_type {};
class_accessvalue structnamemodifier :  inherit_accessbase_type {};

ParametersParameters

RemarksRemarks

The ref class or ref struct extensions declare a class or struct whose object lifetime is administered automatically.
When the object is no longer accessible or goes out of scope, the memory is released.

class_access
(Optional) The accessibility of the class or struct outside the assembly. Possible values are public and private
(private is the default). Nested classes or structs cannot have a class_access specifier.

name
The name of the class or struct.

modifier
(Optional) abstract and sealed are valid modifiers.

inherit_access
(Optional) The accessibility of base_type. The only permitted accessibility is public (public is the default).

base_type
(Optional) A base type. However, a value type cannot act as a base type.

For more information, see the language-specific descriptions of this parameter in the Windows Runtime and
Common Language Runtime sections.

The default member accessibility of an object declared with ref class or value class is private. And the default
member accessibility of an object declared with ref struct or value struct is public.

When a reference type inherits from another reference type, virtual functions in the base class must explicitly be
overridden (with override) or hidden (with new (new slot in vtable)). The derived class functions must also be
explicitly marked as virtual.

To detect at compile time whether a type is a ref class or ref struct, or a value class or value struct, use 
__is_ref_class (type) , __is_value_class (type) , or __is_simple_value_class (type) . For more information, see

Compiler Support for Type Traits.

For more information on classes and structs, see

Instantiating Classes and Structs

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/classes-and-structs-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-define-and-consume-classes-and-structs-cpp-cli


Windows Runtime
RemarksRemarks

ParametersParameters

RequirementsRequirements

Common Language Runtime
RemarksRemarks

ParametersParameters

RequirementsRequirements

See Also

C++ Stack Semantics for Reference Types

Classes, Structures, and Unions

Destructors and finalizers in How to: Define and consume classes and structs (C++/CLI)

User-Defined Operators (C++/CLI)

User-Defined Conversions (C++/CLI)

How to: Wrap Native Class for Use by C#

Generic Classes (C++/CLI)

See Ref classes and structs and Value classes and structs.

base_type
(Optional) A base type. A ref class or ref struct can inherit from zero or more interfaces and zero or one ref
types. A value class or value struct can only inherit from zero or more interfaces.

When you declare an object by using the ref class or ref struct keywords, the object is accessed by a handle to an
object; that is, a reference-counter pointer to the object. When the declared variable goes out of scope, the
compiler automatically deletes the underlying object. When the object is used as a parameter in a call or is stored
in a variable, a handle to the object is actually passed or stored.

When you declare an object by using the value class or value struct keywords, the object lifetime of the declared
object is not supervised. The object is like any other standard C++ class or struct.

Compiler option: /ZW

The following table lists differences from the syntax shown in the All Runtimes section that are specific to
C++/CLI.

base_type
(Optional) A base type. A ref class or ref struct can inherit from zero or more managed interfaces and zero or
one ref types. A value class or value struct can only inherit from zero or more managed interfaces.

The ref class and ref struct keywords tell the compiler that the class or structure is to be allocated on the heap.
When the object is used as a parameter in a call or is stored in a variable, a reference to the object is actually
passed or stored.

The value class and value struct keywords tells the compiler that the value of the allocated class or structure is
passed to functions or stored in members.

Compiler option: /clr

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/cpp-stack-semantics-for-reference-types
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/classes-and-structs-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-define-and-consume-classes-and-structs-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/user-defined-operators-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/user-defined-conversions-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-wrap-native-class-for-use-by-csharp
https://msdn.microsoft.com/library/windows/apps/hh699861.aspx


Component Extensions for .NET and UWP



Platform, default, and cli Namespaces (C++/CLI and
C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

All Runtimes

Windows Runtime

RequirementsRequirements

Common Language Runtime
SyntaxSyntax

using namespace cli;

RemarksRemarks

RequirementsRequirements

ExamplesExamples

A namespace qualifies the names of language elements so the names do not conflict with otherwise identical
names elsewhere in the source code. For example, a name collision might prevent the compiler from recognizing
Context-Sensitive Keywords. Namespaces are used by the compiler but are not preserved in the compiled
assembly.

Visual Studio provides a default namespace for your project when you create the project. You can manually
rename the namespace, although in C++/CX the name of the .winmd file must match the name of the root
namespace.

For more information, see Namespaces and type visibility (C++/CX).

Compiler option: /ZW

The C++/CLI supports the cli namespace. When compiling with /clr , the using statement in the Syntax section
is implied.

The following language features are in the cli namespace:

Arrays

interior_ptr (C++/CLI)

pin_ptr (C++/CLI)

safe_cast

Compiler option: /clr

The following code example demonstrates that it is possible to use a symbol in the cli namespace as a user-
defined symbol in your code. However, once you have done so, you will have to explicitly or implicitly qualify your
references to the cli language element of the same name.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/platform-default-and-cli-namespaces-cpp-component-extensions.md
https://msdn.microsoft.com/library/windows/apps/hh969551.aspx


// cli_namespace.cpp
// compile with: /clr
using namespace cli;
int main() {
   array<int> ^ MyArray = gcnew array<int>(100);
   int array = 0;

   array<int> ^ MyArray2 = gcnew array<int>(100);   // C2062

   // OK
   cli::array<int> ^ MyArray2 = gcnew cli::array<int>(100);
   ::array<int> ^ MyArray3 = gcnew ::array<int>(100);
}

See Also
Component Extensions for .NET and UWP



Compiler Support for Type Traits (C++/CLI and
C++/CX)
10/31/2018 • 6 minutes to read • Edit Online

All Runtimes
RemarksRemarks

The Microsoft C++ compiler supports type traits for C++/CLI and C++/CX extensions, which indicate various
characteristics of a type at compile time.

Type traits are especially useful to programmers who write libraries.

The following list contains the type traits that are supported by the compiler. All type traits return false if the
condition specified by the name of the type trait is not met.

(In the following list, code examples are written only in C++/CLI. But the corresponding type trait is also
supported in C++/CX unless stated otherwise. The term, "platform type" refers to either Windows Runtime types
or common language runtime types.)

ref struct R {
void operator=(R% r) {}
};

int main() {
System::Console::WriteLine(__has_assign(R));
}

ref struct R {
R(R% r) {}
};

int main() {
System::Console::WriteLine(__has_copy(R));
}

__has_assign(  type )

Returns true if the platform or native type has a copy assignment operator.

__has_copy(  type )

Returns true if the platform or native type has a copy constructor.

__has_finalizer(  type )

(Not supported in C++/CX.) Returns true if the CLR type has a finalizer. See Destructors and finalizers in
How to: Define and consume classes and structs (C++/CLI) for more information.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/compiler-support-for-type-traits-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-define-and-consume-classes-and-structs-cpp-cli


using namespace System;
ref struct R {
~R() {}
protected:
!R() {}
};

int main() {
Console::WriteLine(__has_finalizer(R));
}

#include <stdio.h>
struct S {
void operator=(S& r) throw() {}
};

int main() {
__has_nothrow_assign(S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {
S() throw() {}
};

int main() {
__has_nothrow_constructor(S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {
S(S& r) throw() {}
};

int main() {
__has_nothrow_copy(S) == true ?
printf("true\n") : printf("false\n");
}

__has_nothrow_assign(  type )

Returns true if a copy assignment operator has an empty exception specification.

__has_nothrow_constructor(  type )

Returns true if the default constructor has an empty exception specification.

__has_nothrow_copy(  type )

Returns true if the copy constructor has an empty exception specification.

__has_trivial_assign(  type )

Returns true if the type has a trivial, compiler-generated assignment operator.



#include <stdio.h>
struct S {};

int main() {
__has_trivial_assign(S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {};

int main() {
__has_trivial_constructor(S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {};

int main() {
__has_trivial_copy(S) == true ?
printf("true\n") : printf("false\n");
}

// has_trivial_destructor.cpp
#include <stdio.h>
struct S {};

int main() {
__has_trivial_destructor(S) == true ?
printf("true\n") : printf("false\n");
}

// has_user_destructor.cpp

using namespace System;
ref class R {
~R() {}
};

int main() {
Console::WriteLine(__has_user_destructor(R));
}

__has_trivial_constructor(  type )

Returns true if the type has a trivial, compiler-generated constructor.

__has_trivial_copy(  type )

Returns true if the type has a trivial, compiler-generated copy constructor.

__has_trivial_destructor(  type )

Returns true if the type has a trivial, compiler-generated destructor.

__has_user_destructor(  type )

Returns true if the platform or native type has a user-declared destructor.



// has_virtual_destructor.cpp
#include <stdio.h>
struct S {
virtual ~S() {}
};

int main() {
__has_virtual_destructor(S) == true ?
printf("true\n") : printf("false\n");
}

// is_abstract.cpp
#include <stdio.h>
struct S {
virtual void Test() = 0;
};

int main() {
__is_abstract(S) == true ?
printf("true\n") : printf("false\n");
}

// is_base_of.cpp
#include <stdio.h>
struct S {};
struct T : public S {};

int main() {
__is_base_of(S, T) == true ?
printf("true\n") : printf("false\n");

__is_base_of(S, S) == true ?
printf("true\n") : printf("false\n");
}

__has_virtual_destructor(  type )

Returns true if the type has a virtual destructor.

__has_virtual_destructor  also works on platform types, and any user-defined destructor in a platform
type is a virtual destructor.

__is_abstract(  type )

Returns true if the type is an abstract type. For more information on native abstract types, see Abstract
Classes.

__is_abstract  also works for platform types. An interface with at least one member is an abstract type, as
is a reference type with at least one abstract member. For more information on abstract platform types, see
abstract.

__is_base_of(  base  ,  derived  )

Returns true if the first type is a base class of the second type, of if both types are the same.

__is_base_of  also works on platform types. For example, it will return true if the first type is an interface
class and the second type implements the interface.

__is_class(  type )

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/abstract-classes-cpp


#include <stdio.h>
struct S {};

int main() {
__is_class(S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {};
struct T : public S {};

int main() {
S * s = new S;
T * t = new T;
s = t;
__is_convertible_to(T, S) == true ?
printf("true\n") : printf("false\n");
}

delegate void MyDel();
int main() {
System::Console::WriteLine(__is_delegate(MyDel));
}

#include <stdio.h>
struct S {
int Test() {}
static int i;
};
int main() {
__is_empty(S) == true ?
printf("true\n") : printf("false\n");
}

Returns true if the type is a native class or struct.

__is_convertible_to(  from  ,  to  )

Returns true if the first type can be converted to the second type.

__is_delegate(  type )

Returns true if type  is a delegate. For more information, see delegate (C++/CLI and C++/CX).

__is_empty(  type )

Returns true if the type has no instance data members.

__is_enum(  type )

Returns true if the type is a native enum.



// is_enum.cpp
#include <stdio.h>
enum E { a, b };

struct S {
enum E2 { c, d };
};

int main() {
__is_enum(E) == true ?
printf("true\n") : printf("false\n");

__is_enum(S::E2) == true ?
printf("true\n") : printf("false\n");
}

// is_interface_class.cpp

using namespace System;
interface class I {};
int main() {
Console::WriteLine(__is_interface_class(I));
}

#include <stdio.h>
struct S {};

int main() {
__is_pod(S) == true ?
printf("true\n") : printf("false\n");
}

#include <stdio.h>
struct S {
virtual void Test(){}
};

int main() {
__is_polymorphic(S) == true ?
printf("true\n") : printf("false\n");
}

__is_interface_class(  type )

Returns true if passed a platform interface. For more information, see interface class.

__is_pod(  type )

Returns true if the type is a class or union with no constructor or private or protected non-static members,
no base classes, and no virtual functions. See the C++ standard, sections 8.5.1/1, 9/4, and 3.9/10 for more
information on PODs.

__is_pod  will return false on fundamental types.

__is_polymorphic(  type )

Returns true if a native type has virtual functions.

__is_ref_array(  type )



using namespace System;
int main() {
array<int>^ x = gcnew array<int>(10);
Console::WriteLine(__is_ref_array(array<int>));
}

using namespace System;
ref class R {};
int main() {
Console::WriteLine(__is_ref_class(Buffer));
Console::WriteLine(__is_ref_class(R));
}

ref class R sealed{};
int main() {
System::Console::WriteLine(__is_sealed(R));
}

using namespace System;
ref class R {};
value struct V {};
value struct V2 {
R ^ r;   // not a simnple value type
};

int main() {
Console::WriteLine(__is_simple_value_class(V));
Console::WriteLine(__is_simple_value_class(V2));
}

Returns true if passed a platform array. For more information, see Arrays.

__is_ref_class(  type )

Returns true if passed a reference class. For more information on user-defined reference types, see
Classes and Structs.

__is_sealed(  type )

Returns true if passed a platform or native type marked sealed. For more information, see sealed.

__is_simple_value_class(  type )

Returns true if passed a value type that contains no references to the garbage-collected heap. For more
information on user-defined value types, see Classes and Structs.

__is_union(  type )

Returns true if a type is a union.



Windows Runtime
RemarksRemarks

RequirementsRequirements

Common Language Runtime
RemarksRemarks

RequirementsRequirements

ExamplesExamples

#include <stdio.h>
union A {
int i;
float f;
};

int main() {
__is_union(A) == true ?
printf("true\n") : printf("false\n");
}

value struct V {};

int main() {
System::Console::WriteLine(__is_value_class(V));
}

__is_value_class(  type )

Returns true if passed a value type. For more information on user-defined value types, see Classes and
Structs.

The __has_finalizer( type )  type trait is not supported because this platform does not support finalizers.

Compiler option: /ZW

(There are no platform-specific remarks for this feature.)

Compiler option: /clr

Example

The following code example shows how to use a class template to expose a compiler type trait for a /clr

compilation. For more information, see Windows Runtime and Managed Templates.



// compiler_type_traits.cpp
// compile with: /clr
using namespace System;

template <class T>
ref struct is_class {
   literal bool value = __is_ref_class(T);
};

ref class R {};

int main () {
   if (is_class<R>::value)
      Console::WriteLine("R is a ref class");
   else
      Console::WriteLine("R is not a ref class");
}

R is a ref class

See Also
Component Extensions for .NET and UWP



Context-Sensitive Keywords (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

All Runtimes
RemarksRemarks

Windows Runtime
RemarksRemarks

RequirementsRequirements

Common Language Runtime
RemarksRemarks

RequirementsRequirements

ExamplesExamples

Context-sensitive keywords are language elements that are recognized only in specific contexts. Outside the
specific context, a context-sensitive keyword can be a user-defined symbol.

The following is a list of context-sensitive keywords:

abstract

delegate

event

finally

for each, in

initonly

internal

literal

override

property

sealed

where  (part of Generics)

For readability purposes, you may want to limit your use of context-sensitive keywords as user-defined symbols.

(There are no platform-specific remarks for this feature.)

Compiler option: /ZW

(There are no platform-specific remarks for this feature.)

Compiler option: /clr

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/context-sensitive-keywords-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/finally
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/for-each-in
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/initonly-cpp-cli


// context_sensitive_keywords.cpp
// compile with: /clr
public ref class C {
   int MyInt;
public:
   C() : MyInt(99) {}

   property int Property_Block {   // context-sensitive keyword
      int get() { return MyInt; }
   }
};

int main() {
   int property = 0;               // variable name
   C ^ MyC = gcnew C();
   property = MyC->Property_Block;
   System::Console::WriteLine(++property);
}

100

See Also

The following code example shows that in the appropriate context, the property context-sensitive keyword can be
used to define a property and a variable.

Component Extensions for .NET and UWP



delegate (C++/CLI and C++/CX)
10/31/2018 • 3 minutes to read • Edit Online

All Runtimes

RemarksRemarks

Windows Runtime

SyntaxSyntax

access
delegate
return-type
delegate-type-identifier
(
[ parameters ]
)

ParametersParameters

RemarksRemarks

RequirementsRequirements

Common Language Runtime

Declares a type that represents a function pointer.

Both the Windows Runtime and common language runtime support delegates.

delegate is a context-sensitive keyword. For more information, see Context-Sensitive Keywords.

To detect at compile time if a type is a delegate, use the __is_delegate()  type trait. For more information, see
Compiler Support for Type Traits.

C++/CX supports delegates with the following syntax.

access
(optional) The accessibility of the delegate, which can be public (the default) or private. The function prototype
can also be qualified with the const or volatile keywords.

return-type
The return type of the function prototype.

delegate-type-identifier
The name of the declared delegate type.

parameters
(Optional) The types and identifiers of the function prototype.

Use the delegate-type-identifier to declare an event with the same prototype as the delegate. For more
information, see Delegates (C++/CX).

Compiler option: /ZW

The common language runtime supports delegates with the following syntax.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/delegate-cpp-component-extensions.md


SyntaxSyntax

access
delegate
function_declaration

ParametersParameters

RemarksRemarks

RequirementsRequirements

access
(optional) The accessibility of the delegate outside of the assembly can be public or private. The default is private.
Inside a class, a delegate can have any accessibility.

function_declaration
The signature of the function that can be bound to the delegate. The return type of a delegate can be any
managed type. For interoperability reasons, it is recommended that the return type of a delegate be a CLS type.

To define an unbound delegate, the first parameter in function_declaration should be the type of the this pointer
for the object.

Delegates are multicast: the "function pointer" can be bound to one or more methods within a managed class. The
delegate keyword defines a multicast delegate type with a specific method signature.

A delegate can also be bound to a method of a value class, such as a static method.

A delegate has the following characteristics:

It inherits from System::MulticastDelegate .

It has a constructor that takes two arguments: a pointer to a managed class or NULL (in the case of binding
to a static method) and a fully qualified method of the specified type.

It has a method called Invoke , whose signature matches the declared signature of the delegate.

When a delegate is invoked, its function(s) are called in the order they were attached.

The return value of a delegate is the return value from its last attached member function.

Delegates cannot be overloaded.

Delegates can be bound or unbound.

When you instantiate a bound delegate, the first argument shall be an object reference. The second argument of a
delegate instantiation shall either be the address of a method of a managed class object, or a pointer to a method
of a value type. The second argument of a delegate instantiation must name the method with the full class scope
syntax and apply the address-of operator.

When you instantiate an unbound delegate, the first argument shall either be the address of a method of a
managed class object, or a pointer to a method of a value type. The argument must name the method with the full
class scope syntax and apply the address-of operator.

When creating a delegate to a static or global function, only one parameter is required: the function (optionally,
the address of the function).

For more information on delegates, see

How to: Define and Use Delegates (C++/CLI)

Generic Delegates (C++/CLI)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-define-and-use-delegates-cpp-cli


ExamplesExamples

// mcppv2_delegate.cpp
// compile with: /clr
using namespace System;

// declare a delegate
public delegate void MyDel(int i);

ref class A {
public:
   void func1(int i) {
      Console::WriteLine("in func1 {0}", i);
   }

   void func2(int i) {
      Console::WriteLine("in func2 {0}", i);
   }

   static void func3(int i) {
      Console::WriteLine("in static func3 {0}", i);
   }
};

int main () {
   A ^ a = gcnew A;

   // declare a delegate instance
   MyDel^ DelInst;

   // test if delegate is initialized
   if (DelInst)
      DelInst(7);

   // assigning to delegate
   DelInst = gcnew MyDel(a, &A::func1);

   // invoke delegate
   if (DelInst)
      DelInst(8);

   // add a function
   DelInst += gcnew MyDel(a, &A::func2);

   DelInst(9);

   // remove a function
   DelInst -= gcnew MyDel(a, &A::func1);

   // invoke delegate with Invoke
   DelInst->Invoke(10);

   // make delegate to static function
   MyDel ^ StaticDelInst = gcnew MyDel(&A::func3);
   StaticDelInst(11);
}

Compiler option: /clr

The following example shows how to declare, initialize, and invoke delegates.



in func1 8

in func1 9

in func2 9

in func2 10

in static func3 11

See Also
Component Extensions for .NET and UWP



enum class (C++/CLI and C++/CX)
3/5/2019 • 4 minutes to read • Edit Online

All Runtimes
RemarksRemarks

Windows Runtime
SyntaxSyntax

      access
      enum class
      enumeration-identifier
      [:underlying-type] { enumerator-list } [var];
accessenum structenumeration-identifier[:underlying-type] { enumerator-list } [var];

ParametersParameters

RemarksRemarks

Declares an enumeration at namespace scope, which is a user-defined type consisting of a set of named constants
called enumerators.

C++/CX and C++/CLI support public enum class and private enum class which are similar to the standard
C++ enum class but with the addition of the accessibility specifier. Under /clr, the C++11 enum class type is
permitted but will generate warning C4472 which is intended to ensure that you really want the ISO enum type
and not the C++/CX and C++/CLI type. For more information about the ISO Standard C++ enum keyword, see
Enumerations.

access
The accessibility of the enumeration, which can be public or private.

enumeration-identifier
The name of the enumeration.

underlying-type
(Optional) The underlying type of the enumeration.

(Optional. Windows Runtime only) The underlying type of the enumeration, which can be bool, char, char16 , 
int16 , uint16 , int, uint32 , int64 , or uint64 .

enumerator-list
A comma-delimited list of enumerator names.

The value of each enumerator is a constant expression that is either defined implicitly by the compiler, or explicitly
by the notation, enumerator = constant-expression. By default, the value of the first enumerator is zero if it is
implicitly defined. The value of each subsequent implicitly-defined enumerator is the value of the previous
enumerator + 1.

var
(Optional) The name of a variable of the enumeration type.

For more information, and examples, see Enums.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/enum-class-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/enumerations-cpp


RequirementsRequirements

Common Language Runtime
SyntaxSyntax

      access
      enum class
      name [:type] { enumerator-list } var;
accessenum structname [:type] { enumerator-list } var;

ParametersParameters

RemarksRemarks

public enum class day {sun, mon };

Note that the compiler emits error messages if the constant expression that defines the value of an enumerator
cannot be represented by the underlying-type. However, the compiler does not report an error for a value that is
inappropriate for the underlying type. For example:

If underlying-type is numeric, and an enumerator specifies the maximum value for that type, the value of
the next implicitly defined enumeratoin cannot be represented.

If underlying-type is bool, and more than two enumerators are implicitly defined, the enumerators after the
first two cannot be represented.

If underlying-type is char16 , and the enumeration value ranges from 0xD800 through 0xDFFF, the value
can be represented. However, the value logically incorrect because it represents half a Unicode surrogate
pair and should not appear in isolation.

Compiler option: /ZW

access
The accessibility of the enum. Can be either public or private.

enumerator-list
A comma-separated list of the identifiers (enumerators) in the enumeration.

name
The name of the enumeration. Anonymous managed enumerations are not allowed.

type
(Optional) The underlying type of the identifiers. This can be any scalar type, such as signed or unsigned versions
of int, short, or long. bool or char is also allowed.

var
(Optional) The name of a variable of the enumeration type.

enum class and enum struct are equivalent declarations.

There are two types of enums: managed or C++/CX and standard.

A managed or C++/CX enum might be defined as follows,

and is semantically equivalent to:



ref class day {
public:
   static const int sun = 0;
   static const int mon = 1;
};

enum day2 { sun, mon };

static const int sun = 0;
static const int mon = 1;

// mcppv2_enum.cpp
// compile with: /clr
enum E { a, b };
void f(E) {System::Console::WriteLine("hi");}

int main() {
   E myi = b;
   f(myi);
}

void f(int32);

void f(E)

A standard enum might be defined as follows:

and is semantically equivalent to:

Managed enumerator names (identifiers) are not injected into the scope where the enumeration is defined; all
references to the enumerators must be fully qualified (name :: identifier). For this reason, you cannot define an
anonymous managed enum.

The enumerators of a standard enum are strongly injected into the enclosing scope. That is, if there is another
symbol with the same name as an enumerator in the enclosing scope, the compiler will generate an error.

In Visual Studio 2002 and Visual Studio 2003, enumerators were weakly injected (visible in the enclosing scope
unless there was another identifier with the same name).

If a standard C++ enum is defined (without class or struct), compiling with /clr  will cause the enumeration to
be compiled as a managed enum. The enumeration still has the semantics of an unmanaged enumeration. Note,
the compiler injects an attribute, Microsoft::VisualC::NativeEnumAttribute  to identify a programmer's intent for the
enum to be a native enum. Other compilers will simply see the standard enum as a managed enum.

A named, standard enum compiled with /clr  will be visible in the assembly as a managed enum, and can be
consumed by any other managed compiler. However, an unnamed standard enum will not be publicly visible from
the assembly.

In Visual Studio 2002 and Visual Studio 2003, a standard enum used as the type in a function parameter:

would emit the following in MSIL for the function signature:

However, in current versions of the compiler, the standard enum is emitted as a managed enum with a
[NativeEnumAttribute] and the following in MSIL for the function signature:



RequirementsRequirements

ExamplesExamples

// mcppv2_enum_2.cpp
// compile with: /clr
// managed enum
public enum class m { a, b };

// standard enum
public enum n { c, d };

// unnamed, standard enum
public enum { e, f } o;

int main()
{
   // consume managed enum
   m mym = m::b;
   System::Console::WriteLine("no automatic conversion to int: {0}", mym);
   System::Console::WriteLine("convert to int: {0}", (int)mym);

   // consume standard enum
   n myn = d;
   System::Console::WriteLine(myn);

   // consume standard, unnamed enum
   o = f;
   System::Console::WriteLine(o);
}

no automatic conversion to int: b

convert to int: 1

1

1

See Also

For more information about native enums, see C++ Enumeration Declarations.

For more information on CLR enums, see:

Underlying Type of an Enum

Compiler option: /clr

Component Extensions for .NET and UWP

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/enumerations-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-define-and-consume-enums-in-cpp-cli


event (C++/CLI and C++/CX)
10/31/2018 • 6 minutes to read • Edit Online

All Runtimes

SyntaxSyntax

// event data member
modifiereventdelegate^ event_name;

// event block
modifiereventdelegate^ event_name
{
   modifierreturn_valueadd(delegate^ name);
   modifier void remove(delegate^ name);
   modifier void raise(parameters);
}

ParametersParameters

RemarksRemarks

The event keyword declares an event, which is a notification to registered subscribers (event handlers) that
something of interest has occurred.

C++/CX supports declaring an event member or an event block. An event member is shorthand for declaring an
event block. By default, an event member declares the add() , remove() , and raise()  functions that are declared
explicitly in an event block. To customize the functions in an event member, declare an event block instead and
then override the functions that you require.

modifier
A modifier that can be used on either the event declaration or an event accessor method. Possible values are static
and virtual.

delegate
The delegate, whose signature the event handler must match.

event_name
The name of the event.

return_value
The return value of the event accessor method. To be verifiable, the return type must be void.

parameters
(optional) Parameters for the raise  method, which match the signature of the delegate parameter.

An event is an association between a delegate and a member function (event handler) that responds to the
triggering of the event and allows clients from any class to register methods that comply with the signature and
return type of the underlying delegate.

There are two kinds of events declarations:

event data member
The compiler automatically creates storage for the event in the form of a member of the delegate type, and creates
internal add() , remove() , and raise()  member functions. An event data member must be declared inside a

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/event-cpp-component-extensions.md


Windows Runtime
RemarksRemarks

RequirementsRequirements

Common Language Runtime

SyntaxSyntax

// event data member
modifiereventdelegate^ event_name;

// event block
modifiereventdelegate^ event_name
{
   modifierreturn_valueadd(delegate^ name);
   modifier void remove(delegate^ name);
   modifier void raise(parameters);
}

ParametersParameters

class. The return type of the return type of the delegate must match the return type of the event handler.

event block
An event block enables you to explicitly declare and customize the behavior of the add() , remove() , and raise()

methods.

You can use operators+= and operator-= to add and remove an event handler, or call the add()  and remove()

methods explicitly.

event is a context-sensitive keyword; see Context-Sensitive Keywords for more information.

For more information, see Events (C++/CX).

If you intend to add and then remove an event handler, you must save the EventRegistrationToken structure that is
returned by the add operation. Then in the remove operation, you must use the saved EventRegistrationToken
structure to identify the event handler to be removed.

Compiler option: /ZW

The event keyword lets you declare an event. An event is a way for a class to provide notifications when
something of interest happens.

modifier
A modifier that can be used on either the event declaration or an event accessor method. Possible values are static
and virtual.

delegate
The delegate, whose signature the event handler must match.

event_name
The name of the event.

return_value
The return value of the event accessor method. To be verifiable, the return type must be void.

parameters
(optional) Parameters for the raise  method, which match the signature of the delegate parameter.

https://msdn.microsoft.com/library/windows/apps/hh755799.aspx


RemarksRemarks
An event is an association between a delegate and a member function (event handler) that responds to the
triggering of the event and allows clients from any class to register methods that comply with the signature and
return type of the underlying delegate.

The delegate can have one or more associated methods that will be called when your code indicates that the event
has occurred. An event in one program can be made available to other programs that target the .NET Framework
common language runtime.

There are two kinds of events declarations:

event data members
Storage for the event, in the form of a member of the delegate type, is created by the compiler for data member
events. An event data member must be declared inside a class. This is also known as a trivial event (see code
sample below.)

event blocks
Event blocks let you customize the behavior of the add, remove, and raise methods, by implementing add, remove,
and raise methods. The signature of the add, remove, and raise methods must match the signature of the delegate.
Event block events are not data members and any use as a data member will generate a compiler error.

The return type of the event handler must match the return type of the delegate.

In the .NET Framework, you can treat a data member as if it were a method itself (that is, the Invoke  method of its
corresponding delegate). You must predefine the delegate type for declaring a managed event data member. In
contrast, a managed event method implicitly defines the corresponding managed delegate if it is not already
defined. See the code sample at the end of this topic for an example.

When declaring a managed event, you can specify add and remove accessors that will be called when event
handlers are added or removed using operators += and -=. The add, remove and raise methods can be called
explicitly.

The following steps must be taken in order to create and use events in Visual C++:

1. Create or identify a delegate. If you are defining your own event, you must also ensure that there is a
delegate to use with the event keyword. If the event is predefined, in the .NET Framework for example,
then consumers of the event need only know the name of the delegate.

2. Create a class that contains:

An event created from the delegate.

(Optional) A method that verifies that an instance of the delegate declared with the event keyword
exists. Otherwise, this logic must be placed in the code that fires the event.

Methods that call the event. These methods can be overrides of some base class functionality.

This class defines the event.

3. Define one or more classes that connect methods to the event. Each of these classes will associate one or
more methods with the event in the base class.

4. Use the event:

Create an object of the class that contains the event declaration.

Create an object of the class that contains the event definition.

For more information on C++/CLI events, see



RequirementsRequirements

ExamplesExamples

// mcppv2_events.cpp
// compile with: /clr
using namespace System;

// declare delegates
delegate void ClickEventHandler(int, double);
delegate void DblClickEventHandler(String^);

// class that defines events
ref class EventSource {
public:
   event ClickEventHandler^ OnClick;   // declare the event OnClick
   event DblClickEventHandler^ OnDblClick;   // declare OnDblClick

   void FireEvents() {
      // raises events
      OnClick(7, 3.14159);
      OnDblClick("Hello");
   }
};

// class that defines methods that will called when event occurs
ref class EventReceiver {
public:
   void OnMyClick(int i, double d) {
      Console::WriteLine("OnClick: {0}, {1}", i, d);
   }

   void OnMyDblClick(String^ str) {
      Console::WriteLine("OnDblClick: {0}", str);
   }
};

int main() {
   EventSource ^ MyEventSource = gcnew EventSource();
   EventReceiver^ MyEventReceiver = gcnew EventReceiver();

   // hook handler to event
   MyEventSource->OnClick += gcnew ClickEventHandler(MyEventReceiver, &EventReceiver::OnMyClick);
   MyEventSource->OnDblClick += gcnew DblClickEventHandler(MyEventReceiver, &EventReceiver::OnMyDblClick);

   // invoke events
   MyEventSource->FireEvents();

   // unhook handler to event
   MyEventSource->OnClick -= gcnew ClickEventHandler(MyEventReceiver, &EventReceiver::OnMyClick);
   MyEventSource->OnDblClick -= gcnew DblClickEventHandler(MyEventReceiver, &EventReceiver::OnMyDblClick);
}

OnClick: 7, 3.14159

OnDblClick: Hello

Events in an Interface

Compiler option: /clr

The following code example demonstrates declaring pairs of delegates, events, and event handlers; subscribing
(adding) the event handlers; invoking the event handlers; and then unsubscribing (removing) the event handlers.

The following code example demonstrates the logic used to generate the raise  method of a trivial event: If the

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-use-events-in-cpp-cli


// trivial_events.cpp
// compile with: /clr /c
using namespace System;
public delegate int Del();
public ref struct C {
   int i;
   event Del^ MyEvent;

   void FireEvent() {
      i = MyEvent();
   }
};

ref struct EventReceiver {
   int OnMyClick() { return 0; }
};

int main() {
   C c;
   c.i = 687;

   c.FireEvent();
   Console::WriteLine(c.i);
   c.i = 688;

   EventReceiver^ MyEventReceiver = gcnew EventReceiver();
   c.MyEvent += gcnew Del(MyEventReceiver, &EventReceiver::OnMyClick);
   Console::WriteLine(c.i);
}

0

688

See Also

event has one or more subscribers, calling the raise  method implicitly or explicitly calls the delegate. If the
delegate's return type is not void and if there are zero event subscribers, the raise  method returns the default
value for the delegate type. If there are no event subscribers, calling the raise  method simply returns and no
exception is raised. If the delegate return type is not void, the delegate type is returned.

Component Extensions for .NET and UWP



Exception Handling (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

In This Section

Related Sections

See Also

Applications compiled with the /ZW  compiler option or /clr  compiler option both use exceptions to handle
unexpected errors during program execution. The following topics discuss exception handling in either C++/CX or
C++/CLI applications.

Basic Concepts in Using Managed Exceptions
Describes throwing exceptions and using try/catch blocks.

Differences in Exception Handling Behavior Under /clr
Discusses the differences from the standard behavior of C++ exception handling.

finally
Discusses how to use the finally keyword.

How to: Define and Install a Global Exception Handler
Demonstrates how unhandled exceptions can be captured.

How to: Catch Exceptions in Native Code Thrown from MSIL
Discusses how to catch CLR and C++ exceptions in native code.

How to: Define and Install a Global Exception Handler
Demonstrates how to catch all unhandled exceptions.

Exception Handling
Describes exception handling in standard C++.

Component Extensions for .NET and UWP

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/exception-handling-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/basic-concepts-in-using-managed-exceptions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/differences-in-exception-handling-behavior-under-clr
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/finally
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-define-and-install-a-global-exception-handler
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-catch-exceptions-in-native-code-thrown-from-msil
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-define-and-install-a-global-exception-handler
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/exception-handling-in-visual-cpp


Explicit Overrides (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

All Runtimes
SyntaxSyntax

overriding-function-declarator = type::function [,type::function] { overriding-function-definition }
overriding-function-declarator = function { overriding-function-definition }

ParametersParameters

RemarksRemarks

Windows Runtime
RequirementsRequirements

Common Language Runtime
RemarksRemarks

RequirementsRequirements

ExamplesExamples

This topic discusses how to explicitly override a member of a base class or interface. A named (explicit) override
should only be used to override a method with a derived method that has a different name.

overriding-function-declarator
The return type, name, and argument list of the overriding function. Note that the overriding function does not
have to have the same name as the function being overridden.

type
The base type that contains a function to override.

function
A comma-delimited list of one or more function names to override.

overriding-function-definition
The function body statements that define the overriding function.

Use explicit overrides to create an alias for a method signature, or to provide different implementations for
methods witht the same signature.

For information about modifying the behavior of inherited types and inherited type members, see Override
Specifiers.

Compiler option: /ZW

For information about explicit overrides in native code or code compiled with /clr:oldSyntax , see Explicit
Overrides.

Compiler option: /clr

The following code example shows a simple, implicit override and implementation of a member in a base interface,

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/explicit-overrides-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/explicit-overrides-cpp


// explicit_override_1.cpp
// compile with: /clr
interface struct I1 {
   virtual void f();
};

ref class X : public I1 {
public:
   virtual void f() {
      System::Console::WriteLine("X::f override of I1::f");
   }
};

int main() {
   I1 ^ MyI = gcnew X;
   MyI -> f();
}

X::f override of I1::f

// explicit_override_2.cpp
// compile with: /clr
interface struct I1 {
   virtual void f();
};

interface struct I2 {
   virtual void f();
};

ref struct X : public I1, I2 {
   virtual void f() = I1::f, I2::f {
      System::Console::WriteLine("X::f override of I1::f and I2::f");
   }
};

int main() {
   I1 ^ MyI = gcnew X;
   I2 ^ MyI2 = gcnew X;
   MyI -> f();
   MyI2 -> f();
}

X::f override of I1::f and I2::f
X::f override of I1::f and I2::f

not using explicit overrides.

The following code example shows how to implement all interface members with a common signature, using
explicit override syntax.

The following code example shows how a function override can have a different name from the function it is
implementing.



// explicit_override_3.cpp
// compile with: /clr
interface struct I1 {
   virtual void f();
};

ref class X : public I1 {
public:
   virtual void g() = I1::f {
      System::Console::WriteLine("X::g");
   }
};

int main() {
   I1 ^ a = gcnew X;
   a->f();
}

X::g

// explicit_override_4.cpp
// compile with: /clr /LD
using namespace System;
ref class R : ICloneable {
   int X;

   virtual Object^ C() sealed = ICloneable::Clone {
      return this->Clone();
   }

public:
   R() : X(0) {}
   R(int x) : X(x) {}

   virtual R^ Clone() {
      R^ r = gcnew R;
      r->X = this->X;
      return r;
   }
};

See Also

The following code example shows an explicit interface implementation that implements a type safe collection.

Component Extensions for .NET and UWP



ref new, gcnew (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

All Runtimes

Windows Runtime

RequirementsRequirements

Common Language Runtime

RequirementsRequirements

ExamplesExamples

// mcppv2_gcnew_1.cpp
// compile with: /clr
ref struct Message {
   System::String^ sender;
   System::String^ receiver;
   System::String^ data;
};

int main() {
   Message^ h_Message  = gcnew Message;
  //...
}

The ref new aggregate keyword allocates an instance of a type that is garbage collected when the object becomes
inaccessible, and that returns a handle (^) to the allocated object.

Memory for an instance of a type that is allocated by ref new is deallocated automatically.

A ref new operation throws OutOfMemoryException  if it is unable to allocate memory.

For more information about how memory for native C++ types is allocated and deallocated, see the new and
delete operators.

Use ref new to allocate memory for Windows Runtime objects whose lifetime you want to administer
automatically. The object is automatically deallocated when its reference count goes to zero, which occurs after the
last copy of the reference has gone out of scope. For more information, see Ref classes and structs.

Compiler option: /ZW

Memory for a managed type (reference or value type) is allocated by gcnew, and deallocated by using garbage
collection.

Compiler option: /clr

The following example uses gcnew to allocate a Message object.

The following example uses gcnew to create a boxed value type for use like a reference type.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/ref-new-gcnew-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/new-and-delete-operators


// example2.cpp : main project file.
// compile with /clr
using namespace System;
value class Boxed {
    public:
        int i;
};
int main()
{
    Boxed^ y = gcnew Boxed;
    y->i = 32;
    Console::WriteLine(y->i);
    return 0;
}

32

See Also
Component Extensions for .NET and UWP



Generics (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

In This Section
Supported by the Windows Runtime and the Common Language RuntimeSupported by the Windows Runtime and the Common Language Runtime

Supported by the Common Language RuntimeSupported by the Common Language Runtime

Related Sections

See Also

Generics are parameterized types and methods. In this section, find out which generic features are supported by
both the Windows Runtime and the common language runtime, and which are supported by only the common
language runtime. Also, find out how to author your own generic methods and types in C++/CLI, and how to use
generic types authored in a .NET Framework language in C++/CLI. Finally, this section provides a comparison of
generics and C++ templates.

Overview of Generics in C++/CLI
Information about generics are, the motivation for the language feature, definitions of terms used to describe
generics, and information about the use of reference types and value types as type parameters for generics.

Generic Interfaces (C++/CLI)
Information about defining and using generic interfaces.

Generic Delegates (C++/CLI)
Information about defining and using generic delegates.

Constraints on Generic Type Parameters (C++/CLI)
Information about using constraints in generic types.

Consuming Generics (C++/CLI)
Information about using generics defined in .NET assemblies, possibly authored in other languages, in C++/CLI.

Generics and Templates (C++/CLI)
A comparison of generics and templates, when to use each, and how to combine them usefully.

Generic Functions (C++/CLI)
Information about defining and using generic functions and methods.

Generic Classes (C++/CLI)
Information about defining and using generic classes.

How to: Iterate Over a Generic Collection with for each
Using the for each, in keyword on a generic collection.

Component Extensions for .NET and UWP

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/generics-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-iterate-over-a-generic-collection-with-for-each
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/for-each-in


Overview of Generics in C++/CLI
10/31/2018 • 6 minutes to read • Edit Online

Why Generics?

Generic Functions and Types

Generics are parameterized types supported by the common language runtime. A parameterized type is a type
that is defined with an unknown type parameter that is specified when the generic is used.

C++ supports templates and both templates and generics support parameterized types to create typed collection
classes. However, templates provide compile-time parameterization. You cannot reference an assembly containing
a template definition and create new specializations of the template. Once compiled, a specialized template looks
like any other class or method. In contrast, generics are emitted in MSIL as a parameterized type known by the
runtime to be a parameterized type; source code that references an assembly containing a generic type can create
specializations of the generic type. For more information on the comparison of standard C++ templates and
generics, see Generics and Templates (C++/CLI).

Class types, as long as they are managed types, may be generic. An example of this might be a List  class. The
type of an object in the list would be the type parameter. If you needed a List  class for many different types of
objects, before generics you might have used a List  that takes System::Object  as the item type. But that would
allow any object (including objects of the wrong type) to be used in the list. Such a list would be called an untyped
collection class. At best, you could check the type at runtime and throw an exception. Or, you might have used a
template, which would lose its generic quality once compiled into an assembly. Consumers of your assembly could
not create their own specializations of the template. Generics allow you to create typed collection classes, say 
List<int>  (read as "List of int") and List<double>  ("List of double") which would generate a compile-time error if

you tried to put a type that the collection was not designed to accept into the typed collection. In addition, these
types remain generic after they are compiled.

A description of the syntax of generic classes may be found in Generic Classes (C++/CLI). A new namespace,
System.Collections.Generic, introduces a set of parameterized collection types including Dictionary<TKey, TValue>,
List<T> and LinkedList<T>.

Both instance and static class member functions, delegates, and global functions may also be generic. Generic
functions may be necessary if the function's parameters are of an unknown type, or if the function itself must work
with generic types. In many cases where System::Object  may have been used in the past as a parameter for an
unknown object type, a generic type parameter may be used instead, allowing for more type-safe code. Any
attempt to pass in a type that the function was not designed for would be flagged as an error at compile time.
Using System::Object  as a function parameter, the inadvertent passing of an object that the function wasn't
intended to deal with would not be detected, and you would have to cast the unknown object type to a specific type
in the function body, and account for the possibility of an InvalidCastException. With a generic, code attempting to
pass an object to the function would cause a type conflict so the function body is guaranteed to have the correct
type.

The same benefits apply to collection classes built on generics. Collection classes in the past would use 
System::Object  to store elements in a collection. Insertion of objects of a type that the collection was not designed

for was not flagged at compile time, and often not even when the objects were inserted. Usually, an object would
be cast to some other type when it was accessed in the collection. Only when the cast failed would the unexpected
type be detected. Generics solves this problem at compile time by detecting any code that inserts a type that
doesn't match (or implicitly convert to) the type parameter of the generic collection.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/overview-of-generics-in-visual-cpp.md
https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/xfhwa508(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/6sh2ey19(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/he2s3bh7(v=vs.110).aspx


Terminology Used With Generics
Type ParametersType Parameters

Type ArgumentsType Arguments

Constructed TypeConstructed Type

// generics_overview.cpp
// compile with: /clr /c
generic <typename T>

ref class List {};

generic <typename T>

ref class Queue : public List<T> {};

ConstraintConstraint

Reference Types and Value Types

For a description of the syntax, see Generic Functions (C++/CLI).

A generic declaration contains one or more unknown types known as type parameters. Type parameters are given
a name which stands for the type within the body of the generic declaration. The type parameter is used as a type
within the body of the generic declaration. The generic declaration for List<T>  contains the type parameter T.

The type argument is the actual type used in place of the type parameter when the generic is specialized for a
specific type or types. For example, int is the type argument in List<int> . Value types and handle types are the
only types allowed in as a generic type argument.

A type constructed from a generic type is referred to as a constructed type. A type not fully specified, such as 
List<T>  is an open constructed type; a type fully specified, such as List<double>,  is a closed constructed type or

specialized type. Open constructed types may be used in the definition of other generic types or methods and may
not be fully specified until the enclosing generic is itself specified. For example, the following is a use of an open
constructed type as a base class for a generic:

A constraint is a restriction on the types that may be used as a type parameter. For example, a given generic class
could accept only classes that inherit from a specified class, or implement a specified interface. For more
information, see Constraints on Generic Type Parameters (C++/CLI).

Handles types and value types may be used as type arguments. In the generic definition, in which either type may
be used, the syntax is that of reference types. For example, the ->  operator is used to access members of the type
of the type parameter whether or not the type eventually used is a reference type or a value type. When a value
type is used as the type argument, the runtime generates code that uses the value types directly without boxing the
value types.

When using a reference type as a generic type argument, use the handle syntax. When using a value type as a
generic type argument, use the name of the type directly.



// generics_overview_2.cpp
// compile with: /clr
generic <typename T>

ref class GenericType {};
ref class ReferenceType {};

value struct ValueType {};

int main() {
    GenericType<ReferenceType^> x;
    GenericType<ValueType> y;
}

Type Parameters

// generics_overview_3.cpp
// compile with: /clr
interface class I {
   void f1();
   void f2();
};

ref struct R : public I {
   virtual void f1() {}
   virtual void f2() {}
   virtual void f3() {}
};

generic <typename T>
where T : I
void f(T t) {
   t->f1();
   t->f2();
   safe_cast<R^>(t)->f3();
}

int main() {
   f(gcnew R());
}

Type parameters in a generic class are treated like other identifiers. However, because the type is not known, there
are restrictions on their use. For example, you cannot use members and methods of the type parameter class
unless the type parameter is known to support these members. That is, to access a member through the type
parameter, you must add the type that contains the member to the type parameter's constraint list.

These restrictions apply to operators as well. An unconstrained generic type parameter may not use the ==  and 
!=  operators to compare two instances of the type parameter, in case the type does not support these operators.

These checks are necessary for generics, but not for templates, because generics may be specialized at runtime
with any class that satisfies the constraints, when it is too late to check for the use of invalid members.

A default instance of the type parameter may be created by using the ()  operator. For example:

T t = T();

where T  is a type parameter in a generic class or method definition, initializes the variable to its default value. If 
T  is a ref class it will be a null pointer ; if T  is a value class, the object is initialized to zero. This is called a default

initializer.



See Also
Generics



Generic Functions (C++/CLI)
10/31/2018 • 3 minutes to read • Edit Online

All Platforms
RemarksRemarks

Windows Runtime
RemarksRemarks

RequirementsRequirements

Common Language Runtime

SyntaxSyntax

[attributes] [modifiers]
return-type identifier<type-parameter identifier(s)>
[type-parameter-constraints clauses]

([formal-parameters])
{function-body}

ParametersParameters

A generic function is a function that is declared with type parameters. When called, actual types are used instead of
the type parameters.

This feature does not apply to all platforms.

This feature is not supported in the Windows Runtime.

Compiler option: /ZW

A generic function is a function that is declared with type parameters. When called, actual types are used instead of
the type parameters.

attributes
(Optional) Additional declarative information. For more information on attributes and attribute classes, see
attributes.

modifiers
(Optional) A modifier for the function, such as static. virtual is not allowed since virtual methods may not be
generic.

return-type
The type returned by the method. If the return type is void, no return value is required.

identifier
The function name.

type-parameter identifier(s)
Comma-separated identifiers list.

formal-parameters

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/generic-functions-cpp-cli.md


RemarksRemarks

RequirementsRequirements

ExamplesExamples

// generics_generic_function_1.cpp
// compile with: /clr
generic <typename ItemType>
void G(int i) {}

ref struct A {
   generic <typename ItemType>
   void G(ItemType) {}

   generic <typename ItemType>
   static void H(int i) {}
};

int main() {
   A myObject;

   // generic function call
   myObject.G<int>(10);

   // generic function call with type parameters deduced
   myObject.G(10);

   // static generic function call
   A::H<int>(10);

   // global generic function call
   G<int>(10);
}

(Optional) Parameter list.

type-parameter-constraints-clauses
This specifies restrictions on the types that may be used as type arguments, and takes the form specified in
Constraints on Generic Type Parameters (C++/CLI).

function-body
The body of the method, which may refer to the type parameter identifiers.

Generic functions are functions declared with a generic type parameter. They may be methods in a class or struct,
or standalone functions. A single generic declaration implicitly declares a family of functions that differ only in the
substitution of a different actual type for the generic type parameter.

A class or struct constructor may not be declared with generic type parameters.

When called, the generic type parameter is replaced by an actual type. The actual type may be explicitly specified in
angled brackets using syntax similar to a template function call. If called without the type parameters, the compiler
will attempt to deduce the actual type from the parameters supplied in the function call. If the intended type
argument cannot be deduced from the parameters used, the compiler will report an error.

Compiler option: /clr

The following code sample demonstrates a generic function.

Generic functions can be overloaded based on signature or arity, the number of type parameters on a function.
Also, generic functions can be overloaded with non-generic functions of the same name, as long as the functions
differ in some type parameters. For example, the following functions can be overloaded:



// generics_generic_function_2.cpp
// compile with: /clr /c
ref struct MyClass {
   void MyMythod(int i) {}

   generic <class T>
   void MyMythod(int i) {}

   generic <class T, class V>
   void MyMythod(int i) {}
};

// generics_generic_function_3.cpp
// compile with: /clr
using namespace System;

ref class MyBaseClass {
protected:
   generic <class ItemType>
   ItemType MyBaseClassFunction(ItemType item) {
      return item;
   }
};

ref class MyClass: public MyBaseClass {
public:
   generic <class ItemType>
   ItemType MyFunction(ItemType item) {
      return MyBaseClass::MyBaseClassFunction<ItemType>(item);
   }
};

int main() {
   MyClass^ myObj = gcnew MyClass();

   // Call MyFunction using an int.
   Console::WriteLine("My function returned an int: {0}",
                           myObj->MyFunction<int>(2003));

   // Call MyFunction using a string.
   Console::WriteLine("My function returned a string: {0}",
   myObj->MyFunction<String^>("Hello generic functions!"));
}

My function returned an int: 2003
My function returned a string: Hello generic functions!

See Also

The following example uses a generic function to find the first element in an array. It declares MyClass , which
inherits from the base class MyBaseClass . MyClass  contains a generic function, MyFunction , which calls another
generic function, MyBaseClassFunction , within the base class. In main , the generic function, MyFunction , is called
using different type arguments.

Component Extensions for .NET and UWP
Generics



Generic Classes (C++/CLI)
10/31/2018 • 13 minutes to read • Edit Online

Syntax
[attributes]
generic <class-key type-parameter-identifier(s)>
[constraint-clauses]
[accessibility-modifiers] ref class identifier  [modifiers]
[: base-list]
{
class-body
} [declarators] [;]

Remarks

A generic class is declared using the following form:

In the above syntax, the following terms are used:

attributes
(Optional) Additional declarative information. For more information on attributes and attribute classes, see
Attributes.

class-key
Either class or typename

type-parameter-identifier(s), Comma-separated list of identifiers specifying the names of the type parameters.

constraint-clauses
A list (not comma-separated) of where clauses specifying the constraints for the type parameters. Takes the form:

where type-parameter-identifier : constraint-list ...

constraint-list
class-or-interface[ ,  ...]

accessibility-modifiers
Accessibility modifiers for the generic class. For the Windows Runtime, the only allowed modifier is private. For
the common language runtime, the allowed modifiers are private and public.

identifier
The name of the generic class, any valid C++ identifier.

modifiers
(Optional) Allowed modifiers include sealed and abstract.

base-list
A list that contains the one base class and any implemented interfaces, all separated by commas.

class-body
The body of the class, containing fields, member functions, etc.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/generic-classes-cpp-cli.md


// generic_classes_1.cpp
// compile with: /clr
using namespace System;
generic <typename ItemType>
ref struct Stack {
   // ItemType may be used as a type here
   void Add(ItemType item) {}
};

generic <typename KeyType, typename ValueType>
ref class HashTable {};

// The keyword class may be used instead of typename:
generic <class ListItem>
ref class List {};

int main() {
   HashTable<int, Decimal>^ g1 = gcnew HashTable<int, Decimal>();
}

// generic_classes_2.cpp
// compile with: /clr /c
interface class IItem {};
generic <class ItemType>
where ItemType : IItem
ref class Stack {};

declarators
Declarations of any variables of this type. For example: ^ identifier[ ,  ...]

You can declare generic classes such as these (note that the keyword class may be used instead of typename). In
this example, ItemType , KeyType  and ValueType  are unknown types that are specified at the point where the type.
HashTable<int, int>  is a constructed type of the generic type HashTable<KeyType, ValueType> . A number of

different constructed types can be constructed from a single generic type. Constructed types constructed from
generic classes are treated like any other ref class type.

Both value types (either built-in types such as int or double, or user-defined value types) and reference types may
be used as a generic type argument. The syntax within the generic definition is the same regardless. Syntactically,
the unknown type is treated as if it were a reference type. However, the runtime is able to determine that if the
type actually used is a value type and substitute the appropriate generated code for direct access to members.
Value types used as generic type arguments are not boxed and so do not suffer the performance penalty
associated with boxing. The syntax used within the body of the generic should be T^  and ->  instead of . . Any
use of ref new, gcnew for the type parameter will be appropriately interpreted by the runtime as the simple
creation of a value type if the type argument is a value type.

You can also declare a generic class with Constraints on Generic Type Parameters (C++/CLI) on the types that can
be used for the type parameter. In the following example any type used for ItemType  must implement the IItem

interface. Attempting to use int, for example, which does not implement IItem , would produce a compile-time
error because the type argument does not satisfy the constraint.

Generic classes in the same namespace cannot be overloaded by only changing the number or the types of type
parameters. However, if each class lives in a different namespace, they can be overloaded. For example, consider
the following two classes, MyClass  and MyClass<ItemType> , in the namespaces A  and B . The two classes can
then be overloaded in a third namespace C:



// generic_classes_3.cpp
// compile with: /clr /c
namespace A {
   ref class MyClass {};
}

namespace B {
   generic <typename ItemType>
   ref class MyClass2 { };
}

namespace C {
   using namespace A;
   using namespace B;

   ref class Test {
      static void F() {
         MyClass^ m1 = gcnew MyClass();   // OK
         MyClass2<int>^ m2 = gcnew MyClass2<int>();   // OK
      }
   };
}

// generic_classes_4.cpp
// compile with: /clr /c
generic <typename ItemType>
interface class IInterface {};

generic <typename ItemType>
ref class MyClass : IInterface<ItemType> {};

Fields in Generic Classes

Instance VariablesInstance Variables

Example

The base class and base interfaces cannot be type parameters. However, the base class can involve the type
parameter as an argument, as in the following case:

Constructors and destructors are executed once for each object instance (as usual); static constructors are executed
once for each constructed type.

This section demonstrates the use of instance and static fields in generic classes.

Instance variables of a generic class can have types and variable initializers that include any type parameters from
the enclosing class.

In the following example, three different instances of the generic class, MyClass<ItemType>, are created by using
the appropriate type arguments (int, double, and string).



// generics_instance_fields1.cpp
// compile with: /clr
// Instance fields on generic classes
using namespace System;

generic <typename ItemType>
ref class MyClass {
// Field of the type ItemType:
public :
   ItemType field1;
   // Constructor using a parameter of the type ItemType:
   MyClass(ItemType p) {
   field1 = p;
   }
};

int main() {
   // Instantiate an instance with an integer field:
   MyClass<int>^ myObj1 = gcnew MyClass<int>(123);
   Console::WriteLine("Integer field = {0}", myObj1->field1);

   // Instantiate an instance with a double field:
   MyClass<double>^ myObj2 = gcnew MyClass<double>(1.23);
   Console::WriteLine("Double field = {0}", myObj2->field1);

   // Instantiate an instance with a String field:
   MyClass<String^>^ myObj3 = gcnew MyClass<String^>("ABC");
   Console::WriteLine("String field = {0}", myObj3->field1);
   }

Integer field = 123
Double field = 1.23
String field = ABC

Static Variables

Example

On the creation of a new generic type, new instances of any static variables are created and any static constructor
for that type is executed.

Static variables can use any type parameters from the enclosing class.

The following example demonstrates using static fields and a static constructor within a generic class.



// generics_static2.cpp
// compile with: /clr
using namespace System;

interface class ILog {
   void Write(String^ s);
};

ref class DateTimeLog : ILog {
public:
   virtual void Write(String^ s) {
      Console::WriteLine( "{0}\t{1}", DateTime::Now, s);
   }
};

ref class PlainLog : ILog {
public:
   virtual void Write(String^ s) { Console::WriteLine(s); }
};

generic <typename LogType>
where LogType : ILog
ref class G {
   static LogType s_log;

public:
   G(){}
   void SetLog(LogType log) { s_log = log; }
   void F() { s_log->Write("Test1"); }
   static G() { Console::WriteLine("Static constructor called."); }
};

int main() {
   G<PlainLog^>^ g1 = gcnew G<PlainLog^>();
   g1->SetLog(gcnew PlainLog());
   g1->F();

   G<DateTimeLog^>^ g2 = gcnew G<DateTimeLog^>();
   g2->SetLog(gcnew DateTimeLog());

   // prints date
   // g2->F();
}

Static constructor called.
Static constructor called.
Static constructor called.
Test1

Methods in Generic Classes

Non-Generic Methods in Generic ClassesNon-Generic Methods in Generic Classes

Methods in generic classes can be generic themselves; non-generic methods will be implicitly parameterized by
the class type parameter.

The following special rules apply to methods within generic classes:

Methods in generic classes can use type parameters as parameters, return types, or local variables.

Methods in generic classes can use open or closed constructed types as parameters, return types, or local
variables.



Example

// generics_non_generic_methods1.cpp
// compile with: /clr
// Non-generic methods within a generic class.
using namespace System;

generic <typename ItemType>
ref class MyClass {
public:
   String^ name;
   ItemType data;

   MyClass(ItemType x) {
      data = x;
   }

   // Non-generic method using the type parameter:
   virtual void ProtectData(MyClass<ItemType>^ x) {
      data = x->data;
   }
};

// ItemType defined as String^
ref class MyMainClass: MyClass<String^> {
public:
   // Passing "123.00" to the constructor:
   MyMainClass(): MyClass<String^>("123.00") {
      name = "Jeff Smith";
   }

   virtual void ProtectData(MyClass<String^>^ x) override {
      x->data = String::Format("${0}**", x->data);
   }

   static void Main() {
      MyMainClass^ x1 = gcnew MyMainClass();

      x1->ProtectData(x1);
      Console::WriteLine("Name: {0}", x1->name);
      Console::WriteLine("Amount: {0}", x1->data);
   }
};

int main() {
   MyMainClass::Main();
}

Methods in generic classes that have no additional type parameters are usually referred to as non-generic
although they are implicitly parameterized by the enclosing generic class.

The signature of a non-generic method can include one or more type parameters of the enclosing class, either
directly or in an open constructed type. For example:

void MyMethod(MyClass<ItemType> x) {}

The body of such methods can also use these type parameters.

The following example declares a non-generic method, ProtectData , inside a generic class, MyClass<ItemType> .
The method uses the class type parameter ItemType  in its signature in an open constructed type.



Name: Jeff Smith
Amount: $123.00**

Generic Methods in Generic Classes

Example
// generics_method2.cpp
// compile with: /clr /c
generic <typename Type1>
ref class G {
public:
   // Generic method having a type parameter
   // from the class, Type1, and its own type
   // parameter, Type2
   generic <typename Type2>
   void Method1(Type1 t1, Type2 t2) { F(t1, t2); }

   // Non-generic method:
   // Can use the class type param, Type1, but not Type2.
   void Method2(Type1 t1) { F(t1, t1); }

   void F(Object^ o1, Object^ o2) {}
};

Example

You can declare generic methods in both generic and non-generic classes. For example:

The non-generic method is still generic in the sense that it is parameterized by the class's type parameter, but it
has no additional type parameters.

All types of methods in generic classes can be generic, including static, instance, and virtual methods.

The following example demonstrates declaring and using generic methods within generic classes:



// generics_generic_method2.cpp
// compile with: /clr
using namespace System;
generic <class ItemType>
ref class MyClass {
public:
   // Declare a generic method member.
   generic <class Type1>
   String^ MyMethod(ItemType item, Type1 t) {
      return String::Concat(item->ToString(), t->ToString());
   }
};

int main() {
   // Create instances using different types.
   MyClass<int>^ myObj1 = gcnew MyClass<int>();
   MyClass<String^>^ myObj2 = gcnew MyClass<String^>();
   MyClass<String^>^ myObj3 = gcnew MyClass<String^>();

   // Calling MyMethod using two integers.
   Console::WriteLine("MyMethod returned: {0}",
            myObj1->MyMethod<int>(1, 2));

   // Calling MyMethod using an integer and a string.
   Console::WriteLine("MyMethod returned: {0}",
            myObj2->MyMethod<int>("Hello #", 1));

   // Calling MyMethod using two strings.
   Console::WriteLine("MyMethod returned: {0}",
       myObj3->MyMethod<String^>("Hello ", "World!"));

   // generic methods can be called without specifying type arguments
   myObj1->MyMethod<int>(1, 2);
   myObj2->MyMethod<int>("Hello #", 1);
   myObj3->MyMethod<String^>("Hello ", "World!");
}

MyMethod returned: 12
MyMethod returned: Hello #1
MyMethod returned: Hello World!

Using Nested Types in Generic Classes

// generic_classes_5.cpp
// compile with: /clr /c
generic <typename ItemType>
ref struct Outer {
   ref class Inner {};
};

Just as with ordinary classes, you can declare other types inside a generic class. The nested class declaration is
implicitly parameterized by the type parameters of the outer class declaration. Thus, a distinct nested class is
defined for each constructed outer type. For example, in the declaration,

The type Outer<int>::Inner  is not the same as the type Outer<double>::Inner .

As with generic methods in generic classes, additional type parameters can be defined for the nested type. If you
use the same type parameter names in the inner and outer class, the inner type parameter will hide the outer type
parameter.



// generic_classes_6.cpp
// compile with: /clr /c
generic <typename ItemType>
ref class Outer {
   ItemType outer_item;   // refers to outer ItemType

   generic <typename ItemType>
   ref class Inner {
      ItemType inner_item;   // refers to Inner ItemType
   };
};

Example
// generics_linked_list.cpp
// compile with: /clr
using namespace System;
generic <class ItemType>
ref class LinkedList {
// The node class:
public:
   ref class Node {
   // The link field:
   public:
      Node^ next;
      // The data field:
      ItemType item;
   } ^first, ^current;
};

ref class ListBuilder {
public:
   void BuildIt(LinkedList<double>^ list) {
      /* Build the list */
      double m[5] = {0.1, 0.2, 0.3, 0.4, 0.5};
      Console::WriteLine("Building the list:");

      for (int n=0; n<=4; n++) {
         // Create a new node:
         list->current = gcnew LinkedList<double>::Node();

         // Assign a value to the data field:
         list->current->item = m[n];

         // Set the link field "next" to be the same as
         // the "first" field:
         list->current->next = list->first;

         // Redirect "first" to the new node:
         list->first = list->current;

         // Display node's data as it builds:
         Console::WriteLine(list->current->item);
      }
   }

   void ReadIt(LinkedList<double>^ list) {

Since there is no way to refer to the outer type parameter, the compiler will produce a warning in this situation.

When constructed nested generic types are named, the type parameter for the outer type is not included in the
type parameter list for the inner type, even though the inner type is implicitly parameterized by the outer type's
type parameter. In the above case, a name of a constructed type would be Outer<int>::Inner<string> .

The following example demonstrates building and reading a linked list using nested types in generic classes.



   void ReadIt(LinkedList<double>^ list) {
      // Read the list
      // Make "first" the "current" link field:
      list->current = list->first;
      Console::WriteLine("Reading nodes:");

      // Read nodes until current == null:
      while (list->current != nullptr) {
         // Display the node's data field:
         Console::WriteLine(list->current->item);

         // Move to the next node:
         list->current = list->current->next;
      }
   }
};

int main() {
   // Create a list:
   LinkedList<double>^ aList = gcnew LinkedList<double>();

   // Initialize first node:
   aList->first = nullptr;

   // Instantiate the class, build, and read the list:
   ListBuilder^ myListBuilder = gcnew ListBuilder();
   myListBuilder->BuildIt(aList);
   myListBuilder->ReadIt(aList);
}

Building the list:
0.1
0.2
0.3
0.4
0.5
Reading nodes:
0.5
0.4
0.3
0.2
0.1

Properties, Events, Indexers and Operators in Generic Classes

Example

public ItemType MyProperty {}

Properties, events, indexers and operators can use the type parameters of the enclosing generic class as
return values, parameters, or local variables, such as when ItemType  is a type parameter of a class:

Properties, events, indexers and operators cannot themselves be parameterized.

This example shows declarations of an instance property within a generic class.



// generics_generic_properties1.cpp
// compile with: /clr
using namespace System;

generic <typename ItemType>
ref class MyClass {
private:
   property ItemType myField;

public:
   property ItemType MyProperty {
      ItemType get() {
         return myField;
      }
      void set(ItemType value) {
         myField = value;
      }
   }
};

int main() {
   MyClass<String^>^ c = gcnew MyClass<String^>();
   MyClass<int>^ c1 = gcnew MyClass<int>();

   c->MyProperty = "John";
   c1->MyProperty = 234;

   Console::Write("{0}, {1}", c->MyProperty, c1->MyProperty);
}

John, 234

Example
The next example shows a generic class with an event.



// generics_generic_with_event.cpp
// compile with: /clr
// Declare a generic class with an event and
// invoke events.
using namespace System;

// declare delegates
generic <typename ItemType>
delegate void ClickEventHandler(ItemType);

// generic class that defines events
generic <typename ItemType>
ref class EventSource {
public:
   // declare the event OnClick
   event ClickEventHandler<ItemType>^ OnClick;
   void FireEvents(ItemType item) {
      // raises events
      OnClick(item);
   }
};

// generic class that defines methods that will called when
// event occurs
generic <typename ItemType>
ref class EventReceiver {
public:
   void OnMyClick(ItemType item) {
   Console::WriteLine("OnClick: {0}", item);
   }
};

int main() {
   EventSource<String^>^ MyEventSourceString =
                   gcnew EventSource<String^>();
   EventSource<int>^ MyEventSourceInt = gcnew EventSource<int>();
   EventReceiver<String^>^ MyEventReceiverString =
                   gcnew EventReceiver<String^>();
   EventReceiver<int>^ MyEventReceiverInt = gcnew EventReceiver<int>();

   // hook handler to event
   MyEventSourceString->OnClick += gcnew ClickEventHandler<String^>(
       MyEventReceiverString, &EventReceiver<String^>::OnMyClick);
   MyEventSourceInt->OnClick += gcnew ClickEventHandler<int>(
             MyEventReceiverInt, &EventReceiver<int>::OnMyClick);

   // invoke events
   MyEventSourceString->FireEvents("Hello");
   MyEventSourceInt->FireEvents(112);

   // unhook handler to event
   MyEventSourceString->OnClick -= gcnew ClickEventHandler<String^>(
        MyEventReceiverString, &EventReceiver<String^>::OnMyClick);
   MyEventSourceInt->OnClick -= gcnew ClickEventHandler<int>(
        MyEventReceiverInt, &EventReceiver<int>::OnMyClick);
}

Generic Structs

Example

The rules for declaring and using generic structs are the same as those for generic classes, except for the
differences noted in the Visual C++ language reference.



// generics_generic_struct1.cpp
// compile with: /clr
using namespace System;

generic <typename ItemType>
ref struct MyGenStruct {
public:
   ItemType myField;

   ItemType AssignValue(ItemType item) {
      myField = item;
      return myField;
   }
};

int main() {
   int myInt = 123;
   MyGenStruct<int>^ myIntObj = gcnew MyGenStruct<int>();
   myIntObj->AssignValue(myInt);
   Console::WriteLine("The field is assigned the integer value: {0}",
            myIntObj->myField);

   double myDouble = 0.123;
   MyGenStruct<double>^ myDoubleObj = gcnew MyGenStruct<double>();
   myDoubleObj->AssignValue(myDouble);
   Console::WriteLine("The field is assigned the double value: {0}",
            myDoubleObj->myField);

   String^ myString = "Hello Generics!";
   MyGenStruct<String^>^ myStringObj = gcnew MyGenStruct<String^>();
   myStringObj->AssignValue(myString);
   Console::WriteLine("The field is assigned the string: {0}",
            myStringObj->myField);
}

The field is assigned the integer value: 123
The field is assigned the double value: 0.123
The field is assigned the string: Hello Generics!

See Also

The following example declares a generic struct, MyGenStruct , with one field, myField , and assigns values of
different types (int, double, String^ ) to this field.

Generics



Generic Interfaces (C++/CLI)
10/31/2018 • 4 minutes to read • Edit Online

Syntax
[attributes] generic <class-key type-parameter-identifier[, ...]>
[type-parameter-constraints-clauses][accesibility-modifiers] interface class identifier [: base-list] {   
interface-body} [declarators] ;

Remarks

Example

The restrictions that apply to type parameters on classes are the same as those that apply to type parameters on
interfaces (see Generic Classes (C++/CLI)).

The rules that control function overloading are the same for functions within generic classes or generic interfaces.

Explicit interface member implementations work with constructed interface types in the same way as with simple
interface types (see the following examples).

For more information on interfaces, see interface class.

attributes
(Optional) Additional declarative information. For more information on attributes and attribute classes, see
Attributes.

class-key
class or typename

type-parameter-identifier(s)
Comma-separated identifiers list.

type-parameter-constraints-clauses
Takes the form specified in Constraints on Generic Type Parameters (C++/CLI)

accessibility-modifiers
(Optional) Accessibility modifiers (e.g. public, private).

identifier
The interface name.

base-list
(Optional) A list that contains one or more explicit base interfaces separated by commas.

interface-body
Declarations of the interface members.

declarators
(Optional) Declarations of variables based on this type.

The following example demonstrates how to declare and instantiate a generic interface. In the example, the generic
interface IList<ItemType>  is declared. It is then implemented by two generic classes, List1<ItemType>  and 

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/generic-interfaces-visual-cpp.md


// generic_interface.cpp
// compile with: /clr
using namespace System;

// An exception to be thrown by the List when
// attempting to access elements beyond the
// end of the list.
ref class ElementNotFoundException : Exception {};

// A generic List interface
generic <typename ItemType>
public interface class IList {
   ItemType MoveFirst();
   bool Add(ItemType item);
   bool AtEnd();
   ItemType Current();
   void MoveNext();
};

// A linked list implementation of IList
generic <typename ItemType>
public ref class List1 : public IList<ItemType> {
   ref class Node {
      ItemType m_item;

   public:
      ItemType get_Item() { return m_item; };
      void set_Item(ItemType value) { m_item = value; };

      Node^ next;

      Node(ItemType item) {
         m_item = item;
         next = nullptr;
      }
   };

   Node^ first;
   Node^ last;
   Node^ current;

   public:
   List1() {
      first = nullptr;
      last = first;
      current = first;
   }

   virtual ItemType MoveFirst() {
      current = first;
      if (first != nullptr)
        return first->get_Item();
      else
         return ItemType();
   }

   virtual bool Add(ItemType item) {
      if (last != nullptr) {
         last->next = gcnew Node(item);
         last = last->next;
      }
      else {
         first = gcnew Node(item);
         last = first;
         current = first;
      }

List2<ItemType> , with different implementations.



      }
      return true;
   }

   virtual bool AtEnd() {
      if (current == nullptr )
        return true;
      else
        return false;
   }

   virtual ItemType Current() {
       if (current != nullptr)
         return current->get_Item();
       else
         throw gcnew ElementNotFoundException();
   }

   virtual void MoveNext() {
      if (current != nullptr)
       current = current->next;
      else
        throw gcnew ElementNotFoundException();
   }
};

// An array implementation of IList
generic <typename ItemType>
ref class List2 : public IList<ItemType> {
   array<ItemType>^ item_array;
   int count;
   int current;

   public:

   List2() {
      // not yet possible to declare an
      // array of a generic type parameter
      item_array = gcnew array<ItemType>(256);
      count = current = 0;
   }

   virtual ItemType MoveFirst() {
      current = 0;
      return item_array[0];
   }

   virtual bool Add(ItemType item) {
      if (count < 256)
         item_array[count++] = item;
      else
        return false;
      return true;
   }

   virtual bool AtEnd() {
      if (current >= count)
        return true;
      else
        return false;
   }

   virtual ItemType Current() {
      if (current < count)
        return item_array[current];
      else
        throw gcnew ElementNotFoundException();
   }

   virtual void MoveNext() {



   virtual void MoveNext() {
      if (current < count)
         ++current;
      else
         throw gcnew ElementNotFoundException();
   }
};

// Add elements to the list and display them.
generic <typename ItemType>
void AddStringsAndDisplay(IList<ItemType>^ list, ItemType item1, ItemType item2) {
   list->Add(item1);
   list->Add(item2);
   for (list->MoveFirst(); ! list->AtEnd(); list->MoveNext())
   Console::WriteLine(list->Current());
}

int main() {
   // Instantiate both types of list.

   List1<String^>^ list1 = gcnew List1<String^>();
   List2<String^>^ list2 = gcnew List2<String^>();

   // Use the linked list implementation of IList.
   AddStringsAndDisplay<String^>(list1, "Linked List", "List1");

   // Use the array implementation of the IList.
   AddStringsAndDisplay<String^>(list2, "Array List", "List2");
}

Linked List
List1
Array List
List2

Example
This example declares a generic interface, IMyGenIface , and two non-generic interfaces, IMySpecializedInt  and 
ImySpecializedString , that specialize IMyGenIface . The two specialized interfaces are then implemented by two

classes, MyIntClass  and MyStringClass . The example shows how to specialize generic interfaces, instantiate
generic and non-generic interfaces, and call the explicitly implemented members on the interfaces.



// generic_interface2.cpp
// compile with: /clr
// Specializing and implementing generic interfaces.
using namespace System;

generic <class ItemType>
public interface class IMyGenIface {
   void Initialize(ItemType f);
};

public interface class IMySpecializedInt: public IMyGenIface<int> {
   void Display();
};

public interface class IMySpecializedString: public IMyGenIface<String^> {
   void Display();
};

public ref class MyIntClass: public IMySpecializedInt {
   int myField;

public:
   virtual void Initialize(int f) {
      myField = f;
   }

   virtual void Display() {
      Console::WriteLine("The integer field contains: {0}", myField);
   }
};

public ref struct MyStringClass: IMySpecializedString {
   String^ myField;

public:
   virtual void Initialize(String^ f) {
      myField = f;
    }

   virtual void Display() {
      Console::WriteLine("The String field contains: {0}", myField);
   }
};

int main() {
   // Instantiate the generic interface.
   IMyGenIface<int>^ myIntObj = gcnew MyIntClass();

   // Instantiate the specialized interface "IMySpecializedInt."
   IMySpecializedInt^ mySpIntObj = (IMySpecializedInt^) myIntObj;

   // Instantiate the generic interface.
   IMyGenIface<String^>^ myStringObj = gcnew MyStringClass();

   // Instantiate the specialized interface "IMySpecializedString."
   IMySpecializedString^ mySpStringObj =
            (IMySpecializedString^) myStringObj;

   // Call the explicitly implemented interface members.
   myIntObj->Initialize(1234);
   mySpIntObj->Display();

   myStringObj->Initialize("My string");
   mySpStringObj->Display();
}



The integer field contains: 1234
The String field contains: My string

See Also
Generics



Generic Delegates (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[attributes]
generic < [class | typename] type-parameter-identifiers>
[type-parameter-constraints-clauses]
[accessibility-modifiers] delegate result-type identifier
([formal-parameters]);

ParametersParameters

Example

// generics_generic_delegate1.cpp
// compile with: /clr /c
generic <class ItemType>
delegate ItemType GenDelegate(ItemType p1, ItemType% p2);

Example

You can use generic type parameters with delegates. For more information on delegates, see delegate (C++/CLI
and C++/CX).

attributes
(Optional) Additional declarative information. For more information on attributes and attribute classes, see
Attributes.

type-parameter-identifier(s)
Comma-separated list of identifiers for the type parameters.

type-parameter-constraints-clauses
Takes the form specified in Constraints on Generic Type Parameters (C++/CLI)

accessibility-modifiers
(Optional) Accessibility modifiers (e.g. public, private).

result-type
The return type of the delegate.

identifier
The name of the delegate.

formal-parameters
(Optional) The parameter list of the delegate.

The delegate type parameters are specified at the point where a delegate object is created. Both the delegate and
method associated with it must have the same signature. The following is an example of a generic delegate
declaration.

The following sample shows that

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/generic-delegates-visual-cpp.md


// generics_generic_delegate2.cpp
// compile with: /clr
generic <class ItemType>
delegate ItemType GenDelegate(ItemType p1, ItemType% p2);

generic <class ItemType>
ref struct MyGenClass {
   ItemType MyMethod(ItemType i, ItemType % j) {
      return ItemType();
   }
};

ref struct MyClass {
   generic <class ItemType>
   static ItemType MyStaticMethod(ItemType i, ItemType % j) {
      return ItemType();
   }
};

int main() {
   MyGenClass<int> ^ myObj1 = gcnew MyGenClass<int>();
   MyGenClass<double> ^ myObj2 = gcnew MyGenClass<double>();
   GenDelegate<int>^ myDelegate1 =
      gcnew GenDelegate<int>(myObj1, &MyGenClass<int>::MyMethod);

   GenDelegate<double>^ myDelegate2 =
      gcnew GenDelegate<double>(myObj2, &MyGenClass<double>::MyMethod);

   GenDelegate<int>^ myDelegate =
      gcnew GenDelegate<int>(&MyClass::MyStaticMethod<int>);
}

Example

You cannot use the same delegate object with different constructed types. Create different delegate objects
for different types.

A generic delegate can be associated with a generic method.

When a generic method is called without specifying type arguments, the compiler tries to infer the type
arguments for the call.

The following example declares a generic delegate GenDelegate<ItemType> , and then instantiates it by associating it
to the method MyMethod  that uses the type parameter ItemType . Two instances of the delegate (an integer and a
double) are created and invoked.



// generics_generic_delegate.cpp
// compile with: /clr
using namespace System;

// declare generic delegate
generic <typename ItemType>
delegate ItemType GenDelegate (ItemType p1, ItemType% p2);

// Declare a generic class:
generic <typename ItemType>
ref class MyGenClass {
public:
   ItemType MyMethod(ItemType p1, ItemType% p2) {
      p2 = p1;
      return p1;
    }
};

int main() {
   int i = 0, j = 0;
   double m = 0.0, n = 0.0;

   MyGenClass<int>^ myObj1 = gcnew MyGenClass<int>();
   MyGenClass<double>^ myObj2 = gcnew MyGenClass<double>();

   // Instantiate a delegate using int.
   GenDelegate<int>^ MyDelegate1 =
      gcnew GenDelegate<int>(myObj1, &MyGenClass<int>::MyMethod);

   // Invoke the integer delegate using MyMethod.
   i = MyDelegate1(123, j);

   Console::WriteLine(
      "Invoking the integer delegate: i = {0}, j = {1}", i, j);

   // Instantiate a delegate using double.
   GenDelegate<double>^ MyDelegate2 =
      gcnew GenDelegate<double>(myObj2, &MyGenClass<double>::MyMethod);

   // Invoke the integer delegate using MyMethod.
   m = MyDelegate2(0.123, n);

   Console::WriteLine(
      "Invoking the double delegate: m = {0}, n = {1}", m, n);
}

Invoking the integer delegate: i = 123, j = 123
Invoking the double delegate: m = 0.123, n = 0.123

See Also
Generics



Constraints on Generic Type Parameters (C++/CLI)
10/31/2018 • 5 minutes to read • Edit Online

Syntax
where type-parameter: constraint list

ParametersParameters

Remarks

In generic type or method declarations, you can qualify a type parameter with constraints. A constraint is a
requirement that types used as type arguments must satisfy. For example, a constraint might be that the type
argument must implement a certain interface or inherit from a specific class.

Constraints are optional; not specifying a constraint on a parameter is equivalent to constraining that parameter
to Object.

type-parameter
One of the type parameters, to be constrained.

constraint list
constraint list is a comma-separated list of constraint specifications. The list can include interfaces to be
implemented by the type parameter.

The list can also include a class. For the type argument to satisfy a base class constraint, it must be the same class
as the constraint or derive from the constraint.

You can also specify gcnew() to indicate the type argument must have a public parameterless constructor ; or ref
class to indicate the type argument must be a reference type, including any class, interface, delegate, or array
type; or value class to indicate the type argument must be a value type. Any value type except Nullable<T> can
be specified.

You can also specify a generic parameter as a constraint. The type argument supplied for the type you are
constraining must be or derive from the type of the constraint. This is called a naked type constraint.

The constraint clause consists of where followed by a type parameter, a colon (:), and the constraint, which
specifies the nature of the restriction on the type parameter. where is a context-sensitive keyword; see Context-
Sensitive Keywords for more information. Separate multiple where clauses with a space.

Constraints are applied to type parameters to place limitations on the types that can be used as arguments for a
generic type or method.

Class and interface constraints specify that the argument types must be or inherit from a specified class or
implement a specified interface.

The application of constraints to a generic type or method allows code in that type or method to take advantage
of the known features of the constrained types. For example, you can declare a generic class such that the type
parameter implements the IComparable<T>  interface:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/constraints-on-generic-type-parameters-cpp-cli.md
https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx


// generics_constraints_1.cpp
// compile with: /c /clr
using namespace System;
generic <typename T>
where T : IComparable<T>
ref class List {};

// generics_constraints_2.cpp
// compile with: /c /clr
using namespace System;
using namespace System::Collections::Generic;
generic <typename T>
where T : List<T>, IComparable<T>
ref class List {};

// generics_constraints_3.cpp
// compile with: /c /clr
using namespace System;
using namespace System::Collections::Generic;

generic <typename K, typename V>
   where K: IComparable<K>
   where V: IComparable<K>
ref class Dictionary {};

This constraint requires that a type argument used for T  implements IComparable<T>  at compile time. It also
allows interface methods, such as CompareTo , to be called. No cast is needed on an instance of the type parameter
to call interface methods.

Static methods in the type argument's class cannot be called through the type parameter; they can be called only
through the actual named type.

A constraint cannot be a value type, including built-in types such as int or double. Since value types cannot have
derived classes, only one class would ever be able to satisfy the constraint. In that case, the generic can be
rewritten with the type parameter replaced by the specific value type.

Constraints are required in some cases since the compiler will not allow the use of methods or other features of
an unknown type unless the constraints imply that the unknown type supports the methods or interfaces.

Multiple constraints for the same type parameter can be specified in a comma-separated list

With multiple type parameters, use one where clause for each type parameter. For example:

To summarize, use constraints in your code according to the following rules:

If multiple constraints are listed, the constraints may be listed in any order.

Constraints can also be class types, such as abstract base classes. However, constraints cannot be value
types or sealed classes.

Constraints cannot themselves be type parameters, but they can involve the type parameters in an open
constructed type. For example:



Example

// generics_constraints_5.cpp
// compile with: /clr
using namespace System;

interface class IAge {
   int Age();
};

ref class MyClass {
public:
   generic <class ItemType> where ItemType : IAge
   bool isSenior(ItemType item) {
      // Because of the constraint,
      // the Age method can be called on ItemType.
      if (item->Age() >= 65)
         return true;
      else
         return false;
   }
};

ref class Senior : IAge {
public:
   virtual int Age() {
      return 70;
   }
};

ref class Adult: IAge {
public:
   virtual int Age() {
      return 30;
   }
};

int main() {
   MyClass^ ageGuess = gcnew MyClass();
   Adult^ parent = gcnew Adult();
   Senior^ grandfather = gcnew Senior();

   if (ageGuess->isSenior<Adult^>(parent))
      Console::WriteLine("\"parent\" is a senior");
   else
      Console::WriteLine("\"parent\" is not a senior");

   if (ageGuess->isSenior<Senior^>(grandfather))
      Console::WriteLine("\"grandfather\" is a senior");
   else
      Console::WriteLine("\"grandfather\" is not a senior");
}

// generics_constraints_4.cpp
// compile with: /c /clr
generic <typename T>
ref class G1 {};

generic <typename Type1, typename Type2>
where Type1 : G1<Type2>   // OK, G1 takes one type parameter
ref class G2{};

The following example demonstrates using constraints to call instance methods on type parameters.



"parent" is not a senior
"grandfather" is a senior

Example

// generics_constraints_6.cpp
// compile with: /clr /c
generic <class T>
ref struct List {
   generic <class U>
   where U : T
   void Add(List<U> items)  {}
};

generic <class A, class B, class C>
where A : C
ref struct SampleClass {};

See Also

When a generic type parameter is used as a constraint, it is called a naked type constraint. Naked type constraints
are useful when a member function with its own type parameter needs to constrain that parameter to the type
parameter of the containing type.

In the following example, T  is a naked type constraint in the context of the Add  method.

Naked type constraints can also be used in generic class definitions. The usefulness of naked type constraints with
generic classes is limited because the compiler can assume nothing about a naked type constraint except that it
derives from Object. Use naked type constraints on generic classes in scenarios in which you wish to enforce an
inheritance relationship between two type parameters.

Generics

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx


Consuming Generics (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

Example
DescriptionDescription

CodeCode

Generics authored in one .NET (or UWP) language may be used in other languages. Unlike templates, a generic in
a compiled assembly still remains generic. Thus, one may instantiate the generic type in a different assembly and
even in a different language than the assembly in which the generic type was defined.

This example shows a generic class defined in C#.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/consuming-generics-cpp-cli.md


// consuming_generics_from_other_NET_languages.cs
// compile with: /target:library
// a C# program
public class CircularList<ItemType> {
   class ListNode    {
      public ItemType m_item;
      public ListNode next;
      public ListNode(ItemType item) {
         m_item = item;
      }
   }

   ListNode first, last;

   public CircularList() {}

   public void Add(ItemType item) {
      ListNode newnode = new ListNode(item);
      if (first == null) {
         first = last = newnode;
         first.next = newnode;
         last.next = first;
      }
      else {
         newnode.next = first;
         first = newnode;
         last.next = first;
      }
   }

   public void Remove(ItemType item) {
      ListNode iter = first;
      if (first.m_item.Equals( item )) {
         first =
         last.next = first.next;
      }
      for ( ; iter != last ; iter = iter.next )
         if (iter.next.m_item.Equals( item )) {
              if (iter.next == last)
                  last = iter;
              iter.next = iter.next.next;
              return;
          }
   }

   public void PrintAll() {
      ListNode iter = first;
      do {
         System.Console.WriteLine( iter.m_item );
         iter = iter.next;
      } while (iter != last);
   }
}

Example
DescriptionDescription

CodeCode

This example consumes the assembly authored in C#.



// consuming_generics_from_other_NET_languages_2.cpp
// compile with: /clr
#using <consuming_generics_from_other_NET_languages.dll>
using namespace System;
class NativeClass {};
ref class MgdClass {};

int main() {
   CircularList<int>^ circ1 = gcnew CircularList<int>();
   CircularList<MgdClass^>^ circ2 = gcnew CircularList<MgdClass^>();

   for (int i = 0 ; i < 100 ; i += 10)
      circ1->Add(i);
   circ1->Remove(50);
   circ1->PrintAll();
}

90
80
70
60
40
30
20
10

See Also
Generics



Generics and Templates (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

Comparing Templates and Generics

Combining Templates and Generics

Generics and templates are both language features that provide support for parameterized types. However, they
are different and have different uses. This topic provides an overview of the many differences.

For more information, see Windows Runtime and Managed Templates.

Key differences between generics and C++ templates:

Generics are generic until the types are substituted for them at runtime. Templates are specialized at
compile time so they are not still parameterized types at runtime

The common language runtime specifically supports generics in MSIL. Because the runtime knows about
generics, specific types can be substituted for generic types when referencing an assembly containing a
generic type. Templates, in contrast, resolve into ordinary types at compile time and the resulting types may
not be specialized in other assemblies.

Generics specialized in two different assemblies with the same type arguments are the same type.
Templates specialized in two different assemblies with the same type arguments are considered by the
runtime to be different types.

Generics are generated as a single piece of executable code which is used for all reference type arguments
(this is not true for value types, which have a unique implementation per value type). The JIT compiler
knows about generics and is able to optimize the code for the reference or value types that are used as type
arguments. Templates generate separate runtime code for each specialization.

Generics do not allow non-type template parameters, such as template <int i> C {} . Templates allow
them.

Generics do not allow explicit specialization (that is, a custom implementation of a template for a specific
type). Templates do.

Generics do not allow partial specialization (a custom implementation for a subset of the type arguments).
Templates do.

Generics do not allow the type parameter to be used as the base class for the generic type. Templates do.

Templates support template-template parameters (e.g. template<template<class T> class X> class MyClass ),
but generics do not.

The basic difference in generics has implications for building applications that combine templates and generics.
For example, suppose you have a template class that you want to create a generic wrapper for to expose that
template to other languages as a generic. You cannot have the generic take a type parameter that it then passes
though to the template, since the template needs to have that type parameter at compile time, but the generic
won't resolve the type parameter until runtime. Nesting a template inside a generic won't work either because
there's no way to expand the templates at compile time for arbitrary generic types that could be instantiated at
runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/generics-and-templates-visual-cpp.md


Example
DescriptionDescription

CodeCode

// templates_and_generics.cpp
// compile with: /clr
using namespace System;

generic <class ItemType>
ref class MyGeneric {
   ItemType m_item;

public:
   MyGeneric(ItemType item) : m_item(item) {}
   void F() {
      Console::WriteLine("F");
   }
};

template <class T>
public ref class MyRef {
MyGeneric<T>^ ig;

public:
   MyRef(T t) {
      ig = gcnew MyGeneric<T>(t);
      ig->F();
    }
};

int main() {
   // instantiate the template
   MyRef<int>^ mref = gcnew MyRef<int>(11);
}

F

See Also

The following example shows a simple example of using templates and generics together. In this example, the
template class passes its parameter through to the generic type. The reverse is not possible.

This idiom could be used when you want to build on an existing generic API with template code that is local to a
C++/CLI assembly, or when you need to add an extra layer of parameterization to a generic type, to take
advantage of certain features of templates not supported by generics.

Generics



How to: Improve Performance with Generics
(C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

Example

With generics, you can create reusable code based on a type parameter. The actual type of the type parameter is
deferred until called by client code. For more information on generics, see Generics.

This article will discuss how generics can help increase the performance of an application that uses collections.

The .NET Framework comes with many collection classes in the System.Collections namespace. Most of these
collections operate on objects of type System.Object. This allows collections to store any type, since all types in the
.NET Framework, even value types, derive from System.Object. However, there are two drawbacks to this
approach.

First, if the collection is storing value types such as integers, the value must be boxed before being added to the
collection and unboxed when the value is retrieved from the collection. These are expensive operations.

Second, there is no way to control which types can be added to a collection. It is perfectly legal to add an integer
and a string to the same collection, even though this is probably not what was intended. Therefore, in order for
your code to be type safe, you have to check that the type retrieved from the collection really is what was expected.

The following code example shows the two main drawbacks of the .NET Framework collections before generics.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/how-to-improve-performance-with-generics-visual-cpp.md
https://msdn.microsoft.com/en-us/library/system.collections(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx


// perf_pre_generics.cpp
// compile with: /clr

using namespace System;
using namespace System::Collections;

int main()
{
    // This Stack can contain any type.
    Stack ^s = gcnew Stack();

    // Push an integer to the Stack.
    // A boxing operation is performed here.
    s->Push(7);

    // Push a String to the same Stack.
    // The Stack now contains two different data types.
    s->Push("Seven");

    // Pop the items off the Stack.
    // The item is returned as an Object, so a cast is
    // necessary to convert it to its proper type.
    while (s->Count> 0)
    {
        Object ^o = s->Pop();
        if (o->GetType() == Type::GetType("System.String"))
        {
            Console::WriteLine("Popped a String: {0}", (String ^)o);
        }
        else if (o->GetType() == Type::GetType("System.Int32"))
        {
            Console::WriteLine("Popped an int: {0}", (int)o);
        }
        else
        {
            Console::WriteLine("Popped an unknown type!");
        }
    }
}

Popped a String: Seven
Popped an int: 7

Example
The new System.Collections.Generic namespace contains many of the same collections found in the
System.Collections namespace, but they have been modified to accept generic type parameters. This eliminates the
two drawbacks of non-generic collections: the boxing and unboxing of value types and the inability to specify the
types to be stored in the collections. Operations on the two collections are identical; they differ only in how they are
instantiated.

Compare the example written above with this example that uses a generic Stack<T> collection. On large collections
that are frequently accessed, the performance of this example will be significantly greater than the preceding
example.

https://msdn.microsoft.com/en-us/library/system.collections.generic(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.collections(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/3278tedw(v=vs.110).aspx


// perf_post_generics.cpp
// compile with: /clr

#using <System.dll>

using namespace System;
using namespace System::Collections::Generic;

int main()
{
    // This Stack can only contain integers.
    Stack<int> ^s = gcnew Stack<int>();

    // Push an integer to the Stack.
    // A boxing operation is performed here.
    s->Push(7);
    s->Push(14);

    // You can no longer push a String to the same Stack.
    // This will result in compile time error C2664.
    //s->Push("Seven");

    // Pop an item off the Stack.
    // The item is returned as the type of the collection, so no
    // casting is necessary and no unboxing is performed for
    // value types.
    int i = s->Pop();
    Console::WriteLine(i);

    // You can no longer retrieve a String from the Stack.
    // This will result in compile time error C2440.
    //String ^str = s->Pop();
}

14

See Also
Generics



interface class (C++/CLI and C++/CX)
10/31/2018 • 3 minutes to read • Edit Online

All Runtimes
SyntaxSyntax

interface_access
interface class
name :  inherit_accessbase_interface{};interface_accessinterface structname :  inherit_accessbase_interface{};

ParametersParameters

RemarksRemarks

Declares an interface. For information on native interfaces, see __interface.

interface_access
The accessibility of an interface outside the assembly. Possible values are public and private. private is the
default. Nested interfaces cannot have an interface_access specifier.

name
The name of the interface.

inherit_access
The accessibility of base_interface. The only permitted accessibility for a base interface is public (the default).

base_interface
(Optional) A base interface for interface name.

interface struct is equivalent to interface class.

An interface can contain declarations for functions, events, and properties. All interface members have public
accessibility. An interface can also contain static data members, functions, events, and properties, and these static
members must be defined in the interface.

An interface defines how a class may be implemented. An interface is not a class and classes can only implement
interfaces. When a class defines a function declared in an interface, the function is implemented, not overridden.
Therefore, name lookup does not include interface members.

A class or struct that derives from an interface must implement all members of the interface. When implementing
interface name you must also implement the interfaces in the base_interface  list.

For more information, see:

Interface Static Constructor

Generic Interfaces (C++/CLI)

For information on other CLR types, see Classes and Structs.

You can detect at compile time if a type is an interface with __is_interface_class(type) . For more information, see
Compiler Support for Type Traits.

In the development environment, you can get F1 help on these keywords by highlighting the keyword, (
interface class , for example) and pressing F1.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/interface-class-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/interface
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-define-an-interface-static-constructor-cpp-cli


Windows Runtime
RemarksRemarks

RequirementsRequirements

Common Language Runtime
RemarksRemarks

RequirementsRequirements

ExamplesExamples

// mcppv2_interface_class.cpp
// compile with: /clr
using namespace System;

public delegate void ClickEventHandler(int, double);

// define interface with nested interface
public interface class Interface_A {
   void Function_1();

   interface class Interface_Nested_A {
      void Function_2();
   };
};

// interface with a base interface
public interface class Interface_B : Interface_A {
   property int Property_Block;
   event ClickEventHandler^ OnClick;
   static void Function_3() { Console::WriteLine("in Function_3"); }
};

// implement nested interface
public ref class MyClass : public Interface_A::Interface_Nested_A {
public:
   virtual void Function_2() { Console::WriteLine("in Function_2"); }
};

// implement interface and base interface
public ref class MyClass2 : public Interface_B {
private:
   int MyInt;

public:
   // implement non-static function
   virtual void Function_1() { Console::WriteLine("in Function_1"); }

   // implement property
   property int Property_Block {
      virtual int get() { return MyInt; }
      virtual void set(int value) { MyInt = value; }
   }
   // implement event
   virtual event ClickEventHandler^ OnClick;

(There are no remarks for this language feature that apply to only the Windows Runtime.)

Compiler option: /ZW

(There are no remarks for this language feature that apply to only the common language runtime.)

Compiler option: /clr

The following code example demonstrates how an interface can define the behavior of a clock function.



   void FireEvents() {
      OnClick(7, 3.14159);
   }
};

// class that defines method called when event occurs
ref class EventReceiver {
public:
   void OnMyClick(int i, double d) {
      Console::WriteLine("OnClick: {0}, {1}", i, d);
   }
};

int main() {
   // call static function in an interface
   Interface_B::Function_3();

   // instantiate class that implements nested interface
   MyClass ^ x = gcnew MyClass;
   x->Function_2();

   // instantiate class that implements interface with base interface
   MyClass2 ^ y = gcnew MyClass2;
   y->Function_1();
   y->Property_Block = 8;
   Console::WriteLine(y->Property_Block);

   EventReceiver^ MyEventReceiver = gcnew EventReceiver();

   // hook handler to event
   y->OnClick += gcnew ClickEventHandler(MyEventReceiver, &EventReceiver::OnMyClick);

   // invoke events
   y->FireEvents();

   // unhook handler to event
   y->OnClick -= gcnew ClickEventHandler(MyEventReceiver, &EventReceiver::OnMyClick);

   // call implemented function via interface handle
   Interface_A^ hi = gcnew MyClass2();
   hi->Function_1();
}

in Function_3

in Function_2

in Function_1

8

OnClick: 7, 3.14159

in Function_1

The following code sample shows two ways to implement functions with the same signature declared in multiple
interfaces and where those interfaces are used by a class.



// mcppv2_interface_class_2.cpp
// compile with: /clr /c
interface class I {
   void Test();
   void Test2();
};

interface class J : I {
   void Test();
   void Test2();
};

ref struct R : I, J {
   // satisfies the requirement to implement Test in both interfaces
   virtual void Test() {}

   // implement both interface functions with explicit overrides
   virtual void A() = I::Test2 {}
   virtual void B() = J::Test2 {}
};

See Also
Component Extensions for .NET and UWP



literal (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

All Platforms
RemarksRemarks

Windows Runtime
RemarksRemarks

RequirementsRequirements

Common Language Runtime

Remarks

Example

// mcppv2_literal.cpp
// compile with: /clr
ref struct X {
   literal int i = 4;
};

int main() {
   int value = X::i;
}

Example

A variable (data member) marked as literal in a /clr compilation is the native equivalent of a static const variable.

(There are no remarks for this language feature that apply to all runtimes.)

(There are no remarks for this language feature that apply to only the Windows Runtime.)

Compiler option: /ZW

A data member marked as literal must be initialized when declared and the value must be a constant integral,
enum, or string type. Conversion from the type of the initialization expression to the type of the static const data-
member must not require a user-defined conversion.

No memory is allocated for the literal field at runtime; the compiler only inserts its value in the metadata for the
class.

A variable marked static const will not be available in metadata to other compilers.

For more information, see Static and const.

literal is a context-sensitive keyword. See Context-Sensitive Keywords for more information.

This example shows that a literal variable implies static.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/literal-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/storage-classes-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/const-cpp


// mcppv2_literal2.cpp
// compile with: /clr /LD
public ref struct A {
   literal int lit = 0;
   static const int sc = 1;
};

.field public static int32 modopt([mscorlib]System.Runtime.CompilerServices.IsConst) sc = int32(0x0000000A)

.field public static literal int32 lit = int32(0x0000000A)

Example

// mcppv2_literal3.cs
// compile with: /reference:mcppv2_literal2.dll
// A C# program
class B {
   public static void Main() {
      // OK
      System.Console.WriteLine(A.lit);
      System.Console.WriteLine(A.sc);

      // C# does not enforce C++ const
      A.sc = 9;
      System.Console.WriteLine(A.sc);

      // C# enforces const for a literal
      A.lit = 9;   // CS0131

      // you can assign a C++ literal variable to a C# const variable
      const int i = A.lit;
      System.Console.WriteLine(i);

      // but you cannot assign a C++ static const variable
      // to a C# const variable
      const int j = A.sc;   // CS0133
      System.Console.WriteLine(j);
   }
}

Requirements

See Also

The following sample shows the affect of literal in metadata:

Notice the difference in the metadata for sc  and lit : the modopt  directive is applied to sc , meaning it can be
ignored by other compilers.

The following sample, authored in C#, references the metadata created in the previous sample and shows the
affect of literal and static const variables:

Compiler option: /clr

Component Extensions for .NET and UWP



Windows Runtime and Managed Templates
(C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

All Runtimes

Windows Runtime

RequirementsRequirements

Common Language Runtime

RequirementsRequirements

ExamplesExamples

// managed_templates.cpp
// compile with: /clr /c

generic<class T>
ref class R;

template<class T>
ref class Z {
   // Instantiate a generic with a template parameter.
   R<T>^ r;    // OK
};

generic<class T>
ref class R {
   // Cannot instantiate a template with a generic parameter.
   Z<T>^ z;   // C3231
};

Templates enable you to define a prototype of a Windows Runtime or common language runtime type, and then
instantiate variations of that type by using different template type parameters.

You can create templates from value or reference types. For more information about creating value or reference
types, see Classes and Structs.

For more information about standard C++ class templates, see Class Templates.

(There are no remarks for this language feature that apply to only the Windows Runtime.)

Compiler option: /ZW

There are some limitations to creating class templates from managed types, which are demonstrated in the
following code examples.

Compiler option: /clr

It is possible to instantiate a generic type with a managed type template parameter, but you cannot instantiate a
managed template with a generic type template parameter. This is because generic types are resolved at runtime.
For more information, see Generics and Templates (C++/CLI).

A generic type or function cannot be nested in a managed template.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/windows-runtime-and-managed-templates-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/class-templates


// managed_templates_2.cpp
// compile with: /clr /c

template<class T> public ref class R {
   generic<class T> ref class W {};   // C2959
};

// managed_templates_3.cpp
// compile with: /clr

// Will not appear in metadata.
template<class T> public ref class A {};

// Will appear in metadata as a specialized type.
template<class T> public ref class R {
public:
   // Test is referenced, will appear in metadata
   void Test() {}

   // Test2 is not referenced, will not appear in metadata
   void Test2() {}
};

// Will appear in metadata.
generic<class T> public ref class G { };

public ref class S { };

int main() {
   R<int>^ r = gcnew R<int>;
   r->Test();
}

// managed_templates_4.cpp
// compile with: /clr /c

// class template
// ref class
template <class T>
ref class A {};

// partial template specialization
// value type
template <class T>
value class A <T *> {};

// partial template specialization
// interface
template <class T>
interface class A<T%> {};

// explicit template specialization
// native class
template <>
class A <int> {};

You cannot access templates defined in a referenced assembly with C++/CLI language syntax, but you can use
reflection. If a template is not instantiated, it’s not emitted in the metadata. If a template is instantiated, only
referenced member functions will appear in metadata.

You can change the managed modifier of a class in a partial specialization or explicit specialization of a class
template.



See Also
Component Extensions for .NET and UWP



new (new slot in vtable) (C++/CLI and C++/CX)
3/5/2019 • 2 minutes to read • Edit Online

All Runtimes

Windows Runtime

Common Language Runtime
RemarksRemarks

RequirementsRequirements

ExamplesExamples

The new keyword indicates that a virtual member will get a new slot in the vtable.

(There are no remarks for this language feature that apply to all runtimes.)

Not supported in Windows Runtime.

In a /clr  compilation, new indicates that a virtual member will get a new slot in the vtable; that the function does
not override a base class method.

new causes the newslot modifier to be added to the IL for the function. For more information about newslot, see:

GetBaseDefinition()

MethodAttributes

Compiler option: /clr

The following sample shows the effect of new.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/new-new-slot-in-vtable-cpp-component-extensions.md
https://msdn.microsoft.com/en-us/library/hk6tk1s7(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.reflection.methodattributes(v=vs.110).aspx


// newslot.cpp
// compile with: /clr
ref class C {
public:
   virtual void f() {
      System::Console::WriteLine("C::f() called");
   }

   virtual void g() {
      System::Console::WriteLine("C::g() called");
   }
};

ref class D : public C {
public:
   virtual void f() new {
      System::Console::WriteLine("D::f() called");
   }

   virtual void g() override {
      System::Console::WriteLine("D::g() called");
   }
};

ref class E : public D {
public:
   virtual void f() override {
      System::Console::WriteLine("E::f() called");
   }
};

int main() {
   D^ d = gcnew D;
   C^ c = gcnew D;

   c->f();   // calls C::f
   d->f();   // calls D::f

   c->g();   // calls D::g
   d->g();   // calls D::g

   D ^ e = gcnew E;
   e->f();   // calls E::f
}

C::f() called

D::f() called

D::g() called

D::g() called

E::f() called

See Also
Component Extensions for .NET and UWP

Override Specifiers



nullptr (C++/CLI and C++/CX)
10/31/2018 • 4 minutes to read • Edit Online

Usage

Example

The nullptr keyword represents a null pointer value. Use a null pointer value to indicate that an object handle,
interior pointer, or native pointer type does not point to an object.

Use nullptr with either managed or native code. The compiler emits appropriate but different instructions for
managed and native null pointer values. For information about using the ISO standard C++ version of this
keyword, see nullptr.

The __nullptr keyword is a Microsoft-specific keyword that has the same meaning as nullptr, but applies to only
native code. If you use nullptr with native C/C++ code and then compile with the /clr compiler option, the
compiler cannot determine whether nullptr indicates a native or managed null pointer value. To make your
intention clear to the compiler, use nullptr to specify a managed value or __nullptr to specify a native value.

The nullptr keyword is equivalent to Nothing in Visual Basic and null in C#.

The nullptr keyword can be used anywhere a handle, native pointer, or function argument can be used.

The nullptr keyword is not a type and is not supported for use with:

sizeof

typeid

throw nullptr  (although throw (Object^)nullptr;  will work)

The nullptr keyword can be used in the initialization of the following pointer types:

Native pointer

Windows Runtime handle

Managed handle

Managed interior pointer

The nullptr keyword can be used to test if a pointer or handle reference is null before the reference is used.

Function calls among languages that use null pointer values for error checking should be interpreted correctly.

You cannot initialize a handle to zero; only nullptr can be used. Assignment of constant 0 to an object handle
produces a boxed Int32  and a cast to Object^ .

The following code example demonstrates that the nullptr keyword can be used wherever a handle, native
pointer, or function argument can be used. And the example demonstrates that the nullptr keyword can be used
to check a reference before it is used.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/nullptr-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/nullptr
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/sizeof-operator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/typeid-operator


// mcpp_nullptr.cpp
// compile with: /clr
value class V {};
ref class G {};
void f(System::Object ^) {}

int main() {
// Native pointer.
   int *pN = nullptr;
// Managed handle.
   G ^pG = nullptr;
   V ^pV1 = nullptr;
// Managed interior pointer.
   interior_ptr<V> pV2 = nullptr;
// Reference checking before using a pointer.
   if (pN == nullptr) {}
   if (pG == nullptr) {}
   if (pV1 == nullptr) {}
   if (pV2 == nullptr) {}
// nullptr can be used as a function argument.
   f(nullptr);   // calls f(System::Object ^)
}

Example

// mcpp_nullptr_1.cpp
// compile with: /clr
class MyClass {
public:
   int i;
};

int main() {
   MyClass * pMyClass = nullptr;
   if ( pMyClass == nullptr)
      System::Console::WriteLine("pMyClass == nullptr");

   if ( pMyClass == 0)
      System::Console::WriteLine("pMyClass == 0");

   pMyClass = 0;
   if ( pMyClass == nullptr)
      System::Console::WriteLine("pMyClass == nullptr");

   if ( pMyClass == 0)
      System::Console::WriteLine("pMyClass == 0");
}

pMyClass == nullptr

pMyClass == 0

pMyClass == nullptr

pMyClass == 0

Example

The following code example shows that nullptr and zero can be used interchangeably on native pointers.

The following code example shows that nullptr is interpreted as a handle to any type or a native pointer to any



// mcpp_nullptr_2.cpp
// compile with: /clr /LD
void f(int *){}
void f(int ^){}

void f_null() {
   f(nullptr);   // C2668
   // try one of the following lines instead
   f((int *) nullptr);
   f((int ^) nullptr);
}

Example

// mcpp_nullptr_3.cpp
// compile with: /clr /LD
using namespace System;
template <typename T>
void f(T) {}   // C2036 cannot deduce template type because nullptr can be any type

int main() {
   f((Object ^) nullptr);   // T = Object^, call f(Object ^)

   // Delete the following line to resolve.
   f(nullptr);

   f(0);   // T = int, call f(int)
}

Example

// mcpp_nullptr_4.cpp
// compile with: /clr
using namespace System;
void f(Object ^ x) {
   Console::WriteLine("test");
}

int main() {
   f(nullptr);
}

test

Example

type. In case of function overloading with handles to different types, an ambiguity error will be generated. The
nullptr would have to be explicitly cast to a type.

The following code example shows that casting nullptr is allowed and returns a pointer or handle to the cast type
that contains the nullptr value.

The following code example shows that nullptr can be used as a function parameter.

The following code example shows that when handles are declared and not explicitly initialized, they are default
initialized to nullptr.



// mcpp_nullptr_5.cpp
// compile with: /clr
using namespace System;
ref class MyClass {
public:
   void Test() {
      MyClass ^pMyClass;   // gc type
      if (pMyClass == nullptr)
         Console::WriteLine("NULL");
   }
};

int main() {
   MyClass ^ x = gcnew MyClass();
   x -> Test();
}

NULL

Example

// mcpp_nullptr_6.cpp
// compile with: /clr
int main() {
   int * i = 0;
   int * j = nullptr;
}

Requirements

See Also

The following code example shows that nullptr can be assigned to a native pointer when you compile with /clr .

Compiler option: (Not required; supported by all code generation options, including /ZW  and /clr )

Component Extensions for .NET and UWP
nullptr

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/nullptr


Override Specifiers (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

All Runtimes
RemarksRemarks

Windows Runtime

RequirementsRequirements

Common Language Runtime

RequirementsRequirements

See Also

Override specifiers modify how inherited types and members of inherited types behave in derived types.

For more information about override specifiers, see:

abstract

new (new slot in vtable)

override

sealed

Override Specifiers and Native Compilations

abstract and sealed are also valid on type declarations, where they do not act as override specifiers.

For information about explicitly overriding base class functions, see Explicit Overrides.

(There are no remarks for this language feature that apply to only the Windows Runtime.)

Compiler option: /ZW

(There are no remarks for this language feature that apply to only the common language runtime.)

Compiler option: /clr

Component Extensions for .NET and UWP

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/override-specifiers-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-declare-override-specifiers-in-native-compilations-cpp-cli


override (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

Remarks

Examples

// override_keyword_1.cpp
// compile with: /c
struct I1 {
   virtual void f();
};

struct X : public I1 {
   virtual void f() override {}
};

ExampleExample

// override_keyword_2.cpp
// compile with: /ZW /c
ref struct I1 {
   virtual void f();
};

ref struct X : public I1 {
   virtual void f() override {}
};

RequirementsRequirements

ExampleExample

The override context-sensitive keyword indicates that a member of a type overrides a base class or a base
interface member.

The override keyword is valid when compiling for native targets (default compiler option), Windows Runtime
targets ( /ZW  compiler option), or common language runtime targets ( /clr  compiler option).

For more information about override specifiers, see override Specifier and Override Specifiers and Native
Compilations.

For more information about context-sensitive keywords, see Context-Sensitive Keywords.

The following code example shows that override can also be used in native compilations.

The following code example shows that override can be used in Windows Runtime compilations.

Compiler option: /ZW

The following code example shows that override can be used in common language runtime compilations.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/override-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/override-specifier
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-declare-override-specifiers-in-native-compilations-cpp-cli


// override_keyword_3.cpp
// compile with: /clr /c
ref struct I1 {
   virtual void f();
};

ref struct X : public I1 {
   virtual void f() override {}
};

RequirementsRequirements

See Also

Compiler option: /clr

override Specifier
Override Specifiers

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/override-specifier


partial (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

All Runtimes

Windows Runtime

SyntaxSyntax

partial class-key identifier {
   /* The first part of the partial class definition.
      This is typically auto-generated */
}
// ...
class-key identifier {
   /* The subsequent part(s) of the class definition. The same
      identifier is specified, but the "partial" keyword is omitted. */
}

ParametersParameters

RemarksRemarks

The partial keyword enables different parts of the same ref class to be authored independently and in different
files.

(This language feature applies only to the Windows Runtime.)

For a ref class that has two partial definitions, the partial keyword is applied to the first occurrence of the
definition, and this is typically done by auto-generated code, so that a human coder doesn’t use the keyword very
often. For all subsequent partial definitions of the class, omit the partial modifier from the class-key keyword and
class identifier. When the compiler encounters a previously defined ref class and class identifier but no partial
keyword, it internally combines all of the parts of the ref class definition into one definition.

class-key
A keyword that declares a class or struct that is supported by the Windows Runtime. Either ref class, value class,
ref struct, or value struct.

identifier
The name of the defined type.

A partial class supports scenarios where you modify one part of a class definition in one file, and automatic code-
generating software—for example, the XAML designer—modifies code in the same class in another file. By using a
partial class, you can prevent the automatic code generator from overwriting your code. In a Visual Studio project,
the partial modifier is applied automatically to the generated file.

Contents: With two exceptions, a partial class definition can contain anything that the full class definition could
contain if the partial keyword was omitted. However, you can't specify class accessibility (for example, 
public partial class X { ... }; ), or a declspec.

Access specifiers used in a partial class definition for identifier do not affect the default accessibility in a subsequent
partial or full class definition for identifier. Inline definitions of static data members are allowed.

Declaration: A partial definition of a class identifier only introduces the name identifier, but identifier cannot be
used in a way that requires a class definition. The name identifier can't be used to know the size of identifier, or to

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/partial-cpp-component-extensions.md


RequirementsRequirements

Common Language Runtime

See Also

use a base or member of identifier until after the compiler encounters the full definition of identifier.

Number and ordering: There can be zero or more partial class definitions for identifier. Every partial class
definition of identifier must lexically precede the one full definition of identifier (if there is a full definition;
otherwise, the class can't be used except as if forward-declared) but need not precede forward declarations of
identifier. All class-keys must match.

Full definition: At the point of the full definition of the class identifier, the behavior is the same as if the definition of
identifier had declared all base classes, members, etc. in the order in which they were encountered and defined in
the partial classes.

Templates: A partial class cannot be a template.

Generics: A partial class can be a generic if the full definition could be generic. But every partial and full class must
have exactly the same generic parameters, including formal parameter names.

For more information about how to use the partial keyword, see Partial Classes (C++/CX).

Compiler option: /ZW

(This language feature does not apply to the Common Language Runtime.)

Partial Classes (C++/CX)

http://go.microsoft.com/fwlink/p/?LinkId=249023
http://go.microsoft.com/fwlink/p/?LinkId=249023


property (C++/CLI and C++/CX)
10/31/2018 • 5 minutes to read • Edit Online

All Runtimes

SyntaxSyntax

property type property_name;

property type property_name {
   access-modifier type get() inheritance-modifier {property_body};
   access-modifier void set(type value) inheritance-modifier {property_body};
}

property type property_name[index_list] {
   access-modifier type get(index_list) inheritance-modifier {property_body};
   access-modifier void set(index_list, value) inheritance-modifier {property_body};
}

property type default[index_list] {
   access-modifier type get(index_list) inheritance-modifier {property_body};
   access-modifier void set(index_list, value) inheritance-modifier {property_body};
}

ParametersParameters

Declares a property, which is a member function that behaves and is accessed like a data member or an array
element.

You can declare one of the following types of properties.

simple property
By default, creates a set accessor that assigns the property value, a get accessor that retrieves the property value,
and a compiler-generated private data member that contains the property value.

property block
Use this to create user-defined get and/or set accessors. The property is read/write if both the get and set
accessors are defined, read-only if only the get accessor is defined, and write-only if only the set accessor is
defined.

You must explicitly declare a data member to contain the property value.

indexed property
A property block that you can use to get and set a property value that is specified by one or more indexes.

You can create an indexed property that has either a user-defined property name or a default property name. The
name of a default index property is the name of the class in which the property is defined. To declare a default
property, specify the default keyword instead of a property name.

You must explicitly declare a data member to contain the property value. For an indexed property, the data
member is typically an array or a collection.

type
The data type of the property value, and consequently the property itself.

property_name

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/property-cpp-component-extensions.md


Windows Runtime

RequirementsRequirements

Common Language Runtime
SyntaxSyntax

modifier property type property_name;

modifier property type property_name {
   modifier void set(type);
   modifier type get();
}
modifier property type property_name[index-list, value] {
   modifier void set(index-list, value);
   modifier type get(index-list);

modifier property type default[index];
}

ParametersParameters

The name of the property.

access-modifier
An access qualifier. Valid qualifiers are static and virtual.

The get or set accessors need not agree on the virtual qualifier, but they must agree on the static qualifier.

inheritance-modifier
An inheritance qualifier. Valid qualifiers are abstract and sealed.

index_list
A comma-delimited list of one or more indexes. Each index consists of an index type, and an optional identifier that
can be used in the property method body.

value
The value to assign to the property in a set operation, or retrieve in a get operation.

property_body
The property method body of the set or get accessor. The property_body can use the index_list to access the
underlying property data member, or as parameters in user-defined processing.

For more information, see Properties (C++/CX).

Compiler option: /ZW

modifier
A modifier that can be used on either a property declaration or a get/set accessor method. Possible values are
static and virtual.

type
The type of the value that is represented by the property.

property_name
Parameter(s) for the raise method; must match the signature of the delegate.

index_list
A comma-delimited list of one or more indexes, specified in square brackets (the subscript operator, ([])). For each
index, specify a type and optionally an identifier that can be used in the property method body.

https://msdn.microsoft.com/library/windows/apps/hh755807.aspx


RemarksRemarks

RequirementsRequirements

ExamplesExamples

The first syntax example shows a simple property, which implicitly declares both a set  and get  method. The
compiler automatically creates a private field to store the value of the property.

The second syntax example shows a property block, which explicitly declares both a set  and get  method.

The third syntax example shows a customer-defined index property. An index property takes parameters in
addition to the value to be set or retrieved. You must specify a name for the property. Unlike a simple property, the
set  and/or get  methods of an index property must be explicitly defined, and you must specify a name for the

property.

The fourth syntax example shows a default property, which provides array-like access to an instance of the type.
The keyword, default, serves only to specify a default property. The name of the default property is the name of
the type in which the property is defined.

The property keyword can appear in a class, interface, or value type. A property can have a get function (read-
only), a set function (write-only), or both (read-write).

A property name cannot match the name of the managed class that contains it. The return type of the getter
function must match the type of the last parameter of a corresponding setter function.

To client code, a property has the appearance of an ordinary data member, and can be written to or read from by
using the same syntax as a data member.

The get and set methods need not agree on the virtual modifier.

The accessibility of the get and set method can differ.

The definition of a property method can appear outside the class body, just like an ordinary method.

The get and the set method for a property shall agree on the static modifier.

A property is scalar if its get and set methods fit the following description:

The get method has no parameters, and has return type T .

The set method has a parameter of type T , and return type void.

There shall be only one scalar property declared in a scope with the same identifier. Scalar properties cannot be
overloaded.

When a property data member is declared, the compiler injects a data member—sometimes referred to as the
"backing store"—in the class. However, the name of the data member is of a form such that you cannot reference
the member in the source as if it were an actual data member of the containing class. Use ildasm.exe to view the
metadata for your type and see the compiler-generated name for the property's backing store.

Different accessibility is allowed for the accessor methods in a property block. That is, the set method can be
public and the get method can be private. However, it is an error for an accessor method to have a less restrictive
accessibility than what is on the declaration of the property itself.

property is a context-sensitive keyword. For more information, see Context-Sensitive Keywords.

Compiler option: /clr

The following example shows the declaration and use of a property data member and a property block. It also
shows that a property accessor can be defined out of class.



// mcppv2_property.cpp
// compile with: /clr
using namespace System;
public ref class C {
   int MyInt;
public:

   // property data member
   property String ^ Simple_Property;

   // property block
   property int Property_Block {

      int get();

      void set(int value) {
         MyInt = value;
      }
   }
};

int C::Property_Block::get() {
   return MyInt;
}

int main() {
   C ^ MyC = gcnew C();
   MyC->Simple_Property = "test";
   Console::WriteLine(MyC->Simple_Property);

   MyC->Property_Block = 21;
   Console::WriteLine(MyC->Property_Block);
}

test

21

See Also
Component Extensions for .NET and UWP



safe_cast (C++/CLI and C++/CX)
10/31/2018 • 3 minutes to read • Edit Online

All Runtimes

SyntaxSyntax

[default]:: safe_cast< type-id >( expression )

Windows Runtime

SyntaxSyntax

[default]:: safe_cast< type-id >( expression )

ParametersParameters

RemarksRemarks

RequirementsRequirements

ExamplesExamples

The safe_cast operation returns the specified expression as the specified type, if successful; otherwise, throws 
InvalidCastException .

(There are no remarks for this language feature that apply to all runtimes.)

safe_cast allows you to change the type of a specified expression. In situations where you fully expect a variable or
parameter to be convertible to a certain type, you can use safe_cast without a try-catch block to detect
programming errors during development. For more information, see Casting (C++/CX).

type-id
The type to convert expression to. A handle to a reference or value type, a value type, or a tracking reference to a
reference or value type.

expression
An expression that evaluates to a handle to a reference or value type, a value type, or a tracking reference to a
reference or value type.

safe_cast throws InvalidCastException  if it cannot convert expression to the type specified by type-id. To catch 
InvalidCastException , specify the /EH (Exception Handling Model) compiler option, and use a try/catch

statement.

Compiler option: /ZW

The following code example demonstrates how to use safe_cast with the Windows Runtime.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/safe-cast-cpp-component-extensions.md
https://msdn.microsoft.com/library/windows/apps/hh755802.aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/eh-exception-handling-model


// safe_cast_ZW.cpp
// compile with: /ZW /EHsc

using namespace default;
using namespace Platform;

interface class I1 {};
interface class I2 {};
interface class I3 {};

ref class X : public I1, public I2 {};

int main(Array<String^>^ args) {
   I1^ i1 = ref new X;
   I2^ i2 = safe_cast<I2^>(i1);   // OK, I1 and I2 have common type: X
   // I2^ i3 = static_cast<I2^>(i1);   C2440 use safe_cast instead
   try {
      I3^ i4 = safe_cast<I3^>(i1);   // Fails because i1 is not derived from I3.
   }
   catch(InvalidCastException^ ic) {
   wprintf(L"Caught expected exception: %s\n", ic->Message);
   }
}

Caught expected exception: InvalidCastException

Common Language Runtime

SyntaxSyntax

[cli]:: safe_cast< type-id >( expression )

ParametersParameters

RemarksRemarks

safe_cast allows you to change the type of an expression and generate verifiable MSIL code.

type-id
A handle to a reference or value type, a value type, or a tracking reference to a reference or value type.

expression
An expression that evaluates to a handle to a reference or value type, a value type, or a tracking reference to a
reference or value type.

The expression safe_cast< type-id >( expression )  converts the operand expression to an object of type type-id.

The compiler will accept a static_cast in most places that it will accept a safe_cast. However, safe_cast is
guaranteed to produce verifiable MSIL, where as a static_cast could produce unverifiable MSIL. See Pure and
Verifiable Code (C++/CLI) and Peverify.exe (PEVerify Tool) for more information on verifiable code.

Like static_cast, safe_cast invokes user-defined conversions.

For more information about casts, see Casting Operators.

safe_cast does not apply a const_cast (cast away const).

safe_cast is in the cli namespace. See Platform, default, and cli Namespaces for more information.

For more information on safe_cast, see:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/static-cast-operator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/pure-and-verifiable-code-cpp-cli
https://docs.microsoft.com/dotnet/framework/tools/peverify-exe-peverify-tool
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/casting-operators


RequirementsRequirements

ExamplesExamples

// safe_cast.cpp
// compile with: /clr
using namespace System;

interface class I1 {};
interface class I2 {};
interface class I3 {};

ref class X : public I1, public I2 {};

int main() {
   I1^ i1 = gcnew X;
   I2^ i2 = safe_cast<I2^>(i1);   // OK, I1 and I2 have common type: X
   // I2^ i3 = static_cast<I2^>(i1);   C2440 use safe_cast instead
   try {
      I3^ i4 = safe_cast<I3^>(i1);   // fail at runtime, no common type
   }
   catch(InvalidCastException^) {
      Console::WriteLine("Caught expected exception");
   }
}

Caught expected exception

See Also

C-Style Casts with /clr (C++/CLI)

How to: Use safe_cast in C++/CLI

Compiler option: /clr

One example of where the compiler will not accept a static_cast but will accept a safe_cast is for casts between
unrelated interface types. With safe_cast, the compiler will not issue a conversion error and will perform a check
at runtime to see if the cast is possible

Component Extensions for .NET and UWP

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-use-safe-cast-in-cpp-cli


String (C++/CLI and C++/CX)
10/31/2018 • 4 minutes to read • Edit Online

Windows Runtime

SyntaxSyntax

// compile with /ZW
using namespace Platform;
using namespace default;
   Platform::String^ MyString1 = "The quick brown fox";
   String^ MyString2 = "jumped over the lazy dog.";
   String^ MyString3 = "Hello, world!";

RequirementsRequirements

Common Language Runtime

NOTENOTE

The Windows Runtime and common language runtime represent strings as objects whose allocated memory is
managed automatically. That is, you are not required to explicitly discard the memory for a string when the string
variable goes out of scope or your application ends. To indicate that the lifetime of a string object is to be managed
automatically, declare the string type with the handle-to-object (^) modifier.

The Windows Runtime architecture requires that the String  data type be located in the Platform  namespace. For
your convenience, Visual C++ also provides the string  data type, which is a synonym for Platform::String , in
the default  namespace.

Compiler option: /ZW

When compiling with /clr , the compiler will convert string literals to strings of type String. To preserve backward
compatibility with existing code there are two exceptions to this:

Exception handling. When a string literal is thrown, the compiler will catch it as a string literal.

Template deduction. When a string literal is passed as a template argument, the compiler will not convert it
to a String. Note, string literals passed as a generic argument will be promoted to String.

The compiler also has built-in support for three operators, which you can override to customize their behavior:

System::String^ operator +( System::String, System::String);

System::String^ operator +( System::Object, System::String);

System::String^ operator +( System::String, System::Object);

When passed a String, the compiler will box, if necessary, and then concatenate the object (with ToString) with the
string.

The caret ("^") indicates that the declared variable is a handle to a C++/CLI managed object.

For more information see String and Character Literals.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/string-cpp-component-extensions.md
https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/string-and-character-literals-cpp


RequirementsRequirements

ExamplesExamples

// string_operators.cpp
// compile with: /clr
// In the following code, the caret ("^") indicates that the
// declared variable is a handle to a C++/CLI managed object.
using namespace System;

int main() {
   String^ a = gcnew String("abc");
   String^ b = "def";   // same as gcnew form
   Object^ c = gcnew String("ghi");

   char d[100] = "abc";

   // variables of System::String returning a System::String
   Console::WriteLine(a + b);
   Console::WriteLine(a + c);
   Console::WriteLine(c + a);

   // accessing a character in the string
   Console::WriteLine(a[2]);

   // concatenation of three System::Strings
   Console::WriteLine(a + b + c);

   // concatenation of a System::String and string literal
   Console::WriteLine(a + "zzz");

   // you can append to a System::String^
   Console::WriteLine(a + 1);
   Console::WriteLine(a + 'a');
   Console::WriteLine(a + 3.1);

   // test System::String^ for equality
   a += b;
   Console::WriteLine(a);
   a = b;
   if (a == b)
      Console::WriteLine("a and b are equal");

   a = "abc";
   if (a != b)
      Console::WriteLine("a and b are not equal");

   // System:String^ and tracking reference
   String^% rstr1 = a;
   Console::WriteLine(rstr1);

   // testing an empty System::String^
   String^ n;
   if (n == nullptr)
      Console::WriteLine("n is empty");
}

Compiler option: /clr

The following code example demonstrates concatenating and comparing strings.



abcdef

abcghi

ghiabc

c

abcdefghi

abczzz

abc1

abc97

abc3.1

abcdef

a and b are equal

a and b are not equal

abc

n is empty

The following sample shows that you can overload the compiler-provided operators, and that the compiler will find
a function overload based on the String type.

https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx


// string_operators_2.cpp
// compile with: /clr
using namespace System;

// a string^ overload will be favored when calling with a String
void Test_Overload(const char * a) {
   Console::WriteLine("const char * a");
}
void Test_Overload(String^ a) {
   Console::WriteLine("String^ a");
}

// overload will be called instead of compiler defined operator
String^ operator +(String^ a, String^ b) {
   return ("overloaded +(String^ a, String^ b)");
}

// overload will be called instead of compiler defined operator
String^ operator +(Object^ a, String^ b) {
   return ("overloaded +(Object^ a, String^ b)");
}

// overload will be called instead of compiler defined operator
String^ operator +(String^ a, Object^ b) {
   return ("overloaded +(String^ a, Object^ b)");
}

int main() {
   String^ a = gcnew String("abc");
   String^ b = "def";   // same as gcnew form
   Object^ c = gcnew String("ghi");

   char d[100] = "abc";

   Console::WriteLine(a + b);
   Console::WriteLine(a + c);
   Console::WriteLine(c + a);

   Test_Overload("hello");
   Test_Overload(d);
}

overloaded +(String^ a, String^ b)

overloaded +(String^ a, Object^ b)

overloaded +(Object^ a, String^ b)

String^ a

const char * a

The following sample shows that the compiler distinguishes between native strings and String strings.

https://msdn.microsoft.com/en-us/library/system.string(v=vs.110).aspx


// string_operators_3.cpp
// compile with: /clr
using namespace System;
int func() {
   throw "simple string";   // const char *
};

int func2() {
   throw "string" + "string";   // returns System::String
};

template<typename T>
void func3(T t) {
   Console::WriteLine(T::typeid);
}

int main() {
   try {
      func();
   }
   catch(char * e) {
      Console::WriteLine("char *");
   }

   try {
      func2();
   }
   catch(String^ str) {
      Console::WriteLine("String^ str");
   }

   func3("string");   // const char *
   func3("string" + "string");   // returns System::String
}

char *

String^ str

System.SByte*

System.String

See Also
Component Extensions for .NET and UWP
String and Character Literals
/clr (Common Language Runtime Compilation)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/string-and-character-literals-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation


sealed (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

All Runtimes

Syntax
ref class identifier sealed {...};
virtual return-type identifier() sealed {...};

ParametersParameters

Remarks

Windows Runtime

RequirementsRequirements

Common Language Runtime

RequirementsRequirements

sealed is a context-sensitive keyword for ref classes that indicates that a virtual member cannot be overridden, or
that a type cannot be used as a base type.

The ISO C++11 Standard language introduced the final keyword. Use final on standard classes, and sealed on ref classes.

identifier
The name of the function or class.

return-type
The type that's returned by a function.

In the first syntax example, a class is sealed. In the second example, a virtual function is sealed.

Use the sealed keyword for ref classes and their virtual member functions. For more information, see Override
Specifiers and Native Compilations.

You can detect at compile time whether a type is sealed by using the __is_sealed(type)  type trait. For more
information, see Compiler Support for Type Traits.

sealed is a context-sensitive keyword. For more information, see Context-Sensitive Keywords.

See Ref classes and structs.

Compiler option: /ZW

(There are no remarks for this language feature that apply to only the common language runtime.)

Compiler option: /clr

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/sealed-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/final-specifier
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/how-to-declare-override-specifiers-in-native-compilations-cpp-cli


ExamplesExamples

// sealed_keyword.cpp
// compile with: /clr
interface struct I1 {
   virtual void f();
   virtual void g();
};

ref class X : I1 {
public:
   virtual void f() {
      System::Console::WriteLine("X::f override of I1::f");
   }

   virtual void g() sealed {
      System::Console::WriteLine("X::f override of I1::g");
   }
};

ref class Y : public X {
public:
   virtual void f() override {
      System::Console::WriteLine("Y::f override of I1::f");
   }

   /*
   // the following override generates a compiler error
   virtual void g() override {
      System::Console::WriteLine("Y::g override of I1::g");
   }
   */
};

int main() {
   I1 ^ MyI = gcnew X;
   MyI -> f();
   MyI -> g();

   I1 ^ MyI2 = gcnew Y;
   MyI2 -> f();
}

X::f override of I1::f
X::f override of I1::g
Y::f override of I1::f

This following code example shows the effect of sealed on a virtual member.

The next code example shows how to mark a class as sealed.



// sealed_keyword_2.cpp
// compile with: /clr
interface struct I1 {
   virtual void f();
};

ref class X sealed : I1 {
public:
   virtual void f() override {}
};

ref class Y : public X {   // C3246 base class X is sealed
public:
   virtual void f() override {}
};

See Also
Component Extensions for .NET and UWP



typeid (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

All Runtimes
SyntaxSyntax

T::typeid

ParametersParameters

Windows Runtime
SyntaxSyntax

Platform::Type^ type = T::typeid;

ParametersParameters

RemarksRemarks

RequirementsRequirements

Common Language Runtime
SyntaxSyntax

type::typeid

ParametersParameters

RemarksRemarks

Gets a value that indicates the type of an object.

This topic refers to the C++ Component Extensions version of typeid. For the ISO C++ version of this keyword, see typeid
Operator.

T
A type name.

T
A type name.

In C++/CX, typeid returns a Platform::Type that is constructed from runtime type information.

Compiler option: /ZW

type
The name of a type (abstract declarator) for which you want the System::Type  object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/typeid-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/typeid-operator


RequirementsRequirements

ExamplesExamples

// keyword__typeid.cpp
// compile with: /clr
using namespace System;

ref struct G {
   int i;
};

int main() {
   G ^ pG = gcnew G;
   Type ^ pType = pG->GetType();
   Type ^ pType2 = G::typeid;

   if (pType == pType2)
      Console::WriteLine("typeid and GetType returned the same System::Type");
   Console::WriteLine(G::typeid);

   typedef float* FloatPtr;
   Console::WriteLine(FloatPtr::typeid);
}

typeid and GetType returned the same System::Type
G

System.Single*

typeid  is used to get the Type for a type at compile time.

typeid  is similar to getting the System::Type for a type at run time using GetType or GetType. However, typeid
only accepts a type name as a parameter. If you want to use an instance of a type to get its System::Type name, use
GetType.

typeid  must be able to evaluate a type name (type) at compile time, whereas GetType evaluates the type to return
at run time.

typeid  can take a native type name or common language runtime alias for the native type name; see .NET
Framework Equivalents to C++ Native Types (C++/CLI) for more information.

typeid  also works with native types, although it will still return a System::Type. To get a type_info structure, use
typeid Operator.

Compiler option: /clr

The following example compares the typeid keyword to the GetType()  member.

The following sample shows that a variable of type System::Type can be used to get the attributes on a type. It also
shows that for some types, you will have to create a typedef to use typeid .

https://msdn.microsoft.com/en-us/library/system.type(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/z7aahsb8(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/dfwy45w9(v=vs.110).aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/dotnet-framework-equivalents-to-cpp-native-types-cpp-cli
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/typeid-operator


// keyword__typeid_2.cpp
// compile with: /clr
using namespace System;
using namespace System::Security;
using namespace System::Security::Permissions;

typedef int ^ handle_to_int;
typedef int * pointer_to_int;

public ref class MyClass {};

class MyClass2 {};

[attribute(AttributeTargets::All)]
ref class AtClass {
public:
   AtClass(Type ^) {
      Console::WriteLine("in AtClass Type ^ constructor");
   }
};

[attribute(AttributeTargets::All)]
ref class AtClass2 {
public:
   AtClass2() {
      Console::WriteLine("in AtClass2 constructor");
   }
};

// Apply the AtClass and AtClass2 attributes to class B
[AtClass(MyClass::typeid), AtClass2]
[AttributeUsage(AttributeTargets::All)]
ref class B : Attribute {};

int main() {
   Type ^ MyType = B::typeid;

   Console::WriteLine(MyType->IsClass);

   array<Object^>^ MyArray = MyType -> GetCustomAttributes(true);
   for (int i = 0 ; i < MyArray->Length ; i++ )
      Console::WriteLine(MyArray[i]);

   if (int::typeid != pointer_to_int::typeid)
      Console::WriteLine("int::typeid != pointer_to_int::typeid, as expected");

   if (int::typeid == handle_to_int::typeid)
      Console::WriteLine("int::typeid == handle_to_int::typeid, as expected");
}

True

in AtClass2 constructor

in AtClass Type ^ constructor

AtClass2

System.AttributeUsageAttribute

AtClass

int::typeid != pointer_to_int::typeid, as expected

int::typeid == handle_to_int::typeid, as expected



See Also
Component Extensions for .NET and UWP



User-Defined Attributes (C++/CLI and C++/CX)
10/31/2018 • 3 minutes to read • Edit Online

Windows Runtime

RequirementsRequirements

Common Language Runtime

RequirementsRequirements

ExamplesExamples

// user_defined_attributes.cpp
// compile with: /clr /c
using namespace System;

[AttributeUsage(AttributeTargets::All)]
ref struct Attr : public Attribute {
   Attr(bool i){}
   Attr(){}
};

[Attr]
ref class MyClass {};

// extending_metadata_b.cpp
// compile with: /clr
using namespace System;

C++/CLI and C++/CX enable you to create platform-specific attributes that extend the metadata of an interface,
class or structure, method, parameter, or enumeration. These attributes are distinct from the standard C++
attributes.

You can apply C++/CX attributes to properties, but not to constructors or methods.

Compiler option: /ZW

The information and syntax presented in this topic is meant to supersede the information presented in attribute.

You can define a custom attribute by defining a type and making Attribute a base class for the type and optionally
applying the AttributeUsageAttribute attribute.

For more information, see:

Attribute Targets

Attribute Parameter Types

For information on signing assemblies in Visual C++, see Strong Name Assemblies (Assembly Signing)
(C++/CLI).

Compiler option: /clr

The following sample shows how to define a custom attribute.

The following example illustrates some important features of custom attributes. For example, this example shows
a common usage of the custom attributes: instantiating a server that can fully describe itself to clients.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/user-defined-attributes-cpp-component-extensions.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/attributes
https://msdn.microsoft.com/en-us/library/system.attribute(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.attributeusageattribute(v=vs.110).aspx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/dotnet/strong-name-assemblies-assembly-signing-cpp-cli


using namespace System;
using namespace System::Reflection;

public enum class Access { Read, Write, Execute };

// Defining the Job attribute:
[AttributeUsage(AttributeTargets::Class, AllowMultiple=true )]
public ref class Job : Attribute {
public:
   property int Priority {
      void set( int value ) { m_Priority = value; }
      int get() { return m_Priority; }
   }

   // You can overload constructors to specify Job attribute in different ways
   Job() { m_Access = Access::Read; }
   Job( Access a ) { m_Access = a; }
   Access m_Access;

protected:
   int m_Priority;
};

interface struct IService {
   void Run();
};

   // Using the Job attribute:
   // Here we specify that QueryService is to be read only with a priority of 2.
   // To prevent namespace collisions, all custom attributes implicitly
   // end with "Attribute".

[Job( Access::Read, Priority=2 )]
ref struct QueryService : public IService {
   virtual void Run() {}
};

// Because we said AllowMultiple=true, we can add multiple attributes
[Job(Access::Read, Priority=1)]
[Job(Access::Write, Priority=3)]
ref struct StatsGenerator : public IService {
   virtual void Run( ) {}
};

int main() {
   IService ^ pIS;
   QueryService ^ pQS = gcnew QueryService;
   StatsGenerator ^ pSG = gcnew StatsGenerator;

   //  use QueryService
   pIS = safe_cast<IService ^>( pQS );

   // use StatsGenerator
   pIS = safe_cast<IService ^>( pSG );

   // Reflection
   MemberInfo ^ pMI = pIS->GetType();
   array <Object ^ > ^ pObjs = pMI->GetCustomAttributes(false);

   // We can now quickly and easily view custom attributes for an
   // Object through Reflection */
   for( int i = 0; i < pObjs->Length; i++ ) {
      Console::Write("Service Priority = ");
      Console::WriteLine(static_cast<Job^>(pObjs[i])->Priority);
      Console::Write("Service Access = ");
      Console::WriteLine(static_cast<Job^>(pObjs[i])->m_Access);
   }
}



Service Priority = 0

Service Access = Write

Service Priority = 3

Service Access = Write

Service Priority = 1

Service Access = Read

// extending_metadata_e.cpp
// compile with: /clr /c
using namespace System;
[AttributeUsage(AttributeTargets::Class | AttributeTargets::Method)]
public ref class AnotherAttr : public Attribute {
public:
   AnotherAttr(array<Object^>^) {}
   array<Object^>^ var1;
};

// applying the attribute
[ AnotherAttr( gcnew array<Object ^> { 3.14159, "pi" }, var1 = gcnew array<Object ^> { "a", "b" } ) ]
public ref class SomeClass {};

// extending_metadata_f.cpp
// compile with: /clr /c
using namespace System;
ref struct abc {};

[AttributeUsage( AttributeTargets::All )]
ref struct A : Attribute {
   A( Type^ ) {}
   A( String ^ ) {}
   A( int ) {}
};

[A( abc::typeid )]
ref struct B {};

See Also

The Object^  type replaces the variant data type. The following example defines a custom attribute that takes an
array of Object^  as parameters.

Attribute arguments must be compile-time constants; in most cases, they should be constant literals.

See typeid for information on how to return a value of System::Type from a custom attribute block.

The runtime requires that the public part of the custom attribute class must be serializable. When authoring
custom attributes, named arguments of your custom attribute are limited to compile-time constants. (Think of it as
a sequence of bits appended to your class layout in the metadata.)

Component Extensions for .NET and UWP



Attribute Parameter Types (C++/CLI and C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

Example
CodeCode

// attribute_parameter_types.cpp
// compile with: /clr /c
using namespace System;
ref struct AStruct {};

[AttributeUsage(AttributeTargets::ReturnValue)]
ref struct Attr : public Attribute {
   Attr(AStruct ^ i){}
   Attr(bool i){}
   Attr(){}
};

ref struct MyStruct {
   static AStruct ^ x = gcnew AStruct;
   [returnvalue:Attr(x)] int Test() { return 0; }   // C3104
   [returnvalue:Attr] int Test2() { return 0; }   // OK
   [returnvalue:Attr(true)] int Test3() { return 0; }   // OK
};

Example
DescriptionDescription

Values passed to attributes must be known to the compiler at compile time. Attribute parameters can be of the
following types:

bool

char, unsigned char

short, unsigned short

int, unsigned int

long, unsigned long

__int64, unsigned __int64

float, double

wchar_t

char*  or wchar_t*  or System::String*

System::Type ^

System::Object ^

enum

When specifying attributes, all unnamed (positional) arguments must precede any named arguments.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attribute-parameter-types-cpp-component-extensions.md


CodeCode

// extending_metadata_c.cpp
// compile with: /clr /c
using namespace System;
[AttributeUsage(AttributeTargets::Class)]
ref class MyAttr : public Attribute {
public:
   MyAttr() {}
   MyAttr(int i) {}
   property int Priority;
   property int Version;
};

[MyAttr]
ref class ClassA {};   // No arguments

[MyAttr(Priority = 1)]
ref class ClassB {};   // Named argument

[MyAttr(123)]
ref class ClassC {};   // Positional argument

[MyAttr(123, Version = 1)]
ref class ClassD {};   // Positional and named

Example
DescriptionDescription

CodeCode

// extending_metadata_d.cpp
// compile with: /clr /c
using namespace System;

[AttributeUsage(AttributeTargets::Class)]
public ref struct ABC : public Attribute {
   ABC(array<int>^){}
   array<double> ^ param;
};

[ABC( gcnew array<int> {1,2,3}, param = gcnew array<double>{2.71, 3.14})]
ref struct AStruct{};

See Also

Attribute parameters can be one-dimensional arrays of the previous types.

User-Defined Attributes



Attribute Targets (C++/CLI and C++/CX)
10/31/2018 • 3 minutes to read • Edit Online

Attribute usage specifiers let you specify attribute targets. Each attribute is defined to apply to certain language
elements. For example, an attribute might be defined to apply only to classes and structs. The following list shows
the possible syntactic elements on which a custom attribute can be used. Combinations of these values (using
logical or) may be used.

To specify attribute target, to pass one or more AttributeTargets enumerators to AttributeUsageAttribute when
defining the attribute.

The following is a list of the valid attribute targets:

using namespace System;
[AttributeUsage(AttributeTargets::All)]
ref class Attr : public Attribute {};

[assembly:Attr];

using namespace System;
[AttributeUsage(AttributeTargets::Assembly)]
ref class Attr : public Attribute {};

[assembly:Attr];

using namespace System;
[AttributeUsage(AttributeTargets::Module)]
ref class Attr : public Attribute {};

[module:Attr];

using namespace System;
[AttributeUsage(AttributeTargets::Class)]
ref class Attr : public System::Attribute {};

[Attr]   // same as [class:Attr]
ref class MyClass {};

All  (applies to all constructs)

Assembly  (applies to an assembly as a whole)

Module  (applies to a module as a whole)

Class

Struct

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attribute-targets-cpp-component-extensions.md
https://msdn.microsoft.com/en-us/library/system.attributetargets(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.attributeusageattribute(v=vs.110).aspx


using namespace System;
[AttributeUsage(AttributeTargets::Struct)]
ref class Attr : public Attribute {};

[Attr]   // same as [struct:Attr]
value struct MyStruct{};

using namespace System;
[AttributeUsage(AttributeTargets::Enum)]
ref class Attr : public Attribute {};

[Attr]   // same as [enum:Attr]
enum struct MyEnum{e, d};

using namespace System;
[AttributeUsage(AttributeTargets::Constructor)]
ref class Attr : public Attribute {};

ref struct MyStruct{
[Attr] MyStruct(){}   // same as [constructor:Attr]
};

using namespace System;
[AttributeUsage(AttributeTargets::Method)]
ref class Attr : public Attribute {};

ref struct MyStruct{
[Attr] void Test(){}   // same as [method:Attr]
};

using namespace System;
[AttributeUsage(AttributeTargets::Property)]
ref class Attr : public Attribute {};

ref struct MyStruct{
[Attr] property int Test;   // same as [property:Attr]
};

using namespace System;
[AttributeUsage(AttributeTargets::Field)]
ref class Attr : public Attribute {};

ref struct MyStruct{
[Attr] int Test;   // same as [field:Attr]
};

enum

Constructor

Method

Property

Field

Event



[Attr] int MyFn(double x)...

using namespace System;
[AttributeUsage(AttributeTargets::Event)]
ref class Attr : public Attribute {};

delegate void ClickEventHandler(int, double);

ref struct MyStruct{
[Attr] event ClickEventHandler^ OnClick;   // same as [event:Attr]
};

using namespace System;
[AttributeUsage(AttributeTargets::Interface)]
ref class Attr : public Attribute {};

[Attr]   // same as [event:Attr]
interface struct MyStruct{};

using namespace System;
[AttributeUsage(AttributeTargets::Parameter)]
ref class Attr : public Attribute {};

ref struct MyStruct{
void Test([Attr] int i);
void Test2([parameter:Attr] int i);
};

using namespace System;
[AttributeUsage(AttributeTargets::Delegate)]
ref class Attr : public Attribute {};

[Attr] delegate void Test();
[delegate:Attr] delegate void Test2();

using namespace System;
[AttributeUsage(AttributeTargets::ReturnValue)]
ref class Attr : public Attribute {};

ref struct MyStruct {
// Note required specifier
[returnvalue:Attr] int Test() { return 0; }
};

Interface

Parameter

Delegate

ReturnValue

Typically, an attribute directly precedes the language element to which it applies. In some cases, however, the
position of an attribute is not sufficient to determine the attribute's intended target. Consider this example:

Syntactically, there is no way to tell if the attribute is intended to apply to the method or to the method's return



[returnvalue:Attr] int MyFn(double x)... // applies to return value

[returnvalue:Attr1, Attr2]

[returnvalue:Attr1, returnvalue:Attr2]

Example
DescriptionDescription

CodeCode

value (in this case, it defaults to the method). In such cases, an attribute usage specifier may be used. For example,
to make the attribute apply to the return value, use the returnvalue  specifier, as follows:

Attribute usage specifiers are required in the following situations:

[method:Attr] int MyFn(double x)...     // Attr applies to method
[returnvalue:Attr] int MyFn(double x)...// Attr applies to return value
[Attr] int MyFn(double x)...            // default: method

[method:MyAttr(123)] property int Property()
[property:MyAttr(123)] property int Property()
[MyAttr(123)] property int get_MyPropy() // default: property

delegate void MyDel();
ref struct X {
   [field:MyAttr(123)] event MyDel* MyEvent;   //field
   [event:MyAttr(123)] event MyDel* MyEvent;   //event
   [MyAttr(123)] event MyDel* MyEvent;   // default: event
}

To specify an assembly- or module-level attribute.

To specify that an attribute applies to a method's return value, not the method:

To specify that an attribute applies to a property's accessor, not the property:

To specify that an attribute applies to an event's accessor, not the event:

An attribute usage specifier applies only to the attribute that immediately follows it; that is,

is different from

This sample shows how to specify multiple targets.



using namespace System;
[AttributeUsage(AttributeTargets::Class | AttributeTargets::Struct, AllowMultiple = true )]
ref struct Attr : public Attribute {
   Attr(bool i){}
   Attr(){}
};

[Attr]
ref class MyClass {};

[Attr]
[Attr(true)]
value struct MyStruct {};

See Also
User-Defined Attributes



Extensions That Are Specific to C++/CLI
10/31/2018 • 2 minutes to read • Edit Online

See Also

The following language features apply only to C++/CLI:

__identifier (C++/CLI)

C-Style Casts with /clr (C++/CLI)

interior_ptr (C++/CLI)

pin_ptr (C++/CLI)

Type Forwarding (C++/CLI)

Variable Argument Lists (...) (C++/CLI)

Component Extensions for .NET and UWP

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/extensions-that-are-specific-to-cpp-cli.md


__identifier (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

All Platforms
SyntaxSyntax

__identifier(C++_keyword)

RemarksRemarks

Windows Runtime
RequirementsRequirements

ExamplesExamples

// identifier_template.cs
// compile with: /target:library
public class template {
   public void Run() { }
}

// keyword__identifier.cpp
// compile with: /ZW
#using <identifier_template.dll>
int main() {
   __identifier(template)^ pTemplate = ref new __identifier(template)();
   pTemplate->Run();
}

Common Language Runtime
RemarksRemarks

RequirementsRequirements

ExamplesExamples

Enables the use of C++ keywords as identifiers.

Use of the __identifier keyword for identifiers that are not keywords is permitted, but strongly discouraged as a
matter of style.

Compiler option: /ZW

Example

In the following example, a class named template is created in C# and distributed as a DLL. In the C++/CLI
program that uses the template class, the __identifier keyword conceals the fact that template is a standard
C++ keyword.

The __identifier keyword is valid with the /clr  compiler option.

Compiler option: /clr

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/identifier-cpp-cli.md


// identifier_template.cs
// compile with: /target:library
public class template {
   public void Run() { }
}

// keyword__identifier.cpp
// compile with: /clr
#using <identifier_template.dll>

int main() {
   __identifier(template) ^pTemplate = gcnew __identifier(template)();
   pTemplate->Run();
}

See Also

In the following example, a class named template is created in C# and distributed as a DLL. In the C++/CLI
program that uses the template class, the __identifier keyword conceals the fact that template is a standard
C++ keyword.

Component Extensions for .NET and UWP
Component Extensions for .NET and UWP



C-Style Casts with /clr (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

Remarks

// cstyle_casts_1.cpp
// compile with: /clr
using namespace System;

ref struct R {};
int main() {
   const R^ constrefR = gcnew R();
   R^ nonconstR = (R^)(constrefR);
}

// cstyle_casts_2.cpp
// compile with: /clr
using namespace System;
int main() {
   Object ^ o = "hello";
   String ^ s = (String^)o;
}

The following topic applies only to the Common Language Runtime.

When used with CLR types, the compiler attempts to map C-style cast to one of the casts listed below, in the
following order :

1. const_cast

2. safe_cast

3. safe_cast plus const_cast

4. static_cast

5. static_cast plus const_cast

If none of the casts listed above is valid, and if the type of the expression and the target type are CLR reference
types, C-style cast maps to a runtime-check (castclass MSIL instruction). Otherwise, a C-style cast is considered
invalid and the compiler issues an error.

A C-style cast is not recommended. When compiling with /clr (Common Language Runtime Compilation), use
safe_cast.

The following sample shows a C-style cast that maps to a const_cast.

The following sample shows a C-style cast that maps to a safe_cast.

The following sample shows a C-style cast that maps to a safe_cast plus const_cast.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/c-style-casts-with-clr-cpp-cli.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/clr-common-language-runtime-compilation


// cstyle_casts_3.cpp
// compile with: /clr
using namespace System;

ref struct R {};
ref struct R2 : public R {};

int main() {
   const R^ constR2 = gcnew R2();
   try {
   R2^ b2DR = (R2^)(constR2);
   }
   catch(InvalidCastException^ e) {
      System::Console::WriteLine("Invalid Exception");
   }
}

// cstyle_casts_4.cpp
// compile with: /clr
using namespace System;

struct N1 {};
struct N2 {
   operator N1() {
      return N1();
   }
};

int main() {
   N2 n2;
   N1 n1 ;
   n1 = (N1)n2;
}

// cstyle_casts_5.cpp
// compile with: /clr
using namespace System;
struct N1 {};

struct N2 {
   operator const N1*() {
      static const N1 n1;
      return &n1;
   }
};

int main() {
   N2 n2;
   N1* n1 = (N1*)(const N1*)n2;   // const_cast + static_cast
}

The following sample shows a C-style cast that maps to a static_cast.

The following sample shows a C-style cast that maps to a static_cast plus const_cast.

The following sample shows a C-style cast that maps to a run-time check.



// cstyle_casts_6.cpp
// compile with: /clr
using namespace System;

ref class R1 {};
ref class R2 {};

int main() {
   R1^ r  = gcnew R1();
   try {
      R2^ rr = ( R2^)(r);
   }
   catch(System::InvalidCastException^ e) {
      Console::WriteLine("Caught expected exception");
   }
}

// cstyle_casts_7.cpp
// compile with: /clr
using namespace System;
int main() {
   String^s = S"hello";
   int i = (int)s;   // C2440
}

Requirements

See Also

The following sample shows an invalid C-style cast, which causes the compiler to issue an error.

Compiler option: /clr

Component Extensions for .NET and UWP



interior_ptr (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

All Runtimes

Windows Runtime

RequirementsRequirements

Common Language Runtime

SyntaxSyntax

cli::interior_ptr<cv_qualifier type> var = &initializer;

ParametersParameters

RemarksRemarks

An interior pointer declares a pointer to inside a reference type, but not to the object itself. An interior pointer can
point to a reference handle, value type, boxed type handle, member of a managed type, or to an element of a
managed array.

(There are no remarks for this language feature that apply to all runtimes.)

(There are no remarks for this language feature that apply to only the Windows Runtime.)

Compiler option: /ZW

The following syntax example demonstrates an interior pointer.

cv_qualifier
const or volatile qualifiers.

type
The type of initializer.

var
The name of the interior_ptr variable.

initializer
A member of a reference type, element of a managed array, or any other object that you can assign to a native
pointer.

A native pointer is not able to track an item as its location changes on the managed heap, which results from the
garbage collector moving instances of an object. In order for a pointer to correctly refer to the instance, the
runtime needs to update the pointer to the newly positioned object.

An interior_ptr represents a superset of the functionality of a native pointer. Therefore, anything that can be
assigned to a native pointer can also be assigned to an interior_ptr. An interior pointer is permitted to perform
the same set of operations as native pointers, including comparison and pointer arithmetic.

An interior pointer can only be declared on the stack. An interior pointer cannot be declared as a member of a
class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/interior-ptr-cpp-cli.md


RequirementsRequirements

ExamplesExamples

// interior_ptr.cpp
// compile with: /clr
using namespace System;

ref class MyClass {
public:
   int data;
};

int main() {
   MyClass ^ h_MyClass = gcnew MyClass;
   h_MyClass->data = 1;
   Console::WriteLine(h_MyClass->data);

   interior_ptr<int> p = &(h_MyClass->data);
   *p = 2;
   Console::WriteLine(h_MyClass->data);

   // alternatively
   interior_ptr<MyClass ^> p2 = &h_MyClass;
   (*p2)->data = 3;
   Console::WriteLine((*p2)->data);
}

1
2
3

See Also

Since interior pointers exist only on the stack, taking the address of an interior pointer yields an unmanaged
pointer.

interior_ptr has an implicit conversion to bool, which allows for its use in conditional statements.

For information on how to declare an interior pointer that points into an object that cannot be moved on the
garbage-collected heap, see pin_ptr.

interior_ptr is in the cli namespace. See Platform, default, and cli Namespaces for more information.

For more information on interior pointers, see

How to: Declare and Use Interior Pointers and Managed Arrays (C++/CLI)

How to: Declare Value Types with the interior_ptr Keyword (C++/CLI)

How to: Overload Functions with Interior Pointers and Native Pointers (C++/CLI)

How to: Declare Interior Pointers with the const Keyword (C++/CLI)

Compiler option: /clr

The following sample shows how to declare and use an interior pointer into a reference type.

Component Extensions for .NET and UWP



How to: Declare and Use Interior Pointers and
Managed Arrays (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Example
CodeCode

// interior_ptr_arrays.cpp
// compile with: /clr
#define SIZE 10

int main() {
   // declare the array
   array<int>^ arr = gcnew array<int>(SIZE);

   // initialize the array
   for (int i = 0 ; i < SIZE ; i++)
      arr[i] = i + 1;

   // create an interior pointer into the array
   interior_ptr<int> ipi = &arr[0];

   System::Console::WriteLine("1st element in arr holds: {0}", arr[0]);
   System::Console::WriteLine("ipi points to memory address whose value is: {0}", *ipi);

   ipi++;
   System::Console::WriteLine("after incrementing ipi, it points to memory address whose value is: {0}", 
*ipi);
}

1st element in arr holds: 1
ipi points to memory address whose value is: 1
after incrementing ipi, it points to memory address whose value is: 2

See Also

The following C++/CLI sample shows how you can declare and use an interior pointer to an array.

This language feature is supported by the /clr  compiler option, but not by the /ZW  compiler option.

interior_ptr (C++/CLI)

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/how-to-declare-and-use-interior-pointers-and-managed-arrays-cpp-cli.md


How to: Declare Value Types with the interior_ptr
Keyword (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Example
DescriptionDescription

CodeCode

// interior_ptr_value_types.cpp
// compile with: /clr
value struct V {
   V(int i) : data(i){}
   int data;
};

int main() {
   V v(1);
   System::Console::WriteLine(v.data);

   // pointing to a value type
   interior_ptr<V> pv = &v;
   pv->data = 2;

   System::Console::WriteLine(v.data);
   System::Console::WriteLine(pv->data);

   // pointing into a value type
   interior_ptr<int> pi = &v.data;
   *pi = 3;
   System::Console::WriteLine(*pi);
   System::Console::WriteLine(v.data);
   System::Console::WriteLine(pv->data);
}

1
2
2
3
3
3

Example
DescriptionDescription

An interior_ptr can be used with a value type.

This language feature is supported by the /clr  compiler option, but not by the /ZW  compiler option.

The following C++/CLI sample shows how to use an interior_ptr with a value type.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/how-to-declare-value-types-with-the-interior-ptr-keyword-cpp-cli.md


CodeCode

// interior_ptr_value_types_this.cpp
// compile with: /clr /LD
value struct V {
   int data;
   void f() {
      interior_ptr<V> pv1 = this;
      // V* pv2 = this;   error
   }
};

Example
DescriptionDescription

CodeCode

// interior_ptr_value_static.cpp
// compile with: /clr
using namespace System;
value struct V { int i; };

ref struct G {
   static V v = {22};
   static int i = 23;
   static String^ pS = "hello";
};

int main() {
   interior_ptr<int> p1 = &G::v.i;
   Console::WriteLine(*p1);

   interior_ptr<int> p2 = &G::i;
   Console::WriteLine(*p2);

   interior_ptr<String^> p3 = &G::pS;
   Console::WriteLine(*p3);
}

22
23
hello

See Also

In a value type, the this pointer evaluates to an interior_ptr.

In the body of a non-static member-function of a value type V , this is an expression of type interior_ptr<V>

whose value is the address of the object for which the function is called.

The following sample shows how to use the address-of operator with static members.

The address of a static Visual C++ type member yields a native pointer. The address of a static value type member
is a managed pointer because value type member is allocated on the runtime heap and can be moved by the
garbage collector.

interior_ptr (C++/CLI)



How to: Overload Functions with Interior Pointers
and Native Pointers (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Example
CodeCode

// interior_ptr_overload.cpp
// compile with: /clr
using namespace System;

// C++ class
struct S {
   int i;
};

// managed class
ref struct G {
   int i;
};

// can update unmanaged storage
void f( int* pi ) {
   *pi = 10;
   Console::WriteLine("in f( int* pi )");
}

// can update managed storage
void f( interior_ptr<int> pi ) {
   *pi = 10;
   Console::WriteLine("in f( interior_ptr<int> pi )");
}

int main() {
   S *pS = new S;   // C++ heap
   G ^pG = gcnew G;   // common language runtime heap
   f( &pS->i );
   f( &pG->i );
};

in f( int* pi )
in f( interior_ptr<int> pi )

See Also

Functions can be overloaded depending on whether the parameter type is an interior pointer or a native pointer.

This language feature is supported by the /clr  compiler option, but not by the /ZW  compiler option.

interior_ptr (C++/CLI)

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/how-to-overload-functions-with-interior-pointers-and-native-pointers-cpp-cli.md


How to: Declare Interior Pointers with the const
Keyword (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Example

The following sample shows how to use const in the declaration of an interior pointer.

This language feature is supported by the /clr  compiler option, but not by the /ZW  compiler option.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/how-to-declare-interior-pointers-with-the-const-keyword-cpp-cli.md


// interior_ptr_const.cpp
// compile with: /clr
using namespace System;
value struct V {
   int i;
};

ref struct G {
   V v;
   String ^ msg;
};

interior_ptr<int> f( interior_ptr<V> pv ) {
   return &(pv->i);
}

int main() {
   int n = -1;
   int o = -1;
   interior_ptr<int> pn1 = &n;
   *pn1 = 50;

   V v;
   v.i = 101;
   V * npV = &v;   // ok: &v yields a pointer to the native heap

   interior_ptr<int> pn2 = &n;
   interior_ptr<V> pV = &(v);
   pn2 = f(pV);
   *pn2 = 50;

   G ^pG = gcnew G;
   pV = &(pG->v);   // ok: pV is an interior pointer

   interior_ptr<int const> pn3 = &n;
   // *pn3 = 5;   error because pn3 cannot be dereferenced and changed
   pn3 = &o;   // OK, can change the memory location

   interior_ptr<int> const pn4 = &n;
   *pn4 = 5;   // OK because you can dereference and change pn4
   // pn4 = &o;   error cannot change the memory location

   const interior_ptr<const int> pn5 = &n;
   // *pn5 = 5;   error cannot dereference and change pn5
   // pn5 = &o;   error cannot change the memory location

   const G ^ h_G = gcnew G;   // object is const, cannot modify any members of h_G or call any non-const 
methods
   // h_G->msg = "test";   error h_G is const
   interior_ptr<String^ const> int_ptr_G = &(h_G->msg);

   G ^ const h_G2 = gcnew G;   // interior pointers to this obejct cannot be dereferenced and changed
   h_G2->msg = "test";
   interior_ptr<String^ const> int_ptr_G2 = &(h_G->msg);
};

See Also
interior_ptr (C++/CLI)



pin_ptr (C++/CLI)
10/31/2018 • 4 minutes to read • Edit Online

All Runtimes

Windows Runtime

Common Language Runtime

SyntaxSyntax

[cli::]pin_ptr<cv_qualifiertype>var = &initializer;

ParametersParameters

RemarksRemarks

Declares a pinning pointer, which is used only with the common language runtime.

(There are no remarks for this language feature that apply to all runtimes.)

(This language feature is not supported in the Windows Runtime.)

A pinning pointer is an interior pointer that prevents the object pointed to from moving on the garbage-collected
heap. That is, the value of a pinning pointer is not changed by the common language runtime. This is required
when you pass the address of a managed class to an unmanaged function so that the address will not change
unexpectedly during resolution of the unmanaged function call.

cv_qualifier
const or volatile qualifiers. By default, a pinning pointer is volatile. It is redundant but not an error to declare a
pinning pointer volatile.

type
The type of initializer.

var
The name of the pin_ptr variable.

initializer
A member of a reference type, element of a managed array, or any other object that you can assign to a native
pointer.

A pin_ptr represents a superset of the functionality of a native pointer. Therefore, anything that can be assigned
to a native pointer can also be assigned to a pin_ptr. An interior pointer is permitted to perform the same set of
operations as native pointers, including comparison and pointer arithmetic.

An object or sub-object of a managed class can be pinned, in which case the common language runtime will not
move it during garbage collection. The principal use of this is to pass a pointer to managed data as an actual
parameter of an unmanaged function call. During a collection cycle, the runtime will inspect the metadata created
for the pinning pointer and will not move the item it points to.

Pinning an object also pins its value fields; that is, fields of primitive or value type. However, fields declared by
tracking handle ( % ) are not pinned.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/pin-ptr-cpp-cli.md


RequirementsRequirements

ExamplesExamples

Pinning a sub-object defined in a managed object has the effect of pinning the whole object.

If the pinning pointer is reassigned to point to a new value, the previous instance pointed to is no longer
considered pinned.

An object is pinned only while a pin_ptr points to it. The object is no longer pinned when its pinning pointer goes
out of scope, or is set to nullptr. After the pin_ptr goes out of scope, the object that was pinned can be moved in
the heap by the garbage collector. Any native pointers that still point to the object will not be updated, and de-
referencing one of them could raise an unrecoverable exception.

If no pinning pointers point to the object (all pinning pointers went out of scope, were reassigned to point to other
objects, or were assigned nullptr), the object is guaranteed not to be pinned.

A pinning pointer can point to a reference handle, value type or boxed type handle, member of a managed type,
or an element of a managed array. It cannot point to a reference type.

Taking the address of a pin_ptr that points to a native object causes undefined behavior.

Pinning pointers can only be declared as non-static local variables on the stack.

Pinning pointers cannot be used as:

function parameters

the return type of a function

a member of a class

the target type of a cast.

pin_ptr is in the cli  namespace. For more information, see Platform, default, and cli Namespaces.

For more information about interior pointers, see interior_ptr (C++/CLI).

For more information about pinning pointers, see How to: Pin Pointers and Arrays and How to: Declare Pinning
Pointers and Value Types.

Compiler option: /clr

The following example uses pin_ptr to constrain the position of the first element of an array.



// pin_ptr_1.cpp
// compile with: /clr
using namespace System;
#define SIZE 10

#pragma unmanaged
// native function that initializes an array
void native_function(int* p) {
   for(int i = 0 ; i < 10 ; i++)
    p[i] = i;
}
#pragma managed

public ref class A {
private:
   array<int>^ arr;   // CLR integer array

public:
   A() {
      arr = gcnew array<int>(SIZE);
   }

   void load() {
   pin_ptr<int> p = &arr[0];   // pin pointer to first element in arr
   int* np = p;   // pointer to the first element in arr
   native_function(np);   // pass pointer to native function
   }

   int sum() {
      int total = 0;
      for (int i = 0 ; i < SIZE ; i++)
         total += arr[i];
      return total;
   }
};

int main() {
   A^ a = gcnew A;
   a->load();   // initialize managed array using the native function
   Console::WriteLine(a->sum());
}

45

The following example shows that an interior pointer can be converted to a pinning pointer, and that the return
type of the address-of operator ( & ) is an interior pointer when the operand is on the managed heap.



// pin_ptr_2.cpp
// compile with: /clr
using namespace System;

ref struct G {
   G() : i(1) {}
   int i;
};

ref struct H {
   H() : j(2) {}
   int j;
};

int main() {
   G ^ g = gcnew G;   // g is a whole reference object pointer
   H ^ h = gcnew H;

   interior_ptr<int> l = &(g->i);   // l is interior pointer

   pin_ptr<int> k = &(h->j);   // k is a pinning interior pointer

   k = l;   // ok
   Console::WriteLine(*k);
};

1

// pin_ptr_3.cpp
// compile with: /clr
using namespace System;

ref class ManagedType {
public:
   int i;
};

int main() {
   ManagedType ^mt = gcnew ManagedType;
   pin_ptr<int> pt = &mt->i;
   *pt = 8;
   Console::WriteLine(mt->i);

   char *pc = ( char* ) pt;
   *pc = 255;
   Console::WriteLine(mt->i);
}

8
255

The following example shows that a pinning pointer can be cast to another type.



How to: Pin Pointers and Arrays
10/31/2018 • 2 minutes to read • Edit Online

Example
CodeCode

// pin_ptr_array.cpp
// compile with: /clr
#include <stdio.h>
using namespace System;

int main() {
   array<Byte>^ arr = gcnew array<Byte>(4);
   arr[0] = 'C';
   arr[1] = '+';
   arr[2] = '+';
   arr[3] = '\0';
   pin_ptr<Byte> p = &arr[1];   // entire array is now pinned
   unsigned char * cp = p;

   printf_s("%s\n", cp); // bytes pointed at by cp
                         // will not move during call
}

++

See Also

Pinning a sub-object defined in a managed object has the effect of pinning the entire object. For example, if any
element of an array is pinned, then the whole array is also pinned. There are no extensions to the language for
declaring a pinned array. To pin an array, declare a pinning pointer to its element type, and pin one of its elements.

pin_ptr (C++/CLI)

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/how-to-pin-pointers-and-arrays.md


How to: Declare Pinning Pointers and Value Types
10/31/2018 • 2 minutes to read • Edit Online

Example
CodeCode

// pin_ptr_value.cpp
// compile with: /clr
value struct V {
   int i;
};

int main() {
   V ^ v = gcnew V;   // imnplicit boxing
   v->i=8;
   System::Console::WriteLine(v->i);
   pin_ptr<V> mv = &*v;
   mv->i = 7;
   System::Console::WriteLine(v->i);
   System::Console::WriteLine(mv->i);
}

8
7
7

See Also

A value type can be implicitly boxed. You can then declare a pinning pointer to the value type object itself and use a
pin_ptr to the boxed value type.

pin_ptr (C++/CLI)

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/how-to-declare-pinning-pointers-and-value-types.md


Type Forwarding (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

Windows Runtime

Common Language Runtime

SyntaxSyntax

#using "new.dll"
[assembly:TypeForwardedTo(type::typeid)];

ParametersParameters

RemarksRemarks

Type forwarding allows you to move a type from one assembly (assembly A) into another assembly (assembly B),
such that, it is not necessary to recompile clients that consume assembly A.

This feature is not supported in the Windows Runtime.

The following code example demonstrates how to use type forwarding.

new
The assembly into which you are moving the type definition.

type
The type whose definition you are moving into another assembly.

After a component (assembly) ships and is being used by client applications, you can use type forwarding to move
a type from the component (assembly) into another assembly, ship the updated component (and any additional
assemblies required), and the client applications will still work without being recompiled.

Type forwarding only works for components referenced by existing applications. When you rebuild an application,
there must be the appropriate assembly references for any types used in the application.

When forwarding a type (Type A) from an assembly, you must add the TypeForwardedTo  attribute for that type, as
well as an assembly reference. The assembly that you reference must contain one of the following:

The definition for Type A.

A TypeForwardedTo  attribute for Type A, as well as an assembly reference.

Examples of types that can be forwarded include:

ref classes

value classes

enums

interfaces

You cannot forward the following types:

Generic types

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/type-forwarding-cpp-cli.md


RequirementsRequirements

Native types

Nested types (if you want to forward a nested type, you should forward the enclosing type)

You can forward a type to an assembly authored in any language targeting the common language runtime.

So, if a source code file that is used to build assembly A.dll contains a type definition ( ref class MyClass ), and you
wanted to move that type definition to assembly B.dll, you would:

#using "B.dll"
[assembly:TypeForwardedTo(MyClass::typeid)];

1. Move the MyClass  type definition to a source code file used to build B.dll.

2. Build assembly B.dll

3. Delete the MyClass  type definition from the source code used to build A.dll, and replace it with the
following:

4. Build assembly A.dll.

5. Use A.dll without recompiling client applications.

Compiler option: /clr



Variable Argument Lists (...) (C++/CLI)
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

Example
CodeCode

// mcppv2_paramarray.cpp
// compile with: /clr
using namespace System;
double average( ... array<Int32>^ arr ) {
   int i = arr->GetLength(0);
   double answer = 0.0;

   for (int j = 0 ; j < i ; j++)
      answer += arr[j];

   return answer / i;
}

int main() {
   Console::WriteLine("{0}", average( 1, 2, 3, 6 ));
}

3

Code Example

// mcppv2_paramarray2.cpp
// compile with: /clr:safe /LD
using namespace System;

public ref class C {
public:
   void f( ... array<String^>^ a ) {}
};

This example shows how you can use the ...  syntax in C++/CLI to implement functions that have a variable
number of arguments.

This topic pertains to C++/CLI. For information about using the ...  in ISO Standard C++, see Ellipses and Variadic
Templates and Ellipses and Default Arguments in Postfix expressions.

The parameter that uses ...  must be the last parameter in the parameter list.

The following example shows how to call from C# a Visual C++ function that takes a variable number of
arguments.

The function f  can be called from C# or Visual Basic, for example, as though it were a function that can take a
variable number of arguments.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/variable-argument-lists-dot-dot-dot-cpp-cli.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/ellipses-and-variadic-templates
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/postfix-expressions


// mcppv2_paramarray3.cs
// compile with: /r:mcppv2_paramarray2.dll
// a C# program

public class X {
   public static void Main() {
      // Visual C# will generate a String array to match the
      // ParamArray attribute
      C myc = new C();
      myc.f("hello", "there", "world");
   }
}

// mcpp_paramarray4.cpp
// compile with: /clr
using namespace System;

public ref class C {
public:
   void f( ... array<String^>^ a ) {}
};

int main() {
   C ^ myc = gcnew C();
   myc->f("hello", "world", "!!!");
}

See Also

In C#, an argument that is passed to a ParamArray  parameter can be called by a variable number of arguments.
The following code sample is in C#.

A call to f  in Visual C++ can pass an initialized array or a variable-length array.

Arrays



Resources for Creating a C++ Game Using DirectX
11/15/2018 • 2 minutes to read • Edit Online

Resources

To create the best desktop games, use Visual C++ and DirectX together.

Visual C++ is included in all editions of Visual Studio, but it's not installed by default. For information about how
to install Visual Studio and the C++ development tools, see Install C++ support in Visual Studio.

For Windows 8.1 and later, the DirectX SDK is included in the Windows SDK. You don't have to download anything
extra. For more information, see Where is the DirectX SDK?.

To create DirectX apps for Windows 7, Windows Vista, or Windows XP, you can download the stand-alone DirectX
SDK.

DirectX Graphics and Gaming has information and samples to help you get started with DirectX programming.

Win32 Windows Applications contains articles that describe how to create a basic Windows desktop app.

Developing Games discusses Universal Windows Platform game development, but many of the concepts also
apply to desktop games.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/resources-for-creating-a-game-using-directx.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/vscpp-step-0-installation
https://msdn.microsoft.com/library/windows/desktop/ee663275.aspx
http://www.microsoft.com/download/details.aspx?displaylang=en&id=6812
https://docs.microsoft.com/windows/desktop/directx
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/windows-desktop-applications-cpp
https://msdn.microsoft.com/library/windows/apps/hh452744.aspx


 

Walkthrough: Creating and Using a Static Library
(C++)
10/31/2018 • 6 minutes to read • Edit Online

Prerequisites

Creating a static library project
To create a static library projectTo create a static library project

This step-by-step walkthrough shows how to create a static library (.lib file) for use with C++ apps. Using a static
library is a great way to reuse code. Rather than reimplementing the same routines in every app that requires the
functionality, you write them one time in a static library and then reference it from the apps. Code linked from a
static library becomes part of your app—you don’t have to install another file to use the code.

This walkthrough covers these tasks:

Creating a static library project

Adding a class to the static library

Creating a C++ console app that references the static library

Using the functionality from the static library in the app

Running the app

An understanding of the fundamentals of the C++ language.

NOTENOTE

1. On the menu bar, choose File > New > Project.

2. In the left pane of the New Project dialog box, expand Installed > Visual C++, and then select Windows
Desktop. In the center pane, select Windows Desktop Wizard.

For versions of Visual Studio older than 2017, in the New Project dialog box, expand Installed > Templates >
Visual C++, and then select Win32. In the center pane, select Win32 Console Application.

3. Specify a name for the project—for example, MathFuncsLib—in the Name box. Specify a name for the
solution—for example, StaticLibrary—in the Solution Name box. Choose the OK button.

For Visual Studio 2017,

a. Under Application type, select Static Library (.lib).

b. Under Additional Options, un-check the Precompiled header check box.

c. Choose OK to create the project.

For versions of Visual Studio older than 2017,

a. Click Next.

b. Under Application type, select Static library. Then uncheck the Precompiled header box

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/walkthrough-creating-and-using-a-static-library-cpp.md


 Adding a class to the static library
To add a class to the static libraryTo add a class to the static library

and choose Finish.

// MathFuncsLib.h

namespace MathFuncs
{
    class MyMathFuncs
    {
    public:
        // Returns a + b
        static double Add(double a, double b);

        // Returns a - b
        static double Subtract(double a, double b);

        // Returns a * b
        static double Multiply(double a, double b);

        // Returns a / b
        static double Divide(double a, double b);
    };
} 

1. To create a header file for a new class, open the shortcut menu for the MathFuncsLib project in Solution
Explorer, and then choose Add > New Item. In the Add New Item dialog box, in the left pane, under
Visual C++, select Code. In the center pane, select Header File (.h). Specify a name for the header file—
for example, MathFuncsLib.h—and then choose the Add button. A blank header file is displayed.

2. Add a class named MyMathFuncs  to do common mathematical operations such as addition, subtraction,
multiplication, and division. The code should resemble:

3. To create a source file for the new class, open the shortcut menu for the MathFuncsLib project in Solution
Explorer, and then choose Add > New Item. In the Add New Item dialog box, in the left pane, under
Visual C++, select Code. In the center pane, select C++ File (.cpp). Specify a name for the source file—for
example, MathFuncsLib.cpp—and then choose the Add button. A blank source file is displayed.

4. Use this source file to implement the functionality for MyMathFuncs. The code should resemble:



 Creating a C++ console app that references the static library
To create a C++ console app that references the static libraryTo create a C++ console app that references the static library

// MathFuncsLib.cpp
// compile with: cl /c /EHsc MathFuncsLib.cpp
// post-build command: lib MathFuncsLib.obj

#include "MathFuncsLib.h"

#include <stdexcept>

using namespace std;

namespace MathFuncs
{
    double MyMathFuncs::Add(double a, double b)
    {
        return a + b;
    }

    double MyMathFuncs::Subtract(double a, double b)
    {
        return a - b;
    }

    double MyMathFuncs::Multiply(double a, double b)
    {
        return a * b;
    }

    double MyMathFuncs::Divide(double a, double b)
    {
        return a / b;
    }
}

NOTENOTE

5. Compile the static library by selecting Build > Build Solution on the menu bar. Compiling creates a static
library that can be used by other programs.

When you build on the Visual Studio command line, you must build the program in two steps. First, run 
cl /c /EHsc MathFuncsLib.cpp  to compile the code and create an object file that's named MathFuncsLib.obj .

(The cl  command invokes the compiler, Cl.exe, and the /c  option specifies compile without linking. For more
information, see /c (Compile Without Linking).) Second, run lib MathFuncsLib.obj  to link the code and create the
static library MathFuncsLib.lib . (The lib  command invokes the Library Manager, Lib.exe. For more information,
see LIB Reference.)

NOTENOTE

1. On the menu bar, choose File > New > Project.

2. In the left pane of the New Project dialog box, expand Installed > Visual C++, and then select Windows
Desktop. In the center pane, select Windows Desktop Wizard.

For versions of Visual Studio older than 2017, in the New Project dialog box, expand Installed > Templates >
Visual C++, and then select Win32. In the center pane, select Win32 Console Application.

3. Specify a name for the project—for example, MyExecRefsLib—in the Name box. In the drop-down list next

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/c-compile-without-linking
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/lib-reference


 Using the functionality from the static library in the app
To use the functionality from the static library in the appTo use the functionality from the static library in the app

to Solution, select Add to Solution. The command adds the new project to the solution that contains the
static library. Choose the OK button.

For Visual Studio 2017,

a. Under Application type, select Console Application (.exe).

b. Under Additional Options, un-check the Precompiled header check box.

c. Choose OK to create the project.

For versions of Visual Studio older than 2017,

a. Click Next.

b. Make sure Console application is selected. Then check the Empty Project box and choose
Finish.

1. After you create a console app, an empty program is created for you. The name for the source file is the
same as the name that you chose earlier. In the example, it's named MyExecRefsLib.cpp .

2. Before you can use the math routines in the static library, you must reference it. Open the shortcut menu for
the MyExecRefsLib project in Solution Explorer, and then choose Add > Reference.

3. The Add Reference dialog box lists the libraries that you can reference. The Projects tab lists the projects
in the current solution and any libraries they reference. On the Projects tab, select the MathFuncsLib
check box, and then choose the OK button.

4. To reference the MathFuncsLib.h  header file, you must modify the included directories path. In the Property
Pages dialog box for MyExecRefsLib, expand the Configuration Properties node, expand the C/C++
node, and then select General. Next to Additional Include Directories, specify the path of the
MathFuncsLib directory, or browse for it.

To browse for the directory path, open the property value drop-down list, and then choose Edit. In the
Additional Include Directories dialog box, in the text box, select a blank line and then choose the ellipsis
button (...) at the end of the line. In the Select Directory dialog box, select the MathFuncsLib directory
and then choose Select Folder button to save your selection and close the dialog box. In the Additional
Include Directories dialog box, choose the OK button, and then in the Property Pages dialog box, choose
the OK button to save your changes to the project.

5. You can now use the MyMathFuncs  class in this app by including the #include "MathFuncsLib.h"  header in
your code. Replace the contents of MyExecRefsLib.cpp  with this code:



 Running the app
To run the appTo run the app

See Also

// MyExecRefsLib.cpp
// compile with: cl /EHsc MyExecRefsLib.cpp /link MathFuncsLib.lib

#include <iostream>

#include "MathFuncsLib.h"

using namespace std;

int main()
{
    double a = 7.4;
    int b = 99;

    cout << "a + b = " <<
        MathFuncs::MyMathFuncs::Add(a, b) << endl;
    cout << "a - b = " <<
        MathFuncs::MyMathFuncs::Subtract(a, b) << endl;
    cout << "a * b = " <<
        MathFuncs::MyMathFuncs::Multiply(a, b) << endl;
    cout << "a / b = " <<
        MathFuncs::MyMathFuncs::Divide(a, b) << endl;

    return 0;
}

6. Build the executable by choosing Build > Build Solution on the menu bar.

a + b = 106.4
a - b = -91.6
a * b = 732.6
a / b = 0.0747475

1. Make sure that MyExecRefsLib is selected as the default project by opening the shortcut menu for
MyExecRefsLib in Solution Explorer, and then choosing Set as StartUp Project.

2. To run the project, on the menu bar, choose Debug > Start Without Debugging. The output should
resemble:

Walkthrough: Creating and Using a Dynamic Link Library (C++)
Desktop Applications (Visual C++)

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/walkthrough-creating-and-using-a-dynamic-link-library-cpp


How to: Use the Windows 10 SDK in a Windows
Desktop Application
10/31/2018 • 2 minutes to read • Edit Online

To target the Windows 10 SDKTo target the Windows 10 SDK

When you create a classic Windows desktop project in Visual Studio 2017, it is set up by default to build with the
version of the Windows 10 SDK that was installed when the C++ Desktop workload was installed or last updated.
This version of the Windows SDK is compatible with Windows 7 and later. See Using the Windows Headers for
more information about targeting specific versions of Windows.

If you want to target an earlier version of the SDK, you can open Project | Properties and choose from the other
SDK versions available in the Windows SDK Version dropdown.

Starting with Visual Studio 2015 and the Windows 10 SDK, the CRT library was separated into two parts, one
(ucrtbase) that contains the functions that are acceptable to be used in Universal Windows Apps, and one that
contains everything else (vcruntime140). Since the Windows 10 SDK contains new functions, such as many C99
functions, you need to follow these steps in order to use those functions. See CRT Library Features.

1. Make sure the Windows 10 SDK is installed. The Windows 10 SDK is installed as part of the Desktop
development with C++ workload. A standalone version is available at Downloads and tools for Windows
10.

2. Open the shortcut menu for the project node, and choose Retarget SDK Version.

The Review Solution Actions dialog appears.

3. In the Target Platform Version dropdown list, choose the version of the Windows 10 SDK you want to

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/how-to-use-the-windows-10-sdk-in-a-windows-desktop-application.md
https://docs.microsoft.com/windows/desktop/WinProg/using-the-windows-headers
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/crt-library-features
https://developer.microsoft.com/windows/downloads


target. Choose the OK button to apply the change.

Note that 8.1 in this context refers to the Windows SDK version, which is also backwardly compatible with
Windows 8, Windows Server 2012, Windows 7, Windows Server 2008, and Windows Vista.

If this step is successful, the following text appears in the Output window:

Retargeting End: 1 completed, 0 failed, 0 skipped

4. Open the project properties, and in the Configuration Properties, General section, notice the values of
Windows Target Platform Version. Changing the value here has the same effect as following this
procedure. See General Property Page (Project).

This action changes the values of project macros that include paths to header files and library files. To see
what changed, in the Visual C++ Directories section of the Project Properties dialog, choose one of the
properties such as the Include Directories, choose to open the dropdown list, and choose <Edit>. The
Include Directories dialog appears.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/general-property-page-project


To target the Windows 8.1 SDKTo target the Windows 8.1 SDK

See Also

Choose the Macros >> button, and scroll down the list of macros to the Windows SDK macros to see all
the new values.

5. Repeat for other projects, as needed, and rebuild the solution.

1. Open the shortcut menu for the project node, and choose Retarget SDK Version.

2. In the Target Platform Version dropdown list, choose 8.1.

Windows Desktop Applications (Visual C++)



Universal Windows Apps (C++)
11/15/2018 • 2 minutes to read • Edit Online

TIPTIP

UWP apps that use C++/WinRT

UWP apps that use C++/CX

Visual C++ language reference (C++/CX) Describes the set of extensions that simplify C++
consumption of Windows Runtime APIs and enable error
handling that's based on exceptions.

Building apps and libraries (C++/CX) Describes how to create DLLs and static libraries that can be
accessed from a C++/CX app or component.

Tutorial: Create a UWP "Hello, World" app in C++/CX A walkthrough that introduces the basic concepts of UWP app
development in C++/CX.

Creating Windows Runtime Components in C++/CX Describes how to create DLLs that other UWP apps and
components can consume.

UWP game programming Describes how to use DirectX and C++/CX to create games.

UWP Apps that Use the Windows Runtime C++ Template Library
(WRL)

Universal Windows Platform (UWP) apps embody a set of design principles that emphasize simple user interfaces
that are centered around content that automatically adjusts for different screen sizes on different devices. You
create the UI in XAML markup, and the code-behind in native C++. You can also create components (DLLs) that
can be consumed by UWP apps that are written in other languages. The API surface for UWP apps is the Windows
Runtime, which is a well-factored library that provides a wide variety of operating system services.

For Windows 10, you can use the Desktop Bridge app converter to package your existing desktop application for deployment
through the Microsoft Store. For more information, see Using Visual C++ Runtime in Centennial project and Desktop Bridge.

C++/WinRT is a new, header-only library-based C++ language projection for the Windows Runtime that uses
completely standard C++, unlike the C++/CX implementation. C++/WinRT doesn't use non-standard syntax or
Microsoft language extensions, and it takes full advantage of the C++ compiler to create highly-optimized output.
For more information, see C++/WinRT. For an introduction to C++/WinRT and a code quickstart, see Introduction
to C++/WinRT.

The Windows Runtime C++ Template Library provides the low-level COM interfaces by which ISO C++ code can
access the Windows Runtime in an exception-free environment. In most cases, we recommend that you use
C++/WinRT or C++/CX instead of the Windows Runtime C++ Template Library for UWP app development. For
information about the Windows Runtime C++ Template Library, see Windows Runtime C++ Template Library
(WRL).

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/universal-windows-apps-cpp.md
https://blogs.msdn.microsoft.com/vcblog/2016/07/07/using-visual-c-runtime-in-centennial-project
https://docs.microsoft.com/windows/uwp/porting/desktop-to-uwp-root
https://docs.microsoft.com/windows/uwp/cpp-and-winrt-apis
https://docs.microsoft.com/windows/uwp/cpp-and-winrt-apis/intro-to-using-cpp-with-winrt
https://docs.microsoft.com/windows/uwp/get-started/create-a-basic-windows-10-app-in-cpp
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp
https://docs.microsoft.com/windows/uwp/gaming/
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/windows-runtime-cpp-template-library-wrl


See also
Visual C++
Overview of Windows Programming in C++

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/visual-cpp-in-visual-studio


Visual C++ Language Reference (C++/CX)
3/5/2019 • 2 minutes to read • Edit Online

NOTENOTE

Related articles

Quick Reference Table of keywords and operators for C++/CX.

Type System Describes basic C++/CX types and programming constructs,
and how to utilize C++/CX to consume and create Windows
Runtime types.

Building apps and libraries Discusses how to use the IDE to build apps and link to static
libraries aned DLLs.

Interoperating with Other Languages Discusses how components that are written by using
C++/CX can be used with components that are written in
JavaScript, any managed language, or the Windows Runtime
C++ Template Library.

Threading and Marshaling Discusses how to specify the threading and marshaling
behavior of components that you create.

C++/CX is a set of extensions to the C++ language that enable the creation of Windows apps and Windows
Runtime components in an idiom that is as close as possible to modern C++. Use C++/CX to write Windows
apps and components in native code that easily interact with Visual C#, Visual Basic, and JavaScript, and other
languages that support the Windows Runtime. In those rare cases that require direct access to the raw COM
interfaces, or non-exceptional code, you can use the Windows Runtime C++ Template Library (WRL).

C++/WinRT is the recommended alternative to C++/CX. It is a new, standard C++17 language projection for
Windows Runtime APIs, available in the latest Windows 10 SDK from version 1803 onward. C++/WinRT is implemented
entirely in header files, and designed to provide you with first-class access to the modern Windows API.

With C++/WinRT, you can both consume and author Windows Runtime APIs using any standards-compliant C++17
compiler. C++/WinRT typically performs better and produces smaller binaries than any other language option for the
Windows Runtime. We will continue to support C++/CX and WRL, but highly recommend that new applications use
C++/WinRT. For more information, see C++/WinRT.

By using C++/CX, you can create:

C++ Universal Windows Platform (UWP) apps that use XAML to define the user interface and use the
native stack. For more information, see Create a "hello world" app in C++ (UWP).

C++ Windows Runtime components that can be consumed by JavaScript-based Windows apps. For
more information, see Creating Windows Runtime Components in C++.

Windows DirectX games and graphics-intensive apps. For more information, see Create a simple UWP
Game with DirectX.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/visual-c-language-reference-c-cx.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/windows-runtime-cpp-template-library-wrl
https://docs.microsoft.com/windows/uwp/cpp-and-winrt-apis/index
https://docs.microsoft.com/windows/uwp/cpp-and-winrt-apis/index
https://docs.microsoft.com/windows/uwp/get-started/create-a-basic-windows-10-app-in-cpp
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp
https://docs.microsoft.com/windows/uwp/gaming/tutorial--create-your-first-metro-style-directx-game


Namespaces Reference Reference documentation for the default namespace, the
Platform namespace, Platform::Collections, and related
namespaces.

CRT functions not supported in Universal Windows Platform
apps

Lists the CRT functions that are not available for use in
Windows Runtime apps.

How to guides for Windows 10 apps Provides high-level guidance about Windows 10 apps and
links to more information.

C++/CX Part 0 of [n]: An Introduction

C++/CX Part 1 of [n]: A Simple Class

C++/CX Part 2 of [n]: Types That Wear Hats

C++/CX Part 3 of [n]: Under Construction

C++/CX Part 4 of [n]: Static Member Functions

An introductory Visual C++ blog series on C++/CX.

https://msdn.microsoft.com/library/windows/apps/xaml/mt244352.aspx
https://blogs.msdn.microsoft.com/vcblog/2012/08/29/ccx-part-0-of-n-an-introduction/
https://blogs.msdn.microsoft.com/vcblog/2012/09/05/ccx-part-1-of-n-a-simple-class/
https://blogs.msdn.microsoft.com/vcblog/2012/09/17/ccx-part-2-of-n-types-that-wear-hats/
https://blogs.msdn.microsoft.com/vcblog/2012/10/05/ccx-part-3-of-n-under-construction/
https://blogs.msdn.microsoft.com/vcblog/2012/10/19/ccx-part-4-of-n-static-member-functions/


Quick Reference (C++/CX)
10/31/2018 • 4 minutes to read • Edit Online

Quick reference
CONCEPT STANDARD C++ C++/CX REMARKS

Fundamental types C++ fundamental types. C++/CX fundamental types
that implement fundamental
types that are defined in the
Windows Runtime.

The default  namespace
contains C++/CX built-in,
fundamental types. The
compiler implicitly maps
C++/CX fundamental types
to standard C++ types.

The Platform  family of
namespaces contains types
that implement fundamental
Windows Runtime types.

bool bool An 8-bit Boolean value.

__wchar_t char16 A 16-bit nonnumeric value
that represents a Unicode
(UTF-16) code point.

short

unsigned short

int16

uint16

A 16-bit signed integer.

A 16-bit unsigned integer.

int

unsigned int

int

uint32

A 32-bit signed integer.

A 32-bit unsigned integer.

long long  -or- __int64

unsigned long long

int64

uint64

A 64-bit signed integer.

A 64-bit unsigned integer.

float, double float32, float64 A 32-bit or 64-bit IEEE 754
floating-point number.

The Windows Runtime supports Universal Windows Platform (UWP) apps that execute only in a trustworthy
operating system environment, use authorized functions, data types, and devices, and are distributed through the
Microsoft Store. The C++/CX simplify the writing of apps for the Windows Runtime. This article is a quick
reference; for more complete documentation, see Type System.

When you build on the command line, use the /ZW compiler option to build a UWP app or Windows Runtime
component. To access Windows Runtime declarations, which are defined in the Windows Runtime metadata
(.winmd) files, specify the #using  directive or the /FU  compiler option. When you create a project for a UWP app,
Visual Studio by default sets these options and adds references to all Windows Runtime libraries.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/quick-reference-c-cx.md


enum {} enum class {}

-or-

enum struct {}

A 32-bit enumeration.

(Does not apply) Platform::Guid A 128-bit nonnumeric value
(a GUID) in the Platform

namespace.

std::time_get Windows::Foundation::DateTimeA date-time structure.

(Does not apply) Windows::Foundation::TimeSpanA timespan structure.

(Does not apply) Platform::Object^ The reference-counted base
object in the C++ view of
the Windows Runtime type
system.

std::wstring

L"..."

Platform::String^ Platform::String^  is a
reference-counted,
immutable, sequence of
Unicode characters that
represent text.

Pointer Pointer to object ( * ):

std::shared_ptr

Handle-to-object ( ^ ,
pronounced "hat"):

T^ identifier

All Windows Runtime classes
are declared by using the
handle-to-object modifier.
Members of the object are
accessed by using the arrow
( -> ) class-member-access
operator.

The hat modifier means
"pointer to a Windows
Runtime object that is
automatically reference
counted." More precisely,
handle-to-object declares
that the compiler should
insert code to automatically
manage the object's
reference count, and delete
the object if the reference
count goes to zero.

CONCEPT STANDARD C++ C++/CX REMARKS



Reference Reference to an object ( & ):

T &  identifier

Tracking reference ( % ):

T %  identifier

Only Windows Runtime
types can be declared by
using the tracking reference
modifier. Members of the
object are accessed by using
the dot ( . ) class-member-
access operator.

The tracking reference
means "a reference to a
Windows Runtime object
that is automatically
reference counted." More
precisely, a tracking
reference declares that the
compiler should insert code
to automatically manage the
object's reference count, and
delete the object if the
reference count goes to
zero.

Dynamic type declaration new ref new Allocates a Windows
Runtime object and then
returns a handle to that
object.

Object lifetime management delete  identifier

delete[]  identifier

(Invokes the destructor.) Lifetime is determined by
reference counting. A call to
delete invokes the
destructor but itself does
not free memory.

Array declaration T identifier []

std::array  identifier

Array<  T ^>^  identifier 
(  size )

-or-

WriteOnlyArray<  T ^>

identifier (  size )

Declares a one-dimensional
modifiable or write-only
array of type T^. The array
itself is also a reference-
counted object that must be
declared by using the
handle-to-object modifier.

(Array declarations use a
template header class that is
in the Platform

namespace.)

Class declaration class  identifier {}

struct  identifier {}

ref class  identifier {}

ref struct  identifier {}

Declares a runtime class that
has default private
accessibility.

Declares a runtime class that
has default public
accessibility.

CONCEPT STANDARD C++ C++/CX REMARKS



Structure declaration struct  identifier {}

(that is, a Plain Old Data
structure (POD))

value class  identifier 
{}

value struct  identifier 
{}

Declares a POD struct that
has default private
accessibility.

A value class can be
represented in Windows
metadata, but a standard
C++ class cannot be.

Declares a POD struct that
has default public
accessibility.

A value struct can be
represented in Windows
metadata, but a standard
C++ struct cannot be.

Interface declaration abstract class that contains
only pure virtual functions.

interface class  identifier
{}

interface struct

identifier {}

Declares an interface that
has default private
accessibility.

Declares an interface that
has default public
accessibility.

Delegate std::function public delegate  return-
type delegate-type-
identifier (  [ parameters ] 
);

Declares an object that can
be invoked like a function
call.

CONCEPT STANDARD C++ C++/CX REMARKS



Event (Does not apply) event  delegate-type-
identifier event-identifier 
;

delegate-type-identifier
delegate-identifier = 
ref new delegate-type-

identifier ( this [,
parameters] );

event-identifier +=

delegate-identifier ;

-or-

EventRegistrationToken

token-identifier = obj .
event-identifier +=

delegate-identifier ;

-or-

auto  token-identifier =
obj. event-identifier ::add(

delegate-identifier );

obj .  event-identifier -=

token-identifier ;

-or-

obj .  event-identifier 
::remove(  token-identifier
);

Declares an event object,
which stores a collection of
event handlers (delegates)
that are called when an
event occurs.

Creates an event handler.

Adds an event handler.

Adding an event handler
returns an event token
(token-identifier). If you
intend to explicitly remove
the event handler, you must
save the event token for
later use.

Removes an event handler.

To remove an event handler,
you must specify the event
token that you saved when
the event handler was
added.

Property (Does not apply) property  T identifier;

property  T identifier [

index ];

property  T default[

index ];

Declares that a class or
object member function is
accessed by using the same
syntax that's used to access
a data member or indexed
array element.

Declares a property on a
class or object member
function.

Declares an indexed
property on an object
member function.

Declares an indexed
property on a class member
function.

CONCEPT STANDARD C++ C++/CX REMARKS



Parameterized types templates generic <typename  T 
> interface class

identifier {}

generic <typename  T 
> delegate  [return-type]

delegate-identifier () {}

Declares a parameterized
interface class.

Declares a parameterized
delegate.

Nullable value types boost::optional<T> Platform::IBox <T> Enables variables of scalar
types and value structs to
have a value of nullptr .

CONCEPT STANDARD C++ C++/CX REMARKS

See Also
Visual C++ Language Reference



Type System (C++/CX)
10/31/2018 • 8 minutes to read • Edit Online

Windows metadata (.winmd) files

By using the Windows Runtime architecture, you can use C++/CX, Visual Basic, Visual C# and JavaScript to
write apps and components that directly access the Windows API and interoperate with other Windows
Runtime apps and components. Universal Windows Platform apps that are written in C++ compile to native
code that executes directly in the CPU. Universal Windows Platform apps that are written in C# or Visual Basic
compile to Microsoft intermediate language (MSIL) and execute in the common language runtime (CLR).
Universal Windows Platform apps that are written in JavaScript execute in a run-time environment. The
Windows Runtime operating system components themselves are written in C++ and run as native code. All of
these components and Universal Windows Platform apps communicate directly through the Windows Runtime
application binary interface (ABI).

To enable support for the Windows Runtime in a modern C++ idiom, Microsoft created the C++/CX. C++/CX
provides built-in base types and implementations of fundamental Windows Runtime types that enable C++
apps and components to communicate across the ABI with apps that are written in other languages. You can
consume any Windows Runtime type, or create classes, structs, interfaces, and other user-defined types that can
be consumed by other Universal Windows Platform apps and components. a Universal Windows Platform app
that's written in C++/CX can also use regular C++ classes and structs as long as they don't have public
accessibility.

For an in-depth discussion of the C++/CX language projection and how it works under the covers, see these
blog posts:

1. C++/CX Part 0 of [n]: An Introduction

2. C++/CX Part 1 of [n]: A Simple Class

3. C++/CX Part 2 of [n]: Types That Wear Hats

4. C++/CX Part 3 of [n]: Under Construction

5. C++/CX Part 4 of [n]: Static Member Functions

When you compile a Universal Windows Platform app that's written in C++, the compiler generates the
executable in native machine code, and also generates a separate Windows metadata (.winmd) file that contains
descriptions of the public Windows Runtime types, which include classes, structs, enumerations, interfaces,
parameterized interfaces, and delegates. The format of the metadata resembles the format that's used in .NET
Framework assemblies. In a C++ component, the .winmd file contains only metadata; the executable code
resides in a separate file. This is the case for the Windows Runtime components that are included with
Windows. The WinMD file name must match or be a prefix of the root namespace in the source code. (For .NET
Framework languages, the .winmd file contains both the code and the metadata, just like a .NET Framework
assembly.)

The metadata in the .winmd file represents the published surface of your code. Published types are visible to
other Universal Windows Platforms no matter what language those other apps are written in. Therefore, the
metadata, or your published code, can only contain types specified by the Windows Runtime type system.
Language constructs that are specific to C++, such as regular classes, arrays, templates or STL containers,
cannot be published in metadata because a Javascript or C# client app would not know what to do with them.

Whether a type or method is visible in metadata depends on what accessibility modifiers are applied to it. To be

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/type-system-c-cx.md
https://blogs.msdn.microsoft.com/vcblog/2012/08/29/ccx-part-0-of-n-an-introduction
https://blogs.msdn.microsoft.com/vcblog/2012/09/05/ccx-part-1-of-n-a-simple-class
https://blogs.msdn.microsoft.com/vcblog/2012/09/17/ccx-part-2-of-n-types-that-wear-hats
https://blogs.msdn.microsoft.com/vcblog/2012/10/05/ccx-part-3-of-n-under-construction/
https://blogs.msdn.microsoft.com/vcblog/2012/10/19/ccx-part-4-of-n-static-member-functions


Published in metadata Not published in metadata

public private

protected internal

public protected private protected

TIPTIP

Windows Runtime type system in C++/CX

NamespacesNamespaces

Fundamental typesFundamental types

visible, a type must be declared in a namespace and must be declared as public. A non-public ref class is
permitted as an internal helper type in your code; it just isn't visible in the metadata. Even in a public ref class,
not all members are necessarily visible. The following table lists the relationship between C++ access specifiers
in a public ref class, and Windows Runtime metadata visibility:

You can use the Object Browser to view the contents of .winmd files. The Windows Runtime components that
are included with Windows are in the Windows.winmd file. The default.winmd file contains the fundamental
types that are used in C++/CX, and platform.winmd contains additional types from the Platform namespace. By
default, these three .winmd files are included in every C++ project for Universal Windows Platform apps.

The types in the Platform::Collections Namespace don't appear in the .winmd file because they are not public. They are
private C++-specific implementations of the interfaces that are defined in Windows::Foundation::Collections . A
Windows Runtime app that's written in JavaScript or C# doesn't know what a Platform::Collections::Vector Class is, but it
can consume a Windows::Foundation::Collections::IVector . The Platform::Collections  types are defined in
collection.h.

The following sections describe the major features of the Windows Runtime type system and how they are
supported in C++/CX.

All Windows Runtime types must be declared within a namespace; the Windows API itself is organized by
namespaces. A .winmd file must have the same name that the root namespace has. For example, a class that's
named A.B.C.MyClass can be instantiated only if it's defined in a metadata file that's named A.winmd or
A.B.winmd or A.B.C.winmd. The name of the DLL is not required to match the .winmd file name.

The Windows API itself has been reinvented as a well-factored class library that's organized by namespaces. All
Windows Runtime components are declared in the Windows.* namespaces.

For more information, see Namespaces and Type Visibility.

The Windows Runtime defines the following fundamental types, UInt8, Int16, UInt16, Int32, UInt32, Int64,
UInt64, Single, Double, Char16, Boolean, and String. C++/CX supports the fundamental numeric types in its
default namespace as uint16, uint32, uint64, int16, int32, int64, float32, float64, and char16. Boolean and String
are also defined in the Platform namespace.

C++/CX also defines uint8, equivalent to unsigned char , which is not supported in the Windows Runtime and
cannot be used in public APIs.

A fundamental type may be made nullable by wrapping it in a Platform::IBox Interface interface. For more
information, see Value classes and structs.



StringsStrings

ArraysArrays

Ref classes and structsRef classes and structs

Value classes and structsValue classes and structs

Partial classesPartial classes

PropertiesProperties

Windows Runtime collections in C++/CXWindows Runtime collections in C++/CX

For more information about fundamental types, see Fundamental types

A Windows Runtime string is an immutable sequence of 16-bit UNICODE characters. A Windows Runtime
string is projected as Platform::String^ . This class provides methods for string construction, manipulation, and
conversion to and from wchar_t .

For more information, see Strings.

The Windows Runtime supports 1-dimensional arrays of any type. Arrays of arrays are not supported. In
C++/CX, Windows Runtime arrays are projected as the Platform::Array Class.

For more information, see Array and WriteOnlyArray

A Windows Runtime class is projected in C++/CX as a ref class or ref struct, because they are copied by
reference. Memory management for ref classes and ref structs is handled transparently by means of reference
counting. When the last reference to an object goes out of scope, the object is destroyed. A ref class or ref struct
can:

Contain as members constructors, methods, properties, and events. These members can have public,
private, protected, or internal accessibility.

Can contain private nested enum, struct, or class definitions.

Can directly inherit from one base class and can implement any number of interfaces. All ref classes are
implicitly convertible to the Platform::Object Class and can override its virtual methods—for example,
Object::ToString.

A ref class that has a public constructor must be declared as sealed, to prevent further derivation.

For more information, see Ref classes and structs

A value class or value struct represents a basic data structure and contains only fields, which may be value
classes, value structs, or type Platform::String^ . Value structs and value classes are copied by value.

A value struct can be made nullable by wrapping in an IBox interface.

For more information, see Value classes and structs.

The partial class feature enables one class to be defined over multiple files. It's used primarily to enable code-
generation tools such as the XAML editor to modify one file without touching the file that you edit.

For more information, see Partial classes

A property is a public data member of any Windows Runtime type and is implemented as a get/set method pair.
Client code accesses a property as if it were a public field. A property that requires no custom get or set code is
known as a trivial property and can be declared without explicit get or set methods.

For more information, see Properties.

The Windows Runtime defines a set of interfaces for collection types that each language implements in its own
way. C++/CX provides implementations in the Platform::Collections::Vector Class, Platform::Collections::Map



Template ref classesTemplate ref classes

InterfacesInterfaces

EnumsEnums

DelegatesDelegates

ExceptionsExceptions

EventsEvents

CastingCasting

BoxingBoxing

AttributesAttributes

Class, and other related concrete collection types, which are compatible with their Standard Template Library
(STL) counterparts.

For more information, see Collections.

Private and internal ref classes can be templated and specialized.

For more information, see Template ref classes.

A Windows Runtime interface defines a set of public properties, methods, and events that a ref class or ref struct
must implement if it inherits from the interface.

For more information, see Interfaces.

An enum class in Windows Runtime resembles a scoped enum in C++. The underlying type is int32, unless the
[Flags] attribute is applied—in that case, the underlying type is uint32.

For more information, see Enums.

A delegate in the Windows Runtime is analogous to a std::function object in C++. It's a special kind of ref class
that's used to invoke client-provided functions that have compatible signatures. Delegates are most commonly
used in the Windows Runtime as the type of an event.

For more information, see Delegates.

In C++/CX, you can catch custom exception types, std::exception types, and Platform::Exception types.

For more information, see Exceptions.

An event is a public member in a ref class or ref struct whose type is a delegate type. An event can only be
invoked—that is, fired—by the owning class. However, client code can provide its own functions, which are
known as event handlers and are invoked when the owning class fires the event.

For more information, see Events.

C++/CX supports the standard C++ cast operators static_cast, dynamic_cast, and reinterpret_cast, and also the
safe_cast operator that's specific to C++/CX.

For more information, see Casting.

A boxed variable is a value type that's wrapped in a reference type in situations where reference semantics are
required.

For more information, see Boxing.

An attribute is a metadata value that can be applied to any Windows Runtime type or type member and can be
inspected at run time. The Windows Runtime defines a set of common attributes in the 
Windows::Foundation::Metadata  namespace. User-defined attributes on public interfaces are not supported by

Windows Runtime in this release.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/exception-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/static-cast-operator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/dynamic-cast-operator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/reinterpret-cast-operator


API Deprecation

See Also

Describes how to mark public APIs as deprecated by using the same attribute that's used by the Windows
Runtime system types.

For more information, see Deprecating types and members.

Visual C++ Language Reference



Namespaces and Type Visibility (C++/CX )
11/15/2018 • 2 minutes to read • Edit Online

Type visibility

NOTENOTE

Member accessibility and visibility

Modifier Meaning Emitted to metadata?

private The default accessibility. Same meaning
as in standard C++.

No

protected Same meaning as in standard C++,
both within the app or component and
in metadata.

Yes

public Same meaning as in standard C++. Yes

public protected  -or- 
protected public

Protected accessibility in metadata,
public within the app or component.

Yes

A namespace is a standard C++ construct for grouping types that have related functionality and for preventing
name collisions in libraries. The Windows Runtime type system requires that all public Windows Runtime types,
including those in your own code, must be declared in a namespace at namespace scope. Public types that are
declared at global scope or nested inside another class will cause a compile-time error.

A .winmd file must have the same name that the root namespace has. For example, a class that's named
A.B.C.MyClass can be instantiated only if it's defined in a metadata file that's named A.winmd or A.B.winmd or
A.B.C.winmd. The name of the executable is not required to match the .winmd file name.

In a namespace, Windows Runtime types—unlike standard C++ types—have either private or public accessibility.
By default, the accessibility is private. Only a public type is visible to metadata and is therefore consumable from
apps and components that might be written in languages other than C++. In general, the rules for visible types are
more restrictive than the rules for non-visible types because visible types cannot expose C++-specific concepts
that are not supported in .NET languages or JavaScript.

Metadata is only consumed at run time by .NET languages and JavaScript. When a C++ app or component is talking to
another C++ app or component—this includes Windows components ,which are all written in C++—then no run-time
consumption of metadata is required.

In a private ref class, interface, or delegate, no members are emitted to metadata, even if they have public
accessibility. In public ref classes, you can control the visibility of members in metadata independently of their
accessibility in your source code. As in standard C++, apply the principle of least privilege; don't make your
members visible in metadata unless they absolutely must be.

Use the following access modifiers to control both metadata visibility and source code accessibility.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/namespaces-and-type-visibility-c-cx.md


protected private  or 
private protected

Not visible in metadata; protected
accessibility within the app or
component.

internal  or private public The member is public within the app or
component, but is not visible in
metadata.

No

Windows Runtime namespaces

C++/CX namespaces

Namespace Description

default Contains the built-in numeric and char16 types. These types
are in scope in every namespace and a using  statement is
never required.

Platform Contains primarily public types that correspond to Windows
Runtime types such as Array<T> , String , Guid , and 
Boolean . Also includes specialized helper types such as 
Platform::Agile<T>  and Platform::Box<T> .

Platform::Collections Contains the concrete collection classes that implement the
Windows Runtime collection interfaces IVector , IMap , and
so on. These types are defined in a header file, collection.h, not
in platform.winmd.

Platform::Details Contains types that are used by the compiler and are not
meant for public consumption.

See Also

The Windows API consists of types that are declared in the Windows::* namespaces. These namespaces are
reserved for Windows, and types cannot be added to them. In the Object Browser, you can view these
namespaces in the windows.winmd file. For documentation about these namespaces, see Windows API.

The C++/CX define certain types in these namespaces as part of the projection of the Windows Runtime type
system.

Type System (C++/CX)

https://docs.microsoft.com/uwp/api/


Fundamental types (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

Boolean and Character Types

NAMESPACE C++/CX NAME DEFINITION STANDARD C++ NAME RANGE OF VALUES

Platform Boolean An 8-bit Boolean
value.

bool true (nonzero) and
false (zero)

default char16 A 16-bit non-numeric
value that represents
a Unicode (UTF-16)
code point.

wchar_t

-or-

L'c'

(Specified by the
Unicode standard)

Numeric types

C++/CX NAME DEFINITION STANDARD C++ NAME RANGE OF VALUES

int8 An 8-bit signed numeric
value.

signed char -128 through 127

uint8 An 8-bit unsigned numeric
value.

unsigned char 0 through 255

int16 A 16-bit signed integer. short -32,768 through 32,767

uint16 A 16-bit unsigned integer. unsigned short 0 through 65,535

int32 A 32-bit signed integer. int -2,147,483,648 through
2,147,483,647

uint32 A 32-bit unsigned integer. unsigned int 0 through 4,294,967,295

int64 A 64-bit signed integer. long long -or- __int64 -9,223,372,036,854,
775,808 through
9,223,372,036,854,775,807

In addition to the standard C++ built-in types, C++/CX supports the type system that's defined by the Windows
Runtime architecture by providing typedefs for the Windows Runtime fundamental types that map to standard
C++ types.. C++/CX implements Boolean, character, and numeric fundamental types. These typedefs are defined
in the default  namespace, which never needs to be specified explicitly. In addition, C++/CX provides wrappers
and concrete implementations for certain Windows Runtime types and interfaces.

The following table lists the built-in Boolean and character types, and their standard C++ equivalents.

The following table lists the built-in numeric types. The numeric types are declared in the default  namespace and
are typedefs for the corresponding C++ built-in type. Not all C++ built-in types (long, for example) are supported
in the Windows Runtime. For consistency and clarity, we recommend that you use the C++/CX name.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/fundamental-types-c-cx.md


uint64 A 64-bit unsigned integer. unsigned long long -or-
unsigned __int64

0 through
18,446,744,073,709,551,61
5

float32 A 32-bit IEEE 754 floating-
point number.

float 3.4E +/- 38 (7 digits)

float64 A 64-bit IEEE 754 floating-
point number.

double 1.7E +/- 308 (15 digits)

C++/CX NAME DEFINITION STANDARD C++ NAME RANGE OF VALUES

Windows Runtime Types

NAME DEFINITION

Object Represents any Windows Runtime type.

String A series of characters that represent text.

Rect A set of four floating-point numbers that represent the
location and size of a rectangle.

SizeT An ordered pair of floating-point numbers that specify a
height and width.

Point An ordered pair of floating-point x-coordinates and y-
coordinates that define a point in a two-dimensional plane.

Guid A 128-bit non-numeric value that is used as a unique
identifier.

UIntPtr (For internal use only.) An unsigned 64-bit value that is used
as a pointer.

IntPtr (For internal use only.) A signed 64-bit value that is used as a
pointer.

See Also

The following table lists some additional types that are defined by the Windows Runtime architecture and are built
into C++/CX. Object and String are reference types. The others are value types. All of these types are declared in
the Platform  namespace. For a full list, see Platform namespace.

Type System



Strings (C++/CX)
10/31/2018 • 5 minutes to read • Edit Online

String construction

// Initializing a String^ by using string literals
String^ str1 = "Test"; // ok for ANSI text only. uses current code page
String^ str2("Test");
String^ str3 = L"Test";
String^ str4(L"Test");

//Initialize a String^ by using another String^
String^ str6(str1);
auto str7 = str2;

// Initialize a String from wchar_t* and wstring
wchar_t msg[] = L"Test";
String^ str8 = ref new String(msg);
std::wstring wstr1(L"Test");
String^ str9 = ref new String(wstr1.c_str());
String^ str10 = ref new String(wstr1.c_str(), wstr1.length());

String handling operations

Text in the Windows Runtime is represented in C++/CX by the Platform::String Class. Use the 
Platform::String Class  when you pass strings back and forth to methods in Windows Runtime classes, or when

you are interacting with other Windows Runtime components across the application binary interface (ABI)
boundary. The Platform::String Class  provides methods for several common string operations, but it's not
designed to be a full-featured string class. In your C++ module, use standard C++ string types such as wstring for
any significant text processing, and then convert the final result to Platform::String^ before you pass it to or from a
public interface. It's easy and efficient to convert between wstring  or wchar_t*  and Platform::String .

Fast pass

In some cases, the compiler can verify that it can safely construct a Platform::String  or pass a String  to a
function without copying the underlying string data. Such operations are known as fast pass and they occur
transparently.

The value of a String  object is an immutable (read-only) sequence of char16  (16-bit Unicode) characters.
Because a String  object is immutable, assignment of a new string literal to a String  variable actually replaces
the original String  object with a new String  object. Concatenation operations involve the destruction of the
original String  object and the creation of a new object.

Literals

A literal character is a character that's enclosed in single quotation marks, and a literal string is a sequence of
characters that's enclosed in double quotation marks. If you use a literal to initialize a String^ variable, the
compiler assumes that the literal consists of char16  characters. That is, you don't have to precede the literal with
the 'L' string modifier or enclose the literal in a _T() or TEXT() macro. For more information about C++ support
for Unicode, see Unicode Programming Summary.

The following example shows various ways to construct String  objects.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/strings-c-cx.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/basic-string-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/text/unicode-programming-summary


 // Concatenation 
 auto str1 = "Hello" + " World";
 auto str2 = str1 + " from C++/CX!";    
 auto str3 = String::Concat(str2, " and the String class");
 
 // Comparison
 if (str1 == str2) { /* ... */ }
 if (str1->Equals(str2)) { /* ... */ }
 if (str1 != str2) { /* ... */ }
 if (str1 < str2 || str1 > str2) { /* ... */};
 int result = String::CompareOrdinal(str1, str2);
 
 if(str1 == nullptr) { /* ...*/};
 if(str1->IsEmpty()) { /* ...*/};

// Accessing individual characters in a String^
 auto it = str1->Begin();
 char16 ch = it[0];

String conversions

// Create a String^ variable statically or dynamically from a literal string. 
String^ str1 = "AAAAAAAA";

// Use the value of str1 to create the ws1 wstring variable.
std::wstring ws1( str1->Data() ); 
// The value of ws1 is L"AAAAAAAA".

// Manipulate the wstring value.
std::wstring replacement( L"BBB" );
ws1 = ws1.replace ( 1, 3, replacement );
// The value of ws1 is L"ABBBAAAA".

// Assign the modified wstring back to str1. 
str1 = ref new String( ws1.c_str() ); 

String length and embedded NULL values

The String  class provides methods and operators for concatenating, comparing strings, and other basic string
operations. To perform more extensive string manipulations, use the String::Data()  member function to retrieve
the value of the String^  object as a const wchar_t* . Then use that value to initialize a std::wstring , which
provides rich string handling functions.

A Platform::String  can contain only char16  characters, or the NULL  character. If your application has to work
with 8-bit characters, use the String::Data to extract the text as a const wchar_t* . You can then use the appropriate
Windows functions or Standard Library functions to operate on the data and convert it back to a wchar_t*  or
wstring, which you can use to construct a new Platform::String .

The following code fragment shows how to convert a String^  variable to and from a wstring  variable. For more
information about the string manipulation that's used in this example, see basic_string::replace.

The String::Length returns the number of characters in the string, not the number of bytes. The terminating NULL
character is not counted unless you explicitly specify it when you use stack semantics to construct a string.

A Platform::String  can contain embedded NULL values, but only when the NULL is a result of a concatenation
operation. Embedded NULLs are not supported in string literals; therefore, you cannot use embedded NULLs in
that manner to initialize a Platform::String . Embedded NULL values in a Platform::String  are ignored when the

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/basic-string-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/basic-string-class


StringReference

void GetDecodedStrings(std::vector<std::wstring> strings)
{
    using namespace Windows::Security::Cryptography;
    using namespace Windows::Storage::Streams;

    for (auto&& s : strings)
    {
        // Method signature is IBuffer^ CryptographicBuffer::DecodeFromBase64String (Platform::String^)
        // Call using StringReference:
        IBuffer^ buffer = CryptographicBuffer::DecodeFromBase64String(StringReference(s.c_str()));

        //...do something with buffer
    }
}

string is displayed, for example, when it is assigned to a TextBlock::Text  property. Embedded NULLs are
removed when the string value is returned by the Data  property.

In some cases your code (a) receives a std::wstring, or wchar_t string or L"" string literal and just passes it on to
another method that takes a String^ as input parameter. As long as the original string buffer itself remains valid
and does not mutate before the function returns, you can convert the wchar_t*  string or string literal to a
Platform::StringReference, and pass in that instead of a Platform::String^ . This is allowed because 
StringReference  has a user-defined conversion to Platform::String^ . By using StringReference  you can avoid

making an extra copy of the string data. In loops where you are passing large numbers of strings, or when passing
very large strings, you can potentially achieve a significant performance improvement by using StringReference .
But because StringReference  essentially borrows the original string buffer, you must use extreme care to avoid
memory corruption. You should not pass a StringReference  to an asynchronous method unless the original string
is guaranteed to be in scope when that method returns. A String^ that is initialized from a StringReference will
force an allocation and copy of the string data if a second assignment operation occurs. In this case, you will lose
the performance benefit of StringReference .

Note that StringReference  is a standard C++ class type, not a ref class, you cannot use it in the public interface of
ref classes that you define.

The following example shows how to use StringReference:



Array and WriteOnlyArray (C++/CX)
3/5/2019 • 5 minutes to read • Edit Online

PassArray pattern

//JavaScript
function button2_click() {
    var obj = new JS-Array.Class1();
    var a = new Array(100);
    for (i = 0; i < 100; i++) {
        a[i] = i;
    }
    // Notice that method names are camelCased in JavaScript.
    var sum = obj.passArrayForReading(a);
    document.getElementById('results').innerText
        = "The sum of all the numbers is " + sum;
}

You can freely use regular C-style arrays or std::array in a C++/CX program (although std::vector is often a better
choice), but in any API that is published in metadata, you must convert a C-style array or vector to a
Platform::Array or Platform::WriteOnlyArray type depending on how it is being used. The Platform::Array type is
neither as efficient nor as powerful as std::vector, so as a general guideline you should avoid its use in internal
code that performs lots of operations on the array elements.

The following array types can be passed across the ABI:

1. const Platform::Array^

2. Platform::Array^*

3. Platform::WriteOnlyArray

4. return value of Platform::Array^

You use these array types to implement the three kinds of array patterns that are defined by the Windows
Runtime.

PassArray Used when the caller passes an array to a method. The C++ input parameter type is const

Platform::Array<T>.

FillArray Used when the caller passes an array for the method to fill. The C++ input parameter type is
Platform::WriteOnlyArray<T>.

ReceiveArray Used when the caller receives an array that the method allocates. In C++/CX you can return the
array in the return value as an Array^ or you can return it as an out parameter as type Array^*.

When client code passes an array to a C++ method and the method does not modify it, the method accepts the
array as a const Array^. At the Windows Runtime application binary interface (ABI) level, this is known as a
PassArray. The next example shows how to pass an array that's allocated in JavaScript to a C++ function that
reads from it.

The following snippet shows the C++ method:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/array-and-writeonlyarray-c-cx.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class


double Class1::PassArrayForReading(const Array<double>^ arr)
{
    double sum = 0;
    for(unsigned int i = 0 ; i < arr->Length; i++)
    {
        sum += arr[i];
    }
    return sum;
}

ReceiveArray pattern

//JavaScript
function button3_click() {
    var obj = new JS-Array.Class1();

    // Remember to use camelCase for the function name.
    var array2 = obj.calleeAllocatedDemo2();
    for (j = 0; j < array2.length; j++) {
        document.getElementById('results').innerText += array2[j] + " ";
    }
}

// Return array as out parameter...
void Class1::CalleeAllocatedDemo(Array<int>^* arr)
{
    auto temp = ref new Array<int>(10);
    for(unsigned int i = 0; i < temp->Length; i++)
    {
        temp[i] = i;
    }

    *arr = temp;
}

// ...or return array as return value:
Array<int>^ Class1::CalleeAllocatedDemo2()
{
    auto temp = ref new Array<int>(10);    
    for(unsigned int i = 0; i < temp->Length; i++)
    {
        temp[i] = i;
    }

    return temp;
}

Fill arrays

In the ReceiveArray pattern, client code declares an array and passes it to a method which allocates the memory
for it and initializes it. The C++ input parameter type is a pointer-to-hat: Array<T>^* . The following example
shows how to declare an array object in JavaScript, and pass it to a C++ function that allocates the memory,
initializes the elements, and returns it to JavaScript. JavaScript treats the allocated array as a return value, but the
C++ function treats it as an out parameter.

The following snippet shows two ways to implement the C++ method:

When you want to allocate an array in the caller, and initialize or modify it in the callee, use WriteOnlyArray . The



// JavaScript
function button4_click() {
    var obj = new JS-Array.Class1();
    //Allocate the array.
    var a = new Array(10);

    //Pass the array to C++.
    obj.callerAllocatedDemo(a);

    var results = document.getElementById('results');
    // Display the modified contents.
    for (i = 0; i < 10; i++) {
        document.getElementById('results').innerText += a[i] + " ";
    }
}

void Class1::CallerAllocatedDemo(Platform::WriteOnlyArray<int>^ arr)
{
    // You can write to the elements directly.
    for(unsigned int i = 0; i < arr->Length; i++)
    {
        arr[i] = i;
    }   
}

Array conversions

#include <vector>
#include <collection.h>
using namespace Platform;
using namespace std;
using namespace Platform::Collections;

void ArrayConversions(const Array<int>^ arr)
{
    // Construct an Array from another Array.
    Platform::Array<int>^ newArr = ref new Platform::Array<int>(arr);

    // Construct a Vector from an Array
    auto v = ref new Platform::Collections::Vector<int>(arr); 

    // Construct a std::vector. Two options.
    vector<int> v1(begin(arr), end(arr));
    vector<int> v2(arr->begin(), arr->end());

    // Initialize a vector one element at a time.
    // using a range for loop. Not as efficient as using begin/end.
    vector<int> v3;
    for(int i : arr)
    {
        v3.push_back(i);
    }   
}

next example shows how to implement a C++ function that uses WriteOnlyArray  and call it from JavaScript.

The following snippet shows how to implement the C++ method:

This example shows how to use a Platform::Array to construct other kinds of collections:

The next example shows how to construct a Platform::Array from a C-style array and return it from a public



Array<int>^ GetNums()
{
    int nums[] = {0,1,2,3,4};
    //Use nums internally....

    // Convert to Platform::Array and return to caller.
    return ref new Array<int>(nums, 5);
}

Jagged arrays

Use ArrayReference to avoid copying data

public ref class TestReferenceArray sealed
{
public:

    // Assume dr is already initialized with a stream
    void GetArray(Windows::Storage::Streams::DataReader^ dr, int numBytesRemaining)
    {
        // Copy into Platform::Array
        auto bytes = ref new Platform::Array<unsigned char>(numBytesRemaining);            

        // Fill an Array.
        dr->ReadBytes(bytes);

        // Fill a C-style array
        uint8 data[1024];
        dr->ReadBytes( Platform::ArrayReference<uint8>(data, 1024) );
    }
};

Avoid exposing an Array as a property

method.

The Windows Runtime type system does not support the concept of jagged arrays and therefore you cannot use 
IVector<Platform::Array<T>>  as a return value or method parameter in a public method. To pass a jagged array or

a sequence of sequences across the ABI, use IVector<IVector<T>^> .

In some scenarios where data is being passed across the ABI into a Platform::Array, and you ultimately want to
process that data in a C-style array for efficiency, you can use Platform::ArrayReference to avoid the extra copy
operation. When you pass a Platform::ArrayReference as an argument to a parameter that takes a 
Platform::Array , the ArrayReference  will store the data directly into a C-style array that you specify. Just be

aware that ArrayReference  has no lock on the source data, so if it that data is modified or deleted on another
thread before the call completes, the results will be undefined.

The following code snippet shows how to copy the results of a DataReader operation into a Platform::Array  (the
usual pattern), and then how to substitute ArrayReference  to copy the data directly into a C-style array:

In general, you should avoid exposing a Platform::Array  type as a property in a ref class because the entire array
is returned even when client code is only attempting to access a single element. When you need to expose a
sequence container as a property in a public ref class, Windows::Foundation::IVector is a better choice. In private
or internal APIs (which are not published to metadata), consider using a standard C++ container such as
std::vector.

https://docs.microsoft.com/uwp/api/Windows.Storage.Streams.DataReader
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVector_T_
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class


See Also
Type System
Visual C++ Language Reference
Namespaces Reference



Ref classes and structs (C++/CX)
10/31/2018 • 9 minutes to read • Edit Online

Declaration

The C++/CX supports user-defined ref classes and ref structs, and user-defined value classes and value structs.
These data structures are the primary containers by which C++/CX supports the Windows Runtime type system.
Their contents are emitted to metadata according to certain specific rules, and this enables them to be passed
between Windows Runtime components and Universal Windows Platform apps that are written in C++ or other
languages.

A ref class or ref struct has these essential features:

It must be declared within a namespace, at namespace scope, and in that namespace it may have public or
private accessibility. Only public types are emitted to metadata. Nested public class definitions are not
permitted, including nested public enum classes. For more information, see Namespaces and Type
Visibility.

It may contain as members C++/CX including ref classes, value classes, ref structs, value structs, or
nullable value structs. It may also contain scalar types such as float64, bool, and so on. It may also contain
standard C++ types such as std::vector  or a custom class, as long as they are not public. C++/CX
constructs may have public , protected , internal , private , or protected private  accessibility. All 
public  or protected  members are emitted to metadata. Standard C++ types must have private , 
internal , or protected private  accessibility, which prevents them from being emitted to metadata.

It may implement one or more interface classes or interface structs.

It may inherit from one base class, and base classes themselves have additional restrictions. Inheritance in
public ref class hierarchies has more restrictions than inheritance in private ref classes.

It may not be declared as generic. If it has private accessibility, it may be a template.

Its lifetime is managed by automatic reference counting.

The following code fragment declares the Person  ref class. Notice that the standard C++ std::map  type is used
in the private members, and the Windows Runtime IMapView  interface is used in the public interface. Also notice
that the "^" is appended to declarations of reference types.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/ref-classes-and-structs-c-cx.md


// #include <map>
namespace WFC = Windows::Foundation::Collections;
namespace WFM = Windows::Foundation::Metadata;

[WFM::WebHostHidden]
ref class Person sealed
{
public:
    Person(Platform::String^ name);
    void AddPhoneNumber(Platform::String^ type, Platform::String^ number);
    property WFC::IMapView<Platform::String^, Platform::String^>^ PhoneNumbers
    { 
        WFC::IMapView<Platform::String^, Platform::String^>^ get();
    }
private:
    Platform::String^ m_name;
    std::map<Platform::String^, Platform::String^> m_numbers;
};

Implementation

#include <collection.h>
using namespace Windows::Foundation::Collections;
using namespace Platform;
using namespace Platform::Collections;

Person::Person(String^ name): m_name(name) { }
void Person::AddPhoneNumber(String^ type, String^ number)
{
    m_numbers[type] = number;
}
IMapView< String^, String^>^ Person::PhoneNumbers::get()
{
    // Simple implementation. 
    return ref new MapView< String^, String^>(m_numbers);
}

Usage

using namespace Platform;

Person^ p = ref new Person("Clark Kent");
p->AddPhoneNumber("Home", "425-555-4567");
p->AddPhoneNumber("Work", "206-555-9999");
String^ workphone = p->PhoneNumbers->Lookup("Work");

This code example shows an implementation of the Person  ref class:

The next code example shows how client code uses the Person  ref class.

You can also use stack semantics to declare a local ref class variable. Such an object behaves like a stack-based
variable even though the memory is still allocated dynamically. One important difference is that you cannot
assign a tracking reference (%) to a variable that is declared by using stack semantics; this guarantees that the
reference count is decremented to zero when the function exits. This example shows a basic ref class Uri , and a
function that uses it with stack semantics:



void DoSomething()
{
    Windows::Foundation::Uri msdn("http://www.msdn.microsoft.com");
    Windows::Foundation::Uri^ devCenter = msdn.CombineUri("/windows /");
    // ... 
} // both variables cleaned up here.

Memory management

MyRefClass^ myClass = ref new MyRefClass();

MyRefClass^ myClass = ref new MyRefClass();
MyRefClass^ myClass2 = myClass;

MembersMembers

You allocate a ref class in dynamic memory by using the ref new  keyword.

The handle-to-object operator ^ is known as a "hat" and is fundamentally a C++ smart pointer. The memory it
points to is automatically destroyed when the last hat goes out of scope or is explicitly set to nullptr .

By definition, a ref class has reference semantics. When you assign a ref class variable, it's the handle that's
copied, not the object itself. In the next example, after assignment, both myClass  and myClass2  point to the same
memory location.

When a C++/CX ref class is instantiated, its memory is zero-initialized before its constructor is called; therefore it
is not necessary to zero-initialize individual members, including properties. If the C++/CX class derives from a
Windows Runtime C++ Library (WRL) class, only the C++/CX derived class portion is zero-initialized.

A ref class can contain public , protected , and private  function members; only public  and protected

members are emitted into metadata. Nested classes and ref classes are permitted but cannot be public . Public
fields are not allowed; public data members must be declared as properties. Private or protected internal data
members may be fields. By default in a ref class, the accessibility of all members is private .

A ref struct is the same as a ref class, except that by default its members have public  accessibility.

A public  ref class or ref struct is emitted in metadata, but to be usable from other Universal Windows Platform
apps and Windows Runtime components it must have at least one public or protected constructor. A public ref
class that has a public constructor must also be declared as sealed  to prevent further derivation through the
application binary interface (ABI).

Public members may not be declared as const because the Windows Runtime type system does not support
const. You can use a static property to declare a public data member with a constant value.

When you define a public ref class or struct, the compiler applies the required attributes to the class and stores
that information in the .winmd file of the app. However, when you define a public unsealed ref class, manually
apply the Windows::Foundation::Metadata::WebHostHidden  attribute to ensure that the class is not visible to
Universal Windows Platform apps that are written in JavaScript.

A ref class can have standard C++ types, including const  types, in any private , internal , or 
protected private  members.

Public ref classes that have type parameters are not permitted. User-defined generic ref classes are not permitted.
A private, internal, or protected private ref class may be a template.



Destructors

Inheritance

In C++/CX, calling delete  on a public destructor invokes the destructor regardless of the object's reference
count. This behavior enables you to define a destructor that performs custom cleanup of non-RAII resources in a
deterministic manner. However, even in this case, the object itself is not deleted from memory. The memory for
the object is only freed when the reference count reaches zero.

If a class's destructor is not public, then it is only invoked when the reference count reaches zero. If you call 
delete  on an object that has a private destructor, the compiler raises warning C4493, which says "delete

expression has no effect as the destructor of <type name> does not have 'public' accessibility."

Ref class destructors can only be declared as follows:

public and virtual (allowed on sealed or unsealed types)

protected private and non-virtual (only allowed on unsealed types)

private and non-virtual (allowed only on sealed types)

No other combination of accessibility, virtualness, and sealedness is allowed. If you do not explicitly declare a
destructor, the compiler generates a public virtual destructor if the type's base class or any member has a public
destructor. Otherwise, the compiler generates a protected private non-virtual destructor for unsealed types, or a
private non-virtual destructor for sealed types.

The behavior is undefined if you try to access members of a class that has already had its destructor run; it will
most likely cause the program to crash. Calling delete t  on a type that has no public destructor has no effect.
Calling delete this  on a type or base class that has a known private  or protected private  destructor from
within its type hierarchy also has no effect.

When you declare a public destructor, the compiler generates the code so that the ref class implements 
Platform::IDisposable  and the destructor implements the Dispose  method. Platform::IDisposable  is the

C++/CX projection of Windows::Foundation::IClosable . Never explicitly implement these interfaces.

Platform::Object is the universal base class for all ref classes. All ref classes are implicitly convertible to
Platform::Object and can override Object::ToString. However, the Windows Runtime inheritance model not
intended as a general inheritance model; in C++/CX this means that a user-defined public ref class cannot serve
as a base class.

If you are creating a XAML user control, and the object participates in the dependency property system, then you
can use Windows::UI::Xaml::DependencyObject  as a base class.

After you have defined an unsealed class MyBase  that inherits from DependencyObject , other public or private ref
classes in your component or app may inherit from MyBase . Inheritance in public ref classes should only be done
to support overrides of virtual methods, polymorphic identity, and encapsulation.

A private base ref class is not required to derive from an existing unsealed class. If you require an object hierarchy
to model your own program structure or to enable code reuse, then use private or internal ref classes, or better
yet, standard C++ classes. You can expose the functionality of the private object hierarchy through a public sealed
ref class wrapper.

A ref class that has a public or protected constructor in C++/CX must be declared as sealed. This restriction
means that there is no way for classes that are written in other languages such as C# or Visual Basic to inherit
from types that you declare in a Windows Runtime component that's written in C++/CX.

Here are the basic rules for inheritance in C++/CX:



namespace InheritanceTest2 
{
    namespace WFM = Windows::Foundation::Metadata;

    // Base class. No public constructor.
    [WFM::WebHostHidden]
    public ref class Base : Windows::UI::Xaml::DependencyObject
    {
    internal:
        Base(){}
    protected:
        virtual void DoSomething (){}
        property Windows::UI::Xaml::DependencyProperty^ WidthProperty;
    };

    // Class intended for use by client code across ABI.
    // Declared as sealed with public constructor.
    public ref class MyPublicClass sealed : Base
    {
    public:
        MyPublicClass(){}
        //...
    };
}

See Also

ref class C{};
public ref class D : private C //Error C3628
{};

Ref classes can inherit directly from at most one base ref class, but can implement any number of
interfaces.

If a class has a public constructor, it must be declared as sealed to prevent further derivation.

You can create public unsealed base classes that have internal or protected private constructors, provided
that the base class derives directly or indirectly from an existing unsealed base class such as 
Windows::UI::Xaml::DependencyObject . Inheritance of user-defined ref classes across .winmd files is not

supported; however, a ref class can inherit from an interface that's defined in another .winmd file. You can
create derived classes from a user-defined base ref class only within the same Windows Runtime
component or Universal Windows Platform app.

For ref classes, only public inheritance is supported.

The following example shows how to expose a public ref class that derives from other ref classes in an inheritance
hierarchy.

Type System
Value classes and structs
Visual C++ Language Reference
Namespaces Reference



Value classes and structs (C++/CX)
10/31/2018 • 4 minutes to read • Edit Online

// in mainpage.xaml.h:
    value struct TestStruct
    {
        Platform::String^ str;
        int i;
    };

    value struct TestStruct2
    {
        TestStruct ts;
        Platform::String^ str;
        int i;
    };

// in mainpage.cpp:
    // Initialize a value struct with an int and String
    TestStruct ts = {"I am a TestStruct", 1};

    // Initialize a value struct that contains
    // another value struct, an int and a String
    TestStruct2 ts2 = {{"I am a TestStruct", 1}, "I am a TestStruct2", 2};

    // Initialize value struct members individually.
    TestStruct ts3;
    ts3.i = 108;
    ts3.str = "Another way to init a value struct.";

A value struct or value class is a Windows Runtime-compatible POD ("plain old data structure"). It has a fixed size
and consists of fields only; unlike a ref class, it has no properties.

The following examples show how to declare and initialize value structs.

When a variable of a value type is assigned to another variable, the value is copied, so that each of the two
variables has its own copy of the data. A value struct is a fixed-size structure that contains only public data fields
and is declared by using the value struct  keyword.

A value class is just like a value struct  except that its fields must be explicitly given public accessibility. It's
declared by using the value class  keyword.

A value struct or value class can contain as fields only fundamental numeric types, enum classes, 
Platform::String^ , or Platform::IBox <T>^ where T is a numeric type or enum class or value class or struct. An 
IBox<T>^  field can have a value of nullptr —this is how C++ implements the concept of nullable value types.

A value class or value struct that contains a Platform::String^  or IBox<T>^  type as a member is not memcpy -able.

Because all members of a value class  or value struct  are public and are emitted into metadata, standard C++
types are not allowed as members. This is different from ref classes, which may contain private  or internal

standard C++ types..

The following code fragment declares the Coordinates  and City  types as value structs. Notice that one of the 
City  data members is a GeoCoordinates  type. A value struct  can contain other value structs as members.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/value-classes-and-structs-c-cx.md


public enum class Continent 
{  
    Africa,
    Asia,
    Australia,
    Europe,
    NorthAmerica,
    SouthAmerica,
    Antarctica 
};

value struct GeoCoordinates
{
    double Latitude; //or float64 if you prefer
    double Longitude;
};

value struct City
{
    Platform::String^ Name;
    int Population;
    double AverageTemperature;
    GeoCoordinates Coordinates;
    Continent continent;
};

Parameter passing for value types

void Method1(MyValueType obj);

void Method2(MyValueType& obj);

Method2(ref obj);

Nullable value types

If you have a value type as a function or method parameter, it is normally passed by value. For larger objects, this
can cause a performance problem. In Visual Studio2013 and earlier, value types in C++/CX were always passed
by value. In Visual Studio 2015 and later, you can pass value types by reference or by value.

To declare a parameter that passes a value type by value, use code like the following:

To declare a parameter that passes a value type by reference, use the reference symbol (&), as in the following:

The type inside Method2 is a reference to MyValueType and works the same way as a reference type in standard
C++.

When you call Method1 from another language, like C#, you do not need to use the ref  or out  keyword. When
you call Method2, use the ref  keyword.

You can also use a pointer symbol (*) to pass a value type by reference. The behavior with respect to callers in
other languages is the same (callers in C# use the ref  keyword), but in the method, the type is a pointer to the
value type.

As mentioned earlier, a value class or value struct can have a field of type Platform::IBox<T>^—for example, 
IBox<int>^ . Such a field can have any numeric value that is valid for the int  type, or it can have a value of 



public value struct Student
{
    Platform::String^ Name;
    int EnrollmentYear;
    Platform::IBox<int>^ GraduationYear; // Null if not yet graduated.
};
//To create a Student struct, one must populate the nullable type.
MainPage::MainPage()
{
    InitializeComponent();

    Student A;
    A.Name = "Alice";
    A.EnrollmentYear = 2008;
    A.GraduationYear = ref new Platform::Box<int>(2012);

    Student B;
    B.Name = "Bob";
    B.EnrollmentYear = 2011;
    B.GraduationYear = nullptr;

    IsCurrentlyEnrolled(A);
    IsCurrentlyEnrolled(B);
}
bool MainPage::IsCurrentlyEnrolled(Student s)
{
    if (s.GraduationYear == nullptr)
    {
        return true;
    }
    return false;
}

public value struct MyStruct
{
public:
    int i;
    Platform::String^ s;
};

public ref class MyClass sealed
{
public:
    property Platform::IBox<MyStruct>^ myNullableStruct;
};

See Also

nullptr . You can pass a nullable field as an argument to a method whose parameter is declared as optional, or
anywhere else that a value type is not required to have a value.

The following example shows how to initialize a struct that has a nullable field.

A value struct itself may be made nullable in the same way, as shown here:

Type System (C++/CX)
Visual C++ Language Reference
Namespaces Reference
Ref classes and structs (C++/CX)



Partial classes (C++/CX)
10/31/2018 • 5 minutes to read • Edit Online

Syntax

partial ref class MyClass {/* ... */};

Contents

A partial class is a construct that supports scenarios in which you are modifying one part of a class definition, and
automatic code-generating software—for example, the XAML designer—is also modifying code in the same class.
By using a partial class, you can prevent the designer from overwriting your code. In a Visual Studio project, the 
partial  modifier is applied automatically to the generated file.

To define a partial class, use the partial  keyword immediately before the class-key of what would otherwise be a
normal class definition. A keyword such as partial ref class  is a contextual keyword that contains whitespace
characters. Partial definitions are supported in the following constructs.

class  or struct

ref class  or ref struct

value class  or value struct

enum  or enum class

ref interface , interface class , interface struct , or __interface

union

This example demonstrates a partial ref class :

A partial class definition can contain anything that the full class definition can contain if the partial  keyword had
been omitted. With one exception, this includes any valid construct such as base classes, data members, member
functions, enums, friend declarations, and attributes. And inline definitions of static data members are permitted.

The one exception is class accessibility. For example, the statement 
public partial class MyInvalidClass {/* ... */};  is an error. Any access specifiers that are used in a partial class

definition for MyInvalidClass don't affect the default accessibility in a subsequent partial or full class definition for
MyInvalidClass.

The following code fragment demonstrates accessibility. In the first partial class, Method1  is public because its
accessibility is public. In the second partial class, Method2  is private because the default class accessibility is private.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/partial-classes-c-cx.md


partial ref class N 
{
public:
    int Method1(); // Method1 is public.

};
ref class N 
{   
    void Method2(); // Method2 is private.
};

Declaration

// Declaration #1
partial ref class MyClass {};

// Declaration #2
partial ref class MyClass;

// Declaration #3
MyClass^ pMc; // OK, forward declaration.

// Declaration #4
MyClass mc; // Error, MyClass is not defined.

// Declaration #5
ref class MyClass { };

// Declaration #6
MyClass mc; // OK, now MyClass is defined.

Number and ordering

A partial definition of a class such as MyClass is only a declaration of MyClass. That is, it only introduces the name
MyClass. MyClass can't be used in a way that requires a class definition, for example, knowing the size of MyClass
or using a base or member of MyClass. MyClass is considered to be defined only when the compiler encounters a
non-partial definition of MyClass.

The following example demonstrates the declaration behavior of a partial class. After declaration #1, MyClass can
be used as if it were written as the forward declaration, ref class MyClass; . Declaration #2 is equivalent to
declaration #1.Declaration #3 is valid because it's a forward declaration to a class. But declaration #4 is invalid
because

MyClass is not fully defined.

Declaration #5 does not use the partial  keyword, and the declaration fully defines MyClass. Consequently,
declaration #6 is valid.

There can be zero or more partial class definitions for every full definition of a class.

Every partial class definition of a class must lexically precede the one full definition of that class, but doesn't have to
precede forward declarations of the class. If there's no full definition of the class, then the partial class declarations
can only be forward declarations.

All class-keys such as class  and struct  must match. For example, it's an error to code 
partial class X {}; struct X {}; .

The following example demonstrates number and ordering. The last partial declaration fails because the class is
already defined.



ref class MyClass;  // OK
partial ref class MyClass{};  //OK
partial ref class MyClass{}; // OK
partial ref class MyClass{}; // OK
ref class MyClass{}; // OK
partial ref class MyClass{}; // C3971, partial definition cannot appear after full definition.

Full definition

ref class Base1 { public: property int m_num; int GetNumBase();};
interface class Base2 { int GetNum(); };
interface class Base3{ int GetNum2();};

partial ref class N : public Base1 
{
public:
    /*...*/

};

partial ref class N : public Base2
{
public:
    virtual int GetNum();
    // OK, as long as OtherClass is
    //declared before the full definition of N
    void Method2( OtherClass^ oc );       
};

ref class OtherClass;

ref class N : public Base3
{    
public:
    virtual int GetNum2();
};

ref class OtherClass;
ref class N : public Base1, public Base2, public Base3 
{
public:    
    virtual int GetNum();
    virtual int GetNum2();
private:    
    void Method2(OtherClass^ oc);

};

At the point of the full definition of the class X, the behavior is the same as if the definition of X had declared all
base classes, members, and so on, in the order in which they were encountered and defined in the partial classes.
That is, the contents of the partial classes are treated as though they were written at the point of full definition of
the class, and name lookup and other language rules are applied at the point of the full definition of the class as if
the contents of the partial classes were written in place

The following two code examples have identical meaning and effect. The first example uses a partial class and the
second example doesn't.



Templates

Restrictions

ExamplesExamples

// Address.Details.h
partial ref class Address
{
private:
  Platform::String^ street_;
  Platform::String^ city_;
  Platform::String^ state_;
  Platform::String^ zip_;
  Platform::String^ country_;
  void ValidateAddress(bool normalize = true);
};

// Address.h
#include "Address.details.h"
ref class Address
{
public:
  Address(Platform::String^ street, Platform::String^ city, Platform::String^ state,
    Platform::String^ zip, Platform::String^ country);
  property Platform::String^ Street { Platform::String^ get(); }
  property Platform::String^ City { Platform::String^ get(); }
  property Platform::String^ State { Platform::String^ get(); }
  property Platform::String^ Zip { Platform::String^ get(); }
  property Platform::String^ Country { Platform::String^ get(); }
};

See Also

A partial class can't be a template.

A partial class can't span beyond one translation unit.

The partial  keyword is supported only in combination with the ref class  keyword or the value class

keyword.

The following example defines the Address  class across two code files. The designer modifies Address.details.h

and you modify Address.h . Only the class definition in the first file uses the partial  keyword.

Type System
Visual C++ Language Reference
Namespaces Reference



Properties (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

RemarksRemarks

ExamplesExamples

Windows Runtime types expose public data as properties. Client code accesses the property like a public
datamember. Internally, the property is implemented as a block that contains a get accessor method, a set accessor
method, or both. By using the accessor methods, you can perform additional actions before or after you retrieve
the value, for example, you could fire an event or perform validation checks.

The value of a property is contained in a private variable—known as the backing store—which is the same type as
the property. A property can contain both a set accessor, which assigns a value to the backing store, and a get
accessor that retrieves the value of the backing store. The property is read-only if it provides only a get accessor,
write-only if it provides only a set accessor, and read/write (modifiable) if it provides both accessors.

A trivial property is a read/write property for which the compiler automatically implements the accessors and
backing store. You don't have access to the compiler's implementation. However, you can declare a custom
property and explicitly declare its accessors and backing store. Within an accessor, you can perform any logic that
you require, such as validating the input to the set accessor, calculating a value from the property value, accessing a
database, or firing an event when the property changes.

When a C++/CX ref class is instantiated, its memory is zero-initialized before its constructor is called; therefore all
properties are assigned a default value of zero or nullptr at the point of declaration.

The following code example shows how to declare and access a property. The first property, Name , is known as a
trivial property because the compiler automatically generates a set  accessor, get  accessor, and a backing store.

The second property, Doctor , is a read-only property because it specifies a property block that explicitly declares
only a get  accessor. Because the property block is declared, you must explicitly declare a backing store; that is, the
private String^ variable, doctor_ . Typically, a read-only property just returns the value of the backing store. Only
the class itself can set the value of the backing store, typically in the constructor.

The third property, Quantity , is a read-write property because it declares a property block that declares both a 
set  accessor and a get  accessor.

The set  accessor performs a user-defined validity test on the assigned value. And unlike C#, here the name value
is just the identifier for the parameter in the set  accessor; it's not a keyword. If value isn't greater than zero,
Platform::InvalidArgumentException is thrown. Otherwise, the backing store, quantity_ , is updated with the
assigned value.

Note that a property cannot be initialized in a member list. You can of course initialize backing store variables in a
member list.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/properties-c-cx.md


public ref class Prescription sealed
{
private:
    Platform::String^ m_doctor;
    int quantity;
public:
    Prescription(Platform::String^ name, Platform::String^ d) : m_doctor(d)
    {
        // Trivial properties can't be initialized in member list.
        Name = name;
    }

    // Trivial property
    property Platform::String^ Name;

    // Read-only property
    property Platform::String^ Doctor
    {
        Platform::String^ get() { return m_doctor; }
    }

    // Read-write property
    property int Quantity
    {
        int get() { return quantity; }
        void set(int value)
        {
            if (value <= 0) 
            { 
                throw ref new Platform::InvalidArgumentException(); 
            }
            quantity = value;
        }
    }
};

public ref class PropertyConsumer sealed
{
private:
    void GetPrescriptions()
    {
        Prescription^ p = ref new Prescription("Louis", "Dr. Who");
        p->Quantity = 5;
        Platform::String^ s = p->Doctor;
        int32 i = p->Quantity;

        Prescription p2("JR", "Dr. Dat");
        p2.Quantity = 10;
    }
};

See Also
Type System
Visual C++ Language Reference
Namespaces Reference



Collections (C++/CX)
3/5/2019 • 10 minutes to read • Edit Online

Vector usage

In a C++/CX program, you can make free use of Standard Template Library (STL) containers, or any other user-
defined collection type. However, when you pass collections back and forth across the Windows Runtime
application binary interface (ABI)—for example, to a XAML control or to a JavaScript client—you must use
Windows Runtime collection types.

The Windows Runtime defines the interfaces for collections and related types, and C++/CX provides the concrete
C++ implementations in the collection.h header file. This illustration shows the relationships between the
collection types:

IMPORTANTIMPORTANT

The Platform::Collections::Vector class resembles the std::vector class.

The Platform::Collections::Map Class class resembles the std::map class.

Platform::Collections::VectorView Class andPlatform::Collections::MapView Class are read-only versions of
Vector  and Map .

Iterators are defined in the Platform::Collections Namespace. These iterators satisfy the requirements for
STL iterators and enable the use of std::find, std::count_if, and other STL algorithms on any
Windows::Foundation::Collections interface type or Platform::Collections concrete type. For example, this
means that you can iterate a collection in a Windows Runtime component that's created in C# and apply
an STL algorithm to it.

Proxy iterators VectorIterator  and VectorViewIterator  utilize proxy objects VectoryProxy<T>  and 
ArrowProxy<T>  to enable usage with STL containers. For more information, see "VectorProxy elements" later in

this article.

The C++/CX collection types support the same thread safety guarantees that STL containers support.

Windows::Foundation::Collections::IObservableVector and
Windows::Foundation::Collections::IObservableMap define events that are fired when the collection
changes in various ways. By implementing these interfaces, Platform::Collections::Map and
Platform::Collections::Vector support databinding with XAML collections. For example, if you have a 
Vector  that is data-bound to a Grid , when you add an item to a collection, the change is reflected in the

Grid UI.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/collections-c-cx.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/map-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/uwp/api/windows.foundation.collections
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IObservableVector_T_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IObservableMap_K_V_


IMPORTANTIMPORTANT

When your class has to pass a sequence container to another Windows Runtime component, use
Windows::Foundation::Collections:: IVector<T> as the parameter or return type, and
Platform::Collections::Vector<T> as the concrete implementation. If you attempt to use a Vector  type in a public
return value or parameter, compiler error C3986 will be raised. You can fix the error by changing the Vector  to
an IVector .

If you are passing a sequence within your own program, then use either Vector  or std::vector  because they are more
efficient than IVector . Use IVector  only when you pass the container across the ABI.

The Windows Runtime type system does not support the concept of jagged arrays and therefore you cannot pass an
IVector<Platform::Array<T>> as a return value or method parameter. To pass a jagged array or a sequence of sequences
across the ABI, use IVector<IVector<T>^> .

Vector<T>  provides the methods that are required for adding, removing, and accessing items in the collection,
and it is implicitly convertible to IVector<T> . You can also use STL algorithms on instances of Vector<T> . The
following example demonstrates some basic usage. The begin function and end function here are from the 
Platform::Collections  namespace, not the std  namespace.

https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVector_T_


#include <collection.h>
#include <algorithm>
using namespace Platform;
using namespace Platform::Collections;
using namespace Windows::Foundation::Collections;

void Class1::Test()
{
    Vector<int>^ vec = ref new Vector<int>();
    vec->Append(1);
    vec->Append(2);
    vec->Append(3);
    vec->Append(4);
    vec->Append(5);

    auto it = 
        std::find(begin(vec), end(vec), 3);

    int j = *it; //j = 3
    int k = *(it + 1); //or it[1]

    // Find a specified value.
    unsigned int n;         
    bool found = vec->IndexOf(4, &n); //n = 3

    // Get the value at the specified index.
    n = vec->GetAt(4); // n = 3

    // Insert an item.
    // vec = 0, 1, 2, 3, 4, 5
    vec->InsertAt(0, 0);

    // Modify an item.
    // vec = 0, 1, 2, 12, 4, 5,
    vec->SetAt(3, 12);

    // Remove an item.
    //vec = 1, 2, 12, 4, 5 
    vec->RemoveAt(0);

    // vec = 1, 2, 12, 4
    vec->RemoveAtEnd();

    // Get a read-only view into the vector.
    IVectorView<int>^ view = vec->GetView();
}

If you have existing code that uses std::vector  and you want to reuse it in a Windows Runtime component, just
use one of the Vector  constructors that takes a std::vector  or a pair of iterators to construct a Vector  at the
point where you pass the collection across the ABI. The following example shows how to use the Vector  move
constructor for efficient initialization from a std::vector . After the move operation, the original vec  variable is
no longer valid.



//#include <collection.h>
//#include <vector>
//#include <utility> //for std::move
//using namespace Platform::Collections;
//using namespace Windows::Foundation::Collections;
//using namespace std;
IVector<int>^ Class1::GetInts()
{
    vector<int> vec;
    for(int i = 0; i < 10; i++)
    {
        vec.push_back(i);
    }    
    // Implicit conversion to IVector
    return ref new Vector<int>(std::move(vec));
}

Value types in Vector

VectorProxy elements

If you have a vector of strings that you must pass across the ABI at some future point, you must decide whether
to create the strings initially as std::wstring  types or as Platform::String^  types. If you have to do a lot of
processing on the strings, then use wstring . Otherwise, create the strings as Platform::String^  types and avoid
the cost of converting them later. You must also decide whether to put these strings into a std:vector  or 
Platform::Collections::Vector  internally. As a general practice, use std::vector  and then create a 
Platform::Vector  from it only when you pass the container across the ABI.

Any element to be stored in a Platform::Collections::Vector must support equality comparison, either implicitly or
by using a custom std::equal_to comparator that you provide. All reference types and all scalar types implicitly
support equality comparisons. For non-scalar value types such as Windows::Foundation::DateTime, or for custom
comparisons—for example, objA->UniqueID == objB->UniqueID —you must provide a custom function object.

Platform::Collections::VectorIterator and Platform::Collections::VectorViewIterator enable the use of range for

loops and algorithms like std::sort with an IVector<T> container. But IVector  elements cannot be accessed
through C++ pointer dereference; they can be accessed only through GetAt and SetAt methods. Therefore, these
iterators use the proxy classes Platform::Details::VectorProxy<T>  and Platform::Details::ArrowProxy<T>  to
provide access to the individual elements through *, ->, and [] operators, as required by the Standard Library.
Strictly speaking, given an IVector<Person^> vec , the type of *begin(vec)  is VectorProxy<Person^> . However, the
proxy object is almost always transparent to your code. These proxy objects are not documented because they are
only for internal use by the iterators, but it is useful to know how the mechanism works.

When you use a range for  loop over IVector  containers, use auto&&  to enable the iterator variable to bind
correctly to the VectorProxy  elements. If you use auto  or auto& , compiler warning C4239 is raised and 
VectoryProxy  is mentioned in the warning text.

The following illustration shows a range for  loop over an IVector<Person^> . Notice that execution is stopped on
the breakpoint on line 64. The QuickWatch window shows that the iterator variable p  is in fact a 
VectorProxy<Person^>  that has m_v  and m_i  member variables. However, when you call GetType  on this

variable, it returns the identical type to the Person  instance p2 . The takeaway is that although VectorProxy  and 
ArrowProxy  might appear in QuickWatch, the debugger certain compiler errors, or other places, you typically

don't have to explicitly code for them.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/equal-to-struct
https://docs.microsoft.com/uwp/api/windows.foundation.datetime
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/algorithm-functions
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVector_T_
https://docs.microsoft.com/uwp/api/windows.foundation.collections.ivector-1.getat
https://docs.microsoft.com/uwp/api/windows.foundation.collections.ivector-1.setat


void FindButton(UIElementCollection^ col)
{
    // Use auto&& to avoid warning C4239
    for (auto&& elem : col)
    {
        Button^ temp = dynamic_cast<Button^>(static_cast<Object^>(elem));
        if (nullptr != temp)
        {
            // Use temp...
        }
    }
}

Map usage

//#include <collection.h>
//using namespace Platform::Collections;
//using namespace Windows::Foundation::Collections;
IMapView<String^, int>^ Class1::MapTest()
{
    Map<String^, int>^ m = ref new Map<String^, int >();
    m->Insert("Mike", 0);
    m->Insert("Dave", 1);
    m->Insert("Doug", 2);
    m->Insert("Nikki", 3);
    m->Insert("Kayley", 4);
    m->Insert("Alex", 5);
    m->Insert("Spencer", 6);

   // PC::Map does not support [] operator
   int i = m->Lookup("Doug");
   
   return m->GetView();
   
}

One scenario in which you have to code around the proxy object is when you have to perform a dynamic_cast  on
the elements—for example, when you are looking for XAML objects of a particular type in a UIElement  element
collection. In this case, you must first cast the element to Platform::Object^ and then perform the dynamic cast:

This example shows how to insert items and look them up in a Platform::Collections::Map, and then return the 
Map  as a read-only

[Windows::Foundation::Collections::IMapView]/uwp/api/Windows.Foundation.Collections.IMapView_K_V_) type.

In general, for internal map functionality, prefer the std::map  type for performance reasons. If you have to pass
the container across the ABI, construct a Platform::Collections::Map from the std::map and return the Map  as an
Windows::Foundation::Collections::IMap. If you attempt to use a Map  type in a public return value or parameter,
compiler error C3986 will be raised. You can fix the error by changing the Map  to an IMap . In some cases—for
example, if you are not making a large number of lookups or insertions, and you are passing the collection across
the ABI frequently—it might be less expensive to use Platform::Collections::Map  from the beginning and avoid
the cost of converting the std::map . In any case, avoid lookup and insert operations on an IMap  because these

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/map-class
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IMap_K_V_


Value types in Map

Collection types

begin() and end() functionsbegin() and end() functions

are the least performant of the three types. Convert to IMap  only at the point that you pass the container across
the ABI.

Elements in a Platform::Collections::Map are ordered. Any element to be stored in a Map  must support less-than
comparison with strict weak ordering, either implicitly or by using a custom stl::less comparator that you provide.
Scalar types support the comparison implicitly. For non-scalar value types such as Windows::Foundation::DateTime

, or for custom comparisons—for example, objA->UniqueID < objB->UniqueID —you must provide a custom
comparator.

Collections fall into four categories: modifiable versions and read-only versions of sequence collections and
associative collections. In addition, C++/CX enhances collections by providing three iterator classes that simplify
the accessing of collections.

Elements of a modifiable collection can be changed, but elements of a read-only collection, which is known as a
view, can only be read. Elements of a Platform::Collections::Vector orPlatform::Collections::VectorView collection
can be accessed by using an iterator or the collection's Vector::GetAt and an index. Elements of an associative
collection can be accessed by using the collection's Map::Lookup and a key.

Platform::Collections::Map Class
A modifiable, associative collection. Map elements are key-value pairs. Looking up a key to retrieve its associated
value, and iterating through all key-value pairs, are both supported.

Map  and MapView  are templated on <K, V, C = std::less<K>> ; therefore, you can customize the comparator.
Additionally, Vector  and VectorView  are templated on <T, E = std::equal_to<T>>  so that you can customize the
behavior of IndexOf() . This is important mostly for Vector  and VectorView  of value structs. For example, to
create a Vector<Windows::Foundation::DateTime>, you must provide a custom comparator because DateTime
does not overload the == operator.

Platform::Collections::MapView Class
A read-only version of a Map .

Platform::Collections::Vector Class
A modifiable sequence collection. Vector<T>  supports constant-time random access and amortized-constant-
time Append operations..

Platform::Collections::VectorView Class
A read-only version of a Vector .

Platform::Collections::InputIterator Class
An STL iterator that satisfies the requirements of an STL input iterator.

Platform::Collections::VectorIterator Class
An STL iterator that satisfies the requirements of an STL mutable random-access iterator.

Platform::Collections::VectorViewIterator Class
An STL iterator that satisfies the requirements of an STL const  random-access iterator.

To simplify the use of the STL to process Vector , VectorView , Map , MapView , and arbitrary 
Windows::Foundation::Collections  objects, C++/CX supports overloads of the begin Function and end Function

non-member functions.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/less-struct


ITERATORS FUNCTIONS

Platform::Collections::VectorIterator<T>

(Internally stores Windows::Foundation::Collections::
IVector<T> and int.)

begin/ end(Windows::Foundation::Collections:: IVector<T>)

Platform::Collections::VectorViewIterator<T>

(Internally stores IVectorView<T>^ and int.)

begin/ end (IVectorView<T>^)

Platform::Collections::InputIterator<T>

(Internally stores IIterator<T>^ and T.)

begin/ end (IIterable<T>)

Platform::Collections::InputIterator<IKeyValuePair<K, V>^>

(Internally stores IIterator<T>^ and T.)

begin/ end (IMap<K,V>.

Platform::Collections::InputIterator<IKeyValuePair<K, V>^>

(Internally stores IIterator<T>^ and T.)

begin/ end
([Windows::Foundation::Collections::IMapView]/uwp/api/Wind
ows.Foundation.Collections.IMapView_K_V_))

Collection change eventsCollection change events

See Also

The following table lists the available iterators and functions.

Vector  and Map  support databinding in XAML collections by implementing events that occur when a collection
object is changed or reset, or when any element of a collection is inserted, removed, or changed. You can write
your own types that support databinding, although you cannot inherit from Map  or Vector  because those types
are sealed.

The Windows::Foundation::Collections::VectorChangedEventHandler and
Windows::Foundation::Collections::MapChangedEventHandler delegates specify the signatures for event handlers
for collection change events. The Windows::Foundation::Collections::CollectionChange public enum class, and 
Platform::Collection::Details::MapChangedEventArgs  and 
Platform::Collections::Details::VectorChangedEventArgs  ref classes, store the event arguments to determine what

caused the event. The *EventArgs  types are defined in the Details  namespace because you don't have to
construct or consume them explicitly when you use Map  or Vector .

Type System
Visual C++ Language Reference
Namespaces Reference

https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVector_T_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVector_T_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVectorView_T_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVectorView_T_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IIterator_T_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IIterable_T_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IIterator_T_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IMap_K_V_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IIterator_T_
https://docs.microsoft.com/uwp/api/windows.foundation.collections.vectorchangedeventhandler
https://docs.microsoft.com/uwp/api/windows.foundation.collections.mapchangedeventhandler
https://docs.microsoft.com/uwp/api/windows.foundation.collections.collectionchange


Template ref classes (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

Authoring ref class templates

C++ templates are not published to metadata and therefore cannot have public or protected accessibility in your
program. You can, of course, use standard C++ templates internally in your program. In addition, you can define a
private ref class as a template and you can declare an explicitly specialized template ref class as a private member
in a public ref class.

The following example shows how to declare a private ref class as a template, and also how to declare a standard
C++ template and how declare them both as members in a public ref class. Note that the standard C++ template
can be specialized by a Windows Runtime type, in this case a Platform::String^.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/template-ref-classes-c-cx.md


namespace TemplateDemo
{
    // A private ref class template
    template <typename T>
    ref class MyRefTemplate
    {
    internal:
        MyRefTemplate(T d) : data(d){}
    public:
        T Get(){ return data; }
    private:
        T data;
    };

    // Specialization of ref class template
    template<>
    ref class MyRefTemplate<Platform::String^>
    {
    internal:
        //...
    };

    // A private derived ref class that inherits
    // from a ref class template specialization
    ref class MyDerivedSpecialized sealed : public MyRefTemplate<int>
    {
    internal:
        MyDerivedSpecialized() : MyRefTemplate<int>(5){}
    };

    // A private derived template ref class 
    // that inherits from a ref class template
    template <typename T>
    ref class MyDerived : public MyRefTemplate<T>
    {
    internal:
        MyDerived(){}
    };

    // A standard C++ template
    template <typename T>
    class MyStandardTemplate
    {
    public:
        MyStandardTemplate(){}
        T Get() { return data; }
    private:
        T data;

    };

    // A public ref class with private 
    // members that are specializations of
    // ref class templates and standard C++ templates.
    public ref class MySpecializeBoth sealed
    {
    public:
        MySpecializeBoth(){}
    private:
        MyDerivedSpecialized^ g;
        MyStandardTemplate<Platform::String^>* n;
    };
}

See Also



Type System (C++/CX)
Visual C++ Language Reference
Namespaces Reference



Interfaces (C++/CX)
10/31/2018 • 6 minutes to read • Edit Online

Characteristics

Declaration and usage

namespace InterfacesTest
{
    public enum class PlayState {Playing, Paused, Stopped, Forward, Reverse};

    public ref struct MediaPlayerEventArgs sealed
    {
        property PlayState oldState;
        property PlayState newState;
    };

    public delegate void OnStateChanged(Platform::Object^ sender, MediaPlayerEventArgs^ a);
    public interface class IMediaPlayer // or public interface struct IMediaPlayer 
    {
        event OnStateChanged^ StateChanged;
        property Platform::String^ CurrentTitle;
        property PlayState CurrentState;
        void Play();
        void Pause();
        void Stop();
        void Back(float speed);
        void Forward(float speed);
    };
}

Although a ref class can inherit from at most one concrete base class, it can implement any number of interface
classes. An interface class (or interface struct) itself can inherit (or require) multiple interface classes, can overload
its member functions, and can have type parameters.

An interface has these characteristics:

An interface class (or struct) must be declared within a namespace and may have public or private
accessibility. Only public interfaces are emitted to metadata.

The members of an interface can include properties, methods, and events.

All interface members are implicitly public and virtual.

Fields and static members are not permitted.

Types that are used as properties, method parameters, or return values can only be Windows Runtime
types; this includes the fundamental types and enum class types.

The following example shows how to declare an interface. Notice that an interface can be declared as either a class
or struct type.

To implement an interface, a ref class or ref struct declares and implements virtual methods and properties. The
interface and the implementing ref class must use the same method parameter names, as shown in this example:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/interfaces-c-cx.md


public ref class MyMediaPlayer sealed : public IMediaPlayer
{
public:
    //IMediaPlayer
    virtual event OnStateChanged^ StateChanged;
    virtual property Platform::String^ CurrentTitle;
    virtual property PlayState CurrentState;
    virtual void Play()
    {
        // ...
        auto args = ref new MediaPlayerEventArgs(); 
        args->newState = PlayState::Playing;
        args->oldState = PlayState::Stopped;
        StateChanged(this, args);
    }
    virtual void Pause(){/*...*/}
    virtual void Stop(){/*...*/}
    virtual void Forward(float speed){/*...*/}
    virtual void Back(float speed){/*...*/}
private:
    //...
};

Interface inheritance hierarchies

public interface struct A { void DoSomething(); };
public interface struct B : A { void DoSomethingMore();};

public ref struct C sealed : B
{
    virtual void DoSomething(){}
    virtual void DoSomethingMore(){}
};

Implementing interface properties and events

//Alternate implementation in MediaPlayer class of IMediaPlayer::CurrentTitle
virtual property Platform::String^ CurrentTitle
{
    Platform::String^ get() {return "Now playing: " + _title;}
    void set(Platform::String^ t) {_title = t; }
}

An interface can inherit from one or more interfaces. But unlike a ref class or struct, an interface doesn't declare the
inherited interface members. If interface B inherits from interface A, and ref class C inherits from B, C must
implement both A and B. This is shown in the next example.

As shown in the previous example, you can use trivial virtual properties to implement interface properties. You can
also provide custom getters and setters in the implementing class. Both the getter and the setter must be public in
an interface property.

If an interface declares a get-only or set-only property, then the implementing class should explicitly provide a
getter or setter.



public interface class IMediaPlayer
{
    //...
    property Platform::String^ CurrentTitle
    {
        Platform::String^ get();           
    }
};

public ref class MyMediaPlayer3 sealed : public IMediaPlayer
{
public:
    //...
    virtual property Platform::String^ CurrentTitle
    {
        Platform::String^ get() {return "Now playing: " + _title;}
    }
private:
    Platform::String^ _title;
};

Explicit interface implementation

public interface class IArtist
{     
    Platform::String^ Draw();
};

public interface class ICowboy
{
    Platform::String^ Draw();
};

public ref class MyClass sealed : public IArtist, ICowboy
{
public:     
    MyClass(){}     
    virtual  Platform::String^ ArtistDraw() = IArtist::Draw {return L"Artist";}
    virtual  Platform::String^ CowboyDraw() = ICowboy::Draw {return L"Cowboy";}
};

Generic interfaces

You can also implement custom add and remove methods for events in the implementing class.

When a ref class implements multiple interfaces, and those interfaces have methods whose names and signatures
are identical to the compiler, you can use the following syntax to explicitly indicate the interface method that a class
method is implementing.

In C++/CX, the generic  keyword is used to represent a Windows Runtime parameterized type. A parameterized
type is emitted in metadata and can be consumed by code that's written in any language that supports type
parameters. The Windows Runtime defines some generic interfaces—for example,
Windows::Foundation::Collections::IVector<T>—but it doesn't support the creation of public user-defined generic
interfaces in C++/CX. However, you can create private generic interfaces.

Here's how Windows Runtime types can be used to author a generic interface:

A generic user-defined interface class  in a component is not allowed to be emitted into its Windows
metadata file; therefore, it can't have public accessibility, and client code in other .winmd files can't
implement it. It can be implemented by non-public ref classes in the same component. A public ref class can

Windows::Foundation::Collections::IVector


public ref class MediaFile sealed {};

generic <typename T>
private interface class  IFileCollection
{
    property Windows::Foundation::Collections::IVector<T>^ Files;
    Platform::String^  GetFileInfoAsString(T file);
};

private ref class MediaFileCollection : IFileCollection<MediaFile^>
{
public:
    virtual property Windows::Foundation::Collections::IVector<MediaFile^>^ Files;
    virtual Platform::String^  GetFileInfoAsString(MediaFile^ file){return "";}
};

public interface class ILibraryClient
{
    bool FindTitle(Platform::String^ title);       
    //...
};

public ref class MediaPlayer sealed : public IMediaPlayer, public ILibraryClient
{
public:
    //IMediaPlayer
    virtual event OnStateChanged^ StateChanged;
    virtual property Platform::String^ CurrentTitle;
    virtual property PlayState CurrentState;
    virtual void Play()
    {
        auto args = ref new MediaPlayerEventArgs(); 
        args->newState = PlayState::Playing;
        args->oldState = PlayState::Stopped;
        StateChanged(this, args);
    }
    virtual void Pause(){/*...*/}
    virtual void Stop(){/*...*/}
    virtual void Forward(float speed){/*...*/}
    virtual void Back(float speed){/*...*/}

    //ILibraryClient
    virtual bool FindTitle(Platform::String^ title){/*...*/ return true;}

private:
    MediaFileCollection^ fileCollection;

};

have a generic interface type as a private member.

The following code snippet shows how to declare a generic interface class  and then implement it in a
private ref class and use the ref class as a private member in a public ref class.

A generic interface must follow the standard interface rules that govern accessibility, members, requires
relationships, base classes, and so on.

A generic interface can take one or more generic type parameters that are preceded by typename  or class .
Non-type parameters are not supported.

A type parameter can be any Windows Runtime type. That is, the type parameter can be a reference type, a
value type, an interface class, a delegate, a fundamental type, or a public enum class.

A closed generic interface is an interface that inherits from a generic interface and specifies concrete type
arguments for all type parameters. It can be used anywhere that a non-generic private interface can be used.



See Also

An open generic interface is an interface that has one or more type parameters for which no concrete type is
yet provided. It can be used anywhere that a type can be used, including as a type argument of another
generic interface.

You can parameterize only an entire interface, not individual methods.

Type parameters cannot be constrained.

A closed generic interface has an implicitly generated UUID. A user cannot specify the UUID.

In the interface, any reference to the current interface—in a method parameter, return value, or property—is
assumed to refer to the current instantiation. For example, IMyIntf means IMyIntf<T>.

When the type of a method parameter is a type parameter, the declaration of that parameter or variable
uses the type parameter’s name without any pointer, native reference, or handle declarators. In other words,
you never write "T^".

Templated ref classes must be private. They can implement generic interfaces, and can pass template
parameter T to generic argument T. Each instantiation of a templated ref class is itself a ref class.

Type System
Visual C++ Language Reference
Namespaces Reference



Enums (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

RemarksRemarks

// Define the enum
public enum class TrafficLight : int { Red, Yellow, Green }; 
// ...

// Consume the enum:
TrafficLight myLight = TrafficLight::Red;
if (myLight == TrafficLight::Green) 
{
    //...
} 

ExamplesExamples

C++/CX supports the public enum class  keyword, which is analagous to a standard C++ scoped enum . When
you use an enumerator that's declared by using the public enum class  keyword, you must use the enumeration
identifier to scope each enumerator value.

A public enum class  that doesn't have an access specifier, such as public , is treated as a standard C++ scoped
enum.

A public enum class  or public enum struct  declaration can have an underlying type of any integral type although
the Windows Runtime itself requires that the type be int32, or uint32 for a flags enum. The following syntax
describes the parts of an public enum class  or public enum struct .

This example shows how to define a public enum class:

This next example shows how to consume it:

The next examples show how to declare an enum,

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/enums-c-cx.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/enumerations-cpp


// Underlying type is int32
public enum class Enum1
{
    Zero,
    One,
    Two,
    Three
};

public enum class Enum2
{
    None = 0,
    First,      // First == 1
    Some = 5,
    Many = 10
};

// Underlying type is unsigned int
// for Flags. Must be explicitly specified
using namespace Platform::Metadata;
[Flags]
public enum class BitField : unsigned int 
{
    Mask0 = 0x0,
    Mask2 = 0x2,
    Mask4 = 0x4,
    Mask8 = 0x8
};

Enum1 e1 = Enum1::One;
int v1 = static_cast<int>(e1);
int v2 = static_cast<int>(Enum2::First);

 if (e1 == Enum1::One) { /* ... */ }
 //if (e1 == Enum2::First) { /* ... */ } // yields compile error C3063

 static_assert(sizeof(Enum1) == 4, "sizeof(Enum1) should be 4");

 BitField x = BitField::Mask0 | BitField::Mask2 | BitField::Mask4;
 if ((x & BitField::Mask2) == BitField::Mask2) { /*   */ } 

See Also

The next example shows how to cast to numeric equivalents, and perform comparisons. Notice that the use of
enumerator One  is scoped by the Enum1  enumeration identifier, and enumerator First  is scoped by Enum2 .

Type System
Visual C++ Language Reference
Namespaces Reference



Delegates (C++/CX)
3/5/2019 • 9 minutes to read • Edit Online

public delegate void PrimeFoundHandler(int result);

event PrimeFoundHandler^ primeFoundEvent;

Consuming delegates

TIPTIP

[Windows::Foundation::Metadata::WebHostHiddenAttribute]
ref class App sealed
{        
    void InitializeSensor();
    void SensorReadingEventHandler(Windows::Devices::Sensors::LightSensor^ sender, 
        Windows::Devices::Sensors::LightSensorReadingChangedEventArgs^ args);

    float m_oldReading;
    Windows::Devices::Sensors::LightSensor^ m_sensor;

};

The delegate  keyword is used to declare a reference type that is the Windows Runtime equivalent of a function
object in standard C++. A delegate declaration similar to a function signature; it specifies the return type and
parameter types that its wrapped function must have. This is a user-defined delegate declaration:

Delegates are most commonly used in conjunction with events. An event has a delegate type, in much the same
way that a class can have an interface type. The delegate represents a contract that event handlers much fulfill.
Here’s an event class member whose type is the previously-defined delegate:

When declaring delegates that will be exposed to clients across the Windows Runtime application binary interface,
use Windows::Foundation::TypedEventHandler<TSender, TResult>. This delegate has predefined proxy and stub
binaries that enable it to be consumed by Javascript clients.

When you create a Universal Windows Platform app, you often work with a delegate as the type of an event that a
Windows Runtime class exposes. To subscribe to an event, create an instance of its delegate type by specifying a
function—or lambda—that matches the delegate signature. Then use the +=  operator to pass the delegate object
to the event member on the class. This is known as subscribing to the event. When the class instance "fires" the
event, your function is called, along with any other handlers that were added by your object or other objects.

Visual Studio does a lot of work for you when you create an event handler. For example, if you specify an event handler in
XAML markup, a tool tip appears. If you choose the tool tip, Visual Studio automatically creates the event handler method
and associates it with the event on the publishing class.

The following example shows the basic pattern. Windows::Foundation::TypedEventHandler  is the delegate type. The
handler function is created by using a named function.

In app.h:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/delegates-c-cx.md
https://docs.microsoft.com/uwp/api/windows.foundation.typedeventhandler


void App::InitializeSensor()
{
    // using namespace Windows::Devices::Sensors;
    // using namespace Windows::Foundation;
    m_sensor = LightSensor::GetDefault();

    // Create the event handler delegate and add 
    // it  to the object's  event handler list.
    m_sensor->ReadingChanged += ref new  TypedEventHandler<LightSensor^, 
        LightSensorReadingChangedEventArgs^>( this, 
        &App::SensorReadingEventHandler);

}

void App::SensorReadingEventHandler(LightSensor^ sender, 
                                    LightSensorReadingChangedEventArgs^ args)
{    
    LightSensorReading^ reading = args->Reading;
    if (reading->IlluminanceInLux > m_oldReading)
    {/*...*/}

}

WARNINGWARNING

TIPTIP

Creating custom delegates

In app.cpp:

In general, for an event handler, it's better to use a named function instead of a lambda unless you take great care to avoid
circular references. A named function captures the "this" pointer by weak reference, but a lambda captures it by strong
reference and creates a circular reference. For more information, see Weak references and breaking cycles.

By convention, event-handler delegate names that are defined by the Windows Runtime have the form
*EventHandler—for example, RoutedEventHandler, SizeChangedEventHandler, or SuspendingEventHandler. Also
by convention, event handler delegates have two parameters and return void. In a delegate that doesn't have type
parameters, the first parameter is of type Platform::Object^; it holds a reference to the sender, which is the object
that fired the event. You have to cast back to the original type before you use the argument in the event handler
method. In an event handler delegate that has type parameters, the first type parameter specifies the type of the
sender, and the second parameter is a handle to a ref class that holds information about the event. By convention,
that class is named *EventArgs. For example, a RoutedEventHandler delegate has a second parameter of type
RoutedEventArgs^, and DragEventHander has a second parameter of type DragEventArgs^.

By convention, delegates that wrap the code that executes when an asynchronous operation completes are named
*CompletedHandler. These delegates are defined as properties on the class, not as events. Therefore, you don't
use the +=  operator to subscribe to them; you just assign a delegate object to the property.

C++ IntelliSense doesn't show the full delegate signature; therefore, it doesn't help you determine the specific type of the
EventArgs parameter. To find the type, you can go to the Object Browser and look at the Invoke  method for the
delegate.

You can define your own delegates, to define event handlers or to enable consumers to pass in custom
functionality to your Windows Runtime component. Like any other Windows Runtime type, a public delegate
cannot be declared as generic.



DeclarationDeclaration

public delegate Platform::String^ CustomStringDelegate(ContactInfo^ ci);

public ref class ContactInfo sealed
{        
public:
    ContactInfo(){}
    ContactInfo(Platform::String^ saluation, Platform::String^ last, Platform::String^ first, 
Platform::String^ address1);
    property Platform::String^ Salutation;
    property Platform::String^ LastName;
    property Platform::String^ FirstName;
    property Platform::String^ Address1;
    //...other properties

    Platform::String^ ToCustomString(CustomStringDelegate^ func)
    {
        return func(this);
    }       
};

NOTENOTE

public delegate void RoutedEventHandler(
    Platform::Object^ sender, 
    Windows::UI::Xaml::RoutedEventArgs^ e
    );

CustomStringDelegate^ func = ref new CustomStringDelegate([] (ContactInfo^ c)
{
    return c->FirstName + " " + c->LastName;
});

The declaration of a delegate resembles a function declaration except that the delegate is a type. Typically, you
declare a delegate at namespace scope, although you can also nest a delegate declaration in a class declaration.
The following delegate encapsulates any function that takes a ContactInfo^  as input and returns a 
Platform::String^ .

After you declare a delegate type, you can declare class members of that type or methods that take objects of that
type as parameters. A method or function can also return a delegate type. In the following example, the 
ToCustomString  method takes the delegate as an input parameter. The method enables client code to provide a

custom function that constructs a string from some or all of the public properties of a ContactInfo  object.

You use the "^" symbol when you refer to the delegate type, just as you do with any Windows Runtime reference type.

An event declaration always has a delegate type. This example shows a typical delegate type signature in the
Windows Runtime:

The Click  event in the Windows:: UI::Xaml::Controls::Primitives::ButtonBase  class is of type RoutedEventHandler .
For more information, see Events.

Client code first constructs the delegate instance by using ref new  and providing a lambda that's compatible with
the delegate signature and defines the custom behavior.

It then calls the member function and passes the delegate. Assume that ci  is a ContactInfo^  instance and 



textBlock->Text = ci->ToCustomString( func );

//Client app
obj = ref new DelegatesEvents::Class1();

CustomStringDelegate^ myDel = ref new CustomStringDelegate([] (ContactInfo^ c)
{
    return c->Salutation + " " + c->LastName;
});
IVector<String^>^ mycontacts = obj->GetCustomContactStrings(myDel);
std::for_each(begin(mycontacts), end(mycontacts), [this] (String^ s)
{
    this->ContactString->Text += s + " ";
});

// Public method in WinRT component.
IVector<String^>^ Class1::GetCustomContactStrings(CustomStringDelegate^ del)
{
    namespace WFC = Windows::Foundation::Collections;

    Vector<String^>^ contacts = ref new Vector<String^>();
    VectorIterator<ContactInfo^> i = WFC::begin(m_contacts);
    std::for_each( i ,WFC::end(m_contacts), [contacts, del](ContactInfo^ ci)
    {
        contacts->Append(del(ci));
    });

    return contacts;
}

ConstructionConstruction

textBlock  is a XAML TextBlock^ .

In the next example, a client app passes a custom delegate to a public method in a Windows Runtime component
that executes the delegate against each item in a Vector :

You can construct a delegate from any of these objects:

lambda

static function

pointer-to-member

std::function

The following example shows how to construct a delegate from each of these objects. You consume the delegate
in exactly the same way regardless of the type of object that's used to construct it.



ContactInfo^ ci = ref new ContactInfo("Mr.", "Michael", "Jurek", "1234 Compiler Way");

// Lambda. (Avoid capturing "this" or class members.)
CustomStringDelegate^ func = ref new CustomStringDelegate([] (ContactInfo^ c)
{
    return c->Salutation + " " + c->FirstName + " " + c->LastName;
});

// Static function.
// static Platform::String^ GetFirstAndLast(ContactInfo^ info);   
CustomStringDelegate^ func2 = ref new CustomStringDelegate(Class1::GetFirstAndLast);

// Pointer to member.
// Platform::String^ GetSalutationAndLast(ContactInfo^ info)
CustomStringDelegate^ func3 = ref new CustomStringDelegate(this, 
&DelegatesEvents::Class1::GetSalutationAndLast);

// std::function
std::function<String^ (ContactInfo^)> f = Class1::GetFirstAndLast;
CustomStringDelegate^ func4 = ref new CustomStringDelegate(f);

// Consume the delegates. Output depends on the 
// implementation of the functions you provide.
textBlock->Text  = func(ci); 
textBlock2->Text = func2(ci);
textBlock3->Text = func3(ci);
textBlock4->Text = func4(ci);

WARNINGWARNING

Generic delegatesGeneric delegates

generic <typename T>
delegate void  MyEventHandler(T p1, T p2);

MyEventHandler<float>^ myDelegate;

Delegates and threads

If you use a lambda that captures the "this" pointer, be sure to use the -=  operator to explicitly un-register from the event
before you exit the lambda. For more information, see Events.

Generic delegates in C++/CX have restrictions similar to declarations of generic classes. They cannot be declared
as public. You can declare a private or internal generic delegate and consume it from C++, but .NET or JavaScript
clients can’t consume it because it is not emitted into the .winmd metadata. This example declares a generic
delegate that can only be consumed by C++:

The next example declares a specialized instance of the delegate inside a class definition:

A delegate, just like a function object, contains code that will execute at some time in the future. If the code that
creates and passes the delegate, and the function that accepts and executes the delegate, are running on the same
thread, then things are relatively simple. If that thread is the UI thread, then the delegate can directly manipulate
user interface objects such as XAML controls.



See Also

If a client app loads a Windows Runtime component that runs in a threaded apartment, and provides a delegate to
that component, then by default the delegate is invoked directly on the STA thread. Most Windows Runtime
components can run in either STA or MTA.

If the code that executes the delegate is running on a different thread—for example, within the context of a
concurrency::task object—then you are responsible for synchronizing access to shared data. For example, if your
delegate contains a reference to a Vector, and a XAML control has a reference to that same Vector, you must take
steps to avoid deadlocks or race conditions that might occur when both the delegate and XAML control attempt to
access the Vector at the same time. You must also take care that the delegate doesn't attempt to capture by
reference local variables that might go out of scope before the delegate is invoked.

If you want your created delegate to be called back on the same thread that it was created on—for example, if you
pass it to a component that runs in an MTA apartment—and you want it to be invoked on the same thread as the
creator, then use the delegate constructor overload that takes a second CallbackContext  parameter. Only use this
overload on delegates that have a registered proxy/stub; not all of the delegates that are defined in
Windows.winmd are registered.

If you are familiar with event handlers in .NET, you know that the recommended practice is to make a local copy of
an event before you fire it. This avoids race conditions in which an event handler might be removed just before the
event is invoked. It isn’t necessary to do this in C++/CX because when event handlers are added or removed a
new handler list is created. Because a C++ object increments the reference count on the handler list before
invoking an event, it is guaranteed that all handlers will be valid. However, this also means that if you remove an
event handler on the consuming thread, that handler might still get invoked if the publishing object is still
operating on its copy of the list, which is now out-of-date. The publishing object will not get the updated list until
the next time it fires the event.

Type System
Visual C++ Language Reference
Namespaces Reference



Exceptions (C++/CX)
10/31/2018 • 5 minutes to read • Edit Online

Exceptions

Standard exceptions

NAME UNDERLYING HRESULT DESCRIPTION

COMException user-defined hresult Thrown when an unrecognized
HRESULT is returned from a COM
method call.

AccessDeniedException E_ACCESSDENIED Thrown when access is denied to a
resource or feature.

Error handling in C++/CX is based on exceptions. At the most fundamental level, Windows Runtime components
report errors as HRESULT values. In C++/CX, these values are converted to strongly typed exceptions that contain
an HRESULT value and a string description that you can access programmatically. Exceptions are implemented as
a ref class  that derives from Platform::Exception . The Platform  namespace defines distinct exception classes
for the most common HRESULT values; all other values are reported through the Platform::COMException  class.
All exception classes have an Exception::HResult field that you can use to retrieve the original HRESULT. You can
also examine call-stack information for user code in the debugger that can help pinpoint the original source of the
exception, even if it originated in code that was written in a language other than C++.

In your C++ program, you can throw and catch an exception that comes from a Windows Runtime operation, an
exception that's derived from std::exception , or a user-defined type. You have to throw a Windows Runtime
exception only when it will cross the application binary interface (ABI) boundary, for example, when the code that
catches your exception is written in JavaScript. When a non-Windows Runtime C++ exception reaches the ABI
boundary, the exception is translated into a Platform::FailureException  exception, which represents an E_FAIL
HRESULT. For more information about the ABI, see Creating Windows Runtime Components in C++.

You can declare a Platform::Exception by using one of two constructors that take either an HRESULT parameter, or
an HRESULT parameter and a Platform::String^ parameter that can be passed across the ABI to any Windows
Runtime app that handles it. Or you can declare an exception by using one of two Exception::CreateException
method overloads that take either an HRESULT parameter, or an HRESULT parameter and a Platform::String^
parameter.

C++/CX supports a set of standard exceptions that represent typical HRESULT errors. Each standard exception
derives from Platform::COMException, which in turn derives from Platform::Exception . When you throw an
exception across the ABI boundary, you must throw one of the standard exceptions.

You can't derive your own exception type from Platform::Exception . To throw a custom exception, use a user-
defined HRESULT to construct a COMException  object.

The following table lists the standard exceptions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/exceptions-c-cx.md
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp


ChangedStateException E_CHANGED_STATE Thrown when methods of a collection
iterator or a collection view are called
after the parent collection has changed,
thereby invalidating the results of the
method.

ClassNotRegisteredException REGDB_E_CLASSNOTREG Thrown when a COM class has not
been registered.

DisconnectedException RPC_E_DISCONNECTED Thrown when an object is disconnected
from its clients.

FailureException E_FAIL Thrown when an operation fails.

InvalidArgumentException E_INVALIDARG Thrown when one of the arguments
that are provided to a method is not
valid.

InvalidCastException E_NOINTERFACE Thrown when a type can't be cast to
another type.

NotImplementedException E_NOTIMPL Thrown if an interface method hasn't
been implemented on a class.

NullReferenceException E_POINTER Thrown when there is an attempt to
de-reference a null object reference.

ObjectDisposedException RO_E_CLOSED Thrown when an operation is
performed on a disposed object.

OperationCanceledException E_ABORT Thrown when an operation is aborted.

OutOfBoundsException E_BOUNDS Thrown when an operation attempts to
access data outside the valid range.

OutOfMemoryException E_OUTOFMEMORY Thrown when there's insufficient
memory to complete the operation.

WrongThreadException RPC_E_WRONG_THREAD Thrown when a thread calls via an
interface pointer which is for a proxy
object that does not belong to the
thread's apartment.

NAME UNDERLYING HRESULT DESCRIPTION

HResult and Message properties

ExamplesExamples

All exceptions have an HResult property and a Message property. The Exception::HResult property gets the
exception's underlying numeric HRESULT value. The Exception::Message property gets the system-supplied string
that describes the exception. In Windows 8, the message is available only in the debugger and is read-only. This
means that you cannot change it when you rethrow the exception. In Windows 8.1, you can access the message
string programmatically and provide a new message if you rethrow the exception. Better callstack information is
also available in the debugger, including callstacks for asynchronous method calls.

This example shows how to throw a Windows Runtime exception for synchronous operations:



String^ Class1::MyMethod(String^ argument)
{
    
    if (argument->Length() == 0) 
    { 
        auto e = ref new Exception(-1, "I'm Zork bringing you this message from across the ABI.");
        //throw ref new InvalidArgumentException();
        throw e;
    }
    
    return MyMethodInternal(argument);
}

void Class2::ProcessString(String^ input)
{
    String^ result = nullptr;    
    auto obj = ref new Class1();

    try 
    {
        result = obj->MyMethod(input);
    }

    catch (/*InvalidArgument*/Exception^ e)
    {
        // Handle the exception in a way that's appropriate 
        // for your particular scenario. Assume
        // here that this string enables graceful
        // recover-and-continue. Why not?
        result = ref new String(L"forty two");
        
        // You can use Exception data for logging purposes.
        Windows::Globalization::Calendar calendar;
        LogMyErrors(calendar.GetDateTime(), e->HResult, e->Message);
    }

    // Execution continues here in both cases.
    //#include <string>
    std::wstring ws(result->Data());
    //...
}

UnhandledErrorDetected event

The next example shows how to catch the exception.

To catch exceptions that are thrown during an asynchronous operation, use the task class and add an error-
handling continuation. The error-handling continuation marshals exceptions that are thrown on other threads back
to the calling thread so that you can handle all potential exceptions at just one point in your code. For more
information, see Asynchronous Programming in C++.

In Windows 8.1 you can subscribe to the
Windows::ApplicationModel::Core::CoreApplication::UnhandledErrorDetected static event, which provides access
to unhandled errors that are about to bring down the process. Regardless of where the error originated, it reaches
this handler as a Windows::ApplicationModel::Core::UnhandledError object that's passed in with the event args.
When you call Propagate  on the object, it creates and throws a Platform::*Exception  of the type that corresponds
to the error code. In the catch blocks, you can save user state if necessary and then either allow the process to
terminate by calling throw , or do something to get the program back into a known state. The following example
shows the basic pattern:

https://docs.microsoft.com/windows/uwp/threading-async/asynchronous-programming-in-cpp-universal-windows-platform-apps
https://docs.microsoft.com/uwp/api/windows.applicationmodel.core.icoreapplicationunhandlederror#Windows_ApplicationModel_Core_ICoreApplicationUnhandledError_UnhandledErrorDetected
https://docs.microsoft.com/uwp/api/windows.applicationmodel.core.unhandlederror


void OnUnhandledException(Platform::Object^ sender, 
Windows::ApplicationModel::Core::UnhandledErrorDetectedEventArgs^ e);

// Subscribe to the event, for example in the app class constructor:
Windows::ApplicationModel::Core::CoreApplication::UnhandledErrorDetected += ref new 
EventHandler<UnhandledErrorDetectedEventArgs^>(this, &App::OnUnhandledException);

// Event handler implementation:
void App::OnUnhandledException(Platform::Object^ sender, 
Windows::ApplicationModel::Core::UnhandledErrorDetectedEventArgs^ e)
{
    auto err = e->UnhandledError;

    if (!err->Handled) //Propagate has not been called on it yet.
{
    try
    {
        err->Propagate();
    }
    // Catch any specific exception types if you know how to handle them
    catch (AccessDeniedException^ ex)
    {
        // TODO: Log error and either take action to recover
        // or else re-throw exception to continue fail-fast
    }
}

RemarksRemarks

See also

In app.xaml.h:

In app.xaml.cpp:

C++/CX does not use the finally  clause.

Visual C++ Language Reference
Namespaces Reference



Events (C++/CX)
10/31/2018 • 6 minutes to read • Edit Online

Consuming events in Windows components

Creating custom events
DeclarationDeclaration

A Windows Runtime type can declare (that is, publish) events, and client code in the same component or in other
components can subscribe to those events by associating methods called event handlers with the event. Multiple
event handlers can be associated with a single event. When the publishing object raises the event, it causes all
event handlers to be invoked. In this way, a subscribing class can perform whatever custom action is appropriate
when the publisher raises the event. An event has a delegate type that specifies the signature that all event
handlers must have in order to subscribe to the event.

Many components in the Windows Runtime expose events. For example, a LightSensor object fires a
ReadingChanged event when the sensor reports a new luminescence value. When you use a LightSensor object in
your program, you can define a method that will be called when the ReadingChanged event is fired. The method
can do whatever you want it to do; the only requirement is that its signature must match the signature of the
delegate that is For more information about how to create an delegate event handler and subscribe to an event,
see Delegates.

You can declare an event in a ref class or an interface, and it can have public, internal (public/private), public
protected, protected, private protected, or private accessibility. When you declare an event, internally the compiler
creates an object that exposes two accessor methods: add and remove. When subscribing objects register event
handlers, the event object stores them in a collection. When an event is fired, the event object invokes all the
handlers in its list in turn. A trivial event—like the one in the following example—has an implicit backing store as
well as implicit add  and remove  accessor methods. You can also specify your own accessors, in the same way that
you can specify custom get  and set  accessors on a property. The implementing class cannot manually cycle
through the event subscriber list in a trivial event.

The following example shows how to declare and fire an event. Notice that the event has a delegate type and is
declared by using the "^" symbol.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/events-c-cx.md


namespace EventTest
{
    ref class Class1;
    public delegate void SomethingHappenedEventHandler(Class1^ sender, Platform::String^ s);

    public ref class Class1 sealed
    {
    public:
        Class1(){}
        event SomethingHappenedEventHandler^ SomethingHappened;
        void DoSomething()
        {
            //Do something....

            // ...then fire the event:
            SomethingHappened(this, L"Something happened.");
        }
    };
}

UsageUsage

namespace EventClient
{
    using namespace EventTest;
    namespace PC = Platform::Collections; //#include <collection.h>

    public ref class Subscriber sealed
    {
    public:
        Subscriber() : eventCount(0) 
        {
            // Instantiate the class that publishes the event.
            publisher= ref new EventTest::Class1();

            // Subscribe to the event and provide a handler function.
            publisher->SomethingHappened += 
                ref new EventTest::SomethingHappenedEventHandler(
                this,
                &Subscriber::MyEventHandler);
            eventLog = ref new PC::Map<int, Platform::String^>();
        }
        void SomeMethod()
        {            
            publisher->DoSomething();
        }

        void MyEventHandler(EventTest::Class1^ mc, Platform::String^ msg)
        {
            // Our custom action: log the event.
            eventLog->Insert(eventCount, msg);
            eventCount++;
        }

    private:
        PC::Map<int, Platform::String^>^ eventLog;
        int eventCount;
        EventTest::Class1^ publisher;
    };
}

The following example shows how a subscribing class uses the +=  operator to subscribe to the event, and provide
an event handler to be invoked when the event is fired. Notice that the function that's provided matches the
signature of the delegate that's defined on the publisher side in the EventTest  namespace.



WARNINGWARNING

Custom add and remove methodsCustom add and remove methods

In general, it's better to use a named function, rather than a lambda, for an event handler unless you take great care to
avoid circular references. A named function captures the "this" pointer by weak reference, whereas a lambda captures it by
strong reference and creates a circular reference. For more information, see Weak references and breaking cycles (C++/CX).

Internally, an event has an add method, a remove method, and a raise method. When client code subscribes to an
event, the add method is called and the delegate that's passed in is added to the event's invocation list. The
publishing class invokes the event, it causes the raise() method to be called, and each delegate in the list is invoked
in turn. A subscriber can remove itself from the delegate list, which causes the event's remove method to be called.
The compiler provides default versions of these methods if you don't define them in your code; these are known
as trivial events. In many cases, a trivial event is all that's required.

You can specify custom add, remove, and raise methods for an event if you have to perform custom logic in
response to the addition or removal of subscribers. For example, if you have an expensive object that is only
required for event reporting, you can lazily defer the creation of the object until a client actually subscribes to the
event.

The next example shows how to add custom add, remove, and raise methods to an event:



namespace EventTest2
{
    ref class Class1;
    public delegate void SomethingHappenedEventHandler(Class1^ sender, Platform::String^ msg);

    public ref class Class1 sealed
    {
    public:
        Class1(){}
        event SomethingHappenedEventHandler^ SomethingHappened;
        void DoSomething(){/*...*/}
        void MethodThatFires()
        {
            // Fire before doing something...
            BeforeSomethingHappens(this, "Something's going to happen.");
            
            DoSomething();

            // ...then fire after doing something...
            SomethingHappened(this, L"Something happened.");
        }

        event SomethingHappenedEventHandler^ _InternalHandler;

        event SomethingHappenedEventHandler^ BeforeSomethingHappens
        {
            Windows::Foundation::EventRegistrationToken add(SomethingHappenedEventHandler^ handler)
            {
                // Add custom logic here:
                //....
                return _InternalHandler += handler;
            }

            void remove(Windows::Foundation::EventRegistrationToken token)
            {
                // Add custom logic here:
                //....
                _InternalHandler -= token;
            }

            void raise(Class1^ sender, Platform::String^ str)
            {

                // Add custom logic here:
                //....
                return _InternalHandler(sender, str);
            }
        }
    };
}

Removing an event handler from the subscriber side
In some rare cases, you may want to remove an event handler for an event that you previously subscribed to. For
example, you may want to replace it with another event handler or you may want to delete some resources that
are held by it. To remove a handler, you must store the EventRegistrationToken that's returned from the +=

operation. You can then use the -=  operator on the token to remove an event handler. However, the original
handler could still be invoked even after it's removed. Therefore, if you intend to remove an event handler, create a
member flag and set it if the event is removed, and then in the event handler, check the flag and return
immediately if it's set. The next example shows the basic pattern.



namespace EventClient2
{
    using namespace EventTest2;

    ref class Subscriber2 sealed
    {
    private:
        bool handlerIsActive; 
        Platform::String^ lastMessage;

        void TestMethod()
        {
            Class1^ c1 = ref new Class1();
            handlerIsActive = true;
            Windows::Foundation::EventRegistrationToken cookie =
                c1->SomethingHappened += 
                ref new EventTest2::SomethingHappenedEventHandler(this, &Subscriber2::MyEventHandler);
            c1->DoSomething();

            // Do some other work�..then remove the event handler and set the flag.
            handlerIsActive = false;
            c1->SomethingHappened -= cookie;           
        }

        void MyEventHandler(Class1^ mc, Platform::String^ msg)
        {
            if (!handlerIsActive)
                return;
            lastMessage = msg;
        }
    };
}

RemarksRemarks

See Also

Multiple handlers may be associated with the same event. The event source sequentially calls into all event
handlers from the same thread. If an event receiver blocks within the event handler method, it blocks the event
source from invoking other event handlers for this event.

The order in which the event source invokes event handlers on event receivers is not guaranteed and may differ
from call to call.

Type System
Delegates
Visual C++ Language Reference
Namespaces Reference



Casting (C++/CX)
10/31/2018 • 5 minutes to read • Edit Online

static_cast

    interface class A{};
    public ref class Class1 sealed : A { };
    // ...
    A^ obj = ref new Class1(); // Class1 is an A
    // You know obj is a Class1. The compiler verifies that this is possible, and in C++/CX a run-time check 
is also performed.
    Class1^ c = static_cast<Class1^>(obj);

safe_cast

Four different cast operators apply to Windows Runtime types: static_cast Operator, dynamic_cast Operator,
safe_cast Operator, and reinterpret_cast Operator. safe_cast and static_cast throw an exception when the
conversion can't be performed; static_cast Operator also performs compile-time type checking. dynamic_cast
returns nullptr if it fails to convert the type. Although reinterpret_cast returns a non-null value, it might be
invalid. For this reason, we recommend that you not use reinterpret_cast unless you know that the cast will
succeed. In addition, we recommend that you not use C-style casts in your C++/CX code because they are
identical to reinterpret_cast.

The compiler and runtime also perform implicit casts—for example, in boxing operations when a value type or
built-in type are passed as arguments to a method whose parameter type is Object^ . In theory, an implicit cast
should never cause an exception at run time; if the compiler can't perform an implicit conversion, it raises an error
at compile time.

Windows Runtime is an abstraction over COM, which uses HRESULT error codes instead of exceptions. In general,
the Platform::InvalidCastException indicates a low-level COM error of E_NOINTERFACE.

A static_cast is checked at compile time to determine whether there is an inheritance relationship between the
two types. The cast causes a compiler error if the types are not related.

A static_cast on a ref class also causes a run-time check to be performed. A static_cast on a ref class can pass
compile time verification but still fail at run time; in this case a Platform::InvalidCastException  is thrown. In
general, you don't have to handle these exceptions because almost always they indicate programming errors that
you can eliminate during development and testing.

Use static_cast if the code explicitly declares a relationship between the two types, and you therefore are sure that
the cast should work.

The safe_cast operator is part of Windows Runtime. It performs a run-time type check and throws a 
Platform::InvalidCastException  if the conversion fails. Use safe_cast when a run-time failure indicates an

exceptional condition. The primary purpose of safe_cast is to help identify programming errors during the
development and testing phases at the point where they occur. You don't have to handle the exception because the
unhandled exception itself identifies the point of failure.

Use safe_cast if the code does not declare the relationship but you are sure that the cast should work.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/casting-c-cx.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/static-cast-operator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/dynamic-cast-operator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/reinterpret-cast-operator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/static-cast-operator


    // A and B are not related
    interface class A{};
    interface class B{};
    public ref class Class1 sealed : A, B { };
    // ...
    A^ obj = ref new Class1();

    // You know that obj’s backing type implements A and B, but
    // the compiler can’t tell this by comparing A and B. The run-time type check succeeds.
    B^ obj2 = safe_cast<B^>(obj);

dynamic_cast

void App::OnLaunched(Windows::ApplicationModel::Activation::LaunchActivatedEventArgs^ args)
{
    auto rootFrame = dynamic_cast<Frame^>(Window::Current->Content);

    // Do not repeat app initialization when the window already has content,
    // just ensure that the window is active
    if (rootFrame == nullptr)
    {
        // Create a Frame to act as the navigation context and associate it with
        // a SuspensionManager key
        rootFrame = ref new Frame();
        // ...
    }
}

dynamic_cast and tracking references (%)

reinterpret_cast

Use dynamic_cast when you cast an object (more specifically, a hat ̂ ) to a more derived type, you expect either
that the target object might sometimes be nullptr or that the cast might fail, and you want to handle that condition
as a regular code path instead of an exception. For example, in the Blank App (Universal Windows) project
template, the OnLaunched  method in app.xamp.cpp uses dynamic_cast to test whether the app window has
content. It's not an error if it doesn’t have content; it is an expected condition. Windows::Current::Content  is a 
Windows::UI::XAML::UIElement  and the conversion is to a Windows::UI.XAML::Controls::Frame , which is a more

derived type in the inheritance hierarchy.

Another use of dynamic_cast is to probe an Object^  to determine whether it contains a boxed value type. In this
case, you attempt a dynamic_cast<Platform::Box>  or a dynamic_cast<Platform::IBox> .

You can also apply a dynamic_cast to a tracking reference, but in this case the cast behaves like safe_cast. It
throws Platform::InvalidCastException  on failure because a tracking reference cannot have a value of nullptr.

We recommend that you not use reinterpret_cast because neither a compile-time check nor a run-time check is
performed. In the worst case, a reinterpret_cast makes it possible for programming errors to go undetected at
development time and cause subtle or catastrophic errors in your program’s behavior. Therefore, we recommend
that you use reinterpret_cast only in those rare cases when you must cast between unrelated types and you know
that the cast will succeed. An example of a rare use is to convert a Windows Runtime type to its underlying ABI
type—this means that you are taking control of the reference counting for the object. To do this, we recommend
that you use the ComPtr Class smart pointer. Otherwise, you must specifically call Release on the interface. The
following example shows how a ref class can be cast to an IInspectable* .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/reinterpret-cast-operator
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/com-ptr-t-class


#include <wrl.h>
using namespace Microsoft::WRL;
auto winRtObject = ref new SomeWinRTType();
ComPtr<IInspectable> inspectable = reinterpret_cast<IInspectable*>(winRtObject);
// ...

ABI types

HSTRING String^

HSTRING* String^*

IInspectable* Object^

IInspectable** Object^*

IInspectable-derived-type* same-interface-from-winmd^

IInspectable-derived-type** same-interface-from-winmd^*

IDefault-interface-of-RuntimeClass* same-RefClass-from-winmd^

IDefault-interface-of-RuntimeClass** same-RefClass-from-winmd^*

See also

If you use reinterpret_cast to convert from oneWindows Runtime interface to another, you cause the object to be
released twice. Therefore, only use this cast when you are converting to a non-Visual C++ component extensions
interface.

ABI types live in headers in the Windows SDK. Conveniently, the headers are named after the namespaces
—for example, windows.storage.h .

ABI types live in a special namespace ABI—for example, ABI::Windows::Storage::Streams::IBuffer* .

Conversions between a Windows Runtime interface type and its equivalent ABI type are always safe—that
is, IBuffer^  to ABI::IBuffer* .

A Windows Runtime runtime class should always be converted to IInspectable*  or its default interface, if
that is known.

After you convert to ABI types, you own the lifetime of the type and must follow the COM rules. We
recommend that you use WRL::ComPtr  to simplify lifetime management of ABI pointers.

The following table summarizes the cases in which it is safe to use reinterpret_cast. In every case, the cast is safe
in both directions.

Type System
Visual C++ Language Reference
Namespaces Reference



Boxing (C++/CX)
3/5/2019 • 2 minutes to read • Edit Online

Passing a value type to an Object^ parameter

Object^ obj = 5; //scalar value is implicitly boxed
int i = safe_cast<int>(obj); //unboxed with explicit cast. 

Using Platform::IBox<T> to support nullable value typesUsing Platform::IBox<T> to support nullable value types

// A WinRT Component DLL
namespace BoxingDemo
{
    public ref class Class1 sealed
    {
    public:
        Class1(){}
        Platform::IBox<int>^ Multiply(Platform::IBox<int>^ a, Platform::IBox<int>^ b)
        {
            if(a == nullptr || b == nullptr)
                return nullptr;
            else
                return ref new Platform::Box<int>(a->Value * b->Value);
        }
    };

// C# client code
    BoxingDemo.Class1 obj = new BoxingDemo.Class1();
    int? a = null;
    int? b = 5;
    var result = obj.Multiply(a,b); //result = null

See Also

Boxing is wrapping a value type variable such as Windows::Foundation::DateTime—or a fundamental scalar type
such as int —in a ref class when the variable is passed to a method that takes Platform::Object^ as its input type.

Although you don't have to explicitly box a variable to pass it to a method parameter of type Platform::Object^,
you do have to explicitly cast back to the original type when you retrieve values that have been previously boxed.

C# and Visual Basic support the concept of nullable value types. In C++/CX, you can use the Platform::IBox<T>

type to expose public methods that support nullable value type parameters. The following example shows a
C++/CX public method that returns null when a C# caller passes null for one of the arguments.

In a C# XAML client, you can consume it like this:

Type System (C++/CX)
Casting (C++/CX)
Visual C++ Language Reference
Namespaces Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/boxing-c-cx.md
https://docs.microsoft.com/uwp/api/windows.foundation.datetime


Attributes (C++/CX)
3/5/2019 • 2 minutes to read • Edit Online

[Windows::Foundation::Metadata::WebHostHidden]
public ref class MyClass : Windows::UI::Xaml::DependencyObject {};

Custom attributes

[Windows::Foundation::Metadata::WebHostHiddenAttribute]
public ref class MyCustomAttribute sealed : Platform::Metadata::Attribute {
public:
    int Num;
    Platform::String^ Msg;  
};

[MyCustomAttribute(Num=5, Msg="Hello")]
public ref class Class1 sealed
{
public:
    Class1();
};

See Also

An attribute is a special kind of ref class that can be prepended in square brackets to Windows Runtime types and
methods to specify certain behaviors in metadata creation. Several predefined attributes—for example,
Windows::Foundation::Metadata::WebHostHidden—are commonly used in C++/CX code. This example shows how
the attribute is applied to a class:

You can also define custom attributes. Custom attributes must conform to these Windows Runtime rules:

Custom attributes can contain only public fields.

Custom attribute fields can be initialized when the attribute is applied to a class.

A field may be one of these types:

int32 (int)

uint32 (unsigned int)

bool

Platform::String^

Windows::Foundation::HResult

Platform::Type^

public enum class (includes user-defined enums)

The next example shows how to define a custom attribute and then initialize it when you use it.

Type System (C++/CX)
Visual C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/attributes-c-cx.md
https://docs.microsoft.com/uwp/api/Windows.Foundation.Metadata.WebHostHiddenAttribute


Namespaces Reference



Deprecating types and members (C++/CX)
11/8/2018 • 2 minutes to read • Edit Online

C a u t i o nC a u t i o n

ExampleExample

namespace wfm = Windows::Foundation::Metadata;

public ref class Bicycle sealed
{

public:
    property double Speed;

    [wfm::Deprecated("Use the Speed property to compute the angular speed of the wheel", 
wfm::DeprecationType::Deprecate, 0x0)]
    double ComputeAngularVelocity();
};

Supported targets

XAML control

delegate

event

enum field

enum

struct

method

In C++/CX, deprecation of Windows Runtime types and members for producers and consumers by using the
Deprecated attribute is supported. If you consume an API to which this attribute has been applied, you get a
compile-time warning message that indicates that the API is deprecated and also recommends an alternative API
to use. In your own public types and methods, you can apply this attribute and supply your own custom message.

The Deprecated attribute is for use only with Windows Runtime types. For standard C++ classes and members,
use __declspec(deprecated).

The following example shows how to deprecate your own public APIs—for example, in a Windows Runtime
component. The second parameter, of type Windows:Foundation::Metadata::DeprecationType specifies whether the
API is being deprecated or removed. Currently only the DeprecationType::Deprecated value is supported. The third
parameter in the attribute specifies the Windows::Foundation::Metadata::Platform to which the attribute applies.

The following table lists the constructs to which the Deprecated attribute may be applied:

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/deprecating-types-and-members-c-cx.md
https://docs.microsoft.com/uwp/api/windows.foundation.metadata.deprecatedattribute
https://docs.microsoft.com/uwp/api/windows.foundation.metadata.deprecatedattribute
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/deprecated-cpp
https://docs.microsoft.com/uwp/api/windows.foundation.metadata.deprecationtype
https://docs.microsoft.com/uwp/api/windows.foundation.metadata.platformattribute


class

interface

property

struct field

parameterized constructor

See Also
Type System
Visual C++ Language Reference
Namespaces Reference



Building apps and libraries (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

In this section

The topics in this section provide a few details about using the build system to produce a Universal Windows
Platform app or Windows Runtime component.

Compiler and Linker options

Static libraries

DLLs

Note: Visual C++ does not support profile guided optimizations for Universal Windows Platform. If you attempt
to build a project with these options set in the IDE, a build error will result. Console applications are also not
supported.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/building-apps-and-libraries-c-cx.md


Compiler and Linker options (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

Library path

Compiler options
OPTION DESCRIPTION

/ZW

/ZW:nostdlib

Enables Windows Runtime language extensions.

The nostdlib  parameter prevents the compiler from using
the standard, predefined search path to find assembly and
.winmd files.

The /ZW compiler option implicitly specifies the following
compiler options:

- /FI vccorlib.h, which forces inclusion of the vccorlib.h header
file that defines many types that are required by the compiler.
- /FU Windows.winmd, which forces inclusion of the
Windows.winmd metadata file that's provided by the
operating system and defines many types in the Windows
Runtime.
- /FU Platform.winmd, which forces inclusion of the
Platform.winmd metadata file that's provided by the compiler
and defines most types in the Platform family of namespaces.

/AI dir Adds a directory, which is specified by the dir parameter, to
the search path that the compiler uses to find assembly and
.winmd files.

/FU file Forces the inclusion of the specified module, or .winmd file.
That is, you don't have to specify #using file in your source
code. The compiler automatically forces the inclusion of its
own Windows metadata file, Platform.winmd.

/D "WINAPI_FAMILY=2" Creates a definition that enables the use of a subset of the
Win32 SDK that's compatible with the Windows Runtime.

Linker options
OPTION DESCRIPTION

/APPCONTAINER[:NO] Marks the executable as runnable in the appcontainer (only).

An environment variable, C++/CX compiler options, and linker options support the building of apps for the
Windows Runtime.

The %LIBPATH% environment variable specifies the default path to search for .winmd files.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/compiler-and-linker-options-c-cx.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/zw-windows-runtime-compilation
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fu-name-forced-hash-using-file
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ai-specify-metadata-directories


/WINMD[:{NO|ONLY}] Emits a .winmd file and an associated binary file. This option
must be passed to the linker for a .winmd to be emitted.

NO—Doesn't emit a .winmd file, but does emit a binary file.

ONLY—Emits a .winmd file, but doesn't emit a binary file.

/WINMDFILE:filename The name of the .winmd file to emit, instead of the default
.winmd file name. If multiple file names are specified on the
command line, the last name is used.

/WINMDDELAYSIGN[:NO] Partially signs the .winmd file and places the public key in the
binary.

NO—(Default) Doesn't sign the .winmd file.

/WINMDDELAYSIGN has no effect unless /WINMDKEYFILE or
/WINMDKEYCONTAINER is also specified.

/WINMDKEYCONTAINER:name Specifies a key container to sign an assembly. The name
parameter corresponds to the key container that's used to
sign the metadata file.

/WINMDKEYFILE:filename Specifies a key or a key pair to sign the assembly. The
filename parameter corresponds to the key that's used to sign
the metadata file.

OPTION DESCRIPTION

RemarksRemarks

See Also

When you use /ZW, the compiler automatically links to the DLL version of the C Runtime (CRT). Linking to the
static library version is not allowed, and any use of CRT functions that are not allowed in a Universal Windows
Platform app will cause a compile-time error.

Building apps and libraries



Static libraries (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

Creating static libraries
To create a static library for use in a UWP appTo create a static library for use in a UWP app

See Also

A static library that's used in a Universal Windows Platform (UWP) app can contain ISO-standard C++ code,
including STL types, and also calls to Win32 APIs that are not excluded from the Windows Runtime app platform.
A static library consumes Windows Runtime components and may create Windows Runtime components with
certain restrictions.

1. On the menu bar, choose File > New > Project. Under Visual C++ > Windows Universal choose Static
Library (Universal Windows).

2. In Solution Explorer, open the shortcut menu for the project and then choose Properties. In the
Properties dialog box, on the Configuration Properties > C/C++ page, set Consume Windows
Runtime Extension to Yes (/ZW).

When you compile a new static library, if you make a call to a Win32 API that's excluded for UWP apps, the
compiler will raise error C3861, “Identifier not found.” To look for an alternative method that's supported for the
Windows Runtime, see Alternatives to Windows APIs in UWP apps.

If you add a C++ static library project to a UWP app solution, you might have to update the library project’s
property settings so that the UWP support property is set to Yes. Without this setting, the code builds and links,
but an error occurs when you attempt to verify the app for the Microsoft Store. The static lib should be compiled
with the same compiler settings as the project that consumes it.

If you consume a static library that creates public ref  classes, public interface classes, or public value classes, the
linker raises this warning:

warning LNK4264: archiving object file compiled with /ZW into a static library; note that when authoring
Windows Runtime types it is not recommended to link with a static library that contains Windows Runtime
metadata.

You can safely ignore the warning only if the static library is not producing Windows Runtime components that are
consumed outside the library itself. If the library doesn’t consume a component that it defines, then the linker can
optimize away the implementation even though the public metadata contains the type information. This means
that public components in a static library will compile but will not activate at run time. For this reason, any
Windows Runtime component that's intended for consumption by other components or apps must be
implemented in a dynamic-link library (DLL).

Threading and Marshaling

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/static-libraries-c-cx.md
https://docs.microsoft.com/uwp/win32-and-com/alternatives-to-windows-apis-uwp


DLLs (C++/CX)
10/31/2018 • 3 minutes to read • Edit Online

Windows Runtime component DLLs

To reference a third-party Windows Runtime component binary in your projectTo reference a third-party Windows Runtime component binary in your project

Standard DLLs

To create a standard DLL in Visual StudioTo create a standard DLL in Visual Studio

To reference a standard DLL project from the same solutionTo reference a standard DLL project from the same solution

You can use Visual Studio to create either a standard Win32 DLL or a Windows Runtime component DLL that can
be consumed by Universal Windows Platform (UWP) apps. A standard DLL that was created by using a version of
Visual Studio or the Visual C++ compiler that's earlier than Visual Studio 2012 may not load correctly in a UWP
app and may not pass the app verification test in the Microsoft Store.

In almost all cases, when you want to create a DLL for use in a UWP app, create it as a Windows Runtime
component by using the project template of that name. You can create a Windows Runtime component project for
DLLs that have public or private Windows Runtime types. A Windows Runtime component can be accessed from
apps that are written in any Windows Runtime-compatible language. By default, the compiler settings for a
Windows Runtime component project use the /ZW switch. A .winmd file must have the same name that the root
namespace has. For example, a class that's named A.B.C.MyClass can be instantiated only if it's defined in a
metadata file that's named A.winmd or A.B.winmd or A.B.C.winmd. The name of the DLL is not required to match
the .winmd file name.

For more information, see Creating Windows Runtime Components in C++.

1. Open the shortcut menu for the project that will use the DLL and then choose Properties. On the
Common Properties page, choose the Add New Reference button.

2. A Windows Runtime component consists of a DLL file and a .winmd file that contains the metadata.
Typically, these files are located in the same folder. In the left pane of the Add Reference dialog box, choose
the Browse button and then navigate to the location of the DLL and its .winmd file. For more information,
see Extension SDKs.

You can create a standard DLL for C++ code that doesn’t consume or produce public Windows Runtime types and
consume it from a UWP app. Use the Dynamic-Link Library (DLL) project type when you just want to migrate an
existing DLL to compile in this version of Visual Studio but not convert the code to a Windows Runtime
Component project. When you use the following steps, the DLL will be deployed alongside your app executable in
the .appx package.

1. On the menu bar, choose File, New, Project, and then select the Dynamic Link Library (DLL) template.

2. Enter a name for the project, and then choose the OK button.

3. Add the code. Be sure to use __declspec(dllexport)  for functions that you intend to export—for example, 
__declspec(dllexport) Add(int I, in j);

4. Add #include winapifamily.h  to include that header file from the Windows SDK for UWP apps and set the
macro WINAPI_FAMILY=WINAPI_PARTITION_APP .

1. Open the shortcut menu for the project that will use the DLL and then choose Properties. On the
Common Properties page, choose the Add New Reference button.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/dlls-c-cx.md
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp
https://docs.microsoft.com/visualstudio/extensibility/creating-a-software-development-kit#ExtensionSDKs


To reference a standard DLL binaryTo reference a standard DLL binary

To migrate an existing Win32 DLL for UWP app compatibilityTo migrate an existing Win32 DLL for UWP app compatibility

2. In the left pane, select Solution, and then select the appropriate check box in the right pane.

3. In your source code files, add a #include  statement for the DLL header file, as needed.

1. Copy the DLL file, the .lib file, and the header file, and paste them in a known location—for example, in your
current project folder.

2. Open the shortcut menu for the project that will use the DLL and then choose Properties. On the
Configuration Properties, Linker, Input page, add the .lib file as a dependency.

3. In your source code files, add a #include  statement for the DLL header file, as needed.

1. Create a project of the DLL (Universal Windows) type and add your existing source code to it.

2. Add #include winapifamily.h  to include that header file from the Windows SDK for UWP apps and set the
macro WINAPI_FAMILY=WINAPI_PARTITION_APP .

3. In your source code files, add a #include  statement for the DLL header file, as needed.



Interoperating with Other Languages (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

Related topics

This part of the documentation describes how to use C++/CX to author Windows Runtime components that can
be consumed by other programming languages and libraries. You can also author components that can't be
consumed by all languages. This section describes different aspects to consider when your C++/CX application
interoperates with components that are written by using JavaScript, a .NET Framework managed language, or the
Windows Runtime C++ Template Library.

JavaScript integration

CLR integration

WRL integration

Visual C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/interoperating-with-other-languages-c-cx.md


JavaScript integration (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

See also

For more information, see Creating Windows Runtime Components in C++.

Interoperating with Other Languages

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/javascript-integration-c-cx.md
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp


CLR integration (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

Mapping the Windows Runtime to C++/CX

Some Windows Runtime types receive special handling in C++/CX and the languages that are based on the
common language runtime (CLR). This article discusses how several types in one language map to another
language. For example, the CLR maps Windows.Foundation.IVector to System.Collections.IList,
Windows.Foundation.IMap to System.Collections.IDictionary, and so on. Similarly, C++/CX specially maps types
such as Platform::Delegate and Platform::String.

When C++/CX reads a Windows metadata (.winmd) file, the compiler automatically maps common Windows
Runtime namespaces and types to C++/CX namespaces and types. For example, the numeric Windows Runtime
type UInt32  is automatically mapped to default::uint32 .

C++/CX maps several other Windows Runtime types to the Platform namespace. For example, the
Windows::Foundation HSTRING handle, which represents a read-only Unicode text string, is mapped to the
C++/CX Platform::String  class. When a Windows Runtime operation returns an error HRESULT, it's mapped to
a C++/CX Platform::Exception .

The C++/CX also maps certain types in Windows Runtime namespaces to enhance the functionality of the type.
For these types, C++/CX provides helper constructors and methods that are specific to C++ and are not available
in the type's standard .winmd file.

The following lists show value structs that support new constructors and helper methods. If you have previously
written code that uses struct initialization lists, change it to use the newly added constructors.

Windows::Foundation

Point

Rect

Size

Windows::UI

Color

Windows::UI::Xaml

CornerRadius

Duration

GridLength

Thickness

Windows::UI::Xaml::Interop

TypeName

Windows::UI::Xaml::Media

Matrix

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/clr-integration-c-cx.md


Mapping the CLR to C++/CX

See Also

Windows::UI::Xaml::Media::Animation

KeyTime

RepeatBehavior

Windows::UI::Xaml::Media::Media3D

Matrix3D

When the Visual C++ or C# compilers read a .winmd file, they automatically map certain types in the metadata file
to appropriate C++/CX or CLR types. For example, in the CLR, the IVector<T> interface is mapped to IList<T>.
But in C++/CX, the IVector<T> interface is not mapped to another type.

IReference<T> in the Windows Runtime maps to Nullable<T> in .NET.

Interoperating with Other Languages



WRL integration (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

WRL development

ExampleExample

#include <hstring.h>
#include <cor.h>
#include <rometadata.h>
#include <rometadataresolution.h>
#include <collection.h>

namespace ABI_Isolation_Workaround {
    #include <inspectable.h>
    #include <WeakReference.h>
}
using namespace ABI_Isolation_Workaround;
#include <wrl/client.h>

using namespace Microsoft::WRL;
using namespace Windows::Foundation::Collections;

IVector<String^>^ GetTypeMethods(Object^);

MainPage::MainPage()
{
    InitializeComponent();

    Windows::Foundation::Uri^ uri = ref new Windows::Foundation::Uri("http://buildwindows.com/");
    auto methods = GetTypeMethods(uri);

    std::wstring strMethods;
    std::for_each(begin(methods), end(methods), [&strMethods](String^ methodName) {
        strMethods += methodName->Data();
        strMethods += L"\n";
    });

You freely can mix WRL code with Windows Runtime C++ Template Library (WRL) code. In the same translation
unit, you can use objects declared with WRL handle-to-object ( ^ ) notation and WRL smart pointer ( ComPtr<T> )
notation. However, you must manually handle return values, and WRL HRESULT error codes and WRL exceptions.

For more information about authoring and consuming WRL components, see Windows Runtime C++ Template
Library (WRL).

The following code snippet demonstrates using WRL and WRL to consume Windows Runtime classes and
examine a metadata file.

The example is taken from a code snippet in the Building Microsoft Store apps forum. The author of this code
snippet offers the following disclaimers and stipulations:

1. C++ doesn't provide specific APIs to reflect on Windows Runtime types, but Windows metadata files
(.winmd) for a type are fully compliant with CLR metadata files. Windows provides the new metadata
discovery APIs (RoGetMetaDataFile) to get to the .winmd file for a given type. However, these APIs are of
limited use to C++ developers because you can't instantiate a class.

2. After the code is compiled, you'll also need to pass Runtimeobject.lib and Rometadata.lib to the Linker.

3. This snippet is presented as-is. While it is expected to work correctly, it possibly can contain errors.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/wrl-integration-c-cx.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/windows/windows-runtime-cpp-template-library-wrl


    });

    wprintf_s(L"%s\n", strMethods.c_str());
}

IVector<String^>^ GetTypeMethods(Object^ instance)
{
    HRESULT hr;
    HSTRING hStringClassName;
    hr = instance->__cli_GetRuntimeClassName(reinterpret_cast<__cli_HSTRING__**>(&hStringClassName)); // 
internal method name subject to change post BUILD
    if (FAILED(hr))
        __cli_WinRTThrowError(hr); // internal method name subject to change post BUILD
    String^ className = reinterpret_cast<String^>(hStringClassName);

    ComPtr<IMetaDataDispenserEx> metadataDispenser; ComPtr<IMetaDataImport2> metadataImport; hr = 
MetaDataGetDispenser(CLSID_CorMetaDataDispenser, IID_IMetaDataDispenser, 
(LPVOID*)metadataDispenser.GetAddressOf());
    if (FAILED(hr))
        __cli_WinRTThrowError(hr); // internal method name subject to change post BUILD

    HSTRING hStringFileName;
    mdTypeDef typeDefToken;
    hr = RoGetMetaDataFile(hStringClassName, metadataDispenser.Get(), &hStringFileName, &metadataImport, 
&typeDefToken);
    if (FAILED(hr))
        __cli_WinRTThrowError(hr); // internal method name subject to change post BUILD
    String^ fileName = reinterpret_cast<String^>(hStringFileName);

    HCORENUM hCorEnum = 0;
    mdMethodDef methodDefs[2048];
    ULONG countMethodDefs = sizeof(methodDefs);
    hr = metadataImport->EnumMethods(&hCorEnum, typeDefToken, methodDefs, countMethodDefs,  &countMethodDefs);
    if (FAILED(hr))
        __cli_WinRTThrowError(hr); // internal method name subject to change post BUILD

    wchar_t methodName[1024];
    ULONG countMethodName;
    std::wstring strMethods;
    Vector<String^>^ retVal = ref new Vector<String^>();

    for (int i = 0; i < countMethodDefs; ++i)
    {
        countMethodName = sizeof(methodName);
        hr = metadataImport->GetMethodProps(methodDefs[i], nullptr, methodName, countMethodName, 
&countMethodName, nullptr, nullptr, nullptr, nullptr, nullptr);
        if (SUCCEEDED(hr))
        {
            methodName[ countMethodName ] = 0;
            retVal->Append(ref new String(methodName));
        }
    }
    return retVal;
}

See also
Interoperating with Other Languages



Obtaining pointers to data buffers (C++/CX)
3/5/2019 • 4 minutes to read • Edit Online

GetPointerToPixelData

#include <wrl.h>
#include <robuffer.h>
using namespace Windows::Storage::Streams;
using namespace Microsoft::WRL;
typedef uint8 byte;
// Retrieves the raw pixel data from the provided IBuffer object.
// Warning: The lifetime of the returned buffer is controlled by
// the lifetime of the buffer object that's passed to this method.
// When the buffer has been released, the pointer becomes invalid
// and must not be used.
byte* Class1::GetPointerToPixelData(IBuffer^ pixelBuffer, unsigned int *length)
{
    if (length != nullptr)
    {
        *length = pixelBuffer ->Length;
    }
    // Query the IBufferByteAccess interface.
    ComPtr<IBufferByteAccess> bufferByteAccess;
    reinterpret_cast<IInspectable*>( pixelBuffer)->QueryInterface(IID_PPV_ARGS(&bufferByteAccess));

    // Retrieve the buffer data.
    byte* pixels = nullptr;
    bufferByteAccess->Buffer(&pixels);
    return pixels;
}

In the Windows Runtime the Windows::Storage::Streams::IBuffer interface provides a language-neutral, stream-
based means to access data buffers. In C++ you can get a raw pointer to the underlying byte array by using the
Windows Runtime Library IBufferByteAccess interface that is defined in robuffer.h. By using this approach you can
modify the byte array in-place without making any unnecessary copies of the data.

The following diagram shows a XAML image element, whose source is a Windows::UI::Xaml::Media::Imaging
WriteableBitmap. A client app that's written in any language can pass a reference to the WriteableBitmap  to C++
code and then C++ can use the reference to get at the underlying buffer. In a Universal Windows Platform app
that's written in C++, you can use the function in the following example directly in the source code without
packaging it in a Windows Runtime component.

The following method accepts an Windows::Storage::Streams::IBuffer and returns a raw pointer to the underlying
byte array. To call the function, pass in a WriteableBitmap::PixelBuffer property.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/obtaining-pointers-to-data-buffers-c-cx.md
https://docs.microsoft.com/uwp/api/windows.storage.streams.ibuffer
https://docs.microsoft.com/uwp/api/Windows.UI.Xaml.Media.Imaging.WriteableBitmap
https://docs.microsoft.com/uwp/api/windows.storage.streams.ibuffer
https://docs.microsoft.com/uwp/api/windows.ui.xaml.media.imaging.writeablebitmap.pixelbuffer


Complete Example

Create the clientCreate the client

The following steps show how to create a C# Universal Windows Platform app that passes a WriteableBitmap  to a
C++ Windows Runtime component DLL. The C++ code obtains a pointer to the pixel buffer and performs a
simple in-place modification on the image. As an alternative, you can create the client app in Visual Basic,
JavaScript, or C++ instead of C#. If you use C++, you don't need the component DLL; you can just add these
methods directly to the MainPage class or some other class that you define.

1. Use the Blank app project template to create a C# Universal Windows Platform app.

2. In MainPage.xaml

<Grid Background="{StaticResource ApplicationPageBackgroundThemeBrush}">
    <StackPanel HorizontalAlignment="Left" Margin="176,110,0,0" VerticalAlignment="Top" 
Width="932">
        <Image x:Name="Pic"/>
        <Button Content="Process Image" HorizontalAlignment="Stretch" VerticalAlignment="Stretch" 
Height="47" Click="Button_Click_1"/>
    </StackPanel>
</Grid>

Use this XAML to replace the Grid  element:

3. In MainPage.xaml.cs

using Windows.Storage;
using Windows.Storage.FileProperties;
using Windows.UI.Xaml.Media.Imaging;
using Windows.Storage.Streams;
using Windows.Storage.Pickers;

private WriteableBitmap m_bm;

a. Add these namespace declarations:

b. Add a WriteableBitmap  member variable to the MainPage  class and name it m_bm .

c. Use the following code to replace the OnNavigatedTo  method stub. This opens the file picker when the
app is started. (Notice that the async  keyword is added to the function signature).



Create the C++ componentCreate the C++ component

async protected override void OnNavigatedTo(NavigationEventArgs e)
{
    FileOpenPicker openPicker = new FileOpenPicker();
    openPicker.ViewMode = PickerViewMode.Thumbnail;
    openPicker.SuggestedStartLocation = PickerLocationId.PicturesLibrary;
    openPicker.FileTypeFilter.Add(".jpg");
    openPicker.FileTypeFilter.Add(".jpeg");
    openPicker.FileTypeFilter.Add(".png");

    StorageFile file = await openPicker.PickSingleFileAsync();
    if (file != null)
    {
        // Get the size of the image for the WriteableBitmap constructor.
        ImageProperties props = await file.Properties.GetImagePropertiesAsync();
        m_bm = new WriteableBitmap((int)props.Height, (int)props.Width);
        m_bm.SetSource(await file.OpenReadAsync());
        Pic.Source = m_bm;
    }
    else
    {
        //  Handle error...
    }
}

async private void Button_Click_1(object sender, RoutedEventArgs e)
{
    ImageManipCPP.Class1 obj = new ImageManipCPP.Class1();
    await obj.Negativize(m_bm);
    Pic.Source = m_bm;
}

d. Add the event handler for the button click. (Because the ImageManipCPP  namespace reference hasn't
been created yet, it might have a wavy underline in the editor window.)

1. Add a new C++ Windows Runtime component to the existing solution, and name it ImageManipCPP . Add a
reference to it in the C# project by right-clicking on that project in Solution Explorer and choosing Add,
Reference.

2. In Class1.h

typedef uint8 byte;

[Windows::Foundation::Metadata::WebHostHidden]

Windows::Foundation::IAsyncAction^ Negativize(Windows::UI::Xaml::Media::Imaging::WriteableBitmap^ 
bm);

a. Add this typedef  at the second line, just after #pragma once :

b. Add the WebHostHidden  attribute just above the beginning of the Class1  declaration.

c. Add this public method signature to Class1 :

d. Add the signature from the GetPointerToPixelData  method that is shown in the earlier code snippet.
Make sure that this method is private.



3. In Class1.cpp

#include <ppltasks.h>
#include <wrl.h>
#include <robuffer.h>

using namespace Windows::Storage;
using namespace Windows::UI::Xaml::Media::Imaging;
using namespace Windows::Storage::Streams;
using namespace Microsoft::WRL;

IAsyncAction^ Class1::Negativize(WriteableBitmap^ bm)
{
    unsigned int length;
    byte* sourcePixels = GetPointerToPixelData(bm->PixelBuffer, &length);
    const unsigned int width = bm->PixelWidth;
    const unsigned int height = bm->PixelHeight;

    return create_async([this, width, height, sourcePixels]
    {
        byte* temp = sourcePixels;
        for(unsigned int k = 0; k < height; k++)
        {
            for (unsigned int i = 0; i < (width * 4); i += 4)
            {
                int pos = k * (width * 4) + (i);
                temp[pos] = ~temp[pos];
                temp[pos + 1] = ~temp[pos + 1] / 3;
                temp[pos + 2] = ~temp[pos + 2] / 2;
                temp[pos + 3] = ~temp[pos + 3];
            }
        }
    });

}

NOTENOTE

a. Add these #include  directives and namespace declarations:

b. Add the implementation of GetPointerToPixelData  from the earlier code snippet.

c. Add the implementation of Negativize . This method creates an effect that resembles a film negative
by reversing the value of each RGB value in the pixel. We make the method asynchronous because on
larger images it might take a perceptible amount of time to complete.

This method might run faster if you use AMP or the Parallel Patterns Library to parallelize the operation.

4. Ensure that you have at least one picture in your pictures folder, and then press F5 to compile and run the
program.



Threading and Marshaling (C++/CX)
3/5/2019 • 5 minutes to read • Edit Online

Threading model and marshaling behavior

Consuming Windows Runtime components

Compiler warning C4451 when consuming non-agile classesCompiler warning C4451 when consuming non-agile classes

In the vast majority of cases, instances of Windows Runtime classes, like standard C++ objects, can be accessed
from any thread. Such classes are referred to as "agile". However, a small number of Windows Runtime classes
that ship with Windows are non-agile, and must be consumed more like COM objects than standard C++ objects.
You don't need to be a COM expert to use non-agile classes, but you do need to take into consideration the class's
threading model and its marshaling behavior. This article provides background and guidance for those rare
scenarios in which you need to consume an instance of a non-agile class.

A Windows Runtime class can support concurrent thread access in various ways, as indicated by two attributes
that are applied to it:

ThreadingModel  attribute can have one of the values—STA, MTA, or Both, as defined by the ThreadingModel

enumeration.

MarshallingBehavior  attribute can have one of the values—Agile, None, or Standard as defined by the 
MarshallingType  enumeration.

The ThreadingModel  attribute specifies where the class is loaded when activated: only in a user-interface thread
(STA) context, only in a background thread (MTA) context, or in the context of the thread that creates the object
(Both). The MarshallingBehavior  attribute values refer to how the object behaves in the various threading contexts;
in most cases, you don’t have to understand these values in detail. Of the classes that are provided by the
Windows API, about 90 percent have ThreadingModel =Both and MarshallingType =Agile. This means that they
can handle low-level threading details transparently and efficiently. When you use ref new  to create an "agile"
class, you can call methods on it from your main app thread or from one or more worker threads. In other words,
you can use an agile class—no matter whether it's provided by Windows or by a third party—from anywhere in
your code. You don’t have to be concerned with the class’s threading model or marshaling behavior.

When you create a Universal Windows Platform app, you might interact with both agile and non-agile
components. When you interact with non-agile components, you may encounter the following warning.

For various reasons, some classes can't be agile. If you are accessing instances of non-agile classes from both a
user-interface thread and a background thread, then take extra care to ensure correct behavior at run time. The
Visual C++ compiler issues warnings when you instantiate a non-agile run-time class in your app at global scope
or declare a non-agile type as a class member in a ref class that itself is marked as agile.

Of the non-agile classes, the easiest to deal with are those that have ThreadingModel =Both and MarshallingType

=Standard. You can make these classes agile just by using the Agile<T>  helper class. The following example
shows a declaration of a non-agile object of type Windows::Security::Credentials::UI::CredentialPickerOptions^ ,
and the compiler warning that's issued as a result.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/threading-and-marshaling-c-cx.md


ref class MyOptions
    {
    public:
        property Windows::Security::Credentials::UI::CredentialPickerOptions^ Options

        {
            Windows::Security::Credentials::UI::CredentialPickerOptions^ get()
            {
                return _myOptions;
            }
        }
    private:
        Windows::Security::Credentials::UI::CredentialPickerOptions^ _myOptions;
    };

#include <agile.h>
ref class MyOptions
    {
    public:
        property Windows::Security::Credentials::UI::CredentialPickerOptions^ Options

        {
            Windows::Security::Credentials::UI::CredentialPickerOptions^ get()
            {
                return m_myOptions.Get();
            }
        }
    private:
        Platform::Agile<Windows::Security::Credentials::UI::CredentialPickerOptions^> m_myOptions;

    };

Here's the warning that's issued:

Warning 1 warning C4451: 'Platform::Agile<T>::_object' : Usage of ref class
'Windows::Security::Credentials::UI::CredentialPickerOptions' inside this context can lead to invalid
marshaling of object across contexts. Consider using
'Platform::Agile<Windows::Security::Credentials::UI::CredentialPickerOptions>' instead

When you add a reference—at member scope or global scope—to an object that has a marshaling behavior of
"Standard", the compiler issues a warning that advises you to wrap the type in Platform::Agile<T> : 
Consider using 'Platform::Agile<Windows::Security::Credentials::UI::CredentialPickerOptions>' instead  If you use
Agile<T> , you can consume the class like you can any other agile class. Use Platform::Agile<T>  in these

circumstances:

The non-agile variable is declared at global scope.

The non-agile variable is declared at class scope and there is a chance that consuming code might smuggle
the pointer—that is, use it in a different apartment without correct marshaling.

If neither of those conditions apply, then you can mark the containing class as non-agile. In other words, you
should directly hold non-agile objects only in non-agile classes, and hold non-agile objects via Platform::Agile<T>
in agile classes.

The following example shows how to use Agile<T>  so that you can safely ignore the warning.

Notice that Agile  cannot be passed as a return value or parameter in a ref class. The Agile<T>::Get()  method
returns a handle-to-object (^) that you can pass across the application binary interface (ABI) in a public method or



Authoring agile Windows Runtime components

using namespace Windows::Foundation::Metadata;
using namespace Platform;

[Threading(ThreadingModel::STA)]
[MarshalingBehavior(MarshalingType::None)]
public ref class MySTAClass
{
};

See Also

property.

In Visual C++, when you create a reference to an in-proc Windows Runtime class that has a marshaling behavior
of "None", the compiler issues warning C4451 but doesn't suggest that you consider using Platform::Agile<T> .
The compiler can't offer any help beyond this warning, so it's your responsibility to use the class correctly and
ensure that your code calls STA components only from the user-interface thread, and MTA components only from
a background thread.

When you define a ref class in C++/CX, it's agile by default—that is, it has ThreadingModel =Both and 
MarshallingType =Agile. If you're using the Windows Runtime C++ Template Library, you can make your class

agile by deriving from FtmBase , which uses the FreeThreadedMarshaller . If you author a class that has 
ThreadingModel =Both or ThreadingModel =MTA, make sure that the class is thread-safe.

You can modify the threading model and marshaling behavior of a ref class. However, if you make changes that
render the class non-agile, you must understand the implications that are associated with those changes.

The following example shows how to apply MarshalingBehavior  and ThreadingModel  attributes to a runtime class
in a Windows Runtime class library. When an app uses the DLL and uses the ref new  keyword to activate a 
MySTAClass  class object, the object is activated in a single-threaded apartment and doesn't support marshaling.

An unsealed class must have marshaling and threading attribute settings so that the compiler can verify that
derived classes have the same value for these attributes. If the class doesn't have the settings set explicitly, the
compiler generates an error and fails to compile. Any class that's derived from an unsealedclass generates a
compiler error in either of these cases:

The ThreadingModel  and MarshallingBehavior  attributes are not defined in the derived class.

The values of the ThreadingModel  and MarshallingBehavior  attributes in the derived class don't match
those in the base class.

The threading and marshaling information that's required by a third-party Windows Runtime component is
specified in the app manifest registration information for the component. We recommend that you make all of
your Windows Runtime components agile. This ensures that client code can call your component from any thread
in the app, and improves the performance of those calls because they are direct calls that have no marshaling. If
you author your class in this way, then client code doesn't have to use Platform::Agile<T>  to consume your class.

ThreadingModel
MarshallingBehavior

https://docs.microsoft.com/uwp/api/Windows.Foundation.Metadata.ThreadingModel
https://docs.microsoft.com/uwp/api/windows.foundation.metadata.marshalingbehaviorattribute


Weak references and breaking cycles (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

using namespace Platform::Details;
using namespace Windows::UI::Xaml;
using namespace Windows::UI::Xaml::Input;
using namespace Windows::UI::Xaml::Controls;

Class1::Class1()
{
    // Class1 has a reference to m_Page
    m_Page = ref new Page();

    // m_Page will have a reference to this Class1
    // so create a weak reference to this
    WeakReference wr(this);
    m_Page->DoubleTapped += ref new DoubleTappedEventHandler(
        [wr](Object^ sender, DoubleTappedRoutedEventArgs^ args)
    {
       // Use the weak reference to get the object
       Class1^ c = wr.Resolve<Class1>();
       if (c != nullptr)
       {
           c->m_eventFired = true;
       }
       else
       {
           // Inform the event that this handler should be removed
           // from the subscriber list
           throw ref new DisconnectedException();
       }
    });
}

}

See Also

In any type system that's based on reference-counting, references to types can form cycles—that is, one object
refers to a second object, the second object refers to a third object, and so on until some final object refers back to
the first object. In a cycle, objects can't be deleted correctly when one object's reference count becomes zero. To
help you solve this problem, C++/CX provides the Platform::WeakReference Class class. A WeakReference  object
supports the Resolve method, which returns null if the object no longer exists, or throws an
Platform::InvalidCastException if the object is alive but is not of type T .

One scenario in which WeakReference  must be used is when the this  pointer is captured in a lambda expression
that's used to define an event handler. We recommend that you use named methods when you define event
handlers, but if you want to use a lambda for your event handler—or if you have to break a reference counting
cycle in some other situation—use WeakReference . Here's an example:

When an event handler throws DisconnectedException , it causes the event to remove the handler from the
subscriber list.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/weak-references-and-breaking-cycles-c-cx.md


Namespaces Reference (C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

Compiler-supplied namespaces

Related topics
TITLE DESCRIPTION

default namespace Contains descriptions of built-in, fundamental types.

Platform namespace Contains descriptions of types that you can use, and also
internal types that are used only by the compiler
infrastructure.

Windows::Foundation::Collections Namespace Contains descriptions of enhancements and extensions to
the Windows Runtime
Windows::Foundation::Collections  namespace.

See Also

The articles in this section of the documentation describe namespaces that support the compiler for C++/CX.

To simplify the coding of programs that target the Windows Runtime, the C++/CX compiler and its
supporting header files provide namespaces that define a wide range of types. The namespaces define the
built-in numeric types; strings, arrays, and collections; Visual C++ exceptions that represent Windows Runtime
errors; and language-specific enhancements to standard Windows Runtime types.

Visual C++ Language Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/namespaces-reference-c-cx.md


default namespace
10/31/2018 • 2 minutes to read • Edit Online

Syntax
namespace default;

MembersMembers

default::(type_name)::Equals Determines whether the specified object is equal to the
current object.

default::(type_name)::GetHashCode Returns the hash code for this instance.

default::(type_name)::GetType Returns a string that represents the current type.

default::(type_name)::ToString Returns a string that represents the current type.

Built-in typesBuilt-in types

NAME DESCRIPTION

char16 A 16-bit nonnumeric value that represents a Unicode (UTF-
16) code point.

float32 A 32-bit IEEE 754 floating-point number.

float64 A 64-bit IEEE 754 floating-point number.

int16 A 16-bit signed integer.

int32 A 32-bit signed integer.

int64 A 64-bit signed integer.

int8 An 8-bit signed numeric value.

uint16 A 16-bit unsigned integer.

uint32 A 32-bit unsigned integer.

uint64 A 64-bit unsigned integer.

The default  namespace scopes the built-in types that are supported by C++/CX.

All built-in types inherit the following members.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/default-namespace.md


uint8 An 8-bit unsigned numeric value.

NAME DESCRIPTION

RequirementsRequirements

See Also

Header: vccorlib.h

Visual C++ Language Reference



default::(type_name)::Equals Method
10/31/2018 • 2 minutes to read • Edit Online

Syntax
bool Equals(
    Object^ obj
)

ParametersParameters

Return ValueReturn Value

RequirementsRequirements

See Also

Determines whether the specified object is equal to the current object.

obj
The object to compare.

true if the objects are equal, otherwise false.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: default

Header: vccorlib.h

default namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/default-type-name-equals-method.md


default::(type_name)::GetHashCode Method
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public:int GetHashCode();

Return ValueReturn Value

RequirementsRequirements

See Also

Returns the hash code for this instance.

The hash code for this instance.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: default

Header: vccorlib.h

default namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/default-type-name-gethashcode-method.md


default::(type_name)::GetType Method
10/31/2018 • 2 minutes to read • Edit Online

Syntax
Platform::Type^ GetType();

Return ValueReturn Value

RequirementsRequirements

See Also

Returns a Platform::Type^ that represents the current type.

A Platform::Type^ object that represents the current object.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: default

Header: vccorlib.h

default namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/default-type-name-gettype-method.md


default::(type_name)::ToString Method
10/31/2018 • 2 minutes to read • Edit Online

Syntax
String^ ToString();

Return ValueReturn Value

RequirementsRequirements

See Also

Returns a string that represents the current type.

A string that represents the current object.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: default

Header: vccorlib.h

default namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/default-type-name-tostring-method.md


Platform namespace (C++/CX)
10/31/2018 • 3 minutes to read • Edit Online

Syntax
using namespace Platform;

MembersMembers

ATTRIBUTE DESCRIPTION

Flags Indicates that an enumeration can be treated as a bit field;
that is, a set of flags.

MTAThread Indicates that the threading model for an application is
multi-threaded apartment (MTA).

STAThread Indicates that the threading model for an application is
single-threaded apartment (STA).

CLASS DESCRIPTION

Platform::AccessDeniedException Class Raised when access is denied to a resource or feature.

Platform::Agile Class Represents a non-agile object as an agile object.

Platform::Array Class Represents a one-dimensional, modifiable array.

Platform::ArrayReference Class Represents an array whose initialization is optimized to
minimize copying operations.

Platform::Box Class Used to declare a boxed type that encapsulates a value
type such as Windows::Foundation::DateTime or int64
when that type is passed across the application binary
interface (ABI) or stored in a variable of type
Platform::Object^.

Platform::ChangedStateException Class Thrown when methods of a collection iterator or a
collection view are called after the parent collection has
changed, invalidating the results of the method.

Contains built-in types that are compatible with the Windows Runtime.

Attributes

The Platform namespace contains attributes, classes, enumerations, interfaces, and structures. Platform also
contains nested namespaces.

Classes

The Platform namespace has the following classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-namespace-c-cx.md


Platform::ClassNotRegisteredException Class Thrown when a COM class has not been registered.

Platform::COMException Class Represents the exception that is thrown when an
unrecognized value is returned from a COM method call.

Platform::Delegate Class Represents the signature of a callback function.

Platform::DisconnectedException Class The object has disconnected from its clients.

Platform::Exception Class Represents errors that occur during application execution.
The base class for exceptions.

Platform::FailureException Class Thrown when the operation has failed. It is the equivalent
of the E_FAIL HRESULT.

Platform::Guid value class Represents a GUID in the Windows Runtime type system.

Platform::InvalidArgumentException Class Thrown when one of the arguments provided to a method
is not valid.

Platform::InvalidCastException Class Thrown in cases of invalid casting or explicit conversion.

Platform::MTAThreadAttribute Class Indicates that the threading model for an application is
multi-threaded apartment (MTA).

Platform::NotImplementedException Class Thrown if an interface method has not been implemented
on the class.

Platform::NullReferenceException Class Thrown when there is an attempt to dereference a null
object reference.

Platform::Object Class A base class that provides common behavior.

Platform::ObjectDisposedException Class Thrown when an operation is performed on a disposed
object.

Platform::OperationCanceledException Class Thrown when an operation is aborted.

Platform::OutOfBoundsException Class Thrown when an operation attempts to access data
outside the valid range.

Platform::OutOfMemoryException Class Thrown when there's insufficient memory to complete the
operation.

Platform::STAThreadAttribute Class Indicates that the threading model for an application is
single-threaded apartment (STA).

Platform::String Class A sequential collection of Unicode characters that is used
to represent text.

Platform::StringReference Class Enables access to string buffers with minimum of copy
overhead.

CLASS DESCRIPTION



Platform::Type Class Identifies a built-in type by a category enumeration.

Platform::ValueType Class The base class for instances of value types.

Platform::WeakReference Class Provides a weak reference to ref class objects that does
not increment the reference count.

Platform::WriteOnlyArray Class Represents a one-dimensional write-only array which is
used as an input parameter on methods that implement
the FillArray pattern.

Platform::WrongThreadException Class Thrown when a thread calls via an interface pointer which
is for a proxy object that does not belong to the thread's
apartment.

CLASS DESCRIPTION

INTERFACE DESCRIPTION

Platform::IBox Interface Used to pass value types to functions whose parameters
are typed as Platform::Object^.

Platform::IBoxArray Interface Interface used to pass arrays of value types to functions
whose parameters are typed as Platform::Array.

Platform::IDisposable Interface Used to release unmanaged resources.

INTERFACE DESCRIPTION

Platform::CallbackContext Enumeration An enumeration that is used as a parameter of the
delegate constructor. It determines whether the callback is
to be marshalled to the originating thread or to the caller
thread.

Platform::TypeCode Enumeration Specifies a numeric category that represents a built-in
type.

STRUCTURE DESCRIPTION

Platform::Enum Class Represents a named constant.

Platform::Guid value class Represents a GUID.

Interface implementations

The Platform namespace defines the following interfaces.

Enumerations

The Platform namespace has the following enumerations.

Structures

The Platform namespace has the following structures.



Platform::IntPtr value class A signed pointer whose size is appropriate for the platform
(32-bit or 64-bit).

Platform::SizeT value class An unsigned data type used to represent the size of an
object.

Platform::UIntPtr value class An unsigned pointer whose size is appropriate for the
platform (32-bit or 64-bit).

STRUCTURE DESCRIPTION

See Also
Platform::Collections Namespace
Platform::Runtime::CompilerServices Namespace
Platform::Runtime::InteropServices Namespace
Platform::Metadata Namespace



Platform::AccessDeniedException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class AccessDeniedException : COMException,    IException,    IPrintable,   IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when access to a resource or feature is denied.

If you hit this exception, ensure that you have requested the appropriate capability and made the required
declarations in the package manifest of your app. For more information, see COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-accessdeniedexception-class.md


Platform::Agile Class
10/31/2018 • 4 minutes to read • Edit Online

Syntax
template <typename T>
class Agile;

ParametersParameters

RemarksRemarks

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

Agile::Agile Initializes a new instance of the Agile class.

Agile::~Agile Destructor Destroys the current instance of the Agile class.

Public MethodsPublic Methods

NAME DESCRIPTION

Agile::Get Returns a handle to the object that is represented by the
current Agile object.

Agile::GetAddressOf Reinitializes the current Agile object, and then returns the
address of a handle to an object of type T .

Agile::GetAddressOfForInOut Returns the address of a handle to the object represented by
the current Agile object.

Agile::Release Discards the current Agile object's underlying object and
context.

Represents an object that has a MashalingBehavior=Standard as an agile object, which greatly reduces the chances
for runtime threading exceptions. The Agile<T>  enables the non-agile object to call, or be called from, the same or
a different thread. For more information, see Threading and Marshaling.

T
The typename for the non-agile class.

Most of the classes in the Windows Runtime are agile. An agile object can call, or be called by, an in-proc or out-of-
proc object in the same or a different thread. If an object is not agile, wrap the non-agile object in a Agile<T>

object, which is agile. Then the Agile<T>  object can be marshaled, and the underlying non-agile object can be
used.

The Agile<T>  class is a native, standard C++ class and requires agile.h . It represents the non-agile object and
the Agile object's context. The context specifies an agile object's threading model and marshaling behavior. The
operating system uses the context to determine how to marshal an object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-agile-class.md


 

 

Public OperatorsPublic Operators

NAME DESCRIPTION

Agile::operator-> Retrieves a handle to the object represented by the current
Agile object.

Agile::operator= Assigns the specified value to the current Agile object.

Inheritance Hierarchy

RequirementsRequirements

Agile::Agile Constructor

Syntax
Agile();
Agile(T^ object);
Agile(const Agile<T>& object);
Agile(Agile<T>&& object);

ParametersParameters

RemarksRemarks

Agile::~Agile Destructor

Syntax

Object

Agile

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Header: agile.h

Initializes a new instance of the Agile class.

T
A type specified by the template typename parameter.

object
In the second version of this constructor, an object used to initialize a new Agile instance. In the third version, the
object that is copied to the new Agile instance. In the fourth version, the object that is moved to the new Agile
instance.

The first version of this constructor is the default constructor. The second version initializes new Agile instance
class from the object specified by the object  parameter. The third version is the copy constructor. The fourth
version is the move constructor. This constructor cannot throw exceptions.

Destroys the current instance of the Agile class.



 

 

 

~Agile();

RemarksRemarks

Agile::Get Method

Syntax
T^ Get() const;

Return ValueReturn Value

Agile::GetAddressOf Method

Syntax
T^* GetAddressOf() throw();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Agile::GetAddressOfForInOut Method

Syntax
T^* GetAddressOfForInOut()  throw();

ParametersParameters

This destructor also releases the object represented by the current Agile object.

Returns a handle to the object that is represented by the current Agile object.

A handle to the object that is represented by the current Agile object.

The type of the return value is actually an undisclosed internal type. A convenient way to hold the return value is to
assign it to a variable that is declared with the auto type deduction keyword. For example, 
auto x = myAgileTvariable->Get(); .

Reinitializes the current Agile object, and then returns the address of a handle to an object of type T .

T
A type specified by the template typename parameter.

The address of a handle to an object of type T .

This operation releases the current representation of a object of type T , if any; reinitializes the Agile object's data
members; acquires the current threading context; and then returns the address of a handle-to-object variable that
can represent a non-agile object. To cause an Agile class instance to represent an object, use the assignment
operator (Agile::operator=) to assign the object to the Agile class instance.

Returns the address of a handle to the object represented by the current Agile object.



 

 

  

Return ValueReturn Value

RemarksRemarks

Agile::Release Method

Syntax
void Release() throw();

RemarksRemarks

Agile::operator-> Operator

Syntax
T^ operator->() const throw();

Return ValueReturn Value

Agile::operator= Operator

Syntax
Agile<T> operator=( T^ object ) throw();
Agile<T> operator=( const Agile<T>& object ) throw();
Agile<T> operator=( Agile<T>&& object ) throw();
T^ operator=( IUnknown* lp ) throw();

ParametersParameters

T
A type specified by the template typename parameter.

The address of a handle to the object represented by the current Agile object.

This operation acquires the current threading context and then returns the address of a handle to the underlying
the object.

Discards the current Agile object's underlying object and context.

The current Agile object's underlying object and context are discarded, if they exist, and then the value of the Agile
object is set to null.

Retrieves a handle to the object represented by the current Agile object.

A handle to the object represented by the current Agile object.

This operator actually returns an undisclosed internal type. A convenient way to hold the return value is to assign it
to a variable that is declared with the auto type deduction keyword.

Assigns the specified object to the current Agile object.

T
The type specified by the template typename.

object



Return ValueReturn Value

RemarksRemarks

See Also

The object or handle to an object that is copied or moved to the current Agile object.

lp
The IUnknown interface pointer of a object.

A handle to an object of type T

The first version of the assignment operator copies a handle to a reference type to the current Agile object. The
second version copies a reference to an Agile type to the current Agile object. The third version moves an Agile
type to the current Agile object. The fourth version moves a pointer to a COM object to the current Agile object.

The assignment operation automatically persists the context of the current Agile object.

Platform Namespace



Platform::Array Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
template <typename T>
private ref class Array<TArg, 1> :
    public WriteOnlyArray<TArg, 1>,
    public IBoxArray<TArg>

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

Array Constructors Initializes a one-dimensional, modifiable array of types
specified by the class template parameter, T.

MethodsMethods

PropertiesProperties

Array::Value Retrieves a handle to the current array.

RemarksRemarks

RequirementsRequirements

Represents a one-dimensional, modifiable array that can be received and passed across the application binary
interface (ABI).

Platform::Array inherits all its methods from Platform::WriteOnlyArray Class and implements the Value

property of the Platform::IBoxArray Interface.

See Platform::WriteOnlyArray Class.

The Array class is sealed and cannot be inherited.

The Windows Runtime type system does not support the concept of jagged arrays and therefore you cannot
pass an IVector<Platform::Array<T>> as a return value or method parameter. To pass a jagged array or a
sequence of sequences across the ABI, use IVector<IVector<T>^> .

For more information about when and how to use Platform::Array, see Array and WriteOnlyArray.

The Windows Runtime type system does not support the concept of jagged arrays and therefore you cannot
pass an IVector<Platform::Array<T>> as a return value or method parameter. To pass a jagged array or a
sequence of sequences across the ABI, use IVector<IVector<T>^> .

This class is defined in the vccorlib.h header, which is automatically included by the compiler. It is visible in
IntelliSense but not in Object Browser because it is not a public type defined in platform.winmd.

Compiler option: /ZW

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-array-class.md


  

 

Array Constructors

Syntax
Array(unsigned int size);
Array(T* data, unsigned int size);

ParametersParameters

RemarksRemarks

Array::get Method

Syntax
T& get(unsigned int index)  const;

ParametersParameters

Return ValueReturn Value

Array::Value Property

Syntax
property Array^ Value;

Return ValueReturn Value

See Also

Initializes a one-dimensional, modifiable array of types specified by the class template parameter, T.

T
Class template parameter.

size
The number of elements in the array.

data
A pointer to an array of data of type T  that is used to initialize this Array object.

For more information about how to create instances of Platform::Array, see Array and WriteOnlyArray.

Retrieves a reference to the array element at the specified index location.

index
A zero-based index that identifies an element in the array. The minimum index is 0 and the maximum index is
the value specified by the size  parameter in the Array constructor.

The array element specified by the index  parameter.

Retrieves a handle to the current array.

A handle to the current array.

Platform namespace



Array and WriteOnlyArray



 

Platform::ArrayReference Class
11/9/2018 • 2 minutes to read • Edit Online

Syntax
class ArrayReference

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

ArrayReference::ArrayReference Initializes a new instance of the ArrayReference  class.

Public OperatorsPublic Operators

NAME DESCRIPTION

ArrayReference::operator() Operator Converts this ArrayReference  to a Platform::Array<T>^*

.

ArrayReference::operator= Operator Assigns the contents of another ArrayReference  to this
instance.

Exceptions
RemarksRemarks

RequirementsRequirements

ArrayReference::ArrayReference Constructor

SyntaxSyntax

ArrayReference  is an optimization type that you can substitute for Platform::Array^ in input parameters when
you want to fill a C-style array with the input data.

By using ArrayReference  to fill a C-style array, you avoid the extra copy operation that would be involved in
copying first to a Platform::Array  variable, and then into the C-style array. When you use ArrayReference , there
is only one copy operation. For a code example, see Array and WriteOnlyArray.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Header: vccorlib.h

Initializes a new instance of the Platform::ArrayReference class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-arrayreference-class.md


 

 

ArrayReference(TArg* ataArg, unsigned int sizeArg, bool needsInitArg = false);
ArrayReference(ArrayReference&& otherArg)

ParametersParameters

RemarksRemarks

ArrayReference::operator= Operator

SyntaxSyntax

ArrayReference& operator=(ArrayReference&& otherArg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ArrayReference::operator() Operator

SyntaxSyntax

Array<TArg>^ operator ();

Return ValueReturn Value

RemarksRemarks

See Also

dataArg
A pointer to the array data.

sizeArg
The number of elements in the source array.

otherArg
An ArrayReference  object whose data will be moved to initialize the new instance.

Assigns the specified object to the current Platform::ArrayReference object by using move semantics.

otherArg
The object that is moved to the current ArrayReference  object.

A reference to an object of type ArrayReference .

Platform::ArrayReference  is a standard C++ class template, not a ref class.

Converts the current Platform::ArrayReference object back to a Platform::Array class.

A handle-to-object of type Array<TArg>^

Platform::ArrayReference and Platform::Array are standard C++ class templates, not ref classes.

Platform namespace



Platform::Boolean value class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public value struct Boolean

MembersMembers

RequirementsRequirements

See Also

Represents a Boolean value. The equivalent of bool .

Boolean has the Equals(), GetHashCode(), and ToString() methods derived from the Platform::Object Class, and the
GetTypeCode() method derived from the Platform::Type Class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-boolean-value-class.md


 

Platform::Box Class
11/8/2018 • 2 minutes to read • Edit Online

SyntaxSyntax

ref class Box abstract;

RequirementsRequirements

MembersMembers

MEMBER DESCRIPTION

Box Creates a Box  that can encapsulate a value of the specified
type.

operator Box<const T>^ Enables boxing conversions from a const  value class T  or 
enum  class T  to Box<T> .

operator Box<const volatile T>^ Enables boxing conversions from a const volatile  value
class T  or enum  type T  to Box<T> .

operator Box<T>^ Enables boxing conversions from a value class T  to Box<T> .

operator Box<volatile T>^ Enables boxing conversions from a volatile  value class T

or enum  type T  to Box<T> .

Box::operator T Enables boxing conversions from a value class T  or enum

class T  to Box<T> .

Value property Returns the value that is encapsulated in the Box  object.

Box::Box Constructor

SyntaxSyntax

Box(T valueArg);

ParametersParameters

Enables a value type such as Windows::Foundation::DateTime  or a scalar type such as int  to be stored in a 
Platform::Object  type. It is usually not necessary to use Box  explicitly because boxing happens implicitly when

you cast a value type to Object^ .

Header: vccorlib.h

Namespace: Platform

Creates a Box  that can encapsulate a value of the specified type.

valueArg

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-box-class.md


 

 

 

 

Box::operator Box<const T>^ Operator

SyntaxSyntax

operator Box<const T>^(const T valueType);

ParametersParameters

Return ValueReturn Value

Box::operator Box<const volatile T>^ Operator

SyntaxSyntax

operator Box<const volatile T>^(const volatile T valueType);

ParametersParameters

Return ValueReturn Value

Box::operator Box<T>^ Operator

SyntaxSyntax

operator Box<const T>^(const T valueType);

ParametersParameters

Return ValueReturn Value

Box::operator Box<volatile T>^ Operator

SyntaxSyntax

The type of value to be boxed—for example, int , bool , float64 , DateTime .

Enables boxing conversions from a const  value class T  or enum  class T  to Box<T> .

T
Any value class, value struct, or enum type. Includes the built-in types in the default namespace.

A Platform::Box<T>^  instance that represents the original value boxed in a ref class.

Enables boxing conversions from a const volatile  value class T  or enum  type T  to Box<T> .

T
Any enum type, value class, or value struct. Includes the built-in types in the default namespace.

A Platform::Box<T>^  instance that represents the original value boxed in a ref class.

Enables boxing conversions from a value class T  to Box<T> .

T
Any enum type, value class, or value struct. Includes the built-in types in the default namespace.

A Platform::Box<T>^  instance that represents the original value boxed in a ref class.

Enables boxing conversions from a volatile  value class T  or enum  type T  to Box<T> .



 

 

operator Box<volatile T>^(volatile T valueType);

ParametersParameters

Return ValueReturn Value

Box::operator T Operator

SyntaxSyntax

operator Box<T>^(T valueType);

ParametersParameters

Return ValueReturn Value

Box::Value Property

SyntaxSyntax

virtual property T Value{
   T get();
}

Return ValueReturn Value

See Also

T
Any enum type, value class, or value struct. Includes the built-in types in the default namespace.

A Platform::Box<T>^  instance that represents the original value boxed in a ref class.

Enables boxing conversions from a value class T  or enum  class T  to Box<T> .

T
Any enum type, value class, or value struct. Includes the built-in types in the default namespace.

A Platform::Box<T>^  instance that represents the original value boxed in a ref class.

Returns the value that is encapsulated in the Box  object.

Returns the boxed value with the same type as it originally had before it was boxed.

Platform namespace
Boxing



Platform::CallbackContext Enumeration
10/31/2018 • 2 minutes to read • Edit Online

Syntax
enum class CallbackContext {};

MembersMembers

TYPE CODE DESCRIPTION

Any The callback function can execute on any thread context.

Same The callback function can execute on only the thread context
that started the asynchronous operation.

RequirementsRequirements

Specifies the thread context in which a callback function (event handler) executes.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-callbackcontext-enumeration.md


Platform::ChangedStateException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class ChangedStateException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when the internal state of an object has changed, thereby invalidating the results of the method.

One example where this exception is thrown is when methods of a collection iterator or a collection view are called
after the parent collection has changed, invalidating the results of the method.

For more information, see the COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-changedstateexception-class.md


Platform::ClassNotRegisteredException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class ClassNotRegisteredException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when a COM class has not been registered.

For more information, see the COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-classnotregisteredexception-class.md


Platform::COMException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class COMException : Exception,    IException,    IPrintable,    IEquatable

MembersMembers

MEMBER DESCRIPTION

COMException Initializes a new instance of the COMException class.

MEMBER DESCRIPTION

Exception::HResult The HRESULT that corresponds to the exception.

Exception::Message Message that describes the exception.

Derived Exceptions

NAME UNDERLYING HRESULT DESCRIPTION

COMException user-defined hresult Thrown when an unrecognized
HRESULT is returned from a COM
method call.

AccessDeniedException E_ACCESSDENIED Thrown when access is denied to a
resource or feature.

Represents COM errors that occur during application execution. COMException is the base class for a set of
predefined, standard exceptions.

The COMException class inherits from the Object class and the IException, IPrintable, and IEquatable
interfaces.

COMException also has the following types of members.

Constructors

Methods

The COMException class inherits the Equals(), Finalize(), GetHashCode(), GetType(), MemberwiseClose(), and
ToString() methods from the Platform::Object Class.

Properties

The COMException class has the following properties.

The following predefined exceptions are derived from COMException. They differ from COMException only in
their name, the name of their constructor, and their underlying HRESULT value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-comexception-class.md


 

ChangedStateException E_CHANGED_STATE Thrown when methods of a collection
iterator or a collection view are called
after the parent collection has
changed, invalidating the results of
the method.

ClassNotRegisteredException REGDB_E_CLASSNOTREG Thrown when a COM class has not
been registered.

DisconnectedException RPC_E_DISCONNECTED Thrown when an object is
disconnected from its clients.

FailureException E_FAIL Thrown when an operation fails.

InvalidArgumentException E_INVALIDARG Thrown when one of the arguments
provided to a method is not valid.

InvalidCastException E_NOINTERFACE Thrown when a type can't be cast to
another type.

NotImplementedException E_NOTIMPL Thrown if an interface method hasn't
been implemented on a class.

NullReferenceException E_POINTER Thrown when there is an attempt to
dereference a null object reference.

OperationCanceledException E_ABORT Thrown when an operation is aborted.

OutOfBoundsException E_BOUNDS Thrown when an operation attempts
to access data outside the valid range.

OutOfMemoryException E_OUTOFMEMORY Thrown when there's insufficient
memory to complete the operation.

NAME UNDERLYING HRESULT DESCRIPTION

RequirementsRequirements

COMException::COMException Constructor

SyntaxSyntax

COMException( int hresult )

ParametersParameters

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Intializes a new instance of the COMException class.

hresult
The error HRESULT that is represented by the exception.



   

   

COMException::HResult Property

SyntaxSyntax

public:
    property int HResult { int get();}

Property Value

RemarksRemarks

COMException::Message Property

SyntaxSyntax

public:property String^ Message {    String^ get();}

Property ValueProperty Value

See Also

The HRESULT that corresponds to the exception.

An HRESULT value that specifies the error.

For more information about how to interpret the HRESULT value, see Structure of COM Error Codes.

Message that describes the exception.

A description of the exception.

Platform namespace

https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes


Platform::Delegate Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public delegate void delegate_name();

MembersMembers

RemarksRemarks

RequirementsRequirements

See Also

Represents a function object.

The Delegate class has the Equals(), GetHashCode(), and ToString() methods derived from the Platform::Object
Class.

Use the delegate keyword to create delegates; do not use Platform::Delegate explicitly. For more information, see
Delegates. For an example of how to create and consume a delegate, see Creating Windows Runtime Components
in C++.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-delegate-class.md
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp


Platform::DisconnectedException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class DisconnectedException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when a COM proxy object attempts to reference a COM server that no longer exists

When class A references another class (class B) that is in a separate process, class A requires a proxy object to
communicate with the out-of-process COM server that holds class B. Sometimes the server can go out of memory
without class A knowing about it. In that case the RPC_E_DISCONNECTED exception is thrown and it gets
translated to Platform::DisconnectedException. One scenario in which is occurs is when an event source invokes a
delegate that was passed to it, but the delegate has been destroyed at some point after it subscribed to the event.
When this happens, the event source removes that delegate from its invocation list.

For more information, see the COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-disconnectedexception-class.md


Platform::Enum Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public class Enum

MembersMembers

RemarksRemarks

RequirementsRequirements

See Also

A value class that represents a set of named constants.

The Enum class inherits the Equals(), GetHashCode(), and ToString() methods from the Platform::Object Class.

Use the public enum class keyword to create enumerations. Do not use the Platform::Enum type explicitly. For
more information, see Enums.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-enum-class.md


Platform::Exception Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class Exception : Object,    IException,    IPrintable,    IEquatable

MembersMembers

ConstructorsConstructors

MEMBER DESCRIPTION

Exception::Exception Initializes a new instance of the Exception  class.

MethodsMethods

MEMBER DESCRIPTION

Exception::CreateException Creates an exception that represents the specified HRESULT
value.

PropertiesProperties

MEMBER DESCRIPTION

Exception::HResult The HRESULT that corresponds to the exception.

Exception::Message A message that describes the exception. This value is read-
only and cannot be modified after the Exception  is
constructed.

RequirementsRequirements

Represents errors that occur during application execution. Custom exception classes can't be derived from 
Platform::Exception . If you require a custom exception, you can use Platform::COMException  and specify an app-

specific HRESULT.

The Exception  class inherits from the Object  class and the IException , IPrintable , and IEquatable  interfaces.

The Exception  class also has the following kinds of members.

The Exception  class inherits the Equals() , Finalize() , GetHashCode() , GetType() , MemberwiseClose() , and 
ToString()  methods from the Platform::Object Class. The Exception  class also has the following method.

The Exception class also has the following properties.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-exception-class.md


   

 

     

Exception::CreateException Method

SyntaxSyntax

Exception^ CreateException(int32 hr);
Exception^ CreateException(int32 hr, Platform::String^ message);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Exception::Exception Constructor

SyntaxSyntax

Exception(int32 hresult);
Exception(int32 hresult, ::Platform::String^ message);

ParametersParameters

Exception::HResult Property

SyntaxSyntax

public:
    property int HResult { int get(); }

Creates a Platform::Exception^ from a specified HRESULT value.

hr
An HRESULT value that you typically get from a call to a COM method. If the value is 0, which is equal to S_OK,
this method throws Platform::InvalidArgumentException because COM methods that succeed should not throw
exceptions.

message
A string that describes the error.

An exception that represents the error HRESULT.

Use this method to create an exception out of an HRESULT that is returned, for example, from a call to a COM
interface method. You can use the overload that takes a String^ parameter to provide a custom message.

It is strongly recommended to use CreateException to create a strongly-typed exception rather than creating a
Platform::COMException that merely contains the HRESULT.

Intializes a new instance of the Exception class.

hresult
The error HRESULT that is represented by the exception.

message
A user-specified message, such as prescriptive text, that is associated with the exception. In general you should
prefer the second overload in order to provide a descriptive message that is as specific as possible about how and
why the error has occurred.

The HRESULT that corresponds to the exception.



   

Property Value

RemarksRemarks

Exception::Message Property

SyntaxSyntax

public:property String^ Message;

Property Value

RemarksRemarks

See Also

An HRESULT value.

Most exceptions start out as COM errors, which are returned as HRESULT values. C++/CX converts these values
into Platform::Exception^ objects, and this property stores the value of the original error code.

Message that describes the error.

In exceptions that originate in the Windows Runtime, this is a system-supplied description of the error.

In Windows 8, this property is read-only because exceptions in that version of the Windows Runtime are
transported across the ABI only as HRESULTS. In Windows 8.1, richer exception information is transported across
the ABI and you can provide a custom message that other components can access programmatically. For more
information, see Exceptions (C++/CX).

Platform namespace



Platform::FailureException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class FailureException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when the operation has failed. It is the equivalent of the E_FAIL HRESULT.

For more information, see the COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-failureexception-class.md


 

Platform::Guid value class
2/25/2019 • 2 minutes to read • Edit Online

Syntax
public value struct Guid

MembersMembers

MEMBER DESCRIPTION

Guid Initializes a new instance of a Platform::Guid .

operator== Equals operator.

operator!= Not equals operator.

operator< Less than operator.

operator() Converts a Platform::Guid  to a GUID .

RemarksRemarks

RequirementsRequirements

Guid::Guid Constructors

SyntaxSyntax

Represents a GUID type in the Windows Runtime type system.

Platform::Guid  has the Equals() , GetHashCode() , and ToString()  methods derived from the Platform::Object
Class, and the GetTypeCode()  method derived from the Platform::Type Class. Platform::Guid  also has the
following members.

To generate a new Platform::Guid , use the Windows::Foundation::GuidHelper::CreateNewGuid static method.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Initializes a new instance of a Platform::Guid .

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-guid-value-class.md
https://msdn.microsoft.com/library/windows/desktop/aa373931
https://docs.microsoft.com/uwp/api/windows.foundation.guidhelper.createnewguid#Windows_Foundation_GuidHelper_CreateNewGuid


Guid(
    unsigned int a,
    unsigned short b,
    unsigned short c,
    unsigned char d,
    unsigned char e,
    unsigned char f,
    unsigned char g,
    unsigned char h,
    unsigned char i,
    unsigned char j,
    unsigned char k );

Guid(GUID m);

Guid(
    unsigned int a,
    unsigned short b,
    unsigned short c,
    Array<unsigned char>^ n );

ParametersParameters
a
The first 4 bytes of the GUID .

b
The next 2 bytes of the GUID .

c
The next 2 bytes of the GUID .

d
The next byte of the GUID .

e
The next byte of the GUID .

f
The next byte of the GUID .

g
The next byte of the GUID .

h
The next byte of the GUID .

i
The next byte of the GUID .

j
The next byte of the GUID .

k
The next byte of the GUID .

m
A GUID  in the form a GUID structure.

n
The remaining 8 bytes of the GUID .

https://msdn.microsoft.com/library/windows/desktop/aa373931


 

 

 

Guid::operator== Operator

SyntaxSyntax

static bool Platform::Guid::operator==(Platform::Guid guid1, Platform::Guid guid2);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Guid::operator!= Operator

SyntaxSyntax

static bool Platform::Guid::operator!=(Platform::Guid guid1, Platform::Guid guid2);

ParametersParameters

Return ValueReturn Value

Guid::operator< Operator

SyntaxSyntax

static bool Platform::Guid::operator<(Platform::Guid guid1, Platform::Guid guid2);

ParametersParameters

Compares two Platform::Guid  instances for equality.

guid1
The first Platform::Guid  to compare.

guid2
The second Platform::Guid  to compare.

True if the two Platform::Guid  instances are equal.

Prefer using the ==  operator instead of the Windows::Foundation::GuidHelper::Equals static method.

Compares two Platform::Guid  instances for inequality.

guid1
The first Platform::Guid  to compare.

guid2
The second Platform::Guid  to compare.

True if the two Platform::Guid  instances are not equal.

Compares two Platform::Guid  instances for ordering.

guid1
The first Platform::Guid  to compare.

guid2
The second Platform::Guid  to compare.

https://docs.microsoft.com/uwp/api/windows.foundation.guidhelper.equals


 

Return ValueReturn Value

Guid::operator() Operator

SyntaxSyntax

const GUID& Platform::Guid::operator();

Return ValueReturn Value

See Also

True if guid1 is ordered before guid2. The ordering is lexicographic after treating each Platform::Guid  as if it's an
array of four 32-bit unsigned values. This isn't the ordering used by SQL Server or the .NET Framework, nor is it
the same as lexicographical ordering by string representation.

This operator is provided so that Guid  objects can be more easily consumed by the C++ standard library.

Implicitly converts a Platform::Guid  to a GUID structure.

A GUID structure.

Platform namespace

https://msdn.microsoft.com/library/windows/desktop/aa373931
https://msdn.microsoft.com/library/windows/desktop/aa373931


 

Platform::IBox Interface
10/31/2018 • 2 minutes to read • Edit Online

Syntax
template <typename T>
interface class IBox

ParametersParameters

RemarksRemarks

RequirementsRequirements

MembersMembers

METHOD DESCRIPTION

Value Returns the unboxed value that was previously stored in this 
IBox  instance.

IBox::Value Property

SyntaxSyntax

property T Value {T get();}

ParametersParameters

Property Value/Return ValueProperty Value/Return Value

RemarksRemarks

The Platform::IBox interface is the C++ name for the Windows::Foundation::IReference  interface.

T
The type of the boxed value.

The IBox<T>  interface is primarily used internally to represent nullable value types, as described in Value classes
and structs (C++/CX). The interface is also used to box value types that are passed to C++ methods that take
parameters of type Object^ . You can explicitly declare an input parameter as IBox<SomeValueType> . For an
example, see Boxing.

The Platform::IBox  interface inherits from the Platform::IValueType interface. IBox  has these members:

Properties

Returns the value that was originally stored in this object.

T
The type of the boxed value.

Returns the value that was originally stored in this object.

For an example, see Boxing.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-ibox-interface.md


See Also
Platform namespace



 

Platform::IBoxArray Interface
10/31/2018 • 2 minutes to read • Edit Online

Syntax
template <typename T>
interface class IBoxArray

ParametersParameters

RemarksRemarks

MembersMembers

METHOD DESCRIPTION

Value Returns the unboxed array that was previously stored in this 
IBoxArray  instance.

IBoxArray::Value Property

SyntaxSyntax

property T Value {T get();}

ParametersParameters

Property Value/Return ValueProperty Value/Return Value

RemarksRemarks

See Also

IBoxArray  is the wrapper for arrays of value types that are passed across the application binary interface (ABI) or
stored in collections of Platform::Object^  elements such as those in XAML controls.

T
The type of the boxed value in each array element.

IBoxArray  is the C++/CX name for Windows::Foundation::IReferenceArray .

The IBoxArray  interface inherits from the IValueType  interface. IBoxArray  also has these members:

Returns the value that was originally stored in this object.

T
The type of the boxed value.

Returns the value that was originally stored in this object.

For an example, see Boxing.

Array and WriteOnlyArray

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-iboxarray-interface.md


Platform::IDisposable Interface
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public interface class IDisposable

Attributes

MembersMembers

METHOD DESCRIPTION

Dispose Used to release unmanaged resources.

RequirementsRequirements

Used to release unmanaged resources.

GuidAttribute("de0cbaea-8065-4a45-b196-c9d443f9bab3")

VersionAttribute(NTDDI_WIN8)

The IDisposable interface inherits from the IUnknown interface. IDisposable also has the following types of
members:

Methods

The IDisposable interface has the following methods.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-idisposable-interface.md


 

 

Platform::IntPtr value class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public value struct IntPtr

MembersMembers

MEMBER DESCRIPTION

IntPtr::IntPtr Initializes a new instance of IntPtr.

IntPtr::op_explicit Operator Converts the specified parameter to an IntPtr or a pointer to
an IntPtr value.

IntPtr::ToInt32 Converts the current IntPtr to a 32-bit integer.

RequirementsRequirements

IntPtr::IntPtr Constructor

SyntaxSyntax

IntPtr( __int64 handle-or-pointer );   IntPtr( void* value );   IntPtr( int 32-bit_value );

ParametersParameters

IntPtr::op_explicit Operator

SyntaxSyntax

Represents an signed pointer or handle, and whose size is platform-specific (32-bit or 64-bit).

IntPtr has the following members:

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Initializes a new instance of an IntPtr with the specified value.

value
A 64-bit handle or pointer, or a pointer to a 64-bit value, or a 32-bit value that can be converted to a 64-bit value.

Converts the specified parameter to an IntPtr or a pointer to an IntPtr value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-intptr-value-class.md


 

static IntPtr::operator IntPtr( void* value1);   static IntPtr::operator IntPtr( int value2);   static 
IntPtr::operator void*( IntPtr value3 );

ParametersParameters

Return ValueReturn Value

IntPtr::ToInt32 Method

SyntaxSyntax

int32 IntPtr::ToInt32();

Return ValueReturn Value

See Also

value1
A pointer to a handle or IntPtr.

value2
An 32-bit integer that can be converted to an IntPtr.

value3
An IntPtr.

The first and second operators return an IntPtr. The third operator returns a pointer to the value represented by
the current IntPtr.

Converts the current IntPtr value to a 32-bit integer.

A 32-bit integer.

Platform namespace



Platform::InvalidArgumentException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class InvalidArgumentException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when one of the arguments provided to a method is not valid.

For more information, see the COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-invalidargumentexception-class.md


Platform::InvalidCastException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class InvalidCastException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when a cast or explicit conversion is invalid.

For more information, see the COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-invalidcastexception-class.md


Platform::IValueType Interface
10/31/2018 • 2 minutes to read • Edit Online

Syntax
interface class IValueType

See Also

Platform::IValueType  is an infrastructure interface that is implemented by value classes and value structs. Not to
be used explicitly in your code.

Platform namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-ivaluetype-interface.md


 

 

Platform::MTAThreadAttribute Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class MTAThreadAttribute sealed : Attribute

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

MTAThreadAttribute Constructor 1 constructor Initializes a new instance of the class.

Public MethodsPublic Methods

NAME DESCRIPTION

MTAThreadAttribute::Equals Determines whether the specified object is equal to the
current object.

MTAThreadAttribute::GetHashCode Returns the hash code for this instance.

MTAThreadAttribute::ToString Returns a string that represents the current object.

Inheritance Hierarchy

RequirementsRequirements

MTAThreadAttribute Constructor

SyntaxSyntax

public:MTAThreadAttribute();

MTAThreadAttribute::Equals

Indicates that the threading model for an application is multi-threaded apartment (MTA).

The MTAThreadAttribute attribute inherits from Platform::Object Class. MTAThreadAttribute also overloads or has
the following members:

Platform

Metadata: platform.winmd

Namespace: Platform

Initializes a new instance of the MTAThreadAttribute class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-mtathreadattribute-class.md


 

 

SyntaxSyntax

public:virtual override bool Equals( Object^ obj );

ParametersParameters

Return ValueReturn Value

MTAThreadAttribute::GetHashCode

SyntaxSyntax

public:int GetHashCode();

Return ValueReturn Value

MTAThreadAttribute::ToString

SyntaxSyntax

public:String^ ToString();

Return ValueReturn Value

See Also

Determines whether the specified object is equal to the current object.

obj
The object to compare.

true if the objects are equal; otherwise, false.

Returns the hash code for this instance.

The hash code for this instance.

Returns a string that represents the current object.

A string that represents the current object.

Platform Namespace



Platform::NotImplementedException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class NotImplementedException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when an interface member is not been implemented in a derived type.

For more information, see the COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-notimplementedexception-class.md


Platform::NullReferenceException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class NullReferenceException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when there is an attempt to dereference a null object reference.

For more information, see the COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-nullreferenceexception-class.md


  

Platform::Object Class
3/5/2019 • 2 minutes to read • Edit Online

Syntax
public ref class Object : Object

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

Object::Object Initializes a new instance of the Object class.

Public MethodsPublic Methods

NAME DESCRIPTION

Object::Equals Determines whether the specified object is equal to the
current object.

Object::GetHashCode Returns the hash code for this instance.

Object::ReferenceEquals Determines whether the specified Object instances are the
same instance.

ToString Returns a string that represents the current object. Can be
overridden.

GetType Gets a Platform::Type that describes the current instance.

Inheritance Hierarchy

RequirementsRequirements

Object::Equals Method

SyntaxSyntax

Provides common behavior for ref classes and ref structs in Windows Runtime apps. All ref class and ref struct
instances are implicitly convertible to Platform::Object^ and can override its virtual ToString method.

Object

Object

Header: vccorlib.h

Namespace: Platform

Determines whether the specified object is equal to the current object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-object-class.md


 

  

bool Equals(
    Object^ obj
)

ParametersParameters

Return ValueReturn Value

Object::GetHashCode Method

SyntaxSyntax

public:int GetHashCode();

Return ValueReturn Value

RemarksRemarks

Object::GetType Method

SyntaxSyntax

Object::GetType();

Property Value/Return ValueProperty Value/Return Value

RemarksRemarks

rootFrame->Navigate(TypeName(MainPage::typeid), e->Arguments);

obj
The object to compare.

true if the objects are equal, otherwise false.

Returns the IUnknown * identity value for this instance if it is a COM object, or a computed hash value if it is not
a COM object.

A numeric value that uniquely identifies this object.

You can use GetHashCode to create keys for objects in maps. You can compare hash codes by using
Object::Equals. If the code path is extremely critical and GetHashCode  and Equals  are not sufficiently fast, then
you can drop down to the underlying COM layer and do native IUnknown  pointer comparisons.

Returns a Platform::Type object that describes the runtime type of an object.

A Platform::Type object that describes the runtime type of the object.

The static Type::GetTypeCode can be used to get a Platform::TypeCode Enumeration value that represents the
current type. This is mostly useful for built-in types. The type code for any ref class besides Platform::String is
Object (1).

The Windows::UI::Xaml::Interop::TypeName class is used in the Windows APIs as a language-independent way
of passing type information between Windows components and apps. The TPlatform::Type Class has
operators for converting between Type  and TypeName .

Use the typeid operator to return a Platform::Type  object for a class name, for example when navigating
between XAML pages:

https://docs.microsoft.com/uwp/api/windows.ui.xaml.interop.typename


 

 

     

Object::Object Constructor

SyntaxSyntax

public:Object();

Object::ReferenceEquals Method

SyntaxSyntax

public:static bool ReferenceEquals(  Object^ obj1,   Object^ obj2);

ParametersParameters

Return ValueReturn Value

Object::ToString Method (C++/CX)

SyntaxSyntax

public:
virtual String^ ToString();

Return ValueReturn Value

public ref class Tree sealed
{
public:
    Tree(){}
    virtual Platform::String^ ToString() override
    {
      return "I’m a Tree";
    };
};

See Also

Initializes a new instance of the Object class.

Determines whether the specified Object instances are the same instance.

obj1
The first object to compare.

obj2
The second object to compare.

true if the two objects are the same; otherwise, false.

Returns a string that represents the current object.

A string that represents the current object. You can override this method to provide a custom string message
in your ref class or struct:

Platform Namespace
Platform::Type Class
Type System



Platform::ObjectDisposedException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class ObjectDisposedException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when an operation is performed on a disposed object.

For more information, see COMException.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-objectdisposedexception-class.md


Platform::OperationCanceledException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class OperationCanceledException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when an operation is aborted.

For more information, see the COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-operationcanceledexception-class.md


Platform::OutOfBoundsException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class OutOfBoundsException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when an operation attempts to access data outside the valid range.

For more information, see the COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-outofboundsexception-class.md


Platform::OutOfMemoryException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class OutOfMemoryException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when there's insufficient memory to complete the operation.

For more information, see the COMException class.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-outofmemoryexception-class.md


Platform::ReCreateException Method
11/15/2018 • 2 minutes to read • Edit Online

Syntax
static Exception^ ReCreateException(int hr)

ParametersParameters

Property Value/Return ValueProperty Value/Return Value

This method is for internal use only and is not intended for user code. Use the Exception::CreateException method
instead.

hr

Returns a new Platform::Exception^, based on the specified HRESULT.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-recreateexception-method.md


 

Platform::SizeT value class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class SizeT sealed : ValueType

MembersMembers

MEMBER DESCRIPTION

SizeT::SizeT constructor Initializes a new instance of the class with the specified value.

RequirementsRequirements

SizeT::SizeT constructor

SyntaxSyntax

SizeT( uint32 value1 );   SizeT( void* value2 );

ParametersParameters

See Also

Represents the size of an object. SizeT is an unsigned data type.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Initializes a new instance of SizeT with the specified value.

value1
An unsigned 32-bit value.

value2
Pointer to an unsigned 32-bit value.

Platform namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-sizet-value-class.md


 

 

Platform::STAThreadAttribute Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class STAThreadAttribute sealed : Attribute

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

STAThreadAttribute constructor 1 Initializes a new instance of the class.

Public MethodsPublic Methods

NAME DESCRIPTION

STAThreadAttribute::Equals Determines whether the specified object is equal to the
current object.

STAThreadAttribute::GetHashCode Returns the hash code for this instance.

STAThreadAttribute::ToString Returns a string that represents the current object.

Inheritance Hierarchy

RequirementsRequirements

STAThreadAttribute constructor

SyntaxSyntax

public:STAThreadAttribute();

STAThreadAttribute::Equals

Indicates that the threading model for an application is single-threaded apartment (STA).

The STAThreadAttribute attribute inherits from Platform::Object Class. STAThreadAttribute also overloads or has
the following members:

Platform

Header: collection.h

Namespace: Platform

Initializes a new instance of the STAThreadAttribute class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-stathreadattribute-class.md


 

 

SyntaxSyntax

public:virtual override bool Equals( Object^ obj );

ParametersParameters

Return ValueReturn Value

STAThreadAttribute::GetHashCode

SyntaxSyntax

public:int GetHashCode();

Return ValueReturn Value

STAThreadAttribute::ToString

SyntaxSyntax

public:String^ ToString();

Return ValueReturn Value

See Also

Determines whether the specified object is equal to the current object.

obj
The object to compare.

true if the objects are equal; otherwise, false.

Returns the hash code for this instance.

The hash code for this instance.

Returns a string that represents the current object.

A string that represents the current object.

Platform Namespace



Platform::String Class
10/31/2018 • 7 minutes to read • Edit Online

Syntax
public ref class String sealed : Object,
    IDisposable,
    IEquatable,
    IPrintable

Iterators

MEMBER DESCRIPTION

const char16* begin(String^ s) Returns a pointer to the beginning of the specified String
object.

const char16* end(String^ s) Returns a pointer past the end of the specified String object.

MembersMembers

MEMBER DESCRIPTION

String::String Initializes a new instance of the String class.

METHOD DESCRIPTION

String::Begin Returns a pointer to the beginning of the current string.

String::CompareOrdinal Compares two String  objects by evaluating the numeric
values of the corresponding characters in the two string
values represented by the objects.

String::Concat Concatenates the values of two String objects.

Represents a sequential collection of Unicode characters that is used to represent text. For more information and
examples, see Strings.

Two iterator functions, which are not members of the String class, can be used with the std::for_each  template
function to enumerate the characters in a String object.

The String class inherits from Object, and the IDisposable, IEquatable, and IPrintable interfaces.

The String class also has the following types of members.

Constructors

Methods

The String class inherits the Equals(), Finalize(), GetHashCode(), GetType(), MemberwiseClose(), and ToString()
methods from the Platform::Object Class. String also has the following methods.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-string-class.md


String::Data Returns a pointer to the beginning of the current string.

String::Dispose Frees or releases resources.

String::End Returns a pointer past the end of the current string.

String::Equals Indicates whether the specified object is equal to the current
object.

String::GetHashCode Returns the hash code for this instance.

String::IsEmpty Indicates whether the current String object is empty.

String::IsFastPass Indicates whether the current String object is participating in
a fast pass operation. In a fast pass operation, reference
counting is suspended.

String::Length Retrieves the length of the current String object.

String::ToString Returns a String object whose value is the same as the
current string.

METHOD DESCRIPTION

MEMBER DESCRIPTION

String::operator== Operator Indicates whether two specifed String objects have the same
value.

operator+ Operator Concatenates two String objects into a new String object.

String::operator> Operator Indicates whether the value of one String object is greater
than the value of a second String object.

String::operator>= Operator Indicates whether the value of one String object is greater
than or equal to the value of a second String object.

String::operator!= Operator Indicates whether two specifed String objects have different
values.

String::operator< Operator Indicates whether the value of one String object is less than
the value of a second String object.

RequirementsRequirements

Operators

The String class has the following operators.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Header vccorlib.h (included by default)



 

    

 

String::Begin Method

SyntaxSyntax

char16* Begin();

Return ValueReturn Value

String::CompareOrdinal Method

SyntaxSyntax

int CompareOrdinal( String^ str1, String^ str2 );

ParametersParameters

Return ValueReturn Value

VALUE CONDITION

-1 str1  is less than str2 .

0 str1  is equals str2 .

1 str1  is greater than str2 .

String::Concat Method

SyntaxSyntax

String^ Concat( String^ str1, String^ str2);

ParametersParameters

Returns a pointer to the beginning of the current string.

A pointer to the beginning of the current string.

Compares two String  objects by evaluating the numeric values of the corresponding characters in the two
string values represented by the objects.

str1
The first String object.

str2
The second String object.

An integer that indicates the lexical relationship between the two comparands. The following table lists the
possible return values.

Concatenates the values of two String objects.

str1
The first String object, or null .

str2
The second String object, or null .



    

 

 

 

Return ValueReturn Value

String::Data Method

SyntaxSyntax

const char16* Data();

Return ValueReturn Value

RemarksRemarks

String::Dispose Method

SyntaxSyntax

virtual override void Dispose();

String::End Method

SyntaxSyntax

char16* End();

Return ValueReturn Value

RemarksRemarks

String::Equals Method

SyntaxSyntax

bool String::Equals(Object^ str);
bool String::Equals(String^ str);

A new String^ object whose value is the concatenation of the values of str1  and str2 .

If str1  is null  and str2  is not, str1  is returned. If str2  is null  and str1  is not, str2  is returned. If str1

and str2  are both null , the empty string (L"") is returned.

Returns a pointer to the beginning of the object's data buffer as a C-style array of char16  ( wchar_t ) elements.

A pointer to the beginning of a const char16  array of Unicode characters ( char16  is a typedef for wchar_t ).

Use this method to convert from Platform::String^  to wchar_t* . When the String  object goes out of scope,
the Data pointer is no longer guaranteed to be valid. To store the data beyond the lifetime of the original String

object, use wcscpy_s to copy the array into memory that you have allocated yourself.

Frees or releases resources.

Returns a pointer past the end of the current string.

A pointer to past the end of the current string.

End() returns Begin() + Length.

Indicates whether the specified String has the same value as the current object.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/c-runtime-library/reference/strcpy-s-wcscpy-s-mbscpy-s


 

 

 

   

ParametersParameters

Return ValueReturn Value

RemarksRemarks

String::GetHashCode Method

SyntaxSyntax

virtual override int GetHashCode();

Return ValueReturn Value

String::IsEmpty Method

SyntaxSyntax

bool IsEmpty();

Return ValueReturn Value

String::IsFastPass Method

SyntaxSyntax

bool IsFastPass();

Return ValueReturn Value

RemarksRemarks

String::Length Method

str
The object to compare.

true if str  is equal to the current object; otherwise, false.

This method is equivalent to the String::CompareOrdinal. In the first overload, it is expected the str  parameter
can be cast to a String^ object.

Returns the hash code for this instance.

The hash code for this instance.

Indicates whether the current String object is empty.

true if the current String  object is null or the empty string (L""); otherwise, false.

Indicates whether the current String object is participating in a fast pass operation. In a fast pass operation,
reference counting is suspended.

true if the current String  object is fast-past; otherwise, false.

In a call to a function where a reference-counted object is a parameter, and the called function only reads that
object, the compiler can safely suspend reference counting and improve calling performance. There is nothing
useful that your code can do with this property. The system handles all the details.

Retrieves the number of characters in the current String  object.



 

 

SyntaxSyntax

unsigned int Length();

Return ValueReturn Value

RemarksRemarks

String^ str = "Hello";
int len = str->Length(); //len = 5

String::operator+ Operator

SyntaxSyntax

bool String::operator+( String^ str1, String^ str2);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

String::operator== Operator

SyntaxSyntax

bool String::operator==( String^ str1, String^ str2);

ParametersParameters

The number of characters in the current String  object.

The length of a String with no characters is zero. The length of the following string is 5:

The character array returned by the String::Data has one additional character, which is the terminating NULL or
'\0'. This character is also two bytes long.

Concatenates two String objects into a new String object.

str1
The first String  object.

str2
The second String  object, whose contents will be appended to str1 .

true if str1 is equal to str2; otherwise, false.

This operator creates a String^  object that contains the data from the two operands. Use it for convenience
when extreme performance is not critical. A few calls to " + " in a function will probably not be noticeable, but if
you are manipulating large objects or text data in a tight loop, then use the standard C++ mechanisms and types.

Indicates whether two specified String objects have the same text value.

str1
The first String  object to compare.

str2
The second String  object to compare.



 

 

 

Return ValueReturn Value

RemarksRemarks

String::operator>

SyntaxSyntax

bool String::operator>( String^ str1, String^ str2);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

String::operator>=

SyntaxSyntax

bool String::operator>=( String^ str1, String^ str2);

ParametersParameters

Return ValueReturn Value

String::operator!=

SyntaxSyntax

bool String::operator!=( String^ str1, String^ str2);

ParametersParameters

true if the contents of str1  are equal to str2 ; otherwise, false.

This operator is equivalent to String::CompareOrdinal.

Indicates whether the value of one String  object is greater than the value of a second String  object.

str1
The first String  object.

str2
The second String  object.

true if the value of str1  is greater than the value of str2 ; otherwise, false.

This operator is equivalent to explicitly calling String::CompareOrdinal and getting a result greater than zero.

Indicates whether the value of one String  object is greater than or equal to the value of a second String  object.

str1
The first String  object.

str2
The second String  object.

true if the value of str1  is greater than or equal to the value of str2 ; otherwise, false.

Indicates whether two specifed String  objects have different values.



 

 

 

Return ValueReturn Value

String::operator<

SyntaxSyntax

bool String::operator<( String^ str1, String^ str2);

ParametersParameters

Return ValueReturn Value

String::String Constructor

SyntaxSyntax

String();
String(char16* s);
String(char16* s, unsigned int n);

ParametersParameters

RemarksRemarks

ExampleExample

String^ s = L"Hello!";

String::ToString

str1
The first String  object to compare.

str2
The second String  object to compare.

true if str1  is not equal to str2 ; otherwise, false.

Indicates whether the value of one String  object is less than the value of a second String  object.

str1
The first String  object.

str2
The second String  object.

true if the value of str1 is less than the value of str2; otherwise, false.

Initializes a new instance of the String  class with a copy of the input string data.

s
A series of wide characters that initialize the string. char16

n
A number that specifies the length of the string.

If performance is critical and you control the lifetime of the source string, you can use Platform::StringReference
in place of String.



SyntaxSyntax

String^ String::ToString();

Return ValueReturn Value

See Also

Returns a String  object whose value is the same as the current string.

A String  object whose value is the same as the current string.

Platform namespace



 

Platform::StringReference Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
class StringReference

RemarksRemarks

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

StringReference::StringReference Two constructors for creating instances of StringReference .

Public MethodsPublic Methods

NAME DESCRIPTION

StringReference::Data Returns the string data as an array of char16 values.

StringReference::Length Returns the number of characters in the string.

StringReference::GetHSTRING Returns the string data as an HSTRING.

StringReference::GetString Returns the string data as a Platform::String^ .

Public OperatorsPublic Operators

NAME DESCRIPTION

StringReference::operator= Assigns a StringReference  to a new StringReference

instance.

StringReference::operator() Converts a StringReference  to a Platform::String^ .

RequirementsRequirements

StringReference::Data Method

An optimization type that you can use to pass string data from Platform::String^  input parameters to other
methods with a minimum of copy operations.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Header: vccorlib.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-stringreference-class.md


 

 

 

 

SyntaxSyntax

const ::default::char16 * Data() const;

Return ValueReturn Value

StringReference::GetHSTRING Method

SyntaxSyntax

__abi_HSTRING GetHSTRING() const;

Return ValueReturn Value

RemarksRemarks

StringReference::GetString Method

SyntaxSyntax

__declspec(no_release_return) __declspec(no_refcount)
    ::Platform::String^ GetString() const;

Return ValueReturn Value

StringReference::Length Method

SyntaxSyntax

unsigned int Length() const;

Return ValueReturn Value

RemarksRemarks

StringReference::operator= Operator

SyntaxSyntax

Returns the contents of this StringReference  as an array of char16 values.

An array of char16 UNICODE text characters.

Returns the contents of the string as an __abi_HSTRING .

An __abi_HSTRING  that contains the string data.

Returns the contents of the string as a Platform::String^ .

A Platform::String^  that contains the string data.

Returns the number of characters in the string.

An unsigned integer that specifies the number of characters in the string.

Assigns the specified object to the current StringReference  object.



 

 

StringReference& operator=(const StringReference& __fstrArg);
StringReference& operator=(const ::default::char16* __strArg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

StringReference::operator() Operator

SyntaxSyntax

__declspec(no_release_return) __declspec(no_refcount)
         operator ::Platform::String^() const;

Return ValueReturn Value

StringReference::StringReference Constructor

SyntaxSyntax

StringReference();
StringReference(const StringReference& __fstrArg);
StringReference(const ::default::char16* __strArg);
StringReference(const ::default::char16* __strArg, size_t __lenArg);

ParametersParameters

RemarksRemarks

__fstrArg
The address of a StringReference  object that is used to initialize the current StringReference  object.

__strArg
Pointer to an array of char16 values that is used to initialize the current StringReference  object.

A reference to an object of type StringReference .

Because StringReference  is a standard C++ class and not a ref class, it does not appear in the Object Browser.

Converts a StringReference  object to a Platform::String^  object.

A handle to an object of type Platform::String .

Initializes a new instance of the StringReference  class.

__fstrArg
The StringReference  whose data is used to initialize the new instance.

__strArg
Pointer to an array of char16 values that is used to initialize the new instance.

__lenArg
The number of elements in __strArg .

The first version of this constructor is the default constructor. The second version initializes a new StringReference
instance class from the object that's specified by the __fstrArg  parameter. The third and fourth overloads initialize
a new StringReference  instance from an array of char16 values. char16 represents a 16-bit UNICODE text
character.



See Also
Platform::StringReference Class



Platform::Type Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class Platform::Type :
    Platform::Object, Platform::Details::IEquatable,
    Platform::Details::IPrintable

RemarksRemarks

Public methods

Type::GetTypeCode Method Returns a Platform::TypeCode Enumeration value for the
object.

Type::ToString Method Returns the name of the type as specified in its metadata.

Public properties

Type::FullName Returns a Platform::String Class^ that represents the fully
qualified name of the type, and uses . (dot) as a separator,
not :: (double colon)—for example, MyNamespace.MyClass .

Conversion operators

operator Type^ Enables conversion from 
Windows::UI::Xaml::Interop::TypeName  to 
Platform::Type .

operator Windows::UI::Xaml::Interop::TypeName Enables conversion from Platform::Type  to 
Windows::UI::Xaml::Interop::TypeName .

RequirementsRequirements

Contains run-time information about a type—specifically, a string name and a typecode. Obtained by calling
Object::GetType on any object or using the typeid operator on a class or struct name.

The Type  class is useful in applications that must direct processing by using an if  or switch  statement that
branches based on the run-time type of an object. The type code that describes the category of a type is
retrieved by using the Type::GetTypeCode member function.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-type-class.md


 

    

 

Type::FullName Property

SyntaxSyntax

String^ FullName();

Return ValueReturn Value

ExampleExample

//  namespace is TestApp
MainPage::MainPage()
{
    InitializeComponent();
    Type^ t = this->GetType();
    auto s = t->FullName; // returns "TestApp.MainPage"
    auto s2 = t->ToString(); //also returns "TestApp.MainPage"
}

Type::GetTypeCode Method

SyntaxSyntax

Platform::TypeCode GetTypeCode();

Return ValueReturn Value

RemarksRemarks

Type::ToString Method

SyntaxSyntax

Platform::String^ ToString();

Return ValueReturn Value

See Also

Namespace: Platform

Metadata: platform.winmd

Retrieves the fully-qualified name of the current type in the form Namespace.Type .

The name of the type.

Retrieves a built-in types numerical type category.

One of the Platform::TypeCode enumerated values.

The equivalent of the GetTypeCode() member method is the typeid  property.

Retrieves a the name of the type.

A name of the type as specified in its metadata.

Platform namespace



operator Type^
3/5/2019 • 2 minutes to read • Edit Online

Syntax
Operator Type^(Windows::UI::Xaml::Interop::TypeName typeName);

Return ValueReturn Value

RemarksRemarks

rootFrame->Navigate(TypeName(MainPage::typeid), e->Arguments);

ExampleExample

// Convert from Type to TypeName
TypeName tn = TypeName(MainPage::typeid);

// Convert back from TypeName to Type
Type^ tx2 = (Type^)(tn);

.NET Framework Equivalent

RequirementsRequirements

See Also

Enables conversion from Windows::UI::Xaml::Interop::TypeName to Platform::Type .

Returns a Platform::Type  when given a Windows::UI::Xaml::Interop::TypeName.

TypeName  is the language-neutral Windows Runtime struct for representing type information. Platform::Type is
specific to C++ and can’t be passed across the application binary interface (ABI). Here's one use of TypeName , in
the Navigate function:

The next example shows how to convert between TypeName  and Type .

.NET Framework programs project TypeName  as Type

operator Windows::UI::Xaml::Interop::TypeName
Platform::Type Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/operator-type-hat.md
https://docs.microsoft.com/uwp/api/windows.ui.xaml.interop.typename
https://docs.microsoft.com/uwp/api/windows.ui.xaml.interop.typename
https://docs.microsoft.com/uwp/api/windows.ui.xaml.controls.frame.navigate
https://msdn.microsoft.com/en-us/library/system.type(v=vs.110).aspx


Platform::TypeCode Enumeration
10/31/2018 • 2 minutes to read • Edit Online

Syntax
enum class TypeCode {};

MembersMembers

TYPE CODE DESCRIPTION

Boolean A Platform::Boolean type.

Char16 A default::char16 type.

DateTime A DateTime type.

Decimal A numeric type.

Double A default::float64 type.

Empty Void

Int16 A default::int16 type.

Int32 A default::int32 type.

Int64 A default::int64 type.

Int8 A default::int8 type.

Object A Platform::Object type.

Single A default::float32 type.

String A Platform::String type.

UInt16 A default::uint16 type.

UInt32 A default::uint32 type.

UInt64 A default::uint64 type.

UInt8 A default::uint8 type.

RequirementsRequirements

Specifies a numeric category that represents a built-in type.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-typecode-enumeration.md


Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd



Platform::UIntPtr value class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public value struct UintPtr

RequirementsRequirements

See Also

Represents an unsigned pointer whose size is appropriate for the platform (32-bit or 64-bit).

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-uintptr-value-class.md


 

Platform::ValueType Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class ValueType : Object

Public methods

ValueType::ToString Returns a string representation of the object. Inherited from
Platform::Object.

RemarksRemarks

RequirementsRequirements

ValueType::ToString Method

SyntaxSyntax

Platform::String ToString();

Return ValueReturn Value

See Also

The base class for instances of value types.

The ValueType class is used to construct value types. ValueType is derived from Object, which has basic members.
However, the compiler detaches those basic members from value types that are derived from the ValueType class.
The compiler reattaches those basic members when a value type is boxed.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Returns a string representation of the object.

A Platform::String that represents the value.

Platform namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-valuetype-class.md


 

Platform::WeakReference Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
class WeakReference

ParametersParameters

MembersMembers

ConstructorsConstructors

MEMBER DESCRIPTION

WeakReference::WeakReference Initializes a new instance of the WeakReference class.

MethodsMethods

MEMBER DESCRIPTION

WeakReference::Resolve Returns a handle to the underlying ref class, or nullptr if the
object no longer exists.

OperatorsOperators

MEMBER DESCRIPTION

WeakReference::operator= Assigns a new value to the WeakReference object.

WeakReference::operator BoolType Implements the safe bool pattern.

RemarksRemarks

WeakReference::operator=

SyntaxSyntax

WeakReference& operator=(decltype(__nullptr));
WeakReference& operator=(const WeakReference& otherArg);
WeakReference& operator=(WeakReference&& otherArg);
WeakReference& operator=(const volatile ::Platform::Object^ const otherArg);

RemarksRemarks

Represents a weak reference to an instance of a ref class.

The WeakReference class itself is not a ref class and therefore it does not inherit from Platform::Object^ and
cannot be used in the signature of a public method.

Assigns a value to a WeakReference.

The last overload in the list above enables you to assign a ref class to a WeakReference variable. In this case the ref

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-weakreference-class.md


 

    

 

WeakReference::operator BoolType

SyntaxSyntax

BoolType BoolType();

WeakReference::Resolve Method (Platform namespace)

SyntaxSyntax

template<typename T>
T^ Resolve() const;

ParametersParameters

Property Value/Return ValueProperty Value/Return Value

ExampleExample

Bar^ bar = ref new Bar();
//use bar...

if (bar != nullptr)
{
    WeakReference wr(bar);
    Bar^ newReference = wr.Resolve<Bar>();
}

WeakReference::WeakReference Constructor

SyntaxSyntax

WeakReference();
WeakReference(decltype(__nullptr));
WeakReference(const WeakReference& otherArg);
WeakReference(WeakReference&& otherArg);
explicit WeakReference(const volatile ::Platform::Object^ const otherArg);

ExampleExample

MyClass^ mc = ref new MyClass();
WeakReference wr(mc);
MyClass^ copy2 = wr.Resolve<MyClass>();

class is downcast to Platform::Object^. You restore the original type later by specifying it as the argument for the
type parameter in the WeakReference::Resolve<T> member function.

Implements the safe bool pattern for the WeakReference class. Not to be called explicitly from your code.

Returns a handle to the original ref class, or nullptr  if the object no longer exists.

A handle to the ref class that the WeakReference object was previously associated with, or nullptr.

Note that the type parameter is T, not T^.

Provides various ways to construct a WeakReference.



See Also
Platform namespace



 

Platform::WriteOnlyArray Class
11/8/2018 • 2 minutes to read • Edit Online

Syntax
private ref class WriteOnlyArray<T, 1>

MembersMembers

Public MethodsPublic Methods

NAME DESCRIPTION

WriteOnlyArray::begin An iterator that points to the first element of the array.

WriteOnlyArray::Data A pointer to the data buffer.

WriteOnlyArray::end An iterator that points to one past the last element in the
array.

WriteOnlyArray::FastPass Indicates whether the array can use the FastPass mechanism,
which is an optimization transparently performed by the
system. Don’t use this in your code

WriteOnlyArray::Length Returns the number of elements in the array.

WriteOnlyArray::set Sets the specified element to the specified value.

Inheritance Hierarchy

RequirementsRequirements

WriteOnlyArray::begin Method

Represents a one-dimensional array that's used as an input parameter when the caller passes an array for the
method to fill.

This ref class is declared as private in vccorlib.h; therefore, it's not emitted in metadata and is only consumable
from C++. This class is intended only for use as an input parameter that receives an array that the caller has
allocated. It is not constructible from user code. It enables a C++ method to write directly into that array—a
pattern that's known as the FillArray pattern. For more information, see Array and WriteOnlyArray.

These methods have internal accessibility—that is, they are only accessible within the C++ app or component.

WriteOnlyArray

Compiler option: /ZW

Metadata: Platform.winmd

Namespace: Platform

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-writeonlyarray-class.md


 

 

 

SyntaxSyntax

T* begin() const;

Return ValueReturn Value

RemarksRemarks

WriteOnlyArray::Data Property

SyntaxSyntax

property T* Data{
   T* get() const;
}

Return ValueReturn Value

WriteOnlyArray::end Method

SyntaxSyntax

T* end() const;

Return ValueReturn Value

RemarksRemarks

WriteOnlyArray::FastPass Property

SyntaxSyntax

property bool FastPass{
   bool get() const;
}

Return ValueReturn Value

WriteOnlyArray::get Method

Returns a pointer to the first element in the array.

A pointer to the first element in the array.

This iterator can be used with STL algorithms such as std::sort  to operate on elements in the array.

Pointer to the data buffer.

A pointer to the raw array bytes.

Returns a pointer to one past the last element in the array.

A pointer iterator to one past the last element in the array.

This iterator can be used with STL algorithms to perform operations such as std::sort  on the array elements.

Indicates whether the internal FastPass optimization can be performed. Not intended for use by user code.

Boolean value that indicates whether the array is FastPass.



 

 

SyntaxSyntax

T& get(unsigned int indexArg) const;

ParametersParameters

Return ValueReturn Value

WriteOnlyArray::Length Property

SyntaxSyntax

property unsigned int Length{
   unsigned int get() const;
}

Return ValueReturn Value

WriteOnlyArray::set Function

SyntaxSyntax

T& set(
   unsigned int indexArg,
   T valueArg);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

See Also

Returns the element at the specified index.

indexArg
The index to use.

Returns the number of elements in the caller-allocated array.

The number of elements in the array.

Sets the specified value at the specified index in the array.

indexArg
The index of the element to set.

valueArg
The value to set at indexArg .

A reference to the element that was just set.

For more information about how to interpret the HRESULT value, see Structure of COM Error Codes.

Platform Namespace
Creating Windows Runtime Components in C++

https://docs.microsoft.com/windows/desktop/com/structure-of-com-error-codes
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp


Platform::WrongThreadException Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class WrongThreadException : COMException,    IException,    IPrintable,    IEquatable

RemarksRemarks

RequirementsRequirements

See Also

Thrown when a thread calls by way of an interface pointer for a proxy object that doesn't belong to the thread's
apartment.

For more information, see the COMException.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform

Metadata: platform.winmd

Platform::COMException Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-wrongthreadexception-class.md


Platform::Collections Namespace
10/31/2018 • 2 minutes to read • Edit Online

Syntax
#include <collection.h>
using namespace Platform::Collections;

MembersMembers

NAME DESCRIPTION

Platform::Collections::BackInsertIterator Class Represents an iterator that inserts an element at the end of a
collection.

Platform::Collections::InputIterator Class Represents an iterator that inserts an element at the
beginning of a collection.

Platform::Collections::Map Class Represents a modifiable collection of key-value pairs that are
accessed by a key. Similar to std::map.

Platform::Collections::MapView Class Represents a read-only collection of key-value pairs that are
accessed by a key.

Platform::Collections::Vector Class Represents a modifiable sequence of elements. Similar to
std::vector.

Platform::Collections::VectorIterator Class Represents an iterator that traverses a Vector  collection.

Platform::Collections::VectorView Class Represents a read-only sequence of elements.

The Platform::Collections namespace contains the Map , MapView , Vector , and VectorView  classes. These classes
are concrete implementations of the corresponding interfaces that are defined in the
Windows::Foundation::Collections namespace. The concrete collection types are not portable across the ABI (for
example when a Javascript or C# program calls into a C++ component), but they are implicitly convertible to
their corresponding interface types. For example, if you implement a public method that populates and returns a
collection, then use Platform::Collections::Vector to implement the collection internally and use
Windows::Foundation::Collections::IVector as the return type. For more information, see Collections and Creating
Windows Runtime Components in C++.

You can construct a Platform::Collections::Vector from a std::vector and a Platform::Collections::Map from a
std::map.

In addition, the Platform::Collections namespace provides support for back insert and input iterators, and Vector

and VectorView  iterators.

You must include ( #include ) the collection.h header to use the types in the Platform::Collections namespace.

This namespace contains the following members.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-namespace.md
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVector_T_
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/map-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/map-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class


Platform::Collections::VectorViewIterator Class Represents an iterator that traverses a VectorView

collection.

NAME DESCRIPTION

Inheritance hierarchy

RequirementsRequirements

See also

Platform namespace

Metadata: platform.winmd

Namespace: Platform::Collections

Compiler option: /ZW

Platform Namespace



 

Platform::Collections::BackInsertIterator Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
template <typename T>
class BackInsertIterator :
public ::std::iterator<::std::output_iterator_tag, void, void, void, void>;

ParametersParameters

RemarksRemarks

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

BackInsertIterator::BackInsertIterator Initializes a new instance of the BackInsertIterator class.

Public OperatorsPublic Operators

NAME DESCRIPTION

BackInsertIterator::operator* Operator Retrieves a reference to the current BackInsertIterator.

BackInsertIterator::operator++ Operator Returns a reference to the current BackInsertIterator. The
iterator is unmodified.

BackInsertIterator::operator= Operator Appends the specified object to the end of the current
sequential collection.

Inheritance Hierarchy

RequirementsRequirements

BackInsertIterator::BackInsertIterator Constructor

Represents an iterator that inserts, rather than overwrites, elements into the back end of a sequential collection.

T
The type of item in the current collection.

The BackInsertIterator class implements the rules required by the back_insert_iterator Class.

BackInsertIterator

Header: collection.h

Namespace: Platform::Collections

Initializes a new instance of the BackInsertIterator  class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-backinsertiterator-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/back-insert-iterator-class


 

 

 

Syntax

explicit BackInsertIterator(
   Windows::Foundation::Collections::IVector<T>^ v);

ParametersParameters

RemarksRemarks

BackInsertIterator::operator= Operator

Syntax
BackInsertIterator& operator=( const T& t);

ParametersParameters

Return ValueReturn Value

BackInsertIterator::operator* Operator

Syntax
BackInsertIterator& operator*();

Return ValueReturn Value

RemarksRemarks

BackInsertIterator::operator++ Operator

Syntax

v
An IVector<T> object.

A BackInsertIterator  inserts elements after the last element of the object specified by parameter v .

Appends the specified object to the end of the current sequential collection.

t
The object to append to the current collection.

A reference to the current BackInsertIterator.

Retrieves a reference to the current BackInsertIterator.

A reference to the current BackInsertIterator.

This operator returns a reference to the current BackInsertIterator; not to any element in the current collection.

Returns a reference to the current BackInsertIterator. The iterator is unmodified.



BackInsertIterator& operator++();

BackInsertIterator operator++(int);

Return ValueReturn Value

RemarksRemarks

See Also

A reference to the current BackInsertIterator.

By design, the first syntax example pre-increments the current BackInsertIterator, and the second syntax post-
increments the current BackInsertIterator. The int  type in the second syntax indicates a post-increment operation,
not an actual integer operand.

However, this operator does not actually modify the BackInsertIterator. Instead, this operator returns a reference to
the unmodified, current iterator. This is the same behavior as operator*.

Platform Namespace



Platform::Collections::InputIterator Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
template <typename X>
class InputIterator;

ParametersParameters

MembersMembers

Public TypedefsPublic Typedefs

NAME DESCRIPTION

difference_type A pointer difference (ptrdiff_t).

iterator_category The category of a input iterator (::std::input_iterator_tag).

pointer A pointer to a const X

reference A reference to a const X

value_type The X  typename.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

InputIterator::InputIterator Initializes a new instance of the InputIterator class.

Public OperatorsPublic Operators

NAME DESCRIPTION

InputIterator::operator!= Operator Indicates whether the current InputIterator is not equal to a
specified InputIterator.

InputIterator::operator* Operator Retrieves a reference to the element specified by the current
InputIterator.

InputIterator::operator++ Operator Increments the current InputIterator.

InputIterator::operator== Operator Indicates whether the current InputIterator is equal to a
specified InputIterator.

Provides a Standard Template Library InputIterator for collections derived from the Windows Runtime.

X
The typename of the InputIterator template class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-inputiterator-class.md


 

 

 

InputIterator::operator-> Operator Retrieves the address of the element referenced by the
current InputIterator.

NAME DESCRIPTION

Inheritance Hierarchy

RequirementsRequirements

InputIterator::InputIterator Constructor

SyntaxSyntax

InputIterator();
explicit InputIterator(Windows::Foundation::Collections<X>^ iter);

ParametersParameters

InputIterator::operator-> Operator

SyntaxSyntax

pointer operator->() const;

Return ValueReturn Value

InputIterator::operator* Operator

SyntaxSyntax

reference operator*() const;

Return ValueReturn Value

InputIterator::operator== Operator

SyntaxSyntax

InputIterator

Header: collection.h

Namespace: Platform::Collections

Initializes a new instance of the InputIterator class.

iter
An iterator object.

Retrieves the address of the element specified by the current InputIterator.

The address of the element specified by the current InputIterator.

Retrieves a reference to the element specified by the current InputIterator.

The element specified by the current InputIterator.

Indicates whether the current InputIterator is equal to a specified InputIterator.



 

 

bool operator== (const InputIterator& other) const;

ParametersParameters

Return ValueReturn Value

InputIterator::operator++ Operator

SyntaxSyntax

InputIterator& operator++();
InputIterator operator++(int);

Return ValueReturn Value

RemarksRemarks

InputIterator::operator!= Operator

SyntaxSyntax

bool operator!=(const InputIterator& other) const;

ParametersParameters

Return ValueReturn Value

See Also

other
Another InputIterator.

true if the current InputIterator is equal to other; otherwise, false.

Increments the current InputIterator.

The first syntax increments and then returns the current InputIterator. The second syntax returns a copy of the
current InputIterator and then increments the current InputIterator.

The first InputIterator syntax pre-increments the current InputIterator.

The second syntax post-increments the current InputIterator. The int  type in the second syntax indicates a post-
increment operation, not an actual integer operand.

Indicates whether the current InputIterator is not equal to a specified InputIterator.

other
Another InputIterator.

true if the current InputIterator is not equal to other; otherwise, false.

Platform Namespace



Platform::Collections::Map Class
3/5/2019 • 4 minutes to read • Edit Online

Syntax
template <
   typename K,
   typename V,
   typename C = std::less<K>>
ref class Map sealed;

ParametersParameters

RemarksRemarks

MembersMembers

Public ConstructorsPublic Constructors

Represents a map, which is a collection of key-value pairs.

K
The type of the key in the key-value pair.

V
The type of the value in the key-value pair.

C
A type that provides a function object that can compare two element values as sort keys to determine their
relative order in the Map. By default, std::less<K>.

__is_valid_winrt_type() A compiler generated function that validates the type of K  and V and provides a friendly
error message if the type cannot be stored in the Map.

Allowed types are:

integers

interface class ^

public ref class^

value struct

public enum class

Map is basically a wrapper for std::map. It is a C++ concrete implementation of the
Windows::Foundation::Collections::IMap<Windows::Foundation::Collections::IKeyValuePair<K,V>> and
IObservableMap types that are passed across public Windows Runtime interfaces. If you try to use a 
Platform::Collections::Map  type in a public return value or parameter, compiler error C3986 is raised. You can

fix the error by changing the type of the parameter or return value to
Windows::Foundation::Collections::IMap<K,V>.

For more information, see Collections.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-map-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/less-struct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/map-class
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IMap_K_V_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IObservableMap_K_V_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IMap_K_V_


 

 

NAME DESCRIPTION

Map::Map Initializes a new instance of the Map class.

Public MethodsPublic Methods

NAME DESCRIPTION

Map::Clear Removes all key-value pairs from the current Map object.

Map::First Returns an iterator that specifies the first element in the map.

Map::GetView Returns a read-only view of the current Map; that is, a
Platform::Collections::MapView Class.

Map::HasKey Determines whether the current Map contains the specified
key.

Map::Insert Adds the specified key-value pair to the current Map object.

Map::Lookup Retrieves the element at the specified key in the current Map
object.

Map::Remove Deletes the specified key-value pair from the current Map
object.

Map::Size Returns the number of elements in the current Map object.

EventsEvents

Name Description

Map::MapChanged event Occurs when the Map changes.

Inheritance Hierarchy

RequirementsRequirements

Map::Clear Method

SyntaxSyntax

virtual void Clear();

Map::First Method

Map

Header: collection.h

Namespace: Platform::Collections

Removes all key-value pairs from the current Map object.



 

 

 

SyntaxSyntax

virtual Windows::Foundation::Collections::IIterator<
Windows::Foundation::Collections::IKeyValuePair<K, V>^>^ First();

Return ValueReturn Value

RemarksRemarks

Map::GetView Method

SyntaxSyntax

Windows::Foundation::Collections::IMapView<K, V>^ GetView();

Return ValueReturn Value

Map::HasKey Method

SyntaxSyntax

bool HasKey(K key);

ParametersParameters

Return ValueReturn Value

Map::Insert Method

SyntaxSyntax

virtual bool Insert(K key, V value);

ParametersParameters

Returns an iterator that specifies the first element in the map, or nullptr  if the map is empty.

An iterator that specifies the first element in the map.

A convenient way to hold the iterator returned by First() is to assign the return value to a variable that is declared
with the auto type deduction keyword. For example, auto x = myMap->First(); .

Returns a read-only view of the current Map; that is, a Platform::Collections::MapView Class, which implements
the
[Windows::Foundation::Collections::IMapView<K,V>]/uwp/api/Windows.Foundation.Collections.IMapView_K_V
_) interface.

A MapView  object.

Determines whether the current Map contains the specified key.

key
The key used to locate the Map element. The type of key is typename K .

true if the key is found; otherwise, false.

Adds the specified key-value pair to the current Map object.

key



   

 

Return ValueReturn Value

Map::Lookup Method

SyntaxSyntax

V Lookup(K key);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Map::Map Constructor

SyntaxSyntax

explicit Map(const C& comp = C());
explicit Map(const StdMap& m);
explicit Map(StdMap&& m ;
template <typename InIt>
Map(
   InItfirst,
   InItlast,
   const C& comp = C());

ParametersParameters

The key portion of the key-value pair. The type of key is typename K .

value
The value portion of the key-value pair. The type of value is typename V.

true if the key of an existing element in the current Map matches key and the value portion of that element is set
to value. false if no existing element in the current Map matches key and the key and value parameters are
made into a key-value pair and then added to the current Map.

Retrieves the value of type V that is associated with the specified key of type K, if the key exists.

key
The key used to locate an element in the Map. The type of key is typename K .

The value that is paired with the key. The type of the return value is typename V.

If the key does not exist, then a Platform::OutOfBoundsException is thrown.

Initializes a new instance of the Map class.

InIt
The typename of the current Map.

comp
A type that provides a function object that can compare two element values as sort keys to determine their
relative order in the Map.

m
A reference or Lvalues and Rvalues to a map Class  that is used to initialize the current Map.

first
The input iterator of the first element in a range of elements used to initialize the current Map.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lvalues-and-rvalues-visual-cpp


 

 

Map::MapChanged Event

SyntaxSyntax

event Windows::Foundation::Collections::MapChangedEventHandler<K,V>^ MapChanged;

Property Value/Return ValueProperty Value/Return Value

.NET Framework Equivalent

Map::Remove Method

SyntaxSyntax

virtual void Remove(K key);

ParametersParameters

Map::Size Method

SyntaxSyntax

virtual property unsigned int Size;

Return ValueReturn Value

See Also

last
The input iterator of the first element after a range of elements used to initialize the current Map.

Raised when an item is inserted into or removed from the map.

A MapChangedEventHandler<K,V> that contains information about the object that raised the event, and the
kind of change that occurred. See also IMapChangedEventArgs<K> and CollectionChange Enumeration.

Windows Runtime apps that use C# or Visual Basic project IMap<K,V> as IDictionary<K,V>.

Deletes the specified key-value pair from the current Map object.

key
The key portion of the key-value pair. The type of key is typename K .

Returns the number of Windows::Foundation::Collections::IKeyValuePair<K,V> elements in the Map.

The number of elements in the Map.

Platform Namespace
Creating Windows Runtime Components in C++

https://docs.microsoft.com/uwp/api/windows.foundation.collections.mapchangedeventhandler
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IMapChangedEventArgs_K_
https://docs.microsoft.com/uwp/api/windows.foundation.collections.collectionchange
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IKeyValuePair_K_V_
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp


Platform::Collections::MapView Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
template <
   typename K,
   typename V,
   typename C = ::std::less<K>>
ref class MapView sealed;

ParametersParameters

RemarksRemarks

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

MapView::MapView Initializes a new instance of the MapView class.

Public MethodsPublic Methods

NAME DESCRIPTION

MapView::First Returns an iterator that is initialized to the first element in the
map view.

MapView::HasKey Determines whether the current MapView contains the
specified key.

MapView::Lookup Retrieves the element at the specified key in the current
MapView object.

MapView::Size Returns the number of elements in the current MapView
object.

Represents a read-only view into a map, which is a collection of key-value pairs.

K
The type of the key in the key-value pair.

V
The type of the value in the key-value pair.

C
A type that provides a function object that can compare two element values as sort keys to determine their
relative order in the MapView. By default, std::less<K>.

MapView is a concrete C++ implementation of the Windows::Foundation::Collections::IMapView <K,V> interface
that is passed across the application binary interface (ABI). For more information, see Collections (C++/CX).

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-mapview-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/less-struct
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IMapView_K_V_


 

 

 

MapView::Split Splits an original MapView object into two MapView objects.

NAME DESCRIPTION

Inheritance Hierarchy

RequirementsRequirements

MapView::First Method

SyntaxSyntax

virtual Windows::Foundation::Collections::IIterator<
   Windows::Foundation::Collections::IKeyValuePair<K, V>^>^ First();

Return ValueReturn Value

RemarksRemarks

MapView::HasKey Method

SyntaxSyntax

bool HasKey(K key);

ParametersParameters

Return ValueReturn Value

MapView::Lookup Method

SyntaxSyntax

V Lookup(K key);

ParametersParameters

MapView

Header: collection.h

Namespace: Platform::Collections

Returns an iterator that specifies the first element in the map view.

An iterator that specifies the first element in the map view.

A convenient way to hold the iterator returned by First() is to assign the return value to a variable that is declared
with the auto type deduction keyword. For example, auto x = myMapView->First(); .

Determines whether the current MapView contains the specified key.

key
The key used to locate the MapView element. The type of key is typename K .

true if the key is found; otherwise, false.

Retrieves the value of type V that is associated with the specified key of type K.



 

 

Return ValueReturn Value

MapView::MapView Constructor

SyntaxSyntax

explicit MapView(const C& comp = C());

explicit MapView(const ::std::map<K, V, C>& m);

explicit MapView(std::map<K, V, C>&& m);

template <typename InIt> MapView(
    InIt first,
    InIt last,
    const C& comp = C());

MapView(
    ::std::initializer_list<std::pair<const K, V>> il,
    const C& comp = C());

ParametersParameters

MapView::Size Method

SyntaxSyntax

virtual property unsigned int Size;

Return ValueReturn Value

key
The key used to locate an element in the MapView. The type of key  is typename K .

The value that is paired with the key . The type of the return value is typename V.

Initializes a new instance of the MapView class.

InIt
The typename of the current MapView.

comp
A function object that can compare two element values as sort keys to determine their relative order in the
MapView.

m
A reference or Lvalues and Rvalues to a map Class  that is used to initialize the current MapView.

first
The input iterator of the first element in a range of elements used to initialize the current MapView.

last
The input iterator of the first element after a range of elements used to initialize the current MapView.

il
A std::initializer_list<std::pair<K,V>> whose elements will be inserted into the MapView.

Returns the number of elements in the current MapView object.

The number of elements in the current MapView.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lvalues-and-rvalues-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/initializer-list-class


 MapView::Split Method

SyntaxSyntax

void Split(
   Windows::Foundation::Collections::IMapView<
                         K, V>^ * firstPartition,
   Windows::Foundation::Collections::IMapView<
                         K, V>^ * secondPartition);

ParametersParameters

RemarksRemarks

See Also

Divides the current MapView object into two MapView objects. This method is non-operational.

firstPartition
The first part of the original MapView object.

secondPartition
The second part of the original MapView object.

This method is not operational; it does nothing.

Platform Namespace



Platform::Collections::UnorderedMap Class
3/5/2019 • 5 minutes to read • Edit Online

Syntax
template <
   typename K,
   typename V,
   typename C = std::equal_to<K>
>
ref class Map sealed;

ParametersParameters

RemarksRemarks

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

UnorderedMap::UnorderedMap Initializes a new instance of the Map class.

Public MethodsPublic Methods

Represents an unordered map, which is a collection of key-value pairs.

K
The type of the key in the key-value pair.

V
The type of the value in the key-value pair.

C
A type that provides a function object that can compare two element values as sort keys to determine their relative
order in the Map. By default, std::equal_to<K>.

Allowed types are:

integers

interface class^

public ref class^

value struct

public enum class

UnorderedMap is basically a wrapper for std::unordered_map that supports storage of Windows Runtime types.
It is the a concrete implementation of the Windows::Foundation::Collections::IMap and IObservableMap types that
are passed across public Windows Runtime interfaces. If you try to use a Platform::Collections::UnorderedMap  type
in a public return value or parameter, compiler error C3986 is raised. You can fix the error by changing the type of
the parameter or return value to Windows::Foundation::Collections::IMap.

For more information, see Collections.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-unorderedmap-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/equal-to-struct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/unordered-map-class
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IMap_K_V_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IObservableMap_K_V_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IMap_K_V_


 

 

NAME DESCRIPTION

UnorderedMap::Clear Removes all key-value pairs from the current Map object.

UnorderedMap::First Returns an iterator that specifies the first element in the map.

UnorderedMap::GetView Returns a read-only view of the current Map; that is, a
Platform::Collections::UnorderedMapView Class.

UnorderedMap::HasKey Determines whether the current Map contains the specified
key.

UnorderedMap::Insert Adds the specified key-value pair to the current Map object.

UnorderedMap::Lookup Retrieves the element at the specified key in the current Map
object.

UnorderedMap::Remove Deletes the specified key-value pair from the current Map
object.

UnorderedMap::Size Returns the number of elements in the current Map object.

EventsEvents

Name Description

Map::MapChanged event Occurs when the Map changes.

Inheritance Hierarchy

RequirementsRequirements

UnorderedMap::Clear Method

SyntaxSyntax

virtual void Clear();

UnorderedMap::First Method

SyntaxSyntax

UnorderedMap

Header: collection.h

Namespace: Platform::Collections

Removes all key-value pairs from the current UnorderedMap object.

Returns an iterator that specifies the first Windows::Foundation::Collections::IKeyValuePair<K,V> element in the
unordered map.

https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IKeyValuePair_K_V_


 

 

 

virtual Windows::Foundation::Collections::IIterator<
   Windows::Foundation::Collections::IKeyValuePair<K, V>^>^
   First();

Return ValueReturn Value

RemarksRemarks

UnorderedMap::GetView Method

SyntaxSyntax

Windows::Foundation::Collections::IMapView<K, V>^ GetView();

Return ValueReturn Value

UnorderedMap::HasKey Method

SyntaxSyntax

bool HasKey(
   K key
);

ParametersParameters

Return ValueReturn Value

UnorderedMap::Insert Method

SyntaxSyntax

virtual bool Insert(
   K key,
   V value
);

ParametersParameters

An iterator that specifies the first element in the map.

A convenient way to hold the iterator returned by First() is to assign the return value to a variable that is declared
with the auto type deduction keyword. For example, auto x = myUnorderedMap->First(); .

Returns a read-only view of the current UnorderedMap; that is, an Platform::Collections::UnorderedMapView Class
that implements the
[Windows::Foundation::Collections::IMapView::IMapView]/uwp/api/Windows.Foundation.Collections.IMapView_K
_V_) interface.

An UnorderedMapView  object.

Determines whether the current UnorderedMap contains the specified key.

key
The key used to locate the UnorderedMap element. The type of key is typename K .

true if the key is found; otherwise, false.

Adds the specified key-value pair to the current UnorderedMap object.



 

 

 

Return ValueReturn Value

UnorderedMap::Lookup Method

SyntaxSyntax

V Lookup(
   K key
);

ParametersParameters

Return ValueReturn Value

UnorderedMap::MapChanged

SyntaxSyntax

event Windows::Foundation::Collections::MapChangedEventHandler<K,V>^ MapChanged;

Property Value/Return ValueProperty Value/Return Value

.NET Framework Equivalent

UnorderedMap::Remove Method

SyntaxSyntax

virtual void Remove(
   K key);

ParametersParameters

key
The key portion of the key-value pair. The type of key is typename K .

value
The value portion of the key-value pair. The type of value is typename V.

true if the key of an existing element in the current Map matches key and the value portion of that element is set to
value. false if no existing element in the current Map matches key and the key and value parameters are made into
a key-value pair and then added to the current UnorderedMap.

Retrieves the value of type V that is associated with the specified key of type K.

key
The key used to locate an element in the UnorderedMap. The type of key is typename K .

The value that is paired with the key. The type of the return value is typename V.

Raised when an item is inserted into or removed from the map.

A MapChangedEventHandler<K,V> that contains information about the object that raised the event, and the kind
of change that occurred. See also IMapChangedEventArgs<K> and CollectionChange Enumeration.

Windows Runtime apps that us C# or Visual Basic project IMap<K,V> as IDictionary<K,V>.

Deletes the specified key-value pair from the UnorderedMap object.

https://docs.microsoft.com/uwp/api/windows.foundation.collections.mapchangedeventhandler
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IMapChangedEventArgs_K_
https://docs.microsoft.com/uwp/api/windows.foundation.collections.collectionchange


 

 

UnorderedMap::Size Method

SyntaxSyntax

virtual property unsigned int Size;

Return ValueReturn Value

UnorderedMap::UnorderedMap Constructor

SyntaxSyntax

UnorderedMap();

explicit UnorderedMap(
    size_t n
    );

UnorderedMap(
    size_t n,
    const H& h
    );

UnorderedMap(
    size_t n,
    const H& h,
    const P& p
    );

explicit UnorderedMap(
    const std::unordered_map<K, V, H, P>& m
    );

explicit UnorderedMap(
    std::unordered_map<K, V, H, P>&& m
    );

template <typename InIt>
UnorderedMap(
    InIt first,
    InIt last
    );

template <typename InIt>
UnorderedMap(
    InIt first,
    InIt last,
    size_t n
    );

template <typename InIt>
UnorderedMap(
    InIt first,
    InIt last,
    size_t n,
    const H& h

key
The key portion of the key-value pair. The type of key is typename K .

Returns the number of Windows::Foundation::Collections::IKeyValuePair<K,V> elements in the UnorderedMap.

The number of elements in the Unordered Map.

Initializes a new instance of the UnorderedMap class.

https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IKeyValuePair_K_V_


    const H& h
    );

template <typename InIt>
UnorderedMap(
    InIt first,
    InIt last,
    size_t n,
    const H& h,
    const P& p
    );

UnorderedMap(
    std::initializer_list< std::pair<const K, V>> il
    );

UnorderedMap(
    std::initializer_list< std::pair<const K, V>> il,
    size_t n
    );

UnorderedMap(
    std::initializer_list< std::pair<const K, V>> il,
    size_t n,
    const H& h
    );

UnorderedMap(
    std::initializer_list< std::pair<const K, V>> il,
    size_t n,
    const H& h,
    const P& p
    );

ParametersParameters

See also

InIt
The typename of the current UnorderedMap.

P
A function object that can compare two keys to determine whether they are equal. This parameter defaults to
std::equal_to<K>.

H
A function object that produces a hash value for a keys. This parameter defaults to hash Class 1 for the key types
that the class supports.

m
A reference or Lvalues and Rvalues to a std::unordered_map that is used to initialize the current UnorderedMap.

il
A std::initializer_list of std::pair objects that is used to initialize the map.

first
The input iterator of the first element in a range of elements used to initialize the current UnorderedMap.

last
The input iterator of the first element after a range of elements used to initialize the current UnorderedMap.

Platform Namespace
Platform::Collections Namespace

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/equal-to-struct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/hash-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lvalues-and-rvalues-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/unordered-map-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/initializer-list-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/pair-structure


Platform::Collections::Map Class
Platform::Collections::UnorderedMapView Class
Collections
Creating Windows Runtime Components in C++

https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp


Platform::Collections::UnorderedMapView Class
3/5/2019 • 3 minutes to read • Edit Online

Syntax
template <
   typename K,
   typename V,
   typename C = ::std::equal_to<K>>
ref class UnorderedMapView sealed;

ParametersParameters

RemarksRemarks

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

UnorderedMapView::UnorderedMapView Initializes a new instance of the UnorderedMapView class.

Public MethodsPublic Methods

NAME DESCRIPTION

UnorderedMapView::First Returns an iterator that is initialized to the first element in the
map view.

UnorderedMapView::HasKey Determines whether the current UnorderedMapView contains
the specified key.

UnorderedMapView::Lookup Retrieves the element at the specified key in the current
UnorderedMapView object.

UnorderedMapView::Size Returns the number of elements in the current
UnorderedMapView object.

Represents a read-only view into a map, which is a collection of key-value pairs.

K
The type of the key in the key-value pair.

V
The type of the value in the key-value pair.

C
A type that provides a function object that can compare two key values for equality. By default, std::equal_to<K>

UnorderedMapView is a concrete C++ implementation of the Windows::Foundation::Collections::IMapView<K,V>
interface that is passed across the application binary interface (ABI). For more information, see Collections
(C++/CX).

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-unorderedmapview-class.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/equal-to-struct
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IMapView_K_V_


 

 

 

UnorderedMapView::Split Splits an original UnorderedMapView object into two
UnorderedMapView objects.

NAME DESCRIPTION

Inheritance Hierarchy

RequirementsRequirements

UnorderedMapView::First Method

SyntaxSyntax

virtual Windows::Foundation::Collections::IIterator<
    Windows::Foundation::Collections::IKeyValuePair<K, V>^>^
    First();

Return ValueReturn Value

RemarksRemarks

UnorderedMapView::HasKey Method

SyntaxSyntax

bool HasKey(K key);

ParametersParameters

Return ValueReturn Value

UnorderedMapView::Lookup Method

SyntaxSyntax

UnorderedMapView

Header: collection.h

Namespace: Platform::Collections

Returns an iterator that specifies the first Windows::Foundation::Collections::IKeyValuePair<K,V> element in the
unordered map.

An iterator that specifies the first element in the map view.

A convenient way to hold the iterator returned by First() is to assign the return value to a variable that is declared
with the auto type deduction keyword. For example, auto x = myMapView->First(); .

Determines whether the current UnorderedMap contains the specified key.

key
The key used to locate the element. The type of key  is typename K .

true if the key is found; otherwise, false.

Retrieves the value of type V that is associated with the specified key of type K.

https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IKeyValuePair_K_V_


 

 

 

V Lookup(K key);

ParametersParameters

Return ValueReturn Value

UnorderedMapView::Size Method

SyntaxSyntax

virtual property unsigned int Size;

Return ValueReturn Value

UnorderedMapView::Split Method

SyntaxSyntax

void Split(
   Windows::Foundation::Collections::IMapView<
                         K,V>^ * firstPartition,
   Windows::Foundation::Collections::IMapView<
                         K,V>^ * secondPartition);

ParametersParameters

RemarksRemarks

UnorderedMapView::UnorderedMapView Constructor

SyntaxSyntax

key
The key used to locate an element in the UnorderedMapView. The type of key  is typename K .

The value that is paired with the key . The type of the return value is typename V.

Returns the number of Windows::Foundation::Collections::IKeyValuePair<K,V> elements in the
UnorderedMapView.

The number of elements in the Unordered MapView.

Divides the current UnorderedMapView object into two UnorderedMapView objects. This method is non-
operational.

firstPartition
The first part of the original UnorderedMapView object.

secondPartition
The second part of the original UnorderedMapView object.

This method is not operational; it does nothing.

Initializes a new instance of the UnorderedMapView class.

https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IKeyValuePair_K_V_


UnorderedMapView();
explicit UnorderedMapView(size_t n);
UnorderedMapView(size_t n, const H& h);
UnorderedMapView(size_t n, const H& h, const P& p);

explicit UnorderedMapView(
    const std::unordered_map<K, V, H, P>& m);
explicit UnorderedMapView(
    std::unordered_map<K, V, H, P>&& m);

template <typename InIt> UnorderedMapView(InIt first, InIt last );
template <typename InIt> UnorderedMapView(InIt first, InIt last, size_t n );

template <typename InIt> UnorderedMapView(
    InIt first,
    InIt last,
    size_t n,
    const H& h );

template <typename InIt> UnorderedMapView(
    InIt first,
    InIt last,
    size_t n,
    const H& h,
    const P& p );

UnorderedMapView(std::initializer_list<std::pair<const K, V>);

UnorderedMapView(std::initializer_list< std::pair<const K, V>> il, size_t n

UnorderedMapView(
    std::initializer_list< std::pair<const K, V>> il,
    size_t n,
    const H& h);

UnorderedMapView(
    std::initializer_list< std::pair<const K, V>> il,
    size_t n,
    const H& h,
    const P& p );

ParametersParameters
n
The number of elements to preallocate space for.

InIt
The typename of the UnorderedMapView.

H
A function object that can a hash value for a key. Defaults to std::hash<K> for the types that std::hash  supports.

P
A type that provides a function object that can compare two keys to determine their equality. Defaults to
std::equal_to<K>.

m
A reference or Lvalues and Rvalues to a std::unordered_map that is used to initialize the UnorderedMapView.

first
The input iterator of the first element in a range of elements used to initialize the UnorderedMapView.

last
The input iterator of the first element after a range of elements used to initialize the UnorderedMapView.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/hash-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/equal-to-struct
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lvalues-and-rvalues-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/unordered-map-class


See Also
Platform::Collections Namespace
Windows::Foundation::IMapView

https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IMapView_K_V_


Platform::Collections::Vector Class
10/31/2018 • 6 minutes to read • Edit Online

Syntax
template <typename T, typename E>
   ref class Vector sealed;

ParametersParameters

RemarksRemarks

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

Vector::Vector Initializes a new instance of the Vector class.

Public MethodsPublic Methods

NAME DESCRIPTION

Vector::Append Inserts the specified item after the last item in the current
Vector.

Vector::Clear Deletes all the elements in the current Vector.

Represents a sequential collection of objects that can be individually accessed by index.

T
The type of the elements contained in the Vector object.

E
Specifies a binary predicate for testing equality with values of type T. The default value is std::equal_to<T> .

Allowed types are:

1. integers

2. interface class^

3. public ref class^

4. value struct

5. public enum class

The Vector class is the C++ concrete implementation of the Windows::Foundation::Collections::IVector interface.

If you attempt to use a Vector type in a public return value or parameter, compiler error C3986 is raised. You
can fix the error by changing the parameter or return value type to Windows::Foundation::Collections::IVector.
For more information, see Collections (C++/CX).

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-vector-class.md
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVector_T_
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVector_T_


   

Vector::First Returns an iterator that specifies the first element in the
Vector.

Vector::GetAt Retrieves the element of the current Vector that is identifed
by the specified index.

Vector::GetMany Retrieves a sequence of items from the current Vector,
starting at the specified index.

Vector::GetView Returns a read-only view of a Vector; that is, a
Platform::Collections::VectorView.

Vector::IndexOf Searches for the specified item in the current Vector, and if
found, returns the index of the item.

Vector::InsertAt Inserts the specified item into the current Vector after the
element identified by the specified index.

Vector::ReplaceAll Deletes the elements in the current Vector and then inserts
the elements from the specified array.

Vector::RemoveAt Deletes the element identified by the specified index from the
current Vector.

Vector::RemoveAtEnd Deletes the element at the end of the current Vector.

Vector::SetAt Assigns the specified value to the element in the current
Vector that is identified by the specified index.

Vector::Size Returns the number of elements in the current Vector object.

NAME DESCRIPTION

EventsEvents

Name Description

event
Windows::Foundation::Collection::VectorChangedEventHandl
er<T>^ VectorChanged

Occurs when the Vector changes.

Inheritance Hierarchy

RequirementsRequirements

Vector::Append Method

Vector

Header: collection.h

Namespace: Platform::Collections

Inserts the specified item after the last item in the current Vector.

https://docs.microsoft.com/uwp/api/windows.foundation.collections.vectorchangedeventhandler


 

 

   

 

SyntaxSyntax

virtual void Append(T item);

ParametersParameters

Vector::Clear Method

SyntaxSyntax

virtual void Clear();

Vector::First Method

SyntaxSyntax

virtual Windows::Foundation::Collections::IIterator <T>^ First();

Return ValueReturn Value

RemarksRemarks

Vector::GetAt Method

SyntaxSyntax

virtual T GetAt(unsigned int index);

ParametersParameters

Return ValueReturn Value

Vector::GetMany Method

index
The item to insert into the Vector. The type of item is defined by the T typename.

Deletes all the elements in the current Vector.

Returns an iterator that points to the first element in the Vector.

An iterator that points to the first element in the Vector.

A convenient way to hold the iterator returned by First() is to assign the return value to a variable that is
declared with the auto type deduction keyword. For example, auto x = myVector->First(); . This iterator knows
the length of the collection.

When you need a pair of iterators to pass to an STL function, use the free functions
Windows::Foundation::Collections::begin and Windows::Foundation::Collections::end

Retrieves the element of the current Vector that is identifed by the specified index.

index
A zero-based, unsigned integer that specifies a particular element in the Vector object.

The element specified by the index parameter. The element type is defined by the T typename.

Retrieves a sequence of items from the current Vector, starting at the specified index, and copies them into the



 

 

SyntaxSyntax

virtual unsigned int GetMany(
    unsigned int startIndex,
    Platform::WriteOnlyArray<T>^ dest);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Vector::GetView Method

SyntaxSyntax

Windows::Foundation::Collections::IVectorView<T>^ GetView();

Return ValueReturn Value

Vector::IndexOf Method

SyntaxSyntax

virtual bool IndexOf(T value, unsigned int* index);

ParametersParameters

Return ValueReturn Value

caller-allocated array.

startIndex
The zero-based index of the start of the items to retrieve.

dest
A caller-allocated array of items that begin at the element specified by startIndex and end at the last element in
the Vector.

The number of items retrieved.

This function is not intended for use directly by client code. It is used internally in the to_vector Function to
enable efficient conversion of Platform::Vector intances to std::vector instances.

Returns a read-only view of a Vector; that is, an IVectorView.

An IVectorView object.

Searches for the specified item in the current Vector, and if found, returns the index of the item.

value
The item to find.

index
The zero-based index of the item if parameter value is found; otherwise, 0.

The index parameter is 0 if either the item is the first element of the Vector or the item was not found. If the
return value is true, the item was found and it is the first element; otherwise, the item was not found.

true if the specified item is found; otherwise, false.



 

 

 

 

RemarksRemarks

Vector::InsertAt Method

SyntaxSyntax

virtual void InsertAt(unsigned int index, T item)

ParametersParameters

Vector::RemoveAt Method

SyntaxSyntax

virtual void RemoveAt(unsigned int index);

ParametersParameters

Vector::RemoveAtEnd Method

SyntaxSyntax

virtual void RemoveAtEnd();

Vector::ReplaceAll Method

SyntaxSyntax

virtual void ReplaceAll(const ::Platform::Array<T>^ arr);

ParametersParameters

IndexOf uses std::find_if to find the item. Custom element types should therefore overload the == and !=
operator in order to enable the equality comparisons that find_if requires.

Inserts the specified item into the current Vector after the element identified by the specified index.

index
A zero-based, unsigned integer that specifies a particular element in the Vector object.

item
An item to insert into the Vector after the element specified by index. The type of item is defined by the T
typename.

Deletes the element identified by the specified index from the current Vector.

index
A zero-based, unsigned integer that specifies a particular element in the Vector object.

Deletes the element at the end of the current Vector.

Deletes the elements in the current Vector and then inserts the elements from the specified array.

arr
An array of objects whose type is defined by the T typename.



 

 

 

Vector::SetAt Method

SyntaxSyntax

virtual void SetAt(unsigned int index, T item);

ParametersParameters

Vector::Size Method

SyntaxSyntax

virtual property unsigned int Size;

Return ValueReturn Value

Vector::Vector Constructor

SyntaxSyntax

Vector();

explicit Vector(unsigned int size);
Vector( unsigned int size, T value);
template <typename U> explicit Vector( const ::std::vector<U>& v);
template <typename U> explicit Vector( std::vector<U>&& v);

Vector( const T * ptr, unsigned int size);
template <size_t N> explicit Vector(const T(&arr)[N]);
template <size_t N> explicit Vector(const std::array<T, N>& a);
explicit Vector(const Array<T>^ arr);

template <typename InIt> Vector(InIt first, InIt last);
Vector(std::initializer_list<T> il);

ParametersParameters

Assigns the specified value to the element in the current Vector that is identified by the specified index.

index
A zero-based, unsigned integer that specifies a particular element in the Vector object.

item
The value to assign to the specified element. The type of item is defined by the T typename.

Returns the number of elements in the current Vector object.

The number of elements in the current Vector.

Initializes a new instance of the Vector class.

a
A std::array that will be used to initialize the Vector.

arr
A Platform::Array that will be used to initialize the Vector.

InIt
The type of a collection of objects that is used to initialize the current Vector.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl


See Also

il
A std::initializer_list of objects of type T that will be used to initialize the Vector.

N
The number of elements in a collection of objects that is used to initialize the current Vector.

size
The number of elements in the Vector.

value
A value that is used to initialize each element in the current Vector.

v
An Lvalues and Rvalues to a std::vector that is used to initialize the current Vector.

ptr
Pointer to a std::vector  that is used to initialize the current Vector.

first
The first element in a sequence of objects that are used to initialize the current Vector. The type of first is passed
by means of perfect forwarding. For more information, see Rvalue Reference Declarator: &&.

last
The last element in a sequence of objects that are used to initialize the current Vector. The type of last is passed
by means of perfect forwarding. For more information, see Rvalue Reference Declarator: &&.

Platform Namespace
Creating Windows Runtime Components in C++

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/initializer-list-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lvalues-and-rvalues-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/rvalue-reference-declarator-amp-amp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/rvalue-reference-declarator-amp-amp
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp


Platform::Collections::VectorIterator Class
10/31/2018 • 5 minutes to read • Edit Online

Syntax
template <typename T>
class VectorIterator;

ParametersParameters

MembersMembers

Public TypedefsPublic Typedefs

NAME DESCRIPTION

difference_type A pointer difference (ptrdiff_t).

iterator_category The category of a random access iterator
(::std::random_access_iterator_tag).

pointer A pointer to an internal type,
Platform::Collections::Details::VectorProxy<T>, that is required
for the implementation of VectorIterator.

reference A reference to an internal type,
Platform::Collections::Details::VectorProxy<T>,, that is
required for the implementation of VectorIterator.

value_type The T  typename.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

VectorIterator::VectorIterator Initializes a new instance of the VectorIterator class.

Public OperatorsPublic Operators

NAME DESCRIPTION

VectorIterator::operator- Operator Subtracts either a specified number of elements from the
current iterator yielding a new iterator, or a specified iterator
from the current iterator yielding the number of elements
between the iterators.

Provides a Standard Template Library iterator for objects derived from the Windows Runtime IVector interface.

VectorIterator is a proxy iterator that stores elements of type VectorProxy<T>. However, the proxy object is
almost never visible to user code. For more information, see Collections (C++/CX).

T
The typename of the VectorIterator template class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-vectoriterator-class.md


 

VectorIterator::operator-- Operator Decrements the current VectorIterator.

VectorIterator::operator!= Operator Indicates whether the current VectorIterator is not equal to a
specified VectorIterator.

VectorIterator::operator* Operator Retrieves a reference to the element specified by the current
VectorIterator.

VectorIterator::operator[] Retrieves a reference to the element that is a specified
displacement from the current VectorIterator.

VectorIterator::operator+ Operator Returns a VectorIterator that references the element at the
specified displacement from the specified VectorIterator.

VectorIterator::operator++ Operator Increments the current VectorIterator.

VectorIterator::operator+= Operator Increments the current VectorIterator by the specified
displacement.

VectorIterator::operator< Operator Indicates whether the current VectorIterator is less than a
specified VectorIterator.

VectorIterator::operator<= Operator Indicates whether the current VectorIterator is less than or
equal to a specified VectorIterator.

VectorIterator::operator-= Operator Decrements the current VectorIterator by the specified
displacement.

VectorIterator::operator== Operator Indicates whether the current VectorIterator is equal to a
specified VectorIterator.

VectorIterator::operator> Operator Indicates whether the current VectorIterator is greater than a
specified VectorIterator.

VectorIterator::operator-> Operator Retrieves the address of the element referenced by the
current VectorIterator.

VectorIterator::operator>= Operator Indicates whether the current VectorIterator is greater than or
equal to a specified VectorIterator.

NAME DESCRIPTION

Inheritance Hierarchy

RequirementsRequirements

VectorIterator::operator-> Operator

SyntaxSyntax

VectorIterator

Header: collection.h

Namespace: Platform::Collections

Retrieves the address of the element referenced by the current VectorIterator.



 

 

 

Detail::ArrowProxy<T> operator->() const;

Return ValueReturn Value

VectorIterator::operator-- Operator

SyntaxSyntax

VectorIterator& operator--();
VectorIterator operator--(int);

Return ValueReturn Value

RemarksRemarks

VectorIterator::operator* Operator

SyntaxSyntax

reference operator*() const;

Return ValueReturn Value

VectorIterator::operator== Operator

SyntaxSyntax

bool operator==(const VectorIterator& other) const;

ParametersParameters

Return ValueReturn Value

The value of the element that is referenced by the current VectorIterator.

The type of the return value is an unspecified internal type that is required for the implementation of this operator.

Decrements the current VectorIterator.

The first syntax decrements and then returns the current VectorIterator. The second syntax returns a copy of the
current VectorIterator and then decrements the current VectorIterator.

The first VectorIterator syntax pre-decrements the current VectorIterator.

The second syntax post-decrements the current VectorIterator. The int  type in the second syntax indicates a
post-decrement operation, not an actual integer operand.

Retrieves the address of the element specified by the current VectorIterator.

The element specified by the current VectorIterator.

Indicates whether the current VectorIterator is equal to a specified VectorIterator.

other
Another VectorIterator.

true if the current VectorIterator is equal to other; otherwise, false.



 

 

 

VectorIterator::operator> Operator

SyntaxSyntax

bool operator>(const VectorIterator& other) const

ParametersParameters

Return ValueReturn Value

VectorIterator::operator>= Operator

SyntaxSyntax

bool operator>=(const VectorIterator& other) const

ParametersParameters

Return ValueReturn Value

VectorIterator::operator++ Operator

SyntaxSyntax

VectorIterator& operator++();
VectorIterator operator++(int);

Return ValueReturn Value

RemarksRemarks

VectorIterator::operator!= Operator

SyntaxSyntax

Indicates whether the current VectorIterator is greater than a specified VectorIterator.

other
Another VectorIterator.

true if the current VectorIterator is greater than other; otherwise, false.

Indicates whether the current VectorIterator is greater than or equal to the specified VectorIterator.

other
Another VectorIterator.

true if the current VectorIterator is greater than or equal to other; otherwise, false.

Increments the current VectorIterator.

The first syntax increments and then returns the current VectorIterator. The second syntax returns a copy of the
current VectorIterator and then increments the current VectorIterator.

The first VectorIterator syntax pre-increments the current VectorIterator.

The second syntax post-increments the current VectorIterator. The int  type in the second syntax indicates a post-
increment operation, not an actual integer operand.

Indicates whether the current VectorIterator is not equal to a specified VectorIterator.



 

 

 

bool operator!=(const VectorIterator& other) const;

ParametersParameters

Return ValueReturn Value

VectorIterator::operator< Operator

SyntaxSyntax

bool operator<(const VectorIterator& other) const

ParametersParameters

Return ValueReturn Value

VectorIterator::operator<= Operator

SyntaxSyntax

bool operator<=(const VectorIterator& other) const

ParametersParameters

Return ValueReturn Value

VectorIterator::operator- Operator

SyntaxSyntax

VectorIterator operator-(difference_type n) const;

difference_type operator-(const VectorIterator& other) const;

ParametersParameters

other
Another VectorIterator.

true if the current VectorIterator is not equal to other; otherwise, false.

Indicates whether the current VectorIterator is less than a specified VectorIterator.

other
Another VectorIterator.

true if the current VectorIterator is less than other; otherwise, false.

Indicates whether the current VectorIterator is less than or equal to a specified VectorIterator.

other
Another VectorIterator.

true if the current VectorIterator is less than or equal to other; otherwise, false.

Subtracts either a specified number of elements from the current iterator yielding a new iterator, or a specified
iterator from the current iterator yielding the number of elements between the iterators.

n



 

 

Return ValueReturn Value

VectorIterator::operator+= Operator

SyntaxSyntax

VectorIterator& operator+=(difference_type n);

ParametersParameters

Return ValueReturn Value

VectorIterator::operator+ Operator

SyntaxSyntax

VectorIterator operator+(difference_type n);

template <typename T>
inline VectorIterator<T> operator+(
  ptrdiff_t n,
  const VectorIterator<T>& i);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

A number of elements.

other
Another VectorIterator.

The first operator syntax returns a VectorIterator object that is n  elements less than the current VectorIterator.
The second operator syntax returns the number of elements between the current and the other  VectorIterator.

Increments the current VectorIterator by the specified displacement.

n
A integer displacement.

The updated VectorIterator.

Returns a VectorIterator that references the element at the specified displacement from the specified
VectorIterator.

T
In the second syntax, the typename of the VectorIterator.

n
An integer displacement.

i
In the second syntax, a VectorIterator.

In the first syntax, a VectorIterator that references the element at the specified displacement from the current
VectorIterator.

In the second syntax, a VectorIterator that references the element at the specified displacement from the
beginning of parameter i .



 

 

VectorIterator::operator-= Operator

SyntaxSyntax

VectorIterator& operator-=(difference_type n);

ParametersParameters

Return ValueReturn Value

VectorIterator::operator[]

SyntaxSyntax

reference operator[](difference_type n) const;

ParametersParameters

Return ValueReturn Value

VectorIterator::VectorIterator Constructor

SyntaxSyntax

VectorIterator();

explicit VectorIterator(
   Windows::Foundation::Collections::IVector<T>^ v);

ParametersParameters

RemarksRemarks

See Also

The first syntax example

Decrements the current VectorIterator by the specified displacement.

n
An integer displacement.

The updated VectorIterator.

Retrieves a reference to the element that is a specified displacement from the current VectorIterator.

n
An integer displacement.

The element that is displaced by n  elements from the current VectorIterator.

Initializes a new instance of the VectorIterator class.

v
An IVector<T> object.

The first syntax example is the default constructor. The second syntax example is an explicit constructor that is
used to construct a VectorIterator from an IVector<T> object.

Platform Namespace



Platform::Collections::VectorView Class
10/31/2018 • 3 minutes to read • Edit Online

Syntax
template <typename T, typename E>
   ref class VectorView sealed;

ParametersParameters

RemarksRemarks

MembersMembers

Public ConstructorsPublic Constructors

NAME DESCRIPTION

VectorView::VectorView Initializes a new instance of the VectorView class.

Public MethodsPublic Methods

NAME DESCRIPTION

VectorView::First Returns an iterator that specifies the first element in the
VectorView.

VectorView::GetAt Retrieves the element of the current VectorView that is
indicated by the specified index.

VectorView::GetMany Retrieves a sequence of items from the current VectorView,
starting at the specified index.

VectorView::IndexOf Searches for the specified item in the current VectorView, and
if found, returns the index of the item.

VectorView::Size Returns the number of elements in the current VectorView
object.

Inheritance Hierarchy

Represents a read-only view of a sequential collection of objects that can be individually accessed by index. The
type of each object in the collection is specified by the template parameter.

T
The type of the elements contained in the VectorView  object.

E
Specifies a binary predicate for testing equality with values of type T . The default value is std::equal_to<T> .

The VectorView  class implements the Windows::Foundation::Collections::IVectorView<T> interface, and support
for Standard Template Library iterators.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-vectorview-class.md
https://docs.microsoft.com/uwp/api/Windows.Foundation.Collections.IVectorView_T_


 

 

 

RequirementsRequirements

VectorView::First Method

SyntaxSyntax

virtual Windows::Foundation::Collections::IIterator<T>^
   First();

Return ValueReturn Value

RemarksRemarks

VectorView::GetAt Method

SyntaxSyntax

T GetAt(
   UInt32 index
);

ParametersParameters

Return ValueReturn Value

VectorView::GetMany Method

SyntaxSyntax

virtual unsigned int GetMany(
   unsigned int startIndex,
   ::Platform::WriteOnlyArray<T>^ dest
);

ParametersParameters

VectorView

Header: collection.h

Namespace: Platform::Collections

Returns an iterator that specifies the first element in the VectorView.

An iterator that specifies the first element in the VectorView.

A convenient way to hold the iterator returned by First() is to assign the return value to a variable that is declared
with the auto type deduction keyword. For example, auto x = myVectorView->First(); .

Retrieves the element of the current VectorView that is indicated by the specified index.

index
A zero-based, unsigned integer that specifies a particular element in the VectorView object.

The element specified by the index  parameter. The element type is specified by the VectorView template
parameter, T.

Retrieves a sequence of items from the current VectorView, starting at the specified index.



 

 

 

Return ValueReturn Value

VectorView::IndexOf Method

SyntaxSyntax

virtual bool IndexOf(
   T value,
   unsigned int* index
);

ParametersParameters

Return ValueReturn Value

VectorView::Size Method

SyntaxSyntax

virtual property unsigned int Size;

Return ValueReturn Value

VectorView::VectorView Constructor

SyntaxSyntax

startIndex
The zero-based index of the start of the items to retrieve.

dest
When this operation completes, an array of items that begin at the element specified by startIndex  and end at
the last element in the VectorView.

The number of items retrieved.

Searches for the specified item in the current VectorView, and if found, returns the index of the item.

value
The item to find.

index
The zero-based index of the item if parameter value  is found; otherwise, 0.

The index parameter is 0 if either the item is the first element of the VectorView  or the item was not found. If the
return value is true, the item was found and it is the first element; otherwise, the item was not found.

true if the specified item is found; otherwise, false.

Returns the number of elements in the current VectorView object.

The number of elements in the current VectorView.

Initializes a new instance of the VectorView class.



VectorView();
explicit VectorView(
   UInt32 size
);
VectorView(
   UInt32 size,
   T value
);
explicit VectorView(
   const ::std::vector<T>& v
);
explicit VectorView(
   ::std::vector<T>&& v
);
VectorView(
   const T * ptr,
   UInt32 size
);

template <
   size_t N
>
explicit VectorView(
   const T (&arr)[N]
);

template <
   size_t N
>
explicit VectorView(
   const ::std::array<T,
   N>& a
);

explicit VectorView(
   const ::Platform::Array<T>^ arr
);

template <
   typename InIt
>
VectorView(
   InItfirst,
   InItlast
);

VectorView(
   std::initializer_list<T> il
);

ParametersParameters
InIt
The type of a collection of objects that is used to initialize the current VectorView.

il
A std::initializer_list whose elements will be used to initialize the VectorView.

N
The number of elements in a collection of objects that is used to initialize the current VectorView.

size
The number of elements in the VectorView.

value

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/initializer-list-class


See Also

A value that is used to initialize each element in the current VectorView.

v
An Lvalues and Rvalues to a std::vector that is used to initialize the current VectorView.

ptr
Pointer to a std::vector  that is used to initialize the current VectorView.

arr
A Platform::Array object that is used to initialize the current VectorView.

a
A std::array object that is used to initialize the current VectorView.

first
The first element in a sequence of objects that are used to initialize the current VectorView. The type of first  is
passed by means of perfect forwarding. For more information, see Rvalue Reference Declarator: &&.

last
The last element in a sequence of objects that are used to initialize the current VectorView. The type of last  is
passed by means of perfect forwarding. For more information, see Rvalue Reference Declarator: &&.

Platform Namespace
Creating Windows Runtime Components in C++

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lvalues-and-rvalues-visual-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/vector-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/array-class-stl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/rvalue-reference-declarator-amp-amp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/rvalue-reference-declarator-amp-amp
https://docs.microsoft.com/windows/uwp/winrt-components/creating-windows-runtime-components-in-cpp


Platform::Collections::VectorViewIterator Class
10/31/2018 • 5 minutes to read • Edit Online

Syntax
template <typename T>
class VectorViewIterator;

ParametersParameters

MembersMembers

Public TypedefsPublic Typedefs

NAME DESCRIPTION

difference_type A pointer difference (ptrdiff_t).

iterator_category The category of a random access iterator
(::std::random_access_iterator_tag).

pointer A pointer to an internal type that is required for the
implementation of VectorViewIterator.

reference A reference to an internal type that is required for the
implementation of VectorViewIterator.

value_type The T  typename.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

VectorViewIterator::VectorViewIterator Initializes a new instance of the VectorViewIterator class.

Public OperatorsPublic Operators

NAME DESCRIPTION

VectorViewIterator::operator- Operator Subtracts either a specified number of elements from the
current iterator yielding a new iterator, or a specified iterator
from the current iterator yielding the number of elements
between the iterators.

Provides a Standard Template Library iterator for objects derived from the Windows Runtime IVectorView

interface.

ViewVectorIterator  is a proxy iterator that stores elements of type VectorProxy<T> . However, the proxy object is
almost never visible to user code. For more information, see Collections (C++/CX).

T
The typename of the VectorViewIterator template class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-vectorviewiterator-class.md


 

VectorViewIterator::operator-- Operator Decrements the current VectorViewIterator.

VectorViewIterator::operator!= Operator Indicates whether the current VectorViewIterator is not equal
to a specified VectorViewIterator.

VectorViewIterator::operator* Operator Retrieves a reference to the element specified by the current
VectorViewIterator.

VectorViewIterator::operator[] Retrieves a reference to the element that is a specified
displacement from the current VectorViewIterator.

VectorViewIterator::operator+ Operator Returns a VectorViewIterator that references the element at
the specified displacement from the specified
VectorViewIterator.

VectorViewIterator::operator++ Operator Increments the current VectorViewIterator.

VectorViewIterator::operator+= Operator Increments the current VectorViewIterator by the specified
displacement.

VectorViewIterator::operator< Operator Indicates whether the current VectorViewIterator is less than
a specified VectorViewIterator.

VectorViewIterator::operator<= Operator Indicates whether the current VectorViewIterator is less than
or equal to a specified VectorViewIterator.

VectorViewIterator::operator-= Operator Decrements the current VectorViewIterator by the specified
displacement.

VectorViewIterator::operator== Operator Indicates whether the current VectorViewIterator is equal to a
specified VectorViewIterator.

VectorViewIterator::operator> Operator Indicates whether the current VectorViewIterator is greater
than a specified VectorViewIterator.

VectorViewIterator::operator-> Operator Retrieves the address of the element referenced by the
current VectorViewIterator.

VectorViewIterator::operator>= Operator Indicates whether the current VectorViewIterator is greater
than or equal to a specified VectorViewIterator.

NAME DESCRIPTION

Inheritance Hierarchy

RequirementsRequirements

VectorViewIterator::operator-> Operator

VectorViewIterator

Header: collection.h

Namespace: Platform::Collections

Retrieves the address of the element referenced by the current VectorViewIterator.



 

 

 

SyntaxSyntax

Detail::ArrowProxy<T> operator->() const;

Return ValueReturn Value

VectorViewIterator::operator-- Operator

SyntaxSyntax

VectorViewIterator& operator--();
VectorViewIterator operator--(int);

Return ValueReturn Value

RemarksRemarks

VectorViewIterator::operator* Operator

SyntaxSyntax

reference operator*() const;

Return ValueReturn Value

VectorViewIterator::operator== Operator

SyntaxSyntax

bool operator==(const VectorViewIterator& other) const;

ParametersParameters

Return ValueReturn Value

The value of the element that is referenced by the current VectorViewIterator.

The type of the return value is an unspecified internal type that is required for the implementation of this operator.

Decrements the current VectorViewIterator.

The first syntax decrements and then returns the current VectorViewIterator. The second syntax returns a copy of
the current VectorViewIterator and then decrements the current VectorViewIterator.

The first VectorViewIterator syntax pre-decrements the current VectorViewIterator.

The second syntax post-decrements the current VectorViewIterator. The int  type in the second syntax indicates a
post-decrement operation, not an actual integer operand.

Retrieves a reference to the element specified by the current VectorViewIterator.

The element specified by the current VectorViewIterator.

Indicates whether the current VectorViewIterator is equal to a specified VectorViewIterator.

other
Another VectorViewIterator.

true if the current VectorViewIterator  is equal to other; otherwise, false.



 

 

 

 

VectorViewIterator::operator> Operator

SyntaxSyntax

bool operator>(const VectorViewIterator& other) const;

ParametersParameters

Return ValueReturn Value

VectorViewIterator::operator>= Operator

SyntaxSyntax

bool operator>=(const VectorViewIterator& other) const;

ParametersParameters

Return ValueReturn Value

VectorViewIterator::operator++ Operator

SyntaxSyntax

VectorViewIterator& operator++();
VectorViewIterator operator++(int);

Return ValueReturn Value

RemarksRemarks

VectorViewIterator::operator!= Operator

Indicates whether the current VectorViewIterator is greater than a specified VectorViewIterator.

other
Another VectorViewIterator.

true if the current VectorViewIterator is greater than other; otherwise, false.

Indicates whether the current VectorViewIterator  is greater than or equal to the specified VectorViewIterator .

other
Another VectorViewIterator.

true if the current VectorViewIterator  is greater than or equal to other; otherwise, false.

Increments the current VectorViewIterator.

The first syntax increments and then returns the current VectorViewIterator. The second syntax returns a copy of
the current VectorViewIterator and then increments the current VectorViewIterator.

The first VectorViewIterator syntax pre-increments the current VectorViewIterator.

The second syntax post-increments the current VectorViewIterator. The int  type in the second syntax indicates a
post-increment operation, not an actual integer operand.

Indicates whether the current VectorViewIterator is not equal to a specified VectorViewIterator.



 

 

 

SyntaxSyntax

bool operator!=(const VectorViewIterator& other) const;

ParametersParameters

Return ValueReturn Value

VectorViewIterator::operator< Operator

SyntaxSyntax

bool operator<(const VectorViewIterator& other) const;

ParametersParameters

Return ValueReturn Value

VectorViewIterator::operator<= Operator

SyntaxSyntax

bool operator<=(const VectorViewIterator& other) const;

ParametersParameters

Return ValueReturn Value

VectorViewIterator::operator- Operator

SyntaxSyntax

other
Another VectorViewIterator.

true if the current VectorViewIterator  is not equal to other; otherwise, false.

Indicates whether the current VectorIterator is less than a specified VectorIterator.

other
Another VectorIterator .

true if the current VectorIterator  is less than other; otherwise, false.

Indicates whether the current VectorIterator  is less than or equal to a specified VectorIterator .

other
Another VectorIterator .

true if the current VectorIterator  is less than or equal to other; otherwise, false.

Subtracts either a specified number of elements from the current iterator yielding a new iterator, or a specified
iterator from the current iterator yielding the number of elements between the iterators.



 

VectorViewIterator operator-(difference_type n) const;

difference_type operator-(const VectorViewIterator& other) const;

ParametersParameters

Return ValueReturn Value

VectorViewIterator::operator+= Operator

SyntaxSyntax

VectorViewIterator& operator+=(difference_type n);

ParametersParameters

Return ValueReturn Value

VectorViewIterator::operator+ Operator

SyntaxSyntax

VectorViewIterator operator+(difference_type n) const;

template <typename T>
inline VectorViewIterator<T> operator+
   (ptrdiff_t n,
   const VectorViewIterator<T>& i);

ParametersParameters

n
A number of elements.

other
Another VectorViewIterator.

The first operator syntax returns a VectorViewIterator object that is n  elements less than the current
VectorViewIterator. The second operator syntax returns the number of elements between the current and the 
other  VectorViewIterator.

Increments the current VectorViewIterator by the specified displacement.

n
A integer displacement.

The updated VectorViewIterator.

Returns a VectorViewIterator that references the element at the specified displacement from the specified
VectorViewIterator.

T
In the second syntax, the typename of the VectorViewIterator.

n
An integer displacement.

i



 

 

 

Return ValueReturn Value

VectorViewIterator::operator-= Operator

SyntaxSyntax

VectorViewIterator& operator-=(difference_type n);

ParametersParameters

Return ValueReturn Value

VectorViewIterator::operator[]

SyntaxSyntax

reference operator[](difference_type n) const;

ParametersParameters

Return ValueReturn Value

VectorViewIterator::VectorViewIterator Constructor

SyntaxSyntax

VectorViewIterator();

explicit VectorViewIterator(
   Windows::Foundation::Collections::IVectorView<T>^ v
);

ParametersParameters

In the second syntax, a VectorViewIterator.

In the first syntax, a VectorViewIterator that references the element at the specified displacement from the current
VectorViewIterator.

In the second syntax, a VectorViewIterator that references the element at the specified displacement from the
beginning of parameter i .

Decrements the current VectorIterator by the specified displacement.

n
An integer displacement.

The updated VectorIterator.

Retrieves a reference to the element that is a specified displacement from the current VectorViewIterator.

n
An integer displacement.

The element that is displaced by n  elements from the current VectorViewIterator.

Initializes a new instance of the VectorViewIterator class.

v
An IVectorView<T> object.



RemarksRemarks

See Also

The first syntax example is the default constructor. The second syntax example is an explicit constructor that is
used to construct a VectorViewIterator from an IVectorView<T> object.

Platform Namespace



Platform::Collections::Details Namespace
10/31/2018 • 2 minutes to read • Edit Online

Syntax
namespace Platform {  namespace Collections {    namespace Details {}}}

MembersMembers

Inheritance Hierarchy

RequirementsRequirements

See Also

This namespace supports the Platform  infrastructure and is not intended to be used directly from your code.

Members of this namespace are defined in collection.h and are not displayed in Object Browser.

Platform::Collections Namespace

Header: Collection.h

Namespace: Platform::Collection::Details

Platform Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-collections-details-namespace.md


Platform::Details Namespace
10/31/2018 • 2 minutes to read • Edit Online

Syntax
namespace Platform {
   namespace Details {
}}

MembersMembers

NAME REMARK

Console Class. Displays output in unit tests.

_GUID Struct

Heap Class

HeapAllocationTrackingLevel Enumeration

HeapEntryHandler Delegate

IActivationFactory Interface

IAgileObject Interface

IClassFactory Interface

IEquatable Interface

IPrintable Interface

IWeakReference Interface

IWeakReferenceSource Interface

Inheritance Hierarchy

RequirementsRequirements

This namespace is intended for internal use only, and is not intended to be used for development.

Although this namespace is intended for internal use, browsers can display the following members of this
namespace.

Platform

Metadata: platform.winmd

Namespace: Platform::Details

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-details-namespace.md


See Also
Platform Namespace



Platform::Details::__GUID Struct
10/31/2018 • 2 minutes to read • Edit Online

Syntax
ref struct __GUID;

RemarksRemarks

Inheritance Hierarchy

RequirementsRequirements

See Also

This struct is intended for internal use only, and is not intended to be used for development.

This struct is provided solely for completeness because it can be inspected with browsers.

Platform

Metadata: platform.winmd

Namespace: Platform::Details

Platform Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-details-guid-struct.md


Platform::Details::Console Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
ref class Console sealed;

RemarksRemarks

Inheritance Hierarchy

RequirementsRequirements

See Also

This class is intended for internal use only, and is not intended to be used for development.

This class is provided solely for completeness because it can be inspected with browsers.

Platform

Metadata: platform.winmd

Namespace: Platform::Details

Platform Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-details-console-class.md


Platform::Details::Heap Class
10/31/2018 • 2 minutes to read • Edit Online

Syntax
ref class Heap sealed;

RemarksRemarks

Inheritance Hierarchy

RequirementsRequirements

See Also

This class is intended for internal use only, and is not intended to be used for development.

This class is provided solely for completeness because it can be inspected with browsers.

Platform

Metadata: platform.winmd

Namespace: Platform::Details

Platform Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-details-heap-class.md


Platform::Details::HeapAllocationTrackingLevel
Enumeration
10/31/2018 • 2 minutes to read • Edit Online

Syntax
enumm class HeapAllocationTrackingLevel;

RemarksRemarks

Inheritance Hierarchy

RequirementsRequirements

See Also

This enumeration is intended for internal use only, and is not intended to be used for development.

This enumeration is provided solely for completeness because it can be inspected with browsers.

Platform

Metadata: platform.winmd

Namespace: Platform::Details

Platform Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-details-heapallocationtrackinglevel-enumeration.md


Platform::Details::HeapEntryHandler Delegate
10/31/2018 • 2 minutes to read • Edit Online

Syntax
delegate HeapEntryHandler;

RemarksRemarks

Inheritance Hierarchy

RequirementsRequirements

See Also

This delegate is intended for internal use only, and is not intended to be used for development.

This class is provided solely for completeness because it can be inspected with browsers.

Platform

Metadata: platform.winmd

Namespace: Platform::Details

Platform Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-details-heapentryhandler-delegate.md


Platform::Details::IEquatable Interface
10/31/2018 • 2 minutes to read • Edit Online

Syntax
interface class IEquatable;

RemarksRemarks

Inheritance Hierarchy

RequirementsRequirements

See Also

This interface is intended for internal use only, and is not intended to be used for development.

This interface is provided solely for completeness because it can be inspected with browsers.

Platform

Metadata: platform.winmd

Namespace: Platform::Details

Platform Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-details-iequatable-interface.md


Platform::Details::IPrintable Interface
10/31/2018 • 2 minutes to read • Edit Online

Syntax
interface class IPrintable;

RemarksRemarks

Inheritance Hierarchy

RequirementsRequirements

See Also

This interface is intended for internal use only, and is not intended to be used for development.

This interface is provided solely for completeness because it can be inspected with browsers.

Platform

Metadata: platform.winmd

Namespace: Platform::Details

Platform Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-details-iprintable-interface.md


Platform::Metadata Namespace
10/31/2018 • 2 minutes to read • Edit Online

Syntax
namespace Platform {
   namespace Metadata {
}}

MembersMembers

NAME REMARK

Attribute The base class for attributes.

Platform::Metadata::DefaultMemberAttribute Attribute Indicates the preferred function to invoke among several
possible overloaded functions.

Platform::Metadata::FlagsAttribute AttributeFlags Declares an enumeration as an enumeration of bit fields.

The following example shows how to apply the Flags

attribute an enumeration.

[Flags] enum class MyEnumeration { enumA = 1, enumB
= 2, enumC = 3}

Platform::Metadata::RuntimeClassNameAttribute Ensures that a private ref class has a valid runtime class name.

Inheritance Hierarchy

RequirementsRequirements

See Also

This namespace contains attributes that modify the declarations of types.

Although this namespace is intended for internal use, browsers can display the following members of this
namespace.

Platform

Metadata: platform.winmd

Namespace: Platform::Metadata

Platform Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-metadata-namespace.md


Platform::Metadata::Attribute Attribute
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class Attribute abstract : Object

Inheritance

RequirementsRequirements

See Also

Represents the base class for all attributes.

Platform::Object

Platform::Metadata::Attribute

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform::Metadata

Metadata: platform.winmd

Platform::Metadata Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-metadata-attribute-attribute.md


Platform::Metadata::DefaultMemberAttribute
Attribute
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class DefaultMember abstract : Attribute

Inheritance

RemarksRemarks

RequirementsRequirements

See Also

Indicates the preferred function to invoke among several possible overloaded functions.

Platform::Object

Platform::Metadata::Attribute

Apply the DefaultMember attribute to a method that will be consumed by a JavaScript application.

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform::Metadata

Metadata: platform.winmd

Platform::Metadata Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-metadata-defaultmemberattribute-attribute.md


Platform::Metadata::FlagsAttribute Attribute
10/31/2018 • 2 minutes to read • Edit Online

Syntax
public ref class Flags abstract : Attribute

Inheritance

RemarksRemarks

RequirementsRequirements

See Also

Indicates that an enumeration can be treated as a bit field; that is, a set of flags.

Platform::Object

Platform::Metadata::Attribute

Minimum supported client: Windows 8

Minimum supported server: Windows Server 2012

Namespace: Platform::Metadata

Metadata: platform.winmd

Platform::Metadata Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-metadata-flagsattribute-attribute.md


Platform::Metadata::RuntimeClassName
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[Platform::Metadata::RuntimeClassName] name

ParametersParameters

RemarksRemarks

ExampleExample

namespace Test
{
    namespace Native
    {
        namespace MyComponent
        {
            public interface class IHelloWorld
            {
                Platform::String^ SayHello();
            };

            private ref class HelloWorldImpl sealed :[Platform::Metadata::RuntimeClassName] IHelloWorld
            {
            public:
                HelloWorldImpl();
                virtual Platform::String^ SayHello();
            };

            Platform::String^ HelloWorldImpl::SayHello()
            {
                return L"Hello World!";
            }
        }
    }
}

See Also

When applied to a class definition, ensures that a private class returns a valid name from the
GetRuntimeClassName function..

name
The name of an existing public type that is visible in the Windows Runtime.

Use this attribute on private ref classes to specify a custom runtime type name and/or when the existing name
does not meet the requirements. Specify as a name a public interface that the class implements.

The following example shows how to use the attribute. In this example, the runtime type name of
HellowWorldImpl is Test::Native::MyComponent::IHelloWorld

Platform::Metadata Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-metadata-runtimeclassname.md


Platform::Runtime::CompilerServices Namespace
10/31/2018 • 2 minutes to read • Edit Online

Syntax
namespace Platform {
   namespace CompilerServices{
}}

MembersMembers

NAME REMARK

CallConvCdecl

CallConvFastcall

CallConvStdcall

CallConvThiscall

IndexerNameAttribute

IsBoxed

IsByValue

IsConst

IsCopyConstructed

IsExplicitlyDereferenced

IsImplicitlyDereferenced

IsLong

IsSignUnspecifiedByte

IsSigned

IsUdtReturn

IsVolatile

This namespace is intended for internal use only, and is not intended to be used for development.

Although this namespace is intended for internal use, browsers can display the following members of this
namespace.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-runtime-compilerservices-namespace.md


OnePhaseConstructedAttribute

NAME REMARK

Inheritance Hierarchy

RequirementsRequirements

See Also

Platform

Metadata: platform.winmd

Namespace: Platform::CompilerServices

Platform Namespace



Platform::Runtime::InteropServices Namespace
10/31/2018 • 2 minutes to read • Edit Online

Syntax
namespace Platform {
   namespace InteropServices {
}}

MembersMembers

NAME REMARK

ComInterfaceType enumeration

InterfaceTypeAttribute

LayoutKind enumeration

MarshalAsAttribute

StuctLayoutAttribute

UnmanagedType enumeration

Inheritance Hierarchy

RequirementsRequirements

See Also

This namespace is intended for internal use only, and is not intended to be used for development.

Although this namespace is intended for internal use, browsers can display the following members of this
namespace.

Platform

Metadata: platform.winmd

Namespace: Platform::InteropServices

Platform Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/platform-runtime-interopservices-namespace.md


Windows::Foundation::Collections Namespace
(C++/CX)
10/31/2018 • 2 minutes to read • Edit Online

Syntax

namespace Windows {
    namespace Foundation {
        namespace Collections;
    }
}

FunctionsFunctions

NAME DESCRIPTION

back_inserter Function Returns an iterator that can be used to insert a value at the
end of a collection.

begin Function Returns an iterator that points to the beginning of a
collection.

end Function Returns an iterator that points beyond the end of a collection.

to_vector Function Returns a collection as a std::vector.

RequirementsRequirements

C++/CX supplements the Windows::Foundation::Collections namespace with functions that simplify using the
Vector, VectorView, Map, and MapView collection classes.

Header: collection.h

Namespace: Windows::Foundation::Collections

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/windows-foundation-collections-namespace-c-cx.md


back_inserter Function
10/31/2018 • 2 minutes to read • Edit Online

Syntax

template <typename T>
Platform::BackInsertIterator<T>
    back_inserter(IVector<T>^ v);

template<typename T>
Platform::BackInsertIterator<T>
   back_inserter(IObservableVector<T>^ v);

ParametersParameters

Return ValueReturn Value

RequirementsRequirements

See Also

Returns an iterator that is used to insert elements at the end of the specified collection.

T
A template type parameter.

v
An interface pointer that provides access to the underlying collection.

An iterator.

Header: collection.h

Namespace: Windows::Foundation::Collections

Windows::Foundation::Collections Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/back-inserter-function.md


begin Function
10/31/2018 • 2 minutes to read • Edit Online

Syntax

template <typename T>
    ::Platform::Collections::VectorIterator<T>
    begin(
          IVector<T>^ v         );

template <typename T>
    ::Platform::Collections::VectorViewIterator<T>
    begin(
          IVectorView<T>^ v
         );

template <typename T>
    ::Platform::Collections::InputIterator<T>
    begin(
          IIterable<T>^ i         );

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

See Also

Returns an iterator that points to the beginning of a collection that is accessed by the specified interface
parameter.

T
A template type parameter.

v
A collection of Vector<T> or VectorView<T> objects that are accessed by an IVector<T> or IVectorView<T>
interface.

i
A collection of arbitrary Windows Runtime objects that are accessed by an IIterable<T> interface.

An iterator that points to the beginning of the collection.

The first two template functions return iterators, and the third template function returns an input iterator.

The VectorIterator object that is returned by begin is a proxy iterator that stores elements of type
VectorProxy<T>. However, the proxy object is almost never visible to user code. For more information, see
Collections (C++/CX).

Header: collection.h

Namespace: Windows::Foundation::Collections

Windows::Foundation::Collections Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/begin-function.md


end Function
10/31/2018 • 2 minutes to read • Edit Online

Syntax

template <typename T>
    ::Platform::Collections::VectorIterator<T>
    end(
        IVector<T>^ v       );

template <typename T>
    ::Platform::Collections::VectorViewIterator<T>
    end(
        IVectorView<T>^ v
       );
template <typename T>
    ::Platform::Collections::InputIterator<T>
    end(
        IIterable<T>^ i
       );

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RequirementsRequirements

See Also

Returns an iterator that points beyond the end of a collection that is accessed by the specified interface
parameter.

T
A template type parameter.

v
A collection of Vector<T> or VectorView<T> objects that are accessed by an IVector<T>, or IVectorView<T>
interface.

i
A collection of arbitraty Windows Runtime objects that are accessed by an IIterable<T> interface.

An iterator that points beyond the end of the collection.

The first two template functions return iterators, and the third template function returns an input iterator.

The Platform::Collections::VectorViewIterator object that is returned by end  is a proxy iterator that stores
elements of type VectorProxy<T> . However, the proxy object is almost never visible to user code. For more
information, see Collections (C++/CX).

Header: collection.h

Namespace: Windows::Foundation::Collections

Windows::Foundation::Collections Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/end-function.md


to_vector Function
10/31/2018 • 2 minutes to read • Edit Online

Syntax
template <typename T>
inline ::std::vector<T> to_vector(IVector<T>^ v);

template <typename T>
inline ::std::vector<T> to_vector(IVectorView<T>^ v);

ParametersParameters

Return ValueReturn Value

RequirementsRequirements

See Also

Returns a std::vector  whose value is the same as the collection underlying the specified IVector or IVectorView
parameter.

T
The template type parameter.

v
An IVector or IVectorView interface that provides access to an underlying Vector or VectorView object.

Header: collection.h

Namespace: Windows::Foundation::Collections

Windows::Foundation::Collections Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/to-vector-function.md


operator Windows::UI::Xaml::Interop::TypeName
3/5/2019 • 2 minutes to read • Edit Online

Syntax
Operator TypeName(Platform::Type^ type);

Return ValueReturn Value

RemarksRemarks

rootFrame->Navigate(TypeName(MainPage::typeid), e->Arguments);

ExampleExample

// Convert from Type to TypeName
Windows::UI::Xaml::Interop::TypeName tn = TypeName(MainPage::typeid);

// Convert back from TypeName to Type
Type^ tx2 = (Type^)(tn);

.NET Framework Equivalent

RequirementsRequirements

See Also

Enables conversion from Platform::Type  to Windows::UI::Xaml::Interop::TypeName.

Returns a Windows::UI::Xaml::Interop::TypeName when given a Platform::Type^ .

TypeName  is the language-neutral Windows Runtime struct for representing type information. Platform::Type is
specific to C++ and can’t be passed across the application binary interface (ABI). Here's one use of TypeName , in
the Navigate function:

The next example shows how to convert between TypeName  and Type .

.NET Framework programs project TypeName  as System.Type.

operator Windows::UI::Xaml::Interop::TypeName
Platform::Type Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/operator-windows-ui-xaml-interop-typename.md
https://docs.microsoft.com/uwp/api/windows.ui.xaml.interop.typename
https://docs.microsoft.com/uwp/api/windows.ui.xaml.interop.typename
https://docs.microsoft.com/uwp/api/windows.ui.xaml.controls.frame.navigate
assetId:///System.Type?qualifyHint=False&autoUpgrade=True


CRT functions not supported in Universal Windows
Platform apps
11/15/2018 • 5 minutes to read • Edit Online

Unsupported CRT Functions

_beep _sleep _seterrormode These functions were obsolete in
previous versions of the CRT. Also, the
corresponding Win32 APIs are not
available for UWP apps.

No workaround.

chdir _chdrive getcwd These functions are obsolete or are not
thread-safe.

Use _chdir, _getcwd and related
functions.

_cgets _cgets_s _cgetws _cgetws_s
_cprintf _cprintf_l _cprintf_p _cprintf_p_l
_cprintf_s _cprintf_s_l _cputs _cputws
_cscanf _cscanf_l _cscanf_s _cscanf_s_l
_cwait _cwprintf _cwprintf_l _cwprintf_p
_cwprintf_p_l _cwprintf_s _cwprintf_s_l
_cwscanf _cwscanf_l _cwscanf_s
_cwscanf_s_l _vcprintf _vcprintf_l
_vcprintf_p _vcprintf_p_l _vcprintf_s
_vcprintf_s_l _vcwprintf _vcwprintf_l
_vcwprintf_p _vcwprintf_p_l _vcwprintf_s
_vcwprintf_s_l _getch _getch_nolock
_getche _getche_nolock _getwch
_getwch_nolock _getwche
_getwche_nolock _putch _putch_nolock
_putwch _putwch_nolock _ungetch
_ungetch_nolock _ungetwch
_ungetwch_nolock _kbhit kbhit putch
cgets cprintf cputs cscanf cwait getch
getche ungetch

These functions are used to read and
write directly from and to the console.
UWP apps are GUI only; they don't
support console.

No workaround.

getpid This function is obsolete. Use _getpid or the Win32 API 
GetCurrentProcessId() .

_getdiskfree Not available. Use the Win32 API 
GetDiskFreeSpaceExW() .

Many C runtime (CRT) functions are not available when you build Universal Windows Platform (UWP) apps. In
some cases, workarounds are available—-for example, you can use Windows Runtime or Win32 APIs. However,
in other cases, CRT functions have been banned because the features that correspond to them or the supporting
APIs are not applicable to UWP apps. To look for an alternative method that's supported for the Windows
Runtime, see Alternatives to Windows APIs in UWP apps.

The following table lists the CRT functions that are not available when you build UWP apps, and indicates any
workarounds that apply.

https://github.com/Microsoft/cpp-docs/blob/master/docs/cppcx/crt-functions-not-supported-in-universal-windows-platform-apps.md
https://docs.microsoft.com/uwp/win32-and-com/alternatives-to-windows-apis-uwp


_getdrive _getdrives Corresponding API is not available for
UWP apps.

No workaround.

_inp _inpd _inpw _outp _outpd _outpw
inp inpd inpw outp outpd outpw

Port IO is not supported in UWP apps. No workaround.



_ismbcalnum _ismbcalnum_l
_ismbcalpha _ismbcalpha_l _ismbcdigit
_ismbcdigit_l _ismbcgraph
_ismbcgraph_l _ismbchira _ismbchira_l
_ismbckata _ismbckata_l _ismbcl0
_ismbcl0_l _ismbcl1 _ismbcl1_l _ismbcl2
_ismbcl2_l _ismbclegal _ismbclegal_l
_ismbclower _ismbclower_l _ismbcprint
_ismbcprint_l _ismbcpunct
_ismbcpunct_l _ismbcspace
_ismbcspace_l _ismbcsymbol
_ismbcsymbol_l _ismbcupper
_ismbcupper_l _mbbtombc
_mbbtombc_l _mbbtype _mbbtype_l
_mbccpy _mbccpy_l _mbccpy_s
_mbccpy_s_l _mbcjistojms
_mbcjistojms_l _mbcjmstojis
_mbcjmstojis_l _mbclen _mbclen_l
_mbctohira _mbctohira_l _mbctokata
_mbctokata_l _mbctolower
_mbctolower_l _mbctombb
_mbctombb_l _mbctoupper
_mbctoupper_l _mbsbtype _mbsbtype_l
_mbscat _mbscat_l _mbscat_s
_mbscat_s_l _mbschr _mbschr_l
_mbscmp _mbscmp_l _mbscoll
_mbscoll_l _mbscpy _mbscpy_l
_mbscpy_s _mbscpy_s_l _mbscspn
_mbscspn_l _mbsdec _mbsdec_l
_mbsicmp _mbsicmp_l _mbsicoll
_mbsicoll_l _mbsinc _mbsinc_l _mbslen
_mbslen_l _mbslwr _mbslwr_l _mbslwr_s
_mbslwr_s_l _mbsnbcat _mbsnbcat_l
_mbsnbcat_s _mbsnbcat_s_l
_mbsnbcmp _mbsnbcmp_l _mbsnbcnt
_mbsnbcnt_l _mbsnbcoll _mbsnbcoll_l
_mbsnbcpy _mbsnbcpy_l _mbsnbcpy_s
_mbsnbcpy_s_l _mbsnbicmp
_mbsnbicmp_l _mbsnbicoll
_mbsnbicoll_l _mbsnbset _mbsnbset_l
_mbsnbset_s _mbsnbset_s_l _mbsncat
_mbsncat_l _mbsncat_s _mbsncat_s_l
_mbsnccnt _mbsnccnt_l _mbsncmp
_mbsncmp_l _mbsncoll _mbsncoll_l
_mbsncpy _mbsncpy_l _mbsncpy_s
_mbsncpy_s_l _mbsnextc _mbsnextc_l
_mbsnicmp _mbsnicmp_l _mbsnicoll
_mbsnicoll_l _mbsninc _mbsninc_l
_mbsnlen _mbsnlen_l _mbsnset
_mbsnset_l _mbsnset_s _mbsnset_s_l
_mbspbrk _mbspbrk_l _mbsrchr
_mbsrchr_l _mbsrev _mbsrev_l _mbsset
_mbsset_l _mbsset_s _mbsset_s_l
_mbsspn _mbsspn_l _mbsspnp
_mbsspnp_l _mbsstr _mbsstr_l _mbstok
_mbstok_l _mbstok_s _mbstok_s_l
_mbsupr _mbsupr_l _mbsupr_s
_mbsupr_s_l is_wctype

Multi-byte strings are not supported in
UWP apps.

Use Unicode strings instead.

_pclose _pipe _popen _wpopen Pipe functionality is not available to
UWP apps.

No workaround.



_resetstkoflw Supporting Win32 APIs are not
available for UWP apps.

No workaround.

_getsystime _setsystime These were obsolete APIs in previous
CRT versions. Also, a user cannot set
the system time in a UWP app due to
lack of permissions.

To get the system time only, use the
Win32 API GetSystemTime . System
time cannot be set.

_environ _putenv _putenv_s _searchenv
_searchenv_s _dupenv_s _wputenv
_wputenv_s _wsearchenv getenv
getenv_s putenv _wdupenv_s
_wenviron _wgetenv _wgetenv_s
_wsearchenv_s tzset

Environment variables are not available
to UWP apps.

No workaround. To set the time zone,
use _tzset.

_loaddll _getdllprocaddr _unloaddll These were obsolete functions in
previous CRT versions. Also, user
cannot load DLLs except from those in
the same application package.

Use Win32 APIs 
LoadPackagedLibrary , 
GetProcAddress , and FreeLibrary

to load and use packaged DLLs.

_wexecl _wexecle _wexeclp _wexeclpe
_wexecv _wexecve _wexecvp _wexecvpe
_execl _execle _execlp _execlpe _execv
_execve _execvp _execvpe _spawnl
_spawnle _spawnlp _spawnlpe _spawnv
_spawnve _spawnvp _spawnvpe
_wspawnl _wspawnle _wspawnlp
_wspawnlpe _wspawnv _wspawnve
_wspawnvp _wspawnvpe _wsystem
execl execle execlp execlpe execv execve
execvp execvpe spawnl spawnle
spawnlp spawnlpe spawnv spawnve
spawnvp spawnvpe system

The functionality is not available in
UWP apps. A UWP app cannot invoke
another UWP app or a desktop app.

No workaround.

_heapwalk _heapadd _heapchk
_heapset _heapused

These functions are typically used to
work with the heap. However,
corresponding Win32 APIs are not
supported in UWP apps. And, apps can
no longer create or use private heaps.

No workaround. However, _heapwalk

available in the DEBUG CRT, for
debugging purposes only. These cannot
be used in apps that are uploaded to
the Microsoft Store.

Single-byte string functions—for example, strcat , strcpy ,
strlwr , and so on.

Make your UWP apps strictly Unicode because all Win32 APIs
and Windows Runtime APIs that are exposed use Unicode
character sets only. Single-byte functions were left for porting
large code bases, but should otherwise be avoided, and the
corresponding wide char functions should be used instead
when possible.

Stream IO and low-level file IO functions—for example, 
fopen , open , and so on.

These functions are synchronous, which is not recommended
for UWP apps. In your UWP apps, use asynchronous APIs to
open, read from, and write to files to prevent locking of the UI
thread. Examples of such APIs are the ones in the 
Windows::Storage::FileIO  class.

The following functions are available in the CRT for UWP apps, but should be used only when the corresponding
Win32 or Windows Runtime APIs cannot be used—for example, when you are porting large code bases



Windows 8.x Store apps and Windows Phone 8.x apps

_beginthread _beginthreadex
_endthread _endthreadex

Threading Win32 APIs are not available
in Windows 8.x Store apps.

Use the 
Windows Runtime
Windows::System::Threading::ThreadPool

or concurrency::task  instead.

_chdir _wchdir _getcwd _getdcwd
_wgetcwd _wgetdcwd

The concept of a working directory
doesn't apply to Windows 8.x Store
apps.

Use full paths instead.

_getpid This function were obsolete in previous
versions of the CRT.

Use the Win32 API 
GetCurrentProcessId()

_isleadbyte_l _ismbbalnum,
_ismbbalnum_l, _ismbbalpha,
_ismbbalpha _ismbbalpha_l
_ismbbgraph _ismbbgraph_l
_ismbbkalnum _ismbbkalnum_l
_ismbbkana _ismbbkana_l _ismbbkprint
_ismbbkprint_l _ismbbkpunct
_ismbbkpunct_l _ismbblead
_ismbblead_l _ismbbprint _ismbbprint_l
_ismbbpunct _ismbbpunct_l _ismbbtrail
_ismbbtrail_l _ismbslead _ismbslead_l
_ismbstrail _ismbstrail_l _mbsdup
isleadbyte

Multi-byte strings are not supported in
Windows 8.x Store apps.

Use Unicode strings instead.

_tzset Environment variables are not available
to Windows 8.x Store apps.

No workaround.

_get_heap_handle, _heapmin The corresponding Win32 APIs are not
supported in Windows 8.x Store apps.
And, apps can no longer create private
heaps.

No workaround. However, 
_get_heap_handle  is available in the

DEBUG CRT, for debugging purposes
only.

In addition to the previously mentioned APIs, the following APIs are not available in Windows 8.x Store apps and
Windows Phone 8.x apps.



Windows Runtime C++ Template Library (WRL)
1/16/2019 • 7 minutes to read • Edit Online

NOTENOTE

Benefits

The Windows Runtime C++ Template Library (WRL) is a template library that provides a low-level way to author
and use Windows Runtime components.

WRL is now superseded by C++/WinRT, a standard C++17 language projection for Windows Runtime APIs. C++/WinRT is
available in the Windows 10 SDK from version 1803 onward. C++/WinRT is implemented entirely in header files, and
designed to provide you with first-class access to the modern Windows API.

With C++/WinRT, you can both consume and author Windows Runtime APIs using any standards-compliant C++17
compiler. C++/WinRT typically performs better and produces smaller binaries than any other language option for the
Windows Runtime. We will continue to support C++/CX and WRL, but highly recommend that new applications use
C++/WinRT. For more information, see C++/WinRT.

The Windows Runtime C++ Template Library enables you to more easily implement and consume Component
Object Model (COM) components. It provides housekeeping techniques like reference-counting to manage the
lifetime of objects and testing HRESULT values to determine whether an operation succeeded or failed. To
successfully use the Windows Runtime C++ Template Library, you must carefully follow these rules and
techniques.

The C++/CX is a high-level, language-based way to use Windows Runtime components. Both the Windows
Runtime C++ Template Library and C++/CX simplify the writing of code for the Windows Runtime by
automatically performing housekeeping tasks on your behalf.

The Windows Runtime C++ Template Library and C++/CX provide different benefits. Here are some reasons you
might want to use the Windows Runtime C++ Template Library instead of C++/CX:

NOTENOTE

Windows Runtime C++ Template Library adds little abstraction over the Windows Runtime Application
Binary Interface (ABI), giving you the ability to control the underlying code to better create or consume
Windows Runtime APIs.

C++/CX represents COM HRESULT values as exceptions. If you’ve inherited a code base that uses COM,
or one that doesn’t use exceptions, you might find that the Windows Runtime C++ Template Library is a
more natural way to work with the Windows Runtime because you don't have to use exceptions.

The Windows Runtime C++ Template Library uses HRESULT values and does not throw exceptions. In addition, the
Windows Runtime C++ Template Library uses smart pointers and the RAII pattern to help guarantee that objects
are destroyed correctly when your application code throws an exception. For more info about smart pointers and
RAII, see Smart Pointers and Objects Own Resources (RAII).

The purpose and design of the Windows Runtime C++ Template Library is inspired by the Active Template
Library (ATL), which is a set of template-based C++ classes that simplify the programming of COM objects.
Because Windows Runtime C++ Template Library uses standard C++ to wrap the Windows Runtime, you
can more easily port and interact with many existing COM components written in ATL to the Windows

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/windows-runtime-cpp-template-library-wrl.md
https://docs.microsoft.com/windows/uwp/cpp-and-winrt-apis/index
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/smart-pointers-modern-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/objects-own-resources-raii


Getting Started

Runtime. If you already know ATL, you might find that Windows Runtime C++ Template Library
programming is easier.

Here are some resources that can help you get working with the Windows Runtime C++ Template Library right
away.

The Windows Runtime Library (WRL)
In this Channel 9 video, learn more about how the Windows Runtime C++ Template Library helps you write
Universal Windows Platform (UWP) apps and how to author and consume Windows Runtime components.

How to: Activate and Use a Windows Runtime Component
Shows how to use the Windows Runtime C++ Template Library to initialize the Windows Runtime and activate
and use a Windows Runtime component.

How to: Complete Asynchronous Operations
Shows how to use the Windows Runtime C++ Template Library to start asynchronous operations and perform
work when the operations complete.

How to: Handle Events
Shows how to use the Windows Runtime C++ Template Library to subscribe to and handle the events of a
Windows Runtime object.

Walkthrough: Creating a UWP app using WRL and Media Foundation
Learn how to create a UWP app that uses Microsoft Media Foundation.

How to: Create a Classic COM Component
Shows how to use the Windows Runtime C++ Template Library to create a basic COM component and a basic
way to register and consume the COM component from a desktop app.

How to: Instantiate WRL Components Directly
Learn how to use the Microsoft::WRL::Make and Microsoft::WRL::Details::MakeAndInitialize functions to
instantiate a component from the module that defines it.

How to: Use winmdidl.exe and midlrt.exe to create .h files from windows metadata
Shows how to consume custom Windows Runtime components from WRL by creating an IDL file from the
.winmd metadata.

Walkthrough: Connecting Using Tasks and XML HTTP Requests
Shows how to use the IXMLHTTPRequest2 and IXMLHTTPRequest2Callback interfaces together with tasks to
send HTTP GET and POST requests to a web service in a UWP app.

Bing Maps Trip Optimizer sample
Uses the HttpRequest  class that's defined in Walkthrough: Connecting Using Tasks and XML HTTP Requests in
the context of a complete UWP app.

Creating a Windows Runtime DLL component with C++ sample
Shows how to use the Windows Runtime C++ Template Library to create an in-process DLL component and
consume it from C++/CX, JavaScript, and C#.

DirectX marble maze game sample
Demonstrates how to use the Windows Runtime C++ Template Library to manage the lifetime of COM
components such as DirectX and Media Foundation in the context of a complete 3-D game.

Sending toast notifications from desktop apps sample
Demonstrates how to use the Windows Runtime C++ Template Library to work with toast notifications from a
desktop app.

https://channel9.msdn.com/Events/Windows-Camp/Developing-Windows-8-Metro-style-apps-in-Cpp/The-Windows-Runtime-Library-WRL-
https://docs.microsoft.com/windows/desktop/medfound/microsoft-media-foundation-sdk
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/concrt/walkthrough-connecting-using-tasks-and-xml-http-requests
https://docs.microsoft.com/windows/desktop/api/msxml6/nn-msxml6-ixmlhttprequest2
https://docs.microsoft.com/windows/desktop/api/msxml6/nn-msxml6-ixmlhttprequest2callback
https://code.msdn.microsoft.com/Bing-Maps-trip-optimizer-c4e037f7
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/concrt/walkthrough-connecting-using-tasks-and-xml-http-requests
https://code.msdn.microsoft.com/windowsapps/Creating-a-Windows-Runtime-6c399797
https://code.msdn.microsoft.com/windowsapps/DirectX-Marble-Maze-Game-e4806345
https://code.msdn.microsoft.com/windowsdesktop/Sending-toast-notifications-71e230a2


Windows Runtime C++ Template Library Compared to ATL

Concepts

ComPtrComPtr

RuntimeClassRuntimeClass

ModuleModule

CallbackCallback

EventSourceEventSource

AsyncBaseAsyncBase

Windows Runtime C++ Template Library resembles the Active Template Library (ATL) because you can use it to
create small, fast COM objects. Windows Runtime C++ Template Library and ATL also share concepts such as
definition of objects in modules, explicit registration of interfaces, and open creation of objects by using factories.
You might be comfortable with Windows Runtime C++ Template Library if you're familiar with ATL.

Windows Runtime C++ Template Library supports the COM functionality that is required for UWP apps.
Therefore, it differs from the ATL because it omits direct support for COM features such as:

aggregation

stock implementations

dual interfaces ( IDispatch )

standard enumerator interfaces

connection points

tear-off interfaces

OLE embedding

ActiveX controls

COM+

Windows Runtime C++ Template Library provides types that represent a few basic concepts. The following
sections describe those types.

ComPtr is a smart pointer type that represents the interface that's specified by the template parameter. Use 
ComPtr  to declare a variable that can access the members of an object that's derived from the interface. ComPtr

automatically maintains a reference count for the underlying interface pointer and releases the interface when the
reference count goes to zero.

RuntimeClass represents an instantiated class that inherits a set of specified interfaces. A RuntimeClass  object can
provide a combination of support for one or more Windows Runtime COM interfaces, or a weak reference to a
component.

Module represents a collection of related objects. A Module  object manages class factories, which create objects,
and registration, which enables other applications to use an object.

The Callback function creates an object whose member function is an event handler (a callback method). Use the 
Callback  function to write asynchronous operations.

EventSource is used to manage delegate event handlers. Use Windows Runtime C++ Template Library to
implement a delegate, and use EventSource  to add, remove, and invoke delegates.

AsyncBase provides virtual methods that represent the Windows Runtime asynchronous programming model.



FtmBaseFtmBase

WeakRefWeakRef

Related Topics

Key APIs by Category Highlights the primary Windows Runtime C++ Template
Library types, functions, and macros.

Reference Contains reference information for the Windows Runtime
C++ Template Library.

Quick Reference (Windows Runtime and Visual C++) Briefly describes the C++/CX features that support the
Windows Runtime.

Using Windows Runtime Components in Visual C++ Shows how to use C++/CX to create a basic Windows
Runtime component.

Override the members in this class to create a custom class that can start, stop, or check the progress of an
asynchronous operation.

FtmBase represents a free-threaded marshaler object. FtmBase  creates a global interface table (GIT), and helps
manage marshaling and proxy objects.

WeakRef is a smart-pointer type that represents a weak reference, which references an object that might or might
not be accessible. A WeakRef  object can be used by only the Windows Runtime, and not by classic COM.

A WeakRef  object typically represents an object whose existence is controlled by an external thread or application.
For example, a WeakRef  object can reference a file object. When the file is open, the WeakRef  is valid and the
referenced file is accessible. But when the file is closed, the WeakRef  is invalid and the file is not accessible.

https://docs.microsoft.com/windows/uwp/winrt-components/walkthrough-creating-a-basic-windows-runtime-component-in-cpp-and-calling-it-from-javascript-or-csharp


How to: Activate and Use a Windows Runtime
Component Using WRL
1/24/2019 • 4 minutes to read • Edit Online

IMPORTANTIMPORTANT

Activating and Using a Windows Runtime Component

IMPORTANTIMPORTANT

To activate and use a Windows Runtime componentTo activate and use a Windows Runtime component

This document shows how to use the Windows Runtime C++ Template Library (WRL)to initialize the Windows
Runtime and how to activate and use a Windows Runtime component.

To use a component, you must acquire an interface pointer to the type that is implemented by the component. And
because the underlying technology of the Windows Runtime is the Component Object Model (COM), you must
follow COM rules to maintain an instance of the type. For example, you must maintain the reference count that
determines when the type is deleted from memory.

To simplify the use of the Windows Runtime, Windows Runtime C++ Template Library provides the smart pointer
template, ComPtr<T>, that automatically performs reference counting. When you declare a variable, specify 
ComPtr< interface-name >  identifier. To access an interface member, apply the arrow member-access operator (
-> ) to the identifier.

When you call an interface function, always test the HRESULT return value.

The following steps use the Windows::Foundation::IUriRuntimeClass  interface to demonstrate how to create an
activation factory for a Windows Runtime component, create an instance of that component, and retrieve a
property value. They also show how to initialize the Windows Runtime. The complete example follows.

Although you typically use the Windows Runtime C++ Template Library in a Universal Windows Platform (UWP) app, this
example uses a console app for illustration. Functions such as wprintf_s  are not available from a UWP app. For more
information about the types and functions that you can use in a UWP app, see CRT functions not supported in Universal
Windows Platform apps and Win32 and COM for UWP apps.

#include <Windows.Foundation.h>
#include <wrl\wrappers\corewrappers.h>
#include <wrl\client.h>
#include <stdio.h>

using namespace ABI::Windows::Foundation;
using namespace Microsoft::WRL;
using namespace Microsoft::WRL::Wrappers;

1. Include ( #include ) any required Windows Runtime, Windows Runtime C++ Template Library, or C++
Standard Library headers.

We recommend that you utilize the using namespace  directive in your .cpp file to make the code more
readable.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/how-to-activate-and-use-a-windows-runtime-component-using-wrl.md
https://docs.microsoft.com/uwp/win32-and-com/win32-and-com-for-uwp-apps


// Initialize the Windows Runtime.
RoInitializeWrapper initialize(RO_INIT_MULTITHREADED);
if (FAILED(initialize))
{
    return PrintError(__LINE__, initialize);
}

// Get the activation factory for the IUriRuntimeClass interface.
ComPtr<IUriRuntimeClassFactory> uriFactory;
HRESULT hr = GetActivationFactory(HStringReference(RuntimeClass_Windows_Foundation_Uri).Get(), 
&uriFactory);
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

// Create a string that represents a URI.
HString uriHString;
hr = uriHString.Set(L"http://www.microsoft.com");
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

// Create the IUriRuntimeClass object.
ComPtr<IUriRuntimeClass> uri;
hr = uriFactory->CreateUri(uriHString.Get(), &uri);
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

2. Initialize the thread in which the app executes. Every app must initialize its thread and threading model. This
example uses the Microsoft::WRL::Wrappers::RoInitializeWrapper class to initialize the Windows Runtime
and specifies RO_INIT_MULTITHREADED as the threading model. The RoInitializeWrapper  class calls 
Windows::Foundation::Initialize  at construction, and Windows::Foundation::Uninitialize  when it is

destroyed.

In the second statement, the RoInitializeWrapper::HRESULT operator returns the HRESULT  from the call to 
Windows::Foundation::Initialize .

3. Create an activation factory for the ABI::Windows::Foundation::IUriRuntimeClassFactory  interface.

The Windows Runtime uses fully-qualified names to identify types. The 
RuntimeClass_Windows_Foundation_Uri  parameter is a string that's provided by the Windows Runtime and

contains the required runtime class name.

4. Initialize a Microsoft::WRL::Wrappers::HString variable that represents the URI "http://www.microsoft.com" .

In the Windows Runtime, you don’t allocate memory for a string that the Windows Runtime will use.
Instead, the Windows Runtime creates a copy of your string in a buffer that it maintains and uses for
operations, and then returns a handle to the buffer that it created.

5. Use the IUriRuntimeClassFactory::CreateUri  factory method to create a 
ABI::Windows::Foundation::IUriRuntimeClass  object.

6. Call the IUriRuntimeClass::get_Domain  method to retrieve the value of the Domain  property.

https://docs.microsoft.com/windows/desktop/api/roapi/ne-roapi-ro_init_type


// wrl-consume-component.cpp
// compile with: runtimeobject.lib
#include <Windows.Foundation.h>
#include <wrl\wrappers\corewrappers.h>
#include <wrl\client.h>
#include <stdio.h>

using namespace ABI::Windows::Foundation;
using namespace Microsoft::WRL;
using namespace Microsoft::WRL::Wrappers;

// Prints an error string for the provided source code line and HRESULT
// value and returns the HRESULT value as an int.
int PrintError(unsigned int line, HRESULT hr)
{
    wprintf_s(L"ERROR: Line:%d HRESULT: 0x%X\n", line, hr);
    return hr;
}

int wmain()
{
    // Initialize the Windows Runtime.
    RoInitializeWrapper initialize(RO_INIT_MULTITHREADED);
    if (FAILED(initialize))
    {
        return PrintError(__LINE__, initialize);
    }

    // Get the activation factory for the IUriRuntimeClass interface.
    ComPtr<IUriRuntimeClassFactory> uriFactory;
    HRESULT hr = GetActivationFactory(HStringReference(RuntimeClass_Windows_Foundation_Uri).Get(), 
&uriFactory);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Create a string that represents a URI.
    HString uriHString;
    hr = uriHString.Set(L"http://www.microsoft.com");
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

// Get the domain part of the URI.
HString domainName;
hr = uri->get_Domain(domainName.GetAddressOf());
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

// Print the domain name and return.
wprintf_s(L"Domain name: %s\n", domainName.GetRawBuffer(nullptr));

// All smart pointers and RAII objects go out of scope here.

7. Print the domain name to the console and return. All ComPtr  and RAII objects leave scope and are released
automatically.

The WindowsGetStringRawBuffer function retrieves the underlying Unicode form of the URI string.

Here's the complete example:

https://docs.microsoft.com/windows/desktop/api/winstring/nf-winstring-windowsgetstringrawbuffer


    }

    // Create the IUriRuntimeClass object.
    ComPtr<IUriRuntimeClass> uri;
    hr = uriFactory->CreateUri(uriHString.Get(), &uri);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Get the domain part of the URI.
    HString domainName;
    hr = uri->get_Domain(domainName.GetAddressOf());
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Print the domain name and return.
    wprintf_s(L"Domain name: %s\n", domainName.GetRawBuffer(nullptr));

    // All smart pointers and RAII objects go out of scope here.
}
/*
Output:
Domain name: microsoft.com
*/

Compiling the Code

See Also

To compile the code, copy it and then paste it in a Visual Studio project, or paste it in a file that is named 
wrl-consume-component.cpp  and then run the following command in a Visual Studio Command Prompt window.

cl.exe wrl-consume-component.cpp runtimeobject.lib

Windows Runtime C++ Template Library (WRL)



How to: Complete Asynchronous Operations Using
WRL
1/16/2019 • 9 minutes to read • Edit Online

TIPTIP

Example: Working with a Timer

WARNINGWARNING

This document shows how to use the Windows Runtime C++ Template Library (WRL) to start asynchronous
operations and perform work when the operations complete.

This document shows two examples. The first example starts an asynchronous timer and waits for the timer to
expire. In this example, you specify the asynchronous action when you create the timer object. The second example
runs a background worker thread. This example shows how to work with a Windows Runtime method that returns
an IAsyncInfo  interface. The Callback function is an important part of both examples because it enables them to
specify an event handler to process the results of the asynchronous operations.

For a more basic example that creates an instance of a component and retrieves a property value, see How to:
Activate and Use a Windows Runtime Component.

These examples use lambda expressions to define the callbacks. You can also use function objects (functors), function
pointers, or std::function objects. For more information about C++ lambda expressions, see Lambda Expressions.

The following steps start an asynchronous timer and wait for the timer to expire. The complete example follows.

Although you typically use the Windows Runtime C++ Template Library in a Universal Windows Platform (UWP) app, this
example uses a console app for illustration. Functions such as wprintf_s  are not available from a UWP app. For more
information about the types and functions that you can use in a UWP app, see CRT functions not supported in Universal
Windows Platform apps and Win32 and COM for UWP apps.

#include <Windows.Foundation.h>
#include <Windows.System.Threading.h>
#include <wrl/event.h>
#include <stdio.h>
#include <Objbase.h>

using namespace ABI::Windows::Foundation;
using namespace ABI::Windows::System::Threading;
using namespace Microsoft::WRL;
using namespace Microsoft::WRL::Wrappers;

1. Include ( #include ) any required Windows Runtime, Windows Runtime C++ Template Library, or C++
Standard Library headers.

Windows.System.Threading.h  declares the types that are required to use an asynchronous timer.

We recommend that you utilize the using namespace  directive in your .cpp file to make the code more
readable.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/how-to-complete-asynchronous-operations-using-wrl.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expressions-in-cpp
https://docs.microsoft.com/uwp/win32-and-com/win32-and-com-for-uwp-apps


// Initialize the Windows Runtime.
RoInitializeWrapper initialize(RO_INIT_MULTITHREADED);
if (FAILED(initialize))
{
    return PrintError(__LINE__, initialize);
}

// Get the activation factory for the IThreadPoolTimer interface.
ComPtr<IThreadPoolTimerStatics> timerFactory;
HRESULT hr = 
GetActivationFactory(HStringReference(RuntimeClass_Windows_System_Threading_ThreadPoolTimer).Get(), 
&timerFactory);
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

// Create an event that is set after the timer callback completes. We later use this event to wait for 
the timer to complete. 
// This event is for demonstration only in a console app. In most apps, you typically don't wait for 
async operations to complete.
Event timerCompleted(CreateEventEx(nullptr, nullptr, CREATE_EVENT_MANUAL_RESET, WRITE_OWNER | 
EVENT_ALL_ACCESS));
hr = timerCompleted.IsValid() ? S_OK : HRESULT_FROM_WIN32(GetLastError());
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

NOTENOTE

2. Initialize the Windows Runtime.

3. Create an activation factory for the ABI::Windows::System::Threading::IThreadPoolTimer  interface.

The Windows Runtime uses fully-qualified names to identify types. The 
RuntimeClass_Windows_System_Threading_ThreadPoolTimer  parameter is a string that's provided by the

Windows Runtime and contains the required runtime class name.

4. Create an Event object that synchronizes the timer callback to the main app.

This event is for demonstration only as part of a console app. This example uses the event to ensure that an async
operation completes before the app exits. In most apps, you typically don’t wait for async operations to complete.

5. Create an IThreadPoolTimer  object that expires after two seconds. Use the Callback  function to create the
event handler (an ABI::Windows::System::Threading::ITimerElapsedHandler  object).



// wrl-consume-async.cpp
// compile with: runtimeobject.lib
#include <Windows.Foundation.h>
#include <Windows.System.Threading.h>
#include <wrl/event.h>
#include <stdio.h>
#include <Objbase.h>

using namespace ABI::Windows::Foundation;
using namespace ABI::Windows::System::Threading;
using namespace Microsoft::WRL;
using namespace Microsoft::WRL::Wrappers;

// Prints an error string for the provided source code line and HRESULT
// value and returns the HRESULT value as an int.
int PrintError(unsigned int line, HRESULT hr)
{
    wprintf_s(L"ERROR: Line:%d HRESULT: 0x%X\n", line, hr);
    return hr;

// Create a timer that prints a message after 2 seconds.

TimeSpan delay;
delay.Duration = 20000000; // 2 seconds.

auto callback = Callback<ITimerElapsedHandler>([&timerCompleted](IThreadPoolTimer* timer) -> HRESULT
{
    wprintf_s(L"Timer fired.\n");

    TimeSpan delay;
    HRESULT hr = timer->get_Delay(&delay);
    if (SUCCEEDED(hr))
    {
        wprintf_s(L"Timer duration: %2.2f seconds.\n", delay.Duration / 10000000.0);
    }

    // Set the completion event and return.
    SetEvent(timerCompleted.Get());
    return hr;
});
hr = callback ? S_OK : E_OUTOFMEMORY;
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

ComPtr<IThreadPoolTimer> timer;
hr = timerFactory->CreateTimer(callback.Get(), delay, &timer);
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

// Print a message and wait for the timer callback to complete.
wprintf_s(L"Timer started.\nWaiting for timer...\n");

// Wait for the timer to complete.
WaitForSingleObjectEx(timerCompleted.Get(), INFINITE, FALSE);
// All smart pointers and RAII objects go out of scope here.

6. Print a message to the console and wait for the timer callback to complete. All ComPtr  and RAII objects
leave scope and are released automatically.

Here is the complete example:



    return hr;
}

int wmain()
{
    // Initialize the Windows Runtime.
    RoInitializeWrapper initialize(RO_INIT_MULTITHREADED);
    if (FAILED(initialize))
    {
        return PrintError(__LINE__, initialize);
    }

    // Get the activation factory for the IThreadPoolTimer interface.
    ComPtr<IThreadPoolTimerStatics> timerFactory;
    HRESULT hr = 
GetActivationFactory(HStringReference(RuntimeClass_Windows_System_Threading_ThreadPoolTimer).Get(), 
&timerFactory);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Create an event that is set after the timer callback completes. We later use this event to wait for the 
timer to complete. 
    // This event is for demonstration only in a console app. In most apps, you typically don't wait for async 
operations to complete.
    Event timerCompleted(CreateEventEx(nullptr, nullptr, CREATE_EVENT_MANUAL_RESET, WRITE_OWNER | 
EVENT_ALL_ACCESS));
    hr = timerCompleted.IsValid() ? S_OK : HRESULT_FROM_WIN32(GetLastError());
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Create a timer that prints a message after 2 seconds.

    TimeSpan delay;
    delay.Duration = 20000000; // 2 seconds.

    auto callback = Callback<ITimerElapsedHandler>([&timerCompleted](IThreadPoolTimer* timer) -> HRESULT
    {
        wprintf_s(L"Timer fired.\n");

        TimeSpan delay;
        HRESULT hr = timer->get_Delay(&delay);
        if (SUCCEEDED(hr))
        {
            wprintf_s(L"Timer duration: %2.2f seconds.\n", delay.Duration / 10000000.0);
        }

        // Set the completion event and return.
        SetEvent(timerCompleted.Get());
        return hr;
    });
    hr = callback ? S_OK : E_OUTOFMEMORY;
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    ComPtr<IThreadPoolTimer> timer;
    hr = timerFactory->CreateTimer(callback.Get(), delay, &timer);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Print a message and wait for the timer callback to complete.
    wprintf_s(L"Timer started.\nWaiting for timer...\n");



    // Wait for the timer to complete.
    WaitForSingleObjectEx(timerCompleted.Get(), INFINITE, FALSE);
    // All smart pointers and RAII objects go out of scope here.
}
/*
Output:
Timer started.
Waiting for timer...
Timer fired.
Timer duration: 2.00 seconds.
*/

Compiling the CodeCompiling the Code

Example: Working with a Background Thread

TIPTIP

To compile the code, copy it and then paste it in a Visual Studio project, or paste it in a file that is named 
wrl-consume-async.cpp  and then run the following command in a Visual Studio Command Prompt window.

cl.exe wrl-consume-async.cpp runtimeobject.lib

The following steps start a worker thread and define the action that's performed by that thread. The complete
example follows.

This example demonstrates how to work with the ABI::Windows::Foundation::IAsyncAction  interface. You can apply this
pattern to any interface that implements IAsyncInfo : IAsyncAction , IAsyncActionWithProgress , IAsyncOperation ,
and IAsyncOperationWithProgress .

#include <Windows.Foundation.h>
#include <Windows.System.Threading.h>
#include <wrl/event.h>
#include <stdio.h>
#include <Objbase.h>

using namespace ABI::Windows::Foundation;
using namespace ABI::Windows::System::Threading;
using namespace Microsoft::WRL;
using namespace Microsoft::WRL::Wrappers;

// Initialize the Windows Runtime.
RoInitializeWrapper initialize(RO_INIT_MULTITHREADED);
if (FAILED(initialize))
{
    return PrintError(__LINE__, initialize);
}

1. Include ( #include ) any required Windows Runtime, Windows Runtime C++ Template Library, or C++
Standard Library headers.

Windows.System.Threading.h declares the types that are required to use a worker thread.

We recommend that you use the using namespace  directive in your .cpp file to make the code more
readable.

2. Initialize the Windows Runtime.



// Get the activation factory for the IThreadPoolStatics interface.
ComPtr<IThreadPoolStatics> threadPool;
HRESULT hr = 
GetActivationFactory(HStringReference(RuntimeClass_Windows_System_Threading_ThreadPool).Get(), 
&threadPool);
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

// Create an event that is set after the timer callback completes. We later use this event to wait for 
the timer to complete. 
// This event is for demonstration only in a console app. In most apps, you typically don't wait for 
async operations to complete.
Event threadCompleted(CreateEventEx(nullptr, nullptr, CREATE_EVENT_MANUAL_RESET, WRITE_OWNER | 
EVENT_ALL_ACCESS));
hr = threadCompleted.IsValid() ? S_OK : HRESULT_FROM_WIN32(GetLastError());
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

NOTENOTE

3. Create an activation factory for the ABI::Windows::System::Threading::IThreadPoolStatics  interface.

4. Create an Event object that synchronizes completion of the worker thread to the main app.

This event is for demonstration only as part of a console app. This example uses the event to ensure that an async
operation completes before the app exits. In most apps, you typically don’t wait for async operations to complete.

5. Call the IThreadPoolStatics::RunAsync  method to create a worker thread. Use the Callback  function to
define the action.



// wrl-consume-asyncOp.cpp
// compile with: runtimeobject.lib 
#include <Windows.Foundation.h>
#include <Windows.System.Threading.h>
#include <wrl/event.h>
#include <stdio.h>
#include <Objbase.h>

using namespace ABI::Windows::Foundation;
using namespace ABI::Windows::System::Threading;
using namespace Microsoft::WRL;
using namespace Microsoft::WRL::Wrappers;

// Prints an error string for the provided source code line and HRESULT
// value and returns the HRESULT value as an int.
int PrintError(unsigned int line, HRESULT hr)

wprintf_s(L"Starting thread...\n");

// Create a thread that computes prime numbers.
ComPtr<IAsyncAction> asyncAction;
hr = threadPool->RunAsync(Callback<IWorkItemHandler>([&threadCompleted](IAsyncAction* asyncAction) -> 
HRESULT
{
    // Print a message.
    const unsigned int start = 0;
    const unsigned int end = 100000;
    unsigned int primeCount = 0;
    for (int n = start; n < end; n++)
    {
        if (IsPrime(n))
        {
            primeCount++;
        }
    }

    wprintf_s(L"There are %u prime numbers from %u to %u.\n", primeCount, start, end);

    // Set the completion event and return.
    SetEvent(threadCompleted.Get());
    return S_OK;

}).Get(), &asyncAction);
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

// Print a message and wait for the thread to complete.
wprintf_s(L"Waiting for thread...\n");

// Wait for the thread to complete.
WaitForSingleObjectEx(threadCompleted.Get(), INFINITE, FALSE);

wprintf_s(L"Finished.\n");

// All smart pointers and RAII objects go out of scope here.

The IsPrime  function is defined in the complete example that follows.

6. Print a message to the console and wait for the thread to complete. All ComPtr  and RAII objects leave scope
and are released automatically.

Here is the complete example:



int PrintError(unsigned int line, HRESULT hr)
{
    wprintf_s(L"ERROR: Line:%d HRESULT: 0x%X\n", line, hr);
    return hr;
}

// Determines whether the input value is prime.
bool IsPrime(int n)
{
    if (n < 2)
    {
        return false;
    }
    for (int i = 2; i < n; ++i)
    {
        if ((n % i) == 0)
        {
            return false;
        }
    }
    return true;
}

int wmain()
{
    // Initialize the Windows Runtime.
    RoInitializeWrapper initialize(RO_INIT_MULTITHREADED);
    if (FAILED(initialize))
    {
        return PrintError(__LINE__, initialize);
    }

    // Get the activation factory for the IThreadPoolStatics interface.
    ComPtr<IThreadPoolStatics> threadPool;
    HRESULT hr = 
GetActivationFactory(HStringReference(RuntimeClass_Windows_System_Threading_ThreadPool).Get(), &threadPool);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Create an event that is set after the timer callback completes. We later use this event to wait for the 
timer to complete. 
    // This event is for demonstration only in a console app. In most apps, you typically don't wait for async 
operations to complete.
    Event threadCompleted(CreateEventEx(nullptr, nullptr, CREATE_EVENT_MANUAL_RESET, WRITE_OWNER | 
EVENT_ALL_ACCESS));
    hr = threadCompleted.IsValid() ? S_OK : HRESULT_FROM_WIN32(GetLastError());
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    wprintf_s(L"Starting thread...\n");

    // Create a thread that computes prime numbers.
    ComPtr<IAsyncAction> asyncAction;
    hr = threadPool->RunAsync(Callback<IWorkItemHandler>([&threadCompleted](IAsyncAction* asyncAction) -> 
HRESULT
    {
        // Print a message.
        const unsigned int start = 0;
        const unsigned int end = 100000;
        unsigned int primeCount = 0;
        for (int n = start; n < end; n++)
        {
            if (IsPrime(n))
            {
                primeCount++;



                primeCount++;
            }
        }

        wprintf_s(L"There are %u prime numbers from %u to %u.\n", primeCount, start, end);

        // Set the completion event and return.
        SetEvent(threadCompleted.Get());
        return S_OK;

    }).Get(), &asyncAction);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Print a message and wait for the thread to complete.
    wprintf_s(L"Waiting for thread...\n");

    // Wait for the thread to complete.
    WaitForSingleObjectEx(threadCompleted.Get(), INFINITE, FALSE);

    wprintf_s(L"Finished.\n");

    // All smart pointers and RAII objects go out of scope here.
}
/*
Output:
Starting thread...
Waiting for thread...
There are 9592 prime numbers from 0 to 100000.
Finished.
*/

Compiling the CodeCompiling the Code

See Also

To compile the code, copy it and then paste it in a Visual Studio project, or paste it in a file that is named 
wrl-consume-asyncOp.cpp  and then run the following command in a Visual Studio Command Prompt window.

cl.exe wrl-consume-asyncOp.cpp runtimeobject.lib

Windows Runtime C++ Template Library (WRL)



How to: Handle Events Using WRL
1/16/2019 • 7 minutes to read • Edit Online

Subscribing to and Handling Events

WARNINGWARNING

This document shows how to use the Windows Runtime C++ Template Library (WRL)to subscribe to and handle
the events of a Windows Runtime object.

For a more basic example that creates an instance of that component and retrieves a property value, see How to:
Activate and Use a Windows Runtime Component.

The following steps start an ABI::Windows::System::Threading::IDeviceWatcher  object and use event handlers to
monitor progress. The IDeviceWatcher  interface enables you to enumerate devices asynchronously, or in the
background, and receive notification when devices are added, removed, or changed. The Callback function is an
important part of this example because it enables it to specify event handlers that process the results of the
background operation. The complete example follows.

Although you typically use the Windows Runtime C++ Template Library in a Universal Windows Platform app, this example
uses a console app for illustration. Functions such as wprintf_s  are not available from a Universal Windows Platform app.
For more information about the types and functions that you can use in a Universal Windows Platform app, see CRT
functions not supported in Universal Windows Platform apps and Win32 and COM for UWP apps.

#include <Windows.Devices.Enumeration.h>
#include <wrl/event.h>
#include <stdio.h>

using namespace ABI::Windows::Devices::Enumeration;
using namespace ABI::Windows::Foundation;
using namespace Microsoft::WRL;
using namespace Microsoft::WRL::Wrappers;

// Counts the number of enumerated devices.
unsigned int deviceCount = 0;

// Event registration tokens that enable us to later unsubscribe from events.
EventRegistrationToken addedToken;
EventRegistrationToken stoppedToken;
EventRegistrationToken enumCompletedToken;

1. Include ( #include ) any required Windows Runtime, Windows Runtime C++ Template Library, or C++
Standard Library headers.

Windows.Devices.Enumeration.h  declares the types that are required to enumerate devices.

We recommend that you utilize the using namespace  directive in your .cpp file to make the code more
readable.

2. Declare the local variables for the app. This example holds count of the number of enumerated devices and
registration tokens that enable it to later unsubscribe from events.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/how-to-handle-events-using-wrl.md
https://docs.microsoft.com/uwp/win32-and-com/win32-and-com-for-uwp-apps


// Initialize the Windows Runtime.
RoInitializeWrapper initialize(RO_INIT_MULTITHREADED);
if (FAILED(initialize))
{
    return PrintError(__LINE__, initialize);
}

// Create an event that is set after device enumeration completes. We later use this event to wait for 
the timer to complete. 
// This event is for demonstration only in a console app. In most apps, you typically don't wait for 
async operations to complete.
Event enumerationCompleted(CreateEventEx(nullptr, nullptr, CREATE_EVENT_MANUAL_RESET, WRITE_OWNER | 
EVENT_ALL_ACCESS));
HRESULT hr = enumerationCompleted.IsValid() ? S_OK : HRESULT_FROM_WIN32(GetLastError());
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

NOTENOTE

// Get the activation factory for the IDeviceWatcher interface.
ComPtr<IDeviceInformationStatics> watcherFactory;
hr = 
ABI::Windows::Foundation::GetActivationFactory(HStringReference(RuntimeClass_Windows_Devices_Enumeration
_DeviceInformation).Get(), &watcherFactory);
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

// Create a IDeviceWatcher object from the factory.
ComPtr<IDeviceWatcher> watcher;
hr = watcherFactory->CreateWatcher(&watcher);
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

3. Initialize the Windows Runtime.

4. Create an Event object that synchronizes the completion of the enumeration process to the main app.

This event is for demonstration only as part of a console app. This example uses the event to ensure that an async
operation completes before the app exits. In most apps, you typically don’t wait for async operations to complete.

5. Create an activation factory for the IDeviceWatcher  interface.

The Windows Runtime uses fully-qualified names to identify types. The 
RuntimeClass_Windows_Devices_Enumeration_DeviceInformation  parameter is a string that's provided by the

Windows Runtime and contains the required runtime class name.

6. Create the IDeviceWatcher  object.

7. Use the Callback  function to subscribe to the Added , EnumerationCompleted , and Stopped  events.



// Subscribe to the Added event.
hr = watcher->add_Added(Callback<AddedHandler>([&deviceCount](IDeviceWatcher* watcher, 
IDeviceInformation*) -> HRESULT
{
    // Print a message and increment the device count.
    // When we reach 10 devices, stop enumerating devices.
    wprintf_s(L"Added device...\n");
    deviceCount++;
    if (deviceCount == 10)
    {
        return watcher->Stop();
    }
    return S_OK;

}).Get(), &addedToken);
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

hr = watcher->add_Stopped(Callback<StoppedHandler>([=, &enumerationCompleted](IDeviceWatcher* watcher, 
IInspectable*) -> HRESULT
{
    wprintf_s(L"Device enumeration stopped.\nRemoving event handlers...");

    // Unsubscribe from the events. This is shown for demonstration.
    // The need to remove event handlers depends on the requirements of 
    // your app. For instance, if you only need to handle an event for 
    // a short period of time, you might remove the event handler when you
    // no longer need it. If you handle an event for the duration of the app,
    // you might not need to explicitly remove it.
    HRESULT hr1 = watcher->remove_Added(addedToken);
    HRESULT hr2 = watcher->remove_Stopped(stoppedToken);
    HRESULT hr3 = watcher->remove_EnumerationCompleted(enumCompletedToken);

    // Set the completion event and return.
    SetEvent(enumerationCompleted.Get());

    return FAILED(hr1) ? hr1 : FAILED(hr2) ? hr2 : hr3;

}).Get(), &stoppedToken);
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

// Subscribe to the EnumerationCompleted event.
hr = watcher->add_EnumerationCompleted(Callback<EnumerationCompletedHandler>([](IDeviceWatcher* watcher, 
IInspectable*) -> HRESULT
{
    wprintf_s(L"Enumeration completed.\n");

    return watcher->Stop();

}).Get(), &enumCompletedToken);
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

The Added  event handler increments the count of enumerated devices. It stops the enumeration process
after ten devices are found.

The Stopped  event handler removes the event handlers and sets the completion event.

The EnumerationCompleted  event handler stops the enumeration process. We handle this event in case there



// wrl-consume-events.cpp
// compile with: runtimeobject.lib
#include <Windows.Devices.Enumeration.h>
#include <wrl/event.h>
#include <stdio.h>

using namespace ABI::Windows::Devices::Enumeration;
using namespace ABI::Windows::Foundation;
using namespace Microsoft::WRL;
using namespace Microsoft::WRL::Wrappers;

// Prints an error string for the provided source code line and HRESULT
// value and returns the HRESULT value as an int.
int PrintError(unsigned int line, HRESULT hr)
{
    wprintf_s(L"ERROR: Line:%d HRESULT: 0x%X\n", line, hr);
    return hr;
}

int wmain()
{
    // Type define the event handler types to make the code more readable.
    typedef 
__FITypedEventHandler_2_Windows__CDevices__CEnumeration__CDeviceWatcher_Windows__CDevices__CEnumeration__CDevi
ceInformation AddedHandler;
    typedef __FITypedEventHandler_2_Windows__CDevices__CEnumeration__CDeviceWatcher_IInspectable 
EnumerationCompletedHandler;
    typedef __FITypedEventHandler_2_Windows__CDevices__CEnumeration__CDeviceWatcher_IInspectable 
StoppedHandler;

    // Counts the number of enumerated devices.
    unsigned int deviceCount = 0;

    // Event registration tokens that enable us to later unsubscribe from events.

TIPTIP

wprintf_s(L"Starting device enumeration...\n");
hr = watcher->Start();
if (FAILED(hr))
{
    return PrintError(__LINE__, hr);
}

// Wait for the operation to complete.
WaitForSingleObjectEx(enumerationCompleted.Get(), INFINITE, FALSE);

wprintf_s(L"Enumerated %u devices.\n", deviceCount);

// All smart pointers and RAII objects go out of scope here.

are fewer than ten devices.

This example uses a lambda expression to define the callbacks. You can also use function objects (functors), function
pointers, or std::function objects. For more information about lambda expressions, see Lambda Expressions.

8. Start the enumeration process.

9. Wait for the enumeration process to complete and then print a message. All ComPtr  and RAII objects leave
scope and are released automatically.

Here is the complete example:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/standard-library/function-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/lambda-expressions-in-cpp


    // Event registration tokens that enable us to later unsubscribe from events.
    EventRegistrationToken addedToken;
    EventRegistrationToken stoppedToken;
    EventRegistrationToken enumCompletedToken;

    // Initialize the Windows Runtime.
    RoInitializeWrapper initialize(RO_INIT_MULTITHREADED);
    if (FAILED(initialize))
    {
        return PrintError(__LINE__, initialize);
    }

    // Create an event that is set after device enumeration completes. We later use this event to wait for the 
timer to complete. 
    // This event is for demonstration only in a console app. In most apps, you typically don't wait for async 
operations to complete.
    Event enumerationCompleted(CreateEventEx(nullptr, nullptr, CREATE_EVENT_MANUAL_RESET, WRITE_OWNER | 
EVENT_ALL_ACCESS));
    HRESULT hr = enumerationCompleted.IsValid() ? S_OK : HRESULT_FROM_WIN32(GetLastError());
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Get the activation factory for the IDeviceWatcher interface.
    ComPtr<IDeviceInformationStatics> watcherFactory;
    hr = 
ABI::Windows::Foundation::GetActivationFactory(HStringReference(RuntimeClass_Windows_Devices_Enumeration_Devic
eInformation).Get(), &watcherFactory);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Create a IDeviceWatcher object from the factory.
    ComPtr<IDeviceWatcher> watcher;
    hr = watcherFactory->CreateWatcher(&watcher);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Subscribe to the Added event.
    hr = watcher->add_Added(Callback<AddedHandler>([&deviceCount](IDeviceWatcher* watcher, 
IDeviceInformation*) -> HRESULT
    {
        // Print a message and increment the device count.
        // When we reach 10 devices, stop enumerating devices.
        wprintf_s(L"Added device...\n");
        deviceCount++;
        if (deviceCount == 10)
        {
            return watcher->Stop();
        }
        return S_OK;

    }).Get(), &addedToken);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    hr = watcher->add_Stopped(Callback<StoppedHandler>([=, &enumerationCompleted](IDeviceWatcher* watcher, 
IInspectable*) -> HRESULT
    {
        wprintf_s(L"Device enumeration stopped.\nRemoving event handlers...");

        // Unsubscribe from the events. This is shown for demonstration.
        // The need to remove event handlers depends on the requirements of 
        // your app. For instance, if you only need to handle an event for 



        // your app. For instance, if you only need to handle an event for 
        // a short period of time, you might remove the event handler when you
        // no longer need it. If you handle an event for the duration of the app,
        // you might not need to explicitly remove it.
        HRESULT hr1 = watcher->remove_Added(addedToken);
        HRESULT hr2 = watcher->remove_Stopped(stoppedToken);
        HRESULT hr3 = watcher->remove_EnumerationCompleted(enumCompletedToken);

        // Set the completion event and return.
        SetEvent(enumerationCompleted.Get());

        return FAILED(hr1) ? hr1 : FAILED(hr2) ? hr2 : hr3;

    }).Get(), &stoppedToken);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Subscribe to the EnumerationCompleted event.
    hr = watcher->add_EnumerationCompleted(Callback<EnumerationCompletedHandler>([](IDeviceWatcher* watcher, 
IInspectable*) -> HRESULT
    {
        wprintf_s(L"Enumeration completed.\n");

        return watcher->Stop();

    }).Get(), &enumCompletedToken);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    wprintf_s(L"Starting device enumeration...\n");
    hr = watcher->Start();
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    // Wait for the operation to complete.
    WaitForSingleObjectEx(enumerationCompleted.Get(), INFINITE, FALSE);

    wprintf_s(L"Enumerated %u devices.\n", deviceCount);

    // All smart pointers and RAII objects go out of scope here.
}
/*
Sample output:
Starting device enumeration...
Added device...
Added device...
Added device...
Added device...
Added device...
Added device...
Added device...
Added device...
Added device...
Added device...
Device enumeration stopped.
Removing event handlers...
Enumerated 10 devices.
*/

Compiling the Code



See Also

To compile the code, copy it and then paste it in a Visual Studio project, or paste it in a file that is named 
wrl-consume-events.cpp  and then run the following command in a Visual Studio Command Prompt window.

cl.exe wrl-consume-events.cpp runtimeobject.lib

Windows Runtime C++ Template Library (WRL)



Walkthrough: Creating a UWP app using WRL and
Media Foundation
1/16/2019 • 33 minutes to read • Edit Online

NOTENOTE

NOTENOTE

Prerequisites

Key points

Learn how to use the Windows Runtime C++ Template Library (WRL) to create a Universal Windows Platform
(UWP) app that uses Microsoft Media Foundation.

This example creates a custom Media Foundation transform that applies a grayscale effect to images that are
captured from a webcam. The app uses C++ to define the custom transform and C# to use the component to
transform the captured images.

Instead of C#, you can also use JavaScript, Visual Basic, or C++ to consume the custom transform component.

In most cases, you can use C++/CX to create Windows Runtime. However, sometimes you have to use the WRL.
For example, when you create a media extension for Microsoft Media Foundation, you must create a component
that implements both COM and Windows Runtime interfaces. Because C++/CX can only create Windows
Runtime objects, to create a media extension you must use the WRL because it enables the implementation of
both COM and Windows Runtime interfaces.

Although this code example is long, it demonstrates the minimum that's required to create a useful Media Foundation
transform. You can use it as a starting point for your own custom transform. This example is adapted from the Media
extensions sample, which uses media extensions to apply effects to video, decode video, and create scheme handlers that
produce media streams.

Experience with the Windows Runtime.

Experience with COM.

A webcam.

To create a custom Media Foundation component, use a Microsoft Interface Definition Language (MIDL)
definition file to define an interface, implement that interface, and then make it activatable from other
components.

The namespace  and runtimeclass  attributes, and the NTDDI_WIN8 version attribute value are important parts
of the MIDL definition for a Media Foundation component that uses WRL.

Microsoft::WRL::RuntimeClass is the base class for the custom Media Foundation component. The
Microsoft::WRL::RuntimeClassType::WinRtClassicComMix enum value, which is provided as a template
argument, marks the class for use both as a Windows Runtime class and as a classic COM runtime class.

The InspectableClass macro implements basic COM functionality such as reference counting and the 

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/walkthrough-creating-a-windows-store-app-using-wrl-and-media-foundation.md
https://docs.microsoft.com/windows/desktop/medfound/microsoft-media-foundation-sdk
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
https://msdn.microsoft.com/library/windows/apps/br211377.aspx
https://docs.microsoft.com/windows/desktop/Midl/version


To use the WRL to create the Media Foundation grayscale transform componentTo use the WRL to create the Media Foundation grayscale transform component

QueryInterface  method, and sets the runtime class name and trust level.

Use the Microsoft::WRL::Module class to implement DLL entry-point functions such as
DllGetActivationFactory, DllCanUnloadNow, and DllGetClassObject.

Link your component DLL to runtimeobject.lib. Also specify /WINMD on the linker line to generate
Windows metadata.

Use project references to make WRL components accessible to UWP apps.

import "Windows.Media.idl";

#include <sdkddkver.h>

namespace GrayscaleTransform
{
    [version(NTDDI_WIN8), activatable(NTDDI_WIN8)]
    runtimeclass GrayscaleEffect 
    {
        [default] interface Windows.Media.IMediaExtension;
    }
}

#pragma once

#include "targetver.h"

#include <new>
#include <mfapi.h>
#include <mftransform.h>
#include <mfidl.h>
#include <mferror.h>
#include <strsafe.h>
#include <assert.h>

// Note: The Direct2D helper library is included for its 2D matrix operations.
#include <D2d1helper.h>

#include <wrl\implements.h>
#include <wrl\module.h>
#include <windows.media.h>

#pragma once

//  Locks a video buffer that might or might not support IMF2DBuffer.

class VideoBufferLock
{
public:

1. In Visual Studio, create a Blank Solution project. Name the project, for example, MediaCapture.

2. Add a DLL (Universal Windows) project to the solution. Name the project, for example,
GrayscaleTransform.

3. Add a Midl File (.idl) file to the project. Name the file, for example, GrayscaleTransform.idl.

4. Add this code to GrayscaleTransform.idl:

5. Use the following code to replace the contents of pch.h :

6. Add a new header file to the project, name it BufferLock.h , and then replace the contents with this code:

https://msdn.microsoft.com/library/br205771.aspx
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-dllcanunloadnow
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-dllgetclassobject


public:
    VideoBufferLock(IMFMediaBuffer *pBuffer) : m_p2DBuffer(nullptr)
    {
        m_pBuffer = pBuffer;
        m_pBuffer->AddRef();

        // Query for the 2-D buffer interface. OK if this fails.
        m_pBuffer->QueryInterface(IID_PPV_ARGS(&m_p2DBuffer));
    }

    ~VideoBufferLock()
    {
        UnlockBuffer();
        m_pBuffer->Release();
        if (m_p2DBuffer)
        {
            m_p2DBuffer->Release();
        }
    }

    // LockBuffer:
    // Locks the buffer. Returns a pointer to scan line 0 and returns the stride.

    // The caller must provide the default stride as an input parameter, in case
    // the buffer does not expose IMF2DBuffer. You can calculate the default stride
    // from the media type.

    HRESULT LockBuffer(
        LONG  lDefaultStride,    // Minimum stride (with no padding).
        DWORD dwHeightInPixels,  // Height of the image, in pixels.
        BYTE  **ppbScanLine0,    // Receives a pointer to the start of scan line 0.
        LONG  *plStride          // Receives the actual stride.
        )
    {
        HRESULT hr = S_OK;

        // Use the 2-D version if available.
        if (m_p2DBuffer)
        {
            hr = m_p2DBuffer->Lock2D(ppbScanLine0, plStride);
        }
        else
        {
            // Use non-2D version.
            BYTE *pData = nullptr;

            hr = m_pBuffer->Lock(&pData, nullptr, nullptr);
            if (SUCCEEDED(hr))
            {
                *plStride = lDefaultStride;
                if (lDefaultStride < 0)
                {
                    // Bottom-up orientation. Return a pointer to the start of the
                    // last row *in memory* which is the top row of the image.
                    *ppbScanLine0 = pData + abs(lDefaultStride) * (dwHeightInPixels - 1);
                }
                else
                {
                    // Top-down orientation. Return a pointer to the start of the
                    // buffer.
                    *ppbScanLine0 = pData;
                }
            }
        }
        return hr;
    }

    HRESULT UnlockBuffer()
    {



        if (m_p2DBuffer)
        {
            return m_p2DBuffer->Unlock2D();
        }
        else
        {
            return m_pBuffer->Unlock();
        }
    }

private:
    IMFMediaBuffer  *m_pBuffer;
    IMF2DBuffer     *m_p2DBuffer;
};

#include "pch.h"

#include "GrayscaleTransform_h.h"
#include "BufferLock.h"

using namespace Microsoft::WRL;

//
// * IMPORTANT: If you implement your own MFT, create a new GUID for the CLSID. *
//

// Configuration attributes

// {7BBBB051-133B-41F5-B6AA-5AFF9B33A2CB}
GUID const MFT_GRAYSCALE_DESTINATION_RECT = {0x7bbbb051, 0x133b, 0x41f5, 0xb6, 0xaa, 0x5a, 0xff, 0x9b, 
0x33, 0xa2, 0xcb};

// {14782342-93E8-4565-872C-D9A2973D5CBF}
GUID const MFT_GRAYSCALE_SATURATION = {0x14782342, 0x93e8, 0x4565, 0x87, 0x2c, 0xd9, 0xa2, 0x97, 0x3d, 
0x5c, 0xbf};

// {E0BADE5D-E4B9-4689-9DBA-E2F00D9CED0E}
GUID const MFT_GRAYSCALE_CHROMA_ROTATION = {0xe0bade5d, 0xe4b9, 0x4689, 0x9d, 0xba, 0xe2, 0xf0, 0xd, 
0x9c, 0xed, 0xe};

template <class T> void SafeRelease(T **ppT)
{
    if (*ppT)
    {
        (*ppT)->Release();
        *ppT = nullptr;
    }
}

// Function pointer for the function that transforms the image.
typedef void (*IMAGE_TRANSFORM_FN)(
    const D2D1::Matrix3x2F& mat,             // Chroma transform matrix.
    const D2D_RECT_U&       rcDest,          // Destination rectangle for the transformation.
    BYTE*                   pDest,           // Destination buffer.
    LONG                    lDestStride,     // Destination stride.
    const BYTE*             pSrc,            // Source buffer.
    LONG                    lSrcStride,      // Source stride.
    DWORD                   dwWidthInPixels, // Image width in pixels.
    DWORD                   dwHeightInPixels // Image height in pixels.
    );

// Implements a grayscale video effect.
class CGrayscale

7. GrayscaleTransform.h  isn't used in this example. You can remove it from the project if you want to.

8. Use the following code to replace the contents of GrayscaleTransform.cpp :



    : public RuntimeClass<
           RuntimeClassFlags<RuntimeClassType::WinRtClassicComMix>,
           ABI::Windows::Media::IMediaExtension,
           IMFTransform>
{
    InspectableClass(RuntimeClass_GrayscaleTransform_GrayscaleEffect, BaseTrust)

public:
    CGrayscale();

    STDMETHOD(RuntimeClassInitialize)();

    // IMediaExtension
    STDMETHODIMP SetProperties(ABI::Windows::Foundation::Collections::IPropertySet *pConfiguration);

    // IMFTransform
    STDMETHODIMP GetStreamLimits(
        DWORD   *pdwInputMinimum,
        DWORD   *pdwInputMaximum,
        DWORD   *pdwOutputMinimum,
        DWORD   *pdwOutputMaximum
    );

    STDMETHODIMP GetStreamCount(
        DWORD   *pcInputStreams,
        DWORD   *pcOutputStreams
    );

    STDMETHODIMP GetStreamIDs(
        DWORD   dwInputIDArraySize,
        DWORD   *pdwInputIDs,
        DWORD   dwOutputIDArraySize,
        DWORD   *pdwOutputIDs
    );

    STDMETHODIMP GetInputStreamInfo(
        DWORD                     dwInputStreamID,
        MFT_INPUT_STREAM_INFO *   pStreamInfo
    );

    STDMETHODIMP GetOutputStreamInfo(
        DWORD                     dwOutputStreamID,
        MFT_OUTPUT_STREAM_INFO *  pStreamInfo
    );

    STDMETHODIMP GetAttributes(IMFAttributes** pAttributes);

    STDMETHODIMP GetInputStreamAttributes(
        DWORD           dwInputStreamID,
        IMFAttributes   **ppAttributes
    );

    STDMETHODIMP GetOutputStreamAttributes(
        DWORD           dwOutputStreamID,
        IMFAttributes   **ppAttributes
    );

    STDMETHODIMP DeleteInputStream(DWORD dwStreamID);

    STDMETHODIMP AddInputStreams(
        DWORD   cStreams,
        DWORD   *adwStreamIDs
    );

    STDMETHODIMP GetInputAvailableType(
        DWORD           dwInputStreamID,
        DWORD           dwTypeIndex, // 0-based
        IMFMediaType    **ppType
    );



    );

    STDMETHODIMP GetOutputAvailableType(
        DWORD           dwOutputStreamID,
        DWORD           dwTypeIndex, // 0-based
        IMFMediaType    **ppType
    );

    STDMETHODIMP SetInputType(
        DWORD           dwInputStreamID,
        IMFMediaType    *pType,
        DWORD           dwFlags
    );

    STDMETHODIMP SetOutputType(
        DWORD           dwOutputStreamID,
        IMFMediaType    *pType,
        DWORD           dwFlags
    );

    STDMETHODIMP GetInputCurrentType(
        DWORD           dwInputStreamID,
        IMFMediaType    **ppType
    );

    STDMETHODIMP GetOutputCurrentType(
        DWORD           dwOutputStreamID,
        IMFMediaType    **ppType
    );

    STDMETHODIMP GetInputStatus(
        DWORD           dwInputStreamID,
        DWORD           *pdwFlags
    );

    STDMETHODIMP GetOutputStatus(DWORD *pdwFlags);

    STDMETHODIMP SetOutputBounds(
        LONGLONG        hnsLowerBound,
        LONGLONG        hnsUpperBound
    );

    STDMETHODIMP ProcessEvent(
        DWORD              dwInputStreamID,
        IMFMediaEvent      *pEvent
    );

    STDMETHODIMP ProcessMessage(
        MFT_MESSAGE_TYPE    eMessage,
        ULONG_PTR           ulParam
    );

    STDMETHODIMP ProcessInput(
        DWORD               dwInputStreamID,
        IMFSample           *pSample,
        DWORD               dwFlags
    );

    STDMETHODIMP ProcessOutput(
        DWORD                   dwFlags,
        DWORD                   cOutputBufferCount,
        MFT_OUTPUT_DATA_BUFFER  *pOutputSamples, // one per stream
        DWORD                   *pdwStatus
    );

private:
    ~CGrayscale();

    // HasPendingOutput: Returns TRUE if the MFT is holding an input sample.
    BOOL HasPendingOutput() const { return m_pSample != nullptr; }



    BOOL HasPendingOutput() const { return m_pSample != nullptr; }

    // IsValidInputStream: Returns TRUE if dwInputStreamID is a valid input stream identifier.
    BOOL IsValidInputStream(DWORD dwInputStreamID) const
    {
        return dwInputStreamID == 0;
    }

    // IsValidOutputStream: Returns TRUE if dwOutputStreamID is a valid output stream identifier.
    BOOL IsValidOutputStream(DWORD dwOutputStreamID) const
    {
        return dwOutputStreamID == 0;
    }

    HRESULT OnGetPartialType(DWORD dwTypeIndex, IMFMediaType **ppmt);
    HRESULT OnCheckInputType(IMFMediaType *pmt);
    HRESULT OnCheckOutputType(IMFMediaType *pmt);
    HRESULT OnCheckMediaType(IMFMediaType *pmt);
    void    OnSetInputType(IMFMediaType *pmt);
    void    OnSetOutputType(IMFMediaType *pmt);
    HRESULT BeginStreaming();
    HRESULT EndStreaming();
    HRESULT OnProcessOutput(IMFMediaBuffer *pIn, IMFMediaBuffer *pOut);
    HRESULT OnFlush();
    HRESULT UpdateFormatInfo();

    CRITICAL_SECTION            m_critSec;

    // Transformation parameters
    D2D1::Matrix3x2F            m_transform;                // Chroma transform matrix.
    D2D_RECT_U                  m_rcDest;                   // Destination rectangle for the effect.

    // Streaming
    bool                        m_bStreamingInitialized;
    IMFSample                   *m_pSample;                 // Input sample.
    IMFMediaType                *m_pInputType;              // Input media type.
    IMFMediaType                *m_pOutputType;             // Output media type.

    // Fomat information
    UINT32                      m_imageWidthInPixels;
    UINT32                      m_imageHeightInPixels;
    DWORD                       m_cbImageSize;              // Image size, in bytes.

    IMFAttributes               *m_pAttributes;

    // Image transform function. (Changes based on the media type.)
    IMAGE_TRANSFORM_FN          m_pTransformFn;
};
ActivatableClass(CGrayscale);

#pragma comment(lib, "d2d1")

/*

This sample implements a video effect as a Media Foundation transform (MFT).

The video effect manipulates chroma values in a YUV image. In the default setting,
the entire image is converted to grayscale. Optionally, the application may set any
of the following attributes:

MFT_GRAYSCALE_DESTINATION_RECT (type = blob, UINT32[4] array)

    Sets the destination rectangle for the effect. Pixels outside the destination
    rectangle are not altered.

MFT_GRAYSCALE_SATURATION (type = double)

    Sets the saturation level. The nominal range is [0...1]. Values beyond 1.0f 
    result in supersaturated colors. Values below 0.0f create inverted colors.
 



 
MFT_GRAYSCALE_CHROMA_ROTATION (type = double)

    Rotates the chroma values of each pixel. The attribue value is the angle of
    rotation in degrees. The result is a shift in hue.

The effect is implemented by treating the chroma value of each pixel as a vector [u,v],
and applying a transformation matrix to the vector. The saturation parameter is applied
as a scaling transform.

NOTES ON THE MFT IMPLEMENTATION

1. The MFT has fixed streams: One input stream and one output stream. 

2. The MFT supports the following formats: UYVY, YUY2, NV12.

3. If the MFT is holding an input sample, SetInputType and SetOutputType both fail.

4. The input and output types must be identical.

5. If both types are set, no type can be set until the current type is cleared.

6. Preferred input types:
 
   (a) If the output type is set, that's the preferred type.
   (b) Otherwise, the preferred types are partial types, constructed from the 
         list of supported subtypes.
 
7. Preferred output types: As above.

8. Streaming: 
 
    The private BeingStreaming() method is called in response to the 
    MFT_MESSAGE_NOTIFY_BEGIN_STREAMING message. 

    If the client does not send MFT_MESSAGE_NOTIFY_BEGIN_STREAMING, the MFT calls
    BeginStreaming inside the first call to ProcessInput or ProcessOutput. 

    This is a good approach for allocating resources that your MFT requires for
    streaming. 
 
9. The configuration attributes are applied in the BeginStreaming method. If the 
   client changes the attributes during streaming, the change is ignored until 
   streaming is stopped (either by changing the media types or by sending the 
   MFT_MESSAGE_NOTIFY_END_STREAMING message) and then restarted.
 
*/

// Video FOURCC codes.
const DWORD FOURCC_YUY2 = '2YUY'; 
const DWORD FOURCC_UYVY = 'YVYU'; 
const DWORD FOURCC_NV12 = '21VN'; 

// Static array of media types (preferred and accepted).
const GUID g_MediaSubtypes[] =
{
    MFVideoFormat_NV12,
    MFVideoFormat_YUY2,
    MFVideoFormat_UYVY
};

HRESULT GetImageSize(DWORD fcc, UINT32 width, UINT32 height, DWORD* pcbImage);
HRESULT GetDefaultStride(IMFMediaType *pType, LONG *plStride);
bool ValidateRect(const RECT& rc);

template <typename T>
inline T clamp(const T& val, const T& minVal, const T& maxVal)
{



{
    return (val < minVal ? minVal : (val > maxVal ? maxVal : val));
}

// TransformChroma:
// Apply the transforms to calculate the output chroma values.

void TransformChroma(const D2D1::Matrix3x2F& mat, BYTE *pu, BYTE *pv)
{
    // Normalize the chroma values to [-112, 112] range

    D2D1_POINT_2F pt = { static_cast<float>(*pu) - 128, static_cast<float>(*pv) - 128 };

    pt = mat.TransformPoint(pt);

    // Clamp to valid range.
    clamp(pt.x, -112.0f, 112.0f);
    clamp(pt.y, -112.0f, 112.0f);

    // Map back to [16...240] range.
    *pu = static_cast<BYTE>(pt.x + 128.0f);
    *pv = static_cast<BYTE>(pt.y + 128.0f);
}

//-------------------------------------------------------------------
// Functions to convert a YUV images to grayscale.
//
// In all cases, the same transformation is applied to the 8-bit
// chroma values, but the pixel layout in memory differs.
//
// The image conversion functions take the following parameters:
//
// mat               Transfomation matrix for chroma values.
// rcDest            Destination rectangle.
// pDest             Pointer to the destination buffer.
// lDestStride       Stride of the destination buffer, in bytes.
// pSrc              Pointer to the source buffer.
// lSrcStride        Stride of the source buffer, in bytes.
// dwWidthInPixels   Frame width in pixels.
// dwHeightInPixels  Frame height, in pixels.
//-------------------------------------------------------------------

// Convert UYVY image.

void TransformImage_UYVY(
    const D2D1::Matrix3x2F& mat,
    const D2D_RECT_U& rcDest,
    _Inout_updates_(_Inexpressible_(lDestStride * dwHeightInPixels)) BYTE *pDest, 
    _In_ LONG lDestStride, 
    _In_reads_(_Inexpressible_(lSrcStride * dwHeightInPixels)) const BYTE* pSrc,
    _In_ LONG lSrcStride, 
    _In_ DWORD dwWidthInPixels, 
    _In_ DWORD dwHeightInPixels)
{
    DWORD y = 0;
    const DWORD y0 = min(rcDest.bottom, dwHeightInPixels);

    // Lines above the destination rectangle.
    for ( ; y < rcDest.top; y++)
    {
        memcpy(pDest, pSrc, dwWidthInPixels * 2);
        pSrc += lSrcStride;
        pDest += lDestStride;
    }

    // Lines within the destination rectangle.
    for ( ; y < y0; y++)
    {
        WORD *pSrc_Pixel = (WORD*)pSrc;



        WORD *pSrc_Pixel = (WORD*)pSrc;
        WORD *pDest_Pixel = (WORD*)pDest;

        for (DWORD x = 0; (x + 1) < dwWidthInPixels; x += 2)
        {
            // Byte order is U0 Y0 V0 Y1
            // Each WORD is a byte pair (U/V, Y)
            // Windows is little-endian so the order appears reversed.

            if (x >= rcDest.left && x < rcDest.right)
            {
                BYTE u = pSrc_Pixel[x] & 0x00FF;
                BYTE v = pSrc_Pixel[x+1] & 0x00FF;

                TransformChroma(mat, &u, &v);

                pDest_Pixel[x] = (pSrc_Pixel[x] & 0xFF00) | u;
                pDest_Pixel[x+1] = (pSrc_Pixel[x+1] & 0xFF00) | v;
            }
            else
            {
#pragma warning(push)
#pragma warning(disable: 6385) 
#pragma warning(disable: 6386) 
                pDest_Pixel[x] = pSrc_Pixel[x];
                pDest_Pixel[x+1] = pSrc_Pixel[x+1];
#pragma warning(pop)
            }
        }

        pDest += lDestStride;
        pSrc += lSrcStride;
    }

    // Lines below the destination rectangle.
    for ( ; y < dwHeightInPixels; y++)
    {
        memcpy(pDest, pSrc, dwWidthInPixels * 2);
        pSrc += lSrcStride;
        pDest += lDestStride;
    }
}

// Convert YUY2 image.

void TransformImage_YUY2(
    const D2D1::Matrix3x2F& mat,
    const D2D_RECT_U& rcDest,
    _Inout_updates_(_Inexpressible_(lDestStride * dwHeightInPixels)) BYTE *pDest, 
    _In_ LONG lDestStride, 
    _In_reads_(_Inexpressible_(lSrcStride * dwHeightInPixels)) const BYTE* pSrc,
    _In_ LONG lSrcStride, 
    _In_ DWORD dwWidthInPixels, 
    _In_ DWORD dwHeightInPixels)
{
    DWORD y = 0;
    const DWORD y0 = min(rcDest.bottom, dwHeightInPixels);

    // Lines above the destination rectangle.
    for ( ; y < rcDest.top; y++)
    {
        memcpy(pDest, pSrc, dwWidthInPixels * 2);
        pSrc += lSrcStride;
        pDest += lDestStride;
    }

    // Lines within the destination rectangle.
    for ( ; y < y0; y++)



    {
        WORD *pSrc_Pixel = (WORD*)pSrc;
        WORD *pDest_Pixel = (WORD*)pDest;

        for (DWORD x = 0; (x + 1) < dwWidthInPixels; x += 2)
        {
            // Byte order is Y0 U0 Y1 V0
            // Each WORD is a byte pair (Y, U/V)
            // Windows is little-endian so the order appears reversed.

            if (x >= rcDest.left && x < rcDest.right)
            {
                BYTE u = pSrc_Pixel[x] >> 8;
                BYTE v = pSrc_Pixel[x+1] >> 8;

                TransformChroma(mat, &u, &v);

                pDest_Pixel[x] = (pSrc_Pixel[x] & 0x00FF) | (u<<8);
                pDest_Pixel[x+1] = (pSrc_Pixel[x+1] & 0x00FF) | (v<<8);
            }
            else
            {
#pragma warning(push)
#pragma warning(disable: 6385) 
#pragma warning(disable: 6386) 
                pDest_Pixel[x] = pSrc_Pixel[x];
                pDest_Pixel[x+1] = pSrc_Pixel[x+1];
#pragma warning(pop)
            }
        }
        pDest += lDestStride;
        pSrc += lSrcStride;
    }

    // Lines below the destination rectangle.
    for ( ; y < dwHeightInPixels; y++)
    {
        memcpy(pDest, pSrc, dwWidthInPixels * 2);
        pSrc += lSrcStride;
        pDest += lDestStride;
    }
}

// Convert NV12 image

void TransformImage_NV12(
    const D2D1::Matrix3x2F& mat,
    const D2D_RECT_U& rcDest,
    _Inout_updates_(_Inexpressible_(2 * lDestStride * dwHeightInPixels)) BYTE *pDest, 
    _In_ LONG lDestStride, 
    _In_reads_(_Inexpressible_(2 * lSrcStride * dwHeightInPixels)) const BYTE* pSrc,
    _In_ LONG lSrcStride, 
    _In_ DWORD dwWidthInPixels, 
    _In_ DWORD dwHeightInPixels)
{
    // NV12 is planar: Y plane, followed by packed U-V plane.

    // Y plane
    for (DWORD y = 0; y < dwHeightInPixels; y++)
    {
        CopyMemory(pDest, pSrc, dwWidthInPixels);
        pDest += lDestStride;
        pSrc += lSrcStride;
    }

    // U-V plane

    // NOTE: The U-V plane has 1/2 the number of lines as the Y plane.



    // Lines above the destination rectangle.
    DWORD y = 0;
    const DWORD y0 = min(rcDest.bottom, dwHeightInPixels);

    for ( ; y < rcDest.top/2; y++)
    {
        memcpy(pDest, pSrc, dwWidthInPixels);
        pSrc += lSrcStride;
        pDest += lDestStride;
    }

    // Lines within the destination rectangle.
    for ( ; y < y0/2; y++)
    {
        for (DWORD x = 0; (x + 1) < dwWidthInPixels; x += 2)
        {
            if (x >= rcDest.left && x < rcDest.right)
            {
                BYTE u = pSrc[x];
                BYTE v = pSrc[x+1];

                TransformChroma(mat, &u, &v);

                pDest[x] = u;
                pDest[x+1] = v;
            }
            else
            {
                pDest[x] = pSrc[x];
                pDest[x+1] = pSrc[x+1];
            }
        }
        pDest += lDestStride;
        pSrc += lSrcStride;
    }

    // Lines below the destination rectangle.
    for ( ; y < dwHeightInPixels/2; y++)
    {
        memcpy(pDest, pSrc, dwWidthInPixels);
        pSrc += lSrcStride;
        pDest += lDestStride;
    }
}

CGrayscale::CGrayscale() :
    m_pSample(nullptr), m_pInputType(nullptr), m_pOutputType(nullptr), m_pTransformFn(nullptr),
    m_imageWidthInPixels(0), m_imageHeightInPixels(0), m_cbImageSize(0),
    m_transform(D2D1::Matrix3x2F::Identity()), m_rcDest(D2D1::RectU()), m_bStreamingInitialized(false),
    m_pAttributes(nullptr)
{
    InitializeCriticalSectionEx(&m_critSec, 3000, 0);
}

CGrayscale::~CGrayscale()
{
    SafeRelease(&m_pInputType);
    SafeRelease(&m_pOutputType);
    SafeRelease(&m_pSample);
    SafeRelease(&m_pAttributes);
    DeleteCriticalSection(&m_critSec);
}

// Initialize the instance.
STDMETHODIMP CGrayscale::RuntimeClassInitialize()
{
    // Create the attribute store.
    return MFCreateAttributes(&m_pAttributes, 3);
}



}

// IMediaExtension methods

//-------------------------------------------------------------------
// SetProperties
// Sets the configuration of the effect
//-------------------------------------------------------------------
HRESULT CGrayscale::SetProperties(ABI::Windows::Foundation::Collections::IPropertySet *pConfiguration)
{
    return S_OK;
}

// IMFTransform methods. Refer to the Media Foundation SDK documentation for details.

//-------------------------------------------------------------------
// GetStreamLimits
// Returns the minimum and maximum number of streams.
//-------------------------------------------------------------------

HRESULT CGrayscale::GetStreamLimits(
    DWORD   *pdwInputMinimum,
    DWORD   *pdwInputMaximum,
    DWORD   *pdwOutputMinimum,
    DWORD   *pdwOutputMaximum
)
{
    // This MFT has a fixed number of streams.
    *pdwInputMinimum = 1;
    *pdwInputMaximum = 1;
    *pdwOutputMinimum = 1;
    *pdwOutputMaximum = 1;
    return S_OK;
}

// Returns the actual number of streams.

HRESULT CGrayscale::GetStreamCount(
    DWORD   *pcInputStreams,
    DWORD   *pcOutputStreams
)
{
    // This MFT has a fixed number of streams.
    *pcInputStreams = 1;
    *pcOutputStreams = 1;
    return S_OK;
}

//-------------------------------------------------------------------
// GetStreamIDs
// Returns stream IDs for the input and output streams.
//-------------------------------------------------------------------

HRESULT CGrayscale::GetStreamIDs(
    DWORD   dwInputIDArraySize,
    DWORD   *pdwInputIDs,
    DWORD   dwOutputIDArraySize,
    DWORD   *pdwOutputIDs
)
{
    // It is not required to implement this method if the MFT has a fixed number of
    // streams AND the stream IDs are numbered sequentially from zero (that is, the
    // stream IDs match the stream indexes).

    // In that case, it is OK to return E_NOTIMPL.
    return E_NOTIMPL;
}



//-------------------------------------------------------------------
// GetInputStreamInfo
// Returns information about an input stream.
//-------------------------------------------------------------------

HRESULT CGrayscale::GetInputStreamInfo(
    DWORD                     dwInputStreamID,
    MFT_INPUT_STREAM_INFO *   pStreamInfo
)
{
    EnterCriticalSection(&m_critSec);

    if (!IsValidInputStream(dwInputStreamID))
    {
        LeaveCriticalSection(&m_critSec);
        return MF_E_INVALIDSTREAMNUMBER;
    }

    // NOTE: This method should succeed even when there is no media type on the
    //       stream. If there is no media type, we only need to fill in the dwFlags
    //       member of MFT_INPUT_STREAM_INFO. The other members depend on having a
    //       a valid media type.

    pStreamInfo->hnsMaxLatency = 0;
    pStreamInfo->dwFlags = MFT_INPUT_STREAM_WHOLE_SAMPLES | MFT_INPUT_STREAM_SINGLE_SAMPLE_PER_BUFFER;

    if (m_pInputType == nullptr)
    {
        pStreamInfo->cbSize = 0;
    }
    else
    {
        pStreamInfo->cbSize = m_cbImageSize;
    }

    pStreamInfo->cbMaxLookahead = 0;
    pStreamInfo->cbAlignment = 0;

    LeaveCriticalSection(&m_critSec);
    return S_OK;
}

//-------------------------------------------------------------------
// GetOutputStreamInfo
// Returns information about an output stream.
//-------------------------------------------------------------------

HRESULT CGrayscale::GetOutputStreamInfo(
    DWORD                     dwOutputStreamID,
    MFT_OUTPUT_STREAM_INFO *  pStreamInfo
)
{
    EnterCriticalSection(&m_critSec);

    if (!IsValidOutputStream(dwOutputStreamID))
    {
        LeaveCriticalSection(&m_critSec);
        return MF_E_INVALIDSTREAMNUMBER;
    }

    // NOTE: This method should succeed even when there is no media type on the
    //       stream. If there is no media type, we only need to fill in the dwFlags
    //       member of MFT_OUTPUT_STREAM_INFO. The other members depend on having a
    //       a valid media type.

    pStreamInfo->dwFlags =
        MFT_OUTPUT_STREAM_WHOLE_SAMPLES |
        MFT_OUTPUT_STREAM_SINGLE_SAMPLE_PER_BUFFER |



        MFT_OUTPUT_STREAM_SINGLE_SAMPLE_PER_BUFFER |
        MFT_OUTPUT_STREAM_FIXED_SAMPLE_SIZE ;

    if (m_pOutputType == nullptr)
    {
        pStreamInfo->cbSize = 0;
    }
    else
    {
        pStreamInfo->cbSize = m_cbImageSize;
    }

    pStreamInfo->cbAlignment = 0;

    LeaveCriticalSection(&m_critSec);
    return S_OK;
}

// Returns the attributes for the MFT.
HRESULT CGrayscale::GetAttributes(IMFAttributes** ppAttributes)
{
    EnterCriticalSection(&m_critSec);

    *ppAttributes = m_pAttributes;
    (*ppAttributes)->AddRef();

    LeaveCriticalSection(&m_critSec);
    return S_OK;
}

// Returns stream-level attributes for an input stream.

HRESULT CGrayscale::GetInputStreamAttributes(
    DWORD           dwInputStreamID,
    IMFAttributes   **ppAttributes
)
{
    // This MFT does not support any stream-level attributes, so the method is not implemented.
    return E_NOTIMPL;
}

//-------------------------------------------------------------------
// GetOutputStreamAttributes
// Returns stream-level attributes for an output stream.
//-------------------------------------------------------------------

HRESULT CGrayscale::GetOutputStreamAttributes(
    DWORD           dwOutputStreamID,
    IMFAttributes   **ppAttributes
)
{
    // This MFT does not support any stream-level attributes, so the method is not implemented.
    return E_NOTIMPL;
}

//-------------------------------------------------------------------
// DeleteInputStream
//-------------------------------------------------------------------

HRESULT CGrayscale::DeleteInputStream(DWORD dwStreamID)
{
    // This MFT has a fixed number of input streams, so the method is not supported.
    return E_NOTIMPL;
}

//-------------------------------------------------------------------
// AddInputStreams



// AddInputStreams
//-------------------------------------------------------------------

HRESULT CGrayscale::AddInputStreams(
    DWORD   cStreams,
    DWORD   *adwStreamIDs
)
{
    // This MFT has a fixed number of output streams, so the method is not supported.
    return E_NOTIMPL;
}

//-------------------------------------------------------------------
// GetInputAvailableType
// Returns a preferred input type.
//-------------------------------------------------------------------

HRESULT CGrayscale::GetInputAvailableType(
    DWORD           dwInputStreamID,
    DWORD           dwTypeIndex, // 0-based
    IMFMediaType    **ppType
)
{
    EnterCriticalSection(&m_critSec);

    if (!IsValidInputStream(dwInputStreamID))
    {
        LeaveCriticalSection(&m_critSec);
        return MF_E_INVALIDSTREAMNUMBER;
    }

    HRESULT hr = S_OK;

    // If the output type is set, return that type as our preferred input type.
    if (m_pOutputType == nullptr)
    {
        // The output type is not set. Create a partial media type.
        hr = OnGetPartialType(dwTypeIndex, ppType);
    }
    else if (dwTypeIndex > 0)
    {
        hr = MF_E_NO_MORE_TYPES;
    }
    else
    {
        *ppType = m_pOutputType;
        (*ppType)->AddRef();
    }

    LeaveCriticalSection(&m_critSec);
    return hr;
}

// Returns a preferred output type.

HRESULT CGrayscale::GetOutputAvailableType(
    DWORD           dwOutputStreamID,
    DWORD           dwTypeIndex, // 0-based
    IMFMediaType    **ppType
)
{
    EnterCriticalSection(&m_critSec);

    if (!IsValidOutputStream(dwOutputStreamID))
    {
        LeaveCriticalSection(&m_critSec);
        return MF_E_INVALIDSTREAMNUMBER;
    }



    HRESULT hr = S_OK;

    if (m_pInputType == nullptr)
    {
        // The input type is not set. Create a partial media type.
        hr = OnGetPartialType(dwTypeIndex, ppType);
    }
    else if (dwTypeIndex > 0)
    {
        hr = MF_E_NO_MORE_TYPES;
    }
    else
    {
        *ppType = m_pInputType;
        (*ppType)->AddRef();
    }

    LeaveCriticalSection(&m_critSec);
    return hr;
}

HRESULT CGrayscale::SetInputType(
    DWORD           dwInputStreamID,
    IMFMediaType    *pType, // Can be nullptr to clear the input type.
    DWORD           dwFlags
)
{
    // Validate flags.
    if (dwFlags & ~MFT_SET_TYPE_TEST_ONLY)
    {
        return E_INVALIDARG;
    }

    EnterCriticalSection(&m_critSec);

    if (!IsValidInputStream(dwInputStreamID))
    {
        LeaveCriticalSection(&m_critSec);
        return MF_E_INVALIDSTREAMNUMBER;
    }

    HRESULT hr = S_OK;

    // Does the caller want us to set the type, or just test it?
    BOOL bReallySet = ((dwFlags & MFT_SET_TYPE_TEST_ONLY) == 0);

    // If we have an input sample, the client cannot change the type now.
    if (HasPendingOutput())
    {
        hr = MF_E_TRANSFORM_CANNOT_CHANGE_MEDIATYPE_WHILE_PROCESSING;
        goto done;
    }

    // Validate the type, if non-nullptr.
    if (pType)
    {
        hr = OnCheckInputType(pType);
        if (FAILED(hr))
        {
            goto done;
        }
    }

    // The type is OK. Set the type, unless the caller was just testing.
    if (bReallySet)
    {
        OnSetInputType(pType);



        // When the type changes, end streaming.
        hr = EndStreaming();
    }

done:
    LeaveCriticalSection(&m_critSec);
    return hr;
}

HRESULT CGrayscale::SetOutputType(
    DWORD           dwOutputStreamID,
    IMFMediaType    *pType, // Can be nullptr to clear the output type.
    DWORD           dwFlags
)
{
    // Validate flags.
    if (dwFlags & ~MFT_SET_TYPE_TEST_ONLY)
    {
        return E_INVALIDARG;
    }

    EnterCriticalSection(&m_critSec);

    if (!IsValidOutputStream(dwOutputStreamID))
    {
        LeaveCriticalSection(&m_critSec);
        return MF_E_INVALIDSTREAMNUMBER;
    }

    HRESULT hr = S_OK;

    // Does the caller want us to set the type, or just test it?
    BOOL bReallySet = ((dwFlags & MFT_SET_TYPE_TEST_ONLY) == 0);

    // If we have an input sample, the client cannot change the type now.
    if (HasPendingOutput())
    {
        hr = MF_E_TRANSFORM_CANNOT_CHANGE_MEDIATYPE_WHILE_PROCESSING;
        goto done;
    }

    // Validate the type, if non-nullptr.
    if (pType)
    {
        hr = OnCheckOutputType(pType);
        if (FAILED(hr))
        {
            goto done;
        }
    }

    // The type is OK. Set the type, unless the caller was just testing.
    if (bReallySet)
    {
        OnSetOutputType(pType);

        // When the type changes, end streaming.
        hr = EndStreaming();
    }

done:
    LeaveCriticalSection(&m_critSec);
    return hr;
}

// Returns the current input type.

HRESULT CGrayscale::GetInputCurrentType(
    DWORD           dwInputStreamID,



    DWORD           dwInputStreamID,
    IMFMediaType    **ppType
)
{
    HRESULT hr = S_OK;

    EnterCriticalSection(&m_critSec);

    if (!IsValidInputStream(dwInputStreamID))
    {
        hr = MF_E_INVALIDSTREAMNUMBER;
    }
    else if (!m_pInputType)
    {
        hr = MF_E_TRANSFORM_TYPE_NOT_SET;
    }
    else
    {
        *ppType = m_pInputType;
        (*ppType)->AddRef();
    }
    LeaveCriticalSection(&m_critSec);
    return hr;
}

// Returns the current output type.

HRESULT CGrayscale::GetOutputCurrentType(
    DWORD           dwOutputStreamID,
    IMFMediaType    **ppType
)
{
    HRESULT hr = S_OK;

    EnterCriticalSection(&m_critSec);

    if (!IsValidOutputStream(dwOutputStreamID))
    {
        hr = MF_E_INVALIDSTREAMNUMBER;
    }
    else if (!m_pOutputType)
    {
        hr = MF_E_TRANSFORM_TYPE_NOT_SET;
    }
    else
    {
        *ppType = m_pOutputType;
        (*ppType)->AddRef();
    }

    LeaveCriticalSection(&m_critSec);
    return hr;
}

// Query if the MFT is accepting more input.

HRESULT CGrayscale::GetInputStatus(
    DWORD           dwInputStreamID,
    DWORD           *pdwFlags
)
{
    EnterCriticalSection(&m_critSec);

    if (!IsValidInputStream(dwInputStreamID))
    {
        LeaveCriticalSection(&m_critSec);
        return MF_E_INVALIDSTREAMNUMBER;
    }

    // If an input sample is already queued, do not accept another sample until the 



    // If an input sample is already queued, do not accept another sample until the 
    // client calls ProcessOutput or Flush.

    // NOTE: It is possible for an MFT to accept more than one input sample. For 
    // example, this might be required in a video decoder if the frames do not 
    // arrive in temporal order. In the case, the decoder must hold a queue of 
    // samples. For the video effect, each sample is transformed independently, so
    // there is no reason to queue multiple input samples.

    if (m_pSample == nullptr)
    {
        *pdwFlags = MFT_INPUT_STATUS_ACCEPT_DATA;
    }
    else
    {
        *pdwFlags = 0;
    }

    LeaveCriticalSection(&m_critSec);
    return S_OK;
}

// Query if the MFT can produce output.

HRESULT CGrayscale::GetOutputStatus(DWORD *pdwFlags)
{
    EnterCriticalSection(&m_critSec);

    // The MFT can produce an output sample if (and only if) there an input sample.
    if (m_pSample != nullptr)
    {
        *pdwFlags = MFT_OUTPUT_STATUS_SAMPLE_READY;
    }
    else
    {
        *pdwFlags = 0;
    }

    LeaveCriticalSection(&m_critSec);
    return S_OK;
}

//-------------------------------------------------------------------
// SetOutputBounds
// Sets the range of time stamps that the MFT will output.
//-------------------------------------------------------------------

HRESULT CGrayscale::SetOutputBounds(
    LONGLONG        hnsLowerBound,
    LONGLONG        hnsUpperBound
)
{
    // Implementation of this method is optional.
    return E_NOTIMPL;
}

//-------------------------------------------------------------------
// ProcessEvent
// Sends an event to an input stream.
//-------------------------------------------------------------------

HRESULT CGrayscale::ProcessEvent(
    DWORD              dwInputStreamID,
    IMFMediaEvent      *pEvent
)
{
    // This MFT does not handle any stream events, so the method can
    // return E_NOTIMPL. This tells the pipeline that it can stop



    // return E_NOTIMPL. This tells the pipeline that it can stop
    // sending any more events to this MFT.
    return E_NOTIMPL;
}

//-------------------------------------------------------------------
// ProcessMessage
//-------------------------------------------------------------------

HRESULT CGrayscale::ProcessMessage(
    MFT_MESSAGE_TYPE    eMessage,
    ULONG_PTR           ulParam
)
{
    EnterCriticalSection(&m_critSec);

    HRESULT hr = S_OK;

    switch (eMessage)
    {
    case MFT_MESSAGE_COMMAND_FLUSH:
        // Flush the MFT.
        hr = OnFlush();
        break;

    case MFT_MESSAGE_COMMAND_DRAIN:
        // Drain: Tells the MFT to reject further input until all pending samples are
        // processed. That is our default behavior already, so there is nothing to do.
        //
        // For a decoder that accepts a queue of samples, the MFT might need to drain
        // the queue in response to this command.
    break;

    case MFT_MESSAGE_SET_D3D_MANAGER:
        // Sets a pointer to the IDirect3DDeviceManager9 interface.

        // The pipeline should never send this message unless the MFT sets the MF_SA_D3D_AWARE 
        // attribute set to TRUE. Because this MFT does not set MF_SA_D3D_AWARE, it is an error
        // to send the MFT_MESSAGE_SET_D3D_MANAGER message to the MFT. Return an error code in
        // this case.

        // NOTE: If this MFT were D3D-enabled, it would cache the IDirect3DDeviceManager9 
        // pointer for use during streaming.

        hr = E_NOTIMPL;
        break;

    case MFT_MESSAGE_NOTIFY_BEGIN_STREAMING:
        hr = BeginStreaming();
        break;

    case MFT_MESSAGE_NOTIFY_END_STREAMING:
        hr = EndStreaming();
        break;

    // The next two messages do not require any action from this MFT.

    case MFT_MESSAGE_NOTIFY_END_OF_STREAM:
        break;

    case MFT_MESSAGE_NOTIFY_START_OF_STREAM:
        break;
    }

    LeaveCriticalSection(&m_critSec);
    return hr;
}

// Process an input sample.



// Process an input sample.

HRESULT CGrayscale::ProcessInput(
    DWORD               dwInputStreamID,
    IMFSample           *pSample,
    DWORD               dwFlags
)
{
    if (dwFlags != 0)
    {
        return E_INVALIDARG; // dwFlags is reserved and must be zero.
    }

    HRESULT hr = S_OK;

    EnterCriticalSection(&m_critSec);

    // Validate the input stream number.
    if (!IsValidInputStream(dwInputStreamID))
    {
        hr = MF_E_INVALIDSTREAMNUMBER;
        goto done;
    }

    // Check for valid media types.
    // The client must set input and output types before calling ProcessInput.
    if (!m_pInputType || !m_pOutputType)
    {
        hr = MF_E_NOTACCEPTING;
        goto done;
    }

    // Check if an input sample is already queued.
    if (m_pSample != nullptr)
    {
        hr = MF_E_NOTACCEPTING;   // We already have an input sample.
        goto done;
    }

    // Initialize streaming.
    hr = BeginStreaming();
    if (FAILED(hr))
    {
        goto done;
    }

    // Cache the sample. We do the actual work in ProcessOutput.
    m_pSample = pSample;
    pSample->AddRef();  // Hold a reference count on the sample.

done:
    LeaveCriticalSection(&m_critSec);
    return hr;
}

//-------------------------------------------------------------------
// ProcessOutput
// Process an output sample.
//-------------------------------------------------------------------

HRESULT CGrayscale::ProcessOutput(
    DWORD                   dwFlags,
    DWORD                   cOutputBufferCount,
    MFT_OUTPUT_DATA_BUFFER  *pOutputSamples, // one per stream
    DWORD                   *pdwStatus
)
{
    // Check input parameters...



    // This MFT does not accept any flags for the dwFlags parameter.

    // The only defined flag is MFT_PROCESS_OUTPUT_DISCARD_WHEN_NO_BUFFER. This flag 
    // applies only when the MFT marks an output stream as lazy or optional. But this
    // MFT has no lazy or optional streams, so the flag is not valid.

    if (dwFlags != 0)
    {
        return E_INVALIDARG;
    }

    // There must be exactly one output buffer.
    if (cOutputBufferCount != 1)
    {
        return E_INVALIDARG;
    }

    // It must contain a sample.
    if (pOutputSamples[0].pSample == nullptr)
    {
        return E_INVALIDARG;
    }

    HRESULT hr = S_OK;

    IMFMediaBuffer *pInput = nullptr;
    IMFMediaBuffer *pOutput = nullptr;

    EnterCriticalSection(&m_critSec);

    // There must be an input sample available for processing.
    if (m_pSample == nullptr)
    {
        hr = MF_E_TRANSFORM_NEED_MORE_INPUT;
        goto done;
    }

    // Initialize streaming.

    hr = BeginStreaming();
    if (FAILED(hr))
    {
        goto done;
    }

    // Get the input buffer.
    hr = m_pSample->ConvertToContiguousBuffer(&pInput);
    if (FAILED(hr))
    {
        goto done;
    }

    // Get the output buffer.
    hr = pOutputSamples[0].pSample->ConvertToContiguousBuffer(&pOutput);
    if (FAILED(hr))
    {
        goto done;
    }

    hr = OnProcessOutput(pInput, pOutput);
    if (FAILED(hr))
    {
        goto done;
    }

    // Set status flags.
    pOutputSamples[0].dwStatus = 0;
    *pdwStatus = 0;



    // Copy the duration and time stamp from the input sample, if present.

    LONGLONG hnsDuration = 0;
    LONGLONG hnsTime = 0;

    if (SUCCEEDED(m_pSample->GetSampleDuration(&hnsDuration)))
    {
        hr = pOutputSamples[0].pSample->SetSampleDuration(hnsDuration);
        if (FAILED(hr))
        {
            goto done;
        }
    }

    if (SUCCEEDED(m_pSample->GetSampleTime(&hnsTime)))
    {
        hr = pOutputSamples[0].pSample->SetSampleTime(hnsTime);
    }

done:
    SafeRelease(&m_pSample);   // Release our input sample.
    SafeRelease(&pInput);
    SafeRelease(&pOutput);
    LeaveCriticalSection(&m_critSec);
    return hr;
}

// PRIVATE METHODS

// All methods that follow are private to this MFT and are not part of the IMFTransform interface.

// Create a partial media type from our list.
//
// dwTypeIndex: Index into the list of peferred media types.
// ppmt:        Receives a pointer to the media type.

HRESULT CGrayscale::OnGetPartialType(DWORD dwTypeIndex, IMFMediaType **ppmt)
{
    if (dwTypeIndex >= ARRAYSIZE(g_MediaSubtypes))
    {
        return MF_E_NO_MORE_TYPES;
    }

    IMFMediaType *pmt = nullptr;

    HRESULT hr = MFCreateMediaType(&pmt);
    if (FAILED(hr))
    {
        goto done;
    }

    hr = pmt->SetGUID(MF_MT_MAJOR_TYPE, MFMediaType_Video);
    if (FAILED(hr))
    {
        goto done;
    }

    hr = pmt->SetGUID(MF_MT_SUBTYPE, g_MediaSubtypes[dwTypeIndex]);
    if (FAILED(hr))
    {
        goto done;
    }

    *ppmt = pmt;
    (*ppmt)->AddRef();

done:



done:
    SafeRelease(&pmt);
    return hr;
}

// Validate an input media type.

HRESULT CGrayscale::OnCheckInputType(IMFMediaType *pmt)
{
    assert(pmt != nullptr);

    HRESULT hr = S_OK;

    // If the output type is set, see if they match.
    if (m_pOutputType != nullptr)
    {
        DWORD flags = 0;
        hr = pmt->IsEqual(m_pOutputType, &flags);

        // IsEqual can return S_FALSE. Treat this as failure.
        if (hr != S_OK)
        {
            hr = MF_E_INVALIDMEDIATYPE;
        }
    }
    else
    {
        // Output type is not set. Just check this type.
        hr = OnCheckMediaType(pmt);
    }
    return hr;
}

// Validate an output media type.

HRESULT CGrayscale::OnCheckOutputType(IMFMediaType *pmt)
{
    assert(pmt != nullptr);

    HRESULT hr = S_OK;

    // If the input type is set, see if they match.
    if (m_pInputType != nullptr)
    {
        DWORD flags = 0;
        hr = pmt->IsEqual(m_pInputType, &flags);

        // IsEqual can return S_FALSE. Treat this as failure.
        if (hr != S_OK)
        {
            hr = MF_E_INVALIDMEDIATYPE;
        }

    }
    else
    {
        // Input type is not set. Just check this type.
        hr = OnCheckMediaType(pmt);
    }
    return hr;
}

// Validate a media type (input or output)

HRESULT CGrayscale::OnCheckMediaType(IMFMediaType *pmt)
{
    BOOL bFoundMatchingSubtype = FALSE;

    // Major type must be video.



    // Major type must be video.
    GUID major_type;
    HRESULT hr = pmt->GetGUID(MF_MT_MAJOR_TYPE, &major_type);
    if (FAILED(hr))
    {
        goto done;
    }

    if (major_type != MFMediaType_Video)
    {
        hr = MF_E_INVALIDMEDIATYPE;
        goto done;
    }

    // Subtype must be one of the subtypes in our global list.

    // Get the subtype GUID.
    GUID subtype;
    hr = pmt->GetGUID(MF_MT_SUBTYPE, &subtype);
    if (FAILED(hr))
    {
        goto done;
    }

    // Look for the subtype in our list of accepted types.
    for (DWORD i = 0; i < ARRAYSIZE(g_MediaSubtypes); i++)
    {
        if (subtype == g_MediaSubtypes[i])
        {
            bFoundMatchingSubtype = TRUE;
            break;
        }
    }

    if (!bFoundMatchingSubtype)
    {
        hr = MF_E_INVALIDMEDIATYPE; // The MFT does not support this subtype.
        goto done;
    }

    // Reject single-field media types. 
    UINT32 interlace = MFGetAttributeUINT32(pmt, MF_MT_INTERLACE_MODE, MFVideoInterlace_Progressive);
    if (interlace == MFVideoInterlace_FieldSingleUpper  || interlace == 
MFVideoInterlace_FieldSingleLower)
    {
        hr = MF_E_INVALIDMEDIATYPE;
    }

done:
    return hr;
}

// Set or clear the input media type.
//
// Prerequisite: The input type was already validated.

void CGrayscale::OnSetInputType(IMFMediaType *pmt)
{
    // if pmt is nullptr, clear the type.
    // if pmt is non-nullptr, set the type.

    SafeRelease(&m_pInputType);
    m_pInputType = pmt;
    if (m_pInputType)
    {
        m_pInputType->AddRef();
    }

    // Update the format information.



    // Update the format information.
    UpdateFormatInfo();
}

// Set or clears the output media type.
//
// Prerequisite: The output type was already validated.

void CGrayscale::OnSetOutputType(IMFMediaType *pmt)
{
    // If pmt is nullptr, clear the type. Otherwise, set the type.

    SafeRelease(&m_pOutputType);
    m_pOutputType = pmt;
    if (m_pOutputType)
    {
        m_pOutputType->AddRef();
    }
}

// Initialize streaming parameters.
//
// This method is called if the client sends the MFT_MESSAGE_NOTIFY_BEGIN_STREAMING
// message, or when the client processes a sample, whichever happens first.

HRESULT CGrayscale::BeginStreaming()
{
    HRESULT hr = S_OK;

    if (!m_bStreamingInitialized)
    {
        // Get the configuration attributes.

        // Get the destination rectangle.

        RECT rcDest;
        hr = m_pAttributes->GetBlob(MFT_GRAYSCALE_DESTINATION_RECT, (UINT8*)&rcDest, sizeof(rcDest), 
nullptr);
        if (hr == MF_E_ATTRIBUTENOTFOUND || !ValidateRect(rcDest))
        {
            // The client did not set this attribute, or the client provided an invalid rectangle.
            // Default to the entire image.

            m_rcDest = D2D1::RectU(0, 0, m_imageWidthInPixels, m_imageHeightInPixels);
            hr = S_OK;
        }
        else if (SUCCEEDED(hr))
        {
            m_rcDest = D2D1::RectU(rcDest.left, rcDest.top, rcDest.right, rcDest.bottom);
        }
        else
        {
            goto done;
        }

        // Get the chroma transformations.

        float scale = (float)MFGetAttributeDouble(m_pAttributes, MFT_GRAYSCALE_SATURATION, 0.0f);
        float angle = (float)MFGetAttributeDouble(m_pAttributes, MFT_GRAYSCALE_CHROMA_ROTATION, 0.0f);

        m_transform = D2D1::Matrix3x2F::Scale(scale, scale) * D2D1::Matrix3x2F::Rotation(angle);

        m_bStreamingInitialized = true;
    }

done:
    return hr;
}



}

// End streaming. 

// This method is called if the client sends an MFT_MESSAGE_NOTIFY_END_STREAMING
// message, or when the media type changes. In general, it should be called whenever
// the streaming parameters need to be reset.

HRESULT CGrayscale::EndStreaming()
{
    m_bStreamingInitialized = false;
    return S_OK;
}

// Generate output data.

HRESULT CGrayscale::OnProcessOutput(IMFMediaBuffer *pIn, IMFMediaBuffer *pOut)
{
    BYTE *pDest = nullptr;         // Destination buffer.
    LONG lDestStride = 0;       // Destination stride.

    BYTE *pSrc = nullptr;          // Source buffer.
    LONG lSrcStride = 0;        // Source stride.

    // Helper objects to lock the buffers.
    VideoBufferLock inputLock(pIn);
    VideoBufferLock outputLock(pOut);

    // Stride if the buffer does not support IMF2DBuffer
    LONG lDefaultStride = 0;

    HRESULT hr = GetDefaultStride(m_pInputType, &lDefaultStride);
    if (FAILED(hr))
    {
        goto done;
    }

    // Lock the input buffer.
    hr = inputLock.LockBuffer(lDefaultStride, m_imageHeightInPixels, &pSrc, &lSrcStride);
    if (FAILED(hr))
    {
        goto done;
    }

    // Lock the output buffer.
    hr = outputLock.LockBuffer(lDefaultStride, m_imageHeightInPixels, &pDest, &lDestStride);
    if (FAILED(hr))
    {
        goto done;
    }

    // Invoke the image transform function.
    assert (m_pTransformFn != nullptr);
    if (m_pTransformFn)
    {
        (*m_pTransformFn)(m_transform, m_rcDest, pDest, lDestStride, pSrc, lSrcStride,
            m_imageWidthInPixels, m_imageHeightInPixels);
    }
    else
    {
        hr = E_UNEXPECTED;
        goto done;
    }

    // Set the data size on the output buffer.
    hr = pOut->SetCurrentLength(m_cbImageSize);



    hr = pOut->SetCurrentLength(m_cbImageSize);

    // The VideoBufferLock class automatically unlocks the buffers.
done:
    return hr;
}

// Flush the MFT.

HRESULT CGrayscale::OnFlush()
{
    // For this MFT, flushing just means releasing the input sample.
    SafeRelease(&m_pSample);
    return S_OK;
}

// Update the format information. This method is called whenever the
// input type is set.

HRESULT CGrayscale::UpdateFormatInfo()
{
    HRESULT hr = S_OK;

    GUID subtype = GUID_NULL;

    m_imageWidthInPixels = 0;
    m_imageHeightInPixels = 0;
    m_cbImageSize = 0;

    m_pTransformFn = nullptr;

    if (m_pInputType != nullptr)
    {
        hr = m_pInputType->GetGUID(MF_MT_SUBTYPE, &subtype);
        if (FAILED(hr))
        {
            goto done;
        }
        if (subtype == MFVideoFormat_YUY2)
        {
            m_pTransformFn = TransformImage_YUY2;
        }
        else if (subtype == MFVideoFormat_UYVY)
        {
            m_pTransformFn = TransformImage_UYVY;
        }
        else if (subtype == MFVideoFormat_NV12)
        {
            m_pTransformFn = TransformImage_NV12;
        }
        else
        {
            hr = E_UNEXPECTED;
            goto done;
        }

        hr = MFGetAttributeSize(m_pInputType, MF_MT_FRAME_SIZE, &m_imageWidthInPixels, 
&m_imageHeightInPixels);
        if (FAILED(hr))
        {
            goto done;
        }

        // Calculate the image size (not including padding)
        hr = GetImageSize(subtype.Data1, m_imageWidthInPixels, m_imageHeightInPixels, &m_cbImageSize);
    }

done:



    return hr;
}

// Calculate the size of the buffer needed to store the image.

// fcc: The FOURCC code of the video format.

HRESULT GetImageSize(DWORD fcc, UINT32 width, UINT32 height, DWORD* pcbImage)
{
    HRESULT hr = S_OK;

    switch (fcc)
    {
    case FOURCC_YUY2:
    case FOURCC_UYVY:
        // check overflow
        if ((width > MAXDWORD / 2) || (width * 2 > MAXDWORD / height))
        {
            hr = E_INVALIDARG;
        }
        else
        {
            // 16 bpp
            *pcbImage = width * height * 2;
        }
        break;

    case FOURCC_NV12:
        // check overflow
        if ((height/2 > MAXDWORD - height) || ((height + height/2) > MAXDWORD / width))
        {
            hr = E_INVALIDARG;
        }
        else
        {
            // 12 bpp
            *pcbImage = width * (height + (height/2));
        }
        break;

    default:
        hr = E_FAIL;    // Unsupported type.
    }
    return hr;
}

// Get the default stride for a video format. 
HRESULT GetDefaultStride(IMFMediaType *pType, LONG *plStride)
{
    LONG lStride = 0;

    // Try to get the default stride from the media type.
    HRESULT hr = pType->GetUINT32(MF_MT_DEFAULT_STRIDE, (UINT32*)&lStride);
    if (FAILED(hr))
    {
        // Attribute not set. Try to calculate the default stride.
        GUID subtype = GUID_NULL;

        UINT32 width = 0;
        UINT32 height = 0;

        // Get the subtype and the image size.
        hr = pType->GetGUID(MF_MT_SUBTYPE, &subtype);
        if (SUCCEEDED(hr))
        {
            hr = MFGetAttributeSize(pType, MF_MT_FRAME_SIZE, &width, &height);
        }
        if (SUCCEEDED(hr))



        if (SUCCEEDED(hr))
        {
            if (subtype == MFVideoFormat_NV12)
            {
                lStride = width;
            }
            else if (subtype == MFVideoFormat_YUY2 || subtype == MFVideoFormat_UYVY)
            {
                lStride = ((width * 2) + 3) & ~3;
            }
            else
            {
                hr = E_INVALIDARG;
            }
        }

        // Set the attribute for later reference.
        if (SUCCEEDED(hr))
        {
            (void)pType->SetUINT32(MF_MT_DEFAULT_STRIDE, UINT32(lStride));
        }
    }
    if (SUCCEEDED(hr))
    {
        *plStride = lStride;
    }
    return hr;
}

// Validate that a rectangle meets the following criteria:
//
//  - All coordinates are non-negative.
//  - The rectangle is not flipped (top > bottom, left > right)
//
// These are the requirements for the destination rectangle.

bool ValidateRect(const RECT& rc)
{
    if (rc.left < 0 || rc.top < 0)
    {
        return false;
    }
    if (rc.left > rc.right || rc.top > rc.bottom)
    {
        return false;
    }
    return true;
}

EXPORTS
    DllCanUnloadNow                     PRIVATE
    DllGetActivationFactory             PRIVATE
    DllGetClassObject                   PRIVATE

9. Add a new module-definition file to the project, name it GrayscaleTransform.def , and then add this code:

10. Use the following code to replace the contents of dllmain.cpp :



To use the WRL the custom Media Foundation component from a C# appTo use the WRL the custom Media Foundation component from a C# app

#include "pch.h"
#include <initguid.h>
#include <wrl\module.h>

using namespace Microsoft::WRL;

STDAPI_(BOOL) DllMain(_In_ HINSTANCE hInstance, _In_ DWORD reason, _In_opt_ void *reserved)
{
    if (DLL_PROCESS_ATTACH == reason)
    {
        DisableThreadLibraryCalls(hInstance);
    }
    return TRUE;
}

STDAPI DllGetActivationFactory(_In_ HSTRING activatibleClassId, _COM_Outptr_ IActivationFactory 
**factory)
{
    return Module<InProc>::GetModule().GetActivationFactory(activatibleClassId, factory);
}

STDAPI DllCanUnloadNow()
{
    return Module<InProc>::GetModule().Terminate() ? S_OK : S_FALSE;
}

STDAPI DllGetClassObject(_In_ REFCLSID rclsid, _In_ REFIID riid, _COM_Outptr_ void **ppv)
{
    return Module<InProc>::GetModule().GetClassObject(rclsid, riid, ppv);
}

11. In the project’s Property Pages dialog box, set the following Linker properties.

a. Under Input, for the Module Definition File, specify GrayScaleTransform.def .

b. Also under Input, add runtimeobject.lib , mfuuid.lib , and mfplat.lib  to the Additional
Dependencies property.

c. Under Windows Metadata, set Generate Windows Metadata to Yes (/WINMD).

1. Add a new C# Blank App (Universal Windows) project to the MediaCapture  solution. Name the project,
for example, MediaCapture.

2. In the MediaCapture project, add a reference to the GrayscaleTransform  project. To learn how, see How to:
Add or Remove References By Using the Reference Manager.

3. In Package.appxmanifest , on the Capabilities tab, select Microphone and Webcam. Both capabilities are
required to capture photos from the webcam.

4. In MainPage.xaml , add this code to the root Grid element:

https://docs.microsoft.com/visualstudio/ide/how-to-add-or-remove-references-by-using-the-reference-manager
https://msdn.microsoft.com/library/windows/apps/xaml/windows.ui.xaml.controls.grid.aspx


<StackPanel>
    <TextBlock x:Name="StatusBlock" Margin="10,10,0,0"/>
    <StackPanel Orientation="Horizontal" Grid.Row="1" Margin="0,10,0,0">
        <Button x:Name="StartDevice" Click="StartDevice_Click" IsEnabled="true" 
Margin="10,0,10,0">StartDevice</Button>
        <Button x:Name="TakePhoto" Click="TakePhoto_Click" IsEnabled="false" 
Margin="0,0,10,0">TakePhoto</Button>
    </StackPanel>
    <StackPanel Orientation="Horizontal" Grid.Row="2" Margin="0,10,0,0">
        <CheckBox x:Name="AddRemoveEffect" Margin="10,0,10,0" Content="Grayscale effect" 
IsEnabled="False" Checked="AddRemoveEffect_Checked" Unchecked="AddRemoveEffect_Unchecked"/>
    </StackPanel>
    <Image x:Name="CapturedImage" Width="320" Height="240" Margin="10,10,0,0" 
HorizontalAlignment="Left"/>
</StackPanel>

using System;
using Windows.Devices.Enumeration;
using Windows.Media.Capture;
using Windows.Media.Effects;
using Windows.Media.MediaProperties;
using Windows.Storage.Streams;
using Windows.UI;
using Windows.UI.Xaml;
using Windows.UI.Xaml.Controls;
using Windows.UI.Xaml.Media;
using Windows.UI.Xaml.Media.Imaging;
using Windows.UI.Xaml.Navigation;

namespace MediaCapture
{
    public sealed partial class MainPage : Page
    {
        // Captures photos from the webcam.
        private Windows.Media.Capture.MediaCapture mediaCapture;

        // Used to display status messages.
        private Brush statusBrush = new SolidColorBrush(Colors.Green);
        // Used to display error messages.
        private Brush exceptionBrush = new SolidColorBrush(Colors.Red);

        public MainPage()
        {
            this.InitializeComponent();
        }

        // Shows a status message.
        private void ShowStatusMessage(string text)
        {
            StatusBlock.Foreground = statusBrush;
            StatusBlock.Text = text;
        }

        // Shows an error message.
        private void ShowExceptionMessage(Exception ex)
        {
            StatusBlock.Foreground = exceptionBrush;
            StatusBlock.Text = ex.Message;
        }

        // Click event handler for the "Start Device" button.
        private async void StartDevice_Click(object sender, RoutedEventArgs e)
        {
            try

5. Use the following code to replace the contents of MainPage.xaml.cs :



            {
                StartDevice.IsEnabled = false;

                // Enumerate webcams.
                ShowStatusMessage("Enumerating webcams...");
                var devInfoCollection = await DeviceInformation.FindAllAsync(DeviceClass.VideoCapture);
                if (devInfoCollection.Count == 0)
                {
                    ShowStatusMessage("No webcams found");
                    return;
                }

                // Initialize the MediaCapture object, choosing the first found webcam.
                mediaCapture = new Windows.Media.Capture.MediaCapture();
                var settings = new Windows.Media.Capture.MediaCaptureInitializationSettings();
                settings.VideoDeviceId = devInfoCollection[0].Id;
                await mediaCapture.InitializeAsync(settings);

                // We can now take photos and enable the grayscale effect.
                TakePhoto.IsEnabled = true;
                AddRemoveEffect.IsEnabled = true;

                ShowStatusMessage("Device initialized successfully");
            }
            catch (Exception ex)
            {
                ShowExceptionMessage(ex);
            }
        }

        // Takes a photo from the webcam and displays it.
        private async void TakePhoto_Click(object sender, RoutedEventArgs e)
        {
            try
            {
                ShowStatusMessage("Taking photo...");
                TakePhoto.IsEnabled = false;

                // Capture the photo to an in-memory stream.
                var photoStream = new InMemoryRandomAccessStream();
                await mediaCapture.CapturePhotoToStreamAsync(ImageEncodingProperties.CreateJpeg(), 
photoStream);
                ShowStatusMessage("Create photo file successful");

                // Display the photo.
                var bmpimg = new BitmapImage();
                photoStream.Seek(0);
                await bmpimg.SetSourceAsync(photoStream);
                CapturedImage.Source = bmpimg;

                TakePhoto.IsEnabled = true;
                ShowStatusMessage("Photo taken");
            }
            catch (Exception ex)
            {
                ShowExceptionMessage(ex);
                TakePhoto.IsEnabled = true;
            }
        }

        // Enables the grayscale effect.
        private async void AddRemoveEffect_Checked(object sender, RoutedEventArgs e)
        {
            try
            {
                AddRemoveEffect.IsEnabled = false;
                VideoEffectDefinition def = new 
VideoEffectDefinition("GrayscaleTransform.GrayscaleEffect");
                await mediaCapture.AddVideoEffectAsync(def, MediaStreamType.Photo);



Next Steps

See Also

                await mediaCapture.AddVideoEffectAsync(def, MediaStreamType.Photo);
                ShowStatusMessage("Add effect to video preview successful");
                AddRemoveEffect.IsEnabled = true;
            }
            catch (Exception ex)
            {
                ShowExceptionMessage(ex);
            }
        }

        // Removes the grayscale effect.
        private async void AddRemoveEffect_Unchecked(object sender, RoutedEventArgs e)
        {
            try
            {
                AddRemoveEffect.IsEnabled = false;
                await mediaCapture.ClearEffectsAsync(Windows.Media.Capture.MediaStreamType.Photo);
                ShowStatusMessage("Remove effect from preview successful");
                AddRemoveEffect.IsEnabled = true;
            }
            catch (Exception ex)
            {
                ShowExceptionMessage(ex);
            }
        }
    }
}

The following illustration shows the MediaCapture app .

The example shows how to capture photos from the default webcam one at a time. The Media extensions sample
does more. It demonstrates how to enumerate webcam devices and work with local scheme handlers, and
demonstrates additional media effects that work on both individual photos and streams of video.

Windows Runtime C++ Template Library (WRL)
Microsoft Media Foundation
Media extensions sample

http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096
https://docs.microsoft.com/windows/desktop/medfound/microsoft-media-foundation-sdk
http://code.msdn.microsoft.com/windowsapps/Media-extensions-sample-7b466096


How to: Create a Classic COM Component Using
WRL
1/24/2019 • 5 minutes to read • Edit Online

To use the Windows Runtime C++ Template Library to create a basic classic COM componentTo use the Windows Runtime C++ Template Library to create a basic classic COM component

You can use the Windows Runtime C++ Template Library (WRL) to create basic classic COM components for use
in desktop apps, in addition to using it for Universal Windows Platform (UWP) apps. For the creation of COM
components, the Windows Runtime C++ Template Library may require less code than the ATL. For information
about the subset of COM that the Windows Runtime C++ Template Library supports, see Windows Runtime C++
Template Library (WRL).

This document shows how to use the Windows Runtime C++ Template Library to create a basic COM component.
Although you can use the deployment mechanism that best fits your needs, this document also shows a basic way
to register and consume the COM component from a desktop app.

import "ocidl.idl";

[uuid(0DBABB94-CE99-42F7-ACBD-E698B2332C60), version(1.0)] 
interface ICalculatorComponent : IUnknown
{
    HRESULT Add([in] int a, [in] int b, [out, retval] int* value);
}

[uuid(9D3E6826-CB8E-4D86-8B14-89F0D7EFCD01), version(1.0)]
library CalculatorComponentLib
{
    [uuid(E68F5EDD-6257-4E72-A10B-4067ED8E85F2), version(1.0)]
    coclass CalculatorComponent
    {
        [default] interface ICalculatorComponent;
    }
};

1. In Visual Studio, create a Blank Solution project. Name the project, for example, WRLClassicCOM .

2. Add a Win32 Project to the solution. Name the project, for example, CalculatorComponent . On the
Application Settings tab, select DLL.

3. Add a Midl File (.idl) file to the project. Name the file, for example, CalculatorComponent.idl .

4. Add this code to CalculatorComponent.idl:

5. In CalculatorComponent.cpp, define the CalculatorComponent  class. The CalculatorComponent  class inherits
from Microsoft::WRL::RuntimeClass. Microsoft::WRL::RuntimeClassFlags<ClassicCom> specifies that the
class derives from IUnknown and not IInspectable. ( IInspectable  is available only to Windows Runtime
app components.) CoCreatableClass  creates a factory for the class that can be used with functions such as
CoCreateInstance.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/how-to-create-a-classic-com-component-using-wrl.md
https://docs.microsoft.com/windows/desktop/api/unknwn/nn-unknwn-iunknown
https://docs.microsoft.com/windows/desktop/api/inspectable/nn-inspectable-iinspectable
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-cocreateinstance


#include "stdafx.h"

#include "CalculatorComponent_h.h"
#include <wrl.h>

using namespace Microsoft::WRL;

class CalculatorComponent: public RuntimeClass<RuntimeClassFlags<ClassicCom>, ICalculatorComponent>
{
public:
    CalculatorComponent()
    {
    }

    STDMETHODIMP Add(_In_ int a, _In_ int b, _Out_ int* value)
    {
        *value = a + b;
        return S_OK;
    }
};

CoCreatableClass(CalculatorComponent);

#include "stdafx.h"
#include <wrl\module.h>

using namespace Microsoft::WRL;

#if !defined(__WRL_CLASSIC_COM__)
STDAPI DllGetActivationFactory(_In_ HSTRING activatibleClassId, _COM_Outptr_ IActivationFactory** 
factory)
{
    return Module<InProc>::GetModule().GetActivationFactory(activatibleClassId, factory);
}
#endif

#if !defined(__WRL_WINRT_STRICT__)
STDAPI DllGetClassObject(REFCLSID rclsid, REFIID riid, _COM_Outptr_ void** ppv)
{
    return Module<InProc>::GetModule().GetClassObject(rclsid, riid, ppv);
}
#endif

STDAPI DllCanUnloadNow()
{
    return Module<InProc>::GetModule().Terminate() ? S_OK : S_FALSE;
}

STDAPI_(BOOL) DllMain(_In_opt_ HINSTANCE hinst, DWORD reason, _In_opt_ void*)
{
    if (reason == DLL_PROCESS_ATTACH)
    {
        DisableThreadLibraryCalls(hinst);
    }
    return TRUE;
}

6. Use the following code to replace the code in dllmain.cpp . This file defines the DLL export functions. These
functions use the Microsoft::WRL::Module class to manage the class factories for the module.

7. Add a Module-Definition File (.def) file to the project. Name the file, for example, 
CalculatorComponent.def . This file gives the linker the names of the functions to be exported.

8. Add this code to CalculatorComponent.def:



To consume the COM component from a desktop appTo consume the COM component from a desktop app

LIBRARY

EXPORTS
    DllGetActivationFactory PRIVATE
    DllGetClassObject       PRIVATE
    DllCanUnloadNow         PRIVATE

9. Add runtimeobject.lib to the linker line. To learn how, see .Lib Files as Linker Input.

Windows Registry Editor Version 5.00

[HKEY_CLASSES_ROOT\Wow6432Node\CLSID\{E68F5EDD-6257-4E72-A10B-4067ED8E85F2}]
@="CalculatorComponent Class"

[HKEY_CLASSES_ROOT\Wow6432Node\CLSID\{E68F5EDD-6257-4E72-A10B-4067ED8E85F2}\InprocServer32]
@="<dll-path>"
"ThreadingModel"="Apartment"

[HKEY_CLASSES_ROOT\Wow6432Node\CLSID\{E68F5EDD-6257-4E72-A10B-4067ED8E85F2}\Programmable]

[HKEY_CLASSES_ROOT\Wow6432Node\CLSID\{E68F5EDD-6257-4E72-A10B-4067ED8E85F2}\TypeLib]
@="{9D3E6826-CB8E-4D86-8B14-89F0D7EFCD01}"

[HKEY_CLASSES_ROOT\Wow6432Node\CLSID\{E68F5EDD-6257-4E72-A10B-4067ED8E85F2}\Version]
@="1.0"

1. Register the COM component with the Windows Registry. To do so, create a registration entries file, name it
RegScript.reg , and add the following text. Replace <dll-path> with the path of your DLL—for example, 
C:\temp\WRLClassicCOM\Debug\CalculatorComponent.dll .

2. Run RegScript.reg or add it to your project’s Post-Build Event. For more information, see Pre-build
Event/Post-build Event Command Line Dialog Box.

3. Add a Win32 Console Application project to the solution. Name the project, for example, Calculator .

4. Use this code to replace the contents of Calculator.cpp :

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/dot-lib-files-as-linker-input
https://docs.microsoft.com/visualstudio/ide/reference/pre-build-event-post-build-event-command-line-dialog-box


Robust Programming

#include "stdafx.h"

#include "..\CalculatorComponent\CalculatorComponent_h.h"

const IID IID_ICalculatorComponent = {0x0DBABB94,0xCE99,0x42F7,0xAC,0xBD,0xE6,0x98,0xB2,0x33,0x2C,0x60};
const CLSID CLSID_CalculatorComponent = 
{0xE68F5EDD,0x6257,0x4E72,0xA1,0x0B,0x40,0x67,0xED,0x8E,0x85,0xF2};

// Prints an error string for the provided source code line and HRESULT
// value and returns the HRESULT value as an int.
int PrintError(unsigned int line, HRESULT hr)
{
    wprintf_s(L"ERROR: Line:%d HRESULT: 0x%X\n", line, hr);
    return hr;
}

int wmain()
{
    HRESULT hr;

    // Initialize the COM library.
    hr = CoInitializeEx(nullptr, COINIT_APARTMENTTHREADED);
    if (FAILED(hr))
    {
        return PrintError(__LINE__, hr);
    }

    ICalculatorComponent* calc = nullptr; // Interface to COM component.

    // Create the CalculatorComponent object.
    hr = CoCreateInstance(CLSID_CalculatorComponent, nullptr, CLSCTX_INPROC_SERVER, 
IID_PPV_ARGS(&calc));
    if (SUCCEEDED(hr))
    {
        // Test the component by adding two numbers.
        int result;
        hr = calc->Add(4, 5, &result);
        if (FAILED(hr))
        {
            PrintError(__LINE__, hr);
        }
        else
        {
            wprintf_s(L"result = %d\n", result);
        }

        // Free the CalculatorComponent object.
        calc->Release();
    }
    else
    {
        // Object creation failed. Print a message.
        PrintError(__LINE__, hr);
    }

    // Free the COM library.
    CoUninitialize();

    return hr;
}
/* Output:
result = 9
*/



#include "stdafx.h"
#include <wrl.h>

#include "..\CalculatorComponent\CalculatorComponent_h.h"

using namespace Microsoft::WRL;

const IID IID_ICalculatorComponent = {0x0DBABB94,0xCE99,0x42F7,0xAC,0xBD,0xE6,0x98,0xB2,0x33,0x2C,0x60};
const CLSID CLSID_CalculatorComponent = {0xE68F5EDD,0x6257,0x4E72,0xA1,0x0B,0x40,0x67,0xED,0x8E,0x85,0xF2};

// Prints an error string for the provided source code line and HRESULT
// value and returns the HRESULT value as an int.
int PrintError(unsigned int line, HRESULT hr)
{
    wprintf_s(L"ERROR: Line:%d HRESULT: 0x%X\n", line, hr);
    return hr;
}

int wmain()
{
    HRESULT hr;

    // RAII wrapper for managing the lifetime of the COM library.
    class CoInitializeWrapper
    {
        HRESULT _hr;
    public:
        CoInitializeWrapper(DWORD flags)
        {
            _hr = CoInitializeEx(nullptr, flags);
        }
        ~CoInitializeWrapper()
        {
            if (SUCCEEDED(_hr))
            {
                CoUninitialize();
            }
        }
        operator HRESULT()
        {
            return _hr;
        }

    };

    // Initialize the COM library.
    CoInitializeWrapper initialize(COINIT_APARTMENTTHREADED);
    if (FAILED(initialize))
    {
        return PrintError(__LINE__, initialize);
    }

    ComPtr<ICalculatorComponent> calc; // Interface to COM component.

    // Create the CalculatorComponent object.
    hr = CoCreateInstance(CLSID_CalculatorComponent, nullptr, CLSCTX_INPROC_SERVER, 
IID_PPV_ARGS(calc.GetAddressOf()));
    if (SUCCEEDED(hr))

This document uses standard COM functions to demonstrate that you can use the Windows Runtime C++
Template Library to author a COM component and make it available to any COM-enabled technology. You can
also use Windows Runtime C++ Template Library types such as Microsoft::WRL::ComPtr in your desktop app to
manage the lifetime of COM and other objects. The following code uses the Windows Runtime C++ Template
Library to manage the lifetime of the ICalculatorComponent  pointer. The CoInitializeWrapper  class is an RAII
wrapper that guarantees that the COM library is freed and also guarantees that the lifetime of the COM library
outlives the ComPtr  smart pointer object.



    if (SUCCEEDED(hr))
    {
        // Test the component by adding two numbers.
        int result;
        hr = calc->Add(4, 5, &result);
        if (FAILED(hr))
        {
            return PrintError(__LINE__, hr);
        }
        wprintf_s(L"result = %d\n", result);
    }
    else
    {
        // Object creation failed. Print a message.
        return PrintError(__LINE__, hr);
    }

    return 0;
}

See Also
Windows Runtime C++ Template Library (WRL)



How to: Instantiate WRL Components Directly
1/16/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

To create and instantiate a basic logger componentTo create and instantiate a basic logger component

Learn how to use the Windows Runtime C++ Template Library (WRL)Microsoft::WRL::Make and
Microsoft::WRL::Details::MakeAndInitialize functions to instantiate a component from the module that defines it.

By instantiating components directly, you can reduce overhead when you don't need class factories or other
mechanisms. You can instantiate a component directly in both Universal Windows Platform apps and in desktop
apps.

To learn how to use Windows Runtime C++ Template Library to create a classic COM component and instantiate
it from an external desktop app, see How to: Create a Classic COM Component.

This document shows two examples. The first example uses the Make  function to instantiate a component. The
second example uses the MakeAndInitialize  function to instantiate a component that can fail during construction.
(Because COM typically uses HRESULT values, instead of exceptions, to indicate errors, a COM type typically does
not throw from its constructor. MakeAndInitialize  enables a component to validate its construction arguments
through the RuntimeClassInitialize  method.) Both examples define a basic logger interface and implement that
interface by defining a class that writes messages to the console.

You can’t use the new  operator to instantiate Windows Runtime C++ Template Library components. Therefore, we
recommend that you always use Make  or MakeAndInitialize  to instantiate a component directly.

import "ocidl.idl";

// Prints text to the console.
[uuid(AFDB9683-F18A-4B85-90D1-B6158DAFA46C)]
interface ILogger : IUnknown
{
    HRESULT Log([in] LPCWSTR text);
}

1. In Visual Studio, create a Win32 Console Application project. Name the project, for example,
WRLLogger.

2. Add a Midl File (.idl) file to the project, name the file ILogger.idl , and then add this code:

3. Use the following code to replace the contents of WRLLogger.cpp .

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/how-to-instantiate-wrl-components-directly.md


To handle construction failure for the basic logger componentTo handle construction failure for the basic logger component

#include "stdafx.h"
#include <wrl\implements.h>
#include <comutil.h>

#include "ILogger_h.h"

using namespace Microsoft::WRL;

// Writes logging messages to the console.
class CConsoleWriter : public RuntimeClass<RuntimeClassFlags<ClassicCom>, ILogger>
{
public:
    STDMETHODIMP Log(_In_ PCWSTR text)
    {
        wprintf_s(L"%s\n", text);
        return S_OK;
    }

private:
    // Make destroyable only through Release.
    ~CConsoleWriter()
    {
    }
};

int wmain()
{
    ComPtr<CConsoleWriter> writer = Make<CConsoleWriter>();
    HRESULT hr = writer->Log(L"Logger ready.");
    return hr;
}

/* Output:
Logger ready.
*/

1. Use the following code to replace the definition of the CConsoleWriter  class. This version holds a private
string member variable and overrides the RuntimeClass::RuntimeClassInitialize  method. 
RuntimeClassInitialize  fails if the call to SHStrDup  fails.



See Also

// Writes logging messages to the console.
class CConsoleWriter : public RuntimeClass<RuntimeClassFlags<ClassicCom>, ILogger>
{
public:
    // Initializes the CConsoleWriter object.
    // Failure here causes your object to fail construction with the HRESULT you choose.
    HRESULT RuntimeClassInitialize(_In_ PCWSTR category)
    {
        return SHStrDup(category, &m_category);
    }

    STDMETHODIMP Log(_In_ PCWSTR text)
    {
        wprintf_s(L"%s: %s\n", m_category, text);
        return S_OK;
    }

private:
    PWSTR m_category;

    // Make destroyable only through Release.
    ~CConsoleWriter()
    {
        CoTaskMemFree(m_category);
    }
};

int wmain()
{
    ComPtr<CConsoleWriter> writer;
    HRESULT hr = MakeAndInitialize<CConsoleWriter>(&writer, L"INFO");
    if (FAILED(hr))
    {
        wprintf_s(L"Object creation failed. Result = 0x%x", hr);
        return hr;
    }
    hr = writer->Log(L"Logger ready.");
    return hr;
}

/* Output:
INFO: Logger ready.
*/

2. Use the following code to replace the definition of wmain . This version uses MakeAndInitialize  to
instantiate the CConsoleWriter  object and checks the HRESULT result.

Windows Runtime C++ Template Library (WRL)
Microsoft::WRL::Make
Microsoft::WRL::Details::MakeAndInitialize



How to: Use winmdidl.exe and midlrt.exe to create .h
files from windows metadata
1/16/2019 • 2 minutes to read • Edit Online

Location of the tools

Winmdidl command-line arguments
Winmdidl.exe [/nologo] [/suppressversioncheck] [/time] [/outdir:dir] [/banner:file] [/utf8] Winmdfile

Winmdidl.exe and midlrt.exe enable COM-level interaction between native C++ code and Windows Runtime
components. Winmdidl.exe takes as input a .winmd file that contains metadata for a Windows Runtime component
and outputs an IDL file. Midlrt.exe converts that IDL file into header files that the C++ code can consume. Both
tools run on the command line.

You use these tools in two main scenarios:

Creating custom IDL and header files so that a C++ app written by using the Windows Runtime Template
Library (WRL) can consume a custom Windows Runtime component.

Generating proxy and stub files for user-defined event types in a Windows Runtime Component. For more
information, see Custom events and event accessors in Windows Runtime Components.

These tools are required only for parsing custom .winmd files. The .idl and .h files for Windows operating system
components are already generated for you. By default in Windows 8.1, they are located in \Program Files
(x86)\Windows Kits\8.1\Include\winrt\.

By default in [Windows 8.1, winmdidl.exe and midlrt.exe are located in C:\Program Files (x86)\Windows Kits\8.1\.
Versions of the tools are also available in the \bin\x86\ and \bin\x64\ folders.

/nologo
Prevents console display of the winmdidl copyright message and version number.

/suppressversioncheck
Not used.

/time
Displays the total execution time in the console output.

/outdir:dir
Specifies an output directory. If the path contains spaces, use quotation marks. The default output directory is
<drive>:\Users\<username>\AppData\Local\VirtualStore\Program Files (x86)\Microsoft Visual Studio 12.0\.

/banner:file
Specifies a file that contains custom text to prepend to the default copyright message and winmdidl version
number at the top of the generated .idl file. If the path contains spaces, use quotation marks.

/utf8
Causes the file to be formatted as UTF-8.

Winmdfile

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/use-winmdidl-and-midlrt-to-create-h-files-from-windows-metadata.md
https://docs.microsoft.com/uwp/winrt-components/custom-events-and-event-accessors-in-windows-runtime-components


Midlrt command-line arguments

Examples

Remarks

The name of the .winmd file to parse. If the path contains spaces, use quotation marks.

See MIDLRT and Windows Runtime components.

The following example shows a winmdidl command at a Visual Studio x86 command prompt. It specifies an output
directory, and a file that contains special banner text to add to the generated .idl file.

C:\Program Files (x86)\Microsoft Visual Studio 12.0>winmdidl /nologo /outdir:c:\users\giraffe\documents\
/banner:c:\users\giraffe\documents\banner.txt "C:\Users\giraffe\Documents\Visual Studio
2013\Projects\Test_for_winmdidl\Debug\Test_for_winmdidl\test_for_winmdidl.winmd"

The next example shows the console display from winmdidl that indicates that the operation succeeded.

Generating c:\users\giraffe\documents\\Test_for_winmdidl.idl

Next, midlrt is run on the generated IDL file. Notice that the metadata_dir argument is specified after the name of
the .idl file. The path of \WinMetadata\ is required—it's the location for windows.winmd.

C:\Program Files (x86)\Microsoft Visual Studio 12.0> midlrt "c:\users\mblome\documents\test_for_winmdidl.idl"
/metadata_dir "C:\Windows\System32\WinMetadata"

The output file from a winmdidl operation has the same name as the input file but has the .idl file name extension.

If you are developing a Windows Runtime component that will be accessed from the WRL, you can specify
winmdidl.exe and midlrt.exe to run as post-build steps so that the .idl and .h files are generated on each build. For
an example, see Raising Events in Windows Runtime Components.

https://docs.microsoft.com/windows/desktop/Midl/midlrt-and-windows-runtime-components
https://docs.microsoft.com/uwp/winrt-components/raising-events-in-windows-runtime-components


Key WRL APIs by Category
1/16/2019 • 2 minutes to read • Edit Online

Classes
TITLE DESCRIPTION

ActivationFactory Class Enables one or more classes to be activated by the Windows
Runtime.

AsyncBase Class Implements the Windows Runtime asynchronous state
machine.

ClassFactory Class Implements the basic functionality of the IClassFactory

interface.

ComPtr Class Creates a smart pointer type that represents the interface
specified by the template parameter. ComPtr automatically
maintains a reference count for the underlying interface
pointer and releases the interface when the reference count
goes to zero.

Event Class (Windows Runtime C++ Template Library) Represents an event.

EventSource Class Represents an event. EventSource  member functions add,
remove, and invoke event handlers.

FtmBase Class Represents a free-threaded marshaler object.

HandleT Class Represents a handle to an object.

HString Class Provides support for manipulating HSTRING handles.

HStringReference Class Represents an HSTRING that is created from an existing string.

Module Class Represents a collection of related objects.

Module::GenericReleaseNotifier Class Invokes an event handler when the last object in the current
module is released. The event handler is specified by on a
lambda, functor, or pointer-to-function.

Module::MethodReleaseNotifier Class Invokes an event handler when the last object in the current
module is released. The event handler is specified by an object
and its pointer-to-a-method member.

Module::ReleaseNotifier Class Invokes an event handler when the last object in a module is
released.

The following tables list primary Windows Runtime C++ Template Library classes, structs, functions, and macros.
Constructs in helper namespaces and classes are omitted. These lists augment the API documentation, which is
arranged by namespace.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/key-wrl-apis-by-category.md


RoInitializeWrapper Class Initializes the Windows Runtime.

RuntimeClass Class Represents an instantiated class that inherits the specified
number of interfaces, and provides the specified Windows
Runtime, classic COM, and weak reference support.

SimpleActivationFactory Class Provides a fundamental mechanism to create a Windows
Runtime or classic COM base class.

SimpleClassFactory Class Provides a fundamental mechanism to create a base class.

WeakRef Class Represents a weak reference that can be used by only the
Windows Runtime, not classic COM. A weak reference
represents an object that might or might not be accessible.

TITLE DESCRIPTION

Structures
TITLE DESCRIPTION

ChainInterfaces Structure Specifies verification and initialization functions that can be
applied to a set of interface IDs.

CloakedIid Structure Indicates to the RuntimeClass , Implements  and 
ChainInterfaces  templates that the specified interface is

not accessible in the IID list.

Implements Structure Implements QueryInterface  and GetIid  for the specified
interfaces.

MixIn Structure Ensures that a runtime class derives from Windows Runtime
interfaces, if any, and then classic COM interfaces.

Functions
TITLE DESCRIPTION

ActivateInstance Function Registers and retrieves an instance of a specified type defined
in a specified class ID.

AsWeak Function Retrieves a weak reference to a specified instance.

Callback Function Creates an object whose member function is a callback
method.

CreateActivationFactory Function Creates a factory that produces instances of the specified class
that can be activated by the Windows Runtime.

CreateClassFactory Function Creates a factory that produces instances of the specified
class.



GetActivationFactory Function Retrieves an activation factory for the type specified by the
template parameter.

Make Function Initializes the specified Windows Runtime class.

TITLE DESCRIPTION

Macros
TITLE DESCRIPTION

ActivatableClass Macros Populates an internal cache that contains a factory that can
create an instance of the specified class.

InspectableClass Macro Sets the runtime class name and trust level.

See Also
Windows Runtime C++ Template Library (WRL)



WRL Reference
1/16/2019 • 2 minutes to read • Edit Online

NOTENOTE

In This Section

Related Sections

This section contains reference information for the Windows Runtime C++ Template Library (WRL).

The Windows Runtime C++ Template Library defines functionality that supports the Windows Runtime C++ Template
Library infrastructure and is not intended to be used directly from your code. Such functionality is noted in this
documentation.

Microsoft::WRL Namespace
Defines the fundamental types that make up the Windows Runtime C++ Template Library.

Microsoft::WRL::Wrappers Namespace
Defines Resource Acquisition Is Initialization (RAII) wrapper types that simplify the lifetime management of
objects, strings, and handles.

Microsoft::WRL::Wrappers::HandleTraits Namespace
Describes characteristics of common handle-based resource types.

Windows::Foundation Namespace
Enables fundamental Windows Runtime functionality, such as object and factory creation.

Windows Runtime C++ Template Library (WRL)
Introduces Windows Runtime C++ Template Library, a COM-based template library that provides a low-level way
to author and use Windows Runtime components.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/wrl-reference.md


Microsoft::WRL Namespace
1/16/2019 • 2 minutes to read • Edit Online

Syntax
namespace Microsoft::WRL;

Members
TypedefsTypedefs

NAME DESCRIPTION

InhibitWeakReferencePolicy RuntimeClassFlags<WinRt | InhibitWeakReference>

ClassesClasses

NAME DESCRIPTION

ActivationFactory Class Enables one or more classes to be activated by the Windows
Runtime.

AsyncBase Class Implements the Windows Runtime asynchronous state
machine.

ClassFactory Class Implements the basic functionality of the IClassFactory

interface.

ComPtr Class Creates a smart pointer type that represents the interface
specified by the template parameter. ComPtr automatically
maintains a reference count for the underlying interface
pointer and releases the interface when the reference count
goes to zero.

DeferrableEventArgs Class A template class used for the event argument types for
deferrals.

EventSource Class Represents an event. EventSource  member functions add,
remove, and invoke event handlers.

FtmBase Class Represents a free-threaded marshaler object.

Module Class Represents a collection of related objects.

RuntimeClass Class Represents an instantiated class that inherits the specified
number of interfaces, and provides the specified Windows
Runtime, classic COM, and weak reference support.

Defines the fundamental types that make up the Windows Runtime C++ Template Library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/microsoft-wrl-namespace.md


SimpleActivationFactory Class Provides a fundamental mechanism to create a Windows
Runtime or classic COM base class.

SimpleClassFactory Class Provides a fundamental mechanism to create a base class.

WeakRef Class Represents a weak reference that can be used by only the
Windows Runtime, not classic COM. A weak reference
represents an object that might or might not be accessible.

NAME DESCRIPTION

StructuresStructures

NAME DESCRIPTION

ChainInterfaces Structure Specifies verification and initialization functions that can be
applied to a set of interface IDs.

CloakedIid Structure Indicates to the RuntimeClass , Implements  and 
ChainInterfaces  templates that the specified interface is

not accessible in the IID list.

Implements Structure Implements QueryInterface  and GetIid  for the specified
interfaces.

MixIn Structure Ensures that a runtime class derives from Windows Runtime
interfaces, if any, and then classic COM interfaces.

RuntimeClassFlags Structure Contains the type for an instance of a RuntimeClass.

EnumerationsEnumerations

NAME DESCRIPTION

AsyncResultType Enumeration Specifies the type of result returned by the GetResults()

method.

ModuleType Enumeration Specifies whether a module should support an in-process
server or an out-of-process server.

RuntimeClassType Enumeration Specifies the type of RuntimeClass instance that is
supported.

FunctionsFunctions

NAME DESCRIPTION

AsWeak Function Retrieves a weak reference to a specified instance.

Callback Function (WRL) Creates an object whose member function is a callback
method.

CreateActivationFactory Function Creates a factory that produces instances of the specified
class that can be activated by the Windows Runtime.



CreateClassFactory Function Creates a factory that produces instances of the specified
class.

Make Function Initializes the specified Windows Runtime class.

NAME DESCRIPTION

Requirements

See Also

Header: async.h, client.h, corewrappers.h, event.h, ftm.h, implements.h, internal.h, module.h

Namespace: Microsoft::WRL

Microsoft::WRL::Wrappers Namespace



ActivatableClass Macros
1/16/2019 • 2 minutes to read • Edit Online

Syntax
ActivatableClass(
   className
);

ActivatableClassWithFactory(
   className,
   factory
);

ActivatableClassWithFactoryEx(
   className,
   factory,
   serverName
);

ParametersParameters

Remarks

Requirements

See Also

Populates an internal cache that contains a factory that can create an instance of the specified class.

className
Name of the class to create.

factory
Factory that will create an instance of the specified class.

serverName
A name that specifies a subset of factories in the module.

Do not use these macros with classic COM unless you use the #undef  directive to ensure that the 
__WRL_WINRT_STRICT__  macro definition is removed.

Header: module.h

Namespace: Microsoft::WRL

Module Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/activatableclass-macros.md


ActivationFactory Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <
    typename I0 = Details::Nil,
    typename I1 = Details::Nil,
    typename I2 = Details::Nil
>
class ActivationFactory :
    public Details::RuntimeClass<
        typename Details::InterfaceListHelper<
            IActivationFactory,
            I0,
            I1,
            I2,
            Details::Nil
        >::TypeT,
        RuntimeClassFlags<WinRt | InhibitWeakReference>,
        false
    >;

ParametersParameters

Remarks

struct MyClassFactory : public ActivationFactory<IMyAddtionalInterfaceOnFactory>
{
    STDMETHOD(ActivateInstance) (_Outptr_result_nullonfailure_ IInspectable** ppvObject)
    {
        // my custom implementation

        return S_OK;
    }
};

ActivatableClassWithFactory(MyClass, MyClassFactory);
// or if a default factory is used:
//ActivatableClassWithFactory(MyClass, SimpleActivationFactory);

Enables one or more classes to be activated by the Windows Runtime.

I0
The zeroth interface.

I1
The first interface.

I2
The second interface.

ActivationFactory  provides registration methods and basic functionality for the IActivationFactory  interface. 
ActivationFactory  also enables you to provide a custom factory implementation.

The following code fragment symbolically illustrates how to use ActivationFactory.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/activationfactory-class.md


Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

ActivationFactory::ActivationFactory Initializes the ActivationFactory  class.

Public MethodsPublic Methods

NAME DESCRIPTION

ActivationFactory::AddRef Increments the reference count of the current 
ActivationFactory  object.

ActivationFactory::GetIids Retrieves an array of implemented interface IDs.

ActivationFactory::GetRuntimeClassName Gets the runtime class name of the object that the current 
ActivationFactory  instantiates.

ActivationFactory::GetTrustLevel Gets the trust level of the object that the current 
ActivationFactory  instantiates.

ActivationFactory::QueryInterface Retrieves a pointer to the specified interface.

ActivationFactory::Release Decrements the reference count of the current 
ActivationFactory  object.

Inheritance Hierarchy

Requirements

The following code fragment shows how to use the Implements structure to specify more than three interface IDs.

struct MyFactory : ActivationFactory<Implements<I1, I2, I3>, I4, I5>;

I0

ChainInterfaces

I0

RuntimeClassBase

ImplementsHelper

DontUseNewUseMake

RuntimeClassFlags

RuntimeClassBaseT

RuntimeClass

ActivationFactory

Header: module.h



 

 

 

 

ActivationFactory::ActivationFactory

ActivationFactory();

ActivationFactory::AddRef

STDMETHOD_(
   ULONG,
   AddRef
)();

Return ValueReturn Value

ActivationFactory::GetIids

STDMETHOD(
   GetIids
)(_Out_ ULONG *iidCount, _Deref_out_ _Deref_post_cap_(*iidCount) IID **iids);

ParametersParameters

Return ValueReturn Value

ActivationFactory::GetRuntimeClassName

STDMETHOD(
   GetRuntimeClassName
)(_Out_ HSTRING* runtimeName);

ParametersParameters

Namespace: Microsoft::WRL

Initializes the ActivationFactory  class.

Increments the reference count of the current ActivationFactory  object.

S_OK if successful; otherwise, an HRESULT that describes the failure.

Retrieves an array of implemented interface IDs.

iidCount
When this operation completes, the number of interace IDs in the iids array.

iids
When this operation completes, an array of implemented interface IDs.

S_OK if successful; otherwise, an HRESULT that describes the failure. E_OUTOFMEMORY is a possible failure
HRESULT.

Gets the runtime class name of the object that the current ActivationFactory  instantiates.

runtimeName
When this operation completes, a handle to a string that contains the runtime class name of the object that the
current ActivationFactory  instantiates.



 

 

 

Return ValueReturn Value

ActivationFactory::GetTrustLevel

STDMETHOD(
   GetTrustLevel
)(_Out_ TrustLevel* trustLvl);

ParametersParameters

Return ValueReturn Value

ActivationFactory::QueryInterface

STDMETHOD(
   QueryInterface
)(REFIID riid, _Deref_out_ void **ppvObject);

ParametersParameters

Return ValueReturn Value

ActivationFactory::Release

STDMETHOD_(
   ULONG,
   Release
)();

Return ValueReturn Value

S_OK if successful; otherwise, an HRESULT that describes the failure.

Gets the trust level of the object that the current ActivationFactory  instantiates.

trustLvl
When this operation completes, the trust level of the runtime class that the ActivationFactory  instantiates.

S_OK if successful; otherwise, an assertion error is emitted and trustLvl is set to FullTrust .

Retrieves a pointer to the specified interface.

riid
An interface ID.

ppvObject
When this operation is complete, a pointer to the interface specified by parameter riid.

S_OK if successful; otherwise, an HRESULT that describes the failure.

Decrements the reference count of the current ActivationFactory  object.

S_OK if successful; otherwise, an HRESULT that describes the failure.



AgileActivationFactory Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <
    typename I0 = Details::Nil,
    typename I1 = Details::Nil,
    typename I2 = Details::Nil,
    FactoryCacheFlags cacheFlagValue = FactoryCacheDefault
>
class AgileActivationFactory :
    public ActivationFactory<
        Implements<FtmBase, I0>,
        I1,
        I2,
        cacheFlagValue
    >;

Requirements

See Also

Represents an apartment-friendly activation factory that implements FtmBase.

Header: module.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace
ActivationFactory Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/agileactivationfactory-class.md


AgileEventSource Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<
    typename TDelegateInterface,
    typename TEventSourceOptions = Microsoft::WRL::InvokeModeOptions<FireAll>
>
class AgileEventSource :
    public Microsoft::WRL::EventSource<
        TDelegateInterface, TEventSourceOptions>;

Parameters

Remarks

Inheritance Hierarchy

Requirements

Members
Public MethodsPublic Methods

NAME DESCRIPTION

Represents an event that is raised by a agile component, which is a component that can be accessed from any
thread. Inherits from EventSource and overrides the Add  member function with an additional type parameter for
specifying options for how to invoke the agile event.

TDelegateInterface
The interface to a delegate that represents an event handler.

TEventSourceOptions
An InvokeModeOptions stucture whose invokeMode field is set to InvokeMode::StopOnFirstError  or 
InvokeMode::FireAll .

The vast majority of components in the Windows Runtime are agile components. For more information, see
Threading and Marshaling (C++/CX).

EventSource

AgileEventSource

Header: event.h

Namespace: Microsoft::WRL

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/agileeventsource-class.md


 

AgileEventSource::Add Method Appends the agile event handler represented by the specified
delegate interface to the set of event handlers for the current
AgileEventSource object.

NAME DESCRIPTION

AgileEventSource::Add Method

SyntaxSyntax

HRESULT Add(
   _In_ TDelegateInterface* delegateInterface,
   _Out_ EventRegistrationToken* token
);

ParametersParameters

Return ValueReturn Value

See Also

Appends the event handler represented by the specified delegate interface to the set of event handlers for the
current EventSource object.

delegateInterface
The interface to a delegate object, which represents an event handler.

token
When this operation completes, a handle that represents the event. Use this token as the parameter to the 
Remove()  method to discard the event handler.

S_OK if successful; otherwise, an HRESULT that indicates the error.

Microsoft::WRL Namespace



AsWeak Function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
HRESULT AsWeak(
   _In_ T* p,
   _Out_ WeakRef* pWeak
);

ParametersParameters

Return Value

Requirements

See Also

Retrieves a weak reference to a specified instance.

T
A pointer to the type of parameter p.

p
An instance of a type.

pWeak
When this operation completes, a pointer to a weak reference to parameter p.

S_OK, if this operation is successful; otherwise, an error HRESULT that indicates the cause of the failure.

Header: client.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/asweak-function.md


AsyncBase Class
1/16/2019 • 5 minutes to read • Edit Online

Syntax
template <
    typename TComplete,
    typename TProgress = Details::Nil,
    AsyncResultType resultType = SingleResult
>
class AsyncBase : public AsyncBase<TComplete, Details::Nil, resultType>;

template <typename TComplete, AsyncResultType resultType>
class AsyncBase<TComplete, Details::Nil, resultType> :
    public Microsoft::WRL::Implements<IAsyncInfo>;

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

AsyncBase::AsyncBase Initializes an instance of the AsyncBase  class.

Public MethodsPublic Methods

NAME DESCRIPTION

AsyncBase::Cancel Cancels an asynchronous operation.

AsyncBase::Close Closes the asynchronous operation.

AsyncBase::FireCompletion Invokes the completion event handler, or resets the internal
progress delegate.

AsyncBase::FireProgress Invokes the current progress event handler.

Implements the Windows Runtime asynchronous state machine.

TComplete
An event handler that is called when an asynchronous operation completes.

TProgress
An event handler that is called when a running asynchronous operation reports the current progress of the
operation.

resultType
One of the AsyncResultType enumeration values. By default, SingleResult .

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/asyncbase-class.md


AsyncBase::get_ErrorCode Retrieves the error code for the current asynchronous
operation.

AsyncBase::get_Id Retrieves the handle of the asynchronous operation.

AsyncBase::get_Status Retrieves a value that indicates the status of the
asynchronous operation.

AsyncBase::GetOnComplete Copies the address of the current completion event handler
to the specified variable.

AsyncBase::GetOnProgress Copies the address of the current progress event handler to
the specified variable.

AsyncBase::put_Id Sets the handle of the asynchronous operation.

AsyncBase::PutOnComplete Sets the address of the completion event handler to the
specified value.

AsyncBase::PutOnProgress Sets the address of the progress event handler to the
specified value.

NAME DESCRIPTION

Protected MethodsProtected Methods

NAME DESCRIPTION

AsyncBase::CheckValidStateForDelegateCall Tests whether delegate properties can be modified in the
current asynchronous state.

AsyncBase::CheckValidStateForResultsCall Tests whether the results of an asynchronous operation can
be collected in the current asynchronous state.

AsyncBase::ContinueAsyncOperation Determines whether the asynchronous operation should
continue processing or should halt.

AsyncBase::CurrentStatus Retrieves the status of the current asynchronous operation.

AsyncBase::ErrorCode Retrieves the error code for the current asynchronous
operation.

AsyncBase::OnCancel When overridden in a derived class, cancels an asynchronous
operation.

AsyncBase::OnClose When overridden in a derived class, closes an asynchronous
operation.

AsyncBase::OnStart When overridden in a derived class, starts an asynchronous
operation.

AsyncBase::Start Starts the asynchronous operation.

AsyncBase::TryTransitionToCompleted Indicates whether the current asynchronous operation has
completed.



 

 

 

 

AsyncBase::TryTransitionToError Indicates whether the specified error code can modify the
internal error state.

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

AsyncBase::AsyncBase

AsyncBase();

AsyncBase::Cancel

STDMETHOD(
   Cancel
)(void);

Return ValueReturn Value

RemarksRemarks

AsyncBase::CheckValidStateForDelegateCall

inline HRESULT CheckValidStateForDelegateCall();

Return ValueReturn Value

AsyncBase::CheckValidStateForResultsCall

AsyncBase

AsyncBase

Header: async.h

Namespace: Microsoft::WRL

Initializes an instance of the AsyncBase  class.

Cancels an asynchronous operation.

By default, always returns S_OK.

Cancel()  is a default implementation of IAsyncInfo::Cancel , and does no actual work. To actually cancel an
asynchronous operation, override the OnCancel()  pure virtual method.

Tests whether delegate properties can be modified in the current asynchronous state.

S_OK if delegate properties can be modified; otherwise, E_ILLEGAL_METHOD_CALL.

Tests whether the results of an asynchronous operation can be collected in the current asynchronous state.



 

 

 

 

inline HRESULT CheckValidStateForResultsCall();

Return ValueReturn Value

AsyncBase::Close

STDMETHOD(
   Close
)(void) override;

Return ValueReturn Value

RemarksRemarks

AsyncBase::ContinueAsyncOperation

inline bool ContinueAsyncOperation();

Return ValueReturn Value

AsyncBase::CurrentStatus

inline void CurrentStatus(
   Details::AsyncStatusInternal *status
);

ParametersParameters

RemarksRemarks

AsyncBase::ErrorCode

S_OK if results can be collected; otherwise, E_ILLEGAL_METHOD_CALLE_ILLEGAL_METHOD_CALL.

Closes the asynchronous operation.

S_OK if the operation closes or is already closed; otherwise, E_ILLEGAL_STATE_CHANGE.

Close()  is a default implementation of IAsyncInfo::Close , and does no actual work. To actually close an
asynchronous operation, override the OnClose()  pure virtual method.

Determines whether the asynchronous operation should continue processing or should halt.

true if the current state of the asynchronous operation is started, which means the operation should continue.
Otherwise, false, which means the operation should halt.

Retrieves the status of the current asynchronous operation.

status
The location where this operation stores the current status.

This operation is thread-safe.

Retrieves the error code for the current asynchronous operation.



 

 

 

inline void ErrorCode(
   HRESULT *error
);

ParametersParameters

RemarksRemarks

AsyncBase::FireCompletion

void FireCompletion(
   void
) override;

virtual void FireCompletion();

RemarksRemarks

AsyncBase::FireProgress

void FireProgress(
   const typename ProgressTraits::Arg2Type arg
);

ParametersParameters

RemarksRemarks

AsyncBase::get_ErrorCode

STDMETHOD(
   get_ErrorCode
)(HRESULT* errorCode) override;

ParametersParameters

Return ValueReturn Value

error
The location where this operation stores the current error code.

This operation is thread-safe.

Invokes the completion event handler, or resets the internal progress delegate.

The first version of FireCompletion()  resets the internal progress delegate variable. The second version invokes
the completion event handler if the asynchronous operation is complete.

Invokes the current progress event handler.

arg
The event handler method to invoke.

ProgressTraits  is derived from ArgTraitsHelper Structure.

Retrieves the error code for the current asynchronous operation.

errorCode
The location where the current error code is stored.



 

 

 

AsyncBase::get_Id

STDMETHOD(
   get_Id
)(unsigned int *id) override;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AsyncBase::get_Status

STDMETHOD(
   get_Status
)(AsyncStatus *status) override;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

AsyncBase::GetOnComplete

STDMETHOD(
   GetOnComplete
)(TComplete** completeHandler);

ParametersParameters

Return ValueReturn Value

S_OK if successful; otherwise, E_ILLEGAL_METHOD_CALL if the current asynchronous operation is closed.

Retrieves the handle of the asynchronous operation.

id
The location where the handle is to be stored.

S_OK if successful; otherwise, E_ILLEGAL_METHOD_CALL.

This method implements IAsyncInfo::get_Id .

Retrieves a value that indicates the status of the asynchronous operation.

status
The location where the status is to be stored. For more information, see Windows::Foundation::AsyncStatus

enumeration.

S_OK if successful; otherwise, E_ILLEGAL_METHOD_CALL.

This method implements IAsyncInfo::get_Status .

Copies the address of the current completion event handler to the specified variable.

completeHandler
The location where the address of the current completion event handler is stored.

S_OK if successful; otherwise, E_ILLEGAL_METHOD_CALL.



 

 

 

 

 

AsyncBase::GetOnProgress

STDMETHOD(
   GetOnProgress
)(TProgress** progressHandler);

ParametersParameters

Return ValueReturn Value

AsyncBase::OnCancel

virtual void OnCancel(
   void
) = 0;

AsyncBase::OnClose

virtual void OnClose(
   void
) = 0;

AsyncBase::OnStart

virtual HRESULT OnStart(
   void
) = 0;

AsyncBase::put_Id

STDMETHOD(
   put_Id
)(const unsigned int id);

ParametersParameters

Return ValueReturn Value

Copies the address of the current progress event handler to the specified variable.

progressHandler
The location where the address of the current progress event handler is stored.

S_OK if successful; otherwise, E_ILLEGAL_METHOD_CALL.

When overridden in a derived class, cancels an asynchronous operation.

When overridden in a derived class, closes an asynchronous operation.

When overridden in a derived class, starts an asynchronous operation.

Sets the handle of the asynchronous operation.

id
A nonzero handle.



 

 

 

 

AsyncBase::PutOnComplete

STDMETHOD(
   PutOnComplete
)(TComplete* completeHandler);

ParametersParameters

Return ValueReturn Value

AsyncBase::PutOnProgress

STDMETHOD(
   PutOnProgress
)(TProgress* progressHandler);

ParametersParameters

Return ValueReturn Value

AsyncBase::Start

STDMETHOD(
   Start
)(void);

Return ValueReturn Value

RemarksRemarks

AsyncBase::TryTransitionToCompleted

S_OK if successful; otherwise, E_INVALIDARG or E_ILLEGAL_METHOD_CALL.

Sets the address of the completion event handler to the specified value.

completeHandler
The address to which the completion event handler is set.

S_OK if successful; otherwise, E_ILLEGAL_METHOD_CALL.

Sets the address of the progress event handler to the specified value.

progressHandler
The address to which the progress event handler is set.

S_OK if successful; otherwise, E_ILLEGAL_METHOD_CALL.

Starts the asynchronous operation.

S_OK if the operation starts or is already started; otherwise, E_ILLEGAL_STATE_CHANGE.

Start()  is a protected method that is not externally visible because async operations "hot start" before returning
to the caller.

Indicates whether the current asynchronous operation has completed.



 

bool TryTransitionToCompleted(
   void
);

Return ValueReturn Value

AsyncBase::TryTransitionToError

bool TryTransitionToError(
   const HRESULT error
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

true if the asynchronous operation has completed; otherwise, false.

Indicates whether the specified error code can modify the internal error state.

error
An error HRESULT.

true if the internal error state was changed; otherwise, false.

This operation modifies the error state only if the error state is already set to S_OK. This operation has no effect if
the error state is already error, cancelled, completed, or closed.



AsyncResultType Enumeration
1/16/2019 • 2 minutes to read • Edit Online

Syntax
enum AsyncResultType;

Members
ValuesValues

NAME DESCRIPTION

MultipleResults A set of multiple results, which are presented progressively
between Start  state and before Close()  is called.

SingleResult A single result, which is presented after the Complete  event
occurs.

Requirements

See Also

Specifies the type of result returned by the GetResults()  method.

Header: async.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/asyncresulttype-enumeration.md


Callback Function (WRL)
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<
   typename TDelegateInterface,
   typename TCallback
>
ComPtr<TDelegateInterface> Callback(
   TCallbackcallback
);
template<
   typename TDelegateInterface,
   typename TCallbackObject
>
ComPtr<TDelegateInterface> Callback(
   _In_ TCallbackObject *object,
   _In_ HRESULT (TCallbackObject::* method)()
);
template<
   typename TDelegateInterface,
   typename TCallbackObject,
   typename TArg1
>
ComPtr<TDelegateInterface> Callback(
   _In_ TCallbackObject *object,
   _In_ HRESULT (TCallbackObject::* method)(TArg1)
);
template<
   typename TDelegateInterface,
   typename TCallbackObject,
   typename TArg1,
   typename TArg2
>
ComPtr<TDelegateInterface> Callback(
   _In_ TCallbackObject *object,
   _In_ HRESULT (TCallbackObject::* method)(TArg1,
   TArg2)
);
template<
   typename TDelegateInterface,
   typename TCallbackObject,
   typename TArg1,
   typename TArg2,
   typename TArg3
>
ComPtr<TDelegateInterface> Callback(
   _In_ TCallbackObject *object,
   _In_ HRESULT (TCallbackObject::* method)(TArg1,
   TArg2,
   TArg3)
);
template<
   typename TDelegateInterface,
   typename TCallbackObject,
   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4

Creates an object whose member function is a callback method.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/callback-function-wrl.md


   typename TArg4
>
ComPtr<TDelegateInterface> Callback(
   _In_ TCallbackObject *object,
   _In_ HRESULT (TCallbackObject::* method)(TArg1,
   TArg2,
   TArg3,
   TArg4)
);
template<
   typename TDelegateInterface,
   typename TCallbackObject,
   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4,
   typename TArg5
>
ComPtr<TDelegateInterface> Callback(
   _In_ TCallbackObject *object,
   _In_ HRESULT (TCallbackObject::* method)(TArg1,
   TArg2,
   TArg3,
   TArg4,
   TArg5)
);
template<
   typename TDelegateInterface,
   typename TCallbackObject,
   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4,
   typename TArg5,
   typename TArg6
>
ComPtr<TDelegateInterface> Callback(
   _In_ TCallbackObject *object,
   _In_ HRESULT (TCallbackObject::* method)(TArg1,
   TArg2,
   TArg3,
   TArg4,
   TArg5,
   TArg6)
);
template<
   typename TDelegateInterface,
   typename TCallbackObject,
   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4,
   typename TArg5,
   typename TArg6,
   typename TArg7
>
ComPtr<TDelegateInterface> Callback(
   _In_ TCallbackObject *object,
   _In_ HRESULT (TCallbackObject::* method)(TArg1,
   TArg2,
   TArg3,
   TArg4,
   TArg5,
   TArg6,
   TArg7)
);
template<
   typename TDelegateInterface,
   typename TCallbackObject,



   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4,
   typename TArg5,
   typename TArg6,
   typename TArg7,
   typename TArg8
>
ComPtr<TDelegateInterface> Callback(
   _In_ TCallbackObject *object,
   _In_ HRESULT (TCallbackObject::* method)(TArg1,
   TArg2,
   TArg3,
   TArg4,
   TArg5,
   TArg6,
   TArg7,
   TArg8)
);
template<
   typename TDelegateInterface,
   typename TCallbackObject,
   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4,
   typename TArg5,
   typename TArg6,
   typename TArg7,
   typename TArg8,
   typename TArg9
>
ComPtr<TDelegateInterface> Callback(
   _In_ TCallbackObject *object,
   _In_ HRESULT (TCallbackObject::* method)(TArg1,
   TArg2,
   TArg3,
   TArg4,
   TArg5,
   TArg6,
   TArg7,
   TArg8,
   TArg9)
);

ParametersParameters
TDelegateInterface
A template parameter that specifies the interface of the delegate to call when an event occurs.

TCallback
A template parameter that specifies the type of an object that represents an object and its callback member
function.

TCallbackObject
A template parameter that specifies the object whose member function is the method to call when an event
occurs.

TArg1
A template parameter that specifies the type of the first callback method argument.

TArg2
A template parameter that specifies the type of the second callback method argument.



Return Value

Remarks

Requirements

See Also

TArg3
A template parameter that specifies the type of the third callback method argument.

TArg4
A template parameter that specifies the type of the fourth callback method argument.

TArg5
A template parameter that specifies the type of the fifth callback method argument.

TArg6
A template parameter that specifies the type of the sixth callback method argument.

TArg7
A template parameter that specifies the type of the seventh callback method argument.

TArg8
A template parameter that specifies the type of the eigth callback method argument.

TArg9
A template parameter that specifies the type of the ninth callback method argument.

callback
An object that represents the callback object and its member function.

object
The object whose member function is called when an event occurs.

method
The member function to call when an event occurs.

An object whose member function is the specified callback method.

The base of a delegate object must be IUnknown , not IInspectable .

Header: event.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace



CancelTransitionPolicy Enumeration
1/16/2019 • 2 minutes to read • Edit Online

Syntax
enum CancelTransitionPolicy;

Members
ValuesValues

NAME DESCRIPTION

RemainCanceled If the asynchronous operation is currently in a client-
requested canceled state, this indicates that it will stay in the
canceled state as opposed to transitioning to a terminal
completed or error state.

TransitionFromCanceled If the asynchronous operation is currently in a client-
requested canceled state, this indicates that state should
transition from that canceled state to the terminal state of
completed or error as determined by the call that utilizes this
flag.

Requirements

See Also

Indicates how an asynchronous operation’s attempt to transition to a terminal state of completed or error should
behave with respect to a client-requested canceled state.

Header: async.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/canceltransitionpolicy-enumeration.md


ChainInterfaces Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <
    typename I0,
    typename I1,
    typename I2 = Details::Nil,
    typename I3 = Details::Nil,
    typename I4 = Details::Nil,
    typename I5 = Details::Nil,
    typename I6 = Details::Nil,
    typename I7 = Details::Nil,
    typename I8 = Details::Nil,
    typename I9 = Details::Nil
>
struct ChainInterfaces : I0;

template <
    typename DerivedType,
    typename BaseType,
    bool hasImplements,
    typename I1,
    typename I2,
    typename I3,
    typename I4,
    typename I5,
    typename I6,
    typename I7,
    typename I8,
    typename I9
>
struct ChainInterfaces<
    MixIn<
        DerivedType,
        BaseType,
        hasImplements
    >, I1, I2, I3, I4, I5, I6, I7, I8, I9
>;

ParametersParameters

Specifies verification and initialization functions that can be applied to a set of interface IDs.

I0
(Required) Interface ID 0.

I1
(Required) Interface ID 1.

I2
(Optional) Interface ID 2.

I3
(Optional) Interface ID 3.

I4

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/chaininterfaces-structure.md


Members
Protected MethodsProtected Methods

NAME DESCRIPTION

ChainInterfaces::CanCastTo Indicates whether the specified interface ID can be cast to
each of the specializations defined by the ChainInterface

template parameters.

ChainInterfaces::CastToUnknown Casts the interface pointer of the type defined by the I0
template parameter to a pointer to IUnknown .

ChainInterfaces::FillArrayWithIid Stores the interface ID defined by the I0 template parameter
into a specified location in a specified array of interface IDs.

ChainInterfaces::Verify Verifies that each interface defined by template parameters I0
through I9 inherits from IUnknown  and/or IInspectable ,
and that I0 inherits from I1 through I9.

Protected ConstantsProtected Constants

NAME DESCRIPTION

ChainInterfaces::IidCount The total number of interface IDs contained in the interfaces
specified by template parameters I0 through I9.

Inheritance Hierarchy

(Optional) Interface ID 4.

I5
(Optional) Interface ID 5.

I6
(Optional) Interface ID 6.

I7
(Optional) Interface ID 7.

I8
(Optional) Interface ID 8.

I9
(Optional) Interface ID 9.

DerivedType
A derived type.

BaseType
The base type of a derived type.

hasImplements
A Boolean value that if true, means you can't use a MixIn structure with a class that does not derive from the
Implements stucture.

I0



 

 

 

Requirements

ChainInterfaces::CanCastTo

__forceinline bool CanCastTo(
   REFIID riid,
   _Deref_out_ void **ppv
);

ParametersParameters

Return ValueReturn Value

ChainInterfaces::CastToUnknown

__forceinline IUnknown* CastToUnknown();

Return ValueReturn Value

ChainInterfaces::FillArrayWithIid

__forceinline static void FillArrayWithIid(
   _Inout_ unsigned long &index,
   _In_ IID* iids
);

ParametersParameters

ChainInterfaces

Header: implements.h

Namespace: Microsoft::WRL

Indicates whether the specified interface ID can be cast to each of the specializations defined by the non-default
template parameters.

riid
An interface ID.

ppv
A pointer to the last interface ID that was cast successfully.

true if all the cast operations succeeded; otherwise, false.

Casts the interface pointer of the type defined by the I0 template parameter to a pointer to IUnknown .

A pointer to IUnknown .

Stores the interface ID defined by the I0 template parameter into a specified location in a specified array of
interface IDs.

index
Pointer to an index value into the iids array.

iids
An array of interface IDs.



 

 

ChainInterfaces::IidCount

static const unsigned long IidCount = Details::InterfaceTraits<I0>::IidCount + 
Details::InterfaceTraits<I1>::IidCount + Details::InterfaceTraits<I2>::IidCount + 
Details::InterfaceTraits<I3>::IidCount + Details::InterfaceTraits<I4>::IidCount + 
Details::InterfaceTraits<I5>::IidCount + Details::InterfaceTraits<I6>::IidCount + 
Details::InterfaceTraits<I7>::IidCount + Details::InterfaceTraits<I8>::IidCount + 
Details::InterfaceTraits<I9>::IidCount;

Return ValueReturn Value

RemarksRemarks

ChainInterfaces::Verify

WRL_NOTHROW __forceinline static void Verify();

RemarksRemarks

The total number of interface IDs contained in the interfaces specified by template parameters I0 through I9.

The total number of interface IDs.

Template parameters I0 and I1 are required, and parameters I2 through I9 are optional. The IID count of each
interface is typically 1.

Verifies that each interface defined by template parameters I0 through I9 inherits from IUnknown  and/or 
IInspectable , and that I0 inherits from I1 through I9.

If the verification operation fails, a static_assert  emits an error message describing the failure.

Template parameters I0 and I1 are required, and parameters I2 through I9 are optional.



ClassFactory Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <
    typename I0 = Details::Nil,
    typename I1 = Details::Nil,
    typename I2 = Details::Nil
>
class ClassFactory :
    public Details::RuntimeClass<
        typename Details::InterfaceListHelper<
            IClassFactory,
            I0,
            I1,
            I2,
            Details::Nil
        >::TypeT,
        RuntimeClassFlags<ClassicCom | InhibitWeakReference>,
        false
    >;

ParametersParameters

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

ClassFactory::ClassFactory

Public MethodsPublic Methods

Implements the basic functionality of the IClassFactory  interface.

I0
The zeroth interface.

I1
The first interface.

I2
The second interface.

Utilize ClassFactory  to provide a user-defined factory implementation.

The following programming pattern demonstrates how to use the Implements structure to specify more than
three interfaces on a class factory.

struct MyFactory : ClassFactory<Implements<I1, I2, I3>, I4, I5>

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/classfactory-class.md


 

 

NAME DESCRIPTION

ClassFactory::AddRef Increments the reference count for the current 
ClassFactory  object.

ClassFactory::LockServer Increments or decrements the number of underlying objects
that are tracked by the current ClassFactory  object.

ClassFactory::QueryInterface Retrieves a pointer to the interface specified by parameter.

ClassFactory::Release Decrements the reference count for the current 
ClassFactory  object.

Inheritance Hierarchy

Requirements

ClassFactory::AddRef

STDMETHOD_(
   ULONG,
   AddRef
)();

Return ValueReturn Value

ClassFactory::ClassFactory

I0

ChainInterfaces

I0

RuntimeClassBase

ImplementsHelper

DontUseNewUseMake

RuntimeClassFlags

RuntimeClassBaseT

RuntimeClass

ClassFactory

Header: module.h

Namespace: Microsoft::WRL

Increments the reference count for the current ClassFactory  object.

S_OK if successful; otherwise, an HRESULT that describes the failure.



 

 

 

WRL_NOTHROW ClassFactory();

ClassFactory::LockServer

STDMETHOD(
   LockServer
)(BOOL fLock);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ClassFactory::QueryInterface

STDMETHOD(
   QueryInterface
)(REFIID riid, _Deref_out_ void **ppvObject);

ParametersParameters

Return ValueReturn Value

ClassFactory::Release

STDMETHOD_(
   ULONG,
   Release
)();

Return ValueReturn Value

Increments or decrements the number of underlying objects that are tracked by the current ClassFactory  object.

fLock
true to increment the number of tracked objects. false to decrement the number of tracked objects.

S_OK if successful; otherwise, E_FAIL.

ClassFactory  keeps track of objects in an underlying instance of the Module class.

Retrieves a pointer to the interface specified by parameter.

riid
An interface ID.

ppvObject
When this operation completes, a pointer to the interface specified by parameter riid.

S_OK if successful; otherwise, an HRESULT that describes the failure.

Decrements the reference count for the current ClassFactory  object.

S_OK if successful; otherwise, an HRESULT that describes the failure.



CloakedIid Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
struct CloakedIid : T;

ParametersParameters

Remarks

Inheritance Hierarchy

Requirements

See Also

Indicates to the RuntimeClass , Implements  and ChainInterfaces  templates that the specified interface is not
accessible in the IID list.

T
The interface that is hidden (cloaked).

The following is an example of how CloakedIid is used: 
struct MyRuntimeClass : RuntimeClass<CloakedIid<IMyCloakedInterface>> {} .

T

CloakedIid

Header: implements.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/cloakediid-structure.md


ComposableBase Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename FactoryInterface = IInspectable>
class ComposableBase;

ParametersParameters

Requirements

See Also

FactoryInterface

Header: implements.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/composablebase-class.md


ComPtr Class
1/16/2019 • 9 minutes to read • Edit Online

Syntax
template <typename T>
class ComPtr;

template<class T>
friend class ComPtr;

ParametersParameters

Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

InterfaceType A synonym for the type specified by the T template
parameter.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

ComPtr::ComPtr Intializes a new instance of the ComPtr  class. Overloads
provide default, copy, move, and conversion constructors.

ComPtr::~ComPtr Deinitializes an instance of ComPtr .

Public MethodsPublic Methods

Creates a smart pointer type that represents the interface specified by the template parameter. ComPtr

automatically maintains a reference count for the underlying interface pointer and releases the interface when
the reference count goes to zero.

T
The interface that the ComPtr  represents.

U
A class to which the current ComPtr  is a friend. (The template that uses this parameter is protected.)

ComPtr<>  declares a type that represents the underlying interface pointer. Use ComPtr<>  to declare a variable
and then use the arrow member-access operator ( -> ) to access an interface member function.

For more information about smart pointers, see the "COM Smart Pointers" subsection of the COM Coding
Practices topic in the MSDN Library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/comptr-class.md
https://docs.microsoft.com/windows/desktop/LearnWin32/com-coding-practices


NAME DESCRIPTION

ComPtr::As Returns a ComPtr  object that represents the interface
identified by the specified template parameter.

ComPtr::AsIID Returns a ComPtr  object that represents the interface
identified by the specified interface ID.

ComPtr::AsWeak Retrieves a weak reference to the current object.

ComPtr::Attach Associates this ComPtr  with the interface type specified by
the current template type parameter.

ComPtr::CopyTo Copies the current or specified interface associated with this 
ComPtr  to the specified output pointer.

ComPtr::Detach Disassociates this ComPtr  from the interface that it
represents.

ComPtr::Get Retrieves a pointer to the interface that is associated with this
ComPtr .

ComPtr::GetAddressOf Retrieves the address of the ptr_ data member, which
contains a pointer to the interface represented by this 
ComPtr .

ComPtr::ReleaseAndGetAddressOf Releases the interface associated with this ComPtr  and then
retrieves the address of the ptr_ data member, which
contains a pointer to the interface that was released.

ComPtr::Reset Releases all references for the pointer to the interface that is
associated with this ComPtr .

ComPtr::Swap Exchanges the interface managed by the current ComPtr

with the interface managed by the specified ComPtr .

Protected MethodsProtected Methods

NAME DESCRIPTION

ComPtr::InternalAddRef Increments the reference count of the interface associated
with this ComPtr .

ComPtr::InternalRelease Performs a COM Release operation on the interface
associated with this ComPtr .

Public OperatorsPublic Operators

NAME DESCRIPTION

ComPtr::operator& Retrieves the address of the current ComPtr .

ComPtr::operator-> Retrieves a pointer to the type specified by the current
template parameter.



 

 

ComPtr::operator= Assigns a value to the current ComPtr .

ComPtr::operator== Indicates whether two ComPtr  objects are equal.

ComPtr::operator!= Indicates whether two ComPtr  objects are not equal.

ComPtr::operator Microsoft::WRL::Details::BoolType Indicates whether or not a ComPtr  is managing the object
lifetime of an interface.

NAME DESCRIPTION

Protected Data MembersProtected Data Members

NAME DESCRIPTION

ComPtr::ptr_ Contains a pointer to the interface that is associated with,
and managed by this ComPtr .

Inheritance Hierarchy

Requirements

ComPtr::~ComPtr

WRL_NOTHROW ~ComPtr();

ComPtr::As

template<typename U>
HRESULT As(
   _Out_ ComPtr<U>* p
) const;

template<typename U>
HRESULT As(
   _Out_ Details::ComPtrRef<ComPtr<U>> p
) const;

ParametersParameters

ComPtr

Header: client.h

Namespace: Microsoft::WRL

Deinitializes an instance of ComPtr .

Returns a ComPtr  object that represents the interface identified by the specified template parameter.

U
The interface to be represented by parameter p.

p



 

 

 

RemarksRemarks

Return ValueReturn Value

ComPtr::AsIID

WRL_NOTHROW HRESULT AsIID(
   REFIID riid,
   _Out_ ComPtr<IUnknown>* p
) const;

ParametersParameters

Return ValueReturn Value

ComPtr::AsWeak

HRESULT AsWeak(
   _Out_ WeakRef* pWeakRef
);

ParametersParameters

Return ValueReturn Value

ComPtr::Attach

void Attach(
   _In_opt_ InterfaceType* other
);

ParametersParameters

A ComPtr  object that represents the interface specified by parameter U. Parameter p must not refer to the
current ComPtr  object.

The first template is the form that you should use in your code. The second template is an internal, helper
specialization that supports C++ language features such as the auto type deduction keyword.

S_OK if successful; otherwise, an HRESULT that indicates the error.

Returns a ComPtr  object that represents the interface identified by the specified interface ID.

riid
An interface ID.

p
If the object has an interface whose ID equals riid, a doubly-indirect pointer to the interface specified by the riid
parameter ; otherwise, a pointer to IUnknown .

S_OK if successful; otherwise, an HRESULT that indicates the error.

Retrieves a weak reference to the current object.

pWeakRef
When this operation completes, a pointer to a weak reference object.

S_OK if successful; otherwise, an HRESULT that indicates the error.

Associates this ComPtr  with the interface type specified by the current template type parameter.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/auto-cpp


 

 

ComPtr::ComPtr

WRL_NOTHROW ComPtr();
WRL_NOTHROW ComPtr(
   decltype(__nullptr)
);
template<class U>
WRL_NOTHROW ComPtr(
   _In_opt_ U *other
);
WRL_NOTHROW ComPtr(
   const ComPtr& other
);
template<class U>
WRL_NOTHROW ComPtr(
   const ComPtr<U> &other,
   typename ENABLE_IF<__is_convertible_to(U*,
   T*),
   void *>;
WRL_NOTHROW ComPtr(
   _Inout_ ComPtr &&other
);
template<class U>
WRL_NOTHROW ComPtr(
   _Inout_ ComPtr<U>&& other,
   typename ENABLE_IF<__is_convertible_to(U*,
   T*),
   void *>;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ComPtr::CopyTo

other
An interface type.

Intializes a new instance of the ComPtr  class. Overloads provide default, copy, move, and conversion
constructors.

U
The type of the other parameter.

other
An object of type U.

The first constructor is the default constructor, which implictly creates an empty object. The second constructor
specifies __nullptr, which explicitly creates an empty object.

The third constructor creates an object from the object specified by a pointer.

The fourth and fifth constructors are copy constructors. The fifth constructor copies an object if it is convertible
to the current type.

The sixth and seventh constructors are move constructors. The seventh constructor moves an object if it is
convertible to the current type.

Copies the current or specified interface associated with this ComPtr  to the specified pointer.



 

 

HRESULT CopyTo(
   _Deref_out_ InterfaceType** ptr
);

HRESULT CopyTo(
   REFIID riid,
   _Deref_out_ void** ptr
) const;

template<typename U>
HRESULT CopyTo(
   _Deref_out_ U** ptr
) const;

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ComPtr::Detach

T* Detach();

Return ValueReturn Value

ComPtr::Get

T* Get() const;

Return ValueReturn Value

U
A type name.

ptr
When this operation completes, a pointer to the requested interface.

riid
An interface ID.

S_OK if successful; otherwise, an HRESULT that indicates why the implicit QueryInterface  operation failed.

The first function returns a copy of a pointer to the interface associated with this ComPtr . This function always
returns S_OK.

The second function performs a QueryInterface  operation on the interface associated with this ComPtr  for the
interface specified by the riid parameter.

The third function performs a QueryInterface  operation on the interface associated with this ComPtr  for the
underlying interface of the U parameter.

Disassociates this ComPtr  object from the interface that it represents.

A pointer to the interface that was represented by this ComPtr  object.

Retrieves a pointer to the interface that is associated with this ComPtr .

Pointer to the interface that is associated with this ComPtr .



  

 

 

 

 

ComPtr::GetAddressOf

T* const* GetAddressOf() const;
T** GetAddressOf();

Return ValueReturn Value

ComPtr::InternalAddRef

void InternalAddRef() const;

RemarksRemarks

ComPtr::InternalRelease

void InternalRelease();

RemarksRemarks

ComPtr::operator&

Details::ComPtrRef<WeakRef> operator&()

const Details::ComPtrRef<const WeakRef> operator&() const

Return ValueReturn Value

RemarksRemarks

ComPtr::operator->

WRL_NOTHROW Microsoft::WRL::Details::RemoveIUnknown<InterfaceType>* operator->() const;

Retrieves the address of the ptr_ data member, which contains a pointer to the interface represented by this 
ComPtr .

The address of a variable.

Increments the reference count of the interface associated with this ComPtr .

This method is protected.

Performs a COM Release operation on the interface associated with this ComPtr .

This method is protected.

Releases the interface associated with this ComPtr  object and then retrieves the address of the ComPtr  object.

A weak reference to the current ComPtr .

This method differs from ComPtr::GetAddressOf in that this method releases a reference to the interface pointer.
Use ComPtr::GetAddressOf  when you require the address of the interface pointer but do not want to release that
interface.

Retrieves a pointer to the type specified by the current template parameter.



 

Return ValueReturn Value

RemarksRemarks

ComPtr::operator=

WRL_NOTHROW ComPtr& operator=(
   decltype(__nullptr)
);
WRL_NOTHROW ComPtr& operator=(
   _In_opt_ T *other
);
template <typename U>
WRL_NOTHROW ComPtr& operator=(
   _In_opt_ U *other
);
WRL_NOTHROW ComPtr& operator=(
   const ComPtr &other
);
template<class U>
WRL_NOTHROW ComPtr& operator=(
   const ComPtr<U>& other
);
WRL_NOTHROW ComPtr& operator=(
   _Inout_ ComPtr &&other
);
template<class U>
WRL_NOTHROW ComPtr& operator=(
   _Inout_ ComPtr<U>&& other
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Pointer to the type specified by the current template type name.

This helper function removes unnecessary overhead caused by using the STDMETHOD macro. This function
makes IUnknown  types private  instead of virtual .

Assigns a value to the current ComPtr .

U
A class.

other
A pointer, reference, or rvalue reference to a type or another ComPtr .

A reference to the current ComPtr .

The first version of this operator assigns an empty value to the current ComPtr .

In the second version, if the assigning interface pointer is not the same as the current ComPtr  interface pointer,
the second interface pointer is assigned to the current ComPtr .

In the third version, the assigning interface pointer is assigned to the current ComPtr .

In the fourth version, if the interface pointer of the assigning value is not the same as the current ComPtr

interface pointer, the second interface pointer is assigned to the current ComPtr .

The fifth version is a copy operator; a reference to a ComPtr  is assigned to the current ComPtr .

The sixth version is a copy operator that uses move semantics; an rvalue reference to a ComPtr  if any type is



 

 

ComPtr::operator==

bool operator==(
   const ComPtr<T>& a,
   const ComPtr<U>& b
);

bool operator==(
   const ComPtr<T>& a,
   decltype(__nullptr)
);

bool operator==(
   decltype(__nullptr),
   const ComPtr<T>& a
);

ParametersParameters

Return ValueReturn Value

ComPtr::operator!=

bool operator!=(
   const ComPtr<T>& a,
   const ComPtr<U>& b
);

bool operator!=(
   const ComPtr<T>& a,
   decltype(__nullptr)
);

bool operator!=(
   decltype(__nullptr),
   const ComPtr<T>& a
);

ParametersParameters

static cast and then assigned to the current ComPtr .

The seventh version is a copy operator that uses move semantics; an rvalue reference to a ComPtr  of type U is
static cast then and assigned to the current ComPtr .

Indicates whether two ComPtr  objects are equal.

a
A reference to a ComPtr  object.

b
A reference to another ComPtr  object.

The first operator yields true  if object a is equal to object b; otherwise, false .

The second and third operators yield true  if object a is equal to nullptr ; otherwise, false .

Indicates whether two ComPtr  objects are not equal.

a
A reference to a ComPtr  object.



   

      

 

 

 

Return ValueReturn Value

ComPtr::operator Microsoft::WRL::Details::BoolType

WRL_NOTHROW operator Microsoft::WRL::Details::BoolType() const;

Return ValueReturn Value

ComPtr::ptr_

InterfaceType *ptr_;

RemarksRemarks

ComPtr::ReleaseAndGetAddressOf

T** ReleaseAndGetAddressOf();

Return ValueReturn Value

ComPtr::Reset

unsigned long Reset();

Return ValueReturn Value

ComPtr::Swap

b
A reference to another ComPtr  object.

The first operator yields true  if object a is not equal to object b; otherwise, false .

The second and third operators yield true  if object a is not equal to nullptr ; otherwise, false .

Indicates whether or not a ComPtr  is managing the object lifetime of an interface.

If an interface is associated with this ComPtr , the address of the BoolStruct::Member data member; otherwise, 
nullptr .

Contains a pointer to the interface that is associated with, and managed by this ComPtr .

ptr_  is an internal, protected data member.

Releases the interface associated with this ComPtr  and then retrieves the address of the ptr_ data member, which
contains a pointer to the interface that was released.

The address of the ptr_ data member of this ComPtr .

Releases all references for the pointer to the interface that is associated with this ComPtr .

The number of references released, if any.

Exchanges the interface managed by the current ComPtr  with the interface managed by the specified ComPtr .



void Swap(
   _Inout_ ComPtr&& r
);

void Swap(
   _Inout_ ComPtr& r
);

ParametersParameters
r
A ComPtr .



CreateActivationFactory Function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename Factory>
   inline HRESULT STDMETHODCALLTYPE CreateActivationFactory(
      _In_ unsigned int *flags,        _In_ const CreatorMap* entry,
      REFIID riid,
   _Outptr_ IUnknown **ppFactory) throw();

ParametersParameters

Return Value

Remarks

Requirements

See Also

Creates a factory that produces instances of the specified class that can be activated by the Windows Runtime.

flags
A combination of one or more RuntimeClassType enumeration values.

entry
Pointer to a CreatorMap that contains initialization and registration information about parameter riid.

riid
Reference to an interface ID.

ppFactory
If this operation completes successfully, a pointer to an activation factory.

S_OK if successful; otherwise, an HRESULT that indicates the error.

An assert error is emitted if template parameter Factory doesn't derive from interface IActivationFactory .

Header: module.h

Namespace: Microsoft::WRL

Microsoft::WRL::Wrappers::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/createactivationfactory-function.md


CreateClassFactory Function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename Factory>
inline HRESULT STDMETHODCALLTYPE CreateClassFactory(
   _In_ unsigned int *flags,
   _In_ const CreatorMap* entry,
   REFIID riid,
   _Outptr_ IUnknown **ppFactory
) throw();

ParametersParameters

Return Value

Remarks

Requirements

See Also

Creates a factory that produces instances of the specified class.

flags
A combination of one or more RuntimeClassType enumeration values.

entry
Pointer to a CreatorMap that contains initialization and registration information about parameter riid.

riid
Reference to an interface ID.

ppFactory
If this operation completes successfully, a pointer to a class factory.

S_OK if successful; otherwise, an HRESULT that indicates the error.

An assert error is emitted if template parameter Factory doesn't derive from interface IClassFactory .

Header: module.h

Namespace: Microsoft::WRL

Microsoft::WRL::Wrappers::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/createclassfactory-function.md


  

DeferrableEventArgs Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename TEventArgsInterface, typename TEventArgsClass>
class DeferrableEventArgs : public TEventArgsInterface;

ParametersParameters

Members
Public MethodsPublic Methods

NAME DESCRIPTION

DeferrableEventArgs::GetDeferral Gets a reference to the Deferral object which represents a
deferred event.

DeferrableEventArgs::InvokeAllFinished Called to indicate that all processing to handle a deferred
event is complete.

Remarks

Requirements

DeferrableEventArgs::GetDeferral

A template class used for the event argument types for deferrals.

TEventArgsInterface
The interface type that declares the arguments for a deferred event.

TEventArgsClass
The class that implements TEventArgsInterface.

Instances of this class are passed to event handlers for deferred events. The template parameters represent an
interface that defines the details of the event arguments for a specific type of deferred event, and a class that
implements that interface.

The class appears as the first argument to an event handler for a deferred event. You can call the GetDeferral
method to get the Deferral object from which you can get all the information about the deferred event. After
completing the event handling, you should call Complete on the Deferral object. You should then call
InvokeAllFinished at the end of the event handler method, which ensures that the completion of all deferred events
is communicated properly.

Header: event.h

Namespace: Microsoft::WRL

Gets a reference to the Deferral object which represents a deferred event.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/deferrableeventargs-class.md
http://go.microsoft.com/fwlink/p/?linkid=526520
http://go.microsoft.com/fwlink/p/?linkid=526520
http://go.microsoft.com/fwlink/p/?linkid=526520


  

HRESULT GetDeferral([out, retval] Windows::Foundation::IDeferral** result)

ParametersParameters

Return ValueReturn Value

DeferrableEventArgs::InvokeAllFinished

void InvokeAllFinished()

RemarksRemarks

result
A pointer that will reference the Deferral object when the call completes.

S_OK if successful; otherwise, an HRESULT that indicates the error.

Called to indicate that all processing to handle a deferred event is complete.

You should call this method after the event source calls InvokeAll. Calling this method prevents further deferrals
from being taken and forces the completion handler to execute if no deferrals were taken.

http://go.microsoft.com/fwlink/p/?linkid=526520


EventSource Class
1/16/2019 • 4 minutes to read • Edit Online

Syntax
template<typename TDelegateInterface>
class EventSource;

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

EventSource::EventSource Initializes a new instance of the EventSource  class.

Public MethodsPublic Methods

NAME DESCRIPTION

EventSource::Add Appends the event handler represented by the specified
delegate interface to the set of event handlers for the current 
EventSource  object.

EventSource::GetSize Retrieves the number of event handlers associated with the
current EventSource  object.

EventSource::InvokeAll Calls each event handler associated with the current 
EventSource  object using the specified argument types and

arguments.

EventSource::Remove Deletes the event handler represented by the specified event
registration token from the set of event handlers associated
with the current EventSource  object.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

EventSource::addRemoveLock_ Synchronizes access to the targets_ array when adding,
removing, or invoking event handlers.

EventSource::targets_ An array of one or more event handlers.

Represents a non-agile event. EventSource  member functions add, remove, and invoke event handlers. For agile
events, use AgileEventSource.

TDelegateInterface
The interface to a delegate that represents an event handler.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/eventsource-class.md


  

 

 

 

EventSource::targetsPointerLock_ Synchronizes access to internal data members even while
event handlers for this EventSource are being added,
removed, or invoked.

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

EventSource::Add

HRESULT Add(
   _In_ TDelegateInterface* delegateInterface,
   _Out_ EventRegistrationToken* token
);

ParametersParameters

Return ValueReturn Value

EventSource::addRemoveLock_

Wrappers::SRWLock addRemoveLock_;

EventSource::EventSource

EventSource();

EventSource::GetSize

EventSource

Header: event.h

Namespace: Microsoft::WRL

Appends the event handler represented by the specified delegate interface to the set of event handlers for the
current EventSource  object.

delegateInterface
The interface to a delegate object, which represents an event handler.

token
When this operation completes, a handle that represents the event. Use this token as the parameter to the
Remove() method to discard the event handler.

S_OK if successful; otherwise, an HRESULT that indicates the error.

Synchronizes access to the targets_ array when adding, removing, or invoking event handlers.

Initializes a new instance of the EventSource  class.

Retrieves the number of event handlers associated with the current EventSource  object.



   

size_t GetSize() const;

Return ValueReturn Value

EventSource::InvokeAll

void InvokeAll();
template <
   typename T0
>
void InvokeAll(
   T0arg0
);
template <
   typename T0,
   typename T1
>
void InvokeAll(
   T0arg0,
   T1arg1
);
template <
   typename T0,
   typename T1,
   typename T2
>
void InvokeAll(
   T0arg0,
   T1arg1,
   T2arg2
);
template <
   typename T0,
   typename T1,
   typename T2,
   typename T3
>
void InvokeAll(
   T0arg0,
   T1arg1,
   T2arg2,
   T3arg3
);
template <
   typename T0,
   typename T1,
   typename T2,
   typename T3,
   typename T4
>
void InvokeAll(
   T0arg0,
   T1arg1,
   T2arg2,
   T3arg3,
   T4arg4
);
template <
   typename T0,
   typename T1,

The number of event handlers in targets_.

Calls each event handler associated with the current EventSource  object using the specified argument types and
arguments.



   typename T2,
   typename T3,
   typename T4,
   typename T5
>
void InvokeAll(
   T0arg0,
   T1arg1,
   T2arg2,
   T3arg3,
   T4arg4,
   T5arg5
);
template <
   typename T0,
   typename T1,
   typename T2,
   typename T3,
   typename T4,
   typename T5,
   typename T6
>
void InvokeAll(
   T0arg0,
   T1arg1,
   T2arg2,
   T3arg3,
   T4arg4,
   T5arg5,
   T6arg6
);
template <
   typename T0,
   typename T1,
   typename T2,
   typename T3,
   typename T4,
   typename T5,
   typename T6,
   typename T7
>
void InvokeAll(
   T0arg0,
   T1arg1,
   T2arg2,
   T3arg3,
   T4arg4,
   T5arg5,
   T6arg6,
   T7arg7
);
template <
   typename T0,
   typename T1,
   typename T2,
   typename T3,
   typename T4,
   typename T5,
   typename T6,
   typename T7,
   typename T8
>
void InvokeAll(
   T0arg0,
   T1arg1,
   T2arg2,
   T3arg3,
   T4arg4,
   T5arg5,



   T5arg5,
   T6arg6,
   T7arg7,
   T8arg8
);
template <
   typename T0,
   typename T1,
   typename T2,
   typename T3,
   typename T4,
   typename T5,
   typename T6,
   typename T7,
   typename T8,
   typename T9
>
void InvokeAll(
   T0arg0,
   T1arg1,
   T2arg2,
   T3arg3,
   T4arg4,
   T5arg5,
   T6arg6,
   T7arg7,
   T8arg8,
   T9arg9
);

ParametersParameters
T0
The type of the zeroth event handler argument.

T1
The type of the first event handler argument.

T2
The type of the second event handler argument.

T3
The type of the third event handler argument.

T4
The type of the fourth event handler argument.

T5
The type of the fifth event handler argument.

T6
The type of the sixth event handler argument.

T7
The type of the seventh event handler argument.

T8
The type of the eigth event handler argument.

T9
The type of the ninth event handler argument.

arg0
The zeroth event handler argument.



  

    

EventSource::Remove

HRESULT Remove(
   EventRegistrationToken token
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

EventSource::targets_

ComPtr<Details::EventTargetArray> targets_;

RemarksRemarks

arg1
The first event handler argument.

arg2
The second event handler argument.

arg3
The third event handler argument.

arg4
The fourth event handler argument.

arg5
The fifth event handler argument.

arg6
The sixth event handler argument.

arg7
The seventh event handler argument.

arg8
The eigth event handler argument.

arg9
The ninth event handler argument.

Deletes the event handler represented by the specified event registration token from the set of event handlers
associated with the current EventSource  object.

token
A handle that represents an event handler. This token was returned when the event handler was registered by the
Add() method.

S_OK if successful; otherwise, an HRESULT that indicates the error.

For more information about the EventRegistrationToken  structure, see the
Windows::Foundation::EventRegistrationToken Structure topic in the Windows Runtime reference
documentation.

An array of one or more event handlers.



 EventSource::targetsPointerLock_

Wrappers::SRWLock targetsPointerLock_;

When the event that is represented by the current EventSource  object occurs, the event handlers are called.

Synchronizes access to internal data members even while event handlers for this EventSource  are being added,
removed, or invoked.



FactoryCacheFlags Enumeration
1/16/2019 • 2 minutes to read • Edit Online

Syntax
enum FactoryCacheFlags;

Remarks

FactoryCacheDefault The caching policy of the Module  object is used.

FactoryCacheEnabled Enables factory caching regardless of the ModuleType

template parameter that is used to create a Module  object.

FactoryCacheDisabled Disables factory caching regardless of the ModuleType

template parameter that is used to create a Module  object.

Requirements

See Also

Determines whether factory objects are cached.

By default, the factory caching policy is specified as the ModuleType template parameter when you create a
Module object. To override this policy, specify a FactoryCacheFlags value when you create a factory object.

Header: implements.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/factorycacheflags-enumeration.md


FtmBase Class
1/16/2019 • 5 minutes to read • Edit Online

Syntax
class FtmBase :
    public Microsoft::WRL::Implements<
        Microsoft::WRL::RuntimeClassFlags<WinRtClassicComMix>,
        Microsoft::WRL::CloakedIid<IMarshal>
    >;

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

FtmBase::FtmBase Initializes a new instance of the FtmBase  class.

Public MethodsPublic Methods

NAME DESCRIPTION

FtmBase::CreateGlobalInterfaceTable Creates a global interface table (GIT).

FtmBase::DisconnectObject Forcibly releases all external connections to an object. The
object's server calls the object's implementation of this
method prior to shutting down.

FtmBase::GetMarshalSizeMax Get the upper bound on the number of bytes needed to
marshal the specified interface pointer on the specified object.

FtmBase::GetUnmarshalClass Gets the CLSID that COM uses to locate the DLL containing
the code for the corresponding proxy. COM loads this DLL to
create an uninitialized instance of the proxy.

FtmBase::MarshalInterface Writes into a stream the data required to initialize a proxy
object in some client process.

FtmBase::ReleaseMarshalData Destroys a marshaled data packet.

FtmBase::UnmarshalInterface Initializes a newly created proxy and returns an interface
pointer to that proxy.

Public Data MembersPublic Data Members

Represents a free-threaded marshaler object.

For more information, see RuntimeClass Class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/ftmbase-class.md


 

 

 

NAME DESCRIPTION

FtmBase::marshaller_ Holds a reference to the free threaded marshaler.

Inheritance Hierarchy

Requirements

FtmBase::CreateGlobalInterfaceTable

static HRESULT CreateGlobalInterfaceTable(
   __out IGlobalInterfaceTable **git
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

FtmBase::DisconnectObject

STDMETHODIMP DisconnectObject(
   __in DWORD dwReserved
) override;

ParametersParameters

Return ValueReturn Value

FtmBase::FtmBase

FtmBase

Header: ftm.h

Namespace: Microsoft::WRL

Creates a global interface table (GIT).

git
When this operation completes, a pointer to a global interface table.

S_OK if successful; otherwise, an HRESULT that indicates the error.

For more information, see the IGlobalInterfaceTable  topic in the COM Interfaces  subtopic of the COM Reference

topic in the MSDN Library.

Forcibly releases all external connections to an object. The object's server calls the object's implementation of this
method prior to shutting down.

dwReserved
Reserved for future use; must be zero.

S_OK if successful; otherwise, an HRESULT that indicates the error.

Initializes a new instance of the FtmBase  class.



 

 

FtmBase();

FtmBase::GetMarshalSizeMax

STDMETHODIMP GetMarshalSizeMax(
   __in REFIID riid,
   __in_opt void *pv,
   __in DWORD dwDestContext,
   __reserved void *pvDestContext,
   __in DWORD mshlflags,
   __out DWORD *pSize
) override;

ParametersParameters

Return ValueReturn Value

FtmBase::GetUnmarshalClass

Get the upper bound on the number of bytes needed to marshal the specified interface pointer on the specified
object.

riid
Reference to the identifier of the interface to be marshaled.

pv
Interface pointer to be marshaled; can be NULL.

dwDestContext
Destination context where the specified interface is to be unmarshaled.

Specify one or more MSHCTX enumeration values.

Currently, unmarshaling can occur either in another apartment of the current process (MSHCTX_INPROC) or in
another process on the same computer as the current process (MSHCTX_LOCAL).

pvDestContext
Reserved for future use; must be NULL.

mshlflags
Flag indicating whether the data to be marshaled is to be transmitted back to the client process — the typical case
— or written to a global table, where it can be retrieved by multiple clients. Specify one or more MSHLFLAGS
enumeration values.

pSize
When this operation completes, pointer to the upper bound on the amount of data to be written to the marshaling
stream.

S_OK if successful; otherwise, E_FAIL or E_NOINTERFACE.

Gets the CLSID that COM uses to locate the DLL containing the code for the corresponding proxy. COM loads
this DLL to create an uninitialized instance of the proxy.



 

STDMETHODIMP GetUnmarshalClass(
   __in REFIID riid,
   __in_opt void *pv,
   __in DWORD dwDestContext,
   __reserved void *pvDestContext,
   __in DWORD mshlflags,
   __out CLSID *pCid
) override;

ParametersParameters

Return ValueReturn Value

FtmBase::MarshalInterface

STDMETHODIMP MarshalInterface(
   __in IStream *pStm,
   __in REFIID riid,
   __in_opt void *pv,
   __in DWORD dwDestContext,
   __reserved void *pvDestContext,
   __in DWORD mshlflags
) override;

ParametersParameters

riid
Reference to the identifier of the interface to be marshaled.

pv
Pointer to the interface to be marshaled; can be NULL if the caller does not have a pointer to the desired interface.

dwDestContext
Destination context where the specified interface is to be unmarshaled.

Specify one or more MSHCTX enumeration values.

Unmarshaling can occur either in another apartment of the current process (MSHCTX_INPROC) or in another
process on the same computer as the current process (MSHCTX_LOCAL).

pvDestContext
Reserved for future use; must be NULL.

mshlflags
When this operation completes, pointer to the CLSID to be used to create a proxy in the client process.

pCid

S_OK if successful; otherwise, S_FALSE.

Writes into a stream the data required to initialize a proxy object in some client process.

pStm
Pointer to the stream to be used during marshaling.

riid
Reference to the identifier of the interface to be marshaled. This interface must be derived from the IUnknown

interface.

pv
Pointer to the interface pointer to be marshaled; can be NULL if the caller does not have a pointer to the desired



 

 

 

Return ValueReturn Value

FtmBase::marshaller_

Microsoft::WRL::ComPtr<IMarshal> marshaller_; ;

FtmBase::ReleaseMarshalData

STDMETHODIMP ReleaseMarshalData(
   __in IStream *pStm
) override;

ParametersParameters

Return ValueReturn Value

FtmBase::UnmarshalInterface

interface.

dwDestContext
Destination context where the specified interface is to be unmarshaled.

Specify one or more MSHCTX enumeration values.

Unmarshaling can occur in another apartment of the current process (MSHCTX_INPROC) or in another process
on the same computer as the current process (MSHCTX_LOCAL).

pvDestContext
Reserved for future use; must be zero.

mshlflags
Specifies whether the data to be marshaled is to be transmitted back to the client process — the typical case — or
written to a global table, where it can be retrieved by multiple clients.

S_OK The interface pointer was marshaled successfully.

E_NOINTERFACE The specified interface is not supported.

STG_E_MEDIUMFULL The stream is full.

E_FAIL The operation failed.

Holds a reference to the free threaded marshaler.

Destroys a marshaled data packet.

pStm
Pointer to a stream that contains the data packet to be destroyed.

S_OK if successful; otherwise, an HRESULT that indicates the error.

Initializes a newly created proxy and returns an interface pointer to that proxy.



STDMETHODIMP UnmarshalInterface(
   __in IStream *pStm,
   __in REFIID riid,
   __deref_out void **ppv
) override;

ParametersParameters

Return ValueReturn Value

pStm
Pointer to the stream from which the interface pointer is to be unmarshaled.

riid
Reference to the identifier of the interface to be unmarshaled.

ppv
When this operation completes, the address of a pointer variable that receives the interface pointer requested in
riid. If this operation is successful, *ppv contains the requested interface pointer of the interface to be
unmarshaled.

S_OK if successful; otherwise, E_NOINTERFACE or E_FAIL.



GetModuleBase function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
inline Details::ModuleBase* GetModuleBase() throw()

Return value

Remarks

Requirements

See also

Retrieves a ModuleBase pointer that allows for incrementing and decrementing the reference count of a
RuntimeClass object.

A pointer to a ModuleBase  object.

This function is used internally to increment and decrement object reference counts.

You can use this function to control reference counts by calling ModuleBase::IncrementObjectCount and
ModuleBase::DecrementObjectCount.

Header: implements.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/getmodulebase-function.md


Implements Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <
    typename I0,
    typename I1 = Details::Nil,
    typename I2 = Details::Nil,
    typename I3 = Details::Nil,
    typename I4 = Details::Nil,
    typename I5 = Details::Nil,
    typename I6 = Details::Nil,
    typename I7 = Details::Nil,
    typename I8 = Details::Nil,
    typename I9 = Details::Nil
>
struct __declspec(novtable) Implements :
    Details::ImplementsHelper<
        RuntimeClassFlags<WinRt>,
        typename Details::InterfaceListHelper<
            I0, I1, I2, I3, I4, I5, I6, I7, I8, I9
        >::TypeT
    >,
    Details::ImplementsBase;

template <
    int flags,
    typename I0,
    typename I1,
    typename I2,
    typename I3,
    typename I4,
    typename I5,
    typename I6,
    typename I7,
    typename I8
>
struct __declspec(novtable) Implements<
        RuntimeClassFlags<flags>,
        I0, I1, I2, I3, I4, I5, I6, I7, I8> :
    Details::ImplementsHelper<
        RuntimeClassFlags<flags>,
        typename Details::InterfaceListHelper<
            I0, I1, I2, I3, I4, I5, I6, I7, I8
        >::TypeT
    >,
    Details::ImplementsBase;

ParametersParameters

Implements QueryInterface  and GetIid  for the specified interfaces.

I0
The zeroth interface ID. (Mandatory)

I1
The first interface ID. (Optional)

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/implements-structure.md


Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

ClassFlags A synonym for RuntimeClassFlags<WinRt> .

Protected MethodsProtected Methods

NAME DESCRIPTION

Implements::CanCastTo Gets a pointer to the specified interface.

Implements::CastToUnknown Gets a pointer to the underlying IUnknown  interface.

Implements::FillArrayWithIid Inserts the interface ID specified by the current zeroth
template parameter into the specified array element.

Protected ConstantsProtected Constants

I2
The second interface ID. (Optional)

I3
The third interface ID. (Optional)

I4
The fourth interface ID. (Optional)

I5
The fifth interface ID. (Optional)

I6
The sixth interface ID. (Optional)

I7
The seventh interface ID. (Optional)

I8
The eigth interface ID. (Optional)

I9
The ninth interface ID. (Optional)

flags
Configuration flags for the class. One or more RuntimeClassType enumerations that are specified in a
RuntimeClassFlags structure.

Derives from the list of specified interfaces and implements helper templates for QueryInterface  and GetIid .

Each I0 through I9 interface parameter must derive from either IUnknown , IInspectable , or the ChainInterfaces
template. The flags parameter determines whether support is generated for IUnknown  or IInspectable .



 

 

NAME DESCRIPTION

Implements::IidCount Holds the number of implemented interface IDs.

Inheritance Hierarchy

Requirements

Implements::CanCastTo

__forceinline HRESULT CanCastTo(
   REFIID riid,
   _Deref_out_ void **ppv
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Implements::CastToUnknown

__forceinline IUnknown* CastToUnknown();

Return ValueReturn Value

I0

ChainInterfaces

I0

ImplementsBase

ImplementsHelper

Implements

Header: implements.h

Namespace: Microsoft::WRL

Gets a pointer to the specified interface.

riid
A reference to an interface ID.

ppv
If successful, a pointer to the interface specified by riid.

S_OK if successful; otherwise, an HRESULT that indicates the error, such as E_NOINTERFACE.

This is an internal helper function that performs a QueryInterface operation.

Gets a pointer to the underlying IUnknown  interface.

This operation always succeeds and returns the IUnknown  pointer.



 

 

RemarksRemarks

Implements::FillArrayWithIid

__forceinline static void FillArrayWithIid(
   unsigned long &index,
   _In_ IID* iids
);

ParametersParameters

RemarksRemarks

Implements::IidCount

static const unsigned long IidCount;

Internal helper function.

Inserts the interface ID specified by the current zeroth template parameter into the specified array element.

index
A zero-based index that indicates the starting array element for this operation. When this operation completes,
index is incremented by 1.

iids
An array of type IID.

Internal helper function.

Holds the number of implemented interface IDs.



InspectableClass Macro
1/24/2019 • 2 minutes to read • Edit Online

Syntax
InspectableClass(
   runtimeClassName,
   trustLevel)

ParametersParameters

Remarks

Requirements

See Also

Sets the runtime class name and trust level.

runtimeClassName
The full textual name of the runtime class.

trustLevel
One of the TrustLevel enumerated values.

The InspectableClass macro can be used only with Windows Runtime types.

Header: implements.h

Namespace: Microsoft::WRL

RuntimeClass Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/inspectableclass-macro.md
https://docs.microsoft.com/windows/desktop/api/inspectable/ne-inspectable-trustlevel


InvokeModeOptions Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
enum InvokeMode
{
   StopOnFirstError = 1,
   FireAll = 2,
};

struct InvokeModeOptions
{
   static const InvokeMode invokeMode = invokeModeValue;
};

Requirements

See Also

Specifies whether to fire all events in the delegate queue, or to stop firing after an error is raised. The allowable
values are specified in the InvokeMode  enum.

Header: event.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace
Microsoft::WRL::AgileEventSource Class

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/invokemodeoptions-structure.md


Make Function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <
   typename T,
   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4,
   typename TArg5,
   typename TArg6,
   typename TArg7,
   typename TArg8,
   typename TArg9
>
ComPtr<T> Make(
   TArg1 &&arg1,
   TArg2 &&arg2,
   TArg3 &&arg3,
   TArg4 &&arg4,
   TArg5 &&arg5,
   TArg6 &&arg6,
   TArg7 &&arg7,
   TArg8 &&arg8,
   TArg9 &&arg9
);
template <
   typename T,
   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4,
   typename TArg5,
   typename TArg6,
   typename TArg7,
   typename TArg8
>
ComPtr<T> Make(
   TArg1 &&arg1,
   TArg2 &&arg2,
   TArg3 &&arg3,
   TArg4 &&arg4,
   TArg5 &&arg5,
   TArg6 &&arg6,
   TArg7 &&arg7,
   TArg8 &&arg8
);
template <
   typename T,
   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4,
   typename TArg5,
   typename TArg6,
   typename TArg7

Initializes the specified Windows Runtime class. Use this function to instantiate a component that is defined in
the same module.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/make-function.md


>
ComPtr<T> Make(
   TArg1 &&arg1,
   TArg2 &&arg2,
   TArg3 &&arg3,
   TArg4 &&arg4,
   TArg5 &&arg5,
   TArg6 &&arg6,
   TArg7 &&arg7
);
template <
   typename T,
   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4,
   typename TArg5,
   typename TArg6
>
ComPtr<T> Make(
   TArg1 &&arg1,
   TArg2 &&arg2,
   TArg3 &&arg3,
   TArg4 &&arg4,
   TArg5 &&arg5,
   TArg6 &&arg6
);
template <
   typename T,
   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4,
   typename TArg5
>
ComPtr<T> Make(
   TArg1 &&arg1,
   TArg2 &&arg2,
   TArg3 &&arg3,
   TArg4 &&arg4,
   TArg5 &&arg5
);
template <
   typename T,
   typename TArg1,
   typename TArg2,
   typename TArg3,
   typename TArg4
>
ComPtr<T> Make(
   TArg1 &&arg1,
   TArg2 &&arg2,
   TArg3 &&arg3,
   TArg4 &&arg4
);
template <
   typename T,
   typename TArg1,
   typename TArg2,
   typename TArg3
>
ComPtr<T> Make(
   TArg1 &&arg1,
   TArg2 &&arg2,
   TArg3 &&arg3
);
template <
   typename T,
   typename TArg1,



   typename TArg1,
   typename TArg2
>
ComPtr<T> Make(
   TArg1 &&arg1,
   TArg2 &&arg2
);
template <
   typename T,
   typename TArg1
>
ComPtr<T> Make(
   TArg1 &&arg1
);
template <
   typename T
>
ComPtr<T> Make();

ParametersParameters
T
A user-specified class that inherits from WRL::RuntimeClass .

TArg1
Type of argument 1 that is passed to the specified runtime class.

TArg2
Type of argument 2 that is passed to the specified runtime class.

TArg3
Type of argument 3 that is passed to the specified runtime class.

TArg4
Type of argument 4 that is passed to the specified runtime class.

TArg5
Type of argument 5 that is passed to the specified runtime class.

TArg6
Type of argument 6 that is passed to the specified runtime class.

TArg7
Type of argument 7 that is passed to the specified runtime class.

TArg8
Type of argument 8 that is passed to the specified runtime class.

TArg9
Type of argument 9 that is passed to the specified runtime class.

arg1
Argument 1 that is passed to the specified runtime class.

arg2
Argument 2 that is passed to the specified runtime class.

arg3
Argument 3 that is passed to the specified runtime class.

arg4
Argument 4 that is passed to the specified runtime class.



Return Value

Remarks

Requirements

See Also

arg5
Argument 5 that is passed to the specified runtime class.

arg6
Argument 6 that is passed to the specified runtime class.

arg7
Argument 7 that is passed to the specified runtime class.

arg8
Argument 8 that is passed to the specified runtime class.

arg9
Argument 9 that is passed to the specified runtime class.

A ComPtr<T>  object if successful; otherwise, nullptr .

See How to: Instantiate WRL Components Directly to learn the differences between this function and
Microsoft::WRL::Details::MakeAndInitialize, and for an example.

Header: implements.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace



MixIn Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<
    typename Derived,
    typename MixInType,
    bool hasImplements = __is_base_of(Details::ImplementsBase, MixInType)
>
struct MixIn;

ParametersParameters

Remarks

Inheritance Hierarchy

Requirements

See Also

Ensures that a runtime class derives from Windows Runtime interfaces, if any, and then classic COM interfaces.

Derived
A type derived from the Implements structure.

MixInType
A base type.

hasImplements
true if MixInType is derived from the current implementation the base type; false otherwise.

If a class is derived from both Windows Runtime and class COM interfaces, the class declaration list must first list
any Windows Runtime interfaces and then any classic COM interfaces. MixIn ensures that the interfaces are
specified in the correct order.

MixIn

Header: implements.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/mixin-structure.md


Module Class
1/16/2019 • 6 minutes to read • Edit Online

Syntax
template<ModuleType moduleType>
class Module;

template<>
class Module<InProc> : public Details::ModuleBase;

template<>
class Module<OutOfProc> : public Module<InProc>;

ParametersParameters

Members
Protected ClassesProtected Classes

NAME DESCRIPTION

Module::GenericReleaseNotifier Invokes an event handler when the last object in the current
module is released. The event handler is specified by on a
lambda, functor, or pointer-to-function.

Module::MethodReleaseNotifier Invokes an event handler when the last object in the current
module is released. The event handler is specified by an
object and its pointer-to-a-method member.

Module::ReleaseNotifier Invokes an event handler when the last object in a module is
released.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

Module::~Module Deinitializes the current instance of the Module  class.

Protected ConstructorsProtected Constructors

NAME DESCRIPTION

Module::Module Initializes a new instance of the Module  class.

Public MethodsPublic Methods

Represents a collection of related objects.

moduleType
A combination of one or more ModuleType enumeration values.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/module-class.md


NAME DESCRIPTION

Module::Create Creates an instance of a module.

Module::DecrementObjectCount Decrements the number of objects tracked by the module.

Module::GetActivationFactory Gets an activation factory for the module.

Module::GetClassObject Retrieves a cache of class factories.

Module::GetModule Creates an instance of a module.

Module::GetObjectCount Retrieves the number of objects managed by this module.

Module::IncrementObjectCount Increments the number of objects tracked by the module.

Module::RegisterCOMObject Registers one or more COM objects so other applications can
connect to them.

Module::RegisterObjects Registers COM or Windows Runtime objects so other
applications can connect to them.

Module::RegisterWinRTObject Registers one or more Windows Runtime objects so other
applications can connect to them.

Module::Terminate Causes all factories instantiated by the module to shut down.

Module::UnregisterCOMObject Unregisters one or more COM objects, which prevents other
applications from connecting to them.

Module::UnregisterObjects Unregisters the objects in the specified module so that other
applications cannot connect to them.

Module::UnregisterWinRTObject Unregisters one or more Windows Runtime objects so that
other applications cannot connect to them.

Protected MethodsProtected Methods

NAME DESCRIPTION

Module::Create Creates an instance of a module.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

Module::objectCount_ Keeps track of how many classes have been created with the
Make function.

Module::releaseNotifier_ Holds a pointer to a ReleaseNotifier  object.

MacrosMacros
Name | Description -------------------------------------------------- ------------------- | -----------------------------------
----------------------------------------------------------------------------------------------------------------------------------



 

   

Inheritance Hierarchy

Requirements

Module::~Module

virtual ~Module();

Module::Create

WRL_NOTHROW static Module& Create();
template<typename T>
WRL_NOTHROW static Module& Create(
   T callback
);
template<typename T>
WRL_NOTHROW static Module& Create(
   _In_ T* object,
   _In_ void (T::* method)()
);

ParametersParameters

---------------- ActivatableClass | Populates an internal cache that contains a factory that can create an instance of
the specified class. This macro specifies default factory and group ID parameters. ActivatableClassWithFactory |
Populates an internal cache that contains a factory that can create an instance of the specified class. This macro
enables you to specify a particular factory parameter. ActivatableClassWithFactoryEx | Populates an internal
cache that contains a factory that can create an instance of the specified class. This macro enables you to specify
particular factory and group ID parameters.

ModuleBase

Module

Module

Header: module.h

Namespace: Microsoft::WRL

Deinitializes the current instance of the Module  class.

Creates an instance of a module.

T
Module type.

callback
Called when the last instance object of the module is released.

object
The object and method parameters are used in combination. Points to the last instance object when the last
instance object in the module is released.

method
The object and method parameters are used in combination. Points to the method of the last instance object
when the last instance object in the module is released.



 

 

 

Return ValueReturn Value

Module::DecrementObjectCount

virtual long DecrementObjectCount();

Return ValueReturn Value

Module::GetActivationFactory

WRL_NOTHROW HRESULT GetActivationFactory(
   _In_ HSTRING pActivatibleClassId,
   _Deref_out_ IActivationFactory **ppIFactory,
   wchar_t* serverName = nullptr
);

ParametersParameters

Return ValueReturn Value

Module::GetClassObject

HRESULT GetClassObject(
   REFCLSID clsid,
   REFIID riid,
   _Deref_out_ void **ppv,
   wchar_t* serverName = nullptr
);

ParametersParameters

Reference to the module.

Decrements the number of objects tracked by the module.

The count before the decrement operation.

Gets an activation factory for the module.

pActivatibleClassId
IID of a runtime class.

ppIFactory
The IActivationFactory for the specified runtime class.

serverName
The name of a subset of class factories in the current module. Specify the server name used in the
ActivatableClassWithFactoryEx macro, or specify nullptr  to get the default server name.

S_OK if successful; otherwise, the HRESULT returned by GetActivationFactory.

Retreives a cache of class factories.

clsid
Class ID.

riid
Interface ID that you request.



  

 

 

 

 

Return ValueReturn Value

RemarksRemarks

Module::GetModule

static Module& GetModule();
WRL_NOTHROW static Module& GetModule();

Return ValueReturn Value

Module::GetObjectCount

virtual long GetObjectCount() const;

Return ValueReturn Value

Module::IncrementObjectCount

virtual long IncrementObjectCount();

Return ValueReturn Value

Module::Module

Module();

RemarksRemarks

Module::objectCount_

ppv
Pointer to returned object.

serverName
The server name that is specified in either the ActivatableClassWithFactory , ActivatableClassWithFactoryEx , or 
ActivatableClass  macro; or nullptr  to get the default server name.

Use this method only for COM, not the Windows Runtime. This method exposes only IClassFactory  methods.

Creates an instance of a module.

A reference to a module.

Retrieves the number of objects managed by this module.

The current number of objects managed by this module.

Increments the number of objects tracked by the module.

The count before the increment operation.

Initializes a new instance of the Module  class.

This constructor is protected and cannot be called with the new  keyword. Instead, call either Module::GetModule
or Module::Create.



  

 

volatile long objectCount_;

Module::RegisterCOMObject

WRL_NOTHROW virtual HRESULT RegisterCOMObject(
   const wchar_t* serverName,
   IID* clsids,
   IClassFactory** factories,
   DWORD* cookies,
   unsigned int count);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Module::RegisterObjects

HRESULT RegisterObjects(
   ModuleBase* module,
   const wchar_t* serverName);

ParametersParameters

Keeps track of how many classes have been created with the Make function.

Registers one or more COM objects so other applications can connect to them.

serverName
Fully-qualified name of a server.

clsids
An array of CLSIDs to register.

factories
An array of IUnknown interfaces of the class objects whose availability is being published.

cookies
When the operation completes, an array of pointers to values that identify the class objects that were registered.
These values are later used revoke the registration.

count
The number of CLSIDs to register.

S_OK if successfu; otherwise, an HRESULT such as CO_E_OBJISREG that indicates the reason the operation
failed.

The COM objects are registered with the CLSCTX_LOCAL_SERVER enumerator of the CLSCTX enumeration.

The type of connection to the registered objects is specified by a combination of the current comflag template
parameter and the REGCLS_SUSPENDED enumerator of the REGCLS enumeration.

Registers COM or Windows Runtime objects so other applications can connect to them.

module
An array of COM or Windows Runtime objects.

serverName



 

 

 

 

Return ValueReturn Value

Module::RegisterWinRTObject

HRESULT RegisterWinRTObject(const wchar_t* serverName,
   wchar_t** activatableClassIds,
   WINRT_REGISTRATION_COOKIE* cookie,
   unsigned int count)

ParametersParameters

Return ValueReturn Value

Module::releaseNotifier_

ReleaseNotifier *releaseNotifier_;

Module::Terminate

void Terminate();

RemarksRemarks

Module::UnregisterCOMObject

Name of the server that created the objects.

S_OK if successful; otherwise, an HRESULT that indicates the reason the operation failed.

Registers one or more Windows Runtime objects so other applications can connect to them.

serverName
A name that specifies a subset of objects affected by this operation.

activatableClassIds
An array of activatable CLSIDs to register.

cookie
A value that identifies the class objects that were registered. This value is used later to revoke the registration.

count
The number of objects to register.

S_OK if successful; otherwise, an error HRESULT such as CO_E_OBJISREG that indicates the reason the
operation failed.

Holds a pointer to a ReleaseNotifier  object.

Causes all factories instantiated by the module to shut down.

Releases the factories in the cache.

Unregisters one or more COM objects, which prevents other applications from connecting to them.



 

 

virtual HRESULT UnregisterCOMObject(
   const wchar_t* serverName,
   DWORD* cookies,
   unsigned int count

ParametersParameters

Return ValueReturn Value

Module::UnregisterObjects

HRESULT UnregisterObjects(
   ModuleBase* module,
   const wchar_t* serverName);

ParametersParameters

Return ValueReturn Value

Module::UnregisterWinRTObject

virtual HRESULT UnregisterWinRTObject(
   unsigned int,
   _Inout_ WINRT_REGISTRATION_COOKIE* cookie
);

ParametersParameters

serverName
(Unused)

cookies
An array of pointers to values that identify the class objects to be unregistered. The array was created by the
RegisterCOMObject method.

count
The number of classes to unregister.

S_OK if this operation is successful; otherwise, an error HRESULT that indicates the reason the operation failed.

Unregisters the objects in the specified module so that other applications cannot connect to them.

module
Pointer to a module.

serverName
A qualifying name that specifies a subset of objects affected by this operation.

S_OK if this operation is successful; otherwise, an error HRESULT that indicates the reason this operation failed.

Unregisters one or more Windows Runtime objects so that other applications cannot connect to them.

cookie
A pointer to a value that identifies the class object whose registration is to be revoked.



Module::GenericReleaseNotifier Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
class GenericReleaseNotifier : public ReleaseNotifier;

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

Module::GenericReleaseNotifier::GenericReleaseNotifier Initializes a new instance of the 
Module::GenericReleaseNotifier  class.

Public MethodsPublic Methods

NAME DESCRIPTION

Module::GenericReleaseNotifier::Invoke Calls the event handler associated with the current 
Module::GenericReleaseNotifier  object.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

Module::GenericReleaseNotifier::callback_ Holds the lambda, functor, or pointer-to-function event
handler associated with the current 
Module::GenericReleaseNotifier  object.

Inheritance Hierarchy

Requirements

Invokes an event handler when the last object in the current module is released. The event handler is specified by
on a lambda, functor, or pointer-to-function.

T
The type of the data member that contains the location of the event handler.

ReleaseNotifier

GenericReleaseNotifier

Header: module.h

Namespace: Microsoft::WRL

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/module-genericreleasenotifier-class.md


 

 

 

Module::GenericReleaseNotifier::callback_

T callback_;

Module::GenericReleaseNotifier::GenericReleaseNotifier

GenericReleaseNotifier(
   T callback,
   bool release
) throw() : ReleaseNotifier(release), callback_(callback);

ParametersParameters

Module::GenericReleaseNotifier::Invoke

void Invoke();

Holds the lambda, functor, or pointer-to-function event handler associated with the current 
Module::GenericReleaseNotifier  object.

Initializes a new instance of the Module::GenericReleaseNotifier  class.

callback
A lambda, functor, or pointer-to-function event handler that can be invoked with the parentheses function operator
( () ).

release
Specify true  to enable calling the underlying Module::ReleaseNotifier::Release() method; otherwise, specify 
false .

Calls the event handler associated with the current Module::GenericReleaseNotifier  object.



Module::MethodReleaseNotifier Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
class MethodReleaseNotifier : public ReleaseNotifier;

ParametersParameters

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

Module::MethodReleaseNotifier::MethodReleaseNotifier Initializes a new instance of the 
Module::MethodReleaseNotifier  class.

Public MethodsPublic Methods

NAME DESCRIPTION

Module::MethodReleaseNotifier::Invoke Calls the event handler associated with the current 
Module::MethodReleaseNotifier  object.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

Module::MethodReleaseNotifier::method_ Holds a pointer to the event handler for the current 
Module::MethodReleaseNotifier  object.

Module::MethodReleaseNotifier::object_ Holds a pointer to the object whose member function is the
event handler for the current 
Module::MethodReleaseNotifier  object.

Inheritance Hierarchy

Requirements

Invokes an event handler when the last object in the current module is released. The event handler is specified by
an object and its pointer-to-a-method member.

T
The type of the object whose member function is the event handler.

ReleaseNotifier

MethodReleaseNotifier

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/module-methodreleasenotifier-class.md


 

 

 

 

Module::MethodReleaseNotifier::Invoke

void Invoke();

Module::MethodReleaseNotifier::method_

void (T::* method_)();

Module::MethodReleaseNotifier::MethodReleaseNotifier

MethodReleaseNotifier(
   _In_ T* object,
   _In_ void (T::* method)(),
   bool release) throw() :
            ReleaseNotifier(release), object_(object),
            method_(method);

ParametersParameters

Module::MethodReleaseNotifier::object_

T* object_;

Header: module.h

Namespace: Microsoft::WRL

Calls the event handler associated with the current Module::MethodReleaseNotifier  object.

Holds a pointer to the event handler for the current Module::MethodReleaseNotifier  object.

Initializes a new instance of the Module::MethodReleaseNotifier  class.

object
An object whose member function is an event handler.

method
The member function of parameter object that is the event handler.

release
Specify true  to enable calling the underlying Module::ReleaseNotifier::Release() method; otherwise, specify 
false .

Holds a pointer to the object whose member function is the event handler for the current 
Module::MethodReleaseNotifier  object.



 

 

Module::ReleaseNotifier Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
class ReleaseNotifier;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

Module::ReleaseNotifier::~ReleaseNotifier Deinitializes the current instance of the 
Module::ReleaseNotifier  class.

Module::ReleaseNotifier::ReleaseNotifier Initializes a new instance of the Module::ReleaseNotifier

class.

Public MethodsPublic Methods

NAME DESCRIPTION

Module::ReleaseNotifier::Invoke When implemented, calls an event handler when the last
object in a module is released.

Module::ReleaseNotifier::Release Deletes the current Module::ReleaseNotifier  object if the
object was constructed with a parameter of true.

Inheritance Hierarchy

Requirements

Module::ReleaseNotifier::~ReleaseNotifier

WRL_NOTHROW virtual ~ReleaseNotifier();

Module::ReleaseNotifier::Invoke

Invokes an event handler when the last object in a module is released.

ReleaseNotifier

Header: module.h

Namespace: Microsoft::WRL

Deinitializes the current instance of the Module::ReleaseNotifier  class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/module-releasenotifier-class.md


     

 

virtual void Invoke() = 0;

Module::ReleaseNotifier::Release

void Release() throw();

Module::ReleaseNotifier::ReleaseNotifier

ReleaseNotifier(bool release) throw();

ParametersParameters

When implemented, calls an event handler when the last object in a module is released.

Deletes the current Module::ReleaseNotifier  object if the object was constructed with a parameter of true.

Initializes a new instance of the Module::ReleaseNotifier  class.

release
true  to delete this instance when the Release  method is called; false  to not delete this instance.



ModuleType Enumeration
1/16/2019 • 2 minutes to read • Edit Online

Syntax
enum ModuleType;

Members
ValuesValues

NAME DESCRIPTION

InProc An in-process server.

OutOfProc An out-of-process server.

DisableCaching Disable caching mechanism on Module.

InProcDisableCaching Combination of InProc  and DisableCaching .

OutOfProcDisableCaching Combination of OutOfProc  and DisableCaching .

Requirements

See Also

Specifies whether a module should support an in-process server or an out-of-process server.

Header: module.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/moduletype-enumeration.md


operator!= Operator (Microsoft::WRL)
1/16/2019 • 2 minutes to read • Edit Online

Syntax
WRL_NOTHROW bool operator!=(
   const ComPtr<T>& a,
   const ComPtr<U>& b
);
WRL_NOTHROW bool operator!=(
   const ComPtr<T>& a,
   decltype(__nullptr)
);
WRL_NOTHROW bool operator!=(
   decltype(__nullptr),
   const ComPtr<T>& a
);
WRL_NOTHROW bool operator!=(
   const Details::ComPtrRef<ComPtr<T>>& a,
   const Details::ComPtrRef<ComPtr<U>>& b
);
WRL_NOTHROW bool operator!=(
   const Details::ComPtrRef<ComPtr<T>>& a,
   decltype(__nullptr)
);
WRL_NOTHROW bool operator!=(
   decltype(__nullptr),
   const Details::ComPtrRef<ComPtr<T>>& a
);
WRL_NOTHROW bool operator!=(
   const Details::ComPtrRef<ComPtr<T>>& a,
   void* b
);
WRL_NOTHROW bool operator!=(
   void* b,
   const Details::ComPtrRef<ComPtr<T>>& a
);

ParametersParameters

Return Value

Requirements

Inequality operator for ComPtr and ComPtrRef objects.

a
The left object.

b
The right object.

true if the objects are not equal; otherwise, false.

Header: client.h

Namespace: Microsoft::WRL

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/operator-inequality-operator-microsoft-wrl.md


See Also
Microsoft::WRL Namespace



operator== Operator (Microsoft::WRL)
1/16/2019 • 2 minutes to read • Edit Online

Syntax
WRL_NOTHROW bool operator==(
   const ComPtr<T>& a,
   const ComPtr<U>& b
);
WRL_NOTHROW bool operator==(
   const ComPtr<T>& a,
   decltype(__nullptr)
);
WRL_NOTHROW bool operator==(
   decltype(__nullptr),
   const ComPtr<T>& a
);
WRL_NOTHROW bool operator==(
   const Details::ComPtrRef<ComPtr<T>>& a,
   const Details::ComPtrRef<ComPtr<U>>& b
);
WRL_NOTHROW bool operator==(
   const Details::ComPtrRef<ComPtr<T>>& a,
   decltype(__nullptr)
);
WRL_NOTHROW bool operator==(
   decltype(__nullptr),
   const Details::ComPtrRef<ComPtr<T>>& a
);
WRL_NOTHROW bool operator==(
   const Details::ComPtrRef<ComPtr<T>>& a,
   void* b
);
WRL_NOTHROW bool operator==(
   void* b,
   const Details::ComPtrRef<ComPtr<T>>& a
);

ParametersParameters

Return Value

Requirements

Equality operator for ComPtr and ComPtrRef objects.

a
The left object.

b
The right object.

true if the objects are equal; otherwise, false.

Header: client.h

Namespace: Microsoft::WRL

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/operator-equality-operator-microsoft-wrl.md


See Also
Microsoft::WRL Namespace



operator< Operator (Microsoft::WRL)
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<class T, class U>
bool operator<(const ComPtr<T>& a, const ComPtr<U>& b) throw();
template<class T, class U>
bool operator<(const Details::ComPtrRef<ComPtr<T>>& a, const Details::ComPtrRef<ComPtr<U>>& b) throw();

ParametersParameters

Return Value

Requirements

See Also

Determines if the address of one object is less than another.

a
The left object.

b
The right object.

true if the address of a is less than the address of b; otherwise, false.

Header: client.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/operator-less-than-operator-microsoft-wrl.md


RuntimeClass Class
1/16/2019 • 3 minutes to read • Edit Online

Syntax
template <typename ...TInterfaces> class RuntimeClass
template <unsigned int classFlags, typename ...TInterfaces> class RuntimeClass;

ParametersParameters

Members

Public ConstructorsPublic Constructors

NAME DESCRIPTION

RuntimeClass::RuntimeClass Initializes the current instance of the RuntimeClass  class.

RuntimeClass::~RuntimeClass Deinitializes the current instance of the RuntimeClass  class.

Public MethodsPublic Methods

Represents a WinRT or COM class that inherits the specified interfaces and provides the specified Windows
Runtime, classic COM, and weak reference support.

This class provides the boilerplate implementation of WinRT and COM classes, providing the implementation of
QueryInterface , AddRef , Release  etc., manages the reference count of the module and has support for

providing the class factory for activatable objects.

classFlags
Optional parameter. A combination of one or more RuntimeClassType enumeration values. The 
__WRL_CONFIGURATION_LEGACY__  macro can be defined to change the default value of classFlags for all runtime

classes in the project. If defined, RuntimeClass instances are non-agile by default. When not defined,
RuntimeClass instances are agile by default. To avoid ambiguity always specify the Microsoft::WRL::FtmBase  in 
TInterfaces  or RuntimeClassType::InhibitFtmBase . Note, if InhibitFtmBase and FtmBase are both used the

object will be agile.

TInterfaces
The list of interfaces the object implements beyond IUnknown , IInspectable  or other interfaces controlled by
RuntimeClassType. It also may list other classes to be derived from, notably Microsoft::WRL::FtmBase  to make
the object agile and cause it to implement IMarshal .

RuntimeClassInitialize

A function which initializes the object if the MakeAndInitialize  template function is used to construct the object.
It returns S_OK if the object was successfully initialized, or a COM error code if initialization failed. The COM
error code is propagated as the return value of MakeAndInitialize . Note that the RuntimeClassInitialize

method is not called if the Make  template function is used to construct the object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/runtimeclass-class.md


 

 

NAME DESCRIPTION

RuntimeClass::AddRef Increments the reference count for the current 
RuntimeClass  object.

RuntimeClass::DecrementReference Decrements the reference count for the current 
RuntimeClass  object.

RuntimeClass::GetIids Gets an array that can contain the interface IDs
implemented by the current RuntimeClass  object.

RuntimeClass::GetRuntimeClassName Gets the runtime class name of the current RuntimeClass

object.

RuntimeClass::GetTrustLevel Gets the trust level of the current RuntimeClass  object.

RuntimeClass::GetWeakReference Gets a pointer to the weak reference object for the current 
RuntimeClass  object.

RuntimeClass::InternalAddRef Increments the reference count to the current 
RuntimeClass  object.

RuntimeClass::QueryInterface Retrieves a pointer to the specified interface ID.

RuntimeClass::Release Performs a COM Release operation on the current 
RuntimeClass  object.

Inheritance Hierarchy

Requirements

RuntimeClass::~RuntimeClass

virtual ~RuntimeClass();

RuntimeClass::AddRef

STDMETHOD_(
   ULONG,
   AddRef
)();

Return ValueReturn Value

This is an implementation detail.

Header: implements.h

Namespace: Microsoft::WRL

Deinitializes the current instance of the RuntimeClass  class.

Increments the reference count for the current RuntimeClass  object.



 

 

 

 

RuntimeClass::DecrementReference

ULONG DecrementReference();

Return ValueReturn Value

RuntimeClass::GetIids

STDMETHOD(
   GetIids
)
   (_Out_ ULONG *iidCount,
   _Deref_out_ _Deref_post_cap_(*iidCount) IID **iids);

ParametersParameters

Return ValueReturn Value

RuntimeClass::GetRuntimeClassName

STDMETHOD( GetRuntimeClassName )(
    _Out_ HSTRING* runtimeName
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RuntimeClass::GetTrustLevel

S_OK if successful; otherwise, an HRESULT that indicates the error.

Decrements the reference count for the current RuntimeClass  object.

S_OK if successful; otherwise, an HRESULT that indicates the error.

Gets an array that can contain the interface IDs implemented by the current RuntimeClass  object.

iidCount
When this operation completes, the total number of elements in array iids.

iids
When this operation completes, a pointer to an array of interface IDs.

S_OK if successful; otherwise, E_OUTOFMEMORY.

Gets the runtime class name of the current RuntimeClass  object.

runtimeName
When this operation completes, the runtime class name.

S_OK if successful; otherwise, an HRESULT that indicates the error.

An assert error is emitted if __WRL_STRICT__  or __WRL_FORCE_INSPECTABLE_CLASS_MACRO__  isn't defined.

Gets the trust level of the current RuntimeClass  object.



 

 

 

STDMETHOD(GetTrustLevel)(
    _Out_ TrustLevel* trustLvl
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RuntimeClass::GetWeakReference

STDMETHOD(
   GetWeakReference
)(_Deref_out_ IWeakReference **weakReference);

ParametersParameters

Return ValueReturn Value

RuntimeClass::InternalAddRef

ULONG InternalAddRef();

Return ValueReturn Value

RuntimeClass::QueryInterface

STDMETHOD(
   QueryInterface
)
   (REFIID riid,
   _Deref_out_ void **ppvObject);

ParametersParameters

trustLvl
When this operation completes, the trust level of the current RuntimeClass  object.

Always S_OK.

An assert error is emitted if __WRL_STRICT__  or __WRL_FORCE_INSPECTABLE_CLASS_MACRO__  isn't defined.

Gets a pointer to the weak reference object for the current RuntimeClass  object.

weakReference
When this operation completes, a pointer to a weak reference object.

Always S_OK.

Increments the reference count to the current RuntimeClass  object.

The resulting reference count.

Retrieves a pointer to the specified interface ID.

riid
An interface ID.



 

 

Return ValueReturn Value

RuntimeClass::Release

STDMETHOD_(
   ULONG,
   Release
)();

Return ValueReturn Value

RemarksRemarks

RuntimeClass::RuntimeClass

RuntimeClass();

ppvObject
When this opereation completes, a pointer to the interface specified by the riid parameter.

S_OK if successful; otherwise, an HRESULT that indicates the error.

Performs a COM Release operation on the current RuntimeClass  object.

S_OK if successful; otherwise, an HRESULT that indicates the error.

If the reference count becomes zero, the RuntimeClass  object is deleted.

Initializes the current instance of the RuntimeClass  class.



 

RuntimeClassFlags Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <unsigned int flags>
struct RuntimeClassFlags;

ParametersParameters

Members
Public ConstantsPublic Constants

NAME DESCRIPTION

RuntimeClassFlags::value Constant Contains a RuntimeClassType Enumeration value.

Inheritance Hierarchy

Requirements

RuntimeClassFlags::value Constant

static const unsigned int value = flags;

Contains the type for an instance of a RuntimeClass.

flags
A RuntimeClassType Enumeration value.

RuntimeClassFlags

Header: implements.h

Namespace: Microsoft::WRL

A field that contains a RuntimeClassType Enumeration value.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/runtimeclassflags-structure.md


RuntimeClassType Enumeration
1/16/2019 • 2 minutes to read • Edit Online

Syntax
enum RuntimeClassType;

Members
ValuesValues

NAME DESCRIPTION

ClassicCom A classic COM runtime class.

Delegate Equivalent to ClassicCom .

InhibitFtmBase Disables FtmBase  support while 
__WRL_CONFIGURATION_LEGACY__  is not defined.

InhibitWeakReference Disables weak reference support.

WinRt A Windows Runtime class.

WinRtClassicComMix A combination of WinRt  and ClassicCom .

Requirements

See Also

Specifies the type of RuntimeClass instance that is supported.

Header: implements.h

Namespace: Microsoft::WRL

Microsoft::WRL Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/runtimeclasstype-enumeration.md


SimpleActivationFactory Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename Base>
class SimpleActivationFactory : public ActivationFactory<>;

ParametersParameters

Remarks

Members
Public MethodsPublic Methods

NAME DESCRIPTION

SimpleActivationFactory::ActivateInstance Method Creates an instance of the specified interface.

SimpleActivationFactory::GetRuntimeClassName Method Gets the runtime class name of an instance of the class
specified by the Base class template parameter.

SimpleActivationFactory::GetTrustLevel Method Gets the trust level of an instance of the class specified by the
Base class template parameter.

Inheritance Hierarchy

Provides a fundamental mechanism to create a Windows Runtime or classic COM base class.

Base
A base class.

The base class must provide a default constructor.

The following code example demonstrates how to use SimpleActivationFactory with the
ActivatableClassWithFactoryEx macro.

ActivatableClassWithFactoryEx(MyClass, SimpleActivationFactory, MyServerName);

I0

ChainInterfaces

I0

RuntimeClassBase

ImplementsHelper

DontUseNewUseMake

RuntimeClassFlags

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/simpleactivationfactory-class.md


 

 

Requirements

SimpleActivationFactory::ActivateInstance Method

STDMETHOD( ActivateInstance )(
    _Deref_out_ IInspectable **ppvObject
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

SimpleActivationFactory::GetRuntimeClassName Method

STDMETHOD( GetRuntimeClassName )(
    _Out_ HSTRING* runtimeName
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RuntimeClassBaseT

RuntimeClass

ActivationFactory

SimpleActivationFactory

Header: module.h

Namespace: Microsoft::WRL

Creates an instance of the specified interface.

ppvObject
When this operation completes, pointer to an instance of the object specified by the Base  class template
parameter.

S_OK if successful; otherwise, an HRESULT that indicates the error.

If __WRL_STRICT__  is defined, an assert error is emitted if the base class specified in the class template parameter
isn't derived from RuntimeClass, or isn't configured with the WinRt or WinRtClassicComMix RuntimeClassType
enumeration value.

Gets the runtime class name of an instance of the class specified by the Base  class template parameter.

runtimeName
When this operation completes, the runtime class name.

S_OK if successful; otherwise, an HRESULT that indicates the error.

If __WRL_STRICT__  is defined, an assert error is emitted if the class specified by the Base  class template parameter
isn't derived from RuntimeClass, or isn't configured with the WinRt or WinRtClassicComMix RuntimeClassType
enumeration value.



 SimpleActivationFactory::GetTrustLevel Method

STDMETHOD(
   GetTrustLevel
)(_Out_ TrustLevel* trustLvl);

ParametersParameters

Return ValueReturn Value

Gets the trust level of an instance of the class specified by the Base  class template parameter.

trustLvl
When this operation completes, the trust level of the current class object.

Always S_OK.



SimpleClassFactory Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename Base>
class SimpleClassFactory : public ClassFactory<>;

ParametersParameters

Remarks

Members
Public MethodsPublic Methods

NAME DESCRIPTION

SimpleClassFactory::CreateInstance Method Creates an instance of the specified interface.

Inheritance Hierarchy

Provides a fundamental mechanism to create a base class.

Base
A base class.

The base class must provide a default constructor.

The following code example demonstrates how to use SimpleClassFactory  with the
ActivatableClassWithFactoryEx macro.

ActivatableClassWithFactoryEx(MyClass, SimpleClassFactory, MyServerName);

I0

ChainInterfaces

I0

RuntimeClassBase

ImplementsHelper

DontUseNewUseMake

RuntimeClassFlags

RuntimeClassBaseT

RuntimeClass

ClassFactory

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/simpleclassfactory-class.md


 

Requirements

SimpleClassFactory::CreateInstance Method

STDMETHOD( CreateInstance )(
   _Inout_opt_ IUnknown* pUnkOuter,
   REFIID riid,
   _Deref_out_ void** ppvObject
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

SimpleClassFactory

Header: module.h

Namespace: Microsoft::WRL

Creates an instance of the specified interface.

pUnkOuter
Must be nullptr ; otherwise, the return value is CLASS_E_NOAGGREGATION.

SimpleClassFactory doesn't support aggregation. If aggregation were supported and the object being created was
part of an aggregate, pUnkOuter would be a pointer to the controlling IUnknown  interface of the aggregate.

riid
Interface ID of the object to create.

ppvObject
When this operation completes, pointer to an instance of the object specified by the riid parameter.

S_OK if successful; otherwise, an HRESULT that indicates the error.

If __WRL_STRICT__  is defined, an assert error is emitted if the base class specified in the class template parameter
isn't derived from RuntimeClass, or isn't configured with the ClassicCom or WinRtClassicComMix
RuntimeClassType enumeration value.



WeakRef Class
1/16/2019 • 5 minutes to read • Edit Online

Syntax
class WeakRef : public ComPtr<IWeakReference>;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

WeakRef::WeakRef Constructor Initializes a new instance of the WeakRef  class.

WeakRef::~WeakRef Destructor Deinitializes the current instance of the WeakRef  class.

Public MethodsPublic Methods

NAME DESCRIPTION

WeakRef::As Method Sets the specified ComPtr  pointer parameter to represent
the specified interface.

WeakRef::AsIID Method Sets the specified ComPtr  pointer parameter to represent
the specified interface ID.

WeakRef::CopyTo Method Assigns a pointer to an interface, if available, to the specified
pointer variable.

Public OperatorsPublic Operators

NAME DESCRIPTION

WeakRef::operator& Operator Returns a ComPtrRef  object that represents the current 
WeakRef  object.

Remarks

Represents a weak reference that can be used by only the Windows Runtime, not classic COM. A weak reference
represents an object that might or might not be accessible.

A WeakRef  object maintains a strong reference, which is associated with an object, and can be valid or invalid. Call
the As()  or AsIID()  method to obtain a strong reference. When the strong reference is valid, it can access the
associated object. When the strong reference is invalid ( nullptr ), the associated object is inaccessible.

A WeakRef  object is typically used to represent an object whose existence is controlled by an external thread or
application. For example, construct a WeakRef  object from a reference to a file object. While the file is open, the
strong reference is valid. But if the file is closed, the strong reference becomes invalid.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/weakref-class.md


 

  

WeakRef wr;
strongComptrRef.AsWeak(&wr);

// Now suppose that the object strongComPtrRef points to no longer exists
// and the following code tries to get a strong ref from the weak ref:
ComPtr<ISomeInterface> strongRef;
HRESULT hr = wr.As(&strongRef);

// This check won't work with the Windows 10 SDK version of the library.
// Check the input pointer instead.
if(wr == nullptr)
{
    wprintf(L"Couldn’t get strong ref!");
}

if (strongRef == nullptr)
{
    wprintf(L"Couldn't get strong ref!");
}

Inheritance Hierarchy

Requirements

WeakRef::~WeakRef Destructor

~WeakRef();

WeakRef::As Method

Note that there is a behavior change in the As, AsIID and CopyTo methods in the Windows 10 SDK. Previously,
after calling any of these methods, you could check the WeakRef  for nullptr  to determine if a strong reference
was successfully obtained, as in the following code:

The above code does not work when using the Windows 10 SDK (or later). Instead, check the pointer that was
passed in for nullptr .

ComPtr

WeakRef

Header: client.h

Namespace: Microsoft::WRL

Deinitializes the current instance of the WeakRef  class.

Sets the specified ComPtr  pointer parameter to represent the specified interface.



  

template<typename U>
HRESULT As(
   _Out_ ComPtr<U>* ptr
);

template<typename U>
HRESULT As(
   _Out_ Details::ComPtrRef<ComPtr<U>> ptr
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

WeakRef::AsIID Method

HRESULT AsIID(
   REFIID riid,
   _Out_ ComPtr<IInspectable>* ptr
);

ParametersParameters

Return ValueReturn Value

U
An interface ID.

ptr
When this operation completes, an object that represents parameter U.

S_OK if this operation succeeds; otherwise, an HRESULT that indicates the reason the operation failed, and
ptr is set to nullptr .

S_OK if this operation succeeds, but the current WeakRef  object has already been released. Parameter ptr is
set to nullptr .

S_OK if this operation succeeds, but the current WeakRef  object is not derived from parameter U.
Parameter ptr is set to nullptr .

An error is emitted if parameter U is IWeakReference , or is not derived from IInspectable .

The first template is the form that you should use in your code. The second template is an internal, helper
specialization that supports C++ language features such as the auto type deduction keyword.

Starting in the Windows 10 SDK, this method does not set the WeakRef  instance to nullptr  if the weak reference
could not be obtained, so you should avoid error-checking code that checks the WeakRef  for nullptr . Instead,
check ptr for nullptr .

Sets the specified ComPtr  pointer parameter to represent the specified interface ID.

riid
An interface ID.

ptr
When this operation completes, an object that represents parameter riid.

S_OK if this operation succeeds; otherwise, an HRESULT that indicates the reason the operation failed, and
ptr is set to nullptr .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/auto-cpp


  

RemarksRemarks

WeakRef::CopyTo Method

HRESULT CopyTo(
   REFIID riid,
   _Deref_out_ IInspectable** ptr
);

template<typename U>
HRESULT CopyTo(
   _Deref_out_ U** ptr
);

HRESULT CopyTo(
   _Deref_out_ IWeakReference** ptr
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

S_OK if this operation succeeds, but the current WeakRef  object has already been released. Parameter ptr is
set to nullptr .

S_OK if this operation succeeds, but the current WeakRef  object is not derived from parameter riid.
Parameter ptr is set to nullptr . (For more information, see Remarks.)

An error is emitted if parameter riid is not derived from IInspectable . This error supersedes the return value.

The first template is the form that you should use in your code. The second template (not shown here, but
declared in the header file) is an internal, helper specialization that supports C++ language features such as the
auto type deduction keyword.

Starting in the Windows 10 SDK, this method does not set the WeakRef  instance to nullptr  if the weak reference
could not be obtained, so you should avoid error-checking code that checks the WeakRef  for nullptr . Instead,
check ptr for nullptr .

Assigns a pointer to an interface, if available, to the specified pointer variable.

U
Pointer an IInspectable  interface. An error is emitted if U is not derived from IInspectable .

riid
An interface ID. An error is emitted if riid is not derived from IWeakReference .

ptr
A doubly-indirect pointer to IInspectable  or IWeakReference .

S_OK if successful; otherwise, an HRESULT that describes the failure. For more information, see Remarks.

A return value of S_OK means that this operation succeeded, but doesn't indicate whether the weak reference was
resolved to a strong reference. If S_OK is returned, test that parameter p is a strong reference; that is, parameter p
isn't equal to nullptr .

Starting in the Windows 10 SDK, this method does not set the WeakRef  instance to nullptr  if the weak reference
could not be obtained, so you should avoid error checking code that checks the WeakRef  for nullptr . Instead,
check ptr for nullptr .

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/auto-cpp


 

 

WeakRef::operator& Operator

Details::ComPtrRef<WeakRef> operator&() throw()

Return ValueReturn Value

RemarksRemarks

WeakRef::WeakRef Constructor

WeakRef();
WeakRef(
   decltype(__nullptr)
);

WeakRef(
   _In_opt_ IWeakReference* ptr
);

WeakRef(
   const ComPtr<IWeakReference>& ptr
);

WeakRef(
   const WeakRef& ptr
);

WeakRef(
   _Inout_ WeakRef&& ptr
);

ParametersParameters

RemarksRemarks

Returns a ComPtrRef  object that represents the current WeakRef  object.

A ComPtrRef  object that represents the current WeakRef  object.

This is an internal helper operator that is not meant to be used in your code.

Initializes a new instance of the WeakRef  class.

ptr
A pointer, reference, or rvalue-reference to an existing object that initializes the current WeakRef  object.

The first constructor initializes an empty WeakRef  object. The second constructor initializes a WeakRef  object from
a pointer to the IWeakReference  interface. The third constructor initializes a WeakRef  object from a reference to a 
ComPtr<IWeakReference>  object. The fourth and fifth constructors initializes a WeakRef  object from another 
WeakRef  object.



Microsoft::WRL::Details Namespace
1/16/2019 • 2 minutes to read • Edit Online

Syntax
namespace Microsoft::WRL::Details;

Members
ClassesClasses

NAME DESCRIPTION

ComPtrRef Class Represents a reference to an object of type ComPtr<T>.

ComPtrRefBase Class Represents the base class for the ComPtrRef class.

DontUseNewUseMake Class Prevents using operator new  in RuntimeClass .
Consequently, you must use the Make function instead.

EventTargetArray Class Represents an array of event handlers.

MakeAllocator Class Allocates memory for an activatable class, with or without
weak reference support.

ModuleBase Class Represents the base class of the Module classes.

RemoveIUnknown Class Makes a type that is equivalent to an IUnknown -based type,
but has non-virtual QueryInterface , AddRef , and 
Release  methods.

WeakReference Class Represents a weak reference that can be used with the
Windows Runtime or classic COM. A weak reference
represents an object that might or might not be accessible.

StructuresStructures

NAME DESCRIPTION

ArgTraits Structure Declares a specified delegate interface and an anonymous
member function that has a specified number of parameters.

ArgTraitsHelper Structure Helps define common characteristics of delegate arguments.

BoolStruct Structure Defines whether a ComPtr  is managing the object lifetime of
an interface. BoolStruct  is used internally by the
BoolType() operator.

Supports the WRL infrastructure and is not intended to be used directly from your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/microsoft-wrl-details-namespace.md


CreatorMap Structure Contains information about how to initialize, register, and
unregister objects.

DerefHelper Structure Represent a dereferenced pointer to the T*  template
parameter.

EnableIf Structure Defines a data member of the type specified by the second
template parameter if the first template parameter evaluates
to true .

FactoryCache Structure Contains the location of a class factory and a value that
identifies a registered Windows Runtime or COM class object.

ImplementsBase Structure Used to validate template parameter types in Implements
Structure.

ImplementsHelper Structure Helps implement the Implements structure.

InterfaceList Structure Used to create a recursive list of interfaces.

InterfaceListHelper Structure Builds an InterfaceList  type by recursively applying the
specified template parameter arguments.

InterfaceTraits Structure Implements common characteristics of an interface.

InvokeHelper Structure Provides an implementation of the Invoke()  method based
on the specified number and type of arguments.

IsBaseOfStrict Structure Tests whether one type is the base of another.

IsSame Structure Tests whether one specified type is the same as another
specified type.

Nil Structure Used to indicate an unspecified, optional template parameter.

RemoveReference Structure Strips the reference or rvalue-reference trait from the
specified class template parameter.

RuntimeClassBase Structure Used to detect RuntimeClass  in the Make function.

RuntimeClassBaseT Structure Provides helper methods for QueryInterface  operations
and getting interface IDs.

VerifyInheritanceHelper Structure Tests whether one interface is derived from another interface.

VerifyInterfaceHelper Structure Verifies that the interface specified by the template
parameter meets certain requirements.

NAME DESCRIPTION

EnumerationsEnumerations



NAME DESCRIPTION

AsyncStatusInternal Enumeration Specifies a mapping between internal enumerations for the
state of asynchronous operations and the 
Windows::Foundation::AsyncStatus  enumeration.

FunctionsFunctions

NAME DESCRIPTION

ActivationFactoryCallback Function Gets the activation factory for the specified activation ID.

Move Function Moves the specified argument from one location to another.

RaiseException Function Raises an exception in the calling thread.

Swap Function (WRL) Exchanges the values of the two specified arguments.

TerminateMap Function Shuts down the class factories in the specified module.

Requirements

See Also

Header: async.h, client.h, corewrappers.h, event.h, ftm.h, implements.h, internal.h, module.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL Namespace
Microsoft::WRL::Wrappers Namespace



ActivationFactoryCallback Function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
inline HRESULT STDAPICALLTYPE ActivationFactoryCallback(
   HSTRING activationId,
   IActivationFactory **ppFactory
);

ParametersParameters

Return Value

Remarks

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

activationId
Handle to a string that specifies a runtime class name.

ppFactory
When this operation completes, an activation factory that corresponds to parameter activationId.

S_OK if successful; otherwise, an HRESULT that describes the failure. Likely failure HRESULTs are
CLASS_E_CLASSNOTAVAILABLE and E_INVALIDARG.

Gets the activation factory for the specified activation ID.

The Windows Runtime calls this callback function to request an object specified by its runtime class name.

Header: module.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/activationfactorycallback-function.md


ArgTraits Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename TMemberFunction>
struct ArgTraits;

template<typename TDelegateInterface>
struct ArgTraits<HRESULT (STDMETHODCALLTYPE TDelegateInterface::*)(void)>;

template<typename TDelegateInterface, typename TArg1>
struct ArgTraits<HRESULT (STDMETHODCALLTYPE TDelegateInterface::*)(TArg1)>;

template<typename TDelegateInterface, typename TArg1, typename TArg2>
struct ArgTraits<
    HRESULT (STDMETHODCALLTYPE TDelegateInterface::*)(TArg1, TArg2)>;

template<
    typename TDelegateInterface,
    typename TArg1,
    typename TArg2,
    typename TArg3
>
struct ArgTraits<
    HRESULT (STDMETHODCALLTYPE TDelegateInterface::*)(TArg1, TArg2, TArg3)>;

template<
    typename TDelegateInterface,
    typename TArg1,
    typename TArg2,
    typename TArg3,
    typename TArg4
>
struct ArgTraits<
    HRESULT (STDMETHODCALLTYPE TDelegateInterface::*)
             (TArg1, TArg2, TArg3, TArg4)>;

template<
    typename TDelegateInterface,
    typename TArg1,
    typename TArg2,
    typename TArg3,
    typename TArg4,
    typename TArg5
>
struct ArgTraits<
    HRESULT (STDMETHODCALLTYPE TDelegateInterface::*)
             (TArg1, TArg2, TArg3, TArg4, TArg5)>;

template<
    typename TDelegateInterface,
    typename TArg1,
    typename TArg2,
    typename TArg3,
    typename TArg4,
    typename TArg5,
    typename TArg6
>
struct ArgTraits<

Supports the WRL infrastructure and is not intended to be used directly from your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/argtraits-structure.md


struct ArgTraits<
    HRESULT (STDMETHODCALLTYPE TDelegateInterface::*)
             (TArg1, TArg2, TArg3, TArg4, TArg5, TArg6)>;

template<
    typename TDelegateInterface,
    typename TArg1,
    typename TArg2,
    typename TArg3,
    typename TArg4,
    typename TArg5,
    typename TArg6,
    typename TArg7
>
struct ArgTraits<
    HRESULT (STDMETHODCALLTYPE TDelegateInterface::*)
             (TArg1, TArg2, TArg3, TArg4, TArg5, TArg6, TArg7)>;

template<
    typename TDelegateInterface,
    typename TArg1,
    typename TArg2,
    typename TArg3,
    typename TArg4,
    typename TArg5,
    typename TArg6,
    typename TArg7,
    typename TArg8
>
struct ArgTraits<
    HRESULT (STDMETHODCALLTYPE TDelegateInterface::*)
             (TArg1, TArg2, TArg3, TArg4, TArg5, TArg6, TArg7, TArg8)>;

template<
    typename TDelegateInterface,
    typename TArg1,
    typename TArg2,
    typename TArg3,
    typename TArg4,
    typename TArg5,
    typename TArg6,
    typename TArg7,
    typename TArg8,
    typename TArg9
>
struct ArgTraits<
    HRESULT (STDMETHODCALLTYPE TDelegateInterface::*)
             (TArg1, TArg2, TArg3, TArg4, TArg5, TArg6, TArg7, TArg8, TArg9)>;

ParametersParameters
TMemberFunction
Typename parameter for an ArgTraits structure that cannot match any Invoke  method signature.

TDelegateInterface
A delegate interface.

TArg1
The type of the first argument of the Invoke  method.

TArg2
The type of the second argument of the Invoke  method.

TArg3
The type of the third argument of the Invoke  method.



Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

Arg1Type The typedef for TArg1.

Arg2Type The typedef for TArg2.

Arg3Type The typedef for TArg3.

Arg4Type The typedef for TArg4.

Arg5Type The typedef for TArg5.

Arg6Type The typedef for TArg6.

Arg7Type The typedef for TArg7.

Arg8Type The typedef for TArg8.

Arg9Type The typedef for TArg9.

Public ConstantsPublic Constants

NAME DESCRIPTION

ArgTraits::args Keeps count of the number of parameters on the Invoke

method of a delegate interface.

TArg4
The type of the fourth argument of the Invoke  method.

TArg5
The type of the fifth argument of the Invoke  method.

TArg6
The type of the sixth argument of the Invoke  method.

TArg7
The type of the seventh argument of the Invoke  method.

TArg8
The type of the eigth argument of the Invoke  method.

TArg9
The type of the ninth argument of the Invoke  method.

The ArgTraits  structure declares a specified delegate interface and an anonymous member function that has a
specified number of parameters.



 

Inheritance Hierarchy

Requirements

ArgTraits::args

static const int args = -1;

RemarksRemarks

ArgTraits

Header: event.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

Keeps count of the number of parameters on the Invoke  method of a delegate interface. When args  equals -1,
there can be no match for the Invoke  method signature.



  

ArgTraitsHelper Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename TDelegateInterface>
struct ArgTraitsHelper;

ParametersParameters

Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

methodType A synonym for decltype(&TDelegateInterface::Invoke) .

Traits A synonym for ArgTraits<methodType> .

Public ConstantsPublic Constants

NAME DESCRIPTION

ArgTraitsHelper::args Helps ArgTraits::args keep count of the number of parameters
on the Invoke  method of a delegate interface.

Inheritance Hierarchy

Requirements

ArgTraitsHelper::args

Supports the WRL infrastructure and is not intended to be used directly from your code.

TDelegateInterface
A delegate interface.

Helps define common characteristics of delegate arguments.

ArgTraitsHelper

Header: event.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/argtraitshelper-structure.md


static const int args = Traits::args;

RemarksRemarks
Helps ArgTraitsHelper::args  keep count of the number of parameters on the Invoke  method of a delegate
interface.



AsyncStatusInternal Enumeration
1/16/2019 • 2 minutes to read • Edit Online

Syntax
enum AsyncStatusInternal;

Remarks

Members

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

Specifies a mapping between internal enumerations for the state of asynchronous operations and the 
Windows::Foundation::AsyncStatus  enumeration.

_Created

Equivalent to ::Windows::Foundation::AsyncStatus::Created

_Started

Equivalent to ::Windows::Foundation::AsyncStatus::Started

_Completed

Equivalent to ::Windows::Foundation::AsyncStatus::Completed

_Cancelled

Equivalent to ::Windows::Foundation::AsyncStatus::Cancelled

_Error

Equivalent to ::Windows::Foundation::AsyncStatus::Error

Header: async.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/asyncstatusinternal-enumeration.md


   

BoolStruct Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct BoolStruct;

Remarks

Members
Public Data MembersPublic Data Members

NAME DESCRIPTION

BoolStruct::Member Specifies that a ComPtr is, or is not, managing the object
lifetime of an interface.

Inheritance Hierarchy

Requirements

BoolStruct::Member

int Member;

RemarksRemarks

Supports the WRL infrastructure and is not intended to be used directly from your code.

The BoolStruct  structure defines whether a ComPtr  is managing the object lifetime of an interface. BoolStruct  is
used internally by the BoolType() operator.

BoolStruct

Header: internal.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

Specifies that a ComPtr is, or is not, managing the object lifetime of an interface.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/boolstruct-structure.md


ComPtrRef Class
1/16/2019 • 4 minutes to read • Edit Online

Syntax
template <typename T>
class ComPtrRef : public ComPtrRefBase<T>;

ParametersParameters

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

ComPtrRef::ComPtrRef Initializes a new instance of the ComPtrRef  class from the
specified pointer to another ComPtrRef  object.

Public MethodsPublic Methods

NAME DESCRIPTION

ComPtrRef::GetAddressOf Retrieves the address of a pointer to the interface represented
by the current ComPtrRef  object.

ComPtrRef::ReleaseAndGetAddressOf Deletes the current ComPtrRef  object and returns a pointer-
to-a-pointer to the interface that was represented by the 
ComPtrRef  object.

Public OperatorsPublic Operators

NAME DESCRIPTION

ComPtrRef::operator InterfaceType** Deletes the current ComPtrRef  object and returns a pointer-
to-a-pointer to the interface that was represented by the 
ComPtrRef  object.

ComPtrRef::operator T* Returns the value of the ptr_ data member of the current
ComPtrRef object.

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
A ComPtr<T> type or a type derived from it, not merely the interface represented by the ComPtr .

Represents a reference to an object of type ComPtr<T> .

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/comptrref-class.md


 

 

ComPtrRef::operator void** Deletes the current ComPtrRef  object, casts the pointer to
the interface that was represented by the ComPtrRef  object
as a pointer-to-pointer-to void , and then returns the cast
pointer.

ComPtrRef::operator* Retrieves the pointer to the interface represented by the
current ComPtrRef  object.

ComPtrRef::operator== Indicates whether two ComPtrRef  objects are equal.

ComPtrRef::operator!= Indicates whether two ComPtrRef  objects are not equal.

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

ComPtrRef::ComPtrRef

ComPtrRef(
   _In_opt_ T* ptr
);

ParametersParameters

RemarksRemarks

ComPtrRef::GetAddressOf

InterfaceType* const * GetAddressOf() const;

Return ValueReturn Value

RemarksRemarks

ComPtrRefBase

ComPtrRef

Header: client.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

ptr
The underlying value of another ComPtrRef  object.

Initializes a new instance of the ComPtrRef  class from the specified pointer to another ComPtrRef  object.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Address of a pointer to the interface represented by the current ComPtrRef  object.

Retrieves the address of a pointer to the interface represented by the current ComPtrRef  object.



 

 

ComPtrRef::operator==

bool operator==(
   const Details::ComPtrRef<ComPtr<T>>& a,
   const Details::ComPtrRef<ComPtr<U>>& b
);

bool operator==(
   const Details::ComPtrRef<ComPtr<T>>& a,
   decltype(__nullptr)
);

bool operator==(
   decltype(__nullptr),
   const Details::ComPtrRef<ComPtr<T>>& a
);

bool operator==(
   const Details::ComPtrRef<ComPtr<T>>& a,
   void* b
);

bool operator==(
   void* b,
   const Details::ComPtrRef<ComPtr<T>>& a
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ComPtrRef::operator!=

Supports the WRL infrastructure and is not intended to be used directly from your code.

a
A reference to a ComPtrRef  object.

b
A reference to another ComPtrRef  object, or a pointer to an anonymous type ( void* ).

The first operator yields true if object a is equal to object b; otherwise, false.

The second and third operators yield true if object a is equal to nullptr; otherwise, false.

The fourth and fifth operators yield true if object a is equal to object b; otherwise, false.

Indicates whether two ComPtrRef  objects are equal.

Supports the WRL infrastructure and is not intended to be used directly from your code.



 

 

bool operator!=(
   const Details::ComPtrRef<ComPtr<T>>& a,
   const Details::ComPtrRef<ComPtr<U>>& b
);

bool operator!=(
   const Details::ComPtrRef<ComPtr<T>>& a,
   decltype(__nullptr)
);

bool operator!=(
   decltype(__nullptr),
   const Details::ComPtrRef<ComPtr<T>>& a
);

bool operator!=(
   const Details::ComPtrRef<ComPtr<T>>& a,
   void* b
);

bool operator!=(
   void* b,
   const Details::ComPtrRef<ComPtr<T>>& a
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ComPtrRef::operator InterfaceType**

operator InterfaceType**();

RemarksRemarks

ComPtrRef::operator*

InterfaceType* operator *();

a
A reference to a ComPtrRef  object.

b
A reference to another ComPtrRef  object, or a pointer to an anonymous object ( void* ).

The first operator yields true if object a is not equal to object b; otherwise, false.

The second and third operators yield true if object a is not equal to nullptr; otherwise, false.

The fourth and fifth operators yield true if object a is not equal to object b; otherwise, false.

Indicates whether two ComPtrRef  objects are not equal.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Deletes the current ComPtrRef  object and returns a pointer-to-a-pointer to the interface that was represented by
the ComPtrRef  object.

Supports the WRL infrastructure and is not intended to be used directly from your code.



 

 

 

Return ValueReturn Value

RemarksRemarks

ComPtrRef::operator T*

operator T*();

RemarksRemarks

ComPtrRef::operator void**

operator void**() const;

RemarksRemarks

ComPtrRef::ReleaseAndGetAddressOf

InterfaceType** ReleaseAndGetAddressOf();

Return ValueReturn Value

RemarksRemarks

Pointer to the interface represented by the current ComPtrRef  object.

Retrieves the pointer to the interface represented by the current ComPtrRef  object.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Returns the value of the ptr_ data member of the current ComPtrRef  object.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Deletes the current ComPtrRef  object, casts the pointer to the interface that was represented by the ComPtrRef

object as a pointer-to-pointer-to void , and then returns the cast pointer.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Pointer to the interface that was represented by the deleted ComPtrRef  object.

Deletes the current ComPtrRef  object and returns a pointer-to-a-pointer to the interface that was represented by
the ComPtrRef  object.



ComPtrRefBase Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename T>
class ComPtrRefBase;

ParametersParameters

Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

InterfaceType A synonym for the type of template parameter T.

Public OperatorsPublic Operators

NAME DESCRIPTION

ComPtrRefBase::operator IInspectable** Casts the current ptr_ data member to a pointer-to-a-
pointer-to the IInspectable  interface.

ComPtrRefBase::operator IUnknown** Casts the current ptr_ data member to a pointer-to-a-
pointer-to the IUnknown  interface.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

ComPtrRefBase::ptr_ Pointer to the type specified by the current template
parameter.

Inheritance Hierarchy

Requirements

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
A ComPtr<T> type or a type derived from it, not merely the interface represented by the ComPtr .

Represents the base class for the ComPtrRef class.

ComPtrRefBase

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/comptrrefbase-class.md


 

 

         

ComPtrRefBase::operator IInspectable** Operator

operator IInspectable**() const;

RemarksRemarks

ComPtrRefBase::operator IUnknown** Operator

operator IUnknown**() const;

RemarksRemarks

ComPtrRefBase::ptr_

T* ptr_;

RemarksRemarks

Header: client.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

Casts the current ptr_ data member to a pointer-to-a-pointer-to the IInspectable  interface.

An error is emitted if the current ComPtrRefBase  doesn't derive from IInspectable .

This cast is available only if __WRL_CLASSIC_COM__  is defined.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Casts the current ptr_ data member to a pointer-to-a-pointer-to the IUnknown  interface.

An error is emitted if the current ComPtrRefBase  doesn't derive from IUnknown .

Supports the WRL infrastructure and is not intended to be used directly from your code.

Pointer to the type specified by the current template parameter. ptr_  is the protected data member.



 

CreatorMap Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct CreatorMap;

Remarks

Members
Public Data MembersPublic Data Members

NAME DESCRIPTION

CreatorMap::activationId Represents an object ID that is identified either by a classic
COM class ID or a Windows Runtime name.

CreatorMap::factoryCache Stores the pointer to the factory cache for the CreatorMap .

CreatorMap::factoryCreator Creates a factory for the specified CreatorMap .

CreatorMap::serverName Stores the server name for the CreatorMap .

Inheritance Hierarchy

Requirements

CreatorMap::activationId

Supports the Windows Runtime C++ Template Library infrastructure and is not intended to be used directly from
your code.

Contains information about how to initialize, register, and unregister objects.

CreatorMap  contains the following information:

How to initialize, register, and unregister objects.

How to compare activation data depending on a classic COM or Windows Runtime factory.

Information about the factory cache and server name for an interface.

CreatorMap

Header: module.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/creatormap-structure.md


 

 

union {
   const IID* clsid;
   const wchar_t* (*getRuntimeName)();
} activationId;

ParametersParameters

RemarksRemarks

CreatorMap::factoryCache

FactoryCache* factoryCache;

RemarksRemarks

CreatorMap::factoryCreator

HRESULT (*factoryCreator)(
   unsigned int* currentflags,
   const CreatorMap* entry,
   REFIID iidClassFactory,
IUnknown** factory);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

clsid
An interface ID.

getRuntimeName
A function that retrieves the Windows runtime name of an object.

Represents an object ID that is identified either by a classic COM class ID or a Windows runtime name.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Stores the pointer to the factory cache for the CreatorMap .

Supports the WRL infrastructure and is not intended to be used directly from your code.

currentflags
One of the RuntimeClassType enumerators.

entry
A CreatorMap.

iidClassFactory
The interface ID of a class factory.

factory
When the operation completes, the address of a class factory.

S_OK if successful; otherwise, an HRESULT that indicates the error.

Creates a factory for the specified CreatorMap.



 CreatorMap::serverName

const wchar_t* serverName;

RemarksRemarks

Supports the WRL infrastructure and is not intended to be used directly from your code.

Stores the server name for the CreatorMap.



DerefHelper Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename T>
struct DerefHelper;

template <typename T>
struct DerefHelper<T*>;

ParametersParameters

Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

DerefType Identifier for the dereferenced template parameter T* .

Inheritance Hierarchy

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
A template parameter.

Represent a dereferenced pointer to the T*  template parameter.

DerefHelper is used in an expression such as: 
ComPtr<Details::DerefHelper<ProgressTraits::Arg1Type>::DerefType> operationInterface; .

DerefHelper

Header: async.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/derefhelper-structure.md


 

DontUseNewUseMake Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
class DontUseNewUseMake;

Remarks

Members
Public OperatorsPublic Operators

NAME DESCRIPTION

DontUseNewUseMake::operator new Overloads operator new  and prevents it from being used in 
RuntimeClass .

Inheritance Hierarchy

Requirements

DontUseNewUseMake::operator new

void* operator new(
   size_t,
   _In_ void* placement
);

ParametersParameters

Return ValueReturn Value

Supports the WRL infrastructure and is not intended to be used directly from your code.

Prevents using operator new  in RuntimeClass . Consequently, you must use the Make function instead.

DontUseNewUseMake

Header: implements.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

__unnamed0
An unnamed parameter that specifies the number of bytes of memory to allocate.

placement
The type to be allocated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/dontusenewusemake-class.md


RemarksRemarks

Provides a way to pass additional arguments if you overload operator new .

Overloads operator new  and prevents it from being used in RuntimeClass .



EnableIf Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <bool b, typename T = void>
struct EnableIf;

template <typename T>
struct EnableIf<true, T>;

ParametersParameters

Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

type If template parameter b evaluates to true, the partial
specialization defines data member type  to be of type T .

Inheritance Hierarchy

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
A type.

b
A Boolean expression.

Defines a data member of the type specified by the second template parameter if the first template parameter
evaluates to true.

EnableIf

Header: internal.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/enableif-structure.md


EventTargetArray Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
class EventTargetArray :
    public Microsoft::WRL::RuntimeClass<
        Microsoft::WRL::RuntimeClassFlags<ClassicCom>,
        IUnknown
    >;

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

EventTargetArray::EventTargetArray Initializes a new instance of the EventTargetArray  class.

EventTargetArray::~EventTargetArray Deinitializes the current EventTargetArray  class.

Public MethodsPublic Methods

NAME DESCRIPTION

EventTargetArray::AddTail Appends the specified event handler to the end of the internal
array of event handlers.

EventTargetArray::Begin Gets the address of the first element in the internal array of
event handlers.

EventTargetArray::End Gets the address of the last element in the internal array of
event handlers.

EventTargetArray::Length Gets the current number of elements in the internal array of
event handlers.

Inheritance Hierarchy

Supports the WRL infrastructure and is not intended to be used directly from your code.

Represents an array of event handlers.

The event handlers that are associated with an EventSource object are stored in a protected EventTargetArray  data
member.

EventTargetArray

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/eventtargetarray-class.md


 

 

 

 

Requirements

EventTargetArray::~EventTargetArray

~EventTargetArray();

RemarksRemarks

EventTargetArray::AddTail

void AddTail(
   _In_ IUnknown* element
);

ParametersParameters

RemarksRemarks

EventTargetArray::Begin

ComPtr<IUnknown>* Begin();

Return ValueReturn Value

RemarksRemarks

EventTargetArray::End

ComPtr<IUnknown>* End();

Return ValueReturn Value

Header: event.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

Deinitializes the current EventTargetArray  class.

Supports the WRL infrastructure and is not intended to be used directly from your code.

element
Pointer to the event handler to append.

Appends the specified event handler to the end of the internal array of event handlers.

AddTail()  is intended to be used internally by only the EventSource  class.

Supports the WRL infrastructure and is not intended to be used directly from your code.

The address of the first element in the internal array of event handlers.

Gets the address of the first element in the internal array of event handlers.

Supports the WRL infrastructure and is not intended to be used directly from your code.

The address of the last element in the internal array of event handlers.



 

 

RemarksRemarks

EventTargetArray::EventTargetArray

EventTargetArray(
   _Out_ HRESULT* hr,
   size_t items
);

ParametersParameters

RemarksRemarks

EventTargetArray::Length

size_t Length();

Return ValueReturn Value

RemarksRemarks

Gets the address of the last element in the internal array of event handlers.

Supports the WRL infrastructure and is not intended to be used directly from your code.

hr
After this constructor operations, parameter hr indicates whether allocation of the array succeeded or failed. The
following list shows the possible values for hr.

S_OK
The operation succeeded.

E_OUTOFMEMORY
Memory couldn't be allocated for the array.

S_FALSE
Parameter items is less than or equal to zero.

items
The number of array elements to allocate.

Initializes a new instance of the EventTargetArray  class.

EventTargetArray  is used to keep an array of event handlers in an EventSource  object.

Supports the WRL infrastructure and is not intended to be used directly from your code.

The current number of elements in the internal array of event handlers.

Gets the current number of elements in the internal array of event handlers.



 

FactoryCache Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct FactoryCache;

Remarks

Members
Public Data MembersPublic Data Members

NAME DESCRIPTION

FactoryCache::cookie Contains a value that identifies a registered Windows Runtime
or COM class object, and is later used to unregister the object.

FactoryCache::factory Points to a Windows Runtime or COM class factory.

Inheritance Hierarchy

Requirements

FactoryCache::cookie

union {
   WINRT_REGISTRATION_COOKIE winrt;
   DWORD com;
} cookie;

RemarksRemarks

Supports the Windows Runtime C++ Template Library infrastructure and is not intended to be used directly from
your code.

Contains the location of a class factory and a value that identifies a registered wrt or COM class object.

FactoryCache

Header: module.h

Namespace: Microsoft::WRL::Details

Supports the Windows Runtime C++ Template Library infrastructure and is not intended to be used directly from
your code.

Contains a value that identifies a registered Windows Runtime or COM class object, and is later used to unregister
the object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/factorycache-structure.md


 FactoryCache::factory

IUnknown* factory;

RemarksRemarks

Supports the Windows Runtime C++ Template Library infrastructure and is not intended to be used directly from
your code.

Points to a Windows Runtime or COM class factory.



ImplementsBase Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct ImplementsBase;

Remarks

Inheritance Hierarchy

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

Used to validate template parameter types in Implements Structure.

The ImplementsBase structure is empty by design.

ImplementsBase

Header: implements.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/implementsbase-structure.md


ImplementsHelper Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename RuntimeClassFlagsT, typename ILst, bool IsDelegateToClass>
friend struct Details::ImplementsHelper;

ParametersParameters

Remarks

Members
Protected MethodsProtected Methods

NAME DESCRIPTION

ImplementsHelper::CanCastTo Gets a pointer to the specified interface ID.

ImplementsHelper::CastToUnknown Gets a pointer to the underlying IUnknown  interface for the
current Implements  structure.

ImplementsHelper::FillArrayWithIid Inserts the interface ID specified by the current zeroth
template parameter into the specified array element.

ImplementsHelper::IidCount Holds the number of implemented interface IDs in the current 
Implements  object.

Inheritance Hierarchy

Requirements

Supports the WRL infrastructure and is not intended to be used directly from your code.

RuntimeClassFlagsT
A field of flags that specifies one or more RuntimeClassType enumerators.

ILst
A list of interface IDs.

IsDelegateToClass
Specify true if the current instance of Implements  is a base class of the first interface ID in ILst; otherwise, false.

Helps implement the Implements structure.

This template traverses a list of interfaces and adds them as base classes, and as information necessary to enable 
QueryInterface .

ImplementsHelper

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/implementshelper-structure.md


 

 

 

ImplementsHelper::CanCastTo

HRESULT CanCastTo(
   REFIID riid,
   _Deref_out_ void **ppv
);

HRESULT CanCastTo(
   _In_ const IID &iid,
   _Deref_out_ void **ppv
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

ImplementsHelper::CastToUnknown

IUnknown* CastToUnknown();

Return ValueReturn Value

RemarksRemarks

ImplementsHelper::FillArrayWithIid

void FillArrayWithIid(
   _Inout_ unsigned long *index,
   _Inout_ IID* iids) throw();

ParametersParameters

Header: implements.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

riid
Reference to an interface ID.

ppv
If this operation is successful, a pointer to the interface specified by riid or iid.

iid
Reference to an interface ID.

S_OK if successful; otherwise, an HRESULT that indicates the error.

Gets a pointer to the specified interface ID.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Pointer to the underlying IUnknown  interface.

Gets a pointer to the underlying IUnknown  interface for the current Implements  structure.

Supports the WRL infrastructure and is not intended to be used directly from your code.



 

RemarksRemarks

ImplementsHelper::IidCount

static const unsigned long IidCount;

RemarksRemarks

index
A zero-based index that indicates the starting array element for this operation. When this operation completes,
index is incremented by 1.

iids
An array of type IIDs.

Inserts the interface ID specified by the current zeroth template parameter into the specified array element.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Holds the number of implemented interface IDs in the current Implements  object.



InterfaceList Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename T, typename U>
struct InterfaceList;

ParametersParameters

Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

FirstT Synonym for template parameter T.

RestT Synonym for template parameter U.

Inheritance Hierarchy

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
An interface name; the first interface in the recursive list.

U
An interface name; the remaining interfaces in the recursive list.

Used to create a recursive list of interfaces.

InterfaceList

Header: implements.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/interfacelist-structure.md


InterfaceListHelper Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <
    typename T0,
    typename T1 = Nil,
    typename T2 = Nil,
    typename T3 = Nil,
    typename T4 = Nil,
    typename T5 = Nil,
    typename T6 = Nil,
    typename T7 = Nil,
    typename T8 = Nil,
    typename T9 = Nil
>
struct InterfaceListHelper;

template <typename T0>
struct InterfaceListHelper<T0, Nil, Nil, Nil, Nil, Nil, Nil, Nil, Nil>;

ParametersParameters

Supports the WRL infrastructure and is not intended to be used directly from your code.

T0
Template parameter 0, which is required.

T1
Template parameter 1, which by default is unspecified.

T2
Template parameter 2, which by default is unspecified.The third template parameter.

T3
Template parameter 3, which by default is unspecified.

T4
Template parameter 4, which by default is unspecified.

T5
Template parameter 5, which by default is unspecified.

T6
Template parameter 6, which by default is unspecified.

T7
Template parameter 7, which by default is unspecified.

T8
Template parameter 8, which by default is unspecified.

T9
Template parameter 9, which by default is unspecified.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/interfacelisthelper-structure.md


Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

TypeT A synonym for the InterfaceList type.

Inheritance Hierarchy

Requirements

See Also

Builds an InterfaceList  type by recursively applying the specified template parameter arguments.

The InterfaceListHelper template uses template parameter T0 to define the first data member in an 
InterfaceList  structure, and then recursively applies the InterfaceListHelper template to any remaining

template parameters. InterfaceListHelper stops when there are no remaining template parameters.

InterfaceListHelper

Header: implements.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace



          

InterfaceTraits Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename I0>
struct __declspec(novtable) InterfaceTraits;

template<typename CloakedType>
struct __declspec(novtable) InterfaceTraits<
    CloakedIid<CloakedType>
>;

template<>
struct __declspec(novtable) InterfaceTraits<Nil>;

ParametersParameters

Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

Base A synonym for the I0 template parameter.

Public MethodsPublic Methods

NAME DESCRIPTION

InterfaceTraits::CanCastTo Indicates whether the specified pointer can be cast to a
pointer to Base .

InterfaceTraits::CastToBase Casts the specified pointer to a pointer to Base .

InterfaceTraits::CastToUnknown Casts the specified pointer to a pointer to IUnknown .

Supports the WRL infrastructure and is not intended to be used directly from your code.

I0
The name of an interface.

CloakedType
For RuntimeClass , Implements  and ChainInterfaces , an interface that won't be in the list of supported interface
IDs.

Implements common characteristics of an interface.

The second template is a specialization for cloaked interfaces. The third template is a specialization for Nil
parameters.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/interfacetraits-structure.md


 

 

InterfaceTraits::FillArrayWithIid Assigns the interface ID of Base  to the array element
specified by the index argument.

InterfaceTraits::Verify Verifies that Base  is properly derived.

NAME DESCRIPTION

Public ConstantsPublic Constants

NAME DESCRIPTION

InterfaceTraits::IidCount Holds the number of interface IDs associated with the current 
InterfaceTraits  object.

Inheritance Hierarchy

Requirements

InterfaceTraits::CanCastTo

template<typename T>
static __forceinline bool CanCastTo(
   _In_ T* ptr,
   REFIID riid,
   _Deref_out_ void **ppv
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

InterfaceTraits::CastToBase

InterfaceTraits

Header: implements.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

ptr
The name of a pointer to a type.

riid
The interface ID of Base .

ppv
If this operation is successful, ppv points to the interface specified by Base . Otherwise, ppv is set to nullptr .

true if this operation is successful and ptr is cast to a pointer to Base ; otherwise, false.

Indicates whether the specified pointer can be cast to a pointer to Base .

For more information about Base , see the Public Typedefs section.



 

 

template<typename T>
static __forceinline Base* CastToBase(
   _In_ T* ptr
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

InterfaceTraits::CastToUnknown

template<typename T>
static __forceinline IUnknown* CastToUnknown(
   _In_ T* ptr
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

InterfaceTraits::FillArrayWithIid

__forceinline static void FillArrayWithIid(
   _Inout_ unsigned long &index,
   _In_ IID* iids
);

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
The type of parameter ptr.

ptr
Pointer to a type T.

A pointer to Base .

Casts the specified pointer to a pointer to Base .

For more information about Base , see the Public Typedefs section.

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
The type of parameter ptr.

ptr
Pointer to type T.

Pointer to the IUnknown from which Base  is derived.

Casts the specified pointer to a pointer to IUnknown .

For more information about Base , see the Public Typedefs section.

Supports the WRL infrastructure and is not intended to be used directly from your code.



 

 

ParametersParameters

RemarksRemarks

InterfaceTraits::IidCount

static const unsigned long IidCount = 1;

RemarksRemarks

InterfaceTraits::Verify

__forceinline static void Verify();

RemarksRemarks

index
Pointer to a field that contains a zero-based index value.

iids
An array of interface IDs.

Assigns the interface ID of Base  to the array element specified by the index argument.

Contrary to the name of this API, only one array element is modified; not the entire array.

For more information about Base , see the Public Typedefs section.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Holds the number of interface IDs associated with the current InterfaceTraits  object.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Verifies that Base  is properly derived.

For more information about Base , see the Public Typedefs section.



InvokeHelper Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename TDelegateInterface, typename TCallback, unsigned int argCount>
struct InvokeHelper;

template<typename TDelegateInterface, typename TCallback>
struct InvokeHelper<TDelegateInterface, TCallback, 0> :
    public Microsoft::WRL::RuntimeClass<
        RuntimeClassFlags<Delegate>,
        TDelegateInterface
    >;

template<typename TDelegateInterface, typename TCallback>
struct InvokeHelper<TDelegateInterface, TCallback, 1> :
    public Microsoft::WRL::RuntimeClass<
        RuntimeClassFlags<Delegate>,
        TDelegateInterface
    >;

template<typename TDelegateInterface, typename TCallback>
struct InvokeHelper<TDelegateInterface, TCallback, 2> :
    public Microsoft::WRL::RuntimeClass<
        RuntimeClassFlags<Delegate>,
        TDelegateInterface
    >;

template<typename TDelegateInterface, typename TCallback>
struct InvokeHelper<TDelegateInterface, TCallback, 3> :
    public Microsoft::WRL::RuntimeClass<
        RuntimeClassFlags<Delegate>,
        TDelegateInterface
    >;

template<typename TDelegateInterface, typename TCallback>
struct InvokeHelper<TDelegateInterface, TCallback, 4> :
    Microsoft::WRL::RuntimeClass<
        RuntimeClassFlags<Delegate>,
        TDelegateInterface
    >;

template<typename TDelegateInterface, typename TCallback>
struct InvokeHelper<TDelegateInterface, TCallback, 5> :
    Microsoft::WRL::RuntimeClass<
        RuntimeClassFlags<Delegate>,
        TDelegateInterface
    >;

template<typename TDelegateInterface, typename TCallback>
struct InvokeHelper<TDelegateInterface, TCallback, 6> :
    Microsoft::WRL::RuntimeClass<
        RuntimeClassFlags<Delegate>,
        TDelegateInterface
    >;

template<typename TDelegateInterface, typename TCallback>
struct InvokeHelper<TDelegateInterface, TCallback, 7> :
    Microsoft::WRL::RuntimeClass<

Supports the WRL infrastructure and is not intended to be used directly from your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/invokehelper-structure.md


    Microsoft::WRL::RuntimeClass<
        RuntimeClassFlags<Delegate>,
        TDelegateInterface
    >;

template<typename TDelegateInterface, typename TCallback>
struct InvokeHelper<TDelegateInterface, TCallback, 8> :
    Microsoft::WRL::RuntimeClass<
        RuntimeClassFlags<Delegate>,
        TDelegateInterface
    >;

template<typename TDelegateInterface, typename TCallback>
struct InvokeHelper<TDelegateInterface, TCallback, 9> :
    Microsoft::WRL::RuntimeClass<
        RuntimeClassFlags<Delegate>,
        TDelegateInterface
    >;

ParametersParameters

Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

Traits A synonym for the class that defines the type of each event
handler argument.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

InvokeHelper::InvokeHelper Initializes a new instance of the InvokeHelper  class.

Public MethodsPublic Methods

NAME DESCRIPTION

InvokeHelper::Invoke Calls the event handler whose signature contains the specified
number of arguments.

Public Data MembersPublic Data Members

TDelegateInterface
The delegate interface type.

TCallback
The type of the event handler function.

argCount
The number of arguments in an InvokeHelper  specialization.

Provides an implementation of the Invoke()  method based on the specified number and type of arguments.



 

 

NAME DESCRIPTION

InvokeHelper::callback_ Represents the event handler to call when an event occurs.

Inheritance Hierarchy

Requirements

InvokeHelper::callback_

TCallback callback_;

RemarksRemarks

InvokeHelper::Invoke

InvokeHelper

Header: event.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

Represents the event handler to call when an event occurs.

The TCallback  template parameter specifies the type of the event handler.

Supports the WRL infrastructure and is not intended to be used directly from your code.



STDMETHOD(
   Invoke
)();
STDMETHOD(
   Invoke
)(typename Traits;
STDMETHOD(
   Invoke
)( typename Traits;
STDMETHOD(
   Invoke
)( typename Traits;
STDMETHOD(
   Invoke
)( typename Traits;
STDMETHOD(
   Invoke
)( typename Traits;
STDMETHOD(
   Invoke
)( typename Traits;
STDMETHOD(
   Invoke
)( typename Traits;
STDMETHOD(
   Invoke
)( typename Traits;
STDMETHOD(
   Invoke
)( typename Traits;

ParametersParameters

Return ValueReturn Value

arg1
Argument 1.

arg2
Argument 2.

arg3
Argument 3.

arg4
Argument 4.

arg5
Argument 5.

arg6
Argument 6.

arg7
Argument 7.

arg8
Argument 8.

arg9
Argument 9.

S_OK if successful; otherwise, an HRESULT that describes the error.



 

RemarksRemarks

InvokeHelper::InvokeHelper

explicit InvokeHelper(
   TCallback callback
);

ParametersParameters

RemarksRemarks

Calls the event handler whose signature contains the specified number of arguments.

Supports the WRL infrastructure and is not intended to be used directly from your code.

callback
An event handler.

Initializes a new instance of the InvokeHelper  class.

The TCallback  template parameter specifies the type of the event handler.



 

IsBaseOfStrict Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename Base, typename Derived>
struct IsBaseOfStrict;

template <typename Base>
struct IsBaseOfStrict<Base, Base>;

ParametersParameters

Remarks

Members
Public ConstantsPublic Constants

NAME DESCRIPTION

IsBaseOfStrict::value Indicates whether one type is the base of another.

Inheritance Hierarchy

Requirements

IsBaseOfStrict::value

static const bool value = __is_base_of(Base, Derived);

Supports the WRL infrastructure and is not intended to be used directly from your code.

Base
The base type.

Derived
The derived type.

Tests whether one type is the base of another.

The first template tests whether a type is derived from a base type, which might yield true or false. The second
template tests whether a type is derived from itself, which always yields false.

IsBaseOfStrict

Header: internal.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/isbaseofstrict-structure.md


RemarksRemarks
Indicates whether one type is the base of another.

value  is true if type Base  is a base class of the type Derived , otherwise it is false.



 

IsSame Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename T1, typename T2>
struct IsSame;

template <typename T1>
struct IsSame<T1, T1>;

ParametersParameters

Remarks

Members
Public ConstantsPublic Constants

NAME DESCRIPTION

IsSame::value Indicates whether one type is the same as another.

Inheritance Hierarchy

Requirements

IsSame::value

Supports the WRL infrastructure and is not intended to be used directly from your code.

T1
A type.

T2
Another type.

Tests whether one specified type is the same as another specified type.

IsSame

Header: internal.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/issame-structure.md


template <typename T1, typename T2>
struct IsSame
{
    static const bool value = false;
};

template <typename T1>
struct IsSame<T1, T1>
{
    static const bool value = true;
};

RemarksRemarks
Indicates whether one type is the same as another.

value  is true if the template parameters are the same, and false if the template parameters are different.



MakeAllocator Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<
    typename T,
    bool hasWeakReferenceSupport =
          !__is_base_of(RuntimeClassFlags<InhibitWeakReference>,
                        T)
>
class MakeAllocator;

template<typename T>
class MakeAllocator<T, false>;

template<typename T>
class MakeAllocator<T, true>;

ParametersParameters

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

MakeAllocator::MakeAllocator Initializes a new instance of the MakeAllocator  class.

MakeAllocator::~MakeAllocator Deinitializes the current instance of the MakeAllocator  class.

Public MethodsPublic Methods

NAME DESCRIPTION

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
A type name.

hasWeakReferenceSupport
true to allocate memory for an object that supports weak references; false to allocate memory for an object that
doesn't support weak references.

Allocates memory for an activatable class, with or without weak reference support.

Override the MakeAllocator  class to implement a user-defined memory allocation model.

MakeAllocator  is typically used to prevent memory leaks if an object throws during construction.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/makeallocator-class.md


   

 

 

MakeAllocator::Allocate Allocates memory and associates it with the current 
MakeAllocator  object.

MakeAllocator::Detach Disassociates memory allocated by the Allocate method from
the current MakeAllocator  object.

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

MakeAllocator::Allocate

__forceinline void* Allocate();

Return ValueReturn Value

RemarksRemarks

MakeAllocator::Detach

__forceinline void Detach();

RemarksRemarks

MakeAllocator::MakeAllocator

MakeAllocator();

RemarksRemarks

MakeAllocator

Header: implements.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

If successful, a pointer to the allocated memory; otherwise, nullptr .

Allocates memory and associates it with the current MakeAllocator  object.

The size of the allocated memory is the size of the type specified by the current MakeAllocator  template parameter.

A developer needs to override only the Allocate()  method to implement a different memory allocation model.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Disassociates memory allocated by the Allocate method from the current MakeAllocator  object.

If you call Detach() , you are responsible for deleting the memory provided by the Allocate  method.

Supports the WRL infrastructure and is not intended to be used directly from your code.



 MakeAllocator::~MakeAllocator

~MakeAllocator();

RemarksRemarks

Initializes a new instance of the MakeAllocator  class.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Deinitializes the current instance of the MakeAllocator  class.

This destructor also deletes the underlying allocated memory if necessary.



MakeAndInitialize Function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <
    typename T,
    typename I,
    typename TArg1,
    typename TArg2,
    typename TArg3,
    typename TArg4,
    typename TArg5,
    typename TArg6,
    typename TArg7,
    typename TArg8,
    typename TArg9>
HRESULT MakeAndInitialize(
    _Outptr_result_nullonfailure_ I** ppvObject,
    TArg1 &&arg1,
    TArg2 &&arg2,
    TArg3 &&arg3,
    TArg4 &&arg4,
    TArg5 &&arg5,
    TArg6 &&arg6,
    TArg7 &&arg7,
    TArg8 &&arg8,
    TArg9 &&arg9) throw()

ParametersParameters

Initializes the specified Windows Runtime class. Use this function to instantiate a component that is defined in the
same module.

T
A user-specified class that inherits from WRL::RuntimeClass .

TArg1
Type of argument 1 that is passed to the specified runtime class.

TArg2
Type of argument 2 that is passed to the specified runtime class.

TArg3
Type of argument 3 that is passed to the specified runtime class.

TArg4
Type of argument 4 that is passed to the specified runtime class.

TArg5
Type of argument 5 that is passed to the specified runtime class.

TArg6
Type of argument 6 that is passed to the specified runtime class.

TArg7
Type of argument 7 that is passed to the specified runtime class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/makeandinitialize-function.md


Return Value

Remarks

Requirements

See Also

TArg8
Type of argument 8 that is passed to the specified runtime class.

TArg9
Type of argument 9 that is passed to the specified runtime class.

arg1
Argument 1 that is passed to the specified runtime class.

arg2
Argument 2 that is passed to the specified runtime class.

arg3
Argument 3 that is passed to the specified runtime class.

arg4
Argument 4 that is passed to the specified runtime class.

arg5
Argument 5 that is passed to the specified runtime class.

arg6
Argument 6 that is passed to the specified runtime class.

arg7
Argument 7 that is passed to the specified runtime class.

arg8
Argument 8 that is passed to the specified runtime class.

arg9
Argument 9 that is passed to the specified runtime class.

An HRESULT value.

See How to: Instantiate WRL Components Directly to learn the differences between this function and
Microsoft::WRL::Make, and for an example.

Header: implements.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace



 

ModuleBase Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
class ModuleBase;

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

ModuleBase::ModuleBase Initializes an instance of the Module  class.

ModuleBase::~ModuleBase Deinitializes the current instance of the Module  class.

Public MethodsPublic Methods

NAME DESCRIPTION

ModuleBase::DecrementObjectCount When implemented, decrements the number of objects
tracked by the module.

ModuleBase::IncrementObjectCount When implemented, increments the number of objects
tracked by the module.

Inheritance Hierarchy

Requirements

ModuleBase::~ModuleBase

virtual ~ModuleBase();

Supports the WRL infrastructure and is not intended to be used directly from your code.

Represents the base class of the Module classes.

ModuleBase

Header: implements.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/modulebase-class.md


   

   

 

RemarksRemarks

ModuleBase::DecrementObjectCount

virtual long DecrementObjectCount() = 0;

Return ValueReturn Value

RemarksRemarks

ModuleBase::IncrementObjectCount

virtual long IncrementObjectCount() = 0;

Return ValueReturn Value

RemarksRemarks

ModuleBase::ModuleBase

ModuleBase();

RemarksRemarks

Deinitializes the current instance of the ModuleBase  class.

Supports the WRL infrastructure and is not intended to be used directly from your code.

The count before the decrement operation.

When implemented, decrements the number of objects tracked by the module.

Supports the WRL infrastructure and is not intended to be used directly from your code.

The count before the increment operation.

When implemented, increments the number of objects tracked by the module.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Initializes an instance of the Module  class.



Move Function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<class T>
inline typename RemoveReference<T>::Type&& Move(
   _Inout_ T&& arg
);

ParametersParameters

Return Value

Remarks

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
The type of the argument.

arg
An argument to move.

Parameter arg after reference or rvalue-reference traits, if any, have been removed.

Moves the specified argument from one location to another.

For more information, see the Move Semantics section of Rvalue Reference Declarator: &&.

Header: internal.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/move-function.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/rvalue-reference-declarator-amp-amp


Nil Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct Nil;

Remarks

Inheritance Hierarchy

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

Used to indicate an unspecified, optional template parameter.

Nil is an empty structure.

Nil

Header: implements.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/nil-structure.md


RaiseException Function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
inline void __declspec(noreturn)   RaiseException(
      HRESULT hr,
      DWORD dwExceptionFlags = EXCEPTION_NONCONTINUABLE);

ParametersParameters

Remarks

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

hr
The exception code of the exception being raised; that is, the HRESULT of a failed operation.

dwExceptionFlags
A flag that indicates a continuable exception (the flag value is zero), or noncontinuable exception (flag value is
nonzero). By default, the exception is noncontinuable.

Raises an exception in the calling thread.

For more information, see the Windows RaiseException  function.

Header: internal.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/raiseexception-function.md


RemoveIUnknown Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename T>
struct RemoveIUnknown;

template <typename T>
class RemoveIUnknown : public T;

ParametersParameters

Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

ReturnType A synonym for a type that is equivalent to template
parameter T but has nonvirtual IUnknown  members.

Inheritance Hierarchy

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
A class.

Makes a type that is equivalent to an IUnknown -based type, but has nonvirtual QueryInterface , AddRef , and 
Release  member functions.

By default, COM methods provide virtual QueryInterface , AddRef , and Release  methods. However, ComPtr

doesn't require the overhead of virtual methods. RemoveIUnknown  eliminates that overhead by providing private,
nonvirtual QueryInterface , AddRef , and Release  methods.

T

RemoveIUnknown

Header: client.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/removeiunknown-class.md


RemoveReference Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<class T>
struct RemoveReference;

template<class T>
struct RemoveReference<T&>;

template<class T>
struct RemoveReference<T&&>;

ParametersParameters

Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

Type Synonym for the class template parameter.

Inheritance Hierarchy

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
A class.

Strips the reference or rvalue-reference trait from the specified class template parameter.

RemoveReference

Header: internal.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/removereference-structure.md


RuntimeClassBase Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct RuntimeClassBase;

Remarks

Inheritance Hierarchy

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

Used to detect RuntimeClass  in the Make function.

RuntimeClassBase is an empty structure.

RuntimeClassBase

Header: implements.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/runtimeclassbase-structure.md


 

RuntimeClassBaseT Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <unsigned int RuntimeClassTypeT>
friend struct Details::RuntimeClassBaseT;

ParametersParameters

Remarks

Members
Protected MethodsProtected Methods

NAME DESCRIPTION

RuntimeClassBaseT::AsIID Retrieves a pointer to the specified interface ID.

RuntimeClassBaseT::GetImplementedIIDS Retrieves an array of interface IDs that are implemented by a
specified type.

Inheritance Hierarchy

Requirements

RuntimeClassBaseT::AsIID

template<typename T>
__forceinline static HRESULT AsIID(
   _In_ T* implements,
   REFIID riid,
   _Deref_out_ void **ppvObject
);

Supports the WRL infrastructure and is not intended to be used directly from your code.

RuntimeClassTypeT
A field of flags that specifies one or more RuntimeClassType enumerators.

Provides helper methods for QueryInterface  operations and getting interface IDs.

RuntimeClassBaseT

Header: implements.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/runtimeclassbaset-structure.md


 

ParametersParameters

Return ValueReturn Value

RemarksRemarks

RuntimeClassBaseT::GetImplementedIIDS

template<typename T>
__forceinline static HRESULT GetImplementedIIDS(
   _In_ T* implements,
   _Out_ ULONG *iidCount,
   _Deref_out_ _Deref_post_cap_(*iidCount) IID **iids
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

T
A type that implements the interface ID specified by parameter riid.

implements
A variable of the type specified by template parameter T.

riid
The interface ID to retrieve.

ppvObject
If this operation is successful, a pointer-to-a-pointer to the interface specified by parameter riid.

S_OK if successful; otherwise, an HRESULT that describes the error.

Retrieves a pointer to the specified interface ID.

Supports the WRL infrastructure and is not intended to be used directly from your code.

T
The type of the implements parameter.

implements
Pointer to the type specified by parameter T.

iidCount
The maximum number of interface IDs to retrieve.

iids
If this operation completes successfully, an array of the interface IDs implemented by type T.

S_OK if successful; otherwise, an HRESULT that describes the error.

Retrieves an array of interface IDs that are implemented by a specified type.



Swap Function (WRL)
1/16/2019 • 2 minutes to read • Edit Online

Syntax
WRL_NOTHROW inline void Swap(
   _Inout_ T& left,
   _Inout_ T& right
);

ParametersParameters

Return Value

Remarks

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

left
The first argument.

right
The second argument.

Exchanges the values of the two specified arguments.

Header: internal.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/swap-function-wrl.md


TerminateMap Function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
inline bool TerminateMap(
   _In_ ModuleBase *module,
   _In_opt_z_ const wchar_t *serverName,
    bool forceTerminate) throw()

ParametersParameters

Return Value

Remarks

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

module
A module.

serverName
The name of a subset of class factories in the module specified by parameter module.

forceTerminate
true to terminate the class factories regardless of they are active; false to not terminate the class factories if any
factory is active.

true if all class factories were terminated; otherwise, false.

Shuts down the class factories in the specified module.

Header: module.h

Namespace: Microsoft::WRL::Details

Microsoft::WRL::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/terminatemap-function.md


 

VerifyInheritanceHelper Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename I, typename Base>
struct VerifyInheritanceHelper;

template <typename I>
struct VerifyInheritanceHelper<I, Nil>;

ParametersParameters

Remarks

Members
Public MethodsPublic Methods

NAME DESCRIPTION

VerifyInheritanceHelper::Verify Tests the two interfaces specified by the current template
parameters and determines whether one interface is derived
from the other.

Inheritance Hierarchy

Requirements

VerifyInheritanceHelper::Verify

static void Verify();

Supports the WRL infrastructure and is not intended to be used directly from your code.

I
A type.

Base
Another type.

Tests whether one interface is derived from another interface.

VerifyInheritanceHelper

Header: implements.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/verifyinheritancehelper-structure.md


RemarksRemarks
Tests the two interfaces specified by the current template parameters and determines whether one interface is
derived from the other.

An error is emitted if one interface is not derived from the other.



 

VerifyInterfaceHelper Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <bool isWinRTInterface, typename I>
struct VerifyInterfaceHelper;

template <typename I>
struct VerifyInterfaceHelper<false, I>;

ParametersParameters

Remarks

Members
Public MethodsPublic Methods

NAME DESCRIPTION

VerifyInterfaceHelper::Verify Method Verifies that the interface specified by the current template
parameter meets certain requirements.

Inheritance Hierarchy

Requirements

VerifyInterfaceHelper::Verify

static void Verify();

RemarksRemarks

Supports the Windows Runtime C++ Template Library infrastructure and is not intended to be used directly from
your code.

I
An interface to verify.

isWinRTInterface

Verifies that the interface specified by the template parameter meets certain requirements.

VerifyInterfaceHelper

Header: implements.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/verifyinterfacehelper-structure.md


Verifies that the interface specified by the current template parameter meets certain requirements.



WeakReference Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
class WeakReference;

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

WeakReference::WeakReference Initializes a new instance of the WeakReference  class.

WeakReference::~WeakReference Deinitializes (destroys) the current instance of the 
WeakReference  class.

Public MethodsPublic Methods

NAME DESCRIPTION

WeakReference::DecrementStrongReference Decrements the strong reference count of the current 
WeakReference  object.

WeakReference::IncrementStrongReference Increments the strong reference count of the current 
WeakReference  object.

WeakReference::Resolve Sets the specified pointer to the current strong reference value
if the strong reference count is nonzero.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Represents a weak reference that can be used with the Windows Runtime or classic COM. A weak reference
represents an object that might or might not be accessible.

A WeakReference  object maintains a strong reference, which is a pointer to an object, and a strong reference count,
which is the number of copies of the strong reference that have been distributed by the Resolve()  method. While
the strong reference count is nonzero, the strong reference is valid and the object is accessible. When the strong
reference count becomes zero, the strong reference is invalid and the object is inaccessible.

A WeakReference  object is typically used to represent an object whose existence is controlled by an external thread
or application. For example, construct a WeakReference  object from a reference to a file object. While the file is
open, the strong reference is valid. But if the file is closed, the strong reference becomes invalid.

The WeakReference  methods are thread safe.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/weakreference-class.md


 

 

 

WeakReference::SetUnknown Sets the strong reference of the current WeakReference

object to the specified interface pointer.

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

WeakReference::~WeakReference

virtual ~WeakReference();

Return ValueReturn Value

RemarksRemarks

WeakReference::DecrementStrongReference

ULONG DecrementStrongReference();

RemarksRemarks

Return ValueReturn Value

WeakReference::IncrementStrongReference

ULONG IncrementStrongReference();

Return ValueReturn Value

RemarksRemarks

WeakReference

Header: implements.h

Namespace: Microsoft::WRL::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

Deinitializes the current instance of the WeakReference  class.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Decrements the strong reference count of the current WeakReference  object.

When the strong reference count becomes zero, the strong reference is set to nullptr .

The decremented strong reference count.

Supports the WRL infrastructure and is not intended to be used directly from your code.

The incremented strong reference count.

Increments the strong reference count of the current WeakReference  object.



 

 

 

WeakReference::Resolve

STDMETHOD(Resolve)
   (REFIID riid,
   _Deref_out_opt_ IInspectable **ppvObject
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

WeakReference::SetUnknown

void SetUnknown(
   _In_ IUnknown* unk
);

ParametersParameters

RemarksRemarks

WeakReference::WeakReference

WeakReference();

RemarksRemarks

Supports the WRL infrastructure and is not intended to be used directly from your code.

riid
An interface ID.

ppvObject
When this operation completes, a copy of the current strong reference if the strong reference count is nonzero.

S_OK if this operation is successful and the strong reference count is zero. The ppvObject parameter is set
to nullptr .

S_OK if this operation is successful and the strong reference count is nonzero. The ppvObject parameter is
set to the strong reference.

Otherwise, an HRESULT that indicates the reason this operation failed.

Sets the specified pointer to the current strong reference value if the strong reference count is nonzero.

Supports the WRL infrastructure and is not intended to be used directly from your code.

unk
A pointer to the IUnknown  interface of an object.

Sets the strong reference of the current WeakReference  object to the specified interface pointer.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Initializes a new instance of the WeakReference  class.

The strong reference pointer for the WeakReference  object is initialized to nullptr , and the strong reference count
is initialized to 1.



Microsoft::WRL::Wrappers Namespace
1/16/2019 • 2 minutes to read • Edit Online

Syntax
namespace Microsoft::WRL::Wrappers;

Members
TypedefsTypedefs

NAME DESCRIPTION

FileHandle HandleT<HandleTraits::FileHandleTraits>

ClassesClasses

NAME DESCRIPTION

CriticalSection Class Represents a critical section object.

Event Class (WRL) Represents an event.

HandleT Class Represents a handle to an object.

HString Class Provides support for manipulating HSTRING handles.

HStringReference Class Represents an HSTRING that is created from an existing
string.

Mutex Class Represents a synchronization object that exclusively controls a
shared resource.

RoInitializeWrapper Class Initializes the Windows Runtime.

Semaphore Class Represents a synchronization object that controls a shared
resource that can support a limited number of users.

SRWLock Class Represents a slim reader/writer lock.

Requirements

Defines Resource Acquisition Is Initialization (RAII) wrapper types that simplify the lifetime management of
objects, strings, and handles.

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/microsoft-wrl-wrappers-namespace.md


See Also
Microsoft::WRL Namespace



CriticalSection Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
class CriticalSection;

Members
ConstructorConstructor

NAME DESCRIPTION

CriticalSection::CriticalSection Initializes a synchronization object that is similar to a mutex
object, but can be used by only the threads of a single
process.

CriticalSection::~CriticalSection Deinitializes and destroys the current CriticalSection

object.

Public MethodsPublic Methods

NAME DESCRIPTION

CriticalSection::IsValid Indicates whether the current critical section is valid.

CriticalSection::Lock Waits for ownership of the specified critical section object. The
function returns when the calling thread is granted ownership.

CriticalSection::TryLock Attempts to enter a critical section without blocking. If the call
is successful, the calling thread takes ownership of the critical
section.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

CriticalSection::cs_ Declares a critical section data member.

Inheritance Hierarchy

Requirements

Represents a critical section object.

CriticalSection

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/criticalsection-class.md


 

 

 

 

 

CriticalSection::~CriticalSection

WRL_NOTHROW ~CriticalSection();

CriticalSection::CriticalSection

explicit CriticalSection(
   ULONG spincount = 0
);

ParametersParameters

RemarksRemarks

CriticalSection::cs_

CRITICAL_SECTION cs_;

RemarksRemarks

CriticalSection::IsValid

bool IsValid() const;

Return ValueReturn Value

CriticalSection::Lock

Deinitializes and destroys the current CriticalSection  object.

Initializes a synchronization object that is similar to a mutex object, but can be used by only the threads of a single
process.

spincount
The spin count for the critical section object. The default value is 0.

For more information about critical sections and spincounts, see the InitializeCriticalSectionAndSpinCount

function in the Synchronization  section of the Windows API documenation.

Declares a critical section data member.

This data member is protected.

Indicates whether the current critical section is valid.

By default, always returns true.

Waits for ownership of the specified critical section object. The function returns when the calling thread is granted
ownership.



 

SyncLock Lock();

   static SyncLock Lock(
   _In_ CRITICAL_SECTION* cs
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

CriticalSection::TryLock

SyncLock TryLock();

static SyncLock TryLock(
   _In_ CRITICAL_SECTION* cs
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

cs
A user-specified critical section object.

A lock object that can be used to unlock the current critical section.

The first Lock  function affects the current critical section object. The second Lock  function affects a user-specified
critical section.

Attempts to enter a critical section without blocking. If the call is successful, the calling thread takes ownership of
the critical section.

cs
A user-specified critical section object.

A nonzero value if the critical section is successfully entered or the current thread already owns the critical section.
Zero if another thread already owns the critical section.

The first TryLock  function affects the current critical section object. The second TryLock  function affects a user-
specified critical section.



 

Event Class (WRL)
1/16/2019 • 2 minutes to read • Edit Online

Syntax
class Event : public HandleT<HandleTraits::EventTraits>;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

Event::Event Initializes a new instance of the Event  class.

Public OperatorsPublic Operators

NAME DESCRIPTION

Event::operator= Assigns the specified Event  reference to the current Event

instance.

Inheritance Hierarchy

Requirements

Event::Event

explicit Event(
   HANDLE h = HandleT::Traits::GetInvalidValue()
);
WRL_NOTHROW Event(
   _Inout_ Event&& h
);

ParametersParameters

Represents an event.

HandleT

Event

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers

Initializes a new instance of the Event  class.

h

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/event-class-wrl.md


 Event::operator=

WRL_NOTHROW Event& operator=(
   _Inout_ Event&& h
);

ParametersParameters

Return ValueReturn Value

Handle to an event. By default, h is initialized to nullptr .

Assigns the specified Event  reference to the current Event  instance.

h
An rvalue-reference to an Event  instance.

A pointer to the current Event  instance.



HandleT Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename HandleTraits>
class HandleT;

ParametersParameters

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

Traits A synonym for HandleTraits .

Public ConstructorsPublic Constructors

NAME DESCRIPTION

HandleT::HandleT Initializes a new instance of the HandleT  class.

HandleT::~HandleT Deinitializes an instance of the HandleT  class.

Public MethodsPublic Methods

NAME DESCRIPTION

HandleT::Attach Associates the specified handle with the current HandleT

object.

HandleT::Close Closes the current HandleT  object.

HandleT::Detach Disassociates the current HandleT  object from its underlying
handle.

HandleT::Get Gets the value of the underlying handle.

HandleT::IsValid Indicates whether the current HandleT  object represents a
handle.

Protected MethodsProtected Methods

Represents a handle to an object.

HandleTraits
An instance of the HandleTraits stucture that defines common characteristics of a handle.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/handlet-class.md


 

 

 

NAME DESCRIPTION

HandleT::InternalClose Closes the current HandleT  object.

Public OperatorsPublic Operators

NAME DESCRIPTION

HandleT::operator= Moves the value of the specified HandleT  object to the
current HandleT  object.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

HandleT::handle_ Contains the handle that is represented by the HandleT

object.

Inheritance Hierarchy

Requirements

HandleT::~HandleT

~HandleT();

HandleT::Attach

void Attach(
   typename HandleTraits::Type h
);

ParametersParameters

HandleT::Close

void Close();

HandleT

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers

Deinitializes an instance of the HandleT  class.

Associates the specified handle with the current HandleT  object.

h
A handle.

Closes the current HandleT  object.



 

 

 

 

RemarksRemarks

HandleT::Detach

typename HandleTraits::Type Detach();

Return ValueReturn Value

RemarksRemarks

HandleT::Get

typename HandleTraits::Type Get() const;

Return ValueReturn Value

HandleT::handle_

typename HandleTraits::Type handle_;

HandleT::HandleT

explicit HandleT(
   typename HandleTraits::Type h =
      HandleTraits::GetInvalidValue()
);

HandleT(
   _Inout_ HandleT&& h
);

ParametersParameters

RemarksRemarks

The handle that underlies the current HandleT  is closed, and the HandleT  is set to the invalid state.

If the handle doesn't close properly, an exception is raised in the calling thread.

Disassociates the current HandleT  object from its underlying handle.

The underlying handle.

When this operation completes, the current HandleT  is set to the invalid state.

Gets the value of the underlying handle.

A handle.

Contains the handle that is represented by the HandleT  object.

Initializes a new instance of the HandleT  class.

h
A handle.

The first constructor initializes a HandleT  object that is not a valid handle to an object. The second constructor
creates a new HandleT  object from parameter h.



 

 

 

HandleT::InternalClose

virtual bool InternalClose();

Return ValueReturn Value

RemarksRemarks

HandleT::IsValid

bool IsValid() const;

Return ValueReturn Value

HandleT::operator=

HandleT& operator=(
   _Inout_ HandleT&& h
);

ParametersParameters

Return ValueReturn Value

RemarksRemarks

Closes the current HandleT  object.

true if the current HandleT  closed successfully; otherwise, false.

InternalClose()  is protected .

Indicates whether the current HandleT  object represents a handle.

true if the HandleT  represents a handle; otherwise, false.

Moves the value of the specified HandleT  object to the current HandleT  object.

h
An rvalue-reference to a handle.

A reference to the current HandleT  object.

This operation invalidates the HandleT  object specified by parameter h.



HString Class
1/24/2019 • 4 minutes to read • Edit Online

Syntax
class HString;

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

HString::HString Initializes a new instance of the HString  class.

HString::~HString Destroys the current instance of the HString  class.

Public MethodsPublic Methods

NAME DESCRIPTION

HString::Attach Associates the specified HString  object with the current 
HString  object.

HString::CopyTo Copies the current HString  object to an HSTRING object.

HString::Detach Disassociates the specified HString  object from its
underlying value.

HString::Get Retrieves the value of the underlying HSTRING handle.

HString::GetAddressOf Retrieves a pointer to the underlying HSTRING handle.

HString::IsValid Indicates whether the current HString  object is valid.

HString::MakeReference Creates an HStringReference  object from a specified string
parameter.

HString::Release Deletes the underlying string value and intializes the current 
HString  object to an empty value.

A helper class for managing the lifetime of an HSTRING using the RAII pattern.

The Windows Runtime provides access to strings through HSTRING handles. The HString  class provides
convenience functions and operators to simplify using HSTRING handles. This class can handle the lifetime of the
HSTRING it owns through an RAII pattern.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/hstring-class.md
https://docs.microsoft.com/windows/desktop/WinRT/hstring
https://docs.microsoft.com/windows/desktop/WinRT/hstring


 

 

 

HString::Set Sets the value of the current HString  object to the specified
wide-character string or HString  parameter.

NAME DESCRIPTION

Public OperatorsPublic Operators

NAME DESCRIPTION

HString::operator= Moves the value of another HString  object to the current 
HString  object.

HString::operator== Indicates whether the two parameters are equal.

HString::operator!= Indicates whether the two parameters are not equal.

HString::operator< Indicates whether the first parameter is less than the second
parameter.

Inheritance Hierarchy

Requirements

HString::~HString

~HString() throw()

HString::Attach

void Attach(
       HSTRING hstr
       ) throw()

ParametersParameters

HString::CopyTo

HString

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers

Destroys the current instance of the HString  class.

Associates the specified HString  object with the current HString  object.

hstr
An existing HString  object.

Copies the current HString  object to an HSTRING object.



 

 

 

 

HRESULT CopyTo(
   _Out_ HSTRING *str
   ) const throw();

ParametersParameters

RemarksRemarks

HString::Detach

HSTRING Detach() throw()

Return ValueReturn Value

HString::Get

HSTRING Get() const throw()

Return ValueReturn Value

HString::GetAddressOf

HSTRING* GetAddressOf() throw()

Return ValueReturn Value

RemarksRemarks

HString::HString

HString(HSTRING hstr = nullptr) throw();
HString(HString&& other) throw();

ParametersParameters

str
The HSTRING that receives the copy.

This method calls the WindowsDuplicateString function.

Disassociates the specified HString  object from its underlying value.

The underlying HString  value before the detach operation started.

Retrieves the value of the underlying HSTRING handle.

The value of the underlying HSTRING handle

Retrieves a pointer to the underlying HSTRING handle.

A pointer to the underlying HSTRING handle.

After this operation, the string value of the underlying HSTRING handle is destroyed.

Initializes a new instance of the HString  class.

hstr

https://docs.microsoft.com/windows/desktop/api/winstring/nf-winstring-windowsduplicatestring


 

 

 

RemarksRemarks

HString::IsValid

bool IsValid() const throw()

ParametersParameters

HString::MakeReference

template<unsigned int sizeDest>
    static HStringReference MakeReference(
              wchar_t const (&str)[ sizeDest]);

    template<unsigned int sizeDest>
    static HStringReference MakeReference(
              wchar_t const (&str)[sizeDest],
              unsigned int len);

ParametersParameters

Return ValueReturn Value

HString::operator= Operator

HString& operator=(HString&& other) throw()

ParametersParameters

An HSTRING handle.

other
An existing HString  object.

The first constructor initializes a new HString  object that is empty.

The second constructor initializes a new HString  object to the value of the existing other parameter, and then
destroys the other parameter.

Indicates whether the current HString  object is empty or not.

true if the current HString  object is not empty; otherwise, false.

Creates an HStringReference  object from a specified string parameter.

sizeDest
A template parameter that specifies the size of the destination HStringReference  buffer.

str
A reference to a wide-character string.

len
The maximum length of the str parameter buffer to use in this operation. If the len parameter isn't specified, the
entire str parameter is used.

An HStringReference  object whose value is the same as the specified str parameter.

Moves the value of another HString  object to the current HString  object.



 

 

RemarksRemarks

HString::operator== Operator

inline bool operator==(
               const HString& lhs,
               const HString& rhs) throw()

inline bool operator==(
                const HString& lhs,
                const HStringReference& rhs) throw()

inline bool operator==(
                const HStringReference& lhs,
                const HString& rhs) throw()

inline bool operator==(
                 const HSTRING& lhs,
                 const HString& rhs) throw()

inline bool operator==(
                 const HString& lhs,
                 const HSTRING& rhs) throw()

ParametersParameters

Return ValueReturn Value

HString::operator!= Operator

inline bool operator!=( const HString& lhs,
                        const HString& rhs) throw()

inline bool operator!=( const HStringReference& lhs,
                        const HString& rhs) throw()

inline bool operator!=( const HString& lhs,
                        const HStringReference& rhs) throw()

inline bool operator!=( const HSTRING& lhs,
                        const HString& rhs) throw()

inline bool operator!=( const HString& lhs,
                        const HSTRING& rhs) throw()

other
An existing HString  object.

The value of the existing other object is copied to the current HString  object, and then the other object is
destroyed.

Indicates whether the two parameters are equal.

lhs
The first parameter to compare. lhs can be an HString  or HStringReference  object, or an HSTRING handle.

rhs
The second parameter to compare.rhs can be an HString  or HStringReference  object, or an HSTRING handle.

true if the lhs and rhs parameters are equal; otherwise, false.

Indicates whether the two parameters are not equal.



 

 

 

ParametersParameters

Return ValueReturn Value

HString::operator< Operator

inline bool operator<(
    const HString& lhs,
    const HString& rhs) throw()

ParametersParameters

Return ValueReturn Value

HString::Release

void Release() throw()

HString::Set

HRESULT Set(
          const wchar_t* str) throw();
HRESULT Set(
          const wchar_t* str,
          unsigned int len
           ) throw();
HRESULT Set(
          const HSTRING& hstr
           ) throw();

ParametersParameters

lhs
The first parameter to compare. lhs can be an HString  or HStringReference  object, or an HSTRING handle.

rhs
The second parameter to compare.rhs can be an HString  or HStringReference  object, or an HSTRING handle.

true if the lhs and rhs parameters are not equal; otherwise, false.

Indicates whether the first parameter is less than the second parameter.

lhs
The first parameter to compare. lhs can be a reference to an HString .

rhs
The second parameter to compare. rhs can be a reference to an HString .

true if the lhs parameter is less than the rhs parameter ; otherwise, false.

Deletes the underlying string value and intializes the current HString  object to an empty value.

Sets the value of the current HString  object to the specified wide-character string or HString  parameter.

str
A wide-character string.

len
The maximum length of the str parameter that is assigned to the current HString  object.



hstr
An existing HString  object.



HStringReference Class
1/24/2019 • 3 minutes to read • Edit Online

Syntax
class HStringReference;

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

HStringReference::HStringReference Initializes a new instance of the HStringReference  class.

Public MethodsPublic Methods

MEMBER DESCRIPTION

HStringReference::CopyTo Copies the current HStringReference  object to an HSTRING
object.

HStringReference::Get Retrieves the value of the underlying HSTRING handle.

Public OperatorsPublic Operators

NAME DESCRIPTION

HStringReference::operator= Moves the value of another HStringReference  object to the
current HStringReference  object.

HStringReference::operator== Indicates whether the two parameters are equal.

HStringReference::operator!= Indicates whether the two parameters are not equal.

HStringReference::operator< Indicates whether the first parameter is less than the second
parameter.

Inheritance Hierarchy

Represents an HSTRING that is created from an existing string.

The lifetime of the backing buffer in the new HSTRING is not managed by the Windows Runtime. The caller
allocates a source string on the stack frame to avoid a heap allocation and to eliminate the risk of a memory leak.
Also, the caller must ensure that source string remains unchanged during the lifetime of the attached HSTRING.
For more information, see WindowsCreateStringReference function.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/hstringreference-class.md
https://docs.microsoft.com/windows/desktop/api/winstring/nf-winstring-windowscreatestringreference


 

 

 

Requirements

HStringReference::CopyTo

HRESULT CopyTo(
   _Out_ HSTRING *str
   ) const throw();

ParametersParameters

RemarksRemarks

HStringReference::Get

HSTRING Get() const throw()

Return ValueReturn Value

HStringReference::HStringReference

template<unsigned int sizeDest>
HStringReference(wchar_t const (&str)[ sizeDest]) throw();

template<unsigned int sizeDest>
HStringReference(wchar_t const (&str)[ sizeDest],
                 unsigned int len) throw();

HStringReference(HStringReference&& other) throw();

ParametersParameters

HStringReference

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers

Copies the current HStringReference  object to an HSTRING object.

str
The HSTRING that receives the copy.

This method calls the WindowsDuplicateString function.

Retrieves the value of the underlying HSTRING handle.

The value of the underlying HSTRING handle.

Initializes a new instance of the HStringReference  class.

sizeDest
A template parameter that specifies the size of the destination HStringReference  buffer.

str
A reference to a wide-character string.

len
The maximum length of the str parameter buffer to use in this operation. If the len parameter isn't specified, the

https://docs.microsoft.com/windows/desktop/api/winstring/nf-winstring-windowsduplicatestring


 

 

 

RemarksRemarks

HStringReference::operator=

HStringReference& operator=(HStringReference&& other) throw()

ParametersParameters

RemarksRemarks

HStringReference::operator==

inline bool operator==(
               const HStringReference& lhs,
               const HStringReference& rhs) throw()

inline bool operator==(
               const HSTRING& lhs,
               const HStringReference& rhs) throw()

inline bool operator==(
               const HStringReference& lhs,
               const HSTRING& rhs) throw()

ParametersParameters

Return ValueReturn Value

HStringReference::operator!=

entire str parameter is used. If len is greater than sizeDest, len is set to sizeDest-1.

other
Another HStringReference  object.

The first constructor initializes a new HStringReference  object that the same size as parameter str.

The second constructor initializes a new HStringReference  object that the size specifeid by parameter len.

The third constructor initializes a new HStringReference  object to the value of the other parameter, and then
destroys the other parameter.

Moves the value of another HStringReference  object to the current HStringReference  object.

other
An existing HStringReference  object.

The value of the existing other object is copied to the current HStringReference  object, and then the other object is
destroyed.

Indicates whether the two parameters are equal.

lhs
The first parameter to compare. lhs can be an HStringReference  object or an HSTRING handle.

rhs
The second parameter to compare. rhs can be an HStringReference  object or an HSTRING handle.

true if the lhs and rhs parameters are equal; otherwise, false.

Indicates whether the two parameters are not equal.



 

inline bool operator!=(
               const HStringReference& lhs,
               const HStringReference& rhs) throw()

inline bool operator!=(
               const HSTRING& lhs,
               const HStringReference& rhs) throw()

inline bool operator!=(
               const HStringReference& lhs,
               const HSTRING& rhs) throw()

ParametersParameters

Return ValueReturn Value

HStringReference::operator<

inline bool operator<(
    const HStringReference& lhs,
    const HStringReference& rhs) throw()

ParametersParameters

Return ValueReturn Value

lhs
The first parameter to compare. lhs can be an HStringReference  object or an HSTRING handle.

rhs
The second parameter to compare. rhs can be an HStringReference  object or an HSTRING handle.

true if the lhs and rhs parameters are not equal; otherwise, false.

Indicates whether the first parameter is less than the second parameter.

lhs
The first parameter to compare. lhs can be a reference to an HStringReference .

rhs
The second parameter to compare. rhs can be a reference to an HStringReference .

true if the lhs parameter is less than the rhs parameter ; otherwise, false.



 

Mutex Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
class Mutex : public HandleT<HandleTraits::MutexTraits>;

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

SyncLock A synonym for a class that supports synchronous locks.

Public ConstructorPublic Constructor

NAME DESCRIPTION

Mutex::Mutex Initializes a new instance of the Mutex  class.

Public MembersPublic Members

NAME DESCRIPTION

Mutex::Lock Waits until the current object, or the Mutex  object
associated with the specified handle, releases the mutex or the
specified time-out interval has elapsed.

Public OperatorPublic Operator

NAME DESCRIPTION

Mutex::operator= Assigns (moves) the specified Mutex  object to the current 
Mutex  object.

Inheritance Hierarchy

Requirements

Mutex::Lock

Represents a synchronization object that exclusively controls a shared resource.

Mutex

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/mutex-class.md


 

 

SyncLock Lock(
   DWORD milliseconds = INFINITE
);

static SyncLock Lock(
   HANDLE h,
   DWORD milliseconds = INFINITE
);

ParametersParameters

Return ValueReturn Value

Mutex::Mutex

explicit Mutex(
   HANDLE h
);

Mutex(
   _Inout_ Mutex&& h
);

ParametersParameters

RemarksRemarks

Mutex::operator=

Mutex& operator=(
   _Inout_ Mutex&& h
);

ParametersParameters

Return ValueReturn Value

Waits until the current object, or the Mutex  object associated with the specified handle, releases the mutex or the
specified time-out interval has elapsed.

milliseconds
The time-out interval, in milliseconds. The default value is INFINITE, which waits indefinitely.

h
The handle of a Mutex  object.

Initializes a new instance of the Mutex  class.

h
A handle, or an rvalue-reference to a handle, to a Mutex  object.

The first constructor initializes a Mutex  object from the specified handle. The second constructor initializes a 
Mutex  object from the specified handle, and then moves ownership of the mutex to the current Mutex  object.

Assigns (moves) the specified Mutex  object to the current Mutex  object.

h
An rvalue-reference to a Mutex  object.

A reference to the current Mutex  object.



RemarksRemarks
For more information, see the Move Semantics section of Rvalue Reference Declarator: &&.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/rvalue-reference-declarator-amp-amp


   

RoInitializeWrapper Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
class RoInitializeWrapper;

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

RoInitializeWrapper::RoInitializeWrapper Initializes a new instance of the RoInitializeWrapper  class.

RoInitializeWrapper::~RoInitializeWrapper Destroys the current instance of the RoInitializeWrapper

class.

Public OperatorsPublic Operators

NAME DESCRIPTION

RoInitializeWrapper::HRESULT() Retrieves the HRESULT produced by the 
RoInitializeWrapper  constructor.

Inheritance Hierarchy

Requirements

RoInitializeWrapper::HRESULT()

Initializes the Windows Runtime.

RoInitializeWrapper  is a convenience that initializes the Windows Runtime and returns an HRESULT that
indicates whether the operation was successful. Because the class destructor calls 
::Windows::Foundation::Uninitialize , instances of RoInitializeWrapper  must be declared at global or top-level

scope.

RoInitializeWrapper

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers

Retrieves the HRESULT value produced by the last RoInitializeWrapper  constructor.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/roinitializewrapper-class.md


 

 

operator HRESULT()

RoInitializeWrapper::RoInitializeWrapper

RoInitializeWrapper(RO_INIT_TYPE flags)

ParametersParameters

RemarksRemarks

RoInitializeWrapper::~RoInitializeWrapper

~RoInitializeWrapper()

RemarksRemarks

Initializes a new instance of the RoInitializeWrapper  class.

flags
One of the RO_INIT_TYPE enumerations, which specifies the support provided by the Windows Runtime.

The RoInitializeWrapper  class invokes Windows::Foundation::Initialize(flags) .

Uninitializes the Windows Runtime.

The RoInitializeWrapper  class invokes Windows::Foundation::Uninitialize() .



 

Semaphore Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
class Semaphore : public HandleT<HandleTraits::SemaphoreTraits>;

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

SyncLock A synonym for a class that supports synchronous locks.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

Semaphore::Semaphore Initializes a new instance of the Semaphore  class.

Public MethodsPublic Methods

NAME DESCRIPTION

Semaphore::Lock Waits until the current object, or the object associated with
the specified handle, is in the signaled state or the specified
time-out interval has elapsed.

Public OperatorsPublic Operators

NAME DESCRIPTION

Semaphore::operator= Moves the specified handle from a Semaphore  object to the
current Semaphore  object.

Inheritance Hierarchy

Requirements

Semaphore::Lock

Represents a synchronization object that controls a shared resource that can support a limited number of users.

Semaphore

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/semaphore-class.md


 

 

SyncLock Lock(
   DWORD milliseconds = INFINITE
);

static SyncLock Lock(
   HANDLE h,
   DWORD milliseconds = INFINITE
);

ParametersParameters

Return ValueReturn Value

Semaphore::operator=

Semaphore& operator=(
   _Inout_ Semaphore&& h
);

ParametersParameters

Return ValueReturn Value

Semaphore::Semaphore

explicit Semaphore(
   HANDLE h
);

WRL_NOTHROW Semaphore(
   _Inout_ Semaphore&& h
);

ParametersParameters

Waits until the current object, or the Semaphore  object associated with the specified handle, is in the signaled state
or the specified time-out interval has elapsed.

milliseconds
The time-out interval, in milliseconds. The default value is INFINITE, which waits indefinitely.

h
A handle to a Semaphore  object.

A Details::SyncLockWithStatusT<HandleTraits::SemaphoreTraits>

Moves the specified handle from a Semaphore  object to the current Semaphore  object.

h
Rvalue-reference to a Semaphore  object.

A reference to the current Semaphore  object.

Initializes a new instance of the Semaphore  class.

h
A handle or an rvalue-reference to a Semaphore  object.



SRWLock Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
class SRWLock;

Remarks

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

SyncLockExclusive Synonym for an SRWLock  object that is acquired in exclusive
mode.

SyncLockShared Synonym for an SRWLock  object that is acquired in shared
mode.

Public ConstructorsPublic Constructors

NAME DESCRIPTION

SRWLock::SRWLock Initializes a new instance of the SRWLock  class.

SRWLock::~SRWLock Deinitializes an instance of the SRWLock  class.

Public MethodsPublic Methods

NAME DESCRIPTION

SRWLock::LockExclusive Acquires an SRWLock  object in exclusive mode.

SRWLock::LockShared Acquires an SRWLock  object in shared mode.

SRWLock::TryLockExclusive Attempts to acquire a SRWLock  object in exclusive mode for
the current or specified SRWLock  object.

SRWLock::TryLockShared Attempts to acquire a SRWLock  object in shared mode for
the current or specified SRWLock  object.

Protected Data MemberProtected Data Member

Represents a slim reader/writer lock.

A slim reader/writer lock is used to synchronize access across threads to an object or resource. For more
information, see Synchronization Functions.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/srwlock-class.md
https://docs.microsoft.com/windows/desktop/Sync/synchronization-functions


 

 

 

NAME DESCRIPTION

SRWLock::SRWLock_ Contains the underlying lock variable for the current 
SRWLock  object.

Inheritance Hierarchy

Requirements

SRWLock::~SRWLock

~SRWLock();

SRWLock::LockExclusive

SyncLockExclusive LockExclusive();

static SyncLockExclusive LockExclusive(
   _In_ SRWLOCK* lock
);

ParametersParameters

Return ValueReturn Value

SRWLock::LockShared

SyncLockShared LockShared();

static SyncLockShared LockShared(
   _In_ SRWLOCK* lock
);

ParametersParameters

Return ValueReturn Value

SRWLock

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers

Deinitializes an instance of the SRWLock  class.

Acquires an SRWLock  object in exclusive mode.

lock
Pointer to an SRWLock  object.

An SRWLock  object in exclusive mode.

Acquires an SRWLock  object in shared mode.

lock
Pointer to an SRWLock  object.



 

 

 

 

SRWLock::SRWLock

SRWLock();

SRWLock::SRWLock_

SRWLOCK SRWLock_;

SRWLock::TryLockExclusive

SyncLockExclusive TryLockExclusive();

static SyncLockExclusive TryLockExclusive(
   _In_ SRWLOCK* lock
);

ParametersParameters

Return ValueReturn Value

SRWLock::TryLockShared

WRL_NOTHROW SyncLockShared TryLockShared();
WRL_NOTHROW static SyncLockShared TryLockShared(
   _In_ SRWLOCK* lock
);

ParametersParameters

Return ValueReturn Value

An SRWLock  object in shared mode.

Initializes a new instance of the SRWLock  class.

Contains the underlying lock variable for the current SRWLock  object.

Attempts to acquire a SRWLock  object in exclusive mode for the current or specified SRWLock  object. If the call is
successful, the calling thread takes ownership of the lock.

lock
Pointer to an SRWLock  object.

If successful, an SRWLock  object in exclusive mode and the calling thread takes ownership of the lock. Otherwise,
an SRWLock  object whose state is invalid.

Attempts to acquire a SRWLock  object in shared mode for the current or specified SRWLock  object.

lock
Pointer to an SRWLock  object.

If successful, an SRWLock  object in shared mode and the calling thread takes ownership of the lock. Otherwise, an 
SRWLock  object whose state is invalid.



Microsoft::WRL::Wrappers::Details Namespace
1/16/2019 • 2 minutes to read • Edit Online

Syntax
namespace Microsoft::WRL::Wrappers::Details;

Members
ClassesClasses

NAME DESCRIPTION

SyncLockT Class Represents a type that can take exclusive or shared ownership
of a resource.

SyncLockWithStatusT Class Represents a type that can take exclusive or shared ownership
of a resource.

MethodsMethods

NAME DESCRIPTION

CompareStringOrdinal Method Compares two specified HSTRING  objects and returns an
integer that indicates their relative position in a sort order.

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::Details

Microsoft::WRL::Wrappers Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/microsoft-wrl-wrappers-details-namespace.md


CompareStringOrdinal Method
1/16/2019 • 2 minutes to read • Edit Online

Syntax
inline INT32 CompareStringOrdinal(
   HSTRING lhs,
   HSTRING rhs)

ParametersParameters

Return Value
VALUE CONDITION

-1 lhs is less than rhs.

0 lhs equals rhs.

1 lhs is greater than rhs.

Remarks

Requirements

See Also

Supports the WRL infrastructure and is not intended to be used directly from your code.

lhs
The first HSTRING to compare.

rhs
The second HSTRING to compare.

Compares two specified HSTRING objects and returns an integer that indicates their relative position in a sort
order.

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::Details

Microsoft::WRL::Wrappers::Details Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/comparestringordinal-method.md


SyncLockT Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename SyncTraits>
class SyncLockT;

ParametersParameters

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

SyncLockT::SyncLockT Initializes a new instance of the SyncLockT  class.

SyncLockT::~SyncLockT Deinitializes an instance of the SyncLockT  class.

Protected ConstructorsProtected Constructors

NAME DESCRIPTION

SyncLockT::SyncLockT Initializes a new instance of the SyncLockT  class.

Public MethodsPublic Methods

NAME DESCRIPTION

SyncLockT::IsLocked Indicates whether the current SyncLockT  object owns a
resource; that is, the SyncLockT  object is locked.

SyncLockT::Unlock Releases control of the resource held by the current 
SyncLockT  object, if any.

Protected Data MembersProtected Data Members

Supports the WRL infrastructure and is not intended to be used directly from your code.

SyncTraits
The type that can take ownership of a resource.

Represents a type that can take exclusive or shared ownership of a resource.

The SyncLockT  class is used, for example, to help implement the SRWLock class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/synclockt-class.md


 

 

 

  

NAME DESCRIPTION

SyncLockT::sync_ Holds the underlying resource represented by the 
SyncLockT  class.

Inheritance Hierarchy

Requirements

SyncLockT::~SyncLockT

~SyncLockT();

RemarksRemarks

SyncLockT::IsLocked

bool IsLocked() const;

Return ValueReturn Value

RemarksRemarks

SyncLockT::sync_

typename SyncTraits::Type sync_;

RemarksRemarks

SyncLockT::SyncLockT

SyncLockT

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

Deinitializes an instance of the SyncLockT  class.

This destructor also unlocks the current SyncLockT  instance.

Supports the WRL infrastructure and is not intended to be used directly from your code.

true if the SyncLockT  object is locked; otherwise, false.

Indicates whether the current SyncLockT  object owns a resource; that is, the SyncLockT  object is locked.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Holds the underlying resource represented by the SyncLockT  class.

Supports the WRL infrastructure and is not intended to be used directly from your code.



 

SyncLockT(
   _Inout_ SyncLockT&& other
);

explicit SyncLockT(
   typename SyncTraits::Type sync = SyncTraits::GetInvalidValue()
);

ParametersParameters

RemarksRemarks

SyncLockT::Unlock

void Unlock();

RemarksRemarks

other
An rvalue-reference to another SyncLockT  object.

sync
A reference to another SyncLockWithStatusT  object.

Initializes a new instance of the SyncLockT  class.

The first constructor initializes the current SyncLockT  object from another SyncLockT  object specified by
parameter other, and then invalidates the other SyncLockT  object. The second constructor is protected , and
initializes the current SyncLockT  object to an invalid state.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Releases control of the resource held by the current SyncLockT  object, if any.



SyncLockWithStatusT Class
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template <typename SyncTraits>
class SyncLockWithStatusT : public SyncLockT<SyncTraits>;

ParametersParameters

Remarks

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

SyncLockWithStatusT::SyncLockWithStatusT Initializes a new instance of the SyncLockWithStatusT  class.

Protected ConstructorsProtected Constructors

NAME DESCRIPTION

SyncLockWithStatusT::SyncLockWithStatusT Initializes a new instance of the SyncLockWithStatusT  class.

Public MethodsPublic Methods

NAME DESCRIPTION

SyncLockWithStatusT::GetStatus Retrieves the wait status of the current 
SyncLockWithStatusT  object.

SyncLockWithStatusT::IsLocked Indicates whether the current SyncLockWithStatusT  object
owns a resource; that is, the SyncLockWithStatusT  object is
locked.

Protected Data MembersProtected Data Members

NAME DESCRIPTION

Supports the WRL infrastructure and is not intended to be used directly from your code.

SyncTraits
A type that can take exclusive or shared ownership of a resource.

Represents a type that can take exclusive or shared ownership of a resource.

The SyncLockWithStatusT  class is used to implement the Mutex and Semaphore classes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/synclockwithstatust-class.md


 

 

   

SyncLockWithStatusT::status_ Holds the result of the underlying wait operation after a lock
operation on an object based on the current 
SyncLockWithStatusT  object.

NAME DESCRIPTION

Inheritance Hierarchy

Requirements

SyncLockWithStatusT::GetStatus

DWORD GetStatus() const;

Return ValueReturn Value

RemarksRemarks

SyncLockWithStatusT::IsLocked

bool IsLocked() const;

RemarksRemarks

Return ValueReturn Value

SyncLockWithStatusT::status_

SyncLockT

SyncLockWithStatusT

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::Details

Supports the WRL infrastructure and is not intended to be used directly from your code.

The result of a wait operation on the object that is based on the SyncLockWithStatusT  class, such as a Mutex or
Semaphore. Zero (0) indicates the wait operation returned the signaled state; otherwise, another state occurred,
such as time-out value elapsed.

Retrieves the wait status of the current SyncLockWithStatusT  object.

The GetStatus() function retrieves the value of the underlying status_ data member. When an object based on the 
SyncLockWithStatusT  class performs a lock operation, the object first waits for the object to become available. The

result of that wait operation is stored in the status_  data member. The possible values of the status_  data
member are the return values of the wait operation. For more information, see the return values of the 
WaitForSingleObjectEx()  function in the MSDN Library.

Supports the WRL infrastructure and is not intended to be used directly from your code.

Indicates whether the current SyncLockWithStatusT  object owns a resource; that is, the SyncLockWithStatusT  object
is locked.

true if the SyncLockWithStatusT  object is locked; otherwise, false.



  

DWORD status_;

RemarksRemarks

SyncLockWithStatusT::SyncLockWithStatusT

SyncLockWithStatusT(
   _Inout_ SyncLockWithStatusT&& other
);

explicit SyncLockWithStatusT(
   typename SyncTraits::Type sync,
   DWORD status
);

ParametersParameters

RemarksRemarks

Supports the WRL infrastructure and is not intended to be used directly from your code.

Holds the result of the underlying wait operation after a lock operation on an object based on the current 
SyncLockWithStatusT  object.

Supports the WRL infrastructure and is not intended to be used directly from your code.

other
An rvalue-reference to another SyncLockWithStatusT  object.

sync
A reference to another SyncLockWithStatusT  object.

status
The value of the status_ data member of the other parameter or the sync parameter.

Initializes a new instance of the SyncLockWithStatusT  class.

The first constructor initializes the current SyncLockWithStatusT  object from another SyncLockWithStatusT  specified
by parameter other, and then invalidates the other SyncLockWithStatusT  object. The second constructor is 
protected , and initializes the current SyncLockWithStatusT  object to an invalid state.



Microsoft::WRL::Wrappers::HandleTraits Namespace
1/16/2019 • 2 minutes to read • Edit Online

Syntax
namespace Microsoft::WRL::Wrappers::HandleTraits;

Members
StructuresStructures

NAME DESCRIPTION

CriticalSectionTraits Structure Specializes a CriticalSection  object to support either an
invalid critical section or a function to release a critical section.

EventTraits Structure Defines characteristics of an Event  class handle.

FileHandleTraits Structure Defines characteristics of a file handle.

HANDLENullTraits Structure Defines common characteristics of an uninitialized handle.

HANDLETraits Structure Defines common characteristics of a handle.

MutexTraits Structure Defines common characteristics of the Mutex class.

SemaphoreTraits Structure Defines common characteristics of a Semaphore object.

SRWLockExclusiveTraits Structure Describes common characteristics of the SRWLock  class in
exclusive lock mode.

SRWLockSharedTraits Structure Describes common characteristics of the SRWLock  class in
shared lock mode.

Requirements

See Also

Describes characteristics of common handle-based resource types.

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers

Microsoft::WRL::Wrappers Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/microsoft-wrl-wrappers-handletraits-namespace.md


 

CriticalSectionTraits Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct CriticalSectionTraits;

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

Type A typedef  that defines a pointer to a critical section. Type

is defined as typedef CRITICAL_SECTION* Type; .

Public MethodsPublic Methods

NAME DESCRIPTION

CriticalSectionTraits::GetInvalidValue Specializes a CriticalSection  template so that the template
is always invalid.

CriticalSectionTraits::Unlock Specializes a CriticalSection  template so that it supports
releasing ownership of the specified critical section object.

Inheritance Hierarchy

Requirements

CriticalSectionTraits::GetInvalidValue

inline static Type GetInvalidValue();

Return ValueReturn Value

RemarksRemarks

Specializes a CriticalSection  object to support either an invalid critical section or a function to release a critical
section.

CriticalSectionTraits

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::HandleTraits

Specializes a CriticalSection  template so that the template is always invalid.

Always returns a pointer to an invalid critical section.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/criticalsectiontraits-structure.md


 CriticalSectionTraits::Unlock

inline static void Unlock(
   _In_ Type cs
);

ParametersParameters

RemarksRemarks

The Type  modifier is defined as typedef CRITICAL_SECTION* Type; .

Specializes a CriticalSection  template so that it supports releasing ownership of the specified critical section
object.

cs
A pointer to a critical section object.

The Type  modifier is defined as typedef CRITICAL_SECTION* Type; .

For more information, see LeaveCriticalSection function in the Synchronization Functions section of the
Windows API documentation.



EventTraits Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct EventTraits : HANDLENullTraits;

Members

Inheritance Hierarchy

Requirements

See Also

Defines characteristics of an Event  class handle.

HANDLENullTraits

EventTraits

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::HandleTraits

Microsoft::WRL::Wrappers::HandleTraits Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/eventtraits-structure.md


FileHandleTraits Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct FileHandleTraits : HANDLETraits;

Members

Inheritance Hierarchy

Requirements

See Also

Defines characteristics of a file handle.

HANDLETraits

FileHandleTraits

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::HandleTraits

Microsoft::WRL::Wrappers::HandleTraits Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/filehandletraits-structure.md


 

HANDLENullTraits Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct HANDLENullTraits;

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

Type A synonym for HANDLE.

Public MethodsPublic Methods

NAME DESCRIPTION

HANDLENullTraits::Close Closes the specified handle.

HANDLENullTraits::GetInvalidValue Represents an invalid handle.

Inheritance Hierarchy

Requirements

HANDLENullTraits::Close

inline static bool Close(
   _In_ Type h
);

ParametersParameters

Return ValueReturn Value

Defines common characteristics of an uninitialized handle.

HANDLENullTraits

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::HandleTraits

Closes the specified handle.

h
The handle to close.

true if handle h closed successfully; otherwise, false.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/handlenulltraits-structure.md


 HANDLENullTraits::GetInvalidValue

inline static Type GetInvalidValue();

Return ValueReturn Value

Represents an invalid handle.

Always returns nullptr .



 

HANDLETraits Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct HANDLETraits;

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

Type A synonym for HANDLE.

Public MethodsPublic Methods

NAME DESCRIPTION

HANDLETraits::Close Closes the specified handle.

HANDLETraits::GetInvalidValue Represents an invalid handle.

Inheritance Hierarchy

Requirements

HANDLETraits::Close

inline static bool Close(
   _In_ Type h
);

ParametersParameters

Return ValueReturn Value

Defines common characteristics of a handle.

HANDLETraits

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::HandleTraits

Closes the specified handle.

h
The handle to close.

true if handle h closed successfully; otherwise, false.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/handletraits-structure.md


 HANDLETraits::GetInvalidValue

inline static HANDLE GetInvalidValue();

Return ValueReturn Value

Represents an invalid handle.

Always returns INVALID_HANDLE_VALUE. (INVALID_HANDLE_VALUE is defined by Windows.)



 

MutexTraits Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct MutexTraits : HANDLENullTraits;

Members
Public MethodsPublic Methods

NAME DESCRIPTION

MutexTraits::Unlock Releases exclusive control of a shared resource.

Inheritance Hierarchy

Requirements

MutexTraits::Unlock Method

inline static void Unlock(
   _In_ Type h
);

ParametersParameters

Defines common characteristics of the Mutex class.

HANDLENullTraits

MutexTraits

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::HandleTraits

Releases exclusive control of a shared resource.

h
Handle to a mutex object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/mutextraits-structure.md


 

SemaphoreTraits Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct SemaphoreTraits : HANDLENullTraits;

Members
Public MethodsPublic Methods

NAME DESCRIPTION

SemaphoreTraits::Unlock Releases control of a shared resource.

Inheritance Hierarchy

Requirements

SemaphoreTraits::Unlock

inline static void Unlock(
   _In_ Type h
);

ParametersParameters

RemarksRemarks

Defines common characteristics of a Semaphore  object.

HANDLENullTraits

SemaphoreTraits

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::HandleTraits

Releases control of a shared resource.

h
Handle to a Semaphore  object.

If the unlock operation is unsuccessful, Unlock()  emits an error that indicates the cause of the failure.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/semaphoretraits-structure.md


 

 

SRWLockExclusiveTraits Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct SRWLockExclusiveTraits;

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

Type Synonym for a pointer to the SRWLOCK class.

Public MethodsPublic Methods

NAME DESCRIPTION

SRWLockExclusiveTraits::GetInvalidValue Retrieves an SRWLockExclusiveTraits  object that is always
invalid.

SRWLockExclusiveTraits::Unlock Releases exclusive control of the specified SRWLock  object.

Inheritance Hierarchy

Requirements

SRWLockExclusiveTraits::GetInvalidValue

inline static Type GetInvalidValue();

Return ValueReturn Value

SRWLockExclusiveTraits::Unlock

Describes common characteristics of the SRWLock  class in exclusive lock mode.

SRWLockExclusiveTraits

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::HandleTraits

Retrieves an SRWLockExclusiveTraits  object that is always invalid.

An empty SRWLockExclusiveTraits  object.

Releases exclusive control of the specified SRWLock  object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/srwlockexclusivetraits-structure.md


inline static void Unlock(
   _In_ Type srwlock
);

ParametersParameters
srwlock
Handle to an SRWLock  object.



 

 

SRWLockSharedTraits Structure
1/16/2019 • 2 minutes to read • Edit Online

Syntax
struct SRWLockSharedTraits;

Members
Public TypedefsPublic Typedefs

NAME DESCRIPTION

Type Synonym for a pointer to the SRWLOCK class.

Public MethodsPublic Methods

NAME DESCRIPTION

SRWLockSharedTraits::GetInvalidValue Retrieves an SRWLockSharedTraits  object that is always
invalid.

SRWLockSharedTraits::Unlock Releases exclusive control of the specified SRWLock  object.

Inheritance Hierarchy

Requirements

SRWLockSharedTraits::GetInvalidValue

inline static Type GetInvalidValue();

Return ValueReturn Value

SRWLockSharedTraits::Unlock

Describes common characteristics of the SRWLock  class in shared lock mode.

SRWLockSharedTraits

Header: corewrappers.h

Namespace: Microsoft::WRL::Wrappers::HandleTraits

Retrieves an SRWLockSharedTraits  object that is always invalid.

A handle to a SRWLockSharedTraits  object.

Releases exclusive control of the specified SRWLock  object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/srwlocksharedtraits-structure.md


inline static void Unlock(
   _In_ Type srwlock
);

ParametersParameters
srwlock
A handle to an SRWLock  object.



Windows::Foundation Namespace
1/16/2019 • 2 minutes to read • Edit Online

Syntax
namespace Windows::Foundation;

Members
FunctionsFunctions

NAME DESCRIPTION

ActivateInstance Function Registers and retrieves an instance of a specified type defined
in a specified class ID.

GetActivationFactory Function Retrieves an activation factory for the type specified by the
template parameter.

Requirements

See Also

Enables fundamental Windows Runtime functionality, such as object and factory creation.

Header: client.h

Namespace: Windows

Windows UWP Namespaces

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/windows-foundation-namespace.md
https://docs.microsoft.com/uwp/api/


ActivateInstance Function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
inline HRESULT ActivateInstance(
   _In_ HSTRING activatableClassId,
   _Out_ Microsoft::WRL::Details::ComPtrRef<T> instance
);

ParametersParameters

Return Value

Requirements

See Also

Registers and retrieves an instance of a specified type defined in a specified class ID.

T
A type to activate.

activatableClassId
The name of the class ID that defines parameter T.

instance
When this operation completes, a reference to an instance of T.

S_OK if successful; otherwise, an error HRESULT that indicates the cause of the error.

Header: client.h

Namespace: Windows::Foundation

Windows::Foundation Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/activateinstance-function.md


GetActivationFactory Function
1/16/2019 • 2 minutes to read • Edit Online

Syntax
template<typename T>
inline HRESULT GetActivationFactory(
   _In_ HSTRING activatableClassId,
   _Out_ Microsoft::WRL::Details::ComPtrRef<T> factory
);

ParametersParameters

Return Value

Requirements

See Also

Retrieves an activation factory for the type specified by the template parameter.

T
A template parameter that specifies the type of the activation factory.

activatableClassId
The name of the class that the activation factory can produce.

factory
When this operation completes, a reference to the activation factory for type T.

S_OK if successful; otherwise, an error HRESULT that indicates why this operation failed.

Header: client.h

Namespace: Windows::Foundation

Windows::Foundation Namespace

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/getactivationfactory-function.md


IID_PPV_ARGS_Helper Function
1/24/2019 • 2 minutes to read • Edit Online

IMPORTANTIMPORTANT

Syntax
template<typename T>
void** IID_PPV_ARGS_Helper(
   _Inout_ Microsoft::WRL::Details::ComPtrRef<T> pp
);

ParametersParameters

Return Value

Remarks

Requirements

Verifies that the type of the specified argument derives from the IUnknown  interface.

This template specialization supports the WRL infrastructure and is not intended to be used directly from your code. Use
IID_PPV_ARGS instead.

T
The type of argument pp.

pp
A doubly-indirect pointer.

Argument pp cast to a pointer-to-a-pointer to void.

A compile-time error is generated if the template parameter T doesn't derive from IUnknown .

Header: client.h

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/wrl/iid-ppv-args-helper-function.md
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-iid_ppv_args


SafeInt Library
10/31/2018 • 2 minutes to read • Edit Online

In This Section
SECTION DESCRIPTION

SafeInt Class This class protects against integer overflows.

SafeInt Functions Functions that can be used without creating a SafeInt object.

SafeIntException Class A class of exceptions related to the SafeInt class.

Related Sections
SECTION DESCRIPTION

C++ Language Reference Reference and conceptual content for the C++ language.

The SafeInt library helps prevent integer overflows that might result when the application performs mathematical
operations. The latest version of this library is located at https://github.com/dcleblanc/SafeInt.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/safeint-library.md
https://github.com/dcleblanc/SafeInt
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/cpp-language-reference


SafeInt Class
11/8/2018 • 9 minutes to read • Edit Online

NOTENOTE

Syntax
template<typename T, typename E = _SAFEINT_DEFAULT_ERROR_POLICY>
class SafeInt;

ParametersParameters

TEMPLATE DESCRIPTION

T The type of integer or Boolean parameter that SafeInt

replaces.

E An enumerated data type that defines the error handling
policy.

U The type of integer or Boolean parameter for the secondary
operand.

PARAMETER DESCRIPTION

rhs [in] An input parameter that represents the value on the right
side of the operator in several stand-alone functions.

i [in] An input parameter that represents the value on the right
side of the operator in several stand-alone functions.

bits [in] An input parameter that represents the value on the right
side of the operator in several stand-alone functions.

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

SafeInt::SafeInt Default constructor.

Assignment OperatorsAssignment Operators

Extends the integer primitives to help prevent integer overflow and lets you compare different types of integers.

The latest version of this library is located at https://github.com/dcleblanc/SafeInt.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/safeint-class.md
https://github.com/dcleblanc/SafeInt


NAME SYNTAX

= template<typename U>

SafeInt<T,E>& operator= (const U& rhs)

= SafeInt<T,E>& operator= (const T& rhs) throw()

= template<typename U>

SafeInt<T,E>& operator= (const SafeInt<U, E>& rhs)

= SafeInt<T,E>& operator= (const SafeInt<T,E>& rhs)
throw()

Casting OperatorsCasting Operators

NAME SYNTAX

bool operator bool() throw()

char operator char() const

signed char operator signed char() const

unsigned char operator unsigned char() const

__int16 operator __int16() const

unsigned __int16 operator unsigned __int16() const

__int32 operator __int32() const

unsigned __int32 operator unsigned __int32() const

long operator long() const

unsigned long operator unsigned long() const

__int64 operator __int64() const

unsigned __int64 operator unsigned __int64() const

wchar_t operator wchar_t() const

Comparison OperatorsComparison Operators

NAME SYNTAX

< template<typename U>

bool operator< (U rhs) const throw()

< bool operator< (SafeInt<T,E> rhs) const throw()



>= template<typename U>

bool operator>= (U rhs) const throw()

>= Bool operator>= (SafeInt<T,E> rhs) const throw()

> template<typename U>

bool operator> (U rhs) const throw()

> Bool operator> (SafeInt<T,E> rhs) const throw()

<= template<typename U>

bool operator<= (U rhs) const throw()

<= bool operator<= (SafeInt<T,E> rhs) const throw()

== template<typename U>

bool operator== (U rhs) const throw()

== bool operator== (bool rhs) const throw()

== bool operator== (SafeInt<T,E> rhs) const throw()

!= template<typename U>

bool operator!= (U rhs) const throw()

!= bool operator!= (bool b) const throw()

!= bool operator!= (SafeInt<T,E> rhs) const throw()

NAME SYNTAX

Arithmetic OperatorsArithmetic Operators

NAME SYNTAX

+ const SafeInt<T,E>& operator+ () const throw()

- SafeInt<T,E> operator- () const

++ SafeInt<T,E>& operator++ ()

-- SafeInt<T,E>& operator-- ()

% template<typename U>

SafeInt<T,E> operator% (U rhs) const

% SafeInt<T,E> operator% (SafeInt<T,E> rhs) const



%= template<typename U>

SafeInt<T,E>& operator%= (U rhs)

%= template<typename U>

SafeInt<T,E>& operator%= (SafeInt<U, E> rhs)

* template<typename U>

SafeInt<T,E> operator* (U rhs) const

* SafeInt<T,E> operator* (SafeInt<T,E> rhs) const

*= SafeInt<T,E>& operator*= (SafeInt<T,E> rhs)

*= template<typename U>

SafeInt<T,E>& operator*= (U rhs)

*= template<typename U>

SafeInt<T,E>& operator*= (SafeInt<U, E> rhs)

/ template<typename U>

SafeInt<T,E> operator/ (U rhs) const

/ SafeInt<T,E> operator/ (SafeInt<T,E> rhs ) const

/= SafeInt<T,E>& operator/= (SafeInt<T,E> i)

/= template<typename U>

SafeInt<T,E>& operator/= (U i)

/= template<typename U>

SafeInt<T,E>& operator/= (SafeInt<U, E> i)

+ SafeInt<T,E> operator+ (SafeInt<T,E> rhs) const

+ template<typename U>

SafeInt<T,E> operator+ (U rhs) const

+= SafeInt<T,E>& operator+= (SafeInt<T,E> rhs)

+= template<typename U>

SafeInt<T,E>& operator+= (U rhs)

NAME SYNTAX



+= template<typename U>

SafeInt<T,E>& operator+= (SafeInt<U, E> rhs)

- template<typename U>

SafeInt<T,E> operator- (U rhs) const

- SafeInt<T,E> operator- (SafeInt<T,E> rhs) const

-= SafeInt<T,E>& operator-= (SafeInt<T,E> rhs)

-= template<typename U>

SafeInt<T,E>& operator-= (U rhs)

-= template<typename U>

SafeInt<T,E>& operator-= (SafeInt<U, E> rhs)

NAME SYNTAX

Logical OperatorsLogical Operators

NAME SYNTAX

! bool operator !() const throw()

~ SafeInt<T,E> operator~ () const throw()

<< template<typename U>

SafeInt<T,E> operator<< (U bits) const throw()

<< template<typename U>

SafeInt<T,E> operator<< (SafeInt<U, E> bits) const
throw()

<<= template<typename U>

SafeInt<T,E>& operator<<= (U bits) throw()

<<= template<typename U>

SafeInt<T,E>& operator<<= (SafeInt<U, E> bits)
throw()

>> template<typename U>

SafeInt<T,E> operator>> (U bits) const throw()



>> template<typename U>

SafeInt<T,E> operator>> (SafeInt<U, E> bits) const
throw()

>>= template<typename U>

SafeInt<T,E>& operator>>= (U bits) throw()

>>= template<typename U>

SafeInt<T,E>& operator>>= (SafeInt<U, E> bits)
throw()

& SafeInt<T,E> operator& (SafeInt<T,E> rhs) const
throw()

& template<typename U>

SafeInt<T,E> operator& (U rhs) const throw()

&= SafeInt<T,E>& operator&= (SafeInt<T,E> rhs) throw()

&= template<typename U>

SafeInt<T,E>& operator&= (U rhs) throw()

&= template<typename U>

SafeInt<T,E>& operator&= (SafeInt<U, E> rhs) throw()

^ SafeInt<T,E> operator^ (SafeInt<T,E> rhs) const
throw()

^ template<typename U>

SafeInt<T,E> operator^ (U rhs) const throw()

^= SafeInt<T,E>& operator^= (SafeInt<T,E> rhs) throw()

^= template<typename U>

SafeInt<T,E>& operator^= (U rhs) throw()

^= template<typename U>

SafeInt<T,E>& operator^= (SafeInt<U, E> rhs) throw()

| SafeInt<T,E> operator&#124; (SafeInt<T,E> rhs) const
throw()

| template<typename U>

SafeInt<T,E> operator&#124; (U rhs) const throw()

NAME SYNTAX



|= SafeInt<T,E>& operator&#124;= (SafeInt<T,E> rhs)
throw()

|= template<typename U>

SafeInt<T,E>& operator&#124;= (U rhs) throw()

|= template<typename U>

SafeInt<T,E>& operator&#124;= (SafeInt<U, E> rhs)
throw()

NAME SYNTAX

Remarks

NOTENOTE

The SafeInt  class protects against integer overflow in mathematical operations. For example, consider adding
two 8-bit integers: one has a value of 200 and the second has a value of 100. The correct mathematical operation
would be 200 + 100 = 300. However, because of the 8-bit integer limit, the upper bit will be lost and the compiler
will return 44 (300 - 2 ) as the result. Any operation that depends on this mathematical equation will generate
unexpected behavior.

8

The SafeInt  class checks whether an arithmetic overflow occurs or whether the code tries to divide by zero. In
both cases, the class calls the error handler to warn the program of the potential problem.

This class also lets you compare two different types of integers as long as they are SafeInt  objects. Typically,
when you perform a comparison, you must first convert the numbers to be the same type. Casting one number to
another type often requires checks to make sure that there is no loss of data.

The Operators table in this topic lists the mathematical and comparison operators supported by the SafeInt

class. Most mathematical operators return a SafeInt  object of type T .

Comparison operations between a SafeInt  and an integral type can be performed in either direction. For
example, both SafeInt<int>(x) < y  and y> SafeInt<int>(x)  are valid and will return the same result.

Many binary operators do not support using two different SafeInt  types. One example of this is the &  operator. 
SafeInt<T, E> & int  is supported, but SafeInt<T, E> & SafeInt<U, E>  is not. In the latter example, the compiler

does not know what type of parameter to return. One solution to this problem is to cast the second parameter
back to the base type. By using the same parameters, this can be done with SafeInt<T, E> & (U)SafeInt<U, E> .

For any bitwise operations, the two different parameters should be the same size. If the sizes differ, the compiler will throw
an ASSERT exception. The results of this operation cannot be guaranteed to be accurate. To resolve this issue, cast the
smaller parameter until it is the same size as the larger parameter.

For the shift operators, shifting more bits than exist for the template type will throw an ASSERT exception. This
will have no effect in release mode. Mixing two types of SafeInt parameters is possible for the shift operators
because the return type is the same as the original type. The number on the right side of the operator only
indicates the number of bits to shift.

When you perform a logical comparison with a SafeInt object, the comparison is strictly arithmetic. For example,
consider these expressions:

SafeInt<uint>((uint)~0) > -1



Int x = flag ? SafeInt<unsigned int>(y) : -1;

Int x = flag ? SafeInt<unsigned int>(y) : SafeInt<unsigned int>(-1);

Int x = flag ? (int) SafeInt<unsigned int>(y) : -1;

NOTENOTE

NOTENOTE

Inheritance Hierarchy

Requirements

((uint)~0) > -1

The first statement resolves to true, but the second statement resolves to false . The bitwise negation of 0 is
0xFFFFFFFF. In the second statement, the default comparison operator compares 0xFFFFFFFF to 0xFFFFFFFF
and considers them to be equal. The comparison operator for the SafeInt  class realizes that the second
parameter is negative whereas the first parameter is unsigned. Therefore, although the bit representation is
identical, the SafeInt  logical operator realizes that the unsigned integer is larger than -1.

Be careful when you use the SafeInt  class together with the ?:  ternary operator. Consider the following line of
code.

The compiler converts it to this:

If flag  is false , the compiler throws an exception instead of assigning the value of -1 to x . Therefore, to avoid
this behavior, the correct code to use is the following line.

T  and U  can be assigned a Boolean type, character type, or integer type. The integer types can be signed or
unsigned and any size from 8 bits to 64 bits.

Although the SafeInt  class accepts any kind of integer, it performs more efficiently with unsigned types.

E  is the error handling mechanism that SafeInt  uses. Two error handling mechanisms are provided with the
SafeInt library. The default policy is SafeIntErrorPolicy_SafeIntException , which throws a SafeIntException Class
exception when an error occurs. The other policy is SafeIntErrorPolicy_InvalidParameter , which stops the program
if an error occurs.

There are two options to customize the error policy. The first option is to set the parameter E  when you create a 
SafeInt . Use this option when you want to change the error handling policy for just one SafeInt . The other

option is to define _SAFEINT_DEFAULT_ERROR_POLICY to be your customized error-handling class before you
include the SafeInt  library. Use this option when you want to change the default error handling policy for all
instances of the SafeInt  class in your code.

A customized class that handles errors from the SafeInt library should not return control to the code that called the error
handler. After the error handler is called, the result of the SafeInt  operation cannot be trusted.

SafeInt



 SafeInt::SafeInt

SafeInt() throw

SafeInt (
   const T& i
) throw ()

SafeInt (
   bool b
) throw ()

template <typename U>
SafeInt (
   const SafeInt <U, E>& u
)

I template <typename U>
SafeInt (
   const U& i
)

ParametersParameters

RemarksRemarks

Header: safeint.h

Namespace: msl::utilities

Constructs a SafeInt  object.

i
[in] The value for the new SafeInt  object. This must be a parameter of type T or U, depending on the constructor.

b
[in] The Boolean value for the new SafeInt  object.

u
[in] A SafeInt  of type U. The new SafeInt  object will have the same value as u, but will be of type T.

U The type of data stored in the SafeInt . This can be either a Boolean, character, or integer type. If it is an integer
type, it can be signed or unsigned and be between 8 and 64 bits.

The input parameter for the constructor, i or u, must be a Boolean, character, or integer type. If it is another type of
parameter, the SafeInt  class calls static_assert to indicate an invalid input parameter.

The constructors that use the template type U  automatically convert the input parameter to the type specified by 
T . The SafeInt  class converts the data without any loss of data. It reports to the error handler E  if it cannot

convert the data to type T  without data loss.

If you create a SafeInt  from a Boolean parameter, you need to initialize the value immediately. You cannot
construct a SafeInt  using the code SafeInt<bool> sb; . This will generate a compile error.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/static-assert


 

SafeInt Functions
10/31/2018 • 5 minutes to read • Edit Online

NOTENOTE

In This Section
FUNCTION DESCRIPTION

SafeAdd Adds two numbers and protects against overflow.

SafeCast Casts one type of parameter to another type.

SafeDivide Divides two numbers and protects against dividing by zero.

SafeEquals, SafeGreaterThan, SafeGreaterThanEquals,
SafeLessThan, SafeLessThanEquals, SafeNotEquals

Compares two numbers. These functions enable you to
compare two different types of numbers without changing
their types.

SafeModulus Performs the modulus operation on two numbers.

SafeMultiply Multiplies two numbers together and protects against
overflow.

SafeSubtract Subtracts two numbers and protects against overflow.

Related Sections
SECTION DESCRIPTION

SafeInt The SafeInt  class.

SafeIntException The exception class specific to the SafeInt library.

SafeAdd

The SafeInt library provides several functions that you can use without creating an instance of the SafeInt class. If
you want to protect a single mathematical operation from integer overflow, you can use these functions. If you
want to protect multiple mathematical operations, you should create SafeInt  objects. It is more efficient to create 
SafeInt  objects than to use these functions multiple times.

These functions enable you to compare or perform mathematical operations on two different types of parameters
without having to convert them to the same type first.

Each of these functions has two template types: T  and U . Each of these types can be a Boolean, character, or
integral type. Integral types can be signed or unsigned and any size from 8 bits to 64 bits.

The latest version of this library is located at https://github.com/dcleblanc/SafeInt.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/safeint-functions.md
https://github.com/dcleblanc/SafeInt


 

 

template<typename T, typename U>
inline bool SafeAdd (
   T t,
   U u,
   T& result
) throw ();

ParametersParameters

Return ValueReturn Value

SafeCast

template<typename T, typename U>
inline bool SafeCast (
   const T From,
   U& To
);

ParametersParameters

Return ValueReturn Value

SafeDivide

template<typename T, typename U>
inline bool SafeDivide (
   T t,
   U u,
   T& result
) throw ();

ParametersParameters

Adds two numbers in a way that protects against overflow.

t
[in] The first number to add. This must be of type T.

u
[in] The second number to add. This must be of type U.

result
[out] The parameter where SafeAdd  stores the result.

true if no error occurs; false if an error occurs.

Casts one type of number to another type.

From
[in] The source number to convert. This must be of type T .

To
[out] A reference to the new number type. This must be of type U .

true if no error occurs; false if an error occurs.

Divides two numbers in a way that protects against dividing by zero.

t



 

 

Return ValueReturn Value

SafeEquals

template<typename T, typename U>
inline bool SafeEquals (
   const T t,
   const U u
) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

SafeGreaterThan

template<typename T, typename U>
inline bool SafeGreaterThan (
   const T t,
   const U u
) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

[in] The divisor. This must be of type T.

u
[in] The dividend. This must be of type U.

result
[out] The parameter where SafeDivide  stores the result.

true if no error occurs; false if an error occurs.

Compares two numbers to determine whether they are equal.

t
[in] The first number to compare. This must be of type T.

u
[in] The second number to compare. This must be of type U.

true if t and u are equal; otherwise false.

The method enhances ==  because SafeEquals  enables you to compare two different types of numbers.

Compares two numbers.

t
[in] The first number to compare. This must be of type T .

u
[in] The second number to compare. This must be of type U .

true if t is greater than u; otherwise false.

SafeGreaterThan  extends the regular comparison operator by enabling you to compare two different types of



 

 

 

SafeGreaterThanEquals

template <typename T, typename U>
inline bool SafeGreaterThanEquals (
   const T t,
   const U u
) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

SafeLessThan

template<typename T, typename U>
inline bool SafeLessThan (
   const T t,
   const U u
) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

SafeLessThanEquals

numbers.

Compares two numbers.

t
[in] The first number to compare. This must be of type T .

u
[in] The second number to compare. This must be of type U .

true if t is greater than or equal to u; otherwise false.

SafeGreaterThanEquals  enhances the standard comparison operator because it enables you to compare two
different types of numbers.

Determines whether one number is less than another.

t
[in] The first number. This must be of type T .

u
[in] The second numer. This must be of type U .

true if t is less than u; otherwise false.

This method enhances the standard comparison operator because SafeLessThan  enables you to compare two
different types of number.

Compares two numbers.



 

 

template <typename T, typename U>
inline bool SafeLessThanEquals (
   const T t,
   const U u
) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

SafeModulus

template<typename T, typename U>
inline bool SafeModulus (
   const T t,
   const U u,
   T& result
) throw ();

ParametersParameters

Return ValueReturn Value

SafeMultiply

template<typename T, typename U>
inline bool SafeMultiply (
   T t,
   U u,
   T& result
) throw ();

t
[in] The first number to compare. This must be of type T .

u
[in] The second number to compare. This must be of type U .

true if t is less than or equal to u; otherwise false.

SafeLessThanEquals  extends the regular comparison operator by enabling you to compare two different types of
numbers.

Performs the modulus operation on two numbers.

t
[in] The divisor. This must be of type T .

u
[in] The dividend. This must be of type U .

result
[out] The parameter where SafeModulus  stores the result.

true if no error occurs; false if an error occurs.

Multiplies two numbers together in a way that protects against overflow.



 

 

ParametersParameters

Return ValueReturn Value

SafeNotEquals

template<typename T, typename U>
inline bool SafeNotEquals (
   const T t,
   const U u
) throw ();

ParametersParameters

Return ValueReturn Value

RemarksRemarks

SafeSubtract

template<typename T, typename U>
inline bool SafeSubtract (
   T t,
   U u,
   T& result
) throw ();

ParametersParameters

t
[in] The first number to multiply. This must be of type T .

u
[in] The second number to multiply. This must be of type U .

result
[out] The parameter where SafeMultiply  stores the result.

true  if no error occurs; false  if an error occurs.

Determines if two numbers are not equal.

t
[in] The first number to compare. This must be of type T .

u
[in] The second number to compare. This must be of type U .

true if t and u are not equal; otherwise false.

The method enhances !=  because SafeNotEquals  enables you to compare two different types of numbers.

Subtracts two numbers in a way that protects against overflow.

t
[in] The first number in the subtraction. This must be of type T .

u
[in] The number to subtract from t. This must be of type U .

result



Return ValueReturn Value

[out] The parameter where SafeSubtract  stores the result.

true if no error occurs; false if an error occurs.



 

SafeIntException Class
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

Syntax
class SafeIntException;

Members
Public ConstructorsPublic Constructors

NAME DESCRIPTION

SafeIntException::SafeIntException Creates a SafeIntException  object.

Remarks

Inheritance Hierarchy

Requirements

SafeIntException::SafeIntException

SafeIntException();

SafeIntException(
   SafeIntError code
);

ParametersParameters

The SafeInt  class uses SafeIntException  to identify why a mathematical operation cannot be completed.

The latest version of this library is located at https://github.com/dcleblanc/SafeInt.

The SafeInt class is the only class that uses the SafeIntException  class.

SafeIntException

Header: safeint.h

Namespace: msl::utilities

Creates a SafeIntException  object.

code
[in] An enumerated data value that describes the error that occurred.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/safeintexception-class.md
https://github.com/dcleblanc/SafeInt


RemarksRemarks
The possible values for code are defined in the file Safeint.h. For convenience, the possible values are also listed
here.

SafeIntNoError

SafeIntArithmeticOverflow

SafeIntDivideByZero



C++ Attributes for COM and .NET
11/20/2018 • 4 minutes to read • Edit Online

NOTENOTE

Purpose of Attributes

[event_receiver(com)]
class CMyReceiver
{
   void handler1(int i) { ... }
   void handler2(int i, float j) { ... }
}

Basic Mechanics of Attributes

Microsoft defines a set of C++ attributes that simplify COM programming and .NET Framework common
language runtime development. When you include attributes in your source files, the compiler works with provider
DLLs to insert code or modify the code in the generated object files. These attributes aid in the creation of .idl files,
interfaces, type libraries, and other COM elements. In the integrated development environment (IDE), attributes
are supported by the wizards and by the Properties window.

While attributes eliminate some of the detailed coding needed to write COM objects, you need a background in
COM fundamentals to best use them.

If you are looking for C++ standard attributes, see Attributes.

Attributes extend C++ in directions not currently possible without breaking the classic structure of the language.
Attributes allow providers (separate DLLs) to extend language functionality dynamically. The primary goal of
attributes is to simplify the authoring of COM components, in addition to increasing the productivity level of the
component developer. Attributes can be applied to nearly any C++ construct, such as classes, data members, or
member functions. The following is a highlight of benefits provided by this new technology:

Exposes a familiar and simple calling convention.

Uses inserted code, which, unlike macros, is recognized by the debugger.

Allows easy derivation from base classes without burdensome implementation details.

Replaces the large amount of IDL code required by a COM component with a few concise attributes.

For example, to implement a simple event sink for a generic ATL class, you could apply the event_receiver attribute
to a specific class such as CMyReceiver . The event_receiver  attribute is then compiled by the Visual C++ compiler,
which inserts the proper code into the object file.

You can then set up the CMyReceiver  methods handler1  and handler2  to handle events (using the intrinsic
function __hook) from an event source, which you can create using event_source.

There are three ways to insert attributes into your project. First, you can insert them manually into your source
code. Second, you can insert them using the property grid of an object in your project. Finally, you can insert them
using the various wizards. For more information on using the Properties window and the various wizards, see
Creating and Managing Visual C++ Projects.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/cpp-attributes-com-net.md
https://docs.microsoft.com/windows/desktop/com/the-component-object-model
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/attributes
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/hook
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/creating-and-managing-visual-cpp-projects


                                                                                                        

NOTENOTE

Building an Attributed Program

Attribute Contexts

Applies ToApplies To

As before, when the project is built, the compiler parses each C++ source file, producing an object file. However,
when the compiler encounters an attribute, it is parsed and syntactically verified. The compiler then dynamically
calls an attribute provider to insert code or make other modifications at compile time. The implementation of the
provider differs depending on the type of attribute. For example, ATL-related attributes are implemented by
Atlprov.dll.

The following figure demonstrates the relationship between the compiler and the attribute provider.

Attribute usage does not alter the contents of the source file. The only time the generated attribute code is visible is during
debugging sessions. In addition, for each source file in the project, you can generate a text file that displays the results of the
attribute substitution. For more information on this procedure, see /Fx (Merge Injected Code) and Debugging Injected Code.

Like most C++ constructs, attributes have a set of characteristics that defines their proper usage. This is referred to
as the context of the attribute and is addressed in the attribute context table for each attribute reference topic. For
example, the coclass attribute can only be applied to an existing class or structure, as opposed to the cpp_quote
attribute, which can be inserted anywhere within a C++ source file.

After you put Visual C++ attributes into your source code, you may want the Visual C++ compiler to produce a
type library and .idl file for you. The following linker options help you build .tlb and .idl files:

/IDLOUT

/IGNOREIDL

/MIDL

/TLBOUT

Some projects contain multiple independent .idl files. These are used to produce two or more .tlb files and
optionally bind them into the resource block. This scenario is not currently supported in Visual C++.

In addition, the Visual C++ linker will output all IDL-related attribute information to a single MIDL file. There will
be no way to generate two type libraries from a single project.

C++ attributes can be described using four basic fields: the target they can be applied to (Applies To), if they are
repeatable or not (Repeatable), the required presence of other attributes (Required Attributes), and
incompatibilities with other attributes (Invalid Attributes). These fields are listed in an accompanying table in
each attribute's reference topic. Each of these fields is described below.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fx-merge-injected-code
https://docs.microsoft.com/visualstudio/debugger/how-to-debug-injected-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/idlout-name-midl-output-files
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/ignoreidl-don-t-process-attributes-into-midl
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/midl-specify-midl-command-line-options
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/tlbout-name-dot-tlb-file


RepeatableRepeatable

Required AttributesRequired Attributes

Invalid AttributesInvalid Attributes

In This Section

This field describes the different C++ language elements that are legal targets for the specified attribute. For
instance, if an attribute specifies "class" in the Applies To field, this indicates that the attribute can only be applied
to a legal C++ class. If the attribute is applied to a member function of a class, a syntax error would result.

For more information, see Attributes by Usage.

This field states whether the attribute can be repeatedly applied to the same target. The majority of attributes are
not repeatable.

This field lists other attributes that need to be present (that is, applied to the same target) for the specified attribute
to function properly. It is uncommon for an attribute to have any entries for this field.

This field lists other attributes that are incompatible with the specified attribute. It is uncommon for an attribute to
have any entries for this field.

Attribute Programming FAQ
Attributes by Group
Attributes by Usage
Attributes Alphabetical Reference



 

Attribute Programming FAQ
10/31/2018 • 4 minutes to read • Edit Online

What is an HRESULT?

NAME DESCRIPTION VALUE

S_OK Operation successful 0x00000000

E_UNEXPECTED Unexpected failure 0x8000FFFF

E_NOTIMPL Not implemented 0x80004001

E_OUTOFMEMORY Failed to allocate necessary memory 0x8007000E

E_INVALIDARG One or more arguments are invalid 0x80070057

E_NOINTERFACE No such interface supported 0x80004002

E_POINTER Invalid pointer 0x80004003

E_HANDLE Invalid handle 0x80070006

E_ABORT Operation aborted 0x80004004

E_FAIL Unspecified failure 0x80004005

E_ACCESSDENIED General access denied error 0x80070005

This topic answers the following frequently asked questions:

What is an HRESULT?

When do I have to specify the parameter name for an attribute?

Can I use comments in an attribute block?

How do attributes interact with inheritance?

How can I use attributes in a nonattributed ATL project?

How can I use an .idl file in an attributed project?

Can I modify code that is injected by an attribute?

How can I forward declare an attributed interface?

Can I use attributes on a class derived from a class that also uses attributes?

An HRESULT is a simple data type that is often used as a return value by attributes and ATL in general. The
following table describes the various values. More values are contained in the header file winerror.h.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/attribute-programming-faq.md


 

 

When do I have to specify the parameter name for an attribute?

[coclass, aggregatable(value=allowed)]
class CMyClass
{
// The class declaration
};

[coclass, aggregatable(allowed)]
class CMyClass
{
// The class declaration
};

call_as case cpp_quote

default defaultvalue defaultvtable

emitidl entry first_is

helpcontext helpfile helpstring

helpstringcontext helpstringdll id

iid_is import importlib

include includelib last_is

length_is max_is no_injected_text

pointer_default pragma restricted

size_is source switch_is

switch_type transmit_as wire_marshal

Can I use comments in an attribute block?

In most cases, if the attribute has a single parameter, that parameter is named. This name is not required when
inserting the attribute in your code. For example, the following usage of the aggregatable attribute:

is exactly the same as:

However, the following attributes have single, unnamed parameters:

You can use both single-line and multiple-line comments within an attribute block. However, you cannot use either
style of comment within the parentheses holding the parameters to an attribute.

The following is allowed:



 

 

 

 

[ coclass, progid("MyClass.CMyClass.1"), /* Multiple-line
                                       comment */
   threading("both") // Single-line comment
]

[ coclass, progid("MyClass.CMyClass.1" /* Multiple-line comment */ ), threading("both" // Single-line comment)
]

How do attributes interact with inheritance?

How can I use attributes in a nonattributed ATL project?

How can I use an .idl file in an attributed project?

Can I modify code that is injected by an attribute?

// attr_injected.cpp
// compile with: comsupp.lib
#define _ATL_ATTRIBUTES 1
#include <atlbase.h>
#include <atlcom.h>

[ module(name="MyLibrary") ];

// ITestTest
[
   object, uuid("DADECE00-0FD2-46F1-BFD3-6A0579CA1BC4"), dual, helpstring("ITestTest Interface"), 
pointer_default(unique)
]

__interface ITestTest : IDispatch {
   [id(1), helpstring("method DoTest")]
   HRESULT DoTest([in] BSTR str);
};

// _ITestTestEvents
[
   uuid("12753B9F-DEF4-49b0-9D52-A79C371F2909"), dispinterface, helpstring("_ITestTestEvents Interface")

The following is disallowed:

You can inherit both attributed and unattributed classes from other classes, which may themselves be attributed or
not. The result of deriving from an attributed class is the same as deriving from that class after the attribute
provider has transformed its code. Attributes are not transmitted to derived classes through C++ inheritance. An
attribute provider only transforms code in the vicinity of its attributes.

You may have a nonattributed ATL project, which has an .idl file, and you may want to start adding attributed
objects. In this case, use the Add Class Wizard to provide the code.

You may have a .idl file that you want to use in your ATL attributed project. In this case, you would use the
importidl attribute, compile the .idl file to a .h file (see the MIDL Property Pages in the project's Property Pages
dialog box), and then include the .h file in your project.

Some attributes inject code into your project. You can see the injected code by using the /Fx compiler option. It is
also possible to copy code from the injected file and paste it into your source code. This allows you to modify the
behavior of the attribute. However, you may have to modify other parts of your code as well.

The following sample is the result of copying injected code into a source code file:

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/ide/midl-property-pages
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fx-merge-injected-code


   uuid("12753B9F-DEF4-49b0-9D52-A79C371F2909"), dispinterface, helpstring("_ITestTestEvents Interface")
]

__interface _ITestTestEvents {
   [id(1), helpstring("method BeforeChange")] HRESULT BeforeChange([in] BSTR str, [in,out] VARIANT_BOOL* 
bCancel);
};

// CTestTest
[
   coclass, threading(apartment), vi_progid("TestATL1.TestTest"), progid("TestATL1.TestTest.1"), version(1.0), 
uuid("D9632007-14FA-4679-9E1C-28C9A949E784"), // this line would be commented out from original file
   // event_source("com"), // this line would be added to support injected code
   source(_ITestTestEvents), helpstring("TestTest Class")
]

class ATL_NO_VTABLE CTestTest : public ITestTest,
// the following base classes support added injected code
public IConnectionPointContainerImpl<CTestTest>,
public IConnectionPointImpl<CTestTest, &__uuidof(::_ITestTestEvents), CComDynamicUnkArray>
{
public:
   CTestTest() {
   }
   // this line would be commented out from original file
   // __event __interface _ITestTestEvents;
   DECLARE_PROTECT_FINAL_CONSTRUCT()
   HRESULT FinalConstruct() {
      return S_OK;
   }

void FinalRelease() {}

public:
   CComBSTR m_value;
   STDMETHOD(DoTest)(BSTR str) {
      VARIANT_BOOL bCancel = FALSE;
      BeforeChange(str,&bCancel);
      if (bCancel) {
          return Error("Error : Someone don't want us to change the value");
      }

   m_value =str;
   return S_OK;
    }
// the following was copied in from the injected code.
HRESULT BeforeChange(::BSTR i1,::VARIANT_BOOL* i2) {
   HRESULT hr = S_OK;
   IConnectionPointImpl<CTestTest, &__uuidof(_ITestTestEvents), CComDynamicUnkArray>* p = this;
   VARIANT rgvars[2];
   Lock();
   IUnknown** pp = p->m_vec.begin();
   Unlock();
   while (pp < p->m_vec.end()) {
      if (*pp != NULL) {
         IDispatch* pDispatch = (IDispatch*) *pp;
         ::VariantInit(&rgvars[1]);
         rgvars[1].vt = VT_BSTR;
         V_BSTR(&rgvars[1])= (BSTR) i1;
         ::VariantInit(&rgvars[0]);
         rgvars[0].vt = (VT_BOOL | VT_BYREF);
         V_BOOLREF(&rgvars[0])= (VARIANT_BOOL*) i2;
         DISPPARAMS disp = { rgvars, NULL, 2, 0 };
         VARIANT ret_val;
         hr = __ComInvokeEventHandler(pDispatch, 1, 1, &disp, &ret_val);
         if (FAILED(hr))
            break;
      }
      pp++;
   }



 

 

   }
   return hr;
}

BEGIN_CONNECTION_POINT_MAP(CTestTest)
CONNECTION_POINT_ENTRY(__uuidof(::_ITestTestEvents))
END_CONNECTION_POINT_MAP()
// end added code section

// _ITestCtrlEvents Methods
public:
};

int main() {}

How can I forward declare an attributed interface?

Can I use attributes on a class derived from a class that also uses
attributes?

See Also

If you are going to make a forward declaration of an attributed interface, you must apply the same attributes to the
forward declaration that you apply to the actual interface declaration. You must also apply the export attribute to
your forward declaration.

No, using attributes on a class derived from a class that also uses attributes is not supported.

C++ Attributes for COM and .NET



Attributes by Group
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

COM Attributes Inject code to support numerous areas of COM development
and .NET Framework common language runtime
development.

IDL Attributes Enable the modification of the .idl file from a source code file
without the use of a wizard and without knowledge of the
structure and syntax of that file.

OLE DB Consumer Attributes Inject code—based on the OLE DB Consumer Templates—to
create a working OLE DB consumer that performs tasks such
as opening tables, executing commands, and accessing data.

Compiler Attributes Supplied by the Microsoft C++ compiler.

See Also

The C++ attributes are organized into the following functional groups.

For information about how to define custom attributes for your .NET Framework application, see User-Defined
Attributes.

C++ Attributes for COM and .NET
Attributes by Usage
Attributes Alphabetical Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/attributes-by-group.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ole-db-consumer-templates-reference


COM Attributes
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

aggregatable Indicates that a control can be aggregated by another
control.

aggregates Indicates that a control aggregates the target class.

coclass Creates a COM object, which can implement a COM
interface.

com_interface_entry Adds an interface entry to a COM map.

implements_category Specifies implemented component categories for the class.

progid Defines the ProgID for a control.

rdx Creates or modifies a registry key.

registration_script Executes the specified registration script.

requires_category Specifies required component categories for the class.

support_error_info Supports error reporting for the target object.

synchronize Synchronizes access to a method.

threading Specifies the threading model for a COM object.

vi_progid Defines a version-independent ProgID for a control.

See Also

The COM attributes inject code to support numerous areas of COM development and .NET Framework common
language runtime development. These areas range from custom interface implementation and support of
existing interfaces to supporting stock properties, methods, and events. In addition, support can be found for
composite and ActiveX control implementation.

Attributes by Group

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/com-attributes.md


IDL Attributes
10/31/2018 • 6 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

aggregatable Indicates that a control can be aggregated by another
control.

appobject Identifies the coclass as an application object, which is
associated with a full EXE application, and indicates that
the functions and properties of the coclass are globally
available in this type library.

async_uuid Specifies the UUID that directs the MIDL compiler to
define both synchronous and asynchronous versions of
a COM interface.

bindable Indicates that the property supports data binding.

call_as Enables a nonremotable function to be mapped to a
remote function.

case Used with the switch_type attribute in a union.

coclass Places class definition into an .idl file as coclass.

control Specifies that the user-defined type is a control.

cpp_quote Emits the specified string, without the quote characters,
into the generated header file.

Traditionally, maintaining an .idl file meant that you had to:

Be familiar with the structure and syntax of an .idl file to be able to modify it.

Rely on a wizard, which would let you modify some aspects of the .idl file.

Now, you can modify the .idl file from within a source code file using Visual C++ IDL attributes. In many
cases, Visual C++ IDL attributes have the same name as MIDL attributes. When the name of a Visual
C++ IDL attribute and a MIDL attribute are the same, it means that putting the Visual C++ attribute in
your source code file will result in an .idl file that contains its namesake MIDL attribute. However, a
Visual C++ IDL attribute may not provide all the functionality of a MIDL attribute.

When not used with COM attributes, IDL attributes let you define interfaces. When the source code is
compiled, the attributes are used to define the generated .idl file. When used with COM attributes in an
ATL project, some IDL attributes, such as coclass , cause code to be injected into the project.

Note that idl_quote lets you use MIDL constructs that are not supported in the current version of Visual
C++. This and other attributes such as importlib and includelib help you to use existing .idl files in your
current Visual C++ project.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/idl-attributes.md


defaultbind Indicates the single, bindable property that best
represents the object.

defaultcollelem Used for Visual Basic code optimization.

defaultvalue Allows specification of a default value for a typed
optional parameter.

default Indicates that the custom or dispinterface defined within
a coclass represents the default programmability
interface.

defaultvtable Defines an interface as the default vtable interface for a
control.

dispinterface Places an interface in the .idl file as a dispatch interface.

displaybind Indicates a property that should be displayed to the
user as bindable.

dual Places an interface in the .idl file as a dual interface.

entry Specifies an exported function or constant in a module
by identifying the entry point in the DLL.

first_is Specifies the index of the first array element to be
transmitted.

helpcontext Specifies a context ID that lets the user view information
about this element in the Help file.

helpfile Sets the name of the Help file for a type library.

helpstringcontext Specifies the ID of a help topic in an .hlp or .chm file.

helpstringdll Specifies the name of the DLL to use to perform
document string lookup (localization).

helpstring Specifies a character string that is used to describe the
element to which it applies.

hidden Indicates that the item exists but should not be
displayed in a user-oriented browser.

idl_module Specifies an entry point in a DLL.

idl_quote Allows you to use attributes or IDL constructs that are
not supported in the current version of Visual C++.

id Specifies a DISPID for a member function (either a
property or a method, in an interface or dispinterface).

ATTRIBUTE DESCRIPTION



iid_is Specifies the IID of the COM interface pointed to by an
interface pointer.

immediatebind Indicates that the database will be notified immediately
of all changes to a property of a data-bound object.

importlib Makes types that have already been compiled into
another type library available to the type library being
created.

import Specifies another .idl, .odl, or header file containing
definitions you want to reference from your main .idl file.

include Specifies one or more header files to be included in the
generated .idl file.

includelib Causes an .idl or .h file to be included in the generated
.idl file.

in Indicates that a parameter is to be passed from the
calling procedure to the called procedure.

last_is Specifies the index of the last array element to be
transmitted.

lcid Lets you pass a locale identifier to a function.

length_is Specifies the number of array elements to be
transmitted.

licensed Indicates that the coclass to which it applies is licensed,
and must be instantiated using IClassFactory2 .

local Allows you to use the MIDL compiler as a header
generator when used in the interface header. When used
in an individual function, designates a local procedure
for which no stubs are generated.

max_is Designates the maximum value for a valid array index.

module Defines the library block in the .idl file.

ms_union Controls the network data representation alignment of
nonencapsulated unions.

no_injected_text Prevents the compiler from injecting code as a result of
attribute use.

nonbrowsable Indicates that an interface member should not be
displayed in a property browser.

noncreatable Defines an object that cannot be instantiated by itself.

ATTRIBUTE DESCRIPTION



nonextensible Specifies that the IDispatch  implementation includes
only the properties and methods listed in the interface
description and cannot be extended with additional
members at run time.

object Identifies a custom interface; synonymous with custom
attribute.

odl Identifies an interface as an Object Description
Language (ODL) interface.

oleautomation Indicates that an interface is compatible with
Automation.

optional Specifies an optional parameter for a member function.

out Identifies pointer parameters that are returned from the
called procedure to the calling procedure (from the
server to the client).

pointer_default Specifies the default pointer attribute for all pointers
except top-level pointers that appear in parameter lists.

pragma Emits the specified string, without the quote characters,
into the generated .idl file.

progid Specifies the ProgID for a COM object.

propget Specifies a property accessor (get) function.

propputref Specifies a property setting function that uses a
reference instead of a value.

propput Specifies a property setting function.

ptr Designates a pointer as a full pointer.

public Ensures that a typedef will go into the type library even
if it is not referenced from within the .idl file.

range Specifies a range of allowable values for arguments or
fields whose values are set at run time.

readonly Prohibits assignment to a variable.

ref Identifies a reference pointer.

requestedit Indicates that the property supports the 
OnRequestEdit  notification.

restricted Specifies that a library, or member of a module,
interface, or dispinterface cannot be called arbitrarily.

ATTRIBUTE DESCRIPTION



retval Designates the parameter that receives the return value
of the member.

size_is Specifies the size of memory allocated for sized pointers,
sized pointers to sized pointers, and single- or
multidimensional arrays.

source Indicates that a member of a class, property, or method
is a source of events.

string Indicates that the one-dimensional char, wchar_t, 
byte , or equivalent array or the pointer to such an

array must be treated as a string.

switch_is Specifies the expression or identifier acting as the union
discriminant that selects the union member.

switch_type Identifies the type of the variable used as the union
discriminant.

transmit_as Instructs the compiler to associate a presented type,
which client and server applications manipulate, with a
transmitted type.

uidefault Indicates that the type information member is the
default member for display in the user interface.

unique Specifies a unique pointer.

usesgetlasterror Tells the caller that if there is an error when calling that
function, the caller can then call GetLastError  to
retrieve the error code.

uuid Specifies the unique ID for a class or interface.

v1_enum Directs that the specified enumerated type be
transmitted as a 32-bit entity, rather than the 16-bit
default.

vararg Specifies that the function take a variable number of
arguments.

vi_progid Specifies a version-independent form of the ProgID.

wire_marshal Specifies a data type that will be used for transmission
instead of an application-specific data type.

ATTRIBUTE DESCRIPTION

See Also
Attributes by Group



OLE DB Consumer Attributes
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

db_accessor Binds columns in a rowset and binds them to the
corresponding accessor maps.

db_column Binds a specified column to the rowset.

db_command Executes an OLE DB command.

db_param Associates the specified member variable with an input or
output parameter.

db_source Creates and encapsulates a connection, through a provider, to
a data source.

db_table Opens an OLE DB table.

See Also

The OLE DB consumer attributes inject code, based on the OLE DB Consumer Templates, to create a working
OLE DB consumer that performs tasks such as opening tables, executing commands, and accessing data.

Attributes by Group

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/ole-db-consumer-attributes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ole-db-consumer-templates-reference


Compiler Attributes
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

emitidl Determines whether all subsequent IDL attributes will be
processed and placed in the generated .idl file.

event_receiver Creates an event receiver.

event_source Creates an event source.

export Causes a data structure to be placed in the .idl file.

implements Specifies dispatch interfaces that are forced to be members of
the IDL coclass.

importidl Inserts the specified .idl file into the generated .idl file.

importlib Makes types that have already been compiled into another
type library available to the type library being created.

includelib Causes an .idl or .h file to be included in the generated .idl file.

library_block Places a construct inside the .idl file's library block.

no_injected_text Prevents the compiler from injecting code as a result of
attribute use.

satype Specifies the data type of the SAFEARRAY .

version Identifies a particular version among multiple versions of an
interface or class.

See Also

Compiler attributes provide a variety of functionality.

Attributes by Group

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/compiler-attributes.md


Attributes by Usage
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

Module Attributes Applies to the module attribute.

Interface Attributes Applies to the __interface C++ keyword.

Class Attributes Applies to the C++ keyword.

Method Attributes Applies to the methods in a class, coclass, or interface.

Parameter Attributes Applies to parameters of a method in a class or interface.

Data Member Attributes Applies to the data members in a class, coclass, or interface.

Typedef, Enum, Union, and Struct Attributes Applies to the C++ keywords.

Array Attributes Applies to arrays or SAFEARRAY s.

Stand-Alone Attributes Operates more like a line of code but does not operate on a
C++ keyword. Stand-alone attribute statements require a
semicolon at the end of the line.

Custom Attributes Allows the user to extend metadata.

Module Attributes

ATTRIBUTE DESCRIPTION

helpstringdll Specifies the name of the DLL to use to perform document
string lookup (localization).

Interface Attributes

ATTRIBUTE DESCRIPTION

async_uuid Specifies the UUID that directs the MIDL compiler to define
both synchronous and asynchronous versions of a COM
interface.

This topic lists attributes according to the C++ language elements to which they apply.

If an attribute precedes an element that is not in the attribute's scope, the attribute block is treated as a comment.

The following attribute can only be applied to the module attribute.

The following attributes apply to the interface (or __interface) C++ keyword.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/attributes-by-usage.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/interface
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/interface


custom Lets you define your own attributes.

dispinterface Places an interface in the .idl file as a dispatch interface.

dual Places an interface in the .idl file as a dual interface.

export Causes a data structure to be placed in the .idl file.

helpcontext Specifies a context ID that lets the user view information
about this element in the Help file.

helpfile Sets the name of the Help file for a type library.

helpstring Specifies a character string that is used to describe the
element to which it applies.

helpstringcontext Specifies the ID of a help topic in an .hlp or .chm file.

helpstringdll Specifies the name of the DLL to use to perform document
string lookup (localization).

hidden Indicates that the item exists but should not be displayed in
a user-oriented browser.

library_block Places a construct inside the .idl file's library block.

local Allows you to use the MIDL compiler as a header generator
when used in the interface header. When used in an
individual function, designates a local procedure for which no
stubs are generated.

nonextensible Specifies that the IDispatch  implementation includes only
the properties and methods listed in the interface description
and cannot be extended with additional members at run
time. This attribute is only valid on a dual interface.

odl Identifies an interface as an Object Description Language
(ODL) interface.

object Identifies a custom interface.

oleautomation Indicates that an interface is compatible with Automation.

pointer_default Specifies the default pointer attribute for all pointers except
top-level pointers that appear in parameter lists.

ptr Designates a pointer as a full pointer.

restricted Designates which members of the library cannot be called
arbitrarily.

uuid Provides the unique ID for the library

ATTRIBUTE DESCRIPTION



See Also

You must observe these rules for defining an interface:

Default calling convention is __stdcall.

A GUID is supplied for you if you do not supply one.

No overloaded methods are allowed.

When not specifying the uuid attribute and using the same interface name in different attribute projects, the
same GUID is generated.

C++ Attributes for COM and .NET
Attributes by Group
Attributes Alphabetical Reference

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/stdcall


Module Attributes
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

helpstringdll Specifies the name of the DLL to use to perform document
string lookup (localization).

See Also

The following attribute can only be applied to the module attribute.

Attributes by Usage

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/module-attributes.md


Interface Attributes
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

async_uuid Specifies the UUID that directs the MIDL compiler to define
both synchronous and asynchronous versions of a COM
interface.

custom Lets you define your own attributes.

dispinterface Places an interface in the .idl file as a dispatch interface.

dual Places an interface in the .idl file as a dual interface.

export Causes a data structure to be placed in the .idl file.

helpcontext Specifies a context ID that lets the user view information
about this element in the Help file.

helpfile Sets the name of the Help file for a type library.

helpstring Specifies a character string that is used to describe the
element to which it applies.

helpstringcontext Specifies the ID of a help topic in an .hlp or .chm file.

helpstringdll Specifies the name of the DLL to use to perform document
string lookup (localization).

hidden Indicates that the item exists but should not be displayed in
a user-oriented browser.

library_block Places a construct inside the .idl file's library block.

local Allows you to use the MIDL compiler as a header generator
when used in the interface header. When used in an
individual function, designates a local procedure for which no
stubs are generated.

nonextensible Specifies that the IDispatch  implementation includes only
the properties and methods listed in the interface description
and cannot be extended with additional members at run
time. This attribute is only valid on a dual interface.

odl Identifies an interface as an Object Description Language
(ODL) interface.

object Identifies a custom interface.

The following attributes apply to the interface (or __interface) C++ keyword.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/interface-attributes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/interface


oleautomation Indicates that an interface is compatible with Automation.

pointer_default Specifies the default pointer attribute for all pointers except
top-level pointers that appear in parameter lists.

ptr Designates a pointer as a full pointer.

restricted Designates which members of the library cannot be called
arbitrarily.

uuid Provides the unique ID for the library

ATTRIBUTE DESCRIPTION

See Also

You must observe these rules for defining an interface:

Default calling convention is __stdcall.

A GUID is supplied for you if you do not supply one.

No overloaded methods are allowed.

When not specifying the uuid attribute and using the same interface name in different attribute projects, the
same GUID is generated.

Attributes by Usage

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/stdcall


Class Attributes
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

aggregatable Indicates that the class supports aggregation.

aggregates Indicates that a control aggregates the target class.

appobject Identifies the coclass as an application object, which is
associated with a full .exe application, and indicates that the
functions and properties of the coclass are globally available
in this type library.

case Used with the switch_type attribute in a union.

coclass Creates an ActiveX control.

com_interface_entry Adds an interface entry to a COM map.

control Specifies that the user-defined type is a control.

custom Lets you define your own attribute.

db_command Creates an OLE DB command.

db_param Associates the specified member variable with an input or
output parameter and delimits the variable.

db_source Creates a connection to a data source.

db_table Opens an OLE DB table.

default Indicates that the custom or dispinterface defined within a
coclass represents the default programmability interface.

defaultvtable Defines an interface as the default vtable interface for a
control.

event_receiver Creates an event receiver.

event_source Creates an event source.

helpcontext Specifies a context ID that lets the user view information
about this element in the Help file.

helpfile Sets the name of the Help file for a type library.

The following attributes apply to the class C++ keyword.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/class-attributes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/class-cpp


helpstringcontext Specifies the ID of a help topic in an .hlp or .chm file.

helpstring Specifies a character string that is used to describe the
element to which it applies.

hidden Indicates that the item exists but should not be displayed in
a user-oriented browser.

implements Specifies dispatch interfaces that are forced to be members
of the IDL coclass.

implements_category Specifies implemented component categories for the class.

module Defines the library block in the .idl file.

noncreatable Defines an object that cannot be instantiated by itself.

progid Defines the ProgID for a control.

registration_script Executes the specified registration script.

requestedit Indicates that the property supports the OnRequestEdit

notification.

source Specifies the control's source interfaces for connection
points on a class. On a property or method, the source

attribute indicates that the member returns an object or 
VARIANT  that is a source of events.

support_error_info Supports error reporting for the target object.

threading Specifies the threading model for a control.

uuid Specifies the unique ID for a class or interface.

version Identifies a particular version among multiple versions of a
class.

vi_progid Specifies a version-independent form of the ProgID.

ATTRIBUTE DESCRIPTION

See Also
Attributes by Usage



Method Attributes
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

bindable Indicates that the property supports data binding.

call_as Enables a nonremotable function to be mapped to a remote
function.

custom Lets you define your own attribute.

db_column Binds a specified column to the rowset.

db_command Creates an OLE DB command.

db_param Associates the specified member variable with an input or
output parameter and delimits the variable.

db_source Creates a connection to a data source.

db_table Opens an OLE DB table.

defaultbind Indicates the single, bindable property that best represents
the object.

defaultcollelem Used for Visual Basic code optimization.

displaybind Indicates a property that should be displayed to the user as
bindable.

helpcontext Specifies a context ID that lets the user view information
about this element in the Help file.

helpfile Sets the name of the Help file for a type library.

helpstring Specifies a character string that is used to describe the
element to which it applies.

helpstringcontext Specifies the ID of a help topic in an .hlp or .chm file.

helpstringdll Specifies the name of the DLL to use to perform document
string lookup (localization).

hidden Indicates that the item exists but should not be displayed in
a user-oriented browser.

id Specifies a DISPID for a member function (either a property
or a method, in an interface or dispinterface).

The following attributes apply to the methods in a class, coclass, or interface.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/method-attributes.md


immediatebind Indicates that the database will be notified immediately of all
changes to a property of a data-bound object.

in Indicates that a parameter is to be passed from the calling
procedure to the called procedure.

local Allows you to use the MIDL compiler as a header generator
when used in the interface header. When used in an
individual function, designates a local procedure for which
no stubs are generated.

nonbrowsable Indicates that an interface member should not be displayed
in a property browser.

propget Specifies a property accessor function.

propput Specifies a property-setting function.

propputref Specifies a property-setting function that uses a reference
instead of a value.

ptr Designates a pointer as a full pointer.

range Specifies a range of allowable values for arguments or fields
whose values are set at run time.

requestedit Indicates that the property supports the OnRequestEdit

notification.

restricted Specifies that a member of a module, interface, or
dispinterface cannot be called arbitrarily.

satype Specifies the data type of the SAFEARRAY  structure.

source Specifies the control's source interfaces for connection
points on a class. On a property or method, the source

attribute indicates that the member returns an object or
VARIANT that is a source of events.

synchronize Synchronizes access to the target method.

vararg Specifies that the function take a variable number of
arguments.

ATTRIBUTE DESCRIPTION

See Also
Attributes by Usage



Parameter Attributes
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

custom Lets you define your own attribute.

defaultvalue Allows specification of a default value for a typed optional
parameter.

first_is Specifies the index of the first array element to be
transmitted.

iid_is Specifies the index of the first array element to be
transmitted.

immediatebind Indicates that the database will be notified immediately of all
changes to a property of a data-bound object.

in Indicates that a parameter is to be passed from the calling
procedure to the called procedure.

last_is Specifies the index of the last array element to be
transmitted.

lcid Lets you pass a locale identifier to a function.

length_is Specifies the number of array elements to be transmitted.

max_is Designates the maximum value for a valid array index.

optional Specifies an optional parameter for a member function.

out Identifies pointer parameters that are returned from the
called procedure to the calling procedure (from the server to
the client).

range Specifies a range of allowable values for arguments or fields
whose values are set at run time.

ref Identifies a reference pointer.

retval Designates the parameter that receives the return value of
the member.

satype Specifies the data type of the SAFEARRAY  structure.

The following attributes apply to parameters of a method in a class or interface.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/parameter-attributes.md


size_is Specifies the size of memory allocated for sized pointers,
sized pointers to sized pointers, and single- or
multidimensional arrays.

unique Specifies a unique pointer.

ATTRIBUTE DESCRIPTION

See Also
Attributes by Usage



Data Member Attributes
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

db_accessor Groups db_column  attributes that participate in IAccessor

-based binding.

db_column Binds a specified column to the rowset.

db_command Creates an OLE DB command.

db_param Associates the specified member variable with an input or
output parameter and delimits the variable.

db_source Creates a connection to a data source.

db_table Opens an OLE DB table.

defaultbind Indicates the single, bindable property that best represents
the object.

displaybind Indicates a property that should be displayed to the user as
bindable.

id Specifies a DISPID for a member function (either a property or
a method, in an interface or dispinterface).

range Specifies a range of allowable values for arguments or fields
whose values are set at run time.

rdx Creates a registry key or modifies an existing registry key.

readonly Prohibits assignment to a data member.

requestedit Indicates that the property supports the OnRequestEdit

notification.

See Also

The following attributes apply to the data members in a class, coclass, or interface.

Attributes by Usage

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/data-member-attributes.md


Typedef, Enum, Union, and Struct Attributes
10/31/2018 • 3 minutes to read • Edit Online

typedeftypedef

ATTRIBUTE DESCRIPTION

case Used with the switch_type attribute in a union.

custom Lets you define your own attribute.

export Causes a data structure to be placed in the .idl file.

first_is Specifies the index of the first array element to be
transmitted.

helpcontext Specifies a context ID that lets the user view information
about this element in the Help file.

helpfile Sets the name of the Help file for a type library.

helpstring Specifies a character string that is used to describe the
element to which it applies.

library_block Places a construct inside the .idl file's library block.

ptr Designates a pointer as a full pointer.

public Ensures that a typedef will go into the type library even if it
is not referenced from within the .idl file.

ref Identifies a reference pointer.

switch_is Specifies the expression or identifier acting as the union
discriminant that selects the union member.

switch_type Identifies the type of the variable used as the union
discriminant.

unique Specifies a unique pointer.

wire_marshal Specifies a data type that will be used for transmission
instead of an application-specific data type.

enumenum

ATTRIBUTE DESCRIPTION

custom Lets you define your own attribute.

The following attributes apply to the typedef, struct, and enum C++ keywords.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/typedef-enum-union-and-struct-attributes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/aliases-and-typedefs-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/struct-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/enumerations-cpp


export Causes a data structure to be placed in the .idl file.

uuid Specifies the unique ID for a class or interface.

v1_enum Directs that the specified enumerated type be transmitted
as a 32-bit entity, rather than the 16-bit default.

ATTRIBUTE DESCRIPTION

unionunion

ATTRIBUTE DESCRIPTION

custom Lets you define your own attribute.

export Causes a data structure to be placed in the .idl file.

first_is Specifies the index of the first array element to be
transmitted.

last_is Specifies the index of the last array element to be
transmitted.

length_is Specifies the number of array elements to be transmitted.

max_is Designates the maximum value for a valid array index.

size_is Specifies the size of memory allocated for sized pointers,
sized pointers to sized pointers, and single- or
multidimensional arrays.

unique Specifies a unique pointer.

uuid Specifies the unique ID for a class or interface.

Nonencapsulated unionNonencapsulated union

ATTRIBUTE DESCRIPTION

ms_union Controls the network data representation alignment of
nonencapsulated unions.

no_injected_text Prevents the compiler from injecting code as a result of
attribute use.

structstruct

ATTRIBUTE DESCRIPTION

aggregatable Indicates that the class supports aggregation.

aggregates Indicates that a control aggregates the target class.



appobject Identifies the coclass as an application object, which is
associated with a full .exe application, and indicates that the
functions and properties of the coclass are globally available
in this type library.

coclass Creates an ActiveX control.

com_interface_entry Adds an interface entry to a COM map.

control Specifies that the user-defined type is a control.

custom Lets you define your own attribute.

db_column Binds a specified column to the rowset.

db_command Creates an OLE DB command.

db_param Associates the specified member variable with an input or
output parameter and delimits the variable.

db_source Creates a connection to a data source.

db_table Opens an OLE DB table.

default Indicates that the custom or dispinterface defined within a
coclass represents the default programmability interface.

defaultvtable Defines an interface as the default vtable interface for a
control.

event_receiver Creates an event receiver.

event_source Creates an event source.

export Causes a data structure to be placed in the .idl file.

first_is Specifies the index of the first array element to be
transmitted.

hidden Indicates that the item exists but should not be displayed in
a user-oriented browser.

implements_category Specifies implemented component categories for the class.

last_is Specifies the index of the last array element to be
transmitted.

length_is Specifies the number of array elements to be transmitted.

max_is Designates the maximum value for a valid array index.

ATTRIBUTE DESCRIPTION



requires_category Specifies the required component categories of the target
class.

size_is Specifies the size of memory allocated for sized pointers,
sized pointers to sized pointers, and single- or
multidimensional arrays.

source On a class, specifies the COM object's source interfaces for
connection points. On a property or method, indicates that
the member returns an object or VARIANT that is a source
of events.

threading Specifies the threading model for a COM object.

unique Specifies a unique pointer.

uuid Specifies the unique ID for a class or interface.

version Identifies a particular version among multiple versions of a
class.

vi_progid Specifies a version-independent form of the ProgID.

ATTRIBUTE DESCRIPTION

See Also
Attributes by Usage



Array Attributes
10/31/2018 • 2 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

library_block Places a construct inside the .idl file's library block.

satype Specifies the data type of the SAFEARRAY  structure.

string Indicates that the one-dimensional char, wchar_t, byte  (or
equivalent) array or the pointer to such an array must be
treated as a string.

See Also

The following attributes apply to arrays or SAFEARRAY s.

Attributes by Usage

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/array-attributes.md


Stand-Alone Attributes
10/31/2018 • 2 minutes to read • Edit Online

Stand-alone attribute list
ATTRIBUTE DESCRIPTION

cpp_quote Emits the specified string, without the quote characters, into
the generated header file.

custom Lets you define your own attribute.

db_command Creates an OLE DB command.

emitidl Determines whether all subsequent IDL attributes will be
processed and placed in the generated .idl file.

idl_module Specifies an entry point in a DLL.

idl_quote Allows you to use IDL constructs that are not supported in
the current version of Visual C++ and have them pass
through to the generated .idl file.

import Specifies another .idl, .odl, or .h file containing definitions you
want to reference from your main .idl file.

importidl Inserts the specified .idl file into the generated .idl file

importlib Makes types that have already been compiled into another
type library available to the type library being created.

include Specifies one or more header files to be included in the
generated .idl file.

includelib Causes an .idl or .h file to be included in the generated .idl
file.

library_block Places a construct inside the .idl file's library block.

module Defines the library block in the .idl file.

no_injected_text Prevents the compiler from injecting code as a result of
attribute use.

pragma Emits the specified string, without the quote characters, into
the generated .idl file.

A stand-alone attribute does not operate on a C++ keyword but is more like a line of code. Stand-alone attribute
statements require a semicolon at the end of the line.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/stand-alone-attributes.md


See Also
Attributes by Usage



Custom Attributes (C++)
10/31/2018 • 2 minutes to read • Edit Online

See Also

A custom attribute is a strongly typed technique that allows the user to extend metadata. This topic deals with
using attributes: specifying parameters and targets.

For information on defining new custom attributes, see,

User-Defined Attributes

attribute (deprecated syntax).

attribute
Custom Attributes (C++)

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/custom-attributes-cpp.md


Attributes Alphabetical Reference
10/31/2018 • 6 minutes to read • Edit Online

ATTRIBUTE DESCRIPTION

aggregatable Indicates that a control can be aggregated by another control.

aggregates Indicates that a control aggregates the target class.

appobject Identifies the coclass as an application object, which is
associated with a full EXE application, and indicates that the
functions and properties of the coclass are globally available
in this type library.

async_uuid Specifies the UUID that directs the MIDL compiler to define
both synchronous and asynchronous versions of a COM
interface.

attribute Allows you to create a custom attribute.

bindable Indicates that the property supports data binding.

call_as Enables a nonremotable function to be mapped to a remote
function.

case Used with the switch_type attribute in a union.

coclass Creates a COM object, which can implement a COM interface.

com_interface_entry Adds an interface entry to a COM map.

control Specifies that the user-defined type is a control.

cpp_quote Emits the specified string, without the quote characters, into
the generated header file.

custom Lets you define your own attributes.

db_accessor Binds columns in a rowset and binds them to the
corresponding accessor maps.

db_column Binds a specified column to the rowset.

db_command Executes an OLE DB command.

db_param Associates the specified member variable with an input or
output parameter.

The following attributes are available in the Microsoft C++ compiler:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/attributes-alphabetical-reference.md


db_source Creates and encapsulates a connection, through a provider, to
a data source.

db_table Opens an OLE DB table.

default Indicates that the custom or dispinterface defined within a
coclass represents the default programmability interface.

defaultbind Indicates the single, bindable property that best represents
the object.

defaultcollelem Used for Visual Basic code optimization.

defaultvalue Allows specification of a default value for a typed optional
parameter.

defaultvtable Defines an interface as the default vtable interface for a
control.

dispinterface Places an interface in the .idl file as a dispatch interface.

displaybind Indicates a property that should be displayed to the user as
bindable.

dual Places an interface in the .idl file as a dual interface.

emitidl Determines whether all subsequent IDL attributes will be
processed and placed in the generated .idl file.

entry Specifies an exported function or constant in a module by
identifying the entry point in the DLL.

event_receiver Creates an event receiver.

event_source Creates an event source.

export Causes a data structure to be placed in the .idl file.

first_is Specifies the index of the first array element to be transmitted.

helpcontext Specifies a context ID that lets the user view information
about this element in the Help file.

helpfile Sets the name of the Help file for a type library.

helpstring Specifies the ID of a help topic in an .hlp or .chm file.

helpstringdll Specifies the name of the DLL to use to perform document
string lookup (localization).

hidden Indicates that the item exists but should not be displayed in a
user-oriented browser.

ATTRIBUTE DESCRIPTION



id Specifies a DISPID for a member function (either a property or
a method, in an interface or dispinterface).

idl_module Specifies an entry point in a DLL.

idl_quote Allows you to use attributes or IDL constructs that are not
supported in the current version of Visual C++.

iid_is Specifies the IID of the COM interface pointed to by an
interface pointer.

immediatebind Indicates that the database will be notified immediately of all
changes to a property of a data-bound object.

implements Specifies dispatch interfaces that are forced to be members of
the IDL coclass.

implements_category Specifies implemented component categories for the class.

import Specifies another .idl, .odl, or header file containing definitions
you want to reference from your main .idl file.

importidl Inserts the specified .idl file into the generated .idl file.

importlib Makes types that have already been compiled into another
type library available to the type library being created.

in Indicates that a parameter is to be passed from the calling
procedure to the called procedure.

include Specifies one or more header files to be included in the
generated .idl file.

includelib Causes an .idl or .h file to be included in the generated .idl file.

last_is Specifies the index of the last array element to be transmitted.

lcid Lets you pass a locale identifier to a function.

length_is Specifies the number of array elements to be transmitted.

library_block Places a construct inside the .idl file's library block.

licensed Indicates that the coclass to which it applies is licensed, and
must be instantiated using IClassFactory2 .

local Allows you to use the MIDL compiler as a header generator
when used in the interface header. When used in an individual
function, designates a local procedure for which no stubs are
generated.

max_is Designates the maximum value for a valid array index.

ATTRIBUTE DESCRIPTION



module Defines the library block in the .idl file.

ms_union Controls the network data representation alignment of
nonencapsulated unions.

no_injected_text Prevents the compiler from injecting code as a result of
attribute use.

nonbrowsable Indicates that an interface member should not be displayed in
a property browser.

noncreatable Defines an object that cannot be instantiated by itself.

nonextensible Specifies that the IDispatch  implementation includes only
the properties and methods listed in the interface description
and cannot be extended with additional members at run time.

object Identifies a custom interface; synonymous with custom
attribute.

odl Identifies an interface as an Object Description Language
(ODL) interface.

oleautomation Indicates that an interface is compatible with Automation.

optional Specifies an optional parameter for a member function.

out Identifies pointer parameters that are returned from the called
procedure to the calling procedure (from the server to the
client).

pointer_default Specifies the default pointer attribute for all pointers except
top-level pointers that appear in parameter lists.

pragma Emits the specified string, without the quote characters, into
the generated .idl file.

progid Specifies the ProgID for a COM object.

propget Specifies a property accessor (get) function.

propput Specifies a property setting function.

propputref Specifies a property setting function that uses a reference
instead of a value.

ptr Designates a pointer as a full pointer.

public Ensures that a typedef will go into the type library even if it is
not referenced from within the .idl file.

range Specifies a range of allowable values for arguments or fields
whose values are set at run time.

ATTRIBUTE DESCRIPTION



rdx Creates or modifies a registry key.

readonly Prohibits assignment to a variable.

ref Identifies a reference pointer.

registration_script Executes the specified registration script.

requestedit Indicates that the property supports the OnRequestEdit

notification.

requires_category Specifies required component categories for the class.

restricted Specifies that a library, or member of a module, interface, or
dispinterface cannot be called arbitrarily.

retval Designates the parameter that receives the return value of
the member.

satype Specifies the data type of the SAFEARRAY .

size_is Specifies the size of memory allocated for sized pointers, sized
pointers to sized pointers, and single- or multidimensional
arrays.

source Indicates that a member of a class, property, or method is a
source of events.

string Indicates that the one-dimensional char, wchar_t, byte , or
equivalent array or the pointer to such an array must be
treated as a string.

support_error_info Supports error reporting for the target object.

switch_is Specifies the expression or identifier acting as the union
discriminant that selects the union member.

switch_type Identifies the type of the variable used as the union
discriminant.

synchronize Synchronizes access to a method.

threading Specifies the threading model for a COM object.

transmit_as Instructs the compiler to associate a presented type, which
client and server applications manipulate, with a transmitted
type.

uidefault Indicates that the type information member is the default
member for display in the user interface.

unique Specifies a unique pointer.

ATTRIBUTE DESCRIPTION



usesgetlasterror Tells the caller that if there is an error when calling that
function, the caller can then call GetLastError  to retrieve
the error code.

uuid Specifies the unique ID for a class or interface.

v1_enum Directs that the specified enumerated type be transmitted as
a 32-bit entity, rather than the 16-bit default.

vararg Specifies that the function take a variable number of
arguments.

version Identifies a particular version among multiple versions of an
interface or class.

vi_progid Specifies a version-independent form of the ProgID.

wire_marshal Specifies a data type that will be used for transmission instead
of an application-specific data type.

ATTRIBUTE DESCRIPTION

See Also
C++ Attributes for COM and .NET
Attributes by Group
Attributes by Usage



aggregatable
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ aggregatable(value) ]

ParametersParameters

Remarks

ATL ProjectsATL Projects

PARAMETER VALUE INSERTED MACRO

Never DECLARE_NOT_AGGREGATABLE

Allowed DECLARE_POLY_AGGREGATABLE

Always DECLARE_ONLY_AGGREGATABLE

Example

Indicates that the class supports aggregation.

value
(Optional) A parameter to indicate when the COM object can be aggregated:

never  The COM object cannot be aggregated.

allowed  The COM object can be created directly or it can be aggregated. This is the default.

always  The COM object cannot be created directly and can only be aggregated. When you call 
CoCreateInstance  for this object, you must specify the aggregating object's IUnknown  interface (the

controlling IUnknown ).

The aggregatable C++ attribute has the same functionality as the aggregatable MIDL attribute. This means that
the compiler will pass the aggregatable attribute through to the generated .idl file.

This attribute requires that the coclass, progid, or vi_progid attribute (or another attribute that implies one of
these) also be applied to the same element. If any single attribute is used, the other two are automatically applied.
For example, if progid  is applied, vi_progid  and coclass  are also applied.

If this attribute is used within a project that uses ATL, the behavior of the attribute changes. In addition to the
previously described behavior, the attribute also adds one of the following macros to the target class:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/aggregatable.md
https://docs.microsoft.com/windows/desktop/Midl/aggregatable


// cpp_attr_ref_aggregatable.cpp
// compile with: /LD
#define _ATL_ATTRIBUTES
#include "atlbase.h"
#include "atlcom.h"

[module(name="MyModule")];

[ coclass, aggregatable(allowed),
  uuid("1a8369cc-1c91-42c4-befa-5a5d8c9d2529")]
class CMyClass {};

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes One or more of the following: coclass , progid , or 
vi_progid .

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Class Attributes
Typedef, Enum, Union, and Struct Attributes
Aggregation

https://docs.microsoft.com/windows/desktop/com/aggregation


aggregates
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ aggregates(clsid, variable_name) ]

ParametersParameters

Remarks

ATL ProjectsATL Projects

COM_INTERFACE_ENTRY_AUTOAGGREGATE_BLIND(_m_spAttrXXX, clsid)

Example

Indicates that the object aggregates the object specified by the CLSID.

clsid
Specifies the CLSID of the aggregatable object.

variable_name
The name of the variable that is to be inserted. This variable contains the IUnknown  of the object being
aggregated.

When applied to an object, the aggregates C++ attribute implements an outer wrapper for the object being
aggregated (specified by clsid ).

This attribute requires that the coclass, progid, or vi_progid attribute (or another attribute that implies one of
these) also be applied to the same element. If any single attribute is used, the other two are automatically applied.
For example, if progid  is applied, vi_progid  and coclass  are also applied.

If this attribute is used within a project that uses ATL, the behavior of the attribute changes. First, the following
entry is added to the COM map of the target object:

Second, the DECLARE_GET_CONTROLLING_UNKNOWN macro is also added.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/aggregates.md


// cpp_attr_ref_aggregates.cpp
// compile with: /LD
#define _ATL_ATTRIBUTES
#include "atlbase.h"
#include "atlcom.h"

// requires 'aggregatable.dll'
// see aggregatable attribute to create 'aggregatable.dll'
class DECLSPEC_UUID("1a8369cc-1c91-42c4-befa-5a5d8c9d2529") CMyClass;

[module (name="MYObject")];
[object, uuid("ab006d85-e754-47c5-9ef4-2744ff32a20c")]
__interface IObject
{
};

[ coclass, aggregates(__uuidof(CMyClass)),
  uuid("91cb2c06-8931-432a-baac-206e55c4edfb")]
struct CObject : IObject
{
   int i;
};

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable Yes

Required attributes One or more of the following: coclass , progid , or 
vi_progid .

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

COM Attributes
Class Attributes
Typedef, Enum, Union, and Struct Attributes
Aggregation
Aggregatable
COM_INTERFACE_ENTRY_AUTOAGGREGATE_BLIND

https://docs.microsoft.com/windows/desktop/com/aggregation
https://docs.microsoft.com/windows/desktop/Midl/aggregatable


appobject
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[appobject]

Remarks

Example

// cpp_attr_ref_appobject.cpp
// compile with: /LD
#include <windows.h>
[module(name="MyLib", uuid="f1ce17f0-a5df-4d26-95f6-0a122197ac5b")];

[object, uuid="905de6db-7a12-45ab-9f8b-b39f5112f010"]
__interface ICustom {};

[coclass, appobject,uuid="00395340-745f-4b69-bd58-e2921452b9fc"]
class A : public ICustom {
   int i;
};

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes coclass

Invalid attributes None

See Also

Identifies the coclass as an application object, which is associated with a full .exe application, and indicates that the
functions and properties of the coclass are globally available in this type library.

The appobject C++ attribute has the same functionality as the appobject MIDL attribute.

The following code shows a simple class definition preceded by an attribute block that includes appobject:

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Class Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/appobject.md
https://docs.microsoft.com/windows/desktop/Midl/appobject


Typedef, Enum, Union, and Struct Attributes



async_uuid
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[async_uuid (uuid)]

ParametersParameters

Remarks

Example
// cpp_attr_ref_async_uuid.cpp
// compile with: /LD
#include <Windows.h>
[module(name="Test")];
[object, uuid("9e66a290-4365-11d2-a997-00c04fa37ddb"),
async_uuid("e8583106-38fd-487e-912e-4fc8645c677e")]
__interface ICustom {
   HRESULT Custom([in] long l, [out, retval] long *pLong);
};

Requirements
Attribute ContextAttribute Context

Applies to interface

Repeatable No

Required attributes None

Invalid attributes dual, dispinterface

See Also

Specifies the UUID that directs the MIDL compiler to define both synchronous and asynchronous versions of a
COM interface.

uuid
A UUID that identifies the version of the interface.

The async_uuid C++ attribute has the same functionality as the async_uuid MIDL attribute.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Interface Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/async-uuid.md
https://docs.microsoft.com/windows/desktop/Midl/async-uuid




attribute
10/31/2018 • 2 minutes to read • Edit Online

NOTENOTE

See Also

The attribute attribute is now deprecated. Use the common language runtime attribute System.Attribute  to directly to
create user-defined attributes. For more information, see User-Defined Attributes.

Attributes Alphabetical Reference

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/attribute.md


bindable
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[bindable]

Remarks

Example

// cpp_attr_ref_bindable.cpp
// compile with: /LD
#include <windows.h>
[
   uuid("479B29E3-9A2C-11D0-B696-00A0C903487A"), dispinterface, helpstring("property demo Interface")
]
__interface IPropDemo : IDispatch {

   [propget, id(1), bindable, displaybind, defaultbind, requestedit] HRESULT P1([out, retval] long *nSize);
   [propput, id(1), bindable, displaybind, defaultbind, requestedit] HRESULT P1([in] long nSize);
   [id(3), bindable, propget] HRESULT Object([out, retval] IDispatch **ppObj);
   [id(3), bindable, propputref] HRESULT Object([in] IDispatch* pObj);
   [id(-552), helpstring("method AboutBox")] HRESULT AboutBox();
};

[ module(name="PropDemoLib", uuid="479B29E2-9A2C-11D0-B696-00A0C903487A", version="1.0", 
helpstring="property demo") ];

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Indicates that the property supports data binding.

The bindable C++ attribute has the same functionality as the bindable MIDL attribute. You can use it on
properties defined with the propget, propput, or propputref attributes, or you can manually define a bindable
method.

The following MFC samples show the use of bindable:

Controls Samples: MFC-Based ActiveX Controls

CIRC Sample: ActiveX Control

TESTHELP Sample: ActiveX Control with Tooltips and Help

The following code shows how you can use bindable on a property:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/bindable.md
https://docs.microsoft.com/windows/desktop/Midl/bindable
https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/MFC/controls
https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/MFC/controls
https://github.com/Microsoft/VCSamples/tree/master/VC2010Samples/MFC/controls


Repeatable No

Required attributes None

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Method Attributes
defaultbind
displaybind
immediatebind
requestedit



call_as
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ call_as(function) ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_call_as.cpp
// compile with: /LD
#include "unknwn.h"
[module(name="MyLib")];
[dual, uuid("00000000-0000-0000-0000-000000000001")]
__interface IMInterface {
   [local] HRESULT f1 ( int i );
   [call_as(f1)] HRESULT Remf1 ( int i );
};

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Enables a local function to be mapped to a remote function so that when the remote function is called, the local
function is invoked.

function
The local function that you want to be called when a remote function is invoked.

The call_as C++ attribute has the same functionality as the call_as MIDL attribute.

The following code shows how you can use call_as to map a nonremotable function ( f1 ) to a remotable function
( Remf1 ):

For more information about the attribute contexts, see Attribute Contexts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/call-as.md
https://docs.microsoft.com/windows/desktop/Midl/call-as


IDL Attributes
Method Attributes
local



case (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ case(value) ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_case.cpp
// compile with: /LD
#include <unknwn.h>
[export]
struct SizedValue2 {
   [switch_type(char), switch_is(kind)] union {
      [case(1), string]
          wchar_t* wval;
      [default, string]
          char* val;
   };
    char kind;
};
[module(name="ATLFIRELib")];

Requirements
Attribute ContextAttribute Context

Used with the switch_type attribute in a union.

value
A possible input value for which you want to provide processing. The type of value can be one of the following
types:

int

char

boolean

enum

or an identifier of such a type.

The case C++ attribute has the same functionality as the case MIDL attribute. This attribute is only used with the
switch_type attribute.

The following code shows a use of the case attribute:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/case-cpp.md


Applies to Member of a class or struct

Repeatable No

Required attributes None

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes
Class Attributes



coclass
10/31/2018 • 3 minutes to read • Edit Online

Syntax
[coclass]

Remarks

Creates a COM object, which can implement a COM interface.

The coclass C++ attribute places a coclass construct in the generated .idl file.

When defining a coclass, you can also specify the uuid, version, threading, vi_progid, and progid attributes. If
any one of them is not specified, it will be generated.

If two header files contain classes with the coclass attribute and don't specify a GUID, the compiler will use the
same GUID for both classes, and that will result in a MIDL error. Therefore, you should use the uuid  attribute
when you use coclass.

ATL Projects

When this attribute precedes a class or structure definition in an ATL project, it:

Injects code or data to support auto registration for the object.

Injects code or data to support a COM class factory for the object.

Injects code or data to implement IUnknown  and make the object a COM-creatable object.

Specifically, the following base classes are added to the target object:

CComCoClass Class provides the default class factory and aggregation model for the object.

CComObjectRootEx Class has a template based on the threading model class specified by the threading
attribute. If the threading  attribute is not specified, the default threading model is apartment.

IProvideClassInfo2Impl is added if the noncreatable attribute is not specified for the target object.

Finally, any dual interface that is not defined using embedded IDL is replaced with the corresponding
IDispatchImpl class. If the dual interface is defined in embedded IDL, the particular interface in the base list is
not modified.

The coclass attribute also makes the following functions available via injected code, or in the case of 
GetObjectCLSID , as a static method in the base class CComCoClass :

UpdateRegistry  registers the class factories of the target class.

GetObjectCLSID , which is related to registration, can also be used to obtain the CLSID of the target class.

GetObjectFriendlyName  by default returns a string of the format "<target class name> Object ". If this
function is already present, it is not added. Add this function to the target class to return a friendlier
name than the one automatically generated.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/coclass.md


Example

// cpp_attr_ref_coclass1.cpp
// compile with: /LD
#include "unknwn.h"
[module(name="MyLib")];

[ object, uuid("00000000-0000-0000-0000-000000000001") ]
__interface I {
   HRESULT func();
};

[coclass, progid("MyCoClass.coclass.1"), vi_progid("MyCoClass.coclass"),
appobject, uuid("9E66A294-4365-11D2-A997-00C04FA37DDB")]
class CMyClass : public I {};

GetProgID , which is related to registration, returns the string specified with the progid attribute.

GetVersionIndependentProgID  has the same functionality as GetProgID , but it returns the string specified
with vi_progid.

The following changes, which are related to the COM map, are made to the target class:

A COM map is added with entries for all interfaces the target class derives from and all entries specified
by the COM Interface Entry Points attribute or those required by the aggregates attribute.

An OBJECT_ENTRY_AUTO macro is inserted into the COM map.

The name of the coclass generated in the .idl file for the class will have the same name as the class. For
example, and referring to the following sample, to access the class ID for a coclass CMyClass , in a client
through the MIDL-generated header file, use CLSID_CMyClass .

The following code shows how to use the coclass attribute:

The following sample shows how to override the default implementation of a function that appears in the code
injected by the coclass attribute. See /Fx for more information on viewing injected code. Any base classes or
interfaces that you use for a class will be appear in the injected code. Further, if a class is included by default in
the injected code and you explicitly specify that class as a base for your coclass, the attribute provider will use
the form specified in your code.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fx-merge-injected-code


// cpp_attr_ref_coclass2.cpp
// compile with: /LD
#include <atlbase.h>
#include <atlcom.h>
#include <atlwin.h>
#include <atltypes.h>
#include <atlctl.h>
#include <atlhost.h>
#include <atlplus.h>

[module(name="MyLib")];

[object, uuid("00000000-0000-0000-0000-000000000000")]
__interface bb {};

[coclass, uuid("00000000-0000-0000-0000-000000000001")]
class CMyClass : public bb {
public:
   // by adding the definition of UpdateRegistry to your code, // the function will not be included in the 
injected code
   static HRESULT WINAPI UpdateRegistry(BOOL bRegister) {
      // you can add to the default implementation
      CRegistryVirtualMachine rvm;
      HRESULT hr;
      if (FAILED(hr = rvm.AddStandardReplacements()))
         return hr;
      rvm.AddReplacement(_T("FriendlyName"), GetObjectFriendlyName());
      return rvm.VMUpdateRegistry(GetOpCodes(), GetOpcodeStringVals(),       GetOpcodeDWORDVals(), 
GetOpcodeBinaryVals(), bRegister);
   }
};

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes None

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
COM Attributes
Class Attributes
Typedef, Enum, Union, and Struct Attributes
appobject



com_interface_entry (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ com_interface_entry(
  com_interface_entry) ]

ParametersParameters

Remarks

[ coclass, com_interface_entry =
    "COM_INTERFACE_ENTRY_NOINTERFACE(IDebugTest)"
]
   class CMyClass
   {
   };

Example

Adds an interface entry into the COM map of the target class.

com_interface_entry
A string containing the actual text of the entry. For a list of possible values, see COM_INTERFACE_ENTRY
Macros.

The com_interface_entry C++ attribute inserts the unabridged contents of a character string into the COM
interface map of the target object. If the attribute is applied once to the target object, the entry is inserted into the
beginning of the existing interface map. If the attribute is applied repeatedly to the same target object, the entries
are inserted at the beginning of the interface map in the order they are received.

This attribute requires that the coclass, progid, or vi_progid attribute (or another attribute that implies one of
these) also be applied to the same element. If any single attribute is used, the other two are automatically applied.
For example, if progid  is applied, vi_progid  and coclass  are also applied.

Because the first usage of com_interface_entry causes the new interface to be inserted at the beginning of the
interface map, it must be one of the following COM_INTERFACE_ENTRY types:

COM_INTERFACE_ENTRY

COM_INTERFACE_ENTRY_IID

COM_INTERFACE_ENTRY2

COM_INTERFACE_ENTRY2_IID

Additional usages of the com_interface_entry attribute can use all supported COM_INTERFACE_ENTRY types.

This restriction is necessary because ATL uses the first entry in the interface map as the identity IUnknown ;
therefore, the entry must be a valid interface. For example, the following code sample is invalid because the first
entry in the interface map does not specify an actual COM interface.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/com-interface-entry-cpp.md


// cpp_attr_ref_com_interface_entry.cpp
// compile with: /LD
#define _ATL_ATTRIBUTES
#include "atlbase.h"
#include "atlcom.h"

[module (name ="ldld")];

[ object,
  uuid("7dbebed3-d636-4917-af62-c767a720a5b9")]
__interface IDebugTest{};

[ object,
  uuid("2875ceac-f94b-4087-8e13-d13dc167fcfc")]
__interface IMyClass{};

[ coclass,
  com_interface_entry ("COM_INTERFACE_ENTRY (IMyClass)"),
  com_interface_entry ("COM_INTERFACE_ENTRY_NOINTERFACE(IDebugTest)"),
  uuid("b85f8626-e76e-4775-b6a0-4826a9e94af2")
]

class CMyClass: public IMyClass, public IDebugTest
{
};

BEGIN_COM_MAP(CMyClass)
    COM_INTERFACE_ENTRY (IMyClass)
    COM_INTERFACE_ENTRY_NOINTERFACE(IDebugTest)
    COM_INTERFACE_ENTRY(IMyClass)
    COM_INTERFACE_ENTRY2(IDispatch, IMyClass)
    COM_INTERFACE_ENTRY(IDebugTest)
    COM_INTERFACE_ENTRY(IProvideClassInfo)
END_COM_MAP()

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable Yes

Required attributes One or more of the following: coclass , progid , or 
vi_progid .

Invalid attributes None

See Also

The following code adds two entries to the existing COM interface map of CMyBaseClass . The first is a standard
interface, and the second hides the IDebugTest  interface.

The resulting COM object map for CMyBaseClass  is as follows:

For more information about the attribute contexts, see Attribute Contexts.



COM Attributes
Class Attributes
Typedef, Enum, Union, and Struct Attributes



control
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[control]

Remarks

Example
// cpp_attr_ref_control.cpp
// compile with: /LD
#include <windows.h>
[module(name="Test", control=true)];

[object, uuid("9e66a290-4365-11d2-a997-00c04fa37ddb")]
__interface ICustom {
   HRESULT Custom([in] long l, [out, retval] long *pLong);
};

[coclass, control, appobject, uuid("9e66a294-4365-11d2-a997-00c04fa37ddb")]
class CTest : public ICustom {};

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies that the user-defined type is a control.

The control attribute implies the coclass attribute. The control C++ attribute has the same functionality as the
control MIDL attribute.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Class Attributes
Typedef, Enum, Union, and Struct Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/control.md
https://docs.microsoft.com/windows/desktop/Midl/control


cpp_quote
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ cpp_quote("statement") ];

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

See Also

Emits the specified string, without the quote characters, into the generated .idl file.

statement
A C instruction.

The cpp_quote C++ attribute is useful if you want to put a preprocessor directive in an .idl file.

You can also use cpp_quote and generate an .h file as part of the MIDL compilation. For example, if you have a
C++ header file that uses C++ IDL attributes but cannot use this file for some task, then you can compile it to
create a MIDL-generated .h file, which you should be able to use.

The cpp_quote attribute has the same functionality as the cpp_quote MIDL attribute.

See the example for dual for an example use how to use cpp_quote.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Stand-Alone Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/cpp-quote.md
https://docs.microsoft.com/windows/desktop/Midl/cpp-quote


custom (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ custom(
   uuid,
   value
) ];

ParametersParameters

Remarks

Requirements
Attribute ContextAttribute Context

Applies to Non-COM interface, class, enums, idl_module  methods,
interface members, interface parameters, typedefs, unions,
structs

Repeatable Yes

Required attributes coclass (when used on class)

Invalid attributes None

See Also

Defines metadata for an object in the type library.

uuid
A unique ID.

value
A value that can be put into a variant.

The custom C++ attribute will cause information to be placed into the type library. You will need a tool that
reads the custom value from type library.

The custom attribute has the same functionality as the custom MIDL attribute.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Stand-Alone Attributes
Typedef, Enum, Union, and Struct Attributes
Parameter Attributes
Method Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/custom-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/custom


Class Attributes
Interface Attributes



db_accessor
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ db_accessor(num, auto) ]

ParametersParameters

Remarks

Example

Groups db_column  attributes that participate in IAccessor -based binding.

num
Specifies the accessor number (a zero-based integer index). You must specify accessor numbers in increasing
order, using integers or defined values.

auto
A Boolean value that specifies whether the accessor is automatically retrieved (TRUE) or not retrieved (FALSE).

db_accessor defines the underlying OLE DB accessor for subsequent db_column  and db_param  attributes within
the same class or function. db_accessor is usable at member level and is used to group db_column  attributes that
participate in OLE DB IAccessor -based binding. It is used in conjunction with either the db_table  or db_command

attributes. Calling this attribute is similar to calling the BEGIN_ACCESSOR and END_ACCESSOR macros.

db_accessor generates a rowset and binds it to the corresponding accessor maps. If you do not call db_accessor,
accessor 0 will automatically be generated, and all column bindings will be mapped to this accessor block.

db_accessor groups database column bindings into one or more accessors. For a discussion of the scenarios in
which you need to use multiple accessors, see Using Multiple Accessors on a Rowset. Also see "User Record
Support for Multiple Accessors" in User Records.

When the consumer attribute provider applies this attribute to a class, the compiler will rename the class to
_YourClassNameAccessor, where YourClassName is the name you gave the class, and the compiler will also create
a class called YourClassName, which derives from _YourClassNameAccessor. In Class View, you will see both
classes.

The following example uses db_accessor to group columns in the Orders table from the Northwind database into
two accessors. Accessor 0 is an automatic accessor, and accessor 1 is not.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/db-accessor.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/begin-accessor
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/end-accessor
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/using-multiple-accessors-on-a-rowset
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/user-records


// cpp_attr_ref_db_accessor.cpp
// compile with: /LD /link /OPT:NOREF
#define _ATL_ATTRIBUTES
#include <atlbase.h>
#include <atldbcli.h>

[ db_command(L"SELECT LastName, FirstName FROM Orders") ]
class CEmployees {
public:
   [ db_accessor(0, TRUE) ];
   [ db_column("1") ] LONG m_OrderID;
   [ db_column("2") ] TCHAR m_CustomerID[6];
   [ db_column("4") ] DBTIMESTAMP m_OrderDate;

   [ db_accessor(1, FALSE) ];
   [ db_column("8") ] CURRENCY m_Freight;
};

Requirements
Attribute ContextAttribute Context

Applies to Attribute blocks

Repeatable No

Required attributes None

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

OLE DB Consumer Attributes



db_column
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ db_column(ordinal, dbtype, precision, scale, status, length) ]

ParametersParameters

[db_column("2")] TCHAR szCity[30];
[db_column(L"city_name")] TCHAR szCity[30];

Remarks

Binds a specified column to a variable in the rowset.

ordinal
The ordinal column number ( DBCOLUMNINFO  ordinal) or column name (ANSI or Unicode string) corresponding to a
field in the rowset to which to bind data. If you use numbers, you can skip consecutive ordinals (for example: 1, 2,
3, 5). The name may contain spaces if the OLE DB provider you use supports it. For example, you can use either
of the following formats:

dbtype
(Optional) An OLE DB Type Indicator for the column entry.

precision
(Optional) The precision to be used for the column entry. For details, see the description of the bPrecision

element of the DBBINDING structure

scale
(Optional) The scale to be used for the column entry. For details, see the description of bScale  element of the
DBBINDING structure

status
(Optional) A member variable used to hold the status of this column. The status indicates whether the column
value is a data value or some other value, such as NULL. For possible values, see Status in the OLE DB
Programmer's Reference.

length
(Optional) A member variable used to hold the size of the column in bytes.

db_column binds the specified table column to a variable in the rowset. It delimits member data that can
participate in OLE DB IAccessor -based binding. This attribute sets up the column map normally defined using
the OLE DB consumer macros BEGIN_COLUMN_MAP, END_COLUMN_MAP, and COLUMN_ENTRY. These
manipulate the OLE DB DBBINDING structure to bind the specified column. Each member you mark with the
db_column attribute will occupy one entry in the column map in the form of a column entry. Therefore, you call
this attribute where you would put the column map, that is, in the command or table class.

Use db_column in conjunction with either the db_table or db_command attributes.

When the consumer attribute provider applies this attribute to a class, the compiler will rename the class to

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/db-column.md
https://docs.microsoft.com/previous-versions/windows/desktop/ms711251
https://docs.microsoft.com/previous-versions/windows/desktop/ms716845
https://docs.microsoft.com/previous-versions/windows/desktop/ms716845
https://docs.microsoft.com/previous-versions/windows/desktop/ms722617
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/begin-column-map
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/end-column-map
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/column-entry
https://docs.microsoft.com/previous-versions/windows/desktop/ms716845


Example

// db_column_1.cpp
// compile with: /LD
#include <atlbase.h>
#include <atlplus.h>
#include <atldbcli.h>

[ db_command(L"Select * from Products") ]
class CProducts {
   DBSTATUS m_dwProductIDStatus;
   DBLENGTH m_dwProductIDLength;

   [ db_column("1", status="m_dwProductIDStatus", length="m_dwProductIDLength") ] LONG m_ProductID;
};

Example

// db_column_2.cpp
// compile with: /LD
#include <atlbase.h>
#include <atlplus.h>
#include <atldbcli.h>

[ db_command(L"Select * from Products") ]
class CProducts {
   [db_column("1")] LONG m_OrderID;
   [db_column("2")] TCHAR m_CustomerID[6];
   [db_column("4")] DB_NUMERIC m_OrderDate;
   [db_column("7", dbtype="DBTYPE_NUMERIC")] DB_NUMERIC m_ShipVia;
};

Requirements
Attribute ContextAttribute Context

Applies to class, struct, member, method

Repeatable No

Required attributes None

Invalid attributes None

_YourClassNameAccessor, where YourClassName is the name you gave the class, and the compiler will also
create a class called YourClassName, which derives from _YourClassNameAccessor. In Class View, you will see
both classes.

For examples of this attribute used in an application, see the samples AtlAgent, and MultiRead.

This sample binds a column in a table to a long data member and specifies status and length fields.

This sample binds four columns to a long, a character string, a timestamp, and a DB_NUMERIC  integer, in that order.

For more information about the attribute contexts, see Attribute Contexts.

https://github.com/Microsoft/VCSamples
https://github.com/Microsoft/VCSamples


See Also
OLE DB Consumer Attributes
Class Attributes



db_command
10/31/2018 • 5 minutes to read • Edit Online

Syntax
[ db_command(command, name, source_name, hresult, bindings, bulk_fetch)
]

ParametersParameters

[ db_command ( command = "Select * from Products" ) ]

Creates an OLE DB command.

command
A command string containing the text of an OLE DB command. A simple example is:

The command syntax is as follows:

binding parameter block 1   OLE DB command binding parameter block 2   continuation of OLE DB
command binding parameter block 3 ...

A binding parameter block is defined as follows:

([ bindtype ] szVar1 [, szVar2 [, nVar3 [, ...]]] )

where:

( marks the start of the data binding block.

[ bindtype ] is one of the following case-insensitive strings:

[db_column] binds each of the member variables to a column in a rowset.

[bindto] (same as [db_column]).

[in] binds member variables as input parameters.

[out] binds member variables as output parameters.

[in,out] binds member variables as input/output parameters.

szVarX, nVarX resolves to a member variable within the current scope.

) marks the end of the data binding block.

If the command string contains one or more specifiers such as [in], [out], or [in/out], db_command builds a
parameter map.

If the command string contains one or more parameters such as [db_column] or [bindto], db_command
generates a rowset and an accessor map to service these bound variables. See db_accessor for more
information.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/db-command.md


NOTENOTE

TCHAR m_au_fname[21];
TCHAR m_au_lname[41];
TCHAR m_state[3] = 'CA';

[db_command (command = "SELECT au_fname([bindto]m_au_fname), au_lname([bindto]m_au_lname) " \
   "FROM dbo.authors " \
   "WHERE state = ?([in]m_state)")
]

[bindtype] syntax and the bindings parameter are not valid when using db_command at the class level.

Here are some examples of binding parameter blocks. The following example binds the m_au_fname  and 
m_au_lname  data members to the au_fname  and au_lname  columns, respectively, of the authors table in the pubs

database:

name
(Optional) The name of the handle you use to work with the rowset. If you specify name, db_command
generates a class with the specified name, which can be used to traverse the rowset or to execute multiple action
queries. If you do not specify name, it will not be possible to return more than one row of results to the user.

source_name
(Optional) The CSession  variable or instance of a class that has the db_source  attribute applied to it on which
the command executes. See db_source.

db_command checks to ensure that the variable used for source_name is valid, so the specified variable should
be in function or global scope.

hresult
(Optional) Identifies the variable that will receive the HRESULT of this database command. If the variable does
not exist, it will be automatically injected by the attribute.

bindings
(Optional) Allows you to separate the binding parameters from the OLE DB command.

If you specify a value for bindings, db_command will parse the associated value and will not parse the
[bindtype] parameter. This usage allows you to use OLE DB provider syntax. To disable parsing, without binding
parameters, specify Bindings="" .

If you do not specify a value for bindings, db_command will parse the binding parameter block, looking for '(',
followed by [bindtype] in brackets, followed by one or more previously declared C++ member variables,
followed by ')'. All text between the parentheses will be stripped from the resulting command, and these
parameters will be used to construct column and parameter bindings for this command.

bulk_fetch
(Optional) An integer value that specifies the number of rows to fetch.

The default value is 1, which specifies single row fetching (the rowset will be of type CRowset).

A value greater than 1 specifies bulk row fetching. Bulk row fetching refers to the ability of bulk rowsets to fetch
multiple row handles (the rowset will be of type CBulkRowset and will call SetRows  with the specified number of
rows).

If bulk_fetch is less than one, SetRows  will return zero.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/crowset-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/cbulkrowset-class


Remarks

Example

// db_command.h
#include <atlbase.h>
#include <atlplus.h>
#include <atldbcli.h>

#pragma once

[  db_source(L"your connection string"), db_command(L" \
      SELECT au_lname, au_fname \
      FROM dbo.authors \
      WHERE state = 'CA'")  ]

struct CAuthors {
   // In order to fix several issues with some providers, the code below may bind
   // columns in a different order than reported by the provider

   DBSTATUS m_dwau_lnameStatus;
   DBSTATUS m_dwau_fnameStatus;
   DBLENGTH m_dwau_lnameLength;
   DBLENGTH m_dwau_fnameLength;

   [ db_column("au_lname", status="m_dwau_lnameStatus", length="m_dwau_lnameLength") ] TCHAR m_au_lname[41];
   [ db_column("au_fname", status="m_dwau_fnameStatus", length="m_dwau_fnameLength") ] TCHAR m_au_fname[21];

   [ db_param("7", paramtype="DBPARAMIO_INPUT") ] TCHAR m_state[3];

   void GetRowsetProperties(CDBPropSet* pPropSet) {
      pPropSet->AddProperty(DBPROP_CANFETCHBACKWARDS, true, DBPROPOPTIONS_OPTIONAL);
      pPropSet->AddProperty(DBPROP_CANSCROLLBACKWARDS, true, DBPROPOPTIONS_OPTIONAL);
   }
};

db_command creates a CCommand object, which is used by an OLE DB consumer to execute a command.

You can use db_command with either class or function scope; the main difference is the scope of the CCommand

object. With function scope, data such as bindings terminate at function end. Both class and function scope
usages involve the OLE DB Consumer Template class CCommand<> , but the template arguments differ for the
function and class cases. In the function case, bindings will be made to an Accessor  that comprises local
variables, while the class usage will infer a CAccessor -derived class as the argument. When used as a class
attribute, db_command works in conjunction with db_column.

db_command can be used to execute commands that do not return a result set.

When the consumer attribute provider applies this attribute to a class, the compiler will rename the class to
_YourClassNameAccessor, where YourClassName is the name you gave the class, and the compiler will also
create a class called YourClassName, which derives from _YourClassNameAccessor. In Class View, you will see
both classes.

This sample defines a command that selects the first and last names from a table where the state column
matches 'CA'. db_command creates and reads a rowset on which you can call wizard-generated functions such
as OpenAll and CloseAll, as well as CRowset  member functions such as MoveNext.

Note that this code requires you to provide your own connection string that connects to the pubs database. For
information on how to do this in the development environment, see How to: Connect to a Database and Browse
Existing Objects and Add new connections.

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ccommand-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/consumer-wizard-generated-methods
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/crowset-movenext
https://docs.microsoft.com/sql/ssdt/how-to-connect-to-a-database-and-browse-existing-objects
https://docs.microsoft.com/visualstudio/data-tools/add-new-connections


Example
// db_command.cpp
// compile with: /c
#include "db_command.h"

int main(int argc, _TCHAR* argv[]) {
   HRESULT hr = CoInitialize(NULL);

   // Instantiate rowset
   CAuthors rs;

   // Open rowset and move to first row
   strcpy_s(rs.m_state, sizeof(rs.m_state), _T("CA"));
   hr = rs.OpenAll();
   hr = rs.MoveFirst();

   // Iterate through the rowset
   while( SUCCEEDED(hr) && hr != DB_S_ENDOFROWSET ) {
      // Print out the column information for each row
      printf("First Name: %s, Last Name: %s\n", rs.m_au_fname, rs.m_au_lname);
      hr = rs.MoveNext();
   }

   rs.CloseAll();
   CoUninitialize();
}

Example
This sample uses db_source  on a data source class CMySource , and db_command  on command classes CCommand1

and CCommand2 .



// db_command_2.cpp
// compile with: /c
#include <atlbase.h>
#include <atlplus.h>
#include <atldbcli.h>
// class usage for both db_source and db_command

[  db_source(L"your connection string"), db_command(L" \
      SELECT au_lname, au_fname \
      FROM dbo.authors \
      WHERE state = 'CA'")  ]
struct CMySource {
   HRESULT OpenDataSource() {
      return S_OK;
   }
};

[db_command(command = "SELECT * FROM Products")]
class CCommand1 {};

[db_command(command = "SELECT FNAME, LNAME FROM Customers")]
class CCommand2 {};

int main() {
   CMySource s;
   HRESULT hr = s.OpenDataSource();
   if (SUCCEEDED(hr)) {
      CCommand1 c1;
      hr = c1.Open(s);

      CCommand2 c2;
      hr = c2.Open(s);
   }

   s.CloseDataSource();
}

Requirements
Attribute ContextAttribute Context

Applies to class, struct, member, method, local

Repeatable No

Required attributes None

Invalid attributes None

See also

For more information about the attribute contexts, see Attribute Contexts.

OLE DB Consumer Attributes
Stand-Alone Attributes



db_param
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ db_param(ordinal, paramtype="DBPARAMIO_INPUT", dbtype, precision, scale, status, length) ]

ParametersParameters

Remarks

Associates the specified member variable with an input or output parameter and delimits the variable.

ordinal
The column number (DBCOLUMNINFO ordinal) corresponding to a field in the rowset to which to bind data.

paramtype
(Optional) The type to set for the parameter. Providers support only parameter I/O types that are supported by
the underlying data source. The type is a combination of one or more DBPARAMIOENUM values:

DBPARAMIO_INPUT An input parameter.

DBPARAMIO_OUTPUT An output parameter.

DBPARAMIO_NOTPARAM The accessor has no parameters. Setting eParamIO  to this value in row
accessors reminds the user that parameters are ignored.

dbtype
(Optional) An OLE DB Type Indicator for the column entry.

precision
(Optional) The precision to be used for the column entry. For details, see the description of bPrecision  element
of the DBBINDING structure

scale
(Optional) The scale to be used for the column entry. For details, see the description of bScale  element of the
DBBINDING structure

status
(Optional) A member variable used to hold the status of this column. The status indicates whether the column
value is a data value or some other value, such as NULL. For possible values, see Status in the OLE DB
Programmer's Reference.

length
(Optional) A member variable used to hold the size of the column in bytes.

db_param defines parameters that you use in commands; therefore you use it with db_command . For example,
you can use db_param to bind parameters in SQL queries or stored procedures. Parameters in a stored
procedure are denoted by question marks (?), and you should bind the data members in the order in which the
parameters appear.

db_param delimits member data that can participate in OLE DB ICommandWithParameters -based binding. It sets
the parameter type (input or output), OLE DB type, precision, scale, status, and length for the specified parameter.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/db-param.md
https://docs.microsoft.com/previous-versions/windows/desktop/ms711251
https://docs.microsoft.com/previous-versions/windows/desktop/ms716845
https://docs.microsoft.com/previous-versions/windows/desktop/ms716845
https://docs.microsoft.com/previous-versions/windows/desktop/ms722617


Example

// db_param.cpp
// compile with: /LD
#include <atlbase.h>
#include <atlplus.h>
#include <atldbcli.h>

[ db_source(L"my_connection_string"),
  db_command(L"{ ? = CALL dbo.\"Sales by Year\"(?,?) }")
]
struct CSalesbyYear {
   DBSTATUS m_dwShippedDateStatus;
   DBSTATUS m_dwOrderIDStatus;
   DBSTATUS m_dwSubtotalStatus;
   DBSTATUS m_dwYearStatus;

   DBLENGTH m_dwShippedDateLength;
   DBLENGTH m_dwOrderIDLength;
   DBLENGTH m_dwSubtotalLength;
   DBLENGTH m_dwYearLength;

   // Bind columns
   [ db_column("1", status="m_dwShippedDateStatus", length="m_dwShippedDateLength") ] DBTIMESTAMP 
m_ShippedDate;
   [ db_column("2", status="m_dwOrderIDStatus", length="m_dwOrderIDLength") ] LONG m_OrderID;
   [ db_column("3", status="m_dwSubtotalStatus", length="m_dwSubtotalLength") ] CURRENCY m_Subtotal;
   [ db_column("4", status="m_dwYearStatus", length="m_dwYearLength") ] TCHAR m_Year[31];

   // Bind parameters
   [ db_param("1", paramtype="DBPARAMIO_OUTPUT") ] LONG m_RETURN_VALUE;
   [ db_param("2", paramtype="DBPARAMIO_INPUT") ] DBTIMESTAMP m_Beginning_Date;
   [ db_param("3", paramtype="DBPARAMIO_INPUT") ] DBTIMESTAMP m_Ending_Date;
};

Requirements
Attribute ContextAttribute Context

Applies to class, struct, member, method, local

Repeatable No

This attribute inserts the OLE DB consumer macros BEGIN_PARAM_MAP ... END_PARAM_MAP. Each member
you mark with the db_param attribute will occupy one entry in the map in the form of a COLUMN_ENTRY.

db_param is used in conjunction with either the db_table or db_command attributes.

When the consumer attribute provider applies this attribute to a class, the compiler will rename the class to
_YourClassNameAccessor, where YourClassName is the name you gave the class, and the compiler will also
create a class called YourClassName, which derives from _YourClassNameAccessor. In Class View, you will see
both classes.

The following example creates a command class based on the SalesbyYear stored procedure in the Northwind
database. It associates the first parameter in the stored procedure with the m_RETURN_VALUE  variable, and defines it
as an output parameter. It associates the last two (input) parameters with m_Beginning_Date  and m_Ending_Date .

The following example associates the nOutput  variable with an output parameter.



Required attributes None

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

OLE DB Consumer Attributes



db_source
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ db_source(db_source, name, hresult) ]

ParametersParameters

Remarks

Example

Creates a connection to a data source.

db_source
The connection string used to connect to the data source. For the format of the connection string, see Connection
Strings and Data Links in the Microsoft Data Access Components (MDAC) SDK.

name
(Optional) When you use db_source on a class, name is an instance of a data source object that has the
db_source attribute applied to it (see example 1). When you use db_source inline in a method implementation,
name is a variable (local to the method) that can be used to access the data source (see example 2). You pass this
name to the source_name parameter of db_command  to associate the data source with a command.

hresult
(Optional) Identifies the variable that will receive the HRESULT of this database command. If the variable does
not exist, it will be automatically injected by the attribute.

db_source creates a CDataSource and a CSession object, which together represent a connection with an OLE
DB consumer data source.

When you use db_source on a class, the CSession  object becomes a member of the class.

When you use db_source in a method, the injected code will be executed within method scope, and the 
CSession  object is created as a local variable.

db_source adds data source properties to a class or within a method. It is used in conjunction with db_command

(which takes the db_source name parameter as its source_name parameter).

When the consumer attribute provider applies this attribute to a class, the compiler will rename the class to
_YourClassNameAccessor, where YourClassName is the name you gave the class, and the compiler will also
create a class called YourClassName, which derives from _YourClassNameAccessor. In Class View, you will see
both classes.

For an example of this attribute used in an application, see the samples AtlAgent and MultiRead.

This sample calls db_source on a class to create a connection to the data source ds  using the Northwind
database. ds  is a handle for the data source, which can be used internally to the CMyCommand  class.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/db-source.md
https://docs.microsoft.com/previous-versions/windows/desktop/ms718376
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/cdatasource-class
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/csession-class
https://github.com/Microsoft/VCSamples
https://github.com/Microsoft/VCSamples


// db_source_1.cpp
// compile with: /LD
#include <atlbase.h>
#include <atlplus.h>
#include <atldbcli.h>

[
  db_source(L"my_connection_string", name="ds"),
  db_command(L"select * from Products")
]
class CMyCommand {};

Requirements
Attribute ContextAttribute Context

Applies to class, struct, member, method, local

Repeatable No

Required attributes None

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

OLE DB Consumer Attributes



db_table
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ db_table(db_table, name, source_name, hresult) ]

ParametersParameters

Remarks

Example

// db_table.cpp
// compile with: /LD
#include <atlbase.h>
#include <atlplus.h>
#include <atldbcli.h>

[ db_table(L"dbo.Products") ]
class CProducts {
   [ db_column("1") ] LONG m_ProductID;
};

Opens an OLE DB table.

db_table
A string specifying the name of a database table (such as "Products").

name
(Optional) The name of the handle you use to work with the table. You must specify this parameter if you want to
return more than one row of results. db_table generates a variable with the specified name that can be used to
traverse the rowset or execute multiple action queries.

source_name
(Optional) The CSession  variable or instance of a class that has the db_source  attribute applied to it on which
the command executes. See db_source.

hresult
(Optional) Identifies the variable that will receive the HRESULT of this database command. If the variable does
not exist, it will be automatically injected by the attribute.

db_table creates a CTable object, which is used by an OLE DB consumer to open a table. You can use this
attribute only at the class level; you cannot use it inline. Use db_column  to bind table columns to variables; use 
db_param  to delimit (set the parameter type and so on) of parameters.

When the consumer attribute provider applies this attribute to a class, the compiler will rename the class to
_YourClassNameAccessor, where YourClassName is the name you gave the class, and the compiler will also
create a class called YourClassName, which derives from _YourClassNameAccessor. In Class View, you will see
both classes.

The following example opens the Products table for use by CProducts .

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/db-table.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/data/oledb/ctable-class


Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes None

Invalid attributes None

See Also

For an example of this attribute used in an application, see the samples AtlAgent and MultiRead.

For more information about the attribute contexts, see Attribute Contexts.

OLE DB Consumer Attributes

https://github.com/Microsoft/VCSamples
https://github.com/Microsoft/VCSamples


default (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ default(interface1, interface2) ]

ParametersParameters

Remarks

Example

Indicates that the custom or dispinterface defined within a coclass represents the default programmability
interface.

interface1
The default interface that will be made available to scripting environments that create an object based on the class
defined with the default attribute.

If no default interface is specified, the first occurrence of a nonsource interface is used as the default.

interface2
(Optional) The default source interface. You must also specify this interface with the source attribute.

If no default source interface is specified, the first source interface is used as the default.

The default C++ attribute has the same functionality as the default MIDL attribute. The default attribute is also
used with the case attribute.

The following code shows how default is used on the definition of a coclass to specify ICustomDispatch  as the
default programmability interface:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/default-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/default


// cpp_attr_ref_default.cpp
// compile with: /LD
#include "windows.h"
[module(name="MyLibrary")];

[object, uuid("9E66A290-4365-11D2-A997-00C04FA37DDB")]
__interface ICustom {
   HRESULT Custom([in] long l, [out, retval] long *pLong);
};

[dual, uuid("9E66A291-4365-11D2-A997-00C04FA37DDB")]
__interface IDual {
   HRESULT Dual([in] long l, [out, retval] long *pLong);
};

[object, uuid("9E66A293-4365-11D2-A997-00C04FA37DDB")]
__interface ICustomDispatch : public IDispatch {
   HRESULT Dispatch([in] long l, [out, retval] long *pLong);
};

[   coclass, default(ICustomDispatch), source(IDual), uuid("9E66A294-4365-11D2-A997-00C04FA37DDB")
]
class CClass : public ICustom, public IDual, public ICustomDispatch {
   HRESULT Custom(long l, long *pLong) { return(S_OK); }
   HRESULT Dual(long l, long *pLong) { return(S_OK); }
   HRESULT Dispatch(long l, long *pLong) { return(S_OK); }
};

int main() {
#if 0 // Can't instantiate without implementations of IUnknown/IDispatch
   CClass *pClass = new CClass;

   long llong;

   pClass->custom(1, &llong);
   pClass->dual(1, &llong);
   pClass->dispinterface(1, &llong);
   pClass->dispatch(1, &llong);

   delete pClass;
#endif
   return(0);
}

Requirements
Attribute ContextAttribute Context

Applies to class, struct, data member

Repeatable No

Required attributes coclass (when applied to class or struct)

Invalid attributes None

The source attribute also has an example of how to use default.

For more information, see Attribute Contexts.



See Also
IDL Attributes
Class Attributes
coclass



defaultbind
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[defaultbind]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Indicates the single, bindable property that best represents the object.

The defaultbind C++ attribute has the same functionality as the defaultbind MIDL attribute.

See the example for bindable for an example of how to use defaultbind.

For more information, see Attribute Contexts.

IDL Attributes
Method Attributes
Data Member Attributes
displaybind
immediatebind
requestedit

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/defaultbind.md
https://docs.microsoft.com/windows/desktop/Midl/defaultbind


defaultcollelem
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[defaultcollelem]

Remarks

Example

// cpp_attr_ref_defaultcollelem.cpp
// compile with: /LD
#include <unknwn.h>
[module(name="MyLib")];
[object, uuid("00000000-0000-0000-0000-000000000001")]
__interface IMyForm
{
   [propget, id(1), bindable, defaultcollelem, displaybind, defaultbind, requestedit] HRESULT P1([out, retval] 
long *nSize);
   [propput, id(1), bindable, defaultcollelem, displaybind, defaultbind, requestedit] HRESULT P1([in] long 
nSize);
};

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Used for Visual Basic code optimization.

The defaultcollelem C++ attribute has the same functionality as the defaultcollelem MIDL attribute.

The following code shows an interface method using the defaultcollelem attribute:

For more information, see Attribute Contexts.

IDL Attributes
Method Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/defaultcollelem.md
https://docs.microsoft.com/windows/desktop/Midl/defaultcollelem


defaultvalue
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ defaultvalue= value ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_defaultvalue.cpp
// compile with: /LD
#include <windows.h>

[export] typedef long HRESULT;
[export, ptr, string] typedef unsigned char * MY_STRING_TYPE;

[  uuid("479B29EE-9A2C-11D0-B696-00A0C903487A"), dual, oleautomation, helpstring("IFireTabCtrl Interface"), 
helpcontext(122), pointer_default(unique) ]

__interface IFireTabCtrl : IDispatch {
   [bindable, propget] HRESULT get_Size([out, retval, defaultvalue("33")] long *nSize);
   [bindable, propput] HRESULT put_Size([in] int nSize);
};

[ module(name="ATLFIRELib", uuid="479B29E1-9A2C-11D0-B696-00A0C903487A",    version="1.0", 
helpstring="ATLFire 1.0 Type Library") ];

Requirements
Attribute ContextAttribute Context

Applies to Interface parameter

Repeatable No

Required attributes None

Invalid attributes None

Allows specification of a default value for a typed optional parameter.

value
The default value for the parameter.

The defaultvalue C++ attribute has the same functionality as the defaultvalue MIDL attribute.

The following code shows an interface method using the defaultvalue attribute:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/defaultvalue.md
https://docs.microsoft.com/windows/desktop/Midl/defaultvalue


See Also

For more information, see Attribute Contexts.

IDL Attributes
Parameter Attributes
out
retval
in
pointer_default
unique



defaultvtable
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ defaultvtable(interface) ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_defaultvtable.cpp
// compile with: /LD
#include <unknwn.h>
[module(name="MyLib")];

[object, uuid("00000000-0000-0000-0000-000000000001")]
__interface IMyI1 {
   HRESULT x();
};

[object, uuid("00000000-0000-0000-0000-000000000002")]
__interface IMyI2 {
   HRESULT x();
};

[object, uuid("00000000-0000-0000-0000-000000000003")]
__interface IMyI3 {
   HRESULT x();
};

[coclass, source(IMyI3, IMyI1), default(IMyI3, IMyI2), defaultvtable(IMyI1),
uuid("00000000-0000-0000-0000-000000000004")]
class CMyC3 : public IMyI3 {};

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Defines an interface as the default vtable interface for a COM object.

interface
The designated interface that you want to have the default vtable for the COM object.

The defaultvtable C++ attribute has the same functionality as the defaultvtable MIDL attribute.

The following code shows attributes on a class that use defaultvtable to specify a default interface:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/defaultvtable.md
https://docs.microsoft.com/windows/desktop/Midl/defaultvtable


Repeatable No

Required attributes coclass

Invalid attributes None

See Also

For more information, see Attribute Contexts.

IDL Attributes
Class Attributes



dispinterface
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[dispinterface]

Remarks

dispinterface helloPro
   { interface hello; };

Example

Requirements
Attribute ContextAttribute Context

Applies to interface

Repeatable No

Required attributes None

Invalid attributes dual , object , oleautomation , local , ms_union

See Also

Places an interface in the .idl file as a dispatch interface.

When the dispinterface C++ attribute precedes an interface, it causes the interface to be placed inside the
library block in the generated .idl file.

Unless you specify a base class, a dispatch interface will derive from IDispatch . You must specify an id for the
members of a dispatch interface.

The usage example for dispinterface in the MIDL documentation:

is not valid for the dispinterface attribute.

See the example for bindable for an example of how to use dispinterface.

For more information, see Attribute Contexts.

IDL Attributes
Attributes by Usage
uuid
dual

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/dispinterface.md
https://docs.microsoft.com/windows/desktop/Midl/dispinterface


custom
object
__interface

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/interface


displaybind
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[displaybind]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Indicates a property that should be displayed to the user as bindable.

The displaybind C++ attribute has the same functionality as the displaybind MIDL attribute.

See the example for bindable for an example of how to use displaybind.

For more information, see Attribute Contexts.

IDL Attributes
Method Attributes
Data Member Attributes
defaultbind
immediatebind
requestedit

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/displaybind.md
https://docs.microsoft.com/windows/desktop/Midl/displaybind


dual
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[dual]

Remarks

Example

// cpp_attr_ref_dual.cpp
// compile with: /LD
#include <windows.h>
[module(name="MyLibrary")];

[uuid("2F5F63F1-16DA-11d2-9E7B-00C04FB926DA"), dual]

__interface IStatic : IDispatch
{
   HRESULT Func1(int i);
   [   propget,    id(1),    bindable,    displaybind,    defaultbind,    requestedit
   ]
   HRESULT P1([out, retval] long *nSize);
   [   propput,    id(1),    bindable,    displaybind,    defaultbind,    requestedit
   ]
   HRESULT P1([in] long nSize);
};

[cpp_quote("#include file.h")];

Requirements
Attribute ContextAttribute Context

Applies to interface

Repeatable No

Required attributes None

Invalid attributes dispinterface

Places an interface in the .idl file as a dual interface.

When the dual C++ attribute precedes an interface, it causes the interface to be placed inside the library block in
the generated .idl file.

The following code is an attribute block that uses dual before an interface definition:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/dual.md


See Also

For more information, see Attribute Contexts.

IDL Attributes
Attributes by Usage
custom
dispinterface
object
__interface

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/interface


emitidl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ emitidl(state, defaultimports=boolean) ];

ParametersParameters

Remarks

Requirements
Attribute ContextAttribute Context

Specifies whether all subsequent IDL attributes are processed and placed in the generated .idl file.

state
One of these possible values: true , false , forced , restricted , push , or pop .

If true , any IDL category attributes encountered in a source code file are placed in the generated .idl file.
This is the default setting for emitidl.

If false , any IDL category attributes encountered in a source code file are not placed in the generated .idl
file.

If restricted , allows IDL attributes to be in the file without a module attribute. The compiler does not
generate an .idl file.

If forced , overrides a subsequent restricted  attribute, which requires a file to have a module  attribute if
there are IDL attributes in the file.

push  lets you save the current emitidl settings to an internal emitidl stack, and pop  lets you set emitidl
to whatever value is at the top of the internal emitidl stack.

defaultimports= boolean (optional)

If boolean is true, docobj.idl is imported into the generated .idl file. Also, if an .idl file with the same name
as an .h file that you #include  into your source code is found in the same directory as the .h file, then the
generated .idl file contains an import statement for that .idl file.

If boolean is false, docobj.idl is not imported into the generated .idl file. You must explicitly import .idl files
with import.

After the emitidl C++ attribute is encountered in a source code file, IDL category attributes are placed in the
generated .idl file. If there is no emitidl attribute, IDL attributes in the source code file are output to the generated
.idl file.

It is possible to have multiple emitidl attributes in a source code file. If [emitidl(false)];  is encountered in a file
without a subsequent [emitidl(true)]; , then no attributes are processed into the generated .idl file.

Each time the compiler encounters a new file, emitidl is implicitly set to true.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/emitidl.md


Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

See Also

For more information, see Attribute Contexts.

Compiler Attributes
Stand-Alone Attributes



entry
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ entry(id) ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to idl_module  attribute

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies an exported function or constant in a module by identifying the entry point in the DLL.

id
The ID of the entry point.

The entry C++ attribute has the same functionality as the entry MIDL attribute.

See the example for idl_module for an example use of entry.

For more information, see Attribute Contexts.

IDL Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/entry.md
https://docs.microsoft.com/windows/desktop/Midl/entry


event_receiver
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ event_receiver(type
   [, layout_dependent=false]) ]

ParametersParameters

Remarks

NOTENOTE

Creates an event receiver (sink).

type
An enumeration of one of the following values:

#define _ATL_ATTRIBUTES
#include <atlbase.h>
#include <atlcom.h>

native  for unmanaged C/C++ code (default for native classes).

com  for COM code. This value requires that you include the following header files:

layout_dependent
Specify layout_dependent only if type =com. layout_dependent is a Boolean:

true means that the signature of the delegates in the event receiver must exactly match those to which
they are hooked in the event source. The event receiver handler names must match the names specified in
the relevant event source interface. You must use coclass  when layout_dependent is true. It is slightly
more efficient to specify true.

false (default) means that the calling convention and storage class (virtual, static, and others) do not have
to match the event method and the handlers; nor do the handler names need to match the event source
interface method names.

The event_receiver C++ attribute specifies that the class or structure to which it is applied will be an event
receiver, using the Visual C++ unified event model.

event_receiver is used with the event_source attribute and the __hook and __unhook keywords. Use 
event_source  to create event sources. Use __hook within an event receiver's methods to associate ("hook") event

receiver methods to the events of an event source. Use __unhook to dissociate them.

layout_dependent is only specified for COM event receivers ( type =com). The default for layout_dependent is
false.

A templated class or struct cannot contain events.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/event-receiver.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/hook
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/unhook


Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes coclass  when layout_dependent=true

Invalid attributes None

See Also

For more information, see Attribute Contexts.

Compiler Attributes
event_source
__event
__hook
__unhook
Class Attributes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/event
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/hook
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/unhook


event_source
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ event_source(type, optimize=[speed | size], decorate=[true | false]) ]

ParametersParameters

Remarks

NOTENOTE

Requirements
Attribute ContextAttribute Context

Creates an event source.

type
An enumeration of one of the following values:

#define _ATL_ATTRIBUTES
#include <atlbase.h>
#include <atlcom.h>

native  for unmanaged C/C++ code (default for unmanaged classes).

com  for COM code. You must use coclass  when type = com . This value requires that you include the
following header files:

optimize
When type is native , you can specify optimize=size , to indicate that there is 4 bytes of storage (minimum) for
all events in a class or optimize=speed  (the default) to indicate that there is 4 * (# of events) bytes of storage.

decorate
When type is native , you can specify decorate=false , to indicate that the expanded name in the merged (.mrg)
file should not include the enclosing class name. /Fx lets you generate .mrg files. decorate=false , which is the
default, results in fully-qualified type names in the merged file.

The event_source C++ attribute specifies that the class or structure to which it is applied will be an event source.

event_source is used in conjunction with the event_receiver attribute and the __event keyword. Use 
event_receiver  to create event receivers. Use __event on methods within the event source to specify those

methods as events.

A templated class or struct cannot contain events.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/event-source.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fx-merge-injected-code
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/event


Applies to class, struct

Repeatable No

Required attributes coclass when type = com

Invalid attributes None

See Also

For more information, see Attribute Contexts.

Compiler Attributes
event_receiver
__event
__hook
__unhook
Class Attributes

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/event
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/hook
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/unhook


export
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[export]

Remarks

Example

// cpp_attr_ref_export.cpp
// compile with: /LD
[module(name="MyLibrary")];

[export]
struct MyStruct {
   int i;
};

Requirements
Attribute ContextAttribute Context

Applies to union, typedef, enum, struct, or interface

Repeatable No

Required attributes None

Invalid attributes None

Causes a data structure to be placed in the .idl file.

The export C++ attribute causes a data structure to be placed in the .idl file and to then be available in the type
library in a binary-compatible format that makes it available for use with any language.

You cannot apply the export attribute to a class even if the class only has public members (the equivalent of a
struct).

If you export an unnamed enum or struct, it is given a name that begins with __unnamedx, where x is a
sequential number.

The typedefs valid for export are base types, structs, unions, enums, or type identifiers. See typedef for more
information.

The following code shows how to use the export attribute:

For more information, see Attribute Contexts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/export.md
https://docs.microsoft.com/windows/desktop/Midl/typedef


See Also
Compiler Attributes
Typedef, Enum, Union, and Struct Attributes



first_is
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ first_is("expression") ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_first_is.cpp
// compile with: /LD
#include "windows.h"
#include "unknwn.h"

[module(name="MyLib")];

[object, uuid(11111111-1111-1111-1111-111111111111)]
__interface b
{
   [id(0), propget, bindable, displaybind, defaultbind,
requestedit] HRESULT get_I([out, retval]long *i);
   HRESULT Proc1([in] short First, [in] short Last,
[first_is(First), last_is(Last), size_is(Last-First)] char Arr1[]);
   HRESULT Proc2([in] short First, [in] short Last,
[last_is(First), size_is(Last)] char Arr2[]);
};

Requirements
Attribute ContextAttribute Context

Applies to Field in struct or union, interface parameter, interface
method

Repeatable No

Required attributes None

Specifies the index of the first array element to be transmitted.

expression
One or more C-language expressions. Empty argument slots are allowed.

The first_is C++ attribute has the same functionality as the first_is MIDL attribute.

The following code shows various ways to specify a section in an array:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/first-is.md
https://docs.microsoft.com/windows/desktop/Midl/first-is


Invalid attributes None

See Also

For more information, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes
Parameter Attributes
last_is
max_is
length_is
size_is



helpcontext
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ helpcontext(id) ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to interface, typedef, class, method, property

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies a context ID that lets the user view information about this element in the Help file.

id
The context ID of the help topic. See HTML Help: Context-Sensitive Help for Your Programs for more
information on context IDs.

The helpcontext C++ attribute has the same functionality as the helpcontext MIDL attribute.

See the example for defaultvalue for an example of how to use helpcontext.

For more information, see Attribute Contexts.

IDL Attributes
Interface Attributes
Class Attributes
Method Attributes
Typedef, Enum, Union, and Struct Attributes
helpfile
helpstring

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/helpcontext.md
https://docs.microsoft.com/windows/desktop/Midl/helpcontext


helpfile
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ helpfile("filename") ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to interface, typedef, class, method, property

Repeatable No

Required attributes None

Invalid attributes None

See Also

Sets the name of the Help file for a type library.

filename
The name of the file that contains the help topics.

The helpfile C++ attribute has the same functionality as the helpfile MIDL attribute.

See the example for module for an example of how to use helpfile.

For more information, see Attribute Contexts.

IDL Attributes
Interface Attributes
Class Attributes
Method Attributes
Typedef, Enum, Union, and Struct Attributes
helpcontext
helpstring

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/helpfile.md
https://docs.microsoft.com/windows/desktop/Midl/helpfile


helpstring
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ helpstring("string") ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to interface, typedef, class, method, property

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies a character string that is used to describe the element to which it applies.

string
The text of the help string.

The helpstring C++ attribute has the same functionality as the helpstring MIDL attribute.

See the example for defaultvalue for an example of how to use helpstring.

For more information, see Attribute Contexts.

IDL Attributes
Interface Attributes
Class Attributes
Method Attributes
Typedef, Enum, Union, and Struct Attributes
helpfile
helpcontext

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/helpstring.md
https://docs.microsoft.com/windows/desktop/Midl/helpstring


helpstringcontext
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ helpstringcontext(contextID) ]

ParametersParameters

Remarks

Example
// cpp_attr_ref_helpstringcontext.cpp
// compile with: /LD
#include <unknwn.h>
[module(name="MyLib")];

[   object, helpstring("help string"), helpstringcontext(1), uuid="11111111-1111-1111-1111-111111111111"
]
__interface IMyI
{
   HRESULT xx();
};

Requirements
Attribute ContextAttribute Context

Applies to class, interface, interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies the ID of a help topic in an .hlp or .chm file.

contextID
A 32-bit Help context identifier in the Help file.

The helpstringcontext C++ attribute has the same functionality as the helpstringcontext ODL attribute.

For more information, see Attribute Contexts.

IDL Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/helpstringcontext.md
https://docs.microsoft.com/windows/desktop/Midl/helpstringcontext


Interface Attributes
Class Attributes
Method Attributes
module



helpstringdll
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ helpstringdll("string") ]

ParametersParameters

Remarks

Example
// cpp_attr_ref_helpstringdll.cpp
// compile with: /LD
#include <unknwn.h>
[module(name="MyLib", helpstringdll="xx.dll")];

[object, uuid("00000000-0000-0000-0000-000000000001")]
__interface IMyI
{
   HRESULT xxx();
};

Requirements
Attribute ContextAttribute Context

Applies to class, interface, interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies the name of the DLL to use to perform document string lookup (localization).

string
The DLL to use to perform document string lookup.

The helpstringdll C++ attribute has the same functionality as the helpstringdll MIDL attribute.

For more information, see Attribute Contexts.

IDL Attributes
Interface Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/helpstringdll.md
https://docs.microsoft.com/windows/desktop/Midl/helpstringdll


Class Attributes
Method Attributes



hidden
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[hidden]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to interface, class, struct, method, property

Repeatable No

Required attributes coclass (when applied to class or struct)

Invalid attributes None

See Also

Indicates that the item exists but should not be displayed in a user-oriented browser.

The hidden C++ attribute has the same functionality as the hidden MIDL attribute.

See the example for bindable for an example of how to use hidden.

For more information, see Attribute Contexts.

IDL Attributes
Interface Attributes
Class Attributes
Method Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/hidden.md
https://docs.microsoft.com/windows/desktop/Midl/hidden


id
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ id(dispid) ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies a dispid parameter for a member function (either a property or a method, in an interface or
dispinterface).

dispid
The dispatch ID for the interface method.

The id C++ attribute has the same functionality as the id MIDL attribute.

See the example for bindable for an example of how to use id.

For more information, see Attribute Contexts.

IDL Attributes
Method Attributes
Data Member Attributes
defaultvalue
in
out

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/id.md
https://docs.microsoft.com/windows/desktop/Midl/id


idl_module
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ idl_module (name=module_name, dllname=dll, uuid="uuid", helpstring="help text", 
helpstringcontext=helpcontextID, helpcontext=helpcontext, hidden, restricted) ]
function declaration

ParametersParameters

Remarks

Specifies an entry point in a .dll file.

name
A user-defined name for the code block that will appear in the .idl file.

dllname
(Optional) The .dll file that contains the export.

uuid
(Optional) A unique ID.

helpstring
(Optional) A character string used to describe the type library.

helpstringcontext
(Optional) The ID of a help topic in an .hlp or .chm file.

helpcontext
(Optional) The Help ID for this type library.

hidden
(Optional) A parameter that prevents the library from being displayed. See the hidden MIDL attribute for more
information.

restricted
(Optional) Members of the library cannot be arbitrarily called. See the restricted MIDL attribute for more
information.

function declaration
The function that you will define.

The idl_module C++ attribute lets you specify the entry point in a .dll file, which allows you to import from a .dll
file.

The idl_module attribute has functionality similar to the module MIDL attribute.

You can export anything from a COM object that you can export from a .dll file by putting a DLL entry point in the
library block of an .idl file.

Your must use idl_module in two steps. First, you must define a name/DLL pair. Then, when you use idl_module
to specify an entry point, specify the name and any additional attributes.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/idl-module.md
https://docs.microsoft.com/windows/desktop/Midl/hidden
https://docs.microsoft.com/windows/desktop/Midl/restricted
https://docs.microsoft.com/windows/desktop/Midl/module


Example

// cpp_attr_ref_idl_module.cpp
// compile with: /LD
[idl_quote("midl_pragma warning(disable:2461)")];
[module(name="MyLibrary"), idl_module(name="MyLib", dllname="xxx.dll")];
[idl_module(name="MyLib"), entry(4), usesgetlasterror]
void FuncName(int i);

Requirements
Attribute ContextAttribute Context

Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

See Also

The following code shows how to use the idl_module attribute:

For more information, see Attribute Contexts.

IDL Attributes
Stand-Alone Attributes
entry



idl_quote
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ idl_quote(text) ]

ParametersParameters

Remarks

Example

Allows you to use IDL constructs that are not supported in the current version of Visual C++ and have them pass
through to the generated .idl file.

text
The attribute name that you intend the Visual C++ compiler to pass through to the generated .idl file without
returning a compiler error.

If the idl_quote C++ attribute is used as a stand-alone attribute (with a semicolon after the closing bracket), then
text is placed in the merged .idl file as is. If idl_quote is used on a symbol, text is placed within the attribute block
for that symbol.

The following code shows how you could specify an unsupported attribute (using in, which is supported) and how
to define and use an undefined .idl construct:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/idl-quote.md


// cpp_attr_ref_idl_quote.cpp
// compile with: /LD
#include <unknwn.h>
[module(name="MyLibrary")];

[export]
struct MYFLOT {
   int i;
};

[export]
struct MYDUB {
   int i;
};

[idl_quote("typedef union _S1_TYPE switch (long l1) U1_TYPE { case 1024: \
struct MYFLOT f1; case 2048: struct MYDUB d2; } S1_TYPE;") ];

typedef struct _S1_TYPE {
   long l1;

union {
   MYFLOT f1; MYDUB d2; } U1_TYPE;
} S1_TYPE;

[uuid("2F5F63F1-16DA-11d2-9E7B-00C04FB926DA"), object]
__interface IStatic{
   HRESULT Func1([idl_quote("in")] int i);
   HRESULT func( S1_TYPE* myStruct );
};

Requirements
Attribute ContextAttribute Context

Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

See Also

This code causes MYFLOT  and MYDUB  and the text entry to be placed in the generated .idl file. The name parameter
forces text to be placed before anything that references name in the generated .idl file. The dependencies
parameter forces the dependency list definitions to be placed before text in the generated .idl file.

For more information, see Attribute Contexts.

IDL Attributes
Stand-Alone Attributes



iid_is
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ iid_is("expression") ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_iid_is.cpp
// compile with: /LD
#include "wtypes.h"
#include "unknwn.h"
[dispinterface, uuid("00000000-0000-0000-0000-000000000001")]
__interface IFireTabCtrl : IDispatch
{
   [id(1)] HRESULT CreateInstance([in] REFIID riid,[out, iid_is("riid")]
   IUnknown ** ppvObject);
};

[module(name="ATLFIRELib")];

Requirements
Attribute ContextAttribute Context

Applies to Interface parameter, data member

Repeatable No

Required attributes None

Invalid attributes None

Specifies the IID of the COM interface pointed to by an interface pointer.

expression
A C language expression that specifies an IID of a COM interface pointed to by an interface pointer.

The iid_is C++ attribute has the same functionality as the iid_is MIDL attribute.

The following code shows the use of iid_is:

For more information, see Attribute Contexts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/iid-is.md
https://docs.microsoft.com/windows/desktop/Midl/iid-is


See Also
IDL Attributes
Parameter Attributes



immediatebind
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[immediatebind]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Indicates that the database will be notified immediately of all changes to a property of a data-bound object.

The immediatebind C++ attribute has the same functionality as the immediatebind MIDL attribute.

See bindable for an example of how to use immediatebind.

For more information, see Attribute Contexts.

IDL Attributes
Method Attributes
defaultbind
displaybind
requestedit

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/immediatebind.md
https://docs.microsoft.com/windows/desktop/Midl/immediatebind


implements (C++)
11/8/2018 • 6 minutes to read • Edit Online

Syntax
[ implements(
   interfaces={interfaces}, dispinterfaces={dispinterfaces})]

ParametersParameters

Remarks

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable Yes

Required attributes None

Invalid attributes None

Example

Specifies dispatch interfaces that are forced to be members of the IDL coclass.

interfaces
A comma separated list of the interfaces that will be a member of the IDL coclass. A shorthand method for
specifying a single interface is implements( interface_name ).

dispinterfaces
A comma separated list of the dispinterface that will be a member of the IDL coclass. A shorthand method for
specifying a single dispinterface is implements(dispinterfaces = dispinterface_name ).

By default, only COM-interfaces that are base classes of the coclass  are added in the IDL coclass. implements
lets you force other interfaces to be IDL coclass  members.

For more information, see Attribute Contexts.

The following example is in three parts: an .idl file and its associated .h file, and a C++ file.

Assume the following .idl file, which will be available to the compiler.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/implements-cpp.md


// attr_implements.idl
import "docobj.idl";
[ version(1.0), uuid(0ed71801-a1b6-3178-af3b-9431fc00185e) ]
library odod
{
   importlib("stdole2.tlb");
   importlib("olepro32.dll");

   [
      object,    uuid(1AECC9BB-2104-3723-98B8-7CC54722C7DD)
   ]
   interface IBar1 {
      [id(1)] HRESULT bar1();
   };

   [
      dual,    uuid(1AECCABB-2104-3723-98B8-7CC54722C7DD)
   ]
   interface IBar2 {
      [id(1)] HRESULT bar2();
   };

   [
      uuid(1AECC9CC-2104-3723-98B8-7CC54722C7DD)
   ]
   dispinterface ISna {
   properties:

   methods:
      [id(1)] HRESULT sna();
   };

   [
      uuid(159A9BBB-E5F1-33F6-BEF5-6CFAD7A5933F),    version(1.0)
   ]
   coclass CBar {
      interface IBar1;
      interface IBar2;
      dispinterface ISna;
   };
}

Example

// attr_implements.h
// this ALWAYS GENERATED file contains definitions for the interfaces

/* File created by MIDL compiler version 6.00.0361 */
/* at Mon Feb 28 16:30:53 2005 */
/* Compiler settings for attr_implements.idl:
    Oicf, W1, Zp8, env=Win32 (32b run)
    protocol : dce , ms_ext, c_ext, robust
    error checks: allocation ref bounds_check enum stub_data
    VC __declspec() decoration level:
         __declspec(uuid()), __declspec(selectany), __declspec(novtable)
         DECLSPEC_UUID(), MIDL_INTERFACE()
*/
//@@MIDL_FILE_HEADING(  )

#pragma warning( disable: 4049 )  /* more than 64k source lines */

/* verify that the <rpcndr.h> version is high enough to compile this file*/
#ifndef __REQUIRED_RPCNDR_H_VERSION__

And the following .h file, which also needs to be available to the compiler.



#define __REQUIRED_RPCNDR_H_VERSION__ 475
#endif

#include "rpc.h"
#include "rpcndr.h"

#ifndef __RPCNDR_H_VERSION__
#error this stub requires an updated version of <rpcndr.h>
#endif // __RPCNDR_H_VERSION__

#ifndef __attr_implements_h__
#define __attr_implements_h__

#if defined(_MSC_VER) && (_MSC_VER >= 1020)
#pragma once
#endif

/* Forward Declarations */

#ifndef __IBar1_FWD_DEFINED__
#define __IBar1_FWD_DEFINED__
typedef interface IBar1 IBar1;
#endif /* __IBar1_FWD_DEFINED__ */

#ifndef __IBar2_FWD_DEFINED__
#define __IBar2_FWD_DEFINED__
typedef interface IBar2 IBar2;
#endif /* __IBar2_FWD_DEFINED__ */

#ifndef __ISna_FWD_DEFINED__
#define __ISna_FWD_DEFINED__
typedef interface ISna ISna;
#endif /* __ISna_FWD_DEFINED__ */

#ifndef __CBar_FWD_DEFINED__
#define __CBar_FWD_DEFINED__

#ifdef __cplusplus
typedef class CBar CBar;
#else
typedef struct CBar CBar;
#endif /* __cplusplus */

#endif /* __CBar_FWD_DEFINED__ */

/* header files for imported files */
#include "docobj.h"

#ifdef __cplusplus
extern "C"{
#endif

void * __RPC_USER MIDL_user_allocate(size_t);
void __RPC_USER MIDL_user_free( void * );

#ifndef __odod_LIBRARY_DEFINED__
#define __odod_LIBRARY_DEFINED__

/* library odod */
/* [uuid][version] */

EXTERN_C const IID LIBID_odod;

#ifndef __IBar1_INTERFACE_DEFINED__
#define __IBar1_INTERFACE_DEFINED__

/* interface IBar1 */
/* [uuid][object] */



EXTERN_C const IID IID_IBar1;

#if defined(__cplusplus) && !defined(CINTERFACE)

    MIDL_INTERFACE("1AECC9BB-2104-3723-98B8-7CC54722C7DD")
    IBar1
    {
    public:
        BEGIN_INTERFACE
        virtual /* [id] */ HRESULT STDMETHODCALLTYPE bar1( void) = 0;

        END_INTERFACE
    };

#else /* C style interface */

    typedef struct IBar1Vtbl
    {
        BEGIN_INTERFACE

        /* [id] */ HRESULT ( STDMETHODCALLTYPE *bar1 )(         IBar1 * This);

        END_INTERFACE
    } IBar1Vtbl;

    interface IBar1
    {
        CONST_VTBL struct IBar1Vtbl *lpVtbl;
    };

#ifdef COBJMACROS

#define IBar1_bar1(This)\
    (This)->lpVtbl -> bar1(This)

#endif /* COBJMACROS */

#endif /* C style interface */

/* [id] */ HRESULT STDMETHODCALLTYPE IBar1_bar1_Proxy( IBar1 * This);

void __RPC_STUB IBar1_bar1_Stub( IRpcStubBuffer *This,  IRpcChannelBuffer *_pRpcChannelBuffer,  PRPC_MESSAGE 
_pRpcMessage,  DWORD *_pdwStubPhase);

#endif /* __IBar1_INTERFACE_DEFINED__ */

#ifndef __IBar2_INTERFACE_DEFINED__
#define __IBar2_INTERFACE_DEFINED__

/* interface IBar2 */
/* [auto_handle][uuid][dual] */

EXTERN_C const IID IID_IBar2;

#if defined(__cplusplus) && !defined(CINTERFACE)

    MIDL_INTERFACE("1AECCABB-2104-3723-98B8-7CC54722C7DD")
    IBar2
    {
    public:
        BEGIN_INTERFACE
        virtual /* [id] */ HRESULT STDMETHODCALLTYPE bar2( void) = 0;

        END_INTERFACE
    };

#else /* C style interface */

    typedef struct IBar2Vtbl



    typedef struct IBar2Vtbl
    {
        BEGIN_INTERFACE

        /* [id] */ HRESULT ( STDMETHODCALLTYPE *bar2 )(         IBar2 * This);

        END_INTERFACE
    } IBar2Vtbl;

    interface IBar2
    {
        CONST_VTBL struct IBar2Vtbl *lpVtbl;
    };

#ifdef COBJMACROS

#define IBar2_bar2(This)\
    (This)->lpVtbl -> bar2(This)

#endif /* COBJMACROS */

#endif /* C style interface */

/* [id] */ HRESULT STDMETHODCALLTYPE IBar2_bar2_Proxy( IBar2 * This);

void __RPC_STUB IBar2_bar2_Stub( IRpcStubBuffer *This,  IRpcChannelBuffer *_pRpcChannelBuffer,  PRPC_MESSAGE 
_pRpcMessage,  DWORD *_pdwStubPhase);

#endif /* __IBar2_INTERFACE_DEFINED__ */

#ifndef __ISna_DISPINTERFACE_DEFINED__
#define __ISna_DISPINTERFACE_DEFINED__

/* dispinterface ISna */
/* [uuid] */

EXTERN_C const IID DIID_ISna;

#if defined(__cplusplus) && !defined(CINTERFACE)

    MIDL_INTERFACE("1AECC9CC-2104-3723-98B8-7CC54722C7DD")
    ISna : public IDispatch
    {
    };

#else /* C style interface */

    typedef struct ISnaVtbl
    {
        BEGIN_INTERFACE

        HRESULT ( STDMETHODCALLTYPE *QueryInterface )(         ISna * This,          /* [in] */ REFIID riid,          
/* [iid_is][out] */ void **ppvObject);

        ULONG ( STDMETHODCALLTYPE *AddRef )(         ISna * This);

        ULONG ( STDMETHODCALLTYPE *Release )(         ISna * This);

        HRESULT ( STDMETHODCALLTYPE *GetTypeInfoCount )(         ISna * This,          /* [out] */ UINT 
*pctinfo);

        HRESULT ( STDMETHODCALLTYPE *GetTypeInfo )(         ISna * This,          /* [in] */ UINT iTInfo,          
/* [in] */ LCID lcid,          /* [out] */ ITypeInfo **ppTInfo);

        HRESULT ( STDMETHODCALLTYPE *GetIDsOfNames )(         ISna * This,          /* [in] */ REFIID riid,          
/* [size_is][in] */ LPOLESTR *rgszNames,          /* [in] */ UINT cNames,          /* [in] */ LCID lcid,          
/* [size_is][out] */ DISPID *rgDispId);

        /* [local] */ HRESULT ( STDMETHODCALLTYPE *Invoke )(         ISna * This,          /* [in] */ DISPID 
dispIdMember,          /* [in] */ REFIID riid,          /* [in] */ LCID lcid,          /* [in] */ WORD wFlags,          



dispIdMember,          /* [in] */ REFIID riid,          /* [in] */ LCID lcid,          /* [in] */ WORD wFlags,          
/* [out][in] */ DISPPARAMS *pDispParams,          /* [out] */ VARIANT *pVarResult,          /* [out] */ 
EXCEPINFO *pExcepInfo,          /* [out] */ UINT *puArgErr);

        END_INTERFACE
    } ISnaVtbl;

    interface ISna
    {
        CONST_VTBL struct ISnaVtbl *lpVtbl;
    };

#ifdef COBJMACROS

#define ISna_QueryInterface(This,riid,ppvObject)\
    (This)->lpVtbl -> QueryInterface(This,riid,ppvObject)

#define ISna_AddRef(This)\
    (This)->lpVtbl -> AddRef(This)

#define ISna_Release(This)\
    (This)->lpVtbl -> Release(This)

#define ISna_GetTypeInfoCount(This,pctinfo)\
    (This)->lpVtbl -> GetTypeInfoCount(This,pctinfo)

#define ISna_GetTypeInfo(This,iTInfo,lcid,ppTInfo)\
    (This)->lpVtbl -> GetTypeInfo(This,iTInfo,lcid,ppTInfo)

#define ISna_GetIDsOfNames(This,riid,rgszNames,cNames,lcid,rgDispId)\
    (This)->lpVtbl -> GetIDsOfNames(This,riid,rgszNames,cNames,lcid,rgDispId)

#define ISna_Invoke(This,dispIdMember,riid,lcid,wFlags,pDispParams,pVarResult,pExcepInfo,puArgErr)\
    (This)->lpVtbl -> Invoke(This,dispIdMember,riid,lcid,wFlags,pDispParams,pVarResult,pExcepInfo,puArgErr)

#endif /* COBJMACROS */

#endif /* C style interface */

#endif /* __ISna_DISPINTERFACE_DEFINED__ */

EXTERN_C const CLSID CLSID_CBar;

#ifdef __cplusplus

class DECLSPEC_UUID("159A9BBB-E5F1-33F6-BEF5-6CFAD7A5933F")
CBar;
#endif
#endif /* __odod_LIBRARY_DEFINED__ */

/* Additional Prototypes for ALL interfaces */

/* end of Additional Prototypes */

#ifdef __cplusplus
}
#endif
#endif

Example

// attr_implements.cpp
// compile with: /LD /link /idlout:out.idl

In the following program, without implements, IBar1 , IBar2 , and ISna  will not be in the coclass  in the
generated IDL.



#define _ATL_ATTRIBUTES 1
#include <atlbase.h>
#include <atlcom.h>
#include "attr_implements.h"   // IDL generated header that contains a definition of the pseudo-interface IBar 
and pseudo-dispinterface  ISna

[module(name = "MyLib")];

[dispinterface, uuid("00000000-0000-0000-0000-000000000001")]
__interface IMyInterface
{
   [id(0)] long x;
   [id(1)] HRESULT func();
};

[
   coclass, uuid("00000000-0000-0000-0000-000000000002"), implements(interfaces={IBar1,IBar2}, 
dispinterfaces=ISna)
]
class CMyClass : public IMyInterface, public IBar1,    public IDispatchImpl<IBar2, &__uuidof(IBar2)>, public 
ISna
{
   long _x;
public:
   long get_x() { return _x; }
   void put_x(long x0) { _x = x0; }
   HRESULT func() { return S_OK; }
   HRESULT __stdcall bar1() { return S_OK; }
   HRESULT __stdcall bar2() { return S_OK; }
   HRESULT __stdcall sna() { return S_OK; }

   virtual HRESULT STDMETHODCALLTYPE ISna::Invoke(         /* [in] */ DISPID dispIdMember,          /* [in] */ 
REFIID riid,          /* [in] */ LCID lcid,          /* [in] */ WORD wFlags,          /* [out][in] */ 
DISPPARAMS *pDispParams,          /* [out] */ VARIANT *pVarResult,          /* [out] */ EXCEPINFO *pExcepInfo,          
/* [out] */ UINT *puArgErr)
   {
      HRESULT hr = S_OK;
      if (pDispParams == 0) {
         return DISP_E_BADVARTYPE;
      }
      if (pDispParams->cArgs> 0) {
         return DISP_E_BADPARAMCOUNT;
      }
      if (pVarResult != 0) {
         ::VariantInit(pVarResult);
      }
      switch (dispIdMember) {
      case 1:
         {
            if (pDispParams->cArgs != 0) {
               return DISP_E_BADPARAMCOUNT;
            }
            hr = this->sna();
            break;
         }
      default:
         return DISP_E_MEMBERNOTFOUND;
      }
      return hr;
   }
   virtual HRESULT STDMETHODCALLTYPE ISna::GetIDsOfNames(         /* [in] */ REFIID riid,          /* 
[size_is][in] */ LPOLESTR *rgszNames,          /* [in] */ UINT cNames,          /* [in] */ LCID lcid,          
/* [size_is][out] */ DISPID *rgDispId)
   {
      static LPOLESTR names[] = { L"sna" };
      static DISPID dids[] = { 1 };
      for (unsigned int i = 0; i < cNames; ++i) {
         int fFoundIt = 0;
         for (unsigned int j = 0; j < sizeof(names)/sizeof(LPOLESTR); ++j) {



            if (lstrcmpiW(rgszNames[i], names[j]) == 0) {
               fFoundIt = 1;
               rgDispId[i] = dids[j];
               break;
            }
         }
         if (fFoundIt == 0) {
            return DISP_E_UNKNOWNNAME;
         }
      }
      return S_OK;
   }
   virtual HRESULT STDMETHODCALLTYPE ISna::GetTypeInfoCount(unsigned int*  pctinfo)
   {
      if (pctinfo == NULL) {
         return E_POINTER;
      }
      CComPtr<ITypeInfo> spTypeInfo;
      *pctinfo =
                  (SUCCEEDED(TypeInfoHelper(__uuidof(ISna), 0, &spTypeInfo))) ? 1 : 0;
      return S_OK;
   }
   virtual HRESULT STDMETHODCALLTYPE ISna::GetTypeInfo(unsigned int iTInfo, LCID lcid, ITypeInfo** ppTInfo)
   {
      if (iTInfo != 0) {
         return DISP_E_BADINDEX;
      }
      return TypeInfoHelper(__uuidof(ISna), lcid, ppTInfo);
   }
   BEGIN_COM_MAP(CMyClass)
      COM_INTERFACE_ENTRY(IBar1)
      COM_INTERFACE_ENTRY(IBar2)
      COM_INTERFACE_ENTRY(ISna)
   END_COM_MAP()
};

See Also
Compiler Attributes
Class Attributes



implements_category
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ implements_category(implements_category="uuid") ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_implements_category.cpp
// compile with: /LD
#define _ATL_ATTRIBUTES
#include "atlbase.h"
#include "atlcom.h"

[module (name="MyLib")];
[ coclass, implements_category("CATID_Control"),
  uuid("20a0d0cc-5172-40f5-99ae-5e032f3205ae")]
class CMyClass {};

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable Yes

Required attributes One of the following: coclass , progid , or vi_progid

Specifies the component categories implemented by the target class.

implements_category
The ID of the implemented category.

The implements_category C++ attribute specifies the component categories implemented by the target class.
This is done by creating a CATEGORY map and adding separate entries specified by the implements_category
attribute. For more information, see What are Component Categories and How Do They Work?.

This attribute requires that the coclass, progid, or vi_progid attribute (or another attribute that implies one of
these) also be applied to the same element. If any single attribute is used, the other two are automatically applied.
For example, if progid  is applied, vi_progid  and coclass  are also applied.

The following code specifies that the following object implements the Control  category.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/implements-category.md
https://msdn.microsoft.com/library/windows/desktop/ms694322


Invalid attributes None

See Also

For more information, see Attribute Contexts.

COM Attributes
Class Attributes
IMPLEMENTED_CATEGORY



import
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ import(
   idl_file
) ];

ParametersParameters

Remarks

Example

// cpp_attr_ref_import.cpp
// compile with: /LD
[module(name="MyLib")];
[import(import.idl)];

import "docobj.idl";
import "import.idl";

[ uuid(EED3644C-8488-3ECD-BA97-147DB3CDB499), version(1.0) ]
library MyLib {
   importlib("stdole2.tlb");
   importlib("olepro32.dll");
...

Requirements
Attribute ContextAttribute Context

Specifies another .idl, .odl, or header file containing definitions you want to reference from your main IDL.

idl_file
The name of an .idl file that you want imported into the type library of the current project.

The import C++ attribute causes an #import  statement to be placed below the import "docobj.idl"  statement
in the generated .idl file. The import attribute has the same functionality as the import MIDL attribute.

The import attribute only places the specified file into the .idl file that will be generated by your project; the
import attribute does not let you call constructs in the specified file from source code in your project. To call
constructs in the specified file from source code in your project, either use #import and the embedded_idl

attribute or you can include the .h file for the idl_file, if a .h file exists.

The following code:

produces the following code in the generated .idl file:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/import.md
https://docs.microsoft.com/windows/desktop/Midl/import
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/hash-import-directive-cpp


Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

See Also

For more information, see Attribute Contexts.

IDL Attributes
Stand-Alone Attributes
importidl
importlib
include
includelib



importidl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ importidl(idl_file) ];

ParametersParameters

Remarks

Example
// cpp_attr_ref_importidl.cpp
// compile with: /LD
[module(name="MyLib")];
[importidl("import.idl")];

Requirements
Attribute ContextAttribute Context

Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

See Also

Inserts the specified .idl file into the generated .idl file.

idl_file
Identifies the name of the .idl file that you want to merge with the .idl file that will be generated for your
application.

The importidl C++ attribute places the section outside of the library block (in idl_file) into your program's
generated .idl file and the library section (in idl_file) into the library section of your program's generated .idl file.

You may want to use importidl, for example, if you want to use a hand-coded .idl file with your generated .idl file.

For more information, see Attribute Contexts.

Compiler Attributes
Stand-Alone Attributes
import

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/importidl.md


importlib
include
includelib



importlib
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ importlib("tlb_file") ];

ParametersParameters

Remarks

Example

// cpp_attr_ref_importlib.cpp
// compile with: /LD
[module(name="MyLib")];
[importlib("importlib.tlb")];

Requirements
Attribute ContextAttribute Context

Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

See Also

Makes types that have already been compiled into another type library available to the type library being
created.

tlb_file
The name of a .tlb file, in quotes, that you want imported into the type library of the current project.

The importlib C++ attribute causes an importlib  statement to be placed in the library block of the generated
.idl file. The importlib attribute has the same functionality as the importlib MIDL attribute.

The following code shows an example of how to use importlib:

For more information, see Attribute Contexts.

Compiler Attributes
Stand-Alone Attributes
import

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/importlib.md
https://docs.microsoft.com/windows/desktop/Midl/importlib


importidl
include
includelib



in (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[in]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Interface parameter, interface method

Repeatable No

Required attributes None

Invalid attributes retval

See Also

Indicates that a parameter is to be passed from the calling procedure to the called procedure.

The in C++ attribute has the same functionality as the in MIDL attribute.

See bindable for an example of how to use in.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Parameter Attributes
Method Attributes
defaultvalue
id
out

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/in-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/in


include (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ include(header_file) ];

ParametersParameters

Remarks

Example

// cpp_attr_ref_include.cpp
// compile with: /LD
[module(name="MyLib")];
[include(cpp_attr_ref_include.h)];

Requirements
Attribute ContextAttribute Context

Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies one or more header files to be included in the generated .idl file.

header_file
The name of a file that you want included in the generated .idl file.

The include C++ attribute causes an #include  statement to be placed below the import "docobj.idl"

statement in the generated .idl file.

The include C++ attribute has the same functionality as the include MIDL attribute.

The following code shows an example of how to use include. For this example, the file include.h contains only a 
#include  statement.

For more information, see Attribute Contexts.

IDL Attributes
Stand-Alone Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/include-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/include


import
importidl
includelib
importlib



includelib (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ includelib(name.idl) ];

ParametersParameters

Remarks

Example

// cpp_attr_ref_includelib.cpp
// compile with: /LD
[module(name="MyLib")];
[includelib("includelib.idl")];

Requirements
Attribute ContextAttribute Context

Applies to Anywhere

Repeatable Yes

Required attributes None

Invalid attributes None

See Also

Causes an .idl or .h file to be included in the generated .idl file.

name.idl
The name of the .idl file that you want included as part of the generated .idl file.

The includelib C++ attribute causes an .idl or .h file to be included in the generated .idl file, after the importlib

statement.

The following code is shown in a .cpp file:

For more information, see Attribute Contexts.

IDL Attributes
Stand-Alone Attributes
import
importidl

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/includelib-cpp.md


include
importlib



last_is
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ last_is("expression") ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Field in struct or union, interface parameter, interface
method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies the index of the last array element to be transmitted.

expression
One or more C-language expressions. Empty argument slots are allowed.

The last_is C++ attribute has the same functionality as the last_is MIDL attribute.

See first_is for an example of how to specify a section of an array.

For more information, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes
Parameter Attributes
first_is
max_is
length_is
size_is

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/last-is.md
https://docs.microsoft.com/windows/desktop/Midl/last-is


lcid
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[lcid]

Remarks

Example
// cpp_attr_ref_lcid.cpp
// compile with: /LD
#include <unknwn.h>
[module(name="MyLibrary")];
typedef long HRESULT;

[dual, uuid("2F5F63F1-16DA-11d2-9E7B-00C04FB926DA")]
__interface IStatic {
   HRESULT MyFunc([in, lcid] long LocaleID, [out, retval] BSTR * ReturnVal);
};

Requirements
Attribute ContextAttribute Context

Applies to Interface parameter

Repeatable No

Required attributes None

Invalid attributes None

See Also

Lets you pass a locale identifier to a function.

The lcid C++ attribute implements the functionality of the lcid MIDL attribute. If you want to implement locale for
a library block, use the lcid= lcid  parameter to the module attribute.

For more information, see Attribute Contexts.

IDL Attributes
Parameter Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/lcid.md
https://docs.microsoft.com/windows/desktop/Midl/lcid


length_is
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ length_is("expression") ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Field in struct or union, interface parameter, interface
method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies the number of array elements to be transmitted.

expression
One or more C-language expressions. Empty argument slots are allowed.

The length_is C++ attribute has the same functionality as the length_is MIDL attribute.

See first_is for an example of how to specify a section of an array.

For more information, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes
Parameter Attributes
first_is
max_is
last_is
size_is

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/length-is.md
https://docs.microsoft.com/windows/desktop/Midl/length-is


library_block
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[library_block]

Remarks

Example

// cpp_attr_ref_library_block.cpp
// compile with: /LD
#include <windows.h>
[module(name="MyLib")];
[object, library_block, uuid("9E66A290-4365-11D2-A997-00C04FA37DDB")]
__interface IMyInterface {
   HRESULT f1();
};

Requirements
Attribute ContextAttribute Context

Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

See Also

Places a construct inside the IDL library block.

When you place a construct inside the library block, you ensure that it will be passed into the type library,
regardless of whether it is referenced. By default, only constructs modified by the coclass, dispinterface, and
idl_module attributes are placed in the library block.

In the following code, a custom interface is placed inside the library block.

For more information, see Attribute Contexts.

Compiler Attributes
Stand-Alone Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/library-block.md


licensed
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[licensed]

Remarks

Example
// cpp_attr_ref_licensed.cpp
// compile with: /LD
#include "unknwn.h"
[object, uuid("00000000-0000-0000-0000-000000000001")]
__interface IMyI : IUnknown {
   HRESULT f();
};

[coclass, version("2.1"), uuid(12345678-1111-2222-3333-123456789012),
licensed, threading(free), progid(some.name)]
class CSample : public IMyI {
public:
   int nSize;
};

[module(name="MyLibrary", version="1.0", helpstring="My Library Block")];

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes coclass

Invalid attributes None

See Also

Indicates that the COM object to which it applies is licensed, and must be instantiated using IClassFactory2 .

The licensed C++ attribute has the same functionality as the licensed MIDL attribute.

For more information, see Attribute Contexts.

IDL Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/licensed.md
https://docs.microsoft.com/windows/desktop/Midl/licensed


Class Attributes



local (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[local]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to interface, interface method

Repeatable No

Required attributes None

Invalid attributes dispinterface

See Also

When used in the interface header, allows you to use the MIDL compiler as a header generator. When used in an
individual function, designates a local procedure for which no stubs are generated.

The local C++ attribute has the same functionality as the local MIDL attribute.

See call_as for an example of how to use local.

For more information, see Attribute Contexts.

IDL Attributes
Interface Attributes
Method Attributes
call_as

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/local-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/local


max_is
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ max_is("expression") ]

ParametersParameters

Remarks

Requirements
Attribute ContextAttribute Context

Applies to Field in struct or union, interface parameter, interface
method

Repeatable No

Required attributes None

Invalid attributes size_is

Example

See Also

Designates the maximum value for a valid array index.

expression
One or more C-language expressions. Empty argument slots are allowed.

The max_is C++ attribute has the same functionality as the max_is MIDL attribute.

For more information, see Attribute Contexts.

See first_is for an example of how to specify a section of an array.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes
Parameter Attributes
first_is
last_is
length_is
size_is

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/max-is.md
https://docs.microsoft.com/windows/desktop/Midl/max-is


module (C++)
1/24/2019 • 4 minutes to read • Edit Online

Syntax
[ module (type=dll, name=string, version=1.0, uuid=uuid, lcid=integer, control=boolean, helpstring=string, 
helpstringdll=string, helpfile=string, helpcontext=integer, helpstringcontext=integer, hidden=boolean, 
restricted=boolean, custom=string, resource_name=string,) ];

ParametersParameters

Defines the library block in the .idl file.

type
(Optional) Can be one of the following:

dll  Adds functions and classes that allow the resulting DLL to function as a in-process COM server. This
is the default value.

exe  Adds functions and classes that allow the resulting executable to function as a out of process COM
server.

service  Adds functions and classes that allow the resulting executable to function as an NT service.

unspecified  Disables injection of ATL code related to the module attribute: the injection of ATL Module
class, global instance _AtlModule and entry point functions. Does not disable injection of ATL code due to
other attributes in the project.

name
(Optional) The name of the library block.

version
(Optional) The version number you want to assign to the library block. The default value is 1.0.

uuid
The unique ID for the library. If you omit this parameter, an ID will be automatically generated for the library.
You may need to retrieve the uuid of your library block, which you can do by using the identifier __uuidof(
libraryname ).

lcid
The localization parameter. See lcid for more information.

control
(Optional) Specifies that all coclasses in the library are controls.

helpstring
Specifies the type library.

helpstringdll
(Optional) Sets the name of the .dll file to use to perform a document string lookup. See helpstringdll for more
information.

helpfile
(Optional) The name of the Help file for the type library.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/module-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/lcid
https://docs.microsoft.com/windows/desktop/Midl/helpstringdll


[module(custom={guid,1}, custom={guid1,2})]

NOTENOTE

Remarks

helpcontext
(Optional) The Help ID for this type library.

helpstringcontext
(Optional) See helpstringcontext for more information.

hidden
(Optional) Prevents the entire library from being displayed. This usage is intended for use with controls. Hosts
need to create a new type library that wraps the control with extended properties. See the hidden MIDL
attribute for more information.

restricted
(Optional) Members of the library cannot be called arbitrarily. See the restricted MIDL attribute for more
information.

custom
(Optional) One or more attributes; this is similar to the custom attribute. The first parameter to custom is the
GUID of the attribute. For example:

resource_name
The string resource ID of the .rgs file used to register the APP ID of the DLL, executable, or service. When the
module is of type service, this argument is also used to obtain the ID of the string containing the service name.

Both the .rgs file and the string containing the service name should contain the same numerical value.

Unless you specify the restricted parameter to emitidl, module is required in any program that uses C++
attributes.

A library block will be created if, in addition to the module attribute, source code also uses dispinterface, dual,
object, or an attribute that implies coclass.

One library block is allowed in an .idl file. Multiple module entries in source code will be merged, with the most
recent parameter values being implemented.

If this attribute is used within a project that uses ATL, the behavior of the attribute changes. In addition to the
above behavior, the attribute also inserts a global object (called _AtlModule ) of the correct type and additional
support code. If the attribute is standalone, it inserts a class derived from the correct module type. If the
attribute is applied to a class, it adds a base class of the correct module type. The correct type is determined by
the value of the type parameter :

type  = dll

CAtlDllModuleT is used as the base class and the standard DLL entry points required for a COM server.
These entry points are DllMain, DllRegisterServer, DllUnRegisterServer, DllCanUnloadNow, and
DllGetClassObject.

type  = exe

CAtlExeModuleT is used as the base class and the standard executable entry point WinMain.

https://docs.microsoft.com/windows/desktop/Midl/hidden
https://docs.microsoft.com/windows/desktop/Midl/restricted
https://docs.microsoft.com/windows/desktop/Dlls/dllmain
https://docs.microsoft.com/windows/desktop/api/olectl/nf-olectl-dllregisterserver
https://docs.microsoft.com/windows/desktop/api/olectl/nf-olectl-dllunregisterserver
https://docs.microsoft.com/windows/desktop/api/combaseapi/nf-combaseapi-dllcanunloadnow
https://msdn.microsoft.com/library/windows/desktop/dd797891
https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-winmain


Example

// cpp_attr_ref_module1.cpp
// compile with: /LD
[module(name="MyLibrary", version="1.2", helpfile="MyHelpFile")];

// cpp_attr_ref_module2.cpp
// compile with: /LD /link /OPT:NOREF
#include <atlbase.h>
#include <atlcom.h>
#include <atlwin.h>
#include <atltypes.h>
#include <atlctl.h>
#include <atlhost.h>
#include <atlplus.h>

// no semicolon after attribute block
[module(dll, name="MyLibrary", version="1.2", helpfile="MyHelpFile")]
// module attribute now applies to this class
class CMyClass {
public:
BOOL WINAPI DllMain(DWORD dwReason, LPVOID lpReserved) {
   // add your own code here
   return __super::DllMain(dwReason, lpReserved);
   }
};

Requirements
Attribute ContextAttribute Context

Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

type  = service

CAtlServiceModuleT is used as the base class and the standard executable entry point WinMain.

type  = unspecified

Disables injection of ATL code related to the module attribute.

The following code shows how to create a library block in the generated .idl file.

The following code shows that you can provide your own implementation of a function that would appear in the
code that was injected as a result of using module. See /Fx for more information on viewing injected code. In
order to override one of the functions inserted by the module attribute, make a class that will contain your
implementation of the function and make the module attribute apply to that class.

For more information, see Attribute Contexts.

https://docs.microsoft.com/windows/desktop/api/winbase/nf-winbase-winmain
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fx-merge-injected-code


See Also
IDL Attributes
Class Attributes
Stand-Alone Attributes
Typedef, Enum, Union, and Struct Attributes
usesgetlasterror
library
helpcontext
helpstring
helpfile
version

https://docs.microsoft.com/windows/desktop/Midl/library


ms_union
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ms_union]

Remarks

Example

// cpp_attr_ref_ms_union.cpp
// compile with: /LD
#include <unknwn.h>
[object, ms_union, uuid("00000000-0000-0000-0000-000000000001")]
__interface IFireTabCtrl {
   HRESULT DisplayString([in, string] char * p1);
};

[export, switch_type(short)] union _WILLIE_UNION_TYPE  {
   [case(24)]
      float fMays;
   [case(25)]
      double dMcCovey;
   [default]
      int x;
};

[public] typedef _WILLIE_UNION_TYPE WILLIE_UNION_TYPE;

[module(name="ATLFIRELib")];

Requirements
Attribute ContextAttribute Context

Applies to Nonencapsulated unions

Repeatable No

Required attributes None

Invalid attributes dispinterface

Controls the network data representation alignment of nonencapsulated unions.

The ms_union C++ attribute has the same functionality as the ms_union MIDL attribute.

The following code shows the placement of ms_union:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/ms-union.md
https://docs.microsoft.com/windows/desktop/Midl/ms-union-attrib


See Also

For more information, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes



no_injected_text
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ no_injected_text(boolean) ];

ParametersParameters

Remarks

Requirements
Attribute ContextAttribute Context

Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

See Also

Prevents the compiler from injecting code as a result of attribute use.

boolean
(Optional) true if you want no code injected, false to allow code to be injected. true is the default.

The most common use of the no_injected_text C++ attribute is by the /Fx compiler option, which inserts the
no_injected_text attribute into the .mrg file.

For more information about the attribute contexts, see Attribute Contexts.

Compiler Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/no-injected-text.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/build/reference/fx-merge-injected-code


nonbrowsable
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[nonbrowsable]

Remarks

Example
// cpp_attr_ref_nonbrowsable.cpp
// compile with: /LD
#include <unknwn.h>
[module(name="MyLib")];

[object, helpstring("help string"), helpstringcontext(1),
uuid="11111111-1111-1111-1111-111111111111"]
__interface IMyI
{
   [nonbrowsable] HRESULT xx();
};

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Indicates that an interface member should not be displayed in a property browser.

The nonbrowsable C++ attribute has the same functionality as the nonbrowsable MIDL attribute.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Method Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/nonbrowsable.md
https://docs.microsoft.com/windows/desktop/Midl/nonbrowsable


noncreatable
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[noncreatable]

Remarks

Example
// cpp_attr_ref_noncreatable.cpp
// compile with: /LD
#include <unknwn.h>
[module(name="MyLib")];

[object, uuid("11111111-1111-1111-1111-111111111111")]
__interface A
{
};

[coclass, uuid("11111111-1111-1111-1111-111111111112"), noncreatable]
class CMyClass : public A
{
   HRESULT xx();
};

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes coclass

Invalid attributes None

Defines an object that cannot be instantiated by itself.

The noncreatable C++ attribute has the same functionality as the noncreatable MIDL attribute and is
automatically passed through to the generated .IDL file by the compiler.

When this attribute is used within a project that uses ATL, the behavior of the attribute changes. In addition to the
above behavior, the attribute also injects the OBJECT_ENTRY_NON_CREATEABLE_EX_AUTO macro. This macro
indicates to ATL that the object cannot be created externally.

For more information about the attribute contexts, see Attribute Contexts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/noncreatable.md
https://docs.microsoft.com/windows/desktop/Midl/noncreatable


See Also
IDL Attributes
Class Attributes



nonextensible
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[nonextensible]

Remarks

Example

// cpp_attr_ref_nonextensible.cpp
// compile with: /LD
#include "unknwn.h"
[module(name="ATLFIRELib")];
[export] typedef long HRESULT;

[dual, nonextensible, ms_union, oleautomation,
uuid("00000000-0000-0000-0000-000000000001")]
__interface IFireTabCtrl
{
   HRESULT procedure (int i);
};

Requirements
Attribute ContextAttribute Context

Applies to interface

Repeatable No

Required attributes dual  and oleautomation , or dispinterface

Invalid attributes None

See Also

Specifies that the IDispatch  implementation includes only the properties and methods listed in the interface
description and cannot be extended with additional members at run time.

The nonextensible C++ attribute has the same functionality as the nonextensible MIDL attribute.

Use of nonextensible also requires the oleautomation attribute.

The following code shows one use of the nonextensible attribute:

For more information about the attribute contexts, see Attribute Contexts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/nonextensible.md
https://docs.microsoft.com/windows/desktop/Midl/nonextensible


IDL Attributes
Interface Attributes



object (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[object]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to interface

Repeatable No

Required attributes None

Invalid attributes None

See Also

Identifies a custom interface.

When preceding an interface definition, the object C++ attribute causes the interface to be placed in the .idl file
as a custom interface.

Any interface marked with object must inherit from IUnknown . This condition is satisfied if any of the base
interfaces inherit from IUnknown . If no base interfaces inherit from IUnknown , the compiler will cause the
interface marked with object to derive from IUnknown .

See nonbrowsable for an example of how to use object.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Interface Attributes
dual
dispinterface
custom
__interface

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/object-cpp.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/interface


odl
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[odl]

Remarks

Example
// cpp_attr_ref_odl.cpp
// compile with: /LD
#include <unknwn.h>
[module(name="MyLIb")];

[odl, oleautomation, dual, uuid("00000000-0000-0000-0000-000000000001")]
__interface IMyInterface
{
   HRESULT x();
};

[coclass, uuid("00000000-0000-0000-0000-000000000002")]
class cmyClass : public IMyInterface
{
public:
   HRESULT x(){}
};

Requirements
Attribute ContextAttribute Context

Applies to interface

Repeatable No

Required attributes None

Invalid attributes None

See Also

Identifies an interface as an Object Description Language (ODL) interface. The MIDL compiler does not require
the odl attribute; it is recognized only for compatibility with older .odl files.

The odl C++ attribute has the same functionality as the odl MIDL attribute.

For more information about the attribute contexts, see Attribute Contexts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/odl.md
https://docs.microsoft.com/windows/desktop/Midl/odl


IDL Attributes
Interface Attributes



oleautomation
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[oleautomation]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to interface

Repeatable No

Required attributes None

Invalid attributes dispinterface

See Also

Indicates that an interface is compatible with Automation.

The oleautomation C++ attribute has the same functionality as the oleautomation MIDL attribute.

See the examples for defaultvalue and nonextensible for a sample use of oleautomation.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Interface Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/oleautomation.md
https://docs.microsoft.com/windows/desktop/Midl/oleautomation


optional (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[optional]

Remarks

Example

// cpp_attr_ref_optional.cpp
// compile with: /LD
#include "unknwn.h"
[module(name="ATLFIRELib")];

[dispinterface, uuid("00000000-0000-0000-0000-000000000001")]
__interface IFireTabCtrl : IDispatch
{
   [id(1)] long procedure ([in, optional] VARIANT i);
};

Requirements
Attribute ContextAttribute Context

Applies to Interface parameter

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies an optional parameter for a member function.

The optional C++ attribute has the same functionality as the optional MIDL attribute.

The following code shows how optional might be used:

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Parameter Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/optional-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/optional


out (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[out]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Interface parameter

Repeatable No

Required attributes None

Invalid attributes None

See Also

Identifies pointer parameters that are returned from the called procedure to the calling procedure (from the
server to the client).

The out C++ attribute has the same functionality as the out MIDL attribute.

See the example for bindable for a sample use of out.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Parameter Attributes
defaultvalue
id

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/out-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/out-idl


pointer_default
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ pointer_default(value) ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to interface

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies the default pointer attribute for all pointers, except top-level pointers that appear in parameter lists.

value
A value that describes the pointer type: ptr, ref, or unique.

The pointer_default C++ attribute has the same functionality as the pointer_default MIDL attribute.

See the example for defaultvalue for a sample use of pointer_default.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Interface Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/pointer-default.md
https://docs.microsoft.com/windows/desktop/Midl/pointer-default


pragma
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ pragma(pragma_statement) ];

ParametersParameters

Remarks

Example
// cpp_attr_ref_pragma.cpp
// compile with: /LD
#include "unknwn.h"
[module(name="MyLib")];
[pragma(pack(4))];

[dispinterface, uuid("00000000-0000-0000-0000-000000000001")]
__interface A
{
   [id(1)] HRESULT MyMethod ([in, satype("BSTR")] SAFEARRAY **p);
};

Requirements
Attribute ContextAttribute Context

Applies to Anywhere

Repeatable No

Required attributes None

Invalid attributes None

See Also

Emits the specified string into the generated .idl file without the use of quotation marks.

pragma_statement
The pragma that you want to go into the generated .idl file.

The pragma C++ attribute has the same functionality as the pragma MIDL attribute.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/pragma.md
https://docs.microsoft.com/windows/desktop/Midl/pragma


Stand-Alone Attributes
pack

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/preprocessor/pack


progid
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ progid(name) ];

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Specifies the ProgID for a COM object.

name
The ProgID representing the object.

ProgIDs present a human-readable version of the class identifier (CLSID) used to identify COM/ActiveX
objects.

The progid C++ attribute lets you specify the ProgID for a COM object. A ProgID has the form
name1.name2.version. If you do not specify a version for a ProgID, the default version is 1. If you do not specify
name1.name2, the default name is classname.classname. If you do not specify progid and you do specify 
vi_progid , name1.name2 are taken from vi_progid  and the (next sequential number) version is appended.

If an attribute block that uses progid does not also use uuid, the compiler will check the registry to see if a
uuid exists for the specified progid. If progid is not specified, the version (and coclass name, if creating a
coclass) will be used to generate a progid.

progid implies the coclass  attribute, that is, if you specify progid, it is the same thing as specifying the 
coclass  and progid attributes.

The progid attribute causes a class to be automatically registered under the specified name. The generated .idl
file will not display the progid value.

When this attribute is used within a project that uses ATL, the behavior of the attribute changes. In addition to
the above behavior, the information specified with this attribute is used in the GetProgID  function, injected by
the coclass  attribute. For more information, see the coclass attribute.

See the example for coclass for a sample use of progid.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/progid.md


Required attributes None

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Class Attributes
Typedef, Enum, Union, and Struct Attributes
ProgID Key

https://docs.microsoft.com/windows/desktop/com/-progid--key


propget
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[propget]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Method

Repeatable No

Required attributes None

Invalid attributes propput , propputref

See Also

Specifies a property accessor function.

The propget C++ attribute has the same functionality as the propget MIDL attribute.

See the example for bindable for a sample use of propget.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Method Attributes
propput
propputref

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/propget.md
https://docs.microsoft.com/windows/desktop/Midl/propget


propput
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[propput]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Method

Repeatable No

Required attributes None

Invalid attributes propget , propputref

See Also

Specifies a property setting function.

The propput C++ attribute has the same functionality as the propput MIDL attribute.

See the example for bindable for a sample use of propput.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Method Attributes
propget
propputref

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/propput.md
https://docs.microsoft.com/windows/desktop/Midl/propput


propputref
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[propputref]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Method

Repeatable No

Required attributes None

Invalid attributes propget , propput

See Also

Specifies a property setting function that uses a reference instead of a value.

The propputref C++ attribute has the same functionality as the propputref MIDL attribute.

See the example for bindable for a sample use of propputref.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Method Attributes
propget
propput

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/propputref.md
https://docs.microsoft.com/windows/desktop/Midl/propputref


ptr
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ptr]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Interface parameter, interface method, typedef

Repeatable No

Required attributes None

Invalid attributes None

See Also

Designates a pointer as a full pointer.

The ptr C++ attribute has the same functionality as the ptr MIDL attribute.

See the example for defaultvalue for a sample use of ptr.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Interface Attributes
Method Attributes
Typedef, Enum, Union, and Struct Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/ptr.md
https://docs.microsoft.com/windows/desktop/Midl/ptr


public (C++ Attributes)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[public]

Remarks

Example

// cpp_attr_ref_public.cpp
// compile with: /LD
#include "unknwn.h"
[module(name="ATLFIRELib")];
[export, public] typedef long MEMBERID;

[dispinterface, uuid(99999999-9999-9999-9999-000000000000)]
__interface IFireTabCtrl : IDispatch
{
   [id(2)] long procedure ([in, optional] VARIANT i);
};

Requirements
Attribute ContextAttribute Context

Applies to typedef

Repeatable No

Required attributes None

Invalid attributes None

See Also

Ensures that a typedef will go into the type library even if it is not referenced from within the .idl file.

The public C++ attribute has the same functionality as the public MIDL attribute.

The following code shows how to use the public attribute:

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/public-cpp-attributes.md
https://docs.microsoft.com/windows/desktop/Midl/public


range (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ range(low, high) ]

ParametersParameters

Remarks

Example
// cpp_attr_ref_range.cpp
// compile with: /LD
#include <unknwn.h>
[module(name="MyLib")];

[object, uuid("9E66A290-4365-11D2-A997-00C04FA37DDB")]
__interface ICustom {
   HRESULT Custom([in] long l, [out, retval] long *pLong);
   HRESULT length_is1([in, range(0, 999)] long f, [in, length_is(f)] char array[10]);
   HRESULT length_is2([in, range(-99, -1)] long f, [in, length_is("f"), size_is(10)] char *array);
};

Requirements
Attribute ContextAttribute Context

Applies to Interface method, interface parameter

Repeatable No

Required attributes None

Invalid attributes None

Specifies a range of allowable values for arguments or fields whose values are set at run time.

low
The low range value.

high
The high range value.

The range C++ attribute has the same functionality as the range MIDL attribute.

For more information about the attribute contexts, see Attribute Contexts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/range-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/range


See Also
IDL Attributes
Method Attributes
Parameter Attributes
Data Member Attributes



rdx
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ rdx(key, valuename=NULL, regtype) ]

ParametersParameters

Remarks

Requirements
Attribute ContextAttribute Context

Applies to class or struct member

Repeatable No

Required attributes None

Invalid attributes None

Example

Creates a registry key or modifies an existing registry key.

key
The name of the key to be created or opened.

valuename
(Optional) Specifies the value field to be set. If a value field with this name does not already exist in the key, it is
added.

regtype
The type of registry key being added. Can be one of the following: text , dword , binary , or CString .

The rdx C++ attribute creates or modifies an existing registry key for a COM component. The attribute adds a
BEGIN_RDX_MAP macro to the object that implements the target member. RegistryDataExchange , a function
injected as a result of the BEGIN_RDX_MAP macro, can be used to transfer data between the registry and the data
members

This attribute can be used in conjunction with the coclass, progid, or vi_progid attributes or other attributes that
implies one of these.

For more information about the attribute contexts, see Attribute Contexts.

The following code adds a registry key called MyValue to the system describing the CMyClass COM component.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/rdx.md


// cpp_attr_ref_rdx.cpp
// compile with: /LD /link /OPT:NOREF
#define _ATL_ATTRIBUTES
#include "atlbase.h"

[module (name="MyLib")];

class CMyClass {
public:
   CMyClass() {
      strcpy_s(m_sz, "SomeValue");
   }

   [ rdx(key = "HKCR\\MyApp.MyApp.1", valuename = "MyValue", regtype = "text")]
   char m_sz[256];
};

See Also
COM Attributes
registration_script



readonly (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[readonly]

Remarks

Example

// cpp_attr_ref_readonly.cpp
// compile with: /LD
[idl_quote("midl_pragma warning(disable:2461)")];
#include "unknwn.h"
[module(name="ATLFIRELib")];

[dispinterface, uuid(11111111-1111-1111-1111-111111111111)]
__interface IFireTabCtrl
{
   [readonly, id(1)] int i();
};

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Prohibits assignment to a data member.

The readonly C++ attribute has the same functionality as the readonly MIDL attribute.

If you want to prohibit modification of a method parameter, then use the in attribute.

The following code shows a use of the readonly attribute:

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Data Member Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/readonly-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/readonly




ref (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ref]

Remarks

Example

// cpp_attr_ref_ref.cpp
// compile with: /LD
#include <windows.h>
[module(name="ATLFIRELib")];
[dispinterface, uuid("00000000-0000-0000-0000-000000000001")]
__interface IFireTabCtrl
{
   [id(1), unique] char * GetFirstName([in, ref] char * pszFullName );
};

Requirements
Attribute ContextAttribute Context

Applies to typedef, interface parameter, interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Identifies a reference pointer.

The ref C++ attribute has the same functionality as the ref MIDL attribute.

The following code shows how to use the ref attribute:

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes
Parameter Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/ref-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/ref


registration_script
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ registration_script(script) ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_registration_script.cpp
// compile with: /LD
#define _ATL_ATTRIBUTES
#include "atlbase.h"
#include "atlcom.h"

[module (name="REG")];

[object, uuid("d9cd196b-6836-470b-9b9b-5b04b828e5b0")]
__interface IFace {};

// requires "cpp_attr_ref_registration_script.rgs"
// create sample .RGS file "cpp_attr_ref_registration_script.rgs" if it does not exist
[ coclass, registration_script(script="cpp_attr_ref_registration_script.rgs"),
  uuid("50d3ad42-3601-4f26-8cfe-0f1f26f98f67")]
class CMyClass:public IFace {};

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Executes the specified custom registration script.

script
The full path to a custom registration script (.rgs) file. A value of none, such as script = "none" , indicates that the
coclass has no registration requirements.

The registration_script C++ attribute executes the custom registration script specified by script. If this attribute is
not specified, a standard .rgs file (containing information for registering the component) is used. For more
information on .rgs files, see The ATL Registry Component (Registrar).

This attribute requires that the coclass, progid, or vi_progid attribute (or another attribute that implies one of
these) also be applied to the same element.

The following code specifies that the component has a registry script called cpp_attr_ref_registration_script.rgs.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/registration-script.md


Repeatable No

Required attributes One or more of the following: coclass , progid , or 
vi_progid .

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

COM Attributes
Class Attributes
rdx



requestedit
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[requestedit]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Indicates that the property supports the OnRequestEdit  notification.

The requestedit C++ attribute has the same functionality as the requestedit MIDL attribute.

See the example for bindable for a sample use of requestedit.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Method Attributes
Data Member Attributes
defaultbind
displaybind
immediatebind

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/requestedit.md
https://docs.microsoft.com/windows/desktop/Midl/requestedit


requires_category
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ requires_category(
  requires_category) ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_requires_category.cpp
// compile with: /LD
#define _ATL_ATTRIBUTES
#include "atlbase.h"
#include "atlcom.h"

[module (name="MyLibrary")];

[ coclass, requires_category("CATID_Control"),
  uuid("1e1a2436-f3ea-4ff3-80bf-5409370e8144")]
class CMyClass {};

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes One or more of the following: coclass , progid , or 
vi_progid .

Specifies the required component categories of the target class.

requires_category
The ID of the required category.

The requires_category C++ attribute specifies the component categories required by the target class. For more
information, see REQUIRED_CATEGORY.

This attribute requires that the coclass, progid, or vi_progid attribute (or another attribute that implies one of
these) also be applied to the same element.

The following code requires that the object implement the Control category.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/requires-category.md


Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

COM Attributes
implements_category



restricted
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ restricted(
   interfaces
) ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_restricted.cpp
// compile with: /LD
#include "windows.h"
#include "unknwn.h"
[module(name="MyLib")];

[object, uuid("00000000-0000-0000-0000-000000000001")]
__interface a
{
};

[object, uuid("00000000-0000-0000-0000-000000000002")]
__interface b
{
};

[coclass, restricted(a,b), uuid("00000000-0000-0000-0000-000000000003")]
class c : public a, public b
{
};

Requirements
Attribute ContextAttribute Context

Applies to Interface method, interface, class, struct

Specifies that a member of a module, interface, or dispinterface cannot be called arbitrarily.

interfaces
One or more interfaces that may not be called arbitrarily on a COM object. This parameter is only valid when
applied to a class.

The restricted C++ attribute has the same functionality as the restricted MIDL attribute.

The following code shows how to use the restricted attribute:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/restricted.md
https://docs.microsoft.com/windows/desktop/Midl/restricted


Repeatable No

Required attributes coclass (when applied to class or struct)

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Interface Attributes
Method Attributes



retval
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[retval]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Interface parameter, interface method

Repeatable No

Required attributes out

Invalid attributes in

See Also

Designates the parameter that receives the return value of the member.

The retval C++ attribute has the same functionality as the retval MIDL attribute.

retval must appear on the last argument in a function's declaration.

See the example for bindable for a sample use of retval.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Parameter Attributes
Method Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/retval.md
https://docs.microsoft.com/windows/desktop/Midl/retval


satype
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ satype(data_type) ]

ParametersParameters

Requirements
Attribute ContextAttribute Context

Applies to Interface parameter, interface method

Repeatable No

Required attributes None

Invalid attributes None

Remarks

NOTENOTE

Example
// cpp_attr_ref_satype.cpp
// compile with: /LD
#include "unknwn.h"
[module(name="MyModule")];
[dispinterface, uuid("00000000-0000-0000-0000-000000000001")]
__interface A {
   [id(1)] HRESULT MyMethod ([in, satype("BSTR")] SAFEARRAY **p);
};

See Also

Specifies the data type of the SAFEARRAY  structure.

data_type
The data type for the SAFEARRAY  data structure that is being passed as a parameter to an interface method.

The satype C++ attribute specifies the data type of the SAFEARRAY .

A level of indirection is dropped from the SAFEARRAY  pointer in the generated .idl file from how it is declared in the .cpp
file.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/satype.md


Compiler Attributes
Parameter Attributes
Method Attributes
id



size_is
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ size_is("expression") ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to Field in struct or union, interface parameter, interface
method

Repeatable No

Required attributes None

Invalid attributes max_is

See Also

Specify the size of memory allocated for sized pointers, sized pointers to sized pointers, and single- or
multidimensional arrays.

expression
The size of memory allocated for sized pointers.

The size_is C++ attribute has the same functionality as the size_is MIDL attribute.

See the example for first_is for a sample of how to specify a section of an array.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes
Parameter Attributes
first_is
last_is
max_is
length_is

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/size-is.md
https://docs.microsoft.com/windows/desktop/Midl/size-is


source (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ source(interfaces) ]

ParametersParameters

Remarks

Example
// cpp_attr_ref_source.cpp
// compile with: /LD
#include "windows.h"
#include "unknwn.h"
[module(name="MyLib")];

[object, uuid(11111111-1111-1111-1111-111111111111)]
__interface b
{
   [id(0), propget, bindable, displaybind, defaultbind, requestedit]
   HRESULT get_I([out, retval]long *i);
};

[object, uuid(11111111-1111-1111-1111-111111111131)]
__interface c
{
   [id(0), propget, bindable, displaybind, defaultbind, requestedit]
   HRESULT et_I([out, retval]long *i);
};

[coclass, default(c), uuid(11111111-1111-1111-1111-111111111132)]
class N : public b
{
};

[coclass, source(c), default(b, c), uuid(11111111-1111-1111-1111-111111111133)]
class NN : public b
{
};

On a class, specifies the COM object's source interfaces for connection points. On a property or method,
indicates that the member returns an object or VARIANT that is a source of events.

interfaces
One or more interfaces that you specify when you apply the source attribute to a class. This parameter is not
used when source is applied to a property or method.

The source C++ attribute has the same functionality as the source MIDL attribute.

You can use the default attribute to specify the default source interface for an object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/source-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/source


Requirements
Attribute ContextAttribute Context

Applies to class, struct, interface

Repeatable No

Required attributes coclass  (when applied to class or struct)

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Class Attributes
Method Attributes
coclass



string (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[string]

Remarks

Example

// cpp_attr_ref_string.cpp
// compile with: /LD
#include "unknwn.h"
[module(name="ATLFIRELib")];
[export, string] typedef char a[21];
[dispinterface, restricted, uuid("00000000-0000-0000-0000-000000000001")]
__interface IFireTabCtrl
{
   [id(1)] HRESULT Method3([in, string] char *pC);
};

Requirements
Attribute ContextAttribute Context

Applies to Array or pointer to an array, interface parameter, interface
method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Indicates that the one-dimensional char, wchar_t, byte  (or equivalent) array or the pointer to such an array must
be treated as a string.

The string C++ attribute has the same functionality as the string MIDL attribute.

The following code shows how to use string on an interface and on a typedef:

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Array Attributes
export

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/string-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/string




support_error_info
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ support_error_info(error_interface=uuid) ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_support_error_info.cpp
// compile with: /LD
#define _ATL_ATTRIBUTES
#include "atlbase.h"
#include "atlcom.h"

[module (name="mymod")];
[object, uuid("f0b17d66-dc6e-4662-baaf-76758e09c878")]
__interface IMyErrors
{
};

[ coclass, support_error_info("IMyErrors"),
  uuid("854dd392-bdc7-4781-8667-8757936f2a4f") ]
class CMyClass
{
};

Requirements
Attribute ContextAttribute Context

Applies to class

Implements support for returning detailed errors.

error_interface
The identifier of the interface implementing IErrorInfo .

The support_error_info C++ attribute implements support for returning detailed, contextual errors encountered
by the target object to the client. For the object to support errors, the methods of the IErrorInfo  interface must
be implemented by the object. For more information, see Supporting IDispatch and IErrorInfo.

This attribute adds the ISupportErrorInfoImpl class as a base class to the target object. This results in a default
implementation of ISupportErrorInfo  and can be used when a single interface generates errors on an object.

The following code adds default support for the ISupportErrorInfo  interface to the CMyClass  object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/support-error-info.md


Repeatable Yes

Required attributes None

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

COM Attributes
Class Attributes



switch_is
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[switch_is]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to typedef

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies the expression or identifier acting as the union discriminant that selects the union member.

The switch_is C++ attribute has the same functionality as the switch_is MIDL attribute.

See the case example for a sample use of switch_is.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes
switch_type

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/switch-is.md
https://docs.microsoft.com/windows/desktop/Midl/switch-is


switch_type
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[switch_type(
type
}]

ParametersParameters

Remarks

// cpp_attr_ref_switch_type.cpp
// compile with: /LD
#include <windows.h>
[module(name="MyLibrary")];
[ export ]
struct SizedValue2 {
   [switch_type("char"), switch_is(kind)] union {
      [case(1), string]
         wchar_t* wval;
      [default, string]
         char* val;
   };
   char kind;
};

Example

Requirements
Attribute ContextAttribute Context

Applies to typedef

Repeatable No

Required attributes None

Identifies the type of the variable used as the union discriminant.

type
The switch type, can be an integer, character, Boolean, or enumeration type.

The switch_type C++ attribute has the same functionality as the switch_type MIDL attribute.

C++ attributes do not support encapsulated unions. Nonencapsulated unions are supported only in the
following form:

See the case example for a sample use of switch_type.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/switch-type.md
https://docs.microsoft.com/windows/desktop/Midl/switch-type
https://docs.microsoft.com/windows/desktop/Midl/encapsulated-unions
https://docs.microsoft.com/windows/desktop/Midl/nonencapsulated-unions


Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes
export



synchronize
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[synchronize]

Remarks

Example

// cpp_attr_ref_synchronize.cpp
// compile with: /LD
#define _ATL_ATTRIBUTES
#include "atlbase.h"
#include "atlcom.h"

[module(name="SYNC")];

[coclass,
threading(both),
vi_progid("MyProject.MyClass"),
progid("MyProject.MyClass.1"),
uuid("7a7baa0d-59b8-4576-b754-79d07e1d1cc3")
]
class CMyClass {
   float m_nBalance;

   [synchronize]
   void UpdateBalance(float nAdjust) {
      m_nBalance += nAdjust;
   }
};

Requirements
Attribute ContextAttribute Context

Synchronizes access to the target method.

The synchronize C++ attribute implements support for synchronizing the target method of an object.
Synchronization allows multiple objects to use a common resource (such as a method of a class) by controlling the
access of the target method.

The code inserted by this attribute calls the proper Lock  method (determined by the threading model) at the
beginning of the target method. When the method is exited, Unlock  is automatically called. For more information
on these functions, see CComAutoThreadModule::Lock

This attribute requires that the coclass, progid, or vi_progid attribute (or another attribute that implies one of
these) also be applied to the same element. If any single attribute is used, the other two are automatically applied.
For example, if progid  is applied, vi_progid  and coclass  are also applied.

The following code provides synchronization for the UpdateBalance  method of the CMyClass  object.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/synchronize.md


Applies to Class method, method

Repeatable No

Required attributes One or more of the following: coclass , progid , or 
vi_progid .

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

COM Attributes



threading (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ threading(model=enumeration) ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes coclass

Invalid attributes None

Specifies the threading model for a COM object.

model
(Optional) One of the following threading models:

apartment  (apartment threading)

neutral  (.NET Framework components with no user interface)

single  (simple threading)

free  (free threading)

both  (apartment and free threading)

The default value is apartment .

The threading C++ attribute does not appear in the generated .idl file but will be used in the implementation of
your COM object.

In ATL projects, If the coclass attribute is also present, the threading model specified by model is passed as the
template parameter to the CComObjectRootEx class, inserted by the coclass  attribute.

The threading attribute also guards access to an event_source.

See the licensed example for a sample use of threading.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/threading-cpp.md


See Also

For more information about the attribute contexts, see Attribute Contexts.

COM Attributes
Typedef, Enum, Union, and Struct Attributes
Class Attributes
Multithreading Support for Older Code (Visual C++)
Neutral Apartments

https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/parallel/multithreading-support-for-older-code-visual-cpp
https://docs.microsoft.com/windows/desktop/cossdk/neutral-apartments


transmit_as
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ transmit_as(type) ]

ParametersParameters

Remarks

Example

// cpp_attr_ref_transmit_as.cpp
// compile with: /LD
#include "windows.h"
[module(name="MyLibrary")];

[export] typedef struct _TREE_NODE_TYPE {
unsigned short data;
struct _TREE_NODE_TYPE * left;
struct _TREE_NODE_TYPE * right;
} TREE_NODE_TYPE;

[export] struct PACKED_NODE {
   unsigned short data;   // same as normal node
   int index;   // array index of parent
};

// A left node recursive built array of
// the nodes in the tree.  Can be unpacked with
// that knowledge
[export] typedef struct _TREE_XMIT_TYPE {
   int count;
   [size_is(count)] PACKED_NODE node[];
} TREE_XMIT_TYPE;

[transmit_as(TREE_XMIT_TYPE)] typedef TREE_NODE_TYPE * TREE_TYPE;

Requirements
Attribute ContextAttribute Context

Instructs the compiler to associate a presented type that client and server applications manipulate, with a
transmitted type.

type
Specifies the data type that is transmitted between client and server.

The transmit_as C++ attribute has the same functionality as the transmit_as MIDL attribute.

The following code shows a use of the transmit_as attribute:

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/transmit-as.md
https://docs.microsoft.com/windows/desktop/Midl/transmit-as


Applies to typedef

Repeatable No

Required attributes None

Invalid attributes None

See Also

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes
export



uidefault
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[uidefault]

Remarks

Example

// cpp_attr_ref_uidefault.cpp
// compile with: /LD
#include "unknwn.h"
[module(name="MyLib")];

[object, uuid("9E66A290-4365-11D2-A997-00C04FA37DDB")]
__interface ICustom{
   HRESULT Custom([in] long l, [out, retval] long *pLong);
   [uidefault]HRESULT id0([in] long l);
   [uidefault]HRESULT id1([in] long l);

   [uidefault, propget] HRESULT get_y(int *y);
   [uidefault, propput] HRESULT put_y(int y);
};

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Indicates that the type information member is the default member for display in the user interface.

The uidefault C++ attribute has the same functionality as the uidefault MIDL attribute.

The following code shows a sample of uidefault:

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/uidefault.md
https://docs.microsoft.com/windows/desktop/Midl/uidefault


Method Attributes



unique (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[unique]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to typedef, struct, union, interface parameter, interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies a unique pointer.

The unique C++ attribute has the same functionality as the unique MIDL attribute.

See the ref example for a sample use of unique.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes
Parameter Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/unique-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/unique


usesgetlasterror
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[usesgetlasterror]

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to module attribute

Repeatable No

Required attributes None

Invalid attributes None

See Also

Tells the caller that if there is an error when calling that function, then the caller can then call GetLastError  to
retrieve the error code.

The usesgetlasterror C++ attribute has the same functionality as the usesgetlasterror MIDL attribute.

See the idl_module example for a sample of how to use usesgetlasterror.

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/usesgetlasterror.md
https://docs.microsoft.com/windows/desktop/Midl/usesgetlasterror


uuid (C++ Attributes)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ uuid(
   "uuid"
) ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to class, struct, interface, union, enum

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies the unique ID for a class or interface.

uuid
A 128-bit, unique identifier.

If the definition of an interface or class does not specify the uuid C++ attribute, then the Visual C++ compiler
will provide one. When you specify a uuid, you must include the quotes.

If you do not specify uuid, then the compiler will generate the same GUID for interfaces or classes with the
same name in different attribute projects on a machine.

You can use Uuidgen.exe or Guidgen.exe to generate your own unique IDs. (To run either of these tools, click
Start and click Run on the menu. Then enter the name of the required tool.)

When used in a project that does not also use ATL, specifying the uuid attribute is the same as specifying the
uuid __declspec modifier. To retrieve the uuid of a class, you can use __uuidof

See the bindable example for a sample use of uuid.

For more information about the attribute contexts, see Attribute Contexts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/uuid-cpp-attributes.md
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/uuid-cpp
https://docs.microsoft.com/en-us/cpp/vcppdocs-2015/cpp/uuidof-operator


IDL Attributes
Interface Attributes
Class Attributes
Typedef, Enum, Union, and Struct Attributes
uuid

https://docs.microsoft.com/windows/desktop/Midl/uuid


v1_enum
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[v1_enum]

Remarks

Example

// cpp_attr_ref_v1_enum.cpp
// compile with: /LD
[module(name="MyLibrary")];

[export, v1_enum]
enum eList {
   e1 = 1, e2 = 2
};

Requirements
Attribute ContextAttribute Context

Applies to Enumerated type

Repeatable No

Required attributes None

Invalid attributes None

See Also

Directs that the specified enumerated type be transmitted as a 32-bit entity rather than the 16-bit default.

The v1_enum C++ attribute has the same functionality as the v1_enum MIDL attribute.

The following code shows a use of v1_enum:

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/v1-enum.md
https://docs.microsoft.com/windows/desktop/Midl/v1-enum


vararg
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[vararg]

Remarks

Example

// cpp_attr_ref_vararg.cpp
// compile with: /LD
#include "unknwn.h"
#include "oaidl.h"
[module(name="MyLibrary")];

[object, uuid("00000000-0000-0000-0000-000000000001")]
__interface X : public IUnknown
{
   [vararg] HRESULT Button([in, satype(VARIANT)]SAFEARRAY *psa);
};

Requirements
Attribute ContextAttribute Context

Applies to Interface method

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies that the function takes a variable number of arguments.

The vararg C++ attribute has the same functionality as the vararg MIDL attribute.

The following code shows a use of vararg:

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Method Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/vararg.md
https://docs.microsoft.com/windows/desktop/Midl/vararg


version (C++)
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ version("version") ]

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes coclass

Invalid attributes None

See Also

Identifies a particular version among multiple versions of a class.

version
The version number of the coclass . If not specified, 1.0 will be placed in the .idl file.

The version C++ attribute has the same functionality as the version MIDL attribute and is passed through to the
generated .idl file.

See the bindable example for a sample use of version.

For more information about the attribute contexts, see Attribute Contexts.

Compiler Attributes
Class Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/version-cpp.md
https://docs.microsoft.com/windows/desktop/Midl/version


vi_progid
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[ vi_progid(name) ];

ParametersParameters

Remarks

Example

Requirements
Attribute ContextAttribute Context

Applies to class, struct

Repeatable No

Required attributes None

Invalid attributes None

Specifies a version-independent form of the ProgID.

name
The version-independent ProgID representing the object.

ProgIDs present a human-readable version of the class identifier (CLSID) used to identify COM/ActiveX
objects.

The vi_progid C++ attribute lets you specify a version-independent ProgID for a COM object. A ProgID has
the form name1.name2.version. A version-independent ProgID does not have a version. It is possible to specify
both the progid  and the vi_progid attributes on a coclass . If you do not specify vi_progid, the version-
independent ProgID is the value specified by the progid attribute.

vi_progid implies the coclass  attribute, that is, if you specify vi_progid, it is the same thing as specifying the 
coclass  and vi_progid attributes.

The vi_progid attribute causes a class to be automatically registered under the specified name. The generated
.idl file will not display the ProgID value.

In ATL projects, If the coclass attribute is also present, the specified ProgID is used by the 
GetVersionIndependentProgID  function (inserted by the coclass  attribute).

See the coclass example for a sample use of vi_progid.

For more information about the attribute contexts, see Attribute Contexts.

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/vi-progid.md


See Also
IDL Attributes
Typedef, Enum, Union, and Struct Attributes
Class Attributes
ProgID Key

https://docs.microsoft.com/windows/desktop/com/-progid--key


wire_marshal
10/31/2018 • 2 minutes to read • Edit Online

Syntax
[wire_marshal]

Remarks

Example

// cpp_attr_ref_wire_marshal.cpp
// compile with: /LD
#include "windows.h"
[module(name="MyLibrary")];

[export, public] typedef unsigned long _FOUR_BYTE_DATA;

[export] typedef struct _TWO_X_TWO_BYTE_DATA {
   unsigned short low;
   unsigned short high;
} TWO_X_TWO_BYTE_DATA ;

[export, wire_marshal(TWO_X_TWO_BYTE_DATA)] typedef _FOUR_BYTE_DATA FOUR_BYTE_DATA;

Requirements
Attribute ContextAttribute Context

Applies to typedef

Repeatable No

Required attributes None

Invalid attributes None

See Also

Specifies a data type that will be used for transmission instead of an application-specific data type.

The wire_marshal C++ attribute has the same functionality as the wire_marshal MIDL attribute.

The following code shows a use of wire_marshal:

For more information about the attribute contexts, see Attribute Contexts.

IDL Attributes
Typedef, Enum, Union, and Struct Attributes

https://github.com/Microsoft/cpp-docs/blob/master/docs/windows/attributes/wire-marshal.md
https://docs.microsoft.com/windows/desktop/Midl/wire-marshal



	Cover Page
	Overview of Windows Programming in C++
	Windows Desktop Applications in C++
	Windows Console Applications in C++
	Walkthrough: Creating a Standard C++ Program (C++)
	Creating a Console Application
	Win32 Application Wizard
	Application Settings, Win 32 Project Wizard


	Walkthrough: Creating Windows Desktop Applications (C++)
	Creating an Empty Windows Desktop Application
	Adding Files to an Empty Win32 Applications
	Working with Resource Files
	Resource Files
	How to: Create Resources
	How to: Manage Resources
	How to: Include Resources at Compile Time

	Resource Identifiers (Symbols)
	How to: Create Symbols
	How to: Manage Symbols
	Predefined Symbol IDs
	ATL Predefined Symbols
	MFC Predefined Symbols
	Win32 Predefined Symbols


	Resource Editors
	Accelerator Editor
	Accelerator Keys

	Binary Editor
	Dialog Editor
	How to: Create a Dialog Box
	Dialog Box Controls
	How to: Add, Edit, or Delete Controls
	How to: Layout Controls
	How to: Define Control Access and Values


	Image Editor for Icons
	How to: Create an Icon or Other Image
	How to: Edit an Image
	How to: Use a Drawing Tool
	How to: Work with Color
	Accelerator Keys

	Menu Editor
	Menu Commands

	String Editor
	Toolbar Editor
	Version Information Editor



	Active Template Library (ATL)
	ATL COM Desktop Components
	Active Template Library (ATL) Concepts
	Active Template Library (ATL) Tutorial
	Creating the Project (ATL Tutorial, Part 1)
	Adding a Control (ATL Tutorial, Part 2)
	Adding a Property to the Control (ATL Tutorial, Part 3)
	Changing the Drawing Code (ATL Tutorial, Part 4)
	Adding an Event (ATL Tutorial, Part 5)
	Adding a Property Page (ATL Tutorial, Part 6)
	Putting the Control on a Web Page (ATL Tutorial, Part 7)

	Introduction to COM and ATL
	Introduction to COM
	Interfaces (ATL)
	IUnknown
	Reference Counting
	QueryInterface
	Marshaling
	Aggregation

	Introduction to ATL
	Using a Template Library
	Scope of ATL
	Recommendations for Choosing Between ATL and MFC


	Fundamentals of ATL COM Objects
	Implementing CComObjectRootEx
	Implementing CComObject, CComAggObject, and CComPolyObject
	Supporting IDispatch and IErrorInfo
	Supporting IDispEventImpl
	Changing the Default Class Factory and Aggregation Model
	Creating an Aggregated Object

	Dual Interfaces and ATL
	Implementing a Dual Interface
	Multiple Dual Interfaces
	nonextensible Attribute
	Dual Interfaces and Events

	ATL Collections and Enumerators
	ATL Collection and Enumerator Classes
	Design Principles for Collection and Enumerator Interfaces
	Implementing a C++ Standard Library-Based Collection
	ATL Copy Policy Classes


	ATL Composite Control Fundamentals
	Inserting a Composite Control
	Modifying the ATL Project
	Adding Functionality to the Composite Control
	Building and Testing the ATL Project

	ATL Control Containment FAQ
	ATL COM Property Pages
	Specifying Property Pages
	Implementing Property Pages
	Example: Implementing a Property Page


	ATL Support for DHTML Controls
	Identifying the Elements of the DHTML Control Project
	Calling C++ Code from DHTML
	Creating an ATL DHTML Control
	Testing the ATL DHTML Control
	Modifying the ATL DHTML Control
	Testing the Modified ATL DHTML Control

	ATL Connection Points
	ATL Connection Point Classes
	Adding Connection Points to an Object
	ATL Connection Point Example

	Event Handling and ATL
	Event Handling Principles
	Implementing the Event Handling Interface
	Using IDispEventImpl
	Using IDispEventSimpleImpl
	ATL Event Handling Summary

	ATL and the Free Threaded Marshaler
	Specifying the Threading Model for a Project (ATL)
	ATL Module Classes
	ATL Services
	CAtlServiceModuleT::Start Function
	CAtlServiceModuleT::ServiceMain Function
	CAtlServiceModuleT::Run Function
	CAtlServiceModuleT::Handler Function
	Registry Entries
	DCOMCNFG
	Debugging Tips
	Using Task Manager
	Displaying Assertions
	Running the Program as a Local Server


	ATL Window Classes
	Introduction to ATL Window Classes
	Using a Window
	Implementing a Window
	Adding an ATL Message Handler
	Message Maps (ATL)
	Message Handler Functions
	CommandHandler
	MessageHandler
	NotifyHandler

	Implementing a Window with CWindowImpl

	Implementing a Dialog Box
	Using Contained Windows
	Understanding Window Traits

	ATL Collection Classes
	ATL Registry Component (Registrar)
	Creating Registrar Scripts
	Understanding Backus Nauer Form (BNF) Syntax
	Understanding Parse Trees
	Registry Scripting Examples
	Using Replaceable Parameters (The Registrar's Preprocessor)
	Invoking Scripts

	Setting Up a Static Link to the Registrar Code (C++ Only)

	Programming with ATL and C Run-Time Code
	Benefits and Tradeoffs of the Method Used to Link to the CRT
	Linking to the CRT in Your ATL Project

	Programming with CComBSTR (ATL)
	ATL Encoding Reference
	ATL Utilities Reference

	ATL Class Overview
	Class Factories Classes
	Class Information Classes
	Collection Classes
	COM Modules Classes
	Composite Controls Classes
	Connection Points Classes
	Control Containment Classes
	Controls: General Support Classes
	Data Transfer Classes
	Data Types Classes
	Debugging and Exceptions Classes
	Dual Interfaces Classes
	Enumerators and Collections Classes
	Error Information Classes
	File Handling Classes
	Interface Pointers Classes
	IUnknown Implementation Classes
	Memory Management Classes
	MMC Snap-In Classes
	Object Safety Classes
	Persistence Classes
	Properties and Property Pages Classes
	Registry Support Classes
	Running Objects Classes
	Security Classes
	Service Provider Support Classes
	Site Information Classes
	String and Text Classes
	Tear-Off Interfaces Classes
	Thread Pooling Classes
	Threading Models and Critical Sections Classes
	UI Support Classes
	Utility Classes
	Windows Support Classes

	Reference
	ATL Classes and structs
	_ATL_BASE_MODULE70 Structure
	_ATL_COM_MODULE70 Structure
	_ATL_FUNC_INFO Structure
	_ATL_MODULE70 Structure
	_ATL_WIN_MODULE70 Structure
	_AtlCreateWndData Structure
	ATL_DRAWINFO Structure
	_U_MENUorID Class
	_U_RECT Class
	_U_STRINGorID Class
	CA2AEX Class
	CA2CAEX Class
	CA2WEX Class
	CAccessToken Class
	CAcl Class
	CAdapt Class
	CAtlArray Class
	CAtlAutoThreadModule Class
	CAtlAutoThreadModuleT Class
	CAtlBaseModule Class
	CAtlComModule Class
	CAtlDebugInterfacesModule Class
	CAtlDllModuleT Class
	CAtlException Class
	CAtlExeModuleT Class
	CAtlFile Class
	CAtlFileMapping Class
	CAtlFileMappingBase Class
	CAtlList Class
	CAtlMap Class
	CAtlModule Class
	CAtlModuleT Class
	CAtlPreviewCtrlImpl Class
	CAtlServiceModuleT Class
	CAtlTemporaryFile Class
	CAtlTransactionManager Class
	CAtlWinModule Class
	CAutoPtr Class
	CAutoPtrArray Class
	CAutoPtrElementTraits Class
	CAutoPtrList Class
	CAutoRevertImpersonation Class
	CAutoVectorPtr Class
	CAutoVectorPtrElementTraits Class
	CAxDialogImpl Class
	CAxWindow Class
	CAxWindow2T Class
	CBindStatusCallback Class
	CComAggObject Class
	CComAllocator Class
	CComApartment Class
	CComAutoCriticalSection Class
	CComAutoDeleteCriticalSection Class
	CComAutoThreadModule Class
	CComBSTR Class
	CComCachedTearOffObject Class
	CComClassFactory Class
	CComClassFactory2 Class
	CComClassFactoryAutoThread Class
	CComClassFactorySingleton Class
	CComCoClass Class
	CComCompositeControl Class
	CComContainedObject Class
	CComControl Class
	CComControlBase Class
	CComCriticalSection Class
	CComCritSecLock Class
	CComCurrency Class
	CComDynamicUnkArray Class
	CComEnum Class
	CComEnumImpl Class
	CComEnumOnSTL Class
	CComFakeCriticalSection Class
	CComGITPtr Class
	CComHeap Class
	CComHeapPtr Class
	CComModule Class
	CComMultiThreadModel Class
	CComMultiThreadModelNoCS Class
	CComObject Class
	CComObjectGlobal Class
	CComObjectNoLock Class
	CComObjectRoot Class
	CComObjectRootEx Class
	CComObjectStack Class
	CComPolyObject Class
	CComPtr Class
	CComPtrBase Class
	CComQIPtr Class
	CComQIPtrElementTraits Class
	CComSafeArray Class
	CComSafeArrayBound Class
	CComSafeDeleteCriticalSection Class
	CComSimpleThreadAllocator Class
	CComSingleThreadModel Class
	CComTearOffObject Class
	CComUnkArray Class
	CComVariant Class
	CContainedWindowT Class
	CCRTAllocator Class
	CCRTHeap Class
	CDacl Class
	CDebugReportHook Class
	CDefaultCharTraits Class
	CDefaultCompareTraits Class
	CDefaultElementTraits Class
	CDefaultHashTraits Class
	CDialogImpl Class
	CDynamicChain Class
	CElementTraits Class
	CElementTraitsBase Class
	CFirePropNotifyEvent Class
	CGlobalHeap Class
	CHandle Class
	CHeapPtr Class
	CHeapPtrBase Class
	CHeapPtrElementTraits Class
	CHeapPtrList Class
	CInterfaceArray Class
	CInterfaceList Class
	CLocalHeap Class
	CMessageMap Class
	CNonStatelessWorker Class
	CNoWorkerThread Class
	CPathT Class
	CPrimitiveElementTraits Class
	CPrivateObjectSecurityDesc Class
	CRBMap Class
	CRBMultiMap Class
	CRBTree Class
	CRegKey Class
	CRTThreadTraits Class
	CSacl Class
	CSecurityAttributes Class
	CSecurityDesc Class
	CSid Class
	CSimpleArray Class
	CSimpleArrayEqualHelper Class
	CSimpleArrayEqualHelperFalse Class
	CSimpleDialog Class
	CSimpleMap Class
	CSimpleMapEqualHelper Class
	CSimpleMapEqualHelperFalse Class
	CSnapInItemImpl Class
	CSnapInPropertyPageImpl Class
	CSocketAddr Class
	CStockPropImpl Class
	CStringElementTraits Class
	CStringElementTraitsI Class
	CStringRefElementTraits Class
	CThreadPool Class
	CTokenGroups Class
	CTokenPrivileges Class
	CUrl Class
	CW2AEX Class
	CW2CWEX Class
	CW2WEX Class
	CWin32Heap Class
	CWindow Class
	CWindowImpl Class
	CWinTraits Class
	CWinTraitsOR Class
	CWndClassInfo Class
	CWorkerThread Class
	IAtlAutoThreadModule Class
	IAtlMemMgr Class
	IAxWinAmbientDispatch Interface
	IAxWinAmbientDispatchEx Interface
	IAxWinHostWindow Interface
	IAxWinHostWindowLic Interface
	ICollectionOnSTLImpl Class
	IConnectionPointContainerImpl Class
	IConnectionPointImpl Class
	IDataObjectImpl Class
	IDispatchImpl Class
	IDispEventImpl Class
	IDispEventSimpleImpl Class
	IDocHostUIHandlerDispatch Interface
	IEnumOnSTLImpl Class
	IObjectSafetyImpl Class
	IObjectWithSiteImpl Class
	IOleControlImpl Class
	IOleInPlaceActiveObjectImpl Class
	IOleInPlaceObjectWindowlessImpl Class
	IOleObjectImpl Class
	IPerPropertyBrowsingImpl Class
	IPersistPropertyBagImpl Class
	IPersistStorageImpl Class
	IPersistStreamInitImpl Class
	IPointerInactiveImpl Class
	IPropertyNotifySinkCP Class
	IPropertyPage2Impl Class
	IPropertyPageImpl Class
	IProvideClassInfo2Impl Class
	IQuickActivateImpl Class
	IRegistrar Interface
	IRunnableObjectImpl Class
	IServiceProviderImpl Class
	ISpecifyPropertyPagesImpl Class
	ISupportErrorInfoImpl Class
	IThreadPoolConfig Interface
	IViewObjectExImpl Class
	IWorkerThreadClient Interface
	Win32ThreadTraits Class
	Worker Archetype

	ATL_URL_SCHEME
	ATL Functions
	ATL HTTP Utility Functions
	ATL Text Encoding Functions
	ATL Path Functions
	COM Map Global Functions
	Composite Control Global Functions
	Connection Point Global Functions
	Debugging and Error Reporting Global Functions
	Device Context Global Functions
	Event Handling Global Functions
	Marshaling Global Functions
	Pixel-HIMETRIC Conversion Global Functions
	Registry and TypeLib Global Functions
	Security Global Functions
	Security Identifier Global Functions
	Server Registration Global Functions
	WinModule Global Functions

	ATL Macros
	Aggregation and Class Factory Macros
	Category Macros
	COM Map Macros
	COM Interface Entry Macros
	Compiler Options Macros
	Composite Control Macros
	Connection Point Macros
	Debugging and Error Reporting Macros
	Exception Handling Macros
	Message Map Macros (ATL)
	Object Map Macros
	Object Status Macros
	Property Map Macros
	Registry Data Exchange Macros
	Registry Macros
	Service Map Macros
	Snap-In Object Macros
	String Conversion Macros
	Window Class Macros
	Windows Messages Macros

	ATL Operators
	ATL Global Variables
	ATL Typedefs
	ATL Wizards and Dialog Boxes
	Application Settings, ATL Project Wizard
	ATL Active Server Page Component Wizard, ASP
	ATL Active Server Page Component Wizard, Options
	ATL Active Server Page Component Wizard
	ATL COM+ 1.0 Component Wizard
	ATL Control Wizard, Appearance
	ATL Control Wizard, Interfaces
	ATL Control Wizard, Options
	ATL Control Wizard, Stock Properties,
	ATL Control Wizard
	ATL Dialog Wizard
	ATL OLE DB Consumer Wizard
	ATL OLE DB Provider Wizard
	ATL Project Wizard
	ATL Property Page Wizard, Options
	ATL Property Page Wizard, Strings
	ATL Property Page Wizard
	ATL Simple Object Wizard, Options
	ATL Simple Object Wizard
	ATL Wizards and Dialog Boxes
	COM+ 1.0, ATL COM+ 1.0 Component Wizard
	Adding a New Interface in an ATL Project
	Adding an ATL Active Server Page Component
	Adding an ATL COM+ 1.0 Component
	Adding an ATL Control
	Adding an ATL Dialog Box
	Adding an ATL OLE DB Consumer
	Adding an ATL OLE DB Provider
	Adding an ATL Property Page
	Adding an ATL Simple Object
	Adding Objects and Controls to an ATL Project
	Creating an ATL Project
	COM+ 1.0 Support in ATL Projects
	Default ATL Project Configurations
	Making an ATL Object Noncreatable
	MFC Support in ATL Projects
	Specifying Compiler Optimization for an ATL Project



	Microsoft Foundation Classes (MFC)
	MFC and ATL
	MFC Desktop Applications
	MFC Concepts
	General MFC Topics
	Using the MFC Source Files
	An Example of the Comments
	-- Implementation Comment
	-- Constructors Comment
	-- Attributes Comment
	-- Operations Comment
	-- Overridables Comment

	MFC Library Versions
	MFC MBCS DLL Add-on

	Using the Classes to Write Applications for Windows
	Framework (MFC)
	SDI and MDI
	Documents, Views, and the Framework
	Wizards and the Resource Editors

	Building on the Framework
	Sequence of Operations for Building MFC Applications
	Sequence of Operations for Creating OLE Applications
	Sequence of Operations for Creating ActiveX Controls
	Sequence of Operations for Creating Database Applications
	How the Framework Calls Your Code

	CWinApp: The Application Class
	CWinApp and the MFC Application Wizard
	Overridable CWinApp Member Functions
	InitInstance Member Function
	Run Member Function
	ExitInstance Member Function
	OnIdle Member Function
	Special CWinApp Services

	Document Templates and the Document-View Creation Process
	Document Template Creation
	Document-View Creation
	Relationships Among MFC Objects
	Creating New Documents, Windows, and Views

	Managing the State Data of MFC Modules
	Exported DLL Function Entry Points
	COM Interface Entry Points
	Window Procedure Entry Points

	Idle Loop Processing
	Support for Activation Contexts in the MFC Module State
	Isolation of the MFC Common Controls Library
	Build Requirements for Windows Vista Common Controls
	Deprecated ANSI APIs

	How to: Add Restart Manager Support
	Dynamic Layout

	Using CObject
	Deriving a Class from CObject
	Specifying Levels of Functionality

	Accessing Run-Time Class Information
	Dynamic Object Creation
	CObject Class: Frequently Asked Questions
	Do I Have to Derive New Classes from CObject?
	What Does it Cost me to Derive a Class from CObject?


	Collections
	Recommendations for Choosing a Collection Class
	Template-Based Classes
	How to: Make a Type-Safe Collection
	Accessing All Members of a Collection
	Deleting All Objects in a CObject Collection

	Creating Stack and Queue Collections

	Exception Handling in MFC
	Exceptions: Changes to Exception Macros in Version 3.0
	Exceptions: Catching and Deleting Exceptions
	Exceptions: Converting from MFC Exception Macros
	Exceptions: Using MFC Macros and C++ Exceptions
	Exceptions: Examining Exception Contents
	Exceptions: Freeing Objects in Exceptions
	Exceptions: Throwing Exceptions from Your Own Functions
	Exceptions: Exceptions in Constructors
	Exceptions: Database Exceptions
	Exceptions: OLE Exceptions

	Files in MFC
	Opening Files
	Reading and Writing Files
	Closing Files
	Accessing File Status

	Interface Elements
	MAPI
	MAPI Support in MFC
	MAPI Samples

	Memory Management
	Memory Management: Frame Allocation
	Memory Management: Heap Allocation
	Memory Management: Examples
	Memory Management: Resizable Memory Blocks


	Message Handling and Mapping
	Messages and Commands in the Framework
	Messages
	Message Handlers
	Message Categories
	Mapping Messages
	User-Interface Objects and Command IDs
	Command IDs
	Standard Commands

	Command Targets

	How the Framework Calls a Handler
	Message Sending and Receiving
	How Noncommand Messages Reach Their Handlers
	Command Routing
	Command Routing Illustration
	OnCmdMsg Handler
	Overriding the Standard Command Routing

	How the Framework Searches Message Maps
	Where to Find Message Maps
	Derived Message Maps

	Declaring Message Handler Functions
	Handlers for Standard Windows Messages
	Handlers for Commands and Control Notifications
	Handlers for Message-Map Ranges
	Handling Reflected Messages

	How to: Display Command Information in the Status Bar
	How to: Create a Message Map for a Template Class

	MFC COM
	Active Document Containment
	Example of Active Document Containment: Office Binder
	Creating an Active Document Container Application
	Active Document Containers
	Help Menu Merging
	Programmatic Printing
	Message Handling and Command Targets

	Active Document Servers
	Active Documents

	Automation
	Automation Clients
	Automation Clients: Using Type Libraries

	Automation Servers
	Automation Servers: Object-Lifetime Issues


	Connection Points

	MFC Internet Programming Basics
	Internet-Related MFC Classes
	Internet Information by Topic
	Internet Information by Task
	Active Technology on the Internet
	WinInet Basics
	HTML Basics

	MFC Internet Programming Tasks
	Application Design Choices
	Writing MFC Applications
	ActiveX Controls on the Internet
	Upgrading an Existing ActiveX Control
	Asynchronous Monikers on the Internet
	Testing Internet Applications
	Internet Security (C++)

	OLE in MFC
	OLE Background
	OLE Background: Linking and Embedding
	OLE Background: Containers and Servers
	OLE Background: Implementation Strategies
	OLE Background: MFC Implementation

	Activation (C++)
	Activation: Verbs

	Containers
	Containers: Implementing a Container
	Containers: Client Items
	Containers: Client-Item Notifications
	Containers: Client-Item States
	Containers: Compound Files
	Containers: User-Interface Issues
	Containers: Advanced Features

	Data Objects and Data Sources (OLE)
	Data Objects and Data Sources: Creation and Destruction
	Data Objects and Data Sources: Manipulation

	Drag and Drop (OLE)
	Drag and Drop: Implementing a Drop Source
	Drag and Drop: Implementing a Drop Target
	Drag and Drop: Customizing

	Menus and Resources (OLE)
	Menus and Resources: Container Additions
	Menus and Resources: Server Additions
	Menus and Resources: Menu Merging

	Registration
	Servers
	Servers: Implementing a Server
	Servers: Implementing Server Documents
	Servers: Implementing In-Place Frame Windows
	Servers: Server Items
	Servers: User-Interface Issues

	Trackers
	Trackers: Implementing Trackers in Your OLE Application
	How to: Implement Tracking in Your Code
	Rubber-Banding and Trackers



	Serialization in MFC
	Serialization: Making a Serializable Class
	Serialization: Serializing an Object
	What Is a CArchive Object
	Two Ways to Create a CArchive Object
	Using the CArchive << and >> Operators
	Storing and Loading CObjects via an Archive

	Serialization: Serialization vs. Database Input-Output
	Recommendations for Handling Input-Output
	File Menu in an MFC Database Application


	User Interface Elements (MFC)
	ActiveX Controls
	MFC ActiveX Controls
	MFC ActiveX Controls: Optimization
	Optimizing Persistence and Initialization
	Providing Windowless Activation
	Turning off the Activate When Visible Option
	Providing Mouse Interaction While Inactive
	Providing Flicker-Free Activation
	Using an Unclipped Device Context
	Optimizing Control Drawing

	MFC ActiveX Controls: Painting an ActiveX Control
	MFC ActiveX Controls: Events
	MFC ActiveX Controls: Adding Stock Events to an ActiveX Control
	MFC ActiveX Controls: Adding Custom Events
	MFC ActiveX Controls: Methods
	MFC ActiveX Controls: Adding Stock Methods
	MFC ActiveX Controls: Adding Custom Methods
	MFC ActiveX Controls: Returning Error Codes From a Method
	MFC ActiveX Controls: Properties
	MFC ActiveX Controls: Adding Stock Properties
	MFC ActiveX Controls: Adding Custom Properties
	MFC ActiveX Controls: Advanced Property Implementation
	MFC ActiveX Controls: Accessing Ambient Properties
	MFC ActiveX Controls: Property Pages
	MFC ActiveX Controls: Adding Another Custom Property Page
	MFC ActiveX Controls: Using Stock Property Pages
	MFC ActiveX Controls: Creating an Automation Server
	MFC ActiveX Controls: Using Fonts
	MFC ActiveX Controls: Using Pictures in an ActiveX Control
	MFC ActiveX Controls: Advanced Topics
	MFC ActiveX Controls: Distributing ActiveX Controls
	MFC ActiveX Controls: Licensing an ActiveX Control
	MFC ActiveX Controls: Localizing an ActiveX Control
	MFC ActiveX Controls: Serializing
	MFC ActiveX Controls: Subclassing a Windows Control
	Reflected Window Message IDs

	MFC ActiveX Controls: Using Data Binding in an ActiveX Control

	ActiveX Control Containers
	Containers for ActiveX Controls
	ActiveX Control Containers: Manually Enabling ActiveX Control Containment
	ActiveX Control Containers: Inserting a Control into a Control Container Application
	ActiveX Control Containers: Connecting an ActiveX Control to a Member Variable
	ActiveX Control Containers: Handling Events from an ActiveX Control
	ActiveX Control Containers: Viewing and Modifying Control Properties
	ActiveX Control Containers: Programming ActiveX Controls in an ActiveX Control Container
	ActiveX Control Containers: Using Controls in a Non-Dialog Container

	Testing Properties and Events with Test Container

	Clipboard
	Clipboard: When to Use Each Clipboard Mechanism
	Clipboard: Using the Windows Clipboard
	Clipboard: Using the OLE Clipboard Mechanism
	Clipboard: Copying and Pasting Data
	Clipboard: Adding Other Formats


	Controls (MFC)
	Common Control Sample List
	Making and Using Controls
	Using Common Controls in a Dialog Box
	Using the Dialog Editor to Add Controls
	Adding Controls By Hand
	Deriving Controls from a Standard Control
	Using a Common Control as a Child Window
	Receiving Notification from Common Controls

	Using CAnimateCtrl
	Using an Animation Control
	Notifications Sent by Animation Controls

	Using CDateTimeCtrl
	Creating the Date and Time Picker Control
	Date and Time Picker Control Examples
	Accessing the Embedded Month Calendar Control
	Using Custom Format Strings in a Date and Time Picker Control
	Using Callback Fields in a Date and Time Picker Control
	Processing Notification Messages in Date and Time Picker Controls

	Using CComboBoxEx
	Creating an Extended Combo Box Control
	Using Image Lists in an Extended Combo Box Control
	Setting the Images for an Individual Item
	Processing Notification Messages in Extended Combo Box Controls

	Using CHeaderCtrl
	Header Control and List Control
	Header Control Examples
	Header Items in a Header Control
	Customizing the Header Item's Appearance
	Providing Drag-and-Drop Support for Header Items
	Using Image Lists with Header Controls
	Making Owner-Drawn Header Controls
	Working with a Header Control
	Creating the Header Control
	Adding Items to the Header Control
	Ordering Items in the Header Control
	Processing Header-Control Notifications

	Using CHotKeyCtrl
	Using a Hot Key Control
	Setting a Hot Key
	Global Hot Keys
	Thread-Specific Hot Keys

	Using CImageList
	Types of Image Lists
	Using an Image List
	Manipulating Image Lists
	Drawing Images from an Image List
	Image Overlays in Image Lists
	Dragging Images from an Image List
	Image Information in Image Lists

	Using CListCtrl
	List Control and List View
	List Items and Image Lists
	Callback Items and the Callback Mask
	Creating the List Control
	Creating the Image Lists
	Adding Columns to the Control (Report View)
	Adding Items to the Control
	Scrolling, Arranging, Sorting, and Finding in List Controls
	Implementing Working Areas in List Controls
	Processing Notification Messages in List Controls
	Changing List Control Styles
	Virtual List Controls
	Destroying the List Control

	Using CMonthCalCtrl
	Creating the Month Calendar Control
	Month Calendar Control Examples
	Processing Notification Messages in Month Calendar Controls
	Setting the Day State of a Month Calendar Control

	Using CProgressCtrl
	Styles for the Progress Control
	Settings for the Progress Control
	Manipulating the Progress Control

	Using CReBarCtrl
	CReBar vs. CReBarCtrl
	Creating a Rebar Control
	Rebar Controls and Bands
	Using an Image List with a Rebar Control
	Using a Dialog Bar with a Rebar Control
	Processing Notification Messages in a Rebar Control

	Using CRichEditCtrl
	Overview of the Rich Edit Control
	Classes Related to Rich Edit Controls
	Rich Edit Control Examples
	Character Formatting in Rich Edit Controls
	Paragraph Formatting in Rich Edit Controls
	Current Selection in a Rich Edit Control
	Word Breaks in Rich Edit Controls
	Clipboard Operations in Rich Edit Controls
	Stream Operations in Rich Edit Controls
	Printing in Rich Edit Controls
	Bottomless Rich Edit Controls
	Notifications from a Rich Edit Control

	Using CSliderCtrl
	Using Slider Controls
	Slider Control Styles
	Slider Control Member Functions
	Slider Notification Messages

	Using CSpinButtonCtrl
	Spin Button Styles
	Spin Button Member Functions

	Using CStatusBarCtrl
	Methods of Creating a Status Bar
	Settings for the CStatusBarCtrl
	Using CStatusBarCtrl to Create a CStatusBarCtrl Object
	Setting the Mode of a CStatusBarCtrl Object
	Initializing the Parts of a CStatusBarCtrl Object
	Using Tooltips in a CStatusBarCtrl Object

	Using CTabCtrl
	Tab Controls and Property Sheets
	Tabs and Tab Control Attributes
	Making Owner-Drawn Tabs
	Working with a Tab Control
	Creating the Tab Control
	Adding Tabs to a Tab Control
	Processing Tab Control Notification Messages

	Using CToolBarCtrl
	Methods of Creating a Toolbar
	Settings for the Toolbar Control
	Creating a CToolBarCtrl Object
	Using Image Lists in a Toolbar Control
	Using Drop-Down Buttons in a Toolbar Control
	Customizing the Appearance of a Toolbar Control
	Handling Tool Tip Notifications
	Handling Customization Notifications

	Using CToolTipCtrl
	Methods of Creating Tool Tips
	Settings for the Tool Tip Control
	Using CToolTipCtrl to Create and Manipulate a CToolTipCtrl Object
	Manipulating the Tool Tip Control

	Using CTreeCtrl
	CTreeCtrl vs. CTreeView
	Using Tree Controls
	Communicating with a Tree Control
	Tree Control Styles
	Tree Control Parent and Child Items
	Tree Control Item Position
	Tree Control Item Labels
	Tree Control Label Editing
	Tree Control Item States Overview
	Tree Control Image Lists
	Tree Control Item Selection
	Tree Control Drag-and-Drop Operations
	Tree Control Item Information
	Tree Control Notification Messages


	Control Bars
	Dialog Bars
	Dialog Boxes
	Example: Displaying a Dialog Box via a Menu Command
	Dialog Sample List
	Dialog-Box Components in the Framework
	Modal and Modeless Dialog Boxes
	Property Sheets and Property Pages (MFC)
	Creating the Dialog Resource
	Creating a Dialog Class with Code Wizards
	Creating Your Dialog Class

	Life Cycle of a Dialog Box
	Creating and Displaying Dialog Boxes
	Creating Modal Dialog Boxes
	Creating Modeless Dialog Boxes
	Using a Dialog Template in Memory
	Setting the Dialog Box’s Background Color
	Initializing the Dialog Box
	Handling Windows Messages in Your Dialog Box
	Retrieving Data from the Dialog Object
	Closing the Dialog Box
	Destroying the Dialog Box

	Dialog Data Exchange and Validation
	Dialog Data Exchange
	Dialog Data Validation

	Type-Safe Access to Controls in a Dialog Box
	Type-Safe Access to Controls Without Code Wizards
	Type-Safe Access to Controls With Code Wizards

	Mapping Windows Messages to Your Class
	Commonly Overridden Member Functions
	Commonly Added Member Functions
	Common Dialog Classes
	Dialog Boxes in OLE
	Walkthrough: Adding a CTaskDialog to an Application

	Document-View Architecture
	Document-View Sample List
	A Portrait of the Document-View Architecture
	Advantages of the Document-View Architecture
	Document and View Classes Created by the MFC Application Wizard
	Alternatives to the Document-View Architecture
	Using Documents
	Deriving a Document Class from CDocument
	Managing Data with Document Data Variables
	Serializing Data to and from Files
	Bypassing the Serialization Mechanism
	Handling Commands in the Document

	Using Views
	Derived View Classes Available in MFC
	Drawing in a View
	Interpreting User Input Through a View
	Role of the View in Printing
	Scrolling and Scaling Views

	Multiple Document Types, Views, and Frame Windows
	Initializing and Cleaning Up Documents and Views
	Initializing Documents and Views
	Cleaning Up Documents and Views

	Adding Multiple Views to a Single Document

	Form Views (MFC)
	Inserting a Form into a Project

	HTML Help: Context-Sensitive Help for Your Programs
	MDI Tabbed Groups
	Menus (MFC)
	Menu Sample List
	Manipulating Menus During Program Execution
	How to: Update User-Interface Objects
	When Update Handlers Are Called
	ON_UPDATE_COMMAND_UI Macro
	The CCmdUI Class


	OLE (MFC)
	Printing and Print Preview
	Printing
	How Default Printing Is Done
	Multipage Documents
	Headers and Footers
	Allocating GDI Resources

	Print Preview Architecture

	Property Sheets (MFC)
	Property Sheets and Property Pages in MFC
	Using Property Sheets in Your Application
	Adding Controls to a Property Sheet
	Exchanging Data
	Creating a Modeless Property Sheet
	Handling the Apply Button
	Property Sheets as Wizards

	Ribbon Designer (MFC)
	How to: Convert an Existing MFC Ribbon to a Ribbon Resource
	How to: Customize the Application Button
	How to: Customize the Quick Access Toolbar
	How to: Add Ribbon Controls and Event Handlers
	How to: Load a Ribbon Resource from an MFC Application
	Walkthrough: Creating a Ribbon Application By Using MFC
	Walkthrough: Updating the MFC Scribble Application (Part 1)
	Walkthrough: Updating the MFC Scribble Application (Part 2)

	Status Bars
	Status Bar Implementation in MFC
	Updating the Text of a Status-Bar Pane


	Tool Tips
	Tool Tips in Windows Not Derived from CFrameWnd
	Enabling Tool Tips
	Handling TTN_NEEDTEXT Notification for Tool Tips
	TOOLTIPTEXT Structure


	Toolbars
	Toolbar Sample List
	MFC Toolbar Implementation
	Toolbar Fundamentals
	Docking and Floating Toolbars
	Toolbar Tool Tips
	Working with the Toolbar Control
	Using Your Old Toolbars


	Visualization Manager
	Windows
	Window Objects
	Relationship Between a C++ Window Object and an HWND
	Derived Window Classes
	Creating Windows
	Registering Window Classes
	General Window Creation Sequence

	Destroying Window Objects
	Window Destruction Sequence
	Allocating and Deallocating Window Memory

	Detaching a CWnd from Its HWND
	Working with Window Objects
	Device Contexts
	Graphic Objects
	One-Stage and Two-Stage Construction of Objects
	Selecting a Graphic Object into a Device Context


	Frame Windows
	Frame-Window Classes
	Frame-Window Classes Created by the Application Wizard

	Frame-Window Styles (C++)
	Changing the Styles of a Window Created by MFC

	What Frame Windows Do
	Using Frame Windows
	Creating Document Frame Windows
	When to Initialize CWnd Objects
	Destroying Frame Windows
	Managing MDI Child Windows
	Managing the Current View
	Managing Menus, Control Bars, and Accelerators
	Dragging and Dropping Files in a Frame Window
	Responding to Dynamic Data Exchange (DDE)
	Orchestrating Other Window Actions




	Windows Sockets
	Windows Sockets in MFC
	Windows Sockets: Background
	Windows Sockets: Stream Sockets
	Windows Sockets: Datagram Sockets
	Windows Sockets: Using Sockets with Archives
	Windows Sockets: Sequence of Operations
	Windows Sockets: Example of Sockets Using Archives
	Windows Sockets: How Sockets with Archives Work
	Windows Sockets: Using Class CAsyncSocket
	Windows Sockets: Deriving from Socket Classes
	Windows Sockets: Socket Notifications
	Windows Sockets: Blocking
	Windows Sockets: Byte Ordering
	Windows Sockets: Converting Strings
	Windows Sockets: Ports and Socket Addresses


	Win32 Internet Extensions (WinInet)
	How WinInet Makes It Easier to Create Internet Client Applications
	How MFC Makes It Easier to Create Internet Client Applications
	MFC Classes for Creating Internet Client Applications
	Prerequisites for Internet Client Classes
	Writing an Internet Client Application Using MFC WinInet Classes
	Steps in a Typical Internet Client Application
	Steps in a Typical FTP Client Application
	Steps in a Typical FTP Client Application to Delete a File
	Steps in a Typical Gopher Client Application
	Steps in a Typical HTTP Client Application


	Hierarchy Chart
	Hierarchy Chart Categories

	Customization for MFC
	Keyboard and Mouse Customization
	User-defined Tools
	Security Implications of Customization

	MFC Technical Notes
	Technical Notes by Category
	Technical Notes by Number
	TN001: Window Class Registration
	TN002: Persistent Object Data Format
	TN003: Mapping of Windows Handles to Objects
	TN006: Message Maps
	TN011: Using MFC as Part of a DLL
	TN014: Custom Controls
	TN016: Using C++ Multiple Inheritance with MFC
	TN017: Destroying Window Objects
	TN020: ID Naming and Numbering Conventions
	TN021: Command and Message Routing
	TN022: Standard Commands Implementation
	TN023: Standard MFC Resources
	TN024: MFC-Defined Messages and Resources
	TN025: Document, View, and Frame Creation
	TN026: DDX and DDV Routines
	TN028: Context-Sensitive Help Support
	TN029: Splitter Windows
	TN030: Customizing Printing and Print Preview
	TN031: Control Bars
	TN032: MFC Exception Mechanism
	TN033: DLL Version of MFC
	TN035: Using Multiple Resource Files and Header Files with Visual C++
	TN036: Using CFormView with AppWizard and ClassWizard
	TN037: Multithreaded MFC 2.1 Applications
	TN038: MFC-OLE IUnknown Implementation
	TN039: MFC-OLE Automation Implementation
	TN040: MFC-OLE In-Place Resizing and Zooming
	TN041: MFC-OLE1 Migration to MFC-OLE 2
	TN042: ODBC Driver Developer Recommendations
	TN043: RFX Routines
	TN044: MFC Support for DBCS
	TN045: MFC-Database Support for Long Varchar-Varbinary
	TN046: Commenting Conventions for the MFC Classes
	TN047: Relaxing Database Transaction Requirements
	TN048: Writing ODBC Setup and Administration Programs for MFC Database Applications
	TN049: MFC-OLE MBCS to Unicode Translation Layer (MFCANS32)
	TN050: MFC-OLE Common Dialogs (MFCUIx32)
	TN051: Using CTL3D Now and in the Future
	TN053: Custom DFX Routines for DAO Database Classes
	TN054: Calling DAO Directly While Using MFC DAO Classes
	TN055: Migrating MFC ODBC Database Class Applications to MFC DAO Classes
	TN056: Installation of Localized MFC Components
	TN057: Localization of MFC Components
	TN058: MFC Module State Implementation
	TN059: Using MFC MBCS-Unicode Conversion Macros
	TN060: The New Windows Common Controls
	TN061: ON_NOTIFY and WM_NOTIFY Messages
	TN062: Message Reflection for Windows Controls
	TN063: Debugging Internet MFC extension DLLs
	TN064: Apartment-Model Threading in ActiveX Controls
	TN065: Dual-Interface Support for OLE Automation Servers
	TN066: Common MFC 3.x to 4.0 Porting Issues
	TN068: Performing Transactions with the Microsoft Access 7 ODBC Driver
	TN070: MFC Window Class Names
	TN071: MFC IOleCommandTarget Implementation

	Class Library Overview
	General Class Design Philosophy
	Application Framework
	Relationship to the C-Language API

	Root Class: CObject
	MFC Application Architecture Classes
	Application and Thread Support Classes
	Command Routing Classes
	Document Classes
	View Classes (Architecture)
	Frame Window Classes (Architecture)
	Document-Template Classes

	Window, Dialog, and Control Classes
	Frame Window Classes (Windows)
	View Classes (Windows)
	Dialog Box Classes
	Control Classes
	Control Bar Classes

	Drawing and Printing Classes
	Output (Device Context) Classes
	Drawing Tool Classes

	Simple Data Type Classes
	Array, List, and Map Classes
	Template Classes for Arrays, Lists, and Maps
	Ready-to-Use Array Classes
	Ready-to-Use List Classes
	Ready-to-Use Map Classes

	File and Database Classes
	File I-O Classes
	OLE DB Classes
	DAO Classes
	ODBC Classes

	Internet and Networking Classes
	Windows Sockets Classes
	Win32 Internet Classes

	OLE Classes
	OLE Container Classes
	OLE Server Classes
	OLE Drag-and-Drop and Data Transfer Classes
	OLE Common Dialog Classes
	OLE Automation Classes
	OLE Control Classes
	Active Document Classes
	OLE-Related Classes

	Debugging and Exception Classes
	Debugging Support Classes
	Exception Classes


	Walkthroughs (MFC)
	Walkthrough: Using the New MFC Shell Controls
	Walkthrough: Putting Controls On Toolbars
	Walkthrough: Adding a D2D Object to an MFC Project
	Walkthrough: Adding Animation to an MFC Project

	Reference
	MFC Classes
	CAccelerateDecelerateTransition Class
	CAnimateCtrl Class
	CAnimationBaseObject Class
	CAnimationColor Class
	CAnimationController Class
	CAnimationGroup Class
	CAnimationManagerEventHandler Class
	CAnimationPoint Class
	CAnimationRect Class
	CAnimationSize Class
	CAnimationStoryboardEventHandler Class
	CAnimationTimerEventHandler Class
	CAnimationValue Class
	CAnimationVariable Class
	CAnimationVariableChangeHandler Class
	CAnimationVariableIntegerChangeHandler Class
	CArchive Class
	CArchiveException Class
	CArray Class
	CAsyncMonikerFile Class
	CAsyncSocket Class
	CAutoHideDockSite Class
	CBaseKeyFrame Class
	CBasePane Class
	CBaseTabbedPane Class
	CBaseTransition Class
	CBitmap Class
	CBitmapButton Class
	CBitmapRenderTarget Class
	CBrush Class
	CButton Class
	CByteArray Class
	CCachedDataPathProperty Class
	CCheckListBox Class
	CClientDC Class
	CCmdTarget Class
	CCmdUI Class
	CColorDialog Class
	CComboBox Class
	CComboBoxEx Class
	CCommandLineInfo Class
	CCommonDialog Class
	CConnectionPoint Class
	CConstantTransition Class
	CContextMenuManager Class
	CControlBar Class
	CCreateContext Structure
	CCriticalSection Class
	CCtrlView Class
	CCubicTransition Class
	CCustomInterpolator Class
	CCustomTransition Class
	CD2DBitmap Class
	CD2DBitmapBrush Class
	CD2DBrush Class
	CD2DBrushProperties Class
	CD2DEllipse Class
	CD2DGeometry Class
	CD2DGeometrySink Class
	CD2DGradientBrush Class
	CD2DLayer Class
	CD2DLinearGradientBrush Class
	CD2DMesh Class
	CD2DPathGeometry Class
	CD2DPointF Class
	CD2DPointU Class
	CD2DRadialGradientBrush Class
	CD2DRectF Class
	CD2DRectU Class
	CD2DResource Class
	CD2DRoundedRect Class
	CD2DSizeF Class
	CD2DSizeU Class
	CD2DSolidColorBrush Class
	CD2DTextFormat Class
	CD2DTextLayout Class
	CDaoDatabase Class
	CDaoException Class
	CDaoFieldExchange Class
	CDaoQueryDef Class
	CDaoRecordset Class
	CDaoRecordView Class
	CDaoTableDef Class
	CDaoWorkspace Class
	CDatabase Class
	CDataExchange Class
	CDataPathProperty Class
	CDataRecoveryHandler Class
	CDateTimeCtrl Class
	CDBException Class
	CDBVariant Class
	CDC Class
	CDCRenderTarget Class
	CDHtmlDialog Class
	DDX_DHtml Helper Macros

	CDialog Class
	CDialogBar Class
	CDialogEx Class
	CDiscreteTransition Class
	CDocItem Class
	CDockablePane Class
	CDockablePaneAdapter Class
	CDockingManager Class
	CDockingPanesRow Class
	CDockSite Class
	CDockState Class
	CDocObjectServer Class
	CDocObjectServerItem Class
	CDocTemplate Class
	CDocument Class
	CDragListBox Class
	CDrawingManager Class
	CDumpContext Class
	CDWordArray Class
	CEdit Class
	CEditView Class
	CEvent Class
	CException Class
	CFieldExchange Class
	CFile Class
	CFileDialog Class
	CFileException Class
	CFileFind Class
	CFindReplaceDialog Class
	CFolderPickerDialog Class
	CFont Class
	CFontDialog Class
	CFontHolder Class
	CFormView Class
	CFrameWnd Class
	CFrameWndEx Class
	CFtpConnection Class
	CFtpFileFind Class
	CGdiObject Class
	CGlobalUtils Class
	CGopherConnection Class
	CGopherFile Class
	CGopherFileFind Class
	CGopherLocator Class
	CHeaderCtrl Class
	CHotKeyCtrl Class
	CHtmlEditCtrl Class
	CHtmlEditCtrlBase Class
	CHtmlEditDoc Class
	CHtmlEditView Class
	CHtmlView Class
	CHttpConnection Class
	CHttpFile Class
	CHwndRenderTarget Class
	CImageList Class
	CInstantaneousTransition Class
	CInternetConnection Class
	CInternetException Class
	CInternetFile Class
	CInternetSession Class
	CInterpolatorBase Class
	CInvalidArgException Class
	CIPAddressCtrl Class
	CJumpList Class
	CKeyboardManager Class
	CKeyFrame Class
	CLinearTransition Class
	CLinearTransitionFromSpeed Class
	CLinkCtrl Class
	CList Class
	CListBox Class
	CListCtrl Class
	CListView Class
	CLongBinary Class
	CMap Class
	CMapPtrToPtr Class
	CMapPtrToWord Class
	CMapStringToOb Class
	CMapStringToPtr Class
	CMapStringToString Class
	CMapWordToOb Class
	CMapWordToPtr Class
	CMDIChildWnd Class
	CMDIChildWndEx Class
	CMDIFrameWnd Class
	CMDIFrameWndEx Class
	CMDITabInfo Class
	CMemFile Class
	CMemoryException Class
	CMemoryState Structure
	CMenu Class
	CMenuTearOffManager Class
	CMetaFileDC Class
	CMFCAcceleratorKey Class
	CMFCAcceleratorKeyAssignCtrl Class
	CMFCAutoHideBar Class
	CMFCAutoHideButton Class
	CMFCBaseTabCtrl Class
	CMFCBaseToolBar Class
	CMFCBaseVisualManager Class
	CMFCButton Class
	CMFCCaptionBar Class
	CMFCCaptionButton Class
	CMFCCmdUsageCount Class
	CMFCColorBar Class
	CMFCColorButton Class
	CMFCColorDialog Class
	CMFCColorMenuButton Class
	CMFCColorPickerCtrl Class
	CMFCColorPopupMenu Class
	CMFCCustomColorsPropertyPage Class
	CMFCDesktopAlertDialog Class
	CMFCDesktopAlertWnd Class
	CMFCDesktopAlertWndButton Class
	CMFCDesktopAlertWndInfo Class
	CMFCDisableMenuAnimation Class
	CMFCDragFrameImpl Class
	CMFCDropDownFrame Class
	CMFCDropDownToolBar Class
	CMFCDropDownToolbarButton Class
	CMFCDynamicLayout Class
	CMFCEditBrowseCtrl Class
	CMFCFilterChunkValueImpl Class
	CMFCFontComboBox Class
	CMFCFontInfo Class
	CMFCHeaderCtrl Class
	CMFCImageEditorDialog Class
	CMFCImageEditorPaletteBar Class
	CMFCImagePaintArea Class
	CMFCKeyMapDialog Class
	CMFCLinkCtrl Class
	CMFCListCtrl Class
	CMFCMaskedEdit Class
	CMFCMenuBar Class
	CMFCMenuButton Class
	CMFCOutlookBar Class
	CMFCOutlookBarPane Class
	CMFCOutlookBarTabCtrl Class
	CMFCPopupMenu Class
	CMFCPopupMenuBar Class
	CMFCPreviewCtrlImpl Class
	CMFCPrintPreviewToolBar Class
	CMFCPropertyGridColorProperty Class
	CMFCPropertyGridCtrl Class
	CMFCPropertyGridFileProperty Class
	CMFCPropertyGridFontProperty Class
	CMFCPropertyGridProperty Class
	CMFCPropertyGridToolTipCtrl Class
	CMFCPropertyPage Class
	CMFCPropertySheet Class
	CMFCReBar Class
	CMFCRibbonApplicationButton Class
	CMFCRibbonBar Class
	CMFCRibbonBaseElement Class
	CMFCRibbonButton Class
	CMFCRibbonButtonsGroup Class
	CMFCRibbonCategory Class
	CMFCRibbonCheckBox Class
	CMFCRibbonColorButton Class
	CMFCRibbonComboBox Class
	CMFCRibbonContextCaption Class
	CMFCRibbonCustomizeDialog Class
	CMFCRibbonCustomizePropertyPage Class
	CMFCRibbonEdit Class
	CMFCRibbonFontComboBox Class
	CMFCRibbonGallery Class
	CMFCRibbonGalleryMenuButton Class
	CMFCRibbonLabel Class
	CMFCRibbonLinkCtrl Class
	CMFCRibbonMainPanel Class
	CMFCRibbonMiniToolBar Class
	CMFCRibbonPanel Class
	CMFCRibbonProgressBar Class
	CMFCRibbonQuickAccessToolBarDefaultState Class
	CMFCRibbonSeparator Class
	CMFCRibbonSlider Class
	CMFCRibbonStatusBar Class
	CMFCRibbonStatusBarPane Class
	CMFCRibbonUndoButton Class
	CMFCShellListCtrl Class
	CMFCShellTreeCtrl Class
	CMFCSpinButtonCtrl Class
	CMFCStandardColorsPropertyPage Class
	CMFCStatusBar Class
	CMFCTabCtrl Class
	CMFCTabDropTarget Class
	CMFCTabToolTipInfo Structure
	CMFCTasksPane Class
	CMFCTasksPaneTask Class
	CMFCTasksPaneTaskGroup Class
	CMFCToolBar Class
	CMFCToolBarButton Class
	CMFCToolBarComboBoxButton Class
	CMFCToolBarComboBoxEdit Class
	CMFCToolBarDateTimeCtrl Class
	CMFCToolBarEditBoxButton Class
	CMFCToolBarFontComboBox Class
	CMFCToolBarFontSizeComboBox Class
	CMFCToolBarImages Class
	CMFCToolBarMenuButton Class
	CMFCToolBarInfo Class
	CMFCToolBarsCustomizeDialog Class
	CMFCToolTipCtrl Class
	CMFCToolTipInfo Class
	CMFCVisualManager Class
	CMFCVisualManagerOffice2003 Class
	CMFCVisualManagerOffice2007 Class
	CMFCVisualManagerOfficeXP Class
	CMFCVisualManagerVS2005 Class
	CMFCVisualManagerWindows Class
	CMFCVisualManagerWindows7 Class
	CMFCWindowsManagerDialog Class
	CMiniFrameWnd Class
	CMonikerFile Class
	CMonthCalCtrl Class
	CMouseManager Class
	CMultiDocTemplate Class
	CMultiLock Class
	CMultiPageDHtmlDialog Class
	CMultiPaneFrameWnd Class
	CMutex Class
	CNetAddressCtrl Class
	CNotSupportedException Class
	CObArray Class
	CObject Class
	CObList Class
	COccManager Class
	COleBusyDialog Class
	COleChangeIconDialog Class
	COleChangeSourceDialog Class
	COleClientItem Class
	COleCmdUI Class
	COleControl Class
	COleControlContainer Class
	COleControlModule Class
	COleControlSite Class
	COleConvertDialog Class
	COleCurrency Class
	COleDataObject Class
	COleDataSource Class
	COleDBRecordView Class
	COleDialog Class
	COleDispatchDriver Class
	COleDispatchException Class
	COleDocObjectItem Class
	COleDocument Class
	COleDropSource Class
	COleDropTarget Class
	COleException Class
	COleInsertDialog Class
	COleIPFrameWnd Class
	COleIPFrameWndEx Class
	COleLinkingDoc Class
	COleLinksDialog Class
	COleMessageFilter Class
	COleObjectFactory Class
	COlePasteSpecialDialog Class
	COlePropertiesDialog Class
	COlePropertyPage Class
	COleResizeBar Class
	COleSafeArray Class
	COleServerDoc Class
	COleServerItem Class
	COleStreamFile Class
	COleTemplateServer Class
	COleUpdateDialog Class
	COleVariant Class
	CPagerCtrl Class
	CPageSetupDialog Class
	CPaintDC Class
	CPalette Class
	CPane Class
	CPaneContainer Class
	CPaneContainerManager Class
	CPaneDialog Class
	CPaneDivider Class
	CPaneFrameWnd Class
	CParabolicTransitionFromAcceleration Class
	CPen Class
	CPictureHolder Class
	CPrintDialog Class
	CPrintDialogEx Class
	CPrintInfo Structure
	CProgressCtrl Class
	CPropertyPage Class
	CPropertySheet Class
	CPropExchange Class
	CPtrArray Class
	CPtrList Class
	CReBar Class
	CReBarCtrl Class
	CRecentDockSiteInfo Class
	CRecentFileList Class
	CRecordset Class
	CRecordView Class
	CRectTracker Class
	CRenderTarget Class
	CResourceException Class
	CReversalTransition Class
	CRgn Class
	CRichEditCntrItem Class
	CRichEditCtrl Class
	CRichEditDoc Class
	CRichEditView Class
	CRuntimeClass Structure
	CScrollBar Class
	CScrollView Class
	CSemaphore Class
	CSettingsStore Class
	CSettingsStoreSP Class
	CSharedFile Class
	CShellManager Class
	CSimpleException Class
	CSingleDocTemplate Class
	CSingleLock Class
	CSinusoidalTransitionFromRange Class
	CSinusoidalTransitionFromVelocity Class
	CSliderCtrl Class
	CSmartDockingInfo Class
	CSmoothStopTransition Class
	CSocket Class
	CSocketFile Class
	CSpinButtonCtrl Class
	CSplitButton Class
	CSplitterWnd Class
	CSplitterWndEx Class
	CStatic Class
	CStatusBar Class
	CStatusBarCtrl Class
	CStdioFile Class
	CStringArray Class
	CStringList Class
	CSyncObject Class
	CTabCtrl Class
	CTabbedPane Class
	CTabView Class
	CTaskDialog Class
	CToolBar Class
	CToolBarCtrl Class
	CToolTipCtrl Class
	CTooltipManager Class
	CTreeCtrl Class
	CTreeView Class
	CTypedPtrArray Class
	CTypedPtrList Class
	CTypedPtrMap Class
	CUIntArray Class
	CUserException Class
	CUserTool Class
	CUserToolsManager Class
	CView Class
	CVSListBox Class
	CWaitCursor Class
	CWinApp Class
	CWinAppEx Class
	CWindowDC Class
	CWinFormsControl Class
	CWinFormsDialog Class
	CWinFormsView Class
	CWinThread Class
	CWnd Class
	CWordArray Class
	ICommandSource Interface
	ICommandTarget Interface
	ICommandUI Interface
	IView Interface

	Internal Classes
	MFC Macros and Globals
	Data Types (MFC)
	Type Casting of MFC Class Objects
	Run-Time Object Model Services
	Diagnostic Services
	Modules and DLLs
	Exception Processing
	CString Formatting and Message-Box Display
	Application Information and Management
	Standard Command and Window IDs
	Collection Class Helpers
	Gray and Dithered Bitmap Functions
	Record Field Exchange Functions
	Dialog Data Exchange Functions for CRecordView and CDaoRecordView
	Dialog Data Exchange Functions for OLE Controls
	Database Macros and Globals
	DAO Database Engine Initialization and Termination
	OLE Initialization
	Application Control
	Dispatch Maps
	Variant Parameter Type Constants
	Type Library Access
	Property Pages (MFC)
	Event Maps
	Event Sink Maps
	Connection Maps
	Registering OLE Controls
	Class Factories and Licensing
	Persistence of OLE Controls
	Internet URL Parsing Globals
	DHTML Event Maps
	DHTML Editing Command Maps
	Standard Dialog Data Exchange Routines
	Standard Dialog Data Validation Routines
	AFX Messages
	ToolBar Control Styles
	CMFCImagePaintArea::IMAGE_EDIT_MODE Enumeration
	UICheckState Enumeration

	Structures, Styles, Callbacks, and Message Maps
	Structures Used by MFC
	AFX_EXTENSION_MODULE Structure
	AFX_GLOBAL_DATA Structure
	CDaoDatabaseInfo Structure
	CDaoErrorInfo Structure
	CDaoFieldInfo Structure
	CDaoIndexInfo Structure
	CDaoIndexFieldInfo Structure
	CDaoParameterInfo Structure
	CDaoQueryDefInfo Structure
	CDaoRelationInfo Structure
	CDaoRelationFieldInfo Structure
	CDaoTableDefInfo Structure
	CDaoWorkspaceInfo Structure
	CODBCFieldInfo Structure
	DHtmlUrlEventMapEntry Structure
	HSE_VERSION_INFO Structure

	Styles Used by MFC
	Callback Functions Used by MFC
	Message Maps (MFC)
	Message Map Macros (MFC)
	Delegate and Interface Map Macros
	How to: Use the Message-Map Cross-Reference
	Child Window Notification Message Handlers
	Generic Control Handler
	User Button Handlers
	Combo Box Handlers
	Edit Control Handlers
	List Box Handlers
	Handlers for WM_ Messages
	WM_ Message Handlers: A - C
	WM_ Message Handlers: D - E
	WM_ Message Handlers: F - K
	WM_ Message Handlers: L - M
	WM_ Message Handlers: N - O
	WM_ Messages: P - R
	WM_ Messages: S
	WM_ Messages: T - Z
	User-Defined Handlers


	MFC Wizards and Dialog Boxes
	Creating an MFC DLL Project
	MFC DLL Wizard
	Application Settings, MFC DLL Wizard

	Classes and Functions Generated by the MFC DLL Wizard

	Creating an MFC Application
	MFC Application Wizard
	Application Type, MFC Application Wizard
	Compound Document Support, MFC Application Wizard
	Document Template Strings, MFC Application Wizard
	Database Support, MFC Application Wizard
	User Interface Features, MFC Application Wizard
	Advanced Features, MFC Application Wizard
	Generated Classes, MFC Application Wizard

	Creating a Forms-Based MFC Application
	Creating a File Explorer-Style MFC Application
	Creating a Web Browser-Style MFC Application

	Creating an MFC ActiveX Control Container
	Creating an MFC ActiveX Control
	MFC ActiveX Control Wizard
	Application Settings, MFC ActiveX Control Wizard
	Control Names, MFC ActiveX Control Wizard
	Control Settings, MFC ActiveX Control Wizard


	Adding an MFC Class
	MFC Add Class Wizard
	Document Template Strings, MFC Add Class Wizard


	Adding an MFC Class from a Type Library
	Add Class from Typelib Wizard

	Adding an MFC Message Handler
	Mapping Messages to Functions
	Message Types Associated with User-Interface Objects
	Editing a Message Handler
	Defining a Message Handler for a Reflected Message
	Declaring a Variable Based on Your New Control Class


	Adding an MFC ODBC Consumer
	MFC ODBC Consumer Wizard

	Adding ATL Support to Your MFC Project
	Details of ATL Support Added by the ATL Wizard

	MFC Class Wizard



	ATL and MFC Shared Classes
	ATL-MFC Shared Classes
	ATL-MFC Concepts
	Date and Time
	Current Time: General Purpose Classes
	Elapsed Time: General-Purpose Classes
	Formatting Time Values: General-Purpose Classes
	Date and Time: SYSTEMTIME Support
	Date and Time: Automation Support
	Current Time: Automation Classes
	Elapsed Time: Automation Classes
	Formatting Time: Automation Classes

	Date and Time: Database Support
	DATE Type

	Strings (ATL-MFC)
	Using CStringT
	Memory Management with CStringT
	Implementation of a Custom String Manager (Basic Method)
	Avoidance of Heap Contention
	Implementation of a Custom String Manager (Advanced Method)
	CFixedStringT: Example of a Custom String Manager

	Exporting String Classes Using CStringT

	Using CString
	Basic CString Operations
	String Data Management
	CString Semantics
	CString Operations Relating to C-Style Strings
	Allocating and Releasing Memory for a BSTR
	CString Exception Cleanup
	CString Argument Passing
	Unicode and Multibyte Character Set (MBCS) Support



	Reference
	CSize Class
	CTimeSpan Class
	COleDateTime Class
	CRect Class
	Classes Shared by MFC and ATL
	CPoint Class
	CStringT Class
	COleDateTimeSpan Class
	IAtlStringMgr Class
	CFixedStringT Class
	CStrBufT Class
	CFileTimeSpan Class
	CImage Class
	CStringData Class
	CFileTime Class
	CSimpleStringT Class
	CTime Class


	.NET Development with C++/CLI
	Component Extensions for .NET and UWP
	Tracking Reference Operator (C++/CLI and C++/CX)
	Handle to Object Operator (^)  (C++/CLI and C++/CX)
	abstract  (C++/CLI and C++/CX)
	Arrays (C++/CLI and C++/CX)
	Boxing  (C++/CLI and C++/CX)
	Classes and Structs  (C++/CLI and C++/CX)
	Platform, default, and cli Namespaces  (C++/CLI and C++/CX)
	Compiler Support for Type Traits (C++/CLI and C++/CX)
	Context-Sensitive Keywords  (C++/CLI and C++/CX)
	delegate  (C++/CLI and C++/CX)
	enum class  (C++/CLI and C++/CX)
	event  (C++/CLI and C++/CX)
	Exception Handling  (C++/CLI and C++/CX)
	Explicit Overrides  (C++/CLI and C++/CX)
	ref new, gcnew  (C++/CLI and C++/CX)
	Generics  (C++/CLI and C++/CX)
	Overview of Generics in Visual C++
	Generic Functions (C++/CLI)
	Generic Classes (C++/CLI)
	Generic Interfaces (C++/CLI)
	Generic Delegates (C++/CLI)
	Constraints on Generic Type Parameters (C++/CLI)
	Consuming Generics (C++/CLI)
	Generics and Templates (C++/CLI)
	How to: Improve Performance with Generics (C++/CLI)

	interface class  (C++/CLI and C++/CX)
	literal (C++/CLI and C++/CX)
	Windows Runtime and Managed Templates (C++/CLI and C++/CX)
	new (new slot in vtable)  (C++/CLI and C++/CX)
	nullptr  (C++/CLI and C++/CX)
	Override Specifiers  (C++/CLI and C++/CX)
	override  (C++/CLI and C++/CX)
	partial  (C++/CLI and C++/CX)
	property  (C++/CLI and C++/CX)
	safe_cast (C++/CLI and C++/CX)
	String  (C++/CLI and C++/CX)
	sealed  (C++/CLI and C++/CX)
	typeid  (C++/CLI and C++/CX)
	User-Defined Attributes  (C++/CLI and C++/CX)
	Attribute Parameter Types  (C++/CLI and C++/CX)
	Attribute Targets (C++/CLI and C++/CX)

	Extensions That Are Specific to C++/CLI
	__identifier (C++/CLI)
	C-Style Casts with -clr (C++/CLI)
	interior_ptr (C++/CLI)
	How to: Declare and Use Interior Pointers and Managed Arrays (C++/CLI)
	How to: Declare Value Types with the interior_ptr Keyword (C++/CLI)
	How to: Overload Functions with Interior Pointers and Native Pointers (C++/CLI)
	How to: Declare Interior Pointers with the const Keyword (C++/CLI)

	pin_ptr (C++/CLI)
	How to: Pin Pointers and Arrays
	How to: Declare Pinning Pointers and Value Types

	Type Forwarding (C++/CLI)
	Variable Argument Lists (...) (C++/CLI)

	Resources for Creating a Game Using DirectX
	Walkthrough: Creating and Using a Static Library (C++)
	How to: Use the Windows 10 SDK in a Windows Desktop Application

	Universal Windows Apps (C++)
	C++/CX
	Visual C++ Language Reference (C++/CX)
	Quick Reference (C++/CX)
	Type System (C++/CX)
	Namespaces and Type Visibility (C++/CX )
	Fundamental types (C++/CX)
	Strings (C++/CX)
	Array and WriteOnlyArray (C++/CX)
	Ref classes and structs (C++/CX)
	Value classes and structs (C++/CX)
	Partial classes (C++/CX)
	Properties (C++/CX)
	Collections (C++/CX)
	Template ref classes (C++/CX)
	Interfaces (C++/CX)
	Enums (C++/CX)
	Delegates (C++/CX)
	Exceptions (C++/CX)
	Events (C++/CX)
	Casting (C++/CX)
	Boxing (C++/CX)
	Attributes (C++/CX)
	Deprecating types and members (C++/CX)

	Building apps and libraries (C++/CX)
	Compiler and Linker options (C++/CX)
	Static libraries (C++/CX)
	DLLs (C++/CX)

	Interoperating with Other Languages (C++/CX)
	JavaScript integration (C++/CX)
	CLR integration (C++/CX)
	WRL integration (C++/CX)

	Obtaining pointers to data buffers (C++/CX)
	Threading and Marshaling (C++/CX)
	Weak references and breaking cycles (C++/CX)
	Namespaces Reference (C++/CX)
	default namespace
	default::(type_name)::Equals
	default::(type_name)::GetHashCode
	default::(type_name)::GetType
	default::(type_name)::ToString

	Platform namespace (C++/CX)
	Platform::AccessDeniedException Class
	Platform::Agile Class
	Platform::Array Class
	Platform::ArrayReference Class
	Platform::Boolean value class
	Platform::Box Class
	Platform::CallbackContext Enumeration
	Platform::ChangedStateException Class
	Platform::ClassNotRegisteredException Class
	Platform::COMException Class
	Platform::Delegate Class
	Platform::DisconnectedException Class
	Platform::Enum Class
	Platform::Exception Class
	Platform::FailureException Class
	Platform::Guid value class
	Platform::IBox Interface
	Platform::IBoxArray Interface
	Platform::IDisposable Interface
	Platform::IntPtr value class
	Platform::InvalidArgumentException Class
	Platform::InvalidCastException Class
	Platform::IValueType Interface
	Platform::MTAThreadAttribute Class
	Platform::NotImplementedException Class
	Platform::NullReferenceException Class
	Platform::Object Class
	Platform::ObjectDisposedException Class
	Platform::OperationCanceledException Class
	Platform::OutOfBoundsException Class
	Platform::OutOfMemoryException Class
	Platform::ReCreateException
	Platform::SizeT value class
	Platform::STAThreadAttribute Class
	Platform::String Class
	Platform::StringReference Class
	Platform::Type Class
	Platform::Type^ Operator
	Platform::TypeCode Enumeration
	Platform::UIntPtr value class
	Platform::ValueType Class
	Platform::WeakReference Class
	Platform::WriteOnlyArray Class
	Platform::WrongThreadException Class

	Platform::Collections Namespace
	Platform::Collections::BackInsertIterator Class
	Platform::Collections::InputIterator Class
	Platform::Collections::Map Class
	Platform::Collections::MapView Class
	Platform::Collections::UnorderedMap Class
	Platform::Collections::UnorderedMapView Class
	Platform::Collections::Vector Class
	Platform::Collections::VectorIterator Class
	Platform::Collections::VectorView Class
	Platform::Collections::VectorViewIterator Class

	Platform::Collections::Details Namespace
	Platform::Details Namespace
	Platform::Details::__GUID Struct
	Platform::Details::Console Class
	Platform::Details::Heap Class
	Platform::Details::HeapAllocationTrackingLevel Enumeration
	Platform::Details::HeapEntryHandler Delegate
	Platform::Details::IEquatable Interface
	Platform::Details::IPrintable Interface

	Platform::Metadata Namespace
	Platform::Metadata::Attribute Attribute
	Platform::Metadata::DefaultMemberAttribute Attribute
	Platform::Metadata::FlagsAttribute Attribute
	Platform::Metadata::RuntimeClassName

	Platform::Runtime::CompilerServices Namespace
	Platform::Runtime::InteropServices Namespace
	Windows::Foundation::Collections Namespace (C++/CX)
	back_inserter Function
	begin Function
	end Function
	to_vector Function

	Windows::UI::Xaml::Interop::TypeName Operator

	CRT functions not supported in Universal Windows Platform apps


	Windows Runtime C++ Template Library (WRL)
	How to: Activate and Use a Windows Runtime Component Using WRL
	How to: Complete Asynchronous Operations Using WRL
	How to: Handle Events Using WRL
	Walkthrough: Creating a UWP app using WRL and Media Foundation
	How to: Create a Classic COM Component Using WRL
	How to: Instantiate WRL Components Directly
	How to: Use winmdidl.exe and midlrt.exe to create .h files from windows metadata
	Key WRL APIs by Category
	WRL Reference
	Microsoft::WRL Namespace
	ActivatableClass Macros
	ActivationFactory Class
	AgileActivationFactory Class
	AgileEventSource Class
	AsWeak Function
	AsyncBase Class
	AsyncResultType Enumeration
	Callback Function (WRL)
	CancelTransitionPolicy Enumeration
	ChainInterfaces Structure
	ClassFactory Class
	CloakedIid Structure
	ComposableBase Class
	ComPtr Class
	CreateActivationFactory Function
	CreateClassFactory Function
	DeferrableEventArgs Class
	EventSource Class
	FactoryCacheFlags Enumeration
	FtmBase Class
	GetModuleBase Function
	Implements Structure
	InspectableClass Macro
	InvokeModeOptions Structure
	Make Function
	MixIn Structure
	Module Class
	Module::GenericReleaseNotifier Class
	Module::MethodReleaseNotifier Class
	Module::ReleaseNotifier Class

	ModuleType Enumeration
	operator!= Operator (Microsoft::WRL)
	operator== Operator (Microsoft::WRL)
	operator< Operator (Microsoft::WRL)
	RuntimeClass Class
	RuntimeClassFlags Structure
	RuntimeClassType Enumeration
	SimpleActivationFactory Class
	SimpleClassFactory Class
	WeakRef Class

	Microsoft::WRL::Details Namespace
	ActivationFactoryCallback Function
	ArgTraits Structure
	ArgTraitsHelper Structure
	AsyncStatusInternal Enumeration
	BoolStruct Structure
	ComPtrRef Class
	ComPtrRefBase Class
	CreatorMap Structure
	DerefHelper Structure
	DontUseNewUseMake Class
	EnableIf Structure
	EventTargetArray Class
	FactoryCache Structure
	ImplementsBase Structure
	ImplementsHelper Structure
	InterfaceList Structure
	InterfaceListHelper Structure
	InterfaceTraits Structure
	InvokeHelper Structure
	IsBaseOfStrict Structure
	IsSame Structure
	MakeAllocator Class
	MakeAndInitialize Function
	ModuleBase Class
	Move Function
	Nil Structure
	RaiseException Function
	RemoveIUnknown Class
	RemoveReference Structure
	RuntimeClassBase Structure
	RuntimeClassBaseT Structure
	Swap Function (WRL)
	TerminateMap Function
	VerifyInheritanceHelper Structure
	VerifyInterfaceHelper Structure
	WeakReference Class

	Microsoft::WRL::Wrappers Namespace
	CriticalSection Class
	Event Class (WRL)
	HandleT Class
	HString Class
	HStringReference Class
	Mutex Class
	RoInitializeWrapper Class
	Semaphore Class
	SRWLock Class

	Microsoft::WRL::Wrappers::Details Namespace
	CompareStringOrdinal Method
	SyncLockT Class
	SyncLockWithStatusT Class

	Microsoft::WRL::Wrappers::HandleTraits Namespace
	CriticalSectionTraits Structure
	EventTraits Structure
	FileHandleTraits Structure
	HANDLENullTraits Structure
	HANDLETraits Structure
	MutexTraits Structure
	SemaphoreTraits Structure
	SRWLockExclusiveTraits Structure
	SRWLockSharedTraits Structure

	Windows::Foundation Namespace
	ActivateInstance Function
	GetActivationFactory Function

	IID_PPV_ARGS_Helper Function



	SafeInt Library
	SafeInt Class
	SafeInt Functions
	SafeIntException Class

	C++ Attributes for COM and .NET
	Attribute Programming FAQ
	Attributes by Group
	COM Attributes
	IDL Attributes
	OLE DB Consumer Attributes
	Compiler Attributes

	Attributes by Usage
	Module Attributes
	Interface Attributes
	Class Attributes
	Method Attributes
	Parameter Attributes
	Data Member Attributes
	Typedef, Enum, Union, and Struct Attributes
	Array Attributes
	Stand-Alone Attributes
	Custom Attributes

	Attributes Alphabetical Reference
	aggregatable
	aggregates
	appobject
	async_uuid
	attribute
	bindable
	call_as
	case
	coclass
	com_interface_entry
	control
	cpp_quote
	custom
	db_accessor
	db_column
	db_command
	db_param
	db_source
	db_table
	default
	defaultbind
	defaultcollelem
	defaultvalue
	defaultvtable
	dispinterface
	displaybind
	dual
	emitidl
	entry
	event_receiver
	event_source
	export
	first_is
	helpcontext
	helpfile
	helpstring
	helpstringcontext
	helpstringdll
	hidden
	id
	idl_module
	idl_quote
	iid_is
	immediatebind
	implements
	implements_category
	import
	importidl
	importlib
	in
	include
	includelib
	last_is
	lcid
	length_is
	library_block
	licensed
	local
	max_is
	module
	ms_union
	no_injected_text
	nonbrowsable
	noncreatable
	nonextensible
	object
	odl
	oleautomation
	optional
	out
	pointer_default
	pragma
	progid
	propget
	propput
	propputref
	ptr
	public(C++ Attributes)
	range
	rdx
	readonly
	ref
	registration_script
	requestedit
	requires_category
	restricted
	retval
	satype
	size_is
	source
	string
	support_error_info
	switch_is
	switch_type
	synchronize
	threading
	transmit_as
	uidefault
	unique
	usesgetlasterror
	uuid(C++ Attributes)
	v1_enum
	vararg
	version
	vi_progid
	wire_marshal



